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Abstract
Antimicrobial peptides (AMP) are highly diverse and dynamic molecules that are 
expressed by specific intestinal epithelial cells, Paneth cells, as well as immune 
cells in the gastrointestinal (GI) tract. They play critical roles in maintaining 
tolerance to gut microbiota and protecting against enteric infections. Given that 
disruptions in tolerance to commensal microbiota and loss of barrier function play 
major roles in the pathogenesis of inflammatory bowel disease (IBD) and 
converge on the function of AMP, the significance of AMP as potential biomarkers 
and novel therapeutic targets in IBD have been increasingly recognized in recent 
years. In this frontier article, we discuss the function and mechanisms of AMP in 
the GI tract, examine the interaction of AMP with the gut microbiome, explore the 
role of AMP in the pathogenesis of IBD, and review translational applications of 
AMP in patients with IBD.

Key Words: Antimicrobial peptides; Inflammatory bowel disease; Ulcerative colitis; 
Crohn’s disease; Gut microbiome; Biomarkers
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infection while maintaining intestinal homeostasis to support commensalism with the 
gut microbiome. AMPs have broad spectrum antimicrobial activity with diverse 
mechanisms of action and regulate gut microbiome composition. Defects in 
endogenous AMP expression and function have been linked with animal models of 
inflammatory bowel disease (IBD). Exogenous delivery of AMPs such as defensins, 
cathelicidin, and elafin attenuates intestinal inflammation in murine models of IBD. 
AMPs such as calprotectin and lactoferrin are useful biomarkers for patients with IBD. 
Challenges with AMP stability, bioavailability, and selectivity are major barriers to 
their application as potential therapies.

Citation: Gubatan J, Holman DR, Puntasecca CJ, Polevoi D, Rubin SJ, Rogalla S. Antimicrobial 
peptides and the gut microbiome in inflammatory bowel disease. World J Gastroenterol 2021; 
27(43): 7402-7422
URL: https://www.wjgnet.com/1007-9327/full/v27/i43/7402.htm
DOI: https://dx.doi.org/10.3748/wjg.v27.i43.7402

INTRODUCTION
The gastrointestinal (GI) tract is a highly complex and dynamic ecosystem consisting 
of a protective epithelial barrier in constant exposure to commensal microorganisms 
that are collectively known as the gut microbiome[1]. An intricate balance between 
tolerance to commensal microorganisms and protection against enteric pathogens is 
required to maintain intestinal homeostasis. A breakdown in this balance has been 
recognized to play a role in the pathogenesis of inflammatory disorders of the GI tract 
such as inflammatory bowel disease (IBD)[2]. Antimicrobial peptides (AMPs) are 
diverse and bioactive compounds that play critical roles in host defense and 
maintaining tolerance to commensal microorganisms[3,4]. Here we provide a compre-
hensive review of the significant AMP functions in the GI tract and the gut 
microbiome, potential roles of AMPs in the pathogenesis and treatment of IBD based 
on preclinical animal models, and translational applications of AMPs in patients with 
IBD.

ANTIMICROBIAL PEPTIDES IN THE GASTROINTESTINAL TRACT 
Human defensins
Table 1 summarizes the major classes of AMPs in the GI tract. Defensins, which consist 
of small cationic peptides, protect against bacterial infections by directly disrupting 
bacterial membranes. The two major classes of defensins include α-defensins and β-
defensins which differ structurally in their cysteine pairings[5]. Human α-defensins are 
also known as human neutrophil peptides (hNP). Human defensin 5 and 6 (HD5 and 
HD6) are the only α-defensins produced in the GI tract by Paneth cells, highly 
specialized secretory epithelial cells with antimicrobial function[6]. Known functions 
of HD5 include conferring resistance to oral challenge with enteric pathogens[7] and 
regulating the intestinal microbiota by reducing levels of segmented filamentous 
bacteria[8].  HD6 has been shown to restrict infection by limiting intestinal epithelial 
cell invasion[9]. β-defensins are expressed by enterocytes of the small and large 
intestine. The most relevant intestinal β-defensins include human β-defensins 1–4 
(hBD-1, hBD-2, hBD-3, and hBD-4). hBD-2 and hBD-3 expression increases in response 
to infectious stimuli, whereas hBD-1 is constitutively expressed by the GI tract[10]. β-
defensins hBD-2-4 have antimicrobial activity against Escherichia coli (E. coli), 
Pseudomonas aeruginosa, Staphylococcus aureus, and Streptococcus pyogenes, whereas hBD-
1 only has activity against gram positive commensals[11-13].

Cathelicidin
Cathelicidin is another class of cationic peptides that mediates its bactericidal effects 
through direct disruption and lysis of bacterial membranes. Cathelicidin, also known 
as LL-37 or hCAP18, is an 18 kDa antimicrobial peptide involved in innate immune 
defenses and is encoded by the CAMP gene in humans[14]. Cathelicidin has a broad-

https://creativecommons.org/Licenses/by-nc/4.0/
https://creativecommons.org/Licenses/by-nc/4.0/
https://creativecommons.org/Licenses/by-nc/4.0/
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Table 1 Antimicrobial peptides in the gastrointestinal tract

Antimicrobial peptide 
class Gene Specific antimicrobial peptides Tissue expression Biologic function

α-defensins (human 
neutrophil peptides)[5-9]

DEFA Human defensin 5 and 6 (HD5 and HD6) Paneth cells Confers resistance to oral challenge with enteric pathogens, regulates the intestinal microbiota by 
reducing levels of segmented filamentous bacteria, restricts infection by limiting intestinal epithelial 
cell invasion

β-defensins[5,10-13] DEFB Human β-defensins 1–4 
(hBD-1, hBD-2, hBD-3, and hBD-4)

Intestinal epithelial cells Antimicrobial activity (hBD-2-4) against bacterial pathogens including Escherichia coli, Pseudomonas 
aeruginosa, Staphylococcus aureus, and Streptococcus pyogenes, antimicrobial activity (hBD-1) against 
gram-positive commensals

Cathelicidin[14-22] CAMP Cathelicidin (LL-37/hCAP18) Colonic epithelial cells, neutrophils, 
monocytes, macrophages, mast cells

Cationic peptide that directly disrupts bacterial cell membranes, deficiency increases susceptibility to 
infection with enterohemorrhagic E. coli (EHEC)

Regenerating (Reg) protein
[23-29]

REG RegIII; Hepatocarcinoma-intestine pancreas 
(HIP)/pancreatitis-associated protein (PAP)

Paneth cells, intestinal epithelial cells Regulates intestinal homeostasis by maintaining a physical separation between epithelial cells and the 
microbiota, selective for gram-positive bacteria through interaction with cell wall peptidoglycan

Lactoferrin[30] LTF Lactoferrin Epithelial cells Secreted iron binding protein, sequesters free iron required for bacterial growth

Lipocalin[31,129] LCN2 Lipocalin-2 (neutrophil gelatinase-associated 
lipocalin, GAL)

Neutrophils, granulocytes, 
macrophages, epithelial cells

Binds to bacterial siderophore enterobactin and inhibits bacterial growth by sequestering iron

Calprotectin[32] S100A8, 
S100A9

Calprotectin Intestinal epithelial cells, neutrophils Chelates and sequesters metal co-factors (manganese, zinc, iron) during infection and inhibits bacterial 
growth

Hepcidin[33] HAMP, 
LEAP1

Hepcidin antimicrobial peptide Intestinal epithelial cells Regulates iron absorption and homeostasis, inhibits bacterial growth by limiting iron availability

Galectin[34,35] LGALS Galectin-3, Galectin-4, Galectin-8 Intestinal epithelial cells Galectins has bactericidal activity against bacteria expressing blood group antigen, Gal-8 targets 
damaged vesicles for autophagy during bacteria invasion

Lysozyme[36] LYZ Lysozyme Paneth cells Enzymatic degradation of bacterial membranes, preference towards Gram-positive pathogens

Elafin[37] PI3 Elafin (peptidase inhibitor 3) Intestinal epithelial cells Binds to bacterial lipopolysaccharide (LPS) and modulates innate immunity

Secretory Leukocyte Protease 
Inhibitor (SLPI)[38,39]

SLPI SLPI Intestinal epithelial cells, paneth cells, 
neutrophils, macrophages

Protease inhibitor binds to bacterial mRNA and DNA, dose-dependent bactericidal properties of SLPI 
against both Gram-positive and Gram-negative bacteria, has fungicidal properties

spectrum activity against bacteria, enveloped viruses, and fungi[15]. It is expressed by 
differentiated colonic epithelial cells as well as resident immune cells in the GI tract 
including neutrophils, monocytes, and macrophages, and mast cells[16,17]. 
Cathelicidin expression has been reported to be increased in inflamed and 
noninflamed mucosa in ulcerative colitis patients[18]. Butyrate[18] and vitamin D[19,
20] are known inducers of cathelicidin expression on colonic epithelial cells and 
immune cells. Cathelicidin deficiency increases susceptibility to infection with entero-
hemorrhagic E. coli (EHEC)[21]. Vitamin D induction of cathelicidin in human colonic 
epithelial cells has been shown to inhibit in vitro E. coli growth[21]. Likewise, 
cathelicidin protects against colonization with epithelial adherent bacterial pathogens
[22].
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Regenerating protein
Another class of antimicrobial peptides expressed in the GI tract include the soluble 
lectins belonging to the regenerating (Reg) Protein family. RegIIIγ and its human 
counterpart RegIIIα, also known as Hepatocarcinoma-Intestine Pancreas/Pancreatitis-
Associated Protein (HIP/PAP), are expressed by enterocytes and Paneth cells in 
response to microbial and inflammatory stimuli[23,24]. RegIIIα selectively binds to cell 
wall peptidoglycan in gram-positive bacteria to induce pore formation[25]. RegIIIβ 
interacts with surface Lipid A structures to target gram-negative bacteria[26].  In mice, 
RegIIIγ maintains physical separation between the gut microbiota and the intestinal 
epithelial surface and regulates bacterial colonization and intestinal immune responses 
by the microbiota[27]. In mice, RegIII is strongly induced in gut epithelial cells 
following bacterial reconstitution and colitis[28]. In human studies, Reg Iα, Reg Iβ, and 
Reg IV are overexpressed in colon mucosa with ulcerative colitis, whereas Reg IV is 
overexpressed in Crohn's disease[29].

Metal sequestering antimicrobial peptides
Some antimicrobial peptides function by sequestering metal micronutrients which are 
required as co-factors for microbial growth. Lactoferrin is a secreted iron binding 
protein that is expressed by intestinal epithelial cells. Lactoferrin mediates its antimi-
crobial activity by sequestering free iron required for bacteria growth[30]. Lipocalin-2 
(neutrophil gelatinase-associated lipocalin, GAL) is expressed by intestinal epithelial 
cells after stimulation by proinflammatory cytokines IL-17 and IL-22. Lipocalin-2 
sequesters the siderophore enterobactin which then prevents bacteria cells from 
binding iron[31]. Calprotectin, a heterodimer consisting of S100A8 and S100A9, is 
produced by intestinal epithelial cells and neutrophils. Calprotectin inhibits bacterial 
growth by sequestering zinc and manganese during infection[32]. The cationic peptide 
hepcidin plays a key role in regulating iron homeostasis through its binding to the iron 
exporter ferroportin. During infection and inflammation, hepcidin is upregulated and 
subsequently limits iron availability to bacterial pathogens. Hepcidin has antimicrobial 
activity against E. coli, Pseudomonas aeruginosa, and group A Streptococcus[33].

Antimicrobial peptides with different mechanisms of action
Other AMPs of various mechanisms of action have also been characterized. Galectins 
are β-galactoside-binding lectins that can bind to galactose-containing glycans on 
glycoproteins and glycolipids. They are highly expressed by intestinal epithelial cells 
and innate immune cells. Galectin-3, -4, and-8 recognize human blood group B 
antigen-like determinants on the surface of E. coli O86 and have bactericidal activity. 
Galectin-3 can bind to lipopolysaccharide (LPS) on gram-negative bacteria. Galectin-8 
targets damaged vesicles for autophagy during bacteria invasion[34,35]. Another 
mechanism involves enzymatic degradation of bacterial membranes. Lysozyme which 
is secreted by Paneth cells preferentially binds to gram-positive bacteria and degrades 
bacterial membranes by hydrolyzing peptidoglycan linkages[36]. AMPs also function 
as protease inhibitors such as elafin and secretory leukocyte protease inhibitor (SLPI). 
Elafin is produced by epithelial cells of mucosal surfaces including the GI tract. Elafin 
mediates its antimicrobial activity by binding to LPS from gram-negative bacteria and 
modulating macrophages[37]. SLPI is a major serine proteinase inhibitor that is 
expressed and apically secreted by human intestinal epithelium as well as Paneth cells, 
neutrophils, and macrophages. SLPI has antimicrobial activity against the enteric 
pathogen Salmonella typhimurium as well as gram-positive and gram-negative bacteria 
and fungi[38,39].

ANTIMICROBIAL PEPTIDES AND THE GUT MICROBIOME 
The appropriate maintenance of the gut microbiome is critical for health. In addition to 
offering competitive protection against pathogen growth, the microbiome regulates 
gut development[40] modulates digestion[41] and provides nutrients[42]. Thus, the 
microbiome must be carefully cultivated, without being permitted to proliferate 
excessively. However, the rapid renewal of epithelial layers, particularly in the gut 
where renewal rates are amongst the most rapid[43,44], poses a unique challenge for 
maintaining microbial composition and distribution. AMPs are a critical mechanism 
for regulating the microbiome, and act as part of a complex interplay between the gut 
microbiome, the innate immune system, and epithelium renewal. Reduced AMP 
production is associated with disorders such as IBD[45], which will be discussed in 
more depth in section III. In wounds or acute infections, multiple classes of AMPs are 
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rapidly upregulated, frequently through PAMP-dependent induction. Above 
threshold doses, they achieve rapid bacterial killing by synergistically targeting 
diverse yet critical microbial functions[46]. In contrast, direct interactions between 
AMPs and the gut microbiome occur at sub-lethal doses[47], though AMPs also act 
indirectly on the gut microbiome through the local modulation of immune response
[48].

Evolutionary analysis of AMPs offers insights into AMP function
Across a wide array of species, the regional control of which AMP classes are 
expressed acts in concert with local environmental conditions to fine-tune both the 
microbiome’s spatial heterogeneities as well as bacterial phenotype[49].  The 
requirements for broad-spectrum pathogen resistance, coupled with carefully tuned 
microbiome maintenance, lead to fascinating AMP evolutionary behavior. While genes 
associated with immune defense are associated with rapid evolution, AMP amino acid 
sequences evolve more slowly than the genome average. Indeed, they can be highly 
conserved across multiple species[50]. The relatively slow evolution rate of AMP 
amino acid sequences therefore suggests that pathogen control is likely a result of a 
complex AMP mixture, and that any individual AMP exerts minimal co-evolutionary 
pressure[51,52].

Given the importance of microbiome composition for health, and in light of the 
highly conserved AMP amino acid sequences, one might expect strict control over 
AMP copy number and regulation. Unexpectedly, this is not what has been observed. 
While AMP coding sequences are highly conserved within a species, there is 
substantial variability in both copy number and regulatory sequences, as reviewed in
[53]. This is particularly intriguing given that there is a high evolutionary cost 
associated with AMPs; when model organisms are propagated in germ-free 
environments, AMPs are rapidly lost[54]. Together, these data strongly suggest that 
the regulatory variability that is observed within humans may be a function of 
geography, specifically long-term local diets, local pathogens, and/or candidate 
microbiome components.

Dynamics of AMP-microbiome interactions
AMP serve as key regulators of host-gut microbiota interactions in a bi-directional and 
highly dynamic process[55]. AMP can shape the composition of the gut microbiome. 
For example, sublethal doses of AMPs could prime E. coli to develop tolerance and 
increase persistence by production of curli or colonic acid[56]. Prior studies have 
demonstrated that species-specific AMP profiles in animals maintains species-specific 
bacterial communities. Loss-of-function experiments have also shown that antimi-
crobial peptide composition is a predictor of bacterial colonization[57]. Furthermore, 
AMP resistance patterns maintains the resilience of prominent gut commensals during 
perturbations such as inflammation[58]. Conversely, the gut microbiome produces a 
complex array of metabolites[59] that directly regulate AMP production and function
[60,61]. For example, the microbiota metabolite short chain fatty acid promoted the 
production of the AMP RegIIIγ and β-defensins by intestinal epithelial cells[62].

Manipulation of gut microbiome composition has been shown to control AMP 
production and function. Cazorla et al[63] demonstrated that oral administration of 
probiotics in mice increased Paneth cell and intestinal antimicrobial activity. In 
addition, treatment of mice with VSL #3, a common probiotic used in patients with 
IBD, was associated with restoration of AMP gene expression in the small intestine 
and increased abundance of bacterial commensals in the gut[64].  Some probiotic 
strains produce AMP and has been proposed as a strategy to improve immune 
responses in immunocompromised patients[65]. Finally, fecal microbial transplant also 
modulates AMP expression in the GI tract. Teng et al[66] demonstrated that fecal 
microbial transplant of piglets resulted in increased expression in porcine beta-
defensins in the jejunum and subsequent increased gut Firmicutes and decreased 
Bacteroides.

Gut microbiome effects of different antimicrobial peptides
Different locations and cellular origins of AMP production are superimposed along 
the GI tract.  Defensins, the most abundant AMPs in the gut, are notable for their 
multiple disulfide bridges which confer substantial structural resistance to bacterial-
derived peptidases[67]. Defensins exert antimicrobial activity through forming pores 
in target bacterial membranes. Above sufficient thresholds, this results in cell death. 
Although the effect of sub-lethal concentrations is still undergoing characterization in 
humans, it is notable that a similar strategy is used by plants[50]. Here, pore-forming 
AMPs are used to facilitate the release of endosymbiotic microbe-derived nutrients.
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Local immune cell populations such as macrophages, T cells, and B cells[68] secrete 
both classes of defensins.  The highly spatially restricted secretion of α-defensins, in 
comparison to the ubiquitous secretion of β-defensins, strongly suggests that their role 
is likely to prevent bacterial overgrowth[61]. Indeed, Paneth cells are positioned just 
beneath the actively proliferating epithelial stem cells which are critical for epithelium 
renewal. Single-crypt studies show that Paneth cell degranulation of α-defensins is 
induced by both gram-negative and gram-positive bacteria, regardless of whether they 
are alive or dead, as well as bacterial components such as lipopolysaccharide, 
lipoteichoic acid, lipid A, and muramyl dipeptide[69]. Furthermore, the antimicrobial 
products of Paneth cells are protective against in vitro microbial challenges many 
orders of magnitude (> 106) higher than those encountered in vivo. Notably, degranu-
lation is not induced by eukaryotic pathogens, including live fungi and protozoa[69]. 
While α-defensin deficiencies in mouse models do not affect total bacterial load, they 
do result in reduced Bacteroides abundance and increased Firmicutes abundance[70].

β-defensins act in the gut as a two-layered, ubiquitous defense system. β-defensin-1 
is constitutively expressed at low levels, even in the gut of germ-free models[71]. β-
defensin-2 and β-defensin-3 can be further induced by the local microbiome, and 
additionally act as potent chemo-attractants for neutrophils and memory T cells[72]. In 
contrast to α-defensins, cell culture models suggest that gut β-defensin induction may 
rely on live bacteria; pre-incubation of Caco-2 epithelial cells with Enterococcus faecium 
reduced Salmonella typhimurium uptake, while pre-incubation with heat-killed E. 
faecium did not[72]. Unlike α-defensins, at least one (β-defensin-3) has anti-fungal 
activity[72].

Cathelicidins (in humans: LL-37) have broad anti-microbial and immunomodu-
latory function, and act to maintain epithelial barrier integrity[73,74]. Cathelicidins 
also have a two-tiered anti-microbial activity. While their primary mechanism of 
activity at high concentrations is to disrupt bacterial membranes, their immunomodu-
latory functions occur at substantially lower concentrations. Epithelial barrier integrity 
maintenance is accomplished primarily through increasing tight junction protein 
expression, as well as post-translational effects including the redistribution of tight 
junctions[75]. Together, this suggests that cathelicidins are primarily used when the 
epithelial barrier becomes compromised. Furthermore, LL-37 has also been shown to 
alter the composition of the gut microbiome in mice. Cathelicidin knockout mice had 
significantly more OTUs belonging to the phylum Verrucomicrobia and had lower 
amount of OTUs belonging to phylum Proteobacteria and the genus Lactobacillus than 
the other genotypes[76].

Reg III AMPs, primarily secreted by Paneth cells and epithelial cells[28,61], are 
soluble lectins that appear to primarily govern spatial relationships between the 
microbiome host tissues via the mucosa. In mice, Reg IIIβ/γ are co-regulated; Reg IIIα 
is the human ortholog[27,77]. Thinning of the mucosa driven by dietary restrictions in 
microbiota-accessible carbohydrates resulted in increased Reg IIIβ[78], as did increased 
mucosal inflammation[28]. Reg IIIγ-/- mice exhibited increased mucosal bacterial 
burden and impaired spatial relationships between bacteria and their host tissues[27].

FUNCTION AND MECHANISMS OF ANTIMICROBIAL PEPTIDES IN THE 
PATHOGENESIS OF IBD 
Alpha defensins: HNP-1
Several prior studies have linked defects or alterations in GI tract AMPs with the 
pathogenesis of IBD. Table 2 summarizes studies exploring the function and 
mechanisms of AMPs in IBD. HNPs and their role in IBD continues to be investigated. 
Maeda et al[79] found that mild transgenic overexpression of HNP-1 reduces the 
susceptibility to murine dextran sulfate sodium (DSS) induced colitis. Not only did the 
colon of HNP-1 transgenic mice show less tissue damage, but mice also had 
significantly lower disease activity index (DAI) scores when compared to wild type 
mice. Additionally, the authors found intraperitoneal injection of low dose HNP-1 
mitigates DSS-induced colitis and results in reduced expression of pro-inflammatory 
cytokines in the colon of mice. This improvement of colitis from low-dose HNP-1 
could be from its antimicrobial activity[79].

Furthermore, Hashimoto et al[80] found that intraperitoneal injection of high 
concentrations of HNP-1 exacerbate DSS-induced colitis in pathogen free (BALB/c) 
mice and severe combined immunodeficient (SCID) mice. Clinically, HNP-1 treated 
BALB/c mice had significantly decreased weight and colon length as well as 
significantly increased DAI score, histologic score and myeloperoxidase (MPO) 
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Table 2 Antimicrobial peptides in preclinical models of inflammatory bowel disease

Ref. Antimicrobial peptides (expression 
location)

Antimicrobial 
peptide delivery

Preclinical models (animal, human cell 
culture) Key findings

Maeda et al
[79]

Alpha defensins:  Human neutrophil 
peptide-1 (HNP-1) murine colon

Genetic 
overexpression, 
intraperitoneal

Murine dextran sulfate sodium (DSS) colitis Mild transgenic overexpression of HNP-1 reduces the susceptibility to DSS-induced colitis; 
Intraperitoneal injection of low-dose HNP-1 ameliorates DSS-induced colitis; The amelioration of colitis 
by low-dose HNP-1 may be explained by its indirect antimicrobial activity

Hashimoto et 
al[80]

Alpha defensins:  Human neutrophil 
peptide-1 (HNP-1): Murine colon, human 
colon cells

Intraperitoneal Murine dextran sulfate sodium (DSS) colitis, 
SCID mice, human colon cell cultures

Body weight and colon length significantly decreased, and the disease activity index score, histologic 
score, and myeloperoxidase activity significantly increased in HNP-1-treated mice compared with PBS-
treated mice. High concentrations of HNP-1 aggravate DSS-induced colitis, including upregulated 
expression of such macrophage-derived cytokines as IL-1β

Han et al[82] Porcine β-defensin (pBD)2: Murine colon Intrarectal Murine dextran sulfate sodium (DSS) colitis, 
human  colon cell cultures

Administration of pBD2 effectively attenuated colonic inflammation in mice with DSS induced colitis. 
pBD2 reduced the increased serum and colon levels of TNF-a, IL-6 and IL-8 all caused by DSS. The 
effects of pBD2 appeared to be through upregulation of the expression of genes associated with tight 
junctions and mucins 

Koeninger et 
al[81]

Beta defensins: human beta defensin 2 
(HBD-2): Murine colon 

Subcutaneous Murine dextran sulfate sodium (DSS) colitis, 
2,4,6-trinitrobenzenesulfonic acid (TNBS) 
colitis, T cell transfer colitis model

Treatment improved disease activity index and hindered colitis-induced body weight loss on par with 
anti-TNF-α and steroids. Mechanistically, hBD2 engaged with CCR2 on its DC target cell to decrease 
NF-κB, and increase CREB phosphorylation, hence curbing inflammation

Koon et al[73] Cathelicidin (LL-37): Murine colon Genetic knockouts Murine dextran sulfate sodium (DSS) colitis Increased expression of cathelicidin in the colon of DSS-exposed mice; Compared with WT mice, 
cathelicidin KO mice developed a more severe form of DSS-induced colitis; Cathelicidin protects 
against induction of colitis in mice; Increased expression of cathelicidin in monocytes and experimental 
models of colitis involves activation of TLR9-ERK signaling by bacterial DNA

Fabisiak et al
[83]

Cathelicidin (LL-37) 
KR-12 (active fragment of LL-37): Murine 
colon

Intraperitoneal Murine dextran sulfate sodium (DSS) colitis, 
2,4,6-trinitrobenzenesulfonic acid (TNBS) 
colitis, T cell transfer colitis model

LL-37 and KR-12 (1 mg/kg, ip, twice daily) showed a decrease in macroscopic and ulcer scores in the 
acute TNBS-induced model of colitis. KR-12 (5 mg/kg, ip, twice daily) reduced microscopic and ulcer 
scores in the semi-chronic and chronic TNBS-induced models of colitis compared with inflamed mice

Yoo et al[84] Cathelicidin (LL-37): Murine colon Intracolonic, 
intravenous

2,4,6-trinitrobenzenesulfonic acid (TNBS) 
Colitis,

Intracolonic cathelicidin (mCRAMP peptide) administration or intravenous delivery of lentivirus-
overexpressing cathelicidin gene significantly reduced colonic col1a2 mRNA expression in TNBS-
exposed mice compared with vehicle administration. Cathelicidin can reverse intestinal fibrosis by 
directly inhibiting collagen synthesis in colonic fibroblasts

Tai et al[85] Cathelicidin (LL-37): Murine colon Genetic knockouts, 
intrarectal

Murine dextran sulfate sodium (DSS) colitis Cathelicidin knockout mice had more severe symptoms and mucosal disruption than the wild-type 
mice in response to DSS colitis. Intrarectal administration of plasmids encoding cathelicidin reversed 
colitis in cathelicidin knockout mice 

Gubatan et al
[21]

Cathelicidin (LL-37): Murine colon, 
human colon cells

Intrarectal Murine dextran sulfate sodium (DSS) colitis, 
human colon cell cultures

Vitamin D-induced cathelicidin in human colonic epithelial cells suppressed Escherichia coli growth. 
Intrarectal cathelicidin reduced the severity of DSS colitis but did not mitigate the impact of colitis on 
microbial composition

Motta et al[91] Elafin: Murine colon Transgenic 
expression, 
adenoviral delivery

Murine dextran sulfate sodium (DSS) colitis, 
2,4,6-trinitrobenzenesulfonic acid (TNBS) 
colitis

In mice given TNBS or DSS, transgenic expression of elafin protected against the development of colitis. 
Similarly, adenoviral delivery of Elafin significantly inhibited inflammatory parameters. Elafin 
modulated a variety of inflammatory mediators in vitro and in vivo and strengthened intestinal 
epithelial barrier 

Ogawa et al
[28]

RegIII (HIP/PAP): Murine colon Endogenous 
expression

Murine dextran sulfate sodium (DSS) colitis Epithelial expression of Reg III or HIP/PAP was induced under mucosal inflammation initiated by 
exposure to commensal bacteria or DSS as well as inflamed IBD colon
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Jiang et al[93] Donkey milk lysozyme (DML): Murine 
colon

Oral Murine dextran sulfate sodium (DSS) colitis DML ameliorated weight loss, colon damage and mucosal inflammation in DSS colitis mice. DML 
improved mechanical barrier function and increased gut microbiota composition diversity, promoting 
growth of probiotics and inhibiting pernicious bacteria

Reardon et al
[92]

Secretory leukocyte peptidase inhibitor 
(SLPI): Murine colon

Genetic SLPI 
deficiency, oral

Murine dextran sulfate sodium (DSS) colitis, T 
cell transfer colitis model

Tslp−/− mice lead to endogenous SLPI deficiency which exacerbated DSS colitis. Treatment with 
recombinant SLPI (rSLPI) reduced DSS-induced mortality in Tslp−/− mice

Togawa et al
[95]

Lactoferrin: Rat colon Oral Rat dextran sulfate sodium (DSS) colitis DSS-induced colitis was attenuated by oral administration of lactoferrin in a dose-dependent manner. 
Reduced inflammation in response to lactoferrin was correlated with the significant induction of the 
anti-inflammatory cytokines and with significant reductions in the pro-inflammatory cytokines

Shanmugam 
et al[96]

Hepcidin: Murine colon Endogenous 
expression

Murine dextran sulfate sodium (DSS) colitis, T 
cell transfer Colitis model

TNFα inhibits hepcidin expression in two distinct types of innate colitis, with down-regulation of 
Smad1 protein playing an important role in this process

activity when compared to control mice. Furthermore, inflammatory cytokines IL-1β 
and TNF-α were significantly higher in colon of HNP-1 treated mice. In both murine 
models, an increased recruitment of F4/80-positive macrophages in the inflamed 
colonic mucosa after HNP-1 injection has been observed. This enhanced disease 
activity is thought to be due in part to HNP-1 induced cytokine production in 
macrophages.

Beta defensins: Porcine B-defensin and hBD-2
Beta defensins are epithelial cell derived AMPs that have immunomodulating 
properties. Koeninger et al[81] found that subcutaneous recombinant hBD-2 reduced 
intestinal inflammation in three distinct animal models of IBD: chemically induced 
mucosal injury (DSS), loss of mucosal tolerance (TNBS), and T cell transfer into 
immunodeficient recipient mice. Mice treated with hBD-2 had less weight loss, better 
stool score and improved DAI scores in comparison to the T cell colitis control group. 
Additionally, mice given hBD-2 had less mucosal damage and inflammation as they 
maintained crypt anatomy and had reduced colon weight.

In addition to the protective effects of hBD-2, Han et al[82] found that intrarectal 
administration of porcine beta-defensin 2 (pBD2) ameliorated colonic inflammation in 
mice during the induction of DSS-induced colitis. Mice in the pBD2 plus DSS group 
had less symptoms, including less weight loss, firmer and less bloody stools compared 
to the DSS-treated group. Mice treated with pBD2 plus DSS also had less evidence of 
macroscopic and histological colitis in addition to reduced production of TNF-a, IL-6 
and IL-8 when compared to the DSS-treated group. Through colon cell culture, the 
effects of pBD2 seemed to occur via an upregulation of genes associated with tight 
junctions and mucins. This may explain how pBD2 can improve DSS-induced changes 
in the mucosa and paracellular permeability through possible activation of the NF-kB 
signaling.

Cathelicidin (LL-37)
Koon et al[73] demonstrated that genetic knockout of LL-37 in mice had more severe 
forms of DSS-induced colitis and that inflamed colon in wild type mice in DSS colitis 
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models had increased cathelicidin expression. The authors suggested that this upregu-
lation of cathelicidin involves activation of TLR9-ERK signaling from bacterial DNA, 
which may play a role in the development of colitis.  In addition to its protection 
against the induction of colitis, Fabisiak et al[83] showed that intraperitoneal injection 
of LL-37, and its shortest active metabolite, KR-12, decreases ulcer and macroscopic 
scores in DSS-induced and TNBS-induced models of colitis. The study showed that 
intraperitoneal injection of KR-12 altered the microbiomes of TNBS-induced colitis 
mice by reducing total and E. coli group bacteria.

In addition to the protective and antimicrobial properties of LL-37, Yoo et al[84] 
found that intracolonic cathelicidin or intravenous delivery of lentivirus-overex-
pressing cathelicidin gene significantly reduced colonic collagen deposition TNBS-
induced colitis mice when compared to TNBS-induced mice not receiving LL-37. These 
results suggest that cathelicidin reverses fibrosis in the intestines via inhibition of 
collagen synthesis in colonic fibroblasts.

Another unique property of LL-37 was investigated by Tai et al[85], who describe 
that intrarectal administration of plasmids containing cathelicidin to DSS-induced 
colitis mice reestablished colonic mucus thickness via increased expression of mucin 
genes and reduced severe symptoms compared to cathelicidin knockout mice with 
DSS-induced colitis. This increase in mucin genes protected against mucosal damage 
and was linked to the activation of MAP kinase.

Gubatan et al[21] found that cathelicidin is a key mediator of the protective role of 
vitamin D in ulcerative colitis (UC). The authors found higher levels of 25(OH)D 
correlate with increased levels of both serum and colonic LL-37 in UC patients, and 
these higher levels are associated with decreased histologic inflammation and 
probability of clinical relapse. Intrarectal LL-37 reduced the severity of DSS-induced 
colitis in mice, but did not alter the intestinal microbial imbalance, whereas 25(OH)D-
induced cathelicidin in human colonic epithelial cells suppressed E.coli growth. The 
study demonstrated that 25(OH)D is an independent predictor of cathelicidin in UC 
patients in remission and may protect against microbial associated gut inflammation.

Arachidonic acid and its metabolism also play a role in the regulation of antimi-
crobial peptides in inflammatory bowel disease. Arachidonic metabolites such as 
leukotrienes and are elevated in both animal models of colitis and patients with IBD
[86]. Leukotrienes have been shown to trigger release of human cathelicidin from 
neutrophils[87], whereas prostaglandins suppress cathelicidin in human macrophages
[88]. In addition, cyclooxygenase-2 (COX-2), an enzyme that metabolizes arachidonic 
acid, is also induced in colonic epithelial cells in IBD[89]. Cox-2 selective inhibitors 
have been shown to inhibit production of human beta defensins but not cathelicidin
[90].

Elafin
Motta et al[91] showed that in TNBS or DSS-induced mouse models of colitis, 
transgenic expression of elafin or disruption of enzymes that elafin inhibits protected 
against development of colitis. Transgenic mice expressing elafin had reduced inflam-
mation as measured by a reduction in macroscopic tissue damage and myeloper-
oxidase (MPO) activity when compared to TNBS or DSS-induced mice that were not 
expressing elafin. Authors showed that adenoviral delivered elafin inhibited inflam-
matory parameters. The authors demonstrated that elafin is involved in inflammatory 
mediators and its protective effect could in part be from a bolstering of epithelial and 
mucosal barriers.

SLPI
Reardon et al[92] reported that thymic stromal lymphopoietin-deficient (TSLP-/-) mice 
led to endogenous SLPI deficiency, which prevented recovery from DSS-induced 
colitis and resulted in death. The authors demonstrated that the mechanism by which 
the absence of SLPI prevents healing of the colon is from increased neutrophil elastase 
(NE) activity in TSLP-/- mice. When TSLP-/- mice were treated with oral recombinant 
SLPI (rSLPI) there was reduced DSS-induced mortality.

Reg III (HIP/PAP)
Ogawa et al[28] aimed to identify genes that were modulated by bacterial flora to 
better understand mucosal inflammation in IBD patients. The authors found that 
expression of Reg III (HIP/PAP) was increased in DSS-induced colitis. Furthermore, 
the upregulation of Reg III may be due to an increase in the acute phase reactant IL-6 
that occurs during gut inflammation.
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Donkey milk lysozyme
Donkey milk contains high lysozyme levels and was studied by Jiang et al[93] due to 
its antimicrobial properties. Authors found that mice given donkey milk lysozyme 
(DML) orally in a DSS-induced colitis model had improved symptoms of colitis 
measured by a reduction in weight loss, loose stools, rectal bleeding and mucosal 
inflammation. The authors showed that 50% DML treatment brought cytokines, TNF-a 
and IL-13, a pleiotropic cytokine that has proinflammatory effects on intestinal 
epithelial cells resulting in apoptosis and epithelial barrier dysfunction in intestinal 
inflammation[94] back to basal levels similar to control mice. They hypothesized that 
DML improves the intestinal barrier by increasing expression of tight junction proteins 
in the colon. They also presume that DML increases gut microbiota diversity and 
reduces detrimental bacteria thereby restoring the gut microflora.

Lactoferrin 
Lactoferrin, a known immunomodulator, was studied by Togawa et al[95] and was 
found to reduce DSS-induced colitis in a dose-dependent manner after oral adminis-
tration to rats. The DAI, shortening of colon length, histological/macroscopic damage 
score, tissue levels of MPO activity, WBC, and reduction in hemoglobin were 
decreased when DSS-induced colitis rats were treated with lactoferrin. The authors 
postulate that the protective properties of lactoferrin were tied to its modulation of the 
immune system by reducing pro-inflammatory cytokines TNF-a, IL-1B and IL-6 as 
well as the augmented levels of anti-inflammatory cytokines IL-4 and IL-10 in colonic 
tissue of DSS-induced colitis rats given lactoferrin.

Hepcidin 
Hepcidin is regulator of iron metabolism and is upregulated during the inflammation 
in IBD, often resulting in anemia. Shanmugam et al[96] investigated the mechanisms 
that control hepcidin during periods of inflammation. They showed that the pro-
inflammatory cytokine TNF-a inhibits hepcidin in both a DSS-induced colitis and T 
cell transfer colitis model in mice with downregulation of Smad1 protein mediating 
this effect.

TRANSLATIONAL APPLICATIONS OF ANTIMICROBIAL PEPTIDES AS 
BIOMARKERS IN PATIENTS WITH IBD
The diagnosis and long-term monitoring of IBD commonly involve invasive and costly 
endoscopy combined with histologic screening. Consequently, a biomarker that 
reflects the ongoing severity of disease is attractive as a non-invasive, cost-effective, 
and convenient alternative for diagnosing new IBD cases and identifying flares of 
disease. Given their involvement in disease pathophysiology, AMPs represent such 
potential markers, and several have been studied to determine their utility in differen-
tiating CD and UC from other conditions, such as celiac disease and IBS, as well as 
active from quiescent disease states. In addition to reflecting ongoing severity of 
inflammation, several AMPs have shown promise as predictors of relapse, 
complication risk, and treatment response in the setting of IBD. Table 3 summarizes 
the application of AMPs as biomarkers in IBD.

Calprotectin
Among all known AMPs, calprotectin is the one most frequently used in the clinical 
diagnosis and monitoring of IBD. It has been known for decades that fecal calprotectin 
(FC) concentrations are markedly increased in the setting of both CD and UC[97-100]. 
Elevated FC is a highly sensitive marker and is thus a particularly useful tool in the 
initial diagnosis and discrimination of IBD from non-inflammatory causes of 
abdominal discomfort and bowel dysfunction like IBS[97-103]. Based on this diag-
nostic utility, current practice guidelines from the World Gastroenterology 
Organization support measuring FC in the initial work-up of suspected IBD in both 
adult and pediatric patients[101,102]. Recent research has supported using FC 
measurements for the early diagnosis of IBD in at-risk populations, such as patients 
with ankylosing spondylitis[104].

FC is also particularly useful in the evaluation of IBD severity and the early identi-
fication of disease flares[104-106]. Data suggest that FC concentrations positively 
correlate with histologic inflammation in IBD, and assays can be used to accurately 
classify inactive, mild, moderate, and severe disease[102,103]. Cut-off values of fecal 
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Table 3 Biomarker applications of antimicrobial peptides in patients with inflammatory bowel disease

Ref. Antimicrobial peptides Type of 
IBD Biomarker application Key findings

Holgersen et al
[110]

Alpha defensins 5 and 6 
(DEFA5/DEFA6)

UC IBD diagnosis Marked upregulation of DEFA5 and DEFA6 in terminal ileal biopsies of inflamed ulcerative colitis relative to normal controls

Wehkamp et al
[111]

Alpha defensin (HD -5/6) UC/CD IBD diagnosis HD-5/6 both decreased in ileal Crohn's, and this correlated with a decrease in transcription factor Tcf-4, a known regulator of Paneth cell 
differentiation. Normal levels were observed in UC and colonic Crohn's

Yamaguchi et al
[112]

Alpha defensin (HNP1-3), 
beta-defensin (HBD-2)

UC/CD Disease activity HNP-1-3 all elevated in IBD patients, while HBD-2 levels normal; serum HNP1-3 levels correlated with disease severity for Crohn's

Kanmura et al
[113]

Alpha defensin (HNP) UC/CD Disease activity Fecal-HNP levels were markedly elevated in both UC and Crohn's, but slightly more so in Crohn's; F-HNP was significantly higher during flares 
of UC than remission. For UC, HNP levels correlated with Mayo endoscopic score

Cunliffe et al
[114]

Alpha defensin (HNP 1-3) UC/CD Disease activity Surface epithelial cells strongly immunoreactive for neutrophil defensins and lysozyme were seen in active ulcerative colitis and Crohn's disease 
(but not normal or inactive IBD) mucosal samples. Many of these cells coexpressed both antimicrobial proteins. 

Tran et al[116] Cathelicidin UC/CD Disease activity Cathelicidin levels were significantly increased in IBD patients and were inversely correlated with CD activity. In moderate to severe IBD, higher 
cathelicidin levels before treatment correlated with better prognosis. 

Krawiec et al
[115]

Cathelicidin UC/CD IBD diagnosis Cathelicidin was significantly increased in patients with ulcerative colitis (1073.39 ± 214.52 ng/mL) and Crohn’s disease (1057.63 ± 176.03 ng/mL) 
patients compared to controls (890.56 ± 129.37 ng/mL) (P = 0.0003)

Gubatan et al[21] Cathelicidin UC Disease activity, clinical 
relapse

In ulcerative colitis patients, serum 25(OH)D positively correlated with serum and colonic cathelicidin. Higher serum cathelicidin is associated 
with decreased risk of histologic inflammation and clinical relapse but not independent of 25(OH)D or baseline inflammation

Borkowska et al
[118]

Lactoferrin UC/CD IBD diagnosis, disease 
activity

Fecal concentration of lactoferrin in children with IBD was significantly higher than in the controls. The sensitivity and specificity were 80.7% and 
92.7%, respectively, and its positive and negative prognostic values were 96.8% and 63.3%, respectively

Sugi et al[119] Lactoferrin, lysozyme UC/CD Disease activity Lactoferrin and lysozyme were significantly increased in the active phases of CD and UC relative to inactive. They both correlated with fecal Hb 
concentration in UC, and with alpha 1-AT concentration in CD

Sidhu et al[120] Lactoferrin UC/CD IBD diagnosis, disease 
activity

Lactoferrin levels were significantly higher in IBD patients compared with IBS/healthy controls (P < 0.001). The sensitivity, specificity, positive 
and negative predictive values of lactoferrin in distinguishing active IBD from IBS/healthy controls were 67% and 96%, 87% and 86.8% 
respectively

Wang et al[121] Lactoferrin UC/CD IBD diagnosis FL test has a high sensitivity (82%) and specificity (95%) for the discrimination of patients with IBD against non-IBD patients

Kane et al[122] Lactoferrin UC/CD Disease activity Fecal lactoferrin was 90% specific for identifying inflammation in patients with active IBD. Elevated fecal lactoferrin was 100% specific in ruling 
out IBS

Turner et al[123] Lactoferrin UC IBD diagnosis Lactoferrin levels significantly were elevated in pediatric UC patients, but were not responsive to change or predictive of response to 
corticosteroids

Wang et al[132] Elafin CD Disease activity, intestinal 
strictures

High serum elafin levels were associated with a significantly elevated risk of intestinal stricture in CD patients. Serum elafin levels had weak 
positive correlations with clinical disease activity but not endoscopic disease activity

Zhang et al[133] Elafin UC/CD Disease activity The expression of elafin mRNA in peripheral blood in active IBD patients is decreased, which may be correlated with the activity of IBD, and 
negatively correlated with corresponding disease activity score

Study identified a previously unrevealed production of elastase 2A (ELA2A) by colonic epithelial cells, which was enhanced in IBD patients. Motta et al[130] Elafin UC Disease activity
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Study demonstrated that ELA2A hyperactivity is sufficient to lead to a leaky epithelial barrier and modified the cytokine gene expression profile 
with an increase of pro-inflammatory cytokine transcript

Schmid et al[134] Elafin and SLPI UC/CD Disease activity Levels of mRNA and immunostaining of the antiproteases elafin and SLPI were enhanced strongly in inflamed versus noninflamed UC

Frol'ová et al
[124]

Galectin-3 UC/CD Disease activity Serum concentrations were significantly increased in specimen of patients with active and remission-stage ulcerative colitis and Crohn's disease 
(relative to healthy controls)

Yu et al[125] Galectin-1, -3 UC/CD IBD diagnosis Serum level of galectin-1 and -3, but not galectins-2, -4, -7 and -8, were significantly higher in IBD patients than in healthy people. None of the 
galectins however were able to distinguish active disease from remission in UC or CD

Tibble et al[97] Calprotectin CD IBD diagnosis The cross-sectional study showed a sensitivity of 96% for calprotectin in discriminating between normal subjects and those with Crohn's disease. 
With a cutoff point of 30 mg/L fecal calprotectin has 100% sensitivity and 97% specificity in discriminating between active CD and irritable bowel 
syndrome

Moniuszko et al
[100]

Calprotectin UC/CD Disease activity, 
progression

Rapid bedside FC test reliably detected disease flares in patients with both UC and CD. FC levels increased even with early signs of 
inflammations; values were lower in isolated small bowel disease for CD patients

Pous-Serrano et 
al[101]

Calprotectin CD Disease activity FC was the only inflammatory marker significantly associated with the degree of histologic inflammation in surgical specimens

Scheopfer et al
[102]

Calprotectin CD Disease activity FC correlates more closely with endoscopic disease activity that CRP, blood leukocytes, and CDAI. It was the only marker that reliably 
discriminated inactive from mild, moderate, and highly active disease, underscoring its value in disease monitoring

Ferreiro-Iglesias 
et al[103]

Calprotectin UC/CD Relapse In IBD patients under Infliximab maintenance therapy, high FC levels allow predicting relapse within the following 2 mo. Long-term remission is 
associated with low calprotectin levels

Klingberg et al
[104]

Calprotectin CD IBD diagnosis, treatment 
monitoring

FC was a useful predictor of the development of CD in patients with ankylosing spondylitis; NSAIDs increase FC levels; FC levels drop following 
TNF-blocker treatments

Godny et al[109] Calprotectin CD Treatment monitoring FC decreases following successful diet-based treatment of active CD

Karaskova et al
[126]

Hepcidin UC/CD IBD diagnosis Serum hepcidin concentration was significantly decreased in IBD children compared with controls; levels did not differ significantly between 
patients with CD and UC

Martinelli et al
[128]

Hepcidin UC/CD IBD diagnosis, iron 
deficiency Monitoring

Serum hepcidin was significantly higher in IBD patients with active disease versus healthy and celiac patients. Hepcidin levels corresponded with 
iron malabsorption and other inflammatory biomarkers like ESR

Aksan et al[129] Hepcidin UC/CD Response to iron 
supplementation

Higher hepcidin and other inflammatory markers correlated with decreased iron absorption follow supplementation

Zollner et al[127] Lipocalin CD Clinical and endoscopic 
activity 

Fecal lipocalin-2 levels of 78.4 and 0.56 μg/g in Crohn’s disease patients for clinical and endoscopic activity, respectively, corresponded well with 
fecal calprotectin levels in UC patients (R = 0.87, P < 0.001)

IBD: Inflammatory bowel disease: UC: Ulcerative colitis; CD: Crohn's disease.

calprotectin to differentiate active disease vs remission in patients with IBD have been 
previously evaluated[107]: A cutoff value of 50 mg/g had a pooled sensitivity of 0.92 
and specificity of 0.60 (0.52–0.67), a cutoff value of  100 mg/g had a pooled sensitivity 
of  0.84 and specificity of 0.66, a cutoff value of 250 mg/g had a pooled sensitivity of 
0.80 (0.76–0.84) and specificity of 0.82 (0.77–0.86). Decreased levels of FC after therapy 
are associated with clinical, endoscopic and histological improvement with a normal-
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ization of FC (< 50 mg/g) signifying deeper remission[108].
Notably, FC has been found to correlate more strongly with IBD activity than other 

markers of inflammation, including C-reactive protein and blood leukocytes[104,105]. 
FC elevations are more pronounced in patients with pan-colonic CD than in those with 
isolated small bowel disease, indicating that concentrations may reflect disease 
location[105]. Rapid bedside and at-home FC assays are currently available as tools for 
monitoring IBD activity, with elevated concentrations detectable early in disease flares
[104,109]. FC can be used to predict the risk of relapse for patients with quiescent CD 
and UC[105]. FC monitoring also plays a role in the treatment of IBD, as levels 
decrease following effective medical and diet-based management of disease[107,110].

Despite its clear clinical utility, FC remains an imperfect biomarker for the diagnosis 
and monitoring of IBD. Like many other inflammatory biomarkers, FC is not 100% 
specific for IBD. Other factors, including the use of NSAIDs, can also result in elevated 
FC, thereby introducing potential inaccuracy when using the biomarker to evaluate 
IBD[104,105].

Defensins
Previous studies have revealed increased defensin concentration at the intestinal 
surface epithelium in the setting of IBD, and dysregulation of defensin gene expression 
has been proposed as one pathogenic mechanism of disease[110,111]. Thus, defensins 
have been explored as potential biomarkers of IBD[112,113]. Among the 10 known 
human defensins, the alpha defensins HNP-1, HNP-2, and HNP-3 have been found to 
be significantly elevated in the sera of both UC and CD patients[114,115]. In CD, serum 
HNP-1-3 Levels have been shown to correlate with disease severity, as measured by 
Crohn’s disease Activity Index (CDAI)[114]. In UC, these levels are significantly 
greater in active disease than in inactive disease, and serum HNP-1-3 Levels decrease 
following successful treatment with corticosteroids[113]. Notably, serum HNP-1-3 
Levels do not decrease following corticosteroid administration in non-responders, 
signifying the potential use of defensins in the monitoring of treatment efficacy[114]. 
Fecal HNP-1-3 Levels are also significantly elevated in both CD and UC as well, with 
greater elevations measured during UC flares than in remission[113]. In the same 
study, fecal HNP-1-3 Levels correlated more closely with endoscopic severity than 
calprotectin. Results involving the ability to differentiate between UC and CD using 
defensin levels remain mixed[110-113].

Cathelicidin
Significantly elevated levels of serum LL-37 have been detected in both adult and 
pediatric IBD cohorts[115,116]. Multiple studies have indicated that cathelicidin can be 
used to reliably differentiate both CD and UC from healthy controls, reflecting the 
AMP’s potential diagnostic utility[115,116].  While cathelicidin levels are increased in 
both active and remission-stage IBD patients relative to controls, these levels seem to 
inversely correlate with disease activity, histologic inflammation, and risk of clinical 
relapse[21,116,117]. In moderate to severe IBD, higher serum cathelicidin prior to 
treatment is associated with better prognosis and may therefore serve as a predictor of 
treatment response[21]. Cathelicidin may also be a useful indicator of complication 
risk, as reduced serum levels correlate with significantly increased risk of intestinal 
stricture in CD[117]. Serum levels positively correlate with 25(OH)D levels, and the 
apparent protective effect of elevated cathelicidin is likely at least partially dependent 
on this increase in vitamin D[21].

