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Abstract
Liver cancer is a severe concern for public health officials since the clinical cases 
are increasing each year, with an estimated 5-year survival rate of 30%–35% after 
diagnosis. Hepatocellular carcinoma (HCC) constitutes a significant subtype of 
liver cancer (approximate75%) and is considered primary liver cancer. Treatment 
for liver cancer mainly depends on the stage of its progression, where surgery 
including, hepatectomy and liver transplantation, and ablation and radiotherapy 
are the prime choice. For advanced liver cancer, various drugs and immuno-
therapy are used as first-line treatment, whereas second-line treatment includes 
chemotherapeutic drugs from natural and synthetic origins. Sorafenib and 
lenvatinib are first-line therapies, while regorafenib and ramucirumab are second-
line therapy. Various metabolic and signaling pathways such as Notch, JAK/ 
STAT, Hippo, TGF-β, and Wnt have played a critical role during HCC pro-
gression. Dysbiosis has also been implicated in liver cancer. Drug-induced toxicity 
is a key obstacle in the treatment of liver cancer, necessitating the development of 
effective and safe medications, with natural compounds such as resveratrol, 
curcumin, diallyl sulfide, and others emerging as promising anticancer agents. 
This review highlights the current status of liver cancer research, signaling path-
ways, therapeutic targets, current treatment strategies and the chemopreventive 
role of various natural products in managing liver cancer.
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https://dx.doi.org/10.4254/wjh.v15.i1.1
mailto:akpandey23@rediffmail.com


Singh AK et al. Chemopreventive natural products in liver cancer

WJH https://www.wjgnet.com 2 January 27, 2023 Volume 15 Issue 1

Key Words: Liver cancer; Hepatocellular carcinoma; Signaling pathways; Therapeutic targets; Natural 
products; Chemopreventive

©The Author(s) 2023. Published by Baishideng Publishing Group Inc. All rights reserved.

Core Tip: Liver cancer is a serious public health concern and its therapy is stage-dependent. Approximately 
75% of all liver cancers are hepatocellular carcinoma, which is regarded as primary liver cancer. First and 
second-line therapies are used to manage the disease but they have their own limitations in terms of 
toxicity and other severe side effects. Natural products are the prime choice for the future treatment of 
liver cancer. With advancement in the knowledge about the molecular mechanism of the disease, newer 
strategies having fewer side effects and greater effectiveness are needed.

Citation: Singh AK, Singh SV, Kumar R, Kumar S, Senapati S, Pandey AK. Current therapeutic modalities and 
chemopreventive role of natural products in liver cancer: Progress and promise. World J Hepatol 2023; 15(1): 1-18
URL: https://www.wjgnet.com/1948-5182/full/v15/i1/1.htm
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INTRODUCTION
The liver is the human body’s largest solid organ, and has a pivotal role in removing various blood 
toxins and maintaining bioenergetics and cellular metabolism[1,2]. The liver is structured into four lobes 
that are made up of multiple lobules, each having a flowing duct toward the common hepatic duct, 
responsible for bile excretion[3]. Changes in lifestyle patterns and excessive use of medicines, alcohol 
and intake of various unhygienic supplements, impose further stress and finally damage the liver[4,5]. 
Excess alcohol and viral infections causing hepatitis are critical factors for liver cancer[6,7]. Each year 
approximately 0.8 million new clinical cases of liver cancer are diagnosed. From this disease, approx-
imately 830180 people died worldwide in 2020 alone, and this figure seems to be increasing daily, 
according to World Health Organization surveillance reports[8]. Among various liver cancer types, 
hepatocellular carcinoma (HCC) is the most common type and accounts for approximately 85% of 
primary liver cancer cases and often occurs in people with chronic liver diseases. It is the most common 
and second leading cause of cancer-related deaths in Asian and sub-Saharan African countries. It is the 
sixth most common in western countries due to escalating hepatitis C burden along with nonalcoholic 
steatohepatitis and obesity[9,10]. In patients with a preclinical history of chronic liver diseases and 
cirrhosis, the development of HCC is a complex process, including inflammatory damage leading to 
hepatocyte necrosis, regeneration and fibrotic deposition[11,12].

In recent years, multiple efforts have been made to manage HCC using various chemotherapeutic 
approaches, of which, targeted tyrosine kinase inhibitors, immunotherapy and anticancer combination 
therapies are the main ones[13]. However, chemoresistance and initiation and progression of tumors 
mainly reprogram cellular metabolism, particularly during HCC development[14]. These metabolic 
alterations are key factors promoting tumor growth, proliferation and requirements of cancer cells, such 
as increased energy production, macromolecular biosynthesis and maintenance of redox balance. The 
liver is the main site for contact with a variety of orally ingested therapeutic drugs, alcohol and other 
xenobiotics after intestinal absorption and this organ is susceptible to various chemicals[15,16]. These 
chemicals cause serious complications such as acute and chronic hepatitis, granulomatous hepatitis, 
cholestasis with or without hepatitis, tumors and vascular disorders[17].

Among various factors responsible for HCC, viral hepatitis and resulting cirrhosis cover a significant 
proportion of clinical cases. Various viral infections cause upregulation of hexosamine and membrane 
lipid biosynthesis, by modulating glutamine-fructose-6-phosphate transaminase (GFAT)1 and choline 
kinase A expression[18,19]. These findings have been further validated with some results where GFAT1 
is upregulated in HCC patients and its overexpression enhances tumorigenic phenotypes, as observed 
during in vitro studies[20]. Hepatitis B virus (HBV) also alters lipid metabolism, where viral proteins are 
known for inducing lipid accumulation via the upregulation of sterol regulatory element-binding 
protein (SREBP)1, peroxisome proliferator-activated receptor (PPAR)γ, as well as lipogenic and 
adipogenic enzymes, which are also reported during HCC progression[21,22]. HCC cells infected with 
hepatitis C virus (HCV) are also known to exhibit altered glycolysis and gluconeogenesis along with the 
activation of lipid-metabolism transcription factor PPARγ in human hepatocytes, similar to HCV 
infection[23]. Some early findings of HCC include the CD36 gene role in free fatty acid uptake and its 
increased expression during chronic alcohol consumption, thus modulating lipid metabolism, upregu-
lation of SREBP1c and PPARγ, and downregulation of sirtuin 1, collectively leading to impaired fatty 
acid oxidation[24,25]. Nonalcoholic fatty liver disease also manifests alterations in mitochondrial and 
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other metabolic pathways reminiscent of HCC metabolism. As mentioned earlier, modifications in the 
processes are primarily analogous to many contexts observed in HCC. However, there is still a need for 
a better understanding of various underlying mechanisms governing metabolic changes during HCC.

Surgical resection is the primary choice for treating HCC, where recurrence and metastasis mostly 
occur, thus limiting proper treatment for HCC. Due to the minimal number of drugs available for the 
treatment of HCC, chemotherapy has remained insufficient for successful management of HCC[26,27]. 
Although the first-line and second-line therapies can increase life span for several months, these have 
serious side effects and resistance problems[28]. Since natural products are promising and cost-effective 
against various illnesses, it seems reasonable to focus on HCC management using natural products 
where anticancer drugs are limited[2,4,29]. This review focuses on HCC and its associated pathways, 
descriptive illustration of various natural products, along with their anticancer properties. This review 
provides information to investigate further regarding liver cancer, signaling pathways, therapeutic 
targets, current treatment strategies and the chemopreventive role of various natural products.

LIVER CANCER
Molecular signaling pathways associated with hepatic cancer 
The liver is highly exposed to foreign materials, and their continuous processing is required for the 
body’s normal functioning. Alcohol consumption imposes stress on hepatic cells. This condition 
worsens when combined with a genetic defect in hepatic cells. These factors, either alone or in 
combination, alter the molecular signaling events responsible for controlled cellular proliferation and 
differentiation, ultimately leading to hepatic cancer[23]. Targeting these signaling pathways by 
therapeutic molecules is an important strategy. Inhibition of hepatic cancer-associated signaling 
pathways ameliorates cancer hallmarks such as increased cellular proliferation, reduced apoptosis, 
migration, and angiogenesis[24,25]. This section discusses recent advances in molecular signaling 
pathways associated with the different stages (initiation and development) of liver cancer and their 
therapeutic target potential. Critical signaling pathways related to HCC include transforming growth 
factor (TGF)-β, Wnt/B-catenin, Hedgehog, Notch, epidermal growth factor (EGF), hepatocyte growth 
factor (HGF), vascular endothelial growth factor (VEGF), Janus kinase (JAK)/STAT3, and Hippo 
signaling pathways[30].

The human liver possesses regeneration potential, and highly controlled molecular mechanisms 
regulate its repair and regeneration. The Notch signaling pathway is involved in the repair and 
regeneration of the liver, but its malfunction (loss or gain of function) is associated with hepatic 
diseases, including cancer[31]. Notch1 upregulation has been found in most hepatic cancer patients. 
Molecular profiling studies have revealed Notch target genes such as Hes1 and Hey1 in hepatic cancer 
patients with increased cellular proliferation, reduced apoptosis, increased metastasis and angiogenesis 
in hepatic cancer cells[32,33]. Notch signaling crosstalk with other molecular pathways (such as hypoxia 
signaling) is associated with hepatic cancer[34]. Cytokine signaling pathways such as JAK/STAT (Janus 
kinase/signal transducer and activator of transcription) have been involved in viral escape in virus-
induced HCC[35]. Viral invasion and liver injury stimulate hepatocytes and Kupffer cells to secrete 
sonic hedgehog (SHH) ligands. The ligand triggers Smoothened (Smo) receptor by interacting with the 
Patched protein, which initiates the Hippo signaling pathway in hepatic cancer cells. The activation of 
the Hippo signaling pathway results in increased transcription of effector genes (cyclin D, c-Myc, MMP, 
and CD133, etc.), affecting cell proliferation, invasion, and stemness properties of hepatic cancer cells[36-
38].

The TGF-β signaling pathway promotes epithelial to mesenchymal transition, angiogenesis, 
macrophage maturation, cancer stem cell population, and cellular proliferation in HCC. Crosstalk of 
TGF-β with other pathways (EGF, Wnt, SHH, etc.) is associated with liver cancer[39,40]. Increased Wnt 
ligand expression and/or mutations in the molecular components of the Wnt signaling pathway results 
in hyperactivation of the pathway in hepatic cancer cells. The binding of Wnt ligand to its receptor, 
followed by production of free β-catenin and its translocation to the nucleus, activates transcription of 
target genes (CD44, EpCAM, cyclin D1, c-Myc, etc.)[41]. Transcription of target genes ultimately 
increases cellular proliferation, stemness, angiogenesis and migration potential in hepatic cancer cells. 
Wnt signaling response to a hypoxic condition in the tumor microenvironment increases stemness 
potential in hepatic tumor cells. Like other solid tumors, liver cancer cells secrete various growth factors 
such as platelet-derived growth factor (PDGF), fibroblast growth factor (FGF), HGF, and VEGF. These 
factors in turn induce angiogenesis to ensure the appropriate supply of nutrients and oxygen. Liver 
cancer is the result of chronic liver cirrhosis, which ultimately takes the shape of advanced HCC. 
Available clinical data show that protein mutation increases as the disease progresses from the initiation 
stage to highly advanced cancer[42]. Mutation in TERT gene (catalytic subunit of telomerase reverse 
transcriptase) is associated with increased cellular proliferation in liver cancer cells. Clinical data 
revealed that TERT promoter mutation increased up to 10 times in HCC cells compared with low-grade 
dysplastic nodules[43]. It indicates that mutation plays an important role in the initiation and 
progression of the pathological stage of HCC. Besides, other mutations are only involved at the later 
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stage of the disease progression and produce more genetic diversified subtypes[44].

Recent development in therapeutic targets in liver cancer 
Sorafenib is a first-line chemotherapeutic agent approved for advanced HCC. It is a multikinase 
inhibitor targeting Raf, EGFR, VEGF receptor (VEGFR), PDGF receptor (PDGFR), FMS-like tyrosine 
kinase-3 (FLT3) and c-kit[45,46]. Clinical studies have revealed that sorafenib inhibits hepatic tumor 
growth and angiogenesis in advanced stage, but its prolonged exposure induces resistance[47-50]. 
Recently it has been reported that the second-line drugs such as lenvatinib, regorafenib and ipilimumab 
have a better therapeutic outcome, and increase overall disease-free survival in liver cancer patients[51]. 
Increased tumor growth and distance metastasis in sorafenib resistance patients and lower overall 
survival rates in sorafenib-treated liver cancer patients necessitate exploring new and potential 
therapeutic targets in liver cancer. Exploration of newer therapeutic agents and combinatorial drug 
regimens may also be explored to target the disease and increase the therapeutic outcome in patients. 
The current treatment strategy for liver cancer (first- and second-line therapies) is discussed in more 
detail in the subsequent section of this review.

Luo et al[52] identified emerging targets in liver cancer by utilizing comprehensive and integrated 
multiomics analysis. The study identified potential signaling pathways (Tp53/RB1, Wnt/β-catenin, 
PI3/Akt/mTOR, JAK/STAT, MAPK and TGF-β) and molecular events (telomere maintenance, cellular 
differentiation, chromatin remodeling and oxidative stress) in liver cancer. Mutation-mediated protein 
activation (CCND1, CTNNB1, TERT, PIK3CA, KRAS, KEAP1, NFE2L2, JAK3, FGF4, FGF19, and FGF3) 
and inactivation (TP53, Rb1, CDKN24, CHN2B, ATM, AXIN1, APC, ZNRF3, HNF1A, APOB, ALB, 
ARID1A/B, ARID2, SMARC2, BAP1, BRD7, KMT2C, PTEN, TSC1, TSC2, RPS6KA3, and ACVR2A) are 
associated with the pathophysiology of liver cancer and have emerged as therapeutic targets for hepatic 
cancer[52]. β2-spectrin (SPTBN1), a cytoskeleton protein is essential for the development of various 
organs, including the liver. It performs both structural (establishment and maintenance of cellular 
structure) and functional (apoptosis, cell adhesion, and cell cycle regulation) role[53]. Recently it has 
been reported that SPTBN1 induces lipogenesis-mediated liver cancer in high-fat diet fed experimental 
mice. The study proposed SPTBN1 as a potential therapeutic target for liver cancer[54]. Craig et al[55] 
studied the expression profile of cancer testis antigens (CTA) proteins in HCC. CTA was overexpressed 
in HCC patients and associated with poor overall survival and prognosis. Further experimental 
evidence of the study showed that melanoma-associated antigens family A (MAGE-A), a member of the 
CTA family, is responsible for increasing cellular proliferation, and decreased apoptosis and aggress-
iveness in HCC experimental models. The study revealed that MAGEA3 is involved in the developing 
hepatic carcinoma and could serve as a potential novel target for the disease[55]. Glypican (GPC)-3, a 
heparin sulfate proteoglycan, was significantly overexpressed in > 80% of HCC patients and was 
positively associated with poor diagnosis in the patients[56,57]. Clinical studies showed that targeting 
GPC-3 by developed antibodies significantly increased disease progression-free survival in patients 
with overexpressed GPC-3 in comparison with patients with low GPC-3 levels. Combination of 
chemotherapy and the immunotoxin (antibody + exotoxin) mediated GPC-3 targeting showed better 
therapeutic outcomes in liver cancer patients[58-60]. These facts indicate the therapeutic potential of 
GPC-3 proteins in liver cancer. Interaction between HGF and its receptor c-Met is important in liver 
regeneration. Overexpression and/or mutation in c-kit have been positively associated with liver cancer
[61]. Direct or indirect (via different signaling pathways) interaction among HGF and c-kit increases the 
cellular growth, angiogenesis and metastasis in liver cancer cells[62]. Preclinical and clinical studies 
reported that interrupting the association between HGF and c-kit resulted in a potential therapeutic 
response in liver cancer[63-65]. Thus HGF and/or c-kit are potential therapeutic targets in liver cancer. 
Various studies showed that cancer cells rewire their metabolic pathways to fulfil their increased need 
for nutritional requirement. Liver cancer cells also reprogram their lipid metabolic pathway to combat 
their increased nutritional requirements, which ultimately help in cellular proliferation, growth and 
survival. Preclinical studies have shown that biosynthesis of lipids and desaturation process play an 
important role in liver cancer initiation, progression and survival. Pope et al[66]beautifully reviewed 
aberrant biochemical/molecular players of lipid metabolism as potential therapeutic targets in liver 
cancer[66,67]. Overexpression of lipid metabolism enzymes such as fatty acid synthetase, ATP citrate 
lyase, stearoyl-CoA desaturase (SCD)-1, and acetyl CoA carboxylase have been associated with various 
cancers including liver cancer. Targeting these enzymes with small molecules showed a potential 
tumor-suppressive nature in experimental models of liver cancer. There is a need to study some enzyme 
inhibitors in the clinical trial, such as SCD-1 inhibitors[68-70].

miRNAs are short-length noncoding RNAs involved in regulating gene expression and thus 
controlling the normal physiology and disease pathophysiology by normal and abrupt expression, 
respectively[71]. Modulating miRNAs by therapeutic molecules, and/or using their respective 
inhibitors or mimics is an important strategy to target cancer at the gene level[72]. The study showed 
that aberrant expression of miRNAs (miR34, miR36, miR21, miR203, miR17, miR83, miR93, miR221, etc.) 
in liver cancer cells is associated with the increased cellular proliferation, metastasis, angiogenesis, drug 
resistance, cell survival and reduced apoptosis[72]. A miRNA-based mouse model of HCC has been 
developed to study inflammation, tumor initiation, metabolic alteration, and hepatocyte differentiation
[73]. The therapeutic potential of miRNAs in liver cancer has been shown by utilizing the miRNA 
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inhibition/replacement approach. One studyidentified miR-550a, miR-574, miR-424, let-7i, miR-549, 
miR-518 and miR-512 as being significantly associated with overall survival, using bioinformatics tools 
that indicated their therapeutic potential. The study proposed that these miRNAs should be studied in 
detail for their therapeutic potential in liver cancer experimental models[74]. Dai et al[75] compared the 
publically available liver cancer miRNA expression data with the human HCC (hepatitis B positive and 
negative) data (generated by the study group). The study identified miR-0308-3p as a novel miRNA 
associated with HBV-positive HCC. miRNA suppresses liver cancer cell proliferation and arrests cells in 
the G1/S phase by targeting CDK6 and cyclin1 genes[75]. These results show that the miR-0308-3p is a 
novel therapeutic target in liver cancer. Shao et al[76]developed personalized miRNA cocktail therapy 
by combining nanotechnology and gene therapy to treat liver cancer. The research group encapsulated 
mimics (of miR-199a/b-3p) and inhibitor (of miR-10b) into a polymer-based nanoplatform (PCACP). 
The in vitro and in vivo experiments showed the better anticancer potential of the PCACP/miR-cocktail 
system in comparison with mimic or inhibitor treatment alone in liver cancer experimental models[76]. 
This study showed a novel potential strategy to treat liver cancer by combining nanotechnology and 
gene therapy. Wang et al[77] studied the relation between LINC01018 (a long noncoding RNA), miR-
182-5p and FOXO1 protein in HCC. There was poor expression of the long noncoding RNA and FOXO1, 
and higher expression of miR-182-5p in the HCC patient samples. Forced expression of LINC01018 in in 
vitro and in vivo experimental models showed decreased cellular proliferation and induced apoptosis 
with increased miR-182-5p levels. The study showed liver cancer therapeutic potential of LINC01018 by 
miR-182-5p sponge-mediated downregulation of FOXO1 expression[77].

Current treatment strategies for liver cancer 
The dysregulated cell cycle, apoptosis, and many other key signaling pathways are linked to HCC 
pathogenesis. Chemotherapeutic approaches similar to different types of cancer are also reported with a 
limited number of drugs for the cure of HCC and various side effects. Sorafenib, an oral multitargeted 
tyrosine kinase inhibitor has been used as first-line treatment for advanced HCC, showing increased 
survival of approximately 12 mo compared with controls[78]. Various antiangiogenic agents such as 
bevacizumab (human monoclonal antibody directed against VEGF) and erlotinib (EGF receptor tyrosine 
kinase inhibitor) have also been studied and shown effective results in early studies[79]. Until 2016, 
sorafenib was the only FDA-approved first-line treatment for HCC, whereas lenvatinib has also been 
identified and is in use for advanced HCC[80]. Sorafenib acts as an inhibitor of intracellular tyrosine and 
serine/threonine protein kinases such as VEGF, VEGFR, PDGFR, c-Raf and b-Raf MAP kinases, which 
in turn induces autophagy. Due to drug resistance and side effects such as liver fibrosis, clinical usage of 
sorafenib is limited[63]. Long-term exposure to sorafenib also induces cancer cells with less E-cadherin 
content making them more invasive. Some second-line treatments are also available for HCC, including 
regorafenib, ramucirumab and cabozantinib, which are rarely used and are less efficient[28,51,79]. It is 
reported that chemotherapeutic drugs used for HCC treatments are limited in number and seem to be 
less effective, considering their efficacy, bioavailability and side effects. Considering the side effects of 
ongoing therapies, scientific pieces of evidence are also suggestive for the use of natural products for the 
management of HCC, since they can inhibit viral infection, inflammation, oxidative stress, metabolic 
disorders, angiogenesis and metastatic activity, which are known as prime contributors in HCC[2,80,
81]. Hence, there is strong demand for searching novel plant-based drugs for managing HCC with fewer 
side effects and less chemotoxicity. Therefore, several drugs are used to treat HCC to target the 
inhibition of some of these processes (Figure 1). The current therapeutic interventions for patients with 
HCC are divided into first- and second-line therapies. The pharmacological features of these drugs are 
discussed in the following section of this review.

First line therapies
Sorafenib: Sorafenib (BAY 43-9006, Nexavar) is the first-ever systemic drug as well as a standard 
therapeutic agent approved by the US FDA for treatment of liver cancer patients who cannot undergo 
surgical resection or liver transplantation[79]. Sorafenib was the only first-line treatment in the last 10 
years until the FDA approved lenvatinib as a frontline therapy in 2018. It is a tyrosine kinase inhibitor 
that targets VEGFR1 and VEGFR2 and PDGFR-β. It activates AMP-activated protein kinase (AMPK) 
that can block the formation of tumor blood vessels and inhibit proliferation of liver cancer cells[82]. For 
individuals with HCC, sorafenib has a clear advantage in terms of survival. Sorafenib improved overall 
survival considerably compared with placebo in two phase III clinical randomized controlled trials (10.7 
mo vs 7.9 mo and 6.5 mo vs 4.2 mo). However, the side effects associated with these clinical trials were 
diarrhea, tiredness, and hand–foot skin response[80,82].

Several factors hinder more people from obtaining benefits after sorafenib treatment. Because of the 
genetic variability of HCC and other factors, around 40% of people with HCC can benefit from 
sorafenib. Sorafenib was more beneficial for some patient categories in several trials. The two clinical 
studies mentioned above featured only a small number of patients; all of whom had good liver function. 
These individuals were termed Sorafenib Hepatocellular Carcinoma Assessment Randomized Protocol 
(SHARP)-eligible patients, and only SHARP-eligible individuals benefited from sorafenib treatment[79,
82]. Furthermore, the effectiveness of sorafenib is greater in HCV-infected individuals than in others 
who have always been resistant to sorafenib. Primary resistance is another term for the unclear 
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Figure 1 First- and second-line therapies and their targets. VEGFR: Vascular endothelial growth factor receptor; PDGFR: Platelet-derived growth factor 
receptor; FGFR: Fibroblast growth factor receptor.

mechanism of this phenomenon[82,83]. However, some research has uncovered probable explanations. 
Gene polymorphism may be a crucial factor influencing sorafenib function. Polymorphisms in the ATP 
binding cassette (ABC) subfamily B member 1 (ABCB1), ATP binding cassette subfamily G member 2 
(ABCG2), solute carrier family 15 member 2 (SLC15A2) and endothelial nitric oxide synthase (eNOS) 
have been linked to the action of sorafenib[83]. This was confirmed by Silvia and co-workers who 
reported that β-caryophyllene oxide inhibits ABC proteins and causes HCC cells to become chem-
osensitized to sorafenib[84].

Lenvatinib: Lenvatinib (E7080, Lenvima) is an antitumor drug that belongs to the quinoline carboxi-
amides. The IUPAC name of lenvatinib is 4-[3-chloro-4-(cyclopropylcarbamoylamino) phenoxy]-7-
methoxyquinoline-6-carboxamide. Lenvatinib acts as multikinase inhibitor via targeting VEGFR 1-4, 
PDGFR-α, PDGFR-β, FGFR 1-4, tyrosine kinase receptor (KIT) and rearranged during transfection 
receptor (RET) that leads to angiogenesis inhibition, and reduced vascular permeability of the tumor 
microenvironment[28]. Lenvatinib is an effective drug that increases overall survival in patients with 
advance HCC and whose tumor cannot be removed by surgery. In a phase I clinical trial, lenvatinib (12 
and 8 mg) was effective in patients with advanced HCC and Child–Pugh class A or B. The adverse 
effects observed during 12 mg daily lenvatinib oral treatment were hypertension, decreased body 
weight, loss of appetite fatigue, and diarrhea[28,70]. A Phase II clinical trial was conducted to evaluate 
the effectiveness of lenvatinib in advanced unresectable HCC. The trial was conducted on 46 patients 
who received 12 mg lenvatinib orally once daily for 28 d, and lenvatinib demonstrated high efficacy 
with a good toxicity profile. However, the efficacy of lenvatinib was influenced by body weight[85,86].

Second-line therapies
Regorafenib: Regorafenib (BAY-73-4506) with the brand name Stivagra is an oral multikinase receptor 
antagonist developed by Bayer and approved by the US FDA in June 2017 to treat unresectable 
advanced liver cancers. Despite its structural similarity with sorafenib, regorafenib showed more effect-
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iveness in inhibiting the activities of various protein kinases associated with neovascularization (VEGFR 
1–3 and tyrosine kinase with immunoglobulin-like loops and epidermal growth factor homology 
domain-2 (TIE2), oncogenesis (KIT, RET, Raf1 and BRAF) and tumor microenvironment (PDGFR-β, 
PDGFR-α and FGFR) with better drug tolerance profile[87,88]. HCC patients treated with regorafenib 
(160 mg/d for 28 d) showed better overall survival, i.e., 10.6 mo compared with 7.8 mo in the placebo 
group in a randomized, double-blind, placebo-controlled phase III trial. However, the main side effect 
was hypertension, unlike body weight loss, hepatorenal dysfunction, and fatigue in sorafenib-treated 
individuals[87,88].

Ramucirumab: Ramucirumab, sold under brand name Cyramza and others, is a recombinant mono-
clonal antibody (IgG) that targets VEGF2 and blocks its binding to VEGFR ligands. The anticancer 
activity of ramucirumab as second-line therapy was evaluated in Phase II clinical trials in advanced 
HCC patients with a high level of α-fetoprotein. These trials found that individuals who received 
ramucirumab had a better overall survival rate than those who received placebo; the drug was well 
tolerated and had an acceptable toxicity profile[89].

Future promising therapeutic drugs 
Pirfenidone: Pirifenidone (Esbriet®) is an orally administered antifibrotic, antioxidant, and anti-inflam-
matory drug that has been studied in clinical and preclinical trials to treat hepatic and idiopathic 
pulmonary fibrosis[86]. Pirifenidone was effective in causing cell cycle arrest at G0/G1, eventually 
inhibiting cell proliferation in an in vitro model. Similarly, it induces apoptosis in HepG2 cells via Wnt/β
-catenin signaling pathway. Pirifenidone has also been demonstrated to be a potent antifibrotic agent at 
a dose of 300 mg/kg in a carbon tetrachloride-induced HCC mouse model. However, the cellular 
mechanisms behind the responses elicited by pirifenidone remain unknown[70,86]. Figure 1 sum-
marizes the pharmacological properties of drugs used in liver cancer[86].

GUT MICROBIOTA AND LIVER CANCER 
Multiple lines of scientific evidence have suggested the significant contribution of gut microbes to 
critical aspects of human health. Even though the gut microbiota offers substantial benefits to the host, 
particularly in terms of immunity and metabolic activities, there is still growing evidence of the role of 
gut microbes in several pathological conditions. They promote disease progression not just locally, as in 
chronic inflammatory bowel syndrome, but also in other parts of the body, such as liver, brain and heart
[91]. Similarly, there is mounting evidence that the gut microbiota plays a significant role in carcino-
genesis via its local and long-distance effects. The liver is intimately connected to the gut through the 
portal vein. The liver is directly exposed to microbial metabolites and microbe-associated molecular 
patterns (MAMPs) that can induce inflammatory reactions through pattern-recognition receptors, and 
receive nutrient-rich blood from the gut. The multilayer epithelial barrier is responsible for minimal 
hepatic exposure to MAMPs. Although, as in chronic liver diseases, altered gut barrier and microbiota 
composition increases the incidence of inflammation and progression of liver disorder and thus raises 
the risk of HCC[92].

According to accumulating scientific evidence, intestinal dysbiosis appears to have a significant role 
in developing chronic liver disease and HCC. Metagenomic studies have demonstrated significant 
changes in the gut microbiota composition in a variety of chronic liver diseases as well as in people with 
cirrhosis[93]. Patients with advanced liver disease and cirrhosis have an increase in potentially harmful 
bacteria and a decrease in microorganisms with beneficial qualities in their gut microbiomes[94,95].

Toll-like receptor (TLR)4 is found in various liver resident cells such as Kupffer cells, hepatic stellate 
cells (HSCs), endothelial cells, and hepatocytes. A study conducted by Dapito and colleagues in bone 
marrow chimeric mice concluded that the presence of TLR4 on these liver-resident cells promotes 
fibrogenesis and hepatocarcinogenesis[96]. Lipopolysaccharide (LPS), a Gram-negative bacterial cell 
wall component, is produced through the leaky gut and mainly targets Kupffer cells and HSCs, which 
appears to increase the incidence of hepatocarcinogenesis. Activation of TLR4 in HSCs causes nuclear 
factor (NF)-κB-mediated increased expression of epiregulin, a hepatic mitogen belonging to the EGF 
family, and reported to have strong mitogenic potential in hepatic cells[96,97]. The finding was 
confirmed when hepatocarcinogenesis decreased in epiregulin-deficient rats treated with N-nitrosodi-
ethylamine (DEN)-CCl4. Another important method through which the LPS–TLR4 axis promotes HCC 
development is through prevention of NF-κB-mediated hepatocyte apoptosis[96,97].

BIOACTIVE NATURAL PRODUCTS AGAINST LIVER CANCER AND MOLECULAR 
MECHANISMS INVOLVED
For centuries, bioactive natural products from plants have been extensively used to treat many human 



Singh AK et al. Chemopreventive natural products in liver cancer

WJH https://www.wjgnet.com 8 January 27, 2023 Volume 15 Issue 1

diseases. Recent molecular evidence explains their modes of action, metabolic regulation, and identi-
fication of their biological targets. This evidence adds value to their potential use in the chem-
oprevention of HCC. The promising candidate bioactive natural products are discussed in this section, 
where their possible role in liver cancer therapy has been reported.

In vitro studies
In the last two decades, growing evidence has suggested an affirmative role of resveratrol (polyphenolic 
natural product) in the chemoprevention of liver cancer. Its application is limited due to its poor 
bioavailability. Previously, resveratrol was shown to negatively regulate the cellular proliferation of rat 
hepatoma and human hepatoblastoma cell line HepG2 at 1–150 μmol/L concentration[98]. Decreased 
proliferation and invasion of HepG2 cells and AH109A rat ascites hepatoma cells were also reported. In 
subsequent studies, resveratrol induced apoptosis in in vitro studies using HepG2and H4IIE rat 
hepatoma cells[98]. Notas et al[99] showed that even 2 h treatment with resveratrol (10-6–1 μmol/L) in-
terfered with DNA replication and caused cell cycle arrest. Roncoroni et al[100] using SK-ChA-1 human 
cholangiocarcinoma cells in a multicellular tumor spheroid model showed arrest of cell cycle at G1/S 
phase, at a concentration up to 64 μmol/L resveratrol. Resveratrol limited cellular proliferation and 
mobility by activating autophagy through p53 and inhibiting phosphoinositide 3-kinase/Akt in MHCC-
97H cells. Autophagy thus explained the increased chemopreventive property of resveratrol. A study on 
HepG2 and Hep3B cells identified that resveratrol regulates the PTEN/Akt signaling pathway through 
downregulation of membrane-associated RING-CH (MARCH1), which ultimately aggravates apoptosis 
and inhibits cellular growth[101].

A curcumin analog, CUR3d, inhibited the proliferation of liver cancer cells at 100 μmol/L, which was 
due to downregulation of PI3K/Akt and inhibition of the NF-κB pathway, which are responsible for 
cancer cell growth[102]. In another study, supplementation of curcumin (1 g/kg) significantly inhibited 
the growth and liver metastasis of colorectal cancer cells[103]. Microemulsion formulation improve 1225 
times the water solubility of myricetin and enhanced its antiproliferative activity against human liver 
cancer cells (HepG2)[104].

Extract of immature plum induced extrinsic apoptosis in HepG2 cells as demonstrated by caspase-1, 
-3 and -8 activation as well as DNA fragmentation[105]. Two natural polyphenolic compounds (epic-
atechin and gallocatechin gallate) were quantified in the extract and might be responsible for the 
anticancer potential[106]. The garlic extracts consist of multiple organosulfur components and flavanols 
that obstruct different stages of the carcinogenic process. Diallyl sulfide is one of the important 
component of garlic extract and has inhibited diethylnitrosamine (DEN) induced HCC. Another 
constituent of Allium extracts, S-allyl cysteine, has established antiproliferative and metastatic activity 
in the management of HCC[107]. 6-Shogaol and 6-gingerol are the most common active constituents in 
ginger that display anticancer activity against hepatoma cell lines by triggering reactive oxygen species 
(ROS)-mediated apoptosis and controlling expressionof matrix metalloproteinases (MMP)-9 and tissue 
inhibitor of metalloproteinase-1[108]. In vitro and in vivo activities of many natural products are 
depicted in Table 1.

In vivo studies
Intraperitoneal resveratrol administration (1 mg/kg) for 7 d in male Wistar rats implanted with AH-130 
hepatoma cells arrested tumor growth. Liu et al[109] showed the immunomodulatory role of resveratrol 
(500, 1000, 1500 mg/kg for 10 d) in BALB/c mice implanted with H22 hepatoma cells. Rajasekaran et al
[110] studied the chemopreventive role of resveratrol in a model of DEN-induced HCC in male Wistar 
rats. It induced apoptosis by PARP cleavage, caspase-3 activation, p53 upregulation and cytochrome c 
release when given early at a dose of 200 mg/kg. Gao et al[111] tested the chemopreventive property of 
resveratrol in MHCC97-H-inoculated athymic nude mice. The study identified its antitumor activity by 
downregulating the HGF/c-Met signaling pathway. Resveratrol-gold nanoparticles have shown 
improved anticancer effects compared with resveratrol alone in HEPG2 cells and xenografted BALC/c 
nude mice[112].

Lycium polysaccharide portion (LPP) is the most crucial part of Lycium barbarum that has abundant 
biological activities such as antioxidant, neuroprotective, immunoprotective, antitumor, and glucose 
metabolism regulatory activities. LPP inhibited the propagation of hepatocytes and led to apoptosis of 
liver hepatocytes, thus indicating its anticancer role. A clinical trial showed that consumption of LPP 
juice leads to elevation in interleukin (IL-2), IgG, serum antioxidants levels, lymphocyte count and 
reduced levels of lipid peroxides[113]. Berberine mediates anticancer activity by inhibiting antiapoptotic 
protein Bcl-2, and activating the caspase cascade and proapoptotic pathway of Egr1-NAG-1 
(nonsteroidal anti-inflammatory drug-activated gene). Berberine facilitates phosphorylation of AMPK, 
thus increasing the concentration of p-AMPK/total AMPK. The AMPK-mediated mitocho-
ndrial/caspase pathway by raising the Bax/Bcl-2 ratio may be responsible for the anticancer activity of 
berberine. Long-lasting polyethylene glycol-based liposomal berberine displayed in vivo and in vitro 
anti-HCC activity[114]. Paclitaxel-loaded nanoparticles, followed by galactosamine conjugation on the 
formed nanoparticles, were effective in reducing the tumor size through apoptosis activation and cell 
cycle arrest[115]. The efficacy of many natural products against liver cancer is shown in Table 1.
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Table 1 Effect of natural products on liver cancer

Natural 
products Extract/phytochemicals

Experiment model (in 
vitro/in vivo/clinical 
trials

Tested 
concentration Medicinal effects Ref.

