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Abstract
Since the first reports of coronavirus disease 2019 (COVID-19) cases in December 
2019 in China, numerous papers have been published describing a high frequency 
of liver injury associated with severe acute respiratory syndrome coronavirus 2 
infection, many of them proposing a link between these findings and patient 
outcomes. Increases in serum aminotransferase levels (ranging from 16% to 62%) 
and bilirubin levels (ranging from 5% to 21%) have been reported and seem to be 
more often observed in patients with severe forms of COVID-19. Although 
absolute changes in these parameters are frequently seen, other variables, such as 
the ratio above the upper limit of normal, the onset of liver injury as a 
complication in severe cases and histopathological findings, reinforce that liver 
changes are of dubious clinical relevance in the course of this disease. Other 
factors must also be considered in these analyses, such as the repercussions of 
hemodynamic changes, the presence of thrombotic events, and, mainly, the 
possible drug-induced liver injury with the current, yet off-label, treatment. This 
paper aimed to analyze the currently available data on liver injury in patients 
with COVID-19.
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Core tip: The coronavirus disease 2019 (COVID-19) pandemic has affected millions 
worldwide, with high lethality. Papers have been describing liver injury but with divergent 
results; some have suggested a positive relationship between liver involvement and 
severity of infection. To evaluate this matter, some aspects, such as the frequency and 
severity of liver enzyme abnormalities, should be analyzed according to clinical and 
histopathological findings; other associated factors, such as interactions with the drugs 
used in COVID-19 treatment, should be analyzed as well. An overview of the aspects 
related to liver injury during COVID-19 infection was analyzed in this study according to 
evidence known to date.

Citation: Brito CA, Barros FM, Lopes EP. Mechanisms and consequences of COVID-19 
associated liver injury: What can we affirm? World J Hepatol 2020; 12(8): 413-422
URL: https://www.wjgnet.com/1948-5182/full/v12/i8/413.htm
DOI: https://dx.doi.org/10.4254/wjh.v12.i8.413

INTRODUCTION
The first reports of what is now known as coronavirus disease 2019 (COVID-19) came 
out in December 2019 in China, and severe acute respiratory syndrome coronavirus 2 
(SARS-CoV-2) infection, the COVID-19 etiologic agent, subsequently spread 
worldwide. Currently, more than 200 countries have been affected, with 
approximately 3 million confirmed cases and more than 200000 deaths to date (as of 
May 5, 2020). Severe disease is observed in up to 20% of affected patients with a 
lethality rate that may eventually exceed 10%[1-4].

Recently, many papers have been published reporting gastrointestinal 
manifestations,  including acute l iver injury, with increased levels of 
aminotransferases, in COVID-19 patients; these manifestations have been reported 
more frequently in patients with severe forms of this disease. However, there is a wide 
variation of these findings in different studies[5-18].

Despite frequent reports of liver injury in patients with COVID-19, some questions 
remain: What is the liver enzymes’ curve and how often do they rise above the upper 
limit of normal (ULN) serum level? Are these abnormalities correlated with COVID-19 
disease severity? Can increased serum aminotransferase levels reflect the degree of 
injury? What is the liver injury frequency in cases with a severe course of disease with 
complications and death? What do histopathological findings suggest? Are the liver 
parenchymal changes due to the systemic disease consequences or a direct effect of 
SARS-CoV-2? May drug use for COVID-19 be the cause of liver injury?

FREQUENCY OF INCREASE IN LIVER FUNCTION ENZYMES IN COVID-19 
PATIENTS
Liver injury related to SARS-CoV-2 disease has been defined by increased liver 
enzyme serum levels, mainly aminotransferases and bilirubin, during the infection 
course in patients with or without previous liver disease[5-18]. Wide variability in 
deviations of liver enzyme serum levels from normal values is observed in infected 
patients, with an elevation frequency ranging from 16% to 62% for aminotransferases 
and from 5% to 21% for bilirubin. These abnormalities are seen mostly in severe forms 
of COVID-19 (Tables 1 and 2)[6,10,12,14,16].

In fact, the study by Guan et al. found high aminotransferase serum levels in 22% of 
757 hospitalized patients, with elevated aspartate transaminase (AST) in 18.2% 
(112/615) of non-severe patients, in 39% (56/142) of severe patients and in 50% (26/52) 
in those with complicated outcomes such as intensive care unit (ICU) hospitalization, 
mechanical ventilation or death. In addition, bilirubin values above the ULN were 
present in 13.3% of non-severe patients and 20.8% of severe patients[6].

https://www.wjgnet.com/1948-5182/full/v12/i8/413.htm
https://dx.doi.org/10.4254/wjh.v12.i8.413
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Table 1 Different studies that evaluates liver enzymes according to disease severity and treatment protocol

n Disease severity, n (%) Death, n 
(%) Complications, n (%) Treatment (%), Antiviral therapy; 

Antibiotic therapy; Antimalarial Treatment (Drugs)

Xie et al[12] 79 Moderate: 51 (64.5%), 
Severe: 28 (2.5%)

0 NR NR NR

Huang et al[5] 41 Non-severe: 28 (68.3%), 
Severe: 13 (31.7%)

6 (15%) Acute respiratory distress: 12 (29%); Acute cardiac injury: 5 (12%); 
Acute kidney injury: 3 (7%); Secondary infection: 4 (10%); Shock: 3 (7%)

All patients: AV (93%); AB (100%) Non-
ICU care: AV (93%); AB (100%) ICU care: 
AV (92%); AB (100%)

Antiviral: Oseltamivir Antibiotic: NR

Guan et al[6] 1099 Non severe: 926 (84.3%), 
Severe: 173 (15.7%)

15 (1.4%) Acute respiratory distress: 37 (3.4%); Acute kidney injury: 6 (0.5%); 
Septic Shock: 12 (1.1%); Disseminated intravascular coagulation: 1 (0.1); 
Rhabdomyolysis: 2 (0.2)

All patients: AV (35.8%); AB (58%) Non-
severe: AV (33.8%); AB (53.8%) Severe: 
AV (46.2%); AB (80.3%)

Antiviral: Oseltamivir Antibiotic: NR

Zhang et al[13] 115 Non severe: 84 (73%), 
Severe: 31 (27%)

1 (0.9%) NR NR NR

Cao et al[31] 128 Non severe: 107 (83.6%), 
Severe: 21 (16.4%)

0% NR NR NR

Chen et al[9] 99 Non severe: 76 (77%), 
Severe (ICU): 23 (23%)

11 (11%) Acute respiratory injury: 8 (8%); Acute kidney injury: 3 (3%); Septic 
Shock: 4 (4%); Ventilator-associated pneumonia: 1 (1%)

All patients: AV (76%), AB (71%) Antiviral: Oseltamivir, ganciclovir, lopinavir/ritonavir 
Antibiotic: Cephalosporins, quinolones, carbapenems, 
tigecycline, linezolid

Richardson 
et al[18]

5700 Non severe: 4414 (77.4%), 
Severe (ICU): 1286 (22.6%)

553/2634 
(21%)

Acute kidney injury: 1370 (24%); Acute Hepatic injury 89 (1.6%) NR NR

Zhang et al[10] 221 Non severe: 166 (75%), 
Severe: 55 (25%)

12 (5.4%) Acute respiratory injury: 48 (21.7%); Acute kidney injury: 10 (4.5%); 
Acute cardiac injury: 17 (7.6%); Arrhythmia: 24 (11%); Shock: 15 (6.8)

All patients: AV (88.7%) Non-severe: AV 
(88%), Severe: AV (90.9%)

Antiviral: NR Antibiotic: NR

Bhatraju 
et al[11]

24 Severe: 24 (100%) 12 (50%) Shock: 17 (71%) All patients: AV (29.2%) Antiviral: Remdesivir

Zhou et al[8] 191 General: 72 (38%), Severe: 
66 (35%); Critical: 53 (28%)

54 (28%) Sepsis: 112 (59%); Respiratory failure: 103 (54%); Heart failure: 44 
(23%); Septic shock: 38 (20%); acute cardiac injury: 33 (17%); Acute 
kidney injury: 28 (15%); Secondary infection: 28 (15%)

All patients: AV (21%), AB (95%) 
Survivors: AV (21%), AB (93%)Non-
survivors: AV (22%), AB (98%)

Antiviral: Lopinavir/ritonavir Antibiotic: NR

Pan et al[15] 204 NR (total) 36 (17.6%) NR All patients: AV (90.2%), AB (64.7%) Antiviral: Lopinavir/ritonavir Antibiotic: NR

Wang et al[7] 138 Non severe: 102 (74%), 
Severe (ICU): 36 (26%)

6 (4.3%) Respiratory failure: 27 (19.6%); Arrhythmia: 23 (16.7%); Shock: 12 
(8.7%); Acute cardiac injury: 10 (7.2%); Acute Kidney injury: 5 (3.6%)

All patients: AV (89.9%); AB (100%) Non-
ICU care: AV (88.2%); ICU care: AV 
(94.4%)

Antiviral: Oseltamivir Antibiotic: Moxifloxacin, 
ceftriaxone, azithromycin

Fu et al[16] 350 Common: 211 (60.3%), 
Severe: 88 (25.2%); Critical 
ill: 51 (14.5%)

34 (9.8%) NR NR NR

Chen et al[17] 113 NR 113 (41%) Type I respiratory failure: 18/67 (27%), Sepsis: 179 (65%), Acute cardiac 
injury: 89/203 (44%), Heart failure: 43/176 (24%), Acute kidney injury: 
29 (11%)

All patients: AV (86%); AB (91%); 
Recovered: AV (91%); AB (89%) Deaths: 
AV (79%); AB (93%)

Antiviral: Oseltamivir, arbidol, lopinavir/ritonavir 
Antibiotic: Moxifloxacin, cefoperazone, or 
azithromycin
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NR: Not report; ICU: Intensive care unit; AV: Antiviral therapy; AB: Antibiotic therapy; AM: Antimalarial.

Moreover, among 24 hospitalized ICU patients, Bhatraju et al[11] found increases of 
41% and 32% in AST and alanine transaminase (ALT) levels, respectively. Huang 
et al[5,7], when assessing the frequency of abnormalities among 41 patients, found AST 
alterations in 62% of ICU patients compared to 25% of non-ICU hospitalized patients, 
similar to the findings in other studies.

According to these findings, the frequency of aminotransferase elevation during 
COVID-19 is directly related to the disease severity; that is, the higher the COVID-19 
severity, the greater the chance of liver enzyme elevation. Then, increases of 
aminotransferases serum levels would be a predictor factor of severity of SARS-CoV-2 
infection.

SERUM LEVELS OF LIVER ENZYMES AND LIVER INJURY
It must be acknowledged, however, that in acute liver injury, hepatocyte necrosis 
extension is reflected by aminotransferase serum levels. Although these changes are 
often described in COVID-19 cases, the aminotransferase serum level abnormalities are 
discrete[6-8,10-16].

In a study by Cao et al[14] 107 non-severe COVID-19 patients had a mean AST of 
30.63 U/L (30.63 ± 18.85), and even among the 21 severe cases, serum levels were 
lower than 100 U/L (44.13 ± 36.26)[14]. In another study involving 115 patients, 27% 
were categorized as severe, and among them, 85% had serum AST levels below 50 
U/L, with no cases presenting an AST above 150 U/L and just one case with an ALT 
level above this value. For bilirubin, only seven cases presented with serum levels 
higher than ULN (> 21 μmol/L), and they did not exceed 31.5 μmol/L[13].

Using a stratification score for the variability in serum levels among 341 patients, 
Cai et al[19] found 25% of AST abnormalities at admission, with most of these cases 
(91%) having serum levels between one and two times above ULN; 8% had an 
elevation range of two and three times above ULN, and only 1% had an elevation 
above three times the ULN[19].

In the evaluation of cases that progressed to a fatal outcome, the same pattern 
persisted. In the study by Chen et al[17], 52% (59/113) of deceased patients presented an 
AST increase, with median serum levels of 45 U/L (IQR: 31.0-67.0). On the other hand, 
only 25 out of 161 (16%) patients who recovered presented AST levels higher than the 
ULN, with median serum levels of 25.0 (IQR: 20.0-33.3)[17].

In an analysis of 82 deaths, Zhang et al[10] compared the aminotransferases and 
bilirubin values at admission and 24 h before the fatal outcome. The alterations were 
higher close to the timing of death, with AST, ALT and bilirubin values above the 
ULN occurring in 70%, 40% and 30.6%, respectively. However, the absolute values 
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Table 2 Frequency and serum levels of hepatic enzymes abnormalities in different studies

AST abnormalities %1 Serum levelsAST U/L1 ALT abnormalities % Serum levelsALT U/L1 Total bilirubinabnormalities %
Serum levels, Total bilirubin 
mol/L1

Xie et al[12] 35.4% 2All patients: 30 (20-50); 
Moderate: 28 (22-48); Severe: 35 
(22-55)

31.6% 2All patients: 34 (18-67); 
Moderate: 28 (21-43.5); Severe: 
36.5 (17.5-71.5)

5.1% 2All patients: 13.6 (8.8-17.6); 
Moderate: 13.9 (8.9-18.7); Severe: 
12.7 (8.1-15.4)

Huang et al[5] 2All patients: 37%, Non-ICU: 25%; 
ICU: 6%

2All patients: 34 (26-48); Non-
ICU: 34 (24-40.5); ICU: 44 (30-
70)

NR 2All patients: 32 (21-50); Non-
ICU care: 27 (19.5-40); ICU care: 
49 (29-115)

NR 2All patients: 11.7 (9.5-13.9); Non-
ICU care: 10.8 (9.4-12.3); ICU care: 
49 (11.9-32.9)

Guan et al[6] All patients: 22.2%; Non-severe: 
18.2%; Severe: 39.4%; 
ICU/IMV/Death: 50%

NR All patients: 21.3%; Non-severe: 
19.8%; Severe: 28.1%; 
ICU/IMV/Death: 40.8%

NR All patients: 10.5%; Non-severe: 
9.9%; Severe: 13.3%; 
ICU/IMV/Death: 20.8%

NR

Zhang et al[13] 17% 2All patients: 28.3 ± 15.6; ULN ≤ 
50 U/L: 85%; 50-150 U/L: 15%; 
> 150: none

11% 2All patients: 25.71 ± 21.8; ULN: 
≤ 50 U/L: 90.4%; 50-150 U/L: 
8.7%; > 150: 0.9%

6.96% 2All patients: 11.31 ± 5.8; ULN: ≤ 
21 μmol/L: 94%; 21-31.5 μmol/L: 
6%

Cao et al[31] NR All patients: 30.63 ± 18.85; Non-
severe: 27.98 ± 25.8; Severe: 
44.13 ± 36.26

NR All patients: 31.35 ± 20.36; Non-
severe: 28.89 ± 31.83; Severe: 
43.87 ± 47.8

NR NR

Chen N 
et al[9]

35% All patients: 34 (26-48) 28% All patients: 39 (21-55) 18% All patients: 15.1 ± 7.6

Richardson 
et al[10]

58.4% All patients: 46 (31-71) 39% All patients: 33 (21-55) NR NR

Zhang et al[10] NR All patients: 29 (22-49); Non-
severe: 27 (20-38); Severe: 51 
(29-78)

NR All patients: 23 (16-39); Non-
severe: 22 (14-33); Severe: 32 (22-
57)

NR All patients: 10 (8-14.2); Non-
severe: 9.6 (7.9-13.8); Severe: 11.4 
(8.6-17.4)

Bhatraju 
et al[11]

41% NR 32% NR NR 0.6 (0.5-0.7)

Zhou et al[8] NR NR All patients: 31% Survivor: 24%; Non-
survivor: 48%

All patients: 30 (17-46); Survivor: 
27 (15-40); Non-survivor: 40 (24-
51)

NR NR

Pan et al[15] NR All patients: 35.6 ± 59.6 NR All patients: 35.8 ± 48.5 NR All patients: 13.3 ± 10.2

Wang et al[7] NR All patients: 31 (24-51); Non-
ICU: 29 (21-38); ICU: 52 (30-70)

NR All patients: 24 (16-40); Non-ICU: 
23 (15-36); ICU: 35 (19-57)

NR All patients: 9.8 (8.4-14.1); Non-
ICU: 9.3 (8.2-12.8); ICU: 11.55 (9.6-
18.6)

Fu et al[16] NR Common: 16 (20-35); Severe: 29 
(23-54); Critical ill: 49 (35-80)

NR Common: 22 (14-35); Severe: 23 
(15-36); Critical ill: 33 (19-61)

NR 2Common: 10.4 (7.5-14.7) Severe: 
10.9 (8.0-16.2); Critical ill: 12.6 
(10.5-17)

All patients: 31%; Deaths: 52%; All patients: 16 (22-46); All patients: 22%; Deaths: 27%; All patients: 23 (15-38); All patients: 9.6 (6.7-13.5); Chen et al[17] NR
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Recovered: 16% Recovered: 25 (20-33.3); Deaths: 
45 (31-67)

Recovered: 19% Recovered: 20 (14.2-32); Deaths: 
28 (18-57)

Recovered: 8.4 (5.8-11.2); Deaths: 
12.6 (9.4-16.7)

1Data is mean ± SD or median.
2Values on admission. ALT: Alanine transaminase; AST: Aspartate transaminase; NR: Not report; ICU: Intensive care unit; IMV: Invasive mechanical ventilation; ULN: Upper limit of normal.

were not as high as supposed, with AST, ALT and bilirubin serum levels averaging 72 
U/L (IQR: 30-71), 26 U/L (IQR: 18.5-47.5) and 13.6 μmol/L (IQR: 10-22.9) on 
admission, respectively, and 74.5 U/L (IQR: 35.5-184), 30.5 U/L (IQR: 22-102.5) and 26 
μmol/L (IQR: 18.5-47.5) 24 h before death. Moreover, the authors also compared 
COVID-19 patients with 119 patients with community-acquired pneumonia due to 
other etiologies and did not observe significant differences in aminotransferase serum 
levels[10].

Although uncommon, there have been published reports of significant elevation in 
liver enzymes, such as the elevations described among 99 COVID-19 patients in the 
study by Chen et al[9], with one case (1%) presenting an ALT of 7590 U/L and an AST 
of 1145 U/L[9].

According to the studies published so far, liver enzyme serum levels are not very 
elevated during SARS-CoV-2 infection; most often they are below twice the ULN. 
These findings suggest that hepatocyte necrosis on the hepatic parenchyma is discrete 
and that liver injury does not seem to be very relevant. Likewise, serum levels appear 
to increase according to the progression time of the disease COVID-19 severity. To 
date, rare cases of high elevations of liver enzymes have been described during 
COVID-19.

HISTOPATHOLOGICAL FINDINGS
Therefore, the evidence shows that liver injury has little clinical relevance in the course 
of COVID-19 disease. Nevertheless, liver failure is a rare complication in severe cases, 
even though hypoxia and shock may contribute to hepatocyte damage. On the other 
hand, reports of acute respiratory failure, heart failure, acute cardiac injury, acute 
kidney injury and shock predominate in many studies as more frequent complications 
and causes of death[5-8,10,13,17,18].

Little is known about how hepatocytes are damaged during SARS-CoV-2 infection. 
However, years ago, evaluation of three patients with SARS-CoV confirmed the 
presence of coronavirus in liver tissue by RT-PCR, but the virus was present in low 
titles because no viral inclusions were observed ultrastructurally[20,21].

Additionally, postmortem histopathological studies show discrete changes in the 
hepatic parenchyma, and these findings may have multifactorial causes related to the 
viral mode of action, inflammatory response, adjacent repercussions of systemic 
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hemodynamic alterations, coagulation disorders or drug induced liver injury 
(DILI)[22-24].

In a study developed in Milan with 48 liver biopsies from postmortem COVID-19 
patients, vascular changes in the portal vein were observed, with an increased number 
of portal branches, terminal vessel dilations, and thrombi found in portal and 
sinusoidal vessels. The inflammatory alterations were discrete, with mild portal and 
lobular infiltrates. The authors suggested that histopathological findings in COVID-19 
are suggestive of changes in the intrahepatic blood vessel network secondary to 
systemic alterations induced by SARS-CoV-2 that could indicate that they are a target, 
in addition to the lung parenchyma or cardiovascular system. However, they conclude 
that liver failure is not a major concern in COVID-19 cases, and this organ is not a 
significant inflammatory injury target[23].

Moreover, some authors suggest that liver injury in COVID-19 may be triggered by 
viral replication itself within hepatocytes, since SARS-CoV-2 binds cells through the 
angiotensin-2-converting enzyme, especially in bile epithelium cells[23]. Nevertheless, 
the low serum aminotransferase levels observed in COVID-19 patients do not suggest 
that the exacerbated inflammatory response or direct viral injury to hepatocytes is 
relevant. The pattern of the aminotransferase curve during SARS-CoV-2 infection is 
different from those observed in hepatitis associated with other epidemic viruses that 
induce frequent and intense LFT elevations due to diffuse parenchymal necrosis, as 
found, for example, in patients with dengue or yellow fever[25-28]. In fact, the liver injury 
found in COVID-19 looks that one observed in other viruses, such as SARS, MERS and 
influenza[29-31].

Lastly, the liver histopathological findings observed in most patients with COVID-
19 are suggestive of vascular abnormalities possibly resulting from increased arterial 
flow to the liver secondary to cardiac distress and thrombotic phenomena in the portal 
and sinusoidal vessels[23]. Nonetheless, eventually in some patients might be the 
involvement of some drug, as antibiotics or antivirals, in the induction of liver injury.

OTHER CAUSES OF LIVER INJURY IN SARS-CoV-2
Other factors may be involved in hepatic enzyme alterations. Several medications used 
to treat COVID-19, mainly antivirals such as lopinavir/ritonavir and remdesivir, 
chloroquine and hydroxychloroquine antimalarials, antibiotics including 
azithromycin, or immune-modulators such as tocilizumab, may lead to DILI. 
Therefore, physicians should be aware of the LFT profile in response to drug use to 
help attribute liver injury to the natural history of infection[19,32-39].

Antivirals such as lopinavir/ritonavir and remdesivir that have been recently used 
for COVID-19 may be associated with liver injuries. DILI from lopinavir/ritonavir has 
been reported in 2%-10% of patients[32]. Cai et al[19] published a trial in which 417 
patients using lopinavir/ritonavir presented a higher risk for developing liver injury 
[OR of 4.44 (P < 0.01)] and higher levels of bilirubin and gamaGT during 
hospitalization (P < 0.004)[19].

The use of antimicrobials and antibiotics, frequently prescribed for suspicious or 
confirmed very ill COVID-10 patients, is considered a frequent etiology of DILI[33].

In the reviewed papers, antivirals and antimicrobials were often prescribed to 
COVID-19 patients, ranging from 21% to 93% and 58% to 100%, respectively and many 
times they were used simultaneously[5-11,13,17]. Liver enzymes abnormalities were often 
seen, even in the trials that less frequently used antiviral treatment[6,8,11]. In Zhou et al[8] 
trial, lopinavir/ritonavir was used in around 20% of the patients either they survive or 
not, and ALT abnormalities was observed in 24% and 48% respectively[8]. There is also 
a wide variability in antivirals prescribed to patients, such as oseltamivir, remdesivir, 
lopinavir/ritonavir and ganciclovir. The same is also observed with the use of 
antimicrobials, either alone or in combination with antivirals and other drugs. This 
does not allow us to stablish a clear causality relationship or even the amount of 
importance to the use of this drugs and the liver injury. Besides it the histopathological 
findings do not suggest a DILI pattern[23].

Hydroxychloroquine (HCQ) has been used, though still off-label, in several 
countries, despite the limited number of studies published so far and divergent 
opinions regarding its efficacy. Although hepatotoxicity in users of HCQ is 
uncommon, LFTs and severe liver dysfunction have been documented[37-40].

Makin et al[40] reported two cases of patients with rheumatological disease who, after 
2 wk of using 400 mg of HCQ daily, were admitted with fulminant hepatitis; one 
required a liver transplant, and both patients died[40]. Recently, Falcão et al[37] reported 
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an increase in LFTs in very sick COVID-19 patients on drug treatment, with return to 
normal levels once the drugs were halted[37].

The mechanisms of hepatic injury related to HCQ are poorly established, and 
toxicity may be due to reactive metabolites and oxidative stress induced by this drug 
or an idiosyncratic toxic or synergistic effect associated with inflammatory processes 
induced by the infection itself[41-43].

More recently, azithromycin in association with HCQ has become a therapeutic 
option for COVID-19 patients[44,45]. Biliary and hepatocellular injury have been 
associated with azithromycin use[34-36]. Another report with 18 patients presenting with 
azithromycin-induced DILI described a wide range of histopathological abnormalities, 
including hepatitis, veno-occlusive changes and/or central venulitis acute cholestasis 
and cholestatic hepatitis[35].

Due to the significantly increased use of HCQ and azithromycin during COVID-19 
disease treatment, liver toxicity related to these drugs must be considered, and liver 
abnormalities should not be solely attributable to SARS-CoV-2 infection itself; the high 
risk of DILI seen in these scenarios should not be neglected. If DILI is suspected, 
COVID-19 drugs should be promptly halted.

Additionally, it is highly difficult to stablish a causality relationship between a 
specific drug and liver injury during COVID-19 infection, because most of the times 
they are used as combination of antimalarials, antivirals, antimicrobials, 
anticoagulants and sometimes vasoactive drugs. It is also worth remembering that the 
most severe cases, which do not present favorable evolution, are those where more 
drugs are administered in the fight against the disease.

CONCLUSION
Despite the common descriptions of liver enzyme abnormalities observed in COVID-
19 patients, the frequency, intensity and impact of liver injury are discrete and of little 
clinical significance regarding morbidity or mortality of this disease. A better 
understanding of the natural history of liver involvement may be addressed in the 
near future with well-designed prospective studies regarding viral and immunologic 
research.
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Abstract
Cholestatic liver diseases (CLD) begin to develop after an impairment of bile flow 
start to affect the biliary tree. Cholangiocytes actively participate in the liver 
response to injury and repair and the intensity of this reaction is a determinant 
factor for the development of CLD. Progressive cholangiopathies may ultimately 
lead to end-stage liver disease requiring at the end orthotopic liver 
transplantation. This narrative review will discuss cholangiocyte biology and 
pathogenesis mechanisms involved in four intrahepatic CLD: Primary biliary 
cholangitis, primary sclerosing cholangitis, cystic fibrosis involving the liver, and 
polycystic liver disease.
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Core tip: Several factors can condition bile flow derangements including environmental 
triggering factors, bile transport obstruction and conditions that alter bile concentration. 
Sustained pro inflammatory signaling associated with genetic and/or epigenetic 
dysregulation can condition a chronic dysfunctional state that can lead to a fibrogenic state 
with loss of homeostasis and sometimes malignant transformation.
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INTRODUCTION
Cholestatic liver diseases (CLD) encompasses progressive cholangiopathies, which 
may evolve to end-stage liver disease. In the United States from 1988 to 2018, this 
group of illness corresponded to 14.2% of all liver transplants[1]. Thus far, their high 
morbidity and mortality are an economic burden that evolved from the lack of 
effective treatments. Moreover, 10% to 40% of these patients will have a recurrence of 
the primary disease after liver transplantation (LT)[2].

New prospective therapeutic targets are an unmet necessity, a number of which are 
under preclinical development. To evaluate these potential therapies, it is essential to 
understand the primary target of these pathologies, the cholangiocytes. This review 
will reinforce the current understanding of the core concepts of CLD pathogenesis in 
the light of the last translational advancements that may impact clinical management.

CLD: COMMON PATHOGENIC MECHANISMS
Several factors can condition bile flow derangements (Figure 1). Although 
environmental triggering factors are mostly unknown, antigenic stimuli, exotoxins, 
endotoxins, xenobiotics, and microorganisms can promote cholangiocyte reaction that 
will evolve into a cholestatic state[3]. Bile transport obstruction is another predisposing 
factor. Intrahepatic and extrahepatic obstruction can take place due to extrinsic benign 
compression (cystic diseases), malignant mass effect (cholangiocarcinomas), and also 
as a consequence of cholelithiasis formation or migration throughout the biliary tree. 
Moreover, conditions that slow biliary flow promote a cholestatic state with increased 
bile acid (BA) concentration. Sepsis, hyperestrogenic states (pregnancy), congestive 
heart failure, and dysfunction of BA transporter genes may alter the main 
characteristics of BA, conditioning a more cytotoxic BA component.

Early cholangiocyte response may allow resolution of injury, however, sustained 
pro-inflammatory signaling associated with disragulation of genetic and/or epigenetic 
regulatory mechanisms could condition late dysfunctional permanent state. 
Eventually fibrogenic state with biliary and periportal fibrosis, loss of tissue 
homeostasis and autocrine and paracrine remodeling would be achieved. Ultimately, 
proliferation may lead to cell-cycle alteration, senescence, apoptosis, ductopenia, 
mesenchymal infiltration and sometimes malignant transformation. To date, new 
therapeutic targets are being developed for each CLD considering the core of this 
pathogenic process. The main framework will be analyzed along with the foundation 
for potential clinical development.

Ductular reaction: First core concept
Intra and extra-hepatic bile ductules of different sizes are lined by cholangiocytes, 
which are epithelial cells that regulate and modify bile volume and composition[3]. 
These vary in size, metabolic rate as well as proliferative and plasticity capabilities. 
Biliary differentiation pathways are being more thoroughly understood and so it is 
now known that hepatocytes and cholangiocytes have a common stem cell precursor, 
and trans differentiation may occur in massive parenchymal loss from one to another, 
although the exact mechanisms are not well understood[4].

Ductular reaction (DR) is part of the injury response. It is triggered by cholestasis 
which activates the hepatic progenitor cells in CLD[5]. The sonic-hedgehog pathway 
promotes both cholangiocyte maturation and deposition of fibronectin in ductular-
reactive cells[6]. DR may induce injury resolution, or, biliary fibrosis in the presence of 
perpetuating transcriptional inflammatory addiction. The cytokine panel for this 
transcriptional impairment depends on the disease phenotype and ultimately will 
condition different histological classifications beyond the scope of this review[7]. 
Figure 2 lists the dominant spectrum of CLD.

Bile acid toxicity and mitochondrial dysfunction
The second core fundamental framework of CLD pathogenesis is BA cytotoxicity and 
mitochondrial dysfunction. Besides its functional role of converting lipid bilayers into 
mixed micelles, BA are endogenous ligands that activate a network of receptors 
including nuclear receptor farnesoid X (FXR), vitamin D3 receptor (VDR), pregnane X 
receptor (PXR), constitutive androstane receptor (CAR), membrane G protein-coupled 
bile acid receptor-1, and Takeda-G-protein receptor5 (TGR5). Indeed, FXR and TGR5 
provide an anti-inflammatory liver response in mouse models[8]. In fact, FXR mutations 
have been considered a cause of progressive familial intrahepatic cholestasis. Intestinal 
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Figure 1  Core pathogenic mechanism of cholestatic liver diseases.

activation of FXR increases FGF15, a bile synthesis repressor through CYP7A1, a main 
regulatory enzyme, which reduces the pool size of BA and protects against escalating 
pro-inflammatory signaling in mouse models[9].

Likewise, BA hepatobiliary transport dysfunction may lead to several phenotypes of 
cholestatic diseases. Although transcellular BA transport details are mostly unknown, 
a number of apical and basolateral transporters have been identified. After synthesis of 
BA in the liver by CYP7A1 and hydroxylation by CYP8B1, bile acids and 
phospholipids are excreted and secreted across the canalicular membrane of 
hepatocytes into the biliary tree by BSEP (bile salt export pump/ABCB11) and ABCB4 
(ATP binding cassette subfamily B member 4), respectively. BA are then re-uptaken in 
the terminal ileum by ASBT (apical sodium-dependent bile acid transporter/ 
SCL10A2), and released into the portal system by a basolateral transporter (OSTα/β) 
and may later be re-uptaken by the liver via NTCP (Na+/taurocholate cotransporting 
polypeptide) or OATP (organic anion transporting polypeptides) transporters. 
Intrahepatic BA can further be processed by hydroxylation, glucuronidation or 
sulfation, and excreted back into sinusoidal and systemic circulation by OSTα/β and 
MRP3/4 bile acid transporters. Critical steps in the enterohepatic circulation are 
regulated by the BA receptor FXR, which limits BA uptake and synthesis by enhancing 
biliary and basolateral BA export. FGF19, a gut-derived FXR-dependent enterocrine 
hormone, suppresses hepatic bile acid synthesis and induces gallbladder filling when 
it is activated by high intestinal BA concentrations[10].

Recently, AMP-activated protein kinase (AMPK) signaling pathways have been 
implicated in the pathogenesis of drug-induced cholestasis[11]. An example of this 
pathway is metformin. An older study reported that after 2-3 wk of metformin usage, 
several patients developed portal inflammation and ductular proliferation[12].

Moreover, it is well-known that the hydrophilic profiles in BA spectrum protects 
against apoptosis (TCA and UDCA), while those in the hydrophobic range induce 
hepatic apoptosis and liver injury (TLCA and GCDCA). Additionally, accumulation of 
cytotoxic BA activates NF-κB-mediated inflammatory cytokines. This pathway is 
significant in intrahepatic cholestasis of pregnancy as it may arrest placental 
inflammation[13].

Several studies have described BA toxicities and established commonalities between 
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Figure 2  Cholestatic liver disease clinical spectrum.

this toxicity and mitochondrial dysfunction in extra-hepatic cholestasis[14]. In vitro 
studies demonstrated BA effect in normal liver cell line LO2. Glycochenodeoxycholic 
acid (GCDCA) stimulated cytotoxicity, disrupted the mitochondrial membrane 
potential, increasing production of reactive oxygen species (ROS), and leading to 
decreased mitochondrial mass and mitochondrial DNA content[14]. This feature can be 
fundamentally related to the development of anti-mitochondrial antibodies (AMA) in 
primary biliary cholangitis (PBC), consequence of infiltration by both CD4+ and CD8+ 
T cells reactive to conserved mitochondrial and nuclear antigens, particularly the E2 
component of the pyruvate dehydrogenase complex — the principal target of 
circulating AMA[15]. Moreover, one study pointed deacetylation of the gene PGC-1α, 
peroxisome proliferator-activated receptor gamma, coactivator one alpha. PGC-1 α 
acts as an enzyme in mitochondria biogenesis[14]. In chronic intrahepatic cholestasis, 
the lipid peroxidation activates extracellular matrix cells, ROS, and aldehydes; which 
may exert direct fibrogenic effects on activated hepatic stellate cells[16].

Immunogenetic and epigenetic setpoints
The third fundamental aspect of the core framework is the influence of 
immunogenetics and epigenetics on immunoinflammatory response. Patients with 
CLD exhibit a variety of genetic alterations that account for the different elements of 
each CLD. However, some of those genes may be directly implicated in the 
progression rate of the cholestatic phenotype. Recently one study screened some of the 
progression-related candidate genes for primary biliary cholangitis[17]. They evaluated 
315 DNA samples from patients for single nucleotide polymorphisms (SNPs) of 11 
candidate genes involved in regulation of bile acid synthesis. Interestingly, genetic 
variants of CYP7A1, as well as its transcriptional activators (HNF4A and PPARGC1A), 
may activate bile acid synthesis in an escalating fashion leading to the progressing 
cholestasis in PBC[17]. It is significant that this gene could become a potential target for 
new therapeutics, or indirectly their transcriptional activators could serve as 
modulatory targets. This modulation is a type of epigenetic control of gene expression 
as a pathogenic mechanism.

Another study highlighted the central role of the IL-12-STAT4-Th1 pathway, a pro-
inflammatory pathway in the progression of PBC, as well as the HLA associations and 
epigenetic effects[18,19]. Figure 3 shows a panel of immunogenetic genes, where those 
directly related to the T-cell function or the B-cells or the IL12-STAT4-Th1 are 
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Figure 3  Immunogenetics related to the core of cholestatic liver diseases. PSC: Primary sclerosing cholangitis.

highlighted with a red dot. Additionally, genes associated with loss of immune-
tolerance and epithelial permeability are marked with a yellow dot[20,21].

Dysfunctional matrix re-arrangements and fibrogenesis
To complete the core framework of CLD, dysfunctional matrix rearrangements and 
fibrogenesis are the fourth concept. Fibrogenesis is a dynamic process that appears 
intricate to immunoinflammatory mechanisms, secretion of tissue metalloproteinases, 
cytokine networks and derangements of mesenchymal cells infiltration with ultimate 
loss of tissue maintenance homeostasis[16]. The pattern of extra cellular matrix (ECM) 
accumulation in some CLD such as PBC is characterized by increased expression of 
mRNA encoding collagen type I, III, and IV, which in mesenchymal cells promotes the 
expansion of portal tracts, leading to deposition of excessive fibrillar ECM. In this way 
the fibrogenic processes involve damaged and non-damaged bile ducts as well as the 
periportal sinusoidal system, resulting in progressive cholestasis[16]. In contrast in 
patients with primary sclerosing cholangitis (PSC), the fibrogenic process has been 
compared to atherosclerosis onion-like concentric recruitment of pro-fibrogenic cells. 
Also animal models have reported vascular injury with ischemia of the bile duct 
epithelial cells during development of PSC lesion[22].