Lactoferrin
Lactoferrin is among the most thoroughly explored AMPs in the diagnosis and clinical 
evaluation of IBD. Fecal concentrations of lactoferrin are consistently elevated among 
both children and adults with IBD relative to healthy controls[118-123]. While 
estimates of fecal lactoferrin sensitivity in identifying CD and UC vary, several studies 
have confirmed the AMP’s utility as a highly specific marker of IBD-related inflam-
mation[120-122].  This specificity makes lactoferrin a particularly valuable biomarker 
for differentiating IBD from IBS, with studies indicating that lactoferrin levels can 
discriminate between the two conditions with a specificity at or near 100%[119-121]. 
Lactoferrin levels positively correlate with disease activity, with significantly higher 
fecal concentrations found in those with moderate to severe IBD relative to those with 
mild or inactive disease[122]. Unlike some of the other AMPs, lactoferrin has not been 
shown to predict responsiveness to corticosteroid treatment, and only insignificant 
concentration changes have been detected following both effective and ineffective 
treatment regimens[123].
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Galectin
Many members of the galectin family of proteins have been studied as potential 
biomarkers of IBD. Though several galectins are known to be expressed by intestinal 
epithelial cells, only galectin-1 and -3 have been shown to be significantly elevated in 
the serum of IBD patients[124,125]. Unlike those of galectin-1 and -3, serum levels of 
galectins-2, -4, -7, and -8 have not been shown to differentiate IBD patients from 
healthy controls[125]. Of note, galectin-1 and -3 Levels cannot reliably distinguish 
active from remission-stage CD or UC, nor can they distinguish CD and UC from each 
other[125,126]. Evidence also suggests that galectin-1 is a slightly more sensitive 
marker of IBD than galectin-3[125]. Nevertheless, galectins-1 and -3 may have use as 
biomarkers either alone or when combined with other molecules, and their upregu-
lation in the intestinal cells of IBD patients may indicate their potential as therapeutic 
targets[124,125].

Hepcidin
Data regarding the utility of hepcidin as a diagnostic biomarker remain mixed[126-
129]. However, given hepcidin’s crucial role in regulating iron absorption, the AMP 
may be useful in the monitoring of iron deficiency and related anemia, which are two 
common comorbidities seen in IBD patients[126,127]. These comorbidities are most 
frequently seen in pediatric IBD patients[126,127]. Consequently, multiple studies 
have aimed to elucidate the relationship between hepcidin expression and these 
comorbidities in pediatric IBD cohorts. In pediatric patients with IBD, elevated 
hepcidin levels negatively correlate with iron absorption and serum iron levels[125,
126]. Elevated hepcidin corresponds with decreased response to iron supplementation 
in these patients, suggesting that the biomarker may serve a role in predicting 
response to oral iron supplementation in the setting of IBD[129].

Elafin
Elafin is known to be markedly upregulated in the intestinal mucosa of UC patients
[130,131]. Intestinal expression seems to correlate closely with disease progression, as 
elevated concentrations are detectable in the right colon of patients with pan-colonic 
disease, but not those with exclusively left-sided disease[130]. This finding is further 
supported by enhanced colonic mRNA immunostaining in inflamed relative to non-
inflamed UC samples[131]. While serum elafin levels are increased in UC patients 
relative to healthy controls, some evidence suggests an inverse correlation between 
serum elafin and disease severity within UC cohorts[131,132]. Among UC patients, 
significantly elevated serum elafin tends to correlate with decreased disease activity 
scores, with the highest elafin levels measured during disease remission[133,134]. Data 
involving elafin as a biomarker in CD remain mixed, with most results indicating only 
weak correlations between elafin and CD activity[132-134]. However, serum elafin 
measurements may play a role in the evaluation of complication risk in CD, as 
elevations are significantly associated with increased risk of intestinal stricture[132].

CONCLUSION
AMPs produced by innate immune cells of the GI tract and cells that support barrier 
function such intestinal epithelial cells and Paneth cells play critical roles in protecting 
against enteric pathogens while maintaining tolerance to support a complex ecosystem 
of commensal gut microbiota. These highly dynamic molecules have broad spectrum 
antimicrobial activity against bacteria, fungi, and enveloped viruses and mediate their 
protective effects through diverse mechanisms of action from disrupting cell 
membranes, binding microbial components such as LPS, and sequestering metal co-
factors to limit microbial growth. AMPs also play major roles in regulating gut 
microbiome composition and spatial relationships between the microbiota and 
intestinal barrier.

Defects in endogenous AMP expression and function have been linked with 
intestinal inflammation in mice. Conversely, exogenous delivery of AMPs such as 
defensins, cathelicidin, and elafin have been shown to attenuate intestinal inflam-
mation in murine models of IBD. AMPs such as calprotectin and lactoferrin have 
found clinical applications as biomarkers of intestinal inflammation in patients with 
IBD. Other AMPs including alpha- and beta-defensins, cathelicidin, and elafin may be 
useful biomarkers for disease activity and predicting clinical outcomes in patients with 
IBD. Although the protective effects of AMPs have been demonstrated in murine 
models of IBD, there are currently no AMP-based therapies approved or in clinical 
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trials for IBD. Future studies should focus on translation of AMPs as potential 
therapies in patients with IBD. Several challenges with AMPs including limited 
stability due to enzymatic degradation by endogenous proteases[135,136] and cross-
reactivity of AMPs with host cells leading to cytotoxicity[137] pose major barriers to 
their application as therapies.  Biochemical modifications to enhance AMP stability, 
selectivity, and delivery are being explored[46,137].
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Abstract
Chronic pancreatitis (CP) is a complex disease associated with gene-gene or gene-
environment interactions. The incidence of idiopathic CP has shown an increasing 
trend, withits phenotypeshaving changed considerably in the last two decades. 
The diseaseitself can be regulated before it reaches the stage of established CP; 
however, the etiopathogenesis underlying idiopathic CP remains to be 
established, making the condition difficult to cure. Unfortunately, there also 
remains a lack of consensus regarding the beneficial effects of antioxidant 
therapiesfor CP. It is known that antioxidant therapy does not reduce inflam-
matory and fibrotic cytokines, making it unlikely that they could modulate the 
disease process. Although antioxidants are safe, very few studies to date have 
reported the long-term beneficial effects in patients with CP. Thus, studies are 
being performed to identify drugs that can improve symptoms and alter the 
natural history of CP. Statins, with their numerous pleiotropic effects, may play a 
role in the treatment of CP, butin 2006, their use was found to be associated with 
the undesirable side effect of promoting pancreatitis. Latter studies showed 
favourable effects of statins in CP, highlighting the particular benefits of lipophilic 
statins, such as lovastatin and simvastatin, over the hydrophilic statins, such as 
rosuvastatin. Ultimately, studies to repurpose N-acetylcysteine as a CP therapy 
areyielding very promising results.

Key Words: Chronic pancreatitis; Simvastatin; Antioxidants; Quality of life; N-
acetylcysteine; Acute pancreatitis
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Core Tip: The clinical management of a majority of chronic diseases has seen a 
paradigm shift over the last two decades. To date, however, a well-defined standard of 
care has not been established for patients with chronic pancreatitis (CP). Lack of 
sufficient scientific evidence regarding the use of antioxidant supplementation, in 
particular, provides opportunities to repurpose drugs and study their efficacy and safety 
in clinical trials. Statins and N-acetylcysteine represent two of the most promising 
molecules for the treatment of CP, today.
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Biography
Rajiv M Mehta, MD, is Professor and Head of the Department of Gastroenterology and 
Clinical Research at Surat Institute of Digestive Sciences (SIDS) Hospital and Research 
Centre in Surat, India. He received his undergraduate and postgraduate degrees from 
Baroda University in Vadodara, India, in 1996 and 2000, respectively. He received his 
advanced degree in gastroenterology from Amrita Institute of Medical Sciences 
(AIMS) in Kochi, India. Only 5 years later, in 2005, he was awarded the prestigious 
presidential gold medal from the National Board of Examination, New Delhi, in 
Gastroenterology. In his continued efforts to advance the overall field of gastroen-
terology, Dr. Mehta authored the very popular “Clinical Gastroenterology” book for 
undergraduate and post-graduate students, withits fourth edition published in 
December 2019 at the Asia Pacific Digestive Disease Week held in Kolkata, India. He 
has also published more than 50 articles in various prestigious journals, to date. Dr. 
Mehta has also been collaborating with Dr. Stephan Pandol and his team from Cedars-
Sinai Medical Center in Los Angeles, CA, United States over the past 3 years, focusing 
on chronic pancreatitis (CP). Collectively, this group isinvolved in the development of 
novel biomarkers for the diagnosis of “early CP”. Additionally, Dr. Mehta has invest-
igated the effects of simvastatin on the histology of L-arginine-induced pancreatitis in 
mouse models, in association with the Jay Research Foundation (JRF) in Vapi, Gujarat, 
India. Defining the overall role of simvastatin and N-acetylcysteine (NAC) in 
CPtreatment remains Dr. Mehta’s seminal work, while defining the role of genetic 
polymorphisms in patients with idiopathic CP is his focused area of interest. Further, 
he is diligently working towards the development of “New Chemical Entity” in 
pancreatic cancer.

Background
CP is a fibro-inflammatory disorder of the exocrine pancreas occurring in individuals 
with genetic, environmental and other risk factors who develop persistent pathological 
responses to parenchymal injury or stress[1]. CP is characterized by acinar cell 
damage, ductal dysfunction, persistent inflammation, atrophy, fibrosis, and 
neuroimmune responses. The clinical course of CP involves significant abdominal 
pain, exocrine function deficiency (manifested as maldigestion), and endocrine 
deficiency (manifested as diabetes). The causes of CP include alcohol intake, smoking, 
metabolic derangements, genetic disorders, autoimmune factors, obstructive 
mechanisms, and idiopathic aetiologies[2]. Unfortunately, it is difficult to determine 
the exact prevalence of CP, since the early diagnosis of CP continues to be challenging.

Alcoholic chronic pancreatitis (ACP) is most commonly observed in Western 
countries, whereas idiopathic chronic pancreatitis (ICP) is observed more frequently in 
developing countries, like India; reportedly, ICP accounts for 57.3%–69.6% of the cases 
of CP in India[3]. The cause of ICP remains unknown[4]. In genetically susceptible 
individuals, environmental factors initiate the fibroinflammatory process (gene-gene 
or gene-environment interplay), which leads to the development of CP[5]. The subtle 
pathophysiological changes pose challenges to the early diagnosis of CP, and the 
parameters for early diagnosis are ill-defined. Late-stage CP is characterized by 
variable fibrosis and calcification in the pancreatic gland, leading to parenchymal and 
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ductal changes[6].
Abdominal pain is a well-recognized and debilitating symptom, prompting patients 

with CP to seek medical assistance. Among all the complications of CP, abdominal 
pain was found to be strongest predictor of poor quality of life (QoL)[7]. Endoscopic 
and surgical treatments are often performed to relieve pain, but these methods are 
invasive and are beneficial only in a specific subgroup of patients with CP. The 
therapeutic strategies currently used for the management of CP include a combination 
of analgesics, pancreatic enzymes, adequate nutrition, and antioxidants[8]. However, 
the effect of antioxidants on providing sustained pain relief or reversing disease 
activity has not been established, thus far. As such, further studies are warranted to 
address this unmet need for an alternative therapeutic approach for CP.

PATHOPHYSIOLOGIC BASIS OF ANTIOXIDANT THERAPY
The use of antioxidant therapy is based on observations that CP tissues show marked 
oxidative changes.

Oxidative stress
Oxidative stress is caused by an imbalance between production and accumulation of 
reactive oxygen species (ROS) in cells and tissues and the ability of a biological system 
to detoxify these reactive products[9]. Xenobiotics, such as alcohol and smoking 
molecules, are detoxified in the body through phase I and phase II pathways. The 
phase I reaction involves cleaving the parent molecule by enzymes into a less toxic 
molecule. The phase II reaction adds an endogenous molecule to the compound at the 
end of phase I to make it more polar and excretable. Increased exposure to xenobiotics 
may overwhelm the capacity of phase I and phase II detoxification pathways and 
result in oxidative stress. Production of ROS is a particularly destructive aspect of 
oxidative stress. ROS are mainly produced by mitochondria, during both physiological 
and pathological conditions[10]. When the production of ROS increases, they exert 
harmful effects on important cellular structures, like proteins, lipids and nucleic acids, 
leading to destruction of the cell membrane, depletion of cellular antioxidants, and 
alteration in various signalling pathways. Previous studies have indicated that 
oxidative stress is involved, to a varying extent, in the onset and/or progression of 
several diseases[9].

Oxidative stress in CP
Pancreatic acinar cells are the main site for generation of oxidant stress and, therefore, 
are exposed to its detrimental effects. Intra-acinar oxidative stress leads to impairment 
of the transsulfuration pathway, which is required for zymogen exocytosis[11,12]. This 
leads to recurrent intra-acinar zymogen activation. Methionine and ascorbic acid 
appear to be important components in maintaining the transsulfuration pathway[13]. 
Several studies conducted in the 1990s showed that deficiency of essential antiox-
idants, such as vitamin A, ascorbic acid, methionine, vitamin E and selenium, is partic-
ularly prevalent among patients with ACP. Persistent exposure to xenobiotics via 
smoking and consumption of alcohol increase the levels of oxidative stress. Thus, the 
role of oxidative stress and micronutrient deficiency in patients with CP exposed to 
high levels of xenobiotics has been established. “Tropical pancreatitis” has been 
typically associated with protein and micronutrient deficiencies; however, the role of 
malnutrition in the etiopathogenesis of CP has been discarded[14].

Over the past one and a half decades, results of several studies conducted in India 
have shown that the phenotype of patients with ICP has changed significantly. A 
complex gene-environment interplay is now known to be involved in the development 
of ICP[5]. Our experience has revealed that the levels of antioxidant micronutrients are 
normal in patients with ICP who carry normal genetic polymorphisms (in press as of 
the writing of this paper).

ANTIOXIDANT SUPPLEMENTATION IN CP: THE STORY, SO FAR
In 1990, Uden et al[15] performed a double-blind, placebo controlled, crossover trial in 
20 patients to determine the efficacy of the combination of 600 mcg of organic 
selenium, 9000 IU of b carotene, 0.54 g of vitamin C, 270 IU of vitamin E and 2 g of 
methionine. Results of this trial indicated that antioxidants were superior to placebo in 
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relieving pain. Several non-randomized studies in small patient populations have also 
shown the benefits of antioxidant treatments in patients with CP. In a study by 
Bharadwaj et al[16], 147 patients were randomized to an antioxidant therapy or 
placebo group, and the results indicated a beneficial effect of antioxidant therapy in 
reducing “painful days” and in improving the markers of oxidative stress. Although 
the study by Bharadwaj et al[16] was conducted in a large and heterogenous patient 
population (including patients with ACP as well as those with ICP), validated pain 
scores were not used and formal analysis of QoL was not performed. Results of the 
ANTICIPATE study showed that administration of antioxidants to patients with 
painful ACP does not reduce pain or improve QoL, despite a sustained increase in 
blood levels of antioxidants[17]. The results of a randomized controlled trial by Singh 
et al[18] showed that antioxidant supplementation increased the blood antioxidant 
levels but produced no additional benefit on endocrine and exocrine functions, 
markers of fibrosis, inflammation, nutritional status, pain or QoL.

Gooshe et al[19] performed a meta-analysis to determine the efficacy and adverse 
effects of antioxidant therapy in patients with acute pancreatitis (AP), CP and post-
endoscopic retrograde cholangiopancreatography pancreatitis (commonly known as 
PEP). This meta-analysis provided evidence to support the efficacy of antioxidant 
therapy only in AP, whereas its effects in CP and PEP were less clear. The meta-
analysis by Rustagi et al[20] demonstrated a benefit of antioxidants; however, the 
investigators did not control for a heterogenous study population and the use of 
different types of antioxidants among such. The most recent Cochrane Systematic 
Review of 18 studies concluded that antioxidants could result in a slight reduction in 
pain in patients with CP but there were no conclusive data reported for analgesic 
requirement and QoL[21]. Rupjoyti et al[22] showed that treatment with a methionine-
containing antioxidant was associated with a significant increase in the number of 
pain-free patients and a trend towards decreased requirement for hospital visits or 
admissions. Thus, methionine may help to restore the transsulfuration pathway and 
decrease intrapancreatic inflammation. Rupjoyti et al[22] performed a meta-analysis 
based upon data from January 1980 to August 2014, encompassing eight studies (six 
randomized controlled trials and two non-randomized trials). Although the overall 
results supported the efficacy of methionine supplementation, when the two non-
randomized studies (by Shah et al[23] and Castasno et al[24]) were excluded, the 
antioxidant combination was no longer statistically significant for decreasing the pain 
score.

A recent meta-analysis by Mohta et al[25] showed negative results for antioxidants’ 
ability to reduce pain and improve QoL in patients with CP. These findings are 
important because all studies included in the meta-analysis had been performed using 
a similar type of antioxidant and were based on a combination of commercially-
available antioxidants and those used in clinical practice; therefore, the findings of that 
meta-analysis are more relevant to clinical practice. However, the meta-analysis itself 
had some limitations. First, there was variation in the method of reporting of pain 
among the studies included and, as such, the analysis had to be performed with two 
different parameters, namely the visual analogue scale (VAS) score and pain-free 
participants. This resulted in a decrease in the number of patients that could be 
simultaneously included in the analysis. Second, limited information was available 
regarding the QoL.

Although the micronutrient antioxidant therapy was proposed for relieving the pain 
associated with CP more than three decades ago, this treatment has been used sporad-
ically; moreover, the optimal formulation and duration of the antioxidant regimen has 
not been completely elucidated. Further, a majority of the clinical trials were not well-
designed and did not include a homogenous study population. In view of the 
fluctuating nature of this disease, a well-defined method to determine the pain scores 
and measure the QoL was not developed and validated. Differences in the assessment 
and reporting of pain (i.e., VAS score, numeric rating score, brief pain inventory scores, 
vocabulary score sheet, and “painful days”) in various clinical studies make study 
comparisons and meta-analysis difficult. These featurescan be attributable to the 
inconsistent results obtained in the various meta-analysis[20-22,25,26].

The lack of alternative therapies for patients with CP warrants an urgent need for a 
well-designed study to evaluate the effect of antioxidant therapy in a clearly defined 
patient population.
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STATINS: THE ROAD AHEAD
Antioxidant therapy has inconsistent efficacy in patients with CP. Therefore, a reliable, 
effective, safe and predictable agent represents an unmet (but required) need for the 
treatment of CP. A statin appears to be the most appropriate candidate.

Non-lipid-lowering effects of statins
Several primary and secondary prevention trials have shown the clinical benefits of 
statins in coronary artery disease[27]. An increasing number of studies indicate that 
statins have many non-lipid-lowering effects, known as pleotropic effects[28,29]. Some 
of the effects include anti-inflammatory actions and improvement of endothelial 
function by prevention of lipid peroxidation. Statins exert antioxidant effects by 
increasing the bioavailability of nitric oxide[30], decreasing the production of ROS[31] 
and inhibiting the distinct oxidation pathways[32]. Antiproliferative and immuno-
modulatory properties of statins suggest novel applications of statins in various 
diseases apart from dyslipidaemia[33].

Statins and pancreatitis
The relationship between statins and AP is controversial, considering simvastatin- 
induced AP was found in a previous study[34]. Statins are among the most widely 
prescribed medications worldwide for cardiovascular diseases. Thus, it is important to 
understand the relationship between statins and pancreatitis. A population-based 
study from Denmark found no association between the risk of AP and use of statins
[35]. In contrast, a recent meta-analysis of 21 high-quality randomized controlled trials 
showed an overall decrease in the risk of pancreatitis among patients treated with 
statins compared with those treated with placebo[36]. However, since pancreatitis was 
not the primary outcome of the 21 trials included in that meta-analysis, these results 
may not be a true indicator of the protective effects. The protective effects of 
simvastatin and ezetimibe were shown in the Study of Heart and Renal Protection 
(SHARP) study[37]. The result of a recent study by Wu et al[38] also indicated that 
simvastatin and atorvastatin were associated with an overall decrease in the risk of 
AP. Moreover, subgroup analysis in the same study showed a decrease in the risk of 
pancreatitis in patients with chronic alcohol abuse, suggesting the possible role of 
simvastatin in preventing recurrent AP and subsequent progression to CP.

Statins and experimental studies 
The effects of simvastatin pre-treatment on 10 Wistar rats was published by a group 
from Brazil in 2008[39]. They reported no beneficial effects on pancreatic inflammation 
but a trend towards improved survival rate in the simvastatin group. Of interest, the 
lovastatin treatment was found to successfully inhibit invitro activation of pancreatic 
stellate cells[40]. This is an important observation, as activated stellate cells mediate 
the fibroinflammatory response of CP. In a similar study of L-arginine-induced 
pancreatitis in rats, performed by Metalka et al[41], levels of malondialdehyde 
(commonly known as MDA) were significantly reduced in the pancreas tissues of the 
simvastatin treatment group.

Another considerable pathologic process that occurs in pancreatitis is impaired 
autophagy[42-44]. Autophagy is the process of removal of damaged cellular 
compounds, including dysfunctional mitochondria (mitophagy) during stress 
conditions[45]. Because dysfunctional mitochondria are a significant source of ROS 
generation, as indicated above, their dysfunction can be an important source of cellular 
stress that can promote pancreatitis. During autophagy, organelles such as 
mitochondria and cytoplasmic materials are sequestered by the autophagosomes (a 
double–membrane structure) and transported to the lysosome for digestion[46]. 
Autophagosome-lysosome fusion is impaired in pancreatitis, resulting in incomplete 
autophagy andmitophagy[47]. Piplani et al[48] showed that simvastatin restores 
autophagy and mitophagy, resulting in improvement in pancreatitis pathology in the 
cerulein-induced model of experimental AP.

Statins and pancreatic cancer
Autophagosome accumulation during pancreatitis can promote pancreatic cancer[49]. 
CP is the strongest identified risk factor for pancreatic cancer[50]. Intriguingly, the 
results of a study involving 250 patients with pancreatic cancer showed an improved 
survival among those patients with diabetes who were subject to statin treatment[51]. 
Based on these results, Jeon et al[52] retrospectively analysed a cohort of elderly 
patients with pancreatic cancer using the Surveillance, Epidemiology and End Results 
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(commonly known as SEER) database of patients in the United States. They studied 
the use of statins in patients after diagnosis of pancreatic ductal adenocarcinoma. 
Simvastatin was the most prescribed statin. The patients who used statins were found 
to live longer after their cancer diagnosis (median overall survival of 4.7 mo; inter-
quartile range of 1.9-11.7 mo) as opposed to those who were not prescribed statins 
(median overall survival of 2.4 mo; interquartile range of 1.5-7.3 mo). There was a 
favourable impact of statin use on survival in those who had undergone pancre-
atectomy vs those who had undergone no surgery (HR = 0.80, 95%CI: 0.66, 0.97). Of 
interest, simvastatin treatment was associated with significantly lower hazard of death 
compared to no statin treatment (HR = 0.91, 95%CI: 0.84, 0.99). The results of that 
study were confirmed by another, showing the beneficial effect of statins in pancreatic 
cancer patients in a large health care system in Southern California, United States[53].

The mechanism of action of statins in pancreatic cancer remains poorly understood. 
Statins are known to decrease the expression of inflammatory cytokines and to 
modulate the expression of several genes involved in angiogenesis and inflammation, 
which may protect against carcinogenesis. Statins also inhibit protein prenylation. This 
prevents the proper functioning of guanosine triphosphatase proteins, such as Ras and 
Rho, thereby inhibiting downstream pathways that are involved in cell growth, prolif-
eration, survival, motility and invasion, which leads to cell cycle arrest in G1. Further-
more, statins impair cancer cell proliferation by inhibiting the synthesis of cholesterol, 
which is essential for new membrane formation in rapidly proliferating cells[54].

OUR EXPERIENCE IN CP AND SIMVASTATIN
On the basis of the experimental and limited retrospective/population-based data, we 
performed two prospective studies to assess the role of simvastatin in patients with 
ICP. In the first prospective study, patients were assigned to receive either the 
standard antioxidant preparation (a tablet containing 3000 IU β carotene, 550 mg 
methionine, 200 μg selenium, 40 mg vitamin C, and 10 mg vitamin E administered 
thrice daily) or the combination of the standard antioxidant preparation and 
simvastatin (40 mg/d). Improvement in pain was assessed using the VAS. At the end 
of 12 mo, the decrease in the VAS score was significantly greaterin the simvastatin 
group (P  = 0.032)[55]. In the other pilot study (under publication), health-related QoL 
was assessed using the European Organization for Research and Treatment of Cancer 
(referred to as EORTC) QLQ PAN 28 and QLQ C30 scoring. The results of the study 
showed that at 6 mo patients who received a combination of simvastatin and antiox-
idants showed a significant improvement in the pancreatic pain score compared to 
those who received antioxidants alone (P= 0.01) (Figure 1). Patients who received 
simvastatin and antioxidants also consumed fewer analgesics (P  = 0.03) (Figure 2) and 
required less hospitalization (P = 0.04) than those who received antioxidants alone. 
Our findings indicate that, compared to antioxidants alone, simvastatin in combination 
with antioxidants significantly improves the overall QoL (Figure 3) (P  = 0.01), which is 
consistent with the findings reported in several preclinical studies. Thus, simvastatin 
may emerge to modulate the disease process in CP.

Considering the complexity of CP, we have also identified NAC as another 
molecule that can be repurposed for CP. NAC exerts antioxidant and antifibrotic 
effects via inhibition of tissue growth factor signalling in fibrogenic cells[56]. In the 
environment of inflamed pancreatic tissue, activation of pancreatic stellate cells 
produces abundant extracellular matrix proteins, leading to fibrosis as well as inflam-
matory cytokines. Beneficial roles of the combination of simvastatin and NAC on the 
pathophysiology of inflammation and necrosis of the acinar cell involve inhibition of 
pancreatic stellate cells. Thus, we designed a prospective, randomized, open-labelled 
clinical trial entitled “The safety and efficacy of simvastatin plus standard of care or 
simvastatin plus NAC plus standard of care vs only standard of care in patients with 
idiopathic acute recurrent pancreatitis and chronic pancreatitis” (i.e., the SNAPstudy). 
This study aims to assess not only the QoL but also various biomarkers for inflam-
mation in CP.

CONCLUSION
There is a scarcity of scientific evidence to substantiate the use of antioxidants in the 
treatment of CP. Simvastatin and NAC appear to be promising candidates for the 
treatment of CP.
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Figure 1 Reduction in pain score observed in both treatment groups. AO: Antioxidants; S: Simvastatin.

Figure 2 Reduction in analgesic requirement observed for both treatment groups. AO: Antioxidants; S: Simvastatin.

Figure 3 Global health status observed in both treatment groups. AO: Antioxidants; S: Simvastatin.
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Abstract
In December 2019 a novel coronavirus disease 2019 (COVID-19), caused by the 
severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2), started 
spreading from Wuhan city of Chinese Hubei province and rapidly became a 
global pandemic. Clinical symptoms of the disease range from paucisymptomatic 
disease to a much more severe disease. Typical symptoms of the initial phase 
include fever and cough, with possible progression to acute respiratory distress 
syndrome. Gastrointestinal manifestations such as diarrhoea, vomiting and 
abdominal pain are reported in a considerable number of affected individuals and 
may be due to the SARS-CoV-2 tropism for the peptidase angiotensin receptor 2. 
The intestinal homeostasis and microenvironment appear to play a major role in 
the pathogenesis of COVID-19 and in the enhancement of the systemic inflam-
matory responses. Long-term consequences of COVID-19 include respiratory 
disturbances and other disabling manifestations, such as fatigue and psycho-
logical impairment. To date, there is a paucity of data on the gastrointestinal 
sequelae of SARS-CoV-2 infection. Since COVID-19 can directly or indirectly 
affect the gut physiology in different ways, it is plausible that functional bowel 
diseases may occur after the recovery because of potential pathophysiological 
alterations (dysbiosis, disruption of the intestinal barrier, mucosal microinflam-
mation, post-infectious states, immune dysregulation and psychological stress). In 
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this review we speculate that COVID-19 can trigger irritable bowel syndrome and 
we discuss the potential mechanisms.
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Core Tip: Coronavirus disease 2019 (COVID-19) is not only a respiratory tract illness, 
as it may involve other systems, including the gastrointestinal tract. Persistent 
symptoms after the resolution of the infection are described, but there is almost no 
mention on the possible consequences on bowel function. However, some aspects 
concerning COVID-19, its management, and psychological aspects, may contribute to 
trigger disorders of the gut-brain interaction, among which the irritable bowel 
syndrome is the most frequent.
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INTRODUCTION
In December 2019 a cluster of acute atypical respiratory infections were reported in the 
Wuhan city of Hubei province by the Chinese authorities to the World Health 
Organization (WHO). The responsible pathogen was identified as a new member of 
the family Coronaviridae, and it was called severe acute respiratory syndrome 
coronavirus-2 (SARS-CoV-2) due to its similarity to the SARS coronavirus, previously 
involved in the 2002-2003 pandemic. The SARS-CoV-2-related disease was named 
coronavirus disease 2019 (COVID-19) and rapidly spread worldwide. Indeed, COVID-
19 became a public health emergency on January 30, 2020 and, subsequently, a 
pandemic state was declared on March 11, 2020 by the WHO[1].

SARS-CoV-2 is a positive-sense single-stranded RNA virus, whose genome encodes 
for four major structural proteins: Spike (S) protein, envelope protein, membrane 
protein and nucleocapsid protein. The S protein mediates the entering of SARS-CoV-2 
in the host cells by binding to the peptidase angiotensin receptor 2 (ACE2)[2].

COVID-19 is a contagious and highly lethal illness, especially for individuals with 
chronic comorbidities (such as diabetes mellitus, hypertension, cardiorespiratory 
disorders, chronic hepatic and renal diseases), elderly, oncological and immunosup-
pressed patients[2]. The infection is predominately transmitted by person to person 
through respiratory droplets, although many other modes of potential transmission 
have been postulated, which include through faecal-oral transmission. The average 
incubation period for COVID-19 is 5.2 d, but it can last up to 15.5 d.

The infection can have an asymptomatic course or it can present with fever, malaise 
and dry cough in the initial phase, during the invasion and infection of the upper 
respiratory tract. Patients may also experience gastrointestinal symptoms such as 
abdominal pain, vomiting and diarrhoea, and signs of systemic involvement (mainly 
neurological, cardiological, renal, and hepatological manifestations). Subsequently, the 
disease can involve the lower respiratory tract in approximately 20% of the cases and, 
in most severe situations, it can culminate in acute respiratory distress syndrome. This 
condition is characterized by a surge in circulatory inflammatory cytokines [mainly 
interleukin (IL)-1, IL-6, IL-8, tumor necrosis factor (TNF)-α], termed ‘cytokine storm’, 
which is responsible for the subsequent inflammation and lung injury[1,3].

Treatments for COVID-19 change according to the disease severity: They include 
symptomatic and supportive therapy (such as oxygen supplementation, fluid 
resuscitation and vasopressors in case of septic shock), broad-spectrum antibiotics for 
prevention/management of secondary bacterial infections or sepsis, steroids if 
respiratory failure occurs, and prophylactic low molecular weight heparin in patients 
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with moderate to severe disease because of the high risk of thromboembolism. The 
efficacy of antivirals (predominantly remdesivir and lopinavir/ritonavir combination), 
immunomodulatory drugs (including tocilizumab, chloroquine and hydroxy-
chloroquine) and other treatments in reducing mortality and exacerbation of COVID-
19 pneumonia is controversial and needs further evidence. However, these drugs are 
frequently used in clinical practice in the absence of any alternative[1].

As in other infectious diseases, recovered patients often continue to suffer from 
various long-term sequelae involving the respiratory system, as dyspnoea and cough, 
as well as less defined disabling manifestations; the latter include neuropsychiatric 
sequelae such as fatigue, anxiety, depression, post-traumatic stress disorder and 
insomnia[3-7]. It is still unknown whether these symptoms derive from the infection 
itself, from its general management (mainly medical therapies) or from the disease 
itself through mechanisms that have yet to be determined.

As COVID-19 affects also the gastrointestinal tract, some sequelae may derive from 
a disequilibrium of the intestinal homeostasis, but current evidence is almost absent[5,
8].

In this review we hypothesised that the direct involvement of the gut and the one 
derived from COVID-19-related circumstantial conditions can predispose to the 
development of irritable bowel syndrome (IBS). To support this idea, we analysed the 
mechanism through which SARS-CoV-2 perturbs the intestinal physiology in infected 
individuals, went through the physiopathology of IBS and finally considered the 
possible factors that can subsequently trigger IBS after the COVID-19 recovery. For 
this aim, PubMed and Google Scholar were searched using various combinations of 
the terms “SARS-CoV-2”, “COVID-19”, “gastrointestinal”, “gut”, “symptoms”, 
“irritable bowel syndrome”, “microbiota”, and “microbiome”. Subsequently, we 
selected the most pertinent articles in support of reasonable common factors between 
COVID-19 and IBS enhancement and summarised current evidence.

GASTROINTESTINAL INVOLVEMENT OF COVID-19
Gastrointestinal manifestations of COVID-19 can be present with variable incidence 
(40%-50%), and include mainly diarrhoea, nausea, anorexia, vomiting, abdominal pain 
and belching. These symptoms may arise even in the absence of respiratory 
involvement or may appear after the onset of respiratory symptoms[2,9,10]. SARS-
CoV-2 is also associated with other gastrointestinal symptoms. One of these include 
liver injury, which can manifest as increased serum aminotransferases, bilirubin and γ-
glutamyl transferase[2,10]. Furthermore, elevated blood levels of amylase and lipase 
have been described, but a strict causality of pancreatic damage with SARS-CoV-2 
infection has not been ascertained. Importantly, the drugs used to treat COVID-19 may 
also have impact on the gastrointestinal tract[11].

Gastrointestinal involvement in COVID-19 may be due to the capacity of SARS-
CoV-2 to directly infect the intestinal tract: This hypothesis is supported by detection 
of the virus in enterocytes and in stool samples of affected patients, and also in faecal 
samples of individuals with negative nasopharyngeal tests[12-14]. As previously 
mentioned, SARS-CoV-2 attaches to the ACE2 to enter into human cells and to infect 
the host. This receptor exists in two forms: The full-length mACE2, which is located on 
cell membranes with a transmembrane anchor and an extracellular domain, and the 
sACE2, a soluble form released into blood circulation. The N-terminal domain of the 
mACE2 is the target of the S protein of SARS-CoV-2[15]. The S protein consists of two 
different subunits: The S1, which binds to the cell receptors of the host, and the S2, 
which mediates the fusion of the viral and cell membranes[16]. Two transmembrane 
protease serines, TMPRSS2 and TMPRSS4, are essential to cleave the S protein at S1/S2 
and S2 sites, to enhance the S fusogenic activity, the entry and replication of the virus 
in mature small intestinal enterocytes[17,18].

The ACE2 is expressed in several tissues within the human body with specific 
localization on different cells, including enterocytes, renal tubules, gallbladder, 
cardiomyocytes, male reproductive cells, placental trophoblasts, ductal cells, eye, 
vasculature and others[15,19]. Concerning the digestive system, the expression of 
ACE2 gene is highest in the small intestine, but it is also present among other sites, 
such as colon, stomach, oesophagus, liver, biliary tract and pancreas[19-22]. Speci-
fically, this receptor is expressed in the muscularis mucosa and mucosa of the 
intestine, including the epithelial cells, cholangiocytes, hepatocytes, pancreatic ductal, 
acinar and islet cells, and in the gastrointestinal vasculature[11,23,24]. ACE2 seems to 
play a key role in the intestinal homeostasis and functions. Indeed, it can regulate the 
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blood flow perfusion by increasing the vascular resistance (primarily the mesenteric 
vasculature). Moreover, it is possible that ACE2 is capable of enhancing the mucosal 
nitric oxide production, which regulates the properties of the epithelial barrier, and of 
modulating the ion transport and the paracellular permeability. It can also induce 
duodenal secretory responses of mucosal bicarbonate against the luminal acid from 
the stomach and stimulate sodium and water absorption. It seems plausible that ACE2 
is involved in the relaxation of the gastrointestinal wall musculature. Nonetheless, 
current evidence suggests that ACE2 is involved in inflammation and immunomodu-
lation, and in the pathophysiology of IBS for contributing to enhance low-grade 
inflammation in the enteric nerve plexa[24,25]. The ACE2 can also regulate the 
intestinal amino acid homeostasis and absorption, the production of antimicrobial 
peptides, the intestinal motility and the gut microbiota independently of the renin-
angiotensin system[24,26]. It is also reported that the deficiency of this receptor in a 
murine model of colitis leads to an increased susceptibility to intestinal inflammation. 
This effect seems to be mediated by an impaired epithelial immunity and induced 
dysbiosis, defined as the impairment of the diversity and function of intestinal 
microbes. This is suggested by the increased propensity to develop severe colitis after 
the faecal microbiota transplantation of an impaired intestinal microbiota from mice 
with genetic inactivation of ACE2 into germ-free wild-type animals[26]. Moreover, 
preclinical evidence indicates that ACE2 can impair the electrophysiological and 
synaptic functions of the neurons of the enteric nervous system, thus influencing the 
gastrointestinal motility, sensitivity and the pathways of inflammation[27].

Overall, it is plausible that the impairment of bowel physiology by SARS-CoV-2 
may derive from a dysregulation of all these ACE2-mediated functions due to a 
competitive mechanism of the virus on this receptor or from a downregulation of its 
anti-inflammatory activity. Moreover, the gastrointestinal manifestations may arise 
from a direct cytopathic effect of the virus on the mucous epithelium, from a 
malabsorption secondary to the invasion of enterocytes, or from the triggered inflam-
matory response with plasma cells and lymphocytes infiltration in the intestinal 
lamina propria[2,28]. Accordingly, SARS-CoV-2 infection can be associated with 
microscopic bowel inflammation with infiltrating plasma cells and lymphocytes, and 
with interstitial edema in the lamina propria, as well as overt acute haemorrhagic 
colitis with endoscopically confirmed mucosal injury[28,29]. The hypothesis of 
intestinal inflammation is supported by the detection of significantly increased levels 
of faecal cytokines, as IL-8, in COVID-19 patients when compared to uninfected 
controls[30]. Additionally, a significant number of patients (approximately 30%–75%), 
more frequently those with gastrointestinal manifestations, has elevated values of 
faecal calprotectin, a protein released by neutrophils of the intestinal mucosa[31]. The 
occurrence of diarrhoea seems also higher among patients with higher SARS-CoV-2 
RNA loads in stool samples[30]. Finally, the presence of virus-specific immuno-
globulin A (IgA) in faecal samples suggests that the gastrointestinal tract may be 
immunologically active during SARS-CoV-2 infection[30].

It is likely that the gut homeostasis and the intestinal immunity play a major role in 
the pathogenesis of COVID-19 and in the enhancement of the systemic inflammation 
triggered by the SARS-CoV-2 infection, which is characterized by significantly higher 
serum IL-6, IL-8, IL-10 and TNF-α in severe cases[30]. Indeed, it is described that 
higher levels of faecal IL-23 correlate with more severe COVID-19 disease, as well as 
the finding of intestinal virus-specific IgA responses[30]. Interestingly, gut microbial 
alterations in COVID-19 patients can contribute to regulate systemic inflammation, as 
suggested by the correlation between specific changes in genera and inflammation 
indices[32].

IBS
IBS is the most common chronic disorder of the gut-brain interaction, and it is charac-
terized by mild to severe recurrent abdominal pain and bloating associated to 
alterations in bowel habits in the absence of organic disease or biochemical 
abnormalities[33]. IBS is also often accompanied by other comorbidities, like 
psychiatric conditions, pain syndromes, overactive bladder, migraine, and visceral 
sensitivity[34]. The debilitating symptoms of IBS impose a significant burden on the 
quality of life of affected individuals, since it is associated with depression and suicidal 
ideation, reduces work productivity and increases the accesses to medical care[35,36]. 
The prevalence of IBS varies substantially between countries due to the different 
diagnostic criteria and survey methods used in worldwide studies, ranging from less 
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than 1% to more than 25%, with a predominance in women in comparison to men 
(12.0% vs 8.6% respectively; odds ratio 1.46)[37]. Moreover, it is more frequent in lower 
socioeconomic groups and individuals younger than 50 years[36]. IBS is diagnosed 
according to the Rome criteria, a clinical classification which includes four types of IBS 
according to the predominant bowel habits: IBS with predominant constipation, IBS 
with predominant diarrhoea (IBS-D), IBS with mixed bowel habits (IBS-M) and unclas-
sified IBS[38]. IBS-M and IBS-D are reported to be the most prevalent subtypes[37]. For 
an accurate diagnosis of IBS, organic underlying conditions must be excluded, with an 
accurate patient history, physical examination, laboratory tests and, if necessary, 
endoscopic assessment. Common conditions which should be ruled out include celiac 
disease, microscopic colitis, inflammatory bowel disease, bile acid malabsorption, 
colorectal cancer, and dyssynergic defecation[38,39].

The physiopathology of IBS is currently not fully understood, but it is considered a 
complex multifactorial disorder with a still unknown molecular pathophysiology. 
Indeed, it has been hypothesised that an impairment of different functions (such as 
central and autonomic neurophysiology, visceral nociception, bowel motility, 
secretory activity and psycho-somatic balance) due to perturbing factors (i.e., stress 
exposure, psychosocial conditions, food antigens, antibiotics and infections of various 
origin) leads to physiological abnormalities, which may be involved in the 
development and perpetuating of IBS. These include intestinal dysbiosis, increased 
intestinal permeability, immune cell hyper-reactivity with impaired expression and 
release of mucosal and immune mediators, microinflammation with altered mucosal 
functions, hyper-sensitivity of the enteric nervous system, dysregulation of the 
hypothalamus-pituitary-adrenal (HPA) axis and of the enteric nervous system. 
Increased levels of faecal bile acids and predisposing inheritable susceptibility are 
recognised as co-occurring factors as well[34,39,40]. Increasing evidence suggests that 
all these affected pathways are part of the microbiota-gut-brain axis, a bidirectional 
crosstalk between the brain, the bowel and the gut microbiota which occurs through 
nervous signalling, immune mediators, microbial products, tryptophan metabolites 
and other hormones[39,41].

Accordingly, dysbiosis may contribute to IBS by triggering the gut immune system 
and enhancing low-grade inflammation in susceptible individuals. This hypothesis is 
supported by a higher prevalence of small intestinal bacterial overgrowth and 
imbalances of the gut microbiota composition in patients with IBS compared with 
healthy controls in many recent studies, and by the benefit from the use of non-
absorbable antibiotics on related symptoms. A reduction of the diversity and stability 
of the gut microbiota in patients with IBS has been described[42]. Increased Enterobac-
teriaceae, which includes several harmful genera (as Escherichia, Shigella, Campylobacter, 
and Salmonella), and Lactobacillaceae families, together with high levels of Bacteroides 
genus, reduced Faecalibacterium and Bifidobacterium genera and uncultured 
Clostridiales I are reported in patients with IBS in comparison with controls in a recent 
systematic review including 24 studies[43].

In 6%-17% of the patients suffering with IBS the onset of the symptoms occurs after 
a recent episode of gastrointestinal infection, which can increase up to 6-fold the risk of 
developing IBS. This phenomenon is characterised by the persistence of IBS-like 
disturbances (mainly diarrhoea and abdominal discomfort) after the resolution of the 
infection, and it is known as post-infectious IBS (PI-IBS). The prevalence of PI-IBS is 
approximately 4%-36% in patients with previous infectious gastroenteritis and is 
higher in females, young people, patients who experienced severe infections and 
individuals with psychological comorbidities. Moreover, some pathogens seem more 
predisposing than others; indeed, bacterial infections (particularly by Campylobacter, 
Shigella, Escherichia coli and Salmonella) are more likely to enhance PI-IBS than viruses 
and other microorganisms[34,44,45]. The pathogenesis of this condition is poorly 
understood, but it is hypothesized that the responsible pathogenic microorganism may 
trigger an immunologic and inammatory response with low-grade inflammation and 
mucosal injury, which causes the prolongation of IBS symptoms in predisposed 
individuals. Furthermore, it is described that patients with PI-IBS may have increased 
macrophages and T lymphocytes in intestinal samples, together with high expression 
of IL-1 in rectal biopsies and elevated blood level pro-inflammatory cytokines (such as 
TNF-α, IL-6, IL-8, IL-10 and IL-1β)[44,46]. As in IBS, it is likely that an altered intestinal 
permeability, an impairment of the gut eubiosis and of the neuromuscular function are 
involved in PI-IBS as well[47].
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COVID-19 AND ITS MANAGEMENT: WHAT ARE THE POSSIBLE TRIG-
GERS OF IBS?
The plausible mechanisms involved in the development of IBS in individuals who 
experienced COVID-19 are summarised in Figure 1.

Gastrointestinal disturbances are often associated with respiratory infections or to 
secondary complications, and the gut-lung axis, a hypothetical bidirectional pathway 
which works via biochemical and immunologic systemic signalling molecules, is 
possibly involved in the pathophysiology. Among the perturbing factors of the gut 
microbial environment, respiratory viral infections, including COVID-19, can play a 
relevant role[48]. As previously mentioned, an impairment of the gut microbiota 
composition, which is frequently associated to a dysregulation of the overall intestinal 
homeostasis and gut-brain axis, can participate to the development and maintaining of 
IBS[39,41,42]. An imbalance of the gut microbiota is described in SARS-CoV-2-infected 
individuals. Gu et al[32] found a significant reduction in mean community richness 
and bacterial diversity in COVID-19 patients in comparison with healthy controls 
according to the Shannon diversity index and Chao diversity index. A significantly 
higher relative abundance of Streptococcus, Rothia, Veillonella, and Actinomyces, which 
are opportunistic pathogens, and a lower relative abundance of beneficial symbionts 
were reported. Moreover, Fusicatenibacter, Romboutsia, Intestinibacter, Actinomyces and 
Erysipelatoclostridium were identified as biomarkers to discriminate the COVID-19 
patients from healthy individuals[32]. Zuo et al[49] reported that even antibiotics-
unexposed patients with COVID-19 have a significantly changed intestinal microbiota 
during the hospitalization, with enrichment of opportunistic pathogens (including 
Clostridium hathewayi, Actinomyces viscosus, and Bacteroides nordii) and depletion of 
beneficial commensals when compared to healthy individuals. Moreover, a correlation 
between the disease severity and the baseline abundance of certain genera and strains 
was found, suggesting that the gut microbiota may contribute to the systemic 
involvement in the immune system responses; specifically, a positive relation was 
observed with Coprobacillus, Clostridium ramosum, and Clostridium hathewayi, while a 
negative association was described with Faecalibacterium prausnitzii. The loss of 
beneficial bacteria persisted even after a negative throat swab and the disease 
resolution, suggesting a persistent deleterious effect on the gut microbiota[49]. The 
same working group also observed that an active intestinal infection is present in 
approximately half of COVID-19 patients even without gastrointestinal manifestation, 
and persisted even after respiratory clearance of SARS-CoV-2. Of interest, stool 
specimen with a signature of high SARS-CoV-2 infectivity were characterised by an 
enrichment of opportunistic pathogens (including Collinsella aerofaciens, Collinsella 
tanakaei, Streptococcus infantis and Morganella morganii). On the other hand, faecal 
samples with a signature of “low-to-none” SARS-CoV-2 infectivity displayed higher 
concentration of Parabacteroides merdae, Bacteroides stercoris and Lachnospiraceae 
bacterium 1_1_57FAA. The latter are short-chain fatty acid producing bacteria, which 
play a crucial role in boosting host immunity. A longitudinal follow-up revealed 
relevant alterations of the faecal microbiota composition in a subset of patients[50].

More generally, intestinal and pulmonary dysbiosis are described in various acute 
and chronic pulmonary diseases. For example, pulmonary viral infections, such as the 
ones caused by influenza virus and respiratory syncytial virus, can even directly 
impair the gut microbiome[49]. Moreover, patients suffering from asthma have 
functional and structural impairment of the intestinal mucosa, and patients with 
chronic obstructive pulmonary disease often have leaky gut[51]. Apart from the acute 
COVID-19 phase, respiratory sequelae and radiological abnormalities (such as 
dyspnoea, chronic cough, fibrotic lung disease, bronchiectasis, and pulmonary 
vascular disease) may persist in recovered patients, and the optimal management is 
still undefined[5,52,53]. Thus, it might be plausible that an impairment of the gut 
homeostasis may occur in patients during the acute COVID-19 illness and persist after 
the disease resolution, even in those who did not experience gastrointestinal 
disturbances. This can be hypothetically explained by the communication between the 
two systems through the gut-lung axis. The existence of this connection is not entirely 
understood, but it is strengthened by the occurrence of lung diseases worsening as a 
consequence to intestinal microbial imbalances, gut inflammation and increased 
intestinal permeability[54]. Accordingly, it is reported that elevated values of faecal 
calprotectin are associated with a pathological chest X ray in COVID-19 patients[55]. 
Of interest, the enriched presence in faecal samples of patients with COVID-19 with 
high SARS-CoV-2 infectivity of Streptococcus infantis, an upper respiratory tract and 
oral cavity colonizer bacterial pathogen, may indicate a translocation or transmission 
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Figure 1 Possible pathophysiology of irritable bowel syndrome in coronavirus disease 2019 patients. ACE2: Peptidase angiotensin receptor 2; 
COVID-19: Coronavirus disease 2019; HPA: Hypothalamus–pituitary–adrenal; SARS-CoV-2: Severe acute respiratory syndrome coronavirus-2.

of extraintestinal microbes into the gut during COVID-19[50]. Moreover, lung and gut 
are independent systems which originate from one common embryonic organ, the 
foregut[56]. The microbiota of these two systems develop almost simultaneously after 
birth and is influenced by common factors, such as diet[57]. Overall, it is possible that 
a COVID-19-induced dysregulation of the gut-lung axis may enhance predisposing 
circumstances for IBS. This is also supported by the increased occurrence of gut 
disturbances, like inflammatory bowel disease or IBS, in patients with chronic 
respiratory diseases. Moreover, a pulmonary involvement has been described in 
approximately 33% of patients with IBS[51].

As previously mentioned, viral enteritis is described as a risk factor for developing 
PI-IBS. This has been assessed for norovirus infections in particular. Porter et al[58] 
found a significant increase in the incidence of functional gastrointestinal disorders, 
including constipation, in individuals who experienced a gastroenteritis during a 
norovirus outbreak, suggesting that dysmotility-related disorders may arise from viral 
infections[58]. Previously, Marshall et al[59] described a significantly increased 
prevalence of PI-IBS in a small cohort of subjects after a large outbreak of acute 
gastroenteritis attributed to food-borne norovirus when compared to unexposed 
individuals (23.6% vs 3.4%, P = 0.014), with OR of 6.9 (95%CI: 1.0–48.7)[59]. Similarly, 
an Italian study assessed the incidence of PI-IBS and functional gastrointestinal 
disorders after a norovirus outbreak. At 12 mo follow up a significant greater 
proportion of the infected participants (13%, 40 of 186 adults) developed PI-IBS in 
comparison with unexposed controls (3 of 198 subjects). The mechanisms through 
which IBS is elicited by norovirus are unknown, but this micro-organism can lead to 
epithelial barrier dysfunction, increased intestinal permeability, reduction in villous 
surface area and villous height, and to a mucosal immune response with an increase of 
cytotoxic intra-epithelial T cells[47]. It is possible that these alterations may trigger a 
perpetual immune stimulation or a prolonged immune activation toward cross-
reacting non-pathogenic antigens, which impairs the gut sensory-motor function[58]. 
Since SARS-CoV-2 can have an intestinal tropism and induce intestinal flogosis[13,30,
31], it can be speculated that a mechanism similar to that of norovirus is involved in 
the enhancement of PI-IBS.

Other non-infective factors may possibly play a key role in IBS pathophysiology. To 
date, COVID-19 management has involved a wide range of medications, whose 
efficacy has yet to be rigorously proven or is still under evaluation, and that can 
enhance a dysbiotic state. Above all, empiric antimicrobial use is often part of the 
treatment of respiratory infections, including SARS-CoV-2[60]. It is well known that 
broad-spectrum antibiotics can cause a rapid and significant drop in taxonomic 
richness, diversity and evenness, that can persist even for years after the treatment 
interruption. Beyond taxonomical compositional alterations, the gene expression, 
protein activity and metabolism of the gut microbiota can be impaired by antibiotics. 
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Overall, these changes can predispose to intestinal infections, to overgrowth and 
pathogenic behaviour of resident opportunistic organisms, and to impairment of the 
immunological equilibrium with systemic and long-term consequences[61]. Alongside 
with gut dysbiosis, broad-spectrum antibiotics can induce a disruption of the intestinal 
barrier function by altering the tight junction protein expression and localization, 
enhancing a pro-inflammatory state by NLRP3 inflammasome activation and 
promoting autophagy[62]. Hospitalised patients affected by COVID-19 are frequently 
treated with broad spectrum antibiotics for 5-8 d, mainly to prevent or to treat 
pathogens causing atypical pneumonia and staphylococci[60]. For instance, 
azithromycin, which is largely prescribed to COVID-19 patients, can induce a decline 
in the microbial richness and diversity, as well as changes in microbiota composition, 
with a shift in the Actinobacteria phylum, a reduction in the relative abundance of 
Proteobacteria and Verrucomicrobia (including Akkermansia muciniphila) and a 
decrease of the levels of bifidobacteria[63,64]. It is also reported that COVID-19 
patients treated with vancomycin and/or ceftriaxone went through significant 
compositional alteration with reduced diversity of the gut microbiota[30].

