
World Journal of
Hepatology

ISSN 1948-5182 (online)

World J Hepatol  2021 November 27; 13(11): 1459-1815

Published by Baishideng Publishing Group Inc



WJH https://www.wjgnet.com I November 27, 2021 Volume 13 Issue 11

World Journal of 

HepatologyW J H
Contents Monthly Volume 13 Number 11 November 27, 2021

FRONTIER

Role of endoscopic ultrasound in the field of hepatology: Recent advances and future trends1459

Dhar J, Samanta J

OPINION REVIEW

Porta-caval fibrous connections — the lesser-known structure of intrahepatic connective-tissue framework: 
A unified view of liver extracellular matrix

1484

Patarashvili L, Gvidiani S, Azmaipharashvili E, Tsomaia K, Sareli M, Kordzaia D, Chanukvadze I

REVIEW

Promising diagnostic biomarkers of nonalcoholic fatty liver disease and nonalcoholic steatohepatitis: From 
clinical proteomics to microbiome

1494

Castillo-Castro C, Martagón-Rosado AJ, Ortiz-Lopez R, Garrido-Treviño LF, Villegas-Albo M, Bosques-Padilla FJ

Fatty acid metabolism and acyl-CoA synthetases in the liver-gut axis1512

Ma Y, Nenkov M, Chen Y, Press AT, Kaemmerer E, Gassler N

Liver involvement in inflammatory bowel disease: What should the clinician know?1534

Losurdo G, Brescia IV, Lillo C, Mezzapesa M, Barone M, Principi M, Ierardi E, Di Leo A, Rendina M

Chelation therapy in liver diseases of childhood: Current status and response1552

Seetharaman J, Sarma MS

Hepatocellular carcinoma: Understanding molecular mechanisms for defining potential clinical modalities1568

Natu A, Singh A, Gupta S

Heterogeneity of non-alcoholic fatty liver disease: Implications for clinical practice and research activity1584

Pal P, Palui R, Ray S

Newly discovered endocrine functions of the liver1611

Rhyu J, Yu R

MINIREVIEWS

Current strategies to induce liver remnant hypertrophy before major liver resection1629

Del Basso C, Gaillard M, Lainas P, Zervaki S, Perlemuter G, Chagué P, Rocher L, Voican CS, Dagher I, Tranchart H

Health-related quality of life in autoimmune hepatitis1642

Snijders RJ, Milkiewicz P, Schramm C, Gevers TJ



WJH https://www.wjgnet.com II November 27, 2021 Volume 13 Issue 11

World Journal of Hepatology
Contents

Monthly Volume 13 Number 11 November 27, 2021

Fungal infections following liver transplantation1653

Khalid M, Neupane R, Anjum H, Surani S

Elastography as a predictor of liver cirrhosis complications after hepatitis C virus eradication in the era of 
direct-acting antivirals

1663

Cerrito L, Ainora ME, Nicoletti A, Garcovich M, Riccardi L, Pompili M, Gasbarrini A, Zocco MA

Role of immune dysfunction in drug induced liver injury1677

Girish C, Sanjay S

Abnormal liver enzymes: A review for clinicians1688

Kalas MA, Chavez L, Leon M, Taweesedt PT, Surani S

Hepatopulmonary syndrome: An update1699

Gandhi KD, Taweesedt PT, Sharma M, Surani S

Mitochondrial hepatopathy: Respiratory chain disorders- ‘breathing in and out of the liver’1707

Gopan A, Sarma MS

Cystic fibrosis associated liver disease in children1727

Valamparampil JJ, Gupte GL

ORIGINAL ARTICLE

Case Control Study

Tumor characteristics of hepatocellular carcinoma after direct-acting antiviral treatment for hepatitis C: 
Comparative analysis with antiviral therapy-naive patients

1743

Fouad M, El Kassas M, Ahmed E, El Sheemy R

Circulating microRNA 9-3p and serum endocan as potential biomarkers for hepatitis C virus-related 
hepatocellular carcinoma

1753

Wahb AMSE, El Kassas M, Khamis AK, Elhelbawy M, Elhelbawy N, Habieb MSE

Retrospective Cohort Study

Do peripartum and postmenopausal women with primary liver cancer have a worse prognosis? A 
nationwide cohort in Taiwan

1766

Tseng GW, Lin MC, Lai SW, Peng CY, Chuang PH, Su WP, Kao JT, Lai HC

Nonalcoholic fatty liver disease is associated with worse intestinal complications in patients hospitalized 
for Clostridioides difficile infection

1777

Jiang Y, Chowdhury S, Xu BH, Meybodi MA, Damiris K, Devalaraju S, Pyrsopoulos N

Observational Study

Six-minute walking test performance is associated with survival in cirrhotic patients1791

Pimentel CFMG, Amaral ACC, Gonzalez AM, Lai M, Mota DO, Ferraz MLG, Junior WM, Kondo M



WJH https://www.wjgnet.com III November 27, 2021 Volume 13 Issue 11

World Journal of Hepatology
Contents

Monthly Volume 13 Number 11 November 27, 2021

SYSTEMATIC REVIEWS

Incidence of umbilical vein catheter-associated thrombosis of the portal system: A systematic review and 
meta-analysis

1802

Bersani I, Piersigilli F, Iacona G, Savarese I, Campi F, Dotta A, Auriti C, Di Stasio E, Garcovich M



WJH https://www.wjgnet.com IX November 27, 2021 Volume 13 Issue 11

World Journal of Hepatology
Contents

Monthly Volume 13 Number 11 November 27, 2021

ABOUT COVER

Editorial Board Member of World Journal of Hepatology, Igor Skrypnyk, MD, MDS, PhD, Professor, Internal 
Medicine #1, Poltava State Medical University, Poltava 36011, Ukraine. inskrypnyk@gmail.com

AIMS AND SCOPE

The primary aim of World Journal of Hepatology (WJH, World J Hepatol) is to provide scholars and readers from 
various fields of hepatology with a platform to publish high-quality basic and clinical research articles and 
communicate their research findings online. 
    WJH mainly publishes articles reporting research results and findings obtained in the field of hepatology and 
covering a wide range of topics including chronic cholestatic liver diseases, cirrhosis and its complications, clinical 
alcoholic liver disease, drug induced liver disease autoimmune, fatty liver disease, genetic and pediatric liver 
diseases, hepatocellular carcinoma, hepatic stellate cells and fibrosis, liver immunology, liver regeneration, hepatic 
surgery, liver transplantation, biliary tract pathophysiology, non-invasive markers of liver fibrosis, viral hepatitis.

INDEXING/ABSTRACTING

The WJH is now abstracted and indexed in PubMed, PubMed Central, Emerging Sources Citation Index (Web of 
Science), Scopus, China National Knowledge Infrastructure (CNKI), China Science and Technology Journal 
Database (CSTJ), and Superstar Journals Database. The 2021 edition of Journal Citation Reports® cites the 2020 
Journal Citation Indicator (JCI) for WJH as 0.61. The WJH’s CiteScore for 2020 is 5.6 and Scopus CiteScore rank 
2020: Hepatology is 24/62.

RESPONSIBLE EDITORS FOR THIS ISSUE

Production Editor: Xu Guo; Production Department Director: Xiang Li; Editorial Office Director: Xiang Li.

NAME OF JOURNAL INSTRUCTIONS TO AUTHORS

World Journal of Hepatology https://www.wjgnet.com/bpg/gerinfo/204

ISSN GUIDELINES FOR ETHICS DOCUMENTS

ISSN 1948-5182 (online) https://www.wjgnet.com/bpg/GerInfo/287

LAUNCH DATE GUIDELINES FOR NON-NATIVE SPEAKERS OF ENGLISH

October 31, 2009 https://www.wjgnet.com/bpg/gerinfo/240

FREQUENCY PUBLICATION ETHICS

Monthly https://www.wjgnet.com/bpg/GerInfo/288

EDITORS-IN-CHIEF PUBLICATION MISCONDUCT

Nikolaos Pyrsopoulos, Ke-Qin Hu, Koo Jeong Kang https://www.wjgnet.com/bpg/gerinfo/208

EDITORIAL BOARD MEMBERS ARTICLE PROCESSING CHARGE

https://www.wjgnet.com/1948-5182/editorialboard.htm https://www.wjgnet.com/bpg/gerinfo/242

PUBLICATION DATE STEPS FOR SUBMITTING MANUSCRIPTS

November 27, 2021 https://www.wjgnet.com/bpg/GerInfo/239

COPYRIGHT ONLINE SUBMISSION

© 2021 Baishideng Publishing Group Inc https://www.f6publishing.com

© 2021 Baishideng Publishing Group Inc. All rights reserved. 7041 Koll Center Parkway, Suite 160, Pleasanton, CA 94566, USA

E-mail: bpgoffice@wjgnet.com  https://www.wjgnet.com

https://www.wjgnet.com/bpg/gerinfo/204
https://www.wjgnet.com/bpg/GerInfo/287
https://www.wjgnet.com/bpg/gerinfo/240
https://www.wjgnet.com/bpg/GerInfo/288
https://www.wjgnet.com/bpg/gerinfo/208
https://www.wjgnet.com/1948-5182/editorialboard.htm
https://www.wjgnet.com/bpg/gerinfo/242
https://www.wjgnet.com/bpg/GerInfo/239
https://www.f6publishing.com
mailto:bpgoffice@wjgnet.com
https://www.wjgnet.com


WJH https://www.wjgnet.com 1459 November 27, 2021 Volume 13 Issue 11

World Journal of 

HepatologyW J H
Submit a Manuscript: https://www.f6publishing.com World J Hepatol 2021 November 27; 13(11): 1459-1483

DOI: 10.4254/wjh.v13.i11.1459 ISSN 1948-5182 (online)

FRONTIER

Role of endoscopic ultrasound in the field of hepatology: Recent 
advances and future trends

Jahnvi Dhar, Jayanta Samanta

ORCID number: Jahnvi Dhar 0000-
0002-6929-4276; Jayanta Samanta 
0000-0002-9277-5086.

Author contributions: Dhar J 
contributed conception and design, 
data acquisition and analysis, 
drafted the article, final approval; 
Samanta J contributed conception 
and design, data interpretation, 
critical revision and intellectual 
content of the draft, final approval.

Conflict-of-interest statement: All 
the authors declare no potential 
conflicts of interest.

Country/Territory of origin: India

Specialty type: Gastroenterology 
and hepatology

Provenance and peer review: 
Invited article; Externally peer 
reviewed.

Peer-review report’s scientific 
quality classification
Grade A (Excellent): A 
Grade B (Very good): 0 
Grade C (Good): 0 
Grade D (Fair): 0 
Grade E (Poor): 0

Open-Access: This article is an 
open-access article that was 
selected by an in-house editor and 
fully peer-reviewed by external 
reviewers. It is distributed in 
accordance with the Creative 

Jahnvi Dhar, Jayanta Samanta, Department of Gastroenterology, Post Graduate Institute of 
Medical Education and Research, Chandigarh 160012, India

Corresponding author: Jayanta Samanta, MBBS, MD, DM, Assistant Professor, Doctor, 
Department of Gastroenterology, Post Graduate Institute of Medical Education and Research, 
Sector 12, Chandigarh 160012, India. dj_samanta@yahoo.co.in

Abstract
The role of endoscopic ultrasound (EUS) as a diagnostic and therapeutic modality 
for the management of various gastrointestinal diseases has been expanding. The 
imaging or intervention for various liver diseases has primarily been the domain 
of radiologists. With the advances in EUS, the domain of endosonologists is 
rapidly expanding in the field of hepatology. The ability to combine endoscopy 
and sonography in one hybrid device is a unique property of EUS, together with 
the ability to bring its probe/transducer near the liver, the area of interest. Its 
excellent spatial resolution and ability to provide real-time images coupled with 
several enhancement techniques, such as contrast-enhanced (CE) EUS, have 
facilitated the growth of EUS. The concept of “Endo-hepatology” encompasses the 
wide range of diagnostic and therapeutic procedures that are now gradually 
becoming feasible for managing various liver diseases. Diagnostic advancements 
can enable a wide array of techniques from elastography and liver biopsy for liver 
parenchymal diseases, to CE-EUS for focal liver lesions to portal pressure 
measurements for managing various liver conditions. Similarly, therapeutic 
advancements range from EUS-guided eradication of varices, drainage of bilomas 
and abscesses to various EUS-guided modalities of liver tumor management. We 
provide a comprehensive review of all the different diagnostic and therapeutic 
EUS modalities available for the management of various liver diseases. A synopsis 
of all the technical details involving each procedure and the available data has 
been tabulated, and the future trends in this area have been highlighted.

Key Words: Endoscopic ultrasound; Liver disease; Elastography; Varices; Liver tumor; 
Liver biopsy
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Core Tip: The advancements in the field of endoscopic ultrasound (EUS) have enabled 
endosonologists to rapidly expand their wings in the field of hepatology. “Endo-
hepatology” encompasses the wide range of diagnostic and therapeutic endoscopic 
procedures that can be used for the management of various liver diseases. Diagnostic 
advancements range from elastography for liver parenchymal diseases, contrast-
enhanced EUS for a focal liver lesion to portal pressure measurements. Therapeutic 
advancements range from EUS-guided eradication of varices to drainage of abscesses 
to liver tumor ablation. In this comprehensive review, all the various diagnostic and 
therapeutic EUS modalities available for the management of liver diseases have been 
detailed.
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INTRODUCTION
The armamentarium of endoscopic ultrasound (EUS) has grown considerably in recent 
years, both as an investigative and a therapeutic modality. The established diagnostic 
tools for the study of liver diseases include trans-abdominal ultrasound (USG), 
computed tomography (CT) scan and magnetic resonance imaging (MRI). While in the 
past, interventions in liver disease have predominantly been performed by the 
percutaneous or vascular route, EUS is now more and more being used for both 
diagnostic and therapeutic purposes. The ability to combine endoscopy and 
sonography in one hybrid device is a unique property of EUS, together with the ability 
to bring its probe/transducer in close proximity to the liver, the area of interest. In 
addition, its excellent spatial resolution and ability to provide real-time images, along 
with additional techniques, such as contrast-enhanced (CE) EUS, have facilitated the 
growth of EUS.

Furthermore, EUS guided intervention is also used as a rescue modality when the 
percutaneous approach is not favorable. EUS has opened doors to a variety of other 
procedures which are being explored, such as portal vein (PV) sampling for cancer 
cells, delivery of chemotherapy in the PV, measurement of portosystemic pressure 
gradient, and EUS guided transjugular intrahepatic portosystemic shunt (TIPS) 
creation. Harnessing its use in various liver-related interventions paves the way for a 
new zone of specialty, “Endo-hepatology.” Herein we provide a comprehensive 
review on the use of EUS in the field of hepatology, both diagnostic and therapeutic, 
discussing the various recent advances and future trends (Figure 1).

LITERATURE SEARCH
A search was performed in PubMed and Embase and the search strategy is outlined in 
Supplementary Doc 1. All studies such as case reports, series, clinical studies, animal 
models and reviews regarding EUS applications in liver disorders, including portal 
hypertension (PHTN), were reviewed. Non-English language literature was not 
included in the review. EUS applications for extrahepatic bile duct obstruction, 
gallbladder, etc., including their interventions, are beyond the scope of this review and 
have been excluded.

EUS FOR LIVER PARENCHYMA ASSOCIATED DISEASES
EUS can be used for the diagnosis, assessment and therapeutic management of ascites, 
liver parenchymal pathologies, space-occupying lesions (SOLs), liver biopsy, drainage 
of liver abscesses, bilomas and the management of hepatic tumors.

http://creativecommons.org/Licenses/by-nc/4.0/
http://creativecommons.org/Licenses/by-nc/4.0/
http://creativecommons.org/Licenses/by-nc/4.0/
https://www.wjgnet.com/1948-5182/full/v13/i11/1459.htm
https://dx.doi.org/10.4254/wjh.v13.i11.1459
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Figure 1 Spectrum of endoscopic ultrasound in hepatology. EUS: Endoscopic ultrasound; CH-EUS: Contrast harmonic endoscopic ultrasound; EUS-
IPSS: Endoscopic ultrasound guided intrahepatic portosystemic shunt; EUS-LB: Endoscopic ultrasound guided liver biopsy; EUS-PPG: Endoscopic ultrasound guided 
portal pressure gradient; EUS-P: Endoscopic ultrasound guided paracentesis; GV: Gastric varices.

Ascites: Assessment and paracentesis
Ascites can be due to benign or malignant diseases. Although the differential diagnosis 
is broad, around 80%-90% of cases are attributed to underlying cirrhosis and PHTN
[1]. Traditionally, routine paracentesis is performed bedside and sometimes with 
abdominal ultrasound guidance. However, abdominal paracentesis may become 
difficult in the presence of multiple abdominal scars, previous puncture marks, 
obesity, dilated bowel loops, dilated/tortuous veins, or the presence of omental or 
peritoneal nodules[1-3]. EUS guided paracentesis (EUS-P) is more sensitive than CT in 
detecting ascites[2,4]. The presence of ascites not visualized on imaging (CT/USG) as 
well as compartmentalization of fluid (such as benign etiologies like tuberculosis or 
tumor implants in peritoneal carcinomatosis) makes EUS-P a very promising tool in 
these areas[4,5]. With EUS-P, even small amounts of fluid (as little as 2.7 mL) can be 
aspirated and provide valuable diagnostic information[6]. In addition, EUS-P can be 
used as a rescue procedure in the case of previously failed percutaneous paracentesis 
or part of diagnostic workup during diagnostic EUS (Figure 2).

Additionally, EUS guided fine needle aspiration (EUS-FNA) of suspicious nodules 
in the omentum/peritoneum can be performed simultaneously while performing 
paracentesis for targeted cytological diagnosis[7]. Contrast-enhanced EUS (CE-EUS) 
has also been evaluated to identify enhancement patterns of peritoneal nodules or 
omental caking and differentiate benign or malignant causes of undiagnosed ascites
[8].

The technique of EUS-P: The technique of EUS-P is detailed in Table 1.

Future trends: Since the first report of EUS-FNA of ascites and pleural fluid performed 
in 1995, various reports of EUS-P with/out FNA of peritoneal deposits have been 
published subsequently with excellent diagnostic capability and correlation with 
intraoperative findings[12]. Some cases of development of infectious complications 
(attributed to traversing the contaminated gastrointestinal wall) such as self-limited 
fever (3.3%) and bacterial peritonitis (4%) have been reported[5,10]. Recent develop-
ments include the deployment of double plastic stents in loculated ascites 
(benign/malignant), leading to internal drainage causing significant improvement in 
quality of life[13,14] (Figure 3). A clinical trial is also recruiting patients for EUS 
guided placement of a plastic prosthesis for refractory malignant ascites[15]. The 
various studies on EUS-P are summarized in Table 2.

Thus, EUS-P is an excellent tool (sensitivity 94%, specificity 100%) to detect a small 
quantity of ascites[10] and therapeutic drainage where the percutaneous approach is 
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Table 1 Technique of endoscopic ultrasound guided paracentesis[1-3,9-11]

Pre-procedure requirements

(1) No recommendations exist for EUS-P, although most studies have been performed under the cover of pre/peri-procedural antibiotics; and (2) Patient is 
usually fasted for 4-6 h before the procedure

Technical aspects

(1) EUS-P is usually performed using a 22 G/25 G FNA needle. A specialized spring-loaded 22 G FNA needle can also be used for the same; (2) The 
approach can be transgastric or transduodenal. The tip of the needle is visualized under EUS guidance in the ascites; (3) At the time of puncture, care is 
taken to avoid a trajectory involving any tumor/vessels to avoid peritoneal seeding or bleeding; (4) For therapeutic paracentesis, a suction tube attached to 
a vacuum canister can be used; (5) Repositioning of the needle is carried out in case it gets blocked by the tumor or omentum; (6) Two and fro motion is 
usually not needed; (7) CE-EUS followed by FNA of the peritoneal/omental nodules can also be done for added diagnostic value; and (8) The sample 
aspirated is sent for routine cytological assessment and for any additional tests that might be needed

Post procedure

The administration of albumin post 5 L of paracentesis and post procedure observation are carried out as per standard recommendations (EASL, AASLD)

EUS: Endoscopic ultrasound; EUS-FNA: Endoscopic ultrasound guided fine needle aspiration; EUS-P: Endoscopic ultrasound guided paracentesis; G: 
Gauge; CE-EUS: Contrast enhanced endoscopic ultrasound; EASL: European Association for the Study of Liver; AASLD: American Association for the 
Study of Liver Diseases.

not amenable. Furthermore, FNA of peritoneal/omental nodules is an added 
advantage that can increase the diagnostic yield.

Assessment of liver parenchyma/SOLs: Anatomy of the liver, its segments and 
surrounding structures
The requirement for three-dimensional conceptualization of the liver parenchyma 
makes EUS assessment of the liver and surrounding structures different from the 
conventional methods of USG/CT/MRI. Depending on the position of the EUS scope, 
either in the stomach or duodenum, various structures can be identified (Table 3 and 
Figure 4) such as[17]: (1) From the gastric end: Segments I (caudate lobe), left lobe 
segments (II, III, IV), right lobe (V, VIII), umbilical part of the left PV and ligamentum 
teres, ligamentum venosum, inferior vena cava, and hilum; and (2) From the duodenal 
bulb: Segments VI, VII; the hepatoduodenal ligament structures and PV and hepatic 
artery branches, the liver hilum and the segmental divisions of the right PV and 
hepatic artery.

Although transabdominal USG or CT scan is the first-line approach for evaluation 
of liver parenchyma or focal lesions, EUS has additional features which can add to its 
diagnostic/therapeutic potential[18,19]: (1) Transducer proximity enables better identi-
fication of the structures; (2) Combination of real-time images with elastography 
enables semi-quantitative measurements of liver parenchymal stiffness; (3) Newer 
generation EUS machines with color, power and pulsed Doppler systems helps easy 
assessment of the vasculature; (4) CE-EUS or harmonic EUS increases the diagnostic 
performance of focal liver lesions; and (5) Simultaneous assessment and interventions 
such as management of varices and liver biopsy can be performed in a single setting.

Techniques of assessment: Elastography and contrast enhancement techniques
Real-time elastography (RTE) has been developed for the assessment and quanti-
fication of liver tissue stiffness. Qualitative RTE uses the degree of deformation by the 
compression of structures as an indicator of tissue stiffness and is depicted using a 
color map wherein hard tissue is blue, intermediate stiffness is green and soft tissue is 
red. Quantitative RTE, on the other hand, uses hue histogram and strain ratio. While 
the former is a graphical representation of the color distribution in a selected image 
field, the strain ratio is calculated as the ratio of the target area (A) by reference area 
(B) (Figure 5)[20].

CE-EUS is a more valuable technique to improve the diagnostic performance of 
focal liver lesions. It is of 2 types: CE-EUS with the Doppler method (CE-EUS-D) and 
CE-EUS with harmonic imaging (CE-EUS-H). The former helps distinguish vascular-
rich and hypovascular areas of a liver SOL, whereas the latter helps provide a detailed 
roadmap of the vasculature of the same. Of the contrast agents available, Sonovue and 
Sonazoid are more commonly used[21].

The concept of CE-EUS depends on the dual blood supply of the liver and has 3 
phases: arterial phase (20-45 s), portal venous phase (lasting up to 120 s), and the late 
phase (contrast agent clearance, around 6 min)[21].
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Table 2 Studies on endoscopic ultrasound guided paracentesis

Ref. Study design Patient 
population Imaging Age (yr) Gender 

(M/F) Needle Route 
(TG/TD)

Amount of fluid 
aspirated Diagnosis on EUS Actual 

diagnosis Complications

Chang et al[12], 1995 Case report 2 cases CT (pleural effusion 
and ascites)

- - - - - - Malignant 
effusion and 
ascites

-

Romero-Castro et al
[14], 2017

Case series 3 cases DLBCL (1 case), HCC 
(2 cases)

60/74/55 3/- 19 G FNA (all cases) TG (3 
cases)

Double Pigtail 
placement (3 cases)

- Malignant 
ascites (3 cases)

None

Wardeh et al[16], 
2011

Retrospective 
study

101 Ascites not detected in 
6/9 cases on CT

68.3 54/47 19 G FNA NA 10 mL (max) in 90 
cases, 2 smears in 11 
cases

74 negative 84 malignant None

Suzuki et al[11], 2014 Retrospective 
study

11 cases CT (no ascites in 4) 66.4 7/4 22 G 
(automatedspring-
loaded)

NA 14.1 mL (range 0.5-38 
mL)

Benign 5; malignant 6 NA None

Kaushik et al[10], 
2006

Retrospective 
study

25 NA 66-70 16/9 22/25 G FNA Both 6.8 mL (range, 1-20 
mL)

64% malignant (benign 9; 
malignant 16)

Benign 8; 
malignant 17

1 cases (4%) 
(bacterial peritonitis)

Lee et al[4], 2005 Retrospective 
study

250 cases CT in all 60.3 160/90 NA NA NA 37% ascites, 28% 
peritoneal metastasis

All malignant None

Dewitt et al[5], 2007 Retrospective 
study

60 CT/MRI/USG in all 
(ascites 31 cases (51%)

67 33/27 22 G 55 (TG), 5 
(TD)

8.9 (1-40) mL Benign 42; 
malignant/atypical 18

Benign 15; 
malignant 45

2 cases fever

Köck et al[13], 2018 Case report 2 cases Rectal cancer, ovarian 
cancer

36, 56 -/2 19 G Both TG Pigtail (plastic) placed - - None

Nguyen and Chang
[2], 2001

Retrospective 
study

31 cases (of 85) CT had ascites in 14/79 
(18%)

NA NA NA NA 7.9 (1-40 mL) Malignant 5; benign 26 NA None

Varadarajulu and 
Drelichman[3], 2008

Case report 1 SCC anus 31 -/1 19 G TG (1) 10 mL (diagnostic); 5 L 
(therapeutic)

Malignant ascites NA None

DLBCL: Diffuse large B cell lymphoma; TG: Transgastric; TD: Transduodenal; M: Male; F: Female; G: Gauge; EUS: Endoscopic ultrasound; CT: Computed tomography; FNA: Fine needle aspiration; SCC: Squamous cell carcinoma; USG: 
Ultrasound; MRI: Magnetic resonance imaging.

The advantages of CE-EUS over CT and MRI are that: (1) It provides real-time 
imaging; (2) Contrast is not excreted by the kidneys, and thus can be used in cases 
with renal insufficiency; (3) Contrast is confined to the vascular space only and so has 
prolonged enhancement of vascular system; (4) Higher resolution helps in targeted 
biopsies; and (5) Can characterize lesions less than 1 cm.

EUS imaging in chronic liver diseases
Certain tests such as transient elastography (TE), Fibroscan, and RTE can aid in the 
diagnosis of the degree of liver fibrosis. However, these tests are fraught with 
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Table 3 Structures visualized with endoscopic ultrasound in the liver

Structure Features Doppler

Portal vein branches Thick and hyperechoic walls Positive signal

Hepatic vein branches Thin, non-reflective walls, straight course Positive signal

Biliary radical Hyperechoic walls, irregular course Negative signal

Ligaments (teres and 
venosum)

Thick, hyperechoic (no lumen) (between vessels and Glisson’s capsule) Negative signal 

Gallbladder Cystic structure, hyperechoic walls, anechoic content Negative signal

Falciform ligament Thick, hyperechoic (no lumen); on the left anterior to segment III, on the right anterior to segment IVa 
and IVb

Negative signal

Hepatic artery Thick with reflective walls Positive signal

Figure 2 Endoscopic ultrasound guided paracentesis. Needle is visualized in the ascitic fluid.

limitations in people with obesity and ascites. EUS can be used similarly with probably 
better diagnostic sensitivity for the same. Schulman et al[22] reported that liver fibrosis 
index (LFI) correlated with abdominal imaging (LFI in normal, fatty liver and cirrhosis 
patients were 0.8, 1.4 and 3.2, respectively). Similar findings were replicated in liver 
fibrosis assessment for chronic hepatitis C cases (LFI of 2.38 had an area under the 
receiver operating characteristic curve of 0.73) compared with the gold standard of 
liver biopsy. Histogram acquisition was successful in 82% of patients[23]. A recent 
study by Tu et al[24] in early-stage cirrhosis showed that the accuracy of a combination 
of EUS, EUS-RTE, acoustic radiation force impulse (AFRI) and aspartate aminotrans-
ferase-to-platelet ratio (APRI) had the highest diagnostic rate (sensitivity 87%). Thus, 
EUS can provide a one-stop diagnostic modality to screen and rule out a host of 
conditions in patients with liver disease, from the screening of varices, pancre-
aticobiliary pathology to hepatic parenchymal/SOL assessment.

EUS imaging in focal liver lesions
The diagnostic accuracy of EUS in detecting focal liver lesions, mostly less than 1 cm, 
exceeds that of USG, CT, and MRI[25,26]. Singh et al[27] addressed the diagnostic yield 
of EUS vs CT for hepatic metastasis (98% vs 92%), wherein EUS identified a 
significantly greater number of metastatic lesions (40 vs 19). Diagnostic criteria 
proposed by Fujii-Lau et al[28] can be used to differentiate between benign and 
malignant metastatic hepatic lesions based on EUS findings with a positive predictive 
value of 82%. Lesion shape, borders, echogenicity, homogeneity, and size are used to 
delineate malignant lesions. It is said to be neoplastic if it meets at least three criteria: 
(1) Lack of isoechoic/slightly hyperechoic center; (2) Post-acoustic enhancement; (3) 
Adjacent structures distortion; (4) Hypoechogenicity (slightly or distinctly); and (5) At 
least 10 mm in size.
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Figure 3 Endoscopic ultrasound-guided internal drainage of loculated ascites. A: Puncture of the loculated ascites with 19-G aspiration needle; B: 
Guidewire negotiated across as visualized on endoscopic ultrasound; C: Fluoroscopic view of guidewire coiled inside the loculated ascites; D: Naso-cystic drain 
placed inside the loculated ascites.

With the advent of EUS-RTE, the characterization of liver SOLs and their biopsies 
have become better (Figure 6). A study reported a hue histogram cutoff of 170 to 
discriminate between benign and malignant tumors (sensitivity 92.5%, accuracy 88.6%)
[29]. In addition, the use of contrast agents in CE-EUS helps in differentiating primary 
tumors and metastasis[30]. CE-EUS has also been utilized for the assessment of 
treatment response in hepatocellular carcinoma (HCC) post-trans-arterial catheter 
embolization[31]. Hence, EUS with RTE, CE-EUS and CE-EUS-H might be a promising 
tool for diagnosing focal liver lesions and targeted intervention.

EUS-FNA of focal liver lesions
Several studies exist on the use of EUS-FNA/FNB (fine needle biopsy) for solid liver 
lesions with a complication rate of 0%-6% (Table 4). A recent systematic review by 
Ichim et al[42] showed the diagnostic yield of EUS-FNA to be 80%-100%.

Future trends
Studies have reported additional assessment of KRAS mutation in inconclusive 
cytological samples, which has resulted in an improved diagnostic yield from 89.3% to 
96.4%[43]. Similarly, an animal study has evaluated the art of in vivo cytological 
observation using a high-resolution micro-endoscopy (HRME) system under EUS 
guidance[44] to decrease the number of needle-passes and subsequent adverse events. 
Recently, Minaga et al[45] have reported the additive role of CE-EUS-H in the 
detection of left lobe liver metastasis from pancreatic ductal adenocarcinoma. The 
diagnostic accuracy of CH-EUS was 98.4% compared to 90.6% with CECT.

EUS guided liver biopsy
Despite the advances in various non-invasive testing available to determine the degree 
of fibrosis, liver biopsy remains the gold standard method for accurate assessment in 
diagnosis and staging. As first described in 1883 by Dr. Paul Ehlrich, percutaneous 
liver biopsy (PC-LB) has evolved from a mere percussion method to an “image-
guided” technique in the last ten years using ultrasound/CT imaging to accomplish it. 
However, despite image guidance, the risk of bleeding persists, occurring in up to 
0.6% of cases, including other adverse events like pneumothorax and gallbladder 
puncture and even death in a few cases[46]. The transjugular technique of liver biopsy, 
introduced in 1973, can help reduce this risk, especially in patients with underlying 
coagulopathy. However, this method also carried added risks of local site hematoma, 
intraperitoneal bleeding, arrhythmia and carotid puncture[47].
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Table 4 Studies on endoscopic ultrasound guided fine needle aspiration/fine needle biopsy of focal liver lesions

Ref. Design Patients Diagnostic yield (%) Needle passes (median) Complications
EUS-FNA

Nguyen et al[32] Prospective 14 100 2 0

TenBerge et al[33] Retrospective 26 88.6 - 3.8% (fever)

DeWitt et al[34] Retrospective 77 91 3.4 (mean) 0

Hollerbach et al[35] Prospective 33 94 1.4 ± 0.6 6.1% (self-limited bleeding)

McGrath et al[36] Prospective 7 100 2 0

Singh et al[26] Prospective 9 88.9 2 0

Singh et al[27] Prospective 26 96 2.1 0

Crowe et al[37] Retrospective 16 75 3 (minimum) 0

Prachayakul et al[38] Retrospective 14 100 0

Oh et al[39] Prospective 47 90.5 3 0

Ichim et al[25] Prospective 48 98 2 0

EUS-FNB

Lee et al[40] Prospective 21 90.5 2 0

Chon et al[41] Retrospective 58 89.7 2 1.7% (bleed)

EUS: Endoscopic ultrasound; FNA: Fine needle aspiration; FNB: Fine needle biopsy.

EUS guided liver biopsy (EUS-LB) initiated as early as 2007 is currently emerging as 
a cost-effective, safe and well-tolerated procedure and helps in more representative 
sampling. The American Association for the Study of Liver Diseases recommends a 
tissue length of at least 2-3 cm with ≥ 11 or more complete portal tracts (CPTs) for 
determining the adequacy of liver biopsy samples[48]. The mean tissue length and 
CPTs for EUS-LB, PC-LB and TJLB, as shown in various studies is 36.9, 9 and 17.7 mm, 
and 7.7, 13.5 and 6.8 mm, respectively[49,50]. This can be achieved with a regular 19 G 
EUS-FNA needle (71). Similarly, a meta-analysis on EUS-LB revealed that pooled 
successful histological diagnosis was achieved in 93.9% of cases. Adverse event rates 
with EUS-LB, PC-LC and TJLB were 2.3%, 0.09%-3.1% and 0.56%-6.5%, respectively
[48,51,52]. A recent meta-analysis between the three techniques revealed that EUS-LB 
was comparable to PC-LB in terms of CPT, but tissue length was better with the 
former with no complication rates[53].

EUS-LB has been used in the setting where patients undergo other endoscopic 
procedures such as screening of the biliary tree, assessment of surrounding structures 
and lymph nodes and variceal screening in those not affected with ascites and obesity
[50], thereby saving time and resources. Furthermore, EUS-LB is theoretically less 
painful as it does not require skin puncture, eliminates the need for breath-hold and 
allows visualization and avoidance of blood vessels even 1 mm in size and is suitable 
for anxious patients by using adequate sedation (Figure 7). Moreover, bilobar biopsy 
can be achieved, reducing sampling error and helping in better assessment of disease 
activity and fibrosis[54].

Technique: The technique of EUS-LB is described in Table 5.

Future trends: In attempts to acquire better quality and quantity of specimens, various 
studies have been published on different needles and methods of executing a EUS-LB 
procedure. A recent RCT comparing a 19 G FNB needle (fork-tip) vs 19 G standard 
FNA needle yielded better results with the former (pre-processing length 2.09 cm vs 
1.47 cm and more CPTs)[55]. In contrast, a recent meta-analysis showed the superiority 
of FNA needles over core biopsy needles in terms of better tissue acquisition[51]. Thus, 
19 G FNA needle may be used for EUS-LB procedures except for the cases where 
immunohistochemistry and architecture characterization are warranted, in whom core 
biopsy needle may be used.

Mok et al[56] showed that the “wet heparin” suction technique had greater tissue 
yield compared to “dry suction” (aggregate specimen length 49.2 mm vs 23.9 mm; 
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Table 5 Technique of endoscopic ultrasound guided liver biopsy[50,51]

Pre-biopsy: The following workup is needed in all cases of liver biopsy

(1) Coagulation work up including platelet count, PT/INR and BT/CT; (2) Prior to the biopsy, the medications should be stopped as follows: anti-platelet 
medications 7 d, warfarin 5 d, heparin and related products discontinued 12-24 h prior to biopsy; and (3) Use of conscious sedation such as midazolam 
and nalbuphine or propofol as per operator’s preference or patient comfort

Procedural details of EUS-LB

(1) A linear array echoendoscope (Olympus GF-UCT180, Center Valley, United States) is generally used for the procedure; (2) Prior to the procedure, 
Doppler imaging is done to ensure that no vascular structures are present along the expected trajectory of the needle; (3) The EUS-LB can be performed 
using a 19 G EUS-FNA/FNB needle; (4) The left lobe is identified first, as that liver parenchyma which is a few centimeters below the gastro-esophageal 
junction with the scope torqued clockwise. The right lobe if needed to be biopsied, is accessed from the duodenal bulb. Two site biopsy can be undertaken 
at the discretion of the endosonographer; (5) A preferably long vessel free trajectory allowing free passage of the needle to a depth of at least 3 cm or more 
is usually selected; (6) For wet heparin suction, the stylet is removed and the needle is primed with a heparin flush and the suction syringe is reattached to 
the needle hub; (7) The needle is then introduced into the echoendoscope channel; (8) Once liver parenchymal penetration is achieved with the needle 
(around 1-2 cm), full suction is applied with the 20 mL vacuum syringe with fluid column; (9) One pass consists of a total of 4-5 to-and-fro needle motions 
using the fanning technique under direct EUS guided visualization of the tip of the needle. Two such passes are usually taken (maximum 10 actuations); 
and (10) The specimen is pushed from the needle directly into the formalin solution using the stylet or saline flush

Post-liver biopsy: The following instructions are to be followed in all cases post liver biopsy

(1) The patient post biopsy, irrespective of the type of procedure, is transferred to the post procedure recovery room and monitored as per the AASLD 
protocol[69]; (2) The minimum observation period is 2-4 h; (3) Post-procedure pain and need for analgesics to be noted and provided; and (4) Patient is 
asked to report adverse events at specific time intervals (as per institute policy)

EUS: Endoscopic ultrasound; PT Prothrombin time; INR International normalized ratio; BT: Bleeding time; CT: Clotting time; EUS-LB: Endoscopic 
ultrasound guided liver biopsy; FNA: Fine needle aspiration; FNB: Fine needle biopsy; AASLD: American Association for the Study of Liver Diseases.

Figure 4 Endoscopic ultrasound anatomy of liver segments. A: Anatomy of the left lobe with S2 and S3 segments; B: Ligamentum teres with umbilical 
portion of the left portal vein; C: Middle hepatic vein with segments of the liver; D: Anatomy of the bifurcation of portal vein from the duodenal bulb. PV: Portal vein; 
MHV: Middle hepatic vein; LHV: Left hepatic vein; RPV: Right portal vein; LPV: Left portal vein.

mean CPT count 7 vs 4). Thus, the combination of wet-heparinized suction and a 19-G 
second-generation (FNA/FNB) needle might help achieve better specimens with 
minimal fragmentation.
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Figure 5 Endoscopic ultrasound elastography of the liver parenchyma.

Figure 6 Endoscopic ultrasound elastography of a focal liver lesion with strain ratio calculation.

The various studies using EUS-LB (FNA/FNB) in patients with chronic liver disease 
are highlighted in Table 6. The average technical success and diagnostic yield for EUS-
FNA and EUS-FNB-guided liver biopsy are 100% and 89.8%, respectively, with a 
complication rate of 3.3%, consisting entirely of minor events[70]. In addition, studies 
reporting the use of EUS-LB in patients with NAFLD (overall technical success rate 
100%, yield 96.8% with 7.7% complication rate) are reported in Supplementary Table 1.

EUS guided therapeutic management of liver cysts, liver abscess and biloma
Symptomatic liver cysts, abscesses and bilomas may require drainage. Traditionally, 
these were approached through surgical or interventional radiology using 
percutaneous catheter drainage (PCD). Recently, EUS guidance has been used to drain 
simple intrahepatic cysts of varied etiologies, liver abscesses and bilomas. EUS guided 
drainage may be superior to PCD as it enables a one-step approach, leading to internal 
drainage and thus avoiding the complications of catheter dislodgement, pericatheter 
leak, multiple interventions and movement restrictions.

EUS guided treatment of hepatic cysts: The most frequent liver cysts encountered for 
drainage via EUS include simple hepatic cysts and intrahepatic pancreatic 
pseudocysts. Those located in the left lobe of the liver or the caudate lobe can be 
drained via EUS guidance. PCD would be preferred for right lobe cysts as it is difficult 
to access the right lobe in the duodenal bulb with an unstable scope position. 
Therapies offered by EUS include fine-needle aspiration, ethanol lavage and 

https://f6publishing.blob.core.windows.net/7c7f92ad-ecc1-411b-a0fa-fcf9e5edba6f/WJH-13-1459-supplementary-material.pdf
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Table 6 Studies on endoscopic ultrasound guided fine needle aspiration guided and endoscopic ultrasound guided fine needle biopsy 
guided liver biopsy in patients with chronic liver disease

Ref. Design of the 
study Patients

Technical 
success 
(%)

Diagnostic 
yield (%)

Specimen 
length 
(median, 
range) (mm)

CPT 
(median, 
range)

Needle used 
for EUS-LB

Needle 
passes 
(median)

Complications, 
n (%)

EUS-FNA guided liver biopsy

Pineda et al
[57]

Retrospective 110 100 98 38 (24-81) 14 (9-27) 19 G - 0

Shuja et al[58] Retrospective 69 100 100 45.8 (mean) 10.84 (mean) 19 G 3 0

Stavropoulos 
et al[50]

Prospective 
case series

22 100 91 36.9 (2-184.6) 9 (1-73) 19 G 2 (1-3) 0

Diehl et al[59] Prospective 
non 
randomized

110 100 98 38 (0-203) 14 (0-68) 19 G 1.5 (1-2) 1 (0.9) (mild 
bleeding)

Gor et al[60] Retrospective 
case series

10 100 100 13 (6-23) 8 (6-15) 19 G - 0

EUS-FNB guided liver biopsy

Shah et al[61] Retrospective 24 100 96 65.6 (17-167.4) 32.5 (5-85) 19 G 
(SharkCore)

2 (1-3) 2 (8.3)

Nieto et al[62] Retrospective 165 100 100 60 (43-80) 18 (13-24) 19 G 
(SharkCore)

1 3 (1.8)

Mathew[63] Case report 2 100 100 - - 19 G 
(QuickCore)

- 0

Ching et al
[55]

Prospective 
(RCT)

20; 20 100; 100 100; 100 114 (mean); 
153.2 (mean)

16.5 (6-38); 
38 (0-81)

19 G (FNA); 19 
G (Acquire)

-- 8 (40); 7 (35)

Mok et al[56] Prospective 
(RCT)

40; 40 100; 100 88; 68 -; - -; - 19 G (FNA); 22 
G (SharkCore)

-; - 0; 1 (2.5)

Patel et al[64] Retrospective 30; 50; 
28; 27

100; 100; 
100; 100

66.7; 46; 82.1; 
81.5

1.8 (mean); 
4.7 (mean); 
1.9 (mean); 
8.4 (mean)

6.9 (mean); 3 
(mean); 7.3 
(mean); 16.9 
(mean)

Acquire 22 G; 
QuickCore 19 
G; ProCore 19 
G; Expect 19 G

-; -; -; - -; -; -; -

Gleeson et al
[65]

Retrospective 9 100 100 13 (8-28) 7 (5-8) 19 G 
(QuickCore)

2 (1-3) 0

DeWitt et al
[66]

Prospective 
case series

21 100 90.5 9 (1-23) 2 (0-10) 19 G 
(QuickCore)

3 (1-4) 0

Nakai et al
[67]

Case report 1 100 100 15 8 ProCore 19 G 0

Sey et al[68] Prospective 
cross sectional 
study

45; 30 100; 100 73.3; 96.7 9 (0-25); 20 (5-
60)

2 (0-15); 5 (0-
24)

QuickCore 19 
G; ProCore 19 G

3; 2 2 (4.4); 0

Hasan et al
[69]

Prospective 
(RCT)

40 100 100 55 (44.5-68) 42 (28.5-53) Acquire 22 G - 6 (15)

CPT: Complete portal triad; EUS-LB: Endoscopic ultrasound guided liver biopsy; FNA: Fine needle aspiration; FNB: Fine needle biopsy; RCT: Randomized 
controlled trial; G: Gauge.

transmural stent placement.
In a retrospective study by Lee et al[71], 19 cases of hepatic cysts were treated by 

PCD and EUS guided ethanol lavage and reported a 97.5% reduction in cyst volume at 
11.5 mo of follow-up in the PCD group and a 100% reduction at 15 mo in the EUS arm. 
The studies on EUS guided treatment of hepatic cysts are outlined in Supplemen-
tary Table 2.

EUS guided drainage of liver abscess: Traditionally, pyogenic and amoebic liver 
abscesses have been drained by PCD with a high technical success rate. However, EUS 
guided drainage of liver abscesses is a promising new approach, especially for 
difficult-to-reach locations. Additionally, the advantage of internal drainage with a 

https://f6publishing.blob.core.windows.net/7c7f92ad-ecc1-411b-a0fa-fcf9e5edba6f/WJH-13-1459-supplementary-material.pdf
https://f6publishing.blob.core.windows.net/7c7f92ad-ecc1-411b-a0fa-fcf9e5edba6f/WJH-13-1459-supplementary-material.pdf
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Figure 7 Endoscopic ultrasound-guided liver biopsy.

single-step procedure and easy access from the stomach makes transmural drainage of 
left and caudate lobe abscess convenient.

The technique was first described by Seewald et al[72], who reported complete 
resolution 4 weeks post-procedure. Literature on EUS guided drainage is limited to 
retrospective case series only in which the majority have been drained with double 
pigtail plastic stents[73-75]. Recently, data are emerging on the use of fully covered 
self-expandable metal stents (SEMS)[76] for the same. Ogura et al[77] reported 
retrospective comparative data on EUS vs PCD guided abscess drainage wherein EUS 
guided abscess drainage (EUS-AD) cases showed greater clinical success (100% vs 
89%) with shorter hospital stay (21 d vs 41 d). Studies on EUS-AD are listed in Sup-
plementary Table 3.

EUS guided drainage of biloma: Biloma is defined as a well-demarcated collection of 
bile outside the biliary tree, which can be extrahepatic or intrahepatic, encapsulated or 
without a capsule[78]. It is most frequently caused by iatrogenic biliary tree injury 
during cholecystectomy. It has been traditionally managed with PCD or surgery. 
However, large bilomas in opposition to the gastric wall can be taken up for 
transmural drainage (Figure 8). Similar to EUS-AD, earlier plastic stents were utilized 
for the same, but now SEMS has been in vogue for biloma drainage with excellent 
results. Post drainage, such patients should be evaluated to determine the need for 
endoscopic retrograde cholangiopancreatography, or sphincterotomy with/out biliary 
stenting or surgery[79]. Studies on EUS guided drainage of bilomas are described in 
Supplementary Table 4.

Despite it being a point of contention, EUS guided drainage of intrahepatic lesions 
(cysts, abscesses and bilomas) is an upcoming promising technique and may be 
considered in conditions where PCD is not amenable or has failed.

EUS guided treatment of liver tumors
A thrilling offshoot of EUS guided therapeutic interventions has been EUS guided 
local treatment of tumor lesions (both pancreatic and hepatic tumors)[80]. EUS-guided 
tumor management is a new experimental application that has shown promise in 
reaching difficult lesions (left lobe, caudate lobe), provided a rescue option in 
refractory cases, and has potential to improve quality of life by minimizing systemic 
side effects[81,82]. This procedure has been extensively studied in cases of pancreatic 
neoplasm, but its role in hepatic tumors (primary or metastatic) is still in its infancy.

Various techniques of EUS guided liver tumor management have been described.

Fine needle injection therapy: Ethanol ablation
Percutaneous injection of ablative injections is most commonly used worldwide to 
manage HCC, although EUS guided fine needle injection can be performed using 
acetic acid or ethanol (pure alcohol 95%-99%)[83]. Its advantage is that it enables real-
time imaging during delivery of ethanol to the tumorous lesion and thus can help 

https://f6publishing.blob.core.windows.net/7c7f92ad-ecc1-411b-a0fa-fcf9e5edba6f/WJH-13-1459-supplementary-material.pdf
https://f6publishing.blob.core.windows.net/7c7f92ad-ecc1-411b-a0fa-fcf9e5edba6f/WJH-13-1459-supplementary-material.pdf
https://f6publishing.blob.core.windows.net/7c7f92ad-ecc1-411b-a0fa-fcf9e5edba6f/WJH-13-1459-supplementary-material.pdf
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Figure 8 Endoscopic ultrasound-guided drainage of biloma. A: Post-operative biloma noted on endoscopic ultrasound (EUS) with internal echoes; B: 
EUS-guided puncture of the biloma; C: Guidewire negotiated into the collection followed by placement of naso-cystic drain; D: Endoscopic view of the cavity entered 
with catheter noted in situ.

avoid collateral damage.
Initial case reports using 22 G and 25 G FNA needles have been reported with 

excellent technical success and complete resolution of HCC[84-87]. For example, 
Nakaji et al[87] reported a high-resolution rate at 31 mo in 12 cases of caudate lobe 
HCC, whereas Jiang et al[88] only showed 30% complete resolution at 12 mo. This 
technique has also been evaluated for the treatment of hepatic metastasis from 
pancreatic adenocarcinoma[89].

Thermal ablative therapy
Radiofrequency ablation: Radiofrequency ablation (RFA) uses a high-frequency 
alternating current (375 kHz to 500 kHz) and is minimally invasive with good 
tolerability[90]. It can be delivered percutaneously, intraoperatively, via an 
endoluminal approach or endosonographic (transmural) route. Emerging data on the 
latter have resulted in its application in cases wherein the percutaneous approach fails. 
Obesity, tumor nodules in the left lobe or caudate lobe, deep-seated and sub-
capsular/sub-diaphragmatic lesions that carry an inherent risk of hemothorax or 
pleural effusion are some of the conditions where it has been applied[81,90]. A 
specifically designed needle tip electrode for performing EUS-RFA (EUSRA RFA 
Electrode, STARmed, Koyang, Korea) with a designed internally cooled needle 
electrode is the most extensively studied. Only a few case reports exist on EUS-RFA 
using EUSRA in HCC[91-93]. Also, hybrid models combining EUS-RFA with cryoab-
lation in the bovine liver have demonstrated better efficacy of the combination 
treatment[94].

Laser ablation by neodymium:yttrium-aluminum-garnet: Neodymium:yttrium-
aluminum-garnet (Nd-YAG) is a type of LITT (laser interstitial thermotherapy) 
wherein laser waves are introduced through the EUS needle directly into the tumor 
tissue leading to cell apoptosis and eventual necrosis. Only two human studies have 
been published so far for the treatment of HCC. Di Matteo et al[95] reported complete 
HCC resolution in 2 mo in a case of previously failed caudate lobe HCC. Similarly, 
Jiang et al[96] reported resolution at 3 mo with an encouraging safety profile.

Cryotherapy ablation: Cryotherapy ablation (CYA) destroys tissue through multiple 
freezing-thawing cycles leading to osmotic dehydration and injury to the intracellular 
structures and cell death[90]. No human study exists for its use in liver lesions. 
However, a single animal study showed the efficacy of a hybrid EUS-RFA and 
cryoderm device in a porcine model[97].

High-intensity focused ultrasound: This is a non-invasive technique that causes tissue 
necrosis via heat generation and acoustic cavitation by the formation and collapse of 
bubbles produced by intense USG waves[90]. Its use in EUS has only been tested in 
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animal models[98,99], showing complete necrosis of the lesions with no immediate 
side effects.

Brachytherapy
This treatment modality has been used for various cancers with the advantage of less 
toxicity to surrounding tissues over external beam radiotherapy[81,90]. For example, 
EUS guided brachytherapy with permanent seed placement of Iodine (I125) or 
palladium (Pd103) has been performed for head-neck, esophageal, and pancreatic 
cancer[100-102]. In addition, Jiang et al[88] have used EUS guided I125 seed im-
plantation for liver tumors with high efficacy and safety.

Studies on EUS guided liver tumor treatments are outlined in Table 7.

EUS GUIDED VASCULAR INTERVENTIONS
The presence of real-time, high-resolution sonographic imaging with Doppler, along 
with the relative proximity of the gastrointestinal tract to the major blood vessels in the 
abdomen and the mediastinum, has led to a growing interest to explore the role of 
EUS in the field of vascular interventions. EUS may be preferred over the percuta-
neous route, especially in obesity, ascites and overlying distended bowel[104].

Esophageal and gastric varices: diagnosis and management
EUS guided vascular intervention in patients with PHTN has been well established in 
managing varices (esophageal, gastric, duodenal, and ectopic).

Management of esophageal varices: Endoscopic variceal band ligation (EVL) has been 
the standard treatment of esophageal varices (EV) (both primary and secondary 
prophylaxis). However, re-bleeding rates of 15%-65% have been reported due to the 
failure to obliterate perforating veins and collaterals feeding the varices[105]. Lahoti et 
al[106] described the first report of EUS guided sclerotherapy in 5 cases, wherein 
sclerosant (sodium morrhuate) was injected under EUS guidance (2-4 mL per injection 
site) directed at the perforating vessels as determined by color Doppler with complete 
eradication of the varices. An RCT comparing EUS vs direct sclerotherapy revealed no 
difference in both arms[107]. Thus, although EUS carries a theoretical advantage for 
identifying the feeders, more studies are needed to assess its practical clinical benefit.

Management of gastric varices: In patients with PHTN, gastric varices (GV) are 
present in up to 20% with a 50%-65% re-bleeding rate[108]. Endoscopic injection of 
CYA glue for GVs has been the treatment of choice since its first description in 1986 
but is still prone to a re-bleeding rate of 40%[109]. In the current era of EUS guided 
vascular interventions, management of GVs by EUS has many conceptual advantages, 
both diagnostic and therapeutic such as[110,111]: (1) A higher detection rate (6 times) 
over conventional endoscopy; (2) Greater success in differentiating varices from thick 
gastric folds; (3) Confirmation of the cessation of blood flow post-treatment; (4) Real-
time varix visualization and hence accurate delivery of hemostatic agent to the varix; 
and (5) Targeted treatment for feeder vessels.

The first description of EUS guided CYA injection in GVs was given by Romero-
Castro et al[111] and Lee et al[112]. To reduce the chances of embolization with CYA, 
stainless steel coils alone or in combination with CYA glue have been introduced. The 
advantage is three-pronged: additive hemostasis and varix obliteration, reducing the 
volume of glue needed and acting as a scaffold to retain the glue within the varix, 
thereby decreasing embolization. Various studies, including RCTs, have favored coil 
over glue. Bhat et al[113] reported a complete obliteration in 93% with only 3% re-
bleeding rates using coils and glue combination. Similarly, two RCTs and a meta-
analysis have reported the combination therapy of coil with glue to be superior to 
either agent alone[114-116]. Newer treatments of utilizing coils with gelatin sponge 
and sclerotherapy or isolated thrombin injection have been reported in various case 
series and have shown good results[117-119].

The technical steps of the EUS guided coil and glue placement for the obliteration of 
GV are outlined in Table 8 and Figure 9.

Use of EUS in the prediction of re-bleeding from EV/GV: EUS with Doppler has a 
higher sensitivity for detecting esophageal and GV than upper GI endoscopy and can 
also be used to predict re-bleeding. Certain parameters can help guide us in this 
direction[120,121]: (1) EUS can help in demonstrating collaterals or feeders, a strong 
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Table 7 Studies in humans demonstrating the role of endoscopic ultrasound guided therapies for liver lesions

EUS guided 
treatment Study design Patients Location of the 

lesion
Technical success 
(%)

Response to 
therapy Complications

Ethanol ablation in HCC

Nakaji et al[84] Case report 1 Segment 8 100 Complete 0

Lisotti et al[85] Case report 1 Segment 2 100 Complete 0

Nakaji et al[86] Case report 1 Segment 3 100 Complete 0

Nakaji et al[87] Retrospective 12 Caudate lobe 100 Complete 2 (16.7%)

Jiang et al[88] RCT 10 Left lobe 92 Partial (30%) 0

Alcohol ablation in liver metastasis

Barclay et al[89] Case report 1 Left lobe 100 Complete Self-limited sub-capsular 
hematoma

Hu et al[103] Case report 1 Left lobe 100 Complete Low grade fever

RFA (radiofrequency ablation) in HCC

Armellini et al[91] Case report 1 Left lobe 100 Complete None

Attili et al[92] Case report 1 Segment 3 100 Complete None

de Nucci et al[93] Case report 1 Segment 2-3-4b 100 70% reduction None

Ablation by Nd-YAG

Di Matteo et al[95] Case report 1 Caudate lobe 100 Complete 0

Jiang et al[96] Prospective 10 Left lobe 100 Complete 0

Brachytherapy (Iodine-125)

Jiang et al[88] RCT 13 Left lobe 92 Near complete 0

EUS: Endoscopic ultrasound; HCC: Hepatocellular carcinoma; RCT: Randomized controlled trial; Nd-YAG: Neodymium:yttium-aluminum-garnet; RFA: 
Radiofrequency ablation.

Table 8 Steps of endoscopic ultrasound guided coil and glue placement for gastric varices obliteration

Pre-procedure requirements

(1) All procedures are done under the cover of pre/peri-procedural antibiotics; (2) Patient is usually fasted for 4-6 h before the procedure; and (3) 
Adequate resuscitation of the patient, in case of active bleeding is ensured, prior to the procedure

Technical aspects

(1) The echoendoscope is usually positioned either in the distal esophagus or the gastric fundus; (2) Water is filled intra-luminally in the fundus. This 
enables a good acoustic coupling for better visualization of the gastric varices. Adequate examination of the fundus, the intramural varices and the feeder 
vessels is carried out; (3) The approach can be trans-esophageal or transgastric, wherein the trans-esophageal route is given preference; (4) EUS-guided 
coil and glue embolization is usually performed using a 22 G/19 G (gauge) FNA needle. The size of the coil is determined by the short axis of the diameter 
of the varix; (5) After puncture of the varix, blood is aspirated to confirm the location. This is followed by flushing of the needle with saline; (6) The coils 
are then deployed into the varix using the stylet as a pusher. Once the coils are deployed, flushing of the needle is done with normal saline; (7) After coil 
deployment, 1-2 mL of cyanoacrylate glue is injected over 30-45 s followed by rapid flushing with saline; and (8) Once, the varix is obliterated, visualized 
by absence of flow on color Doppler, the sheath of the needle is advanced beyond the endoscope tip for 2-3 cm before withdrawing the scope. This avoids 
contact of glue with the endoscope tip. The sample aspirated is sent for routine cytological assessment as well as for any additional tests that might be 
needed

Post procedure

(1) The patients are kept under observation for 12 h; (2) Repeat EUS can be done after 2 d to look for residual varices; and (3) Follow-up EUS can be 
performed at 1- and 3-mo intervals

EUS: Endoscopic ultrasound; FNA: Fine needle aspiration; G: Gauge.

indicator to a future occurrence of a re-bleed; (2) Hematocystic spots on EVs identified 
as saccular aneurysms on EUS is associated with a high risk of variceal rupture; (3) 
Digital image analysis on EUS can help to determine the cross-sectional area of EVs in 
the distal esophagus and a cutoff of 0.45 cm2 has a sensitivity of 83% for future re-
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Figure 9 Endoscopic ultrasound-guided coil embolization of fundal varix. A: Endoscopic view of the fundal varix; B: Endoscopic ultrasound (EUS) view 
of the fundal varix; C: EUS guided puncture of the varix with a 22-G needle; D: Coil deployment inside the varix. GV: Gastric varices.

bleeding; and (4) Para-esophageal diameter after EVL is a better recurrence predictor 
(cutoff 4 mm has a 70.6% sensitivity).

Thus, there is a huge prospect for using EUS in PHTN, namely in the evaluation of 
vascular changes of the digestive wall, hemodynamic assessment by measurement of 
PV pressure gradient, management of variceal bleeding and re-bleeding prediction 
and currently liquid biopsy via PV sampling. Nonetheless, despite the diversity of 
possible uses, more data on efficacy and safety are warranted.

EUS guided PV access
The PV can be accessed from both the stomach and duodenum and is in very close 
juxtaposition with the tip of the echoendoscope. The most frequent location to target is 
the intrahepatic PV through the hepatic parenchyma. The other less commonly used 
technique is the extrahepatic PV via the duodenum[122,123].

Technique of the procedure: After confirming the vascular structure with color 
Doppler and pulse-wave verification, PV puncture is done via the EUS-FNA needle. 
Studies have shown that 25 G needle causes the least trauma. The trans-gastric, trans-
hepatic approach is safer than the trans-duodenal approach. CO2 is better than using 
iodine as a contrast (allows better PV visualization and easier intravascular adminis-
tration through the small-caliber FNA needle). After PV puncture, on withdrawal of 
the needle, the track is monitored with color Doppler to check for bleeding. In cases of 
blood flow being identified, the needle is kept in place until the flow has stopped[122,
123].

Animal studies: The first case of PV access was reported in 2004 by Lai et al[124], 
wherein a EUS guided trans-duodenal access to extrahepatic PV was adopted with a 
22 G FNA needle in 21 swine models, proving the technical feasibility of the 
procedure. Thereafter, PV angiography was reported for the first time in 2007 by 
Magno et al[125], wherein autopsies revealed no injuries with a 25 G needle and a 
hematoma with 19 G needle. Subsequently, Giday et al[123,126] reported trans-hepatic 
access to the PV with a 25 G needle.

EUS guided portal pressure gradient measurement
Measurement of PHTN is useful in determining the stage, progression, prognosis and 
complications of cirrhosis. Currently, the standard practice of measuring the portal 
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pressure gradient (PPG) is the percutaneous route. However, both direct PV access 
and hepatic venous pressure gradient (HVPG) measurement are invasive procedures 
and have high complication rates. Moreover, HVPG correlated poorly in presinusoidal 
PHTN cases. Therefore, EUS guided PPG can be performed to overcome these 
difficulties. Moreover, additional analyses such as assessment of varices and liver 
biopsy can be carried out in the same sitting. The technique of PPG measurement and 
the studies (human and animal models) on the same are shown in Supplementary 
Tables 5 and 6.

EUS guided TIPS
TIPS has an established role in managing PHTN-related complications like variceal 
bleeding (pre-emptive or rescue) and refractory ascites. EUS-guided TIPS creation in a 
live porcine model (8 cases) was first described by Buscaglia et al[127], wherein the 
hepatic vein (HV) and PV were sequentially punctured, and a metal stent was inserted 
with the distal end in the PV and proximal end in the HV. In addition, Binmoeller and 
Shah[128], and Schulman et al[129] have both reported using a lumen apposing metal 
stent (LAMS) in porcine models for the same purpose.

EUS guided PV sampling
“Liquid biopsy” for hepatobiliary malignancies is gaining momentum in view of the 
PV harboring circulating tumor cells (CTCs) from the primary tumor. These CTCs are 
the forerunners of future metastasis of solid organ cancers and help predict the 
development of liver metastasis[130]. They have been inconsistently found in the 
peripheral blood due to hepatic sequestration. They reflect tumor signature, help in 
prognostic stratification, and potentially form organoids for future tumor study.

Catenacci et al[131] reported the first human study of PV sampling wherein a 19 G 
FNA needle was used to sample the PV as four 7.5 mL aliquots of blood. CTCs were 
detected in 100% cases from the PV vs 4 (22.2%) cases from peripheral blood. Liu et al
[132] reported similar findings in cases of advanced pancreatic cancer (100% detection 
of CTCs in PV vs 54% in peripheral blood). Besides these, further studies are needed to 
establish the clinical utility of EUS guided liquid biopsies.

EUS guided FNA of PV thrombosis
The presence of malignant PV thrombosis (PVT) usually portends a poor prognosis. 
Therefore, differentiating bland and malignant thrombus needs FNA confirmation. 
Various case reports have suggested the use of EUS guided FNA of the PVT by 
overcoming the complications encountered via the percutaneous route[133-135] with 
excellent results.

EUS guided PV injection chemotherapy
Both systemic palliative chemotherapy and transarterial microbead injection into the 
hepatic artery for diffuse liver metastasis are fraught with complications. However, 
Faigel et al[136] reported the feasibility of EUS guided PV injection chemotherapy in 24 
porcine models using drug-eluting microbeads and nanoparticles. In comparison with 
systemic injection, systemic levels were halved, but the hepatic concentration of drugs 
was doubled. Human studies are warranted for the same.

EUS guided PV embolization
Preoperative PV embolization before liver resection in hepatobiliary malignancies 
induces affected lobe atrophy and ultimately hypertrophy in the functional liver[137]. 
However, preliminary studies in the animal model by Matthes et al[138] and Park et al
[139] using EUS guided PV embolization using ethylene-vinyl alcohol copolymer and 
coil with CYA glue embolization, respectively, reported high success rates.

EUS guided PV stent placement
EUS directed PV access has opened up avenues for stent placement via this route in PV 
occlusion or thrombosis. Park et al[140] reported 100% technical success (all uncovered 
stents) in 6 swine models.

FUTURE ADVANCES
Photodynamic therapy
Photodynamic therapy (PDT) is a commonly used modality for treating malignant 

https://f6publishing.blob.core.windows.net/7c7f92ad-ecc1-411b-a0fa-fcf9e5edba6f/WJH-13-1459-supplementary-material.pdf
https://f6publishing.blob.core.windows.net/7c7f92ad-ecc1-411b-a0fa-fcf9e5edba6f/WJH-13-1459-supplementary-material.pdf
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biliary obstruction, requiring pretreatment with a photosensitizer followed by 
exposure to selective tissue wavelength of light-generating singlet oxygen species 
(tissue necrosis from 6-40 mm depth)[141]. Preliminary animal studies exist on the use 
of EUS guided PDT on the porcine pancreas[141,142] and pancreaticobiliary 
malignancies (with lesions in the caudate lobe)[143].

EUS guided fiducial marker placement
Stereotactic body radiation therapy demands high targeting accuracy to minimize 
toxicity to surrounding organs. Placement of fiducial markers can help localize and 
track the target and can be placed via a percutaneous or surgical approach. EUS 
guided fiducial marker placement has come into the forefront for targeting even 
deeper abdominal lesions not amenable via standard means[144,145]. However, no 
studies exist on its use in liver malignancies.

Artificial intelligence
Artificial intelligence (AI) is a prediction technique using mathematical algorithms to 
create automated learning and recognize patterns in the fed data. Artificial neural 
network (ANN) and deep learning (DL) are powerful machine-learning-based tools 
used to provide high yield predictions and are being used more and more in the 
medical field to aid in diagnosis. Just like its widespread use in the field of endoscopic 
diagnosis of polyps and other lesions, AI has also found its place in the arena of 
diagnostic EUS. Studies have used ANN for the interpretation of EUS-elastography 
and CE-EUS[146]. However, to date, only two studies have used DL for EUS image 
analysis. With the availability of additional studies, AI can add to the diagnostic 
armamentarium of EUS and lead to much better accuracy.

CONCLUSION
Hepatologists have always turned to radiologists for imaging and intervention of 
various liver-related conditions. However, with the expansion of this intersection of 
endoscopy in EUS and hepatology, the field of “Endo-hepatology” may soon evolve 
into a sub-specialty with hepatologists trained in interventional EUS. Starting from 
EUS-guided liver biopsy to PV interventions, the merger of EUS and hepatology seems 
to show invigorating scope in the future. However, more studies are needed to 
establish the safety and efficacy of these newer modalities in regular mainstream 
practice.
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Abstract
Knowledge about the connective-tissue framework of the liver is not system-
atized, the terminology is inconsistent and some perspectives on the construction 
of the hepatic matrix components are contradictory. In addition, until the last two 
decades of the 20th century, the connective-tissue sheaths of the portal tracts and 
the hepatic veins were considered to be independent from each other in the liver 
and that they do not make contact with each other. The results of the research 
carried out by Professor Shalva Toidze and his colleagues started in the 1970s in 
the Department of Operative Surgery and Topographic Anatomy at the Tbilisi 
State Medical Institute have changed this perception. In particular, Chanukvadze 
I showed that in some regions where they intersect with each other, the 
connective tissue sheaths of the large portal complexes and hepatic veins fuse. The 
areas of such fusion are called porta-caval fibrous connections (PCFCs). This 
opinion review aims to promote a systematic understanding of the hepatic 
connective-tissue skeleton and to demonstrate the hitherto underappreciated 
PCFC as a genuine structure with high biological and clinical significance. The 
components of the liver connective-tissue framework — the capsules, plates, 
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sheaths, covers — are described, and their intercommunication is discussed. The 
analysis of the essence of the PCFC and a description of its various forms are 
provided. It is also mentioned that analogs of different forms of PCFC are found 
in different mammals.

Key Words: Hepatic capsule; Hilar plate; Perivascular fibrous sheath; Glissonean pedicle; 
Portal tract; Caval port
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Core Tip: In the places of spatial intersection of the Glissonean pedicles with the main 
hepatic veins, the fusion of their connective tissue sheaths is described. The sites of the 
above-mentioned fusion are called porta-caval fibrous connections. Various forms of 
porta-caval fibrous connections are discussed as well as their clinical and scientific 
implications.
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INTRODUCTION
The extracellular matrix — the connective-tissue framework of the liver — determines 
the shape of the organ and creates specialized compartments for the liver cell 
populations and blood and lymph circulations, the synergy of which determines the 
diverse functioning of the organ. The structure and components of the human liver 
extracellular matrix were comprehensively analyzed in a series of studies performed 
in the 1980s and the 90s[1,2].

The last five years saw a new wave of studies on hepatic connective-tissue stru-
ctures. This "revisiting" is thanks to the introduction of new methods and computer 
technologies in morphological studies[3] and includes studies not only of the human 
liver but also of the liver of various animals and birds[4-7].

The emergence of endoscopic anatomic liver resections strengthened the need to 
specify the anatomy and interrelationship of the connective-tissue structures within 
the liver[8-11]. Additionally, the prospects for the use of human and animal liver 
matrices as scaffolds for the creation of bioartificial livers (thanks to the development 
of stem cells and bioengineering technologies)[11-14] also contribute to the resurgence 
of interests in the hepatic connective-tissue structures.

However, upon reviewing these studies, we noticed that knowledge on the 
connective-tissue skeleton of the liver were not systematized, the terminology was 
inconsistent, and the literature concerning the construction of one or another com-
ponent of the hepatic matrix were sometimes contradictory[15].

Until the last two decades of the 20th century, the branches of the portal vein and the 
hepatic veins were considered to be independent from each other in the liver and that 
their connective-tissue sheaths did not make contact with each other[16-18]. Modern 
hepatology textbooks usually perpetuate this notion that the Glissonean portal 
pedicles and the main hepatic veins intersect spatially, but some liver parenchyma 
always remains between them. Thus, it was believed that they are anatomically 
independent of each other[19].

The results of the research carried out by Professor Shalva Toidze and his colleagues 
started in the 1970s in the Department of Operative Surgery, and the Topographic 
Anatomy of Tbilisi State Medical Institute changed this perception. In particular, 
Chanukvadze[20] showed that in some regions where they intersect with each other, 
the connective-tissue sheaths of the main portal complex and a hepatic vein fuse. The 
regions of such fusion he called porta-caval fibrous connections (PCFCs). Several 
forms of PCFC have been described. It has also been revealed that PCFC, as an 
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anatomical formation, develops in the 11th-12th weeks of gestation. Despite numerous 
publications, these data have not yet received proper acknowledgement in scientific 
discourse and, as a result, in clinical hepatology. This opinion review aims to promote 
a systematic understanding of the connective-tissue skeleton of the liver, standardize 
the definition and the nomenclature of its structural components, and highlight the 
importance of the hitherto underappreciated PCFC as a genuine structure.

Since the same connective-tissue structure of the liver is often referred to by 
different names, we have tried to standardize the terms used throughout this article. 
The following terms will be used in the ensuing discussion: (1) Liver capsule is the 
same as Laennec's capsule (but not Glisson’s capsule); (2) Hilar plate is the same as 
Walaeus vasculo-biliary sheath (but not Glisson’s plate); (3) Perivascular fibrous 
capsule is the same as Glisson’s capsule; (4) Proper hepatic capsule (PHC) is the same 
as the intrahepatic part of Laennec’s capsule covering the liver parenchyma; (5) Portal 
hilus is the same as portal port; (6) Caval port is the same as hepatic venous port 
(where the inferior vena cava adjoins to the liver and incorporates the hepatic veins); 
and (7) Glissonean pedicle is the same as the portal tract surrounded by Glisson's 
capsule.

DISCUSSION
Liver capsule and its derivatives
Laennec's capsule (liver capsule) covers the entire liver surface, including its bare area 
(aperitoneal area). In the portal hilus and venous port of the liver, Laennec's capsule 
around the Glissonean pedicles and the hepatic veins enters the hepatic parenchyma, 
covers it, and separates it from the portal tracts and hepatic vein tributaries[21].

In the hepatic hilus, the liver capsule directly touches the hilar plate (also known as 
Walaeus vascular-biliary sheath) covering the portal vein, the hepatic artery, and the 
bile ducts, while within the liver, the intrahepatic part of the liver capsule — PHC — 
covering the parenchyma, sets against the perivascular fibrous capsule (Glisson’s 
capsule), which is a direct extension of the Walaeus sheath and envelops the lobar, 
sectoral, and segmental portal tracts[15,22]. These two fibrous fascial structures — 
PHC and Glisson’s capsule — are separated by a narrow fissure[10] (Figure 1A and C). 
The individual fibers of the connective tissue (or their bundles) are located in this 
fissure and connect the outer side of Gleason’s capsule with the PHC. On the other 
hand, soft collagen fibers (type I and III collagen) separate from the internal side of 
PHC and extend within the liver lobule (Disse's spaces), fusing to the intralobular 
matrix[3].

In the region of the thinner portal tracts (subsegmental, zonal), Glisson's capsule 
tapers off, and cross-banded collagen fibers from portal spaces are in continuity with 
similar fibers in the immediately adjacent lobular interstitium, which in turn are in 
continuity with those in central spaces; in this manner, collagen type I fibers and 
bundles form the structural scaffold of the liver lobule[2]. Meanwhile, the portal, 
extralobular and intralobular matrices of the liver are united by creating a complex 
labyrinth that represents the circulation area for tissue fluid and prelymph[23,24].

Laenneс's capsule covering the liver parenchyma is related to the adventitia of the 
hepatic veins and their tributaries, represented by type I and type III collagen fibers 
and single muscle fibers, mainly running along the veins. Thick collagen fibers were 
found external to thin elastic fibers, which were intimately related to smooth muscle. 
The above-mentioned features are consistent with the observation that all veins of the 
infracardiac region in humans are mainly propulsive veins[25]. The increase in 
collagen content on the adventitial side of the interface may strengthen it and prevent 
rupture of the vein during extreme liver movements[26].

The PHC is often separated from the adventitia of the hepatic veins and their large 
tributaries by a narrow slit (similar to that described in relation to Glissonean 
pedicles), in which the tissue fluid and prelymph circulate[23,24] (Figure 1C). The 
average distance between the PHC and the Glissonean pedicle is 32 ± 8.7 μm, while 
that between the PHC and the hepatic veins is 26 ± 6.3 μm[8]. Some authors suggest 
that Laennec’s capsule, Glisson’s capsule and the sheath for the hepatic vein tributaries 
can be characterized by a high content of thin, wavy elastic fibers. The Waleaus 
vasculo-biliary sheath of the thick vessels and ducts does not contain elastic fibers[15]. 
However, some researchers believe that there is no fibrous sheath around the hepatic 
veins and that the adventitia of the hepatic veins is in direct contact with the PHC 
covering the liver parenchyma[27]. With the reduction of the diameter (caliber) of the 
tributaries of the hepatic veins, the adventitia of these veins thins out, PHC tapers off, 
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Figure 1 Connective tissue structures and their relationship in the liver. A: 1: Peritoneum; 2: Liver capsule (Laennec's capsule); 3: Hilar plate (Walaeus 
vasculo-biliary sheath); 4: Portal tract; 5: Hepatic vein and its tributaries; 6: Connective tissue sheath of a hepatic vein; 7: Portal tract surrounded by Glisson's capsule 
(Glissonean pedicle); 8: Porta-caval fibrous connection (PCFC); Arrowhead: the fissure among the Laennec's capsule (proper hepatic capsule, PHC) and the 
Glisson's capsule; B: Intrahepatic portal tracts and hepatic veins of the human liver after maceration from the visceral surface (preparation from the private archive of 
Professor Chanukvadze I); Intersection of portal tracts and the hepatic veins. Yellow lines show the borders among the liver segments enumeration of which is shown 
in red quadrats. 1: Portal tract; 2: Hepatic veins and their tributaries; 3: Inferior vena cava; 4: Walaeus vasculo-biliary sheath; 5: Round ligament; 6: Gallbladder; C: 
Section of liver tissue containing the portal tract and hepatic vein (scheme). White arrowhead: the fissure among the Laennec's capsule (PHC) and the Glisson's 
capsule; Green arrowhead: the fissure among the Laennec's capsule (PHC) and connective-tissue sheath surrounding the hepatic vein; D: Area of complete fusion of 
the Glisson's capsule and a connective-tissue sheath surrounding the hepatic vein (scheme); E: Plate-shaped PCFC (scheme).

and intralobular connective-tissue fibers connect directly to the connective-tissue fibers 
of adventitia of the small tributaries of the hepatic veins[2,28]. Such a relationship 
further reinforces the notion that the merger of the intralobular and extralobular 
connective-tissue fibers and that of the capsule covering the organ create a complex, 
yet well-regulated, structure of the extracellular matrix, which is the connective-tissue 
skeleton of the liver, coordinating the synergy between the cell populations and the 
neural and circulatory tubular structures. The PHC is mainly composed of reticular 
fibers (RFs) that cover the hepatic lobules. The ring of hepatocytes abutting the 
connective tissue of the portal region is called the periportal limiting plate. The RF 
bordering the hepatocytes constituting the limiting plate forms a capsule. This capsule 
covers the hepatic lobule from one side and abuts the perivascular fibrous capsule 
(Glisson’s capsule) enveloping the portal tract, from another side[3].
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Based on computer software analysis of liver specimens (histotopograms), the same 
authors distinguish loose fiber construction (and not the fissure described above) 
between Glisson's capsule and the PHC and called it the private hepatic ligament 
(PHL). The PHL is a structure in which collagen fibers have invaded from the portal 
region into the lattice-like or mesh-like RF that originally surrounded the lost 
hepatocytes[3]. However, it should be noted that the existence of such a formation has 
to be confirmed by additional studies.

There is a system of connective-tissue plates in the area of the hepatic port, whose 
origin and structure continue to be the subject of debate. This system includes a cystic 
plate, a round ligament plate, an Arantial plate, and a hilar plate (Walaeus vasculo-
biliary sheath)[27,29].

The names of the plates are determined by their location: the gallbladder bed, round 
ligament gutter, Arantial ligament (obliterated venous duct) gutter, and hilus of the 
liver[30,31]. Several researchers have further described the caval plate, the connective-
tissue sheath situated between the hepatic parenchyma and the adventitia of the 
hepatic part of the inferior vena cava[26,32]. Some researchers believe that these plates 
are derivatives of Laennec's capsule, which is attached to the liver capsule as an 
additional outer layer in the above-mentioned areas[30]. Other researchers indicate 
that the plate complexes, especially the hilar plate (which has special functional and 
clinical significance), is not an embryological derivative of Laennec's capsule and is 
connected with the fibrous part of the hepatoduodenal ligament and the connective 
tissues surrounding the blood vessels and bile ducts located in the portal area[27]. 
However, another group of researchers believes that the hilar plate does not exist at all 
as an independent entity; it is part of the liver capsule, which thickens in the area of 
the hepatic port due to a large number of thin-walled bile ducts (so-called "vaginal 
ductuli"). During surgery and dissection, it should be kept in mind that the hilar plate 
is likely to be artificially generated when, the surgeon unintentionally bundles 
collagenous fibers around the vaginal ductuli[15,29,33]. Taken together, the origin of 
the plates located on the visceral surface of the liver requires additional studies. 
Furthermore, we can state with confidence that the hilar plate (Walaeus vasculo-biliary 
sheath) covers the structures entering or exiting the liver at the hepatic port — the 
branches of the portal vein, hepatic artery, and bile ducts and accompanying 
lymphatic vessels and nerve cords. In combination with the accompanying connective-
tissue fibers, afore-mentioned structures form the portal tracts that branch inside the 
liver. Large portal tracts, such as lobar, sectoral, segmental, and sometimes subseg-
mental tracts, are enveloped by a perivascular fibrous capsule (Glisson's capsule), 
which forms the so-called Glissonean pedicle[30]. Glisson's capsule is an intrahepatic 
extension of the hilar plate (Walaeus sheath). Thus, the portal tracts at the hepatic port 
are surrounded by the Walaeus sheath and inside the liver with Glisson's capsule. As 
mentioned above, Glisson's capsule is prominent around the large-caliber portal tracts 
but tapers off or completely disappears in thinner tracts[7].

Taking all of the above into consideration, Hu et al[8] concluded that the plate 
system represented a fibrous, thickened part of the Walaeus vasculo-biliary sheath and 
that Laennec’s capsule had no continuity with the Glissonean pedicle. However, 
Laennec’s capsule, which is dissociated from the main Glissonean capsule, extends to 
the peripheral portal tracts, where the structural integrity loosens and directly 
continues into the intralobular connective tissue fibers.

Laennec's capsule is the critical structure for understanding the comprehensive 
surgical anatomy of the liver and standardizing extrahepatic Glissonean pedicle 
isolation in anatomical liver resection[21]. Its precise understanding may rewrite the 
descriptions in the hepatology textbooks on the relationship between the hepatic 
capsule and intrahepatic and extrahepatic portal pedicle sheaths as follows: the 
connective tissue that constitutes the hepatic capsule wraps around the portal vein, 
hepatic artery, bile duct, lymphatics, and nerves that enter and exit the liver from the 
hilar part and then enters the liver where it is distributed as a skeleton in the 
parenchyma[34].

Portal tracts and their connective-tissue structures
The blood vessels, bile ducts and nerves located in the portal tracts are covered by 
their own fascial connective tissue. These structures are individually encased by a 
typical membrane containing laminin, collagen type IV, entactin, and heparan sulfate 
proteoglycan. The surrounding portal interstitium contains collagen types I, III, V, and 
VI, fibronectin and tenascin[2]. The fibrous covers are separated from the blood vessel 
walls by a space called the conceptual paravasal body[35].
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In the liver hilus and adjacent proximal part of the hepatoduodenal ligament, the 
connective tissue cover of the portal vein is well distinguished. It surrounds the blood 
vessel in the form of a sheath, inside of which there is the aforementioned paravasal 
fissure, which contains connective tissue fibers running in different directions, 
connecting the portal vein adventitia with the inner surface of its fibrous cover. 
Likewise, in the same regions, the hepatic artery is also surrounded by a layer of 
fibrous connective tissue called the fibrous cover. It is separated from the blood vessel 
wall by a well-defined fissure containing the bundles of connective-tissue fibers 
connecting the inner wall of the fibrous cover with the adventitia of the artery[20,32].

The Brisbane Meeting of the International Society of Hepatobiliary-Pancreatic 
Surgery in 2000 formed a consensus on the uniform anatomical term/terminology 
classification to remedy the confusion that was present at that time. Their consensus 
was that first-order divisions of the elements of the portal triad were those that 
supplied the right and left halves of the liver, second-order divisions were those that 
supplied the liver sectors, and third-order divisions were those that supplied the 
segments[36].

The perivascular fibrous capsule abruptly appears in the area of the sectoral portal 
tract. It is dense and easily separates from the liver tissue, which in turn is covered by 
the PHC (the intrahepatic part of Laennec’s capsule)[3].

The perivascular fibrous capsule is formed by collagen fibers running in various 
directions (elastic fibers are relatively rare). In addition, the outer layer of the capsule 
is denser. The relatively loose inner layer is contiguous to the connective tissue that 
surrounds the covers of individual elements of the portal triad. The thickness of the 
sectoral perivascular fibrous capsule is 45-110 μm (average 70-75 μm). Gradually, with 
the decrease in the caliber of the portal tract, the perivascular fibrous capsule also 
becomes thinner. The perivascular fibrous capsule of the 2-3 mm caliber subsegmental 
portal tract loses its sheath-like structure and transforms into loose connective tissue 
located between the individual elements of the portal triad.

The thickness of the proper cover of sectoral and segmental branches of the portal 
vein ranges from 50 μm to 150 μm (on average 90-100 μm) and it is directly propor-
tional to the caliber of the blood vessel. The portal vein cover, within the subsegmental 
tract, gradually becomes thinner and looser. In addition, studies have shown that in 
15% of cases, the identification of the connective tissue cover of the portal vein is 
hampered, even around the sectoral and segmental branches[32,37].

The number of bile ducts in sectoral and segmental portal tracts always exceeds 
three. Bile ducts are enveloped by the fibrous parabiliary sheath. The sheath has 
circularly oriented internal bundles, while the external bundles form septa oriented in 
various directions and connect closely to both the adjacent bile duct wall and the 
perivascular fibrous capsule. Bile ducts are accompanied by the peribiliary glands, 
which are connected to the ducts mainly along their opposite edges. The glands can be 
distinguished between intramural and extramural parts. The extramural part of the 
glands is several times larger in size than the intramural part. It is covered by the 
fibers of the fibrous parabiliary sheath, extends a considerable distance from the duct 
wall, is closely related to the connective tissue sheaths of other elements of the portal 
complex, and sometimes directly attaches to the perivascular fibrous capsule. 
Occasionally, the fibers covering the peribiliary glands and that of the internal surface 
of the perivascular capsule are so intertwined that no border can be identified between 
them[32,38-40].

The number of branches of the hepatic artery with a caliber larger than 1 mm varies 
from 2 to 5 in each sectoral and/or segmental portal tract. They are located more 
centrally (closer to the portal vein branch) than the bile ducts. The covers of the hepatic 
artery are not as distinct in sectoral and segmental tracts as in the hepatic hilus or 
hepatoduodenal ligament. The paravasal fissure is invisible as the adventitia is 
virtually contiguous with its own cover. The covers of the arteries at the peripheral 
edges of the blood vessels extend into the septa, which often interconnect and create 
the circular layer of para-arterial connective tissue located between the portal vein and 
the parabiliary fibrous sheath (Figure 1C). The degree of differentiation of the 
connective tissue covers of the arteries strongly depends on the caliber of the portal 
tract. In the small (subsegmental and thinner) portal tracts, the arteries have no 
connective tissue covers at all, and they are surrounded only by loose connective tissue 
that forms a bed for all elements of the portal triad[32,37]. Therefore, a combination of 
paravasal and parabiliary connective-tissue formations concentrated around the portal 
vein makes the skeletons of the hepatic portal tracts. The perivascular fibrous capsule, 
with adjacent parabiliary tissue with bile ducts and peribiliary glands, is located on the 
periphery of Glissonean pedicles[32,37].
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PCFCs
In the liver, at the site of the spatial intersection of the main portal tracts and the 
hepatic veins, there is a little-known anatomical formation generated by the fusion of 
the connective-tissue fibrous sheaths of the portal tracts and the hepatic veins where 
these two structures come into contact with each other. The perivascular fibrous 
capsule extends from the portal complex to the wall of the hepatic vein and it becomes 
an additional element (Figure 1A, B, D and E). An anatomical formation created by the 
fusion of the sheaths of portal tracts and hepatic veins is called the intrahepatic PCFC
[20,32].

Anatomical classification of PCFCs
Various forms of PCFC are distinguished.

Complete fusion: This type of porta-caval connection is characterized by the complete 
fusion of the surfaces of connective tissue sheaths of the portal tract and hepatic vein 
directed towards each other (Figure 1D and 2B). This type of connection is mainly 
found in segments II and III of the liver. The connective tissue sheaths of the hepatic 
veins are highly developed in the PCFC area, and its thickness reaches 90 μm. It 
represents a thick network of the collagen fibers running in various directions and the 
spiral bundles of elastic fibers and separate cellular elements are located between 
them. At the same time, irrespective of the density of the elements of the portal triad 
that merge with the hepatic veins in the area of the PCFC, there is always a narrow 
gap between them, filled with loose connective tissue. Small blood vessels (up to 1.5 
mm in diameter), which are separated from the branches of the hepatic artery located 
in the portal tract, might pass through this place. They extend to the wall of the hepatic 
vein and supply it with blood.

Touching connection: This type of PCFC occurs when the perivascular fibrous capsule 
and the sheath of the hepatic vein merge only with the parts of the surface facing each 
other, while the rest of the space between them is filled with liver tissue. Similar to 
complete fusion, this form of PCFC also contains small blood vessels, but rarely the 
nerves or lymphatics. Touching PCFCs are often found within segments II, III, VI, and 
VII of the liver.

Fan-shaped connection: The fan-shaped connection, a special form of connection, is 
formed when the 2-5 mm caliber portal tract touches the wall of the inferior vena cava 
or large hepatic vein and immediately splits into thinner branches. The fan-shaped 
PCFC is constantly found within segment I (caudal lobe), including the inferior vena 
cava wall. The branches feeding the wall of the inferior vena cava or large caliber 
hepatic veins are separated from the arteries of the portal tract within this connection
[20,32]. Within the complete fusion, touching and fan-shaped PCFCs, the hepatic vein 
is most often bordered by the bile ducts and their peribiliary glands. Such direct 
contacts may facilitate the spread of the inflammatory process from the bile ducts to 
the liver[32].

Plate and thread-shaped connections: The plate or thread-shaped PCFCs are 
represented by a fibrous plate or a cone that stretches between the perivascular fibrous 
capsule and the hepatic venous sheath. The plate may contain small blood and 
lymphatic vessels[20,32] (Figure 1E and 2A).

It should also be noted that the presence of various forms of PCFC has been 
confirmed in other mammals (pigs, sheep, dogs, rats). In the histological liver 
specimens of these animals, the sites of the crossing of different size portal tracts and 
hepatic vein tributaries with integration (fusion) of their connective-tissue sheaths 
were described. At the same time, in rat livers, the translocation of biliary structures 
from the portal tract toward hepatic veins was shown. This translocation causes the 
appearance of ductular profiles accompanying hepatic veins and their tributaries on 
histological specimens[32] (Figure 2C and D).

Clinical significance of PCFCs
Today, among the modern methods of surgical treatment of portal hypertension 
complicated by bleeding from varicose veins, the transjugular method of intrahepatic 
porta-caval anastomosis, which has a palliative effect, is widely used[41]. However, 
this method is often accompanied by complications; the most common ones are 
thrombotic or proliferative occlusion of the endoprosthetic shunt implanted between 
the branches of portal and hepatic veins, as well as stent migration-transposition[20]. 
This is exacerbated by the fact that the tubular shunt-prosthesis is often placed 
between the right branch of the portal vein and the right hepatic vein, which are 
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Figure 2 Porta-caval fibrous connections in humans and animals. A: Plate-shaped porta-caval fibrous connection (PCFC) (histotopogram of liver tissue): 
1: Lumen of the portal vein; 2: Lumen of hepatic vein tributary; 3: Bile ducts and biliary glands (filled with Indian ink); 4: Liver parenchyma; Rad arrow: Proper hepatic 
capsule (PHC); Blue arrow: Perivascular fibrous capsule (Glisson’s capsule); Green arrowhead: Fissure among the PHC and Glisson’s capsule; Yellow arrowhead: 
Fissure among the PHC and perivenous connective-tissue sheath (preparation from the private archive of Professor Chanukvadze I); B: PCFCs (histotopogram of 
liver tissue): Large portal tract is surrounded by a yellow ellipse; 1: Lumen of the portal vein; 2: Lumen of hepatic vein tributaries; 3: Small portal tract; 4: Liver 
parenchyma; 5: Bile ducts (filled with Indian ink); Green arrowhead: The area of complete fusion; Red arrowhead: Thread-shaped PCFC (preparation from the private 
archive of Professor Ilya Chanukvadze); C: PCFC in rat liver (surrounded by a red ellipse). 1: Lumen of the portal vein; 2: Lumen of a hepatic vein; Red arrow: Bile 
ductule abutted to hepatic vein connective tissue sheath (preparation from the private archive of Professor Dimitri Kordzaia). Hematoxylin-eosin, Ob × 10, Oc × 10; D: 
Fragment of Figure C. Hematoxylin-eosin, Ob × 40, Oc × 10. C and D: Citation: Kordzaia D, Jangavadze M. Unknown bile ductuli accompanying hepatic vein 
tributaries (experimental study). Georgian Med News 2014: 121-129. Copyright ©Georgian Medical News 2014. Published by Georgian Medical News[43].

significantly separated from each other (from 2 cm to 9 cm). The longer the shunting 
prosthesis is, the higher the likelihood of thrombosis, suppression and/or tran-
sposition[41,42].

It is quite probable that the endovascular method may be more successful in 
developing portocaval anastomoses in the area of PCFCs, where parenchyma-free 
areas of direct contact between the walls of large branches (5 mm to 20 mm) of the 
hepatic and portal veins already exist. It is preferable to perform endovascular 
intervention on liver segments II and III, where the left hepatic vein passes below the 
main portal complex and is in direct contact with the portal vein branch, as well as 
between the right hepatic vein and the portal vein branch of segment VII. The various 
types of branching of the portal and caval veins determine a large variation in the 
number of PCFCs — from 4 to 20; however, despite this, the above-mentioned PCFCs 
in segments III and VII are characterized by high stability. In addition, the sites of 
integration within the connective-tissue sheaths of the large portal tracts and hepatic 
veins with the standard topography can be visualized by magnetic resonance imaging
[20].

CONCLUSION
In the human liver where the portal tracts and hepatic veins spatially intersect (spatial 
crossing), the fusion of their connective-tissue sheaths develops an anatomical 
structural element in the form of a nodal fibrous connection — “porta-caval fibrous 



Patarashvili L et al. Porta-caval fibrous connections

WJH https://www.wjgnet.com 1492 November 27, 2021 Volume 13 Issue 11

connection” — allowing the hepatic vein to interact closely with the elements of the 
portal complex. The PCFC is a stable structure, whose formation begins at the 11th-12th 
week of embryogenic development. Based on the above discussion, intrahepatic PCFC 
can be considered an independent anatomical element of the liver, which deserves to 
be reflected in international anatomical nomenclature. Knowledge of the existence and 
features of PCFC enhance our understanding of the liver connective tissue framework 
and support the development of new surgical approaches for the treatment of various 
liver pathologies.
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Abstract
Fatty liver has been present in the lives of patients and physicians for almost two 
centuries. Vast knowledge has been generated regarding its etiology and 
consequences, although a long path seeking novel and innovative diagnostic 
biomarkers for nonalcoholic fatty liver disease (NAFLD) and nonalcoholic steato-
hepatitis (NASH) is still envisioned. On the one hand, proteomics and lipidomics 
have emerged as potential noninvasive resources for NAFLD diagnosis. In 
contrast, metabolomics has been able to distinguish between NAFLD and NASH, 
even detecting degrees of fibrosis. On the other hand, genetic and epigenetic 
markers have been useful in monitoring disease progression, eventually 
functioning as target therapies. Other markers involved in immune dysregulation, 
oxidative stress, and inflammation are involved in the instauration and evolution 
of the disease. Finally, the fascinating gut microbiome is significantly involved in 
NAFLD and NASH. This review presents state-of-the-art biomarkers related to 
NAFLD and NASH and new promises that could eventually be positioned as 
diagnostic resources for this disease. As is evident, despite great advances in 
studying these biomarkers, there is still a long path before they translate into 
clinical benefits.
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Core Tip: Nonalcoholic fatty liver disease is increasing in prevalence worldwide. Liver 
biopsy is considered the gold standard for diagnosis, but it has several limitations. 
Given the burden on the healthcare system caused by liver fibrosis in a population with 
metabolic syndrome, there is a priority for noninvasive and accurate diagnostic 
biomarkers that differentiate patients with steatosis from those with nonalcoholic 
steatohepatitis, stage fibrosis, predict progression, and monitor treatment response. 
These biomarkers could assist clinicians in early interventions, avoiding complications 
and improving prognosis. Here, we summarize the current evidence and future 
directions.

Citation: Castillo-Castro C, Martagón-Rosado AJ, Ortiz-Lopez R, Garrido-Treviño LF, 
Villegas-Albo M, Bosques-Padilla FJ. Promising diagnostic biomarkers of nonalcoholic fatty 
liver disease and nonalcoholic steatohepatitis: From clinical proteomics to microbiome. World J 
Hepatol 2021; 13(11): 1494-1511
URL: https://www.wjgnet.com/1948-5182/full/v13/i11/1494.htm
DOI: https://dx.doi.org/10.4254/wjh.v13.i11.1494

INTRODUCTION
Thomas Addison first described “fatty liver” in 1836 in England; however, it was not 
until 1885 when Bartholow made an association between obesity and fatty liver. In 
1938, Charles Connor demonstrated a link between fatty liver and progression to 
cirrhosis in diabetic patients. Throughout the 1950s and up to the 1970s, pathologists 
reported similarities between alcoholic liver disease and hepatic histological changes 
in obese and diabetic patients. In 1980, Jurgen Ludwig[1] described patients who 
denied excessive alcohol consumption yet still had chronic liver disease and histo-
logical characteristics of alcoholic fatty liver disease. There was no name for the 
disease, so Ludwig coined the terms nonalcoholic fatty liver disease (NAFLD) and 
nonalcoholic steatohepatitis (NASH)[1].

As reported in the most recent guidelines, NAFLD is defined as the presence of 
steatosis in > 5% of hepatocytes in the absence of significant ongoing or recent alcohol 
consumption and other known causes of liver disease. While in 2005 it had a global 
prevalence of 15%, a rapid increase in sedentarism and excessive calorie intake 
independent of diet has pushed it to 24%, with the highest rates in South America 
(31%) and the Middle East (32%), followed by Asia (27%), the United States (24%), and 
Europe (23%)[2]. In persons with obesity or type 2 diabetes, it increases up to 70%-90%
[3]. Although there is a significant difference between ethnicities within these 
populations, the exact explanation remains unknown[2].

NAFLD is a necessary and opportune diagnosis, given that 59% progress to NASH. 
From this stage, 41% continue to fibrosis, with 40% ending with cirrhosis, increasing 
their risk of a liver transplant, cardiovascular disease, and mortality if there are no 
interventions[4]. In our country, the Mexican population has several risk factors for the 
disease because there is a high incidence of overweight and obesity[5], making the 
NAFLD prevalence likely to surpass 50%. Up to 82% of obese patients who have 
undergone bariatric surgery present NAFLD, alongside 36% of women with obesity[6].

An international panel has now proposed to rename the disease metabolic 
dysfunction-associated fatty liver disease to represent the hepatic manifestation of a 
multisystemic disorder. Until now, the diagnosis was reached by the exclusion of other 
liver diseases; however, as the pathogenesis is better understood, it is now perceived 
as a distinct disease and requires a positive diagnosis, which is why it is proposed that 
the criteria be based on histological, imaging, or blood biomarker evidence of fat 
accumulation in the liver in addition to one of the following three: Overweight/ 
obesity, type 2 diabetes mellitus, or evidence of metabolic dysregulation (at least two 
metabolic risk abnormalities)[1].
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Today, the liver biopsy remains the gold standard for diagnosing and monitoring 
liver disease, with the disadvantage of being a costly and invasive procedure[7], which 
is why it is important to look into possible new noninvasive diagnostic tools, such as 
biomarkers, use of transcriptomics, proteomics, metabolomics, and now “glycomics”
[8]. These should aid in predicting liver disease severity, progression, and response to 
lifestyle changes and pharmacological treatment[9]. The objective of this article is to 
review concisely and present the potential diagnostic biomarkers for NAFLD and 
NASH (Figure 1).

PROTEOMICS 
The concentrations of several plasma components are determined in routine clinical 
practice, including electrolytes, molecules, and proteins. Plasma proteins, which 
constitute the plasma proteome, are released as a result of inflammation, apoptosis, 
and oxidative stress (OS)[10]. Mass spectrometry-based proteomics[9] and two-
dimensional electrophoresis are powerful tools for studying differences[11] in the 
plasma proteome. There are differences in protein expression among patients with 
NAFLD and healthy controls. Proteomics technologies have gained relevance as 
potential non-invasive diagnostic methods for NAFLD.

Plasma proteomics
Plasma proteomics may be secreted by the liver or as a result of the response of the 
host to steatosis. Hemoglobin is currently the most replicated proteomic biomarker in 
NAFLD[12]. Studies have found that higher hemoglobin levels are associated with a 
higher incidence of NAFLD[12]. Circulating aminotransferase [aspartate aminotrans-
ferase (AST) and alanine aminotransferase (ALT)] levels are markers of several liver 
diseases, including NASH. Changes in these enzymes are one of the most commonly 
observed abnormalities[10].

Fibroblast growth factor 21 is another protein secreted in response to peroxisome 
proliferator-activated receptor (PPAR)-α activation, and several studies support its 
potential use as a biomarker for NAFLD[13,14]. The elevation of retinol-binding 
protein 4 has also been associated with liver fat accumulation[15]. Some glycoproteins 
like serum fucosylated haptoglobin and Mac-2 binding protein are predictors of 
hepatocyte ballooning and liver fibrosis[16].

Cytokeratin-18 fragments, such as CK18Asp396, are other proteins that have been 
extensively studied. These are produced during apoptosis (M30) or cell death (M65). 
CK18 is the most reviewed biomarker to evaluate liver inflammation[15], but current 
knowledge does not support its use in clinical practice[17] because of its modest 
accuracy[8].

Increased cytokeratin-18 levels have good predictive value for NASH vs normal 
livers but do not differentiate NASH vs simple steatosis[18,19]. Cytokeratin-18 serum 
levels decrease parallel with histological improvement, but its predictive value is not 
better than ALT in identifying histological responders[20].

Circulating concentrations of cytokeratin-18 fragments were proposed as the most 
reliable predictors of NASH in patients with NAFLD[21].

Circulating extracellular vesicles
Another important plasma component includes circulating extracellular vesicles (EVs), 
which are small cell-derived membrane-surrounded structures enclosed by a 
phospholipid bilayer, with a specific cargo of bioactive molecules of cell origin. There 
are three types according to their size: Exosomes (40-100 nm), microvesicles or 
microparticles (0.1-1 μm), and apoptotic bodies (1-4 μm)[22].

They can be detected in several body fluids and can serve several functions by 
delivering a variety of bioactive molecules, including non-coding RNAs, proteins, 
lipids, and nucleic acids[23]. Recent studies have provided insight on the bioavail-
ability of circulating EVs in various fluids and, as a consequence, on their potential use 
as biomarkers for various diseases such as cancer[20,24,25], cardiovascular disease
[26], renal disease[27], and liver disease[28,29].

Some authors consider them noninvasive “liquid biopsies” for NASH diagnosis, 
and studies suggest they can assess disease severity[30]. Serum levels of total and 
hepatocyte-derived EVs correlate with NASH clinical characteristics, and disease 
severity in experimental models of NASH, liver and blood levels of EVs are increased 
and correlate positively with changes in liver histology[31].
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Figure 1 Although liver biopsy remains as the gold standard for the diagnosis of nonalcoholic fatty liver disease and nonalcoholic 
steatohepatitis, other current imaging studies are shown, along with promising diagnostic and/or monitoring biomarkers that may be 
present in each of the stages of hepatic pathology, ranging from reversible steatosis and inflammation to irreversible fibrosis and 
eventually cirrhosis (Figure 1 created with BioRender.com). US: Ultrasound; TE: Transient elastography; BMI: Body mass index; Hb: Hemoglobin; FGF-
21: Fibroblast growth factor 21; RBP4: Retinol binding protein 4; CK18Asp396: Caspase cleaved cytokeratin-18 fragment; TMAO: Trimethylamine N-oxide; LDL-c: 
Low density lipoprotein cholesterol; Fecal SCFAs: Fecal Short chain fatty acids; fCh: Ferrochelatase; IL-17: Interleukin-17; IL-22: Interleukin-22; PPARα: Peroxisome 
proliferator-activated receptor α; DR5: Death receptor 5; miRNA-122: MicroRNA 122; miR-192: MicroRNA 192; N/L ratio: Neutrophil/lymphocyte ratio; Th17/Treg 
imbalance: T helper 17/T regulatory cells imbalance; IL-1: Interleukin-1; IL-6: Interleukin-6; TNFα: Tumor necrosis factor alpha; ASGPR1+: Asialoglycoprotein 
receptor 1; CNN2: Calponin 2; miRNA-214: MicroRNA 214; miR-34a: MicroRNA 34a; Hfib1: Hepatic fibrosis 1; N/L ratio: Neutrophil/lymphocyte ratio; IFNγ: Interferon 
γ; IL-4: Interleukin-4; IL-13: Interleukin-13.

Povero et al[30] performed a study isolating EVs from controls with histologically 
confirmed NASH without cirrhosis and patients with cirrhotic NASH[30]. After the 
characterization of EV structural features, they found that differences in the quantity 
and protein components of circulating EVs could be potentially useful for differen-
tiating patients with NASH from controls and patients with pre-cirrhotic NASH from 
patients with cirrhotic NASH[30].

Notably, asialoglycoprotein receptor 1-positive hepatocyte-specific EVs may 
represent a surrogate noninvasive biomarker of portal hypertension in patients with 
cirrhotic NASH. If confirmed, these findings may support the clinical utility of 
asialoglycoprotein receptor 1-positive EVs (hepatocyte-specific EVs) as a potential 
alternative to an invasive hepatic venous pressure gradient[30].

Patients with NAFLD or NASH secrete increased levels of microvesicles derived 
from macrophages/monocytes [CD14(+)] and natural killer (NK) T cells; these levels 
correlate with NASH severity based on histology[28]. Hirsova et al[32] have 
demonstrated that lipids that stimulate death receptor 5 on hepatocytes also induce 
the release of hepatocyte EVs that activate an inflammatory phenotype in macro-
phages that lead to NASH[32].

However, a major problem in translating this research into clinically useful 
information is a lack of reproducibility and rigorous criteria for reporting these 
biomarkers. Proteomics analysis of EVs from patients with advanced NASH is 
currently limited.

Exosomes 
Exosomes are a type of EVs secreted in most cells[22]. These nanovesicles of endocytic 
origin are present in nearly all-human fluids. Exosomes have several bioactive 
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molecules, including proteins, lipids, and genetic materials[33]. They are conduits for 
intracellular transfer, and their signals can induce fibrosis, macrophage activation, 
cytokine secretion, and remodeling extracellular matrix (ECM) production and 
inactivate hepatic stellate cells (HSC)[34]. Hepatocytes are exosome-secreting cells that 
are also regulated by hepatic and extrahepatic exosomes[33].

Koeck et al[35] found that exosomes from visceral adipose tissue were involved in 
the progression of NAFLD by inducing dysregulation of the transforming growth 
factor-beta (TGF-β) pathway in hepatocytes and HSCs in vitro[35]. Another study by 
Seo et al[36] detected that during liver injury, damaged hepatocytes produce exosomes 
that activate toll-like receptor 3, which exacerbates liver fibrosis by enhancing 
interleukin-17A (IL-17A) production by γδ T cells[36].

Liver fibrogenic pathways are primarily controlled by HSC, which produces and 
responds to fibrotic mediators such as connective tissue growth factor (CCN2)[37]. 
Tadokoro et al[29] found that CCN2 upregulation in fibrotic or steatotic livers is 
associated with the downregulation of microRNA-214 (miRNA-214). miR-214 levels 
increased in quiescent HSC-secreted exosomes compared with active HSC-released 
exosomes[29]. On the other hand, exosomal CCN2 may amplify fibrogenic signaling 
and might be useful for assessing hepatic fibrosis[37].

Chen et al[38] found that the miR-214 promoter binds to the basic helix-loop-helix 
transcription factor (Twist1), which drives miR-214 expression and results in CNN2 
suppression. Twist 1 expression was suppressed during HSC activation. The amounts 
of Twist1, miR-214, or CCN2 in circulating exosomes from fibrotic mice reflected 
fibrosis-induced changes in the liver[38]. These findings suggest that during liver 
fibrosis, exosomes contain specific types of biomarkers, which could be helpful in the 
diagnosis and progression of liver diseases.

miRNA
Circulating microRNAs (miRNA) are RNA molecules that do not encode proteins but 
regulate gene expression in the body, binding to target mRNAs and interfering with 
their translation[22]. They are expressed in several liver cell types and may offer a 
biologically stable blood-based biomarker tool for the detection and stratification of 
liver disease[29].

Tadokoro et al[29] have suggested that serum/plasma miR-122 correlates with liver 
damage. They have also identified that miR-155 might serve as a liver inflammation 
biomarker. The one limitation found is that this miRNA cannot differentiate different 
liver damage etiologies[29].

Another study reported that miRNA-122 and miR-192 levels are dynamic and 
increase over time, closely correlating with the histopathological severity of NASH[31]. 
The miR-29 family (miR-29a, miR-29b, miR-29c) mediates the regulation of liver 
fibrosis through several cellular signaling pathways such as the nuclear transcription 
factor-kappa B pathway, TGF, and phosphatidylinositol 3-kinase/AKT signaling in 
HSC with upregulation of ECM genes for the progression of liver fibrosis[39].

Members of the miR-34 family (miR-34a, miR-34b, miR-34c) have pleiotropic roles in 
the cell cycle and promote the progression of hepatic fibrosis by activation of HSC[39]. 
miR-34a appears to have an important role in liver fibrosis by regulating the 
deposition of ECM[40]. miR-30c and miR-193 are also involved in fibrotic remodeling 
processes that modify the TGF-β-dependent regulation of ECM-related genes in HSCs
[41].

