
World Journal of
Hepatology

ISSN 1948-5182 (online)

World J Hepatol  2023 November 27; 15(11): 1170-1252

Published by Baishideng Publishing Group Inc



WJH https://www.wjgnet.com I November 27, 2023 Volume 15 Issue 11

World Journal of 

HepatologyW J H
Contents Monthly Volume 15 Number 11 November 27, 2023

EDITORIAL

Editorial: Metabolomics in chronic hepatitis C: Decoding fibrosis grading and underlying pathways1170

Quarleri J, Delpino MV

REVIEW

Budd-Chiari syndrome in children: Challenges and outcome1174

Samanta A, Sen Sarma M, Yadav R

MINIREVIEWS

Risk of hepatitis B reactivation in patients with myeloproliferative neoplasms treated with ruxolitinib1188

Adesola AA, Cozma MA, Chen YF, Srichawla BS, Găman MA

Function of macrophage-derived exosomes in chronic liver disease: From pathogenesis to treatment1196

Xiang SY, Deng KL, Yang DX, Yang P, Zhou YP

ORIGINAL ARTICLE

Clinical and Translational Research

Global burden of cirrhosis and other chronic liver diseases due to nonalcoholic fatty liver disease, 1990-
2019

1210

Liu ZP, Ouyang GQ, Huang GZ, Wei J, Dai L, He SQ, Yuan GD

Observational Study

Evaluation of a protocol for rifaximin discontinuation in critically ill patients with liver disease receiving 
broad-spectrum antibiotic therapy

1226

Ward JA, Yerke J, Lumpkin M, Kapoor A, Lindenmeyer CC, Bass S

Basic Study

Metabolomics in chronic hepatitis C: Decoding fibrosis grading and underlying pathways1237

Ferrasi AC, Lima SVG, Galvani AF, Delafiori J, Dias-Audibert FL, Catharino RR, Silva GF, Praxedes RR, Santos DB, 
Almeida DTM, Lima EO

LETTER TO THE EDITOR

Letter to editor ‘Non-invasive model for predicting high-risk esophageal varices based on liver and spleen 
stiffness’

1250

Gao X, Guo XY, Yang LB, Wei ZC, Zhang P, Wang YT, Liu CY, Zhang DY, Wang Y



WJH https://www.wjgnet.com II November 27, 2023 Volume 15 Issue 11

World Journal of Hepatology
Contents

Monthly Volume 15 Number 11 November 27, 2023

ABOUT COVER

Editorial Board Member of World Journal of Hepatology, Rui Tato Marinho, FACG, FAASLD, FEBG, MD, PhD, 
Associate Professor, Head of Department ofof Gastroenterology and Hepatology, Centro Hospitalar Universitário 
Lisboa Norte, President of Portuguese Society of Gastroenterology, Medical School of Lisbon, Lisboa 1649-035, 
Portugal. ruitatomarinho@sapo.pt

AIMS AND SCOPE

The primary aim of World Journal of Hepatology (WJH, World J Hepatol) is to provide scholars and readers from 
various fields of hepatology with a platform to publish high-quality basic and clinical research articles and 
communicate their research findings online. 
    WJH mainly publishes articles reporting research results and findings obtained in the field of hepatology and 
covering a wide range of topics including chronic cholestatic liver diseases, cirrhosis and its complications, clinical 
alcoholic liver disease, drug induced liver disease autoimmune, fatty liver disease, genetic and pediatric liver 
diseases, hepatocellular carcinoma, hepatic stellate cells and fibrosis, liver immunology, liver regeneration, hepatic 
surgery, liver transplantation, biliary tract pathophysiology, non-invasive markers of liver fibrosis, viral hepatitis.

INDEXING/ABSTRACTING

The WJH is now abstracted and indexed in PubMed, PubMed Central, Emerging Sources Citation Index (ESCI), 
Scopus, Reference Citation Analysis, China Science and Technology Journal Database, and Superstar Journals 
Database. The 2023 Edition of Journal Citation Reports® cites the 2022 impact factor (IF) for WJH as 2.4.

RESPONSIBLE EDITORS FOR THIS ISSUE

Production Editor: Yi-Xuan Cai; Production Department Director: Xiang Li; Editorial Office Director: Xiang Li.

NAME OF JOURNAL INSTRUCTIONS TO AUTHORS

World Journal of Hepatology https://www.wjgnet.com/bpg/gerinfo/204

ISSN GUIDELINES FOR ETHICS DOCUMENTS

ISSN 1948-5182 (online) https://www.wjgnet.com/bpg/GerInfo/287

LAUNCH DATE GUIDELINES FOR NON-NATIVE SPEAKERS OF ENGLISH

October 31, 2009 https://www.wjgnet.com/bpg/gerinfo/240

FREQUENCY PUBLICATION ETHICS

Monthly https://www.wjgnet.com/bpg/GerInfo/288

EDITORS-IN-CHIEF PUBLICATION MISCONDUCT

Nikolaos Pyrsopoulos, Ke-Qin Hu, Koo Jeong Kang https://www.wjgnet.com/bpg/gerinfo/208

EXECUTIVE ASSOCIATE EDITORS-IN-CHIEF POLICY OF CO-AUTHORS

Shuang-Suo Dang <WebSite>https://www.wjgnet.com/bpg/GerInfo/310</WebSite>

EDITORIAL BOARD MEMBERS ARTICLE PROCESSING CHARGE

https://www.wjgnet.com/1948-5182/editorialboard.htm https://www.wjgnet.com/bpg/gerinfo/242

PUBLICATION DATE STEPS FOR SUBMITTING MANUSCRIPTS

November 27, 2023 https://www.wjgnet.com/bpg/GerInfo/239

COPYRIGHT ONLINE SUBMISSION

© 2023 Baishideng Publishing Group Inc https://www.f6publishing.com

PUBLISHING PARTNER PUBLISHING PARTNER's OFFICIAL WEBSITE

Department of Infectious Diseases, the Second Affiliated Hospital of Xi’an 
Jiaotong University

http://2yuan.xjtu.edu.cn/Html/Departments/Main/Index_21148.html

© 2023 Baishideng Publishing Group Inc. All rights reserved. 7041 Koll Center Parkway, Suite 160, Pleasanton, CA 94566, USA

https://www.wjgnet.com/bpg/gerinfo/204
https://www.wjgnet.com/bpg/GerInfo/287
https://www.wjgnet.com/bpg/gerinfo/240
https://www.wjgnet.com/bpg/GerInfo/288
https://www.wjgnet.com/bpg/gerinfo/208
<WebSite>https://www.wjgnet.com/bpg/GerInfo/310</WebSite>
https://www.wjgnet.com/1948-5182/editorialboard.htm
https://www.wjgnet.com/bpg/gerinfo/242
https://www.wjgnet.com/bpg/GerInfo/239
https://www.f6publishing.com
http://2yuan.xjtu.edu.cn/Html/Departments/Main/Index_21148.html


WJH https://www.wjgnet.com 1170 November 27, 2023 Volume 15 Issue 11

World Journal of 

HepatologyW J H
Submit a Manuscript: https://www.f6publishing.com World J Hepatol 2023 November 27; 15(11): 1170-1173

DOI: 10.4254/wjh.v15.i11.1170 ISSN 1948-5182 (online)

EDITORIAL

Editorial: Metabolomics in chronic hepatitis C: Decoding fibrosis 
grading and underlying pathways

Jorge Quarleri, M Victoria Delpino

Specialty type: Gastroenterology 
and hepatology

Provenance and peer review: 
Invited article; Externally peer 
reviewed.

Peer-review model: Single blind

Peer-review report’s scientific 
quality classification
Grade A (Excellent): A 
Grade B (Very good): 0 
Grade C (Good): 0 
Grade D (Fair): 0 
Grade E (Poor): 0

P-Reviewer: Sahin TT, Turkey

Received: October 24, 2023 
Peer-review started: October 24, 
2023 
First decision: November 7, 2023 
Revised: November 7, 2023 
Accepted: November 13, 2023 
Article in press: November 13, 2023 
Published online: November 27, 
2023

Jorge Quarleri, M Victoria Delpino, Instituto de Investigaciones Biomédicas en Retrovirus y Sida, 
Universidad de Buenos Aires, Consejo Nacional de Investigaciones Científicas y Técnicas, 
Buenos Aires 1121, Argentina

Corresponding author: Jorge Quarleri, PhD, Adjunct Professor, Research Scientist, Instituto de 
Investigaciones Biomédicas en Retrovirus y Sida, Universidad de Buenos Aires, Consejo 
Nacional de Investigaciones Científicas Técnicas, No. 2155 Paraguay, Buenos Aires 1121, 
Argentina. quarleri@fmed.uba.ar

Abstract
In the management of the growing population of hepatitis C virus-infected 
patients, a significant clinical challenge exists in determining the most effective 
methods for assessing liver impairment. The prognosis and treatment of chronic 
hepatitis C depend, in part, on the evaluation of histological activity, specifically 
cell necrosis and inflammation, and the extent of liver fibrosis. These parameters 
are traditionally obtained through a liver biopsy. However, liver biopsy presents 
both invasiveness and potential sampling errors, primarily due to inadequate 
biopsy size. To circumvent these issues, several non-invasive markers have been 
proposed as alternatives for diagnosing liver damage. Different imaging 
techniques and blood parameters as single markers or combined with clinical 
information are included. This Editorial discusses the identification of a set of six 
distinctive lipid metabolites in every fibrosis grade that appear to show a 
pronounced propensity to create clusters among patients who share the same 
fibrosis grade, thereby demonstrating enhanced efficacy in distinguishing 
between the different grades.

Key Words: Hepatitis C virus; Chronic hepatitis C; Liver fibrosis; Biomarker; Liquid 
biopsy
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Core Tip: Accurate diagnosis of liver damage in chronic hepatitis C is pivotal for decision-making. Liver biopsy, the 
traditional "gold standard" for assessing tissue damage, offers valuable insights but is invasive, with potential complications 
and sampling errors. Non-invasive methods have made progress in the last decade, but challenges remain. Various non-
invasive techniques are in development, including serum biomarker assays and advanced imaging. They often struggle to 
distinguish intermediate fibrosis stages and are affected by hepatic and extrahepatic factors. This Editorial discusses which 
identified potential biomarkers in plasma samples linked to each fibrosis grade and hepatitis C virus-induced pathogenesis.

Citation: Quarleri J, Delpino MV. Editorial: Metabolomics in chronic hepatitis C: Decoding fibrosis grading and underlying pathways. 
World J Hepatol 2023; 15(11): 1170-1173
URL: https://www.wjgnet.com/1948-5182/full/v15/i11/1170.htm
DOI: https://dx.doi.org/10.4254/wjh.v15.i11.1170

INTRODUCTION
The natural evolution of chronic hepatitis C (CHC) involves a continuous inflammatory response triggered by recurring 
liver injuries. This is subsequently accompanied by the activation of hepatic stellate cells, the accumulation of fibrillar 
collagen within the extracellular matrix (ECM), and the gradual development of fibrosis. These sequential events can 
potentially lead to ECM degradation, which in turn may result in vascular and architectural modifications, ultimately 
culminating in the occurrence of cirrhosis or hepatocellular carcinoma (HCC)[1].

Timely diagnosis and intervention are pivotal in preventing the progression to liver cirrhosis and HCC, particularly in 
light of the advent of direct-acting antiviral therapy, which has revolutionized the treatment of CHC. Nevertheless, 
effectively reducing the morbidity and mortality associated with this condition necessitates a more comprehensive 
understanding of liver involvement, improved prognostication, and rigorous monitoring[2]. In this context, accurate 
determination of the degree of liver fibrosis assumes paramount significance in the clinical management of HCC, as it not 
only informs treatment decisions but also aids in predicting patient outcomes. However, this endeavor is fraught with 
challenges, as the methods employed for fibrosis staging encompass both histological assessment through liver biopsies 
and various imaging modalities. The Metavir classification system, which employs a 0-4 scale, is commonly utilized for 
staging the various grades of fibrosis in biopsied liver tissue[3]. While liver biopsy remains the acknowledged "gold 
standard" for diagnosing and staging liver fibrosis, its invasiveness and associated discomfort, coupled with the risk of 
complications, subject to sampling errors and subjectivity between observers make it a less-than-ideal option[4-6].

Conventional imaging modalities (ultrasonography, computed tomography, and magnetic resonance imaging) are 
valuable but their sensitivity is limited when it comes to detecting moderate or advanced fibrosis[7]. Besides, advanced 
acoustic technologies (hepatic elastography) enhance the precision of imaging approaches but the cost of the equipment is 
a limitation, among others[8].

In the present issue of the JWH, the Ferrasi et al[9] study aims to investigate the plasma metabolome using mass 
spectrometry on samples obtained from individuals with CHC and varying degrees of fibrosis with the goal of 
identifying prospective biomarkers for categorizing these fibrotic conditions.

The potential clinical utility of these markers presents a compelling avenue for not only staging liver fibrosis but also 
evaluating the rate and progression of liver fibrogenesis. This assessment, in turn, translates into valuable prognostic 
insights and serves as a tool for assessing treatment response and monitoring the effectiveness of antifibrotic medications. 
Nevertheless, the available data regarding their performance in defining the stage of liver fibrosis is variable, and their 
routine availability may be limited in certain hospital settings[10]. These markers encompass various glycoproteins (such 
as hyaluronan and laminin), members of the collagen family (including procollagen III, type IV collagen, and type IV 
collagen 7s domain), collagenases and their inhibitors (metalloproteinases and tissue inhibitors of metalloproteinases), 
along with numerous cytokines implicated in the fibrogenic process, notably transforming growth factor-β1. These 
markers have been individually and collectively assessed to gauge the severity and progression of hepatic fibrosis and to 
monitor changes associated with viral treatment[2] or, even HCC[11-18].

The metabolome comprises the entirety of metabolites that are internally generated within a particular physiological 
state and can be considered as the ultimate outcome of gene expression. This approach enhances the biomarker identi-
fication in human plasma as an invaluable tool in clinical practice and research. They facilitate early detection, accurate 
diagnosis, personalized treatment, and improved patient outcomes, ultimately contributing to more effective healthcare 
and better public health.

For every stage of fibrosis, the researchers identified a distinct metabolite profile, and the significance of each molecule 
varies based on the fibrosis stage, potentially intensifying or diminishing over the course of the disease. Hence, the 
employment of metabolomics techniques in liquid biopsies exhibits potential as diagnostic, prognostic, and therapeutic 
monitoring tools.

The pro-viral implications of lipid metabolic reprogramming during virus infection encompass four distinct functions. 
Firstly, lipids play crucial roles in virus entry and trafficking, serving as attachment factors, internalization receptors, or 
transportation shuttles during the initial stages of viral entry. Secondly, lipids contribute to virus replication and 
assembly by providing subcellular spaces essential for key events in the viral life cycle. Thirdly, lipids are indispensable 
for the generation of energy and essential nutrients required for viral replication. Lastly, lipids serve as pivotal 
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components in viral envelopment and fulfill diverse functions in the process of virus egress[19]. The study from Ferrasi et 
al[9] analyzes the link between hepatitis C virus (HCV)-induced lipid metabolism abnormalities with the fibrosis grade 
score, at first with an emphasis on those involved in cholesterol biosynthesis[9].

In the case of grade F1, certain biomarkers that appeared to be more associated with HCV infection rather than fibrosis 
progression were noticed when compared to individuals with more advanced fibrosis stages. Consequently, the initial 
molecule detected in grade F1 belonged to the sterol category, featuring distinct characteristics related to cholesterol ester, 
already recognized as a critical component of HCV lipoviral particles[20]. Furthermore, a diacylglycerol was also 
identified in grade F1, and its elevated levels were associated with a less advanced state of fibrosis, specifically.

When considering lipid metabolism and the accrual of lipids, it became feasible to pinpoint the presence of the 
sphingolipid class in the intermediate-grade F2, specifically represented by ceramide. Their accumulation potentially 
leads to steatosis, which, in turn, may contribute to the progression of liver fibrosis[21]. Furthermore, the authors 
identified in F2 grade a molecule from the eicosanoid class. This particular molecule is a bioactive lipid that serves as a 
potent mediator of inflammation in infectious diseases and HCC.

In the case of intermediate-grade F3 and advanced-grade F4, another lipid class (glycerophospholipids) was identified, 
with the specific biomarkers recognized as phosphoethanolamines. Besides, in F3 grade samples the authors identified 
the farnesylcysteine, a prenol lipid, as a plausible biomarker for assessing the risk of tumor development, that was 
previously linked to liver carcinogenesis.

As mentioned above, several studies indicate the potential disruption of fatty acid lipid metabolic pathways during 
HCV infection. This disruption leads to the accumulation of acyl-coenzyme A (CoA) and intermediary products in fatty 
acid metabolism belonging to the CoA class. Among them, the authors identified the cis, cis-3,6-dodecadienoyl-CoA 
among those patients exhibiting F1 grade, while in those with F3 the S-2-octenoyl CoA was found.

Finally, in the advanced grade (F4), a metabolite associated with CoA was detected, along with malonyl carnitine. The 
presence of malonyl carnitine is noteworthy as it is intricately tied to disease progression and the development of HCC, 
primarily due to the dysregulation of energy-supplying metabolic pathways.

In addition to the lipid-based biomarkers, the authors identified other plausible markers such as polypeptide 
angiotensin III [Ang III, also called Ang-(2-8), is generated from Ang II by aminopeptidase A] in grade F1 which may 
augment collagen production, methyladenosine in F2 and (S)-2,3,4,5-tetrahydropiperidine-2-carboxylate in F3 grade.

CONCLUSION
In conclusion, despite a limited number of samples, Ferrasi et al[9] analysis found potential biomarkers specific to each 
grade of liver fibrosis. These biomarkers showed a propensity to group patients with similar fibrosis grades, although 
there were instances of overlap such as those proposed for grades F2 and F3. The score plot analysis showed greater 
efficiency in discriminating between the extreme grades (F1 and F4). This study represents an advancement in the quest 
for non-invasive serum markers that reflect the progression of liver damage.
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Abstract
Budd-Chiari syndrome (BCS) is an uncommon disease of the liver, characterised 
by obstruction of the hepatic venous outflow tract. The etiological spectrum of 
BCS as well as venous obstruction pattern show wide geographical and 
demographic variations across the globe. Compared to adults with BCS, children 
have primary BCS as the predominant etiology, earlier clinical presentation, and 
hence better treatment outcome. Underlying prothrombotic conditions play a key 
role in the etiopathogenesis of BCS, though work-up for the same is often 
unyielding in children. Use of next-generation sequencing in addition to conven-
tional tests for thrombophilia leads to better diagnostic yield. In recent years, 
advances in radiological endovascular intervention techniques have revolu-
tionized the treatment and outcome of BCS. Various non-invasive markers of 
fibrosis like liver and splenic stiffness measurement are being increasingly used to 
assess treatment response. Elastography techniques provide a novel non-invasive 
tool for measuring liver and splenic stiffness. This article reviews the diagnostic 
and therapeutic advances and challenges in children with BCS.
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Core Tip: Budd-Chiari syndrome (BCS) is a rare disease of the liver, characterised by obstruction of hepatic venous outflow 
tract. The effectiveness of radiological endovascular interventions in alleviating clinical symptoms as well as hepatic 
congestion has been shown both in adults and children. However, unlike in adults, established treatment guidelines have not 
been developed in children with BCS. Long-term follow-up studies including the prevalence of hepatopulmonary syndrome 
and hepatocellular carcinoma in this patient population are lacking in children. The role of liver and splenic stiffness 
measurement by elastography techniques is poorly studied in patients with BCS.
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INTRODUCTION
Budd-Chiari syndrome (BCS) is a rare vascular disease of the liver with a promising outcome if treated optimally on time. 
It occurs due to obstruction in the hepatic venous outflow anywhere from the hepatic vein (HV) to the entry of the 
inferior vena cava (IVC) to the heart[1]. Involvement of at least two HV leads to an increase in hepatic sinusoidal pressure 
and congestion resulting in symptoms of BCS[2]. Global epidemiological data on BCS is scarce[3]. The incidence of BCS 
reported in the published literature ranges from 0.2 to 4.1 cases per million population per year, with an estimated 
prevalence of 2.4–7.7 per million population in Asian countries[4,5] and of 1.4–4.0 per million population in Western 
countries[6-9]. Population-based study on the epidemiology of BCS in children is lacking. Large case series on pediatric 
BCS are available[10-15]. Chronic BCS constitutes 3%-7% of cases of portal hypertension (PHTN) in the pediatric 
population[10,11]. So far, interventional and long-term outcome studies in children are limited[12-15]. Over the years 
there has been remarkable progress in understanding the evolution of this disease. This review aims to discuss the 
various aspects of BCS, including recent updates on diagnostic and treatment modalities for BCS in children as well as the 
challenges in them. The review will particularly focus on chronic BCS which accounts for the majority of cases in 
children.

VARIATIONS IN THE ETIOLOGICAL SPECTRUM OF BCS
Primary BCS is an obstruction of the hepatic venous outflow tract that occurs due to an endoluminal venous lesion 
(thrombosis or web) resulting from an unidentifiable cause or an inherent prothrombotic condition. Secondary BCS 
results from obstruction from an invasive lesion (malignant tumor or a parasitic mass) or extrinsic compression by space-
occupying lesions (abscesses, cysts, and benign or malignant solid tumors)[1]. The above inflammatory or neoplastic 
conditions can also result in a secondary prothrombotic state which further adds to thrombosis in the HV. Secondary 
causes of BCS are common in adults as compared to children[16]. Global variations in the type of BCS may reflect 
different predisposing factors in different countries. Studies from Western countries have shown HV to be the most 
common site of obstruction in BCS[17,18]. There seems to be a shift in the pattern of obstruction in studies from Asian 
countries. Earlier, isolated IVC obstruction was the most type of BCS in Asian patients. Recent studies from China[19,20] 
as well as India[16,21,22] have noted that a combined IVC and HV obstruction (40%-75%) is the most common type of 
BCS. A similar pattern has also been documented in Indian children with BCS[12-15]. Over the years, the changes in the 
spectrum have been better documented due to the advancements in radiology such as high-resolution Doppler ultrasono-
graphy (DUS) and non-invasive venography by computed tomography (CT), and magnetic resonance imaging.

BCS AND THROMBOPHILIA
Primary BCS is often regarded as a result of a unique constellation of prothrombotic conditions. The inherited 
prothrombotic conditions associated with BCS are protein C deficiency, protein S deficiency, antithrombin III deficiency, 
factor V Leiden mutation, prothrombin gene mutation, and hyper-homocysteinemia with methyltetrahydrofolate 
reductase mutation[23]. Acquired prothrombotic conditions like antiphospholipid syndrome (APLS), paroxysmal 
nocturnal hemoglobinuria (PNH), sickle cell disease, and myeloproliferative disorders (MPD) also predispose to BCS[24,
25]. Systemic disorders like inflammatory bowel disease, Behcet’s disease, and other inflammatory intraabdominal lesions 
can cause BCS in adults but rarely in children[26]. Recent studies reported an identifiable etiology in 80-84% of cases in 
adults[27-30]. Underlying myeloproliferative disorders (45%–51%) and exposure to oral contraceptives (50%) are the 
commonest etiologies[27,28]. In over 25% of cases, more than one thrombophilic state may be present[29,30]. From the 
available pediatric literature, we understand that the prothrombotic workup in children is often unyielding, inconclusive, 
or ambiguous. Table 1 summarizes the findings of prothrombotic workup of prior pediatric studies on BCS[11-14,31-35]. 
As shown, most of the pediatric publications are from India including authors’ own experience. One of the major 
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Table 1 Summary of various pediatric studies (national) of thrombophilia profile in children with Budd-Chiari syndrome

Ref. Country No. of 
cases

Age 
group

Disease 
under 
evaluation

Proportion of 
cases with 
prothrombotic 
work-up

Yield of 
prothrombotic 
work-up, n (%)

Conditions detected

Nagral et 
al[12]

India 16 4 yr (2-
11 yr)

Primary BCS 15/16 4/15 (27) Protein C deficiency 2; APLA syndrome 1; 
Antithrombin III deficiency 1

Kathuria 
et al[13]

India 45 10 yr 
(2-16 
yr)

Primary BCS 12/45 children 8/12 (67) PNH 1; APLA 4; Protein C deficiency 5; Protein 
S deficiency 3; Hyperhomocystinemia 2 (60% 
multiple prothrombotic conditions)

Sharma et 
al[14]

India 32 9 yr (5-
15.5 yr)

Primary BCS Not available

Alam et al
[11]

India 13 9 yr (5-
13.5 yr)

Primary BCS 13/13 10/13 (77) MTHFR mutation 5; Factor V mutation 1; 
Celiac disease 1

Malik et al
[31]

India 11 10 yr 
(3-16 
yr)

Primary BCS 11/11 4/11 (37) APLA 2; PNH 1; JAK2 1

Shukla et 
al[32]

India 36 1-10 yr Primary BCS 36/36 15/36 (41.7) JAK 2V617F 0; Protein C deficiency 2; Protein S 
deficiency 2; Antithrombin III deficiency 3; 
APLA 4; Factor V Leiden 4; High homocysteine 
level 0; Multiple conditions 0

Shukla et 
al[32]

India 43 10-19 yr Primary BCS 43/43 16/43 (37) JAK 2V617F 5; Protein C deficiency 1; Protein S 
deficiency 1; Antithrombin III deficiency 3; 
APLA 4; Factor V Leiden 1; High homocysteine 
level 4; Multiple conditions 4

Zhou et al
[33]

China 35 22 yr 
(10-25 
yr)

Primary BCS 35/35 22/35 (63) Hyperhomocyteinemia14; APLA 5; JAK2 
V617F 1; IBD 1; Behcet disease 1

Dobre et 
al[34]

England 7 7 yr (4-
14 yr)

Primary BCS 7/7 7/7 (100) JAK2 V617F 2; Protein C deficiency 3; Antith-
rombin III deficiency 2; PNH 1; Factor V 
Leiden 1; APLA syndrome 2

Revil-Vilk 
et al[35]

Canada 171 BCS 
-31 
cases

3.5 yr 
(2-13 
yr)

Venous 
thrombosis of 
different sites

171/171 23/171 (13.4) Factor V Leiden 8; Prothrombin gene mutation 
4; Protein S deficiency 2; Protein S deficiency 1; 
High lipoprotein a 8

PNH: Paroxysmal nocturnal haemoglobinuria; APLA: Anti phospholipid antibody; IBD: Inflammatory bowel disease; JAK: Janus kinase; MTHFR: Methyl 
tetrahydro folate reductase.

drawbacks is the lack of in-depth testing for prothrombotic conditions. Shukla et al[32] found thrombophilia in 42% of 
children and 37% of adolescents. The commonest etiologies were Factor V Leiden in children and JAK 2V617F mutation 
in adolescents. Although thrombophilia may be present in 68%-75% of children, the cause-and-effect relationship is not 
established[12,32]. Relative and multiple deficiencies of proteins C and S, antithrombin III deficiency, and hyper-
homocysteinemia (9%-15%) may be a result of an advanced liver disease resulting in poor synthetic function of the liver 
rather than a true thrombophilia state[29]. In a systematic review of adults with BCS, MPD was found to be more 
associated with HV block (16%-62%) than IVC block (4%-5%)[36].

Oral anticoagulants may alter proteins C and S, activated protein C levels, and lupus anticoagulant levels. Hence these 
tests are best performed before starting thromboprophylaxis. Further, the presence of hypersplenism and hemodilution in 
cirrhosis with portal hypertension masks the peripheral blood findings of a concomitant MPD[29]. Genetic testing is the 
gold standard for documentation of thrombophilia. In a study of 80 adults with non-cirrhotic splanchnic vein thrombosis, 
next-generation sequencing was able to identify JAK2 mutations, previously undetected by conventional techniques in 
one-third of cases[37].

It is also suggested that the prevalence of various thrombophilic disorders is different between younger children and 
adolescents. In a study from India, the JAK2V617F was found to be common in adolescents but not in children[32]. 
Recently it has been shown that adolescent venous thromboembolism is multifactorial in the majority with more than two 
risk factors at diagnosis[38]. Warfarin is the most commonly used oral anticoagulant in BCS patients, especially after 
radiological intervention. As it has a narrow therapeutic window, the dose needs to be titrated with regular monitoring of 
international normalized ratio (INR) (target: 2-3). Vitamin K epoxide reductase complex subunit C1 (VKORC1) and 
cytochrome P450 2C9 (CYP2C9) are the two major genes involved in the metabolism of warfarin and they determine the 
dose requirement of warfarin[39]. CYP2C9 metabolizes the more potent S-enantiomer of warfarin while VKORC1 is the 
target protein for warfarin. Multiple single nucleotide polymorphisms have been described in these genes, of which the 
most important ones are CYP2C9*2, CYP2C9*3, and VKORC1 heterozygous haplotype GA and homozygous AA[40]. 
Thus, the patient’s genotype is a major determinant of not only the dose requirement but also the risk of anticoagulation-
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related complications. In a study from India in adults with BCS, patients with the presence of mutations in VKORC1 or 
CYP2C9 were associated with an increased risk of bleeding[41]. More intensive monitoring while on warfarin is 
recommended for these patients. Some guidelines have now started recommending incorporating the results of genetic 
testing for clinical use while on warfarin therapy[42].

Identification of thrombophilia in a child has implications in terms of the need for lifelong oral anticoagulation, 
increased risk of other venous thromboembolic events, lifestyle modifications like avoiding oral contraceptive pills, risk 
of complications like leukemia in myeloproliferative disorders, and implications for other family members. In addition, 
there is a need to educate asymptomatic family members regarding the risk factors and lifestyle modifications.

CLINICAL FEATURES
Clinical manifestations can be diverse, ranging from acute liver failure to completely asymptomatic patients, making BCS 
a possible differential diagnosis in many acute and chronic liver diseases. Most patients with BCS have a chronic 
presentation, whereas only a small number of patients present with a fulminant type of BCS[12-14]. The clinical and 
radiological features of children with BCS in various pediatric studies are summarized in Table 2. The usual age at 
presentation in children is 10 (range 1.5–17) years but BCS has been reported in children as young as 4.5 mo[11,12,32]. The 
commonest symptom is rapidly reaccumulating ascites (83%–90%) with dilated tortuous abdominal and back veins (60%-
70%)[11-14,31]. Up to 15%-20% of patients can be completely asymptomatic, hence a high index of suspicion should be 
kept, especially when there is no clear detectable etiology for chronic liver disease and/or a prothrombotic condition 
exists[43]. In such scenarios, proper imaging by an experienced radiologist is warranted[44]. The presentation of BCS 
depends on the extent and rapidity of hepatic venous outflow obstruction and the development of decompressing venous 
collaterals. With this concept, BCS can be classified as fulminant, acute, subacute, or chronic[45,46]. However, a 
pathological examination of the liver illustrates a dissociation between the rapidity of the clinical presentation and the 
acuteness of the histological damage. Up to 50% of patients clinically classified as acute have histological features of 
chronicity (e.g., fibrosis or cirrhosis)[46]. The prognostic value of this clinical classification in predicting mortality has not 
been prospectively evaluated[47]. Over time, several prognostic indices have been designed to predict mortality and 
response to therapeutic interventions[15,18,46,47]. These scoring systems incorporate clinical and laboratory features to 
stratify patients, although their use for the management of an individual patient is debatable[48].