Additionally, it is described that the use of corticosteroids, which is considered a 
treatment option in severe COVID-19 cases, may induce dysbiosis and alter intestinal 
homeostasis as well[57,65]. This is supported by the influence of steroid hormones on 
the gut bacterial communities in animal studies. In example, gonadectomy can reduce 
the microbiota-related sex differences observed between male and female rats. 
Similarly, hormone replacement to rodent females from the birth can decreased the 
microbial diversity in adulthood by increasing the Firmicutes:Bacteroidetes ratio[66]. 
As to systemic glucocorticoid therapy, there is evidence that subcutaneous 
prednisolone administration can alter the gut microbiota of mice, inducing significant 
shifts in the relative abundance of bacteria (decrease in Verrucomicobiales and Bacteri-
odales and increase in Clostridiales) in comparison with controls[67]. Interestingly, it is 
reported that individuals with glucocorticoid-induced obesity, who received 
prednisolone for at least three months, have significant decrease in gut microbial 
diversity in comparison with healthy controls, alongside with increased Firmicutes 
and Actinobacteria levels, and depletion in Bacteroidetes. Taxonomic analysis revealed 
a significantly reduced relative abundances of Bacteroides, Bifidobacterium, and 
Eubacterium in treated patients, whereas Streptococcus and Geobacillus displayed higher 
abundances. Also the faecal content of short-chain fatty acids (propionate and 
butyrate), which are products of carbohydrate fermentation by the gut bacteria, tended 
to be remarkably lower when compared to healthy control[68].

Other treatment options for the pulmonary phase of COVID-19 include antiviral 
drugs, mainly the adenosine nucleotide analogue prodrug remdesivir and the protease 
inhibitor lopinavir in combination with ritonavir[69]. Multicentre randomized 
controlled trials to assess the efficacy in reducing inpatient mortality, ventilation rate, 
and duration of hospital stay are still undergoing, although preliminary results are 
overall not encouraging[70]. While remdesivir seems not to affect the gut microbiota 
composition, antiretrovirals may somehow have a modulatory activity. The 
knowledge of the impact of antiretroviral drugs on the microbiome is limited by little 
evidence and it is predominantly focused on human immunodeficiency virus (HIV) 
treatment. It is still unclear whether antiretroviral treatment can consistently restore 
gut health of HIV-infected individuals or not, but it is likely that the initiation and 
prosecution of these medications can promote dysbiotic states[71,72]. Importantly, 
there is evidence that this drug class can promote microbiome changes independently 
from those induced by HIV. Indeed, a decreased alpha diversity is reported among 
treated patients in comparison with untreated HIV-positive ones. Moreover, protease 
inhibitors can directly interfere with the in vitro adherence of Candida albicans to an 
epithelial cell layer, which can possibly contribute to the reduction of oral candidiasis 
in HIV treated individuals[73].

Even if current evidence discourages its use in the prevention or treatment of 
COVID-19, hydroxychloroquine has been largely administered to patients due to its 
in-vitro capability of inhibiting SARS-CoV-2 by interfering with membrane fusion 
between host cell and the virus, especially in the early phase of the pandemic[70,74]. 
Hydroxychloroquine was initially used as an antimalarial, but, subsequently, it has 
been used as a disease-modifying anti-rheumatic drug to treat rheumatic disorders 
due to its immunomodulatory properties[75]. The impact of this medication on the 
human gut microbiota has been assessed by Balmant et al[48] in patients affected by 
systemic lupus erythematosus. They reported that the use of this drug is associated to 
different degrees of dysbiosis with a dose-dependent effect[48].
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Severe SARS-CoV-2 infection is associated to an aberrant immune response with a 
massive cytokine release, mainly the IL-6 and IL-8. The elevation of inflammatory 
markers, such as IL-6 and C-reactive protein, has been associated with mortality and 
severe disease with pulmonary involvement in comparison to moderate disease. Thus, 
the targeted blockade of systemic inflammation has been proposed as a strategy to 
treat advanced acute conditions with lung lesions when contrasting the virus alone 
might not be sufficient. Specifically, Tocilizumab, a monoclonal antibody that inhibits 
the IL-6 receptor, has been proposed in patients with advanced lung injury[69]. Little 
evidence about the effect of this biological agent on the intestinal microbiota is 
available. A study of patients with rheumatoid arthritis reported that biologics, 
including tocilizumab, significantly reduced the total bacterial count and led to a 
decrease of Clostridium coccoides group, Bifidobacterium, and Lactobacillus plantarum and 
Lactobacillus gasseri strains after 6 mo[76]. Furthermore, it has been hypothesized that 
the aetiology of tocilizumab-related intestinal perforation may lie in the compositional 
or functional microbial changes[8]. Possibly, another IL-6 receptor inhibitor, which is 
currently being tested for severe COVID-19, may induce similar changes to the 
intestinal microbiota, but no study with this objective has been performed to date[69].

A further significant imbalance in the commensal bacterial populations may also be 
caused by polypharmacotherapy (e.g. proton-pump inhibitors, laxatives and 
metformin), which is common especially in elderly comorbid COVID-19 patients, and 
by the use of commonly prescribed drugs to manage mild COVID-19, as nonsteroidal 
anti-inflammatory drugs[63].

Finally, another considerable element involved in the IBS onset, exacerbation and 
relapse, is the activation of the HPA axis consequential to the secretion of the cortico-
tropin-releasing hormone due to acute or chronic stressful conditions. This signalling 
pathway affects the gut functions by regulating the stimulation of the sympathetic and 
parasympathetic activity, the release of catecholamines, the mucosal immunity, the 
intestinal barrier function, the splanchnic blood flow and the composition and growth 
of the gut microbiota. Immune activation and intestinal micro-inflammation are 
described in IBS and can increase the intestinal permeability, modulate the peripheral 
sensitization of mucosal neuronal afferents and the recruitment of “silent” nociceptors 
involved in the hypersensitivity. Similarly, stress-induced dysbiosis may modulate the 
neuro-immune-endocrine systems and interfere with the brain-gut axis. Accordingly, 
the prevalence of at least one psychiatric disorder (mainly depression and anxiety) in 
patients with IBS ranges from 40% to 60% approximately, and the severity of IBS 
manifestations is remarkably correlated with the intensity co-morbid psychiatric 
disturbs. Moreover, early adverse life events and major traumatic experiences are 
frequently described before the onset of IBS[77,78]. COVID-19 is having a significant 
impact on mental health worldwide, since various psychological stress-associated 
factors are linked to the pandemic. More than 40% of patients experiences psycho-
logical distress even when the disease is under control during the acute infection 
phase. A considerable role is also played by anxiety, panic and fear for the isolation 
environment and the uncertain sequelae following resolution of a new and dangerous 
disease. Long-term psychological consequences (as anxiety, depression, post-traumatic 
stress disorder, insomnia, irritability, memory impairment, fatigue, and traumatic 
memories) are frequently reported among those who suffered from COVID-19, 
especially hospitalized ones and individuals with previous emotional dysregulation[7,
79]. Overall, COVID-19-related psychological disturbances are significant and can 
definitely contribute to IBS occurrence.

CONCLUSION
The COVID-19 pandemic is a threat to global public health. A wide spectrum of 
respiratory and systemic symptoms can occur during the acute disease with different 
degrees of severity, and some of them can persist over time after the recovery. A large 
body of evidence supports the gastrointestinal involvement of SARS-CoV-2 infection 
during the acute phase, possibly because the intestinal ACE2 is an additional target of 
viral infection. Importantly, little is known about the gastrointestinal sequelae; at 
present, there is no study reporting the occurrence of IBS in individuals recovered 
from COVID-19. However, a number of considerations may be made regarding the 
plausible role of COVID-19, its management and global setting in the enhancement of 
IBS. Specifically, it can be assumed that many factors contributing to promote a 
dysbiotic state, epithelial barrier impairment, intestinal inflammation and gut 
dysfunction (like antibiotics and other treatments of the acute phase, gut-lung axis 
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impairment, disease-related psychological stress, as well as the virus itself) can be 
involved in this process. Prospective cohort studies are necessary to confirm these 
hypotheses before clinical significance can be concluded.
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Abstract
Viral B and C hepatitis are a major current health issue, both diseases having a 
chronic damaging effect on the liver and its functions. Chronic liver disease can 
lead to even more severe and life-threatening conditions, such as liver cirrhosis 
and hepatocellular carcinoma. Recent years have uncovered an important 
interplay between the liver and the gut microbiome: the gut-liver axis. Hepatitis B 
and C infections often cause alterations in the gut microbiota by lowering the 
levels of ‘protective’ gut microorganisms and, by doing so, hinder the microbiota 
ability to boost the immune response. Treatments aimed at restoring the gut 
microbiota balance may provide a valuable addition to current practice therapies 
and may help limit the chronic changes observed in the liver of hepatitis B and C 
patients. This review aims to summarize the current knowledge on the anato-
functional axis between the gut and liver and to highlight the influence that 
hepatitis B and C viruses have on the microbiota balance, as well as the influence 
of treatments aimed at restoring the gut microbiota on infected livers and disease 
progression.
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INTRODUCTION
Viral B and C hepatitis are two types of infections with a high rate of morbidity and 
mortality[1]. Hepatitis B virus (HBV) is a DNA virus belonging to the Hepadna virus, 
and hepatitis C virus (HCV) is an RNA virus in the Flaviviridae family. These viruses 
have hepatic tropism, are non-cytopathic with the ability to cause chronic liver inflam-
mation and even liver cirrhosis and hepatocellular carcinoma[2].

Both HBV and HCV may cause similar clinical manifestations. Some patients may 
be asymptomatic, while others may have mild signs and symptoms from general 
manifestations (fatigue, fever, loss of appetite) to gastrointestinal symptoms 
(abdominal pain, nausea, vomiting, jaundice)[3].

The microbiota represents the totality of microbes (bacteria, viruses, fungi, 
protozoans, and archaea) associated with the human microorganism, while the 
microbiome consists of all microbes and their genes[4]. The main part of the body 
colonized by microbes is the gastrointestinal tract, whereas other parts such as skin, 
airways, vaginal tract, etc. are also colonized, but to a lesser extent. Changes in the 
microbiota are continuous throughout our life and there are many influencing factors, 
from type of delivery and breastfeeding, to long-term dietary changes, frequent and 
prolonged antibiotic treatment or other medications, etc.[5]. There are six bacterial 
dominant phyla in the gut microbiota: Firmicutes and Bacteroidetes (90%), Pro-
teobacteria, Actinobacteria, Fusobacteria and Verrucomicrobia[6]. The intestinal microbiota 
is a cornerstone in maintaining the homeostasis of the human body. Firstly, this 
"organ" provides nutrients and energy from ingested food and, secondly, it is able to 
produce important metabolites that play a role in maintaining the host's metabolism
[7].

The liver can be considered the largest immune organ in the body with a high 
ability to select and activate immune cells in response to metabolic products in the gut 
or to signals sent by various pathogens[8]. Recent years have seen advances in our 
understanding of the human microbiome and its interaction with us as hosts. The gut-
liver axis is part of these new discoveries, integrating the microbiome modifications 
and dysbiosis in hepatic pathologies.

Our review will discuss part of the mechanisms by which the microbiome 
influences host immunity, as well as the gut-liver axis, with an accent on viral hepatitis 
B and C.

MICROBIOTA AND THE IMMUNE SYSTEM
Through its products, the human microbiota can influence both the local, enteric, and 
the systemic immune system, dysbiosis being correlated with several autoimmune, 
metabolic and neurodegenerative diseases (inflammatory bowel disease progression, 
rheumatoid arthritis, diabetes, asthma and bones homeostasis)[9-15]. This shows that 
the microbiota is not only involved in intestinal, but also in systemic and organ specific 
pathologies. This relationship is bidirectional; systemic modifications can trigger 
intestinal changes, but also intestinal dysbiosis can trigger and maintain organ 
dysfunctions. Gut-associated lymphoid tissue (GALT) is an important "immunological 
organ" of the body that belongs to the gut-mucosal immune system. GALT consists of 
Peyer's patches, intraepithelial lymphocytes, lamina propria lymphocytes (including 
dendritic cells) and mesenteric lymph nodes. Activation of this system has the ability 
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to produce various mediators with immunostimulatory or immunosuppressive effect
[16].

Some of the products by which the intestinal microflora communicates with the rest 
of our organism are lipopolysaccharides (LPS), bacterial DNA and RNA, flagellin, 
short-chain fatty acids (SCFA) such as acetate, propionate and butyrate, tryptophan 
(Trp) and it’s metabolites, teichoic acid and peptidoglycans and secondary bile acids 
(BA)[9,17]. These bacterial components and products of the bacterial metabolism are 
recognized by pattern recognition receptors, which particularly include the toll-like 
receptors (TLR) family. TLRs are expressed on epithelial and immune cells and are 
capable of recognizing specific bacterial molecules, triggering specific local protective 
and immunomodulatory (both pro- and anti-inflammatory) responses[18,19]. TLR 
activation is an essential element of the innate immune systems fight against the HBV 
and HCV infections[20,21]. Not all of these pathways were studied directly in 
connection with HBV and HCV. Therefore, more studies are needed to determine the 
exact relationship between the bacterial products, the immune system and hepatitis.

We will briefly mention some of the most important of the microbial-produced 
products and their interaction with the immune system (Figure 1).

LPS
In Gram-negative bacteria, LPS are an important pathogen-associated molecular 
pattern and a well-studied microbial marker in connection with bacterial translocation 
and host systemic responses[22,23]. The outer membrane of gram-negative bacteria 
consists of LPS, which possess a hydrophobic endotoxin, called lipid A[24]. This 
component is recognized by TLR4 and via this mechanism it further activates nuclear 
factor kappa B (NF-κB) and elicits pro-inflammatory effects[25,26]. One type of LPS is 
Escherichia coli (E. coli) produced LPS. This stimulates TLR4 receptors and triggers the 
release of pro-inflammatory cytokines. E.coli LPS also increases endotoxin tolerance 
and decreases the autoimmune activity, protecting against autoimmune diabetes[27]. 
However, some bacterial species produce LPS molecules with underacylated lipid A 
that exhibit an immuno-inhibitory effect[28]. These LPS molecules are produced 
especially by members of the Bacteroidales order and instead of stimulating TLR 
receptors, they silence the TLR4 signaling and the inflammatory process[29]. LPS 
induces the upregulation of cluster of differentiation 14 protein (CD14) via the TLR4 
pathway, which decreases the relative epithelial resistance and increases its 
permeability. Increased intestinal permeability allows for more LPS to reach the 
general circulation, aiding it in reaching different organs and exhibiting a pro-inflam-
matory effect[30]. This is also true in cases of dysbiosis with an increase in LPS 
production that is correlated with an increase in tumor necrosis factor alpha (TNF-α), 
interleukin (IL) 6 and C-reactive protein levels[31,32]. Intestinal dysbiosis caused an 
LPS-induced inflammatory response in a mice model, while unaltered host microbiota 
reduced the inflammatory response to LPS in the liver[33]. LPS-induced monocyte 
activation has been shown to be increased in patients with HBV or HCV[34].

This underlines the ability of LPS and gut lipid metabolism to modulate both 
intestinal and organ-specific inflammatory response.

SCFA
In the gut, non-digestible carbohydrates are transformed by the microbiota into SCFA 
such as acetate, propionate and butyrate[35]. Acetate and propionate are produced 
mainly by Bacteroidetes, while butyrate, the main source of energy for colonocytes, by 
Firmicutes. A small portion of SCFA that is not metabolized can reach the liver through 
the portal vein, being used as energy substrates for hepatocytes[36,37]. Certain bacteria 
such as Butyricimonas and Prevotella have the ability to generate butyrate and 
propionate, SCFAs with anti-inflammatory effect[38].

SCFA bind to the G-protein coupled free fatty acid receptors (FFA): GPR41 (FFA2) 
and GPR43 (FFA3)[39,40]. Enteroendocrine and pancreatic β-cells present both GPR41 
and GPR43 receptors, while immune cells and adipocytes present mostly GPR41 and 
peripheral neurons GPR43[41]. This links SCFA production to a multitude of 
metabolic, neurological and inflammatory mechanisms. Thus, FFA receptors and 
SCFA production presents therapeutic targets in these diseases[41-43].

In immune cells (leukocytes and neutrophils) SCFA increase the intracellular 
calcium levels[39,44,45]. This reaction leads to an increased production of reactive 
oxygen species, as well as an increased neutrophil recruitment and a pro-inflammatory 
effect[46-48]. GPR41 activation by SCFAs in the gut promotes the function and size of 
regulatory T cells, protecting against intestinal inflammation[49]. Also, GPR43 was 
found to be a chemotactic receptor for neutrophils, stimulating their migration 
towards the source of SCFAs[50,51]. In a mouse model of gout, the intestinal 
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Figure 1 The mechanisms by which the gut microbiome influences the immune system. LPS: Lipopolysaccharides; SCFA: Short-chain fatty acids.

microbiota-produced SCFA determined inflammasome assembly, reactive oxygen 
species formation and IL-1b production and improved the inflammatory response[52]. 
Increased SCFA levels determined the production of macrophages and dendritic cells, 
protecting the lung against allergic inflammation[53]. Also, by activating another G-
protein coupled receptor, GPR109A, the microbiota is involved in inflammatory 
suppression via the NF-κB pathway in normal and colon cancer cells[54].

Another SCFA mechanism involved the inhibition of histone deacetylases (HDAC). 
By non-competitively inhibiting the activity of HDAC 1 and 2, butyrate causes histone 
hyperacetylation. By this mechanism, butyrate and other SCFAs are thought to serve 
as a protective factor against colon cancer, dysbiosis being a risk factor for the 
development of this disease, as well as other chronic inflammatory diseases[55]. 
HDAC inhibition also promotes macrophage activity and CD8 T cells and improves 
anti-cancer therapy[56-59]. Furthermore, class 1 HDACs inhibition is proposed as a 
target in pulmonary inflammation, due to its contribution in the release of pro-inflam-
matory cytokines[60]. HDAC inhibition promotes effector and regulatory T-cell differ-
entiation and the production of IL-17, interferon-γ (IFN-γ) and IL-10, contributing to 
an overall anti-inflammatory effect mediated by SCFAs[61,62].

By increasing acetyl-CoA activity and controlling gene expression, SCFA are 
involved in plasma B cells metabolism, activity, energy production boosting, and 
differentiation. During an infection, they support B cells antibody production, 
decreasing the host susceptibility to pathogens[63].

Therefore, SCFA present both a pro- and anti-inflammatory role[61]. There is still 
the need for more studies to fully understand the implications of SCFA in inflam-
matory and immune diseases and determine in which conditions they act as pro-
inflammatory or as anti-inflammatory factors.

Trp
The microbiota is involved in the transformation of Trp in indole derivatives, 
serotonin (5-hydroxytryptamine) and kynurenine[64].

Lactobacilli species can metabolize Trp into indole-3-aldehyde, a ligand for the aryl 
hydrocarbon receptor (AhR) that is involved in intestinal immunity and the 
production of IL-22[65,66]. There are only a few species such as Peptostreptococcus 
russellii and Lactobacillus spp. with the ability to produce AhR ligands[64]. In high fat 
diets IL-22 can act as an antioxidant and anti-inflammatory agent, protecting the 
intestinal mucosa and epithelial cells from oxidative and inflammatory stressors[67]. 
Also, IL-22 is involved in the intestinal mucosa immune response against exterior 
pathogens[68,69]. However, in patients with inflammatory bowel disease, Il-22 is 
considered a “two-headed cytokine”: it acts as a mucosal producing and healing agent, 
but in the chronic form of the disease it is also involved in tumorigenesis, promoting 
tumoral growth[70-72].

The Trp microbiota metabolite AhR regulates the activation and transcription of 
several other pathways, including IL-6, cytochrome P450 1A1 (CYP1A1), and 1B1 
(CYP1B1), vascular endothelial growth factor A, and prostaglandin G/H synthase 2 
and also stimulates innate lymphoid cells and intraepithelial lymphocytes 
development, mediating their anti-inflammatory effects[73,74]. Other bacteria that 
interfere with Trp metabolism are E. coli, Lactobacilli and Clostridium sporogenes. The 
first two possess tryptophanase which converts Trp to indole, while the latter 
decarboxylates Trp and increases tryptamine production[64].
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The microbiota influence on Trp provides intestinal anti-inflammatory effects, but it 
also poses potential research directions regarding systemic inflammation[75,76].

Flagellin
The locomotive bacterial flagella contain flagellin, which is recognized by the host 
TLR5. Via the TLR pathways, flagellin is involved in several immunological 
mechanisms, both locally, in the gut, but also systemic, inducing the release of pro-
inflammatory molecules[77]. In a study administering purified flagellin in mice, there 
was a decreased microbial dysbiosis, as well as an amelioration of IL-10 deficiency-
induced colitis[78]. This shows that flagellin presenting bacterial species could pose a 
beneficial effect in chronic inflammatory diseases. However, in patients with inflam-
matory bowel diseases there have been observed higher concentrations of flagellin, 
putting into question its supposed protective role[79]. Also, flagellin has been 
observed to be a potent TLR5/NF-κB activator, promoting inflammation in intestinal 
epithelial cells[80]. Via the same TLR5/NF-κB mechanism, flagellin could also promote 
the attachment and development of viral molecules, supporting viral infections via the 
intestine[81].

Bacterial CpG motifs
Bacterial DNA contains unmethylated CpG dinucleotides that are recognized by the 
immune system and produce an immunostimulatory effect[82,83]. These bacterial CpG 
motifs are recognized by TLR9 receptors and, depending on their localization, they 
exhibit several effects. Apical TLR9 activation inhibits NF-κB activation, while 
basolateral receptors stimulate NF-κB activation and the subsequent inflammatory 
pathways[84].

INFLAMMATION AND B AND C HEPATITIS
Many extrahepatic changes (metabolic, cardiovascular, autoimmune, renal) have been 
correlated with chronic HCV infection. This statement is supported by a prospective 
cohort study in which patients with chronic HCV infection (with HCV RNA detected 
in the serum) had a high risk of death due to liver or non-liver disease (cardiovascular 
and renal disease) compared to uninfected patients (without serum HCV RNA) or 
with patients presenting HCV antibodies[85].

Inflammatory cytokines are normally released in response to various stimuli, 
including viral infection. This limits cellular stress and cell damage[86]. HCV infection 
is associated with an immune activation status that can further influence the levels of 
inflammatory markers (Il-6, TNF-α, iNOS, COX-2, IL-1), which are correlated with 
various extrahepatic diseases[87,88]. In HBV-infected patients there is an increase in Il-
8, IL-29 and COX-2. Under normal conditions, adult hepatocytes do not express COX-
2, but in chronic inflammatory diseases, the expression of this isoenzyme increases. 
Furthermore, IL-8 activates the extracellular signal-regulated kinase and c-Jun N-
terminal kinase signaling pathways, which are also involved in inflammatory 
processes[86].

In infected hepatocytes with HCV, the production of type 1 and 3 interferons is 
blocked by the action of the viral NS3/4A protease. This protease may also influence 
the innate immune adaptor molecules mitochondrial antiviral signaling proteins with 
an effect on the intracellular antiviral defense system. In an experimental study on 
hepatic macrophages the first activated factor in liver macrophages with HCV 
infection has been shown to be TNF-α that further activates NF-κB and increases IL-1β. 
Adding to this, the HCV core protein also activates the NLRP3 inflammasome. The 
hepatic inflammatory environment is ensured by the activity of the NLRP3 inflam-
masome, phospholipase-C and IL-1β. Thus, NLRP3 inflammasome and IL-1β can be 
considered as target of treatment in HCV-induced liver disease[89].

THE GUT-LIVER AXIS
The gut microbiome can interact tightly with the liver via the so-called gut-liver axis. 
Blood from the intestine, rich in microbiota-derived molecules, reaches the liver via the 
portal vein. In the liver, these molecules are recognized by TLRs pattern recognition 
receptors, mediating their effect on the liver tissue[90]. Related to liver pathologies, the 
gut microbiota is particularly involved in liver fibrosis and cirrhosis, hepatic cancers, 
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alcoholic and non-alcoholic fatty liver disease, autoimmune hepatitis, primary 
sclerosing and primary biliary cholangitis as well as viral hepatitis[91-96]. Some of the 
most studied components that affect liver pathologies are represented by LPS and 
SCFAs.

LPS produced by the microbiota are scarcely found in the normal liver, being 
cleared by Kupffer cells and not causing any damage[97]. However, in alcoholic liver 
disease, because of an increase intestinal permeability, an increased amount of LPS 
reached the liver[96]. LPS binds to TLR4, causing an excessive release of pro-inflam-
matory cytokines IL-1 and TNF-α[33,98]. Also, LPS can upregulate the expression of 
the cluster of differentiation 14 (CD14) receptor on Kupffer cells[99]. This could 
potentially make the liver more sensitive to LPS toxicity, as CD14 is vital for Kupffer 
cells LPS activation[100]. Kupffer cells activation produces a pro-inflammatory state, 
increasing the levels of NF-κB, TNF-α and IL-1. This leads to liver injury and disease 
progression, dysbiosis favoring the chronic inflammatory state[101].

SCFA such as acetate, propionate and butyrate may have a protective effect on liver 
diseases progression. High levels of butyrate restore the intestinal microbiota in cases 
of dysbiosis, reducing the intestinal permeability and thus the levels of endotoxins 
reaching the liver via the portal circulation. This attenuated the histological aspect of 
steatohepatitis livers, reducing the levels of TNF-α, IL-1, IL-6 and IFN-γ pro-inflam-
matory cytokines, as well as the expression of TLR4 receptors[102]. In an experimental 
study by Endo et al[103], administering probiotics, aimed at increasing butyrate levels, 
significantly improved non-alcoholic fatty liver disease progression, reducing the 
inflammation and oxidative stress. This clearly shows that intestinal-produced 
metabolites can influence the immune and inflammatory state of the liver. Dysbiosis 
and an increased intestinal permeability allows for the gut-liver balance to change, 
causing a pro-inflammatory state of the liver and contributing to disease progression
[104,105]. Pathogen-associated molecular patterns (bacterial antigens and products) 
such as LPS and viral RNAs activate TLR4 on Kupffer cells and other immune cells. 
Thus, the innate immune response is induced.

The liver is influenced by the intestine through the portal circulation, while the 
intestine is influenced by the liver through the released mediators and hepatic bile 
flow. It is known that increased intestinal permeability contributes to systemic inflam-
mation and disease progression[106]. BA and other mediators such as immuno-
globulin A (IgA) regulate the gut-liver axis. IgA influences the homeostasis of the 
intestinal microbiota, preventing bacterial translocation. BA modulate the intestinal 
barrier and have antimicrobial activity. Several enzymes involved in BA synthesis are 
regulated by the microbiota. However, some secondary BA (e.g., deoxycholic acid) 
resulting from intestinal biotransformation produce microbial dysbiosis and increase 
the intestinal permeability[107].

TGR5 is a G-protein-coupled BA receptor involved in the anti-inflammatory 
immune response, energy homeostasis, metabolic pathways and in pathologies such as 
diabetes and obesity[108]. In the intestine, TGR5 is involved in regulating the colonic 
motility and the intestinal permeability via the farnesoid X receptor — cAMP pathway
[109,110]. Moreover, TGR5 activation stimulates mucosal proliferation and protects 
against mucosal injuries[111]. In liver pathologies, the levels of BA are significantly 
decreased, leading to a reduced activation of TGR5 in the gut[112,113]. In a mouse 
model with TGR5 silencing, there was a significant reduction in gut epithelial 
cellularity, with histological abnormalities and distortions and an increased intestinal 
permeability[114]. BA and TGR5 activation are therefore necessary for a normal 
functioning of the intestine and the gut-blood barrier. BA administration is beneficial 
for viral hepatic diseases. In a HBV model, TGR5 agonists administration suppressed 
the infection[115]. BA and TGR5 agonists pose as potential treatment options for viral 
hepatitis[116].

Decreased BA quantities in virus hepatitis could be responsible for the increased 
intestinal permeability and the subsequent increase in LPS and other endotoxins. This 
in turn favors the progression of the liver pathology, creating a vicious circle where the 
liver pathology creates an environment that further promotes the liver pathology 
(Figure 2). Future studies should determine the exact mechanism by which liver 
diseases influence the intestinal permeability and lead to the production of dysbiosis.

THE GUT MICROBIOTA-VIRAL B AND C HEPATITIS
The presence of the HBV or HCV infection can lead to intestinal dysbiosis[117]. Some 
of the microbial changes present in patients with HBV and HCV-related liver diseases 
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Figure 2 The gut-liver axis in liver diseases. TGR5: G-protein-coupled bile acid receptor; PAMPs: Pathogen-associated molecular patterns; LPS: 
Lipopolysaccharides; TLR: Toll-like receptor.

are shown in Table 1.
These studies showed significant differences in the composition of the intestinal 

microbiota between patients with B or C hepatitis with or without cirrhosis present. A 
healthy gut microbiota means a gut microbiota with great diversity and the ability to 
react to changes. Thus, B and C viruses can cause changes and can shape the gut 
microbiota in different directions[122].

Nowadays, the treatment of B and C hepatitis is well established by international 
guidelines[124-126]. The main question is: does the treatment of B or C hepatitis 
influence the diversity and abundance of the intestinal microbiota? And if so, are these 
changes helping in preventing or halting the evolution of the disease? A part of the 
studies looking into the microbial changes caused by HBV and HCV treatments are 
presented in Table 2.

Entecavir increases the abundance of the genus Clostridium sensu stricto 1 which has 
been associated with large and extra-large HDL particles and also with a decreased 
risk of cardiovascular disease[131]. Increased lipid content in the liver and steatosis 
can result in the development of inflammation and, over time, cirrhosis, and can also 
increase oxidative stress[132]. Genus Intestinibacter along with genus Escherichia, 
Shigella can be considered as a major contributor to NAFLD progression. Increases in 
the abundance of Intestinibacter have been correlated with severe intestinal disorders in 
humans and are recognized as a biomarker of the onset of Crohn's disease[133].

In a study by Pérez-Matute et al[129], it was shown that the use of direct antiviral 
agents in patients with chronic HCV infection could only restore the intestinal 
bacterial changes in those patients with a lower degree of fibrosis (F0-1). The data 
highlight a strong relationship between the liver and the intestine and suggest that 
mild intestinal changes caused by liver damage could possibly be counteracted with 
the appropriate drugs.

Blautia, Coprococcus, Dorea, Lachnospira, Oribacterium, Roseburia and L-Ruminococcus 
were detected in the human intestine as the main genera belonging to the Lachnos-
piraceae family[134]. Lachnospiraceae is considered a "good" family of bacteria, having a 
beneficial role in host homeostasis. The bacteria belonging to this family can convert 
carbohydrates into SCFA in the gut[135]. Decreasing the abundance of Lachnospiraceae 
leads to decreased SCFA production and thus increases the pH of the colon. This 
change increases the production of ammonia and its absorption in the intestine[136].

Direct-acting antivirals (DAA) treatment in cirrhotic patients appears to have a 
positive impact on changes in the intestinal microbiota, as well as fibrosis and inflam-
mation, but without a positive impact on the function of the intestinal barrier. DAA 
has greatly reduced the abundance of Enterobacteriaceae, Staphylococcus, and Veillonel-
laceae[130]. The abundance of the Enterobacteriaceae family, belonging to the Proteo-
bacteria phylum, depends on the amount of oxygen that crosses the intestinal barrier. 
The abundance of Enterobacteriaceae is elevated after the oxygen level increases and can 
aggravate intestinal inflammation. Members of this family cannot degrade complex 
carbohydrates (as Clostridia and Bacteroidia do); they are only involved in the passive 
transport of oligosaccharides. This disadvantage may explain the lower abundance of 
Enterobacteriaceae compared to Clostridia and Bacteroidia in the healthy distal intestine
[137]. Veillonellaceae belonging to Firmicutes phylum, is one of the main microbial taxa 
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Table 1 Microbiota changes in different studies regarding hepatic B and C virus

Changes of gut microbiota in patients vs healthy subjects Ref.
Type of HBV infection

↓ Bacteroidetes and Firmicutes; ↑ Proteobacteria and Actinobacteria Chen et al
[117]

↑ Bifidobacterium dentium; ↓ Bifidobacterium catenulatum and longum Xu et al
[118]

Chronic HBV infection

↑ Veillonellaceae; ↓ Lachnospiraceae, Rikenellaceae, Ruminococcaceae Wang et al
[119]

HBV liver cirrhosis ↓↓↓ Bacteroidetes and Firmicutes; ↑↑↑ Proteobacteria and Actinobacteria Chen et al
[117]

Decompensated HBV 
cirrhosis

↓ Bifidobacteria/Enterobacteriaceae ratio; ↑ Enterobacteriaceae; ↓ Firmicutes (F.prausnitzii, Clostridium clusters XI and 
XIVab, Bifidobacterium); ↓ Bacteroidetes

Lu et al
[120]

HBV related 
hepatocellular 
carcinoma

↓ Proteobacteria; ↑ Prevotella, Phascolarctobacterium, Anaerotruncus; ↑ Proteus, Veillonella, Prevotella 2, Barnesiella and 
Ruminococcaceae spp.

Liu et al
[121]

Type of HCV infection

Chronic HCV infection 
without cirrhosis

↑ Veillonella spp., Lactobacillus spp., Streptococcus spp. and Alloprevotella spp.; ↓ Bilophila spp., Clostridium IV spp., 
Clostridium XlVb spp., Mitsuokella spp. and Vampirovibrio spp.; No changes: Akkermansia spp., Bifidobacterium spp., 
Escherichia/Shigella spp., Haemophilus spp., Micrococcus spp. and Weissella spp.

Heidrich et 
al[122]

Chronic HCV infection 
with cirrhosis

↑↑↑ Veillonella spp., Lactobacillus spp., Streptococcus spp. and Alloprevotella spp.; ↓↓↓ Bilophila spp., Clostridium IV spp., 
Clostridium XlVb spp., Mitsuokella spp. and Vampirovibrio spp.; ↑↑↑ Akkermansia spp., Bifidobacterium spp., 
Escherichia/Shigella spp., Haemophilus spp., Micrococcus spp. and Weissella spp.

Heidrich et 
al[122]

Stage 4 HCV infection 
(cirrhosis)

↓ Firmicutes; ↑ Prevotella, Faecalibacterium (F. prausnitzii); ↑ Acinetobacter; ↑ Veillonella Aly et al
[123]

HBV: Hepatitis B virus; HCV: Hepatitis C virus.

Table 2 Microbial changes as a result of several treatments in viral B and C hepatitis

Drug Type of study Changes in gut microbiota Ref.

Experimental 
(mice)

↑ Lachnospiraceae, Akkermansia, Alistipes, Escherichia, Shigella, Oscillibacter, 
Bilophila

Li et al[127]Entecavir

Clinical ↑ Clostridium sensu stricto 1, Erysipelotrichaceae UCG-007, Intestinibacter; ↓ 
Streptococcus, Atopobium, and Murdochiella

Lu et al[128]

Direct antiviral agents in patients with 
HCV infection

Clinical ↑ Phylum Firmicutes, genera Lachnospira Pérez-Matute et 
al[129]

Direct antiviral agents in patients with 
HCV-related liver cirrhosis

Clinical ↓ Enterobacteriaceae, Staphylococcus and Veillonellaceae Ponziani et al
[130]

HCV: Hepatitis C virus.

associated with the severity of fibrosis in non-obese patients. This family has the 
ability to produce propionate, one of the most important SCFAs and has been 
associated with chronic liver disease[138]. The LPS and SCFA metabolites produced by 
intestinal Veillonella stimulate the release of cytokines (Il-6, IL-10, TNF-α) in human 
peripheral blood mononuclear cells and thus have a negative impact on liver 
pathology and host inflammation[139].

GUT MICROBIOTA-TARGET OF TREATMENT
Although standard therapy for B and C viral hepatitis is well established and 
presented in clinical guidelines, many dietary supplements, including pre-, pro-, and 
symbiotic agents, are being studied to reduce the toxicity of standard therapy (side 
effects) or to increase their effect. Also, fecal microbiota transplantation (FMT) is one of 
the methods that can manipulate the composition of the intestinal microbiota. It has 
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the ability to strengthen the intestinal barrier, reduce intestinal permeability and also 
improve host immunity[140]. There are various routes of administration for FMT: 
nasogastric tube, upper endoscopy or colonoscopy, retention enema, etc. The route of 
administration depends on the characteristics of the disease. For example, good results 
have been obtained after duodenal administration in metabolic disease[141].

There are only a few studies that support the effect of certain probiotics in viral B or 
C hepatitis.

Oo et al[142] studied the long-term (36-mo) effect of probiotic heat-treated strain 
Enterococcus faecalis FK-23 in patients with HCV infection. This probiotic may change 
the microbiota in these patients and may have an important role of decreased ALT in 
serum.

In patients with HBV-induced liver cirrhosis, the role of a probiotic (Clostridium 
butyricum combined with Bifidobacterium infantis) has been studied in the treatment of 
minimal hepatic encephalopathy. The results claim that the probiotic modulates the 
intestinal barrier and thus can lower the level of ammonia and can improve cognition
[143].

CONCLUSION
Most of the microbiota-derived components elicit an immunomodulatory effect, both 
pro- and anti-inflammatory. Alteration of the host microbiome produces an unbalance 
of these factors, leading to negative effects both locally in the intestine, as well as at 
distance in other organs. Therefore, we can conclude that by its factors, the host 
microbiota is an important determinant in the hosts immune response modulation. 
Future experimental and clinical studies are needed to determine the exact 
mechanisms of these changes, as well as the exact conditions in which the microbiota 
can serve as a protective factor.

Currently, the intestinal microbiota is a target of treatment for various diseases in 
humans. Future studies should focus on the effects and efficacy of treatments aimed at 
restoring the gut microbial environment (prebiotics, probiotics, symbiotics, fecal 
transplant) and their exact relationship with liver pathologies. By understanding the 
natural communication pathways between the liver and the gut, in both health and 
disease, we could potentially formulate better therapies aimed at reducing the effects 
of the chronic inflammatory response on the progression of liver diseases.
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Abstract
Hepatocellular carcinoma (HCC) is the most common primary cancer of the liver 
and has an overall five-year survival rate of less than twenty percent. For patients 
with unresectable disease, evolving liver-directed locoregional therapies provide 
efficacious treatment across the spectrum of disease stages and via a variety of 
catheter-directed and percutaneous techniques. Goals of locoregional therapies in 
HCC may include curative intent in early-stage disease, bridging or downstaging 
to surgical resection or transplantation for early or intermediate-stage disease, and 
local disease control and palliation in advanced-stage disease. This review 
explores the outcomes of chemoembolization, bland embolization, radioembol-
ization, and percutaneous ablative therapies. Attention is also given to prognostic 
factors related to each of the respective techniques, as well as future directions of 
locoregional therapies for HCC.
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therapies for hepatocellular carcinoma, as well as future directions and promising new 
techniques. Therapies including transarterial bland embolization, chemoembolization, 
and radioembolization, as well as percutaneous ablation are reviewed. Prognostic 
considerations vary by indication but generally follow baseline disease staging and 
tumor quantification. Outcomes data reveal survival benefits in appropriately selected 
patients. New advances in precision medicine, combination therapy, and immuno-
therapy are being investigated.

Citation: Makary MS, Ramsell S, Miller E, Beal EW, Dowell JD. Hepatocellular carcinoma 
locoregional therapies: Outcomes and future horizons. World J Gastroenterol 2021; 27(43): 
7462-7479
URL: https://www.wjgnet.com/1007-9327/full/v27/i43/7462.htm
DOI: https://dx.doi.org/10.3748/wjg.v27.i43.7462

INTRODUCTION
Hepatocellular carcinoma (HCC) is the fifth most common cancer globally[1] and the 
most common primary liver malignancy[2,3], comprising over 90% of liver tumors[4,
5]. The overall prognosis of HCC involves a complex interplay of baseline clinical 
staging, underlying liver function, and demographic factors[6,7]. Nonetheless, the 5-
year relative survival rate for primary liver cancer is estimated to be 19.6%[8], with a 
mean survival being reported between 6-20 mo[5]. The unfavorable prognosis of HCC 
highlights the importance of treatment innovation and improvement. Surgical therapy 
has been the traditional definitive management in eligible patients; however, fewer 
than 20% of HCC patients are candidates for surgical resection based on a variety of 
tumor and disease characteristics. For the remainder of HCC patients, liver-directed 
locoregional therapies form the mainstay of treatment.

Locoregional therapies play a vital role in HCC therapy across a vast range of 
disease stages[9]. Image-guided techniques with locoregional delivery of chemothera-
peutic, radiotherapeutic, or ablative therapy are flourishing[10,11]. Minimally-invasive 
approaches, such as transarterial chemoembolization (TACE), transarterial 
embolization (TAE), transarterial radioembolization (TARE), and ablation may be 
indicated based on patient clinical status and tumor characteristics. Treatment goals 
may include bridging to or downstaging for transplant eligibility, inducing 
parenchymal hypertrophy to enhance function following resection, disease control and 
palliation, and, in some instances, cure[10]. In general, locoregional liver-directed 
treatments provide less morbidity than traditional surgical options while also 
improving outcomes compared to traditional systemic therapies[12]. This paper 
reviews prognostic factors and outcomes of locoregional therapies for HCC. We 
discuss how prognostic factors overlay the clinical staging systems most commonly 
used, the existent data regarding survival and treatment response, and future 
directions of locoregional HCC therapy.

TACE
TACE relies on a combination of targeted chemotherapeutic and embolic agents[13]. 
Transarterial therapies make use of a mismatch in blood flow between healthy liver 
parenchymal tissue and hepatocellular tumors. Unlike normal liver parenchyma, 
which derives most of its blood supply from the portal venous system, hepatocellular 
tumors are primarily perfused via the hepatic arterial system[14]. Thus, normal tissue 
is preferentially spared when therapies are targeted at tumor tissue through the 
hepatic arterial tree. Conventional TACE (cTACE) utilizes hepatic arterial adminis-
tration of a chemotherapeutic agent emulsed with lipiodol oil to increase chemothera-
peutic concentration and decrease pharmacologic washout. Chemotherapeutic and 
embolic agent administration via drug-eluting beads (DEB-TACE) has been shown to 
provide less systemic chemotherapy uptake, an increased ischemic effect, and a more 
homogenous drug distribution due to decreased variability in delivery technique[15-
19]. Use of small drug-eluting microspheres (DEM-TACE) and balloon occlusion 
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catheters (B-TACE) represent newer approaches to chemoembolization, albeit with less 
comparative data in HCC treatment at this stage[20-22]. A summary of these TACE 
approaches, as well as approaches, clinical strengths, and risks of the other locore-
gional therapies discussed here can be seen in Table 1.

Prognostic factors
The staging of HCC is particularly complex due to the varying presence of 
accompanying liver dysfunction. Prognostic factors for HCC patients undergoing non-
surgical treatment have coalesced into several existing clinical staging systems to 
predict survival and adverse events. Examples include the Okuda staging system, 
Cancer of the Liver Italian Program staging system, Hong Kong Liver Cancer staging 
system, and Barcelona Clinic Liver Cancer (BCLC) classification scheme[23-25]. Other 
clinical indices which must be considered for prognosis include Albumin-Bilirubin and 
Model for End-stage Liver Disease[26]. Overall survival (OS) in HCC patients is most 
strongly related to performance status, tumor burden, hepatic reserve, and 
extrahepatic spread[23,27,28].

The most widely used prognostic tool in HCC is the BCLC[29,30], which has 
garnered international consensus endorsement for patient treatment stratification[31]. 
A treatment schematic for HCC based on BCLC classification is shown in Figure 1. The 
BCLC staging system matches liver dysfunction, tumor burden, and performance 
status to a recommended therapy[27,32]. Specifically, the BCLC utilizes Child-Pugh 
score and Eastern Cooperative Oncology Group (ECOG) status in addition to 
indicators of tumor burden. BCLC stratifies patients into five stages, categorized from 
stage 0 for “very early detection” to stage D for the most advanced disease cases.

Patients in BCLC stage 0 and BCLC stage A should generally undergo surgical 
resection if they are otherwise strong surgical candidates. In certain circumstances, 
TACE may be used as a bridge to surgery or as primary therapy when patients in 
these stages are non-candidates for surgery or ablation[12,33]. TACE is a first-line 
therapy recommendation for intermediate, unresectable HCC (BCLC stage B)[34]. 
Advanced disease (BCLC stage C) patients typically require systemic therapy, 
traditionally in the form of sorafenib or Lenvatinib[35]. More recently, combination 
atezolizumab and bevacizumab has gained endorsement as first-line therapy in the 
American Society of Clinical Oncology’s 2020 clinical practice guideline on systemic 
therapy[36]. When local disease control is needed for advanced disease, TACE may be 
indicated for use alone or in combination with systemic therapy. A current phase III 
study is evaluating TACE in combination with Lenvatinib and Pembrolizumab for 
advanced, non-metastatic disease[37]. In addition to being useful in stratifying patients 
to appropriate treatment, BCLC class is a useful tool in prognosticating survival 
following TACE, with many studies stratifying survival based on these categories.

Despite the prevalent adoption of BCLC as the gold standard staging and 
management decision tool for HCC, other staging tools have been investigated and are 
utilized in certain situations. The AFP, BCLC, Child-Pugh, and Response (ABCR) score 
also predict retreatment success. Specifically, ABCR uses a baseline AFP over 200, 
more advanced BCLC stage, increase in Child-Pugh score of at least 2 from baseline, 
and absence of radiologic response to create a score range of -3 to +6, correlating with 
survival post-TACE retreatment. A score greater than or equal to 4 prior to a second 
TACE treatment prognosticates poor outcomes.

Prognostic factors may also indicate risks related to post-procedural complications. 
Post-embolization syndrome (PES) consists of post-procedural fever in the absence of 
infection, transaminitis, right upper quadrant pain, and nausea or vomiting. PES is a 
risk common to each of the transarterial therapies. Up to 80% of patients may 
experience a component of PES following TACE, however rates of serious clinical 
sequela of PES are much lower[38]. Most cases of PES resolve within 72 h. Features 
predictive of an increased risk of PES following TACE are tumor > 5 cm, multiple 
tumors, and technical considerations relating to procedure performance[39]. Other 
complications of TACE include acute hepatic failure, abscess, biloma, iatrogenic 
dissection, and acute cholecystitis. These more serious complications are reported at a 
combined rate of approximately 5% of cases[40,41].

Outcomes
In addition to typical outcomes measures in oncology - such as OS, progression-free 
survival (PFS), and time-to-progression (TTP) - tumor response outcomes are 
especially important in HCC due to the complexity of such patients who often 
undergo multiple therapies that can confound long-term outcomes. The most widely 
used tool for measuring tumoral response to treatment in HCC is the 2010 modified 
Response Evaluation Criteria in Solid Tumors (mRECIST)[42,43]. The mRECIST 
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Table 1 Locoregional therapy techniques, benefits, and risks

Locoregional 
modality Techniques Clinical advantages Clinical risks

TACE Drug-eluting beads or 
conventional delivery

Provides both local embolic and chemotherapeutic effect PES, biloma, liver abscess, liver 
failure

TAE Particulate or other embolic 
agents

Avoids radio and chemotoxicity; less expensive than other 
embolotherapies

PES, biloma, liver abscess, liver 
failure

TARE Y90 microspheres May be used in early disease with curative intent; intermediate 
disease can be used to increase FLV to qualify for curative intent 
surgery; best QoL scores of all options

PRS, RILD, radiation-induced 
pneumonitis, biloma, liver 
abscess, liver failure

Ablation Radiofrequency current, 
microwaves, or 
cryoablation

Efficacious as monotherapy for early-stage disease; less morbidity 
than transarterial therapies

PAS, iatrogenic injury, bleeding 

TACE: Transarterial chemoembolization; PES: Post-embolization syndrome; TAE: Transarterial embolization; TARE: Transarterial radioembolization; FLV: 
Functional liver volume; QoL: Quality of life; PRS: Post-radioembolization syndrome; RILD: Radiation-induced liver disease; PAS: Post-ablation syndrome.

Figure 1 Hepatocellular carcinoma treatment algorithm based on Barcelona Clinic Liver Cancer-staging[13]. BCLC: Barcelona Clinic Liver 
Cancer; TARE: Transarterial radioembolization; TACE: Transarterial chemoembolization; TAE: Transarterial embolization.

treatment response tool builds on the traditional RECIST model of evaluating 
reduction in tumor size; however, because locoregional therapies induce devascular-
ization and necrosis—and not always a reduction in size[44] - the American 
Association for the Study of Liver Diseases proposed mRECIST and the utilization of 
arterial enhancement measurements[45]. The effectiveness of these tools has been 
validated by a meta-analysis from Vincenzi et al[46]. More recently, three-dimensional 
imaging techniques have brought about more quantitative versions of these clinical 
response tools, namely volumetric RECIST and quantitative EASL (qEASL), which are 
being evaluated for efficacy and specific indications[47]. However, mRECIST remains 
the most widely used treatment response tool in practice.

Outcomes for both cTACE and DEB-TACE have consistently proven superior to 
conservative therapy[48,49]. Thus, as previously mentioned, TACE is to be considered 
for patients with advanced, unresectable disease who may not tolerate side effects of 
systemic therapy and who have acceptable hepatic function. This becomes especially 
important because systemic sorafenib has considerable toxicity, including diarrhea, 
weight loss, dermatitis, and hypophosphatemia[50]. Combination therapy using TACE 
with systemic sorafenib for both advanced and intermediate disease has been invest-
igated. TACE induces ischemia which leads to the production of neoplastic angiogenic 
growth factors. The anti-angiogenic actions of sorafenib block these angiogenic factors. 
The GIDEON study[51] demonstrated through global observational data that patients 
given TACE concomitantly with sorafenib achieved better OS (21.6 mo) compared to 
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patients treated with sequential TACE then sorafenib (12.7 mo) and compared to 
patients treated with only sorafenib (9.7 mo). The concomitant treatment group’s 
survival superiority was present across all BCLC stages. Importantly, the study calls 
attention to the need for further standardization of TACE technique as many centers 
reported logistical differences in treatment plans. The phase II SPACE trial[52] 
randomized intermediate stage HCC patients to DEB-TACE with sorafenib vs DEB-
TACE with placebo treatment arms. Time to progression was similar in both treatment 
groups, and both options demonstrated adequate safety profiles. More recently, the 
phase II TACTICS trial showed a significant difference in PFS of TACE and sorafenib 
vs TACE alone (25.2 mo and 13.5 mo, respectively)[53]. Combination TACE and 
sorafenib also displayed significantly prolonged TTP.

TACE is also implicated in strategies for early-stage patients who need adjunctive 
procedures prior to surgery. In combination with portal vein embolization (PVE), 
TACE may induce contralateral liver hypertrophy to allow for tumor resection in 
patients with inadequate predicted future liver remnant (FLR). The utility of TACE in 
this setting is to decrease the risk of tumor progression during the period of time it 
takes PVE to induce FLR hypertrophy. A systematic review and meta-analysis 
concluded that TACE combined with PVE provided higher OS than PVE, portal vein 
ligation (PVL), or radioembolization of the portal vein alone[54]. Of patients receiving 
both TACE and PVE, 90% went on to receive resection. These strategies may be further 
explored to increase liver resection eligibility rates in the future. Bridging or 
downstaging patients for liver transplantation is another use for TACE in early-stage 
patients[5].

