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Abstract
Non-alcoholic fatty liver disease (NAFLD) is the most 
common diffuse liver disease, with a worldwide pre
valence of 20% to 46%. NAFLD can be subdivided into 
simple steatosis and nonalcoholic steatohepatitis. Most 
cases of simple steatosis are non-progressive, whereas 
nonalcoholic steatohepatitis may result in chronic liver 
injury and progressive fibrosis in a significant minority. 
Effective risk stratification and management of NAFLD 
requires evaluation of hepatic parenchymal fat, fibrosis, 
and inflammation. Liver biopsy remains the current 
gold standard; however, non-invasive imaging methods 
are rapidly evolving and may replace biopsy in some 
circumstances. These methods include well-established 
techniques, such as conventional ultrasonography, com
puted tomography, and magnetic resonance imaging 
and newer imaging technologies, such as ultrasound 
elastography, quantitative ultrasound techniques, mag
netic resonance elastography, and magnetic resonance-
based fat quantitation techniques. The aim of this article 
is to review the current status of imaging methods for 
NAFLD risk stratification and management, including their 
diagnostic accuracy, limitations, and practical applicability.

Key words: Simple steatosis; Non-alcoholic fatty liver 
disease; Ultrasonography; Computed tomography; 
Nonalcoholic steatohepatitis; Elastography; Magnetic 
resonance

© The Author(s) 2018. Published by Baishideng Publishing 
Group Inc. All rights reserved.

Core tip: Patients with non-alcoholic fatty liver disease 
(NAFLD) are at risk of steatohepatitis and progressive 
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liver fibrosis or progressive liver disease. However, recent 
longitudinal paired biopsy studies have shown that some 
patients with SS can progress to develop inflammation and 
fibrosis[6], and up to 20%–30% can progress to NASH[7]. 
Patients with NASH have a 20%–50% risk of developing 
progressive inflammation or liver fibrosis[8,9] and have a 
2%–20% 5-year cumulative incidence of hepatocellular 
carcinoma[10]. In addition, NAFLD is an independent 
cardiovascular disease risk factor with a 70% overall 
mortality increase, driven by a about 300% increase in 
cardiovascular disease mortality[11].

Pathophysiology of NAFLD 
The underlying pathophysiology of NAFLD is the accu
mulation of hepatic free fatty acids and triglycerides[12]. 
The pathogenesis of progression from simple fatty liver 
to NASH is not fully understood. The widely popular 
“two-hit hypothesis,” suggests a “first hit” involves lipid 
accumulation in the hepatocytes, which increases the 
risk for a “second hit,” comprising several factors, which 
result in hepatic injury, inflammation, and fibrosis[13]. 
The “multiple hit” hypothesis considers multiple insults, 
such as insulin resistance, hormones secreted from the 
adipose tissue, gut microbiota, genetic, epigenetic factors 
and nutritional factors, many of them acting together in 
genetically predisposed subjects to induce NAFLD[14,15].

Irrespective of the underlying pathophysiological 
process, adequate characterization of the NAFLD spectrum 
for prognostication necessitates the evaluation of three 
disease components. (1) Hepatic steatosis: The diag
nosis and quantification of hepatic fat is the threshold 
criterion for the diagnosis of NAFLD. Steatosis has also 
been recognized as a risk factor for diabetes and other 
cardiovascular risk factors[14] (Figure 1); (2) Inflammation 
and cellular injury: steatohepatitis is distinguished from 
steatosis by the presence of inflammation in conjunction 
with a particular form of hepatocyte injury termed 
hepatocyte ballooning, which distinguishes the progressive 
form of NAFLD from the non-progressive forms[16]. 
Other histologic features of NASH are variably present 
and include necrosis, glycogen nuclei, Mallory bodies 
and fibrosis[17]; and (3) Fibrosis: Clinical outcomes have 
been shown to be correlated with fibrosis, and hence 
identification and quantification of fibrosis is crucial for 
effective risk stratification and disease management[18].

Role of Liver Biopsy
Adequate NAFLD risk stratification and management 
requires assessment and preferably quantification of 
hepatic parenchymal fat, inflammation, and fibrosis. The 
current gold standard remains liver biopsy. Liver biopsy 
specimen evaluation in NAFLD patients can presently 
be accomplished using standardized pathologic staging 
systems, including the Kleiner modification of the 
Brunt scoring system or the NASH-CRN (Nonalcoholic 
Steatohepatitis Clinical Research Network) scoring syst
em[19]. For example, the Brunt criteria include evaluation 
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liver fibrosis culminating in cirrhosis, typically over a 
period of decades. Early diagnosis and risk stratification 
are essential for effective management. Current imaging 
methods such as ultrasound, computed tomography, and 
magnetic resonance elastography have demonstrated 
their values to serve as noninvasive imaging biomarkers to 
evaluate NAFLD progression, but they are still relatively 
limited in the detection of inflammation, which is more 
important than steatosis in terms of its high risk for 
fibrosis, cirrhosis, and hepatocellular carcinoma.