Hepatic stellate cells (HSC) are the primary source of myofibroblast during liver 
injury, however mesenchymal cells also give rise to myofibroblasts (portal 
myofibroblasts (PMF) as these cells are located in the portal tract)[23]. Studies in animal 
models of biliary cirrhosis (rat) reported that PMF use vascular endothelial growth 
factor A-containing microparticles signaling for newly formed vessels, driving scar 
progression, while acting as mural cells[24]. This type of fibrosis progression originating 
from the portal tract is crucial in cystic fibrosis-related liver fibrosis[25]. In PBC 
epigenetic influence has been observed in the discordance of monozygotic twins. The 
role of the CD40-CD40L interaction in T-cell and B-cell mechanisms has been reported 
in the decreased methylation of CD40L promoter regions amongst PBC patients 
compared with controls[18]. Similarly, X chromosome monosomy has been found on 
peripheral cells of PBC patients[26]. Recently the Milan PBC epigenetic Study Group 
reported demethylation of the CXCR3 promoter, which is negatively correlated with 
peripheral blood receptor expression in CD4+ T-cells[27]. The epigenetic role of 
demethylation is considered as CXCL9-11 is up-regulated in damaged bile ducts and it 
is a co-ligand for CXCR3, which is highly expressed in Th1 and Th17[28]. Another group 
evaluated the role of microRNA (miR), that can also promote downregulation of 
protein-coding gene expression. Down-Regulation of miR-122a and miR-26a was 
reported, as well as an increased expression of miR-328 and miR-299-5p. These 
microRNAs are known to affect cell proliferation, inflammation, oxidative stress 
metabolism, and apoptosis[29].
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PRE-CLINICAL THERAPEUTIC DEVELOPMENTS
From a pathogenic standpoint, a number of therapeutic genetic and epigenetic targets 
can be considered. Some pathways already have one or more target drugs available. 
Table 1.

A number of preclinical studies may pave the way to new clinical advancements. A 
few of them are listed in Table 2, where we highlight the main pathogenic framework 
as described before.

CLINICAL TRIALS AND TRANSLATIONAL RESEARCH
The core fundamental concepts and pathogenic framework are platforms to build new 
models of clinical interventions for specific CLD. This section addresses the main 
cholestatic diseases individually.

Primary biliary cholangitis
PBC is characterized histologically by intralobular nonsuppurative bile duct 
destruction by lymphocytic cholangitis[30]. Patients with PBC often have a decreased 
quality of life as the disease progresses to hepatic fibrosis and end-stage liver disease. 
To date, one-third of the patients do not have a biochemical response to 
ursodeoxycholic acid (UDCA), which is primarily defined by bilirubin and alkaline 
phosphatase levels after one year of UDCA.

PBC inflammatory disarrays present with increased cholangiocyte chemokines 
released mainly CXCL10, CXCL9, CX3CL1, and CCL20, which involve the IL-12/IL23 
pathways[31]. A number of novel therapeutics in immunomodulation such as fibrates 
and budesonide had promising results as an alternative to UDCA nonresponders, and 
recently obeticholic acid was approved by the FDA for UDCA non responders[32-34]. 
Advancements for PBC patients also include agonists for peroxisome proliferator-
activated receptor alpha (PPARα), FXR, GR/PXR most often in combination with 
UDCA, fibrates, obeticholic acid (OCA) and budesonide, respectively[35]. Some of these 
translational therapeutics are mentioned in Table 3 and can also be used in PSC as 
discussed as follows.

Primary sclerosing cholangitis
There are currently no approved therapies for PSC. The disease causes a significant 
economic burden, and patients have high hospitalization and malignancy rates, often 
progressing to end-stage liver disease, requiring eventually liver transplantation. 
Table 3 summarizes the main translational research in the field. Novel approaches for 
PSC include transcriptional modifiers of bile formation, such as the agonists of FXR, 
PXR, GR and activation of PPARα. This activation can be promoted by fibrates as they 
decrease expression of inflammatory cytokines, also reducing hepatocyte BA 
synthesis. Another approach is the use of agonists of Takeda-G-protein 5 (TGR5), a BA 
membrane receptor expressed in various tissues as it can lower the levels of 
proinflammatory cytokines in bile ducts[36]. Other approaches include inhibitors of the 
ileal apical sodium BA transporter, derivatives of the FXR-induced fibroblast growth 
factor 19 (FXR-induced FGF19) from the ileum that suppress hepatic BA synthesis, and 
norursodesoxicholic acid (norUDCA), a side chain shortened UDCA derivative.

Cystic fibrosis involving the liver – hepatobiliary spectrum
The frequency of biliary manifestations in cystic fibrosis (CF) is still unclear. Clinical 
phenotypes range from gallbladder dyskinesia, symptomatic cholelithiasis to 
sclerosing obstructive cholangitis. Early diagnosis can be challanging. Tools like the 
Aspartate Aminotransferase-to-Platelet Ratio Index (APRI) are reliable at predicting 
severe fibrosis, but not for differentiating fibrosis in early stages. Therefore, serum 
biomarkers are an unmet necessity thus far. Promising research areas include further 
investigating the role of intestinal bile salt malabsorption such as the plasma fibroblast 
growth factor 19 (FGF19) and the intermediate of CYP7A activity and the 4-cholesten-
3-one (C4)[37]. Transient elastography may be useful as well, however appropriate 
validation in mild-to-moderate fibrosis is still pending[38]. Clinical trials for CF 
cholestasis, using the new generation of therapeutic targets beyond UDCA, would also 
provide benefits to patients. Some agents discussed previously had good results in 
preclinical research, such as NorUDCA, tested in mice[39].

Recent CF animal model investigations uncovered the underpinning relationship of 
the CF transmembrane conductance regulator and the control of biliary epithelial 



Yokoda RT et al. Pathogenesis of CLD

WJH https://www.wjgnet.com 429 August 27, 2020 Volume 12 Issue 8

Table 1 Potential pathways as targets for existing antibodies

Drug Primary role of the pathway in specific cholestatic liver disease Previous disease of 
drug-testing Ref.

Anti-CD40 
(dacetuzumab/lucatumumab)

T-cell-B-cell interactions in primary biliary cholangitis Multiple sclerosis (pre-
clinical)

[53]

Anti-CXCL10 (MDX-1100) CXCR3-CXCL9/10/11 CXCR3 is upregulated on liver-infiltrating Th1 and Th17 in 
primary biliargy cholangitis

Rheumatoid arthritis [54]

Anti-CXCL13 (Mab 5261) T- and B-cell migration to germinal centers in primary biliary cholangitis Preclinical development [55]

Anti-CCR6 Recruitment of Th17 cells around inflamed biliary epithelial cells in primary 
biliary cholangitis

Preclinical development [56]

Anti-GRP35 Activation of GPR35 reduces IL-4 release from natural killer T cells in primary 
sclerosing cholangitis

Antibody recently 
developed

[57]

Anti-PRKD2 SIK2 pathway in PSC, AMPK-related kinase PRKD2 polymorphism are seen in 
early inflammatory bowel disease in primary sclerosing cholangitis

Preclinical development [58]

PSC: Primary sclerosing cholangitis.

inflammation and permeability mediated by TLR4-NF-κB[40]. Moreover, a number of 
studies have identified a dysfunctional PPAR-gamma (peroxisome proliferator-
activated receptor gamma), that was partially recovered with PPAR-gamma ligands, 
as rosiglitazone, particularly attenuating biliary fibrosis in CF[41]. Another study, also in 
murine model, linked those PPAR-gamma as a limiting factor for NF-κB-dependent 
inflammation[42]. These findings can possibly be further studied as possible target for 
future therapies.

Polycystic liver disease
Polycystic liver diseases are autosomal dominant disorders that result from a mutation 
of PRKCSH or Sec63 genes; genes that are mainly expressed in cholangiocytes[43]. 
Cystogenesis in this scenario is due to benign cholangiocyte proliferation, with cell-
cycle dysregulation and increased level of cAMP in cholangiocytes leading to cyst 
progression and abnormal fluid transport[44]. Over time, the cyst growth may compress 
the biliary tree impairing bile flow as well. Liver volume is a prognostic marker as 
complications may occur as the disease progresses, such as hepatic cyst infection, 
rupture, hemorrhage and hepatic venous outflow obstruction[45]. Therapeutic 
developments have focused in preclinical studies in lowering cAMP and stopping or 
reversing progression, usually evaluated by the organ size and hepatic cystic volume. 
Octreotide became an option for treatment via decrease in cAMP levels[46,47]. Recently 
an open-label clinical trial tested UDCA effect in cystic liver diseases and reported a 
reduction of liver cyst volume growth after 24 wk of treatment[48,49]. This effect was 
expected as UDCA decreases the concentration of cytotoxic BA and therefore 
diminishes proliferation stimuli[50]. Additionally, more than 50% of patients may have 
fibrosis[51].

CONCLUSION
Although CLD pathogenic features are becoming unveiled, and translational research 
is achieving success, some findings still challenge what we know about the basic 
molecular developments in CLD, such as the relationship of FXR agonists, synthesis of 
FGF19 and metabolism expression and cell survival[52], and ultimately possible 
carcinogenesis. To date, inhibitors of the FGF19/FGFR4 pathway are in development 
for the treatment of hepatocellular malignancies. This acknowledgment for the regular 
hepatology practice is essential, as for a number of cases, hepatologists and oncologist 
specialized in hepatobiliary tumors do not often work on the same cases at the same 
point in time. However, the same patient may experience interactions with these 
professionals on different occasions in the course of disease progression. For the 
current therapeutics of cholestatic disease, FXR agonists may represent a novel 
approach for PBC, and trigger experimentational use for PSC. In the long run, 
however, the aberrant expression of FGF19 in its oncogenic driver is not entirely 
presumed. The landscape of modulation of the fibroblast growth factor family, as well 
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Table 2 Preclinical research cholestatic liver diseases

Area of concern Findings Approach Ref.

Mitochondrial damage by GCDCA Mitofusin 2 protects hepatocyte mitochondrial function In vitro (LO2 cell 
lines)

[59]

Immunomodulation in primary biliary 
cholangitis with CTLA-4-Ig (immunoglobulin) 
as an immunotherapeutic agent

Signaling by CTLA-4 can modulate costimulation and induce inhibitory 
signals

In vivo (murine 
models)

[60]

Immunomodulation in primary biliary 
cholangitis with anti-CD40L

Reduced liver inflammation significantly initial lowering of anti-mitochondrial 
antibodies was observed but non-sustained.

In vivo (murine 
models)

[61]

Action of nuclear bile acid receptor FXR in 
cholestasis

Hepatoprotection from cholestasis by inducing FGF-15 In vivo (murine 
model)

[9]

Immunomodulation Anti-CCR5/CCR2 in 
combination with all-trans-retinoic acid

Significant reduction in plasma liver enzymes, bilirubin, liver fibrosis, bile 
duct proliferation and hepatic infiltration of neutrophils and T cells and 
expression of cytokines

In vivo (murine 
model)

[62]

Curcumin acts through FXR signaling Protection against alpha-naphthylisothiocyanate ANIT-induced cholestasis In vitro and in 
vivo (murine 
model)

[63]

Modulation of bile duct proliferation, with 
Melatonin

GnRH stimulated fibrosis gene expression in Hepatic stellate cells; melatonin 
may improve outcomes of cholestasis by suppressing GnRH.

In vivo (murine 
model)

[64]

Apamin, an apitoxin (bee venom) derivate 
prevented tetrachloride-induced liver fibrosis

Apamin suppressed the deposition of collagen, the proliferation of BECs and 
expression of fibrogenic genes

In vivo (murine 
model)

[65]

Toxic bile acids induce mitochondrial 
fragmentation. Preventing fragmentation 
improved outcome

Decreasing mitochondrial fission substantially diminished ROS levels, liver 
injury, and fibrosis under cholestatic conditions

In vivo Knockout 
mouse models

[66]

Epigenetic approach Histone deacetylase 4 
(HDAC4) restores prohibitin-1 (PHB1)

Genomic reprogramming, with regression of the fibrotic phenotype In vivo Knockout 
mouse models

[67]

Anti-γ-glutamyl transpeptidase antibody for 
osteodystrophy in cholestatic liver disease

GGT inhibited mineral nodule formation and expression of alkaline 
phosphatase and bone sialoprotein in osteoblastic cells.

In vivo (murine 
model)

[68]

EGFR signaling protects from cholestatic liver 
injury and fibrosis.

STAT3 is a negative regulator of bile acids synthesis and protects from bile 
acid-induced apoptosis. Additionally, it regulates EGFR expression

In vivo Knockout 
mouse models

[69]

Necroptosis pathway in primary biliary 
cholangitis

Necroinflammatory pathways regulated by receptor-interacting protein 3 
(RIP3), with deleterious progress in cholestatic diseases. RIP3 deficiency 
blocked bile-duct-ligation-induced (BDL) necroinflammation at 3 and 14 d 
post-BDL

In vivo Knockout 
mouse models

[70]

Tauroursodeoxycholic acid modulates 
apoptosis in mice

Significant reduction of liver fibrosis, accompanied by a slight decrease of liver 
damage

In vivo (murine 
model)

[71]

as its signal through the transmembrane tyrosine kinase receptors, needs an operable 
spotlight in cholestatic diseases.

Moreover, in pre-carcinogenic sclerosing conditions such as PSC, the agonistic effect 
of cell proliferation, differentiation, and tissue repair through a potential oncogenic 
signaling pathway demands further scrutiny. Besides, a possible role in therapeutic 
resistance for advanced metastatic hepatocellular carcinomas, once the pathway is 
wired up, is also concerning. Epigenetic modulation in the core of the CLD and the 
hepatostat growth activation through FGF19/FGFR4 may interface with the Hippo-
Yap signaling and play an essential role in liver carcinogenesis.

It is expected that the current understanding of the multifactorial pathogenic 
process and the potential substantial role of epigenetics will drive further much 
needed basic research and introduce new concepts and prospective therapeutic targets 
to the world of CLD.
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Table 3 Clinical trials and translational research

Area of concern and specific 
cholestatic liver disease Findings Phase, study description Clinical trial 

number Ref.

IL12/IL23 Inflammatory 
pathway and loss of self-
tolerance (Primary biliary 
cholangitis)

After 28 wk of treatment modest decreases in 
alkaline phosphatase

Phase 2, open-label proof of 
concept using Ustekimunab 
for ursodeoxycholic acid non-
responsive patients

NCT01389973 [72]

Ileal bile acid transporter (IBAT) 
(Primary biliary cholangiti, 
Alagille syndrome, progressive 
familial intrahepatic cholestasis)

Bile acid transporter inhibitor A4250 interrupts 
enterohepatic bile acid circulation at the terminal 
ileum

Phase 1 (40 individuals) 
completed Bile acids A4250 
either as monotherapy or in 
combination with colonic 
release cholestyramine

NCT02963077 [73]

Modified bile acid and FXR 
agonist derived from 
chenodeoxycholic acid 
Obeticholic acid (OCA) (Primary 
biliary cholangitis)

Durable treatment response; the drug was 
approved by FDA in May 2017 for non-UDCA 
responders

Phase 4, double-blind, 
randomized, placebo-
controlled, multicenter (428 
patients) estimated 
completion by 2025 (COBALT 
study)

NCT02308111 [34]

IBAT inhibition by GSK2330672 After 14 d, GSK2330672 demonstrated to be safe, 
well tolerated and reduced pruritus severity

Phase 2 double-blind, 
randomized, placebo-
controlled

NCT01899703 [74]

Bile acids Significantly reduced ALT and the bile acid 
intermediate C4

Phase I: Combination of 
UDCA and ATRA

NCT01456468 [75]

Bile acids Obeticholic acid 
monotherapy (Primary biliary 
cholangitis)

With ursodiol or as monotherapy for 12 mo 
decreases from baseline in alkaline phosphatase 
and total bilirubin levels that differed 
significantly from the placebo. observed changes

Phase 3, double-blind, 
placebo-controlled trial and 
long-term safety extension of 
obeticholic acid (217 patients) 
(POISE study)

NCT01473524 [76]

Bezafibrate 400 mg alternative PBC patients with inadequate response to 
ursodeoxycholic acid alone, treatment with 
bezafibrate in addition to ursodeoxycholic acid 
resulted in a rate of complete biochemical 
response that was significantly higher than the 
rate with placebo and ursodeoxycholic acid 
therapy

Phase 3 multi-center, 
randomized, placebo-
controlled, parallel-group (100 
patients) (BEZURSO study)

NCT01654731 [77]

Different doses of UDCA in 
primary sclerosing cholangitis

Significantly reduced ALP values dose-
dependently

Phase 2 double-blind, 
randomized, multi-center, 
placebo-controlled (159 
patients) (NUC3)

NCT01755507 [78]

Pentoxifylline as 
immunomodulator for primary 
biliary cholangitis

The study is small, and results were in 
clinicaltrials.gov, but due to study size no 
conclusion can be safely achieved

Phase 2, pilot study, open-
label Pentoxifylline 400 mg 
TID for six months (20 
participants)

NCT01249092 Results at 
clinicaltrials.gov

Umbilical cord-derived 
mesenchymal cells (UC-MSC)

A significant decrease in alkaline phosphatase Phase1/2 study, randomized, 
parallel group (100 
participants) 12 wk of 
treatment

NCT01662973 [79]

Mitomycin C in primary 
sclerosing cholangitis

Final results awaited Phase 2, double-blind, 
randomized, parallel group 
(130 participants)

NCT01688024 -

Curcumin in primary sclerosing 
cholangitis

Final results awaited Phase1/2 open-label pilot 
study Evaluating the safety 
and efficacy of curcumin (15 
participants)

NCT02978339 -

Human monoclonal antibody 
(BTT1023) that targets the 
vascular adhesion protein (VAP-
1) in primary sclerosing 
cholangitis

Recruiting Phase 2, a single arm, two-
stage, multicenter, open-label 
(41 participants)

NCT02239211 [80]

Cenicriviroc a CCR2/CCR5 
inhibitor proof of concept in 
primary sclerosing cholangitis

Results awaited Phase 2, proof of concept, 
open-label (24 participants) 
(PERSEUS study)

NCT02653625 -

Bile acids Maralixibat Apical bile 
acids transporter inhibition 
(ASBTi) in primary sclerosing 
cholangitis

Although results are online, complete 
information is still awaited

Phase 2, pilot, open-label NCT02061540 Results available 
at clinicaltrial.gov
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Immunomodulation 
Simtuzumab in primary 
sclerosing cholangitis 
Monoclonal antibody against 
lysyl oxidase-like 2 (LOXL2)

Results awaited Phase 2b, dose-ranging, 
randomized, double-blind, 
placebo-controlled (235 
participants)

NCT01672853 -

Bile acids Obethicolic acid in 
primary biliary cholangitis

Treatment with OCA 5-10 mg reduced serum 
ALP in patients with PSC. Mild to moderate 
dose-related pruritus was the most common 
adverse event

Phase 2, double-blind, 
placebo-controlled trial. Dose-
Finding (AESOP)

NCT02177136 [80]

PSC: Primary sclerosing cholangitis.
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Abstract
Non-alcoholic fatty liver disease (NAFLD), the most common chronic liver 
disorder in Western countries, comprises steatosis to nonalcoholic steatohepatitis 
(NASH), with the latter having the potential to progress to cirrhosis. The 
transition from isolated steatosis to NASH is still poorly understood, but 
lipidomics approach revealed that the hepatic lipidome is extensively altered in 
the setting of steatosis and steatohepatitis and these alterations correlate with 
disease progression. Recent data suggest that both quantity and quality of the 
accumulated lipids are involved in pathogenesis of NAFLD. Changes in 
glycerophospholipid, sphingolipid, and fatty acid composition have been 
described in both liver biopsies and plasma of patients with NAFLD, implicating 
that specific lipid species are involved in oxidative stress, inflammation, and cell 
death. In this article, we summarize the findings of main human lipidomics 
studies in NAFLD and delineate the currently available information on the 
pathogenetic role of each lipid class in lipotoxicity and disease progression.

Key words: Lipidomics; Non-alcoholic fatty liver disease; Non-alcoholic steatohepatitis; 
Lipotoxicity; Fatty acids; Ceramides
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Core tip: Lipidomics is a new rapidly growing field that allows the overall and detailed 
investigation of the whole lipid composition in a given biology matrix. Lipid profiling of 
liver biopsies of patients with non-alcoholic fatty liver disease (NAFLD) has previously 
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revealed several changes in glycerophospholipids and sphingolipids concentrations and 
alterations in fatty acid pattern compared to healthy control. However, findings from 
lipidomics studies in plasma samples are inconsistent. We review the main findings of 
lipidomics studies and the important pathophysiological role of specific lipid species in 
lipotoxicity and development of NAFLD.
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INTRODUCTION
Non-alcoholic fatty liver disease (NAFLD) is one of the most common forms of chronic 
liver diseases in the Western countries, affecting approximately 25% of the general 
population[1]. NAFLD encompasses a wide spectrum of liver histological features, 
ranging from mild hepatic steatosis (non-alcoholic fatty liver, NAFL) to nonalcoholic 
steatohepatitis (NASH)[2]. The hallmark of NAFLD is the hepatic intracellular 
accumulation of lipids and the subsequent formation of lipid droplets in 
hepatocytes[3]. NASH, the more progressive form of the disease, is characterized by the 
presence of hepatic steatosis accompanied by lobular inflammation, hepatocellular 
damage, and fibrosis and associated with an increased risk of developing cirrhosis and 
hepatocellular carcinoma[4]. In fact, NASH-related cirrhosis is believed to become the 
leading cause of liver transplantation in the future[5].

NAFLD is commonly associated with insulin resistance and type 2 diabetes mellitus 
and is considered an independent risk factor for cardiovascular disease[6]. Obesity, 
physical inactivity, consumption of nutritionally imbalanced food, and unhealthy 
dietary and other lifestyle habits are also associated with NAFLD, and lifestyle 
modifications involving physical activity and diet have been shown to improve 
hepatic steatosis and liver fibrosis[6-8]. Although there has been remarkable progress in 
the elucidation of NAFLD pathogenesis, the pathophysiological pathways underlying 
lipotoxicity and transition of simple steatosis to NASH are still incompletely 
understood[9]. Recent lipidomic studies revealed marked changes in the fatty acid 
pattern and phospholipid composition in liver samples of NAFLD patients, suggesting 
that perturbations in lipid metabolism are a key factor in the pathogenesis and 
progression of NAFLD[10,11]. Furthermore, liver biopsy remains the only reliable but 
invasive method to diagnose NAFLD and differentiates NASH from simple steatosis. 
Thus, the non-invasive diagnosis of NASH is still an unmet need. Alterations 
occurring in plasma lipid molecules identified by lipidomic techniques which cannot 
be determined in every day clinical practice, may have utility as non-invasive 
biomarkers of disease progression[12].

The present review article focuses on the main findings of the alterations occurring 
in lipidome in NAFLD patients and the interpretation of pathophysiological role of 
several identified lipid classes in the development and progression of NAFLD.

PATHOGENESIS OF NAFLD AND ROLE OF LIPIDS
The pathogenesis of NAFLD is considered to be a multifactorial process and the 
underlying mechanisms involved in the progression of the disease are complex. 
Intrahepatic fat accumulation, the hallmark of the disease, is the result of increased 
uptake of fatty acids, increased de novo lipogenesis, and impairment in export and 
oxidation of fatty acids[3]. Obesity through expansion and dysfunction of adipose tissue 
and insulin resistance through subsequent reduction of adipose tissue lipolysis lead to 
increased efflux of free fatty acids[13]. Moreover, the hyperinsulinemia associated with 
insulin resistance promotes de novo fatty acid synthesis in the liver by activating the 
sterol regulatory element binding protein-1c (SREBP-1c), a transcriptional regulator of 
lipogenic genes[14]. These free fatty acids as well as those from dietary sources either 
undergo β-oxidation or are esterified with glycerol to form triglycerides. Then, 
triglycerides are stored in hepatocytes and form lipid droplets or are packaged and 
exported as very-low-density lipoprotein (VLDL)[3]. Thus, a dietary overload and 
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insulin resistance promote the hepatic fat accumulation, as observed in NAFLD[15].
Intracellular deposition of lipids in NAFLD and the subsequent increased demand 

for metabolism of excess fatty acids lead to production of reactive oxygen species 
(ROS), elevation of oxidative or endoplasmic reticulum (ER) stress, and activation of 
Jun N-terminal kinase, all of which result in mitochondrial dysfunction and cell 
death[16]. Cell injury, in the setting of steatosis, is also largely attributed to activation of 
inflammatory pathways. Adipose tissue dysfunction leads to secretion of pro-
inflammatory cytokines and alters the production and secretion of adipokines, such as 
leptin and adiponectin that are involved in the modulation of inflammation and 
insulin resistance[15]. Hepatic inflammation in fatty liver is considered to be triggered 
by a variety of compounds, such as damage-associated molecular patterns (DAMPs) 
released from hepatocytes, gut-derived bacterial endotoxin, free fatty acids, and free 
cholesterol[17]. Cytokine-induced liver inflammation, the subsequent activation of 
Kupffer and hepatic stellate cells, and lipotoxicity induced by free fatty acids and other 
lipotoxic bioactive lipids are involved in chronic liver injury and are thought to be 
responsible for progression from NAFL to NASH and development of fibrosis[18].

Over the past decade, our knowledge regarding lipotoxicity has been greatly 
expanded and recent progress in lipidomics analyses has given new insights into lipid 
profiling and pathophysiological mechanisms involved in chronic inflammation and 
cell injury. Investigation of liver and serum lipidome in patients with NAFLD has 
disclosed that perturbations in lipid metabolism are a key factor for the development 
of NAFLD and that several complex lipid species, including sphingolipids and 
glycerophospholipids, are involved in lipotoxicity and the pathogenesis of NASH.

LIPIDOMICS STUDIES IN NAFLD
Lipidomics is defined as the detailed characterization of lipid molecular species and of 
their structure and biological role in a given matrix including cell, tissue, and 
biological fluid[19]. This relatively new research field is a subset of metabolomics and 
represents a powerful approach to obtain a comprehensive overview of whole lipid 
metabolism in a biological system or even in specific disease state[20]. Lipidomics 
includes the identification and characterization as well as the quantification of 
thousands of lipid molecular species in a biological matrix[21]. This rapidly growing 
advanced field incorporates analytical techniques that are utilized for lipid separation 
and detection, such as high-performance liquid chromatography (HPLC), electrospray 
ionization mass spectroscopy (ESI MS), and nuclear magnetic spectroscopy (NMR)[19,22].

The first lipidomics studies in NAFLD patients, as seen in Table 1, were conducted 
in liver biopsies and focused mainly on the analysis of fatty acid composition. Araya 
et al[10] was the first to report an increased n-6:n-3 ratio in liver lipids of NAFLD 
patients accompanied by a decrease of the long chain polyunsaturated fatty acid 
(PUFA) of n-3 and n-6 series in liver TAG, such as arachidonic, eicosapentaenoic, and 
docosahexanoic acid. A depletion of long chain n-3 and n-6 PUFA in NASH patients 
has also been reported by a later study, regardless of the dietary FA intake, suggesting 
that the biosynthetic pathways of these lipids are impaired[23]. Indeed, later studies on 
enzymatic activities confirmed the decreased activity of Δ5 desaturase, a key enzyme 
in essential n-3 and n-6 PUFA synthesis[24]. However, the first most comprehensive 
lipidomic study in liver biopsies, which included quantification of major lipid classes, 
was carried by Puri et al[11]. In this study, lipidomic analyses identified marked changes 
not only in the fatty acid composition but also in the total phospholipid content[11]. 
Alterations of phospholipid content in liver biopsies of NASH patients have also been 
reported by other studies, implicating that phospholipid synthesis is impaired in 
NASH and is associated with disease progression[24].

The research later focused on the study of the alterations occurring in plasma and 
serum samples of patients with NAFLD. In view of the fact that the liver is the key 
organ of metabolism and that plasma lipids under fasting conditions reflect mainly the 
lipids exported from the liver, changes in the circulating lipidome could be correlated 
with those in the liver during NAFLD progression. Interestingly, the changes observed 
in plasma fatty acid and phospholipid composition were discrepant from those 
reported in liver samples[25,26]. Moreover, as seen in Table 2, the findings of lipidomic 
studies conducted on plasma samples are inconsistent. According to Puri et al[26], no 
significant differences were observed in the plasma phospholipid subclasses of 
patients with NAFLD compared to healthy controls. However, recent studies report 
s tat is t ical ly  s ignif icant  changes in  plasma phosphatidylser ine (PS) ,  
phosphatidylethanolamine (PE), phosphatidyloinositol (PI), phosphatidylcholine (PC), 
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Table 1 Summary of main liver lipidomics studies in non-alcoholic fatty liver disease

Ref. Tissue Main findings in NAFLD patients compared to 
healthy controls

Main findings in NASH 
patients compared to NAFL 
patients

Puri et al[11], 2007 Liver Increased: DAG, TAG, total SFA, total PUFA; stepwise 
increase in the mean TAG/DAG ratio, FC/PC ratio and 
hepatic FC from normal livers to NAFL to NASH.  
Decreased: Total PC in both NAFL and NASH; AA in 
FFA, TAG, and PC in NASH; EPA and DHA in TAG in 
NASH.

The n-6:n-3 FFA ratio increased 
in NASH

Araya et al[10], 2004 Liver, adipose tissue (fatty acid 
composition)

Increased: n-6:n-3 ratio, n-6 LCPUFA in liver 
phospholipids, total MUFA.  
Decreased: Long-chain PUFA of the n-6 and n-3 series in 
liver TAG, AA/LA ratio, EPA + DHA)/ALA in liver 
TAG, n-3 LCPUFA in phospholipids, total PUFA, n-3 
PUFA, n-6 PUFA, AA, EPA, DHA.

The n-6:n-3 ratio increased in 
NASH

Allard et al[23], 2008 Liver, red blood cells (fatty acid 
composition)

Increased: MUFAs, palmitoleic acid (16:1 n9), and oleic 
acid (18:1 n9) in NASH compared to control group.  
Decreased: Total n-3 PUFA, long-chain n-3 (EPA + 
DHA) and long-chain n - 6 (AA) PUFA in NASH 
compared to control; RBC-FA composition similar 
among the three groups.

Decreased: Total n- 6-PUFA in 
NASH compared to NAFL

Chiappini et al[24], 2017 Liver Increased: C14:0, C16:0, C16:1n-7, C18:1n-7, C18:1n-9, 
and C18:2n-6 in NASH.  
Decreased: Total SM, PI, PS, PE, PC in NASH.

Lipid signature of NASH (32 
lipids).  
Decreased: AA, EPA, and DHA; 
total Cer.

NAFLD: Non-alcoholic fatty liver disease; NAFL: Nonalcoholic fatty liver; NASH: Nonalcoholic steatohepatitis; DAG: Diacylglycerol; TAG: 
Triacylglycerol; SFA: Saturated Fatty acids; PUFA: Polyunsaturated fatty acids; FC: Free cholesterol; PC: Phosphatidylcholine; FFA : Free fatty acids; 
LCPUFA: Long chain polyunsaturated fatty acid; MUFA: Monounsaturated fatty acid; RBC-FA: Red blood cell-fatty acids; SM: Sphingomyelin; PI: 
Phosphatidylinositol; PS: Phosphatidylserine; PE: Phosphatidylethanolamine; EPA: Eicosapentaenoic acid (C20:5n-3); DHA: Docosahexanoic acid (C22:6n-
3); AA: Arachidonic acid (C20:4n-6); LA: Linoleic acid (C18:2n-6); ALA: α-linolenic acid (C18:3n-3); Cer: Ceramides.

and sphingomyelin contents among healthy subjects and NAFL and NASH 
patients[25,27].

Due to discrepancy between the findings in plasma lipidomic analyses and the need 
to discover novel non-invasive biomarkers to distinguish NASH from NAFL, several 
studies for lipidomics analysis were performed in both plasma and liver biopsy 
samples[28,29]. A total of 48 common analytes with an overlap in both tissues were 
identified in a comprehensive lipidomic study conducted both in liver and plasma 
samples of patients with NAFLD. These analytes were mainly sphingolipid species, 
such as dihydroceramides, 1-deoxydihydroceramides, and longer chain ceramides, 
suggesting that perturbation of sphingolipid metabolism is involved in the 
pathogenesis of NAFLD[28].

The alterations occurring in each lipid class as well as the possible mechanisms 
underlying these changes in NAFLD will be discussed below.

GLYCEROPHOSPHOLIPIDS
Glycerophospholipids are major components of cellular membranes and a source of 
physiologically active compounds. They serve as signaling molecules and as anchors 
for proteins in cell membranes.

Phosphatidylcholine (PC) is one of the most abundant phospholipids in mammals 
and a major component of cellular membrane lipids. PC levels were reported to be 
decreased in the liver samples of patients with NAFLD[11,24]. However, there are 
conflicting data concerning the changes occurring in serum PC[25-27].

From a metabolic point of view, in most mammalian cells, PC is produced de novo 
from dietary choline via the cytidine 5’-diphosphate CDP-choline pathway[30]. In 
hepatocytes, up to 30% of PC comes from the conversion of phosphatidylethanolamine 
(PE) to PC, a reaction which is catalyzed by the enzyme phosphatidylethanolamine N-
methyltransferase (PEMT)[31]. The synthesis of PE occurs via a CDP-ethanolamine 
pathway and via decarboxylation of phosphatidylserine (PS). Up to now, a few 
number of lipidomic studies mentioned alterations in PE in NAFLD patients. Liver PE 
content was found to be decreased among subjects with NASH, but in another study 
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Table 2 Summary of main lipidomics studies in plasma and serum in non-alcoholic fatty liver disease

Ref. Tissue Main findings in NAFLD patients compared to healthy control Main findings in NASH patients compared to 
NAFL patients

Puri et al[26], 2009 Plasma Increased: DAG, TAG, MUFA, dihomo-gamma-linolenic acid, palmitoleic acid, oleic acid, palmitoleic acid to 
palmitic acid ratio in NAFLD; stepwise increase in lipoxygenase (LOX) metabolites 5-HETE, 8-HETE, and 15-HETE 
from healthy controls to NAFL to NASH; 11-HETE in NASH compared with controls.  
Decreased: LA; total plasmalogen levels in NASH compared with controls.

Zheng et al[81], 2012 Plasma phospholipids fatty acid 
composition

Increased: Dihomo-gamma-linolenic acid (C20: 3n-6), total SFA in phospholipids.  
Decreased: Eicosanoic acid (C20: 0), cis-11-octadecenoic acid (C18: 1n-7), DHA in PL.

Loomba et al[89], 2015 plasma eicosanoid lipidomic profile Increased: 15-HETE, 5,6-diHETrE.  
Decreased: 12,13-diHOME.

Increased: 11,12-diHETrE, dhk PGD2, and 20-
COOH AA.  
Decreased:

Walle et al[80], 2016 Serum (fatty acid composition) Increased: Palmitoleic acid in CE in individuals with NAFLD.  
Decreased: LA and total n-6 fatty acids in TAG in individuals with NASH.

Increased: SFA in TAG were higher in subjects 
with NASH, myristic acid in CE and TAG, Stearic 
acid in TAG.  
Decreased:

Tiwari-Heckler et al[27], 
2018

Serum Increased: PC and SM in NAFL and NASH.  
Decreased: Lysophospatidylethanolamine in NAFL and NASH individuals.

Increased: PE in patients with NASH.

Ma et al[27], 2016 Plasma Increased: PS and PI in NAFL and NASH, DHA and AA in PS in NAFL and NASH.

NAFLD: Non-alcoholic fatty liver disease; NAFL: nonalcoholic fatty liver; NASH: Nonalcoholic steatohepatitis; DAG: Diacylglycerol; TAG: Triacylglycerol; SFA: Saturated Fatty acids; MUFA: Monounsaturated fatty acids; PC: 
Phosphatidylcholine; HETE: Hydroxyeicosatetraenoic acid; 5,6-diHETrE : 5,6 dihydroxy- eicosatrienoic acid; 12,13-diHOME: 12,13-dihydroxy-9- octadecenoic acid; CE: Cholesteryl ester; PE: Phosphatidylethanolamine; LA: Linoleic acid 
(C18:2n-6); DHA: 11,12-diHETrE: 11,12-dihydroxy- eicosatrienoic acid; dhk PGD2: 13,14-dihydro-15-keto prostaglandin D2; 20-COOH AA: 20-carboxy arachidonic acid; SM: Sphingomyelin; PE: Phosphatidylethanolamine; PS: 
Phosphatidylserine; PI: Phosphatidylinositol.

serum PE levels were increased in these patients[24,27].
The ratio of PC/PE in the liver reflects the activity of PEMT[32]. In a shotgun MS-

based targeted lipidomic analysis, researchers observed a statistically significant 
decrease of the hepatic PC/PE ratio in NAFLD patients[32]. Similarly, a low PC/PE 
ratio was also reported in red blood cell membrane of NAFLD patients and is 
considered as a biomarker of NAFLD. Additionally, a loss-of-function polymorphism 
in the PEMT gene seems to be associated with susceptibility in NAFLD[33]. However, 
when this parameter was calculated in plasma of NAFLD patients, no significant 
differences were observed among the healthy controls and NAFL and NASH patients, 
suggesting that compensatory mechanisms are activated in an attempt to maintain the 
plasma PC/PE ratio[25].

The low hepatic PC levels and the altered hepatic PC/PE ratio seem to have major 
implications in the development of NAFLD, but the pathophysiology of the lipid-
induced processes is not fully understood. PC is the only phospholipid molecule that 
is known to regulate the assembly and secretion of lipoproteins[34]. Low hepatic levels 
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of PC, due to its synthesis impairment, have been found to impair the VLDL secretion 
and reduce significantly the levels of circulating VLDL lipoproteins. A dysfunction of 
VLDL secretion results in hepatic accumulation of TGs, as observed in many animal 
model studies[35,36]. Moreover, low PC levels have been previously described to activate 
sterol regulatory element-binding protein 1 (SREBP1)[37]. The activation of SREBP1, as 
mentioned above, leads to upregulation of lipogenic gene expression, thus resulting in 
increased de novo lipogenesis and formation of lipid droplets in hepatocytes.