The miR-15 family mainly regulates the TGF-β pathway. The activation of HSCs 
relates to miR15a and miR15b, and they are thought to be essential for apoptosis by 
targeting Bcl-2 and the caspase signaling pathway[42]. The miR-378 family (specially 
miR-378a-3p) suppresses the activation of HSCs by directly targeting Gli3[43]. miR-571 
closely correlates with the liver cirrhosis stage, and it is upregulated in human 
hepatocytes and HSC[44]. miR-503 also acts on HSC activation and hepatic fibrosis 
through the TGF-β/SMAD pathway[45].

The miR-199 family and miR-200 family are responsible for ECM deposition and the 
release of profibrotic cytokines, which might play profibrotic or anti-fibrotic roles[39]. 
HSCs also have anti-fibrotic miRNAs, and these include miR-19b, miR-29, miR-30, 
miR-101, miR-122, miR-133a, miR-144, miR-146a, miR-150-5p, miR-155, miR-195, miR-
200a, miR-214, miR-335, miR-370, miR-454, miR-483, etc. The latter are responsible for 
the maintenance of the quiescent phenotype of normal HSCs[46]. Thus, these studies 
evidence the role of microRNAs as potential biomarkers of liver damage in NAFLD.
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METABOLOMICS
Technological advances in metabolomic analyses on feces, serum, plasma, urine, or 
liver biopsies led to identifying different metabolites in patients with NAFLD or 
NASH[47]. Recent studies have found that the severity of fibrosis is associated with 
serum metabolite changes[48-50].

Remarkably, some metabolites come from the host or the diet, but most need the 
participation of gut microbes. Notably, inosine and hypoxanthine are enriched in 
serum samples from patients with mild or moderate NAFLD[47]. Another study found 
that liver steatosis correlates with phenylacetic acid levels in humans[51]. Glutathione 
plasma concentration is significantly lower in subjects with liver steatosis, while in 
subjects with NASH, homocysteine and cysteine concentrations in plasma are higher
[52].

Gut microbially-derived metabolomics
Choline, betaine, and circulating methylamines: Choline is an essential component of 
phosphatidylcholine (a precursor of acetylcholine), mostly obtained from the diet[53]. 
It is known that a reduction in dietary choline is related to an increase in liver fat. Mice 
fed with a choline deficient diet are identified as a characteristic model of NAFLD[54]. 
Choline can be oxidized to betaine, and it has been found that patients with increasing 
severity of NAFLD have a decreased betaine to choline ratio[55]. The gut microbiota 
metabolizes choline into trimethylamine (TMA), which is further metabolized into 
trimethylamine-N-oxide (TMAO) in the liver[56]. Studies suggest that NAFLD severity 
is associated with increased urinary levels of TMA and TMAO, while TMAO seems to 
be associated with NAFLD severity[47].

TMAO and bile acids: Gut microbiota regulates secondary bile acid metabolism and 
inhibits the liver synthesis of lipids by alleviating farnesoid X-activated receptor 
inhibition[57]. TMAO is a gut-dependent metabolite of choline. A decreased level of 
bile acids could be associated with TMAO production and NAFLD since it induces a 
decrease in the bile acid pool by inhibiting two key enzymes of bile acid metabolism: 
Cytochrome P450 (CYP)7A1 and CYP27A1[55]. Some studies have found adverse 
associations between the circulating TMAO levels and the presence and severity of 
NAFLD and a favorable betaine-NAFLD relationship in participants[55].

Three-(4-hydroxyphenyl) lactate: Three-(4-hydroxyphenyl) lactate is a derived 
product of amino acid metabolism. It was consistently associated with increased liver 
fibrosis severity in a test and validation cohort[48].

Ethanol: Gut microbiota leads to endogenous ethanol production, which might be a 
liver toxin involved in NAFLD and NASH development[47]. A study showed that 
Klebsiella pneumoniae can produce ethanol from glucose in the absence of alcohol 
consumption, and it might be associated with NAFLD[58].

LIPIDOMICS AND LIPOTOXICITY 
Human serum and plasma are composed of lipids that play important roles in energy 
storage, metabolic regulation, signaling, etc.[10]. Technological advances have made 
possible the identification of specific alterations in lipids and metabolites in the feces, 
serum, plasma, urine, and liver of patients with NAFLD[47].

Choline is a dietary component metabolized in the liver, necessary for cell function. 
Epidemiological studies suggest that increased free choline levels are related to the 
degree of hepatic steatosis fibrosis[59].

Kalhan et al[60] have shown that plasma levels of triglycerides[60] and low-density 
lipoprotein cholesterol are higher in patients with NAFLD[52]; however, differences in 
this lipidomic profile are also observed in obesity. Therefore, this lack of specificity 
remains a limitation for their use. Barr et al[61] described a lipidomic signature 
associated with NAFLD progression to distinguish NASH from steatosis, depending 
on the body mass index in a large cohort of samples[61].

Gorden et al[62] described a panel of 20 lipids that differentiate patients with NASH 
and liver steatosis[62]. Later, Kimberly et al[63] identified the association between 
anandamide (endocannabinoid derived from arachidonic acid metabolism) and 
NAFLD severity[63]. Tokushige et al[64] reported 28 metabolites associated with liver 
fibrosis, showing a decrease of dehydroepiandrosterone sulfate and etiocholanolone-S 
with the progression of fibrosis[64].
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Puri et al[65] analyzed plasma lipids and eicosanoid metabolites in NAFLD and 
NASH patients. They reported increased plasma monounsaturated fatty acids and 
primary palmitoleic and oleic acids and decreased linoleic acid. Plasmalogen levels 
were significantly decreased in NASH, and 11-HETE (a nonenzymatic product of 
arachidonic acid) was increased in NASH[65]. Loomba et al[66] assessed the lipidomic 
profile in NAFLD and NASH patients and reported that 11,12-dihydroxy- eicosatrie-
noic acid (11,12-diHETrE) was the best biomarker for differentiating NAFLD from 
NASH[66].

Short-chain fatty acids (SCFAs) are comprised of butyrate, acetate, and propionate. 
They are produced in the colon through microbial fermentation of dietary fiber and 
are a substrate that increases liver triglyceride levels[67]. They are also involved in 
fatty acid synthesis and gluconeogenesis[68]. Human studies have observed an 
increased fecal concentration of SCFAs in patients with NAFLD and/or NASH[69].

In NAFLD, lipid metabolism is disrupted, and lipotoxicity is a key mechanism for 
NAFLD progression. Lipidomic profiling might provide a novel biomarker for the 
noninvasive prediction of NASH.

GENETIC MARKERS
The role of genetic and epigenetic factors in the progression of liver fibrosis is well 
documented. It is known that key regulatory genes partially control the cell 
phenotype. Several genes are involved in the pathogenesis and histological stage of 
liver fibrosis, although the mechanisms underlying gene regulation are highly 
complex and need additional research[70].

Chromosome 15, designated Hfib1 (hepatic fibrogenic gene 1), affects the stage of 
liver fibrosis[71]. The core of risk genes that control fibrosis progression has been 
defined by quantitative trait locus analysis in mouse strains by genome-wide interval 
mapping, which identified several genomic loci related to fibrosis phenotypes on 
chromosomes 4, 5, 7, 12, and 17[72].

Bruschi et al[73] reported that PLPNA3 quantification correlates with the liver 
fibrosis stage. Expression of PLPNA3 in biopsies from NASH patients is increased 
during progression from mild to severe liver fibrosis. Carriers of the I148M single-
nucleotide polymorphism (C>G) had higher PLPNA3 and serum liver enzyme 
(ALT/AST) levels, along with steatosis grade inflammation ballooning and NAFLD 
activity score, compared with non-polymorphism carriers[73]. On the other hand, 
Sharma et al[74] stated that neurocan is associated with NASH and liver fibrosis in 
patients of European ancestry. Another study found that patients of Indian descent 
with neurocan variations had higher ALT levels[74].

EPIGENETIC MARKERS
Epigenetics describes reversible gene expression changes that do not imply changes in 
the DNA sequence and are entirely cell type-specific. Epigenetic mechanisms initiate 
and sustain chromatin modifications by facilitating gene transcription, cell phenotype, 
and consequently, organ function. These mechanisms include DNA methylation, 
histone modifications, and noncoding RNAs mediating gene silencing[75].

Aberrant DNA methylation is associated with fibrosis. Komatsu et al[76] suggested 
that DNA hypomethylation in fibrogenic genes is crucial for the onset and progression 
of liver fibrosis[76]. Mann et al[77] confirmed this functional association of DNA 
methylation with liver fibrosis. The transdifferentiation of HSC to profibrogenic 
myofibroblast phenotype was suppressed in vitro by the DNMT inhibitor 5’-aza-
deoxycytidine[77]. The development of fibrosis is also related to changes in the 
expression of enzymes that regulate DNA methylation and hydroxymethylation[78].

Epigenetic modulation on the PPAR-γ gene promoter is involved in HSC differen-
tiation. Aberrant expression of a series of chemokines in HSCs aggravate inflammation 
and OS[79].

Small non-coding RNAs contribute to various pathologic states of liver disease, but 
miRNA has been previously reviewed. The detection of genetic and epigenetic 
markers may be helpful in the recognition and monitoring of disease evolution and 
can eventually be applied for targeted therapies.
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IMMUNE DYSREGULATION
NASH pathology encompasses an intricate network of mechanisms. OS activates 
Kupffer cells (KC), and KC activation triggers an innate and adaptative immune 
response, including the release of cytokines and chemokines that activate NK T (NKT) 
cells and HSCs[80]. Besides, there is augmented infiltration of different immune cells, 
such as monocytes, T lymphocytes, and neutrophils, in the activation and in situ 
expansion of liver cells, like KC or stellate cells. Activated KC and NKT cells promote 
additional fat accumulation in the liver. KC, neutrophils, NKT cells, and inflammatory 
T cells [T helper (Th)1, Th17, CD8+ T cells] enhance liver inflammation and contribute 
to the development of fibrosis[81].

The neutrophil to lymphocyte ratio (N:L ratio) has been proposed as a novel 
noninvasive marker to predict NASH and advanced fibrosis in patients with NAFLD
[82]. In patients with cirrhosis, these cells are functionally deficient, with impaired 
chemotaxis, phagocytosis, and intracellular killing. Their function correlates with 90-d 
survival[83].

On the other hand, monocytes are myeloid-derived cells that migrate to inflam-
mation sites, phagocytose microbes, and secrete cytotoxins. They are spontaneously 
activated in patients with liver fibrosis. Cirrhotic patients have an increased peripheral 
frequency of monocytes, impaired phagocytosis, and reduced responses to stimulation
[84].

Studies have reported that NK cells are dysregulated in liver diseases. One study 
found that IL-17- and IL-22- secreting iNKT cells are dominant at the beginning of 
liver steatosis, and IFNγ/IL-4/IL-13-secreting iNKT cells are prevalent at the most 
advanced course of the disease[85].

Notably, CD4+ T cells are reduced in patients with liver fibrosis. This finding could 
explain the increased risk of spontaneous bacterial peritonitis in these patients[86]. 
CD8+ T cells isolated from mice hepatic cells expressed an increased cytotoxic IL-10 
phenotype and CD8+ T cell depletion[87].

Th17 cells and T regulatory cells (Treg) originate from naïve T cell precursors. Th17 
cells are important for pathogen clearance and inflammation. Treg cells in patients 
with liver fibrosis are significant[88]. There is a Th17/Treg imbalance that positively 
correlates with NASH histological progression[89].

Innate lymphoid cells are lymphocytes that secrete cytokines and chemokines in 
response to pathogenic tissue damage. They have a role in inflammation and fibro-
genesis that progresses with advancing chronic liver disease[90].

OS AND INFLAMMATION
Detoxification is a crucial hepatic activity. It is vulnerable to OS and inflammation. An 
increase in free fatty acids is critical for the elevation of reactive oxygen species (ROS). 
A balance between the ROS and antioxidant systems is necessary for adequate cell 
function[80]. OS causes liver damage by altering DNA molecules, proteins, and lipids 
and modulating pathways associated with gene transcription, protein expression, cell 
apoptosis, and HSC activation. Inflammation is manifested as inflammatory cell infilt-
ration in the liver to fight pathogen invasion. When the stimuli are persistent, it can 
lead to cell injury and lipid accumulation associated with an increased risk of severe 
liver disease, including steatohepatitis and fibrosis[91].

In NASH, ROS are generated in several ways that can alter signaling pathways, 
such as cell kinases, phosphatases, and transcription factors, which impact cell prolif-
eration, differentiation, and apoptosis. They can lead to cirrhosis via the rebuilding of 
stellate cells and ECM within the liver. Substantial hepatic ROS is produced by 
excessive angiotensin II and activated CYP2E1, resulting in impaired beta-oxidation 
and eventually fatty liver[91].

Lipotoxicity in NAFLD causes OS and induces organelle damage due to decreased 
antioxidant systems, mitochondrial dysfunction, and an increase in unfolded protein 
response by endoplasmic reticulum stress[80]. On the other hand, there is an 
impairment of α-oxidation due to a decrease in PPARα activity, which upturns hepatic 
lipid levels. Fatty acid overload is the major source of reducing equivalents responsible 
for increased ROS production. Also, TNF-α and lipid peroxidation products could 
induce mitochondrial dysfunction. Mitochondrial damage will result in secondary 
lipid α-oxidation inhibition and a further increase in the degree of steatosis[80].

Furthermore, inflammatory cytokines such as IL-1-β, TNF-α, and IL-17/20/33, 
chemokines, like monocyte chemoattractant protein-1 and C-X-C chemokine ligand 10, 
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and the toll-like receptor pathway are intensively involved in the regulation of hepatic 
fibrogenesis[91]. Macrophage activation and influx in the liver are important for the 
progression of NAFLD since hepatic macrophages promote NASH development via 
cytokines IL-1, IL-6, and TNF-α[92]. Liver failure causes an increase of TNF-α, IL-6, 
and angiotensin II[80].

OTHER NOVEL MARKERS
Gut permeability markers 
The intestinal barrier is composed of chemical, physical, and immunological barriers. 
Maintaining a healthy barrier is essential to prevent microbial translocation and keep 
the liver safe to prevent systemic inflammation[93].

Differences in the taxonomic composition of the intestinal microbiome in NAFLD 
(an increased proportion of Firmicutes and a reduced proportion of Bacteriodetes) 
change metabolic function. The availability of bile acids, endogenous alcohols, and 
voltaic organic compounds increases. When these changes are combined with reduced 
SCFAs and choline, the integrity of the intestinal barrier is reduced[93].

Gut barrier disruption is recognized in patients with cirrhosis. The epithelial layers 
show structural abnormalities related to increased intestinal permeability or bacterial 
translocation[94]. Permeability can be measured by the urinary excretion of 
radiolabeled 51chromium-ethylenediamine tetraacetic acid or by measuring volatile 
organic compounds formed by the fermentation of some dietary polysaccharides[95].

CTC–cardiotonic steroids
Cardiotonic steroids (CTS) are part of a group of specific ligands of Na+, K+-ATPase, a 
ubiquitously expressed enzyme responsible for the maintenance of electrochemical 
gradients across the cell membrane through active transport[96] that provokes a 
variety of cell signals[70]. In the last decades, studies have revealed the role of Na+, K+-
ATPase and its signaling in various diseases, including inflammation and fibrosis[97].

CTS increase cholesterol synthesis in liver HepG2 cells, which augments the activity 
and expression of 3-hydroxy-3-methylglutaryl-coenzyme A reductase[98]. Disturbed 
cholesterol balance underlies cardiovascular disease and an increasing number of 
other diseases, such as neurodegenerative diseases, cancers, and liver disease[99].

Elevated CTS might encourage increased cholesterol levels in the liver and worsen 
liver fibrosis by activating HSCs[100] and other redox-inflammatory pathways[101]. 
This increase in cholesterol levels could precipitate hepatocyte injury and macrophage 
activation that could lead to liver fibrosis progression. However, even CTS seem to 
have an important role in hepatocyte lipotoxicity and fibrosis; to our knowledge, they 
have not been studied as biomarkers for liver disease progression.

GUT MICROBIOTA
A large community of viruses, bacteria, archaea, and fungi live in the gastrointestinal 
tract and composes the gut microbiota[102]. It has critical roles in digestion, immunity, 
and metabolism[103]. Recently, the characterization of gut microbiota has evolved 
rapidly due to the advances in sequencing technology, permitting the creation of a gut 
microbiota gene catalogue[102]. The collective genetic material of the microbiota is 
often referred to as the “gut microbiome”. It encodes pathways that produce small 
bioactive molecules derived from dietary or metabolic precursors and may alter 
human health[104].

Thus, knowledge of microbiome characteristics in different metabolic diseases has 
increased in the past years. There has been great interest in dysbiosis (alterations in the 
composition and balance of microbiota[104]). Microbiota alterations are being studied 
as possible diagnostic biomarkers to improve personalized care. Animal studies have 
demonstrated a potential causal role of gut microbiota in NAFLD development[105]. 
However, extrapolating mouse model experimental information to humans has several 
limitations[106]. Consequently, signatures specific to liver alterations would be useful 
as NAFLD diagnostic biomarkers. However, discrepant microbiome signatures might 
be linked to the heterogeneity of diet, drugs, infections, environmental exposures, 
among others[104].
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Bacterial microbiome
Alterations in the gut microbiome have been associated with the progression and 
severity of NAFLD[107]. Proteobacteria are enriched in steatosis[103,108,109]. Patients 
with NAFLD, compared with healthy individuals, also have significant changes at the 
phylum (increased Enterobacteriaceae[109] and decreased Rikenellaceae and Rumino-
coccaceae[109]) and genera level (increased Escherichia[109], Dorea, and Peptoniphilus 
and decreased Anaerosporobacter, Coprococcus, Faecalibacterium, and Prevotella)[103].

When comparing people with NASH vs healthy controls, some patterns are 
observed that also overlap with the NAFLD microbiome: Phylum (increased Proteo-
bacteria[50,109-111]), family (increased Enterobacteriaceae[109,110] and decreased 
Ruminococcaceae[110-113] and Rikenellaceae[110]), and genera (increased Dorea[111] 
and decreased Faecalibacterium[110,113,114], Coprococcus[110,112,113], and Anaeros-
porobacter[112,114]).

Few projects have studied microbial composition as a function of fibrosis 
progression. Bacteroides vulgatus and Escherichia coli are the most abundant species in 
advanced fibrosis (F3–F4)[50]. Models have been proposed to use the microbiome as a 
reservoir for diagnostic signatures of NAFLD fibrosis[50], but further confirmation in 
independent cohorts and across geographical regions is necessary to assess their 
clinical relevance.

Microbial signatures of liver fibrosis are related to a severe shift in taxa 
conformation, leading to a growth in pathogenic taxa and a decline in metabolically 
beneficial taxa[115]. However, the evaluation of gut microbiota contribution to liver 
disease progression (from steatosis to NASH and NASH cirrhosis) is limited and 
bacterial markers are frequently identified in a given study yet not confirmed in 
independent cohorts.

Although some studies consider gut bacterial groups as promising markers of 
different stages of liver disease, if the microbiota is a causal factor and how it interacts 
with the complex pathophysiological processes driving disease progression from mild 
fibrosis to severe fibrosis is still under investigation[50,109].

Virome
Dense and complex populations of intestinal viruses reside in the gut and interact with 
other microorganisms and the human host[116,117]. Most intestinal viruses are 
bacteriophages (phages), viruses that can specifically infect bacteria[118]. Phages may 
serve as important microbiota genetic diversity reservoirs by acting as vehicles for the 
horizontal transfer of virulence, antibiotic resistance, and metabolic determinants 
among bacteria[119].

Lang et al[120] studied the fecal viromes from NAFLD patients and controls. They 
found associated histologic markers of NAFLD severity with significant decreases in 
viral diversity and proportion of bacteriophages[120]. The intestinal virome is specific 
for every individual, and viral diversity measures were the third and fifth most 
important variables following a higher AST and higher age. The most important viral 
species belonged to Lactococcus phages, and several Lactococcus phages were less 
present in patients with NAFLD and NASH.

Protozoa and fungi
Fungi and archaea are important components of the human microbiota. Recent 
findings have revealed that mycobiome (commensal fungi at barrier surfaces) can 
influence host immunity and the development and progression of human inflam-
matory diseases[121]. The human gut mycobiome is dominated by Saccharomyces, 
Malassezia, Candida, and Cladosporium and are an important modulator for local and 
peripheral immune responses. Patients with liver fibrosis have decreased fungal 
diversity and increased Candida[122]. Gut mycobiota disturbance might produce 
metabolites called mycotoxins (trichothecenes, zearalenone, fumonisins, ochratoxins, 
aflatoxins) that can alter gut health by compromising intestinal epithelia[123,124].

LIMITATION
The increasing burden of NAFLD worldwide has encouraged the search for novel 
biomarkers to detect liver diseases. Liver biopsy is currently the gold standard for 
diagnosis and staging, but it has several limitations, including sampling errors, 
invasiveness, inter-observer variability, and related procedure risks. Researchers have 
faced the challenge of developing novel biomarkers in past decades, and significant 
advances have been made. A promising biomarker should be liver-specific, accessible 
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Figure 2 Potential biomarkers involved in hepatic pathophysiology. Hb: Hemoglobin; FGF-21: Fibroblast growth factor 21; RBP4: Retinol binding 
protein 4; CK18Asp396: Caspase cleaved cytokeratin-18 fragment (M30); Fuc-Hpt: Fucosylated haptoglobin; Mac2bp: Mac-2-binding protein; DR5: Death receptor 5; 
miRNA-122: MicroRNA 122; miR-192: MicroRNA 192; ASGPR1+: Asialoglycoprotein receptor 1; CNN2: Calponin 2; miRNA-214: MicroRNA 214; miR-34a: MicroRNA 
34a; TMAO: Trimethylamine N-oxide; LDL-c: Low density lipoprotein cholesterol; Fecal SCFAs: Fecal Short chain fatty acids; fCh: Ferrochelatase; 11-HETE: 11-
Hydroxyeicosatetraenoic Acid; 11,12-diHETrE: 11,12-dihydroxyicosatrienoic acid; DHEA-S: Dehydroepiandrosterone sulphate; PPAR-γ: Peroxisome proliferator-
activated receptor γ; IL-17: Interleukin-17; IL-22: Interleukin-22; N/L ratio: Neutrophil/lymphocyte ratio; Th17/Treg imbalance: T helper 17/T regulatory cells imbalance; 
IFNγ: Interferon gamma; IL-4: Interleukin-4; IL-13: Interleukin-13; CD4+T: Cluster of differentiation 4, T helper cells; T reg: Regulatory T cells; ILCs: Innate lymphoid 
cells.

and accurate, replicable, and available in clinical laboratories. As summarized in this 
article, most studies have focused on proteomics, metabolomics, genome-wide 
association studies, microbiome, and inflammation markers. Still, some may be more 
specific for NAFLD while others for NASH, although the challenge for determining 
the etiology and staging the degree of severity remains a limitation (Figure 2).

The evaluation of future biomarkers for the assessment of liver fibrosis could greatly 
impact the health system. There is a priority for non-invasive diagnostic tools to fulfil 
medical needs, differentiate patients with steatosis from those with NASH and 
fibrosis, predict disease progression, and monitor patients to evaluate the therapeutic 
response. In the following years, it would be expected that a physician who faces a 
hepatic patient could suspect hepatic disease, perform imaging studies, and from there 
have a set of potential biomarkers that they may request to have a concrete and 
specific diagnosis. Some of these biomarkers have strong diagnostic performance, but 
current evidence shows a lack of reproducibility. Besides, the analytical, clinical 
validity of the methodology is lacking. Validity is necessary to translate basic research 
into real clinical application. Even if we perform this validation, it is unlikely that a 
single biomarker could fulfil this necessity. A combination of these biomarkers could 
soon be used to create a diagnostic panel. This panel, combined with the patient´s 
clinical history and clinical data, could certainly lead to a medical decision that results 
in an accurate diagnosis and treatment. This result must be the goal in the following 
years.
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CONCLUSION
Through this review, we have shown that despite a wide range of potential biomarkers 
for the different stages of hepatic steatosis and fibrosis, there is still a long path to the 
translation of these resources. We provide evidence of the current absence of an 
efficient, non-invasive, and widely accessible test for NAFLD and NASH detection. 
Biomarkers are still in early stages. Rigorous, well-designed comprehensive studies are 
required to determine the actual benefit these may pose for determining the risk, 
diagnosis, and progression of the hepatic patient. In conclusion, our review compiles 
significant efforts to find new promising biomarkers for liver disease, still leaving 
great challenges. There is still a need to define normal reference levels in healthy 
individuals and the different stages of the disease and to determine the clinical 
sensitivity and specificity of biomarkers to develop a clinical diagnostic panel.
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Abstract
Fatty acids are energy substrates and cell components which participate in 
regulating signal transduction, transcription factor activity and secretion of 
bioactive lipid mediators. The acyl-CoA synthetases (ACSs) family containing 26 
family members exhibits tissue-specific distribution, distinct fatty acid substrate 
preferences and diverse biological functions. Increasing evidence indicates that 
dysregulation of fatty acid metabolism in the liver-gut axis, designated as the 
bidirectional relationship between the gut, microbiome and liver, is closely 
associated with a range of human diseases including metabolic disorders, inflam-
matory disease and carcinoma in the gastrointestinal tract and liver. In this 
review, we depict the role of ACSs in fatty acid metabolism, possible molecular 
mechanisms through which they exert functions, and their involvement in hepato-
cellular and colorectal carcinoma, with particular attention paid to long-chain 
fatty acids and small-chain fatty acids. Additionally, the liver-gut communication 
and the liver and gut intersection with the microbiome as well as diseases related 
to microbiota imbalance in the liver-gut axis are addressed. Moreover, the 
development of potentially therapeutic small molecules, proteins and compounds 
targeting ACSs in cancer treatment is summarized.
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Core Tip: To understand the role of acyl-CoA synthetases (ACSs) in the fatty acid 
metabolism, it is necessary to explore the biological function, gene interactions/ 
regulations and signal pathways in physiological and pathological conditions. Growing 
evidence demonstrates that the control of microbial balance plays an important role in 
maintaining homeostasis and normal functions of the liver-gut axis, and the bidirec-
tional communication in turn affects microbial communities. As novel therapeutic 
targets, miRNAs are receiving more and more attention, together with other com-
pounds targeting ACSs.

Citation: Ma Y, Nenkov M, Chen Y, Press AT, Kaemmerer E, Gassler N. Fatty acid metabolism 
and acyl-CoA synthetases in the liver-gut axis. World J Hepatol 2021; 13(11): 1512-1533
URL: https://www.wjgnet.com/1948-5182/full/v13/i11/1512.htm
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INTRODUCTION
Lipids, one of three main nutrients, are mainly composed of fatty acids (FAs), trigly-
cerides (TGs), phospholipid and cholesterol. Lipid metabolites are involved in various 
biological functions and physiological processes, ranging from energy storage and 
degradation and structural composition to molecule signaling as well as signal 
transduction cascade[1].

The liver-gut axis plays a critical role in the homeostasis of lipid metabolism in the 
human body during the feed-fast cycle. Free FAs are absorbed by enterocyte and 
intestine-derived products released into portal blood which is directed to the liver; in 
turn, the liver responds by secreting bile acids (BAs) to the intestine via the biliary 
tract. BAs are transported back to the liver via enterohepatic circulation. Since the 
Volta group identified the important role of microorganisms in the liver-gut axis for the 
first time[2], a number of studies have confirmed that gut microbiota, described as an 
invisible metabolic ‘organ’, has a tight and coordinated connection with the gut and 
liver[3,4]. The intestinal mucosal barrier either acts as a physical barrier or lives in 
symbiosis with microbiota. Once the balance of symbiosis is disrupted, microbiota 
responds to this imbalance, microbiota metabolites (short-chain fatty acids, SCFAs) are 
modified and circulated into the liver. Aberrant lipid metabolism in the liver-gut axis 
has been linked with intestinal bowel diseases and diverse liver diseases[5].

Around 95% of dietary lipids absorbed are TGs, mainly composed of long-chain 
fatty acids (LCFAs)[6]. Fatty acid metabolism takes place mainly in intestinal 
enterocytes and hepatocytes, further assisted by adipocytes and other cell types. To 
become further involved in both anabolic and catabolic pathways, FAs must be taken 
up and activated by thioesterification. This ATP-mediated coupling reaction of FAs 
with coenzyme A is catalyzed by the enzymes called acyl-CoA synthetases (ACSs). 
ACSs are classified into five groups according to the fatty acid chain length: short-
chain, medium-chain, bubblegum-chain, long-chain and very-long-chain acyl CoA 
synthetases (ACSVLs)[7]. ACSVLs as membrane channel proteins have been identified 
as a major enzyme responsible for LCFA uptake and activation[8]. Long-chain acyl-
CoA synthetases (ACSLs) are responsible for the catalyzation of intracellular free 
LCFAs which are transported by other transport proteins, such as fatty acid translo-
case (CD36) and fatty acid binding proteins (FABPs)[9]. Short-chain acyl-CoA 
synthetases (ACSSs) are involved in the activation of microbiota-derived SCFAs, such 
as acetate and propionate[10] (Table 1).

In this review, we will summarize the functional role of ACSs in fatty acid 
metabolism, focusing on LCFAs and SCFAs, as well as potential therapeutic targets of 
ACSs. Furthermore, we will explore the influence of dietary diversity on microbiota 
and the microbial metabolites, and their bidirectional communication in the liver-gut 
axis.
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Table 1 miRNA and compounds targeting acyl-CoA synthetases

Type Name Target Mechanism Ref.

miRNA miR-205 ACSL4/ACSL1 Inhibition of ACSL4/ACSL1 in hepatocellular 
carcinoma

[155,171]

miR-211-5p ACSL4 Inhibition of ACSL4 in hepatocellular carcinoma [172]

miR-19b-1 ACSL1/ACSL4/SCD1 Inhibition of ACSL1/ACSL4/SCD1 axis in colorectal 
cancer

[173]

miR-142-3p ACSL1/ACSL4/SCD1 Inhibition of ACSL1/ACSL4/SCD1 axis in colorectal 
cancer

[173,174]

miR-34c ACSL1 Inhibition of ACSL1 and induction of liver 
fibrogenesis

[175]

miR-497-5p ACSL5 Inhibition of ACSL5 in colon cancer [170]

Compounds Triacsin C ACSL1/ACSL3/ACSL4 and 
ACSL51

Inhibition of ACSL1/ACSL3/ACSL4 and ACSL51 [177,178]

Roglitazone Pioglitazone 
Troglitazone

ACSL4 Inhibition of ACSL4 [179-181]

Lipofermata FATP2 Inhibition of FATP2 [191,192]

Grassofermata FATP2 Inhibition of FATP2 [191,193,
194]

Ursodiol chenodiol FATP5 Inhibition of FATP5 in liver [195]

Fenofibrate PPARα Indirect activation of FATP in liver predominantly [196,197]

1Triacsin C is also competitive inhibitor of ACSL5 when used in higher concentration.

FATTY ACID METABOLISM MEDIATED BY ACYL-COA SYNTHETASES IN 
THE LIVER-GUT AXIS
Circulation of fatty acids and bile acids in the liver-gut axis
Intestinal absorption of FAs is a multistep process that includes digestion, uptake and 
absorption and needs to cooperate with large numbers of enzymes secreted by series 
of organs in the gastrointestinal tract[11]. TGs are first released from a fatty diet after 
digestion with lingual and gastric lipase in the stomach, and released TGs are further 
hydrolyzed by pancreatic lipase to produce 2-monoacylglycerides and free FAs[12]. 
Sequentially those digested FAs mix with BAs and emulsify to form spherical water-
soluble droplets, called micelles (MCs). With intestinal peristalsis, MCs are transported 
to the small intestinal lumen and further translocated into the apical membrane of 
enterocytes.

In intestinal enterocytes, absorbed LCFAs experience a series of catabolic metabo-
lisms for energy supply for massive biological activities, and anabolic metabolism to 
reconstitute lipids. Newly synthesized lipids are incorporated into transport vehicles, 
chylomicrons (CMs), that are later liberated from enterocytes, and then transported to 
the liver through the hepatic portal vein. The liver is the major processing factory of 
FAs and regulates and balances lipid homeostasis systemically in the liver-gut axis. 
Fatty acid uptake and metabolism occur in hepatocytes. During feeding, hepatocytes 
take up the influx of FAs and get rid of FAs via β-oxidation to produce energy, and 
reformed TGs integrated into CMs partition into two pathways: (1) Secreted into 
bloodstream; and (2) transported and stored in adipose tissue. During fasting or 
starvation, hepatocytes recycle TGs from lipid droplets and adipose tissue, and initiate 
de novo lipogenesis by using other energy sources in the liver, such as carbohydrates
[13,14]. Therefore, the pool of FAs is always in dynamic equilibrium between dietary 
absorption in the enterocytes, process and lipogenesis in the liver and liver feedback 
regulation via BAs during the feed-fast cycle. 

As previously mentioned, BAs are involved not only in facilitating MC formation, 
but also as signaling molecules and metabolic regulators of lipid/glucose metabolism, 
energy homeostasis and inflammation in the liver-gut axis[15]. It has been demon-
strated that a higher level of BAs can be detected in the tissues of the liver-gut axis 
compared to peripheral blood[16]. Primary BAs are synthesized in the hepatocytes and 
secreted into the small intestine; most of them are reabsorbed in the ileum. A small 
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number of unabsorbed BAs are taken up by microbiota and metabolized into 
secondary BAs[17]. In enterocytes BAs are reabsorbed through the apical sodium-
dependent BA transporter (ASBT), carried by the intestinal bile acid-binding protein 
(FABP6) and released into portal blood via heterodimeric transporter OSTα/OSTβ. BA 
activation of the nuclear farnesoid X receptor (FXR) also upregulates FABP6, OSTα
/OSTβ and fibroblast growth factor 19 (FGF19), which further inhibits BAs synthesis. 
In hepatocytes, the transport of BAs is mediated by sodium-taurocholate cotrans-
porting polypeptide (NTCP) and organic anion transporters (OATPs). BAs acting as an 
activator of hepatic FXR regulate the expression of genes involved in bile acid 
transport and synthesis. This enterohepatic circulation of BAs plays a critical role in 
maintaining the BAs pool in the liver-gut axis[18,19].

Long-chain fatty acid transport to enterocytes and hepatocytes
Free fatty acid uptake is requested across the phospholipid bilayer in the mammalian 
membrane. It is widely known that LCFAs can be taken up into cells via flip-flop 
diffusion with rate limiting[20,21]. High permeability of LCFA transport is mediated 
by several membrane-associated transport proteins including FA transport proteins 
(FATPs), FABPs, CD36 and caveolin (CAV)[9].

FATP1-6 (fatp in mice, also called ACSVL1-6) is a group of enzymatic proteins with 
double capabilities of transport and activation. FATP can trap and activate a broad 
range of LCFA and VLCFA to form acyl-CoA[9,22]. Different FATP family members 
have tissue-specific expression patterns[23]. In the intestine, FATP4 (ACSVL5) is 
strongly expressed in intestinal villi but not in crypts, which plays an important role in 
fatty acid absorption[24]. Fapt4-null mice display an embryonic lethality with a 
defective epidermal barrier. Fapt4 depletion alters the ceramide fatty acid composition 
significantly, especially in saturated VLCFA substitutes C26:0 and C26:0-OH[25]. 
FAPT5 (ACSVL6) mainly transports BAs but also LCFAs, is only expressed in the liver 
and particularly in the basal membrane of hepatocytes[8,26]. Fapt5 knockout mice 
showed this defective bile acid conjugation, indicating that Fapt5 is essential for fatty 
acid uptake by hepatocytes and maintenance of the lipid balance which further 
regulates body weight[27]. With the discovery of the topological structure of murine 
FAPT1 containing one transmembrane domain and a large cytoplasm domain[28], 
different mechanisms of FATP1 transporting exogenous FAs into cells have been 
proposed, one of which is vectorial transport or flipase function[29]. Moreover, BAs 
acting as a FATP5 antagonist dramatically decrease hepatic fatty acid uptake as well as 
liver triglyceride synthesis[30].

FABP 1-9 (fabp in mice) are a fatty acid binding protein superfamily that binds to 
FAs, cholesterol or other non-esterified FAs, facilitate fatty acid uptake and lipid 
metabolism[31]. FABP appears in two distinct forms depending on localization: one is 
peripheral membrane protein (FABPpm) and the other is intracellular/cytoplasmic 
protein (FABPc)[32]. Like FATP, different family members of FABPs exhibit organ-
specific expression. FABP2 (Intestinal-FABP, I-FABP) encodes the intestinal form 
which is only expressed in the small intestine, and FABP-1(Liver-FABP, L-FABP) is 
only expressed in the liver[33]. I-FABP and L-FABP are all cytoplasmic proteins, but it 
is reported that they deliver FAs through different mechanisms of L-FABP in diffusion 
and I-FABP in collision[34]. L-fabp-null mice showed a reduced uptake of LCFAs as 
well as new biosynthesis for lipid storage or secretion, suggesting the important role of 
L-fabp in fatty acid esterification at endoplasmic reticulum (ER)[35]. Furthermore, L-
FABP depletion suppresses lipid catabolism in mitochondria and downregulates the 
transcription of oxidative enzymes through inhibition of peroxisome proliferator-
activated receptor (PPARα) transcriptor in the nucleus[36,37].

CD36, officially designated as scavenger receptor B2 (SR-B2), is a transmembrane 
glycoprotein which has a broad range of binding profiles including LCFAs, plasma 
lipoproteins, phospholipids, collagen[38]. CD36 whole body knockout mice showed 
significantly decreased fatty acid uptake in the heart and skeletal muscle[39]. In the 
intestine, CD36 is only detected in the duodenal and jejunal parts and plays a critical 
role for fatty acid and cholesterol uptake in the small intestine[40]. Although CD36 has 
a very low expression level in the liver, CD36 liver-specific knockout in the steatosis 
model indicated that CD36 deletion reduces lipid content and inflammation and 
improves insulin sensitivity[41].

CAV 1-3 (cav in mice) are intramembrane proteins which are responsible for 
caveolae formation. CAV1 as a cholesterol-binding protein is implicated in cholesterol 
trafficking and absorption[42]. However, Cav1 knockout mice did not show a 
compensatory mechanism to increase other family members, such as Cav2 and Cav3, 
and cholesterol absorption and sterol excretion were also not changed in the intestine
[43]. Additionally, CAV1 also acts as a cytosolic intermediate form involved in 
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lipogenesis and lipid body formation during liver regeneration[44].
It is widely recognized that several fatty acid transport proteins cooperate synergist-

ically to accomplish the process of fatty acid transport (Figure 1). Due to the tissue-
specific expression pattern, FATP4, FABPpm, FABP-I, CD36 are main types in the 
intestine and FATP5, FABPpm, FABP-L, CD36 are major types in the liver. Partial 
LCFAs are activated during transport via FATP. The rest of the LCFAs are grabbed by 
FABPpm and presented to CD36. Free cytosolic LCFAs is not only activated by ACSLs 
for esterification of acyl-CoA but also trapped by FABPc for subcellular function. 
Generated acyl-CoA as a raw material initiates the subsequent metabolism pathway to 
produce energy or synthesize diverse complex lipids. In addition, acyl-CoA can be 
deactivated to free FAs and CoA, and this process is mediated by acyl-CoA thioes-
terases (ACOTs). ACSLs and ACOTs are two critical enzymes helping to control the 
dynamic balance between acyl-CoA and free FAs.

Long-chain fatty acid activation in enterocytes and hepatocytes 
As mentioned previously, most of the abundant dietary FAs are LCFAs so ACSLs are 
addressed in more details here. In humans and rodents there are five existing ACSL 
isoforms namely ACSL1, ACSL3, ACSL4, ACSL5 and ACSL6 (acsl in mice), each one 
coded by the different gene containing several splice variants[45]. Due to the 
differences in the 5’UTRs, the first coding exon, alternative coding exons and 
exchangeable motifs, different variants of each ACSL isoform are available[46]. The 
ACSL isoforms have two motifs: ATP binding and fatty acid binding[47]. The fatty 
acid binding tunnel located at the N-terminal domain has been linked to the substrate 
specificity of each ACSL isoform[48]. Since the N-terminal domain varies between the 
different ACSL isoforms, it contributes to the substrate preference of each family 
member and its different subcellular localization which is essential for vectorial 
acylation[49].

ACSL1 is predominantly located in the liver. Knockout of ACSL1 in the liver 
demonstrated a reduction in total ACSL activity of up to 50%, together with a decrease 
in the hepatic amount of acyl-CoA and a decreased level of oleic acid-derived TG[1,
50]. Acsl1 deficient mice showed a 50% reduction in the amount of long-chain acyl-
carnitines, leading to the conclusion that the loss of Acsl1 impaired partitioning of its 
products into TG synthesis and oxidation pathways[1]. Due to its both endoplasmic 
and mitochondrial localization, ACSL1 directs its metabolites to both the anabolic (TG 
synthesis ) and catabolic (β-oxidation) pathway[1].

ACSL3 Localization is linked to the lipid droplets and ER in the liver and other 
tissue. The increase in fatty acid uptake causes a transition of ACSL3 from ER to the 
lipid droplets, suggesting its role in neutral lipid synthesis[1]. Knockdown of ACSL3 
reduced the activity of transcription factors including PPARγ, ChREBP, SREBP1C and 
Liver X receptor and their target genes involved in hepatic lipogenesis[1]. ACSL3 
activates FAs incorporated into phospholipids, which are used for very-low density 
lipoprotein (VLDL) production[50]. As revealed by Yan et al, ACSL3 knockdown 
decreased the level of VLDL in hepatic cells[50]. Besides its role in the activation of 
FAs, overexpression of ACSL3 was found to be able to induce cellular fatty acid 
uptake[51]. 

ACSL4 is mostly expressed in adrenal glands and steroid-producing organs[52,53]. 
The role of ACSL4 is related to the activation of polyunsaturated FAs in steroidogenic 
tissue. ACSL4 has a preference for the arachidonic acid which is involved in the 
eicosanoid synthesis.

The nuclear-coded ACSL5 is prominent in both the mitochondria and ER of the 
intestinal mucosa and liver[50]. Highest expression was detected in the jejunum and 
ACSL5 was assumed to be involved in dietary fatty acid absorption. However, studies 
in acsl5 null mice showed no alteration in dietary fatty acid absorption but a 
significant decrease in total ACSL activity[1]. In the liver, ACSL5 activates LCFAs 
mostly of C18 carbon atoms, which are further incorporated into TGs, phospholipids 
and cholesterol esters. According to previous reports, ACSL5 plays a role in the 
metabolism of dietary FAs, but not in de novo synthetized ones[50,54,55]. Since ACSL5 
is localized on the mitochondrial outer membrane, the activity was initially attributed 
to β-oxidation. Some studies with ectopic expression of ACSL5 failed to prove this, but 
the increased synthesis of TGs and diglycerides was observed in the liver[54]. ACSL5 
is a dominant activator of dietary LCFAs and displayed an 80% lower activity in total 
acsl of the jejunum in acsl5 knockout mice[56]. ACSL5 is strongly expressed by 
enterocytes in an ascending gradient along the crypt-villus axis with the highest 
expression level at the villus tip; however, nuclear β-catenin, a hallmark of Wnt 
activation, is expressed in a descending gradient along the crypt-villus axis[57], 
suggesting an interplay between ACSL5 and Wnt activity during enterocyte differen-
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Figure 1 Mechanism of long-chain fatty acid transport across the lipid raft. LCFAs are taken up into cell in two different ways. One is passive transport 
by a flip-flop with rate limiting. The other is active transport, which is mediated with transport-associated proteins (FATPs, CD36, FABPs and Caveolin). FATPs with 
tissue-specific distribution integrating both transport and activation functions are responsible for LCFAs uptake. Free FAs trapped by the FABPpm present to CD36 
and are transported into cells. Consequently released free FAs bind with FABPc and CAV channel into different organelles and are activated by different subcellular 
expression of ACSLs into acyl-CoA. In addition, acyl-CoA can be deactivated to free FA and CoA which is mediated by ACOTs. Liver-specific proteins: FATP5, 
FABP-L, ACSL1; Intestine-specific proteins: FATP4, FABP-I, ACSL5; ACSL: Acyl-CoA synthetase, ACOT: Acyl-CoA thioesterase; MCs: Micelles, CMs: Chylomicrons

tiation and maturation[58].
ACSL6 is highly expressed in the brain where it plays a role in phospholipid 

synthesis during neurite outgrowth. ACSL expression is controlled by the level of 
intracellular FAs in physiological conditions[1].

Short-chain fatty acid transport and activation in enterocytes and hepatocytes
Microbiota-derived SCFAs cross the lipid membrane via different mechanisms: non-
ionized diffusion, Na+/H+-dependent gradient exchange[59,60]. Intracellular SCFAs 
can shuttle between cytosol, nucleus and mitochondria via a diffusion mechanism[10,
60]. SCFA activation by ACSSs is the first step in utilizing the energy source. ACSS 1-3 
(acss in mice) are encoded and designated in humans. ACSS1 and ACSS3 are localized 
at the mitochondria matrix, while ACSS2 is a nuclear-cytosolic enzyme. ACSS1 and 
ACSS2 activate acetate to thioester into acetyl-CoA, but ACSS3 favors propionate[10].

In humans, mitochondrial ACSS1 is most highly expressed in the brain, blood, testis 
and intestine, also to a certain level in the heart, muscle and kidney, but not in the liver 
or spleen[61]. In mice, ACSS1 is strongly expressed in the heart, kidney, skeletal 
muscle and brown adipose tissue, which all need high energy expenditure[62]. Acss1 
knockout mice showed a remarkably decreased acetate oxidation in the whole body 
during fasting compared with the wild type, however, no histological changes were 
detected in multiple tissues including the intestine and liver[63]. ACSS3 displays the 
character of propionyl-CoA synthetase as well as the highest expression in the liver. 
Knockdown of ACSS3 in hepG2 significantly decreases the activity of propionyl-CoA 
synthetase. During fasting, ACSS3 is upregulated, which is probably linked to 
ketogenesis, and ACSS2 is downregulated[64].

ACSS2 is most highly expressed in the liver and kidney[64,65]. Moffet et al[10] 
introduced the concept that the expression of ACSS2 in different cell types is based on 
the different physiological conditions to utilize acetate. Therefore, the liver is supposed 
to be the main organ for processing acetate. With the feature of localization, ACSS2 
catalyzes acetate into acetyl-CoA which is correlated with fatty acid biosynthesis in 
cytosol, and retains acetate released from histone in the nucleus[66]. Acss2-deficient 
mice with high-fat feeding can lighten fat deposition in the liver by regulating many 
genes involved in lipid metabolism, suggesting that Acss2 acts as a transcription 
regulator during lipogenesis[67].

The expression and localization pattern of ACSS 1-3 suggests that ACSS1 and 
ACSS3 are responsible for energy production by using acetate in the intestine and liver 
respectively. The majority of acetate is taken up by the liver, ACSS2 in cytoplasm is 
involved in lipogenesis and is distributed to other organs in ketone bodies through 
systemic circulation. Acetyl-CoA as a central metabolite can go into either energy 
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production or lipid biosynthesis. ACSS1-3 plays a key role in regulating the level of 
acetyl-CoA in the nucleus, mitochondria and cytoplasm (Figure 2).

MICROBIOTA UTILIZATION OF DIET, MICROBIOTA METABOLITES AND 
THE ROLE OF MICROBIOTA IN THE LIVER-GUT AXIS
Dietary structure shapes the composition of microbiota
Gut microbiota, a diverse microbial community with approximately 100 trillion 
microorganisms, is colonized in the gastrointestinal tract. In human adults, five 
families microbiota are mainly Firmicutes, Bacteroidetes, Actinobacteria, Proteo-
bacteria and Verrucomicrobia, while phylum Firmicutes and Bacteroidetes make up 
approximately 80% of all species[68].

A high-fiber intake population has higher diversity microbiota and more SCFAs 
production than a high-calorie diet population, and two populations showed distinct 
diet favor microbiota[69]. Bacteroides and Prevotella are two dominant groups which are 
highly enriched in a high-protein/fat diet population and high-fiber population 
respectively[70,71]. Moreover, the composition of fecal microbiota varies by age, 
geography and lifestyle due to the behavior of microbiota dietary preferences[72]. The 
term microbiota-accessible carbohydrates (MACs) introduced by Sonnenburg et al 
refers to microbiota favorable-carbohydrates that cannot be digested by the host. Mice 
feeding on a long-term low-MACs diet display a remarkably reduced diversity of 
microflora containing mostly Bacteroildales and Clostridiales. Although the microbiota 
composition cannot be restored after refeeding with a high-MAC diet, it increases 
again mainly in Bacteroidales upon reintroduction of fecal microbiota[73].

SCFAs are metabolic end-products from specialized bacteria utilizing with 
undigested dietary polysaccharides in human small intestine. The most abundant 
SCFAs in the intestine are acetate (C2), propionate (C3) and butyrate (C4). The phylum 
Bacteroidetes, the most abundant gram-negative bacteria with a high flexibility to 
adapt the environment, are associated with acetate production[74]. Phylum Bacteroi-
detes and Negativicutes (Akkermansia muciniphila, family Veillonellacear and phylum 
Firmicutes) are dominantly responsible for production of propionate by the succinate 
pathway, small bacterial genera from phylum Firmicutes have been identified to form 
propionate through the acrylate pathway, and distant Lachnospiraceae are known to 
produce propionate by utilizing the propanediol pathway[75]. Several species from 
families Lachnospiraceae, Ruminococcaceae and Erysipelotrichacear (Phylum 
Firmicutes) produce butyrate via butyrate kinase route and butyryl-CoA:acetate CoA-
transferase route[76]. Diverse composition of microbiota has distinct SCFAs profiles, 
and additionally, SCFAs-metabolic network is a cross-feeding microbial system 
between different bacterial species[77].

In all, a high intake of MACs is pivotal in shaping the diversity and composition of 
microbiota. Diverse microbiota-generated SCFAs reversely influence the microbial 
communities and further act as a mediator is strongly involved in host-microbiota 
cross-talk.

Utilization of long-chain fatty acid in microbiota 
Microbiota can also employ luminal unabsorbed LCFAs directly as energy source once 
there is a fermentable fiber deficiency[78]. LCFAs cross the cellular envelope in 
bacteria and yeast, unlike in mammalian cells. In bacteria, FadL transports exogenous 
LCFAs from outer membrane to periplasm, FadD (role as ACSLs) extracts LCFAs into 
the cytoplasmic membrane and activates to form acyl-CoA. In yeast, Fat1p and 
Faa1p/Faa4p are required for LCFAs transport and activation respectively[29]. 
Moreover, LCFAs can also permeate the bilayers via the TolC channel in E. coli[79,80].

Subsequently activated acyl-CoA is degraded to acetyl-CoA via β-oxidation. Acetyl-
CoA is located at the crossroads of central metabolism[81]. During bacterial 
overgrowth, acetyl-CoA is not only necessary only for energy generation via entering 
citric acid cycle and respiratory chain, but also synthesizes new cell material via the 
glyoxylate cycle. Moreover, the conversion from acetyl-CoA to acetate and ethanol 
takes place through anaerobic fermentation due to oxidant deficiency[82].

In addition to being a nutrient, LCFAs serve as an environmental factor which 
guides a series of gram-negative bacteria to colonize and invade intestinal lumen by 
repressing the expression of the strain-specific pathogenicity island. A pathogenicity 
island has been reported as a transcriptional activator which is mandatory for tissue 
invasion, such as Salmonella PI1/hilA[80], the Vibril cholera AraC/Xyls family ToxT
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Figure 2 The crosslink between acyl-CoA synthetases and short-chain fatty acids. In mitochondria, acetyl-CoA is generated either from fatty acid β-
oxidation and glucose via pyruvate or SCFAs through ACSS1 and ACSS3; acetyl-CoA is directed into energy production through the TCA cycle and electron 
respiration chain, as well as reflux into cytosol via citrate and again synthesizes acetyl-CoA. In addition, excessive acetate and butyrate synthesize into ketone bodies 
and are released into cytosol. In cytosol, acetyl-CoA is produced from pyruvate which is from both glucose and propionate; the source of acetyl-CoA can be converted 
from butyrate and acetate via butyryl-CoA/acetate CoA-transferase and ACSS2 respectively; cytosolic ketone bodies can also either produce acetyl-CoA or enter the 
blood circulation in the whole body. On the other hand, acetyl-CoA is involved in cholesterol biosynthesis. In the nucleus, acetate synthesizes acetyl-CoA via ACSS2 
which is responsible for chromosome stability through histone acylation regulation. Cyto: Cytoplasma; Mito: mitochondria; Nucl: Nucleus; TCA: tricarboxylic acid 
cycle.

[83], Yersinia enterocolitica VirF and enterotoxigenic E. coli Rns[84].

Microbiota-derived short-chain fatty acids
Microbiota-derived SCFAs make up almost all SCFAs due to the lower level of SCFAs 
in human blood[85]. SCFAs as the basic substance sources play an important role in 
regulating lipid metabolism as well as maintaining the host energy homeostasis. In 
part, SCFAs can be absorbed directly as an energy source by enterocytes or 
transported to the liver via the portal vein; in part, SCFAs are reassigned by the liver 
and released into bloodstream for the systemic circulation through the whole body[10,
86]. SCFAs are mainly composed of acetate, butyrate and propionate which comprise 
60%, 20% and 20% respectively[87]. SCFAs are transported and taken up into cells via 
non-ionized and ionized diffusion. The liver-gut axis plays a key role in the absorption, 
metabolism and systemic circulation of SCFAs[88].

Acetate, which is produced from pyruvate via acetyl-CoA and the wood-Ljungdahl 
pathway in microbiota, is the most abundant SCFA. Acetate is activated by ACSS1-3 to 
form acetyl-CoA and metabolized for energy production. However, the majority of 
acetate reaches and is processed in the liver. In cytosol, acetyl-CoA can synthesize 
cholesterol[89]; in the nucleus, acetate and acetyl-CoA are involved in regulating DNA 
histone acetylation and deacetylation[90]; in mitochondria, acetyl-CoA can be either 
for energy supply or ketogenesis in case of glucose deficiency, ketone bodies enter 
blood circulation for peripheral tissues usages[91]. Moreover, acetate can cross the 
blood-brain barrier freely and is an energy source for glial cells[92]. Acetate has a 
direct role in appetite regulation. Acetate is metabolized to generate more adenosine 
triphosphate, and inhibits adenosine monophosphate-active protein kinase (AMPK), 
as well as upregulating anorectic neuropeptide POMC and downregulating orexigenic 
neuropeptide AgRP[93].

Of the SCFAs which are mainly composed of acetate, butyrate and propionate, 
butyrate is the most widely studied. Butyrate is generated through the butyrate kinase 
or butyryl-CoA/acetate CoA-transferase route. Butyrate is a major SCFA in the large 
intestine. In enterocytes, the majority of butyrate is converted into acetyl-CoA that 
further participates in catabolism for host energy supply[94]; a small amount of 
butyrate is delivered to the liver and incorporated into ketone bodies (β-hydroxybu-
tyrate) in mitochondrial for ATP production[95]. Butyrate plays a key role in 
maturating the intestinal barrier function in premature infants[96]. In vivo studies 
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showed that butyrate administration has favorable therapeutic effects on normal 
colonic health in a safe dose[86]. In a mouse model with globin chain synthesis 
disorder, the application of a high dose of butyrate resulted in striking neuropatho-
logical changes and multiorgan system failure due to harmful systemic concentrations
[97]. Therefore, mechanisms underlying the dosage-dependent effects on the intestinal 
barrier are controversial, but reasonable. A low dose promotes restitution of intestinal 
epithelial lumen and a high dose impairs the intestinal barrier function with regulation 
of permeability by inducing apoptosis[98]. The selective paracellular permeability is 
determined by junction proteins including tight junction, adherence junction and 
desmosomes[99]. Excessive SCFA accumulation downregulates the expression of 
junction protein and further impairs the integrity of the membrane, leading to a leaky 
gut[100]. Moreover, increased intestinal permeability has been linked to inflammatory 
bowel disease[101].

Propionate is produced via the succinate, acrylate and propanediol pathway in 
microbiota. Propionate is activated by ACSS3 in mitochondria of hepatocytes. The 
concentration of dietary propionate regulates the balance between lipid and glucose 
metabolism[102]. Propionate reduces cancer cell proliferation through activation of G-
protein-coupled receptors 43 GPR43) in mice liver[103].

In view of the biosynthesis of SCFAs, acetate, butyrate and propionate have 
crosslinks through acetyl-CoA, pyruvate, oxaloacetate, some of which can be 
converted between them to meet the physiological need of microbiota[104]. SCFAs as 
key microbiota metabolites are closely correlated with host health and disease 
conditions through regulation of diverse physiological processes. Two major signaling 
pathways related to SCFAs including G-protein-coupled receptors (GPCRs) and 
histone deacetylases have been characterized[105]. GPCRs, also named free fatty acid 
receptors (FFAR) are activated by SCFAs. Two SCFA receptors, GPR41 (FFAR3) and 
GPR43 (FFAR2) have been reported. FFAR2 has preference to acetate and propionate, 
and FFAR3 has a specificity in butyrate[106]. FFAR2 is expressed along the entire 
gastrointestinal tract. FFAR2 can be upregulated by propionate during adipocyte 
differentiation[107]. In addition, FFAR2 activated by SCFAs releases glucagon-like 
peptide 1(GLP-1) and peptide YY (PYY) in enteroendocrine L cells, GLP-1 and PYY, 
are involved in gut motility, glucose tolerance and regulation of appetite[108]. 
Moreover, Butyrate plays a role in anti-inflammation through inhibition of pro-inflam-
matory mediators/adipokines, adhesion molecules, metalloproteinase production as 
well as inflammatory signaling pathways (NFκB, MAPKinase, AMPK-α, and 
PI3K/Akt). However, the anti-inflammatory activity of butyrate was eliminated by 
FFRA3 knockdown[109]. Supplementation of SCFAs significantly improved hepatic 
metabolic actiity in FFAR3-dificient mice, but not FFAR-2 deficient mice[110].

SCFAs are also considered a promising supplementary treatment for active 
intestinal bowel disease[111]. Moreover, SCFAs, as inhibitors of histone deacetylases, 
show potential anti-inflammatory activity[112,113]. It is demonstrated that three 
SCFAs alone or in combination protect the intestinal barrier via stimulation of tight 
junction formation and repression of NLRP3 inflammasome and autophagy in the 
colon cancer cell model[114]. Apart from this, a high-fiber intake, fecal microbiota 
transplant, prebiotics and probiotics are suggested to have a beneficial effect on 
colonic health by increasing the level of SCFAs.

Microbiota-imbalance-related diseases in the liver-gut axis 
Gut microbiota exert multifunction in maintaining the host homeostasis, including 
defensing against pathogens, affecting immune system, mediating digestion and 
metabolism, involving in insulin regulation and maintaining the intestinal epithelial 
cell renewal[115]. Gut microbiota interact with host through producing a serial of 
metabolites, particularly SCFAs. Imbalance in diversity and composition as well as 
alterations in the function of gut microbiota is associated with the pathogenesis of 
diverse gastrointestinal tract diseases, such as small intestinal bacterial overgrowth 
(SIBO), intestinal bowel disease (IBD), and a serial of liver diseases[116].

SIBO takes place in short bowel syndrome (SBS) and causes variable signs and 
symptoms resulting in nutrient malabsorption[117]. SIBO is characterized with the 
small intestinal excessive numbers and types of bacteria overgrowth exceeding 105 

organisms/mL, which are mainly colonic type with predominantly gram-negative 
aerobic species (Streptococcus, Escherichia coli, staphylococcus) and anaerobic species (
Lactobacillus, bacteroides, clostridium and veillonella)[118]. Enterotoxins expressing in the 
outer membrane of germ-negative species can damage the intestinal mucosa barrier by 
stimulation of fluid secretion in enterocytes, and further affect the absorptive function
[119]. SIBO is associated with irritable bowel syndrome (IBS), celiac disease (CD) as 
well as IBD[120], and also involved in the development of nonalcoholic fatty liver 
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disease[121].
IBD occurs due to the imbalance between the host immune system and gut 

microbiota in digestive tract and is becoming an increasing health problem. Crohn’s 
disease and ulcerative colitis are the two prevailing types. The worldwide epidemi-
ologic data shows that the higher incidence and prevalence of IBD is associated with 
industrialization[122]. Differences in dietary habits highly influence the composition of 
microbiota; a high-fat diet induces microbiota dysbiosis which alters the intestinal 
permeability[123].

Additionally, the disruption of bacterial colonization with dysbiosis and an 
exaggerated inflammatory response has been linked with the pathological process of 
necrotizing enterocolitis (NEC) in preterm infants[124]. In NEC cases, an increased 
proportion of Proteobacteria and Actinobacteria, a decreased numbers of Bifidoba-
cteria and Bacteroidetes were detected before NEC diagnosis. Moreover, a type of 
bacteria related to Klebsiella pneumoniae has been strongly correlated with the NEC 
development later stage[125].

Although the mechanism involved in diverse gastrointestinal tract diseases is still 
not completely understood, an impaired intestinal mucosal barrier is common feature 
among them. In addition, Paneth cells located in the crypts of the small intestine are 
very important for providing a sterile inner mucus layer and maintaining mucosal 
barrier integrity against microbiota by secreting antibiotic peptides containing α-
defensin, angiogenin, lysozyme and lectins[126]. α-defensin 5/6 are the most abundant 
components. α-defensin 5 can be digested into fragments which exert specific 
antibiotic activity[127]. However, α-defensin 6 prevents invasion by bacterial 
pathogens through self-assembly to form fibrils and nanonets[128]. Diminished 
expression of Paneth cell defensins regulated by the Wnt factor is associated with 
Crohn’s disease (also called Paneth’s disease)[129,130]. Paneth-cell-deficient mice 
showed a dysbiosis in favor of an E. coli expansion and further weakening of the 
intestinal mucosal barrier with a visceral hypersensitivity[131]. Moreover, active 
Crohn’s disease is accompanied by bile acid malabsorption due to altered expression 
of the major bile acid transporter[132].

As a consequence of intestinal mucosal barrier disruption, microbial/pathogen-
associated molecular patterns (MAMPs/PAMPs) pass through lumen and mucosa to 
induce the inflammatory signaling nuclear factor kappa B (NFκB) via toll-like receptors 
(TLRs) and nod-like receptors (NLRs). Activation of this signaling induces the release 
of cytokines and chemokines into portal circulation[133,134].

Both bacterial components and metabolites reach the liver via the portal vein to 
induce hepatocytes damage. Additionally if dysbiosis occurs, secondary BAs including 
deoxycholic and lithocholic acid, which are toxic for both intestine and liver, are 
produced more than usual in microbiota[135]. Hepatocytes are damaged due a high 
level of secondary BAs, bacterial components and metabolites. High lipid peroxides 
and PAMPs derived from damaged hepatocytes induce liver microphage activation 
and initiate an immune response through NFκB, p-38/c-Jun-N-terminal kinase, TGF-β
1 and other inflammation cytokines[136]. A macrophage-mediated immune response 
is a major player in liver fibrogenesis. Chronic liver injury leads to hepatic stellate cells 
to transition into myofibroblast-like cells which produce an extracellular matrix and 
further contribute to the progression of fibrosis[137,138]. Moreover, chronic liver 
inflammation is significantly involved in the pathogenesis of liver fibrosis/cirrhosis 
and probably contributes to carcinogenesis.

POTENTIAL THERAPEUTIC APPLICATION TARGETING ACYL-COA 
SYNTHETASES
Long-chain acyl-CoA synthetases and cancer
Alteration in a fatty acid metabolism with a higher fatty acid synthesis and lipid 
deposition is a major player in the pathogenesis of metabolic disorders and cancer
[139]. Deregulation of metabolism is known as a hallmark of cancer[140]. The Warburg 
effect, one of the hallmarks of cancer, first introduced by Otto Warburg, has been used 
to describe the deregulated metabolism of cancer cells characterized by increased 
conversion of glucose into lactate even in the presence of oxygen[141]. Many cancer 
cells are highly dependent on aerobic glycolysis for their growth and division[142]. 
Recently, several studies have shown that some cancers, including colon cancer, rather 
synthetize ATP by oxidative phosphorylation, which has been called the reverse 
Warburg effect[143-146]. In addition to previously reported abnormalities of glucose 
and glutamine metabolism in cancers, abnormal lipid metabolism was also found in 
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different cancer types[143]. Highly proliferative cancer cells are dependent not only on 
glucose but also on other metabolites including glutamine, serine and FAs[147-151]. It 
was reported that many cancer cells are characterized by an increased level of de novo 
fatty acid synthesis[152,153]. Upregulation of processes as fatty acid synthesis and FA 
release from lipid storage on the one hand, and downregulation of β-oxidation of FAs 
and their reesterification on the other, leads to an increased level of fatty acid in cancer 
cells. The fatty acid level was reported as a prognostic marker in several types of 
cancers including colorectal carcinoma (CRC)[7]. A high level of FA is considered a 
cancer biomarker and is associated with a worse prognosis and survival[7].

There is some evidence from mice with genetic inactivation of the Muc2 gene that in 
adenocarcinoma arising in both the small and large intestine, alterations of the glucose 
metabolism induce expression of genes linked to de novo lipogenesis[154]. However, a 
systematic comparative analysis of adenocarcinomas arising in different locations of 
the intestinal tract with lipidomics is not available at present. Increased expression of 
ACSL1 was reported in several cancers, including colon[155,156] and liver[157,158], 
related to a poor clinical outcome[159]; ACSL4 was also upregulated in multiple 
cancer types, including colon[155,160] and liver[161-163]. Poorer patient survival in 
stage II colon cancer was correlated with the expression of ACSL4 and expression of 
stearoyl CoA desaturase 1 (SCD1)[156]. Concomitant overexpression of ACSL1, ACSL4 
and SCD1 was found to induce epithelial-mesenchymal transtion in colorectal cancer
[155]. ACSL3 and ACSL4 were upregulated in hepatocellular carcinoma (HCC)[164]. 
Deregulated expression of both ACSL3 and ACSL4 is associated with disease and 
especially with cancer[7]. ACSL3 drives tumor growth by increasing both fatty acid β-
oxidation[165] and arachidonic acid conversion into prostaglandin[166]. As previously 
reported, ACSL4 indirectly stabilizes c-Myc by acting on the ERK/FBW7 axis and 
driving oncogenesis via c-Myc-oncogenic signaling in HCC[167]. ACSL4 expression is 
highly linked to the cell sensitivity for ferroptosis, known as an iron-mediated non-
apoptotic cell death[168]. Reported roles of ACSL4 include metabolic signaling 
resulting in drug resistance and the activation of intracellular, pro-oncogenic signaling 
pathways[139]. Impaired expression of ACSL5 is associated with coeliac disease and 
sporadic colorectal adenocarcinomas[169] and overexpression of ACSL5 induces 
apoptosis[170] and suppresses proliferation by inhibiting the activation of the Wnt/β-
catenin signaling pathway in colon cancer[57].

ACSS1 and ACSS2 are overexpressed in HCC[171]. Both are key players in acetate 
metabolism which is shown to be highly taken up by several types of cancers, 
including liver. Gao et al[171] reported a role of acetate in epigenetic regulation 
(Histone acetylation) of a promoter region of FASN. Induction of lipid synthesis 
driven by increased FASN expression supports tumor cell survival and growth[171].

miRNAs targeting of long-chain acyl-CoA synthetases
Micro RNAs (miRNAs) are non-coding single stranded RNAs which regulate 
transcription of messenger RNA via binding to their 3’-untranslated region[172]. 
Cancer cells evolved a regulatory mechanism to control the mRNA stability of ACSLs 
by targeting their 3'-untranslated regions (3'UTR). For example, it was reported that 
miR-205 was decreased in liver cancer[173]. Negative correlation between miR-205 and 
ACSL4 expression was reported in human HCC patients[173]. The miR-205 targeting 
site is reported at the 3'UTR region of ACSL4-mRNA[173]. In addition, it is known that 
miR-205 binds to the 3'UTR of ACSL1 and induces its degradation[157]. The role of 
miR-211-5p as a tumor suppressor was reported in HCC[174]. This tumor-suppressive 
role was accomplished by downregulation of ACSL4 which is highly expressed in 
HCC[174]. miR-19b-1 showed an inhibitory effect on the ACSL1/ACSL4/SCD1 axis by 
downregulating the Wnt/β-catenin pathway[175]. ACSL/SCD increases GSK3β 
phosphorylation, activating Wnt signaling and EMT, therefore, downregulation of β-
catenin signaling by miR-19b-1 can be beneficial in colon cancer[175]. miR-142-3p has 
been reported to target cancer stem cell markers, such as the Wnt target and LGR5 in 
colorectal cancer cells[176], in agreement with its action on the ACSL/SCD network 
cancer stem cell feature generation[175,176]. miR-34c was reported to be involved in 
hepatic fibrogenesis, miR-34c increases lipid droplet formation and hepatic stellate cell 
activation by downregulating ACSL1 in the liver[177]. miR-497-5p was reported to 
induce death in colon cancer cells by targeting ACSL5, suggesting its therapeutic 
potential in colon cancer[172].

Pharmacological targeting of long-chain acyl-CoA synthetases 
Triacsin C, a fungal metabolite and a potent competitive inhibitor of ACSs activity[178,
179], competes with FAs for the catalytic domain. It inhibits ACSL1, ACSL3 and 
ACSL4, and in higher concentration proves effective against ACSL5[179,180]. It is 
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worth highlighting that triacsin C has a high toxicity (IC50) and consequently normal 
cells can be damaged[7].

Thiazolidinediones, also known as glitazones, are used for the therapy of diabetes II. 
Troglitazone and rosiglitazone are PPARγ agonists; interestingly they inhibit ACSL4 
via PPARγ indirect mechanism[181,182]. Some of these drugs (Troglitazone, 
Ciglitazone) showed a protective effect against diabetes-promoted cancer[183].

Pharmacological targeting of very-long-chain acyl-CoA synthetases
FATP1 and FATP4 inhibitors were detected using high-throughput screening[184-
186]. However, these compounds were not effective as revealed by in vivo studies. 
Screening compounds that specifically target domains involved in fatty acid transport, 
rather than the ACSL activity domain, might help to discover more effective 
compounds which could inhibit fatty acid transport. FATP2/ACSVL1, expressed 
mostly in the liver and intestine, acts as a transport protein and ACS[187]. FATP2 
might be considered as an early marker for the development of overweight disorder 
after a high-fat diet[188]. A high-fat diet significantly upregulated fatp2 expression in 
the intestine of mice[188,189] It has a role in hepatic long-chain fatty acid uptake[190]. 
Due to its important role in fatty acid transport, FATP2 can be a promising pharmaco-
logical target in diseases which are characterized by an abnormal accumulation of 
intracellular FAs and lipids which may eventually result in irreversible hepatic 
cirrhosis[191,192]. Lipofermata and Grassofermata are selected FATP2 inhibitors 
which show specificity toward attenuating transport of LCFAs and VLCFAs. 
Lipofermata (5'-bromo-5-phenyl-spiro[3H-1,3,4-thiadiazole-2,3'-indoline]-2'-one) 
inhibits the function of FATP2 as a transport protein, without compromising its 
function as an ACS[193,194]. Grassofermata (2-benzyl-3-(4-chlorophenyl)-5-(4-
nitrophenyl) pyrazolo[1,5-a] pyrimidin-7(4H)-one) suppresses palmitic acid mediated 
lipotoxicity[193,195,196]. Both of them reduce intestinal fat absorption of 13C labeled 
oleate[186]. In addition to its contribution to the development of metabolic liver 
diseases, FATP2 promotes the growth of cancer cells and induces their resistance to 
targeted therapies[190]. A study by Veglia et al[194] demonstrated that lipofermata 
abrogated the activity of polymorphonuclear myeloid-derived suppressor cells (PMN-
MDSCs) and substantially delayed tumor progression in colon cancer cell line CT26 
tumor-bearing mice. STAT5 signaling induced by granulocyte-macrophage colony 
stimulating factor (GM-CSF) upregulated the FATP2 in these cells. FATP2 overex-
pression in these PMN-MDSCs cells induced PGE2 synthesis and its immunosup-
pressive effect on CD8+ T cell[194]. Interestingly in this study, it was found that 
lipofermata elevated the therapeutical effect of immune checkpoint inhibitor therapy 
(anti-PD-1 and anti-CTLA-4) as well as macrophage targeted therapy (anti CSF-1R)
[194].

FATP5 can be exclusively found in liver, at the basal plasma membrane of 
hepatocytes[197]. Both its location and role in long-chain fatty acid uptake make it an 
attractive target for treatment of metabolic disorders. Interestingly, screening of 
potential compounds revealed the potential of BAs including the primary BAs 
produced by the liver and the secondary BA secreted by intestinal bacteria 
(microbiota) to attenuate specifically FATP5 function without affecting FATP4[197]. 
The following BAs showed potential for FATP5 inhibition: chenodiol, primary BA, 
produced by the liver and ursodiol, secondary BA, which is metabolically produced by 
intestinal bacteria[197].

Experimental in vivo studies in rats showed induction of FATP mRNA expression, 
finding the highest upregulation in the liver. In the intestine, there was an increase in 
the FATP mRNA level but two times less than in the liver[198], suggesting that 
fenofibrates show specificity towards liver FATPs. Fibrates are known as PPARα 
activators, their hypolipidemic effect is accomplished via FATP activation, induction of 
β-oxidation and consequently reduction in triglyceride synthesis[198]. The indirect 
activation of FATP by the fenofibrate is mediated via PPARα[199].

Targeting of short-chain acyl-CoA synthetases
As reported by Bjorson et al[200], mitochondrial acetate appears to be the main 
metabolic energy source under hypoxia in HCC patients. Upregulation of ACSS1 Led 
to an enhanced level of mitochondrial acetate in HCC, which is associated with several 
metabolic alterations including decreased fatty acid oxidation, glutamine utilization, 
gluconeogenesis and increased glycolysis[200] This finding suggests a potential of 
ACSS1 as a target in cancer treatment. Indeed, the ACSS1 inhibitor showed a growth 
inhibitory effect on glioma[201].
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CONCLUSION
LCFAs and SCFAs are the most abundant energy sources from dietary lipid intake and 
microbiota-derived fermentation products. Members of ACSs play a critical role in 
lipid metabolism, participating in fatty acid transport and activation. Abnormal 
expression of ACSs is closely associated with lipid metabolic disorders and carcino-
genesis. Research on ACSs will shed further light on their biological functions and 
molecular mechanisms in fatty acid metabolism and eventually lead to the 
development of therapeutic drugs targeting ACSs in the treatment of human metabolic 
diseases.
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Abstract
Inflammatory bowel disease (IBD) may show a wide range of extraintestinal 
manifestations. In this context, liver involvement is a focal point for both an 
adequate management of the disease and its prognosis, due to possible serious 
comorbidity. The association between IBD and primary sclerosing cholangitis is 
the most known example. This association is relevant because it implies an 
increased risk of both colorectal cancer and cholangiocarcinoma. Additionally, 
drugs such as thiopurines or biologic agents can cause drug-induced liver 
damage; therefore, this event should be considered when planning IBD treatment. 
Additionally, particular consideration should be given to the evidence that IBD 
patients may have concomitant chronic viral hepatitis, such as hepatitis B and 
hepatitis C. Chronic immunosuppressive regimens may cause a hepatitis flare or 
reactivation of a healthy carrier state, therefore careful monitoring of these 
patients is necessary. Finally, the spread of obesity has involved even IBD 
patients, thus increasing the risk of non-alcoholic fatty liver disease, which has 
already proven to be more common in IBD patients than in the non-IBD 
population. This phenomenon is considered an emerging issue, as it will become 
the leading cause of liver cirrhosis.

Key Words: Inflammatory bowel disease; Liver; Primary sclerosing cholangitis; Viral 
hepatitis; Immunosuppression; Non-alcoholic fatty liver disease
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Core Tip: In the present article, several aspects of liver involvement of inflammatory 
bowel disease (IBD) have been highlighted. Co-occurrence of primary sclerosing 
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cholangitis is one of the most well-known comorbidities and deserves more attention 
by the clinician. Liver damage due to drugs used to cure IBD is also a relevant issue. 
Finally, some emerging topics such as the spread of liver steatosis or the implications 
of chronic viral hepatitis have been analyzed.
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INTRODUCTION
Inflammatory bowel disease (IBD) consists of two separate disease entities, ulcerative 
colitis (UC) and Crohn’s disease (CD), affecting the gastrointestinal tract[1]. However, 
IBD does not exclusively affect the gut. The gut-liver axis refers to the bidirectional 
relationship between the gut and its microbiota, and the liver, resulting from the 
integration of signals generated by dietary, genetic and environmental factors[2]. 
Therefore, a perturbation of this axis may mirror pathologic conditions both in the gut 
and the liver. Based on this consideration, the relationships between IBD and liver 
disorders are noteworthy and should always be considered by the clinician. The 
association between IBD and primary sclerosing cholangitis (PSC) is the most known 
and studied model, as it has several implications, the most important ones are the 
increased risk of both colorectal cancer and cholangiocarcinoma. Additionally, hepato-
toxicity due to drugs such as thiopurines or biologic drugs is a relevant issue that 
should also be taken into account when planning IBD treatment[3]. It should not be 
forgotten that IBD patients may have concomitant chronic viral hepatitis, such as 
hepatitis B (HBV) and hepatitis C (HCV)[3]. Chronic immunosuppressive regimens 
may cause a hepatitis flare or reactivation of a healthy carrier state; therefore, careful 
monitoring of these patients is necessary. Finally, the obesity epidemic has involved 
even IBD patients, thus increasing the risk of non-alcoholic fatty liver disease 
(NAFLD), which has already proven to be higher than the control population in IBD 
patients[3]. This phenomenon is considered an emerging issue, as it will become the 
leading cause of liver cirrhosis.

Therefore, we aimed to perform a narrative review describing the main interactions 
between IBD and corresponding liver involvement, with a particular focus on PSC and 
other autoimmune liver disorders, drug-induced hepatitis, HBV, HCV and NAFLD 
(Table 1).

IBD AND PRIMARY SCLEROSING CHOLANGITIS
IBD and PSC are two pathologic entities that can occur alone or in combination. In this 
case they create a phenotypically different disease known as PSC-IBD. PSC-IBD 
prevalence is uncertain and differs in several studies, but it is agreed that it is very low 
(0.024%-0.041%)[4-6]. PSC and IBD may occur simultaneously or sequentially. Indeed, 
PSC patients develop IBD in 20%-70% of cases, with a stronger association with UC 
(80%) than with CD (10%) and indeterminate colitis (IC) (10%)[7]. Conversely only 5% 
of patients with UC show concomitant PSC.

Primary Sclerosing Cholangitis and Ulcerative Colitis
UC represents the underlying IBD in most cases of PSC-IBD. In patients with PSC and 
UC (PSC-UC), UC characteristically tends to be mild, quiescent and may even appear 
endoscopically normal (in this case, the diagnosis is based simply on histological 
analysis)[8]. Therefore, random biopsies during the first colonoscopy should always be 
performed to reveal an underlying UC in patients with PSC. Similarly, PSC may be 
underdiagnosed in patients with UC, as it can be asymptomatic. Thus, liver function 
tests, including cholestatic and hepatocellular damage markers, should always be 
recommended in the follow-up of UC. If a patient with UC is found to have hepato-
cellular injury or a cholestatic pattern, magnetic resonance cholangiopancreatography 
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Table 1 Main liver comorbidities associated with inflammatory bowel disease

Associated 
diseases

Prevalence in 
IBD (%) Notes 

PSC 0.024-0.041 Higher risk of cholangiocarcinoma and colorectal cancer; IBD shows less severe lesions than IBD alone

NAFLD 20-30 Associated with the use of corticosteroids, long disease duration, severe disease course; Associated with 
metabolic syndrome

Viral hepatitis 1-9 More common in the elderly; Association with advanced liver fibrosis; Need for anti-viral treatment before 
starting immunosuppressive drugs; HBV vaccine recommended

HBV: Hepatitis B virus; NAFLD: Non-alcoholic fatty liver disease; PSC: Primary sclerosing cholangitis; IBD: Inflammatory bowel disease.

(MRCP) should be performed to confirm the diagnosis[9]. The onset of the two 
disorders may vary. Typically, UC occurs first, with a median time interval of 10 years
[10]. Nevertheless, in a minority of cases, UC may appear some years after the 
diagnosis of PSC, even after orthotopic liver transplantation[11]. The degree and the 
extension of colorectal inflammation in PSC-UC differ from UC alone. Indeed, the 
incidence of pancolitis appears increased in PSC-UC patients when compared with 
UC-only patients, as shown by Boonstra et al[12] In their series, PSC-UC patients were 
affected by pancolitis in 94% of cases, while pancolitis was demonstrated only in 62% 
of patients affected by UC alone. Patients with PSC-UC usually have a greater 
prevalence of backwash ileitis and rectal sparing (51% and 52%, respectively) than 
controls with UC alone (7% and 6%, respectively)[13]. However, the mild degree of 
colitis and the low rate of endoscopically visible inflammation may overestimate rectal 
sparing, when random biopsies are not performed[12,14]. Even though, the extension 
of colitis tends to be more diffuse, and in PSC-UC the severity of the mucosal inflam-
mation seems less pronounced. Patients with PSC-UC have less significant bowel 
symptoms, a lower need for steroids and undergo fewer hospitalizations than patients 
with UC alone[15].

Primary Sclerosing Cholangitis and Crohn’s Disease
Similar to patients affected by PSC-UC, patients with PSC and CD (PSC-CD) have a 
phenotypical and clinical pattern that sharply differs from patients with CD alone. 
Indeed, isolated ileal involvement, which occurs in about 30% of patients affected with 
CD, is rare in patients with PSC-CD (2%-5%)[12,16]. As shown with PSC-UC, the 
degree of endoscopically visible inflammation is milder in patient with PSC-CD than 
in those affected by UC. Likewise, the incidence of CD complications seems low in 
PSC-CD[12,16,17].

Main characteristics of PSC in IBD
While IBD in PSC-IBD has specific phenotypical patterns as listed above, PSC does not 
show significant differences in terms of histologic findings such as periductal fibrosis, 
inflammation and portal edema or fibrosis[18]. From a clinical point of view, according 
to Yanai et al[19] PSC outcomes, including cirrhosis incidence and transplant-free 
survival, did not differ in PSC-IBD compared with PSC alone patients. Conversely, 
Fevery et al[20] reported higher rates of liver-related death and malignancies in 
patients with PSC-UC when compared to patients with PSC-CD. Interestingly, 
Nordenvall et al[21] found that patients with PSC-UC who underwent colectomy, 
seemed to have a lower risk of mortality, morbidity and the need for liver transplan-
tation.

Risk of colorectal cancer (CRC) and hepatobiliary carcinomas in PSC-IBD
Although both PSC and IBD patients do not have a general higher risk of malignancies 
than the general population, patients with PSC-IBD show a significantly more marked 
risk of developing colorectal carcinoma (CRC) and cholangiocarcinoma (CCA), and 
hepatocellular carcinoma (HCC). In a meta-analysis, Zengh et al[22] found that 
patients with PSC-IBD have a strikingly higher risk for the development of CRC than 
patients with IBD alone. In detail, the stratification by IBD type showed a three-fold 
increased risk for the development of CRC and colorectal dysplasia in patients with 
PSC-UC compared to those with UC alone. A non-significant increase in the risk of 
neoplasia was shown in patients with PSC-CD, in contrast to that found in patients 
with CD alone. For these reasons, patients with PSC-IBD (especially those with PSC-
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UC) require close colorectal neoplasia endoscopic surveillance. Major American and 
European Societies recommend that annual CRC screening should be started at the 
time of PSC-IBD diagnosis. In PSC-IBD patients an increased risk of hepatobiliary 
malignancies such as CCA, gallbladder carcinoma (GBC), and HCC has been 
demonstrated. Gulamhusein et al[23] demonstrated that prolonged duration of IBD is 
associated with an increased risk of CCA in patients with PSC-IBD. They also observed 
that the risk of CCA was not modified after colectomy, thus suggesting that colonic 
resection itself does not reduce the risk of CCA. European and American Societies 
recommend that CA 19-9 and biliary imaging should be completed every year for 
these patients[24,25]. IBD could be an additional risk factor that further increases the 
hazard of CCA in PSC. In particular, a long duration of IBD is associated with CCA 
with a hazard ratio of 1.37[23].

There are no studies demonstrating an increased risk of GBC in PSC-IBD patients, 
even if that risk is demonstrated in PSC-alone patients[26]. Said et al[27] found in their 
cohort of patients affected with PSC, that 6% had gallbladder masses, of which 56% 
were malignant. The American Association for the Study of Liver Disease (AASLD) 
guidelines support cholecystectomy for polyps of any size in these patients, given the 
high likelihood of malignancy[28]. HCC seems to be a rare malignancy in PSC-IBD. 
Zanouzi et al[29] analyzed a cohort of PSC-cirrhosis patients and found no cases of 
HCC. However, in the same cohort of patients, IBD was found in 65%.

As both CCA and CRC are likely to occur in PSC-IBD patients, a chemopreventive 
strategy could be proposed. A meta-analysis[30] showed that low dose ursodeoxy-
cholic acid may have a protective effect on both CRC and colonic dysplastic lesions, 
with an odds ratio of 0.19. However, the studies were performed on small populations 
in tertiary centers, and were often retrospective, therefore the strength of evidence is 
not high[31]. Even mesalazine has demonstrated, in vitro and in animal models, an 
anti-proliferative effect as well as the ability to inhibit the Wnt/β-Catenin pathway and 
epithelial growth factor receptor activation; therefore, it may be a promising agent for 
CRC prevention, despite the chemopreventive effect of mesalazine only being 
documented for patients with UC alone so far[32]. Unfortunately, no effective appr-
oach for CCA chemoprevention has emerged, therefore surveillance remains the 
mainstay for early CCA detection in PSC patients.

Therapeutic perspectives
The pathogenetic mechanisms underlying PSC-IBD remain unknown, even though 
many hypotheses have been proposed. Understanding the basis of the disease could 
lead to the identification of a new targeted therapy. One of the most interesting 
assumptions suggests that intestinal mucosal lymphocytes may migrate to the liver 
following activation in the bowel of IBD patients, thus promoting liver inflammation
[33]. It has been shown that adhesion molecules and chemokine receptors normally 
expressed only in the gut can be aberrantly expressed within the liver to promote the 
homing of gut-associated lymphocytes. One of these adhesion molecules is α4β7 
integrin. A monoclonal antibody directed against α4β7, vedolizumab, has been 
approved for the treatment of IBD. It was hypothesized that vedolizumab could 
provide hepatic anti-inflammatory benefits. Nevertheless, Christensen et al found that, 
after treatment with vedolizumab, symptoms and intestinal clinical activity were 
significantly decreased, but the Mayo PSC Risk Score and liver damage biomarkers 
were only slightly improved[34].

Aberrant microbiota epitope recognition and gut dysbiosis seem to have a role in 
the pathogenesis of PSC-IBD, while genetics, gut mucosal permeability and autoim-
mune mechanisms have a controversial role[35]. Further studies are needed to 
improve our knowledge on the pathogenesis of PSC-IBD in order to provide new and 
efficient therapeutic strategies.

When PSC causes end-stage liver disease, liver transplantation is the only curative 
treatment. Regarding this point, some studies found that IBD does not worsen survival 
in patients who undergo liver transplantation for PSC. Only exposure to azathioprine 
seems to increase post-transplant mortality, while IBD per se increases the risk of 
cytomegalovirus infection[36].

PRIMARY BILIARY CHOLANGITIS AND AUTOIMMUNE HEPATITIS IN IBD
PBC is an autoimmune liver disease characterized by inflammatory cell infiltration of 
intralobular biliary ducts, with consequent biliary duct damage, which can progress 
towards fibrosis. Currently, there is no solid link between IBD and PBC, as only a few 
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case reports have been published. The most consistent case series involving six PBC 
patients in a cohort of IBD subjects during the period 2006-2016 (3 CD and 3 UC), who 
were diagnosed with PBC by liver biopsy responded to ursodeoxycholic acid therapy
[37]. In a genetic association study, it was found that TNFSF15 and ICOSLG-CXCR5 
might be a shared pathogenic pathway in the development of PBC and CD[38].

Similarly, only some case reports on the association between IBD and autoimmune 
hepatitis (AIH) have been published. A systematic review found approximately 109 
cases, which were mostly overlap syndrome with PBC. The authors reported that 
jaundice was the most common onset sign and that response to steroids was good, 
with a low mortality rate[39]. Interestingly, a case report of AIH onset after starting 
adalimumab has been described, which underlines the possibility that an 
immunogenic drug may alter an equilibrium in the immune system[40].

HEPATIC STEATOSIS IN IBD
Hepatic steatosis is defined as intrahepatic fat accumulation of at least 5% of liver 
weight. Prolonged hepatic lipid storage may lead to liver metabolic dysfunction, 
inflammation, and advanced forms of NAFLD. Non-alcoholic hepatic steatosis is 
associated with obesity, type 2 diabetes and dyslipidemia. Several mechanisms are 
involved in the accumulation of intrahepatic fat, including increased flux of fatty acids 
to the liver, increased de novo lipogenesis, and/or reduced clearance through β-
oxidation or very-low-density lipoprotein secretion[41,42] in the absence of secondary 
causes of lipid overload such as significant alcohol intake.

A link between hepatic steatosis and IBD has been studied since 1873, when Thomas
[43] described for the first time the association between “ulceration of the colon” and a 
“much enlarged fatty liver”. In recent years, due to the spread of obesity in the context 
of IBD[44], fatty liver disease has been increasingly recognized in IBD. The intestinal 
inflammatory state and gut barrier perturbation secondary to IBD might increase toxin 
and bacterial constituents translocation from the gut to the portal vein; this event has 
been recognized as a possible pathophysiologic mechanism underlying NAFLD[45]. 
Moreover, diets poor in high fiber foods, such as fruits and vegetables, frequently 
consumed by IBD subjects to avoid intestinal symptoms, could lead to a great 
prevalence of NAFLD[46]. Moreover, food components and alimentary habits with 
high proteins and fats, excessive sugar intake and less vegetables and fiber can 
influence the composition of the intestinal microbiome, and play a role in driving IBD 
pathogenesis and fat metabolism leading tog NAFLD onset[47].

A recent meta-analysis showed that the overall pooled prevalence of NAFLD in IBD 
patients was 27.5%[48]. NAFLD, in particular, was more common among patients with 
features of severe IBD, such as longer disease duration or a history of abdominal 
surgery.

Another study by Bessisow et al[49] showed a frequency of NAFLD in IBD of 33.6% 
and demonstrated that disease activity, duration of IBD and prior surgery were 
predictors of NAFLD development.

Conversely, in a Japanese study[50], the ultrasonographic prevalence of NAFLD in 
CD was 21.8% and this was the only study in which NAFLD was identified as an 
independent predictor of a negative C-reactive protein level and higher rate of 
remission, so NAFLD might offer a protective effect in patients with CD.

Nevertheless, most studies did not include non-IBD patients as a control group.
Glassner et al[51] examined 3 groups of patients: IBD + NAFLD, IBD alone, and 

NAFLD alone. A total of 168 patients were evaluated, 56 patients in each group. They 
found an overall NAFLD prevalence of 13.3% in IBD patients. IBD patients with 
NAFLD had longer IBD disease duration and developed NAFLD even in the absence 
of metabolic risk factors when compared to patients with NAFLD alone.

A study performed in 2018 by Principi et al[52] included 465 IBD patients and 223 
non-IBD patients. The prevalence of NAFLD was higher in IBD than in non-IBD 
patients (28.0% vs 20.1% respectively, P = 0.04); furthermore, younger age was 
observed in NAFLD-IBD than in non-IBD individuals, whereas no other differences 
were found between these two subgroups. Regarding risk factors, diabetes and fasting 
blood glucose were associated with development of NAFLD in IBD, without any 
difference in the populations without IBD, with only a higher waist circumference in 
IBD compared to non-IBD patients. No IBD-related variable was associated with 
NAFLD.

There are no studies on the progression of NASH in IBD. However, since IBD may 
induce gut barrier perturbation and an increase in toxin and bacterial translocation, it 
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is possible that in patients with NAFLD, the coexistence of IBD can trigger the 
progression from simple steatosis to NASH. A single study, on the other hand, has 
shown that progression of fibrosis, estimated by the NAFLD fibrosis score, is quite 
rare in IBD[53].

In conclusion, NAFLD is common in patients with IBD. Screening, prevention, and 
early treatment of NAFLD might be recommended in IBD patients. However, a better 
understanding of the underlying mechanism of the coexistence of IBD and NAFLD is 
necessary to improve management. The treatment of NAFLD in IBD does not differ 
from other cases. In particular, so far only diet and physical exercise have been proved 
to be effective[54].

CHRONIC VIRAL HEPATITIS IN IBD
Chronic viral hepatitis, in particular HBV and HCV-related, is a very common 
infection and a worldwide health issue. It is estimated that over 350 million people in 
the world have chronic HBV infection and over 250 million people have chronic HCV 
infection, with a mean prevalence of 5% and 2% for HBV and HCV, respectively[55,
56].

With regard to the prevalence of chronic hepatitis B (CHB) and chronic hepatitis C 
(CHC) in IBD, recent evidence[57-61] shows that it was comparable to a control 
population, ranging from 1% to 9%. A recent Italian study by Losurdo et al[62] on 807 
IBD patients and 189 controls, found a prevalence of 3.4% for CHC and 0.9% for CHB, 
a result which agrees with recent literature reports[57,58,61]. This analysis demon-
strated that advanced age was independently associated with increased risk of 
CHB/CHC. It is possible that surgery performed before the diffusion of presurgical 
hepatitis screening could explain this result, also taking into account that CHC was 
more common in patients operated before 1990. Indeed, the introduction of the HBV 
vaccine and HCV routine detection led to an improvement in the prevention measures 
against viral hepatitis transmission during surgery or blood donation, thus reducing 
the risk of infection in young generations[62].

As the treatment of IBD is based in selected cases on immunosuppressive agents 
(thiopurines and biologic drugs such as monoclonal antibodies), an accurate clinical 
and laboratory assessment is preliminarily required to look for chronic infections that 
may have a severe flare under biologic drugs[57,63]. Among these, chronic viral 
hepatitis and in particular CHB and CHC, are advised to be investigated by the 
guidelines before starting immunosuppressive treatment[64].

According to the guidelines, all IBD patients should be tested for HBV (HBsAg, anti-
HBs, anti-HBc) at diagnosis of IBD to determine HBV status. In patients with positive 
HBsAg, viremia (HBV-DNA) should also be quantified. Moreover, HBV vaccination is 
recommended in all HBV anti-HBc seronegative patients with IBD. All HBsAg positive 
subjects should start anti-viral agents before undergoing biologic treatment to prevent 
potentially serious hepatitis B flares[64,65]. A number of case series and study cohorts 
suggest that nucleotide/nucleoside analogues are safe and effective in IBD patients on 
immunomodulator treatment[66]. Entecavir and tenofovir are preferred for IBD 
patients due to their rapid onset of action, high anti-viral potency and low incidence of 
resistance. On the other hand, patients with HBsAg positive (chronic HBV infection) 
should receive anti-viral agents before, during and for at least 12 mo after immuno-
modulator treatment has ceased[64]. Additionally, HBV vaccination is strongly 
advised by the guidelines, possibly before starting any immunosuppressive treatment 
and preferably at the moment of diagnosis, if anti-HBs level is not protective. This 
approach should be followed in any region, irrespective of HBV prevalence.

With regard to CHC, present knowledge shows in some cases mild liver 
dysfunction and an amplified detrimental effect by the simultaneous presence of other 
viruses (HBV/HIV) in relation to immunomodulator assumption[67,68]; therefore, 
HCV antibody testing and HCV-RNA should be investigated. Immunomodulators are 
not contraindicated but should be used with caution. The decision depends on the 
severity of IBD and the stage of liver disease. In the past years, an interferon-based 
treatment for HCV infection in CD has generally not been recommended, as it could 
worsened the intestinal disorder; however, this aspect remains controversial[69]. 
Conversely, in UC, interferon therapy did not appear to have an adverse effect[70]. In 
addition, the administration of ribavirin plus interferon or triple anti-viral therapy 
(interferon, ribavirin and protease inhibitors) could have increased the toxicity of 
drugs used for IBD maintenance (for example azathioprine, methotrexate)[64]. 
Therefore, the risk that anti-viral therapy or drug interactions with IBD therapy might 
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exacerbate IBD should assessed cautiously when considering the need for HCV 
treatment[64]. However, over the last years, concomitant IBD and HCV infection 
management has completely changed due to the recent introduction of direct-acting 
anti-virals (DAAs). Recently published data on DAAs are very encouraging also in 
IBD patients[71]. There are three possible timing strategies for administration in 
patients requiring biological therapies: (1) Sequential strategy, meaning the choice of 
treating firstly the active IBD with biologics and then, once the acute phase has been 
controlled, treating the HCV infection; (2) Concomitant strategy, that is the contempor-
aneous initiation of DAAs and biologic drug administration; and (3) Inverted 
sequential strategy, i.e., the administration of anti-viral therapy before biologics. The 
timing strategy could depend on several factors, including IBD activity and patient 
comorbidity. This means that a case-by-case decision could be the best choice[72]. The 
opportunity to eradicate HCV should always be taken into account, as it has 
demonstrated that a sustained viral response may reduce liver stiffness in these 
patients[73].

IBD AND DRUG-INDUCED LIVER INJURY
In the last decade, treatment options for IBD have included new molecules acting at 
different target levels. Usually, as new drugs are introduced, their side effects should 
also be considered, and liver toxicity is one of the most meaningful among these.

Drug-induced liver injury (DILI) caused by these drugs can be classified into three 
forms: hepatocellular, cholestatic or a mixed pattern. Moreover, some forms of drug-
induced AIH should also be considered. This issue leads to a schedule of specific 
screening before starting therapy for IBD, and a follow-up to monitor liver enzymes is 
necessary[74,75].

In Table 2, we summarize the main knowledge on DILI in IBD patients.

Thiopurines 
Thiopurines, in particular azathioprine (AZA) and 6-mercaptopurine (6-MP) are used 
for induction and maintenance of remission in IBD. Studies have shown that AZA/6-
MP as add-on to infliximab can reduce the development of antibodies against 
infliximab. Thiopurines act as DNA synthesis inhibitors by incorporating purine 
analogues into DNA with cytotoxic and immunosuppressive effects. AZA is 
metabolized in the liver to 6-MP, which is metabolized by three enzymes, including 
thiopurine S-methyltransferase (TMPT) to 6-methylmercaptopurine (6-MMP). AZA 
and 6-MP are prodrugs of 6-thioguanine (6-TGN), the real effective metabolite. Some 
studies have suggested that some TMPT polymorphisms could cause a rise in 6-MMP 
level, thereby amplifying hepatotoxicity. In a cohort study of 270 patients treated with 
6-MP, 47 patients showed evidence of altered liver function tests (LFT) in the first 20 
weeks of treatment and > 80% of these patients had elevated levels of 6-MMP in the 
first week[76]. Another study proved that patients with high concentrations of 6-MMP 
had not only a strong risk of side effects but also a reduction in therapeutic response
[77]. Conversely, Dong et al[78] found that the presence of TMPT polymorphisms 
increased bone marrow toxicity but not hepatotoxicity. A recent meta-analysis of 10 
studies (recruiting 1875 patients) proved that TMPT polymorphisms were not linked 
with liver injury. The physiopathology of liver injury due to thiopurine is still unclear.

The prevalence of thiopurine-induced liver toxicity can vary between 0% and 17%. 
In a systematic review of 34 studies with 3485 patients, the prevalence of hepato-
toxicity induced by AZA/6-MP was 3.4% with no differences between the two drugs
[79]. Additionally, Chaparro et al[80] in a study of 3931 patients with IBD treated with 
thiopurine reported that hepatotoxicity was one of the most common side effects, with 
a prevalence of 4%. CD, smoking and preexisting NAFLD seemed to be risk factors, 
while the prevalence was lower in females. In a study by Shroder, who analyzed 259 
patients undergoing immunosuppressive treatment with AZA, 6MP and MTX, liver 
steatosis was found in 28.2% of them, and patients with steatosis also had a higher risk 
of having elevated alanine transaminase (ALT) blood levels[81].

On the other hand, dose independent, idiosyncratic liver reactions have been 
described for thiopurines. Acute dose-independent toxicity is caused by an idiosyn-
cratic cholestatic reaction accompanied by fever, rash, lymphadenopathy and hepato-
megaly with increased alkaline phosphatase level. The median onset time of hepato-
toxicity is 110 days, and in most cases is self-limiting with a good prognosis.

Another atypical, long-term liver injury caused by thiopurines is characterized by 
vascular endothelial lesions. Nodular regenerative hyperplasia (NRH), is the most 
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Table 2 Main features of drug-induced liver injury in inflammatory bowel disease

Drug Characteristics of drug induced liver injury

Aminosalicylates Increases in LFT; Cholestatic pattern; Rarely eosinophilia

Thiopurines Influenced by TMPT polymorphisms > increase in 6-MMP, the hepatotoxic molecule; Increases in LFT; Idiosyncratic cholestatic 
reaction; Fever, rash, lymphadenopathy and hepatomegaly; Nodular regenerative hyperplasia

Anti-TNF Idiosyncratic reaction > dose-dependent mechanism; Hepatocellular injury > cholestasis; Autoimmune phenomena

Anti-integrins Rare; Asymptomatic LFT increase

Anti IL12/23 Mild LFT increase

LFT: Liver function test; TMPT: Thiopurine S-methyltransferase; TNF: Tumor necrosis factor.

frequent of these lesions, while peliosis hepatis and sinusoidal obstruction syndrome 
(SOS) are less common. NRH is frequently asymptomatic. The mechanism underlying 
NRH is still unknown, it is possible that hepatocyte atrophy and portal venules 
destruction could be involved; risk factors seem to be male sex, CD with stricturing 
behavior and previous small bowel resection. In a large French study, NRH was found 
in 37 cases, with a cumulative risk of 0.5% at five years and a median onset time of 48 
mo[82]. A recent study observed a similar prevalence of NRH between patients treated 
with thiopurines and patients thiopurine-naïve[83]. On the other hand, it was found 
that thiopurines are associated with NRH when the dose is high (tioguanine > 40 
mg/day) or in male patients with small bowel resection > 50 cm[84,85]. The evolution 
of NRH after stopping thiopurine therapy is still unclear.

There is no agreement on thiopurine toxicity management. In a large study with a 
long-term follow-up only 3.6% of patients needed to discontinue therapy[86]. In 
another study, 90% of patients had normalization of LFT by reducing thiopurine doses
[87]. It is unclear whether the frequency of hepatotoxicity is the same for AZA and 6-
MP treatment: a study of 135 patients reported that 6-MP was well tolerated in 71% 
patients who had shown liver toxicity with AZA[88]. Coadministration of allopurinol 
(a xanthine-oxidase inhibitor) seems to reduce 6-MMP levels as it leads to a higher 
concentration of 6-MP converted to 6-TGN. However, since allopurinol is a xanthine-
oxidase inhibitor, the AZA dose should be reduced. A retrospective cohort study of 
105 patients reported that coadministration of allopurinol allowed long-lasting 
therapy and transaminase normalization[89]. Also, in another study by Krejineof, 
among 211 patients with liver toxicity, 86% experienced an improvement by lowering 
the dose of thiopurines in association with allopurinol[90]. A larger study by 
Vasuvedan analyzed 767 patients on thiopurine therapy and demonstrated that 
allopurinol should be started to reduce side effects, as 94% of patients who had 
hepatotoxicity achieved resolution by changing to co-therapy[91]. As TMPT polymor-
phisms are likely to be involved in hepatotoxicity, some authors have proposed that 
these polymorphisms should be identified before starting therapy, but a review by the 
American Gastroenterological Association Institute stated that the benefits of these 
tests were low[92]. On the contrary, a consensus guideline by the British Society of 
Gastroenterology focused on TMPT activity and recommended the administration of a 
half-dose of thiopurines to patients with low TMPT activity[93].

LFT should be monitored routinely, but there is no agreement on their timing. 
Mottet et al[93] recommended LTF every wk for the first mo, then twice a mo during 
the second mo and then once every 3 mo.

Sulfasalazine and mesalamine
Sulfasalazine is used for mild UC. It has been associated with acute hepatitis, 
cholestatic hepatitis, granulomatous hepatitis and rarely with acute liver failure[94]. 
The incidence of hepatotoxicity is low: A review by Ransford et al who analyzed 4.7 
million prescriptions in the period from 1991 and 1998, reported only 9 cases of 
hepatitis caused by sulfasalazine[95].

Mesalamine (oral and rectal) is approved for mild UC. Authors in the last three 
years have demonstrated that the prevalence of liver toxicity caused by mesalamine is 
low, between 0% and 4%. The use of mesalamine may be associated with 
asymptomatic elevations in LFT, hepatitis and cholestatic hepatitis[96]. A recent 
review reported that LTF should be monitored every year and therapy should be 
stopped in the case of abnormal increases, while treatment with corticosteroids should 
be considered if fever, rash, or eosinophilia are observed. The same review 
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demonstrated that most cases of hepatotoxicity quickly reversed with drug 
withdrawal[97].

Methotrexate 
Low doses of methotrexate (MTX) are used for mild CD, and it is widely used for 
rheumatologic disease; therefore, in this field its hepatotoxicity has been more 
extensively studied. The underlying mechanism is still not clear; several polymor-
phisms of enzymes involved in folic acid metabolism are thought to be involved. Two 
systematic reviews on this topic reported opposite results: the first review found an 
association between MTX hepatotoxicity and C677T polymorphism of methylenetet-
rahydrofolate reductase (MTHFR) gene, while the second review did not confirm this 
result[98,99]. MTX can cause different histological liver findings according to the 
Roenigk’s classification including: (1) Normal; (2) Mild fatty infiltration, nuclear 
alterations or portal inflammation; (3) Moderate to severe fatty infiltration, nuclear 
alterations, or portal infiltration and mild fibrosis; (4) Moderate to severe fibrosis; and 
(5) cirrhosis[100].

Some studies reported that the prevalence of abnormal LTF in these patients ranged 
from 15 to 50%, while most recent evidence demonstrated a lower prevalence. A meta-
analysis of patients with IBD treated with MTX reported a rate of abnormal LTF 
(defined as ALT higher than normal values but less than x2 upper normal limit (ULN)) 
of 1.4 per 100 person-month and a rate of hepatotoxicity (defined as ALT higher than 
two times normal values) of 0.9 per 100 person-month[101]. It should be noted that, in 
CD, methotrexate is given i.m., with a dose of 25 mg/wk at induction and 15 mg/wk 
for maintaining remission. Considering that this dose is higher than in rheumatologic 
patients, this could explain the more frequent liver adverse events.

Before starting MTX treatment, patients should be screened for preexisting medical 
conditions, such as alcohol intake, viral hepatitis, steatosis and family history of liver 
disease. Rheumatological consensus guidelines recommend monitoring LFT every two 
wk for the first 2 mo, then every 2 or 3 mo[102]. Liver biopsy should be considered in 
some cases, such as when liver laboratory tests remain abnormal despite dose 
reduction or when there are high blood levels of drug in patients with known risk 
factors for hepatotoxicity. Treatment should be stopped in the case of severe fibrosis or 
cirrhosis and daily doses should be reduced in the case of LFT elevation. Co-adminis-
tration with folic acid or folinic acid seems to reduce the frequency of serum transa-
minase elevation[103]. Elastography (Fibroscan) and laboratory tests are emerging 
tools to diagnose fibrosis as reported by Labadie et al[104]. Furthermore, in a case 
control study of 518 patients treated with MTX, 8.5% showed Fibroscan and FibroTest 
abnormalities, i.e., severe fibrosis[105]. A multivariate analysis reported that 
elastography should be used mainly in patients with an alcohol habit or obesity, or 
affected by NAFLD. Similar results were reported in a study by Herfath et al[106].

Tumor necrosis factor alpha inhibiting agents 
Currently several molecules belonging to this class have been approved to treat IBD: 
infliximab (IFX), adalimumab (ADA), golimumab and certolizumab pegol. Few data 
are available on the hepatotoxicity of golimumab and certolizumab, while most of the 
literature reports DILI by IFX and ADA.

The Food and Drug Administration (FDA) in 2004 after 130 cases of liver injury in 
patients treated with IFX and etanercept (which has no indication in IBD), issued an 
alarm statement of severe hepatic adverse reactions, including acute liver failure, 
autoimmune hepatitis (AIH) and cholestatic hepatitis during IFX therapy[107]. In an 
Icelandic study by Bjornsson that included patients with IBD, rheumatological and 
dermatological disorders, the occurrence of DILI in patients treated with IFX or ADA 
was 1:120 and 1:270, respectively[108]. Shelton et al[109] in a retrospective study 
analyzed 1753 patients under anti-TNF therapy (1170 IFX, 575 ADA, 8 certolizumab), 
and found that 102 patients had high blood levels of ALT, but in 54 of these patients, 
additional risk factors for liver injury were found and, of the remaining 48 patients (45 
IFX, 3 ADA), only 4 were considered to be affected by anti-TNF induced liver injury. 
Koller et al[110] in a recent observational study of 251 patients with IBD, monitored 
liver injury in 163 receiving IFX. Twenty-six patients (16%) showed a grade 1 liver 
injury (ALT < x3 ULN), 4 patients (2.5%) a grade 2 (ALT > x3 ULN); grade 1 alkaline 
phosphatase elevation was seen in 11 patients (6.7%) and grade 2 alkaline phosphatase 
elevation (> x2.5 ULN) in none. Liver injury in these patients was associated with high 
BMI, hepatic steatosis and longer duration of IBD[110]. In an Australian retrospective 
cohort study of adult patients with IBD treated with IFX (IDLE STUDY), out of 175 
patients (149 with CD and 26 with UC), 57 showed abnormal liver laboratory tests. In 
this study, the authors used the Roussel Uclaf Causality Assessment Method 
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(RUCAM) score to predict the risk of hepatic injury caused by drugs. A score of 0 rules 
out DILI, 1-2 means unlikely DILI, 3-5 possible DILI, 6-8 probable DILI, and > 8 highly 
probable DILI. Eleven patients had a RUCAM score > 3, but just one patient had a 
score > 8. Usually, liver injury due to IFX occurs after multiple infusions and a mean 
latency of 14-18 wk from induction. In this context, the RUCAM score is not a 
diagnostic test, but it is useful to predict DILI relying on LFT, timing of drug initiation 
and cessation, and on liver biopsy, when performed[111].