Broccoli Sulforaphane In vitro (murine hepatoma 
Hepa 1c1c7 and human 
HepG2 cells)

1-20 μmol/L Sulforaphane showed positive effect on Phase II 
detoxification enzyme. Sulphoraphane treatment 
resulted in increased expression of CYP1A1 and 
quinone reductase

[116]

Procynidins rich grape 
crude extract

In vitro (HepG2 human 
liver cancer cells)

0-120 μg/mL Grape extract in concentrations greater than 20 
μg/mL (20.4 μmol/L) was cytotoxic to HepG2 
human liver cancer cells, with maximal toxicity 
of 67.2% and ED50 of 49.6 μg/mL (50.5 μmol/L)

[117]Grape

Flavan-3-ol rich extract In vitro HepG2 and breast 
cancers (MCF-7) cells

0-60 μg/mL Grape extract showed dose dependent 
cytotoxicity via Induction of apoptosis, DNA 
damage and suppression of oncoprotein Her-2 
expression. Treatment also resulted in increased 
NO production in cancer cell

[118]

Mung bean 
sprouts

Extract In vitro [Human cervical 
(HeLa) and hepatocar-
cinoma cells (HepG2)]

9.37 to 300 
mg/mL

Mung bean sprouts was found to be a potent 
anticancer agent. The cytotoxic effect of Mung 
bean sprouts extract on HeLa, expressed as IC50, 
was 13.3 mg/ml 163.97 mg/ml while on HepG2 
cells was 14.04 mg/ml. It also increases 
apoptosis, anti-tumor cytokines (TNF-and IFN-β
), IFN-γproduction and subsequently up 
regulated the cell-mediated immunity

[119]

Cinnamon Isoobtusilac-tone A In vitro (Hep G2 cells) 100 μmol/L Induces apoptosis in cancer cell [120]

Ginger 6-shogaol, 6-gingerol In vitro (Human hepatoma 
HepG2 and Hep3B cells)

10 μmol/L and 
50 μmol/L

The migratory and invasive activity of HepG2 
and Hep3B cells were decreased in doses 
dependent manner post 6-shogaol, 6-gingerol 
treatment. It suppresses the metastatic activity via 
down regulation of matrix metalloproteinase 
(MMP)-9 and urokinase type plasminogen and 
upregulation of tissue inhibitor metallopro-
teinase protein

[108,121]

Asparagus asparanin A In vitro (HepG2 cells) 0-30 μmol/L Treatment with asparanin A resulted in cell cycle 
arrest at G2/M phase and apoptosis in HepG2 
cells. Following treatment of HepG2 cells with 
asparanin A, cell cycle-related proteins including 
cyclin A, Cdk1 and Cdk4 were down-regulated, 
while p21WAF1/Cip1 and p-Cdk1 
(Thr14/Tyr15) were up-regulated

[122]

Tomatine In vitro (HepG2 cells) 10, 50 and 100 
μg/mL

Induces antigen-specific cellular immunity and 
direct destruction of cancer cell membranes

[123]Tomato

Lycopene In vivo (N-nitrosodi-
ethylamine induced 
hepatocarcinogenesis in 
female Balb/c mice)

5 mg/kg bw Lycopene treatment causes modulation of 
apoptosis related genes (enhanced expression of 
caspase 3 and 9 and p53 and decreased 
expression of Bcl-2). Lycopene exhibits pro-
oxidant activity in tumor that supports observed 
enhanced apoptosis. This increased apoptosis is a 
chemopreventive action of lycopene in liver 
cancer

[124]

Plum Extract Benzopyrene-induced 
hepatocarcinogenesis in 
rats

2.5 or 5 g/kg bw Plum extracts may counteract toxic effects of 
carcinogens and benzopyrene, and therefore 
have chemopreventive efficacy

[125]

Pomegranate Emulsion Diethylnitrosamine 
(DENA)-induced hepato-
carcinogenesis inrat

1 or 10 g/kg bw Treatment for 18 wk in rats resulted in reduced 
incidence, number, multiplicity, size and volume 
of hepatic nodules, precursors of HCC. It showed 
chemoprevention through potent antioxidant 
activity as the expression of Nrf-2 is increased in 
pomegranate treated rats

[126]

Citrus fruit Auraptine Diethylnitrosamine 
(DEN)-induced hepatocar-
cinogenesis in rat

5 or 10 g/kg bw It suppresses tumor progression in DEN- 
challenged rats by negative selection for cancer 
cells with β-catenin mutation

[127]

Pepper glycoprotein of 24 kDa treatment in rats 
causes increased activity of natural killer cell and 
ultimately prevention of DENA induced liver 
carcinogenesis via immunomodulation and 

Pepper Glycoprotein In vivo (DEN induced 
hepatocarcinogenesis in 
mice)

20 mg/kg bw [128]
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promotion of apoptosis

CHALLENGES AND WAY FORWARD IN NATURAL-PRODUCT-BASED ANTI-LIVER 
CANCER THERAPEUTICS
Natural products have become a focus of attention in anticancer drug discovery due to unsolved 
problems related to current chemotherapy, such as drug resistance and toxicity. It should be noted that 
from 1940 to 2014, approximately 50% of the small molecules approved for cancer treatment were either 
natural compounds or their derivatives[129,130]. Natural products for anticancer therapy have had 
some therapeutic limitations, which affect therapeutic outcome, lower bioavailability, and selected and 
targeted delivery. This section highlights these issues, recent advances in the field, and future potential. 
Advancements in computational biology/pharmacology/chemistry and high-throughput in vitro 
screening of natural anticancer drugs have highly accelerated the drug discovery process, resulting in a 
lead molecule. Most of the time, it is frustrating to obtain unsatisfactory activity of the lead natural 
molecule in in vivo experiments and/or clinical studies, which results in lesser activity and 
nonselectivity for a given therapeutic target. It has been proposed that delivering natural products to a 
targeted site using an appropriate delivery system may improve the efficacy by increasing their 
bioavailability. The process may also decrease the off-target effects and toxicity related issues in a given 
therapy[131]. Different means of drug delivery or appropriate vehicles have been discussed elsewhere
[132]. The use of these tools/vehicles is dependent on their biocompatibility, degradability and 
functional limitations. However, the concept is promising but has its limitations (rapid elimination from 
the body, toxicity and inflammation), which still need to be addressed[132,133].

To consider the efficacy of natural products in living systems, it is essential to understand their 
pharmacokinetics. Absorption, distribution, metabolism and excretion may primarily affect the 
therapeutic outcome of the natural products. Absorption of a particular drug is influenced by the mode 
of administration, i.e., whether it is oral, intravenous or inhalation. In each case, the drug shows 
different kinetic behavior in relation to its therapeutic outcome. Factors such as permeability of barriers, 
pH of cellular/body compartments, binding affinity with the off-targets and their fat solubility affect the 
distribution of the natural products in the body. Drug metabolism in the liver or gut introduces 
alterations in the structure of natural products, as well as irreversible secretion of the drugs through the 
hepatobiliary system or kidneys, which affects the plasma level of the drug and its efficacy. Few reports 
are available on the pharmacokinetics of natural products (such as glycyrrhetinic acid, curcumin, 
ethiodized oil) in liver cancer experimental models or patients[103,104,134]. Most of the lead anti-liver 
cancer natural products have not yet been studied for the above pharmacokinetic parameters in experi-
mental models. Information on the pharmacokinetic parameters of the particular natural products may 
shed light on the efforts that should be taken to improve their therapeutic efficacy in in vivo experi-
mental models and liver cancer patients.

New approaches have been introduced to improve the natural product delivery and specifically 
target liver cancer cells. Previously it has been reported that tissue-targeted drug delivery significantly 
enhances the therapeutic efficacy of anti-liver cancer drugs, confining their bioavailability within the 
tumor. The concept of tissue targeted drug delivery also minimizes the side effects such as toxicity by 
reducing systemic bioavailability to other organs of the body. Anti-liver cancer drugs combined with a 
delivery system providing galactose residues have been utilized to target liver cells (with asialogly-
coprotein receptors) specifically[135,136]. Liposomes have been used as carriers for anticancer drugs 
due to various advantages such as improved drug stability in the body without altering the structural 
integrity of the drug[136,137]. Li et al[138] studied the effect of natural product encapsulated galacto-
sylated liposomes (NPEGLs) to assess their anticancer activity and liver cancer cell selectivity. The study 
found that anti-liver cancer activity of the NPEGLs was significantly increased compared with normal 
natural product–liposomes and free natural product treatment in liver cancer cells. Enrichment of 
NPEGLs with galactosylated stearate significantly increased the uptake of the delivery system by the 
liver cancer cells compared with gastric and non-small cell lung cancer cells[139].

Toxicity due to the off-target effect of the anticancer therapeutic drug is also an important problem in 
managing liver cancer at the clinical level. It is challenging to increase bioavailability and decrease off-
target effects of anti-liver cancer natural products without compromising therapeutic efficacy. This 
situation is more difficult when increased effectiveness of the product is required. Nanotechnology-
based approaches are promising to provide the solution to this problem. It is possible to deliver the 
natural products using nanotechnology-based strategies, which not only increase the product’s 
biological activity but also enhance its bioavailability. Targeted delivery using these strategies also 
lowers toxicity by reducing the systemic circulation of the product. Gera et al[140] synthesized a 
phytocomposite nanoparticle and studied its anticancer efficacy in liver cancer cells. The natural-
compound-based nanoparticles produced significantly higher antiproliferative activity in liver cancer 
cells in comparison with free natural product (non-nanoparticle form). The study suggested that the 
increased activity of the nano-formulation of the natural product in comparison with its non-nano form 
might be attributed to its well dispersed, small-sized particles, and thereby increased cellular uptake. 
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The study also suggested that the attraction of the formulation towards the acidic environment of liver 
cancer cells enhances the output of targeted therapy with less or no effect on normal cells. Thus, this 
type of strategy, in combination with other approaches (such as receptor targeting), could be utilized to 
selectively target liver cancer cells to avoid the off-target effects and increase the drug’s bioavailability
[141,142].

CONCLUSION
In recent years, liver cancer has emerged as a significant public health concern worldwide. Various 
factors such as viral infection, alcohol abuse, drug-induced liver injury, or a high fat diet are the leading 
causes of mortality due to liver diseases. Different signaling pathways, including TGF-β, Wnt/B-catenin, 
Hedgehog, Notch, EGF, VEGF, JAK and Hippo, are responsible for the progression of liver cancer. First- 
and second-line treatments produced better therapeutic outcomes than chemotherapy and increased 
overall disease-free survival in liver cancer patients. Intestinal dysbiosis appears to have a significant 
role in developing chronic liver diseases. The available modes of treatment include numerous side 
effects that could be minimized with the use of natural products such as resveratrol, curcumin, diallyl 
sulfide and many more. However, natural-product-based anticancer therapy also has some limitations, 
mainly concerning the therapeutic outcome, lower bioavailability, and newer targeted delivery 
approaches. Targeted drug delivery using NPEGLs and nano-formulations increased the biological 
activity and bioavailability of the drugs.
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Abstract
Liver disorders are one of the most common pathological problems worldwide. It 
affects more than 1.5 billion worldwide. Many types of hepatic cells have been 
reported to be involved in the initiation and propagation of both acute and ch-
ronic liver diseases, including hepatocytes, Kupffer cells, sinusoidal endothelial 
cells, and hepatic stellate cells (HSCs). In addition, oxidative stress, cytokines, 
fibrogenic factors, microRNAs, and autophagy are also involved. Understanding 
the molecular mechanisms of liver diseases leads to discovering new therapeutic 
interventions that can be used in clinics. Recently, antioxidant, anti-inflammatory, 
anti-HSCs therapy, gene therapy, cell therapy, gut microbiota, and nanoparticles 
have great potential for preventing and treating liver diseases. Here, we explored 
the recent possible molecular mechanisms involved in the pathogenesis of acute 
and chronic liver diseases. Besides, we overviewed the recent therapeutic in-
terventions that targeted liver diseases and summarized the recent studies 
concerning liver disorders therapy.

Key Words: Liver disorders; Autophagy; Gene therapy; Anti-hepatic stellate cells; Cell 
therapy
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Core Tip: Acute and chronic liver diseases are worldwide problems with multifactorial pathogenesis. The 
exact pathological mechanism of several liver disorders is still unclear. However, many suggested 
mechanisms are involved, including but not limited to oxidative stress, inflammation, autophagy, and 
microRNA. The underlying perspective mechanisms are helpful in the discovery of new and effective 
therapeutic interventions for this annoying problem.

Citation: Ali FE, Abd El-Aziz MK, Sharab EI, Bakr AG. Therapeutic interventions of acute and chronic liver 
disorders: A comprehensive review. World J Hepatol 2023; 15(1): 19-40
URL: https://www.wjgnet.com/1948-5182/full/v15/i1/19.htm
DOI: https://dx.doi.org/10.4254/wjh.v15.i1.19

INTRODUCTION
Chronic liver diseases are a significantly prevalent health problem contributing to the rising burden on 
countries daily. Specifically, liver cirrhosis - a result of chronic liver damage - is considered one of the 
well-known causes of morbidity and mortality all over the globe. According to Cheemerla and 
Balakrishnan[1], liver cirrhosis was responsible for the worldwide death of approximately 1.32 million 
patients in 2017. Not only that liver cirrhosis ranked 11th among the leading causes of mortality, but it 
has also become a habitual cause of living with a disability[2].

Acute liver injury is characterized by an abrupt decline in hepatocyte function. Unlike liver cirrhosis, 
acute liver failure (ALF) typically has no underlying liver problem and worsens rapidly in days or 
weeks. Regarding etiology, hepatitis B viral infection and medication toxicity, particularly from 
acetaminophen (APAP), are the primary contributors to ALF. However, other types of hepatitis, 
autoimmune disorders, Wilson’s disease, and cardiovascular diseases are less common suspects for ALF
[3]. On the contrary, there are two classes of chronic liver injuries: Cholestatic conditions that block the 
bile flow and persistent hepatotoxicity. Various factors can lead to hepatotoxicity, such as hepatitis B 
viruses (HBV), hepatitis D viruses, and hepatitis C viruses (HCV), alcohol abuse, or non-alcoholic 
steatohepatitis (NASH). At the same time, biliary cholangitis, atresia of bile ducts, and primary scl-
erosing cholangitis can cause cholestatic injuries. Regardless of the causative agent, chronic hepatic 
inflammation causes liver fibrosis which, if not reversed, progresses to liver cirrhosis and hepatocellular 
carcinoma (HCC)[4,5].

Different physiological mechanisms have been involved in liver injury, including autophagy and 
their different types, microRNAs (miRNAs) and their crucial effect, inflammation, hepatic cell 
regulation role, and the main effects of transcription factors and inflammatory cytokines. Considering 
the therapeutic interventions for liver diseases, there are specific treatments that are basically dependent 
on the cause of the disease. For instance, alcohol cessation, acetylcysteine for APAP toxicity, antiviral 
medication for hepatitis viruses, and immunosuppressants for autoimmune hepatitis are considered[3].

Recent studies have discussed various interventions for liver disorders, such as antifibrotic agents, 
cell-based therapies, gut microbiota, different nanoparticle systems, gene therapy, and much more. 
Consequently, we aim to discuss the newly characterized pathophysiological mechanisms and the most 
appropriate and recent therapy discovered to be effective on acute and chronic liver disorders 
(Figure 1).

DIFFERENT PATHOPHYSIOLOGICAL MECHANISMS INVOLVED IN LIVER INJURY
Both initial liver damage and subsequent multiple organ failure (MOF) can be classified as parts of the 
pathophysiology of ALF. The mechanism of APAP-induced ALF is the most well-known in terms of the 
first liver injury. Glucuronidation and sulfation of APAP create harmless chemicals that are eliminated 
through the urine in nontoxic doses (4 g/d)[5]. The residual APAP is transformed into the hazardous 
metabolite N-acetyl-p-benzoquinone (NAPQI) by cytochrome P450 enzymes (CYPs), which is then 
detoxified by bringing it to glutathione (GSH)[6]. Interestingly, after overdosing on APAP, GSH is 
depleted after its conjugation with NAPQI, and the extra NAPQI binds to hepatocellular proteins 
causing mitochondrial oxidative stress and necrosis[7]. NAPQI amount is enhanced during the decrease 
of GSH availability which will exacerbate the toxic effects of an APAP overdose. Antibiotics, 
antiepileptic medications, and ethanol activate CYPs and increase NAPQI production. Reduced GSH 
production is a result of fasting and malnutrition[6].

Moreover, the pathogenesis of secondary MOF appears to have several characteristics in common 
with severe sepsis. The innate immune response is triggered early in the course of a disease. It can be a 
response to heterotropic viruses’ pathogen-specific molecular patterns (PAMPs) or to damage-
associated molecular patterns (DAMPs), which include histones, DNA, and high mobility group box 
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Figure 1 Graphical abstract. Illustration diagram to explore the pathophysiological mechanisms and possible therapeutic intervenension of acute and chronic 
liver diseases.

molecules-1 proteins produced from wounded cells following hepatocyte apoptosis as a result of toxic 
causes[8]. It is well known that the innate response involves a wide range of immune cells, such as 
monocytes, macrophages, dendritic cells, leukocytes, and natural killer cells. PAMPs and DAMPs are 
recognized by these cells, which then react and generate proinflammatory mediators like tumor necrosis 
factor α (TNF-α), interleukin (IL)-1, and IL-6, as well as reactive oxygen species (ROS), which trigger a 
systemic inflammatory response.

Additionally, IL-17 and IL-10 contribute to the overall inflammatory response[8]. Afterward, MOF is 
produced, and liver damage is still being brought on by ROS and cytokines. Proinflammatory cytokines 
entice neutrophils and encourage extravasation into the parenchyma of the liver. They begin to emit 
ROS and proteases once they are inside the parenchyma, which causes hepatocyte destruction. 
Promoting neutrophil extravasation into the hepatic parenchyma is greatly aided by mediators released 
from dying or dead hepatocytes and CXC chemokines. By releasing reactive oxygen intermediates and 
proteases once they have reached the hepatic parenchyma, neutrophils cause intracellular hepatocyte 
stress and oncotic necrosis[9]. The vasodilatation of the peripheral microcirculatory leads to inefficient 
pulmonary oxygen exchange, decreased peripheral tissue oxygen supply, and subsequently, lactic 
acidosis, which finally causes hypotension. The most severe effects are on cerebral and renovascular 
tone, which results in hemorrhage, cerebral hyper-perfusion, and functional renal failure[8]. The most 
common pathological mechanisms of acute and chronic liver disease are summarized in Table 1.

ROLE OF DIFFERENT CELL TYPES IN LIVER DISEASES
The liver is composed of two types of cells; hepatocytes, known as parenchymal cells, which constitute 
most of the liver and non-parenchymal cells. Around 10% of the liver’s mass comprises non-
parenchymal cells that include liver sinusoidal endothelial cells (SECs), hepatic stellate cells (HSCs), 
biliary cells, Kupffer cells (KCs), and immune cells such as neutrophils, natural killer cells, and infilt-
rating macrophages[10]. Whenever the liver is exposed to a harmful substance, both parenchymal and 
non-parenchymal hepatic cells take a role in the onset of liver fibrosis and cirrhosis.

Understanding the etiology of chronic liver disorders is essential for their prevention, slowing their 
progress, and advancing different treatment options. There are various etiologies to chronic liver 
disease, from alcoholic liver disease (ALD), non-alcoholic fatty liver (NAFLD), steatohepatitis, and 
chronic viral hepatitis, to other genetic, autoimmune, drugs, or cryptogenic liver diseases. Among the 
different etiologies of liver disorders, alcohol abuse is the most common cause. As a result of excessive 
alcohol consumption, the condition of alcoholic liver worsens to fatty liver and chronic steatohepatitis, 
which in turn triggers liver fibrosis, cirrhosis, or even HCC[11]. The non-ALD shares the same fate as 
the ALD but is correlated with metabolic syndrome[12]. Also, different types of hepatitis viruses can 
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Table 1 Summarized the common pathological mechanisms of acute and chronic liver diseases

Disease Mechanism Model Findings Ref.

N-acetyl-p-APAP Mice model The hazardous metabolite N-acetyl-p-benzoquinone 
depleted GSH and caused mitochondrial oxidative 
stress and necrosis

[6]

Innate immunity, 
apoptosis, and cytokine 
release

Bio-samples from roughly 2000 
patients with ALF

Generated pro-inflammatory mediators and oxidative 
stress, vasodilatation of the peripheral microcircu-
latory, hypoxia, lactic acidosis, and hypotension

[8]

MiR-122 and miR-192 APAP in mice Increased miR-122 and miR-192 levels after acute 
hepatic poisoning with acetaminophen in mice before 
transaminases

[82]

Up-regulated miR-155, miR-146a, miR-125a, miR-15b, 
and miR-16

ALF

MiRNAs ALF in mice

Down-regulated miR-1187

[83]

Down-regulated miR-29c_AS, miR298, miR327, 
miR342, miR370, miR376c, miR494, and miR503

MiRNAs Acetaminophen or carbon 
tetrachloride in male rats

Upregulated miR-153, miR-302b AS, miR-337, miR-363, 
miR-409-5p, and miR-542-3p

[66]

MiR-122 I/R mouse model Elevated miR-122 level [67]

Acute liver injury

MiR-192 APAP induced liver injury in 
mouse

Dose- and exposure-dependent elevation of miR-192 
level

[79]

MiRNAs Pooled sera obtained from HBV 
patients

Up-regulated miR-122 level. miR-122 could inhibit 
HBV replication in Huh7 and HepG2 cells

[84]HBV

MiR-155 Human hepatoma cells MiR-155 enhances innate antiviral immunity by 
promoting JAK/STAT signaling pathway by targeting 
SOCS1

[86]

MiR-122 Human hepatoma Huh-7.5 cells MiR-122 is the predominant miRNA in the liver tissue. 
2’-O-methyl antisense oligonucleotide depletion of 
miR-122 also inhibits HCV genotype 2a replication and 
infectious virus production

[89]HCV

MiRNAs Human hepatoma cells MiR-24, miR-149, miR-638, and miR-1181 were 
identified to be involved in HCV entry, replication, and 
propagation

[90]

Up-regulated miR-155 expression both in vitro and in 
vivo

Increased TNF alpha production in response to miR-
155 induction

MiRNAs In vitro (RAW 264.7 macrophage) 
and in vivo (Kupffer cells of 
alcohol-fed mice)

Increased expression of miR-155 and miR-132 in the 
total liver

[94]

MiRNAs Bile duct ligation rat model Down-regulated miR-150 and miR-194 expression [98]

Alcoholic steatohep-
atitis

MiRNAs Human stellate cell line Up-regulated miR-199 and miR-200 led to higher 
expression of fibrosis-related genes in an HSC cell line

[97]

NAFLD and alcoholic 
liver disease

Autophagy In-vivo Activation of macroautophagy and CMA eliminated 
damaged mitochondria, lessens oxidative stress, and 
promotes regeneration

[136]

Protein kinase C promotes autophagy and oxidative 
phosphorylation

Liver cancer Autophagy Oncogene-driven cancer models

ROS generation, which through Nrf2 drives HCC 
through cell-autonomous and non-autonomous 
mechanisms

Hepatocyte In-vivo Activation of hepatic stellate cells by damaged 
hepatocytes

[18]

Hepatic stellate cell In-vivo The activated hepatic stellate cells produce endothelin-
1, TGF-β, and cytoglobin that share in the process of 
fibrogenesis

[24]

Sinusoidal endothelial 
cells SECs

Co-culture with freshly isolated 
SECs

Differentiated SECs prevent HSC activation and 
promote reversion of activated HSCs to quiescence 
through VEGF-stimulated NO production

[32]

Liver cirrhosis
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Enhanced death ligand expression

Inhibition of hepatocyte apoptosis with a caspase 
inhibitor prevented Kupffer cell activation

Kupffer cells Mouse model

Hepatic stellate cell activation

[35]

ALF: Acute liver failure; APAP: Aminophenol; HBV: Hepatitis B virus; HCV: Hepatitis C virus; SECs: Sinusoidal endothelial cells; VEGF: Vascular 
endothelial growth factor; HSCs: Hepatic stellate cells; TGF-β: Tumor growth factor-beta; CMA: Chaperone-mediated autophagy; HCC: Hepatocellular 
carcinoma; Nrf2: Nuclear factor erythroid 2-related factor 2; NAFLD: Non-alcoholic fatty liver; TNF: Tumor necrosis factor; GSH: Glutathione; ROS: 
Reactive oxygen species; miRNA: MicroRNA.

result in chronic liver disease, especially hepatitis B and C; hence, they are considered a major concern 
for cirrhosis and liver cancer[13]. Concerning the less common causes of liver disorders, genetic factors 
such as hemochromatosis, alpha-1 antitrypsin deficiency, Wilson’s disease, and autoimmune hepatitis 
can all contribute to irreversible cirrhosis[14]. Additionally, hepatotoxic drugs, primarily APAP, 
followed by idiosyncratic drugs inducing liver injuries, such as antibiotics, nonsteroidal anti-inflam-
matory drugs, herbal remedies, and statins, can cause the liver to progress to liver fibrosis and cirrhosis
[15]. When the liver is exposed to any of the above-mentioned destructive agents, liver cells undergo a 
remodeling process to compensate for the damage.

Hepatocytes play a complex role in the progression of cirrhosis since they are the main constituent of 
the liver and are particularly susceptible to harm from hepatotoxic substances[16]. Hepatocytes produce 
most of the matrix metalloproteinases and tissue inhibitors of matrix metalloproteinases, which regulate 
the extracellular matrix deposition and thus participate in the process of liver cirrhosis[17]. Damaged 
hepatocytes activate HSCs, increase the ability of myofibroblasts to synthesize fibrous tissue, and 
produce ROS and other fibrogenic mediators[18]. The persistence of fibrosis induces hepatocytes to 
become hypoxic and produce large amounts of tumor growth factor-beta (TGF-β), a powerful stimulator 
of fibrogenesis[19]. Additionally, recent studies showed that hepatocyte telomere shortening and aging 
is a possible factor contributing to fibrosis and is thus implicated in the pathogenesis of cirrhosis[20].

HSCs are primarily in charge of regulating and storing vitamin A or retinol, and they are found in the 
subendothelial space between hepatocytes and SECs. ROS, cytokines, and growth factors, such as TNF-α 
and TGF-β, respectively, can activate these quiescent cells, causing them to synthesize a lot of extra-
cellular matrixes, which can form a scar in the space of the disease[21-23]. In addition, the activated 
HSCs produce endothelin-1, TGF-β, and cytoglobin that share in the process of fibrogenesis[24-26]. 
However, recent studies showed that the delivery of berberine nanoparticles could inhibit the prolif-
eration of HSCs and reverse the damage resulting from fibrosis[27].

SECs are an important type of liver cells, surrounded by the bloodstream from one side and 
hepatocytes from the other side[28]. Morphologically, liver SECs are characterized by transcellular pores 
known as fenestrae, which are essential for transporting nutrients and other components from the blood 
to the hepatocytes and vice versa. Fenestrae is important for normal liver function and plays a great role 
in maintaining liver homeostasis and regeneration[29]. In pathological conditions, SECs lose their 
fenestrae and become capillarized, impairing proper liver function[30]. Furthermore, they encourage 
fibrogenesis by activating HSCs by releasing IL-33[31]. In contrast, several studies have documented 
that differentiated liver SECs can encourage the reversion of activated HSCs to the quiescent form and 
thus stop the progress of fibrosis via modulating vascular endothelial growth factor (VEGF)-stimulated 
NO release[32].

KCs are liver macrophage cells that comprise an average of 85% of body macrophages and are 
present in hepatic sinusoids. KCs are necessary for innate and adaptive immunity as they deal with 
detrimental pathogens entering the liver from the portal vein[33]. As a result of liver injury, KCs get 
activated and respond by producing various cytokines, ILs, and chemokines[16]. Additionally, NO 
produced by KCs, together with TNF-α, TGF-β, and platelet-derived growth factors (PDGFs), activate 
HSCs, causing an excess of extracellular matrix to be produced[34]. Although KCs produce death 
ligands and contribute to liver fibrogenesis and fibrosis[35], they are not a suitable target for therapeutic 
interventions due to their crucial host defense function.

ROLE OF CYTOKINES, TRANSCRIPTION FACTORS, AND ROS IN HEPATIC INJURY
Cytokines are bioactive molecules made by several types of liver cells that are essential in the 
progression of liver cirrhosis[36]. They consist of TNF-α, PDGF, interferons (IFNs), ILs, TGF-β, 
chemokines, and adipokines. Several important biological processes, such as hematopoiesis, 
immunology, inflammation, and body development, are mediated by cytokines. However, they are also 
linked to several illnesses, including liver disorders, rheumatoid arthritis, and atherosclerosis[37]. A 
significant coordinated program of cellular and molecular alterations in liver cirrhosis results in a potent 
fibrotic response. Cytokines are involved in the combative signaling pathways that regulate the 
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activation of HSCs and fibrogenesis[38].
PDGF is the most powerful HSCs activator concerning all polypeptide growth factors. According to 

the degree of fibrosis, it seems to be overexpressed, enhancing its receptors and their activity in fibrous 
tissue[39]. Mainly in reaction to diverse stimuli, including viruses, chemicals, or mechanical injury, KCs 
manufacture and release PDGF[40]. When PDGF is released, it attaches to a particular receptor on the 
HSCs’ membrane, activating transcription factors and matching signal molecules involved in the 
process[41]. This causes the activation of its target genes, which are downstream of the receptor, as well 
as the activation of HSCs. It has been shown that PDGF (P38-MAPK) increases the activity of C-Jun N-
terminal kinase, extracellular signal-regulated kinase (ERK) 1/2, MMP, TIMP, protein kinase B/AKT 
pathways, and P38 mitogen-activated protein kinase[39].

Transforming growth factor-beta is the strongest known fibrogenic inducer during liver cirrhosis[42]. 
It is released by all types of hepatic cells in response to unpleasant stimuli and is essential for 
developing and spreading cirrhosis and liver fibrosis. In fibrotic diseases, TGF-β is abundantly 
expressed and reaches its peak in cirrhosis[43]. TGF-β pro-fibrogenic impact is carried out by boosting 
the production of HSCs and ECM while inhibiting MMPs, which results in an excessive buildup of 
collagen fibers and aids in the progression of liver fibrosis[44]. Additionally, it has been demonstrated 
that TGF-β causes hepatocyte death and inhibits DNA synthesis[38].

TNF-α is a pro-inflammatory cytokine generated during inflammation and oversees various cell 
signaling processes. HSCs, KCs, monocytes, and macrophages secrete it[45]. According to a study 
showing that TNF-α is a mediator of hepatotoxicity and inflammation in many liver diseases, hepato-
cellular injury followed by inflammation and activation of the innate immune system leads to early-
stage liver fibrosis, which in turn causes HSC activation and ECM deposition[46]. In addition, TNF-α 
contributes to ECM deposition by enhancing the expression of TIMP-1 in HSCs[47]. TNF-α has complex 
and sometimes conflicting effects on HSCs and fibrosis. TNF-α, on the other hand, has also been 
demonstrated to have an anti-fibrogenic impact in rat’s HSCs by lowering GSH and decreasing pro-
collagen 1 expression. TNF’s function in fibrogenesis is debatable, and it is unknown exactly how TNF 
receptors contribute to the activation of HSCs. Researchers demonstrate that loss of both TNF receptors 
decreased pro-collagen 1 expression, slowed HSC proliferation, and impaired PDGF-induced pro-
mitogenic signaling in HSC from wild-type, TNF-receptor-1 (TNFR1) knockout, TNFR2 knockout, or 
TNFR1/R2 double knockout (TNFR-DKO) mice. In response to PDGF, TNFR-DKO HSC showed 
decreased AKT phosphorylation and in vitro proliferation. However, these effects were not replicated in 
TNFR2 knockout HSC. Additionally, in primary mouse HSC, TNF binding to TNFR1 was necessary for 
MMP-9 expression. Neutralizing antibodies against TNFR1 and TNFR2 confirmed these findings in the 
human HSC cell line LX2. Additionally, compared to wild-type or TNFR2 knockout mice, TNFR-DKO 
and TNFR1 knockout animals showed less in vivo liver damage and fibrogenesis after bile duct ligation 
(BDL)[48].

Oxidative stress is frequently described as a general imbalance between oxidizing and reducing 
substances in the cell. The signaling transduction pathways are governed by these redox states. 
Numerous human disorders, particularly chronic liver diseases, have been linked to the development of 
ROS[49]. The production of ROS is crucial in causing liver injury and kicking off hepatic fibrogenesis. 
Oxidative stress alters lipids, proteins, and DNA, causing hepatocytes to necrotize and apoptosis and 
escalating the inflammatory response[50].

Additionally, ROS directly activates HSCs and encourages the synthesis of profibrogenic mediators 
from KCs and circulating inflammatory cells, which leads to the beginning of fibrosis[51]. Regardless of 
their underlying causes, almost all liver illnesses have been found to exhibit oxidative stress[52]. 
Prooxidants are ROS that can harm liver cells and whose levels may be raised by some medications, 
infections, environmental exposures, tissue damage, and other factors. Oxidative stress can be caused by 
increased prooxidant production, a reduction in antioxidant levels, or a shortage of antioxidants. 
Signaling, regulation, and redox balance of the liver system are biased by molecular redox switches, 
oxygen detection by the thiol redox proteome, NAD/NADP, and phosphorylation/dephosphorylation 
systems. ROS rapidly interact with all biological macromolecules due to their reactivity. The phosphod-
iester bonds that keep the bases in RNA and DNA together are cleaved by ROS, causing RNA and DNA 
to lose their chain structure. In a process known as lipid peroxidation, polyunsaturated fatty acids are 
another important target for oxidation by ROS. This process disturbs the normal structure of the 
membrane and results in necrosis. Additionally, since cysteine is necessary for the function of enzymes, 
ROS, particularly the hydroxyl radical, oxidizes cysteine residues in proteins to form disulfides, 
sulfoxides, or sulfonic acids. Additionally, oxidative stress promotes fibrogenesis by raising toxic 
cytokines such as TNF-α, IL-6, and TGF-β[53].

ROS generated by the NADP/NADPH oxidase system can control the cellular redox environment in 
hepatocytes and KCs. NADPH oxidase activation is the main ROS source in myofibroblasts and the 
stimulation of profibrogenic pathways[54]. It is regarded as the main producer of superoxide anion and 
hydrogen peroxide, the two most damaging ROS contributing to liver damage from oxidative stress
[55]. NADPH oxidase inhibition is emerging as a target for antifibrotic treatment since NADPH oxidase 
activation may constitute a central mechanism in fibrosis[56].
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The activities of various antioxidant enzymes, whose expression is controlled by several redox-
sensitive transcription factors like nuclear factor kappa-light-chain-enhancer of activated B cells [nuclear 
factor-kappaB (NF-κB)] and nuclear factor erythroid 2-related factor 2 (Nrf2), may have an impact on 
the generation of ROS[57]. Quiescent HSCs lack NF-κB in contrast to activated HSCs, which suggests 
that a redox-sensitive activation of NF-B might govern the expression of NF-B-targeted genes and 
provide a suitable cellular redox threshold for quiescent HSCs to enter the proliferative cycle[58]. In 
support of this theory, it has been shown that blocking NF-κB activity shields rats from the onset of 
hepatic fibrosis. The suppression of Nrf-2 may also change the expression of antioxidant enzymes, 
disrupting the cellular redox environment and impacting HSC proliferation, cell death, and collagen 
formation, all of which contribute to liver fibrosis[49].

Additionally, ROS-sensitive cytokines help activate HSCs during inflammation by receiving 
paracrine cues from immune cells. Hepatic fibrosis progresses more quickly due to the activated HSCs’ 
increased receptivity to PDGF and TGF-β[40]. TGF-β boosts the generation of ROS while lowering the 
level of reduced GSH. The production of the collagen I protein is increased when lipid peroxidation is 
increased, and anti-oxidant defenses like GSH, catalase, or superoxide dismutase are decreased[59].

ROLE OF MIRNAS IN HEPATIC DISEASES
MiRNAs are a group of tiny, non-coding endogenous RNA molecules with a high degree of chemical 
stability (22 nucleotides). MiRNAs have been thoroughly investigated since their discovery in 1993[60] 
because of their function in RNA-induced posttranscriptional gene silencing. One of the most prevalent 
adult hepatic miRNAs, miR-122, controls several important gene networks, including lipid metabolism, 
cell differentiation, and the hepatic circadian rhythm[61]. Recently, miR-223 is thought to interfere with 
the development and homeostasis of the immune system as well as it has an important role in inflam-
matory disorders and other liver disorders[62]. Moreover, MiR-223 also controls the nucleotide-binding 
oligomerization domain-like receptor (NLR) inflammasome by targeting the NLR protein 3 (NLRP3) 3′-
untranslated regions[63]. Notably, different cell types require NLRP3 inflammasome to start the inflam-
matory reaction and the production of ILs. Accordingly, overexpression of miR-223 reduces IL-1 
production from the inflammasome and prevents NLRP3 protein formation. Additionally, miR-223 may 
prevent macrophage hyperactivation[64].

Recent evidence showed that numerous liver disorders, including viral hepatitis, alcohol-induced 
liver damage, drug-induced liver injury, NAFLD, cirrhosis, and HCC, have dysregulated the expression 
of the miR-223 gene. Markedly, Weseslindtner et al[65] revealed that, the elevation of miR-106a, miR-
122, and miR-197 levels in patients with severe acute viral hepatitis. Interestingly, Fukushima et al[66] 
made a thorough comparative microarray study and looked at how different miRNAs changed in rats 
after receiving APAP and CCL4 and discovered that eight miRNAs were downregulated while six 
miRNAs (miR-153, miR-337, miR-363, miR-302b AS, miR-409-5p, and miR-542-3p) were upregulated in 
both hepatotoxicity models.

Since miR-122 is very liver-specific and makes up around three-quarters of the entire miRNAs that 
the liver expresses, it has been extensively studied concerning liver damage[67-69]. It is highly 
expressed in hepatocytes because of liver-specific transcriptional regulation under the effect of hepatic 
transcription factors[70]. Further, it seems to be elevated in the majority of liver disorders, including 
HCV and HBV, in addition to ALD, drug-induced liver damage, NAFLD, and HCC[71-74]. Along with 
this, loss of miR-122 is seen during hepatocellular carcinogenesis due to hepatic cell dedifferentiation[75,
76]. In acute and chronic liver disorders, miR-122 serum/plasma levels are correlated to hepatic necro-
inflammation, elevated aminotransferase levels, liver injury, and cell death[77].

Not only miR-122 but miR-192 as well was elevated in the mice sera after APAP administration 
compared to controls in a dose-dependent and exposure-dependent manner. In this context, the levels 
of those miRNAs were enhanced sooner than the levels of serum transferases[78], highlighting that they 
can be used diagnostically superior to the conventional ALF indicators[79]. Similarly, the serum levels 
of miR-122 were also elevated in the I/R mice models, and they were connected to both aspartate 
aminotransferase (AST)/alanine aminotransferase (ALT) levels and the hepatic cell death identified by 
terminal deoxynucleotidyl transferase-mediated dUTP nick end labeling. As in vitro studies showed that 
miR-122 levels increase in the supernatant after hepatocyte injury. The presence data imply that miR-122 
may replace hepatocyte mortality in liver damage[67]. Additionally, the elevation of miR-122 and miR-
192 in the sera of patients with APAP-induced ALF could be confirmed, and these findings concur with 
results from high-throughput sequencing of patients who had taken too much APAP[69]. Krauskopf et 
al[69] showed that, compared to controls, the serum levels of 36 types of miRNAs were higher in these 
individuals. Additionally, following APAP overdose, miR-122, miR-192, miR-194, miR-210, and miR-483 
were shown to be reinforced in the liver.

In ALF, a considerable downregulation of miR-122 is seen in the injured liver in both acute and 
chronic liver injury, and it showed an inverse correlation between hepatic damage and ALT levels, 
suggesting that it may play a role in human ALF. When paraquat was administered to humans, miR-122 
was noticeably upregulated, whereas miR-483 and miR-711 were concurrently downregulated. This is 
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consistent with what was shown in the rats given an APAP overdose[78,80]. Zhang et al[81] discovered 
that blood levels of miR-122 and miR-192 were increased after acute hepatic poisoning with APAP in 
mice before transaminases, particularly ALT, were raised. However, it was shown that the miRNA 
levels in liver tissue were lower. Since these miRNAs may be detected before the liver experiences 
apparent cell death, they may serve as a more accurate indicator of liver failure than liver enzymes[82]. 
Recent studies showed that miR-15b, miR-16, miR-125a, miR-146a, and miR-155 were considerably up-
regulated during ALF in mice, while miR-1187 showed a significant down-regulation[83].

