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Abstract
S-palmitoylation is one of the most common post-translational modifications in 
nature; however, its importance has been overlooked for decades. Crohn’s disease 
(CD), a subtype of inflammatory bowel disease (IBD), is an autoimmune disease 
characterized by chronic inflammation involving the entire gastrointestinal tract. 
Bowel damage and subsequent disabilities caused by CD are a growing global 
health issue. Well-acknowledged risk factors for CD include genetic susceptibility, 
environmental factors, such as a westernized lifestyle, and altered gut microbiota. 
However, the pathophysiological mechanisms of this disorder are not yet compre-
hensively understood. With the rapidly increasing global prevalence of CD and 
the evident role of S-palmitoylation in CD, as recently reported, there is a need to 
investigate the relationship between CD and S-palmitoylation. In this review, we 
summarize the concept, detection, and function of S-palmitoylation as well as its 
potential effects on CD, and provide novel insights into the pathogenesis and 
treatment of CD.
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Core Tip: S-palmitoylation is one of the most common post-translational modifications 
in nature; however, its importance has been overlooked for decades. Crohn’s disease 
(CD) is an autoimmune disease characterized by chronic inflammation of the entire 
gastrointestinal tract, whose underlying mechanisms of action remain poorly 
understood. Recent studies have revealed a key role of S-palmitoylation in CD; 
therefore, there is a need to elucidate the relationship between CD and S-
palmitoylation. This review summarizes the basic facts of S-palmitoylation and its 
potential effect on CD to provide novel insights into the pathogenesis and treatment of 
CD.

Citation: Cheng WX, Ren Y, Lu MM, Xu LL, Gao JG, Chen D, Kalyani FS, Lv ZY, Chen CX, 
Ji F, Lin HN, Jin X. Palmitoylation in Crohn’s disease: Current status and future directions. 
World J Gastroenterol 2021; 27(48): 8201-8215
URL: https://www.wjgnet.com/1007-9327/full/v27/i48/8201.htm
DOI: https://dx.doi.org/10.3748/wjg.v27.i48.8201

INTRODUCTION
Cysteine palmitoylation or S-palmitoylation is the process of adding a 16-carbon 
saturated fatty acyl chain to the sulfhydryl group of cysteine residues of proteins via a 
labile thioester bond[1,2]. Initial reports on the modification of proteins by palmitate 
using 14C-labeled palmitic acid date back to the 1970s. Evidence supporting the 
modification of cysteine residues emerged in the 1980s[3]. Since then, accumulating 
evidence has shown that over 2000 proteins are S-palmitoylated in mammals, as 
documented in SwissPalm, an S-palmitoylation database (https://swisspalm.org/). 
Nevertheless, although S-palmitoylation widely occurs in nature, similar to 
phosphorylation, acetylation, and ubiquitination, its importance in human health and 
disease has been overlooked over the years. In fact, there are currently no approved 
drugs known to target S-palmitoylation. Crohn’s disease (CD), a subtype of inflam-
matory bowel disease (IBD), is characterized by chronic inflammation of the 
gastrointestinal tract with or without systemic symptoms, leading to bowel damage 
and disability[4]. Currently, genetic susceptibility, environmental factors, such as a 
western lifestyle, and an altered gut microbiota are well-known risk factors for CD[5]. 
However, the detailed mechanism underlying this disorder has yet to be elucidated. 
With the rapidly increasing global prevalence of CD[6] and recent reports on the effect 
of S-palmitoylation on CD[7], evaluating the relationship between CD and S-
palmitoylation is a meaningful effort to gain insights into pathogenesis and treatment 
of CD. In this review, we summarize the concept, measurement, and function of S-
palmitoylation, as well as its potential effect on CD, with the aim of providing insights 
into the pathogenesis and treatment of CD.

OVERVIEW OF PROTEIN CYSTEINE PALMITOYLATION
Enzymes controlling S-palmitoylation
The addition of S-palmitoylation is catalyzed by palmitoyltransferases. Known 
palmitoyltransferases belong to the zinc finger aspartate-histidine-histidine-cysteine 
(ZDHHC) family[2]. There are 23 ZDHHC proteins in humans and mice, using 
palmitoyl-CoA as the major palmitoyl donor to acylate substrate proteins[8]. It should 
be noted that even though proteins prefer palmitoyl-CoA, they are also able to utilize 
other similar acyl-CoA molecules as substrates; therefore, some researchers prefer to 
use S-acylation over S-palmitoylation as a more general term to reflect the use of 
several different long-chain fatty acyl groups. Here, the term S-palmitoylation is used 
to represent all similar long-chain acylations on cysteine catalyzed by ZDHHCs. In 
most cases, these acylations are likely to have similar functions; thus, there is no need 
to specifically differentiate them for the purpose of this review.

ZDHHC proteins are integral membrane proteins with at least four transmembrane 
helices (Figure 1A). The conserved DHHC cysteine-rich domain is present in the 
intracellular loop between transmembrane domains 2 and 3[1]. The cysteine residue in 

https://creativecommons.org/Licenses/by-nc/4.0/
https://creativecommons.org/Licenses/by-nc/4.0/
https://creativecommons.org/Licenses/by-nc/4.0/
https://www.wjgnet.com/1007-9327/full/v27/i48/8201.htm
https://dx.doi.org/10.3748/wjg.v27.i48.8201
https://swisspalm.org/
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Figure 1 Protein S-palmitoylation. A: The ZDHHC-type palmitoyltransferases are integral membrane proteins with at least four transmembrane helices. The 
cysteine rich domain containing the DHHC motif is between the second and third transmembrane helices; B: Scheme showing the palmitoylation and depalmitoylation 
process. ZDHHC are self-palmitoylated first before transferring the palmitoyl group to substrate proteins. Depalmitoylation is catalyzed by the alpha/beta hydrolases.

the conserved DHHC motif is known to serve as a catalytic nucleophile that reacts 
with the thioester bond in palmitoyl-CoA, forming a palmitoyl-enzyme intermediate, 
which then relays the palmitoyl group to the cysteine residues in the substrate proteins
[1,2,8]. The crystal structure of DHHC20 has been reported[9], providing a structural 
basis for understanding this class of enzymes. Although S-palmitoylation is not a very 
stable modification due to the chemically labile nature of the thioester bond, the 
removal of S-palmitoylation is known to be catalyzed by several depalmitoylases 
(Figure 1B), including acyl protein thioesterase (APT1 and APT2), α/β-hydrolase 
domain 17 (ABHD17A/B/C/D), and α/β-hydrolase domain 10 (ABHD10)[1,10]. These 
enzymes belong to the alpha-beta hydrolase family, with a catalytic serine residue in 
the active site.

Functions of S-palmitoylation
The most common function of S-palmitoylation is to promote the membrane 
localization of proteins. This can be easily appreciated from a recent review that listed 
many S-palmitoylated proteins and the function of S-palmitoylation[1]. This function 
is consistent with the hydrophobic nature of the palmitoyl group, which is especially 
true for peripheral membrane proteins (proteins without integral transmembrane 
domains). One well-known example is the small GTPases of the Ras subfamily, H-Ras, 
N-Ras, and K-Ras4a[1,11]. These proteins are soluble cytosolic proteins, but function at 
the plasma membrane or intracellular membranes. Their targeting to the plasma 
membrane requires prenylation and palmitoylation at the C-terminal sequence. 
Interestingly, it has been shown that the palmitoylation-depalmitoylation cycle helps 
to actively promote the trafficking of Ras to the plasma membrane. Several non-
receptor tyrosine kinases, such as Fyn and Lyn, also require palmitoylation to target 
the plasma membrane.
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Many integral membrane proteins are also palmitoylated. Integral membrane 
proteins contain transmembrane domains; thus, in principle, they should not require 
palmitoylation for membrane targeting. Instead, many reports indicate that 
palmitoylation promotes the targeting of these proteins to lipid rafts, which are 
specific membrane microdomains. This phenomenon requires further exploration in 
future studies. Other functional effects of S-palmitoylation have also been reported, 
including the regulation of protein stability and the aggregation of proteins[1,8]. 
However, the exact mechanism of these effects is unclear and may be indirectly caused 
by the membrane-targeting effect of S-palmitoylation.

Methods for detecting S-palmitoylation
Many convenient tools have been developed for the study of S-palmitoylation, making 
it relatively easy to study compared to other post-translational modifications. The 
chemically labile nature of S-palmitoylation has enabled the development of several 
methods for its detection, including acyl-biotin exchange (ABE)[12,13], acyl-resin-
assisted capture (Acyl-Rac)[14], and acyl-PEG exchange (APE)[1,15] (Figure 2A). A 
common procedure for these methods is to first cap free cysteine residues using a 
cysteine alkylation reagent, such as iodoacetamide or N-ethyl maleimide. Next, 
hydroxylamine is used to break down palmitoyl cysteine and release it as a free 
cysteine. The newly released free cysteine is then captured using a thiol-reactive group 
(HPDP-biotin in ABE, thiol-reactive resin in acyl-RAC, and thiol-reactive PEG in APE). 
In ABE, the biotinylation of palmitoylated proteins allows for affinity pulldown using 
streptavidin beads, and the palmitoylated proteins can then be detected after protein 
electrophoresis and western blotting, or analyzed by mass spectrometry (MS) in 
proteomic studies. In acyl-RAC, the palmitoylated proteins are pulled down using a 
resin and then analyzed using MS in proteomic studies. In a typical procedure for MS 
detection, the modified peptide is usually not detected by mass spectrometers because 
it is modified with a large biotin molecule or retained on the resin. However, certain 
modifications to this procedure can facilitate the detection of palmitoylated peptide. In 
APE, a large PEG molecule is attached to the palmitoylated protein of interest, which 
can change the protein size, which in turn can determine the number of palmitoyl 
cysteine modifications on the protein.

The ABE and acyl-RAC methods have the advantage of being able to detect S-
palmitoylation in animal tissues as they reflect the endogenous palmitoylation level of 
endogenous proteins. A disadvantage of these methods is that there is no information 
on the identity of the acyl group on the cysteine residues as the hydroxylamine 
treatment removes all acyl modifications on cysteine residues. Theoretically, a short-
chain acyl group modification could mistakenly be identified as palmitoylation; 
however, we are not aware of any such report for any protein. Another potential 
disadvantage is that a certain protein’s S-palmitoylation may be hydroxylamine-
resistant and, therefore, may affect the outcome in acyl exchange assays[16].

A complementary method that could address the limitations of these acyl-exchange 
methods is metabolic labeling with labeled fatty acid analogs (Figure 2B). Although 14

C-labeled palmitic acid was commonly used in early studies, a more convenient and 
sensitive method that has become commonly used in recent decades is that of clickable 
fatty acid analogs. This method typically uses an alkyne-tagged fatty acid, such as 
Alk14, which has 16 carbons similar to palmitic acid, but ends with a C-C triple bond 
at the end[17,18]. The structure of Alk14 is very similar to that of palmitic acid and can 
be efficiently utilized by cellular machinery to convert to the corresponding acyl-CoA 
and acylate proteins. The Alk14-modified protein can then be conjugated to an azide-
containing fluorescent or biotin tag using a highly efficient copper-catalyzed cyclo-
addition reaction. The conjugation of a fluorescent dye allows for the in-gel fluorescent 
detection of the Alk14 modification, while the conjugation of biotin allows for affinity 
purification and MS identification in proteomic studies.

The Alk14 Labeling method is in many ways comparable to ABE, as both allow for 
the gel-based detection of the S-palmitoylation of proteins of interest and proteomic 
studies. Alk14 Labeling does not require S-palmitoylation to be sensitive to 
hydroxylamine and can readily label proteins with dynamic palmitoylation. In 
contrast to ABE, Alk14 Labeling reflects the ability of a protein to be palmitoylated, but 
it is technically not the endogenous palmitoylation and is rarely used in animal 
studies. Generally, Alk14 Labeling and ABE are highly complementary to each other, 
with Alk14 demonstrating the palmitoylation of target proteins and ABE able to 
determine endogenous modifications on endogenous proteins. These two methods are 
often used simultaneously to confirm the S-palmitoylation of a protein of interest.



Cheng WX et al. Palmitoylation in Crohn’s disease

WJG https://www.wjgnet.com 8205 December 28, 2021 Volume 27 Issue 48

Figure 2 Commonly used methods for detecting S-palmitoylation. A: Scheme showing how acyl-biotin exchange (ABE), acyl-resin assisted capture 
(acyl-RAC), and acyl-PEG exchange (APE) work; B: Scheme showing how metabolic labeling with alkyne-tagged fatty acid analogs works. ABE: Acyl-biotin 
exchange; acyl-RAC: Acyl-resin assisted capture; APE: Acyl-PEG exchange.

In comparison to other modifications, such as lysine acetylation, these detection 
methods make S-palmitoylation relatively straightforward to study. For lysine 
acetylation, a pan-acetyl-lysine antibody is typically used for affinity pull-down 
modified proteins, which are then subjected to MS analysis[19]. For a given protein of 
interest, it can be pulled down using immunoprecipitation, and then acetyl-lysine 
modification can be detected using western blotting with pan-acetyl-lysine antibodies. 
These studies rely heavily on the pan-acetyl-lysine antibody, which is expensive and 
may not work for all acetyl-lysine peptides. For S-palmitoylation, there is no antibody 
currently available, but acyl exchange methods and metabolic labeling methods have 
been found to work extremely well.

Methods for studying the functional effects of S-palmitoylation
To investigate the function of palmitoylation on a particular protein, the most common 
method involves the identification of the site of palmitoylation, followed by the 
evaluation of the effect of cysteine to serine or alanine mutations on protein function. 
Typically, the occurrence of cysteine residues in proteins is less frequent compared to 
other modified residues, such as lysine, making the task of mutating all cysteine 
residues in a protein of interest much more practical than mutating all lysine residues. 
If a cysteine residue of a protein is the major palmitoylation site, then mutating it to 
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Ser/Ala would markedly decrease the S-palmitoylation of the protein (detected by 
ABE or Alk14 Labeling). Subsequently, the same mutant can be used to observe 
whether the mutation affects protein localization, stability, and interaction with other 
proteins, as well as other biochemical activities.