From a structural point of view, disturbances in the proportion of PC and PE 
possibly affect the structure of the phospholipid bilayer of cell membrane. PC has a 
cylindrical shape and is distributed mainly in the outer monolayer of plasma 
membrane. On the contrary, PE is described as conical, and is located mostly in the 
inner monolayer[38]. A low PC/PE ratio possibly leads to rearrangement of PE in the 
outer monolayer, resulting in a loss of membrane integrity and increased permeability 
to pro-inflammatory molecules such as cytokines. Thus, the release of cellular 
contents, such as calcium, accompanied by an increase in influx of cytokines, initiates 
the inflammation in NAFLD[39].

As far as the rest of the glycerophospholipids is concerned, only a small number of 
lipidomics studies have previously reported statistically significant changes of their 
abundance in NAFLD[11,24,25]. Likewise, the findings from lipidomics studies conducted 
on liver samples were inconsistent with those from plasma samples of NAFLD 
patients.

Chiappini et al[24] found that the levels of PS and PI were decreased in liver biopsy 
samples of patients with NASH compared with control individuals, whereas in a 
recent lipidomic study, no statistically significant differences were found in hepatic PS 
and PI among the control group, patients with NAFL, and those with NASH[24,29]. On 
the contrary, plasma PS and PI were found to be increased in NAFL and NASH 
compared with the control, while another study reported only an increase of serum PI 
in NASH patients compared to patients with simple steatosis[25,40]. Tiwari-Heckler 
et al[27], on the other hand, reported no significant changes in the amount of circulating 
PI among controls, NAFL patients, and NASH patients, but it is worth noting that in 
this study liver biopsy was not performed in all included subjects. These 
glycerophospholipids are also components of cellular membrane and are associated 
with cellular signaling and cellular apoptosis[41,42]. Given the important role of these 
lipids, differences observed in their hepatic or plasma levels may be involved in the 
development and progression of NAFLD.

Lysophosphatidylocholine (LPC) is a biologically active lipid and is considered an 
important mediator of hepatic lipotoxicity[43]. In liver biopsies from patients with 
NASH, LPC was found to be increased and this elevation seems to follow the disease 
severity[11,44]. However, several plasma and serum lipidomic studies failed to detect any 
statistically significant changes in the LPC content in patients with NAFL or 
NASH[25-27]. Interestingly, a recent study in biopsy proven patients with NAFLD found 
that plasma LPC species were decreased in patients with NASH[45]. Furthermore, 
another study reported that LPC diminished in patients with NAFLD[46]. This finding 
combined with an increase of TGs with low carbon number and double-bond content 
and a decrease of ether phospholipids has been proposed as a useful biomarker 
capable of estimating the percentage of liver fat in patients with NAFLD.

LPC is generated from PC by the action of secretory or lipoprotein-bound 
phospholipase A2 (PLA2). Also, LPC in plasma originates by the activity of lecithin-
cholesterol acyltransferase (LCAT) as well as the activity of endothelial lipase. Hepatic 
secretion is also considered as a source of plasma LPC[47]. The increased hepatic LPC 
content could be attributable to an increase in hepatic biosynthesis or to an increase of 
total LPCs transported back to the liver by albumin or alpha 1-acid glycoprotein 
(AGP)[48]. As concerns the LPC levels in plasma, an impairment either on LCAT 
activity or PLA2 activity, as well as an increased turnover of LPC to PC or 
lysophosphatidic acid and sphingosine-1-phosphate are probable causes of diminished 
LPC levels in plasma. In fact, lipoprotein associated phospholipase A2 levels were 
found to be decreased in patients with NAFLD, whereas LCAT activity was higher in 
subjects with NAFLD, as inferred from a Fatty Liver Index > 60[49,50]. Moreover, a study 
in mice reported lower levels of palmitoyl-, stearoyl-, and oleoyl-LPCs in NASH 
compared to animals with NAFL, suggesting that the activity of lyso-PC 
acyltransferase, that catalyzes the recycle of LPCs to PC, is elevated in NASH[51].

LPC as a bioactive molecule, seems to be involved in the pathogenesis of NAFLD 
and the transition from simple steatosis to NASH. LPC affects the whole liver lipid 
metabolism and has been found to downregulate genes involved in fatty acid 
oxidation and upregulate genes involved in cholesterol biosynthesis[52]. Furthermore, 
LPC has been demonstrated in vitro to trigger apoptosis of hepatocytes, probably 
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through disruption of mitochondrial integrity, whereas inhibitors of phospholipase A2 
were shown to decrease palmitate-induced lipotoxicity and cell apoptosis[52,53]. Lastly, 
lipotoxicity induced by LPC could be mediated by release of proinflammatory and 
pro-fibrogenic molecules from hepatocytes or the enhanced turnover of LPC to 
profibrogenic lysophosphatidic acid[54].

Plasmalogens are a class of glycerophospholipids carrying a vinyl ether bond in sn-1 
and an ester bond in sn-2 position of their glycerol backbone. The biosynthesis of 
plasmalogens is a complex multistep process that takes place in peroxisomes and the 
endoplasmic reticulum[55]. Circulating plasma plasmalogens levels have been 
previously found to be decreased in patients with NASH and were negatively 
associated with obesity[26,56]. Furthermore, a depletion of total ether phospholipids has 
also been found in patients with NAFLD[46]. Lipidomic studies in liver biopsies of 
patients with NAFLD, however, failed to detect any changes in plasmalogen levels, 
probably due to their significantly lower liver concentrations compared to the rest of 
glycerophospholipids[57]. The liver contains low amounts of plasmalogens, although 
the enzymes involved in their synthesis are active in this tissue. This reduction might 
be attributable to their synthesis in the liver, and subsequent transport by lipoproteins 
to other tissues[57]. More interestingly, lipidomic analyses in NAFLD patients carrying 
the GG-genotype of PNPLA3, who are at a higher risk for more advanced disease and 
fibrosis, revealed lower levels of total plasma plasmalogens compared to subjects with 
CC- and CG-allele[27].

Plasmalogens represent a key structural component of the cell membrane and may 
be involved in ion transport and cholesterol efflux. They have been described as 
signaling molecules and may also serve as precursors for eicosanoid biosynthesis[58]. 
Several studies have shown that plasmalogens, by virtue of their vinyl ether, function 
as endogenous antioxidants[59]. The deficiency in plasmalogens, which has been 
reported in plasma of NASH patients, could be attributed to oxidative stress-induced 
peroxisome damage and subsequent impairment of plasmalogen biosynthesis[55]. In 
fact, a recent study reported that endogenous hepatic plasmalogens, through a PPARa-
dependent mechanism, prevent the development of hepatic steatosis and NASH in 
mice[60].

SPHINGOLIPIDS
Sphingolipids are a special group of phospholipids which contain a sphingosine 
backbone. Even though sphingolipids are very low in abundance compared with 
glycerophospholipids, they are considered important structural components of cell 
membrane[61,62]. They are involved in the arrangement of membrane lipid domains and 
cell signaling of major biological processes, such as cell survival and immune 
responses[62]. Lipidomic studies revealed changes in levels of sphingomyelin (SM), 
ceramides, and diydroceramides in plasma and liver biopsies of patients with NAFL 
and NASH, implicating that alterations in sphingolipid metabolism are associated 
with the development and severity of NAFLD[24,28,45].

SM is the most abundant sphingolipid and its plasma levels have been previously 
reported to correlate with body mass index (BMI)[56,61]. In NAFLD, the results from 
lipid profiling of liver and plasma are inconsistent. SM was found to be decreased in 
liver biopsies of patients with biopsy proven NASH[24], but Puri et al[11] reported a non-
statistically significant increase of this sphingolipid in patients with NASH. In other 
lipidomic studies, in which the control group was also morbidly obese, no significant 
differences were observed in the total sphingomyelin levels among the control, NAFL, 
and NASH groups[25,29,40]. Tiwari-Heckler et al[27], however, reported an increase of total 
serum SM in NAFL and NASH patients compared to healthy controls. Moreover, 
individual sphingomyelin species, specifically SM (36:3), (d18:2/16:0), (d18:2/14:0), 
(d18:1/18:0), (d18:1/16:0), (d18:1/12:0), and (d18:0/16:0), were found to be increased 
in serum of patients with NAFLD compared to healthy subjects[63], whereas Zhou 
et al[45] reported that circulating sphingomyelin cluster with representatives SM 
(d18:1/24:1), SM (d18:1/16:0), SM (d18:1/22:0), SM (d18:1/24:0), SM (d18:1/18:0), SM 
(d18:1/20:0), SM (d18:1/23:0), SM (d18:0/16:0), and SM (d18:0/20:4) was decreased in 
NASH patients compared to non-NASH subjects. Although there is no consensus on 
whether SM increases or decreases along with disease severity, studies in transgenic 
mice lacking the sphingomyelin synthase gene, revealed a strong association between 
liver SM levels and insulin resistance[64]. Further studies are needed to assess the 
relationship between SM metabolism and progression of NAFLD.

Numerous studies suggest that ceramide is a major contributing factor to insulin 
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resistance[65]. Ceramides and ceramide-derived sphingolipids are structural 
constituents of cell membranes, which also possess cell-signaling properties. Even 
though ceramide synthesis occurs in many organs, the liver is a key site for ceramide 
synthesis and in fact data from several studies suggest that sphingolipids, such as SM 
and ceramides, are found in higher quantity in the liver compared to other tissues[65,66]. 
Moreover, ceramide levels have been reported to be increased in the plasma of 
patients with prediabetes and ceramides were also increased in plasma and liver 
biopsies of patients with NAFLD[28,40,67].

Ceramide synthesis can occur through three different pathways: (1) A de novo 
pathway that includes four sequential reactions with serine palmitoyl-CoA transferase 
(SPT) representing the rate-limiting enzyme of this pathway; (2) Through hydrolysis of 
SM catalyzed by sphingomyelinase (SMase); and (3) A salvage pathway[68]. De novo 
synthesis has been described to be stimulated by a diet rich in saturated fat[69]. 
Furthermore, increased hepatic free fatty acid influx, inflammation induced by TNFα 
and IL1, and oxidative stress can all increase the activity of SPT and activate de novo 
synthesis of ceramides[68,70]. All these three conditions are involved in the 
etiopathogenesis of NAFLD and represent important regulators of de novo ceramide 
synthesis[3]. Aside from the activation of de novo synthesis, inflammation increases 
ceramides by up-regulating the activity of sphingomyelinase[71]. Adiponectin, an 
adipokine involved in NAFLD pathophysiology, affects also the ceramide production. 
Adiponectin via receptors appears to upregulate the expression of ceramidase, the 
enzyme that converts ceramides to sphingosine-1-phosphate (S1P). Patients with 
NAFLD exhibit lower adiponectin levels than healthy subjects and this seems to 
contribute to the already increased concentration of ceramides[72].

Ceramides, through their function as signaling molecules, have several 
physiological effects that contribute to the pathogenesis of steatosis and 
steatohepatitis. In particular, ceramides have been previously reported to decrease 
insulin sensitivity in skeletal muscle and hepatocytes[65]. In fact, a previous animal 
study reported that administration of inhibitors of ceramide biosynthesis resulted in a 
significant improvement of insulin resistance[70]. While increase of inflammatory 
cytokines leads to increased ceramide production, it is likely that ceramides through 
feedback mechanisms lead to increased production of cytokines and induce further 
processes of inflammation[65]. In addition, ceramides are involved in increased 
oxidative stress, mitochondrial dysfunction, and cell apoptosis[65,73]. Finally, there is 
evidence that ceramides may regulate the synthesis of HDL lipoproteins and thereby 
affect the reverse cholesterol transport. In a study in Western diet rat models, 
administration of myriosine - an inhibitor of ceramide biosynthesis – not only 
improved insulin resistance and steatosis, but also increased ApoAI production rate 
and consequently the production rate of HDL lipoprotein[74].

NEUTRAL LIPIDS
As far as neutral lipid classes are concerned, a limited number of studies have been 
conducted to investigate whether quantitative changes in their content are observed in 
patients with NAFLD. Triacylglycerols (TG), as expected, were found to be increased 
in liver biopsies of patients with NAFLD, whereas no statistically significant 
differences were observed in free fatty acid (FFA) hepatic content[11,29]. Diacylglycerols 
(DG) were also increased in the liver and interestingly, the ratio of TG/DG was 
increased in a stepwise manner from NAFL to NASH, suggesting that diacylglycerol 
acyl transferase (DGAT) is possibly involved in the pathogenesis of NAFLD[11]. In fact, 
inhibitors of DGAT-2 decreased hepatic steatosis, ballooning, and fibrosis in mice[75]. 
Moreover, recently this study was extended in phase 1 clinical trial in humans and 
steatosis and clinical markers of liver function were improved[76].

Several studies have demonstrated that cholesterol homeostasis is disturbed in 
NAFLD[77,78]. Hepatic free cholesterol accumulation has been correlated with disease 
progression from simple steatosis to NASH without an increase in cholesterol 
esters[11], whereas the findings about esterified cholesterol are contradictory[11,29]. Free 
cholesterol is considered a cytotoxic lipid that is involved in hepatotoxicity by 
disrupting membrane integrity and inducing oxidative stress, mitochondrial 
dysfunction, and apoptosis[79]. Thus, the observed increase of free cholesterol might 
contribute to liver injury and disease progression.
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FATTY ACIDS
Numerous studies have demonstrated that the fatty acid composition of lipids is 
altered in patients with simple steatosis and NASH. Total saturated fatty acids were 
found to be increased in liver biopsies of patients with NAFLD[11]. Especially, an 
increase in individual saturated fatty acids such as myristic acid and palmitic acid was 
found in liver samples of patients with NASH[24]. Walle et al[80] conducted a 
comprehensive study in serum fatty acid composition and reported an increase in total 
saturated fatty acids in triacyglycerols in NASH patients compared to patients with 
simple steatosis. Furthermore, serum levels of myristic acid in cholesterol esters and 
triacyglycerols and those of stearic acid in triacylgylerols were found to be increased in 
patients with NASH[80]. Total saturated fatty acids were reported also to be increased in 
plasma phospholipids in patients with NAFLD[81]. The increased de novo lipogenesis 
occurring in NAFLD as well a diet enriched in those types of fatty acids might be the 
main cause for the increase of saturated fatty acids in the liver and serum of patients 
with NAFLD[82]. In addition, saturated fatty acids exhibit pro-apoptotic properties and 
also, are involved in the pathogenesis of steatosis. The increase of saturated fatty acids 
in hepatocytes results in endoplasmatic reticulum stress, increased caspase activation, 
and hepatocellular apoptosis[83].

Total monounsaturated fatty acids were also found to be increased in the liver and 
plasma of NAFLD patients[10,23,26,29]. In some cases, this increase was driven by 
palmitoleic acid and oleic acid[23,26]. These individual fatty acids are generated by the 
enzyme stearoyl-Coa desaturase (SCD1) from saturated fatty acids. The increase of 
monounsaturated fatty acids could be attributable to increased de novo lipogenesis 
activity and increased activity of SCD1[84]. In fact, Chiappini et al[24] demonstrated that 
the gene expression of SCD1 was significantly increased in NASH patients in 
accordance with the increase of oleic and palmitoleic acid. Monounsaturated fatty 
acids are considered to contribute to the development of steatosis, but are more 
efficient in incorporating into hepatocyte triglycerides, thus they are less lipotoxic than 
saturated fatty acids. A potential protective role of monounsaturated fatty acids 
against lipotoxicity has also been suggested through the promotion of triglycerides 
accumulation in hepatocytes[85].

The most common finding in lipidomic studies is the decrease of long chain PUFA. 
Specifically, a decrease in eicosapentaenoic acid, docosahexanoic acid, and arachidonic 
acid was reported in several lipidomic studies performed in the liver and plasma of 
patients with NAFLD[10,11,23,25]. The depletion of these n-3 and n-6 PUFA may be 
attributed to either a dietary deficiency or impaired biosynthesis. The generation of 
these PUFA is a multistep process in which several elongase and desaturases enzyme 
are involved. In NASH patients, the activities of fatty acid desaturase 1 (FADS1) and 
fatty acid elongase 6 (ELOVL6) were decreased[24]. Furthermore, the decreased activity 
of FADS1 is considered a key pathogenetic factor in the progression of simple steatosis 
to NASH. Another interesting finding is the increased n-6/n-3 ratio observed in liver 
biopsies of patients with NASH[10,11]. PUFA, especially n-3, are involved several 
biological processes and exhibit a protective role against lipotoxicity and insulin 
resistance[86]. Restoration of hepatic n-3 content improved steatosis and insulin 
resistance and decreased lipid peroxidation and necroinflammation in a mouse model 
of steatohepatitis[86]. Moreover, PUFA interact with transcription factors and modulate 
the expression of genes involved in lipid metabolism and fibrogenesis[87,88].

PUFA serve also as precursors for the synthesis of proinflammatory eicosanoids and 
specialized pro-resolving mediators (SPMs). The biosynthesis of these lipid species 
involves several enzymes such as cyclooxygenases and lipoxygenases. Puri et al[26] 
reported a stepwise increase of lipoxygenase metabolites of arachidonic acid in plasma 
from control to NAFL and NASH, whereas no significant differences were observed in 
the plasma cyclooxygenase products of arachidonic acid among the study groups. 
Specifically, the lipoxygenase metabolites 5-HETE, 8-HETE, 11-HETE, and 15-HETE 
were found to be increased in plasma of patients with NASH[26]. Later, Loomba et al[89] 
investigated the plasma lipidomic profile of eicosanoid in patients with NAFLD and 
reported a significant increase of arachidonic acid-derived metabolites 11,12-diHETrE, 
dhk PGD2, and 20-COOH AA in plasma of patients with NASH compared to subjects 
with NAFL.

LIMITATIONS OF PLASMA LIPIDOMICS STUDIES IN NAFLD
The findings of lipidomics studies conducted in plasma or serum of patients with 
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NAFLD, as mentioned before, are inconsistent. Lack of consistency is observed also 
between findings from plasma and liver studies. Interestingly, the discrepancies 
between liver and plasma findings regard mainly glycerophospholipid composition 
rather than fatty acid composition. In general, liver lipidomics studies revealed a 
decrease in glycerophospholipid species, such as PC, PE, PS, and PI, in NAFL patients 
and in some cases this alteration was profound only in the setting of NASH. On the 
contrary, most plasma lipidomic studies failed to detect depletion of these lipids and 
in some cases plasma glycerophospholipids were found to be increased in patients 
with NAFLD compared to the control group. Plasma glycerophospholipids are carried 
and distributed in lipoprotein classes. Plasma PC and PE are mainly distributed in 
HDL lipoprotein and 50% of hepatic PC is derived from circulation probably though 
hepatic uptake of HDL-PC[90,91]. Hence, low hepatic glycerophospholipid content, in an 
attempt to maintain adequate levels of these lipids, could lead to activation of 
unknown compensatory processes resulting in increased delivery of HDL-associated 
phospholipids and subsequent increase in plasma levels.

Moreover, findings regarding SM content in the liver and plasma are also 
inconsistent. Approximately 50% of plasma SM is found in LDL and 40% in HDL, and 
it is worth noticing that plasma SM levels correlate with BMI[56,90]. Differences in 
lipidomics study design including the selection of obese study population as a control 
group could explain the discordant findings. Furthermore, alteration in SM content in 
lipoprotein particles due to dietary factors, obesity, and unknown compensatory 
mechanism could be responsible for the differences observed in liver and plasma 
studies regarding sphingolipid species.

Further lipidomic studies focused on phospholipid content of lipoproteins in 
NAFLD patients should address this issue and delineate the changes observed in the 
setting of NAFLD.

NONINVASIVE DIAGNOSIS OF NASH THROUGH LIPIDOMICS
At present, the diagnosis of NAFLD and the distinction of NASH from simple steatosis 
require liver biopsy and histological assessment. Nevertheless, liver biopsy is an 
invasive, costly, and time-consuming procedure. Hence, there is a growing interest in 
developing noninvasive methods for differential diagnosis of NASH and evaluation of 
treatment outcomes. Lipidomic studies carried out in liver biopsies of patients with 
NAFL and NASH patients reported alterations of hepatic lipid profile and several 
studies investigated if these changes were also observed in plasma or serum. Plasma 
lipidomic studies reported changes in the concentration of several lipids between 
patients with NASH and NAFL, but as highlighted above the results are inconsistent. 
As seen in Table 2, saturated fatty acids in TGs, such as myristic acid and stearic acid, 
were found to be increased in patients with NASH compared to subjects with 
NAFL[80]. Moreover, plasma eicosanoid lipidomics analyses revealed a significant 
increase of arachidonic acid-derived metabolites (11,12-diHETrE, dhk PGD2, and 20-
COOH AA) in patients with NASH compared to subjects with NAFL and researchers 
suggested that these eicosanoids may have a utility as biomarkers for the noninvasive 
diagnosis of NASH[89]. Lipoxygenase metabolites 5-HETE, 8-HETE, 11-HETE, and 15-
HETE were also found to be increased in plasma of patients with NASH and these 
metabolites seem promising predictive biomarkers of NASH[26].

Gorden et al[28] investigated the alterations of liver and plasma lipidomic profiles in 
patients with NAFLD categorized in three subgroups of disease progression. The 
study population included healthy subjects, patients with simple steatosis, patients 
with NASH, and subjects with cirrhosis. Lipidomic analyses in combination with 
aqueous metabolites analyses led to identification of 48 common analytes, which 
presented variation across disease stage and an overlap in both tissues. These analytes 
were sphingolipid species, such as dihydroceramides, 1-deoxydihydroceramides, and 
longer chain ceramides, implicating that sphingolipid metabolism is impaired and 
additionally involved in disease progression and transition of simple steatosis to 
NASH. Furthermore, Gorden et al[28] identified a panel of 20 plasma lipids that can be 
used to distinguish NASH from simple steatosis. This panel included 
dihydrosphingolipids, ether phospatidylicholines, and other individual species. 
However, the number of patients that participated in this study is relatively small and 
validation of these findings in larger cohort of patients is needed[28]. Later, Zhou and 
his team developed an MS-based model and diagnostic score for NASH with an area 
under the receiver operating characteristic of 0.86. The NASH ClinLipMet score 
included AST, fasting glucose, glutamate, isoleucine, glycine, lysophospatidylcholine 
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16:0, and phospoethanolamine 40:6 along with PNPLA3 genotype. This score needs 
also external validation[45].

CONCLUSION
Recent advances in lipidomics technology have made it possible to profile lipidome of 
liver tissues and plasma in NAFLD and compare the findings among the different 
stages of disease. Lipidomic profiling accompanied by experimental studies using 
pharmacological reagents to alter synthesis or metabolism of certain lipids, has given 
additional insights into mechanisms governing lipotoxicity and disease progression. In 
this review, the most interesting findings of lipodomics analyses are summarized and 
the interpretation of these findings in the pathogenesis of NAFLD is discussed. The 
inconsistencies observed between the findings of plasma and liver lipidomics studies 
in NAFLD have also been underlined and future studies will need to address this 
issue. Moreover, even if a small number of studies identified specific lipids or a panel 
of lipids as biomarkers of disease progression, these findings need further external 
validation from a large cohort of patients.
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Abstract
Sepsis and septic shock are catastrophic disease entities that portend high 
mortality in patients with cirrhosis. In cirrhosis, hemodynamic perturbations, 
immune dysregulation, and persistent systemic inflammation with altered gut 
microbiota in the background of portal hypertension enhance the risk of infections 
and resistance to antimicrobials. Patients with cirrhosis develop recurrent life-
threatening infections that progress to multiple organ failure. The definition, 
pathophysiology, and treatment options for sepsis have been ever evolving. In 
this exhaustive review, we discuss novel advances in the understanding of sepsis, 
describe current and future biomarkers and scoring systems for sepsis, and 
delineate newer modalities and adjuvant therapies for the treatment of sepsis 
from existing literature to extrapolate the same concerning the management of 
sepsis in cirrhosis. We also provide insights into the role of gut microbiota in 
initiation and progression of sepsis and finally, propose a treatment algorithm for 
management of sepsis in patients with cirrhosis.

Key words: Portal hypertension; Sequential organ failure assessment; Acute on chronic 
liver failure; Predisposition insult response organ-dysfunction model; Intensive care unit; 
Shock
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Core tip: Advances in understanding sepsis have led to an uncomplicated and robust 
definition with prognostic importance. What has emerged is a redefinition of the clinical 
protocols for early and aggressive management of sepsis at hour 1 of patient presentation 
and identification of a novel combination of biomarkers. In addition, antimicrobial 
resistance has been addressed and adjuvant therapies have been identified through deep 
data mining, metagenomics, and machine learning-based tools for improving clinical 
outcomes. These advances have the potential to be extrapolated and studied in patients 
with cirrhosis and sepsis to improve notable catastrophic clinical outcomes seen in this 
unique and challenging patient population.

Citation: Philips CA, Ahamed R, Rajesh S, George T, Mohanan M, Augustine P. Update on 
diagnosis and management of sepsis in cirrhosis: Current advances. World J Hepatol 2020; 
12(8): 451-474
URL: https://www.wjgnet.com/1948-5182/full/v12/i8/451.htm
DOI: https://dx.doi.org/10.4254/wjh.v12.i8.451

INTRODUCTION
Critical illness in the presence or absence of overwhelming infection leading to 
multiple organ failure in patients with cirrhosis is a rapid, complex, and catastrophic 
process that, in the majority, does not respond to conventional treatment practices laid 
down for the general population. In advanced cirrhosis, hyperdynamic circulation 
with high cardiac output, subclinical cardiomyopathy, central hypovolemia, third 
space fluid accumulation, and low systemic vascular resistance prevail. In 
decompensated patients with cirrhosis, a small proportion develops the syndrome 
acute on chronic liver failure (ACLF) with sepsis, which is characterized by 
extrahepatic organ failures requiring intensive care management with rapid 
progression to multiple organ failure. Such events increase in-hospital mortality and 
result in treatment futility even with the best supportive care.

Sepsis is defined as a “life-threatening organ dysfunction caused by a dysregulated 
host response to infection,” that can cause critical illness in patients with cirrhosis with 
different clinical consequences. In a compensated cirrhosis, the development of sepsis 
can cause acute decompensation that can progress to ACLF. Sepsis can develop as an 
intercurrent event in decompensated cirrhosis, leading to worsening of existing or 
new-onset decompensation, both of which can lead to ACLF. Sepsis can also develop 
during acute decompensation or ACLF, all of which can lead to organ failures. Sepsis 
is established in the presence of suspected or documented infection and an acute 
increase of ≥ two sequential organ failure assessment (SOFA) (a proxy for organ 
dysfunction) points[1-3].

In cirrhosis, an associated immune dysfunction exists with worsening severity, 
depending on the stages and severity of decompensation. This cirrhosis-associated 
immune dysfunction (CAID) is dynamic and affects both the innate and acquired 
immune functions, because of changes and deficiencies in both the local milieu of the 
liver microenvironment and systemic immunity. CAID depends on the increased and 
persistent systemic inflammation, liver disease severity, and portal hypertension and 
is central to both acute and chronic decompensation. Besides, increased gut 
permeability, reduction in gut motility, and altered gut microbiota promote increased 
bacterial translocation and subsequent endotoxemia, leading to worsening systemic 
inflammation in cirrhosis. Sepsis by itself is a state of profound immune dysregulation 
in which, during the early phase, a pro-inflammatory state, counterbalanced by an anti 
- inflammatory response, affects immune functions (compensatory anti - inflammatory 
response syndrome). In patients with dysregulated immune functions, such as those 
with cirrhosis, this initial phase goes unchecked, progressing to sepsis - induced 
immunosuppression and a stage of immune-paralysis with subsequent organ failure 
development. In the following sections of this review, we aim to discuss current and 
future aspects in the diagnosis and treatment of sepsis and extrapolate recent advances 
in the management of sepsis concerning critically ill patients with cirrhosis with 
sepsis[4,5].

http://creativecommons.org/licenses/by-nc/4.0/
http://creativecommons.org/licenses/by-nc/4.0/
http://creativecommons.org/licenses/by-nc/4.0/
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DEFINING SEPSIS, SEPTIC SHOCK, AND RELATED COMPONENTS IN 
CIRRHOSIS
Early on, the pathogenesis of sepsis and its systemic consequences were considered a 
hyper-inflammatory response to microbial invasion (infection) accompanied by an 
evolving cytokine storm. Because of this, sepsis was defined as ”a systemic 
inflammatory response syndrome (SIRS) to infection” (Sepsis-1 definition). A decade 
later, expert consensus concluded that such a general definition did not allow for 
staging of sepsis-related events, and hence prediction of the host response to infection 
remained vague for clinical and research purposes. The SIRS criteria, even though 
useful for easy identification of sepsis, remained non-specific and too sensitive. This 
paved the way for the Sepsis-2 definition that included the PIRO [P: Predisposition; I: 
The type and extent of insult (infection in sepsis); R: The type and extent of host 
response; and O: The type and extent of organ dysfunction] model[6,7]. With PIRO, 
morbidity (primary organ dysfunction) because of the infection itself and morbidity 
developing during host response (secondary organ dysfunction) were identifiable. For 
example, in a patient with cirrhosis with the development of bacterial pneumonia, 
type 1 respiratory failure occurring early during illness can be considered primary 
organ dysfunction (because of the infection). In the same patient, the development of 
ascites and acute kidney injury during the later course of the disease can be secondary 
organ dysfunction (hepatorenal syndrome) because of predisposition (cirrhosis), insult 
(pneumonia), and host response (decompensation of cirrhosis). In such a situation, 
stratifying patients at risk of death depending on early and late events along with 
components of the PIRO model can help in improving prognostication and define 
specific timeframes for therapeutic interventions.

Acceptance and attempt at including the PIRO model in patients with cirrhosis are 
lacking in the literature. Jalan and colleagues studied the prognostic value of the PIRO 
model on outcomes in patients with ACLF. The authors found that in patients with 
organ failures, previous hospitalization (predisposition), persistence and severity of 
inflammation (response), and severity of organ failure (organ dysfunction) were 
associated with higher mortality[8,9]. Maiwall et al[10] in a prospective study of ACLF 
patients showed that serum creatinine, bilirubin, potassium, and blood urea at 
baseline (predisposition); nephrotoxic medications (insult); SIRS (response), and 
circulatory failure (organ dysfunction) identified those at risk of developing acute 
kidney injury during the disease course and death. The PIRO model could help 
identify patients with cirrhosis at risk of sepsis, those at risk of developing specific 
organ failure, and those at risk of recurrent sepsis. This could help define specific 
therapeutic ”windows” to improve further deterioration and reduce organ failures in 
patients with cirrhosis.

An expert consensus meeting re-defined sepsis (Sepsis – 3), with the omission of the 
terms SIRS and severe sepsis. According to the new consensus, in the absence of organ 
dysfunction, the event is termed an ”infection”. Septic shock was defined as 
hypotension unresponsive to fluid boluses and with lactate > 2 mmol/L. For defining 
and grading organ failures, the SOFA score was identified as the best tool. Acute organ 
dysfunction is identified when the SOFA score increased by two points from baseline 
(considered 0 before admission), and parallel identification of an infective focus 
defined sepsis. A new screening tool for early recognition of sepsis called the ”quick”-
SOFA (qSOFA) was provided, intended for primary use in the non-intensive unit care. 
According to qSOFA, patients meeting two of three criteria (altered mental status, 
respiratory rate > 22 per min, systolic blood pressure < 100 mmHg) were suspected of 
having new-onset or worsening sepsis. The SOFA score was developed from the 
general intensive care unit population rather than from patients with cirrhosis, and 
hence, some of the core components (such as Glasgow coma scale and platelet count) 
could be influenced by the severity of the underlying liver disease[11,12].

To improve on the prediction of SOFA score in patients with cirrhosis developing 
acute decompensation, the European Association for Study of Liver-Chronic Liver 
Failure Consortium (EASL - CLIF Consortium) changed the SOFA score into CLIF - 
SOFA score and defined ACLF according to the new score. In the CLIF - SOFA score, 
six organ systems with specific changes applied regarding patients with end - stage 
liver disease were designated. Platelet count was replaced by the international 
normalized ratio of prothrombin time and the Glasgow coma scale with hepatic 
encephalopathy as the central nervous system criterion. It also modified the use of 
terlipressin as part of the cardiovascular component and renal replacement therapy 
within the renal parameter[13-15]. The CLIF - SOFA score also added peripheral capillary 
oxygen saturation/fraction of inspired oxygen in the air as an alternative to respiration 
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parameter for patients without arterial line placed (Table 1).
Small studies have shown that the Acute Physiology And Chronic Health 

Evaluation II (APACHE II) and subsequent modifications were superior to other 
scoring and definition systems of sepsis in cirrhosis. However, no study has shown its 
superiority to CLIF-SOFA. Hence, further studies pending, application of either of 
these scoring systems, as per operator ease is acceptable in critically ill patients with 
cirrhosis. To summarize, in a patient with cirrhosis, sepsis is identified when there is 
the fulfilment of at least two SOFA score points at presentation, in the presence of an 
infection, the latter proved either radiologically or microbiologically with or without 
blood biomarker correlation (Figure 1).

THE LACTATE QUANDARY IN CIRRHOSIS
Serum lactate levels play a major role in defining patients with septic shock. It was 
shown that lactate levels were elevated in patients with cirrhosis, compared to healthy 
controls, related to portal pressures, and increased with severity of the liver disease. 
This meant that lactate kinetics in the cirrhosis population differed greatly from other 
patient populations[16]. A study tested lactate levels in patients with acute circulatory 
failure with hepatic dysfunction. No differences in pertinent variables, such as lowest 
systolic blood pressure, serum creatinine, and simplified APACHE scores, were noted. 
However, the lactate levels were higher in the group with liver disease (8.24 mmol/L 
vs 4.29 mmol/L, P < 0.001), with a positive correlation between lactate and aspartate 
aminotransferase levels. The authors concluded that there was no apparent correlation 
between liver dysfunction and the severity of shock as a confounder[17]. Kruse et al[18] 
tested the significance of blood lactate in critically ill patients with liver disease. They 
found that arterial lactate > 2.2 mmol/L was associated with clinical evidence of shock 
and significant in-hospital mortality.

In a systematic review of blood lactate as a predictor for in-hospital mortality in 
acutely ill patients, venous or arterial lactate > 2.5 mmol/L at admission was 
associated with the progression of clinical deterioration[18-20]. Sun et al[21] showed that 
the serum lactate levels were predictive of extrahepatic organ failure (acute kidney 
injury) in critically ill patients with cirrhosis. The mortality rate increased with a rise in 
serum lactate. In a multinational study, Drolz et al[22] showed that lactate levels 
reflected the severity of disease and organ failure and was independently associated 
with a high risk of death in the brief term in critically ill cirrhosis patients.

The addition of lactate into the CLIF-C score for ACLF patients improved its 
prognostic power. A serum lactate ≥ 5 mmol/L had high predictive power for short 
term mortality, and lactate clearance predicted 28-d mortality. Admission and 12-h 
lactate clearance in those with admission lactate ≥ 5 mmol/L predicted 1-y mortality. 
In summary, including lactate above 2 mmol/L can be extrapolated to define patients 
of cirrhosis with septic shock. The admission and serial lactate measurements and 
lactate clearance are useful in identifying those with poor prognosis even though the 
complex lactate dynamics remain undefined in patients with advanced cirrhosis. Thus, 
septic shock in cirrhosis can be identified in the presence of sepsis, the onset of 
hypotension requiring vasopressor support [mean arterial pressure (MAP) < 65 
mmHg], and lactate > 2 mmol/L despite adequate fluid resuscitation.

TOLERANCE TO SEPSIS – A BROKEN DEAL IN CIRRHOSIS
There are three essential strategies for dealing with disease because of pathogens - 
avoidance, resistance, and tolerance. Of these, the first two are notable among animals 
(who are mobile), while the third strategy is clear in plants (since they are stationary). 
Tolerance results in the ability to maintain health in the presence of a pathogen(s). An 
example of tolerance to infection or pathogen is the case of Ms. Mary Mallon (”typhoid 
Mary”), causing severe Salmonellosis in persons consuming dishes she prepared and 
tolerance to malaria among persons with sickle-cell anaemia. In sepsis, at the core, 
there occurs complete dysregulation of local and systemic inflammatory and 
associated metabolic processes that lead to organ failure. Yet another major event in 
sepsis is the destruction of red blood cells through direct or indirect pathogen-based 
hemolysin effect. Hence, in sepsis, heme production is overwhelming, and the removal 
of free heme results in the formation of divalent iron (Fe2+). Excess production of Fe2+ 
leads to the overproduction of reactive free radicals through the Fenton reaction, 
resulting in the release of trivalent iron (Fe3+), which is a hydroxyl radical that 
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Table 1 Modification of sequential organ failure assessment score for patients with cirrhosis, the chronic liver failure-sequential organ 
failure assessment scoring system[13,15]

Score 1 2 3 4

Respiration PaO2/FiO2 or SpO2
/FiO2, mmHg

> 300 to ≤ 400 or > 357 
to ≤ 512

> 200 to ≤ 300 or > 214 to ≤ 357 > 100 to ≤ 200 or 89 to ≤ 214 < 100 or ≤ 89

Liver bilirubin, mg/dL 1.2-1.9 2.0-5.9 6.0-11.9 > 12

Cardiovascular hypotension Mean arterial pressure 
< 70 mmHg

Dopamine ≤ 5 or any 
dobutamine or terlipressin

Dopamine > 5 or 
noradrenaline ≤ 0.1

Dopamine > 15 or 
noradrenaline > 0.1

Cerebral HE grades I II III IV

Renal creatinine (mg/dL) or 
urine output

1.2-1.9 2.0-3.4 3.5-4.9 or use of renal 
replacement therapy

≥ 5.0

Coagulation - INR ≥ 1.1 to < 1.25 ≥ 1.25 to < 1.5 ≥ 1.5 to < 2.5 ≥ 2.5 or platelet count ≤ 
20000/µL

FiO2: Fraction of inspired oxygen; HE: Hepatic encephalopathy; INR: International normalized ratio; PaO2: Arterial oxygen pressure.

promotes various secondary metabolic reactions. To prevent toxic secondary reactions, 
oxidized iron is removed by ferritin. Ferritin thus confers tolerance towards 
infections[23].