Hepatitis B e antigen (HBeAg) positive patients had much greater blood levels of miRs than those 
with HBeAg negative, especially miR-122 and miR-194, which showed the greatest differential 
expression[84]. Additionally, it has been shown that the expression of miR-122, miR-638, miR-572, miR-
575, miR-638, and miR-744 was dysregulated in chronic HBV patients; these miRs were significantly 
more abundant in HBV than AST or ALT. MiR-122, miR-572, miR-575, and miR-638 were more 
abundant than miR-744[85]. In human hepatoma cells, HepG2, miR-155 has been shown to contribute to 
antiviral immunity against HBV infection[86]. An initial therapeutic response to IFN (independent 
relationship with early virologic response) may be predicted in HBV patients using a miR profile of 11 
miRs for example, hsa-let-7a, hsa-miR-30a, hsa-miR-106b, hsa-miR-198, hsa-miR-1224-5p, and hsa-miR-
1290. It has been demonstrated that certain miRs might play a function in the HBV life cycle[87]. 
According to studies, specific miRs have been shown to affect HCV infection or be affected by the virus. 
There is still much to learn about how miR-122 interacts with the HCV genome[88].

However, miR-122 expression is unaffected by viral infection or replication. Recently, Randall et al[89] 
looked at miR-21 and miR-122 expression in the liver biopsy samples from patients infected with HCV 
and controls. They established that miR-122 levels were inversely linked to the fibrotic stage, ALT, and 
AST but that miR-21 levels were positively linked. It was suggested that rather than levels of expression, 
fibrosis might be brought on by dysregulation of miR-21 and miR-122. MiRs 24, 149, 638, and 1182, 
among others, share in HCV entrance, replication, and spread[90]. The tumor suppressor “deleted in 
liver cell-1” protein was shown to be highly dependent on miR-141 activation, miR-141-targeted 
downregulation, and depletion for sustained HCV propagation. According to research on the 
association between HCV and the levels of miR-29 in both HSC and hepatocytes, HSC stimulation 
results in miR-29 down-regulation[91]. The overexpression of miR-29 in infected cells reduced HCV 
replication by 70% and inhibited the growth of HSCs and collagen synthesis. When comparing the livers 
of HCV with non-SVR, miR-29a, b, and c levels were higher[92], indicating a potential function for these 
biomarkers in monitoring the effectiveness of anti-HCV therapy.

In alcoholic steatohepatitis, miRs are crucial immune response regulators and activators of the innate 
immune system[93]. Alcohol-induced gut leakiness, which permits endotoxin to enter the blood and 
begin liver damage, has been shown to play a critical role in ALD and to increase miR-122 expression. It 
is shown that inducing miR-155 and -132 causes KCs to release higher TNF-α in response to lipopolysac-
charide (LPS)[94]. Hepatic miRs 182, 183, 705, 1224, and 199a-3p are modulated by endotoxemia and 
alcohol use directly[95]. Alcohol specifically targets and upregulates the miR-155 gene in macrophages, 
which controls the production of TNF-α[96]. Prolonged alcohol exposure also stimulates the miR-155 
gene in KCs and RAW264.7 macrophages. As a result, miR-155 upregulation might be engaged in the 
oxidative stress and LPS pathways, thus promoting the development of ALD[94].

There is mounting evidence that miRs, namely via controlling gene expression in HSCs, are important 
regulators of hepatic fibrogenesis. The advancement of liver fibrosis has been linked to the miR-199 and 
miR-200 family’s expression. Patients with fibrotic livers had higher levels of the miR-199 and miR-200 
families, and upregulation of these miRs led to considerably higher levels of the genes related to fibrosis 
in a cell line of HSC. In a fibrosis model of BDL in rats, miR-150 and miR-194 levels were significantly 
lower than in animals with a sham procedure. Furthermore, in a human stellate cell line called LX2, it 
has been shown that overexpressing miR-150 or miR-194 through the reduction of c-myb and rac1 
expression can reverse the activated stellate cells (i.e., expression of collagen and alpha-smooth muscle 
actin genes). Therefore, miR-150 and miR-194 may represent promising therapeutic targets for fibrosis 
treatment[97,98].

ROLE OF AUTOPHAGY IN LIVER DISEASES
Autophagy is a self-eating catabolic mechanism in eukaryotic cells that ends in the lysosome[99,100]. In 
addition to its anti-aging function, autophagy plays a significant role in immune response and organ 
homeostasis[101,102]. Numerous pathological disorders, such as obesity and type 2 diabetes, inflam-
matory and viral diseases, neurodegenerative diseases, and cancer, exhibit autophagy dysregulation
[103,104]. There are distinct phases of autophagy; induction, phagophore development, autophagosome 
creation, autolysosome formation, and destruction[105,106]. Atg molecules participate in several 
complexes crucial for triggering autophagy and creating autophagosomes[107]. The unc-51-like kinase 1 
complex (Atg1 in yeast) is activated first, then beclin 1 (Atg6 in yeast), and followed by a series of Atg 
proteins that result in the production of autophagosomes, with LC3 (Atg8 in yeast), being one of them
[108]. Further processing of LC3 results in the formation of LC3-I and LC3-II[109]. As soon as the 
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autophagosome gets created, a blockade of autophagic flux at later stages will suppress the autopha-
gosome’s ability to be cleared, ultimately leading to autophagy-dependent cell death[110]. To date, 
macroautophagy, microautophagy, and chaperone-mediated autophagy (CMA) are the three main 
types of autophagy that have been characterized[111,112].

AUTOPHAGY AND THE IMMUNE SYSTEM
Lately, researchers have investigated the relationship between autophagy and the immune system[113,
114]. There have been documented non-canonical macroautophagic processes that create lysosome-
fusing autophagosomes[115]. Only a portion of the Atgs equipment is utilized. Due to its significance in 
immunological modulation, LC3-associated phagocytosis (LAP) has received the most attention[116,
117]. LAP draws LC3-II to the phagosomal membrane via innate immune receptors, such as toll-like 
receptors, where macrophages consume it. The crucial part that CMA plays is antigen presentation and 
aging, which has also garnered attention[118]. Innate immunity’s ability to hinder macrophage 
autophagy is also associated with autophagy. Innate immunity and autophagy interact because IFN-α 
stimulates autophagy in macrophages[119].

AUTOPHAGY AND CELL DEATH
In some circumstances, autophagy can either serve as a defense mechanism or contribute to cellular 
death[120,121]. The main way autophagy contributes to cellular death is through its influence on 
apoptosis. Apoptosis and autophagy are linked, and these two cellular destructing processes influence 
one another[122,123]. This is crucial in the demise of liver cells[124]. Autophagy generally prevents 
caspase-dependent apoptosis from being induced, whereas apoptosis-related caspase activation halts 
the autophagic process.

Along with these results, Ni et al[125] documented that necrosis and necroptosis are caused by 
caspase-independent cell death, which is closely linked to autophagy. Cells harmed by the tumor 
suppressor gene p53 are removed by the induction of apoptosis[126]. In addition to being engaged in 
autophagy, the mechanistic target of rapamycin (mTOR)/AKT pathway also inhibits apoptosis. For the 
destiny of damaged cells, p53 and AKT/mTOR must coexist in equilibrium[127]. Numerous proteins 
linked to autophagy, including Atgs and BECN1, also played a role in ferroptosis. Additionally, erastin, 
an activator of ferroptosis, caused the formation of autophagosomes, and activation of autophagy 
resulted in ferroptotic cell death, maybe because of the ferritin being broken down by ferritinophagy
[128].

Autophagy and inflammation
Autophagy and the liver’s inflammatory response are tightly related. The same inhibitory mechanisms 
govern autophagy and inflammasome but are regulated by various input pathways. Procaspase-1 
activation results from the activation of the NLRP3 inflammasome, which is often triggered by 
pathogen- or danger-associated molecular patterns[129], which will further stimulate the synthesis of 
IL-1 and IL-18 that causes pyroptotic cell death. Moreover, the activation of autophagy by caspase-1 
prevents these occurrences. Additionally, autophagy decreases inflammasome activation by destroying 
inflammasomes in autophagosomes and removing damaged cytoplasmic organelles that, in the absence 
of autophagy, would otherwise create DAMPS and increase inflammasome activation[130]. On the other 
hand, when autophagy is diminished, the pro-inflammatory IL-1 is produced more often due to the 
negative association between inflammasomes and autophagy[131,132]. Although the connection 
between NLRP3 and autophagy is not entirely understood, recent research has indicated that NF-κB 
activation can similarly modify NLRP3 and autophagy[133].

Given the preceding, it is not surprising that many autophagy reviews emphasize the contrasting 
impacts that autophagy may have on the same biological process by using the phrase “double-edged 
sword”[134]. Cancer[135] and viral infections[101] are prominent fundamental paradigms. The fact that 
autophagy exhibits Jekyll-like and Hyde-like characteristics depending on the cells involved is another 
trait exclusive to the liver. Hepatocytes in NAFLD and ALD exhibit protective macroautophagy and 
CMA (in NAFLD). It eliminates damaged mitochondria, lessens oxidative stress, and promotes 
regeneration. In macrophages, macroautophagy reduces liver fibrosis and inflammation while 
promoting fibrosis-activated stellate cells. It is preventative in the early stages of HCC but might be 
damaging in the later stages[136]. Both the non-parenchymal sinusoidal cells of the liver and the 
hepatocytes depend on autophagy for proper liver function[137], and autophagy abnormalities are 
linked to most liver illnesses’ pathogenesis[138]. Autophagy disorders are linked to both common 
conditions like alcoholic and NAFLD or viral hepatitis and uncommon conditions like Wilson disease 
and alpha 1 antitrypsin deficiency[139,140]. Due to the 6-12 mo half-life of hepatocytes, impaired 
autophagy also contributes to the accumulation of toxic hepatocyte byproducts. A large number of 
xenobiotics must also be processed by the liver, and autophagy is a cytoprotective mechanism[141].
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Therapeutic interventions for acute and chronic liver diseases
Cirrhosis of the liver, the end stage of liver fibrosis after chronic liver damage, used to be cured by 
nearly liver transplantation only. That is why researchers used to focus on preventing liver cirrhosis by 
eradicating the cause and reversion of fibrosis. However, if liver cirrhosis develops, treatment is 
restricted to preventing the progression of the complications and avoiding the need for liver 
transplantation[142-144]. Besides removing the cause, various categories of treatments have proven to 
be beneficial in preventing fibrosis progression or regression, such as antioxidants, and antifibrotic 
agents, including phyto drugs[144-147]. Via understanding the process of fibrogenesis, various 
mechanisms implicated in this process would be potential for the reversion of fibrosis and cirrhosis. 
Here in, we discuss several conventional and novel therapeutic interventions that showcased, by recent 
data, the ability to modulate liver fibrosis and cirrhosis. The recent therapeutic interventions are 
summarized in Table 2.

Antioxidants
Oxidative stress is well known to play a detrimental role in developing liver cirrhosis. When ROS 
production exceeds antioxidants level, cellular signaling pathways alterations eventually result in liver 
damage[148]. For this reason, antioxidants received much attention and extensive study to prevent and 
treat various liver disorders. Silymarin is an herbal extract that consists mainly of silybin, which is 
responsible for the activity of silymarin. Free radical scavenging activity and inhibition of lipid 
peroxidation have been exhibited as reasons for the antioxidant activity of silybin[149]. Selenium is an 
essential element for the GSH antioxidant system in our bodies that has been extensively studied for its 
antioxidant activity in various cases of liver damage[150]. Selenium showed the ability to decrease DNA 
damage and hepatocyte necrosis against cyclophosphamide-induced oxidative stress[151]. In cadmium-
induced acute liver injury, selenium nanoparticles decreased liver toxicity by boosting the Nrf2 pathway
[152]. In chronic liver injury, selenium is reported to mitigate lipid peroxidation and decrease other 
oxidative stress biomarkers, especially when combined with the natural antioxidant gum arabic[153]. A 
study investigating the effect of curcumin, selenium, and silymarin showed that the combination of 
selenium, curcumin, and silymarin ameliorates the oxidant/antioxidant status in lipopolysaccharide 
and diclofenac-induced liver damage[154]. Vitamin E is a fat-soluble vitamin and one of the most potent 
antioxidants. This action is attributed to the ability of the hydroxyl group to scavenge free radicals and 
restoration of GSH levels and hence the improvement of oxidant/antioxidant status. Accordingly, in 
addition to other mechanisms, vitamin E effectively reduces inflammation[155] but not fibrosis[156].

Nevertheless, a recent in vivo study by Aljuhr et al[157] showed that using vitamins E and C loaded 
on selenium nanoparticles effectively reduces the induced hepatocellular damage, making it a potent 
combination for preventing and treating HCC. Acute hepatotoxicity induced by APAP overdose is 
typically countered by N acetyl cysteine via its antioxidant activity and increasing the level of GSH in 
the liver[158]. In cases of APAP-induced acute liver injury, N acetylcysteine is the antidote for hepato-
toxicity as it can preserve GSH stores and counteract the toxic metabolite NAPQI[159]. In addition, N 
acetyl cysteine exerted favorable effects at increasing GSH peroxidase and decreasing oxidative stress in 
liver fibrosis induced by carbon tetra chloride[160]. Mitoquinone (MitoQ), mitochondrial-targeted 
coenzyme Q, is a recent advance in antioxidant therapy that delivers coenzyme Q directly to the 
mitochondria[161]. In carbon tetrachloride-induced liver fibrosis, MitoQ showed a reduction in lipid 
peroxidation marker, 4-hydroxynonenal, in vivo and inhibition of cultured HSC activation[162]. 
Accordingly, MitoQ seems promising in mitigating liver fibrosis, but further studies are needed to 
confirm its efficacy.

Anti-fibrotic and anti-inflammatory drugs
Both acute and chronic liver disorders involve a series of cytokine and chemokine production and 
inflammatory cell infiltration that promote fibrogenesis[163,164]. This emphasizes the importance of 
using anti-fibrotic and anti-inflammatory drugs to modulate fibrogenesis and reduce the progression of 
liver fibrosis. Pirfenidone is a pyridone derivative with antifibrotic and anti-inflammatory properties 
and is mainly used for pulmonary fibrosis[165]. These actions are attributed to the ability of pirfenidone 
to suppress TGF-β and NF-κB activation and thus decrease inflammatory cell infiltration and excess 
matrix deposition. Along with the antioxidant activity of pirfenidone, it effectively diminishes liver 
fibrosis[166], as shown in a two-year in vivo study on CHC virus-infected patients[167]. Statins and anti-
NADPH oxidases as anti-fibrotic classes, peroxisome proliferator-activated receptor alpha modulators, 
and timolumab as immunomodulators have been recently investigated and declared promising for 
decreasing inflammation and fibrosis in cases of primary sclerosing cholangitis[168].

Immunosuppressants
Autoimmune hepatitis is a chronic inflammatory liver disease that occurs when helper T cells and 
cytotoxic T cells attack the liver causing inflammation that may progress to liver cirrhosis. Autoimmune 
hepatitis can be acute, fulminant, or chronic and, like other autoimmune disorders, require immunosup-
pressive therapy to suppress the disease progression. The treatment of autoimmune hepatitis involves 
using corticosteroids as antifibrotic agents and azathioprine, and when this line of management is 
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Table 2 Therapeutic interventions implicated in acute and chronic liver disorders

Therapeutic intervention Drugs Main findings Ref.

Silymarin Possesses free radical scavenging activity and inhibits lipid 
peroxidation thus improving chronic liver diseases

[149]

Selenium Decrease DNA damage, hepatocyte necrosis, oxidative 
stress biomarkers, and liver toxicity

Vitamin E Reduces inflammation and protects from hepatocellular 
damage

N acetylcysteine Increasing GSH peroxidase and decreasing oxidative stress 
in liver fibrosis

[155,157,160]

Antioxidants

MitoQ Reduces lipid peroxidation and cultured hepatic stellate 
cell activation

[162]

Pirfenidone Pirfenidone is effective at diminishing liver fibrosis as it 
suppresses TGF-β1 and NF-κB and decreases inflammatory 
cell infiltration and excess matrix deposition

Antifibrotic agents

Statins, and anti- NADPH oxidases PPAR-α modulators might decrease inflammation and 
fibrosis in cases of primary sclerosing cholangitis

[166-168]

Immunosuppressants Corticosteroids, and azathioprine The first line of treatment for autoimmune hepatitis [169]

Imatinib and sorafenib Respectively act as PDGF and angiogenesis inhibitors thus 
they modulate fibrogenesis and fibrosis in autoimmune 
hepatitis

[173]

Paclitaxel, ferulic acid and methyl 
ferulic acid

Can inhibit hepatic stellate cell activation through TGF-β
/Smad pathway modulation

[175-177]

Anti-HSC therapy

Curcumin Can interrupt the PDGF-β/ERK pathway and inhibit 
hepatic stellate cell angiogenesis through activation of 
PPAR-γ. Curcumin can also activate autophagy and thus 
inhibit the TGF-β/Smad pathway thus reducing epithelial-
mesenchymal transition

[178-180]

HGF Decreases the expression of TGF-β1, suppresses hepatocyte 
apoptosis, and improves fibrosis

[181]

Matrix metalloproteinase-1 Enhances the proliferation of hepatocytes and diminishes 
fibrosis

[183]

Gene therapy

siRNA By silencing CTGF, TGF-β, NF-κB target gene A, galectin-3, 
and αvβ3 integrin, siRNA effectively stops fibrogenesis by 
preventing HSCs activation and/or promoting their 
apoptosis

[184]

MSCs Inhibit hepatocyte degeneration, promote liver 
regeneration, and suppress fibrosis through differentiation 
into hepatocytes and production of various growth factors

[187]

BMSCs Decrease serum markers of liver injury and mRNA 
expression of TNF-α, IFN-γ, and FasL, and increase IL-10 
mRNA expression in acute liver failure

[189]

Cell therapy

Matrix metalloproteinase 2, tissue 
inhibitor of metalloproteinase 1, and 
growth arrest-specific 6

Promote hepatocytes regeneration, neovascularization, and 
extracellular matrix remodeling all contributing to liver 
regeneration

[191]

Baicalin Modulates FXR and G-protein-coupled bile acid receptor 
TGR5 thus modulating the levels of TNF-α, NF-kβ, and 
TGF-β. It also inhibits inflammation, autophagy, and 
necrosis of parenchymal liver cells

[195-198]Gut liver axis

Probiotics Modulate gut dysbiosis and bile acid dysregulation thus 
aiding in the treatment of NAFLD. Probiotics also 
modulate inflammation and fibrosis in NASH

[199-201]

Gold Enhances the antifibrotic activity of silymarin through 
increasing the expression of protective microRNAs and 
suppression of inflammatory mediators in the TGF-β
1/smad pathway

[204]

Phosphatidylserine-decorated 
nanoparticles

Enhances curcumin efficacy in fibrosis reduction [205]

Can be specifically delivered to integrins of activated 
hepatic stellate cells, in addition to facilitating gene therapy 

Nanoparticle drug delivery

Liposome nanoparticles [208]
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using siRNAs and mRNAs to modulate gene expression of 
hepatocytes

Becn1 knockdown Autophagy suppression and inhibition of T lymphocyte 
infiltration, HSCs proliferation, as well as production of 
TNF-α, IFN-γ, and TGF-β1

[209]

Carvedilol Increased p62 protein levels and inhibited autophagic flux 
by increasing lysosomal pH

[210]

Doxazosin Inhibited HSC proliferation and migration, blocked 
autophagic flux and induced HSCs apoptosis

[211]

Autophagy inhibition

Resolvin D1 Modulated AKT/mTOR signaling pathway resulting in the 
inhibition of autophagy and suppression of hepatic stellate 
cell activation

[212,213]

GSH: Glutathione; PPAR-α: Peroxisome proliferator-activated receptor alpha; CTGF: Connective tissue growth factor; TGR5: G-protein-coupled bile acid 
receptor; MitoQ: Mitoquinone; HSCs: Hepatic stellate cells; TGF-β: Tumor growth factor-beta; NF-κB: Nuclear factor-kappaB; PDGF: Platelet-derived 
growth factor; HGF: Hepatocyte growth factor; ERK: Extracellular signal-regulated kinase; siRNA: Small interfering RNA; mTOR: Mechanistic target of 
rapamycin; TNF: Tumor necrosis factor; IFN: Interferon; NAFLD: Non-alcoholic fatty liver; NASH: Non-alcoholic steatohepatitis; FXR: Farnesoid X 
receptor; IL: Interleukin; MSC: Mesenchymal stem cell; BMSC: Bone marrow-derived mesenchymal stromal cell.

insufficient, mycophenolate mofetil and calcineurin inhibitors are used[169,170]. In contrast, these drugs 
require more investigation for their use in other autoimmune liver disorders, such as primary sclerosing 
cholangitis and primary biliary cirrhosis[171].

Anti-HSCs therapy
One of the most important mitogens in profibrogenic HSC activation following liver damage is PDGF
[172]. A recent study using PDGF and angiogenesis inhibitors as imatinib and sorafenib, respectively, 
concluded that they were able to modulate fibrogenesis and fibrosis in induced autoimmune hepatitis 
models[173]. Silymarin possesses antioxidant activity and antifibrotic properties through inhibition of 
KCs activation, decreasing extracellular matrix deposition, and inhibiting the production of IL-1 and IL-
8 on HSCs[174]. As TGF-β is a crucial cytokine for HSC fibrogenesis and hence liver fibrosis progression
[172], different studies have been conducted to study the effect of various substances to obstruct TGF-β
/Smad signals. In vitro studies on paclitaxel, ferulic acid, and methyl ferulic acid were encouraging for 
inhibition of HSC activation via TGF-β/Smad pathway modulation[175-177]. Curcumin is a natural 
antioxidant, anti-inflammatory, and antifibrotic agent that can modulate different apoptotic pathways 
during tissue injury. Recent studies showed that curcumin could interrupt the PDGF-β/ERK signaling 
pathway and inhibit HSC angiogenesis by activating PPAR-γ[178,179]. Furthermore, curcumin can 
activate autophagy and thus inhibit the TGF-β/Smad pathway, which reduces epithelial-mesenchymal 
transition[180]. Accordingly, curcumin is considered a good candidate for treating liver fibrosis.

Gene therapy
Acute liver injury is usually reversible; however, chronic liver damage is a progressive condition that 
usually progresses from inflammation and fibrosis to cirrhosis. That is why extensive investigations on 
gene therapy have been conducted with various genes and delivering vectors to modulate liver fibrosis 
and cirrhosis. Hepatocyte growth factor (HGF) is an essential antiapoptotic and hepatoprotective factor 
for hepatocytes and an antifibrogenic agent in liver fibrosis models. HGF gene therapy has been studied 
for liver cirrhosis in rats and was shown to decrease the expression of TGF-β, suppress hepatocyte 
apoptosis, and improve fibrosis in dimethyl nitrosamine-induced cirrhosis[181]. Due to the ability of 
HGF to suppress TGF-β, it exhibits immunomodulatory action that is promising in cases of autoimmune 
disorders, but further investigations are still required[182]. As HSCs generate abundant amounts of 
extracellular matrix during fibrogenesis, matrix metalloproteinase-1 delivered by adenovirus to fibrotic 
livers enhances the proliferation of hepatocytes and diminishes fibrosis[183]. Another mechanism 
involves the use of small interfering RNA (siRNA) to silence the genes that are essential for the process 
of fibrosis, such as connective tissue growth factor, TGF-β, NF-κB target gene A, galectin-3, and αvβ3 
integrin. Silencing these genes stops fibrogenesis effectively by preventing HSCs activation and 
promoting their apoptosis[184].

Cell therapy
Stem cells are a category of cells that can replicate and differentiate into numerous types of specialized 
cells in the body[185]. During the last two decades, stem cell-based therapy has been extensively invest-
igated and appears promising for liver regeneration. Thus, it is a considerable alternative for liver 
transplantation and overcoming its demerits like the shortage of liver donors, high cost, and surgical 
complications. Various types of stem cells have been studied in acute and chronic liver disorders, 
including embryonic stem cells, induced pluripotent, and adult stem cells composed of the liver, 
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mesenchymal, and hematopoietic stem cells[186]. Mesenchymal stem cells (MSCs) are a suitable 
alternative for liver transplantation because they inhibit hepatocyte degeneration, promote liver 
regeneration, suppress fibrosis via differentiation into hepatocytes, and produce various growth factors
[187].

Moreover, combining MSCs with induced bone marrow-derived macrophages showed stronger 
antifibrotic activity and hence better improvement of the cirrhotic liver than monotherapy[188]. An in 
vivo study investigating cell therapy in mice used four types of cells; mature hepatocytes, fetal liver cells, 
bone marrow-derived mesenchymal stromal cells (BMSCs), and induced hepatic stem cells for 
concanavalin A-induced fulminant hepatitis causing ALF and fumarylacetoacetate hydrolase-deficient 
induced chronic liver failure. Remission of concanavalin A-induced ALF was only noticed with BMSCs 
as they decreased serum markers of liver injury and mRNA expression of some inflammatory cytokines, 
including TNF-α, IFN-γ, and FasL, and increased IL-10 mRNA expression. In the chronic liver failure 
model, mature hepatocytes in the adult liver were the most effective for liver regeneration compared to 
other cell types. However, these hepatocytes are not common in clinical applications due to their limited 
sources[189]. In acute liver injury induced by carbon tetra chloride, using hepatocyte-like cells derived 
from embryonic stem cells showed the potential for attenuation of liver injury and the remission of 
induced liver fibrosis[190]. Furthermore, rather than cell transplantation, using trophic factors such as 
matrix metalloproteinase 2, tissue inhibitor of metalloproteinase 1, and growth arrest-specific 6, released 
from embryonic-derived hepatocyte-like cells, promoted hepatocytes regeneration, neovascularization, 
and extracellular matrix remodeling, all of which contribute to liver regeneration[191]. Despite the 
numerous advantages of stem cell therapy, safety concerns such as ethical approval of embryonic stem 
cell use, lack of knowledge of appropriate transmission methods, enhancement of tumor growth, and 
incomplete prediction of tissue response are limiting their use nowadays[192].

Gut-liver axis
The relationship between the gut and the liver involves the delivery of intestinal contents to the liver 
through the portal vein and the transport of bile acids and immunoglobulins from the liver back to the 
intestines. Any disruption of the homeostasis of this axis through altering gut microbiota (gut 
dysbiosis), bile acid composition, or intestinal barrier damage will result in the exposure of the liver to 
these microbes and their metabolites which is critical in the pathogenesis of the ALD, NAFLD and even 
liver cirrhosis[193,194]. That is why various experiments and clinical trials targeting the gut-liver axis 
are being studied to treat liver disorders, including NASH, NAFLD, and chronic hepatitis B and C[195]. 
The farnesoid X receptor (FXR) is a nuclear receptor highly expressed in the gut-liver axis and regulates 
bile acid production, detoxification, maintenance of triglyceride homeostasis, and enhancement of the 
function of the intestinal epithelial barrier[194,196,197]. Baicalin is a natural flavonoid studied on 
various liver disorders and exhibited favorable effects such as inhibition of inflammation and 
autophagy and necrosis of parenchymal liver cells, thus decreasing liver injury. One of the pathways 
involved in baicalin effects is FXR and G-protein-coupled bile acid receptor, as they can modulate TNF-
α, NF-kβ, and TGF-β levels[195,198]. As gut dysbiosis and bile acid dysregulation are directly related to 
NAFLD’s pathogenesis, using various probiotics, prebiotics, and synbiotics has been proven to be 
promising for treating NAFLD[199,200]. In addition to the role of probiotics in NAFLD and their ability 
to modulate inflammation and fibrosis in NASH, probiotics are an attractive target for gut-liver-related 
disorders as they are also cost-efficient, with mild adverse effects and nearly no long-term adverse 
reactions[201].

Nanoparticle drug delivery
Recently, nanomedicine gained much attention as an innovative way for effective drug delivery in 
various resistant types of diseases. Numerous nanoparticle types are used in liver fibrosis treatment: 
Inorganic oxides and metals[202] or organic micelles and liposomes[203]. Gold, an inert inorganic 
widely used material, is formulated in nanoparticle form to deliver silymarin to fibrotic livers induced 
by carbon tetrachloride. This process enhanced the antifibrotic activity of silymarin, attributed to 
increased expression of protective miRNAs and suppression of inflammatory mediators in the TGF-β
/Smad pathway[204]. As we previously mentioned, the anti-fibrotic action of curcumin, enhancing drug 
delivery and bioavailability of curcumin using phosphatidylserine-decorated nanoparticles, further 
enhances curcumin efficacy in fibrosis reduction[205].

Interestingly, nanoparticles can also target different liver cells involved in liver fibrosis. As the 
expression of c-x-c chemokine receptor 4 (CXCR4) and VEGF is associated with HSCs activation and 
hence liver fibrosis progression, combining CXCR4 antagonist in nanoparticles with siRNA against 
VEGF provided significant inhibition of the process of angiogenesis making it auspicious treatment for 
liver fibrosis[206]. Considering liposome nanoparticles, the use of liposomes to be specifically delivered 
to integrins of activated HSCs rather than any other type of liver cells has been conducted, making it 
available to deliver therapeutic drugs to special sites overcoming their complications[207]. A novel 
advantage of liposome nanoparticles is that they facilitate gene therapy using siRNAs and mRNAs to 
modulate gene expression of hepatocytes instead of using viruses as carriers[208].
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Autophagy
As we have mentioned, the BECN1 protein has been involved in autophagy, resulting in ferroptotic cell 
death. A study on knocking down BECN1 showed inhibition of autophagy and its consequent inflam-
mation in addition to increasing prostaglandin E2 (PGE2) levels. Modulation of the prostaglandin-
endoperoxide synthase 2/PGE2 pathway may cause suppression of HSC proliferation and lymphocyte 
infiltration, all contributing to MSCs’ enhanced antifibrotic activity[209]. That is why inhibition of 
autophagy is a potential target for liver fibrosis treatment. Carvedilol, a non-selective B-blocker, has 
been thought to possess antifibrotic activity. Testing this theory in vitro revealed that carvedilol can 
alleviate liver fibrosis by inhibiting the autophagy of HSCs and enhancing their apoptosis[210]. 
Doxazosin, an alpha-1 adrenergic receptor agonist, has also been studied in vitro and in vivo and showed 
similar action to carvedilol on activating apoptosis of HSCs and inhibiting autophagy through the 
PI3K/Akt/mTOR signaling pathway[211]. Resolvin D1 is a polyunsaturated fatty acid that has been 
proven effective in various liver disorders, such as acute liver injury and liver fibrosis, due to its 
antioxidant, anti-inflammatory, and antifibrotic effects. Further investigations on resolvin D1 on CCL4-
induced liver fibrosis demonstrated its ability to modulate the AKT/mTOR signaling pathway, 
resulting in inhibition of autophagy and suppression of HSC activation, which further intensifies 
resolvin D1 liver protective effect[212,213].

CONCLUSION
Collectively, acute and chronic liver diseases are worldwide problems with multifactorial pathogenesis. 
The exact pathological mechanism of several liver disorders is still unclear. However, many suggested 
mechanisms are involved, including but not limited to oxidative stress, inflammation, autophagy, and 
miRNA. The role of autophagy and miRNA is still unclear and requires more clarification. Besides, it 
may be a new way to find new therapy for hepatic disorders. Recent therapeutic strategies like gene the-
rapy, stem cell therapy, gut microbiota, and even nanoparticle formulations require more investigations 
and improvements.
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Abstract
The coronavirus disease 2019 (COVID-19) pandemic caused by the severe acute 
respiratory syndrome coronavirus 2 (SARS-CoV-2) has had a significant impact 
on the lives of millions of people, especially those with other concomitant di-
seases, such as chronic liver diseases. To date, seven coronaviruses have been 
identified to infect humans. The main site of pathological action of these viruses is 
lung tissue. However, a substantial number of studies have proven that SARS-
CoV-2 shows affinity towards several organs, including the gastrointestinal tract 
and the liver. The current state of evidence points to several proposed me-
chanisms of liver injury in patients with COVID-19 and their combination. Liver 
impairment is considered to be the result of the direct effect of the virus on the 
hepatic tissue cells, a systemic reaction consisting of inflammation, hypoxia and 
cytokine storm, drug-induced liver injury, with the possible contribution of a 
perturbed gut-liver axis. Reactivation of chronic hepatic disease could be another 
factor for liver impairment in patients with SARS-CoV-2 infection. Acute-on-
chronic liver failure (ACLF) is a relatively new syndrome that occurs in 10%–30% 
of all hospitalized patients with chronic liver disease. It is crucial to recognize 
high-risk patients due to the increased morbidity and mortality in these cases. 
Several published studies have reported virus infection as a trigger factor for 
ACLF. However, to date, there are few relevant studies describing the presence of 
ACLF in patients with acute SARS-CoV-2 infection. In this minireview we sum-
marize the current state of knowledge regarding the relation between ACLF and 
acute SARS-CoV-2 infection.
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Core Tip: The main aim of this brief review is to summarize current knowledge on the acute-on-chronic 
liver failure (ACLF) in patients with coronavirus disease 2019 (COVID-19). We also describe several 
mechanisms by which severe acute respiratory syndrome coronavirus 2 infection induces liver injury. 
Although several systematic reviews have already been published regarding liver impairment in COVID-
19, there are few studies focusing on ACLF. We believe that this brief review has an informative value for 
clinicians and could contribute to better understanding of the disease and therefore improved management 
of this serious condition.

Citation: Liptak P, Nosakova L, Rosolanka R, Skladany L, Banovcin P. Acute-on-chronic liver failure in patients 
with severe acute respiratory syndrome coronavirus 2 infection. World J Hepatol 2023; 15(1): 41-51
URL: https://www.wjgnet.com/1948-5182/full/v15/i1/41.htm
DOI: https://dx.doi.org/10.4254/wjh.v15.i1.41

INTRODUCTION
The coronavirus disease 2019 (COVID-19) pandemic caused by the novel coronavirus severe acute 
respiratory syndrome coronavirus 2 (SARS-CoV-2) has had a significant impact on the lives of millions 
of people, especially those with other concomitant diseases such as chronic liver diseases.

This minireview focused on acute-on-chronic liver failure (ACLF) in COVID-19-involved cases. ACLF 
is a relatively new syndrome that occurs in 10%-30% of all hospitalized patients with chronic liver 
disease[1]. Patients with ACLF are considered to be high-risk patients when they become infected with 
SARS-CoV-2 because of the increased morbidity and mortality in these cases. The etiology of chronic 
liver diseases varies substantially (e.g., viral hepatitis B and C, alcohol liver disease, non-alcohol steato-
hepatitis, automimune hepatitis, primary biliary cholangitis, primary sclerosing cholangitis, Wilsons’s 
disease). Even after more than two years of global pandemic, this is a rather underestimated topic with 
an uneven ratio of patients with chronic liver disease who have been infected with SARS-CoV-2.

Therefore, understanding the pathophysiology mechanisms of SARS-CoV-2 virus affecting the liver 
along with improved stratification of patients with chronic liver diseases can ultimately result in better 
management, and a significant reduction in mortality and morbidity in the case of COVID-19 infection.

CORONAVIRUS DISEASE 2019 AND THE HEPATOBILIARY SYSTEM
Pathophysiology
To date, seven coronaviruses have been identified to infect humans. While human coronaviruses HCoV-
229E, HCoV-NL63, HCoV-OC43 and HCoV-HKU1 cause a “common cold”, the other three, severe acute 
respiratory syndrome-related coronavirus (SARS-CoV) (2002-2003), Middle East respiratory syndrome-
related coronavirus (MERS-CoV) (2012) and SARS-CoV-2 (from 2019), are highly pathogenic to humans 
and cause severe acute respiratory syndrome (SARS), with significant morbidity and mortality[2,3]. The 
main site of pathological action of these viruses is lung tissue. It has been widely hypothesized that the 
SARS-CoV-2 virus uses the angiotensin-converting enzyme 2 (ACE2) receptor to enter the respiratory 
tract cells[4]. The ACE2 receptor is expressed not only in the lungs, but also in other organs, such as the 
heart, intestine (ileum), pancreas, kidneys and endothelium, which may explain the multi-organ effect 
of virus infection[5]. A huge number of studies have proved that SARS-Co-V-2 shows affinity towards 
several organs, including those of gastrointestinal tract, such as the liver[6-9].

Evidence that coronaviruses could damage liver cells through the induction of apoptosis by act-
ivating caspase has been known for some time[10,11]. Liver impartment was also confirmed in the case 
of SARS-CoV during the pandemic in the early years of new millennium, and several studies have 
shown the direct negative impact of SARS-CoV on the liver at the cellular level[12,13]. Liver biopsies in 
these patients revealed common pathologic findings, such as the presence of acidophilic bodies, the 
ballooning of hepatocytes and mild to moderate lobular activities[12]. Studies based on autopsies of 
SARS-CoV victims showed that the virus was detectable in 41% of liver tissue samples with a relatively 
high viral load[14]. Hepatocellular necrosis, mitoses, cellular infiltration and fatty degeneration were all 
visible in these biopsies[14]. Interestingly there was no detection of viral particles in liver specimens 
from patients with MERS[15].
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Almost three years after the COVID-19 pandemic broke out, there is undoubtedly a large amount of 
scientific and clinical evidence that COVID-19 is in many cases directly connected with abnormal liver 
function to a varying extent. Right from the beginning of the pandemic there were indications of a 
similar mechanism of influence of SARS-CoV and SARS-CoV-2 on hepatocytes[16], although the strains 
bear approximately 79% structural similarity[17]. It was pointed out that recipients of liver transplant 
could be at higher risk for virus transmission through the transplanted organ[18]. The fact that non-
alcoholic fatty liver disease (NAFLD) presents with a proinflammatory hypercoagulable state could be 
associated with a more severe course of the disease and thrombosis in these patients when infected with 
SARS-CoV-2[19]. The structural hepatic abnormalities could persist even after acute COVID-19, as was 
shown in a study using multiparametric ultrasound[20]. These changes include increased liver stiffness 
and increased viscosity and attenuation, which could be indicative of various types of parenchymal 
impairment, including fibrosis, inflammation and steatosis[20].

The current state of evidence points to several proposed mechanisms of liver injury in patients with 
COVID-19 (Figure 1). Liver impairment is considered to be the result of the direct effect of the virus on 
hepatic tissue cells, a systemic reaction consisting of inflammation, hypoxia and cytokine storm, and 
drug-induced liver injury[21-23] with the possible contribution of a perturbed gut-liver axis[24]. 
Reactivation of chronic hepatic disease could be another factor for liver impairment in patients with 
SARS-CoV-2 infection[25].