Several prospective studies comparing cTACE vs DEB-TACE have found no 
significant difference in OS, including one meta-analysis examining results from four 
randomized clinical trials and eight observational studies[48,49,55]. Beyond survival, 
the PRECISION-V trial demonstrated that in a subgroup of advanced HCC patients 
with Child-Pugh B, ECOG 1, bilobar, and recurrent disease, patients receiving DEB-
TACE had higher rates of complete response, objective response, and disease control at 
6 mo compared to patients receiving cTACE[48]. Concerning safety endpoints, DEB-
TACE was originally theorized to provide fewer adverse events and a lower risk of 
post-embolization syndrome characteristics; however, the PRECISION-V trial found 
comparable 30-day adverse event incidence between the two groups[48]. Comparable 
safety profiles between cTACE and DEB-TACE were upheld through meta-analysis as 
well[55]. Observationally, DEB-TACE has displayed higher localized biliary injury 
rates and global hepatic damage[56]. In another randomized trial, Golfieri et al[49] 
found that DEB-TACE patients suffered less post-operative pain. The overall 
comparative safety and efficacy of cTACE vs DEB-TACE needs further exploration and 
likely has significant situational considerations which must be applied. Other areas of 
TACE outcomes that warrant further investigation include more rigorous standard-
ization of cTACE protocols[57], the efficacy and considerations of TACE in portal vein 
thrombosis, and TACE for larger (> 5 cm) or multifocal lesions[58]. Primary outcomes 
for TACE, as well as the other forms of locoregional therapy discussed here, can be 
viewed in Table 2.

TAE
TAE is commonly referred to as “bland” embolization because the embolic particles 
lack additional chemical or radiation components. With this therapy, endovascular 
arterial occlusion induces hypoxia and subsequent death of tumor cells[59]. As with 
other transarterial therapies, optimal vascular catheter placement results in a 
maximally selective effect on tumor cells. Care must be taken to avoid arterial-venous 
shunts which could cause pulmonary arterial embolization with smaller particles. 
Embolic agents used have historically included gel foam, polyvinyl alcohol, and 
various drug-eluting beads[45]. The lack of chemotoxicity and radiotoxicity associated 
with this therapy means that tumoral response is primarily derived from a hypoxic cell 
death mechanism. It also means that the therapy may hold advantages in certain 
patients who have an especially high need to spare healthy liver parenchyma.

Prognostic factors
BCLC class B patients receive the most disease-control benefit from TAE, followed by 
class C patients[48]. Additionally, BCLC class A patients may undergo TAE to 
maintain eligibility for transplantation per the Milan criteria, a prognostic tool shown 
to improve 4-year OS in liver transplant when used for patient selection[60]. The Milan 
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Table 2 Summary of primary outcomes of locoregional therapies for hepatocellular carcinoma

Locoregional 
technique Primary outcomes

TACE TACE provides a survival benefit compared to supportive care in unresectable disease[34]. Concomitant TACE and sorafenib is 
superior to standalone therapy for unresectable disease[51-53]. Comparisons of DEB-TACE versus cTACE have yet to reveal significant 
differences in OS and short and long-term complication rates. Further studies are needed for considerations in more specific 
circumstances[48,49]. When combined with PVE, TACE provides more robust FLR increase and results in better survival compared to 
monotherapy strategies to enhance FLR[54].

TAE TAE provides a survival benefit compared to supportive care in unresectable disease[34]. Early data of chemoembolization has shown 
little survival benefit over TAE, but superior proximate outcomes such as TTP and tumor response compared to TAE[63,64].

TARE TARE shows similar complication and survival rates to TACE, while producing higher QoL scores and longer TTP[77,78]. TARE 
segmentectomy for early-stage disease (tumors < 3 cm) results in a 5-year survival of 75%, which is comparable to curative intent 
therapies such as transplantation and surgical resection[81]. TARE lobectomy provides a significant increase in FLR and is a safe 
mechanism to treat tumor while inducing contralateral hypertrophy[82-86].

Ablation In early-stage patients, standalone percutaneous ablation produces comparable survival outcomes to surgical resection[113-116]. RFA 
and MWA techniques show similar outcomes in early-stage disease (tumor < 3 cm)[108,119]. Combination therapy using TACE and 
ablation (particularly MWA) provide the best outcomes for large tumors (tumor 3-5 cm)[120].

TACE: Transarterial chemoembolization; DEB-TACE: Drug-eluting bead chemoembolization; cTACE: Conventional transarterial chemoembolization; OS: 
Overall survival; PVE: Portal vein embolization; FLR: Future liver remnant; TAE: Transarterial embolization; TTP: Time-to-progression; TARE: 
Transarterial embolization; QoL: Quality of life; RFA: Radiofrequency ablation; MWA: Microwave ablation.

criteria consists of one lesion less than 5 cm or up to three lesions less than 3 cm, no 
evidence of extrahepatic manifestation, and no evidence of vascular invasion. 
Similarly, TAE is an option for downstaging of BCLC class B patients for trans-
plantation. TAE is contraindicated in patients with severe comorbidities or with poorly 
preserved liver function as evidenced by Child-Pugh scores of B8 or higher, untreated 
esophageal varices, elevated markers of liver function, creatinine clearance < 30 
mL/min, and high tumor burden[61].

Prognostically, a key advantage of TAE relative to other transarterial options is its 
gentler impact on short-term adverse events, possibly due to the avoidance of 
chemotherapy toxicity. As with other embolotherapies, bland embolization poses risk 
for PES. Agrawal et al[62] reported a higher incidence of PES among patients 
undergoing TACE (74.7%) compared to TAE (68.7%). PES following TACE resulted in 
a significantly longer hospital stay than PES following TAE (1.47 d vs 1.12 d). This 
observational study further identified that, in addition to the PES risk factors 
mentioned in the previous section, more patients who were female or who had 
alcohol-related HCC developed PES.

Outcomes
Like other embolotherapies, TAE offers a survival benefit compared to conservative 
treatment. Llovet et al[34] found that compared to best supportive care, repeated 
administration of either TACE or TAE showed a survival benefit in patients with 
unresectable HCC. While TACE provided even higher survival probabilities than TAE 
in the study, both therapies performed better than conservative treatment. 
Comparison of bland embolization and chemoembolization is an ongoing focus of 
research. Despite some data suggesting TACE's superiority to TAE, multiple studies 
investigating bland embolization compared to either cTACE or DEB-TACE have failed 
to demonstrate significant differences in OS between the two[63-65]. Importantly, 
much of the early data accumulated on the comparative efficacy of TACE and TAE 
was collected during a period of evolving indications and chemotherapeutic protocols 
for TACE. Furthermore, the development of DEB-TACE may continue to influence 
overall comparisons of bland embolization and chemoembolization.

Some studies have shown benefits to TACE compared to TAE in more proximate 
outcomes such as TTP, tumor recurrence, and local response. For example, a trial by 
Meyer et al[65] found insignificant differences in median OS and PFS among TAE and 
cTACE, but found a significantly greater mRECIST treatment response in cTACE vs 
TAE (47.3% vs 67.4% respectively). However, because several studies have shown TAE 
performing comparably to TACE in terms of survival, and because TAE lacks 
utilization of chemotherapy particles, TAE may be better tolerated in HCC patients 
with borderline liver function[45].
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TARE
TARE, also referred to as selective internal radiotherapy (SIRT) and Y90, uses a 
radioisotope form of yttrium to selectively target tumor cells via the hepatic arterial 
tree[66]. The Y90 radioisotope is delivered using microspheres and, once reaching 
target tissue, undergoes beta decay to locally irradiate the tumor in a continuous, low-
dose fashion over a fourteen-day period. TARE is considered a two-stage treatment 
process because a planning arteriography must be performed one to two weeks before 
the radiation-delivering procedure[67]. This planning stage helps to differentiate 
tumor and hepatic arterial supply, isolate the future path of radiation delivery via 
embolization of extrahepatic vessels at risk of nontarget microsphere delivery, and 
identify the degree of hepatopulmonary shunting[68]. Technetium-99m labeled 
macroaggregated albumin is combined with single photon emission computed 
tomography imaging technology to provide imaging for this stage[69]. After TARE, 
there is a longer wait time compared to other embolization techniques until the 
treatment effect is fully realized, with therapy response imaging taking place 3-6 mo 
following the procedure[70].

Prognostic factors
Characteristics most predictive of post-TARE prognosis are extrahepatic disease, 
baseline BCLC stage, ECOG performance status, and tumor burden[71]. In a multi-
center study, Sangro et al[72] analyzed a cohort of 325 patients undergoing TARE. 
Median OS was strongly influenced by BCLC staging (BCLC A 24.4 mo; BCLC B 16.9 
mo; BCLC C 10.0 mo). Other significant predictors of superior survival following 
TARE were ECOG performance status (ECOG 0), Child-Pugh class (A), absence of 
ascites, baseline total bilirubin (< 1.5), number of tumor nodules (< 5), alpha-
fetoprotein level (< 400), patent portal vein, single lobe disease, and absence of 
extrahepatic disease.

Understanding the influence of the pre-procedural disease stage on post-TARE 
survival is important because TARE maintains indications across the spectrum of HCC 
severity. Patients with advanced disease may benefit from the local tumor control and 
palliative effects of TARE. TARE is an acceptable treatment alternative to TACE for 
first-line therapy for BCLC class B patients[73]. Early-stage patients in BCLC classes 0 
and A may benefit from TARE radiation segmentectomy. Early-stage patients may 
also benefit from TARE lobectomy in an attempt to either downstage for trans-
plantation or induce contralateral hypertrophy for future resection.

Common complications of TARE are well characterized. Radiation-induced liver 
disease (RILD) is an adverse event unique to TARE among the locoregional therapies. 
RILD involves an extensive array of local vascular, fibroblastic, and parenchymal 
change[74]. Risk of RILD may be increased by gemcitabine, which must be held for 
four weeks prior to the procedure[75]. Padia et al[76] report the overall risk of RILD 
following TARE to be 1%-4%. They also report rates of other common adverse events, 
including GI ulcers (0%-5%), PES requiring extended hospitalization or readmission 
(1%-2%), iatrogenic dissection (1%), and death within 30 d (2%). There was a less than 
1% reported rate for radiation-induced skin-injury, radiation pneumonitis, radiation-
induced pulmonary fibrosis, biloma requiring drainage, and abscess. A hepatopul-
monary fraction above 20% predicts an increased likelihood of radiation pneumonitis. 
Relative contraindications to TARE include an elevated baseline bilirubin level (> 2 
mg/dL), an elevated hepatopulmonary fraction (> 20%), Child-Pugh class C, ECOG 
score over 2, significant transaminitis (ALT or AST > 5x upper limit of normal), and 
total tumor burden over 70% of the liver or total tumor burden over 50% with a high 
number of nodules[12]. Of these variables, elevated baseline bilirubin and increased 
tumor burden have been shown to decrease OS[18].

Outcomes
TARE appears to have comparable complication and survival rates to TACE. The 
SIRTACE trial compared TARE vs TACE in unresectable HCC and found that a single 
TARE session was as safe and produced a better quality of life (QoL) change than 
multiple TACE sessions[77]. More recently, the PREMIERE trial revealed a 
significantly longer median TTP for patients receiving TARE (> 26 mo) compared to 
cTACE (6.8 mo). A smaller randomized trial compared QoL measures between TACE 
and TARE, finding that patients treated with TARE had improvements in QoL despite 
being treated for more severe disease than the TACE cohort. In contrast, the TACE 
cohort had worsened QoL post-procedurally[78]. Both TACE and TARE are being 
investigated to identify the optimal transarterial therapy for downstaging tumors for 
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transplantation eligibility. Lewandowski et al[70] compared triple-drug cTACE to 
TARE in their ability to downstage tumor size from UNOS T3 to UNOS T2 to achieve 
eligibility. TARE significantly outperformed cTACE in rates of T2 achievement, event-
free survival, and OS.

In addition to sustaining or achieving transplantation eligibility, TARE is also useful 
in early-stage disease for its ability to act as primary therapy in certain circumstances. 
TARE’s effectiveness in early-stage disease is in part due to its evolution into more 
selective indications for earlier tumors via radiation segmentectomy[79]. First 
described in 2011[80], TARE segmentectomy is an alternative option in non-surgical 
candidates whose tumor anatomy discourages ablative techniques due to nearby high-
risk structures[33]. For example, in a retrospective study, Lewandowski et al[81] 
analyzed 70 patients with similar inclusion criteria with the additional exclusion of 
patients who received secondary surgery. Median OS in this cohort was found to be 
6.7 years with a median TTP of 2.4 years. The cohort had comparable five-year OS 
(75%) and response rates to other curative-intent treatments like ablation, resection, 
and transplantation.

Similar to segmentectomy, radiation lobectomy is a relatively novel application of 
TARE. Its primary use is to treat the tumor-occupied lobe while inducing hypertrophy 
of the contralateral lobe, thus increasing the FLR in patients who were deemed 
unresectable due to low FLR[12]. Scarring of the treated lobe slowly creates a shunting 
of blood to the contralateral portal vein and, over time, induces hypertrophy of that 
lobe[82]. Multiple observational studies show that TARE lobectomy increases the FLR 
by an approximate average of 30% from baseline[83-86]. In contrast to TACE treatment 
to increase FLR, TARE lobectomy does not require concomitant PVE. A comparison of 
standalone PVE and TARE lobectomy by Garlipp et al[84] has proven that, while both 
display significant increases in FLR, PVE does it more effectively at the 6-wk mark 
(61.5% vs 29%). Issues have been raised with this measurement, however, as PVE has 
been shown to increase FLR quicker than radiation lobectomy[86], and as some 
evidence suggests that PVE may actually induce mild growth of existing tumor tissue
[87]. The safety of using radiation lobectomy as a strategy to qualify for and 
subsequently undergo resection was demonstrated in a prospective cohort studied by 
Gabr et al[88]. Among 25 patients receiving major hepatic resection and 6 patients 
receiving partial hepatectomy, a range of perioperative outcomes following resection 
were comparable to resection-only outcomes. Survival rates at one and three years was 
reported at 96% and 86%, respectively.

TARE is also being compared to sorafenib as monotherapy in advanced disease. The 
phase III SARAH trial[89] randomized 467 patients with intermediate-stage, 
unresectable HCC to either sorafenib or TARE. Median OS and median PFS were 
comparable; however, TARE showed significantly fewer treatment-related adverse 
events, higher QoL scores, and a higher treatment response rate than sorafenib. The 
SIRveNIB trial[90] was another phase III study that failed to show significant 
differences in survival between TARE and sorafenib, but which also demonstrated the 
improved toxicity profile of TARE. Further trials are needed to better power subgroup 
analyses of TARE vs sorafenib and define specific patients who may see the improved 
tumor response of TARE translated into improved survival over sorafenib[91]. TARE 
is also useful in advanced disease because it has relatively less embolic activity 
compared to other transarterial therapies. This becomes useful in the setting of portal 
vein thrombus (PVT) of unresectable HCC patients. A retrospective study of HCC 
patients with PVT compared OS between those treated with TARE and those treated 
with sorafenib. TARE led to significantly longer median OS (26.2 mo) than sorafenib 
(8.7 mo)[92].

TARE and sorafenib combination therapy for patients ineligible for TACE but with 
BCLC classes B and C disease was investigated in the SORAMIC trial[93]. Again, no 
significant differences in median OS were found; however, survival benefit was found 
with combination therapy among patients without cirrhosis, with cirrhosis of 
nonalcoholic etiology, and in patients younger than 65 years of age. The phase III 
STOP-HCC trial is a larger study. It is expected to evaluate further what specific subset 
of patients may benefit most from combination therapy with TARE and systemic 
therapy. It is expected to be complete in September 2022[94]. Further, with the 
development of additional effective systemic therapies for HCC including immuno-
therapy and most recently, atezolizumab/bevacizumab, the combination of TARE 
with these agents is a potential area of synergy and an active area of clinical invest-
igation[95,96].
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ABLATION
Generally, ablation is recommended for early-stage, small tumors (up to 3 cm) in 
patients who would otherwise qualify for resection but are considered unsuitable 
candidates for surgery[73]. Percutaneous ablative techniques were originally centered 
around ethanol injection (PEI), however this has fallen out of favor when a patient is a 
strong candidate for more contemporary ablative techniques[10]. Today, commonly 
used ablative techniques in the setting of HCC include microwave ablation (MWA), 
radiofrequency ablation (RFA), and cryoablation (CA). RFA utilizes a radiofrequency 
electrode to deliver an alternating electric current (460-500kHz) to the target lesion. 
Frictional heating, necrosis, and cell death ensue. MWA utilizes a common final cell 
death pathway involving local heating and eventual cell death, however MWA heats 
tissue via an oscillating microwave field (915/2450 MHz). The properties of 
microwaves result in reduced heat sink effect compared to RFA. RFA has the ability to 
decrease unwanted energy delivery to nearby structures compared to MWA[97]. 
However, due to less heat-sink, MWA may perform better near large vessels, in 
patients with comparatively larger tumors (between 3 cm and 5 cm), and in patients 
with multiple nodule disease[98]. CA relies on argon and helium gasses to rapidly 
alternate freezing and thawing of local tissue and vascular structures[99]. CA is not as 
commonly used due to the complication profile[100]. Laser ablation and irreversible 
electroporation are two examples of newer therapies still under investigation[10].

Prognostic factors
Prognostic factors for ablative therapy follow general prognostic patterns for HCC. 
Across multiple studies examining prognostic factors of RFA, survival has been 
consistently and independently predicted by Child-Pugh classification, tumor size, 
and tumor number[101-104]. Long-term survival following MWA is predicted by 
similar factors. Three-year PFS following MWA can range from 27% to 91.7%, with 
heavy influence from the above clinical characteristics[105]. Prognostic factors for 
combination therapy of MWA with TACE were well characterized by Ni et al[106] 
Predictably, adjusted prognostic factors associated with better OS rates of MWA with 
TACE combination therapy were earlier BCLC stage, smaller tumor size, lack of portal 
vein thrombus, MWA therapy times, and targeted drug usage.

Complication risk of biloma following percutaneous ablation may be predicted by 
comparatively large lesions situated closer to major bile ducts or near the hilum[107]. 
Additional characteristics prognostic of increased complication risk include tumor 
volume, ablated tissue volume, multiple tumors, and Child-Pugh class B or above
[108]. In general, however, ablation carries less morbidity than other curative therapies 
due to its less invasive nature, coagulative properties related to heating tissue, liver 
preservation, and shorter hospital stay[109,110]. Bertot et al[111] found a pooled major 
complication rate of 3.29% for RFA, PEI, and MWA across 34 randomized trials and 
observational studies.

A complication unique to ablation among the locoregional therapies is post-ablation 
syndrome (PAS). PAS is a transient, flu-like illness which may occur about three days 
following ablation and lasts an average of five days. PAS occurs in roughly 25%-35% 
of patients undergoing ablation and is correlated with the volume of liver tissue 
treated. Pre-procedural tumor volume and post-procedural rise in AST are predictive 
of an increased likelihood of PAS[112].

Outcomes
Studies have demonstrated comparable survival via ablation vs surgery in early-stage 
HCC, despite ablative patients usually having poorer baseline hepatic function. In 
2006, percutaneous thermal ablation was compared to resection in a randomized trial 
of 105 patients[113]. Results showed nonsignificant differences in complete tumor 
elimination rates, time to first recurrence, and disease-free and OS rates at 1, 2, and 3-
year follow-ups. More recently, Fang et al[114] showed through a randomized trial of 
120 patients that RFA had a similar complete remission rate (95%) to surgical resection 
(96.7%) and similar disease-free and OS rates at years 1, 2, and 3 follow-ups. In 
addition, RFA demonstrated significantly better hepatic function at day-7 post-
treatment and fewer post-operative complications. The trend of comparable ablative 
survivability does not always extend to patients meeting Milan criteria. A trial that 
randomized HCC patients meeting Milan criteria to either RFA or surgical resection 
found significantly lower OS and recurrence-free survival along with higher overall 
recurrence among RFA patients[115]. As shown by the STORM trial, curative-intent 
ablation is best as a standalone therapy, without the addition of adjuvant sorafenib 
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following the procedure[116]. CA has largely fallen out of favor due to the severity of 
complications despite similar performance to other ablative techniques. A meta-
analysis including a total of 433 total HCC patients revealed significantly fewer 
complications and less local tumor recurrence in RFA compared to CA[117].

As mentioned previously, the two ablative techniques most common in current 
practice are RFA and MWA, which are a source of ongoing outcomes comparison[118] 
and which feature similar curative-intent indications in early-stage disease (up to three 
tumor nodules smaller than 3 cm with the absence of extrahepatic disease) and similar 
complication rates[108]. A meta-analysis looking at seven studies comparing RFA and 
MWA found comparable rates of complete response, local recurrence, major complic-
ations, and 3-year survival[119].

HCC tumors between 3-5 cm fall outside the purview of curative-intent ablation but 
may still be addressed by combination therapy with TACE and ablation[9]. 
Comparison of the best combination therapies for specific indications in this 
population is ongoing. For example, Sheta et al[120] compared cTACE alone, combined 
MWA with cTACE, and combined RFA with cTACE in a clinical trial of 50 patients 
with nonresectable, single-lesion HCC greater than 4 cm. They found the highest 
success rates in the combined MWA with the cTACE group and the lowest success 
rates in the cTACE alone group. Whereas combination therapy of TACE with MWA 
may be indicated for 3-5 cm HCC, combination therapy of TACE with RFA may serve 
a role in the treatment of early-stage HCC. Kim et al[121] found that combined cTACE 
with RFA provided decreased local tumor progression and better PFS at 1, 3, and 5-
year follow-ups. OS at follow-up intervals, however, was similar.

FUTURE DIRECTIONS
The future of HCC therapy will likely rely on a combination of the current proven 
standards of care and several other promising areas of innovation. One such 
promising area of growing evidence for HCC is immunotherapy. In addition to its use 
as a second-line monotherapy agent, immunotherapy may augment the effects of 
sorafenib and locoregional therapy in HCC. Locoregional therapies produce an 
immune response that can be augmented via immune checkpoint inhibition. Given 
that prognosis in HCC is correlated with T-cell tumoral infiltration[122], potentiation 
of both tumoral and locoregional therapy-induced T-cell response could improve 
outcomes. In an early-phase trial, Duffy et al[123] safely treated HCC with 
tremelimumab (anti-CTLA4) combined with ablation and showed that the post-
procedural immune response could be enhanced. The effects of combined anti-PD1 
inhibitors and TARE or TACE are also being evaluated[124]. The ongoing phase II 
DEMAND trial evaluates first-line combination therapy of systemic anti-angiogenic 
and immunotherapy while reserving TACE as second-line therapy[125].

As with immunotherapy, precision medicine has potential to create a paradigm shift 
in the way HCC patients are treated. By relying on big data and genomics to 
personalize clinical care, precision medicine will allow further customization of HCC 
treatment plans across the spectrum of therapeutic modalities, based on an 
individual’s genetic mutations, local tumor environment, and further stratification of 
many clinical factors already in use today. Precision medicine will likely feature small 
molecule inhibitors, epigenetic regulators, and monoclonal antibodies specific to an 
individual’s disease. A number of these agents are currently being evaluated for both 
safety and efficacy in advanced disease[7]. The success of these agents in treating HCC 
is reliant upon accurate characterization of multiple carcinogenic molecular pathways 
- including mutations to TERT, Wnt/ß-catenin, P53, Akt/mTOR, VEGFR, and EGFR 
genetic pathways. Ideally, molecular therapy will target multiple genetic pathways 
within the same patient and will be combined with other therapies such as locore-
gional treatment to optimize OS.

As treatments such as immunotherapy and molecular therapy evolve and become 
integrated with current standards of care, further prognostic sophistication is a 
priority for immediate improvement of care. This growth is already underway. In 
some cases, pre-procedural evaluation of inflammatory markers may provide 
prognostic information for HCC patients treated with locoregional therapy. A meta-
analysis of 22 studies showed poorer OS following TACE in HCC patients with higher 
C-reactive protein levels, neutrophil to lymphocyte ratio, and platelet to lymphocyte 
ratio[126]. This is in line with the general understanding of inflammation being tumor-
protective. More research is needed to routinely integrate inflammatory markers into 
the larger prognostic landscape of clinical staging systems for locoregional HCC 
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treatments.
With the numerous advancements within HCC treatment, outcomes research must 

continue to be robust. With the need for increased outcomes research related to locore-
gional therapies comes a call for increased reporting of randomized controlled trial 
data. Grégory et al[127] found that nearly two-thirds of RCTs conducted regarding 
HCC treatment with TACE did not yield public results. This highlights the importance 
of increased data reporting as evidence and indications behind various locoregional 
therapies for HCC continue to mature. For the care of HCC patients to continue to 
improve, and for future directions of care such as personalized medicine and immuno-
therapy to flourish, high-quality outcomes data must be generated and distributed 
throughout the field.

CONCLUSION
HCC is the most common primary liver malignancy[2] and carries a 5-year survival 
rate under 20%. Organ transplant availability and eligibility is limited, and fewer than 
20% of HCC patients are candidates for surgical resection. For the remainder of 
patients with HCC, liver-directed, locoregional therapies serve a growing purpose 
across a spectrum of disease stages. Transarterial and ablative procedures are involved 
in treatment for curative-intent, disease control, bridging to surgery, downstaging for 
future treatment, and palliation. In addition to bland embolization, TAE techniques 
with locoregional delivery of radioactive or chemotherapeutic microspheres offer 
survival benefits in appropriately selected patients. Microwave and radiofrequency 
ablative techniques offer comparatively less morbidity and curative results in select 
early-stage patients. Multiple indications exist for various locoregional therapies in the 
adjunctive realm of transplantation, resection, and systemic therapy. Prognostic 
considerations for locoregional therapies vary by indication but generally follow 
baseline disease staging and tumor quantification. Outcomes data reveal that locore-
gional therapies provide survival benefits in appropriately selected patients. New 
advances in precision medicine, combination therapy, and immunotherapy are being 
investigated and have potential to augment available treatment strategies.
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Abstract
Pancreatic ductal adenocarcinoma (PDAC) remains the most lethal type of cancer. 
The 5-year survival rate for patients with early-stage diagnosis can be as high as 
20%, suggesting that early diagnosis plays a pivotal role in the prognostic 
improvement of PDAC cases. In the medical field, the broad availability of 
biomedical data has led to the advent of the “big data” era. To overcome this 
deadly disease, how to fully exploit big data is a new challenge in the era of 
precision medicine. Artificial intelligence (AI) is the ability of a machine to learn 
and display intelligence to solve problems. AI can help to transform big data into 
clinically actionable insights more efficiently, reduce inevitable errors to improve 
diagnostic accuracy, and make real-time predictions. AI-based omics analyses will 
become the next alterative approach to overcome this poor-prognostic disease by 
discovering biomarkers for early detection, providing molecular/genomic 
subtyping, offering treatment guidance, and predicting recurrence and survival. 
Advances in AI may therefore improve PDAC survival outcomes in the near 
future. The present review mainly focuses on recent advances of AI in PDAC for 
clinicians. We believe that breakthroughs will soon emerge to fight this deadly 
disease using AI-navigated precision medicine.

Key Words: Pancreatic cancer; Pancreatic ductal adenocarcinoma; Artificial intelligence; 
Machine learning; Precision medicine
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intelligence to solve problems. AI can help to transform big data into clinically 
actionable insights more efficiently, reduce inevitable errors to improve diagnostic 
accuracy, and make real-time predictions. AI-based omics analyses should be the next 
alternative approach to improve survival outcomes in PDAC by discovering 
biomarkers for early detection, molecular/genomic subtyping, treatment guidance, and 
predicting recurrence and survival. The present review mainly focuses on recent 
advances of AI in PDAC for clinicians.
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INTRODUCTION
Pancreatic ductal adenocarcinoma (PDAC) stands the most life-threatenning type of 
cancer[1]. The recent 5-year survival rate for PDAC in all stages is 8.5% according to 
American Cancer Society statistics 2017. In patients with early-stage diagnosis, the 5-
year survival rate for can be as high as 20%. During the past ten years, median overall 
survival (OS) has improved from 22.1 mo to 35 mo in resectable PDAC, considerably 
owing to improvements in adjuvant therapies[2-5]. These findings suggest that early 
diagnosis plays a pivotal role in the prognostic improvement of PDAC cases. 
Furthermore, the high recurrence rate, even in patients who have undergone curative 
resection, and chemoresistance to the current systemic chemotherapies (FOLFIRINOX: 
5-fluorouracil, folinic acid, irinotecan, and oxaliplatin; and GnP: Gemcitabine plus nab-
paclitaxel)[6,7] are major issues. Based on recent advances in genetic analysis, PDACs 
have been divided into several molecular subtypes[8-11], which is a prelude of 
precision medicine. Genetic and molecular profiling researches have revealed that up 
to 25% (range 12%-25%) of PDACs maintained actionable molecular alterations. 
Actually, matching to relevant molecular-specific treatments improves the OS 
compared to that of those without actionable mutations or those who do not receive 
molecular-specific therapy[12]. The comprehensive biomedical data has led to the 
dawn of the “big data” era in the medical field[13].

To overcome this deadly disease, how to well utilize big data is a next step for 
physicians and researchers physicians in the era of precision medicine. The main issue 
for physicians has shifted from gathering data to competently analyzing it. Artificial 
intelligence (AI) is the ability of a machine to learn and display intelligence to solve 
problems (Figure 1)[14]. An artificial neural network (ANN) can imitate the human 
neural meridian system. It is divided into three parts: Input layer, hidden layer, and 
output layer. “Deep learning” refers to an ANN with multiple hidden layers. Machine 
learning helps researchers spend less time on data processing. The processess for 
employing machine learning generally contain the following: Gathering the basic data, 
separating the data into an experimental group and a verification group, buildinging a 
screening and processing model, inputting the experimental group data into the 
model, accounting the output results, and confirming the model’s workability using 
the verification group. The verification group can be employed to examine the 
sensitivity and specificity of the experimental group, while the experimental group can 
fabricate more intelligent model. An overview of types in AI is provided in the Supple-
mentary material. Chen et al[15] developed a survival prediction model of non-small 
cell lung cancer patients through the use of ANN. AI has also been applied to tackle 
and manage the recent coronavirus disease 2019 crisis in many areas, including 
screening, diagnosis, severity stratification, mortality prediction, and epidemiology 
controls[16].

In the age of precision medicine, AI can support to convert big data into clinically 
actionable perception more conveniently, reduce the inevitable errors to improve 
diagnostic accuracy, and make real-time predictions[17,18]. Due to latest break-
throughs, the demand of AI in cancer treatment has been swiftly increasing, including 
for PDACs[19-21]. Recent studies have demonstrated considerable potential for AI 
application in PDAC care (Table 1). Advances in AI for PDACs may thus be the 
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Table 1 Comprehensive list of artificial intelligence-based investigations in pancreatic ductal adenocarcinoma

Ref. Modality Type of algorithm Sensitivity (%) Specificity (%) ROC-AUC (or 
accuracy %)

PDAC risk prediction

Boursi et al[25], 2021 7 clinical variables Logistic regression 66.53 54.91 0.71

Appelbaum et al[29], 2021 18 risk factors Logistic regression NA NA 0.71

Muhammad et al[30], 2018 Personal health data (18 
features)

ANN 80.7 80.7 0.85

Hsieh et al[28], 2018 ICD-9 code Logistic regression NA NA 0.727

Boursi et al[26], 2017 10 clinical variables Logistic regression 44.7 94 0.82

Cai et al[27], 2011 5 clinical variables Logistic regression NA NA 0.72

Early diagnosis of PDAC

Zhang et al[34], 2020 Nine-gene signature Support vector 
machine

98.65 100 93.3

Zhang et al[83], 2020 CT DCNN 83.76 91.79 0.9455

Si et al[42], 2021 CT Fully end-to-end deep 
learning

86.8 69.5 0.871

Liu et al[54], 2020 CT CNN 79 (United States) 97.6 (United States) 0.920 (United States)

Ma et al[84], 2020 CT CNN 98.2 91.6 95

Chu et al[85], 2019 CT Deep learning (details 
are NA)

94.1 98.5 NA

Liu et al[53], 2019 CT CNN NA NA 0.9632

Tonozuka et al[86], 2021 EUS CNN 90.2 74.9 0.924

Ozkan et al[87], 2016 EUS ANN 83.3 93.3 87.5

Săftoiu et al[88], 2015 EUS ANN 94.64 94.44 NA

Zhu et al[63], 2013 EUS Support vector 
machine

92.52 93.03 NA

Zhang et al[62], 2010 EUS Support vector 
machine

94.32 99.45 NA

Das et al[61], 2008 EUS ANN 93 92 0.93

Săftoiu et al[89] 2008 EUS elastography NN 91.4 87.9 89.7

Norton et al[60], 2001 EUS NN 73 NA 83

Alizadeh Savareh et al[40], 
2020

Circulating microRNA 
signatures

PSO + ANN + NCA 93 92 93

Urman et al[90], 2020 Bile juice NN 88 100 0.98

Pancreatic fistula after pancreaticoduodenectomy

Kambakamba et al[71], 2020 CT k-NN, random forest 
classifier, etc

96 98 0.95

Mu et al[72], 2020 CT CNN 86.7 87.3 0.89

Pathological tumor response to neoadjuvant chemotherapy

Watson et al[80], 2020 CT and CA19-9 CNN NA NA 0.785

Survival model

Zhang et al[77], 2020 CT CNN NA NA 11.81% in IPA

Alizadeh Savareh et al[40], 
2020

Circulating microRNA 
signatures

PSO + ANN + NCA NA NA NA

Kaissis et al[66], 2019 MRI Random forest 87 80 0.90

Walczak et al[79], 2017 14 clinical variables ANN 91 38 0.6576
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Molecular subtype

Kaissis et al[68], 2020 CT Random forest 84 92 0.93

Tumor subtype (QM vs 
non-QM)

Kaissis et al[67], 2019 MRI Gradient boosting 
decision tree

90 92 0.93

Molecular subtype (KRT81 
positive vs negative)

Microsatellite instability status

Li et al[19], 2020 PreMSIm (15-gene 
signature)

k-NN 85 97 95

AI: Artificial intelligence; PDAC: Pancreatic ductal adenocarcinoma; NA: Not available; ROC-AUC: Area under the receiver operating characteristic curve; 
ICD-9: International Classification of Diseases 9th Revision; ANN: Artificial neural network; CT: Computed tomography; DCNN: Deep convolutional 
neural network; EUS: Endoscopic ultrasound; NN: Neural network; CA19-9: Carbohydrate antigen 19-9; IPA: Index of prediction accuracy; MRI: Magnetic 
resonance imaging; QM: Quasi-mesenchymal; PSO: Particle swarm optimization; NCA: Neighborhood components analysis; k-NN: k-Nearest neighbor.

Figure 1 Differences among artificial intelligence, machine learning, neural network, and deep learning.

alternative stream to improve survival outcomes for this deadly disease. The present 
review mainly focuses on recent advances of AI in PDAC care for clinicians.

PDAC RISK PREDICTION BY AI
The radiographic traits of unoperability and the appearance of symptoms of PDAC 
occur concurrently[22]. At the time of diagnosis, only a small part of patients (< 15%) 
have surgically resectable state[22]. In addition, identification of individuals at high 
risk for PDAC or with early stage is hard due to the absence of trusty screening tools, 
the lack of clinically relevant biomarkers, and low prevalence[22]. No established 
screening strategy has been introduced for sporadic PDAC. It is estimated that 
symptoms manifest about 6 mo after PDAC becomes unresectable[22]. Identifying 
individuals at high risk but asymptomatic is crucial for finding PDAC while it is still 
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resectable.
Approximately 50% of all patients with PDAC develop diabetes mellitus prior to 

their diagnosis[23,24]. Screening patients with new-onset diabetes may enable earlier 
diagnosis of PDAC. In pre-diabetic and new-onset diabetic patients, an AI-based 
prediction model of PDAC risk has been developed[25,26]. In a pre-diabetic study, 245 
of 138232 patients with impaired fasting glucose were thereafter diagnosed as having 
PDAC within 3 years of impaired fasting glucose detection. The AI (logistic regression 
model)-based prediction model consisted of age, body mass index, PPIs, total 
cholesterol, low-density lipoprotein, alanine transaminase, and alkaline phosphatase
[25]. This model achieved an area under the curve (AUC) of 0.71. Furthermore, by 
analyzing 109,385 new-onset diabetic patients including 390 PDAC cases, a 
multivariable prediction (logistic regression) model that included age, smoking, body 
mass index, change in body mass index, usage of proton pump inhibitors and anti-
diabetic medications (insulin, oral hypoglycemic except metformin, and metformin), as 
well as levels of hemoglobin, hemoglobin A1C, creatinine, cholesterol, and alkaline 
phosphatase, was established (AUC, 0.82)[26]. Among these diabetic patients, 390 
(0.4%) were diagnosed with PDAC within 3 years. If the predicted risk threshold for 
definitive PDAC screening was set at 1% over 3 years, only 6.19% of the new-onset 
diabetes cases would undergo definitive screening, which could identify PDAC cases 
with 94.0% specificity, 44.7% sensitivity, and a positive predictive value of 2.6%[26].

Cai et al[27] established a PDAC risk prediction model by analyzing 138 chronic 
pancreatitis patients with focal mass lesions. A scoring method based logistic 
regression was employed to build the prediction model, which included five variables: 
sex, mass number, mass location, bilirubin, and carbohydrate antigen 19-9 (CA19-9) 
(AUC, 0.72). Hsieh et al[28] predicted PDAC in patients with type 2 diabetes using 
ICD-9 code data by logistic regression and ANN models. The AUCs achieved by these 
models were 0.72[27] and 0.73[28], respectively.

Appelbaum et al[29] used a logistic regression model and developed a prediction 
model of PDAC using electronic health record data. A total of 18 risk factors (i.e., age, 
gender, race, abdominal pain, angina pectoris, asthma, atherosclerotic heart disease, 
calculus gallbladder, chest pain, chronic pancreatitis, coronary heart disease, diabetes 
mellitus, emphysema, essential hypertension, family history pancreatic cancer, 
jaundice, stroke, and ulcer) were used to weigh the risk factors, and their prediction 
model displayed an AUC of 0.71. Their risk model based on patients’ prior diagnoses 
derived from electronic health record data would predict PDAC 6-12 mo before an 
eventual diagnosis date. Such a risk score could be employed as an initial screening 
prior to additional biomarkers or genetic testing, to pick out individuals from the 
general population for closer surveillance.

Muhammad et al[30] used the ANN model to focus on the early prediction and 
stratification of PDAC risk based on personal health data (800114 answers in the 
National Health Interview Survey and Pancreatic, Lung, Colorectal, and Ovarian 
cancer datasets, including 898 cases diagnosed with pancreatic cancer) before 
symptoms appear. The prediction model using 18 personal health features produced a 
specificity of 80.7%, a sensitivity of 80.7%, and an AUC of 0.85 to predict PDAC[30]. 
Furthermore, the model based solely on personal health data was able to divide 
individuals into low, medium, and high cancer risk. Identification of high-risk 
individuals who would benefit from tailored screening may increase the probability of 
detecting early PDAC. While logistic regression was used to develop risk prediction 
models in many previous studies, Muhammad et al[30] employed an ANN model 
based on personal health big data and produced the highest AUC in the prediction 
model of PDAC risk.

Such prediction models using AI will be beneficial for clinicians to estimate the 
PDAC risk of their patients easily after inputting their data. These models can be 
combined into an electronic medical record system or be available on portable devices 
such as tablets and mobile phones. They may also be useful for primary care 
physicians to stratify individuals into various risk categories. By such PDAC risk 
stratification, higher-risk individuals can be referred to a diagnostic department for 
more intensive and tailored assessments. More data and testing will be required to 
refine the performance of the AI-based prediction model of PDAC in order to facilitate 
its application in the clinical setting. An AI-based prediction model using clinical 
variables is non-invasive, cost-effective, and easy for early diagnosis of PDAC. Using 
AI to recognize signs in early PDAC and precancerous lesions is one of the key 
strategies to improving survival.
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DETECTION OF EARLY PDAC BY BIOMARKERS USING AI
It is highly desirable to identify an effective PDAC diagnostic biomarker. Currently, 
the most widely employed biomarker for early PDAC detection is CA19-9, however it 
is not an perfect because of its comparatively low level of specificity and sensitivity 
(70% with a 5% error rate, for diagnosis of PDAC)[31,32]. Several molecular elements 
such as CA19-9, CEA, DUPAN, and Span-1 have been employed as biomarkers for 
diagnosis of pancreatic tumors[33], but none of them are sufficiently specific and 
sensitive to clearly distinguish cancer from healthy or benign diseases. Therefore, a 
solid tool with sufficient specificity and sensitivity is required to enable early PDAC 
diagnosis. Zhang et al[34] designed a novel AI (support vector machine) method based 
on relative gene expression ranking within tissue samples using the microarray gene 
expression data and RNA-seq data collected from two databases, GEO and TCGA. 
Zhang et al[34] then identified a qualitative diagnostic signature comprising 9 gene 
pairs (16 genes), that could distinguish PDAC (using expression profiles from PDAC 
and adjacent normal tissues) patients from non-PDAC (pancreatitis and normal 
tissues) and was a useful biomarker for early detection of PDAC. Seven genes in the 
nine-gene-pair signature, namely CTSE, HOXB7, LAMC2, ONECUT1, RRM2, 
SERPINB5, and UBE2C, had previously been known to be associated with PDAC. 
Thus, AI-based tissue biomarker analysis identified a multiple-gene expression 
signature for detection of early PDAC.

MicroRNAs (miRNAs) have been proposed as promising biomarkers for diagnosis 
of PDAC[35]. miRNAs are a group of short non-coding RNA molecules with 19-25 
nucleotides that have been considered as candidate biomarkers for early cancer 
diagnosis and precise prognosis[36]. Recently, miRNA-used liquid biopsy has become 
a promising approach for early detection of cancers. Several miRNAs in plasma of 
PDAC patients are abundantly expressed, supporting that circulating miRNAs could 
be helpful for PDAC detection[37]. Ganepola et al[38] employed three circulating 
miRNAs (miR-22, miR-642b-3p, and miR-885-5) for detection of PDAC, and the AUC 
value was 0.97 for discrimination of the PDAC cases. Liu et al[39] utilized a serum 
panel including miR-20a, miR-21, miR-24, miR-25, miR-99a, miR-185, and miR-191 for 
diagnosis of PDAC at different stages, and the AUC value was 0.99. Alizadeh Savareh 
et al[40] assessed the value of top miRNAs using a machine learning method (particle 
swarm optimization + ANN + neighborhood components analysis) to assist early 
diagnosis of PDAC. They identified a number of serum miRNAs that were 
significantly differentially expressed in 671 microarray PDAC expression profiles, 
using bioinformatics techniques Their final model comprised the most promising 
miRNAs (miR-92a-2-5p, miR-125b-3p, miR-532e5p, miR-663a, and miR-1469) with the 
high performance (accuracy, 0.93; sensitivity, 0.93; and specificity, 0.92) in differen-
tiation of PDAC from controls.

Early detection of PDAC using tissue and/or blood biomarkers in conjunction with 
AI is an alternative approach to improving survival.

DETECTION OF EARLY PDAC BY RADIOMICS
Nowadays, computed tomography (CT), magnetic resonance imaging (MRI), and 
ultrasound, endoscopic ultrasound are the most popular imaging modalities for PDAC 
detection. However, these modalities are often employed in patients with symptoms, 
which results in delayed detection of PDACs in most cases. A promising application of 
AI technology is in the earlier detection of PDAC from radiological findings. CT is the 
most frequently used modality for the initial assessment of suspected PDAC, and its 
sensitivity of detection ranges from 76%-96%[41]. CT imaging can collect information 
about tumor location, size, and morphology. The pancreas is considerably different in 
size, shape, and location among the individuals and possesses only a very small part 
of the entire CT image, or about 1.3% of each CT image in a CT dataset[42]. Further-
more, a tumor shows high similarity to the surrounding tissues. Therefore, visual 
diagnosis demands doctors with enough clinical experience, because the quality of CT 
images varies between different CT scanners and operators, and pathological texture 
features are hard to distinguish. Actually, 19% of patients with pancreatic cancer who 
underwent a review of submitted outside imaging and repeat imaging at a tertiary 
referral center received major changes in diagnosis and/or disease stage[43].

The features of early PDAC can be delicate and retrospectively ascertained up to 34 
mo before the diagnosis of PDAC[44]. In a tertiary medical center, 7.1% of PDACs 
were missed even by radiologist assessment. This fact emphasizes the limitations in 
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the conventional CT approach for PDAC. Prognostic outcome in patients with PDACs 
considerably deteriorates when tumor size exceeds 2 cm[45], however tumors smaller 
than 2 cm are frequently invisible on CT images and so about 40% of small PDACs are 
missed[46]. An AI-based diagnostic tool might minimize such oversight. Therefore, 
there is a growing need to develop AI-based algorithms for accurate pancreatic tumor 
detection. Although deep learning has been investigated for the diagnosis of 
pancreatic cystic neoplasms[47], neuroendocrine tumors[48] and segmentation of the 
pancreas[49-52], the usefulness of AI in the detection of PDAC has not yet been widely 
explored. AI can analyze thousands of images on a pixel-by-pixel level and is not 
susceptible to mistakes due to human error. Another strength of AI is automatic 
diagnosis, which takes no more than approximately 20 s per case from inputting the 
original CT image to obtaining a diagnosis.

Liu et al[53] reported that the AUC of an AI [convolutional neural network (CNN)] 
platform for CT-assisted diagnosis of PDAC was 0.963. Furthermore, the time of the 
CT-assisted diagnosis was 20 s/case, which is remarkably shorter than the duration 
required for diagnosis by radiologists, indicating AI has good clinical feasibility. In a 
deep learning (fully end-to-end deep learning) model for diagnosing pancreatic 
tumors, Si et al[42] reported that the average test time per case was 18.6 s, compared 
with at least 8 min for manual reviewing. Thus, the AI diagnosis system was more 
efficient than the conventional diagnostic approach.

Liu et al[54] showed that CNN-based analysis could precisely discriminate cases 
with and without PDAC in portal venous CT. The CNN-based analysis achieved an 
accuracy approaching 99% and missed fewer tumors than did radiologists. In this 
study, CNN-based analysis provided higher sensitivity compared to radiologists 
(0.983 vs 0.929, respectively)[54]. CNN missed three (1.7%) of 176 PDACs (1.1-1.2 cm). 
Radiologists missed 12 (7%) of 168 PDACs (1.0-3.3 cm), of which 11 (92%) were 
correctly classified by CNN. The sensitivity of CNN for tumors smaller than 2 cm was 
92.1% in local test sets and 63.1% in an external (US) test set. Although the latter 
sensitivity for tumors smaller than 2 cm initially seemed unsatisfactory, DeWitt et al
[46] reported that the sensitivity of CT by radiologist assessment was 53% for PDACs 
smaller than 2.5 cm[46]. Consequently, the sensitivity of the CNN-based analysis was 
equivalent to radiologist assessment. The lower sensitivity of the CNN in the external 
test set compared with local test sets might be attributed to differences in patients' 
ethnicity and race, and protocols or scanners, between the training and external test 
sets, which could present greater challenges for small tumors. An important factor that 
affects the imaging features of the pancreas is fat content. Higher fat content decreases 
the density of the pancreas on CT images, and several studies reported marked 
differences in pancreatic fat content between ethnicities and races[55,56].

Radiologists were given with important clinical information from the clinicians 
when they assessed the CT images, whereas the CNN was provided with no 
information except CT images. Therefore, the major utility of the CNN was to support 
radiologists in judging whether a lesion or suspicious area in the pancreas harbored 
pancreatic cancer. For example, patients present with obstructive jaundice which is a 
typical sign of pancreatic cancer in the pancreatic head. Nevertheless, the CT findings 
are negative or equivocal. In such a situation, occult pancreatic cancer should be 
highly suspected even if no apparent mass is noted on CT image, given that about 40% 
of PDACs smaller than 2 cm are missed on CT image due to undefined borders with 
surrounding tissue[46,57].

With the wide application of endoscopic ultrasonography (EUS) and EUS-fine 
needle aspiration (FNA) have become the important diagnostic modalities for PDAC; 
these modalities provide diagnostic accuracies up to 85%, which are remarkably 
greater than the 50% accuracy in CT-assisted diagnosis. The sensitivity of diagnosis of 
pancreatic tumors 3 cm in diameter was reported to be 93% for EUS, which was 
greater than that of CT (53%) and MRI (67%)[58]. A meta-analysis revealed that CT 
and EUS were comparable in determining the resectability of PDAC, with high 
sensitivity and specificity[59].

However, based on EUS for early diagnosis of PDAC, the experience and subjective 
factors affect on the accuracy, especially in the presence of chronic pancreatitis. 
Additionally, the availability of the EUS-FNA is restricted in community hospitals. 
Even when the EUS-FNA is utilized, the diagnosis can be also influenced by the 
operator's experience and the location of the needle insertion. In 2001, Norton et al[60] 
reported the usefulness of neural network analysis of EUS images to distinguish 
between PDAC and chronic pancreatitis using 4 different image parameters. Although 
they provided a high sensitivity, the specificity was only 50%. In 2008, Das et al[61] 
applied techniques of digital image analysis to EUS images of the pancreas to develop 
a classification model that could differentiate PDAC from non-neoplastic tissue using 
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ANN. The model accurately classified PDAC, with an AUC of 0.93 and a 93% 
sensitivity rate[61]. Digital analysis of EUS images is useful in differentiating PDAC 
from normal tissue and chronic inflammation. Given the possibility of real-time 
application, digital image analysis may become a helpful diagnostic modality in 
pancreatic diseases and may sometimes evade EUS-guided FNA. In another study, 
Zhang et al[62] differentiated between PDAC and normal tissue on EUS images. 
Regions of interest were selected from 216 images obtained from 153 cancer and 63 
non-cancer patients, and a 97.98% sensitivity rate was obtained from the 29 features 
that were identified[62]. Zhu et al[63] conducted a computer-aided diagnosis utilizing 
EUS images of 262 PDAC and 126 chronic pancreatitis patients, from which 105 
features were extracted. Sixteen of these features were selected for classification by a 
support vector machine and a 94% sensitivity rate was obtained[63].

EUS imaging is a common imaging method for diagnosing PDAC, and is often 
applied with FNA in distinguishing benign and malignant tumors. However, FNA is 
not available in all health centers. AI-assisted diagnosis via EUS images should guide 
physicians toward more accurate and easier diagnosis.

Collectively, AI can supplement radiologists to reduce miss rates, rather than 
replace them. The AI stands as a diagnostic tool to assist clinicians and radiologists in 
diagnosing PDAC. The application of AI in the diagnosis of PDAC has made subs-
tantial advances and is certainly improving.

AI IN MOLECULAR/GENETIC SUBTYPE CLASSIFICATION
Recent advances in biotechnology enable us to execute comprehensive genomic, 
transcriptomic, proteomic, and metabolomic analyses rapidly and cheaply. Such 
inclusive gene expression studies have uncovered subtypes of PDAC with biological 
and prognostic relevance. Collisson et al[9] proposed the categorization of PDACs into 
three subtypes: classical, quasi-mesenchymal (QM), and exocrine-like. The prognostic 
outcome of PDAC patients following operation and conventional medical treatment 
was notably better in the classical subtype than in patients with the QM subtype; 
patientss with the exocrine-like subtype displayed intermediate prognostic outcome 
between the two other subtypes[9]. Muckenhuber et al[64] subsequently reported that 
the most of PDAC can be categorized into two distinct subtypes based on 
transcriptome profiling and on immunohistochemical staining of cytokeratin-81 
(KRT81) and hepatocyte nuclear factor-1A (HNF1a). The epithelial KRT81-/HNF1a- 
(double-negative) subtype (the so-called classical subtype) showed better survival and 
response to chemotherapy, notably to the FOLFIRINOX regimen, but not to a 
gemcitabine-based regimen. On the other hand, the epithelial KRT81+/HNF1a- 
subtype (the so-called QM subtype) has worse OS. But, the QM subtype displays a 
better response to the gemcitabine-based regimen compared to the non-QM subtype
[65]. These features encourage precision medicine based on individual molecular 
features.