DIFFERENCE BETWEEN ADULTS AND CHILDREN WITH BCS
BCS can occur at any age group but it most commonly affects young adults. In adults, secondary causes of BCS are much 
more frequently seen than children in whom primary causes are predominant. Regarding the underlying etiology, 
thrombophilic conditions are reported in more than 80% of adults with BCS. In Asian children, the etiology is largely 
idiopathic. Thrombophilia work-up is often under-reported and the results are variable. Acquired prothrombotic 
conditions like MPD, APLS, PNH, sickle cell disease, and oral contraceptive pill use are predominantly seen in adults. On 
the contrary, inherited thrombophilias like protein C deficiency and protein S deficiency are more commonly found in 
children. The clinical presentation is also different for adults and children. Shukla et al[32] compared 43 children and 129 
adult patients with BCS. They found hepatomegaly without ascites as the most common presentation in children as 
compared to ascites being the most common presentation in adults. The authors hypothesized that children have better 
angiogenesis and collateral formation, and shorter disease duration, leading to milder clinical presentation and better 
treatment outcome.

DIAGNOSTIC CHALLENGES
The diagnosis of BCS depends on the demonstration of HV and/or IVC obstruction. Invasive venography remains the 
gold standard; however, it is performed during the time of endovascular intervention procedure. DUS has therefore 
emerged as the primary imaging modality with a diagnostic accuracy of > 90%[12,13,15]. DUS evaluates hepatic, portal, 
and IVC patency, site, and length of block and liver parenchymal changes (including caudate lobe hypertrophy and 
intrahepatic comma-shaped collaterals). HVs may be engorged, irregular, or filled with thrombus. The “health” and 
residual stump of the HV are the most critical to plan an endovascular intervention. Triphasic flow may be dampened or 
reversed. The IVC may be narrowed or displaced by caudate hypertrophy or contain an intraluminal thrombus. 
Intrahepatic comma-shaped collaterals and caudate lobe hypertrophy are almost universally seen in patients with BCS. 
The presence of dense intrahepatic collaterals suggests chronicity. Subcapsular collaterals may bleed during a 
percutaneous intervention and need to be carefully documented. Non-invasive venography (CT or MRI) is required when 
there is a diagnostic ambiguity. Hypoenhancement of the peripheral hepatic parenchyma and relatively normal 
enhancement of the caudate lobe result in a mottled appearance on CT. These changes are more obvious on MRI[49]. 
However, if they are unyielding, invasive venography and liver biopsy should be considered.

Another challenging diagnostic dilemma in the context of BCS is hepatocellular carcinoma (HCC). Long-standing 
congestion and fibrosis of hepatic parenchyma in patients with chronic BCS are known to give rise to hepatic nodules. 
The etiology of hepatic nodules detected on radio imaging in BCS patients can be benign regenerative nodules and HCC. 



Samanta A et al. BCS in children: Challenges and outcome

WJH https://www.wjgnet.com 1178 November 27, 2023 Volume 15 Issue 11

Table 2 Clinical presentation, site of block, radiological intervention, and outcomes of major studies in children with Budd-Chiari 
syndrome

Nagral et al[12], % Kathuria et al[13], % Sharma et al[14], % Singh et al[15], % Shukla et al[32], %

No. of patients 16 45 32 113 43

Age at presentation, 
median (range) 

22 (4-132) mo 10.5 (2-16) yr 9 (4.5-214) mo 10 (1.5-17) yr 16.7 (10-19) yr

Symptom duration, 
median (range)

3 (0.5-48) mo 8.9 mo (5 d–8 yr) - - 12.7 (0.5-150) mo

Diagnosis by USG 63 95.6 60 - -

Symptoms

Ascites 81 82 96 84 91

GI bleed 25 35 8 22 23

Jaundice 12.5 20 24 12 14

Hepatomegaly N/A 85 96 N/A 67

Splenomegaly N/A 70 N/A N/A 37

Abdominal vein 
dilation

N/A 70 70 N/A N/A

Type of block

Only HV 94 71 76 74 67

Only IVC 6 4 0 2 9

Both HV + IVC 0 25 24 24 24

RI, n 13 25 24 53 24

Angioplasty alone 4 2 7 7 -

Angioplasty + 
stenting

3 20 3 40 10

DIPS - - - 5 -

TIPSS 6 3 14 1 14

Follow-up duration, 
median (IQR)

31 (12-54) mo 6.5 (0.5-86) mo 44 (5-132) mo 13.5 (1-155) mo 41 (12-168) mo

Successful RI

Angioplasty 25 100 43 100 -

Angioplasty + 
stenting

100 87 67 90 90

DIPS - - - 80% -

TIPSS 80 67 72 100 80

Procedure related 
complications

TIPSS encephalopathy 
= 1; Neck hematoma = 
1

Anaesthesia related death = 1; 
Neck Hematoma-1; 
Hemoperitoneum = 1

No major TIPSS; Enceph-
alopathy = 1

N/A

Stent patency rate - Overall 75% - 87% at 1 yr, 82% at 5 
yr, 62% at 10 yr

Overall 75%

Mortality 2: GI bleeding 1, liver 
failure = 1

3: Intracranial bleeding = 1, 
anaesthesia related = 1, liver 
failure = 1

5: Intracranial bleeding = 
2, GI bleeding = 1, HCC 
= 1, liver failure = 1

3: Procedure related = 
2, head trauma = 1

4: Intracranial 
bleeding = 1, HCC = 
1, liver failure = 2

HPS N/A N/A 4 (12, 5%) -

HCC N/A N/A 1 (3%) 1 (2.3%)

N/A: Not available; HV: Hepatic vein; IVC: Inferior vena cava; USG: Ultrasonography; GI: Gastro-intestinal; HV: Hepatic vein; IVC: Inferior vena cava; RI: 
Radiological intervention; DIPS: Direct intrahepatic porto-systemic shunt; TIPSS: Transjugular intrahepatic porto-systemic shunt; HPS: Hepato-pulmonary 
syndrome; HCC: Hepatocellular carcinoma.
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It is important to distinguish between these two conditions as treatment differs significantly. HCC lesions are usually 
larger in size (> 2 cm) and hypervascular on DUS and CT/MR[50]. Also, for HCC, contrast enhancement in T1-weighted 
MR imaging can show different enhancement patterns between HCC with and without BCS[51]. Yang et al[51], in a 
comparative study between 10 adult HCC patients with associated primary BCS and 32 other HCC patients without BCS, 
found that significantly more lesions with BCS were hyperintense during the arterial phase and slightly hyperintense or 
isointense during the venous phase than lesions without BCS (P < 0.05 for both). Therefore, histological confirmation is 
required in the workup of HCC in patients with BCS.

TREATMENT OPTIONS
Therapeutic options for BCS include medical management with anticoagulation therapy, radiological interventions such 
as angioplasty and stenting, surgical shunting and transjugular intrahepatic portosystemic shunt (TIPSS), and lastly, liver 
transplantation (LT).

Medical therapy
Anticoagulation alone with oral anticoagulants is sufficient in only 10% of adult patients, especially those with mild 
disease, and the vast majority of them progress, requiring intervention strategies in follow-up[52-54]. Pediatric experience 
is limited. Sharma et al[14] reported a 33% response in a small cohort of Indian BCS children who were treated with 
warfarin alone. Data on the comparative efficacy of directly acting anticoagulants vs vitamin K antagonists in BCS 
patients is scarce[55]. A recent Austrian multicentre study on the efficacy and safety of DOAC in 22 adult BCS patients 
(DOAC first-line anticoagulation in 6, switched over from warfarin and LMWH in 16) showed that DOAC showed 
clinical response in 63% of cases while bleeding occurred in 11 ( 4 major bleeding, 7 minor bleeding)[55]. Confirmation of 
efficacy and safety by larger prospective studies is needed.

Radiological endovascular intervention
The progressive improvement in radiological endovascular intervention (REI) techniques in the past two decades has 
provided better procedural and clinical success for BCS treatment compared to other treatment modalities in both adults 
and children[14,15,56,57].

Angioplasty vs stenting
The rationale of angioplasty is to decompress the liver while restoring hepatic blood flow. Angioplasty can be done with 
or without stenting in BCS patients with short-segment stenosis (< 5 cm). Wang et al[58], in a landmark study, compared 
the treatment efficacy and long-term patency of angioplasty with and without stenting in 88 adult Chinese patients with 
BCS. They had shown that the superiority of angioplasty with stenting over angioplasty alone in the rate of re-stenosis 
(2% vs 40% over a median follow-up period of 27 mo, P < 0.0001)[58]. Balloon angioplasty without stenting of the 
obstructed veins is preferred in infants and younger children as appropriate sizes of stents are not available, thus making 
stenting technically difficult in this population. Also due to the relatively shorter duration of disease, the veins are likely 
to be much more pliant. Hence angioplasty alone may reduce and normalize the venous pressure significantly after the 
procedure. In older children, angioplasty alone has a technical success rate and clinical response rate of 90% but is fraught 
with a high risk of blockage[11-15]. Restenosis is almost always inevitable. Nagral et al[12], Kathuria et al[13], and Sharma 
et al[14] have reported higher re-occlusion rates with angioplasty alone (75%, 33%, and 57%, respectively) compared to 
angioplasty + stenting (0%, 13%, and 33%, respectively) and TIPSS (20%, 33%, and 28%, respectively). This highlights that 
angioplasty with stenting rather than angioplasty alone, should be the preferred modality of radiological intervention 
(RI) in children. The smaller size of the liver and caliber of the veins in children pose a challenge when choosing an 
appropriate size and length of the stent. An uncovered self-expandable metallic stent is preferred over fully covered 
stents because of the lower risk of post-procedural thrombosis. Longer stents (20–30 mm) are required for long-segment 
IVC blocks than HV blocks. Overall, the technical success and clinical response rate of stenting in children is excellent (> 
90%) with a much less re-stenosis rate than angioplasty[11-15]. In the authors’ experience, the length of the stent may 
appear longer as the liver decongests after the intervention. However, with the growth of the child, the liver also grows in 
size and the final stent size is usually appropriate for the child. Customized stents are available. It is also important to 
realize that once the liver is recovering and the physiology is restored, there is an expected sudden growth spurt in 
children with chronic liver disease, especially during puberty. With growth, the blood flow and turbulence through the 
recovering liver increase. Hence anticoagulation is most important in this phase till the stent undergoes complete 
endothelialization. Oral contraceptives in adolescence are to be prescribed with caution.

TIPSS
TIPSS is a shunt created between the portal and the systemic circulation, leading to a reduction in hepatic congestion and 
symptom resolution. Currently, TIPSS is performed in failed angioplasty-stenting with an available HV stump and as a 
bridge to LT[27]. TIPSS is technically more demanding than cirrhotic patients due to the blocked HVs. Nonetheless, 
various studies have established TIPSS as a safe and effective treatment for BCS in adults[22,48,59,60]. Amarapurkar et al
[22] and Shalimar et al[59] have shown good technical success rates (87.5%-100%) and clinical success rates (80%-93%). 
Post-procedure encephalopathy occurs less frequently (3% to 5% cases) than in other cirrhotic patients, reflecting the 
relatively preserved hepatic function in most patients with BCS[59,60]. The main concern about TIPSS is the higher 
occurrence of stent dysfunction. Compared to other cirrhotic patients undergoing TIPSS, BCS patients show higher stent 
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dysfunction (70% vs 50% within 1 year), probably due to underlying prothrombotic conditions in BCS[61]. The advent of 
polytetrafluoroethylene covered stents has dramatically reduced the incidence of stent dysfunction (30%-70% in bare 
stents vs 10-20% in covered stents)[61,62]. The available TIPSS stents are usually expensive and are inappropriate in terms 
of sizes for children, thus limiting their use in the pediatric population, although reports of successful treatment of 
children with BCS with TIPSS are available[12,13]. TIPSS in children with BCS risks placement of the bare end of the stent 
beyond the portal vein and into the superior mesenteric vein if the size is too long. Hence, a “stent within a stent” is a 
minor modification of this technique that allows customization for the size of the liver. In this technique, a fully covered 
graft stent (10 mm × 3–7 cm) is placed inside the bare uncovered stent (10 mm × 8–10 cm).

Modified TIPSS/DIPS (direct intrahepatic portosystemic shunt)
Long-segment (> 5 cm) HV block is usually not amenable to angioplasty, stenting, or TIPSS. A modified TIPSS or DIPS is 
a procedure where a shunt is made between IVC and the right branch of the portal vein. Though technically challenging, 
DIPS has been shown to effectively decompress hepatic congestion and clinical resolution in patients with BCS. In a large 
pediatric study from the authors’ center, children with chronic BCS undergoing DIPS had a procedural success and 
clinical response rate of 80% and 90%, respectively[15].

Surgical shunts
The principle of a surgical portosystemic shunt is to relieve the obstruction causing PHTN using a venous conduit, 
thereby decompressing the hepatic sinusoids. Surgical portosystemic shunts have now been almost completely 
abandoned because of high perioperative mortality (25%) and poor shunt patency (70%)[63-65]. Surgical portosystemic 
shunting can also be technically difficult when there is caudate lobe hypertrophy[66]. Most studies on surgical 
portosystemic shunts in adult patients with BCS failed to show any survival benefit[65,67]. In a case series of 25 Indian 
children with BCS, only one out of the four patients who underwent surgical shunts survived[68].

LT
LT is considered a salvage therapy in the setting of fulminant presentation, progression to end-stage liver disease, or 
development of HCC[27,53]. BCS accounts for approximately 1% of all pediatric LT cases[69]. Involvement of retrohepatic 
IVC, the proximity of thrombus near the right atrium, and an underlying prothrombotic condition causing vascular 
complications make LT challenging. The challenge is even greater when considering living donor liver transplantation 
(LDLT) since the graft does not contain the retrohepatic IVC, as in deceased-donor liver transplantation (DDLT). 
Therefore, HV reconstruction is more complex, especially if the IVC is also obliterated[69]. The smaller size of vessels in 
children complicates the situation further. Several large retrospective analyses have evaluated the benefit of DDLT in 
adult BCS patients with 5-year survival rates varying between 71% and 89.4%, similar to those undergoing LT for other 
diseases[70,71]. Due to the scarcity of deceased-donor liver grafts, LDLT has been the mainstay for BCS patients 
undergoing LT in most Asian countries with 5-year survival rates ranging from 75% to 81%[72-75]. Data on LT in 
pediatric BCS is only in the form of case reports and small case series and long-term prognosis has been reported to be 
good so far[76,77].

STEPWISE APPROACH OR UPFRONT REI IN CHILDREN WITH BCS: THE WAY FORWARD?
The rarity of BCS in general makes it difficult to perform randomized controlled trials in patients with BCS. Hence, most 
recommendations regarding treatment are based on case reports, retrospective studies, and expert opinions. Concerning 
the timing of the interventions, the European Association for the Study of the Liver[78] and the Asia Pacific Association 
for the Study of the Liver (APASL)[27] recommended a stepwise therapeutic algorithm for BCS in adults. The algorithm 
depends on treatment response, medical therapy with anticoagulant drugs, angioplasty, stent placement, TIPS, and LT. In 
contrast to the strict step-up principle, an AASLD practical guideline suggested checking for a venous obstruction 
amenable for angioplasty in all symptomatic patients right at the beginning and treating accordingly[79]. The step-up 
algorithm has also been criticized because it pays little attention to hemodynamics and its possible improvement or even 
relief by interventional treatment. The step-up algorithm also does not restore physiology at the onset and possibly delays 
the definitive procedure, leading to advanced liver disease. Guidelines are silent regarding what should be the optimal 
treatment approach in children with BCS. Longitudinal studies on pediatric BCS have shown that children with chronic 
BCS tend to decompensate early with ascites and variceal bleeding[13,14]. In those receiving medical therapy alone, it has 
been seen that 26% of adults die over 2 years[53,55]. Response to medical therapy has been variable in children (33-43%) 
and two-thirds of these children ultimately require an intervention in the long run[14]. There is also concern about the 
safety profile of long-term use of oral anticoagulants in children[80]. Hence, we suggest that all children with BCS 
(whether symptomatic or not) should undergo angioplasty and stenting as a primary treatment modality.

It is debatable whether asymptomatic or incidentally detected BCS should be subjected to REI or not, especially in 
children. On one hand, decompensation may rapidly set in as children do not tolerate portal hypertension for longer 
periods as compared to adults. On the other hand, there are no sound ethical justifications as to whether these children 
should be subjected to invasive procedures and maintained on lifelong anticoagulation. In a personal opinion, the authors 
would prefer the former in asymptomatic children given their longer life expectancy, milder liver disease, and possibly 
better health and compliance with the HV. Hence there is a small window of opportunity to restore normal physiology in 
optimal conditions.
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POST-INTERVENTION COMPLICATIONS AND NEED FOR MONITORING AFTER REI
Immediate complications of REI include subcapsular hematoma, hemoperitoneum, congestive heart failure, transient 
hepatic encephalopathy, and pulmonary thromboembolism and are encountered in 1%–3% of procedures in experienced 
centers[12-16,27]. Long-term complications of bleeding secondary to anticoagulation have also been reported[12,13,22]. 
However, the most commonly encountered post-procedure complication is re-stenosis after REI. Singh et al[15], in a large 
cohort of Indian children with BCS, reported follow-up vascular patency rates of 87%, 82%, and 62% at 1, 5, and 10 years 
after intervention, respectively. In the above study, 29% of the cohort with REI (27% HV/IVC stenting; 60% modified 
TIPSS) had restenosis[15]. Adult studies report 17% to 41% restenosis after REI[21,22,24]. To prevent re-stenosis, heparin 
infusion should be started during the intervention and continued thereafter. Warfarin must be initiated within 24 h of 
completing the procedure. The physician should consider stopping heparin and continuation of long-term warfarin if the 
target INR of 2–3 is achieved. Periodic clinical examination, liver function test, and shunt patency by DUS (post-stenting: 
24 h, 1 wk, 1 mo, 3 mo, and subsequently every 6 mo; post TIPS/DIPS: at 7–14 d, 3 mo, 6 mo, 9 mo, and 12 mo) is 
performed. Post-intervention surveillance aims to re-intervene before critical stenosis or occlusions recur.

Assessment of response to therapy
Response to therapy implies restoration of blood flow across previously blocked HV/IVC and consequent improvement 
in organomegaly and liver function test (LFT), no recurrence of ascites without need of diuretics, and resolution of signs 
of PHTN. Kathuria et al[13], in a study among 20 children with BCS undergoing REI, demonstrated clinical and 
biochemical resolution in all; however, the median follow-up duration was 6.5 mo only. Sharma et al[14], in another study 
of 20 Indian children with BCS who underwent REI, showed that HV stenting or TIPS is efficacious in improving clinical 
features, LFT, PHTN features, and growth parameters in 66% and 72% of cases, respectively, over a median follow-up 
duration of 44 (range 5-132) mo. Further long-term studies need to holistically address the natural history and timelines 
of resolution of organomegaly, liver stiffness, varices, liver functions, growth, pubertal maturity, and quality of life in 
children with BCS.

LIVER AND SPLENIC STIFFNESS MEASUREMENT IN MONITORING
Recently, liver stiffness measurement (LSM) and splenic stiffness measurement (SSM) have been extensively studied as 
potential non-invasive markers of hepatic and splenic fibrosis and congestion and hepatic venous pressure gradient in 
patients with chronic liver disease[81-84]. LSM and SSM can be measured by various imaging techniques [transient 
elastography (TE), shear-wave elastography (SWE), and MR elastography]. Fraquelli et al[82], in a study of 132 patients 
with chronic hepatitis B and C, showed that LSM and SSM measured by TE, were reliable in predicting significant fibrosis 
[odds ratio (OR) = 5.2 and 4.6, respectively] and cirrhosis (OR = 7.8 and 9.1, respectively). SSM of < 48 kPa by TE was 
useful in ruling out esophageal varices. In another study by the same authors in 186 chronic liver disease patients, LSM 
and SSM measured by SWE were equally effective and reliable in predicting significant liver fibrosis as compared to TE, 
with SWE having the advantage of applicability in patients with obesity or ascites[83]. The latest Baveno VII guidelines 
recommended that all cases of clinically advanced chronic liver disease should undergo LSM testing[85].

However, these tests are yet not standardized in children. Pediatric literature regarding LSM and SSM by elastography 
techniques is emerging. Chongsrisawa et al[86] reported significantly higher LSM in biliary atresia patients with 
esophageal varices than those without (37.72 ± 21.55 vs 10.97 ± 8.71 kPa, P < 0.001). Yoon et al[87] showed that an LSM 
value of > 18.4 kPa predicted clinically significant PH (CSPH) in children with CLD with a high sensitivity (87.5%) and 
specificity (84.0%). LSM has been used to monitor and assess treatment response in adult patients with BCS[88]. In a 
study to assess short- and long-term outcomes in 32 Chinese adults with BCS undergoing REI, Wang et al[88] measured 
LSM using SWE at 2 d, 3 mo, and 6 mo post-procedure. Mean LSM value before the procedure was 35.17 ± 10.60 kPa, 
which decreased to 15.36 ± 4.34 kPa and 15.68 ± 5.58 kPa at 3 mo and 6 mo post-procedure, respectively (P < 0.001). 
Published literature on the role of LSM in monitoring children with BCS is scarce[89]. Dohare et al[89] evaluated the role 
of LSM in 32 children undergoing REI and showed that LSM values decreased significantly after REI. A maximal decrease 
is seen 24 h after REI (43.7 kPa at baseline vs 22.5 kPa 24 h post-procedure, P = 0.001)[75]. Among the nine children 
developing re-stenosis after REI, re-stenosis was typically associated with an increase in LSM compared with the patient's 
prior measurement (median absolute increase 11.0 kPa; interquartile range [IQR] 6.1-24.4).

SSM reflects congestion as well as structural changes in the spleen as a direct consequence of the increased PHT[90,91]. 
SSM is considered a direct and more suitable surrogate marker of PHTN and performs better for the prediction of CSPH
[91,92] and esophageal varices[93,94]. Sutton et al[94] evaluated SSM in 67 children with chronic liver disease and showed 
that SSM is a reliable predictor of CSPH at a value > 38.0 kPa [area under receiver operating curve (AUROC) = 0.92, 
sensitivity = 89%, specificity = 82%, P < 0.01]. Sintusek et al[95] studied 51 BA children and showed a higher SSM of 46.85 
(IQR 25.95-54.55) kPa in patients with varices as compared to the no-varices group [median SSM-16.54 (IQR 11.75-21.75) 
kPa; P < 0.001]. SSM has been performed in adults with BCS (n = 7) who underwent TIPSS[96]. In this case series, SSM in 
combination with LSM may reflect the severity of the disease at presentation and the need for invasive treatment. SSM 
values also showed a significant decline after TIPSS over a median follow-up period of 1 year. Further studies are 
required to elucidate the role of LSM and SSM in monitoring BCS patients after REI.
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PROGNOSTIC INDICES AND THEIR IMPLICATIONS
To date, many prognostic scores have been developed in patients with BCS to quantify the disease severity and prognosis 
(Table 3). The authors evaluated the prognostic accuracy of these indices in BCS children and found that pre-intervention 
PELD score with a cut–off of 4 (AUROC = 0.809, 86% sensitivity, and 75% specificity) significantly determined poor 
outcomes following REI. Zeitoun score independently predicted poor outcome [OR = 15.4, 95% confidence interval (CI): 
1.17-203.56, P = 0.04] with a cut-off of 4.3 (AUROC = 0.923, 83% sensitivity, and 77% specificity) in the unintervened 
chronic BCS[15]. Hence BCS children with a Zeitoun index > 4.3 should undergo REI without any delay.

LONG-TERM COMPLICATIONS OF BCS
Hepatopulmonary syndrome
Hepatopulmonary syndrome (HPS) occurs in a substantial portion (28%) of adult patients with BCS and balloon 
angioplasty can reverse HPS in patients with BCS[97]. The mechanism is unknown but may be related to portal 
decompression. This may also explain the favorable outcomes of TIPSS creation for HPS in patients with cirrhosis and 
idiopathic PHTN[98]. Sharma et al[14] in a previous pediatric study reported the detection of HPS among five children in 
long-term follow-up, one in an un-intervened child and four after RI with patent stent (3 TIPSS, 1 HV angioplasty). It is 
not clear as to which patients will have resolution or progress to HPS as contradicting outcomes have been noted. The 
possible reason for developing HPS even after reduction of portal hypertension post-RI could be increased exposure of 
pulmonary vasculature to vasodilator mediators like increased levels of nitric oxide, endothelin-1, tumor necrosis factor-α
, and endotoxemia[98].

HCC is an uncommon but dreaded long-term complication of BCS[99,100]. In a recent systematic review of adults, the 
prevalence of HCC in BCS is geographically varied[99]. It is documented as 2.0%–46.2% in 12 Asian studies, 40.0%–51.6% 
in two African studies, 11.3% in one European study, and 11.1% in one American study[99]. Irrespective of hepatitis as 
the underlying risk factor of HCC, the pooled prevalence of HCC was 17.6% in BCS patients (95%CI: 10.1%–26.7%), 26.5% 
in IVC obstruction (95%CI: 14.4%–40.7%), and 4.2% in HV obstruction (95%CI: 1.6%–7.8%). When patients with HCC and 
concomitant hepatitis were excluded, the pooled prevalence of HCC was 15.4% (95%CI: 6.8%–26.7%). Only 3 out of the 16 
included studies evaluated the risk factors for the development of HCC in BCS patients. However, there was significant 
heterogeneity among these studies and the results were contradicting[99]. Further long-term prospective studies are 
necessary to evaluate risk factors for HCC in BCS patients. Data regarding the prevalence of HCC in children with BCS is 
limited. So far, only three cases of HCC in children with BCS have been reported[14,32,101]. All of them had HCC in the 
2nd decade of life, liver nodules > 3 cm, and elevated alpha-fetoprotein. One patient was on anticoagulation only[101] 
while the other two had blocked stents[14,32]. In the authors’ own unpublished experience from the authors' center, an 
18-year-old boy developed HCC 6 years after blockage of DIPS. Routine surveillance for HCC is thus warranted in BCS 
patients, even after undergoing REI.

FUTURE DIRECTIONS
Future studies need to elucidate the underlying thrombophilic conditions and their role in the etiopathogenesis of BCS. 
The use of next-generation sequencing in addition to the conventional thrombophilia work-up is warranted for better 
understanding and higher diagnostic yield. Further studies are needed to determine the precise role of MRA in differen-
tiating benign liver nodules with HCC in BCS patients. Liver and splenic stiffness measurement by elastography 
techniques (transient elastography, shear-wave elastography, and MR elastography) may serve as a useful non-invasive 
marker for assessing treatment response. Despite its rarity, pediatric BCS provides a unique opportunity to study the 
natural history, long-term complications, and treatment outcome.

CONCLUSION
BCS is a rare but potentially treatable cause of portal hypertension with an excellent prognosis after definitive treatment. 
Due to recent advances in interventional radiology, radiological endovascular intervention is currently the preferred 
primary treatment modality. Better patient and procedure selection, choice of appropriate size and type of stent, and 
mandatory follow-up assessment are of utmost importance for better long-term outcomes. In future, prospective and 
larger studies should be undertaken to study the epidemiology and establish standardized diagnostic and therapeutic 
management protocols for pediatric BCS.



Samanta A et al. BCS in children: Challenges and outcome

WJH https://www.wjgnet.com 1183 November 27, 2023 Volume 15 Issue 11

Table 3 Budd-Chiari syndrome-specific prognostic indices

Score Equation Cut-off Predicted survival rate

CTP Serum bilirubin, serum albumin, INR, ascites, 
HE

- -

MELD 9.57 × log (creatinine) + 3.78 × log (total 
bilirubin) + 11.2 × log (INR) + 6.43

- -

Zeitoun index Ascites scorea × 0.75 + Child-Pugh score × 0.28 + 
age × 0.037 + creatinine ×  0.0036

5.4 (range from 3.4 to 9.1) At 5 yr; ≤ 5.4: 95%; > 5.4: 65%

New Clichy score 0.95 × ascites score + 0.35 × CTP score + 0.047 × 
age + 0.0045 × serum creatinine + 2.2  × type IIIbb

—2.6

5.1 (range from 2.0 to 9.7) At 5 yr; < 5.1: 100%; ≥ 5.1: 65%

Rotterdam BCS index 1.27 × encephalopathy + 1.04 × ascites + 0.72 × 
prothrombin time + 0.004 × bilirubin

Bilirubin; class I: 0–1.1; class II: 
1.1–1.5; class III: ≥ 1.5 (range from 
0.02 to 4.03)

At 5 yr; class I: 89%; class II: 74%; 
class III: 42%

TIPS-BCS index Age (yr) × 0.08 + bilirubin (mg/dL) × 0.16 + INR 
× 0.63

7 1-yr OLT-free survival, ≤ 7: 95%; > 7: 
12%

BCS-intervention-free 
survival prognostic score

Ascites (yes = 1, no = 0) × 1.675 + ln creatinine 
(μmol/L) × 0.613 + ln bilirubin (μmol/L) × 0.440

Interval 1: ≤ 5; interval 2: 5-6; 
interval 3: ≥ 6

Intervention-free survival interval 1: 
78.3%, interval 2: 27.8%; interval 3: 
6.8%

AIIMS-HVOTO score 1.2 × response to therapy + 0.8 × child class) Score: < 3; 3-4; > 4 % yr survival score ≤ 3: 92%; score 3-
4: 79%; score > 4: 39%

aAscites score: 1, absent with free sodium intake and no diuretic agents; 2, easy to control with sodium restriction or diuretic agents; and 3, resistant to this 
treatment because of hyponatremia or functional renal failure.
bType III’ is a binary variable coded as 1 for patients with clinicopathological findings of acute injury superimposed on chronic lesions, and 0 for the other 
patients.
CTP: Child-Turcotte-Pugh, MELD: Model for end stage liver disease; BCS: Budd-Chiari syndrome; AIIMS: All India Institute of Medical Sciences; HVOTO: 
Hepatic vein outflow tract obstruction; OLT: Orthotopic liver transplantation.
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Abstract
Classical Philadelphia-negative myeloproliferative neoplasms (MPNs), i.e., polyc-
ythemia vera, essential thrombocythemia, and primary/secondary myelofibrosis, 
are clonal disorders of the hematopoietic stem cell in which an uncontrolled 
proliferation of terminally differentiated myeloid cells occurs. MPNs are charac-
terized by mutations in driver genes, the JAK2V617F point mutation being the 
most commonly detected genetic alteration in these hematological malignancies. 
Thus, JAK inhibition has emerged as a potential therapeutic strategy in MPNs, 
with ruxolitinib being the first JAK inhibitor developed, approved, and prescribed 
in the management of these blood cancers. However, the use of ruxolitinib has 
been associated with a potential risk of infection, including opportunistic 
infections and reactivation of hepatitis B. Here, we briefly describe the association 
between ruxolitinib treatment in MPNs and hepatitis B reactivation.
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Core Tip: The JAK inhibitor ruxolitinib has been approved for the treatment of classical Philadelphia-negative myeloprolif-
erative neoplasms (MPNs), i.e., polycythemia vera, essential thrombocythemia and primary/secondary myelofibrosis. 
However, its use has been associated with a potential risk of opportunistic infections, including hepatitis B reactivation. 
Herein, we briefly overview the association between ruxolitinib treatment in MPNs and hepatitis B reactivation.