In the seminal work by Weis et al[24] on sepsis tolerance, mice with pre-deleted 
ferritin subunit (FTH) and those expressing FTH, underwent cecal ligation and 
puncture (an animal model of sepsis). The authors found that the survival of the mice 
depended on FTH expression on hepatocytes and macrophages. Those with FTH 
deficiency had inferior survival with the development of sepsis. In both FTH deficient 
and sufficient groups, the microbial burden and cytokine production were similar but 
without overt sepsis in the latter, showing tolerance to sepsis development in the 
presence of ferritin expression. In FTH deficient mice, the bodyweight loss was 
extensive, with lower body temperatures, and correlated with hypoglycaemia. Thus, 
the link between FTH expression and maintenance of blood glucose levels was notable 
in this study. When heme was infused into FTH deficient mice with sepsis, death was 
inevitable; with the infusion of glucose, health status, and survival improved. At the 
gene expression level, the activity of glucose-6-phosphatase catalytic subunit-1 (G6PC-
1) was reduced, leading to curtailment of gluconeogenesis. The authors found that in 
the absence of ferritin expression, free heme downregulated G6PC-1 expression and 
reduced hepatic gluconeogenesis and glycogenolysis, leading to an increase in 
mortality. Use of iron-chelators, antioxidants, and iron-free ferritin restored G6PC-1 
activity and induced gluconeogenesis, leading to an improvement in survival[23,24]. In 
an animal model of listeriosis, Medzhitov et al[25] showed that correction of 
hypoglycaemia using glucose infusions worsened survival because of the promotion 
of neurotoxicity by exacerbation of reactive oxidative species. In virus-infected mice, 
glucose infusions improved sepsis and survival and reduced neuronal endoplasmic 
reticulum stress responses. These two studies showcase an important aspect of sepsis – 
adaptive tolerance to sepsis in the host that was dependent on the pathogen type[25,26].

In patients with decompensated cirrhosis, Changani et al[27] showed impairment in 
gluconeogenesis in advanced liver disease but not in stable patients with cirrhosis. In 
the early stages of cirrhosis, hepatic gluconeogenesis and fatty acid oxidation are 
increased in the presence of reduced hepatic glycogen content, resulting in lactate and 
alanine production through muscle breakdown and protein degradation. With the 
progression of cirrhosis, liver failure sets in, leading to a reduction in gluconeogenesis, 
depletion of glycogen stores, amelioration in glycogenesis, and loss of muscle mass 
(sarcopenia) leading to a diminution in pro-glucogenic substrates[28]. Heme-oxygenase 
has anti-inflammatory and anti-apoptotic properties, and induction of heme-
oxygenase-1 in animal models of acute or chronic liver injury showed a reduction in 
hepatic inflammation and fibrosis progression and partial resolution of existing 
fibrosis. In animal models of cirrhosis and humans with decompensated cirrhosis, the 
expression of heme-oxygenase increased with increasing severity of liver disease and 
portal hypertension[29,30]. Patients with cirrhosis have excessive erythrocyte destruction 
because of splenomegaly, reduced red blood cell survival, reduced red cell mass, 
suppression of bone marrow function, blood loss because of acute and chronic 
gastrointestinal bleeding events associated with portal hypertension and blunted 
response to erythropoietin[31,32].
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Figure 1  Definitions, diagnosis, and summary of prognostic scoring systems of sepsis[2,4,6,58,63-65]. Sepsis is defined as presence of suspected or 
confirmed infection in the presence of an organ failure as defined by the sequential organ failure assessment tool. After diagnosis of sepsis, a prognostic tool is 
utilized to identify patients at risk of worsening or death. APACHE: Acute physiology and chronic health evaluation; CLIF: Chronic liver failure; HeRO: Heart rate 
index; MBRS: Mean arterial pressure, bilirubin, respiratory failure, sepsis; MEWS: Modified early warning score; PIRO: Predisposition, insult, response, organ failure; 
qSOFA: Quick sequential organ failure assessment; SIRS: Systemic inflammatory response syndrome; SOFA: Sequential organ failure assessment; TREW: Targeted 
real-time early warning score.

Ferritin, a marker of stored iron, can be elevated in decompensated cirrhosis 
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patients with inflammation and in those patients whose cirrhosis aetiology is 
secondary to alcohol use or chronic hepatitis C infection. It has been shown that even 
in the presence of high ferritin levels in patients with decompensated cirrhosis, the 
transferrin levels were low, and transferrin saturation elevated. Lower transferrin 
levels that represent malnutrition, the severity of cirrhosis, and inflammation are 
associated with poor transplant-free survival in patients with decompensated 
cirrhosis[33,34]. To summarize, in cirrhosis, there occurs increased red cell destruction, 
reduction in hepatic gluconeogenesis, lower levels of transferrin, and high 
dysfunctional levels of ferritin, which leads to a state of perturbed tolerance to 
infections and a higher risk of sepsis, loss of muscle mass, lower body temperature, 
and dysfunctional control over inflammation. Measures to improve tolerance to sepsis 
in patients with advanced cirrhosis could become an important component in the 
armamentarium of therapeutic options against cirrhosis with sepsis and improving 
survival outcomes (Figure 2).

FASTING METABOLISM AND DEFENSE AGAINST INFECTIONS – IS 
THERE A ROLE IN EARLY CIRRHOSIS?
A proverb goes, ”feed a cold, starve a fever”. In the presence of infection, animals 
develop specific behavioural changes that include anorexia, sleep pattern variations, 
and withdrawal from social activities – asymptomatic complex referred to as ”sickness 
behaviours”. These patterns were considered flawed consequences of the host 
response to infection. Newer evidence suggests that sickness behaviours are strategic 
evolution in the host to ward off the harmful effects of infection and improve survival. 
Of these, the most important is anorexia. Anorexia modulates host metabolic 
requirements of stress responses pertinent for tolerance to bacterial inflammatory 
states.

In the seminal work by Wang et al[26], it was demonstrated in a small animal model 
that fasting metabolism was protective in bacterial but not virus-induced 
inflammation. The ketosis that develops during fasting limited the reactive oxygen 
species induced neuronal damage during bacterial infection-related inflammation 
while non-fasting or glucose infusion prevented neuronal damage in viral 
inflammation, showcasing the importance of host responses to aetiology of infection 
during fasting[26,35,36]. Force-feeding mice with lipopolysaccharide induced endotoxemia 
increased mortality. Intermittent fasting was shown to increase acute immune and 
behavioural sickness responses leading to worse outcomes in mouse models of viral 
infections and inflammation.

Metabolic processes in the liver microenvironment are firmly regulated by neuronal 
and hormonal systems such as the sympathetic and parasympathetic systems and 
insulin-glucagon related systems[37,38]. Patients with cirrhosis are a unique population 
regarding nutritional and metabolic disorders. In advanced cirrhosis, the liver cannot 
synthesize and store required amounts of glycogen, which creates a ”glucose 
deficient” state in times of stress. In this scenario, the utilization of non-carbohydrate 
sources for gluconeogenesis, such as glycerols from fatty tissue and amino acids from 
muscles, becomes remarkable. Dietary improvements rather than restriction are well 
known to improve outcomes in this stage, even though dietary or nutritional 
interventions in special situations such as in an obese patient with cirrhosis remain 
controversial. An overnight fast in a patient with cirrhosis patient is akin to 3-d fasting 
in an average person[39]. Owen et al[40] showed that after an overnight fast, hepatic 
glucose production in patients with cirrhosis was diminished because of low-rate 
glycogenolysis, but hepatic gluconeogenesis and ketogenesis were increased. After 3 d 
of starvation, patients with cirrhosis were found to have hepatic gluconeogenic and 
ketogenic profiles comparable to those of healthy patients undergoing deprivation of a 
similar duration. García-Compeán et al[41] showed that subclinical abnormal glucose 
tolerance was a predictor of death in patients with liver cirrhosis. In the study by 
Wang et al[26], the authors found that fasting metabolism protected against sepsis and 
that protection was suppressed by infused glucose[35], and Weis et al[24] discovered that 
mice have to maintain minimal glucose levels through gluconeogenesis for tolerating 
bacterial sepsis. Thus, there occurs an upper and lower limit of glucose homeostasis 
and blood glucose level that must be maintained through the reduced intake 
(anorexia) and by endogenous hepatic glucose production (gluconeogenesis) to 
improve outcomes in sepsis. This is a matter of further research in patients with 
cirrhosis.

In animal models of cirrhosis and sepsis, we need to identify outcomes related to 
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Figure 2  Insights into pathophysiology of tolerance toward sepsis and loss of tolerance leading to higher risk of sepsis in cirrhosis 
patients[4,23-25]. Apart from tolerance, loss of resistance and exposure to pathogens (shown as red crosses in the upper part of the figure) can initiate infections that 
can lead to development of sepsis. In patients with infections who develop sepsis, local and systemic inflammation lead to dysregulated red cell homeostasis and 
development of toxic oxidants especially iron ligands that are removed by ferritin. Ferritin formation and oxidant sweep are regulated systematically through 
hepatocyte and macrophage functions in the healthy liver through expression of glucose-6-phosphatase (G6PD) and ferritin H gene subunit (FTH). In cirrhosis, liver 
dysfunction results in aberrant FTH activity, defective macrophage and hepatocyte functions and reduction in G6PD activity, resulting in increased oxidant stress and 
loss of tolerance to infection, leading to progression of sepsis through reduction in functional ferritin (shown as red crosses at the bottom). The blue and purple boxes 
demonstrate steps and measures for correction of dysregulated responses in a patient with cirrhosis, respectively, so as to improve tolerance to infection and 
prevention of sepsis. FTH: Ferritin H gene subunit; G6PD: Glucose-6-phosphatase.

fasting and non-fasting states. Studies on intermittent or prolonged fasting on immune 
functions in patients with cirrhosis and associated clinical outcomes remain an unmet 
need. In summary, in patients with compensated cirrhosis, the role of different 
modes/methods of fasting for prevention or treatment of bacterial infection could be 
an exciting area of research – one that needs bench work in small cirrhotic animal 
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models for further consideration in humans (Figure 3).

ADVANCES IN GENERAL PATHOPHYSIOLOGY OF SEPSIS AND 
RELEVANCE IN CIRRHOSIS
With the intrusion of a microbial entity, the initial host response is the activation of 
innate immunity that is comprised of macrophages, monocytes, neutrophils, and 
natural killer cells. This cellular activation is a result of the binding of pathogen-
associated molecular patterns, which include endotoxins and fungal elements such as 
beta-glucans and other microbial degradation components. Apart from these direct 
pathogen-related activator molecules, damage-associated molecular patterns, which 
include intracellular material, components of dead or damaged host cells, and 
microbial DNA, potentiate the host response to infection. All of these activator 
molecules bind to specific receptors on cells (such as monocytes and macrophages) 
associated with mounting a counteractive immune response through toll-like 
receptors, C-type leptin receptors retinoic-acid inducible gene-1-like receptors and 
nucleotide-binding oligomerization domain-like receptors[42]. In sepsis, close 
interactions between the inflammatory and haemostatic pathways also affect host 
responses at the cellular, tissue, and organ levels. With perpetuation of host 
inflammatory response to an overwhelming or under controlled infection, toxicity at 
local and systemic levels due to inflammatory components as well as microthrombi 
formation in organ systems in the initial phase leads to hypoperfusion and decreased 
delivery of and utilization of oxygen by cellular components, leading to organ 
dysfunction seen in sepsis[43].

In cirrhosis, the systemic inflammation is mediated through the activation of all 
innate and adaptive immune cells, with the tipping of the balance towards pro-
inflammatory cytokines. In compensated cirrhosis, the progression of fibrosis and 
hepatocyte loss release damage-associated molecular patterns that activate the 
immune system causing sterile systemic inflammation. In decompensated cirrhosis, 
worsening portal hypertension leads to bacterial translocation and release of 
pathogen-associated molecular patterns into the systemic circulation from the 
intestinal lumen into the circulation. The continuous influx of immune and 
inflammation activating molecules leads to a state of persistent inflammation in the 
host. As cirrhosis progresses and patients start developing complications of portal 
hypertension, and ultimately liver failure, exhaustion of the immune system occurs, 
along with loss of tolerance to infections, leading to the inability to mount functional 
innate and adaptive immune responses. This defines CAID state in which increased 
levels of anti-inflammatory cytokines and leukocyte inhibitory antigens predominate 
with loss of immune cell function. In its most extreme form, ACLF, a state of immune 
paralysis that is also notable in advanced stages of sepsis, is appreciable. In advanced 
cirrhosis with CAID, an infectious insult can rapidly lead to a state of immune 
exhaustion that is much more burdensome compared to a non-cirrhotic patient 
population. A study showed that lymphocytopenia on the 4th day after a diagnosis of 
sepsis was predictive of both 28-d and 1-y mortality in sepsis[42,44].

Systemic inflammation plays a central role in defining landmark events in patients 
with cirrhosis. Even in the absence of infection or sepsis, patients with cirrhosis are at 
baseline, in a state of persistent systemic inflammation. In the presence of non-
infectious causes for worsening or acute severe systemic inflammatory states (for 
example, alcoholic hepatitis, drug-induced liver injury, or reactivation of chronic 
hepatitis B virus infection), acute decompensation can develop in patients with 
compensated cirrhosis. In cirrhosis patients with bacterial infections who developed 
acute decompensation and ACLF, the inflammatory markers interleukin (IL)-6, 
tumour necrosis factor-alpha, and IL-1 receptor antagonist were found to increase 
much higher than those with other stress/insults[45]. In patients with compensated and 
decompensated cirrhosis, in the absence of infections, persistent systemic 
inflammation leads to a prothrombotic or hypercoagulable state. This baseline 
hypercoagulability worsens organ dysfunction in patients with cirrhosis who develop 
infections, and in advanced stages of cirrhosis, once organ failures take full form, 
disseminated intravascular coagulation develops that leads to a haemorrhagic 
phenotype in critically ill patients with cirrhosis with septic shock[46,47]. In summary, 
targeting sepsis in cirrhosis is not merely targeting the pathogen but, in early stages, 
improving tolerance to infection and correcting of hypercoagulability; in middle 
stages, keeping in control the unhealthy proinflammatory storm; and late stages, 
improving immune regulation and abolishing immune paralysis. Timing of treatments 
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Figure 3  Fasting metabolism and its impact on immune homeostasis and enhanced tolerance to infections[26-28]. The figure demonstrates the 
potential mechanisms associated with fasting metabolism on immune functions that ultimately prove beneficial for prevention of and combating infections. This could 
be hypothesized to have benefits in patients with early cirrhosis, especially in those who are obese, pending bench to bedside translational studies. Nonetheless, in 
advanced cirrhosis, on the contrary, nutritional management to improve immune functions, prevention of infections, and boosting tolerance to sepsis is of importance.

and targeted therapy for these important events in sepsis and cirrhosis remain an 
unmet need and require multicentre collaboration and specific focused groups 
working on each aspect to define each therapeutic component that would ultimately 
become a primary protocol that can be generalized world over.
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NOVEL BIOMARKERS FOR SEPSIS DIAGNOSIS AND PROGNOSIS: USE 
IN CIRRHOSIS
A multitude of biomarkers has been identified that help in the diagnosis and prognosis 
of sepsis. Of these, the C-reactive protein (CRP), procalcitonin (PCT), and IL-6 have 
been most extensively studied and of clinical use currently. However, these markers 
have high levels of heterogeneity concerning the population studied and lack 
homogeneity in displaying diagnostic value under special circumstances. The 
Surviving Sepsis Campaign guidelines advocate that measuring PCT can help reduce 
the duration and promote early discontinuation, escalation, or de-escalation of 
antimicrobial therapy in patients with diagnosed sepsis. Even though single PCT 
measurements do not have strong prognostic value, serial measurements can help 
identify patients at risk of death due to the progression of sepsis and the emergence of 
septic shock[48,49].

Mid-regional pro adrenomedullin (MR-proADM), a fragment of adrenomedullin 
precursor (amino acids 45 to 92) with vasodilator and natriuretic properties, was found 
to be superior to current biomarkers and scoring systems in predicting 28-d mortality 
in patients with sepsis, septic shock, critically ill with new-onset fever, and respiratory 
tract infection. In patients with cirrhosis, MR-proADM was found to relate to portal 
pressures and systemic hemodynamics. It was recently shown that MR-proADM was 
reliable in identifying cirrhosis patients with complicated bacterial infections as well as 
those with a very high risk of short-term death independent of bacterial infections or 
SIRS criteria[50].

Remmler et al[51], in a retrospective observational study in end-stage liver disease 
patients, found that the model for end-stage liver disease (MELD) scores, IL-6 level, 
and CRP level were associated with mortality risk. The 1-y mortality was zero among 
patients with IL-6 levels < 5.3 pg/mL but 68% among those with IL-6 > 37.0 pg/mL. 
The predictive performance for 90-d mortality was excellent (area under the curve, 
0.94) for IL-6 and similar to those of MELD and MELD-sodium scores and superior to 
those of CRP and white blood cell levels. The authors also found that the IL-6 level 
was an independent predictor of mortality after adjustment for the other markers[51].

Recently, the changes associated with the expression of the neutrophilic CD64 
surface marker were found to predict severe inflammation and sepsis efficiently. 
Neutrophilic dysfunction, a hallmark of sepsis, is that in which neutrophils lose their 
ability to respond to chemokines leading to an alteration in the microbicidal activity. 
Such neutrophils have a specific motility signature that can be captured using 
microfluidic-based assays. From these motility signatures, the Sepsis Score was 
determined by [N × (O + P + R + AD)/103], where N is the neutrophil count; O the 
number of oscillations exhibited within the migration channels; P the time spent 
pausing during spontaneous motility; R the reverse migration of cells out of the 
device, and AD the average distance migrated by the cells. Among patients without 
cirrhosis, the scoring system generated an area under the curve of 0.98 for non-sepsis 
and sepsis patients with 96.8% sensitivity and 97.6% specificity[52].

Apart from the clinical definitions that guide diagnosing sepsis at the outset, several 
novel investigational tools have improved diagnosis and prognostication of sepsis. A 
novel biomarker, the intensive care infection score (ICIS) composed of five blood-cell-
derived parameters [mean fluorescence intensity of mature (segmented) neutrophils, 
the difference in haemoglobin concentration between newly formed and mature red 
blood cells, the total segmented neutrophil count, the antibody-secreting lymphocytes, 
and the accurate immature granulocytes count] characterizing the early innate 
immune response can be routinely obtained from blood samples sent to the laboratory 
for cell counts. This score has been retrospectively evaluated in two pilot studies, 
which suggested its potential predictive value for infection. A mean ICIS value of < 3 
(lower cut-off level) indicates the absence of infection. In contrast to CRP and PCT 
measurements, the ICIS can be determined routinely without new blood sampling and 
lower costs, yielding results within 15 min[53].

Recently, the monocyte distribution width, with a value > 20 U, was found to be 
effective for sepsis detection based on the Sepsis – 3 criteria at admission. In the 
presence of a raised white cell count, the value of monocyte distribution width 
improved diagnosing and defining early management protocols for sepsis[54]. 
Crawford et al[55] developed an automated deformability cytometric analysis using 
microfluidic cartridge and customized instrumentation. In this system, imaging of 
single cells at the rate of thousands/s with the high-speed camera can be studied as 
they undergo stretching in a controlled microfluidic flow. Deformability was defined 
as the length by width of a cell during its motion through the microfluidic chamber. 
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The authors found that granulocytes in patients with sepsis fluidize and elongate 
much more when compared to the normal population. This can help identify patients 
with sepsis-associated early innate immune activation. The assay time takes less than 
10 min from blood collection to final output and can be used in an emergency setting 
to identify those who require immediate antibiotic care. This is important because an 
increase in mortality has been shown with every passing hour in patients with sepsis 
and even more so in those with septic shock, which holds in patients with cirrhosis 
and sepsis at a more catastrophic level (Figure 4)[55,56].

To improve on the diagnostic and prognostic accuracy of single-protein biomarkers 
that are currently in use, transcriptomics (the study of the whole set of RNA 
transcripts that are produced by the genome, under specific circumstances or in a 
specific cell—using high-throughput methods, to identify specific gene expressions) 
based biomarker panels for a broader assessment of host response to infection have 
become novel powerful tools. Two such transcriptomic sepsis scores, the SeptiScore™ 
and the Sepsis MetaScore, using set algorithms, have been validated in independent 
cohorts. SeptiScore™ utilizes SeptiCyte™LAB technology (ImmuneExpress, Seattle, 
WA, United States), which consists of four messenger-RNAs (mRNA; CEACAM4, 
LAMP1, PLA2G7, PLAC8) that represent sepsis-related host response gene expression 
based mathematical algorithm that predicts sepsis earlier than traditional methods. 
SeptiScore™ is United States Food and Drug Administration cleared and aids in the 
differentiation of infection-negative sterile systemic inflammation compared to 
infection-positive sepsis. The Sepsis MetaScore, which utilizes the expression of 11 
host mRNAs discovered from public microarray datasets, was found to have the 
highest prediction power for sepsis amongst all currently studied transcriptomics-
based assays. mRNA based gene expression assays have also been studied to 
differentiate bacterial from viral sepsis (for example, the 7-mRNA bacterial or viral 
Metascore). All of these novel tools (Table 2) for diagnosing and identifying the 
severity of sepsis appear promising but lacks validation in the patients with 
cirrhosis[57].

UPDATE ON PROGNOSTIC SCORING SYSTEMS FOR SEPSIS IN 
CIRRHOSIS
The newly described qSOFA, as per the Sepsis-3 guidelines, has become an important 
tool that can be utilized at the bedside for the identification of sepsis and predict 
mortality. More recently, Rhee et al[58] evaluated the performance of a novel electronic 
SOFA (eSOFA) compared to the classical SOFA score. The eSOFA was developed by 
the United States Centers for Disease Control and Prevention to facilitate retrospective 
surveillance of sepsis events and was found to identify better, a smaller but sicker 
cohort of patients, than classical SOFA score system. The SOFA score defines organ 
dysfunction across six organ systems and assigns 0-4 points for each organ system 
depending on the degree of dysfunction, whereas eSOFA replaces these with binary 
criteria for most of the same organ systems. Currently, the diagnosis of sepsis with the 
SOFA score to evaluate organ dysfunction in the setting of infection and the use of 
qSOFA to predict the severity and outcome of sepsis have been recommended by the 
Sepsis-3 consensus document. Müller et al[59] showed that qSOFA did not predict in-
hospital mortality, intensive unit admission, or length of hospitalization in patients 
with decompensated cirrhosis. The application of sodium level to qSOFA (called 
qSOFA-Na+) improved the diagnostic ability for identifying sepsis and mortality. 
However, in a larger series of cirrhosis patients, Piano et al[60] found that the Sepsis-3 
criteria were more accurate than SIRS criteria in predicting the severity of infections in 
patients with cirrhosis and that the qSOFA was a useful bedside tool in assessing risk 
for poor outcomes in hospital. Patients fulfilling Sepsis-3 criteria had a higher 
incidence of ACLF, septic shock, and transfer to an intensive unit that those without. 
In a more recent study, Augustinho et al[61] showed that in patients with cirrhosis 
hospitalized for bacterial infections, admission qSOFA was an independent predictor 
of survival, and for those classified as high risk for death by qSOFA, only the CLIF-
SOFA predicted prognosis independently, and Sepsis-3 criteria did not play a major 
role in predicting risk or stratifying patients. Lan et al[62] in a large retrospective cohort 
found that CLIF-SOFA and CLIF-organ failure scores were better tools that qSOFA, 
MELD, or qCLIF-SOFA in the evaluation of prognosis of critically ill patients with 
cirrhosis with suspected infections.

A Korean study revealed that qSOFA had limited utility in predicting adverse 
outcomes in cirrhosis patients with sepsis at medical emergency team activation in the 
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Table 2 Transcriptomics based micro assays for diagnosis of sepsis[57]

Assay name (manufacturer) Technique/sample volume
Turn-
around 
time

Highest noted 
sensitivity and 
specificity

Detection

SeptiFast (Roche) Real-time PCR/1.5 mL 4 h to 6 h 83%/95% > 16 bacteria, Candida and 
Aspergillus fumigatus

SeptiTest (Molzyme) Universal PCR/1 mL 8 h to 10 h 87%/96% > 345 bacteria and 13 fungi

SeptiCyte (ImmuneExpress) RT-qPCR with machine learning/2.5 mL 1 h to 6 h -/ 95% (discriminates SIRS 
from sepsis)

All pathogens

Iridica Plex ID (Abbott) Multiplex broad range PCR/5 mL 6 h 83%/94% 780 bacteria and Candida

MinION (Oxford Nanopore) Nanopore sequencing/10 ng DNA 4 h to 6 h -/100% Few viruses and bacteria 
currently

U-dHRM (UCSD, United States) Digital PCR/1 mL 3 h -/99.9% 37 bacteria

LAMP Tech Loop mediated isothermal 
amplification/30 µL

1 h -/100% 1 pathogen per sample

Integrated droplet digital detection 
tech (Velox Biosystems)

DNA-zyme base sensor droplet 
microencapsulation 3D particle analysis

1 h to 4 h - 1 pathogen per sample

3D: Three-dimensional; PCR: Polymerase chain reaction; RT: Reverse transcriptase; SIRS: Systemic inflammatory response syndrome.

general wards or rooms. Another scoring system, called the modified early warning 
score (Table 3), detected sepsis early in these patients[63]. Pan et al[64] showed that the 
“MAP, bilirubin, respiratory failure, sepsis” score, a simple prognostic model 
consisting of MAP, serum bilirubin level, assessment of acute respiratory failure, and 
sepsis [calculated using the following predictors: MAP, < 80 mmHg; serum bilirubin 
level, > 80 µmol/L (4.7 mg/dL); type 1 respiratory failure, and fulfilment of definition 
of sepsis; defined as the sum of the values of the individual predictors, each value 
ranging from 0 to 4], analysed on the 1st day of admission to the intensive care unit in 
critically ill patients with cirrhosis with acute kidney injury, was useful in predicting 
short term mortality in-hospital better than current complex scoring systems including 
the commonly used CTP and MELD scores. A novel approach to predicting sepsis and 
severity is by coupling electronic medical records data with machine learning 
algorithms. As an example of this modality, researchers have identified a novel 
targeted, real-time early warning score called the TREWScore that predicts the 
development of septic shock in adult intensive care patients 28 h before clinical onset. 
The HeRO score algorithm (Medical Predictive Science Corp, Charlottesville, VA, 
United States) utilized subtle changes and irregularities in heart rate variability to 
predict poor outcomes before the actual onset. However, this technology has not been 
fully validated and lacks power in the identification of sepsis and bloodstream 
infections. Such novel approaches have the potential to be of great value in diagnosing 
sepsis and improving outcomes in this difficult to manage cohort of patients[65].

TREATING SEPSIS IN CIRRHOSIS – CURRENT RECOMMENDATIONS 
AND NEWER APPROACHES
Current updated guidelines recommend that the treatment of sepsis, along with 
needful resuscitation, should commence immediately at the identification of sepsis and 
related clinical outcomes. This includes appropriate antibiotics (based on region-
specific community and hospital-related pathogen patterns) and other source control 
measures. The Surviving Sepsis Campaign currently recommends the ”Hour-1 
Bundle”, which includes broad-spectrum antimicrobials, intravenous fluid 
management, measurement of serum lactate level and inotropes, and vasopressor 
support in those not responding to fluid resuscitation. There is no role of early goal-
directed treatment in sepsis, as was considered previously as three large multicentre 
trials in three major countries reported absence of benefit with such an intervention. 
The use of crystalloid or colloid as the initial resuscitation fluid also remains an 
enigma. Even though guidelines suggest that crystalloid, possibly normal saline or a 
buffered salt solution such as Plasmalyte need to be utilized at 30 mL/kg over 3 h, this 
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Table 3 The modified early warning scoring system for identification of sepsis[63]

Score 3 2 1 0 1 2 3

Respiratory rate per min ≤ 8 9-14 15-20 21-29 > 29

Heart rate per min ≤ 40 41-50 51-100 101-110 111-129 > 129

Systolic blood pressure, mmHg ≤ 70 71-80 81-100 101-199 ≥ 200

Urine output, mL/(kg·h) Nil < 0.5

Temperature, °C ≤ 35 35.1-36 36.1-38 38.1-38.5 ≥ 38.6

Neurological, subjective Alert Reacting to voice Reacting to pain Unresponsive

Figure 4  A summary of new and upcoming biomarkers for sepsis[48,50-57]. CD: Cluster of differentiation; IL: Interleukin; MDW: Monocyte distribution 
width; MELD: Model for end-stage liver disease; Na: Sodium.

practice is currently undergoing further scrutiny to improve on protocolized 
management. In those patients in whom crystalloids do not improve MAP, the 
addition of human albumin may be considered. However, no such recommendations 
exist, and the choice of fluid and its further modification rightfully rests on the 
common sense directed therapeutic decisions of the treating physician, based on close 
follow up of clinical parameters in the intensive care unit. Generalizability of 
Surviving Sepsis Campaign recommendations in the patients with cirrhosis needs 
validation. This is because goals of treatment may be different in patients with 
cirrhosis since they are frailer, have lower MAP at baseline due to the use of beta-
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blockers for portal hypertension, have higher central venous oxygen saturation due to 
a hyperdynamic circulation with lower haematocrit, and abnormal lactate 
metabolism[66,67].

Philips et al[68] conducted an open-label trial in 308 patients with cirrhosis (published 
in abstract form) with sepsis-induced hypotension and randomized them to receive 
either 5% human albumin or normal saline. The primary endpoint was the reversal of 
hypotension (MAP > 65 mmHg) at 3 h, and the secondary endpoints included effects 
on heart rate, arterial lactate, urine output, and survival at 1 wk. The authors found 
that the reversal of hypotension was higher in patients receiving 5% albumin than 
saline at the end of 1 h [25.3% and 11.7% respectively, P = 0.03, odds ratio (95%CI): - 
1.9 (1.08-3.42)] and 3 h [11.7% and 3.2% respectively, P = 0.008, 3.9 (1.42-10.9)]. 
Sustained reduction in heart rate and lactate levels were greater in patients receiving 
albumin, without statistically significant changes in the urine output or adverse events 
between the groups. At the end of 1 wk, the proportion of patients surviving in the 
albumin group was higher than that in those who received saline (43.5% vs 38.3%, P = 
0.03).

Regarding antibiotic therapy, some authors suggest that in community-acquired 
infections, the initial antibiotic of choice be a third-generation cephalosporin or 
amoxicillin-clavulanic acid and carbapenem or piperacillin and tazobactam 
combination in nosocomial infections in regions with a high and low prevalence of 
multiresistant bacteria, respectively, with or without a glycopeptide. Novel 
antimicrobial strategies are an area of active research. This includes targeting 
resistance mechanisms in pathogens. For example, the novel small molecule Inh2-B1, 
which targets serine-threonine protein kinase of methicillin-resistant Staphylococcus 
aureus, makes the pathogen susceptible to ceftriaxone and cefotaxime. Another 
example is antibiotic pairing with novel beta-lactamase or carbapenemase, as is seen 
with ceftazidime-avibactam and meropenem-vaborbactum, both of which were 
approved by the United States Food and Drug Administration for use in 
Enterobacteriaceae infections. Pathogen targeted antibody therapy is also a novel 
strategy to improve antimicrobial susceptibility. An example of this is the 
development of a monoclonal antibody against extremely drug-resistant Acinetobacter 
baumannii[43].

A haemoglobin threshold of 7 g/dL to 8 g/dL could be considered ideal in patients 
with cirrhosis with sepsis, as is endorsed by Baveno VI guidelines in those with acute 
variceal bleeding with a restrictive strategy of blood transfusion. In general, the septic 
shock population, the use of noradrenaline with or without vasopressin and 
adrenaline in a staged manner, has been recommended to maintain MAP. In a 
randomized controlled trial in patients with cirrhosis, Choudhury et al[69] demonstrated 
that terlipressin was as effective as noradrenaline as a vasopressor in patients with 
cirrhosis with septic shock and additionally provided early survival benefit with 
reduction in risk of variceal bleeding. In cirrhosis patients, the use of dopamine does 
not come highly recommended due to the high risk of inducing arrhythmias, and the 
administration of dobutamine is not supported because patients with cirrhosis have 
high cardiac output at baseline, which worsens with sepsis. Dobutamine is 
recommended in patients with clinically significant myocardial dysfunction. With 
regards to vasopressor hypo responsiveness and adrenal insufficiency in a general 
population of septic shock patients, the ADRENAL trial found no difference in 90-d 
all-cause mortality even though patients in the hydrocortisone group had faster 
resolution of shock, had a shorter duration of the initial episode of mechanical 
ventilation, and were less likely to receive blood transfusions. However, the 
APPROCHS (Activated Protein C and Corticosteroids for Human Septic Shock) trial 
showed that the 90-d all-cause mortality was lower among those who received 
hydrocortisone plus fludrocortisone than among those who received a placebo. A 
systematic review and meta-analysis in septic shock patients showed that 
corticosteroids possibly caused a small reduction in mortality and reduced duration of 
shock and intensive unit treatment but an increase in neuromuscular 
complications[70,71].

In patients with cirrhosis, a randomized study did not show any benefit on 
mortality and shock reversal with the use of intravenous hydrocortisone[72]. Since 
protective ventilation (low tidal volumes of 6 mL/kg of ideal body weight and plateau 
pressures < 30 cm H2O) improves survival in general patients with adult respiratory 
distress syndrome, patients with cirrhosis who require mechanical ventilation should 
also be treated on the same lines. However, the sedation in such circumstances must 
ideally be with drugs with short half-lives such as propofol and remifentanil with 
avoidance of benzodiazepines[73-75]. In patients with cirrhosis, profound distributive 
shock leads to the development of refractoriness (a state of ”vasoplegia”) to inotrope, 
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and pressor support is higher than that seen in non-liver patients with septic shock 
due to increased sympathetic drive, use of beta-blockers, and more severe relative 
adrenal insufficiency.

Case reports and small series in general patients have shown that methylene blue 
(MB) (a selective inhibitor of guanylate cyclase improves vascular tone and tissue 
perfusion) infusion could improve refractory septic shock. Ahamed et al[76] recently 
studied the role of MB in patients with cirrhosis with refractory septic shock 
(published in abstract form) compared to those on a standard of care. The authors 
defined refractory septic shock as requirement of noradrenaline (final concentration 64 
μg/mL in 250 mL 0.9% normal saline) ≥ 4 μg/min (i.e. 8 mL/h) + vasopressin ≥ 0.01 
units/min (i.e. 1.5 mL/h). On retrospective analysis, they found that improvement in 
systolic blood pressure was significantly better in the MB group from baseline at the 
end of 24-, 72-, and 120 h compared to those on a standard of care. Improvement in 
diastolic blood pressure was notable in the MB group from baseline at the end of 24- 
and 72 h; between 24- and 72 h and 24- and 120 h while the increase in MAP was 
significantly higher in patients receiving MB from baseline at 24- and 72 h. Significant 
reduction in dose of noradrenaline and vasopressin dosing was also noted from 
baseline at the end of 24- and 72 h in the MB group. The need for additional inotropes 
was significantly higher at the end of 24- and 72 h in patients continued on the 
standard of care. The total hospital stay duration was significantly lower in the MB 
group (8 d vs 10 d, P < 0.05), however, without significant differences in short-term-
survival (1 wk, 14 d, and 28 d) between groups[76]. A proposed algorithm for the 
treatment of sepsis in cirrhosis is shown in Figure 5[43,66,73,74].

Walley et al[77] showed that the proprotein convertase subtilisin/kexin type-9 
(PCSK9) was a critical regulator of the innate immune response, and septic shock 
outcome and reduction in PCSK9 function were associated with increased pathogen 
lipid clearance through the low-density lipoprotein receptors with a decrease in the 
inflammatory response. Repurposing drugs for newer indications and genomic 
approaches to improving outcomes in septic shock is an area of active research[77]. 
Other promising treatment modalities in sepsis include a combination of vitamin C, 
hydrocortisone, thiamine, short-acting beta-blockade therapy using esmolol in patients 
with sepsis and persistent tachycardia, and toxin removal and inflammation control 
using hemadsorption techniques that utilize specialized membranes such as those with 
polymyxin B and finally, immune-stimulation with growth factors such as granulocyte 
and granulocyte-macrophage colony-stimulating factors. The role of nanoparticle-
based adjuvant therapies is gaining widespread attention as a novel area with 
beneficial strategic output in the treatment of sepsis. Nanoparticles have small size and 
sizeable surface area to volume ratio and can be utilized as antibacterial agents, 
structure platforms for adsorbents that bind and sequester endotoxins and cytokines to 
restore homeostasis[78,79]. A summary of novel adjuvant therapies for sepsis is shown in 
Table 4.