Recent developments in AI using medical image analysis such as radiomics reveal 
promising models of molecular phenotyping from imaging data. The radiomics 
approach can perform whole-tumor analytics without invasiveness. Kaissis et al[66,67] 
have reported on machine learning algorithms to preoperativelly predict molecular 
subtypes and survival risk in PDAC patients from MRI. However, the restricted 
availability of MRI data, overall decreased image quality, and the less-quantitative and 
unstandardized nature of MRI render obstacles to algorithm development and 
generalization. To reinfoce clinical application, Kaissis et al[68] extended their previous 
results to CT by training and validating an algorithm (random forest) capable of 
discriminating between the QM and the non-QM subtypes of PDAC. The advantages 
of CT comprise broad availability, fewer motion artifacts, and high standardization. 
Their retrospective study assessed baseline CT from 207 PDAC cases. By immunohis-
tochemical staining for KRT81 and HNF1a, the molecular subtype was determined as 
QM vs non-QM. The random forest algorithm was used to predict the molecular 
subtype from the radiomic features. Then, the algorithm was applied to an 
independent cohort of histopathologically unclassifiable tumors. The classification 
algorithm achieved sensitivity, specificity, and AUC of 0.84, 0.92, and 0.93, 
respectively. The median OS for predicted QM and non-QM tumors was 16.1 and 20.9 
mo, respectively. The application of the algorithm to histopathologically unclassifiable 
tumors showed two groups with remarkably different survival (8.9 and 39.8 mo). 
Thus, the machine learning-based analysis of CT imaging provided the possibility of 
the prediction of molecular subtypes that is clinically relevant for prognostic outcome, 
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permitting pre-operative stratification for precision medicine. This approach is 
encouraged by the fact that histopathological approachs are by default a significant 
underrepresentation of the tumor, since they are derived from a small sub-section of 
the tissue, and regions of differing molecular subtype are likely to coexist within the 
same tumor[69]. On the other hand, the radiomic approach enables whole-tumor 
assessment, providing better information required for precision therapy.

Microsatellite instability (MSI) is a genomic property of cancers with defective DNA 
mismatch repair. Notably, MSI has been recognized as a biomarker for the favorable 
immune checkpoint blockade therapy response in cancer[70]. Most standard methods 
for examing MSI are based on DNA sequencing data and a few are based on mRNA 
expression data. Using RNA-Seq pan-cancer datasets for three cancer cohorts (colon, 
endometrial, and gastric cancers) from TCGA program, Li et al[19] established an 
algorithm called PreMSIm (Predicting MSI from mRNA) to predict MSI in cancer from 
the expression profiling of a 15-gene panel. A benefit of mRNA-based over DNA-
based MSI prediction algorithms is that mRNA data are closer to protein and 
phenotype than DNA data. Pathway analysis revealed that these genes were mainly 
involved in DNA damage repair (MLH1 and MSH4), gene expression (MLH1, 
HENMT1, and RPL22L1), cell cycle regulation (MLH1, MSH4, and HENMT1), and 
metabolism (NHLRC1 and RPL22L1). Gene ontology analysis showed that these genes 
were involved in the biological processes of DNA repair (MLH1, MSH4, and RTF2), 
gene expression regulation (NHLRC1 and HENMT1), cell cycle (MLH1, MSH4, 
RPL22L1, and RTF2), biogenesis (DDX27, EPM2AIP1, NHLRC1, and RNLS), metabolic 
process (HENMT1, LYG1, NHLRC1, and SMAP1), and cell and organism development 
(SMAP1, SHROOM4, and TTC30A). The PreMSIm algorithm provided high 
performance in predicting MSI using both RNA-Seq and microarray gene expression 
datasets[19]. Furthermore, PreMSIm showed superior or comparable performance vs 
other DNA- or mRNA-based methods. Li et al[19] comment that PreMSIm can be an 
alternative approach for identifying MSI. The introduction of machine learning 
algorithms such as this as a clinical decision support tool should be beneficial to 
predict molecular/genetic signatures that may help to stratify patients in clinical 
routines.

AI IN RISK ASSESSMENT FOR PANCREATIC SURGERY
In the pancreatic fields, the availability of AI in surgery is still very limited. An AI-
based risk prediction model of postoperative complication has been reported[71,72]. 
Postoperative pancreatic fistula (POPF) is a serious complication after pancreat-
oduodenectomy (PD). The fistula risk score (FRS), which consists of four variables — 
soft pancreas, small main pancreatic duct, high-risk pathology (PDAC or chronic 
pancreatitis), and massive intraoperative blood loss — is useful to predict clinically 
relevant POPF development after PD[73,74]. However, the score contains subjective 
factors related to surgeons. Therefore, an accurate and easy-to-use preoperative index 
is desired. Kambakamba et al[71] examined whether quantitative analysis of plain CT 
with five types of machine learning algorithms (k-nearest neighbors, sequential 
minimum optimization, multilayer perceptron, random forest, and C5.0) could predict 
clinically relevant POPF in 110 patients from a single institution, and found that 
machine learning-based CT analysis provided an magnificent AUC of 0.95 in 
predicting clinically relevant POPF[71]. Mu et al[72] tried to predict clinically relevant 
POPF after PD using a deep learning (CNN model) score derived from preoperative 
CT. The deep learning score offered significantly greater predictability compared to 
FRS in training (0.85 vs 0.78 in AUC, respectively), validation (0.81 vs 0.76 in AUC, 
respectively) and test (0.89 vs 0.73 in AUC, respectively) cohorts. In particular, in 
patients of intermediate risk (FRS 3-6), the deep learning score achieved remarkably 
higher accuracy compared to FRS (test: 92.1% vs 65.8%, respectively). Interestingly, the 
deep learning score was independently associated with pancreatic fibrosis, diameter of 
main pancreatic duct and remnant volume in multivariate linear regression analysis. 
The automated scores reflected histomorphological features related to pancreatic duct, 
parenchymal fibrosis, and remnant pancreatic tissue volume. Thus, an AI model using 
preoperative CT represents a novel tool to predict clinically relevant POPF after PD, 
especially at intermediate risk levels. Such an AI system helps surgeons to optimize 
preoperative strategy.
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AI IN SURVIVAL PREDICTION AND RESPONSE TO CHEMOTHERAPY
The potential of radiomics in prediction of clinically relevant conditions, such as 
expected OS or response to a specific therapy, has been reported in recent studies[75,
76]: For instance, CT-derived radiomic features were useful to predict local disease 
control and OS in PDAC[75,76]. Entropy-related and cluster tendency features were 
described as predictive of OS in PDAC[76]. Zhang et al[77] proposed that a CNN-
based survival model outperforms a Cox proportional hazard model-based radiomics 
pipeline in PDAC prognosis. This model provides a better fit for survival patterns 
based on CT images and overcomes the limitations of conventional survival models. 
Kaissis et al[66] reported that a machine learning algorithm (random forest) using MRI 
achieved 87% sensitivity, 80% specificity, and AUC 0.9 for the prediction of above- vs 
below-median OS in the independent validation cohort. Alizadeh Savareh et al[40] 
have identified several circulating miRNAs as a diagnosis model in PDAC patients by 
analyzing microarray miRNA expression profiles from the Gene Expression Omnibus 
database. Three (hsa-mir-1469, hsa-mir-663a and hsa-mir-532) of five miRNAs with a 
high rank in the final model were comprehensively associated with the OS of patients 
with PDAC based on their up- or down-regulated expression patterns[40].

Late diagnosis of PDAC can cause to lose the chance of surgical treatment and lead 
to a high mortality rate[78]. On the other hand, surgical treatments for PDAC can have 
a high morbidity and mortality rate. Therefore, the clinicians must weigh the potential 
survival advantage of the invasive treatment, the complications due to invasive 
treatment, and the impacts on the patient’s quality of life with and without treatment.

Walczak and Velanovich[79] established ANN models that could accurately predict 
the 7-mo survival of PDAC patients using 14 clinical variables including eight SF-36 
domain values, both with and without surgical resection, at 91% sensitivity and 38% 
specificity. The ANN model to predict 7-mo survival consisted of age, sex, the eight 
domains of quality of life measurements from the SF-36, the stage of the cancer, 
whether or not a resection had taken place, if any adjuvant therapy had been given, 
and time in months since diagnosis. The quality of life domains from the SF-36 are 
bodily pain, vitality, physical functioning, social functioning, role-physical, role-
emotional, general health, and mental health. Such an ANN model for predicting the 
survival of PDAC patients helps physicians and patients to reduce anticipated regret 
from treatment decisions including observation. This information may be useful for 
patients and surgeons in determining invasive treatment plans to minimize regret and 
improve the patients' quality of life.

Neoadjuvant therapy may provide improved survival of PDAC patients; but, 
determining the efficacy is difficult. Watson et al[80] hypothesized that a deep learning 
(CNN) model could predict the tumor response to neoadjuvant therapy using CT and 
CA19-9. A total of 81 cases were divided between partial responder (333 images) and 
non-responder (443 images). The model using only the deep learning model had an 
AUC of 0.738, whereas a hybrid model incorporating a decrease in CA19-9 of 10% in 
addition to the deep learning model had an AUC of 0.785. CA19-9 reduction alone was 
not an effective predictor of the response to neoadjuvant therapy, with an AUC of 
0.564. A deep learning model can predict the pathological response to neoadjuvant 
therapy for PDAC patients, and the model is amended with the incorporation of 
decreases in serum CA19-9. Abraham et al[81] investigated the clinical relevance of a 
machine learning-derived signature in predicting the responses from first-line 
oxaliplatin-based chemotherapy in PDAC and advanced colorectal cancer. The 
machine learning-derived signature was effective for metastatic colorectal cancer, but 
not for PDAC. AI has already been applied to match biological information with 
chemical properties of specific drugs to predict the response to these specific agents in 
cancers[82].

In the near future, the combined analysis of clinical variables, less-invasive 
biological samples, and radiological features through machine learning should be able 
to simulate responses to chemotherapy and patient survival. On the other hand, 
radiological features and biological tissue can be variable in response to the treatment 
including chemotherapy and radiotherapy. In particular, PDAC has a high potential 
for acquired drug resistance. During sequential treatment, good communication and 
the accumulation of knowledge from various fields such as gastroenterology, 
radiology, oncology, computer science, and pathology must will be required to fight 
this deadly disease.



Hayashi H et al. Recent advances in AI for PDAC

WJG https://www.wjgnet.com 7490 November 21, 2021 Volume 27 Issue 43

Figure 2 Future perspectives in the management of pancreatic ductal adenocarcinoma by artificial intelligence. AI: Artificial intelligence; 
PDAC: Pancreatic ductal adenocarcinoma.

LIMITATIONS AND FUTURE PERSPECTIVES
A major limitation is the lack of adequate standardization. Universal and uniform 
protocols for data collection, data quality, storage, processing, reproduction, and 
analysis must be established. For instance, ANNs can be trained to appropriately 
categorize histologic slides of pancreatic biopsies. However, the trained ANNs may 
underperform, or not perform at all, when the prepared slides are fixed and stained in 
a different manner. Development of universal and uniform protocols during data and 
sample processing will be required for medical AI to be feasible. Further improvement 
of the technology is also essential for medical AI in clinical practice.

AI in the medical field should become an indispensable tool to reduce human error. 
Because of human limitations, we cannot achieve zero errors. Furthermore, it is time-
consuming to train professional radiologists, gastroenterologists, oncologists, and 
pathologists. Combined work by experts from multiple fields will be needed to 
establish feasible medical AI systems in clinical practice. With further research, AI 
must have a great impact on the diagnosis and treatment of PDAC in near future. 
Ultimately, a sequential approach involving risk prediction, diagnosis, treatment, and 
survival prediction using IA will realize timely and consecutive precision medicine 
and lead to improved prognosis in PDAC (Figure 2). Dr. William Osler stated: 
“Medicine is a science of uncertainty and an art of probability.” This is still true in 
medical AI, which is also “a science of uncertainty and an art of probability.” 
However, the degree of uncertainty and probability will consistently shrink with the 
advance of AI technology and cooperation among various experts. While AI applic-
ations in PDAC are still in the early stage of development, further research must lead 
to great advances in screening, early diagnosis, and treatment.

CONCLUSION
Here we summarize the current advances of AI in PDAC. AI-based omics analyses are 
likely to be the next alternative approach to overcome this poor-prognostic disease by 
the discovery of biomarkers for early detection, molecular/genomic subtyping, and 
treatment guidance, and by the improved prediction of recurrence and survival. How 
to entirely utilize “big data” is a new challenge for physicians and researchers in the 
era of precision medicine. On the other hand, AI will not entirely act for doctors — 
human beings and machines working harmoniously together is the ideal state that 
results in excellent performance. Although AI data reveal that the diagnostic accuracy 
of deep learning models is better than that of radiologists, the aim in this field is to 
develop a helpful tool to aid radiologists in making effective and accurate diagnoses, 
not to be a replacement for doctors. To facilitate AI-based omics analyses, multidiscip-
linary collaboration between physicians, basic scientists, radiologists, statisticians, and 
engineers is mandatory. To further validate the clinical relevance of AI systems, next 
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step is to conduct a prospective study based on multicenter clinical data. We believe 
that breakthroughs will soon emerge to fight this deadly disease using AI-navigated 
precision medicine.
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Abstract
New hepatitis B virus (HBV) infections are decreasing owing to improved 
antiviral therapy and increased HBV vaccination worldwide; however, the 
number of HBV infections remains a major cause of liver carcinogenesis. HBV 
triggers cytotoxic immunity to eliminate HBV-infected cells. Therefore, the HBV 
pathophysiology changes in persistently infected individuals depending on host 
immune responses and HBV DNA proliferation state. To prevent liver cirrhosis 
and carcinogenesis caused by HBV, it is important to treat HBV infection at an 
early stage. Active treatment is recommended for the immunoactive hepatitis B 
surface-antigen-positive and -negative phase, but not during the immune-inactive 
phase or immune-tolerant phase; instead, follow-up is recommended. However, 
these patients should be monitored through regular blood tests to accurately 
diagnose the immune-inactive or -tolerant phases. The treatment regimen should 
be determined based on the age, sex, family history of liver cancer, and liver 
fibrosis status of patients. Early treatment is often recommended due to various 
problems during the immune-tolerant phase. This review compares the four 
major international practice guidelines, including those from the Japanese Society 
of Hepatology, and discusses strategies for chronic hepatitis B treatment during 
the immune-tolerant, immune-inactive, and resolved phases. Finally, recom-
mended hepatitis B antiviral therapy and follow-up protocols are discussed.

Key Words: Hepatitis B; Immune tolerance; Immune-inactive; Anti-viral therapy; 
Hepatocellular carcinoma; Cirrhosis
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Core Tip: Hepatitis B virus (HBV) is a global health problem that causes acute and 
chronic infections and often leads to liver cirrhosis and hepatocellular carcinoma. 
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Treatment of HBV is recommended for patients in the immunoactive hepatitis B 
surface-antigen-positive and -negative phases. Follow-up is recommended only for 
patients in the immune-inactive phase and the immune-tolerant phase, but opinion on 
this recommendation remain divided. This review discusses the major international 
guidelines for the treatment of chronic hepatitis B and highlights the importance of 
clinical factors for making decisions regarding the management of patients with HBV 
infection.

Citation: Kawanaka M, Nishino K, Kawamoto H, Haruma K. Hepatitis B: Who should be 
treated?-managing patients with chronic hepatitis B during the immune-tolerant and 
immunoactive phases. World J Gastroenterol 2021; 27(43): 7497-7508
URL: https://www.wjgnet.com/1007-9327/full/v27/i43/7497.htm
DOI: https://dx.doi.org/10.3748/wjg.v27.i43.7497

INTRODUCTION
Chronic hepatitis B (CHB) is the leading cause of hepatocellular carcinoma (HCC), and 
it is estimated that 240 million individuals are persistently infected by the hepatitis B 
virus (HBV)[1-4]. The prevalence of hepatitis B surface-antigen (HBsAg) is approx-
imately 3%-4% worldwide; in addition, more than 880000 individuals die each year 
from HBV-derived liver damage[1-4]. The high prevalence of hepatitis B in Asia and 
Africa is accompanied by high mortality, and infections in the Western Pacific region 
account for approximately 50% of chronic HBV infections worldwide[1,5,6]. Therefore, 
prevention, diagnosis, evaluation, indication of treatment, and management of co-
infected patients are important in these areas. HBV may exploit the immature neonatal 
immune system to establish a persistent infection. Following vertical or perinatal 
transmission, 90% of neonates develop CHB, whereas children infected between 1 and 
5 years of age have a 30% chance of developing chronic infection. Studies on the 
natural history of HBV infection have shown that the timing of hepatitis B e-antigen 
(HBeAg) seroconversion varies from childhood to adulthood, with HBeAg serocon-
version occurring primarily between 15 and 35 years of age[7-9]. Natural HBeAg 
seroconversion has been reported to be 4.6%, 7.1%, and 28% for those under 6, 
between 6 and 12, and above 12 years of age, respectively[9]. Most patients with HBV 
can resolve their infections, but approximately 10% continue to have viral activity, 
progress to cirrhosis at an annual rate of 2% and develop HCC or liver failure[5,10-
14]. Since its discovery in 1965, the gene structure and replication mechanism of HBV, 
its infection route, natural course, and pathophysiology have been clarified, and 
treatment methods have been advancing continuously. The timeline of HBV infection 
is complex and comprises various overlapping immune phases[2,3,10,13].

The European Association for the Study of Liver Disease (EASL), American 
Association for the Study of Liver Disease (AASLD), Asian-Pacific Association for the 
Study of the Liver (APASL), and the Japanese Society of Hepatology (JSG) have 
defined HBsAg loss as a CHB treatment goal[15-18]. HBsAg loss is associated with 
improved clinical outcomes such as prevention of HCC and survival[19]. However, 
this endpoint is difficult to achieve with the existing antiviral therapies that include 
long-term nucleos(t)ide analog (NA) and pegylated interferon (Peg-IFN) therapies]. A 
recent study reported that a higher portion of patients showed HBsAg loss in response 
to combined treatment with tenofovir disoproxil fumarate (TDF) and Peg-IFN α-2a for 
48 wk than to TDF or Peg-IFN α-2a monotherapy[20]. Therefore, NA and Peg-IFN 
combination therapies are being constantly used and developed to prevent cirrhosis 
and HCC[20-22]. Several factors, such as the immune phase, genotype, race, degree of 
liver fibrosis, HCC family history[23-25], age, and sex should be considered to 
determine the most efficient treatment for CHB. Moreover, the appropriate drug type 
and timing of drug administration are crucial[19,26]. CHB immune phases can be 
divided into five categories, including the immunotolerant phase, immunoactive 
HBeAg-positive phase, immune-inactive phase, immunoactive HBeAg-negative phase, 
and resolved CHB phase; each phase is identified according to immunological 
features, virology, biochemistry, and histology specific to the infection[3,5,7,13]. 
Among these phases, phases 1, 3, and 5 are often not indicated for treatment, and 
instead, follow-up is often recommended[15-18]. In any case, it remains uncertain 
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whether follow-up is sufficient, especially for the immunotolerant phase.

CURRENT TREATMENT CONSIDERATIONS FOR HEPATITIS B PATIENTS
Indicators for initiating HBV treatment 
The CHB treatment goals are to reduce liver disease mortality, improve survival, and 
enhance quality of life by preventing liver disease progression from fibrosis to 
cirrhosis and HCC. All global guidelines recommend initiating treatment based on the 
presence of HBV DNA and serum alanine aminotransferase (ALT) levels. Patients in 
either the immunoactive HBeAg-positive or -negative phase are likely to progress to 
cirrhosis and liver carcinogenesis. Considering the risk of developing cirrhosis and 
HCC associated with them, these phases are used as the main characteristics for 
initiating antiviral therapy[15-18]. The following host indicators are also considered 
prior to treatment: Sex (male), age > 40 years, family history of HCC, place of birth 
(sub-Saharan Africa or Asia), presence of virus- or disease-related cirrhosis, HBV-DNA 
> 2000 IU/mL and elevated ALT levels, presence of HBeAg, and genotype C, which 
causes delayed HBeAg seroconversion[23-28]. In patients treated using NA, HBsAg 
and HB core-related antigen (HBcrAg) levels are associated with HCC carcinogenesis, 
even at low levels of HBV DNA levels[29-32]. Recently, modified PAGE-B scores, 
which are determined based on patient age, sex, baseline platelet count, and serum 
albumin levels were shown to predict HCC in patients receiving NA treatment[33].

The AASLD guidelines propose different HBV-DNA levels for antiviral therapy, 
depending on the HBeAg status[17]. According to the APASL guidelines, the HBV 
DNA levels considered for starting treatment depend on whether the patients are 
HBeAg-positive or -negative, regardless of the ALT levels[16]. In contrast, the EASL 
guidelines state that treatment determination should be based upon HBV-DNA and 
ALT levels, regardless of HBeAg status[15]. Furthermore, according to the JSG 
guidelines, an ALT level value of 31 or higher, which exceeds normal values in Japan, 
and HBV DNA levels ≥ 2000 IU/mL are indicated for antiviral treatment, regardless of 
the HBeAg status[18]. For HBV cirrhosis, antiviral treatment is recommended by all 
the global guidelines[15-18] (Table 1).

Treatment indications for patients in the immune-tolerant phase
The first phase of CHB, the immune-tolerant phase, is characterized by minimal or no 
necroinflammatory activity, during which the risk of disease progression is minimal[8,
34]; moreover, 90% of patients infected in early childhood undergo seroconversion 
from HBeAg-positive to -negative at a young age, and the disease stabilizes in most 
cases[7-9]. Thus, most clinical practice guidelines do not recommend antiviral therapy 
for these patients, and follow-up is recommended[15-18]. Among these, the 2017 EASL 
guidelines[15] set the immune-tolerant phase as HBeAg-positive chronic HBV 
infection, and the treatment indications for the immune-tolerant phase are expanded 
compared to other guidelines. Furthermore, serum HBV DNA and HBsAg levels are 
associated with increased HCC risk and disease progression at serum ALT levels with 
or without HBeAg[26,27]. Early HBV treatment decreases mortality, improve 
transplantation outcomes, and decreases the risk of HCC[19]. Therefore, therapeutic 
intervention should be considered in cases of immune tolerance.

The HBV immune-tolerant phase exhibits high HBsAg and HBeAg titers, indicating 
high viral replication, and either normal or minimally elevated serum ALT levels. In 
this case, HBV proliferation is active but ‘tolerated’ as the host immune system does 
not recognize the viral antigen.

Table 2 presents the definition of immune tolerance and treatment guidelines[15-
18]. The ALT cutoff value during the immune tolerance phase depends on the global 
guidelines. The AASLD guidelines indicate cutoff values of 35 IU/L for men and 25 
IU/L for women. The APASL and EASL guidelines set the cutoff at 40 IU/L, whereas 
the JSG guidelines recommend no treatment for ALT < 30 IU/L. High HBV DNA level 
cutoffs are important to distinguish immune-tolerant CHB from other phases. The 
HBV DNA criteria during the immune-tolerant phase differs between the EASL (≥ 
2000 IU/mL), and the AASLD and APASL (≥ 20000 IU/mL for both). Moreover, the 
age limit for considering a liver biopsy or treatment in the immune-tolerant phase also 
depends on the guidelines: > 40 years old (both AASLD and JSG), > 35 years old 
(APASL), or > 30 years old (EASL). Furthermore, antiviral therapy is considered when 
ALT levels increase during monitoring. According to the AASLD guidelines, treatment 
is indicated for patients with liver fibrosis stage F2 or higher, especially for patients 
over 40 years of age. The EASL guidelines indicate treatment for patients with liver 
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Table 1 Summary of treatment criteria for chronic hepatitis B

HBeAg+; HBV DNA 
(IU/mL) HBeAg+; ALT (IU/L) HBeAg–; HBV DNA 

(IU/mL) HBeAg–; ALT (IU/L) Cirrhosis

≥ 2000 > ULN and/or at least moderate 
liver necro-inflammation or fibrosis

≥ 2000 > × ULN or significant 
histological disease

EASL[15]

≥ 20000 > 2 × ULN or irrespective of fibrosis ≥ 20,000 > 2 × ULN irrespective of 
fibrosis

HBV-DNA 
detectable

APASL[16] ≥ 20000 > 2 × ULN or significant histological 
disease

≥ 2000 > 2 × ULN or significant 
histological disease

HBV-DNA 
detectable

AASLD[17] > 20000 > 2 × ULN or significant histological 
disease

≥ 2000 > 2 × ULN or significant 
histological disease

HBV-DNA 
detectable

JSG[18] ≥ 2000 > ULN ≥ 2000 > ULN HBV-DNA 
detectable

AASLD: American Association for the Study of Liver Disease; ALT: Alanine aminotransferase; APASL: Asian-Pacific Association for the Study of the Liver; 
EASL: European Association for the Study of Liver Disease; HBeAg: Hepatitis B e-antigen; HBV: Hepatitis B virus; JSG: Japanese Society of Hepatology; 
ULN: Upper limit of normal.

Table 2 Treatment indications for patients with hepatitis B e-antigen positive, alanine aminotransferase < upper limit of normal for 
chronic hepatitis B

Monitor criteria Consideration for anti-viral therapy

EASL[15] Normal ALT (< 40 IU/L) and high HBV DNA (≥ 2000 
IU/mL) levels. Monitor ALT and HBV DNA levels every 3-6 
mo

Age > 30 yr, family history of HCC or cirrhosis and extrahepatic 
manifestations. Consider liver biopsy or non-invasive test if: ALT level is 
elevated; excluding other causes

APASL[16] Normal ALT (< 40 IU/L) and high HBV DNA (≥ 20000 
IU/mL) levels Monitor ALT and HBV DNA levels every 3 
mo

Age > 35 yr, liver biopsy showing F2/A2, significant fibrosis by non-
invasive tests, stiffness ≥ 8 kPa, persistently elevated ALT, family history 
of HCC/cirrhosis

AASLD[17] Normal ALT [< 35 IU/L (male), < 25 IU/L (female)] and high 
HBV DNA (≥ 20000 IU/mL) levels. Monitor ALT and HBV 
DNA levels every 3-6 mo

Liver biopsy or non-invasive test shows ≥ F2 or F3, persistently elevated 
ALT level; exclude other causes, especially age > 40 yr

JSG[18] Normal ALT (≤ 30 IU/L) level Consider liver biopsy or non-invasive test if Age > 40 yr, high HBV DNA 
or platelet counts < 15 × 104/uL, family history of HCC

A2: Activity score 2; AASLD: American Association for the Study of Liver Disease; ALT: Alanine aminotransferase; APASL: Asian-Pacific Association for 
the Study of the Liver; EASL: European Association for the Study of Liver Disease; F2/3: Fibrosis score 2/3; HBeAg: Hepatitis B e-antigen; HBV: Hepatitis 
B virus; HCC: Hepatocellular carcinoma; JSG: Japanese Society of Hepatology.

fibrosis stage F2/A2 or higher (as determined using elastography and/or liver 
biopsy), over 30 years old, and who have liver stiffness of ≥ 12 kPa. The APASL 
guidelines simply recommend that patients with F2/A2 or a higher score be 
considered for treatment. According to the JSG guidelines, determination of liver 
fibrosis (by liver biopsy or a non-invasive procedure) is recommended if the ALT level 
is intermittently elevated, HBV DNA is high, platelet counts are less than 15 × 104/μL, 
and the patient is older than 40 years of age.

To summarize the global guidelines: Age, family history of developing HCC or 
cirrhosis, and liver fibrosis are important factors for deciding the best therapeutic 
strategy during the immune-tolerant phase.

Arguments against treatment during the immune-tolerant phase
There are various opinions regarding the need to treat patients in the HBV immune-
tolerant phase. This phase is characterized by high viral replication, the presence of 
HBeAg, and normal or minimally elevated serum ALT and/or aspartate aminotrans-
ferase levels[3,5,10,13]. The immune-tolerant phase is usually identified in patients 
below 30 years of age. Very mild non-specific hepatitis has also been reported in 
patients in immune-tolerant phase who are between the ages of 10 and 12 years, 
although the 5 years progression of liver damage is minimal among patients who 
remain in the immune-tolerant phase[8,34].
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Immune-active HBeAg-positive CHB that occurs in adolescence is associated with 
continued hepatitis activity. Some patients develop fibrosis or cirrhosis during the 
HBeAg-positive phase, but most show decreased serum HBV DNA levels and HBeAg 
seroconversion, resulting in an immunoactive HBeAg-negative CHB phase. This phase 
is characterized by persistent normal serum ALT levels and low HBV DNA load. Some 
patients show spontaneous HBeAg antibody positivity and may not require antiviral 
therapy. Patients who spontaneously show HBeAg seroconversion before the age of 30 
years usually have a good prognosis[35,36]. In fact, approximately 90% of patients will 
either be cured, or the hepatitis will not progress into adulthood. For instance, Tada et 
al[35] examined 408 HBV carriers who did not receive NA and found that individuals 
under the age of 40 with HBeAg seroconversion had a better prognosis than those 
without HBeAg seroconversion, even when matched by sex and age.

Furthermore, the HBeAg seroconversion rate is very low even if antiviral treatment 
is administered during the immune-tolerant phase[37-39]. Patients in the immune-
tolerant phase requires continuous NA treatment due to high HBsAg levels; moreover, 
the HBeAg seroconversion rate is low, and serum clearance of HBsAg is rarely 
achieved[19,39].

In another example, Chan et al[39] administered TDF or a combination of TDF and 
entecavir (ETV) to 126 HBeAg-positive patients with normal ALT levels, who were 
close to the immune-tolerant phase and found that only 5% of patients receiving 
treatment showed HBeAg seroconversion. Although none of these cases were in the 
immune-tolerant phase, other reports have shown that HBeAg seroconversion is high 
in cases with elevated ALT levels[20]. In general, the higher the ALT level, the better 
the seroconversion. As ALT levels are naturally low during the immune-tolerant 
phase, HBeAg seroconversion is not expected.

Several patients in the HBV immune-tolerant phase are young and the NA 
treatment period is extensive. Treatment is also complicated by several factors, 
including the development of viral resistance, treatment cost, and long-term safety 
issues. Andreani et al[8] also showed that patients with normal ALT levels and high 
HBV DNA (107 copies/mL) do not require liver biopsies as liver tissue-related changes 
are minimal during the immune-tolerant phase. In conclusion, there is little evidence 
to support that treatment alters the clinical outcome in these patients, though some 
guidelines recommend follow-up[40].

Recommendations for treating patients in the HBV immune-tolerant phase
Earlier, most clinical practice guidelines did not recommend antiviral therapy for 
patients in the immune-tolerant phase. However, it was recently reported that 
antiviral treatment during the immune-tolerant phase reduces the risk of HCC, liver 
transplantation, and death. Thus, some evidence supports antiviral therapy for 
patients in the immune-tolerant phase[41]. Studies have reported that increase in HBV 
DNA levels is a risk factor for cirrhosis and HCC[26-28]; moreover, HBV infection 
itself may lead to HCC. Patients infected with HBV treated with antiviral NA therapy 
can achieve remarkable viral suppression[39,42]. Further, combined Peg-IFN and NA 
therapy is more effective in children who are in immune-tolerant phase than in adults
[43-45]. A randomized control study evaluated the usefulness of IFN with lamivudine 
combined therapy for naive HBV infection for patients in immune-tolerant phase, aged 
1–16 years, and the results showed reduced HBV DNA load, improved HBeAg 
seroconversion, and improved rate of HBsAg loss[45]. Management of hepatitis B in 
children has also been recently reported[46,47]. In fact, hepatitis B vaccination for 
infants and young children has markedly reduced HBV infections in the vaccinated 
younger generation, but a significant number of children are still infected with HBV. 
Most HBV infections in children are in a phase of immune tolerance, and therefore, 
many are followed up. Most chronically HBV-infected children have mild disease, but 
a small number may develop undetected fibrosis, cirrhosis, or HCC[47]. There are 
insufficient data to identify high-risk groups for HCC among children. In fact, children 
with HBV-associated HCC do not have cirrhosis and have normal alfa-fetoprotein 
levels, which should be considered for the duration of follow-up and indications for 
treatment[48].

In recent years, advances in understanding the immunopathogenicity of CHB have 
questioned whether treatment should be administered at an early stage of CHB 
regardless of ALT level or severity of liver disease. The immune-tolerant phase is not 
associated with immunological tolerance, and the results question whether good 
follow-up as benign is good[49].

Antiviral therapy may also suppress the risk of disease spread from patients with 
hepatitis B to other individuals. Indeed, antiviral therapy reduces the risk of horizontal 
transfer of HBV infection from immunotolerant patients with very high viral load, as 
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well as vertical HBV transmission by mothers with high viral load. Cases without 
hepatitis B immune globulin and a vaccine occur almost exclusively in HBeAg-positive 
women with high HBV DNA levels (> 200000 IU/mL) and HBsAg levels exceeding 
4–4.5 logs/mL. Mother-to-child HBV transmission rates (MTCTs) were 0% in HBsAg-
positive pregnant patients showing high HBV DNA levels (> 200000 IU/mL), who 
were treated with TDF at 28 gestational weeks[50]. In a meta-analysis based on 595 
articles, the administration of antiviral drugs during pregnancy, especially TDF, was 
deemed safe in helping prevent MTCTs[51,52]. In addition to TDF, tenofovir 
alafenamide fumarate is administered to pregnant women at 24–35 wk gestation, and 
the safety of the pregnant women and infants as well as the prevention of MTCT were 
reported recently[53].

The WHO advocates administration of TDF to infected pregnant women with high 
HBV load (≥ 5.3 log 10 IU/mL; or ≥ 200000 IU/mL) from the 28th week of pregnancy 
till delivery. This treatment regimen is recommended to prevent MTCT. The WHO 
also suggests three hepatitis B vaccinations for newborns, including one dose at birth
[54].

Standard follow-up of the immune-tolerant phase may not identify the transition to 
the immunoactive phase. Thus, evaluating the progression of liver fibrosis and liver 
carcinogenesis during follow-up is important.

Challenges associated with immune-tolerant phase-diagnosis, liver fibrosis, and 
liver carcinogenesis
Liver damage caused by HBV causes hepatocellular regeneration associated with 
chronic necrotizing inflammation, which leads to HCC. The onset of HCC in HBV may 
arise from immunopathogenic factors[11,55]. In addition, adult serum ALT levels and 
HBV DNA levels are associated with liver carcinogenesis. Active HBV DNA 
replication is strongly associated with HCC development and cirrhosis, regardless of 
ALT levels[26-28,56]. The cumulative incidences of HCC and liver-related diseases in 
patients who have been in the immune-tolerant phase for over 10 years is 2.7% and 
12.7%, respectively[41]. Lee et al[57] examined the cumulative HCC risk over a 10-year 
period in immunologically active patients who achieved a virological response with 
antivirals in comparison with that in untreated patients in immune-tolerant phase. 
Surprisingly, the HCC risk was similar between these two groups of patients. In this 
study, the immune-tolerant phase was diagnosed by regular blood chemistry tests and 
serum HBV DNA tests every 3–6 mo. Additionally, liver stiffness measured by 
transient elastography was used to strictly determine whether patients were in the 
immune-tolerant phase. Thus, this report indicates that HCC carcinogenesis is as high 
during the immune tolerance period as in the immunologically active phase.

To clarify these points, it is important to determine whether the subject is truly in 
the immune-tolerant phase. One study found significant fibrosis in 60% of patients 
with a high viral load and normal or slightly elevated serum ALT for at least 12 mo
[58]. Another study found that 37% of HBeAg-positive patients aged 35 years or 
above, with ALT greater than 0.5 × ULN, had progressive fibrosis, as assessed by 
transient elastography[59]. Therefore, patients with normal ALT levels and high HBV 
DNA levels are more likely to be immune-tolerant, subject to the status of their liver 
fibrosis status[60].

Patients with ALT and HBV DNA greater than 10,000 copies/mL should be 
carefully evaluated and monitored, even if they appear normal. Necrotic inflammation 
of the liver and/or fibrosis is observed or progresses unnoticed in certain cases, even 
in patients with persistently normal ALT levels[56,59-61]. Serum ALT levels cannot be 
used as a surrogate marker for hepatocyte damage to assess the severity of hepatitis 
activity.

For this reason, the 2017 EASL guidelines renamed this phase to “HBeAg-positive 
chronic HBV infection” instead of the “immune tolerance phase,” to avoid confusion 
and the need for early treatment[15]. The AASLD guidelines suggest that ALT levels 
should be tested every 6 mo at least, even if the patient is in the “immune-tolerant 
phase,” to monitor the potential for progression to “immunoactive or immune-inactive 
phase”[17]. Various global guidelines recommend regular evaluation of ALT level and 
HBV DNA load every 3–6 mo in patients who are in the immune-tolerant phase 
(Table 3). A previous study showed that 4.6% children (up to 12 years of age) progress 
from the immune tolerance to the immunoclearance phase; therefore, it may be helpful 
to evaluate ALT levels and HBV DNA load once every 6–12 mo in such children[9].

To diagnose the immune tolerance period accurately, constant monitoring of HBsAg 
levels, HBeAg levels, and HBV DNA, and ALT levels is required. Chan et al[62] 
performed transient elastography on 161 patients with HBV infection and determined 
liver stiffness cutoffs associated with normal and elevated ALT levels (> 1–5-fold 
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Table 3 Treatment indications for patients in the hepatitis B e-antigen-negative immune-inactive phase

Monitor criteria Consideration for anti-viral therapy

EASL[15] Normal ALT (< 40 IU/L) and HBV DNA (< 2000 IU/mL) levels. 
Monitor ALT and HBV DNA levels (< 2000 IU/mL)every 6-12 mo, 
(≥ 2000 IU/mL)every 3-6 mo

Age > 30 yr, family history of HCC or cirrhosis and extrahepatic 
manifestations 

APASL[16] Normal ALT (< 40 IU/L) and HBV DNA (< 2000 IU/mL) levels. 
Monitor ALT and HBV DNA levels every 3-6 mo

Age > 35 yr, liver biopsy showing F2 or A2, significant fibrosis by 
non-invasive tests, stiffness ≥ 8 kPa, persistently elevated ALT, 
family history of HCC/cirrhosis

AASLD[17] Normal ALT [< 35 IU/L (male), < 25 IU/L (female)] and HBV DNA 
(< 2000 IU/mL) levels. Monitor ALT and HBV DNA levels every 3 
mo for 1 yr, then every 6 mo

Liver biopsy or non-invasive test shows ≥ F2 or F3, persistently 
elevated ALT level; exclude other causes, especially age > 40 yr

JSG[18] Normal ALT level (≤ 30 IU/L) and HBV DNA (< 2000 IU/mL) 
levels

Consider liver biopsy or non-invasive test if age > 40 yr, high HBV 
DNA or platelet counts < 15 × 104/uL, family history of HCC

A2: Activity score 2; AASLD: American Association for the Study of Liver Disease; ALT: Alanine aminotransferase; APASL: Asian-Pacific Association for 
the Study of the Liver; EASL: European Association for the Study of Liver Disease; F2/3: Fibrosis score 2/3; HBeAg: Hepatitis B e-antigen; HBV: Hepatitis 
B virus; HCC: Hepatocellular carcinoma; JSG: Japanese Society of Hepatology.

ULN). These patients were divided into reassurance, observation, liver biopsy, and 
treatment consideration groups; notably, 58% and 62% of patients with normal and 
elevated ALT levels (> 1–5 times ULN), respectively, did not require a liver biopsy. In 
addition to measuring HBsAg, ALT levels, HBV DNA load, and liver fibrosis should 
be constantly monitored to diagnose true immune tolerance. Recently, non-invasive 
diagnostic methods for diagnosing fibrosis, such as transient elastography, and 
markers for liver fibrosis have been developed[63,64]. These methods must be used to 
accurately diagnose HBV and develop future policies for clinical management of 
patients with HBV infection.

Antiviral treatment during the immune-inactive phase
The third phase of CHB, which is the immune-inactive phase, is characterized by low 
HBV DNA load (usually < 2000 IU/mL) and ALT levels within the normal range. 
HBeAg seroconversion often reduces hepatitis symptoms, however, in 20%–30% of 
these patients, HBV re-proliferates, hepatitis relapses, and the third immunoactive 
HBeAg phase transitions into the immune-negative phase. When HBV does not 
repopulate, it leads to a decrease in HBV DNA load as well as reduction in HBsAg; 
then, CHB progresses to the HBsAg-negative resolved phase[2,5,7,13]. JSG guidelines 
define the immune-inactive phase (phase 3) when the patient is HBeAg negative at 
least three times over 1-year follow-up period, with HBV DNA levels < 2000 IU/mL, 
and ALT ≤ 30 IU/L. This guideline is based on the fact that histologically favorable 
liver disease is rare when HBeAg is negative three or more times during follow-up for 
1 year or more. In this case, HBV DNA is usually < 2000 IU/mL and ALT is typically < 
40 IU/L. Although liver biopsy is not required at this time, lifelong monitoring is 
indeed required. However, even under these conditions, patients with advanced 
fibrosis are at increased risk of liver carcinogenesis. Thus, treatment should be 
considered if liver fibrosis is suspected as recommended per the AASLD, EASL, and 
APASL guidelines. During this phase, antiviral treatment is recommended if the 
patient has a family history of HCC or cirrhosis or if significant histological findings 
are noted on the liver biopsy. Thus, in this phase, age, family history of cirrhosis and 
HCC, and fibrosis progression are important factors for consideration.

Loss of HBsAg is an ideal endpoint and antiviral therapy during the immune-
inactive phase may promote HBsAg clearance and lead to low HBsAg levels. The 
annual incidence of HCC and liver-related deaths among patients in this phase are 
higher and this trend may be reduced by antiviral treatment. However, treatment 
should be carefully considered, as chances of HBsAg loss can still increase naturally 
during the immune stage compared to other stages. It is also believed that antiviral 
treatment is not necessary and should only be considered in exceptional circumstance. 
If antiviral treatment is provided, the administration time during the immune-inactive 
period will be shorter than that during the immune tolerance period.

Need for treatment in the resolved phase of CHB
In the resolved phase of CHB, the patient tests negative for HBsAg, HBV DNA is not 
detected, ALT level is normalized, and liver inflammation disappears. This condition 
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is the goal of hepatitis B treatment and no longer requires NA therapy. However, in 
cases where treatment is initiated with NA(s), AASLD guidelines recommend that 
patients consider discontinuing treatment when HBsAg is negative, and cirrhosis is 
absent[20]. The EASL guidelines may consider long-term (i.e., 3 years or longer) NA 
treatment after the loss of HBsAg, with or without HBsAg positivity. However, the 
EASL guidelines do not consider cirrhosis at this stage[15]. The APASL guidelines 
recommend treatment discontinuation if HBsAg level decreases, antibody reversal is 
observed, and HBV DNA is not detected for at least two years at three separate follow-
up visits every six months. Nevertheless, it is recommended that lifelong NA therapy 
be continued for patients with cirrhosis[16]. Although the JSG guidelines also set 
criteria for discontinuing NA therapy based on HBsAg levels and HBcrAg[18], 
treatment discontinuation in the resolved CHB phase is not specified. However, for 
liver cirrhosis, relapse after discontinuation of NA treatment has a risk of inducing 
liver failure; therefore, treatment is generally continued lifelong.

If HBsAg is absent, treatment discontinuation remains an option; however, this is 
not recommended since results on the long-term prognosis of patients with discon-
tinued treatment are currently unavailable. Thus, further therapy is not required if the 
HBsAg test yields negative results; however, indefinite treatment is recommended for 
patients with liver cirrhosis.

CONCLUSION
In summary, hepatitis B should be followed up or treated according to the hepatitis B 
disease course. Toward that end, the treatment selection, as well as mode and timing 
of drug administration are important for improving HBV prognosis. It is necessary to 
determine whether patients are in the immune-tolerant or immune-inactive phase to 
recommend appropriate follow-up and assess their need for antiviral therapy. 
Furthermore, a major consideration during the course of HBV treatment is to 
determine the true extent of immune inactivity and immune resistance, for which it is 
necessary to devise non-invasive evaluation of continuous ALT and HBV DNA level 
changes, and liver fibrosis. In addition, it is important to consider clinically relevant 
factors such as age, sex, and genotype during the treatment decision-making process. 
The option of early treatment also needs to be discussed during the immune tolerance 
stage. As these factors are not yet clarified in the global guidelines, future research is 
warranted to elucidate treatment options and prognosis according to the cirrhosis and 
HCC risk profiles of HBV-infected patients.
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Abstract
BACKGROUND 
Serum small extracellular vesicles (sEVs) and their small RNA (sRNA) cargoes 
could be promising biomarkers for the diagnosis of liver injury. However, the 
dynamic changes in serum sEVs and their sRNA components during liver injury 
have not been well characterized. Given that hepatic macrophages can quickly 
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clear intravenously injected sEVs, the effect of liver injury-related serum sEVs on 
hepatic macrophages deserves to be explored.

AIM 
To identify the characteristics of serum sEVs and the sRNAs during liver injury 
and explore their effects on hepatic macrophages.

METHODS 
To identify serum sEV biomarkers for liver injury, we established a CCL4-induced 
mouse liver injury model in C57BL/6 mice to simulate acute liver injury (ALI), 
chronic liver injury (CLI) and recovery. Serum sEVs were obtained and charac-
terized by transmission electron microscopy and nanoparticle tracking analysis. 
Serum sEV sRNAs were profiled by sRNA sequencing. Differentially expressed 
microRNAs (miRNAs) were compared to mouse liver-enriched miRNAs and 
previously reported circulating miRNAs related to human liver diseases. The 
biological significance was evaluated by Ingenuity Pathway Analysis of altered 
sEV miRNAs and conditioned cultures of ALI serum sEVs with primary hepatic 
macrophages.

RESULTS 
We found that both ALI and CLI changed the concentration and morphology of 
serum sEVs. The proportion of serum sEV miRNAs increased upon liver injury, 
with the liver as the primary contributor. The altered serum sEV miRNAs based 
on mouse studies were consistent with human liver disease-related circulating 
miRNAs. We established serum sEV miRNA signatures for ALI and CLI and a 
panel of miRNAs (miR-122-5p, miR-192-5p, and miR-22-3p) as a common marker 
for liver injury. The differential serum sEV miRNAs in ALI contributed mainly to 
liver steatosis and inflammation, while those in CLI contributed primarily to 
hepatocellular carcinoma and hyperplasia. ALI serum sEVs decreased both CD86 
and CD206 expression in monocyte-derived macrophages but increased CD206 
expression in resident macrophages in vitro.

CONCLUSION 
Serum sEVs acquired different concentrations, sizes, morphologies and sRNA 
contents upon liver injury and could change the phenotype of liver macrophages. 
Serum sEVs therefore have good diagnostic and therapeutic potential for liver 
injury.

Key Words: MicroRNA; Small RNA sequencing; Biomarker; Monocyte-derived 
macrophage; Resident macrophage

©The Author(s) 2021. Published by Baishideng Publishing Group Inc. All rights reserved.

Core Tip: The liver injury changed the concentration, morphology and small RNA 
contents of serum small extracellular vesicles (sEVs). Altered serum sEV microRNAs 
(miRNAs) based on mouse studies were highly consistent with the circulating miRNAs 
reported in human liver diseases. Serum sEV miRNA signatures for acute liver injury 
and chronic liver injury and a panel of miRNAs that can be used as a common marker 
for liver injury were established. Acute liver injury serum sEVs depolarized monocyte-
derived macrophages and educated resident liver macrophages to transform into M2-
like cells. Serum sEVs have good diagnostic and therapeutic potential for liver injury.
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INTRODUCTION
Because of its strategic location and biological functions, the liver is particularly 
susceptible to various pathogenic factors, including drugs, alcohol and viruses. The 
initial insult induces acute liver injury (ALI) or even liver failure. Repeated or 
persistent insults will cause chronic liver injury (CLI), resulting in liver fibrosis and 
finally fatal cirrhosis[1,2]. Therefore, it is important to identify individuals with liver 
injury. However, liver injury does not always cause noticeable signs and symptoms. 
Aside from the widely used blood liver function tests on serum alanine aminotrans-
ferase (ALT) and aspartate aminotransferase (AST), which are not always restricted to 
liver injury[3], there is still a need to explore specific and sensitive biomarkers. With 
the rapid progress in medical research, it is now possible and necessary to search for 
new biomarkers from serum small extracellular vesicles (sEVs).

Recently, serum sEVs have attracted tremendous interest due to their essential roles 
in intercellular communication and to their diagnostic and therapeutic potential[4]. 
The term sEVs refers to extracellular vesicles released by cells that are of relatively 
small size (< 200 nm) and were previously regarded as exosomes[5]. The cargoes 
carried by sEVs represent a snapshot of the parental cells at the time of release and 
change depending on the physiological and pathological states[6,7]. In the liver, sEVs 
are released from both hepatocytes and nonparenchymal cells into the extracellular 
space and circulation. Several studies have reported that circulating sEV RNAs or 
proteins are abnormally expressed in the contexts of drug-induced liver injury (DILI), 
steatohepatitis, viral hepatitis and hepatocellular carcinoma (HCC)[6,8].

MicroRNAs (miRNAs) are 22-24 nt small noncoding RNAs involved in posttran-
scriptional regulation and various biological processes[9]. Tissue-specific distribution 
is a key feature of miRNAs, making miRNAs good candidates as biomarkers or 
therapeutic targets for particular types of tissue injury[10-12]. Serum miRNAs have 
been studied in a variety of liver diseases[13]. However, compared to serum miRNAs, 
serum sEV miRNAs are well protected from RNA enzymes. Thus, serum sEV can 
serve as a more reliable miRNA pool[14]. We hypothesized that serum sEVs and their 
miRNA cargoes might reflect liver damage upon injury and could be promising 
biomarkers.

In the present study, we tried to determine the effects of liver injury on serum sEVs 
and the small RNAs (sRNAs) they transport; we were also interested in determining if 
there is any difference between acute and chronic injury. A study in this regard will 
aid in identification of potential serum sEV miRNA biomarkers. The dynamic changes 
in the number and morphology of serum sEVs and the sRNA components of serum 
sEVs were examined. The profiles of deregulated serum sEV miRNAs were obtained 
and compared to those of mouse liver enriched miRNAs and previously reported 
circulating miRNAs related to human liver diseases (HLD). To further evaluate the 
biological significance of serum sEVs upon liver injury, conditioned cultures of ALI 
serum sEVs and primary hepatic macrophages were carried out.

MATERIALS AND METHODS
Animal studies
Male C57BL/6 mice (8 wk old) were purchased from the Shanghai Medical Laboratory 
Animal Center (Shanghai, China) and housed in the animal facility of Nantong 
University with temperature 25 ± 2 °C and 12 h light/dark cycle controls. All experi-
mental protocols were approved by the Animal Ethics Committee of Nantong 
University. The animal care and experiments were performed in accordance with the 
relevant guidelines and regulations. For ALI, mice were treated with a single dose of 
CCL4 (0.5 mL/kg intraperitoneal injection) dissolved in olive oil (1:9). The mice were 
sacrificed at 2 d or 7 d. For CLI, mice were treated with CCL4 (0.5 mL/kg) or vehicle 
twice a week for 8 wk[15]. The mice were sacrificed 48 h after the last injection at 8 wk 
or at 12 wk (Figure 1A). Mice treated with the same volume of olive oil served as the 
controls for the ALI and CLI models, and 10-12 mice were used in each group. Blood 
or livers were collected from each group for further analyses.

Liver function test and histopathologic examination
Blood was collected by left ventricular puncture from mice and was left undisturbed 
for 1 h at 37 °C and 2 h at 4 °C. Afterward, the samples were centrifuged at 1000 × g for 
10 min at 4 °C; the clear upper fractions were aliquoted and stored at -80 °C. Serum 
ALT and AST levels were measured on an ADVIA 1800 autoanalyzer (Siemens 
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Figure 1 Establishment and validation of CCL4-induced acute liver injury and chronic liver injury in mice. A: Workflow for the establishment of 
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the acute liver injury (ALI) and chronic liver injury (CLI) mouse models; B: Serum alanine aminotransferase (ALT) and aspartate aminotransferase (AST) levels in ALI 
mice. Compared with the ALI control (AC) group, aP < 0.05, bP < 0.01; C: Hematoxylin-eosin (H&E) and Sirius Red staining of liver sections from AC, 2 d and 7 d 
mice; D: Serum ALT and AST levels in CLI mice. Compared with the CC group, aP < 0.05; E: H&E and Sirius Red staining of liver sections from CLI control (CC), 8 
wk and 12 wk mice. Scale bar = 100 μm. D: Day; W: Week.

Healthcare Diagnostics, Deerfield, IL, United States). The livers were preserved in 4% 
paraformaldehyde, paraffin-embedded and sectioned. The liver tissue sections were 
stained with hematoxylin and eosin (Beyotime Biotechnology, Shanghai, China) for 
routine histology and 0.1% Sirius Red (Sigma-Aldrich, St. Louis, MO, United States) 
for collagen evaluation.

Mouse serum sEV isolation and characterization
Exosome-enriched serum sEV fractions were precipitated using ultracentrifugation 
and an ExoQuick precipitation kit (System Biosciences Inc., Mountain View, CA, 
United States)[16]. The sizes and particle concentrations of the isolated serum sEVs 
were measured by nanoparticle tracking analysis (NTA, NanoSight NS300, Malvern, 
United Kingdom). Serum sEVs were visualized using transmission electron 
microscopy (TEM, HT7700, Hitachi Ltd., Tokyo, Japan). The expression of exosomal 
protein markers was determined by Western blot analysis. The details are provided in 
the Supplementary material, Supporting Information.

sRNA library construction and deep sequencing
Serum sEV sRNA sequencing (RNA-seq) was conducted by BMK Biotech Co., Ltd. 
(Beijing, China) with biological replicates for each group.