Li Q, Dhyani M, Grajo JR, Sirlin C, Samir AE. Current 
status of imaging in nonalcoholic fatty liver disease. World J 
Hepatol 2018; 10(8): 530-542  Available from: URL: http://www.
wjgnet.com/1948-5182/full/v10/i8/530.htm  DOI: http://dx.doi.
org/10.4254/wjh.v10.i8.530

INTRODUCTION
Non-alcoholic fatty liver disease (NAFLD) is increasingly 
becoming a disease of clinical importance, largely due to 
increasing prevalence, better understanding of patho
physiology, and rapid development of therapeutics[1]. 
In this article, we review imaging methods for NAFLD 
screening, diagnosis and risk stratification, with a focus on 
diagnostic accuracy, limitations, and practical applicability.

EPIDEMIOLOGY AND CLINICAL 
FEATURES OF NAFLD
NAFLD is a chronic liver disease defined as the pathological 
presence of hepatic steatosis (> 5% of the cross-sectional 
area of the liver occupied by fat vacuoles) in the absence 
of any secondary cause for hepatic fat accumulation, such 
as alcohol use, steatogenic medication, and hereditary 
disorders[1]. It has an estimated worldwide prevalence 
ranging from 20% to 46%, varying with study population 
and diagnostic criteria used[2]. In the United States, NAFLD 
is estimated to affect approximately 30% (100 million) of 
the population[3,4]. The prevalence is even higher amongst 
obese (70%) and diabetic (90%) individuals[5]. NAFLD-
related liver impairment is expected to be the dominant 
cause of end stage liver disease (ESLD) requiring 
transplantation in the United States by 2020[4].

NAFLD comprises a spectrum of disease that can be 
simplified into two categories: (1) Simple Steatosis (SS), 
70%-75% of cases, defined by excess liver fat without 
inflammation or cellular injury; and (2) nonalcoholic 
steatohepatitis (NASH), 25%-30% of cases, defined by 
the presence of excess liver fat with inflammation and 
cellular injury[1,2]. It is important to appreciate that SS and 
NASH are not entirely distinct, with many patients falling 
along a spectrum of fatty accumulation, inflammation, and 
hepatocyte injury. Nonetheless, this simplification facilitates 
prognostication and assessment of clinical significance. In 
most cases, SS is non-progressive, and does not result in 
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evaluation of inflammation and degrees of fibrosis less 
than cirrhosis are not possible with conventional imaging 
techniques. Newer imaging technologies are being 
increasingly used in combination with conventional tech
nologies and include ultrasound elastography (USE), 
quantitative ultrasound-based techniques, magnetic 
resonance elastography (MRE), and magnetic resonance-
based fat quantitation techniques[24].

IMAGING ASSESSMENT OF NAFLD
Imaging evaluation of the liver has several advantages 
over liver biopsy and serum biomarkers in the evaluation 
of NAFLD, including: (1) non-invasiveness; (2) evaluation 
a greater volume of liver parenchyma than biopsy, which 
reduces sampling error in heterogeneously distributed 
diffuse liver disease processes; and (3) less variability 
and more quantitative than histopathologic liver biopsy 
specimen evaluation with some techniques[25].

Ultrasonography
Conventional US is often the first imaging modality used 
to evaluate fatty liver clinically[26], especially for screening 
of suspected NAFLD, due to its lack of invasiveness, 
wide availability, and relatively low cost[27]. NAFLD 
sonographic features include increased echogenicity, 
hepatomegaly, and intra-hepatic vascular blurring[28]. 
Fatty liver has higher echogenicity than renal cortex and 
splenic parenchyma owing to intracellular fat vacuole 
accumulation[29], Figure 2 with increased acoustic wave 
reflection. Steatosis is reported to be detectable by US 
when more than 20% of hepatocytes contain histologically 
visible fat droplets, with a reported sensitivity of 79.7% 
and specificity of 86.2%[30]. 

There are several limitations of conventional US for 
NAFLD evaluation: (1) It is qualitative and therefore 
subjective. The value of conventional US to evaluate 
NAFLD is limited by the subjective nature of the criteria 
used to differentiate fatty from normal liver and a lack 
of sonographic criteria for different degrees of steatosis; 
(2) Sensitivity is limited when there are few steatotic 
hepatocytes[30]; (3) The sensitivity and specificity of B 
mode sonography decreases as BMI (body mass index) 

of fat, fibrosis, and necroinflammation, and according 
to this system, NASH is diagnosed by the presence of 
fibrosis (grade 1 or more) or necroinflammation (grade 2 
or more)[20].

Patients with a higher likelihood of NASH based on 
clinical criteria will usually be referred for liver biopsy. 
Limitations of liver biopsy include sampling error, inter
observer variability, patient anxiety, and procedure-related 
morbidity and mortality[21]. Ultimately, the high prevalence 
of NAFLD implies that liver biopsy is not a viable tool for 
widespread NAFLD risk stratification.