Moderate microvesicular steatosis and mild inflammation in the lobular and portal area was observed 
in the liver tissues obtained during autopsies of COVID-19 victims[26]. This is, however, not disease-
specific, as it could also be detected in liver tissue samples in patients with sepsis or drug-induced liver 
injury (DILI)[26].

DIRECT INFLUENCE OF THE VIRUS ON THE LIVER CELLS
There are several proposed mechanisms of SARS-CoV-2 influence on hepatocytes. One of the early 
histological and ultrastructural studies identified typical coronavirus particles in the hepatocytes’ 
cytoplasm, with mitochondrial swelling, endoplasmic reticulum dilatation and glycogen granule 
decrease with a general histological picture of massive hepatocyte apoptosis and binuclear hepatocytes
[27].

One possible explanation is based on the binding of SARS-CoV-2 to the ACE2 receptors on the 
cholangiocytes, leading to their dysfunction and induction of a local and systemic inflammatory 
response, ultimately resulting in liver injury[28]. Although the ACE2 receptor is present on the biliary 
epithelial cells, it was repeatedly observed that the bilirubin level was normal in most of the cases[29], 
regardless of severity of the disease itself[30]. Although the effect of the virus is primary on the bile duct 
epithelial cells, some researchers have proposed that the compensatory hyperplasia of hepatic 
parenchymal cells induce the up-regulation of ACE2 receptor expression in liver tissue[22]. This could 
be one of the pathways by which SARS-CoV-2 is responsible for direct liver parenchyma injury.

A study by Zhao et al[31] showed a significant increase of viral loads in cholangiocytes 24-h post-
infection with a substantial decrease 48 h after infection. Their data also indicated that the virus impairs 
the bile acid transporting function of cholangiocytes and impairs the luminal barrier by modulating the 
expression of genes involved in sustaining the tight junctions and transportation of bile acids[31]. The 
direct viral cytopathogenic effect is predominantly on target cells that express ACE2 and TMPRSS2[31]. 
ACE2 expression level is higher in cholangiocytes (59.7%) than in hepatocytes (2.6%)[32].

Stebbing et al[33] reported massive induction of ACE2 expression in hepatocytes after 16 h of 
exposure to Interferone-α2 (IFN-α2) and Interferone-β. Exposure to Interferone-γ, tumor necrosis factor-
α and interleukins (IL-1, IL-6, IL-10, Il-18) does not have the same effect. They further pointed out that 
the effect was strongest with Interferone-α2. Therefore, it has been proposed that the increased levels of 
IFN-α2 predominantly in patients with severe inflammatory response to SARS-CoV-2 infection could 
lead to significant ACE2 expression in parenchymal liver cells, contributing to virulence and further 
damaging the cells by the virus[33].

Another study focused on the expression of ACE2, TMPRSS2 and FURIN (paired basic amino acid-
cleaving enzyme) levels in various cells within the liver tissue. It was shown that these receptors are 
expressed across various cell types. ACE2 is mostly expressed in cholangiocytes and hepatocytes, 
TMPRSS2 in cholangiocytes, hepatocytes, periportal liver sinusoidal endothelial cells, erythroid cells, 
non-inflammatory macrophages and T cells, and FURIN is expressed through all cell lines within liver 
tissue[23].

A recent study by Wanner et al[9] has provided multilevel evidence of SARS-CoV-2 human liver 
tropism using a wide range of clinical, histopathological, virological, molecular and bioinformatic 
approaches. Their data showed strong upregulation of JFN responses, JAK-STAT signaling and liver-
specific metabolic modulation. Mismatch of the expression of the ACE2 protein and the location of the 
SARS-CoV-2 spike protein in Kupffer cells was also observed in this study[9]. Also, the main pro-
inflammatory cytokines, such as IL-6, which is responsible for cytokine storm, is regulated by JAK-
STAT signaling. Due to this known pathophysiological mechanism, JAK inhibitors such as baricitinib 
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Figure 1 Different mechanisms of liver impairment due to severe acute respiratory syndrome coronavirus 2 infection. 1: Direct effect of the 
virus on the liver cells; 2: Drug-induced injury; 3: General response of the immune system; 4: Systemic inflammation and tissue hypoxia. The figure was created with 
BioRender (https://biorender.com).

have been used for treatment and have shown improvement in clinical outcomes in patients infected 
with SARS-COV-2. On the other hand, considering the potential adverse effects of this drug on the liver, 
more studies are needed to establish the proper dosage and timing, so the risk/benefit ratio can be 
determined in patients with high vulnerability for drug-induced liver injury[33,34]. Although several 
medications were used for treating COVID-19 with different outcomes, the “perfect” compound is still 
missing. However, results of the studies mentioned herein could facilitate the push of research towards 
targeting signaling pathways, receptors or even the virus itself.

Another study proposed high-density lipoprotein scavenger receptor class B member 1 (SRB1) as a 
facilitator for cell entry for the SARS-CoV-2 because of its strong protein expression in human liver cells
[35]. This is based on the observation that SRB1 plays a crucial role in hepatitis virus C (HCV) cell entry
[36]. SARS-CoV-2 shares some molecular features with HCV in the means of liver tropism[9]. Therefore, 
it is possible to assume that SRB1 could facilitate SARS-CoV-2 entry into liver cells along the well 
described ACE2 pathway.

It is interesting to compare the mechanism of action of SARS-CoV-2 with other coronaviruses. An 
indirect mechanism that resulted in hepatic damage through a complex inflammatory cascade was 
proposed in case of the SARS-CoV virus infection[13,37]. On the other hand, MERS-CoV requires 
dipeptidyl peptidase-4 (DPP-4) receptor for cell entry, which is different from SARS-CoV-1 and SARS-
CoV-2 adherence mechanisms. Thus, the pathophysiology of the disease is different to some extent. The 
liver damage observed in MERS-CoV-infected cases was mostly mild. It is difficult to determine 
whether this is the result of a direct action of the virus or the inflammation-mediated reaction due to a 
lack of sufficient data[37]. An interesting fact is the comparison with hepatitis viruses, which, from a 
phylogenetic point of view, have developed a natural affinity for the liver tissue and whose infections 
are of a stealthy nature. Despite the fact that the mechanism of infection is not fully understood, it is 
assumed that hepatitis viruses do not have a direct cytopathic effect on hepatocytes but rather to trigger 
immune mechanisms that result in liver damage[38-40].

DRUG-INDUCED LIVER INJURY
Lopinavir and ritonavir are widely used antiviral drugs that are predominantly metabolized by the 
liver. These drugs were shown to have a potentially damaging effect on the liver by inducing inflam-
mation and lipid metabolism disorders via the endoplasmic reticulum stress pathway and also could 
cause apoptosis of hepatocytes via the caspase system[22].

Integration of drug cytochrome P-450 could contribute to the secondary toxicity of several drugs 
commonly and widely used in the treatment of COVID-19 such as paracetamol (acetaminophen), 
lopinavir/ritonavir or azithromycin[41]. The meta-analysis by Yadav et al[42] showed that treatment by 
lopinavir/ritonavir is strongly correlated with liver injury, while other commonly used medications are 
not significantly connected with hepatic impairment.

https://biorender.com
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Another commonly used drug in COVID-19 treatment is the antiviral drug favipiravir. It was 
reported that favipiravir used with interferon alpha resulted in liver injury in 2.9% of these patients[22].

RESULTS OF SYSTEMIC INFLAMMATION RESPONSE AND GENERAL HYPOXIA
One of the factors contributing secondarily to the hypoxic damage of hepatocytes could be hepatic 
congestion due to high positive end respiratory pressure in critically ill, mechanically ventilated patients
[32]. Platelet activation is well described in patients with a serious course of COVID-19, and it has been 
proposed that vascular dysfunction due to endotheliopathy and platelet activation in response to a 
systemic inflammatory response could contribute to impaired liver function, predominantly in patients 
with a pre-existing chronic liver disease[43].

Systemic inflammatory response generally leads to cellular ischemia and abnormal coagulation with 
micro-thrombotic events. Inflammatory response in COVID-19 is characterized by high lymphocyte 
activation, neutrophilia with significantly elevated levels of serum interleukins, tumor necrosis factor, 
granulocyte-macrophage colony stimulating factor (GM-CSF), interferon inducible protein 10, monocyte 
chemotactic protein 1 and macrophage inflammatory protein 1 alpha[44]. Accumulation of T cells in the 
post-mortem liver histological findings further supports the theory of immune-mediated response 
related to liver damage[44].

ROLE OF IMMUNITY
A well-functioning immune system is essential in the fight against infections. The liver is known to play 
an important role in the body’s immune response to an infectious stimulus. Many factors are involved 
in the physiological immune response of the host, such as immune cells, antimicrobial peptides and so-
called pattern recognition receptors (PRRs), which can detect dangerous microbial signals through 
molecular patterns[45]. The liver is the major source for the production of PRRs, which have two main 
functions: complement activation and opsonization, which is an important step of phagocytosis[46]. An 
important subgroup of PRRs is the toll-like receptors, which play a crucial role in several liver disorders, 
such as alcoholic liver disease, non-alcoholic steatohepatitis, viral hepatitis, hepatic fibrosis, 
autoimmune hepatitis and liver cancer. Thus, the liver plays an important role in the adaptive immunity 
of the body, which is essential against infections and not only bacterial ones. Liver cirrhosis interferes 
and damages the proper functioning of adaptive immunity by impairing the synthesis of PRRs and 
various proteins, which can result not only in immune dysfunction but also in immunodeficiency[47,
48]. The association between SARS-CoV-2 and the activation of the pro-inflammatory cascade results in 
excessive overproduction of pro-inflammatory cytokines, such as IL-1, IL-6 and TNF-alpha, and 
attenuation of the body’s anti-inflammatory response, resulting in the development of the so-called 
cytokine storm, as it has been repeatedly described in the case of COVID-19 infection. The cytokine 
storm possibly reflects the severity of the disease[49]. Cirrhotic patients are at a higher risk of 
developing a systemic inflammatory response syndrome with overproduction of the above-mentioned 
cytokines, which, together with deregulation of the immune response and ongoing acute infection, may 
have fatal consequences. ACLF is a relatively novel umbrella term where acute and chronic liver insults 
exist along with an imbalance between systemic pro-inflammatory and anti-inflammatory responses. 
All the above-mentioned could then trigger an uncontrolled and complex sequence of events, which 
may result in ACLF with fatal consequences to patients with acute COVID-19[47,50].

SARS-COV-2 INFECTION IN PATIENTS WITH KNOWN LIVER DISEASE
A study based on histological findings from COVID-19 victim biopsies showed a 10-fold increase in the 
number of ACE-2 positive cells in the liver (predominantly in the form of activated hepatic stellar cells) 
in patients with pre-existing alcohol use disorder compared to patients with normal liver function who 
died before the pandemic[51]. As chronic alcohol abuse is related to chronic liver damage, these findings 
may have potential clinical implications. These are further supported by evidence of massive up-
regulation of ACE2 (a 97-fold increase in a widespread parenchymal pattern) in cirrhotic liver and 
NASH induced by high-fat diet [52]. The significant ACE2 upregulation in liver cells was also observed 
in animal models with high-fat-diet-induced non-alcoholic steatohepatitis, with concomitant treatment 
with pioglitazone[24]. Therefore, diabetic patients who are treated with PPARγ agonist and present 
with chronic liver impairment have a higher susceptibility to SARS-CoV-2 infection, and possibly with 
more severe consequences. There is also evidence that the level of hepatokines is disturbed in patients 
with COVID-19, and these are associated with disease severity and outcomes[53]. A relationship 
between hepatokines, liver steatosis and metabolic diseases, such as diabetes mellitus[54], has been 
suggested. ACE2, as a main receptor for viral entry and a modulator of inflammatory responses, is also 
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considered a potential target for treatment strategies. There are only a few ACE2-related molecules (e.g. 
DIZE, Ang 1-7) that are tested in humans. Some of these molecules can, for example, reduce tissue ACE2 
activity. Many of them have already been tested on animal models; however extensive research in 
humans is still needed[55].

In patients with viral hepatis B (HBsAg-positive and hepatitis B core antibody positive patients) a 
higher risk of HBV reactivation with liver injury and fatal course of the COVID-19 was observed[56]. 
This could be considered a secondary result of SARS-CoV-2 infection on the liver in patients with 
chronic hepatic disease.

CLINICAL ASPECTS OF ACLF AND COVID-19
ACLF is a relatively new syndrome that occurs in 10%-30% of all hospitalized patients with chronic liver 
disease[1]. It is crucial to recognize high-risk patients due to the increased morbidity and mortality in 
these cases. The main hepatological societies (APASL, EASL and AASLD) have proposed their own 
definitions of ACLF, each of which differs from the others[57]. However, despite several differences, the 
main criteria are roughly the same. These are dominantly the presence of liver disease, precipitant 
factors of ACLF and hepatic or extrahepatic failure[58-60]. One definition was proposed by the World 
Gastroenterology Organization in 2014 to unify and simplify the diagnosis. It defined ACLF as a 
syndrome with very a high short-term mortality in patients with chronic liver disease with known or 
unknown cirrhosis characterized by acute hepatic decompensation, resulting in liver failure and at least 
one extrahepatic failure[61,62].

Activated pathogen-associated molecular patterns and damage-associated molecular patterns as 
drivers of systemic inflammation are proposed as the main etiopathological factors[63]. Activation of 
this systemic inflammatory response can be triggered by various conditions. Identification of precip-
itating factors can predict the course of the disease. The trigger of ACLF depends on the region. While in 
Asian populations this is usually reactivation of hepatitis B, in Western countries it is usually alcohol 
hepatitis, gastrointestinal bleeding or another infection[57,62].

Several published studies have reported virus infection as a trigger factor for ACLF. Infection with 
hepatitis B virus could lead to occurrence of a specific syndrome – hepatitis B virus-related ACLF with a 
wide variety of disease course[64,65]. Hepatitis A and hepatitis E viruses lead significantly less often to 
the development of ACLF[66,67]. The ability of the SARS-CoV-2 virus to adhere to ACE2 on the 
hepatocyte and cholangiocyte membrane is known[68]. However, the data describing the prevalence of 
ACLF in patients with chronic liver diseases suffering SARS-CoV-2 infection are scarce. Iavarone et al
[69] carried out a retrospective study on a cohort of 50 cirrhotic patients infected with SARS-CoV-2 with 
an observed high mortality rate of > 34%. ACLF was present in 28% of patients, and death related to 
liver impairment was present in 29% of the cases. An independent factor for worse prognosis of COVID-
19 in patients with concomitant chronic liver disease is the presence of an alcohol-related liver disease 
and ongoing drinking[69]. Reports of a predictive role of the CLIF and MELD scores in the setting of 
ACLF influenced by acute SARS-CoV-2 infection are emerging[70]. Sarin et al[71] investigated a 
population of 228 patients with liver disease (185 patients with chronic liver disease and 43 patients 
with cirrhosis) and found that 43% of patients with chronic liver disease infected with SARS-CoV-2 also 
presented with acute liver injury. Almost 12% (11.9%) of cirrhotic patients in this patient group 
developed ACLF. Complications related to liver function deterioration were present in half of the 
patients with decompensated cirrhosis, with higher mortality. Obesity was identified as a predictor of 
worse prognosis. In a multicenter study, Bajaj et al[60] reported the incidence of ACLF within a group of 
cirrhotic patients infected with SARS-CoV-2 as high as 36%. Interestingly there was no significant 
difference in mortality rate compared to patients with cirrhosis and negative for acute SARS-CoV-2. 
Another study from Shalimar et al[72] recorded the presence of ACLF in 9 of 28 patients from their 
study cohort. Mortality in these patients reached 100%[72], and mechanical ventilation was associated 
with poor prognosis. Besides a scarce number of prospective or retrospective cohort studies, there are 
also several individual case reports describing the occurrence of ACLF in a patient with chronic liver 
disease[68].

CONCLUSION
SARS-CoV-2 is a virus with multiorgan affinity. A substantial percentage of patients with COVID-19 
could be simultaneously diagnosed with liver impairment to a varying degree, with different prognosis 
and duration. The virus affects the liver via different pathways (Table 1). Patients with chronic liver 
disease are at a higher risk for poor disease outcome when infected with the novel coronavirus. One of 
the lesser reported and described subgroups of these patients are those who developed ACLF. Patients 
with chronic liver disease and cirrhosis simultaneously infected with SARS-CoV-2 are at a risk of 
developing ACLF, with poor prognosis of survival. Available data are heterogenous, and the incidence 
of ACLF varies from 11.9% to 36%.
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Table 1 Summary of the relationship between the pathophysiologic mechanism of a virus and its possible clinical impact in the context 
of liver damage caused by severe acute respiratory syndrome coronavirus 2

Pathophysiologic 
mechanism of virus Clinical impact Considerations for clinical management

Direct influence of the virus 
on the liver cells

Significant ACE2 expression in 
parenchymal liver cells contributing to 
virulence and further damaging effect of the 
virus on the cells

Several antiviral agents are approved for treatment of SARS-CoV-2 
infection e.g. remdesivir and ritonavir-boosted nirmatrelvir, which can 
inhibit viral replication. Also, monoclonal antibodies reduce the binding 
ability of SARS-CoV-2 to the ACE2 receptor

Drug-induced liver injury Drug metabolized by cytochrome P-450 
could contribute to secondary toxicity of 
several drugs (paracetamol, antibiotics)

Following the strict rules for avoidance of hepatotoxic drugs if possible. 
Standard use of hepatoprotective medications

Results of systemic inflam-
mation response and general 
hypoxia

The hypoxic damage of hepatocytes, 
platelet activation, endotheliopathy, 
immune-mediated response related to liver 
damage

Administration of corticosteroids and other immunomodulators can reduce 
or modulate the adverse impact of immune over-response

Role of immunity Impaired synthesis of PRRs are toll-like 
receptors, activation of the pro-inflam-
matory cytokines such as IL-1, IL-6, TNF-
alpha

Use of IL-1 and IL-6 inhibitors, such as anakinra or tocilizumab, as well as 
Janus kinase inhibitors, such as baricitinib, can decrease the excessive effect 
of pro-inflammatory cytokines

ACE2: Angiotensin-converting enzyme 2; SARS-CoV-2: Severe acute respiratory syndrome coronavirus 2; IL-6: Interleukin 6.

Although the clinical management of patients with liver diseases who contracted SARS-CoV-2 
infection is still evolving, several consensus guidelines have been developed[73-75]. These guidelines 
were created based on multicenter and international studies, which can provide guidance for better 
clinical management. Several steps should be followed by clinicians to identify patients with higher risk 
of liver disease progression according to these recommendations. Thorough history taking and physical 
examination should be a cornerstone in the diagnosis process. It is also crucial to further investigate the 
possible presence of underlying chronic liver diseases. For doing this, a serological test for hepatitis 
viruses, frequent monitoring of liver enzymes or imaging examinations, such as ultrasound, could be 
used. It is also important to thoroughly review patients’ chronic and currently administered 
medications due to the possibility of liver damage related to specific drugs (e.g., antivirals, antibiotics, 
anti-inflammatory medications, etc.).

To summarize, it is important to consider patients with ACLF as a distinct patient population with a 
high risk for a severe course of SARS-CoV-2 infection and to manage them appropriately.
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Abstract
The liver is the front line organ of the immune system. The liver contains the 
largest collection of phagocytic cells in the body that detect both pathogens that 
enter through the gut and endogenously produced antigens. This is possible by 
the highly developed differentiation capacity of the liver immune system between 
self-antigens or non-self-antigens, such as food antigens or pathogens. As an 
immune active organ, the liver functions as a gatekeeping barrier from the outside 
world, and it can create a rapid and strong immune response, under unfavorable 
conditions. However, the liver's assumed immune status is anti-inflammatory or 
immuno-tolerant. Dynamic interactions between the numerous populations of 
immune cells in the liver are key for maintaining the delicate balance between 
immune screening and immune tolerance. The anatomical structure of the liver 
can facilitate the preparation of lymphocytes, modulate the immune response 
against hepatotropic pathogens, and contribute to some of its unique immuno-
logical properties, particularly its capacity to induce antigen-specific tolerance. 
Since liver sinusoidal endothelial cell is fenestrated and lacks a basement 
membrane, circulating lymphocytes can closely contact with antigens, displayed 
by endothelial cells, Kupffer cells, and dendritic cells while passing through the 
sinusoids. Loss of immune tolerance, leading to an autoaggressive immune re-
sponse in the liver, if not controlled, can lead to the induction of autoimmune or 
autoinflammatory diseases. This review mentions the unique features of liver 
immunity, and dysregulated immune responses in patients with autoimmune 
liver diseases who have a close association with inborn errors of immunity have 
also been the emphases.

Key Words: Liver immunity; Autoimmunity; Immune tolerance; Autoinflamation; 
Autoimmune liver diseases; Inborn errors of immunity
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Core Tip: The various repertoires of immune cell populations in the liver play a central role in maintaining 
homeostasis between inflammation and tolerance. Inflammatory and immunoregulatory interactions within 
the liver are essential for maintaining systemic homeostasis. In this review, we summarize the molecular 
mechanisms involved in these seemingly contradictory immune processes and how liver immunity 
functions during normal liver homeostasis and liver pathologies, such as viral hepatitis, autoimmune 
hepatitis, and hepatocellular cancer.

Citation: Parlar YE, Ayar SN, Cagdas D, Balaban YH. Liver immunity, autoimmunity, and inborn errors of 
immunity. World J Hepatol 2023; 15(1): 52-67
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DOI: https://dx.doi.org/10.4254/wjh.v15.i1.52

INTRODUCTION
The immune system is a complex cellular and molecular network that provides the body with defense 
against harmful and foreign substances. While the immune system provides defense against pathogens 
in healthy individuals, it also plays a role in clearing the body’s own dead cells and cell remnants to 
prevent tumoral cell formation. On the other hand, one of the main features of the immune system is 
"immune tolerance" which ensures that the body does not harm its own tissues and maintains tissue 
homeostasis while performing the aforementioned active immune screening of tissues and organs.

Conceptually, the elements of the immune system can be divided into two main groups: Innate and 
acquired (adaptive) immunity, which interact closely with each other. The innate immune system 
provides a pre-structured first response to a wide range of situations and stimuli, and thus constitutes 
an initial rapid response against immune insults. However, the adaptive immune system learns to 
recognize previously encountered stimuli and provides a specific immune response against them. Both 
types of immunity are mediated by both molecules and cells. The general characteristics of the innate 
and adaptive immune systems are summarized in Table 1[1].

Immune tolerance implies the inertia of the immune response towards self-antigen. Immune 
tolerance can occur in two ways. “Central tolerance” is acquired by training lymphocytes about 
autoantigens during their development in primary immune organs (e.g., thymus), whereas “peripheral 
tolerance” defines the maintenance of tolerance towards self-antigens by lymphocytes at the target 
organ, such as the liver, which has previously completed their development and spread around the 
body. Central tolerance is achieved by apoptosis of self-reacting T lymphocytes in the thymus and by 
the loss of autoreactive feature of lymphocytes by changing their receptors in the bone marrow. 
Peripheral tolerance is provided by T regulatory (Treg) cells and co-stimulatory surface molecules that 
control antigen presentation by dendritic cells (DCs)[2].

Autoimmunity is the formation of a cellular or humoral immune response against the body’s own 
antigens due to defects in immune tolerance mechanisms. Autoimmune diseases are characterized by 
tissue damage resulting from a dysregulated immune reaction of an organism against its own antigens
[3]. The autoimmune reaction can be limited to an organ (e.g., autoimmune hepatitis [AIH]) or systemic 
reactions involving several organ systems (e.g., systemic lupus erythematosus). Although both the 
innate and adaptive immune systems contribute to the development of autoimmune disease, it is 
generally known that adaptive immunity plays a major role. Indeed, recent literature proposed to 
classify the disease with loss of immune tolerance as “autoinflammatory disease“ which is mainly 
associated with disorders in innate immunity and “autoimmune disease“ which is driven by path-
ological responses of the adaptive immune system[4].

Various factors and mechanisms can trigger autoimmunity. In general, the presence of underlying 
genetic predisposition factors, environmental factors, infection, inflammation, and apoptotic bodies 
triggers the development of autoimmunity[5]. Although the pathogenesis of autoimmunity is still not 
fully understood and studies are ongoing, the currently known mechanisms that are thought to cause 
autoimmunity are summarized at the cellular and molecular levels in Table 2[6].

The prevalence of autoimmune diseases in the general population is around 3%-5%[7,8]. They include 
a diverse group of diseases that can affect almost all organs and sometimes multiple systems, such as 
autoimmune thyroiditis and autoimmune hemolytic anemia, which can be organ-specific whereas 
systemic lupus erythematosus and vasculitides have systemic involvement. The presence of one 
autoimmune disease predisposes patients to other autoimmune diseases. In fact, autoimmune liver 
diseases (AILD) are organ-specific, namely, liver-restricted autoimmune diseases, and are commonly 
associated with autoimmune diseases of other organs[9].
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Table 1 Characteristics of immune system components

Innate immunity Adaptive immunity

Cells Macrophages, dendritic cells, neutrophils, eosinophiles, 
basophiles, mast cells, NK cells, γδT cells

T lymphocytes, B lymphocytes, NK cells, γδT cells

Molecules Complement, cytokines, glycoproteins, chemokines, TLR, 
NLR, IL-1 beta, IL-18

Immunoglobulins, cytokines, chemokines

Response time Rapid (minute-hour) Slow (hour-days)

Response type Response is non-spesific Pathogen and antigen specific response

Memory No immunological memory Immunological memory

Dysregulated 
disease

Autoinflamatory diseases (e.g., periodic fever syndromes, 
systemic juvenile idiopatic artritis, adult onset Still 
disease, gout aritis)

Autoimmune diseases (e.g., mixed connective tissue diseases, systemic 
lupus erythnatosus, systemic sclerosis, idiopatic inflamatory myopaties, 
primary sjögren syndrome)

TKR: Toll-like receptors; NLR: Nod-like receptor; IL: Interleukin; NK: Natural killer.

Table 2 Mechanisms of autoimmunity

Item Description

Exogen Molecular mimicry

Superantigen stimulation

Microbial and tissue damage related adjuvant effect

Endogen Loss of central and peripheral tolerance

Autoreactive B and T lymphocytes

Apoptotic defects and defects in cleaning apoptotic substance

Disturbances in cytokine balance

Change in immunoregulation

Dysregulated immune responses not only increase infection risk but also make individuals prone to 
autoimmune and malignant diseases. Inborn errors of immunity (IEI) were previously named “primary 
immunodeficiency diseases”. IEI is a heterogeneous group of diseases caused by one or more disorders 
in the innate or adaptive immune system, affecting the development or function of the immune system 
and increasing susceptibility to infections[10]. Unlike secondary immune deficiencies, which develop 
due to various drugs and diseases, IEI is a genetic disorder. More than 350 genes involved in the 
etiology of IEI have been identified. While some IEIs are inherited by a single gene, other is polygenic. 
Except for selective IgA deficiency, all other forms are rare, occurring in approximately 1:10000 Live 
births. However, it is estimated that IEI is more common in consanguineous or genetically isolated 
populations[11]. According to a classification updated in 2019, IEIs were grouped under ten headings as 
shown in Table 3[12,13]. Most IEIs present with symptoms and are diagnosed in childhood; however, 
symptoms of some diseases, such as common variable immunodeficiency (CVID), may appear later in 
life. Diagnosis may be delayed because of the heterogeneous and indolent course of symptoms 
associated with IEI. The risks in these patients are not limited to susceptibility to bacterial, viral, or 
opportunistic infections but also include autoimmunity, malignancy, lymphoid proliferation, atopy, and 
granulomatous disease[12,14,15]. The treatment method varies according to the type of IEI, such as 
prophylaxis for bacterial, fungal, and/or viral infections; intravenous or subcutaneous immunoglobulin; 
immunosuppressive or modulatory drugs; and hematopoietic stem cell transplantation.

ROLE OF THE LIVER IN IMMUNITY
The liver has been proposed as an “immunological organ”. Beginning with intrauterine life, the liver has 
several unique immunological features, including a high level of immune tolerance, powerful innate 
immunity, and over-reactive autoimmunity against a weak adaptive immune response. In addition, the 
liver has a dual arterial blood supply from the hepatic artery and portal vein; thus, it is a bridge between 
the two circulatory systems of the body, namely, the caval and portal systems. Oxygen-rich arterial 
blood enters the liver via the hepatic artery, which supplies one-third of the liver’s blood flow. The 
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Table 3 Categories of inborn errors of immunity

No. Inborn errors of immunity phenotypical classification

1 Immunodeficiencies affecting cellular and humoral immunity

2 Combined immunodeficiences with associated or syndromic features

3 Predominantly antibody deficiencies

4 Disease of immune dysregulation

5 Congenital defects of phagocyte number and function

6 Defects in intrinsic or innate immunity

7 Autoinflammatory disorders

8 Complement deficiencies

9 Phenocopies of inborn errors of immunity

10 Bone marrow failure

portal vein carries most of the blood to the liver, which is rich in both nutrients and pathogen-derived 
molecules[16,17]. After passing through a network of liver sinusoids, blood leaves the parenchyma via 
the central hepatic veins. Various antigenic structures and cells from the gut and other organs mix 
within the liver sinusoids and are cleaned by hepatocytes. Approximately 30% of the total cardiac 
output passes through the liver every minute, and it carries approximately 108 peripheral blood 
lymphocytes in 24 h[18]. Decreased blood velocity in the feeding vessels of the liver, minimal increases 
in systemic venous pressure, and disturbances in sinusoidal flow result in stasis. This prolongs the 
contact time between lymphocytes and antigen-presenting cells (APCs) in the sinusoids and promotes 
lymphocyte extravasation. The sinusoids are lined with special liver sinusoidal endothelial cells (LSECs) 
containing multiple fenestrae that allow blood lymphocytes to reach the space of Disse between LSECs 
and hepatocytes, where they contact the extracellular matrix, stellate cells, and hepatocytes[19].

The liver is considered to be one of the primary organs of the immune system, with its own 
microanatomy and lymphoid and non-lymphoid cells. Liver parenchymal cells are hepatocytes and 
cholangiocytes, which constitute 60%-80% of liver tissue (Figure 1) and function as part of the “liver 
immune system”. Non-parenchymal cells, namely, LSECs, hepatic satellite/into cells, Kupffer cells, 
neutrophils, mononuclear cells, T and B lymphocytes, natural killer (NK) cells, and NKT cells, also have 
immunological functions[18]. Lymphocytes are scattered throughout the hepatic lobules and portal 
areas. The liver contains approximately 1010 lymphocytes, including conventional and nonconventional 
lymphocyte subpopulations of the immune system.

Conventional T cells include clusters of differentiation (CD)8+ and CD4+ T cells. Both groups of T cells 
exhibit a diverse repertory of T cells that recognize antigens in the context of major histocompatibility 
complex (MHC) class I and II molecules. CD4+ T cells are less in number than CD8+ T cells in the liver. 
There are more memory cells in the liver than in blood. Unconventional T cells contain a variety of cell 
types and are categorized into two main populations based on NK cell marker presentation. Unconven-
tional T cells presenting T cell markers are named NKT cells, and they bridge the gap between the 
adaptive and innate immune systems. NKT cells have a limited T-cell receptor (TCR) repertoire. They 
recognize and eliminate tumor and virus-infected cells. Unlike conventional T cells, NKT cells recognize 
glycolipid antigens that are presented by CD1d. NKT cells are further classified as “classical NKT cells” 
and “nonclassical NKT cells”. Classical NKT cells are divided into two groups: CD4-positive or 
CD4/CD8-double negative. Nonclassical NKT cells contain TCR αβ and TCR γδ T cells[20]. Classical 
and non-classical NKT cells are found in higher proportions in the liver than in other organs and may 
constitute 30% of the intrahepatic lymphocyte population[21].

The liver comprises various types of resident APCs that can capture cell-associated released antigens, 
either passing through the liver or during the death of pathogen-infected hepatocytes. Resident APCs 
include Kupffer cells, LSECs, and DCs. Kupffer cells constitute the majority of the macrophage group in 
the body and constitute approximately 20% of the non-parenchymal cells in the liver[22]. Kupffer cells 
originate from circulating monocytes and localize in the sinusoidal vascular space of the liver. Here, 
they settle perfectly to remove endotoxins from the blood and phagocytose residues and microor-
ganisms. Their slow migration through hepatic sinusoids leads to temporary stasis, facilitating close 
contact with the passing lymphocytes[23]. LSECs constitute the majority of non-parenchymal cells in the 
liver (50%). Their morphology forms a sieve-like fenestral endothelium. LSECs express molecules 
containing mannose and scavenger receptors, which facilitate antigen uptake. LSECs also include MHC 
class I and II and co-stimulatory molecules (CD40, CD80, and CD86) that facilitate antigen presentation
[24]. DCs are professional APCs that control immunity and tolerance. Hepatic DCs are derived from the 
bone marrow and are mostly found around the central veins and portal tracts of the liver[25]. Hepatic 
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Figure 1 Cell composition of the healthy liver. ILC: Innate lymphoid cells; DC: Dendritic cells; LSEC: Liver sinusoidal endothelial cells; NK: Natural killer; 
NKT: Natural killer T.

DCs produce certain cytokines in response to signals from invading microbes and their cellular 
environment, support the adaptive immune system, and act as a bridge between innate and adaptive 
responses[26].

IMMUNE SYSTEM ELEMENTS IN THE LIVER
Innate immunity
The innate immune system is the first crucial defense against infections. It quickly reacts to possible 
pathogenic attacks. The innate immune system contains physical and chemical barriers, humoral factors, 
phagocytic cells, and lymphocytic cells (NK and NKT cells). Although innate immune responses kill 
pathogens non-specifically, recent studies suggest that innate immunity can detect specific infections 
through “pattern recognition receptors (PRRs)”. PRPs identify structures reflected by pathogens called 
pathogen-associated molecular patterns (PAMPs)[27]. Among them, the best-defined PAMPs are 
lipopolysaccharides and peptidoglycans.

Hepatocytes play an important role in the control of systemic innate immunity by secreting PRRs and 
complementing plasma. Liver expression of genes encoding these proteins is governed by transcription 
factors such as hepatocyte nuclear factors (nuclear factor-1) and CCAAT-enhancer-binding protein. 
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During the acute phase of the systemic inflammatory response, various pro-inflammatory cytokines 
[such as interleukin (IL)-6, IL-1, tumor necrosis factor α (TNF-α), and interferon-gamma (IFN-γ)] 
stimulate hepatocytes to produce high levels of complement and PRRs[28].

The complement system comprises plasma and membrane proteins that affect each other to protect 
against infection. In addition, it contributes to the pathogenesis of various liver disorders including 
fibrosis, alcoholic liver disease, and ischemic liver injury. There are three different ways to activate the 
complement system: Classical, lectin, and alternate pathways. After activation, the complement system 
mediates various biological activities, such as opsonization, and inflammatory and cytotoxic functions. 
The liver biosynthesizes the main complement components in the plasma, including C1r/s, C2, C4, Cbp, 
C3, mannan-binding lectin, factor B, mannan-binding lectin-associated serine proteases 1-3, and the 
terminal components of the complement system C5, C6, C8, and C9. Hepatocytes are also involved in 
the biosynthesis of certain regulatory proteins in the plasma, such as factor I, factor H, and C1 inhibitors
[29,30].

The liver contains membrane-bound PRRs, such as Toll-like receptors (TLRs), which are a family of 
proteins that recognize PAMPs expressed by microorganisms. Diverged TLRs are expressed by liver 
cells. They have been shown to participate in liver injury and repair, and contribute to the pathogenesis 
of various liver diseases. Recently, cytoplasmic PRRs, including nucleotide-binding oligomerization 
domain-like receptors and retinoic acid-inducible gene (RIG)-like helicases, have been identified. RIG-1 
serves as a pathogen receptor that regulates cellular transition to hepatitis C virus (HCV) replication[31].

Many studies have shown that hepatic NK cells play a significant role in innate immune responses 
against tumors, viruses, intracellular bacteria, and parasites. NK cells also contribute to innate defense 
against primary liver tumors and liver metastases in patients. This effect is achieved by direct killing of 
tumor cells and stimulation of tumor-specific immunity[32]. Activation of NK cells is also involved in 
liver injury, fibrosis, and repair[33]. Liver lymphocytes are enriched in Tγδ cells. Evidence suggests that 
Tγδ cells play an important role in innate defense against viral and bacterial infections and in tumor 
formation. The percentage of Tγδ cells is considerably increased in the livers of tumor-bearing mice and 
patients with viral hepatitis[34].

In addition to host defense against infection, innate immunity can detect signals from damaged 
hepatocytes during non-infectious liver injury. Acetaminophen hepatotoxicity and ischemic liver injury 
can cause liver damage by inducing sterile neutrophilic inflammation. Neutrophilic inflammation after 
partial hepatectomy can promote liver regeneration by triggering a local inflammatory response, 
leading to hepatocyte proliferation[35]. IL-1 is an important mediator of sterile neutrophilic inflam-
mation in liver injury.

All chronic liver diseases lead to liver fibrosis, which is characterized by the activation of hepatic 
satellite cells (HSCs) overproducing collagen, and eventually, its accumulation in the liver[36]. HSCs are 
generally inactive in healthy livers, but become activated during liver injury and differentiate into 
myofibroblastic cells. Transforming growth factor β (TGF-β) and platelet-derived growth factor induce 
HSC transformation and proliferation. Evidence suggests that the innate immune system plays a key 
role in regulating HSC activation and liver fibrosis[37]. The complement system is activated after liver 
damage. A recent study showed that C5 deficiency caused a decrease in liver fibrosis, whereas overex-
pression of the C5 gene caused an increase in liver fibrosis[38]. TLRs likely play a significant role in the 
pathogenesis of liver fibrosis because various TLRs are expressed in liver cells, including HSCs[39]. 
TLR9-deficient mice have been shown to be resistant to liver fibrosis because HSCs require TLR9 for 
DNA activation[40]. Kupffer and NK cells have been shown to play significant roles in liver fibrosis[33]. 
It is thought that Kupffer cells activate HSC by producing cytokines/growth factors such as TGF-β. NK 
cells have an inhibitory effect on liver fibrogenesis. Activated HSCs are directly killed by NK cells by 
expressing the NK cell-activated ligand retinoic acid early inducible gene 1 and tumor necrosis factor-
related apoptosis-inducing ligand receptors[41,42].