Sequencing data analysis and bioinformatic analysis
The raw data were processed as described previously[16]. The trimmed sequencing 
reads were deposited in the European Nucleotide Archive (https://www.ebi.ac.uk/
arrayexpress/experiments/E-MTAB-9462). Bioinformatic analysis of the differentially 
expressed serum sEV miRNAs was performed using Ingenuity Pathways Analysis 
(Qiagen, Valencia, CA, United States). The significance of enrichment for genes with 
particular biologically relevant functions was determined with a one-sided Fisher’s 
exact test.

Systematic review of abnormally expressed circulating miRNAs in HLDs
The detailed procedure is provided in the Supplementary material, Supporting 
Information.

Isolation and culture of mouse hepatic macrophages
Primary mouse hepatic macrophages were isolated from male C57BL/6 mouse livers 
by Percoll (GE Healthcare, Princeton, NJ, United States) density gradient centrifu-
gation. Incubation of liver macrophages with mouse serum sEVs and subsequent 
multiple-color flow cytometric analysis were carried out. The details are provided in 
the Supplementary material, Supporting Information.

Statistical analysis
Statistical analyses were performed with GraphPad Prism 7.0 software (GraphPad 
Software, Inc., La Jolla, CA, United States). Quantitative data were reported as the 
mean ± standard deviation. Comparisons between groups were made by Student’s t-
test or one-way analysis of variance. All P values were two-sided, and statistical 
significance was accepted for a value less than 0.05. Except for the data from sRNA-seq 
experiments, which included two biological replicates for each group, the data 
provided in the present study were from three or more independent experiments.

Additional methods and details are provided in the Supplementary material, 
Supporting Information.

RESULTS
Establishment and validation of CCL4-induced ALI and CLI in mice
The mouse CCL4-induced ALI and recovery model and the mouse CCL4-induced CLI 
and recovery model were established and validated (Figure 1).

https://f6publishing.blob.core.windows.net/36c41c82-1bff-4be2-8c33-890f20de8d0d/WJG-27-7509-supplementary-material.zip
https://www.ebi.ac.uk/arrayexpress/experiments/E-MTAB-9462)
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https://f6publishing.blob.core.windows.net/36c41c82-1bff-4be2-8c33-890f20de8d0d/WJG-27-7509-supplementary-material.zip
https://f6publishing.blob.core.windows.net/36c41c82-1bff-4be2-8c33-890f20de8d0d/WJG-27-7509-supplementary-material.zip
https://f6publishing.blob.core.windows.net/36c41c82-1bff-4be2-8c33-890f20de8d0d/WJG-27-7509-supplementary-material.zip
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In acutely injured mice (at 2 d; 2D group), serum ALT and AST levels were 
increased, and hepatocyte necrosis and inflammatory cell infiltration were observed 
around the lobular central vein. After 5 d of recovery (at 7 d; 7D group), the elevated 
ALT and AST levels had returned to the baseline of the ALI control group, and the 
histological changes were also reversed (Figure 1B and C). For CLI, repeated CCL4 
treatment induced a slight elevation in serum ALT (at 8 wk; 8W group), but the level 
returned to the baseline of the CLI control (CC) group by 4 wk after cessation of CCL4 
treatment (at 12 wk; 12W group) (Figure 1D). Although the ALT level change in CLI at 
8W was not as prominent as those in ALI at 2D, the change was comparable to the 
ALT level changes reported by other study groups using the same mice CLI model[17,
18]. Damaged hepatocytes and centrilobular contracture were observed in the livers of 
the CLI mice (8W), with mild inflammatory cell infiltration. Sirius Red staining 
showed obvious collagen deposition and pseudolobule formation in 8W CLI mice. 
These morphological changes were alleviated in recovered mice (12W) (Figure 1E).

Identification and characterization of serum sEVs from ALI and CLI mice
The isolated particles were spherical or cup-shaped, as observed by TEM (Figure 2A). 
Exosomal protein markers, including CD63, CD81 and CD9, were all highly expressed 
(Figure 2B), as determined by Western blot analysis.

NTA showed that the mean diameter of the particles ranged from 90.2 nm to 127.8 
nm. The number of particles was higher in the 2D group but lower in the 7D group 
than in the control group, and the particle diameters were smaller in the 2D group but 
larger in the 7D group than in the control group. We also noticed that the size distri-
bution of sEVs widened and that multiple peaks were present in the 7D group 
(Figure 2C). For CLI mice, the particle concentrations in the 8W and 12W groups 
tended to be lower than those in the control group, although there were no significant 
differences. The size distribution of sEVs was expanded with multiple peaks in both 
the 8W and 12W groups, and the particle diameters were larger in both the 8W and 
12W groups (Figure 2D). TEM examination revealed that the multiple peaks reflected 
the aggregation or fusion of mouse serum sEVs present in 7D, 8W and 12W samples 
(Figure 2C and D).

These findings suggested that both ALI and CLI changed the number and 
morphology of mouse serum sEVs, and even when the visible histological changes of 
the liver had recovered in the 7D and 12W groups, the changes in particle number and 
morphology of serum sEVs persisted.

Comparison of the sRNA components in serum sEVs from ALI and CLI mice
Dramatic increases in both total RNA and sRNA levels in serum sEVs were observed 
upon ALI (2D) (Figure 3A and B). For CLI, there was no significant difference in either 
sEV RNA or sRNA content among the groups. RNA-seq and annotation revealed that 
each pair of biological repeats had at least 94.97% common sequences in clean reads 
(Supplementary Figure 1). In the control groups (ALI control and CC), tRNA was the 
dominant sRNA species in serum sEVs, followed by rRNA and miRNA (Figure 3C). 
The most remarkable change in serum sEV sRNAs was the increase in miRNA 
proportion in both ALI and CLI mice. Compared to the control condition, ALI 
increased the proportion of miRNAs by more than four-fold, but the proportion 
returned to baseline by 7 d; the proportion of miRNAs increased by almost three-fold 
in CLI mice but was partially restored by 12 wk. With the increase in miRNA, the 
proportion of tRNA decreased (Figure 3D).

miRNA expression profiles of serum sEVs from ALI and CLI mice
For the ALI and CLI groups, 467 and 488 detectable sEVs (transcripts per million reads 
≥ 5.0) miRNAs were obtained, respectively. The biological replications were highly 
correlated in each group (Figure 4A). The RNA-seq data were further validated by 
quantitative real-time polymerase chain reaction. Differentially expressed miRNAs 
with different abundances were selected for validation (Figure 4B).

In total, 91 miRNAs were upregulated and 85 miRNAs were downregulated (fold 
change ≥ 2.0, P < 0.05) in the 2D group compared with the ALI control group 
(Figure 4C and Supplementary Table 1). The levels of most of these miRNAs had 
recovered to baseline levels in the 7D group, in which only 8 upregulated miRNAs 
and 11 downregulated miRNAs were detected (fold change ≥ 2.0, P < 0.05) (Figure 4C 
and Supplementary Table 2). The cumulative distribution frequency was calculated by 
adding each proportion of miRNAs from most to least abundant. The plot showed that 
the top five upregulated miRNAs (miR-148a-3p, miR-122-5p, miR-192-5p, miR-22-3p 
and miR-21a-5p) in the 2D group accounted for up to 84.27% of all detectable miRNAs 

https://f6publishing.blob.core.windows.net/36c41c82-1bff-4be2-8c33-890f20de8d0d/WJG-27-7509-supplementary-material.zip
https://f6publishing.blob.core.windows.net/36c41c82-1bff-4be2-8c33-890f20de8d0d/WJG-27-7509-supplementary-material.zip
https://f6publishing.blob.core.windows.net/36c41c82-1bff-4be2-8c33-890f20de8d0d/WJG-27-7509-supplementary-material.zip
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Figure 2 Characterization of isolated mouse serum small extracellular vesicles. A: Transmission electron microscopy (TEM) images of the particles 
isolated using ultracentrifugation and an ExoQuick precipitation kit; B: Representative Western blotting bands for CD63, CD81, CD9, calnexin and albumin; C: 
Nanoparticle tracking analysis (NTA) plots for the size distribution and concentration of the isolated particles in each group from ALI mice and the corresponding TEM 
images. Compared with the ALI control group, aP < 0.05, bP < 0.01; D: NTA plots for the size distribution and concentration of the isolated particles in each group from 
CLI mice and the corresponding TEM images. Compared with the CLI control group, bP < 0.01. The red arrow indicates aggregated particles; representative particles 
were amplified and were exemplified in the top left corner. Scale bar = 200 nm. UC: Ultracentrifuge; D: Day; W: Week; AC: Acute liver injury control; CC: Chronic liver 
injury control; sEVs: Small extracellular vesicles.

(Figure 4C).
Only 13 miRNAs were upregulated and six miRNAs were downregulated (fold 

change ≥ 2.0, P < 0.05) in the 8W group compared with the CC group (Figure 4D and 
Supplementary Table 3); in addition, 8 miRNAs were upregulated and 3 miRNAs 
were downregulated (fold change ≥ 2.0, P < 0.05) in the 12W group compared with the 
CC group (Figure 4D and Supplementary Table 4). The cumulative distribution 
frequency analysis showed that the top three upregulated miRNAs (miR-122-5p, miR-
192-5p, and miR-22-3p) in the 8W group constituted up to 43.48% of all detectable 
miRNAs (Supplementary Figure 2). These findings suggested that both ALI and CLI 
induced changes in serum sEV miRNA composition. The changes were caused by the 
differential expression of a small number of miRNAs with high abundance.

The biological significance of these differentially expressed serum sEV miRNAs in 
liver injury was explored by Ingenuity Pathway Analysis (www.qiagen.com/
ingenuity). For the 176 differentially expressed serum sEV miRNAs upon ALI, hepatic 
steatosis was the most significant hepatotoxic effect, followed by liver inflammation. 
For the 19 differentially expressed serum sEV miRNAs upon CLI, HCC was the most 
significant, followed by liver hyperplasia (Figure 4E).

The liver is the main contributor to the differentially expressed serum sEV miRNAs 
during ALI and CLI
We were interested in determining the contribution of liver cells to the changes in 
serum sEV miRNAs upon ALI and CLI. First, the liver miRNA expression profile for 
wild-type male C57BL/6 mice was established using BRB-Array Tool v4.6.0 (
https://brb.nci.nih.gov) based on the RNA-seq data from GSE78792 (https://www.
ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE78792)[19] (Supplementary Table 5). 
Differentially expressed serum sEV miRNAs from ALI and CLI mice were compared 
to the liver miRNA expression profile. Among the top ten most abundant liver 
miRNAs, seven were also among the top ten increased miRNAs in serum sEVs upon 
ALI (Table 1) and constituted up to 84.70% of the increased serum sEV miRNAs. For 
CLI, the levels of three were raised in serum sEVs. These three miRNAs were the top 
three miRNAs that increased upon CLI (Table 1) and constituted up to 60.56% of the 
total increased serum sEV miRNAs. These findings suggested the liver as the primary 
contributor to the upregulated serum sEV miRNAs during ALI and CLI and 
confirmed that the serum sEV miRNA test could be a reliable and sensitive way to 
monitor either ALI or CLI.

ALI and CLI signatures based on serum sEV miRNA profiling
To identify serum sEV miRNA signatures for liver injury, we compared the differen-
tially expressed serum sEV miRNAs in various stages of ALI and CLI. Compared to 
the levels in the vehicle control samples, eight miRNAs were upregulated and two 
miRNAs were downregulated significantly during the acute injury stage, and these 
changes were sustained through the chronic phase (fold change ≥ 2.0, P < 0.05); thus, 
they can serve as common liver injury signatures (Figure 5A). In addition, the levels of 
166 miRNAs changed significantly during acute injury, while those of nine miRNAs 
changed dramatically during chronic injury. These miRNAs with high abundance 
(transcripts per million reads _mean > 1000) have the potential to be ALI or CLI 

https://f6publishing.blob.core.windows.net/36c41c82-1bff-4be2-8c33-890f20de8d0d/WJG-27-7509-supplementary-material.zip
https://f6publishing.blob.core.windows.net/36c41c82-1bff-4be2-8c33-890f20de8d0d/WJG-27-7509-supplementary-material.zip
https://f6publishing.blob.core.windows.net/36c41c82-1bff-4be2-8c33-890f20de8d0d/WJG-27-7509-supplementary-material.zip
http://www.qiagen.com/ingenuity)
http://www.qiagen.com/ingenuity)
https://brb.nci.nih.gov
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE78792
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE78792
https://f6publishing.blob.core.windows.net/36c41c82-1bff-4be2-8c33-890f20de8d0d/WJG-27-7509-supplementary-material.zip
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Table 1 Liver-enriched microRNAs ranked highly among serum small extracellular vesicle microRNAs from acute liver injury and 
chronic liver injury model mice

GSE78792 liver Rank ALI ALI rank CLI CLI rank

miR-192 1 miR-192-5p 3 miR-192-5p 2

miR-22 2 miR-22-3p 4 miR-22-3p 3

miR-30a 3 miR-30a-5p 7 N/A N/A

miR-148a 4 miR-148a-3p 1 N/A N/A

miR-21a 5 miR-21a-5p 5 N/A N/A

miR-26a-2 6 miR-26a-5p 105 N/A N/A

miR-122 7 miR-122-5p 2 miR-122-5p 1

miR-10a 8 N/A N/A N/A N/A

miR-143 9 miR-143-3p 92 N/A N/A

miR-27b 10 miR-27b-3p 10 N/A N/A

N/A: Not applicable; ALI: Acute liver injury; CLI: Chronic liver injury.

signatures. The complete lists of these potential ALI and CLI serum sEV miRNA 
signatures are provided in Supplementary Table 6. According to their abundance, up 
to the top 20 miRNAs are listed in Figure 5. For the recovery stage, 18 miRNAs were 
changed significantly in the ALI group, and 11 miRNAs were changed significantly in 
the CLI group (Figure 5B). Some of these miRNAs overlapped with differentially 
expressed serum sEV miRNAs in corresponding acute or chronic injury stages.

Comparison of the potential ALI and CLI serum sEV miRNA signatures to HLD-
related circulating miRNAs
To explore the biological significance of the ALI and CLI serum sEV miRNA 
signatures in HLDs, we performed a systematic review of abnormally expressed 
circulating miRNAs reported in various HLDs. In total, 299 and 257 studies were 
identified from PubMed (https://pubmed.ncbi.nlm.nih.gov) and Web of Science (
http://apps.webofknowledge.com/) databases, respectively (Figure 6A). Data were 
retrieved from 14 studies, including drug-induced liver injury[20], chronic hepatitis B
[21-25], chronic hepatitis C[21,25-27], nonalcoholic fatty liver disease[28], nonalcoholic 
steatohepatitis[23], liver cirrhosis[24,29,30] and HCC[21-24,28-33] studies. Details on 
the 14 articles are summarized in Supplementary Table 7.

In total, 269 nonredundant abnormally expressed circulating miRNAs related to 
HLDs were extracted, and those that appeared ≥ four times were defined as high-
frequency miRNAs (Figure 6A). Of the 30 high-frequency miRNAs (Supple
mentary Table 7), 23 miRNAs were detected in ALI and CLI serum sEVs (Figure 6B), 
14 miRNAs overlapped with ALI and CLI serum sEV signatures, and 12 miRNAs 
showed the same expression trend. Of the 12 miRNAs, three miRNAs (miR-122-5p, 
miR-192-5p, and miR-22-3p) were identified as being increased in both ALI and CLI 
mice and thus have the potential to serve as common signatures for either ALI or CLI. 
The other 9 miRNAs were identified as ALI signatures (miR-21a-5p, miR-92a-3p, miR-
194-5p, miR-17-5p and miR-19b-3p were increased; miR-451a, miR-27a-3p, miR-26a-5p, 
and miR-223-3p were decreased) and may reflect acute or active liver injury 
(Figure 6C). In addition, it was noteworthy that the four high-frequency circulating 
miRNAs reported in HLDs with decreased levels all exhibited decreased levels in 
serum sEVs upon ALI.

Serum sEVs from liver injury mice induced hepatic macrophage reprogramming
Primary mouse hepatic macrophages were isolated, purified and incubated with 
SYTO-labeled serum sEVs. After 24 h, green fluorescence was observed in most 
macrophages in both the control and ALI (2D) serum sEV incubation groups 
(Figure 7A). These observations indicated that serum sEVs could be taken up by 
hepatic macrophages. Serum sEVs from ALI mice (2D) accelerated the adhesion of 
hepatic macrophages (Figure 7B). As determined by quantitative real-time polymerase 
chain reaction, normal serum sEVs increased M1-like gene (IL-1B and TNFA) 

https://f6publishing.blob.core.windows.net/36c41c82-1bff-4be2-8c33-890f20de8d0d/WJG-27-7509-supplementary-material.zip
https://pubmed.ncbi.nlm.nih.gov
http://apps.webofknowledge.com/
https://f6publishing.blob.core.windows.net/36c41c82-1bff-4be2-8c33-890f20de8d0d/WJG-27-7509-supplementary-material.zip
https://f6publishing.blob.core.windows.net/36c41c82-1bff-4be2-8c33-890f20de8d0d/WJG-27-7509-supplementary-material.zip
https://f6publishing.blob.core.windows.net/36c41c82-1bff-4be2-8c33-890f20de8d0d/WJG-27-7509-supplementary-material.zip
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Figure 3 Annotations of small RNA in serum small extracellular vesicles from acute liver injury and chronic liver injury mice. A: Total RNA 
in serum small extracellular vesicles (sEVs) compared with the 2D group, cP < 0.001; B: Small RNA (sRNA) concentrations in serum sEVs compared with the 2 d 
group, cP < 0.001; C: Representative pie charts depicting the annotated sRNA species and their proportions in the different groups; D: Statistical analysis of sRNA 
species in sEVs. Compared with the 2 d group, dP < 0.0001; compared with the 8 wk group, fP < 0.01, gP < 0.0001. D: Day; W: Week; AC: Acute liver injury control; 
CC: Chronic liver injury control; ALI: Acute liver injury; CLI: Chronic liver injury; miRNA: MicroRNA; snoRNA: Small nucleolar RNA.
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Figure 4 Differentially expressed microRNAs in serum small extracellular vesicles from acute liver injury and chronic liver injury mice 
and their biological significance. A: Pearson correlation coefficients between samples from acute liver injury (ALI) and chronic liver injury (CLI). The correlation 
coefficient values are labeled in the heat map; red or green represents high or low correlation, respectively; B: Validation of RNA sequencing data by quantitative real-
time polymerase chain reaction for microRNAs (miRNAs) from ALI and CLI; C: Heatmap for the differentially expressed miRNAs in the ALI injury stage (2 d vs ALI 
control) and recovery stage (7 d vs ALI control), a cumulative distribution frequency plot for the increased miRNAs in ALI, and pie charts illustrating the proportions of 
the top five upregulated miRNAs in the ALI control and 2 d groups; D: Heatmap for the differentially expressed miRNAs in the CLI injury stage (8 wk vs CLI control) 
and recovery stage (12 wk vs CLI control). The pie charts illustrate the proportions of the top three upregulated miRNAs in the CLI control and 8 wk groups; E: The top 
hepatotoxicity processes related to the differentially expressed serum sEV miRNAs in ALI (top) and the differentially expressed serum sEV miRNAs in CLI (bottom) 
cataloged by Ingenuity Pathway Analysis-Tox function analysis. D: Day; W: Week; AC: Acute liver injury control; CC: Chronic liver injury control; ALI: Acute liver injury; 
CDF: Cumulative distribution frequency; qRT-PCR: Quantitative real-time polymerase chain reaction; FC: Fold change; RNA-seq: RNA sequencing; miRNA: 
MicroRNA.

expression and decreased the expression of some M2-like genes (IL-10RB, CD163, 
ARG1 and CD206); ALI serum sEVs showed similar effects. However, compared to 
normal serum sEVs, ALI serum sEVs tended to decrease M1-like IL-1B but increase 
M2-like CD163 gene expression (Figure 7C).

In order to further dissect the effects of ALI serum sEVs on monocyte-derived and 
resident hepatic macrophage subgroups, multiple-color flow cytometric analyses were 
performed to assess the expression of M1-like CD86 and M2-like CD206 in CD11b+

F4/80Low monocyte-derived and CD11b+F4/80High resident macrophages (Tacke and 
Zimmermann[34] and our unpublished data). ALI serum sEVs decreased both CD86 
and CD206 expression in the CD11b+F4/80Low subgroup but increased CD206 
expression in the CD11b+F4/80High subgroup (Figure 7D and E). These findings 
indicated that ALI serum sEVs might induce depolarization of CD11b+F4/80Low 
monocyte-derived macrophages but M2 differentiation of CD11b+F4/80High resident 
macrophages.
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Figure 5 Common and specific microRNAs for acute and chronic liver injury and recovery in mouse models. A: Common and specific 
microRNAs (miRNAs) for acute and chronic liver injury; B: Common and specific miRNAs for the recovery stages of acute and chronic liver injury. Bold font: 
Transcripts per million reads Mean > 1000; Blue font: Overlapping microRNAs in injury and recovery; NA: Not applicable; ALI: Acute liver injury; CLI: Chronic liver 
injury; ALI-R: Acute liver injury recovery; CLI-R: Chronic liver injury recovery.

DISCUSSION
A growing number of studies have suggested the diagnostic value of serum sEV 
content for liver injury, especially miRNAs[6,8]. To explore potential serum sEV 
miRNA biomarkers for liver injury, we simulated the complex processes of liver injury 
and recovery in CCL4-induced ALI and CLI mouse models. The 2D group and 8W 
group represented ALI and CLI, respectively, while the 7D group and 12W group 
represented the recovery stage of ALI and CLI, respectively. The ALT and AST levels 
elevated in the 2D group and 8W group and returned to the baseline of the control 
groups (Figure 1B and D). Moreover, the histological changes also reversed in the 7D 
and 12W recovery groups (Figure 1C and E), which indicated that the ALI and CLI 
and recovery models were well established.

Unexpectedly, aside from differentially expressed miRNAs, we found that the 
concentration, size and morphology of serum sEVs might be essential features in liver 
injury (Figure 2). The number of serum sEVs increased upon ALI, which has been 
reported in human alcoholic hepatitis and alcoholic liver injury mouse models[35-37]. 
Furthermore, we found sustained decreases in serum sEV number during the chronic 
injury stage and the recovery stage for both ALI and CLI. Moreover, serum sEVs 
became smaller upon ALI but enlarged during ALI recovery and the CLI stage, and 
the increased size persisted through the CLI recovery stage, at which time there were 
multiple peaks, as observed by NTA. Interestingly, aggregation of serum sEV particles 
was observed in samples from the ALI recovery stage, CLI stage and CLI recovery 
stage by TEM, which explained the multiple peaks and increased particle size found 
by NTA. We propose that the aggregation of sEVs might reflect membrane damage of 
extracellular vesicles following liver injury. Thus, changes in serum sEV concentration, 
size, and morphology are well connected to a particular stage of liver injury and could 
provide diagnostic clues. In addition, the changes in serum sEVs persisted even when 
liver function and visible histopathological changes were restored; thus, they could be 
useful to trace recent liver injury.
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injury (ALI) and chronic liver injury (CLI) serum small extracellular vesicles (sEVs); C: Common miRNAs in the serum sEVs from mice with ALI and CLI and in the 
circulation in the context of HLDs. Red font: Upregulated miRNAs; Green font: Downregulated miRNAs; HC: Healthy control; AC: Acute liver injury control; CC: 
Chronic liver injury control; WoS: Web of Science; D: Day; W: Week.

Then, we showed that ALI and CLI altered the sRNA levels and components in 
serum sEVs. For ALI, both the total RNA and sRNA levels of serum sEVs increased 
significantly, and the proportion of miRNAs in sRNA also increased. Although there 
were no significant increases in RNA or sRNA levels for CLI, the proportion of 
miRNAs increased significantly. Compared to CLI, ALI significantly changed more 
miRNA species (176 vs 19, fold change ≥ 2.0, P < 0.05). The increased proportion of 
miRNAs upon liver injury was mainly attributable to a few highly abundant miRNAs. 
To traceback the primary source of the increased serum sEV miRNAs, the highly 
abundant miRNAs detected in serum sEVs from ALI and CLI mice were evaluated in 
the livers of normal male C57BL/6 mice. The miRNAs with the highest abundance 
were all liver-enriched miRNAs (Table 1). We propose that the liver is the main 
contributor to the elevations in miRNAs in serum sEVs for both ALI and CLI. Thus, 
serum sEVs carry the miRNA messages released from the injured liver, and examining 
the serum sEV miRNAs could be a reliable way to monitor either ALI or CLI.

By comparing the expression profiles of serum sEV miRNAs in various stages of 
ALI and CLI, we obtained a list of miRNAs that can be used as common liver injury 
signatures as well as the miRNA signatures for ALI, CLI and the recovery stages. 
However, these signatures were obtained from mouse models and need to be 
validated in human patients. Hence, we carried out a systematic review of previously 
published studies and obtained 30 miRNAs that were highly correlated with HLD, 
including drug-induced liver injury, chronic hepatitis B, chronic hepatitis C, 
nonalcoholic fatty liver disease, nonalcoholic steatohepatitis and liver cirrhosis 
(Figure 6). Of these 30 miRNAs, 3 miRNAs (miR-122-5p, miR-192-5p and miR-22-3p) 
were identified as common injury signatures that were increased in both ALI and CLI 
mice. Although these three miRNAs have been studied separately[24,36,38,39], here, 
for the first time, they were combined as a universal signature for either ALI or CLI. 
Nine miRNAs were identified as ALI signatures. Along with the five increased 
miRNAs (miR-21a-5p, miR-92a-3p, miR-194-5p, miR-17-5p and miR-19b-3p), four 
miRNAs were decreased (miR-451a, miR-27a-3p, miR-26a-5p and miR-223-3p): the 
same four miRNAs that are frequently reported to be decreased in HLD (Figure 6). 
Although the human data were mostly from patients with CLI, the overlapping ALI 
signatures might reflect active lesions. Based on serum sEV miRNAs, we established 
common signatures for liver injury and specific signatures for acute/active liver 
injury.

The biological significance of the alterations in sEV miRNAs upon liver injury was 
explored by Ingenuity Pathway Analysis. The top hepatotoxicity-related functions of 
the altered serum sEV miRNAs in ALI were hepatic steatosis and liver inflammation, 
while the altered miRNAs carried by serum sEVs from CLI were linked primarily to 
HCC, followed by liver hyperplasia. These findings are consistent with the clinical 
findings that ALI mainly causes inflammation and that sustained damage increases the 
risk of carcinoma[40,41]. Hepatic steatosis reflects fatty degeneration that is typically 
caused by CCL4[42]. These findings reveal the pathological importance of serum sEVs 
during the processes of ALI and CLI.

It has been reported that hepatic macrophages can take up serum sEVs and play 
essential roles in the clearance of intravenously injected sEVs from the systemic 
circulation[43,44]. We were interested in determining the effects of liver injury-related 
serum sEVs on hepatic macrophages and whether these effects could aggravate liver 
damage or play a protective role. We found that in vitro, ALI serum sEVs could be 
taken up by hepatic macrophages and promote macrophage adhesion. Furthermore, 
ALI serum sEVs tended to decrease M1-like gene expression, such as IL-1B and TNFA 
expression, and increase M2-like gene expression, including CD163 expression. 
However, the trends were not consistent. Considering that hepatic macrophages are 
heterogeneous populations composed of two subgroups, including resident 
macrophages and circulating monocyte-derived macrophages[34], we propose that 
macrophages of different origins might react inconsistently to ALI serum sEVs. The 
expression of M1 (CD86) and M2 (CD206) polarization signatures on the two 
subgroups of hepatic macrophages was examined by flow cytometry. ALI serum sEVs 
induced depolarization of CD11b+F4/80Low monocyte-derived macrophages but 
induced M2 differentiation of CD11b+F4/80High resident macrophages. We propose that 
the changes in serum sEVs upon ALI might alleviate liver damage by depolarizing 
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Figure 7 Uptake of serum small extracellular vesicles by hepatic macrophages and subsequent reprogramming. A: Uptake of SYTO-labeled 
serum small extracellular vesicles (sEVs) from normal (AC) or acute liver injury (ALI) (2D) mice by primary hepatic macrophages; B: Hepatic macrophages were 
incubated with AC or 2D serum sEVs for 24 h. The number of attached cells per 200 × field is shown; C: Expression of M1- and M2-like cell surface markers and 
cytokines in hepatic macrophages incubated with mice serum sEVs. The unfilled column represents macrophages incubated with AC sEVs, and the filled column 
represents macrophages incubated with 2D sEVs. Compared with the untreated control group, aP < 0.05, bP < 0.01, cP < 0.001, dP < 0.0001; compared with the AC 
sEV treatment group, eP < 0.05, fP < 0.01; D: Macrophages were defined as CD11b+F4/80Low and CD11b+F4/80High subgroups. The representative images show the 
percentage of CD86-and CD206-positive cells in each subgroup subjected to the control, AC sEV and 2D sEV treatments; E: CD86- and CD206-positive cells in each 
subgroup. Compared with the control group, aP < 0.05, dP < 0.0001; compared with the AC sEV treatment group, fP < 0.01, gP < 0.0001. Scale bar = 100 μm. Mac: 
Macrophage; D: Day; AC: Acute liver injury control; sEVs: Small extracellular vesicles.

monocyte-derived macrophages and educating resident hepatic macrophages to 
transform into M2-like cells.

CONCLUSION
In conclusion, we found that the concentration, size and morphology of serum sEV 
particles were essential features for liver injury. We established specific serum sEV 
miRNA signatures for different liver injury stages and created a list of miRNAs that 
can be used as common liver injury biomarkers. The altered ALI and CLI serum sEV 
miRNAs were connected to diverse liver pathological processes. ALI serum sEVs 
reprogrammed hepatic macrophage subgroups differently. Serum sEVs not only have 
good diagnostic potential but also could be used to ameliorate liver injury. However, 
the diagnostic and therapeutic potential of these altered serum sEVs upon liver injury 
deserves further study.
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ARTICLE HIGHLIGHTS
Research background
Both acute liver injury (ALI) and chronic liver injury (CLI) do not always cause 
noticeable signs and symptoms. Serum small extracellular vesicles (sEVs) have 
attracted tremendous interest due to their essential roles in intercellular 
communication and their diagnostic and therapeutic potential. The cargoes carried by 
sEVs represent a snapshot of the parental cells and change depending on the 
physiological and pathological states.

Research motivation
Serum sEVs and their small RNA (sRNA) cargoes could be promising biomarkers for 
the diagnosis of liver injury.

Research objectives
The present study aimed to characterize the dynamic changes of serum sEVs and their 
sRNA components during liver injury and to explore the effect of liver injury-related 
serum sEVs on hepatic macrophages.

Research methods
Male C57BL/6 mice were treated with CCL4 to establish a mouse liver injury model for 
simulating ALI, CLI and recovery. Serum sEVs were obtained and characterized by 
transmission electron microscopy and nanoparticle tracking analysis. Serum sEV 
sRNAs were profiled by sRNA sequencing. Differentially expressed microRNAs 
(miRNAs) were compared to mouse liver-enriched miRNAs and previously reported 
circulating miRNAs related to human liver diseases. The biological significance was 
evaluated by Ingenuity Pathway Analysis of the altered sEV miRNAs and conditioned 
cultures of ALI serum sEVs with primary hepatic macrophages.

Research results
Both ALI and CLI changed the concentration and morphology of serum sEVs. The 
proportion of serum sEV miRNAs increased upon liver injury, with the liver as the 
primary contributor. The altered serum sEV miRNAs based on mouse study were 
consistent with human liver disease-related circulating miRNAs. We established 
serum sEV miRNA signatures for ALI and CLI and a panel of miRNAs (miR-122-5p, 
miR-192-5p, and miR-22-3p) as a common marker for liver injury. ALI serum sEVs 
decreased both CD86 and CD206 expression in monocyte-derived macrophages but 
increased CD206 expression in resident macrophages in vitro.

Research conclusions
Serum sEVs acquired different concentrations, sizes, morphologies and sRNA contents 
upon diverse liver injured pathological processes. ALI serum sEVs reprogrammed 
hepatic macrophage subgroups differently.

Research perspectives
Serum sEVs have good diagnostic and therapeutic potential for liver injury.
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Abstract
BACKGROUND 
Severe acute pancreatitis (SAP) is a deadly inflammatory disease with complex 
pathogenesis and lack of effective therapeutic options. N6-methyladenosine (m6A) 
modification of circRNAs plays important roles in physiological and pathological 
processes. However, the roles of m6A circRNA in the pathological process of SAP 
remains unknown.

AIM 
To identify transcriptome-wide map of m6A circRNAs and to determine their 
biological significance and potential mechanisms in SAP.

METHODS 
The SAP in C57BL/6 mice was induced using 4% sodium taurocholate salt. The 
transcriptome-wide map of m6A circRNAs was identified by m6A-modified RNA 
immunoprecipitation sequencing. The biological significance of circRNAs with 
differentially expressed m6A peaks was evaluated through gene ontology and 
Kyoto Encyclopedia of Genes and Genomes analysis. The underlying mechanism 
of m6A circRNAs in SAP was analyzed by constructing of m6A circRNA-
microRNA networks. The expression of demethylases was determined by 
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quantitative polymerase chain reaction and western blot to deduce the possible 
mechanism of reversible m6A process in SAP.

RESULTS 
Fifty-seven circRNAs with differentially expressed m6A peaks were identified by 
m6A-modified RNA immunoprecipitation sequencing, of which 32 were 
upregulated and 25 downregulated. Functional analysis of these m6A circRNAs in 
SAP found some important pathways involved in the pathogenesis of SAP, such 
as regulation of autophagy and protein digestion. In m6A circRNA–miRNA 
networks, several important miRNAs participated in the occurrence and 
progression of SAP were found to bind to these m6A circRNAs, such as miR-24-
3p, miR-26a, miR-92b, miR-216b, miR-324-5p and miR-762. Notably, the total m6A 
level of circRNAs was reduced, while the demethylase alkylation repair homolog 
5 was upregulated in SAP.

CONCLUSION 
m6A modification of circRNAs may be involved in the pathogenesis of SAP. Our 
findings may provide novel insights to explore the possible pathogenetic 
mechanism of SAP and seek new potential therapeutic targets for SAP.

Key Words: Severe acute pancreatitis; Circular RNAs; N6-methyladenosine; MeRIP-seq; 
Epigenetic analysis

©The Author(s) 2021. Published by Baishideng Publishing Group Inc. All rights reserved.

Core Tip: We identified a transcriptome-wide map of N6-methyladenosine (m6A) 
circRNAs and determined their biological significance and potential mechanisms in 
severe acute pancreatitis (SAP). The main findings were: (1) Function analysis found 
that circRNAs with differentially expressed m6A peaks were involved in the key 
process of SAP; (2) m6A may affect the interplays of circRNAs and microRNAs to 
participate in the pathogenesis of SAP; and (3) Demethylase alkylation repair homolog 
5 may play key roles in dynamic process of m6A to downregulate the total m6A level of 
circRNAs in SAP. We provided novel insights to explore the possible 
pathophysiological mechanism of SAP and seek new potential therapeutic targets.

Citation: Wu J, Yuan XH, Jiang W, Lu YC, Huang QL, Yang Y, Qie HJ, Liu JT, Sun HY, Tang 
LJ. Genome-wide map of N6-methyladenosine circular RNAs identified in mice model of 
severe acute pancreatitis. World J Gastroenterol 2021; 27(43): 7530-7545
URL: https://www.wjgnet.com/1007-9327/full/v27/i43/7530.htm
DOI: https://dx.doi.org/10.3748/wjg.v27.i43.7530

INTRODUCTION
Acute pancreatitis (AP) is a pancreatic inflammatory disorder that is associated with 
substantial morbidity and mortality[1]. Approximately 20% of patients with AP 
develop into severe AP (SAP)[2]. Due to the extensive pancreatic necrosis, subsequent 
infection, systemic inflammatory response syndrome and multiple organ failure, the 
mortality of SAP is up to 30%[2,3]. Previous studies have suggested that some 
important pathological mechanisms, including premature trypsinogen activation in 
the acinar cells and macrophages, mitochondrial dysfunction, pathological calcium 
signaling, endoplasmic reticulum (ER) stress, and impaired autophagy, are involved in 
the initiation and development of SAP[1]. However, the pathophysiology of SAP is 
complex and remains unclear, especially the level of gene regulation.

CircRNAs were discovered in the 1970s[4] and were identified as single-stranded 
covalently closed RNA molecules that lack 5’ caps and 3’ tails[5]. Long after, they were 
thought to be the byproducts of splicing[6]. In recent years, as high-throughput 
sequencing developed, thousands of circRNAs were found to be expressed in a wide 
range of mammalian tissues[7,8], including the pancreas[9], and accumulating studies 
have demonstrated that circRNAs play vital roles in the whole process and prognosis 
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of many diseases, including cardiovascular diseases[8], cancer[10], neurodevelop-
mental processes[11], immune responses and immune diseases[12]. The main 
mechanisms of circRNAs participated in the initiation and development of diseases 
include the following functions[6,8,10,12]: interplay with RNA-binding proteins, 
microRNA (miRNA) sponges, regulating the stability of mRNAs, modulating the 
transcription of parental gene and the templates for protein synthesis. However, the 
post-transcription modification of circRNAs remains unclear.

N6-methyladenosine (m6A) is the most prevalent internal modification of RNA in 
eukaryotic cells[13]. In 2017, Zhou et al[14] reported that the m6A modification is 
widespread in circRNAs and m6A modifications are read and written by the same 
complexes in circRNAs and mRNAs. The regulatory role of m6A is mainly performed 
by three homologous factors, namely so-called “writers”, “erasers” and “readers”[13-
15]. The writers mainly include methyltransferase-like 3 and 14 proteins (METTL3 and 
METTL14) and their cofactor WT1-associated protein (WTAP). They form a methyl-
transferase complex to catalyze the installation of m6A. The erasers, including 
alkylation repair homolog 5 (ALKBH5) and fat mass and obesity related protein (FTO), 
can catalyze the oxidative demethylation of N-alkylated nucleic acid bases. The 
readers are mainly YT521-B homology (YTH) domain containing proteins family, 
including YTHDC1, YTHDC2, YTHDF1, YTHDF2 and YTHDF3. They can specifically 
recognize m6A and regulate splicing, localization, degradation and translation of 
RNAs. Recently, it has been found that the m6A modification of circRNAs plays a key 
role in innate immunity and tumors though regulating the metabolism and function of 
circRNAs[15]. In human embryonic stem cells and HeLa cells, m6A circRNAs display 
cell-type-specific methylation patterns[14]. In colorectal carcinoma, the m6A 
modification can modulate cytoplasmic export of circNSUN2 and stabilize HMGA2, 
ultimately enhancing the colorectal liver metastasis[16]. However, the roles of m6A 
circRNAs in SAP are still unknown.

Here, we investigated the expression profile of m6A circRNAs in SAP through m6A-
modified RNA immunoprecipitation sequencing (MeRIP-seq). We evaluated the 
biological significance of circRNAs with differentially expressed m6A peaks though 
gene ontology (GO) analysis, Kyoto Encyclopedia of Genes and Genomes (KEGG) 
pathway analysis, and explored their underlying mechanism by construction of m6A 
circRNA–miRNA networks. In addition, we determined the expression of demethyl-
transferase, ALKBH5 and FTO, to deduce the possible mechanism of reversible m6A 
process in SAP.

MATERIALS AND METHODS
Animals and preparation of SAP model
Male C57BL/6 mice weighing 22-25 g were provided by Chengdu Dashuo Experi-
mental Animal Technology Co. Ltd. All the mice were housed in ventilated plastic 
cage system and fed with the same food and water for 7 d to adapt to the environment. 
The entire research protocol was approved by the Institutional Animal Care and Use 
Committee at the General Hospital of Western Theater Command.

Before the operation, the mice were divided into SAP and control groups randomly 
(3 mice per group) and fasted for 12 h but had free access to water. Isoflurane (5%) was 
used to anesthetize mice by induction box prior to surgery. Then, the SAP was 
induced through 4% sodium taurocholate salt that was slowly retrogradely injected 
into the biliopancreatic duct with a microinfusion pump. All mice were killed 24 h 
after the establishment of model, and the blood samples and pancreatic tissues were 
collected for further analysis.

Pancreatic histological analysis
Pancreatic tissue (0.4 cm × 0.4 cm) was fixed in 4% paraformaldehyde solution. After 
dehydrating with ethanol, the tissue samples were embedded in paraffin. Then, the 
samples were cut into about 4-μm-thick sections, and the sections were stained with 
hematoxylin and eosin. The light microscopy at × 200 magnification was used to 
examine the slide. The scoring system described previously was used to evaluate the 
degree of pancreatic injury[17]. The scores were averaged for five different slides that 
were selected randomly from each pancreas.

Amylase and lipase measurement
The concentrations of lipase and amylase in serum were determined using Lipase 
Assay kit and Amylase Assay kit (Nanjing Jiancheng Bioengineering Institute, 
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Nanjing, China) according to the instructions.

RNA isolation and RNA quality control
TRIzol reagent (Invitrogen, Carlsbad, CA, United States) was used to extract total RNA 
from the homogenized pancreatic tissues of the control and SAP groups. The concen-
tration of extracted RNA was measured at OD260 and 280 by NanoDrop ND-2000 
instrument (Thermo Fisher Scientific, Waltham, MA, United States). We assessed the 
integrity of RNA through denaturing agarose gel electrophoresis. The OD A260/A280 
ratio between 1.8 and 2.0 was set as the RNA purity standard.

Library preparation and MeRIP-seq 
rRNAs in total RNA were removed using Ribo-Zero rRNA Removal Kits (Illumina, 
San Diego, CA, United States). The removal efficiency of rRNA by the residual determ-
ination of 28S and 18S of rRNA using quantitative polymerase chain reaction (qPCR). 
The fragmented RNA was incubated with the anti-m6A antibody at 4 °C for 2 h in IPP 
buffer. Then, the mixture was immunoprecipitated by incubation with protein-A 
beads (Thermo Fisher Scientific) for 2 h at 4 °C. The bound RNA was eluted from the 
beads with m6A (Berry & Associates) in IPP buffer and then extracted with TRIzol 
reagent (Thermo Fisher Scientific). The immunoprecipitated RNA and input RNA 
were used to construct the library using NEBNext® Ultra™ RNA Library Prep Kit and 
double-ended 150-bp sequencing of the m6A-IP and input samples was performed on 
an Illumina HiSeq sequencer (performed by Cloudseq Biotech Inc., Shanghai, China).

Analysis of MeRIP-Seq data
Paired-end reads were harvested from the Illumina HiSeq 4000 sequencer, and were 
quality controlled by Q30. To obtain high quality clean reads, 3’ adaptor-trimming and 
low-quality reads were removed by cutadapt software. The clean reads with high 
quality of the input library were aligned to the mouse reference genome (UCSC 
MM10) with STAR software. DCC software was used for detecting and identifying the 
circRNAs. The identified circRNAs were annotated using the circBase database and 
Circ2Traits database. For all samples, raw junction reads were normalized to the 
number of total mapped reads and log2 transformed. The read alignments on the 
genome were visualized using the tool integrative genomics viewer. The adapter-
removal reads were aligned to the reference genome using Hisat2 software. The 
methylated sites in each sample were identified using MACS software. Differentially 
methylated sites were identified using diffReps software.

GO and KEGG analysis
The parent genes of circRNAs with differential m6A peaks were selected to analyze 
their potential biological roles through GO and KEGG pathway analysis. GO analysis 
included three parts, namely, biological process (BP) analysis, molecular function (MF) 
analysis, and cell component (CC) analysis[18]. GO analysis was performed by R 
topGO package. Fisher’s exact test in Matlab MCR software was applied to calculate 
the enrichment of each pathway. The bubble plots and column plots were generated 
using the ggplot2 in R package (https://ggplot2.tidyverse.org).

Construction of circRNA–miRNA networks
circRNA containing miRNA-binding sites can bind to miRNA response elements 
competitively, further regulating the target mRNAs[19]. The top 10 upregulated and 
top 10 downregulated circRNAs according to the level of m6A were selected to 
construct circRNA–miRNA networks. The m6A circRNA–miRNA networks were 
constructed using TargetScan software and miRanda software and the 
circRNA–miRNA interactions were visualized by Cytoscape.

Conservation analysis
The top 10 upregulated and top 10 downregulated circRNAs were selected to analyze 
their homology with human circRNAs. The sequence of human circRNAs was 
downloaded from circBase database and the sequence of each selected m6A circRNA 
was blasted against the human circRNAs sequence by the blastn function of Blast 
software.

Western blotting 
The whole pancreatic tissues from SAP and control groups were placed in RIPA lysate 
buffer with protease inhibitor, phosphatase inhibitor and phenylmethylsulfonyl 
fluoride inside (Total Protein Extraction Kit; Beijing Solarbio Science and Technology 
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Inc., Beijing, China), and the tissues were homogenized with homogenizer. The tissue 
homogenate was centrifuged at 12000 g for 30 min at 4 °C, and the supernatant was 
collected. After protein concentration was measured by BCA Protein Assay Kit 
(Beyotime Biotechnology, Jiangsu, China), the supernatant was mixed with loading 
buffer (Beijing Solarbio Science and Technology), boiled at 100 °C for 10 min for 
protein denaturation, and stored at -80 °C after separation. The target proteins were 
separated by SDS-PAGE. The proteins were transferred to polyvinylidene difluoride 
membrane (0.45 μm, IPVH00010; Millipore, Billerica, MA, United States), blocked in 
5% nonfat milk for 1 h at room temperature (22 ± 3 °C), and then incubated with 
primary antibody, FTO (1:1000, D2V1I; Cell Signaling Technology, Danvers, MA, 
United States), ALKBH5 (1:2000, 16837-1-AP; Proteintech, Rosemont, IL, United 
States), GAPDH (1:5000, 10494-1-AP; Proteintech) at 4 °C overnight. The membranes 
were washed with Tris-buffered saline with Tween-20 (TBST) (Beijing Solarbio Science 
and Technology) three times and incubated with secondary antibody (1:10000, 15015; 
Proteintech) at room temperature for 1 h. After being washed three times with TBST, 
the protein bands were visualized by enhanced chemiluminescence (Immobilon 
Western Chemilum HRP Substrate; Millipore) in a biological imaging system.

qPCR
The total RNA was extracted from SAP and control groups as described above. qPCR 
was performed using One Step SYBR® PrimeScript™ RT-PCR kit II (Takara Biotech-
nology Co., Ltd., Dalian, China) and the primers (ALKBH5: forward 5’-GGCGGTCAT-
CATTCTCAGGAAGAC-3’ and reverse 5’-CTGACAGGCGATCTGAAGCATAGC-3’; 
FTO: forward 5’-CTCACAGCC TCGGTTTAGTTCCAC-3’ and reverse 5’–CGTCGC-
CATCGTCTGAGTCATT G-3’; GAPDH: forward 5’-GGTGAAGGTCGGTGTGAACG-
3’ and reverse 5’-CTCGCTCCTGGAAGATGGTG-3’) were synthesized by Shanghai 
Sangon Biotech Co., Ltd.. The outcomes were analyzed by means of 2-ΔΔCT through 
normalizing the quantity of GAPDH.

Data analysis
GraphPad Prism 8 (La Jolla, CA, United States) and SPSS 22.0 (IBM Corp., Armonk, 
NY, United States) were used for performing statistical analyses. Student’s t test was 
used for estimating statistically significance between two groups. The results were 
evaluated through Spearman’s correlation coefficient test. All values are shown as 
mean ± SE of the mean; P < 0.05 was regarded as statistically significant.

RESULTS
Evaluation of mouse model of SAP
Twenty-four hours after treatment with sodium taurocholate salt, the staining of 
hematoxylin and eosin on the pancreatic tissues from the SAP group showed typical 
histopathological changes, including pancreatic lobular edema, extensive acinar cell 
necrosis, focal expansion of the pancreatic interlobular septum and granulocyte infilt-
ration (Figure 1A). By contrast, under light microscopy, the pancreases from the 
control group had a complete normal structure. Figure 1B showed the corresponding 
histopathological scores. At the same time, considering that the levels of serum lipase 
and amylase are as one of the diagnostic criteria of AP[20], we determined their 
concentrations in serum. As a result, the serum lipase and amylase levels in the SAP 
group were also markedly higher than those in the control group (P < 0.05; Figure 1C 
and 1D). These results confirmed the successful establishment of the SAP mice model.

Overview of m6A circRNAs in SAP
We used MeRIP-seq to investigate the expression of m6A circRNAs in pancreatic 
tissues from the control and SAP groups. We had submitted the data to the online 
repository, which can be found at: https://www.ncbi.nlm.nih.gov/geo/query/
acc.cgi?acc=GSE173298. Before performing MeRIP-seq, the residual determination of 
28S and 18S of rRNA showed that the rRNAs in total RNA were removed effectively 
(Supplementary Figure 1). In general, a total of 409 m6A circRNAs were identified in 
all chromosomes (Figure 2A). Among these, 178 were specifically expressed in the SAP 
group, 107 in the control group, and 124 were shared in both groups (Figure 2B). m6A 
level in total circRNAs from the SAP group was lower than that from the control 
group (Figure 2C). Besides, > 80% of circRNAs contained only one m6A peak in both 
SAP and control groups (Figure 2D).
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Figure 1 Evaluation of mouse model of severe acute pancreatitis. A: Representative images of pancreatic tissues stained with hematoxylin from control 
(left) and severe acute pancreatitis (SAP) (right) groups (× 100 magnification); B: Histological score of pancreatic tissues in control and SAP groups; C and D: Levels 
of serum lipase and amylase, respectively. bP < 0.01 vs control group, n = 3 per group.

Differential m6A modification of circRNAs in SAP
To understand the biological role of m6A modification of circRNAs in SAP, the 
circRNAs with differentially expressed (DE) m6A peaks were further analyzed. 
Significant differential expression was defined as fold-change > 2 and P < 0.05. 
Compared with the control group, 57 circRNAs with DE m6A peaks were identified; 32 
were upregulated and 25 downregulated in the SAP group. Table 1 presents the top 10 
methylated m6A sites that were up- and downregulated within circRNAs. Figure 3A 
shows the m6A circRNAs expression profile in the SAP and control groups though 
hierarchical cluster analysis. The scatter plot exhibits the variation of DE m6A 
circRNAs between the SAP and control groups (Figure 3B). The volcano plot depicted 
DE m6A circRNAs between the two groups (Figure 3C).