NON-INVASIVE METHODS FOR NAFLD 

EVALUATION
The limitations of liver biopsy have driven a search for 
non-invasive NAFLD screening and risk stratification 
methods. Since advanced fibrosis has been proven to be 
prognostic of poor outcomes in NAFLD, multiple surrogate 
fibrosis markers have been studied, including clinical 
predictors, serum biomarkers, and imaging methods[22]. 
One of these methods, the NAFLD fibrosis score, is used 
to assess advanced fibrosis risk. In this method, clinical 
parameters such as age, body mass index, albumin, 
AST/ALT ratio, etc., are used to calculate a score. A 
score of > 0.676 has an 82% positive predictive value 
in diagnosing advanced liver fibrosis (stage ≥ 3 in a 
5-stage fibrosis scoring system) in patients with histology-
proven NAFLD[19]. Serum biomarkers such as aspartate 
aminotransferase (AST) and alanine aminotransferase 
(ALT) have been shown to be elevated in patients with 
NAFLD/NASH, although normal aminotransferase levels do 
not exclude the diagnosis of SS or NASH[23]; patients with 
advanced NAFLD have been reported to have normal ALT 
levels[3].

A variety of imaging modalities are increasingly used 
for NAFLD evaluation and include conventional imaging 
techniques as well as newer technologies. Conventional 
imaging techniques consist of B-mode ultrasonography 
(US), computed tomography (CT), and magnetic resonance 
(MR) imaging. Findings in NAFLD patients with these 
techniques are based on lipid accumulation. However, 

Figure 1  Pathological changes of liver simple steatosis and cirrhosis. A: 45-year-old man with simple steatosis. The liver biopsy shows marked macrovesicular 
steatosis without inflammation or fibrosis (H and E x4); B: 48-year-old man with cirrhosis due to non-alcoholic fatty liver disease. In addition to marked macrovesicular 
steatosis, there is loss of normal hepatic architecture and replacement by regenerative nodules surrounded by bands of fibrous tissue, a characteristic feature of 
cirrhosis (H and E x4).

A B
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Table 1  Summary table for the value of conventional and elastographic imaging modalities in non-alcoholic fatty liver disease 
stratification
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increases, varying between 49%-100% and 75%-95%[31]; 
and (4) Conventional sonography cannot differentiate 
steatosis and steatohepatitis or stage fibrosis[32,33].

Quantitative ultrasound (QUS) parameters, includ
ing attenuation coefficient and backscatter coefficient 
(BSC), have been developed for liver fat quantification. 
Attenuation coefficient measures ultrasound energy loss 
in tissue and provides a quantitative parameter analog
ous to the qualitative loss of view of deeper structures 
observed in severe fatty liver[34]. BSC measures the 
returned ultrasound energy from tissue and provides 
a quantitative parameter analogous to echogenicity[35]. 
One study compared the diagnostic performances of 
attenuation coefficient, BSC, and MRI proton density 
fat fraction (MRI-PDFF) to differentiate three histological 
steatosis grades (grade 1, 2, and 3), and revealed 
AUROCs (area under receiver operating characteristic) 
ranges of 0.779–0.804, 0.811–0.860, and 0.929–0.962, 
respectively[36]. In another study, BSC showed excellent 
diagnostic performance for quantification of hepatic 
steatosis compared to MRI-PDFF, with AUROCs ranging 
from 0.90-0.97 at various degrees of hepatic steatosis 
(MRI-PDFF ≥ 4%, 5%, 6%, and 8%)[35]. Although 
QUS parameters have shown potential for accurate 

hepatic steatosis quantitation, assessment of variation 
across different scanner manufacturers and operators is 
warranted to further investigate accuracy, reproducibility, 
and repeatability[36].

Ultrasound elastography (USE) quantitatively eva
luates liver stiffness to make noninvasive evaluation of 
liver fibrosis and NASH clinically possible. The rationale is 
that fibrosis acts as a parenchymal scaffold that imparts 
rigidity. Estimated tissue stiffness therefore provides 
information on the presence and degree of fibrosis. 
Current state-of-the-art quantitative elastographic me
thods do not measure stiffness directly; rather, they 
assess the propagation of shear waves through tissue 
from which that tissue’s stiffness can be inferred.

USE can be broadly categorized into two methods; 
(1) Transient elastography (a non-imaging ultrasound-
based technique); and (2) imaging-based elastography 
techniques. Two broad categories of imaging-based 
sonoelastography are currently in clinical use: (1) strain 
elastography (SE), which is dependent on operator or 
physiologic forces to produce tissue deformation; and (2) 
SWE (shear wave elastography), which is dependent on 
acoustic radiation force induced tissue displacement[37-43] 
(Table 1).