The mutagenesis method, although powerful, has limitations. The mutated cysteine 
residue may have other functions (structural function or other modifications), which in 
turn can affect the palmitoylation of the protein; therefore, complementary methods to 
further confirm its function should be used. These complementary methods include 
identifying the ZDHHC enzyme that is responsible for the S-palmitoylation of the 
protein and determining whether the knockdown or knockout of ZDHHC produces 
the same effect as mutating the modified Cys residues. Similarly, identifying and 
disrupting the depalmitoylase also produces results consistent with the mutation of 
palmitoylated Cys. Recently, a method using amber suppression technology and click 
chemistry to insert a palmitoyl cysteine mimic on proteins in live HEK293T cells has 
been reported[20]. This method may allow for the gain-of-function analysis of S-
palmitoylation. However, how closely the palmitoyl cysteine mimic can replicate the 
functional effect of S-palmitoylation remains unclear and will need to be tested in 
more proteins in future studies.

PATHOPHYSIOLOGY AND MOLECULAR PATHWAYS OF CROHN’S 
DISEASE
A brief review of the pathophysiology of Crohn’s disease
It is widely acknowledged that the pathophysiology of CD involves multiple factors, 
including genetic, environmental, microbial, immunologic, epithelial, and gut mucosal 
factors[21-23]. These factors are explored in detail in this section.

Genetic factors: Genome-wide association studies (GWAS) have identified over 240 
risk variants that affect the recognition of microbial products by intracellular pathways 
[such as nucleotide oligomerization domain (NOD)–like receptors 2 (NOD2)], 
autophagy pathways that promote intracellular organelle circulation and the clearance 
of intracellular microorganisms [such as autophagy-related protein 16 Like 1 
(ATG16L1) and immunity-related GTPase M (IRGM)], genes that regulate epithelial 
barrier function [such as extracellular matrix protein 1 (ECM1)], and pathways that 
regulate innate and adaptive immunity [such as interleukin (IL)-23R and IL-10][21,22]. 
Interestingly, known associations between CD and NOD2 gene variants are mainly 
found in patients of European or Jewish origin, but not in patients of Japanese or 
Chinese origin[22,24,25]. Another GWAS study supports this, additionally revealing 
that the tumor necrosis factor superfamily member 15 (TNFSF15) variant is dominant 
in East Asian populations[26]. These results conclusively indicate that different genetic 
factors contribute to CD through different inflammatory pathways.

Environmental factors: A series of environmental factors have been reported to affect 
the incidence of CD, including breastfeeding, living on farms, childhood contact with 
animals, smoking, antibiotic exposure, and dietary pattern[4,27-29]. Although 
inconsistent, breastfeeding, living on farms, and childhood contact with animals are 
believed to represent protective factors for CD[4]. Smoking is one of the most 
consistently reported risk factors for CD and is associated with a two-fold increase in 
the risk of developing CD (OR = 1.76, 95%CI: 1.40–2.22)[4,27,28]. A meta-analysis 
revealed that exposure to antibiotics also markedly increased the risk of CD, especially 
in children (OR = 2.75, 95%CI: 1.724.38)[29]. Low dietary fiber and an increased intake 
of saturated fats are also associated with an increased risk of developing CD[4].

Microbial factors: Although the gut host-microbial relationship is symbiotic, close 
contact between a rich bacterial community and intestinal tissue poses a great risk to 
health. In humans, in excess of 1012/cm3 of bacteria over a span of approximately 200 
m2 are separated from the intestinal tissues by a mere 10-μm epithelial layer[30]. 
Therefore, it is crucial to maintain homeostasis between the microbiota and mucosal 
immunity in the gut. Mucus, defensins, IgA, and RegIIIγ are products of the epithelial 
and immune cells that control the gut microbiota. Certain microbes are beneficial to 
the growth of various T cell subsets, promoting the induction of type 17 T helper 
(Th17), regulatory T (Treg), and type 1 T helper (Th1) cells, and regulate mucosal 
immunity[22,30]. In addition, gut microbes can produce essential components, such as 
vitamin K, an important coagulation cofactor, and short-chain fatty acids, which are 
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energy sources for colon epithelial cells[21,31]. Numerous studies have shown that 
changes in the microbial community result in a dysregulation of homeostasis[31,32]. In 
these studies, CD was associated with a decrease in the total number, diversity, and 
richness of microbial species.

Immune factors: CD arises as a result of chronic gastrointestinal inflammation and is 
associated with tissue destruction via the aberrant expression of pro-and anti-inflam-
matory molecules in response to innate and adaptive immune systems[33,34]. 
Amongst the numerous immune cells involved, Th17 cells regulated by IL-23 play an 
important role in immune regulation in the progression of CD[34-36]. IL-23 not only 
acts on members of the innate immune system but also promotes the proliferation and 
maintenance of Th17 cells. It is generally acknowledged that Th17 cells promote tissue 
inflammation, while Treg cells suppress autoimmunity, which suggests that the 
balance of Th17/Treg cells is crucial in the pathogenesis of CD[37,38]. With the 
development of GWAS, evidence is increasingly supporting the role of the innate 
immune response in the pathological process of CD, which includes epithelial barrier 
integrity, innate microbial sensing, autophagy, and unfolded protein response[34]. 
Other factors, such as injuries of epithelial and mesenchymal cells, changes in 
intestinal permeability, and obesity, also contribute to the pathophysiology of CD.

Important pathways in the pathogenesis of CD
In recent decades, complex molecular pathways have been reported to be involved in 
the pathogenesis of CD. The identification of the main pathways and key factors may 
provide novel therapeutic targets. Current clinical therapies for IBD include anti-
tumor necrosis factor (TNF) antibodies (such as infliximab, adalimumab, and certol-
izumab pegol), anti-IL-12/23 antibodies (such as ustekinumab), anti-sense oligonuc-
leotides inhibiting SMAD7 transcription (such as mongersen), Janus kinase (JAK) 
inhibitors (such as tofacitinib and filgotinib), and anti-adhesion molecules (such as 
vedolizumab, etrolizumab, and anti-MAdCAM1 antibody)[4,39,40]. The main 
pathways and key factors are discussed in detail in this section (Table 1).

Nuclear factor kappa B signaling pathway: The targeting of TNF-α is a first-line 
treatment for CD, as well as for several other autoimmune diseases[40]. TNF-α is a 
pro-inflammatory mediator that plays a crucial role in the immune response to CD. It 
can induce T cell activation, inflammatory cell recruitment to local inflammatory sites, 
edema, coagulation, and granuloma formation[41]. Nuclear factor kappa B (NF-κB) 
signaling is considered the key pathway in lieu of TNF-α. Previous studies have shown 
that CD patients with high NF-κB activation have specific clinical manifestations, such 
as a higher frequency of ileocolonic involvement and higher histologic scores, 
compared to patients with low NF-κB activation[42]. The NF-κB signaling pathway 
also regulates the expression of IL-1, IL-6, IL-12, and IL-23[43-45] which are involved 
in mucosal damage within the inflammatory parts of the intestine. Furthermore, the 
differentiation of Th1 influenced by IL-12, IL-23, and TNF-α is actively involved in CD
[45-47]. Corticosteroids, another first-line drug for the treatment of CD, have 
immunosuppressive effects and can induce the increased expression of IκBα, a key 
factor in the NF-κB pathway. These findings indicate that the NF-κB pathway plays a 
central role in the pathogenesis of CD.

Transforming growth factor-β/SMAD signaling pathway: Transforming growth 
factor-β (TGF-β) is an immunosuppressive cytokine produced by a variety of cells and 
activated by integrins. The role of TGF-β in intestinal immunity has been intensively 
investigated in previous studies[48]. Tregs have been suggested to produce anti-
inflammatory cytokines, such as IL-10 and TGF-β. IL-10 promotes Treg cell prolif-
eration by activating the signal transducer and activator of transcription (STAT)3, 
while TGF-β inhibits the proinflammatory responses of macrophages and effector T 
cells by activating SMAD3 and SMAD4[22]. Therefore, the upregulation of the Treg 
cell population and the reduction of effector T cells in CD indicate that the TGF-β
/SMAD pathway plays a crucial role. In addition, SMAD7 is a downstream target of 
the TGF-β pathway, inhibiting the TGF-β pathway through negative feedback. In CD, 
the expression of SMAD7 is increased, leading to a reduction in SMAD3 
phosphorylation and the suppression of TGF-β signaling, which may contribute to CD 
pathogenesis[48].

JAK/STAT signaling pathway: Although clinical trials using tofacitinib for the 
treatment of CD were canceled due to poor results, the efficacy of filgotinib, a selective 
JAK1 inhibitor, was confirmed in a randomized, double-blind, placebo-controlled 
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Table 1 Primary signaling pathways and relative drug applications of Crohn’s disease

Signaling pathway Relative function Targeted factor Drug application

TNF-α infliximab, adalimumab, and 
certolizumab

IL-12/23 ustekinumab

NF-κB Maintenance of epithelial integrity and intestinal 
immune homeostasis

IκBa corticosteroids

TGF-β/SMAD3 Immunosuppression and fibrosis SMAD7 mongerson

JAK/STAT Immunoregulation, anti-inflammation and epithelial 
barrier function

JAK tofacitinib and filgotinib

α4β7 integrin vedolizumab

α4β7 and αEβ7 integrins etrolizumab

Chemokines/integrins Leukocytes trafficking to targeted location

MAdCAM1 PF-00547659 

Wnt Regulation of epithelial proliferation and gut mucosal 
homeostasis

NA NA

NF-κB: Nuclear factor kappa B; TGF-β: Transforming growth factor-β; JAK: Janus kinase; STAT: Signal transducer and activator of transcription; Wnt: 
Wingless/Int1; TNF-α: Tumor necrosis factor-α; IL: Interleukin; NA: Not available.

phase II trial[49,50]. JAK tyrosine kinases and STAT DNA-binding proteins mediate 
signal transduction and downstream biological effects in response to cytokine receptor 
binding, some of which are associated with CD pathology. The cytokines mentioned 
above, which play essential roles in immunoregulation and the maintenance of 
epithelial barrier function (such as IL-6, IL-10, IL-12, and IL-23) are all dependent on 
JAK/STAT signaling[51]. STAT3 has also been reported to be crucial for the differen-
tiation of Th17 cells and Th17 cell-dependent colitis, such as CD[37,52]. Interestingly, 
there is crosstalk between TNF and the JAK/STAT signaling pathway: TNF can 
amplify JAK-dependent receptor signal transduction by upregulating the expression of 
STAT[53]. Therefore, the role of JAK/STAT in the pathology of CD should be 
emphasized.

Wingless/Int1 signaling pathway: The Wingless/Int1 (Wnt) pathway is a key 
regulator of epithelial proliferation and gut mucosal homeostasis[54,55]. Wnt signaling 
is crucial for maintaining the stability of epithelial homeostasis, where the inhibition of 
this pathway leads to crypt loss and tissue degradation[56]. This pathway stimulates 
the differentiation and maturation of Paneth cells and regulates the expression of the α
-defensins HD5 and HD6, in addition to mediating the stabilization of β-catenin[57]. 
Recently, Courth et al[58] found that the relationship between Paneth cells and bone 
marrow-derived monocytes participates in the mechanism of CD, which is charac-
terized by the reduction of Wnt ligand expression in peripheral blood mononuclear 
cells (PBMCs) to attenuate intestinal barrier function. Furthermore, Wnt signaling is 
involved in various inflammatory signaling pathways, including NF-κB, mitogen-
activated protein kinase (MAPK), protein kinase B (PKB/AKT), and STAT signaling. 
This complex network of signaling pathways may explain the contribution of Wnt to 
inflammatory injury repair[54].

Chemokines and integrins: In CD, chemokines induce the recruitment of immune 
cells to inflamed and epithelial-damaged sites. A highly effective and sequential 
adhesion system is involved in this process, in which integrins are activated by 
chemokines and interact with the addressins on the endothelium. For example, the 
antibody blockade of CCL25/CCR9 has been found to reduce early chronic ileitis in 
mice[59]. In addition, the ligation of CCR9 by CCL25 can result in a conformational 
change in α4β7 integrin, subsequently leading to the stable adhesion of MAdCAM-1
[60]. Collectively, these results indicate that anti-adhesion molecules can be used 
clinically for CD therapy.
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PALMITOYLATION OF MOLECULAR PATHWAYS IN CD
Many of the molecular pathways associated with CD have been reported to be 
modulated by S-palmitoylation. For example, a high frequency of mutations in 
NOD1/2 are found in IBD patients, and ZDHHC5-mediated NOD1/2 palmitoylation 
is responsible for normal gut functions. However, most reported CD-associated 
pathways in which palmitoylation occurs don’t specifically connect CD to 
palmitoylated factors such as Myd88. Myd88 is a component of TLR signaling that has 
been reported to be palmitoylated by ZDHHC6, but its palmitoylation hasn’t been 
associated with a gut phenotype. In CD, Myd88 participates in the recognition of 
extracellular and/or vacuolar intracellular pathogen-associated molecular patterns 
(PAMPs), which mediate sensing of microbial antigens[34]. The effects of 
palmitoylation on function of CD-associated factors need further exploration. Whether 
the effects of palmitoylation on CD symptoms are positive or negative might depend 
on a varied array of factors. Present opinion suggests that the functional effects of 
palmitoylation predominantly act to retain normal gut structures and functions. 
However, it is too early to conclude that all instances of palmitoylation exert positive 
effects. For instance, palmitoylation-mediated NF-kB activation probably results in 
negative consequences for CD patients. In this section, we summarize the S-
palmitoylation events that have been reported to be associated with signaling 
pathways implicated in CD.