Distribution of m6A sites in SAP and control groups
We identified 903 m6A peaks distributed on 781 circRNAs and it is reported that 
circRNAs can be generated from any region of the genome[21]. Therefore, we firstly 
analyzed the genomic distribution of m6A and non-m6A circRNAs according to their 
genomic origins to explore their distribution features. As a results, in non-m6A 
circRNAs, 45.33% were sense overlapping, 21.15% exonic, 26.71% intronic, 4.94% 
intergenic and a few antisense; in m6A circRNAs, 42.78% were sense overlapping, 
30.32% exonic, 21.27% intronic, 3.42% intergenic and a few antisense (Figure 4A). 
These results indicated that the majority of m6A and non-m6A circRNAs were 
commonly encoded by sense overlapping sequences and the number of circRNAs that 
generated from protein-coding genes in m6A circRNAs was more than those in non-m6

A circRNAs.
We further analyzed the distribution of circRNAs with DE m6A peaks. The length of 

DE m6A circRNAs was mainly enriched in 1–10 000 base pairs (Figure 4B). Although 
the host genes of m6A circRNAs located in all chromosomes, the dysregulated parts 
mostly located in chromosomes 4, 9 and 11 (Figure 4C). A previous study reported that 
most circRNAs that derived from protein-coding genes spanned two or three exons
[14]. In this study, the majority of circRNAs from protein-coding genes spanned one or 
two exons (Figure 4D). Similarly, the majority of m6A circRNAs and non-m6A 
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Table 1 Top 20 differently expressed N6-methyladenosine peaks compared with control group

PeakStart PeakEnd circRNA Regulation Fold-change P value

chr15 98658229 98658320 chr15:98656602-98658435- Up 187.2 3.67392E-09

chr11 74929241 74929540 chr11:74928993-74990215+ Up 172.8 3.92116E-09

chr9 108248361 108248660 chr9:108207543-108263690- Up 120.034482 3.70238E-08

chr2 153763381 153763760 chr2:153756037-153769786+ Up 106.330434 2.09239E-08

chr18 30281961 30282053 chr18:30276981-30282053+ Up 50.9545454 7.61781E-09

chr19 40346381 40346760 chr19:40314443-40373578- Up 42.4 0.026929988

chr16 94641481 94641740 chr16:94611419-94694141+ Up 37.6772727 7.9549E-08

chr10 60144412 60144720 chr10:60144413-60144723- Up 24.9 0.014047401

chr11 44652781 44652825 chr11:44651797-44652825+ Up 23.9 0.007108941

chr7 63895821 63896100 chr7:63891679-63938495- Up 21.1 0.034908475

chr9 107852341 107852720 chr9:107847268-107860459- Down 302.6 3.63198E-09

chr8 104143561 104143760 chr8:104143031-104143793+ Down 160.728571 1.15908E-08

chr1 150426881 150427260 chr1:150413021-150442180+ Down 52.095238 1.98141E-08

chr1 13312381 13312680 chr1:13298706-13325802- Down 51.7 6.86061E-05

chr6 119970581 119970800 chr6:119951703-120038640- Down 47.4 9.37286E-05

chr11 23271132 23271205 chr11:23261835-23271205+ Down 40.6 0.000442849

chr4 108499346 108499398 chr4:108486454-108508433+ Down 27.79 3.27262E-08

chr9 102619691 102619760 chr9:102618811-102619760- Down 24.25 4.83147E-07

chr11 32296401 32296600 chr11:32283981-32297161+ Down 24.1 4.96449E-07

chr9 69414201 69414580 chr9:69408311-69432615+ Down 22.6 0.00943617

circRNAs were more commonly encoded by a single or two exons (Figure 4E).

Functional analysis of circRNAs with DE m6A peaks
To explore the function of m6A circRNAs in SAP, GO analysis and KEGG pathway 
analysis of circRNAs with the DE m6A peaks were performed. Figure 5A presented the 
top 10 GO terms of circRNAs with upregulated m6A peaks from the three aspects: BP, 
CC and MF. For BP, the most enriched and meaningful GO terms were cellular 
component organization, macromolecule metabolic process and regulation of develop-
mental process. For CC, the top three terms were focal adhesion, cell–substrate 
junction and anchoring junction. For MF, the main represented GO terms were C2H2 
zinc finger domain binding and protein binding. The top 10 pathways from KEGG 
pathway analysis for circRNAs with upregulated m6A peaks were selected and 
presented in a bubble chart (Figure 5B). Among them, protein digestion and 
absorption and regulation of autophagy were the major signaling pathways associated 
with the SAP progression.

The GO terms of circRNAs with downregulated m6A peaks are presented in 
Figure 5C. For BP, protein-containing complex localization, RNA transport and 
macromolecule metabolic process were the most enriched and meaningful GO terms. 
For CC, nucleus, dendrite and dendritic tree were the top three terms. For MF, the 
main represented GO terms were channel regulator activity, RNA, enzyme and 
protein binding. As for the KEGG pathway analysis of circRNAs with downregulated 
m6A peaks, RNA transport was the main pathway (Figure 5D).

Relationship between m6A level and expression of circRNAs in SAP
To explore whether m6A modification could affect the expression of circRNAs, we 
analyzed the expression of m6A circRNAs. The expression level of these circRNAs 
with DE m6A peaks did not have significant differences (fold-change < 2 or P > 0.05; 
Supplementary Table 1), indicating that m6A modification of circRNAs did not 
influence the expression of circRNAs. To verify this result further, we analyzed the 
cumulative distribution of circRNA expression between the control and SAP groups 

https://f6publishing.blob.core.windows.net/8ba2fc9a-8c92-46ee-be68-c7ba3ea3b801/WJG-27-7530-supplementary-material.pdf
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Figure 2 Overview of N6-methyladenosine circRNAs in severe acute pancreatitis. A: Number of identified N6-methyladenosine (m6A) circRNAs 
according to distribution on chromosomes; B: Venn diagram exhibiting number of common and specific m6A circRNAs between control and severe acute pancreatitis 
(SAP) groups; C: Box plot showing level of m6A peaks enrichment in circRNAs in control and SAP groups; D: Number of circRNAs containing variant numbers of m6A 
peaks.

for m6A and non-m6A circRNAs (Figure 6). This was consistent with the above result.

Construction of m6A circRNA–miRNA networks in SAP
Given the importance of circRNA–miRNA interaction[22] and to further explore the 
underlying mechanism of these circRNAs with DE m6A peaks, the top 10 upregulated 
and top 10 downregulated circRNAs according to the level of m6A were selected to 
construct circRNA–miRNA networks. In this network map, several important 
miRNAs participated in the occurrence and development of SAP were found to bind 
to these m6A circRNAs (Figure 7), such as miR-24-3p, miR-26a, miR-92b, miR-216b, 
miR-324-5p and miR-762. These data suggest that these circRNAs with DE m6A peaks 
might play a role in the pathological process of SAP.

Conservation analysis of identified m6A circRNAs with human circRNAs
To explore whether the circRNAs with DE m6A peaks identified in mouse SAP may 
have similar roles in human SAP, we performed the conservation analysis of the 
sequence of the top 10 upregulated and top 10 downregulated circRNAs preliminarily. 
Through aligning with the sequence of human circRNAs that downloaded from 
circBase database, we found that 15/20 of the selected circRNAs that have highly 
similar sequences to human circRNAs (sequence identity > 80%), as shown in the 
Table 2. These results suggested that these circRNAs may have similar roles in human 
SAP.

Expression of demethyltransferase in SAP
Given that the total m6A level of circRNAs was reduced in SAP and to explore how the 
m6A level was regulated in SAP, we detected the protein and mRNA expression of two 
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Table 2 The conservation analysis of the sequence between the selected circRNAs and human circRNAs

Human circRNA

Mouse circRNA Human circRNA Hg19 location Transcript Parent gene Sequence identity, %

chr15:98656602-98658435- hsa_circ_0026065 chr12:49223538-49245957- NM_004818 DDX23 88.75

chr11:74928993-74990215+ hsa_circ_0041387 chr17:2139785-2203958- NM_001170957 SMG6 86.32

chr9:108207543-108263690- hsa_circ_0124055 chr3:49514281-49548252+ NM_001177634 DAG1 85.36

chr2:153756037-153769786+ hsa_circ_0059811 chr20:31436477-31438211+ NM_012325 MAPRE1 84.18

chr19:40314443-40373578- hsa_circ_0094611 chr10:97110965-97114724- ENST00000371247.2 SORBS1 93.52

chr16:94611419-94694141+ hsa_circ_0115989 chr21:38792600-38888974+ ENST00000338785.3 DYRK1A 91.34

chr7:63891679-63938495- hsa_circ_0034321 chr15:31619082-31670102+ NM_015995 KLF13 85.89

chr9:107847268-107860459- hsa_circ_0065768 chr3:50000008-50114685+ NM_005777 RBM6 90.84

chr1:150413021-150442180+ hsa_circ_0111511 chr1:186294895-186325581- NM_003292 TPR 87.91

chr1:13298706-13325802- hsa_circ_0113369 chr1:42166586-42254891- ENST00000247584.5 HIVEP3 91.30

chr6:119951703-120038640- hsa_circ_0024963 chr12:939168-990955+ NM_001184985 WNK1 92.02

chr11:23261835-23271205+ hsa_circ_0120688 chr2:61749745-61764803- ENST00000404992.2 XPO1 95.11

chr4:108486454-108508433+ hsa_circ_0012539 chr1:52927184-53018762- NM_001009881 ZCCHC11 92.38

chr11:32283981-32297161+ hsa_circ_0118668 chr2:202780266-202790202- None None 91.48

chr9:69408311-69432615+ hsa_circ_0035568 chr15:60720627-60748993- NM_024611 NARG2 87.08

demethyltransferases (ALKBH5 and FTO). FTO was reduced at the level of protein, 
but ALKBH5 was increased in SAP at both the level of mRNA and protein (Figure 8). 
These results indicated that ALKBH5 might be related to the dynamic process of m6A 
in SAP.

DISCUSSION
In the present study, we identified transcriptome-wide map of m6A circRNAs and 
determined their biological significance and potential mechanisms for the first time in 
SAP. The main findings are: (1) We identified 57 circRNAs with DE m6A peaks and 
found these DE m6A circRNAs were involved in the key process of SAP by GO and 
KEGG analysis, such as protein digestion and regulation of autophagy; (2) In m6A 
circRNA-miRNA networks, several important miRNAs participated in the initiation 
and development of SAP were found to bind to these m6A circRNAs potentially, 
suggesting that m6A may affect the interplays with miRNAs; and (3) The total m6A 
level was reduced in SAP, and the demethylase ALKBH5 was found to be upregulated 
in SAP, indicating that ALKBH5 may be related to dynamic process of m6A in SAP. 
These results suggested that m6A modification on circRNAs may be involved in the 
pathophysiology of SAP, which may provide novel insights to explore the possible 
pathophysiological mechanism of SAP and seek new potential therapeutic targets.

To find effective therapeutic targets for SAP, many studies have explored the 
underlying molecular mechanisms of SAP. Our previous study found that many 
circRNAs are expressed in mice with SAP[9] and these circRNAs play an important 
role in the pathogenetic mechanism of SAP[9,23]. In recent years, m6A modification of 
circRNAs was found to be widespread[14] and gained widespread attention in 
epigenetics. Several important studies have investigated the roles of m6A modification 
in circRNA metabolism and found that m6A circRNAs play key roles in some diseases
[16,24-28]. In circRNA metabolism, m6A modifications can regulate its translation 
through recognition by YTHDF3 and eIF4G2, and this progress of translation can be 
enhanced by METTL3/14 and inhibited by FTO[24,25]. In addition, m6A circRNAs 
associate with YTHDF2 in an HRSP12-dependent manner and are selectively 
downregulated by RNase P/MRP[26]. In innate immunity, Chen et al[27] found that 
unmodified circRNA adjuvant induces antigen-specific T and B cell responses, but m6

A modification could abrogate circRNA immunity though YTHDF2-mediated 
suppression. In male germ cells, the back splicing tends to occur mainly at m6A-
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Figure 3 Differential N6-methyladenosine modification of circRNAs in severe acute pancreatitis. A: Hierarchical clustering graph exhibiting 
differential N6-methyladenosine (m6A) modification of circRNAs in control and severe acute pancreatitis (SAP) groups. Higher expression is presented in red and 
lower expression in blue; B and C: Volcano and scatter plot showing the circRNAs with significant differentially expressed m6A peaks.

enriched sites, which are usually located around the start and stop codons in linear 
mRNAs, resulting in about half of circRNAs containing large open reading frames. 
This potential mechanism could ensure long-lasting and stable protein production for 
specific physiological processes when lacking the corresponding linear mRNAs[28]. 
These findings showed the important roles of m6A in circRNAs during disease 
progress. Therefore, it is essential to explore the roles of m6A circRNAs in SAP.

In the present study, the function analysis of DE m6A circRNAs in SAP found that 
two important pathways were involved in the pathogenesis of SAP, including protein 
digestion and regulation of autophagy. As an important pathological cellular event, 
the activation of premature trypsinogen can result in acinar cell necrosis[1]. Many 
pancreatic injury factors, such as trauma, obstruction of the pancreatic duct and 
alcohol, can initiate the fusion of lysosomes with zymogen in acinar cells, leading to 
the activation of trypsinogen through cathepsin B to trypsin. Once trypsin is released, 
it can cause self-digestion in and outside the acinar cells, and the release of cathepsin B 
can cause necroptosis. As a cytoprotective mechanism, autophagy can process and 
recycle various aged, defective or damaged cytoplasmic contents[29]. Selective 
macroautophagy is a biological process during which specific damaged organelles and 
misfolded proteins are processed and recycled. Autophagy is accomplished via a series 
of steps, which start with the enucleation of cytoplasmic inclusions in the open double 
membrane formed by the ER, Golgi apparatus and plasma membrane[30]. Knocking 
out ATG7 genes (which are important to form autophagosome) and LAMP genes could 
lead to pancreatitis with extensive inflammation in mice[29,31]. Importantly, impaired 
autophagy leads to trypsinogen activation, ER stress and mitochondrial dysfunction. 
These events can together make acinar cells become more susceptible to other insults 
and cellular death[1]. In addition, RNA transport is enriched in GO terms of note, and 
Chen et al[16] found that m6A modification can modulate the export of circNSUN2 to 
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Figure 4 Distribution of N6-methyladenosine sites in severe acute pancreatitis and control groups. A: Distribution of genomic origins of non-N6-
methyladenosine (m6A) circRNAs (left) and m6A circRNAs (right); B: Number of circRNAs with differentially expressed m6A peaks based on the distribution of length; 
C: Chromosomal distribution of all differential m6A sites within circRNAs; D and E: Distribution of non-m6A and m6A circRNAs based on the number of exons in each 
circRNA.

the cytoplasm, suggesting that m6A modification regulates transport of circRNAs in 
SAP. These results were consisted with the hypothesis that m6A modification of 
circRNAs participated in the progression of SAP.

m6A modification of mRNA can influence its expression by regulating transcription, 
splicing and degradation[32]. In circRNAs, Zhou et al[14] and Su et al[33] reported that 
m6A levels are correlated with expression levels of circRNAs in HeLa cells and a rat 
model of hypoxia-mediated pulmonary hypertension. However, in SAP, we found m6

A modification in circRNAs was not associated with expression of circRNAs, 
suggesting that m6A circRNAs function in SAP though other mechanisms, such as 
miRNA sponges. It is worth mentioning that more direct evidence is currently needed 
to support that m6A can affect circRNA expression.

miRNA sponges is an important function of circRNAs. Cytoplasmic circRNAs can 
prevent miRNAs from binding to target mRNAs by competitive binding to miRNA 
response elements, further playing a key role in diseases[8,34]. For instance, in lung 
squamous cell carcinoma, circTP63 can competitively bind to miR-873-3p and prevent 
miR-873-3p from decreasing the level of FOXM1. The FOXM1 can upregulate the 
expression of CENPA and CENPB, ultimately facilitating cell cycle progression[35]. In 
SAP, circHIPK3 can enhance pyroptosis via regulating the miR-193a-5p/GSDMD axis 
in acinar cells, ultimately aggravating this disease[36]. In our previous study, we 
found that circZFP644 could sponge miR-21-3p, thereby participating in the 
pathogenesis of SAP[9]. Recently, Su et al[33] found that m6A modification of circRNAs 
could influence the interactions between circRNAs and miRNAs. Therefore, analysis 
of m6A circRNA–miRNA networks was performed in this study. Several important 
miRNAs participated in the pathological process of SAP were found to bind to these 
m6A circRNAs, such as miR-24-3p, miR-26a, miR-92b, miR-216b, miR-324-5p and miR-
762. For example, in caerulein-stimulated AR42J cells, expression of miR-92b-3p was 
decreased, while overexpression of miR-92b-3p could downregulate the expression of 
TRAF3 and inhibit the MKK3-p38 pathway, attenuating inflammatory response and 
autophagy[37]. These results suggest that m6A modification of circRNAs functions by 
influencing the interactions between circRNAs and miRNAs.

m6A modification is a reversible process that occurs by methyltransferase complex 
consisting of METTL3, METTL14 and WTAP, and is “erased” by ALKBH5 and FTO
[13,15]. In pancreatic cancer, ALKBH5 could regulate the post-transcriptional 
activation of PER1 through m6A abolishment, thereby inhibiting the cancer[38]. In 
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Figure 5 Functional analysis of circRNAs with differentially expressed N6-methyladenosine peaks though gene ontology and Kyoto 
Encyclopedia of Genes and Genomes analysis. A and B: Gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis of 
circRNAs with upregulated N6-methyladenosine (m6A) peaks; C and D: GO and KEGG analysis of circRNAs with downregulated m6A peaks. GO analysis include 
biological process (BP) analysis, cellular component (CC) analysis, and molecular function (MF) analysis.

hepatocellular carcinoma, ALKBH5 could attenuate expression of LYPD1 by an m6A-
dependent manner and act as a tumor suppressor[39]. Overall, this evidence has 
suggested that ALKBH5 plays an essential role in m6A modification. In this study, we 
found that expression level of ALKBH5 was upregulated in SAP. Consistent with this 
result, total m6A level of circRNAs in SAP was reduced, indicating that ALKBH5 may 
play a role in the dynamic process of m6A in SAP.

However, there are still limitations in our study. Firstly, further in vivo and in vitro 
experiments are needed to further explore the m6A circRNA-mediated precise 
regulatory mechanisms in SAP. Secondly, the conservation analysis of the m6A 
circRNAs showed that these circRNAs may have similar roles in human SAP. 
However, their clinical significance and the results should be investigated further in 
SAP patients. Additionally, the precise mechanism of ALKBH5 in m6A circRNAs 
during SAP needs to be studied. Actually, these are in our next plans to explore the 
roles of m6A circRNAs in SAP.

CONCLUSION
In conclusion, our study identified the transcriptome-wide profiling of m6A circRNAs 
in SAP and predicted their biological significance and possible potential mechanisms, 
providing new insights to explore the possible pathophysiological mechanism of SAP 
and seek new potential therapeutic targets.
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Figure 6 Relationship between N6-methyladenosine level and expression of circRNAs in severe acute pancreatitis. Cumulative distribution of 
circRNAs expression between control and severe acute pancreatitis (SAP) groups for N6-methyladenosine (m6A) circRNAs (red) and non-m6A circRNAs (blue).

Figure 7 Construction of N6-methyladenosine circRNA-miRNA networks in severe acute pancreatitis. A map showing the interaction networks of 
the top 10 upregulated and top 10 downregulated circRNAs according to the level of N6-methyladenosine, and their around 20 target miRNAs with the most stable 
binding in SAP. Green circles represent hypomethylated circRNAs, red circles represent hypermethylated circRNAs and triangles represent miRNAs, compared with 
control group.
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Figure 8 Expression of demethyltransferase in severe acute pancreatitis. A: Relative mRNA levels of alkylation repair homolog 5 (ALKBH5) and fat 
mass and obesity related protein (FTO) (normalized by the quantity of GAPDH) in each group; B: Representative images of western blot detected with alkylation 
repair homolog 5 (ALKBH5), FTO, and GAPDH antibodies in control and severe acute pancreatitis (SAP) groups; C: Relative protein levels of ALKBH5 and FTO 
(measured as the ratio of ALKBH5, FTO to GAPDH by band density) in each group. Data are representative of at least three independent experiments. aP < 0.05 vs 
control group.

ARTICLE HIGHLIGHTS
Research background
Severe acute pancreatitis (SAP) is a lethal inflammatory disease with mortality up to 
30%. But the genetic pathological mechanism of SAP remains unclear and SAP is still 
lack of effective therapeutic options. N6-methyladenosine (m6A) modification of 
circular (circ)RNAs plays a key role in many diseases and physiological processes 
through regulating the metabolism and function of circRNAs. However, the role of m6

A circRNA in SAP has been unexplored yet.

Research motivation
The pathophysiology of SAP at the level of gene regulation is complex and remains 
unclear. circRNAs are found to participate in many physiological processes and play 
key roles in pathological processes during SAP. m6A modification can affect the “fate” 
of m6A modified circRNAs, thereby participating in the regulation of diseases. 
Therefore, we want to explore whether the m6A modification of circRNAs is related to 
the pathophysiological mechanism of SAP, and determine their biological significance 
and potential mechanisms.

Research objectives
The present study aims to determine the transcriptome-wide map of m6A circRNAs 
and explore their biological significance and its possible mechanisms in SAP.

Research methods
The SAP C57BL/6 mice model was induced by retrograde injection of 4% sodium 
taurocholate salt. m6A-modified RNA immunoprecipitation sequencing was used to 
determine the transcriptome-wide map of m6A circRNAs. The biological significance 
of circRNAs with differentially expressed m6A peaks was identified by GO and KEGG 
analysis. m6A circRNA-microRNA networks was constructed to explore the 
underlying mechanism of m6A circRNAs in SAP. The expression of demethylases was 
measured by western blot and qPCR. H&E staining and measurement of serum lipase 
and amylase were performed to assess the establishment of SAP mice model.

Research results
In the identified transcriptome-wide map of m6A circRNAs, there were 57 circRNAs 
with differentially expressed m6A peaks; among which, 32 were upregulated and 25 
downregulated. Important pathways in the pathogenetic process during SAP were 
found by functional analysis of these m6A circRNAs, such as protein digestion and 
regulation of autophagy. m6A circRNA–miRNA networks showed that several 
important miRNAs in pathogenesis of SAP were bind to these m6A circRNAs, such as 
miR-24-3p, miR-26a, miR-92b, miR-216b, miR-324-5p and miR-762. To be note, the total 
m6A level of circRNAs was reduced in SAP, accompanied by the upregulated 
demethylase ALKBH5.

Research conclusions
The transcriptome-wide profiling of m6A circRNAs in SAP was identified, and the 
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biological significance and possible potential mechanisms of m6A circRNAs in SAP 
were predicted, providing new insights into exploring the possible pathophysiological 
mechanism of SAP and new potential therapeutic targets.

Research perspectives
This present study for the first time identified transcriptome-wide map of m6A 
circRNAs and determined their biological significance and potential mechanisms. 
However, the m6A circRNA-mediated precise regulatory mechanisms are need to be 
explore further in vivo and vitro experiments. What’s more, further studies are needed 
to reveal the precise mechanism of ALKBH5 in m6A circRNAs during SAP. In the 
future, we will explore them and investigate these m6A circRNAs in SAP patients.
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Abstract
BACKGROUND 
Circulating tumor cells (CTCs) and survivin are indicators for tumor stage and 
metastasis, as well as epitheliomesenchymal transition, in various cancers, 
including hepatocellular cancer (HCC).

AIM 
To explore the potential of survivin-positive CTCs, specifically, as a marker for 
tumor progression in HCC patients.

METHODS 
We examined the survivin expression pattern in CTCs obtained from 179 HCC 
patients, and investigated the in vitro effects of survivin silencing and overex-
pression on the proliferation and invasion of HCC cells. CTC count and survivin 
expression in patient samples were examined using RNA in situ hybridization.

RESULTS 
All 179 patients were positive for CTC markers, and 94.41% of the CTCs were 
positive for survivin. The CTC and survivin-positive CTC counts were signi-
ficantly higher in the HCC patients than in the normal controls, and were 
significantly associated with tumor stage and degree of differentiation. Further, 
survivin overexpression was found to induce HepG2 cell proliferation, reduce 
apoptosis, and improve invasive ability.

CONCLUSION 

https://www.f6publishing.com
https://dx.doi.org/10.3748/wjg.v27.i43.7546
http://orcid.org/0000-0001-5836-5334
http://orcid.org/0000-0001-5836-5334
http://orcid.org/0000-0001-5836-5334
http://orcid.org/0000-0003-3729-5466
http://orcid.org/0000-0003-3729-5466
http://orcid.org/0000-0003-3729-5466
http://orcid.org/0000-0002-5245-304X
http://orcid.org/0000-0002-5245-304X
http://orcid.org/0000-0002-5245-304X
http://orcid.org/0000-0002-7751-489X
http://orcid.org/0000-0002-7751-489X
http://orcid.org/0000-0002-7751-489X
http://orcid.org/0000-0002-6586-3179
http://orcid.org/0000-0002-6586-3179
http://orcid.org/0000-0002-6586-3179
mailto:yujings9774@sina.com.cn


Yu J et al. Survivin expression in circulating HCC cells

WJG https://www.wjgnet.com 7547 November 21, 2021 Volume 27 Issue 43

Family Planning Commission 
Foundation of Hubei Province, No. 
WJ2019H194.

Country/Territory of origin: China

Specialty type: Oncology

Provenance and peer review: 
Unsolicited article; Externally peer 
reviewed.

Peer-review report’s scientific 
quality classification
Grade A (Excellent): 0 
Grade B (Very good): B 
Grade C (Good): 0 
Grade D (Fair): 0 
Grade E (Poor): 0

Open-Access: This article is an 
open-access article that was 
selected by an in-house editor and 
fully peer-reviewed by external 
reviewers. It is distributed in 
accordance with the Creative 
Commons Attribution 
NonCommercial (CC BY-NC 4.0) 
license, which permits others to 
distribute, remix, adapt, build 
upon this work non-commercially, 
and license their derivative works 
on different terms, provided the 
original work is properly cited and 
the use is non-commercial. See: htt
p://creativecommons.org/License
s/by-nc/4.0/

Received: May 23, 2021 
Peer-review started: May 23, 2021 
First decision: June 12, 2021 
Revised: July 19, 2021 
Accepted: October 27, 2021 
Article in press: October 27, 2021 
Published online: November 21, 
2021

P-Reviewer: Suzuki R 
S-Editor: Liu M 
L-Editor: Wang TQ 
P-Editor: Liu M

Survivin shows upregulated expression (indicative of anti-apoptotic effects) in 
HCC. Thus, survivin-positive CTCs are promising as a predictor of HCC 
prognosis and metastasis, and their accurate measurement may be useful for the 
management of this cancer.

Key Words: Survivin; Circulating tumor cells; Hepatocellular carcinoma; Prognosis; 
Metastasis
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Core Tip: This study first analyzed surviving-positive circulating tumor cells (CTCs) in 
patients with hepatocellular carcinoma (HCC). The levels of survivin expression in 
different CTCs were significantly different. The rates of moderate and high expression 
in the mesenchymal and hybrid CTCs were significantly higher than those in the 
epithelial CTCs. Survivin overexpression induced HCC cell proliferation, promoted 
their invasive ability, and reduced apoptosis. The expression of survivin in mesen-
chymal CTCs (mCTCs) in liver cancer was associated with metastasis and detection of 
survivin positivity in mCTCs may have potential value in early detection of tumor 
metastasis and prognostic evaluation.

Citation: Yu J, Wang Z, Zhang H, Wang Y, Li DQ. Survivin-positive circulating tumor cells as 
a marker for metastasis of hepatocellular carcinoma. World J Gastroenterol 2021; 27(43): 
7546-7562
URL: https://www.wjgnet.com/1007-9327/full/v27/i43/7546.htm
DOI: https://dx.doi.org/10.3748/wjg.v27.i43.7546

INTRODUCTION
According to 2020 statistics, hepatic cancer ranked sixth among malignant cancers in 
terms of incidence, and it ranked fourth globally as the main reason for cancer-related 
death[1]. Further, the 5-year overall survival of this cancer is quite abysmal, as it is less 
than 12%[1]. The prognosis of this disease continues to remain poor, even though there 
have been advances in the diagnostic and therapeutic strategies[2]. Hence, 
understanding the mechanisms underlying the metastasis of this cancer and assessing 
the status of disease progression are necessary.

The number of circulating tumor cells (CTCs) is an effective marker for solid tumors 
associated with metastasis[2]. CTC analysis is considered as real-time “liquid biopsy” 
for cancer patients, as it provides real-time monitoring of tumor progression and 
recurrence[3]. As a non-invasive biomarker, the CTC level can be used for compre-
hensive surveillance of cancer progression, in the case of both hepatocellular 
carcinoma (HCC) and cholangiocarcinoma[4]; in particular, it has been shown to be a 
good prognostic marker for HCC[5-7]. Currently, the most commonly used technique 
for CTC isolation is the cell search system, which is the only FDA-approved detection 
method; this method is based on positive immunoselection of epithelial cell adhesion 
molecule (EpCAM) and negative immunoselection of leukocytes (for which the 
general target is CD45). By using this technique, CTCs are divided into epithelial 
CTCs, mesenchymal CTCs (mCTCs), and hybrid CTCs[8]. According to this classi-
fication, CTCs have been reported to be useful as a marker for epithelial-mesenchymal 
transition (EMT) in HCC[9], and EMT is a known marker for the diagnosis and 
prognosis of cancer progression. Accordingly, previous studies have revealed that 
CTCs undergoing EMT are useful as indicators for diagnosing HCC and for predicting 
its prognosis[10]. The prognostic value of CTCs has also been demonstrated after 
surgery or during chemotherapy and recurrence[11,12].

Survivin is an anti-apoptotic protein (molecular weight, 16.5 kDa)[13] that plays an 
important role in inhibiting apoptosis in multicellular organisms and is overexpressed 
in many tumors, including HCC[14]. Studies have also shown that overexpression of 
survivin is associated with protection against apoptosis and propensity for metastasis 
in tumor cells, but this effect was not observed in normal cells[15]. Wurmbach et al[16] 
and Roessler et al[17] showed gene overexpression of survivin in HCC samples 
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compared to normal liver samples, and the difference between the two groups was 
significant, as shown in Figure 1. Additionally, recent research has shown that insulin-
like growth factor-1 induced EMT via activation of survivin in HCC cells[18]. 
Accordingly, overexpression of survivin mRNA and protein has been shown to 
stimulate EMT in HCC cells; this has been shown to increase their ability for invasion 
and migration and their cell proliferation rate, and decrease their apoptosis rate[15]. 
Thus, there is evidence for the potential of survivin as a marker for cancer cell prolif-
eration and metastasis.

As discussed above, the research so far has indicated that both CTCs and survivin 
are markers for EMT and, therefore, cancer progression in HCC. However, the serum 
survivin levels of HCC patients are not different from those of healthy controls and 
patients with nonmalignant chronic liver diseases[19]. And no study so far has 
analyzed the prognostic value of survivin-expressing CTCs in HCC. Therefore, in the 
present study, we explored whether survivin-positive CTC levels are associated with 
cancer stage and clinicopathological characteristics in HCC, and whether survivin 
expression in CTCs has potential as a predictor of metastasis in HCC patients.

MATERIALS AND METHODS
Genome data
Cancer genome atlas data were retrieved from GEO database (http://www.ncbi.
nlm.nih.gov/geo) and TCGA database (http://www.ualcan.path.uab.edu). The 
GSE6467 and GSE14520 datasets were downloaded for this study. Data was analyzed 
using software packages including ClusterProfiler, GSEquery, and pheatmap.

Patient cohort
A study cohort (n = 179) included HCC patients who were enrolled at Hubei Cancer 
Hospital, China between May 2018 and December 2018. Only patients for whom HCC 
was confirmed based on pathological evidence, according to the World Health 
Organization criteria, and patients who had not undergone prior anticancer treatment 
were included. The tumors were staged as 0-A or B-C according to the Barcelona 
Clinic Liver Cancer (BCLC) staging system. Further, based on TNM classification, the 
tumors were staged as I, II, III, or IV. A control group comprised 70 healthy persons 
and 54 patients who tested positive for hepatitis B/C virus. The study was approved 
by the ethics committee of Hubei Cancer Hospital. (Ethical approval number: 
LLHBCH2019LW-002)

Collection of blood samples and isolation of CTCs 
Samples of peripheral blood (a volume of 5 mL mixed with EDTA as an anticoagulant) 
were obtained via venipuncture. The CanPatrol CTC enrichment technique (SurExam, 
Guangzhou, China) was used to isolate CTCs from the blood samples and classify 
them. The samples were filtered through a membrane (pore diameter, 8 μm; Millipore, 
Billerica, United States), a vacuum plate that provided various valve settings 
(SurExam, Guangzhou, China), an E-Z 96 vacuum that also had various settings 
(Omega, Norcross, United States), and a vacuum pump (Auto Science, Tianjin, China). 
A cell lysis buffer that comprised 154 mmol/L NH4Cl, 10 mmol/L KHCO3, and 0.1 
mmol/L EDTA (all the reagents were from Sigma, St. Louis, United States) was used 
to induce lysis of erythrocytes. The cell suspension was then resuspended for 5 min in 
phosphate-buffered saline (Sigma, St. Louis, United States) that contained 4% formal-
dehyde (Sigma, St. Louis, United States), and transferred to the specialized filtration 
system described earlier. The vacuum pump was turned on and set at a pressure of 
0.08 MPa. The CTCs were separated using the membrane as mentioned above.

Classification of CTCs by RNA in situ hybridization
CTC phenotypes were detected by RNA in situ hybridization (ISH) with CD45 (a 
leukocyte marker), EpCAM and CK8/18/19 (epithelial cell markers), and vimentin 
and Twist (mesenchymal cell markers) as markers (Figure 1). A protease (Qiagen, 
Hilden, Germany) was used to pretreat the blood cells on the membrane. Following 
this, the cells were hybridized with a capture probe that targeted the genes for the 
markers mentioned above. Next, the cells were stained by 5-min incubation with 4,6-
diamidino-2-phenylindole (Sigma, St. Louis, United States), and viewed under an 
automated imaging fluorescence microscope (Keyence, United States). Red 
fluorescence signals were considered to indicate epithelial cell markers, while green 
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Figure 1 Circulating tumor cell classification and survivin expression in circulating tumor cells by RNA-in situ hybridization. A: Circulating 
tumor cell (CTC) isolation and RNA in situ hybridization analysis of blood samples from patients and healthy controls; B: Detection and classification of CTCs using 
epithelial-mesenchymal transition markers. CD45 was used as a leukocyte marker, and it is indicated by white fluorescence. Epithelial biomarkers (EpCAM and 
CK8/18/19) were used for epithelial CTCs, which are represented by red fluorescence, and mesenchymal biomarkers (vimentin and Twist) were used for mCTCs, 
which are represented by green fluorescence; C: Survivin expression in CTCs is indicated by purple fluorescence (Alexa Fluor 647), with the intensity scored as low, 
moderate, and high (left to right images). CTC: Circulating tumor cell. CTC: Circulating tumor cell.

fluorescence signals were considered to indicate mesenchymal cell markers. Further, 
bright white fluorescence signals were considered to indicate CD45 expression.

Survivin expression in CTCs
Survivin expression in CTCs was assessed using the RNA-ISH method (Figure 1C). 
Survivin expression is indicated by purple fluorescence emitted by the CTCs (Alexa 
Fluor 647). According to the signal intensity score, survivin expression was classified 
as absent (0), low (1-2), moderate (3-9), and high (signal > 9), as shown in Figure 1C.

In vitro silencing and overexpression of survivin
The HCC cell line HepG2 was obtained from the cell bank of the Chinese Academy of 
Science and cultured in Dulbecco’s modified Eagle medium with 10% fetal bovine 
serum and 1% penicillin/streptomycin at 37°C in a 5% CO2 incubator.

Short hairpin RNAs against the survivin sequence (5'-CTTACCAGGTGAGAA-
GTGAGGT-3') were designed to knockdown survivin in HepG2 cells, by transfec-tion 
with the vector pGPU6 harboring siRNAs against survivin. The lentivirus vector 
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pCDH-CMV-MCS-EF1-CopGFP-T2A-Puro was used to induce overexpression of 
survivin in HepG2 cells. The vector and siRNA were obtained from Hualian Biotech-
nology Company (Wuhan, China). HepG2 cells were stably transfected with the 
survivin siRNA and lentivirus-siRNA plasmid using Lipofectamine2000 (Invitrogen). 
The transfected cells were incubated in selection medium containing 2 mg/mL 
puromycin for 2 wk (Bioswamp), and Western blot analysis was used to assess 
survivin expression.

Cell proliferation and apoptosis analysis
The CCK-8 kit (Bioswamp Company, China) was used to analyze cell proliferation 
according to the manufacturer’s protocol. The staining reagent used was CCK-8 (at a 
volume of 10 mL); the cells were incubated with the reagent for 2 h at 37 °C for 12 h, 24 
h, 36 h, 48 h, 60 h, and 72 h after transfection (with the survivin siRNA or lentivirus). 
Following this, the absorbance of the cells was detected at 450 nm. Flow cytometry 
(Beckman, United States) was used to analyze cell apoptosis with the Annexin V-PE 
and 7AAD assay kit (Becton, Dickinson Company, United States). Apoptotic cells were 
defined as PE-positive and 7AAD-negative, while necrotic or dead cells were defined 
as 7AAD-positive and PE-negative.

Cell invasion analysis
For the invasion experiment, cells were seeded at a density of 5 × 104 cells/well in 
Transwell inserts (pore diameter, 8 µm) coated with Matrigel and containing cold 
serum-free medium. After an incubation period of 48 h, non-invasive cells that were 
present in the upper compartment were removed with a cotton swab, and the cells that 
had successfully adhered to the lower compartment were subjected to fixation with 
10% paraformaldehyde and staining with 0.1% hexamethylpararosaniline for 30 min. 
The number of cells was counted under a microscope (Olympus BX53) in five selected 
fields. The average number of adherent cells was calculated.

Western blot and immunohistochemistry analysis of survivin protein expression in 
HCC tissue
Formalin-fixed paraffin-embedded specimens of HCC tissues from Hubei Cancer 
Hospital were prepared for immunohistochemical staining. The tissue slides were 
washed in phosphate-buffered saline (Bioswamp, China) after dewaxing and 
dehydration. The slides were placed in plastic tubes and incubated with boiling citric 
acid for antigen retrieval. In the next step, endogenous peroxidase activity was 
inhibited via 10-min incubation in methanol containing 3% H2O2. Next, the slides were 
blocked by 15-min incubation in 1% goat serum at 37 °C. Following this, they 
underwent incubation with anti-survivin rabbit polyclonal antibody (1:100 dilution; 
Abcam, United Kingdom) at 4 °C overnight in a moist chamber. After treatment with 
the secondary antibodies for 30 min, the slides were colored with diaminobenzidine 
and counterstained with hematoxylin. All the images were captured using an 
Olympus BX53 microscope. The protocol for Western blot assay of survivin protein 
expression in the tissue specimens was the same as that described for Western blot 
analysis of the HepG2 cells.

Statistical analysis
All analyses were conducted using SPSS version 20.0 (IBM Corp., Armonk, NY, United 
States). The Kolmogorov-Smirnov method was used to determine the normality of the 
CTC and survivin-positive CTC counts, which were found to be non-normally 
distributed. The phenotypic CTC counts and survivin expression in different groups 
were examined by the Fisher exact probability test. Correlations between variables 
were evaluated with the Spearman rank correlation test. P < 0.05 was considered to 
indicate statistical significance.

RESULTS
Analysis of genome data
Based on the GSE6467 and GSE14520 datasets, gene expression was found to differ 
between tumor tissue and normal tissue, as evident from the survivin gene expression 
data shown in Figure 2A and 2C. Next, we found that DNA replication and cell cycle 
pathways were downregulated in HCC samples, based on the Ingenuity pathway 
analysis (Z-score < 0; Figure 2B).
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Figure 2 Analysis of survivin gene expression in normal liver tissue and hepatocellular cancer tissue from previously reported genome 
data. A: The expression patterns in 21 normal tissue samples and 22 hepatocellular carcinoma samples were analyzed by hierarchical clustering; B: Ingenuity 
pathway analysis was used to identify the upregulated pathways (Z-score > 0) and the downregulated pathways (Z-score < 0) in the normal tissue samples and 
hepatocellular cancer (HCC) samples; C: The FPKM (fragments per kilobase of transcript per million fragments mapped) of survivin was determined for different 
samples. Compared with normal liver tissue samples, the expression of the survivin gene was upregulated in HCC samples.

Based on the TCGA data analysis, the expression of survivin in HCC tissue was 
significantly associated with stage and tumor grade.  Survivin expression (fragments 
per kilobase of transcript per million fragments mapped) in patients with stages III 
and IV HCC was significantly higher than that in patients with stages I and II HCC (P 
< 0.05). And survivin expression (fragments per kilobase of transcript per million 
fragments mapped) in patients with grades 3 and 4 HCC was significantly higher than 
that in patients with grades 1 and 2 HCC (P < 0.05) (Supplementary Figure 1).

Survivin expression in HCC specimens and normal hepatic tissues
The survivin expression level in tissue samples from HCC patients (n = 8) was 
significantly higher than that in normal hepatic tissues (n = 4), as indicated in the 
Western blot in Figure 3A and the immunohistochemical staining images in Figure 3B.

Association between survivin expression and cell proliferation, apoptosis, and 
invasion abilities in HepG2 cells
Silencing of survivin expression and overexpression of survivin were successfully 
induced by siRNA and lentivirus transfection, respectively (Figure 4A). At 12 h, 24 h, 
48 h, 60 h, and 72 h post-transfection, the cell proliferation rate was significantly higher 
in the survivin-overexpression cells than in the control cells and survivin-silenced 
cells, while it was significantly lower in the survivin-silenced cells than in the control 
cells and survivin-overexpressing cells (Figure 5A). Accordingly, the apoptosis rate of 
survivin-silenced HepG2 cells was significantly higher than that of survivin-overex-
pressing and normal control cells (Figure 4B). Finally, the results for cell invasion rates 
obtained from the Transwell migration assays indicated that the survivin-overex-
pressing HepG2 cells had significantly higher invasive ability than the survivin-

https://f6publishing.blob.core.windows.net/f011336d-df84-4569-915f-0d131851c638/WJG-27-7546-supplementary-material.pdf


Yu J et al. Survivin expression in circulating HCC cells

WJG https://www.wjgnet.com 7552 November 21, 2021 Volume 27 Issue 43

Figure 3 Survivin expression in hepatocellular cancer and normal adjacent tissue samples. A: Western blot analysis showing the protein 
expression of survivin in hepatocellular cancer (HCC) (n = 8) and normal liver tissue (n = 4); B: Immunohistochemical staining for survivin in HCC (n = 8) and normal 
liver tissue (n = 4). Survivin expression was higher in HCC than in normal liver tissue. aP < 0.05. HCC: Hepatocellular cancer.

silenced and normal control cells (Figure 5B).

Isolation and classification of CTCs
The observations of RNA-ISH analysis of CTCs based on EMT markers are shown in 
Figure 1B. The expression of survivin in these subtypes of CTCs is also indicated. The 
proportion of mCTCs is shown in Figure 6C. The number of mCTCs seemed to be 
higher in advanced-stage HCC (stage B-C) than in metastatic HCC.

CTC count and its association with clinicopathological characteristics of HCC 
patients
Table 1 shows the clinicopathological characteristics of the study cohort. A CTC count 
of > 5/5 mL was detected in 168 out of 179 blood samples (93.85%), and the median 
CTC count was 16/5 mL (range, 1-193 CTCs/5 mL). Further, survivin-positive CTCs 
were detected in 94.41% (169 of 179) of the patients. As shown in Figure 6, the median 
CTC count (Figure 6A) and survivin-positive CTC count (Figure 6B) in HCC patients 
were significantly higher than those in the HBV/HCV patients and healthy controls (P 
< 0.05). Patients with stage B/C HCC (or advanced HCC) had a significantly greater 
median CTC count than those with stage 0/A HCC (or early-stage HCC) (P = 0.024) 
(Table 1), and the median CTC count in patients with poorly differentiated tumors was 
significantly higher than that in patients with well-differentiated tumors (P = 0.002) 
(Table 1).

Correlation between mCTC counts and clinicopathological features 
Out of the 179 patients, 138 had an mCTC count of > 2/5 mL. The mCTC count was 
not significantly associated with AFP level, tumor stage, or degree of differentiation 
(Table 1). However, the proportion and count of mCTC were associated with BCLC 
stage and metastasis (Figure 6C).
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Table 1 Clinical characteristics of 179 hepatocellular cancer patients

1CTC count/5 mL 2mCTC count/5 mL 3Survivin (+)CTC count/5 mL
Clinical factor n

Median, SE Median, SE Median, SE
P value

Sex

Male 119 17, 3.57 6, 1.11 9, 3.05

Female 60 12, 9.61 6, 3.19 9.5, 7.88

0.2511, 0.8192, 0.9093

Age

< 55 yeara 89 19, 4.28 9, 1.50 11, 3.54

≥ 55 years 90 14, 5.75 4, 1.71 8, 4.88

0.7001, 0.1412, 0.4673

HBV/HCV

Positive 130 17, 3.57 7, 1.16 10, 3.03

Negative 49 13, 9.90 4, 3.12 6.5, 8.21

0.4021, 0.5392, 0.4363

AFP levels

< 7.0 80 14, 5.85 5, 1.85 7, 4.66

≥ 7.0 99 22.5, 4.42 7.5, 1.45 11, 3.92

0.2851, 0.812, 0.2543

Cirrhosis

Yes 119 16, 3.43 6, 1.19 9.0, 2.78

No 60 19.5, 10.03 7.5, 2.94 10, 8.67

0.4981, 0.6712, 0.8293

TNM stage

I-II 79 14, 2.93 6, 1.04 6, 1.49

III-IV 100 24, 6.29 8.50, 2.00 18, 5.95

0.1111, 0.4332, 0.0023

BCLC stage

0-A 58 12.5, 3.04 4, 0.75 4, 1.25

B-C 121 25, 4.94 9, 1.56 20, 4.64

0.0241, 0.0002, 0.0003

Differentiation

Well 29 13, 2.04 5, 2.46 5, 1.70 0.0021 (well vs poor)

Moderate 92 14.5, 5.35 6, 1.77 8.5, 5.15 0.9702 (well vs poor)

Poor 58 37, 6.18 7.5, 1.55 24, 5.44 0.0053 (well vs poor)

1Presents circulating tumor cell counts analysis.
2Presents mesenchymal circulating tumor cell counts analysis.
3Presents survivin positive circulating tumor cell counts analysis.
CTC: Circulating tumor cell; mCTC: Mesenchymal circulating tumor cell; AFP: α-fetoprotein.

ROC curve analysis of CTCs, survivin-positive CTCs, and mCTC proportion
The area under the ROC curve was 0.84 [95% confidence interval (CI) = 0.77-0.91] for 
CTCs, 0.82 (95%CI = 0.75-0.89) for survivin-positive CTCs, and 0.82 (95%CI = 0.75-0.90) 
for the proportion of mCTCs (Figure 6D). The rational cut-off value for diagnosis was 
12 for the CTC count (sensitivity = 60.89%, specificity = 91.13%), 4 for the survivin-
positive CTC count (sensitivity = 81.01%, specificity = 78.23%), and 1.85% for the 
proportion of mCTCs (sensitivity = 84.92%, specificity = 72.58%).

Correlation between survivin expression in CTCs and clinicopathological factors of 
HCC patients 
The survivin-positive CTC counts were not significantly associated with AFP levels. 
However, the median survivin-positive CTC count in patients with stages III and IV 
HCC was significantly higher than that in patients with stages I and Ⅱ HCC (Table 1). 
Further, patients with stage B/C HCC (or advanced HCC) had a significantly greater 
median survivin-positive CTC count than those with stage 0/A HCC (or early-stage 
HCC) (P < 0.001) (Table 1). Finally, patients with poorly differentiated HCC had a 
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Figure 4 Effect of survivin silencing and overexpression on apoptosis ability of HepG2 cells. A: Western blot analysis confirming survivin protein 
knockdown and upregulation in the selected clones (siRNA, siRNA-survivin, Lenti, and Lenti-survivin) and controls; B: Cell apoptosis was detected by flow cytometric 
analysis (n = 3). The apoptosis rate was significantly lower in the survivin-overexpressing cells (bP < 0.01).

significantly greater median survivin-positive CTC count than those with well-differ-
entiated tumors (P = 0.005) (Table 1).

Survivin expression in CTC subtypes
Survivin expression was detected in all CTC-positive patients (Figure 7), but the level 
of expression (based on the intensity of the purple fluorescent signal) differed between 
epithelial, mesenchymal, and hybrid CTCs, although not significantly: Survivin 
expression was observed in 62.7% of mCTCs, 74.61% of hybrid CTCs, and 73.53% of 
epithelial CTCs. However, the signal intensities were significantly different: Moderate- 
and high-intensity signals were observed in 48.53% and 31.91% of mCTCs, 
respectively, and in 47.65% and 16.5% of hybrid CTCs, respectively. The proportion of 
mesenchymal and hybrid CTCs with moderate- and high-intensity signals was 
significantly higher than that of epithelial CTCs (P < 0.001) (Figure 7A and B). In 
contrast, a significantly greater proportion of epithelial CTCs tended to have low 
signal intensity for survivin expression: 72.47% of epithelial CTCs vs 33.85% and 
35.83% of hybrid and mCTCs, respectively (Figure 7A and B).

Dynamic changes in survivin-positive CTC count following surgery and its 
prognostic significance
The survivin-positive CTC counts were detected in 22 patients at 1 wk following 
surgical resection. The total CTC count exhibited a considerable decrease after 
resection, as did the survivin-positive CTC and mCTC counts (Figure 8A-C). During 
the postoperative period, in 10 out of 22 HCC patients, the total CTC, mCTC, and 
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Figure 5 Effect of survivin silencing and overexpression on proliferation and invasion abilities of HepG2 cells. A: Cell proliferation was 
evaluated at 12 h, 24 h, 48 h, 60 h, and 72 h after transfection with the siRNA or lentivirus using the CCK8 assay (n = 5), and it was significantly higher in the survivin-
overexpressing cells (aP < 0.05); B: Invasion ability of cells was examined by transwell assay (n = 3). The invasive cell count was significantly higher in the survivin-
overexpressing cells (aP < 0.05).

survivin-positive CTC counts had increased over the thresholds (12 for CTCs, 4 for 
mCTCs and sur-CTCs) at 86 d before imaging recurrence or metastatic lesions were 
detected, while no increase was noted in the other 12 patients for more than 1 year 
(Figure 8D). Additionally, log-rank test revealed that the recurrence free survival rate 
was significantly associated with survivin-positive CTC count (Figure 9A). In all 10 
cases, over 4 survivin-positive CTCs were detected before recurrence (Figure 9B).

In two HCC patients, initial overexpression of survivin was observed in CTCs 
(counts/5 mL), while recurrence or metastasis (Figure 10A and B) was observed 4-5 
mo after therapy in patients who were in the same BCLC stage before treatment. And 
increased surviving-positive CTC count is showed in Figure 10C.

DISCUSSION
In the present study, we analyzed the correlation between survivin-positive CTC 
expression patterns and the prognosis of HCC, in order to explore the potential of 
survivin-positive CTCs as markers for HCC stage and predictors of HCC metastasis. 
The prognostic value of survivin-positive CTCs in patients after surgical resection was 
also demonstrated.
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Figure 6 Total circulating tumor cell count and survivin-positive circulating tumor cell count in the study cohort. A and B: Both the median 
circulating tumor cell (CTC) count (A) and survivin-positive CTC count (B) in hepatocellular cancer (HCC) patients were significantly higher than those in the 
HBV/HCV patients and healthy controls; C: The proportion of mesenchymal CTCs (mCTCs) in HCC at the advanced BCLC stage (B-C) was significantly higher than 
that in HCC at the early stage (0-A); D: ROC curves for survivin-positive CTC count, total CTC count, and mCTC proportion. The rational cut-off for diagnosis was 12 
for the CTC count, 4 for the survivin-positive CTC count, and 1.85% for the mCTC proportion. aP < 0.05; bP < 0.01. CTC: Circulating tumor cell.

Our in vitro experiments with HepG2 cells showed that siRNA-induced silencing of 
survivin expression resulted in a significant decrease in the proliferation and invasive 
ability of these cells, and a significant increase in their apoptosis rate; opposite results 
were obtained with overexpression of survivin. In agreement with this finding, 
previous studies have confirmed that survivin deficiency induces apoptosis in HepG2 
cells[20,21]. These findings together indicate that survivin promotes the metastasis of 
HCC, and they are in agreement with a previous study which showed that knockdown 
of survivin expression suppressed HCC metastasis[22].

In our study, 94.41% of CTCs obtained from the HCC patients were positive for 
survivin expression. Further, we examined the survivin expression pattern in different 
phenotypes of CTCs, including mCTCs, hybrid CTCs, and epithelial CTCs. The 
findings showed that survivin expression was much higher in mesenchymal and 
hybrid CTCs than in epithelial CTCs, and a major proportion (62.7%) of mCTCs were 
positive for survivin expression. These findings indicate that survivin plays an 
important role in promoting EMT in HCC cells. During the process of carcinogenesis, 
tumor cells gain invasive ability by undergoing EMT, which occurs via downregu-
lation of the epithelial cell marker E-cadherin (among others) and upregulation of the 
mesenchymal cell markers vimentin and N-cadherin (among others)[23]. Accordingly, 
it has also been reported that survivin mediates EMT in HCC cells via modulation of 
EMT marker expression[24]. Thus, based on these findings, it appears that survivin 
promotes metastasis of HCC through mediation of EMT events.
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Figure 7 Analysis of survivin gene expression patterns in epithelial, mixed, and mesenchymal circulating tumor cells. A significantly lower 
percentage of epithelial circulating tumor cells (CTCs) showed moderate staining intensity than mixed and mesenchymal CTCs (mCTCs), while a significantly higher 
percentage of epithelial CTCs showed low staining intensity than hybrid and mCTCs. aP < 0.05; bP < 0.01. CTC: Circulating tumor cell.