Modality Steatosis assessment Fibrosis assessment SS / NASH differentiation

Conventional imaging
US Not quantitative1[30]:

Sensitivity 79.7%, Specificity 86.2%
No for fibrosis, but

can detect cirrhosis with high sensitivity
No

CT Quantitative2[38]:
Sensitivity 82%, Specificity 100%

Semi-quantitative for fibrosis, but can detect cirrhosis 
with high sensitivity[39]

No

MRI Quantitative3: Sensitivity 76.7%-90.0%, 
Specificity 87.1%-91%[40,41]

No for fibrosis, but
can detect cirrhosis with high sensitivity

No

Elastographic imaging
TE / CAP Sensitivity 82%, Specificity 91%4[42] Advanced Fibrosis[43]: Sensitivity 91%, Specificity 75% No
USE - Advanced Fibrosis[44]: Sensitivity 100%, Specificity 91% No
MRE Sensitivity 90%, Specificity 93.3%5[42] Advanced Fibrosis[45]: Sensitivity100%, Specificity 92% Yes5[46]: Sensitivity 94%, Specificity 73%

1Gray-scale US detecting steatosis (more than 20% of hepatocytes involved in fat infiltration); 2Non-contrast CT detecting steatosis; 3MRI detecting liver 
histological steatosis; 4Evaluated by CAP based on TE; 5MRE discriminating steatosis from NASH using a threshold of 2.74 kPa. SS: Simple steatosis; NASH: 
Non-alcoholic steatohepatitis; US: Ultrasonography; CT: Computed tomography; MRI: Magnetic resonance imaging; TE: Transient elastography; CAP: 
Controlled attenuation parameter; USE: Ultrasound elastography; MRE: Magnetic resonance elastography.

Rt liver post

A

Rt liver post

B

Figure 2  Grey-scale ultrasound in non-alcoholic fatty liver disease. A: 47-year-old female with increased echogenicity of the liver relative to the right kidney, a 
classic sonographic finding of hepatic steatosis. The patient had elevated serum liver enzymes and underwent a liver biopsy for NASH evaluation; B: 51-year-old 
female who underwent liver biopsy as part of clinical follow-up. On evaluation of liver pathology, there was no steatosis. Ultrasound image shows normal echogenicity 
of the liver parenchyma, which is only slightly hyperechoic relative to the renal parenchyma.
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Fibroscan employs ultrasound transient elastography 
(TE) to measure hepatic elasticity by quantifying the 
shear wave speed with pulse-echo ultrasound from 
low frequency vibrations that are transmitted into the 
liver[44-46]. It is able to detect liver cirrhosis with high 
accuracy, and liver stiffness measurements correlate 
with liver fibrosis stages[47]. In a NAFLD study with 246 
subjects, the AUROCs for the detection of F ≥ 2 and F 
≥ 3 were 0.84 and 0.93, respectively, and the sensitivity 
and specificity for F ≥ 3 were 91% and 75% at a 
cutoff value of 7.9 kPa[48]. A lower TE value appears to 
reliably exclude advanced fibrosis[49]. Because transient 
elastography requires transmission of a mechanical 
wave that originates at the skin, obesity is a significant 
cause of technical failure and unreliable measurements. 
To address this problem, the Fibroscan XL probe was 
developed for obese patients. Controlled attenuation 
parameter (CAP) is another technique implemented 
on the Fibroscan device. The reduction in ultrasound 
amplitude can be estimated as the sound wave traver
ses liver tissues using the same radiofrequency[50]. In 
a study of 183 patients, CAP showed good capability 
in discriminating NASH from simple steatosis, with an 
AUROC of 0.812 (95%CI: 0.724-0.880)[51].

Two-dimensional SWE (2D-SWE) is an ultrasound-
based technique that provides visualization of viscoe
lastic properties of soft tissue in real time[52]. These 
techniques employ acoustic radiation force impulses 
to induce tissue movements at a microscopic level, 
which in turn produces tissue shear waves. Shear wave 
speed is algebraically related to tissue stiffness under 
simple assumptions, expressed as Young’s modulus[53]. 
Unfortunately, vendors of ultrasound elastography 
equipment use technical terminology inconsistently, 
which can cause confusion. Researchers have attempted 
to use this technique for evaluating liver fat content, 
however, a recent study showed that the SWE value 
was essentially independent of hepatic liver fat content 
and was not comparable with the subjective evaluation 

of liver echogenicity in terms of hepatic steatosis 
evaluation[54]. 

Acoustic radiation force impulse (ARFI) imaging is 
a technique of point shear wave elastography, which 
refers to the use of acoustic energy to create shear 
waves in tissue and quantitatively measures the shear 
wave velocity as a marker of elasticity. It has been 
shown that ARFI-induced liver shear wave velocity 
increases with increasing hepatic fibrosis. A study of 54 
patients with NAFLD showed that, at a cutoff of shear 
wave speed (SWS) of 1.77 m/s, AUROC, sensitivity, 
and specificity for the diagnosis of stage ≥ 3 fibrosis 
have been reported to be as high as 0.973, 100%, 
and 91%, respectively[44]. The relationship between 
shear wave speed and steatosis is unclear. In one 
study, SWS was reduced in NAFLD patients, and SWS 
was lower in patients with simple steatosis than in 
healthy volunteers. If true, this would make it difficult 
to distinguish between simple steatosis and NASH with 
mild fibrosis[49]. However, in other studies, steatosis had 
no effect on SWS elasticity estimates[48].