Adaptive immunity
The liver is a front-line filter for pathogens and PAMPs entering the body from the gut via the portal 
vein, and is often one of the first points of contact with other antigens entering the body. Similar to 
lymphoid organs, the liver is involved in the development and function of the adaptive immune 
response. Despite the abundance of APCs in the liver and their ability to rapidly recruit diverse immune 
cell populations, establishing an integrated adaptive immune response in the liver is a complex process. 
The immune response in the liver must be in delicate balance between tolerance to non-threats and 
immunity to pathogens.

There is insufficient data on the functions of B cells in the liver. The scarcity of B cells in the healthy 
liver is the reason for not obtaining the intended information. In adaptive immunity in the liver, these T 
cell subsets are highly regulated in all stages of diverse disorders. The major T lymphocytes involved in 
adaptive immunity include CD4+ T cells, CD8+ T cells, and γδ cells. CD4+ T cells have at least five 
functional subgroups, including helper T (Th), Th2, Th17, follicular helper T (Tfh), and T-regulatory 
(Treg) cells. The innate and adaptive immune responses in the liver are supported by Tfh cells, which 
are often suppressed by Treg cells. CD8+ T cells are composed of two subgroups: Cytotoxic T (Tc) cells 
and CD8+ Treg cells. Tc cells are the main killer cells in adaptive immunity, and CD8 Treg cells suppress 
immune responses to infection. Tγδ cells participate in both the innate and adaptive immune responses.
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Adaptive immunity and viral hepatitis
Although hepatitis B virus (HBV) and HCV are both hepatotropic viruses, hepatocellular necrosis 
during infection primarily results from an adaptive immune response targeting virus-infected liver cells
[43]. Naive T cells specific to viral antigens can be locally activated in the liver. In the initial stage of 
adaptive immunity, antigen-specific naive T cells are usually prepared by APCs in the lymph nodes, 
differentiate into effector cells, and then migrate to the target (liver)[44]. However, HBV-specific naïve T 
cells can exert their anti-HBV effects by directly entering the liver before maturation in lymphoid organs
[45]. Th17 cells can exacerbate liver lesions during HBV infection. In patients with HBV infection, the 
number of Th17 cells increases in the blood and liver, accompanied by high levels of IL-17 and IL-22 in 
the blood[46]. In contrast, HBV-specific CD4+CD25+foxp3+ Treg cells have immunosuppressive effects 
during HBV infection[47]. Evidence demonstrates that HBV-specific CD8+ T cells play a significant role 
in viral clearance and in the prognosis of HBV infection. When HBV-specific CD8+ T cells are activated, 
they produce IFN-γ and TNF-α, which in turn inhibit HBV replication in infected hepatocytes and 
enable viral clearance. However, studies in mice infected with HBV have shown that HBV components 
also induce specific immune tolerance through clonal deletion, clonal ignorance, and clonal anergy[48]. 
It has been reported that there are more CD11b+Gr-1+ myeloid-derived suppressor cells (MDSCs) in the 
liver of patients with chronic hepatitis B. The suppressive role of MDSCs in T cells contributes to the 
dysfunction of HBV-specific CD8+ T cells. Additionally, γδ-T cells may promote CD8+ T-cell depletion in 
these patients by recruiting MDSCs to the liver[49].

Adaptive immunity and hepatocellular carcinoma
Most cases of hepatocellular carcinoma (HCC) occur in individuals with a history of HBV or HCV 
infection, with or without cirrhosis. Two main mechanisms explain the close association between viral 
infection and HCC: Immunosuppression due to viral infection, and viral gene integration. The 
occurrence and prognosis of HCC are closely related to T-cell-mediated immunity[50]. It has been 
known that CD8+ T cells are the essential cells of adaptive immunity that kill tumor cells via histocom-
patibility leukocyte antigen class I molecule limitation on the tumor cells. Several HCC tumor-
associated antigen (TAA)-specific CD8 T cells have been identified. Alpha-fetoprotein (AFP) is the most 
common TAA in HCC patients. AFP has been reported to transform DCs into tolerogenic DCs, which 
inhibit the induction of tumor-specific CD8+ T cells[51]. Among the CD4+ T-cell subsets in HCC, CD4+

CD25+Foxp3+ Treg cells play an important immunoregulatory role. As the number of infiltrating Treg 
cells increased, the number of CD8+ T cells in the liver decreased. When the number of Treg cells is 
decreased by cyclophosphamide treatment in patients with HCC, the number of CD4+ T cells that 
secrete IFN-γ increases[52]. Evidence suggests that the number of MDSCs is increased in the peripheral 
lymphatic tissue and blood of patients with HCC, resulting in suppression of both innate and adaptive 
immunity. MDSCs suppress NK cells in HCC via cell-cell contact. Studies have suggested that MDSCs 
inhibit CD8+ T cells through indirect pathways by producing inhibitory cytokines such as IL-10[53]. It 
has been shown that programmed death 1 (PD-1) is highly expressed in T cells that are infiltrating the 
hepatic tumor, whereas PD-1 Ligand (PD-L1) is overexpressed on tumor cells. IFN-γ secreted by CD8+ T 
cells with increased PD-1 expression induces high levels of PD-L1 expression in cancer cells. This may 
lead to the exhaustion of TAA-specific CD8+ T cells in the tumor through tumor cell immune escape. 
Increased PD-L1 expression in HCC cells is inversely related to HCC prognosis[54].

IMMUNE TOLERANCE AND THE LIVER
Besides being an immunological organ, the liver is also an “immune tolerant” organ. Approximately 1.5 
L of blood per minute comes to the liver from both the circulatory systems. This blood contains 
pathogenic antigens as well as harmless substances such as dietary antigens, intestinal microbiota 
products, and autoantigens. This necessitates advanced “immune tolerance mechanisms” that prevent 
untoward immune responses in the liver. The first observations on the immunotolerant effect of the 
liver are that rejection did not develop in liver transplant patients despite allograft major MHC 
incompatibility, and also that combined transplant patients (transplantation of other organs together 
with liver from the same donor) accepted non-hepatic allografts more easily even without immunosup-
pression[55]. Therefore, considering the antigenic diversity to which the liver is exposed in its normal 
physiology, it is accepted that the liver is not an “immune reactive” but an “immune tolerogenic” organ
[56]. Immunosuppressive agents, including calcineurin inhibitors (cyclosporine and tacrolimus) and 
corticosteroids, which target the activation, expansion, and cytotoxicity of the recipient’s T lymphocytes, 
have led to advances in transplant surgeries since the 1970s, reducing the rate of acute rejection to less 
than 15%. However, the long-term use of immunosuppressants is associated with an increased risk of 
infection and malignancy. It has been observed that hepatic allografts can be accepted by MHC-
incompatible individuals for a short period of time without immunosuppressant treatment. Cellular and 
humoral alloimmune responses contribute to the rejection. It is also important to know that liver 
transplantation itself can induce inflammatory pathways, such as hepatic ischemia-reperfusion injury. 
The liver microenvironment is permeated by waves of pro-inflammatory and anti-inflammatory 
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responses throughout life, and this regenerative profile, as well as the subtypes of secreted cytokines, is 
closely associated with the restoration of liver function and clinical outcomes after liver transplantation.

Immune cells in the liver have their own mechanisms that make the liver more immune tolerant than 
other organs. The key factor in ensuring immune tolerance is the anti-inflammatory effect of Treg cells 
(CD4+25+ T lymphocytes) on other lymphocytes. Although Tγδ lymphocytes have cytotoxic effects 
against bacteria and tumors, they also play a role in limiting hepatic inflammation and fibrosis by 
releasing anti-inflammatory cytokines. Unlike other tissues, antigen-presenting DCs in the liver exhibit 
an “immature” phenotype that expresses low levels of MHC and costimulatory molecules (CD40, CD80, 
and CD86). DCs also contribute to immune tolerance by secreting IL-10, which activates Th2 rather than 
Th1, and by enabling the formation of Treg cells. In response to inflammation, PD-L1 upregulation 
occurs in hepatocytes and HSCs; thus, inflammation is suppressed. It is interesting that “autoimmunity” 
can also be seen in the liver, an organ where such different immune-tolerance mechanisms are at the 
forefront[57,58].

AUTOIMMUNITY AND LIVER DISEASE 
AILD is a group of diseases, including AIH, primary biliary cholangitis (PBC), primary sclerosing 
cholangitis (PSC), and variant syndromes (AIH with PBC or PSC). Each AILD is heterogeneous in itself, 
and genetic and environmental factors play roles in the underlying pathogenesis. Although all of them 
affect the liver, the target cells for autoimmune damage, the pattern of inflammation, presenting clinical 
findings, and treatment options vary divergently within the AILD spectrum.

Primary biliary cholangitis
PBC is a typical organ-specific autoimmune disease, in which the biliary tract is the main target of 
destruction. Patients with PBC experience symptoms ranging from lymphocytic cholangitis associated 
with cholestasis and biliary fibrosis to progressive ductopenia. The presence of antimitochondrial 
antibodies (AMA) directed to pyruvate decarboxylase E2 (PDC-E2) is a diagnostic and serological 
feature of PBC. Anti-PDC-E2 antibodies primarily belong to the IgG3 subclass; however, IgM and IgA 
autoantibodies targeting this antigen may also be found. Anti-PDC-E2 antibodies have a potential 
pathogenic role, and immunohistochemical examinations of liver tissues from patients with PBC 
revealed predominantly CD4 and CD8 T cells of the bile ducts in the portal area[59]. The innate and 
adaptive immune cell elements and cytokines involved in the PBC pathology are shown in Figure 2.

Adaptive immunity and PBC: Infiltration of mononuclear cells around the small- or medium-sized bile 
ducts in the hepatic portal area is one of the characteristic histopathological features of PBC. These infilt-
rating lymphocytes are adjacent to the biliary epithelial cells in the damaged bile ducts. Loss of tolerance 
to PDC-E2 is the initiating event leading to clinical biliary pathology, and PDC-E2-specific CD4+ and 
CD8+ T cells are highly enriched in the PBC liver[60]. Among the T cells, CD8+ T cells play a 
predominant role in the immunopathogenesis of PBC. In patients with PBC, CD8+ T cells highly 
infiltrate the portal area. PDC-E2-specific CD8+ T cells were detected in the peripheral blood at the early 
stages of PBC. In experimental models of PBC, liver lesions with extensive CD8+ T-cell infiltration in the 
portal region, granuloma, and even fibrosis have been detected[61,62]. Different subsets of CD4+ T cells 
are also involved in the pathogenesis of PBC. In liver samples from patients with PBC, infiltration of 
CD4 T cells, including PDC-E2-specific CD4+ T cells, is evident during inflammation in the portal areas
[63]. An increased number of CD4+ T cells (Th17) have been observed in the portal tracts compared to 
the peripheral blood in PBC patients. The analysis showed that Th17 cells play a significant role in 
maintaining PBC immunopathology, which is mediated by Th1 cells at an early stage[64].

IL-12 and IL-23 are pleiotropic cytokines with proinflammatory effects that play an important role in 
various autoimmune diseases. Additionally, genome-wide association studies identified the important 
elements of the IL-12/Th1 signaling pathway, IL-12A, IL-12Rβ2, and STAT4, as susceptibility gene loci 
for PBC[65]. Although there was a low amount of Treg cells in the serum of patients, they were detected 
in lymphocyte aggregates located in the portal area. Studies have shown that Treg cells from patients 
with PBC significantly increase IFN-γ secretion in response to low-dose IL-12 stimulation. This effect 
was achieved by rapid and potent phosphorylation of STAT4 on Treg cells in these patients[66].

Innate immunity and PBC: The role of innate immunity in the immunopathogenesis of PBC has been 
supported by numerous studies, demonstrating the ability of cholangiocytes to express various TLRs, 
cellular activators of innate immunity, and other PPRs. Peroxisome proliferator-activated receptor γ 
(PPARγ) is constitutively expressed in biliary epithelial cells of small intrahepatic bile ducts. PPARγ 
appears to be downregulated in the bile ducts of PBC patients. PBC is characterized by the upregulation 
of TLR4 and TLR9 in cholangiocytes, and TLR3 and type I IFN-γ signaling pathways in the portal tracts
[67]. Evidence suggests that IL-17-positive cells accumulate around the damaged bile ducts. Biliary 
epithelial cells can produce Th17-inducible cytokines, such as IL-6 and IL-1β, as a result of the innate 
immune response. These results suggest that periductal IL-17-secreting cells facilitate the migration of 
inflammatory cells around the bile ducts in PBC, which may worsen chronic cholangitis[68].
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Figure 2 Model of pathogenic mechanisms in primary biliary cholangitis. APC: Antigen presenting cell; DC: Dendritic cell; NK: Natural killer; IL: 
Interleukin; TNF: Tumor necrosis factor; TGF-β: Transforming growth factor β; IFN-γ: Interferon-gamma; PPAR: Peroxisome proliferator-activated receptor; AMA: 
Anti-mitochondrial antibody.

Autoimmune hepatitis
AIH is an autoimmune chronic inflammatory liver disease characterized by the presence of multiple 
autoantibodies, elevated serum aminotransferase levels, and excessive hepatic lymphoplasmacytic infilt-
ration. However, the exact pathogenesis of AIH remains unclear. Although autoantibody positivity is a 
sine qua non of AIH, T cells rather than B cells are the major mediators of AIH immunopathogenesis. 
Current evidence suggests that T cells are immune regulators, and multiple autoantibodies are also 
important participants[69].

The frequency of infiltrating CD4+ T cells is histopathologically higher than that of CD8+ T cells in the 
early stages of AIH. Spontaneous apoptosis of CD4+ T cells is markedly reduced in AIH[70]. The ratio of 
liver CD8+/CD4+ T cells (Tc/Th) increases with disease activity in patients with AIH. CXCR3 and CCR6 
are highly expressed in CD8+ T-cells. This shows that the ligands CXCL9 and CCL20 are highly 
expressed in the inflamed liver, thus facilitating the uptake of CD8+ T cells into the liver[71]. Emperi-
polesis is defined as the presence of an intact, viable cell (lymphocyte) within the cytoplasm of another 
cell (hepatocyte), and is one of the histopathological and diagnostic features of AIH. Emperipolesis is 
predominantly mediated by CD8+ T cells and is correlated with severe necroinflammation and fibrosis
[71].

Different subsets of CD4+ T (Th) cells, particularly Treg cells, have been found to exert remarkable 
effects in AIH. Treg cells in patients with AIH suppress autoimmunity by direct contact with CD4+CD25- 
T cells and secretion of regulatory cytokines, such as IL-4, IL-10, and TGF-β[72]. Treg cells mediate 
immune suppression through the expression of CD39 and CD73. Treg cells in AIH exhibit reduced 
NTPDase-1 activity as well as a reduced ability to inhibit IL-17 secretion from Th17 cells in AIH, which 
contributes to autoimmunity. Circulating and intrahepatic IL-17 Levels were significantly higher in AIH 
patients than in healthy controls. Hepatic expression of IL-17 is associated with inflammation and 
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fibrosis in the liver[73]. Studies have shown that the interaction between Gal-9 on Treg cells and Tim-3 
on Th cells may be an important mechanism for direct contact suppression mediated by Treg cells. 
Although some studies have reported a decrease in the number of Treg cells in AIH, others have shown 
that Treg cells do not decrease in AIH[74,75]. These results suggest that the role of Treg cells in AIH 
immunopathology remains controversial.

In addition to Treg cells, Thf cells are associated with adaptive cell immunity in AIH. CD8 T cells 
have been shown to be activated by IL-21, secreted by Tfh cells. Tfh cells are widely recognized as a 
subset of CD4+ T cells that aid in B-cell development[76]. The number of T γδ cells was increased in 
patients with AIH. T γδ cells secrete higher levels of IFN-γ and granzyme B than healthy controls, which 
may contribute to autoimmune damage in AIH patients.

Studies have shown that B cells inhibit CD4+ T cells in animal models of AIH. Its suppressive function 
is dependent on the expression of CD11b in B cells. IL-10 is mainly secreted by CD4+ T cells and 
increases CD11b expression. This means that CD4+ T cells and B cells can regulate each other in AIH
[77]. The possible immune cells and mediator cytokines involved in the autoimmune hepatitis 
pathogenic pathway are shown in Figure 3.

AUTOIMMUNITY AND IEI
With a simplistic approach, autoimmunity and IEI can be thought of as “over” and “insufficient” 
functioning of the immune system, respectively. In other words, autoimmunity and IEI might be 
accepted as opposites in the spectrum of immune system functioning. However, with the accumulation 
of knowledge and experience in both disease groups, this simple distinction disappeared, and it was 
revealed that the immune system was “dysregulated” in both groups.

The coexistence of autoimmunity and IEI is a well-known entity[78]. An analysis conducted in France 
showed that 26.2% of patients with IEI had one or more autoimmune or autoinflammatory symptoms 
during their lifetime[79]. In a two-center prevalence study in Turkey including 1435 patients with IEI, 
autoimmunity was reported at a rate of 2.2%[80], although antibody deficiencies take the first place 
among immunodeficiencies. According to this study, the most common type of immunodeficiency 
associated with autoimmune diseases is CVID, and the most common accompanying autoimmune 
diseases include vasculitis, autoimmune hemolytic anemia, and autoimmune thrombocytopenia. In a 
national data-based study conducted in France, Fischer et al[79] found that autoimmunity is mostly 
associated with T cell-related diseases and CVID. The cumulative incidence graph of lifelong 
autoimmune development in patients with IEI increased almost linearly after 8-10 years of age, and 40% 
of patients developed autoimmune disease by the age of 50 years. The most common accompanying 
autoimmune diseases were cytopenia and gastrointestinal, skin, rheumatological, and endocrine 
diseases. Therefore, it is important for all physicians dealing with autoimmune diseases or immunodefi-
ciencies to keep in mind that various autoimmune diseases can accompany almost all types of IEI 
syndrome, either as the first finding or during their course.

Pathophysiology of autoimmunity developing on the background of IEI
It is thought that there are common genetic and pathophysiological mechanisms for IEI and auto-
immune diseases based on the frequent occurrence of their association and the increased incidence of 
autoimmunity in the families of individuals with IEI. The leading cause of autoimmunity in IEI is loss of 
immune tolerance. In Autoimmune Polyendocrinopathy-Candidiasis-Ectodermal Dystrophy (APECED) 
and DiGeorge syndrome, T cell development and function are impaired, resulting in “loss of central 
tolerance”, and the development of autoreactive T cells triggers autoimmunity[81]. The “peripheral 
tolerance loss” is lost in patients with Immune Dysregulation, Polyendocrinopathy, Enteropathy, X-
linked (IPEX) syndrome, hyper immunoglobulin-M (HIGM) syndrome, and CVID, and autoreactive B 
cells play a role in the emergence of autoimmunity in these patients[82]. Autoimmunity can also occur 
with a disorder in signaling pathways in the immune system, and one of the best examples is Wiskott-
Aldrich Syndrome (WAS). Loss of the WAS protein, a regulatory protein that plays a key role in 
signaling from TCR to the cytoskeleton in WAS, results in impaired number and function of Treg 
lymphocytes, which triggers autoimmunity[83]. Autoimmunity may develop as a result of the failure of 
autoreactive lymphocytes to be cleared by apoptosis in autoimmune lymphoproliferative syndrome 
(ALPS) and some combined immunodeficiencies[84]. Autoimmunity develops in partial IgA (PIgA) 
deficiency and complement disorders due to impaired antigen clearance and increased exposure to 
antigens[85]. X-linked chronic granulomatous disease causes an abnormal immune response against 
cellular wastes, and this is blamed for the pathogenesis of SLE developing in one-third of female carriers 
of this disease[86].

Autoimmunity should also be considered as a warning sign in terms of the IEI. On the one hand, the 
hypogammaglobulinemic state and cellular deficiency affect the results of serology tests and biopsies, 
creating diagnostic difficulties for autoimmune diseases in patients with IEI. Therefore, the 
interpretation of diagnostic tests in these patients should be done very carefully, and even weak 
autoantibody positivity, which is normally ignored, should be taken into account.
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Figure 3 Pathogenic pathways of autoimmune hepatitis. APC: Antigen-presenting cell; CTL: Cytotoxic T lymphocyte; Mac: Macrophage; IL: Interleukin; 
TNF: Tumor necrosis factor; MHC: Major histocompatibility complex; TGF-β: Transforming growth factor β; IFN-γ: Interferon-gamma.

Association of AILD and IEI
Although AILD can be seen together in IEI, it is difficult to state its prevalence due to the rarity of both 
groups of diseases. The most well-known type of IEI that accompanies AILD is CVID, which can 
accompany all AILD types[87]. PBC was detected in three of 248 patients with CVID followed at a 
center in New York between 1973 and 1986; one of the patients died due to liver-related causes and the 
other two died due to non-hepatic causes. In the same study, although no definitive diagnosis was 
made, three patients were considered to have AIH, and all of them died due to liver failure[88]. PIgA 
deficiency is accompanied by AIH in the range of 0.79% to 5.00%[89]. In a series of 52 pediatric patients 
with AIH, a PIgA deficiency rate of 2.31 % was detected. In this series, the frequency of PIgA deficiency 
was significantly higher in patients positive for LKM-1 autoantibodies (45%) than in patients positive 
for ANA and SMA (9%)[90].

APECED syndrome is an IEI characterized by the predominance of autoimmunity, and AIH can 
occur in up to 43% of cases[91]. In MHC II disorders, autoimmunity may develop against hepatocytes 
and cholangiocytes in the liver[92]. There is a case report of an association between mucocutaneous 
candidiasis and AIH in a child with a STAT-1 gain-of-function mutation[93]. In a case series of 274 
individuals with a STAT-1 gain-of-function mutation, AIH was reported in six (2%) patients[94]. A high 
titer positivity for AMA autoantibodies, indicating a predisposition to the development of PBC, has 
been reported in a case of IPEX syndrome[95]. In a series of 11 patients with hyperimmunoglobulin M 
syndrome, PSC developed in five (45%) patients. Since Cryptosporidium parvum was detected in the stool 
of four of them, it was thought to play a role in the pathogenesis of PSC[96]. In a series of 90 patients 
with ALPS, seronegative AIH was detected in three (3.3%) patients (83). A case report of a five-year-old 
boy with IL-2 receptor alpha (CD25) deficiency provided important information about the pathogenesis 
of AILD in IEI[97]. He was diagnosed with PBC, a disease that is not normally expected to be observed 
in this age and sex. It was shown that he had an increase in autoreactive T cells due to a decrease in 
CD4+CD25+ Treg cells. After allogeneic bone marrow transplantation, AMA/PDC-E2 positivity dis-
appeared, and PBC findings improved, along with improved T cell composition.

CONCLUSION
The liver has a unique anatomical design to protect the host from potential pathogens passing from the 
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intestine to the portal circulation, while maintaining a general state of immune hyposensitivity. The 
liver is the main organ of the innate and adaptive immune systems. As the mechanisms of antigen 
capture, presentation, and recognition in the liver will be understood, the biological mechanisms of 
immune tolerance in the liver will become clearer. The balance between immune tolerance and effective 
immune screening is maintained by interactions between numerous immune cells that are present in 
and recruited into the liver. This is necessary for normal functioning of the liver. If an inappropriate 
immune response disturbs this delicate balance, autoimmune liver pathologies can develop. In addition, 
failure to initiate an effective immune response results in chronic viral infections or failure to clear 
cancer cells. This function of the liver in maintaining immune responses and tolerance demonstrates the 
importance of the liver as a vital immune organ.
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Abstract
BACKGROUND 
Patients with autoimmune hepatitis (AIH) require life-long immunosuppressive 
agents that may increase the risk of poor coronavirus disease 2019 (COVID-19) 
outcomes. There is a paucity of large data at the population level to assess whe-
ther patients with AIH have an increased risk of severe diseases.

AIM 
To evaluate the impact of pre-existing AIH on the clinical outcomes of patients 
with COVID-19.

METHODS 
We conducted a population-based, multicenter, propensity score-matched cohort 
study with consecutive adult patients (≥ 18 years) diagnosed with COVID-19 
using the TriNeTx research network platform. The outcomes of patients with AIH 
(main group) were compared to a propensity score-matched cohort of patients: (1) 
Without chronic liver disease (CLD); and (2) Patients with CLD except AIH (non-
AIH CLD) control groups. Each patient in the main group was matched to a pa-
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tient in the control group using 1:1 propensity score matching to reduce confounding effects. The 
primary outcome was all-cause mortality, and secondary outcomes were hospitalization rate, need 
for critical care, severe disease, mechanical ventilation, and acute kidney injury (AKI). For each 
outcome, the risk ratio (RR) and confidence intervals (CI) were calculated to compare the 
association of AIH with the outcome.

RESULTS 
We identified 375 patients with AIH, 1647915 patients with non-CLD, and 15790 patients with 
non-AIH CLD with COVID-19 infection. Compared to non-CLD patients, the AIH cohort had an 
increased risk of all-cause mortality (RR = 2.22; 95%CI: 1.07-4.61), hospitalization rate (RR = 1.78; 
95%CI: 1.17-2.69), and severe disease (RR = 1.98; 95%CI: 1.19-3.26). The AIH cohort had a lower 
risk of hospitalization rate (RR = 0.72; 95%CI: 0.56-0.92), critical care (RR = 0.50; 95%CI: 0.32-0.79), 
and AKI (RR = 0.56; 95%CI: 0.35-0.88) compared to the non-AIH CLD patients.

CONCLUSION 
Patients with AIH are associated with increased hospitalization risk, severe disease, and all-cause 
mortality compared to patients without pre-existing CLD from the diagnosis of COVID-19. 
However, patients with AIH were not at risk for worse outcomes with COVID-19 than other cau-
ses of CLD.

Key Words: Autoimmune hepatitis; SARS-CoV-2; COVID-19; Mortality; Outcomes; Liver disease; Severe

©The Author(s) 2023. Published by Baishideng Publishing Group Inc. All rights reserved.

Core Tip: Autoimmune hepatitis (AIH) is a chronic inflammatory disease of the liver of unknown etiology. 
Patients with AIH may be at increased risk of severe illness from coronavirus disease 2019 (COVID-19) 
and have poor outcomes due to underlying chronic liver disease (CLD) and ongoing pre-existing 
immunosuppression therapies. Patients with AIH are associated with increased hospitalization risk, severe 
disease, and all-cause mortality compared to patients without pre-existing CLDs from the diagnosis of 
COVID-19. Patients with AIH had a lower risk of several outcomes, including hospitalization, a necessity 
for critical care, and acute kidney injury, compared to patients with pre-existing CLDs other than AIH.

Citation: Krishnan A, Patel RA, Hadi YB, Mukherjee D, Shabih S, Thakkar S, Singh S, Woreta TA, Alqahtani SA. 
Clinical characteristics and outcomes of COVID-19 in patients with autoimmune hepatitis: A population-based 
matched cohort study. World J Hepatol 2023; 15(1): 68-78
URL: https://www.wjgnet.com/1948-5182/full/v15/i1/68.htm
DOI: https://dx.doi.org/10.4254/wjh.v15.i1.68

INTRODUCTION
As coronavirus disease 2019 (COVID-19) cases increase in the United States and globally, investigators 
continue to identify risk factors for adverse outcomes resulting from COVID-19 infection. The known 
risk factors for severe disease include older age, male gender, and comorbidities such as hypertension, 
diabetes, chronic obstructive pulmonary disease, and chronic liver diseases (CLDs)[1-3]. In addition, 
studies have shown that COVID-19 affects the liver, with over one-third of hospitalized COVID-19 
patients presenting with abnormal liver function, which was also associated with a longer hospital stay
[4,5]. In contrast, a higher risk of mortality and hospitalization rates have been reported in COVID-19 
patients with pre-existing liver disease compared to those without liver disease[6].

Autoimmune hepatitis (AIH) is a genetically predisposed CLD. The exact mechanism regarding its 
immune dysfunction has yet to be elucidated; however, an imbalance between effector and regulatory 
immunity and molecular mimicry may play a role in its pathogenesis[7]. The prevalence rate of AIH in 
the United States is estimated to be 31.2/100000, which is similar to the prevalence rates reported in 
Europe[8]. The association between severe acute respiratory disease coronavirus 2 (SARS-CoV-2) and 
autoimmune diseases is very complex and only partially understood. In addition, understanding the 
outcomes of COVID-19 infections in AIH patients is particularly important due to the fact that patients 
with AIH require lifelong immunosuppressive agents to prevent cirrhosis and end-stage liver disease, 
which may increase the risk of viral and bacterial infections[9,10]. The clinical impact of the pre-existing 
use of immunosuppression in patients with COVID-19 remains complex and not clearly defined. 
Evidence is mixed regarding the impact of immunosuppressive agents on COVID-19 outcomes. Hence, 
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existing data are controversial on the outcome following COVID-19 infection in patients with auto-
immune diseases. Some studies have shown that long-term steroid use in the management of 
autoimmune conditions prior to COVID-19 diagnosis is associated with adverse outcomes such as 
hospitalization, intensive care unit (ICU) admission, and mortality[11,12]. At the same time, other 
results did not support an increased risk of severe COVID-19[13,14]. Thus, study results are 
inconsistent, with a high degree of heterogeneity. Therefore, a detailed understanding of the clinical 
course of COVID-19 in patients with AIH is necessary.

On the other hand, increasing vaccine uptake and other public health safety measures have helped 
reduce the pandemic’s burden. However, considerable morbidity and mortality continue to accrue 
among non-immune and unvaccinated individuals. Furthermore, previous AIH literature has used 
small samples of patients with AIH. To address these research gaps, we performed a large population-
based retrospective cohort study using data from the multicenter research network. Our analysis 
focused on evaluating AIH as an independent risk factor associated with severe diseases of SARS-CoV-2 
and all-cause mortality.

MATERIALS AND METHODS
Study design
This population-based, multicenter, retrospective cohort study was conducted using TriNetX 
(Cambridge, MA, United States), a federated health research network data set. TriNetX is a multi-
institutional health research network that provides de-identified electronic medical records systems 
(EHRs) from the included healthcare organizations. Clinical variables (referred to as “facts” on the 
network) are derived directly through EHRs. Robust quality assurance on the network is achieved at the 
time of extraction before inclusion. The platform only provides aggregate patient counts and statistical 
summaries to ensure de-identification at all levels of retrieval and dissemination of patient data. 
TriNetX received a waiver from the Western institutional review board as a federated network since 
only aggregated counts and statistical summaries of de-identified information are included. No 
protected health information was obtained, and no study-specific activities were performed in the 
retrospective analyses. Details of the data source and quality checks are described in the supplementary 
data.

Study participants
All adult patients (age ≥ 18 years) with AIH and confirmed COVID-19 infection between January 20, 
2020, and November 30, 2021, were included. The search criteria for potential patients with COVID-19 
were based on specific COVID-19 diagnosis codes or positive laboratory confirmation of COVID-19.

To determine the clinical impact of AIH on clinical outcomes of COVID-19, we compared AIH 
patients to a control group of patients without any pre-existing CLD, including AIH (non-CLD) and 
COVID-19. To assess the impact of AIH compared to other liver diseases, we compared AIH patients to 
a control group of patients with other pre-existing CLD (non-AIH CLD) and COVID-19. Details of the 
search criteria and diagnosis codes used for patient selection are described in the supplementary data.

Matching process
Each patient in the main group was matched to a patient in the control group using 1:1 propensity score 
matching (PSM) to reduce confounding effects[15]. Covariates in the propensity score model were 
adjusted for a priori-identified potential confounders: Age, sex, race/ethnicity (Hispanic, non-Hispanic 
white, non-Hispanic black, or non-Hispanic other), body mass index (BMI), nicotine dependence, and 
comorbidities that are listed in Table 1. Logistic regression on these input matrices was used to obtain 
propensity scores for each patient in both cohorts. Logistic regression was performed in Python 3.6.5 
(Python Software Foundation) using standard libraries NumPy and Sklearn. The same analyses were 
also performed in R 3.4.4 software (R Foundation for Statistical Computing, Vienna, Austria) to ensure 
outputs match. After calculating propensity scores, matching was performed using a greedy nearest-
neighbor matching algorithm with a caliper of 0.1 pooled standard deviations. The order of the rows in 
the covariate matrix can affect the nearest neighbor matching; therefore, the order of the rows in the 
matrix was randomized to eliminate this bias.

Study outcomes
The primary study outcome was all-cause mortality from index events within 60 d. The index event was 
defined as either the time of COVID-19 diagnosis or the first COVID-19 positive test result date, 
whichever occurred first. Secondary outcomes were hospitalization, severe diseases, acute kidney injury 
(AKI), and intensive care (requiring extracorporeal membrane oxygenation or mechanical ventilation) in 
the 30 d from COVID-19 diagnosis. Severe disease was operationalized and defined as a composite 
outcome requiring intensive care or death within 30 d of COVID-19 diagnosis.
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Table 1 Baseline characteristics of patients with autoimmune hepatitis and non-chronic liver diseases patients with a positive test for 
severe acute respiratory syndrome coronavirus-2

Before propensity score matching After propensity score matching
Variables

AIH (n = 375) Non-CLD (n = 1647915) P value AIH (n = 375) Non-CLD (n = 375) P value

Age, yr, mean ± SD 53.1 ± 18.4 46.4 ± 18.8 < 0.01 53.1 ± 8.4 53.2 ± 8.2 0.97

Sex, n (%)

Female 271 (72.2) 893768 (54.2) < 0.01 271 (72.2) 256 (68.2) 0.23

Ethnicity, n (%)

Hispanic or Latino 37 (9.8) 144535 (8.7) 0.45 37 (9.8) 36 (9.6) 0.90

Race, n (%)

White 238 (63.4) 1028824 (62.4) 0.68 238 (63.4) 228 (60.8) 0.45

Black or African American 64 (17.1) 245820 (14.9) 0.24 64 (17.1) 69 (18.4) 0.63

Other 65 (17.3) 325638 (19.7) 0.24 65 (17.3) 69 (18.4) 0.70

Nicotine dependence, n (%) 76 (20.2) 181270 (10.9) < 0.01 72 (19.2) 74 (19.7) 0.67

BMI (kg/m2), mean ± SD 28.9 ± 7.05 29.9 ± 7.45 0.07 28.9 ± 7.05 30.8 ± 7.65 0.01

Comorbidities, n (%)

Hypertension 163 (43.4) 384968 (23.3) < 0.01 163 (43.4) 159 (42.4) 0.77

Ischemic heart diseases 59 (15.7) 119162 (7.2) < 0.01 59 (15.7) 57 (15.2) 0.84

Heart failure 38 (10.1) 65245 (3.9) < 0.01 38 (10.1) 37 (9.8) 0.90

Diabetes 74 (19.7) 171727 (10.4) < 0.01 74 (19.7) 68 (18.1) 0.58

Chronic lower respiratory 
diseases

82 (21.8) 235406 (14.2) < 0.01 82 (21.8) 81 (21.6) 0.93

Cerebrovascular diseases 37 (9.8) 73209 (4.4) < 0.01 37 (9.8) 39 (10.4) 0.81

CKD of any stage 46 (12.2) 78265 (4.7) < 0.01 46 (12.2) 37 (9.8) 0.29

Neoplasms 125 (33.3) 293362 (17.8) < 0.01 125 (33.3) 132 (35.2) 0.59

AIH: Autoimmune hepatitis; CLD: Chronic liver diseases; SARS-CoV-2: Severe acute respiratory syndrome coronavirus-2; SD: Standard deviation; BMI: 
Body mass index; CKD: Chronic kidney disease.

Statistical analysis
All statistical analyses were performed in real-time using the TriNetX platform. Continuous variables 
are expressed as means ± SD. Categorical variables were defined as frequency and percentage. For each 
outcome, the risk ratio (RR) and confidence intervals (CI) were calculated to compare the association of 
the AIH with the outcome. Numbers were then validated by comparing them with the output from SAS 
version 9.4. A-priori-defined two-sided alpha of less than ≤ 0.05 was used for statistical significance, and 
all statistical data analyses were performed utilizing the form of the limitation in real-time.

RESULTS
Baseline characteristics
We identified 15790 non-AIH CLD and 1647915 non-CLD patients during the study period (Figure 1). 
Major etiologies of non-AIH CLD included alcoholic liver disease (n = 4159, 26.3%), NAFLD (n = 3085, 
19.5%), viral hepatitis (n = 1093, 6.9%), and other diseases of the liver (n = 3456, 21.8%) (Supp-
lementary Table 1). Baseline characteristics of non-CLD patients are described in Table 1. 893768 (54.2%) 
were female, and 144535 (8.8%) were Hispanic or Latino. 181270 (11%) reported nicotine dependence. 
Rates of several common comorbidities were significantly lower in the non-CLD group compared to the 
AIH cohort, including hypertension (n = 384968, 23.3%), neoplasms (n = 293362, 17.8%), and chronic 
lower respiratory diseases (n = 235406, 14.2%).

Baseline characteristics of the non-AIH CLD patients are described in Table 2. 6517 (41.2%) patients 
were female, and 1831 (11.5%) patients had a history of nicotine dependence. Compared to the AIH 
cohort, non-AIH CLD patients had higher rates of comorbidities, including hypertension (n = 11469, 

https://f6publishing.blob.core.windows.net/fbaa2c04-d1d2-48a3-a477-c994aa899a7e/WJH-15-68-supplementary-material.pdf
https://f6publishing.blob.core.windows.net/fbaa2c04-d1d2-48a3-a477-c994aa899a7e/WJH-15-68-supplementary-material.pdf
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Table 2 Baseline characteristics of patients with autoimmune hepatitis and non-autoimmune hepatitis chronic liver diseases patients 
with a positive test for severe acute respiratory syndrome coronavirus-2

Before propensity score matching After propensity score matching
Variables

AIH (n = 375) Non-AIH CLD (n = 
15790) P value AIH (n = 363) Non-AIH CLD (n = 

363) P value

Age, yr, mean ± SD 53.1 ± 18.5 60.3 ± 12.1 < 0.01 53.9 ± 18.1 54.3 ± 15.5 0.76

Sex, n (%)

Female 267 (71.2) 6517 (41.2) < 0.01 262 (72.1) 266 (73.2) 0.74

Ethnicity, n (%)

Hispanic or Latino 82 (21.8) 1579 (10) < 0.01 82 (22.5) 67 (18.4) 0.19

Race, n (%)

White 236 (62.9) 11132 (70.5) 0.02 235 (64.7) 218 (60.1) 0.19

Black or African American 65 (17.3) 2462 (15.5) 0.41 58 (15.9) 72 (19.8) 0.17

Other 66 (17.6) 1824 (11.5) 0.04 62 (17.1) 61 (16.8) 0.92

Nicotine dependence, n (%) 87 (23.2) 1831 (11.5) < 0.01 89 (24.5) 87 (23.9) 0.94

BMI (kg/m2), mean ± SD 28.9 ± 7.1 30.4 ± 7.48 0.09 29 ± 7.11 28.7 ± 7.79 0.72

Comorbidities, n (%)

Hypertension 165 (44) 11469 (72.6) < 0.01 161 (44.3) 200 (55.1) 0.03

Ischemic heart diseases 62 (16.5) 5472 (34.6) < 0.01 59 (16.2) 56 (15.4) 0.76

Heart failure 39 (10.4) 4196 (26.5) < 0.01 38 (10.4) 48 (13.2) 0.25

Diabetes 74 (19.7) 7882 (49.9) 0.01 74 (20.4) 66 (18.1) 0.45

Chronic lower respiratory 
diseases

84 (22.4) 5843 (37.0) < 0.01 82 (22.5) 79 (21.7) 0.79

Cerebrovascular diseases 37 (9.8) 3079 (19.4) < 0.01 37 (10.1) 39 (10.7) 0.81

CKD of any stage 49 (13.1) 5102 (32.3) < 0.01 46 (12.6) 55 (15.1) 0.33

Neoplasms 131 (34.9) 8400 (53.1) < 0.01 124 (34.1) 131 (36.1) 0.59

AIH: Autoimmune hepatitis; CLD: Chronic liver diseases; SARS-CoV-2: Severe acute respiratory syndrome coronavirus-2; SD: Standard deviation; BMI: 
Body mass index; CKD: Chronic kidney disease.