Although IFX, ADA and etanercept are anti-TNF drugs, they are structurally 
different. This explains the different responses to these agents and the different 
capacity to induce liver injury. Some authors have described how patients tolerate 
successful treatment with another molecule after a prior DILI episode induced by an 
anti-TNF agent. This suggests a lack of cross-toxicity within this class of drugs.

The pathogenetic mechanism underlying anti-TNF hepatotoxicity is still unknown. 
As liver injury can occur after a singular infusion it seems more an idiosyncratic injury 
rather than a dose-dependent one[107]. A genetic predisposition may be considered. 
Another hypothesis is that anti-TNF agents may trigger a pre-existing autoimmune 
disorder or generate autoantibodies: the binding of IFX to the transmembrane TNF-
alpha can lead to apoptosis of monocytes and T-lymphocytes with exposure of 
nucleosomal autoantigens and the production of autoantibodies[112,114]. Another 
possibility is that anti-TNF drugs inhibit T-lymphocytes activity, thus suppressing 
auto-reactive B cells; this may lead to increased humoral autoimmunity[114]. 
However, there are several cases without evidence of autoimmunity, in which direct 
liver injury is involved.

DILI caused by anti-TNF agents can show different patterns: Hepatocellular injury 
in 75% cases, but also a mixed pattern, most rarely with cholestasis, while few cases of 
acute liver failure have been described. Colina et al[115] reported histological necroin-
flammation caused by IFX, with bridging and massive necrosis in the most severe 
cases and some features of autoimmune injury with piecemeal necrosis in the 
periportal interface and prominent plasma cells infiltration. Liver injury caused by 
anti-TNF drugs is associated with the presence of autoimmunity markers in some 
patients: anti-nucleus, anti-DsDNA and anti-smooth muscle actin positivity and/or 
histologic features of AIH are described for IFX, ADA and etanercept. In a study 
analyzing 34 patients undergoing anti-TNF treatment with DILI, 22 were positive for 
such antibodies and showed higher levels of ALT than seronegative patients. Fifteen 
out of 22 subjects underwent liver biopsy that revealed clear features of autoimmunity
[116]. Indeed, it is difficult to distinguish between AIH and drug-induced AIH, since 
these conditions may have similar clinical, biochemical, serological and histological 
features. Actually, IFX-induced AIH is rare in IBD patients and is described more often 
in rheumatology patients. In several studies, autoimmunity features were treated with 
corticosteroids, achieving in some cases a reduction or disappearance of autoan-
tibodies titer; this suggests an immune-mediated DILI rather than an anti-TNF 
induced AIH. Ierardi et al[117] reported a case of acute liver injury after a single IFX 
administration. Analogously, Adar et al[118] described the first case of AIH caused by 
ADA that resolved after treatment cessation and corticosteroid therapy.

There is still a lack of consensus on the management of DILI induced by anti-TNF 
agents. The prognosis is usually favorable with normalization of LFT without 
cessation of anti-TNF therapy. Liver enzymes should be monitored before starting 
treatment and then monitored periodically, especially during the first 3 mo. If ALT 
remains < x3 ULN, anti-TNF can be continued until resolution; if ALT is persistently 
elevated > x3 ULN or in the case of jaundice, corticosteroids and liver biopsy should 
be considered. If a DILI is documented, anti-TNF withdrawal is still controversial. 
Also, the necessity to obtain an autoimmune panel before starting anti-TNF treatment 
is debated: several studies demonstrated that this practice does not predict the risk of 
developing drug-induced AIH and that anti-TNF therapy could be continued in the 
presence of asymptomatic anti-nucleus positivity[102].

Anti-Integrins
Natalizumab and vedolizumab were approved some years ago for the treatment of 
IBD. Both drugs have shown a good safety profile, but in the post-marketing phase, 6 
cases of significant DILI associated with natalizumab were reported to the FDA[119].

Liver injury caused by natalizumab is rare with a 5% rate of asymptomatic liver 
enzymes elevation and it can manifest with both the hepatocellular and cholestatic 
pattern and can be associated with jaundice. Some cases with autoimmune features 
(autoantibodies positive) have also been described[120]. The guidelines recommend 
monitoring LFT before starting the treatment and then every 3 or 6 mo[121]. 
Nevertheless, the use of natalizumab is quite rare in IBD due to possible severe 
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neurologic complications such as progressive multifocal leukoencephalopathy[122].
Similar to natalizumab, liver injury associated with vedolizumab is rare, less than 

2% in clinical trials, with both the hepatocellular or cholestatic pattern[123]. Similar to 
natalizumab, the guidelines recommend monitoring liver enzymes every 3-6 mo.

Anti IL12/23
Ustekimumab was approved for CD treatment in 2016 and UC treatment in 2019. Most 
of the data regarding hepatotoxicity induced by ustekimumab comes from 
dermatologic studies. In PHOENIX 1 and 2, both studies evaluated the efficacy and 
safety of ustekimumab in patients with psoriasis, and the rate of liver enzymes 
abnormalities was low (between 0.5% and 2%) and similar between the case and 
control group[124,125]. A small retrospective study including 44 patients with 
psoriasis treated with ustekimumab described cases of mild elevation of liver enzymes 
and no cases of severe DILI[126]. Some case reports described spontaneous regression 
of liver injury after ustekinumab withdrawal[127].

Small molecules
Tofacitinib was approved for UC treatment in 2018. Liver enzymes elevation with a 
hepatocellular pattern has been rarely described[128]. One case of possible AIH was 
reported, but liver injury due to other drugs could not be excluded[129]. Monitoring 
liver enzymes periodically during tofacitinib treatment is recommended.

Ozanimod is a new molecule introduced for IBD treatment. Aspartate transaminase 
increases 32 wk after drug exposure were described in 2% and 1% of patients treated 
with 0.5 mg and 1 mg of ozanimod, respectively. Preliminary data suggest a low rate 
of hepatotoxicity associated with these new therapeutic approaches[102].

PORTAL VEIN THROMBOSIS
Portal vein thrombosis (PVT) is a common event in IBD. Indeed, IBD patients have a 
high risk of thromboembolism due to systemic inflammation and alterations in the 
concentrations of some coagulation factors, such as high factor V and VIII or low 
antithrombin III[130].

In a retrospective study, the incidence of thromboembolic events in patients with 
IBD rose from 5.65% in 2000 to 7.17% by 2009[131]. In particular, the prevalence of PVT 
in IBD has been estimated to be about 0.17%[132]. There are several causes of PVT, 
including inflammation, immobilization, major extent of colon disease, disease 
severity, surgery, use of corticosteroids and smoking. For that reason, the guidelines 
recommend starting heparin when facing an acute flare of UC, for PVT prophylaxis
[133].

After the onset of PVT, complications such as portal hypertension, bleeding or even 
death are not common, but early anticoagulation is safe and associated with a better 
outcome, and the use of novel direct oral anticoagulants was associated with partic-
ularly favorable outcomes in this setting[134].

CONCLUSIONS
In conclusion, the scenario of liver involvement of IBD patients is quite extensive. The 
relationship between IBD and PSC is the most studied. PSC is a disease that currently 
has no effective medical therapy; therefore, research on drugs that may be effective for 
both hepatic and intestinal disorders is required. Moreover, the strategies for early 
neoplasia screening (both CCA and CCR) in these patients are not sufficiently efficient 
at present, and this is a pitfall that needs to be resolved.

NAFLD in IBD is another focal issue, as this novel comorbidity may complicate the 
management of IBD patients due to its multifaceted aspects.

As viral hepatitis may soon become a thing of the past, due to the advent of drugs 
with very high success rates, some patients will still require careful monitoring, 
especially when immunosuppression for IBD is required.

Among the drugs currently in use to treat IBD, thiopurines, mesalazine derivatives 
and methotrexate are the most studied, and periodic assessment of LFT is still 
required. However, the field of DILI is expected to expand quickly, as several novel 
molecules for the treatment of IBD (tyrosine kinase inhibitors, small molecules and 
others) have been developed, and their possible hepatotoxicity will be a matter of 
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debate.
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Abstract
Chelation is the mainstay of therapy in certain pediatric liver diseases. Copper 
and iron related disorders require chelation. Wilson’s disease (WD), one of the 
common causes of cirrhosis in children is treated primarily with copper chelating 
agents like D-penicillamine and trientine. D-Penicillamine though widely used 
due its high efficacy in hepatic WD is fraught with frequent adverse effects 
resulting discontinuation. Trientine, an alternative drug has comparable efficacy 
in hepatic WD but has lower frequency of adverse effects. The role of ammonium 
tetra-thiomolybdate is presently experimental in hepatic WD. Indian childhood 
cirrhosis is related to excessive copper ingestion, rarely seen in present era. D-
Penicillamine is effective in the early part of this disease with reversal of clinical 
status. Iron chelators are commonly used in secondary hemochromatosis of liver 
in hemolytic anemias. There are strict chelation protocols during bone marrow 
transplant. The role of iron chelation in neonatal hemochromatosis is presently 
not in vogue due to its poor efficacy and availability of other modalities of 
therapy. Hereditary hemochromatosis is rare in children and the use of iron 
chelators in this condition is limited.

Key Words: Wilson’s disease; D-Penicillamine; Trientine; Indian childhood cirrhosis; 
Deferoxamine; Deferasirox; Hemochromatosis
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Core Tip: Chelation forms the most important part of management of certain liver 
diseases in children. In Wilson's disease and secondary hemochromatosis related to 
transfusion, chelation is well established treatment modality with proven efficacy. In 
other diseases like copper associated childhood cirrhosis and neonatal hemochro-
matosis the role of chelation is doubtful. In hereditary hemochromatosis, chelation is 
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recommended as alternative therapy. The selection of chelating agents for treatment 
depends on the efficacy, feasibility and risk of adverse effects known from literature. 
The review discusses the concepts of chelation and reviews the literature to assess the 
role of chelation in treatment of various pediatric liver diseases.
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INTRODUCTION
Chelation is a process in which a synthetic compound is administered to remove an 
excess mineral or heavy metal from the body. There are various liver diseases that are 
caused by excess deposition of various heavy metals such as copper, iron and arsenic. 
Some of these are genetic-metabolic, others are due to environmental exposure. In the 
landmarks of chelation therapy in hepatology, Walshe documented cupriuresis after 
administering dimethyl cysteine (penicillamine) in Wilson’s disease (WD) in 1956[1]. 
Chelation was thereafter used in non-Wilsonian liver diseases. In the subsequent years 
newer chelators such as trientine and ammonium tetra thiomolybdate were identified 
for WD. From the 1970s, transfusion-related liver siderosis of hemolytic anemias was 
revolutionized by the use of deferoxamine[2]. The use of iron chelators was attempted 
in gestational alloimmune liver disease and hereditary hemochromatosis. This review 
explores the rationale and outcome of chelation therapy in various pediatric liver 
diseases.

MECHANISM OF CHELATION 
Metal ion (M) complexes with cheating agent (L) through an equilibrium reaction to 
form metal-ligand complex (ML) or chelate. The concentration of the chelate in the 
solution is directly proportional to the concentration of metal ion [M] and the ligand 
[L].

Where k is the effective stability constant. Value k denotes the affinity of the 
chelating agent. High k values suggest high affinity of the chelating agent. The value 
of k depends on the nature of the chelating agent, temperature, pH of the solution[3]. 
The in-vivo milieu is not similar to the in-vitro chemical reaction. The presence of weak 
acids in the body fluids like glutamate, sulfate, citrate, amino acids, albumin, 
macroglobulin etc. affect the chelation. These are called biological ligands. Chelating 
agent binds to the biological ligands and the effective concentration in the body fluid is 
lowered. Hence the equation becomes.

Where Mt, Lt is the total concentration of the metal ion and chelating agent 
respectively which is very difficult to assess in the clinical setting[4].

Effective chelation occurs when concentration of M and/or L is high, when affinity 
of the chelator (k) is high or when the concentration of the chelate [ML] is low. The 
metal ion concentration [M] in the body depends on the severity of the disease. For 
example, in a WD presenting as acute liver failure, serum copper (Cu) levels are 
usually very high. The concentration of chelating agent [L] is increased by increasing 
the dosing and/or frequency as tolerated by the patient. For the chelation to progress, 
urinary excretion of chelate [ML] is very important as it effectively reduces the concen-
tration[3]. Ideal chelating agents must have good oral absorption, acceptable bioavail-
ability, high affinity to metal ions, low toxicity at appropriate plasma concentration, 
undergo rapid elimination or detoxification after combining with metal ions and more 
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importantly should be available in affordable price[5].

CHELATION IN WD
WD is an autosomal recessive disorder caused by mutation of ATP7B gene that 
encodes for a protein P-type ATPase which transports copper into trans Golgi network 
and for biliary excretion of copper. In lysosomes, copper is incorporated into cerulo-
plasmin. In WD, due to defect in ATPase transport protein, ceruloplasmin formation is 
defective and biliary excretion of copper is impaired[6,7]. This causes excess accumu-
lation of intracellular copper subsequently increasing the levels in blood causing 
accumulation in extra-hepatic organs (Figure 1).

Chelating drugs
D-Penicillamine (3, 3-dimethylcysteine) is the most commonly used medication for 
WD worldwide. The L-isomer of this drug is not advised for treatment due to its 
neurotoxicity. The chelation property of DPA is due to the presence of thiol (-SH), 
which is responsible for its high affinity towards divalent metal ions such as copper. 
The mechanism of action of D-Penicillamine (DPA) is by inducing cuprieuresis, 
inducing hepatic metallothionine synthesis, reducing fibrosis (by preventing collagen 
formation). DPA also has an anti-inflammatory property[8]. It is rapidly absorbed in 
proximal intestine but only 40%-70% are absorbed[9]. The peak plasma concentration 
occurs after 1-3 h after ingestion. It circulates in the plasma predominantly by binding 
to albumin (80%), while the rest of the compound is present as free or disulphide 
forms. DPA is metabolized in the liver by conjugation with sulfide or by methylation 
(phase II reaction) and excreted in urine with almost 80% being eliminated within 10 h 
of ingestion. After discontinuation of therapy, the drug is eliminated in about 3-6 d
[10]. Food, antacids, iron and zinc preparations reduce the bioavailability by almost 
50%. Plasma concentration reduces significantly when the drug is taken with food[11]. 
It is recommended to give the drug either 1- hour before or 2- h after food. The drug is 
given in the dose of 20 mg/kg per day (up to 1500 mg) rounded to nearest 250 mg in 2-
4 divided doses and can be maintained at 1000 mg/d once the disease is in remission
[12]. As DPA causes pyridoxine deficiency, pyridoxine should be supplemented at 25-
50 mg/d. In case of neurological WD, to prevent paradoxical neurological worsening, 
the drug is started at low dose (125-250 mg) and slowly increased (125-250 mg every 
week) to reach the desired dose by 4-6 wk[13].

Trientine (triethylenetetramine) is an alternative chelating agent in WD. It is a 
derivative of spermine and putrescine and binds to copper in the ratio 1:1 to form a 
stable complex, which is eliminated in the urine. Trientine dihydrochloride is the oral 
ingestible form requiring storage at 2-8 degree Celsius to maintain stability. 10% of the 
trientine is absorbed in the proximal small intestine and achieves its peak concen-
tration 1.5-4 h after ingestion. Trientine is extensively metabolized in tissues by 
acetylation but the enzyme responsible for it is not identified. 1% of ingested trientine 
and 8% trientine metabolite acetyltrien, appears in the urine. Plasma concentration of 
the trientine significantly reduces when given with food due to its affinity to dietary 
copper in the lumen thereby compromising the removal of tissue copper and the other 
reason could be due to the physiological polyamines secreted during food intake 
inhibits effective trientine absorption[14]. Trientine is not to be given with iron as it 
forms toxic complexes. The dose recommended is 20 mg/kg per day with the 
maximum of 1500 mg/d rounded to nearest 250 mg (300 mg capsules in North 
America) and maintenance dose of 1000 mg/d. Similar to DPA, trientine also should 
be ingested 1 h before or 2 h after food intake[12,15]. The decoppering efficacy of any 
chelating agent is evident from the effective stability constant (k) which denotes 
copper affinity. The comparison of k-value of DPA (2.38 × 10-16) and trientine (1.74 × 
10-16) suggests the decoppering efficacy of DPA is much higher than trientine[16].

Efficacy of chelation
Improvement in symptoms and biochemical parameters in WD takes around 2-6 mo in 
hepatic forms whereas in isolated neurological forms it may take up to 12-24 mo[12]. 
DPA in WD children shows an efficacy of almost 70%-90%[17-20]. The response 
depends on whether it is hepatic or neurological form and severity of the disease at 
presentation. Long term of follow up of WD (median duration- 15.1 years) studied by 
Bruha et al[19] showed the response to DPA to hepatic forms is 82% compared to 69% 
for neurological forms. One of the largest series of WD patients (n = 327) from Euro 
Wilson consortium, showed hepatic forms had 91% response compared to only 68% in 
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Figure 1 Pathophysiology of Wilson’s disease. Due to mutation in ATP 7B gene, P type ATPase is defective and copper is not incorporated in 
ceruloplasmin. Free copper increases in blood and is deposited in liver and extrahepatic sites (brain, kidneys, bones, cornea, RBC).

neurological forms after a median follow up duration of 13.3 years[20]. In most series, 
trientine is used as a second line either due to poor response or due to toxicity to DPA. 
Hence, there are no head-to-head randomized trials comparing the efficacy of DPA 
and trientine. Overall efficacy of trientine is reported to be 80%-92%[21,22]. 
Retrospective analysis of efficacy of the two drugs by Hölscher et al[23] showed 
response in hepatic forms with DPA was 92% compared to 84% response with 
trientine after a median follow up duration of 13.3 years. In neurological forms, DPA 
fares significantly better (68%) than trientine (48%, P = 0.008)[23]. In Euro Wilson 
consortium, the response of both the DPA and trientine were comparable when used 
as a first line in both hepatic (90.7% vs 92.6%, P = 0.98) and neurological forms (67.5% 
vs55%, P = 0.76). However when used as a second line therapy, trientine vs DPA 
showed similar response in hepatic form (75% vs 68.9%, P = 0.76) but better response 
in neurological form (51% vs 23.1%, P = 0.01)[20].

Adverse effects of copper chelators
Adverse effects of DPA are always a major concern with up to 30% of the patients 
develop one or more adverse effects (Table 1)[20,24,25]. Adverse effect can be early 
onset (less than 3 wk of therapy) or late (more than 3 wk to up to 2-3 years of initiation 
of therapy). Early adverse effects like fever, rash, arthralgia, lymphadenopathy, 
pancytopenia are predominantly immune mediated[26]. Nephropathy, the most 
common late adverse effect of DPA is seen in 5%-30%. Presentations include 
proteinuria, glomerulonephritis, nephrotic syndrome less commonly as Good 
Pasture’s syndrome[27-29]. More than 90% of the nephropathy occurs within 12 mo of 
therapy. High doses of DPA, decompensated liver disease, intrinsic renal diseases or 
presence of HLA-B8/DR3 are probable risk factors of nephropathy[30]. Eighty percent 
are membranous glomerulonephritis on renal biopsy. In a study by Hall et al[27] of 33 
patients with DPA nephropathy, one-third each showed resolution at 6, 12 and 18 mo 
respectively, after drug discontinuation. There are no clear recommendations as to 
whether the drug can be rechallenged after resolution of nephropathy. However, in 
such situations, it is prudent to continue the patient on an alternative drug such as 
trientine or zinc. DPA related myelotoxicity occur in up to 7% patients undergoing 
chelation with DPA[31-33]. Two types of myelotoxicity are known to occur, idiosyn-
cratic (usually with in 1 year of therapy) or dose dependent (more than after 1 year 
therapy)[34]. Though, there are no definite guidelines for monitoring and treatment of 
myelotoxicity, European society of Pediatric Gastroenterology Hepatology and 
Nutrition (ESPGHAN) suggests weekly blood counts initially, 1-3 mo till remission 
and 3-6 monthly thereafter[35]. If two or more values of total leukocyte count less than 
3.5 × 103 per cubic mm, drug is to be discontinued. Bone marrow examination and 
reticulocyte counts differentiates this condition if concomitant hypersplenism is 
present[36,37]. Blood products, colony stimulating factor and anti-thymocyte globulin 
may improve the counts. Usual time of spontaneous recovery is 4-12 wk. Rarely 
hematopoietic stem cell transplantation may be required in refractory and prolonged 
cases. Once bone marrow toxicity has ensued, the drug should not be re-challenged. 
Adverse effects of DPA related to skin may be due to either acute hypersensitivity 
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Table 1 Adverse effects of copper chelating drugs

Name of the 
drug Side effects

D-Penicillamine Early (1-3 wk): Fever, rash, arthralgia, cytopenia, proteinuriaLate: (1) Skin: degenerative dermatoses elastosis perforans serpingosa, 
cutis laxa, pseudoxanthoma elasticum, bullous dermatoses, psoriasiform dermatoses, lichen planus, seborrheic dermatitis alopecia, 
aphthous ulcerations, hair loss; (2) Connective tissue disorders: Lupus like syndrome, arthralgia, Rheumatoid arthritis, polymyositis; (3) 
Renal: proteinuria, hematuria, glomerulonephritis, nephrotic syndrome, renal vasculitis, Goodpasture’s syndrome; (4) Nervous system: 
paradoxical neurological worsening, neuropathies, myasthenia, hearing abnormalities, serous retinitis; (5) Gastrointestinal: Nausea, 
vomiting, diarrhea, elevated transaminases, cholestasis, hepatic siderosis; (6) Respiratory: pneumonitis, pulmonary fibrosis, pleural 
effusion; (7) Hematological: cytopenia, agranulocytosis, aplastic anemia, hemolytic anemia; and (8) Others: Immunoglobulin deficiency, 
breast enlargement, pyridoxine deficiency

Trientine Paradoxical neurological worsening (10%-50%), sideroblastic anemia, bone marrow suppression, gastritis, skin rash, arthralgia, 
myalgia, hirsutism

Ammonium 
tetra 
thiomolybdate

Neurological dysfunction (rare), hepatotoxicity, bone marrow suppression

reaction presenting as morbilliform rash, urticaria, degenerative dermatoses (cutis laxa 
or elastosis perforans serpingosa) or an autoimmune phenomenon (pemphigus, 
scleroderma or lichen planus[38]. Rare musclar adverse effects of DPA include 
myasthenia (1%-2%) and ptosis. Anti- nicotinic acetyl choline receptor or Anti- MuSK 
(Anti- Muscle Specific tyrosine Kinase) is present in up to 70%[39]. Systemic lupus 
erythematosus can occur within 6-12 mo after the onset of DPA therapy presenting as 
pleurisy, arthritis, rash with or without presence of anti-nuclear antibody[40]. 
Deutscher et al[41] noted 3 out of 50 WD children with elevated transaminases within 6 
wk of DPA therapy who resolved subsequently following discontinuation. Trientine 
also present with similar adverse effects as DPA like nausea, vomiting, arthralgia, 
myalgia, leukopenia, elevation in anti-nuclear antibody (ANA), nephropathy but 
adverse effects requiring discontinuation of trientine is significantly lower compared 
to DPA[20].

In hepatic WD, paradoxical neurological worsening occurs commonly within 6 mo 
of therapy, in patients with an underlying overt or occult neuropsychiatric feature. 
Paradoxical neurological worsening occurs even when dosing and compliance is good
[42]. It occurs due to the sudden release of Cu from the liver following chelation 
therapy causing oxidative brain injury. Overall incidence of paradoxical neurological 
worsening ranges from 7%-26%. Those with previous known neurological WD, the 
incidence of worsening is up to 75%[19,24,25]. Both DPA and TA have shown to cause 
neurological worsening. In series from Euro Wilson consortium, paradoxical 
neurological worsening occurred significantly more with TA compared to DPA[20]. 
Litwin et al[13] studied natural history of 143 WD (70 Neuro/Neurohepatic WD and 73 
hepatic WD), of whom 23% neurological cohort and none of the hepatic cohort 
developed early neurological worsening on chelation. In this series, median time of 
onset of neurological worsening was 2.3 mo. Fifty-three percent were completely 
reversible and 13% were partially reversible on drug discontinuation with median 
time of reversibility of 9.2 mo[13]. Prior neurological involvement, lesions in brain 
stem or thalamus and concomitant anti-dopaminergic drugs had higher chances of 
neurological worsening. Treatment consists of drug discontinuation and addition of 
zinc for a transition period. Chelators can be restarted in lower doses with gradual 
increment once the symptoms improve[13].

Assessment of adequacy of chelation: Clinical parameters
Currently there is no fool-proof, gold standard yardstick to assess chelation adequacy. 
All have fallacies in assessment and hence multiple parameters are considered. 
Chelation adequacy can be assessed firstly by assessing compliance to drug intake. 
Compliance is assessed by having a pill count, self-reporting by patients themselves or 
by checking empty blister packs during follow up outpatient visits[43]. There are 
various scales being developed assessing medication adherence (MAQ: Medication 
adherence questionnaire, MARS: Medication adherence Rating scale) but none have 
been validated in children[44]. More objective way of assessing compliance is by 
measuring drug levels but it is not routinely available under clinical setting. Secondly, 
follow up of clinical parameters assess the adequacy of chelation like improvement in 
jaundice, ascites, encephalopathy which usually take 2-6 mo post therapy. Resolution 
of neurological symptoms may take longer than 2-3 years[12]. The resolution of 
Kayser-Fleischer ring on de-coppering therapy has considerable controversies to the 
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same. Studies have heterogeneity in their assessment and reports. It appears to be 
independent on type of presentation (neurologic vs hepatic), stage of disease (pre-
symptomatic vs symptomatic) and choice of chelator and compliance. Initial reports 
showed, Kayser-Fleischer (KF) ring disappearance in 81% of the patients (completely 
in 41% and incompletely in 59%), more in pre-symptomatic stage (60%) than those in 
symptomatic phase with ongoing therapy (2%) over 22 years of follow-up on DPA 
(90%) and zinc or trientine (10%). Conversely one-third of asymptomatic patients the 
rings did not reabsorb even after therapy of > 10 years. In this study, the fading of KF 
rings seemed to be independent of the stage of the disease and effectiveness of the 
decopperizing treatment[45]. In a study by Fenu et al[46] where 66% were hepatic and 
31% were neuro-hepatic (90% on DPA ± zinc therapy), partial or total KF ring 
resolution was observed in 28%, deterioration in 6% and static in the rest of the cohort 
over 1-3 years of therapy. Other smaller cohorts report reduction of KF ring in 
neuropsychiatric manifestation or disappearance over 10 years on maintenance zinc 
and molybdate therapy in pediatric hepatic WD[47,48]. KF rings may reappear with 
non-compliance, and occasionally even with successful maintenance therapy[49].

Liver status can be appropriately assessed by Pediatric end-stage liver disease or 
Child-Turcotte-Pugh score. Biochemical parameters like serum albumin, total bilirubin 
and prothrombin time normalizes by 6 mo but liver enzymes might take longer[12]. In 
the author’s experience it takes 9-12 mo for complete normalization of Liver function 
tests in majority of the cases[50]. In patients who have additional neurological 
involvement, neurological response is monitored by indices such as Global assessment 
scale (GAS)[51]. Even with neurological WD with significant MRI changes, 50% show 
improvement with long term chelation[52].

Assessment of adequacy of chelation: Biochemical parameters
Presently the most widely acceptable way to assess adequacy of chelation is by 24-h 
urine copper and non-ceruloplasmin copper. Twenty-four hours urine copper (UCu) 
increases immediately following chelation and takes around 12-18 mo to reach a stable 
level[53]. European Association for the Study of the Liver (EASL) and American 
Association for the Study of Liver diseases (AALSD) recommends targeting 24-h urine 
copper between 200-500 mg/d for adequate chelation[12,15]. Values > 500 mg/d 
suggest under chelation as lot of unchelated copper is remaining in the body. Values < 
200 mg/d may be either due to over chelation or poor compliance (Table 2). This can 
be differentiated by non-ceruloplasmin copper (NCC) levels calculated by the formula 
(serum copper (mg/L) - 0.3 x serum ceruloplasmin(mg/L)[54]. NCC has a few 
fallacies. Firstly, almost 20% of NCC are negative values, seen mostly when 
immunoassay method was used to measure ceruloplasmin as it measures both 
holoceruloplasmin and apoceruloplasmin. NCC calculation becomes inappropriate 
when inactive apoceruloplasmin is included. Secondly, there are variabilities in 
reference ranges in ceruloplasmin values between various laboratories across the 
world creating disparities in NCC cut-offs[55]. According to EASL guidelines, NCC > 
15 mg/dL suggest poor compliance and < 5 mg/dL suggest over chelation. 
Additionally, 24-h urine copper after 48-h cessation of therapy has been recommended 
by EASL. Values > 100 mg/d is suggestive of under chelation or poor compliance 
while values < 100 mg/d suggest adequate treatment[15].

A novel and upcoming modality to assess chelation is the use of exchangeable 
copper. Exchangeable copper is the fraction of copper bound to albumin, peptide and 
amino acids which are easily chelated by chelating agents. It denotes a direct 
estimation of non-ceruloplasmin copper (NCC)[56]. On WD with chelation for long 
time, exchangeable copper values tend to reduce comparable to non-Wilson children. 
In a pilot study by the authors, the role of exchangeable copper was assessed in a 
cohort of 96 children with hepatic WD. Exchangeable copper was significantly higher 
in newly diagnosed WD compared to WD on chelation for more than 1 year (3 ± 7 
μmol/L vs 0.9 ± 0.6 μmol/L, P = 0.03). Exchangeable copper values were lower in 
stable liver disease compared to unstable liver disease (0.86 ± 0.5mmol/L vs 1.3 ± 0.6 
mmol/L, P = 0.01). Exchangeable copper values showed excellent correlation with 
non-ceruloplasmin copper (r = 0.92, P < 0.001). Predictive model incorporating 
exchangeable copper into standard monitoring tools improved the yield of disease 
control assessment by 21%[57].

Comparison of single vs dual chelation: Which is better in hepatic WD?
Strictly zinc is not considered as a systemic chelator. Oral zinc (Zn) induces metallo-
thionine in enterocyte. Metallothionine is an endogenous chelator that has high affinity 
to copper. Hence induced metallothionine combines with luminal Cu, preventing its 
entry into circulation. This Cu is removed through feces when enterocyte is shed. Zn 
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Table 2 Twenty-four hours urine copper and non-ceruloplasmin copper in various stages of Wilson’s disease treatment

Early stages of treatment (< 1 yr) UCu > 500 μg/dNCC > 25 μg/dL

Good control (treatment > 1 yr) UCu 200-500 μg/dNCC < 15 μg/dL

Poor compliance/uncontrolled disease UCu > 500 μg/dNCC > 15 μg/dL

Inadequate dose UCu < 200 μg/dNCC > 15 μg/dL

Over-treatment UCu < 200 μg/dNCC < 5 μg/dL

UCu: Twenty-four hours urinary copper; NCC: Non ceruloplasmin copper.

also induces hepatic metallothionine[58]. Hence, Zn is used in pre-symptomatic WD, 
stable well chelated WD on maintenance therapy, severe neurological WD. It is also 
used as a last resort in those with DPA or trientine intolerance. In severe hepatic 
disease, many centers consider giving a trial of dual chelation DPA and zinc for rapid 
chelation and quick stabilization. In a study conducted by the authors, 65 children 
with > 9 mo chelation were followed up for long term outcome. Majority had 
advanced disease at presentation. 83% of children were treated with DPA mon-
otherapy and 17% treated with DPA and zinc combination. Trientine was started in 4 
children due to DPA toxicity. 77% of children responded to DPA monotherapy even 
when the disease is severe at presentation and 50% responded when DPA and zinc 
combination was started. The overall response to oral chelation is 71%[50]. Hence, 
DPA should be the first line of therapy for any hepatic WD and zinc is added in those 
who failed to show optimal response with DPA in desperate circumstances with the 
hope of rapid synergistic chelation and quicker liver recuperation[50]. Though there 
are no comparative trials of dual or single chelation therapy, there are limited case 
series that have used DPA or trientine with zinc for WD presenting with ascites, 
coagulopathy and encephalopathy[59-61]. Though the efficacy of dual therapy in these 
studies were 91%-100%, sample sizes were small. Systematic review of 17 studies that 
assessed the efficacy of dual therapy (DPA/ Trientine with zinc) showed pooled 
efficacy rate (60.4%, 95%CI: 55.8-65.0) compared to DPA (73.7%, 95%CI: 65.1-85.4) and 
trientine monotherapy (82.6%, 95%CI: 75.4-89.5). Adverse effects following 
monotherapy is also lesser with either DPA or trientine compared to combination 
therapy[62]. Another retrospective study assessed 30 of 313 patients on dual chelator 
therapy, showed long term discontinuation and non-adherence was higher as 
compared to monotherapy (P = 0.006). Combination therapy, may fare better in 
neurological WD compared to exclusive hepatic forms[63]. Compliance and adequate 
spacing with chelating agent need careful consideration in the treatment schedule. If 
consumed together, chelator can combine with zinc in the lumen and effective 
absorption of both the medication gets reduced. Animal studies have shown that 
hepatic zinc stores is also significantly reduced during decoppering[64]. Hence, when 
chelator is combined with zinc, a proportion of chelator is used up in removing the 
body zinc thereby compromising the efficacy.

Efficacy of ammonium tetra thiomolybdate
Ammonium tetra thiomolybdate is a strong decoppering agent used in limited trials. It 
prevents intestinal absorption of copper if given with meals but also reduces serum 
copper when given in between meals. Ammonium tetra thiomolybdate (ATM) is 
predominantly advised for neurological forms due to it low risk of neurological 
worsening[65]. In the comparative study of ATM with trientine in neurological WD, 
paradoxical neurological worsening is significantly lower with ATM (4%) compared to 
trientine (26.1%, P = 0.01)[66]. At larger doses, ATM can form toxic insoluble complex 
that gets deposited in liver causing hepatoxicity[67]. Hence the role of ATM in hepatic 
WD is precarious. Up to 10% of patients receiving ATM might develop bone marrow 
toxicity also[68]. Bis-choline tetra thiomolybdate (WTX101) is an investigational 
derivative of ATM being studied recently in neurological WD with better stability and 
lower toxicity[69]. Twenty-four weeks treatment of the drug caused improvement in 
71% of neurological WD. Seven percent developed leukopenia and almost 39% 
developed elevated liver enzymes post therapy[69]. Robust experience in exclusive 
hepatic WD is not yet available.
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CHELATION IN INDIAN CHILDHOOD CIRRHOSIS
Indian childhood cirrhosis is commonly seen in children between 6 mo and 5 years of 
age in Indian subcontinent with its peak incidence seen during 1970-1990[70]. 
Presently this entity seems to be waning in the Indian subcontinent. Predominant 
etiology advocated was excessive copper ingestion with use of copper utensils[71]. 
There was also a possibility of genetic predisposition affecting copper metabolism[70]. 
Clinical features consist of nonspecific symptoms to start with like fever, lethargy, easy 
fatiguability, palpable liver with leafy edges in stage I, splenomegaly and ascites in 
stage II and jaundice, coagulopathy and encephalopathy in stage III. Histopathological 
examination of liver shows diffuse hepatocyte necrosis, presence of Mallory bodies 
and granular orcein staining. Treatment monitoring is by liver function tests (LFT), 
serum copper and in many studies, by repeat hepatic copper and liver histology, while 
on treatment. Mortality is almost 60% in stage II but reaching almost 90% in stage III
[72]. In the study by Bavdekar et al[73] 65 children with Indian childhood cirrhosis 
(ICC) on treatment with DPA were followed up for the mean duration of 3.5 years, 
showed response in 60% of the children in pre-icteric phase compared to only 6% 
response (P < 0.01) in icteric phase (Table 3). Another study in ICC children who 
received DPA or DPA with steroids showed 50% survival as compared to10% in 
placebo group (P = 0.002)[74].In a pediatric study, DPA therapy has showed better 
response compared to DPA with intravenous immunoglobulin (P = 0.018)[75]. 
Chelation may improve symptoms if given early as prognosis is poor in advanced 
disease despite treatment[75].

CHELATION IN NON-WILSONIAN COPPER RELATED DISORDERS
Non-Wilsonian copper related diseases termed by Baker et al[76] as copper associated 
childhood cirrhosis includes ICC from India and ICC-like illness from western 
countries. This ICC like illnesses is otherwise called idiopathic copper toxicosis. Type I 
copper associated childhood cirrhosis (CACC) resembles ICC, with an early onset of 
disease and related to increased copper intake. Type II CACC has onset later than 4 
years of age and possibly has an autosomal recessive inheritance without an obvious 
increase in copper intake[77]. Although there are few case reports of ICC- like 
illnesses, meagre number of reports use chelation therapy probably due to its 
conflicting results. One child from Bangladeshi origin, presented with jaundice, 
anorexia, weight loss at 7 years, with normal serum ceruloplasmin, and elevated 
hepatic copper 2319 mg/g. Improvement in symptoms and decrease in liver copper 
(35 mg/g) was noted after 19 mo of DPA therapy (Table 3)[77]. In contrast, a 10 year 
old Italian child with ascites and hepatomegaly, normal ceruloplasmin levels and liver 
copper of 1970 mg/g did not show any improvement clinically and biochemically 
even after 2 years of DPA[78]. Largest cohort of endemic Tyrolean infantile cirrhosis 
studied by Muller et al[79] showed both genetics and copper contamination were 
responsible for the disease. However there is paucity of chelation therapy experience 
in this condition.

IRON CHELATION IN GESTATIONAL ALLOIMMUNE LIVER DISEASES 
In Gestational alloimmune liver disease alloimmunization of fetal liver antigen occurs 
in maternal blood resulting in IgG fetal liver antibody causing complement activation 
in fetal liver and significant impairment in hepcidin production (Figure 2)[80]. This 
causes iron storage in various organs like liver, heart, gonads, pancreas etc. Gestational 
alloimmune liver disease (GALD) causes liver failure as a result of hemochromatosis 
in newborn period and has high mortality if not intervened earlier. The liver injury 
causes reduced production of hepcidin resulting in uncontrolled iron absorption 
through placenta. This excess iron might further aggravate liver injury and also result 
in extra-hepatic iron deposition[81,82]. There have been few studies of GALD being 
treated with iron chelators (intravenous deferoxamine) and antioxidants with no clear-
cut benefit. In the series by Flynn et al[83] five infants with neonatal hemochromatosis 
received intravenous deferoxamine but only one survived without liver trans-
plantation. In the study by Rodrigues et al[84] 10 infants received iron chelation but 
only one survived without transplantation. In another series by Sigurdsson et al[85] six 
infants with neonatal hemochromatosis received supportive measures whereas eight 
infants received combination of deferoxamine and antioxidants. Two out of six who 
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Table 3 Pediatric studies of chelation in liver diseases

Ref. Disease Drug Follow up duration Response Adverse effects

Dhawan et al
[60]

WD DPA (n = 32) Median:11.78 (1.45-34.2) yr 20/32 (62.5%) Minor- 6.3%; Major- 
21.9%

Wang et al
[106]

WD DPA/TA (n = 
9)

Mean: 5.1  4.1 yr All responded Not mentioned

Das et al[50] WD DPA (n = 65), 
TA(n = 4)

Median: 3.6 (0.8-12) yr DPA (42/65) 64.6%, TA (3/4) 75% DPA 10.8%

Arnon et al
[107]

WD TA (n = 10) Treatment duration: 18 mo. 
Follow up:12-60 mo

All responded 1/10 (10%) reported 
hepatotoxicity

Taylor et al
[108]

WD TA (n = 16) 6.4 (0.78-18.6) yr 14/16 (87.5%) 1 had allergic 
reaction

Santos Silva et 
al[59]

WDAll decompensated liver 
disease

DPA (n = 1)TA 
(n = 4)

18-60 mo All responded one still had raised 
transaminase

3/4 (75%) on DPA 
developed cytopenia

Bavdekar et al
[73]

ICC DPA (n = 68) 3.5 (1-7) yr 29/68 (42.6%) alive after follow up 5 children had 
proteinuria

Tomar et al
[75]

ICC DPA (n = 60) 12 mo duration 13/17 (76.5%) of grade III survived 11.8% drug rash, 
5.9% fever

Tanner et al
[74]

ICC (15 children treated 
with DPA in both trials 
together)

DPA (n = 15) 6 yr Trial I: 1/15 (6.7%) survived in 6 yr, 
Trial II: 5/10 (50%) survived in 6 yr

Not mentioned

Horselen et al
[77]

Case report CACC (age 7 
yr)

DPA 19 mo Hepatic copper normalized none

Maggiore et al
[78]

Case report CACC (age 10 
yr)

DPA 24 mo No improvement Not mentioned

Rodeck et al
[109]

CACC (age 6 and 10 mo) DPA 18 mo, other child 
deteriorated immediately 
following DPA initiation

One child improved and other 
developed acute liver failure 
requiring liver transplantation

None

Flynn et al[83]
2002

NH DFO (n = 5) 
with 
antioxidant

Follow up at 48 mo 2/5 (40%) survived without 
transplantation

Not mentioned

Rodrigues et al
[84] 2005

NH DFO with 
antioxidant (n = 
9)

Follow up 3-9.8 yr 1/9 (11.1%) survived without 
transplantation

Not mentioned

Sigurrdson et 
al[85] 1998

NH DFO with 
antioxidant (n = 
8)

Not mentioned None survived without 
transplantation

Not mentioned

Masera et al
[110] 2013

HJV hemochromatosis Case 
report (7/F)

DFX 12 mo of treatment Iron indices improved on 12 mo 
treatment

Not mentioned

DPA: D-Penicillamine; TA: Trientine; WD: Wilson’s disease; ICC: Indian childhood cirrhosis; NH: Neonatal Hemochromatosis; DFO: Deferoxamine; DFX: 
Deferasirox; CACC: Copper associated childhood cirrhosis.

received supportive measures survived compared to only one who received chelation. 
It is not clear if the small proportion of response to chelation is due to efficacy of the 
drug in already advanced disease or due to natural history. In the recent years, it now 
clear that intravenous immunoglobulin has a superior role than chelation therapy in 
GALD.

IRON CHELATION IN HEREDITARY HEMOCHROMATOSIS
Hemochromatosis is due to iron accumulation in various organs with secondary 
causes being commoner in children than hereditary hemochromatosis. Secondary 
causes of hemochromatosis are commonly related to repeated transfusions in 
hemolytic anemia especially thalassemia major. In normal individuals, increased 
plasma iron induces the genes like HFE, TFR2 and HJV. This causes release in 
hepcidin, binding with ferroportin in enterocytes and macrophages, reducing iron 
absorption. Hereditary hemochromatosis (HH), most commonly due to mutation in 



Seetharaman J et al. Chelation in pediatric liver diseases

WJH https://www.wjgnet.com 1561 November 27, 2021 Volume 13 Issue 11

Figure 2 Pathogenesis of gestational alloimmune liver disease. Alloimmunization of fetal liver antigen by maternal blood produces IgG antibody passively 
transferred through the placenta to cause fetal liver injury by complement activation. Liver injury reduces the hepatic synthesis of hepcidin resulting in uncontrolled 
placental iron absorption. Excess iron is deposited in liver, pancreas, heart, gonads, etc.

HFE, cause impaired production of hepcidin making checkpoint for iron absorption 
defective[86]. Animal studies showed excessive fat intake causes impaired hepcidin 
production and increased transferrin receptor 1 and divalent metal transporter 1 
Levels by altering mRNA expression. Hence, increased iron absorption and iron 
related liver injury may be responsible for development of non-alcoholic steatohep-
atitis[87]. Hereditary hemochromatosis (HH) is extremely rare in children. Excess iron 
in the serum causes liver cirrhosis, skin pigmentation, pancreatic insufficiency, cardiac 
dysfunction and hypothyroidism[88]. Iron chelation forms the mainstay of therapy in 
transfusion related siderosis in various hemolytic anemias in children. In a few 
studies, iron chelators have been implicated in treatment of HH also. Deferoxamine is 
parenteral iron chelator, given either as subcutaneous or intravenous infusion (20-50 
mg/kg per day) over 8-24 h. Adverse effects seen are local reaction in injection site, 
hearing abnormalities, bone abnormalities etc. Deferasirox is an oral chelator with a 
similar efficacy as deferoxamine in removing hepatic iron but prone for its 
gastrointestinal side effects. Deferiprone, also an oral chelator is prone for 
gastrointestinal side effects and agranulocytosis and is highly effective in removing 
cardiac iron compared to other chelators (Table 4)[89]. Phatak et al[90] from Italy 
studied multiple doses of deferoxamine in HH, showed 10 mg/kg is the dose with 
optimal response and lower side effects. Nagler et al[91] analyzed 2 patients treated for 
6 mo and 10 mo respectively who showed significant reduction in serum ferritin in the 
follow up. EASL and AASLD guidelines on HH recommend phlebotomy as the 
treatment of choice in HH[92,93]. Chelation may be considered in HH when 
phlebotomy is not tolerated due to severe congestive cardiac failure, anemia and in 
case of difficult venous access.

IRON CHELATION IN SECONDARY HEMOCHROMATOSIS
In children, secondary hemochromatosis is more common than HH and is usually 
caused by transfusion related iron overload seen in chronic hemolytic anemia 
especially beta thalassemia[94]. Each milliliter of packed RBC adds 1mg of iron to the 
body stores. Iron is usually bound to transferrin in plasma. However when the iron 
load increases, transferrin sites saturate and excess iron spills as labile plasma iron 
causing free radical injury to heart, liver and endocrine organs[95]. Multiple 
transfusion causes liver injury by various mechanisms such as siderosis causing 
hepatitis eventually progressing to fibrosis and cirrhosis. Hepatic foci of hemopoiesis 
and transfusion related hepatitis B and C infection are also seen[96].

Iron overload related liver injury can be assessed by various modalities. Serum 
ferritin is easily available and an inexpensive method to assess iron overload but its 
utility is limited in the presence of infection and inflammation. Liver iron concen-
tration > 15 mg/g dry weight of liver is associated with significant mortality and 
morbidity[97]. The superconducting quantum interface device (SQUID) measures liver 
iron stores non-invasively but the SQUID scanners are not available in many centers 
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Table 4 Properties of iron-chelators

Properties Deferoxamine (DFO) Deferasirox (DFX) Deferiprone (DFP)
Chelator: Iron ratio 1:1 2:1 3:1

Plasma t1/2 30 min 12-16 h 2-3 h

Usual dose 20-50 mg/kg per day over 8-24 h 20-40 mg/kg per day once 
daily

75-100 mg/kg per day in 3 divided 
doses

Route of administration Subcutaneous, intravenous Oral Oral

Clearance Renal, hepatic Hepatic Renal

Efficacy in removing liver iron 
stores

Good Good Moderate

Efficacy in removing cardiac 
iron

Moderate Moderate Good

Advantages Long safety data available, strongest chelator on 
molar basis

Oral once daily dose is 
sufficient

Oral, effective in removing cardiac 
iron

Local reactions Gastric intolerance Nausea

Sensorineural hearing loss Rash Vomiting

Bone abnormalities Diarrhea Diarrhea

Retinopathy Elevation in creatinine Arthralgia

Pulmonary disease Elevation in transaminases Elevated liver enzymes

Allergic reaction Peptic ulcer Agranulocytosis

Bacterial infections (e.g., Listeria, Klebsiella) Renal dysfunction

Adverse effects

Hepatic dysfunction

worldwide[98]. Magnetic resonance imaging estimates liver iron by R2 and R2* 
techniques and it correlates well with liver iron concentration attained from biopsy. 
Magnetic resonance imaging (MRI) has now become the primary monitoring tool for 
both liver and cardiac iron[99].

Liver injury due to iron overload was common in children in pre-chelation era. 
Liver biopsies obtained in 80 children with beta thalassemia during splenectomy 
showed cirrhosis in 40% of children > 11 years with risk of cirrhosis increasing with 
age. 60% of the children showed hypoalbuminemia and 70% showed elevated transa-
minases[96]. Iron-chelators are well established treatment modality to prevent iron 
overload related liver injury. In a retrospective study by Maira et al[100] deferasirox 
for a duration of 4 ± 1.5 years showed significant improvement in liver stiffness mea-
surement by transient elastography (7.4 ± 3.2 kPa vs 6.6 ± 3.2 kPa, P = 0.017) and liver 
iron concentration (LIC) (4.81 ± 3.82 mg/g vs 3.65 ± 3.45 mg/g, P = 0.001). Thus, iron 
chelation not only prevents progression of liver injury but also reverses inflammation 
and fibrosis. In the multicentric cross-sectional study from Italy, 924 beta-thalassemia 
patients were evaluated for iron overload assessment and management. The study 
showed serum ferritin had an excellent correlation with liver iron concentration. 
Deferasirox (38.3%) was most preferred chelator, especially in children because of its 
safety and easy administration[101]. Deferiprone was less commonly used when 
transaminases were elevated due to its concern of hepatic fibrosis[97]. Combination of 
two chelators were used whenever serum ferritin > 2500 ng/mL or MRI R2* values < 
20 ms. Guidelines suggest that LIC assessment should be done at 1-2 yearly intervals
[102]. Iron over load needs to be monitored and treated pre- and post-alloimmune 
hematopoietic stem cell transplantation (HSCT) for hemolytic anemia. Pre-transplant 
serum ferritin > 1000 ng/mL is associated with increased risk of post-transplant 
complications such as chronic liver disease, graft vs host disease (GVHD), sinusoidal 
obstruction syndrome and infection[103,104]. Hence it is mandatory to rapidly reduce 
ferritin levels before HSCT. Gruppo Italiano Trapianto di Midollo Osseo (GITMO) 
study group recommends switching to intravenous deferoxamine for rapid lowering 
of serum ferritin pre-transplant. From 6 mo post-transplant, iron overload is to be 
assessed by serum ferritin and MRI R2*. If LIC in MRI > 7 mg/g phlebotomy is 
preferred, but when LIC > 15 mg/g phlebotomy along with iron chelators are required 
to prevent complications[105].
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CONCLUSION
Copper chelation by D-penicillamine and trientine forms the mainstay of treatment in 
childhood WD. Appropriate dosing, compliance to medications and scheduled 
monitoring with liver function tests, 24-h urine copper and non- ceruloplasmin copper 
are required for better control of the disease. D-penicillamine is a promising treatment 
for Indian childhood cirrhosis especially in early stages. The role in other non-
Wilsonian copper diseases is doubtful. The use of iron chelator in Gestational 
alloimmune liver disease is waning due to its poor efficacy. Iron chelator may be 
considered as an alternative therapy in hereditary hemochromatosis when the primary 
treatment fails or not feasible but in case of secondary hemochromatosis chelation 
forms the main treatment.
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Abstract
Liver cancer is the sixth most commonly occurring cancer and costs millions of 
lives per year. The diagnosis of hepatocellular carcinoma (HCC) has relied on 
scanning techniques and serum-based markers such as α-fetoprotein. These 
measures have limitations due to their detection limits and asymptomatic 
conditions during the early stages, resulting in late-stage cancer diagnosis where 
targeted chemotherapy or systemic treatment with sorafenib is offered. However, 
the aid of conventional therapy for patients in the advanced stage of HCC has 
limited outcomes. Thus, it is essential to seek a new treatment strategy and 
improve the diagnostic techniques to manage the disease. Researchers have used 
the omics profile of HCC patients for sub-classification of tissues into different 
groups, which has helped us with prognosis. Despite these efforts, a promising 
target for treatment has not been identified. The hurdle in this situation is genetic 
and epigenetic variations in the tumor, leading to disparities in response to 
treatment. Understanding reversible epigenetic changes along with clinical traits 
help to define new markers for patient categorization and design personalized 
therapy. Many clinical trials of inhibitors of epigenetic modifiers (also known as 
epi-drugs) are in progress. Epi-drugs like azacytidine or belinostat are already 
approved for other cancer treatments. Furthermore, epigenetic changes have also 
been observed in drug-resistant HCC tumors. In such cases, combinatorial 
treatment of epi-drugs with systemic therapy or trans-arterial chemoembolization 
might re-sensitize resistant cells.
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Core Tip: This review article focuses on the limitations of diagnosis and treatment of 
hepatocellular carcinoma (HCC). Furthermore, the use of omics technology with 
clinical attributes for categorizing HCC patients in order that personalized treatment 
can be designed to prolong survival is discussed. Finally, the potential of epi-drugs in 
targeting epigenetic changes in the disease and resistance has been proposed.

Citation: Natu A, Singh A, Gupta S. Hepatocellular carcinoma: Understanding molecular 
mechanisms for defining potential clinical modalities. World J Hepatol 2021; 13(11): 1568-
1583
URL: https://www.wjgnet.com/1948-5182/full/v13/i11/1568.htm
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INTRODUCTION
Liver cancer ranks sixth in cancer incidence globally and accounts for 8.2% of total 
cancer deaths. The different categories of primary liver cancer are intrahepatic cholan-
giocarcinoma, hepatocellular carcinoma (HCC), fibrolamellar carcinoma, and hepato-
blastoma. These categories have distinct changes in their molecular, histological, and 
pathological features. HCC alone accounts for 85%-90% of liver cancer cases[1]. 
Almost 2/3 of the population affected by HCC is found in east Asian and south-east 
Asian countries, making this disease endemic to the region[2]. Globally, 5-year median 
survival is below 20% for HCC[3]. Major risk factors for HCC include chronic infection 
with hepatitis B virus and hepatitis C virus, excessive consumption of alcohol, 
exposure to aflatoxin, physiological state such as non-alcoholic fatty liver disease, and 
diabetes[4]. According to the Barcelona Clinic Cancer Liver Classification (BCLC) 
algorithm, curative care for HCC involves tumor resection, ablation, and liver 
transplantation[5]. However, this mode of treatment is offered to patients diagnosed in 
an early stage of the disease. Current research suggests that only 20% of patients are 
diagnosed in the early stage[6]. The lacunae in diagnosis are the unavailability of 
promising liquid-based biomarkers and detection limits of scanning techniques. 
Palliative care involving chemo/radiation-based treatment is given to patients with 
intermediate and advanced stage disease. Following this, 70% of patients come back 
with a relapse of disease and suffer treatment side effects[7,8].

A new approach should be considered to identify diagnostic markers and achieve 
better therapy response to overcome disease management challenges. Recent advances 
in the omics field shed light on the pathogenesis and molecular classification of HCC
[9-11]. The omics approach can help to investigate new markers to improve the 
therapeutic outcome. Liver carcinogenesis involves both genetic and epigenetic 
changes. It is impossible to target all genetic variations due to tumor heterogeneity, but 
gene signature can be manipulated as epigenetic changes are reversible[12]. Therefore, 
epi-drug-based treatment may act as an alternate treatment strategy instead of 
targeting a single protein or molecular pathway. Epi-drugs can be beneficial not only 
for the treatment of HCC but also for dealing with cancer resistance[13,14].

This article focuses on the existing approach for diagnosis and treatment in the 
management of HCC. We also review transcriptomic-based signatures of HCC for 
patient sub-categorization and their potential implications for diagnosis and therapy. 
Finally, we propose an epi-drug based treatment strategy based on the epigenetic 
landscape of HCC.

DIAGNOSIS OF LIVER CANCER 
Five standard WHO-approved guidelines include the European Association for the 
Study of Liver Disease (EASL)[15], American Association for the Study of Liver 
Diseases (AASLD)[16], Asia-Pacific Association Study of the Liver[17], EASL-EORTC 
Clinical Practice Guidelines[18], and the updated AASLD guidelines are used for 
diagnosis of liver cancer. The diagnosis is primarily based on imaging techniques such 
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as ultrasound, computed tomography (CT) scan, and conventional magnetic resonance 
imaging (MRI)[19]. Invasive biopsies are not helpful for the diagnosis of liver tumors. 
The myriad risk factors involved in biopsy are the local spread of HCC along the 
needle track and different complications observed in individual patients[20]. The 
early-stage diagnosis of HCC continues to be crucial due to reduced sensitivity and 
specificity of the diagnostic methods, due to which an ample number of tumors are 
undetected. The complete list of diagnostic methods with detection limits is shown in 
Table 1. The various factors responsible for undetectable tumors involve a lack of 
specific markers and asymptomatic condition during the early stages of HCC[21]. 
Thus, the diagnosis of tumor occurs when it has spread and has reached an advanced 
stage.

The diagnostic marker used most frequently is serum α-fetoprotein (AFP)[22]. AFP 
level increases beyond 20 ng/mL in more than 70% of patients with HCC. However, 
AFP elevations are not explicitly associated with HCC as AFP levels from 10-500 
ng/mL and even occasionally to 1000 ng/mL may be seen in patients with a high 
degree of necro-inflammatory activity such as chronic viral hepatitis[23]. Chan et al[24] 
in 2008 have shown that AFP could be better used as a prognostic marker to evaluate 
response to treatment and detection of recurrence instead of diagnosis[25]. Studies 
have shown that multiple combinations of markers provide more appropriate results 
in diagnosis than a single marker. A recent study investigated the use of HSP90α (heat 
shock protein 90) combined with AFP and thymidine kinase 1 to diagnose HCC with 
more efficiency[26]. A study from Beijing YouAn Hospital found that for early 
diagnosis of HBV-related HCC, a combination of AFP, GPC3, and GP73 had the 
highest diagnostic value[27]. Ghosh et al[28] have shown that the exosome encap-
sulated microRNAs could be used as a circulating diagnostic marker for HCC with 
low AFP levels.

Another marker, α-L-fucosidase (AFU), is expressed in liver cirrhosis patients[29]. 
However, limited research is available regarding the utility of AFU in the diagnosis of 
HCC. In the liver and gallbladder, cell membrane protein 5’-nucleotidase (5’-NT) is 
released into the blood during hepatic injury or obstruction[30]. It has been observed 
that 5’-NT levels also increase with age and during pregnancy[31]. Other markers such 
as AFP-L3, glypican-3, and des-γ-carboxy prothrombin also show inconsistent data 
due to low sensitivity and specificity. Hence, the discovery of putative liquid 
biomarkers is required, which can associate with tumor progression, recurrence, and 
effectiveness of therapeutic programs.

TREATMENT REGIME AND LIMITATIONS OF CHEMOTHERAPY IN LIVER 
CANCER
Treatment of HCC is decided based on different stages of tumor detection[32]. The 
BCLC algorithm is widely used for treatment as it considers tumor stage, liver 
function, performance status, and treatment impact (Figure 1). Early-stage cases are 
treated with surgery, ablation, or liver transplantation. The patients undergoing 
surgery showed 70% recurrence within five years[33]. The currently used methods for 
tumor ablation in HCC are percutaneous ethanol injection (PEI) and radiofrequency 
ablation (RFA). PEI consists of the direct injection of absolute ethanol into HCC 
nodules[34]. RFA is responsive in tumors > 4 cm in size. It involves necrosis of the 
tumor using a needle tip electrode that reaches temperatures up to 100°C[35]. 
Microwave ablation and irreversible electroporation have shown more promising 
results than tumor removal with PEI[36].

Patients with an intermediate stage having a tumor size greater than 5 cm or 
multinodular HCC with no vascular invasion are treated with trans-arterial chemoem-
bolization (TACE). TACE is used to obstruct the nutrient supply to the tumor using 
the occlusion of arterial blood vessels[37]. Chemotherapeutic drugs such as 
doxorubicin or cisplatin are given during embolization, allowing prolonged exposure 
of the drug to tumor cells, resulting in tumor reduction. Yeo et al[38] showed that the 
overall response rate for doxorubicin-treated patients was 10.5%. Moreover, 
doxorubicin alone and combined with PIAF had no significant difference in response 
rate but showed treatment-associated toxicity in patients. Another study showed that 
combinatorial treatment of fluorouracil, leucovorin, and oxaliplatin failed to improve 
survival compared to doxorubicin[39]. In a multicohort study involving patients with 
unresectable tumors treated with TACE, overall survival (OS) was approximately 26-
40 mo, with only 52% of patients achieving treatment benefits[40,41]. In some cases, 
selective internal radiation therapy is used in patients with intermediate-stage HCC. 
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Table 1 Utility and detection limits of existing diagnostic measures of hepatocellular carcinoma

Diagnostic methods Definition/concept Diagnostic limit/range Ref. 

Contrast-enhanced ultrasound Inexpensive, non-invasive, first choice for screening HCC; Real time 
dynamic of blood supply.

Small HCC less than 1 cm [101]

Multi phasic enhanced 
computed tomography 

3 dimensional reconstructions, high sensitivity 1-2 cm HCC lesion [102]

Magnetic resonance imaging High resolution anatomic details, pre-contrast and multi-phasic enhanced 
3D; Diffusion weighted imaging-functional imaging

2-3 cm HCC lesion [103]

Positron emission tomography Hepatocyte-specific PET tracer, 2-[18F] fluoro-2-deoxy-D-galactose, is used 
which accumulates in the liver compared with other tissues

Detection of small intrahepatic; 
HCC lesions

[104]

AFP Elevated in HCC, non-specific Range: > 500 ng/mL [23]

α-L-fucosidase Expressed in liver cirrhosis Cut-off: 870 nmol/L [105]

Des-γ-carboxy prothrombin Sensitive; Not expressed in other liver disease Cut-off: 40 mAU/mL [105,
106]

HSP90α + AFP +TKI Combination of markers have improved diagnostic value HSP90- (76.65-144.00); AFP- (5.33-
2000.00); TK1- (0.57-2.30)

[26]

AFP, GPC3, and GP73 Useful markers for early diagnosis and prognosis Upregulated [27,
107]

microRNA: miR-21, miR-199, 
and miR-122, miR-23a

Specific for diagnosis of HCC; Extremely sensitive Cut-off value of ≥ 210 [108,
109]

HCC: Hepatocellular carcinoma; AFP: α-fetoprotein.

Figure 1 Treatment modalities for hepatocellular carcinoma based on tumor-node-metastasis staging. HCC: Hepatocellular carcinoma.

Intraarterial infusion of radioisotope labeled microspheres is carried out in this 
modality. Another radiation-based technique known as stereotactic body radiation is 
used for patients with > 3 cm of the tumor.

Systemic chemotherapy is given for advanced stages of HCC. NCCN Clinical 
Practice Guidelines in Oncology (NCCN Guidelines) have recommended sorafenib 
and lenvatinib as first-line systemic therapy for patients with unresectable HCC[42]. 
Brivanib, sunitinib, erlotinib, and regorafenib are other preferred drugs for late-stage 
HCC treatment. Kudo et al[43] observed that treatment with lenvatinib results in 
significantly higher OS than sorafenib and improvement in all secondary efficacy 
endpoints. This trial further results in FDA approval of lenvatinib as the first line of 
therapy for HCC[43]. Sorafenib and sunitinib are protein kinase inhibitors targeting 
VEGFR, PDGFR, and the Raf kinase pathway. However, a study suggested that 
sunitinib had an adverse effect in these patients and had no advantage over sorafenib
[44]. Moreover, sorafenib has been extensively explored in the systemic treatment of 
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advanced stage HCC and combination with TACE, but it provided contradictory 
results[45,46]. Brivanib is an inhibitor of FGF1 and VEGFR2. Phase II clinical trials of 
brivanib showed the ineffectiveness of the drug compared to sorafenib for improving 
OS[47,48]. The EGFR inhibitor erlotinib or cetuximab was administered in phase II 
clinical trials of advanced stages of HCC. However, the trial results did not show the 
anti-tumor effect of cetuximab in HCC patients[49]. Interestingly, erlotinib showed a 
positive response in treatment by increasing OS to 13 mo and a response rate of 59%
[50].

As discussed earlier, ablation treatment is possible in less than 40% of patients due 
to late diagnosis, and only 20% are treated with TACE. For the patients with advanced 
stages of HCC, treatment modalities are limited to systemic therapy, and response 
rates are also significantly less due to resistance towards available chemotherapy. 
Multimodal treatment involving more than one therapeutic drug has also failed in 
different combinations due to cytotoxicity and poor trial outcomes. Despite the 
significant research in targeted therapy of HCC management, a promising drug is yet 
to be identified. Thus, the hunt for combinatorial treatment with different therapeutic 
agents continues (Figure 2).

MOLECULAR LANDSCAPE OF LIVER TUMOR TISSUE FOR PATIENT 
STRATIFICATION AND IDENTIFICATION OF ALTERNATE TARGETS
Over the past years, HCC classification has mainly focused on histological analysis of 
tumor tissues. However, the molecular profile and clinical attributes have a significant 
impact on the prognosis of the disease, thereby redefining HCC into several 
subgroups. Boyault et al[51] published molecular classification systems for HCC 
composed of 6 groups. The groups were based on mutation profile, disease prognosis, 
and transcription landscape. The first group included patients with hepatitis B 
infection and low viral load, increased AFP levels, and high IGF2 expression, whereas 
the second group included patients with a high viral titer and associated microva-
scular invasion (MVI) and satellitosis. However, the difference in groups 3 and 4 was 
based on histological parameters. The third group consisted of poorly differentiated 
tumors with the worst prognosis; on the other hand, group 4 had well-differentiated 
tumors. Group 5 and 6 had a low proliferation rate and activated Wnt-signaling 
pathway. Moreover, pathways are differentially activated in different groups. Another 
group classified HCC into three groups based on histology and expression analysis of 
the tumor[52]. In this study, the first group showed the presence of satellitosis and 
MVI. Group 2 had high AFP expression, and the third group consisted of well-differ-
entiated tumors with a low proliferation rate.

Tumor morphology-based classification has been proposed by Murakata et al[53]. 
The nodal status of the tumor was correlated with survival and recurrence of the 
disease. Moreover, the miRNA profile of HCC patients has been used to classify 
sorafenib responders[54]. c-myc signaling and EB-1 protein were functionally linked 
with HCC[55]. Similar findings were observed by Lee et al[56] in progenitor-like HCC, 
which correlated with poor prognosis. In another study, HCC progenitor-like 
signature consisting of CK-19, Ep-CAM, and CD133 was seen by Woo et al[57]. 
Morofuji et al[58] identified the gene signature of early recurrent HCC, including 
ERK1, PKG, Apaf1, and Bcl-X. Furthermore, ERK1 and Bcl-X were identified as genes 
associated with the poor prognosis of HCC[58]. However, these studies did not 
consider the survival status of an individual while proposing subtypes.

Jiang et al[59] showed that heterogeneity exists in proteomic profiling of paired 
early-stage HCC patients. The tumors were segregated into three subtypes: S-I, S-II, 
and S-III. S-I tumors had increased expression of liver-associated functional proteins. 
In contrast, S-II and S-III had a more proliferative nature due to overexpression of cell-
cycle-related proteins. Furthermore, S-III were more aggressive and had a high 
expression of KRT19 and MMP9, associated with poor prognosis. Gao et al[60] sub-
grouped 159 HBV infected patients based on survival, tumor thrombus, and multi-
omics profile. These sub-groups were classified based on metabolic rewiring, 
alterations in the microenvironment, and cellular proliferation. Moreover, the study 
proposed two prognostic markers PYCR2 and ADH1A.

In the past decade, data generated under the TCGA consortium can be used to 
understand the gene expression profile of patients and obtain correlations with clinical 
attributes[9]. Machine learning algorithms are necessary to analyze such multivariate 
data. The molecular alterations obtained from the cancer genome atlas liver hepato-
cellular carcinoma (TCGA-LIHC) cohort (423 patients) can be explored to predict new 
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Figure 2 Challenges in the treatment of hepatocellular carcinoma.

targets and rationalize the combinatorial therapy. Transcriptome data generated from 
TCGA-LIHC identified over 13000 differentially expressed genes compared to cut-
margin samples, and around 3330 genes correlated with poor survival (P value < 0.05). 
Furthermore, 1730 genes overlapped between the DE gene list and genes correlated 
with patient survival. The majority of overlapped genes showed more than 30% 
alteration compared to adjacent normal in this cohort and had a significant association 
with OS. Patients were categorized into different groups using clustering analysis of 
gene expression. It was observed that these genes belong to metabolism-related 
pathways and the cellular proliferation-related family (Figure 3). Deep learning 
computational framework on the TCGA-LIHC dataset suggested that aggressive 
subtype has TP53 inactivation with high expression of KRT10, EPCAM, and active 
AKT, WNT signaling[61]. Furthermore, drugs and small molecular compounds are 
available to target these genes. Schulze et al[62] reported that potential gene targets 
have FDA-approved drugs in 28% of liver tumors. Therefore, these genes can be used 
for prognosis of the disease, and targeting them may improve patient survival.

Gene expression analysis of liver cancer samples can also be utilized to identify new 
markers for diagnostic purposes. For example, SPP2 is downregulated at the transcript 
level in HCC. This gene is deregulated in multiple HCC cohorts. Moreover, a stage-
wise decrease at the transcript level was observed in HCC TCGA data. Also, the 
downregulation of SPP2 leads to a significant decrease in patient survival (Figure 4). 
This observation indicates that SPP2 level is associated with normal liver function, and 
a change in levels can be a measure of liver carcinogenesis.

EPI-DRUG BASED TREATMENT FOR IMPROVEMENT OF THERAPEUTIC 
OUTCOME
The lack of success in disease management can be explained by the multifactorial 
nature of carcinogenesis involving multiple mutations and global level epigenome 
alterations[63-65]. Epigenetic changes being reversible can be useful to understand the 
relationship between tumor biology and help in redefining therapeutic response[12]. 
Epigenetics deals with changes in gene expression without change in the DNA 
sequences[66]. Despite all cells having the same DNA sequence, the epigenome 
decides cell fate regarding differentiation, cell proliferation, and cell death[67,68]. The 
widely studied epigenetic marks are DNA methylation, histone post-translational 
modifications, and non-coding RNAs. DNA methylation is the most characterized 
heritable epigenetic mark. This is where a methyl group is transferred onto the 
cytosine of the CpG di-nucleotide-rich region in DNA by DNMT enzymes[69]. DNA 
methylation plays a vital role in gene inactivation, genomic imprinting, attaining 
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Figure 3 The cancer genome atlas liver hepatocellular carcinoma data analysis. A: Volcano plot representing differential gene expression between 
373 tumor samples and 50 normal samples. Genes colored with red or green are most significantly altered; B: Venn diagram showing overlap between differentially 
expressed gene list and genes affecting survival of patients upon alteration (survival); C: Normalized expression of top 300 genes associated with overall survival 
represented using heatmap. Patients with overall survival below the median are marked with a red bar while those above the median are marked with a green bar; D: 
Altered biological process from overlap gene. Upregulated processes highlighted with red and downregulated processes are depicted as blue; E: Pathways analysis 
for overlap genes. Deregulated KEGG pathways shown by yellow bars and reactome pathways displayed using green bars. DE: Differentially expressed gene list.

tissue-specific gene expression, and X chromosome inactivation[69].
Similar to DNA modification, histone proteins also undergo post-translational 

modifications carried out by chromatin modifiers, namely writers, readers, and erasers
[70]. The well-studied modifications include methylation, acetylation, phospho-
rylation, and ubiquitination. Histone methylation involves the addition of a methyl 
group at the lysine or arginine residue on the protruding histone tails. Histone 
methylation marks can result in repression of transcription or gene activation[71]. A 
typical example of gene suppression is trimethylation at H3K9, and H3K27 whereas 
methylation at H3K4, H3K36, and H3K79 enhance transcriptional activity[71]. Histone 
acetylation is the transfer of an acetyl group from acetyl CoA. This reaction leads to a 
change in electrostatic interaction between DNA and histones, resulting in the 
unwinding of chromatin and enhances gene transcription[72]. Histone phospho-
rylation has an essential role in DNA damage repair, gene transcription, and 
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Figure 4 Expression of SPP2 in the cancer genome atlas liver cancer cohort. A: Stage-wise expression of SPP2; B: Patient survival associated with 
SPP2 expression. TCGA: The cancer genome atlas; LIHC: Liver hepatocellular carcinoma.

chromatin condensation during mitosis[72]. An illustration of chromatin-associated 
modifications and the role of epigenetic modifiers is shown in Figure 5. Non-coding 
RNAs are the transcribed intragenic regions of the DNA that are not translated into 
proteins. These entities govern gene silencing via RISC and RNA-induced transcrip-
tional silencing complex formation[73].

Different research groups have extensively studied the epigenetic landscape of liver 
carcinogenesis. Moreover, in the past few years, researchers are investigating the 
epigenetic basis of chemoresistance in HCC. Lie et al[74] showed that lysine-specific 
demethylase 1 (LSD1) is upregulated in LGR5+ cells contributing to stemness and 
chemoresistance properties. Mechanistically, LSD1 removes the H3K4 methylation 
mark from the promoter of genes which inhibit Wnt-signaling. Thus, promoting 
pathway activation, which is essential for stemness and chemoresistance[74]. EpCAM+ 
liver cancer cells have high expression of chromodomain helicase DNA binding 
protein (CHD4), a DNA damage response protein. The abundance of CHD4 in liver 
cancer cells leads to epirubicin resistance[75]. Zinc-fingers and homeoboxes 2 (ZHX2) 
is one of the signature proteins which is downregulated in liver CSCs and is associated 
with tumor progression. It has been found that low expression of ZHX2 is correlated 
with epigenetic regulation of OCT4, SOX4, and NANOG by H3K36 methylation[76]. 
Oriana Lo Re et al[77] observed that low expression of MacroH2A1 leads to paracrine 
mediated chemoresistance and imparts CSCs properties to the tumor cells. Another 
study showed that the regulator of chromosome condensation 2 promotes metastasis 
and cisplatin resistance in HCC[78]. Ling et al[79] discovered that USP22 helps to 
attain chemoresistance by hypoxia-driven p53 mutant tumors. Hypoxia-induced 
expression of carbonyl reductase 1 leading to chemoresistance in HCC was observed 
by Tak et al[80]. H19 long non-coding (lnc)RNA has been shown to sensitize sorafenib 
or doxorubicin-resistant liver cancer cells[81]. The lncRNA CRNDE has been shown to 
interact with histone methyltransferase to enhance their effect on the inhibition of 
tumor suppressors and induce resistance in tumor cells[82].

Epigenetic alterations can be targeted by the class of small-molecule inhibitors that 
specifically inhibit or reverse the changes[83]. This class of inhibitors are referred to as 
epi-drugs. Different research groups have synthesized epi-drugs for all three 
prominent families of epigenetic modifiers- readers, writers, and erasers. Many epi-
drugs have cleared pre-clinical trials, and initial phase trials have shown promising 
results. Few epi-drugs are clinically approved for the treatment of hematological 
malignancies. In some studies, treatment of solid tumors with an epi-drug helps in 
sensitizing tumor cells to chemotherapy[84,85]. These findings have promoted the 
research on inhibitors of HDAC, HAT, and DNMTs in combination with chemothera-
peutic drugs. In HCC and gastric cancer, the inactive or suppressed state of tumor 
suppressor genes (TSGs) is mainly attributed to the overexpression of DNMTs and 
HDACs, leading to heterochromatinization. Reversion of the chromatin state using 
epi-drugs further leads to activation of TSGs and prevents tumor growth[86]. Ongoing 
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Figure 5 Schematic illustration of epigenetic modifications observed in hepatocellular carcinoma and chromatin modifiers targeted by 
epi-drugs. The figure represents general epigenetic alterations observed in hepatocellular carcinoma and different epigenetic modifiers that can be targeted via 
small molecule inhibitors. Moreover, DNA and chromatin mediated alterations observed in tumors are highlighted. Changes in DNA methylation and histone post-
translational modifications levels inside normal cells lead to tumor formation. HCC: Hepatocellular carcinoma; HDM: Histone demethylase; HDAC: Histone 
deacetylase; HMT: Histone methyltransferase; DNMT: DNA methyltransferase; HAT: Histone acetyltransferase.

pre-clinical trials have been carried out with HDAC and DNMT inhibitors in 
combination or in comparison with each other to study the anti-tumor effects of the 
drugs. Guadecitabine (SGI-110), a DNMT inhibitor with sorafenib and oxaliplatin, is in 
phase II clinical trials for HCC (NCT01752933). Multicenter phase I/II clinical trials 
using belinostat (HDAC inhibitor) in patients with unresectable HCC showed a tumor 
stabilization effect[87]. One study showed that the combination of panobinostat and 
sorafenib significantly decreased tumor volume by inducing apoptosis in the tumor
[88]. A group of researchers observed that the DNMT inhibitor 5’-aza-2’ deoxycytidine 
and HDAC inhibitor SAHA down-regulated DNMT1, DNMT3a, DNMT3b, and 
HDAC1 and upregulated GSTP1 and SOCS1 gene expression, which further resulted 
in inhibition of cell viability and induced apoptosis[89]. A detailed list of potential epi-
drugs is given in Table 2. These findings indicate the ability of epi-drugs, which can 
restructure the treatment strategy for HCC.

Future perspectives
The most effective way of controlling HCC is preventing the disease by spreading 
knowledge of etiological agents and hepatitis B vaccination. An increase in 
surveillance is one of the strategies to achieve better survival. This practice helps in the 
early diagnosis of HCC, monitors progression-free survival, and improves quality of 
life. Diagnosis of HCC at an early stage is crucial in order to start treatment at the right 
time and improve patient survival. Due to the reduced sensitivity of current diagnostic 
techniques, ultrasound scanning of high-risk individuals should be carried out every 
three months. Although ultrasound is cost-effective compared to MRI and CT scans, 
there is scope for developing more advanced MRI or CT versions to detect small 
lesions in the liver. Similarly, there is a need for an appropriate combination of liquid 
biomarkers used for the investigation of liver carcinogenesis. From a treatment 
perspective, upon early diagnosis, liver transplantation is preferred over surgical 
removal or ablation as it is has less than 15% chance of recurrence[90].

The primary cause of treatment failure in cancer is resistance to available 
chemotherapy, which results in relapse. From heterogeneous tumors, cells respond to 
treatment differently, and a rare small percentage of cells found in the quiescent G0 
state of the cell cycle can escape treatment. These cells are inherently resistant to 



Natu A et al. Epigenetics and its potential role in HCC

WJH https://www.wjgnet.com 1577 November 27, 2021 Volume 13 Issue 11

Table 2 List of Food and Drug Administration approved/under trial epi-drugs

Drugs Classification Approved year Indicated disease Reference/ clinical trial number

Azacytidine DNMT inhibitor 2004 MDS NCT01186939

2009 AML NCT00887068

Decitabine DNMT inhibitor 2006 MDS NCT01751867

2011 AML NCT00260832

Vorinostat HDAC inhibitor 2006 CTCL NCT00773747

Romidepsin HDAC inhibitor 2009 TCL NCT02296398

Belinostat HDAC inhibitor 2015 PTCL NCT01839097

Panobinostat HDAC inhibitor 2015 MM NCT01023308

2016 CML NCT00451035

2017 TCL NCT00490776

MDS: Myelodysplastic syndrome; AML: Acute myeloid leukemia; CTCL: Cutaneous T cell lymphoma; TCL: T-cell lymphoma; PTCL: Peripheral T cell 
lymphoma; MM: Multiple myeloma; CML: Chronic myeloid leukemia; HDAC: Histone deacetylase; DNMT: DNA methyltransferase.

chemotherapy and involved in relapse. Studies have shown that tumor cells maintain 
the drug-tolerant state via chromatin-mediated changes after drug treatment[13]. The 
drug-tolerant persister (DTP) stage is reversible; however, prolonged exposure to 
chemotherapeutic drugs results in stable drug resistance properties[91-93]. DTP cells 
have non-random differential gene expressions, implicating chromatin-mediated 
changes leading to hetero-chromatinization of the transposable elements such as 
LINE1[94]. Recent findings suggest that ablation of the DTP cell population with FDA-
approved epi-drugs impedes the development of resistance and relapse[13,94]. 
Hangauer et al[95] have shown DTP cells dependence on mesenchymal state and GPX4 
(lipid hydroperoxide) for survival. Furthermore, inhibition of GPX4 triggers cell death 
of DTP cells via the ferroptosis pathway, indicating ferroptosis is required for the 
survival of DTP cells[95]. Thus, targeting inherently resistant residual cells could be 
helpful in reducing relapse in patients. However, more research on the identification 
and characterization of DTP cells is required to choose the appropriate drug 
combination for treatment purposes.

Targeted drug delivery is the critical factor in improving treatment outcomes and 
reducing the drug's side effects. Currently, researchers are investigating nanoparticle-
mediated drug delivery. In addition, modified liposomal formulation showed a 
successful therapeutic response in HCC due to tumor-directed delivery and low drug 
load in the system[96]. Albumin is also a suitable drug-carrier molecule. An albumin-
tagged drug has more potent effects compared to the drug alone[97]. Other materials 
such as dendrimers, micelles, polysaccharides, and silica are also used as carrier 
molecules[98-100]. Still, the hunt for an effective delivery system continues for targeted 
delivery.

CONCLUSION
Existing diagnostic methods are inadequate for the early detection of HCC. Similarly, 
implemented treatment modalities are unsuccessful in improving the survival of 
patients and result in cytotoxicity in normal cells. The use of credible biomarkers in the 
prognosis of HCC is essential to reduce mortality due to the disease. In the future, 
clinicians should focus on patient stratification based on molecular signatures and 
decide the treatment strategy to achieve maximum therapy outcome. The development 
of a combinatorial regime consisting of epi-drugs is urgently needed to treat the tumor 
mass.
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Abstract
Non-alcoholic fatty liver disease (NAFLD) is a heterogeneous condition with a 
wide spectrum of clinical presentations and natural history and disease severity. 
There is also substantial inter-individual variation and variable response to a 
different therapy. This heterogeneity of NAFLD is in turn influenced by various 
factors primarily demographic/dietary factors, metabolic status, gut microbiome, 
genetic predisposition together with epigenetic factors. The differential impact of 
these factors over a variable period of time influences the clinical phenotype and 
natural history. Failure to address heterogeneity partly explains the sub-optimal 
response to current and emerging therapies for fatty liver disease. Consequently, 
leading experts across the globe have recently suggested a change in nomen-
clature of NAFLD to metabolic-associated fatty liver disease (MAFLD) which can 
better reflect current knowledge of heterogeneity and does not exclude conco-
mitant factors for fatty liver disease (e.g. alcohol, viral hepatitis, etc.). Precise 
identification of disease phenotypes is likely to facilitate clinical trial recruitment 
and expedite translational research for the development of novel and effective 
therapies for NAFLD/MAFLD.
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Core Tip: It is being increasingly recognized that non-alcoholic fatty liver disease 
(NAFLD) is a heterogenous condition with wide variability in clinical presentation and 
natural history. This heterogeneity is driven by genetic predisposition, metabolic 
factors, gut microbiota, diet and demographic factors. The suboptimal response to 
current pharmacotherapy in NAFLD highlights the failure to recognize this hetero-
geneity. Experts believe that updating NAFLD nomenclature is the first step towards 
this. Identification of disease subtypes can help development of preclinical model 
evaluating novel targets. This would in turn help clinical trial design by comparing and 
pooling results and thus improve disease outcomes.

Citation: Pal P, Palui R, Ray S. Heterogeneity of non-alcoholic fatty liver disease: Implications 
for clinical practice and research activity. World J Hepatol 2021; 13(11): 1584-1610
URL: https://www.wjgnet.com/1948-5182/full/v13/i11/1584.htm
DOI: https://dx.doi.org/10.4254/wjh.v13.i11.1584

INTRODUCTION
Non-alcoholic fatty liver disease (NAFLD) is increasing in both developed and 
developing countries, in parallel with the global obesity epidemic. Nevertheless, much 
is still unknown on the NAFLD phenotype. Moreover, since the term NAFLD was 
coined by Ludwig et al[1] in 1980, the nomenclature and diagnostic criteria have not 
been revisited. With a deeper understanding of the natural history of NAFLD, it has 
become gradually more obvious that this term is inherently complicated, chiefly due to 
the heterogeneity of NAFLD and principal driving factors between individuals. This 
heterogeneity in clinical presentation and the course of NAFLD is probably influenced 
by several factors which include age, gender, ethnicity, diet, alcohol consumption, 
genetic predisposition, microbiota, and metabolic milieu[2].The combined effect of the 
dynamic and complex systems-level interactions of these drivers is probably reflected 
in the phenotypic manifestations of NAFLD. Therefore, comprehensive phenotyping 
will translate into individual-level risk prediction and preventive strategies, and 
improvements in the design of clinical trials[2]. The heterogeneity of NAFLD and the 
presence of multiple pathophysiological pathways intrinsic to its progression suggest 
that the nomenclature should be revised and NAFLD may be classified in a way that 
takes into account the various underlying processes[3]. However, a change of name of 
any disease has considerable implications for both clinical practice as well as public 
health policy. Based on these evolving paradigms, this review will explore the factors 
contributing to NAFLD heterogeneity and its clinical and therapeutic implications. 
Besides, proposed changes in the current nomenclature and definition of NAFLD are 
discussed along with future perspectives.

HETEROGENEITY OF NAFLD: NEED FOR A NEW TERMINOLOGY
NAFLD represents an umbrella term with considerable heterogeneity among its 
subtypes. This is evidenced by variable disease severity and progression (disease 
phenotype) among patients with NAFLD[4]. The disease phenotype in NAFLD is in 
turn influenced by primary drivers of the disease and dynamic interaction between 
various disease modifiers (age, sex, ethnicity, co-existing disease, diet, alcohol 
consumption, smoking, hormonal status, genetic and epigenetic factors, gut micro-
biota, and metabolic risk factors)[2]. Although steatosis is highly prevalent, 
progression to steatohepatitis or other liver-related complications like cirrhosis and 
hepatocellular carcinoma (HCC) is highly unpredictable. The rate of fibrosis 
progression can also vary widely among patients. Moreover, there is growing evidence 
that HCC can develop in NAFLD without cirrhosis[5].

The suboptimal response rates of current investigational therapies (20%-40%) reflect 
a lack of consideration of heterogeneity of NAFLD[2,6]. Hence, a structured dissection 
of the key pathogenetic pathway and precise disease sub-typing based on genetic 
background, metabolic profile and anthropometric parameters shall help predict 
individualized risk and provide effective treatment[2]. The term NAFLD was coined in 
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1980 by Ludwig et al[1] and it was used to describe fatty liver disease without a history 
of significant alcohol intake. Although the prevalence of NAFLD has grown to 
epidemic proportions involving one-fourth of the population, the nomenclature and 
the diagnostic criteria have not been reevaluated[2]. The term NAFLD does not 
consider the heterogeneity of the disease and hence does not reflect current 
knowledge.

Based on recent epidemiological studies, it has been increasingly recognized that 
there is no cut-off for safe drinking in so-called NAFLD as there is frequent co-
existence of at-risk drinking and dysmetabolism[7]. Moreover, accurate assessment of 
alcohol intake is often challenging especially in subpopulations like children and 
women due to cultural interdiction[8]. To further confuse the issue, there is evidence 
that an altered gut microbiome can lead to excess production of endogenous alcohol in 
non-drinkers[9]. Hence, the dichotomy between alcoholic liver disease and NAFLD 
should be abandoned. Until now, diagnosis of NAFLD was based on the exclusion of 
excess alcohol intake, concomitant viral hepatitis/other liver diseases, and secondary 
cause of fatty liver (e.g. drug-induced). With the increasing prevalence of NAFLD and 
the high prevalence of other liver diseases such as viral hepatitis particularly in 
countries like Middle East and north Africa, dual causes of liver disease should be 
considered[8]. The current definition of metabolic-associated fatty liver disease 
(MAFLD) does not require the exclusion of the above, considering the co-existence of 
different pathology for fatty liver disease (Figure 1). However, it requires the presence 
of overweight/obesity, type 2 diabetes mellitus (T2DM), or 2 metabolic risk factors. 
The term “non” in “nonalcoholic fatty liver disease” trivializes a disease that has major 
hepatic, cardiovascular (CV), and oncological sequelae[2,10]. Due to the “non”-rubric, 
it could be misinterpreted as something not serious and even encourage alcohol 
consumption. The term “alcohol” makes the nomenclature derogatory and thus 
stigmatizing the condition blaming the patient for their condition[2]. This has 
profound implications on recognition of the disease as a major public health problem 
and resource allocation by regulatory authorities to intercept this potentially deadly 
disease.

Due to the aforementioned reasons, the term MAFLD was proposed by Lonardo 
and Carulli 16 years back[11]. However, NAFLD nomenclature remained unchanged 
until now. For the same reasons, Polyzos and Mantzoros[12] have proposed the term 
dysmetabolism associated fatty liver disease (DAFLD). Recently two consensus 
guidelines have proposed a change in the nomenclature of NAFLD to MAFLD and 
have redefined the condition based on the presence of hepatic steatosis and metabolic 
risk factors[2,13] (Figure 2). The impact of such change was reflected in the identi-
fication of patients with hepatic steatosis with a higher risk of disease progression in a 
cross-sectional study of more than 13000 patients based on data from the third 
National Health and Nutrition Examination Surveys of the United States[14]. Another 
study from Hong Kong has shown that MAFLD definition reduces the incidence of 
fatty liver disease by 25% [more so in patients with low body mass index (BMI)], while 
the prevalence remains unchanged. Patients with a fatty liver disease not fulfilling the 
criteria of MAFLD were unlikely to have significant liver disease.

However, the future implications of change in the nomenclature are still unknown. 
Hence, Younossi et al[15], on behalf of the American Association for the Study of Liver 
Disease[15] have cautioned about the impact of premature change in terminology to 
MAFLD. While there are still existing challenges in widespread disease awareness, 
identification of treatment endpoints, and biomarkers for risk stratification, changing 
terminology may negatively impact the field[15]. Moreover, international consensus 
involving all scientific societies, regulatory bodies, pharmacological industry, and 
patient organizations is required before a change in terminology. No matter what is 
the terminology for fatty liver disease, it is clear that it is a heterogeneous disease with 
varying manifestations.

NAFLD AND CARDIOVASCULAR RISK 
Patients with NAFLD are more likely to have morbidity and mortality from 
cardiovascular disease (CVD). Currently proposed term MAFLD is closely linked to 
DM, dyslipidemia, hypertension, systemic inflammation which are known to increase 
CVD risk. A higher risk of CVD and CVD associated events have been noted in 
epidemiological and observational studies in NAFLD[16,17]. NAFLD not only 
damages the coronary arteries (atherosclerosis and ischemic heart disease), but also the 
other cardiac structures like myocardium (heart failure), cardiac valves (aortic stenosis, 



Pal P et al. Nonalcoholic fatty liver disease heterogeneity

WJH https://www.wjgnet.com 1587 November 27, 2021 Volume 13 Issue 11

Figure 1 Proposed diagnostic criteria of metabolic associated fatty liver disease and key differences with non-alcoholic fatty liver 
disease definition. 1Metabolic risk factors include (1) Waist circumference ≥ 102/88 cm in Caucasian men and women (≥ 90/80 cm for Asian men and women); 
(2) Blood pressure ≥ 130/85 mmHg or on drug treatment; (3) Triglyceride levels ≥ 150 mg/dL (≥ 1.70 mmol/L) or on drug treatment; (4) Plasma high density 
lipoprotein [HDL < 40 mg/dL (< 1.0 mmol/L) for men and < 50 mg/dL (< 1.3 mmol/L)] for women or on drug treatment; (5) Pre-diabetes [i.e., fasting glucose levels 100 
to 125 mg/dL (5.6 to 6.9 mmol/L), or 2-h post-load glucose levels 140 to 199 mg/dL (7.8 to 11.0 mmoL) or HbA1c 5.7% to 6.4% (39 to 47 mmol/moL)]; (6) 
Homeostasis model assessment of insulin resistance score ≥ 2.5; and (7) Plasma high-sensitivity C-reactive protein level > 2 mg/L. BMI: Body mass index; MAFLD: 
Metabolic-associated fatty liver disease; NAFLD: Non-alcoholic fatty liver disease.

mitral annular calcification), and conduction system (atrial fibrillation, conduction 
defects)[18]. CV disease in NAFLD can be subclinical (coronary and courted athero-
sclerosis) or clinical (myocardial infarction, stroke). Pathophysiological factors include 
dyslipidemia, oxidative stress, systemic inflammation, endothelial dysfunction, and a 
pro-thrombotic state leading to structural and functional cardiac changes including 
arterial stiffness, atherogenic plaque formation, and coronary calcification[19]. Among 
genetic factors related to NAFLD, MBOAT7 may promote venous thromboembolism 
whereas Transmembrane 6 superfamily 2 (TM6SF2) appears to be protective and 
PNPLA3 seems not to be associated with the risk of CVD. Other pathogenetic 
mechanisms of NAFLD such as environmental factors (diet, obesity, etc.), gut micro-
biota (through the gut liver axis and altered intestinal permeability), and epigenetic 
alterations also influence the CV risk[16].

Lifestyle modification and weight loss help in primary and secondary prevention of 
CVD in NAFLD. Aspirin and statins may be considered for primary and secondary 
prevention in individuals with NAFLD who are at high risk of CVD. Newer anti-
diabetic medications such as SGLT2 inhibitors and GLP-1 receptor agonists are known 
to reduce CV events in T2DM and may be useful in this regard. Additional data are 
required on CV risk modification by farnesoid X receptor (FXR) agonists such as 
obeticholic acid. Future studies will likely address the predictive factors responsible 
for elevated CVD risk in NAFLD as there is a lack of targeted pharmacological 
therapy. Hence, CV endpoints should be included in clinical trials in NAFLD/MAFLD
[16,19].
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Figure 2 Key drivers of metabolic-associated fatty liver disease, resulting in disease heterogeneity and its clinical implications. Genetic 
predisposition, metabolic health, and environmental factors influence molecular and phenotypical heterogeneity of metabolic-associated fatty liver disease leading to 
various disease subtypes, variable disease progression, and response to therapy. MAFLD: Metabolic-associated fatty liver disease; NAFLD: Non-alcoholic fatty liver 
disease.

FACTORS FOR HETEROGENEITY
Age
The prevalence, risk of hepatic/extra-hepatic complications, and all-cause mortality of 
NAFLD increase with age. This is due to multiple factors like reduction in hepatic 
blood flow/volume, decrease in bile acid synthesis, altered cholesterol metabolism, 
increase in oxidative respiration due to decrease in mitochondria numbers, cellular 
aging, increased exposure to disease drivers over a prolonged period, and progressive 
increase in insulin resistance (IR) due to change in body composition (sarcopenia, 
abdominal and visceral adiposity with ectopic fat deposition)[20-23].

Gender and menopause effect
The prevalence of NAFLD and degree of hepatic fibrosis are lower in pre-menopausal 
women compared to men and postmenopausal women with better overall survival 
rates in the former[24]. Changes in body fat distribution (abdominal obesity after 
menopause), differences in metabolic risk factors, sexual dimorphism of key metabolic 
pathways (lipid metabolism, insulin signaling, and inflammation), and differences in 
hepatic gene expression of various metabolic pathways (e.g. FXR, liver X receptor) are 
likely mechanisms for the difference[25-27]. The prevalence of NAFLD and fibrosis 
risk is lower in postmenopausal women on hormone replacement therapy (HRT) 
compared to those who are not on HRT[28]. The extent of hepatic fibrosis increases 
with the prolonged duration of estrogen deficiency in postmenopausal women[29]. 
Hence, risk stratification in NAFLD should be based on gender and menopausal 
status.

Ethnicity
The prevalence of NAFLD and risk of nonalcoholic steatohepatitis (NASH) are seen in 
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decreasing order of frequency in Hispanics, non-Hispanic whites, and African 
Americans[30]. It is important to note that the risk of fibrosis did not vary based on 
ethnicity. The plausible explanations for such racial disparity are differences in genetic 
predisposition, metabolic traits (IR and body fat distribution), environmental factors 
(dietary habits like increased carbohydrate consumption, physical inactivity, and 
cultural factors). For example, the frequency of risk alleles of Patatin-like phospho-
lipase domain-containing protein 3 (PNPLA3) gene in Hispanics, non-Hispanic whites, 
and African-Americans are 49%, 23%, and 17% respectively[31]. Importantly, Asian 
individuals tend to accumulate liver fat at lower BMI, have a higher degree of inflam-
mation, and have a possibly higher risk of fibrosis compared to other ethnicities[32,
33]. PNPLA3 rs738409 risk allele frequency is more common in East Asians compared 
to Caucasians[34].

Diet and gut microbiota
It is well known that a Western diet with high fat and fruit content leads to a higher 
incidence of NAFLD. On the other hand, the adoption of the Mediterranean diet is 
associated with decreased liver fat content and CV risk[35]. Gut microbial composition 
changes rapidly according to changing dietary patterns. The effect of diet in fatty liver 
disease is difficult to differentiate from those due to diet-induced change in gut 
microbial composition[36]. Gut microbiome composition can identify individuals with 
a higher risk of NAFLD progression[37]. The gut microbiome and its metabolites 
influence bile acid metabolism, which in turn influences lipid, choline, and glucose 
metabolism. Alteration in gut microbial composition and intestinal permeability in 
NAFLD leads to the circulation of bacterial metabolites such as lipopolysaccharide 
which is in turn sensed by hepatic Toll-like receptors which induce activation of 
hepatic pro-inflammatory cells and stellate cells leading to inflammation and fibrosis 
progression[38,39]. Apart from dietary factors, genetic makeup and ethnicity influence 
gut microbiome composition[40,41].

Metabolic health
Obese vs lean NASH: Although intra-hepatic fat content is closely influenced by 
obesity, 45% of the obese are said to be metabolically healthy as they don’t have any 
components of metabolic syndrome (MetS)[42]. It is not clear whether these 
individuals have a lower risk of CV complications compared to normal-weight, 
metabolically healthy individuals[43]. On the other hand, 30% of normal-weight 
individuals have MetS and higher cardiometabolic risk. This is because the distri-
bution and nature of fat are more important than the amount of fat in predicting 
metabolic risk[2]. Visceral fat is associated with higher metabolic risk compared to 
peripheral and subcutaneous fat. Fat distribution is influenced by ethnicity (higher 
visceral adiposity in Asians) and genetic makeup[44]. 5%-45% of NAFLD (20% among 
Europeans) are also lean NAFLD as defined by the presence of hepatic steatosis with 
normal BMI in the absence of significant alcohol intake[45]. Lean NAFLD has distinct 
genetic predisposition, metabolic and microbial profiles. Increased prevalence of 
TM6SF2 risk allele, increased bile acids/Farnesoid receptor activity due to intact 
metabolic adaptation, and gut microbial profile which facilitates liver fat generation 
have been seen in lean NAFLD. Individuals with lean NALFD have a better metabolic 
profile compared to their obese counterparts[46]. The data on the natural history of 
disease progression in lean NAFLD have shown variable outcomes. Distinct pathways 
of liver fat accumulation are being recognized. In type 1/metabolic NAFLD, calorie 
excess due to dietary intake and physical inactivity leads to increased hepatic fatty 
acid supply by peripheral lipolysis and hepatic lipogenesis[4]. This is associated with 
IR and other components of MetS thus leading to increased cardiometabolic risk. The 
accumulated liver fat is composed of monounsaturated triacylglycerols and free fatty 
acids enriched with ceramides. In type 2/PLNPLA3 NAFLD (with rs738409 risk 
allele), there is increased intra-hepatic lipogenesis and impaired lipolysis leading to 
steatosis[47]. The fat composition is predominantly polyunsaturated triacylglycerols. 
This is not associated with IR and adverse cardiometabolic outcomes although the risk 
of NASH and HCC is increased. Increasingly various metabolomic signatures leading 
to hepatic steatosis are being recognized based on RNA-sequencing analysis study
[48]. Identification of the key pathway for hepatic steatosis by genetic and molecular 
profiling may thus help in predicting the risk of progression, cardio-metabolic, and 
treatment outcomes.

Genetics and epigenetics
Among the multiple variant genes associated with NAFLD identified on genome-wide 
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association studies, few common variants (PNPLA3, TM6SF2, GCKR, MBOAT7, 
HSD17B13) are worth mentioning which have divergent metabolic effects[49]. 
PNPLA3 and TM6SF2 variants increase the risk of NAFLD and advanced fibrosis[50,
51]. PLPLA3, TM6SF2, and GCKR variants are associated with T2DM[52]. MBOAT7 
and HSD17B13 variants do not affect serum lipid or glucose levels and do not increase 
cardiometabolic risk[53,54]. These variants explain only a minority of NAFLD. That is 
why it is important to consider the effect of other variants, gene-environment 
interactions (described with the PNPLA3 gene), and epigenetics. Epigenetic alterations 
of key regulators of metabolic, inflammatory, and fibrotic pathways represent a bridge 
between variant genes and the environment in NAFLD. Micro-RNAs such as miRNA-
122, miRNA-192, and miRNA-34a are unregulated in NAFLD[55]. miRNA-34A also 
correlates with disease activity. The role of long non-coding RNAs (lncRNAs) in 
NAFLD is limited requiring further elucidation[56]. Reversible alteration of methy-
lation signatures of key regulatory pathways is seen in NAFLD which reverses 
following weight reduction surgery[57]. Methylation signatures can help identify 
patients with advanced fibrosis [e.g. hyper-methylation of peroxisome proliferator-
activated receptor gamma (PPARγ)][58]. Epigenetic alterations can alter the expression 
of PNPLA3 explaining the gene-environment link[59]. There is increasing evidence 
that maternal high fat diet leads to epigenetic alterations in fetal liver and increasing 
the possibility of NAFLD in adolescence in the offspring[60,61]. Higher maternal BMI 
is associated with hypermethylation of the PPARγ coactivator 1(PGC1) gene which 
regulates energy metabolism in the newborn[62].

Familial risk
Twin studies, prospective and retrospective family studies have shown heritable 
factors in hepatic steatosis and fibrosis. In a prospective study, the risk of advanced 
fibrosis in first-degree relatives of patients with NAFLD-cirrhosis was 18% which is 
significantly higher than the general population risk[63,64]. Hence family history also 
should be considered while doing risk stratification of NAFLD patients.

Alcohol intake
The effect of alcohol use in fatty liver disease has a dose-dependent response which 
synergistically increases in the presence of metabolic risk factors[65]. This is contrary 
to the earlier belief that alcohol consumption has a “J” shaped effect on fatty liver 
disease progression with a beneficial effect on light to moderate use and deleterious 
effect on excessive use[66]. Hence, it is being increasingly revealed that there is no safe 
cutoff of alcohol consumption in fatty liver disease.

CLINICAL IMPLICATIONS OF NAFLD HETEROGENEITY
NAFLD sub-classification
The heterogeneity in NAFLD due to its multifactorial etiology, pathophysiological 
diversity, genetic polymorphisms, and on the other side, the ultimate unifying fate of 
steatosis and its progression, made NAFLD more like an umbrella disease with 
multiple subtypes. The proposed change of nomenclature as MAFLD, will not truly 
represent the full spectrum of the disease pathophysiology and thus this over-
generalized new nomenclature has been criticized. Singh et al[3] had proposed the 
‘MEGA-D’ classification representing the ‘Mega-diversity’ of the NAFLD. They had 
proposed five sub-types of the disease, each representing a major pathophysiological 
hypothesis behind each subtype. The subtypes are as follows: M-Metabolic syndrome, 
E-Environmental stressor, G-Genetic Factor, A-Bile Acid dysregulation, and D-Gut 
dysbiosis related NAFLD. Moreover, it is also suggested to consider fatty liver disease 
as an umbrella term to include the whole spectrum of cryptogenic to classic to alcohol-
associated fatty liver disease. Till any consensus-driven widely accepted terminology 
and sub-classification of NAFLD comes into place, it is prudent to consider fatty liver 
disease as common outcome pathology with different etiological triggers.

Alteration of lipid metabolism is one of the major pathophysiological factors behind 
the development and progression of NAFLD. Lipidomics based sub-classification of 
patients with NAFLD had been proposed which depends upon the signature patterns 
of alteration in the fatty acid homeostasis pathway[67]. ‘M-subtype’ is characterized by 
increased hepatic fatty acid uptake and reduced hepatic glutathione and S-adenosine 
methionine (SAM) content. On the other hand, the ‘non-M subtype’ occurs due to 
increased de novo hepatic lipogenesis and is characterized by normal hepatic SAM 
levels. Gut microbiota composition-based sub-classification of NAFLD had also been 
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proposed. However, till now no studies had been able to reveal any signature gut 
microbiota profile suitable for phenotypical classification of NAFLD patients.

Automated algorithm-driven cluster sub-classification, based on demographic 
factors (age, gender, ethnicity), clinical and laboratory findings[68], had been 
evaluated in a cohort of 13290 NAFLD patients in the United States. The whole cohort 
had been divided into 5 subtypes and evaluated for disease outcomes including 
survival rates. In subtype 1, there were mostly female Hispanics with mild metabolic 
comorbidities with minimal fibrosis, but on the other hand subtype 2 had mostly 
patients with MetS with signs of developing liver dysfunction. Subtype 3 was a mostly 
young and healthy population with mild disease and minimal abnormalities. Subtype 
4 patients were predominantly elderly male Caucasians who had more severe disease 
at baseline with features of fibrosis and also showed features of progression to 
cirrhosis stage. Subtype 5 patients were the oldest with more severe cirrhosis and 
associated with significant co-morbidities. Among the disease outcome, subtype 5 was 
at the highest risk mortality and subtype 4 had the highest risk of cirrhosis and HCC. 
Although this type of cluster-based subtyping of the disease needs to be validated 
clinically it can help to identify relevant disease subtypes in future studies.

In a gene expression study by Hoang et al[48], the disease progression score of 
individual genes had been evaluated and it showed a strong correlation with 
histological manifestations of disease severity. In this study, the authors proposed 
NAS (gene-level NAFLD activity score) and gene-level fibrosis stage (gFib) scores. 
These score-based subtypes of NAFLD not only can assess the risk of disease 
progression but also can predict the response to therapy. This molecular-based cluster 
classification either can be the forerunner of different clinical subtypes of NAFLD or 
can represent different phases of a dynamic spectrum of the disease.

Though genetic, clinical cluster, and pathophysiological based sub-classification of 
NAFLD had been proposed as discussed above, none of them are universally 
accepted. Moreover, detailed literature is mainly limited to disease phenotypes 
depending upon demographic factors, obesity, and clinical outcomes.

Inter-individual variation
Demography (Asian vs Western countries): The prevalence of NAFLD is now 
showing an increasing trend in Asian countries. A meta-analysis done in 2016[69] 
showed a higher prevalence in Asia (27.4%) than North America (24%) or European 
Union (23.7%). In a recent meta-analysis[70], the prevalence in Asia was found to have 
increased further (29.62%) and a secular trend of the rising prevalence in the last few 
decades had been reported. The increase in prevalence in Asia is likely due to an 
increase in obesity, sedentary lifestyle, changing westernized eating habits, and 
various socio-economic factors[71]. The prevalence in the rural area was significantly 
lower than in the urban areas, suggesting the detrimental effect of urbanization on 
obesity and the consequent NAFLD[72]. In both Asian and western countries, the 
prevalence increases with age. Prevalence is higher in males as well as among elderly 
women indicating protective effects of estrogen in females in the reproductive age 
group. Apart from the increased prevalence of metabolically unhealthy obesity and 
excessive visceral obesity, alteration of gut microbiota and bile acid profiles has also 
been postulated as possible contributing factors behind the development of steatosis
[40]. Among the genetic factors, PNPLA3 polymorphism (rs738409) had been strongly 
associated with hepatic steatosis in both western and eastern studies[31]. However, a 
higher prevalence of PNPLA3 risk allele had been reported in Asia than in African or 
European countries[73,74]. Genetic polymorphisms of other genes like TM6SF2, 
AGTR1, HSD17B13, and GCKR genes had also been linked with increased suscept-
ibility of NAFLD in Asian subjects[54,75-77]. Sarcopenia and hypovitaminosis D also 
was associated with NAFLD development[78,79]. One of the major differences in 
Asian countries from their western counterpart is the increased prevalence of lean 
NAFLD (discussed later) in the former. Though the overall prevalence of NAFLD is 
almost similar in eastern and western countries, however, the rate of complications is 
still lesser in Asian countries. In a retrospective study from Japan with a median 
follow-up of 5.8 years, only 0.25% of patients developed HCC with an annual 
incidence of 0.043%[80]. In contrast to western countries, NAFLD still contributes only 
to a minor proportion of liver-related complications requiring liver transplantation in 
Asia. In a Japanese nationwide survey, only 2.1% of patients with cirrhosis had NASH 
and almost two-thirds of the patients had viral hepatitis[81]. The indolent course of 
NAFLD in Asian countries is likely due to relatively short disease duration in the 
majority of the patients in this part of the world. As there is a considerable lag in 
economic growth and consequent obesity epidemic in Asian countries, the rise in 
NAFLD and its complications are likely to follow the western trend in the coming 
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years. Moreover, the relatively higher chance of co-existence of viral hepatitis and 
NAFLD in Asian countries increases the risk of hepatic complications further[82].