Inflammation is known to increase shear wave 
velocity, confounding fibrosis staging. Nonetheless, the 
information obtained may permit diagnosis of NASH[55] 
(Figure 3).

A large body habitus with BMI > 28 kg/m2 also 
predisposes to failure of shear wave measurements in 
NAFLD. In one study, successful SWE measurements 
were captured in only 75% of obese patients (BMI ≥ 
28 kg/m2) using a standard probe (78). To improve 
diagnostic performance, combined ultrasound elas
tographic methods have been used for liver fibrosis 
assessment. For example, shear wave elastography 
and FibroS can were both used in patients with chronic 
hepatitis C, resulting in high performance in fibrosis 
staging when used in combination[56].

In summary, among the different ultrasound tech
niques for differentiating NASH and simple steatosis, TE 
is studied much more extensively than SWE, but both 

Figure 3  Share wave elastography in non-alcoholic fatty liver disease. A: 54-year old female who underwent liver biopsy for NASH evaluation. The biopsy 
demonstrated steatosis only with no inflammation or fibrosis. SWE median value of 7.05 kPa; B: SWE in a 52-year old female that underwent liver biopsy for the 
evaluation of NASH. A median SWE value of 11.5 kPa was significantly higher than normal liver with steatosis only. On biopsy, the subject had fibrosis stage 0 
according to the METAVIR system and fibrosis stage 1a as per the NAS CRN criteria. The non-alcoholic fatty liver disease activity score in this patient was 6, 
consistent with NASH. NASH: Non-alcoholic steatohepatitis; SWE: Share wave elastography.

A B

Rt liver
Rt liver
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appear to have similar accuracy[57].

CT
Unenhanced CT is more specific than US for NAFLD 
detection[58]. The mechanism of unenhanced CT to ass
ess NAFLD utilizes attenuation values to evaluate the 
liver triglyceride content. Hepatic steatosis manifests 
as reduced attenuation in the liver parenchyma[29], 
which correlates with the degree of intrahepatic fat 
accumulation[59]. CT parameters to evaluate fatty liver 
include (1) the absolute attenuation value (HU, Hounsfield 
units); (2) the attenuation value difference between the 
liver and spleen; and (3) ratio of the liver to the splenic 
attenuation values.

The normal attenuation value of the unenhanced 
liver parenchyma is 50-65 HU, which is typically 8-10 HU 
higher than the spleen[26]. The sensitivity and specificity 
of unenhanced CT to assess ≥ 30% macrovesicular 
steatosis has been reported to be 100% (95%CI: 
70-100) and 95% (95%CI: 90-98), respectively, at a 
cutoff of 58 HU and 73% (95%CI: 43-91) and 100% 
(95%CI: 97-100), respectively, at a cutoff of 42 HU[38]. 
A recent longitudinal study following NAFLD patients 
using CT showed no progression of moderate-to-severe 

hepatic steatosis to symptomatic fatty liver disease over 
a 5-10-year time period[60]. This may be ascribed to the 
variations of liver fat content changes over time. BMI 
changes were identified as an influencing factor, which 
was negatively correlated with changes in attenuation[61].

Using these normal values on unenhanced CT, var
ious combinations of liver parenchyma versus spleen 
parenchyma attenuation values have been studied to 
evaluate fat accumulation in the liver[38]. The normal diff
erence of hepatic and splenic attenuation on unenhanced 
CT (CTL-S) ranges from 1-18 HU. An unenhanced CTL-S of 
less than 1 HU can diagnose ≥ 30% hepatic steatosis, 
with a sensitivity of 67%[62]. The liver/spleen attenuation 
ratio is another helpful parameter, which has an acceptable 
diagnostic performance for steatosis detection[63] (Figure 
4). Unenhanced CT assessment of hepatic steatosis can 
be confounded by deposition of materials other than fat, 
including iron, copper, glycogen, and amiodarone[64]. 

CT has limited diagnostic performance for quantitative 
assessment of mild steatosis; it is sensitive for detecting 
moderate to advanced steatosis. CT can evaluate for 
pre-cirrhotic liver fibrosis, with parameters such as the 
caudate-to-right-lobe ratio and decreased diameter 
of the hepatic veins. The combination of both of these 
parameters showed good diagnostic performance for pre-
cirrhotic liver fibrosis (sensitivity 83%, specificity 76%) 
and liver cirrhosis (sensitivity 88%, specificity 82%)[39].