THE ROLE OF AND MODULATION OF GUT MICROBIOTA IN SEPSIS AND 
CIRRHOSIS
An intact intestinal barrier and commensal balance are imperative for proper 
maturation and development of the immune system. In health, gut microbiota 
antagonize pathogens by competing with nutritional components, produce 
antimicrobial peptides and metabolites, and render the local milieu hostile by 
modifying bile salts. Not only at the local sites, but at a systemic level, immune-
regulation is an important task of the healthy microbiota. Various structural 
components of the gut microbes called the microbe-associated molecular patterns, or 
MAMPs, can promote a systemic inflammatory response by activating and further 
maturing the innate and adaptive immune system. The microbial metabolites such as 
short-chain fatty acids (SCFAs) help in modulating both pro and anti-inflammatory 
responses to maintain immune and inflammatory balance in the host. SCFAs like 
butyrate and propionate activate regulatory T cells that ameliorate systemic 
inflammation. Other gut metabolites such as desaminotyrosine boosts type 1 
interferon responses leading to improved viral pathogen clearance. In patients who 
develop dysbiosis, due to environmental and host factors, gut microbial health 
deteriorates, leading to increased risk of infections. Furthermore, the use of antibiotics 
increases dysbiosis that enters the host into a vicious cycle of infections and organ 
dysfunction. It is well known that patients with cirrhosis have dysbiosis that worsens 
with the severity of liver disease. In its worst form, pathobionts prevail, and the 
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Table 4 Novel adjuvant therapies for management of sepsis[74-76]

Therapy Mechanism Systemic effect in sepsis

Eritoran; resatorvid Toll-like receptor 4 antagonist; Eritoran is structurally similar to 
lipopolysaccharide – A of Gram-negative bacteria. Resatorvid is 
a direct antagonist of toll like receptor 4

Anti-inflammatory; Immunomodulation

Polymixin B fibre column; CytoSorb Hemoperfusion; CytoSorb has hemadsorption properties Removal of circulating endotoxin and bacterial 
components

Plasma exchange; Whole blood exchange; Coupled plasma filtration adsorption; Hemofiltration Exchange of plasma or blood with or without sorbent 
adsorption; either continuous or intermittent; low or high 
volume

Removal of endotoxins and circulating cytokines

Macrolides Nuclear factor kB and AP-1 signalling suppression, inhibition of 
ERK-1 and 2 pathways

Anti-inflammatory and immunomodulating 
properties

Interferon-gamma Increase in monocyte HLA-DR expression Restores immune regulation, abolishes 
immunoparalysis by restoring monocyte function

Immunoglobulins Increase in IgA and IgM levels Boosts humoral immunity

Granulocyte macrophage colony stimulating factor Promotes maturation and differentiation of neutrophils, 
monocytes, macrophages, dendritic cells, T lymphocytes and 
plasma cells

Improves immune regulation, reduces 
immunoparalysis

Anti-MIF Antagonizes macrophage migration inhibition factor Immunomodulation through boosting activity of 
endogenous glucocorticoids

Super-Antigen-Antagonist Suppression of pro-inflammatory gene expression by inhibition 
of T cell activation

Th1 blockade and prevention of lethal shock

Heparin and its analogues Anti-thrombotic, immunomodulation Prevents early disseminated intravascular 
coagulation, prevents early organ failures due to 
diffuse system microvascular thrombosis

Naloxone Opioid receptor antagonism Improves hemodynamic instability

Pentoxifylline Decreases erythrocyte aggregation and deformability, anti TNF-
alpha effect

Improvement in arterial oxygen tension by 
improving fractionated oxygen exchange

GTS-21 Selective alpha-7-nicotinic acetylcholine receptor agonist, blocks 
nuclear factor – kB and cytokines downstream

Activates cholinergic anti-inflammatory pathway

Interleukin 7 and 2 Pro-inflammatory cytokines Prevents immunoparalysis

Programmed cell death-1 (PD-1) and ligand (PD-L1) antagonist Prevention of lymphocyte depletion, improvement in pro-
inflammatory mediators and increased bacterial clearance

Immune modulation

B and T cell lymphocyte attenuator antagonism (BTLA) Increases activity and proliferation of T cells Increases resistance to endotoxin and prevention of 
endotoxin mediated shock

Antagonism of cytotoxic T lymphocyte antigen 4 (CTLA-4) Increased activity and proliferation of T cells Abolishes endotoxemia and associated toxic shock
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Methylthiouracil Suppresses high mobility group box – 1 (HMGB-1) Anti-inflammatory

Structurally nanoengineered antimicrobial peptide polymers; Ceria – zirconia nanoparticles; Piceatannol-loaded 
albumin nanoparticles; Sialic-acid decorated nanoparticles; Exsosomes loaded with MFGE8, miR-223; Red blood 
cells and macrophage coated nanoparticles; Liposomes tagged to antimicrobials; Opsonin bound magnetic 
nanobeads

Nanoparticle technology (pre-clinical studies) Antibacterial; Antioxidant; Anti-inflammatory; 
Endotoxin antagonist; Extracorporeal blood 
cleansing; Clearance of apoptotic cells

AP: Activator protein; BTLA: B and T lymphocyte associated; CTLA-4: Cytotoxic T-lymphocyte-associated protein 4; ERK: Extracellular signal-regulated kinases; HLA-DR: Human leukocyte antigen – DR isotype; HMGB: High-mobility 
group box; Ig: Immunoglobulins; MFGE8: Milk fat globule epidermal growth factor 8 protein; MIF: Macrophage migration inhibitory factor; miR: Micro-RNA; PD-L: Programmed death receptor ligand; TNF: Tumour necrosis factor.

intestinal microbiota after that functions as a repository for antimicrobial resistance (a 
state called ”resistome”). This further endangers immune function at the local and 
systemic level predisposing the host to not only infectious insults but also severe 
inflammatory states leading to organ failures. The best proof that sepsis can be 
improved with modulation of gut microbiota stems from studies of healthy donor 
faecal microbiota transplantation (currently rechristened intestinal microbiota 
reinstitution therapy or intestinal microbiota re-instituition therapy) in patients with 
recurrent and severe Clostridium difficile infections[80-82]. Modulation of microbiota in a 
similar fashion in patients with liver disease has been shown to improve outcomes 
related to hepatic encephalopathy, alcoholic hepatitis with infections, ACLF, and 
primary sclerosing cholangitis with recurrent cholangitis[83-86]. In patients with 
cirrhosis, understanding the gut microbiota and its modulation are still in foetal stages. 
In such patients, the first step is to identify, through omics-based research, those at risk 
for the development of infections before sepsis development. Modulating microbiota 
at this stage can help prevent infections by restoring a eubiotic microbiome. In those 
patients with sepsis, addressing dysbiosis through active modulation of the microbiota 
can help improve outcomes related to sepsis and organ failures. In those surviving 
sepsis, modulation of microbiota to restore homeostatic balance can help prevent 
dysbiosis driven infectious insults in the future (Figure 6). Recently, in a randomized 
controlled pilot trial, Stadlbauer et al[87] demonstrated that dysbiosis in early sepsis 
could be modulated by utilizing a multispecies probiotic (Winclove 607 based on 
Omnibiotic® 10 AAD) with improvement in clinical outcomes.

CONCLUSION
Sepsis and septic shock are conditions associated with high mortality in the general 
population, more so in patients with cirrhosis due to specific hemodynamic and 
immune system-related changes affecting the latter. Over the past few decades, the 
definition of sepsis and its application in clinical practice has seen a major change, 
which has helped to identify better patients at risk. The sepsis care protocols have 
evolved over the past few years to incorporate the best clinical practices that would 
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Figure 5  The proposed treatment algorithm for sepsis in cirrhosis[66,68,70-72,75]. BCAA: Branched-chain amino acids; FMT: Faecal microbiota 
transplantation; G-CSF: Granulocyte-colony stimulating factor; GM: Granulocyte-macrophage; ICU: Intensive care unit; IMRT: Intestinal microbiota re-instituition 
therapy; IV: Intravenous; LOLA: L-ornitine L-aspartate; LPS: Lipopolysaccharide; MDR: Multidrug resistant.

improve clinical outcomes in affected patients. Even though specific guidelines for 
sepsis identification and treatments do not exist in patients with cirrhosis, real-world 
evidence from the non-liver population has been of great help in managing sepsis in 
this difficult to treat cohort. Basic science work has identified novel areas such as the 
role of nutrition, immune regulation, genomics-based and nanomedicine-based 
approaches, as well as microbiota modulation in improving adjuvant treatments for 
sepsis, which could become an integral part in the management of severe infections. 
Novel antimicrobial strategies for combating resistance and the role of machine 
learning and deep data mining are also major tools currently in development as 
armamentarium against sepsis. In this exciting era of basic science work driven bench 
to bedside strategies, the improvements in challenges during the management of 
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Figure 6  The role of gut microbiota in driving and worsening sepsis and cirrhosis[78,80,81]. Gut microbiota modulation is an interesting approach to 
management of sepsis in the future. Reducing dysbiotic bacterial communities and favouring commensals that improve host immune functions, promote endogenous 
antimicrobial metabolite formation and resist pathogenic colonization could be achieved through high dose probiotics or intestinal microbiota re-institution therapy. 
MDR: Multidrug resistant.

sepsis in cirrhosis in the future looks promising.
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Abstract
Cell competition is now a well-established quality control strategy to optimize cell 
and tissue fitness in multicellular organisms. While pursuing this goal, it is also 
effective in selecting against altered/defective cells with putative (pre)-neoplastic 
potential, thereby edging the risk of cancer development. The flip side of the coin 
is that the molecular machinery driving cell competition can also be co-opted by 
neoplastic cell populations to expand unchecked, outside the boundaries of tissue 
homeostatic control. This review will focus on information that begins to emerge 
regarding the role of cell competition in liver physiology and pathology. Liver 
repopulation by normal transplanted hepatocytes is an interesting field of 
investigation in this regard. The biological coordinates of this process share many 
features suggesting that cell competition is a driving force for the clearance of 
endogenous damaged hepatocytes by normal donor-derived cells, as previously 
proposed. Intriguing analogies between liver repopulation and carcinogenesis 
will be briefly discussed and the potential dual role of cell competition, as a 
barrier or a spur to neoplastic development, will be considered. Cell competition 
is in essence a cooperative strategy organized at tissue level. One facet of such 
cooperative attitude is expressed in the elimination of altered cells which may 
represent a threat to the organismal community. On the other hand, the society of 
cells can be disrupted by the emergence of selfish clones, exploiting the molecular 
bar codes of cell competition, thereby paving their way to uncontrolled growth.

Key words: Cell competition; Liver carcinogenesis; Liver repopulation; Aging; Tissue 
homeostasis; Clonal expansion
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Core tip: Cell competition stands as an eminently cooperative strategy which operates in 
coordination with mechanisms overlooking tissue mass and tissue architecture. One facet 
of such cooperative attitude is also expressed in the elimination of altered, putative (pre)-
neoplastic cells which may potentially pose a threat to the organismal community. On the 
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other hand, cell populations on the path towards neoplasia may cheat the society of cells 
from which they originate using the molecular bar codes of cell competition, thereby 
paving their way to uncontrolled growth, invasiveness and metastatic capacity.
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ORGANISMAL COMMUNITIES
Cell communities in multicellular organisms are shaped by a fundamental organizing 
principle, instructing the relative sizes and reciprocal relationships to be enacted and 
maintained over time among different cell types. Such a seemingly simple fact 
represents the very essence of individual multicellular communities and mechanisms 
overlooking their correct implementation are central during development and 
throughout life[1-3]. For example, when part of liver tissue is lost (due to surgery or any 
injury), residual hepatocytes are immediately alerted and awakened from their 
quiescent state to enter cell cycle, divide and replenish the missing parenchyma. 
Conversely, following liver hyperplasia a wave of hepatocyte deletion ensues upon 
withdrawal of the inciting stimulus, until the original tissue mass is reinstated.

While the capacity to maintain stable tissue mass is remarkable, there is still more to 
it. In fact, another layer of complexity has been added to the above mechanism 
following the realization that quality control strategies are also at play to optimize cell 
fitness in tissue composition. Thus, not only the number of cells in a given tissue is 
constantly under control, but their functional efficiency is also monitored and actively 
selected for in order to limit any time-dependent decline. One such strategy is cell 
competition, consisting in the confrontation of homotypic cells with varying levels of 
fitness and resulting in the elimination of the weaker (losers) carried out by the 
stronger counterparts (winners). While primarily aimed at maintaining optimal 
functional proficiency in cell populations of normal tissues, it has been suggested that 
mechanisms driving cell competition can also be hijacked and exploited by pre-
neoplastic and/or neoplastic cells to manifest their aggressive and dominant 
phenotype[4]. The aim of this review is to discuss the possible role of cell competition 
during hepato-carcinogenesis.

WHAT IS CELL COMPETITION
In its simplest definition, cell competition refers to a process whereby cells in a given 
tissue, which would be otherwise viable and functional, are instead outcompeted and 
cleared by the presence of a functionally more proficient population. The first report 
describing a similar scenario dates back to the mid the 1970s and refers to the 
elimination of Minute-mutant cells when confronted with wild type counterparts in the 
imaginal disk of Drosophila melanogaster[5]. The Minute mutation affects ribosomal 
protein genes and translates into a slower growth rate of heterozygous mutant cells. 
Several other mutations were subsequently identified to induce a loser phenotype in 
presence of wild type cells, including those involving basic cellular functions such as 
tissue patterning, protein translation and cell signaling[6].

In an attempt to outline the boundaries of cell competition, a series of biological 
features have been proposed to be associated with this phenomenon[7]. Firstly, cell 
competition is context-dependent, i.e., the fate of each cell type, the winner and the 
loser, results from their reciprocal interaction, be it direct or indirect; this is arguably 
the single most relevant attribute of cell competition, as well as the most complex to 
enact. Secondly, the winner cell proliferates following induction of cell death 
(apoptosis) of the loser cell, i.e., the two opposite events are temporally and 
mechanistically coordinated. As a corollary, biological forces driving cell competition 
tend to maintain appropriate tissue size and pattern. Furthermore, interactions 
conducive to cell competition occur within a relatively short range, being strongest at 
the interface between winner and loser cells. Last but not least, cell competition is 
restricted within defined developmental compartments[1], i.e., it occurs within discrete 
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tissue boundaries that cannot be overridden by winner cells.
Within this definition, mechanism(s) governing cell competition are intertwined, at 

least in part, with those overlooking the fine balance between cell gain and cell loss, 
which in turn determine tissue size in any organ and organism[1,2]. Since alterations of 
the latter mechanisms represent a hallmark of neoplastic disease, it is all the more 
reasonable to propose that cancer cell populations may coopt strategies involving cell 
competition in order to selectively emerge vis a vis the surrounding counterparts[8,9].

COMPETITION FOR WHAT
Cell competition can only occur when a critical degree of phenotypic heterogeneity is 
present within a homotypic cell population; in addition, a limit must exist in the 
availability of whatever resource these cells are competing for. Molecular analysis 
carried out at the resolution of single cells has revealed that cell heterogeneity at 
genetic and epigenetic levels is indeed far more pervasive than previously thought 
even in normal adult tissues, raising the possibility that cell competition may not be a 
rare phenomenon[6]. Cells can compete for nutrients, growth factors and ultimately 
space, given the size constraints imposed on any tissue by homeostatic control 
mechanisms[3].

A paradigmatic example in which the principle of cell competition is at play is the 
process of antibody affinity maturation in lymphoid germinal centers[8,9]. 
Heterogeneity is generated through somatic hypermutation in the gene coding for the 
B-cell receptor. The limited resource is represented by antigen availability: The lower 
the antigen concentration, the higher the affinity of the resulting antibodies. 
Lymphocytes are in fact positively selected through the binding of their mutated 
receptor to antigen, which in turn is dictated by the degree of affinity of the former to 
the latter. Lymphocytes that are unable to reach for antigen trough their receptor die 
by apoptosis. Thus, the competitive fitness of B lymphocyte clones rests on their ability 
to bind a rescuing or “trophic” factor, which is epitomized, in this case, by the 
incoming antigen.

The above sequence of events is similar, in essence, to the one described in the 
Minute-mutant of Drosophila wing imaginal disk referred to above, which is considered 
as a classical model of cell competition. It was in fact proposed that in this system, 
slow-growing Minute-mutant cells have a disadvantage in competing for a survival 
signal, and this leads to increased expression of a pro-apoptotic cascade and final 
clearance of mutants by wild type cells[10]. Parenthetically, it is important to point out 
that the latter interpretation has been questioned by subsequent studies suggesting 
that differences in growth rate per se between mutant and wild type cells are sufficient 
to account for their unbalanced contribution to wing development, while cell 
competition per se would not appear to play a major role in the process[5]. These 
findings also indicate that a slower growth rate does not necessarily entail a loser 
phenotype compared to faster homotypic counterparts, i.e., for cell competition to be 
enforced other critical differences must be present.

WHAT IS CELL FITNESS
The latter consideration brings us to the core issues pertaining cell competition: What 
parameters are measured between winner and loser cells to assess relative fitness and 
how is this accomplished? We must acknowledge that only scattered information is 
available so far to answer these questions. Given that evolutionary processes 
(including cell competition) have selected over time for cells with better and better 
functional proficiency, it follows that normal tissues are populated with cells with 
near-optimal performing capacity. This in turn implies that any damage to any cell 
will likely result in a decreased fitness, laying the basis for its clearance by neighboring 
normal cells through cell competition[11-13]. Thus, any damage above a given threshold 
can potentially trigger cell deletion. However, this is not a cell-autonomous process, as 
postulated for the classical p53-dependend apoptosis elicited in response to DNA 
damage[14]. Rather, it relies on the presence of surrounding cells and results from the 
confrontation of different levels of cellular fitness, within the biological boundaries of 
cell competition[15,16]. There is obviously a fundamental difference between these two 
strategies leading to clearance of damaged cells. While cell-autonomous mechanisms 
operate at single-cell level and do not take into account overall tissue function, 
deletion of damaged cells via cell competition is only triggered when fitter cells are 
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available and can possibly replace the ones that are lost. The latter consideration 
supports the contention that cell competition is an integral part of regulatory networks 
overlooking tissue maintenance and homeostasis[17,18]. Specific strategies to pursue this 
goal can vary even in the same tissue during different developmental phases. In 
mouse skin, the early embryonic epithelium is single-layered and loser cell disposal is 
carried out through their direct phagocytosis by surrounding winner cells; however, as 
the epidermis becomes stratified, loser cells are extruded from the basal layer along 
the differentiation conveyor and are eventually shed out[19].

Sensing relative cellular fitness is therefore an essential step in the process of cell 
competition[6]. One of the parameters that has emerged as relevant in this regard is the 
expression of Myc protein[20-23]. Higher cellular levels of this transcription factor confer 
a winner phenotype both during Drosophila development[20], in early mammalian 
embryo[21,24-26] and in adult, post-mitotic tissues such heart[27]. Furthermore, 
overexpression of Myc is associated with a super-competitor phenotype, which is able 
to outcompete wild type cells[20]. Similar to Myc, other genes important for cell 
anabolism have been implicated as triggers of cell competition, including those 
involved in the Hippo, Wnt/Wingless, Ras/mitogen-activated protein kinases and 
Janus kinase/signal transducers and activators of transcription (JAK/STAT) 
pathways, among others[21]. Conversely, defects in genes implicated in the 
determination of cell polarity and tissue patterning impose a loser phenotype on the 
affected cells in presence of wild type counterparts[28,29].

So far, the best characterized direct sensor of cell fitness is the Flower system[30,31]. It 
consists of three splice isoform proteins, Flowerubi, FlowerLoseA and FlowerLoseB and only 
the former is expressed under steady state conditions. However, when cell fitness 
decreases, expression of Flowerubi is down-regulated, while levels of both FlowerLoseA 
and FlowerLoseB increase, generating what has been referred to as the “flower code”, 
which targets cells for survival (Flowerubi) or apoptosis (FlowerLoseA and FlowerLoseB)
[23,24]. Human Flower isoforms have recently been reported and evidence was presented 
that a similar winner/loser code is also operative in human cells[32].

CELL COMPETITION IN THE LIVER
Virtually no information is available on the possible role of cell competition in the liver 
during normal development and throughout post-natal life. However, a few studies, 
mostly using cell transplantation systems, have indicated that hepatic tissue appears to 
be susceptible to undergo this process. About 20 years ago, we proposed that a 
mechanism consistent with cell competition was possibly involved in a newly 
developed model of massive liver repopulation[33,34]. In this experimental system, 
animals (rats) are treated with retrorsine, a naturally occurring pyrrolizidine alkaloid 
that causes persistent DNA damage associated with a chronic mitotic block in targeted 
hepatocytes. It is noteworthy that damaged hepatocytes are able to sustain normal 
liver function and in fact retrorsine treated animals survive for up to 2 years[35]. 
However, the most intriguing finding was observed following cell transplantation. 
When normal syngeneic hepatocytes were orthotopically delivered after treatment 
with the alkaloid, they are able to massively replace endogenous parenchymal cells, 
with greater that 90% repopulation at the end of the process[33]. It was suggested that 
“the presence of normal transplanted cells may trigger selective deletion of RS-
damaged resident hepatocytes, possibly through apoptosis”[33], a process that is fully 
consistent with cell competition (Figure 1). A few years later, a study by Oertel et al[36] 
proposed cell competition as the basis for the selective expansion of transplanted 
normal embryonic hepatic cells in the liver of syngeneic adult rats[36], similar to results 
obtained following transplantation of young adult hepatocytes in the liver of aged 
recipients[37].

While common molecular pathways involved in cell competition were not 
investigated under the above experimental conditions, biological coordinates of the 
described phenomena support the hypothesis that liver repopulation by transplanted 
hepatocytes is, at least in part, the outcome of a differential fitness comparison 
between resident and donor-derived cells. Accordingly, a cell-autonomous decrease in 
proliferative competitiveness was reported in aged vs young hepatocytes upon 
transplantation in the same microenvironment in vivo[38].

If cell transplantation is not performed, a slow process of repopulation sustained by 
endogenous hepatocytes occurs in rat liver exposed to RS, giving rise to regenerative 
nodules[39,40]. A similar scenario has also been reported in the liver of patients affected 
by type 1 tyrosinemia[41], the human counterpart of a well characterized mouse model 
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Figure 1  Modes of canonical cell competition. A: Wild type cells (dark brown) are endowed with higher fitness (winner phenotype) compared to rare altered 
cells (loser phenotype

of liver repopulation[42]. Whether cell competition is driving and/or contributing to 
either or both processes is an intriguing possibility that remains to be explored.

CELL COMPETITION IN THE PATHOGENESIS OF CANCER
We are now back to the central question of this review: Is there a role for cell 
completion in cancer and, more specifically, in liver carcinogenesis, From a molecular 
standpoint, numerous pathways that have been proposed to have a role in cell 
competition (summarized above) are also implicated in the pathogenesis of neoplastic 
disease. It would appear therefore quite reasonable to expect that alterations in these 
pathways might cause a defective control in the mechanisms of cell competition and, 
almost inevitably, a parallel increase in the risk of cancer. As an example, the Myc 
protein is often overexpressed in human cancer[43] and is also a known driver of cell 
competition[7]. Accordingly, cells with up-regulated Myc can express a super-
competitor phenotype[23] and this could contribute, at least theoretically, towards a 
neoplastic behavior[22].

However, the potential role of cell competition in the multistep process of neoplastic 
development is far from being confined to situations of altered molecular control. In 
fact, the emerging picture is that biological mechanisms underlying cell competition 
under normal conditions are directly relevant to the pathogenesis of cancer from early 
stages to advanced disease[4]. A compelling case is the extrusion of altered, potentially 
pre-neoplastic cells from epithelia orchestrated by normal surrounding counterparts 
and referred to as epithelial defense against cancer[12]. For example, normal cells were 
able to induce Warburg-like metabolic changes in RasV12-transformed cells, leading to 
their removal from mouse intestinal epithelium[11]. Similarly, cell competition by 
normal cells is able to eliminate scrib mutant cells from Drosophila imaginal disk, 
while in the absence of wild type counterparts mutant clones do not die and progress 
to form tumors[29].

As one can predict, this protective strategy is not foolproof and, more to the point, it 
can be altered in its efficiency by environmental influences. A recent study indicated 
that removal of RasV12-transformed cells from mouse intestine was decreased 
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following feeding a high fat diet (HFD), due to altered lipid metabolism and HFD-
induced inflammatory changes; treatment with aspirin was able to mitigate HFD 
negative effects on transformed cell clearance[44]. Similarly, hematopoietic stem and 
progenitor cells expressing a mutant p53 displayed a growth advantage vs wild type 
counterparts when transplanted in mice following exposure to mild irradiation, while 
no such advantage was evident upon transplantation of the same cell populations in 
untreated recipients[15]. Furthermore, we have proposed that aging is associated with a 
generalized decrease in the efficiency of mechanisms overlooking maintenance of cell 
fitness, possibly including cell competition[17,45,46]. In addition, specific genetic 
alterations might be positively selected, as opposed to eliminated, under 
environmental conditions favoring their phenotype. This could partly account for the 
pervasive presence of aberrant clonal expansions in aged human tissues[47] and/or in 
association with disease states such as ulcerative colitis[48,49]. It was shown that 
organoids derived from ulcerative colitis patients are populated by genetically altered 
cell clones that are adapted to an inflammatory microenvironment, i.e., they are fitter 
to that environment compared with wild type intestinal cells[48,49]. Whether in these 
instances cell competition is at play is an important question that remains to be 
addressed. Relevant to this issue, a mechanistic association was reported between 
alterations in intestinal barrier integrity, aging, dietary regimen and the efficiency of 
cell competition[46].

Direct evidence that cell competition is indeed mechanistically exploited by cancer 
cells during growth and metastatic spread was recently presented[32,50]. Human cancer 
cells were shown to express the Flower code of a winner cell phenotype and inhibition 
of the latter resulted in reduced tumor growth and increased response to 
chemotherapy[32].

CELL COMPETITION IN LIVER CARCINOGENESIS
Given the limited amount of information available regarding the role of cell 
competition in liver under normal conditions, it is not surprising that a similar 
consideration also applies to the process of liver cancer development. Several years 
ago we have pointed out the existence of intriguing analogies between the process of 
liver repopulation by normal hepatocytes and carcinogenesis[34]. For example, several 
of the available experimental models of massive liver repopulation are also prone to 
develop neoplastic disease, including the RS-based model developed by our research 
group and referred to above. Thus, pre-neoplastic hepatocytes grow and progress to 
cancer upon transplantation into retrorsine treated rat liver, while the same cells are 
unable to expand when delivered to normal untreated host[51]. As discussed above for 
liver repopulation by transplanted normal hepatocytes, the biological coordinates of 
this phenomenon suggest that cell competition might be involved (Figure 2)[27], albeit 
formal proof of this linkage is not available yet.

Along these lines, an important step forward was the report by Moya et al[45], who 
have studied the role of Hippo signaling pathway in the growth of primary liver 
tumors and liver metastases from melanoma cells in mice. It was found that the 
relative level of activation of Hippo pathway in normal surrounding vs tumor cells 
was critical in determining the growth rate of the latter; specifically, inhibition of this 
pathway in peritumoral cells increased proliferation in nodular lesions, while tumors 
regressed when Hippo activity was up-regulated in surrounding normal tissue. In 
addition, tumor survival in wild type mice was dependent on the presence of an active 
Hippo pathway in cancer cells, while the activity of the pathway was dispensable 
when tumors were growing in a Hippo-deficient liver background[52]. These findings 
were interpreted to suggest that Hippo pathway-driven cell competition is an 
important determinant in controlling the growth of (pre)-neoplastic cell populations in 
the liver. It is intriguing to note that Hippo pathway activity was also shown to be 
essential for the maintenance of the differentiated state in hepatocytes and its 
inhibition correlated with the appearance of a progenitor cell phenotype[53].

CONCLUSION
Cell competition has emerged as an important quality control mechanism overlooking 
tissue functional proficiency during development and in post-natal life. In essence, 
such mechanisms entails the elimination and replacement of a less fit (loser) cell 
population by a fitter cell type (winner). Evidence is also accruing that this process 
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Figure 2  Liver repopulation and liver carcinogenesis. Top: In the context of persistent, widespread tissue damage, transplanted homotypic cells with 
normal fitness (dark brown) can outcompete resident damaged cells (light brown) and slowly repopulate nearly the entire tissue, without exceeding tissue boundaries. 
However, in the absence of normal transplanted hepatocytes, endogenous cells persist for at least several months; Bottom: In a similar context of persistent, 
widespread tissue damage, transplanted homotypic cells with normal fitness and with a pre-neoplastic phenotype (dark yellow) can outcompete resident damaged 
cells and form hepatic nodules that progress to cancer. The same pre-neoplastic cells do not grow following transplantation in a context of normal cell fitness in vivo 
(see text for details).

might be involved in the pathogenesis of neoplastic disease at different steps. On one 
side of the coin is the first and possibly firmest conclusion so far, i.e., cell competition 
protects from the risk of cancer via identification and purging of single altered cells 
expressing a loser code, which flags a decreased fitness relative to surrounding 
counterparts. On the other hand, several studies suggest that the winner/loser code 
associated with cell competition can be exploited or hijacked by (pre)-cancerous cell 
populations to outcompete normal neighbors in the same tissue, thereby fueling their 
progression towards increasing malignancy. The prototypic example of such scenario 
is the super-competitor phenotype of Myc-overexpressing cells, which can be a winner 
phenotype over wild type cells. However, this apparently straightforward sequence of 
events appears difficult to reconcile with the defining biological features of cell 
competition, as it was aptly pointed out long ago[23]. A critical attribute of cell 
competition is in fact that it operates within discrete tissue boundaries that cannot be 
overridden by winner cells (see above). Thus, any cell type engaging in this process 
should stop expanding once the appropriate tissue compartment has been fully 
replenished, and this is also the case for the Myc super-competitor phenotype[1,21]. 
However, cancer cells do not obey these rules and their growth beyond set 
compartmental boundaries cannot be explained by cell competition per se (Figure 2). 
Stated otherwise, while canonical cell competition occurs within tissue homeostatic 
control mechanisms, the type of cell competition engaged by neoplastic cell 
populations is clearly outside such boundaries and is the expression of an eminently 
selfish phenotype[54,55].

A second feature of canonical cell competition which appears at odds with the 
phenotype of cancer cells is the type of cell interaction that is required to define 
relative fitness and hence the winner vs loser cell fate. According to the currently 
accepted paradigm, cell competition occurs among homotypic cells, in that it compares 
fitness levels within a cell population performing the same function in a tissue. By 
contrast, it is almost axiomatic that cancer cells have often departed significantly from 
the phenotype of the tissue of origin, including its functional proficiency. Therefore, a 
comparison of cell fitness between neoplastic cells and their normal tissue 
counterparts would likely favor survival of the latter, not the former.

Based on the above considerations, we propose that canonical cell competition is 
possibly involved in the initial stages of carcinogenesis leading, to discrete clonal 
expansions which are still within tissue homeostatic control[56]. However, the 
molecular machinery of cell competition may be co-opted by overtly neoplastic cell 
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populations endowed with additional phenotypic features to sustain their 
uncontrolled growth.
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Abstract
In recent years, significant progress in the antiviral treatment of chronic hepatitis 
C (CHC) has been made due to the development of interferon-free therapies. 
Three different highly effective, oral direct-acting antiviral (DAA) regimens have 
been approved for use in adolescents with CHC between the ages of 12-years-old 
and 17-years-old in Europe. According to the current recommendations, all 
treatment-naïve and treatment-experienced children with CHC virus infection 
should be considered for DAA therapy to prevent the possible progression of 
hepatitis C virus-related liver disease and its complications. However, the novel 
coronavirus disease 2019 outbreak, which was classified as a pandemic in March 
2020, is currently spreading throughout the world, resulting in a disruption of the 
healthcare system. This disruption is having a negative impact on the care of 
patients with chronic diseases, including children with CHC. Thus, several efforts 
have to be made by pediatric hepatologists to prioritize patient care in children 
with CHC. These efforts include promoting telemedicine in the outpatient setting, 
using local laboratory testing for follow-up visits, and engaging in the home 
delivery of DAAs for patients under antiviral therapy whenever possible.

Key words: Children; Chronic hepatitis C; COVID-19; Direct-acting antiviral; Hepatitis C 
virus
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Core tip: The novel coronavirus disease 2019 outbreak, classified as a pandemic, is 
currently spreading throughout the world, resulting in a disruption of the healthcare 
system. This disruption is having a negative impact on the care of patients with chronic 
diseases, including children with chronic hepatitis C. In this review, we describe several 
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efforts that have to be made by pediatric hepatologists to prioritize patient care in children 
with chronic hepatitis C. They include promoting telemedicine in the outpatient setting, 
using local laboratory testing for follow-up visits, and engaging in the home delivery of 
drugs for patients under antiviral therapy whenever possible.
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INTRODUCTION
Hepatitis C virus (HCV) infection is considered a major cause of liver-related mortality 
and morbidity worldwide, rendering it an important public health problem[1,2]. It is 
estimated by the World Health Organization (WHO) that 71 million people [95% 
confidence interval (CI): 64-103 million] are infected with HCV globally, which 
represents approximately 1% of the population[1,3]. The prevalence of HCV infection in 
children aged 1-year-old to 19-years-old is 0.15%, corresponding to 3.5 million people 
(95%CI: 3.1-3.9 million)[1,4]. However, since major gaps in our current knowledge on the 
epidemiology of chronic hepatitis C (CHC) exist in both adults and children, most 
HCV-infected people are unaware of their infection[1]. Thus, the true prevalence of 
HCV infection in children and adolescents might be underestimated[5]. In 2016, the 
WHO released a global health sector strategy for eliminating viral hepatitis by 2030 
that includes global and country-wide targets for the testing, treatment, and 
prevention of CHC[6].

Chronic HCV infection leads to a progressive disease, with 10%-20% of infected 
patients developing cirrhosis and approximately 7% of adult patients with cirrhosis 
progressing to hepatocellular carcinoma[7,8]. Data reporting liver disease progression in 
the pediatric population infected with HCV are limited[9]. This progression is usually 
described as a mild disease in children and adolescents; however, severe cases have 
also been described occasionally[9-12]. Liver fibrosis and inflammation in children 
suffering from CHC is a time-dependent process, with approximately 2% of infected 
children developing advanced liver disease during childhood[13-16]. In the case of 
vertical HCV transmission, the progression of liver disease may occur at a younger age 
than in children infected horizontally in the later years of life, resulting in severe liver 
disease in their teens or in young adulthood[9,17]. Thus, effective antiviral treatment in 
children with CHC could prevent the development of end-stage liver disease, 
cirrhosis, and hepatocellular carcinoma in young adults.

MANAGEMENT OF HCV INFECTION IN CHILDREN AND ADOLESCENTS
Since 2015, the development and approval of novel, oral, interferon-free, antiviral 
treatment with direct-acting antivirals (DAAs) has substantially improved the 
treatment of HCV infection[18,19]. With an efficacy approaching 100% and a short 
duration of therapy, DAAs are a highly effective, safe, and well-tolerated alternative 
for previously used therapies based on interferons[18,19]. Currently, approximately 10 
different DAA combinations have been approved for use in adults, increasing the 
prospect of HCV elimination on a population level[1,18]. However, treatment options 
based on DAA for children are currently limited[1,18]. Only three DAA regimens have 
been approved for use in adolescents by the European Medicines Agency (EMA) in 
Europe[1,20-24] (Table 1). The first DAA regimens, a fixed-dose combination of 
sofosbuvir/ledipasvir and sofosbuvir with ribavirin, were approved by the EMA in 
2017 for use in adolescents between 12-years-old and 17-years-old with CHC[20,25]. The 
first regimen with pangenotypic activity, i.e. glecaprevir/pibrentasvir, was approved 
by the EMA in 2019 for adolescents aged 12-years-old to 17-years-old[24]. In addition, in 
2019, the United States Food and Drug Administration (FDA) approved 
sofosbuvir/ledipasvir and sofosbuvir with ribavirin for use in children between 3-
years-old and 11-years-old, and in March 2020, the FDA approved another 
pangenotypic combination, i.e. sofosbuvir/velpatasvir, for the treatment of chronic 
HCV patients as young as 6 years of age or weighing at least 17 kg[26-28]. However, the 

https://www.wjgnet.com/1948-5182/full/v12/i8/485.htm
https://dx.doi.org/10.4254/wjh.v12.i8.485


Pokorska-Śpiewak M et al. Management of HCV during COVID-19 pandemic

WJH https://www.wjgnet.com 487 August 27, 2020 Volume 12 Issue 8

Table 1 Direct-acting antivirals approved for adolescents aged 12 to 17 years in Europe (May 2020)[20,22-24]

Direct-acting antivirals regimen 
(doses per d)

Hepatitis C virus 
genotype Patients Duration of 

treatment in wk

Treatment-naïve with or without cirrhosis or treatment-
experienced without cirrhosis

121

Treatment-experienced with cirrhosis 24

Sofosbuvir/ledipasvir (400/90 mg)

4, 5, 6 Treatment-naïve or treatment-experienced, with or without 
cirrhosis

12

2 12Sofosbuvir + ribavirin (400 mg + 15 
mg/kg)

3

Treatment-naïve or treatment-experienced, with or without 
cirrhosis

24

All genotypes Without cirrhosis 8

All genotypes With cirrhosis 12

Glecaprevir/pibrentasvir (300/120 mg)

3 Treatment experienced 16

FDA approvals are not applicable in Europe. According to the current 
recommendations, all treatment-naïve and treatment-experienced children with CHC 
virus infection should be considered for DAA therapy to prevent the possible 
progression of HCV-related liver disease and its complications[20,21]. In children 
younger than 12-years-old with CHC, antiviral treatment should be deferred until 
interferon-free regimens are available[21]. Since liver disease in HCV-infected children 
is usually mild, and they rarely have comorbidities or take medicines posing potential 
risk for drug interactions, pediatric patients seem to be ideal candidates for DAA 
treatment. However, treatment options for children in many regions are currently 
limited[1]. Due to the high costs of DAAs, very few countries have implemented 
recommendations for CHC treatment in adolescents in their national policies[1]. In 
addition, there are no approved treatment options for children younger than 12-years-
old in Europe. Thus, only a small number of children and adolescents with CHC have 
been treated globally, especially in low- and middle-income countries[1]. Considering 
the positive results from the clinical trials on DAA efficacy and safety, the first real-life 
therapeutic programs for pediatric patients infected with HCV based on DAAs were 
launched in Europe in 2019.