Ethnicity: Irrespective of ethnic variability, a trend of overall increased prevalence of 
NAFLD had been seen globally. In the world, Middle East had the highest prevalence 
of NAFLD, and in Africa; it is the lowest[69]. Studies from the United States reported 
that Hispanics had shown the highest risk of NAFLD and on the other hand, the risk is 
much less in the Alaskan Native. Among Asian ethnicity, the prevalence is highest 
among Indonesian and lowest in Japanese[70]. Interestingly, people of South Asian 
origin who are living in the United Kingdom, also showed higher risk[83]. In a recent 
meta-analysis, which evaluated ethnic heterogeneity of NAFLD in the United States, 
both higher overall prevalence of NAFLD and risk of progression to NASH had been 
reported in Hispanics and the risks were lowest among Blacks[30]. Although there was 
no significant difference in patients with fibrosis among different ethnicities. The 
reasons behind the ethnic variation are multifactorial. A significantly high risk of 
NAFLD among American Japanese than the native Japanese suggests the impact of 
socio-economic development and differences in lifestyles in the pathogenesis[70]. 
Specific western dietary patterns in different ethnicities, like consumption of red meat 
and hydrogenated fat, had also been associated with an increased risk of fibrosis[84]. 
Intake of saturated fatty acids increases and on the other hand, consumption of omega 
3 fatty acid-rich food reduces the risk of steatosis. Genetic factors can explain the 
heterogeneity of NAFLD across different ethnicities. Among genetic variants of the 
PNPLA3 gene, rs738409 increases the risk of NAFLD in Hispanics and Southeast 
Asians[85]. On the other hand, the increased prevalence of protective polymorphism 
of the same PNPLA3 gene (rs6006460) can explain the reduced risk of NAFLD among 
African Americans[31]. The rs738409 variant had been also associated with an 
increased risk of progression to NASH and hepatic fibrosis[86,87]. However, in a study 
from Malaysia, though the frequency of PNPLA3 risk allele was higher among Chinese 
individuals but the prevalence of NAFLD was much less in them in comparison to 
Malay and Indian participants[87]. This paradox can be explained by the involvement 
of multiple candidate genes in disease pathophysiology among different ethnicities. 
With the advent of Genome Wise Association studies, the role of predisposing 
polymorphisms of other candidate genes like TM6SF2 and GCKR gene had been 
explored further. The rs58542926 variants of the TM6SF2 gene were significantly 
associated with intra-hepatic fat (triglyceride) accumulation in White and African-
American but not among Hispanic individuals[88]. Different polymorphisms in the 
AGTR1 gene were protective among Indians but not in Chinese and Malay subjects
[75]. Recently, polygenic gene scores had been developed to evaluate the cumulative 
effects of multiple candidate genes in the development and progression of NAFLD
[89]. Further studies are needed in the future to explore the complex interaction of 
different genetic polymorphisms which can explain disease heterogeneity across 
different ethnic populations.

Age (Children and adolescents): With the increasing prevalence of pediatric obesity, 
the prevalence of NAFLD in children and adolescents is ever rising. The pooled 
prevalence of pediatric NAFLD in general population and obesity clinic were 7.6% 
(95%CI: 5.5%-10.3%) and 34.2% (95%CI: 27.8%-41.2%) respectively[90]. The factors 
which can influence the intrauterine metabolic milieu of the developing fetus, like 
maternal obesity and diabetes, had been postulated to increase the future risk of 
NAFLD[91,92]. Increased consumption of fructose-rich beverages, processed food, 
saturated fat along with decreased intake of dietary fibers (westernized dietary habits) 
had been strongly associated with the development of NAFLD in children[93]. On the 
other hand, breastfeeding was protective against the development of NAFLD[94]. The 
genes which had been shown to increase the risk of pediatric NAFLD are similar to the 
adults. Genetic variants ofPNPLA3 (rs738409), TM6SF2 (rs58542926), and GCKR gene 
had been shown to increase the susceptibility of development of NAFLD in pediatric 
patients[31,88]. Though histological diagnosis of NAFLD remains ideal, diagnosis by 
imaging (ultrasound/MRI) is the most practical one in the pediatric population. As the 
prevalence of obesity in children is ever-increasing, the chance of co-existence of other 
secondary causes of hepatic steatosis should also be carefully evaluated before 
confirming the diagnosis of NAFLD. Histological pattern in pediatric NAFLD (peri-
portal distribution-Type 2 NASH) differs from that of their adult counter-part (peri-
central distribution-Type 1 NASH)[95]. Both fibrosis and steatosis are mainly present 
in the periportal region in type 2 NASH and are seen more in younger children. 
Moreover, the classical ‘ballooning’ change is also seen less frequently in children. On 
the other hand, type 1 NASH of the adult pattern can be seen in the older adolescent 
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age group[96]. There is a paucity of longitudinal studies evaluating the natural history 
of pediatric NAFLD. Around 10%-25% of patients had advanced fibrosis and almost 
half of the patients had NASH at the time of diagnosis[97]. Though the incidence of 
HCC in the pediatric age group is extremely rare, a large number of pediatric patients 
with NAFLD are at increased risk of developing HCC in early adulthood. Weight loss 
and lifestyle changes were effective in the reversal of steatosis in pediatric patients[98].

BMI (lean/non-obese NAFLD): Lean and non-obese NAFLD is defined as NAFLD in a 
person with BMI < 25 kg/m2 (< 23 for Asian subjects) and < 30 kg/m2 (< 25 for Asian 
subjects) respectively. In a meta-analysis that included 93 studies from 24 countries, 
the prevalence of lean and non-obese NAFLD in the general population was reported 
as 5.1% and 12.1% respectively[99]. Globally, the prevalence of non-obese NAFLD 
among the whole NAFLD group was 40% and in countries like India, it is as high as 
47%, indicating that a large proportion of fatty liver disease is now developing in the 
non-obese population. Though non-obese NAFLD initially was more common in 
Asian countries, now almost similar prevalence of NAFLD is being reported from the 
western part of the world (United States 43.2%). Globally the prevalence of lean/non-
obese NAFLD is showing an increasing trend over the last 3 decades[100]. Though Shi 
et al[101] had reported a lower prevalence of hypertension, hyperuricemia, and fasting 
blood glucose in lean/non-obese NAFLD patients compared to obese NAFLD, these 
lean patients are not necessarily metabolically healthy. Rather lean NAFLD patients 
are more likely to have visceral obesity, metabolic syndrome, dyslipidemia, 
hypertension, and DM as co-morbidities than the lean controls[101]. The 
pathophysiological basis of the development of NAFLD in lean/non-obese individuals 
is complex and multi-factorial. Increased prevalence of the PNPLA3 G allele had been 
found in lean NAFLD patients[102]. Other genetic factors like TM6SF2 (T)[46], 
cholesteryl ester transfer protein, and interferon lambda 3 (IFNL3)/IFNL4(C) had also 
been found to increase the risk of lean/non-obese NAFLD[103,104]. On the other 
hand, possible roles of distinct gut microbiota, bile acid profile[46,105], increased 
lysine, tyrosine, lysophosphatidylcholines, and phosphatidylcholines, had also been 
implicated in the development of NAFLD among lean individuals[106]. The 
progression of NAFLD in the lean population can be conceptualized as a state of 
gradual attenuation of metabolic adaptation. Pathophysiologically, this can be divided 
into 3 stages- stage of susceptibility, stage of adaptation, and stage of failure[107]. 
Studies evaluating the true natural history of lean NAFLD are sparse in the literature. 
In the largest meta-analysis Ye et al[99] reported that among lean/non-obese NAFLD 
patients, NASH and fibrosis (> stage 2) were present in 39% and 29% of patients 
respectively, which was lesser than the prevalence among obese NAFLD population. 
However, liver-related mortality was reported as almost twice in lean/non-obese 
NAFLD patients than in the obese NAFLD group. In another study with a mean 
longitudinal follow-up of almost 20 years, lean NAFLD patients did not show any 
significantly increased risk of overall mortality but the risk of progression to severe 
hepatic diseases was significantly higher (HR 2.69) than the obese NAFLD population
[108]. Like obese NAFLD, lifestyle modification in the form of dietary modifications 
and increased physical activity remains the main therapeutic approach in lean NAFLD 
patients[109].

Variable natural history
Classic and dynamic model: Previously, the natural history of NAFLD had been 
conceptualized as a disease spectrum that follows a linear model of disease 
progression. This classic model hypothesized that there is a gradual progression of the 
disease from NAFL to NASH to cirrhosis and HCC. However, this progressive 
worsening of the disease does not occur in all of the patients of NAFLD and significant 
heterogeneity in the natural history of NAFLD had been observed. Recent literature 
had identified that not all the patients with NAFLD follow this ‘classic linear model’ of 
natural history. A study by Pais et al[110], which systemically evaluated serial liver 
biopsy in NAFLD patients, had shown that 60% of NAFL patients had progressed to 
NASH and around 25% of patients of NAFL had directly progressed to the fibrotic 
stage. Various factors like DM, obesity, old age, and a higher degree of baseline 
abnormality were identified as possible risk factors for disease progression. In another 
longitudinal follow-up study by McPherson et al[111], no significant difference in the 
rate of fibrosis progression between NAFL and NASH patients was found. In an 
excellent systematic review by Singh et al[112], serial liver biopsy data of 411 biopsy-
proven NAFLD from 11 cohort studies were analyzed. They had also re-emphasized 
that both NAFL and NASH can progress to the fibrotic stage. However, it takes much 
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longer (14 years) time to progress one fibrosis stage in NAFL than in NASH (7 years). 
The annual fibrosis progression rate was slower in NAFL (0.07 stage) than in NASH 
(0.14 stage). Moreover, NAFL and NASH had a comparable rate of CV mortality (OR 
0.9) though all-cause and liver-related mortality are higher in NASH[113]. To 
summarize, NAFL can progress both to the NASH and fibrosis stage directly and on 
the other hand, NASH can also regress to NAFL or progress to the fibrotic stage. Thus, 
in the ‘dynamic model’ of NAFLD, it has been conceptualized that in early NAFLD, 
there is dynamic cycling between NAFL and NASH[114] (Figure 3).

Slow and rapid progressor: In the same meta-analysis discussed above, Singh et al
[112] also had identified significant heterogeneity among disease progression in 
NAFLD. They reported 2 subtypes of NAFLD patients according to fibrosis 
progression rate- rapid and slow progressor. The rapid progressors were around 20% 
of the NAFLD group who progressed rapidly from baseline (stage 0 fibrosis) to 
advanced (stage 3 or 4 fibrosis). On the other hand, the majority of NAFLD patients 
are slow progressors who only progressed 1 or 2 stage fibrosis in a similar time frame. 
Older age, low ASL: Alanine aminotransferase (ALT) ratio, co-morbidities like 
diabetes mellitus or hypertension, and genetic polymorphisms are probable risk 
factors for rapid progressors[103,115] (Figure 3).

HCC: With the progressive increase in the prevalence of NAFLD worldwide, the risk 
of HCC and liver-related mortality are likely to rise as a consequence. Viral hepatitis-
related HCC usually occurs in the background of the advanced stage of cirrhosis. 
Though classically HCC usually occurs in the advanced stage of cirrhosis in the 
NAFLD spectrum, this is not true for all the cases of NAFLD-related HCC[116]. Rather 
one of the most common causes of chronic liver disease-related HCC without evidence 
of cirrhosis is NAFLD[5]. Leung et al[117] had reported 15% percent of NAFLD-related 
HCC as non-cirrhotic and they usually had larger hepatic tumor diameter at diagnosis. 
In a retrospective analysis, Mohamad et al[118] also reported that HCC in NAFLD 
patients without cirrhosis are likely to present in the older age group with a larger 
tumor size with a high recurrence rate in comparison to those with cirrhosis (Figure 3).

THERAPEUTIC AND RESEARCH IMPLICATIONS 
NAFLD progression and prognostication
Many factors may influence the progression of NAFLD to the more advanced stage 
but are not routinely or easily assessed in day-to-day practice (e.g., genotype, gut 
microbiome, mitochondrial function, immunological response)[119]. Consequently, we 
need to consider the natural history studies to help provide clinical, biochemical, and 
histological variables that can be utilized to decipher which patients will develop 
severe disease with worse outcomes. With regard to clinical features, a paired biopsy 
study by McPherson et al[111] underscores the impact of IR with 80% of patients with 
NAFL and progression of fibrosis developing diabetes by the time of follow-up biopsy 
compared with 25% of nonprogressors. Other studies have also shown that weight 
gain and worsening IR are associated with fibrosis progression in NAFLD[110]. Data 
for biochemical predictors are somewhat deficient. However, a study found that in 
patients with biopsy-proven NASH and compensated cirrhosis; lower levels of serum 
cholesterol, ALT, and platelets are independently associated with hepatic complic-
ations and higher aspartate aminotransferase (AST)/ALT ratio with overall mortality
[120]. In NAFLD, baseline histology can provide a good prognostic value. According 
to a systemic review and meta-analysis of paired-biopsy studies, a third of individuals 
with NAFLD will have progression of fibrosis with a mean progression rate of 0.14 
stages per annum for NASH, corresponding to one stage of fibrosis progression over a 
median of 7.1 years[112]. Nevertheless, many epidemiological studies have de-
emphasized the presence of NASH and confirmed the presence and degree of fibrosis 
as the most important histologic predictor of liver-related morbidity and mortality
[121,122].

It is now widely accepted that the severity of fibrosis is the only significant predictor 
of outcomes in NAFLD. The histological differentiation between NAFL and NASH is 
unlikely to predict fibrosis progression and carries very little prognostic value. Thus, it 
is better to consider the diagnosis of patients with advanced fibrosis (F3 and F4) 
because this stage is a predictor for hepatic and extrahepatic morbidity and mortality
[123]. This strategy identifies those with liver disease sufficient to call for specific 
interventions to prevent complications of cirrhosis and the development of HCC. 
People with NAFL or NASH with early F0–F2 don’t need to be considered as having 
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Figure 3 Natural history of non-alcoholic fatty liver disease (classic and dynamic model). HCC: Hepatocellular carcinoma; NAFL: Nonalcoholic fatty 
liver; NASH: Nonalcoholic steatohepatitis.

liver disease necessitating intervention owing to the low risk of liver-related complic-
ations. In these persons, metabolic risk factors like diabetes should be addressed to 
optimize CV outcomes, with likely benefits on liver disease[123]. As progressive 
fibrosis indicates a poor prognosis with unfavorable CV and adverse hepatic 
outcomes, the approach should now focus on the risk stratification of patients and 
identify those needing liver-specific intervention.

Non-invasive tests of hepatic fibrosis
As the severity of fibrosis is the major driver for the long-term prognosis of NAFLD 
patients, it is, therefore, critical to identify patients at higher risk of advanced fibrosis 
to optimize their management[124]. Although required to detect patients with NASH 
and early fibrosis, liver biopsy is an invasive procedure. Patient acceptability is low, 
and it is not desirable to perform liver biopsy repetitively to assess disease progression 
and response to treatment. Moreover, as only a small proportion of the patients would 
develop liver-related complications, performing non-invasive tests (NITs) as the 
primary assessment is preferable[125]. This section focuses on the confounding factors 
that can affect the performance and accuracy of NITs of liver fibrosis in patients with 
NAFLD.

Impact of confounding factors 
Non-invasive fibrosis scores are usually used to detect or exclude advanced fibrosis in 
individuals with NAFLD. A few studies purposely looked at reasons for imprecise 
prediction by these scores. In a multicentric European study in subjects with biopsy-
proven NAFLD, the AST-to-ALT ratio, NAFLD fibrosis score (NFS) and Fibrosis-4 
(FIB-4) index performed poorly for the detection of significant fibrosis in persons aged 
35 years or below[126]. The specificity of the FIB-4 index and NFS reduced to 
unacceptable levels in those aged 65 years and older in the same study. This reason is 
that age is a component of both the fibrosis scores. The performance of NITs and the 
used transient elastography (TE) liver stiffness cutoffs in different ethnic populations 
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and special subpopulations such as individuals with diabetes and obesity also need to 
be taken into account. For example, depending on the ethnicity, the diagnostic 
accuracy of the NITs may be altered. Compared to Western populations, South Asians 
develop more metabolic complications at lower body mass indices. The accuracy of the 
NFS, AST-to-platelet ratio index, FIB-4, AST/ALT ratio, and BARD score is found to be 
lower in the South Asian population in comparison with the Caucasian population
[127]. In addition, the NFS has a lower sensitivity in individuals of South Asian 
descent, as the majority had a lower BMI and were younger than Caucasian 
counterparts with a comparable disease stage, and therefore had a lower score[125]. 
Serum markers of liver fibrosis and possible confounding factors are summarized in 
Table 1.

With regards to imaging modalities that estimate liver stiffness as a potential 
surrogate of hepatic fibrosis, vibration-controlled transient elastography (VCTE) has 
been widely validated against liver histology[128] and shows correlation with clinical 
outcomes in longitudinal studies[129]. However, there are a number of factors to be 
considered while using this modality. Pathologies that increase liver stiffness can lead 
to a false-positive diagnosis of advanced fibrosis. Besides, high BMI and severe hepatic 
steatosis have been reported to increase the false positive rate of VCTE[130]. A recent 
study suggests that when using the XL probe in obese patients, steatosis does not 
augment liver stiffness independent of fibrosis[128]. Magnetic resonance elastography 
(MRE) can surmount many of these barriers, except for iron overload and acute 
inflammation; nonetheless, restricted availability at most centers and cost are the 
limiting factors. MRE has higher applicability and accuracy than VCTE when 
compared head-to-head[131].

While it is expected that blood-based parameters or imaging modalities will replace 
liver biopsy for the diagnosis in people who would benefit from treatment, equally it 
indicates that validation of any future marker should be done in more specifically 
defined cohorts. A recent International Consensus Panel suggested that the factors that 
shape the NAFLD heterogeneity should be taken into account when devising risk-
stratification scores and algorithms[2]. Caution should be exercised by clinicians 
during the interpretation of test results when the tests are applied in patients with 
potential confounding factors.

Considerations for best practice
Early detection of advanced fibrosis is essential in the efforts to halt the NASH 
progression. Therefore, screening is vital to ensure that patients, mainly those with 
advanced F3–F4, are identified and linked to care before they develop end-stage liver 
disease. With the development of reliable NITs to identify patients with advanced 
fibrosis, there is now potential to put management strategies earlier in place[132]. 
Clinicians need to be more proactive in detecting patients with advanced fibrosis due 
to NASH. Figure 4 shows a diagnostic algorithm that targets screening of patients with 
characteristics of MetS who are at risk of progressive fibrosis. This is in accordance 
with guideline recommendations to screen this high-risk group[133]. This pathway 
includes sequential use of NITs (preferably a serum biomarker and an imaging 
technique) and can decrease secondary and tertiary referral rates and achieve larger 
cost savings.

In the Asia–Pacific region, quite a few studies have assessed the cross-sectional 
accuracy of non-invasive surrogates of liver biopsy among NAFLD patients[134,135]. 
It has been suggested that the serum tests and physical tools when used in combin-
ations can yield more reliable data than that provided by either method alone[136]. 
Nevertheless, concerns are there regarding the definition of threshold values in Asian 
patients and Asia-Pacific Working Party stated that “at the present time, the clinical 
use of such tools to avoid liver biopsy remains undefined”[137].

Newsome et al[138] recently published the FibroScan-AST (FAST) score for the non-
invasive identification of patients with significant fibrosis (≥ F2) and a NAFLD activity 
score (NAS) of ≥ 4 to detect those at increased risk of disease progression. This could 
reduce unnecessary liver biopsies in patients unlikely to have significant disease. The 
incorporation of VCTE values in the score enhanced the diagnostic performance. This 
prospective study was validated in multiple global cohorts from North America, 
Europe, and Asia. Discrimination was considerably higher for the FAST score when 
compared with FIB-4 and NFS. Now, further research on the performance of the FAST 
score is required to transition the use of such predictive models to clinical practice. The 
diagnostic accuracy of the sequential combination of FIB-4 and VCTE had been 
evaluated recently in an individual participant data meta-analysis that included 5735 
patients. Depending upon the different cut-offs used, this combined algorithm can 
diagnose cirrhosis with a specificity of 95%-98%, obviating the need for liver biopsy
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Table 1 Non-invasive tests of hepatic fibrosis and potential confounding factors

Biomarker panel Parameters Validation Prognostic ability Confounding factors/limitations

APRI AST, platelet Good Fair Large number of individuals fall in the 
indeterminate range

Poor performance in patients aged ≤ 35 yr

Low specificity in patients aged ≥ 65 yr

Fibrosis-4 index Age, AST, ALT, platelet Very good Very good

Less sensitive in South Asian Population

Different cutoff values needed for younger or 
older participants

Albumin may decrease in chronic illnesses, 
malnutrition, nephrotic syndrome and protein-
losing enteropathy

NAFLD fibrosis score Age, BMI, IFG or diabetes, AST, 
ALT, platelet, albumin

Very good Good

Less sensitive in South Asian Population

PIIINP is increased in other fibrotic diseases or 
bone fracture

TIMP1 is increased in cancer and inflammation

Enhanced liver fibrosis 
panel

PIIINP, HA, TIMP1 Good Very good

Not as widely available as non-patented scores 
and more expensive

Prothrombin index affected by anti-coagulants

Ferritin is an acute phase protein

Glucose is affected by anti-diabetic treatment

FibroMeter NAFLD Age, weight, prothrombin index, 
ALT, AST, ferritin, fasting 
glucose

Fair NA

More validation needed

Not as widely available as non-patented scores 
and more expensive

NIS4 miR-34a-5p, α2-M, YKL-40, and 
glycated hemoglobin

Fair NA

More validation is needed

ALT: Alanine aminotransferase; APRI: AST-to platelet ratio index; AST: Aspartate aminotransferase; BMI: Body mass index; HA: Hyaluronic acid; IFG: 
Impaired fasting glucose; α2-M: α2 macroglobulin; NA: Not applicable; NAFLD: Non-alcoholic fatty liver disease; PIIINP: Procollagen type III N-terminal 
peptide; PTI: Prothrombin index; TIMP-1: Tissue inhibitor of matrix metalloproteinase 1.

[139].

Identification of novel therapeutic targets
As the burden of NAFLD has become increasingly evident, so also have hurdles to 
developing effective therapeutic points of action. The development of progressive 
steatohepatitis is connected to excess metabolic substrate delivery to the liver that, in 
turn, induces cell stress, which can activate inflammatory and apoptotic signaling. 
Eventually, inflammation triggers a fibrogenic response that can lead to cirrhosis in the 
end[140]. This simplified model facilitates the evaluation of precise mechanisms 
underlying each of these factors and targeting them for treatment. Table 2 summarizes 
proposed ‘druggable’ pathophysiologic targets in NAFLD[141-153].

Quite a few of the recently carried out phase 2 and 3 studies failed to reproduce the 
encouraging antifibrotic or NASH-resolving effects observed in animal models. 
Reasons for this discrepancy between preclinical models and clinical settings are likely 
diverse. Most importantly, no model can ever assess compounds in the actual 
physiological settings of heterogeneous human populations. This aspect may become 
further relevant if mechanisms are not entirely translatable between two different 
species[154]. Additionally, none of the available NASH models used for preclinical 
trials adequately represents all the human disease aspects from the macroscopic to the 
molecular level. Moreover, only a few models reflect linked extrahepatic diseases 
(such as atherosclerosis, obesity, or IR). Finally, a higher heterogeneity in humans in 
relation to genetics, the gut microbiota, gender, and existing comorbidities leads to 
even more complications. It is, therefore, critical to recognize the drawbacks of 
preclinical models to improve clinical trial outcomes in drug development.

There is significant interindividual variability in the NAFLD susceptibility and for 
progression to liver-related complications[49]. It is becoming more and more apparent 
that there is substantial heterogeneity in the molecular and cellular processes 
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Table 2 Liver-targeted therapies in development for the treatment of nonalcoholic fatty liver disease

Treatment targets Mechanism of action Agent (oral/injectable) Current status

Obeticholic acid Interim analysis of a phase 3 RCT (REGENERATE) showed 
significant histological improvement[141]

Tropifexor (LJN452) A phase 2 study recently completed (NCT02855164)

FXR agonism

Cilofexor A phase 2 study in patients with NASH showed a decrease in 
hepatic fat[142]

Elafibranor Interim analysis a phase 3 trial (RESOLVE-IT) failed to show any 
treatment effect

Lanifibranor (IVA337) A phase 2 study in patients with T2DM and NAFLD is actively 
recruiting (NCT03459079)

PPAR agonism

Saroglitazar A phase 2 RCT (EVIDENCES IV) in participants with 
NAFLD/NASH has shown significant improvement in ALT, 
LFC, and IR[143]

Acetyl-CoA Carboxylase 
inhibition

PF-05221304 Improved liver chemistry and liver fat in an RCT[144]

Liraglutide Only data from small studies have been published and the 
relative contribution of weight loss and improvement in 
glycemic control to the observed benefits in NASH are yet to be 
determined[145-147]

GLP-1 agonism

Semaglutide In a phase 2 trial, the primary endpoint (resolution of NASH 
with no worsening in fibrosis), was met[148]

FGF21 agonism Pegbelfermin (BMS-986036) A series of phase 2b trials of pegbelfermin are underway

MCP2 antagonism MSDC-0602 K The EMMINENCE phase 2b trial didn’t meet the primary end 
point[149]

Metabolism

THRβ agonism Resmetirom (MGL-3196) A phase 3 study is actively recruiting (NCT03900429)

Antioxidant Vitamin E Resolution of NASH in some studies, but not all; no impact on 
fibrosis[150]

Pan-caspase inhibition Emricasan Phase 2b clinical trials for NASH failed to meet their primary 
efficacy end points[151]

Cell stress and apoptosis

ASK1 inhibition Selonsertib Phase 3 STELLAR trials discontinued due to lack of efficacy

CCR2/CCR5 inhibition Cenicriviroc Phase 3 trial AURORA terminated due to lack of efficacyInflammation

Inflammasome inhibition SGM-1019 A phase 2 study is terminated due to a safety event 
(NCT03676231) 

Fibrosis LOXL2 inhibition Simtuzumab No benefit on histological analysis or on clinical outcomes[152]

Gut–liver signaling axis FGF19 agonism Aldafermin (NGM282) In a phase 2 trial of patients with NASH, aldafermin reduced 
liver fat and produced a trend toward fibrosis improvement[153]

ACC: Acetyl-CoA carboxylase; ALT: Alanine aminotransferase; ASK1: Apoptosis signal-regulating kinase; CCR: C–C motif chemokine receptor; FGF: 
Fibroblast growth factor; FXR: Farnesoid X receptor; GLP1: Glucagon-like peptide 1; IR: Insulin resistance; LFC: Liver fat content; LOXL2: Lysyl oxidase 
homolog 2; NAFLD: Nonalcoholic fatty liver disease; NASH: Nonalcoholic steatohepatitis; PPAR: Peroxisome proliferator-activated receptor; THRβ: 
Thyroid hormone receptor β.

propelling the disease from one patient to the next. This understanding raises the 
possibility of matching specific therapeutic strategies to the particular disease drivers 
in a given patient. The development of such personalized approaches and the 
detection of subpopulations with distinctive disease drivers will need a combination of 
phenotypic, genetic, and molecular data[140]. Furthermore, genetic insights present a 
powerful approach to deduce and prioritize candidate drugs. Such selection can avoid 
numerous drawbacks while defining likely benefits[155]. However, drug discovery 
based on genetics is still in its infancy, and this area will present its challenges. NAFLD 
is associated with several metabolic disturbances. As many circadian clock-controlled 
genes are fundamental in the metabolic processes of the body, it is not unexpected that 
some of these genes can be potential therapeutic targets[156]. Thus, by considering the 
circadian cycling of their targets, new drugs for NAFLD can be administered in a way 
that optimizes the benefits and minimizes the side effects.
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Figure 4 A suggested algorithm for the use of non-invasive tests for risk stratification of patients with suspected non-alcoholic fatty liver 
disease in clinical practice. 1Obesity, type 2 diabetes, or metabolic syndrome; 2Estimated prevalence for low, intermediate, and high risks groups; 3Patented 
serum biomarkers (FibroTest, Fibrometer, or ELF) could be considered in patients with intermediate-risk. ARFI: Acoustic radiation force imaging; LSM: Liver stiffness 
measurement; MRE: Magnetic resonance elastography; NPV: Negative predictive value; PPV: Positive predictive value; SWE: Shear wave elastography.

Impact on clinical trials and endpoints 
Given the rising disease burden associated with NAFLD, the development of outcome 
measures to assess the at-risk population and validate clinically relevant study 
endpoints is vital. Nevertheless, the natural history of NAFLD is highly variable, often 
nonlinear in progression. In addition, NAFLD itself is a heterogeneous disease that is 
shaped by the dynamic interaction between genetic predisposition, environmental 
factors, and several modifiable risk factors[157]. This pathogenetic background 
provides numerous potential targets for therapeutic intervention, however, this same 
complexity limits defining clear, measurable, and objective clinical endpoints[158]. 
Considering these factors, surrogate endpoints, which can be used to predict outcomes 
on clinically relevant endpoints, are expected to be beneficial in most patients. 
Furthermore, NAFLD is a slowly progressive disease, with a gap of many years 
between onset and development of “hard” clinical outcomes, such as liver-related and 
all-cause mortality. As stated earlier, the fibrosis stage is the most important predictor 
of liver-related outcomes. Unfortunately, the progression of fibrosis itself is also slow, 
with a median of 7.1 years in subjects with NASH[112]. Thus, selecting meaningful 
clinical endpoints has been a major challenge in drug development and validation. At 
present, before enrolling patients into NASH clinical trials, identifying which patients 
with NAFLD have NASH, particularly those with advanced fibrosis, is one of the 
major stumbling blocks. Once these at-risk patients have been selected, monitoring for 
fibrosis regression in individuals with advanced fibrosis appears to be the optimal 
endpoint in clinical trials and should supplant NASH-based endpoints[158]. Surrogate 
measures of liver-related outcomes also seem reliable. Although important, to assess 
for all-cause mortality (primarily CV death) and liver-related mortality will require 



Pal P et al. Nonalcoholic fatty liver disease heterogeneity

WJH https://www.wjgnet.com 1600 November 27, 2021 Volume 13 Issue 11

longer-term follow-up.
Liver biopsy is essentially prone to sampling error and interobserver variability; its 

invasive nature also makes it a barrier for large clinical trials. Given these limitations, 
the development of accurate, robust, and reproducible noninvasive surrogate 
endpoints which may ultimately replace biopsy in trials are eagerly sought in NAFLD 
research[159]. Algorithms such as NFS and FIB-4 may be useful tools for prescreening, 
in order to enrich the patient group with an appropriate spectrum of NASH and 
fibrosis for enrollment. Noninvasive imaging methods such as VCTE and MRE are 
likely to play a future role but presently lack the ability to differentiate between closely 
related fibrosis stages[160].

To summarize, a combination of the slow nature of disease progression in NAFLD, 
heterogeneity of therapeutic targets, and inherent limitations of serial liver biopsy to 
evaluate effects of intervention have considerably hampered clinical trial design as 
well as the development of new and effective therapies[158]. Thus, the standard trial 
design that does not consider the disease heterogeneity may not be the best approach 
for learning this complex disease. Future clinical trials need to target patients with 
specific characteristics (gender, hormonal status, genetic susceptibility, metabolic and 
microbiota signatures, and the presence or absence of comorbidities) once the 
connections between these characteristics and the therapeutic targets are clearly 
understood[2].

FUTURE PERSPECTIVES
With increasing recognition of heterogeneous molecular and genetic drivers of 
NAFLD, there is a possibility of precision medicine based on the identification of 
specific drivers of the disease. An integrated model of NAFLD development based on 
genetic, molecular, histology, “omics” based data (transcriptome, metabolite, 
proteome, microbiome), and disease phenotype to identify disease subpopulations is 
required for such personalized approaches[140]. Critical data on molecular hetero-
geneity and its relation to clinical outcomes of NAFLD to going to explore new 
horizons in the management of this global pandemic[161]. A better understanding of 
bidirectional and dynamic disease progression and regression (e.g. fibrosis), the 
influence of behavioral factors, and establishing a correlation with end-organ damage 
is warranted. Prospective follow-up data on the evolution of pediatric NAFLD into 
adulthood shall shed light on pediatric disease evolution[162]. Identification and 
validation of non-invasive methods of disease assessment and biomarkers will 
accelerate the development of pharmacotherapy and testing of combination therapies. 
Seamless phase II-IV trial designs, virtual placebo cohort analysis, master clinical trials 
testing multiple agents and multiple disease types, use of effectiveness trials in real-
world settings, and patient-reported outcomes would revolutionize clinical trials for 
NAFLD. Precise terminology, characterization of disease heterogeneity (both 
molecular and clinical), novel translational models to identify new therapeutic target, 
and thus better designed clinical trials would help reduce the burden of the disease[2].

CONCLUSION
The impact of the upsurge in NAFLD patients and a rising proportion with advanced 
disease will be reflected in higher rates of hepatic and extrahepatic morbidity and 
mortality, which will continue to burden the health care system heavily. On the other 
hand, a lack of enough consideration of heterogeneity in risk profiles and respons-
iveness to treatment posing impediments that hampers progress to effective 
treatments. It is anticipated that a more robust understanding of pathophysiology will 
result in better characterization and subphenotyping of the disease and its drivers. In 
turn, this understanding of disease variability may help the introduction of 
appropriate noninvasive biomarkers for each subtype, thus promoting more individu-
alized interventions. In this regard, any discussions on the update of nomenclature or 
more appropriate terminology are in the right direction. However, the proposed 
redefining of the disease should increase the prioritization of research activity on 
NAFLD to fill current knowledge gaps and find new tools to overcome the challenges. 
It appears to be important to place NAFLD/MAFLD/DAFLD under the same 
umbrella with significant comorbidities and approach NAFLD/MAFLD/DAFLD 
holistically rather than facing NAFLD as a separate entity. Future studies are likely to 
provide us the necessary prerequisites for designing more appropriate clinical trials to 
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identify finely tailored diagnostic and treatment strategies for our patients.
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Abstract
The liver, the largest solid visceral organ of the body, has numerous endocrine 
functions, such as direct hormone and hepatokine production, hormone 
metabolism, synthesis of binding proteins, and processing and redistribution of 
metabolic fuels. In the last 10 years, many new endocrine functions of the liver 
have been discovered. Advances in the classical endocrine functions include 
delineation of mechanisms of liver production of endocrine hormones [including 
25-hydroxyvitamin D, insulin-like growth factor 1 (IGF-1), and angiotensinogen], 
hepatic metabolism of hormones (including thyroid hormones, glucagon-like 
peptide-1, and steroid hormones), and actions of specific binding proteins to 
glucocorticoids, sex steroids, and thyroid hormones. These studies have furthered 
insight into cirrhosis-associated endocrinopathies, such as hypogonadism, 
osteoporosis, IGF-1 deficiency, vitamin D deficiency, alterations in glucose and 
lipid homeostasis, and controversially relative adrenal insufficiency. Several novel 
endocrine functions of the liver have also been unraveled, elucidating the liver’s 
key negative feedback regulatory role in the pancreatic α cell-liver axis, which 
regulates pancreatic α cell mass, glucagon secretion, and circulating amino acid 
levels. Betatrophin and other hepatokines, such as fetuin-A and fibroblast growth 
factor 21, have also been discovered to play important endocrine roles in 
modulating insulin sensitivity, lipid metabolism, and body weight. It is expected 
that more endocrine functions of the liver will be revealed in the near future.

Key Words: Liver; Endocrine function; Hormone; Amino acids; Hepatokine; Fibroblast 
growth factor 21
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Core Tip: The liver has many newly discovered endocrine functions, most of which are 
in regulating metabolism, underscoring the functioning of the liver as a major 
metabolic organ. Convincing evidence has shown that the liver regulates endocrine 
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functions in mineral and fuel metabolism, especially in the metabolism of glucose and 
lipids via hepatokines and amino acids via negative feedback on pancreatic α cells. As 
research into the endocrine function of the liver is a rapidly evolving field, contro-
versial findings often exist; caution needs to be taken when interpreting novel findings 
to avoid over-simplification of complex metabolic processes and premature allocation 
of research resources.
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INTRODUCTION
The liver is a dynamic endocrine organ and mediates critical metabolic pathways via 
roles in direct hormone and hepatokine production, hormone metabolism, synthesis of 
binding proteins, detoxification, and processing and redistribution of metabolic fuels
[1-4]. It participates in multiple signaling pathways with other endocrine organs, 
including the pituitary, pancreas, gut, thyroid, adrenal glands, and bone, with 
hormones in turn modulating the liver’s metabolic and synthetic functions[1,5]. 
Diseases that affect the liver lead to a variety of endocrine manifestations, including 
hypogonadism, osteoporosis, effects on glucose metabolism and growth hormone 
(GH), and controversial effects on cortisol[1,5].

The liver, with its vascularity, is well-positioned to provide and receive endocrine 
signals, including those from pancreatic and gut hormones[6]. It also receives exposure 
to antigen-rich blood systemically and from the gastrointestinal system as a lymphoid 
organ[7] and serves as a principal organ in drug metabolism and clearance[8]. Despite 
only representing 2.5% of the body weight, the liver receives up to 25% of the total 
cardiac output at rest[9]. It also receives a unique double afferent blood flow from the 
hepatic artery and partially deoxygenated portal vein, with around 75% of the blood 
flow from the latter[9]. The portal vein, in turn, receives blood from the stomach, small 
and large intestines, pancreas, spleen, and gallbladder[9], with direct physiological 
implications on the regulation of metabolism by endocrine liver functions[6]. Great 
progress has been made in the understanding of the endocrine functions of the liver in 
the last 10 years.

ADVANCES IN CLASSIC ENDOCRINE FUNCTIONS OF THE LIVER
We will first briefly summarize the advances in the understanding of the liver classic 
endocrine functions (Table 1).

Direct hormone production
The liver directly synthesizes multiple hormones, including 25-hydroxyvitamin D, 
insulin-like growth factor 1 (IGF-1), and angiotensinogen. Given roles in direct 
hormone production, the liver also has permissive roles of normal hormone function, 
in particular with effects on bone health, the GH-IGF-1 axis, and renin-angiotensin-
aldosterone (RAA) pathway.

Vitamin D: The liver is the primary site of 25-hydroxylation of vitamin D to 25-
hydroxyvitamin D (calcidiol), the main storage form of vitamin D[10]. Vitamin D is a 
secosteroid hormone well known for its role in calcium and bone homeostasis, with 
pleiotropic effects on cellular proliferation, differentiation, and immunomodulation
[11-13]. 25-hydroxyvitamin D (calcidiol) then undergoes 1-alpha-hydroxylation in the 
kidney to the activated form 1,25-dihydroxyvitamin D (calcitriol)[10], which provides 
the active hormonal effects of vitamin D. The hydroxylation of vitamin D to produce 
calcidiol is mainly carried out in the liver by multiple cytochrome P450 mixed-function 
oxidases (CYPs) located in the mitochondria, endoplasmic reticulum (ER), and 
microsomes, though studies also show presence of these CYPs in extrahepatic tissues
[10,11].
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Table 1 Classic endocrine functions of the liver

Hormone Liver function Target organ Action on target organ Alteration in liver 
diseases

25-hydroxyvitamin D Direct production Gut Prohormone of calcitriol which stimulates 
gut calcium absorption

Decreased production 
resulting in low bone 
density

Insulin-like growth 
factor 1

Direct production Ubiquitous Promoting growth and differentiation and 
regulating nutrients metabolism

Decreased production 
resulting in dysmetabolism

Angiotensinogen Direct production Cardiovascular 
system

Precursor of angiotensin II which regulates 
aldosterone level. Both regulate vascular 
tone, sodium retention, and cardiac 
remodeling

Near-normal function

Thyroid hormone Activation through T4 to T3 
conversion; inactivation through 
degradation; TBG production

Ubiquitous Increasing metabolism and energy 
expenditure

Low T3 syndrome

Glucagon-like peptide 
1 (GLP-1)

Metabolism of GLP-1 via 
dipeptidyl peptidase-4(DPPIV)

Pancreas, gut, 
and brain

Stimulating insulin production, decreasing 
gut motility, and suppressing appetite

Increased DPPIV 
expression resulting in 
higher risk of diabetes

Sex hormones Hormone metabolism and SHBG 
production

Ubiquitous Numerous (details beyond this review) Hypogonadism

Glucocorticoids Hormone metabolism and CBG 
production

Ubiquitous Numerous (details beyond this review) Relative adrenal 
insufficiency

Mineralocorticoids Hormone metabolism Cardiovascular 
system

Maintaining electrolyte balance and blood 
pressure

Largely intact

TBG: Thyroxine binding globulin; CBG: Cortisol binding globulin; SHBG: Sex hormone binding globulin.

IGF-1: The liver is the primary source of IGF-1, a 70-amino acid polypeptide hormone 
with endocrine, paracrine, and autocrine effects[14]. IGF-1 affects almost every tissue 
and organ[15], and its receptors are ubiquitously expressed[16]. Besides mediating the 
actions of GH, more recently, non-growth-related actions of IGF-1 are found. IGF-1 
binds to the insulin receptor and the hybrid IGF-1/insulin receptors, with implications 
on the metabolic effects of IGF-1[14]. IGF-1, GH, and insulin are hypothesized to 
constitute a regulated axis to inform cells about nutritional status, helping direct cells 
grow and differentiate vs induce a state of quiescence, senescence or apoptosis[14]. The 
IGF-1 receptor also participates in a crosstalk with the thyrotropin receptor by forming 
heterodimers[17], with implications on cellular growth and pathological implications 
in Graves’ eye disease.

Angiotensinogen: The liver is the primary source of angiotensinogen, which is 
involved in the RAA system[18]. The RAA system is vital for maintaining blood 
pressure homeostasis, via effects on sodium balance, intra- and extra-vascular volume, 
and systemic vascular tone[19]. Angiotensinogen, an alpha-globulin, is the only 
known substrate for renin and the main precursor molecule for angiotensin II (AngII), 
the major biologically active peptide in the RAA pathway[19]. Despite local tissue 
production of AngII, liver angiotensinogen is the primary source of renal AngII[18]. 
Hepatocytes tonically secrete angiotensinogen and primarily determine plasma 
angiotensinogen levels, with small increases in angiotensinogen levels increasing 
blood pressure and AngII levels[20].

Hormone metabolism
The liver is involved in the metabolism of multiple endocrine hormones, including 
thyroid hormones, glucagon-like peptide-1, and steroid hormones, with roles in both 
activation and inactivation of the hormones.

Thyroid hormone: Hepatic metabolism has roles in both activation and inactivation of 
thyroid hormones. The biologic activity of thyroid hormone is mainly mediated 
through the active thyroid hormone T3. The thyroid only secretes 20% of the daily T3 
requirement, with the remainder 80% converted from T4 by peripheral selenium-
containing deiodinase enzymes (DIO), of which three primary deiodinases (type 1, 2, 
and 3) have been identified[21]. The liver expresses DIO1, along with the kidney and 
thyroid, which converts T4 to T3, though with less kinetic efficiency compared to 
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DIO2, which is expressed by brown adipose tissue and the pituitary. Subsequently, the 
thyroid hormone is metabolized by conjugation with sulfate or glucuronic acid, which 
occurs prominently in the liver[22].

Glucagon-like peptide 1: With the discovery of glucagon-like peptide 1 (GLP-1), 
increasing research has been studying the gut-pancreas-liver axis, and the liver has 
been shown to play a key role in the hormone’s metabolism[23]. GLP-1 is an incretin 
hormone produced by the intestinal L-cells in response to ingestion of nutrients, 
including carbohydrates, fatty acids, and fiber[24]. It stimulates insulin secretion in a 
glucose-dependent manner, with associated inhibition of hepatic gluconeogenesis, and 
promotes insulin gene transcription and growth and proliferation of islet cells[24]. 
GLP-1 is inactivated by dipeptidyl peptidase-4 (DPPIV), also known as CD26, a 
ubiquitous membrane-associated peptidase[25]. DPPIV has pleiotropic effects and 
widespread tissue distribution in all organs, with expression in capillary endothelial 
cells and high expression in the liver[25].

Steroid hormone metabolism: The liver participates in most steps of steroid hormone 
regulation, starting from being the primary site of cholesterol biosynthesis[26,27]. At 
the liver, steroid hormones undergo phase I metabolism by cytochrome P450 enzymes 
(CYPs), via multiple pathways including hydroxylation or reduction, and phase II 
metabolism, also via various processes including glucuronidation, sulfation, or 
methylation[27], ultimately leading to excretion of their conjugates in urine or bile.

Steroid hormone metabolism: Sex hormones: The liver is the main site for metabolic 
conversion of estrogens, progesterone, and androgens to their metabolites via CYPs, 
which are abundantly expressed in the liver[28]. In particular, as part of the first phase 
of metabolism, estrogens undergo hydroxylation by numerous CYPs, including 2-
hydroxylation to 2-hydroxyestradiol and 4-hydroxylation to 4-hydroxestradiol, which 
represent 80% and 20% of biotransformation of estradiol in the liver, respectively. 2-
hydroxylation is mainly catalyzed by CYP1A2 and CYP3A4, which are expressed in 
the liver, and CYP1A1 in extrahepatic tissues[28]. 4-hydroxestradiol, unlike 2-
hydroxestradiol, is associated with free radical generation and cellular damage, with 
associated increased risk of carcinogenesis in the breast and endometrium. Subsequent 
phase II metabolism of sex hormones, via O-methylation by catechol O-methyltrans-
ferase (COMT), glucuronidation, or sulfation, occurs at high levels at the liver, with 
subsequent elimination in the urine or stool[28-30].

Steroid hormone metabolism: Glucocorticoids and mineralocorticoids: The liver is 
also the primary site of glucocorticoid and mineralocorticoid metabolism[27]. Cortisol 
is converted to and from its inactive metabolite cortisone by two isozymes of 11-beta 
hydroxysteroid dehydrogenase (11-beta-HSD)[31]. 11-beta-HSD type 1 (11-beta-HSD1) 
is widely distributed, though most abundantly located in the liver and adipose tissue, 
and is responsible for converting cortisone back to cortisol[31], with in vitro activity 
being greater in omental than subcutaneous adipose tissue[32]. In healthy individuals, 
local splanchnic cortisol production, including from the liver, can equal or even exceed 
that produced by extra-splanchnic tissues, including the adrenal gland[32]. In obese, 
non-diabetic individuals, the liver has been shown to account for virtually all 
splanchnic cortisol production[32]. Though primarily secreted from the adrenal glands 
under the regulation of the RAA axis, animal studies suggest possibility of local 
hepatic aldosterone production during liver injury, which may contribute to fibro-
genesis[33]. Glucocorticoids and mineralocorticoids, like other steroid hormones, 
undergo phase I and phase II metabolism in the liver, with excretion of their 
conjugates in urine or bile[27].

Binding protein production
Lipophilic hormones, including steroid hormones, are not water soluble and need to 
be carried in the blood stream by binding proteins[2,34]. The liver is the primary 
source of binding proteins for many hormones. The liver produces specific binding 
proteins to multiple lipophilic hormones, including glucocorticoids, mineralocor-
ticoids, sex steroids, thyroid hormones (T3 and T4), and vitamin D metabolites[2,34]. 
Binding globulins for these lipophilic hormones include cortisol binding globulin 
(CBG, which binds cortisol, aldosterone, and progesterone), sex hormone binding 
globulin (SHBG, which binds estradiol, testosterone, and other sex hormones), 
thyroxine binding globulin (TBG, which binds T3 and T4), and vitamin D binding 
globulin (DBG, which binds vitamin D metabolites)[2,34]. Binding proteins that are 
produced by the liver also include transthyretin (which binds thyroid hormone and 
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retinol), IGF-1 binding proteins (IGFBP, which binds IGF, including IGF-1), and non-
specific binding proteins including albumin and lipoproteins. Binding proteins serve 
as a circulating reservoir for hormones, potentially regulating tissue distribution and 
target destination in a manner that can be highly selective and targeted[2,35]. Binding 
protein expression and production, which occur primarily at the liver, is complex and 
under the regulation and influence of multiple factors[2]. Most binding protein 
expression increase in response to estrogens, including physiologically with pregnancy 
or with oral contraceptives[2,34]. Hepatic failure and protein-losing nephropathies 
lead to decrease of binding proteins in general[2,34].

Endocrine dysregulation in liver disease
The liver mediates the effects of numerous hormonal pathways, whether directly or 
indirectly; thus, not surprisingly, derangements affecting the liver lead to disruptions 
of various hormonal pathways. Patients with cirrhosis are characterized by various 
endocrinopathies, including relative increase in estrogen compared to androgens, 
hypogonadism, osteoporosis, IGF-1 deficiency, vitamin D deficiency, alterations in 
glucose and lipid homeostasis, and perhaps more controversially a relative adrenal 
insufficiency.

Sex hormones: Cirrhosis is characterized by symptoms of estrogen-androgen 
imbalance, with relatively higher estradiol and lower testosterone concentrations[36]. 
The etiology of estrogen-testosterone imbalance is at least in part due to conversion of 
androgens to estrogens in cirrhosis, which in large part occurs peripherally[36]. The 
pathophysiology of hypogonadism is complex, including potential contribution from 
hypothalamic-pituitary suppression from a relatively increased estrogen circulation. 
SHBG is elevated in compensated cirrhotic patients, with subsequent decreases with 
decompensated cirrhosis, leading to concern for potential underestimation of 
hypogonadism in cirrhosis[34].

Cortisol: Patients with cirrhosis have relatively lower cortisol levels, also in the setting 
of lower production of cortisol binding globulin[37]. Some studies suggest the 
presence of a relative adrenal insufficiency in cirrhosis, also termed critical illness-
associated corticosteroid insufficiency[38]. These studies suggest a potential 
hepatoadrenal syndrome in advanced liver disease, with associated inadequate 
cortisol production during stress response[38]. The decrease in cortisol binding 
globulin makes the diagnosis more difficult, though some studies suggest that free 
cortisol levels are decreased in relative adrenal insufficiency[37]. Hepatoadrenal 
syndrome and associated low free cortisol are attributed to decreased formation of 
HDL precursors and formation of proinflammatory cytokines and endotoxins[38].

RAA system: In liver disease, the systemic RAA pathway is upregulated due to 
systemic and splanchnic arterial vasodilation and associated hypoperfusion of the 
renal system[39]. Notably, the cirrhotic liver is able to produce angiotensinogen to 
near-normal plasma levels until the end stages[40].

DPPIV and GLP-1: DPPIV may play a role in linking type 2 diabetes with chronic liver 
disease. Type 2 diabetes has been associated with a greater than 2-fold increased risk 
of liver disease[41], and in vitro studies have suggested that elevated glucose can 
induce DPPIV expression in liver cells[42]. The increased DPPIV activity, which 
degrades the incretin hormone GLP-1, may contribute towards development of IGT, 
insulin resistance, lipogenesis, and hepatic injury in liver disease[25,43]. Serum DPPIV 
levels are notably increased in cirrhosis[25], and increased DPPIV expression in the 
liver has been observed in hepatitis C, NAFLD, experimental liver regeneration, and 
cirrhosis[25,43]. Cirrhotic nodules show diffuse and uniform staining of DPPIV, with 
loss of usual zonal expression of DPPIV[43], and degree of hepatic expression of 
DPPIV has also been shown to correlate with NAFLD grading[25]. Increased DPPIV 
expression has also been seen in various malignant tumors, including hepatocellular 
carcinoma, with DPPIV noted to promote resistance to anticancer agents[25].

Thyroid hormone: Given the liver’s role in thyroid hormone metabolism, including 
local conversion of T4 to T3 by DIO1[21], patients with cirrhosis may present with 
abnormalities in thyroid hormone levels[44]. Though a variety of patterns are seen, the 
most common pattern is a low total T3 (TT3), low free T3 (FT3), elevated reverse T3 
(rT3), low total T4 (TT4), variable literature on elevated vs low free T4 (FT4) levels, and 
possible elevations in TSH[44,45]. The low total hormone levels are attributable to low 
TBG[44]. The pattern is consistent with low T3 syndrome, which occurs in systemic 
illnesses, and represents non-thyroidal illness syndrome, previously known as 
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euthyroid sick syndrome[44].

IGF-1: Systemic IGF-1 deficiency in cirrhosis has been associated with an altered 
metabolic profile, including diabetes, deregulated lipid profile, and cardiovascular 
disease[14]. Lack of liver-derived IGF-1, in particular, has been associated with 
resultant insulin insensitivity in the liver, skeletal muscle, and adipose tissue, and 
corresponding hyperinsulinemia[46]. In NAFLD, the severity of steatosis has been 
correlated with a decrease in IGF-1 levels, with statistically significant differences in 
IGF-1 levels between mild-moderate vs severe steatosis[14,47].

Bone health and vitamin D: Chronic liver disease, including cirrhosis regardless of 
etiology, is associated with osteomalacia, osteopenia, and osteoporosis, and up to 40% 
of patients with chronic liver disease may develop an osteoporotic fracture[48]. The 
etiology of hepatic osteodystrophy is not well understood, though potential 
contributing factors include hypogonadism, and decreased hepatic production of IGF-
1 and fibronectin[48]. There is a shift in cytokine production with changes in the 
receptor activator of nuclear factor kappa-B ligand (RANKL)/osteoprotegerin (OPG) 
system and an up-regulation of IL-6, which stimulates osteoclasts[48]. Decreased 
vitamin D synthesis, which is more marked in severely compromised liver function or 
in cholestatic liver disease, can further contribute to increased osteoporotic risk[49]. 
History of steroid treatment in chronic liver disease may be a risk factor for 
osteoporosis as well[48,49]. Different etiologies of liver disease may differ in their 
pathogenesis of osteoporosis, and in particular, diseases such as hemochromatosis and 
Wilson’s may also directly impact bone health[48].

NOVEL ENDOCRINE FUNCTIONS OF THE LIVER
Besides the advances in the understanding of classic endocrine functions of the liver, 
novel liver endocrine functions have been unraveled in the last several years (Table 2), 
including endocrine regulation of pancreatic α cells, adipose tissue, and insulin 
sensitivity.

Feedback regulation of pancreatic α cells and glucagon
A major novel endocrine function of the liver is its critical role in a pancreatic α cell-
liver axis that regulates pancreatic α cell proliferation and circulating glucagon and 
amino acid levels[50,51]. The pancreatic α cells, unlike the insulin-secreting β cells, 
have been considered a mysterious cell type until recently[52,53]. The α cells appear 
first during embryogenesis[54]. The main known function of the α cells is to produce 
and secrete the hormone glucagon[55]. Glucagon raises circulating glucose levels 
directly by stimulating gluconeogenesis and glycogenolysis, and indirectly by 
inhibiting insulin secretion[55,56].

Recently, a new α cell-liver axis has been discovered, endowing the liver with new 
endocrine functions[50,51]. The first clue of the α cell-liver axis came from glucagon 
receptor (GCGR) knockout mice[57,58]. The GCGR knockout mice harbor diffusely 
enlarged pancreas and exhibit extremely high glucagon levels[57-59]. Histologically, 
the pancreas of GCGR knockout mice contain numerous islets at various sizes, which 
are composed of mostly α cells as demonstrated by immunochemistry[57-59]. 
Normally the number of islets is quite small, and the islets are mostly composed of β 
cells. Mahvash disease, a human autosomal recessive hereditary disease discovered by 
our group, is caused by biallelic inactivating GCGR mutations, and its universal 
features are also α cell hyperplasia and hyperglucagonemia[60-62]. GCGR inactivation 
in zebra fish and non-human primates also result in α cell hyperplasia and hypergluca-
gonemia[63-66]. Thus, preservation of glucagon function is conserved throughout 
evolution.

Although a physiological compensation of hyperglucagonemia in animals and 
humans with inactive GCGR is quite intuitive, the specific mechanism of the 
compensation was initially not clear[67]. The liver-specific GCGR knockout mice 
interestingly have similar α cell hyperplasia and hyperglucagonemia, as those in global 
GCGR knockout mice[57,58,68], suggesting that the liver is the only target organ of 
glucagon that sends feedback signals to α cells, and that loss of the usual negative 
feedback mechanism stimulates α cell hyperplasia and glucagon secretion. This theory 
is also supported by the liver-specific stimulatory G protein α subunit (Gsα) knockout 
mice, which also exhibit α cell hyperplasia and hyperglucagonemia[69]. As glucagon 
antagonists were a promising anti-diabetes medication, both academia and pharmaco-
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Table 2 Novel endocrine functions of the liver

Liver 
hormone Target organ Action on target organ Alteration in liver diseases

Amino acids Pancreatic α cells Stimulate cell proliferation and glucagon secretion Not studied yet

Betatrophin Pancreatic β cells (?) Stimulate cell proliferation (?) Increased in cirrhosis

Fetuin Skeletal muscle; Adipose 
tissue

Decrease insulin sensitivity; Reduce adiponectin 
expression

Elevated in nonalcoholic fatty liver disease

FGF21 Adipose tissue; Brain Increase insulin sensitivity; Reduce food intake Elevated in nonalcoholic fatty liver disease

Activin E Adipose tissue Increase fat oxidation Increased in nonalcoholic fatty liver 
disease

Tsukushi Adipose tissue Increase thermogenesis Increased in nonalcoholic fatty liver 
disease

GPNMB Adipose tissue Increase lipogenesis Increased in nonalcoholic fatty liver 
disease

FGF21: Fibroblast growth factor 21; GPNMB: Glycoprotein nonmetastatic melanoma protein B.

logical companies became interested in the α cell-liver axis due to potential applic-
ations in diabetes drug development[70,71]. Some of the key original large-scale 
experiments leading to the discovery of the role of amino acids in regulating α cells 
were performed by pharmaceutical companies[72-74].

The liver may regulate α cells via neural or humoral mechanisms[67,68]. Islet 
transplantation experiments demonstrate that the liver uses a humoral mechanism
[68]. Wild-type islets transplanted into the kidney of GCGR knockout mice undergo α 
cell hyperplasia, while GCGR knockout islets transplanted into wild-type kidney 
undergo reduced α cell proliferation. Thus, it is assumed that the liver sends a humoral 
factor (hormone) to stimulate pancreatic α cells, a phenomenon that is pronounced in 
diseases where the usual negative feedback mechanism is affected.

Initially, it was hoped that a single liver hormone would be isolated from differ-
ential liver gene expression patterns of wild-type and GCGR knockout mice[67]. 
Several groups, including ours, performed liver mRNA arrays of GCGR knockout 
mice and in wild-type mice treated with inhibitory GCGR antibodies, using wild-type 
mice as control[67,68,72]. Not surprisingly, many genes are overexpressed (potential 
stimulatory hormones) or underexpressed (potential inhibitory hormones) in the 
GCGR knockout liver[67,68,72]. Genes involved in gluconeogenesis are downreg-
ulated in the GCGR knockout liver[67,68,72]. On the other hand, genes involved in 
amino acid synthesis (e.g., asparagine synthetase, Asns) are upregulated, and genes 
involved in amino acid catabolism (e.g., glutaminase 2, Gls2) are downregulated[67,68,
72]. Genes regulating lipid metabolism are also differentially expressed[67,68,72]. Most 
of the genes with significant differential expression were not bona fide hormone 
candidates because they were not secreted proteins[67,68,72]. InhbA and DefB1 were 
the only 2 overexpressed secreted proteins by both the GCGR knockout liver and wild-
type liver treated with inhibitory GCGR antibodies; however, these two proteins were 
are also upregulated by glucagon in primary hepatocytes and thus unlikely the 
pursued liver hormone[67,68,75].

Another possibility was that the liver hormone may not be a direct gene product 
such as a protein or polypeptide; rather, the hormone may be a small molecule or 
metabolite[67]. Metabolomes of the GCGR knockout and wild-type mice were 
compared[72]. Many differences exist but most notable differences were in glucose, 
amino acid, nucleotide, and bile acid levels[72]. The GCGR knockout mice have lower 
glucose levels (70% of wild-type value) and higher levels of most amino acids (up to 
15-fold for alanine, glutamine, glycine, lysine, and threonine) and 2 bile acids (cholic 
acid and glycocholic acid, both about 200-fold) [72]. In humans with Mahvash disease, 
glucose levels are generally normal, but the levels of amino acids, especially alanine 
and glutamine, are clearly elevated[62,76-78].

Pinpointing the identity of the novel liver hormone requires tremendous amount of 
work. Parabiosis of GCGR knockout and wild-type mice was considered, but no such 
models were published[67]. A more practical in vitro islet culture assay was adopted 
by most groups to screen for the liver hormone that stimulates α cell hyperplasia and 
hyperglucagonemia[73-75]. With the islet culture assay, it is shown that a < 10 kDa 
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fraction of serum from GCGR knockout mice sufficiently stimulates α cell proliferation
[75]. This fraction contains small proteins or peptides, lipids, amino acids, and 
metabolites[75]. We have discussed earlier that most proteins or peptides are unlikely 
the liver hormone. Eliminating lipids from the fraction does not change the activity of 
the fraction in stimulating α cell proliferation[75]. Finally, as amino acids levels are 
much higher in GCGR knockout serum, cocktails that mimic the amino acids levels in 
GCGR knockout mice serum have been tested for their ability to stimulate α cell prolif-
eration, and indeed they do[73-75].

Individual amino acids were further tested to see if a particular amino acid is 
sufficient to stimulate α cell proliferation[73-75,79]. So far, the data on individual 
amino acids are still somewhat controversial. Most individual amino acid do not 
stimulate α cell proliferation or glucagon secretion[73-75,79]. Glutamine alone 
stimulated α cell proliferation in 2 studies, but it did not stimulate glucagon secretion 
in another, which is intriguing as α cell hyperplasia and hyperglucagonemia coexist in 
all models of GCGR inhibition[74,75,79]. Alanine alone stimulated α cell proliferation 
in one study, but not in another, albeit acutely stimulating glucagon release[75,79]. 
Experimental conditions may explain some of the different results. It is also possible 
that α cell proliferation and acute glucagon release may be separate processes.

The α cell receptor for amino acids is under active research. In GCCR knockout mice 
and in wild-type type mice treated with inhibitory GCGR antibodies, the most 
upregulated α cell gene is the amino acid transporter Slc38a5 (20-80-fold increase)[74,
75]. Slc38a5 preferentially transports glutamine and several other amino acids, which 
is concordant with the stimulatory effect of glutamine on α cell proliferation[74,75]. 
Slc38a5 knockout mice treated with inhibitory glucagon antibodies and Slc38a5 and 
GCGR double knockout mice exhibited less prominent α cell hyperplasia ( approx-
imately 50% less) but similar hyperglucagonemia[74]; this data suggested that Slc38a5 
is at least partially responsible for amino acid-stimulated α cell hyperplasia and that α 
cell hyperplasia and hyperglucagonemia may be regulated separately. Slc38a5, 
however, is not expressed in human α cells[74]. Another amino acid transporter 
Slc38a4 is enriched in human α cells when mice with human islet implants are treated 
with inhibitory GCGR antibodies[80]. In humans with Mahvash disease, Slc38a4 is 
expressed in the α cells[80], supporting a role of the amino acid transporter in 
mediating amino acid-stimulated α cell hyperplasia in humans as well. The mTOR 
pathway in α cells is activated by amino acids as well, contributing to α cell 
hyperplasia[73-75].

As a result of these studies, the α cell-liver axis has largely been clarified (Figure 1). 
The α cells secrete glucagon, which signals the liver to increase hepatic amino acid 
breakdown and reduce amino acid synthesis, consequently leading to desirable amino 
acid levels in the circulation. After glucagon signaling is inhibited, the liver decreases 
amino acid breakdown and increases amino acid synthesis, thus raising circulating 
amino acid levels. The amino acid levels, in turn, act on the α cell amino acid 
transporters to stimulate α cell proliferation. The evolutionarily conserved α cell-liver 
axis suggests that glucagon’s primary role may be regulating amino acid levels.

Betatrophin
Betatrophin (also known as angiopoietin-like protein 8, ANGPTL8) is a 22-kD protein 
produced and secreted by the liver and adipose tissue[81,82]. Several years ago, 
betatrophin was touted as the long sought-after liver hormone that stimulates 
pancreatic β cell proliferation and insulin production in conditions with insulin 
resistance[83,84]. An insulin resistance mouse model based on insulin receptor 
antagonist (S961) infusion exhibits remarkable hyperinsulinemia and beta cell 
hyperproliferation[83]. As S961 does not directly stimulate β cell proliferation, it was 
hypothesized that a humoral factor mediates the stimulation of β cell proliferation in 
this mouse model[83]. Screening of liver genes that were differentially expressed as a 
result of S961 infusion suggested that betatrophin, a secreted protein that is 
upregulated by S961 infusion, could be the humoral factor[83]. Betatrophin expression 
correlated well with β cell proliferation rates. The original report found that liver 
overexpression of betatrophin stimulated β cell proliferation[83].

The potential of betatrophin as the Holy Grail for diabetes treatment attracted much 
attention, but later experiments strongly argue against this function of betatrophin[85-
87]. Betatrophin knockout mice exhibited normal glucose metabolism and similar 
hyperinsulinemia and β cell hyperproliferation in response to S961 infusion[85,86]. 
Detailed analysis of pancreas morphometry by several laboratories definitively 
showed that betatrophin overexpression does not stimulate β cell proliferation[88]. The 
only exception was that direct delivery of betatrophin to pancreas does stimulate β cell 
proliferation in rats[89]. In some mouse models of diabetes, betatrophin lowered 
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Figure 1 Schematic drawing of regulation of pancreatic α cell number and glucagon secretion by amino acid levels controlled by the 
liver. The numbers indicate specific ways to disrupt glucagon signaling. (1) Glucagon deletion; (2) Prohormone convertase 2 deletion (with no mature glucagon 
secretion); (3) Glucagon receptor (GCGR) global deletion; (4) GCGR liver-specific deletion; (5) GCGR inactivating mutation; (6) GCGR antisense RNA; (7) GCGR 
antagonists; (8) GCGR antibodies; and (9) Gsα liver-specific deletion. See text for details. Citation: Yu R, Zheng Y, Lucas MB, Tong YG. Elusive liver factor that 
causes pancreatic α cell hyperplasia: A review of literature. World J Gastrointest Pathophysiol 2015; 6(4): 131-139. Copyright ©The Author(s) 2015. Published by 
Baishideng Publishing Group Inc[67]. GCGR: Glucagon receptor.

glucose levels without effects on β cell proliferation[90]. Overall, betatrophin, despite 
the name, does not appear to stimulate β cell proliferation.

Betatrophin, however, could be a circulating marker of insulin resistance[82]. Early 
studies of betatrophin levels in various forms of human insulin resistance were quite 
conflictory, partly due to the differences in measurement methods[82]. Later studies 
using more standardized methods for measuring betatrophin were summarized by 
several meta-analyses on the correlation of circulating betatrophin levels and type 2 
diabetes, gestational diabetes, polycystic ovary syndrome (PCOS), and obesity — all 
conditions with insulin resistance[91-95]. Xu et al[91] analyzed 25 such studies and 
showed a positive and significant correlation between circulating betatrophin levels 
and insulin resistance. Yue et al[92] analyzed 11 studies on betatrophin in type 2 
diabetes and found that betatrophin is significantly elevated in type 2 diabetes. Kong 
et al[93] analyzed 8 studies on betatrophin in gestational diabetes and concluded that 
betatrophin is significantly elevated in gestational diabetes. Varikasuvu et al[94] 
analyzed 11 studies on betatrophin in PCOS and concluded that betatrophin is 
significantly elevated in PCOS. Similarly, Ye et al[95] analyzed 6 studies on betatrophin 
in obesity and concluded that betatrophin is significantly elevated in obesity. Thus, 
overall, circulating betatrophin is likely a marker of insulin resistance in humans. The 
high betatrophin liver expression in mice treated with S961, in retrospect, could simply 
be a sign of insulin resistance caused by S961[83]. It is, however, not clear how insulin 
resistance upregulates betatrophin. In humans, hyperinsulinemia, often associated 
with insulin resistance, and metformin, an insulin sensitizer, both decrease betatrophin 
levels, suggesting that insulin resistance per se upregulates betatrophin levels[96]. 
Betatrophin overexpression could further worsen hepatocyte sensitivity to insulin, the 
significance of which needs to be further explored[97].

Betatrophin also has a role in lipids regulation[98]. Betatrophin knockout mice 
exhibit much reduced triglyceride levels due to reduction in liver VLDL secretion[86]; 
betatrophin also forms a complex with ANGPTL3, which inhibits lipoprotein lipase 
(LPL) activity[86]. The increased production of VLDL and decreased LPL activity both 
contribute to hypertriglyceridemia. Betatrophin overexpression doubles triglyceride 
levels in mice[86]. In humans, circulating betatrophin levels are positively correlated 
with triglyceride levels in the general population[99]. In people with dyslipidemia, 
however, betatrophin levels were lower than in controls[100]. Betatrophin may 
potentially be a target in dyslipidemia treatment[101].

Hepatokines
Hepatokines are metabolism-regulating proteins produced and secreted by the liver
[102,103]. Several hepatokines have been reported and studied. Five of the most 
studied hepatokines are discussed in this review: Fetuin-A, fibroblast growth factor 21 
(FGF21), activin E, Tsukushi, and glycoprotein nonmetastatic melanoma protein B 
(GPNMB).

Fetuin-A: Fetuin-A, also known as α2-Heremans-Schmid glycoprotein in humans, is 
one of the first discovered hepatokines[104]. A 52-kD glycoprotein, fetuin-A has 
diverse metabolic functions[104]. Under physiological conditions, fetuin-A mostly 
functions as a carrier protein and regulates osteogenesis and inhibits extra-skeletal 



Rhyu J et al. Liver endocrine functions

WJH https://www.wjgnet.com 1620 November 27, 2021 Volume 13 Issue 11

calcification[105]. Fetuin-A’s role in regulating insulin sensitivity has also been studied 
in detail[106,107]. Fetuin-A knockout mice exhibit higher insulin sensitivity and have 
less tendency to develop obesity[106]. At the molecular level, fetuin-A inhibits insulin 
receptor phosphorylation in myocytes and adipocytes and adiponectin expression in 
adipocytes[107]. Fetuin-A levels are elevated in patients with insulin resistance or type 
2 diabetes, likely mediated by high free fatty acid levels, and high fetuin-A levels are a 
risk factor for type 2 diabetes[108,109]. The thiazolidinedione-type diabetes medication 
pioglitazone directly inhibits hepatic production of fetuin-A, partly contributing to its 
action in improving insulin sensitivity[110].

FGF21: FGF21 is a hepatokine that was first discovered in 2000, but its metabolic 
regulation functions were not characterized until recently[111,112]. Although FGF21 is 
also expressed in adipose tissue and the pancreas, circulating FGF21 is predominantly 
derived from the liver[113]. Hepatic FGF21 expression is regulated by a number of 
physiological conditions and factors[114]. Prolonged starvation (> 7 d) and overnu-
trition both upregulate FGF21 expression[115,116]. Glucagon and the thyroid hormone 
triiodothyronine (T3) both stimulate FGF21 expression, while insulin may inhibit 
FGF21 expression in liver[117,118]. High-carbohydrate, high-fat diet, and low protein 
diets stimulate FGF21 expression as well[119,120]. The microRNAs miR-577 and miR-
212 target FGF21 mRNA for degradation, thus suppressing FGF21 expression[121,
122]. FGF21 is also upregulated by ER stress[123]. At the molecular level, at least some 
of the above actions are mediated by the nuclear hormone receptor peroxisome prolif-
eration-activated receptor α (PPARα), which binds to regions of the FGF21 promoter 
and simulates FGF21 expression[124-126].

The human pre-FGF21 (precursor of mature FGF21) includes a 28-amino-acid 
signaling peptide and a 181-amino-acid FGF21 proper as the circulating form[127]. 
FGF21 signals through its transmembrane tyrosine kinase receptors, FGFR1c and 
FGFR3c, and its transmembrane co-receptor, Klotho-β (KLB)[128]. FGF21 downstream 
signaling is tissue-specific but generally leads to metabolic benefits such as increased 
insulin sensitivity and weight loss[129]. In the adipose tissue, FGF21 stimulates the 
Ras/Raf/MAPK pathway, with phosphorylation of ERK1 and ERK2, and the mTOR 
pathway, contributing to higher insulin sensitivity[130-132]. Other FGF21 metabolic 
benefits such as weight loss is mediated by non-adipose tissue such as the brain[133]. 
FGF21 has been a major interest of metabolic drug development. As the native FGF21 
is not stable in the usual formulation, re-engineered FGF21 analogues and PEGylated 
FGF21 have been developed to be more stable[134]. Activating monoclonal antibodies 
targeting FGFR1–β-klotho have also been developed[135]. Preclinical and clinical 
studies have demonstrated clear metabolic benefits of the FGF21 analogs and 
activating antibodies, such as appetite suppression, weight loss, improved glycemia, 
and favorable lipid profile[134,135].

Activin E: Activin E belongs to the family of transforming growth factor-β (TGF-β) 
proteins[136]. Activin E is a secreted homodimer of inhibin-βE, which is mainly 
expressed in the liver[137]. Each mature inhibin-βE monomer has 113 amino acids
[137]. In both mice and humans, inhibin-βE is upregulated by obesity and insulin 
resistance[138]. In mice, hepatic overexpression of inhibin-βE prevents excess weight 
gain and improves insulin sensitivity by promoting energy expenditure via increased 
fat oxidation[139,140]. Inhibin-βE ablation in mice gives conflictory results[138,139]. In 
one study using the transcriptional activator-like effector nucleases (TALENs) to 
remove liver specific inhibin-βE expression, inhibin-βE-deficient mice exhibited 
normal weight but had impaired thermogenesis during cold exposure[139]. In another 
study, however, use of small interfering RNA (siRNA) to silence Inhibin-βE expression 
in the liver reduced weight gain in obese mice[138]. Thus, the roles of Activin E in 
metabolic regulation are still controversial.

Tsukushi: Tsukushi belongs to the family of small leucine-rich proteoglycan (SLRP) 
extracellular matrix proteins[141]. The secreted human Tsukushi protein has 337 
amino acids. Besides its role in regulating embryonic development, Tsukushi is found 
to be a hepatokine, potentially regulating adipose tissue, weight, and energy 
expenditure[142]. In both mice and humans, Tsukushi is upregulated by thyroid 
hormone[142,143]; in mice, Tsukushi is induced by obesity and cold exposure[142]. 
Tsukushi deficiency in mice protects them from diet-induced obesity by increasing 
adipose tissue thermogenesis and energy expenditure[142]. Using mice from a 
different genetic background, another group could not reproduce the metabolic 
benefits of Tsukushi deficiency[144]. Furthermore, studies have also failed to show 
deleterious metabolic effects from Tsukushi overexpression[144]. The roles of 
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Figure 2 Major classic and novel endocrine functions of the liver. Left, major classic endocrine functions of the liver; right, novel endocrine functions of 
the liver. See text for details. IGF-1: Insulin-like growth factor 1; TBG: Thyroxine binding globulin; CBG: Cortisol binding globulin; SHBG: Sex hormone binding 
globulin.

Tsukushi in metabolic regulation thus also remain controversial.

GPNMB: GPNMB is a transmembrane glycoprotein expressed in the liver and other 
organs[145]. The cleaved extracellular domain of GPNMB (a glycosylated 480-amino-
acid protein) is a hepatokine targeting adipose tissue[146,147]. In 2 obese mouse 
models, GPNMB expression was upregulated in the liver and secreted GPNMB levels 
were higher as well. Secreted GPNMB stimulates lipogenesis in vitro and in vivo[147]. 
A neutralizing antibody targeting GPNMB reduces obesity and improves insulin 
sensitivity[147]. In both mice and humans, GPNMB levels are positively correlated 
with obesity and insulin resistance[147]. GPNMB is thus a promising therapeutic 
target for treatments of obesity and diabetes.

CONCLUSION
The liver has numerous endocrine functions such as direct hormone and hepatokine 
production, hormone metabolism, synthesis of binding proteins, and processing and 
redistribution of metabolic fuels. In the last 10 years, many new endocrine functions of 
the liver have been discovered (Figure 2). Several novel endocrine functions of the 
liver have been unraveled. The liver plays a key negative feedback regulatory role in 
the pancreatic α cell-liver axis which regulates pancreatic α cell mass, glucagon 
secretion, and circulating amino acid levels. Betatrophin and other hepatokines such as 
fetuin-A and FGF21 play important endocrine roles in modulating insulin sensitivity, 
lipid metabolism, and body fat weight. It is expected that more endocrine functions of 
the liver will be discovered in the near future. As endocrine function of the liver is a 
rapidly evolving field, controversial findings often exist; caution needs to be taken 
when interpreting novel findings to avoid over-simplification of complex metabolic 
processes and premature allocation of research resources.
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INTRODUCTION
Hepatic resection is the gold standard for patients affected by primary or metastatic 
liver tumors but is hampered by the risk of post hepatectomy liver failure (PHLF). 
Indeed, PHLF is considered the most frightening complication of liver surgery, repres-
enting a major source of severe morbidity and mortality[1]. Despite recent improve-
ments, liver surgery still requires excellent clinical judgement in selecting patients for 
surgery and, above all, efficient pre-operative tools to provide an adequate future liver 
remnant (FLR).

The liver has a unique capacity of preserving its volume due to regeneration. The 
atrophy-hypertrophy phenomenon is a prime example of the liver’s pathophysiologic 
(atrophy) and restorative (hypertrophy) response to injury[2]. It occurs whenever there 
is impairment of bile or blood flow: the liver reacts with atrophy of the region 
concerned and with compensatory hypertrophy of the less or not impaired regions, 
resulting in characteristic gross deformity of the organ and, in some instances, in 
rotation of the liver around a virtual hilar axis[3]. The mechanisms that induce cellular 
division are complex and based on different inflammatory cytokines. The Hepatocyte 
Growth Factor (HGF) seems to be the main mitogenic factor and its role has been 
established in liver regeneration[4].

The first case of in vivo human hepatic regeneration was described by Pack et al[5] in 
1962. Starting from animal models in the first half of the 20th century, it was recognized 
that liver regeneration could also be induced by portal vein ligation (PVL)[6]. In 1986, 
the first cases of percutaneous transhepatic portal vein embolization (PVE) were 
performed before liver resection in the setting of hepatocellular carcinoma[7], and a 
few years later Makuuchi et al[8] reported the utility of PVE in promoting FLR 
hypertrophy prior to hepatic resection in patients with hilar cholangiocarcinoma. Since 
those initial reports, preoperative PVE has been established as the standard procedure 
for obtaining FRL hypertrophy, increasing the eligibility of patients for major 
hepatectomy as well as improving postoperative outcomes and safety. However, 
concerns regarding the insufficient increase of FLR and/or concomitant tumoral 
progression after PVE have led to the development of recent alternative techniques to 
push further the limits of liver surgery.

The aim of this article is to review the techniques available for preparing the liver 
for major hepatectomy, and to depict their advantages and limitations.

LIVER REGENERATION
The liver’s unique capacity for regeneration was first recorded in the legend of 
Prometheus in Greek mythology and it represents the basis of the treatment of many 
liver diseases. Regeneration of the liver is a pathophysiological process, embracing 
both hypertrophy (increase in cell size or protein content in the prereplicative phase) 
and hyperplasia (increase in cell numbers). Both events can take place independently
[9]. The mechanisms of liver regeneration have mainly been studied after extensive 
hepatectomy. The players of regeneration following the different techniques exposed 
in this article are thought to be similar to those after hepatectomy, but the precise 
mechanism remains unknown. Basically, the regeneration process is a cytokine- and 
growth-factor-mediated pathway. The main cytokine-mediated pathways include 
members of the innate immune system, tumor necrosis factor (TNF)α and interleukin 
(IL)-6, and growth-factor-mediated pathways are regulated by HGF and transforming 
growth factor (TGF)α[10]. It is a multi-step process, starting from the “priming” of 
hepatocytes, the moment they acquire replicative capacity, followed by the prolif-
erative step in which an adequate cell mass is attained, and a termination stage in 
which liver cell proliferation is ended once the necessary functional mass has been 
reached[11]. Proliferation of hepatocytes advances from periportal to pericentral areas 
of the lobule, as a wave of mitoses[12]. Proliferation of biliary epithelial cells occurs a 
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little later than hepatocytes. The particularity of liver regeneration is that replacement 
of the lost hepatic mass is not mediated by selected stem cells proliferation but it 
entirely depends on mature adult hepatocytes and other hepatic cell types. Concerning 
the time interval, as far as we know, normal liver weight is reestablished within 8-15 d 
in humans[13].

POST-HEPATECTOMY LIVER FAILURE
Although morbidity and mortality after liver surgery have improved over the past 10 
years, PHLF is still reported in up to 8%, ranging from 1.2% to 32%, and depends on 
the patient’s condition and functional reserve of the liver before resection[1]. Different 
definitions of PHLF are available. In 2011, the International Study Group of Liver 
Surgery (ISGLS) defined PHLF as “a post-operatively acquired deterioration in the 
ability of the liver to maintain its synthetic, excretory, and detoxifying functions, 
which are characterized by an increased International Normalized Ratio (INR) and 
concomitant hyperbilirubinemia on or after postoperative day 5”[14]. It is worth 
pointing out that severe PHLF is associated with a mortality rate of 54%.

A related syndrome that results in a transient but sometimes fatal form of liver 
failure has been described following liver transplantation (LT) but also after extensive 
liver resection. This is the so-called Small For Size Syndrome (SFSS). In 2005, Dahm et 
al[15] defined SFSS as a graft to recipient weight ratio < 0.8% alongside two of the 
following for three consecutive days; bilirubin > 100 mmol/L, INR > 2 and enceph-
alopathy grade 3 or 4. In this definition, SFSS is a clinical syndrome characterized by 
post-operative liver dysfunction, prolonged cholestasis and coagulopathy, portal 
hypertension and ascites. It can lead to a higher rate of hemorrhage, sepsis and 
gastrointestinal bleeding[16]. The key point of SFSS is the presence of portal 
hypertension and intra-hepatic portal congestion as the underlying cause of liver 
failure[17].

PREDICTION OF PHLF RISK
Despite improvements in surgical and postoperative management, parameters 
determining the degree of possible hepatectomy remain largely uncertain. Different 
patient related and surgical factors have to be considered to decrease PHLF incidence. 
Surgical factors include the extent of resection and volume of FLR, duration of intraop-
erative liver ischemia during portal pedicle clamping, duration of surgery and the 
need for blood transfusion. The risk of PHLF is highly influenced by the quality of 
underlying liver parenchyma. The type of underlying liver parenchyma is frequently 
assessed by preoperative liver biopsy, but noninvasive methods, such as liver stiffness, 
are now available. For example, liver stiffness measurement by transient elastography 
(Fibroscan) predicts persistent hepatic decompensation in patients undergoing 
resection for hepatocellular carcinoma[18].

It is generally thought that the minimal functional liver mass needed for adequate 
postoperative liver function is estimated to be 20%-25% in patients with normal liver 
parenchyma, whereas those with chemotherapy-induced liver injury require a FLR 
volume of approximately 30%, while those with cirrhosis at least a 40% minimal 
functional liver mass[19]. Therefore, standardized FLR volume can be easily evaluated 
by a tridimensional computed tomography (CT) reconstruction method, as FLR/ 
estimated total liver volume[20]. Estimated total liver volume is generally calculated 
using a formula based on body surface area[21].

In addition to volume, estimation of FLR function is an important factor. Typical 
biochemical parameters, such as liver function tests, albumin, and clotting factors must 
be evaluated. The old but effective Child-Turcotte-Pugh score, which was introduced 
in 1964, still represents a simple system for grading liver function[22]. The model for 
end-stage liver disease score, which is mainly used in liver transplantation, can also 
predict the survival rate of cirrhotic patients to better select ideal candidates for 
surgery[23]. A recent study also showed that mean serum level of hyaluronic acid can 
be a useful tool, especially when liver biopsy is not feasible[24].

Dynamic tests of liver function can also be used. The most well-known is 
indocyanine green (ICG) clearance. ICG is a water soluble, inert, fluorescent tricar-
bocyanine dye with protein binding close to 95% (mainly, alpha1- and beta-
lipoproteins and albumin), a hepatic extraction rate above 70%, and is almost 
completely excreted in its unchanged form by the liver. ICG elimination can be 
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expressed as ICG plasma disappearance rate (ICGPDR) or retention rate at 15 min 
(ICGR15), reflecting liver function. Use of the ICG test for patient selection has been 
shown to decrease postoperative mortality[25].

In recent years, there have been several attempts to assess hepatobiliary magnetic 
resonance imaging (MRI) as a tool to predict liver dysfunction. Since it was first 
described in 1991 by Weinmann et al[26], MRI has been showed to provide both global 
and segmental liver function information, and postoperative remnant liver function 
thanks to the measurement of liver signal intensity in the hepatobiliary phase.

Liver function evaluation by nuclear medicine techniques is also more and more 
used. Dynamic 99mTc-mebrofenin hepatobiliary scintigraphy has been used to 
provide quantitative information on total and regional liver function. The hepatic 
uptake of 99mTc-mebrofenin is similar to the uptake of organic anions such as 
bilirubin[27]. This technique efficiently estimates the risk of postoperative liver failure 
especially in patients with uncertain quality of liver parenchyma[28]. The 99m Tc-GSA 
is another recently proposed agent that is not affected by hyperbilirubinemia and can 
be used for liver function assessment in cholestatic patients[29]. Finally, the LiMAx test 
allows real-time in vivo determination of liver Cytochrome P450 1A2 (CYP1A2) 
activity. The CYP1A2 is not influenced by cholestasis or drugs and is ubiquitous in 
liver parenchyma. Intravenous administration of 13C methacetin, a substance 
exclusively metabolized by CYP1A2, with continuous real-time breath analysis 
represents the basis of the LiMAx test[30].

PORTAL VEIN EMBOLIZATION 
Since the first report in 1986, PVE has progressively become the gold standard for 
inducing liver hypertrophy with satisfying safety and efficacy[31]. Initially described 
by laparotomy, the portal system access is now obtained by percutaneous puncture of 
the portal vein. According to the operator’s preference, an ipsilateral or contralateral 
approach can be chosen, in reference to the segment bearing the tumor. The ipsilateral 
approach has the main advantage of protecting the FLR from injury[2] whereas the 
contralateral approach facilitates embolization[32]. Irrespective of the approach 
chosen, PVE is performed in a retrograde manner (Figure 1). Many embolic materials 
have been used for PVE without significant differences in terms of hypertrophy. 
Embolic materials include fibrin glue, N-butyl-2-cyanoacrylate and ethiodized oil, 
gelatin sponge and thrombin, coils, microparticles [e.g., polyvinyl alcohol (PVA) 
particles or tris-acryl gelatin microspheres] and absolute alcohol[33]. A non�
absorbable material is generally used. However, interesting results were reported with 
the use of an absorbable powder material (Gelfoam® powder, Pfizer, New York, USA) 
that lasts approximately 2 wk, leading to temporary PVE. In an animal model, this 
method showed efficient and stable liver regeneration[34]. These results were 
confirmed in a limited preliminary series in clinical practice[35] and a prospective 
study is undergoing (EMBORES study, NCT02945059). One of the advantages of 
temporary PVE is that it can theoretically be repeated several times to boost more liver 
hypertrophy, as has been suggested in an animal model[36].

PVE is successfully performed in more than 90% of cases[37]. A computed 
tomography scan with volumetric evaluation is generally performed between 4 and 8 
wk after embolization. PVE induces a FLR hypertrophy than can reach 40%[37], with a 
low 2% morbidity rate and no mortality in the vast majority of studies[37-39]. PVE is 
considered an efficient method, allowing successful hepatectomy in more than 70% of 
cases[37,38,40].

Contraindications to PVE are extensive portal thrombus and important portal 
hypertension[41]. Another potential limit of PVE is the risk of tumor growth during 
the 4 to 8 wk separating PVE and liver surgery. In addition, several authors have 
suggested that PVE itself could promote tumor growth within the embolized liver[42-
45]. Among others, these reasons have led to the development of alternative strategies.

PORTAL VEIN LIGATION (PVL) AND TWO-STAGE HEPATECTOMY
As it requires a surgical procedure with portal pedicles dissection, PVL is nowadays 
mainly indicated in the setting of two-stage hepatectomy (TSH) for the treatment of 
bilobar liver disease[46,47]. In the TSH strategy, the first surgical step includes tumoral 
clearance of the FLR (usually by parenchymal spearing resections or locoregional 
treatment like radiofrequency ablation) and concomitant PVL that allows FLR growth. 
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Figure 1 Right portal vein embolization using. A: Contralateral; B: Ipsilateral approach.

In the second step, after liver regeneration (approximately 4 to 8 wk later), major liver 
resection is performed (usually right or right extended hepatectomy) (Figure 2). 
Similarly, PVL can be performed for the management of patients presenting 
synchronous colorectal metastases or neuroendocrine tumors[47]. The first surgical 
step associates colorectal resection with PVL, followed by major liver surgery in the 
second procedure. However, many centers have adopted PVE (performed by the 
percutaneous approach after FLR clearance or colorectal resection) for two-step 
procedures, avoiding portal pedicle dissection and facilitating the second procedure
[48].

It was initially suggested that PVE resulted in superior FLR growth compared to 
PVL[49] as in theory PVE allows distal portal obstruction which decreases the 
possibility of intrahepatic collateral development. Several studies demonstrated that 
the results are globally similar[50,51]. In fact, the debate concerning the efficiency of 
PVL compared to PVE is no longer relevant. PVL requires a surgical procedure and 
can appear as an alternative to PVE only when a two-step surgery is planned. In other 
cases, percutaneous PVE is clearly a simpler and better tolerated approach.

ASSOCIATING LIVER PARTITION AND PORTAL VEIN LIGATION FOR 
STAGED HEPATECTOMY
The aim of this alternative strategy, described by Schnizbauer et al[52] in 2012, is to 
induce rapid and massive liver hypertrophy, to allow liver surgery in a short period of 
time in patients with initially very limited FRL volume. The first step of the associating 
liver partition and portal vein ligation for staged hepatectomy (ALPPS) procedure 
consists of performing PVL and an in situ splitting of the liver parenchyma, leaving the 
hepatic artery, bile duct, and hepatic vein intact until the subsequent operation. This 
first surgical step can be associated with tumoral clearance of the FRL. During the 
second operation (that can be performed one to two weeks later) the remaining hepatic 
artery, bile duct, and hepatic vein are divided and the liver specimen is extracted 
(Figure 3).

The first report demonstrated a morbidity rate of 44% and a mortality rate of 12%
[52], and triggered an intense debate on the safety of this procedure, limiting its 
promotion worldwide. The morbi-mortality rate decreased with experience but 
remains high, with approximately 40% of major postoperative complications and 9% 
of mortality[53]. Nevertheless, the ALPPS technique induces more than 65% of FLR 
growth in approximately 7 days[52-55] and the second procedure is feasible in more 
than 90% of cases[56]. The main advantage of the ALPPS procedure is the rapid 
increase in FLR volume in a short interval and therefore a shorter interval between the 
two stages. Although the volumetric results of this technique are impressive, several 
authors suggested that FLR volume hypertrophy is not correlated to functional 
improvement[57,58] which could partly explain the high morbidity of the procedure. 
Besides, concerns have been raised by some authors regarding potentially poorer 
oncological results comparing to the classical TSH[59]. The results of a meta-analysis 
comparing ALPPS to TSH showed that the extent of FLR increase was not different 
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Figure 2 Two-stage hepatectomy procedure starts with tumoral clearance of the future liver remnant. A: Concomitant right portal vein ligation; B: 
Allowing left liver growth; C: Ends with right hepatectomy.

Figure 3 Associating liver partition and portal vein ligation for staged hepatectomy procedure. A: Starts with in situ splitting of the liver 
parenchyma with concomitant right portal vein ligation; B: Ends with right hepatectom.

between the two groups[60]. The time needed to reach final liver volume was shorter 
in ALPPS than in the TSH approach[60]. In this meta-analysis, ALPPS was associated 
with a higher incidence of major and overall morbidity and mortality compared to 
TSH[60]. However, in a recent randomized controlled trial, Hasselgren et al[61] 
observed similar morbidity between ALPPS and classical TSH and an improved 
survival in the ALPPS group.

To decrease complication rate, a variety of technical modifications have been 
proposed such as partial-ALPPS, mini-ALPPS, tourniquet-ALPPS, hybrid-ALPPS, 
microwave ablation-assisted ALPPS and radiofrequency ablation-assisted ALPPS. 
Huang et al[62] suggested in a systematic review that a partial ALPPS technique in 
which only partial parenchymal sparing is performed during the first surgical step 
could achieve lower morbidity and mortality rates, reaching the same FLR 
hypertrophy rate as ALPPS in non-cirrhotic patients.

SEQUENTIAL TRANS-ARTERIAL EMBOLIZATION (TAE) AND PORTAL 
VEIN EMBOLIZATION
Although PVE remains the gold standard for FLR hypertrophy, two concerns persist 
with this approach: An insufficient contralateral hypertrophy, particularly in patients 
with underlying liver disease (steatosis, fibrosis or cirrhosis), and the eventuality of 
tumor progression while waiting for the non-embolized liver to hypertrophy. In 
particular, portal flow interruption may induce a compensatory increase in arterial 
blood flow of embolized segments and result in a paradoxical growth of tumors 
vascularized by arterial blood flow. In this context, it has been postulated that the 
addition of trans-arterial embolization (TAE) or trans-arterial chemoembolization 
(TACE) would produce more rapid and extensive FLR growth (by obtaining 
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obliteration of intrahepatic arterioportal shunts) and may help to counteract the 
stimulating effect on tumor growth[63]. Therefore, hepatocellular carcinomas, which 
are tumors particularly vascularized by arterial blood flow and develop generally in 
underlying pathological liver parenchyma, are the main target of this combined 
strategy[64].

During TAE, a catheter is directly inserted via either the common femoral or left 
radial artery and an intra-arterial injection of a combination of microspheres and PVA 
particles is performed in the arterial branches of the segments to be resected. During 
TACE, an intra-arterial injection of a cytotoxic drug is performed such as doxorubicin, 
epirubicin, idarubicin, mitomycin C, or cisplatin, that is emulsified in ethiodized oil 
(Lipiodol® Ultra-Fluid, Guerbet). This is followed by intra-arterial injection of an 
embolic agent, such as gelatin sponge, PVA particles, or microspheres[65] (Figure 4). 
TACE can also be performed using recently developed drug-eluting beads (DEB) that 
allow the slow release of chemotherapeutic agents, and increase ischemia intensity and 
duration[65].

A sequential approach, with a time interval of a few days, is recommended to limit 
the risk of nontumoral liver ischemic necrosis[66] and TAE is mostly performed before 
PVE[66,67]. Although the number of patients reported in studies that evaluated this 
approach is limited, observed FLR hypertrophy is generally superior to that observed 
after isolated PVE. For example, Yoo et al[68] reported a statistically significant 
increase of 7.3% and 5.8% in FLR (over the total liver volume) for sequential 
TACE/PVE and isolated PVE, respectively.

An important elevation of transaminases is generally observed after this sequential 
approach without important clinical consequences. In the largest series reporting this 
approach, Peng et al[64] reported 29 procedures without deaths and only one 
complication and 27 patients (93%) underwent subsequent hepatectomy. Post-
hepatectomy morbidity and mortality among these patients was 27.5% and 6.9%, 
respectively.

Theoretical contraindications of this method include extensive portal thrombus, 
important portal hypertension or previous biliary surgery (biliodigestive anastomosis) 
which exposes the patient to hepatic abscess formation after arterial embolization.

LIVER VENOUS DEPRIVATION
This technique consists of performing conventional PVE and ipsilateral hepatic vein 
obstruction (Figure 5). By associating hepatic vein embolization, the aim is to eliminate 
any residual portal vein flow and reduce hepatic artery inflow which can further 
encourage liver regeneration. Initially described as a sequential approach in which 
hepatic vein embolization is secondarily performed in case of insufficient FLR growth 
after PVE, it was demonstrated that both procedures (portal and hepatic vein 
embolization) can be performed simultaneously[69,70]. This novel approach is partic-
ularly interesting as it allows important liver regeneration with good tolerance. 
Although no study comparing ALPPS to LVD is available, it has been suggested that 
LVD could overcome the limits of ALPPS, abolishing the necessity of two major 
surgical interventions in close sequence.

Firstly, PVE is performed as previously described. For hepatic vein embolization, a 
vascular plug is placed in the proximal part of the hepatic vein to avoid migration of 
embolization agent. The vein is then embolized with a mixture of ethiodized oil and 
N- butyl cyanoacrylate[71]. The term “extended LVD” is used for concomitant 
embolization of the right and middle hepatic vein with the right portal branch[57].

The results of this approach on FLR increase are superior to those observed after 
isolated PVE. In a recent large comparative study, Laurent et al[71] observed a FLR 
volume increase of 28.9% after PVE compared to 61.2% after LVD (P < 0.0001). In this 
study, LVD allowed surgery in 86.4% of patients and no PHLF was reported. 
Kobayashi et al[72] observed similar results with a superior FLR hypertrophy after 
LVD compared to PVE (35% vs 24%, P = 0.034). In addition, the tolerance of LVD 
seems to be similar to the tolerance of isolated PVE[71,72].

RADIATION LOBECTOMY
This recent approach is derived from trans-arterial radioembolization with yttrium-90
[73]. In radiation lobectomy (RL), radioembolization of both the tumor and the non-
tumoral liver parenchyma that will be secondarily resected is performed, which 
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Figure 4 Sequential embolization. A: Trans-arterial embolization; B: Portal vein embolization of the right liver.

Figure 5 Right liver venous derivation associates in a sequential or concomitant approach. A: Right portal vein embolization; B: Ipsilateral hepatic 
vein embolization.

requires higher radiation doses[74,75]. This technique allows concomitant tumoral 
control and FLR increase. One major advantage of this approach is that it could be 
carried out in patients with portal vein thrombosis[75].

The procedure is well-tolerated[74] with transient moderate adverse events. Results 
in terms of FLR volume growth are very similar to those observed after PVE. Vouche 
et al[74] reported 45% of FLR hypertrophy and observed a correlation between the 
presence of a portal vein thrombosis and FLR growth. However, series reporting major 
liver resection after RL are scarce[76,77]. Andel et al[77] recently reported 10 major 
hepatectomies in patients that were initially treated with RL for insufficient functional 
FLR. The RL allowed a 41% increase in FLR volume with 84% of FLR function increase 
(evaluated on scintigraphy). All resections were performed without major intraop-
erative problems. Only one patient developed a serious complication not directly 
related to the liver surgery and other complications were mild.
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Table 1 Indication, advantages, and disadvantages of existing approaches to induce liver remnant hypertrophy before major liver 
resection

Approach Indication Advantage Disadvantage

PVE Insufficient FLR 
volume

Percutaneous approach Contraindicated in patients with extensive portal 
thrombus and important portal hypertension; Could 
promote tumoral growth within the embolized liver

PVL and two-stage 
hepatectomy

Insufficient FLR 
volume and treatment 
of bilobar liver disease

PVL is performed during the first surgical step 
(tumoral clearance of the FLR)

Surgical procedure; Morbidity 

Associating liver 
partition and PVL 
for staged 
hepatectomy 

Insufficient FLR 
volume +/- treatment 
of bilobar liver disease

Liver surgery is performed in a short period of 
time (15 d); First surgical step (PVL and in situ 
splitting of the liver parenchyma) can be 
associated with tumoral clearance of the FLR

Surgical procedure; Morbidity

Sequential trans 
arterial embolization 
and PVE

Insufficient FLR 
volume in patients 
with hepatocellular 
carcinoma

Percutaneous approachMay help to counteract 
the stimulating effect of PVE on tumor growth

Sequential approach (two procedures) is recommended 
to limit the risk of nontumoral liver ischemic necrosis; 
Contraindicated in patients with extensive portal 
thrombus, important portal hypertension or previous 
biliary surgery (biliodigestive anastomosis)

Liver venous 
deprivation

Insufficient FLR 
volume

Percutaneous approach Contraindicated in patients with extensive portal 
thrombus and important portal hypertension; Could 
promote tumoral growth within the embolized liver

RL Insufficient FLR 
volume

Percutaneous approachConcomitant tumoral 
control and FLR increaseCan be carried out in 
patients with portal vein thrombosis

Data reporting liver resection after RL is scarce

PVE: Portal vein embolization; FLR: Future liver remnant; PVL: Portal vein ligation; RL: Radiation lobectomy.

CONCLUSION
Careful initial evaluation of FLR volume and function is crucial before planning major 
liver resection. When required, several approaches are now available to decrease the 
risk of PHLF (Table 1) and thus postoperative mortality. Although PVE remains the 
gold standard, recent techniques that are derived from PVE might play an increasingly 
important role in future years.
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Abstract
Autoimmune hepatitis (AIH) is a severe chronic autoimmune disease and has a 
significant impact on the patient’s quality of life, in particular regarding psycho-
logical problems such as anxiety and depression. Consistent evidence on which 
patient-related, disease-related or physician-related factors cause health-related 
quality of life (HRQoL) impairment in patients with AIH is lacking. Current 
studies on HRQoL in AIH are mainly single-centered, comprising small numbers 
of patients, and difficult to compare because of the use of different questionnaires, 
patient populations, and cutoff values. Literature in the pediatric field is sparse, 
but suggests that children/adolescents with AIH have a lower HRQoL. 
Knowledge of HRQoL and cohesive factors in AIH are important to improve 
healthcare for AIH patients, for example by developing an AIH-specific chronic 
healthcare model. By recognizing the importance of quality of life beyond the 
concept of biochemical and histological remission, clinicians allow us to seek 
enhancements and possible interventions in the management of AIH, aiming at 
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Core Tip: Autoimmune hepatitis (AIH) is a severe chronic autoimmune disease and has 
a significant impact on the patient’s quality of life, in particular regarding psycho-
logical problems such as anxiety and depression. The health-related quality of life 
(HRQoL) of patients with AIH can be affected by various patient-related, disease-
related, and physician-related factors. In this review we summarized several specific 
factors that are liable to influence HRQoL in AIH. By recognizing the importance of 
quality of life beyond the concept of biochemical and histological remission, clinicians 
allow us to seek enhancements and possible interventions in the management of AIH.

Citation: Snijders RJ, Milkiewicz P, Schramm C, Gevers TJ. Health-related quality of life in 
autoimmune hepatitis. World J Hepatol 2021; 13(11): 1642-1652
URL: https://www.wjgnet.com/1948-5182/full/v13/i11/1642.htm
DOI: https://dx.doi.org/10.4254/wjh.v13.i11.1642

INTRODUCTION
Autoimmune hepatitis (AIH) is a severe chronic autoimmune disease that occurs 
mainly in women and affects health-related quality of life (HRQoL) worldwide. The 
diagnosis of AIH is based on the presence of autoantibodies, typical features on liver 
histology, and increased immunoglobulin G (IgG) levels[1]. The presentation of AIH is 
variable, ranging from mild and asymptomatic disease to fulminant hepatic failure. 
Nonspecific symptoms at presentation are fatigue, anorexia, jaundice, and abdominal 
pain, whereas others are asymptomatic at disease onset[1]. The majority of patients 
need lifelong treatment to prevent disease progression to cirrhosis and/or 
decompensation[2]. Current treatment strategies in AIH include administering 
corticosteroids (mainly prednisolone) and a long-term corticosteroid-saving regime, 
including azathioprine (AZA) as first-line treatment[3,4]. Second-line immunosup-
pressants include mycophenolate mofetil (MMF), calcineurin inhibitors (CNIs), and 
mercaptopurine and have proven to be effective in mainly uncontrolled studies[5].

The main goal of AIH treatment is to achieve complete biochemical and histological 
remission without the occurrence of side effects. Alanine aminotransferase, aspartate 
aminotransferase and IgG serum levels are used as parameters to monitor biochemical 
response, and current guidelines advocate pursuit of normalization of those 
parameters as the aim of treatment. As a result, treatment failure, defined as absence of 
normalization of transaminases, triggers clinical actions such as increase of drug dose 
or change in drug class. A sole focus on biochemical response is insufficient when 
managing AIH. From a patient perspective, other aspects that affect HRQoL, including 
but not limited to side effects, psychological health, and implications of the disease, are 
just as important.

One of the main objectives relating to AIH according to the International 
Autoimmune Hepatitis Group (IAIHG), is better assessment of HRQoL in patients. 
However, literature or guidelines on that topic in AIH are scarce and inconsistent. An 
update on current literature on HRQoL in AIH, is warranted to reveal the most 
important research gaps[6]. Understanding which potentially treatable factors are 
associated with reduced quality of life in patients with AIH is essential for 
development of interventions targeting well-being. The focus of this paper is to review 
the current knowledge of HRQoL and associated factors in AIH, to comment on the 
current status, and to identify future perspectives that may influence and benefit 
disease management of adult patients with AIH.
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METHODOLOGY
We searched the titles, abstracts, and MeSH terms of articles indexed in PubMed using 
the keywords “autoimmune hepatitis,” “AIH,” “health-related quality of life,” and 
“quality of life.” The search was limited to articles published before January 27, 2021. 
We included articles based on the following criteria: (1) Full-text articles published in 
peer-reviewed journals; (2) English or Dutch articles; (3) Publication dates within the 
last 20 years at the time of the search; and (4) Either adult or pediatric AIH. The search 
retrieved 116 publications; 39 were evaluated in full-text after screening the titles and 
abstracts (Figure 1). We also checked the reference lists of the included articles to 
identify other articles. For the purpose of this review, we primarily focused on articles 
addressing the role of HRQoL in AIH.

HRQOL IN ADULT PATIENTS WITH AIH
Several studies have reported reduced general or liver-specific HRQoL in AIH patients 
(Tables 1 and 2)[7-15]. The first study published was conducted in the Netherlands 
and showed a reduced quality of life in 141 patients with AIH compared with healthy 
controls, using three instruments, the SF-36 for generic HRQoL, the Multidimensional 
Fatigue Index-20, and the Liver Disease Symptom Index 2.0, which is a liver-specific 
questionnaire addressing nine topics. In particular, patients had lower scores in 
subscales measuring physical problems or general health. Patients with AIH 
mentioned fatigue more often than healthy controls did[13]. A landmark study 
performed in Germany compared 102 AIH patients to the German general population 
and to published data of patients with arthritis using the SF-12[12]. They reported 
lower mental well-being in patients with AIH compared with both groups, but the 
physical component score (PCS) was unaffected[12]. A Polish single-center study 
showed that patients with AIH (n = 140) scored significantly worse in all subscales of 
the SF-36, except for one measuring the impact of emotional problems on work and 
daily activities[15]. The majority of the AIH patients in that cohort had cirrhosis (55%), 
and as in the previously mentioned study, that did not have a significant effect on 
well-being. A recent Italian multicenter study of chronic liver disease reported that of a 
total of seven different chronic liver diseases without cirrhosis, patients with AIH had 
a lower quality of life measured with the EQ-5D VAS score, and experienced 
difficulties in the self-care domain, even after adjusting for multiple possible 
confounders, including age, sex, education, and professional status[10]. That was 
confirmed in a Cuban study in which AIH patients had lower quality of life scores 
than hepatitis B patients using the disease-specific Chronic Liver Disease 
Questionnaire (CLDQ)[7]. Only one meta-analysis was performed, including three 
studies that evaluated HRQoL measured with the SF-36. The analysis confirmed 
reduction of the PCS and mild reduction of the mental component score in patients 
with AIH. However, they included only older studies and compared all AIH patients 
(including Dutch and German patients) to the United States general population norm
[16]. Finally, the largest study conducted so far involved multiple health centers in the 
United Kingdom and confirmed previous results by finding that the HRQoL of 
patients with AIH (n = 990) was worse than it was in the general population, adjusted 
for age and gender and using the EQ-5D-5L[14]. Although these studies consistently 
report a lower HRQoL in AIH, albeit in varying domains, it remains difficult to 
compare the studies because of the use of different questionnaires (EQ-5D-5L vs SF-12 
or SF-36 vs CLDQ), cutoff values, methodology, and patient populations. Moreover, 
most studies were conducted at single centers and included small numbers of 
participants, thereby introducing bias based on the heterogenicity in study 
populations (e.g., remission status and demographic differences).