Citation: Adesola AA, Cozma MA, Chen YF, Srichawla BS, Găman MA. Risk of hepatitis B reactivation in patients with myeloprolif-
erative neoplasms treated with ruxolitinib. World J Hepatol 2023; 15(11): 1188-1195
URL: https://www.wjgnet.com/1948-5182/full/v15/i11/1188.htm
DOI: https://dx.doi.org/10.4254/wjh.v15.i11.1188

INTRODUCTION
Introduction to hepatitis B virus reactivation
Hepatitis B virus (HBV) infection is the most common chronic viral infection in the world. It affects more than 350 million 
people worldwide as chronic carriers, and more than 2 billion (30% of the world’s population) people show evidence of 
past exposure. Additionally, HBV infection has accounted for roughly half of total liver cancer mortality in 2010[1,2]. 
Once contacted, the virus cannot be eliminated, even with proper and rapid antiviral treatment, but the infection is self-
limiting in more than 95% of immunocompetent adults. These patients are now known as carriers 'anti-HBc positive'. 
They do not require specific management or monitoring unless immunosuppression is suspected[3].

If HBV persists for more than 6 mo in the body, the affected individual is considered to have chronic hepatitis B. Its 
incidence depends on the time of exposure: 95% of newborns, 20%-30% of children aged 1 to 5 years, and less than 5% of 
adults[3]. The reason for this dormant state of HBV is the presence of covalently closed circular viral DNA (cccDNA) that 
penetrates and persists indefinitely in hepatocyte DNA[2-4]. This cccDNA acts as a template for future viral components 
in the case of HBV reactivation (HBVr). Viral transmission has been greatly slowed recently by the advent of a safe and 
effective vaccine, available since 1981 and introduced in 2011 in routine vaccination schedules in more than 180 countries
[1,5].

DEFINITION, EPIDEMIOLOGY AND MANIFESTATIONS OF HBVR
The number of cases of HBVr after treatment with immunosuppressive agents is increasing worldwide, mostly attributed 
to an increase in the prevalence of positive HBV serology and, at the same time, an increase in the number of clinical 
indications for potent immunosuppression, including solid malignancies, inflammatory bowel disease, autoimmune 
disorders, blood cancers, e.g. myeloproliferative neoplasms (MPNs), and rheumatic diseases[3].

There are, although very similar, several definitions of HBVr, proposed by several medical associations from around 
the globe. All of them take into account both virological and serological criteria and describe HBVr as either an exacer-
bation of chronic hepatitis B or a reactivation of past hepatitis B infection. The most used definition is the one proposed 
by the American Association for the Study of Liver Diseases, last updated in 2020, which defines HVBr according to the 
virological status of the patient[4,6-8].

For HBsAg-positive patients with or without detectable HBV DNA: (1) At least 2 Log (or 100-fold) increase in HBV 
DNA compared to the baseline level; (2) HBV DNA at least 3 Log (or 1000) IU/mL in patients with previously 
undetectable HBV DNA; or (3) HBV DNA at least 4 Log (or 10000) IU/mL if the baseline level is unavailable[4,6-8].

For patients with HBsAg negative and HBV DNA negative: (1) HBV DNA becomes detectable; or (2) reverse HBsAg 
seroconversion (reappearance of HBsAg)[4,6-8].

The natural history of HBVr depends, among others, on the underlying disease requiring immunosuppressives, host 
immunity and the immunosuppressive agents used. Evolution can be classified into multiple stages[4,6-8].

After the initiation of immunosuppressive therapy, viral replication resumes, leading to a gradual increase in serum 
HBV DNA levels. The patient is still asymptomatic and, in general, HBVr-related hepatitis, described as an increase in 
alanine transaminase (ALT) or aspartate transaminase (AST) to 3 times upper limit of normal (ULN), does not develop[4,
6-8].

HBVr-related hepatitis
ALT or AST increases to ≥ 3 times ULN (in some cases between 5-10 times ULN). Although most patients may remain 
asymptomatic, a small number might experience constitutional symptoms, such as pain in the right upper quadrant and 
jaundice. In rare cases, hepatic injury could further progress and cause liver failure, fulminant hepatitis or even death[4,6-

https://www.wjgnet.com/1948-5182/full/v15/i11/1188.htm
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8].

Spontaneous or antiviral-induced resolution
Normalization of serum ALT and AST levels, due to completion of immunosuppressive therapy, due to antiviral therapy, 
or due to host immunological mechanisms[4,6-8].

Acute liver failure/persistent liver injury
Found in a small number of individuals who continue to have a progressive decline in liver function, it is characterized 
by increased levels of bilirubin, prolonged prothrombin time, and, in very rare cases, even signs and symptoms of acute 
liver failure and hepatic decompensation (ascites and encephalopathy)[4,6-8].

MECHANISMS OF HBVR
As previously mentioned, after entering the hepatocytes, the viral genome is converted into plasmid-like cccDNA which 
can persist in liver cells in a latent state, serving as a reservoir for HBVr, in spite of active anti-HBV immune response. 
Compared to the hepatitis C virus (HCV) infection, complete eradication of both HBV cccDNA and integrated DNA is 
impossible with current antiviral treatment with nucleos(t)ide analogs. Thus, these cells constitute a reservoir of 
persistent HBV. Although HBVr can occur in a variety of settings, immunosuppressive therapies are the most commonly 
reported. A detailed description of the HBVr induction mechanisms of immunosuppressive therapies is provided in 
Table 1[3,4,6-12].

RISK FACTORS FOR HBVR
Host-related risk factors for HBVr include male sex, younger age and older age (the elderly are more likely to have 
HBsAg seroclearance but persistent levels of total HBV DNA and cccDNA in the liver) and have been associated with 
increased risk of HBVr. Preexisting conditions, for example, cirrhosis or MPNs, also play a role in HBVr. HBVr has been 
reported in patients with MPNs, lymphomas, myeloma, and acute myeloid leukemia. However, it is not yet clear whether 
this association is attributed to the underlying disease or to the potent immunosuppressants used in the management of 
these blood cancers[7-9].

Virological factors include HBsAg and HBeAg positivity (adding a 5- to 8-fold risk for HBVr), non-A HBV genotypes, 
elevated HBV DNA levels before starting immunosuppressive therapy, and co-infection of HBV with other viruses such 
as HIV and HCV[4,7,8].

Type of immunosuppression: the greatest risk of HBVr is represented by the use of B-cell depleting therapies, used in 
the therapeutic armamentarium of blood and solid cancers and in the setting of bone marrow or solid organ trans-
plantation[3,4,6-12]. More details are presented in Table 1.

PREVENTION OF HBVR
Identifying infected individuals is the first and most important step for HBVr prophylaxis. According to the latest 
specialty guidelines, HBV infection screening must be performed in all patients who are receiving immunosuppressive 
treatment. Furthermore, all patients who are HBcAg positive, regardless of the status of HBsAg or the HBV DNA values, 
must receive prophylactic antiviral treatment. In numerous studies, prophylactic antiviral treatment has been shown to 
reduce the rate of HBVr, liver failure, and death in these categories of patients. Even if lamivudine was the first and for 
many years the most used oral antiviral agent for HBVr prophylaxis, YMDD gene mutations cause a high incidence of 
viral resistance if used for > 6 mo. This is why entecavir or tenofovir are recommended as therapies for HBVr prevention 
if intended for longer periods of time[4,6-8].

Duration of antiviral prophylaxis
In general, the duration of antiviral therapy varies depending on the type of immunosuppressives used. General 
recommendations include the use of antiviral therapy for at least 6 mo after the last dose of immunosuppressive agents is 
administered. However, in the case of B cell-depleting therapies (such as rituximab or obinutuzumab), it is recommended 
that antiviral prophylaxis be continued up to 12 mo after the last dose. Another important step is routine testing for HBV 
DNA and serum ALT and AST 3-6 mo after discontinuation of immunosuppressives[3,7].

Moreover, particular attention should be given to preventive measures, such as instructing patients to withdraw from 
alcohol consumption, as well as close monitorization of liver function tests in subjects who are prescribed pharmaco-
logical agents with a potentially hepatotoxic effect[13,14]. According to the findings of the Dionysos Study, individuals 
diagnosed with HBV who consume alcohol experience elevated rates of hepatic fibrosis and death[13].
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Table 1 Immunosuppressive agents associated with HBVr

Immunosuppressive therapies with high risk of HBVr

B-cell depleting therapies 
(rituximab and ofatumumab)

Anthracycline 
derivatives 
(doxorubicin and 
epirubicin)

Corticosteroids TNF-α inhibitors (infliximab, adalimumab, 
certolizumab)

Anti-CD52 
monoclonal 
antibody 
(alemtuzumab)

Increased HBVr risk in positive 
HBsAg and negative HBsAg and 
anti-HBc subjects by acting against 
the B-lymphocyte antigen CD20; 
The Food and Drug Administration 
has placed a black box warning for 
rituximab regarding HBVr in 
rituximab-treated individuals; used 
to treat CD20+ blood cancers 
(lymphomas, CLL) and IRD; B cells 
play a previously underestimated 
role in HBV immune control by 
producing neutralizing antibodies; 
rituximab associated with > 5× 
increase in HBVr risk (incidence 
3%–55%, overall mortality rate 
30%–38%)

High-risk for 
patients with 
hepatocellular 
carcinoma and 
hepatitis B 
undergoing 
TACE; used to 
treat lymphomas 
and acute 
leukemias, breast 
and ovarian 
cancer, and 
sarcoma; HBVr 
rate = 41% in 
patients with 
HBsAg positive

Prednisone use > 20 mg 
p.o. daily > 4 wk

TNF-α can activate the APOBEC antiviral 
pathway which causes the degradation of 
cccDNA in HBV-infected cells. HBVr pooled 
incidence in patients with resolved HBV 
infection = 3.0% vs 15.4% in HBsAg positive 
patients

Used for 
refractory CLL; 
causes reverse 
HBsAg serocon-
version and 
reactivation-
related hepatitis 

Immunosuppressive agents with moderate risk of HBVr

Less potent 
TNF-α 
inhibitors 
(etanercept)

Cytokine or 
integrin 
inhibitors 
(abatacept, 
ustekinumab, 
natalizumab, 
vedolizumab)

Tyrosine kinase 
inhibitors 
(imatinib, 
nilotinib, 
dasatinib)

Proteasome inhibitors: 
(Bortezomib)

Histone deacetylase 
inhibitors (HDIs) 
(romidepsin)

Prednisone 10-20 mg 
p.o. daily > 4 wk

Calcineurin 
inhibitors 
(cyclosporine or 
tacrolimus)

Moderate risk 
of HBVr in 
patients with 
HBsAg positive 
(1%-5%) and 
even lower in 
patients with 
HBsAg negative 

Commonly 
utilized in the 
treatment of IBD, 
IRD and 
dermatologic 
conditions; 
inhibit local 
inflammatory 
response 
associated with 
immune-
mediated 
diseases by 
blocking the 
localization and 
traffic of 
activated 
lymphocytes

Standard of 
treatment for all 
phases of CML; 
also used in the 
treatment of 
GIST; inhibit 
various kinase 
signaling 
pathways, 
essential for 
immune 
activation and 
proliferation of 
lymphocytes, 
with an 
important role in 
immune control 
of HBV 
replication; 
prophylactic 
antiviral therapy 
and regular 
monitoring of 
HBV DNA and 
liver enzymes are 
essential; 
reported HBVr 
rates of 
26%–34.8%

Used for the treatment of 
MM and induction therapy 
for transplant- eligible 
patients prior to stem cell 
harvest; target cellular 
pathways that interfere 
with the functions of 
healthy B cells, which are 
important in HBV immune 
control

Used in the treatment of 
T-cell lymphomas; inhibit 
histone deacetylase, a 
histone-modifying 
enzyme that is important 
for epigenetic regulation 
of gene expression with 
possible deacetylation 
status of silent cccDNA, 
resulting in active HBV 
transcription and then 
HBVr

The mechanism is 
two-fold: The HBV 
genome contains a 
transcription 
regulatory element 
responsive to 
glucocorticoid that is 
up-regulated by 
corticosteroids, 
resulting in 
increased viral 
replication; a 
directly suppressive 
effect on cytotoxic T 
cells that are 
involved in HBV 
control; risk of HBVr 
of 10%-15.8% in 
HBsAg positive 
individuals

Suppress T cell 
function by 
inhibiting 
calcineurin 
required for 
signal 
transduction of 
T cell activation 
and inhibiting 
transcription of 
interleukin 
required for T 
cell proliferation

Immunosuppressive agents with low risk of HBVr

Methotrexate, azathioprine or 6-mercaptopurine Intra-articular steroid injections or prednisone < 10 mg p.o. daily

Documented cases of HBVr are rather rare

Novel therapies

Immune 
checkpoint 
inhibitors such 
as anti-PD-L1 
(nivolumab) 
and anti-CTLA4 
(ipilimumab)

BTK inhibitor 
ibrutinib and 
PI3K delta 
inhibitor 
idelalisib

Ruxolitinib Mogamulizumab Brentuximab Obinutuzumab Hypomethylating 
agents: Decitabine, 
azacitidine

Daratumumab
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HBVr rarely 
reporter; anti-
HBV 
prophylaxis is 
recommended 

B-cell receptor 
signaling 
modulators; 
approved by the 
FDA for the 
treatment of CLL 
and certain low-
grade NHL; 
HBVr has been 
rarely been 
reported; anti-
HBV prophylaxis 
is recommended

A novel inhibitor 
of JAK1 and 
JAK2 that has 
been approved 
for the treatment 
of patients with 
MPNs; There are 
reported cases of 
HBVr

Humanized 
monoclonal 
antibody targeting 
the C-C chemokine 
receptor 4; Used 
for ATLL; HBVr 
cases have been 
reported

Anti-CD30 
drug 
conjugated 
antibody; 
used in the 
treatment of 
relapsed or 
refractory HL 
and CD30 
positive T-cell 
lymphoma; 
There are 
reported 
cases of HBVr

Newer 
generation anti-
CD20 
monoclonal 
antibody, similar 
to rituximab but 
with greater 
efficacy; FDA has 
mandated a 
warning of the 
risk of HBVr 
with 
obinutuzumab 
and HBVr has 
been reported

Used in the 
treatment of AML; 
anti-HBV 
prophylaxis is 
recommended

Monoclonal 
antibody against 
CD38; used in 
the treatment of 
hematologic 
malignancies of 
B cells; HBVr 
cases have been 
reported

CML: Chronic myeloid leukemia; GIST: Gastrointestinal stromal tumors; ATLL: Adult T-cell leukemia/lymphoma; AML: Acute myeloid leukemia; CLL: 
Chronic lymphocytic leukemia; IRD: Inflammatory rheumatic diseases; TACE: transarterial chemoembolization, APOBEC: Catalytic polypeptide-like 
apolipoprotein B mRNA editing enzyme, catalytic polypeptide-like; MM: Multiple myeloma; NHL: Non-Hodgkin’s lymphomas; HL: Hodgkin’s 
lymphoma; HBVr: Hepatitis B virus reactivation.

HBVR RISK IN MPNS TREATED WITH RUXOLITINIB
Ruxolitinib is a commonly used medication to treat MPNs, a group of blood disorders characterized by excessive blood 
cell production in the bone marrow. One of the common manifestations of MPNs is splenomegaly. Ruxolitinib acts by 
inhibiting Janus kinases (JAK1 and JAK2), which are enzymes involved in signaling pathways associated with cytokine 
receptors. By inhibiting these enzymes, ruxolitinib effectively helps control MPNs, particularly intermediate and high-risk 
myelofibrosis (MF) and high-risk polycythemia vera (PV). Importantly, its effect is not specific to any particular mutation. 
Ruxolitinib shows good oral bioavailability and reaches its maximum plasma concentration within 1-2 h after adminis-
tration. Plasma half-life of this drug is approximately 3 h when administered at a maximum tolerated dose of 100 mg 
once a day. It is mainly metabolized through the CYP3A4 pathway, an important liver enzyme system involved in drug 
metabolism. Consequently, ruxolitinib has the potential for interactions with medications that induce or inhibit the 
CYP3A4 pathway. Ruxolitinib is primarily eliminated from the body through metabolism in urine and feces. Therefore, 
dosage adjustments are necessary for patients with renal or liver impairments, as these conditions can affect the clearance 
of the drug from the body[15].

It is important to note that this pharmacological agent exhibits immunomodulatory effects, meaning that it can modify 
the functioning of the immune system. As a result, ruxolitinib treatment may increase susceptibility to opportunistic 
infections in patients prescribed this drug. Thus, regular monitoring for signs of infection is important when subjects 
diagnosed with MPNs start taking this medicine[16]. In particular, this pharmacological agent exhibits immunomodu-
latory and anti-inflammatory actions and can interfere with or impair the innate/adaptive immune response due to its 
interplay with dendritic cells, regulatory/T-helper lymphocytes or natural killer cells[17,18].

In a case report by Sjoblom et al[19], a patient with a history of PV received initial treatment with hydroxyurea. 
However, due to progressive splenomegaly and fatigue, his treatment was changed to pegylated interferon. Furthermore, 
to more effectively manage his symptoms, ruxolitinib was introduced. The patient experienced HBVr while on 
ruxolitinib, which was confirmed by abnormal liver function test results, positive viremia, and newly positive surface 
antigen for hepatitis B (HbsAg). With the initiation of tenofovir disoproxil, the patient's liver function gradually 
normalized, indicating successful management of HBVr[19]. In another report by Shen et al[20], a patient with MF and a 
history of HBV infection experienced HBVr during ruxolitinib treatment. The initial elevation in transaminase levels was 
mistakenly attributed to drug toxicity. Subsequent detection of high plasma levels of HBV DNA confirmed the 
reactivation. Ruxolitinib was discontinued and antiviral therapy was started, resulting in a gradual decrease in transa-
minase levels[19,20]. Additionally, in another report by Passucci et al[21], a patient with PMF and previous HBV infection 
achieved resolution of splenomegaly with ruxolitinib therapy. However, HBVr occurred after the patient discontinued 
prophylactic lamivudine. De-escalation of ruxolitinib and the initiation of anti-HBV therapy led to a gradual decline in 
HBV DNA levels without signs of active hepatitis[21]. Kirito et al[22] highlight the importance of considering prophylactic 
antiviral therapy in patients with chronic HBV infection before starting treatment with ruxolitinib, as such a proactive 
measure can help prevent HBVr, as observed in their patient[22].

Ruxolitinib has an immunosuppressive effect, leading to an increased risk of serious infections. The immunosup-
pressive effect of ruxolitinib is due to its interaction with multiple pathways of the immune system, affecting both 
adaptive and innate immune responses. This can result in the reactivation of silent infections such as tuberculosis, HBV, 
and varicella-zoster virus. Therefore, proactive infection surveillance, baseline screening for latent infections, and 
considering prophylactic or preventive interventions for specific infections such as varicella-zoster virus and HBV virus 
are crucial[23]. A pilot study conducted by Crodel et al[24] investigated the frequency of infections in patients with 
MPNs. The study included multiple centers and relied on patient-reported data. The findings revealed that over 50% of 
MPN patients experienced one or more episodes of infection within a 12-mo period. The most frequently reported 
infections were upper respiratory tract infections, herpes virus infections, and gastrointestinal infections. Among the 
different subtypes of MPNs, subjects with MF had the highest percentage of infectious events, followed by PV and 
essential thrombocythemia[24]. Furthermore, Lussana et al[25] conducted a systematic review and meta-analysis 
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Figure 1 Benefits and risks of ruxolitinib use in terms of opportunistic infections in myeloproliferative neoplasms. MPNs: Myeloproliferative 
neoplasms; RUX: Ruxolitinib; HBVr: Hepatitis B virus reactivation; NK cells: Natural killer cells.

examining the safety and efficacy of ruxolitinib in the treatment of MF and PV. The study specifically focused on the 
incidence of infections in patients receiving ruxolitinib. It was found that ruxolitinib, with its immunosuppressive effects, 
can affect immune functions and increase the risk of infections. Herpes zoster, pneumonia, bronchitis, and urinary tract 
infections were among the most frequently reported infectious complications. The aforementioned quantitative 
assessment emphasized the importance of carefully evaluating infection risk before initiating ruxolitinib therapy and 
highlighted the need to monitor and address infections in patients receiving ruxolitinib for MF and PV[25].

In a paper by Perricone et al[26], two case reports of HBVr in MF patients treated with ruxolitinib are discussed. The 
immunosuppressive effects of ruxolitinib, particularly in dendritic cells and T cells, may contribute to an increased risk of 
infections, including HBVr. The article emphasizes the need for vigilance among physicians when considering infectious 
causes when using immunosuppressive agents such as ruxolitinib[26]. In a prospective study by Gill et al[27], 40 patients 
with MPNs were included. Among the 37 subjects who were negative for HBsAg, 15 tested positive for anti-HBc 
antibodies, indicating occult HBV infection. Prophylactic treatment for HBV was administered to the three HBsAg 
positive patients. During a median follow-up of 19.2 mo, four patients (26.7%) experienced HBVr, occurring at a median 
of 10.5 mo after starting ruxolitinib therapy. The estimated cumulative incidence rates of HBVr at 6 and 12 mo were 7.7% 
and 30.8%, respectively. This investigation emphasizes the need to monitor HBVr in patients with occult HBV infection 
who receive ruxolitinib therapy[27]. Garcia-Horton et al[28] conducted a retrospective cohort study involving 1171 
individuals with MPNs to evaluate the risk of HBVr in subjects treated with ruxolitinib. Among the 58 patients with prior 
HBV infection, 20 received ruxolitinib. Only one patient experienced HBVr during ruxolitinib therapy, and their HBV 
DNA levels peaked, but subsequently returned to undetectable levels without interrupting or reducing the ruxolitinib 
dose[28]. Duan et al[29] conducted a retrospective analysis to evaluate the incidence of HBVr in MPN patients treated 
with ruxolitinib. The study included 62 patients with a history of HBV infection, 56 with resolved infection and 6 with 
chronic HBV infection. Among patients with chronic HBV infection, two experienced HBVr and hepatitis flare-up after 
ruxolitinib therapy. None of the patients with resolved HBV infection experienced reactivation. In particular, the two 
patients with chronic HBV infection did not receive antiviral prophylaxis[29]. Caocci et al[30] presented a case report of a 
patient with MF who experienced HBVr during treatment with ruxolitinib. The patient had a history of HBV infection 
and initially received ruxolitinib for symptoms related to MF. Although there was improvement in MF symptoms, HBVr 
was observed through increased levels of HBV-DNA. Adjusting the dose of ruxolitinib resulted in an improvement in 
symptoms, but HBV-DNA levels remained fluctuating. This case report raises concerns about the management of MF 
patients with HBV infection receiving ruxolitinib and emphasizes the importance of careful monitoring and potential 
prophylactic treatment[30].

A schematic representation between the benefits and risks of ruxolitinib use in terms of opportunistic infections in 
MPNs is depicted in Figure 1.

CONCLUSION
In conclusion, ruxolitinib is an effective medication to manage MPNs such as MF and PV, particularly in intermediate and 
high-risk cases. By inhibiting JAK1 and JAK2, ruxolitinib helps control excessive blood cell production and reduce spleno-
megaly. However, its use carries certain risks and considerations. The interaction of ruxolitinib with the immune system 
can increase the susceptibility to opportunistic infections, highlighting the need for vigilant monitoring and timely 
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intervention. Furthermore, there is a potential for HBVr, especially in patients with a history of HBV infection. Close 
monitoring of liver function and proactive measures, such as prophylactic antiviral therapy, are crucial to managing these 
risks. In general, ruxolitinib offers therapeutic benefits for MPNs, but careful evaluation of infection risk, regular 
monitoring, and appropriate interventions are essential to ensure patient safety.
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Abstract
Chronic liver disease (CLD) imposes a heavy burden on millions of people 
worldwide. Despite substantial research on the pathogenesis of CLD disorders, no 
optimal treatment is currently available for some diseases, such as liver cancer. 
Exosomes, which are extracellular vesicles, are composed of various cellular 
components. Exosomes have unique functions in maintaining cellular homeostasis 
and regulating cell communication, which are associated with the occurrence of 
disease. Furthermore, they have application potential in diagnosis and treatment 
by carrying diverse curative payloads. Hepatic macrophages, which are key 
innate immune cells, show extraordinary heterogeneity and polarization. Hence, 
macrophage-derived exosomes may play a pivotal role in the initiation and 
progression of various liver diseases. This review focuses on the effects of 
macrophage-derived exosomes on liver disease etiology and their therapeutic 
potential, which will provide new insights into alleviating the global pressure of 
CLD.
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Core Tip: Chronic liver disease (CLD) affects hundreds of millions of individuals worldwide, and identifying the causes and 
researching viable therapies could lessen the global burden. As nanovesicles produced by cells, exosomes are able to 
facilitate intercellular communication and play a crucial role in a variety of systemic disorders. Immune cells such as 
macrophages are intimately associated with liver diseases. In this review, the importance of macrophage-derived exosomes 
in CLD, from pathophysiology to therapeutic potential, is highlighted.

Citation: Xiang SY, Deng KL, Yang DX, Yang P, Zhou YP. Function of macrophage-derived exosomes in chronic liver disease: From 
pathogenesis to treatment. World J Hepatol 2023; 15(11): 1196-1209
URL: https://www.wjgnet.com/1948-5182/full/v15/i11/1196.htm
DOI: https://dx.doi.org/10.4254/wjh.v15.i11.1196

INTRODUCTION
Chronic liver disease (CLD) imposes a heavy burden on millions of people worldwide. A total of 1.5 billion people 
worldwide had suffered from CLD by 2017[1]. Approximately 2 million individuals worldwide die each year from liver 
disease[2]. Chronic hepatitis, cirrhosis and liver cancer are the three main CLDs. Among the ranked global causes of 
death, cirrhosis is 11th, while hepatocellular carcinoma (HCC) is 16th[3]. We reviewed numerous studies and found that 
the pathogenesis of CLD is multifactorial. Most liver diseases are associated with steatosis, oxidative stress, alcoholism, 
inflammation[4], the environment, the microbiome, metabolism, and genetic factors[5]. However, in addition to liver 
transplantation, current therapy consists only of eliminating the etiology and treating the complications of cirrhosis[6]. 
Therefore, the exploration of the pathogenic mechanism and identification of optimal treatment strategies are urgently 
needed.

Exosomes can be released into biological fluids by all cells under physiological or pathological conditions. Exosomes 
are produced by budding and have apparent molecular heterogeneity because of various membrane-related protein 
complexes. Exosomes contain components including RNAs, DNAs, lipids, proteins, amino acids, and metabolites[7]. 
These soluble and extracellular components can enter cells through endocytosis and plasma membrane invagination, 
which involve the surface proteins on exosomes[8]. Substances within exosomes stimulate recipient cells, thereby altering 
signal transduction pathways[9]. Therefore, by carrying these payloads, exosomes can mediate intercellular commu-
nication[10]. When exosomes are taken up by other cells, the components alter the phenotype of recipient cells and 
disrupt the dynamic equilibrium of cellular transformation, demonstrating their unique functions in maintaining cellular 
homeostasis[11,12]. Furthermore, exosomes may serve as biomarkers or therapeutic targets in the diagnosis and 
treatment of various diseases[9,11,13]. At present, exosomes have been widely studied in liver diseases. In alcoholic liver 
disease (ALD)[14], alcohol increases the generation of exosomes, which is due to autophagic damage and the destruction 
of autophagosomes or lysosomes. During the progression of nonalcoholic fatty liver disease (NAFLD)[15], hepatocyte-
derived exosomal microRNA (miR)-192-5p can activate proinflammatory macrophages. In liver fibrosis[16], activated 
hepatic stellate cells (HSCs) release fibrogenic vesicles. Furthermore, engineered exosomes can be used for drug delivery. 
For instance, Tang et al[17] showed that exosomes from mesenchymal stem cells (MSCs) modified to carry small 
interfering RNA or an antisense oligonucleotide targeting signal transducer and activator of transcription 3 (STAT3) 
could directly inhibit STAT3 to treat fibrosis. Lou et al[18] also modified exosomes from MSCs to carry miR-199a-3p, 
which improved the chemotherapy sensitivity of liver cancer, proving that exosomes can be used as novel therapeutic 
agents by acting as nanocarriers to deliver drugs or molecules. In conclusion, exosomes can drive or inhibit disease 
progression and have potential utility in liver disease therapy.