CORONAVIRUS DISEASE 2019 AND THE LIVER
Since the end of 2019, a novel severe acute respiratory syndrome coronavirus (SARS-
CoV-2) has caused an outbreak of coronavirus disease 2019 (COVID-19), resulting in 
an emerging global threat rapidly spreading throughout the world[29,30]. On March 11, 
2020, the WHO declared the COVID-19 a pandemic[31]. In March 2020, the epicenter of 
the pandemic moved from China to the United States and Europe. Children seem to be 
less likely to be affected by the disease. According to the available data, the proportion 
of children among all infected patients ranged between 0.6% and 5.2% in different 
regions[32-34]. The clinical course of COVID-19 in children seems to be less severe than 
that in adults, with fewer clinical symptoms and case-fatality rates close to 0%[29,30].

In general, patients with pre-existing morbidities are at higher risk of a severe 
course of COVID-19, however, liver disease was not specifically listed in the published 
studies so far[35]. It is possible that patients with advanced liver disease are at increased 
risk of SARS-CoV-2 infection due to cirrhosis-induced immunodeficiency[36]. On the 
other hand, immunosuppression might provide some protection against cytokine 
storms, which contribute to multiorgan failure associated with COVID-19[37,38]. Patients 
with chronic liver disease including cirrhosis may be at higher risk of death resulting 
from COVID-19, but risk factors in specific liver diseases have not been defined[39]. It 
was revealed that SARS-CoV-2, similarly to SARS-CoV, uses angiotensin-converting 
enzyme 2 as its entry receptor[40]. Both liver and bile duct cells express angiotensin-
converting enzyme 2. Thus, the liver is a potential target for SARS-COV-2 
infection[39,40]. It results in liver injury, which is observed in 15% to 58% of patients, 
more commonly in severe COVID-19 cases[39,40]. The incidence of liver disease in death 
cases of COVID-19 was as high as 58% to 78%[40]. Liver disease manifests mainly with 
elevated aminotransferase levels and/or slightly elevated bilirubin level[39,40]. Liver 
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injury is usually transient and does not require specific treatment[39].
Severe liver injury as a result of SARS-CoV-2 infection is uncommon in pediatric 

patients. In the rare cases of severe COVID-19 in children, increase in aminotransferase 
level was only mild (not exceeding 2 × upper limit of normal)[39]. There are only limited 
data on SARS-CoV-2 infection in patients with chronic viral hepatitis[35]. Thus, it 
remains unknown whether patients with chronic viral hepatitis B and/or C are more 
susceptible to liver injury from SARS-CoV-2[39]. Observations from China suggest that 
chronic hepatitis B does not affect the outcome of COVID-19[41]. No case of SARS-CoV-
2 infection has been described among pediatric patients with CHC; however, the 
impact of the COVID-19 pandemic on the management of patients with chronic HCV 
infection is significant, with several aspects requiring attention[35].

MANAGEMENT OF PEDIATRIC PATIENTS WITH CHRONIC HEPATITIS 
DURING THE COVID-19 PANDEMIC
The COVID-19 pandemic has led to the disruption of the healthcare system. This 
disruption has had a negative impact on the care of patients with chronic diseases, 
including children with CHC, which may not only pose a risk for individual patients 
but also have a negative influence on viral hepatitis elimination programs[42]. The 
treatment and management of patients with HCV infection is influenced by closing 
clinics and avoiding nonemergent visits[42]. In many cases, DAA therapies in children 
are conducted in infectious disease departments, which are now on the front line of 
fighting the pandemic. This change of focus may result in a reduction in both the 
diagnosis and treatment rates of hepatitis patients[42]. It is essential to maintain the care 
of children with CHC and to find potential methods to prioritize the care of these 
patients despite the limited healthcare resources[35]. This may be achieved by adapting 
to the unique logistical and pharmacological issues caused by the pandemic[39]. Recent 
recommendations from the European Association for the Study of the Liver-European 
Society of Clinical Microbiology and Infectious Diseases and the American Association 
for the Study of Liver Diseases Expert Panel consensus statement on the care of patents 
with liver disease during the COVID-19 pandemic may also be useful for pediatricians 
caring for children with CHC[35,39].

The most important issue is that both patients and medical staff should avoid SARS-
CoV-2 exposure and infection. The precise management of the patients depends 
mostly on the local COVID-19 burden[35]. It is essential to educate the patients on risk 
and precaution on COVID-19, especially in cases complicated by cirrhosis or end-stage 
liver disease, when the risk of severe course of COVID-19 exists[39]. In most regions, 
physical distancing and avoiding direct face-to-face contact have been officially 
implemented. Thus, all patients suffering from chronic liver diseases should adhere to 
these common rules[35]. Visits to outpatient or inpatient clinics should be avoided 
unless necessary. Since in most cases children with CHC present with mild disease 
and are in stable, good condition, visits to hepatological clinics are not essential and 
may be postponed. In case of patients already on DAA treatment, therapy should be 
continued[39]. It is reasonable to use telemedicine for follow-up visits in patients under 
antiviral treatment and to send them prescriptions by e-mail or organize a home 
delivery of DAAs, as appropriate. Routine laboratory testing may be performed in a 
local laboratory through primary care physicians only in cases when it is truly 
necessary. Collaboration between hepatologists and local health care providers and 
primary care physicians is essential for further management of patients during 
pandemics. Whenever possible, liver-related diagnostic procedures (e.g., ultrasound, 
elastography, or liver biopsy if required) should be avoided unless they are likely to 
change management. In addition, an inclusion of the patients in the clinical trials 
should be deferred. While planning DAA treatment, its priority should be determined. 
In patients with stable CHC, therapy may be safely postponed to after COVID-19 
pandemic. However, in selected cases with known advanced liver disease (e.g., with 
significant fibrosis: Liver stiffness measurement > 7 kPa) or in patients with human 
immunodeficiency virus coinfection, decision on starting therapy despite COVID-19 
pandemic should be considered. If a visit to an outpatient clinic is needed, standard 
operating procedures should be adopted, e.g., separation from patients suspected for 
COVID-19, remodeling of waiting areas, keeping distance between patients, reduction 
of waiting times, and minimizing exposure to the medical staff[35]. The number of 
family members who accompany patients to their visits should be limited to one 
healthy parent or guardian[39]. All patients should be screened for symptoms of 
COVID-19 (e.g., fever, cough, shortness of breath, sore throat, rhinitis), and their 
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temperature should be checked as they enter the clinical space[39]. There are currently 
no specific recommendations on screening for SARS-COV-2 infection in patients with 
CHC. As in individuals without HCV infection, children with CHC should be tested 
for COVID-19 in case of the presence of clinical symptoms suggesting the SARS-CoV-2 
infection or having household contact with an infected family member. Our 
unpublished observations of over 100 pediatric patients with COVID-19 suggest that 
children usually acquire infection from infected close relatives. Thus, family history 
should be assessed in order to stratify the risk of the SARS-CoV-2 infection. In 
addition, testing should be considered in patients requiring hospitalization in order to 
reduce a risk of spreading the infection by an asymptomatic person in the hospital 
setting. Recommendations for the management of pediatric patients with CHC are 
summarized in Table 2.

Despite the fact that CHC does not seem to increase the risk of a severe course of 
COVID-19, in case of coinfection, an early admission and inclusion to the experimental 
antiviral therapy of COVID-19 should be considered, following local 
recommendations[35]. Interestingly, one of the DAAs, sofosbuvir alone or in 
combination with ribavirin, has been suggested for the experimental treatment of 
COVID-19[35,43]. In all hospitalized COVID-19 patients, regular monitoring of 
aminotransferase levels is recommended, particularly in cases treated with 
tocilizumab or remdesivir, due to their hepatotoxicity[39]. As COVID-19 is only rarely 
associated with elevated liver enzymes in children, all pediatric patients with high 
aminotransferase levels during the SARS-CoV-2 infection should be evaluated for 
other etiologies and underlying liver diseases, including hepatitis A, B, or C and drug-
induced liver injury[39].

CONCLUSION
The open issue is how this COVID-19 pandemic will influence diagnostic and 
treatment strategies regarding CHC and its elimination program. Despite the special 
attention required by the COVID-19 pandemic, we should not forget about other 
diseases and chronically ill patients, including viral hepatitis. Several efforts have to be 
made by pediatric hepatologists to prioritize patient care in children with CHC and to 
avoid regression regarding programs leading to HCV elimination.



Pokorska-Śpiewak M et al. Management of HCV during COVID-19 pandemic

WJH https://www.wjgnet.com 490 August 27, 2020 Volume 12 Issue 8

Table 2 Recommendations for the management of pediatric patients with chronic hepatitis C virus infection during the coronavirus 
disease 2019 pandemic[35,39]

Management Recommendation

Physical distancing Recommended

Patient education on risk and precaution on 
COVID-19

Recommended

Testing for severe acute respiratory 
syndrome coronavirus infection

Recommended in patients with clinical symptoms suggesting COVID-19, or with household contact with an 
infected family member, or requiring hospitalization

Visits to specialized centers Should be postponed

Routine laboratory testing Should be performed (only if truly necessary) locally/offsite

Direct-acting antiviral therapy already 
initiated

Should be continued

Starting direct-acting antiviral treatment May be postponed in patients with stable chronic hepatitis C. If possible, it should be considered in patients 
with significant fibrosis or human immunodeficiency virus/hepatitis C virus coinfection

Telemedicine/visits by phone Recommended instead of face-to-face visits whenever possible

Drug supply Home delivery or sending prescriptions by e-mail

Liver-related diagnostic procedures Should be deferred unless they are likely to change management

COVID-19: Coronavirus disease 2019.
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Abstract
Non-alcoholic fatty liver disease (NAFLD) is the predominant cause of chronic 
liver disease worldwide. NAFLD progresses in some cases to non-alcoholic 
steatohepatitis (NASH), which is characterized, in addition to liver fat deposition, 
by hepatocyte ballooning, inflammation and liver fibrosis, and in some cases may 
lead to hepatocellular carcinoma. NAFLD prevalence increases along with the 
rising incidence of type 2 diabetes mellitus (T2DM). Currently, lifestyle 
interventions and weight loss are used as the major therapeutic strategy in the 
vast majority of patients with NAFLD. Glucagon-like peptide-1 receptor agonists 
(GLP-1RAs) are used in the management of T2DM and do not have major side 
effects like hypoglycemia. In patients with NAFLD, the GLP-1 receptor 
production is down-regulated. Recently, several animal and human studies have 
emphasized the role of GLP-1RAs in ameliorating liver fat accumulation, 
alleviating the inflammatory environment and preventing NAFLD progression to 
NASH. In this review, we summarize the updated literature data on the beneficial 
effects of GLP-1RAs in NAFLD/NASH. Finally, as GLP-1RAs seem to be an 
attractive therapeutic option for T2DM patients with concomitant NAFLD, we 
discuss whether GLP-1RAs should represent the first line pharmacotherapy for 
these patients.

Key words: Glucagon-like peptide-1 receptor agonists; Non-alcoholic fatty liver disease; 
Type 2 diabetes mellitus; Clinical studies; Fatty liver; Animal studies
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Core tip: The strong relationship between non-alcoholic fatty liver disease (NAFLD) and 
type 2 diabetes mellitus points to a need to evaluate the therapeutic potential of 
antidiabetic drugs in patients with NAFLD. Accordingly, glucagon-like peptide-1 receptor 
agonists, which are well-tolerated antidiabetic agents with no risk of hypoglycemia, seem 
to be a very appealing therapeutic option for type 2 diabetes mellitus patients with 
NAFLD. Herein, based on data from animal studies and clinical trials, we discuss the 
beneficial impact of glucagon-like peptide-1 receptor agonists on NAFLD.
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INTRODUCTION
Non-alcoholic fatty liver disease (NAFLD) is one of the most common chronic liver 
diseases, affecting approximately one third of the population globally[1]. It includes a 
wide spectrum of clinical presentations, from isolated fat accumulation in the liver to 
inflammation and fibrosis [i.e., non-alcoholic steatohepatitis (NASH)], cirrhosis and 
hepatocellular carcinoma[2]. NAFLD is inextricably linked to major comorbidities of the 
metabolic syndrome, including obesity, insulin resistance, type 2 diabetes mellitus 
(T2DM) and dyslipidemia[3]. In addition, various metabolism disorders, including 
thyroid dysfunction, are associated with the occurrence of NAFLD. Of note, thyroid 
hormones are of cardinal importance in regulating fat deposition and insulin 
resistance as well as lipid and carbohydrate metabolism, thereby contributing to 
NAFLD/NASH modification[4,5].

Hypothyroidism has been suggested as an independent risk factor for 
NAFLD/NASH development in both adult and children/adolescent population. 
Moreover, the inconsistent findings on current literature regarding the association 
between NAFLD and free thyroid hormones (free triiodothyronine and free thyroxine) 
may indicate a key role for thyroid-stimulating hormone in NAFLD onset and 
progression, independently of free triiodothyronine and free thyroxine[4]. The 
increasing prevalence of NAFLD in combination with its severe complications 
underlines the need for effective and safe treatments. Presently, diet and lifestyle 
changes are the main treatment options for NAFLD, whereas vitamin E and 
pioglitazone have limited application, mostly in non-diabetic patients[6].

Glucagon-like peptide-1 receptor agonists (GLP-1RAs) are used for the treatment of 
T2DM[7]. This class includes exenatide, lixisenatide, liraglutide, albiglutide, 
semaglutide and dulaglutide[8]. GLP-1RAs are divided into short- and long-acting[8]. 
The former include exenatide and lixisenatide, whereas the latter include liraglutide, 
albiglutide, dulaglutide, semaglutide and once weekly exenatide[8]. GLP-1 receptors 
are expressed mainly in the pancreas but are also present in the brain, adipose tissue, 
muscles, heart, kidney, lung, stomach and hepatocytes[7,9,10]. Their primary actions are 
the stimulation of insulin secretion and the reduction of glucagon secretion[7]. In 
patients with T2DM, they reduce hemoglobin A1c (HbA1c) levels by approximately 
1.5% without the risk of hypoglycemia[8]. Their main side effects are nausea and 
vomiting[8]. Interestingly, the production of GLP-1 is reduced in patients with 
NAFLD[11].

Accumulating data suggest that GLP-1RAs improve liver histology in patients with 
NAFLD. In the present review, we discuss the role of these agents in the management 
of NAFLD.

LITERATURE RESEARCH
We systematically reviewed the literature in the PubMed database up to December 
2019. The following search terms were used: ”(GLP-1 receptor agonists OR glucagon-
like peptide-1 agonists OR glucagon-like peptide-1 analogues OR GLP-1 analogues OR 
liraglutide OR exenatide OR semaglutide OR dulaglutide OR lixisenatide OR 
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albiglutide) AND (NASH OR NAFLD OR non-alcoholic fatty liver disease OR fatty 
liver disease OR non-alcoholic steatohepatitis).

EXENATIDE
Effects of exenatide in animal models of NAFLD
Several studies reported beneficial effects of exenatide in animal models of NAFLD, 
and a variety of mechanisms appear to underpin these effects. First, exenatide appears 
to reduce intrahepatic oxidative stress. Indeed, in rats, administration of exendin-4 
resulted in an increase in glutathione levels, which in turn reduced oxidative stress[12]. 
A reduction of the hepatic expression of receptors for advanced glycation end-
products also appears to contribute to the antioxidant effects of exenatide[13].

Αn improvement in insulin resistance also may play a role in the improvement of 
hepatic steatosis during exenatide treatment. In rats, administration of exendin-4 
resulted in an increase in cystathionine beta synthase, which resulted in a reduction in 
insulin resistance[12]. Treatment with exendin-4 also results in an increase of 
adiponectin levels, which again improves insulin sensitivity[14,15]. In contrast, levels of 
visfatin, which appears to play a role in insulin resistance, were reduced after 
treatment with exenatide[15]. Exenatide also improves insulin sensitivity by increasing 
peroxisome proliferator-activated receptor (PPAR)-γ activity[16].

Exenatide exerts anti-inflammatory effects, which contribute to the improvement in 
hepatic histology in NAFLD. Accordingly, exenatide was shown to inhibit the NLRP3 
inflammasome by enhancing the autophagy/mitophagy pathway[17]. In another study 
in mice, administration of exendin-4 for 4 wk reduced inflammation both in the liver 
and in the vascular, wall as shown by a decreased accumulation of monocytes and 
macrophages and a reduced recruitment of oxidized LDL, which correlated with 
reduced formation of foam cells[18]. Kawaguchi et al[19] reported that mice treated with 
exendin-4 had a lower NAFLD activity score compared with mice that received 
saline[19]. This beneficial effect was mediated by an inhibition of the action of Δ-5-
desaturase, which resulted in a reduction of pro-inflammatory eicosanoids and an 
increase in dihomo-γ-linolenic acid and anti-inflammatory eicosanoids[19].

Another important mechanism implicated in the reduction of hepatic fat 
accumulation during exenatide treatment is the amelioration of hepatic lipid 
metabolism. Exenatide was shown to suppress hepatic very-low density lipoprotein 
(VLDL) production, resulting in improvement of hepatic steatosis[20]. Mice treated with 
exendin-4 showed an increased expression of acyl-CoA oxidase and medium chain 
acyl-coenzyme A dehydrogenase, which are both related to β-oxidation[9]. In addition, 
the expression of several enzymes participating in hepatic lipid metabolism, including 
sirtuin-1, phospho-5’ adenosine monophosphate-activated protein kinase, phospho-
Foxo1 and glucose transporter 2, was also up-regulated during exendin-4 treatment[9]. 
On the other hand, the levels of modulators of hepatic lipogenesis such as sterol 
regulatory element-binding protein-1c (SREBP-1c) and stearoyl CoA desaturase-1 
mRNA were decreased[9]. Exenatide-induced up-regulation of sirtuin also increases 
fibroblast growth factor-1 activity, which is another important regulator of hepatic 
lipid metabolism[21]. During treatment with exenatide, enzymes related to hepatic 
lipogenesis, including ACC, stearoyl CoA desaturase-1 and SREBP-1c are down-
regulated whereas enzymes participating in β-oxidation, including PPARa and fatty 
acyl-CoA oxidase, are up-regulated[14].

Yamamoto et al[22] randomly assigned male db/db non-obese NASH mice to 
methionine-choline sufficient diet or methionine-choline deficient diet (MCD), a well-
established inductor of hepatic steatosis and inflammation, plus exendin-4 (20 μg/kg 
per day intraperitoneally) or MCD plus saline for 4 or 8 wk[22]. Exendin-4 
administration significantly ameliorated both the MCD-induced oil red O-positive 
area, an index of hepatic fat deposition, and the liver triglyceride content in the MCD 
plus exendin-4 group compared to the saline group at 4 and 8 wk through suppression 
of FATP4, which plays a role in hepatic free fatty acid uptake[22]. In addition, exendin-4 
administration led to significant decreased mRNA expression of SREBP-1c, a gene 
responsible for free fatty acid production in MCD-fed mice at 4 and 8 wk, along with 
markedly reduced serum alanine transaminase (ALT) levels at 8, but not at 4 wk, in 
the same group[22]. Of note, exendin-4 therapy attenuated the increased, by MCD, 
hepatic mRNA expression levels of inflammation-related genes such as tumor necrosis 
factor-α, monocyte chemotactic protein-1 and cc-chemokine receptor 2 and also 
decreased insulin levels and homeostasis model assessment of insulin resistance[22].

In rabbits, treatment with exenatide decreased the expression of fat mass and 
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obesity-associated gene (FTO), which is associated with both lipogenesis and oxidative 
stress[23]. In another study, treatment with exenatide improved histological features of 
NAFLD through enhancing the action of PPARa, which is another key regulator of 
fatty acid β-oxidation[16]. In mice, exendin-4 reduced VLDL-triglycerides and VLDL-
ApoB, inhibited the expression of Srebp-1c, Fasn and Dgat1, which participate in 
hepatic lipogenesis, and down-regulated the genes Acox1 and Cpt1α, which play a role 
in fatty acid oxidation[20].

Endoplasmic reticulum (ER) stress appears to play an important role in the 
pathogenesis of hepatic steatosis, and exenatide was shown to alleviate ER stress by 
enhancing the sirtuin 1/heat shock factor 1/heat shock protein pathway[24,25]. 
Treatment of mice with exenatide was also shown to improve mitochondrial lipid 
metabolism, which in turn resulted in decreased steatosis[26]. Exenatide also activates 
the phophoinositide 3-kinase/Akt pathway, which might improve liver histology in 
NAFLD through the regeneration of hepatocytes[23].

In addition to these effects of exenatide on the liver, an enhancement of lipid 
catabolism in the adipose tissue during treatment with this agent also appears to 
ameliorate hepatic steatosis by decreasing free fatty acid influx into the liver[27]. 
Interestingly, it has been recently reported that co-agonists of GLP-1 and glucagon 
receptor ameliorate hepatic steatosis and inflammation more than GLP-1 agonists 
alone[28]. The concomitant administration of exendin-4 and glucokinase activator in 
mice also resulted in a reduction of liver steatosis, liver weight, intrahepatic 
triglyceride levels and serum ALT levels[29].

Effects of exenatide in clinical studies of NAFLD
It is of interest whether data from animal studies can be translated into humans, in 
order to clarify the beneficial impact of GLP-1RAs on human NAFLD (Table 1). In 
particular, in a study by Gastaldelli et al[30], 15 males with newly diagnosed T2DM or 
impaired glucose tolerance were randomized to receive exenatide or placebo, each 
therapy on two sessions with random order, 30 min before the performance of an oral 
glucose tolerance test (OGTT)[30]. Adipose tissue glucose uptake, hepatic glucose 
uptake, hepatic glucose production and oral glucose absorption were assessed by 
positron emission tomography scan[30]. Exenatide, compared to placebo, markedly 
reduced oral glycose absorption and hepatic glycose production, resulting in minimal 
change in glucose serum concentration during the 2-h OGTT. In addition, treatment 
with exenatide reduced hepatic and adipose tissue insulin resistance and increased 
hepatic glucose uptake compared with placebo resulting in postprandial 
euglycemia[30]. The aforementioned findings were observed despite a decrease in 
insulin levels by exenatide compared with placebo[30].

In addition, a prospective randomized trial was conducted in order to clarify the 
effect of exenatide on ectopic fat accumulation[31]. Forty four obese patients with 
inadequately controlled T2DM were randomized to receive either exenatide (5 μg 
twice daily for 4 wk, followed by 10 μg twice daily for 22 wk) or reference antidiabetic 
treatment according to French guidelines[31]. Patients’ hepatic, myocardial and 
pancreatic triglyceride content as well as epicardial adipose tissue were assessed by 
magnetic resonance imaging and magnetic resonance spectrometry (MRS) at baseline 
and after 26 wk of treatment[31]. In the exenatide group compared with the reference 
group, anthropometric parameters such as body weight, waist, thigh and hip 
circumference and laboratory values, such as fasting plasma insulin, total cholesterol 
and palmitoleic acid plasma levels, were decreased[31]. Moreover, a significant 
reduction in epicardial adipose tissue mass and liver fat content was observed in the 
exenatide compared with the reference group, and both correlated with weight loss[31].

In an open-label, parallel-group, uncontrolled, 6-mo study, the effect of exenatide on 
hepatic fat accumulation and liver enzymes was evaluated[32]. One hundred and 
twenty five patients with T2DM were divided into two groups: The first group 
received exenatide (10 μg twice daily) alone or in combination with other oral 
antidiabetic drugs while the second group received oral antidiabetic drugs without 
exenatide for 6 mos[32]. At the end of follow-up, group 1, compared with group 2, had 
reduced values of body mass index, waist circumference, alkaline phosphatase, ALT 
and intrahepatic fat accumulation (calculated by the fatty liver index)[32].

Of note, in a small prospective study, 25 obese patients with NAFLD and 
inadequately-controlled T2DM despite treatment with metformin and sulphonylureas 
or dipeptidyl-peptidase-IV inhibitors, received GLP-1RA (exenatide in 19 patients and 
liraglutide in six patients) for a period of 6 mo[33]. At the end of the study, GLP-1RA 
treatment resulted in a 7%-11% reduction in abdominal visceral adipose tissue and 
subcutaneous adipose tissue, while HbA1c, ALT and γ-glutamyl-transferase (γGT) 
levels improved along with a marked increase in serum adiponectin levels[33]. In 



Sofogianni A et al. NAFLD/GLP-1RAs

WJH https://www.wjgnet.com 497 August 27, 2020 Volume 12 Issue 8

Table 1 Characteristics and outcomes of clinical studies that evaluated the effects of exenatide, lisixenatide and dulaglutide on non-alcoholic fatty liver disease

Ref. Type of study, country Number of patients Treatment Effects on NAFLD

Gastaldelli et al[30], 
2016

Randomized double-blind 
vs placebo/Pisa, Italy

15 Exenatide 5 μg vs placebo 30 min before a 75-g OGTT Exenatide significantly ameliorated oral glucose absorption, hepatic glucose production, 
hepatic and adipose tissue insulin resistance, reduced insulin levels and increased hepatic 
glucose uptake

Dutour et al[31], 
2016

Prospective randomized 
trial, France

44 Exenatide 5 μg twice daily for 4 wk, followed by 10 μg twice 
daily for additional 22 wk vs reference antidiabetic treatment 
according to French guidelines

Exenatide markedly reduced body weight, waist, thigh, hip circumference, fasting plasma 
insulin, total cholesterol and palmitoleic acid plasma levels

Blaslov et al[32], 
2014

Open label parallel-
group, uncontrolled 
study, Croatia

125 Exenatide (10 μg twice daily) on its own or in combination with 
other oral antidiabetic drugs vs other oral antidiabetic drugs 
without exenatide for 6 mo

Exenatide remarkably attenuated body mass index, waist circumference, ALP, ALT, 
intrahepatic fat accumulation assessed by fatty liver index

Cuthbertson 
et al[33], 2012

Prospective study, United 
Kingdom

25 [exenatide (n = 19), 
liraglutide (n = 6)]

Exenatide 5 μg twice daily titrated to 10 μg twice daily after one 
month; liraglutide 0.6 mg once daily, titrated to 1.2 mg once 
daily for 6 mo

GLP-1RA reduced, compared to baseline, abdominal visceral and subcutaneous adipose 
tissue, HbA1c, ALT, γ-GT and intrahepatic lipid content and increased adiponectin serum 
levels

Fan et al[34], 2013 Randomized clinical trial, 
China

117 Exenatide (5 μg for four weeks followed by 10 μg for additional 
8 wk, two times daily) vs metformin (0.5-2 g/d)

Exenatide decreased body weight, waist-to-hip ratio, ALT, AST, AST/ALT ratio, γ-GT, 2-h 
postprandial glucose serum levels, CRP and increased adiponectin serum levels

Savvidou et al[35], 
2016

Open label, randomized 
controlled intervention 
trial, Greece

120 Exenatide 5 μg twice daily for 4 wk and 10 μg twice daily as 
supplementation on glargine insulin vs intense self-regulated 
insulin therapy for 6 mo

Both therapies significantly increased adiponectin serum levels compared to baseline, but no 
significant change between the groups; Exenatide, compared to insulin group, reduced more 
robustly body weight but not HbA1c

Shao et al[37], 2014 Randomized controlled 
trial, China

60 Exenatide 5 μg twice daily, followed by 10 μg twice daily for 
additional 8 wk plus insulin glargine vs intensive insulin 
therapy with insulin glargine and insulin as part for a time 
period of 12 wk

Body weight, waist circumference, ALT, AST, γ-GT were markedly reduced in exenatide 
compared to insulin group, while levels of fasting blood glucose, postprandial blood 
glucose, HbA1c, triglyceride and total bilirubin were significantly reduced at both groups at 
12 wk, compared to baseline

Bi et al[38], 2014 Randomized controlled 
trial, China

33 Exenatide 5 μg twice daily for 4 wk, followed by maximum 10 
μg twice daily for 20 wk vs insulin vs pioglitazone 30 mg daily, 
titrated to 45 mg at fourth week, 6 mo study

Exenatide reduced, compared to baseline, intrahepatic fat, visceral and subcutaneous fat 
volumes, body weight, waist circumference, serum triglycerides, HbA1c, TNF-a

Sathyanarayana 
et al[39], 2011

Randomized controlled 
study, United States

21 Exenatide 10 μg twice daily plus pioglitazone 45 mg/d vs 
pioglitazone 45 mg/d for 12 mo

Combination pharmacotherapy with exenatide, compared to pioglitazone, significantly 
decreased serum ALT and triglyceride levels as well as intrahepatic fat content and 
increased adiponectin plasma levels

Gluud et al[41], 2014 Review, Denmark 15 studies included in this 
meta-analysis

12 randomized clinical trials on lisixenatide vs placebo and 3 
randomized clinical trials on lisixenatide vs liraglutide, 
exenatide or sitagliptin

Lisixenatide markedly increased the proportion of overweight or obese patients with T2DM 
who achieved ALT levels normalization

Seko et al[42], 2017 Retrospective study, 
Japan

15 Dulaglutide 0.75 mg once weekly for 12 wk Dulaglutide, compared to baseline, reduced body weight, ALT, AST, HbA1c and liver 
stiffness

Ghosh et al[43], 2019 Retrospective study, India 85 T2DM overweight 
patients

Dulaglutide 1.5 mg once weekly for 20 wk Dulaglutide led to significant reductions in HbA1c, body weight, ALT and AST levels

Cusi et al[44], 2018 Post hoc analysis, 
multicenter

4 randomized, placebo-
controlled trials with 1499 
T2DM patients

Dulaglutide 1.5 mg once weekly for 6 mo Dulaglutide, compared to placebo, significantly decreased ALT, AST, γ-GT, particularly in 
patients with elevated transaminase levels at the onset of the study
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NAFLD: Non-alcoholic fatty liver disease; OGTT: Oral glucose tolerance test; ALP: Alkaline phosphatase; ALT: Alanine transaminase; GLP-1RA: Glucagon-like peptide-1 receptor agonists; AST: Aspartate aminotransferase; CRP: C-reactive 
protein; T2DM: Type 2 diabetes mellitus; γ-GT: γ-glutamyl-transferase.

parallel, intrahepatic lipid content, evaluated by MRS, was reduced by 42% at 24 wk 
compared with baseline, a change that correlated with HbA1c reduction during the 
same time period[33].

In a larger study including 117 patients with T2DM and NAFLD, Fan et al[34] 
assessed the impact of exenatide on anthropometric and laboratory values. The 
patients were randomly assigned to receive either exenatide (5 μg for 4 wk followed by 
10 μg for 8 wk, two times daily) or metformin (0.5-2 g/d)[34]. At the end of follow-up 
(12 wk), in the exenatide group, compared with the metformin group, body weight, 
waist-to-hip ratio, ALT, aspartate aminotransferase (AST), AST to ALT ratio, γGT and 
2-h postprandial glucose serum levels were markedly reduced[34]. Interestingly, high-
sensitivity C-reactive protein (hsCRP) levels, a marker of subclinical inflammation, 
were improved and adiponectin serum levels were significantly increased in the 
exenatide group compared to the metformin group, and these changes might have 
played a role in the reduction in transaminase levels[34].

Indeed, adiponectin appears to exert a hepato-protective effect in patients with 
NAFLD[35]. Exendin-4 also appears to protect hepatocytes from steatosis through 
autophagy and reduction of apoptosis associated with ER stress[36]. The latter is 
associated with intrahepatic fat accumulation, but autophagy has a protective role on 
cell survival[36]. Accumulation of fatty acids is related to ER stress, cell death, apoptosis 
and elevated caspase-3 levels, while administration of exendin-4 reduces caspase-3 
levels[36]. In another study, patients with NAFLD who were treated with exenatide had 
lower levels of AST, ALT and γGT, compared with patients treated with insulin[37]. 
Exenatide also induced a reduction of intrahepatic fat, visceral fat and subcutaneous 
fat[38]. In a small study in 21 patients, the combination of exenatide and pioglitazone 
resulted in a reduction in intrahepatic fat content, serum ALT and triglyceride levels 
and in an increase in plasma adiponectin levels[39].

LIXISENATIDE AND DULAGLUTIDE
There are limited data regarding the effects of lixisenatide and dulaglutide on NAFLD 
(Table 1). In a study in conscious dogs, lixisenatide did not affect hepatic glucose 
uptake[40]. In a meta-analysis of 12 randomized controlled trials, lixisenatide increased 
the proportion of obese or overweight patients with T2DM who achieved 
normalization of ALT levels[41]. On the other hand, the administration of dulaglutide 
for 12 wk at a dose of 0.75 mg once weekly in patients with NAFLD reduced HbA1c 
levels, body weight, transaminases and liver stiffness[42]. In another study in 85 
overweight patients with inadequately controlled T2DM conducted in India, treatment 
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with dulaglutide 1.5 mg once weekly for 20 wk resulted in significant reductions in 
HbA1c, body weight, ALT and AST levels[43]. Also, in a post hoc analysis of four 
randomized, placebo-controlled trials in patients with T2DM (n = 1499), dulaglutide 
decreased transaminase and γGT levels compared with placebo, particularly in 
patients with elevated transaminase levels at baseline[44].

LIRAGLUTIDE
In a prospective study, liraglutide was administered for 6 mo in 19 women with 
polycystic ovary syndrome and controls[45]. Serum procollagen type 3 amino-terminal 
peptide levels, a marker of hepatic fibrosis, decreased in patients with polycystic ovary 
syndrome but not in controls[45]. In another study in 26 patients with glucose 
intolerance and biopsy-proven NASH, treatment with liraglutide for 24 wk reduced 
ALT levels[46]. Ten patients were treated with liraglutide for 96 wk, and liver biopsy at 
the end of treatment showed an improvement in liver histology in six of them[46]. In a 
retrospective study that included 46 patients, the liver to kidney attenuation ratio in 
computed tomography (an index of hepatic steatosis) increased after treatment with 
liraglutide 0.9 mg/d for 6 mo[47]. Another retrospective analysis of 82 patients with 
NAFLD who were treated with sitagliptin, liraglutide or pioglitazone revealed that 
patients who received sitagliptin showed a decrease in ALT activity whereas the AST 
to platelet count ratio index (APRI score), a marker of liver fibrosis, did not change[48]. 
In contrast, patients treated with liraglutide or pioglitazone experienced a decrease in 
both ALT activity and APRI[48]. In a subgroup analysis of the Liraglutide Effect and 
Action in Diabetes-2 trial, 103 patients were treated with liraglutide 0.6, 1.2 and 1.8 
mg/d, 37 patients received glimepiride and 20 were given placebo for 26 wk[49]. Liver 
to spleen attenuation ratio increased in patients treated with liraglutide 1.8 mg but did 
not change in those treated with lower doses of liraglutide or with glimepiride[49]. ALT 
activity showed comparable decreases with both agents[49]. In a more recent study, 30 
non-diabetic patients with abdominal obesity and NAFLD were managed with 
liraglutide or with lifestyle modification[50]. Liraglutide was effective in decreasing 
weight, hepatic steatosis and hepatocellular apoptosis, but benefits were not sustained 
after discontinuation of treatment, in contrast with lifestyle modification[50].

In another study, 87 patients with T2DM and NAFLD were randomized to receive 
liraglutide, metformin or gliclazide for 24 wk[51]. Gliclazide resulted in smaller 
improvement in liver function and less reduction in intrahepatic fat content, HbA1c 
levels and body weight compared with liraglutide and metformin[51]. Slightly greater 
improvements were achieved with liraglutide than with metformin[51]. In a single-
center, randomized, open-label study in 19 patients with T2DM, liraglutide reduced 
visceral fat at 24 wk[52]. Urinary albumin-to-creatinine ratio and hsCRP levels were also 
significantly reduced by liraglutide at 12 and 24 wk[52]. HbA1c levels, body weight and 
hepatic fat also decreased in patients treated with liraglutide[52]. In a prospective trial in 
68 patients with uncontrolled T2DM, treatment with liraglutide for 6 mo was 
associated with a decrease in body weight and HbA1c and a reduction in liver fat 
content[53].