Palmitoylation in STING signaling
In the presence of damaged DNA, cyclic GMP-AMP synthase (cGAS) is activated and 
catalyzes the synthesis of cyclic GMP–AMP (cGAMP), which binds and activates its 
receptor stimulator of interferon genes (STING). STING is a membrane protein 
typically associated with endoplasmic reticulum (ER) stress. Upon activation, it 
translocates to the Golgi apparatus, where it is palmitoylated on Cys88 and Cys91, 
most likely by ZDHHC3, ZDHHC7, or ZDHHC15. Cysteine palmitoylation is 
important for its ability to activate TANK-binding kinase 1 (TBK1), which in turn 
phosphorylates interferon regulatory factor 3 (IRF3), which subsequently activates the 
transcription of immune response genes. STING palmitoylation has been proposed to 
promote the localization of STING to lipid rafts in the Golgi apparatus, which recruits 
both TBK1 and IRF3 to allow for downstream signal propagation[61]. Small molecules 
that can covalently label the palmitoylated Cys residues of STING have been identified 
and shown to suppress inflammation[62]. Interestingly, 9- or 10-nitro-oleic acid, which 
can be produced endogenously under inflammation, can also covalently modify the 
Cys residue of STING and inhibit its palmitoylation. This is likely to be a negative 
feedback regulation that inhibits STING signaling[62].

Palmitoylation of NOD1/2
NOD1/2 are receptors for pathogen-associated molecular patterns, sensing bacterial 
peptidoglycans and initiating immune signaling, mainly by activating NF-κB. They are 
cytosolic proteins associated with bacteria-containing phagosomes upon bacterial 
infection. The cysteine palmitoylation of NOD1/2 is important for the phagosome 
translocation of NOD1/2. Palmitoylation occurs on multiple cysteine residues and is 
catalyzed by ZDHHC5[63]. NOD1/2 mutations are also associated with IBD. 
Interestingly, several of these mutations decrease the palmitoylation of NOD1/2 and 
inhibit NF-κB activation[63]. Therefore, methods to modulate the palmitoylation and 
signaling NOD1/2 hold potential for use in the treatment of CD.

Palmitoylation in TNF/TNFR signaling
Intriguingly, both the ligand TNF-α and its receptor TNFR1 are known to be regulated 
by cysteine palmitoylation. TNF-α is palmitoylated on Cys47, however, the enzymes 
regulating palmitoylation have not been reported[64]. Palmitoylation promotes the 
targeting of membrane TNF-α (before cleavage and secretion) to lipid rafts. TNF-α 
palmitoylation does not affect the secretion of soluble TNF-α, but affects the stability of 
the N-terminal intracellular domain[65]. A recent report showed that TNFR1 is 
palmitoylated and that palmitoylation is regulated by APT2 and TNF-α[66]. However, 
the site of modification, the exact ZDHHC responsible for palmitoylation, and the 
effect of palmitoylation on TNF signaling requires further exploration. Given the 
importance of anti-TNF therapy in CD, the palmitoylation of TNF and TNFR1 
deserves further investigation in future studies.
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Palmitoylation in TLR signaling
Toll-like receptors (TLRs) and transmembrane proteins initiate immune signaling by 
sensing PAMPs. A proteomic study identified several TLRs as palmitoylated proteins. 
TLR2 palmitoylation was found to occur on a membrane-proximal cysteine residue, 
Cys609. Palmitoylation is important for TLR2 and NF-κB activation[67]. TLR signaling 
requires an adaptor protein, Myd88, which is palmitoylated on Cys113 and Cys274 by 
ZDHHC6. The palmitoylation of Cys113 is important for the recruitment of 
interleukin-1 receptor-associated kinase 4 (IRAK4) and NF-κB activation. The 
palmitoylation of Myd88 is also affected by the fatty acid synthase (FASN). Small 
molecule inhibitors of FASN reduce Myd88 palmitoylation and NF-κB activation[68]. 
Though no report indicates that Myd88 palmitoylation influences CD, it may exert 
effects related to sensing of microbial antigens, which is mediated by Myd88. 
However, as NF-kB activation displayed a high correlation to clinical CD manifest-
ations, impaired palmitoylation resulting in NF-kB inhibition could be beneficial for 
CD patients.

Palmitoylation in JAK-STAT3 signaling
STAT3-mediated Th17 differentiation is important for IBD. STAT3 is a transcription 
factor that, when phosphorylated by JAK in response to cytokines, such as IL-6, 
activates the transcription of genes that promote Th17 cell differentiation. Recently, 
STAT3 was reported to be regulated by S-palmitoylation of Cys108[7]. Palmitoylation 
is regulated by ZDHHC7 and depalmitoylated by APT2. Interestingly, the 
palmitoylation-depalmitoylation cycle has been found to be important for the 
activation of STAT3. Palmitoylation promotes STAT3 membrane localization and 
phosphorylation by JAK2. However, to translocate to the nucleus, phosphorylated 
STAT3 needs to be depalmitoylated. Therefore, APT2 is required for STAT3 activation. 
Interestingly, APT2 seems to prefer phosphorylated STAT3 over unphosphorylated 
STAT3, which ensures that the palmitoylation-depalmitoylation cycle moves in one 
direction, that which promotes STAT3 activation. Accordingly, the deletion or 
inhibition of either ZDHHC7 or APT2 decreases STAT3 activation, Th17 differen-
tiation, and colitis in a mouse model. Furthermore, APT2 and ZDHHC7 are 
upregulated in human IBD patients, and the levels of IL-17 are closely correlated with 
the levels of APT2. This study provides strong evidence that the palmitoylation of 
STAT3 is a promising target for the treatment of IBD.

STAT3 activation occurs downstream of IL-6 receptor activation. Interestingly, one 
subunit of the IL-6 receptor, IL6ST (also called Gp130), is also regulated by 
palmitoylation. In neurons, ZDHHC5 and ZDHHC8 can palmitoylate IL6ST and 
promote JAK-STAT3 signaling[69]. Thus, it is possible that other proteins in the IL-6 
signaling pathway, in addition to IL6ST and STAT3, could be regulated by cysteine 
palmitoylation. Future studies in this direction could identify additional targets, which 
would prove useful for advances in the treatment of IBD. Currently, there are no 
reports regarding the palmitoylation of the SMAD signaling pathway. However, 
SMAD2 has been reported to work with STAT3 to affect Th17 differentiation[70]. 
Therefore, SMAD signaling may be indirectly affected by STAT3 palmitoylation.

Palmitoylation in chemokine signaling
Inflammation involves the migration of various immune cells to the site of infection or 
inflammation. Thus, the inhibition of immune cell migration is an effective strategy to 
inhibit inflammation and autoimmune responses. Immune cell migration is typically 
mediated by chemotactic chemokine signaling. Multiple components of the chemokine 
signaling pathway can be regulated by cysteine palmitoylation. Chemotactic signaling 
is initiated by the binding of chemotactic ligands to the cell surface G protein-coupled 
receptors (GPCRs). Sphingosine 1-phosphate (S1P) receptor 1 (S1PR1), which binds to 
S1P, is important for the migration of mature T cells from the thymus into the blood 
stream and peripheral lymphoid organs. S1PR1 is palmitoylated by ZDHHC5 on 
multiple Cys residues at the C-terminus, and palmitoylation is important for its 
downstream signaling, which is mediated by trimeric G proteins[71,72]. Similarly, 
another chemotactic receptor, CCR5, is also regulated by cysteine palmitoylation[73]. 
Despite this, there are currently no reports on the palmitoylation of CCR9, which has 
been implicated in CD.

Chemotactic GPCR signaling requires coupling with the downstream trimeric G 
proteins. Interestingly, many trimeric G proteins are known to be regulated by 
palmitoylation[74,75]. Similarly, RGS proteins, which are regulators of G protein 
signaling, are also reported to be regulated by palmitoylation[75-77]. However, most 
of these examples have been reported in neuronal systems, and their role in the 
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regulation of the immune system has yet to be studied extensively. The Rac1 small 
GTPase is important for cytoskeletal reorganization, which is required for immune cell 
adhesion and migration. Rac1 is palmitoylated on Cys176, which promotes its 
targeting to lipid rafts and inhibits its oligomerization, and is required for its signaling 
function. Palmitoylation-deficient Rac1 mutant cells are defective in cell spreading and 
migration[78]. However, the enzymes responsible for regulating Rac1 palmitoylation 
have yet to be identified. Targeting Rac1 palmitoyltransferases may potentially inhibit 
immune cell migration, thus representing a potential strategy for the treatment of 
autoimmune diseases.

POTENTIAL OF PALMITOYLATION SITES AS DRUG TARGETS IN CD
Accumulating evidence has recently provided novel insights into the role of 
palmitoylation in the pathological mechanism of CD, highlighting potential drug 
targets for the control of palmitoylation. Since STING signaling is associated with 
palmitoylation, it is reasonable to assume that STING-associated autoimmune 
diseases, such as systemic lupus erythematosus (SLE) and Aicardi–Goutières 
syndrome (AGS), are related to the process of palmitoylation[79]. However, the contri-
bution of STING to CD requires further study. If this relationship is confirmed, a novel 
promising drug target for the treatment of CD could be identified based on STING-
related factors. Other factors related to CD have also been found to undergo 
palmitoylation during normal functional processes. These findings support the 
potential of palmitoylation as drug targets in CD, and we hope this area will attract 
more intensive research in the future.

CONCLUSION
S-palmitoylation is one of the most common post-translational modifications in nature 
which has been overlooked for decades. With the rapidly increasing global prevalence 
of CD and recent reports on the effect of S-palmitoylation on CD, elucidating the 
relationship between CD and S-palmitoylation becomes an urgent task. The basic facts 
of S-palmitoylation and its potential effect on CD summarized by this review will 
provide novel insights into the pathogenesis and treatment of CD.
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Abstract
Electrochemotherapy is a local ablative therapy that increases the cytotoxicity of 
either bleomycin or cisplatin by applying electric pulses (electroporation) to 
tumors. It has already been widely used throughout Europe for the treatment of 
various types of human and veterinary cutaneous tumors, with an objective 
response rate ranging from 70%-90%, depending on the tumor histotype. 
Recently, electrochemotherapy was introduced for the treatment of primary liver 
tumors, such as hepatocellular carcinoma (HCC). The complete response rate was 
85% per treated lesion, with a durable response. Therefore, electrochemotherapy 
could become a treatment of choice for HCC, especially after achieving a 
transition from an open surgery approach to a percutaneous approach that uses 
dedicated electrodes. Electrochemotherapy elicits a local immune response and 
can be considered an in situ vaccination. HCC, among others, is a potentially 
immunogenic tumor; thus, electrochemotherapy could boost adjuvant immuno-
therapy to achieve a better and longer-lasting antitumor response. Therefore, 
therapeutic strategies that combine electrochemotherapy with immune checkpoint 
inhibitors or adjuvant treatment with cytokines are indicated for HCC. Immu-
nogene therapy using electroporation as a delivery system for plasmid DNA 
coding for interleukin-12 is a highly promising approach. This electroporation 
approach has shown efficacy in preclinical settings and veterinary oncology and is 
awaiting translation for the treatment of liver tumors, i.e., HCC.
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Core Tip: Electrochemotherapy was found to be feasible, safe and highly effective for 
the treatment of hepatocellular carcinoma (HCC). A local immune response is induced 
through the destruction of tumor cells; therefore, the electrochemotherapy approach 
can be considered an in situ vaccination. Electrochemotherapy combined with immune 
checkpoint inhibitors had an interactive effect on melanoma tumors and HCC. 
Furthermore, electrochemotherapy can be combined with immunostimulation with 
cytokines. Electrochemotherapy involving the gene electrotransfer of a plasmid DNA 
coding for interleukin-12 (IL-12) has already been shown to have clinical value. The 
combination of electrochemotherapy and immunogene therapy with IL-12 via electro-
poration might be a feasible new treatment strategy for HCC that is also potentially 
applicable to other liver tumors.

Citation: Trotovšek B, Djokić M, Čemažar M, Serša G. New era of electrochemotherapy in 
treatment of liver tumors in conjunction with immunotherapies. World J Gastroenterol 2021; 
27(48): 8216-8226
URL: https://www.wjgnet.com/1007-9327/full/v27/i48/8216.htm
DOI: https://dx.doi.org/10.3748/wjg.v27.i48.8216

INTRODUCTION
Liver tumors represent a group of tumors that arise in liver tissue. Hepatocellular 
carcinoma (HCC) is the sixth most commonly diagnosed tumor, the fourth leading 
cause of cancer-related death worldwide and is responsible for over 850000 deaths 
annually. Outcomes are poor overall, with an estimated 5-year survival rate of approx-
imately 20%[1].

The most common type of primary liver tumor is HCC, which represents approx-
imately 90% of all primary liver tumors, followed by intrahepatic cholangiocarcinoma. 
The incidence of liver tumors varies from Europe to Asia, mostly because of regional 
differences in the prevalence of risk factors. This difference is most clearly seen in 
HCC. HCC generally occurs in the presence of liver cirrhosis or liver disease. The 
incidence of HCC in eastern Asia is 3.5-fold higher than the incidence in Europe, 
mainly because of the difference in the incidence of hepatitis B/C in Asia and Europe
[2].

In addition to hepatitis B/C infection, one of the most common risk factors for HCC 
is alcohol abuse. Other risk factors include dietary aflatoxin exposure, smoking, 
nonalcoholic fatty liver disease associated with obesity, and diabetes, which is 
increasingly emerging as a key contributor to the incidence of HCC in the United 
States and other western countries[2,3].

Therapy options are individualized and based on the stage of disease, liver function, 
and performance status of the patient.