Macrophages are the core cellular component of the liver and are crucial in maintaining organ homeostasis and coping 
with liver injury[19]. As key immune cells, they contribute to the development of hepatic disease by polarizing into 
diverse phenotypes in response to microenvironmental stimulation[20] or expressing their heterogeneity through the 
production of cytokines, cell surface markers, and transcriptomes[21]. Due to the specific physiological roles of 
macrophages, the involvement of macrophage-derived exosomes in the development and progression of liver disease has 
been extensively studied. For instance, relaxin is an antifibrotic peptide hormone that affects vasodilation, thereby 
alleviating fibrosis and protecting organs through its cognate G protein-coupled receptor relaxin family peptide receptor 
1. A study showed that after binding to receptors expressed by hepatic macrophages, relaxin can change the phenotype of 
macrophages, and macrophages can release exosomes to promote relaxin-mediated HSC dormancy and alleviate hepatic 
fibrosis (HF)[22]. In vitro, interleukin-6 (IL-6) treatment upregulated exosome generation-related genes, stimulating the 
release of miR-223-rich exosomes from macrophages, which can transfer and reduce the expression of fibrogenic TAZ in 
liver cells to alleviate liver fibrosis[23]. However, macrophage-derived exosomes can also accelerate disease progression; 
for example, exosomes derived from macrophages treated with lipopolysaccharide (LPS) promote liver fibrosis[24], and 
exosomes derived from M2 macrophages can mediate HCC metastasis[25]. At present, determining how to use 
macrophage-derived exosomes to treat disease has become a research hotspot. Studies have shown that macrophage-
derived exosomes can be used as natural nanocarriers to deliver proteins[26] or drugs[27], induce immune activation and 
participate in immunotherapy[28]. Overall, investigating the various physiological functions of macrophage-derived 
exosomes can lead to a better understanding of the pathogenesis and treatment of CLD.

https://www.wjgnet.com/1948-5182/full/v15/i11/1196.htm
https://dx.doi.org/10.4254/wjh.v15.i11.1196


Xiang SY et al. Macrophage-derived exosomes in CLD

WJH https://www.wjgnet.com 1198 November 27, 2023 Volume 15 Issue 11

This review discusses the biology and physiological functions of exosomes, focusing on exosomes derived from 
macrophages in the etiology of liver disease, as well as the possible use of exosomes in diagnosis, prognosis, and 
treatment, which will help in the search for the best therapeutic strategies for liver disease and contribute to reducing the 
global burden of liver disease (Figure 1).

OVERVIEW OF MACROPHAGE-DERIVED EXOSOMES
Exosomes are a subtype of extracellular vesicles secreted by all cells and are widely distributed in various body fluids. 
These factors mediate cell-to-cell communication and play specific roles in normal physiological functions and the 
occurrence of diseases. Macrophages are important immune cells in the human body, and their unique heterogeneity and 
phenotype result in different physiological effects. In addition, macrophage-derived exosomes participate in the 
occurrence of diseases in various systems.

Biology of exosomes
Exosomes are small nanoscale vesicles with diameters of 30-150 nm[29]. They originate in endosomes and form mature 
exosomes during interactions with other vesicles or organelles[8]. First, the cell invaginates the cell membrane through 
budding to generate clathrin bodies, which enter the cytoplasm and form early endosomes[30,31]. Late endosomes 
mature from early endosomes by interacting with the Golgi complex, which can form intraluminal vesicles (ILVs) by 
invagination of the restrictive membrane[10]. ILVs are then further endocytosed to generate multivesicular bodies 
(MVBs), which are known as multivesicular endosomes[8]. Ultimately, MVBs have two outcomes: Some MVBs enter the 
lysosomal pathway and are degraded by the lysosome, while others fuse with the cell membrane and release multiple 
vesicular structures into the extracellular matrix as exosomes[31]. Therefore, the biogenesis of exosomes can be divided 
into the following processes: Budding, envelope invagination, MVB production, and MVB release. All cells, whether 
normal or abnormal, can release exosomes, and cancer cells release more exosomes than other cells[9]. Exosomes can 
exhibit unique characteristics based on their cell origin and material composition. As a double lipid-encapsulated vesicle, 
exosomes contain a variety of substances, such as DNAs, RNAs, lipids, and proteins, and the composition or contents of 
these vesicles vary depending on the cell source[32]. Moreover, exosomes can be isolated from various types of body 
fluids, such as plasma[33], serum[34], and urine[35]. In summary, exosomes are tiny vesicles secreted by various cells, 
and their secretion mechanism is related to membrane fusion. In addition, secreted exosomes can be widely distributed 
throughout the body, enabling them to play a role in a variety of systems.

Function of exosomes
Because structure determines function, the function of exosomes is dependent on their complex and specific character-
istics, which are determined by the cell type from which they are derived. Exosomes can be involved in the immune 
response, antigen presentation, cell migration, cell differentiation, tumor invasion, and other processes. The most 
important function of exosomes is to mediate intercellular communication[9]. Exosomes transfer cargo to recipient cells 
by binding to cell surface receptors, undergoing plasma membrane fusion, or through the endocytic system[36], which 
can activate signaling pathways, alter gene expression, or regulate the overall function of the recipient cell. For example, 
the decrease in hsa_circ_0074854 carried by exosomes secreted by HCC cells can inhibit M2 macrophage polarization, 
thus delaying the migration and invasion of HCC cells[37]. Cancer-associated fibroblasts can transfer exosomal miRNAs 
directly to tumor cells and enhance their cell-related functions, such as epithelial-mesenchymal transition and chemores-
istance[38]. Therefore, exosomes can mediate material exchange between cells, are involved in cellular communication, 
and reflect the different physiological functions of cells; thus, they are often used as biomarkers of diseases or targeted 
delivery vectors of substances. The expression levels of some miRNAs in serum exosomes are significantly upregulated in 
patients with pancreatic cancer; thus, some miRNAs are considered useful markers for the early diagnosis and 
progression of pancreatic cancer[39]. The delivery of engineered exosomes loaded with an iron shedding inducer [erastin 
(ER)] and photosensitizer (rose bengal) into tumor tissue can specifically induce ferroptosis in HCC cells, which can be 
used as a new treatment strategy for malignant tumors[40]. In conclusion, exosomes have wide-ranging functions. 
Whether as carriers of substances or as signaling factors, exosomes have powerful cellular communication functions, 
which is an area for future basic research to determine clinical applications.

Exosomes derived from macrophages
Macrophages are immune cells that can be found in most tissues and serve numerous roles[41]. For instance, 
macrophages are derived from monocytes and have phagocytic functions; these cells can engulf and kill intracellular 
parasites, bacteria, and tumor cells, as well as aging and abnormal cells, which is critical for immune defense, immune 
stability, and immune surveillance. In addition, macrophages are uniquely heterogeneous. In a dynamically changing 
microenvironment, macrophages can exhibit two phenotypes that perform different functions: Classically activated 
macrophages (M1) and alternatively activated macrophages (M2)[42]. M1 macrophages can be activated by LPS alone or 
in combination with T-helper 1 (Th1) cytokines [such as interferon (IFN)-γ and granulocyte-macrophage colony-
stimulating factor] and can produce proinflammatory cytokines, such as IL-1β, IL-6, IL-12, IL-23, tumor necrosis factor 
(TNF)-α, chemokine (C-X-C motif) ligand (CXCL) 1-3, CXCL8-10, chemokine (C-C motif) ligand (CCL)2-5, and CCL11. 
Therefore, M1 macrophages are able to mediate functions such as antigen presentation, Th1 immune reactions, proinflam-
matory effects, pathogen elimination, and antitumor activity[43-46]. However, M2 macrophages can be further divided 
into M2a, M2b, M2c, and M2d subtypes and can release complex cytokines. Specifically, when injury causes an acute 
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Figure 1 Schematic diagram of the pathogenesis of chronic liver disease from the perspective of macrophage-derived exosomes. Injured 
livers activate macrophages to secrete exosomes that encapsulate RNAs, DNAs, lipids, proteins, etc., which influence the development of chronic liver disease 
through various signaling pathways. CLD: Chronic liver disease; NAFLD: Nonalcoholic fatty liver disease; HF: Hepatic fibrosis; HCC: Hepatocellular carcinoma; IL-6: 
Interleukin-6; TGF: Transforming growth factor; BMP: Bone morphogenetic protein; TXNIP: Thioredoxin-interacting protein; TLR: Toll-like receptor.

inflammatory response or organ fibrosis, inflammatory factors such as IL-4 and IL-13 activate M2 macrophages to 
transform into M2a macrophages to inhibit inflammation, mediate damage repair and promote fibrosis. In response to 
LPS and immune complexes, M2 macrophages can be transformed into M2b macrophages, which can regulate immunity 
and induce the occurrence of infection and cancer. Glucocorticoids, IL-10, and transforming growth factor-beta (TGF-β) 
can induce the polarization of M2 macrophages to M2c macrophages, which perform functions such as phagocytosis, 
immunosuppression, and tissue remodeling. Moreover, M2d macrophages are induced by toll-like receptor (TLR) 
agonists and adenosine A2A receptor ligands to cause angiogenesis and promote cancer. M2 macrophages can produce 
various cytokines, including Arg1, CCL17, CCL22, IL-10, IL-1β, IL-6, TNF-α, IL-12, IL-10, TGF-β, CXCL13, and IL-10, 
which can mediate numerous functions, including inhibiting inflammation, wound healing, the Th2 immune response, 
anaphylaxis, fibrosis, immune regulation, supporting tumors, promoting infection, and angiogenesis[47-51]. Therefore, 
when homeostasis is disrupted, the polarization of different macrophage phenotypes occurs, which means that 
macrophages are remarkably plastic cells (Figure 2).

Macrophages are capable of secreting exosomes, and macrophage-derived exosomes are present in multiple systems. 
In addition, macrophage-derived exosomes are involved in various diseases and act as therapeutic targets and drug 
carriers. In recent years, research has mainly focused on the involvement of macrophage-derived exosomes in systemic 
diseases. For instance, in multimicrobial sepsis, lactate promotes macrophages to release exosomes containing lactated/
acetylated high mobility box-1 (HMGB1), which increases endothelial cell permeability and accelerates sepsis. Therefore, 
reducing circulating levels of exosomal HMGB1 be a therapeutic strategy for the treatment of sepsis[52]. In head and neck 
squamous cell carcinoma (HNSCC), the long non-coding RNA (lncRNA) HOTTIP in exosomes secreted by M1 
macrophages upregulates the TLR5/NF-κB signaling pathway via the competing sponges miR-19a-3p and miR-19b-3p to 
inhibit the progression of HNSCC[53]. In the respiratory system, Wei et al[54] found that the exosomes derived from M2 
macrophages in patients with lung adenocarcinoma could encapsulate miR-942, and these exosomes enhanced the 
invasion and migration of lung adenocarcinoma cells and promoted angiogenesis by regulating FOXO1 protein to 
alleviate β-catenin inhibition. In addition, macrophage-derived exosomes are also valuable in the treatment of chronic 
pulmonary fibrosis[55] and asthma[56]. In the circulatory system, macrophage-derived exosomes accelerate athero-
sclerosis in patients with diabetes[57], but they can also be used for myocardial tissue repair in acute myocardial 
infarction[58]. Moreover, macrophage-derived exosomes can serve as carriers for drug delivery. In a mouse model of 
Alzheimer’s disease (AD), macrophage-derived exosomes could carry silybin, allowing it to cross the blood-brain barrier 
and reduce astrocyte-mediated neuroinflammation and improve cognitive deficits in AD mice[59]. In conclusion, 
macrophage-derived exosomes are widely distributed in the body and are associated with a variety of systemic diseases, 
and exosomes can play an important role in the treatment of diseases by acting as therapeutic targets or drug carriers. 
Given the importance of macrophages in the physiology of the liver, much research has been devoted to the link between 
macrophage-derived exosomes and the onset of CLD. Therefore, this review focuses on the impact of macrophage-
derived exosomes on the etiology and treatment of CLD.



Xiang SY et al. Macrophage-derived exosomes in CLD

WJH https://www.wjgnet.com 1200 November 27, 2023 Volume 15 Issue 11

Figure 2 Schematic diagram of the phenotypes and functions of macrophage polarization. The nature macrophage can be activated by a variety of 
influencing factors (such as lipopolysaccharide, interferon-γ, granulocyte-macrophage colony-stimulating factor, etc.) and polarized into two phenotypes - classically 
activated macrophages and alternatively activated macrophages. Exosomes carry stimulatory factors to activate macrophages. Macrophages themselves secrete 
exosomes to form a signal transmission network between macrophages and other cells. (M0: M0 macrophage; M1: M1 macrophage; M2: M2 macrophage; M2a: M2a 
macrophage; M2b: M2b macrophage; M2c: M2c macrophage; M2d: M2d macrophage; LPS: Lipopolysaccharide; IFN-γ: Interferon-γ; GM-CSF: Granulocyte-
macrophage colony-stimulating factor; IL: Interleukin; TLR: Toll-like receptor; A2AR: A2A receptor; MHC: Major histocompatibility complex; TGF: Transforming growth 
factor.

MACROPHAGE-DERIVED EXOSOMES IN CLD
CLD has impacted tens of thousands of patients worldwide, its pathogenesis has been explored, and its therapeutic 
regimen has been optimized. In recent years, there has been intensive study of the function of macrophage-derived 
exosomes in some diseases. In this review, the use of macrophage-derived exosomes to treat NAFLD, HF, HCC, and other 
liver diseases is discussed in the context of pathogenesis and therapeutic potential.

NAFLD
NAFLD is the most common CLD and is recognized as a global public health problem. The pathogenesis of NAFLD is 
complex[5,60]. During the pathogenesis of NAFLD, hepatic damage caused by inflammation, oxidative stress, and 
lipotoxicity eventually cause collagen deposition and fiber regeneration, which lead to liver fibrosis[61]. During this 
process, obesity, type 2 diabetes, resistance to insulin, HSC activation, the environment, genetics, and other factors 
accelerate the progression of liver injury. However, due to the complexity of the pathophysiology and the heterogeneity 
of disease phenotypes, there is currently no specific drug to treat NAFLD. Healthy lifestyle interventions and weight loss 
are mostly used to prevent this disease in high-risk groups, and individualized combination therapy is often used to treat 
patients[62]. Only a better understanding of the pathogenesis and progression of this disease can provide a more accurate 
treatment plan. Therefore, we focused on the role of exosomes in NAFLD and their potential use in treatments.

The study of macrophage-derived exosomes in the pathogenesis and treatment of NAFLD has made considerable and 
remarkable progress and has potential applications in NAFLD therapy. For example, in sepsis associated with NAFLD, 
exosomes released by Trem2-deficient macrophages carry a large amount of miR-106b-5p and cause abnormal 
mitochondrial structure and energy metabolism in hepatocytes by blocking mitofusin 2 (Mfn2), which accelerates the 
progression of NAFLD and increases the susceptibility of NAFLD patients to sepsis[63]. In addition, miR-155-rich 
exosomes secreted by adipose tissue macrophages improved insulin sensitivity and maintained glucose homeostasis in 
obese mice[64]. Similarly, miR-69 released from M2 macrophages had the same effect[65]. In obese individuals, 
macrophage-derived exosomes are increased and delivered to hepatocytes, thereby regulating obesity-related insulin 
resistance[66] (Figure 3). In conclusion, exosomes derived from macrophages typically carry different cargos and transfer 
them between liver cells, and these exosomes can not only initiate but also delay the progression of NAFLD.

HF
HF is a dynamic and highly integrated molecular, cellular, and tissue process involving most types of CLD that undergo 
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Figure 3 Schematic diagram of the role of macrophage-derived exosomes in nonalcoholic fatty liver disease. Exosomes derived from 
macrophages carry different microRNAs (miR-106b-5p[63], miR-155[64], miR-69[65]) to act on nonalcoholic fatty liver disease cells and alleviate the disease 
progression by regulating liver homeostasis. NAFLD: Nonalcoholic fatty liver disease; EVs: Extracellular vesicles; miRNA: MicroRNA.

repeated substantial liver damage and continuous activation of inflammatory responses[67]. During these processes, the 
activation of hepatic myofibroblasts results in the secretion of extracellular matrix proteins, including collagen, which can 
lead to fibrous scars and, eventually, the development of HF[68]. If not treated in time, HF will progress to cirrhosis, 
HCC, and eventually liver failure, but unfortunately, the only treatment that can achieve a complete cure is liver 
transplantation[69]. Previously, hepatic macrophages, which are specific immune cells, were shown to be important in the 
progression of HF. Macrophages mediate various functions in fibrotic liver homeostasis, disease progression, and injury 
recovery and are considered potential targets to protect against fibrosis[21]. Notably, intercellular crosstalk between 
hepatic macrophages and HSCs is vital for stimulating HSC activation[24]. Therefore, exosomes derived from 
macrophages are important for intercellular crosstalk during the pathogenesis of HF.

Recent studies have shown that exosomes derived from different sources are involved in the pathogenesis, diagnosis, 
and potential treatment of HF. This review will focus on research on macrophage-derived exosomes in HF. On the one 
hand, exosomes derived from macrophages accelerate HF. For instance, when THP-1 macrophages were treated with 
LPS, the exosomes secreted by these cells were changed, and the alteration in miRNA correlated with HF progression, 
increasing fibrotic gene expression and promoting HSC replication and activation[24]. Similarly, another study showed 
that exosomes secreted by LPS-treated macrophages could overexpress miR-500, which promoted the proliferation and 
activation of HSCs to accelerate the progression of fibrosis by inhibiting MFN2[70]. Deng et al[71] found that exosomes 
derived from LPS-treated macrophages could increase the expression levels of collagen-1 and alpha-smooth muscle actin 
in JS1 cells. According to recent research, LPS stimulation enhances the expression of miR-155-5p in macrophage-derived 
exosomes, which facilitates the activation of HSCs, resulting in oxidative stress and collagen production[72]. Autophagy 
contributes to the progression of liver damage in the early stages of liver fibrosis, and CCL4 can exacerbate autophagy, 
which causes M1 macrophages to polarize and secrete exosomes rich in miR-423a-5p to encourage HSC activation and 
control HF[73]. The miRNAs carried by macrophage-derived exosomes in these examples could accelerate HF, but they 
were also shown to be expressed at high levels in serum, which suggested that these miRNAs can be used as biomarkers 
for the diagnosis of fibrosis. On the other hand, exosomes derived from macrophages can be used to delay HF. Hepatic 
macrophages are important mediators of relaxin-mediated amelioration of HF. When the relaxin receptor on 
macrophages binds to relaxin, their phenotype can be changed from the profibrogenic phenotype to the pro-resolution 
phenotype, and the pro-resolution phenotype can secrete exosomal miR-30a-5p to inhibit the growth of HSCs. Therefore, 
nanoparticle-mediated delivery of miR-30a-5p can alleviate liver fibrosis[22]. In another recent study, phillygenin, an 
active ingredient in the Chinese medicine Forsythiae Fructus, was shown to inhibit StarD13-targeted M1 macrophage 
exosomal miR-125b-5p to reduce HSC activation, thereby alleviating the progression of liver fibrosis[74]. Macrophage-
derived exosomes can also delay or treat the occurrence of NAFLD-HF. For instance, miR-411-5p is present in exosomes 
secreted by M2 macrophages and can suppress HSC activation in NAFLD[75]. In contrast, miR-223-enriched exosomes 
suppressed the expression of profibrotic TAZ to inhibit the development of NAFLD[23]. Kupffer cells (KCs) are a special 
type of macrophage in the liver that can also produce exosomes. In nonalcoholic steatohepatitis (NASH), KCs deliver 
endogenous miR-690 to HSCs via exosomes, which can help treat HF in NASH by suppressing the expression of 
profibrotic genes[65]. These results demonstrate that macrophage-derived exosomes can alleviate the progression of HF 
and interact with HSCs (Figure 4). Therefore, research on macrophage-derived exosomes in HF mainly focuses on the 
crosstalk between macrophages and HSCs, and the mechanisms are diverse and should be analyzed from multiple 
perspectives. Since the search for a better treatment strategy for HF is ongoing, future studies should focus on how to use 
macrophage-derived exosomes to diagnose or treat HF.

HCC
Worldwide, HCC is one of the most common causes of cancer death, and HCC is a major type of liver cancer, accounting 
for more than 90% of cases[76]. HCC is caused by many pathogenic factors, and its prognosis is poor. Most patients are 
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Figure 4 Schematic diagram of the relationship between macrophage-derived exosomes and hepatic fibrosis. Exosome-mediated 
communication between macrophages and hepatic stellate cell (HSC) influences the disease progression of hepatic fibrosis (HF). Special substances carried in 
exosomes, such as microRNAs (miR-103-3p[24]; miR-500[70]; miR-155-5p[72]; miR-432-5p[73]; miR-125b-5p[74]; miR-411-5p[75]; miR-690[65]; miR-223[23], are 
signaling factors that induce the activation of HSC to form cirrhosis or inhibit the activation of HSC to alleviate HF. EVs: Extracellular vesicles; HSC: Hepatic stellate 
cell; HF: Hepatic fibrosis.

diagnosed with advanced HC, for which chemotherapy and immunotherapy are by far the best treatment options[77]. 
Therefore, the burden of HCC in the world is still severe, and it is important to continue to find new methods for early 
diagnosis and treatment to improve HCC prognosis. Because exosomes mediate cell communication and carry substances 
that can be exchanged between cells, macrophages can take up exosomes released by tumor cells in the tumor microenvir-
onment, which affects tumor growth or metastasis by altering macrophage phenotypes. For example, Li et al[78] found 
that exosomes produced by HCC contain abundant levels of lncRNA TUC339, which alters macrophage phenotype, 
ultimately accelerating the rapid growth of tumors by promoting tumor immune evasion. In addition, another study 
showed that ER-stressed HCC cells released exosomal miR-23a-3p, which upregulated programmed cell death ligand 1 
expression in macrophages and inhibited T-cell functions, thereby ameliorating tumor progression[79]. Similarly, ER-
stressed HepG2 cell-derived exosomes promoted the expression of cytokines through the activation of the JAK2/STAT3 
pathway, and these exosomes ultimately led to the immunosuppression of macrophages and promoted tumor growth
[80]. These results indicate the close connection between exosomes secreted by hepatic carcinoma cells and macrophages, 
and the impact on macrophages has a robust effect on the growth of HCC. Therefore, we discuss the role of macrophage-
derived exosomes in HCC, including the mechanism and application value in diagnosing or treating HCC (Figure 5 and 
Table 1).

Studies have shown that exosomes derived from macrophages mainly promote the growth and invasiveness of HCC. 
According to recent research, tumor-associated macrophage (TAM)-derived exosomal lncRNAs increase aerobic 
glycolysis and cell growth in HCC by controlling the miR-548s/ALDH1A3 pathway, thereby contributing to disease 
malignancy[81]. Liu et al[82] discovered that the miRNAs in exosomes secreted by macrophages were altered, and these 
miRNAs could reduce androgen receptor (AR) expression and translation to enhance the invasion of HCC. In addition, 
miR-15b was increased in the exosomes of arsenite-treated macrophages, and this factor could be delivered to HCC cells 
to promote HCC[83]. Exosomes produced by M2-polarized macrophages could induce TGF-β1/bone morphogenetic 
protein 7 pathway imbalances and promote the invasiveness of liver cancer[84]. Similarly, Li et al[85] reported that M2 
macrophage-derived exosomes were rich in miR-27a-3p, and these exosomes could promote cancer cell stemness via the 
miR-27a-3p/thioredoxin-interacting protein pathway. Moreover, miR-660-5p-rich M2 macrophage-derived exosomes 
could promote liver cancer development by downregulating KLF3[86]. These results indicate that some substances 
loaded in exosomes can promote tumor growth, invasion, and metastasis, which can provide new insights into the 
pathogenesis of HCC.

In addition, these results increase enthusiasm for using exosomes in cancer treatment. For example, exosomal miR-628-
5p generated by M1 macrophages prevented the m6A alteration of circFUT8, which prevented the proliferation of HCC
[87]. Additionally, M1 macrophage-derived exosomal miR-326 inhibited HCC cells from proliferating, forming colonies, 
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Table 1 Association of the macrophage-derived exosomes with hepatocellular carcinoma

Ref. Macrophage cell 
type/phenotype HCC cell lines/model/tissue Exosome 

contents Findings

Liu et al
[82], 2020

THP-1/M2 Human HCC cell lines: SK-HEP-1 and 
HepG2 cell; mouse HCC cell lines: Hepa 1-6

MiR-92a-2-5p Promote HCC invasion via altering the 
AR/PHLPP/p-AKT/β-catenin signaling

Li et al
[83], 2021

THP-1/M2 Human HCC cell lines: SMMC-7721 MiR-15b Promotes the progression of HCC by 
blocking the LATS1-mediated Hippo 
pathway

Li et al
[85], 2021

THP-1/M2 Human HCC cell lines: Huh7, 97H, HepG2, 
LM3 and SMMC-7721

MiR-27a-3p Promote cancer stemness of HCC via the 
miR-27a-3p/TXNIP pathways

Tian et al
[86], 2021

THP-1/M2 Human HCC cell lines: HepG2 and Bel-7402; 
human HCC tumor tissues

MiR-660-5p Promote the development of HCC by 
regulating KLF3

Bai et al
[88], 2020

THP-1/M1 Human HCC cell line BEL-7404, HepG2, 
SMMC-7721 and QGY-7703; Xenograft nude 
mouse model

MiR-326 Suppresses HCC progression via NF-κB 
signaling pathway

Pu J et al
[89], 2021

C57BL/6 mouse bone 
marrow-derived 
macrophages/M2

Murine model of primary HCC (C57BL/6) MiR-21-5p Facilitate CD8+T cell exhaustion in HCC 
via the miR-21-5p/YOD1/YAP/β-
catenin pathway

Wang et al
[90], 2019

TAMs/M1 Human HCC cell lines: Huh7, HepG2 and 
BEL-7404; human HCC tumor tissues

MiR-125a/b Suppressed HCC cell proliferation and 
stem cell properties by targeting CD90

Zhang et al
[92], 2022

THP-1/M2 Human HCC cell lines: SMMC-7721and 
HepG2; Xenograft nude mouse model 
(BALB/C)

hsa_circ_0004658 Inhibits HCC progression via miR-499b-
5p/JAM3

HCC: Hepatocellular carcinoma; M1: M1 macrophage; M2: M2 macrophage; TAMs: Tumour-associated macrophages; miRNA: MicroRNA; AR: Androgen 
receptor; LATS1: Suppressor kinase 1; TXNIP: Thioredoxin-interacting protein.

migrating, invading, and promoting apoptosis by decreasing the expression of NF-κB[88]. Exosomes released by M2 
macrophages could also prevent HCC. M2 macrophage-derived exosomal miR-92a-2-5p enhanced liver cancer invasion, 
and preclinical research showed that inhibiting miR-92a-2-5p in macrophages could reverse the effect of coculture on AR 
and weaken the invasion of HCC[82]. MiR-21-5p in exosomes derived from M2 macrophages could enter HCC tissue and 
deplete CD8+ T cells, providing new insights into tumor immunotherapy[89]. Another team showed that the levels of 
miR-125a and miR-125b in exosomes secreted by TAMs could inhibit HCC stem cells[90]. Chen et al[91] recently showed 
that IL-2 was an important factor that further regulated TAM-derived exosomal miRNAs to enhance the inhibition of 
cancer progression. Likewise, RBPJ+/+ macrophage-derived exosomes could also suppress neoplasms[92]. Further study 
of the effects of these exosomes in the treatment of liver cancer would provide important value in the search for early 
diagnostic screening markers for patients, which will help in the development of novel schemes for clinical treatment and 
is critical for reducing the burden of HCC patients worldwide.

Other CLD
The range of CLDs is varied; in addition to NAFLD, HF, and HCC, CLDs also include alcoholic fatty liver disease, viral 
liver disease, and immune liver disease. Current research into the role of macrophage-derived exosomes in other liver 
diseases also deserves attention.

Viral hepatitis is a liver disease caused by infection by various hepatitis viruses. The prognosis is generally good, but 
due to inappropriate lifestyles and untimely treatment, some cases progress to more serious liver diseases, such as liver 
failure. Therefore, some studies have explored the relationship between exosomes and viral hepatitis. A study showed 
that macrophage-derived exosomes could spread to hepatocytes and promote IFN-α-induced hepatitis B virus (HBV) 
resistance, and these factors relied on the main pathways of viral invasion[93]. Antiviral molecules can also enter 
hepatocytes through internalized INF-α-treated macrophage-derived exosomes, thereby reducing the replication of HBV
[94]. Similarly, exosomes released from Tlr3-activated macrophages are enriched in many hepatitis C virus (HCV)-
resistant miRNAs, and when these exosomes are taken up by HCV hepatocytes, they can mediate anti-HCV activity by 
inhibiting HCV replication in cells, which suggests a potential treatment for HCV[95]. These studies show that in viral 
liver diseases, exosomes carrying antiviral substances are transmitted from macrophages and absorbed by diseased liver 
cells; thus, these exosomes are therapeutic carriers, indicating a potential novel treatment method for viral hepatitis. In 
ALD, the main causative factor is alcohol intake. Alcohol stimulation increases the expression of miR-155 and increases 
the release of macrophage-derived exosomes by reducing lysosome-associated proteins in the liver, leading to the dysreg-
ulation of lysosomal autophagy[14]. Alcohol exposure can increase the number of miR-27a-rich exosomes produced by 
monocytes, which can polarize primitive monocytes into M2 macrophages[96]. In another study, macrophage-derived 
exosomes were shown to participate in immune regulation in concanavalin A-induced hepatitis[97]. A recent study 
showed that Concanavalin A could promote the release of exosomes from type I macrophages and that these exosomes 
contained the lncRNA H19, which induced apoptosis in autoimmune liver disease cells, suggesting a new avenue for 
developing treatments for autoimmune liver diseases[98]. In summary, research on exosomes in liver diseases has 
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Figure 5 Schematic diagram of the effect of exosomes derived from macrophages on hepatocellular carcinoma. The crosstalk of exosomes 
between macrophages and hepatocellular carcinoma (HCC) affects tumor progression. Both exosomes released by macrophages and HCC have unique intracellular 
components, including a variety of mRNAs, microRNAs, long non-coding RNAs, lipids, etc. These intracellular components are utilized as communicators to induce 
pathways that result in increased or inhibited cell proliferation, invasion, and other hallmarks of malignancy (M0: M0 macrophage; M1: M1 macrophage; M2: M2 
macrophage; miR-92a-2-5p[82]; miR-15b[83]; miR-27a-3p[85]; miR-660-5p[86]; miR-628-5p[87]; miR-326[88]; miR-125a/b[90]). EVs: Extracellular vesicles; HCC: 
Hepatocellular carcinoma; miRNA: MicroRNA; lncRNA: Long non-coding RNA.

increased, which is conducive to exploring new treatments for CLD in the future.

CONCLUSION
The role and potential therapeutic value of exosomes in CLD have been the focus of research in recent years. 
Understanding the mechanism by which macrophage-derived exosomes affect liver diseases is critical for identifying 
their roles in liver disease pathogenesis and improving their therapeutic effects. In liver disease, macrophages can be 
activated and polarized. These activated macrophages secrete exosomes that carry various miRNAs and proteins, and 
these substances are encapsulated in exosomes and transferred from cell to cell. Macrophage-derived exosomes disrupt 
normal signaling between parenchymal and nonparenchymal cells in the liver, ultimately leading to liver damage and 
can act on specific targets to activate or inhibit signaling pathways and mediate related pathological processes. Thus, 
macrophage-derived exosomes are involved in the diagnosis of liver disease as biomarkers, and the signaling targets of 
these exosomes can also be used as potential therapeutic targets, providing more novel strategies for the diagnosis and 
treatment of liver disease. This article reviewed the mechanism and functions of macrophage-derived exosomes in liver 
diseases.