72.6%), neoplasms (n = 8400, 53.1%), diabetes (n = 7882, 49.9%), and chronic lower respiratory diseases (
n = 5843, 37.0%).

AIH characteristics
During the same study period, 375 patients with AIH were identified. Baseline characteristics are 
described in Tables 1 and 2. A majority (n = 271, 72.2%) of the patients were female, and 76 (20.2%) 
patients had a history of nicotine dependence. Common comorbidities were hypertension (n = 163, 
43.4%), neoplasms (n = 125, 33.3%), chronic lower respiratory diseases (n = 82, 21.8%), and diabetes (n = 
74, 19.7%). Coexistence of other immune-mediated disorders in the AIH cohort occurred most often 
with systemic lupus erythematosus (n = 61, 16.2%), rheumatoid arthritis (n = 57, 15.2%), Sjögren 
syndrome (n = 45, 12.0%), and ulcerative colitis (n = 27, 7.2%) (Supplementary Table 2). The most 
common immunosuppressive agents used in the AIH cohort were prednisone (n = 313, 83.4%), 
azathioprine (n = 170, 45.3%), and budesonide (n = 80, 21.3%) (Supplementary Table 2).

Clinical characteristics
Patients with AIH compared to non-CLD: Results of laboratory vitals, symptoms, and laboratory 
findings between AIH and non-CLD cohorts are presented in Supplementary Table 3. All liver function 
tests were significantly different between the AIH and non-CLD patients (P < 0.01). After a propensity 
score-matched analysis, all liver function results remained significantly different between the cohorts: 
The mean alanine aminotransferase (ALT) (65.3 vs 23.6 U/L; P < 0.01), aspartate aminotransferase (54.9 
vs 23.7 U/L; P = 0.01), total bilirubin (0.86 vs 0.53 mg/dL; P = 0.01), and alkaline phosphatase (ALP) 
(105.0 vs 88.3 U/L; P = 0.01), and serum albumin (3.88 vs 4.04 g/dL; P = 0.04) (Supplementary Table 3).

https://f6publishing.blob.core.windows.net/fbaa2c04-d1d2-48a3-a477-c994aa899a7e/WJH-15-68-supplementary-material.pdf
https://f6publishing.blob.core.windows.net/fbaa2c04-d1d2-48a3-a477-c994aa899a7e/WJH-15-68-supplementary-material.pdf
https://f6publishing.blob.core.windows.net/fbaa2c04-d1d2-48a3-a477-c994aa899a7e/WJH-15-68-supplementary-material.pdf
https://f6publishing.blob.core.windows.net/fbaa2c04-d1d2-48a3-a477-c994aa899a7e/WJH-15-68-supplementary-material.pdf
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Figure 1 Flow chart showing patient selection for study cohorts. COVID-19: Coronavirus disease-2019; AIH: Autoimmune hepatitis; CLD: Chronic liver 
disease.

Compared to non-CLD patients, AIH patients had higher ferritin levels (336 vs 192 ng/mL; P = 0.01) 
and lower fibrinogen levels (303 vs 389 mg/dL; P = 0.04). After propensity matching, the higher ferritin 
level (336 vs 118 ng/mL; P = 0.01) and lower fibrinogen level (303 vs 436 mg/dL; P = 0.03) remained. All 
other inflammatory markers were measured with no significant differences (Supplementary Table 3).

Patients with AIH compared to non-AIH CLD: When compared to non-AIH CLD patients, AIH 
patients had higher ALT levels (65.6 vs 38.3 U/L; P < 0.01), lower total bilirubin (0.87 vs 1.58 mg/dL; P = 
0.01), lower ALP (106 vs 129 U/L; P = 0.04), and higher serum albumin (3.87 vs 3.61 g/dL; P < 0.01). 
After PSM, the differences in total bilirubin (0.87 vs 2.09 mg/dL; P < 0.01), ALP (105 vs 133 U/L; P = 
0.04), and serum albumin (3.87 vs 3.71 g/dL; P = 0.01) remained significant. Before PSM, AIH patients 
had higher C-reactive protein levels (15.4 vs 28.4 mg/L; P = 0.01) and lower erythrocyte sedimentation 
rate (24.3 vs 34.0 mm/h; P < 0.01). After PSM, the AIH group had higher fibrinogen levels (307 vs 234 
mg/dL; P = 0.01) (Supplementary Table 4).

Outcomes
Patients with AIH compared to non-CLD: Before PSM, there were significant differences between the 
AIH and non-CLD cohorts in the rates of all hospitalization-related outcomes. AIH patients had a 
significantly higher risk of all-cause mortality (RR = 2.33; 95%CI: 1.66-3.28), hospitalization rate (RR = 
2.14; 95%CI: 1.75-2.60), critical care (RR = 1.94; 95%CI: 1.35-2.79), severe disease (RR = 2.01; 95%CI: 1.55-
2.59), need for mechanical ventilation (RR = 1.99; 95%CI: 1.21-3.27), and AKI (RR = 1.94; 95%CI: 1.38-
2.72).

After PSM, the increased risk of all-cause mortality (RR = 2.22; 95%CI: 1.07-4.61), hospitalization rate 
(RR = 1.78; 95%CI: 1.17-2.69), and severe disease (RR = 1.98; 95%CI: 1.19-3.26), persisted in the AIH 
group. However, there were no significant differences in the rates of critical care (RR = 1.50; 95%CI: 0.79-
2.83), need for mechanical ventilation (RR = 1.38; 95%CI: 0.62-3.08), and AKI (RR = 1.53; 95%CI: 0.79-
2.96) (Figure 2A).

Patients with AIH compared to non-AIH CLD: When compared to the non-AIH CLD cohort, the AIH 
group had a lower risk of all-cause mortality (RR = 0.49; 95%CI: 0.34-0.68), critical care (RR = 0.43; 
95%CI: 0.30-0.62), severe disease (RR = 0.57; 95%CI: 0.45-0.74), need for mechanical ventilation (RR = 
0.41; 95%CI: 0.24-0.69), and AKI (RR = 0.38; 95%CI: 0.27-0.53), There were no significant differences 
between the groups in hospitalization rate (RR = 0.93; 95%CI: 0.78-1.10).

https://f6publishing.blob.core.windows.net/fbaa2c04-d1d2-48a3-a477-c994aa899a7e/WJH-15-68-supplementary-material.pdf
https://f6publishing.blob.core.windows.net/fbaa2c04-d1d2-48a3-a477-c994aa899a7e/WJH-15-68-supplementary-material.pdf
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Figure 2 Risk of all-cause mortality, rates of hospitalization, severe diseases, need for critical care, need for mechanical ventilation, and 
acute kidney injury, at 30 d from coronavirus disease 2019 diagnosis. A: Between patients with autoimmune hepatitis and patients without any pre-
existing liver diseases; B: Between patients with autoimmune hepatitis and patients with pre-existing liver diseases other than autoimmune hepatitis. The numbers 
inside the bars represent the number of patients who developed outcomes related to the study. AIH: Autoimmune hepatitis; CLD: Chronic liver disease.

After PSM, lower risk persisted for hospitalization rate (RR = 0.72; 95%CI: 0.56-0.92), critical care (RR 
= 0.50; 95%CI: 0.32-0.79), and AKI (RR = 0.56; 95%CI: 0.35-0.88) among patients with AIH. However, 
there were no significant differences in all-cause mortality (RR = 0.93; 95%CI: 0.55-1.56), severe disease 
(RR = 0.78; 95%CI: 0.55-1.06), and need for mechanical ventilation (RR = 0.81; 95%CI: 0.43-1.52) between 
these groups (Figure 2B).

DISCUSSION
Although the number of COVID-19-related cases, rates of hospitalizations, and deaths are decreasing in 
the United States, the COVID-19 pandemic is still ongoing worldwide, and significant questions remain. 
Our data showed that the patients with AIH had a higher risk of hospitalization, severe COVID-19, and 
all-cause mortality than those without liver disease. Notably, a lower survival probability was also 
noted for AIH patients. On the other hand, compared to non-AIH CLD, AIH patients had a lower risk of 
hospitalization, critical care, and AKI without any difference in survival probability between the groups.

The present study is the largest United States-based study investigating severe COVID-19 in AIH 
patients. Our results showed an increased all-cause mortality risk in AIH patients compared to non-
CLD, but no difference in all-cause mortality risk compared to non-AIH CLD. Marjot et al[16] 
demonstrated a similar significant difference in mortality risk between AIH and non-CLD patients; 
however, their findings showed a similar mortality risk between AIH and non-CLD patients. Efe et al
[17] compared rates of adverse outcomes of COVID-19 between AIH patients and non-AIH CLD. The 
AIH cohort included 34 United States patients and 110 total AIH patients[14]. No differences were 
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found in the risk of severe outcomes[17]. Although outcomes such as mortality, severe COVID-19, need 
for supplemental oxygen, and hospitalization was addressed in the study[14], the need for intensive 
care or mechanical ventilation was not. Marjot et al[16] also conducted an international retrospective 
study comparing 70 AIH to non-AIH CLD and non-CLD patients. There was an increased hospital-
ization risk for AIH patients compared to non-CLD patients[12]; however, there were no differences in 
the risk of severe outcomes between the AIH group and patients with other causes of CLD[13,14]. 
Outcomes assessed in this study included hospitalization, ICU requirement, ICU admission, the new 
requirement for renal replacement therapy, the need for invasive ventilation, and mortality. In AIH 
patients, age and advanced liver disease, but not immunosuppression, were found to be factors 
associated with mortality[13]. While both studies investigated hospitalization and mortality, neither 
study included AKI as an adverse outcome. Additionally, a small case series demonstrated a clinical 
course of COVID-19 in 10 AIH patients that were similar to the general population[15]. Our study 
addresses these gaps in knowledge while building on previous work with a focus on a larger cohort of 
United States-based AIH patients.

Our results may differ from previous studies due to the covariables included in our propensity score-
matched analysis. Strengths of the present study include an expansion of clinical outcomes addressed in 
previous studies and an adjustment for confounders such as BMI, race, ethnicity, chronic kidney 
disease, neoplasms, and obstructive sleep apnea. The chronic, low-grade inflammation that is charac-
teristic of obesity causes immune dysregulation, and obesity has been established as an independent 
risk factor for severe COVID-19 disease[14]. The inclusion of race and ethnicity as covariables are also 
important, as minority groups, including African American, Hispanic, and Asian American individuals, 
have higher rates of comorbidities that are associated with an increased risk of severe COVID-19 disease
[18,19].

Autoimmune disease diagnosis has been associated with more severe COVID-19 disease[20,21]. The 
immunosuppressive agents used to treat AIH may increase the risk of viral and bacterial infections and 
delay viral clearance[22]. Our contrasting finding that AIH patients had a lower risk of several adverse 
outcomes compared to non-AIH CLD patients may be explained by the immunosuppressive agents that 
are used in its treatment. Other investigators have found a decreased risk of severe COVID-19 outcomes 
such as mechanical ventilation, death, and severe acute respiratory distress syndrome[23]. In contrast, a 
different study found a higher risk of severe COVID-19 in AIH patients who were on thiopurine or 
glucocorticoid therapy prior to COVID-19 infection[24]. Further investigation is needed to clarify the 
relationship between immunosuppression and COVID-19 outcomes.

Of note, we found that AIH patients had higher fibrinogen levels than the non-CLD group but lower 
than the non-AIH CLD group. This is consistent with the literature, as higher fibrinogen levels have 
been associated with disease severity and ICU admission in COVID-19 patients[25], which may be 
explained by the role of the cytokine storm that follows COVID-19 infection in disseminated in-
travascular coagulation[26].

Strengths and limitations
Our study has several strengths. Firstly, our study is the first to examine severe COVID-19 outcomes in 
a large cohort of United States-based AIH patients. While other studies have also compared AIH 
COVID-19 outcomes to non-CLD and non-AIH CLD groups, our study includes a larger sample size of 
375 patients with AIH. Additionally, we included AKI as an adverse outcome. AKI is a common 
complication of COVID-19, reported in approximately 29% of hospitalized patients and 78% of patients 
that require intubation[27]. The investigation of AKI in COVID-19 is important, as there may be 
differences in pathophysiology between AKI related to COVID-19 and non-COVID sepsis-associated 
AKI[25]. Secondly, we included a robust control and adjustment for baseline and potential confounders. 
Thirdly, the large sample in the propensity-matched analyses resulted in narrow confidence intervals. It 
allowed us to capture a significant number of outcomes, which lends strength to the conclusions that we 
have derived. Lastly, our cohort was derived from a multicenter database, increasing the generaliz-
ability of our findings within the United States.

The study had some notable limitations. First, the data derived from an EHRs-based database is 
susceptible to errors in coding or data entry when patient information is translated into the diagnosis 
and procedure codes. However, care was taken to use standardized measures to identify cases to 
minimize documentation errors. Second, even though we adjusted our analyses, it is still possible that 
there is some residual confounding we did not account for. Third, patients who were asymptomatic 
throughout the course of infection and who did not undergo COVID-19 testing were not captured in the 
study. Fourth, our data were not able to include COVID-19 vaccines or SARS-CoV-2 variants to assess 
the impact on accuracy in patients with AIH. Another limitation includes the absence of cirrhosis 
prevalence and Child-Pugh scores in our cohort. Our study did not examine the changes made in 
immunosuppressive therapy after COVID-19 diagnosis in AIH patients. Finally, we could not obtain 
long-term outcomes due to a comparatively short observation period.



Krishnan A et al. Outcomes of COVID-19 in autoimmune hepatitis

WJH https://www.wjgnet.com 76 January 27, 2023 Volume 15 Issue 1

CONCLUSION
In conclusion, in this cohort, we found that AIH patients have an increased hospitalization risk, severe 
COVID-19, and all-cause mortality compared to non-CLD patients. Compared to the large group of 
patients with non-AIH CLD, AIH patients had a lower risk of several outcomes, including hospital-
ization, a necessity for critical care, and AKI. These results confirm that many patients with existing AIH 
are at high risk and should continue to follow recommended preventive measures against SARS-CoV-2 
exposure.

ARTICLE HIGHLIGHTS
Research background
Severe illness and clinical outcomes can directly correlate with the underlying comorbidities of patients 
infected with coronavirus disease 2019 (COVID-19), including patients with autoimmune diseases. 
However, the clinical course of COVID-19 in patients with autoimmune hepatitis (AIH) is still not well 
studied.

Research motivation
AIH is a chronic inflammatory liver disease of unknown etiology in which autoimmune-mediated 
factors against hepatocytes are thought to play a key role. Patients with AIH may be at increased risk of 
severe illness from COVID-19 and have poor outcomes due to underlying chronic liver disease (CLD) 
and ongoing pre-existing immunosuppression therapies. Notably, there is a wide research gap in the 
perceived impact of COVID-19 on patients with AIH due to a high degree of heterogeneity in the 
existing literature.

Research objectives
This study aimed to evaluate the impact of pre-existing AIH on the clinical outcomes of patients with 
COVID-19.

Research methods
A population-based, multicenter, propensity score-matched cohort study included 375 patients with 
AIH, 1647915 patients with non-CLD, and 15790 patients with non-AIH CLD with COVID-19 infection. 
To reduce confounding effects, we performed a 1:1 propensity score matching with each patient in the 
main group to a patient in the control group. The primary outcome was all-cause mortality at 60 d, and 
secondary outcomes were hospitalization rate, need for critical care, severe disease, mechanical 
ventilation, and acute kidney injury (AKI) at 30 d.

Research results
Patients with AIH had an increased risk of all-cause mortality [risk ratio (RR) = 2.22; 95% confidence 
interval (CI): 1.07-4.61], hospitalization rate (RR = 1.78), and severe disease (RR = 1.98) compared to the 
non-CLD controls. However, compared to the non-AIH CLD group, patients in the AIH cohort had a 
lower risk of hospitalization rate (RR = 0.72), critical care (RR = 0.50), and AKI (RR = 0.56).

Research conclusions
This multicenter, propensity score-matched cohort study reveals that patients with AIH are at risk of 
worse COVID-19 outcomes than those without pre-existing CLD. However, patients with AIH were not 
at increased risk of COVID-19 adverse outcomes compared to matched patients with other causes of 
CLD.

Research perspectives
Further studies with long-term follow-up of these patients are needed to understand the long-term 
impact of COVID-19 on the liver and elucidate the pathogenic mechanisms among patients with AIH.
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Abstract
BACKGROUND 
Non-alcoholic fatty liver disease (NAFLD) is the leading cause of liver disease 
globally with an estimated prevalence of 25%, with the clinical and economic bur-
den expected to continue to increase. In the United States, non-variceal upper 
gastrointestinal bleeding (NVUGIB) has an estimated incidence of 61-78 cases per 
100000 people with a mortality rate of 2%-15% based on co-morbidity burden.

AIM 
To identify the outcomes of NVUGIB in NAFLD hospitalizations in the United 
States.

METHODS 
We utilized the National Inpatient Sample from 2016-2019 to identify all NVUGIB 
hospitalizations in the United States. This population was divided based on the 
presence and absence of NAFLD. Hospitalization characteristics, outcomes and 
complications were compared.

RESULTS 
The total number of hospitalizations for NVUGIB was 799785, of which 6% were 
found to have NAFLD. NAFLD and GIB was, on average, more common in youn-
ger patients, females, and Hispanics than GIB without NAFLD. Interestingly, GIB 
was less common amongst blacks with NAFLD. Multivariate logistic regression 
analysis was conducted, controlling for the multiple covariates. The primary 
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outcome of interest, mortality, was found to be significantly higher in patients with NAFLD and 
GIB [adjusted odds ratio (aOR) = 1.018 (1.013-1.022)]. Secondary outcomes of interest, shock [aOR 
= 1.015 (1.008-1.022)], acute respiratory failure [aOR = 1.01 (1.005-1.015)] and acute liver failure 
[aOR = 1.016 (1.013-1.019)] were all more likely to occur in this cohort. Patients with NAFLD were 
also more likely to incur higher total hospital charges (THC) [$2148 ($1677-$2618)]; however, were 
less likely to have a longer length of stay [0.27 d (0.17-0.38)]. Interestingly, in our study, the pat-
ients with NAFLD were less likely to suffer from acute myocardial infarction [aOR = 0.992 (0.989-
0.995)]. Patients with NAFLD were not more likely to suffer acute kidney injury, sepsis, blood 
transfusion, intubation, or dialysis.

CONCLUSION 
NVUGIB in NAFLD hospitalizations had higher inpatient mortality, THC, and complications such 
as shock, acute respiratory failure, and acute liver failure compared to those without NAFLD.

Key Words: Non-alcoholic fatty liver disease; Non-variceal gastrointestinal bleeding; Outcomes; Mortality; 
Complications
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Core Tip: Non-alcoholic fatty liver disease (NAFLD) is a growing problem. The national inpatient 
database was used to identify patients with non-variceal upper gastrointestinal bleeding who were 
categorized based on NAFLD status. Statistically significant differences were observed between the two 
cohorts with respect to mortality, utilization of healthcare resources and complications. We believe this 
will be beneficial for physicians in terms of predicting morbidity and prognosis in these patients.
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INTRODUCTION
Non-alcoholic fatty liver disease (NAFLD) is a common cause of chronic liver disease worldwide[1]. It 
has a disease spectrum ranging from hepatic steatosis to non-alcoholic steatohepatitis, which may 
ultimately lead to liver cirrhosis[2]. Major risk factors for NAFLD include obesity, metabolic syndrome, 
diabetes mellitus, hypertriglyceridemia, hypertension, and increasing age. The primary path-
ophysiological mechanism implicated in the development of NAFLD involves de-novo synthesis and 
uptake of triglyceride by hepatocytes leading to the development of ‘fatty liver’[3]. Per current 
literature, NAFLD is associated with significant morbidity and all-cause mortality, with mortality rates 
ranging from 5% to 40%[4-6]. Furthermore, with increasing rates of NAFLD in the global population, 
associated complications such as gastrointestinal bleeding (GIB) are also on the rise.

Upper GIB can be divided into 2 main categories, namely variceal and non-variceal upper GIB 
(NVUGIB). Variceal GIB is usually seen in patients with portal hypertension in a setting of underlying 
liver cirrhosis[7,8]. However, the most common cause of NVUGIB is peptic ulcer disease. Other causes 
include but are not limited to gastritis, duodenitis, angiodysplasia, non-variceal esophageal hemorrhage 
secondary to mucosal tears, etc. All the causes included in the study are mentioned in the Supple-
mentary material, malignancy as a cause of NVUGIB was not included in the study. In the United 
States, it is estimated that NVUGIB has an incidence rate of 61-78 cases per 100000 persons with a 
mortality rate ranging from 2%-15% depending on the co-morbidity burden. Although there is a sig-
nificant paucity of data on the rates of NVUGIB in NAFLD populations, current literature has described 
a positive association between Helicobacter pylori (H. pylori) infection and NAFLD, which could in turn 
lead to higher rates of GIB. Hence, in this study, we investigate and compare hospitalization character-
istics, clinical outcomes, and complications of NVUGIB in NAFLD and non-NAFLD hospitalizations in 
the United States.

https://www.wjgnet.com/1948-5182/full/v15/i1/79.htm
https://dx.doi.org/10.4254/wjh.v15.i1.79
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MATERIALS AND METHODS
Study design and data source
The study population was derived from the National Inpatient Sample (NIS) which is a part of the 
Healthcare Cost and Utilization Project (HCUP) databases. It is one of the largest publicly available, 
multi-ethnic databases derived from a collection of billing data submitted by United States hospitals to 
state-wide data organizations. As the NIS collects data from almost all hospitals across the United 
States, it covers greater than 95% of the United States population. It approximates a 20% stratified 
sample of discharges from United States community hospitals and the dataset is further weighted to 
obtain national estimates. For our study period between 2016 and 2019, the NIS database was coded 
using the International Classification of Diseases, Tenth Clinical Modification/Procedure Coding 
System (ICD/PCS-10).

Study population
We identified all adult (≥ 18 years) hospitalizations with NVUGIB in the United States from 2016-2019. 
The study population was further divided into two distinct subgroups based on the presence or absence 
of NAFLD. Individuals ≤ 18 years of age, and those with a diagnosis of liver disease other than NAFLD 
were excluded from the analysis. Details on inclusion and exclusion criteria are included in the Supple-
mentary material.

Outcome measures
The primary outcome of interest was mortality. Secondary outcomes of interest included length of stay 
(LOS), hospital charges, and complications such as acute kidney injury, shock, sepsis, acute respiratory 
failure, acute myocardial infarction, acute liver failure, blood transfusion, need for early endoscopy, 
need for intubation, and need for dialysis.

Ethical considerations
The NIS does not contain patient or hospital-specific identifiers. Hence, an Institutional Review Board 
(IRB) approval was not required for this study as per the guidelines put forth by our IRB on the analysis 
of HCUP databases.

Statistical analysis
The statistical analysis was conducted using R software (version 4.2.1) to account for weights in the 
stratified survey design for the NIS database. The weights were considered during the statistical 
estimation process by incorporating variables for strata, clusters, and weights for discharges in the NIS 
database. Descriptive statistics were provided, including the mean (standard error) for continuous 
variables and count (percentage) for categorical variables. Mann-Whitney tests with Bonferroni 
corrections were used for testing differences in continuous variables, while chi-squared tests with 
Bonferroni corrections were used for testing the homogeneity of categorical variables. Furthermore, a 
multivariate regression analysis was performed to compare outcomes such as in-patient mortality, 
healthcare burden (mean LOS and mean total hospital charges), and complications. All analyses with P-
values ≤ 0.05 were considered statistically significant.

RESULTS
Hospitalization characteristics
We identified a total of 799785 patients admitted with a primary diagnosis of NVUGIB between the 
years 2016 and 2019 that met our inclusion criteria. Of these 752980 (94.15%) belonged to the cohort 
without NAFLD and 46805 (5.85%) belonged to the cohort with NAFLD.

Compared to the group without NAFLD, the patients with NAFLD were significantly younger (69.3 
vs 64.6, P < 0.001). In both groups, GIB was more common in females. Furthermore, there were statist-
ically significant racial differences noted, with GIB and NAFLD being less common in blacks (8.5% vs 
14.4%, P < 0.001) and more common in Hispanics (15% vs 8.2%, P < 0.001). The Elixhauser comorbidities 
index was almost similar in both groups, with most patients having 2 or more comorbidities. Compared 
to the group without NAFLD, we noted that the NAFLD group had a higher proportion of patients with 
diabetes (44.1% vs 30%, P < 0.001) and obesity (18% vs 11%, P < 0.001). The patient and hospital charac-
teristics are summarized in Table 1 and Figure 1.

Clinical outcomes
After adjusting for the variables shown in Table 1, the group with NAFLD had higher odds of inpatient 
mortality [4.2% vs 2.7%, adjusted odds ratio (aOR) = 1.018 (1.013-1.022), P < 0.01] compared to those 
without NAFLD.

https://f6publishing.blob.core.windows.net/23974077-a2bd-4968-bd59-380c9e72d4c7/WJH-15-79-supplementary-material.pdf
https://f6publishing.blob.core.windows.net/23974077-a2bd-4968-bd59-380c9e72d4c7/WJH-15-79-supplementary-material.pdf
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Table 1 Comparison of demographics, comorbidities, and hospital stay information

Variable GI bleeding without NAFLD (n = 752980) GI bleeding with NAFLD (n = 46805) P value

Age (yr) < 0.001

  mean ± SD 69.3 ± 0.1 64.6 ± 0.2

Sex < 0.001

  Male 374615 (49.8%) 21805 (46.6%)

  Female 378210 (50.2%) 24985 (53.4%)

Race < 0.001

  White 515935 (68.5%) 31705 (67.7%)

  Black 108520 (14.4%) 3965 (8.5%)

  Hispanic 61990 (8.2%) 7030 (15%)

  Other 46220 (6.1%) 3000 (6.4%)

Insurance < 0.001

  Medicare 521895 (69.3%) 28550 (61%)

  Medicaid 67665 (9%) 5460 (11.7%)

  Private 122560 (16.3%) 9670 (20.7%)

  Self-pay 23575 (3.1%) 1805 (3.9%)

  Other 16250 (2.2%) 1240 (2.6%)

Hospital location < 0.001

  Rural 82535 (11%) 3745 (8%)

  Urban nonteaching 189130 (25.1%) 11245 (24%)

  Urban teaching 481315 (63.9%) 31815 (68%)

Hospital bedsize < 0.001

  Small 162810 (21.6%) 8810 (18.8%)

  Medium 236145 (31.4%) 14245 (30.4%)

  Large 354025 (47%) 23750 (50.7%)

Hospital region

  Northeast 152290 (20.2%) 7440 (15.9%)

  Midwest 163005 (21.6%) 9370 (20%)

  South 301330 (40%) 19790 (42.3%)

  West 136355 (18.1%) 10205 (21.8%)

Chronic pulmonary disease < 0.001

  0 608815 (80.9%) 39505 (84.4%)

  1 144165 (19.1%) 7300 (15.6%)

Hypertension < 0.001

  0 241235 (32%) 18195 (38.9%)

  1 511745 (68%) 28610 (61.1%)

Diabetes < 0.001

  0 527140 (70%) 26170 (55.9%)

  1 225840 (30%) 20635 (44.1%)

Obesity < 0.001

  0 670225 (89%) 38385 (82%)

  1 82755 (11%) 8420 (18%)
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Peripheral vascular disease < 0.001

  0 700625 (93%) 44630 (95.4%)

  1 52355 (7%) 2175 (4.6%)

Smoker 0.598

  0 658350 (87.4%) 40765 (87.1%)

  1 94630 (12.6%) 6040 (12.9%)

Valvular disease < 0.001

  0 736900 (97.9%) 46255 (98.8%)

  1 16080 (2.1%) 550 (1.2%)

Colorectal cancer 0.287

  0 747345 (99.3%) 46380 (99.1%)

  1 5635 (0.7%) 425 (0.9%)

Number of Elixhauser comorbidities < 0.001

  0 89900 (11.9%) 5195 (11.1%)

  1 191920 (25.5%) 12280 (26.2%)

  2 233635 (31%) 14935 (31.9%)

  3 + 237525 (31.5%) 14395 (30.8%)

Disposition < 0.001

  Routine 13685 (1.8%) 825 (1.8%)

  Short-term hospital 448085 (59.5%) 29620 (63.3%)

  Skilled nursing facility 21130 (2.8%) 1775 (3.8%)

  Home health care 148465 (19.7%) 6550 (14%)

  Died in-hospital 100955 (13.4%) 6090 (13%)

  Other 20205 (2.7%) 1920 (4.1%)

GI: Gastrointestinal; NAFLD: Non-alcoholic fatty liver disease.

Healthcare utilization
The difference between the total charge of hospitalizations was also statistically significant, being higher 
in the NAFLD group ($35092 vs $32275, P < 0.01). Patients with GIB and NAFLD were less likely to have 
a longer LOS (4.47 ± 4.92 vs 4.27 ± 4.53, P < 0.01). Routine discharges were the same in both groups; 
however, patients with NAFLD were more likely to go to a short-term rehab facility (63.3% vs 59.5%, P < 
0.001).

Complications
Patients with NVUGIB and NAFLD were more likely to have worse outcomes in terms of complications 
including shock [13% vs 12%, aOR = 1.015 (1.008-1.023), P < 0.01], acute respiratory failure [5.2% vs 4.1%, 
aOR = 1.01 (1.005-1.015), P < 0.01), and acute liver failure [2% vs 0.3%, aOR = 1.016 (1.013-1.019), P < 
0.01]. Peculiarly, patients with NAFLD were less likely to suffer from an acute myocardial infarction 
(MI). However, they were 1.04 times more likely to undergo an endoscopy. The clinical outcomes, 
healthcare utilization, and complications are summarized in Table 2.

DISCUSSION
Many studies have been conducted to evaluate variceal bleeding in liver disease and cirrhosis. There is a 
paucity of published data evaluating NVUGIB in patients with NAFLD without cirrhosis[9]. Given the 
increasing incidence of NAFLD, understanding the patient demographics, clinical outcomes and associ-
ations is of practical importance to gastroenterologists and hepatologists[10-13].

In our analysis, it was noted that patients with both GIB and NAFLD were younger, with a higher 
incidence in the Hispanic population, and were seen more in population groups with diabetes and 
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Table 2 Regression analysis showing effect of non-alcoholic fatty liver disease on outcomes in patients with gastrointestinal bleeding

Outcomes GI bleeding with 
NAFLD (n = 45215)

GI bleeding without 
NAFLD (n = 726490) Univariate P value OR or regression 

coefficient (95%CI) Multivariate P value

Mortality 1920 (4.2%) 20205 (2.7%) < 0.01 1.018 (1.013-1.022) < 0.01

Length of stay 4.47 ± 5.03 4.26 ± 4.51 < 0.01 0.27 (0.17-0.38) < 0.01

Total charges 35092 ± 21749 32275 ± 21011 < 0.01 2148 (1677-2618) < 0.01

Acute kidney injury 10150 (22.4%) 159955 (21.2%) 1 1.012 (1.003-1.021) 1

Shock 6015 (13.3%) 87425 (11.6%) < 0.01 1.015 (1.008-1.023) < 0.01

Sepsis 1000 (2.2%) 12640 (1.7%) 0.14 1.005 (1.002-1.008) 1

Acute respiratory 
failure

2330 (5.2%) 30540 (4.1%) < 0.01 1.01 (1.005-1.015) < 0.01

Acute MI 955 (2.1%) 22635 (3%) < 0.01 0.992 (0.989-0.995) < 0.01

Acute liver failure 915 (2%) 2560 (0.3%) < 0.01 1.016 (1.013-1.019) < 0.01

Blood transfusion 12505 (27.7%) 210580 (28%) 0.14 1.003 (0.993-1.012) 1

Endoscopy 12500 (27.6%) 169385 (22.5%) < 0.01 1.038 (1.028-1.048) < 0.01

Intubation 140 (0.3%) 1255 (0.2%) 0.28 1.001 (1-1.003) 1

Dialysis 750 (1.7%) 11525 (1.5%) 1 1.001 (0.998-1.003) 1

All P values were corrected for multiple comparisons using Bonferroni correction. Length of stay and total charges were calculated with regression 
coefficients, while all other outcomes were calculated with odds ratios. GI: Gastrointestinal; NAFLD: Non-alcoholic fatty liver disease; OR: Odds ratio; CI: 
Confidence interval; MI: Myocardial infarction.

Figure 1 Gastrointestinal bleeds and patient characteristics. A: Gastrointestinal bleeds and patient characteristics; B: Outcomes. GI: Gastrointestinal; 
NAFLD: Non-alcoholic fatty liver disease.

obesity. Al-though the length of hospitalization was almost similar in both groups, patients with 
NAFLD and NVUGIB had higher inpatient costs with increased discharges to short-term rehab facilities. 
Patients were also noted to have higher mortality and were likely to have acute liver failure, respiratory 
failure, and shock but less chance of having an acute MI during the hospital course.

Our study found increased odds of patients with NAFLD presenting with GIB at a younger age. This 
is in contrast to available literature[14]. This is probably related to patients having an increased risk of 
developing NAFLD at a younger age with the increasing risk factors especially the increasing 
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prevalence of metabolic syndrome in young adults, which is one of the major risk factors for NAFLD
[15]. Patients with NAFLD are more prone to atherosclerotic cardiovascular disease (ASCVD) including 
coronary artery disease (CAD)[16-18]. With the increased CAD prevalence and percutaneous 
interventions for CAD, an increasing number of patients are on antiplatelet medications such as aspirin 
and clopidogrel which likely predispose them to GIB. Despite ASCVD still being the highest cause of 
mortality in NAFLD patients, in our study, we found that the odds of NAFLD patients with GIB 
developing an acute MI were actually less[19]. There are studies with conflicting data regarding acute 
cardiac events in patients admitted for other NAFLD-related complications[14,20].

Studies have also demonstrated a positive association between H. pylori infection and predisposition 
to NAFLD incidence[21,22]. This underlying relationship can also explain the increased risk of 
developing gastric ulcers and subsequent bleeding[23]. Studies have shown that aspirin can decrease 
the progression of fibrosis in NAFLD. Although it is not known if this has led to increased use of aspirin 
in this population but could also be a contributing factor.

Previous studies have shown that NAFLD has an increased prevalence in the Hispanic population[24-
26]. This also resonates with our results, as NAFLD with GIB was higher in Hispanics. Non-variceal GIB 
from ulcer disease is seen more in the African-American population[27,28]. However, in our study we 
found that patients with NAFLD were less likely to have NVUGIB, indicating a possible protective 
effect. The mechanism for the same is unclear. This association needs to be further studied.

Patients with NAFLD and GIB were found to have a longer LOS and showed increased odds of 
having higher hospital charges and discharges to short-term rehab facilities, thus leading to increased 
utilization of healthcare resources and an increased economic burden. This trend has been seen in 
multiple studies and was associated with the established risk factors of NAFLD and metabolic 
syndrome, especially diabetes[29,30]. Another reason for the economic burden could be the higher 
incidence of complications among these patients[31,32].

Murine models have shown that hepatic steatosis and NAFLD lead to aberrant corticosterone release 
which could put patients at increased risk of developing and delayed recovery from shock[33]. It was 
shown that reduced lung function is an independent risk factor for the development of NAFLD which 
can theoretically increase the risk of developing acute respiratory failure[34]. It was also shown that 
NAFLD and metabolic syndrome can be associated with impaired lung function predominantly due to 
abdominal obesity[35]. Along with the increased risk of shock and respiratory failure, the NAFLD 
population is inherently at risk for the development of acute on chronic liver failure from chronic 
hepatocyte inflammation and increased mortality in the presence of multiple comorbidities[36].

Strengths and limitations
Using the NIS database gives nationwide generalizability, a large patient population, and multiple 
clinical parameters. It provides an excellent representative sample with results in a reliable and valid 
range[37]. Our study should be prudently interpreted as the NIS database has its own limitations. It 
does not include how NAFLD was diagnosed and the specific diagnostic modality that was used. This 
contributes to variations in the prevalence of NAFLD amongst various geographical regions and income 
groups.

Another drawback was that given it is a nationwide sample and with the use of ICD-10 CM coding, 
there may have been imprecision and erroneous coding causing an over or underestimation of the cases. 
ICD nomenclature does not include the spectrum of liver disease to further stratify based on severity in 
the NAFLD population. Although Elixhauser comorbidity indices were used to account for the various 
systemic comorbidities, the calculation of liver-specific indices such as model for end-stage liver disease 
score was not possible given the non-availability of laboratory data.

Areas for future research
With the increasing worldwide incidence of liver disease from NAFLD and with the rising frequency of 
hospitalizations[37,38], emphasis should be placed on aggressive risk factor modification and secondary 
prevention of the disease and its numerous complications. Further longitudinal studies are needed to 
study NVUGIB in the NAFLD population and develop tools to help guide clinicians in the early 
detection of patients at risk for NVUGIB. This will help reduce multiple hospitalizations, increasing 
financial burden with prolonged hospital stays and mortality.