Our findings showed that survivin was expressed at significantly greater levels in 
HCC tissue than in normal liver tissue, and the expression levels were significantly 
associated with the degree of tumor differentiation, that is, poorly differentiated 
tumors had significantly higher survivin expression. We also found that survivin 
expression level was significantly greater in HCC tissue than in normal tissue. The 
high frequency of cytoplasmic survivin expression in HCC observed in our study is in 
agreement with that reported in previous studies[24,25]. Many studies have 
demonstrated that survivin plays a crucial role in the early and late stage of carcino-
genesis[26]. In agreement with our findings, other in vitro studies have reported 
increased expression of survivin in tumor cells[27,28]. Based on these findings, we 
assumed that survivin plays an anti-apoptotic role and aids in the progression of HCC. 
Hence, HCC patients who are positive for survivin should be monitored carefully, and 
enhanced adjuvant therapy should be considered to help improve their prognosis[29,
30]. It is not easy to obtain HCC tissue samples at every follow-up appointment; 
therefore, detection of survivin in CTCs may be a useful supplementary method.

CONCLUSION
Previous studies have mostly investigated the expression of survivin in cancer cells or 
tissue specimens from patients[25,31,32], but the strength of our study lies in its invest-
igation of survivin expression in different subtypes of CTCs. This is the first study to 
have pursued this line of investigation. We found that the survivin-positive CTC 
counts are significantly associated with the TNM tumor stage, BCLC stage, and degree 
of differentiation. Thus, the survivin-positive CTC count may particularly be 
important as an indicator of tumor stage and cancer progression. Additionally, the 
proportion of mCTCs also increases with tumor progression, but the mCTC counts are 
not significantly different between the different tumor grades and AFP. This variable 
needs to be explored further in future studies for its potential as a tumor stage marker.

One of the limitations of this study is the small sample size. Future investigations on 
survivin-positive CTCs should use a larger sample. Additionally, because of the 
limited follow-up time, the relationship between survivin-positive CTC counts and 
overall survival could not be explored. Therefore, an analysis with a longer follow-up 
duration would be highly useful.

Thus, the present findings indicate that the survivin-positive CTC count might have 
potential as an indicator for disease stage and a predictor of recurrence in HCC 
patients. Thus, an efficient and reliable technique to measure survivin expression in 
CTCs from liver cancer patients could prove useful for predicting the prognosis and 
recurrence of this cancer, and this could help clinicians select an optimal and 
customized management strategy for the treatment of this malignancy.
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Figure 8 Dynamic changes in circulating tumor cell, mesenchymal circulating tumor cell, and survivin-positive circulating tumor cell 
counts following surgery. A-C: The total circulating tumor cell (CTC) count, mesenchymal CTC proportion, and survivin-positive CTC count decreased 
dramatically 1 wk after resection. D: Increased survivin-positive CTC count in postoperative hepatocellular cancer patients (n = 10) at 1-12 mo before detectable 
recurrence or appearance of metastatic lesions, and decreased surviving-positive CTC count in the last 12 hepatocellular cancer patients with no recurrence. bP < 
0.01. CTC: Circulating tumor cell.
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Figure 9 Prognosis of hepatocellular cancer patients with different survivin-positive circulating tumor cell counts. A: Recurrence free survival 
time after surgery by change in survivin-positive circulating tumor cell (CTC) count; B: The survivin-positive CTCs detected during follow-up of 10 hepatocellular 
cancer patients after operation predict tumor recurrence. bP < 0.01. CTC: Circulating tumor cell.

Figure 10  Survivin-positive circulating tumor cells detected during follow-up predict recurrence (m). A and B: Images of two hepatocellular 
cancer (HCC) patients at the same BCLC stage who expressed survivin in circulating tumor cells (CTCs). At 4 and 5 mo after treatment, the HCC tumors showed 
more rapid progression in patients with higher survivin expression in CTCs at baseline; C: Cumulative total CTC count by three cell types and survivin-positive CTC 
count in the two patients before and after operation. The patients’ CTC and survivin-positive CTC count increased at the 2-mo follow-up. Letter E represents epithelial 
CTCs; Letter H represents hybrid CTCs; Letter M represents mesenchymal CTCs. CTC: Circulating tumor cell.
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ARTICLE HIGHLIGHTS
Research background
Circulating tumor cells (CTCs), which are also known as liquid biopsy, are mainly 
used as a predictor to monitor the recurrence and metastasis of tumors including 
hepatocellular carcinoma (HCC). Survivin is an anti-apoptotic protein that plays an 
important role in inhibiting apoptosis and is overexpressed in many tumors, including 
HCC. No study has analyzed the value of survivin-expressing CTCs in HCC.

Research motivation
We aimed to study the expression of survivin in CTCs of HCC and indicate the role of 
survivin-expressing CTCs as a marker for EMT and cancer progression in HCC.

Research objectives
To explore the prognostic value of survivin-expressing CTCs in HCC, and estimate 
survivin-positive CTCs as a potential predictor of metastasis in HCC patients.

Research methods
We examined the survivin expression patterns in CTCs of HCC patients, and invest-
igated the in vitro effects of survivin silencing and overexpression on the proliferation 
and invasion of HCC cells. We also analysed the survivin protein expression in HCC 
tissue. And we observed the dynamic changes in survivin-positive CTC count 
following surgery and its prognostic significance.

Research results
The CTC and survivin-positive CTC counts were significantly higher in the HCC 
patients than in the normal controls. Further, survivin overexpression was found to 
induce HepG2 cell proliferation, reduce apoptosis, and improve invasive ability. 
Additionally, log-rank test revealed that the recurrence free survival rate was 
significantly associated with survivin-positive CTC count.

Research conclusions
Survivin-positive CTCs are promising as a predictor of HCC prognosis and metastasis.

Research perspectives
The dynamic monitoring of survivin-positive CTC count would help clinical therapy 
and improve the prognosis of HCC patients.
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Abstract
BACKGROUND 
Autoimmune markers including plasma cells (PC), anti-smooth-muscle antibody 
(ASMA), anti-nuclear antibody (ANA), and raised immunoglobulin G (IgG) are 
commonly observed in non-alcoholic steatohepatitis (NASH), however their 
clinical significance is unknown.

AIM 
To determine if autoimmune markers in NASH patients are independently 
associated with poorer clinical outcomes.

METHODS 
Consecutive patients with biopsy proven NASH from Christchurch Hospital, 
New Zealand and Singapore General Hospital (SGH) were included between 2005 
to 2016 in a prospective multi-centre cohort study. Patients with other causes of 
chronic liver disease were excluded. IgG > 14 g/L or globulin fraction > 50%, 
ANA ≥ 1:40, SMA ≥ 1:40 were considered positive. Multivariate analysis was 
performed to assess which markers were independently associated with mortality 
and hepatic decompensation.

RESULTS 
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Total 261 patients were included of which 201 were from SGH. The median age 
was 53 and 51.9% were male. Advanced fibrosis was present in 31.4% at 
diagnosis. PC, ASMA, ANA and raised IgG were observed in 13.1%, 4.9%, 27.8% 
and 30.1% of patients respectively. After multivariate analysis, elevated IgG 
[Hazard Ratio (HR) 6.79, 95%CI: 2.93-17.15] and fibrosis stage (HR 1.37, 95%CI: 
1.03-1.87) were found to be independently associated with increased risk of liver 
decompensation. Age (HR 1.06, 95%CI: 1.02-1.10) and elevated IgG (HR 3.79, 
95%CI: 1.90-7.68) were independent factors associated with higher mortality risk.

CONCLUSION 
Elevated IgG, rather than ANA, ASMA or plasma cells, is independently 
associated with increased risk of hepatic decompensation and mortality in NASH. 
It could hence be important for prognostication.

Key Words: Non-alcoholic fatty liver disease; Non-alcoholic steatohepatitis; Immuno-
globulin G; Autoantibodies; Mortality; Hepatic decompensation

©The Author(s) 2021. Published by Baishideng Publishing Group Inc. All rights reserved.

Core Tip: Autoantibodies such as anti-nuclear antibody (ANA) and anti-smooth-muscle 
antibody (ASMA) can be present in up to 20%-30% of patients with non-alcoholic 
steatohepatitis (NASH). However, clinical significance is not well studied and there is 
no published data on the impact of immunoglobulin G (IgG) and plasma cells on 
hepatic decompensation and mortality outcomes. Our study found that elevated IgG but 
not ANA, ASMA or plasma cells is associated with higher risk of mortality, including 
liver related death, as well as increased risk of hepatic decompensation events. Patients 
with IgG positive NASH should hence be identified early and monitored closely as 
they are at higher risk of poorer clinical outcomes.

Citation: De Roza MA, Lamba M, Goh GBB, Lum JHM, Cheah MCC, Ngu JHJ. 
Immunoglobulin G in non-alcoholic steatohepatitis predicts clinical outcome: A prospective 
multi-centre cohort study. World J Gastroenterol 2021; 27(43): 7563-7571
URL: https://www.wjgnet.com/1007-9327/full/v27/i43/7563.htm
DOI: https://dx.doi.org/10.3748/wjg.v27.i43.7563

INTRODUCTION
Non-alcoholic fatty liver disease (NAFLD) is a growing phenomenon with an 
estimated global prevalence of 25%. Non-alcoholic steatohepatitis (NASH) in 
particular is a progressive form of NAFLD and is associated with poorer clinical 
outcomes and higher liver related mortality[1]. Independent predictors for poor 
outcomes include fibrosis[2], obesity and metabolic syndrome, diabetes mellitus (DM)
[3], as well as genetic polymorphisms such as PNPLA3[4]. NASH is characterized 
histologically by hepatic steatosis, inflammation, hepatocellular injury and varying 
degrees of fibrosis[5]. The inflammatory process in NASH is a complex and hetero-
geneous “multi-hit” pathway in which the innate immune system plays a critical role, 
driving the progression of liver fibrosis and leading to cirrhosis, liver failure, the need 
for liver transplantation and death[6-8]. Less is known, however, about the role of the 
adaptive immune system and autoantibodies. Autoantibodies are produced by 
humoral immune responses against self-cellular proteins and nucleic acids and can be 
physiological or pathological[9]. When used in tandem with clinical findings, they are 
serological hallmarks for inflammatory autoimmune liver diseases. However, their 
significance in NAFLD is not well studied despite autoantibodies being present in 
25%-35% of patients with NAFLD[10,11].

Adams et al[10] reported a higher grade of inflammation in NAFLD patients with 
positive antinuclear antibodies (ANA) and/or anti smooth muscle antibodies (ASMA) 
but the difference was slight (1.0 vs 1.2, P = 0.02) and there was no correlation to 
clinical significance or outcomes. More recent data from McPherson et al[12] looking 
specifically at serum immunoglobulins in NAFLD, showed that elevated serum 
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immunoglobulin A was significantly associated with advanced fibrosis. Similarly, 
there was no correlation to immunoglobulins being a predictor for mortality or hepatic 
events independently from fibrosis and other factors. Despite evidence showing 
association of autoantibodies and immunoglobulins with higher histological grades of 
inflammation or fibrosis[10,12,13], other studies dispute these findings[14,15], and 
correlation to clinical outcomes is still not established in NASH. Ravi et al[16] reported 
no significant difference on liver disease outcomes in steatohepatitis patients with 
positive ANA or ASMA , however, the major limitation of the study was that overall 
follow-up was short (median 3 years) and alcoholic and non-alcoholic hepatitis were 
grouped together.

Overall, autoimmune markers such as ANA, ASMA, plasma cells and immuno-
globulins with immunoglobulin G (IgG) in particular, are not well studied in NASH 
and their clinical significance is unknown in this population. Hence, the aim of this 
study is to determine if autoimmune markers in patients with biopsy proven NASH 
are independently associated with poorer outcomes. The outcomes measured being all 
cause mortality and liver decompensation events.

MATERIALS AND METHODS
Patient selection
Consecutive patients who underwent liver biopsy at Christchurch Hospital, New 
Zealand (CH) and Singapore General Hospital, Singapore (SGH) were assessed for 
inclusion in the study. CH cohort consisted of patients with liver biopsy performed 
from 2008 to 2016 and the SGH cohort from 2005 to 2015. Patients with chronic liver 
diseases of other aetiologies such as viral hepatitis, alcohol, toxins or drugs, 
autoimmune including IgG4 related disease, vascular, metabolic and hereditary causes 
were excluded. All patients, as per local hospital protocol underwent non-invasive 
liver testing including serology analysis and imaging to exclude other causes of 
chronic liver disease. Patients were included in the study if the final histological 
diagnosis was NASH with NAFLD activity score (NAS) ≥ 3 on biopsy with scores for 
steatosis, lobular inflammation and hepatocyte ballooning[17].

ANA and ASMA were considered positive if titres were observed to be ≥ 1:40. IgG 
was considered elevated if > 14g/L. Additionally, if quantitative values were not 
available, globulin fraction (GF) was calculated by the following equation: total 
protein/(total protein - albumin). Since IgG is the commonest globulin type[18], 
individuals with GF > 50% were defined as elevated IgG. To assess presence of plasma 
cells, histology reports were reviewed. Plasma cells were scored as positive if any 
plasma cells were identified on histology specimens by the pathologist. This study 
conforms to ethical guidelines and was approved by our respective institutional 
review boards.

Follow-up
Patients from CH and SGH were followed up for clinical events of liver 
decompensation and all-cause mortality. Liver decompensation event was defined as 
the development of any of the following: ascites, gastrointestinal haemorrhage 
secondary to portal hypertension, hepatic encephalopathy, hepatorenal syndrome. 
Patients were followed up till 31st December 2017. Follow-up was censored at 
development of first liver decompensation event, death, liver transplantation, or last 
clinical contact in case of patients lost to follow-up.

Statistical analysis
Continuous variables were expressed as mean ± SD or median (interquartile range, 
IQR) and were compared using unpaired t-test. Categorical variables were compared 
using χ2 test. The associations of putative risk factors and outcomes were analyzed 
using Cox proportional hazards regression and are summarized as hazard ratios (HR) 
with 95%CI. The time to event outcomes were also summarized using Kaplan-Meier 
curves. A two-tailed P value of < 0.05 was taken to indicate a statistical significance. 
All analyses were undertaken using statistical software SPSS version 20.

RESULTS
A total of 261 patients met the study criteria. Of these, 201 patients were recruited from 
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SGH and 60 patients from CH. Baseline characteristics of patients are listed in Table 1. 
Majority of patients from CH were of European origin (91.7%) while 97.5% patients 
from SGH were of Asian origin, reflecting the local population demographic. Median 
follow-up per patient was 5.1 years (IQR 3.5-7.5). Median age at inclusion in the study 
was 53 years (± 12.9) and 51.9% were male. The median NAS score at diagnosis was 4 
(IQR 3-5) and the mean Metavir fibrosis score was 1.7 (± 1.4). 77% of patients had data 
available for body mass index (BMI), and comorbidities including presence of DM, of 
which the mean BMI was 30.61 and DM was present in 45.02% of patients. There were 
no significant differences in baseline characteristics between patients from SGH and 
CH (Table 1).

Prevalence of autoimmune markers
ANA was the most common positive autoimmune marker present in 27.8% patients 
followed by elevated IgG observed in 23.4%. Plasma cells were found on histological 
examination in 13% of patients with NASH. ASMA was the least common 
autoimmune marker and was positive in only 4.9% of NASH patients.

Clinical end-points: Liver decompensation and all-cause mortality
During a cumulative follow-up of 1464 person years, 25 patients developed liver 
decompensation. There was no significant difference between risk of liver 
decompensation or all-cause mortality between patients from CH and SGH. The 5-year 
risk of developing liver decompensation after diagnosis of NASH was 8.1% (95%CI: 
6.1-11.8) and the 5-year mortality risk was 11.7% (95%CI: 4.4-22.9) (Figure 1). Ten 
patients developed hepatocellular carcinoma of which 7 were male. Median age at 
diagnosis of HCC was 65.7 years. Advanced fibrosis or cirrhosis was present in 6 of 10 
patients at diagnosis of HCC. During the follow-up period, 36 patients died. Data on 
cause of death were available for 30 (83.3%) patients. Liver related causes of death 
were observed in 12 cases (40%), followed by malignancy (30%), septicaemia (17%) 
and cardiovascular causes of death (13%). Overall, 5-year risk of all-cause mortality 
was 11.7% (95%CI: 4.4-22.9) (Figure 1).

Predictors of Liver decompensation and all-cause mortality
Liver decompensation: In univariate analysis (Table 2), factors associated with 
increased risk of liver decompensation were increasing age (HR 1.04, 95%CI: 1.00-1.08), 
stage of fibrosis (HR 1.67, 95%CI: 1.25-2.26) and elevated IgG (HR 8.20, 95%CI: 3.61-
20.30). Other autoimmune markers (ANA, ASMA or Plasma cells) were not found to 
be associated with risk of liver decompensation (Table 2; Figure 1). Multivariate model 
was constructed with variables found to be significant in univariate analysis. In 
multivariate analysis, elevated IgG (HR 6.79, 95%CI: 2.93-17.15) and stage of fibrosis 
(HR 1.37, 95%CI: 1.03-1.87) were found to be independently associated with increased 
risk of liver decompensation during follow-up (Table 2).

In a sub-group analysis where only patients with quantitative IgG values (> 14 g/L) 
were included (n = 43), a trend of association was observed between elevated IgG and 
increased risk of liver-decompensation during follow-up. (HR 3.1, 95%CI: 0.92-10.8, P 
= 0.054) (Figure 2).

Mortality: In univariate analysis, predictors of all-cause mortality included: increasing 
age (HR 1.06, 95%CI: 1.03-1.10), stage of fibrosis (HR 1.27, 95%CI: 1.00-1.61) and 
elevated IgG (HR 4.5, 95%CI: 2.29-9.00) (Table 2). In multivariate analysis, age (HR 
1.06, 95%CI: 1.02-1.10) and elevated IgG (HR 3.79, 95%CI: 1.90-7.68) were found to be 
independent factors associated with increased risk of mortality (Table 2; Figure 2). 
Median survival in patients with elevated IgG at baseline was 9.4 years.

DISCUSSION
In this multicentre cohort study, we examined the association between the presence of 
autoimmune markers such as ANA, ASMA, elevated IgG and plasma cells on 
histology with clinical outcomes in patients with NASH. The most pertinent finding of 
our study is that elevated IgG at diagnosis of NASH was associated with increased 
risk of liver decompensation and reduced overall survival.

Autoimmune markers are commonly encountered in patients with NASH, however 
their clinical significance is not well defined. In a study of 225 patients with histolo-
gically confirmed NAFLD, 20% and 3% respectively were found to have the presence 
of ANA and ASMA[10]. Similarly, in another cohort study of NASH patients, the 
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Table 1 Baseline characteristics, n (%)

Overall CH SGH P value

Patients 261 60 201 -

Regions 0.07

European 60 (23.0) 55 (91.7) 5 (2.5)

Asian 197 (75.5) 2 (3.3) 195 (97.5)

Others 4 (1.5) 3 (5.5) 1 (0.5)

Age, mean ± SD 53 ± 12.9 52.9 ± 16.9 53 ± 11.7 0.30

Male 51.9% 53.3% 51.7% 0.83

ALT, mean ± SD 112.3 ± 373.9 80.2 ± 66.6 121.9 ± 425.5 0.45

AST, mean ± SD 80.3 ± 216.7 60.8 ± 42.3 86.1 ± 246.1 0.43

NAS, Median (IQR) 4 (3-5) 4 (3-5) 4 (3-5) 0.54

Metavir Fibrosis score, mean ± SD 1.7 ± 1.4 1.6 ± 1.4 1.7 ± 1.3 0.58

F0 53 (20.3) 13 (21.7) 40 (19.9)

F1 95 (36.3) 25 (41.7) 70 (34.8)

F2 31 (11.9) 5 (8.3) 26 (12.9)

F3 48 (18.4) 7 (11.7) 41 (20.4)

F4 34 (13.1) 10 (16.6) 24 (11.9)

CH: Christchurch Hospital, New Zealand; SGH: Singapore General Hospital, Singapore; IQR: interquartile range; NAS: Non-alcoholic fatty liver disease 
activity score.

Table 2 Univariate and multivariate analysis of predictors of clinical outcomes

Liver decompensation All-cause mortality

Univariate analysis Multivariate analysis Univariate analysis Multivariate analysisPredictors

HR (95%CI) P value HR (95%CI) P value HR (95%CI) P value HR (95%CI) P value

Age1 (per 1 yr) 1.04 (1.00-1.08) 0.04 1.01 (0.98-1.05) 0.46 1.06 (1.03-1.10) < 0.0001 1.06 (1.02-1.10) 0.001

Sex 0.99 (0.44-2.19) 0.98 - - 1.16 (0.60-2.27) 0.65 - -

Fibrosis2 1.67 (1.25-2.26) < 0.001 1.37 (1.03-1.87) 0.03 1.27 (1.00-1.61) 0.05 1.01 (0.80-1.29) 0.91

NAS3 0.96 (0.67-1.32) 0.79 - - 0.88 (0.66-1.16) 0.37 - -

IgG 8.20 (3.61-20.30) < 0.0001 6.79 (2.93-17.15) < 0.0001 4.50 (2.29-9.00) < 0.0001 3.79 (1.90-7.68) 0.0001

ANA 1.15 (0.41-2.86) 0.78 - - 1.14 (0.47-2.51) 0.76 - -

ASMA 0 - - 0.94 (0.05-4.53) 0.95 - -

Plasma cells 0.97 (0.23-2.81) 0.96 - - 1.20 (0.41-2.83) 0.71 - -

1Age as continuous variable for every one year increase in age.
2Increase in Metavir fibrosis stage.
3Increase in non-alcoholic fatty liver disease activity score by 1.
IgG: Immunoglobulin G; ANA: Anti-nuclear antibody; ASMA: Anti smooth muscle antibody; HR: Hazard ratio.

presence of ANA and ASMA was observed in 34% and 6% of all patients respectively
[15]. The findings of our study are consistent with the reported prevalence estimates. 
While inflammation involving plasma cells is typically observed in AIH, the 
prevalence of plasma cell infiltration in NASH is not known. In the present study, 
plasma cell infiltration was observed in 13% of patients with histological diagnosis of 
NASH.
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Figure 1 Overall risk of liver decompensation and all cause mortality. A: Overall risk of liver decompensation; B: Overall risk of all cause mortality.

Figure 2 Raised immunoglobulin G and risk of liver decompensation and mortality on multivariate analysis. A: Raised immunoglobulin G (IgG) 
and risk of liver decompensation; B: Raised IgG and risk of all-cause mortality; C: Raised absolute IgG > 14 and risk of liver decompensation. IgG: Immunoglobulin G.

Association of ANA and/or ASMA with histological severity of NASH has been 
examined previously in multiple cohort studies and yielded conflicting results[10,12-
15,19]. None of the studies, to our knowledge, have assessed association of 
autoimmune markers with long-term clinical outcomes. We found that the risk of liver 
decompensation or all-cause mortality were not associated with the presence of either 
ANA, ASMA or plasma cells, thereby suggesting that these are non-specific markers of 
inflammation and unlikely to be pathogenically relevant.

On the contrary, elevated IgG at diagnosis of NASH was independently associated 
with increased risk of liver decompensation (HR 6.79, 95%CI: 2.93-17.15, P < 0.0001) 
and all-cause mortality (HR 3.79, 95%CI: 1.9-7.68, P = 0.0001) during follow-up. 
Majority of the excess mortality in the elevated IgG cohort were liver-related. It needs 
to be highlighted that diagnosis of probable or definite AIH was conclusively ruled out 
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in all patients based on the international standardised criteria and no patients were 
treated with immunosuppression except in cases of organ transplantation.

We do not have a concrete biological explanation for the observed pathogenic role 
of IgG in NASH, however several mechanisms are plausible. Firstly, oxidative stress in 
NASH may induce production of IgG by deployment of adaptive humoral response[5,
20]. Animal and human based studies have shown that IgG directed against products 
of lipid peroxidation such as Malondialdehyde and 4-hydroxynonenal appears to be 
elevated in NASH and correlates with disease severity[20]. Secondly, anti-endotoxins 
IgG levels were observed to be higher in patients with NASH compared to controls (48 
vs 10 GMU/mL), and IgG levels corelated with severity of NASH[20,21]. Endotoxins 
are generally derived from the gut microbiota[21] and are potential triggers for inflam-
mation and insulin resistance, driving oxidative stress in NASH. Therefore, elevated 
IgG may be representative of high endotoxemic burden leading to rapid progression of 
NASH. Lastly, it is possible that elevated IgG in patients with NASH may represent an 
overlap with a mild degree of autoimmune hepatitis. However, currently no 
diagnostic criteria exist to define NASH-AIH overlap syndrome.

Our study has several limitations which ought to be acknowledged. Quantitative 
immunoglobulin values were not available for all patients and globulin fraction was 
used as a surrogate marker of elevated IgG. While globulin fraction has previously 
been utilised as an effective surrogate marker of hyper/hypogammaglobulinemia[22] 
it is possible that we may have under or overestimated the IgG effect on clinical 
outcomes. However, upon restricting analysis to those patients with quantitative IgG 
values, a similar effect was observed (although statistically non-significant), 
suggesting that the observed association between IgG and poor clinical outcomes is 
true rather than a type-1 error. Data for pre-existing medical comorbidities and current 
medications were only available for 77% of patients, which may have confounded 
overall results. However, all patients were on follow up with a specialist and would 
have received standard of care for hepatic decompensation, regardless of compliance 
to treatment. Lastly, the diagnosis of NASH was based on unblinded histology 
interpretation by the local pathology team, consequently an element of inter-observer 
bias cannot be ruled out. Our study design involved two different population cohorts 
from two large tertiary centres. Despite having different ethnic compositions, there 
were no significant differences in baseline-characteristics at inclusion in the study 
between the two centres suggesting that our results are generalizable. Importantly, 
both centres have national electronic records available making complete data 
ascertainment of clinical events possible.

CONCLUSION
In conclusion, we report that ANA, ASMA and plasma cells are commonly present in 
patients with NASH but carry no prognostic significance. On the contrary, elevated 
IgG is an independent predictor of increased risk of liver decompensation and reduced 
overall survival in patients with NASH. Presence of elevated IgG therefore represents 
a more aggressive NASH phenotype. Identification and close monitoring of these 
patients is prudent to improve overall clinical outcomes.

ARTICLE HIGHLIGHTS
Research background
Autoimmune markers such as immunoglobulin G (IgG), anti-nuclear antibody (ANA), 
anti-smooth-muscle antibody (ASMA) can be present in patients with Non-alcoholic 
steatohepatitis (NASH) but their clinical significance is not well studied.

Research motivation
Knowing the clinical significance of autoimmune markers in patients with biopsy 
proven NASH can pave the way for future research to better understand why certain 
sub-groups of patients with NASH deteriorate more rapidly.

Research objectives
This study aimed to determine if any of the autoimmune markers were independently 
associated with worse outcomes such as mortality and hepatic decompensation. This is 
important as such patients can be identified for closer monitoring.
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Research methods
This is a prospective, multi-center study. Patients with biopsy proven NASH were 
included and multivariate analysis was performed to determine if any of the 
autoimmune markers (IgG, ANA, ASMA) were independent risk factors for mortality 
and hepatic decompensation

Research results
Elevated IgG was an independent risk factor for both mortality and liver 
decompensation after multivariate analysis with adjustment for age and fibrosis stage. 
The exact pathophysiology is unknown but IgG levels could possibly correlate to 
disease severity due to anti-endotoxins IgG and oxidative stress.

Research conclusions
Elevated IgG is an independent predictor of increased risk of liver decompensation 
and reduced survival in patients with NASH. It could represent a more aggressive 
NASH phenotype.

Research perspectives
Further research is needed to validate and reproduce this finding and to also establish 
the pathophysiology and underlying biochemical mechanisms for this observation.
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Abstract
BACKGROUND 
Of 25% of randomised controlled trials (RCTs) on interventions for inflammatory 
bowel disease (IBD) have no power calculation.

AIM 
To systematically review RCTs reporting interventions for the management of 
IBD and to produce data for minimum sample sizes that would achieve appro-
priate power using the actual clinical data.

METHODS 
We included RCTs retrieved from Cochrane IBD specialised Trial register and 
CENTRAL investigating any form of therapy for either induction or maintenance 
of remission against control, placebo, or no intervention of IBD in patients of any 
age. The relevant data was extracted, and the studies were grouped according to 
the intervention used. We recalculated sample size and the achieved difference, as 
well as minimum sample sizes needed in the future.

RESULTS 
A total of 105 trials were included. There was a large discrepancy between the 
estimated figure for the minimal clinically important difference used for the 
calculations (15% group differences observed vs 30% used for calculation) 
explaining substantial actual sample size deficits. The minimum sample sizes 
indicated for future trials based on the 25 years of trial data were calculated and 
grouped by the intervention.

CONCLUSION 
A third of intervention studies in IBD within the last 25 years are underpowered, 
with large variations in the calculation of sample sizes. The authors present a 
sample size estimate resource constructed on the published evidence base for 
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Core Tip: This work has identified a large variation in the estimated minimal clinically 
important difference (MCID) between study groups in inflammatory bowel disease 
trials in the literature, with no standard to support study designers or reviewers. We 
have provided a resource to support sample size estimation based on observed MICD 
in the literature over the last 25 years.
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INTRODUCTION
Sample size estimation (SSE) is an extremely important calculation for designing a 
clinical trial. Failure to produce an appropriate calculation may lead to imprecise 
results[1]. If a sample size is too large, statistically significant outcomes may be 
theoretically detected that may not be clinically relevant (type 1 error). This, however, 
is rarely a concern as studies are rarely overpowered to balance the study power with 
the cost. On the other hand, if a sample size is too small then a clinically significant 
outcome may not be detected statistically (type 2 error)[2,3]. The reporting of SSE in 
randomised controlled trials (RCTs) is a standard requirement according to the consol-
idated standards of reporting trials (CONSORT) statement which was introduced as a 
guide to conducting RCTs in 1996[4].

In a previous systematic review[5], we showed that 25% of RCTs on interventions 
for inflammatory bowel disease (IBD) have no power calculation (PC). A third of those 
who report PC do not achieve their target sample size. Based on those results, we 
decided to conduct a further systematic review.

We set out to systematically review RCTs on interventions for the IBD management, 
extract the vital parameters needed for sample size calculations, and synthesise the 
data to demonstrate whether trials across the field are adequately powered. We also 
set out to use the actual clinical data across these comparisons to synthesise data for 
minimum sample sizes that would achieve appropriate power to support future 
researchers designing trials and performing SSEs.

MATERIALS AND METHODS
This review was performed in alignment with Cochrane guidelines[6] in April 2020 
and reported in line with the Preferred Reporting Items for Systematic Reviews and 
Meta-analyses statement[7].

Eligibility criteria
We followed the sampling methodology described within our systematic review 
protocol (uploaded within our institutional repository)[8] used for our previous 
review of the reporting of sample size calculations[5].

In brief, we included RCTs investigating either induction or maintenance therapy 
with biologics, immunomodulators, and microbiome against control, placebo, or no 
intervention. We conducted a comprehensive search of the Cochrane IBD Specialized 
Trials Register, CENTRAL, Cochrane library of IBD reviews for primary RCTs. The 
search terms are presented in Supplementary material.

http://creativecommons.org/Licenses/by-nc/4.0/
http://creativecommons.org/Licenses/by-nc/4.0/
http://creativecommons.org/Licenses/by-nc/4.0/
https://www.wjgnet.com/1007-9327/full/v27/i43/7572.htm
https://dx.doi.org/10.3748/wjg.v27.i43.7572
https://f6publishing.blob.core.windows.net/e8e215bd-eee5-42cd-b918-782e0853ba62/WJG-27-7572-supplementary-material.pdf
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We included RCTs published since 1996 (after the publication of the CONSORT 
statement). We excluded reports lacking clear information on the number of 
participants; cluster RCTs; pilot or feasibility studies; studies with mixed population of 
people with and without IBD; studies on secondary analyses of follow-up data 
collection after discontinuation of treatment. We excluded abstracts as these rarely 
allow space for such information to be presented. As we wanted to assess the 
established evidence for a PC of treatment for the IBD, we excluded RCTs describing 
all interventions where work may be at phase 3 (pharmacological: e.g. ustekinumab, 
golimumab, tofacitinib) or not under the three core headings (biologic, immunomodu-
lators or anti-inflammatories).

Complying to the above search strategy, two authors (SL and MG) identified RCTs 
titles that appeared to be applicable. These were independently screened and in cases 
of disagreement, a third review author (VS) was involved to reach consensus. Two 
review authors independently extracted and recorded data on a predefined checklist. 
When disagreements occurred, a third review author was involved, and the consensus 
was reached.

We created an excel document to extract data regarding the trials. Firstly, we 
separated the studies into 8 categories [Crohn’s disease (CD)–clinical relapse, clinical 
remission, endoscopic relapse, endoscopic remission; ulcerative colitis (UC)–clinical 
relapse, clinical remission, endoscopic relapse, endoscopic remission]. Secondly, we 
grouped the studies according to the intervention used. One author extracted the data, 
and in case of any problems, the data was checked by the second author.

The extracted data although is not available publicly can be obtained via direct 
contact with authors. The references of the included stuidies can be found in Supple-
mentary material.

Extracted data included
(1) Number of events and participants originally assigned to each group; (2) Character-
istics of participants; (3) The proportion that we calculated according to the number of 
events and participants (x = n/N), in which n is a number of events and N is a number 
of participants); (4) The difference achieved that we calculated according to the 
proportions of two groups (proportion 1–proportion 2); (5) Intervention and control 
details; (6) Presence of SSE and calculation details [minimal clinically important 
difference (MCID) used for PC, power, significance level, target sample size]; and (7) 
Outcomes (the number of patients recruited and completing study; the number of 
treatment success/failures; and the difference achieved).

We used the studies in which intervention was compared to the control or placebo. 
We grouped those studies according to the interventions, type of treatment (induction, 
maintenance), and outcomes (relapse, remission) and calculated mean difference and 
mean MCID where it was possible.

After resolving all the inconsistencies with data extraction regarding the use of 
sample size calculations for the studies with achieved difference of less than 10%, we 
produced two tables (Tables 1 and 2). We recalculated sample size for those groups 
using the power of 80%, probability of type 1 error 0.05, and the achieved difference. 
We used those parameters as they were the most commonly used amongst the studies. 
The parameters we used were two independent groups, dichotomous outcomes. In 
group 1 we have put the rate reported by the study of the intervention drug, and in 
group 2 we have put the rate of the placebo.

The small lest MCID that was reported by the studies was 10%, thereby, we decided 
to not reproduce PC for those studies with the achieved difference of less than 10%. 
We also calculated the mean sample deficit in percentage based on the target sample 
size and achieved sample size reported by the studies.

After receiving the sample size of participants, we made a decision whether the 
study is underpowered, and if yes, then by how many people.

Data synthesis
We produced descriptive statistics regarding the sample sizes for the studies grouped 
according to the interventions (Tables 1 and 2).

Ethical statement
As all data included already existed within the published scholarly output, no ethical 
approval was sought.

https://f6publishing.blob.core.windows.net/e8e215bd-eee5-42cd-b918-782e0853ba62/WJG-27-7572-supplementary-material.pdf
https://f6publishing.blob.core.windows.net/e8e215bd-eee5-42cd-b918-782e0853ba62/WJG-27-7572-supplementary-material.pdf
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Table 1 Overall summary of power calculations and sample size deficits

Total 
studies

Studies with 
power 
calculation

Studies with 
difference of 
10% and less1

How many 
studies didn’t 
achieve target 
sample size

Mean sample size 
underpowered 
(range)

Mean 
sample 
size 
needed

How many studies 
are underpowered2

CD induction 39 26 12 6 28 (2-70) 231 11

CD 
maintenance

25 19 9 3 52 (7-79) 300 10

UC induction 27 19 8 3 22 (1-55) 219 4

UC 
maintenance

16 10 0 1 + 1 didn’t report 21 196 7

1Those studies were not included in analysis.
2Either didn’t achieve their target sample size, or their achieved sample size is less than mean sample size needed.
UC: Ulcerative colitis; CD: Crohn’s disease.

RESULTS
A total of 7451 potential citations were screened and 308 full texts assessed for 
eligibility. There were 209 texts excluded, 106 because they were published prior to the 
release of the CONSORT statement and 103 because they did not match our inclusion 
outcome. This left a total of 99 trials included, with 60 pertaining to CD and 39 to UC. 
The full details are shown in Figure 1.

The mean proportion of patients achieving clinical remission reported within the 
placebo groups of induction studies was 34.34% in CD trials and 26.79% for UC. For 
endoscopic remission, 0% in CD and 29.6% for UC. The mean proportion of patients 
achieving clinical relapse for maintenance studies were 55% for CD and 46.79% for 
UC. For endoscopic relapse, 78.85% in CD, and 28.7% in UC.

Within CD induction studies, 26 out of 41 (63.4%) reported a PC and 19 of 26 (73.1%) 
in maintenance studies. Within UC induction studies, 22 out of 31 (71%) reported a PC 
and 10 of 17 (58.8%) in maintenance studies.

When considering the MCID that those studies reporting a PC employed for this 
calculation, within CD induction studies the mean difference was 33% (range 20%-
50%) and 27% difference for maintenance studies (15%-40%). Within UC induction 
studies the mean was 26% (range 19%-40%) and 27% for maintenance studies (18%-
40%). The MCIDs these studies reported rarely matched the actual differences 
achieved by these studies. In fact, the discrepancy between this estimated figure for 
the MCID used for the PC and the actual differences seen were a mean of 22.8% higher 
in CD induction studies, 13.8% higher in maintenance studies, 15.7% higher in UC 
induction studies, and 10.2% higher in maintenance studies.

These discrepancies are proportionally large and in the context of PCs are clearly 
substantial and led to large numbers of studies being underpowered. These are 
summarised in Table 1. Study specific data with further details is available upon 
request.

Table 2 gives the results of our sample size calculations at the intervention specific 
level that employed the actual achieved clinical differences from previous studies, 
using the power of 80% and the probability of type 1 error 0.05. This shows the 
minimum sample sizes that would be indicated for RCTs compared with placebo to 
use. Within comparisons where the mean difference was less than 10%, no calculation 
has been given as this would be a very high indicative figure.

DISCUSSION
Within this review, it has been demonstrated that there is no clear basis or accepted 
standard for current practice for MCID estimation when producing a PC for a primary 
RCT within IBD. This has led to huge variations in suggested figures for recruitment. 
These trials present practical and logistical challenges to organisers, with potential 
inconvenience to patients, as well as the cost to those funding such research. Having 
an accurate figure for calculations is important to ensure this investment of resource is 
used most efficiently and effectively. It is key to note that we are not commenting at 
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Table 2 Proposals for minimum clinically important difference and associated power calculations for future studies

Ulcerative 
colitis-
comparison

Ulcerative colitis-
difference achieved 
(Group 1–Placebo)

Ulcerative colitis-
Minimum sample size 
needed based on data

Crohn’s disease-
comparison

Crohn’s disease-
difference achieved 
(Group 1–Placebo)

Crohn’s disease-
Minimum sample size 
needed based on 
data

Induction studies

Outcome–clinical remission Outcome–clinical remission

Glutamine-enriched diet 
vs Placebo

-11.1 634

Azathioprine vs Placebo -3.6% NA

Vedolizumab vs 
Placebo

14.8% 190

6-MP vs Placebo 5% NA

Fecal Transplant 
vs Control

20.3% 150 6-MP vs Placebo 5% NA

Budesonide vs 
Placebo

6.5% NA Interventional diet vs 
Control diet

20.9% 160

Type 1 IFNs vs 
Placebo

5.9% NA Elemental diet vs Non 
elemental diet

1.6% NA

N6/N9 rich feeds vs non 
N6/N9 rich food

-1.1% NAEtrolizumab vs 
Placebo

13.4% 140

Low dose naltrexone vs 
Placebo

9% NA

5-ASA vs Placebo 11.8% 422 GM-CSF vs Placebo 7.8% NA

Outcome–endoscopic remission Brakinumab vs Placebo 8.5% NA

Ustekinumab vs Placebo 8.6% NAVedolizumab vs 
Placebo

37.7% 182

Natalizumab vs Placebo 14.8% 310

Fecal Transplant 
vs Control

26.4% 160 Methotrexate vs Placebo -14.8% 350

Budesonide vs 
Placebo

13.9% NA Antibiotics vs Placebo 10% 780

Methotrexate vs 
Placebo

46.7% NA Outcome–endoscopic 
remission

Etrolizumab vs 
Placebo

7.7% NA

5-ASA vs Placebo 53.7% 306

Low dose naltrexone vs 
Placebo

22.2% 60

Maintenance studies

Outcome–clinical relapse Outcome–clinical relapse

5-ASA vs Placebo -16.4% 290 5-ASA vs Placebo, 
medically induced

3.1% NA

Vedolizumab vs 
Placebo

-27.4 84 5-ASA vs Placebo, 
surgically induced

-5.4% NA

Interventional diet 
vs Control diet

-3.6% NA Anti-TB vs Placebo -23% 130

Probiotics vs 
Control

-16.7 154 Azathioprine vs Placebo, 
medically induced

-9.9% NA

Azathioprine vs 
Placebo

-22.4 154 Azathioprine vs Placebo, 
surgically induced

-17.3% 254

Methotrexate vs 
Placebo

19.9% 194 6-MP vs Placebo, 
surgically induced

-10.9% 646

Rectal 5-ASA vs 
Placebo

-29% 90 Omega -3 fatty acids diet 
vs Control diet

-8.5% NA

Curcumin vs 
Placebo

-9.6% NA Elemental diet vs No 
supplemets

-29.4% 88
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Outcome–endoscopic relapse Interventional diet vs 
Control diet

-2.5% NA

Antibiotics vs Placebo -14.6% 360Vedolizumab vs 
Placebo

-34 60

Methotrexate vs Placebo -24.2% 128

Methotrexate vs Placebo -24.2% 128

Outcome–endoscopic relapse

5-ASA vs Placebo 2.7% NA

Azathioprine vs Placebo -23% 130

6-MP vs Placebo -3.8% NA

5-ASA vs Placebo -16.4% 290

Antibiotics vs Placebo 6.6% NA

Induction studies

Outcome–clinical remission Outcome–clinical 
remission

Glutamine-enriched diet 
vs Placebo

-11.1 634

Azathioprine vs Placebo -3.6% NA

Vedolizumab vs 
Placebo

14.8% 190

6-MP vs Placebo 5% NA

Fecal Transplant 
vs Control

20.3% 150 6-MP vs Placebo 5% NA

Budesonide vs 
Placebo

6.5% NA Interventional diet vs 
Control diet

20.9% 160

Type 1 IFNs vs 
Placebo

5.9% NA Elemental diet vs Non 
elemental diet

1.6% NA

N6/N9 rich feeds vs non 
N6/N9 rich food

-1.1% NAEtrolizumab vs 
Placebo

13.4% 140

Low dose naltrexone vs 
Placebo

9% NA

5-ASA vs Placebo 11.8% 422 GM-CSF vs Placebo 7.8% NA

Outcome–endoscopic remission Brakinumab vs Placebo 8.5% NA

Ustekinumab vs Placebo 8.6% NAVedolizumab vs 
Placebo

37.7% 182

Natalizumab vs Placebo 14.8% 310

Fecal Transplant 
vs Control

26.4% 160 Methotrexate vs Placebo -14.8% 350

Budesonide vs 
Placebo

13.9% NA Antibiotics vs Placebo 10% 780

Methotrexate vs 
Placebo

46.7% NA Outcome–endoscopic remission

Etrolizumab vs 
Placebo

7.7% NA Low dose naltrexone vs 
Placebo

22.2% 60

5-ASA vs Placebo 53.7% 306

Maintenance studies

Outcome–clinical relapse Outcome–clinical relapse

5-ASA vs Placebo -16.4% 290 5-ASA vs Placebo, 
medically induced

3.1% NA

Vedolizumab vs 
Placebo

-27.4 84 5-ASA vs Placebo, 
surgically induced

-5.4% NA

Interventional diet 
vs Control diet

-3.6% NA Anti-TB vs Placebo -23% 130

Probiotics vs 
Control

-16.7 154 Azathioprine vs Placebo, 
medically induced

-9.9% NA
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Azathioprine vs 
Placebo

-22.4 154 Azathioprine vs Placebo, 
surgically induced

-17.3% 254

Methotrexate vs 
Placebo

19.9% 194 6-MP vs Placebo, 
surgically induced

-10.9% 646

Rectal 5-ASA vs 
Placebo

-29% 90 Omega -3 fatty acids diet 
vs Control diet

-8.5% NA

Curcumin vs 
Placebo

-9.6% NA Elemental diet vs No 
supplemets

-29.4% 88

Outcome–endoscopic relapse Interventional diet vs 
Control diet

-2.5% NA

Antibiotics vs Placebo -14.6% 360Vedolizumab vs 
Placebo

-34 60

Methotrexate vs Placebo -24.2% 128

Methotrexate vs Placebo -24.2% 128

Outcome–endoscopic relapse

5-ASA vs Placebo 2.7% NA

Azathioprine vs Placebo -23% 130

6-MP vs Placebo -3.8% NA

5-ASA vs Placebo -16.4% 290

Antibiotics vs Placebo 6.6% NA

NA is put when the difference achieved is less than 10% (which is the least Minimal Clinically Important Difference used by the studies).

Figure 1 Study flow diagram. UC: Ulcerative colitis; CD: Crohn’s disease.

the individual study level. It is inappropriate to look at the projected MCID and PC for 
a project, if calculated on a reasonable basis, to then retrospectively suggest that the 
findings of a lesser MCID mean it is underpowered. This not just statistically inappro-
priate, but methodologically flawed. However, these findings propose that the basis 
for such MCID estimations is at worst unclear and often can be seen as flawed.

There are further ethical issues these problems raise, such as being forced to give 
treatments to people without having a statistically proved effect or a high certainty 
result within the Grading of Recommendations Assessment, Development and 
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Evaluation analysis (due to reasons of imprecision from statistical sampling issues). 
The power of a study, therefore, has huge implications on the precision of estimates in 
the future analysis of data and in turn clinical practice guidelines. Within this review, 
30% of studies appeared to be underpowered based on actual achieved clinical 
differences within the wider comparable evidence base, with mean sample size deficits 
up to 79 patients per trial. This does impact the overall certainty of the global evidence 
base within IBD, with precision a key limitation downgrading many outcomes within 
key guidelines across dozens of interventions.

Within this review, we present a resource for SSE not just for future study authors, 
but for study peer reviewers and most importantly professionals and the patients. This 
table gives an estimated PC result for a minimum sample size based on all existing 
studies within this period. Rather than being based on just single studies or clinical 
judgement, these represent estimates based on actual achieved clinical data and to our 
knowledge are the first time such a resource has ever been provided for researchers in 
the field or indeed for readers of future research. Additionally, for those wishing to 
calculate key statistics and measures of outcome from their primary studies, this paper 
provides a systematic and objective resource for baseline risk. This could be used for 
calculating numbers needed to treat or harm, for example.

This resource can be used by study designers to prevent PCs based on studies that 
offer a high MCID and as such a lower minimum sample size than is actually 
warranted. Conversely, it prevents unnecessary over recruitment. Funders can use this 
to appropriately budget and ensure viability of studies. Ethics boards and other 
governance groups will be able to consult this resource to support their consideration 
of research proposals.

There were a number of comparisons where the difference in practice was below 
10% and it was deemed inappropriate to make a calculation in such cases, as no 
previous study has ever indicated an MCID below 10% as clinically significant to 
patients or practice. In these cases, consideration should be given to the overall figures 
presented in Table 2 or minimum sample size and MCID in practice in a similar 
context.

We would also recommend that in practice, patients and key stakeholders should be 
involved in deciding on an MCID for a given intervention prior to a new study. They 
may indicate that in spite of any existing MCID evidence that such a difference is not 
significant enough to matter to those who are most impacted by the findings and such 
views must be reflected in the process of SSE. It is also worth noting that there will 
always be settings and contexts when deviation may be warranted, thereby, a resource 
is not prescriptive but rather presented as evidence-based guidance. We would, 
however, propose that such deviations can and should be justified to support 
transparency for the readings these trials report.

There are weaknesses and exceptions to these approaches. The search methods used 
limited the parameters of the search for pragmatic reasons. However, this does not 
represent any systematic bias, hence we do not believe it invalidates the findings, and 
in the future this resource can be updated prospectively. When the achieved difference 
was less than 10%, rather than reporting extremely large sample size calculations, no 
such calculation was made. Additionally, in studies comparing active agents, accurate 
estimates are needed based on the contexts as the hypothesis may not be of the 
inferiority or superiority but of no difference, which requires a different approach to 
calculations.

There were some limitations to this review. There are obvious issues of hetero-
geneity limiting the appropriateness of pooling the data, however, the only way to 
obtain the previously used MCID was through looking at the past studies. These are 
mainly related to missing or unclear information in primary studies regarding SSE and 
as authors were not contacted, assumptions were made for the basis of these 
calculations which could confer some inaccuracy in our estimations. We also limited 
our studies to those from after the CONSORT statement release as we felt this was a 
fair time from which to expect SSE to occur, but earlier studies could potentially have 
offered more insight. Finally, we have focussed on studies comparing treatment with 
placebo or no intervention. This was a pragmatic decision as many studies of agents 
choose to make this comparison, although often these do not reflect current standard 
clinical practice. In the cases of such comparisons, SSE may not have to be based on a 
MCID but instead assume clinical equivalency and therefore be informed differently. 
In essence, this guidance may not be relevant for these scenarios, although may inform 
statistical considerations within similar contexts. Finally, such a resource of course is 
likely to become inaccurate rapidly, with the need for updates, but as often no such 
resource is employed, we believe this is still an improvement on current practices.
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Future researcher is needed to potentially validate the calculations with clinical and 
patient input to ensure the SSE and MCID that the data informs has clinical, as well as 
statistical relevance. This could lead to a more triangulated resource that is statistically 
and evidentially sound, but also clinically sound and patient informed. This could 
conceivably lead to increases or decreases in minimally important differences to reflect 
complexity in specific clinical scenarios and interventional contexts.

CONCLUSION
In conclusion, a third of intervention IBD studies within the last 25 years are 
underpowered, with large variations in the approaches to calculating sample sizes and 
the minimum clinically important differences. The authors present a sample size 
estimate resource based on the published evidence base for future researchers and 
other key stakeholders within the IBD trial field.

ARTICLE HIGHLIGHTS
Research background
A third of randomised controlled trials (RCTs) on interventions for inflammatory 
bowel disease (IBD) have no adequate power calculation (PC).

Research motivation
A key element of PCs is an estimation of a minimally important clinical difference. The 
basis of these is capricious within the literature, with many not based on any existing 
or prior studies and as such can lead to massive shifts in PCs for similar studies, with 
concerns as to the underlying power.

Research objectives
We systematically reviewed RCTs reporting interventions for the management of IBD 
and to producted a resource for minimum clinically important difference using clinical 
data for the future researchers to use as a starting point.

Research methods
We included RCTs retrieved from Cochrane IBD trial register and CENTRAL invest-
igating anti-inflammatory, immunomodulator and biologic therapies for either 
induction or maintenance of remission against control, placebo, or no intervention of 
IBD in patients of any age. The data was extracted and synthesized. We recalculated 
sample size and the achieved difference, as well as minimum sample sizes and 
presented in a tabular format.

Research results
Of 105 trials were included. A large discrepancy between the estimated figure for the 
minimal clinically important difference used for the calculations (15% differences 
observed vs 30% used for calculation) was observed explaining substantial actual 
sample size deficits. The minimum sample sizes indicated for future trials based on the 
25 years of trial data were calculated and grouped by the intervention.

Research conclusions
There are large variations in the sample size calculatins in the studies of interventions 
for IBD with a third of all studies being underpowered. The authors present a sample 
size estimate resource constructed on the published evidence base for future 
researchers and key stakeholders within the IBD trial field.

Research perspectives
The use of this resource will support research staff, ethics committees and journal 
editors in ensuring adequate sample sizing and powering of studies across the field.
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