Voxel-based CT attenuation values are subject to be 
influenced by the contents in the dedicated voxel, so 
CT values may be influenced by other materials in the 
liver, such as iron or glycogen, even having the same 
fat content[65]. Other sources of variations in attenuation 
values include CT scan settings (voltage, tube current, 
pitch, etc.) and patient parameters (BMI, iodinated 
contrast agents, etc.), all of which limit the reliability of 
unenhanced CT for quantitative measurement[54,66,67]. 

Contrast-enhanced CT: Both hepatic and splenic 
attenuation can be influenced by altered perfusion, 
acquisition timing, contrast type, dosage, and injection 
rate. On contrast-enhanced CT, a difference of liver/
spleen attenuation of at least 20 HU between 80-100 s 
after intravenous contrast injection or at least 18.5 HU 
between 100-120 s after contrast administration (Figure 5) 
have sensitivity ranging from 54% to 93% and specificity 
ranging from 87%-93% for hepatic steatosis[68]. These 
criteria are confounded by variability in contrast-enhanced 
CT protocols and timing differences related to peripheral 
injection site variation[69], consequently reliability of the 
technique is limited. In general, the diagnosis of hepatic 
steatosis should be rendered only with caution or if the 
findings are unequivocal on contrast-enhanced CT.

Dual-energy CT: Recent advances in dual-energy CT 
(DECT) have introduced the ability to perform material 
decomposition, which has been shown to more accura
tely quantify hepatic steatosis and potentially permit 
fibrosis staging[70]. In DECT, the liver is imaged at two 

Figure 4  Unenhanced computed tomography of the abdomen in a patient with 
fatty liver disease. Regions of interest placed within the liver and spleen demonstrate 
a hepatic attenuation of 16.75 Hounsfield units (less than 40) and a splenic attenuation 
of 40.68 Hounsfield units. This meets the definition of fatty liver on CT by absolute 
value, liver/spleen attenuation difference, and liver/spleen attenuation ratio criteria.

Figure 5  Contrast-enhanced computed tomography of the abdomen demon
strating a fatty liver. The liver has an attenuation value of 42.64 Hounsfield 
units while the spleen has an attenuation value of 104.25 Hounsfield units. An 
attenuation difference of 62 HU is highly suggestive of fatty liver disease.
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different energy levels (typically 80 kVp and 140 kVp). 
Attenuation differences of tissue at different energies 
levels are a function of tissue composition, allowing for 
post-processing of images into “material decomposition 
images.” Material separation enables the generation of 
iodine, water, and fat-weighted images. DECT has the 
potential to quantitate liver fat content independent of 
ROI (region of interest) placement[71] (Figure 6). In a 
recent study of 50 patients, DECT measurement of fat 
content showed good correlation with magnetic resonance 
spectroscopy (MRS), indicating its potential to quantify 
steatosis[54].

Single-energy CT: Unenhanced single-energy CT 
(SECT) attenuation values has shown good correlation 
with quantitative MRI in animal NAFLD models[72]. In 
a human study, SECT attenuation values acquired at 
120 kVp had good correlation with MRS (r2 = 0.855) 
in overall patients, but the correlation was significantly 
lower with MRS in patients with less than 5.56% fat 
at MRS (r2 = 0.07), which may be ascribed to the fact 
that minimal fat in the liver is not CT-detectable[54]. This 
study also showed that unenhanced SECT (120 kVp) 
had high performacne for fat quantification compared 
with DECT (80 and 140 kVp). This was likely bacause 
DECT was presumably used with contrast enhancement, 
which accentuated the differences between iodine and 
the liver but not between fat and water.

MRI
MRI is regarded as the most definitive imaging tool to 
qualitatively and quantitatively evaluate hepatic steatosis. 
Both fat and water contribute to the signal observed in the 
liver on MRI. Differences in the precession of protons in 
fat and water allow for detection of fat through various MR 
techniques (Table 1)[36,73]. The sensitivity and specificity 
of MRI for detecting histologically confirmed steatosis (≥  
5%) are 76.7%-90.0% and 87.1%-91%[40,41]. Frequency-
selective MRI, chemical-shift-encoded MRI, and MR 
spectroscopy are three techniques that exploit fat-water 
precession differences to assess fatty liver disease[74]. 

Frequency-selective imaging applies a saturation 
radiofrequency pulse to the fat or water frequency range 
to selectively suppress (or excite) fat or water signals. Fat 
saturation is a common option for many clinical imaging 
sequences, including most spin-echo and gradient-echo 
based sequences at 1.5 T and higher. With fat saturation, 
the images coincide with the water signal alone; without 
fat saturation, they represent the sum of fat and water 
signals. Therefore, hepatic fat may be assessed by 
comparing these two sets of images. In hepatic steatosis, 
the fat-saturated images show relative signal loss 
compared to unsaturated images. In normal liver, fat 
saturation has no effect and the two sets of images have 
similar signal intensities. This approach is reasonable 
for qualitative assessment of liver fat, but does not lend 
itself to accurate or reliable fat quantification because it is 

Figure 6  Dual-energy CT images for the assessment of liver fibrosis. A: Delayed phase axial CT images from a patient with mild fibrosis; B: Severe fibrosis; C-D: 
DECT color overlay contrast agent maps. Iodine concentration within the liver parenchyma in reference to that in the aorta [NIC (normalized iodine concentration) in mg/mL 
= I Liver / I Aorta] on 5 min delayed acquisitions can be seen on the images. Since contrast media is retained within fibrotic tissues, the NIC on delayed-phase images 
increases with the severity of liver fibrosis; D: Patients with severe cirrhosis have higher parenchymal contrast media retention on delayed images in relationship to the 
aorta, as compared to the mild retention in patients with lesser grades of liver fibrosis (C).
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not possible to achieve perfect fat suppression (or water 
excitation), and there is usually unsuppressed fat signal.