CONCLUSION
Our analysis showed that patients with NVUGIB have higher mortality, increased complications, longer 
LOS and higher hospital charges demonstrating the increased morbidity and economic burden of 
NAFLD.
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ARTICLE HIGHLIGHTS
Research background
With the increasing prevalence, morbidity and mortality of non-alcoholic fatty liver disease (NAFLD), 
and worse outcomes with concomitant conditions, we wanted to determine the effect of NAFLD on a 
commonly seen in-patient presentation, non-variceal upper gastrointestinal bleeding (NVUGIB).

Research motivation
There are studies showing the effect of alcoholic liver disease on both variceal and NVUGIB, along with 
studies showing an increased risk of variceal bleeding and screening in patients with NAFLD. However, 
there have been no studies showing the influence of NAFLD on NVUGIB. Our aim was to try to bridge 
this gap.

Research objectives
Our objective was to examine whether the presence of NAFLD led to worse outcomes in patients with 
NVUGIB.

Research methods
We used the National Inpatient Sample database to ensure generalizability of findings. We compared 
the two cohorts of NAFLD with and without NVUGIB on the basis of mortality which was the primary 
outcome and secondary outcomes such as the length of stay, hospital charges, and complications.

Research results
It was shown that patients with NVUGIB and NAFLD had higher odds of mortality, higher hospital 
charges and more complications such as shock, acute respiratory failure and acute liver failure.

Research conclusions
Co-existence of NAFLD and NVUGIB was associated with higher mortality, morbidity and economic 
burden.

Research perspectives
Because of increased morbidity and mortality due to NAFLD, aggressive risk management should be a 
focus. Also, further studies should be performed to stratify patients with NAFLD that are at higher risk 
of NVUGIB so that they can be identified by clinicians and the mortality, morbidity and economic 
burden can be reduced.
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Abstract
BACKGROUND 
Liver disease incidence and hence demand on hepatology services is increasing.

AIM 
To describe trends in incidence and natural history of liver diseases in Wales to 
inform effective provision of hepatology services.

METHODS 
The registry is populated by International Classification of Diseases-10 (ICD-10) 
code diagnoses for residents derived from mortality data and inpatient/day case 
activity between 1999-2019. Pseudo-anonymised linkage of: (1) Causative diag-
noses; (2) Cirrhosis; (3) Portal hypertension; (4) Decompensation; and (5) Liver 
cancer diagnoses enabled tracking liver disease progression.

RESULTS 
The population of Wales in 2019 was 3.1 million. Between 1999 and 2019 73054 
individuals were diagnosed with a hepatic disorder, including 18633 diagnosed 
with cirrhosis, 10965 with liver decompensation and 2316 with hepatocellular 
carcinoma (HCC). Over 21 years the incidence of liver diseases increased 3.6 fold, 
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predominantly driven by a 10 fold increase in non-alcoholic fatty liver disease (NAFLD); the 
leading cause of liver disease from 2014. The incidence of cirrhosis, decompensation, HCC, and all-
cause mortality tripled. Liver-related mortality doubled. Alcohol-related liver disease (ArLD), 
autoimmune liver disease and congestive hepatopathy were associated with the highest rates of 
decompensation and all-cause mortality.

CONCLUSION 
A 10 fold increase in NAFLD incidence is driving a 3.6 fold increase in liver disease in Wales over 
21 years. Liver-related morbidity and mortality rose more slowly reflecting the lower progression 
rate in NAFLD. Incidence of ArLD remained stable but was associated with the highest rates of 
liver-related and all-cause mortality.

Key Words: Epidemiology; Cirrhosis; Liver failure; Non-alcoholic fatty liver disease hepatitis; 
Hepatocellular carcinoma

©The Author(s) 2023. Published by Baishideng Publishing Group Inc. All rights reserved.

Core Tip: In this paper we describe the following: (1) Novel methodology for developing a national liver 
registry; (2) The incidence of liver disease has increased 3.6-fold in Wales between 1999-2019 driven by a 
10-fold increase in non-alcoholic fatty liver disease (NAFLD); (3) 3-fold increase in cirrhosis, portal 
hypertension, decompensation and hepatocellular carcinoma, 2-fold increase in liver disease related 
mortality between 1999-2019; and (4) Actuarial tables of 10-year liver disease progression: Alcohol-
related liver disease, autoimmune liver disease and congestive hepatopathy are associated with increased 
rates of decompensation and death compared to viral hepatitis and NAFLD. Description of the proportion 
of patients dying from liver disease as directly, as a contributory cause or where liver disease has not been 
recording on the death certificate.

Citation: Pembroke TPI, John G, Puyk B, Howkins K, Clarke R, Yousuf F, Czajkowski M, Godkin A, Salmon J, 
Yeoman A. Rising incidence, progression and changing patterns of liver disease in Wales 1999-2019. World J 
Hepatol 2023; 15(1): 89-106
URL: https://www.wjgnet.com/1948-5182/full/v15/i1/89.htm
DOI: https://dx.doi.org/10.4254/wjh.v15.i1.89

INTRODUCTION
Liver disease is the third most common cause of premature death in the United Kingdom[1]. Since 1970 
mortality from liver disease has increased fourfold in the United Kingdom whilst all other major causes 
of death have declined[2]. The major causes of liver disease are alcohol-related liver disease (ArLD), 
non-alcoholic fatty liver disease (NAFLD) and viral hepatitis.

Liver disease typically progresses through several stages with increasing mortality regardless of the 
underlying aetiology[3]. Persistent inflammation may drive the accumulation of fibrosis resulting in 
cirrhosis and the development of portal hypertension over months to years[4]. Decompensation of 
chronic liver disease is defined by a deterioration in hepatic function and is represented by the sequalae 
of portal hypertension on a background of cirrhosis: Jaundice, ascites, encephalopathy, hepatorenal 
syndrome and variceal bleeding[5]. Up to a third of individuals with cirrhosis will develop liver cancer 
over their life time[6], which can precipitate liver decompensation. Decompensation may be the initial 
symptoms and first presentation to medical services and is associated with a high mortality[2,7]. 
Treatment of the underlying liver disease is key to improving prognosis, and can result in improvement 
in liver function, re-compensation of liver failure and even regression of cirrhosis[8,9]. Access to 
specialist care, surveillance for liver cancers and variceal bleeding and early discharge specialist follow 
up are all associated with reduced all-cause mortality for patients with cirrhosis[10,11].

Over the last decade there have been significant clinical advances in the management of liver disease, 
a striking example is the impact of direct acting antiviral drugs to eradicate hepatitis C virus (HCV) 
infection[12]. It is reasonable to assume that public health initiatives addressing lifestyle risk factors for 
liver disease may impact on the liver disease incidence and morbidity. Minimum unit pricing for 
alcohol in Scotland has resulted in an initial reduction in alcohol consumption, and taxation on sugary 
drinks has been introduced in an attempt to counter the obesity epidemic[13,14]. The long term impact 
of such interventions on liver disease incidence and mortality has yet to be established. Accurate 
epidemiological data may inform the effective provision of public health, primary and secondary care 
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initiatives for liver disease and assess the future effectiveness of these interventions. Previous epidemi-
ological studies have been limited by use of either mortality data alone[15,16], focusing of cohorts with 
advanced disease severity[3,10,17,18], or by specific disease aetiology such as autoimmune hepatitis, 
HCV or ArLD[4,19,20].

We set out to define the incidence of inpatient presentation, progression through significant stages of 
disease over time, and mortality of all liver diseases in Wales. We have developed a national liver 
disease registry populated by routinely coded diagnoses related to hospital admissions and death 
certificates. These diagnoses are recorded using the International Classification of Diseases (ICD)-10 
classification[21]. Incorporating routinely coded data into a registry remains problematic for the 
following reasons: (1) ICD-10 codes for liver disease may be specific to individual aetiologies; 
descriptive of a disease process; or reflect the stage of disease i.e., ‘chronic viral hepatitis C’ (B18.2), 
‘inflammatory liver disease, unspecified’ (K76.9) and portal hypertension (K76.6) respectively; (2) 
Diagnoses are recorded in the order of presentation rather than reflecting the natural history of disease 
described above. For example, variceal bleeding (I85.01) may be the initial presentation of autoimmune 
hepatitis (K75.4), however, a period of investigation including liver biopsy is commonly required before 
the aetiological diagnosis is later made. A code of ‘inflammatory liver disease, unspecified’ (K76.9) may 
be recorded during the diagnostic work up for this patient which becomes redundant once autoimmune 
hepatitis is confirmed; and (3) The progression of liver disease requires different levels of surveillance 
and monitoring and defining the stage of liver disease can be challenging. As a consequence, disease 
registries do not typically reflect multiple stages of disease.

In this paper we have applied a novel methodology to define: (1) The point of entry into a national 
liver registry; (2) Aetiological diagnoses from routinely coded data whilst removing redundant 
diagnoses; and (3) A decision tree to define the ordering of diagnostic codes for stages of liver disease. 
The aim was to develop novel insights into the changing aetiology and progression of liver disease, 
hence providing an analytic pipeline that will allow assessment of public health interventions, define 
clinical service requirements and aid redesign.

MATERIALS AND METHODS
Data sources
Between 1999 and 2019 the population of Wales increased from 2.9 to 3.1 million people; of whom 2.5 
million are adults. Health care is devolved to the Welsh Government from the United Kingdom 
Government in Westminster. Primary and secondary health care services are delivered by 7 health 
boards each covering a population of approximately 400000 people. All medical diagnoses documented 
in medical notes from hospital admissions and day case procedures are recorded by dedicated teams of 
disease coders within health boards using the ICD-10 classification[21]. Mortality data including 
diagnoses recorded on death certificates are derived from the Office for National Statistics (ONS). The 
ONS record the ICD-10 code of the underlying cause of death, defined as “the disease or injury which 
initiated the train of morbid events leading directly to death” detailed in Part Ia-c of the United 
Kingdom death certificate[22]. Contributory diseases not part of the direct sequence resulting in death 
are recorded and are typically reported in part II of the death certificate. For all Welsh residents these 
data from hospitals in Wales or admissions to English hospitals are uploaded into the NHS Wales 
Informatics Services (NWIS) data warehouse. It is not possible to access primary care records to link risk 
factors for liver disease for all patients in Wales at present. Individuals with liver disease diagnosis 
recorded between 1991 and 1998 were excluded to reduce the risk of secular trend analysis bias through 
over-estimation of incidence in the early period of the study. All coded diagnoses between 1st January 
1999 and 31st December 2019 were captured. Individuals were anonymised and given a unique identifier 
to link all demographic characteristics, 4-digit ICD-10 codes, and mortality data. The European Age 
Standardised Rate (EASR) of liver diseases was calculated using ONS census data for Wales from 2001-
2019; the years for which census data has been used to estimate the European Age Standardised 
population for Wales[22].

Definitions of liver disease aetiology and stages of liver disease
ICD-10 classifications include codes for aetiology of liver disease, cirrhosis, portal hypertension, liver 
cancers and decompensation. We have sought to categorise ICD-10 codes into these stages of liver 
diseases as laid out below.

Aetiology: Building upon the recoding mapping in the Hepahealth project[15] and 2021 expert panel 
consensus[23], we grouped ICD-10 codes to represent the aetiology of liver diseases. In order to manage 
overlapping and compound liver diseases we designated a hierarchy of 3 tiers groups based upon 
perceived clinical importance and relevance to public health, primary and secondary care intervention 
(Table 1). Tier 1 diagnoses were defined as the 6 major categories of liver disease hepatitis B virus 
(HBV), HCV, autoimmune liver disease, ArLD, NAFLD, and metabolic liver diseases (haemochro-
matosis, alpha 1 antitrypsin deficiency and Wilson’s disease). Individuals with more than one of these 
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Table 1 International Classification of Diseases-10 code case definition for liver disease aetiology, stratified into hierarchical tiers 
based of clinical importance

Tier 1 Tier 2 Tier 3

Descriptor ICD-10 
code

Descriptor ICD-10 
code 

Descriptor ICD-10 
code

Autoimmune hepatitis K75.4 Inflammatory liver 
disease unspecified

K76.9 Peliosis hepatis K76.4

Primary biliary cholangitis K74.3 Other specified 
inflammatory liver 
disease

K75.8 Other specified 
diseases of the 
liver

K76.8

Autoimmune 
liver disease

Granulomatous hepatitis 
not elsewhere specified

K75.3

Hepatitis not 
specified

Chronic hepatitis not 
elsewhere classified

K73.0-
K73.9

Miscellaneous

Liver disorders in 
diseases classified 
elsewhere

K77

Haemochromatosis E83.11 Chronic passive 
congestion of the 
liver

K76.1

Alpha 1 anti-trypsin 
deficiency

E88.01 Central haemor-
rhagic necrosis of the 
liver

K76.2

Metabolic liver 
disease

Wilson’s disease E83.01

Congestive 
hepatopathy

Hepatic veno-
occlusive disease

K76.5

Hepatitis B without D B18.1HBV

Hepatitis B with D B18.0

Toxic liver 
disease

Toxic liver disease K71

HCV Hepatitis C B18.2

Alcohol-related 
liver disease

Alcoholic liver disease K70-
K70.9

Non-alcoholic 
fatty liver disease

Non-alcoholic fatty liver 
disease

K76.0

ICD-10: International Classification of Diseases-10; HBV: Hepatitis B virus; HCV: Hepatitis C virus.

Tier 1 diagnoses are recorded as an overlap aetiology. If alcohol was one of the overlapping Tier 1 
aetiologies individuals were defined as ‘alcohol-overlap’, if alcohol was not one of multiple Tier 1 
diagnoses they were defined as ‘not alcohol-overlap’. All codes recorded by clinical coders were 
included in this registry methodology and the relative position of codes complied by the clinical coders 
did not impact on the aetiology definition.

Tier 2 diagnoses were toxic liver injury (K71), congestive hepatopathy, indicating passive venous 
congestion of the liver including right heart failure (K76.1, K76.2, K76.5 and I82.0), and hepatitis not 
specified (K76.9, K75.8 and K73.0-K73.9 capturing undefined liver inflammation). We propose that 
whilst these diagnoses may result in significant chronic liver disease, either they are not specific or they 
do not constitute the majority of hepatology workload within either primary or secondary care. 
Additionally, in the presence of Tier 1 diagnoses they are of secondary importance to understanding the 
epidemiology of liver disease. Tier 3 was designated as miscellaneous diagnoses (K76.4 peliosis hepatis, 
K76.8 ‘other specified diseases of the liver’ and K77 ‘liver disorders in diseases classified elsewhere’). 
Tier 3 diagnoses were only recorded in the absence of Tier 1 or 2 diagnoses. Finally, individuals without 
one of these aetiological codes but with a diagnosis of cirrhosis were grouped as ‘cirrhosis without 
defined aetiology’. Individuals were pseudo-anonymised with linkage of diagnoses allowing repeat 
codes to be removed.

Stages of liver disease
We propose that liver disease is typically considered in 5 discrete stages (Supplementary Figure 1). The 
first stage is the underlying aetiological disease process in the absence of cirrhosis. The management of 
this stage focuses upon reversing causes of inflammation and, in specific subsets of patients with HBV, 
hepatocellular carcinoma (HCC) surveillance. The ICD-10 case definitions for stages 2-5 are detailed in 
Table 2 and described below. Stage 2 is cirrhosis without portal hypertension or synthetic failure. At this 
point HCC should be considered and signs of potentially significant portal hypertension sought to 
screen for varices by gastroscopy. Stage 3 is defined as portal hypertension without decompensation 
and represents an important group which should be screened for varices and medium/large varices 
treated to prevent bleeding. The presence of clinically significant portal hypertension is associated with 

https://f6publishing.blob.core.windows.net/c9bac874-c28e-4a24-9327-a4901610c7b6/WJH-15-89-supplementary-material.pdf
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Table 2 International Classification of Diseases-10 codes to define the advanced stages of liver disease

Aetiological 
diagnoses (stage 1) Cirrhosis (stage 2) Portal hypertension (stage 3) Hepatic decompensation 

(stage 4)
Hepatocellular 
carcinoma (stage 5)

Alcoholic cirrhosis, 
K70.3

Portal hypertension, K76.6 Chronic hepatic failure, 
K72.1

Primary liver cancer C22.0

Hepatic fibrosis or 
sclerosis, K74.0-K74.2

Portal vein thrombosis, I81 Hepatorenal syndrome, 
K76.7 

Hepatocellular carcinoma 
C22.1

Secondary biliary 
cirrhosis, K74.4

Oesophageal varices without bleeding 
I85.9

Oesophageal varices with 
bleeding, I85.0

Biliary cirrhosis 
unspecified, K74.5

Oesophageal varices without bleeding in 
diseases specified elsewhere, I98.2

Hepatic failure unspecified 
K72

As defined in Table 1

Cirrhosis, other, K74.6

increased mortality[5]. Portal vein thrombosis is included within this group as a significant complication 
of portal hypertension. Stage 4 denotes liver decompensation associated with variceal bleeding, hepatic 
synthetic failure, ascites and hepatorenal syndrome. Stage 5 represents development of HCC. Whilst 
this may develop spontaneously or in HBV in the absence of cirrhosis, HCC most commonly arises in 
cirrhotic livers. It is well recognised that liver injury may regress and decompensation may improve. 
There are no recorded codes for this process however, liver transplantation may be considered as a 
separate code applied to a small proportion of individuals with liver disease. As described above, 
patients may progress through these stages in turn but can present either in a stepwise fashion or at a 
later stage depending on symptoms, screening or incidental diagnosis. Each of these stages requires 
varying levels of surveillance and specialist input to ameliorate the risk of liver-related mortality.

The acute liver diseases are considered separately to these acquired chronic liver diseases 
(Supplementary Table 1) as they carry a different challenge to public health, primary, and secondary 
care. Whilst these codes are captured, they are not included within the aetiology of chronic liver 
diseases described above. Alcohol-related codes that did not indicate liver disease (for example F10; 
alcohol use disorder) were not recorded to maintain a focus on individuals with evidence of liver 
disease requiring hepatology services rather than broader substance misuse services.

Time of registry entry and progression analysis
We proposed that the time of the first liver-related diagnosis listed in either Table 1 or Table 2 is used as 
the point of entry into the registry and was defined as the index diagnosis. In order to assess the 
proportion of individuals presenting late the diagnoses were ordered in keeping with the natural 
history of disease. Thus, the highest tier aetiological diagnosis is always the first entry into the liver 
registry, followed by cirrhosis, portal hypertension, decompensation and liver cancer. The application of 
the Wales Liver Registry methodology to a hypothetical patient is described in Supplementary Figure 2. 
The proportion of patients at each stage of liver disease was recorded. Mortality was recorded and 
deaths were divided into liver disease underlying cause, liver disease contributing, and non-liver-
related.

We also set out to assess the quality of routinely coded inpatient, day case and mortality diagnoses in 
Wales in comparison to outpatient liver disease data to identify if significant liver diagnoses are under-
recorded. Consultant hepatologists within the Gwent region (Aneurin Bevan Health Board), have 
routinely entered ICD-10 liver disease codes at the end of each outpatient appointment since 2012. These 
diagnoses were made with the full benefit of clinical investigations and could be updated at subsequent 
appointments to reflect evolving clinical manifestations of liver disease and progression of liver disease. 
We defined this as the gold standard of aetiological diagnosis to compare the diagnoses recorded within 
hospitals and on death certificates. To assess the impact of our proposed methodology we interrogated 
the NWIS data warehouse and report the impact of this approach. Scripts were written in SQL to 
perform the data linkage and reordering. Data was then collated and reported as fold change in 
incidence and time to event by Kaplan Meier analysis in Power BI (Microsoft, United Kingdom) and 
Prism (GraphPad, United States). This study was conducted in keeping with the Helsinki declaration. 
The design of this study was discussed with the South Wales research ethics committee and was not 
classed as research requiring regulatory approvals by Health Research Authority.

RESULTS
Between January 1, 1999 and December 31, 2019 there were 336677 routinely coded diagnoses of liver 
disease in Wales. There were 79111 index ICD-10 diagnosis of liver disease of any aetiology or stage in 
73054 individuals (Figure 1). This indicates that there were approximately 3 times as many repeat 

https://f6publishing.blob.core.windows.net/c9bac874-c28e-4a24-9327-a4901610c7b6/WJH-15-89-supplementary-material.pdf
http://
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Figure 1 Modified CONSORT flow chart of liver disease diagnoses Wales 1999-2019. There were 336677 liver disease diagnoses recorded by routine 
inpatient, day case and death certificate coding. 257566 were duplicate diagnoses. 11059 aetiological diagnoses were considered redundant by superior tier 
diagnosis (e.g., hepatitis C virus is higher tier than hepatitis not specified in the same individual). The total number of index liver disease stage diagnoses are 
recorded. Each subsequent box shows the number of individuals within the total who have advanced liver disease.

diagnoses as indexed diagnoses during subsequent admissions. Fifty two percent of individuals (n = 
37877) with a liver disease diagnosis between 1999 and 2019 died from all causes. A third of the 
individuals (n = 13266) who died, died from an underlying liver disease cause; equating to 18% of all 
individuals in the registry. In 2019 there were 35177 individuals alive with a secondary care diagnosis of 
chronic liver disease equating to a prevalence of 1.1% of the 3.1 million Welsh population.

The proposed hierarchy of aetiological diagnoses was applied to the liver registry cohort; 11059 Tier 2 
and 3 diagnoses (including miscellaneous and hepatitis not specified) recorded in the presence of a Tier 
1 diagnosis and therefore considered redundant. Following application of the staging criteria 
methodology there were 16992 individuals with cirrhosis, including 12858 diagnosed with portal 
hypertension and 10399 with an index diagnoses of decompensation, and 2316 with HCC (Figure 1). The 
aetiologies of liver disease in Wales are listed in Table 3; across the study period, the most frequent 
causes of liver disease in Wales were ArLD (26.1%), NAFLD (21.6%) metabolic disease (11.5%) and HCV 
(4.7%). The mean age of the entire cohort at diagnosis was 59.7 years and there was a slight male 
preponderance (54.5%, n = 39875). The mean age of diagnosis varied by aetiologies, ranging from 43 
years in HCV to 64.7 years in congestive hepatology. Similarly, the proportion of males ranged from 
20.5% to 67.8% in autoimmune liver diseases and ArLD respectively (Table 3).

Impact of outpatient diagnosis
Inpatient and day case coding may fail to capture the incidence of disease diagnosed in the outpatient 
clinic. We wished to assess the variation in incidence of aetiological diagnoses and staging diagnoses in 
the outpatient setting. When including outpatient coded diagnoses there was a substantial increase in 
the number of HBV (additional 112%), HCV (77%), autoimmune liver diseases (66%), NAFLD (40%), 
hepatitis not specified (34%), metabolic (23%), and ArLD (23%) cases captured (Supplement-
ary Figure 3A). There was no increase in number of diagnoses of congestive hepatopathy, miscellaneous 
or toxic liver disease diagnoses. Of note there was no increase in the number of diagnoses of cirrhosis, 
decompensation, portal hypertension or HCC with the additional of outpatient coding to inpatient/day 
case coding (Supplementary Figure 3B).

The rising incidence of liver disease in Wales
Between 1999 and 2019 the total number of new liver disease diagnosis rose 3.6-fold from 1916 to 6932 
individuals per annum (Figure 2A). The total EASR of liver diseases increased from 75.9 to 199 per 
100000 (Figure 2B) between 2001 and 2019. There was a marked increase in all liver disease diagnoses 
over this period apart from ArLD and toxic liver disease. NAFLD demonstrated a 10-fold increase over 
the 20-year period and in 2014 became the most common aetiological diagnosis of liver disease in Wales. 
Importantly, between 1999 and 2019 there was at least a 3-fold increase in the first recorded diagnosis of 

https://f6publishing.blob.core.windows.net/c9bac874-c28e-4a24-9327-a4901610c7b6/WJH-15-89-supplementary-material.pdf
https://f6publishing.blob.core.windows.net/c9bac874-c28e-4a24-9327-a4901610c7b6/WJH-15-89-supplementary-material.pdf
https://f6publishing.blob.core.windows.net/c9bac874-c28e-4a24-9327-a4901610c7b6/WJH-15-89-supplementary-material.pdf
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Table 3 The number, age and sex of individuals with aetiological liver disease diagnoses in Wales 1999-2019 following application of 
aetiology hierarchy

Aetiology n % of total cohort Mean/median age (yr) % male
Tier 1

ArLD 16143 26.1% 54.9/55 67.8%

NAFLD 13390 21.6% 57/58 47%

Metabolic 7131 11.5% 63/67 52.5%

HCV 2889 4.7% 43/41 66.8%

ArLD overlap 2979 4.8% 51.2/51 65.3%

Autoimmune liver diseases 2312 3.7% 61.8/64 20.5%

HBV 904 1.5% 43.5/39 53.3%

Non ArLD overlap 955 1.5% 51.2/51 55.8%

Tier 2

Hepatitis not specified 6069 9.8% 63/66 50.9%

Congestive hepatopathy 894 1.4% 64.7/70 49.6%

Toxic liver disease 820 1.3% 46.3/44 38.4%

Tier 3

Miscellaneous 7430 12% 66.7/70 42%

ArLD: Alcohol-related liver disease; NAFLD: Non-alcoholic fatty liver disease; HBV: Hepatitis B virus; HCV: Hepatitis C virus.

the clinically significant sequelae of chronic liver disease; cirrhosis, (435 to 1533) portal hypertension 
(282 to 1214), decompensation (173 to 785), and liver cancers (146 to 449, Figure 2B). The absolute 
number of deaths per year in a longitudinal cohort may be influence by lead time bias; the increasing 
age of the cohort, progressive and accumulation of comorbidities. However, between 2001 and 2019 the 
number of deaths in Wales with an underlying liver disease cause or in which liver disease contributed 
doubled (451 to 890 and 199 to 381 respectively, Figure 2C). In 2019 the number of all-cause deaths in 
the Wales Liver Registry was 3398.

Aetiology drives liver disease morbidity
Different aetiologies of liver disease will have different rates of progression to advanced liver disease 
and risk of all-cause mortality thus requiring varying levels of specialist care and surveillance. For each 
aetiological group we analysed the proportion of patients by their most advanced stage of liver disease 
(aetiology only, cirrhosis, portal hypertension, decompensation, and liver cancer) and all-cause 
mortality from entry into the liver registry up until death or censure at the end of the study period. The 
proportion who had further diagnoses indicating progression to each stage of liver disease was 
recorded at baseline, and by 6 mo, 1, 2, 3, 5 and 10 years (Table 4, Supplementary Figures 4A-F). The 
aetiology of liver disease resulted in significantly different proportions of each stage of liver disease at 
each time point (Figures 3A-F; P < 0.001 one way ANOVA). In this respect, advanced liver disease and 
decompensation were more frequent in ArLD, autoimmune liver disease, HCV, and congestive 
hepatopathy than NAFLD, HBV, and metabolic liver disease. This ranking of more progressive liver 
diseases did not change significantly at different time points (Figure 3). A notable exception was the 
proportion of patients living with HCC diagnosis was greatest in those with HBV up to year 3, then it 
was greatest in those with HCV (Figure 3E). The highest rates of cirrhosis were in ArLD (35%-20%) and 
autoimmune liver diseases (23.5%-18.5%) over the 10 years of follow up. The rate of cirrhosis in NAFLD 
(2.5%-1.98%) was over 10-fold lower than for ArLD (Table 4). In the final year of the study the number 
of individuals with index ArLD aetiology, cirrhosis and decompensation diagnoses were 638, 537 and 
238 respectively. In the same year index NAFLD aetiology, cirrhosis and decompensation diagnoses 
were 2242, 164 and 63 respectively (data not shown). The proportion of ArLD and autoimmune liver 
patients with cirrhosis decreased over 10 years whilst the proportion with portal hypertension and 
decompensation increased to a peak at 1 year and 3 years respectively before falling below baseline 
(Figures 3C and 3D). This suggests progression of liver disease drives the increasing morbidity for these 
aetiologies. Congestive hepatopathy had the greatest mortality increasing for 21% at entry into the 
registry, 42% at 1 year and 64% at 10 years but relatively low rates of cirrhosis. Alcohol and metabolic 
liver disease had similar high levels of all-cause mortality whilst HBV and HCV had the lowest levels of 

https://f6publishing.blob.core.windows.net/c9bac874-c28e-4a24-9327-a4901610c7b6/WJH-15-89-supplementary-material.pdf
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Table 4 Progression of liver disease over 10 years by aetiology

0 6 mo 1 yr 2 yr 3 yr 5 yr 10 yr
ArLD

Stage 1 48.75 40.27 36.14 31.54 28.36 24.21 19.18

Stage 2 16.52 14.12 12.93 11.75 10.82 9.65 7.87

Stage 3 13.47 13.93 13.92 12.8 11.86 10.18 8.1

Stage 4 4.49 4.8 5.09 5.3 5.33 4.97 4.25

Stage 5 0.63 0.5 0.49 0.44 0.38 0.34 0.34

Stage 6 16.14 26.38 31.43 38.17 43.25 50.64 60.25

NAFLD

Stage 1 86.3 82.52 80.42 77.98 76.25 73.93 70.7

Stage 2 2.54 2.28 2.31 2.21 2.22 2.18 1.98

Stage 3 2.87 2.99 2.87 2.7 2.52 2.29 2.07

Stage 4 0.82 0.93 0.98 1.01 1.01 0.95 0.91

Stage 5 0.4 0.38 0.36 0.28 0.3 0.22 0.24

Stage 6 7.07 10.89 13.07 15.82 17.71 20.43 24.1

Autoimmune liver disease

Stage 1 72.94 66.33 63.31 59.57 56.44 51.89 44.83

Stage 2 10.79 10.53 10.12 9.67 9.07 8.51 7.73

Stage 3 8.7 9.29 9.41 9.07 8.77 7.69 6.83

Stage 4 2.43 2.8 2.84 2.95 3.02 3.21 2.99

Stage 5 0.86 0.9 0.82 0.67 0.63 0.56 0.6

Stage 6 4.29 10.15 13.51 18.07 22.06 28.14 37.03

HBV

Stage 1 88.96 86.25 84.58 82.6 81.46 79.69 78.02

Stage 2 2.5 1.77 1.98 1.98 1.88 1.88 1.88

Stage 3 2.71 2.71 2.5 2.5 2.4 1.98 2.08

Stage 4 0.94 1.04 1.04 0.94 0.94 1.04 1.25

Stage 5 2.19 1.46 1.25 1.25 1.25 0.94 0.83

Stage 6 2.71 6.77 8.65 10.73 12.08 14.48 15.94

HCV

Stage 1 88.02 85.5 83.54 80.68 78.51 75.38 71.59

Stage 2 4.15 3.88 3.94 4.06 4.12 4.06 3.61

Stage 3 2.8 2.59 2.53 2.53 2.59 2.35 2.29

Stage 4 0.87 1.05 1.14 1.17 1.2 1.17 1.2

Stage 5 1.38 1.2 1.17 1.11 1.08 1.17 1.17

Stage 6 2.77 5.78 7.67 10.44 12.49 15.86 20.13

Metabolic

Stage 1 82.03 67.35 63.3 59.25 56.3 52.51 47.7

Stage 2 1.73 1.37 1.29 1.21 1.16 1.11 1.05

Stage 3 1.36 1.24 1.16 1.2 1.07 0.99 0.96

Stage 4 0.63 0.52 0.53 0.57 0.56 0.56 0.49

Stage 5 0.56 0.4 0.24 0.23 0.23 0.28 0.23
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Stage 6 13.69 29.12 33.48 37.54 40.69 44.55 49.57

Congestive hepatopathy

Stage 1 70.36 55.3 50.05 43.44 38.58 34.79 31.1

Stage 2 2.24 1.65 1.65 1.07 0.78 0.58 0.58

Stage 3 3.21 3.01 2.62 2.33 2.04 1.94 1.46

Stage 4 2.04 1.75 1.75 1.75 1.94 1.85 2.04

Stage 5 0.68 0.29 0.29 0.29 0.29 0.19 0.19

Stage 6 21.48 38 43.63 51.12 56.37 60.64 64.63

Toxic

Stage 1 80.87 76.09 73.96 71.31 69.48 67.45 62.87

Stage 2 1.22 0.92 1.02 0.81 0.71 0.61 0.61

Stage 3 1.63 1.93 1.73 1.42 1.73 1.53 1.42

Stage 4 3.46 3.15 3.36 3.26 3.36 3.15 2.95

Stage 5 0.31 0.2 0.2 0.2 0.2 0.2 0.1

Stage 6 12.51 17.7 19.74 22.99 24.52 27.06 32.04

Miscellaneous

Stage 1 91.24 80.46 75.76 70.45 67.05 63.04 57.4

Stage 2 0.62 0.57 0.49 0.42 0.35 0.31 0.29

Stage 3 0.94 0.97 0.99 0.94 0.94 0.9 0.75

Stage 4 0.37 0.34 0.37 0.39 0.39 0.35 0.37

Stage 5 0.62 0.64 0.57 0.45 0.38 0.35 0.28

Stage 6 6.21 17.02 21.82 27.35 30.89 35.04 40.91

The percentage of the individuals with a liver disease diagnosis who have progressed from aetiology only (stage 1), aetiology and cirrhosis (stage 2), 
aetiology, cirrhosis and portal hypertension (stage 3), aetiology, cirrhosis and portal hypertension and decompensation (stage 4), aetiology and liver cancer 
stage 5, and aetiology and mortality by any cause (stage 6). At baseline entry of registry between 1999 and 2019 and up to 10 yr of follow up. ArLD: 
Alcohol-related liver disease; NAFLD: Non-alcoholic fatty liver disease; HBV: Hepatitis B virus; HCV: Hepatitis C virus.

mortality over 10 years (Figure 3F). Progression to advanced stages of liver disease appeared to most 
frequently occurred in the first 3 years following entry into the registry (Figures 3A-F).

Liver disease recorded on death certification
The variation in progression to advanced stages of liver disease suggests that liver-related mortality will 
vary considerable between aetiologies of liver disease. The ONS records diagnoses that are the 
underlying cause of death and contributary causes. We compared the number of individuals who had a 
liver disease diagnosis listed as the underlying cause of death, other recording of liver disease or no 
mention of liver disease on the death certificate. Absolute number of deaths caused directly by liver 
disease was highest in the cohort ArLD (n = 6238) and this was approximately 10-fold higher than 
deaths due to liver disease in hepatitis not specified (n = 704), NAFLD (n = 559) or autoimmune liver 
diseases (n = 334, Figure 4A). ArLD, overlap and autoimmune liver diseases were associated with the 
greatest proportion of liver-related deaths. A third of individuals with NAFLD who died had a liver 
disease diagnosis recorded on their death certificate. The lowest rates of liver-related death were 
associated with metabolic liver disease, congestive hepatopathy and miscellaneous liver disease 
diagnoses (Figure 4B). These data are in keeping with diagnoses associated with highest rates of 
progression to cirrhosis and decompensation (Figure 3).

DISCUSSION
Accurate epidemiological data covering the broad arc of liver disease diagnoses and stages has the 
potential to improve the planning of hepatology services. In this paper we have proposed a novel 
epidemiological approach to analysing routinely coded data with 3 key features: (1) Defined groups of 
ICD-10 codes with the application of a hierarchy order of the most clinically relevant codes; (2) Linkage 
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Figure 2 Incidence of liver disease in Wales 1999-2019. A: The incidence of liver disease by aetiology recorded by routine coding following inpatient and 
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day case admission and on death certification in Wales between 1999 and 2019; B: The European Age Standardised Rate of the incidence of liver disease in Wales 
between 2001 and 2019; C: The incidence of index diagnosis of liver disease stage (cirrhosis, portal hypertension, decompensation and liver cancer) caused by liver 
diseases of all aetiologies in Wales; D: All cause mortality in individuals with a preceding liver disease diagnosis in Wales 1999-2019. ArLD: Alcohol related liver 
disease; NALFD: Non-alcoholic fatty liver disease; HCV: Hepatitis C virus; HBV: Hepatitis B virus; A1AT: Alpha 1 antitrypsin deficiency.

of diagnoses on an individual level to assess the clinical stage of liver disease; and (3) Monitor 
progression and mortality. To knowledge this approach to capture all diagnoses and stages of liver 
disease has not been applied previously in the United Kingdom or internationally. We have applied this 
methodology to the Welsh national data warehouse to establish the first dedicated national liver disease 
registry providing novel insight into the changing incidence and progression associated with different 
liver diseases.

The Wales Liver Registry methodology builds on the Hepahealth project grouping of ICD-10 code 
which was predominantly applied to mortality data[15]. To increase the relevance to longitudinally 
collected routine hospital coding data these groupings have been modified with the addition of a 
hierarchical ordering of aetiological diagnoses removing less specific overlapping codes. We have 
prioritised diagnoses that predominantly drive the long-term liver disease outcomes to better inform 
appropriate service level interventions. Analysis of outpatient data suggests that routine inpatient 
coding will underestimate the incidence of most aetiologies, in particular viral hepatitis (Supple-
mentary Figure 3). Importantly, however, the significant sequalae of chronic liver disease are well 
captured within routine inpatient coding compared to consultant led outpatient diagnoses. In addition 
to being key diagnoses related to patient symptoms, quality of life and mortality[24], this data informs 
the provision of secondary care resources screening for varices and HCC. This approach has also 
allowed analysis of subsequent diagnoses indicating progression, and liver disease related deaths. This 
has highlighted aetiologies that frequently present in an advanced disease state and are associated with 
poor outcomes such as ArLD and congestive hepatology (Table 4). Conversely in 2019 NALFD had a 4-
fold higher incidence than ArLD but was associated with fewer index cases of cirrhosis, 
decompensation and liver-related deaths underlying the importance of defining morbidity in addition 
to incidence and mortality. This approach has the potential to be applied to a variety of chronic 
conditions to inform practical registries which are reflective of disease progression with increased 
diagnostic specificity.

Incidence and outcomes of liver disease
The incidence of liver disease has increased 3.6-fold over the last 21 years in Wales, predominantly 
driven by a 10-fold increase in NAFLD diagnoses (Figure 2). This is in keeping with trends in NAFLD 
around the world[25]. Between 2004/5 and 2018/19 the proportion of overweight and obese individuals 
in Wales increased from 55% to 60% and obesity from 18% to 25%[26,27]. The rapid increase in 
incidence of NAFLD in the registry may reflect the evolution of establishing NAFLD in individuals over 
several years. Other co-morbidities that contribute to the incidence of NAFLD include diabetes and 
insulin resistance. The incidence of diabetes in Wales has doubled in the last 21 years and Wales has the 
highest prevalence of diabetes in the United Kingdom (7.4%)[28]. The precise proportion of the 
overweight and obesity population that will develop NAFLD remains to be defined, nonetheless, at 
present, the trajectory of NAFLD diagnoses continues to climb. The proportion of individuals with 
NALFD who had cirrhosis increased by 70% over the 21 year period (Figure 4A). This increase is likely 
to reflect more severe and earlier onset of obesity in Wales in combination with earlier detection using 
novel diagnostic approaches including fibroscan. The rising incidence of NAFLD may also be related to 
increased recognition and diagnosis of NAFLD through national guidelines and primary care abnormal 
liver function test pathways and an increasing number of hepatologists in Wales altering clinical 
practice.