Currently, the link between macrophage-derived exosomes and liver diseases has mostly focused on a subset of liver 
diseases, such as NAFLD, HF, and HCC. However, the occurrence and development of CLDs are complicated processes 
involving multiple causes, stages, and links. In response to viral infection, alcohol intake, a high-fat diet, and drugs, liver 
inflammation and cellular degeneration first occur, which are accompanied by a series of adaptive events in the liver, 
including autophagy, aging, and the innate immune response, but these events can further aggravate liver damage, such 
as the activation of HSCs, leading to the accumulation of extracellular matrix and HF. Without early treatment, HF can 
further develop into cirrhosis, HCC, and even liver failure. Thus, some of the pathological stages of CLD overlap and 
further evolve. However, most current studies have only been conducted in vivo and in vitro, which limits the research 
object to a single liver disease while ignoring the role of macrophage-derived exosomes in the complex pathogenesis of 
CLD. Therefore, it is important to provide new ideas for subsequent studies so that researchers can focus on the role of 
macrophage-derived exosomes in different stages of CLD, which will be valuable to understanding the pathogenesis and 
treatment of many complex liver diseases.

Additionally, it has been found that different stimuli can cause macrophages to polarize into M1 and M2 cells and that 
M2 cells can then further differentiate into many subtypes. However, at present, there is still a lack of research on the 
mechanism by which these different isoforms release exosomes and the released exosome contents, which can be the 
focus of future research. In terms of clinical applications, techniques for extracting and purifying exosomes are 
improving, but determining how to amplify and change these extracted exosomes into a form that can be used in clinical 
settings requires cooperation and communication between different fields to develop a better treatment plan to reduce 
the global burden of CLD.
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In the future, the development of exosomes is expected to shift from basic research to clinical applications. In recent 
years, exosomes have been recognized as potential biological treatments and drug delivery vehicles for the treatment of a 
variety of diseases. Compared with commonly used nanoparticles, macrophage-derived exosomes have the advantages of 
low immunogenicity and escape from macrophage phagocytosis. However, there are still gaps in clinical trials of 
macrophage-derived exosomes for the treatment of CLD. Before clinical translation, we urgently need to confirm which 
exosome components have profound diagnostic and therapeutic value, especially as accurate biomarkers that reflect 
disease status, target membrane segments, and critical cargo involved in the disease process. In addition, these system-
ically delivered exosomes tend to become trapped in nonspecific organs, particularly the liver, lungs, and spleen, 
resulting in inadequate target doses. Surface modifications for targeted delivery may provide an opportunity to enhance 
or expand the innate therapeutic value of exosomes. To improve the stability and delivery efficiency of natural exosomes, 
emerging biological nanotechnology provides a new option for precise material delivery. By designing exosome-like 
nanovesicles and membrane-camouflaging nanoparticles, the loading and delivery efficiency of effective substances of 
natural exosomes can be improved. In future clinical treatment of CLD, exosomes from macrophages can carry key 
effective substances and act as drug carriers after targeted modification or nanotechnology engineering and finally realize 
individualized targeted therapy, making great contributions to relieving the pressure of global liver diseases.
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Abstract
BACKGROUND 
Nonalcoholic fatty liver disease (NAFLD) has become the leading cause of 
cirrhosis and other chronic liver diseases (COCLDs).

AIM 
To conduct a comprehensive and comparable updated analysis of the global, 
regional, and national burden of COCLDs due to NAFLD in 204 countries and 
territories from 1990 and 2019 by age, sex, and sociodemographic index.

METHODS 
Data on COCLDs due to NAFLD were collected from the Global Burden of Disea-
ses, Injuries, and Risk Factors Study 2019. Numbers and age-standardized 
prevalence, death, and disability-adjusted life years (DALYs) were estimated 
through a systematic analysis of modelled data from the Global Burden of 
Diseases, Injuries, and Risk Factors Study 2019. The estimated annual percentage 
change was used to determine the burden trend.

RESULTS 
In 2019, the global age-standardized prevalence rate of COCLDs due to NAFLD 
was 15022.90 per 100000 population [95% uncertainty interval (UI): 13493.19-
16764.24], which increased by 24.51% (22.63% to 26.08%) from 1990, with an 
estimated annual percentage change of 0.78 (95% confidence interval: 0.74-0.82). 
In the same year, however, the age-standardized death rate and age-standardized 
DALYs per 100000 population were 1.66 (95%UI: 1.20-2.17) and 43.69 (95%UI: 
31.28-58.38), respectively. North Africa and the Middle East had the highest 
prevalence rates of COCLDs due to NAFLD. The death rate increased with age up 
to the 95+ age group for both sexes. Males had higher numbers of prevalence, 
death rate, and DALYs than females across all age groups before the 65-69 age 
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group. The sociodemographic index was negatively correlated with the age-standardized DALYs.

CONCLUSION 
Globally, the age-standardized prevalence rate has increased during the past three decades. However, the age-
standardized death rate and age-standardized DALYs decreased. There is geographical variation in the burden of 
COCLDs due to NAFLD. It is strongly recommended to improve the data quality of COCLDs due to NAFLD 
across all countries and regions to facilitate better monitoring of the burden of COCLDs due to NAFLD.

Key Words: Cirrhosis; Nonalcoholic fatty liver disease; Global burden of disease; Prevalence; Disability-adjusted life years; 
Death

©The Author(s) 2023. Published by Baishideng Publishing Group Inc. All rights reserved.

Core Tip: Nonalcoholic fatty liver disease is the leading cause of cirrhosis and other chronic liver diseases. The global age-
standardized prevalence rate of cirrhosis and other chronic liver diseases due to nonalcoholic fatty liver disease increased by 
24.51% from 1990. The age-standardized death rate and age-standardized disability-adjusted life-years rate per 100000 
population were 1.66 and 43.69, respectively. The highest prevalence rate was observed in North Africa and the Middle East. 
Males had a higher burden of prevalence, death, and disability-adjusted life-years lost than females before the 65-69 age 
group. Furthermore, there is a negative correlation between sociodemographic index and age-standardized death rate.

Citation: Liu ZP, Ouyang GQ, Huang GZ, Wei J, Dai L, He SQ, Yuan GD. Global burden of cirrhosis and other chronic liver diseases 
due to nonalcoholic fatty liver disease, 1990-2019. World J Hepatol 2023; 15(11): 1210-1225
URL: https://www.wjgnet.com/1948-5182/full/v15/i11/1210.htm
DOI: https://dx.doi.org/10.4254/wjh.v15.i11.1210

INTRODUCTION
The incidence and prevalence of nonalcoholic fatty liver disease (NAFLD) have been rapidly increasing worldwide over 
the past few decades. Recent estimates suggest that approximately 25% of the world’s population is affected by NAFLD, 
with projections indicating a potential 56% surge in the prevalence of nonalcoholic steatohepatitis (NASH) within the 
coming decade[1]. NAFLD encompasses a spectrum of liver damage, ranging from simple steatosis to NASH, fibrosis, 
cirrhosis, and even hepatocellular carcinoma[2]. It is noteworthy that NAFLD now stands as the fifth leading cause of 
mortality among young adults within the category of metabolic diseases. Alarming forecasts predict a staggering 158.4% 
increase in its death rate by the year 2050[3]. Conversely, another separate study demonstrated divergent trends, finding 
that the age-standardized prevalence rate (ASPR) of NAFLD increased while the age-standardized death rate (ASDR) and 
age-standardized disability-adjusted life-year (DALY) rate (ASDAR) decreased from 1990 to 2019[4].

Cirrhosis is the leading cause of liver-related morbidity, contributing to more than 1 million deaths annually 
worldwide. The mortality increase escalates markedly for individuals grappling with decompensated cirrhosis[5], and the 
deaths from cirrhosis increased by 47.15% globally from 1990 to 2017[6]. Beyond mortality statistics, cirrhosis imposes a 
significant public health burden globally, substantially compromising quality of life[7,8]. The etiologies of cirrhosis 
include alcoholic liver disease, hepatitis B virus, hepatitis C virus, and NAFLD[9,10]. Over the past few decades, 
universal hepatitis B virus vaccination initiatives, coupled with rising obesity rates and the prevalence of type 2 diabetes, 
have positioned NAFLD as a major etiological factor contributing to cirrhosis[11-14].

Chronic liver disease (CLD) is a disease that is characterized by decreased liver function resulting from chronic inflam-
mation or injury to the liver, leading to fibrosis and cirrhosis that progresses for more than 6 mo[15,16]. This spectrum 
encompasses an array of liver pathologies, encompassing inflammation, cirrhosis, portal hypertension, and hepatorenal 
syndrome. Notably, the incidence of CLD is increasing yearly, and it is now the fifth leading cause of death in the United 
Kingdom. In Western regions, NAFLD has become the leading cause of CLD[17]. Today, the United States has nearly 4.5 
million adults afflicted by cirrhosis and CLD, resulting in an overall death toll of 414731[16]. However, no studies have 
focused on the epidemiology of cirrhosis and other CLDs (COCLDs) due to NAFLD across the globe.

In the Global Burden of Diseases, Injuries, and Risk Factors Study (GBD) 2017, it was shown that the incidence of cases 
of liver cirrhosis caused by NASH increased by approximately 105.56%, and the age-standardized incidence rate 
increased by 1.35%. This study only included data from 195 countries, and data on prevalence, death, and DALYs were 
not provided[18]. Furthermore, no updated global studies on COCLDs due to NAFLD have been published since the 2017 
estimates. Using the data from the GBD 2019, we conducted this comprehensive, updated analysis of the global, regional, 
and national levels of prevalence, death rate, and DALYs of COCLDs due to NAFLD with regard to age-standardized 
rates (ASRs) and raw numbers from 1990 to 2019, stratified by sex, age, and sociodemographic index (SDI).

https://www.wjgnet.com/1948-5182/full/v15/i11/1210.htm
https://dx.doi.org/10.4254/wjh.v15.i11.1210
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MATERIALS AND METHODS
Overview
The GBD 2019 was conducted by the Institute of Health Metrics and Evaluation and analyzed approximately 369 diseases 
and injuries, 282 causes of death, and 84 risk factors from 204 countries/territories, 21 regions, and 7 superregions from 
1990 to 2019[19]. Detailed methods for GBD 2019 regarding date inputs, analytical processes, and outputs have been 
described in previous publications[19,20]. Additional information on fatal and nonfatal estimates can be found at https://
vizhub.healthdata.org/gbd-compare/ and http://ghdx.healthdata.org/gbd-results-tool. Our study complied with the 
Guidelines for Accurate and Transparent Health Estimates Reporting statement[21].

Case definition and data sources
NAFLD was defined as a range of liver conditions that mimic alcoholic liver disease but occur in people who drink little 
to no alcohol. It includes nonalcoholic fatty liver (characterized by fat deposition in liver cells), NASH (characterized by 
fat deposition and inflammation), and cirrhosis[19]. Cirrhosis is a CLD in which there is progressive destruction of 
functional hepatic cells and replacement with fibrosis (scarring) of the liver. In GBD 2019, COCLDs due to NAFLD were 
defined as COCLDs that were specifically caused by NAFLD, excluding all other potential etiologies[19]. All the GBD 
data used in this study are publicly available online at the Global Health Data Exchange.

Data processing and disease modelling
The Bayesian meta-regression tool DisMod-MR 2.1 was used to assess and model estimates of the burden of COCLDs due 
to NAFLD by pooling all the available epidemiological data. Prior settings included remission of 0 before the age of 15 
years in the DisMod-MR 2.1 model. No prevalence of COCLDs due to NAFLD before the age of 15 years was assumed. 
The age range was restricted to ≥ 15 years and was divided into 17 5-year age groups.

The estimated annual percentage change (EAPC) values were calculated to reflect the change in ASRs over a specified 
period. EAPC values above or below 0 indicate that the ASR is increasing or decreasing, respectively. If the EAPC range 
includes 0, this means the ASR is stable during this period. ASPR, ASDR, ASDAR, and EAPC were used to quantify 
global trends of COCLDs due to NAFLD.

The SDI was used as a composite indicator of the development status in each country and territory. It was calculated 
based on lag-distributed income, the total fertility rate for individuals younger than 25 years, and average years of 
education in people older than 15 years. SDI ranged from 0 to 1, with a higher score indicating a higher level of 
development. The 204 countries and territories were categorized into five groups: low SDI, low-middle SDI, middle SDI, 
high-middle SDI, and high SDI.

Statistical analyses
Smoothing spline models were employed to examine the shape of the correlation curve between the burden index of 
COCLDs due to NAFLD and SDI according to the GBD estimates across 204 countries and 21 regions from 1990 to 2019. 
The 95% uncertainty intervals (UIs) were defined as the 2.5 to the 97.5 percentile of the ordered draws. R software version 
3.6.3 was used for all statistical analyses and figures. A P value of <  0.05 was considered statistically significant.

RESULTS
Global level
Globally in 2019 there were 1235652879 (95%UI, 1109501987-1378481210) prevalent cases of COCLDs due to NAFLD. 
From 1990 to 2019, the global ASPR increased from 12065.15 (10779.06-13536.49) to 15022.90 (13493.19-16764.24) per 
100000 population, with an EAPC of 0.78 (0.74-0.82) (Table 1, Figure 1). COCLDs due to NAFLD accounted for 134240 
(96483-176920) deaths globally in 2019, which was a substantial increase of 76.73% (61.23%-94.75%) over that in 1990. The 
ASDR of COCLDs due to NAFLD decreased from 1.94 per 100000 population (1.39-2.59 per 100000) in 1990 to 1.66 per 
100000 population (1.20-2.17 per 100000) in 2019, with an EAPC of 0.65 (-3.68-2.48) (Table 1, Supplementary Figure 1). In 
the same year, COCLDs due to NAFLD accounted for 3621471.92 (2585375.27-4862918.36) DALY cases at the global level 
with an ASR of 43.69 per 100000 population. The global ASDAR was reduced from 51.92 per 100000 population (37.23-
69.19 per 100000) in 1990 to 43.69 per 100000 population (95%UI: 31.28-58.38) in 2019, with an EAPC of -0.73 (-1.33 to -
0.13) (Table 1, Supplementary Figure 2).

SDI regions and 21 GBD region levels
The number of prevalence, deaths, and DALYs of COCLDs due to NAFLD increased in all five SDI regions from 1990 to 
2019. Among them, the greatest increases in prevalence (1.54-fold), deaths (0.96-fold), and DALY (0.77-fold) cases were 
observed in low-SDI, middle-SDI, and low-middle-SDI regions, respectively (Figure 2, Supplementary Figure 3). All-age 
prevalence rates of COCLDs due to NAFLD increased across all SDI quintiles, with the most significant increase observed 
in the middle-SDI region (0.65-fold). Outside of the low-SDI quintile, all-age death rates and DALYs showed an 
increasing trend. The ASDR and ASDAR of COCLDs due to NAFLD exhibited a decreasing trend across all five SDI 
quintiles. The low-SDI quintile had the greatest absolute decreases in the ASDR (EAPC = -1.04; -3.48-1.45) and the 
ASDAR (EAPC = -1.14; -1.63 to -0.65). The ASPR of COCLDs due to NAFLD increased in all SDI regions from 1990 to 
2019, with the highest increase observed in the high-SDI region (EAPC = 1.22; 1.17-1.26) (Table 1, Supplemen-

https://vizhub.healthdata.org/gbd-compare/
https://vizhub.healthdata.org/gbd-compare/
http://ghdx.healthdata.org/gbd-results-tool
https://f6publishing.blob.core.windows.net/1864d79c-537b-440a-90c2-672219292083/WJH-15-1210-supplementary-material.pdf
https://f6publishing.blob.core.windows.net/1864d79c-537b-440a-90c2-672219292083/WJH-15-1210-supplementary-material.pdf
https://f6publishing.blob.core.windows.net/1864d79c-537b-440a-90c2-672219292083/WJH-15-1210-supplementary-material.pdf
https://f6publishing.blob.core.windows.net/1864d79c-537b-440a-90c2-672219292083/WJH-15-1210-supplementary-material.pdf
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Table 1 Global burden of cirrhosis and other chronic liver diseases due to nonalcoholic fatty liver disease in 204 countries and territories from 1990 to 2019

Death (95%UI) Prevalence (95%UI) DALYs (95%UI)

2019 2019 1990-2019 2019 2019 1990-2019 2019 2019 1990-2019
Characteristics Death cases among 

COCLDs due to 
NAFLD

ASDR per 100000 
population (95%UI)

EAPC 
(95%CI)

Prevalence cases among 
COCLDs due to NAFLD 

ASPR per 100000 
population (95%UI)

EAPC 
(95%CI)

DALY cases among 
COCLDs due to NAFLD 

ASDAR per 100000 
population (95%UI)

EAPC 
(95%CI)

Global 134240.56 (96483.10-
176920.13)

1.66 (1.20-2.17) -0.65 (-3.68-
2.48)

1235652879.48 (1109501987.09-
1378481210.81)

15022.90 (13493.19-
16764.24)

0.78 (0.74-
0.82)

3621471.92 (2585375.27-
4862918.36)

43.69 (31.28-58.38) -0.73 (-1.33 to 
-0.13)

Sex

Male 72379.97 (51296.70-
98029.91)

1.91 (1.36-2.54) -0.62 (-3.46-
2.31)

679261655.31 (610650033.21-
753716195.72)

16789.38 (15136.45-
18609.47)

0.77 (0.74-
0.81)

2111194.29 (1490236.02-
2905285.80)

52.39 (37.17-71.63) -0.65 (-1.20 to 
-0.10)

Female 61860.58 (44641.50-
81216.17)

1.42 (1.03-1.86) -0.70 (-3.95-
2.66)

556391224.17 (499050879.21-
624989968.22)

13278.47 (11900.05-
14925.95)

0.78 (0.74-
0.82)

1510277.64 (1087564.54-
1984959.30)

35.16 (25.35-46.24) -0.84 (-1.49 to 
-0.18)

SDI

Low SDI 12175.43 (8552.07-
16892.87)

2.41 (1.65-3.38) -1.04 (-3.48-
1.45)

108176159.27 (95419333.67-
122650081.72)

14278.53 (12741.85-
16053.31)

0.34 (0.30-
0.38)

367698.76 (255871.37-
510346.73)

59.56 (41.46-82.97) -1.14 (-1.63 to 
-0.65)

Low-middle SDI 28042.90 (20040.37-
37459.68)

2.09 (1.52-2.77) -0.73 (-3.47-
2.08)

245742808.24 (219055120.10-
276667118.34)

15232.77 (13662.46-
17078.41)

0.56 (0.52-
0.59)

826708.77 (584688.97-
1130359.54)

54.77 (39.14-74.11) -0.86 (-0.31 to 
-1.4)

Middle SDI 51854.16 (37473.84-
68073.39)

2.23 (1.62-2.92) -0.77 (-3.35-
1.88)

464259979.22 (417290788.31-
516020477.89)

17596.41 (15842.14-
19525.24)

0.66 (0.62-
0.69)

1347118.90 (956498.31-
1772557.91)

52.41 (38.16-68.22) -0.98 (-1.52 to 
-0.44)

Middle-high SDI 25074.30 (18164.41-
33237.26)

1.27 (0.93-1.67) -0.75 (-4.08-
2.69)

278080918.57 (251203100.31-
308471139.19)

15336.20 (13798.84-
17095.00)

0.79 (0.75-
0.83)

676567.46 (480709.11-
915257.33)

34.81 (25.11-46.87) -0.52 (-1.16-
0.14)

High SDI 16984.00 (12138.02-
22893.89)

0.95 (0.67-1.30) -0.79 (-4.75-
3.33)

138619942.87 (125499384.96-
153306375.41)

10528.91 (9426.64-
11724.43)

1.22 (1.17-
1.26)

400520.00 (273854.75-
550359.22)

25.46 (17.47-35.02) -0.84 (-1.61 to 
-0.05)

Region

Andean Latin 
America

2935.06 (2012.67-4051.53) 5.31 (3.62-7.30) -0.23 (-1.96-
1.54)

8442278.35 (7603147.20-
9329779.19)

13689.71 (12376.75-
15086.12)

0.50 (0.47-
0.54)

70058.17 (47362.01-
98970.21)

121.70 (82.37-172.61) -0.69 (-1.05 to 
-0.34)

Australasia 413.12 (297.05-538.48) 0.87 (0.63-1.13) -0.22 (-4.56-
4.32)

3459804.59 (3121214.49-
3821041.92)

9444.14 (8455.34-
10478.02)

0.91 (0.86-
0.95)

9514.38 (6661.05-12694.41) 22.52 (15.80-30.52) -0.22 (-1.09-
0.65)

Caribbean 1607.95 (1113.98-2236.69) 3.11(2.15-4.30) -0.71 (-3.01-
1.65)

8176172.43 (7382389.69-
9017056.63)

16169.48 (14591.11-
17866.53)

0.40 (0.37-
0.43)

41576.95 (28066.48-
60045.06)

80.64 (54.52-115.96) -0.75 (-1.21 to 
-0.29)

Central Asia 2633.58 (1802.74-3693.53) 3.56 (2.51-4.95) 2.00 (-0.39-
4.45)

12814865.72 (11452914.10-
14330325.35)

14150.39 (12737.16-
15748.23)

0.50 (0.46-
0.54)

84039.15 (57215.03-
120570.79)

97.76 (67.81-137.00) 1.97 (1.51-
2.43)

-0.36 (-4.12- 18627848.59 (16912570.59- 11894.85 (10754.82- 0.34 (0.30- 54731.91 (36055.44- -0.35 (-1.06-Central Europe 2061.07 (1378.12-2972.76) 1.05 (0.71-1.49) 30.45 (19.95-43.92)
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3.56) 20480313.45) 13109.51) 0.38) 79057.76) 0.37)

Central Latin America 13972.52 (10310.77-
18101.39)

5.90 (4.32-7.66) -0.61 (-2.24-
1.06)

42166216.88 (37817332.61-
46840542.82)

16617.99 (14959.55-
18388.64)

0.43 (0.40-
0.46)

379421.91 (275350.09-
504051.39)

154.08 (112.26-204.63) -0.84 (-1.16 to 
-0.52)

Central Sub-Saharan 
Africa

1464.95 (913.12-2215.29) 2.71 (1.74-4.05) -0.79 (-3.19-
1.67)

11343938.83 (9886866.10-
12995919.12)

13331.21 (11795.46-
15097.36)

0.16 (0.13-
0.20)

47553.59 (29400.33-
74006.26)

70.04 (43.82-106.28) -0.78 (-1.26 to 
-0.30)

East Asia 15620.62 (11027.12-
21039.77)

0.80 (0.58-1.07) -2.35 (-6.22-
1.68)

303112259.13 (272363603.29-
339481359.63)

15680.86 (14022.56-
17552.19)

0.85 (0.81-
0.89)

391872.94 (268774.96-
535743.63)

18.91 (13.28-25.56) -2.71 (-3.50 to 
-1.91)

Eastern Europe 7354.24 (5071.40-
10094.04)

2.41 (1.67-3.30) 3.04 (0.05-
6.12)

34110583.23 (30980982.64-
37557624.89)

12295.07 (11098.49-
13601.74)

0.39 (0.35-
0.42)

245483.77 (166670.25-
344145.21)

85.82 (58.40-120.98) 3.58 (3.06-
4.11)

Eastern Sub-Saharan 
Africa

6094.93 (4211.94-8428.57) 3.98 (2.74-5.49) -0.66 (-2.62-
1.34)

36093305.19 (31609582.82-
41132257.66)

13709.06 (12222.30-
15370.26)

0.29 (0.26-
0.33)

175459.64 (119576.20-
250541.44)

91.96 (62.83-129.95) -0.82 (-1.22-
0.41)

High-income Asia 
Pacific

1462.94 (990.41-2089.17) 0.31 (0.21-0.42) -3.18 (-8.97-
2.97)

20933934.70 (18773194.85-
23278277.91)

7671.66 (6829.94-
8629.15)

0.56 (0.51-
0.61)

26564.50 (18456.53-
35825.79)

7.20 (4.90-9.83) -3.36 (-4.57 to 
-2.14)

High-income North 
America

7014.45 (4867.08-9682.42) 1.20 (0.83-1.63) 0.34 (-3.56-
4.39)

44312078.16 (39693504.66-
49544059.79)

9395.90 (8403.86-
10542.43)

0.98 (0.94-
1.03)

178065.34 (120160.62-
251423.01)

33.23 (22.97-46.98) 0.36 (-0.40-
1.12)

North Africa and 
Middle East

11756.00 (7699.85-
17161.92)

3.18 (2.07-4.60) -0.35 (-2.59-
1.94)

161456578.66 (146407605.69-
177659074.34)

27748.49 (25409.87-
30283.48)

0.47 (0.45-
0.50)

265596.53 (171336.92-
375177.75)

61.14 (39.58-87.12) -0.31 (-0.83-
0.21)

Oceania 87.79 (55.51-129.24) 1.13 (0.77-1.60) -0.17 (-3.94-
3.75)

1744101.91 (1541892.36-
1965419.91)

16869.18 (15133.44-
18726.79)

0.18 (0.15-
0.21)

3194.63 (1975.61-4878.17) 33.00 (20.97-48.54) -0.21 (-0.91-
0.50)

South Asia 17739.51 (12596.43-
24044.26)

1.28 (0.90-1.73) -1.55 (-4.85-
1.87)

241838470.86 (214848138.41-
273682478.00)

14513.87 (12969.20-
16400.60)

0.55 (0.51-
0.58)

546376.19 (385933.87-
757708.62)

34.54 (24.64-47.48) -1.76 (-2.41 to 
-1.11)

Southeast Asia 19624.56 (13971.70-
26356.88)

3.43 (2.46-4.62) -0.23 (-2.40-
1.99)

128065513.81 (114729541.70-
142457456.46)

18299.21 (16508.63-
20309.58)

0.46 (0.42-
0.49)

539043.89 (379432.49-
734864.03)

82.56 (58.82-110.61) -0.58 (-1.01 to 
-0.14)

Southern Latin 
America

1429.48 (982.16-1989.97) 1.73 (1.18-2.41) -0.18 (-3.30-
3.02)

6483740.60 (5831421.14-
7191963.86)

8602.52 (7719.35-
9564.23)

0.90 (0.85-
0.95)

34294.28 (22901.01-
48792.78)

42.86 (28.61-61.04) -0.52 (-1.14-
0.11)

Southern Sub-Saharan 
Africa

888.05 (632.75-1213.53) 1.61 (1.14-2.18) -0.53 (-3.41-
2.44)

13161620.39 (11810250.76-
14681736.21)

18075.91 (16347.92-
19997.66)

0.41 (0.37-
0.44)

26198.48 (18261.46-
36311.83)

40.87 (28.84-55.60) -0.69 (-1.26 to 
-0.12)

Tropical Latin 
America

4447.37 (3232.26-5827.27) 1.84 (1.35-2.40) -0.44 (-3.42-
2.63)

37986300.10 (34231442.55-
41945927.58)

15241.19 (13723.17-
16818.90)

0.49 (0.45-
0.52)

120114.10 (85232.80-
161026.13)

48.00 (34.37-63.83) -0.60 (-1.18 to 
-0.02)

Western Europe 9604.81 (6833.82-
12825.54)

1.09 (0.78-1.46) -1.81 (-5.22-
1.72)

59002155.13 (53307928.02-
65208561.44)

9932.86 (8931.95-
11044.15)

0.80 (0.76-
0.85)

201120.00 (140612.13-
273526.30)

26.97 (18.77-37.08) -2.03 (-2.72 to 
-1.35)

Western Sub-Saharan 
Africa

6027.57 (4018.12-8572.80) 3.31 (2.21-4.67) -0.67 (-2.78-
1.48)

42321112.21 (37193511.05-
48136808.11)

14283.82 (12756.86-
15952.84)

0.22 (0.18-
0.25)

181191.57 (116196.70-
270466.76)

79.06 (51.99-113.80) -0.70 (-1.13 to 
-0.26)

ASDAR: Age-standardized disability-adjusted life-years rate; ASDR: Age-standardized death rate; ASPR: Age-standardized prevalence rate; CI: Confidence interval; COCLD: Cirrhosis and other chronic liver diseases; DALYs: 
Disability-adjusted life-years; EAPC: Estimated annual percentage change; NAFLD: Nonalcoholic fatty liver disease; SDI: Sociodemographic index; UI: Uncertainty interval.
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Figure 1 Global disease burden of cirrhosis and other chronic liver diseases due to nonalcoholic fatty liver disease by countries and 
territories for both sexes combined. A: The age-standardized prevalence rate (ASPR) of cirrhosis and other chronic liver diseases (COCLDs) due to 
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nonalcoholic fatty liver disease (NAFLD) in 2019; B: The percentage change in prevalence cases of COCLDs due to NAFLD between 1990 and 2019; C: The 
estimated annual percentage change of COCLDs due to NAFLD ASPR from 1990 to 2019. EAPC: Estimated annual percentage change.

Figure 2 Cirrhosis and other chronic liver diseases due to nonalcoholic fatty liver disease at the global and regional levels from 1990 to 
2019. A: Prevalence number; B: Death number; C: All-age prevalence rate; D: All-age death rate.

tary Figure 4).
Among the 21 GBD regions, both the highest ASDR and ASDAR were observed in Central Latin America in 2019. Both 

the lowest ASDR and ASDAR were observed in high-income Asia Pacific in 2019 (Supplementary Tables 1 and 2, 
Supplementary Figures 5 and 6). The highest increases in the ASDR (EAPC = 3.04; 0.05-6.12) and ASDAR (EAPC = 3.58; 
3.06-4.11) were found in Eastern Europe, followed by Central Asia and high-income North America. In contrast, high-
income Asia Pacific exhibited the most pronounced decreases in the ASDR (EAPC= -3.18; -8.97-2.97) and ASDAR (EAPC= 
-3.36; -4.57 to -2.14) (Table 1).

The highest ASPR of COCLDs due to NAFLD was found in North Africa and the Middle East regions, followed by 
Southeast Asia and Southern Sub-Saharan Africa (Figure 3, Supplementary Table 3). The highest increase in the ASPR 
was observed in high-income North America, followed by Australasia and Southern Latin America. Central Sub-Saharan 
Africa showed the lowest increases from 1990 to 2019 (Table 1).