HRQOL IN PEDIATRIC PATIENTS WITH AIH
A lower HRQoL was also found in children and adolescents with AIH, although 
literature in the pediatric field is sparse[17-19]. A study performed in Portugal 
compared 43 children with AIH to 62 healthy children using the Pediatric Quality of 
Life Inventory 4.0 (PedsQL 4.0)[17]. They found that especially children with 
associated comorbidities (e.g., inflammatory bowel disease, hemolytic anemia, and 
hypothyroidism) had a lower quality of life. That was confirmed in a Brazilian cohort 
using the same questionnaire[18]. Interestingly, the evaluation of HRQoL in the 
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Table 1 Overview of the studies assessing aspects of health-related quality of life in autoimmune hepatitis

Ref. Country Population (n) Biochemical 
remission (%)

Cirrhosis 
(%) Questionnaire Factors/results

van der Plas et al
[13], 2007

The 
Netherlands

AIH (142), other 
liver diseases (776)

- - SF-36, MFI-20, LDSI HRQoL impairment; Association 
with: Fatigue

Afendy et al[8], 
2009

United States, 
Italy

AIH (13), other 
chronic liver 
diseases (1090)

- 84.61 SF-36 HRQoL impairment; Negative 
correlation: Age (every scale), 
female gender (primary predictor 
of mental health), cirrhosis (every 
scale, primary predictor of 
physical health)

Schramm et al
[12], 2014

Germany AIH (103) 77 27 SF-12, PHQ-9, 
GAD-7

HRQoL impairment (total mental 
score/mental well-being); 
Association with: depression and 
anxiety (positive correlation with 
female gender, corticosteroid use, 
and concerns about progression of 
the liver disease)

Takahashi et al
[11], 2018

Japan AIH (265), chronic 
hepatitis C (88)

- 10.6 CLDQ, SF-36 HRQoL impairment; Negative 
correlation: Age, cirrhosis, 
comorbid diseases, corticosteroid 
use (worry domain), disease 
duration, AST; Positive 
correlation: platelet count

Wong et al[14], 
2018

United 
Kingdom

AIH (990) 56 33 EQ-5D-5L, FIS, 
CFQ, HADS

HRQoL impairment; Positive 
correlation: Biochemical remission; 
Negative correlation: overlap 
syndromes, corticosteroid use, and 
calcineurin inhibitor use

Janik et al[15], 
2019

Poland AIH (140) - 55 SF-36, MFIS, PHQ-
9, STAI

HRQoL impairment (every scale, 
except role emotional2); Negative 
correlation: Female gender, 
depression, trend toward better 
HRQoL (physical health) with 
budesonide vs prednisone; 
Association with: Anxiety, 
depression, and fatigue

Dirks et al[9], 
2019

Germany AIH (27), AIH/PBC 
(8), other liver 
diseases (97)

- 0 SF-36, FIS, HADS HRQoL impairment; Association 
with: Anxiety, depression, and 
fatigue

Castellanos-Fern
ández et al[7], 
2021

Cuba AIH (22), overlap 
syndrome of AIH 
and PBC (7), PBC 
(14), other liver 
diseases (500)

- 43.93 FACIT-F, 
WPAI:SHP, CLDQ

HRQoL impairment; Positive 
correlation: Male gender, 
exercising > 90 min/wk; Negative 
correlation: Fatigue, abdominal 
pain, anxiety, depression, and 
extrahepatic comorbidity (diabetes 
mellitus type 2, sleep apnea)

Cortesi et al[10], 
2020

Italy AIH (51), other 
chronic liver 
diseases (2911)

- 0 EQ-5D-3L HRQoL impairment in AIH

1Eight patients with Child-Pugh class A and three patients with Child-Pugh class C.
2Scale measures the impact of emotional problems on work and daily activities.
3Cirrhosis in patients with autoimmune liver diseases (n = 43). AIH: Autoimmune hepatitis; HRQoL: Health-related quality of life; PBC: Primary biliary 
cholangitis; AST: Aspartate aminotransferase; CFQ: Cognitive failure questionnaire; CLDQ: Chronic liver disease questionnaire; ECR: Experiences in close 
relationship scale; EQ-5D-5L/3L: European quality of life 5-dimension 5-level/3-level; FACIT-F: Functional assessment of chronic illness therapy-fatigue; 
FIS: Fatigue impact scale; GAD-7: Generalized anxiety disorder screener; HADS: Hospital anxiety depression scale; LDSI: Liver disease symptom index 2.0; 
MFI-20: Multidimensional fatigue index-20; PHQ-9: Patient health questionnaire; SF-12: Short-form 12; SF-36: Short-form 36; STAI: State-trait anxiety 
inventory; WPAI:SHP: Work productivity and activity-specific health problem.

parents differed from the children’s self-reports[18]. Only the physical and total scores 
were significantly lower in patients with AIH based on the parental reports, whereas 
in the children’s reports the emotional, school, physical, and total scores were 
significantly lower.
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Table 2 Overview of the questionnaires assessing aspects of health-related quality of life in autoimmune hepatitis

Questionnaire Main function Domains Items, total score

CFQ[41] Cognition Memory, attention, concentration, forgetfulness, 
word-finding abilities, and confusion

25 items scored 0-4, total 
score 0-100

CLDQ[42] Generic HRQoL Abdominal symptoms, fatigue, systemic symptoms, 
activity, emotions, and worry

29 items scored 1-7, total 
score 29-203

ECR[43] Relationship styles ECR-anxiety, and ECR-avoidance 12 items scored 1-7, each 
scale total score 7-42

EQ-5D-5L/EQ-5D-3L/EQ-VAS
[44]

Generic HRQoL, EQ-VAS: 
participants’ self-rated health on a 
visual analog scale

Mobility, self-care, usual activities, pain/discomfort, 
and anxiety/depression

EQ-5D: 5 items scored 1-5, 
total score 5-25; EQ-VAS: 
total score 0-100

FACIT-F[45] Fatigue Physical well-being, social well-being, emotional 
well-being, functional well-being, and a fatigue-
specific domain

40 items scored 0-4, total 
score 0-160

FIS[46] Fatigue Cognitive functioning, physical functioning, and 
psychosocial functioning

40 items scored 0-4, total 
score 0-160

GAD-7[47] Anxiety - 7 items scored 0-3, total 
score 0-21

HADS[48] Anxiety, depression Anxiety, and depression 14 items scored 0-3, total 
score 0-42

LDSI[49] Liver disease symptoms Itch, joint pain, abdominal pain, daytime sleepiness, 
worry about family situation, decreased appetite, 
depression, fear of complications, and jaundice (+ 
symptom hinderance)

18 items scored 1-5, total 
score 18-90

MFI-20[50] Fatigue General fatigue, physical fatigue, reduction in 
activity, reduction in motivation, and mental fatigue

20 items scored 1-5, each 
domain total score 4-20

MFIS[46,51] Fatigue Physical, cognitive, and psychosocial functioning 21 items scored 0-4, total 
score 0-84

PHQ-9[52] Depression Anhedonia, feeling down, sleep, feeling tired, 
appetite, feeling bad about self, concentration, 
activity, and suicidality

9 items scored 0-3, total 
score 0-27

SF-12[53] Generic HRQoL Physical functioning, role limitations due to physical 
problems, bodily pain, general health, vitality, social 
functioning, role limitations due to emotional 
problems, and mental health

12 items scored 1-5, total 
score 0-100

SF-36[54] Generic HRQoL General health, physical and social functioning, 
bodily pain, role-physical, mental health, role-
emotional, and vitality

36 items, total score 0-100

STAI[55] Anxiety State anxiety, and trait anxiety 40 items scored 1-4, total 
score 0-80

WPAI:SHP[56] Impairment in daily activities and 
in work

Work productivity impairment, and activity 
impairment

6 items scored 0-10, total 
score -

Included in the table are the questionnaires that were employed in the reviewed studies. CFQ: Cognitive Failure Questionnaire; CLDQ: Chronic Liver 
Disease Questionnaire; ECR: Experiences in Close Relationship Scale; EQ-5D-5L/EQ-5D-3L/EQ-VAS: European Quality of life 5-Dimension 5-Level/3-
Level/EQ-visual analog scale; FACIT-F: Functional Assessment of Chronic Illness Therapy-Fatigue; FIS: Fatigue Impact Scale; GAD-7: Generalized Anxiety 
Disorder Screener; HADS: Hospital Anxiety Depression Scale; LDSI: Liver Disease Symptom Index 2.0); MFI-20: Multidimensional Fatigue Index-20; MFIS: 
Modified Fatigue Impact Scale); PHQ-9: Patient Health Questionnaire; SF-12: Short-form 12; SF-36: Short-form 36; STAI: State-Trait Anxiety Inventory; 
WPAI:SHP: Work Productivity and Activity-Specific Health Problem).

DETERMINANTS OF HRQOL IN AIH
The HRQoL of patients with chronic diseases can be affected by various patient-
related, disease-related, and physician-related factors. We have summarized the 
patient-, disease- and physician-related factors that are liable to influence HRQoL in 
AIH in Figure 2.

Patient-related factors
Patients with AIH are more often diagnosed with symptoms of depression and anxiety 
compared with the general population or healthy controls[7,9,10,12,15]. Studies by 
Schramm and Janik et al[15] showed a significantly higher percentage of depression 
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Figure 1 Flowchart of included studies after performing the literature search. AIH: Autoimmune hepatitis; HRQoL: Health-related quality of life.

Figure 2 Patient-, disease- and physician-related factors affecting health-related quality of life in patients with autoimmune hepatitis. 
HRQoL: Health-related quality of life.

and anxiety symptoms, measured with the PHQ-9, GAD-7, or State-Trait Anxiety 
Inventory[12,15]. Depression was strongly correlated with both physical and mental 
components of SF-36. Despite biochemical remission in 77% of the patients (n = 103), 
the occurrence of severe depressive symptoms within the German cohort appeared to 
be five times as frequent compared with the general population.12 In addition, even 
AIH patients without cirrhosis revealed more problems with regard to depression and 
anxiety compared with the general population[10]. It is interesting to note that psycho-
logical stress was also associated with relapses in patients with AIH type 1[20].

Other patient-related factors, particularly age and sex, have been described often in 
previous studies[7,11,12,14]. Studies in the United Kingdom and Japan reported a 
negative correlation between age and HRQoL[11,14], but Polish and Cuban studies did 
not find such a correlation [7,15]. With respect to sex differences, female patients 
experience more symptoms of depression[12,15] and have a worse quality of life than 
their male counterparts[7,15]. In our experience, women experience weight increase 
and other cosmetic changes associated with corticosteroids as a great inconvenience in 
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particular. In contrast, a study in the United Kingdom study found that the female sex 
was associated with a higher quality of life, albeit in an unadjusted regression analysis. 
These inconsistent correlations highlight that we still do not know which patient 
factors are important when assessing HRQoL in patients with AIH.

For all chronic liver diseases, it holds that lifestyle changes are part of the treatment. 
While tackling lifestyle is a hot topic in chronic disease, it is infrequently addressed in 
AIH. However, patients should still be informed about the risk of specific lifestyles, 
such as overweight, alcohol misuse, and sedentary behavior. Losing weight, more 
exercise, and a healthier diet contribute to successful management of chronic liver 
diseases and cirrhosis[21]. Indeed, exercising for more than 90 min/wk is a predictor 
of a better quality of life in patients with chronic liver diseases (e.g., AIH)[7]. Another 
study confirmed that an increased body mass index was associated with a lower 
quality of life in patients with AIH[14]. In addition, alcohol consumption presents a 
clear risk of the progression of liver fibrosis in chronic liver diseases. Other factors, 
such as education level, socioeconomic data, smoking, or losing weight, were not 
frequently mentioned in the described studies. It follows that physicians need to 
communicate with patients about lifestyle adaptations through motivational 
interviews.

Coping with chronic conditions and taking medication daily goes hand in hand 
with discomfort, which potentially results in reduced HRQoL. Patients with more than 
one chronic disease that take daily medication have a lower quality of life[22]. 
Adherence to treatment is rarely discussed with patients but has a great impact on 
well-being and treatment response. A high psychosocial burden has been shown to 
significantly decrease adherence to treatment and to be associated with poor treatment 
response[23]. Therefore, prompt recognition of symptoms of depression and anxiety is 
important to improve patient adherence and lead to better response to treatment. 
Various factors may influence adherence to drug treatment in adolescents with AIH, 
particularly depression, anxiety, younger age, sex, prednisone dose, and long-term 
therapy have been found in previous studies[23-25]. In liver transplant recipients, 
marital status (if the patient is divorced) and having mental distress are associated 
with reduced self-reported adherence to immunotherapy[26]. However, information 
on demographic factors or socioeconomic data, including the status of a relationship 
and educational level, were not explicitly examined in all previous studies, which 
would be necessary for more detailed conclusions.

Disease-related factors
As mentioned previously, the main objective in treating AIH is to achieve complete 
biochemical and histological remission without side effects. While it is plausible that 
achieving biochemical remission results in better HRQoL, the association has not been 
studied often. One study found that patients with biochemical remission had a 
significantly higher quality of life [14]. One could speculate that incomplete 
biochemical remission causes uncertainty about, and possibly fear of, a relapse, which 
is understandable given that every relapse increases the risk of decompensated liver 
failure or the necessity of liver transplantation[27]. Whether this has a role in AIH is 
unknown at present.

Liver cirrhosis, or an advanced stage of fibrosis in patients with chronic liver disease 
is a known cause for reduced HRQoL, independent of the underlying liver disease[8,
28,29]. However, studies in patients with AIH demonstrate significant variability 
regarding the relation between fibrosis and HRQoL. Most studies describe that having 
liver fibrosis or compensated cirrhosis does not affect patient well-being in general[12,
14,15]. In contrast, another study did find an impaired physical condition in patients 
with AIH using the same SF-36 questionnaire and an overall lower quality of life using 
the CLDQ[11]. Plausible explanations for the discrepancy are the use of different 
general vs disease-specific, SF-36 vs SF-12 vs EQ-5D-5L questionnaires and the 
inclusion of different AIH populations regarding biochemical remission status and 
disease duration. Interestingly, none of the cited studies included AIH patients with 
decompensated cirrhosis in their cohort, which is known to be a major factor for 
reduced HRQoL in cirrhosis with other etiologies[30,31].

Patients with an overlap syndrome or a variant syndrome of AIH and primary 
biliary cholangitis (PBC) or primary sclerosing cholangitis (PSC), had a worse quality 
of life than patients not reporting those comorbidities[7,9,14]. In addition, fatigue is a 
typical symptom in patients with characteristics of PBC, and is expected to have a 
negative impact on HRQoL[7,9]. In that context, it is not only essential to treat both 
AIH and the overlapping syndrome (i.e., PBC or PSC), but also to address associated 
symptoms (i.e., IBD in PSC, itch in PBC) in the patients[14]. Interestingly, such a 
correlation was not found in a study in children with autoimmune liver diseases. It 
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found no differences in HRQoL scores in children with AIH vs overlap syndrome or 
variant syndrome with PSC[19]. Extrahepatic manifestations, for example thyroid 
disease, insulin-dependent diabetes mellitus, connective tissue disorders, and 
autoimmune skin disease, are common in AIH and can affect well-being, including 
fatigue, but the effect on HRQoL is unstudied so far[32].

A large proportion of patients with AIH receive corticosteroid therapy[11,33]. All 
treatments have specific side effects[34,35], but long-term use of corticosteroids is well-
known for its undesirable effects, including osteoporosis, mood swings, depression, 
obesity, cognitive dysfunction, chronic fatigue, and reduced physical activity[1,5]. The 
negative impact of the use of corticosteroids on HRQoL was demonstrated in several 
studies[12,14]. In the United Kingdom cohort, corticosteroids were extensively linked 
to impaired HRQoL. Even patients who received low-dose of corticosteroids, and 
independent of their biochemical status, had a lower HRQoL[14]. Schramm et al[12] 
found a significant correlation between corticosteroids and depression. Sockalingam et 
al[23] found that patients with a moderate or high PHQ-9 score of > 10 were 
administered a significantly higher dose of prednisone compared with patients with a 
score of < 10. These data give additional support for steroid-free therapy as a 
treatment goal in every AIH patient to prevent steroid-related complications, and 
should be attempted within the first year of treatment. Other disease-related factors 
affecting mental well-being or HRQoL, such as markers of disease activity or disease 
duration, are so far unknown[12,15].

Currently, AZA is still the primary choice for maintenance therapy, and was not 
directly associated with a lower quality of life or health utility in a large cross-sectional 
analysis[14]. It is important to note that the use of AZA is associated with an increased 
risk of lymphoma and nonmelanoma skin cancer[36,37]. Although lymphoma in the 
long term is rare, it has to be taken into account that the occurrence of these side 
effects, or even the patient’s concerns, might affect their quality of life. AZA may also 
cause hair loss that leads to alopecia. The possibility is frequently raised by the female 
patients and may affect various aspects of quality of life and lead to incompliance. The 
effect of other prescribed therapies on improving psychosocial outcomes, such as 
mycophenolate mofetil and mercaptopurine, is unknown. However, calcineurin 
inhibitors that have undesirable effects may be associated with lower health utility[14].

Physician-related factors
Physician-related factors are usually not addressed in studies and are thus difficult to 
take into account. Schramm et al[12] found that patient concerns about the severity of 
their disease, and being fearful of cirrhosis (mostly unnecessary) were factors 
associated with depression and anxiety symptoms. Providing the patient with 
information on his/her illness or medications and involving the patient in treatment 
options, can contribute to the patient’s well-being. Whether the location of care (i.e. 
transplant vs nontransplant center) matters is uncertain. One study showed that there 
was no difference in health utility between transplant and nontransplant centers[14], 
and another found that biochemical remission rates were higher in transplant centers 
compared with nontransplant centers[33]. Both were conducted in the United 
Kingdom. Extrapolation of the results to other countries is difficult given the 
differences in health care management among countries.

CONCLUSION
It is clear that patients with AIH experience a lower quality of life and have more 
psychological problems, such as anxiety and depression, compared with the general 
population. Consistent evidence on which patient-related, disease-related, or 
physician-related factors cause HRQoL impairment in patients with AIH is lacking. 
Most studies did not include information on important socioeconomic, disease 
behavior, maintenance treatment, or even geographical factors, whereas they are 
known to affect patient well-being and HRQoL in other chronic liver diseases. In 
addition, some aspects of AIH are unexplored so far, for example the effect of lifestyle 
changes, extrahepatic manifestations, and patient counseling on HRQoL. Studies 
addressing HRQoL in pediatric AIH and their parents/support team are scarce and 
are desperately needed as a first step to improve their well-being.

Knowledge of HRQoL and associated factors in AIH are important to improve 
healthcare for AIH patients, for example by incorporating the factors in a chronic 
healthcare model (CCM). A CCM provides a clear approach for managing chronic 
diseases, with focus on assessment of the modifiable factors affecting the disease in 
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order to improve patient well-being. While no studies mentioned a CCM for AIH so 
far, some studies discussed elements that could be part of a model. For example, Janik 
et al[38] screened AIH patients for moderately severe depression and redirected them 
to a psychiatrist and psychiatric therapeutic interventions in case of a PHQ ≥ 15 points. 
Another example are lifestyle interventions for overweight patients[39]. There is also a 
role for the development of a disease-specific questionnaire for AIH patients, similar to 
the PBC-40 questionnaire, to measure the patient’s perspective of the disease[40]. In 
what way, a CCM can be developed and implemented that would probably differ 
from country to country because of differences in health care. However, it is 
paramount that the AIH-specific CCM incorporate the most important factors of 
HRQoL in AIH, as discussed in this review.

Finally, HRQoL should not only be targeted in everyday clinical treatment 
approaches, but also as an important outcome of clinical trials and a research objective 
per se. Most studies of HRQoL in AIH have been conducted at a single center and 
comprised small numbers of patients, which underlines the need for collaboration 
between healthcare centers in different countries. Currently, there is an ongoing 
multicenter, cross-sectional study of HRQoL in patients with AIH within the European 
Network for Rare Liver Diseases. Recognizing the importance that quality of life has 
for the patient beyond the concept of biochemical and histological remission allows us 
to strive for significant improvements in management of adult and pediatric AIH.
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Abstract
With increasing morbidity and mortality from chronic liver disease and acute 
liver failure, the need for liver transplantation is on the rise. Most of these patients 
are extremely vulnerable to infections as they are immune-compromised and have 
other chronic co-morbid conditions. Despite the recent advances in practice and 
improvement in diagnostic surveillance and treatment modalities, a major portion 
of these patients continue to be affected by post-transplant infections. Of these, 
fungal infections are particularly notorious given their vague and insidious onset 
and are very challenging to diagnose. This mini-review aims to discuss the 
incidence of fungal infections following liver transplantation, the different fungi 
involved, the risk factors, which predispose these patients to such infections, 
associated diagnostic challenges, and the role of prophylaxis. The population at 
risk is increasingly old and frail, suffering from various other co-morbid 
conditions, and needs special attention. To improve care and to decrease the 
burden of such infections, we need to identify the at-risk population with more 
robust clinical and diagnostic parameters. A more robust global consensus and 
stringent guidelines are needed to fight against resistant microbes and maintain 
the longevity of current antimicrobial therapies.
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Core Tip: Fungal infections post liver transplant remains the predominant source of 
morbidity and mortality despite the incidence being low. This is because of evasive 
clinical features coupled with difficulty to isolate and culture these pathogens. 
Therefore, appropriate patients are selected for prophylactic regimen based on specific 
risk factors to curb the rise of drug-resistant species. Traditional regimens include 
fluconazole or liposomal amphotericin with a shift towards echinocandins based on 
recently published and promising data.
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INTRODUCTION
Liver transplantation is one of the principal treatment modalities for the treatment of 
many hepatic diseases, mainly but not limited to chronic and end-stage liver disease. 
Despite advances in the field of transplantation, invasive fungal infections remain a 
major source of morbidity and mortality. This is attributed to delay in diagnosis, 
nonspecific clinical features[1], fastidious nature of these organisms, lack of consensus 
on prophylactic regimens, and rise of antifungal resistant species.

Moreover, with an increase in the number of grafts being offered, there is a trend 
towards recipients being older, debilitated, and having more non hepatic comor-
bidities which contributes to the burden and subsequently leads to a higher rate of 
fungal infections[2].

In this article, we aim to discuss the incidence and trend of invasive fungal 
infections (IFI) in liver transplant (LT) patients, associated risk factors, diagnostic 
challenges, and data on prophylaxis.

IFI DEFINITION
IFIs, according to the Invasive Fungal Infections Cooperative Group in Europe and the 
Mycoses Study Group in the United States, are divided into 3 categories: proven, 
probable and possible.

Proven IFI is defined as a positive fungal culture or histological proof of fungal or 
hyphal elements in a sterile site biopsy. This also includes positive cryptococcal 
antigen in cerebrospinal fluid.

Probable and possible IFIs have a wider definition and inclusion criteria. This is 
based on several host factors along with various clinical and mycological criteria[3].

Some studies evaluating prophylactic regimens, in this regard have been a focus of 
criticism as their IFI’s were considered colonization rather than infection[4].

INCIDENCE AND RESPONSIBLE FUNGI
The incidence of IFI after LT has decreased in recent years and this is attributable to 
advancement and improvement in surgical techniques along with more aggressive 
post-operative care. Previously, in one study by Fung et al[5], the incidence of IFI after 
LT was reported to be 6.6% with a mortality of 54.5%. The ninety-day cumulative 
mortality after invasive candidiasis has been reported to be 26% and 1-year survival 
after invasive aspergillosis is about 59% according to TRANSNET in 2010[6].

More recently, according to some cohort studies, the overall incidence of IFI after 
solid organ transplant is about 1%-4%[7-9]. 1-year cumulative probability of IFI in LT 
was 1.8%[7]. This shows a promising trend and is related to improvise surgical 
techniques and timely recognition of risk factors that make certain patients more 
susceptible to IFIs.

http://creativecommons.org/Licenses/by-nc/4.0/
http://creativecommons.org/Licenses/by-nc/4.0/
http://creativecommons.org/Licenses/by-nc/4.0/
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However, in underdeveloped nations, it remains higher at 14.7% with an in-hospital 
mortality rate of 77%[10]. A future streamlined approach to the problem with specific 
guidelines might be one of the ways to improve these numbers.

The three major fungi involved are Candida spp., Cryptococcus, and Aspergillus spp. 
Candida predominates with 81% followed by Aspergillus (16%) and Cryptococcus (3%). 
Non-Albicans Candida accounted for 68% of all Candida infections[11]. The rise of 
resistant non-Albicans Candida especially C. parapsilosis was felt to coincide with the 
increased use of fluconazole[11]. C. parapsilosis is associated with increased mortality 
in these patients. This increase in resistant fungal species indicates a dire need for a 
patient-specific prophylactic regimen based on risk factors vs a universal approach.

The distribution of the fungal species remains similar in the East with Candida 
representing 64.1% and Aspergillus 35.8% of the IFIs in LT patients.

Despite the highly variable clinical presentation, these pathogens most commonly 
affect the respiratory system followed by renal and gastrointestinal tract[10]. 
According to a retrospective study in 2015 by Eschenauer and colleagues, intra-
abdominal candidiasis (73%) was the most common IFI[12]. The common clinical 
manifestations of various fungal organisms are shown in Table 1.

TIMING FROM TRANSPLANT TO INFECTION
There has been a shift in the time duration between the developments of IFIs after LT. 
It was initially thought to occur in the early post-operative phase most commonly 
within the first couple of months.

Grauhan et al[13] in 1994 reported a median time from LT to IFI of 2 mo.
According to Husain et al[14] in 2003, the median time to infection for invasive 

candidiasis was 13.5 d with 72% of the IFIs happening within the first month after LT.
Aspergillus tends to present later as compared to Candida. Results from one study by 

Singh and colleagues in 2003 reported 55% of their Aspergillus IFI occurring after 90 d
[15] and Gravalda et al[16] also described 43% of their IFIs as late onset Aspergillus.

In transplant centers with a higher risk of Aspergillus based on epidemiology, this 
delayed time to presentation is important to consider while deciding on the length of 
prophylactic regimen in high-risk patients. Moreover, clinicians need to be mindful of 
this time frame while diagnosing an already difficult-to-diagnose disease.

RISK FACTORS
Multiple factors have been observed over time to be associated with the development 
of fungal infections in LTs. Identifying patients that are at high risk for developing IFI 
can be of immense help as that can aide in decreasing the diagnostic delay and assure 
appropriate prophylaxis. By adopting this targeted method of prophylaxis vs universal 
approach, we can also potentially reduce the incidence of drug-resistant fungi, lower 
the morbidity due to side effects and interactions of these medications particularly 
with immunosuppressants, and mitigate the overall cost.

Many scientists over the past few decades have worked on identifying these 
attributes. These can be categorized into pre-operative, operative, and post-operative 
factors as shown in Table 2. Risk factors for Aspergillus specifically seem to depend 
more on post-operative factors as highlighted in Figure 1.

Collins et al[17] in 1994 identified the following as potential risk factors: renal 
insufficiency, length of transplant operation, rate of re-transplantation, abdominal or 
intra-thoracic reoperation, and cytomegalovirus infection.

Other studies showed that model for end-stage liver disease (MELD) scores > 25, 
post-transplant acute kidney injury (Cr > 2 or risk, injury, failure, loss of kidney 
function, and end-stage n criteria I- or F-) and pre-transplant fungal colonization seem 
to be the culprits identified with IFIs[11,18].

One of these was an important and common risk factor of daily prophylactic 
fluconazole dose of < 200 mg, which was thought to cause a rise in drug-resistant non-
Albicans Candida spp[11].

Although very rare, a French study also identified contamination during organ 
procurement as a risk factor with a 1.33% prevalence of Candida spp. in preservation 
fluid. This was associated with a higher rate of IFI and impaired survival[19].

Alongside predictable risk factors like diabetes and hemodialysis dependence, 
Verma et al[10] pointed out prior antibiotic use, cerebral and respiratory organ failures, 
chronic liver failure (CLIF) organ failure/CLIF-consortium acute-on-chronic liver 
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Table 1 Common clinical manifestations of invasive fungal infection

Clinical manifestations

Candida Intra-abdominal abscesses

Recurrent cholangitis

Peritonitis 

Fungemia

Aspergillus Invasive pulmonary Aspergillosis

Brain abscess 

Endophthalmitis 

Osteomyelitis 

Endocarditis

Cryptococcus CNS infection

Focal lesions on imaging

Meningeal enhancement

CNS: Central nervous system.

Table 2 Risk factors for invasive fungal infections

Risk factors 

Pre-operative SBP prophylaxis with fluoroquinolone 

Operative Retransplantation 

Long transplantation time

Long transplantation time

Class 2 partial or complete match

Donor from male

Post-operative Post-transplant HD

High number of RBC units transfused

Post-transplant bacterial infection

Cytomegalovirus infection

Use of muromonab-CD3

Aspergillus antigenemia

SBP: Spontaneous bacterial prophylaxis; HD: Hemodialysis; RBC: Red blood cells.

failure as predictors of IFIs. Non-survivors in their study also had higher levels of 1.3-
beta D glucan (BDG) levels. BDG levels have been studied as a diagnostic marker and 
look promising.

There has been a general shift in the trend of risk factors over the last 2 decades, 
which is attributable to better surgical techniques. Singh et al[20] studied 190 liver 
transplants during 1990 and 2000 and demonstrated improvement in length of 
operation, intraoperative transfusion requirements, use of roux-en-Y biliary 
anastomosis, re-transplantation, rate of rejection over time, and cold ischemic time. 
This led to a decrease in the incidence of invasive candidiasis in this study population 
from 9%-1.7% without any use of antifungal prophylaxis.

In 2015, Eschenauer and colleagues identified bile leaks within the first 30 d post-
transplant and living donor liver transplants as new independent risk factors for IFIs. 
This is because Candida has an affinity for growth in the biliary tract. Moreover, living 
donor liver transplants are highly technical procedures that are not commonly 
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Figure 1 Risk factors for Candida and Aspergillus. FQ: Fluoroquinolone; HLA: Human leukocyte antigen; CMV: Cytomegalovirus; HD: Hemodialysis; LT: 
Liver transplant.

performed in the United States. The increased length and complexity of these 
procedures along with higher disruption of the biliary tract is responsible for these 
findings. The authors recommended instituting antifungal prophylaxis in all living 
donor liver transplants[12].

A small study recently in 2020 by Jorgenson et al[21] studied the effects of pre-
transplant roux-en Y gastric bypass on liver transplant outcomes. There were 
increased rates of fungal infection in patients with bariatric surgery before transplant 
and might be associated with loss of defense provided by gastric acid. This study is 
limited by its retrospective nature and its size.

DIAGNOSTIC CHALLENGES
In general, fungal infections do not present themselves vividly and are increasingly 
difficult to grow in culture media. It makes it even more challenging in patients who 
have chronic liver disease, are immunosuppressed, or have other underlying 
comorbidities. They are difficult to detect clinically and also objectively in laboratories. 
Hence, prevention becomes essential, and it has significantly improved in the last 
decade with the advancement in surgical techniques, intense pre-operative evaluation, 
and appropriate use of antifungal prophylactic agents in high-risk patients.

Distinguishing between colonization and true infection can be challenging for the 
clinician. Apart from 'proven IFI' as discussed above, the other two categories are 
vague and have plenty of variable factors. In these clinical scenarios, the use of newer 
diagnostic tools like BDG and galactomannan (GM) can be helpful. Polymerase chain 
reaction fungal assays are promising but not yet approved by the Food and Drug 
Administration.

BDG has been studied and looks promising as a diagnostic marker in serum. In a 
study from 2017, with 271 transplant patients, weekly BDG was tested and monitored 
for IFIs. 95% of the patients with IFI had positive BDG and a very promising negative 
predictive value of 96% was seen. The sensitivity of BDG was 75% and specificity was 
65%, making it a very good tool to rule out IFIs[22].

The GM test is an enzyme-linked immunosorbent assay that detects the GM antigen 
released by Aspergillus hyphae when they invade host cells.

The patient’s epidemiological risk factors should be considered strongly which 
would help guide better towards increasing clinical suspicion and ordering appro-
priate tests and guided treatments. Objective risk factors such as the MELD score, the 
overall duration of need for total parenteral nutrition, length of the operative 
procedure, and removal of abdominal drains and other catheters or lines should be 
evaluated[23].
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PROPHYLAXIS
Fungal infections in liver transplant recipients are mostly attributed to Aspergillus and 
Candida. Three agents are mainly used in prophylaxis–fluconazole, liposomal 
amphotericin B, and itraconazole. The studies involving these agents have been 
confounded by the difficulty of differentiating colonization and a true infection, the 
variability between patient selection, therapeutic agent(s) used in comparison with 
placebo or each other, and variable duration of treatment.

Data on the effectiveness of antifungal prophylaxis in LT over the past 10 years have 
been summarized in the Table 3 below.

There have been three meta-analyses as summarized in Table 3. Playford et al[24] 
and Cruciani et al[25] published two in 2006, with 10 and 6 studies respectively. These 
summarized that universal fungal prophylaxis leads to a reduction in proven IFIs 
without any mortality benefit. This universal approach leads to a significantly higher 
proportion of episodes of non-Albicans Candida infection.

In 2014, Evans et al[26] published a meta-analysis of studies on prophylaxis to 
prevent IFIs after LT and concluded that the odds of proven IFI and IFI related 
mortality were lower in patients receiving antifungal prophylaxis, even if the overall 
mortality did not change. It was also demonstrated that the efficacy of fluconazole 
compared to liposomal amphotericin was similar with the latter having the benefit of 
not altering the cytochrome P450 system and therefore not affecting the calci-neurin 
inhibitor levels. However, fluconazole is favored because of its cost-effectiveness and 
safety profile. This meta-analysis did not reveal any information on echinocandins, 
however, it was different from their counterparts in that they did a mixed treatment 
comparison and was more recent of the few meta-analyses already on the subject 
matter.

Studies since 2014 (after the last meta-analysis) on prophylaxis are summarized in 
Table 4.

In 2015, Eschenauer and colleagues performed a retrospective study involving liver 
transplant patients that were divided into three main groups. Group 1 included 145 
patients who received targeted prophylaxis with either voriconazole in 54%, 
fluconazole in 5% or no antifungal which was the case of 38% of these patients. This 
was compared to a group of 237 patients, who received universal prophylaxis with 
voriconazole. These regimens were continued for a median time of 11 d in the targeted 
group and for 6 d in the universal group, with a significant P value. There was no 
statistical difference between incidence of IFI between both groups (6.8% in targeted 
and 4.2% in universal). Similarly, the P value was not statistically significant for the 
mortality rates over 100 d from IFIs in both groups (10% for targeted and 7% for 
universal group). They, therefore concluded that targeted approach to antifungal use 
in liver transplant patients was a safe, cost effective strategy and prevented unnec-
essary side effects[12].

With regards to echinocandins, Saliba et al[27] in 2015 compared micafungin vs 
standard treatment and found them equally effective. Standard therapy was center-
specific and included IV fluconazole, liposomal amphotericin, or IV caspofungin.

Similarly, in a study from Spain in 2016, caspofungin was compared to fluconazole 
in high-risk patients and similar efficacy was reported to prevent global IFIs. In this 
study caspofungin was related to decrease in breakthrough IFIs and also led to a lower 
rate of invasive aspergillosis[28].

Echinocandins should be considered as prophylactic agents, where appropriate, 
especially in areas of increased prevalence of drug-resistant non-Albicans Candida. 
Unfortunately, these too come with a higher price tag compared to fluconazole which 
can affect their use, especially in non-affluent countries.

According to the Infectious Disease Society of America guidelines, patients who 
meet 2 or more of the following risk factors to be considered for prophylaxis: creat-
inine more than 2 mg/dL, need for re-transplantation, choledochojejunostomy, more 
than 11 h of operative time, need to transfuse with ≥ 40 units of blood products, 
evidence of fungal colonization in immediate pre and post-operative days. Suggested 
duration of antifungal use is 14-21 d.

However, since the current data suggest that the incidence and risk of fungal 
infection overall in the general liver transplantation population is low, these agents 
should be utilized for higher-risk patients as unguided use is associated with drug-
resistant non-Albicans Candida infection and higher mortality in these patients[23].
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Table 3 Effectiveness of antifungal prophylaxis in liver transplant

Ref. Trials Patients Regimens Infection reduction Comments 

(95%CI)

Cruciani et 
al[25], 2006

6 698 AmB vs Pla (1) Total proven fungal infections RR 0.31 (0.21-
0.46), IFI RR 0.33 (0.18-0.59)

Patients receiving prophylaxis had higher number 
of non-Albicans proven fungal infections. Mostly C. 
glabrata.

Flu vs nonsystemic AF (1)

Flu vs Pla (2)

Itra vs Pla(1)

Amb-Itra vs Flu-itra vs Pla (1)

Playford et 
al[24], 2006

7 793 Flu vs Pla (2) Proven IFI RR 0.39 (0.18-0.85), fungal 
colonization RR 0.51 (0.41-0.62), fungal 
colonization with C. glabrata/C. krusei, RR 1.57 
(0.76-3.24)

Formulated algorithm in which patients with < 2 RF 
deemed low risk (4%incidence) for IFI and those 
with ≥ 2 at high risk (25% incidence) for IFI.

Flu vs nonsystemic AF (2)

Itra vs Pla (2)

AmB vs Pla (1)

Evans et al
[26], 2014

14 1633 Flu vs 
Pla/nonabs AF 
(4)

Proven IFI OR 0.37 (0.19-0.72), P = 0.003, 
Bayesian MTC, AmB vs Pla OR 0.21 (0.05-0.71), 
Flu vs Pla OR 0.21 (0.06-0.57)

Benefit of AmB is of similar magnitude to that 
previously described for fluconazole. 

Itra vs Pla (1)

AmB vs Pla (1)

3 arm study with Pla/AmB/Flu (1)

Flu vs AmB (3)

Liposomal + Flu vs standard AmB + Flu

Itra vs Flu (2)

Micafungin vs standard care (1)

Clo vs Nys (1)

AmB: Amphotericin-B; Pla: Placebo; Flu: Fluconazole; AF: Antifungal; Itra: Itraconazole; Nonabs AF: Nonabsorbable antifungal; Nys: Nystatin; Clo: 
Clotrimazole.

CONCLUSION
Fungal infections following liver transplantation remain an influential cause of 
morbidity and mortality in these patients, despite the low incidence. Identification of 
high-risk patients based on risk factors discussed above and starting an appropriate 
prophylactic antifungal regimen based on epidemiology, calcineurin inhibitor use, and 
renal function is the first step in avoiding dealing with this evasive disease.

Prophylactic antifungals are generally well tolerated but can lead to drug-resistant 
Candida spp., hence the importance of selecting the appropriate patient and agent. 
Using BDG as a negative predictive tool and having a high degree of suspicion, even if 
the time from transplant exceeds 2 mo, can prevent diagnostic delays.

Further randomized controlled trials comparing azoles, amphotericin, and echino-
candins are needed to develop an updated standard of care.
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Table 4 Studies since 2014 (after the last meta-analysis) on prophylaxis for liver transplant

Ref. Design Regimen Outcomes

Antunes et al
[29], 2014

Single center. Retrospective (n = 461) High risk group: AmB vs nystatin; Low 
risk group: nystatin

Higher IFI in high risk patients who did not receive 
AmB 

Winston et al
[30], 2014

Randomized, double-blind. 2010-2011 
(n = 200)

Group 1: Andulafugin; Group 2: Flu 1:1 randomized. Similar cumulative IFI occurrence 
and equal 3 mo mortality

Saliba et al[27], 
2015

Randomized, open label. 2009-2012 (n 
= 347)

Micafungin vs center specific standard 
care (Flu/AmB/Caspo)

Micafungin was non-inferior to standard of care 

Giannella et al
[31], 2015 

Prospective, non-randomized. 2009-
2013. Safety of high dose AmB (n = 
76)

Amb 10 mg/kg Q weekly until hospital 
discharge for a minimum of 2 wk

10 patients discontinued therapy. (6 for AmB related 
AEs and 4 for IFI)

Eschenauer et 
al[12], 2015

Single center study. 2008-2012. 
Effectiveness of targeted prophylaxis 
(n = 381)

Universal ppx: Vori. Targeted: Group1: 
Vori, 30 d. Group 2: Flu during icu sta. 
Group3: No ppx

Cumulative IFI occurrence 5.2% (targeted vs 
universal group). Similar 100 day mortality between 
targeted and universal ppx gp. 40% breakthrough IFI

Balogh et al
[32], 2016

Single center study. 2008-2014 (n = 
314)

Voriconazole vs oral nystatin or Flu No episodes of IA occurred. No difference in graft 
and patient survival curves between the two groups

Perrella et al
[33], 2016

Single center study. 2006-2012. 
Comparative observational study for 
targeted prophylaxis (n = 54)

Group 1: AmB 3 mg/kg/day; Group2: 
Caspofungin 70 mg loading→50 mg/day

No episodes of IFI in both groups

Fortún et al
[28], 2016

Multicenter. 2005-2012. Comparative 
observational study for targeted 
prophylaxis (n = 195)

Group 1: Caspofungin 50 mg/d; Group 2: 
Flu median 200 mg/day

Similar 6 m IFI occurrence [5.2% b (G1) vs 12.2% 
(G2)]. Reduced risk of IA in LT receiving 
caspofungin. Similar overall mortality

Chen et al[34], 
2016

Single center study. 2005-2014. 
Effectiveness of targeted prophylaxis 
(n = 402)

Group 1: Anidulafungin 100 mg/day or 
micafungin 100 mg/day; Group 2: No 
prophylaxis 

High risk patients MELD > 20; Similar IFI occurrence 
lower cumulative mortality in group 1 (P = 0.001)

Giannella et al
[35], 2016

Retrospective, single center. 2010-
2014. Evaluation of RF for a targeted 
prophylaxis (n = 303)

Group 1: No RF. No prophylaxis; Group 
2: 1RF IC, Flu; Group3: High risk, anti 
mould agent

Antifungal prophylaxis administered to 45.9% 
patients. Cumulative IFI prevalence 6.3%. Flu 
independently associated with IFI development

Lavezzo et al
[36], 2018

Single center study. 2011-2015. 
Effectiveness of targeted prophylaxis 

Group 1 high risk: AmB; Group 2 low 
risk: No prophylaxis 

Overall IFI prevalence 2.8%. 1 yr mortality higher in 
prophylaxis group (P = 0.001). 1 yr mortality higher 
in IFI patients (P < 0.001)

Jorgenson et al
[37], 2019

Single center study. 2009-2016. 
Effectiveness of fixed dose 
prophylaxis (n = 189)

Group 1: Flu 400 mg/day for 14 d for 
high risk patients; Group 2: unsupervised 
antifungal protocols

Reduction in 1 yr IFI among high risk group (12.5% 
vs 26.6%). Similar 1 yr patient and graft survival

Kang et al[38], 
2020

Multicenter, randomized, open label. 
Living donor LT. 2012-2015 (n = 144)

Group 1: Micafungin Group 1 vs Group 2: 69 vs 75 pts. IFI occurrence in 3 
wk: 1/69 vs 0/75. Micafungin was noninferior to Flu

100 mg/d; Group 2: Flu 100-200 mg/day

AmB: Amphotericin-b; Flu: Fluconazole; Caspo: Caspofungin; AE: Adverse effects; Vori: Voriconazole; ppx: Prophylaxis; gp: Group; IA: Invasive 
aspergillosis; IC: Invasive candidiasis.
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Abstract
Chronic inflammation due to hepatitis C virus (HCV) infection leads to liver 
fibrosis and rearrangement of liver tissue, which is responsible for the develop-
ment of portal hypertension (PH) and hepatocellular carcinoma (HCC). The 
advent of direct-acting antiviral drugs has revolutionized the natural history of 
HCV infection, providing an overall eradication rate of over 90%. Despite a 
significant decrease after sustained virological response (SVR), the rate of HCC 
and liver-related complications is not completely eliminated in patients with 
advanced liver disease. Although the reasons are still unclear, cirrhosis itself has a 
residual risk for the development of HCC and other PH-related complications. 
Ultrasound elastography is a recently developed non-invasive technique for the 
assessment of liver fibrosis. Following the achievement of SVR, liver stiffness (LS) 
usually decreases, as a consequence of reduced inflammation and, possibly, 
fibrosis. Recent studies emphasized the application of LS assessment in the 
management of patients with SVR in order to define the risk for developing the 
complications of chronic liver disease (functional decompensation, gastroin-
testinal bleeding, HCC) and to optimize long-term prognostic outcomes in clinical 
practice.

Key Words: Direct-acting antiviral agents; Liver stiffness; Portal hypertension; Hepato-
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Core Tip: Direct-acting antiviral agents lead to hepatitis C virus eradication and to the 
regression of liver inflammation. However, they do not eliminate the risk of possible 
portal hypertension-related complications and hepatocellular carcinoma (HCC), 
increasing the necessity for post-sustained virological response surveillance and the 
development of non-invasive predictive models to detect the categories of patients 
requiring more intensive follow-up. Many studies reported a significant reduction in 
liver fibrosis markers after treatment with direct-acting antiviral drugs. Ultrasound 
elastography is gaining growing importance as a predictive element in the assessment 
of the risk of developing esophageal varices or gastrointestinal bleeding, liver 
functional decompensation and HCC.
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INTRODUCTION
Hepatitis C virus (HCV) infection is one of the major causes of chronic liver disease 
and a significant cause of morbidity and mortality worldwide[1]. In 2015, it was 
estimated that over 70 million people were affected, most of whom were unaware of 
the infection[2]. Chronic inflammation due to HCV infection leads to liver fibrosis and 
rearrangement of liver tissue, which is responsible for the development of portal 
hypertension (PH) and other complications. Moreover, inflammation and microenvir-
onmental changes are known risk factors for the occurrence of hepatocellular 
carcinoma (HCC)[3].

The advent of direct-acting antiviral drugs (DAAs) has revolutionized the natural 
history of HCV infection, providing an overall eradication rate of over 90% associated 
with a remarkable safety profile in all stages of chronic liver disease[1].

The achievement of sustained virological response (SVR) prevents the development 
of cirrhosis in the early stages of the disease and significantly reduces the risk of HCC 
and PH-related events, such as ascites, hepatic encephalopathy, hepatorenal 
syndrome, infections and gastrointestinal bleeding, in patients with advanced liver 
disease[4-6]. However, initial reports have warned of an increased risk of HCC in 
patients who achieved SVR after treatments with DAAs[7,8]. On the other hand, other 
studies have shown a protective effect on the development of HCC[9,10]. More 
recently, a meta-analysis analyzing 41 studies concluded that there is no evidence for 
increased occurrence or recurrence of HCC in patients treated with DAAs compared 
with interferon-based therapies[11].

Despite a significant decrease after SVR, the rate of HCC and liver-related complic-
ations is not completely eliminated in patients with advanced liver disease. Although 
the reasons are still unclear, cirrhosis itself has a residual risk for the development of 
HCC and other PH-related complications[12]. At present, there are no validated 
predictors to estimate the risk of HCC and PH-related events after HCV eradication.

Ultrasound elastography is a recently developed non-invasive technique for the 
assessment of liver fibrosis. Vibration controlled transient elastography (VCTE), is the 
oldest share-wave-based method and the reference standard in this field. The device is 
equipped with a one-dimensional probe, where a vibrator sends low frequency shear 
waves through the liver. Wave propagation, evaluated by an ultrasound receiver 
inside the probe, is directly related to liver tissue elasticity. Since its emergence, this 
technique has provided a fast point-of-care estimate of liver fibrosis in daily clinical 
practice, avoiding the complications of liver biopsy[13]. Indeed, several studies using 
histology as the reference standard defined accurate thresholds that are able to 
distinguish the different stages of liver fibrosis[14]. In the last few years, new 
ultrasound based elastographic techniques have been developed. They are embedded 
into conventional ultrasound devices, allowing visualization of the sampling area. The 
two main categories are the point shear wave elastography (pSWE) and bidimensional 
SWE (2D-SWE)[13]. All these devices are able to evaluate the elastic properties of the 
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liver during real-time B mode imaging. In particular, the ultrasound probe generates 
short-duration acoustic impulses in a small region of interest that causes soft tissue 
displacement and shear waves running in the perpendicular plane. Shear wave 
travelling speed can then be quantified and interpreted as a measurement for liver 
stiffness (LS)[13].

To date, LS measurement (LSM) is recommended by the European Association for 
the Study of Liver Disease (EASL) and the American Association for the Study of Liver 
Disease (AASLD) guidelines for the assessment of liver disease severity in patients 
with HCV infection eligible for DAAs[1,15]. Following the achievement of SVR, LS 
usually decreases, as a consequence of reduced inflammation and, possibly, fibrosis
[16-19]. Recent studies evaluated the usefulness of LS assessment after HCV eradi-
cation and the prediction of HCC and other PH-related complications in patients with 
advanced liver disease.

In this review, we summarize the current evidence on the role of ultrasound 
elastography in the prediction of liver-related outcomes of patients with HCV 
infection treated with DAAs.

DIRECT-ACTING ANTIVIRAL AGENTS AND LIVER FIBROSIS
Despite DAAs being pharmacologically designed only for the eradication of HCV 
infection and since HCV is directly responsible for liver injury and consequent 
parenchymal fibrosis, the achievement of both SVR and anti-fibrotic effect results in 
advantages in terms of prevention of chronic liver disease complications (Table 1).

Different non-invasive methods traditionally used to assess liver fibrosis such as 
VCTE and the Fibrosis-4 (FIB-4) score (based on patient’s age, transaminases levels 
and platelet count) and aspartate aminotransferase to platelet ratio index (APRI score) 
have been evaluated for staging chronic liver disease and predicting hepatic fibrosis in 
patients with HCV infection.

It has been demonstrated that baseline LSM by VCTE together with FIB-4 and APRI 
score have an important role in the prediction of treatment outcome in the new era of 
DAAs and could be integrated in pre-treatment assessment as a guide for treatment 
decisions and optimization of patient management[20,21].

Many authors have documented the improvement of VCTE, FIB-4 and APRI score 
after DAAs treatment. However, it is not clear if this finding is a true recovery of liver 
fibrosis or represents only an epiphenomenon of the reduction in liver inflammation 
resulting in the normalization of blood tests and decrease of LS values[22-25]. The 
retrospective study by Elsharkawy et al[26] analyzed a group of 337 Egyptian patients 
with chronic genotype 4 HCV infection who underwent sofosbuvir-based treatments. 
Among the patients evaluated, 29.1% had non-relevant fibrosis (F0-1; VCTE < 7.1 kPa), 
17.2% were included in the F2 group (7.1 kPa ≤ VCTE < 9.5 kPa), 8.6% in the F3 group 
(VCTE ≥ 9.5 kPa) and 45.1% were classified as cirrhotic (F4; ≥ 12.5 kPa). One year after 
treatment, 77% of responders (with any stage fibrosis) and 81.8% of cirrhotic patients 
had a valuable recovery in liver fibrosis parameters (measured with FIB-4 and APRI 
score), due to the increase in platelet count and decrease in transaminase levels 
together with a reduction in LS values (11.8 ± 8.8 kPa vs 14.8 ± 10.7 kPa, P = 0.000). A 
higher number of patients with poor LS improvement after DAAs-therapy was 
observed in cases with low baseline LS values and infection relapse.

In a group of 42 patients treated with DAAs, Chekuri et al[27] demonstrated a signi-
ficant decrease in LS values at SVR 24 wk after the end of treatment (median values: 
10.40 kPa vs 7.60 kPa, P < 0.01), without significant improvement in the follow-up.

Abdel Alem et al[28] used pre-treatment liver fibrosis (measured by VCTE and FIB-4 
score) as a predictor of treatment outcome after sofosbuvir-based regimens in 7256 
HCV patients (46.6% cirrhotic, 91.4% with SVR12). Both, baseline FIB-4 and VCTE 
were significantly lower in the group with SVR (2.66 ± 1.98 kPa and 17.8 ± 11.5 kPa, 
respectively) compared to relapsers (4.02 ± 3.3 kPa and 24.5 ± 13.9 kPa, respectively). 
Based on these results, the authors concluded that fibrosis stage is a crucial element in 
the evaluation of treatment outcome and disease prognosis. In particular, a LS value 
higher than 16.7 kPa resulted as an unfavorable prognostic factor for treatment 
response (relapse rate 13%), probably related to an impaired immune-mediated HCV 
clearance that is worsened in advanced liver fibrosis. Similar considerations were 
drawn by Neukam et al[29] in patients treated with pegylated interferon/ribavirin-
based therapy associated with NS3/4A protease inhibitor (PR-PI) and patients under 
DAAs therapy. In the PR-PI group, SVR12 was obtained in 59.6% of patients with LS < 
21 kPa and in 46.5% of subjects with LS ≥ 21 kPa (P = 0.064); in the DAAs group, 
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Table 1 Liver stiffness improvement after treatment with direct acting antivirals

Ref. Study design Number of 
Patients Drugs Patients with LS 

improvement (%) Pre-treatment LS Post-treatment 
LS

P 
value Measurement

Elsharkawy et 
al[26], 2017

Retrospective 337 DAA 81.8% (cirrhotic) 
71.7% (non-cirrhotic)

14.8 ± 10.7 kPa 11.8 ± 8.8 kPa 0.000 Fibroscan

Chekuri et al
[27], 2016

Observational 100 IFN-based 
and DAA

NA 10.40 kPa 7.60 kPa < 0.01 Fibroscan

Bachofner et al
[30], 2017

Multicenter, 
observational

392 DAA 93% 12.65 kPa 8.55 kPa < 
0.001

Fibroscan

Afdhal et al
[39], 2017

Prospective 52 DAA 59.6% 15.2 kPa 9.3 kPa (6.7–16.8 
kPa)

< 
0.0001

Fibroscan

Ravaioli et al
[68], 2018

Retrospective 139 DAA 44.6% (LS reduction 
> 30%)

18.6 kPa (15-26.3 
kPa)

13.8 kPa (10.4-20.4 
kPa)

< 
0.001

Fibroscan

Pan et al[70], 
2018

Retrospective 84 DAA 62% Fibrosis regression by at least two stages: 
Cirrhosis group (48%); F3 fibrosis group 
(39%) 

- Fibroscan

DAA: Direct acting antivirals; IFN: Interferon; LS: Liver stiffness; NA: Not applicable.

SVR12 was reached by 95.3% of patients with LS < 21 kPa and 87.4% of patients with ≥ 
21 kPa. Relapse rates after an apparent end-of-treatment response were 4.8% vs 17.9% 
in patients treated with PR-PI and 2.4% vs 8.2% in the DAAs group, respectively, for 
LS < 21 kPa and ≥ 21 kPa. These results suggest that LS evaluation might be useful to 
avoid HCV-relapse in cirrhotic patients by choosing both the appropriate composition 
and duration of DAAs-therapy.

Many studies reported a significant reduction in liver fibrosis markers after 
treatment with DAAs. In particular, Bachofner et al[30] highlighted a 32.4% drop in 
VCTE values from 12.65 kPa to 8.55 kPa (P < 0.001), a reduction of FIB-4 from 2.54 to 
1.80 (P < 0.001) and a decrease of APRI from 1.10 to 0.43 (P < 0.001).

DIRECT-ACTING ANTIVIRAL AGENTS AND LIVER CIRRHOSIS RELATED 
EVENTS
Even though DAA-therapy leads to HCV eradication and to the regression of liver 
inflammation, it does not eliminate the risk of possible PH-related complications and 
HCC, increasing the necessity for post-SVR surveillance and the development of non-
invasive predictive models to detect the categories of patients requiring more intensive 
follow-up (Table 2).

To this purpose, Trivedi et al[31] suggested a VCTE-based algorithm in order to 
schedule the controls of patients with SVR after HCV eradication: In the case of mild 
fibrosis (F1) without liver-related comorbidities, regular monitoring with the primary 
care physician is indicated; for advanced fibrosis/cirrhosis (F3-4), routine HCC and 
variceal surveillance is prescribed (six-monthly ultrasound, upper endoscopy every 2-
3 years, annual non-invasive fibrosis assessment); for moderate fibrosis (F2) or in the 
case of concomitant liver-related comorbidities an annual non-invasive fibrosis 
measurement should be performed.

The importance of liver fibrosis stage in the development of liver-related complic-
ations was confirmed by Kozbial et al[32], who analyzed 551 patients treated with 
DAAs for a median period of 65.6 wk: No complications were registered in patients 
with severe fibrosis, whereas 9.1% of subjects with compensated cirrhosis developed 
liver-associated complications including HCC (4.1%). Furthermore, the presence of 
decompensated cirrhosis was markedly associated with the development of complic-
ations and mortality.

Even though histology remains the gold standard in evaluating fibrosis, liver biopsy 
presents some potential obstacles such as patient compliance, severe post-procedural 
complications, and sampling errors. For this reason, elastography has been proposed 
as a possible non-invasive alternative to biopsy for patient surveillance after SVR[33-
35].
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Table 2 Direct-acting antiviral agents and liver cirrhosis related events

Ref. Study design
Number 
of 
patients

Drugs HCC Portal hypertension-related 
complications

Kozbial et al
[32], 2018

Prospective 551 DAA 16 (4.1%) Ascites: 3.1%; variceal hemorrhage: 1%; 
hepatic encephalopathy: 0%

Masuzaki et al
[36], 2009

Prospective 984 DAA 77 (2.9% per 1 person-year); HCC risk: 
45.5 times higher in LS > 25 kPa

NA

Afdhal et al
[39], 2017

Prospective 50 DAA LS improvement in patients who did 
not develop HCC during follow-up 
(42.6% reduction in patients without 
HCC vs 13.6% in HCC group)

24% patients had ≥ 20% decreases in HVPG 
during treatment (89% subjects with 
baseline HVPG ≥ 12 mmHg had a ≥ 20% 
reduction in HVPG after SVR)

Giannini et al
[51], 2019

Prospective 52 DAA 4 (7.7%) Clinical decompensation: 0%

Tachi et al[58], 
2017

Prospective 263 DAA 19 (7.2%) NA

Foster et al
[60], 2016

Retrospective, 
observational

467 DAA NA MELD improvement (0.85, SD 2.54); 
composite adverse outcome in 52.0% 
(treated) vs 61.7% (untreated)

Rinaldi et al
[63], 2019

Multicenter, prospective 258 DAA 35 (13.6%) NA

Ravaioli et al
[68], 2018

Retrospective 139 DAA 20 (14.4%) NA

Pan et al[70], 
2018

Retrospective 84 DAA 4 (4.8%) NA

Toyoda et al
[75], 2015

Retrospective/prospective 522 IFN-
based

18 (1.2% after five yr; 4.3% after ten yr) NA

D’Ambrosio et 
al[77], 2018

Prospective 38 DAA 5 (13%) Clinical decompensation: 0%

Lleo et al[78], 
2019

Prospective 1927 DAA Previous HCC: 38/161 (recurrence 
rate: 24.8 per 100-yr); No previous 
HCC: 50/1766 (incidence rate: 2.4 per 
100-yr)

NA

Hamada et al
[79], 2018

Retrospective 196 DAA 8 (4.1%) NA

DAA: Direct acting antivirals; HCC: Hepatocellular carcinoma; HVPG: Hepatic venous pressure gradient; IFN: Interferon; LS: Liver stiffness; MELD: 
Model for end-stage liver disease; NA: Not applicable; SD: Standard deviation; SVR: Sustained virological response.

VCTE is gaining growing importance as a predictive element in the assessment of 
the risk of developing esophageal varices or gastrointestinal bleeding, liver functional 
decompensation and HCC[36]. The retrospective study by Mandorfer et al[37] was the 
first to compare Hepatic Venous Pressure Gradient (HVPG) measurement with VCTE 
for the assessment of PH and showed a good agreement between the techniques. The 
authors also observed that a PH decrease after SVR was less likely in subjects with 
baseline HVPG higher than 16 mmHg and severe liver function impairment.

The review by Garbuzenko et al[38] confirmed that staging the severity of PH in 
cirrhotic subjects and personalized preventive therapy could lead to an increase in 
both patient survival and treatment effectiveness; particularly, DAAs achieve the 
amelioration of subclinical PH. In a recent study by Afdhal et al[39] of 50 patients with 
clinically significant PH (presence of esophageal varices, HVPG > 6 mmHg) from 
different international centers, 89% obtained a HVPG reduction of > 20% and only 3 
patients obtained a reduction of portal pressure to less than 12 mmHg.

Paternostro et al[40] endorsed spleen stiffness measurement (SSM) through elast-
ography (especially pSWE and 2D-SWE) as an effective tool for high-risk varices asses-
sment in chronic liver disease, especially in distinguishing between small and large 
varices as confirmed by Sharma et al[41]. Previously, both Colecchia et al[42] and 
Fraquelli et al[43] had underlined the efficacy of LSM and SSM association in the 
assessment of HVPG and prediction of gastroesophageal varices in cirrhotic patients, 
showing a very high sensitivity (98% and 100% in the two studies, respectively), and 
economic advantages following the implementation of endoscopic screening progr-



Cerrito L et al. Elastography and liver related events

WJH https://www.wjgnet.com 1668 November 27, 2021 Volume 13 Issue 11

ams. However, there are some important limitations related to SSM: It is an operator-
dependent measurement and the upper limit of VCTE is fixed to a fibrosis value of 75 
kPa that, in the case of severe PH, could be widely exceeded by SSM unlike LSM. 
Concerning the latter issue, Calvaruso et al[44] demonstrated the superior predictive 
value of SSM for high-risk varices, adopting a modified VCTE unit with a maximum 
stiffness value of 150 kPa (AUC: 0.80 for SSM vs 0.71 for LSM).

It has been demonstrated that the association of LSM with other non-invasive items 
(e.g. platelets, SSM) has a powerful positive predictive value in the detection of 
esophageal varices: Stefanescu et al[45] created a simple diagnostic algorithm with the 
combination of LSM and SSM (cut-off: 19 kPa and 55 kPa, respectively), thus reaching 
a 93% sensibility and a 95% positive predictive value.

Wang et al[46] observed that the combination of Baveno VI criteria with SSM (with 
46 kPa cut-off) might help to avoid 61.6% of esophagogastroduodenoscopies in HBV-
related cirrhosis with persistent viral suppression due to antiviral therapy, missing less 
than 5% high-risk varices.

An interesting analysis by Fofiu et al[47] evaluated a score based on the combination 
of LSM, SSM and spleen size as non-invasive predictors of high-risk varices in com-
pensated cirrhosis, proving a better performance of the association of the three 
elements compared to each parameter alone. However, a meta-analysis by Ma et al[48] 
found that SSM alone is superior to LSM in predicting any grade esophageal varices, 
thus turning out to be useful in clinical practice, especially in the case of non-
measurable LSM (multifocal HCC, biliary obstruction or liver metastasis).

Semmler et al[49] underlined the predictive value of LSM by VCTE included in a 
non-invasive algorithm together with von Willebrand factor-platelet count ratio as a 
useful method to define PH, stratify risk categories and predict liver decompensation 
and HCC development in patients with HCV-related advanced chronic liver disease 
treated with DAAs. These results could be very interesting in introducing the concept 
of a tailored follow-up strategy.

It is still not clear if the improvement in non-invasive markers after SVR could be 
associated to a decline in PH itself. However, in a recent study, Thabut et al[50] noted 
that subjects with previous unfavorable Baveno VI status (LS > 20 kPa, platelets < 
150000/mm3) who experienced platelets increase and/or LS reduction after SVR 
reached a favorable Baveno VI class, with a subsequent reduction in the probability of 
PH progression and development of esophageal varices. A decrease of PH has also 
been demonstrated by Giannini et al[51] in a group of 52 patients with advanced 
fibrosis/cirrhosis at baseline followed for approximately 60 wk after SVR with DAAs. 
A significant improvement in HVPG was detected, together with a decrease in LS 
values (from 15.2 kPa at baseline to 9.3 kPa at the end of follow-up), APRI and FIB-4 
score, spleen bipolar diameter and an increase in platelet count[37].

As the role of these indices is quite limited, other non-invasive methods have been 
proposed to detect varices at high risk of bleeding: Considering the worldwide low 
availability of TE, Jangouk et al[52] demonstrated the effectiveness of Baveno VI 
consensus criteria as a non-invasive method to identify patients with compensated 
liver cirrhosis and low-risk of varices requiring endoscopic treatment. In particular, the 
authors highlight the uppermost role of both platelet count (> 150000/mm3) and 
MELD score (< 6) in defining a low probability of high-risk varices.

Chen et al[53] demonstrated the efficacy and extremely high negative predictive 
value (97.1% in the study group and 98.1% in the validation cohort) of the association 
of albumin-bilirubin grade with platelet count (ALBI-PLT score) in the screening of 
high-risk esophageal varices in subjects with HCC: The 5-year variceal hemorrhage 
rate was 9.7% in patients with ALBI-PLT score > 2 (decompensated liver disease) as 
compared to 1.7% in those with a score of 2 (P = 0.007).

Baveno VI guidelines indicate platelet count and VCTE as effective elements in the 
identification of cirrhotic patients who are at high-risk of developing esophageal 
varices: Due to the not-always easy access to VCTE (for example, in the case of 
inmates) or to the unavailability of adequate instrumentation in all hepatological 
centers, Calvaruso et al[54] proposed the “Rete Sicilia Selezione Terapia–HCV” 
algorithm as an effective and simple tool (based only on blood tests: Platelet count and 
serum albumin level) that could substitute Baveno VI criteria in the identification of 
HCV-cirrhotic patients with medium/large varices, thus simplifying the diagnosis of 
the complications of PH, with a reduction of more than 30% of useless endoscopic 
exams and diminishing the risk of false-negative results.

The implications of HCV eradication on HCC development are even more complex. 
Despite the widely demonstrated efficacy of DAAs in both achieving SVR and a 
reduction in liver fibrosis, there is no corresponding decrease in HCC development 
risk. These data led to an initial alert claiming the possibility of a DAAs-driven 
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oncogenic mechanism[7], even if this theory was subsequently proved wrong by other 
studies[11]. The mechanism of HCC development post SVR is probably sustained by a 
“point of no-return” in HCV pathogenesis that determines the loss of the potential 
benefits brought by viral eradication[55]. This evidence highlights the necessity for 
optimizing regular HCC surveillance with a particular focus on patients with 
advanced fibrosis or cirrhosis[56]. In fact, even though a decrease in LS values from 
cirrhosis to advanced fibrosis was observed in some cases after DAAs therapy, 
patients with SVR maintained an elevated HCC risk[57,58].

Whether the HCC risk of patients with SVR coincides with that of viremic subjects is 
still a matter of debate. In the case of precariously compensated or decompensated 
liver function, the achievement of SVR could be useful to reduce the risk of HCC 
because of the decrease in intrahepatic inflammatory processes, despite the persistence 
of PH and decompensated liver function (that increase the risk of liver cancer in 
cirrhotic patients)[59,60].

Both EASL and AASLD guidelines recommend continuing ultrasound surveillance 
in subjects with advanced fibrosis/cirrhosis despite histological response to treatment 
and suggest accurate definition of the additional baseline risk-factors profile[61,62].

Rinaldi et al[63] assessed the importance of both baseline LS evaluation and ultra-
sound liver surveillance for the risk of HCC in patients with HCV-related cirrhosis, 
treated with DAAs: Among 258 subjects enrolled, divided into three groups according 
to liver fibrosis stage (< 20 kPa, from 20 kPa to 30 kPa, > 30 kPa), 35 developed HCC 
during follow-up. The group with LS higher than 30 kPa had a statistically significant 
increase in HCC risk [HR (95%CI): 0.329 (0.131-0.830); P = 0.019].

Even though the mechanisms directly involving HCV in both fibrogenesis and 
oncogenesis have not yet been completely explained, it seems crucial to define the 
degree of liver fibrosis through VCTE and FIB-4, in order to set appropriate HCC 
screening and the subsequent therapeutic strategy[64,65].

Many attempts have been made to create prognostic scores to evaluate the risk of 
HCC development in chronic liver diseases, considering other criteria than PH alone
[66]. An interesting example is represented by the King score that includes laboratory 
parameters (platelet count and bilirubin levels) and gene signature, and classifies 
cirrhotic patients with HCV infection into three risk categories for functional 
decompensation, HCC and death. However, it is not clear if this score maintains its 
predictive efficacy in patients with SVR[67].

Ravaioli et al[68] studied 139 cirrhotic patients treated with DAAs, analyzing the 
difference between LS at baseline and at the end of treatment: They found a lower 
reduction of LS in patients who developed HCC compared to patients who did not (-
18.0% vs -28.9%, P = 0.005).

Recent studies demonstrated that LS assessment after SVR could be an inaccurate 
method to define the grade of fibrosis in patients treated with DAAs. In fact, the fast 
modifications in LS could be determined by both the reduction of liver inflammatory 
activity and the narrowing of fibrotic septa, without real histological improvement in 
fibrosis grading as demonstrated by liver biopsy[69-71]. Notwithstanding, LS 
evaluation by VCTE remains a cornerstone in the assessment of HCC risk after SVR, 
especially due to its non-invasiveness.

Masuzaki et al[36] demonstrated that HCC risk was 45.5 times higher in patients 
with LS values higher than 25 kPa.

However, it becomes important in the association to other elements in a more 
complete non-invasive score. Among them, we can include: Age, alcohol abuse, pre-
treatment advanced fibrosis/cirrhosis, platelet count, steatosis, diabetes, alfa 
fetoprotein (AFP), baseline gamma-glutamyltransferase (GGT) levels together with 
ethnic and environmental factors. All these factors have been studied in patients 
treated with interferon-based therapies with interesting results[72-76]. During the pre-
DAAs era, studies on the complications of liver cirrhosis after HCV-treatment showed 
that SVR and fibrosis regression did not prevent hepatic carcinogenesis. D’Ambrosio et 
al[77] found that 13% of patients who responded to interferon-based treatments, 
developed HCC during an 8-year follow-up (17% cumulative probability and 1.2% 
annual incidence rate) whereas neither variceal-bleeding nor liver-function 
decompensation occurred. Higher baseline levels of GGT and glycemia were identified 
as risk factors for HCC development. Similarly, Toyoda et al[75] demonstrated that 
diabetes mellitus and FIB-4 index increase represent risk factors for HCC after SVR 
with interferon-based regimens, thus suggesting continuing active surveillance in 
these groups of patients.

In a prospective analysis of 1927 patients with HCV-related cirrhosis, receiving 
DAAs in ten tertiary Italian liver centers, Lleo et al[78] observed a recurrence rate of 
HCC of 24.8 per 100 patients/year and a de novo occurrence rate of 2.4 per 100 
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patients/year. They found that treatment failure and high AFP levels represent 
independent predictors of HCC development, while SVR and absence of PH are 
associated with a lower HCC incidence, suggesting that HCC risk stratification should 
rely on the presence of PH and elevated baseline AFP levels.

It has been suggested that PH as a complication of liver fibrosis (more than fibrosis 
itself) may represent an independent risk factor for HCC[66]. Afdhal et al[39] analyzed 
50 patients with HCV-related liver cirrhosis treated with DAAs and observed a 
significant reduction in HVPG values during long-term follow-up after SVR: 24% of all 
patients and 89% of subjects with baseline HVPG ≥ 12 mmHg who reached SVR had a 
≥ 20% reduction in HVPG. With regard to LS, a more evident improvement was 
observed in patients who did not develop HCC during follow-up (42.6% reduction in 
patients without HCC vs 13.6% in the HCC group), thus proposing a protective role of 
HVPG and LS against HCC development.

In a recent retrospective study performed in patients with SVR after DAAs, Hamada 
et al[79], identified six variables that could be included in the HCC prediction model: 
Age, body mass index, platelet count, albumin, AFP, LS and FIB-4 index. Following 
multivariate analysis they found that age ≥ 75 years, AFP ≥ 6 ng/mL, and LS ≥ 11 kPa 
were independent risk factors for hepatocarcinogenesis (risk ratio: 35.16, 43.30 and 
28.71, respectively; P = 0.001, 0.003 and 0.006, respectively). In particular, patients with 
LS < 11 kPa had a cumulative HCC incidence of 1.3% at 12 mo, 24 mo, 36 mo and 48 
mo, while in the group with LS > 11 kPa the HCC incidence rate was 4.6% at 12 mo 
and 24 mo, 24.8% at 36 mo and 62.4% at 48 mo.

The role of LSM in the development of a prediction model for HCC has also been 
emphasized by Feier et al[80]. They confirmed that high levels of AFP, transaminases 
and LS are excellent predictors of HCC but underlined the importance of interquartile 
range (IQR) in LSMs. This led to the hypothesis of “stiffness shadow” that indicated an 
inhomogeneous shear stress due to the chaotic tumoral growth in the already hard 
cirrhotic tissue, with relevant diagnostic repercussions[81,82]. The overall prognostic 
model combining the four variables demonstrated relevant results both in the training 
and validation phase with a positive relation with tumor size. The four parameters 
together showed a 64.5% HCC prediction, with LS alone reaching the highest 
predictive power. The authors concluded that an elevation in LS values and IQR 
during follow-up could enhance the diagnostic skill towards early HCC[80].

It is interesting to note that some genetic factors also seem to be involved in hepato-
carcinogenesis, despite the lack of clear evidence and the need for further prospective 
studies.

In their cohort of 200 patients with HCV-related cirrhosis with SVR after DAAs, 
Simili et al[83] noted a strong association of the single-nucleotide polymorphism of 
interleukin 28 (IL28B–rs12979860) with HCC development (both de novo and disease 
recurrence); furthermore, they observed a relation of HCC with lower levels of serum 
retinol and the presence of another two polymorphisms: Major histocompatibility 
complex class I polypeptide-related sequence A gene (MICA) and tolloid-like 1. The 
latter has proven particularly controversial since its oncogenic role was stated by 
Matsuura et al[84] but denied by Degasperi et al[85]: The difference between these 
studies could be ascribed to the different allele frequency or the presence of still 
unknown cofactors in the two ethnic groups (Japanese and Caucasian) or to discrep-
ancies in the length of the follow-up period.

CONCLUSION
DAAs-therapy has brought about an effective revolution in hepatology resulting in 
HCV eradication in a wide range of patients and eventually reducing liver fibrosis 
after SVR. However, these benefits have not erased the risk of developing liver 
disease-related complications and in particular HCC and PH associated events. For 
this reason, it is crucial to continue long-term systematic surveillance after HCV 
eradication focusing on the subjects with a high-risk score.

Due to its accuracy, cost-effectiveness and non-invasiveness, together with specific 
clinical and laboratory parameters, LSM is gaining a relevant role in the construction 
of algorithms assessing both liver fibrosis and PH. The potential application of this 
non-invasive and simple method has been emphasized especially in the management 
of patients with SVR in order to define the risk to develop the complications of chronic 
liver disease (functional decompensation, gastrointestinal bleeding, HCC) and 
optimize long-term prognostic outcomes in clinical practice.
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Abstract
Drug-induced liver injury (DILI) is one of the leading causes of liver failure and 
withdrawal of drugs from the market. A poor understanding of the precipitating 
event aetiology and mechanisms of disease progression has rendered the 
prediction and subsequent treatment intractable. Recent literature suggests that 
some drugs can alter the liver’s repair systems resulting in injury. The pathop-
hysiology of DILI is complex, and immune dysfunction plays an important role in 
determining the course and severity of the disease. Immune dysfunction is 
influenced by the host response to drug toxicity. A deeper understanding of these 
processes may be beneficial in the management of DILI and aid in drug devel-
opment. This review provides a structured framework presenting DILI in three 
progressive stages that summarize the interplay between drugs and the host 
defence networks.
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Core Tip: This review demonstrates the critical role of the immune system in the pro-
gression of drug-induced liver injury and also in determining the severity of the 
damage. Drugs affect the normal functioning of hepatocytes through several direct and 
indirect mechanisms leading to the dysfunctional immune response. The major effector 
cells in amplifying liver damage are Kupffer cells, monocytes and neutrophils. Genetic 
predispositions and environmental factors also make individuals vulnerable to immune 
dysfunction.
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INTRODUCTION
The liver plays a central role in the complex process of metabolism and elimination of 
drugs from the body. The liver is equipped with a wide array of detoxification systems 
that have evolved over time with exposure to xenobiotics. The primary role of this 
system is to convert a drug to a more hydrophilic form so that it can be eliminated 
through bile or urine. Despite the liver’s detox potential, certain drugs can still cause 
hepatotoxicity that can range from mild asymptomatic liver damage to liver failure[1,
2].

A study showed that, out of the 462 pharmaceuticals withdrawn due to adverse 
drug reactions between 1953 and 2013, hepatotoxicity ranked first with 81 cases (18%). 
It is estimated that over 1000 drugs currently available on the market that cause liver 
damage[3] despite these drugs passing the safety measures of clinical trials before 
entering the market. Some drugs that are hepatotoxic at doses higher than the 
therapeutic range can also cause drug-induced liver injury (DILI) at doses within the 
therapeutic range[2,4-6]. This implies that the dose may not be the only contributing 
factor.

Despite large number of drugs known to cause liver injury, the incidence of DILI is 
rare. DILI is reported in 1 in every 10000 to 100000 individuals annually. This suggests 
that drug-host interactions in these susceptible individuals may play an important role 
in DILI[7-9]. Recent data shows that this interaction can result in an imbalance 
between damage and repair mechanisms resulting in DILI with immune dysfunction 
being cited as an important precipitating event in the pathophysiology of DILI[10-12]. 
This is supported by evidence from experimental studies. Some drugs that are 
hepatotoxic in humans do not cause liver damage in animal models, but the adminis-
tration of these drugs along with low doses of lipopolysaccharide (LPS) result in a 
similar pattern of liver injury as observed in humans. For example, Trovafloxacin 
(TVX) is a broad-spectrum fluoroquinolone antibiotic, and a study reported that TVX 
use caused 140 severe hepatic reactions resulting in 14 cases of liver failure. 
Examination of the case reports suggest that the duration of TVX therapy in patients 
does not correlate with the toxic response, so TVX hepatotoxicity is classified as 
idiosyncratic. In rodent models, TVX did not cause liver damage, even at high doses. 
However, further studies with a normally nontoxic dose of TVX coupled with LPS 
induced inflammatory stress caused acute liver injury[13,14].

The upcoming sections provide a structured framework presenting DILI in three 
progressive stages, summarizing the interplay between drugs and the host defence 
networks that lead to immune system dysfunction.

STAGES OF DILI
Initiation of DILI
Direct initiation: The metabolism of drugs by phase 1 enzymes results in the prod-
uction of intermediary metabolites and free radicals, in some instances. These 
intermediary metabolites may also be unstable and reactive, but they are subsequently 
neutralized by phase 2 conjugation. DILI is initiated when there is an imbalance 
between the production of reactive metabolites and their subsequent detoxification[2,
5] (Figure 1).

Certain drugs and reactive metabolites can bind to cellular organelles resulting in 
loss of function and likely cell death. One such case is the damage caused by drugs 
acting on the endoplasmic reticulum (ER). The ER plays an important role in protein 
synthesis, folding, assembly, trafficking, and regulation of intracellular calcium 
homeostasis. Drug related oxidative stress can disturb ER function and lead to the 
accumulation of unfolded proteins in the ER. This process is termed ER stress. A 
variety of common drugs cause ER stress, including paracetamol, lopinavir, ritonavir, 
saquinavir, nelfinavir, atazanavir, and amprenavir[15].

During drug metabolism, free radicals are released that are normally detoxified by 
cell defence mechanisms. Excessive free radical generation can be caused by enzyme 
induction or genetic defects in enzyme systems. Free radicals damage the cellular 
organelles and the lipid bilayer, which results in amplification of damage. Lipid 
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Figure 1 Initiation of drug-induced liver injury - Direct damage by drug and metabolite. Drugs and their metabolites damage organelles and cell 
membrane of liver cells causing damage. ER: Endoplasmic reticulum.

bilayer damage can lead to the release of cytosolic components and alarmins that 
attract the liver’s resident immune cells. This initial immune response can amplify the 
sterile damage. Some of the alarmins associated with DILI are high mobility group box 
1, S100 proteins, hepatoma-derived growth factor and heat shock proteins[16-20].

Free radicals can also damage the mitochondrial membrane leading to cell 
dysfunction and death. Mitochondrial dysfunction includes disruption or disturbance 
to different metabolic pathways and damage to mitochondrial components. In 
addition, these mitochondrial alterations can have several deleterious consequences, 
such as oxidative stress, ATP depletion, triglycerides accumulation, and necrotic cell 
death[21].

Indirect initiation of DILI: There are two main mechanisms of indirect initiation of 
DILI. Inhibition of efflux transporters. Bile salt export pump (BSEP) is a member of the 
ABC transporter superfamily located in the canalicular membrane of hepatocytes. 
BSEP is responsible for the biliary excretion of bile acids. Drug metabolites inhibit 
BSEP function, resulting in toxicity. One such metabolite, Troglitazone sulphate, a 
metabolite of troglitazone, inhibits BSEP mediated taurocholate transport which 
contributes to troglitazone toxicity. Other potent BSEP inhibitors with the potential to 
cause DILI include cyclosporin A, bosentan, sulindac, rifamycin, and glibenclamide[2,
22].

Enzyme induction: Paracetamol is known to cause liver injury through enzyme 
induction due to CYP2E1 induction by ethanol. A minor percentage of ethanol is 
metabolised by CYP2E1. When ethanol and paracetamol are taken simultaneously, 
ethanol slows the degradation of the CYP enzyme increasing its half-life from 7 h to 37 
h. Until ethanol is present in the body more CYP2E1 is induced and a portion is 
blocked from paracetamol for ethanol metabolism. Once ethanol is completely 
removed, CYP2E1 enhances paracetamol metabolism resulting in the excess 
production of toxic intermediary metabolite, NAPQI, causing liver injury[2,23] 
(Figure 2).

PROGRESSION
The initiation of DILI does not necessarily result in adverse outcomes. In experimental 
models, the progression of DILI mainly depends on the persistent and recurrent 
assault by the toxins that deplete the liver’s resources leading to irreversible damage. 
This is unlikely at the therapeutic dose of most drugs, as the liver has highly 
developed protective and regenerative mechanisms. Experimental and clinical data 
suggest that a myriad of host and drug-related factors contribute to the progressive 
dysfunction of survival mechanisms that lead to DILI. This is further complicated by 
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Figure 2 Initiation of drug-induced liver injury - Indirect damage by drugs. Drugs can modulate the functioning of enzymes and transporters involved in 
drug metabolism and elimination that may lead to toxicity.

the fact that each drug can cause multiple patterns of liver disease, implying an 
important role for host-drug interactions in the progression of DILI. Immune 
dysfunction is a major determinant of hepatic cell death and DILI progression[2,4,6,24-
26].

This section covers the two main mechanisms of immune reactions induced by 
drugs and the influence of host factors on them.

Immune allergic DILI
A drug or its metabolites alone cannot activate an immune response due to their small 
size, but a drug’s reactive metabolites or the drug itself can bind to cellular proteins 
and form protein-drug adducts that elicit an immune response. In normal individuals, 
this complex is degraded by cellular detoxification but in susceptible individuals, these 
adducts act as immunogens and are taken up by antigen-presenting cells and 
presented by major histocompatibility complexes to helper T cells, and further 
activation by cytokines stimulates an immune response and anti-drug antibodies are 
also produced, resulting in extensive death of cells where the drug has accumulated[6,
27-29] (Figure 3).

It is hypothesized that ER stress is a contributing factor for this type of reaction. 
Accumulation of drug/metabolite causes ER stress, which results in misfolding of 
proteins. These misfolded proteins are more susceptible to drug-protein adduct 
formations that elicit an immune response[15].

An example of this type of reaction is abacavir, a reverse transcriptase inhibitor 
employed in the treatment of AIDS, which causes a rare, but serious hypersensitivity 
reaction that resembles an immune allergic drug reaction. Several genetic variants in 
the HLA regions are identified as risk factors for DILI, the incidence of hypersens-
itivity reactions to abacavir is markedly elevated in subjects who carry the B*57:01 
variant in the human leukocyte antigen B (HLA-B) gene. Furthermore, carriers of this 
genotype are at increased risk of flucloxacillin-induced DILI. Studies have shown an 
association between HLA-B1*15:01 and amoxicillin/clavulanate DILI. The HLA-B*
35:02 allele is reported to have a significant association with minocycline DILI[10,25,30,
31]. DILI caused by other drugs such as amoxicillin-clavulanate, lumiracoxib, 
ticlopidine, lapatinib, and ximelagatran is also associated with HLA genotypes, 
suggesting an important role of the immune system in DILI[25,31].

Autoimmune DILI
Autoimmune DILI is caused by the release of alarmins from necrotic cells or cells with 
leaky cell membranes. This results in the activation of innate immune cells. Alarmins 
are rapidly released following necrotic cell death that are not released by apoptotic 
cells. The immune system also can be induced to produce and release alarmins to 
recruit and activate innate immune cells[19,32] (Figure 4).

Mitochondrial dysfunction is reported to play a critical role in the pathogenesis of 
autoimmune DILI. NSAIDs, such as diclofenac and nimesulide, and other drugs can 
cause mitochondrial dysfunction that leads to the formation of the mitochondrial 
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Figure 3 Immune allergic drug-induced liver injury. A: Endoplasmic reticulum stress by drug, causes misfolded protein resulting in cell death and release of 
stress signals and drug-protein complex. Kupffer cells ingest the drug-protein complex to T-helper cells; B: T-helper cells process it and present it to B-cells; C: B-cells 
produce anti-drug antibodies; D: These antibodies target the tissues, where drug is accumulated. KC: Kupffer cell; HSC: Hepatic stellate cells.

Figure 4 Mechanism of autoimmune drug-induced liver injury. A: Drug causes mitochondrial dysfunction resulting in cell death and release of HMGB-1 
and other stress signals; B: Kupffer cells and Stellate cells get activated. Release cytokines, chemokines and toxins; C: Chemokines attract monocytes; D: 
Amplification of injury and cell death. KC: Kupffer cell; HSC: Hepatic stellate cells; ROS: Reactive oxygen species.

permeability transition pore (MPTP). MPTP formation is induced by increased 
oxidative stress that results in a dissipation of membrane potential, uncoupling of 
oxidative phosphorylation leading to necrotic cell death and the release of alarmins[18,
21,33].

HMGB-1 is an alarmin released by necrotic cells that binds to TLR4 receptors of 
kupffer cells (KCs) and hepatic stellate cells (HSC), and activates them. Activated KCs 
produce mediators that directly induce cell death, such as tumor necrosis factor (TNF)-
α, Fas ligand and reactive oxygen species, or indirectly cause death through the 
recruitment of neutrophils by cytokines and chemokines like IL-1β and CXCL2. 
Production of chemokine, CCL2 (MCP-1) recruits monocytes from the bone marrow to 
the liver. These infiltrating monocytes produce inflammatory chemokines resulting in 
the activation of HSCs and the promotion of fibrosis[18,34].

Host sex and sex hormones influence immune response. Studies have shown that 
female patients with DILI are at higher risk of developing acute liver failure (ALF) 
with more severe hepatitis and higher levels of pro-inflammatory cytokines. In a 
halothane-induced experimental DILI model, oestrogen reduced liver injury while 
progesterone increased liver damage, both hormones influenced immune response. 
Another important factor affecting DILI is race. A study reported that African-
Americans are at a higher risk of developing chronic DILI, while Asian individuals are 
at increased risk of ALF, liver-related death, or damage that precipitates a need for 
liver transplantation[4,7,10,24,35].
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ADVERSE OUTCOMES
In normal individuals, DILI resolves completely without any residual liver injury. But 
there are three major exceptions. They are ALF, cirrhosis  and acute-on-chronic liver 
failure (ACLF). These conditions are relatively rare but severe and may result in death 
or require a liver transplant.

ALF
Even in the absence of pre-existing liver disease, drugs can cause a rapid loss of liver 
function either directly, as seen in overdoses, or through inflammatory cell mediated 
mechanisms such as cytokine overproduction. Drug-induced ALF is defined by the 
signs or symptoms of hepatic failure and encephalopathy during the course of acute 
DILI. The time to onset of ALF after the start of a medication can vary from a few days 
to months, but not exceeding six months[4,24,36-38].

In Western countries, paracetamol overdose is the most common reason behind 
ALF. In India, anti-TB regimens with isoniazid, rifampicin and pyrazinamide are 
reported as the leading cause of ALF. Other drugs that are reported to cause ALF 
include phenytoin, carbamazepine, valproate, nitrofurantoin, propylthiouracil, 
disulfiram, diclofenac, ketoconazole, flutamide, sulphonamides, terbinafine, 
fluoroquinolone antibiotics and macrolide antibiotics. Drug-induced ALF is a major 
cause for withdrawal from the market or restricted use of a medication (troglitazone, 
bromfenac, nefazodone, halothane, telithromycin). ALF occurs in cases with acute 
hepatocellular injury with characteristics similar to acute viral hepatitis[10,23,39-41].

Paracetamol is responsible for more than 50% of drug related ALF and about 20% of 
liver transplant cases in the United States[42]. In case of paracetamol overdose, the 
drug metabolite NAPQ1 depletes GSH and causes organelle damage, the most 
significant resulting in mitochondrial stress. Thereby the NAPQ1 accumulation 
triggers necrosis[43,44]. Hepatocyte necrosis passively releases various DAMPs such 
as HMGB-1, HSP and DNA fragments. These DAMPs activate the resident immune 
cells such as Kupffer cells and natural killer (NK) cells. Cytokines and chemokines 
such as TNF-α, IL-1β and CCL2 produced by the activated immune cells and the 
DAMPs enter systemic circulation and cause infiltration of neutrophils and monocytes 
into the liver. In conditions of sterile injury, the immune cells function to clear the 
dead cells by producing chemokines and free radicals to digest it. Once the cellular 
debris is cleared the immune cells undergo phenotypic change and support in liver 
regeneration. However, in case of paracetamol overdose, the overwhelming amount of 
cellular debris and DAMPs causes excess immune activation, whose products such as 
superoxide, nitric oxide and peroxynitrite result in further amplification of liver injury 
leading to massive necrosis and organ failure[45-48].

Cirrhosis
Cirrhosis is characterized by islands or nodules of regenerative parenchymal cells 
surrounded by excessive deposition of fibrous tissue and portal hypertension. 
Cirrhosis is rarely the initial manifestation of DILI and is most often a cumulative 
response to long-term exposure to hepatotoxic drugs. It usually occurs at least six 
months after starting the drug treatment. The time to onset of cirrhosis due to 
medications is typically long; at least 6 month after starting the medication but usually 
several years afterwards. The drugs that are most commonly cause cirrhosis are 
vitamin A, amiodarone, statins, tamoxifen, valproic acid, fibrates, and methotrexate[4,
25,26,49-51]. Drugs such as dantrolene, phenytoin, trazadone and nitrofurantoin are 
also associated with chronic hepatitis with autoimmune features that may lead to 
cirrhosis[52-54].

Amiodarone is a benzofuran derivative mainly used in the treatment of arrhythmia. 
The safety of long-term use of amiodarone is well established however there are 
several reports of reversible and irreversible liver injury from its long-term use. Even 
though rare amiodarone can cause asymptomatic continuous liver injury that has 
histological features similar to alcoholic hepatitis such as nodular formation, fibrosis, 
steatosis and neutrophil infiltration[55-61]. Due to its lipophilic nature and long half-
life, amiodarone accumulates in the hepatocytes affecting cellular organelles such as 
ER and mitochondria causing misfolding of proteins. Amiodarone affects the 
cholesterol metabolism by blocking enzymes emopamil binding protein and 
dehydrocholesterol reductase 24. As cholesterol plays an important role in maint-
aining membrane fluidity and composition this affects the function of potassium 
channels and other membrane proteins resulting in “lipid traffic jam”[62-67]. The 
immune cells in the liver get activated in response to cellular debris, misfolded 
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proteins and accumulating cholesterol precursors such as desmosterol[63,66,68]. 
Unless diagnosed in an early stage, this leads to irreversible end stage liver disease[62,
69].

Acute-on-chronic liver failure
Acute-on-chronic liver failure (ACLF) as the name suggests is characterized by ALF 
due to a different cause in patients with chronic liver disease (compensated) resulting 
in short term mortality. It consists of two components: a chronic underlying liver 
disease and an acute trigger[70,71]. Devarbhavi et al[72] reported that drugs 
contributed to 10.5% cases in the Asia-Pacific region. Among these drugs, the most 
common culprits were complementary and alternative medications (71.7%), followed 
by anti-TB drug combination therapies (27.3%). Anti-TB drug isoniazid is also 
observed to cause severe hepatitis that leads to liver failure[72-74].

Studies suggest that excessive focal liver and systemic inflammatory response play a 
significant role in the development of ACLF. Reports have shown high levels of 
cytokines in patients with ACLF. This may be due to the activation of monocytes and 
macrophages in response to DAMPs, microbial toxins or drug adducts[19,75,76].

Paracetamol induced liver failure in patients with alcoholic hepatitis is a typical 
example of drug induced ACLF. Alcoholic hepatitis is reported in approximately 25% 
of the cases of ACLF. The trigger due to paracetamol toxicity can occur in two ways- 
the first is due to direct toxicity by paracetamol and the second due to immune 
response that is secondary to the hepatocellular damage due to the direct toxicity. The 
activation of innate immune response due to the paracetamol acute toxicity results in 
upregulation of cytokine and chemokine production that initiates severe systemic 
inflammation, liver damage and mortality[70,75,77,78].

The dysregulation in innate immune response plays important roles in disease 
progression as well as disease severity. In the liver, systemic inflammation plays a 
significant role in the development and course of chronic alcoholic hepatitis. Similar to 
the acute toxicity, immune activation in alcoholic liver disease results in activation of 
resident Kupffer cells and dendritic cells as well as the infiltrating immune cells- 
monocytes and neutrophils lead to progression towards fibrosis and cirrhosis. This 
disrupts the liver architecture and function setting stage for liver failure, that can be 
actuated by an acute trigger[75,78,79].

CONCLUSION
Drugs and their metabolic products can cause liver damage through multiple 
mechanisms. Under normal conditions, the liver is well equipped to neutralize 
potential drug-related damage, but in susceptible individuals, this same drug use can 
result in severe liver injury. This is further amplified by a dysfunctional immune 
responses that is influenced by host factors like genetics, age and sex. The severe 
adverse outcomes of DILI are ALF, cirrhosis and acute-on-chronic liver injury. All 
these injuries are associated with concurrent immune dysfunction. A better 
understanding of immune mediators may offer new targets for the management of 
DILI. Individualized therapy that focuses on early detection of risk factors, triggers 
and stage of the liver injury may play a significant role in effectively attenuating this 
disorder.
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Abstract
Liver biochemical tests are some of the most commonly ordered routine tests in 
the inpatient and outpatient setting, especially with the automatization of testing 
in this technological era. These tests include aminotransferases, alkaline 
phosphatase, gamma-glutamyl transferase, bilirubin, albumin, prothrombin time 
and international normalized ratio (INR). Abnormal liver biochemical tests can be 
categorized based on the pattern and the magnitude of aminotransferases 
elevation. Generally, abnormalities in aminotransferases can be classified into a 
hepatocellular pattern or cholestatic pattern and can be further sub-classified 
based on the magnitude of aminotransferase elevation to mild [< 5 × upper limit 
of normal (ULN)], moderate (> 5-< 15 × ULN) and severe (> 15 × ULN). Hepato-
cellular pattern causes include but are not limited to; non-alcoholic fatty liver 
disease/non-alcoholic steatohepatitis, alcohol use, chronic viral hepatitis, liver 
cirrhosis (variable), autoimmune hepatitis, hemochromatosis, Wilson’s disease, 
alpha-1 antitrypsin deficiency, celiac disease, medication-induced and ischemic 
hepatitis. Cholestatic pattern causes include but is not limited to; biliary 
pathology (obstruction, autoimmune), other conditions with hyperbilirubinemia 
(conjugated and unconjugated). It is crucial to interpret these commonly ordered 
tests accurately as appropriate further workup, treatment and referral can greatly 
benefit the patient due to prompt treatment which can improve the natural 
history of several of the diseases mentioned and possibly reduce the risk of 
progression to the liver cirrhosis.
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Core Tip: Liver function test are one of the most commonly ordered tests. With the 
automation of test and its inclusion in the complete metabolic profile, the knowledge as 
it pertains to its interpretation is of paramount importance. It is also important for the 
clinician to understand the difference between cholestatic and hepatocellular 
abnormalities. This can be of help for the clinician to formulate appropriate further 
diagnostic workup and plan the treatment.

Citation: Kalas MA, Chavez L, Leon M, Taweesedt PT, Surani S. Abnormal liver enzymes: A 
review for clinicians. World J Hepatol 2021; 13(11): 1688-1698
URL: https://www.wjgnet.com/1948-5182/full/v13/i11/1688.htm
DOI: https://dx.doi.org/10.4254/wjh.v13.i11.1688

INTRODUCTION
Liver biochemical tests are some of the most commonly ordered tests in the United 
States due to the automation of routine laboratory tests. A United States population-
based study of 6823 subjects from 1999 to 2002 showed elevated alanine aminotrans-
ferase (ALT) in 8.9% of subjects and aspartate aminotransferase (AST) in 4.9% of 
subjects.

Another population-based study consisting of 15676 subjects was done from 1988 to 
1994 which showed elevation in aminotransferases (either ALT or AST) in 7.9%. In that 
study, 69% of the elevated aminotransferases results were unexplained[1].

Laboratory tests normal ranges are calculated based on the mean value found 
amongst a group of healthy individuals +/- 2 standard deviations. Hence 5% of 
healthy individuals’ results lie outside the reference range[2].

As a result of the prevalence of liver biochemical tests ordered and abnormal 
results, we will be writing this review to increase the knowledge about liver tests to 
clinicians and improve the interpretation of these tests.

Liver function tests (LFTs) are a term commonly used for aminotransferases, 
alkaline phosphatase (ALP), bilirubin, and albumin which is somewhat of a misnomer 
as only bilirubin and albumin represent a synthetic function by the liver[3]. Besides, 
the liver is crucial in clotting factors production and decreased synthetic function of 
the liver can result in prothrombin time (PT) prolongation and an increase in the 
international normalized ratio (INR). Consequently, some of the most widely used 
scores for predicting mortality in cirrhotic patients such as the Child-Pugh score and 
model for end stage liver disease-Na (MELD-Na) score do not include AST, ALT, or 
ALP but rather use INR, bilirubin, and albumin in Child-Pugh score and INR and 
bilirubin in MELD-Na score.

LIVER BIOCHEMICAL STUDIES
Liver biochemical studies include; ALT, AST, ALP, gamma-glutamyl transferase 
(GGT), 5’nucleotidase, lactate dehydrogenase (LDH), bilirubin, albumin, PT/INR 
(Table 1).

Enzymes
ALT is an enzyme that is found primarily in hepatocytes (lower concentrations in 
cardiac, renal, and muscle tissue) and thus is specific to the hepatocellular injury. ALT 
levels often fluctuate throughout the d. ALT facilitates the formation of glutamate and 
pyruvate in the hepatocyte which is important for energy production[4]. The normal 
range for ALT in males is between 29-33 IU/L and 19-25 IU/L for females.

http://creativecommons.org/Licenses/by-nc/4.0/
http://creativecommons.org/Licenses/by-nc/4.0/
http://creativecommons.org/Licenses/by-nc/4.0/
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Table 1 Liver biochemical tests and their respective sites and functions

Interpretation Test Site (s) Function

ALT Hepatocyte (main), cardiac, renal and muscle 
tissue to smaller extent

AST Hepatocyte, cardiac, muscle and brain tissue

Amino acid catabolism. Glutamate and pyruvate production for 
ATP production

Hepatocellular 
integrity

LDH Nonspecific, present widely in the body Anaerobic glycolysis major enzyme in addition to NADH 
production. Significant in ischemic hepatitis

ALP Hepatobiliary tract, bone, placenta and 
intestines

Dephosphorylation reactions. Role in bile production

GGT Mainly in hepatobiliary tract, present in 
multiple other organs (nonspecific as an 
isolate test)

Aids in identification of elevated ALP of biliary origin

5’nucleotidase Nonspecific, present widely in the body Clinical value in hepatobiliary and cholestatic disease specifically 
when paired with ALP and GGT

Cholestatic pattern

Bilirubin Serum and liver End product of heme breakdown. Exists in conjugated and 
unconjugated form. Elevation in conjugated suggestive of possible 
cholestasis

Albumin Serum Main protein in the serum, maintains oncotic pressure. Produced by 
the liver

Synthetic function

PT/INR Test to measure extrinsic coagulation pathway Clotting factors primarily produced in the liver. Helpful however 
does not reflect true coagulation status

ALT: Alanine aminotransferase; AST: Aspartate aminotransferase; LDH: Lactate dehydrogenase; ALP: Alkaline phosphatase; GGT: Gamma-glutamyl 
transferase; ATP: Adenosine-triphosphate; PT: Prothrombin time; INR: International normalized ratio.

ALT levels have been a point of debate recently as newer studies are suggesting the 
need for a lower ALT cutoff to increase the sensitivity of the test. It’s believed that the 
current ALT cutoffs were defined by using patients with possible underlying 
subclinical liver disease and hence decrease the sensitivity of the test. A retrospective 
study in 2002 evaluated 6835 patients and hypothesized that undiagnosed hepatitis C 
and non-alcoholic fatty liver disease (NAFLD) are likely to have skewed the studies 
previously used to determine normal ALT levels based on the 95th or the 97.5th 
percentile.

Suggested new cut-offs from this study are ALT < 30 in men and < 19 in women. It 
was found that the sensitivity in detecting hepatitis C virus viremia with the lower cut 
offs was higher than that of the traditional cut-offs. Nonetheless these values should be 
cautiously interpreted as body mass index, cholesterol levels and age can affect ALT 
levels[5].

It is important to note that the reference ranges for labs differs across countries and 
sometimes even between different centers in the same country.

AST is an enzyme which like ALT is also found in the liver however has also other 
sites where its presence is not as minimal as ALT. These sites are primarily skeletal 
muscle, cardiac muscle, renal tissue, and brain. It occurs as 2 isoenzymes that are not 
differentiated on standard testing and hold little clinical value. AST facilitates amino 
acid metabolism[6]. When it comes to AST, caution must be practiced when evaluating 
abnormal levels due to its presence in other tissues. The normal range for AST is < 35 
IU/L[7].

ALP is an enzyme that is primarily found in the hepatobiliary tract, bone, placenta, 
and to a smaller extent in intestinal tissue. ALP is involved in multiple dephos-
phorylating reactions. The normal range for ALP is between 30-120 IU/L. ALP is 
generally higher in children and adolescents due to the increased osteoblastic activity 
associated with the bone growth[8].

GGT is an enzyme that is found in multiple organs in the body including the 
pancreas, seminal vesicles, kidneys, biliary tract, and liver. Its elevation is usually 
considered significant for a hepatobiliary disease when accompanied by an elevation 
in other liver biochemical tests. It is generally elevated in biliary disease, cytochrome-
inducing medications, and alcohol abuse. GGT is involved in the glutathione 
metabolism and production in multiple tissues in the body. Normal GGT levels range 
between 0-30 IU/L. GGT levels are generally 6-8 times higher in infants[9].
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5’nucleotidase is an enzyme that is present in many organs however its clinical 
value holds significance primarily in hepatobiliary or cholestatic disease. It is generally 
used as a test to help in evaluating whether an isolated elevated ALP is from a hepato-
biliary source vs an osseous source. Its primary function is in nucleotide hydrolysis 
reactions. The normal range for 5’nucleotidase 0.3-3.2 Bodansky units (levels need to 
be corrected with elevated serum ALP)[10].

LDH is an enzyme that is widely present in the body, it has multiple isoenzymes of 
which one is primarily excreted/taken up by Kupffer cells in the liver[11]. Hence liver 
disease/injury can result in elevated LDH. This is non-specific and is rarely used as 
means of evaluating liver disease. Normal LDH ranges between 140-280 U/L (ranges 
vary slightly between different labs).

Markers of liver synthetic function
Albumin is one of the major protein constituents in the blood and comprises 50%-60% 
of total protein in the serum. Albumin synthesis occurs in the liver hence it is 
considered a marker of the liver’s synthetic function. Albumin levels can be influenced 
by other causes such as systemic inflammation as albumin is a negative inflammatory 
marker, protein malnutrition, nephrotic syndrome, fluid overload, or protein-losing 
enteropathy. Albumin has multiple functions such as maintaining serum oncotic 
pressure and endogenous (i.e., bilirubin) and exogenous (i.e., drugs) substances 
transport in the blood[12]. Normal albumin levels range between 3.5-5 g/dL.

PT and INR reflect the coagulation cascade and in specific, the extrinsic pathway of 
the coagulation cascade. The liver is involved in the synthesis of multiple clotting 
factors including, factors I, II, V, VII, IX, X, XI, and XIII, in addition to protein C, 
protein S, and anti-thrombin. The reason why PT and INR are primarily elevated 
rather than activated partial thromboplastin time (aPTT) is due to factor VIII and von 
Willebrand factor being produced in multiple organs around the body and conceals 
the aPTT prolongation in vitro. Due to deficiency of both pro-coagulant and antico-
agulant factors, PT/INR and aPTT are not reliable measures of bleeding risk in 
cirrhotic patients. Moreover, PT/INR and aPTT are measures of pro-coagulant activity 
and do not take into consideration defects in anticoagulant pathways. Besides, patients 
with chronic liver diseases or cirrhosis are likely to have thrombocytopenia due to 
splenic sequestration and decreased thrombopoietin levels which further increases the 
risk of bleeding[13].

Bilirubin itself is not a marker of liver synthetic function per se however its 
excretion and conjugation are closely linked to the liver’s conjugating and excreting 
function. Bilirubin is the end product of heme breakdown and is initially bound to 
albumin in the serum. In the liver, it is conjugated and excreted in the bile. Elevations 
in bilirubin levels are further classified as direct hyperbilirubinemia and indirect 
hyperbilirubinemia. Direct hyperbilirubinemia is generally due to an excretion defect 
in the liver such as cholestasis or Dubin-Johnson and Rotor syndrome. Indirect 
hyperbilirubinemia can be due to intrinsic liver injury or hemolysis[14].

PATTERN RECOGNITION AND INTERPRETATION
Pattern recognition and interpretation are crucial in the evaluation of abnormal liver 
biochemical tests. Patterns can be primarily divided into hepatocellular and 
cholestatic. These can be subdivided further into; acute (< 6 wk), subacute (6 wk-6 mo), 
or chronic (> 6 mo).

In hepatocellular pattern, there is a disproportionate rise in ALT and AST in 
contrast to ALP and GGT. In hepatocellular injury, there is release of aminotrans-
ferases from the hepatocytes resulting in elevated serum levels. R value is a proposed 
score aimed to aid physicians in determining the pattern of liver injury based on the 
upper limit of normal (ULN) of certain enzymes. R value = (ALT ÷ ULN ALT)/(ALP ÷ 
ULN ALP). R value > 5 is suggestive of hepatocellular pattern, > 2 to < 5 is suggestive 
of a mixed pattern, and < 2 suggestive of cholestatic pattern (Table 2)[15].

Hepatocellular pattern
Aminotransferase elevations can be divided into mild, moderate, and severe even 
though the values for this classification are variable, in this review we will be taking 
mild as > 2 × - < 5 × ULN lab value, moderate > 5 × - < 15 ×, severe as > 15 × ULN and 
massive > 10000 IU/L[16]. These values are not accurate measures of the extent of liver 
injury however can aid in initial workup.
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Table 2 R-value calculation and interpretation

R value = (ALT  ULN ALT)/(ALP ÷ ULN ALP)

R value Interpretation

> 5 Hepatocellular pattern

> 2 but < 5 Mixed pattern

< 2 Cholestatic pattern

ALT: Alanine aminotransferase; ULN: Upper limit of normal; ALP: Alkaline phosphatase.

One of the most commonly known and used ratios is AST:ALT and is generally 
helpful only for an alcoholic liver disease where AST:ALT > 2. A study done in 1979 
among patients with histologic evidence of liver disease demonstrated that 90% of 
patients with AST:ALT > 2 had alcoholic liver disease and > 96% of patients with 
AST:ALT > 3 had alcoholic liver disease[17]. This ratio can be explained due to alcohol 
being a mitochondrial toxin and low pyridoxal phosphate absorption as a result of 
heavy alcohol use. AST is found in mitochondria and cytoplasm, while ALT is found 
in cytoplasm but not mitochondria. ALT synthesis is more dependent on pyridoxal 
phosphate when compared to AST. In alcoholic liver disease, ALT is generally < 300 
IU/L and is rarely > 500 IU/L. In situations where ALT > 500 IU/L, even if AST: ALT 
> 2, other etiologies should be explored. AST:ALT > 1 can be seen in cases of liver 
cirrhosis. GGT > 2 × the ULN is suggestive of alcohol abuse specifically when paired 
with AST:ALT > 2, GGT on its own is not a specific indicator of alcohol abuse[1].

Mild elevations in aminotransferases are common to be seen in clinical practice and 
are generally caused by medications (nontoxic ingestions), alcohol use, and chronic 
liver diseases such as liver cirrhosis, NAFLD, chronic hepatitis infections (B and C), 
hemochromatosis, Wilson’s disease, autoimmune hepatitis, alpha-1 antitrypsin 
deficiency (AATD) and celiac disease (CD)[16]. It is advisable in patients with a mild 
increase in AST and ALT to undergo repeat testing in addition to the investigation of 
the aforementioned causes.

Moderate and severe elevations of aminotransferases are generally attributed to 
acute exacerbations of chronic liver diseases (such as exacerbations of hepatitis B virus, 
Wilson’s disease, acute viral hepatitis, autoimmune hepatitis), drug-induced liver 
injury (DILI), and ischemic liver injury[16]. Also, they can occur in cases of acute 
biliary obstruction and tend to resolve soon after the obstruction is relieved.

Cholestatic pattern
Elevation of ALP and bilirubin levels often indicate a cholestatic pattern[18]. ALP can 
be elevated in the presence of liver or bone disease, additionally, it can be elevated due 
to pregnancy (placenta production). GGT is often used to clarify the origin of ALP 
elevation. Since ALP is produced in the bile duct epithelia, cholestasis or biliary 
pathology elevates the enzyme. Both anatomic and autoimmune conditions that affect 
the biliary system cause a cholestatic pattern. When obstruction of the common bile 
duct (CBD) is the cause of ALP elevation, the aminotransferases can also be elevated
[18].

GGT elevation is also caused by biliary or hepatocyte disease but not bone disease. 
However, other causes may elevate this enzyme such as drugs (anticonvulsants and 
oral contraceptives), pulmonary and renal disease. As a marker, it has a high 
sensitivity for liver disease but low specificity[19,20].

Elevations in bilirubin levels are further classified as direct (conjugated) hyperbiliru-
binemia and indirect (unconjugated) hyperbilirubinemia. Hemolysis is the most 
common cause of indirect hyperbilirubinemia followed by Gilbert’s syndrome. On the 
other hand, direct hyperbilirubinemia indicates liver pathology including cholestatic 
drug reactions, autoimmune cholestatic disease, and biliary obstruction[21].

Further laboratory and imaging studies are essential to work up the causes of a 
cholestatic pattern[18]. When autoimmune cholestatic liver disease is suspected the 
presence of anti-neutrophil cytoplasmic antibodies (for primary sclerosing cholangitis) 
or anti-mitochondrial antibodies (for primary biliary cirrhosis) among other studies 
help aid in the diagnosis.
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COMMON CONDITIONS ASSOCIATED WITH ABNORMAL LIVER ENZY-
MES
NAFLD is one of the most common liver diseases, a meta-analysis was done in 2016 
demonstrated the global prevalence of NAFLD to be approximately 25.24%[22]. 
Common condition associated with abnormal liver enzyme is shown in Table 3.

Nonalcoholic fatty liver (NAFL) and non-alcoholic steatohepatitis (NASH) are 
diseases in the same spectrum where NAFL can progress to NASH and subsequently 
liver cirrhosis if no intervention or modification of risk factors was done[23]. These 
terms are often used interchangeably however it is important to note that the 
management is different and accurate assessment should be made. The difference 
between the two is primarily seen on histology as NAFL has only fatty infiltration 
without inflammation whereas NASH has marked inflammation. AST and ALT levels 
can be normal in NAFL and are generally mildly elevated in NASH (ALT > AST). 
NAFL and NASH are diseases of exclusion and general risk factors are metabolic, such 
as obesity, dyslipidemia, and diabetes mellitus[23]. It is important to note that NAFL is 
generally reversible with lifestyle modifications in contrast to NASH (Table 4).