Therapy options can be divided into three categories as follows: (1) Curative options 
for early-stage tumors are surgery, liver transplantation and ablation, e.g., microwave 
ablation (MWA) or radiofrequency ablation (RFA); MWA is more convenient for the 
treatment of larger lesions, especially those in close proximity to blood vessels[4]; (2) 
Locoregional therapy, such as transarterial chemoembolization (TACE) and transar-
terial radioembolization (TARE), for intermediate-stage tumor; TACE is the standard 
of care for patients without curative treatment options with liver-only disease and 
without macrovascular invasion or for patients listed for liver transplantation as 
“bridging” to transplantation; and (3) Systemic therapy for advanced tumors (atezol-
izumab and bevacizumab, sorafenib, levatinib, regorafenib, cabozantinib, and 
ramucirumab). Surgical and locoregional therapies are not covered in this review, as 
they have been reviewed extensively elsewhere[1,2,5-9].

http://creativecommons.org/Licenses/by-nc/4.0/
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LOCAL THERAPIES FOR LIVER TUMORS
Local therapies are particularly appropriate for the treatment of liver tumors, mostly 
due to the feasibility of the percutaneous approach. Thermal ablative therapies have 
been the most rapidly adopted local therapy approaches. Tumors up to 3 cm in 
diameter can be successfully ablated with either RFA or MWA. Tumor control is 
achieved with complete responses (CRs) ranging from 40%-80%[10]. However, the 
local and locoregional recurrence rates in the liver following thermal ablative therapies 
are significant due to the localized nature of their efficacy. A local recurrence rate of up 
to 20% has been reported during follow-up after RFA. Similar results have been seen 
in patients treated with MWA, considering that patients treated with MWA had larger 
and more lesions or lesions in the vicinity of blood vessels[11]. Another thermal 
ablative technique is cryoablation, which is based on repetitive cycles of freezing 
(argon gas) and thawing (helium gas) of tumors, causing the formation of intracellular 
ice crystals that lead to cell death. The efficacy of cryoablation is similar to that 
reported for RFA[12].

There are some nonthermal ablative therapies available in addition to these thermal 
ablative therapies. Electroporation-based treatment is one of them. Irreversible electro-
poration is a relatively well-established treatment approach, and the use of electro-
chemotherapy is on the rise. Irreversible electroporation is a well-accepted therapy for 
liver tumors, including HCC[13]. This percutaneously performed approach has been 
practiced in renowned centers, and their reports have demonstrated the feasibility and 
safety of the approach. Irreversible electroporation is based on the delivery of a long 
train of up to 100 electric pulses of 1000 V per cm of the distance between the 
electrodes to destabilize the cell membrane and induce necrotic cell death. Some 
reports have also indicated the induction of immunogenic cell death following 
irreversible electroporation[14]. The drawback of irreversible electroporation is that it 
takes a considerable amount of time to deliver all the electric pulses, and the repetitive 
delivery of electric pulses increases the temperature of the area around the electrodes; 
therefore, irreversible electroporation cannot be considered a completely nonthermal 
technique. Electrochemotherapy is a nonthermal therapy since only 8 electric pulses 
are delivered between the electrodes to permeabilize the cell membrane, which leads 
to reversible electroporation[15]. The train of 8 pulses induces permeable structures in 
the cell membrane, which immediately start to reseal after the pulses are delivered. 
The application of electric pulses does not affect cell viability per se. The cytotoxic 
effect is exerted by the drug, which is delivered into the cells due to the permeabil-
ization of the cell membrane. The cytotoxic effect of bleomycin or cisplatin on tumor 
cells is slowly exerted by the induction of apoptotic, mitotic, and immunogenic cell 
death[16]. Therefore, the advantage of electrochemotherapy is the slow reaction and 
the exertion of a cytotoxic effect from the drug only, which avoids the clinical problem 
of massive necrosis[14]. The drug dosage needed to exert the cytotoxic action is very 
small due to the increased intracellular delivery of the drugs by electroporation; 
therefore, there are no severe systemic side effects even when the drug is delivered 
systemically. Electrochemotherapy can prevent tumor bleeding through the disruption 
of small tumor vessels; furthermore, electrochemotherapy can promote hemostasis in 
bleeding tumors[15].

ELECTROCHEMOTHERAPY FOR THE TREATMENT OF HCC
The first study of electrochemotherapy for the treatment of liver tumors was a 
preliminary study on colorectal liver metastases that indicated the safety and 
feasibility of the approach[17]. The approach was described from a technical point of 
view during open surgery. The standard operating procedures for the electrochemo-
therapy of cutaneous tumors were followed but adapted for the specifics of the liver 
tumors, especially for tumors larger than 3 cm in diameter[18]. These protocols were 
then followed in the subsequent application of electrochemotherapy for the treatment 
of colorectal liver metastases and HCC. The pilot and subsequent phase II study of the 
treatment of colorectal liver metastases with electrochemotherapy demonstrated a 
significant benefit of electrochemotherapy as a treatment for patients for whom 
electrochemotherapy was the only remaining treatment option. A 75% CR rate of 
metastases was achieved. Effective treatment provided long-term local tumor control 
as well as a long, progression-free survival rate. The success of electrochemotherapy 
enabled patients to receive successive treatments and consequently a prolonged life 
expectancy[19].
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Electrochemotherapy was also performed on HCC tumors in patients for whom 
other curative treatment options had been exhausted. We observed slow resolution of 
the treated tumors, those associated with cirrhotic livers, and in situations when 
tumors were adjacent to or embraced major liver vessels or bile ducts. We took 
advantage of the nonthermal action of electrochemotherapy and demonstrated the 
feasibility of the approach in patients with difficult-to-treat situations[20,21]. It was 
demonstrated in a separate study on pig livers that electrochemotherapy does not 
affect the function and architecture of larger tumor vessels[22]. Furthermore, in that 
study, no specific pathological effects of electrochemotherapy on healthy liver 
parenchyma, vessels, or bile ducts were observed, which provided a good starting 
point for the use of electrochemotherapy in the treatment of HCC, especially in cases 
where tumors are in contact with larger hollow structures of the liver.

The results obtained for the treated tumors described above demonstrated that 
electrochemotherapy has similar effectiveness to other ablative therapies. We achieved 
CR in 84.4% of treated lesions in the phase II trial with a median follow-up time of 50 
mo. Thus, the effectiveness of electrochemotherapy is comparable to the effectiveness 
of MWA, which achieves disease-free survival in 67.2% of patients at 36 mo and 49.1% 
at 60 mo[11]. Early reports for percutaneous irreversible electroporation show an 
efficacy of 72%-100% across different studies[13,23].

The main limitation of electrochemotherapy for liver tumors in previous studies 
was that the procedure was performed intraoperatively during open surgery. This was 
necessary to maximally control the execution of the treatment and explore the limits of 
the treatment. Based on the experience gained and the results obtained, we can now 
claim that electrochemotherapy could produce equally beneficial treatment effects for 
HCC tumors as other ablative therapies and could be used for the treatment of other 
liver tumors and metastases. The limitation of not being a percutaneous technique has 
been recently overcome[21,24].

The percutaneous application of electrochemotherapy was enabled by the 
development of a new pulse generator Cliniporator®VITAE (IGEA SpA, Carpi, Italy), 
which can generate sufficient power to treat deep-seated tumors. Additionally, long 
needle electrodes are available, which are similar to those used for irreversible electro-
poration[15]. The first attempt to treat HCC with percutaneous electrochemotherapy 
was performed in Ljubljana and demonstrated the feasibility, safety and efficacy of the 
percutaneous approach to electrochemotherapy for the treatment of HCC (Figure 1)
[21]. We are currently gaining new experience in the percutaneous approach, and the 
process of transition from intraoperative to percutaneous electrochemotherapy is 
underway. Additionally, other authors have reported the feasibility of percutaneous 
electrochemotherapy for the treatment of HCC portal vein tumor thrombus at the 
hepatic hilum in six patients[24].

Another percutaneous electrochemotherapy application was performed for the 
treatment of cholangiocarcinoma in the hepatic hilum[25]. The treatment proved to be 
safe and effective in five patients and improved the prognosis and quality of life of 
patients with unresectable perihilar cholangiocarcinoma.

The design and production of new multineedle electrodes for percutaneous use will 
enable easier and reliable placement of electrodes, avoiding the tedious and laborious 
placement of single needle electrodes. Currently, needle electrodes need to be placed 
in the right position with the prerequisite of being in a parallel position to obtain 
adequate electric field distribution. The treatment plan needs to be prepared for the 
placement of the electrodes to cover the whole tumor with an electric field sufficient to 
permeabilize the whole tumor mass. Electrodes are placed at the edge of the tumor or 
in normal tissue to ensure appropriate safety margins[26]. Minimally invasive 
endoscopic and laparoscopic electrodes were recently developed as an alternative to 
this procedure of placing single needles and are now available for clinical use. The 
shaft of the electrode is inserted in the abdomen, and then the electrode array is 
inserted into the tumor, extending in an umbrella-like fashion[21]. Endoscopic 
electrodes have also been developed and are available on the market. The electrode is 
mounted on the endoscope. The electrodes are parallel plates in a chamber in which 
the tumor tissue is pulled for injection with bleomycin followed by electroporation. 
The results of the pilot study using these electrodes have already been published[27]. 
Seven patients with colorectal tumors who were deemed ineligible for or had declined 
standard treatment were included. They were treated with bleomycin either intrat-
umorally or intravenously, and the electric pulses were delivered through the 
endoscopic electrode device. Safety and efficacy were assessed clinically and by scans 
immediately after treatment, and adverse events were reported. This first-in-human 
study showed that electrochemotherapy for colorectal tumors using an endoscopic 
electrode device can induce a local tumor response and is safe for fragile elderly 
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Figure 1 Electrochemotherapy using long needle electrodes in the percutaneous procedure. A: Positioning of the electrodes; B: Verification of the 
electrode positioning with computerized tomography; C: Treatment of the tumor, electric pulse delivery; D: Posttreatment.

patients with comorbidities.
The intraoperative approach might still be an option in surgical situations in which 

an unexpected, difficult-to-surgically treat situation occurs; in such a situation, electro-
chemotherapy can represent a viable treatment option.

CURRENT DEVELOPMENTS IN ABLATIVE THERAPIES COMBINED WITH 
IMMUNOTHERAPY
The current paradigm is that local and locoregional ablative therapies can elicit a local 
immune response that can be boosted by immunotherapeutic approaches. This 
approach is currently being explored, predominantly with a combination of 
radiotherapy and immune checkpoint inhibitors; however, other ablative techniques 
are already in clinical trials in combination with immune therapies. These clinical trials 
explored which tumors would benefit the most and the optimal timing, sequence, dose 
of immune therapy, and the number of fractions and dose per fraction for 
radiotherapy. Radiotherapy can stimulate a proinflammatory environment by killing 
tumor cells and stimulating the infiltration of immune cells, thus turning immunolo-
gically cold tumors into immunologically hot tumors. Radiation damage resulting in 
micronuclei in cells stimulates cytosolic nucleic acid sensor pathways, such as cyclic 
GMP-AMP synthase, which is a stimulator of interferon genes. Additionally, 
irradiation modulates neoantigen expression, which impacts immune surveillance and 
sets the stage for combined treatment with immune checkpoint inhibitors[28,29]. 
However, as stated, questions arise regarding the appropriate doses and fractionation 
of tumor irradiation to elicit an adequate immunogenic response. Clinical studies 
indicate that stereotactic body radiation therapy is more powerful in enhancing 
antitumor immunity and works better with immune checkpoint inhibitors than 
fractionated conventional radiotherapy. This effect was observed when this 
combination was tested in non-small cell lung cancer, melanoma, head and neck 
cancer, HCC, pancreatic cancer, and genital tumors[30].

Several clinical studies have been initiated on the treatment of HCC with the 
combination of locoregional and local ablative therapies with immune checkpoint 
inhibitors based on promising results from studies testing immune checkpoint 
inhibitors in advanced HCC. It is known from retrospective studies of other tumor 
types that the clinical efficacy of immune checkpoint inhibitors correlates with tumor 
burden; therefore, it is better to treat smaller tumors with this approach. Another 
reason for combining electrochemotherapy with immune checkpoint inhibitors is that 
although immune therapies are also combined with surgical approaches, the immuno-
logical effects that are observed after local and locoregional therapies favor such 
combinations. Current clinical studies are evaluating immune checkpoint inhibitors as 
an adjuvant therapy with RFA in neoadjuvant settings and are investigating whether 
the combination with immune checkpoint inhibitors in tumors larger than 3 cm can be 
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performed with curative intent (NCT03847428 and NCT03630640). Furthermore, the 
role of anti-vascular endothelial growth factor (VEGF) therapies in combination with 
immune checkpoint inhibitors and local ablative therapies should be determined in the 
future. It has been shown that anti-VEGF therapies overcome intrinsic resistance to 
immune checkpoint inhibitors (Figure 2). Additionally, an increase in VEGF after RFA 
was observed in patients with HCC; thus, inhibiting VEGF can enhance the effect of 
immune therapy in combination with the local ablative therapies required to achieve a 
complete response of HCC[9].

CAN ELECTROCHEMOTHERAPY FOR IN SITU VACCINATION IN 
COMBINATION WITH IMMUNE CHECKPOINT INHIBITORS BE 
EXPLOITED?
Similar findings to those outlined above were found with electroporation-based 
treatments. The results of these reports showed that both irreversible electroporation 
and electrochemotherapy could induce immunogenic cell death[14]. A recent study on 
electrochemotherapy in mice compared the response of different tumors to electro-
chemotherapy and correlated it with the immune status of those tumors. The response 
of tumors correlated with the immune status; specifically, more immunogenic tumors 
responded significantly better than less immunogenic tumors. Furthermore, the 
response varied according to the drug used for electrochemotherapy. The study 
indicated that intratumoral cisplatin electrochemotherapy seems to be very effective 
for immunogenic tumors. All these data indicate that electrochemotherapy elicits 
immunogenic cell death in situ by releasing ATP and high-mobility group box and 
calreticulin translocation, which is dependent on tumor immunogenicity and the drug 
used for electrochemotherapy[14,16,31].