National levels
At the national level, the ASPR of COCLDs due to NAFLD ranged from 6680.34 to 34515.88 per 100000 population in 
2019. In that year, Egypt [34515.89 (31796.95-37253.06) per 100000] had the highest ASPR in 2019, followed by Qatar and 
Kuwait. Conversely, Finland, Canada, and Greenland had the lowest ASPR in 2019. The most pronounced changes in 
prevalent cases from 1990 to 2019 were seen in Qatar and Georgia. The largest increase in ASPRs was observed in the 
Republic of Korea [EAPC = 1.08; 95% confidence interval (CI): 1.03-1.13] and Equatorial Guinea between 1990 and 2019. 

https://f6publishing.blob.core.windows.net/1864d79c-537b-440a-90c2-672219292083/WJH-15-1210-supplementary-material.pdf
https://f6publishing.blob.core.windows.net/1864d79c-537b-440a-90c2-672219292083/WJH-15-1210-supplementary-material.pdf
https://f6publishing.blob.core.windows.net/1864d79c-537b-440a-90c2-672219292083/WJH-15-1210-supplementary-material.pdf
https://f6publishing.blob.core.windows.net/1864d79c-537b-440a-90c2-672219292083/WJH-15-1210-supplementary-material.pdf
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Figure 3  Age-standardized prevalence rate for cirrhosis and other chronic liver diseases due to nonalcoholic fatty liver disease by 
region and sex, 2019.

Only Zimbabwe (EAPC = -0.06; 95%CI: -0.10 to -0.03) showed a decreasing trend during this period (Supplemen-
tary Table 4, Figure 1C).

The highest ASDR of COCLDs due to NAFLD was observed in Egypt [14.02 (8.42-22.43)] in 2019, followed by 
Honduras and Guatemala. In contrast, Montenegro, Japan, and Singapore had the lowest ASDRs. Between 1990 and 2019, 
the United Arab Emirates [828.78% (368.37%-1461.06%)] showed the most significant increase in the number of deaths 
caused by COCLDs due to NAFLD, whereas Hungary showed a decrease of 39.94%. The largest increases in the ASDRs 
of COCLDs due to NAFLD were observed in Armenia (EAPC = 4.21; 95%CI: 0.98-7.54) and Kazakhstan (EAPC = 4.11; 
95%CI: 1.33-6.97) from 1990 to 2019. In contrast, 143 countries or territories experienced decreasing trends, with the 
Republic of Korea presenting the largest decrease in ASDR during this period (EAPC = -4.19; 95%CI: -8.84 to -0.70) (
Supplementary Table 5, Supplementary Figure 2).

The highest ASDAR of COCLDs due to NAFLD was observed in Guatemala [258.61 (170.42-329.98)] in 2019, followed 
by Honduras and Egypt. In contrast, Montenegro, Japan, and Singapore had the lowest ASDAR. Between 1990 and 2019, 
the United Arab Emirates [905.78% (402.13%-1627.41%)] showed the most significant increase in the number of DALYs 
from COCLDs due to NAFLD, whereas Hungary exhibited a decrease of 49.82% (-61.59% to -35.81%). The countries with 
the largest increases in ASDR during this period were Kazakhstan (EAPC = 4.02; 95%UI: 3.50-4.55) and Belarus. In 
contrast, the Republic of Korea experienced the largest decrease in ASDR, with the greatest reduction in ASDAR over the 
same period (Supplementary Table 6, Supplementary Figure 3).

Age and sex patterns
Globally, the prevalent number of COCLDs due to NAFLD exhibited an age-dependent pattern, reaching its peak at 45-49 
years for males and 50-54 years for females. There was a declining trend in prevalence as age increased 
(Supplementary Figure 7). Similarly, the disease prevalence rate showed increasing and then decreasing trends with age 
in both sexes, with the highest prevalence rate observed in people aged 70-74 years, decreasing after this age group.

Globally, mortality rates increased with age and peaked at 65-69 years for males and 70-74 years for females before 
declining. The mortality rate steadily increased with age up to the 95+ age group for both sexes in 2019 (Figure 4). In the 
same year, the 50-54 age group for males and the 60-64 age group for females had the highest number of DALY cases, 
which decreased as age increased. The rate of DALYs peaked in the 80-84 age group, decreased in the 85-94 age group, 
and subsequently increased in the 95+ age group (Supplementary Figure 8). Among individuals under 70 years old, the 
numbers of prevalent cases, deaths, and DALYs lost was higher among males than females. However, among those aged 
70 years and older, all three numbers were lower among males than among females (Figure 4, Supplemen-
tary Figures 7 and 8).

https://f6publishing.blob.core.windows.net/1864d79c-537b-440a-90c2-672219292083/WJH-15-1210-supplementary-material.pdf
https://f6publishing.blob.core.windows.net/1864d79c-537b-440a-90c2-672219292083/WJH-15-1210-supplementary-material.pdf
https://f6publishing.blob.core.windows.net/1864d79c-537b-440a-90c2-672219292083/WJH-15-1210-supplementary-material.pdf
https://f6publishing.blob.core.windows.net/1864d79c-537b-440a-90c2-672219292083/WJH-15-1210-supplementary-material.pdf
https://f6publishing.blob.core.windows.net/1864d79c-537b-440a-90c2-672219292083/WJH-15-1210-supplementary-material.pdf
https://f6publishing.blob.core.windows.net/1864d79c-537b-440a-90c2-672219292083/WJH-15-1210-supplementary-material.pdf
http://
https://f6publishing.blob.core.windows.net/1864d79c-537b-440a-90c2-672219292083/WJH-15-1210-supplementary-material.pdf
https://f6publishing.blob.core.windows.net/1864d79c-537b-440a-90c2-672219292083/WJH-15-1210-supplementary-material.pdf
https://f6publishing.blob.core.windows.net/1864d79c-537b-440a-90c2-672219292083/WJH-15-1210-supplementary-material.pdf
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Figure 4  All-age numbers and rates of deaths for cirrhosis and other chronic liver diseases due to nonalcoholic fatty liver disease in 
2019 are illustrated by sex for females and males.

Burden of COCLDs due to NAFLD by SDI
From 1990 to 2019, there was generally a negative correlation between SDI and global and regional ASDARs of COCLDs 
due to NAFLD. Globally, the observed burden of COCLDs due to NAFLD was lower than expected. In most regions, 
higher SDI values were associated with decreased ASDAR, except in Central Asia, high-income North America, and 
Eastern Europe, which showed an increasing trend during the study period. At the regional level, the observed burden of 
ASDAR of COCLDs due to NAFLD in Central Latin America, Andean Latin America, Eastern Sub-Saharan Africa, 
Western Sub-Saharan Africa, Southeast Asia, and Western Europe was found to be higher than the expected level based 
on the SDI from 1990 to 2019 (Figure 5). The link between the SDI and ASDR of COCLDs due to NAFLD had a similar 
pattern from 1990 to 2019 (Supplementary Figure 9). The predicted relationship between SDI and ASPR of COCLDs due 
to NAFLD exhibited an initial increasing trend, followed by a decreasing trend at an SDI value of 0.58 (Supplemen-
tary Figure 10).

At the national level, the ASDAR of COCLDs due to NAFLD in 2019 generally displayed a negative correlation with 
SDI. In numerous countries/territories, including Egypt, Guatemala, Honduras, and Mexico, the ASDAR was higher than 
the expected level based on SDI in 2019; conversely, in countries such as the Maldives, Bangladesh, Papua New Guinea, 
and Mozambique, the burden was lower than expected (Figure 6). Negative correlations between the national-level ASDR 
and ASPR of COCLDs due to NAFLD and SDI in 2019 were also found (Supplementary Figures 11 and 12).

DISCUSSION
This study comprehensively described the trends and patterns in prevalence, DALYs, and deaths caused by COCLDs due 
to NAFLD at the global, regional, and national levels over the past three decades. Globally, there were an estimated 
123.56 million prevalent cases, 0.13 million deaths, and 3.62 million DALYs lost in 2019. Our findings indicated a 
substantial increase in the number of all-age deaths, prevalent cases, and DALYs. The global prevalence and ASPR of 
COCLDs due to NAFLD both showed increasing trends from 1990 to 2019. Although the ASDR and ASDAR of COCLDs 
due to NAFLD decreased between 1990 and 2019, the total number of deaths and DALYs experienced an increasing 
trend, which can be partly explained by population growth, longer life expectancy, and higher prevalence in older age 
groups. COCLDs due to NAFLD are an increasing threat to our population and place a strain on valuable health 
resources. As there is currently no effective treatment for NAFLD, this trend is likely to continue, driven by its increasing 
prevalence.

To highlight the vital role of metabolic dysfunction in the pathogenesis of fatty liver disease, the Asian Pacific 
Association for the study of the Liver proposed that NAFLD be renamed metabolic- or metabolic dysfunction-associated 
fatty liver disease (MAFLD) in 2020[22,23]. However, there exist slight discrepancies in the definitions of MAFLD and 

https://f6publishing.blob.core.windows.net/1864d79c-537b-440a-90c2-672219292083/WJH-15-1210-supplementary-material.pdf
http://
http://
https://f6publishing.blob.core.windows.net/1864d79c-537b-440a-90c2-672219292083/WJH-15-1210-supplementary-material.pdf
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Figure 5 Age-standardized disability-adjusted life years rate of cirrhosis and other chronic liver diseases due to nonalcoholic fatty liver 
disease by sociodemographic index globally and in 21 regions, 1990-2019. SDI: Sociodemographic index; DALYs: Disability-adjusted life years.

Figure 6 Age-standardized disability-adjusted life years rate of cirrhosis and other chronic liver diseases due to nonalcoholic fatty liver 
disease by sociodemographic index in 204 countries and territories, 2019. DALYs: Disability-adjusted life years; SDI: Sociodemographic index.

NAFLD among different populations. The key distinctions between NAFLD and MAFLD lie in the requirement for 
NAFLD to exclude alcohol consumption and other risk factors, such as chronic viral hepatitis, whereas the MAFLD 
diagnosis focuses on detecting fatty liver in conjunction with metabolic risk factors, without necessitating the exclusion of 
other liver disorders[24]. In addition, GBD 2019 only estimated the burden of COCLDs due to NAFLD, and the MAFLD 
burden was not estimated. Therefore, in this study, we focused on the burden of COCLDs due to NAFLD.
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NAFLD is closely associated with overweight and obesity, affecting an estimated 25% of the general adult population. 
Obesity significantly elevates the risk of NAFLD development. In a previous study, obesity was found in approximately 
81% of patients with NASH and 50% of patients with NAFLD[25]. Lifestyle modifications and bariatric surgery have 
significantly improved NAFLD activity scores[26,27]. Earlier epidemiological investigations projected that the worldwide 
count of obese or overweight individuals surpassed 2.1 billion, constituting a pervasive global health concern[28]. For 
2019, we identified the prevalent count of COCLDs attributed to NAFLD as 1.2 billion individuals, which was slightly 
less than the number of obese individuals.

Interestingly, reports indicate that around 20% of Asian individuals diagnosed with NAFLD have body mass index 
and waist circumference measurements falling within the range designated as lean, despite the prevailing association of 
NAFLD with overweight or obesity[29]. Notably, regions with higher incomes, such as the United States, France, and 
Japan, tend to exhibit an elevated prevalence of lean MAFLD[30]. However, certain developing countries, such as India 
and Sri Lanka, have an even higher prevalence rate of lean MAFLD, which may be attributed to racial and dietary factors. 
United States-based studies also indicate that people with ancestry from Latin America have a higher prevalence rate of 
lean MAFLD, whereas African Americans have a lower prevalence rate. The suggested racial and ethnic variations are 
important risk factors for the prevalence of lean MAFLD[30,31]. In addition, lean MAFLD patients have worse long-term 
outcomes than healthy people and have a similar prognosis to overweight or obese MAFLD patients. Therefore, more 
attention should be focused on normal-weight MAFLD patients, and a 3%-5% weight reduction and improvement in diet 
quality are strongly recommended to improve lean MAFLD[30]. Beyond body weight, additional factors such as diabetes, 
ethnic disparities, and genetic variations could also contribute to the prevalence and outcomes of lean NAFLD[32]. Given 
the ongoing global epidemic of obesity and diabetes, the burden of COCLDs attributed to NAFLD is expected to rise in 
the coming years.

According to previous research, the number of deaths due to cirrhosis caused by NAFLD/NASH was 102615 in 2012 
and 118030 in 2017. The annual percent change in the ASDR of cirrhosis due to NAFLD/NASH from 2012 to 2019 was 
0.29[33]. In contrast, our study found that the EAPC of the ASDR of COCLDs due to NAFLD was -0.65 from 1990 to 2019, 
indicating a decreasing trend. This variation in findings can be ascribed to disparities in the time frames of participant 
enrolment: Our study encompassed data from 1990 to 2019, while the study by Paik et al[33] included data from 2012 to 
2017. Notably, we also calculated the EAPC of the ASDR of COCLDs due to NAFLD from 2012 to 2019 and found a 
decreasing trend with a value of -0.05. This indicates that there may have been a decreasing trend from 2017 to 2019.

The global upsurge in type 2 diabetes and obesity has raised the prevalence of NAFLD in both developed and 
developing nations[4]. Our study found that the highest ASPRs of COCLDs due to NAFLD were in some developing 
regions, such as North Africa, the Middle East regions, and Southeast Asia, and in specific countries such as Egypt, Qatar, 
and Kuwait. Previous research reported an NAFLD prevalence of 42.04% in South Asia and 31.79% in the Middle East, 
which is consistent with our finding that these regions had the highest prevalence rates[25,34].

According to previous research, approximately half of the global burden of liver complications associated with NAFLD 
is concentrated in the Middle East, North Africa, and Asia[35]. The escalated prevalence in these geographical areas can 
be attributed to intricate interplays of lifestyle choices, economic conditions, and ethnic factors. The tandem epidemics of 
obesity and NAFLD are predominantly propelled by unhealthy dietary practices and sedentary habits characterized by 
consumption of calorie-dense foods and insufficient physical activity[34]. Studies have indicated that Middle East and 
North African countries have a high prevalence of overweight and obesity, with more than 30% of females and more than 
20% of males being obese in most countries in the region. This trend is attributed to unhealthy diets and the lowest levels 
of physical activity worldwide[36]. Concurrently, the Middle East and North Africa register the highest prevalence rates 
of cirrhosis of the liver attributable to NAFLD. This underscores the critical need for effective interventions aimed at 
mitigating the escalating prevalence of obesity and diabetes to ameliorate the burden of COCLDs attributed to NAFLD
[37].

According to our study, the prevalence, deaths, and DALYs lost due to COCLDs stemming from NAFLD were higher 
in males than in females across all age groups before the age of 65-69 years. Similarly, the rates of these occurrences were 
comparable when compared with their female counterparts across all age groups. This sex disparity is consistent with 
previous research demonstrating that from 1990 to 2017, the burden of cirrhosis in males was universally higher in males 
than in females[38]. Hormonal factors could underlie this pattern, where estrogen, acting as an antioxidant, mitigates the 
activity of stellate cells and the advancement of liver fibrosis[39]. After menopause, women lose the protective effect of 
estrogen[40], and physiological changes associated with hypoestrogenism, such as insulin resistance, dysglycemia, 
dyslipidemia, and visceral fat accumulation, may be associated with the higher prevalence of COCLDs due to NAFLD in 
postmenopausal women[41,42]. This may partly elucidate the higher prevalence in males older than 70 years in our 
study.

We found that the number of prevalent cases, deaths, and DALYs lost due to COCLDs due to NAFLD was the highest 
among middle-aged groups (approximately 45-69 years). Within this range, the 75-79 age group presented the highest 
prevalence rate, while the 95+ age group exhibited the highest mortality rate. The underlying reasons for these findings 
are multifactorial. One potential explanation involves the metabolic alterations that transpire in older age groups[43]. 
Another possible reason is the natural history of liver cirrhosis, which is characterized by a compensated phase that lasts 
significantly longer than the rapidly progressive decompensated phase, with a median survival time of more than 12 
years. A large proportion of patients with cirrhosis die after transitioning from the compensated phase to the 
decompensated phase[5]. Given this context, the imperative need for accurate, noninvasive methodologies to enable early 
identification of COCLDs stemming from NAFLD becomes evident.

We found a negative correlation between the SDI and the ASDAR of COCLDs due to NAFLD in the 21 GBD regions 
from 1990 to 2019 and in 204 countries in 2019. Generally, regions with higher SDI had a lower burden of cirrhosis due to 
NAFLD, which may be attributed to accessible high-quality health care and enough safe spaces to exercise[44,45]. 
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Conversely, low-SDI and low-middle-SDI regions tended to bear a higher burden. The Sub-Saharan African region 
showed a high ASDAR of COCLDs due to NAFLD in 2019. Some regions such as Western Sub-Saharan Africa, Southeast 
Asia, Central Latin America, Andean Latin America, and Eastern Sub-Saharan Africa, as well as some countries and 
territories, such as Egypt, Honduras, and Guatemala, had burdens higher than expected based on their SDIs, indicating 
that these regions and countries should receive more investment and public health programs.

The escalating prominence of COCLDs emanating from NAFLD has positioned it as a preeminent public health 
challenge. Notably, an absence of effective pharmaceutical interventions to fully eradicate NAFLD persists. 
Consequently, interventions targeting weight loss could be efficacious and cost-effective strategies to avert the 
progression of NAFLD to COCLDs. In addition, exercise interventions without significant weight loss have also had a 
beneficial effect on alleviating NAFLD[46]. Thus, it is imperative to emphasize the critical role of weight management and 
exercise within public health programs. Furthermore, an enhancement of noninvasive diagnostic methods and the 
development of effective treatment strategies will be pivotal in alleviating the burden of COCLDs stemming from 
NAFLD. Importantly, public awareness regarding NAFLD and its associated complications remains inadequate. A 
concerted effort to raise population awareness about the implications of NAFLD is paramount.

In this study, we pioneered a comprehensive analysis of the relative burden of COCLDs attributed to NAFLD on 
global, regional, and national scales spanning the period from 1990 to 2019. Nevertheless, several limitations warrant 
consideration. First, the data from GBD 2019 have the general limitations of the GBD approach that have been described. 
The GBD estimates depended on robust statistical methods and trends from neighboring countries to overcome data 
scarcity and low data quality in some countries. Second, liver biopsy remains the gold-standard diagnostic test for 
patients with COCLDs due to NAFLD, but its poor acceptability during compensation and sampling variability may lead 
to misdiagnosis and underdiagnosis[47]. A dearth of diagnostic techniques may cause an underestimation of COCLDs 
due to NAFLD, which may be more severe in regions with low SDIs. Third, patients admitted to hospitals mostly had 
decompensated cirrhosis. Therefore, the number of compensated cirrhosis cases may be underestimated. The underre-
porting of cirrhosis can bias the estimates. Fourth, GBD 2019 failed to adopt the new term MAFLD to replace NAFLD. 
NAFLD was defined only after the exclusion of other causes of hepatic steatosis, and there is an unclear differentiation 
between NAFLD and alcoholic liver disease owing to different adjustments for alcohol use. Finally, the exclusion of 
patients with cirrhosis with hepatocellular carcinoma from our study could result in an underestimation of the true 
mortality rate among individuals with liver cirrhosis due to NAFLD.

CONCLUSION
This study described the burden of COCLDs due to NAFLD in 204 countries and territories from 1990 to 2019 by age, sex, 
and SDI. COCLDs due to NAFLD are becoming a significant global public health concern. Over the past three decades, 
there has been a notable increase in the ASPR, while the ASDR and ASDAR have exhibited downward trends. Notably, 
substantial geographic disparities exist in the burden of COCLDs due to NAFLD, with the highest prevalence rates 
observed in North Africa and the Middle East. In 2019, males had a higher burden of prevalence, deaths, and DALYs lost 
than females before the 65-69 age group. Furthermore, there is a negative correlation between SDI values and ASDAR. 
We hope this study raises public awareness of COCLDs due to NAFLD and broadcasts the need for more effective 
prevention strategies to minimize the future health care burden.

ARTICLE HIGHLIGHTS
Research background
The incidence and prevalence of nonalcoholic fatty liver disease (NAFLD) have been rapidly increasing worldwide over 
the past few decades, leading to cirrhosis and other chronic liver diseases (COCLDs). Cirrhosis is the leading cause of 
liver-related morbidity and contributes to more than 1 million deaths annually worldwide. NAFLD has become the 
leading cause of COCLDs.

Research motivation
A previous study reported the burden of liver cirrhosis caused by nonalcoholic steatohepatitis. However, no studies have 
focused on the epidemiology of COCLDs due to NAFLD across the globe.

Research objectives
We conducted a comprehensive and comparable updated analysis of the global, regional, and national levels of 
prevalence, death, and disability-adjusted life-years (DALYs) of COCLDs due to NAFLD in regards to age-standardized 
rates and numbers from 1990 to 2019, stratified by sex, age, and sociodemographic index.

Research methods
Data on COCLDs due to NAFLD were collected from the Global Burden of Diseases, Injuries, and Risk Factors Study 
2019. Numbers and age-standardized prevalence, death, and DALYs were estimated through a systematic analysis of 
modeled data from the Global Burden of Diseases, Injuries, and Risk Factors Study 2019. Estimated annual percentage 
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change was used to determine the burden trend.

Research results
We found that the global age-standardized prevalence rate of COCLDs due to NAFLD was 15022.90 per 100000 
population in 2019, with an estimated annual percentage change of 0.78. The age-standardized death rate and age-
standardized DALYs rate per 100000 population were 1.66 and 43.69 in 2019, respectively. The highest prevalence rate 
was observed in North Africa and the Middle East. The numbers of prevalent cases, deaths, and DALYs cases of COCLDs 
due to NAFLD were higher in males than in females across all age groups before the age of 65-69 years. There was a 
negative correlation between sociodemographic index and age-standardized DALYs rate.

Research conclusions
COCLDs due to NAFLD have emerged as a large and growing public health burden worldwide. Globally, the ASPR has 
increased during the past three decades, whereas the ASDR and age-standardized DALY rate have decreased. There is 
geographical variation in the burden of COCLDs due to NAFLD. It is strongly recommended to improve the quality of 
COCLDs due to NAFLD health data across all countries and regions to facilitate better monitoring of the burden of 
COCLDs due to NAFLD.

Research perspectives
We believe that the findings of this study will provide insight into the global disease burden of COCLDs due to NAFLD 
and assist policymakers in formulating effective policies to mitigate modifiable risk factors.
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Abstract
BACKGROUND 
Rifaximin is frequently administered to critically ill patients with liver disease and 
hepatic encephalopathy, but patients currently or recently treated with antibiotics 
were frequently excluded from studies of rifaximin efficacy. Due to overlapping 
spectrums of activity, combination therapy with broad-spectrum antibiotics and 
rifaximin may be unnecessary. A pharmacist-driven protocol was piloted to 
reduce potentially overlapping therapy in critically ill patients with liver disease. 
It was hypothesized that withholding rifaximin during broad-spectrum antibiotic 
therapy would be safe and reduce healthcare costs.

AIM 
To determine the clinical, safety, and financial impact of discontinuing rifaximin 
during broad-spectrum antibiotic therapy in critically ill liver patients.

METHODS 
This was a single-center, quasi-experimental, pre-post study based on a pilot 
pharmacist-driven protocol. Patients in the protocol group were prospectively 
identified via the medical intensive care unit (ICU) (MICU) protocol to have 
rifaximin withheld during broad-spectrum antibiotic treatment. These were 
compared to a historical cohort who received combination therapy with broad-
spectrum antibiotics and rifaximin. All data were collected retrospectively. The 
primary outcome was days alive and free of delirium and coma (DAFD) to 14 d. 

https://www.f6publishing.com
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Safety outcomes included MICU length of stay, 48-h change in vasopressor dose, and ICU mortality. Secondary 
outcomes characterized rifaximin cost savings and protocol adherence. Multivariable analysis was utilized to 
evaluate the association between group assignment and the primary outcome while controlling for potential 
confounding factors.

RESULTS 
Each group included 32 patients. The median number of delirium- and coma-free days was similar in the control 
and protocol groups [3 interquartile range (IQR 0, 8) vs 2 (IQR 0, 9.5), P = 0.93]. In multivariable analysis, group 
assignment was not associated with a reduced ratio of days alive and free of delirium or coma at 14 d. The protocol 
resulted in a reduced median duration of rifaximin use during broad-spectrum antibiotic therapy [6 d control (IQR 
3, 9.5) vs 1 d protocol (IQR 0, 1); P < 0.001]. Rates of other secondary clinical and safety outcomes were similar 
including ICU mortality and 48-h change in vasopressor requirements. Overall adherence to the protocol was 
91.4%. The median estimated total cost of rifaximin therapy per patient was reduced from $758.40 (IQR $379.20, 
$1200.80) to $126.40 (IQR $0, $126.40), P < 0.01.

CONCLUSION 
The novel pharmacist-driven protocol for rifaximin discontinuation was associated with significant cost savings 
and no differences in safety outcomes including DAFD.

Key Words: Rifaximin; Hepatic encephalopathy; Critical illness; Antibiotics; Liver disease; Cirrhosis

©The Author(s) 2023. Published by Baishideng Publishing Group Inc. All rights reserved.

Core Tip: Critically ill patients with liver disease receiving broad-spectrum antibiotic therapy have been frequently excluded 
from clinical trials of rifaximin efficacy. Therefore, despite overlapping spectrums of antibacterial activity, it is not known if 
rifaximin provides additional clinical benefit in these patients. In this study, pharmacist-guided rifaximin discontinuation 
during broad-spectrum antibiotic therapy resulted in significant cost savings and was not associated with negative short-term 
cognitive effects or adverse events.

Citation: Ward JA, Yerke J, Lumpkin M, Kapoor A, Lindenmeyer CC, Bass S. Evaluation of a protocol for rifaximin discontinuation 
in critically ill patients with liver disease receiving broad-spectrum antibiotic therapy. World J Hepatol 2023; 15(11): 1226-1236
URL: https://www.wjgnet.com/1948-5182/full/v15/i11/1226.htm
DOI: https://dx.doi.org/10.4254/wjh.v15.i11.1226

INTRODUCTION
Hepatic encephalopathy (HE) encompasses a spectrum of neurocognitive alterations in patients with liver dysfunction 
and/or porto-systemic shunting, and is associated with symptoms that range in severity from minimal neuropsychiatric 
manifestations to cerebral edema and coma in the most severe cases[1,2]. The pathogenesis of HE has not been fully 
elucidated and is likely multifactorial. Ammonia has been implicated as a contributing factor to the development of HE 
due to its association with direct neurotoxicity mediated by astrocyte swelling and modification of glutamine and 
gamma-amino-n-butyric acid systems[3]. Rifaximin is an oral, non-absorbable rifamycin derivative with antibiotic activity 
against ammonia-producing gram-positive, gram-negative, and anaerobic species[4,5]. Long-term rifaximin use is 
associated with clinically important reductions in infections, hospital re-admissions, durations of hospital stays, and overt 
HE recurrence[6-8]. The exact mechanism by which rifaximin exerts benefit remains unclear[9]. Previous hypotheses 
focused on the control of ammonia-producing enteric bacteria via antibiotic activity[10,11]. However, a growing body of 
evidence depicts increasingly understood mechanisms of rifaximin activity including decreased circulating endotoxin 
burden, decreased microbiota-derived systemic inflammation, and improvement in cirrhosis-related dysbiosis which 
suggests the presence of multi-factorial benefits of rifaximin in the pathobiology of cirrhosis[12]. Rifaximin is 
recommended by the American Association for the Study of Liver Diseases (AASLD) as adjunctive therapy for the 
prevention of overt HE recurrence (grade I, A, 1)[13]. Similarly, the European Association for the Study of the Liver 
(EASL) recommends rifaximin as an adjunct to lactulose as secondary prophylaxis following ≥ 1 additional episodes of 
overt HE within 6 mo of the first episode (LoE 2, strong)[14]. Use of rifaximin for the treatment of HE is not recom-
mended in these guidelines; however, efficacy has been demonstrated in randomized controlled trials and use is common 
in clinical practice[15-18].

Patients receiving or recently treated with antibiotics were frequently excluded from these trials[15-17]. These studies, 
which included patients with both acute and chronic HE, excluded cases with precipitants or recent medication exposures 
which could interfere with HE or therapeutic effect monitoring. Infection is a frequent precipitant of overt HE in critically 
ill patients, the treatment of which commonly relies on broad-spectrum antibiotics[19]. In many cases of infection, 
patients also receive rifaximin either as a continuation of home therapy or newly initiated treatment. Because these 
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patients are infrequently studied, it remains unclear if rifaximin provides additional therapeutic benefit when combined 
with broad-spectrum antibiotics.

In 2018, Cleveland Clinic established the medical intensive liver unit (MILU), a specialty unit of the MICU supported 
by a multidisciplinary team including intensivists, hepatologists, and critical care clinical pharmacy specialists caring for 
patients with a variety of hepatic pathologies. Many patients admitted to the MILU are initiated on broad-spectrum 
antibiotics for empiric or targeted therapy for infections in addition to HE treatment with rifaximin. A pharmacist-driven 
pilot protocol was implemented to reduce potentially overlapping therapy through the discontinuation of rifaximin 
during broad-spectrum antibiotic treatment. Pharmacists were also responsible for the coordination of rifaximin re-
initiation following antibiotic therapy narrowing or discontinuation. This study aimed to evaluate the impact of this 
protocol on clinical, safety, and financial outcomes.

MATERIALS AND METHODS
Study design
This was an Institutional Review Board-approved, quasi-experimental, pre-post study conducted at a large quaternary 
academic medical and liver transplant center in the United States. The pharmacist-driven protocol for rifaximin discon-
tinuation was implemented beginning August 1, 2020. Adult patients in the medical intensive care unit (ICU) (MICU) 
were prospectively screened by clinical pharmacy specialists and eligible for the protocol if they had orders for rifaximin 
and a qualifying antibiotic regimen (Table 1). Discontinuation of rifaximin was recommended and recorded by the 
pharmacist and research team. Duration of antibiotic therapy was tracked and reviewed daily by a small group of critical 
care clinical pharmacy specialists to ensure re-initiation of rifaximin upon antibiotic narrowing or discontinuation. Before 
implementation, education was provided to all pharmacists who would manage or verify orders for MICU patients to 
reduce time to rifaximin discontinuation for patients admitted to the MICU during evenings and weekends. Physician 
leadership and medical teams were also involved in education about the protocol and its implementation.

Patient selection
Patients[3] 18 years old were eligible for study inclusion if they received at least 3 d of broad-spectrum antibiotics and 
had an order for rifaximin during MICU admission. Additional inclusion criteria for the control group were: (1) 
Admission to the MICU between August 1 and October 31, 2019 and (2) rifaximin therapy for ≥ 3 d or 75% of the 
antibiotic treatment duration during MICU admission, whichever was longer. In the protocol group inclusion criteria 
were (1) admission to the MICU between August 1, 2020 and January 31, 2021; and (2) ≥ 3 d of broad-spectrum antibiotics 
without rifaximin and concomitant rifaximin for ≤ 25% of the antibiotic duration during MICU admission. Any patient 
with a positive test for severe acute respiratory syndrome coronavirus 2 during admission was excluded.