ArLD has a high rate of cirrhosis and advanced liver disease at presentation (35%) which will have a 
significant demand on healthcare resources. Interestingly, the incidence of ArLD peaked between 2006 
and 2008 (approximately 925 diagnoses per year), before reducing towards baseline levels seen in 1999 
(630 diagnoses). The fall in ArLD incidence coincides with a trend to a reduction in the consumption of 
alcohol within the United Kingdom[29], and the introduction of the alcohol duty escalator between 2008 
and 2013. This increased duty on alcohol by 2% above the rate of inflation reduced alcohol affordability
[14,30]. Such measures demonstrate how targeted policy intervention in the community may further 
reduce the proportion of individuals with ArLD presenting with decompensation. Minimum unit 
pricing, introduced in Wales in March 2020, may further impact trends in ArLD incidence and disease 
behavior.

The annual all-cause mortality of individuals with a liver disease diagnosis has increased 30% over 
the last 21 years. This increase is a tenth of the increment of liver disease incidence. All cause and liver 
related mortality was greatest in individuals with an ArLD diagnosis and considerably lower for 
individuals with NAFLD. Advances in the management of chronic liver diseases are likely to have 
impacted upon mortality rates. In particular hepatitis C viral eradication with the advent of diatom 
diazotroph associations. Other factors that are likely to have had a significant impact are variceal 

https://f6publishing.blob.core.windows.net/c9bac874-c28e-4a24-9327-a4901610c7b6/WJH-15-89-supplementary-material.pdf
https://f6publishing.blob.core.windows.net/c9bac874-c28e-4a24-9327-a4901610c7b6/WJH-15-89-supplementary-material.pdf
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Figure 3 Progression of liver diseases in Wales. The proportion of individuals at their most advanced stage of liver disease at baseline, 6 mo, 1, 2, 3, 5 and 
10 years in Wales by aetiology. A: Aetiology (stage 1) diagnosis alone (not progressed); B: Cirrhosis (stage 2); C: Portal hypertension (stage 3); D: Decompensation 
(stage 4); E: Liver cancer (stage 5); F: All cause mortality (stage 6).

screening programmes and alcohol and lifestyle interventions. Our data suggests that the early period 
following initial diagnosis is associated with the greatest morbidity and mortality (Figure 3). This 
supports previous data suggesting that early specialist follow up and presumably optimal management 
is associated improved outcomes following decompensation[11].

Taken together these data confirm that the major causes of liver disease in Wales are driven by 
population health behaviors and lifestyle, which are, crucially, modifiable. Given the scale of the obesity 
and diabetes epidemics in Wales, hepatology services will need to adapt and expand to manage the 5%-
6% of individuals who develop cirrhosis and advanced liver disease. To improve population health and 
the impact on clinical services, further targeted interventions on alcohol excess and body weight are 
required to reverse the rising trends observed in this study and prevent the adverse health 
consequences also identified. Identification of patients who will most benefit from long term follow up 
requires further investigation.

We recognise the limitations of this study in regard to the lack of primary care and complete 
outpatient data. Firstly, there is a reduction in the capture of aetiology diagnoses compared to the 
outpatient department particularly for viral hepatitis (Supplementary Figure 3B). This may in part 
reflect the efficacy of nucleos(t)ide inhibitors in suppressing HBV[31,32] and direct acting antivirals to 
eradicate HCV[33], with a reduction in these patients developing HCC or decompensation requiring 
inpatient hepatology services[34,35]. Secondly whilst up to 50% of index liver disease diagnoses in the 
United Kingdom occur within the inpatient setting this is associated with a worse outcome[36], this is 
likely to reflect more advanced underlying liver disease. The described natural history of liver disease is 
likely to be less severe if primary care data is included. However, acute hospital admission marks a 
milestone in the prognosis of liver disease defining outcomes from this time point is useful when 
counselling the need for major lifestyle interventions such as alcohol cessation. In future, primary care 
diagnoses of liver disease could be included in the Liver Registry by mapping SNOMED or read codes 
onto ICD-10 codes and applying the same analytic approach. This would provide further insight into 
the time from first presentation to medical services to disease progression. The major practical challenge 

http://
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Figure 4 Liver disease diagnoses on death certificates reported for individuals in the Wales Liver Disease Registry 1999-2019. A: The 
number of liver disease diagnoses that were reported as the underlying cause, reported on the death certification and certificates which were did not have any mention 
of liver disease for all individuals with an index diagnosis of liver disease in Wales between 1999-2019; B: The proportion of deaths by aetiology that were recorded 
with an underlying liver disease cause, liver disease reported on the death certificate or liver disease was not mentioned. ArLD: Alcohol related Liver Disease; A1AT: 
Alpha 1 antitrypsin deficiency.

to accessing this data in Wales, as elsewhere, is the lack of primary care coding data in the national 
secondary care data warehouse. Thirdly routinely coded diagnoses do not define non-cirrhotic disease 
is mild or more advanced. There are inherent assumptions associated with applying a framework to a 
complex disease natural history and the current approach lacks a certain level of granularity, for 
example, HBV serological markers of disease activity or levels of fibrosis and steatohepatitis in NAFLD. 
This level of detail would require significant specialised data input and would probably be best served 
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by separate or combined disease specific registries with additional clinical details and prospective data 
entry. Similarly cirrhosis could be stratified by inclusion of clinical scoring systems such as Childs Pugh 
or model for end-stage liver disease, however, it is not possible to access these results to incorporate into 
the Liver Registry.

CONCLUSION
We propose that the Wales Liver Registry methodology to group aetiological diagnoses and monitor 
time to progression is robust and has provided novel insights into liver disease in Wales prior to the 
coronavirus disease 2019 (COVID-19) pandemic. Development of an analytic pipeline will allow rapid 
assessment of COVID-19 which presents significant challenges in terms of a worsening picture in terms 
of liver disease lifestyle risk factors as well as impacting healthcare capacity. This data can be used to 
identify potential targets for the provision of hepatology services, including public health interventions, 
and assess their impact.

ARTICLE HIGHLIGHTS
Research background
The incidence, morbidity, and mortality related to liver disease is not well understood.

Research motivation
To develop a national liver disease registry to inform the provision of hepatology services.

Research objectives
Develop and apply a novel methodology for a national liver registry incorporating aetiology, stage and 
mortality related to liver disease.

Research methods
Novel methodology for developing a national liver registry using routinely coded secondary care and 
death certificate datasets.

Research results
The incidence of liver disease has increased 3.6-fold in Wales between 1999-2019 driven by a 10-fold 
increase in non-alcoholic fatty liver disease (NAFLD) 3-fold increase in cirrhosis, portal hypertension, 
decompensation and hepatocellular carcinoma, 2-fold increase in liver disease related mortality between 
1999-2019. Actuarial tables of 10-year liver disease progression: Alcohol-related liver disease, 
autoimmune liver disease and congestive hepatopathy are associated with increased rates of 
decompensation and death compared to viral hepatitis and NAFLD.

Research conclusions
The Wales Liver Registry methodology provides a novel approach to understand the progression of 
liver disease in the setting of a rapidly altering incidence of liver disease in Wales.

Research perspectives
We have developed an analytic pipeline and will using this methodology to assess the impact of 
improvements in service provision.
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Abstract
BACKGROUND 
Hepatitis C virus is known for its oncogenic potential, especially in hepatocellular 
carcinoma and non-Hodgkin lymphoma. Several studies have shown that chronic 
hepatitis C (CHC) has an increased risk of the development of colorectal cancer 
(CRC).

AIM 
To analyze this positive relationship and develop an artificial intelligence (AI)-
based tool using machine learning (ML) algorithms to stratify these patient popu-
lations into risk groups for CRC/adenoma detection.

METHODS 
To develop the AI automated calculator, we applied ML to train models to predict 
the probability and the number of adenomas detected on colonoscopy. Data sets 
were split into 70:30 ratios for training and internal validation. The Scikit-learn 
standard scaler was used to scale values of continuous variables. Colonoscopy fin-
dings were used as the gold standard and deep learning architecture was used to 
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train six ML models for prediction. A Flask (customizable Python framework) application 
programming interface (API) was used to deploy the trained ML model with the highest accuracy 
as a web application. Finally, Heroku was used for the deployment of the web-based API to https
://adenomadetection.herokuapp.com.

RESULTS 
Of 415 patients, 206 had colonoscopy results. On internal validation, the Bernoulli naive Bayes 
model predicted the probability of adenoma detection with the highest accuracy of 56%, precision 
of 55%, recall of 55%, and F1 measure of 54%. Support vector regressor predicted the number of 
adenomas with the least mean absolute error of 0.905.

CONCLUSION 
Our AI-based tool can help providers stratify patients with CHC for early referral for screening 
colonoscopy. Along with providing a numerical percentage, the calculator can also comment on 
the number of adenomatous polyps a gastroenterologist can expect, prompting a higher adenoma 
detection rate.

Key Words: Machine learning; Calculator; Artificial intelligence; Hepatitis C; Screening

©The Author(s) 2023. Published by Baishideng Publishing Group Inc. All rights reserved.

Core Tip: Hepatitis C is associated with a wide array of extra-hepatic manifestations. In this study, we 
evaluated the incidence of colorectal adenomas and adenoma detection rates in hepatitis C patients. We 
developed an artificial intelligence-based tool to guide physicians in the detection and diagnosis of pre-
malignant and malignant colorectal pathologies in these patient populations.

Citation: Singh Y, Gogtay M, Yekula A, Soni A, Mishra AK, Tripathi K, Abraham G. Detection of colorectal 
adenomas using artificial intelligence models in patients with chronic hepatitis C. World J Hepatol 2023; 15(1): 
107-115
URL: https://www.wjgnet.com/1948-5182/full/v15/i1/107.htm
DOI: https://dx.doi.org/10.4254/wjh.v15.i1.107

INTRODUCTION
Hepatitis C is the most common blood-borne infection worldwide despite being gravely under-
diagnosed[1,2]. Data from the National Health and Nutrition Examination Survey 2013-2016 and four 
other high-risk populations; homeless, incarcerated, active-duty military, and nursing homes estimates 
that approximately 4.1 million persons in the United States (approximately 1.7% of the population) were 
hepatitis C virus (HCV) antibody-positive indicating past exposure and 2.4 million persons (approx-
imately 1% of the population) were HCV RNA positive indicating an active infection[3].

Although HCV is thought of as a primary disease of the liver, it has a wide array of extrahepatic 
manifestations, including skin, blood, lymphatic and intestinal pathologies[4,5]. The United States 
Chronic Hepatitis Cohort Study showed an increased incidence of rectal cancer with increased mortality 
in chronic HCV, but not colon cancers[4-6]. Colorectal cancer (CRC) is the third most commonly 
diagnosed cancer and the second most common cause of cancer-related death worldwide[3,7].

The current gold standard for diagnosing CRC is colonoscopy. The United States Preventive Services 
Task Force, American College of Gastroenterology, and American Cancer Society recommend screening 
for CRC starting at age 45 years in average-risk individuals[8-10]. There are no specific screening 
guidelines for CRC in patients with hepatitis C, despite there being an increased association.

Importance of artificial intelligence
Artificial intelligence (AI) is the new silk road. It is a technique that allows machines to store large 
amounts of data from various sources, process them accurately, reason, and even simulate human 
intelligence to provide a plan for clinical treatment. AI has augmented medical research on an enormous 
scale in recent years and continues to do so. It has significantly helped reduce the workload of clinicians 
and healthcare staff[11].

There are multiple facets of AI used in gastroenterology such as convolutional neural network 
(CNN), deep learning (DL), machine learning (ML), and computer-aided design (CAD)[12]. ML is a 
subset of AI, DL is a subset of ML and neural networks make up the backbone of DL algorithms. 
Multiple AI-assisted systems such as EndoBRAIN CAD by Kudo et al[13] and a CNN-based auxiliary 
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model by Ding et al[14] have been used to detect and diagnose bowel pathologies including colonic 
adenomas and neoplasms with higher sensitivity and specificity as compared to trained endoscopic 
experts[13,14].

ML is one of the subsets of AI where algorithms are trained for specific tasks. This is being in-
creasingly used in modern medicine for analyzing large volumes and complex data. ML can be applied 
in any clinical setting to include mathematical and statistical assumptions that are unfamiliar to most 
clinicians. It can be performed in a two-step process. Firstly, the clinical question. Secondly, which 
factors in the clinical question/process can be optimized. Data management is another aspect of ML that 
is crucial. The availability of high-quality data can train the ML algorithms and avoid data bias and 
errors that can erroneously skew the results.

The use of AI has shown an increase in both polyp detection rate and adenoma detection rate (ADR) 
which are the primary colonoscopy quality indicators. Each 1% increase in ADR leads to an approx-
imately 3% decrease in the future risk of cancer[15]. As timely intervention in the form of screening 
colonoscopy can help detect pre-neoplastic or early stages of CRC[15], it is imperative to develop a tool 
that can help clinicians distinguish which patients with chronic hepatitis C (CHC) infection require early 
referral for colonoscopy. Rustagi et al[16] in a case-control study showed a significantly higher number 
of adenomas detected on screening colonoscopy in the CHC group. In addition, building an ML model 
which can help predict the expected number of adenomas can reduce missed adenomas, decreasing 
subsequent cancer and the overall burden of CRC on healthcare. This is the aim of our research in 
developing an AI/ML-based tool.

MATERIALS AND METHODS
Study design and setting
This observational study with cross-sectional data collection and analysis was conducted at a com-
munity hospital in Massachusetts, USA. The institutional review board approved the study. The results 
were tabulated and statistically analyzed using computer software (SPSS version 25 for Windows, SPSS 
Inc., Chicago, IL, USA). Descriptive statistics for continuous variables were calculated with the Mann-
Whitney U test, and categorical variables were calculated with the Chi-square test. The level of 
significance was set at P < 0.05.

Model training: Classification
Several ML models were trained and tested, and the model that could predict percentage probability 
with the highest accuracy was saved for the deployment stage.

Training and testing dataset characteristics
The dataset used to train and test the ML algorithms was collected manually and stored in a comma-
separated file format. The dataset contained several attribute vectors from 415 patients [i.e., sex, age, 
body mass index (BMI), obesity class, oral contraceptive use, significant alcohol use, hypothyroidism, 
intravenous drug use, diabetes mellitus, human immunodeficiency virus, concomitant statin use, 
controlled attenuation parameter (CAP) grade, HCV status, genotype, aspartate aminotransferase, 
alanine aminotransferase, platelet count, hemoglobin A1c, and triglycerides]. Some patients had missing 
data, which were replaced by zeros for training and testing. The task was to predict the percentage 
probability of adenoma occurrence in colonoscopy, followed by calculating the number of polyps. For 
this purpose, two ML models, i.e., classification and regression models, were trained, and the best 
models were saved from both ML categories.

Preprocessing
The dataset was loaded onto a pandas DataFrame. The output label was colorectal adenomatous polyps. 
Numerical feature vectors were replaced with categorical variables. Categorical attributes such as HCV 
genotype and gene polymorphisms underwent label encoding. The variables with numerical values 
were scaled using the scikit-learn StandardScaler function to scale down to the desired range of 0-1. The 
complete dataset was split into a 70:30 ratio, in which 70% of the total dataset was used for training. The 
remaining 30% of the entire dataset was used to test internal validity and select the ML model with the 
highest predictive value.

ML algorithm internal testing
Several ML algorithms were trained to predict hepatic steatosis and CAP grades using the above-listed 
vectors. These models included: Support vector classifier, random forest, Bernoulli naïve Bayes (BNB), 
Gradient boosting classifier (GBC), logistic regression, and stochastic gradient descent classifier. All 
models were trained using 70% of the dataset. After training, each model was tested using the 
remaining 30% of the dataset The model with the highest testing accuracy, the GBC model, was chosen 
for external validity testing.
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GBC model
The GBC model is a set of ML algorithms that additively combines multiple weaker ML models to 
produce a final predictive model. Our model assigned a binary classification to datasets and used 
multiple regressions along several decision trees to refine its attempts to predict the steatosis classi-
fication correctly. The model graded each attempt on a loss function which evaluates the extent to which 
the previous tree was inaccurate.

RESULTS
Patients were divided into cases (HCV) and controls (non-HCV). Data was tabulated as described in 
Table 1. Figure 1 is a strobe diagram with an overview of the methodology and results. The performance 
of different ML algorithms for training and testing to detect colorectal adenomatous polyps is shown in 
Table 2.

Using the colonoscopy results determined by the pathology of the biopsied polyp as the output, we 
applied a DL architecture using the above variables to train and test several ML models using a 415-
patient dataset. As shown in Table 2, our results demonstrated that the BNB model had the highest 
testing accuracy (56%), precision (55%), recall (55%), and F1 score (54%). The distribution of actual and 
predicted labels during internal testing can be seen in Figure 2. As depicted in Table 3, our results 
demonstrated that the support vector regressor model had the lowest mean absolute error - 0.905, 
indicating it was the most suitable ML model to calculate an approximate number of polyps.

Application development phase
A flask-based web app was developed using the model with the highest accuracy for the application 
phase. A flash application programming interface (API) was used to deploy the trained ML model as a 
web application. The web-based API was then deployed into a web server using Heroku, a cloud 
application platform (https://adenomadetection.herokuapp.com/).

DISCUSSION
The initial analyses of the variables have demonstrated that median age of 62 years, with higher BMI, 
smoking, alcohol use, and concomitant aspirin use are related to adenoma detection with statistical 
significance among the data collected from patients with CHC who underwent colonoscopies. Using 
these initial datasets, DL architecture was used to train six ML models, which were prepared and 
validated using a 70:30 ratio of the dataset. Of the multiple models, the BNB model predicted the 
probability of adenoma detection with the highest accuracy, precision, and recall. Flask API was used to 
deploy the ML model, and Heroku web API was used to develop the AI tool. The model training and 
performance are shown in Tables 2-4.

The AI tool may be useful in the clinical setting to triage patients with hepatitis C, who have not 
received a formal CRC screening to stratify them into high-risk and low-risk groups. This can guide the 
gastroenterologist during the colonoscopy to help increase the ADRs. This knowledge of the increased 
risk of CRC incidence in hepatitis C and isolating patients that are high risk can prompt physicians to 
start CRC screening early and more frequently in these specific subsets.

Although multiple review articles have been published, there are very few clinical studies. To our 
knowledge, this is one of two retrospective analyses performed comparing CRC in hepatitis C and non-
hepatitis C individuals. One of the main limiting factors was that the study was performed in the patient 
population that visited the primary care clinic at a community hospital in a single city in the northeast 
United States; it is limited by the geographical and socioeconomic aspects of the patient population. 
Analysis and validation were carried out on this limited sample size. Another drawback was that the 
study was primarily a retrospective analysis. Timing of the colonoscopy and the patient having active 
hepatitis infection might not always be documented, and timing was not specific in many patients, 
which limited the sample size that was analyzed.

AI application to healthcare has been increasingly pursued in the past decade, changing how we 
deliver advanced patient care[17,18]. AI and ML ensure the automation of many time-consuming 
activities and provide better insight into patient data that are not evident to providers[17]. Although the 
hype behind AI is promising, various barriers prevent the real-world application of these new AI 
systems. AI has helped in increased interoperability of extensive data, reasonable data-driven decisions 
involving evidence-based medicine, and hence a higher quality of care.

CRC is a commonly diagnosed malignancy in men and women with increasing mortality[19]. Many 
epidemiological studies have shown a positive association of CHC infection with extra-hepatic 
malignancies, especially gastrointestinal malignancies[16,19]. Our study focused on this positive 
association between CHC and CRC and on using AI and ML models to further ease the diagnosis in 
these patient populations.

https://adenomadetection.herokuapp.com/


Singh Y et al. AI tool to detect colorectal adenoma

WJH https://www.wjgnet.com 111 January 27, 2023 Volume 15 Issue 1

Table 1 Patient demographics

Variables Case (n = 109) Control (n = 97) OR 95%CI P value
Age (mean ± SD in yr) 62.73 ± 9.146 60.20 ± 7.062 0.02a

Age median (yr), n (%) 49 (50.5) 58 (53.2) 0.54 0.31-0.95 0.03a

Gender, n (%) - female 48 (44) 46 (47.4) 0.87 0.50-1.51 0.62

BMI, median (IQR) 28 (7) 32 (7) 0.001a

Family history of hepatitis, n (%) 10 (9.2) 6 (6.2) 1.53 0.55-4.38 0.42

Aspirin use, n (%) 22 (20.2) 35 (36.1) 0.44 0.24-0.83 0.01a

Smoking, n (%) 2.31 1.31-4.07 0.004a

No 51 (46.8) 65 (67)

Yes 38 (34.9) 15 (15.5)

Former 20 (18.3) 17 (17.5)

Total pack years, median (IQR) 25 (21) 25 (11) 0.75

Alcohol use, n (%) 12 (11) 24 (24.7) 0.37 0.17-0.80 0.01a

DM, n (%) 27 (24.8) 31 (32) 0.87 0.50-1.51 0.25a

HIV, n (%) 3 (2.8) 1 (1) 2.71 0.27-26.56 0.62a

Adenomatous polyps present 58 (53.2) 33 (34) 2.20 1.25-3.87 0.006a

Bowel preparation (%) 0.14

Good 90 (82.6) 88 (90.7)

Fair 11(10.1) 7 (7.2)

Poor 8 (7.3) 2 (2.1)

aP < 0.05
OR: Odds ratio; CI: Confidence interval; BMI: Body mass index; IQR: Interquartile range; DM: Diabetes mellitus; HIV: Human immunodeficiency virus.

Table 2 Machine learning model training

ML model Test accuracy (%) Precision (%) Recall (%) F1 score (%)
Support vector classifier 52 51 51 51

Random forest 53 53 53 53

Bernoulli naïve Bayes 56 55 55 54

Gradient boosting 50 49 49 48

Logistic regression 50 48 48 47

Deep neural networks 53 53 53 51

ML: Machine learning.

AI is integrated into our everyday life to such an extent that we barely remember what life was before 
it. This includes face recognition to unlock our phones, self-driven cars, chatbots for almost every 
business, and even ML-based financial fraud detection. AI-driven models are increasingly utilized to 
screen, diagnose and monitor multiple clinical conditions. Many AI algorithms have been used in CRC 
detection. Hu et al[20] performed ML simulations using S-Kohonen, Backpropagation and SVM neural 
networks, showing the S-Kohonen method’s effectiveness for colon cancer classification[20].

Zhang et al[21] derived a cost-effective and sensitive method for detecting BRAF mutations in CRC 
using a counter propagation artificial neural network to distinguish mutant BRAF vs wild type[20,21]. 
Many such ML models are increasingly being utilized in precision oncology to precisely guide diagnosis 
and management decisions in CRC patients[19-21].
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Table 3 Machine learning models and their mean absolute error

ML model Mean absolute error
Linear regression 1.072

LGBM regressor 1.106

XGBoost regressor 1.273

ElasticNet 0.941

Gradient boosting regressor 1.139

Support vector regressor 0.905

ML: Machine learning.

Table 4 Machine learning models and their performance

ML model Performance
Support vector classifier Good

Random forest Good

Bernoulli naïve Bayes Optimal

Gradient boosting Inadequate

Logistic regression Inadequate

Deep neural networks Good

ML: Machine learning.

Figure 1 Strobe diagram. HCV: Hepatitis C virus; ML: Machine learning.

AI tools will potentially transform our practice by leveraging massive amounts of data to personalize 
care to the right patient, in the right amount, at the right time. These novel tools assist physicians in the 
detection and early diagnosis of pre-malignant and malignant lesions in general and high-risk 
populations.

CONCLUSION
Our AI tool can be further modified based on the treatment of hepatitis C with the new direct-acting 
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Figure 2 Distribution of actual label vs predicted label during internal testing.

antivirals, and how treated and cured hepatitis C alters the incidence of CRC in these groups. Long-term 
prospective studies, including a subgroup analysis between patients cured of hepatitis C, who had a 
relapse of the disease, and who refused or were untreated and how it affected CRC detection, would 
help guide diagnostics. Further validation with randomized controlled trials and multicenter part-
icipation will ensure replicability and repeatability of the results for the smooth incorporation of such 
AI-based tools into clinical practice[19-22].

ARTICLE HIGHLIGHTS
Research background
Several studies have shown that chronic hepatitis C virus (HCV) increases the risk of developing 
colorectal cancer (CRC). We conducted a study to analyze this positive relationship. We developed an 
artificial intelligence (AI) based tool using machine learning (ML) algorithms to stratify these patient 
populations into risk groups for CRC/adenoma detection.

Research motivation
We acknowledge the increased applications of AI with ML in medicine. Gastroenterology and 
hepatology have immense potential for AI integration. Hence, to develop an AI automated calculator, 
we applied ML to train models to predict the probability and the number of adenomas detected on 
colonoscopy.

Research objectives
Our objective was the create a readily available AI tool in the form of a calculator that healthcare 
providers throughout the globe can access to predict the prevalence of adenoma/CRC.

Research methods
We used colonoscopy findings as the gold standard and applied a deep learning architecture to train 
ML models for prediction. The institutional review board approved the study.

Research results
Data on 415 patients were collected. We discovered a higher incidence of adenoma/CRC in patients 
with chronic HCV in the untreated patient population. On internal validation, the Bernoulli naive Bayes 
ML model showed the highest predictive accuracy and recall for adenoma detection rates.
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Research conclusions
Our AI-based tool shows an association between HCV and colorectal adenomas. This tool can help 
providers stratify their patients at increased risk of CRC and prompt early referral for colonoscopy.

Research perspectives
In the future, we would like to see this calculator being used in clinical practice as a preventative 
measure to increase early diagnosis of high-risk adenomas/CRC.
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Abstract
We have found that the expression of ring finger and WD repeat domain 3 (RF-
WD3) is significantly higher in unpaired and paired hepatocellular carcinoma 
(HCC) tissues than in normal tissues. Moreover, this expression has a significant 
correlation with the infiltration level of 14 immune cell types and when the 
detected RFWD3 expression levels were grouped as high and low, a prominent 
difference was revealed for overall survival, disease-specific survival, and 
progression-free interval. Through statistical analysis (univariate Cox), we were 
also able to identify RFWD3 as an independent prognostic element for HCC, with 
RFWD3 having an ability to accurately predict HCC prognosis (area under the 
curve of 0.863). Finally, we have generated prognostic nomograms for probab-
ilities of 1-, 3- and 5-year overall survival in HCC via integrating the factors of age, 
pathologic stage, alpha-fetoprotein level, and RFWD3 expression.
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Core Tip: We have discovered that ring finger and WD repeat domain 3 (RFWD3) expression is 
remarkably higher in tumor tissues compared to corresponding non-tumor tissues, regardless of hepato-
cellular carcinoma (HCC) tissue type (unpaired or paired). The RFWD3 expression also showed a 
significant correlation with the infiltration level of 14 immune cell types and was identified as an 
independent prognostic element in HCC by univariate Cox regression analysis. Our collective findings 
suggest that RFWD3 has the ability to accurately predict prognosis of HCC.

Citation: Miao YD, Quan WX, Wang JT, Gan J, Dong X, Zhang F. Prognostic role of ring finger and WD repeat 
domain 3 and immune cell infiltration in hepatocellular carcinoma. World J Hepatol 2023; 15(1): 116-122
URL: https://www.wjgnet.com/1948-5182/full/v15/i1/116.htm
DOI: https://dx.doi.org/10.4254/wjh.v15.i1.116

TO THE EDITOR
We perused the recently published paper by Liang et al[1] with much interest. The authors reported on 
their assessments of ring finger and WD repeat domain 3 (RFWD3) expression levels in hepatocellular 
carcinoma (HCC) patients. Their findings included RFWD3 effects on HCC prognosis, the processes of 
proliferation, invasion and metastasis, and the underlying mechanisms, specifically regulation via the 
Wnt/β-catenin signaling pathway. We have a particular appreciation for these authors' novel invest-
igation into the prognostic implication of RFWD3 in HCC as we have also discovered that the 
expression of RFWD3 is prominently higher in both unpaired and paired HCC tissues from HCC 
patients than in their corresponding normal tissues (Figure 1A and B).

According to the current literature, cancer cells, endothelial cells, stromal cells, immune cells, and 
cancer-associated fibroblasts cells all exist in the tumor microenvironment (TME)[3,4]. While the TME is 
known to play crucial roles in development, invasion and metastasis of HCC, the immune escape of 
HCC cells has yet to be fully understood and continues to complicate cancer treatment[5]. Due to the 
ongoing and well-known limitations of chemotherapy in general, immunotherapies are a hot topic of 
bench and clinical research. This newly emerging cancer therapy exploits immune cells both inside and 
outside the TME to target and attack cancer cells; its demonstrated advantages are high specificity and 
low side-effects[6]. The power of this therapeutic method’s potential lies in the fact that different types 
of immune-related cells serve diverse roles; for HCC, the research into defining and developing those 
immune cells that inhibit/promote tumor processes has a long way to go[7].

Upon reading the report that Liang et al[1] found RFWD3 is able to affect the prognosis of HCC, we 
tested a hypothesis that the expression of RFWD3 may be associated with immune cell infiltration in 
HCC. Detailed information is shown in Table 1. Following our initial positive data, we systematically 
explored the correlation between RFWD3 expression and infiltration level of 24 immune cell types, 
using a single-sample gene set analysis (also known as ssGSEA) algorithm and Spearman coefficient 
correlation analysis[8]. We found that RFWD3 expression has a remarkable correlation with the infilt-
ration level of 14 immune cell types (Figure 2A). Among them, RFWD3 expression was positively 
associated with the infiltration level of T helper (Th) cells in general, Th2 cells in particular, T follicular 
helper (TFH) cells, T central memory (Tcm) cells, activated dendritic cells (DCs), natural killer (NK) 
CD56bright cells, and eosinophils ( all P < 0.05; Figure 2B-H). There were negative associations with 
cytotoxic cells, DCs, plasmacytoid DCs (pDCs), neutrophils, T gamma delta (Tgd) cells, T regulatory 
cells (Tregs), and Th17 cells (all P < 0.05; Figure 2I-O). We hope our findings will encourage further 
investigations into RFWD3 as an HCC immunotherapy. Detailed information on this aspect is presented 
in Table 2.

Importantly, we agree with the finding of Liang et al[1] that indicates higher RFWD3 expression is 
related to worse overall survival (OS) in HCC. We have found that OS, disease-free survival, and 
progression-free interval were prominently shorter in HCC patient tissues with high RFWD3 expression 
than in those with low RFWD3 expression (all P < 0.05; Figure 3A-C). Our further statistical analysis via 
univariate Cox regression identified RFWD3 as an independent prognostic element for HCC (Table 3). 
Generation of the receiver operating characteristic curve showed that RFWD3 has the ability to 
accurately predict prognosis in HCC (area under the curve of 0.863). Finally, we generated prognostic 
nomograms for probabilities of 1-, 3- and 5-year OS in HCC via integrating the factors of age, pathologic 
stage, alpha-fetoprotein level, and RFWD3 expression; each element was assigned a score according to 
its contribution to survival (Figure 3E).

Ultimately, our new findings highlight that the research of Liang et al[1] is worthy of attention and 
that subsequent efforts to build upon it, such as our related discoveries, may promote the next 
generation of effective and safe therapeutics, such as immunotherapies.

https://www.wjgnet.com/1948-5182/full/v15/i1/116.htm
https://dx.doi.org/10.4254/wjh.v15.i1.116


Miao YD et al. RFWD3 in HCC

WJH https://www.wjgnet.com 118 January 27, 2023 Volume 15 Issue 1

Table 1 Detailed statistical results of differential expression of ring finger and WD repeat domain 3 in hepatocellular carcinoma and 
normal tissues

Gene Group n Minimum Maximum Median IQR Lower quartile Upper quartile Mean SD SE

Normal 50 0.504 1.504 0.98 0.251 0.883 1.133 1.013 0.208 0.029

Tumor 374 0.62 3.5 1.544 0.755 1.245 2 1.647 0.559 0.029

Normal 50 0.504 1.504 0.98 0.251 0.883 1.133 1.013 0.208 0.029

RFWD3

Tumor 50 0.707 2.939 1.577 0.716 1.204 1.92 1.578 0.521 0.074

RFWD3: Ring finger and WD repeat domain 3; IQR: Interquartile range; SD: Standard deviation; SE: Standard error.

Table 2 Detailed information on the statistical correlation between ring finger and WD repeat domain 3 expression and immune cell 
infiltration

Gene Immune cell type Pearson’s correlation 
coefficient Pearson’s P value Spearman’s correlation 

coefficient Spearman’s P value

Th2 cells 0.499 < 0.001 0.501 < 0.001

Th cells 0.434 < 0.001 0.436 < 0.001

Cytotoxic cells -0.304 < 0.001 -0.314 < 0.001

DCs -0.281 < 0.001 -0.304 < 0.001

pDCs -0.261 < 0.001 -0.261 < 0.001

Neutrophils -0.210 < 0.001 -0.214 < 0.001

TFH cells 0.226 < 0.001 0.213 < 0.001

Tcm cells 0.187 < 0.001 0.164 0.002

Tgd cells -0.105 0.043 -0.142 0.006

Tregs -0.155 0.003 -0.121 0.019

aDCs 0.141 0.006 0.114 0.027

NK CD56bright cells 0.128 0.013 0.112 0.031

Th17 cells -0.170 < 0.001 -0.110 0.033

Eosinophils 0.077 0.135 0.106 0.041

Macrophages 0.096 0.063 0.071 0.171

Th1 cells 0.090 0.081 0.064 0.214

iDCs -0.034 0.507 -0.061 0.241

Mast cells -0.053 0.309 -0.060 0.247

CD8 T cells -0.047 0.368 -0.058 0.260

T cells -0.013 0.796 -0.033 0.522

Tem cells 0.085 0.100 0.020 0.704

B cells 0.033 0.525 0.017 0.744

NK cells 0.035 0.494 -0.012 0.810

RFWD3

NK CD56dim cells 0.020 0.699 -0.001 0.979

aDCs: Activated dendritic cells; DCs: Dendritic cells; iDCs: Immature dendritic cells; NK: Natural killer; pDCs: Plasmacytoid dendritic cells; RFWD3: Ring 
finger and WD repeat domain 3; Tcm: T central memory; Tem: T effector memory; TFH: T follicular helper; Tgd: T gamma delta.

Statistical analysis
R statistical software (version 4.1.2; R Foundation for Statistical Computing, Vienna, Austria; 
https://www.R-project.org/) was used for all statistical analyses. Wilcoxon rank-sum test was used to 
perform the differential expression analysis of RFWD3 between HCC samples and corresponding 

https://www.R-project.org/
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Table 3 Univariate Cox regression analysis in hepatocellular carcinoma

Univariate analysis
Characteristics Total, n

Hazard ratio (95%CI) P value

Pathologic stage 349

I 173

II 86 1.417 (0.868-2.312) 0.164

III 85 2.734 (1.792-4.172) < 0.001

IV 5 5.597 (1.726-18.148) 0.004

Child-Pugh grade 240

A 218

B 21 1.595 (0.757-3.361) 0.219

C 1 2.138 (0.294-15.544) 0.453

Fibrosis Ishak score 214

0 75

1/2 31 0.935 (0.437-2.002) 0.864

3/4 28 0.698 (0.288-1.695) 0.428

5/6 80 0.737 (0.410-1.325) 0.308

Histologic grade 368

G1 55

G2 178 1.162 (0.686-1.969) 0.576

G3 123 1.185 (0.683-2.057) 0.545

G4 12 1.681 (0.621-4.549) 0.307

RFWD3 373 1.557 (1.148-2.110) 0.004

CI: Confidence interval; RFWD3: Ring finger and WD repeat domain 3.

Figure 1 Differential expression levels of ring finger and WD repeat domain 3 in hepatocellular carcinoma and normal tissues. A: Non-
paired hepatocellular carcinoma (HCC) and normal samples; B: Paired HCC and normal samples. Data source: mRNA-Seq data from the Genotype-Tissue 
Expression project (GTEx) of The Cancer Genome Atlas processed through the Toil process in the UCSC Xena database.(https://xenabrowser.net/datapages/)[2].

normal samples, with results demonstrated by the “ggplot2” R package[10]. Survival analysis was 
carried out by log-rank test and univariate Cox regression. The association between RFWD3 expression 
and immune cell infiltration were performed by Spearman and Pearson analysis. Positive values of 
correlation coefficient indicate positive correlation, negative values indicate negative correlation.

https://xenabrowser.net/datapages/
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Figure 2 Correlation analysis of ring finger and WD repeat domain 3 expression and immune cell infiltration in hepatocellular carcinoma. 
A: Lollipop plot manifesting the correlation between ring finger and WD repeat domain 3 (RFWD3) expression and the infiltration level of 24 immune cell types; B-H: 
The infiltration levels of 7 immune cell types have significant positive correlation with RFWD3 expression; B: T helper (Th)2 cells; C: Th cells; D: T follicular helper 
(TFH) cells; E: T central memory (Tcm) cells; F: Activated dendritic cells (aDCs); G: Natural killer (NK) CD56bright cells; H: Eosinophils; I-O: The infiltration levels of 7 
immune cell types have significant negative correlation with RFWD3 expression; I: Cytotoxic cells; J: Dendritic cells (DCs); K: Plasmacytoid dendritic cells (pDCs); L: 
Neutrophils; M: T gamma delta (Tgd) cells; N: T regulatory cells (Tregs); O: Th17 cells.
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Figure 3 Survival analysis of ring finger and WD repeat domain 3 in hepatocellular carcinoma and the nomogram for prognosis. A-C: Ring 
finger and WD repeat domain 3 (RFWD3) expression is related to overall survival, disease-specific survival (B) and progression-free interval (C)[9] in the The Cancer 
Genome Atlas-liver hepatocellular carcinoma (HCC) data; D: Receiver operating characteristic curves for the RFWD3 gene’s prognosis predictive ability. The 
nomogram can predict 1-, 3- and 5-year overall survival of HCC based on clinicopathological features and the expression of RFWD3.
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