The results following electrochemotherapy performed for patients with melanoma 
during therapy with immune checkpoint inhibitors against either cytotoxic T-
lymphocyte antigen or programmed cell death ligand 1 were published in a retro-
spective study[32]. The local response rate was higher than the reported local response 
rate for electrochemotherapy only. Ipilimumab combined with electrochemotherapy 
was feasible, tolerable, and showed a high systemic response rate. The second report 
to date is a case report, where a symptomatic melanoma lesion that was refractory to 
nivolumab was successfully treated with electrochemotherapy and achieved a 4-year 
durable response[33].

One question that remains is how the combined treatment affects the local 
recurrence-free interval and systemic progression-free interval or even influences 
overall survival. Another question is whether the combined treatment increases long-
term survival. The retrospective analysis of the combined electrochemotherapy and 
pembrolizumab treatment of patients with melanoma demonstrated that all these 
parameters were increased[34]. This study proved that electrochemotherapy can be 
considered an in situ vaccination. However, the question arises as to whether this 
holds true for all tumor types and treatment parameters. Some preclinical data 
indicate that not all tumors are equally susceptible to electrochemotherapy. Their 
responses are dependent on some immune response-related parameters in addition to 
intrinsic sensitivity to chemotherapeutic drugs and vascularization, such as major 
histocompatibility complex I expression and mutational burden[16]. This is the so-
called “immunogenicity” of the tumors. Therefore, the treatment induces immu-
nogenic cell death and the in situ vaccination effect to different degrees in different 
tumors. This was demonstrated by the adjuvant effects of immunotherapy with the 
cytokine interleukin-12 (IL-12). The adjuvant effect was more pronounced in less 
immunogenic tumors, indicating less responsiveness to electrochemotherapy, and less 
pronounced potentiation was observed in more immunogenic tumors that were more 
responsive to electrochemotherapy[16].

Therefore, we can expect that not all tumors in the liver will respond equally to 
adjuvant immunotherapy either with immune checkpoint inhibitors or other immuno-
therapies. However, a comparison between the responses of colorectal liver metastases 
and HCC to electrochemotherapy showed that HCC responds better[19,20]. Does this 
mean that HCC is more immunogenic than colorectal liver metastases and that 
adjuvant immunotherapy would not contribute significantly? It is well established that 
HCC is an immunologically hot tumor, and it was demonstrated that HCC is 
responsive to immune checkpoint inhibitors in clinical trials[35,36]. However, the 
combination with electrochemotherapy needs to be investigated for all liver cancers. 
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Figure 2 Potential benefits of combining local ablative therapies with immune checkpoint inhibitors and anti-vascular therapies. IL-12: 
Interleukin-12.

The other aspect is that HCC is better vascularized than colorectal liver metastases; 
therefore, the disruptive vascular effect of electrochemotherapy is more pronounced 
and could also account for the overall antitumor effectiveness[19-21].

IS THERE A POSSIBILITY FOR ADJUVANT IMMUNOSTIMULATION?
If ongoing clinical trials on ablative therapies will meet expectations in combination 
with immune checkpoint inhibitors and other systemic treatments (tyrosine kinase 
inhibitors and anti-VEGF), then a new line of treatment will be available for cancer 
patients. The effects will certainly vary between the patients according to the tumor 
type, the type of ablative technique, and the degree to which the tumors need to be 
destroyed for the best vaccination effect. These aspects need to be explored, but first, 
reliable markers are needed for the measurement of immune effects in vivo[36].

Nevertheless, if the current combination of immune checkpoint inhibitors and other 
drugs does not provide optimal treatment outcomes, we will need to explore add-
itional ways to boost the immune responses of the organism. Adjuvant immunostimu-
lation with cytokines has been explored as one option. Historically, some interleukins, 
such as IL-2 and IL-12, were evaluated in clinical trials in the form of recombinant 
proteins. These combinations with radiotherapy have yielded promising results, but 
the cytokine side effects were overwhelming in some cases. Therefore, this approach 
was abandoned[37].

There are now new techniques that can provide targeted and controllable expre-
ssion of the desired molecules. Gene therapy is one such method that is gaining 
attention, especially with the development of genetically based coronavirus 2019 
vaccines. Special attention has been given to naked DNA plasmids that can be 
delivered to targeted tissues by nonviral delivery techniques, such as electroporation
[38]. This technique is called gene electrotransfer and can be used to deliver genes to 
either healthy tissues or tumors. In healthy tissues, such as muscle or skin, the 
expression is either systemic or localized. Therefore, if transfection occurs in normal 
cells, the expression lasts until the cells start to divide, as the plasmid is expressed 
episomally and is not retained as the cells divide. However, the encoded protein works 
in a paracrine fashion.

This technique is also gaining recognition because clinical studies in the United 
States have demonstrated the feasibility, safety, and efficacy of similar gene therapies 
for cancer treatment using a plasmid coding for IL-12. IL-12 is a potent proinflam-
matory cytokine with pleiotropic activity[39]. Most importantly, it can engage in 
multiple effector mechanisms and reverse tumor immunosuppression. Numerous 
localized delivery strategies are being explored to maximize its effectiveness, among 
which naked plasmid delivery with electroporation is promising. This approach has 
already been proven safe and effective for the treatment of cutaneous melanoma, and 
clinical trials for other tumors are underway[40,41].
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Therefore, the immune-gene therapy approach might be the next step in immuno-
therapy. The approach could be exploited for skin tumors and liver tumors and be 
used as a monotherapy or in combination with ablative techniques.

COMBINED ELECTROCHEMOTHERAPY AND GENE ELECTROTRANSFER 
OF PLASMID DNA CODING FOR IL-12
There are two options for the combined electrochemotherapy and gene electrotransfer 
approach for the treatment of HCC. The first involves combined treatment delivered 
during the same electroporation session since both drug and gene delivery is based on 
electroporation. Therefore, the same electroporation session could be exploited to 
perform both electrochemotherapy and gene electrotransfer. In theory, the two 
treatments require different electric pulse parameters for optimal/high delivery, but 
preclinical data indicate that gene electrotransfer can occur with the same electric 
pulses that are used for electrochemotherapy[42]. Therefore, gene delivery of IL-12 
coding plasmids to tumors could be performed during electrochemotherapy. The 
problem of how to deliver the plasmid into the tumor needs to be resolved. One option 
could be to adjust the new percutaneous electrodes with a syringe to deliver the 
plasmid into tumors.

The second approach for combining electrochemotherapy with gene electrotransfer 
for the treatment of HCC is to perform gene electrotransfer into distant muscle or skin 
for systemic transgene delivery. For example, localized transfection into the muscle 
could result in the shedding of IL-12 from the muscle into the bloodstream[43-45]. The 
shedding of the transgene would be controllable, sustainable and without pharmaco-
logical peaks that can produce severe side effects. This approach would provide a 
more prolonged action of the transgene and could also provide a good treatment 
effect.

CONCLUSION
Local ablative therapies that destroy tumor cells activate localized immune reactions; 
thus, these therapies can be considered in situ vaccines. Electrochemotherapy is an 
ablative therapy that elicits this in situ vaccination effect. Electrochemotherapy has 
been used for the treatment of HCC tumors in patients where other treatment options 
have been exhausted. This approach has been proven to be feasible, safe, and highly 
effective. Its limits were explored in the open surgery approach; however, with the 
development of new percutaneous electrodes, electrochemotherapy could be 
performed in a similar percutaneous way to other ablative therapies used for the 
treatment of liver tumors. Electrochemotherapy combined with immune checkpoint 
inhibitors has been shown to have an interactive effect as a treatment for melanoma 
tumors. Similar to the combination of inhibitors with other ablative therapies, the 
combination of immune checkpoint inhibitors and electrochemotherapy could also be 
effective for the treatment of HCC. Furthermore, electrochemotherapy could be 
combined with cytokine immunostimulation methods. The combination of electro-
chemotherapy with gene electrotransfer of a naked plasmid coding for IL-12 has 
already proven its value in preclinical work. Therefore, the combination of electro-
chemotherapy with IL-12 immunogene therapy, which are both delivered via electro-
poration, could be a new treatment approach for HCC tumors and possibly other liver 
tumors.
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Abstract
Almost 15 years have passed since the first paper on the possibility of using 
magnets to prevent gastro-esophageal reflux (GER) was published and so it is 
time to assess the results obtained with the first magnetic device available on the 
market, the Linx magnetic sphincter augmentation (MSA) and to consider what 
other options are forthcoming. MSA demonstrated an anti-reflux activity similar 
to that of Nissen fundoplication, considered the “gold standard” surgical 
treatment for GER disease, and caused less gas-bloating and a better ability to 
allow vomiting and belching. However, unlike Nissen fundoplication, this mag-
netic device is burdened by complications, which are roughly similar to those of 
the non-magnetic anti-reflux Angelchik prosthesis, that, after considerable use in 
the eighties, was shelved due to these complications. It is interesting to note that 
some of these complications show the same pathophysiological mechanism in 
both devices. The upcoming new magnetic devices should avoid these complic-
ations, as their anti-reflux magnetic mechanism is completely different. The 
experiments in animals regarding these new magnetic appliances were examined, 
remarking their advantages and drawbacks, but the way to apply them in surgical 
practice is long and difficult, although worthy, as they represent the future of 
magnetic surgery.

Key Words: Gastro-esophageal reflux disease; Magnetic sphincter augmentation device; 
Nissen fundoplication; Angelchik prosthesis; Lower esophageal sphincter; Dysphagia
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Core Tip: The idea of a magnetic device aimed to prevent gastroesophageal reflux was 
conceived and realized more or less 15 years ago, for which it is time to take stock and 
consider its future. The first and only device available nowadays in the market is the 
Linx magnetic sphincter augmentation. Its effectiveness was examined and compared 
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to that of Nissen fundoplication, whereas its complications, similar to those of the 
Angelchik prosthesis, were described and their pathophysiology discussed. Fur-
thermore, the pros and cons of the upcoming magnetic anti-reflux devices were 
examined, underlining the fact that, working with a mechanism completely different to 
that of the first device, many of its complications could be avoided.
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INTRODUCTION
It is well known that gastrointestinal sphincters may undergo a weakening in their 
function of blocking the retrograde flux of contents as at the gastro-esophageal 
junction level, giving rise to the gastro-esophageal reflux (GER) and the antegrade 
flux, as at the anal level, causing fecal incontinence. Researchers have tried to 
strengthen these sphincters by means of medical and surgical treatments, with varying 
success, and in these last few years they have started using magnets.

Until a few years ago magnetic devices were used only in laparoscopic and end-
oscopic surgery, providing alternatives for retraction, anchoring, compression, 
mobilization, and anastomosis[1]. In particular, circular magnets applied face to face 
have been used to create an “anastomosis” between two adjacent intestinal loops, 
through necrosis of the compressed tissues, in order to bypass the stop caused by 
scarring stenosis or by an inoperable cancer obstructing the intestinal lumen[2]. This 
latter appliance of the magnetic force made me think that the reciprocal attraction of a 
couple of low power magnets placed face to face outside the opposite walls of a 
sphincter, may squeeze it, thereby closing the lumen. Thus, some fifteen years ago I 
described in a bench-top experiment this novel idea of strengthening a gut sphincter 
with magnets and sent the article to the Journal of Biomechanics in 2003, but “oddly” 
the article was only published in 2006[3]. As illustrated in Figure 1 in this study a 
couple of magnetic plaques were applied with the opposite polarities facing each other 
on the opposite sides of a flaccid tube perfused with water by means of a pump at a 
certain pressure. The plaques, which attract one another, squeeze the lumen of the 
tube thereby blocking the flux of the content (like a sphincter that prevents reflux). 
When the endoluminal pressure is increased above the attraction force of the magnets, 
the plaques detach themselves, allowing the flow to resume (like a sphincter that 
opens). On the other hand, when the endoluminal pressure is decreased, the attraction 
force again prevails and the plaques again squeeze the lumen (to prevent reflux). 
Furthermore, the force of closure of the plaques can be increased or decreased as 
desired using magnets with a different force of attraction.

A few years after the aforementioned publication, an increasing number of papers 
from 2008 to today on the use of magnets to strengthen gut sphincters, and in par-
ticular the lower esophageal sphincter (LES), became available. The first magnetic 
device available on the market to strengthen a weak LES, called Linx magnetic 
sphincter augmentation (MSA), appeared in an article[4] approximately 13 years ago 
and represented a clever evolution of the first idea previously published in 2006[3]. 
This paper was followed by many other studies and so today it is time to consider the 
surgical magnetic story, assess its successes and failures, as well as drawbacks and 
complications, and look to the future with the upcoming magnetic devices. A literature 
search was carried out essentially in the PubMed database, with the following search 
terms: “magnetic sphincter augmentation device”; “Linx reflux management system”; 
and “antireflux magnetic devices”. From the articles thus found, the most significant 
and representative were chosen to fulfil the aim of the study. However, a systematic 
review is not the purpose of this study, but, starting from state-of-the art , I have tried 
to provide a perspective for future research.

http://creativecommons.org/Licenses/by-nc/4.0/
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Figure 1 Benchtop experiment to demonstrate the possibility of creating a sphincter with two magnetic plaques. A: Schematic illustration of 
the bench model used to study the new anti-reflux device based on magnets. On the right there is a flaccid polyethylene tube 2.8 cm in diameter, mimicking the 
gastro-esophageal junction. It is squeezed perpendicularly by two rectangular magnets made of plastoferrite (Flexo) 2 cm × 4 cm × 0.5 cm with an attraction force of 
0.36 N/cm2, when in contact and 0.16 N/cm2, at a distance of 7 mm. It creates a high pressure zone 2 cm wide, that divides the tube in segment E (esophagus) and G 
(stomach). The tube is perfused with water by a pump and the pressure variations in each segment are detected with 2 pressure transducers and recorded by a 
polygraph; B: Intraluminal pressure variations in segment G (bottom) and E (top). The pressure in segment G (stomach) was progressively increased by the pump 
and when it reached approximately 11.5 mmHg, the magnets, simulating the sphincter, get detached, so that the pressure in segment E (esophagus) starts to 
increase, mimicking a gastro-esophageal reflux and reaching the level of the segment G. Once the pump stops the pressure falls and the magnets adhere again, 
closing the passage. Exchanging the letter E for G and G for E, this sequence of events may represent the passage of a bolus through the zone squeezed by the 
magnets. A-B: Citation: Bortolotti M. A novel anti-reflux device based on magnets. J Biomech 2006; 39: 564-7. Copyright© The Authors 2020. Published by Elsevier. 
The authors obtained permission for use of the figure from the Elsevier Publishing Group (Supplementary material).