A multicenter, double-blind, randomized, placebo-controlled, phase 2 trial was 
conducted in four United Kingdom medical centers to compare liraglutide with 
placebo in overweight patients who showed clinical evidence of NASH[54]. Nine (39%) 
of 23 patients who received liraglutide and underwent end-of-treatment liver biopsy 
had resolution of definite NASH compared with two (9%) of 22 patients in the placebo 
group[54]. In another study in patients with T2DM, treatment with liraglutide or 
sitagliptin for 12 wk did not reduce hepatic steatosis, which was estimated using 
MRS[55]. In a study in China, which enrolled 835 patients with T2DM, liraglutide 
improved blood glucose levels, lipid levels and liver function[56]. In a similar study, 
which compared treatment of T2DM with liraglutide or metformin, liraglutide was 
more effective in alleviating liver inflammation and improving liver function[57]. 
Finally, in a prospective study (n = 25), treatment with either exenatide or liraglutide 
for 6 mo decreased ALT activity and hepatic fat content (evaluated with MRS)[33] 
(Table 2).

SEMAGLUTIDE
Recently, Newsome et al[58] evaluated the effects of semaglutide on liver biochemistry 
(ALT) and hsCRP levels in patients at risk for NAFLD. The authors analyzed data 
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Table 2 Characteristics and outcomes of clinical studies that evaluated the effects of liraglutide and semaglutide on non-alcoholic fatty liver disease

Ref. Type of study; country Number of 
patients Treatment Effects on NAFLD

Kahal et al[45], 
2014

Prospective; United Kingdom 36 Liraglutide 0.9 mg/d for 6 mo Serum procollagen type 3 amino-terminal peptide levels, a marker of hepatic fibrosis, decreased in women 
with PCOS

Eguchi et al[46], 
2014

Prospective; Japan 26 Liraglutide 0.9 mg/d for 24-96 wk ALT activity decreased. NASH decreased in 6/10 patients who underwent repeat biopsy at 96 wk

Suzuki et al[47], 
2013

Retrospective; Japan 46 Liraglutide 0.9 mg/d for 6 mo Liver to kidney attenuation ratio in CT (an index of hepatic steatosis) increased

Ohki et al[48], 
2012

Retrospective; Japan 82 Liraglutide 0.9 mg/d for 340 d or sitagliptin 50-
100 mg/d for 250 d or pioglitazone 15 mg/d for 
1200 d

ALT activity was reduced with all agents. Liraglutide and pioglitazone but not sitagliptin reduced the APRI 
score

Jendle et al[49], 
2009

Randomized controlled; 
multicenter

160 Liraglutide 0.6, 1.2 or 1.8 mg/d or glimepiride 4 
mg/d or placebo for 26 wk

Liver to spleen attenuation ratio in CT (a marker of hepatic steatosis) increased in patients treated with 
liraglutide 1.8 mg/d and did not change in those treated with lower doses of liraglutide or glimepiride. ALT 
activity showed comparable decreases with both agents

Khoo et al[50], 
2009

Randomized controlled; 
Singapore

30 Liraglutide 3 mg/d for 16 wk or lifestyle 
modification

Liraglutide was effective for decreasing weight, hepatic steatosis and hepatocellular apoptosis, but benefits 
were not sustained after discontinuation, in contrast with lifestyle modification

Feng et al[51], 
2017

Randomized controlled; China 87 Liraglutide, metformin, or gliclazide for 24 wk Liraglutide has better results in improving liver function, reductions in intrahepatic fat content and HbA1c 
level, and weight loss than metformin and gliclazide

Bouchi et al[52], 
2017

Randomized controlled; Japan 19 Liraglutide 0.9 mg/d plus insulin or insulin alone 
for 14 wk

Liraglutide reduces visceral fat, hepatic fat accumulation, albuminuria and micro-inflammation and improves 
QOL

Petit et al[53], 
2017

Prospective; France 68 Liraglutide 1.2 mg/d for 6 mo Liraglutide significantly reduced liver fat content

Armstrong 
et al[54], 2016

Double-blind, randomized, 
controlled; multicenter United 
Kingdom

52 Liraglutide 1.8 mg/d or placebo for 48 wk Liraglutide led to histological resolution of NASH

Smits et al[55], 
2016

Randomized placebo-controlled; 
Holland

52 Liraglutide 1.8 mg/d, sitagliptin 100 mg/d or 
placebo

Liraglutide or sitagliptin treatment does not reduce hepatic steatosis or fibrosis

Zhang et al[56], 
2016

Randomized controlled; China 835 Liraglutide 1.2 mg/d or metformin 500 mg/3 
times per day

Liraglutide improves the blood glucose and lipid levels as well as liver function

Tian et al[57], 2018 Randomized controlled; China 127 Liraglutide 0.6-1.2 mg/d or metformin 1000-1500 
mg/d for 12 wk

Liraglutide decreases ALT levels and is more effective than metformin at alleviating liver inflammation and 
improving liver function

Cuthbertson 
et al[33], 2012

Prospective; United Kingdom 25 Exenatide 10 mg twice daily or liraglutide 1.2 
mg/d

Both liraglutide and exenatide reduce body weight, HbA1c and intrahepatic lipid accumulation

Newsome 
et al[58], 2019

Retrospective (data from 2 trials); 
United Kingdom

957 (trial 1) and 
3297 (trial 2)

Semaglutide 0.05, 0.1, 0.2, 0.3 or 0.4 mg/d for 52 
wk (trial 1) and semaglutide 0.5 or 1.0 mg/wk for 
104 wk (trial 2)

Semaglutide significantly reduced ALT and hsCRP in clinical trials in subjects with obesity and/or type 2 
diabetes
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PCOS: Polycystic ovary syndrome; NAFLD: Non-alcoholic fatty liver disease; ALT: Alanine transaminase; hsCRP: High-sensitivity C-reactive protein; NASH: Non-alcoholic steatohepatitis; CT: Computed tomography; APRI: AST to 
platelet count ratio index.

from two randomized, double-blind, multinational, placebo-controlled trials: A) A 
104-wk cardiovascular outcomes trial, in which semaglutide 0.5 or 1.0 mg was given 
once weekly subcutaneously in T2DM patients with HbA1c levels ≥ 7% (SUSTAIN-6 
trial) and B) A 52-wk weight management trial, in which semaglutide 0.05-0.4 mg was 
given daily subcutaneously in obese patients without T2DM[58]. Among patients (n = 
499, 52%) with abnormal ALT levels (men > 30 IU/L, women > 19 IU/L) at baseline, 
ALT reductions were observed in 6%-21% of patients at doses ≥ 0.2 mg/d) (P < 0.05 vs 
placebo) in the weight management trial. Similarly, hsCRP reductions were recorded 
in 25%-43% of patients receiving semaglutide 0.2 and 0.4 mg/d (P < 0.05 vs 
placebo)[58]. Among those who had abnormal ALT levels and received semaglutide 0.4 
mg in the weight management trial, the prevalence of metabolic syndrome was 
reduced (25.6% at week 28 vs 50.0% at baseline)[58]. Normalization of elevated baseline 
ALT occurred in 25%-46% of patients in the weight management trial in a dose 
dependent manner (vs 18% in placebo group), while in the SUSTAIN-6 trial, 
reductions in ALT levels were recorded only at the 1.0 mg dose (9% vs placebo, P = 
0.0024) at week 104[58]. However, changes in ALT and hsCRP levels were not 
significant after adjustment for weight change. Histological data are awaited from an 
ongoing phase 2 trial of semaglutide in biopsy-proven NASH (NCT02970942)[58] 
(Table 2).

CONCLUSION
Both animal and clinical studies are highly promising for the beneficial effect of GLP-
1RAs in patients with NAFLD. Importantly, GLP-1RAs have good safety profile, since 
the most common adverse events are nausea and diarrhea, while the risk of 
pancreatitis is very small and not confirmed in a recent meta-analysis[59]. Among GLP-
1RAs, liraglutide has been studied more extensively in the setting of NAFLD, leading 
to amelioration in both hepatic and visceral fat accumulation as well as improvement 
in liver function tests and histological lesions in patients with NAFLD[46,51]. 
Nonetheless, the need for daily injection is a major limitation, presumably affecting 
patients’ medication compliance. Long-acting GLP1-RAs, such as dulaglutide and 
semaglutide, seem an appealing therapeutic option. Dulaglutide pharmacotherapy 
combines the beneficial effects of short-acting liraglutide on ameliorating 
anthropometric and laboratory parameters, such as body mass and ALT serum levels 
respectively, with the significant advantage of weekly injection administration[42,60]. 
Beyond the latter advantage, disposable and prefilled devises for dulaglutide 
medication are also available[60]. Regarding semaglutide, appears to have some 
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additional advantages to other GLP-1RA agents. Based on data from SUSTAIN-6, a 
placebo-controlled trial, semaglutide medication led to marked prevention of 
cardiovascular events, the predominant cause of mortality among NAFLD patients, 
while SUSTAIN-7 trial demonstrated the superiority of semaglutide over dulaglutide 
regarding glucose control and body weight reduction among T2DM patients[61,62]. Of 
great interest, the recent Food and Drug Administration approval of oral semaglutide 
taken once a day for T2DM, might become the first-line approach for patients with 
both T2DM and NAFLD. Of note, a plethora of data concerning the efficacy of GLP-
1RAs on NAFLD is based on exenatide. Indeed, exenatide exerts hepato-protective as 
well as glucose-lowering actions combined with remarkable amelioration of 
anthropometric parameters and liver dysfunction markers[30,34]. However, similarly to 
liraglutide pharmacotherapy, the need for twice daily administration therapy appears 
as a significant limitation[63]. On the other hand, pharmacotherapy with lisixenatide 
requires once daily administration and beyond that, its tolerability profile seems to be 
better than exenatide, since T2DM patients treated with lisixenatde experienced 
markedly less nausea than the corresponding exenatide treated group of T2DM 
patients[64]. Nevertheless, more data with lisixenatide efficacy on NAFLD modification 
are required in order to consider the aforementioned drug as a propitious therapeutic 
opportunity. In conclusion, it seems that GLP-1RA administration in patients with 
T2DM is an attractive therapeutic option associated with weight loss, glycemic control 
and potentially reversal of biochemical and/or histological features of NAFLD in 
patients with concomitant NAFLD. However, larger, long-term, randomized, 
controlled trials should be conducted to better define the role of these agents in the 
management of NAFLD.
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Abstract
BACKGROUND 
Non-alcoholic fatty liver disease (NAFLD) has a heterogeneous distribution across 
racial and ethnic groups, with a disproportionate burden among Hispanics. 
Although there are currently no approved therapies for treatment of NAFLD, 
several therapies have been investigated in clinical trials.

AIM 
To analyze the inclusion of racial and ethnic minority groups in clinical trials for 
NAFLD.

METHODS 
We performed a systematic review of North American, English-language, 
prospective studies for NAFLD therapies published from 2005 to 2019. Racial and 
ethnic enrollment data were recorded for each eligible study. Meta-analysis was 
performed to compute pooled prevalence of different racial and ethnic groups, 
followed by further subgroup analyses. These analyses were based on diagnosis 
of non-alcoholic steatohepatitis (NASH) and timing of study on enrollment by 
ethnicity. Descriptive statistics were performed to compare racial and ethnic study 
enrollment to previously reported NAFLD population prevalence.

RESULTS 
Thirty-eight studies met criteria for inclusion in the systematic review. When 
reported, median age of enrolled subjects was 49 years (range 41.5-58) with 56% 
female participants. NAFLD was defined through biopsy findings in 79% (n = 30) 
of the studies. Of the included articles, treatment modalities ranged from 
medications (n = 28, 74%), lifestyle interventions (n = 5, 13%), bariatric surgery (n 
= 4, 11%) and phlebotomy (n = 1, 2%). Twenty-eight studies (73%) included racial 
and/or ethnic demographic information, while only 17 (45%) included 
information regarding Hispanic participation. Of the 2983 patients enrolled in all 
eligible trials, a total of only 346 (11.6%) Hispanic participants was reported. 
Meta-analysis revealed a pooled Hispanic prevalence of 24.3% (95% confidence 
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interval 16.6-32.0, I2 94.6%) among studies documenting Hispanic enrollment. 
Hispanic enrollment increased over time from 15% from 2005-2014 to 37% from 
2015-2019.

CONCLUSION 
In a meta-analysis of NAFLD trials, documentation of racial/ethnic demographic 
data occurred in less than half of studies. Standardization of reporting of 
race/ethnicity and targeted interventions toward minority recruitment are needed 
to improve diversity of enrollment.

Key words: Non-alcoholic fatty liver disease; Non-alcoholic steatohepatitis; Hispanic; 
Racial disparities; Meta-analysis
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Core tip: The Hispanic population in the United States is disproportionately affected by 
non-alcoholic fatty liver disease (NAFLD). Currently, there is no Food and Drug 
Administration approved treatment for this disease, but several clinical trials are 
investigating new potential therapies. This study evaluates the inclusion of race and 
ethnicity in the enrollment of these trials. In a systemic review and meta-analysis of 
clinical trials for treatment of NAFLD, 44% of eligible trials reported data on race and 
ethnicity. Despite a high burden of disease, Hispanic participation remained low. Future 
targeted interventions must take place to increase the enrollment of diverse and 
representative study populations in clinical trials.

Citation: Patel P, Muller C, Paul S. Racial disparities in nonalcoholic fatty liver disease clinical 
trial enrollment: A systematic review and meta-analysis. World J Hepatol 2020; 12(8): 506-518
URL: https://www.wjgnet.com/1948-5182/full/v12/i8/506.htm
DOI: https://dx.doi.org/10.4254/wjh.v12.i8.506

INTRODUCTION
Non-alcoholic fatty liver disease (NAFLD) is the most common cause of chronic liver 
disease in the United States, affecting up to 25% of the global adult population[1]. 
NAFLD ranges from simple steatosis to non-alcoholic steatohepatitis (NASH), with 
some patients experiencing eventual cirrhosis. Given the rising incidence, NAFLD is 
poised to become the leading indication for liver transplantation in the coming years[2].

Risk factors for the development of NAFLD include insulin resistance and metabolic 
syndrome (encompassing elevated fasting glucose levels, hypertension, dyslipidemia, 
and central obesity). However, not all individuals with these risk factors develop 
NAFLD. In a recent systematic review and meta-analysis, heterogeneity in NAFLD 
burden between racial and ethnic groups was noted, with the highest prevalence seen 
in Hispanic populations (pooled prevalence 22.9%)[3].

Although it remains unclear why Hispanics are at a higher risk of developing 
NAFLD and NASH, there is likely an interplay of multifactorial causes. Genetic risk 
factors play a large role in the pathogenesis of NAFLD. Studies have shown the single 
nucleotide polymorphisms in patatin-like phospholipase domain-containing protein 3 
(PNPLA3), transmembrane 6 superfamily member 2 (TM6SF2), and membrane bound 
O-acyl transferase (MBOAT) play various roles in different races[4]. For example, the 
isoleucine to methionine substitution at position 148 (I148M) variant in PNPLA3, has 
been strongly linked to hepatic fat content. This variant occurs more frequently in 
Hispanics (49%) compared to non-Hispanic whites (23%) or African Americans  
(17%)[4]. Additionally, other factors such as culture, environment, and socioeconomic 
status, play an important role.

Although weight loss through lifestyle interventions or bariatric surgery can reverse 
the effects of NAFLD, there are currently no Food and Drug Administration (FDA) 
approved therapies for the treatment of NAFLD. Several promising therapies are 
currently being investigated in clinical trials. Although the burden of NAFLD on 
Hispanics is significant, it is unknown if this population is represented in these clinical 
trials. Identifying possible racial disparities is the first step in improving targeted 
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interventions for patient subgroups. The aim of this study was to evaluate the 
enrollment of Hispanics in NAFLD trials conducted in the United States and Canada. 
We hypothesized that the expected rate of Hispanics in NAFLD therapy trials should 
be proportionate to the burden of disease among Hispanics within the NAFLD 
population.

MATERIALS AND METHODS
Literature search strategy
The literature search was performed using the PubMed (United States National 
Institutes of Health, Bethesda, MD, United States) database from January 1, 2005 to 
March 31, 2019. Three index search terms for nonalcoholic fatty liver disease, 
nonalcoholic steatohepatitis, and fatty liver were combined. Other potential studies 
were identified from reference lists of previously published review articles. The search 
was restricted to English-language articles. Conference abstracts were excluded. Three 
investigators (Patel P, Muller C and Paul S) reviewed articles for study inclusion. 
Discrepancies were resolved by consensus.

Study selection and data collection
Published studies of patients with NAFLD or NASH receiving any therapeutic 
intervention were included. NAFLD and NASH were independently defined by each 
study, usually either by imaging or histology.

Randomized controlled trials (RCTs) or prospective cohort studies conducted in the 
United States and Canada with human subjects aged 18 years or older were included. 
Retrospective studies, case-control, case series, case reports, reviews, and studies with 
non-human subjects or non-English language were excluded. Three investigators 
(Patel P, Muller C and Paul S) reviewed articles for study inclusion with discrepancies 
resolved by consensus. All data were extracted by 1 researcher and verified by another 
independent researcher and included study author, country, publication date, study 
design, intervention, sex, age, and race and/or ethnicity. Enrollment demographic 
information regarding race and ethnicity, when available, was recorded as defined in 
each individual study. For the purposes of analysis, ethnicity referred to designations 
of “Hispanic” or “non-Hispanic”, reported along with an independent racial 
designation for each participant.

An assessment of risk of bias was not performed as we had a heterogenous 
inclusion criteria, and a risk assessment is not applicable to our study design. 
Additionally, given the framework of our research question, we have demonstrated 
that these studies are, in fact, biased towards patient selection.

Data synthesis and analysis
NAFLD prevalence data was obtained using a recent systematic review and meta-
analysis that examined racial and ethnic disparities in NAFLD prevalence among 
adult patients in the United States through August 2, 2016[3]. In this study, the 
prevalence of NAFLD in the Hispanic population was 22.9% compared to 14.4% in 
white persons and 13.0% in black persons[3]. Additionally, the prevalence of NASH 
followed similar trends in this analysis with Hispanics disproportionately affected 
with a prevalence of 45.4%[3].

Descriptive statistics were performed with frequencies and proportions reported. 
Two-tailed z-test was performed to compare differences in proportions. All meta-
analyses were performed using random effects models and results were pooled using 
the maximum likelihood estimation. The arcsine transformation was used to estimate 
the absolute proportion of Hispanics participating in each study. Study heterogeneity 
was assessed using the Cochrane I2 statistic. All statistical analyses were performed 
using OpenMeta software. The statistical methods of this study were reviewed by Dr. 
Sonali Paul.

Prespecified subgroup analyses explored differences in Hispanic trial participation 
by specifically a diagnosis of NASH, mode of NAFLD diagnosis, and type of 
therapeutic intervention. Further subgroup analyses examined the effect of study 
design (RCT versus prospective cohort) on enrollment by ethnicity.
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RESULTS
The search strategy yielded 14406 citations using the relevant search terms, with 38 
meeting eligibility criteria (Figure 1). Thirty-two studies (84%) were conducted in the 
United States, 4 studies (11%) performed in Canada, and 2 studies (5%) were 
multinational (Table 1). Twenty-six (68%) studies were randomized controlled trials 
and 12 (32%) were prospective cohort or open label studies. When reported, median 
age of enrolled subjects was 49 years old (range 41.5-58) with 56% female participants. 
NAFLD was defined through biopsy findings in 79% (n = 30) of the studies. Of the 
included articles, treatment modalities ranged from medications (n = 28, 74%), lifestyle 
interventions (n = 5, 13%), bariatric surgery (n = 4, 11%) and phlebotomy (n = 1, 2%).

Reporting of racial data
Of the 38 identified trials, 25 (66%) included racial data with a total of 2531 total 
enrolled patients. Twenty-one (84%) trials were conducted in the United States, 2 (8%) 
trials were performed in Canada and 2 (8%) were multinational trials. The median age 
of enrolled patients was 49.5 years (range 41-58). NAFLD was diagnosed by biopsy in 
80% (n = 20) of the trials, with 20% (n = 5) diagnosed by imaging. Interventions 
included medications (n = 23, 92%) or bariatric surgery (n = 2, 8%) (Table 1).

Enrollment of Hispanic patients
Among the 38 eligible trials, only 17 (44.7%) included information regarding patient 
ethnicity. Of the 2983 patients enrolled in all eligible trials, a total of only 346 (11.6%) 
Hispanic participants was reported. Among the 25 studies that included data on race, 
14 included data on Hispanic participation. Of note, 3 studies that did not have racial 
data did provide data on Hispanic participation (Table 1).

Among the 17 trials that reported Hispanic participation, there were 346 Hispanic 
patients out of 1577 total enrolled patients with a participation rate of 21.9% compared 
to 74.8% of Caucasian participants among those including data on Caucasian 
participation. The 21.9% unadjusted pooled prevalence of Hispanic trial participants 
was similar to the 22.8% unadjusted pooled NAFLD Hispanic prevalence (990/4332 
total patients) in the recent systematic review by Rich et al[3] (P = 0.365).

A meta-analysis was then performed to estimate pooled prevalence while taking 
heterogeneity of included studies into consideration. The pooled prevalence was 
found to be 24.3% [95% confidence interval (CI) 16.6-32.0] with significant 
heterogeneity (I2 = 94.6%) (Figure 2).

Further sub-group meta-analyses were performed in patients with biopsy proven 
NASH and found Hispanic participation to be 24.7% (Table 2), considerably lower 
than the 45.4% prevalence of NASH in the Hispanic population found in the recent 
meta-analysis by Rich et al[3]. Caucasian and African American participation in studies 
using NASH as inclusion criteria, was slightly lower than those of NAFLD studies 
(67.3% vs 63.9% and 8.0% vs 2.7%, respectively).

To determine if rates of Hispanic enrollment changed over time, studies conducted 
before and after 2015 were compared. The pooled prevalence of Hispanic patients in 
studies from 2005-2014 was 15%, compared to 37% for studies from 2015-2019. Trends 
in Hispanic study participation over time are displayed in Figure 3.

DISCUSSION
The purpose of this systematic review and meta-analysis was to characterize the 
participation rate of Hispanic patients in clinical trials investigating therapies for 
NAFLD. Despite the importance of genetics and race in the prevalence of NAFLD, our 
results show that racial/ethnic demographic data are under-reported, with only 25 of 
38 (66%) eligible clinical trials reporting race or ethnicity. Both the FDA and the 
National Institutes of Health (NIH) have published recommendations on how to 
report race and ethnicity data in clinical trials, however in practice these guidelines are 
not strictly followed or enforced[5,6]. Previous studies have demonstrated reporting of 
race/ethnicity to be similarly suboptimal in clinical trials across several specialties[7,8]. 
An analysis of clinical trial enrollment for several disease processes (spanning general 
medicine, oncology, cardiovascular disease, and infectious diseases) from 2009, found 
that 21% of studies failed to include racial or ethnic demographic data[7].

In this review, of the 38 trials that met eligibility criteria, 25 reported racial 
information. Among these only 17 (68%) provided data on ethnicity (participation of 
Hispanic patients). It is well established that the prevalence of NAFLD and NASH is 
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Table 1 Summary of non-alcoholic fatty liver disease studies included in systematic review

Year Author Study design
NAFLD 
or 
NASH

How NAFLD defined 
(ultrasound/biopsy) Intervention Total 

enrolled % Men Median 
age (yr)

Reporting 
of Race

Reporting 
of ethnicity

% 
White

% 
Black

% 
Hispanic

% 
Asian

% 
Other Unknown

2005 Huang et al Uncontrolled, 
open-label trial

NASH Biopsy Dietary intervention/ 
counseling

23 47.8 48 N Y 87% 0% 13% 0% 0% 0%

2005 Clark et al Prospective 
cohort

NAFLD Biopsy Roux-en-Y 16 50.0 43 Y N 88% NR NR NR NR 12%3

2006 Barker et al Retrospective 
cohort

NASH Biopsy Roux-en-Y 19 10.5 49 N N NR NR NR NR NR NR

2006 Browning et al Prospective 
cohort

NAFLD Imaging (MRI)2 Statins 268 44.0 54 Y Y 38% 50% 10% 0% 2% 0%

2006 Belfort et al RCT NASH Biopsy Pioglitazone 47 44.7 51 N N NR NR NR NR NR NR

2007 Balas et al RCT NASH Biopsy Pioglitazone 35 54.3 48 N N NR NR NR NR NR NR

2007 Lutchman et al Uncontrolled, 
open-label trial

NASH Biopsy Discontinuation of pioglitazone 13 54.0 41.5 Y Y 84% 0% 8% 8% 0% 0%

2009 Loomba et al Uncontrolled, 
open-label trial

NASH Biopsy Metformin 26 50.0 44 Y Y 65% 0% 15% 19% 0% 0%

2010 Chalasani et al RCT NASH Biopsy Pioglitazone/ Vitamin E 247 40.0 46 Y Y NR NR 15% NR NR 85%4

2011 Foster et al RCT NAFLD CT Atorvastatin 80 71.0, 77.5 
with 
NAFLD

59 Y Y 93% 2% 2% 2% 0.5% 0%

2011 Van Wagner et 
al

RCT NASH Biopsy Pentoxyfylline 30 43.3 50.5 Y Y 80% 0% 17% 3% 0% 0%

2011 Zein et al RCT NASH Biopsy Pentoxyfylline 55 69.1 50 Y N 93% NR NR NR NR 7%3

2011 Torres et al RCT NASH Biopsy Rosiglitazone/ metformin 108 50.4 49 Y Y 65% 4% 22% 4% 5%

2012 Le et al RCT NASH MRI Colesevelam 50 46.0 47 Y Y 38 0% 28% 22 8 0%

2012 Zein et al RCT NASH Biopsy Pentoxyfylline 47 70.2 50 Y N 92% NR NR NR NR 8%3

2012 Sullivan et al RCT NAFLD Biopsy Exercise 18 27.8 48 N N NR NR NR NR NR NR

2012 Fealy et al RCT NAFLD Imaging (MRI) Exercise 13 NR 58 N N NR NR NR NR NR NR

2013 Mudaliar et al RCT NAFLD Biopsy Obeticholic acid 64 51.6 52 Y Y1 42% 28% 25% 5% 0% 0%

2013 Beaton et al Uncontrolled, 
open-label trial

NAFLD 
or NASH

Biopsy Phlebotomy 31 61.3 49 N N NR NR NR NR NR NR
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2014 Sanyal et al RCT NASH Biopsy EPA-E 243 39.1 48 Y N 91% 3% 0% 0% 6% 0%

2015 Dasarthy et al RCT NASH Biopsy Omega 3 fatty acids 37 21.6 50 Y Y 92% 3% 5% 0% 0% 0%

2015 Argo et al RCT NASH Biopsy N-3 fish oil 34 38.2 46 Y N 97% NR NR NR NR 3%3

2015 Loomba et al RCT NASH Biopsy Ezetemibe 50 38.0 49 Y Y NR NR 34% NR NR 66%4

2015 Neuschwander 
et al

RCT NAFLD Biopsy Obeticholic acid 283 33.9 51 Y Y 83% 2% 15% 6% 10% 0%

2015 Vilar-Gomez et 
al

Prospective 
cohort

NASH Biopsy Bariatric surgery 293 41.0 48 Y N 98% NR NR NR NR 2%3

2015 Glass et al Prospective 
cohort

NASH Biopsy Weight loss 45 28.9 46 N N NR NR NR NR NR NR

2016 Harrison et al RCT NASH Biopsy GT020 (galectin 3 protein 
inhibitor)

31 54.8 54 N NR NR NR NR NR NR NR

2016 Cusi et al RCT NASH Biopsy Pioglitazone 101 70.3 51 Y Y 25% NR 67% NR 8% 0%

2016 Cui et al RCT NAFLD MRI Sitagliptin 84 41.7 53.5 N Y 32% NR 36% NR NR NR

2016 Ratziu et al RCT NASH Biopsy Elafibranor (PPAR agonist) 274 55 52 Y N 89% NR NR NR NR NR

2017 Winn et al RCT NAFLD MRI Exercise 21 NR 46 N N NR NR NR NR NR NR

2017 Joy et al RCT NASH Biopsy Sitagliptin 12 41.7 56 Y N 92% NR NR NR NR 8.3%3

2017 Loomba et al RCT NASH Biopsy Selonsertib (ASK1 inhibitor) 72 31 54.2 Y N 90% NR NR NR NR 10%3

2017 Lawitz et al Prospective 
cohort

NAFLD MRI Acetyl-CoA carboxylase 
inhibitor (GS-0976)

20 55 45 Y N 100% 0% NR 0% 0% NR

2018 Shiffman et al RCT NAFLD Biopsy or MRI Emricasan 38 63.2 NR Y N 89% NR NR NR NR 11%3

2018 Schwenger et al Prospective 
cohort

NAFLD Biopsy Bariatric surgery 42 23.8 48 N N NR NR NR NR NR NR

2018 Chalasani et al RCT NAFLD MRI Leucine/metformin/sildenafil 70 44.3 46 Y Y 63% 4.2% 27% 2.9% 1.4% 2.9%

2019 Harrison et al Prospective 
cohort

NASH Biopsy FGF19 analog (NGM282) 43 20.9 50 N Y NR NR 76.7% NR NR 23.34

1Race and ethnicity categorized together.
2Definition of NAFLD included presence of steatosis on MRI.
3Patients were categorized as either white or non-white.
4Patients were categorized as either Hispanic or non-Hispanic. NAFLD: Non-alcoholic fatty liver disease; NASH: Non-alcoholic steatohepatitis; Y: Yes; N: No; MRI: Magnetic resonance imaging; NR: Not recorded; RCT: Randomized 
control trial.

higher among Hispanic patients than among either non-Hispanic whites or other 
minority groups, with a prevalence of 25%-40% and 25%, respectively[9-13]. Although 
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Table 2 Proportion of trial patients with non-alcoholic steatohepatitis by race/ethnicity

NASH

Prevalence (%) 95%CI

Hispanic 24.7 9.1-40.4

White persons 63.9 42.4-85.5

Black persons 2.7 0.5-4.9

NASH: Non-alcoholic steatohepatitis; CI: Confidence interval.

Figure 1  Summary of review process of all PubMed articles using search terms.

Hispanic participation among trials that included information about Hispanic 
enrollment (24.3%) was close to that of the United States Hispanic population  
(18.3%)[14], it does not provide an accurate reflection of the racial and ethnic makeup of 
the NAFLD population, which is closer to 30% Hispanic[12]. There was also significant 
discrepancy between Hispanic participation in NASH trials (24.7%) and the prevalence 
of NASH (45.5%) reported in a recent meta-analysis[3]. It is not known whether the low 
rate of Hispanic participation in these trials is due to lack of collection of ethnic 
demographic data on behalf of the investigators, failure to report ethnicity by subjects, 
or true under-enrollment.

Under-reporting of Hispanic trial participants could be in part due to heterogeneity 
in self-reported ethnicity among Hispanic patients and diversity of their country of 
origin and race[15]. Health sciences typically follow the United States Census practice of 
categorizing “Hispanic” as an ethnicity that is distinct from race. This practice can 
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Figure 2  Pooled prevalence of Hispanic patients among studies reporting ethnicity.

result in discordance between patients’ self-perceived race/ethnicity and their 
associated categorization in health systems in addition simplification of a diverse, 
heterogenous group, and inaccuracy in reporting[15,16].

Heterogeneity of enrollment practices for the included trials is also likely 
contributing significantly to Hispanic under-enrollment. Hispanic enrollment (among 
those reporting any Hispanic participants) ranged from 4%-67%. The I2 statistic of 94% 
highlights the significant heterogeneity of Hispanic enrollment among studies 
included in this meta-analysis. The finding that 10 of the 17 trials (59%) including data 
on Hispanic enrollment were conducted in states that shared a border with Mexico[17-26] 
highlights the opportunistic, rather than systematic, nature of trial recruitment and 
enrollment. The generalizability of such clinical trials is significantly compromised 
when they fail to include information about key demographics.

When comparing racial and ethnic enrollment between studies using NAFLD and 
NASH as inclusion criteria, we found that Hispanic enrollment in NASH trials 
increased relative to enrollment of Caucasian and African American participants. 
These findings are consistent with those of prior studies demonstrating that Hispanic 
NAFLD patients are more likely to progress to steatohepatitis than Caucasians or 
African Americans[3,27]. However, given that 45% of Hispanic NAFLD patients 
experience progression to steatohepatitis, compared to 32% and 20% of Caucasian and 
African American NAFLD patients, respectively[3], Hispanics are likely even more 
under-represented in studies of NASH relative to the disease burden in that 
population. The observed proportion of African American NASH participants in our 
study was particularly low (2.7%), but is likely a reflection of the low rate of African 
American enrollment in included studies in general.

Acknowledging the importance of diverse trial participation to generalizability of 
findings in the development of new therapies, the NIH has stipulated that all 
sponsored clinical trials include women and minority patients since 1993[7]. Aside from 
ethical issues related to equity and justice, racial differences in response to 
pharmacologic therapy identified in diverse trials have been used to guide current 
clinical practice[28,29]. Recent work suggesting differences in the underlying genetic 
contributions to NAFLD in patients of different racial/ethnic backgrounds[30,31] 
highlight the importance of diversity in clinical trial participation. Genetic variants on 
PNPLA3, TM6SF2, and neurcan (NCAN) can increase the heritability of NAFLD by up 
to 27% within families. A missense mutation of PNPLA3 has a strong association with 
hepatic fat accumulation and with a higher susceptibility to develop more severe 
histologic liver damage, irrespective of the degree of obesity or presence of 
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Figure 3  Percentage of Hispanic enrollment in trials. A: Percentage of Hispanic enrollment in trials; B: Percentage of Hispanic enrollment in trials grouped 
by year.

diabetes[32-34]. This variant in PNPLA3 gene has been observed in highest frequency in 
Hispanics[4].

Despite the benefits of diversity in trial enrollment, minority patients have 
historically been underrepresented in clinical trials. Barriers to minority participation 
in clinical trials include mistrust of providers/research, reduced access to healthcare, 
financial and time constraints, lack of education about clinical trials, and cultural or 
language differences impairing communication with trial recruiters or providers[35]. 
Hispanic patients, in particular, have been underrepresented in clinical trials for 
multiple conditions. In a 2004 analysis of colorectal, lung and prostate cancer studies, 
Murthy et al[36] found that Hispanic patients only constituted 3.1% trial participants. 
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Compared to African American patients, Hispanic patients are less likely to be aware 
of or recruited to participate in clinical research[37-39]. Although lack of access to 
healthcare resources and lower socioeconomic status are shared among multiple 
minority groups, language barriers create a burden for Hispanic patients in particular. 
Interventions such as provision of Spanish-speaking recruitment materials or 
personnel have been shown to improve enrollment of Hispanic patients in clinical 
trials[40,41] and serve as potential targets for increasing diversity of study populations 
for NAFLD. In spite of these historic barriers to Hispanic participation in clinical trials, 
a trend toward increasing Hispanic enrollment over time was observed in our study, 
with Hispanic enrollment in studies conducted after 2015 nearly triple that of studies 
from 2005-2014. While these results are encouraging, future efforts are needed to 
standardize reporting of race/ethnicity in clinical trials and encourage diverse, 
representative enrollment.

A major limitation of this study is the low rate of reporting demographic data on 
Hispanic participation among the trials analyzed. Although many trials did not 
include any racial/ethnic demographic data, the rate of inclusion of data on Hispanic 
participation was particularly poor (44% of eligible trials). From the information 
available, it is not known if these trials did not actually recruit any Hispanic 
participants or if they simply failed to collect or report data on their inclusion.

In conclusion, North American clinical trials of NAFLD from 2015-2019 did not 
consistently include data on Hispanic participation. Among trials that did include 
racial/ethnic demographic data, Hispanic patients may be underrepresented relative 
to the burden of NAFLD and NASH among this population. Future efforts aimed at 
improving or standardizing reporting of race in clinical trials and at increasing 
enrollment of diverse and representative study populations are needed to address this 
disparity.

ARTICLE HIGHLIGHTS
Research background
Non-alcoholic fatty liver disease (NAFLD) is the most common cause of chronic liver 
disease in the United States and has a heterogeneous distribution across racial and 
ethnic groups, with a disproportionate burden among Hispanics. Although it remains 
unclear why Hispanics are at a higher risk of developing NAFLD and nonalcoholic 
steatohepatitis (NASH), there is likely an interplay of multifactorial causes including 
genetics, culture, socioeconomic status and environment. Despite this high burden of 
disease, there are currently no approved therapies for the treatment of NAFLD. 
Several promising therapies are currently being investigated in clinical trials but it is 
unknown if Hispanics are appropriately represented in these clinical trials.

Research motivation
Identifying possible racial disparities is the first step in improving targeted 
interventions for patient subgroups. The purpose of this systematic review and meta-
analysis was to characterize the participation rate of different races and ethnicities in 
clinical trials investigating therapies for NAFLD.

Research objectives
The aim of this study was to evaluate the enrollment of Hispanics in NAFLD trials 
conducted in the United States and Canada. We hypothesized that the expected rate of 
Hispanics in NAFLD therapy trials should be proportionate to the burden of disease 
among Hispanics within the NAFLD population.