Viral hepatitis can result in a mild increase in aminotransferases, specifically chronic 
viral hepatitis. Hepatitis B and Hepatitis C infections can generally cause chronic 
infections and also have a risk for developing liver cirrhosis. In a study done in 1988, 
patients with chronic viral hepatitis without liver cirrhosis had an AST:ALT < 1 (0.59 
average), however those with chronic viral hepatitis and liver cirrhosis had an AST: 
ALT > 1. This was found to be significant and is important to identify in cases of 
chronic viral hepatitis to aid in recognizing possible concomitant liver cirrhosis[24]. 
Nonetheless, caution must be practiced when looking at AST:ALT specifically when 
alcohol use cannot be excluded. Acute viral hepatitis on the other hand can result in 
moderate to severe elevation in aminotransferases, often with ALT elevations higher 
than that of AST. Acute hepatitis C virus can result in marked elevations in 
aminotransferases however generally the elevation is modest compared to hepatitis A 
and B. Acutely, elevation in aminotransferases levels peak before bilirubin levels, 
however, begins declining gradually after in contrast to bilirubin[25]. Acute hepatitis 
A and B in adults are associated with elevations in bilirubin resulting in jaundice 
(more common with hepatitis A infection) and ALP. The risk of progression to chronic 
hepatitis is approximately 10% in hepatitis B patients above the age of 6, hepatitis A is 
not associated with chronic infection[26].

Hereditary hemochromatosis is an autosomal recessive disease caused by over 
absorption of iron secondary to abnormal iron sensing in the gastrointestinal tract 
resulting in iron overload[27]. The 2 most common mutations identified are C282Y and 
H63D on the hemochromatosis (HFE) gene. Non-HFE hemochromatosis exists, 
however in this review we will talk only about HFE hemochromatosis.

Hemochromatosis causes mild elevations in aminotransferases (ALT > AST), 
elevations in ALP and bilirubin can also be seen however liver biochemical tests are 
non-specific in cases of hemochromatosis[27]. Bilirubin elevation is thought to be a 
protective mechanism to help mitigate oxidative damage caused by excess iron in the 
liver. Moreover, a study done in 2004 demonstrated that bilirubin level elevation was 
found to have a positive correlation with serum iron level[28]. In cases of elevated 
aminotransferases without a clear cause, it would be wise to check iron studies 
including iron level, ferritin level, total iron-binding capacity, and transferrin satu-
ration. If results suggestive of iron overload, genetic testing and liver biopsy should be 
considered.

Wilson’s disease is an autosomal recessive disease due to mutations in the ATP7B 
gene with a prevalence of approximately 1:30000 worldwide, studies have suggested 
higher prevalence based on gene mutation frequency. The difference between the 2 
reported prevalence could be related to the disease’s possible low penetrance[29]. 
Wilson’s disease liver presentation is variable and can be from asymptomatic elevation 
in aminotransferases to acute liver failure (ALF). Aminotransferase elevation is mild in 
the majority of cases however can be moderate to severe in patients with Wilson’s 
presenting with ALF. 6%-12% of emergent liver transplant referrals are due to 
Wilson’s disease ALF[30]. Markers that aid in the diagnosis of ALF secondary to 
Wilson’s disease are non-immune hemolytic anemia, acute renal failure, AST:ALT > 
2.2, and ALP: Bilirubin < 4. Almost all patients presenting with ALF secondary to 
Wilson’s have underlying liver fibrosis or cirrhosis[31,32].

AATD is an autosomal co-dominant disease with an expected prevalence of 3.4 
million globally with combinations for severe AATD[33]. However, this number is 
thought to be under-representative of the actual prevalence[33]. A study done in 1989 
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Table 3 Common condition with abnormal liver biochemical tests

Condition AST/ALT ALP GGT Bilirubin Other

Alcoholic hepatitis ↑↑ AST:ALT > 2 ↑ ↑ ↑ AST/ALT < 500

NAFLD -/↑ ALT > AST -/Mild ↑ -/Mild ↑ ↑ If progress to cirrhosis -

Viral hepatitis ↑↑ In acute/↑ in 
chronic

↑ ↑ ↑ In chronic AST:ALT > 1 suggestive of cirrhosis

Hemochromatosis ↑ ALT > AST ↑ ↑ ↑ Higher levels = higher 
iron load

↑ Ferritin and transferrin saturation

Wilson’s disease ↑/↑↑↑ AST:ALT > 2.2 
in ALF

↑ ↑ ↑ ALP:Bilirubin < 4

AATD ↑ AST > ALT - - - -

Celiac disease ↑ ALT > AST - - - -

Autoimmune hepatitis ↑↑ ↑ ↑ ↑ ALP:AST/ALT < 3

DILI ↑↑/↑↑ ↑ ↑ ↑ ↑ PT/INR

Cholestasis ↑ ↑↑ ↑↑ ↑ AST:ALT < 1.5 – ExtrahepaticAST:ALT > 
1.5 - Intrahepatic

ALT: Alanine aminotransferase; AST: Aspartate aminotransferase; ALP: Alkaline phosphatase; GGT: Gamma-glutamyl transferase; NAFLD: Non-alcohol 
fatty liver disease; AATD: Alpha-1 antitrypsin deficiency; DILI: Drug induced liver injury; PT: Prothrombin time; INR: International normalized ratio.

Table 4 Non-alcoholic fatty liver disease spectrum

Non-alcoholic fatty liver disease spectrum

NAFL Steatosis changes. No cellular ballooning, hepatocyte 
inflammation or fibrosis

Prevalence of 25% approximately. Reversible

NASH Steatosis changes. Cellular ballooning and hepatocyte 
inflammation. No fibrosis

Prevalence of 1.5%-6.45% approximately. Generally irreversible (has been 
found to be reversible in some patients)

NASH related liver 
cirrhosis

Hepatocyte destruction and fibrosis Prevalence of 1%-2% approximately. Irreversible

Healthy liver ←→ NAFL → NASH → NASH related cirrhosis

NAFL: Non-alcoholic fatty liver; NASH: Non-alcoholic steatohepatitis.

in St. Louis examined 20000 blood bank samples, 700 blood samples came back 
positive for homozygous PI*Z mutation, however, only 28 of those individuals have 
been diagnosed with AATD[34]. AATD involves multiple alleles however the alleles 
thought to be contributing to liver disease are M (maltron) and Z allele. In adults with 
homozygous PI*Z mutation, 40% were found to have evidence of injury and cirrhosis 
histologically. Aminotransferases are generally mildly elevated with ALT predom-
inance. Bilirubin levels are elevated in later stages (cirrhosis) along with a decrease in 
albumin[35].

CD is an autoimmune disease characterized by gluten intolerance which often leads 
to malabsorption. A study was done where 158 adults recently diagnosed with CD 
were followed, 42% of patients were found to have mild elevations in aminotrans-
ferases. Patients were started on a gluten-free diet and in 95% of cases, the aminotrans-
ferases levels normalized at 1 year[36]. Another study was done evaluating patients 
with chronically elevated aminotransferases, workup on those patients revealed that 
9.3% of patients had serological evidence of CD and all but one of the 9.3% had 
duodenal biopsy findings of CD[37]. Aminotransferases elevation is mild with an 
AST:ALT < 1, bilirubin levels are generally normal. ALP can be slightly elevated in a 
subset of patients but is generally normal. Albumin and PT/INR values are not very 
reliable indicators of hepatic synthetic function in cases of CD as CD is an autoimmune 
disease, and a state of inflammation could cause a decrease in albumin levels. 
Moreover, PT/INR values can be elevated due to concomitant vitamin K deficiency 
secondary to malabsorption[38].
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Autoimmune hepatitis is an inflammatory disorder with a female predilection and a 
prevalence of approximately 1:5000-1:10000 in Europe. At the time of diagnosis, almost 
50% of patients have jaundice and approximately 30% have cirrhosis[39,40]. 
Autoimmune hepatitis affects aminotransferases variably depending on acute vs 
chronic presentations. Acutely, elevations in aminotransferases can be moderate to 
severe and tend to gradually decline as the disease becomes chronic and/or liver 
cirrhosis ensues. Bilirubin, ALP, and gamma globulins elevations are also seen in 
autoimmune hepatitis. ALP:AST or ALT ratio < 3 which is calculated by using the 
following equation (ALP/ALP ULN)/(AST/AST ULN) (ALT can be used in place of 
AST for this calculation) and this ratio is thought to be helpful as disproportionate 
elevation of ALP should prompt exploration of other differentials such as primary 
biliary cholangitis[41]. Furthermore, it was found that patients with higher elevations 
in aminotransferases had a better prognosis when compared to those with milder 
aminotransferase elevations[42].

DILI can cause a multitude of effects on aminotransferases and elevations of 
aminotransferases can be mild, moderate, or severe. A wide range of medications can 
cause mild elevations of aminotransferases and those include antibiotics (such as 
amoxicillin-clavulanic acid, macrolides (cholestatic pattern), ceftriaxone), anticon-
vulsants (such as Carbamazepine, Phenytoin, Valproic acid, Gabapentin), statins, anti-
tuberculosis medications, and herbal supplements. Hence, a thorough history of 
medication history is crucial in patients with elevated aminotransferases. More 
commonly, DILI is ALT predominant.

Drugs can also be a cause of moderate to severe aminotransferase elevation with the 
most commonly implicated drug being acetaminophen. Acetaminophen is advertised 
as safe with a daily dose < 4000 mg/d[43]. Acetaminophen-induced hepatotoxicity has 
a prevalence of approximately 30000 cases a year in the United States[44]. Up to 50% of 
overdoses were found to be unintentional[44]. Studies have been done which showed 
6% of acetaminophen prescriptions to be > 4000 mg/d. A study evaluating AST:ALT 
ratio found that in cases of severe toxicity, an AST:ALT < 0.4 is suggestive of resolving 
hepatitis and is a positive prognostic marker[45]. Bilirubin, ALP, and PT/INR can all 
rise in cases of acetaminophen overdose. It is important to note that aminotransferases 
generally rise 2-3 d after an initial overdose and that an initial normal liver 
biochemical test does not exclude acetaminophen toxicity[45].

Acute cholecystitis (AC) usually presents as a cholestatic pattern or mixed. The 
biochemical test abnormalities are associated with obstruction from CBD, reactive 
hepatitis, fatty liver, direct gallbladder pressure on the biliary tract, or portal tract 
inflammation[19-21]. Patients with calculous AC may have CBD stones in up to 15%
[17]. Gallbladder ultrasound and computed tomography (CT) is not entirely reliable 
for the diagnosis of CBD stones. Therefore, LFTs may be used for the identification of 
patients with suspected CBD stones who would benefit from endoscopic retrograde 
cholangiopancreatography (ERCP) or magnetic resonance cholangiopancreatography 
(MRCP) which are more sensitive and specific for this condition[18]. Multiple studies 
have shown mean values of LFTs higher in patients with AC plus CBD stones[18,22]. 
Bilirubin, AST, ALP, and GGT are the variables mostly studied to predict CBD stones. 
Ahn et al[18] found GGT to be the most reliable variable for CBD stones prediction 
with a sensitivity of 80.6% and specificity of 75%. Another study found an elevation in 
ALP to be the most important predictor for CBD stones[21]. Elevated LFTs in patients 
with AC without CBD stones are more likely to be transient and resolve within 2-7 d 
after surgery[18].

Ischemic hepatitis (often also referred to as hypoxic liver injury, shock liver, and 
hypoxic hepatitis) is a clinical condition characterized by acute liver injury causing 
severe elevation of aminotransferases secondary to hypoperfusion with a prevalence 
of approximately 2:1000 admissions and 2.5:100 in intensive care unit admissions. 
Moreover, it was found that approximately 4 out of 10 admissions with severe 
elevations in aminotransferases had ischemic hepatitis diagnosis. After further 
analysis, 78.2% of patients with ischemic hepatitis had a preceding acute cardiac event, 
23.4% of patients with ischemic hepatitis had a diagnosis of sepsis and 52.9% of 
patients had a documented episode of hypotension (unspecified duration)[46].

The aminotransferase elevation is generally severe with level > 75 × ULN being 
suggestive of ischemic hepatitis, AST:ALT > 1 usually due to the location of AST (zone 
3) in the liver and ischemic effect on zone 3. Bilirubin rise is not uncommon yet it can 
bemild and typically < 3 mg/dL. ALP is usually normal and PT/INR can be mildly 
elevated[47]. Another ratio that was found to be useful is AST:LDH < 1.5 which helps 
in differentiating ischemic hepatitis from viral hepatitis[48]. The AST:LDH ratio is 
thought to be due to the rapid and severe rise of LDH in cases of ischemic hepatitis 
due to hypoperfusion.
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ALF is another potential cause of severe elevation in aminotransferases and cautious 
identification of this condition is crucial as mortality risk is approximately 40%-80%
[49]. ALF is defined as the presence of severe liver injury in addition to clinical and 
laboratory features of liver failure such as hepatic encephalopathy and elevation in 
INR specifically in an individual with no prior history of liver cirrhosis or liver 
disease. Etiologies of ALF include but are not limited to Ischemic hepatitis, Budd 
Chiari syndrome, Wilson’s disease, autoimmune hepatitis, acute viral hepatitis, and 
drug-induced liver disease. Biochemical test evaluation in ALF can be hepatocellular 
initially and progress to cholestatic in later stages. Labs are typically significant for 
severe elevation in aminotransferases, mild to moderate elevation in bilirubin and ALP 
in addition to INR ≥ 1.5, and in some cases LDH elevation[49]. While declining 
aminotransferases can be suggestive of recovery, this is not an accurate measure of 
recovery as it could be indicative of worsening liver failure and severe loss of liver 
mass. It is more appropriate to follow bilirubin, INR, and clinical features (hepatic 
encephalopathy) in patients with ALF for possible recovery[49].

DIAGNOSTIC TESTS
The initial evaluation of abnormal biochemical tests will be guided by the pattern 
(hepatocellular, cholestatic, or mixed). As a first step, the clinician should inquire 
about the use of medication, herbal therapies, drugs, or alcohol consumption. If a 
hepatocellular pattern is identified, initial serology should be obtained to rule out 
infectious and autoimmune etiologies. A right upper quadrant ultrasound (RUQ US) is 
also justified to evaluate for fatty liver. If the previous workup is unrevealing 
uncommon causes should be worked up (such as Wilson disease, AATD, etc.). If the 
serologic studies and imaging are unremarkable and ALT/AST is persistently 
elevated, consider a liver biopsy. When ALP is elevated, GGT and 5’ nucleotidase tests 
are important to identify the source of ALP elevation. If the latter is elevated ALP 
likely is elevated from hepatobiliary origin. The RUQ US will help to identify ductal 
dilation or the absence of it. Further workup includes either an MRCP or an ERCP 
(when ductal dilation is present) or serological studies including AMA if no dilation is 
identified. Cholestasis can be further divided into intrahepatic or extrahepatic both 
usually seen with marked elevation of ALP. The workup for extrahepatic cholestasis 
should aim to rule out choledocholithiasis, malignant obstruction, and biliary 
strictures. For intrahepatic cholestasis, laboratory works up should aim to rule out 
primary biliary cholangitis, primary sclerosing cholangitis, sickle cell disease among 
other causes. In intrahepatic cholestasis imaging or laboratory, workup may not yield 
a definitive diagnosis and other causes should be considered (i.e., total parenteral 
nutrition, drugs associated with cholestasis, ischemic, cholestasis of pregnancy, etc.)

CONCLUSION
The elevation of liver biochemical studies is a common encounter of all clinicians. The 
multiple markers used to identify liver injury may be also elevated due to other 
sources (bone, placenta, kidney, muscle, etc.). The biochemical knowledge helps to 
better understand the behavior of these markers in specific conditions. The proper 
recognition of hepatocellular or cholestatic pattern prompts further investigations that 
include imaging and laboratory studies. Other factors highly important to consider 
when evaluating abnormal liver biochemical patterns are signs and symptoms, 
medications, degree of liver tests elevation, and other laboratory abnormalities 
present. Unfortunately, despite the use of additional tests (imaging and laboratory) in 
some causes the diagnostic is unclear and liver biopsy is recommended.
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Abstract
Hepatopulmonary syndrome (HPS) is characterized by defects in oxygenation 
caused by intra-pulmonary vasodilation occurring because of chronic liver 
disease, portal hypertension, or congenital portosystemic shunts. Clinical implic-
ations of portal hypertension are very well-known, however, awareness of its 
effect on multiple organs such as the lungs are less known. The presence of HPS 
in chronic liver disease is associated with increased mortality. Medical therapies 
available for HPS have not been proven effective and definitive treatment for HPS 
is mainly liver transplantation (LT). LT improves mortality for patients with HPS 
drastically. This article provides a review on the definition, clinical presentation, 
diagnosis, and management of HPS.

Key Words: Hepatopulmonary syndrome; Chronic liver disease; Hypoxemia; Intrapul-
monary vasodilatation; Liver failure
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Core Tip: Hepatopulmonary syndrome (HPS) is a progressive disease, the presence of 
which in cirrhotic patients worsens their prognosis. Patients with HPS have an increase 
rate of mortality compared to those without HPS when matched for severity of liver 
disease, age, sex, and liver transplantation (LT). HPS should be identified in all 
patients with chronic liver disease and supportive management should be provided 
until definitive treatment, e.g., LT could be done.
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INTRODUCTION
HPS is a progressive disease associated with worsen prognosis in patients with chronic 
liver disease. Patients with HPS have an increase rate of mortality compared to those 
without HPS when matched for severity of liver disease, age, sex, and liver trans-
plantation (LT)[1]. Hepatopulmonary syndrome (HPS) was first described in 1884 by 
Fluckiger based on observation in a woman with cyanosis, clubbing, and cirrhosis. 
Later, HPS was coined in 1977 after multiple post-mortem studies showing pulmonary 
vascular dilation in cirrhotic patients. These studies showed marked peripheral 
dilation of pulmonary arteries at precapillary and capillary levels, without any 
obvious lung parenchymal disease. These studies were also remarkable for multiple 
pleural spider naevi[2].

DEFINITION
HPS is defined as hypoxemia due to pulmonary vascular dilation in the setting of liver 
disease with or without portal hypertension. Definition and staging of HPS are shown 
in Table 1 and Table 2.

INCIDENCE/PREVALENCE
HPS has been reported in 5%-35% of patients with end-stage liver disease[3,4]. Studies 
have shown the presence of HPS in various liver etiologies including cirrhosis, non-
cirrhotic portal fibrosis, and extra-hepatic portal vein obstruction[5,6]. Studies showed 
an increasing prevalence of intrapulmonary shunt in patients with increased severity 
of cirrhotic disease such as pretransplant patients with Child-Pugh Class C when 
compared with class A or B[7]. It has also been found to be associated with liver 
disease severity assessed by MELD score[3].

PATHOPHYSIOLOGY
Chronic liver disease can lead to hypoxemia due to a variety of underlying patho-
logies. Thus, it is imperative to differentiate between them. For example, HPS is 
caused by pulmonary vasodilation in the setting of liver disease whereas Porto-
pulmonary hypertension, which is very similar in clinical presentation, is defined by 
pulmonary vasoconstriction causing hypoxemia due to resultant pulmonary 
hypertension.

The hypoxemia associated with HPS is secondary ventilation-perfusion mismatch 
caused mainly by diffusion defect in the dilated pulmonary bed: (1) Increased blood 
flow through the intra-pulmonary vasodilatation (IPVD) through the well-ventilated 
alveoli results in the passage of mixed venous blood in the pulmonary veins; and (2) 
Diffusion of oxygen is limited through the dilated pulmonary vessels due to their 
increased diameters resulting in disequilibrium. Supplemental oxygen increases the 
partial pressure of oxygen by providing the driving pressure for the oxygen to diffuse 
across the dilated vessels. Thus, IPVDs act as physiologic shunts more than anatomic 
shunts as oxygenation improves with external supplementation[8].

The unique pathological feature of HPS is dilatation of pulmonary precapillary and 
capillary vessels (15-100 µm diameter) along with an absolute increase in the number 
of dilated vessels. Paraumbilical vein and hepatic artery diameters are significant 
larger in cirrhotic patients with HPS compared to non-HPS[9]. Lungs and pleural 
spider nevi are the terms used when these vessels are noted in the lungs and along the 
pleural surface. Intrahepatic vasculature changes which were reported in HPS include 
thrombosis in intrahepatic portal venules, fibrous septa with vessels proliferation, and 
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Table 1 Hepatopulmonary syndrome definition

Index

Oxygenation PaO2 < 80 mmHg or A-a gradient (corrected for age) > 15 mmHg or 20 mmHg if age > 64 years while breathing room air

Intrapulmonary vasodilation Confirmed by contrast-enhance echocardiography or lung perfusion scanning showing brain shunt fraction > 6%

Liver disease Cirrhosis and/or portal hypertension

Table 2 Staging based on severity of hepatopulmonary syndrome

Stage Partial pressure of oxygen (mmHg) on room air

Mild ≥ 80

Moderate ≥ 60 to < 80

Severe ≥ 50 to < 60

Very severe < 50 on room air or < 300 while breathing 100% oxygen

centrilobular venous thickening[9]. Doppler ultrasonography in HPS reveals hepato-
jugular flow and portal blood flow of less than 10 cm/s[9].

The underlying pathophysiology is not fully proven, however, is thought to be 
caused by loss of pulmonary capillary vessel tone and inhibition of pulmonary 
vasoconstrictors. Enhanced production of nitric oxide (NO) is the major factor for 
pulmonary vasodilatation. NO is produced by the action of NO synthase on l-arginine. 
NO synthase had three isoforms of which endothelial NO synthase (eNOS) produced 
by pulmonary endothelial cells is the major source of NO production[10].

In experimental rat models of HPS with common bile duct ligation, proliferating 
cholangiocytes produces endothelin-1 (ET-1) which activates pulmonary vascular 
endothelin-B (ETB) receptor which in turn mediates eNOS activation and pulmonary 
macrophages accumulation. These animal models also showed overall increased 
expression of ETB receptors and increased circulation of ET-1[11,12].

In humans with HPS, exhaled NO is elevated which is a result of pulmonary 
vascular production and it normalizes after LT[13,14]. Acute administration of 
methylene blue, an inhibitor of NOS, transiently improves oxygenation[15].

Bacterial translocation from the gut in the setting of portal hypertension results in 
pulmonary vascular macrophages has been proposed as a mechanism causing 
pulmonary vasodilatation[16,17]. A study shows the decrease in this bacterial translo-
cation by norfloxacin and thus, decreasing the severity of HPS[18]. Heme-oxygenase-
derived carbon monoxide and tumor necrosis factor-alpha are also observed to 
contribute to pulmonary vasodilatation and angiogenesis[19,20].

CLINICAL PRESENTATION
Dyspnea on exertion or rest is the most common presenting symptom of HPS. 
However, dyspnea is very non-specific given it can be present in chronic liver disease 
due to ascites, volume overload, anemia, or muscle weakness. The presence of 
platypnea and orthodeoxia are specific for HPS, but not pathognomonic. Platypnea 
means dyspnea in an upright position which is relieved in the supine position. 
Orthodeoxia refers to a decrease in partial pressure of oxygen by greater than 4 mmHg 
or a decrease in oxygen saturation by more than 5% from a supine to upright position
[21]. Both platypnea and orthodeoxia are attributed to the ventilation-perfusion 
mismatch.

Physical signs such as the presence of spider nevi, clubbing, cyanosis along hypoxia 
are strongly suggestive of HPS. Of these signs, patients with the chronic liver disease 
having spider nevi have a higher prevalence of HPS compared to those without spider 
nevi[22].
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DIAGNOSIS
Patients with chronic liver disease who has dyspnea, or signs of clubbing, cyanosis, 
spider nevi should undergo screening and evaluation for HPS. All patients who are 
candidates for LT are also screened for HPS. Evaluation of HPS includes assessment of 
hypoxemia and intrapulmonary vasodilation. Exhaled NO is found to be higher in 
HPS than non-HPS patients which may help with the diagnosis.

ASSESSMENT FOR HYPOXEMIA
Pulse oximetry is used for screening purposes in chronic liver diseases to assess for 
HPS. All the patients with oxygen saturation < 96% should further undergo arterial 
blood gas analysis (ABG) to evaluate for underlying hypoxemia[23]. ABG should be 
drawn in the upright position to evaluate for orthodeoxia. A-a gradient > 15 mmHg or 
PaO2 < 80 mmHg is used for evaluation of hypoxemia. A-a gradient is more reliable 
than the partial pressure of oxygen as it accounts for hyperventilation, which is 
common in chronic liver disease[24].

The establishment of hypoxemia alone is not enough for the diagnosis of HPS, as it 
can be seen in other diseases such as Porto-pulmonary hypertension. Diagnosis 
requires confirmation of intrapulmonary vasodilation.

ASSESSMENT FOR INTRAPULMONARY VASCULAR DILATATIONS
Transthoracic contrast echocardiography (TTCE) is first-line diagnostic tool for IPVDs. 
IPVDs create a shut wherein 5%-6% of the cardiac output gets shunted. TTCE is 
performed by injecting the agitated saline into the venous system during the echocar-
diogram. Agitated saline leads to the formation of bubbles in the right atrium which is 
then filtered by the pulmonary capillary bed. Pulmonary capillary diameter varies 
from 8 to 15 μm which does not allow the passage of the microbubbles. The presence 
of intra-cardiac or intra-pulmonary shunt leads to visualization of microbubbles/ 
contrast in the left heart chambers. The timing of the appearance of these bubbles in 
the left atrium varies with heart rate, cardiac output, and shunt size. With the intra-
pulmonary shunt, the microbubbles or opacification of the left atrium occurs in three 
to six cardiac cycles after their first appearance in the right atrium. Whereas with the 
intra-cardiac shunt, this opacification of the left atrium is visualized within the first 
three cardiac cycles after its first appearance in the right atrium. Thus, TTCE is a 
sensitive tool for the diagnosis of pulmonary shunt[25].

Transesophageal echocardiography is a more specific alternative to TTCE, however, 
is generally avoided due to the high risk associated with bleeding from esophageal 
varices in this patient population[26].

Technetium-99m-labeled macro aggregated albumin is also filtered by the 
pulmonary capillary bed and can be used to measure shunt fraction by identifying its 
uptake in the brain and/or kidneys. Under normal circumstances, macro aggregated 
albumin should not pass the pulmonary capillary bed. However, in presence of right-
to-left shunt, the radionuclide is taken up by the brain and kidneys and the percentage 
uptake can be used to quantify the shunt. In contrast to TTCE, this method does not 
distinguish between intra-pulmonary and intra-cardiac shunts[27].

Contrast pulmonary angiography is rarely used to visualize the IPVD due to the 
invasive nature of this procedure. It is generally indicated in patients with suspicion 
for pulmonary arteriovenous malformations, which rarely occurs in HPS[28]. Contrast-
enhanced triple phase multi-detector computed tomography abdominal portosystemic 
shunts of more than 10 mm in diameter[9].

MANAGEMENT
LT
The only definitive management for HPS is LT. All the patients with the partial 
pressure of oxygen less than 60 mmHg should be evaluated for LT. Mortality is 
significantly higher in patients with HPS who do not undergo LT compared to those 
who undergo LT. A study showed 78% mortality in HPS patients who did not 
undergo LT compared to 21% mortality in patients who underwent LT[29]. Thus, 
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patients with HPS are given higher priority for liver transplants compared to other 
factors. LT has been shown to improve oxygenation and shunt within the first year of 
transplant[30,31]. A retrospective study with 74 patients showed improvement in PaO2 
from 89% to 94% and a decrease in A-a gradient from 16 to 8 mmHg after 
transplantation, without significant change in DLCO[32]. A study showed a 76% 5-
year survival rate in HPS who underwent LT, which is similar to liver transplant 
patients without HPS[33].

Oxygen supplementation
All the patients with mild to moderate HPS should be evaluated every 3 to 6 mo with 
ABG. All patients with oxygen saturation less than 89% or partial pressure of oxygen 
less than 55 mmHg at rest, exercise and while sleep should be provided supplemental 
oxygen.

Investigational therapies
Pentoxifylline, a tumor necrosis factor-alpha inhibitor, vasodilator with anti-
angiogenesis, showed variable results in oxygenation improvement in HPS[34-36]. 
Early-stage HPS patients seem to have a favorable outcome, while patients with 
advanced-stage HPS had unimproved oxygenation and difficulty tolerating pentoxi-
fylline due to gastrointestinal adverse effects. Randomized placebo-controlled trial is 
needed to prove its result.

Garlic, has allicin which is a potent vasodilator and anti-angiogenesis. It shows 
significant improvement in gas exchange in small studies, which include one 
randomized controlled trial[37,38]. Large trials are still required to prove its benefit. 
Inhaled NO, a vasodilator, showed an improvement of PaO2 in a recent physiologic 
study even though prior findings were contradicting[39,40]. Vascular dilatations, 
pulmonary capillary arteriovenous communication, and blood flow shunting in HPS 
are thought to be more prominent in lower lung zones due to gravitation and the 
vasodilators use in HPS are believed to be more potent in upper and mid lung zones. 
Therefore, ventilation-perfusion mismatch decreased.

Methylene blue causes vasoconstriction by inhibiting NO and may also decrease 
angiogenesis. It has shown some benefits in improving oxygenation; however, no 
randomized clinical trial is available to support its use[15]. Another agent that has 
been shown to reduce pulmonary NO is N(G)-nitro-L-arginine methyl ester. However, 
it didn’t improve arterial oxygenation or ventilation-perfusion mismatch[41].

Sorafenib is a tyrosine kinase inhibitor that can reduce angiogenesis. It significantly 
decreased alveolar-arterial oxygen gradient in rat model but failed to show benefit in 
patients with HPS in a randomized-controlled trial[42]. Octreotide, a somatostatin 
analogue that can inhibit angiogenesis, also showed no benefit in HPS patients in few 
studies[43].

Mycophenolate mofetil only showed benefit in one case report[44]. Norfloxacin 
decreases bacterial translocation and reveals benefit in an animal study and a human 
case report but not in a randomized controlled trial[45]. Other medications including 
iloprost (vasodilator), paroxetine (NO synthase inhibitor), almitrine bismesylate 
(pulmonary vasoconstrictor) have been tried without any clear benefit. Letrozole is 
undergoing an ongoing phase two trial.

The transjugular intrahepatic portosystemic shunt has been proposed to decrease 
portal hypertension in HPS. A small prospective study showed improvement in gas 
exchanged, but limited data are available[46,47]. Few case reports regarding 
embolization of pulmonary vasodilatation have shown improvement in oxygen[28]. 
All these studies do not have clear establish benefits.

CONCLUSION
All the patients with chronic liver disease with dyspnea should be screened for HPS 
using ABG. There is no definitive proven treatment plan for HPS except LT. Thus, all 
patients with HPS should undergo expedited evaluation of LT.
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Abstract
Mitochondria, the powerhouse of a cell, are closely linked to the pathophysiology 
of various common as well as not so uncommon disorders of the liver and 
beyond. Evolution supports a prokaryotic descent, and, unsurprisingly, the 
organelle is worthy of being labeled an organism in itself. Since highly metabol-
ically active organs require a continuous feed of energy, any dysfunction in the 
structure and function of mitochondria can have variable impact, with the worse 
end of the spectrum producing catastrophic consequences with a multisystem 
predisposition. Though categorized a hepatopathy, mitochondrial respiratory 
chain defects are not limited to the liver in time and space. The liver involvement 
is also variable in clinical presentation as well as in age of onset, from acute liver 
failure, cholestasis, or chronic liver disease. Other organs like eye, muscle, central 
and peripheral nervous system, gastrointestinal tract, hematological, endocrine, 
and renal systems are also variably involved. Diagnosis hinges on recognition of 
subtle clinical clues, screening metabolic investigations, evaluation of the extra-
hepatic involvement, and role of genetics and tissue diagnosis. Treatment is 
aimed at both circumventing the acute metabolic crisis and long-term manage-
ment including nutritional rehabilitation. This review lists and discusses the 
burden of mitochondrial respiratory chain defects, including various settings 
when to suspect, their evolution with time, including certain specific disorders, 
their tiered evaluation with diagnostic algorithms, management dilemmas, role of 
liver transplantation, and the future research tools.
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Core Tip: Liver disease with multi-system involvement should arouse the suspicion for 
mitochondrial respiratory chain hepatopathies. These disorders are predominantly 
autosomal recessive with some having a maternal inheritance. Presence of lactic 
acidosis without hypoglycemia is an important clue. A tiered evaluation yields the most 
data, with the final step being a genetic and enzyme analysis from tissue of interest. 
Treatment is largely supportive with blood transfusions, correction of acidosis and 
shock, providing cofactors and salvage therapies, with liver transplantation in a select 
group. A periodic follow-up is mandatory for monitoring evolution of disease 
including “migration” to other systems.
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INTRODUCTION
Mitochondria are intracellular organelles, with a double lamellar covering outer 
membrane serving as a corset that holds the highly convoluted inner membrane in 
place (Figure 1). The inter-membrane space is the first of two liquid components 
within the mitochondria mainly participating in the exchange of lipids, proteins, and 
metal ions and also signaling cascades[1]. The second space is the soluble matrix, lying 
within the inner membrane and the hub of various metabolically active processes, 
most notably the tricarboxylic acid cycle, fatty acid oxidation, and urea synthesis. The 
inner membrane is folded into multiple cristae, which are shelf like projections into the 
matrix. The number of cristae are reflective of a metabolically active state, with a more 
active tissue having numerous mitochondria with many cristae, an ideal comparison 
being striated muscle tissue against adipocytes. This inner membrane of the 
mitochondria houses the respiratory chain comprised of electron carriers (complexes I, 
II, III, and IV, cytochrome c, coenzyme Q) and complex V, which is the hydrogen 
adenosine triphosphatases complex (Figure 2). All metabolic processes within the 
matrix generate reducing equivalents in the form of electrons (carried as NADPH2), 
which pass through these complexes, entering it at various points. While doing so, 
from one complex to another, it also results in proton (H+) flow from matrix to 
intermembrane space leading to its pooling up and a chemical gradient that then flows 
down the potential via the complex V, which utilizes the energy to generate adenosine 
triphosphate from adenosine diphosphate, the ultimate objective of this intricately 
woven complex process called oxidative phosphorylation[2].

MITOCHONDRIAL GENOME AND ITS IMPLICATIONS
From the perspective of evolution, the classical endosymbiont theory proposes that 
mitochondria are actually prokaryotes within eukaryotic cells and hence have a 
genome of their own[3]. Mitochondrial genome consists of a circular double stranded 
DNA made of 16569 base pairs organized to make up 37 genes. Of these, 13 genes are 
exclusively for synthesis of proteins that are part of the respiratory chain. The other 24 
genes are required for mitochondrial DNA (mtDNA) translation process (22 genes for 
an equal number of transfer RNA and two for ribosomal RNA synthesis). There are 
three major differences between mitochondrial and Mendelian inheritance: Maternal 
inheritance, heteroplasmy and threshold effect, and mitotic segregation. Maternal 
inheritance in simple terms means that the mtDNA and its aberrations are transferred 
from mother (ovum) to its offspring (zygote), as there is hardly any mitochondria left 
in the sperm, which concentrates itself to fill its entire cytoplasm with the energy 
dense nucleus. However, there are a few exceptions, as reported in skeletal muscle 
defects linked to mitochondrial inheritance that are transmitted by father to offspring
[4]. It is essential to understand that all characteristics encoded by mtDNA are 
maternally inherited but all mitochondrial diseases are not maternally inherited.
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Figure 1 Diagrammatic representation of structure of mitochondria. mtDNA: Mitochondrial DNA.

Figure 2 The electron transport chain formed by the respiratory chain complexes and process of oxidative phosphorylation. ADP: 
Adenosine diphosphate; ATP: Adenosine triphosphate; CoQ: Coenzyme Q; Cyt c: Cytochrome c; FAD: Flavin adenine dinucleotide; FADH2: Reduced form of FAD; 
NAD: Nicotinamide adenine dinucleotide; NADH: Reduced form of NAD.

Nuclear DNA (nuDNA) encodes most of the metabolic processes occurring in the 
mitochondria. NuDNA also encodes many enzymes and cofactors required for 
maintenance of mtDNA as well as approximately 70 respiratory chain subunits[5]. 
Figures 3 and 4 describe the way of inheritance and the mathematics of genetics in 
mitochondrial diseases. In normal persons, all mtDNA are identical, a state known as 
homoplasmy. Presence of both mutated and non-mutated wild type mtDNA 
containing mitochondria together in a cell is cellular heteroplasmy, while having 2 
types of mtDNA within a single mitochondrion is organellar heteroplasmy. A 
particular number of abnormal mtDNA burden should exist for disease phenotype to 
manifest, a phenomenon known as threshold effect. This effect is seen at different 
levels of mutated mtDNA in various organs, the lowest threshold (and hence 
maximum susceptibility) being in organs dependent highly on oxidative metabolism 
like brain, heart, skeletal muscle, retina, and endocrine organs. Another interesting 
phenomenon is “skewed heteroplasmy” where some organs selectively have a higher 
burden of abnormal mitochondria, exemplified by mitochondrial diabetes, cardiomy-
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Figure 3 Various modes of inheritance of mitochondrial disease. mtDNA: Mitochondrial DNA.

Figure 4 Comparison of mitochondrial and nuclear DNA influence in genetics of mitochondria. mtDNA: Mitochondrial DNA; rRNA: Ribosomal 
RNA; tRNA: Transfer RNA.

opathies, and deafness[6-8]. Mitotic segregation effect refers to the random distri-
bution of mitochondria at end of cell division, which can segregate mutated and non-
mutated mtDNA in a variable manner into the two daughter cells. This may result in a 
daughter cell phenotype that is diseased (due to presence of more abnormal 
mitochondria), i.e. more abnormal than the originator cell in the subsequent divisions. 
With age, abnormal cells may predominate, explaining age related unmasking of 
diseases.

THE PROBLEM STATEMENT: EPIDEMIOLOGY
Prevalence of respiratory chain defects is variable across geographical lines as well as 
across eras. A large study examining birth prevalence of mitochondrial respiratory 
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chain disorders (RCDs) up to 16 years of age puts the figure at 5/100000 births[9]. This 
would mean that for every 20000 births in a particular time period, 1 child has the 
probability of getting affected by a respiratory chain defect of any type till he or she 
reaches the age of 16. The same study extrapolated the prevalence as 13.1/100000 
births with onset at any age when seen together in the light of another study by 
Chinnery et al[10]. According to the Swedish registry, in a population study 
identifying mitochondrial encephalomyopathies, 20% had liver involvement[11]. In a 5 
year French study of 1041 children, 22 (10%) of the 234 patients with respiratory chain 
defects had hepatopathy[12]. We would, however, add a word of caution that these 
figures can be an underrepresentation of true values in view of the heterogeneity of 
presentation and difficulty in diagnosis of mitochondrial respiratory chain defects.

CLASSIFICATION OF MITOCHONDRIAL HEPATOPATHIES AND STATUS 
OF RESPIRATORY CHAIN DISORDERS
Mitochondrial disorders are characterized by their variability in presentation and 
predilection for more than one organ system simultaneously or separated in time.

Sokol and Treem proposed classifying these disorders as primary and secondary 
depending on whether defect is inherently present in the mitochondria and leads to 
liver dysfunction or there is secondary involvement of mitochondria in the form of 
injury or alteration in non-mitochondrial genetics. There are two broad types of 
mitochondrial hepatopathies, one which affects the respiratory chain present on the 
inner mitochondrial membrane and the other includes fatty acid oxidation defects, 
which are related to the process within the mitochondrial matrix. The RCDs can also 
be divided into those arising due to defective mtDNA and those due to defect/ 
mutation in nuDNA. Among the diseases affecting mtDNA, the affliction can be in the 
form of either mutations or an overall depletion of quantity of mtDNA compared to 
nuDNA in a cell/tissue. Figure 5 shows a simplified way of classification of 
mitochondrial hepatopathies (MH), and a tabular representation of primary MH 
individual disorders is shown in Table 1. It is worthwhile to note that usually 
mitochondrial disorders with primary myopathic involvement have mutations in 
mtDNA, while those with primary hepatic involvement have mutations in nuDNA 
affecting mitochondrial processes, with some exceptions[13]. Since we are discussing 
respiratory chain disorders not confined to liver but to include the gastrointestinal 
tract, we will include one prototype non-hepatic RCD affecting the gastrointestinal 
(GI) tract, mitochondrial neurogastrointestinal encephalomyopathy (MNGIE), in our 
review. This review does not cover non-RCD mitochondrial hepatopathies (fatty acid 
oxidation disorders and others) and GI manifestations of non-RCD, non-hepatic 
mitochondrial disorders.

CLINICAL PRESENTATION
Mitochondrial disorders are often called mitochondrial multiorgan disorder syndrome 
(MIMODS) in view of their heterogenous presentation affecting the nervous system 
(central and peripheral), eyes, ears, endocrine system, kidneys, heart and blood 
vessels, bone marrow, lungs, and also the intestinal tract, apart from affecting the liver 
(hepatopathy). The liver involvement is also variable in clinical presentation as well as 
in age of onset, from acute liver failure, cholestasis, or as chronic liver disease. A 
graphical summary of all mitochondrial RCDs affecting the liver is represented in 
Figure 6. Each of the individual disorders is briefly discussed.

Neonatal liver failure
Neonatal liver failure is a catastrophic event, and there are few disorders that present 
in the first few months as liver failure. Neonatal acute liver failure (ALF) is distinct 
from pediatric and adult liver failures in that it can include causes that have 
underlying cirrhosis. Also, the cut-off for coagulopathy is proposed as an international 
normalized ratio (INR) of ≥ 3 for newborns, as normal INR can be up to 2 in this age
[14]. The four main causes of neonatal liver failure are: (1) Gestational alloimmune 
liver disease (neonatal hemochromatosis); (2) Viral infections (herpes simplex); (3) 
Hemophagocytic lymphohistiocytosis (primary-familial/secondary to infections); and 
(4) Mitochondrial hepatopathies (respiratory chain defects).
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Table 1 Various mitochondrial primary respiratory chain disorders

Disorder Mutation/defective gene Location of 
defect Affected proteins/consequence

Neonatal liver failure: (1) Complex I deficiency; (2) Complex 
III deficiency; (3) Complex IV deficiency; and (4) Multiple 
complex deficiencies

ACAD9; BCS1L; SCO1 nuDNA Respective complexes deficiency as per 
name

Delayed onset liver failure: Alper’s Huttenlocher syndrome POLG mutation nuDNA Defective mtDNA polymerase; mtDNA 
depletion

MtDNA depletion syndrome DGUOK; TK-2; MPV 17; POLG All nuDNA Decreased deoxyribonucleotide 
concentrations within mitochondria

Mitochondrial neuro-gastrointestinal encephalomyelopathy TYMP nuDNA Markedly low levels of thymidine 
phosphorylase activity 

Pearson marrow pancreas syndrome 4000-5000 bp deletions in 
mtDNA; tRNA gene of mtDNA

Both mtDNA Complex I, IV, V 

Navajo neurohepatopathy MPV 17 mutations nuDNA mtDNA depletion 

Villous atrophy with hepatic involvement Rearrangement defect/deletion-
duplications in mtDNA

mtDNA Complex III deficiency

nuDNA: Nuclear DNA; mtDNA: Mitochondrial DNA.

Figure 5 Simplified way of classification of mitochondrial hepatopathies based on location of defect. IMS: Intermembrane space; mtDNA: 
Mitochondrial DNA; PEP: Phosphoenolpyruvate.

Apart from these, galactosemia, tyrosinemia, and hereditary fructose intolerance 
can present as ALF in early infantile period and rarely in neonatal age[15]. The key 
here is to keep mitochondrial hepatopathy (RCD and non-RCD) as one of the differ-
entials of acute liver failure in a newborn/early infantile period, though it accounts for 
< 5% in neonatal ALF series[14]. Multi-system involvement, especially with 
neurological symptoms in form of lethargy, floppy tone, vomiting, poor suck, and 
seizures, are diagnostic clues. Some patients are apparently normal until a viral illness 
or an unknown inciting event seems to trigger a downhill course either hepatic or 
neurological or both. Infants with mitochondrial hepatopathies are seen to have a low 
birth weight in up to 23%, and associated intrauterine growth retardation is seen in 
16%, likely due to insult beginning from intrauterine period[16]. Laboratory findings 
of metabolic acidosis, elevated lactate levels, high lactate to pyruvate ratio often more 
than 30 mol/mol, elevated ketone bodies betahydroxybutyrate, and betahydroxybu-
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Figure 6 Graphical summary of various respiratory chain disorders involving liver on a timeline with key features. CNS: Central nervous 
system; IDDM: Insulin dependent diabetes mellitus; mtDNA: Mitochondrial DNA; PNS: Peripheral nervous system.

tyrate to acetoacetate ratio > 2 mol/mol are corroborative, but absence does not rule 
out the diagnosis. Liver biopsy findings may yield micro or macrovesicular steatosis, 
which reflects impaired energy metabolism. Liver or muscle tissue respiratory chain 
analysis shows decreased levels of complexes I, III, or IV. Liver biopsy is often done 
post-mortem due to the inability to do so percutaneously in view of coagulopathy. 
Treatment including liver transplant is discussed subsequently.

Delayed onset liver disease: Alpers Huttenlocher syndrome 
This syndrome presents anywhere from 2 mo to 8 years of age, predominantly in late 
infancy to childhood (Figure 7 graphical summary). The diagnostic criteria include[17]: 
(1) Presence of refractory seizures including focal seizures; (2) Infection triggered 
psychomotor regression that is episodic in nature; and (3) Liver dysfunction with or 
without liver failure. Liver involvement is in the form of hepatomegaly, jaundice, 
coagulopathy, and episodes of hypoglycemia. Gastrointestinal involvement mainly 
due to the muscle impairment results in progressive feeding difficulty and gastroeso-
phageal reflux, progressing to intractable vomiting. One series of 5 patients with 
Alpers Huttenlocher syndrome (AHS) showed mean age of liver disease presentation 
of 35 mo, and all died over a mean 4.6 wk period, due to progressive liver failure[18]. 
Autopsy findings across series show macrovesicular steatosis, massive hepatocyte 
dropout, proliferating bile ductular elements replacing hepatocytes, and often cirrhosis
[17,18]. Valproate is known to precipitate liver failure in these patients when given for 
the frequently associated seizure disorder, which often demands use of more than one 
anticonvulsant. This is possibly because of depletion of respiratory chain enzyme 
activity by the drug and inability to increase metabolic rate by the DNA polymerase 
subunit gamma (POLG) deficient cells[19]. Valproate increases glycolysis, likely an 
indirect clue of impaired mitochondrial function as shown in yeast and mouse liver 
models[20]. POLG mutation subtype and zygosity influence outcome, with worst 
outcomes shown in compound heterozygous mutations for A467T and W748S[21].

Liver failure management, addressing feeding issues often mandating percutaneous 
endoscopic gastrostomy tube insertion, seizure control, and use of respiratory aids like 
continuous positive airway pressure in view of progressive motor impairment are 
cornerstones of management. Liver transplantation is often contraindicated in view of 
the multisystem involvement.

MtDNA depletion syndrome
DNA depletion is distinct from DNA deletion. MtDNA depletion refers to a state 
when a cell contains less than normal mtDNA per unit nuDNA. Depletion diseases are 
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Figure 7 Graphical summary of Alpers Huttenlocher syndrome and its natural history. BiPAP: Bilevel positive airway pressure; C/I: Contraindicated; 
CPAP: Continuous positive airway pressure; FTT: Failure to thrive; LTx: Liver transplantation; Mx: Management; PEG: Percutaneous endoscopic gastrostomy; Vx: 
Vomiting.

much more severe and earlier in onset compared to deletion diseases[22]. NuDNA 
encodes for processes within the mitochondria including production and stability of 
mtDNA. Mutations in nuDNA may result in low levels of or increased destruction of 
DNA pool essential for mtDNA synthesis[23], thereby reducing the concentration of 
mtDNA in the cell or tissue as a whole. The end result is suboptimal mitochondrial 
function. DGUOK mutations lead to predominant neuro-hepatopathy, while TK2 
mutations lead to predominant myopathy[23]. As an illustration to above statements, 
TK2 induced depletions present early in the first few years with myopathy, feeding 
difficulty, hypotonia, and respiratory failure as a terminal event. However, multiple 
TK2 deletions present as proximal myopathy and chronic progressive external 
ophthalmoplegia later in life[24]. Two additional genes, POLG coding for mtDNA 
polymerase and MPV17, have been described in hepatocerebral form of MDS. POLG 
mutations in older children have been associated with AHS as already described. It 
should be understood that MDS and AHS both have mtDNA depletion. AHS got its 
name earlier and was later found to have its molecular basis as mtDNA depletion, and 
it characteristically refers to a comparatively delayed onset (> 2 mo age), compared to 
MDS, which has its onset in the first few weeks of life. The other mutation in nuclear 
gene MPV17 leads to decreased synthesis of an unknown inner mitochondrial 
membrane protein that possibly has a role in oxidative phosphorylation, and knockout 
mice (-/-) have shown impaired oxidative phosphorylation and also mtDNA depletion
[25].

Liver failure in infancy is the common presentation of the hepatopathic form. There 
is notably an overlap between the hepatopathic form of MDS and neonatal liver failure 
presentation of RCD. The difference exists in the fact that the former has mtDNA 
quantity that is < 10% of nuDNA, and there is no sequence alteration in mtDNA.

Pearson syndrome
Pearson syndrome is one among three mitochondrial diseases (Kearne Sayre 
syndrome and chronic progressive external ophthalmoplegia being the other two) 
associated with a single large deletion in mtDNA[26]. This is a multi-systemic fatal 
disorder with involvement of exocrine pancreas, eyes, skin, hematological system, 
liver, and kidneys[22]. MtDNA rearrangements form the etiological basis, and it is 
associated with large 4-5 kbp deletions in a large proportion of cases. All respiratory 
chain complexes can suffer a decreased synthesis, with complex I most severely 
affected. Refractory anemia with ring sideroblasts occurs in infancy with vacuolization 
in bone marrow of myeloid and erythroid precursors[27]. Elevated plasma alanine and 
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fumaric acid levels are discriminating from other non-mitochondrial bone marrow 
failure syndromes[28], though neither specific for Pearson syndrome nor distin-
guishing it from other mitochondrial disorders. Hematological manifestations may 
occur alone or in combination with renal tubular dysfunction (Fanconi syndrome) and 
hepatic failure. If the patient survives this phase of hematological symptoms, its 
intensity begins to decrease[29], and symptoms change from hematological to a 
phenotype of severe pancreatic insufficiency in late infancy to early childhood, during 
the same time which villous atrophy is found to appear. Eye involvement is in form of 
pigmentary retinopathy and external ophthalmoplegia and appears in early to late 
childhood. Liver involvement is in form of hepatomegaly with cirrhosis, cholestatic 
jaundice, elevated liver enzymes, and progressive liver failure leading to death in early 
childhood similar to what is seen in MDS[30]. Recent series have shown age of death 
ranging from 5 to 11 years, and mortality is worse in Pearson syndrome compared to 
other single large mitochondrial deletions[28,31]. A graphical summary outlining the 
natural history is shown in Figure 8. Supportive therapy with packed red cell 
transfusions for anemia, granulocyte colony stimulated factor for neutropenia, and 
bicarbonate for metabolic acidosis forms the basis of care.

Navajo neurohepatopathy
This is an autosomal recessive disease prevalent in southwestern United States. The 
genetic defect is a nuclear gene MPV17 (chromosome 2p24)[32], whose product is 
located on the inner mitochondrial membrane and is responsible for mtDNA 
maintenance and regulation of oxidative phosphorylation. Hence, there is impaired 
pool of mtDNA and disrupted oxidative phosphorylation. While earlier only 
neurological manifestations were known and this entity was called Navajo 
neuropathy, liver manifestations in form of jaundice, failure to thrive, and liver failure 
were recognized to be part of the same disease spectrum prompting a change in name 
to Navajo neurohepatopathy[33]. Clinical features are outlined in Figure 9 graphical 
summary. All the three subtypes have occurred in same kindred, underscoring the 
pattern of mitochondrial inheritance.

Villous atrophy syndrome
This disorder was described in 1994 by Cormier-Daire et al[34] in 2 unrelated children 
presenting as chronic diarrhea in infancy with villous atrophy. The defect was 
identified as mtDNA rearrangements in the form of deletion-duplications. Hepato-
megaly and steatosis on biopsy with mildly deranged transaminases was the liver 
manifestation. Both children survived the diarrheal phase, which subsided by early 
childhood, including a reversal in histology (Figure 10: Graphical summary). 
However, the phenotype then changed to neuromuscular and ophthalmic involvement 
and death by the end of first decade. Complex III defect was detected on muscle 
biopsy after the advent of neuromuscular symptoms and was normal in lymphocytes. 
Intravenous dextrose for resuscitation should not be used in high rates as it may lead 
to worsening of metabolic acidosis.

Mitochondrial neurogastrointestinal encephalomyopathy
This entity is discussed purely as a prototype for GI (non-hepatic) manifestations of 
mitochondrial disorders, and also since it is a respiratory chain disorder, though not 
classically a “hepatopathy”, and additionally as it is rewarding to diagnose in view of 
available therapy[35]. It is to be understood that RCD and non RCD mitochondrial 
diseases can have some or the other GI manifestation (Table 2). MNGIE was earlier 
known as polyneuropathy, ophthalmoplegia, leukoencephalopathy and intestinal 
pseudo-obstruction, oculogastrointestinal encephalopathy syndrome, or oculogas-
trointestinal muscular distrophy[36]. The current nomenclature was given by Hirano et 
al[37].

MNGIE occurs due to mutation in a nuclear gene encoding TYMP, encoding 
thymidine phosphorylase, deficiency of which leads to toxic accumulation of 
pyrimidine nucleosides thymidine and deoxyuridine. This impairs mtDNA synthesis 
thereby leading to a mtDNA depletion state. Clinical symptoms of MNGIE usually 
begin between the first and fifth decades of life and before 20 years of age in approx-
imately 60%. GI dysmotility is one of the most important features in form of 
dysphagia, gastroparesis, and pseudo-obstruction leading to consequences like small 
bowel bacterial overgrowth, nutritional deficiencies, and severe weight loss[38]. 
Hepatic steatosis, hepatomegaly, elevated transaminases, and cirrhosis have also been 
described[38,39].
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Table 2 Gastrointestinal manifestations of mitochondrial respiratory chain defects

Site Manifestation

Oral cavity and esophagus Sicca syndrome; Dry mouth; Dysphagia

Stomach Vomiting; Reflux; Pseudo-obstruction

Small bowel and large bowel Pseudo-obstruction; Diarrhea; Megacolon; Constipation

Extra-luminal/miscellaneous Poor appetite; Pancreatitis; Pancreatic cysts

Figure 8 Graphical summary of Pearson marrow pancreas syndrome and its natural history. GCSF: Granulocyte colony stimulation factor; insuff: 
Insufficiency; KSS: Kearns Sayre syndrome; Pancr: Pancreatic; Plt: Platelets; PRBC: Packed red blood cells.

A diagnostic delay of about 5 to 10 years can occur in view of multisystem and 
complex clinical presentation[40,41]. Often there are unnecessary exploratory surgeries 
for the GI symptoms before being diagnosed as pseudo-obstruction[36]. Neurological 
involvement is mainly in form of peripheral neuropathy (demyelination with or 
without axonal neuropathy)[38], oculoparesis, with subtle central nervous system 
manifestations due to subcortical white matter involvement, and magnetic resonance 
imaging changes showing leukoencephalopathy. Muscle biopsies may show ragged 
red fibers due to proliferation of abnormal mitochondria. Current diagnostic methods 
employ testing for plasma thymidine and deoxyuridine levels (> 3 μmol/L and > 5 
μmol/L, respectively)[42] or elevated urinary concentrations[43] and thymidine 
phosphorylase activity in leucocytes (< 10% of healthy controls)[43]. TYMP gene 
(nuDNA) mutations and also consequent mtDNA abnormalities can be identified on 
Sanger sequencing and Southern blot assays[44]. A graphical summary is as shown in 
Figure 11.

Symptomatic management remains the cornerstone. Experimental therapies include 
hemodialysis and peritoneal dialysis[43], platelet transfusions, hematopoietic stem cell 
transplant, enzyme replacement, and liver transplant[45,46]. All above therapies 
concentrate on 2 aspects: To reduce the toxic load of nucleosides and to replace the 
enzyme thymidine phosphorylase.

SETTINGS TO SUSPECT RCD AND DIAGNOSTIC EVALUATION
The settings of when to suspect a mitochondrial hepatopathy are shown in Figure 12.

Individual disorders discussed above and their graphical summaries outlined give 
specific information. The diagnostic evaluation of mitochondrial disorders follows 
once a clinical suspicion is raised, and in this section we highlight general steps 
towards approaching to diagnose a mitochondrial RCD[30]. Parallel evaluation of 
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Figure 9 Graphical summary of Navajo neurohepatopathy. Bx: Biopsy; FTT: Failure to thrive.

Figure 10  Graphical summary of villous atrophy syndrome and its natural history. HPE: Histopathological examination; SNHL: Sensorineural 
hearing loss; Vx: Vomiting.

extra-hepatic and extra-GI symptoms, if present, need to be carried out for “mapping” 
the disease and for aid in management and improving quality of life. Table 3 
elucidates a stepwise evaluation algorithm[30]. Diagnostic steps proceed from non-
invasive, easily available, and less expensive investigations to more complex elaborate 
tests, some of which are available in the research setting only. Level-1 entails workup 
for basic metabolic causes including checking for hypoglycemia and, if present, 
whether it is ketotic or non-ketotic. Fatty acid oxidation defects (but not RCDs) are 
known to have non-ketotic hypoglycemic episodes. Lactate levels more than 2.1 
mmol/L (mmol) are significant, and this may often not be observed when not in a 
metabolic crisis. Notably, lactate may not be elevated much in POLG1 mutations[47]. 
Normal lactate to pyruvate ratio is less than 20 mol/mol. However, the value often 
rises above 30 and is typical though not exclusive to RCDs and is discriminatory from 
pyruvate metabolism defects[48]. Similarly, 3-hydroxy butyrate to acetoacetate ratio is 
normally less than 4, and values above this should arouse a suspicion of mitochondrial 
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Table 3 Stepwise evaluation of mitochondrial hepatopathies (respiratory chain disorder/non- respiratory chain disorders)

Steps Description Additional action
Level-1 
(body 
fluids)

Basic: CBC, INR, AFP, CPK, NH3, sugars, phosphorous, urine 
ketones. Advanced: Lactate: Pyruvate (1 h post feeds); Ketone 
Body ratio, 3OH-butyrate: Acetoacetate; Serum acylcarnitine 
profile; Urine organic acidogram; Serum aminoacidogram; 3 
Methyl Glutaconic acid in serum/urine; CSF lactate: 
Pyruvate, CSF alanine, protein; Plasma thymidine (MNGIE); 
Leucocyte CoQ levels

Parallel level-1: Evaluate other involved systems: CNS: MRI/MR-
Spectroscopy, EEG; Eye: Fundus evaluation, clinical evaluation for 
ophthalmoplegias; Hearing screen; Heart: 2D-Echo, ECG; Renal: urine 
electrolytes, proteins, amino acids; Muscle: Muscle biopsy (Level-1 in case of 
primary muscle involvement, level-3 otherwise); Endocrine: HbA1c, 8 AM 
cortisol; Pancreas: Fecal elastase

Level-2 
(genetics)

Common genes genotyping: POLG-1; DGUOK; MPV-17; 
SUCLG-1; TRMU; C10ORF2/Twinkle; CPT-1; mtDNA point 
mutations

Alternative level-2: Next generation sequencing/clinical exome sequencing 
for simultaneous evaluation of all mitochondrial DNA and nuclear DNA

Level-3 
(invasive)

Tissue diagnosis: (1) Liver biopsy: Light microscopy 
including oil red O stain for steatosis; Electron microscopy for 
structural mitochondrial alterations; Frozen tissue analysis for 
respiratory chain enzymes, DNA quantification. (2) Muscle 
biopsy: Frozen tissue analysis as above; Blue native page 
analysis. (3) Skin biopsy: Same as muscle biopsy

Key points to note during level-3 evaluation: Biopsy specimens for electron 
microscopy need to be preserved in glutaraldehyde and not formalin; It is 
possible that one invasive test may not give a clue and one has to proceed for 
an additional invasive test. This is usually because of heteroplasmy. Often 
liver biopsy molecular analysis provides a final definitive answer; 
Combination of level-1, level-2 and level-3 studies are sometimes needed to 
provide comprehensive management and for prognostication

2D Echo: Two-dimensional echocardiography; AFP: Alpha-fetoprotein; CBC: Complete blood count; CNS: Central nervous system; CoQ: Coenzyme Q; 
CPK: Creatine phosphokinase; CSF: Cerebrospinal fluid; EEG: Electroencephalogram; HbA1c: Glycosylated hemoglobin; INR: International normalized 
ratio; MRI: Magnetic resonance imaging; NH3: Serum ammonia levels; POLG: DNA polymerase subunit gamma; RCD: Respiratory chain disorders.

Figure 11  Graphical summary of mitochondrial neurogastrointestinal encephalomyopathy. BMT: Bone marrow transplantation; dThd: Thymidine; 
dUrd: Deoxy uridine levels; MRI: Magnetic resonance imaging; TP: Thymidine phosphorylase. Vx: Vomiting.

dysfunction. Urine organic acids like lactate, succinate, fumarate, malate, and 3-
methyl-glutaconic are seen elevated in Pearson syndrome. Serum alanine elevation is 
also a clue; however, it is often more elevated in pyruvate dehydrogenase deficiency 
than in RCDs[48]. Creatine kinase elevation and concomitant low levels of phospho-
creatine in brain and muscle tissue are seen in RCDs[49]. Branched chain amino acid to 
glutamine ratios were highest in RCDs and lowest in pyruvate dehydrogenase 
deficiency compared to controls, according to one study[48].

Table 4 helps differentiate the common metabolic disorders encountered in the 
pediatric patient and how to filter out RCD.

Role of genetic testing
Genetic studies are confirmatory but have a high turnaround time of 4-6 wk. They may 
not also be available freely at all centers or in resource poor settings. Timely referral to 
tertiary care centers for management is advisable. A major limitation is selection of the 
gene panel testing for the phenotypic presentation. In products of consanguineous 
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Table 4 Biochemical differentiation between various metabolic hepatopathies (respiratory chain disorder vs non respiratory chain 
disorder comparison)

Acidosis Urine ketones Blood sugar Serum lactate Serum ammonia

RCD ++ ++ Normal ++++ ±

FAOD ++ Nil (non-ketotic) Low (hypoglycemia) + +

OA +++ (persistent) ++/+++ Low/normal/high Normal ++

UCD Normal Normal Normal Normal ++++

FAOD: Fatty acid oxidation defects; OA: Organic acidemias; RCD: Respiratory chain defects; UCD: Urea cycle defects.

Figure 12  Scenarios when to suspect mitochondrial hepatopathy. Bx: Biopsy; CNS: Central nervous system.

union and multiple affected siblings, genetic evaluation is better guided, and it is 
possible to identify the index patient’s chromosomal region containing the 
abnormality by linkage analysis. Targeted gene analysis is performed if the phenotype 
matches the previous cases in a family and there is an already identified mutation 
responsible for the clinical features in those particular kindred. Whole exome analysis 
for nuDNA and mtDNA is preferred otherwise as an alternative step in case there are 
no previously affected siblings or if the phenotype does not classically match 
previously described entities[50]. Targeted analysis can be performed using Sanger 
method of few genes, while whole exome sequencing refers to a massive parallel 
sequencing technique of multiple genes or the entire exome using next generation 
sequencing[51]. Another method to short-list genes for analysis is to study the 
expression profiles of RNA or specific proteins or polypeptides levels encoded by the 
gene(s) of interest, especially after a biochemical diagnosis is made. As an example, 
complex I deficiency can be caused by any of the multiple mtDNA and nuDNA 
responsible for each of its subunits. To identify a particular gene (of the multiple 
encoding ones) responsible for causing overall complex I deficiency in an index 
patient, analyzing the distribution or expression of proteins or RNA and its deviation 
from healthy controls or known standards can help pinpoint which gene may be 
defective. Once a specific change is identified, either in RNA expression, which can be 
detected by microarray assays, or in enzyme levels or stress protein expression, which 
can be identified by immunoblotting using an antibody panel, indirectly “reverse 
identification” of the causative gene(s) is facilitated[52]. This of course is only possible 
when, with time, all genes encoding each subunit of large proteins are identified so 
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that such indirect, simpler, and time saving methods may be employed. Tables 1 and 3 
list genes implicated in mitochondrial RCDs. Figure 13 suggests a two-step strategy of 
genetic evaluation in mitochondrial RCDs and also a few phenotypes for which 
specific genes should be tested.

It is pertinent to note that mitochondrial hepatopathies, unlike other metabolic 
disorders, require analysis of mtDNA in addition to nuDNA defects. Hence, when 
screening genetics do not yield the diagnosis and the next step of whole exome 
sequencing is being undertaken, it is essential to specify to the testing lab that mtDNA 
analysis be included in addition to the wide gamut of nuDNA being tested. While for 
nuDNA analysis, the tissue of interest may not be specific and whole blood sample 
may serve the purpose, for mtDNA molecular analysis, specific tissues (liver, muscle) 
may be required, mainly because of the phenomenon of heteroplasmy.

MtDNA depletions are diagnosed by first isolating the DNA of the tissue biopsied, 
which is then subjected to electrophoresis and blotting followed by hybridization with 
probes specific for mtDNA and nuDNA both. The relative levels of autoradiographic 
signals emitted post hybridization are detected for mtDNA and nuDNA, and this 
helps in diagnosing mtDNA depletions. MtDNA deletions and point mutations on the 
other hand can be detected by single strand conformational polymorphisms[53,54].

Next generation sequencing by parallel exome sequencing undertaken with blood 
or any tissue is limited by its inability to detect mutations in the non-exonic region, 
like untranslated regions or intronic splice sites. It is also not adept in diagnosing 
trinucleotide repeat sequences, complex genetic inheritance like synergistic contri-
bution of nuDNA and mtDNA to cause a particular disease, and epigenetic effects[51].

Role of tissue biopsies
Tissue biopsies are important despite having readily evident biochemical 
abnormalities; only one-third to one-half of mitochondrial disorders have identifiable 
mutations despite extensive exome sequencing of known genetic defects[51,55]. That is 
to say, all genes related to mitochondrial disorders have not yet been identified. 
Biopsies from the most involved site are more likely to yield the diagnosis[56]. 
Respiratory chain enzymes can be analyzed and activity quantified on tissue biopsy 
specimens. Quantitative Southern blot analysis or real-time quantitative polymerase 
chain reaction to detect mtDNA depletion can be done in liver biopsy specimens. Skin 
biopsy for cultured skin fibroblasts can be stored indefinitely and retrieved for re-
culture once newer diagnostic modalities are available. It is simpler to perform and 
less invasive compared to muscle biopsy. However, the downside is that not all 
diseases are detectable on skin fibroblast analysis[47].

How to select which tissue to test is an important question that the clinician must be 
aware. Most mitochondrial disorders involve the muscle, and hence muscle is one of 
the most useful sites for analysis of enzymes, metabolites, and even molecular DNA 
studies. While earlier 1-5 g of muscle tissue was required for respiratory chain enzyme 
assays, now even 100-200 mg of skeletal muscle tissue (usually quadriceps or soleus) is 
sufficient especially in young children, which then yields a mitochondrial enriched 
fraction of 400-500 μg of protein, enough to characterize the respiratory chain enzyme 
deficiencies[57]. Muscle biopsies may be analyzed either as frozen or fresh samples. 
Samples once collected should be snap frozen immediately bedside or in the 
procedure room at -80 °C till analysis of mitochondrial enzymes[53]. Fresh muscle 
samples should not be frozen and transported in cool buffer solution, which offers the 
advantage of analysis of the entire mitochondrial energy generation system in addition 
to mitochondrial enzymes being studied in frozen samples[58].

Those diseases that have primary liver involvement and no apparent muscle 
involvement, especially the ones with liver failure phenotype, liver tissue of up to 10 
mg can be more yielding than muscle. Cardiac tissue requirement, when indicated, is 
even less, about 1-2 mg, obtained by endomyocardial biopsy[53]. These invasive 
techniques may be gradually substituted by molecular DNA techniques done on 
whole blood and cater to only research purpose over time as cost and availability of 
next generation sequencing is eased.

MANAGEMENT OF MITOCHONDRIAL RESPIRATORY CHAIN DEFECTS
There are three aspects to management: Firstly, acute management of crisis, second is 
general management of children with metabolic liver disease, followed by specific 
treatment if available including the role of liver transplant. An additional important 
component relates to parental counseling and to bust myths and avoid patients to 
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Figure 13  Step-wise strategy of genetic evaluation in mitochondrial respiratory chain defects. MRCD: Mitochondrial respiratory chain disorders; 
ALF: Acute liver failure; MMA: Methylmalonic acid.

resort to non-scientific therapies and refraining from standard of care.

Acute crisis management
Treatment of acute liver failure and progressive liver disease remains unsatisfactory. 
The aim of therapy is mainly mitigating, postponing, or circumventing damage to the 
respiratory chain. The basic steps and precautions are outlined as in Table 5. 
Bicarbonate infusions when used for a longer time may itself worsen cerebral function. 
An alternative is dichloroacetate, which inhibits pyruvate dehydrogenase kinase, 
hence favoring persistent levels of active pyruvate dehydrogenase and hence 
preventing pyruvate accumulation and pyruvate to lactate conversion.

Other supportive therapy is to give packed red cell and platelet transfusions for 
anemia and thrombocytopenia and pancreatic enzyme replacement in case of insuffi-
ciency.

General considerations for managing a child with mitochondrial hepatopathy
Once the acute crisis is settled, it is important to improve the nutrition of the child as 
malnutrition itself can lead to secondary mitochondrial dysfunction[59]. These 
children often have increased caloric needs and an inability to maintain it owing to 
either repeated sickness bouts or a general anorexia associated with liver disorders. 
The issues of swallowing difficulties, impaired gut motility, and gastro-esophageal 
reflux need to be addressed often to the extent of placement of feeding tubes 
(orogastric or nasogastric), percutaneous endoscopic feeding gastrostomy, or using 
parenteral nutrition therapy. Nutritional improvement has led to improved quality of 
life and an increase in developmental quotients in these children[60]. Ketogenic diet 
may be useful in some mitochondrial disorders but may worsen fatty acid oxidation 
defects and should be avoided in them. Exercise helps in reducing the burden of 
abnormal mitochondria[61]. It is useful to do so regularly, under supervision in a 
graded manner, and to have a meal prior to exercise[62].

Pharmacotherapy 
A combination of drugs is often empirically administered to suspected mitochondrial 
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Table 5 Management during evaluation in acute phase

Following thumb rules while attending to a patient with suspected mitochondrial disorder

Monitor closely for hypoglycemia and acidosis

Avoid lactated ringer’s solution for fluid administration: Worsens acidosis

Bicarbonate infusions as 1st line of defense

Avoid propofol for sedation/anesthesia

Avoid fasting > 12 h; avoid high rate glucose only infusions

Avoid drugs that are toxic to mitochondria: Chloramphenicol, valproate, aminoglycosides, phenytoin, carbamazapine, phenobarbital, statins, linezolid

Avoid drugs precipitating hepatopathy/liver dysfunction

disorders and comprises: Coenzyme Q, carnitine, thiamine, riboflavin, vitamins C and 
E, and creatine. Of all, Coenzyme Q shows promise and along with B vitamins remains 
the most common combination as part of cocktail therapy[63]. The various drugs and 
their pediatric dosages are outlined in Table 6[13,63,63].

Role of organ transplant
Multisystem involvement in mitochondrial hepatopathies often precludes performing 
a liver transplant. However, in hepatocerebral form of DGUOK defects when detected 
in infancy without neurological involvement, liver transplant has shown to be 
effective. Those with neurological involvement do not benefit from liver transplant
[65]. Overall post-transplant survival is less with RCDs than non-RCDs. Sokal et al[66] 
reported 8 cases with a survival of 50% post transplantation for RCDs. In an elaborate 
compilation of 40 cases with mitochondrial RCDs across various centers at different 
time points, it was noted that 22 (55%) patients died within 24 mo post-transplant[67]. 
Early postoperative multi-organ failure and neuro-degeneration followed by 
respiratory complications and severe pulmonary hypertension were the cause of death 
in these patients. The same group recognized that those diagnosed pre-transplant had 
a higher survival (58%) than those recognized to have RCD after transplant (29%). 
Thus, the emphasis is on early recognition of the diagnosis and a thorough evaluation 
for extra-hepatic manifestations, adding investigations like magnetic resonance 
imaging of the brain and echocardiography.

MNGIE stands out as the single mitochondrial disorder for which replacement of 
the missing enzyme thymidine phosphorylase by stem cell transplantation can be 
curative and lead to improvement in long term outcomes. While earlier enzyme levels 
were artificially increased using repeated platelet transfusions[40], stem cell transplant 
has come up as a definitive modality[68,69].

Myths in mitochondrial disorders
Immunizations are not contraindicated in children with mitochondrial diseases. This is 
to be emphasized because of certain misconceptions that immunization may lead to 
autism in children with mitochondrial diseases for which there is no evidence[64]. The 
other important aspect that needs to be clarified is that there is no role of hyperbaric 
therapy in treatment of MH and in fact may lead to oxygen toxicity. Vagus nerve 
stimulation may not be very helpful in controlling refractory seizures in children with 
MH[63].

CONCLUSION
In a nutshell: (1) Liver along with other system involvement may not be just sepsis – 
think of mitochondrial respiratory chain hepatopathy; (2) Lactic acidosis without 
hypoglycemia is an important clue, avoid ringer lactate and drugs causing 
hepatopathy; (3) Evaluation should be done in a tiered manner – genetic evaluation 
and enzyme analysis from tissue of interest; (4) Treatment is largely supportive with 
transfusions, correction of acidosis, shock, and providing cofactors/salvage therapies; 
(5) Liver transplantation needs to be considered in only a select group and may 
worsen disease despite adequate precautions; and (6) Periodic follow-up is mandatory 
for monitoring evolution of disease including “migration” to other organ systems.
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Table 6 Pharmacotherapy used for mitochondrial diseases

Drug Pediatric dose Remark

Coenzyme Q: (1) Ubiquinol form; 
(2) Ubiquinone form

2-8 mg/kg/d in BD dosing; 10-30 mg/kg/d BD 
dosing

Preferably had after meals; Most effective and most used therapy; 
Free radical scavenger; Bypasses complex I

Idebenone 5 mg/kg/d Synthetic form of CoQ; Penetrates blood-brain barrier

L-carnitine 10-100 mg/kg/d IV or oral divided 3 times/d Avoid in long chain FAO-Ds: May lead to cardiac arrhythmias

Creatine 0.1 g/kg PO, OD Used for repletion of muscle phosphocreatine levels

L-arginine 500 mg/kg IV per day for 1-3 d followed by 150-
300 mg/kg oral daily in BD dosing

Used for acute stroke; Watch for hypotension while infusion; 
Evidence is anecdotal

Thiamine 100 mg/d Cofactor of PDH; useful for thiamine responsive PDH deficiency; 
Helpful in leigh disease

Riboflavin 50-400 mg/d Give at night time before sleep; Shown to be useful in ACAD9 
mutations; Flavin precursor for complex I & II

Vitamin C 5 mg/kg/d OD Antioxidant; Artificial electron acceptor

Vitamin E Variable dosing, up to 25 IU/kg/d OD (avoid > 
400 IU/d)

Absorption better when taken with meals

Dichloroacetate 25-50 mg/kg/d Improves lactic acidosis

BD: Twice daily; CoQ: Coenzyme Q; FAO-D: Fatty acid oxidation defects; IV: Intravenous; PDH: Pyruvate dehydrogenase; PO: Per oral; OD: Once daily.
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Abstract
Cystic fibrosis (CF) is an autosomal recessive disorder caused by mutations in the 
CF transmembrane conductance regulator gene. CF liver disease develops in 5%-
10% of patients with CF and is the third leading cause of death among patients 
with CF after pulmonary disease or lung transplant complications. We review the 
pathogenesis, clinical presentations, complications, diagnostic evaluation, effect of 
medical therapies especially CF transmembrane conductance regulator modu-
lators and liver transplantation in CF associated liver disease.
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Core Tip: Cystic fibrosis(CF) liver disease is caused by abnormal cholangiocyte 
function, altered biliary secretion and abnormal innate immune response with abnormal 
response to endotoxins. CF liver disease can present with a wide variety of clinical 
features from a heterogenous liver on ultrasound, to life threatening gastrointestinal 
bleeds secondary to portal hypertension. Novel treatment strategies directly targeting 
the ion channel abnormality-cystic fibrosis transmembrane conductance regulator 
modulators are available and has significantly improved the clinical status and life 
expectancy of the cystic fibrosis patients.
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INTRODUCTION
Cystic fibrosis (CF) the most frequent fatal autosomal recessive disorder in Caucasians, 
is caused by autosomal recessive disease caused by mutations in the CF transmem-
brane conductance regulator (CFTR) gene on the long arm of chromosome 7 with more 
than 2000 variants reported[1]. F508del variant resulting from deletion of three 
nucleotides that leads to loss of a single phenylalanine residue at codon 508, accounts 
for approximately 70% mutations[2]. CFTR protein is found in the epithelial cells of 
lungs, sweat glands, liver pancreas and intestine. Liver disease is one of the classic 
phenotypes of CF.

CF liver disease (CFLD) usually develops within the first 20 years of life and has a 
stable non-progressive or mildly progressive course in later life[3,4]. Most children 
with CF will have some degree of steatosis but clinically significant liver disease 
develops in < 10% of pediatric CF patients usually by 10 years of age. CF related 
cirrhosis is a disease of the childhood and adolescence while predominant biliary 
involvement mimicking sclerosing cholangitis mostly occurs in adulthood[5]. The 
diagnosis of liver disease has profound implications in short and long term prognosis 
in CF patients and is the third leading cause of mortality in CF. Analysis of a large 
cohort of patients from the CF Foundation Patient Registry database showed that in 
CF patients with liver disease, the estimated 10-year cumulative rate of any adverse 
liver-related outcomes was approximately 20%[2]. Liver disease with cirrhosis and or 
portal hypertension has been classified as severe CFLD.

PATHOPHYSIOLOGY
CFLD is a genetic disorder of cholangiocyte transport protein defect, resulting in 
chronic cholangiopathy caused by reduced ductal bile flow generation and reduction 
in biliary chloride and bicarbonate secretion caused by the dysfunction of CFTR[6,7]. 
But this mechanism alone cannot explain CFLD, because CFTR deficiency is present in 
all patients while CFLD occurs only in a small population of CF patients and has 
varying clinical manifestations and severity. As described below, a combination of 
factors including CFTR genotype, non-CFTR genetic variability, abnormal intracellular 
interactions, abnormal cholangiocyte function, altered biliary secretion, pathologic 
stimulation of innate immune response with abnormal response to endotoxins lead to 
CFLD.

Abnormal cholangiocyte function and altered biliary secretion
Abnormal CFTR results in inhibition of cyclic adenosine monophosphate dependent 
chloride and bicarbonate secretion. This reduces the bile flow and alkalinity resulting 
in the biliary epithelial damages deriving from the retention of cytotoxic bile acids and 
xenobiotics and from the reduction in natural defenses against microbiologic 
pathogens. The response to chronic epithelial damage and the progression in the liver 
damage depends on the immunogenetic response of the individual and on other 
modifier genes.

Abnormal protein-protein interactions
CFTR mediated liver injury is also postulated to be caused by ability to regulate the 
function of other proteins by physically associating in macromolecular complexes at 
the membrane (protein-protein interaction)[8,9]. CFTR interacting proteins are located 
not only in the plasma membrane but also in nucleus, endoplasmic reticulum, Golgi 
apparatus, trafficking vesicles, proteasomes and cytoskeleton[9]. For example, the 
interaction of CFTR with proteins regulating the function of non-receptor tyrosine 
kinase Rous sarcoma oncogene cellular homologue can modulate innate immune 
responses in cholangiocytes[8]. Dysfunction of interactions can have systemic 
consequences resulting from the perturbation of the interconnected cellular networks 
accounting for some of the phenotypic variation in CF[8].

Abnormal innate inflammatory response
The conventional theory of CFLD postulates that biliary epithelial CFTR dysfunction 
causes alterations in the volume and composition of bile, resulting in loss of protective 
effect of biliary bicarbonate and mucus and an accumulation of toxic bile acids causing 
damage to the epithelium by initiating an inflammatory response[8]. But it is now 
postulated that the abnormal inflammatory response is due to lack of tolerance in the 
innate immune system[7]. CFTR is a now thought as a regulator of cholangiocyte 
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innate immune responses and defective CFTR results in aberrant activation of Src 
tyrosine kinase causing upregulation of innate inflammatory responses via the Toll-
like receptor 4/NF-κB axis[7,10]. This results in lack of tolerance of biliary epithelium 
to endotoxin (e.g. pathogen-associated molecular patterns) from bile and intestine, 
leading to a para-inflammatory process in the biliary epithelium with the release of 
cyto/chemokines and the infiltration of the portal spaces with inflammatory cells[7,
10].

Gut dysbiosis and role of gut-liver axis
There is a substantial reduction in the richness and diversity of gut bacteria in patients 
with CF from early childhood until late adolescence and the changes deviate 
progressively farther from the path of healthy controls with increasing age[11]. Gut 
dysbiosis results in reduction in anti-inflammatory short-chain fatty acids, altered 
ratios of arachidonic acid/Linoleic acid and arachidonic acid/docosahexaenoic acid 
leading to increased gut inflammation[8,12]. This causes increased permeability of 
intestinal epithelia, increasing the exposure of biliary epithelial cholangiocytes to 
endotoxins, perpetuating the inflammatory cascade[8,12]. But it is not certain if 
intestinal inflammation is caused by the altered microbiota in CF or is the consequence 
of an altered environment[8,12].

Genetics
There is massive heterogenicity in CFTR phenotype among patients with CFLD and 
CFTR genotype-phenotype correlations are generally weak. The functional conse-
quences of CF-causing variants have been grouped into six classes[1,13] (Figure 1). 
Mutations in classes I and II are also known as minimal function mutations since they 
demonstrate no to very little CFTR function, while those in classes IV, V, and VI are 
known as residual function mutations since they demonstrate some CFTR function, 
although it is lower compared to the wild type CFTR[14]. CFLD is mostly occurs in 
pancreatic insufficient patients with biallelic loss-of-function mutations in CFTR (class 
I, II, or III mutations on both allele)[1,3]. It has been shown that non-CFTR genetic 
variability also contributes to risk for severe liver disease[15]. This might be one of the 
reasons in variability of phenotype even between siblings inheriting the same 
mutations. Though many candidate genes have been postulated, in a large study 
SERPINA1 (coding for alpha1-antitrypsin) Z allele was significantly associated with 
CFLD and portal hypertension[16].

CLINICAL FEATURES
The prevalence of CFLD varies widely in children and adolescents, based upon the 
diagnostic criteria used ranging from < 5% to 68%[17,18]. CFLD is more common and 
the median age of diagnosis is earlier in males[19]. Liver involvement in CF may be 
subclinical until diffuse liver damage occurs. Liver involvement can vary from mild 
elevation of aminotransferases to cirrhosis with synthetic failure and portal 
hypertension. The degree of liver involvement and the rate of progression of liver 
disease varies significantly among individuals. The awareness of CFLD and its clinical 
implications has increased as evidenced by an early diagnosis and a drop in the 
median time at diagnosis from adolescence to < 3 years of age[17,18].

Risk factors for CFLD include male sex, presence of severe mutations, presence of 
SERPINA 1Z allele, history of meconium ileus, exocrine pancreatic insufficiency and 
CF-related diabetes[20]. The most common clinical feature is asymptomatic hepato-
megaly detected by clinical examination or ultrasonography[18]. Pancreatic insuffi-
ciency occurs in 99% of patients with CFLD[19]. Liver involvement in CF can be 
classified into two broad categories based on the presence of cirrhosis/portal 
hypertension (Table 1).

Liver disease without portal hypertension
Cholestasis: Neonatal/infantile cholestasis is the earliest manifestation of liver 
involvement in CF, but is very rare (< 2%). It is important to exclude other common 
causes of neonatal cholestasis like biliary atresia and also to consider the diagnosis of 
CF in infants who present with cholestasis[21].

Abnormal liver enzymes: The commonly noticed abnormalities include intermittent 
rise in serum transaminases (aspartate aminotransferase (AST) and alanine 
aminotransferase (ALT)) and/or increased serum levels of alkaline phosphatase (ALP) 
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Table 1 Spectrum of cystic fibrosis liver disease in children

Spectrum of cystic fibrosis liver disease in children

Liver

Neonatal cholestasis

Pre-clinical

Elevated aminotransferases

Increased GGT

Steatosis

Portal hypertension including non-cirrhotic portal hypertension

Cirrhosis

Focal biliary

Multi-lobular

Gallbladder and biliary system

Cholelithiasis

Abnormal size/function

Intra and extrahepatic biliary strictures (sclerosing cholangitis)

GGT: Gamma glutamyl transferase.

and gamma glutamyl transferase (GGT). Elevated liver enzymes can precede clinical 
and radiological abnormalities by several years. Bile duct damages can be 
demonstrated even in asymptomatic cases[22]. About 53%–93% of patients with CF 
have at least one abnormal value of AST/ALT, while over one-third have abnormal 
levels of GGT by 21 years of age[23]. CFLD patients with cirrhosis with portal 
hypertension can have normal liver biochemistry and synthetic function. Fluctuations 
in liver biochemistry is common and can be due to medications, infection or 
malnutrition.

Steatosis: Steatosis is common in CF patients, seen in upto 70% children undergoing 
liver biopsies[24]. The etiology is uncertain, but postulated to be due to malnutrition, 
deficiencies of essential fatty acid, carnitine and choline[24,25]. Steatosis in CF patients 
can also be caused by impaired glucose tolerance, diabetes mellites, hypertrigly-
ceridemia and obesity[23]. Significant steatosis has become uncommon due to earlier 
diagnosis of CFLD and appropriate nutritional management. Alcohol consumption 
should be considered in adolescent CF patients with steatosis. Steatosis in CF was 
previously thought to be a benign condition, but with the emergence of nonalcoholic 
steatohepatitis as a leading cause of cirrhosis and understanding of the pathology, this 
might no longer be the case. Other signs of chronic liver disease or portal hypertension 
are usually not present.

Gallbladder and biliary tract involvement: Abnormalities of gallbladder (GB) can be 
present in children with CF. Micro-GB has been described in up to 33% of patients and 
GB might even be absent in CF patients[26]. Abnormal function of gallbladder and 
gallstones can also present. Black pigmented stones are more commonly found in 
patients with CF compared to cholesterol gallstones which are common in general 
population[26]. Symptomatic GB disease (4%) and need for cholecystectomy is 
common in adults[26].

Intra- or extrahepatic biliary strictures and segmental dilation has been reported in 
children with CF. Bile duct strictures and associated complications frequently occur 
even in patients with mild variants of CF. Magnetic resonance (MR) cholangiography 
data has shown that up to 70% of patients can have abnormalities of biliary tree 
regardless of biochemical or clinical evidence of liver disease and can mimic primary 
sclerosing cholangitis[24,26]. There is no correlation between severity of liver disease, 
abnormal liver tests and the presence of biliary strictures[24,26].
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Figure 1 The functional consequences of cystic fibrosis-causing variants have been grouped into six classes. Class I mutations lead to no 
protein synthesis or translation of shortened, truncated forms. They result from splice site abnormalities, frameshifts due to deletions or insertions, or nonsense 
mutations, which generate premature termination codons. Class II mutations lead to a misfolding protein that fails to achieve conformational stability in the 
endoplasmic reticulum and then does not traffic to the plasma membrane (PM), being instead prematurely degraded by proteasomes. Class III mutations lead to a 
gating channel defect due to impaired response to agonists, although the protein is present at the PM. Class IV mutations lead to a channel conductance defect with 
a significant reduction in cystic fibrosis transmembrane conductance regulator (CFTR)-dependent chloride transport. Class V mutations lead to a reduction in protein 
abundance of functional CFTR due to reduced synthesis or inefficient protein maturation. They result from alternative splicing, promoter or missense mutations. Class 
VI mutations lead to reduced protein stability at the PM, which results in increased endocytosis and degradation by lysosomes, and reduced recycling to the PM. PM: 
Plasma membrane.

Liver disease with cirrhosis/portal hypertension (severe CFLD)
Portal hypertension: Variceal bleed can occur with or without cirrhosis and frequently 
occurs in the context of preserved hepatic synthetic function. Varices can be seen in 10- 
70% with CFLD and may be present at diagnosis of CFLD in 25%[19,27,28]. Isolated 
gastric varices may be seen in 15%[19]. Variceal bleed can be the sentinel event in 
CFLD leading to the diagnosis of portal hypertension/cirrhosis in up to 50% and may 
also be fatal, either from bleed itself or by precipitating liver failure. The age at first 
bleed can range from 10-30 years and recurrent bleeds can also occur[4]. Variceal bleed 
is associated with 5 fold risk of liver transplantation (LT)[2]. Thrombocytopenia has 
been postulated as a marker of severe CFLD with portal hypertension, so decreasing 
or persistently low platelet counts should prompt evaluation for portal hypertension
[19]. Non cirrhotic portal hypertension can also occur in CFLD[28,29]. This has been 
postulated to be due to perisinusoidal portal venopathy caused by inflammation and 
fibrosis[24,29].

Focal biliary cirrhosis: Focal biliary cirrhosis is characterized by focal areas of scarring 
and furrowing in the liver with large areas of normal preserved hepatic architecture in 
between. Histologically, it is characterized by cholestasis, significant focal fibrosis, 
plugging of bile ducts with eosinophilic material, bile duct proliferation and expansion 
of portal tract leading to the postulation that bile duct plugging is the causative factor.

Focal biliary cirrhosis is clinically silent without any abnormalities on physical 
examination and normal liver biochemistry. Radiological imaging is also frequently 
noncontributory. Postmortem studies have shown that the incidence of focal biliary 
cirrhosis increases with advanced age- 11% in infants, 27% at 1 year and 25%–70% of 
adults[24]. Only a small subset of patients will progress to more severe liver disease 
and eventually multilobular cirrhosis, but the factors causing this is not known.

Multilobular cirrhosis: Biliary cirrhosis with portal hypertension is the most severe 
clinical manifestation of CFLD. Clinically, liver is multilobulated and firm- extensive 
lobulation is characteristic of CF cirrhosis. Signs of chronic liver disease such as 
clubbing, spider angioma, and palmar erythema may be present but is uncommon and 
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often occurs late in the disease course. There are no clinical or biochemical 
abnormalities or radiological features that consistently predict the presence of cirrhosis 
or risk of development of portal hypertension[28]. Majority of the morbidity due 
cirrhosis is caused by complications arising from portal hypertension. Hepatic enceph-
alopathy is rare complication of cirrhosis per se in CFLD and mostly has occurred after 
therapeutic portosystemic shunting for management of portal hypertension[24]. 
Hepatic decompensation as evidenced by progressive decrease in albumin levels and 
development of ascites represents poor prognosis and necessitates LT evaluation.

Patients with cirrhosis are at risk of significant malnutrition as compared to CF 
patients without liver disease. This is due to anorexia, micronutrient deficiency, early 
satiety due to organomegaly and increased catabolism. In a study comparing CFLD 
patients with CF patients without liver disease, body fat measurements, including 
triceps, subscapular, and supra-iliac skinfold measures, were significantly less in the 
CFLD patients[27]. However, weight, height and mid upper arm circumference were 
not different between the two groups[27].

EVALUATION
Liver enzymes (AST, ALT, GGT) are poor predictors or indicators of cirrhosis or the 
risk of development of cirrhosis or CFLD and are neither sensitive or specific. There is 
poor correlation of liver enzymes with histologic findings, with 25% of CFLD patients 
with biopsy proven severe liver fibrosis having normal ALT levels[28]. But patients 
presenting with significant or persistently elevated liver biochemistries warrant 
further investigation for evidence of CFLD and other etiologies (Table 2). Persistently 
elevated GGT might be a pointer to biliary disease (e.g., sclerosing cholangitis). 
Thrombocytopenia with splenomegaly is suggestive of development of portal 
hypertension. The synthetic function of liver (clotting, albumin) should be checked in 
all patients with suspected CFLD. If deranged after correcting nutritional (poor diet, 
vitamin deficiency) defects, should be thoroughly investigated.

Imaging
Ultrasound (US) of the hepatobiliary system with Doppler measurements of hepatic 
vasculature is non-invasive and may be a valuable marker of early CFLD[30]. Partial 
or complete hyper echogenicity liver, suggestive of steatosis is the most common US 
finding in CF[31]. Another fatty infiltration pattern, pseudomasses, seen as lobulated 
fatty structures of 1–2cm causing heterogeneity in the liver parenchyma is typical of 
CF[31]. Focal biliary cirrhosis appears sonographically as regions of increased 
echogenicity in periportal areas[31,32]. Cirrhotic liver has a nodular appearance with a 
coarsened echotexture[32]. Right hepatic lobe atrophy and hypertrophy of the caudate 
and lateral segments of the left lobe may be seen[32]. Splenomegaly, portosystemic 
shunts, hepatofugal flow in portal vein, and ascites can be seen with portal 
hypertension.

Abnormal echogenicity frequently precedes biochemical/clinical evidence of liver 
disease, with one study showing that two thirds of the children with abnormal liver 
echotexture and 50% with portal hypertension had no biochemical/clinical evidence of 
CFLD at the time when US changes were first noted[30]. Heterogeneous pattern of 
liver has been shown to be associated with higher risk of development of advanced 
liver disease in CF patients[30,33]. However, there is significant intra/ interobserver 
variability in US imaging and children with normal hepatic US can have advanced 
fibrosis, so a normal US does not exclude significant liver fibrosis or CFLD[3].

Assessment of the intra and extrahepatic biliary tree is better with MR cholan-
giography. The typical appearances include strictures, beading, narrowing, or 
dilatation of the intrahepatic ducts; diffuse narrowing or focal stricture of the common 
bile duct; and calculi[32].

Liver biopsy
Liver biopsy (LB) the gold standard in diagnosing fibrosis and cirrhosis, but is difficult 
to perform in CF patients because of the invasive nature and presence of associated 
comorbidities. Also because of the patchy distribution of lesions in CFLD, LB may 
underestimate the severity of lesions[25]. LB should be reserved for evaluation for 
other potential causes of fibrosis (autoimmune hepatitis, Wilson’s disease, hepato-
trophic infections) or drug-induced liver injury.
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Table 2 Causes of acute or chronic liver disease in cystic fibrosis patients showing hepatic abnormalities

Condition Investigation

Acute/chronic viral hepatitis Serology for HAV, HBV, HCV, EBV, CMV, adenovirus, HHV 6, parvovirus

α1 antitrypsin deficiency Serum α1 antitrypsin level, including phenotype

Autoimmune hepatitis Non-organ specific autoantibodies (SMA, anti-LKM1, LC1)

Celiac disease Total IgA, IgA anti-tissue transglutaminase

Wilson disease Ceruloplasmin, serum copper, 24 h urinary copper

Drug induced liver injury Antibiotics (cyclines, macrolides, amoxicillin-based, and cephalosporins) & antifungals 
(azoles and polyenes)

Genetic hemochromatosis (adults) Iron, Ferritin, Transferrin binding capacity

Other causes of steatosis Malnutrition, diabetes, obesity

This table is modified from Debray et al[25]. HAV: Hepatitis A virus; HBV: Hepatitis B virus; HCV: Hepatitis C virus; CMV: Cytomegalovirus; EBV: 
Epstein-Barr virus; HHV6: Herpes hominis virus type 6; SMA: Smooth muscle antibody; LKM1: Liver kidney microsomal type 1; LC: Liver cytosol type 1; 
IgA: Immunoglobulin A.

Noninvasive tests of fibrosis and liver disease
The early detection and monitoring of fibrosis, assessment of stage of fibrosis and 
progression to CFLD is challenging because routinely available tests to measure liver 
damage can often be normal even in advanced cirrhosis and liver biopsy is invasive 
with potential risk of complications. Non-invasive tests are divided into direct and 
indirect markers of liver fibrosis and imaging modalities as outlined in Table 3.

Direct markers are components of extracellular matrix degradation or fibrogenesis 
in serum include Matrix Metalloproteinase-9, tissue inhibitor of metalloproteinase-1 
and 2, procollagen III peptide, collagen type-IV, hyaluronic acid, laminin, prolyl 
hydroxylase and YKL-40. These are not readily available in the routine clinical setting, 
are costly and are not validated in large scale studies. Indirect markers are serum-
based tests and consist of readily available biochemical surrogates and clinical risk 
factors (AST, ALT, platelet count, age) for liver fibrosis. These include aspartate 
aminotransferase to platelet ratio index (APRI) and Fibrosis-4 (Fib-4). Stonebraker et al
[19] demonstrated in a large pediatric cohort (n = 497) with CFLD and portal 
hypertension that APRI and Fib-4 values could differentiate patients who developed 
complications of portal hypertension and were significantly different in CFLD patients 
with and without oesophageal varices.

Advanced imaging modalities which quantify liver stiffness as a marker of fibrosis 
such as transient elastography (TE, Fibroscan®), acoustic radiation force impulse and 
MR elastography have been shown to accurately reflect advanced liver disease/end-
stage fibrosis in CF. Liver stiffness as measured by TE had high diagnostic accuracy 
and was increased in CFLD compared to CF patients without liver disease[34]. Serial 
monitoring using TE is more useful as progressive enhancement of liver stiffness as 
this might reflect progression of liver disease thereby facilitating early detection[34,
35]. MR elastography is currently the most accurate noninvasive method across the 
spectrum of liver fibrosis and offers promise in the assessment of response to 
antifibrotic drugs but is not well studied in the context of CF liver disease[36].

Noninvasive methods are valuable for excluding advanced fibrosis or cirrhosis, but 
are not sufficiently predictive when used in isolation and have not yet been 
demonstrated to accurately reflect fibrosis change in response to treatment, limiting 
their role in disease monitoring[36]. Combination of serum markers with liver stiffness 
analysis might improve the sensitivity and negative predictive value without altering 
the specificity[34]. The negative predictive value of noninvasive tests is generally very 
high, allowing the clinician to be confident that advanced fibrosis or cirrhosis has been 
excluded.

DIFFERENTIAL DIAGNOSIS
The wide spectrum, variability of presentation at different age groups, presence of 
confounding factors and the absence of specific markers or tests makes it difficult to 
diagnose CFLD. The common differential diagnosis to be considered in CFLD are 
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Table 3 Examples of noninvasive monitoring of liver fibrosis in pediatric cystic fibrosis liver disease

Non-invasive 
marker Ref. Outcome 

measured AUC Sensitivity Specificity Comments

Indirect markers of liver fibrosis

APRI Leung et 
al[37]

CFLD diagnosis 
and severe CFLD

0.81 73% 70% APRI score cut-off > 0.264; Predict CFLD and significant fibrosis in 
CFLD with a high degree of accuracy

FIB-4 Leung et 
al[37]

Portal 
hypertension

0.91 78% 93% FIB-4 cutoff 0.358

Direct markers of liver fibrosis

TIMP-1 Pereira et 
al[38]

CFLD diagnosis 0.76 64% 83% Significantly increased in CFLD vs no-CFLD

CFLD Prolyl 
hydroxylase

Pereira et 
al[38]

diagnosis

60% 91% Negative correlation between serum TIMP-1 levels and the stage of 
histological fibrosis; Prolyl hydroxylase useful in distinguishing 
CFLD patients with early fibrogenesis vs extensive fibrosis; Not able 
to differentiate CFLD versus no-CFLD

TIMP-2 Rath et al
[38]

CFLD diagnosis 0.69 - -

m-RNA’s Cook et al
[39] 

CFLD diagnosis 0.78 47% 94% Able to differentiate between CFLD versus no-CFLD but quantify not 
fibrosis stage; Pathological significance not yet certain, more studies 
needed

Imaging methods

Witters et 
al[40]

Liver stiffness 0.86 63% 87% Less inter and intra-observer variability; Easy to learn and perform; 
Regular measurements for serial follow-up feasible

Transient 
elastography

Rath et al
[34]

Liver stiffness 0.68 - - Few centres have access to technology

MR 
elastography

Palermo 
et al[41]

Liver stiffness - 100% 100% Small study, paucity of data; Shear stiffness significantly elevated in 
CF patients with cirrhosis; Costly with limited availability

AUC: Area under the curve; APRI: Aspartate aminotransferase to platelet ratio index; CFLD: Cystic fibrosis associated liver disease; Fib-4: Fibrosis-4; TIMP: 
Tissue inhibitor of metalloproteinase; m-RNA: Messenger ribonucleic acid; MR: Magnetic resonance.

listed in Table 2.

DIAGNOSTIC CRITERIA OF CFLD
The commonly used diagnostic criteria are described in Table 4.

MANAGEMENT
Management of CFLD should be done by a multi-disciplinary team and is mainly 
supportive since there is no effective therapy to treat or prevent progression of fibrosis, 
portal hypertension, or cirrhosis in CFLD. The CF foundation guidelines recommends 
annual screening for CFLD in children with examination of abdomen (hepatospleno-
megaly), biochemical evaluation (bilirubin, AST, ALT, GGT, ALP, albumin, 
prothrombin time, platelet count), abdominal US and pulse oximetry (screening for 
hepatopulmonary syndrome)[25]. Salicylic acid and non-steroid anti-inflammatory 
drugs are contraindicated once CFLD is diagnosed and vaccination against hepatitis A 
and B should be done.

Ursodeoxycholic acid (UDCA) is recommended for all children diagnosed with 
CFLD at 20 mg/kg/d divided twice daily initially and increased up to 30 mg/kg/d
[25]. A Cochrane review[42] had shown that there were only few trials assessing the 
effectiveness of UDCA with poor quality of evidence and there was no data on the 
effect of UDCA on long term outcomes including need for LT or mortality. Hence, the 
long term continuation of UDCA should be individualized.
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Table 4 Diagnostic criteria of cystic fibrosis liver disease

Debray et al[25] CF foundation classification[24]

Hepatomegaly and/or splenomegaly- increased liver 
span at midclavicular line and spleen size in 
longitudinal coronal plane for age and sex, confirmed 
by ultrasonography

CF related liver disease with cirrhosis/portal hypertension (based on clinical exam/imaging, 
histology, laparoscopy)

Abnormalities of liver function tests-elevated AST and 
ALT and GGT levels above the upper limit of normal 
with at least at 3 consecutive determinations over 12 
months after excluding other causes of liver diseases

Liver involvement without cirrhosis/portal hypertension consisting of at least one of the 
following: (1) Persistent AST, ALT, GGT > 2 times upper limit of normal; (2) Intermittent 
elevations of the above laboratory values; (3) Steatosis (histologic determination); (4) Fibrosis 
(histologic determination); (5) Cholangiopathy (based on ultrasound, MRI, CT, ERCP); and (6) 
Ultrasound abnormalities not consistent with cirrhosis

Ultrasonographic evidence of coarseness, nodularity, 
increased echogenicity, or portal hypertension

Preclinical: No evidence of liver disease on clinical examination, imaging or laboratory values

Liver biopsy showing cirrhosis

AST: Aspartate aminotransferase; ALT: Alanine aminotransferase; GGT: Gamma glutamyl transpeptidase; CF: Cystic fibrosis; MRI: Magnetic resonance 
imaging; CT: Computed tomography; ERCP: Endoscopic retrograde cholangiopancreatography.

Nutrition
Optimal nutrition is the cornerstone of CFLD management. Malnutrition in CF is 
multifactorial including malabsorption due to pancreatic insufficiency, recurrent 
infections, chronic inflammation, chronic liver disease and anorexia. Nutrition should 
be managed by experienced CF dietetic team. It is recommended that CFLD patients 
increase energy intake to 150% of Recommended Daily Allowance preferably by 
increasing proportion of fat to 40%–50% of the energy content of the feed or diet, with 
supplementation in medium chain triglycerides and special attention to polyunsat-
urated fatty acids[25].

About 3 g/kg/d of protein and sufficient pancreatic enzymes to allow optimal 
absorption of long-chain triglycerides and essential fatty acids is also recommended. 
High dose oral fat soluble vitamin supplements is recommended- vitamin A 
(5000–15000 international units daily), vitamin E (alpha tocopherol 100–500 mg daily), 
vitamin D (alphacalcidiol 50 ng/kg to maximum of 1 μg) and vitamin K (1–10 mg 
daily)[25]. Plasma levels of vitamins (A, D and E) and prothrombin time needs to be 
closely monitored to prevent toxicity or deficiencies.

Salt supplementation should be avoided in CF patients with cirrhosis and portal 
hypertension due to the risk of development of ascites. If adequate caloric intake 
cannot be achieved orally, nasogastric feeding may be required to ensure adequate 
caloric intake. CFTR modulator therapy has resulted in less pulmonary exacerbations, 
decrease in levels of inflammatory makers, better body mass index and pancreatic 
function resulting in better overall nutritional status[14].

Management of esophageal varices
Management of varices in CFLD is complicated by the fact that non-selective beta-
blocker (propranolol or carvedilol) might be contraindicated due to the associated lung 
disease and repeated general anesthesia required for screening of therapeutic 
endoscopic procedures may also reduce lung function and predispose to infections. 
Primary variceal prophylaxis in CFLD most commonly involves endoscopic variceal 
band ligation, but there is lack of quality evidence in children[24].

Variceal bleeding in the absence of decompensated cirrhosis in CFLD is most 
commonly managed by therapeutic endoscopy (band ligation +/- sclerotherapy)[4]. 
Sclerotherapy is useful if variceal band ligation is unsuccessful or gastric varices are 
present. Patients with refractory life threatening bleeds might require transjugular 
intrahepatic portosystemic shunt (TIPSS) or in rare circumstances surgical 
portosystemic shunting as an lifesaving procedure. Careful evaluation of liver disease 
and lung disease is necessary before proceeding with an elective TIPSS procedure. In a 
study[4] specifically analyzing outcomes of variceal bleeds in CFLD, out of 35 bleeding 
episodes, 30 were controlled by endoscopic procedures, while 11% (4 episodes) 
required either TIPSS, surgical shunts procedures.

Liver transplantation
LT evaluation should be offered for CFLD patients with intractable complications of 
portal hypertension and/or end stage liver disease since LT confers significant 
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survival advantage[43]. The main indications of isolated LT in CFLD is listed in 
Table 5. Poor growth and nutrition as an indication remains controversial because 
studies have not shown consistent improvement after LT[43]. LT should be considered 
when nutritional deficiencies are believed to be sequelae of advanced liver disease and 
portal hypertensive enteropathy impacting clinical outcomes[43]. Lung function may 
improve, remain stable or deteriorate after LT and any short term advantage with 
improvement of lung function is lost within 3 years of LT[44,45]. So, rapidly deteri-
orating lung function alone should not be an indication for isolated LT in stable CFLD
[46].

Long term outcomes after LT are lower in children with CFLD as compared to other 
etiologies[44]. Table 6 illustrates details of few published series on LT in CFLD in 
children. For those patients with end-stage liver disease and significant pulmonary 
complications, combined liver-lung or liver-heart-lung transplantation may be 
considered, but outcomes are worse compared to isolated LT[45,46].

Pre-transplant considerations
Careful assessment of liver disease, pulmonary function, nutritional status and type of 
transplant to be performed should be done by an experienced multidisciplinary team. 
Concomitant causes or other etiologies of liver injury as listed in Table 3 should be 
ruled out before LT is considered. Alpha-1-antitrypsin level and genotype, screening 
for autoimmune hepatitis and Wilson’s disease should be done as a part of the workup 
especially if the child is seen for the first time in a LT center. CFLD patients being 
considered for LT should have endoscopic variceal surveillance and possibly 
coordinated with bronchoscopy and dental procedures as part of the LT evaluation to 
minimize the number anaesthetic procedures[43]. Careful evaluation of cardiac 
function should be done since patients with cardiomyopathy or severe pulmonary 
hypertension may require combined heart, lung, and liver transplantation.

A thorough evaluation by a pediatric pulmonologist with CF and lung 
transplantation expertise should be a part of the LT assessment, irrespective of the 
forced expiratory volume in one second (FEV1). Analysis of United Network for 
Organ Sharing data from 1987 through 2009 suggested that patients with a predicted 
forced vital capacity (FVC) > 75% and FEV1 > 60% (possibly even ≥ 40%) may be safely 
offered isolated LT[50]. The possibility of progressive deterioration in lung function 
after LT should be communicated to the family. The most difficult group to decide is 
patients who require LT but present with borderline (FEV1 40%-60% predicted) 
and/or rapidly declining (10% FEV1 predicted/year) pulmonary function[43].

Microbial considerations, such as multidrug resistant bacterial infections and 
history of recurrent/ invasive fungal infections are critical since post-transplant sepsis 
is a leading cause of mortality[43,50]. Flexible bronchoscopy with bronchioalveolar 
lavage with cultures for mycobacteria, fungus, and quantitative bacterial analysis from 
at least 2 locations within each lung is recommended[43]. The presence of multidrug 
resistant Mycobacterium abscessus in the lungs, even with well-preserved pulmonary 
function, carries a high risk of mortality in the first year after transplant and needs to 
be considered carefully before recommendation for LT[43].

Patients should be evaluated for nasal polyps and chronic sinusitis and treated 
immediately if identified[43]. CF–related diabetes should be evaluated and well 
controlled prior to LT. Dietetic and nutritional assessment is an integral part of the 
evaluation.