THE MSA DEVICE
The first MSA device to prevent GER (LINX Reflux Management System) was 
produced by Torax Medical, Inc., Shore View, MN, United States, and was utilized in a 
2008 study by Bonavina et al[4]. It consisted of a “collar” of titanium beads with a 
magnetic core of neodymium interlinked along an independent flexible titanium wire 

https://f6publishing.blob.core.windows.net/514ab189-a6f5-4670-8b25-fc633d250883/WJG-27-8227-supplementary-material.pdf
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(Figure 2). The magnets were allowed to slide against one another along the wire, self-
attracting by their magnetic force and self-detaching under the action of an opposing 
force, as the expanding pressure that dilates the “collar”. In this manner they can 
attach and detach each other, thereby tightening or widening the collar which, 
consequently, closes and opens the esophageal lumen below. This “magnetic collar” is 
placed around the abdominal esophagus at the patient’s LES level, by adapting its 
circumference by increasing or decreasing the number of magnetic beads.

Effectiveness of the Linx MSA device (“magnetic collar”) in preventing GER 
The first clinical trial[4] with the “magnetic collar” MSA, carried out in 2008 on 38 
GERD patients, reported that, after a mean follow-up of 209 d, the GERD-Health 
Related Quality of Life (HRQL) score significantly decreased from 26.0 to 1.0, whereas, 
3 mo after insertion, 89% of patients were off anti-reflux medications, and 79% had a 
normal 24-h pH recording test. Mild dysphagia occurred in 45% of patients. A 
subsequent study[5] performed in 2013 on 100 patients showed that at the 1-year 
follow-up there was a normalization or a 50% or greater reduction in esophageal acid 
exposure at 24-h pH test in 64% of patients, together with an improvement of 50% or 
more in GERD-HRQL scores in 92% of patients. In addition, there was a 50% or greater 
reduction in the use of proton-pump inhibitors (PPIs) and a significant increase in LES 
pressure. However, 36% of patients did not reach the normal esophageal acid 
exposure, whereas at the 1-year follow-up, esophagitis was still present in 10% of 
patients and had developed in 8%.

More or less similar results regarding the effectiveness in preventing GER were 
obtained by other investigators[6-11] in the following years up to 2020. One of the 
recent most complete studies from a single referral center was that of Ferrari et al[12], 
who followed up 124 patients for six up to 12 years (median 9 years) after insertion of 
the MSA device. The mean total GERD-HRQL score significantly improved from 19.9 
to 4.01, PPIs were discontinued by 79% of patients, the mean total percent time with 
pH < 4 at 24-h pH recording significantly decreased from 9.6% to 4.1% and 89% of 
patients achieved intra-esophageal pH normalization. However, the term normal-
ization is inexact, being only an improvement. In fact, although there was a significant 
decrease in the total % time pH < 4, the total number of reflux episodes, and partic-
ularly of those longer than 5 min, did not significantly decrease (Table 1)[12]. This 
indicates that the MSA device may not completely seal the gastro-esophageal junction 
and explains why in this study gastrointestinal endoscopy after a follow-up of 6 years 
revealed a grade A esophagitis in 4.7% of patients and incomplete intestinal meta-
plasia in 2.8%. In addition, the fact that the number of reflux episodes was not 
significantly decreased, whereas the total % time of acid exposure was significantly 
decreased, indicates that the mean duration of each reflux episode is decreased. 
However, this short duration does not depend on the closure of the gastro-esophageal 
junction by the MSA device, but it is due to an improved peristaltic clearance activity 
of the distal esophagus, which rapidly cleanses the mucosa from the refluxed acid[13]. 
In conclusion, after MSA device insertion the number of reflux episodes does not 
change significantly, but esophageal acid exposure after each reflux decreases with 
some benefits for the mucosa.

Comparison between MSA and Nissen fundoplication 
The clinical results of MSA are not overwhelming when compared to those of Nissen 
fundoplication, which is considered paramount in GER surgical treatment. Nissen 
fundoplication showed excellent GER symptom control, low rates of complications 
and reoperations in long-term follow-up studies[14], whereas only 15% of patients 
reported recurrent symptoms[15]. In a review of studies with a long-term outcome
[16], the control of reflux symptoms, such as heartburn and regurgitation, was achi-
eved in 84% to 97% of patients, and in another similar review[17] good and excellent 
results were reported in 85%-95% of patients, with reflux recurrence in only 1%-8.5%, 
and dysphagia in 0%-10%.

Of great interest are the comparative studies of MSA vs Nissen fundoplication 
(Table 2). In two studies of a systematic review and meta-analysis, one with 1211 
patients[18], and the other with 688 patients[19], postoperative GERD-HRQL and PPI 
suspension were similar in both the MSA and fundoplication groups, but MSA 
resulted in less gas-bloating and a greater ability to belch and vomit. Similar results 
were obtained in other comparative studies[20-23]. However, Riegler et al[20] found 
that the percentage of MSA patients with PPI suspension was significantly higher than 
that of fundoplication patients, whereas Warren et al[23]  found the opposite results. 
Skubleny et al[19] noted that the occurrence of gas-bloating was not statistically 
different between the two treatments. In addition, Aiolfi et al[18] reported the 
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Table 1 Esophageal pH measurements (mean ± SD) off proton pump inhibitors[12]

Baseline 6-12 yr 
Measure 

n = 124 n = 91
P value

Total time (%)

pH < 4 9.7 (6.4) 4.2 (4.9) < 0.001

Upright 9.7 (7.8) 4.6 (4.9) < 0.001

Supine 8.3 (9.6) 3.3 (7.4) < 0.001

Reflux episodes

Total number 92.2 (92.2) 71.5 (67.7) 0.125

Number lasting > 5 min 6.1 (6.0) 4.3 (5.8) 0.036

Longest (min) 32.9 (34.2) 19.6 (31.5) 0.005

DeMeester score 40.7 (26.5) 16.3 (18.8) < 0.001

occurrence, although not statistically significant, of dysphagia requiring endoscopic 
dilatation in 9.3% of patients of the MSA group vs 6.6% of the fundoplication group, 
whereas Warren et al[23]  observed that mild dysphagia was significantly more 
frequent in MSA patients. Skubleny et al[19] found a trend with 24% of MSA patients 
requiring dilatation vs 3.3% in those with fundoplication. In addition, Sheu et al[24] 
stated that dysphagia associated with MSA lasted longer, was more severe and 
required dilatation more frequently compared with fundoplication. The operative time 
in patients with MSA was shorter than in those with fundoplication[18,19,21,23]. 
Finally, both the MSA intervention[25] and fundoplication[26] were followed by the 
regression of intestinal metaplasia. In conclusion, although there are no randomized 
controlled trials to more properly compare MSA results with those of Nissen 
fundoplication, it can be said that both systems are roughly similar in preventing GER. 
However, on the one hand MSA has the advantage of less gas bloating and greater 
ability to vomit and belch, while on the other hand it has the disadvantage of a more 
prolonged and severe dysphagia, requiring more frequent endoscopic dilatation and, 
in some cases, device removal, as we will see later, along with other complications.

MSA complications and their pathophysiology
The most frequent complication after MSA device insertion was dysphagia; however, 
its occurrence was highly variable. Ganz et al[5] reported that 68% of patients 
developed dysphagia in the immediate postoperative period, which decreased to 11% 
after 1 year. Twenty seven percent of these patients underwent esophageal dilatation 
and 3% required device removal, whereas in the remaining patients dysphagia 
spontaneously improved after some months. In a review of 35 studies[27], the most 
common postoperative complication was dysphagia ranging between 6% and 83%, 
whereas Ayazi et al[28] reported a 15.5% rate of persistent postoperative dysphagia in 
a group of 380 patients who underwent MSA device insertion. Thirty-one percent of 
these patients required at least one dilatation due to dysphagia or chest pain and the 
overall positive response rate to this procedure was 67%, whereas 1.8% required 
device removal. Schwameis et al[29] compared to pseudoachalasia the difficult transit 
at the level of the esophago-gastric junction caused by the MSA device, because it 
mimics the clinical and pathophysiological manifestations of idiopathic achalasia.

The occurrence of dysphagia or incomplete GER prevention may have various 
explanations. The length of the “magnetic collar” (MSA) circumference, which must be 
adapted to each patient by adding or removing some beads, may increase exposure 
risk due to an incorrect measurement. Furthermore, sometimes by adding a bead, the 
collar may be too large, giving rise to incomplete GER prevention, whereas, by not 
adding the bead, the collar may be too tight, causing dysphagia. This phenomenon 
could occur in patients with smaller esophageal circumferences. Dysphagia and 
uncontrolled GER, which appear some time after surgery, could also be explained in a 
different way. The MSA device, as the months go by, may be “encapsulated” by 
fibrous tissue, as demonstrated by necropsy performed in a porcine model 11 mo after 
MSA implantation[30]. This “encapsulation” of the MSA device due to a fibrotic 
reaction was also confirmed in patients, in whom the “magnetic collar” was explanted 
because of complications[31,32]. The fibrosis around the magnetic mechanisms of the 
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Table 2 Comparison of magnetic sphincter augmentation and fundoplication

Aiolfi et al[18] Skubleny et al[19] Riegler et al[20] Reynolds et al[21] Guidozzi et al[22] Warren et al[23]

MSA FUNDO P value MSA FUNDO P value MSA FUNDO P value MSA FUNDO P value MSA FUNDO P value MSA FUNDO P value

Type of study Systematic review and meta-
analysis

Systematic review and meta-
analysis

O. prospective multicenter 
study

O. retrospective review from a 
single center

Systemic review and meta-
analysis 

Multi institutional retrospective 
cohort study

N. patients (n) 686 525 415 273 202 47 52 67 632 467 169 185

Follow-up (mo) 6-12 6-12 7-12 7-16 12 12 12 12 15.5 15.8 12 12

GERD-HRQL 
score

POR = 0.48 0.101 20.5 vs 3 19.7 vs 3.2 NS 20 vs 3 23 vs 3.5 0.177 4.3 p. 5.1 p. 0.47 WMD = 0.34 0.525 21 vs 3 19 vs 4 0.17

PPI suspension POR = 0.81 0.548 81.4%1 81.5%1 0.68 81.8% 63.0% 0.009 85% 92% 0.37 POR = 1.08 0.877 76% 88% 0.02

Gas/bloating POR = 0.39 < 0.001 26.7%1 53.4%1 0.06 10.0% 31.9% < 0.001 23% 53% < 0.01 POR = 0.34 0.004 47% 59% 0.008

Ability to vomit POR = 10.1 < 0.001 93.5%1 49.5%1 < 0.0001 91.3% 44.4% < 0.001 4% 19% < 0.01 95% 43% < 0.001

Ability to belch POR = 5.53 < 0.001 95.2%1 65.9%1 < 0.00001 98.4% 88.9% 0.007 10.0% 36% < 0.01 POR = 12.34 < 0.001 96.5% 69.2% < 0.001

Dysphagia POR = 1.56 0.119 33.9%1 47.1%1 0.43 7% 10.6% 0.373 46% 56% 0.25 POR = 0.94 0.822 58% 47% 0.31

Operative time 
(min)

42-73 76-118 63.7 76.8 66 82 < 0.01 60 76 < 0.001

1Weighted mean percent values. MSA: Magnetic sphincter augmentation; FUNDO: Fundoplication; O.: Observational; WMD: Weighted mean difference; POR: Pooled odds ratio; NS: Not statistically significant; vs: Signifies preoperative 
versus postoperative score; p.: Postoperative.

MSA device could hamper the detachment and reattachment of the magnetic beads, 
which should slip along the wires, when the “collar” has to open or close, causing 
dysphagia or GER, respectively. Another cause of dysphagia is described in the 
subheading below.