Research methods
The literature search was performed using the PubMed (US National Institutes of 
Health, Bethesda, MD, United States) database from January 1, 2005 to March 31, 2019 
using the following search terms: Nonalcoholic fatty liver disease, nonalcoholic 
steatohepatitis, and fatty liver. Randomized controlled trials (RCTs) or prospective 
cohort studies conducted in the United States and Canada with human subjects aged 
18 years or older were included. Descriptive statistics were performed with 
frequencies and proportions reported. Two-tailed z-test was performed to compare 
differences in proportions. All meta-analyses were performed using random effects 
models and results were pooled using the maximum likelihood estimation.
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Research results
Of the 38 trials that met eligibility criteria, twenty-five reported racial information. 
Among these only 17 (68%) provided data on ethnicity (participation of Hispanic 
patients). Among the 2983 patients enrolled in all eligible trials, a total of only 346 
(11.6%) Hispanic participants was reported. Among the 17 trials that reported 
Hispanic participation, there were 346 Hispanic patients out of 1577 total enrolled 
patients with a participation rate of 21.9% compared to 74.8% of Caucasian 
participants among those including data on Caucasian participation. A meta-analysis 
was then performed to estimate pooled prevalence while taking heterogeneity of 
included studies into consideration. The pooled prevalence was found to be 24.3% 
(95%CI: 16.6-32.0) with significant heterogeneity (I2 = 94.6%). To determine if rates of 
Hispanic enrollment changed over time, studies conducted before and after 2015 were 
compared. The pooled prevalence of Hispanic patients in studies from 2005-2014 was 
15%, compared to 37% for studies from 2015-2019.

Research conclusions
North American clinical trials of NAFLD from 2015-2019 did not consistently include 
data on Hispanic participation. Among trials that did include racial/ethnic 
demographic data, Hispanic patients may be underrepresented relative to the burden 
of NAFLD and NASH among this population.

Research perspectives
Future efforts aimed at improving or standardizing reporting of race in clinical trials 
and at increasing enrollment of diverse and representative study populations are 
needed to address this disparity. It is not known whether the low rate of Hispanic 
participation in these trials is due to lack of collection of ethnic demographic data on 
behalf of the investigators, failure to report ethnicity by subjects, or true under-
enrollment. Despite the benefits of diversity in trial enrollment, minority patients have 
historically been underrepresented in clinical trials. Barriers to minority participation 
in clinical trials include mistrust of providers/research, reduced access to healthcare, 
financial and time constraints, lack of education about clinical trials, and cultural or 
language differences impairing communication with trial recruiters or providers. 
Interventions such as provision of Spanish-speaking recruitment materials or 
personnel have been shown to improve enrollment of Hispanic patients in clinical 
trials and serve as potential targets for increasing diversity of study populations for 
NAFLD.
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Abstract
BACKGROUND 
Non-islet cell tumor hypoglycemia (NICTH) is a rare cause of persistent 
hypoglycemia seen in patients with hepatocellular carcinoma (HCC). It is likely to 
be underdiagnosed especially in the patients with poor hepatic function and 
malnutrition. Herein, we report a rare case of NICTH as the initial presentation of 
HCC in a patient with chronic hypoglycemia due to end-stage liver cirrhosis.

CASE SUMMARY 
A 62-year-old male with chronic fasting hypoglycemia secondary to end-stage 
hepatitis C-related cirrhosis, presented with altered mental status and dizziness. 
He was found to have severe hypoglycemia refractory to glucose supplements. 
Imaging studies and biopsy discovered well differentiated HCC without 
metastasis. Further evaluation showed low insulin, C-peptide and beta-
hydroxybutyrate along with a high insulin-like growth factor-2/insulin-like 
growth factor ratio, consistent with the diagnosis of NICTH. As patient was not a 
candidate for surgical resection or chemotherapy, he was started on prednisolone 
with some improvements in the glucose homeostasis, but soon decompensated 
after a superimposed hospital acquired pneumonia.

CONCLUSION 
NICTH can occur as the sole initial presentation of HCC and is often difficult to 
correct without tumor removal. Clinicians should maintain high clinical suspicion 
for early recognition of paraneoplastic NICTH in patients at risk for HCC, even 
those with chronic fasting hypoglycemia in the setting of severe hepatic failure 
and malnutrition.

Key words: Non-islet cell tumor hypoglycemia; Hepatocellular carcinoma; Liver cirrhosis; 
Insulin-like growth factor-2; Paraneoplastic syndrome; Case report
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Core tip: Paraneoplastic Non-islet cell tumor hypoglycemia can occur as an initial 
presentation in patients with hepatocellular carcinoma and is often difficult to correct. It is 
tend to be underdiagnosed because patients often developed tolerance to chronic fasting 
hypoglycemia secondary to advanced liver cirrhosis. A ratio of insulin-like growth factor-
2/insulin-like growth factor-1 above 10 is often found if non-islet cell tumor hypoglycemia 
is induced by overproduction of incompletely processed insulin-like growth factor-2. Oral 
corticosteroids and frequent high carbohydrate meals are often recommended but the 
outcome is unfavorable in general if tumor removal is not possible.

Citation: Yu B, Douli R, Suarez JA, Gutierrez VP, Aldiabat M, Khan M. Non-islet cell tumor 
hypoglycemia as an initial presentation of hepatocellular carcinoma coupled with end-stage 
liver cirrhosis: A case report and review of literature. World J Hepatol 2020; 12(8): 519-524
URL: https://www.wjgnet.com/1948-5182/full/v12/i8/519.htm
DOI: https://dx.doi.org/10.4254/wjh.v12.i8.519

INTRODUCTION
Non-islet cell tumor hypoglycemia (NICTH) is a rare paraneoplastic complication 
associated with malignancies of both epithelial and mesenchymal origin. One of the 
most common epithelial tumors is hepatocellular carcinoma (HCC)[1,2]. Hypoglycemia 
is induced either by tumor consumption of glucose (type A) or overproduction of 
incompletely processed insulin-like growth factor-2 (IGF-2) (type B), while levels of 
insulin, C-peptide, pro-insulin, and beta-hydroxybutyrate are suppressed[3]. NICTH 
occurs in 4% to 27% of patients with HCC[4]. However the actual prevalence might be 
underestimated due to limited availability of testing for IGF-2. In addition, the 
etiologies of hypoglycemia in HCC patients are often multifactorial. Many patients 
might have developed tolerance to chronic fasting hypoglycemia due to long term 
poor hepatic function and nutritional status at the time of discovery of HCC. Here we 
report a case of persistent NICTH as the initial presentation in a patient with newly 
diagnosed HCC overlapped with end-stage liver cirrhosis.

CASE PRESENTATION
Chief complaints
A 62-year-old Hispanic male with long-standing hepatitis C-related cirrhosis was 
brought to the emergency room on December 7, 2019 due to 2 episodes of altered 
mental status and non-vertiginous dizziness witnessed by his family. He also reported 
an unintentional 1-kg weight loss over the past 1 mo.

History of present illness
There was no history of loss of consciousness, falls, or head trauma. He was first found 
to have hepatitis C infection with concurrent liver cirrhosis and portal hypertension in 
2015. Viral load became undetectable after the completion of antiviral therapy but the 
patient lost follow-up ever since July 2018. Child-Pugh score during the last outpatient 
visit was 8 (class B). AFP was within the normal limit. No signs of malignancy were 
found on liver ultrasound.

Physical examination upon admission
On physical exam, he was all the time conscious and had full ability to communicate. 
Vital signs were within normal limits. Rest of the physical exam was significant for 
cachectic appearance, jaundice, and bilateral lower extremity edema up to the knee.

Laboratory examination, imaging studies and diagnostic reasoning
In the emergency room, his blood glucose was detected to be 26 mg/dL. He denied 
poor oral intake or history of diabetes, alcohol abuse or illicit drug use. Of note, his 
blood glucose level tended to be on the lower side (75-85 mg/dL) seen in the records 
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of several outpatient visits before he lost follow-up. The blood glucose level was 
corrected by two immediate intravenous 50% dextrose pushes, but dropped again 
down to 10 mg/dL in 2 h for which continuous 10% dextrose infusion was started and 
the patient was instructed to consume frequent carbohydrate-rich snacks. However, 
recurrent hypoglycemic attacks still occurred since admission that required multiple 
IV 50% dextrose and glucagon pushes.

Laboratory evaluation of hypoglycemia showed undetectable insulin [< 0.4 µU/mL 
(2.6-24.9 µU/mL)], low C-peptide [0.2 ng/mL (1.1-4.4 ng/mL)], lower normal pro-
insulin [1.3 pmol/L (0-10.0 pmol/L)], and undetectable beta-hydroxybutyrate [< 0.1 
mg/dL (0.2-2.8 mg/dL)], excluding the possibility of insulinoma. Sulfonylurea screen 
test was negative. Adrenal insufficiency was also unlikely due to a high serum cortisol 
concentration. His hepatic function deteriorated [INR 2.8; albumin 2.9 g/dL (3.5-5.2 
g/dL); total bilirubin 3.76 mg/dL (0.2-1.2 mg/dL); aspartate transaminase 145 U/L (< 
40 U/L); alanine transaminase 93 U/L (< 41 U/L); alkaline phosphatase 263 U/L (40-
130 U/L)]. Hepatic encephalopathy was also suspected due to high ammonia level 
[101 µmol/L (16-60 µmol/L)]. Child-Pugh score was calculated to be 11 (class C). AFP 
level was found to be elevated [108 ng/mL (< 8.3 ng/mL)]. Computed tomography of 
the abdomen with contrast showed cirrhosis and there was a centrally necrotic mass in 
the left hepatic lobe, measuring 6.7 cm × 6.5 cm (Figure 1). Three-phase liver computed 
tomography scan demonstrated suboptimal arterial phase enhancement due to the 
timing of the contrast with washout on delayed phase of the study. A subsequent 
biopsy confirmed the diagnosis of well differentiated HCC. No metastasis was found 
on bone scan. Therefore, NICTH was suspected. To establish the diagnosis, serum 
insulin-like growth factor-1 (IGF-1), IGF-2, and insulin-like growth factor-binding 
protein 3, the major binding protein for IGF-2 were measured. IGF-1 was suppressed 
[14 ng/mL (49-214 ng/mL)], IGF-2 was lower normal [303 ng/mL (300-960 ng/mL)], 
insulin-like growth factor-binding protein 3 was slightly decreased [2.2 µg/mL (2.6-4.8 
µg/mL)], and the IGF-2/IGF-1 ratio was 21.6 (> 10), consistent with the diagnosis of 
NICTH.

FINAL DIAGNOSIS
NICTH (type B); well differentiated HCC, Barcelona Clinic Liver Cancer Stage D; 
decompensated liver cirrhosis, Child-Pugh Class C.

TREATMENT
The patient was not a candidate of transplant, surgical resection, or palliative 
chemotherapy due to the baseline poor hepatic function. He was started on oral 
prednisolone with a dose titrated up to 60 mg daily. There were less hypoglycemic 
episodes and the patient showed improvements in the severity of hypoglycemia. 
However, he still required on and off glucose supplements to maintain glucose 
homeostasis. While waiting for the trial of trans-arterial chemoembolization and 
radiotherapy, he developed hospital-acquired pneumonia. And concurrently his 
plasma glucose dropped and became difficult to correct again (Figure 2).

OUTCOME AND FOLLOW-UP
The patient opted for inpatient hospice care and died of septic shock on day 19 of 
hospitalization.

DISCUSSION
NICTH is a rare complication seen in patients with HCC. In the present case, the 
patient had advanced cirrhosis without regular follow up for a year, so it’s unclear 
when the HCC first developed. Interestingly, acute hypoglycemic encephalopathy 
occurred as the sole initial clinical symptom prior to the diagnosis of HCC. Different 
from a few previously reported cases[5-9], our patient had a very poor hepatic function 
and nutritional status which could both contribute to his hypoglycemia to some extent. 
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Figure 1  Arterial phase of abdominal computed tomography showed a centrally necrotic mass in the left hepatic lobe, measuring 6.7 cm 
× 6.5 cm (orange arrow). A: Axial view; B: Coronal view; C: Sagittal view.

Figure 2  Capillary blood glucose trend.

He might have developed chronic hypoglycemia with diminished awareness during 
the past year since there were no signs of sympathetic activation. This might obscure 
other underlying causes of hypoglycemia if patient was not assessed thoroughly. 
However, his glucose level fluctuated drastically and was very difficult to correct. 
Further investigation for NICTH is merited given high risk of malignancy.

Two types of NICTH (type A and B) are seen in HCC patients[10]. Type A often 
occurs at the terminal stage of disease when there is an increased glucose consumption 
by the tumor on top of a progressive reduction in glucose supply due to hepatic failure 
on the residual liver tissue and in part due to malnutrition. The tumor mass is usually 
rapid growing and poorly differentiated, associated with severe anorexia, muscle 
wasting and weight loss. But hypoglycemia is often mild and relatively easier to 
correct[11,12]. Type B, less common than type A, is related to an overproduction of IGF-2 
and its precursors by the tumor. It often occurs at the earlier course of the disease and 
is thought to be a paraneoplastic syndrome. The severity of hypoglycemia is 
predominant and is often difficult to control. Glucose utilization by the tumor might 
also contribute to the hypoglycemia but is not a significant pathway[9]. The excess of 
IGF-2 Messenger RNA overwhelms the enzyme transforming pro-IGF-2 to mature 
IGF-2, thus producing various sizes of incompletely processed and unprocessed pro-
IGF-2, the so called “big IGF-2”[3,13]. Normally most of serum IGF-2 is transported in 
the form of a 150 kDa ternary complex together with insulin-like growth factor-
binding protein 3 and acid-labile sub-unit. But the “big IGF-2” mainly forms a 50 kDa 
binary complex with only insulin-like growth factor-binding protein 3. These binary 
complexes have a higher biological activity and can readily cross the capillary 
membrane to interact with insulin receptors in the liver, adipose tissue, and skeletal 
muscle due to their smaller size, leading to more glucose uptake and inhibition of 
gluconeogenesis[14,15]. By interacting with the IGF-1 receptors in the hypothalamus, the 
excess of pro-IGF-2 and IGF-2 inhibits the secretion of growth hormone, which in turn 
suppresses the production of IGF-1, insulin-like growth factor-binding protein 3, and 
acid-labile sub-unit. Therefore, more amount of free IGF-2 might gain access to the 
target tissue[16-19].
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As to our patient, IGF-2 was inappropriately normal for the extremely low IGF-1 
level. An IGF-2/IGF-1 ratio greater than 10 has been proposed to be enough to confirm 
the diagnosis of NICTH[16,20,21]. IGF-2 might be falsely normal in our patient because the 
sample was collected after the first dose of prednisolone was administered, which was 
able to inhibit the production of IGF-2[22]. In addition, serum IGF-2 levels in NICTH are 
often not elevated partially because most “big IGF-2” are not measured by common 
commercially available assay[16,23,24]. It has also been found by a few case reports that 
the levels of serum IGF-2 were decreased or normal in contrast to an increased pro-
IGF-2 in NICTH[25,26]. Pro-IGF-2 was not measured in this patient because the test was 
not available in our setting. Although we are not able to entirely exclude the 
possibility of excessive glucose consumption by the tumor, the tumor mass was not 
extensive, only occupying part of the left lobe, and the level of AFP was not 
significantly elevated, indicating mild biological activities. The hepatic failure was 
more likely due to his advanced cirrhosis rather than the tumor. Therefore, we believe 
that our case fits more into type B rather than type A NICTH.

Priority of management of NICTH is still tumor resection. In inoperable patients, 
several treatment options of local tumor cytoreduction are recommended, including 
percutaneous ethanol injection and trans-arterial chemoembolization[27,28]. Systemic 
chemotherapy ,  such  as  Sora fen ib  or  FOLFOX (oxa l ip la t in  and 5 -
fluorouracil/leucovorin), has also been showed to be effective[29]. In addition, emerging 
drugs that directly inhibit the IGF signals (PI3K-AKT-TOR or RAF-MEK-ERK) are 
under investigation[30]. In case that the primary malignancy cannot be treated, 
palliative medical management can be chosen. Glucocorticoid together with frequent 
high carbohydrate meals and IV glucose infusions is an ideal option to achieve long-
term prevention of hypoglycemia. Glucocorticoid, on one hand, stimulates hepatic 
gluconeogenesis and inhibits peripheral glucose uptake; on the other hand, can reduce 
the level of “big IGF-2” either by decreasing tumor production or by promoting the 
maturation of pro-IGF-2 and the formation of normal ternary complexes[22,31-33]. Other 
than glucocorticoid, glucagon, growth hormone, and octreotide infusion are also 
recommended, but their effects are transient and limited[2,8,34,35]. Our patient initially 
showed responses to high-dose prednisolone, but it failed to last for a long time 
mainly because of a poor hepatic reserve from cirrhosis. And the concurrent sepsis and 
pneumonia further destroyed patient’s ability to maintain the euglycemic status.

CONCLUSION
In conclusion, paraneoplastic NICTH should be considered in the evaluation of 
refractory hypoinsulinemic hypoglycemia in patients with risk factors of HCC, even in 
the setting of chronic fasting hypoglycemia induced by severe hepatic failure and 
malnutrition. NICTH can occur as the only initial presentation of HCC. Oral 
corticosteroids and frequent high carbohydrate meals are often recommended but the 
outcome is unfavorable in general if tumor removal is not possible.
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Abstract
The “six-and-twelve” (6&12) score is a new hepatocellular carcinoma (HCC) 
prognostic index designed for recommended transarterial chemoembolization 
(TACE) candidates. Quick and easy to use by the sum of tumor size (cm) and 
number, this model identifies three groups with different survival time (the sum 
is ≤ 6; or > 6 but ≤ 12; or > 12); a survival benefit with TACE can be expected for 
HCC patients with a score not exceeding twelve. Recently, Wang ZW et al showed 
that the “6&12” model was the best system correlated with radiological response 
after the first TACE. Thus, we wanted to assess its survival prediction ability as 
well as its prognostic value and compared it to other systems (Barcelona Clinic 
Liver Cancer, Hong Kong Liver Cancer (HKLC) staging, Albumin-Bilirubin grade, 
tumor nodularity, infiltrative nature of the tumor, alpha-fetoprotein, Child-Pugh 
class, and Performance Status score, Cancer of the Liver Italian Program, Model to 
Estimate Survival for HCC scores, up-to-seven criteria) different from Wang ZW 
et al study in a multicenter French cohort of HCC including only recommended 
TACE candidates retrospectively enrolled. As previously demonstrated, we show 
that the "6&12” score can classify survival within this French cohort, with a 
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prognostic value comparable to that of other systems, except HKLC staging. More 
importantly, the “6&12” score simplicity and ability in patients’ stratification 
outperform other systems for a routine clinical practice.
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Core tip: Not all-intermediate stage hepatocellular carcinoma (HCC) benefit from 
transarterial chemoembolization (TACE). The recent “six-and-twelve” (6&12) score is an 
easy to use prognostic model that ensure a quick and appropriate patient’ selection before 
the first TACE in Chinese cohorts. In this multicenter French cohort of HCC, the “6&12” 
score can also classify survival among recommended TACE candidates with a good 
prognostic performance. It may help clinicians in routine clinical practice.
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TO THE EDITOR
We have read with great interest the study by Wang et al[1] who assessed and 
compared different prognostic models for hepatocellular carcinoma (HCC) patients 
undergoing transarterial chemoembolization (TACE) treatment, especially the latest 
“six-and-twelve” (6&12) score[2] within a nationwide Chinese HCC cohort (n = 1107). 
Increased survival after TACE is correlated with radiological response[3,4] and this 
study shows that the “6&12” index is the best system correlated with radiological 
response after the first TACE. The study population was more heterogeneous than the 
population used to develop the score, including patients with slightly altered 
performance status (PS) and logically a model like the 3rd version of the hepatoma 
arterial-embolization prognostic score[5] (which include liver function parameters) had 
a higher predictive value for survival. However, simplicity (using two cut-off values 
for risk stratification) and presumed reliability of the “6&12” score have convinced us 
to assess once again[6] the reproducibility and the predictive value of this new model in 
a multicenter French cohort of HCC patients including only recommended TACE 
candidates (n = 324) ie intermediate and early unresectable stages according to the 
treatment stage migration concept. We compared it to other systems different from 
Wang et al[1]’s study (Barcelona Clinic Liver cancer[7] (BCLC) staging, Child-Pugh (CP) 
class, Albumin-Bilirubin[8] (ALBI) grade, NIACE[9] [tumor nodularity, infiltrative 
nature of the tumor, alpha-fetoprotein (AFP), CP class, and PS] score (Table 1)) using 
time-dependent area under receiver operating characteristic curve (AUROC) values 
and C-indices.

Patients were retrospectively enrolled over a six years period in two centers 
(Marseille, Nancy). Demographic and clinical characteristics of HCC patients are 
shown in Table 2. HCC patients were mostly male (85%), with a median of age of 68 
years. Cirrhosis was present in 96% of cases, CP class A (77%), CP class B7 (23%). 
Underlying liver disease was mostly related to alcohol abuse (38%) or viral C hepatitis 
(40%). Patients were BCLC stage B (n = 179), BCLC stage A (n = 145). HCC were 
multinodular in 71% of cases and the median tumor diameter was 35 mm (25-50). The 
mean session number of conventional TACE was 2.7 ± 1.8.

After a median follow-up duration of 24.4 (15.0-36.8) mo, eighty one percent of 
patients died. Kaplan-Meier analyses showed significant differences in overall survival 
(OS) distributions across subgroups of BCLC staging, “6&12” (Figure 1) and NIACE 
scores within this cohort (P < 0.05) (Table 3). Liver function at baseline also had an 
impact on survival; median OS was significantly different according to the CP class 
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Table 1 Summary of points-based scores

CLIP (0 to 7 points) MESH (0 to 6 points) NIACE (0 to 7 points)

Portal vein thrombosis 1 point Tumor extent: Beyond Milan 
criteria

1 point Tumor nodules ≥ 3 1 point

Infiltrative HCC 1.5 pointsAFP ≥ 400 ng/mL 1 point Vascular invasion and/or 
Extrahepatic spread

1 point

Nodular HCC 0 point

A 0 point PS ≥ 2 1 point

B 1 point

Child-Pugh grade

C 2 points

Child-Pugh grade ≥ A6 1 point

AFP ≥ 200 ng/mL 1.5 points

Unidolar and extension ≤ 50% 0 point AFP ≥ 20 ng/mL 1 point Child-Pugh grade A 0 point

Multinodular and extension ≤ 
50%

1 point Child-Pugh grade B 1.5 points

Tumor extent

Massive or extension > 50% 2 points

Alkaline phosphatase ≥ 200 IU/l 1 point

PS ≥ 1 1.5 points

CLIP: Cancer of the Liver Italian Program; MESH: Model to Estimate Survival for Hepatocellular carcinoma; NIACE: Tumor nodularity, infiltrative nature 
of the tumor, alpha-fetoprotein, Child-Pugh class, and performance status.

[CP-A, 27 (25-31) mo; CP-B7, 21 (15-24) mo (P = 0.0003)], or ALBI grade [grade 1, 35 
(25-43) mo; grade 2, 26 (22-28) mo; grade 3, 16 (12-24) mo (P = 0.0029)].

Performances of the “6&12” score and other systems for survival prediction are 
indicated in Table 4. Time-dependent AUROC values and C-indices of the “6&12” 
score was not significantly different from those of other systems. We checked our 
results within the main cohort from Marseille (n = 252) (Table 2) by comparing the 
“6&12” score to other staging scoring systems (Hong Kong Liver Cancer[10] (HKLC), 
Cancer of the Liver Italian Program[11] (CLIP), Model to Estimate Survival for HCC[12] 
(MESH), up-to-seven criteria[13]). Significant differences in survival distributions were 
also found across subgroups of the “6&12” score and other systems within this single 
center cohort (P < 0.05) (Table 5). Its predictive value remained comparable to that of 
other systems [C-index “6&12” 0.63 (0.56-0.70) vs CLIP 0.70 (0.62-0.78) vs “up-to-
seven” 0.61 (0.56-0.66) vs MESH 0.71 (0.63-0.78), not significant] except for HKLC 
staging, which provides a better prognostication ability [3-year AUROC (“6&12”) 0.56 
(0.44-0.68) vs (HKLC) 0.69 (0.65-0.74), P = 0.0325] using a more complex stratification 
into five subgroups.

Firstly, our findings confirm previously published results[1,2], the “6&12” score can 
classify survival among recommended TACE candidates. Its prognostic performance 
was similar within our cohort compared to Wang et al[2] original study [3-year AUROC 
values: 0.64 (0.58-0.71) vs 0.65 (0.61, 0.70); C-indices: 0.66 (0.58-0.74) vs 0.66 (0.63, 0.69) 
(Table 4)], and higher than that observed in this nationwide Chinese cohort[1] [c-index: 
0.58 (0.56, 0.60)]. Moreover, HCC patients with the highest tumor burden [sum of 
largest tumor size (cm) and number exceeding 12] have a median survival of 15 mo 
similar to Wang et al[1]’s manuscript. Thus, this model can also identify within our 
population a subgroup of patients with poor prognosis who may not achieve benefit 
from TACE. The “6&12” risk stratification into three subgroups is relevant. Indeed, the 
first one (sum of tumor size and number not exceeding six) identifies TACE candidates 
with long-term survival especially those who may achieve a complete necrosis after 
this treatment[14,15]. Moreover, TACE is also an effective therapy for the second 
subgroup (sum of tumor size and number above six and not exceeding twelve), which 
has clear boundaries unlike intermediate stage subclassifications[16,17] that divide tumor 
burden according to the up-to-seven criteria (within/out).

Secondly, in our study the “6&12” score prognostic value is comparable to that of 
other systems, but most of these models cannot be used to guide treatment decision 
directly. “6&12” simplicity outweighs other systems for a current clinical practice 
including models with online calculator[5]. Indeed, therapeutic management is 
determined using a multidisciplinary approach and control of different published 
prognostic scores for TACE by clinicians (surgeons, oncologists, hepatologists and 
radiologists) is very unusual. By adding “the sum of largest tumor size and number”, 
it is true that consensus is easy to achieve among all clinicians. Moreover, other 
scores[9] encompass other baseline features that are likely to impact OS such as 
morphology of the tumor[18], but those parameters are not routinely recorded, which 
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Table 2 Baseline characteristics of hepatocellular carcinoma patients undergoing transarterial chemoembolization treatment, n (%)

Demographic variables Marseille/Nancy cohort, n = 324 Marseille cohort1,n = 252

Age - Median [Q1-Q3], year 68 [62-74] 68 [60-73]

Gender Male/female 276 (85)/48 (15) 214 (85)/38 (15)

Liver disease HCV/HBV/Alcoholism/MS/other 129 (40)/14 (4)/122 (38)/42 (13)/17 (5) 109 (43)/12 (5)/84 (33)/37 (15)/10 (4)

ECOG (PS-0) 324 (100) 252 (100)

Cirrhosis 311 (96) 243 (96)

Tumor variables:

Tumor Size – mm - median [q1-q3] 35 [25-50] 32 [25-44]

Nodule (s): 1/2/3/4/≥ 5 95 (29)/72 (22)/80 (25)/38 (12)/39 (12) 83 (33)/67 (27)/34 (13)/31 (12)/37 (15)

Laboratory variables

AFP – ng/mL, median [q1-q3] 16.3 [6.0-120.3] 11.2 [5.0-77.7]

PT (%), median [q1-q3] 76 [64-88] 78 [68-88]

Albumin (g/L), median [q1-q3] 35 [28-38] 36.6 [32.7-41.0]

Total bilirubin (mcmol/L), median [q1-q3] 19.0 [13.7-28.7] 17 [11-27]

Child - Pugh grade A/B7 249 (77)/75 (23) 180 (71)/72 (29)

ALBI1 class 64 (20)/230 (71)/30 (9) 37 (15)/175 (73)/29 (12)

BCLC1 stage A/B 145 (45%)/179 (55%) 134 (56)/107 (44)

“6&12”1 score allocation n ≤ 6/> 6 - ≤ 12/> 12 154 (48)/163 (50)/7 (2) 130 (54)/106 (44)/5 (2)

NIACE score allocation ≤ 1/1.5 - 3/> 3 168 (52)/134 (41)/22 (7)

CLIP1 score allocation 0/1/2/≥ 3 - 55 (23)/135 (56)/45 (19)/ 6 (2)

MESH1 score allocation 0/1/2/3/4 - 41 (17)/77 (32)/78 (32)/37 (15)/8 (4)

Up-to-Seven model1 (In/Out) - 176 (73)/65 (27)

HKLC1 stage 1/2a/2b/3a/3b - 89 (37)/43 (17)/65 (27)/24 (10)/21 (9)

1Available data for 241 patients for staging and scores calculation. The Albumin-Bilirubin (ALBI) score was calculated according to the . ALBI grades were 
defined as ALBI grade 1 (score ≤ -2.60), ALBI grade 2 (score > - 2.60 and ≤ - 1.39) and ALBI grade 3 (score > - 1.39). Bilirubin level in mcmol/L and albumin 
level in g/L; Up-to-seven criteria: With seven as the sum of the largest tumor size (in cm) + number of tumor(s). Barcelona Clinic Liver cancer (BCLC) 
classification: Current (BCLC) staging considers solitary tumor > 2 cm or no more than 3 tumors not exceeding 3 cm in diameter (Performance Status-0, 
Child-Pugh (CP) class A or B7 grade) as stage A. No tumor was classified at the very early stage of hepatocellular carcinoma (HCC) (BCLC 0) in this 
multicenter French cohort. BCLC stage B HCC encompassed patients with multiple tumors beyond 3 cm, PS-0, CP A or B7 grade. Hong Kong Liver Cancer 
classification: Early tumor: ≤ 5 cm, ≤ 3 tumor nodules; CP grade A (stage 1), CP grade B (stage 2a), -Intermediate tumor: ≤ 5 cm and > 3 tumor nodules or > 
5 cm and ≤ 3 tumor nodules, CP grade A (stage 2b), CP grade B (stage 3a), - Locally-advanced tumor: > 5 cm, > 3 tumor nodules, CP grade A or B (stage 
3b). HCC: Hepatocellular carcinoma; TACE: Transarterial chemoembolization; HCV: Hepatitis C virus; HBV: Hepatitis B virus; MS: Metabolic syndrome; 
ECOG (PS): Eastern Cooperative Oncology Group (Performance Status); AFP: Alpha-fetoprotein; PT: Prothrombin Time; ALBI: Albumin-Bilirubin; BCLC: 
Barcelona Clinic Liver Cancer; “6&12”: “Six-and-twelve”; NIACE: Tumor nodularity, infiltrative nature of the tumor, AFP, CP, PS; CLIP: Cancer of the 
Liver Italian Program; MESH: Model to Estimate Survival for Hepatocellular carcinoma; HKLC: Hong Kong Liver Cancer.

limits their use.
Thirdly, TACE should be limited to HCC patients with preserved liver function, and 

our results also highlight the importance of liver function in our population that 
included only recommended TACE candidates. Our patients are older, with more 
cirrhotic patients, and more alcohol-related diseases. This probably explains the 
differences in survival observed between this multicenter French cohort and Wang 
et al[2] original study, with OS ranging from 31.0 to 15.0 mo compared to 43.3 to 16.8 mo 
(according to “6&12” score), respectively. However, OS observed in our cohort was 
comparable to that of this nationwide Chinese cohort[1] including a more 
heterogeneous population with OS ranging from 31.3 to 18.5 mo.

Fourthly, Wang et al[19] findings on ABCR score are not surprising. This model 
designed for further TACE combines four parameters (AFP serum level, BCLC stage, 
change in Child-Pugh grade, and radiological tumor Response), but unlike ART[20,21] 
(assessment for re-treatment with TACE) model the highest coefficient is assigned to 
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Table 3 Kaplan-Meier survival analysis according to “Six-and-twelve” score and other systems in the multicenter French cohort (n = 
324)

Scoring/stage systems OS [95%CI], mo P value (log-rank) Sidak1 Hazard ratio [95%CI] P value

“6&12” score < 0.0001

sum ≤ 6 (n = 154) 31 [27-35] Ref Ref

sum > 6 ≤ 12 (n = 163) 20 [17-24] 0.0009 1.55 [1.21-1.99] 0.0005

sum > 12 (n = 7) 15 [5-19] < 0.0001 3.80 [1.76-8.21] 0.0007

BCLC staging < 0.0001

A (n = 145) 35 [29-38] NR Ref

B (n = 179) 19 [17-23] NR 1.88 [1.47-2.41] < 0.0001

NIACE score < 0.0001

≤ 1 (n = 168) 35 [28-36] Ref Ref

1.5 - 3 (n= 134) 20 [16-23] < 0.0001 1.92 [1.49-2.48] < 0.0001

> 3 (n = 22) 11 [5-16] < 0.0001 6.23 [3.87-10.02] < 0.0001

Child-Pugh class 0.0003

A (n = 249) 27 [25-31] NR Ref

B (n = 75) 21 [15-24] NR 1.66 [1.26-2.19] 0.0003

ALBI grade 0.0029

Grade 1 (n = 64) 35 [25-43] Ref Ref

Grade 2 (n = 230) 26 [22-28] 0.1228 1.50 [1.06-2.11] 0.0216

Grade 3 (n = 30) 16 [12-24] 0.0016 2.30 [1.41-3.75] 0.0009

1Sidak test for multiple comparisons. OS: Overall Survival; CI: Confidence Interval; “6&12”: “Six-and-twelve”; Ref: Reference; BCLC: Barcelona Clinic Liver 
Cancer; NIACE: Tumor nodularity, infiltrative nature of the tumor, alpha-fetoprotein, child-pugh class, performance status; ALBI: Albumin-Bilirubin.

Table 4 Comparison of predictive accuracy for overall survival between “Six-and-Twelve” score and staging/scoring systems 
(multicenter French cohort n = 324)

Scoring/stage 
systems 1-yr AUROC P (vs ref) 2-yr AUROC P (vs ref) 3-yr AUROC P (vs ref) C-index P (vs ref)

“6&12” score 0.65 [0.57-0.74] Ref 0.65 [0.59-0.71] Ref 0.64 [0.58-0.71] Ref 0.66 [0.58-
0.74]

BCLC staging 0.61 [0.54-0.67] 0.1827 0.64 [0.59-0.70] 0.7079 0.61 [0.55-0.68] 0.2317 0.61 [0.54-
0.68]

NS

NIACE score 0.75 [0.68-0.83] 0.0134 0.69 [0.64-0.75] 0.2368 0.69 [0.63-0.74] 0.2827 0.70 [0.64-
0.77]

NS

Child-Pugh class 0.56 [0.49-0.63] 0.1057 0.56 [0.51-0.60] 0.0217 0.55 [0.50-0.59] 0.0304 0.59 [0.55-
0.64]

NS

ALBI grade 0.63 [0.57-0.69] 0.6835 0.56 [0.51-0.61] 0.0479 0.55 [0.49-0.61] 0.1033 0.62 [0.55-
0.68]

NS

“6&12”: “Six-and-twelve”; AUROC: Area under receiver operating characteristic curve; C-index: Concordance index; Ref: Reference; BCLC: Barcelona 
Clinic Liver Cancer; NS: Not significant; NIACE: Tumor nodularity, infiltrative nature of the tumor, alpha-fetoprotein, child-pugh class, performance 
status; ALBI: Albumin-Bilirubin.

radiological tumor response.
In summary, in this multicenter French HCC cohort different staging/scoring 

systems classify survival among recommended TACE candidates with a similar 
predictive power. However, “6&12” score simplicity and ability in patients’ 
stratification outperform other systems for a routine clinical practice.
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Table 5 Kaplan-Meier survival analysis according to “Six-and-twelve” score and other systems in the main cohort from Marseille 
(available data for 241 hepatocellular carcinoma patients)

Scoring/stage systems OS [95%CI], mo P value (log-rank) Sidak1 Hazard ratio [95%CI] P value

“6&12” score 0.0004

sum ≤ 6 (n = 130) 32 [28-36] Ref Ref

sum > 6 ≤ 12 (n = 106) 20 [17-25] 0.0017 1.61 [1.21-2.14] 0.0010

sum > 12 (n = 5) 16 [5-34] 0.0003 3.34 [1.35-8.25] 0.0092

CLIP < 0.0001

0 (n = 55) 35 [30-68] Ref Ref

1 (n = 135) 28 [25-32] 0.0724 1.81 [1.23-2.67] 0.0028

2 (n = 45) 18 [15-23] < 0.0001 2.86 [1.81-4.54] < 0.0001

3 (n = 6) 10 [1-27] < 0.0001 8.12 [3.35-19.67] < 0.0001

HKLC < 0.0001

1 (n = 89) 36 [30-40] Ref Ref

2a (n = 42) 25 [19-35] 0.0024 1.79 [1.18-2.72] 0.0060

2b (n = 65) 26 [19-34] 0.0749 1.45 [1.01-2.10] 0.0450

3a (n = 24) 17 [11-23] < 0.0001 3.30 [2.03-5.36] < 0.0001

3b (n = 21) 14 [11-16] < 0.0001 4.55 [2.73-7.58] < 0.0001

Up-to-Seven 0.0001

In (n = 176) 30 [27-35] NA Ref

Out (n = 65) 18 [15-24] NA 1.81 [1.34-2.46] 0.0001

MESH < 0.0001

0 (n = 41) 43 [35-70] Ref Ref

1 (n = 77) 30 [25-35] 0.1291 2.16 [1.33-3.48] 0.0017

2 (n = 78) 26 [19-34] 0.0490 2.30 [1.41-3.74] 0.0008

3 (n = 37) 15 [10-21] < 0.0001 6.02 [3.51-10.33] < 0.0001

4 (n = 8) 13 [4-24] < 0.0001 9.69 [3.86-24.36] < 0.0001

1Sidak test for multiple comparisons. “6&12”: “Six-and-twelve”; OS: Overall Survival; CI: Confidence Interval; Ref: Reference; CLIP: Cancer of the Liver 
Italian Program; HKLC: Hong Kong Liver Cancer; MESH: Model to Estimate Survival for Hepatocellular carcinoma.
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Figure 1  Kaplan-Meier analysis of overall survival according to “Six-and-twelve” criteria in the multicenter French HCC cohort (n = 324). 
TACE: Transarterial chemoembolization.
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