Post-transplant considerations
Immunosuppression after LT in patients with CF will vary from center to center but 
typically consists of triple drug therapy with tacrolimus, steroids and mycophenolate 
mofetil/azathioprine. Close collaboration between the CF, transplant and infectious 
diseases teams is crucial because of the increased risk of mortality from infections. 
Early mortality (< 6 mo) post-LT is due to disseminated aspergillosis/candidiasis, and 
sepsis with gram-negative enteric bacteria and staphylococcus aureus while later 
deaths are a result of progressive pulmonary disease[43]. Post-transplant antibiotic 
prophylaxis in our unit consists of fluconazole for candida species, acyclovir for herpes 
simplex virus, valganciclovir for cytomegalovirus and trimethoprim-sulfamethoxazole 
for Pneumocystis jiroveci. Distal intestinal obstructive syndrome (DIOS) causing acute 
potentially life-threatening intestinal obstruction can develop post- transplant in >20% 
of pediatric patients[49]. In the pre-transplant period, DIOS occurs typically in older 
CF patients in adolescence and adulthood, in those with advanced liver disease, severe 
CFTR mutations, pancreatic insufficiency and diabetes mellitus. In our unit, patients 
are categorized into low risk (no episodes of DIOS in previous 5 years) and high risk 
(episodes of DIOS in previous 5 years and previous abdominal surgery) before LT. 
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Table 5 Indications and contraindications for liver transplantation in cystic fibrosis liver disease (Modified from Freeman et al[43])

Indications and contraindications
Indications

Strong (1) Progressive hepatic dysfunction with hypoalbuminemia and coagulopathy (Coagulopathy not corrected by vitamin K, cholestasis not 
attributed to other causes); (2) Complications of portal hypertension (Intractable/recurrent variceal bleeding which is not controlled by 
medical or endoscopic management); (3) Hepatopulmonary and porto-pulmonary syndrome; (4) Overt hepatic encephalopathy; and (5) 
Hepatorenal syndrome

Controversial (1) Deteriorating pulmonary function (FEV1/FVC <50%) with increased frequency and severity of pulmonary infective episodes requiring 
hospitalization; and (2) Severe malnutrition, unresponsive to intensive nutritional support

Contraindications

Absolute (1) Extrahepatic malignancies not amenable to curative therapy; (2) Multiorgan disease for which transplant would not be considered life-
sustaining; (3) Uncontrolled systemic or pulmonary infection, active exacerbation, or veno-arterial extracorporeal membrane oxygenation; 
and (4) Severe porto-pulmonary hypertension nonresponsive to medical management 

Relative (1) Hepatocellular carcinoma; (2) Noncompliance or psychosocial concerns unamenable to transplant; (3) Uncontrollable CF-related 
diabetes; (4) Substance abuse; (5) Severe cardiopulmonary disease; and (6) Infection/colonization with multi-resistant organism (e.g., 
Burkholderia cenocepacia and Mycobacterium abscessus)

FEV1: Forced expiratory volume in one second; FVC: Forced vital capacity.

Table 6 Liver transplantation in cystic fibrosis liver disease - data from few published series

Ref. Type
Number of 
pediatric 
recipients

Type of 
transplants Males

Mean age at isolated 
liver transplantation 
(yr)

Lung function after Liver 
transplantation 

5-year 
survival

Milkiewicz et 
al[45], 2002

Single center 9 Liver; Liver- 
lung -heart

Not 
available

15 Improved Not 
available

Fridell et al
[21], 2003

Single center 12 Liver 83% 10 ± 4.5 Improved or remained 
unchanged

75%

Molmenti et al
[47], 2003

Single center 10 Liver 90% 9.7 (1.23–19) Not available 60%

Mendizabal et 
al[44], 2011

Analysis of United 
Network for Organ 
Sharing database

148 Liver; Liver- 
lung (3.4%)

62% 11 ± 4.7 Not available 86%

Miguel et al
[48], 2011

Single center 11 Liver 67% 12 (5.4–17) Worsened or remained 
unchanged

> 85%

Dowman et al
[49], 2012

Single center 19 Liver Not 
available

11.8 (9.5–16.5) Stable/improved initially, 
deteriorated > 5 years after 
transplant

> 60%

Our pre and post-LT protocol for prevention and treatment of DIOS is given in 
Table 7. High risk patients should be counselled for loop ileostomy formation at 
transplant assessment.

CFTR modulators
CFTR modulator drugs enhance or even restore the expression, function, and stability 
of a defective CFTR by different mechanisms[14,51] (Table 8). These treatments target 
the underlying cause of CF and is classified into five main groups depending on their 
effects on CFTR mutations[14,51] (Table 8). Different CFTR genetic variants can benefit 
from the same type of modulator and this is the base of a new system recently 
introduced to classify and group common and rare CFTR variants based on their 
response to modulators called ‘theratyping’.

The first United States Food and Drug Administration (FDA) approved drug was 
ivacaftor (Kalydeco, Vertex Pharmaceuticals)[14,51]. Other FDA approved CF 
modulators combinations are lumacaftor/ivacaftor (Orkambi®, Vertex Pharma-
ceuticals), tezacaftor/ivacaftor (Symdeko® or Symkevi®, Vertex Pharmaceuticals) for 
patients aged ≥ 12 years who are F508del-homozygous or F508del-heterozygous with a 
residual function mutation[14,20]. Lumacaftor/ivacaftor has been approved for 
F508del homozygous patients aged ≥ 2 years[14]. The triple combination elexacaftor/ 
ivacaftor/tezacaftor (Trikafta™, Vertex Pharmaceuticals) has been by the FDA for the 
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Table 7 Pre and post-transplant protocol for prevention and treatment of distal intestinal obstructive syndrome

Pre and post-transplant protocol
Low risk (1) 600 mg N-acetyl-cysteine in 120 mL water orally/nasogastric tube twice/day. Senna twice daily; (2) 2 liters of Klean prep per day post-

transplant; (3) Consider early nasogastric tube in patients with delayed gastric emptying studies pre-operatively; (4) All patients in intensive 
care unit should only receive only elemental feed via nasogastric tube as this does not require pancreatic enzyme replacement. Once 
transferred to ward, can be restarted on regular feeding and pancreatic enzyme supplements; (5) Try and reduce opiates early during 
hospital stay; and (6) Treat all patients with proton pump inhibitors.

High risk (1) As per low risk management; and (2) High risk of developing DIOS and subsequent surgical gut decompression is associated with a high 
mortality. So these patients should receive a prophylactic loop ileostomy. 

Treatment 
of DIOS

(1) Stop feeding, nasogastric tube on free drainage and intravenous fluids; (2) 100 mL gastrografin in 400 mL water enterally and repeat 
after 6 h; (3) Subsequent management is with Klean prep in 1 L water over 1 h via oral/nasogastric tube and can be repeated up to 4 times 
every 24 h until bowel movement is achieved; and (4) If no improvement after 48 h, then it is unlikely to resolve without surgery to 
decompress the gut and also consider total parenteral nutrition.

DIOS: Distal intestinal obstructive syndrome.

Table 8 Cystic fibrosis transmembrane conductance regulator modulators

Type of 
modulator Mechanism of action

Mutation class 
in which drug is 
effective

Example Clinical effects/present status 
of modulator

Potentiators Restore or even enhance the channel open probability, 
thus allowing for CFTR-dependent anion conductance

Classes III and IV Ivacaftor Improvement in lung function, 
pancreatic function and body mass 
index 

Correctors Rescue folding, processing and trafficking to the 
plasma membrane of a CFTR mutant. Enhance protein 
conformational stability during the endoplasmic 
reticulum folding process

Class II Lumacaftor; 
Tezacaftor; 
Posenacaftor; 
Elexacaftor

Significant improvement in lung 
function when used with Ivacaftor

Stabilizers Anchor CFTR at the plasma membrane, thus 
preventing its removal and degradation by lysosomes

Class VI Cavosonstat First CFTR stabilizer studied in 
clinical trials- studies terminated 
because of lack of clinical efficacy

Read-through 
agents 

Induce ribosomal over-reading of premature 
termination codon, enabling the incorporation of a 
foreign amino acid in place and continued translation 
to the normal end of the transcript

Class I Ataluren (PTC124) Clinical trials terminated 

Amplifiers Increase expression of CFTR mRNA and thus 
biosynthesis of the CFTR protein

Class V Nesolicaftor (PTI-428) Clinical trial planned

CFTR: Cystic fibrosis transmembrane conductance regulator; mRNA: Messenger RNA.

treatment of CF patients aged ≥ 12 years with F508del mutation in at least one allele, 
benefiting 90% of CF population[14,51].

CF MODULATORS AND LIVER
Abnormal elevation aminotransaminases (> 8 times upper limit of normal, more 
commonly in pediatric patients) and bilirubin (> 3 times upper limit of normal) has 
been reported 3%-15% of patients on CFTR modulators[52-54]. Lumacaftor/ivacaftor 
was shown to have less hepatic steatosis as assessed by MR imaging proton density fat 
fraction in a small cohort[55]. In a study[56] of 117 patients with CFTR gating 
mutations (partially F508 del heterozygous) treatment with Ivacaftor partially restored 
disrupted FGF19-regulated bile acid homeostasis. Worsening of liver function and 
liver failure leading to death has been reported in CF patients with pre-existing 
cirrhosis and portal hypertension receiving lumacaftor/ivacaftor.

Recommendations for dose adjustment are based on Child Pugh classification: no 
dose adjustment for Child-Pugh Class A but dose reduction is recommended for 
Child-Pugh Class B and C. This is applicable to adults and no specific recommend-
ations exist in the literature for children with CFLD. Lumacaftor/ivacaftor should be 
used with caution in patients with advanced liver disease and only if the benefits are 
expected to outweigh the risks.



Valamparampil JJ et al. Cystic fibrosis liver disease in children

WJH https://www.wjgnet.com 1739 November 27, 2021 Volume 13 Issue 11

Because an association with liver injury cannot be excluded, assessments of liver 
function tests (ALT, AST and bilirubin) are recommended before initiation, a month 
after starting the treatment and every 3 mo during the first year of treatment, and 
annually thereafter. For patients with a history of ALT, AST, or bilirubin elevations, 
more frequent monitoring should be considered in collaboration with a pediatric 
hepatology centre. In the event of significant elevation of ALT or AST, with or without 
elevated bilirubin [either ALT or AST > 5× the upper limit of normal (ULN), or ALT or 
AST > 3× ULN with bilirubin > 2× ULN and/or clinical jaundice], dosing with CFTR 
modulators should be discontinued and closely followed up until the abnormalities 
resolve. A thorough investigation of potential causes should be conducted and 
patients should be followed closely for clinical progression. Following resolution of 
transaminase elevations, the benefits and risks of resuming CFTR modulators should 
be considered.

Metabolism of CFTR inhibitors is by the CYP450 enzyme pathway. Hence 
concomitant use of lumacaftor/ivacaftor with these immunosuppressants is not 
recommended at present as they may reduce efficacy of immunosuppressants by 
induction of the CYP3A pathway. Given the fact that respiratory function may 
eventually worsen after LT, CFTR modulators might need to be initiated post-
transplant due to significant beneficial effects on lung function, nutritional status and 
decreased pulmonary exacerbations[43].

CONCLUSION
CFLD is the most important non-pulmonary cause of death in CF. CFLD is has a wide 
spectrum from asymptomatic elevation of liver enzymes to severe disease with portal 
hypertension and cirrhosis with synthetic failure. The degree of liver involvement and 
the rate of progression of liver disease varies significantly among individuals. There 
are no specific clinical features or tests for prediction or early detection of CFLD, so 
regular screening is essential for CF patients. Currently, there is no medical therapy to 
prevent or treat or CFLD. With the advent of CFTR modulators, improvement in 
medical management has resulted in significantly improved life expectancy in patients 
with CF and this will have implications in the management of CFLD in future. The 
long term effects of CFTR modulators on CFLD and liver function is not known, but 
will hopefully have a beneficial effect. LT is indicated in patients with CFLD with 
severe portal hypertension or impaired synthetic function of liver either alone or in 
combination with lung transplantation.
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Abstract
BACKGROUND 
Insufficient and contradictory data are available about the relation between direct-
acting antivirals (DAAs) and hepatocellular carcinoma (HCC) development in 
patients with hepatitis C virus (HCV).

AIM 
To analyze differences in basic clinical, radiological, and laboratory characteristics 
in addition to tumor behavior upon HCC diagnosis between patients with and 
without a previous history of DAAs exposure.

METHODS 
This multicenter case-control study included 497 patients with chronic HCV-
related HCC, allocated into one of two groups according to their history of 
antiviral treatment for their HCV.

RESULTS 
Group I included 151 HCC patients with a history of DAAs, while 346 patients 
who had never been treated with DAAs were assigned to group II. A significant 
difference was observed between both groups regarding basic assessment scores 
(Child, MELD, and BCLC), which tended to have more advanced liver disease 
and HCC stage upon diagnosis in group I. However, serum albumin was 
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significantly affected, and serum α-fetoprotein was significantly higher in group II 
(P < 0.001). In addition, group I showed significant HCC multicentricity than 
group II, while the incidence of portal vein thrombosis was significantly higher in 
group I (P < 0.001).

CONCLUSION 
The basic clinical scores and laboratory characteristics of HCC patients are 
advanced in patients who are naïve to DAAs treatment; however, HCC behavior 
is more aggressive in DAA-treated patients.

Key Words: Hepatocellular carcinoma; Direct-acting antiviral treatment; Hepatitis C; 
Tumor behavior; Occurrence

©The Author(s) 2021. Published by Baishideng Publishing Group Inc. All rights reserved.

Core Tip: Despite the introduction of newer direct-acting antivirals (DAAs), hepatitis C 
virus (HCV)-related hepatocellular carcinoma (HCC) will continue to be a significant 
public health concern in the coming decades. Post-treatment HCV-related HCC has 
been discovered to be an emerging issue due to unmet needs for early HCC identi-
fication and intervention. In addition, we found that aggressive tumors were more 
common in DAAs exposed patients, which needs to be investigated further in 
prospective studies with larger cohorts and necessitates proactive screening for HCC in 
HCV-treated patients via public or private pharmacovigilance programs.

Citation: Fouad M, El Kassas M, Ahmed E, El Sheemy R. Tumor characteristics of 
hepatocellular carcinoma after direct-acting antiviral treatment for hepatitis C: Comparative 
analysis with antiviral therapy-naive patients. World J Hepatol 2021; 13(11): 1743-1752
URL: https://www.wjgnet.com/1948-5182/full/v13/i11/1743.htm
DOI: https://dx.doi.org/10.4254/wjh.v13.i11.1743

INTRODUCTION
Hepatocellular carcinoma (HCC) is the sixth most common cancer and the third most 
common cause of cancer-related mortality worldwide[1]. In Egypt, HCC is a 
significant public health problem responsible for 33.63% and 13.54% of all cancers in 
males and females, respectively[2]. On the other hand, hepatitis C virus infection 
(HCV) is considered a leading cause of chronic liver disease in Europe, the United 
States, and many other countries, including Egypt[3,4]. The risk of HCC development 
in HCV-related liver cirrhosis is 2% to 8% per year[5]. Multiple studies and meta-
analyses demonstrated during the era of interferon (IFN)-based therapy that HCV 
eradication decreased the risk of hepatocarcinogenesis regardless of fibrosis stage[6,7]. 
Furthermore, these studies showed that the achievement of sustained virologic 
response (SVR) after IFN based treatment is directly related to reduced incidence of 
HCC and increased survival rates[8].

In 2014, the introduction of the more effective direct-acting antivirals (DAAs) for 
HCV treatment was generally expected to benefit all patients, including those who 
were not permitted to be treated with IFN-based therapy[7]. However, unexpectedly, 
the clinical use of DAAs has evoked a significant dilemma about the relationship 
between DAAs and the development of HCC. Some studies have suggested a direct 
relation between DAAs and the development of HCC, while others have insisted that 
DAAs are protective against HCC development[7].

In 2016, the first report in this context showed an unexpectedly high recurrence rate 
of previously treated HCC after DAAs exposure[6]. This initial report was followed by 
another retrospective study conducted in Italy which included 344 patients with HCV-
related cirrhosis who received different DAA regimens; 91% achieved SVR. The 
patients were followed for 24 wk. The study revealed a 29% recurrence rate for those 
with a history of HCC and a 3.16% incidence rate (de novo HCCs) in those without a 
history of prior HCC irrespective of the used DAA regimen[9].
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In addition to HCC recurrence, the different biological behavior of HCC in DAAs 
exposed patients, and the pattern of recurrence after DAA treatment has also been 
reported in studies coming from various countries. For example, in 2017, Reig and his 
colleagues reported more aggressive HCC recurrence after DAA treatment, as defined 
by an advanced Barcelona Clinic Liver Cancer (BCLC) stage[6]. Moreover, Renzulli et 
al[10] found a more aggressive HCC recurrence pattern with vascular invasion 
evidence after DAA therapy.

This study aimed to analyze differences in basic clinical, radiological, and laboratory 
characteristics and tumor behavior upon HCC diagnosis between patients with and 
without a previous history of DAAs exposure.

MATERIALS AND METHODS
Study design
The current study is a multicenter retrospective case-control study designed to 
compare the basic demographic, laboratory, and radiological criteria of HCC in 
patients with a history of DAAs treatment for their chronic HCV infection compared to 
HCC patients with no previous history of HCV antiviral treatment. Patients were 
recruited from December 2016 to April 2019 from Minia university hospital and Minia 
fever hospital, Minia, Egypt. Study patients were assigned to one of 2 groups 
according to previous DAAs exposure. The first group included 151 HCC patients 
who were previously treated with DAAs (Group I). According to a standardized 
treatment protocol, all patients were treated in one of the specialized viral hepatitis 
treatment centers affiliated to the Egyptian National Committee for Control of Viral 
Hepatitis. Group II included 346 HCC patients with the first presentation as HCC and 
no history of antiviral treatment for their HCV infection. Patients with combined HBV 
or HIV infections and patients with extrahepatic malignancies were excluded from the 
study.

Methods
All patients were recruited and diagnosed according to EASL guidelines and updated 
AASLD practice guidelines for managing HCC and BCLC guidelines[11-13]. In 
addition, baseline demographic, clinical, laboratory, and radiological criteria were 
studied. The Child-Turcotte Pugh score (CTP), Model for End-stage Liver Disease 
(MELD) score, BCLC score, and FIB 4 as a non-invasive marker for fibrosis were 
calculated and presented.

Lines of treatment for HCV have been verified as well as the viral response. In 
addition, all baseline characteristics, laboratory, radiological and medical scores were 
compared between the two groups.

The study was performed according to the ethical guidelines of the 1975 Declaration 
of Helsinki after approval from the Research Ethics Committee for human subject 
research at the Faculty of Medicine, Minia University (Serial: 165: 2/2019) on Feb 25, 
2019. In addition, written informed consent was obtained from all participants before 
enrolment in the study.

Statistical analysis
Statistical analyses were performed using IBM SPSS advanced statistics, version 26 
(SPSS Inc., Chicago, Illinois, USA. Numerical data were presented as mean ± SD and 
median (range), whereas categorical data were presented as number (percent). The 
Mann-Whitney U-test and the χ2-test are used when appropriate. Statistical signifi-
cance is considered if P value is less than or equal to 0.05.

RESULTS
This study included 497 patients with chronic HCV-related HCC, allocated into one of 
two groups according to their history of antiviral treatment for their HCV. Group I 
included 151 patients with chronic HCV and HCC who were previously treated with 
DAAs. Group II included 346 patients representing all patients recruited in the same 
period with HCV-related HCC and age and sex-matched with group I. Most of the 
studied patients in both groups were males: (76.2%) and (72.0%) (P value 0.33), with a 
mean age of 60.2 years and 59.8 years in groups I and II, respectively (P value 0.70) 
(Table 1). Regarding the received DAAs regimen in group I patients, 44.4% of patients 
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Table 1 Basic demographic data and underlying liver status in both groups

Group I Group II P value

HCC with previous DAAs (n = 151) HCC without previous DAAS (n = 346)

Age (mean ± SD) 60.17 ± 7.75 59.84 ± 9.12 0.70

Gender 0.33

Female 36 (23.8) 97 (28.0)

Male 115 (76.2) 249 (72.0)

Residence 0.28

Rural 131 (86.8) 287 (82.9)

Urban 20 (13.2) 59 (17.1)

BCLC < 0.001a

0 5 (3.3) 15 (4.3)

A 47 (31.1) 134 (38.7)

B 17 (11.3) 68 (19.7)

C 49 (32.5) 50 (14.5)

D 33 (21.9) 79 (22.8)

MELD (mean ± SD) 14.35 ± 5.041 36.10 ± 30.22 < 0.001a

CTP score 0.04

A 50 (33.1) 88 (25.4)

B 65(43.0) 138 (39.9)

C 36 (23.8) 120 (34.7)

FIB4 < 0.001c

mean ± SD 3.25 ± 9.87 7.11 ± 7.68

Median 0.023 4.49

IQR 4.51 6.2

HCC detection time after stop of DAAS Range: 1-72 moMedian: 8 mo - -

aP < 0.05.
cP < 0.001.
HCC: Hepatocellular carcinoma; MELD: Model for end stage liver disease; CTP: Child Turcotte-pough; BCLC: Barcelona cancer liver clinic.

received sofosbuvir/daclatasvir (SOF/DAC), 40.1% received SOF/DAC/RBV, 13.2% 
received SOF/RBV, and only 2% received SOF/RBV/PEG IFN. Figure 1 shows 
patients' distribution among various treatment regimens and treatment duration, in 
addition to treatment viral response.

Notably, significant differences were observed between the two groups regarding 
the case assessment scores that reflect the severity of the underlying liver condition 
upon HCC discovery. A total of 34.7% of patients in group II were CTP class C, and 
only 23.8% of group I patients were class C. Mean MELD score in group I was 14, 
while the mean MELD in group II was 36 (P value < 0.001). Moreover, a significant 
difference was observed in the BCLC score (P value < 0.001). A significant difference 
was encountered in FIB4 as a method for non-invasive fibrosis assessment with a mean 
FIB4 of 3.25 in group I, compared to 7.11 in group II (P value < 0.001). Basic 
demographic data and underlying liver status in both groups are detailed in Table 1. 
The time between stopping DAAs and the development of HCC ranged from 1 to 72 
mo with a median of 8 mo.

When comparing both groups' clinical data, no significant differences were 
observed except in the current smoking status, which was significantly increased in 
group I compared to the other group (P value 0.005). On the other hand, a significant 
history of blood transfusion was observed in patients with no previous history of 
DAAs (P value 0.01); cellular decompensation in the form of hepatic encephalopathy is 
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Figure 1 Patients in group I distribution among different treatment regimen. SOFO: Sofosbuvir; DACLA: Daclatasvir; RIBA: Ribavirin; PEG INFS: 
Pegylated interferon.

significantly observed in patients with no previous history of DAAs (P value 0.01). 
Detailed clinical data of the two studied groups are well presented in Table 2.

Comparing laboratory data in both groups, hemoglobin level and total leukocytic 
count were significantly different (P values are 0.02 and 0.004, respectively). Median 
ALT in group I was 77 IU in comparison to 54 IU in group II (P value 0.001). Mean 
albumin in groups I and II was (3.3 and 2.9 respectively) (P value 0.004), and mean 
urea in groups I and II was (40 and 54 respectively) (P value 0.04). Median AFP in 
group I was 184 in comparison to 60 in group II (P value < 0.001). An illustrated 
comparison of all laboratory data is presented in Table 3.

Regarding the radiological characters of HCC in both groups, HCC in group I 
patients was more multifocal (53%) in comparison to (25%) in group II (P value < 
0.001). Moreover, HCCs in group I patients tended to present with a bigger tumor size 
at the initial presentation than group II patients. More precisely, less than 1% of group 
I patients were presented with tumors less than 2 cm, while more than 15% of group II 
patients presented with tumors less than 2 cm (P value < 0.001), indicating more 
aggressive tumor behavior associated with the previous history of DAAs. The right 
lobe was the dominant victim in both groups. Early vascular invasion was significantly 
higher in group I compared to group II as evidenced radiologically by portal vein 
thrombosis (PVT), which present in 45% of group I patients and only 21% of group II 
patients (P value < 0.001), all radiological data for HCCs in the studied patients are 
detailed in Table 4.

DISCUSSION
Chronic HCV infection is a significant risk factor for developing liver cirrhosis in 
approximately 20%-30% of patients with subsequent increased risk for HCC 
development in those patients with an estimated annual incidence of 3.5%[14]. This 
risk is shown to be lower in patients with chronic HCV infection without cirrhosis and 
in patients who succeeded in achieving eradication, as proved by their SVR[15]. 
Despite the notable decrease in the overall incidence of HCV infection, its prevalence 
in HCC patients is still high[16]. Surprisingly, HCC development's risk is continuous 
in HCV-induced liver cirrhosis even after viral eradication and SVR achievement[16]. 
During the interferon-based treatment era, successful viral eradication decreases the 
risk for HCC and improvement in the fibrosis stage[9].

The emergence of DAAs with their extended patient spectrum, improved efficacy, 
and safety profile increased our expectations regarding a decrease in HCC occurrence 
and recurrence. However, unpleasant data from new studies showed that DAAs might 
encourage tumor occurrence in patients with cirrhosis or recurrence in patients with 
previously treated HCC[9,17]. The same was reported in some studies regarding HCC 
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Table 2 Clinical presentation in both groups

Group I Group II P value

HCC with previous DAAs (n = 151) HCC without previous DAAS (n = 346)

Hypertension 56 (37.1) 135 (39.0) 0.68

DM 56 (37.1) 113 (32.7) 0.33

Smoking 73 (48.3) 121 (35.0) 0.005a

Surgical operations 32 (21.2) 101 (29.2) 0.06

Blood transfusion 23 (15.2) 87 (25.1) 0.01a

Jaundice 60 (39.7) 154 (44.5) 0.32

Ascites 90 (59.6) 197 (56.9) 0.58

LL edema 48 (31.8) 143 (41.3) 0.07

Hepatic encephalopathy 14 (9.3) 61 (17.6) 0.01a

aP < 0.05.
HCC: Hepatocellular carcinoma; DM: Diabetes mellitus; LL: Lower limb.

Table 3 Comparison of laboratory data in both groups

Group I Group II P value 

HCC with previous DAAs (n = 151) HCC without previous DAAS (n = 346)

HB (mean ± SD) 10.41 ± 1.88 10.78 ± 1.99 0.02a

TLC (mean ± SD) 6.55 ± 6.20 7.74 ± 8.60 0.004b

PLATELETS (mean ± SD) 147.28 ± 79.76 135.95 ± 61.17 0.22

TBIL (median) 3.07 2.5 0.93

DBIL (median) 0.7 0.9 0.84

ALB (mean ± SD) 3.32 ± 1.47 2.98 ± 0.85 0.004b

INR 1.31 ± 0.35 1.44 ± 0.47 0.4

ALT (median) 77 54 0.001c

AST (median) 76 70 0.62

CREAT (mean ± SD) 1.21 ± 0.45 1.43 ± 3.67 0.15

UREA (mean ± SD) 40.81 ± 16.01 54.93 ± 46.17 0.04a

AFP (median) 184.0 60.0 < 0.001c

aP < 0.05.
bP < 0.01.
cP < 0.001.
HCC: Hepatocellular carcinoma; CBC: Complete blood picture; TLC: Total leucocytic count; TBIL: Total bilirubin; DBIL: Direct bilirubin; ALB: Albumin, 
ALT: Alanine aminotransferase; AST: Aspartate aminotransferase; AFP: Alfa feto protein.

recurrence after initial management upon treatment with DAAs[18].

This study stands at the current dilemma between DAAs’ benefits and drawbacks; 
studying the basic characteristics of HCC patients previously treated with DAAs and 
comparing them with HCC patients never treated with DAAs provides the central part 
of this controversy.

In our study, significant differences were found in the CTP, MELD, and BCLC 
scores in HCC patients without DAAs and those who received DAAs; these findings 
are contrary to what proved by Abdelaziz et al[19], who found matching between 
patients with HCC and previous DAAs and HCC without DAAs regarding CTP score. 
In accordance with our results, a large study from Pakistan reported a raised 
neutrophil to lymphocyte ratio and younger patient age with more aggressive tumor 
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Table 4 Radiological characters of hepatocellular carcinoma in both groups

Group I Group II P valuec

HCC with previous DAAs (n = 151) HCC without previous DAAS (n = 346)

Number < 0.001

Single 71 (47.0) 259 (74.9)

Multiple 80 (53.0) 87 (25.1)

Size < 0.001

Less than 2 cm 1 (0.7) 54 (15.6)

2.5 cm 91(60.3) 177 (51.2)

Greater than 5 cm 59 (39.1) 115 (33.2)

Site 0.001

Bilobar 21 (13.9) 29 (8.4)

Lt lobe 24 (15.9) 23 (6.6)

RT lobe 106 (70.2) 294 (84.9)

PVT 68 (45.0) 75 (21.7) < 0.001

Splenomegaly < 0.001

Average 38 (25.2) 98 (28.3)

Mild 113 (74.8) 214 (61.8)

Moderate 0 (0.0) 34 (9.8)

cP < 0.001.
HCC: Hepatocellular carcinoma; DAAs: Directly acting antiviral agents; PVT: Portal vein thrombosis.

behavior in HCV-treated HCC patients[20].
The pattern of HCC invasion either locally inside the liver manifested by 

multiplicity and larger size or vascularly manifested by PVT is significantly increased 
with the previous history of DAAs, suggesting a possible DAAs role in such 
aggressive behavior. In accordance with the current study, Reig et al[6] stated the 
increased aggressiveness of HCC, but in recurrent cases, he omitted de novo HCC in 
his study. Also, Renzulli et al[10] noticed a faster rate of development of HCC after 
DAA therapy with an aggressive course of microvascular invasion. Similarly, Faillaci 
et al[21] proved that DAAs are associated with increased aggressiveness and tumor 
recurrence growth. Another study done by Romano et al[21] demonstrated an 
aggressive behavior of tumors after DAA in the form of a higher number of nodules 
and extrahepatic metastases, suggesting that such patients' tumor growth is faster than 
usual. Many theories have been proposed to explain this unexpected event; some 
researchers have related the development of HCC to baseline risk factors such as 
advanced fibrosis grade, HBV co-infection, or age[7]. Another theory proposes that 
DAAs cause immune surveillance mechanisms to become dysregulated due to the 
rapid viral clearance, and this behavior has been confirmed by several investigations
[16,19]. With the downregulation of type II and III IFNs, their receptors, and IFN-
stimulated genes, this dysregulation may result in the re-establishment of innate 
immunity. Due to the anti-angiogenic and anti-proliferative capabilities of IFN, which 
DAAs lack, a reduction in IFN activation may promote the proliferation of malignant 
cells. Furthermore, after HCV eradication, one of the immune system alterations 
observed is a decrease in the number of cytotoxic activity of natural killer cells in the 
liver, favoring a faster progression of HCC foci[7,22].

A significant difference was observed in AFP levels between the two groups, 
explained mainly by the invasive pattern and prominent vascular invasion in group I, 
and this is in agreement with Abdelaziz et al[20].

The strengths of our study include its design and the large number of included 
subjects. Limitations include the exclusive existence of genotype four patients because 
of its prevalence in Egypt and lack of tight evaluation of other risk factors for HCC, 
like non-alcoholic fatty liver disease and aflatoxin effect, and the lack of further longit-
udinal follow up of the studied cohort.
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CONCLUSION
In conclusion, despite the introduction of newer DAAs, HCV-related HCC will 
continue to be a significant public health concern in the coming period. Post-treatment 
HCV-related HCC has been discovered to be an emerging issue due to unmet needs 
for early HCC identification and intervention. In this study, more aggressive tumor 
behavior was encountered in DAAs exposed patients. Such finding needs to be invest-
igated further in prospective studies with larger cohorts and more longitudinal follow-
up for comparing survival and necessitates proactive screening for HCC in HCV-
treated patients via public or private pharmacovigilance programs. Furthermore, anti-
HCV therapy in HCC patients should be postponed until a consistent risk-benefit ratio 
is established through further research.

ARTICLE HIGHLIGHTS
Research background
The evidence on the link between direct-acting antivirals (DAAs) and the development 
of hepatocellular carcinoma (HCC) in hepatitis C virus (HCV) patients is insufficient 
and conflicting.

Research motivation
Due to unmet needs for early HCC detection and care, post-treatment HCV-related 
HCC is an increasing concern.

Research objectives
To compare fundamental clinical, radiographic, and laboratory features and tumor 
behavior in individuals with and without a history of DAAs exposure after HCC 
diagnosis.

Research methods
A multicenter case-control study including 497 patients with chronic HCV-related 
HCC, allocated into one of two groups according to their history of antiviral treatment 
for their HCV.

Research results
Group I consisted of 151 HCC patients who had previously been treated with DAAs, 
while group II included 346 patients who had never been treated with DAAs. 
Regarding basic assessment scores (Child, MELD, and BCLC), there was a substantial 
difference between the two groups, with group I showing a tendency for more 
advanced liver disease and HCC stage at diagnosis. However, serum albumin levels 
were considerably lower in group II, and serum-fetoprotein levels were significantly 
greater (P = 0.001). In addition, HCC multicentricity was substantially higher in group 
I than in group II, and the rate of portal vein thrombosis was significantly higher in 
group I (P = 0.001).

Research conclusions
HCC patients who are naïve to DAAs have more advanced clinical scores and 
laboratory features than those who have never been treated with DAAs; yet, HCC 
behavior is more aggressive in DAA-treated patients.

Research perspectives
The findings of this study warrant additional investigation in prospective trials with 
larger cohorts and longer follow-up for comparing survival and proactive screening 
for HCC in HCV-treated patients through public or private pharmacovigilance 
programs.
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Abstract
BACKGROUND 
The high mortality rate of hepatocellular carcinoma (HCC) in Egypt is due mainly 
to the increasing prevalence of hepatitis C virus infection (HCV) and late 
diagnosis of the carcinoma. MicroRNAs (miRNA), which regulate tumor prolif-
eration and metastasis in HCC, may serve as a useful diagnostic approach for the 
early detection of HCC, thus decreasing its mortality. Meanwhile, endocan is a 
protein with angiogenic and inflammatory properties that are associated with 
tumor progression and poor outcomes.

AIM 
To analyze the levels of miRNA 9-3p and endocan in HCV-infected HCC patients 
and correlate them with clinicopathological parameters.

METHODS 
We compared levels of endocan and circulating miRNA 9-3p from 35 HCV-
related HCC patients to 33 patients with HCV-induced chronic liver disease and 
32 age and gender matched healthy controls recruited from inpatient and 
outpatient clinics of the National Liver Institute, Menoufia University, Egypt in 
the period from January to March 2021 in a case-control study. Serum samples 
from all groups were analyzed for HCV. Endocan was measured by enzyme-
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linked immunosorbent assays, and the expression levels of circulating miRNA 9-
3p were measured by real-time quantitative reverse transcriptase PCR.

RESULTS 
The levels of circulating miRNA 9-3p were significantly lower in the HCC group 
compared to the chronic liver disease (P < 0.001) and control (P < 0.001) groups, 
while levels in the chronic liver disease were significantly lower than those in the 
control group (P < 0.001). The levels of serum endocan were significantly higher 
in the HCC group compared to the chronic liver disease (P < 0.001) and control (P 
< 0.001) groups. Moreover miRNA 9-3p and endocan performed better than α-
fetoprotein in discriminating HCC patients from cirrhosis and healthy patients. 
The levels of miRNA 9-3p were significantly inversely correlated to vascular 
invasion (P = 0.002), stage of advancement of Barcelona Clinical Liver Cancer (P < 
0.001) and the metastatic site (P < 0.001) of the HCC group.

CONCLUSION 
Circulating miRNA 9-3p and endocan can be used as novel biomarkers for the 
early diagnosis of HCV-related HCC.

Key Words: MicroRNA 9-3p; Hepatocellular carcinoma; Endocan; Diagnostic; Biomarker; 
Egypt
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Core Tip: The level of circulating microRNA 9-3p was significantly decreased in hepat-
ocellular carcinoma (HCC) patients than in chronic liver disease and control groups. 
The level of serum endocan was significantly increased in HCC patients than in the 
cirrhotic and control groups, and there was better diagnostic performance of 
microRNA 9-3p and endocan than α-fetoprotein. The levels of microRNA 9-3p have a 
significant inverse correlation with endocan and vascular invasion and advanced stage 
of Barcelona Clinical Liver Cancer in the HCC group. Circulating microRNA 9-3p and 
endocan could be novel biomarkers for early diagnosis of hepatitis C virus-related 
HCC patients.

Citation: Wahb AMSE, El Kassas M, Khamis AK, Elhelbawy M, Elhelbawy N, Habieb MSE. 
Circulating microRNA 9-3p and serum endocan as potential biomarkers for hepatitis C virus-
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URL: https://www.wjgnet.com/1948-5182/full/v13/i11/1753.htm
DOI: https://dx.doi.org/10.4254/wjh.v13.i11.1753

INTRODUCTION
Worldwide, hepatocellular carcinoma (HCC) is the sixth most prevalent cancer and the 
third leading cause of cancer deaths[1]. In Egypt, HCC is a significant health problem, 
as it is the most prevalent and second most prevalent cancer in males and females, 
respectively. It is the most prevalent malignancy in general, accounting for 32.35% of 
the total cancer deaths[2,3]. One reason for these high prevalence rates is the high 
prevalence of hepatitis C in Egypt[4].

Moreover, HCC has been attributed to molecular aberrations, such as errors in 
regulation of gene expression, which may result in translational repression and/or 
degradation[5,6]. To improve the overall survival from HCC, extensive research is 
needed, focusing particularly on more accurate and monitored management of the 
disease[7].

MicroRNAs (miRNAs) are small (approximately 22 nucleotides long), endogenous, 
non-protein coding RNAs that are key post-transcriptional regulators of gene 
expression[8]. miRNAs regulate different cellular pathways, including the cell cycle, 
cell proliferation and apoptosis. Dysregulation of miRNAs can therefore impact 
cellular processes involved in tumorigenesis and cancer. Thus, serum miRNAs may 
serve as non-invasive biomarkers for the diagnosis of cancer[9].
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Three genes encode miRNA 9-3p: MIR9-1, MIR9-2 and MIR9-3, located on chromo-
somes 1 (1q22), 5 (5q14.3) and 15 (15q26.1), respectively[10]. miRNA 9-3p is expressed 
abnormally in various types of human cancer, suggesting that it is functionally 
versatile[11]. miRNA 9-3p has been identified to have a tumor suppressive role by 
targeting an oncogenic tafazzin expression in HCC cells[12].

Endocan is a 50 kDa soluble proteoglycan that circulates freely in the bloodstream of 
healthy individuals and is expressed by the vascular endothelium. It has angiogenic 
and inflammatory properties that may affect vascular permeability, thus it plays 
crucial roles in regulating major physiological and pathophysiological processes, such 
as cell adhesion, inflammation and tumor progression[13]. Endocan expression is 
upregulated in cancer cells derived from the lung, kidney, brain, astrocytes and liver
[14].

A single study has reported that miRNA 9-3p expression decreases in bladder 
cancer patients, resulting in reduced inhibition of endocan, thus increasing its 
expression, which promotes cell proliferation[15]. These results indicate that the gene 
encoding endocan is a target of miRNA 9-3p. To the best of our knowledge, simul-
taneous assessment of the roles of both miRNA 9-3p and inflammatory role of endocan 
that may induce tumorigenesis and tumor progression have not been evaluated in 
HCV-related HCC, which is triggered by the viral inflammation. Thus, the current 
work aimed to study the diagnostic value of circulating levels of miRNA 9-3p and 
endocan in HCV-related HCC patients and to correlate them with clinicopathological 
parameters.

MATERIALS AND METHODS
Study subjects
This case-control study included a total of 100 subjects recruited from inpatient and 
outpatient clinics of the National Liver Institute, Menoufia University, Egypt in the 
period from January to March 2021. Participants were categorized into three groups: 
Group I: 35 patients with HCV-related HCC; Group II: 33 patients with chronic liver 
disease due to chronic HCV; and Group III: 32 healthy and free of viral infection 
volunteers of matched age and gender. Patients were selected based on restrictive 
inclusion criteria including patients whose age was more than 18 years with confirmed 
HCV infection by both HCV antibody (anti-HCV) detection and positive HCV RNA. In 
Group I, HCC was diagnosed (triphasic spiral computed tomography or dynamic 
magnetic resonance imaging together with elevated α-fetoprotein and/or liver biopsy), 
and its stage was identified according to the Barcelona Clinical Liver Cancer (BCLC) 
system[16]. In Group II, chronic liver disease was diagnosed based on history, clinical 
examination, laboratory results and imaging that included abdominal ultrasonography 
and computed tomography. Liver disease severity was assessed by the Child-Pugh 
score. Patients with positive hepatitis B surface antigen and/or hepatitis B c antibody, 
secondary liver cancer, other malignancies, chronic hepatitis or cirrhosis due to any 
cause other than HCV infection, significant associated comorbidities (such as renal 
failure or heart failure) and those receiving chemotherapy, radiotherapy or on 
immunosuppression medication were excluded. Detailed histories of all participants 
were taken, and they all underwent physical examination, liver imaging (abdominal 
ultrasound) and routine laboratory tests that included complete blood counts, kidney 
and liver function tests [albumin, total bilirubin, direct bilirubin, alanine aminotrans-
ferase (ALT) and aspartate aminotransferase (AST)], serum levels of α-fetoprotein, and 
serological tests for hepatitis B virus and HCV. Serum samples from Groups I and II 
were analyzed for HCV by reverse transcriptase PCR (RT-PCR).

Laboratory procedures
Seven milliliters of venous blood were withdrawn by venipuncture; of this, 5 mL were 
transferred into a plain tube, left to clot and centrifuged for 10 min at 4000 rpm. The 
serum obtained was stored at -80 ºC until subsequent analyses for serum α-fetoprotein 
levels, liver function tests, hepatitis viral markers and endocan levels. The remaining 2 
mL of blood were placed into an EDTA containing tube for HCV RT-PCR and miRNA 
9-3p expression analysis. Anti-HCV levels were determined by electrochemilumin-
escence immunoassay using the Cobas immunoassay analyzer.

The hepatitis B surface antigen in serum was determined using (Sorin Biomedica 
Co. kits, Italy). Serum levels of ALT and AST were determined by the kinetic UV 
optimized method of the IFCC (ELTEC Kit, England). Serum levels of total bilirubin 
were measured using the DIAMOND diagnostics Kit, Germany. Serum albumin levels 
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were quantified using a colorimetric method of enhanced specificity of bromocresol 
green (DIAMOND diagnostics Kit, Germany). Prothrombin time was determined by 
the STA-Stago Compact computed tomography autoanalyzer. Serum α-fetoprotein 
levels were measured by enzyme-linked immunosorbent assays using the IMMULITE 
1000 system (Siemens Medical Solutions Diagnostics, United States).

Endocan detection 
Serum endocan levels were measured by enzyme-linked immunosorbent assay using 
the PicokineTM ELISA Kit for human ESMI/Endocan (Boster Biological Technology 
Co., Ltd., CA, United States, cat# EK0752).

RT-PCR for HCV
Nucleic acids were extracted using the Qiagen viral RNA Mini Extraction Kit.

Expression assay for miRNA 9-3p 
miRNA was isolated from plasma using the QiagenTM RNA extraction Kit MiRNeasy 
Kit (QIAGEN). miRNA was purified and then its concentration and purity were 
quantified using a NanoDrop® N50 nanophotometer (Implant GmbH and Implen, Inc. 
Schatzbogen 52 81829 München, Germany). Purified miRNA was stored at -80 °C until 
reverse transcription, which was accomplished using the Qiagen®miScript II RT Kit 
(QIAGEN) following the manufacturer’s instructions. Each 20-µl reaction tube 
contained 4 μL 5 × miScript HiSpec Buffer, 2 μL 10 × miScript Nuclease Mix, 2 μL 
RNase-free water, 2 μL miScript Reverse Transcriptase Mix, and 10 μL template RNA. 
Reverse transcription was carried out at 37 °C for 60 min and 95 °C for 5 min on an 
Applied Biosystems 2720 thermal cycler (Bioline, Singapore, United States). The cDNA 
product was diluted to 5 ng/ul before determining the transcript levels by real-time 
quantitative PCR. Real-time quantitative PCR was performed using the miScript SYBR 
Green PCR Kit (QIAGEN) according to the manufacturer's instructions. The reaction 
mixture contained 12.5 μL 2x QuantiTect SYBR Green PCR Master Mix, 2.5 μL 10x 
miScript Universal Primer based on mRNA sequences obtained from the miRBase 
database for miRNA 9-3p, 2.5 μL template cDNA and 3.5 μL RNase-free water. The 
Applied Biosystems®7500 real-time thermal cycler (Applied Biosystems, Foster City, 
CA, United States) was programmed to run 40 cycles of the following steps: 95 °C for 
15 min (initial denaturation step), denaturation at 94 °C for 15 s, annealing for 30 s at 
55 °C and extension for 30 s at 70 °C. U6 snRNA was used as an endogenous control. 
Relative quantification expression levels were calculated using the comparative 
2−ΔΔCt method with Applied Biosystems 7500 software version 2.0.1. Each run was 
completed using melting curve analysis to confirm the specificity of the amplification 
and absence of primer dimers.

All procedures involving human participants were performed according to the 
ethical standards of the institutional and/or national research committee and the 1964 
Helsinki Declaration and its later amendments or comparable ethical standards. The 
study was approved by the Menoufia University Faculty of Medicine Research Ethics 
Committee. Every patient in this research provided their written consent to participate 
in the research, provided that they were not identified in the paper.

Statistical analysis
Data were analyzed using IBM SPSS statistics software version 20 (SPSS Inc. Released 
2011. IBM SPSS statistics for windows, version 20.0, Armonk, NY, United States: IBM 
Corp). Quantitative data are presented as means, standard deviations, medians and 
interquartile ranges, while qualitative data are presented as frequencies and 
percentages. The relationship between qualitative variables was evaluated by the χ2 
test. Pairs of groups of non-normally distributed quantitative data were compared by 
the Mann–Whitney test, while three groups were compared by the Kruskal–Wallis test 
(non-parametric analysis of variance). Based on Kruskal–Wallis distribution, a post-
hoc test was performed for pairwise comparisons. Correlations were assessed using 
the Spearman correlation test. The diagnostic values of serum miRNA 9-3p and 
endocan in HCC patients were evaluated by the receiver operating characteristic 
(ROC) curve analysis. The most independent factor associated with metastasis was 
identified by logistic regression analysis. P values of < 0.05 were considered statist-
ically significant.
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RESULTS
The patients in all three groups did not differ statistically in terms of age and gender. 
Biochemical analyses results (Table 1) showed that the HCC group and the chronic 
liver disease group differed in the following: ALT, direct bilirubin, international 
normalized ratio, endocan and miRNA 9-3p (P = 0.005, P = 0.003, P = 0.002, P < 0.001 
and P < 0.001, respectively).

The HCC group differed significantly from the control group in terms of ALT, AST, 
platelet count, serum albumin, direct bilirubin, international normalized ratio, α-
fetoprotein level, endocan and miRNA 9-3p (P < 0.001). The chronic liver disease 
group differed significantly from the control group in terms of ALT, AST, hemoglobin 
level, platelet count, international normalized ratio, α-fetoprotein level, endocan and 
miRNA 9-3p (P = 0.003, P < 0.001, P = 0.019, P = 0.022, P = 0.001, P < 0.001, P < 0.001 
and P < 0.001 respectively).

Serum endocan levels in the HCC group were significantly higher than those in the 
chronic liver disease and control groups (P < 0.001). Furthermore, serum miRNA 9-3p 
expression levels in the HCC group were significantly lower than those in the chronic 
liver disease and control groups (P < 0.001), while levels in the chronic liver disease 
group were significantly lower than those in the control group (P < 0.001).

In the HCC group, 62.9% of patients (22 patients) were classified as grade A and 
(37.1%) of patients (13 patients) were classified as grade B according to Child-Pugh 
classifications; 4 (11.4%) patients were classified as grade A in BCLC stage, 18 (51.4 %) 
patients in stage B and 13 (37.1%) patients were in stage C. Detailed tumor character-
istics of the HCC group are shown in Table 2.

The correlations between serum miRNA 9-3p levels and clinical data in HCC 
patients are shown in Table 3. miRNA 9-3p expression levels were significantly 
inversely correlated to vascular invasion, BCLC classification and metastatic site. 
Moreover, miRNA 9-3p expression levels were also significantly inversely correlated 
to serum endocan levels (Figure 1).

Univariate and multivariate logistic regression analyses on the HCC group 
indicated that miRNA 9-3p is an independent predictor factor of metastasis (P = 0.041; 
95% confidence interval: 0.089-0.951) (Table 4).

ROC analysis of miRNA 9-3p and endocan levels indicated that at a cutoff point of 
0.26, miRNA 9-3p can discriminate between patients with HCC and those with chronic 
liver disease with a sensitivity of 91.43%, a specificity of 87.88%, a positive predictive 
value of 88.90% and a negative predictive value of 90.60%. Meanwhile, at a cutoff 
point of 2370 pg/mL, endocan can discriminate between HCC and chronic liver 
disease patients with a sensitivity of 82.86%, a specificity of 84.85%, a positive 
predictive value of 85.30% and a negative predictive value of 82.40%. In comparison, α
-fetoprotein was less sensitive and specific (60.00% and 33.30%, respectively).

At a cutoff point of 1.01, miRNA 9-3p can discriminate between HCC and control 
group patients with a sensitivity of 91.43%, a specificity of 87.50%, a positive 
predictive value of 88.90% and a negative predictive value of 90.30%. Meanwhile, at a 
cutoff point of 1510 pg/mL, endocan can discriminate between HCC and chronic liver 
disease patients with a sensitivity of 85.71%, a specificity of 87.50%, a positive 
predictive value of 88.20% and a negative predictive value of 84.80%. In comparison, α
-fetoprotein was less sensitive and specific (80.00% and 71.87%, respectively). 
Diagnostically, both miRNA 9-3p and endocan performed better than α-fetoprotein at 
discriminating HCC patients from both chronic liver disease and healthy patients 
(Figures 2 and 3).

ROC analysis of miRNA 9-3p levels in the HCC group indicated that at a cutoff 
point of 0.02, miRNA 9-3p can discriminate between metastatic and non-metastatic 
HCC patients with a sensitivity of 91.67%, a specificity of 82.61%, a positive predictive 
value of 73.30% and a negative predictive value of 95.00%.

DISCUSSION
The increasing prevalence of HCC worldwide and its associated poor prognosis make 
it a global health problem. Studies in Egypt shows the increasing role of HCV infection 
in liver cancer etiology, and among all cancer deaths in Egypt, HCC is the primary 
cause[17,18].

HCC is often detected late, when it is no longer operable, which limits curative 
surgical treatment to only a few cases involving small HCC malignancies. Moreover, 
as a diagnostic tool, α-fetoprotein is limited in its accuracy[19]. In contrast, circulating 
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Table 1 Demographic and laboratory data of the study participants

Group I Group II Group III

HCC Chronic liver 
disease ControlVariables

n = 35 n = 33 n = 32

P value

Gender

Male, n (%) 30 (85.7) 23 (69.7) 27 (84.4)

Female, n (%) 5 (14.3) 10 (30.3) 5 (15.6)

NS

Age (yr)

mean ± SD 55.2 ± 5.2 52.7 ± 5.3 52.8 ± 5.6 NS

ALT (IU/L), median (IQR) 50.0 (35.0-55.0) 34.0 (28.0-50.0) 29.7 (23.5-31.7) P < 0.001 aP = 0.005; bP < 0.001; c
P = 0.003

AST (IU/L), median (IQR) 52.0 (39.0-70.0) 42.0 (32.0-57.0) 32.8 (30.0-36.0) < 0.001 aP = 0.060; bP < 0.001; c
P < 0.001

Hb (mg/dL), mean ± SD 13.1 ± 1.7 12.5 ± 1.6 13.5 ± 1.0 0.025 aP = 0.260; bP = 0.438; c
P = 0.019

Platelets, (× 10³/μL), median (IQR) 141.0 (104.5-193.5) 162.0 (134.0-213.0) 197.5 (180.5-246.0) 0.002 aP = 0.225; bP < 0.001; c
P = 0.022

Serum ALB (g/dL), mean ± SD 3.6 ± 0.7 3.8 ± 0.6 4.1 ± 0.4 0.001 aP = 0.382; bP = 0.001; c
P = 0.050

INR, mean ± SD 1.3 ± 0.2 1.1 ± 0.4 0.8 ± 0.2 < 0.001 aP = 0.002; bP = 0.001; c
P = 0.001

α-fetoprotein (ng/mL), median (IQR) 240.0 (28.2-635.0) 124.0 (108.9-166.0) 17.4 (14.0-24.0) < 0.001 aP = 0.895; bP < 0.001; c
P < 0.001

Endocan (pg/mL), median (IQR) 3450.0 (3188.5-4135.0) 1934.0 (1450.0-2257.0) 878.5 (850.0-1188.0) < 0.001 aP < 0.001; bP < 0.001; c
P = 0.001

microRNA 9-3p, median 
(IQR)

0.03 (0.02-0.05) 0.42 (0.29-1.35) 1.70 (1.40-2.15) < 0.001 aP < 0.001; bP < 0.001; c
P < 0.001

aP: P value for comparing between HCC and chronic liver disease.
bP: P value for comparing between HCC and control.
cP: P value for comparing between chronic liver disease and control. Statistically significant at P ≤ 0.05. SD: Standard deviation; AST: Aspartate 
aminotransferase; ALT: Alanine aminotransferase; Hb: Hemoglobin; ALB: Albumin; INR: International normalized ratio; HCC: Hepatocellular carcinoma; 
NS: Not significant; IQR: Interquartile range.

miRNAs may serve as biomarkers and a useful diagnostic approach for the early 
detection of HCC[20].

In the present study, clinical and laboratory data from the three different groups of 
patients revealed that serum α-fetoprotein levels of HCC and chronic liver disease 
patients was significantly different from those of control patients. α-fetoprotein is 
known to be overexpressed in HCC[21-23], and the severity of cirrhosis is a significant 
predictor of elevated serum α-fetoprotein levels; higher serum α-fetoprotein levels are 
significantly correlated with advanced cirrhosis in patients with chronic HCV[24].

We found that serum α-fetoprotein levels in the HCC group did not differ 
significantly from those of the chronic liver disease group. This agrees with the results 
of Massironi et al[25], who reported similar findings in HCC and liver cirrhosis 
subjects. In our study, at a cutoff value of 23 ng/dL, α-fetoprotein discriminates 
between HCC and control patients at a sensitivity of 80.00% and a specificity of 
71.87%. These results are similar to those of Massironi et al[25] and Metwaly et al[26], 
who reported a sensitivity of 75% and a specificity of 80% at a cutoff value of 16.9 
ng/dL.

Our findings show higher serum endocan levels in HCC patients than in chronic 
liver disease patients, which agrees with previous studies by Nault et al[27] and Ozaki 
et al[28].

Recent studies on HCC show that elevated serum endocan levels and endocan 
expression by stromal endothelial cells in HCC tissues are correlated with poor 
survival[29]. Endocan expression in tumors undergoing angiogenesis reflects the 
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Table 2 Clinical characteristics of tumors in the hepatocellular carcinoma group, n = 35

Number of the focal lesions n (%)

Single 16 (45.7)

Multiple 19 (54.3)

Tumor size in cm

Small < 3 7 (20.0)

Medium 3-5 15 (42.9)

Large > 5 13 (37.1)

Location of the focal lesions

Rt. Lobe 19 (54.3)

Lt. Lobe 8 (22.9)

Both 7 (20.0)

Caudate lobe 1 (2.9)

BCLC stage

A 4 (11.4)

B 18 (51.4)

C 13 (37.1)

Vascular invasion

Negative 25 (71.4)

Positive 10 (28.6)

LN metastasis

Negative 28 (80.0)

Positive 7 (20.0)

Ascites

No 25 (73.5) 

Mild 8 (23.5) 

Moderate 1 (2.9) 

Child Pugh classA 22 (62.9)

B 13 (37.1)

C 0 (0)

Distant metastasis

No 23 (65.7)

Yes 12 (34.3)

Rt.: Right; Lt.: Left; BCLC: Barcelona Clinic Liver Cancer; LN: Lymph node.

processes of angiogenesis and tumor invasion. Structurally, the glycan form and 
phenylalanine-rich region of endocan are its key effective sections through the nuclear 
factor-κB/IκB pathway[30]. However, the involvement of endocan in HCC develo-
pment remains unclear.

We found that plasma miRNA 9-3p levels are significantly lower in HCC patients 
compared to chronic liver disease and control patients. Overall, the order of miRNA 9-
3p expression among the different groups is as follows: HCC < chronic liver disease < 
control.

This supports the concept of the antitumor function of miRNA 9-3p as reported by 
Higashi et al[12], Yang et al[31] and Tang et al[32]. In contrast, Sun et al[33] showed that 
miR-9 increases the levels of migration and invasion of HCC cell lines. It is possible 
that miR-9 (i.e. miR-9-5p) and miR-9* (miR-9-3p) are two different miRNAs that 
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Table 3 Correlations between microRNA 9-3p levels and clinical data in hepatocellular carcinoma group

microRNA 9-3p
n

Median (IQR) P value

Vascular invasion

Negative 25 0.04 (0.02-0.26)

Positive 10 0.02 (0.02-0.02)

0.002

LN metastasis

Negative 28 0.04 (0.02-0.17)

Positive 7 0.02 (0.02-0.03)

0.072

Distant metastasis

No 23 0.04 (0.03-0.26)

Yes 12 0.02 (0.02-0.02)

< 0.001

Child Pugh class

A 22 0.03 (0.02-0.04)

B 13 0.04 (0.02-0.26)

0.389

Tumor number

Single 16 0.03 (0.02-0.17)

Multiple 19 0.03 (0.02-0.05)

0.935

Tumor size in cm

Small < 3 7 0.03 (0.02-0.15)

Medium 3-5 15 0.03 (0.02-0.06)

Large > 5 13 0.04 (0.02-0.04)

0.852

Tumor site

Rt lobe 19 0.04 (0.02-0.06)

Lt lobe 8 0.04 (0.03-0.15)

Both 7 0.02 (0.02-0.04)

Caudate lobe 1

0.432

BCLC stage

A 4 0.26 (0.17-0.26)

B 18 0.04 (0.03-0.05)

C 13 0.02 (0.02-0.02)

< 0.001

Rt.: Right; Lt.: Left; BCLC: Barcelona Clinic Liver Cancer; IQR: Interquartile range; LN: Lymph node.

originate from the same precursor, and they can play either synergistic or opposite 
roles within one malignancy[34].

Interestingly, we observed significantly lower levels of miRNA 9-3p expression and 
vascular invasion at the advanced stage of BCLC and at the metastatic site of the HCC 
group.

In cervical adenocarcinoma, miRNA 9-3p is downregulated and acts as a tumor 
suppressor. Ectopic expression of miR-9-3p inhibits the JAK/STAT3 pathway by 
targeting interleukin 6, leading to the upregulation of vascular endothelial growth 
factor and increased angiogenesis. This results in decreased proliferation and 
migration and reduced tumor growth in vivo[35]. Moreover, Tang et al[32] reported 
that exosomal miRNA 9-3p suppresses the development and progression of HCC.

Cai et al[15] reported that increased exosomal miR-9-3p counteracts bladder cancer 
growth and metastasis and decreases endocan protein expression in nude mice. We 
similarly observed that miR-9-3p expression is inversely correlated to serum endocan 
levels in the HCC group.
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Table 4 Univariate and multivariate regression analyses for the parameters affecting metastasis in hepatocellular carcinoma group

Univariate Multivariate

P value OR (95%CI) P value OR (95%CI)

microRNA 9-3p 0.008 0.193 (0.057-0.653) 0.041 0.291 (0.089-0.951)

Endocan 0.023 1.002 (1.000-1.003) 0.358 1.001 (0.999-1.002)

Statistically significant at P ≤ 0.05. OR: Odds ratio; CI: Confidence interval.

Figure 1 Correlation between microRNA 9-3p and endocan levels in the hepatocellular carcinoma group.

We performed ROC analysis to compare the diagnostic accuracies of miRNA 9-3p, 
endocan and the traditional HCC tumor marker, α-fetoprotein. Diagnostically, both 
miRNA 9-3p and endocan perform better than α-fetoprotein in discriminating patients 
with HCC from those with or without (i.e. healthy) chronic liver disease. Furthermore, 
ROC analysis revealed that miRNA 9-3p performed well at discriminating between 
metastatic and non-metastatic patients in the HCC group. Statistically, miRNA 9-3p is 
an independent predictor factor of metastasis. This study could be the nucleus of a 
larger study working on a larger number of patients that may include those with other 
causes of chronic liver disease like alcoholism as our study was limited to HCV-
induced chronic liver disease as it is highly prevalent in Egypt.

CONCLUSION
Endocan and miRNA 9-3p could be biomarkers with potential use for the early 
diagnosis of HCV-related HCC. In this regard, they are more valuable than α-
fetoprotein. Moreover, miRNA 9-3p is an independent predictor of metastasis in HCC 
patients.
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Figure 2 Receiver operating characteristic curve analysis of microRNA 9-3p, endocan and α-fetoprotein for discriminating between 
hepatocellular carcinoma and chronic liver disease.

Figure 3 Receiver operating characteristic curve analysis of microRNA 9-3p, endocan and α-fetoprotein for discriminating between 
hepatocellular carcinoma and control.

ARTICLE HIGHLIGHTS
Research background
The high mortality rate of hepatocellular carcinoma (HCC) in Egypt is due mainly to 
the increasing prevalence of hepatitis C virus infection (HCV) and late diagnosis of the 
carcinoma.

Research motivation
MicroRNAs (miRNA), which regulate tumor proliferation and metastasis in HCC, may 
serve as a useful diagnostic approach for the early detection of HCC, thus decreasing 
its mortality. Meanwhile, endocan is a protein with angiogenic and inflammatory 
properties that are associated with tumor progression and poor outcomes.
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Research objectives
To analyze the levels of miRNA 9-3p and endocan in HCV-infected HCC patients and 
correlate them with clinicopathological parameters.

Research methods
We compared levels of endocan and circulating miRNA 9-3p from 35 HCV-related 
HCC patients to 33 patients with HCV-induced chronic liver disease and 32 age and 
gender matched healthy controls.

Research results
The levels of circulating miRNA 9-3p were significantly lower in the HCC group 
compared to the chronic liver disease (P < 0.001) and control (P < 0.001) groups, while 
levels in the chronic liver disease were significantly lower than those in the control 
group (P < 0.001). While the levels of serum endocan were significantly higher in the 
HCC group compared to the chronic liver disease (P < 0.001) and control (P < 0.001) 
groups. Moreover, miRNA 9-3p and endocan performed better than α-fetoprotein in 
discriminating HCC patients from cirrhosis and healthy patients. The levels of miRNA 
9-3p are significantly inversely correlated to vascular invasion (P = 0.002), stage of 
advancement of Barcelona Clinical Liver Cancer (P < 0.001 and the metastatic site (P < 
0.001) of the HCC group.

Research conclusions
Endocan and miRNA 9-3p could be biomarkers with potential use for the early 
diagnosis of HCV-related HCC. In this regard, they are more valuable than α-
fetoprotein. Moreover, miRNA 9-3p is an independent predictor of metastasis in HCC 
patients.

Research perspectives
The findings of this study warrant additional investigation in prospective trials with 
larger cohorts and longer follow-up for confirming our results and validating the 
potential clinical use of these markers in early HCC detection.
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Abstract
BACKGROUND 
While primary liver cancer (PLC) is one of the most common cancers around the 
world, few large-scale population-based studies have been reported that 
evaluated the clinical survival outcomes among peripartum and postmenopausal 
women with PLC.

AIM 
To investigate whether peripartum and postmenopausal women with PLC have 
lower overall survival rates compared with women who were not peripartum and 
postmenopausal.

METHODS 
The Taiwan National Health Insurance claims data from 2000 to 2012 was used for 
this propensity-score-matched study. A cohort of 40 peripartum women with PLC 
and a reference cohort of 160 women without peripartum were enrolled. In the 
women with PLC with/without menopause study, a study cohort of 10752 
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menopausal females with PLC and a comparison cohort of 2688 women without 
menopause were enrolled.

RESULTS 
Patients with peripartum PLC had a non-significant risk of death compared with 
the non-peripartum cohort [adjusted hazard ratios (aHR) = 1.40, 95% confidence 
intervals (CI): 0.89-2.20, P = 0.149]. The survival rate at different follow-up 
durations between peripartum PLC patients and those in the non-peripartum 
cohort showed a non-significant difference. Patients who were diagnosed with 
PLC younger than 50 years old (without menopause) had a significant lower risk 
of death compared with patients diagnosed with PLC at or older than 50 years 
(postmenopausal) (aHR = 0.64, 95%CI: 0.61-0.68, P < 0.001). The survival rate of 
women < 50 years with PLC was significantly higher than older women with PLC 
when followed for 0.5 (72.44% vs 64.16%), 1 (60.57% vs 51.66%), 3 (42.92% vs 
31.28%), and 5 year(s) (37.02% vs 21.83%), respectively (P < 0.001).

CONCLUSION 
Peripartum females with PLC have no difference in survival rates compared with 
those patients without peripartum. Menopausal females with PLC have worse 
survival rates compared with those patients without menopause.

Key Words: Primary liver cancer; Peripartum and postmenopausal women; Prognosis; 
Nationwide cohort; Peripartum women; Postmenopausal women

©The Author(s) 2021. Published by Baishideng Publishing Group Inc. All rights reserved.

Core Tip: This is the first nationwide study to evaluate the survival rate of peripartum 
and postmenopausal women with primary liver cancer (PLC) using the National Health 
Insurance Research Database in Taiwan. The results showed that patients with 
peripartum PLC had a non-significant risk of death compared with those in the non-
peripartum cohort. Patients who were diagnosed with PLC younger than 50 years 
(without menopause) had a significantly lower risk of death compared with patients 
diagnosed with PLC at 50 years or older (after menopause). We believe that the results 
presented in this study provide important information on clinical applications.

Citation: Tseng GW, Lin MC, Lai SW, Peng CY, Chuang PH, Su WP, Kao JT, Lai HC. Do 
peripartum and postmenopausal women with primary liver cancer have a worse prognosis? A 
nationwide cohort in Taiwan. World J Hepatol 2021; 13(11): 1766-1776
URL: https://www.wjgnet.com/1948-5182/full/v13/i11/1766.htm
DOI: https://dx.doi.org/10.4254/wjh.v13.i11.1766

INTRODUCTION
Primary liver cancer (PLC), the sixth most common cancer, and the fourth leading 
cause of cancer-related death around the world in 2018, put a heavy burden on global 
health[1,2]. Hepatocellular carcinoma (HCC) and intrahepatic cholangiocarcinoma, 
account for 70%-75% and 15% of cases, respectively, and comprise most primary liver 
malignancies[3]. The common risk factors of PLC are male gender, excess body fat, 
type II diabetes mellitus, chronic infection with hepatitis B virus (HBV) and/or 
hepatitis C virus (HCV), cigarette smoking, aflatoxin, and heavy alcohol consumption
[4,5]. Men appear to have a higher occurrence and worse outcomes, with two to three 
times higher incidence and mortality compared with women[1,6]. Thus, most studies 
have included too few women to draw accurate conclusions.

Animal studies indicated that the primary etiology behind the protective effect of 
the female sex hormone might involve the anti-inflammatory modulation of estrogen, 
as chronic inflammation was a major contributor to carcinogenic processes[7-9]. 
Nevertheless, controversial results were obtained in research targeting women of 
reproductive age. Despite the rarity, PLC diagnosed during pregnancy generally 
caused a shorter survival compared with non-pregnant patients with inoperable PLC
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[10-12]. Several early reports suggested that the adverse influence of pregnancy for the 
development of PLC was probably due to an alteration of the hormonal milieu[13,14]. 
In contrast, other recent papers attributed the consequence to delayed diagnosis[11,
15]. However, the latest cohort analysis needs further interpretation, as most of the 
published articles were case reports, with the largest including 48 cases published in 
2011[12,16]. In addition, evidence implied that the downturn in ovarian function in 
menopause is related to the spontaneous elevation in pro-inflammatory cytokines[17-
19], which may have an undesirable effect on PLC development and progression. 
While there were limited epidemiologic statistics with the survival outcome among 
females, the research indicated that there was a reduced risk. It increased overall 
survival times of PLCs in postmenopausal patients receiving hormone replacement 
therapy (HRT)[20]. It is estimated that 1.2 billion women worldwide will be 
menopausal or postmenopausal by the year 2030[21]. Therefore, there is a growing 
necessity to make a thorough exploration of the morbidity and mortality of PLCs 
among this sector of the population.

To date, few large-scale population-based studies have been conducted to elucidate 
the relationship between pregnancy, menopause, and survival outcomes among 
women with PLCs. Our primary aim was to determine if pregnant and postmeno-
pausal female patients with PLCs have a lower survival rate relative to population-
based controls using a nationwide database in Taiwan.

MATERIALS AND METHODS
Data source
Taiwan government built a nationwide health record-related database named the 
National Health Insurance Research Database (NHIRD) in 1995. The database contains 
comprehensive health information, representative study subjects, and long-term 
follow-up periods. This study was conducted using the population-based hospital-
ization file, including all hospitalization records of Taiwan citizens. The identification 
was encrypted before the database released the records for medical research to protect 
the privacy of each patient.

All previous diagnoses in the database were coded according to the International 
Classification of Disease, Ninth Revision, Clinical Modification (ICD-9-CM). The 
Research Ethics Committee of China Medical University and Hospital in Taiwan 
approved the study (CMUH-104-REC2-115-R3).

Study population
According to the study objective, we would like to confirm the association between 
peripartum PLC and survival. We selected patients with peripartum PLC (ICD-9-CM: 
155) who were diagnosed between 10 mo before and six months after delivery, during 
2000-2012, as the exposed cohort. We defined the date of newly diagnosed PLC as the 
index date. The unexposed group was defined as patients with PLC who were 
diagnosed outside of the pregnancy period and selected by 4:1 propensity score 
matching with the exposed cohort. The matching variables included age, index year, 
and comorbidities, such as HBV, unspecified chronic hepatitis, alcoholic liver disease, 
cirrhosis, biliary stones, cholecystitis, and cholangitis. To further realize the correlation 
between menopause and PLC prognosis, we defined women aged 50 and beyond as 
postmenopausal period. While natural menopause may occur from 45 to 55 of age[22], 
a recent cohort analysis including 36931 postmenopausal women indicated that the 
mean age at menopause is 50.2 years in Taiwan[23]. Propensity score matching and 
matching variables mentioned above were applied. Patients with PLC before the index 
date were excluded from the study. The study population was followed up until 
death, withdrawn from NHIRD, or until December 31, 2013.

The comorbidities of concern in this study were HBV (ICD-9-CM: 070.2, 070.3, and 
V02.61), unspecified chronic hepatitis (ICD-9-CM: 070.9, 571.4, 571.8, 571.9), alcoholic 
liver disease (ICD-9-CM: 571.0, 571.1, 571.2, 571.3), cirrhosis (ICD-9-CM: 571.5, 571.6), 
biliary stones (ICD-9-CM: 574), cholecystitis (ICD-9-CM: 575), and cholangitis (ICD-9-
CM: 576). The comorbidities above were defined as at least one hospitalization before 
the index date.

Statistical analysis
This study included demographic and comorbidities variables. The continuous and the 
categorical variables were shown by mean ± SD and number (%), and to compare the 
difference of each variable in two groups, a t-test and chi-square test were used, 
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respectively. To calculate the risk of death in the exposed and the unexposed cohorts, 
Cox proportional hazard models were used and presented using hazard ratios, 
adjusted hazard ratios (aHR) and 95% confidence intervals (CIs). The survival rate of 
death in the two cohorts was presented by the Kaplan-Meier method. The log-rank test 
was used to compare the difference between two survival curves. All statistical 
analyses were performed with SAS statistical software version 9.4 (SAS Institute Inc., 
Cary, NC). The Figure of the cumulative incidence curve was plotted by R software. 
The significance criteria were set up as a two-sided test with a P value of less than 0.05.

RESULTS
Of 200 eligible subjects in this study (Table 1), 40 were diagnosed with peripartum 
PLC, and the other 160 were selected as the unexposed cohort. Among patients with 
peripartum PLC, the dominant age group was younger than 30 years old (47.5%), 11 
(27.5%) with HBV, one (2.5%) with unspecified chronic hepatitis, one with alcoholic 
liver disease, three (7.5%) with cirrhosis, two (5%) with biliary stone, four (10%) with 
cholecystitis, and three (7.5%) with cholangitis. The mean age of the exposed and 
unexposed cohort was 30.9 and 31.3 years, respectively. The characteristics and 
comorbidities showed a non-significant difference between the two cohorts after 
propensity matching (P > 0.05).

Table 2 presents the risk factors of death associated with and without peripartum 
PLC. Patients with peripartum PLC had a non- significant risk of death compared with 
the unexposed cohort (aHR = 1.40, 95%CI: 0.89-2.20, P = 0.149). Considering their older 
age and comorbidities, patients with HBV (aHR = 0.48, 95%CI: 0.30-0.77, P = 0.002) and 
cholecystitis (aHR = 0.30, 95%CI: 0.12-0.75) showed a decreased risk of death; patients 
with cholangitis showed a significantly higher risk of death (aHR = 3.34, 95%CI: 1.49-
7.47, P = 0.003). Figure 1 illustrates the non-significant difference in the survival curves 
between the two cohorts (P = 0.1649).

The survival rate at different follow-up durations between patients with peripartum 
PLC and the unexposed cohort (Table 3) revealed a non-significant difference. When 
followed for less than 0.5 years, 1 year, 3 years, or 5 years, the survival rate in patients 
with peripartum PLC was lower than that in the unexposed cohort (71.79% vs 78.94%; 
60.84 vs 63.61%; 30.42 vs 44.85%; 27.38 vs 39.59%), but without a significant difference 
between the two cohorts (P > 0.05).

We enrolled 13440 study subjects to learn more about the influence of age and 
menopause on survival outcomes. Of these women, 2688 were diagnosed with PLC, 
younger than 50 years, and without menopause (Table 4). The other group comprised 
10752 women who were PLC patients, aged 50 years and older, and with menopause 
(postmenopausal). The mean ages were 39.7 and 69.1 years, respectively. The 
percentage of comorbidities had no significant difference between the two cohorts 
after propensity score matching by age and comorbidities (P > 0.05), except alcoholic 
liver disease (P = 0.041).

Table 5 shows the risk factors for developing death. Patients who were diagnosed 
with PLC at less than 50 years old had a substantially lower risk of death compared 
with patients diagnosed with PLC at 50 years or older (aHR = 0.64, 95%CI: 0.61-0.68, P 
< 0.001). Patients with HBV (aHR = 0.76, 95%CI: 0.72–0.80, P < 0.001), HCV (aHR = 
0.72, 95%CI: 0.67-0.78, P < 0.001) and cholecystitis (aHR = 0.71, 95%CI: 0.64-0.78, P < 
0.001) showed a significantly lower risk of developing death. patients with 
comorbidities such as cirrhosis (aHR = 1.18, 95%CI: 1.13-1.24, P < 0.001), and 
cholangitis (aHR = 1.77, 95%CI: 1.63-1.92, P < 0.001) had a notably higher risk of death. 
Figure 2 shows that the survival rate was significantly higher in women younger than 
50 years old with PLC than in the older cohort (P < 0.001).

Table 6 presents the survival rates at different follow-up durations. The survival 
rate in women < 50 years with PLC was significantly higher than in older women with 
PLC when followed for 0.5 year (72.44% vs 64.16%), 1 year (60.57% vs 51.66%), 3 years 
(42.92% vs 31.28%), and 5 years (37.02% vs 21.83%), respectively (P < 0.001).

DISCUSSION
To our knowledge, this large-scale, population-based, cohort study is one of the 
pioneering research investigations that focused on women under different conditions 
to determine the relationship between peripartum and postmenopause and the risk of 
death from liver cancer. Based on our results, despite no significant difference, overall 
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Table 1 Demographic characteristics and comorbidities of patients with newly diagnosed peripartum primary liver cancer in Taiwan 
during 1996-2012

Peripartum primary liver cancer

No, n = 160 Yes, n = 40Characteristics Total, N

n (%) / mean ± SD n (%) / mean ± SD

P value

Age 0.788

< 30 88 69 (43.1) 19 (47.5)

30-34 64 53 (33.1) 11 (27.5)

35-49 48 38 (23.8) 10 (25)

mean ± SD1 31.3 ± 5.1 30.9 ± 4.8 0.673

Baseline comorbidity

HBV 58 47 (29.4) 11 (27.5) 0.815

Unspecified chronic hepatitis 2 1 (0.6) 1 (2.5) 0.286

Alcoholic liver disease 6 5 (3.1) 1 (2.5) 0.836

Cirrhosis 9 6 (3.8) 3 (7.5) 0.306

Biliary stone 6 4 (2.5) 2 (5) 0.407

Cholecystitis 12 8 (5) 4 (10) 0.234

Cholangitis 10 7 (4.4) 3 (7.5) 0.417

1t-test, Chi-square test.
HBV: Hepatitis B virus; SD: Standard deviation.

low survival was found in PLCs diagnosed either within or outside of the peripartum 
period among women of reproductive age (15-49 years old). Our data revealed that 
five-year survival rates in non-peripartum and peripartum PLCs were 39.59% and 
27.38% (aHR = 1.40, 95%CI: 0.89-2.20, P = 0.149), respectively. However, postmeno-
pausal women (> 50 years old) with PLCs have a considerable decrease in survival 
rates (five-year survival rates in fertile and postmenopausal women were 37.02% and 
21.83%, respectively), compared with a significantly higher risk of death in premeno-
pausal female patients (aHR = 0.64; 95%CI: 0.61-0.68). Although the molecular 
mechanisms underlying this protective effect are complicated, previous research 
suggested that the inhibitory role of estrogen was responsible for the gender disparity 
of PLCs partly via micro RNA, DNA repair, and obesity-associated pathways[7]. 
Moreover, the number of estrogen receptors (ERs) correlated with the risk of tumor 
occurrence and invasion. Some research proposed that ERs suppressed the prolif-
eration and progression of liver cancer by decreasing the peroxisome proliferator-
activated receptor γ and transcription of metastatic tumor antigen 1[24,25]. In the time 
of limited estrogen supply (e.g., Postmenopause), sex hormone binding globulin 
(SHBG), a plasma protein that involved in the maintenance of a reservoir of sex steroid 
hormones, played a crucial role in potentiating estrogenic action[26].

We focused on women of childbearing age to gain a deeper understanding of the 
influence of reproductive hormones. Because of the elevation of estrogen and proges-
terone during pregnancy, the diagnosis of PLCs within this period is rare. 
Nevertheless, among the 62 cases reported to date worldwide, all ended with poor 
outcomes when compared with non-pregnant women with PLCs[10]. As early as in 
1995, Lau and his colleague[27] concluded that pregnancy has an adverse effect on the 
prognosis of patients with HCC, and therefore measurement of AFP level is 
recommended for screening HCC in pregnant women at high risk. The largest 
retrospective review published by Choi et al[12] demonstrated poor yet improving 
survival rates over time (median survivals of the groups before and during/after 1995 
were 18 and 25.5 mo, respectively) among all 48 HCC cases in pregnancy. Contrary to 
prior research, our analysis of the nationwide database revealed an overall unpleasant 
prognosis among women of childbearing age. There was no significant difference in 
survival rates between parous and non-parous women with PLCs. This could probably 
be explained by the limited number of cases and the nationwide coverage of health 
insurance. Since almost all women received check-ups during the prenatal and 
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Table 2 Cox model measured hazard ratios and 95% confidence intervals of death associated non-peripartum primary liver cancer and 
peripartum primary liver cancer patients

Crude Adjusted
Characteristics Event, n = 124 Person, yr IR

HR (95%CI) P value HR (95%CI) P value

Peripartum primary liver 
cancer

No 97 587 16.53 Ref. Ref.

Yes 27 99 27.17 1.35 (0.88-2.08) 0.166 1.40 (0.89-2.20) 0.149

Age at baseline

< 30 54 350 15.44 Ref. Ref.

30-34 39 169 23.08 1.21 (0.80-1.84) 0.359 1.47 (0.95-2.28) 0.083

35-49 31 167 18.52 1.29 (0.83-2.00) 0.266 1.13 (0.69-1.85) 0.617

Baseline comorbidity

HBV 27 230 11.72 0.52 (0.34-0.80) 0.003 0.48 (0.30-0.77) 0.002

Unspecified chronic hepatitis 1 11 9.04 0.86 (0.12-6.17) 0.882 0.56 (0.08-4.10) 0.565

Alcoholic liver disease 6 8 73.37 2.85 (1.25-6.49) 0.013 2.15 (0.73-6.36) 0.165

Cirrhosis 7 40 17.55 1.12 (0.52-2.40) 0.773 1.49 (0.57-3.90) 0.411

Biliary stone 4 11 35.47 1.23 (0.45-3.33) 0.686 0.64 (0.17-2.35) 0.499

Cholecystitis 5 80 6.26 0.43 (0.18-1.06) 0.066 0.30 (0.12-0.75) 0.010

Cholangitis 7 4 179.30 3.76 (1.71-8.26) < 0.001 3.34 (1.49-7.47) 0.003

Adjusted HR: Adjusted for gender, age, and all comorbidities in Cox proportional hazards regression; CI: Confidence interval; HR: Hazard ratios; HBV: 
Hepatitis B virus; IR: Incidence rate.

Table 3 Survival rates of different follow-up durations between non-peripartum primary liver cancer and peripartum primary liver cancer 
patients

Survival rate (%)
Follow-up duration

Non-peripartum primary liver cancer Peripartum primary liver cancer
P value

≤ 0.5 78.94 71.79 0.254

≤ 1 63.61 60.84 0.611

≤ 3 44.85 30.42 0.111

≤ 5 39.59 27.38 0.117

postnatal period under the national health insurance program, proper management 
could be provided in time to improve outcomes.

Because menopause represents a state of gradual estrogen deficiency in the setting 
of physiologic aging, we also divided the study population into two groups by age, 
either younger or older than 50 years. According to Yang's research[28] investigating 
patients with HCC, women of 18 years old to 64 years old were noted as having longer 
survival than men of the same age, with the largest difference in survival among 
women aged 18 years to 44 years. Furthermore, Shimizu et al[29] reported that hepatic 
ER levels, which were inversely related to the progression of HCC, were significantly 
higher in premenopausal women compared with postmenopausal women. While El 
Mahdy Korah et al[30] stated that there was no clear relationship between sex hormone 
and HCC development or progression by analyzing total testosterone, estrogen, 
progesterone and prolactin levels among 40 selected HCC patients, Petrick’s cohort 
study in 2019[31] indicated that higher levels of SHBG and circulating estradiol were 
associated with an increased risk of HCC and ICC, respectively, among women after 
menopause. These data suggest that climacteric status may adversely mediate the 
outcomes of PLCs. Our results are consistent with those of previous studies, that 
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Table 4 Demographic characteristics and comorbidities of female patients newly diagnosed with and without menopause primary liver 
cancer patients in Taiwan during 1996-2012

Liver cancer

≥ 50 yr, n = 10752 < 50 yr, n = 2688Characteristics Total, N = 13440

n (%)/mean ± SD n (%)/mean ± SD

P value

Age

mean ± SD1 69.1 ± 9.6 39.7 ± 10.5 < 0.001

Baseline comorbidity

HBV 2971 2358 (21.9) 613 (22.8) 0.329

HCV 1168 931 (8.7) 237 (8.8) 0.795

Unspecified chronic hepatitis 780 619 (5.8) 161 (6) 0.645

Alcoholic liver disease 211 157 (1.5) 54 (2) 0.041

Cirrhosis 4142 3321 (30.9) 821 (30.5) 0.730

Biliary stone 1269 1012 (9.4) 257 (9.6) 0.813

Cholecystitis 626 489 (4.5) 137 (5.1) 0.227

Cholangitis 818 649 (6) 169 (6.3) 0.626

1t-test, Chi-square test.
HBV: Hepatitis B virus; HCV: Hepatitis C virus; SD: Standard deviation.

Table 5 Cox model measured hazard ratios and 95% confidence intervals of death associated with and without menopause primary 
liver cancer patients

Crude Adjusted
Characteristics Event, N = 9982 Person, yr IR

HR (95%CI) P value HR (95%CI) P value

Liver cancer

≥ 50 yr 8279 23410 35.37 Ref. Ref.

< 50 yr 1703 9149 18.61 0.65 (0.61-0.68) < 0.001 0.64 (0.61-0.68) < 0.001

Baseline comorbidity

HBV 2049 7552 27.13 0.81 (0.77-0.85) < 0.001 0.76 (0.72-0.80) < 0.001

HCV 831 3513 23.65 0.75 (0.70-0.81) < 0.001 0.72 (0.67-0.78) < 0.001

Unspecified chronic hepatitis 584 2224 26.25 0.90 (0.83-0.98) 0.015 0.96 (0.88-1.05) 0.349

Alcoholic liver disease 165 449 36.72 1.04 (0.89-1.21) 0.640 1.07 (0.91-1.25) 0.408

Cirrhosis 3186 9924 32.10 1.01 (0.97-1.05) 0.739 1.18 (1.13-1.24) < 0.001

Biliary stone 955 2730 34.98 1.08 (1.01-1.15) 0.024 0.98 (0.91-1.05) 0.562

Cholecystitis 416 2162 19.25 0.70 (0.63-0.77) < 0.001 0.71 (0.64-0.78) < 0.001

Cholangitis 687 989 69.45 1.76 (1.63-1.91) < 0.001 1.77 (1.63-1.92) < 0.001

Adjusted HR: Adjusted for comorbidities in Cox proportional hazards regression; CI: Confidence interval; HR: Hazard ratios; HBV: Hepatitis B virus; 
HCV: Hepatitis C virus; IR: Incidence rate.

implied a negative interplay between age and hormonal factors in the disease course 
since women beyond reproductive age (> 50 years old) with PLCs were found to have 
lower half-year, one-year, three-year, and five-year survival rates. Although it is 
difficult to distinguish how the two factors account for the consequence individually, 
it is certain that they interact with each other. This interaction results in diminishing 
immunologic responses to injury, and the imbalance between antioxidant formation 
and oxidative stress.
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Table 6 Survival rates of different follow-up durations between primary liver cancer patients with and without menopause

Survival rate (%)
Follow-up duration

≥ 50 yr < 50 yr
P value

≤ 0.5 64.16 72.44 < 0.001

≤ 1 51.66 60.57 < 0.001

≤ 3 31.28 42.92 < 0.001

≤ 5 21.83 37.02 < 0.001

Figure 1 The estimated survival rates between non-peripartum primary liver cancer and peripartum primary liver cancer patients by 
Kaplan-Meier analysis.

Figure 2 The estimated survival rates between patients younger than 50 years old with primary liver cancer (without menopause) and 
those older with primary liver cancer (with menopause) by Kaplan-Meier analysis.

The use of a broad, representative, nationwide, population-based sample to observe 
the survival outcome of PLC in reproductive and postmenopausal female patients 
increased the validity of the results. Nevertheless, these results should be interpreted 
with caution because of several limitations in this study. First, detailed information 
related to the risk of PLC is not available. This information includes data on body mass 
index, smoking and alcohol use, high-fat diet, lower physical activity lifestyle, history 
of receiving HRT, and family history of PLC. Second, tumor burden, staging, and 
management strategies of PLC are not accessible from the NHIRD and therefore 
cannot be analyzed. Third, defining menopause by age alone may not be compre-
hensive enough since it is hard to make an optimal covariate adjustment. Fourth, the 



Tseng GW et al. Prognosis of women with PLC

WJH https://www.wjgnet.com 1774 November 27, 2021 Volume 13 Issue 11

generalization of the findings to Western or non-Taiwanese populations is a concern. 
For instance, the high incidence of PLC warrants further follow-up in other 
populations. Fifth, the small number of cases during the peripartum period may lead 
to biased findings. Hence, future studies with an improved design, larger sample sizes, 
and better control of confounding factors are required to enable a more thorough 
understanding.

CONCLUSION
In summary, among female patients with PLC, we found a trend for older age to be 
associated with increased risk for both incidence and mortality of PLC. In contrast, no 
apparent relationship was noted between pregnancy and prognosis. Even though 
subsequent clinical studies are necessary for further validation, the present research 
demonstrates that age and hormonal factors have a protective influence on the 
occurrence and deterioration of PLCs. Moreover, patients with more risk factors are 
recommended to follow up regularly to achieve a better prognosis.

ARTICLE HIGHLIGHTS
Research background
Primary liver cancer (PLC), the sixth most common cancer, accounts for the fourth 
leading cause of cancer-related death worldwide. Given the continuous rise of the 
global burden, there are increasing concerns about PLC outcomes in different 
populations.

Research motivation
For a long time, most studies about PLC put their focus on men due to higher 
incidence and riskier morbidities compared to women. Even with growing evidence 
on the protective effects of female sex hormones in animal research, few clinical 
cohorts pay attention to women with PLCs. Therefore, we are interested in the issue of 
how female reproductive status is related to the prognosis of PLCs.

Research objectives
This study aimed to assess whether peripartum and postmenopausal women with 
PLC have lower overall survival rates in a large cohort of subjects in Taiwan.

Research methods
This is a retrospective cohort of the PLC prognosis among peripartum, non-
peripartum, premenopausal, and postmenopausal women using the Taiwan National 
Health Insurance Research Database from 2000-2012. There were 200 eligible subjects 
enrolled in the study of peripartum PLC, whereas 13440 subjects enrolled in the 
research of menopausal PLC. 4:1 Propensity score matching was applied to adjust the 
covariates.

Research results
While the survival rate was overall lower in patients with peripartum PLC, there was 
no significant difference in the risk of death and the survival rate at different follow-up 
durations among patients with/without peripartum PLC. In the menopausal PLC 
cohort, significantly lower risk of death (aHR = 0.64, 95%CI: 0.61-0.68, P < 0.001) and 
higher survival rate when followed for 0.5 year (72.44% vs 64.16%), 1 year (60.57% vs 
51.66%), 3 years (42.92% vs 31.28%), and 5 years were seen in patients diagnosed with 
PLC younger than 50 years old (without menopause) compared with patients 
diagnosed with PLC at or older than 50 years (with menopause).

Research conclusions
According to our dataset, it is concluded that younger age and female hormonal 
factors may reduce the occurrence and deterioration of PLCs. Females with 
paripartum PLC have no difference in survival rates compared with those patients 
without peripartum. Menopausal females with PLC have worse survival rates 
compared with those patients without menopause.
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Research perspectives
To further clarify the association between sexual hormone and PLC outcome, future 
studies with more detailed information and better-controlled confounders are 
required.
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Abstract
BACKGROUND 
Nonalcoholic fatty liver disease (NAFLD) has become the leading cause of chronic 
liver disease with increasing prevalence worldwide. Clostridioides difficile infection 
(CDI) remains the most common cause of nosocomial diarrhea in developed 
countries.

AIM 
To assess the impact of NAFLD on the outcomes of hospitalized patients with 
CDI.

METHODS 
This study was a retrospective cohort study. The Nationwide Inpatient Sample 
database was used to identify a total of 7239 adults admitted as inpatients with a 
primary diagnosis of CDI and coexisting NAFLD diagnosis from 2010 to 2014 
using ICD-9 codes. Patients with CDI and coexisting NAFLD were compared to 
those with CDI and coexisting alcoholic liver disease (ALD) and viral liver disease 
(VLD), individually. Primary outcomes included mortality, length of stay, and 
total hospitalization charges. Secondary outcomes were in-hospital complications. 
Multivariate regression was used for outcome analysis after adjusting for possible 
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confounders.

RESULTS 
CDI with NAFLD was independently associated with lower rates of acute 
respiratory failure (2.7% vs 4.2%, P < 0.01; 2.7% vs 4.2%, P < 0.05), shorter length of 
stay (days) (5.75 ± 0.16 vs 6.77 ± 0.15, P < 0.001; 5.75 ± 0.16 vs 6.84 ± 0.23, P <0.001), 
and lower hospitalization charges (dollars) (38150.34 ± 1757.01 vs 46326.72 ± 
1809.82, P < 0.001; 38150.34 ± 1757.01 vs 44641.74 ± 1660.66, P < 0.001) when 
compared to CDI with VLD and CDI with ALD, respectively. CDI with NAFLD 
was associated with a lower rate of acute kidney injury (13.0% vs 17.2%, P < 0.01), 
but a higher rate of intestinal perforation (P < 0.01) when compared to VLD. A 
lower rate of mortality (0.8% vs 2.7%, P < 0.05) but a higher rate of intestinal 
obstruction (4.6% vs 2.2%, P = 0.001) was also observed when comparing CDI with 
NAFLD to ALD.

CONCLUSION 
Hospitalized CDI patients with NAFLD had more intestinal complications 
compared to CDI patients with VLD and ALD. Gut microbiota dysbiosis may 
contribute to the pathogenesis of intestinal complications.

Key Words: Nonalcoholic fatty liver disease; Clostridioides difficile infection; Gut 
microbiota; Intestinal complications; Alcoholic liver disease; Viral liver disease

©The Author(s) 2021. Published by Baishideng Publishing Group Inc. All rights reserved.

Core Tip: This study demonstrated that patients hospitalized with Clostridioides 
difficile infection (CDI) and coexisting nonalcoholic fatty liver disease (NAFLD) had 
more favorable overall outcomes but higher rates of intestinal complications when 
compared to those with alcoholic liver disease and viral liver disease individually, 
which suggests altering gut microbiota may play an essential role in the pathogenesis 
of both CDI and NAFLD. NAFLD-associated metabolic syndrome may contribute 
significantly to gut dysbiosis and increase risk for CDI and its complications. This 
study provides potential directions for future prospective clinical research to identify 
the clinical meaningfulness of interactions between the gut microbiota, gut immunity 
and systemic inflammation.

Citation: Jiang Y, Chowdhury S, Xu BH, Meybodi MA, Damiris K, Devalaraju S, Pyrsopoulos 
N. Nonalcoholic fatty liver disease is associated with worse intestinal complications in patients 
hospitalized for Clostridioides difficile infection. World J Hepatol 2021; 13(11): 1777-1790
URL: https://www.wjgnet.com/1948-5182/full/v13/i11/1777.htm
DOI: https://dx.doi.org/10.4254/wjh.v13.i11.1777

INTRODUCTION
Nonalcoholic fatty liver disease (NAFLD) is a heterogeneous disease with a spectrum 
from simple steatosis to nonalcoholic steatohepatitis (NASH), cirrhosis, and hepato-
cellular carcinoma[1,2]. With a prevalence of 10 to 46 percent in the United States and 
6% to 35% worldwide[3,4], NAFLD has become the leading cause of chronic liver 
disease, and its prevalence continues to increase, paralleled by the increase of obesity 
and type 2 diabetes[5].

Clostridioides difficile (C. difficile) is a gram-positive, spore-forming bacterium, known 
as the most common pathogen causing nosocomial diarrhea in developed countries
[6]. Symptoms of C. difficile infection (CDI) range from mild to severe diarrhea, which 
can progress to sepsis, fulminant colitis, and bowel perforation[7]. Severe colitis may 
also present as ileus and megacolon, which are characterized by symptoms of 
intestinal obstruction[8,9]. Gut microbiota dysbiosis due to the administration of 
antibiotics is the most prominent risk factor for the development of CDI. Advanced 
age, prolonged hospitalization and gastric acid suppression are some common 
additional risk factors for CDI[10,11].
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Recently, a number of animal and human studies have revealed the role of the gut 
microbiota in the pathophysiology of NAFLD. It is proposed that dysbiosis-induced 
dysregulation of the gut barrier function and translocation of the bacteria link the gut 
microbiome to NAFLD[12,13]. In addition, it has been well documented that patients 
with chronic liver disease are more susceptible to CDI due to frequent hospitalization 
and antibiotics use. Specifically, recent studies have observed that NAFLD is an 
independent risk factor for CDI by single-centered retrospective design[14,15].

Although a strong association between NAFLD and CDI has been observed, gut 
microbiota dysbiosis likely plays a vital role in the pathogenesis of both aforemen-
tioned diseases. However, the inpatient outcomes of CDI in the NAFLD population, 
have not been well studied in large populations. The aim of this nationwide study was 
to assess the impact of NAFLD on the outcomes of hospitalized patients with CDI.

MATERIALS AND METHODS
Data source and study population
The largest all-payer inpatient care database in the United States, the Nationwide 
Inpatient Sample (NIS) database was accessed. The NIS database represents approx-
imately 20% of all inpatient hospitalizations. Weighted, it estimates more than 35 
million hospitalizations nationally[16]. It includes demographic information (age, sex, 
race, income), hospital characteristics (e.g., bed size, type), insurance status, discharge 
status, diagnoses and procedures (identified by The International Classification of 
Diseases-Ninth Edition Revision Clinical Modification (ICD-9 CM) codes), total hospit-
alization charges, length of stay (LOS), severity and other comorbidity measures. 
Yearly sampling weights are applied to generate national estimates.

This retrospective cohort study examined all adult (18-90 years old) patients hospit-
alized with CDI as the primary diagnosis from 2010 to 2014. Within this CDI 
population, patients with NAFLD were selected to compare to those with viral liver 
disease (VLD) (including hepatitis B infection and hepatitis C infection) and those with 
alcoholic liver disease (ALD). Notably, CDI was identified by ICD-9 CM code 008.45. 
NAFLD was identified by ICD-9 CM code 571.80 with the exclusion of all diagnostic 
codes for previous organ recipients and donors as well as other causes of chronic liver 
disease including hepatitis B and hepatitis C infection, ALD, hemochromatosis, 
primary biliary cholangitis, autoimmune hepatitis, and other unspecified liver 
diseases. The diagnosis of VLD was identified by the ICD-9 CM codes for hepatitis B 
and C caused liver diseases with the exclusion of previous organ recipients and 
donors, as well as other causes of chronic liver disease including NAFLD, ALD, 
hemochromatosis, primary biliary cholangitis, autoimmune hepatitis, and other 
unspecified liver diseases. Similarly, ALD was identified by the ICD-9 CM codes for 
ALD with the exclusion of previous organ recipients and donors as well as other 
causes of chronic liver disease including NAFLD, VLD, hemochromatosis, primary 
biliary cholangitis, autoimmune hepatitis, and other unspecified liver diseases (see 
Supplementary Table 1, supplemental digital content 1, which demonstrates ICD-9 
diagnostic and procedure codes). VLD and ALD were assessed as separate groups 
which excluded patients with concomitant diagnoses of VLD and ALD. Information 
such as patients’ demographics, comorbidities, disposition, selected outcomes and 
surgical interventions were extracted from the NIS database. Elixhauser Comorbidity 
Index (ECI)[17], which measures 29 general medical conditions, then assigns different 
weights to compile a longitudinal score, allowing for further description of 
comorbidity burden.

Primary outcomes included mortality, length of stay, and total hospitalization 
charges. Secondary outcomes were CDI related complications and interventions.

Statistical analysis
SAS Survey Procedures (SAS 9.4, SAS Institute Inc, Cary, NC, United States) was 
utilized for all statistical analyses. The national estimates were calculated after 
accounting for sample design elements (clusters, strata, and trend weights) provided 
by the NIS. Continuous variables were reported as weighted mean ± SE; categorical 
variables were reported as weighted numbers (n) and percentages (%). The SEs of 
weighted means were estimated using the Taylor linearization method that 
incorporated the sample design. Weighted Student’s t-tests were used to analyze the 
normally distributed continuous variables, while Rao-Scott modified chi-square tests 
were used to test the difference of distribution for categorical variables. Wilcoxon 
Rank-Sum Tests were used to test the variables that are not normally distributed. 

https://f6publishing.blob.core.windows.net/ed31a4df-8bed-423b-9d19-7b4268880f49/WJH-13-1777-supplementary-material.pdf
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Multivariate linear regression was used to estimate the average change in LOS and 
total hospitalization charges after adjusting for patient demographics, hospital charac-
teristics, insurance type, median household income, ECI score, obesity, diabetes, 
tobacco use disorder, hypertension, dyslipidemia, cirrhosis and its complications, 
numbers of cirrhosis complications, and hepatocellular carcinoma. Multivariate 
logistic regression was used to estimate the odds ratio (OR) of mortality, CDI complic-
ations and interventions after adjusting for the same confounding variables as noted 
above.

The statistical methods of this study were reviewed by Dr. Chunyi Wu, PhD of 
Epidemiology from University of Michigan Medical School.

RESULTS
Patient demographics and baseline characteristics
From 2010 to 2014, the numbers of patients hospitalized for CDI with coexisting 
NAFLD, VLD and ALD were 7239, 11857 and 5938, respectively. The CDI with 
NAFLD cohort in this study was predominantly Caucasian with an average age 56.3 
years old. In the aforementioned cohort, 69.4% of the patients were female, 41.6% were 
admitted to southern hospitals, and 58.6% were admitted to large hospitals (Table 1). 
Compared to CDI with VLD or ALD individually, the CDI with NAFLD group had 
significantly more patients in the 18-39 and greater than 70-year-old age groups (P < 
0.0001), were more likely to be female (P < 0.0001), from the southern hospital region (
P < 0.0001), and less likely to be Medicaid insured (P < 0.0001). Additionally, the CDI 
with coexisting VLD group was associated with a higher percentage of African 
American patients and had less patients with a high household income (Q3 and Q4, 
median household income for ZIP code between 51th and 100th percentile) compared 
to the CDI with NAFLD group.

In regard to comorbidities (Table 2), when compared to the CDI with VLD or ALD 
groups individually, CDI patients with NAFLD had a greater prevalence of obesity (P 
< 0.0001, P < 0.0001), diabetes (P < 0.0001, P < 0.0001), hypertension (P = 0.0006, P < 
0.0001) and dyslipidemia (P < 0.0001, P < 0.0001). CDI with NAFLD was also 
associated with a significantly lower rate of cirrhosis (P < 0.0001, P < 0.0001) when 
compared to the other two groups. None of the patients in the CDI with NAFLD 
group had cirrhosis-related ascites, esophageal varices bleeding, spontaneous bacterial 
peritonitis or hepatorenal syndrome. Moreover, a lower rate of hepatocellular 
carcinoma (P < 0.0001, P = 0.0217) was observed in the CDI with NAFLD group 
compared to the CDI with VLD or ALD groups individually.

Outcomes and regression analysis of CDI patients with NAFLD vs VLD
When compared to the CDI with NAFLD group, the CDI with VLD group was 
associated with higher rates of acute kidney injury (AKI) [adjusted OR (aOR) = 1.35, 
95%CI: 1.10-1.67, P = 0.0041], respiratory failure (RF) (aOR = 1.83, 95%CI: 1.22-2.76, P = 
0.0036), longer LOS (adjusted LOS ratio = 1.12, 95%CI: 1.06-1.18, P < 0.0001) and higher 
hospitalization charges (adjusted cost ratio = 1.13, 95%CI :1.06-1.2, P < 0.0001). 
However, a lower rate of intestinal perforation rate was observed in the CDI with VLD 
group (aOR = 0.12, 95%CI: 0.03-0.57, P = 0.0075). CDI with VLD was initially 
associated with higher rates of mortality, colectomy and ileostomy, however this 
difference no longer existed after adjusting for confounding factors (Table 3).

Outcomes and regression analysis of CDI patients with NAFLD vs ALD
When compared to CDI patients with NAFLD, CDI patients with ALD had higher 
rates of RF (aOR = 1.72, 95%CI: 1.09-2.72, P = 0.0201), mortality (aOR = 2.63, 95%CI: 
1.25-5.51, P = 0.0107), longer LOS (adjusted LOS ratio = 1.18, 95%CI: 1.10-1.25, P < 
0.0001) and higher hospitalization charges (adjusted cost ratio = 1.17, 95%CI: 1.09-1.26, 
P < 0.0001). However, a lower rate of intestinal obstruction (aOR = 0.45, 95%CI: 0.28-
0.72, P = 0.0010) was found in the CDI with ALD group when compared to the CDI 
with NAFLD group. Higher rates of AKI and septic shock, and a lower rate of 
colectomy were initially observed in CDI with ALD group, but the difference no 
longer existed after adjusting for the aforementioned confounders (Table 4).
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Table 1 Comparison of demographic data for patients hospitalized with Clostridioides difficile infection with coexisting nonalcoholic 
fatty liver disease, viral liver disease and alcoholic liver disease

Variables CDI with NAFLD CDI with VLD CDI with ALD P value

n (weighted) 7239 11857 5938 CDI with NAFLD vs CDI 
with VLD

CDI with NAFLD vs CDI 
with ALD

Age (yr) 56.32 ± 0.42 57 ± 0.26 56.13 ± 0.37 0.15 0.73

18-39 1133 (15.6%) 791 (6.7%) 557 (9.4%)

40-49 1290 (17.8%) 1811 (15.3%) 1051 (17.7%)

50-59 1618 (22.4%) 4873 (41.1%) 2021 (34%)

60-69 1620 (22.4%) 2791 (23.5%) 1439 (24.2%)

≥ 70 1578 (21.8%) 1591 (13.4%) 870 (14.7%)

< 0.0001 < 0.0001

Sex

Female 5023 (69.4%) 5795 (48.9%) 2300 (38.7%)

< 0.0001 < 0.0001

Race

Caucasian 5427 (75%) 6920 (58.4%) 4358 (73.4%)

African American 482 (6.5%) 2773 (23.4%) 525 (8.8%)

Hispanic 648 (9%) 1144 (9.6%) 515 (8.7%)

< 0.0001 0.17

Hospital bed size

Large 4241 (58.6%) 7414 (62.6%) 3461 (58.3%)

0.033 0.9

Hospital region

Northeast 1091 (15.1%) 2618 (22.1%) 1243 (20.9%)

Midwest 1618 (22.3%) 2514 (21.1%) 1584 (26.7%)

South 3008 (41.6%) 4208 (35.5%) 1671 (28.1%)

West 1522 (21%) 2517 (21.2%) 1440 (24.3%)

< 0.0001 < 0.0001

Hospital type

Urban teaching 3401 (47%) 7207 (60.8%) 3065 (51.6%)

< 0.0001 0.22

Insurance

Medicare 3086 (42.6%) 5493 (46.3%) 2239 (37.7%)

Medicaid 914 (12.6%) 3329 (28.1%) 1261 (21.2%)

Private 2526 (34.9%) 1835 (15.5%) 1391 (23.4%)

< 0.0001 < 0.0001

Median household income for 
ZIP Code, %

Q1 1790 (24.7%) 4205 (35.5%) 1592 (26.8%)

Q2 1824 (25.2%) 3128 (26.4%) 1407 (23.7%)

Q3 1926 (26.6%) 2353 (19.8%) 1503 (25.3%)

Q4 1511 (20.9%) 1657 (14%) 1252 (21.1%)

< 0.0001 0.61

Values reported as weighted mean ± SE and weighted number [n (%)]. CDI: Clostridioides difficile infection; NAFLD: Nonalcoholic fatty liver disease; VLD: 
Viral liver disease; ALD: Alcoholic liver disease; Q1: Quartile 1, 0-25th percentile; Q2: Quartile 2, 26th-50th percentile; Q3: Quartile 3, 51th-75th percentile; 
Q4: Quartile 4, 76th-100th percentile.

DISCUSSION
This nationwide retrospective cohort study investigated the inpatient clinical charac-
teristics and outcomes of CDI in hospitalized patients with coexisting liver diseases, 
with comparisons between NAFLD, VLD and ALD. We demonstrated that patients 
hospitalized with CDI and coexisting NAFLD had overall more favorable outcomes 
including a lower rate of RF, lower hospitalization charges and a shorter LOS when 



Jiang Y et al. NAFLD and C. difficile infection

WJH https://www.wjgnet.com 1782 November 27, 2021 Volume 13 Issue 11

Table 2 Comparison of comorbid conditions and complications for patients hospitalized with Clostridioides difficile infection with 
coexisting nonalcoholic fatty liver disease, viral liver disease and alcoholic liver disease

Variables CDI with NAFLD CDI with VLD CDI with ALD P value

n (weighted) 7239 11857 5938 CDI with NAFLD vs CDI 
with VLD

CDI with NAFLD vs CDI 
with ALD

Number of Elixhauser 
comorbidities

0 0 (0%) 114 (1%) -

1 244 (3.4%) 574 (4.8%) 116 (2%)

2 656 (9.1%) 1409 (11.9%) 354 (6%)

≥ 3 6338 (87.6%) 9760 (82.3%) 5463 (92%)

< 0.0001 < 0.0001

Obesity 2012 (27.8%) 850 (7.2%) 372 (6.3%) < 0.0001 < 0.0001

Diabetes 2750 (38%) 3451 (29.1%) 1170 (19.7%) < 0.0001 < 0.0001

Hypertension 4300 (59.4%) 6347 (53.5%) 2980 (50.2%) 0.00058 < 0.0001

Dyslipidemia 2619 (36.2%) 1868 (15.8%) 905 (15.2%) < 0.0001 < 0.0001

Hepatocellular carcinoma - 253 (2.1%) 45 (0.8%) < 0.0001 0.0217

Cirrhosis related comorbidities1

Cirrhosis 401 (5.5%) 2508 (21.2%) 3407 (57.4%) < 0.0001 < 0.0001

Number of cirrhosis 
complications

0 137 (34.2%) 1773 (70.7%) 2105 (61.8%)

1 244 (60.8%) 688 (27.4%) 1104 (32.4%)

v ≥ 2 20 (5.0%) 47 (1.9%) 198 (5.8%)

0.0013 < 0.0001

Ascites 0 (0%) 0 (0%) 0 (0%) NA NA

Esophageal varices bleeding 0 (0%) - 20 (0.6%) NA NA

Hepatic encephalopathy 110 (27.4%) 60 (2.4%) 569 (16.7%) 0.003338 < 0.0001

Hepatorenal syndrome 0 (0%) 15 (0.6%) 33 (1.0%) NA NA

Portal hypertension 175 (43.6%) 661 (26.4%) 843 (24.7%) < 0.0001 < 0.0001

Spontaneous bacterial 
peritonitis

0 (0%) 38 (1.5%) 40 (1.2%) NA NA

1Value reported as percentage of all cirrhotic patients.
Values reported as weighted number [n (%)].-: Numbers were not displayed due to extremely small numbers were associated with increased risk for 
identification of persons; CDI: Clostridioides difficile infection; NAFLD: Nonalcoholic fatty liver disease; VLD: Viral liver disease; ALD: Alcoholic liver 
disease; NA: Not available.

compared to those with ALD and VLD individually. Interestingly, higher rates of 
intestinal complications were observed in the CDI with NAFLD group when 
compared to the CDI with ALD or VLD groups. Specifically, a significantly higher rate 
of intestinal obstruction was seen in the CDI with NAFLD group when compared to 
the CDI with ALD group, and a higher rate of intestinal perforation was seen when 
compared to CDI patients with concomitant VLD.