Outcomes
The primary outcome was days alive and free of delirium and coma (DAFD) to day 14. Secondary outcomes were days 
alive and free of delirium to day 14, days alive and free of coma to day 14, ICU length of stay, ICU mortality, time to first 
extubation, rate of reintubation, days of combination therapy during MICU admission, rate of protocol adherence, time to 
rifaximin discontinuation in the protocol group, and the per-patient cost of rifaximin therapy during the follow-up 
period. The cost of rifaximin therapy was calculated using the average wholesaler price as of January 2023 to reflect the 
increase in rifaximin cost since initial protocol implementation[20]. The minimum cost of rifaximin was calculated based 
on one tablet given (control) or saved (protocol) per day of therapy while the maximum cost assumed two tablets given 
or saved per day. Changes in vasopressor requirements and Glasgow Coma Score (GCS) during the first 48 h of MICU 
combination therapy or withholding rifaximin were evaluated as additional safety measures.

Study definitions
Day one for the 14-d study period was defined as the first day during MICU admission on which patients received broad-
spectrum antibiotics and rifaximin (control group) or broad-spectrum antibiotics without rifaximin (protocol group). 
Broad-spectrum antibiotic regimens were defined as providing gram-positive, gram-negative, and anaerobic coverage 
(Table 1). A day of therapy was defined as a 24-h period from midnight to 11:59 pm during which at least one-half of the 
scheduled doses of rifaximin and/or broad-spectrum antibiotics were received. Days were considered delirium-free if 
patients were alive and without a positive confusion assessment method for the ICU (CAM-ICU) assessment during the 
24-h period and coma-free if patients were alive and with zero hours spent with a Richmond Agitation Sedation Scale 
(RASS) score of -4 or -5 or with GCS of 3 during the 24-h period. Days of mechanical ventilation were defined as the use 
of positive pressure ventilation during any one hour of the 24-h period from midnight to 11:59 pm for use in the 
multivariable model. All admission days in non-ICUs during which the patient was alive were considered to be free of 
delirium as brief CAM (bCAM) and West-Haven grades (WHG) were not routinely recorded. Protocol adherence was 
defined as the discontinuation of rifaximin occurring within 72-h of protocol-defined broad-spectrum antibiotic therapy 
initiation. All vasopressor doses were converted to norepinephrine equivalents according to the following equation: 
[norepinephrine (mcg/min) + (epinephrine (mcg/min)] + [(dopamine (mcg/kg/min) ÷ 2] + [(phenylephrine (mcg/min) 
÷ 10] + [vasopressin (units/hour) × 8.33][21,22]. Sedative agents included propofol, dexmedetomidine, ketamine, 
lorazepam, or midazolam when administered as a continuous infusion. Ileus was defined as > 48 h with zero bowel 
movements or fecal management system output recorded. Orders for octreotide continuous infusions were used as a 
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Table 1 Protocol-defined broad-spectrum antibiotic regimens

Monotherapy Gram-positive/negative Gram-positive Gram-negative Anaerobic

Ampicillin-sulbactam Cefazolin Vancomycin Aminoglycosides Metronidazole

Amoxicillin-clavulanate Cephalexin Linezolid Polymyxin B and colistin Clindamycin

Piperacillin-tazobactam Cefuroxime Daptomycin Aztreonam

Cefoxitin Cefdinir Quinupristin-dalfopristin Cefiderocol

Meropenem +/- vaborbactam Cefixime Rifampin

Imipinem-cilastatin +/- 
relebactam 

Ceftazidime +/- avibactam Rifabutin

Ertapenem Ceftriaxone Penicillins

Tigecycline Cefepime

Eravacycline Ceftaroline

Ceftolozane-tazobactam

Ciprofloxacin

Levofloxacin

Doxycycline

Sulfamethoxazole-trimethoprim

Broad-spectrum antibiotic therapy is defined as: (1) Any agent from “Monotherapy”; (2) one agent from each of “Gram-positive/negative” and 
“Anaerobic”; (3) one agent from each of “Gram-positive,” “Gram-negative,” and “Anaerobic.”

surrogate to identify episodes of gastrointestinal bleeding according to routine institutional practice. Occurrences of 
Clostridioides difficile infection were recorded if the patient had either a positive polymerase chain reaction or enzyme-
linked immunosorbent assay test.

Statistical analyses
Continuous data were assessed for normality by the Shapiro-Wilk test. Parametric continuous data are reported as mean 
± SD and were analyzed using a two-sample t-test. Non-parametric continuous data are reported as median (IQR) and 
were analyzed using the Wilcoxon rank-sum test. Categorical data are presented as number (%) and were analyzed by 
chi-squared or Fisher’s exact tests, based on sample size. The primary outcome of DAFD was compared using a one-sided 
Wilcoxon rank-sum test, assuming greater median DAFD in the control group. It was calculated that the inclusion of 32 
patients in each group would provide 80% power to detect a 0.65-d difference in DAFD, with a one-sided significance 
level of 0.025. Multivariable analysis of the primary outcome was planned to include covariates of biologic plausibility 
(duration of mechanical ventilation, use of deep sedation, MELD-Na score, gastrointestinal bleeding) and those with a P-
value of < 0.05 in univariable analysis. A negative binomial model was selected for the multivariable analysis to account 
for the observed over-dispersion of the primary outcome which violated foundational assumptions of a Poisson distri-
bution that was attempted after similar violations of linear regression despite log-transformation of the variables. All 
variables included in the model were selected based on prior literature and biological plausibility to contribute to or 
interfere with the assessment of delirium and coma or to indicate a clinically significant baseline difference in illness 
severity between the groups. All analyses were performed based on an overall significance level of 0.05 using either SAS 
software (version 9.4, Cary, NC) or Stata/IC software, v.14 (StataCorp LP, College Station, TX). Data extracted from the 
electronic medical record were collected and managed using REDCap electronic data capture tools hosted by Cleveland 
Clinic[23,24].

RESULTS
Overall characteristics of patients
A total of 159 patients were screened for inclusion and 32 were included in both groups (Figure 1). The most common 
reason for exclusion in both groups was insufficient treatment duration. The two groups were well-balanced at baseline 
with the exception of norepinephrine requirements on the day of MICU admission, which were higher in the protocol 
group, and race (Table 2). There was no difference in high-grade HE at baseline; however, due to intubation and sedation 
on study day 1, many patients were unable to be assigned baseline WHG. Though none of these differences were statist-
ically significant, deep sedation, paralysis, and gastrointestinal bleeding were more common among protocol patients 
while control patients more often received scheduled benzodiazepines and were admitted directly to the ICU.
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Table 2 Baseline characteristics

Variable Control (n = 32) Protocol (n = 32) P value

Male 19 (59.4) 18 (56.2) 0.21

Age (yr) 57.9 (± 12.9) 53.0 (± 12.7) 0.13

Race 0.01

White 26 (81.3) 24 (75)

Unavailable 4 (12.5) 2 (6.3)

Black 1 (3.1) 1 (3.1)

American Indian/Alaskan native 1 (3.1) 0 (0)

Asian 0 (0) 0 (0)

Multiracial-Multicultural 0 (0) 0 (0)

Weight (kg) 85.4 (± 23.1) 91.3 (± 29.2) 0.37

Direct Intensive Care Unit Admission 15 (46.9) 12 (37.5) 0.45

SOFA score 10.2 (± 3.0) 11 (± 3.2) 0.34

NE requirements, mcg/kg/min 0 (0, 0.136) 0.023 (0, 0.309) 0.02

MELD-Na 28.5 (± 8.5) 30.0 (± 8.2) 0.48

West-Haven grade 0.31

Unavailable 10 (31.3) 6 (18.8)

0 6 (18.8) 8 (25)

1 6 (18.8) 6 (18.8)

2 4 (12.5) 6 (18.8)

3 5 (15.6) 5 (15.6)

4 1 (3.1) 1 (3.1)

Glasgow Coma Score 9 (6, 14) 11 (7, 15) 0.69

Cirrhosis Etiology 0.21

Ethanol 17 (53.1) 21 (65.6)

Non-alcoholic steatohepatitis 9 (28.1) 5 (15.6)

Primary biliary cholangitis 2 (6.3) 1 (3.1)

Autoimmune hepatitis 2 (6.3) 1 (3.1)

Primary sclerosing cholangitis 0 (0) 1 (3.1)

Unknown 2 (6.3) 0 (0) 

Other 0 (0) 3 (9.4)

Pre-ICU rifaximin treatment 12 (37.5) 17 (48.6) 0.21

Antibiotic Indication 0.80

Empiric; source unknown 20 (62.5) 23 (71.9)

Pneumonia 6 (18.8) 3 (9.4)

Intraabdominal 4 (12.5) 4 (12.5)

Bloodstream infection 1 (3.1) 1 (3.1)

Skin and soft tissue 1 (3.1) 0 (0)

Bone and joint infection 0 (0) 1 (3.1)

Rifaximin regimen 0.37

550 mg BID 31 (96.9) 31 (96.9)

400 mg BID 1 (3.1) 0 (0)
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200 mg BID 0 (0) 1 (3.1)

Deep sedation use 5 (15.6) 9 (28.1) 0.38

Benzodiazepine use 3 (9.4) 0 (0) 0.29

Continuous neuromuscular blockade use 2 (6.3) 3 (9.4) 1.00

Polyethylene glycol use 9 (28.1) 13 (40.6) 0.29

Lactulose use 29 (90.6) 31 (96.9) 0.30

Gastrointestinal bleeding treatment 8 (25) 14 (43.8) 0.11

Alcohol withdrawal diagnosis 1 (3.1) 0 (0) 1.00

Ileus 6 (18.8) 9 (28.1) 0.56

C. difficile infection 1 (3.1) 2 (6.3) 1.00

All values are presented as mean ± SD, median (interquartile range), or N (%). BID: bis in die; ICU: Intensive care units; MELD-Na: Model for End-Stage 
Liver Disease Sodium score; NE: Norepinephrine; SOFA: Sequential Organ Failure Assessment score.

Figure 1  Consort diagram.

Primary outcome
No significant differences were observed in the primary outcome (DAFD to day 14), between the control and protocol 
groups [3 (interquartile range (IQR 0, 8) vs 2 (IQR 0, 9.5); P = 0.93] (Table 3). After adjustment for deep-sedation, 
gastrointestinal bleeding treatment, MELD-Na score, and duration of mechanical ventilation in a negative binomial 
regression there remained no significant difference in the primary outcome between the control and protocol groups 
(ratio 0.78, 95% confidence interval 0.39-1.56, P = 0.48) (Table 4).

Secondary outcomes including safety analyses
The observed ICU mortality rate was high in both groups [control 13 (40.6%) vs protocol 15 (46.9%); P = 0.61]. Days alive 
and free of either delirium or coma, ICU length of stay, and time to extubation were similar between the groups. 
Similarly, no significant differences in vasopressor requirements and GCSs in the 48 h following rifaximin discon-
tinuation were observed between groups (Table 3). For patients included in the protocol group, the median time to 
rifaximin discontinuation was approximately 24 h from MICU admission. Protocol adherence was 91.4% with the most 
common reason for non-adherence being rifaximin discontinuation during antibiotic therapy not meeting the protocol 
definition of broad-spectrum. Days of rifaximin therapy during broad-spectrum antibiotics were significantly reduced in 
the protocol group [6 (IQR 3-9.5) vs 1 (IQR 0-1); P < 0.001]. The cost of rifaximin therapy was also significantly reduced in 
the protocol group with an estimated cost savings of $316.00 [United States dollar (USD)] to $632.00 (USD) per patient.
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Table 3 Clinical, safety, and cost outcomes

Outcome Control (n = 32) Protocol (n = 32) P value

Primary outcome

Days alive and free of delirium and coma to day 14 3 (0, 8) 2 (0, 9.5) 0.93

Secondary outcomes

Days alive and free of delirium 3 (0, 8.5) 2 (0, 9) 0.85

Days alive and free of coma (RASS) 6 (3.5, 12) 8 (4, 11) 0.81

Days alive and free of coma (GCS) 8 (5.5, 13) 7.5 (5.5, 9) 0.21

Glasgow Coma Score 48-h change 0 (-3, 1.5) 0 (-1, 0.5) 0.43

ICU mortality (%) 13 (40.6) 15 (46.9) 0.61

ICU length of stay 10 (4.5, 20.5) 11 (7, 17) 0.73

Time to first extubation from day 1 of intubation 6 (4, 14) (n = 23) 5 (4, 9) (n = 26) 0.49

Rate of reintubation (%) 4 (17.4) 3 (11.5) 0.56

IVVP requirement 48-h change, NE mcg/kg/min 
equivalents

0 (0, 0.12) 0 (0, 0.01) 0.45

Days of MICU combination therapy 6 (3, 9.5) 1 (0, 1) < 0.01

Protocol adherence - 91.4% -

Time to rifaximin discontinuation, days - 1 (0, 1) -

Cost of rifaximin therapy per patient to day 14, USD

Minimum 379.20 (189.60, 600.40) 63.20 (0, 63.20) < 0.01

Maximum 758.40 (379.20, 1200.80) 126.40 (0, 126.40) < 0.01

GCS: Glasgow Coma Score; ICU: Intensive care unit; IVVP: Intravenous vasopressor; MICU: Medical intensive care unit; NE: Norepinephrine; RASS: 
Richmond Agitation-Sedation Scale; USD: United States dollar.

Table 4 Negative binomial multivariable model

(n = 60) DAFD ratio (95%CI)

Group assignment (protocol) 0.78 (0.39, 1.56)

Deep sedation (yes) 0.89 (0.39, 2.02)

Gastrointestinal bleeding (yes) 0.65 (0.32, 1.31)

MELD-Na (per unit increase) 0.97 (0.94, 1.01)

Mechanical ventilation duration (per day) 0.79 (0.72, 0.87)

Reference value listed in parentheses. DAFD: Days alive and free of delirium and coma to day 14; MELD-Na: Model for End-Stage Liver Disease Sodium 
score; CI: Confidence interval.

DISCUSSION
The addition of rifaximin to broad-spectrum antibiotic therapy may provide overlapping antibacterial activity without 
additional therapeutic benefit in critically ill patients with HE. Notably, patients on broad-spectrum antibiotics have been 
generally excluded from studies of rifaximin efficacy in HE. This gap in the literature represents a need to better 
understand the role of rifaximin in this unique patient population, as ICU hospitalizations for patients with HE are 
typically characterized by severe disease and increased morbidity and mortality. This study is the first to evaluate the 
feasibility and safety of rifaximin discontinuation during broad-spectrum antibiotic therapy.

In our pilot investigation, rifaximin discontinuation during broad-spectrum antibiotic therapy in critically ill patients 
with liver disease was not associated with higher rates of delirium or coma. This result was robust to adjustment in 
multivariable analysis. As demonstrated in Table 3, no negative associations were observed between rifaximin discon-
tinuation and short-term cognitive outcomes. Neither was rifaximin discontinuation associated with increased adverse 
effects, which adds support to the hypothesis that withholding rifaximin during broad-spectrum antibiotic therapy is 
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safe. The lack of observed differences in cognitive outcomes is an important contribution to the existing understanding of 
the interaction between treatment with rifaximin and other broad-spectrum antibiotics.

Much of the promising data for the benefit of rifaximin therapy in patients with cirrhosis, including reduced infections 
and hospitalizations, have been produced in the outpatient setting and reflect chronic use (> 30 d in most cases)[6-8]. In 
the present study, rifaximin was held for a limited time in hospitalized, critically ill patients during concomitant broad-
spectrum antibiotic treatment. Few trials of rifaximin efficacy have included or focused on a critically ill population, 
however, the very limited data available suggest potential for harm with rifaximin discontinuation[19,25,26]. Sharma et al
[18] published the largest single cohort evaluating rifaximin efficacy including critically ill patients. The authors reported 
a decrease in mortality among patients treated with rifaximin and lactulose compared with those treated with lactulose 
and placebo. Importantly, this finding is limited by the high rate of sepsis-related mortality in the placebo group. In 
contrast to the study by Sharma et al[18], all patients included in the present study had known or suspected infection but 
observed mortality rates were similar among patients who continued rifaximin during broad-spectrum antibiotic therapy 
and those who did not. In an open-label single-center study including 15 patients, Kalambokis et al[24] demonstrated that 
rifaximin therapy was associated with increased systemic vascular resistance after four weeks. This finding raised a 
question about the potential impact sudden discontinuation of therapy might have in critically ill patients predisposed to 
clinically significant vasodilation exacerbated in the setting of active infection. To address this question, vasopressor 
requirements in the first 48-h after rifaximin discontinuation (protocol) or antibiotic initiation (control) were compared. In 
the current larger cohort, rifaximin discontinuation was not associated with changes in vasopressor requirements despite 
severe and progressive illness in many included patients. Finally, in a single-center retrospective cohort analysis of 
mechanically ventilated critically ill patients with decompensated cirrhosis, rifaximin administration within the first 24-h 
post-intubation was associated with shorter time to extubation [hazard ratios 1.74 (1.21-2.50)], although pre-intubation 
rifaximin and lactulose administration was associated with a delayed time to extubation[26]. Rifaximin discontinuation 
was not associated with delays in extubation or rates of reintubation in the present study, though the sample size was 
smaller. In summary, although several studies in critically ill patients had demonstrated potential associations with 
mortality, vasopressor requirements, and duration of mechanical ventilation, the current study evaluated several 
potential safety concerns in a highly vulnerable patient population and did not reveal any negative signals associated 
with rifaximin discontinuation.

Notably, the present study demonstrates the feasibility and benefit of a pharmacist-driven, manually applied protocol 
with multidisciplinary support aimed at antimicrobial stewardship in a critically ill population. Though likely to be 
applicable to many centers in the United States, opportunities to optimize protocol execution exist including streamlining 
patient identification and enrollment, minimizing delays in rifaximin discontinuation, and ensuring rifaximin re-initiation 
after broad-spectrum antibiotic therapy completion or narrowing.

Several limitations exist within this evaluation. First, this was a single-center study with retrospective data collection. 
Second acute (overt) HE was not a requirement for inclusion, nor was the chronicity of HE episodes able to be quantified. 
Patients were stratified according to WHG and/or GCS in order to describe clinical status and align with available 
guideline recommendations for HE assessment. Similarly, it was not possible to definitively identify the specific 
indication for rifaximin for every patient nor to confirm the prescription of rifaximin prior to hospital admission with the 
limited available insurance claim records. Though based on available records, pre-hospital rifaximin therapy was 
prescribed at a similar rate in both the control and protocol groups, 37.5% vs 48.6%, respectively. Third, the high 
frequency of missing WHG due to retrospective clinical assessment in the setting of critical illness requiring mechanical 
ventilation and sedation necessitated the use of multiple surrogate endpoints. The primary outcome of DAFD was 
selected based on previously published studies evaluating critically ill patients’ level of awareness[27,28]. While CAM 
scoring is routine in ICUs at our institution, delirium assessments (i.e. bCAM) are not routine in non-ICU care areas. The 
decision to consider all patients in non-ICU care areas delirium-free was based on an understanding of the clinical 
improvements required to support ICU discharge and the lack of routinely available validated scores to collect for the 
endpoint. This may have led to an over-estimation of the days free of delirium, however, this is likely balanced by the 
high average proportion of time spent in the ICU compared to non-ICU care areas. The 48-h change in GCS was also 
collected as a sensitive marker for any negative cognitive effect rifaximin discontinuation may have exerted. GCS was 
selected as current AASLD guidelines recommend this score as an alternative measure to the WHG for the diagnosis of 
HE (grade II-2, B, 1)[13]. The EASL guidelines recommend the addition of GCS to West-Haven criteria in patients with 
impaired consciousness, including those treated in an ICU (LoE 5, strong)[14]. Several outcomes of interest were unable 
to be assessed due to the absence of baseline WHG including the achievement and time to resolution or improvement of 
HE. Despite a robust effort to characterize the patient population and describe the severity and extent of illness, there are 
illness-specific variables and outcomes that were unable to be feasibly assessed, including indication for MICU admission 
and infection resolution which may have contributed to cognitive and clinical outcomes. Additionally, this study was not 
designed to evaluate long-term outcomes or impact of withheld rifaximin therapy. Despite these limitations, no 
differences were found in the available and utilized markers of cognitive outcomes between patients who did or did not 
have rifaximin discontinued during broad-spectrum antimicrobial therapy. Finally, the few baseline differences observed 
in the two cohorts may have been smaller or eliminated in a larger sample size. However, the authors anticipate the 
strong left skew in the primary outcome with a predominance of zero or minimal days spent alive and free of delirium 
and coma to persist, even in a larger sample, given the tenuous nature of critically ill patients with liver disease. Similarly, 
rates of HE resolution in a comparable population would be expected to be very low. These data characteristics would 
likely render future non-inferiority trials difficult or impossible to complete.
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CONCLUSION
In conclusion, no significant differences were noted between the control and protocol groups in key clinical or safety 
outcomes. The robustness of the primary outcome to multivariable analysis strengthens the conclusion that rifaximin 
discontinuation during broad-spectrum antibiotic therapy does not appear to negatively impact the cognitive status of 
critically ill liver patients. This study demonstrates the feasibility of a pharmacist-driven protocol to reduce combination 
therapy in critically ill patients with liver disease treated with rifaximin and broad-spectrum antibiotics. Given the 
significant cost savings achieved during ICU and hospital admission, a prospective, multi-center evaluation of a similar 
protocol in a larger sample is warranted, including investigation into longer-term outcomes. Investigation of the impact 
of this type of protocol in non-critically ill liver patients should likewise be considered.

ARTICLE HIGHLIGHTS
Research background
Rifaximin is frequently administered to critically ill patients with liver disease and hepatic encephalopathy (HE). 
However, data supporting the use of rifaximin in this population, particularly in combination with broad-spectrum 
antibiotics, are extremely limited. Due to the overlapping spectrums of antibiotic activity, it was hypothesized that 
withholding rifaximin during broad-spectrum antibiotic therapy would be safe and reduce healthcare costs. The present 
study is the first to evaluate the feasibility and safety of rifaximin discontinuation during broad-spectrum antibiotic 
therapy and represents a highly vulnerable patient population.

Research motivation
The gap in available evidence demonstrates the need to better understand the role of rifaximin in this unique population, 
as intensive care unit (ICU) hospitalizations for patients with HE are typically characterized by severe disease and 
increased morbidity and mortality. Therefore, after protocol development the need to assess clinical and safety outcomes 
was clear. Additionally, given the opportunity to reduce healthcare expenditures with decreased use of rifaximin during 
ICU admission, costs of therapy were quantified. This proof-of-concept evaluation also provides a foundation for future, 
larger-scale, well-controlled studies to confirm and expand on the findings.

Research objectives
The present study aimed to evaluate the safety, efficacy, and financial impact of discontinuing rifaximin during broad-
spectrum antibiotic use. The efficacy of withholding rifaximin was evaluated using a surrogate marker for short-term 
cognitive impact, days alive and free of delirium and coma. Multiple, robust safety outcomes were considered including 
mortality, ICU length of stay, 48-h change in vasopressor requirements, duration of mechanical ventilation, and 
successful extubation. Cost avoidance was evaluated by comparing rifaximin drug costs during the observation period 
pre- and post-protocol. The outcomes utilized provided an initial, comprehensive assessment of the pilot protocol that 
could be replicated in further investigations.

Research methods
This was a single-center, quasi-experimental study evaluating outcomes pre- and post-implementation of a pharmacist-
driven protocol for rifaximin discontinuation in critically ill liver patients being treated in a medical ICU. To address 
potential sources of bias, multivariable analysis of the primary outcome was performed with characteristics selected 
based on biological plausibility and univariate screening. Inferential statistics were performed in the usual fashion based 
on data type and distribution. The study achieved 80% power to detect a 0.65 d difference in the primary outcome.

Research results
In this pilot investigation, rifaximin discontinuation during broad-spectrum antibiotic therapy in critically ill patients 
with liver disease was not associated with more days of delirium or coma [3 (0, 8) vs 2 (0, 9.5); P = 0.93]. Protocol 
application was associated with a high rate of adherence (91.4%) and resulted in a significant reduction in days of 
combination therapy [6 (3-9.5), 1 (0-1); P < 0.001] and medication expenditures (estimated per patient cost avoidance 
$316.00 to $632.00 USD). No signals of harm were detected in any safety endpoint. The results of this study support the 
safety and feasibility of a protocolized discontinuation of rifaximin during broad-spectrum antibiotic therapy. Due to the 
limited sample size and retrospective nature of the present study, future evaluations should prioritize larger sample sizes 
and prospective designs to the greatest extent possible. Many questions remain regarding the optimal use of rifaximin 
among patients being treated with broad-spectrum antibiotics, including non-critically ill patients and those receiving 
long courses of therapy.

Research conclusions
This was a novel evaluation that provides new insight about the potential safety of discontinuing rifaximin during short-
term, broad-spectrum antibiotic therapy in critically ill patients with liver disease which has not yet been investigated in 
the literature. The safety, efficacy, and cost-saving results of this study warrant confirmation in an investigation with a 
larger sample size and prospective, well-controlled methods which could lead to broader application of a similar 
protocol. Finally, this study provides further support that pharmacists may be leveraged to assist with antimicrobial 
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stewardship efforts in specific and dynamic patient populations.

Research perspectives
Future research related to this question should focus on: Confirmation of the reported findings; longer-term outcomes of 
withholding rifaximin therapy, particularly during prolonged courses of broad-spectrum antibiotics; the impact of a 
similar protocol among non-critically ill patients; and opportunities to optimize protocol application.
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Abstract
BACKGROUND 
Chronic Hepatitis C (CHC) affects 71 million people globally and leads to liver 
issues such as fibrosis, cirrhosis, cancer, and death. A better understanding and 
prognosis of liver involvement are vital to reduce morbidity and mortality. The 
accurate identification of the fibrosis stage is crucial for making treatment 
decisions and predicting outcomes. Tests used to grade fibrosis include histolo-
gical analysis and imaging but have limitations. Blood markers such as molecular 
biomarkers can offer valuable insights into fibrosis.

AIM 
To identify potential biomarkers that might stratify these lesions and add 
information about the molecular mechanisms involved in the disease.

METHODS 
Plasma samples were collected from 46 patients with hepatitis C and classified 
into fibrosis grades F1 (n = 13), F2 (n = 12), F3 (n = 6), and F4 (n = 15). To ensure 
that the identified biomarkers were exclusive to liver lesions (CHC fibrosis), 
healthy volunteer participants (n = 50) were also included. An untargeted 
metabolomic technique was used to analyze the plasma metabolites using mass 
spectrometry and database verification. Statistical analyses were performed to 
identify differential biomarkers among groups.

https://www.f6publishing.com
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RESULTS 
Six differential metabolites were identified in each grade of fibrosis. This six-metabolite profile was able to establish 
a clustering tendency in patients with the same grade of fibrosis; thus, they showed greater efficiency in discrim-
inating grades.

CONCLUSION 
This study suggests that some of the observed biomarkers, once validated, have the potential to be applied as 
prognostic biomarkers. Furthermore, it suggests that liquid biopsy analyses of plasma metabolites are a good 
source of molecular biomarkers capable of stratifying patients with CHC according to fibrosis grade.

Key Words: Chronic Hepatitis C; Fibrosis; Metabolome; Biomarkers; Plasma; Liquid biopsy

©The Author(s) 2023. Published by Baishideng Publishing Group Inc. All rights reserved.

Core Tip: Chronic Hepatitis C affects 71 million people globally and leads to liver fibrosis, cirrhosis, cancer, and death. The 
accurate staging of fibrosis is crucial for treatment decisions and outcome prediction. Blood markers are a relevant source of 
information, and various molecular biomarkers have been investigated to characterize liver fibrosis. We analyzed plasma 
metabolites by mass spectrometry in 50 healthy participants, and in 46 patients with hepatitis C and classified them into 
fibrosis grades F1-F4. Six differential metabolites were identified in each grade of fibrosis; their biochemical pathways were 
analyzed and suggests molecular mechanisms involved in the disease.

Citation: Ferrasi AC, Lima SVG, Galvani AF, Delafiori J, Dias-Audibert FL, Catharino RR, Silva GF, Praxedes RR, Santos DB, 
Almeida DTM, Lima EO. Metabolomics in chronic hepatitis C: Decoding fibrosis grading and underlying pathways. World J Hepatol 
2023; 15(11): 1237-1249
URL: https://www.wjgnet.com/1948-5182/full/v15/i11/1237.htm
DOI: https://dx.doi.org/10.4254/wjh.v15.i11.1237

INTRODUCTION
Chronic hepatitis C (CHC) is an infectious disease caused by the hepatitis C virus (HCV) and is a serious public health 
problem, affecting an estimated 71 million people worldwide[1-3].

Approximately 50%-80% of HCV-infected individuals develop CHC, which can trigger a chronic inflammatory disease 
process leading to liver fibrosis, cirrhosis, hepatocellular carcinoma (HCC), and death[4].

Natural progression of CHC occurs with sustained inflammation due to repetitive liver injury, followed by the 
activation of hepatic stellate cells, deposition of fibrillar collagen in the extracellular matrix (ECM), and progressive 
fibrosis[5,6]. These progressive processes may result in ECM degradation and, consequently, vascular and architectural 
alterations, leading to cirrhosis (10%-20% of patients)[7] or HCC (1%-5%)[8].