Dixon methods
Chemical-shift-encoded imaging methods, also termed 
Dixon methods, use the echo time-dependent phase-
interference effect between fat and water gradient-
echo signals to accurately detect and quantify fat 
content[63]. Because fat and water molecules process at 
different frequencies, they undergo phase interference 
at predictable intervals. Fat and water signals cancel at 
out-of-phase (OP) and add at in-phase (IP) echo times. 
Due to this phenomenon, hepatic fat may be assessed 
by comparing sequential OP and IP images. In fatty liver 
disease, the OP images show relative signal loss due 
to signal cancellation (Figure 7). In normal liver, the OP 
and IP images have similar intensities[75]. The OP pulse 
sequence should be obtained prior to the IP sequence to 
ensure that perceived signal loss is due to fat deposition 
and not T2* decay, which may occur in the setting of 
hepatic parenchymal iron deposition. Fat-only and water-
only images can be computed using advanced chemical-
shift-encoded imaging data. These techniques allow for 
reliable and reproducible detection of liver fat[76] but are 
unsuitable for fat quantification because of the presence 
of confounding factors. 

Dixon pulse sequences are offered as a standard fat-
suppression technique by nearly every major vendor. 
Currently, GE (Milwaukee, WI) offers a three-point Dixon 
technique called IDEAL (Iterative Decomposition of 
water and fat with Echo Asymmetry and Least-squares 
estimation), which is a single acquisition technique that 
results in inherent registration between in-phase and out-
of-phase sequences, allowing for reduced scan times and 
increased reproducibility[77]. The robust fat suppression 
of IDEAL also allows for imaging of challenging body 
parts, which is why it is widely utilized in musculoskeletal 
radiology. Another GE product, named Flex, is a two-
point Dixon technique that, while providing less robust 
fat suppression than its IDEAL counterpart, offers faster 
acquisition for use in dynamic contrast-enhanced imaging 
and patients prone to motion artifact. Siemens (Erlangen, 
Germany) has two and three-point techniques under the 
generic name DIXON, which utilize multi-echo fat and 
water separation for detection of small concentrations of 

fat with increased contrast resolution. Philips (Best, the 
Netherlands) offers multi-point Dixon (mDixon) in a single 
breath hold to decrease acquisition time and maximize in-
plane and through-plane resolution while offering flexibility 
in echo time settings. Hitachi (Tokyo, Japan) offers a 
two-point Dixon sequence called FatSep. Advantages 
of this technique include uniform fat suppression over a 
large field-of-view, particularly in the presence of a metal 
implant, as well as customizable levels of fat suppression 
(light, medium, or heavy). Toshiba (Tochigi, Japan) also 
has a 2-point Dixon technique called WFOP (Water-Fat 
Opposed Phase). Regardless of the implementation details, 
all of the current Dixon-type sequences produce four sets 
of images, including water only, fat only, in-phase, and out-
of-phase[78] (Figure 8).

Magnetic resonance spectroscopy (MRS) evaluates 
proton signals as a function of their resonant frequency, 
which shows multiple peaks at different locations within a 
specified volume of the liver[71]. The MR spectrum describes 
the intensity of MR signal as a function of precession 
frequency, with fat and water producing the most visible 
peaks. However, water occurs as a single peak and fat 
shows as multiple peaks due to its multiple chemical 
components[29]. Thus, in fatty liver disease, both water and 
fat spectral peaks are present. In normal (non-fatty) liver, 
only the water peak is seen. To be performed correctly, 
confounding factors need to be addressed including T1 bias 
(addressed by use of long repetition time ≥ 3000 ms), 
T2 relaxation (addressed by collecting spectra at multiple 
echo times and correcting for T2 decay), and J-coupling 
(minimized by using appropriate spectroscopic sequences 
and using the shortest possible mixing time).