Our findings of worse intestinal complications in patients hospitalized with CDI 
and coexisting NAFLD compared to CDI patients with VLD and ALD, linked the gut 
pathology to the liver. The crosstalk between the gut and liver is increasingly 
recognized as the gut-liver axis[18]. Receiving more than 70% of the blood supply from 
the intestinal venous outflow, the liver represents the first line of defense against gut 
derived antigens with a broad array of immune cells[19]. The liver also releases many 
bioactive mediators into the systemic circulation, allowing for communication with the 
intestine. In the intestine, the endogenous and exogenous products from host and 
microbial metabolism translocate to the liver through the portal venous system, 
ultimately influencing liver function[20].
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Table 3 Multivariate regression analysis of outcomes for patients hospitalized for Clostridioides difficile infection with coexisting 
nonalcoholic fatty liver disease vs viral liver disease

Outcomes CDI with 
NAFLD CDI with VLD

n (weighted) 7239 11857

Unadjusted ratio 
(95%CI) P value Adjusted ratio1 

(95%CI) P value

Hospital mortality 59 (0.8%) 186 (1.6%) 1.94 (1.44, 2.6) < 0.0001 1.87 (0.95, 3.7) 0.071

Acute kidney injury 938 (13%) 2035 (17.2%) 1.39 (1.28, 1.51) < 0.0001 1.35 (1.1, 1.67) 0.0041

Respiratory failure 192 (2.7%) 504 (4.2%) 1.63 (1.37, 1.92) < 0.0001 1.83 (1.22, 2.76) 0.0036

Septic shock 39 (0.5%) 115 (1%) 1.8 (1.25, 2.59) 0.0015 1.64 (0.67, 4.02) 0.27

Intestinal perforation - - 0.3 (0.1, 0.89) 0.03 0.12 (0.03, 0.57) 0.0075

Intestinal obstruction 331 (4.6%) 527 (4.4%) 0.97 (0.84, 1.12) 0.67 0.94 (0.66, 1.33) 0.725

Peritonitis 61 (0.8%) 106 (0.9%) 1.06 (0.77, 1.45) 0.71 0.72 (0.35, 1.52) 0.39

Colectomy 45 (0.6%) 105 (0.9%) 1.43 (1.01, 2.03) 0.044 1.38 (0.6, 3.15) 0.44

Ileostomy - 41 (0.3%) 2.47 (1.24, 4.92) 0.01 2.62 (0.66, 10.41) 0.17

LOS (days) 5.75 ± 0.16 6.77 ± 0.15 1.11 (1.06, 1.16) < 0.0001 1.12 (1.06, 1.18) < 0.0001

Total hospitalizationcharges 
(dollars)

38150.34 ± 
1757.01

46326.72 ± 
1809.82

1.14 (1.07, 1.2) < 0.0001 1.13 (1.06, 1.2) < 0.0001

1Adjusted for age, sex, race, primary insurance payer, hospital type, hospital bed size, hospital region, income quartile, Elixhauser Comorbidity Index 
score, obesity, diabetes, tobacco use disorder, hypertension, dyslipidemia, cirrhosis and its complications, numbers of cirrhosis complications, and 
hepatocellular carcinoma.
-: Numbers were not displayed due to extremely small numbers were associated with increased risk for identification of persons. Values reported as 
weighted mean ± SE and weighted numbers [n (%)]; CDI: Clostridioides difficile infection; NAFLD: Nonalcoholic fatty liver disease; VLD: Viral liver disease; 
CI: Confidence interval; LOS: Length of stay.

How does NAFLD influence the intestinal complications of CDI through the gut-
liver axis? Convincing evidence has shown that NAFLD is associated with 
significantly increased gut permeability and inflammation in both animal[21] and 
human models. Miele et al[22] found that NAFLD patients had significantly increased 
gut permeability measured by urine radiolabeled markers and immunohistochemical 
analysis of zona occludens -1 expression in intestinal biopsy specimens, compared 
with healthy volunteers. They also discovered that both gut permeability and the 
prevalence of small intestinal bacterial overgrowth are correlated with the severity of 
steatosis. Verdam et al[23] found that plasma immunoglobulin G levels against 
endotoxin were increased in NASH patients, which positively correlated with the 
severity of inflammation. Furthermore, transmission electron microscopy observed 
irregular microvilli and widened tight junctions in the gut mucosa of the NAFLD 
patients[24]. In addition, decreased numbers of CD4+ and CD8+ T lymphocytes and 
increased levels of TNF-α, IL-6 and IFN-γ were detected in the NAFLD patient group 
compared to healthy control. All of these results suggested impaired gut permeability 
and increased levels of inflammation at both the tissue and cellular levels in NAFLD 
disease models.

The gut microbiota-mediated inflammation, the related disturbance of the intestinal 
integrity and the impairment in mucosal immune function have been reported to play 
important roles, not only in the pathophysiology of CDI[25] but also in the 
pathogenesis of NAFLD[13,24,26]. The gut microbiota normally exerts significant 
influence on intestinal epithelial cell health, nutrient metabolism and mucosal defense
[19,27]. Early evidence in animal studies demonstrated that altered gut microbiota 
composition[28] independently contributed to the development of NAFLD in mice. In 
addition, altered interaction between the gut and the host (produced by defective 
inflammasome sensing in inflammasome-deficient mouse models) may govern the rate 
of progression of multiple metabolic syndrome-associated abnormalities[29]. With the 
recent developments in genome sequencing technologies, bioinformatics, and 
culturomics; it has been recognized that NAFLD and NASH are associated with 
decreased richness of the gut flora and increased risk of pathogenic flora in pediatric 
and adult patients[30-34], which are both well known risk factors for CDI. Although it 
is still unclear which specific microorganisms are harmful given conflicting results in 
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Table 4 Multivariate regression analysis of outcomes for patients hospitalized for Clostridioides difficile infection with coexisting 
nonalcoholic fatty liver disease vs alcoholic liver disease

Outcomes CDI with 
NAFLD CDI with ALD

n (weighted) 7239 5938

Unadjusted ratio 
(95%CI) P value Adjusted ratio1 

(95%CI) P value

Hospital mortality 59 (0.8%) 159 (2.7%) 3.34 (2.48, 4.52) < 0.0001 2.63 (1.25, 5.51) 0.0107

Acute kidney injury 938 (13%) 935 (15.8%) 1.26 (1.14, 1.39) < 0.0001 1.2 (0.93, 1.54) 0.15

Respiratory failure 192 (2.7%) 249 (4.2%) 1.61 (1.33, 1.94) < 0.0001 1.72 (1.09, 2.72) 0.0201

Septic shock 39 (0.5%) 79 (1.3%) 2.48 (1.69, 3.64) < 0.0001 2.14 (0.84, 5.46) 0.109

Intestinal perforation - 0 (0%) NA NA NA NA

Intestinal obstruction 331 (4.6%) 133 (2.2%) 0.48 (0.39, 0.59) < 0.0001 0.45 (0.28, 0.72) 0.0010

Peritonitis 61 (0.8%) 69 (1.2%) 1.38 (0.97, 1.95) 0.071 0.54 (0.25, 1.18) 0.12

Colectomy 45 (0.6%) 15 (0.3%) 0.42 (0.23, 0.74) 0.003 0.44 (0.14, 1.39) 0.16

Ileostomy - - 0.65 (0.23, 1.85) 0.42 0.99 (0.15, 6.61) 0.98

LOS (days) 5.75 ± 0.16 6.84 ± 0.23 1.14 (1.08, 1.21) < 0.0001 1.18 (1.1, 1.25) < 0.0001

Totalhospitalizationcharges 
(dollars)

38150.34 ± 
1757.01

44641.74 ± 
1660.66

1.14 (1.07, 1.22) < 0.0001 1.17 (1.09, 1.26) < 0.0001

1Adjusted for age, sex, race, primary insurance payer, hospital type, hospital bed size, hospital region, income quartile, Elixhauser Comorbidity Index 
score, obesity, diabetes, tobacco use disorder, hypertension, dyslipidemia, cirrhosis and its complications, numbers of cirrhosis complications, and 
hepatocellular carcinoma.
Values reported as weighted mean ± SE and weighted numbers [n (%)]. -: Numbers were not displayed due to extremely small numbers were associated 
with increased risk for identification of persons. CDI: Clostridioides difficile infection; NAFLD: Nonalcoholic fatty liver disease; ALD: Alcoholic liver disease; 
LOS: Length of stay.

human and animal studies[35], it is believed that gut microbiota-derived signatures 
extracted by whole-genome shotgun sequencing of DNA can be used for diagnosis of 
advanced fibrosis in NAFLD[36], and modification of gut microbiota analyzed by 16S 
ribosomal RNA pyrosequencing can be used for therapeutic purposes in NASH 
patients[37]. Additionally, increased pathogenic flora in NAFLD and NASH further 
disturb the immune balance and cause worsened dysbiosis through various 
mechanisms involving short-chain fatty acids[38], lipopolysaccharide[21], choline 
metabolism[39], bile acid metabolism[40] and bacteria-derived ethanol[41]. 
Collectively, NAFLD and NASH related alterations of gut microbiota and its 
downstream dysbiosis pathways may contribute to CDI risk and worse intestinal 
complications.

On the other end, we sought to identify the characteristics of gut microbiota changes 
in ALD and VLD. Compared to NAFLD, ALD is remarkably similar histologically[42] 
and initiated directly from the gut by alcohol intake or binges. It has been well 
documented that alcohol intake can lead to changes in gut microbiota composition[43] 
and gut permeability[44] early on, even before the development of liver disease. These 
alterations involve multiple physical and biochemical layers of defense in the intestinal 
barrier[19]. In VLD, the gut microbiome works as an effective tool early on for 
immunity against the hepatitis virus, and helps with viral clearance[45]. In chronic 
VLD, large translocations of intestinal microbiota were observed and thought to 
contribute to not only dysregulation of immune cells and dysfunction of the intestinal 
barrier, but also viral replication[27]. Comparison analysis revealed that, compared to 
other cirrhosis etiologies, alcoholic cirrhosis is associated with worse gut dysbiosis 
after adjusting for Model For End-Stage Liver Disease score and body mass index[46]. 
In two other studies[47,48], which primarily compared the gut microbiota composition 
in HBV/HCV related and alcoholic cirrhosis, no difference was observed at the 
phylum and class level.

Intriguingly, in our study, the majority (94.5%) of patients in CDI with NAFLD 
group were non-cirrhotic; the percentage of cirrhotic patients in CDI with NAFLD 
group was significantly less than those in CDI with ALD or VLD group. CDI with 
NAFLD group was associated with a higher rate of intestinal complications after 
adjusting for cirrhosis and its complications. These results suggested that NAFLD is 
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associated with altered gut microbiota that is predisposed to CDI and its complic-
ations, likely independent from the liver disease severity. In fact, NAFLD has been 
reported as an independent risk factor for CDI[14]. Although ALD and VLD cirrhosis 
was previously found to be associated with worse gut dysbiosis than NAFLD 
cirrhosis, this finding should be treated cautiously for non-cirrhotic patients, because 
the alteration of the gut microbiome is associated with the severity of liver disease, as 
significant differences in gut microbiota have been found between non-cirrhotic, 
compensated and decompensated cirrhotic patients[49,50]. Importantly, the standard 
of care therapies in cirrhotic patients such as lactulose, rifaximin, antibiotics and acid-
suppressants that can affect the gut microbiota, may be playing a critical role[51]. In 
summary, our study suggested that NAFLD may be associated with worse dysbiosis 
in early liver disease stages and therefore a higher risk for CDI and its complications 
compared to ALD and VLD.

Aside from aforementioned gut microbiota changes that directly link NAFLD to 
CDI and intestinal complications, NAFLD related metabolic syndrome and systemic 
inflammation also play crucial roles in intestinal pathology. Recently, metabolic 
dysfunction-associated fatty liver disease has been proposed as a more appropriate 
name to replace NAFLD by an international panel of experts, with emphasis on the 
underlying metabolic dysfunction[52,53]. Clinical evidence has demonstrated that 
NAFLD, along with other components of metabolic syndrome, such as diabetes and 
obesity, are associated with an increased prevalence of small intestinal bacterial 
overgrowth (SIBO)[54,55] by insulin resistance, oxidative stress and chronic low grade 
inflammation[56]. Subsequently, the dysmotility induced by SIBO can further promote 
SIBO in NAFLD patients, causing a vicious cycle[57]. In fact, dysmotility itself is 
associated with NAFLD and may be a potential therapeutic target for NAFLD from a 
Japanese study[58,59]. Moreover, diabetes, a component of metabolic syndrome which 
may cause vasculopathies and neuropathies in the intestines, also contributes to 
dysmotility[60]. Additionally, diverticular disease, irritable bowel disease[61] and 
inflammatory bowel disease[62], together with SIBO and dysmotility have all been 
shown to have increased prevalence in NAFLD patients. Not surprisingly, the 
structural and functional abnormalities in the gut associated with NAFLD and 
metabolic dysfunction further increase the risk of CDI and its complications.

The strengths of this study include the utilization of the NIS database to provide a 
unique opportunity to investigate a nationwide population hospitalized for CDI. To 
the best of our knowledge, this study is a leading clinical research analysis that 
provided a comprehensive nationwide comparison of outcomes between NAFLD and 
other common chronic liver diseases, ALD and VLD, in hospitalized CDI patients. 
There are also limitations in this study. Particularly, NIS data acquisition relies on the 
accuracy ICD-9-CM codes for medical diagnoses and no lab results, biopsy or image 
studies were available for NAFLD diagnosis and severity stratification. It is also 
difficult to determine which cases of CDI were hospital acquired or community 
acquired because ICD-9 codes are assigned at discharge. To strengthen the validity of 
ICD-9 codes for NAFLD, VLD and ALD, we used not only diagnostic codes but also 
excluded the codes for all other chronic liver diseases (Supplementary Table 1)[63]. 
The ICD-9 codes for CDI were validated previously with good diagnostic accuracy[64,
65].

CONCLUSION
In conclusion, this study found more favorable overall outcomes but higher rates of 
intestinal complications in patients hospitalized with CDI and coexisting NAFLD, 
compared to CDI with coexisting ALD and VLD, individually. These results suggested 
that NAFLD may be associated with a higher risk of CDI associated intestinal complic-
ations through alteration of gut microbiota. Our study also suggested that NAFLD 
associated metabolic syndrome may contribute significantly to the gut dysbiosis even 
in the early liver disease stages and cause increased risk for CDI and its complications. 
During the last few years, the novel and rapidly evolving research technologies for the 
gut microbiome have been opening up an exciting era in the microbiota therapeutics 
for different disease models[66]. Tremendous progress has been observed in the 
treatment of NAFLD and CDI through gut microbiome manipulation. Our study may 
help increase awareness and diagnose intestinal complications in patients with two 
common diseases: CDI and NAFLD. Unraveling the significance of interactions 
between gut microbiota, gut immunity and systemic metabolic impact of NAFLD with 
prospective studies will provide more insights into the future microbiota therapeutics 

https://f6publishing.blob.core.windows.net/ed31a4df-8bed-423b-9d19-7b4268880f49/WJH-13-1777-supplementary-material.pdf
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for CDI and NAFLD.

ARTICLE HIGHLIGHTS
Research background
The ongoing exploration of liver-gut axis has discovered strong association between 
gut dysbiosis and nonalcoholic fatty liver disease (NAFLD) in both basic science and 
clinical research. Small-scaled studies have observed that NAFLD is an independent 
risk factor for Clostridioides difficile infection (CDI).

Research motivation
CDI, as the most common cause of nosocomial diarrhea in developed countries, carries 
high hospitalization burden. NAFLD, as the leading cause of chronic liver disease, is 
commonly seen in hospitalized patients with CDI. So far the inpatient outcomes of 
CDI in the NAFLD population have not been well studied.

Research objectives
The authors aimed to examine the impact of NAFLD on the inpatient outcomes of 
hospitalized patients with CDI, by comparing the effect of NAFLD with alcoholic liver 
disease (ALD) and viral liver disease (VLD) individually.

Research methods
This nationwide retrospective cohort study was conducted according to STROBE 
statement using the National Inpatient Sample database. Inpatient CDI with coexisting 
NAFLD cases were selected using ICD-9 codes. Multivariate regression analysis was 
used with adjustment for a large group of possible confounders. Elixhauser 
Comorbidity Index (ECI) was used for a full description of comorbidity burden.

Research results
CDI with NAFLD was independently associated with lower rates of acute respiratory 
failure, shorter length of stay and lower hospitalization charges when compared to 
CDI with VLD and CDI with ALD. However, CDI with NAFLD was associated with a 
higher rate of intestinal perforation when compared to VLD, and a higher rate of 
intestinal obstruction when compared to ALD.

Research conclusions
CDI and coexisting NAFLD is associated with favorable overall outcomes, but higher 
rates of intestinal complications compared to CDI with coexisting ALD and VLD, 
individually.

Research perspectives
This finding suggests that alteration of gut microbiota may play an important role in 
the pathogenesis of both CDI and NAFLD. NAFLD associated metabolic syndrome 
may contribute significantly to the gut dysbiosis and cause increased risk for CDI and 
its complications. This study provides potential directions for future prospective 
clinical research to identify the clinical meaningfulness of interactions between gut 
microbiota, gut immunity and systemic inflammation. The study may open the door 
for potential microbiota therapeutic targets and manipulation as future treatment 
options for chronic liver diseases.

ACKNOWLEDGEMENTS
The authors thank Dr. Chunyi Wu, PhD of Epidemiology from University of Michigan 
Medical School for her assistance with the statistical analysis.

REFERENCES
Younossi ZM, Koenig AB, Abdelatif D, Fazel Y, Henry L, Wymer M. Global epidemiology of 
nonalcoholic fatty liver disease-Meta-analytic assessment of prevalence, incidence, and outcomes. 

1     



Jiang Y et al. NAFLD and C. difficile infection

WJH https://www.wjgnet.com 1787 November 27, 2021 Volume 13 Issue 11

Hepatology 2016; 64: 73-84 [PMID: 26707365 DOI: 10.1002/hep.28431]
Huang DQ, El-Serag HB, Loomba R. Global epidemiology of NAFLD-related HCC: trends, 
predictions, risk factors and prevention. Nat Rev Gastroenterol Hepatol 2021; 18: 223-238 [PMID: 
33349658 DOI: 10.1038/s41575-020-00381-6]

2     

Williams CD, Stengel J, Asike MI, Torres DM, Shaw J, Contreras M, Landt CL, Harrison SA. 
Prevalence of nonalcoholic fatty liver disease and nonalcoholic steatohepatitis among a largely 
middle-aged population utilizing ultrasound and liver biopsy: a prospective study. Gastroenterology 
2011; 140: 124-131 [PMID: 20858492 DOI: 10.1053/j.gastro.2010.09.038]

3     

Vernon G, Baranova A, Younossi ZM. Systematic review: the epidemiology and natural history of 
non-alcoholic fatty liver disease and non-alcoholic steatohepatitis in adults. Aliment Pharmacol Ther 
2011; 34: 274-285 [PMID: 21623852 DOI: 10.1111/j.1365-2036.2011.04724.x]

4     

Younossi ZM. Non-alcoholic fatty liver disease - A global public health perspective. J Hepatol 2019; 
70: 531-544 [PMID: 30414863 DOI: 10.1016/j.jhep.2018.10.033]

5     

Evans CT, Safdar N. Current Trends in the Epidemiology and Outcomes of Clostridium difficile 
Infection. Clin Infect Dis 2015; 60 Suppl 2: S66-S71 [PMID: 25922403 DOI: 10.1093/cid/civ140]

6     

Rupnik M, Wilcox MH, Gerding DN. Clostridium difficile infection: new developments in 
epidemiology and pathogenesis. Nat Rev Microbiol 2009; 7: 526-536 [PMID: 19528959 DOI: 
10.1038/nrmicro2164]

7     

McDonald LC, Gerding DN, Johnson S, Bakken JS, Carroll KC, Coffin SE, Dubberke ER, Garey 
KW, Gould CV, Kelly C, Loo V, Shaklee Sammons J, Sandora TJ, Wilcox MH. Clinical Practice 
Guidelines for Clostridium difficile Infection in Adults and Children: 2017 Update by the Infectious 
Diseases Society of America (IDSA) and Society for Healthcare Epidemiology of America (SHEA). 
Clin Infect Dis 2018; 66: e1-e48 [PMID: 29462280 DOI: 10.1093/cid/cix1085]

8     

Nwachuku E, Shan Y, Senthil-Kumar P, Braun T, Shadis R, Kirton O, Vu TQ. Toxic Clostridioides 
(formerly Clostridium) difficile colitis: No longer a diarrhea associated infection. Am J Surg 2021; 
221: 240-242 [PMID: 32680621 DOI: 10.1016/j.amjsurg.2020.06.026]

9     

Kistangari G, Lopez R, Shen B. Frequency and Risk Factors of Clostridium difficile Infection in 
Hospitalized Patients With Pouchitis: A Population-based Study. Inflamm Bowel Dis 2017; 23: 661-
671 [PMID: 28296825 DOI: 10.1097/MIB.0000000000001057]

10     

Czepiel J, Dróżdż M, Pituch H, Kuijper EJ, Perucki W, Mielimonka A, Goldman S, Wultańska D, 
Garlicki A, Biesiada G. Clostridium difficile infection: review. Eur J Clin Microbiol Infect Dis 2019; 
38: 1211-1221 [PMID: 30945014 DOI: 10.1007/s10096-019-03539-6]

11     

Safari Z, Gérard P. The links between the gut microbiome and non-alcoholic fatty liver disease 
(NAFLD). Cell Mol Life Sci 2019; 76: 1541-1558 [PMID: 30683985 DOI: 
10.1007/s00018-019-03011-w]

12     

Aron-Wisnewsky J, Vigliotti C, Witjes J, Le P, Holleboom AG, Verheij J, Nieuwdorp M, Clément 
K. Gut microbiota and human NAFLD: disentangling microbial signatures from metabolic disorders. 
Nat Rev Gastroenterol Hepatol 2020; 17: 279-297 [PMID: 32152478 DOI: 
10.1038/s41575-020-0269-9]

13     

Nseir WB, Hussein SHH, Farah R, Mahamid MN, Khatib HH, Mograbi JM, Peretz A, Amara AE. 
Nonalcoholic fatty liver disease as a risk factor for Clostridium difficile-associated diarrhea. QJM 
2020; 113: 320-323 [PMID: 31688897 DOI: 10.1093/qjmed/hcz283]

14     

Papić N, Jelovčić F, Karlović M, Marić LS, Vince A. Nonalcoholic fatty liver disease as a risk factor 
for Clostridioides difficile infection. Eur J Clin Microbiol Infect Dis 2020; 39: 569-574 [PMID: 
31782025 DOI: 10.1007/s10096-019-03759-w]

15     

Agency for Healthcare Research and Quality.   Healthcare Cost and Utilization Project (HCUP). 
2019. Available from: https://www.ahrq.gov/data/hcup/index.html

16     

Moore BJ, White S, Washington R, Coenen N, Elixhauser A. Identifying Increased Risk of 
Readmission and In-hospital Mortality Using Hospital Administrative Data: The AHRQ Elixhauser 
Comorbidity Index. Med Care 2017; 55: 698-705 [PMID: 28498196 DOI: 
10.1097/MLR.0000000000000735]

17     

Tripathi A, Debelius J, Brenner DA, Karin M, Loomba R, Schnabl B, Knight R. The gut-liver axis 
and the intersection with the microbiome. Nat Rev Gastroenterol Hepatol 2018; 15: 397-411 [PMID: 
29748586 DOI: 10.1038/s41575-018-0011-z]

18     

Son G, Kremer M, Hines IN. Contribution of gut bacteria to liver pathobiology. Gastroenterol Res 
Pract 2010; 2010 [PMID: 20706692 DOI: 10.1155/2010/453563]

19     

Stärkel P, Schnabl B. Bidirectional Communication between Liver and Gut during Alcoholic Liver 
Disease. Semin Liver Dis 2016; 36: 331-339 [PMID: 27997973 DOI: 10.1055/s-0036-1593882]

20     

Mao JW, Tang HY, Zhao T, Tan XY, Bi J, Wang BY, Wang YD. Intestinal mucosal barrier 
dysfunction participates in the progress of nonalcoholic fatty liver disease. Int J Clin Exp Pathol 
2015; 8: 3648-3658 [PMID: 26097546]

21     

Miele L, Valenza V, La Torre G, Montalto M, Cammarota G, Ricci R, Mascianà R, Forgione A, 
Gabrieli ML, Perotti G, Vecchio FM, Rapaccini G, Gasbarrini G, Day CP, Grieco A. Increased 
intestinal permeability and tight junction alterations in nonalcoholic fatty liver disease. Hepatology 
2009; 49: 1877-1887 [PMID: 19291785 DOI: 10.1002/hep.22848]

22     

Verdam FJ, Rensen SS, Driessen A, Greve JW, Buurman WA. Novel evidence for chronic exposure 
to endotoxin in human nonalcoholic steatohepatitis. J Clin Gastroenterol 2011; 45: 149-152 [PMID: 
20661154 DOI: 10.1097/MCG.0b013e3181e12c24]

23     

Jiang W, Wu N, Wang X, Chi Y, Zhang Y, Qiu X, Hu Y, Li J, Liu Y. Dysbiosis gut microbiota 24     

http://www.ncbi.nlm.nih.gov/pubmed/26707365
https://dx.doi.org/10.1002/hep.28431
http://www.ncbi.nlm.nih.gov/pubmed/33349658
https://dx.doi.org/10.1038/s41575-020-00381-6
http://www.ncbi.nlm.nih.gov/pubmed/20858492
https://dx.doi.org/10.1053/j.gastro.2010.09.038
http://www.ncbi.nlm.nih.gov/pubmed/21623852
https://dx.doi.org/10.1111/j.1365-2036.2011.04724.x
http://www.ncbi.nlm.nih.gov/pubmed/30414863
https://dx.doi.org/10.1016/j.jhep.2018.10.033
http://www.ncbi.nlm.nih.gov/pubmed/25922403
https://dx.doi.org/10.1093/cid/civ140
http://www.ncbi.nlm.nih.gov/pubmed/19528959
https://dx.doi.org/10.1038/nrmicro2164
http://www.ncbi.nlm.nih.gov/pubmed/29462280
https://dx.doi.org/10.1093/cid/cix1085
http://www.ncbi.nlm.nih.gov/pubmed/32680621
https://dx.doi.org/10.1016/j.amjsurg.2020.06.026
http://www.ncbi.nlm.nih.gov/pubmed/28296825
https://dx.doi.org/10.1097/MIB.0000000000001057
http://www.ncbi.nlm.nih.gov/pubmed/30945014
https://dx.doi.org/10.1007/s10096-019-03539-6
http://www.ncbi.nlm.nih.gov/pubmed/30683985
https://dx.doi.org/10.1007/s00018-019-03011-w
http://www.ncbi.nlm.nih.gov/pubmed/32152478
https://dx.doi.org/10.1038/s41575-020-0269-9
http://www.ncbi.nlm.nih.gov/pubmed/31688897
https://dx.doi.org/10.1093/qjmed/hcz283
http://www.ncbi.nlm.nih.gov/pubmed/31782025
https://dx.doi.org/10.1007/s10096-019-03759-w
https://www.ahrq.gov/data/hcup/index.html
http://www.ncbi.nlm.nih.gov/pubmed/28498196
https://dx.doi.org/10.1097/MLR.0000000000000735
http://www.ncbi.nlm.nih.gov/pubmed/29748586
https://dx.doi.org/10.1038/s41575-018-0011-z
http://www.ncbi.nlm.nih.gov/pubmed/20706692
https://dx.doi.org/10.1155/2010/453563
http://www.ncbi.nlm.nih.gov/pubmed/27997973
https://dx.doi.org/10.1055/s-0036-1593882
http://www.ncbi.nlm.nih.gov/pubmed/26097546
http://www.ncbi.nlm.nih.gov/pubmed/19291785
https://dx.doi.org/10.1002/hep.22848
http://www.ncbi.nlm.nih.gov/pubmed/20661154
https://dx.doi.org/10.1097/MCG.0b013e3181e12c24


Jiang Y et al. NAFLD and C. difficile infection

WJH https://www.wjgnet.com 1788 November 27, 2021 Volume 13 Issue 11

associated with inflammation and impaired mucosal immune function in intestine of humans with 
non-alcoholic fatty liver disease. Sci Rep 2015; 5: 8096 [PMID: 25644696 DOI: 10.1038/srep08096]
Theriot CM, Koenigsknecht MJ, Carlson PE Jr, Hatton GE, Nelson AM, Li B, Huffnagle GB, Z Li J, 
Young VB. Antibiotic-induced shifts in the mouse gut microbiome and metabolome increase 
susceptibility to Clostridium difficile infection. Nat Commun 2014; 5: 3114 [PMID: 24445449 DOI: 
10.1038/ncomms4114]

25     

Campo L, Eiseler S, Apfel T, Pyrsopoulos N. Fatty Liver Disease and Gut Microbiota: A 
Comprehensive Update. J Clin Transl Hepatol 2019; 7: 56-60 [PMID: 30944821 DOI: 
10.14218/JCTH.2018.00008]

26     

Sehgal R, Bedi O, Trehanpati N. Role of Microbiota in Pathogenesis and Management of Viral 
Hepatitis. Front Cell Infect Microbiol 2020; 10: 341 [PMID: 32850467 DOI: 
10.3389/fcimb.2020.00341]

27     

Le Roy T, Llopis M, Lepage P, Bruneau A, Rabot S, Bevilacqua C, Martin P, Philippe C, Walker F, 
Bado A, Perlemuter G, Cassard-Doulcier AM, Gérard P. Intestinal microbiota determines 
development of non-alcoholic fatty liver disease in mice. Gut 2013; 62: 1787-1794 [PMID: 23197411 
DOI: 10.1136/gutjnl-2012-303816]

28     

Henao-Mejia J, Elinav E, Jin C, Hao L, Mehal WZ, Strowig T, Thaiss CA, Kau AL, Eisenbarth SC, 
Jurczak MJ, Camporez JP, Shulman GI, Gordon JI, Hoffman HM, Flavell RA. Inflammasome-
mediated dysbiosis regulates progression of NAFLD and obesity. Nature 2012; 482: 179-185 [PMID: 
22297845 DOI: 10.1038/nature10809]

29     

Tsai MC, Liu YY, Lin CC, Wang CC, Wu YJ, Yong CC, Chen KD, Chuah SK, Yao CC, Huang PY, 
Chen CH, Hu TH, Chen CL. Gut Microbiota Dysbiosis in Patients with Biopsy-Proven Nonalcoholic 
Fatty Liver Disease: A Cross-Sectional Study in Taiwan. Nutrients 2020; 12 [PMID: 32204538 DOI: 
10.3390/nu12030820]

30     

Schwimmer JB, Johnson JS, Angeles JE, Behling C, Belt PH, Borecki I, Bross C, Durelle J, Goyal 
NP, Hamilton G, Holtz ML, Lavine JE, Mitreva M, Newton KP, Pan A, Simpson PM, Sirlin CB, 
Sodergren E, Tyagi R, Yates KP, Weinstock GM, Salzman NH. Microbiome Signatures Associated 
With Steatohepatitis and Moderate to Severe Fibrosis in Children With Nonalcoholic Fatty Liver 
Disease. Gastroenterology 2019; 157: 1109-1122 [PMID: 31255652 DOI: 
10.1053/j.gastro.2019.06.028]

31     

Del Chierico F, Nobili V, Vernocchi P, Russo A, De Stefanis C, Gnani D, Furlanello C, Zandonà A, 
Paci P, Capuani G, Dallapiccola B, Miccheli A, Alisi A, Putignani L. Gut microbiota profiling of 
pediatric nonalcoholic fatty liver disease and obese patients unveiled by an integrated meta-omics-
based approach. Hepatology 2017; 65: 451-464 [PMID: 27028797 DOI: 10.1002/hep.28572]

32     

Shen F, Zheng RD, Sun XQ, Ding WJ, Wang XY, Fan JG. Gut microbiota dysbiosis in patients with 
non-alcoholic fatty liver disease. Hepatobiliary Pancreat Dis Int 2017; 16: 375-381 [PMID: 
28823367 DOI: 10.1016/S1499-3872(17)60019-5]

33     

Wang B, Jiang X, Cao M, Ge J, Bao Q, Tang L, Chen Y, Li L. Altered Fecal Microbiota Correlates 
with Liver Biochemistry in Nonobese Patients with Non-alcoholic Fatty Liver Disease. Sci Rep 2016; 
6: 32002 [PMID: 27550547 DOI: 10.1038/srep32002]

34     

Jennison E, Byrne CD. The role of the gut microbiome and diet in the pathogenesis of non-alcoholic 
fatty liver disease. Clin Mol Hepatol 2021; 27: 22-43 [PMID: 33291863 DOI: 
10.3350/cmh.2020.0129]

35     

Loomba R, Seguritan V, Li W, Long T, Klitgord N, Bhatt A, Dulai PS, Caussy C, Bettencourt R, 
Highlander SK, Jones MB, Sirlin CB, Schnabl B, Brinkac L, Schork N, Chen CH, Brenner DA, Biggs 
W, Yooseph S, Venter JC, Nelson KE. Gut Microbiome-Based Metagenomic Signature for Non-
invasive Detection of Advanced Fibrosis in Human Nonalcoholic Fatty Liver Disease. Cell Metab 
2017; 25: 1054-1062.e5 [PMID: 28467925 DOI: 10.1016/j.cmet.2017.04.001]

36     

Wong VW, Tse CH, Lam TT, Wong GL, Chim AM, Chu WC, Yeung DK, Law PT, Kwan HS, Yu J, 
Sung JJ, Chan HL. Molecular characterization of the fecal microbiota in patients with nonalcoholic 
steatohepatitis--a longitudinal study. PLoS One 2013; 8: e62885 [PMID: 23638162 DOI: 
10.1371/journal.pone.0062885]

37     

Cani PD, Possemiers S, Van de Wiele T, Guiot Y, Everard A, Rottier O, Geurts L, Naslain D, 
Neyrinck A, Lambert DM, Muccioli GG, Delzenne NM. Changes in gut microbiota control 
inflammation in obese mice through a mechanism involving GLP-2-driven improvement of gut 
permeability. Gut 2009; 58: 1091-1103 [PMID: 19240062 DOI: 10.1136/gut.2008.165886]

38     

Dumas ME, Barton RH, Toye A, Cloarec O, Blancher C, Rothwell A, Fearnside J, Tatoud R, Blanc 
V, Lindon JC, Mitchell SC, Holmes E, McCarthy MI, Scott J, Gauguier D, Nicholson JK. Metabolic 
profiling reveals a contribution of gut microbiota to fatty liver phenotype in insulin-resistant mice. 
Proc Natl Acad Sci U S A 2006; 103: 12511-12516 [PMID: 16895997 DOI: 
10.1073/pnas.0601056103]

39     

Parséus A, Sommer N, Sommer F, Caesar R, Molinaro A, Ståhlman M, Greiner TU, Perkins R, 
Bäckhed F. Microbiota-induced obesity requires farnesoid X receptor. Gut 2017; 66: 429-437 [PMID: 
26740296 DOI: 10.1136/gutjnl-2015-310283]

40     

Aragonès G, González-García S, Aguilar C, Richart C, Auguet T. Gut Microbiota-Derived Mediators 
as Potential Markers in Nonalcoholic Fatty Liver Disease. Biomed Res Int 2019; 2019: 8507583 
[PMID: 30719448 DOI: 10.1155/2019/8507583]

41     

Brunt EM, Tiniakos DG. Histopathology of nonalcoholic fatty liver disease. World J Gastroenterol 
2010; 16: 5286-5296 [PMID: 21072891 DOI: 10.3748/wjg.v16.i42.5286]

42     

http://www.ncbi.nlm.nih.gov/pubmed/25644696
https://dx.doi.org/10.1038/srep08096
http://www.ncbi.nlm.nih.gov/pubmed/24445449
https://dx.doi.org/10.1038/ncomms4114
http://www.ncbi.nlm.nih.gov/pubmed/30944821
https://dx.doi.org/10.14218/JCTH.2018.00008
http://www.ncbi.nlm.nih.gov/pubmed/32850467
https://dx.doi.org/10.3389/fcimb.2020.00341
http://www.ncbi.nlm.nih.gov/pubmed/23197411
https://dx.doi.org/10.1136/gutjnl-2012-303816
http://www.ncbi.nlm.nih.gov/pubmed/22297845
https://dx.doi.org/10.1038/nature10809
http://www.ncbi.nlm.nih.gov/pubmed/32204538
https://dx.doi.org/10.3390/nu12030820
http://www.ncbi.nlm.nih.gov/pubmed/31255652
https://dx.doi.org/10.1053/j.gastro.2019.06.028
http://www.ncbi.nlm.nih.gov/pubmed/27028797
https://dx.doi.org/10.1002/hep.28572
http://www.ncbi.nlm.nih.gov/pubmed/28823367
https://dx.doi.org/10.1016/S1499-3872(17)60019-5
http://www.ncbi.nlm.nih.gov/pubmed/27550547
https://dx.doi.org/10.1038/srep32002
http://www.ncbi.nlm.nih.gov/pubmed/33291863
https://dx.doi.org/10.3350/cmh.2020.0129
http://www.ncbi.nlm.nih.gov/pubmed/28467925
https://dx.doi.org/10.1016/j.cmet.2017.04.001
http://www.ncbi.nlm.nih.gov/pubmed/23638162
https://dx.doi.org/10.1371/journal.pone.0062885
http://www.ncbi.nlm.nih.gov/pubmed/19240062
https://dx.doi.org/10.1136/gut.2008.165886
http://www.ncbi.nlm.nih.gov/pubmed/16895997
https://dx.doi.org/10.1073/pnas.0601056103
http://www.ncbi.nlm.nih.gov/pubmed/26740296
https://dx.doi.org/10.1136/gutjnl-2015-310283
http://www.ncbi.nlm.nih.gov/pubmed/30719448
https://dx.doi.org/10.1155/2019/8507583
http://www.ncbi.nlm.nih.gov/pubmed/21072891
https://dx.doi.org/10.3748/wjg.v16.i42.5286


Jiang Y et al. NAFLD and C. difficile infection

WJH https://www.wjgnet.com 1789 November 27, 2021 Volume 13 Issue 11

Bajaj JS. Alcohol, liver disease and the gut microbiota. Nat Rev Gastroenterol Hepatol 2019; 16: 
235-246 [PMID: 30643227 DOI: 10.1038/s41575-018-0099-1]

43     

Parlesak A, Schäfer C, Schütz T, Bode JC, Bode C. Increased intestinal permeability to 
macromolecules and endotoxemia in patients with chronic alcohol abuse in different stages of 
alcohol-induced liver disease. J Hepatol 2000; 32: 742-747 [PMID: 10845660 DOI: 
10.1016/S0168-8278(00)80242-1]

44     

Xu D, Huang Y, Wang J. Gut microbiota modulate the immune effect against hepatitis B virus 
infection. Eur J Clin Microbiol Infect Dis 2015; 34: 2139-2147 [PMID: 26272175 DOI: 
10.1007/s10096-015-2464-0]

45     

Bajaj JS, Heuman DM, Hylemon PB, Sanyal AJ, White MB, Monteith P, Noble NA, Unser AB, 
Daita K, Fisher AR, Sikaroodi M, Gillevet PM. Altered profile of human gut microbiome is 
associated with cirrhosis and its complications. J Hepatol 2014; 60: 940-947 [PMID: 24374295 DOI: 
10.1016/j.jhep.2013.12.019]

46     

Chen Y, Yang F, Lu H, Wang B, Chen Y, Lei D, Wang Y, Zhu B, Li L. Characterization of fecal 
microbial communities in patients with liver cirrhosis. Hepatology 2011; 54: 562-572 [PMID: 
21574172 DOI: 10.1002/hep.24423]

47     

Kakiyama G, Pandak WM, Gillevet PM, Hylemon PB, Heuman DM, Daita K, Takei H, Muto A, 
Nittono H, Ridlon JM, White MB, Noble NA, Monteith P, Fuchs M, Thacker LR, Sikaroodi M, Bajaj 
JS. Modulation of the fecal bile acid profile by gut microbiota in cirrhosis. J Hepatol 2013; 58: 949-
955 [PMID: 23333527 DOI: 10.1016/j.jhep.2013.01.003]

48     

Qin N, Yang F, Li A, Prifti E, Chen Y, Shao L, Guo J, Le Chatelier E, Yao J, Wu L, Zhou J, Ni S, Liu 
L, Pons N, Batto JM, Kennedy SP, Leonard P, Yuan C, Ding W, Hu X, Zheng B, Qian G, Xu W, 
Ehrlich SD, Zheng S, Li L. Alterations of the human gut microbiome in liver cirrhosis. Nature 2014; 
513: 59-64 [PMID: 25079328 DOI: 10.1038/nature13568]

49     

Qin N, Le Chatelier E, Guo J, Prifti E, Li L, Ehrlich SD. Qin et al. reply. Nature 2015; 525: E2-E3 
[PMID: 26381989 DOI: 10.1038/nature14852]

50     

Bajaj JS, Betrapally NS, Gillevet PM. Decompensated cirrhosis and microbiome interpretation. 
Nature 2015; 525: E1-E2 [PMID: 26381988 DOI: 10.1038/nature14851]

51     

Eslam M, Newsome PN, Sarin SK, Anstee QM, Targher G, Romero-Gomez M, Zelber-Sagi S, Wai-
Sun Wong V, Dufour JF, Schattenberg JM, Kawaguchi T, Arrese M, Valenti L, Shiha G, Tiribelli C, 
Yki-Järvinen H, Fan JG, Grønbæk H, Yilmaz Y, Cortez-Pinto H, Oliveira CP, Bedossa P, Adams LA, 
Zheng MH, Fouad Y, Chan WK, Mendez-Sanchez N, Ahn SH, Castera L, Bugianesi E, Ratziu V, 
George J. A new definition for metabolic dysfunction-associated fatty liver disease: An international 
expert consensus statement. J Hepatol 2020; 73: 202-209 [PMID: 32278004 DOI: 
10.1016/j.jhep.2020.03.039]

52     

Eslam M, Sanyal AJ, George J; International Consensus Panel. MAFLD: A Consensus-Driven 
Proposed Nomenclature for Metabolic Associated Fatty Liver Disease. Gastroenterology 2020; 158: 
1999-2014.e1 [PMID: 32044314 DOI: 10.1053/j.gastro.2019.11.312]

53     

Ferolla SM, Armiliato GN, Couto CA, Ferrari TC. The role of intestinal bacteria overgrowth in 
obesity-related nonalcoholic fatty liver disease. Nutrients 2014; 6: 5583-5599 [PMID: 25479248 DOI: 
10.3390/nu6125583]

54     

Ghoshal UC, Goel A, Quigley EMM. Gut microbiota abnormalities, small intestinal bacterial 
overgrowth, and non-alcoholic fatty liver disease: An emerging paradigm. Indian J Gastroenterol 
2020; 39: 9-21 [PMID: 32291578 DOI: 10.1007/s12664-020-01027-w]

55     

Augustyn M, Grys I, Kukla M. Small intestinal bacterial overgrowth and nonalcoholic fatty liver 
disease. Clin Exp Hepatol 2019; 5: 1-10 [PMID: 30915401 DOI: 10.5114/ceh.2019.83151]

56     

Wu WC, Zhao W, Li S. Small intestinal bacteria overgrowth decreases small intestinal motility in the 
NASH rats. World J Gastroenterol 2008; 14: 313-317 [PMID: 18186574 DOI: 10.3748/wjg.14.313]

57     

Kessoku T, Imajo K, Kobayashi T, Ozaki A, Iwaki M, Honda Y, Kato T, Ogawa Y, Tomeno W, Kato 
S, Higurashi T, Yoneda M, Kirikoshi H, Kubota K, Taguri M, Yamanaka T, Usuda H, Wada K, 
Kobayashi N, Saito S, Nakajima A. Lubiprostone in patients with non-alcoholic fatty liver disease: a 
randomised, double-blind, placebo-controlled, phase 2a trial. Lancet Gastroenterol Hepatol 2020; 5: 
996-1007 [PMID: 32805205 DOI: 10.1016/S2468-1253(20)30216-8]

58     

Schattenberg JM. Intestinal motility: a therapeutic target for NAFLD? Lancet Gastroenterol Hepatol 
2020; 5: 957-958 [PMID: 32805206 DOI: 10.1016/S2468-1253(20)30204-1]

59     

Gotfried J, Priest S, Schey R. Diabetes and the Small Intestine. Curr Treat Options Gastroenterol 
2017; 15: 490-507 [PMID: 28913777 DOI: 10.1007/s11938-017-0155-x]

60     

Weaver MJ, McHenry SA, Sayuk GS, Gyawali CP, Davidson NO. Bile Acid Diarrhea and NAFLD: 
Shared Pathways for Distinct Phenotypes. Hepatol Commun 2020; 4: 493-503 [PMID: 32258945 
DOI: 10.1002/hep4.1485]

61     

Reddy SK, Zhan M, Alexander HR, El-Kamary SS. Nonalcoholic fatty liver disease is associated 
with benign gastrointestinal disorders. World J Gastroenterol 2013; 19: 8301-8311 [PMID: 24363521 
DOI: 10.3748/wjg.v19.i45.8301]

62     

Bush H, Golabi P, Otgonsuren M, Rafiq N, Venkatesan C, Younossi ZM. Nonalcoholic Fatty Liver is 
Contributing to the Increase in Cases of Liver Disease in US Emergency Departments. J Clin 
Gastroenterol 2019; 53: 58-64 [PMID: 29608451 DOI: 10.1097/MCG.0000000000001026]

63     

Dubberke ER, Reske KA, McDonald LC, Fraser VJ. ICD-9 codes and surveillance for Clostridium 
difficile-associated disease. Emerg Infect Dis 2006; 12: 1576-1579 [PMID: 17176576 DOI: 
10.3201/eid1210.060016]

64     

http://www.ncbi.nlm.nih.gov/pubmed/30643227
https://dx.doi.org/10.1038/s41575-018-0099-1
http://www.ncbi.nlm.nih.gov/pubmed/10845660
https://dx.doi.org/10.1016/S0168-8278(00)80242-1
http://www.ncbi.nlm.nih.gov/pubmed/26272175
https://dx.doi.org/10.1007/s10096-015-2464-0
http://www.ncbi.nlm.nih.gov/pubmed/24374295
https://dx.doi.org/10.1016/j.jhep.2013.12.019
http://www.ncbi.nlm.nih.gov/pubmed/21574172
https://dx.doi.org/10.1002/hep.24423
http://www.ncbi.nlm.nih.gov/pubmed/23333527
https://dx.doi.org/10.1016/j.jhep.2013.01.003
http://www.ncbi.nlm.nih.gov/pubmed/25079328
https://dx.doi.org/10.1038/nature13568
http://www.ncbi.nlm.nih.gov/pubmed/26381989
https://dx.doi.org/10.1038/nature14852
http://www.ncbi.nlm.nih.gov/pubmed/26381988
https://dx.doi.org/10.1038/nature14851
http://www.ncbi.nlm.nih.gov/pubmed/32278004
https://dx.doi.org/10.1016/j.jhep.2020.03.039
http://www.ncbi.nlm.nih.gov/pubmed/32044314
https://dx.doi.org/10.1053/j.gastro.2019.11.312
http://www.ncbi.nlm.nih.gov/pubmed/25479248
https://dx.doi.org/10.3390/nu6125583
http://www.ncbi.nlm.nih.gov/pubmed/32291578
https://dx.doi.org/10.1007/s12664-020-01027-w
http://www.ncbi.nlm.nih.gov/pubmed/30915401
https://dx.doi.org/10.5114/ceh.2019.83151
http://www.ncbi.nlm.nih.gov/pubmed/18186574
https://dx.doi.org/10.3748/wjg.14.313
http://www.ncbi.nlm.nih.gov/pubmed/32805205
https://dx.doi.org/10.1016/S2468-1253(20)30216-8
http://www.ncbi.nlm.nih.gov/pubmed/32805206
https://dx.doi.org/10.1016/S2468-1253(20)30204-1
http://www.ncbi.nlm.nih.gov/pubmed/28913777
https://dx.doi.org/10.1007/s11938-017-0155-x
http://www.ncbi.nlm.nih.gov/pubmed/32258945
https://dx.doi.org/10.1002/hep4.1485
http://www.ncbi.nlm.nih.gov/pubmed/24363521
https://dx.doi.org/10.3748/wjg.v19.i45.8301
http://www.ncbi.nlm.nih.gov/pubmed/29608451
https://dx.doi.org/10.1097/MCG.0000000000001026
http://www.ncbi.nlm.nih.gov/pubmed/17176576
https://dx.doi.org/10.3201/eid1210.060016


Jiang Y et al. NAFLD and C. difficile infection

WJH https://www.wjgnet.com 1790 November 27, 2021 Volume 13 Issue 11

Scheurer DB, Hicks LS, Cook EF, Schnipper JL. Accuracy of ICD-9 coding for Clostridium difficile 
infections: a retrospective cohort. Epidemiol Infect 2007; 135: 1010-1013 [PMID: 17156501 DOI: 
10.1017/S0950268806007655]

65     

Khoruts A, Staley C, Sadowsky MJ. Faecal microbiota transplantation for Clostridioides difficile: 
mechanisms and pharmacology. Nat Rev Gastroenterol Hepatol 2021; 18: 67-80 [PMID: 32843743 
DOI: 10.1038/s41575-020-0350-4]

66     

http://www.ncbi.nlm.nih.gov/pubmed/17156501
https://dx.doi.org/10.1017/S0950268806007655
http://www.ncbi.nlm.nih.gov/pubmed/32843743
https://dx.doi.org/10.1038/s41575-020-0350-4


WJH https://www.wjgnet.com 1791 November 27, 2021 Volume 13 Issue 11

World Journal of 

HepatologyW J H
Submit a Manuscript: https://www.f6publishing.com World J Hepatol 2021 November 27; 13(11): 1791-1801

DOI: 10.4254/wjh.v13.i11.1791 ISSN 1948-5182 (online)

ORIGINAL ARTICLE

Observational Study

Six-minute walking test performance is associated with survival in 
cirrhotic patients

Carolina Frade M G Pimentel, Ana Cristina de Castro Amaral, Adriano Miziara Gonzalez, Michelle Lai, Daniel 
de Oliveira Mota, Maria Lucia Gomes Ferraz, Wilson Mathias Junior, Mario Kondo

ORCID number: Carolina Frade M G 
Pimentel 0000-0001-8092-1106; Ana 
Cristina de Castro Amaral 0000-0002-
8290-7073; Adriano Miziara Gonzalez 
0000-0002-5425-7886; Michelle Lai 
0000-0002-1035-0659; Daniel de 
Oliveira Mota 0000-0002-9629-8512; 
Maria Lucia Gomes Ferraz 0000-0001-
8992-8494; Wilson Mathias Junior 
0000-0003-0201-6754; Mario Kondo 
0000-0002-0079-2955.

Author contributions: All authors 
of this manuscript contributed to 
its developing; Carolina PFMG, 
Amaral ACC, Gonzalez AM, Lai 
M, Mota DO, Ferraz ML, Junior 
WM, and Kondo M responsible for 
conception and design of the 
study, and interpretation of the 
data, making critical revisions and 
final approval of the version of the 
article to be published; Carolina 
PFMG, Lai M, and Kondo M 
drafted the article; Carolina PFMG 
and Kondo M contributed to 
acquisition of data and analysis.

Institutional review board 
statement: The study has been 
performed in accordance with the 
Declaration of Helsinki (2000) and 
approved by the Ethics Committee 
of our institution, Federal 
University of Sao Paulo, Brazil 
(CAAE: 30942714.8.0000.5505; May 
28, 2014).

Carolina Frade M G Pimentel, Department of Medicine, Federal University of Sao Paulo, Sao 
Paulo 04026090, Brazil

Ana Cristina de Castro Amaral, Maria Lucia Gomes Ferraz, Mario Kondo, Department of 
Gastroenterology, Federal University of Sao Paulo, Sao Paulo 04023062, Brazil

Adriano Miziara Gonzalez, Department of Surgery, Liver Transplantation Service, Federal 
University of Sao Paulo, Sao Paulo 04026090, Brazil

Michelle Lai, Department of Medicine, Division of Gastroenterology and Hepatology, Beth 
Israel Deaconess Medical Center, Boston, MA 02215, United States

Daniel de Oliveira Mota, Department of Industrial Engineering, University of Sao Paulo, Sao 
Paulo 05508010, Brazil

Wilson Mathias Junior, Department of Cardiology, Heart Institute, University of Sao Paulo, Sao 
Paulo 05403900, Brazil

Corresponding author: Carolina Frade M G Pimentel, MD, Professor, Department of Medicine, 
Federal University of Sao Paulo, Botucatu Street n 740, Sao Paulo 04026090, Brazil.  
carolinapimentel.gastro@gmail.com

Abstract
BACKGROUND 
Patients with cirrhosis are at risk of cirrhotic cardiomyopathy, with resulting 
cardiac dysfunction and exercise limitations. Six minute walking test (6MWT) 
assesses functional status and predicts morbidity and mortality in cardiopul-
monary diseases.

AIM 
To determine if it associates with mortality by analyzing 6MWT performance in 
patients with liver cirrhosis.

METHODS 
A cohort of 106 cirrhotic patients was evaluated in the outpatient setting with 
echocardiogram and 6MWT and follow up for one year to document hepatic 
decompensation and mortality. The distance in meters was recorded at the end of 
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6 min (6MWD).

RESULTS 
This cohort had a mean age of 51 years and 56% male; patients were staged as 
Child A in 21.7%, B 66% and C 12.3%. Walk distance inversely correlated with 
Child scores, and was significantly reduced as Child stages progresses. Patients 
who died (10.4%) showed shorter mean 6MWD (P = 0.006). Low 6MWD was an 
independent predictor of mortality (P = 0.01).

CONCLUSION 
6MWT is a noninvasive inexpensive test whose result is related to Child scores 
and mortality. It is useful to identify patients with liver cirrhosis at high risk of 
mortality for closer monitoring and potential early intervention.

Key Words: Six-minute walking test; Liver cirrhosis; Hospital admission and mortality; 
Child score

©The Author(s) 2021. Published by Baishideng Publishing Group Inc. All rights reserved.

Core Tip: Our study proposes that six-minute walking test, a simple exercise test, can 
be applicable in the evaluation of cirrhotic patients. This is a well-none routine 
assessment in patients with cardiopulmonary diseases, where it is used to predict 
mortality in this population. Its use in liver cirrhosis is limited. Patients with chronic 
hepatic insufficient are at risk of progressively muscle loss, frailty, and exercise 
limitation, all factors directly associated with poor survival. We propose by using six-
minute walk test a practical and simple manner of assess this risks and provide a better 
understanding of how exercise limitation can directly affect survival.

Citation: Pimentel CFMG, Amaral ACC, Gonzalez AM, Lai M, Mota DO, Ferraz MLG, Junior 
WM, Kondo M. Six-minute walking test performance is associated with survival in cirrhotic 
patients. World J Hepatol 2021; 13(11): 1791-1801
URL: https://www.wjgnet.com/1948-5182/full/v13/i11/1791.htm
DOI: https://dx.doi.org/10.4254/wjh.v13.i11.1791

INTRODUCTION
Liver cirrhosis is related to functional impairment leading to reduction in physical 
fitness[1,2]. Some possible factors implicated in this process are profound muscle 
wasting (or cirrhotic myopathy)[3], cardiac dysfunction (cirrhotic cardiomyopathy)[4], 
autonomic dysfunction (chronotropic incompetence) and concurrent pulmonary 
disease (portopulmonary hypertension and hepatopulmonary syndrome). Recently 
studies reinforce the importance of frailty scores as a prediction of mortality in liver 
transplantation list[5,6], giving emphasis in sarcopenia and physical fitness as 
important factors associated with mortality[7].

The six-minute walk test (6MWT) is a practical simple inexpensive test that provides 
a global assessment of all systems involved during exercise[8]. Although it does not 
give information about specific organ impairment, it evaluates overall exercise 
capacity and has been shown, in patients with cardiac disease, to correlate with the 
maximal oxygen consumption (VO2) and survival[9].

Some studies demonstrated that short distance during 6MWT (6MWD) predicted 
poorer prognosis and disease outcome in patients with heart failure[10] and chronic 
obstructive pulmonary disease[11]. In addition, this test can be used to assess the 
overall functional status and quantify response to a certain intervention[8] in a variety 
of other chronic diseases and in the elderly population[9-12].

Previous studies highlight the importance of 6MWD in predicting survival in 
cirrhotic and non-cirrhotic patients[13-16]. There are also evidences suggesting an 
association between exercise performance and increase risk of death on the waiting 
liver transplantation list[15-18]. Despite its role in long term survival in different 
chronic diseases, the impact in mortality prediction in cirrhotic patients is underes-

http://creativecommons.org/Licenses/by-nc/4.0/
http://creativecommons.org/Licenses/by-nc/4.0/
http://creativecommons.org/Licenses/by-nc/4.0/
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timated over years.
The aim of this study was to analyze the association between 6MWT and long-term 

mortality in a cohort of cirrhotic patients.

MATERIALS AND METHODS
A total of 106 outpatients with liver cirrhosis (57 male, mean age 51.2 ± 12.9 years) was 
included in the present study. Cirrhosis was defined by clinical history, physical 
examination, laboratory analysis and at least one imaging data. Disease prognosis and 
severity were established based on Child and MELD scores, according to original 
scores definitions[19,20]. Exclusion criteria were any previous or current 
cardiovascular or pulmonary disease, heart failure or diagnosis of hemochromatosis 
(when cardiac involvement was documented). Patients who had a history of alcohol 
abuse (more than 20 g and 60 g of ethanol per day for women and men, respectively)
[21] were included if they had abstained from alcohol use for at least 6 mo prior to 
enrollment. Patients with non-sinus rhythm, decompensated arterial hypertension, 
low peripheral oxygen saturation (SpO2 < 90%), recent history (less than 3 mo) of new 
liver related decompensation or hospitalizations were also excluded (patients with 
previous ascites or encephalopathy were included, those characterized with chronic 
decompensated patients). Patients with neuromuscular diseases, myopathy, balance 
deficits or orthopedic disorders were also excluded. Patients who have previously 
received a liver transplant were not included. No paracentesis was performed within 
at least one week prior to exercise, avoiding volume depletion or electrolyte 
imbalances.

One hundred and sixty-four patients were consecutively screened from two liver 
transplantation centers between October 2014 and December 2014, 58 out of 164 were 
excluded according to previous criteria, most of the due to cardiovascular disorders 
(26%) or active alcohol consumption (19%). On the day of enrollment, patients 
provided written informed consent and had blood samples collected and 6MWT done. 
Electrocardiogram and transthoracic bubble echocardiogram were performed within 1 
mo of enrollment.

Patients were followed-up by clinical visits, hospital records or telephone calls to 
patients to capture deaths and their causes. Patients were stratified according to their 
ability to complete 6MWT, whether they achieved or not predicted distance according 
to gender and age, and pattern of symptom secondary to physical effort due to the test. 
Patients included were follow-up to one year, main outcomes were defined as death or 
liver transplantation.

The study has been performed in accordance with the Declaration of Helsinki (2000) 
and approved by the Ethics Committee of our institution.

6MWT
The 6MWT was conducted according to American Thoracic Society guidelines[8] and 
supervised by a qualified physician. The test was performed indoors, along a 30 m flat, 
straight corridor with a hard surface and free of any type of obstacles. Before starting 
the test, all patients were provided instructions by the evaluator, encouraged to walk 
as far as possible within 6 min, and instructed to stop if pain, dyspnea, or other 
symptoms. The distance in meters was recorded at the end of the six minutes (6MWD). 
Predicted distances were computed according to specific equations for gender, weight, 
height and age[22]. Predicted distance achieved percentage (%6MWD) is then derived 
by dividing the actual 6MWD divided by the predicted distance.

Statistical analysis
Data were analyzed using a statistical software program (IBM® SPSS® Statistics, 
version 22.0). Logistic regressions were performed to evaluate the independent 
association between 6MWD and death. Receiver operating curves (ROC) and the area 
under ROC (AUROC) were computed to estimate sensitivity, specificity and cut-off 
points for 6MWD used in regression models, selected by Youden’s index. COX 
regression analysis and Kaplan-Meier curves were performed and significant 
differences between the later were assessed by means of the log-rank test. We 
performed subgroup analysis according achievement of liver transplantation in order 
to evaluated 6MWT distance as a predictor of death.
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RESULTS
Patient characteristics
The main demographic, clinical, and laboratory characteristics of the patients are 
presented in Table 1. One hundred and six patients were selected from two liver 
transplantation centers in Sao Paulo, Brazil. The majority was male (56%), and non-
alcoholic etiology of the liver disease was the most common (69.8%). The mean MELD 
was 11.1, Child B more common (66%), and 74% of patients presented a history of at 
least one liver related decompensation. Ascites was identified in 32.1% and hepatic 
encephalopathy in 10.4% of patients on the day of the test.

All patients were followed until death, time of transplantation or end of study 
follow-up (12 mo). During the study period, 11 patients died and 3 underwent liver 
transplantation. All deaths were related to hepatic decompensation.

The majority of this cohort (71.7%) did not achieve the predicted distance adjusted 
for age and gender according to standardized equations[22] (678 ± 131m, 402-890 m) 
(see Figure 1). 6MWT performance is demonstrated in Table 2. The mean 6MWD of 
this cohort was 515 ± 138 m, 180-960 m. Not surprisingly, older patients with higher 
Child score, worse hepatic synthetic function (lower albumin) and anemia performed 
worse. It was found to be inversely correlated with age (r = -0.391, P < 0.001) and Child 
score (r = -0.228, P = 0.019), and positively correlated with albumin (r = 0.242, P = 
0.012), creatinine (r = 0.242, P = 0.018) and hemoglobin (r = 0.192, P = 0.048). Patients 
with a history of at least one hepatic decompensation in the past (74.5%) presented 
with significant shorter 6MWD (496 ± 141 m vs 571 ± 115 m, P = 0.015).

The mean 6MWD was progressively shorter among Child classes (A = 570 ± 144 m, 
B = 504 ± 137 m and C = 471 ± 115 m) and statistical significance was demonstrated 
between Child A and C (P = 0.04) and when Child A was compared with more 
advanced stages (B and C), P = 0.02. 6MWD was different among compensated (Child 
Pugh A) and decompensated (Child Pugh B and C) patients (P = 0.031) (see Figure 2). 
Patients decompensated with ascites or hepatic encephalopathy on the day of the test 
achieved shorter distances than those who did not have ascites or hepatic enceph-
alopathy (472 vs 534m, P = 0.03; 440 vs 525m, P = 0.04, respectively). All patients 
previously included were submitted to 6MWT, even those with hepatic 
decompensation at the moment of evaluation, ascites or encephalopathy. 6MWD did 
not differ according to the etiologies of cirrhosis (P = 0.08), past history of alcohol 
abuse (P = 0.58), use of beta-blocker (P = 0.19), tobacco (P = 0.97) and presence of 
anemia (P = 0.84).

None of the patient presented with liver related decompensation within 2 wk 
following the exercise, meaning no detectable clinically significant portal hypertension 
increase induced by exercise. All patients were able to perform exercise adequately, 
without help, interruptions, or any significantly adverse effect.

To emphasize the role of 6MWD and %6MWD in the prediction mortality, as an 
additional factor besides liver disease severity, logistic regression models were 
designed to evaluate if the inclusion of 6MWT parameters improves the model 
performance and increases the AUROC computed using regression models. MELD 
and Child score were used to quantify the severity of liver disease. When 6MWT 
parameters were added to the models designed to predicted mortality using MELD or 
Child score, we observed an improvement in model performance, defined as a 
significant difference according to Omnibus Chi-square test (P = 0.01) and higher 
AUROCs in combining models (see Figure 3).

Cutoff points associated with mortality was 387 m for 6MWD (sensibility 90.9 and 
specificity 88.4) and 0.82 for %6MWD (sensibility 100 and specificity 83.2). After 
exclusion of patients who were submitted to liver transplantation, patients who died 
(11, 10.4%) had a shorter mean 6MWD (423 m vs 526 m, P = 0.006) and lower %6MWD 
(0.72 vs 0.92, P = 0.004). Just one of them achieved the predicted distance during 
6MWT. 6MWD and %6MWD were independent predictors of mortality, after adjusted 
for Child scores, according to multivariate regression model analysis (Table 3). 
Patients who achieved distances shorter than 387 m or %6MWD < 0.82 presented 
higher mortality, and statistical difference according to Kaplan-Meier and log-rank 
analysis (P = 0.004 and P = 0.006, respectively) (Figure 4).

DISCUSSION
6MWT is a safe, easy-to-administer, and inexpensive test to determine the functional 
capacity of cirrhotic patients and also has prognostic value. We found that a decreased 
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Table 1 Patients’ characteristics (n = 106), n (%)

Characteristic n (%) or means ± SD

Gender M/F 59/47 (56/44)

Age (yr) 51 ± 13

BMI (kg/m2) 25.7 ± 4.7

PASP (mmHg) 25.4 ± 8.0

Cirrhosis etiology

Virus 36 (33.9)

Alcohol 32 (30.2)

NASH 8 (7.5)

Others 30 (28.4)

Child-Pugh class n 7.1 ± 1.8

A 23 (21.7)

B 70 (66)

C 13 (12.3)

MELD 11.1 ± 3.1

Previous history of liver related decompensation 76 (73.8)

Hypertension 19 (17.9)

Diabetes 26 (24.5)

Tobacco smoking 12 (11.4)

Beta-blocker use 32 (30.2)

Hepatic decompensation on the day of the test

Ascites 34 (32.1)

(Grade 1, 2, and 3) (11.3, 17, 5)

Peripheral edema 13 (12.3)

Hepatic encephalopathy 13 (12.3)

(Grade 1, 2, 3, and 4) (10.4, 1.9, 0, 0)

Hepatocellular carcinoma 5 (4.7)

Patient on the liver transplantation waiting list 35 (33)

Baseline laboratory1

Hemoglobin (mg/dL) 13.1 ± 1.9

Hematocrit (%) 39.3 ± 5.4

Albumin (g/dL)Bilirubin (mg/dL)INR 3.5 ± 0.62.0 ± 1.51.2 ± 0.2

Creatinine (mg/dL) 0.8 ± 0.3

Na (mmol/L) 137.8 ± 2.1

K (mmol/L) 4.1 ± 0.5

Mg (mg/dL) 1.8 ± 0.2

Ca (mmol/L) 1.2 ± 0.1

1Continuous variables are shown as means ± SD.
Reference range values: Na (136-145); K (3.5-5.0); Mg (1.6-2.6) and Ca (1.15-1.29).
M: Male; F: Female; PASP: Pulmonary arterial systolic pressure.
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Table 2 Six minute walking test performance in 106 patients with liver cirrhosis

P P
Variable 6MWD (m) (t-test when 

applicable)
6MWD (%) (t-test when 

applicable)

Mean 6MWD (m) 515 ± 138

Mean 6MWD (%) 0.91 ± 2.3

6MWD according to Child classes

A 570 ± 144 0.97 ± 0.22

B 504 ± 137 0.88 ± 0.21

C 471 ± 115 0.82 ± 0.25

6MWD according to

Liver decompensation

Ascites (w vs wo) 473 ± 20 vs 535 ± 17 0.03 0.86 ± 0.22 vs 0.95 ± 
0.21

0.028

Hepatic encephalopathy (w vs wo) 435 ± 34 vs 525 ± 14 0.04 0.87 ± 0.25 vs 0.91 ± 
0.21

0.87

History of previous hepatic decompensation (w vs 
wo)

496 ± 141 vs 571 ± 
115

0.02 0.86 ± 0.22 vs 1.02 ± 
0.17

0.004

Hospital admission during follow-up (w vs wo) 444 ± 172 vs 531 ± 
125 

0.01 0.77 ± 0.25 vs 0.92 ± 
0.20

0.004

Survival (died vs survived) 423 ± 122 vs 526 ± 
137

0.02 0.72 ± 0.21 vs 0.93 ± 
0.21

6MWT: Six-minute walking test; 6MWD: Six-minute walking distance; 6MW (%): Predicted distance achieved percentage; w: With; wo: Without.

6MWD, as a marker of impaired exercise capacity, is associated with hepatic 
dysfunction. In addition, 6MWD and %6MWD performed as independent predictors 
of mortality, becoming an important tool during risk evaluation of severe complic-
ations and death in liver cirrhosis. Also, this study reinforces the key importance of 
physical evaluation during cirrhotic patients, especially those referred to liver 
transplantation team.

Basal exercise capacity was significantly impaired in our patients, as only 28.3% 
achieved the pre-test predicted distance. The 6MWD results in our cohort of patients 
was similar to previous studies in patients with cirrhosis which found a significantly 
lower 6MWD values than expected for healthy population[22]. Our cohort had a mean 
89.7% (34.8%-149%) of predicted 6MWD (vs 63% found by Román et al[18], and a mean 
6MWD of 515 m (180-960 m), compared to 306 m in Alameri et al[14]‘s cohort of 98 
patients with cirrhosis. The poor performance during 6MWT meets with the current 
knowledge about the abnormal exercise capacity in cirrhotic patients. Future studies 
should verify those findings and evaluate if 6MWD can be used as a more general tool 
able to evaluate outcomes and quality of life in this group[15].

We reported a weak inverse correlation between 6MWD and Child scores (r = -
0.228, P = 0.019), although it was clear the tendency in walk distance reduction along 
Child classes. Carey et al[15], studying 121 cirrhotic patients, showed a strong 
correlation with MELD. In this particular study, all patients were listed for liver 
transplant, denoting a population with more advanced disease, making us understand 
that this stronger correlation reflects a major prevalence of their patient’s overall 
disability when comparing to our study group. In the same way, by comparing 
subjects with advanced disease (Child B and C) and those without it (Child A), we 
detected a significant difference between these groups (P = 0.02), supporting the 
previous interpretation. Furthermore, patients with a history of at least one hepatic 
decompensation in the past, presented shorter 6MWD (P = 0.015) and subjects 
presenting with ascites or encephalopathy at the moment of evaluation performed 
worse, these facts highlight the relationship between shorter distances and severity of 
liver disease in our study. Similarly, Wong et al[23] reported that patients with 
decompensated cirrhosis with ascites performed worse during cycle ergometer 
evaluation when compared to well compensated patients, however, no specific data is 
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Table 3 Association between six-minute walking test parameters and unfavorable clinical outcomes (hospital admissions and mortality) using logistic regression models

Hospital Admission Mortality

Predictors Univariate Multivariate Univariate Multivariate

b p OR b p OR b p OR b p OR

Child score 0.74 < 0.01 2.1 0.72 < 0.01 2.05 1.01 < 0.01 2.75 1.03 < 0.01 2.8

6MWD -0.005 < 0.01 0.99 -0.005 0.24 0.99 -0.007 0.01 0.99 -0.007 0.04 0.99

%6MWD -0.04 0.01 0.96 -0.03 0.03 0.96 -0.05 0.02 0.95 -0.05 0.03 0.95

6MWD ≤ 444 m -1.395 0.007 0.3 -1.462 0.01 0.2 - - - - - -

6MWD ≤ 387 m - - - - - - 1.659 0.004 5.25 -1.17 0.2 0.31

1Confidential intervals for odds ratio are not represented but consider adequate for all analysis except forodds ratio.
OR: Odds ratio.

available regarding 6MWT.
Although the gold standard measurement of exercise capacity is maximal VO2[24] 

measurement during treadmill or cycle ergometer tests, 6MWT is a cheap and simple 
test found to correlate with oxygen consumption that can be administered without 
special equipment or skilled staff that you can perform in clinic to give an immediate 
result. Noticeable that all patients in our study completed the full test, independently 
of the presence of ascites or encephalopathy, demonstrating one great advantage 
above other exercise tests, that sometimes require a more complex adaptation and 
comprehension about the technique. Cahalin et al[9] performed 6MWT and symptom-
limited cardiopulmonary exercise testing in patients with heart failure during cardiac 
transplant evaluation. The authors described a significant correlation between 6MWD 
and peak VO2 (r = 0.64, P < 0.001), concluding that 6MWT is a valuable tool to predict 
VO2 and short-term survival. These results should be validated in cirrhotic population, 
but represent a good evidence that 6MWT could be introduced in routine practice 
without loss of diagnostic accuracy in exercise capacity estimation. While our study 
did not evaluate the association between VO2 and 6MWD, it did show the safety and 
practicality of this procedure. García-Pagàn et al[25] reported that moderate exercise 
(30% of the maximum) significantly increases portal pressure in patients with portal 
hypertension, and, therefore, could increase the risk of variceal bleeding, ascites and 
encephalopathy. Although 6MWT is a submaximal exercise, we did not identify any 
clinical event directly associated with it during the period following the test. Recent 
studies do not mention the prevalence of adverse events induced by exercise, and 
more studies designed to respond this issue should be carried out.



Pimentel CFMG et al. Six-minute walking test in cirrhotic patients

WJH https://www.wjgnet.com 1798 November 27, 2021 Volume 13 Issue 11

Figure 1 Relationship between predicted (line) and performed (bars) walking distance during six minute walking test. 6MWD: Six minute 
walking distance.

Figure 2 Distance in meters was recorded at the end of the six minutes among compensated (Child Pugh A) and decompensated (Child 
Pugh B and C) patients

Previously studies who reported the relationship between 6MWT and mortality 
were conducted with small populations and during a short period of followup[11,12]. 
Poor performance during 6MWT may warrant that the at-risk patients should be 
followed more closely due to the risk of adverse events. Notwithstanding, 6MWT has 
been proposed as a tool during frailty status evaluation, giving emphasis in this role as 
a practical and cheap method for this proposal. This study reinforces this importance, 
adding more powerful results due to our long period of follow-up, demonstrating how 
physical exercise evaluation may be an interesting long predictor of prognosis in 
cirrhotic patients.

In our study, 6MWD was an independent predictor of death, consistent with 
findings from previous studies by Alameri et al[14], and Carey et al[15]. In the first 
study, mortality was evaluated in the whole group, including patients with non-
cirrhotic chronic hepatitis, which may bias the interpretation about causality between 
6MWD and cirrhosis. Also, Carey et al[15] studied a population with more advanced 
disease, all of them on the liver transplant waiting list with a high frequency of liver 
transplantation (50.4%) performed in a short period of time (5-6 mo). The statistical 
power of 6MWT in predicting mortality could be affected by pulling out so many 
patients after transplant from this cohort.

The role of 6MWD and %6MWD in the prediction of mortality were independently 
of Child scores as demonstrated by multivariate logistic regression analysis. These 
facts highlight the association of 6MWT parameters with disease progression and 
adverse outcomes, despite the severity of liver disease.
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Figure 3 Progressive improvement in prediction of mortality using models combing six minute walking test parameters and Child scores. 
6MWD: Six minute walking distance.

Figure 4 Kaplan Meier analysis for overall survival.

There are several limitations to our study. First, we did not proceed an external 
validation of 6MWD cutoffs used in our study, although our main objectives were 
focused in the transversal and descriptive characterization of study population. 
Second, we did neither evaluated nutritional status nor calculate the Frailty score of 
our patients. When study was designed there were no clear parameters specific settle 
for this diagnosis and a retrospective evaluation was not possible due to lack of 
complete data. Although recent studies suggest a close relationship between malnou-
rished patients and physical capacity, in order to better evaluate this relationship, 
another specific protocol must be designed, which was not in accordance with our 
main objectives. Finally, we did not submit this cohort to a second phase 6MWT to 
evaluate the relationship between test performance and disease progression. Maybe 
this analysis could enhance the comprehension about the association of shorter 6MWD 
and severity of liver disease and its role as a marker of liver decompensation episodes. 
As we proposed a sectional evaluation of cirrhotic patients with 6MWT, future 
prospective studies should be able to better answer the previous questions.

CONCLUSION
In summary, 6MWT is a very simple, inexpensive, well tolerated, noninvasive test to 
assess exercise capacity and the result of which is related to MELD and Child scores. 
The present study showed that 6MWD is an independent predictor of mortality in this 
population. 6MWT is a promising prognostic marker in patients with liver cirrhosis 
and should be considered as part of liver transplantation evaluation especially in those 
referred for the liver transplantation team.
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ARTICLE HIGHLIGHTS
Research background
Patients with cirrhosis are at risk of exercise limitations due to progressive limitations 
related to liver dysfunction. Sarcopenia and cirrhotic cardiomyopathy may be possible 
related factors. The six-minute walking test (6MWT) is a known simple and practical 
tool used to evaluate patients with cardiopulmonary disease.

Research motivation
In face of limited diagnosis tools focused on exercise capacity, we purposed to 
evaluate the role of 6MWT in this population.

Research objectives
The aim of our study was to analyzed 6MWT performance in patients with liver 
cirrhosis to determine if it associates with mortality.

Research methods
We analyzed 6MWT performance in 106 cirrhotic patients. They were evaluated in the 
outpatient setting with 6MWT and follow up for one year. Hepatic decompensation 
and mortality were documented.

Research results
This cohort had a mean age of 51 years and 56% male; patients were staged as Child A 
in 21.7%, B 66%, and C 12.3%. Walk distance inversely correlated with Child scores, 
and was significantly reduced as Child stages progress. Patients who died (10.4%) 
showed a shorter mean 6MWD (P = 0.006). Low 6MWD was an independent predictor 
of mortality (P = 0.01).

Research conclusions
6MWT is a noninvasive inexpensive test whose result is related to Child scores and 
mortality.

Research perspectives
It is a useful, simple, practical test that can be incorporated into cirrhotic evaluation 
due to its relation with mortality for closer monitoring and potential early 
intervention.
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Abstract
BACKGROUND 
The use of umbilical venous catheters (UVCs) in the perinatal period may be 
associated with severe complications, including the occurrence of portal vein 
thrombosis (PVT).

AIM 
To assess the incidence of UVC-related PVT in infants with postnatal age up to 
three months.

METHODS 
A systematic and comprehensive database searching (PubMed, Cochrane Library, 
Scopus, Web of Science) was performed for studies from 1980 to 2020 (the search 
was last updated on November 28, 2020). We included in the final analyses all 
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peer-reviewed prospective cohort studies, retrospective cohort studies and case-
control studies. The reference lists of included articles were hand-searched to 
identify additional studies of interest. Studies were considered eligible when they 
included infants with postnatal age up to three months with UVC-associated PVT. 
Incidence estimates were pooled by using random effects meta-analyses. The 
quality of included studies was assessed using the Newcastle-Ottawa scale. The 
systematic review was performed according to the Preferred Reporting Items for 
Systematic reviews and Meta-Analysis (PRISMA) guidelines.

RESULTS 
Overall, 16 studies were considered eligible and included in the final analyses. 
The data confirmed the relevant risk of UVC-related thrombosis. The mean 
pooled incidence of such condition was 12%, although it varied across studies 
(0%-49%). In 15/16 studies (94%), diagnosis of thrombosis was made accidentally 
during routine screening controls, whilst in 1/16 study (6%) targeted imaging 
assessments were carried out in neonates with clinical concerns for a thrombus. 
Tip position was investigated by abdominal ultrasound (US) alone in 1/16 (6%) 
studies, by a combination of radiography and abdominal US in 14/16 (88%) 
studies and by a combination of radiography, abdominal US and echocardio-
graphy in 1/16 (6%) studies.

CONCLUSION 
To the best of our knowledge, this is the first systematic review specifically invest-
igating the incidence of UVC-related PVT. The use of UVCs requires a high index 
of suspicion, because its use is significantly associated with PVT. Well-designed 
prospective studies are required to assess the optimal approach to prevent UVC-
related thrombosis of the portal system.

Key Words: Portal vein thrombosis; Umbilical venous catheter; Portal system thrombosis; 
Hepatic thrombosis; Neonate; Incidence

©The Author(s) 2021. Published by Baishideng Publishing Group Inc. All rights reserved.

Core Tip: Portal vein thrombosis (PVT) is a dreadful complication that can occur after 
umbilical vein catheterization in neonates. Although previous observational studies 
have provided a general overview about the risk of this complication, the present 
systematic review specifically investigates the incidence catheter-related PVT and 
identifies relevant gaps in knowledge about the optimal diagnostic approach 
highlighting the need for prospective randomized studies and updated guidelines.
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INTRODUCTION
The placement of an umbilical venous catheter (UVC) is a common procedure in 
neonatology and has multiple clinical indications driven by the need for quick and 
secure access for medication administration[1]. During placement, the UVC should 
run through the umbilical vein, pass the medial portion of the left portal vein at the 
umbilico-portal confluence, join the direct communication existing between the 
umbilical vein and the ductus venosus and, through it, bypass the liver and join the 
inferior vena cava[2,3]. The UVC has to be placed in a central position, ideally at the 
junction between the inferior vena cava and the right atrium. If a central position is not 
achieved, then the tip of the catheter can be left below the liver, i.e., below the level of 
umbilical-portal confluence (peripheral position). The UVC in peripheral position can 
be used as an emergency access, but it has to be replaced as soon as possible by a 
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central venous catheter. To prevent UVC-related complications, a proper assessment of 
catheter tip position is mandatory before its use. In fact, if the tip of the catheter is too 
deep, it can cause complications such as thrombo-embolic disorders, arrhythmias, and 
pericardial effusion. On the other hand, if the tip of the UVC is too low, then it can be 
associated with necrotizing enterocolitis, colon perforation, hepatic abscess, and portal 
vein thrombosis (PVT)[1,4-9]. Furthermore, if the ductus venosus is not perfectly 
aligned to the umbilical vein, the UVC may unintentionally enter the portal system 
through the left portal vein during placement and possibly lead to severe complic-
ations involving both the hepatic vasculature and parenchyma[1,2,5-8,10-16]. Such 
liver complications may arise from multiple mechanisms including thrombosis of the 
portal system vasculature, infusion of irritating drugs and/or hypertonic solutions 
within the UVC leading to hepatic necrotizing direct mechanical injury[3,17-19]. 
Besides individual hereditary or acquired predisposing factors (such as prematurity, 
hereditary prothrombotic disorders, sepsis, the need of transfusions, hyper-viscosity 
syndrome, dehydration, asphyxia, congenital malformations etc.), whose actual role is 
still debated[3,10,19-26], umbilical venous catheterization itself represents a risk factor 
for the development of PVT[18]. In fact, multiple factors may explain the association 
between UVC and PVT: The introduction of a foreign surface with thrombogenic 
properties in a small diameter vessel, endothelial damage, and the well-known pro-
thrombotic predisposition typical of the neonatal period[27-29]. Symptoms/signs 
suggestive of PVT may include unexplained thrombocytopenia, catheter-obstructed 
fluid delivery, increased UVC in-line pressure, impaired lower body/extremity 
perfusion, although PVT may remain completely asymptomatic[30,31]. When 
persisting, PVT may inflict substantial damage to the liver leading to portal 
hypertension, mainly related to the increased vascular resistance in the portal venous 
system, and to liver atrophy[11,19,32].

In the present systematic review, we specifically focused our search attention on the 
risk of UVC-related PVT. Although multiple observational studies have provided an 
overview about the risk of PVT after UVC positioning, to the best of our knowledge no 
reviews explored systematically this issue. Our aim was to investigate the most 
accurate information about the actual incidence of UVC-related PVT in the neonatal 
setting, and to assess if any particular risk factor was systematically associated with 
the development of such complication.

MATERIALS AND METHODS
The review followed the Preferred Reporting Items for Systematic Reviews and Meta-
Analyses (PRISMA) reporting guidelines[33].

The PICOS strategy was used, which comprised the following (PRISMA): 
Population: Infants with less than three months of postnatal age; Intervention (or 
exposure): Umbilical venous catheter; Comparison: No catheter; Outcome (primary): 
Incidence of PVT; Outcome (secondary): Association with a specific risk factor; Study 
type: Peer-reviewed observational, cohort and case-control studies.

There was no funding agency for this study. The systematic review did not require 
ethical approval/informed consent since there was no direct contact with individual 
patients, and only previously published data were included in the analyses.

Outcomes
The primary outcome was the incidence of PVT related to the use of UVCs (UVC 
only/attempted UVC/UVC + umbilical artery catheters) in infants with postnatal age 
up to three months. The secondary outcome was the identification of any risk factor 
associated with the development of UVC-related PVT.

Search strategy and selection criteria
The following search strategy was used: (portal OR vein OR system OR hepatic) AND 
(thrombosis) AND (neonat* OR newborn OR pediatric*) AND (catheter* OR 
umbilical). For reliability, three review authors (Bersani I, Iacona G and Piersigilli F) 
independently analyzed the currently available literature through systematic and 
comprehensive database searching (PubMed, Cochrane Library, Scopus, Web of 
Science) from 1980 to 2020 (the search was last updated on November 28, 2020). 
Reviews, in vitro studies, animal studies, autopsy studies and conference abstracts 
were excluded. The reference lists of the included articles were hand-searched to 
identify additional studies of interest. We obtained the full texts of all the potentially 
eligible studies.
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Eligibility criteria
Three review authors independently undertook eligibility assessment (Bersani I, 
Iacona G and Piersigilli F). Any disagreement about study eligibility was resolved by 
discussion with a fourth review author (Garcovich M) until consensus. We considered 
the studies eligible if they investigated the incidence of UVC-related PVT in infants 
with postnatal age up to three months. For articles resulting eligible based on the title 
or abstract, the full paper was retrieved. Case reports were considered not eligible for 
the final analyses being the calculation of an incidence not possible for such study 
design. Non-English studies were considered not eligible for the final analyses. We 
finally included all peer-reviewed, English-language, prospective/retrospective cohort 
studies and case-control studies.

Study quality assessment
To assess the risk of bias, two authors (Bersani I and Garcovich M) independently used 
the Newcastle-Ottawa Scale for comparative nonrandomized studies corresponding to 
each study’s design (cohort/cross-sectional)[34]. Such scale is a validated quality 
assessment instrument for non-randomized trials which evaluates three parameters of 
study quality: selection, comparability and exposure assessment. The scale assigns a 
maximum score of 4 for selection, 2 for comparability, and 3 for exposure, for a 
maximum total score of 9. Studies with a total score of ≥ 5 or ≥ 7 were considered to be 
of moderate or high quality, whereas those with a score of less than 5 were considered 
low-quality studies with high risk of bias. The scale results were tabulated in Table 1.

Data extraction
Three review authors independently performed data extraction (Bersani I, Iacona G 
and Piersigilli F). Disagreements about data extraction were resolved by discussion 
with a fourth review author (Garcovich M) until consensus. Pertinent findings from 
the included studies were tabulated in Table 2 and assessed according to pre-specified 
subgroups analyses: (1) Year of publication: 1980-2000 or 2001-2020; (2) Indication for 
thrombosis assessment: Abdominal US as systematic screening or abdominal 
ultrasound (US) only in case of a clinical concern for thrombosis; (3) Type of diagnostic 
technique to detect tip position: Radiography or/and (US) evaluation; (4) UVC model: 
UVC material, size (French), single or double lumen; (5) Thrombosis localization and 
type: Exact localization within the portal system, complete or partial; (6) Dwell time: 
Mean UVC in situ persistence (in days); and (7) Prophylaxis: None or heparin infusion 
or other.

Statistical analysis
Because of high heterogeneity, pooled data on the incidence of UVC-related PVT were 
analyzed using a random effects (DerSimonian and Laird method) model approach. 
Statistical heterogeneity among studies was assessed with Cochran’s Q and quantified 
with Higgins I2 statistic[35,36]. We considered an I2 of < 25% as low heterogeneity, I2 of 
25% to 75% as moderate heterogeneity and I2 > 75% as high heterogeneity. Publication 
bias was assessed graphically using funnel plots and qualitatively using Egger’s 
regression and Begg rank correlation method. Statistical analysis was performed by 
using the Statistical Package for Social Science (SPSS 22.0; SPSS Inc, Chicago, IL, 
United States) and Microsoft Excel (Version 16.45).

RESULTS
The searches identified 2460 potentially relevant papers, 1835 after duplicates were 
removed. After title and abstract screening, 53 full-text studies were considered 
potentially eligible for inclusion and 37 studies were then excluded for the following 
reasons: (1) Not relevant comparators (n = 23); (2) Non-English language (n = 3); and 
(3) Wrong study design (n = 11) (Figure 1). Since the design/methodologies varied 
among different studies, information was not uniformly available for all analyses. For 
example, some studies could not be considered eligible, although pertinent, since the 
exact incidence UVC-associated PVT and/or the exact site of a catheter-related 
thrombosis and/or the exact age of patients with PVT could not be clearly 
extrapolated from the results.

According to the Newcastle-Ottawa Scale assessing the risk of bias, all the included 
studies were of moderate-high quality (Table 1). The characteristics and most relevant 
findings of the included studies are summarized in Table 2[5,21,30-32,37-45]. Of the 16 
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Table 1 Risk of bias assessment (Newcastle-Ottawa scale for non-randomized studies)

Ref. Selection Comparability Outcome Total score

Levit et al[42], 2020 4 2 3 9

Dubbink-Verheij et al[31], 2020 4 2 3 9

Chen et al[15], 2020 4 0 3 7

Hwang et al[46], 2020 4 2 3 9

Çakır et al[38], 2020 4 0 3 7

Cabannes et al[32], 2018 4 2 3 9

Derinkuyu et al[5], 2018 4 0 3 7

Chandrashekhar et al[45], 2015 4 0 3 7

Michel et al[37], 2012 4 2 3 9

Gharehbaghi et al[39], 2011 4 2 3 9

Sakha et al[41], 2007 4 2 3 9

Turebylu et al[21], 2007 4 2 3 9

Kim et al[30], 2001 4 2 3 9

Boo et al[44], 1999 4 2 3 9

Schwartz et al[40], 1997 4 0 3 7

Yadav et al[43], 1993 4 0 2 6

included studies, 14 were prospective and 2 were retrospective[15,46]. In some cases, 
the information about the clinical features of the included population was generically 
related to the overall cohort rather than specifically to neonates with UVC-related PVT 
and could not be extrapolated.

In the present review a total pooled sample of 4509 of neonates aged less than three 
months with UVC was included, 195 of whom experienced UVC-related PVT. The 
sample sizes ranged widely across studies (median, 83 patients; range, 22-2017). Mean 
gestational age and birth weight were 30.9 wk and 1738 g respectively, but it was not 
possible to extrapolate these data from each study, since neonates with PVT sometimes 
only represented a subgroup, whilst the available data mostly referred to the overall 
cohort. Figure 2 presents the results of overall meta-analysis with a random effects 
overall pooled-estimated incidence of UVC-related PVT of 12% [95% confidence 
interval (CI): 5.91-20.16], with high heterogeneity [I2 = 97.5% (95%CI: 97.1%-97.9%)]. 
Figure 3 shows evidence of publication bias, as indicated by visual inspection of the 
funnel plot and by the Egger test for small study effects for the primary outcome [bias 
coefficient for the main analysis, 3.5309 (95%CI: 1.983176-5.078624); P = 0.0002].

When investigating the pre-specified subgroups analyses, we found the following 
data (Table 2): (1) Year of publication: Overall, 3/16 (19%) studies were published 
between 1980 and 2000, whereas 13/16 (81%) between 2001 and 2020; (2) Indication for 
thrombosis assessment: In 15/16 studies (94%), the diagnosis of thrombosis was made 
accidentally during routine screening controls, whilst in 1/16 study (6%) targeted 
imaging assessments were carried out in neonates with clinical concerns for a 
thrombus. In most studies it was not possible to extrapolate mean age at the time of 
PVT diagnosis (Table 2); (3) Type of diagnostic technique used to assess tip position: 
Tip position was never assessed exclusively by radiography or echocardiography 
alone, while it was investigated by abdominal US alone in 1/16 (6%) studies, by a 
combination of radiography and abdominal US in 14/16 (88%) studies and by a 
combination of radiography, abdominal US and echocardiography in 1/16 (6%) 
studies. Only a minority of studies (3/16 studies, with a total number of 39/195 
neonates) explicitly specified wrong tip position at the first imaging assessment, in 
UVC-related PVT cases[32,37,39]. However, most of the studies did not provide such 
information specifically for neonates who developed PVT, but rather for the overall 
population. Follow-up imaging controls were scheduled differently across studies; (4) 
UVC model: Information about UVC material, size and lumen number was only 
specified by a minority of studies. When the information was available, the studies 
reported the use of polyvinyl UVCs (n = 3/16) or polyurethane (n = 3/16) UVCs. 
When described, UVC size varied from 2.5 French to 5 French; (5) Thrombosis 
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Table 2 Characteristics of included studies

Ref. Study 
design

UVC 
with 
PVT

UVC 
without 
PVT

Dwel time 
UVC with 
PVT

Dwel time 
UVC without 
PVT

Indication to 
UVC control Type of imaging Country/territory

Levit et al[42], 2020 Prospective 1 2016 N/A N/A Clinical 
Suspicion

X-ray + US United States

Dubbink-Verheij et 
al[31], 2020

Prospective 13 27 N/A N/A Screening X-ray + US The Netherlands

Chen et al[15], 2020 Retrospective 7 1320 N/A N/A Screening X-ray + US Taiwan

Hwang et al[46], 
2020

Retrospective 15 54 N/A N/A Screening X-ray + US South Korea

Çakır et al[38], 2020 Prospective 13 83 10.5 ± 4.31 12.2 ± 4.11 Screening X-ray + US Turkey

Cabannes et al[32], 
2018

Prospective 51 53 N/A N/A Screening X-ray + US France

Derinkuyu et al[5], 
2018

Prospective 15 229 N/A N/A Screening X-ray + US Turkey

Chandrashekhar et 
al[45], 2015

Prospective 3 27 N/A N/A Screening X-ray + US India

Michel et al[37], 2012 Prospective 2 59 N/A N/A Screening X-ray + US + 
Echocardiography

France

Gharehbaghi et al
[39], 2011

Prospective 5 159 N/A N/A Screening X-ray + US Iran

Sakha et al[41], 2007 Prospective 17 33 2 ± 1.121 N/A Screening US Iran

Turebylu et al[21], 
2007

Prospective 2 26 N/A 6 Screening X-ray + US United States

Kim et al[30], 2001 Prospective 43 57 > 6 d in 
23/43

> 6 d in 6/57 Screening X-ray + US South Korea

Boo et al[44], 1999 Prospective 0 57 N/A N/A Screening X-ray + US Malaysia

Schwartz et al[40], 
1997

Prospective 1 99 3 4 (0-12)2 Screening X-ray + US United States

Yadav et al[43], 1993 Prospective 7 15 N/A N/A Screening X-ray + US India

1Results are expressed as mean ± SD, if reported.
2Results are expressed as median (range), if reported.
UVC: umbilical venous catheter; PVT: portal vein thrombosis; N/A: Not applicable; US: Ultrasound (abdominal).

localization and type: Only a minority of studies specified PVT exact localization 
within the portal system. When reported, the left portal vein was the most frequently 
involved. Similarly, only a minority of studies (in a total number of 84/195 neonates) 
specified if PVT was complete or partial[5,30,38-41]. According to the available data, 
PVT was complete in 27/84 (32%) cases and partial in 57/84 (68%) cases; (6) Dwell 
time: Only a minority of studies reported explicitly the mean UVC dwelling time in 
neonates with PVT (since most of the studies provided mean dwelling time for the 
overall population); and (7) Prophylaxis: Only 6/16 (37%) studies reported a prophy-
lactic administration of heparin[21,38,39,42,44,46].

DISCUSSION
To the best of our knowledge, this is the first systematic review specifically invest-
igating the issue of UVC-related PVT. One of the most important limitations that 
emerged when reviewing the scientific literature was the extreme heterogeneity of 
study designs across the investigated studies (Table 2 and Figure 3).

As a whole, the data achieved by our systematic review confirmed the relevant risk 
of PVT associated with umbilical catheterization. The mean reported pooled incidence 
of neonatal UVC-related PVT among studies was 12%, with a range which varied from 
0% to 49% from study to study (Figure 2). Such large difference might be attributed to 
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Figure 1 Flow-chart of study selection process.

multiple factors, including the different indication to imaging diagnostics, the different 
imaging time schedules, the heterogeneous UVC size/position/duration, and the 
proportion of preterm/term neonates[30,40,43]. Moreover, the time frame of research 
and publication may have influenced the incidence of UVC-related PVT as well. In 
fact, across literature, PVT was more frequently reported in the most recent studies. 
For example, a large multicenter registry assessing all thrombotic events occurring 
between 1989 and 1992 in 22 Canadian and 42 international centers from Europe, 
Australia and United States, recorded only 97 thrombotic events but did not explicitly 
report any case of PVT at all[47]. In contrast, a more recent large multicenter survey 
which included 187 children with a diagnosis of PVT (mean age at diagnosis: 4 years) 
reported a history of neonatal UVC placement in 65% of cases[19]. The higher 
incidence of PVT in recent years might be explained by the fact that clinicians are more 
aware of the thrombotic risk associated with the use of UVC and are more attentive to 
its detection. Furthermore, advances in US techniques make the detection of PVT 
easier.

The scientific literature emphasizes that UVC-related PVT is mostly related to 
improper tip position. Considering the small distance required for an UVC to become 
dislodged, UVC may migrate into the portal vein even following an initial proper 
positioning[2,15,16,42,48-52]. Therefore, tip location must be verified with accuracy not 
only soon after placement but also at regular intervals throughout time[30,31]. For this 
purpose, US is the ideal tool to check the position of the tip, since it is easy to perform 
for clinicians, it can be done at bedside and is not invasive for the patient.

When reviewing the literature, we found differences regarding the indication for US 
assessment, i.e., systematic surveillance in asymptomatic neonates with history of 
UVCs vs targeted diagnostic test in neonates with clinical concerns for a thrombus. 
However, in the studies which were finally included in the analyses, UVC-related PVT 
was mostly asymptomatic and only detected thanks to systematic imaging 
surveillance. Levit et al[42] found that in their neonatal unit, where routine US 
screening for PVT was not conducted, the rate of clinically identified thrombi was only 
0.15% of all UVCs placed and 1.1% of all UVC-associated complications. On the other 
hand, Kim et al[30] found clinically silent PVT after UVC placement in 43% of critically 
ill neonates undergoing systematic US assessment. This indicates that UVC-related 
PVT might be largely underestimated if not properly investigated[42], once more 
confirming the need for routine imaging screenings in all neonates with UVC to 
exactly determine the incidence of UVC related PVT. Notably, PVT might also be 
associated with short- and long-term severe complications, deserving meticulous 
clinical evaluation[5,15].
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Figure 2 Forest plot showing the incidence of umbilical venous catheter-related portal vein thrombosis. PVT: Portal vein thrombosis; CI: 
Confidence interval.

Figure 3 Funnel plot.

According to the results of our systematic review, UVC-related PVT was reliably 
investigated by US assessment. Nevertheless, we found large discrepancies across 
studies concerning data presentation. As described above in the text, only a minority 
of studies reported the exact thrombus position/extension within the portal system 
and if the occlusion was partial/complete. After PVT detection, imaging follow-up 
controls were performed with heterogeneous time schedules across studies. As a 
whole, however, the data confirmed that US is a valid, non-invasive, bed-side 
diagnostic technique for PVT detection. But whereas assessment of tip position is easy, 
requires a minimal training, and can be performed by the neonatologist bedside, 
detection of PVT at an early stage usually warrants a higher degree of US expertise. 
Besides the skill level of the radiologist/neonatologist, correct US examination might 
also depend on further technical factors (neonatal cooperation, abdominal gas 
distension, clinical instability, small-sized anatomical structures etc.) which may 
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influence the assessment.
A meticulous assessment of UVC tip position is needed to decrease catheter-related 

complications. Radiography is the most widely used technique to assess and follow-up 
UVC tip location[53,54]. However, most of the studies used only the anteroposterior 
view to assess tip location, although such view alone is not able to safely define the 
correct UVC tip position[54]. In case of wrong tip position within the portal system, 
radiography may show: (1) The tip below the diaphragm (below the vertebral body 
T10), overlying the liver; (2) Portal venous gas; and (3) Hypodiaphan lesions in the 
liver if fluid extravasation into liver parenchyma occurred[2,9,10,12,13]. However, 
radiographic assessments expose neonates to repeated ionizing radiations. US 
evaluation can be used in daily practice to check UVC tip position as well as the 
possible occurrence of UVC-associated hepatic complications. In fact, point-of-care US 
is able to assess in real-time UVC navigation and tip position during catheter 
placement[55]. Once UVC is correctly in place, US is the technique of choice to detect 
the development of UVC-related liver complications[5,30,31,53,56,57]. US and Doppler 
findings demonstrating hepatic complications include: (1) Detection of air in the portal 
venous system; (2) Portal venous thrombosis with impaired vascular patency; and (3) 
Liver parenchymal lesions presenting as nodular echogenic lesions/branched 
echogenic lesions/wide irregular heterogeneous lesions with laceration and the 
presence of peri-hepatic fluid[2,5,9,10,32]. Data exist comparing the ability of 
radiography and sonography to assess UVC positioning. A recent study found that US 
testing of UVC placement was able to identify catheter location in 100% of cases when 
compared to radiographic assessment[57]. Moreover, US is more accurate in the 
assessment of tip position compared to an estimation of catheter position achieved by 
its relationship to external structures on a radiograph[9,37,54,58]. Echocardiographic 
evaluation of UVC tip position was also assessed with success in recent years, 
although most studies focused on its ability to detect intra-cardiac abnormal tip 
position or atrial/inferior vena cava thrombosis, considering its limited ability to 
detect thrombi outside of the thoracic great vessels[24,59-62].

To date, the latest guidelines recommend the removal of UVCs after 7-10 d, 
although some authors reported an UVC in situ duration up to 28 d, once more 
proving how the management of UVCs is highly heterogeneous[4,22,24,38,42,61,63,
64]. Unfortunately, the mean UVC dwell time in neonates with PVT was explicitly 
reported only by a minority of the included studies. Some authors found comparable 
UVC duration both in neonates with or without PVT[38-40], whilst in a large 
prospective study Kim et al[30] found an increased risk of PVT with a dwell time 
longer than 6 d. Noteworthy, PVT occurrence may develop soon after UVC position, 
as demonstrated by studies describing its detection already 12 h after placement[37]. It 
could be put forward that the presence of an UVC may itself represent a trigger for 
PVT development, presumably by raising vascular pressure in the ductus venosus and 
slowing down blood flow[18], and that such risk may eventually increase if catheter-
ization persists. Such hypothesis deserves proper validation and large randomized 
controlled trials are warranted to achieve conclusive data about the benefits of early 
UVC removal.

Only a minority of studies described the occurrence of difficult or failed umbilical 
catheterization[30,65]. Considering that traumatic catheterization and/or failed 
insertion may induce vasculature injury and predispose to PVT by damaging the 
endothelial wall and decreasing portal flow[8], also the occurrence and number of 
failed attempts to UVC placement may play a role in PVT development and should be 
therefore considered either when programming diagnostic/follow-up controls for PVT 
or in the design of future studies.

The studies included in the final analyses reported the use of different models of 
UVCs, but unfortunately several studies did not specify the UVC model at all. Today, 
the most used UVC are dedicated catheters in polyurethane or in polyvinyl chloride 
but in the past several units used nasogastric tubes for venous umbilical catheter-
ization. Furthermore, most of the studies did not specify the size and the number of 
lumens of the catheters that have been used. The use of different UVC 
models/materials may have influenced the incidence of UVC-related PVT in each 
study.

Concerning the presence of hereditary risk factors, the literature is, once more, quite 
vague and inconclusive. Turebylu et al[21] evaluated prospectively the prevalence of 
hereditary prothrombotic mutations in neonates with umbilical catheterization 
developing thrombotic lesions (including two cases of PVT). Interestingly, the authors 
found no increase in the risk of catheter-related thrombosis in patients carrying such 
prothrombotic mutations. In contrast, Heller et al[25] found that among 65 neonates, 24 
of whom had PVT, the rate of genetic prothrombotic risk factors was higher than 
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healthy, age-/sex-matched controls.
Sepsis was suggested as possible risk factor for pediatric PVT development[3,66,

67]. However, only a minority of patients affected by PVT presented with infection[3]. 
Furthermore, as for the studies included in the present review, only a minority of 
authors explicitly reported the presence of sepsis in case of PVT.

Recently, Hwang et al[46] reported for the first time significantly higher serum 
calcium concentrations in infants with umbilical catheter-related thrombosis. The 
authors assessed that such finding may reflect a possible role of calcium as a clotting 
factor leading to a hypercoagulable state. Further evidence is however required to 
confirm these results.

Only a minority of the studies included in our review reported a prophylactic 
treatment with heparin which, moreover, varied in terms of dosage[21,38,39,42,46]. 
After UVC-related PVT development, spontaneous resolution may often occur in 
UVC-related PVT, but this warrants close monitoring to determine either progression 
or resolution of the thrombus[21,30,32,40,46,64,68-70]. However, in case of thrombus 
extension with occlusion of the portal venous tract or clinical deterioration, antith-
rombotic therapy with unfractionated or low molecular weight heparin can be 
considered[64,68,70,71]. Kim et al[30] investigated prospectively the occurrence of 
UVC-related PVT in 100 neonates by subsequent US assessment. The authors found 
that 43% of neonates had a clinically silent PVT and reported complete resolution in 
56% of neonates at follow-up controls, with recanalization being more frequent in 
neonates with partial rather than occlusive thrombi. Cabannes et al[32] investigated 
prospectively the occurrence of PVT in a cohort of patients including preterm 
neonates. PVT occurred in 53/123 of which 51 had an UVC. In these cases, the authors 
reported a spontaneous favorable evolution of left PVT in 95% of cases. In a 
prospective observational study, Dubbink-Verheij et al[31] investigated by serial US 
evaluations the incidence of catheter-related thrombosis in neonates with UVCs 
compared to a control group of neonates without UVC. The authors found the 
presence of thrombotic lesions in the UVC route in 30/40 cases (75%), of which 13 in 
the portal vein system. Most of the thrombotic lesions were asymptomatic and 
regressed spontaneously, whilst a minority required treatment with heparin. In 
contrast, Derinkuyu et al[5] treated with low-molecular-weight heparin all neonates 
with a diagnosis of UVC-related PVT (all described as asymptomatic). This hetero-
geneous approach may reflect the absence of solid evidence about safety/efficacy of 
antithrombotic therapy specifically addressing the neonatal period.

Our systematic review has multiple limitations, mostly attributable to the hetero-
geneity across studies. First, the intrinsic limitation of having included either 
retrospective studies or “old” studies (from 1980 onwards), i.e., performed at time-
points during which clinical approach to patients and awareness about PVT was 
presumably different compared to more recent studies. Second, the lack of correlation 
between PVT and UVC tip position in most studies. Third, the different study designs 
regarding the indication and time schedule for imaging assessment. Fourth, the 
different approach of clinicians about the use of prophylactic/therapeutic treatment in 
neonates with indwelling UVCs.

CONCLUSION
In conclusion, the use of umbilical lines requires a high index of suspicion for PVT 
development, especially if considering that the need for an UVC obviously preselects 
ill newborns in whom multiple risk factors for the development of thrombotic 
disorders may coexist. To avoid or minimize the risk of PVT, some crucial key-points 
have to be followed, as checking the correct position before infusing in the catheter, 
checking again the correct tip position every 48 h, and removing the UVC after a 
maximum of 7 d.

As a whole, this systematic review revealed relevant gaps also in knowledge about 
the optimal diagnostic approach and treatment for UVC-related PVT, maybe related to 
the lack of updated, evidence-based guidelines addressing step-by-step all the aspects 
of what the best approach to the management of this complication should be. 
According to our opinion, this represents a call to action addressed to researchers and 
clinicians to design large prospective randomized studies and to draft specific, 
concrete and updated guidelines.
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ARTICLE HIGHLIGHTS
Research background
The use of umbilical venous catheters (UVCs) in the perinatal period may be 
associated with severe complications, including the occurrence of portal vein 
thrombosis (PVT).

Research motivation
Although multiple observational studies have provided an overview about the risk of 
PVT after UVC positioning, no studies/reviews explored systematically this issue.

Research objectives
The main goal was to investigate the most accurate information about the actual 
incidence of UVC-related PVT in the neonatal setting, and to assess if any particular 
risk factor was systematically associated with the development of such complication.

Research methods
A systematic and comprehensive database searching (PubMed, Cochrane Library, 
Scopus, Web of Science) was performed for prospective cohort studies, retrospective 
cohort studies and case-control studies from 1980 to 2020. Incidence estimates were 
pooled by using random effects meta-analyses. The quality of included studies was 
assessed using the Newcastle-Ottawa scale.

Research results
Sixteen studies were considered eligible and included in the final analyses. The data 
confirmed the relevant risk of UVC-related thrombosis with a mean pooled incidence 
of 12%, although it varied across studies (0%-49%).

Research conclusions
This is the first systematic review specifically investigating the incidence of UVC-
related PVT. The use of UVCs requires a high index of suspicion, because its use is 
significantly associated with PVT.

Research perspectives
Large prospective randomized studies and updated guidelines are warranted in order 
to define the best management of this dreaded complication.
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