Early diagnosis and treatment can prevent liver cirrhosis and HCC, especially with screening and recent advances in 
CHC treatment based on direct-acting antiviral therapy. However, effective reduction of disease morbidity and mortality 
requires better characterization of liver involvement, more accurate prognosis, and follow-up[9]. Under this scenario, 
accurate identification of the liver fibrosis stage is critical for the clinical management of HCC, guiding therapeutic 
options and helping to predict prognosis[10]. However, this approach is challenging. Tests used to stage fibrosis include 
histological analysis of liver biopsies and imaging tests. Liver biopsy is considered the “gold standard” for the diagnosis 
and staging of liver fibrosis. However, it is an invasive and uncomfortable procedure with a risk of minor (10%-20%) or 
serious (0.5%-1%) complications[7,11]. In addition, the interpretation of histological results is subject to sampling errors 
and inter-observer subjectivity in the interpretation of histological results[7,12,13]. For staging the grades of fibrosis in 
biopsied liver tissue, the 0-4 scale of the Metavir classification system[14] is commonly used; however, the main 
limitations are related to the representativeness of liver samples and histopathological interpretation. Conventional 
imaging tests include ultrasonography, computed tomography, and magnetic resonance imaging. Although they 
represent important tools for detecting cirrhosis, nodules on the liver surface, and splenomegaly, they present low 
sensitivity for moderate or even advanced fibrosis. Newer acoustic technologies, such as hepatic elastography, can 
increase the accuracy of imaging techniques. For these tests, acoustic vibrations are applied to the abdomen and, 
according to how quickly these vibrations are transmitted along the liver tissue, the stiffness (fibrosis) of the liver is 
indicated. However, conditions other than fibrosis also increase liver stiffness[7], which requires further study and 
standardization. Another important limitation is the cost of the equipment[15], which is unaffordable in places with 
limited financial resources. In clinical practice, blood markers should be considered a relevant source of information. 
Current approaches are limited to combining commonly available tests (e.g., aspartate transaminase, alanine aminotrans-
ferase, albumin, serum bilirubin, and international normalized ratio) with clinical information (e.g., age, body mass index, 
and diabetes) and, in some cases, direct markers of liver function. However, this approach is most useful in distin-
guishing between two levels of fibrosis: Absent to minimal vs moderate to severe and fails to stratify the grades.

https://www.wjgnet.com/1948-5182/full/v15/i11/1237.htm
https://dx.doi.org/10.4254/wjh.v15.i11.1237
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Undeniably, the search for blood biomarkers is a less invasive method for diagnosis and prognosis, and as blood 
circulates through most tissues, it can be a relevant source of information about diseases. Therefore, different molecular 
biomarkers, particularly those with easier and more accessible analytical methodologies, have been investigated for the 
characterization of liver fibrosis[16-20].

The present study focused on analyzing the plasma metabolome of patients with CHC with different grades of fibrosis 
aiming to identify potential biomarkers for stratifying these lesions. The metabolome is the set of endogenously 
synthesized metabolites in a specific physiological condition and may represent the final product of gene expression. 
Thus, as a secondary aim of this study, we analyzed the pathways linked to the main metabolites detected, contributing 
information about the molecular mechanisms involved in the disease.

MATERIALS AND METHODS
Study participants
This study was approved by the Ethics Committee on Research of São Paulo State University in accordance with the 
provisions of the Declaration of Helsinki. Plasma samples from 46 volunteer participants diagnosed with hepatitis C were 
obtained from peripheral blood. The inclusion criteria were as follows: Patients > 18 years, unrelated, diagnosed by 
detection of HCV RNA, with identification of HCV genotype, naïve patients (with no previous hepatitis C treatment), and 
patients with a known fibrosis stage or clinical diagnosis of cirrhosis by imaging. The exclusion criteria were as follows: 
Volunteers with a history of liver transplantation, hepatic steatosis unrelated to chronic hepatitis C and other liver 
diseases. To ensure that the biomarkers identified were exclusive to liver lesions (hepatitis C fibrosis), 50 healthy 
volunteer blood bank donors [healthy control group (CG)] were included in this study. Participants were recruited from 
the Viral Hepatitis Outpatient Clinic of Botucatu Medical School, UNESP, Brazil. The demographic and clinical character-
istics of the study participants are summarized in Table 1.

Fibrosis was classified based on the Metavir score[14]. Liver samples were collected by percutaneous biopsy before 
treatment and analyzed histologically. Peripheral blood was collected at the same time as the liver biopsy.

Sample preparation
Samples were collected in tubes with ethylenediamine tetraacetic acid anticoagulant, followed by centrifugation to 
separate the plasma, which was stored at -80 ℃ until metabolite extraction. At the time of extraction, 20 μL of blood 
plasma was solubilized in 200 μL of tetrahydrofuran, vortexed, and centrifuged at 3200 rpm for 5 min. Then, the collected 
supernatant was solubilized in 780 μL of methanol and again centrifuged as above. Afterward, 50 μL of this supernatant 
was solubilized in 500 μL methanol q.s., homogenized, and subjected to chemical ionization with 0.1% formic acid.

Mass spectrometry
For mass spectrometry analysis, the ionized solution was directly injected into an LTQ Mass Spectrometer (ESI-LTQ-XL 
Discovery, Thermo Fisher Scientific, Waltham, MA, United States) using electrospray ionization. Ten replicates were used 
for each biological replicate. The parameters for analysis were set as the following configuration: Sample flow rate of 10 
μL/min, capillary temperature of 180 ℃, 7 kV spray voltage, and carrier gas of 2 arbitrary units. After direct injection, the 
samples were analyzed in the positive ion mode in the mass range of 100-1400 (mass-to-charge ratio), and the signal 
intensity was detected, which resulted in a set of ions m/z for each sample. XCalibur software (v. 2.4, Thermo Scientific) 
was used to acquire and process the spectrometer data, which were submitted for statistical analysis.

Statistical analyses
Statistical analysis was performed using MetaboAnalyst 4.0 platform[21], in which raw data were evaluated using partial 
least squares discriminant analysis (PLS-DA). As a result, a list of markers was generated according to the intensity of the 
most differential and important markers for each group evaluated; that is, the variable importance score (VIP score) was 
obtained. From this, six ions with the highest VIP score for each grade of fibrosis, with scores > 2.0, were selected. The 
accuracy of the identified biomarkers was assessed by receiver operating characteristic (ROC) curve analysis.

Identification of biomarkers
From the selected biomarkers, a search was performed using the METLIN online metabolomics database (http://metlin.
scripps.edu) to identify molecules compatible with the mass/charge values selected for each grade of fibrosis. The 
molecules of interest were added to the candidate list and fragmented in silico using the MassFrontier tool (v. 6.0, Thermo 
Fisher Scientific). After the fragmentation in silico, the molecules whose fragments were compatible with those generated 
experimentally were selected.

RESULTS
Selection of biomarkers
Based on the PLS-DA, the ions were grouped according to the signal intensity profile within each staging grade, making 
it possible to analyze the separation between fibrosis grades, as represented in the PLS-DA score plot (Figure 1).

http://metlin.scripps.edu
http://metlin.scripps.edu
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Table 1 Demographic and clinical characteristics of all study participants, distributed by fibrosis grade (Metavir score)

Fibrosis grade (Metavir)1

Variables Healthy control
F1 F2 F3 F4

Age (yr) 44 ± 12.2 50 ± 10.78 49 ± 8.6 55 ± 8.8 54 ± 11.22

Sex

Male 24 (65.0) 8 (61.5) 7 (58.3) 5 (100) 9 (60.0)

Female 26 (52.0) 5 (38.5) 5 (41.7) 0 6 (40.0)

BMI (kg/m2) 22.9 ± 2.98 28.3 ± 8.89 26.5 ± 6.26 26.9 ± 3.60 27.4 ± 7.14

HCV genotype

12 - 10 (77.0) 8 (66.7) 3 (50.0) 12 (80.0)

Not 13 - 3 (23.0) 4 (33.3) 3 (50.0) 3 (20.0)

1Metavir score to assess the fibrosis grade by histopathological examination of a liver biopsy.
2HCV 1: Hepatitis C Virus genotype 1.
3HCV not 1: Hepatitis C Virus other genotypes.
BMI: Body mass index; HCV: Hepatitis C virus.

Figure 1 Score plot generated from partial least squares discriminant analysis comparing fibrosis grades (Metavir). Each plasma metabolite 
profile is highlighted by different colors: F1 (red dots), F2 (blue dots), F3 (purple dots), and F4 (green dots). The shaded regions around the points represent the 95% 
confidence interval for each group.

To identify the biomarkers responsible for the separation between the groups (Figure 1), a VIP score was used in the 
projection. This score allows visualization of the relevance of each marker within each grade analyzed according to the 
mass/charge ratios of the metabolites[22]. Considering a VIP score of > 2.0 (Figure 2), the six most important ions were 
selected for each group (Table 2).

To ensure that the identified biomarkers were exclusive to liver lesions (fibrosis, CHC), CG were included. The plasma 
samples from the two groups (CHC vs CG) were compared and this analysis showed that the fibrosis biomarkers 
(Table 2) were not detected in CG. The PLS-DA and VIP score graphs comparing the two groups are shown in Figures 3 
and 4, respectively.

Identification of biomarkers
The most relevant biomarkers, represented by m/z values, were identified according to fibrosis grade, as shown in 
Table 2.
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Table 2 Metabolites identified as important in discriminating grades of fibrosis (Metavir) in chronic hepatitis C

Class Molecule Ion VIP 
score Formula Adducts MSMS Metlin ID

F1

18:0 Cholesteryl ester 671 2.3 C45H80O2 [M+NH4]
+ 83955Sterols

20:5 Cholesteryl ester 672 2.35 C47H74O2 [M+H]+

303-369-583-437-
147-161-135-109-95

41710

DG(44:12)1 C47H68O5 [M+H-H2O]+ 311-119-95-81-69-57-
97-113-339

4681Glycerolipids 

DG(42:7)1

695 2.9

C45H74O5 [M+H]+ 311-119-95-81-69-57-
97-113-339-437

4605/59181

Coenzyme A cis,cis-3,6-Dodecadienoyl-CoA 928 2.35 C33H54N7O17P
3S

[M+H-H2O]+ 95-112-119-720-184 58193

Polypeptide Angiotensin III 931 2.4 C46H66N12O9 [M+H]+ 400-311-112-113-96-
97-437-659-720-146-
147

58017

Unknown - 1297 2.55 - - - -

F2

N6-Methyladenosine 81-85-63-99-117-135-
149-163-177

58196

3'-O-Methyladenosine 81-85-63-117-135-
163

58340

1-Methyladenosine 81-84-63-99-117-135-
163

6888

2'-O-Methyladenosine 81-85-63-99-117 58235

Methyladenosine

O6-Methyl-2'-deoxyguanosine

265 2.18 C11H15N5O4 [M+H-H2O]+

81-85-63-99-149-163-
177

66286

8,15-diHPETE 75001

5S,15S-diHPETE 75023

5,15-diHPETE 75000

15S-hydroperoxy-PGD2 74985

Eicosanoids

20-hydroxy-PGD2

369 2.08 C20H32O6 [M+H]+ 95-81-109-147-161-
135-69-93-107

74981

Sphingolipids Cer (42:1)1 673 2.15 C42H83NO3 [M+Na]+ 303-370-95-81-109-
60-69-93-107

41569

Unknown - 828 2.05 - - - 0

F3

Aminoacid derivative (S)-2,3,4,5-Tetrahy-
dropiperidine-2-carboxylate

150 2.1 C6H9NO2 [M+Na]+ 106-134-84-61-56-52-
105-120

62803

Prenol lipid Farnesylcysteine 365 2.05 C18H31NO2S [M+K]+ 203-185-112-81-71-
307

62388

Glycerophospholipid PE(34:5)1 732 2.17 C39H68NO8P [M+Na]+ 184-437-438-660-83-
113-133-97

60844

Coenzyme A S-2-Octenoyl CoA 914 2.18 C29H48N7O17P
3S

[M+Na]+ 86-80-119-112-95-67-
104-184-720

58140

158 2.2Unknown -

920 2.1

- - - -

F4

Glycerophospholipids PE(36:1)1 C41H80NO7P [M+H]+ 184-659-437-393-113 62180

PE(34:6)1

731 3

C39H66NO8P [M+Na]+ 184-659-437-393-
316-113

77367

PE(O-36:1)1 77526733 2.6 C41H82NO7P [M+H]+ 184-97-304-437-369
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PE(P-36:0)1 77623

PE(34:5)1 C39H68NO8P [M+Na]+ 184-97-304-437-675-
369

60812

Coenzyme A CoA(22:2)1 1118 2.8 C43H74N7O17P
3S

[M+CH3
OH+H]+

453-703-437-338-
113-780-675-799

75415

Acyl-carnitines Malonylcarnitine 266 2.7 C10H17NO6 [M+NH4]
+ 172-94-95-116-57-90-

204
6484

1257 2.85Unknown -

1296 2.95

- - - -

1Carbon number: Double bond number. MSMS: In tandem mass spectrometry; DG: Diacylglycerol; CoA: Coenzyme A; HPETE: 
Hydroxy/hydroperoxyeicosatetraenoic acids; Cer: Ceramide; PE: Phosphoethanolamine; PGD: Prostaglandin; VIP score: Variable importance score.

Figure 2 Variable importance score of the biomarkers identified for grades F1, F2, F3, and F4. The Y axis represents the metabolites m/z ratio. The 
X axis indicates the importance of projection for each biomarker. Laterally to the right, the relevance of each specific marker within the group analyzed is represented 
according to the color gradations of each biomarker for each grade of fibrosis. The red color represents the most relevant biomarkers; as the red intensity decreases 
and approaches the green color, the relevance of the biomarkers reduces. Red = up-regulation; Green = down-regulation. VIP Score: Variable importance score.

ROC curve analysis
The accuracy of the biomarkers was assessed using the ROC curve analysis of the sets of metabolites identified for each 
fibrosis grade (Figure 5). ROC curves were used to analyze the sensitivity, specificity, and area under the curve (AUC) of 
each group of metabolites identified at each grade of fibrosis. The ROC curve of the selected metabolites for F1 (AUC = 
0.806) was plotted with a sensitivity of 82% and a specificity of 68%, and the other selected metabolite groups for F2 (AUC 
= 0. 652), F3 (AUC = 0.807), and F4 (AUC = 0.864) showed sensitivities of 62%, 82%, and 83% and specificities of 57%, 
74%, and 76%, respectively.

DISCUSSION
The metabolome was analyzed to identify new prognostic and diagnostic biomarkers. Thus, the present study invest-
igated the differential metabolites in blood plasma as potential biomarkers of fibrosis stages. Our analysis identified 
potential biomarkers for each grade of liver fibrosis, which will increase our knowledge about the progression of CHC 
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Figure 3 Score plot generated from partial least squares discriminant analysis comparing the chronic hepatitis C vs healthy control 
groups. Each group is highlighted by different colors: Healthy control groups (red dots) and chronic hepatitis C (green dots), where each dot represents one 
analytical replicate. The shaded regions around the points represent the 95% confidence interval for each group.

Figure 4 Variable importance score of the biomarkers identified when comparing the chronic hepatitis C vs healthy control groups. The Y 
axis represents the metabolites m/z ratio. The X axis indicates the importance in projection for each biomarker. Laterally to the right, the relevance of each specific 
marker within the group analyzed is represented according to the color gradations of each biomarker for each grade of fibrosis. The red color represents the most 
relevant biomarkers; as the red intensity decreases and approaches the green color, the relevance of the biomarkers reduces. Red = up-regulation; Green = down-
regulation. VIP Score: Variable importance score.
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Figure 5 Receiver operating characteristic curve analysis of the sets of metabolites identified at each fibrosis grade. A: Receiver operating 
characteristic (ROC) curve analysis of the set of differential metabolites identified in F1 compared to the other grades (F2, F3, and F4); B: ROC curve analysis of the 
set of differential metabolites identified in F2 compared to the other grades (F1, F3, and F4); C: ROC curve analysis of the set of differential metabolites identified in 
F3 compared to the other grades (F1, F2, and F4); D: ROC curve analysis of the set of differential metabolites identified in F4 compared to the other grades (F1, F2, 
and F3).

and highlight targets for further investigation. The identified biomarkers were able to establish a clustering tendency in 
patients with the same grade of fibrosis despite some overlap. The score plot analysis showed greater efficiency in 
discriminating between the extreme grades (F1 and F4), with an overlap in grades F2 and F3. This result may be related to 
the analytical bias of histological classification, as the formation of groups was based on this criterion-Metavir[12-14], 
which is subject to some bias related to inadequate sample acquisition, incorrect sample representation or inter-observer 
variability[7,12,13]. To ensure that the identified biomarkers were exclusive to liver lesions caused by CHC, we compared 
them with the plasma samples of healthy donors (Figures 3 and 4). None of the biomarkers found in the patient within 
the CHC group were detected in the plasma of healthy controls, which reinforces their potential as biomarkers exclusive 
to the disease.

Analysis of the accuracy of the most relevant metabolites in each grade showed that the sets associated with grades F1, 
F3, and F4 were good biomarkers (AUC 0.806, 0.807, and 0.864, respectively; Figure 5) and had good sensitivity and 
specificity scores. However, the metabolites identified as grade F2 were less specific and showed poor sensitivity. Such 
findings could be useful for distinguishing grades F1, F3, and F4, where uncertainty exists when the analyses are based 
solely on histology. Some serum markers of fibrosis validated in patients with hepatitis C and correlated with liver biopsy 
as a reference standard showed a mean AUC suitable for clinical practice (> 0.80)[23]; however, an overlap was also 
observed between adjacent grades of liver fibrosis, particularly the lower grade[24].
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Despite the histological bias, our analysis identified different metabolites from diverse chemical classes, including 
sterols, fatty acids, lipids, and coenzymes. However, for each grade of fibrosis, a metabolite profile has been identified, 
and as observed in Figure 2, the relevance of each molecule changes according to the fibrosis grade and may intensify or 
decrease during the disease.

Some studies have demonstrated the potential of metabolomics analyses for different scenarios in diverse diseases, 
particularly in cancer management[25]. One of the great achievements of metabolomics is the assessment of therapeutic 
responses and tumor progression, as shown by Rattner et al[26], in which serum blood metabolites indicated positive or 
negative responses to chemotherapy using gas chromatography-mass spectrometry. In addition, some methods for 
metabolomics analysis, such as nuclear magnetic resonance and multisegment injection-capillary electrophoresis-mass 
spectrometry, have also shown impressive results, and have also been used to evaluate the metabolome of serum samples 
from patients with CHC with fibrosis of different grades[27]. This study identified markers for the highest grades of 
fibrosis, which are compatible with our results, such as glycerophospholipid and acyl-carnitine markers. Therefore, the 
use of metabolomics approaches for liquid biopsies show promise as diagnostic, prognostic, and therapeutic monitoring 
tools.

In the context of viral infection, viruses are known to synthesize fatty acids by benefitting from their intermediate 
products. HCV alters the expression of lipid-related genes associated with cholesterol biosynthesis[28,29]. Interestingly, 
some metabolites found in different grades of fibrosis are associated with lipid alterations[30-32].

For grade F1, biomarkers that may be more related to HCV infection than to the development of fibrosis were observed 
when compared to patients with more advanced fibrosis. Thus, the first molecule identified in F1 belonged to the sterol 
class, with specific signatures for cholesterol ester (CE) (m/z = 671 and m/z = 672). Previous studies have pointed out that 
CE is a critical component of lipoviral particles whose synthesis has been linked to HCV infection in vitro when 
cholesterol and triglyceride accumulation is observed[29]. In agreement with our results, we suggest that HCV may 
modulate the environment, promoting a higher density and infectivity of viral particles and viral spread in the hepatic 
tissue, which intensifies infection[28,33,34].

Considering lipid metabolism and accumulation, it was possible to identify the sphingolipid class in intermediate-
grade F2, represented by ceramide (m/z = 673). It is a central molecule in sphingolipid metabolism with anti-proliferative 
and pro-apoptotic effects[30]. In the context of HCV infection, lipid accumulation and, consequently, ceramide accumu-
lation occur and may lead to steatosis[35], which may contribute to the development of liver fibrosis[5,35-37].

In addition, a glycerolipid was also identified in F1, specified as diacylglycerol (DG) (m/z = 695). Recent studies have 
shown that the conversion of DG to phosphatidic acid (mediated by diacylglycerokinases) results in lysophosphatidic 
acid production, which is involved in many chronic inflammatory diseases, including fibrosis and cancer[38,39]. 
Therefore, the present study highlights a potential relationship between high levels of DG and a less fibrotic state (low-
grade fibrosis) compared to F4, where fibrosis is accentuated.

Another lipid class, glycerophospholipids, was identified in intermediate-grade F3 and advanced-grade F4, in which 
the biomarkers were identified as phosphoethanolamines (PE) (m/z = 731, m/z = 732, and m/z = 733). Some studies have 
suggested that PE gradually increases according to the grade of liver fibrosis and acts as a potential marker of carcino-
genesis[40,41]. This finding suggests that patients diagnosed with F3 could be at the beginning of the carcinogenesis 
process; however, this hypothesis needs to be further investigated.

Other biomarkers related to changes in lipid signaling pathways have also been identified. One of these belongs to the 
eicosanoid class (m/z = 369) identified in F2. This molecule is a biologically active lipid that has several implications in 
biological processes and is a potent mediator of inflammation in infectious diseases and HCC[42,43]. In addition, it is 
associated with liver fibrosis staging and is a potential biomarker[44-46]. Another class of lipids, prenol lipids, was 
identified as F3, represented by farnesylcysteine (m/z = 365). This marker participates in the process of liver carcino-
genesis by directly acting on the activity of oncogenic rat sarcoma virus protein[47,48]. Thus, these results encourage 
investigations into the use of this metabolite as a potential biomarker of the risk of tumor development.

Different intermediate metabolites of the coenzyme A (CoA) class have also been identified, and they are typically 
involved in the β-oxidation of medium- and long-chain fatty acids to acyl-CoA, a key intermediate in lipid metabolism. 
Some studies suggest the existence of a disruption in fatty acid lipid metabolic pathways during HCV infection[49,50]. 
This process results in the accumulation of acyl-CoA and fatty acid metabolic intermediates, such as the three molecules 
identified in the present study, described as follows. The cis,cis-3,6-dodecadienoyl-CoA (m/z = 928) was identified in the 
F1 cases in our study. For F3, the marker S-2-octenoyl CoA (m/z = 914) was found[51,52], and in advanced grade (F4), a 
CoA metabolite (m/z = 1118) was identified. Because different acyl-CoAs isoenzymes are expressed in the liver, some of 
which are overexpressed in activated hepatic stellate cells[51,53], the results of the present study indicate that there is a 
disruption in lipid metabolism throughout the infection; however, this is unclear and requires further investigation. 
Considering the presence of acyl-CoAs in three different fibrosis grades, these molecules are not good candidates for the 
classification of fibrosis stages but highlight their importance in CHC.

Another marker involved in β-oxidation was found in patients with F4, represented by malonyl carnitine (m/z = 266). 
Tumors require more energy for cell proliferation, which may lead to dysregulation of energy-supplying metabolic 
pathways, such as β-oxidation of fatty acids[54,55]. In the context of HCC, alterations in the metabolism of acylcarnitine 
are directly related to the worsening of the disease and to alterations of β-oxidation[56], which results in the accumulation 
of Acyl-CoA[57], as discussed previously. Thus, malonylcarnitine can be considered a potential HCC biomarker; 
however, further studies are needed to validate this hypothesis.

In addition to the lipid biomarkers, the polypeptide angiotensin III (Ang III) (m/z = 931) was identified in F1, which, 
according to some studies, exhibits physiologically relevant effects similar to those of angiotensin II. In the context of 
CHC and liver fibrosis, Ang III participates in the increase in collagen production through its interaction with the 
angiotensin type 2 receptor[58,59] Therefore, this pathway may be involved at the beginning of the fibrotic process once 
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Ang III is identified in F1.
The last two metabolites were identified as intermediate grades: methyladenosine (m/z = 265) in F2 and (S)-2,3,4,5-

tetrahydropiperidine-2-carboxylate (m/z = 150) in F3. Adenosine methylation is a post-transcriptional modification of 
mRNAs that affects various biological functions[60-62]. In HCV infection, methyladenosine may represent an RNA 
modification that enhances the production of infectious particles by interacting with viral proteins[62-64]. These findings 
suggest that these modifications are involved in the progression of infections and liver fibrosis. Finally, (S)-2,3,4,5-tetrahy-
dropiperidine-2-carboxylate identified in F3 may be related to the degradation of enzymatically inactive proteins and 
viral assembly[65]. Although this study related amino acid residues to the progression of infection and consequent 
worsening of fibrosis staging, further studies are necessary to clarify the actions of these protein residues in the viral 
cycle.

The main limitation of this research was the sample size. This study covered a regional sample and were limited to a 
single center, which may limit external generalization. However, the results encourage further research with a larger 
casuistry and the application of this methodology to other liver diseases.

The current study has innovative potential for the detection of markers in plasma, an easily accessible biological fluid. 
Besides, liquid biopsy could be used side by side with the other noninvasive tests (like elastography) for achieving more 
accuracy in predicting prognosis.

CONCLUSION
In conclusion, the results from this study suggest that some of the observed biomarkers, once validated, have the 
potential to be applied as prognostic biomarkers. In addition, they suggest that liquid biopsy analyses of plasma 
metabolites are a good source of molecular biomarkers capable of stratifying patients with CHC according to fibrosis 
grade.

ARTICLE HIGHLIGHTS
Research background
Chronic hepatitis C (CHC) is an infectious disease caused by the hepatitis C virus, leading to liver issues like fibrosis, 
cirrhosis, cancer, and death. The accurate fibrosis stage identification is crucial for treatment decisions and predicting 
outcomes. Thus, blood markers are a source of relevant information on the staging of fibrosis, in a less invasive and 
representative way, compared to percutaneous biopsies.

Research motivation
Currently, approaches to staging fibrosis are invasive, subject to sampling errors and subjectivity between observers. In 
clinical routine, blood markers should be considered a relevant source of information. However, current approaches are 
limited to routine biochemical tests associated with clinical information, which is not very informative. Analyses based on 
liquid biopsy are less invasive, and blood plasma, since it circulates throughout the body, can provide information on 
pathologies that have not yet manifested themselves clinically, positively impacting on prognosis.

Research objectives
Analyze the plasmatic metabolome of CHC patients, looking for potential biomarkers to stratify these lesions.

Research methods
Plasma metabolites from hepatitis C patients and 50 healthy volunteer participants were analyzed using the LTQ Mass 
Spectrometer. The sample and the control group were classified into Fibrosis grades was classified using the Metavir 
score. Liver samples were collected by percutaneous biopsy before any treatment and then analyzed histologically. The 
most relevant metabolites were categorized using the METLIN online metabolomics database. The molecules of interest 
were added to a list of candidates and subsequently fragmented in silico using the MassFrontier tool. Molecules 
compatible with those generated experimentally were then selected for functional analysis.

Research results
For each degree of fibrosis, six differential metabolites were identified that were able to establish an interesting grouping 
trend among patients with the same degree of fibrosis.

Research conclusions
The results of this study suggest that liquid biopsy analyzes of plasma metabolites are a good source of molecular 
biomarkers capable of stratifying patients with CHC according to their fibrosis grade.

Research perspectives
Some of the observed biomarkers, once validated, have the potential for application as prognostic biomarkers. This study 
has innovative potential regarding the detection of pre-clinical biomarkers in easily accessible plasma using minimally 
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invasive methods.
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Abstract
This letter to the editor relates to the study entitled "Non-invasive model for 
predicting high-risk esophageal varices based on liver and spleen stiffness". Acute 
bleeding caused by esophageal varices is a life-threatening complication in 
patients with liver cirrhosis. Due to the discomfort, contraindications, and 
associated complications of upper gastrointestinal endoscopy screening, it is 
crucial to identify an imaging-based non-invasive model for predicting high-risk 
esophageal varices in patients with cirrhosis.

Key Words: Cirrhosis; High-risk esophageal varices; Non-invasive prediction model; 
Spleen stiffness measurement; Liver stiffness measurement; Upper gastrointestinal 
endoscopy
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Core Tip: Liver cirrhosis is the end of chronic liver disease. Rupture of esophageal 
varices (EVs) is a common and potentially fatal complication in patients with cirrhosis. 
In clinical practice, prophylactic treatment is primarily used to prevent events of 
esophageal venous bleeding, however, this strategy requires invasive and expensive 
upper gastrointestinal endoscopy testing, leading to poor patient adherence. In recent 
years, several studies have demonstrated an association between EVs and liver stiffness 
measurement (LSM) as well as spleen stiffness measurement (SSM). The main 
objectives of this paper are to elucidate the differences between EVs, SSM, and LSM 
and explore the feasibility of using LSM and SSM to develop a non-invasive model for 
predicting high-risk esophageal varices.
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TO THE EDITOR
We read with interest the retrospective study by Yang et al[1], which is titled "Non-invasive model for predicting high-
risk esophageal varices based on liver and spleen stiffness". The results of this study highlight the potential use of liver 
stiffness measurement (LSM) and spleen stiffness measurement (SSM) for predicting high-risk esophageal varices (HEVs) 
in patients with cirrhosis.

Portal hypertension (PH) is a common and significant complication in patients with cirrhosis, leading to esophageal 
varices (EVs)[2]. Hepatic venous pressure gradient and upper gastrointestinal endoscopy (UGE) are considered the gold 
standard for assessing the severity of PH and the risk of EV bleeding. However, due to their invasiveness, discomfort, 
and high cost, it is crucial to identify non-invasive markers for screening HEVs in cirrhotic patients[3,4]. In recent years, 
LSM and SSM using transient elastography (TE), acoustic radiation force impulse elastography, two-dimensional shear 
wave elastography, and magnetic resonance elastography have been proven to be accurate diagnostic tools for evaluating 
chronic liver disease with liver fibrosis as well as predicting the presence or absence of HEVs[5].

We want to emphasize a few points about this study: In this study, the authors used Baveno VI as a comparator but did 
not include the more comprehensive Baveno VII as a comparator[6]. At the same time, the authors did not distinguish 
between the M and XL models of the FibroScan probe when measuring LSM and SSM, which may have an impact on the 
comprehensiveness and accuracy of the results[7]. Second, patients with current/past clinical cirrhosis were included in 
this study, but the proportion of patients with decompensated cirrhosis in this cohort is unclear, since the non-invasive 
measures used here were primarily used for endoscopic triage of patients with compensated cirrhosis. No guidelines 
recommend its use in patients with clinical decompensation, for whom screening by UGE is recommended. Additionally, 
while all subjects included in this study had viral hepatitis cirrhosis, they did not consider the possible effect of antiviral 
treatment on TE measurements. Furthermore, the effect of alcoholic and nonalcoholic steatohepatitis on cirrhosis has been 
underrepresented, which may limit the external validity of our findings across diverse populations and settings. To 
enhance the reliability of the conclusions of this study, we recommend a study with a larger sample size, especially in 
patients with nonalcoholic steatohepatitis and alcohol-induced cirrhosis, to verify the validity of the model in patients 
with different types of cirrhosis. Such a study would help improve the convenience and operability of clinical practice 
and more accurately assess the condition of patients.

The highlight of this study is that all enrolled patients completed UGE testing. Additionally, when SSM is unavailable 
or unsuccessful, the Baveno VI criterion can be used as a reasonable alternative according to Yang et al[1] Moreover, a 
screening strategy based on LSM and SSM could reduce the workload of endoscopy and optimize the use of health care 
resources while minimizing risk and patient discomfort. In summary, we acknowledge the efforts and contributions 
made by the authors. Furthermore, we recommend further prospective validation to facilitate future research on this 
topic.
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