MSA complications similar to those of the Angelchik prosthesis
Even if the "magnetic collar", hypothetically speaking, is blocked in the open position 
by fibrotic “encapsulation”, it could maintain its ability to prevent GER and could 
continue to perform a sort of barrier function against GER. The explanation of this 
phenomenon could be sought in a mechanism similar to that of another anti-reflux 
collar, which is unable to tighten or dilate: The “notorious” Angelchik prosthesis[33]. 
This prosthesis consisted of a collar with a circular section made of silicone that was 
surgically placed around the abdominal esophagus to prevent GER in the eighties of 
last century. The Angelchik prosthesis was used for almost 15 years, due to good 
results against reflux obtained in several studies[34-36]. Some prospective randomized 
trials demonstrated that the Angelchik prosthesis was as effective in preventing GER, 
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Figure 2 Schematic drawing of the Linx magnetic augmentation device to insert around the abdominal portion of the esophagus in the 
open and closed position. A: Open position; B: Closed position. A-B: Citation:  Bonavina L, Saino GI, Bona D, Lipham J, Ganz RA, Dunn D, DeMeester T. 
Magnetic augmentation of the lower esophageal sphincter: results of a feasibility clinical trial. J Gastrointest Surg 2008; 12: 2133-40. Copyright© The Authors 2020. 
Published by Springer Nature. The authors obtained permission for use of the figure from Springer Nature (Supplementary material).

as the Nissen fundoplication[37], and with similar 24-h pH monitoring results[38]. The 
anti-reflux mechanism of this device occurs through the prevention of LES unfolding, 
when challenged by an increase in intragastric pressure[39] and, mostly, through the 
“padding” action against the posterior wall of the abdominal esophagus, which creates 
a barrier to GER[40]. In this way it causes a high pressure zone at the LES level, which 
can be detected by manometry[34,36]. The “magnetic collar” MSA, just in the hypo-
thesis  that its function is hindered by fibrosis, could resemble a sort of Angelchik 
prosthesis made of metal, which would produce with its weight, a continuous 
pressure against the posterior wall of the abdominal esophagus, closing the lumen to 
reflux. However, this mechanism of the Angelchik prosthesis, on the one hand, could 
help to control GER, but, on the other hand, could represent an obstacle to bolus 
transit, causing persistent, and sometimes severe dysphagia[41]. This fact required the 
removal of the prosthesis in some cases[36,42] and was also responsible for some other 
more severe complications. In fact, a continuous compression of the plastic collar, 
leaning on the esophageal wall, in some cases also caused erosions, fistulas and perfor-
ations of the esophagus and stomach, that sometimes were followed by migration of 
the device into the gastric lumen[43-48]. These complications began to appear years 
after insertion of the prosthesis, but despite this, it continued to be implanted for years. 
In the first decade of the current century the Angelchik prosthesis, which had seemed 
to be a good alternative to Nissen fundoplication, was definitely shelved.

In a manner similar to that of the Angelchik prosthesis the MSA “magnetic collar” 
too, leaning on the distal esophageal wall, being also heavier, may induce ischemia 
and consequently may cause erosion of the wall. The latter complication may be 
revealed by persistent severe dysphagia[49,50] or odinophagia[51]. In some cases the 
device may protrude more or less deeply into the esophageal lumen[50-54]. The app-
earance of these complications requires device removal. In addition, a prolonged 
leaning of the MSA device against the esophageal wall was suspected, but without 
clear proof of being responsible, probably through a chronic foreign body reaction, for 
an adenocarcinoma found in the distal esophagus of a patient with the MSA device
[55].

Causes and timing of MSA device removal 
MSA device removal, however, has been performed not only for the occurrence of 
erosions and device protrusion, but also for severe dysphagia, recurrent GER and 
epigastric pain. In a retrospective review[54], 5.5% of 435 patients undergoing MSA 
device implantation from 2009 to 2017 in a single institution, required removal, the 
most common reasons being recurrent GER (54%), dysphagia (38%), or erosion (8%). 
In a single referral center[12], 124 patients were followed up for 6 up to 12 years 
(median 9 years) after insertion of the MSA device, and 9.2% of patients required 
laparoscopic device removal for various reasons: The most frequent were erosions, 

https://f6publishing.blob.core.windows.net/514ab189-a6f5-4670-8b25-fc633d250883/WJG-27-8227-supplementary-material.pdf


Bortolotti M. Magnets and gastroesophageal reflux

WJG https://www.wjgnet.com 8234 December 28, 2021 Volume 27 Issue 48

regurgitation, heartburn, and dysphagia, but also foreign body sensation, 
odinophagia, pharyngodynia, chronic cough and even the need for a magnetic 
resonance study. In another retrospective single center cohort study[31], after a 
median follow-up of 48 mo 6.7% of 164 patients were explanted. In almost half of cases 
this occurred due to recurrence of heartburn or regurgitation, followed by dysphagia, 
and, in the remainder of cases, due to chest pain and full-thickness erosion of the 
esophageal wall with partial penetration of the device. The majority of the removals 
occurred within two years after implantation[31], whereas for other investigators most 
cases of removal for erosion occurred between 1 and 4 years after device placement
[56]. According to the commercial registries in the United States and Europe, the 
worldwide clinical experience of 497 magnetic implants established that the median 
duration was 2.9 years[5]. In another study[57], the median duration was 274 d in the 
first 1000 MSA implanted patients in 82 institutions, whereas Smith et al[58], 
consulting the MAUDE database from 2012 to 2016 regarding 3283 implanted patients, 
found that the median duration was 1.4 years and more than half of the removals 
occurred within the first year. In conclusion, removal was required in 5% to 9.2% of 
patients and occurred in the first few years after device placement mainly for 
dysphagia, recurrence of GERD symptoms and erosions and the duration varied from 
274 d to 2.9 years. These differences in implant removal, as well as in the occurrence of 
adverse events, may be due to the fact that the number increases with time, and 
therefore the real number in retrospective reviews, likely depends on the follow-up 
duration. Moreover, it should also be kept in mind that different sizing protocols may 
play an important role in producing important data differences.

Procedures and consequences of the removal
Furthermore, the operative management of the MSA device removal and especially its 
pathophysiologic consequences must be considered. The removal of the device was 
carried out using a single stage procedure[31], or, more rarely, in two stages: First 
endoscopically for the visible beads, then laparoscopically for the remaining beads 
within 3 mo after complete healing[51]. Tatum et al[53] reported that the MSA devices 
were removed through laparotomy (4%), laparoscopically (88%), or through a 
combination of endoscopy and laparoscopy (8%). After removal, these patients 
underwent repeated MSA (33%), fundoplication (21%), gastrectomy (4%), or no 
additional procedure (42%). Symptoms prompting removal of the MSA device were 
eliminated in 52% of patients and improved in an additional 35%, whereas in 13% of 
cases the symptoms persisted. As removal of the MSA device is followed not only by 
recurrent GER, but also by a delayed gastric emptying, prokinetics should be added to 
the medical therapy with a PPI[49] or surgical treatment with fundoplication[52]. The 
onset of delayed gastric emptying after removal may be easily explained by damage to 
the right branch of the vagus nerve, which runs along the posterior part of the 
abdominal esophagus. This is the region where the penetration and removal of the 
MSA device usually takes place. Apart from the occurrence of erosion and removal, 
the continuous friction and pressure of the rather heavy MSA “collar”, as well as the 
creation of the tunnel around the abdominal esophagus to insert it, both could damage 
or irritate the area of vagus nerve passage, with possible motor dysfunction of the 
stomach and intestine. A delay in gastric emptying induced by a lesion to the vagus 
nerve was found at the 6 mo follow-up in 125 patients after anti-reflux surgery[59]. 
Consequently, it would be interesting to perform a gastric emptying test before and 6 
mo after the insertion of the MSA device in a group of patients undergoing the 
procedure, or at least in those complaining of dysphagia.

In conclusion, in patients subjected to MSA device insertion there are complications 
and adverse events, the occurrence of which shows great variability from one study to 
another. A possible explanation for this can be found in the different sizing protocols 
as well as in the duration of the follow-up. Some complications, such as dysphagia or 
GER could be considered related to a not so perfect adjustment of the MSA collar 
length or, when they appear or worsen after months, might perhaps be due to 
wrapping of the working mechanism of the device by a coating of fibrous tissue, 
which stiffens with time. Dysphagia may also be linked to the “collar” shape of the 
MSA device pressing with its weight on the posterior wall of the distal esophagus, as 
the Angelchik prosthesis does. This leaning of the “magnetic collar” on the distal 
esophageal wall may be responsible for more severe complications, which manifest 
themselves over time, such as erosions and device penetration through the esophageal 
wall. The consequent MSA device removal also leaves a functional aftermath at the 
gastro-esophageal junction as well as the stomach. Considering the trend over time of 
these latter complications, which in some way could recall to mind those of the 
Angelchik prosthesis, although much less severe, one might wonder if there may be a 
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risk that the the story of the latter will repeat itself with the “magnetic collar”, as was 
feared  in an article in 2014[60]. However, I do not think this could happen, as the 
power of technology will not allow it.

OTHER MAGNETIC TECHNIQUES TO PREVENT GER 
As previously mentioned, another way of exploiting magnetic force to prevent GER 
was devised in a bench-top study published in 2006[3]. As previously described, this 
system consisted of two small magnetic plaques, that, when applied in opposite 
positions around the abdominal esophagus, should attract each other, squeezing the 
LES, to prevent GER. These magnetic plaques are also capable of detaching them-
selves, when the endoluminal pressure increases above a determined value, to allow 
transit of the bolus. The pair of plaques should be surgically inserted at the LES level 
to form a magnetic valve with a dynamic closure that should be sufficient to prevent 
the reflux of contents, without the risk of fibrosis that blocks them in the open or 
closed position, since they are separated by the esophageal lumen.

Another experimental study was subsequently performed to evaluate the feasibility 
of this method[61]. Two small magnetic plaques (5 mm × 20 mm × 1.5 mm) made of 
plastoferrite were implanted by means of a special endoesophageal device (Figure 3) 
in two submucosal longitudinal tunnels in the opposite parts of the distal esophagus 
of esophago-gastric specimens taken from an "ex vivo" swine. The magnetic plaques 
with the opposite polarities facing, through a reciprocal attraction closed the eso-
phageal lumen (Figure 4), creating a high-pressure zone. The latter was measured by a 
manometric catheter passed through the gastroesophageal junction, showing after five 
pull-throughs, a mean pressure ± SD of 14.2 ± 1.27 mmHg, which was significantly 
higher than the basal pressure of 1.5 ± 0.26 mmHg. This preliminary study suggests 
that it could be possible to create functional closure at the LES level with a pressure 
sufficient to prevent GER with a couple of magnetic plaques with various attraction 
forces, using a safe and simple endoscopic procedure.

A technique inspired by the one just described was devised by Dobashi et al[62]. In 
porcine models first “ex vivo” and then “in vivo”, two magnets of neodymium (3 mm × 
12 mm) were endoscopically inserted with opposite polarities into two opposite sub-
adventitial tunnels of the distal esophagus, with the aim of closing the lumen with 
their reciprocal attraction (Figure 5). The tunnels were created with the aid of blunt 
dissection by means of a biliary balloon catheter. Unfortunately, the tunnels “in vivo” 
were successful in only five of 10 pigs and the magnet augmentation device was 
functionally active in only 4 of them. In another study by the same investigator[63] 
neodymium ring magnets (4.8 OD × 1.6 ID mm and 1.6 mm thick) were endoscopically 
anchored to the esophageal mucosa with a suture anchor from a needle arm fixed full-
thickness to the esophageal wall, to create a flap. Two to three magnets were placed in 
opposite positions at the LES level, to induce closure of the lumen with reciprocal 
attraction. This procedure was performed both in nine cadaveric and six surviving 
pigs. In the latter animals the mean LES pressure increased from 8.4 to 32.4 mmHg just 
after device placement. Repeated endoscopy after two weeks showed intact magnets 
in four of 6 animals with a persistent increase in LES pressure. These magnets can be 
easily removed, but low durability is expected and it is not known whether these 
magnetic rings are really capable of completely sealing the lumen. In conclusion, the 
first applications “in vivo” of these different endoluminal magnetic systems did not 
yield outstanding results and they clearly require further development. This deserves 
to be performed, as they present various advantages with respect to the “magnetic 
collar”.

Advantages and shortcomings of the “two plaques system” 
With regard to the working mechanism, the system based on a "collar" of magnets in 
the MSA device seems perfect at the work-bench, but, once inserted into a living orga-
nism, things change. In fact, the biological reaction could trouble its perfect 
functioning, wrapping the device by a coating of fibrous tissue, that with time become 
stiffer and could cause thus dysphagia or GER. The mechanism of the two magnetic 
plaques, instead is not subject to this possible drawback, because it does not have 
mechanical sliding parts, which could be blocked by the deposition of fibrin, possibly 
hindering the to and fro movements of the magnets. In fact, the attraction force acts 
through the lumen of the esophagus, so that the magnets are free to approach and 
separate. The fibrous coating on the magnets may also contribute to securing them in 
their crevice in the esophageal wall. Naturally, the magnetic plaques should be 
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Figure 3 Extremity of the special endoesophageal probe positioned at the LES level in a sequence of operations for the deployment of a 
magnetic plaque seen in profile. A: The mucosa of the distal esophagus is sucked onto the perforated wall of the operative chamber; B: The needle injects 
milliliters of saline solution to create a blister in the submucosa; C: The end of the catheter with a blunted bolt creates a pouch in the submucosa; D: The magnetic 
plaque (seen in profile) is pushed into the pouch. 1: Esophageal lumen; 2: Delivery probe; 3: Deployment channel; 4: Perforated wall of the aspiration chamber; 5: 
Mucosal layer; 6: Submucosal layer; 7: Muscular layer; 8: Needle-catheter; 9: Saline solution; 10: Bolt-catheter; 11: Magnetic plaque seen in profile. A-D: Citation: 
Bortolotti M, Grandis A, Mazzero G. A novel endoesophageal magnetic device to prevent gastroesophageal reflux. Surg Endosc 2009; 4: 885-9. Copyright© The 
Authors 2020. Published by Springer Nature. The authors obtained permission for use of the figure from Springer Nature (Supplementary material).

covered by a soft biomaterial to avoid undesirable reactions of the surrounding tissues 
and must have an appropriate force of attraction to close the lumen without causing 
ischemia and erosions of the underlying compressed tissues.

In this regard another advantage of the “two plaques system", unlike the “magnetic 
collar” MSA, lies in the possibility of accurately establishing the force of closure by 
choosing magnets with different attraction forces for different conditions. In fact, the 
distance between the two plaques may vary from patient to patient and, therefore, 
their force of attraction varies with the square of the distance. Consequently, plaques 
with greater attraction force are required for greater distances, and vice versa. This 
system offers the possibility of choosing, even during insertion, the most suitable 
plaques by measuring with a manometric probe or other systems the endoluminal 
pressure obtained. The MSA “magnetic collar”, instead, always exerting the same force 
of attraction between the beads, could become less effective when the area to surround 
is large, thus facilitating reflux. The reverse could occur for small circumferences, with 
the creation of an obstacle to content transit and consequent dysphagia.