Current state-of-the-art MR techniques for quantifying 
hepatic steatosis include confounder-corrected chemical-
shift-encoded MRI, which can estimate the PDFF. Unlike 
US and CT, which use surrogate measures of fat in the 
form of altered echogenicity and attenuation, PDFF 
measures the fraction of MRI-visible protons bound to 
fat divided by all MRI-visible protons in the liver (fat 
and water)[79]. Using this technique, the liver signal on 
MRI is divided into water and fat signal components by 
acquiring gradient echoes at appropriately spaced echo 
times, so as to quantify the percentage of liver fat[80]. 
Images are acquired with a low flip angle to minimize 
T1 bias and at multiple echo times to measure and 

Figure 7  Hepatic steatosis on magnetic resonance imaging. A, B: In phase (A) and out of phase (B) gradient echo T1-weighted images of the abdomen demonstrate 
signal dropout on the out of phase image due to the presence of microscopic (intracellular) fat deposition in the liver; C: A fat only image via the Dixon method demonstrates 
diffuse fat accumulation as evidenced by increased T1 signal within the liver.
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correct for T2* decay. The signal model mathematically 
incorporates a multi-peak fat spectrum to address the 
multi-frequency interference effects of protons in fat[81]. 
In a study of 50 patients, it was found that complex 
three-echo chemical-shift-encoded MRI is equivalent to 
MRS for quantifying liver fat, but only after correction for 
T2* decay and T1 recovery and spectral fat modeling[82]. 
MRI-PDFF has demonstrated a high diagnostic accuracy 
(AUROC = 0.989, 95%CI: 0.968-1.000) for detecting 
histological steatosis grade 1 or higher, and can be mea
sured reproducibly across field strengths and scanner 
manufacturers[83]. 

Magnetic resonance elastography (MRE) uses a 
modified phase-contrast MRI sequence and an external 
mechanical actuator to induce and non-invasively visua
lize propagating tissue shear waves[84]. It estimates the 
degree of fibrosis throughout the liver by analyzing the 
resulting wavefield using a so-called inversion algorithm 
from which the magnitude of the complex shear modulus 
(often described as the “shear stiffness” for simplicity) is 
computed[31]. Similar to ultrasound elastography, MRE-
estimated stiffness increases along with fibrosis stage. 
MRE can differentiate fibrosis between F ≥ 2 and F1 
(sensitivity 89.7%, specificity 87.1%) at a stiffness cutoff 
value of 3.05 kPa, and it can also discriminate severe 
fibrosis (F3) from liver cirrhosis (sensitivity 100%; 
specificity 92.2%) with a cutoff value of 5.32 kPa[45]. 
In addition to staging advanced fibrosis, MRE has also 
shown high accuracy for discriminating SS from NASH 
in a retrospective study in a cohort of patients with a 
relatively high frequency of advanced disease (cutoff 
value 2.74 kPa, AUROC 0.93, sensitivity of 94%, and 

specificity 73%). The performance of MRE to diagnose 
NASH in the absence of significant fibrosis is unknown[46] 
but is thought to be limited. These studies indicate that 
MRE-measured hepatic stiffness has the potential to 
identify NASH before fibrosis onset. Finally, MRE shows 
superior diagnostic performance than TE for liver fibrosis 
evaluation, but low availability and high cost limit its 
widespread clinical adoption[29,42].

Imaging Assessment of NAFLD in 
Pediatric Patients
The estimated prevalence of NAFLD in overall children 
is 10%, but increases to 40%-70% in the obese 
pediatric population[85]. The value of MRE and SWE 
in the pediatric population has been compared with 
that in adult patients. MRE has shown comparable 
sensitivity and specificity to detect any stage of fibrosis 
(≥ F1) from no fibrosis, and its optimal threshold to 
differentiate ≥ F3 fibrosis is reported 3.03-3.33 kPa, 
which were lower than in adults with NAFLD (3.45-4.8 
kPa) (Figure 9)[37,86,87]. SWE is also an accurate tech
nique to detect significant liver fibrosis (≥ F2) in 
pediatric patients with NAFLD (AUC = 0.97, 95%CI: 
0.95-0.99) and for mild liver fibrosis (≥ F1, AUC = 0.92, 
95%CI: 0.86-0.98)[88]. Given the variated thresholds 
in MRE and SWE, further investigation is warranted 
to validate and standardize optimal cutoffs for fibrosis 
staging. Additionally, current imaging techniques still 
have limitations to accurately discriminate pediatric 
early stage fibrosis, which is important to be monitored 
for early treatments.

Figure 8  Magnetic resonance imaging dixon technique in the patient with hepatic steatosis. A: Water only sequence; B: Fat only sequence; C: In-phase sequence; D: 
Out-of-phase sequence.
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CONCLUSION
Patients with NAFLD are at risk of steatohepatitis and 
progressive liver fibrosis culminating in cirrhosis, typically 
over a period of decades. Early diagnosis and risk 
stratification are essential for effective management. 
Current imaging methods such as ultrasound, CT, and MRI 
have demonstrated their values to serve as noninvasive 
imaging biomarkers to evaluate NAFLD progression, 
but they are still relatively limited in the detection of 
inflammation (NASH), which is more important than 
steatosis in terms of its high risk for fibrosis, cirrhosis, 
and HCC. Detection of NASH by imaging remains the 
future direction in NAFLD.
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