Furthermore, with the “two plaques system” it is possible to realize an anti-reflux 
device that can be inserted endoscopically, as described above. This possibility, 
assuming it works with the magnetic plaques, would cost much less than laparoscopy 
and the MSA device.

The drawback of this system lies in the fact that at the present time it is difficult to 
obtain a stable insertion of the plaques in the esophageal wall. The system by Dobashi 
et al[62] with a sub-adventitial tunnel seems to provide excellent fixing, but was 
followed by functional success in only four of 10 cases. The other system by Dobashi et 
al[63] with 2-3 ring magnets anchored to the distal esophageal wall like a flap was 

https://f6publishing.blob.core.windows.net/514ab189-a6f5-4670-8b25-fc633d250883/WJG-27-8227-supplementary-material.pdf
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Figure 4 Schematic section following a vertical frontal plane through the lower portion of the esophago-gastric wall showing in profile 
the two magnetic plaques inserted face to face in the submucosal position at the lower esophageal sphincter level; these attracting each 
other close the gastro-esophageal junction. Citation: Bortolotti M, Grandis A, Mazzero G. A novel endoesophageal magnetic device to prevent 
gastroesophageal reflux. Surg Endosc 2009; 4: 885-9. Copyright© The Authors 2020. Published by Springer Nature. The authors obtained permission for use of the 
figure from Springer Nature (Supplementary material).

Figure 5 Fluoroscopic view after insertion of the magnets. A: Magnets in the sub-adventitial space opposing the respective esophageal walls. A surgical 
clamp indicates the level of the esophago-gastric junction and the arrow indicates the magnets attracted to one another and closing the lumen; B: Magnets separated 
by the passage of the endoscope. The arrow indicates one of the magnets separated from the other. A-B: Citation: Modified from: Dobashi A, Wu SW, Deters JL, 
Miller CA, Knipschield MA, Cameron GP, Lu L, Rajan E, Gostout CJ. Endoscopic magnet placement into subadventitial tunnels for augmenting the lower esophageal 
sphincter using submucosal endoscopy: ex vivo and in vivo study in a porcine model (with video). Gastrointest Endosc 2019; 89: 422-428. Copyright© The Authors 
2020. Published by Elsevier. The authors obtained permission for use of the figure from Elsevier (Supplementary material).

successful in only four of 6 surviving pigs after 2 wk. Furthermore, although it 
obtained a high endoluminal pressure, it may give the impression of not completely 
seal the esophageal lumen against reflux. The insertion of magnets in submucosal 
tunnels, chosen by Bortolotti et al[60], by means of a special endoesophageal device is 
easy to perform, but it requires a more stable fixing of the devices to the esophageal 
wall. A biologic glue and closure of the proximal mucosal opening by a surgical stitch, 
could avoid loss of the magnets. To date, no one has attempted to apply the couple of 
magnetic plaques outside the esophageal wall, in areas where the vagus nerve does 
not pass. Indeed, this idea poses considerable problems in fixing these plaques. The 
solution could be obtained by various expedients, such as suture anchors, surgical 
stitches and biological glue, whereas the magnetic plaques should have particular 
shapes, with hooks, holes for surgical threads etc. I am confident that a good solution 
for fixing the plaques outside the esophageal wall will be found by a skilled surgeon.

https://f6publishing.blob.core.windows.net/514ab189-a6f5-4670-8b25-fc633d250883/WJG-27-8227-supplementary-material.pdf
https://f6publishing.blob.core.windows.net/514ab189-a6f5-4670-8b25-fc633d250883/WJG-27-8227-supplementary-material.pdf
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Please note that this system with two plaques could also be easily used to prevent 
fecal incontinence. A couple of the plaques may be surgically positioned on the right 
and left sides of the incontinent anal sphincter, with the opposite polarities facing each 
other, so that, by self-attracting they could keep the anal canal closed[64].

CONCLUSION
Considering the clinical effectiveness and occurrence of more or less severe complic-
ations, one might wonder whether the magnetic anti-reflux device MSA actually 
represents an extraordinary progress with respect to Nissen fundoplication. One of the 
major criticisms to MSA studies is that up to now there has not been any randomized 
controlled trial which correctly compared the MSA results with those of Nissen 
fundoplication. However, considering the available studies, it can be said that the 
MSA system achieves a GER control roughly similar to that of fundoplication with the 
advantage of less gas bloating and a greater ability to vomit and belch. On the other 
hand, it has the disadvantage of more prolonged and severe dysphagia, requiring 
endoscopic dilatation more frequently and, in some cases, device removal[11]. The 
latter may also be necessary for some other severe complications, which are for-
tunately infrequent, such as mucosal erosions and device penetration through the 
esophageal wall.

It would be of concern if this “magnetic way” for GER treatment could met the same 
fate as the Angelchik prosthesis, which tried to replace fundoplication, but after 15 
years it was shelved due to numerous and severe complications. I believe this will not 
happen in this case, as “magnetic sphincters” represent a real progress in the surgical 
treatment of GER. I am convinced that the magnetic technique is not a spark in the 
dark  followed by the full return of fundoplication for the following reasons: The MSA 
device is relatively easier to insert, whereas fundoplication, on the other hand, requires 
an expert surgeon for its perfect realization. In addition, I also believe that the 
upcoming “two magnetic plaques system” with submucosal or sub-adventitial 
tunnels, could be the future of the magnetic era. It is unfortunate that this magnetic 
system, which presents many advantages, is not yet available and calls for further 
experiments on animals and clinical trials in selected patients, to achieve sufficient 
reliability in order to enter into surgical practice. This new road appears to be a long 
one filled with obstacles, but I think it is worthwhile trying to continue, unless one 
wants to go further into the future by studying the possibility of biocompatible 
magnetic nanoparticles to be injected into two longitudinal sections of a weak 
sphincter facing one another and then magnetically oriented for the purpose to attract 
themselves along with the surrounding muscle, thus closing the lumen. Unfortunately 
this is still a dream, but dreams can sometimes come true.
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Abstract
Inflammatory bowel disease (IBD) is a chronic disease that requires chronic 
treatment throughout the evolution of the disease, with a complex 
physiopathology that entails great challenges for the development of new and 
specific treatments for ulcerative colitis and Crohn´s disease. The anti-tumor 
necrosis factor alpha therapy has impacted the clinical course of IBD in those 
patients who do not respond to conventional treatment, so there is a need to 
develop new therapies and markers of treatment response. Various pathways 
involved in the development of the disease are known and the new therapies have 
focused on blocking the inflammatory process at the gastrointestinal level by oral, 
intravenous, subcutaneous, and topical route. All these new therapies can lead to 
more personalized treatments with higher success rates and fewer relapses. These 
treatments have not only focused on clinical remission, but also on achieving 
macroscopic changes at the endoscopic level and microscopic changes by 
achieving mucosal healing. These treatments are mainly based on modifying 
signaling pathways, by blocking receptors or ligands, reducing cell migration and 
maintaining the integrity of the epithelial barrier. Therefore, this review presents 
the efficacy and safety of the new treatments that are currently under study and 
the advances that have been made in this area in recent years.

Key Words: Inflammatory bowel disease; Review; Emerging; Treatment; Ulcerative 
colitis; Crohn´s disease
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Core Tip: This review is to present the efficacy and safety of novel treatments for 
inflammatory bowel disease. The new treatments that may be available in the future are 
new anti-tumor necrosis factor alpha, anti-integrines, anti-interleukines, modulation of 
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sphingosine-1-phosphate, janus kinase inhibitors, toll like receptor agonist, therapy on 
the integrity of the epithelial barrier, phosphodiesterase-4 inhibitors and antisense 
oligonucleotide therapy, currently in clinical studies. Many of them with encouraging 
results in clinical studies, while others have not been able to maintain significant 
results in the final phases.
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INTRODUCTION
The pathogenesis of inflammatory bowel disease (IBD) is multifactorial and involves a 
series of factors specific to the patient and the environment. The chronic inflammatory 
process in ulcerative colitis (UC) and Crohn´s disease (CD) is causing damage to the 
intestinal mucosa with gastrointestinal and systemic symptoms. The anti-tumor 
necrosis factor alpha (TNF-α) therapy has impacted in the clinical course of IBD in 
those patients who do not respond to conventional treatment. Up to 30.0% of patients 
may not respond to initial anti-TNF alfa therapy and up to 46.0% may lose response 
during disease evolution[1]. Therefore, there is a need to innovate with the 
development of new treatments to be able to modify the clinical course of IBD 
including fewer clinical relapses, hospitalizations, surgeries and better quality of life. 
Currently, the approved biological treatments have great limitations such as their 
route of administration and adverse events. In recent years, new therapies have been 
developed to reduce the inflammatory process through different signaling pathways. 
There are several new mechanisms of action available such as anti-integrines, anti-
interleukines, modulation of sphingosine-1-phosphate (S1P1), janus kinase (JAK) 
inhibitors, toll like receptor (TLR) agonist, phosphatidylcholin, phosphodiesterase-4 
(PDE4) inhibitors and antisense oligonucleotide therapy, which are promising 
therapies currently in clinical studies. The mechanisms of action of the new biological 
treatments are illustrated in Figure 1. The purpose of this review is to present the 
efficacy and safety of novel treatments for IBD.

PATHOGENESIS OF IBD
IBD is now recognized as an immune-mediated disease that occurs in genetically 
susceptible hosts and can be described as chronic perturbations in homeostasis 
between the host and the external environment. The interface of these interactions can 
be divided into three critical elements: intestinal epithelium, immune cells, and 
commensal microbiota.

One consensus hypothesis is that each of these three major host compartments that 
functions as an integrated supraorganism is affected by specific environmental 
(enteropathogens, antibiotics, smoking etc.) and genetic factors that come together in a 
susceptible host and lead to chronic dysregulation and development of inflammation
[2]. Thus, in both UC and CD, an inflammatory pathway likely emerges from the 
genetic predisposition that is associated with inappropriate innate immune and 
epithelial sensing and reactivity to commensal microbiota that secrete inflammatory 
mediators, together with inadequate regulatory pathways that lead to activated CD4+ 
T cells within the intestinal epithelium and lamina propria, secreting excessive 
quantities of inflammatory cytokines relative to anti-inflammatory cytokines. Some 
activate other inflammatory cells (macrophages and B cells) and others act indirectly to 
recruit other lymphocytes, inflammatory leukocytes, and mononuclear cells from the 
vasculature into the gut, through interactions between homing receptors on leukocytes 
(e.g., α4β7 integrin) and addressins on the vascular endothelium (e.g., MadCAM1). 
Neutralization of TNF or α4β7 integrin is consistent with an effective treatment of IBD. 
There are three major types of CD4+ T cells that promote inflammation in the gut, all 
of which are possibly associated with colitis in animal models and humans: TH1 cells 
(secrete interferon, TNF), TH2 cells [secrete interleukin (IL)-4, IL-5, IL-13] and TH17 
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Figure 1 Mechanism of action of new therapies in inflammatory bowel disease. JAK: Janus kinase; TLR: Toll like receptor; IL: Interleukin; S1P1: 
Sphingosine-1-phosphate; PDE4: Phosphodiesterase-4; TNF: Tumor necrosis factor.

cells (secrete IL-17, IL-21). Each of these subsets of T cells cross-regulate each other. 
The TH1 cytokine pathway is initiated by IL-12, a key cytokine in the pathogenesis of 
experimental models of mucosal inflammation. IL-4 and IL-23, together with Il-6 and 
transforming growth factor beta (TGF-β), induce TH2 and TH17 cells, respectively. IL-
23 also inhibits the suppressive functions of regulatory T cells[3]. Activated 
macrophages secrete TNF and IL-6.

Understanding inflammatory pathways has led to the development of new 
therapies, such as monoclonal antibodies that block pro-inflammatory cytokines or the 
signaling by their receptors (e.g., anti-TNF-α anti-IL-12, anti-IL-23, anti-IL-6 or JAK 
inhibitors); molecules associated with leukocyte recruitment (e.g., anti-α4β7); and the 
use of cytokines that inhibit inflammation (e.g., IL-10) or promote intestinal barrier 
function (e.g., epidermal growth factor), which may be beneficial to humans with 
intestinal inflammation.

RESEARCH METHODS
We performed an exhaustive search, encompassing the last 10 years, in the 
Medline/PubMed, the Cochrane Database, EMBASE (Ovid), and LILACS databases, 
using the following MeSH terms: ulcerative colitis, Crohn’s disease, inflammatory 
bowel disease, pathogenesis, biologic therapy, new anti-TNF-α agents, anti-integrin 
therapy, vedolizumab, etrolizumab, abrilumab, ontamalimab, cytokine blockade, anti-
interleukin therapy, vercirnon, anti-interlukin 23, eldelumab, rizankizumab, 
mirikizumab, brazikumab, guselkumab, briakinumab, anti-interleukin 17, 
secukinumab, brodalumab, anti-interleukin 6, interleukin 22, JAK inhibitors, 
upadacitinib, filgotinib, peficitinib, modulation of SIP1, ozanimod, etrasimod, 
amiselimod, laquinimod, toll like receptor agonist, cobitolimob, phosphatidylcholine, 
PDE4 inhibitor, apremilast, antisense oligonucleotide therapy, mongersen, GATA3 
DNAzyme, alicaforsen. The search was limited to randomized controlled trials (RCTs) 
conducted on human subjects. Language: English. We also searched for any relevant 
RCTs included in the IBD Group Specialized Trials Register, the World Health 
Organization International Clinical Trials Registry, the European Union Clinical Trials 
Register, and the ClinicalTrials.gov to ensure identification of all eligible studies; and 
recent conference proceedings (European Crohn’s and Colitis Organisation, United 
European Gastroenterology Week, and Digestive Disease Week). Finally, we 
conducted supplemental searches of the regulatory authorities’ websites (European 
Medicines Agency: www.ema.europa.eu; United States Food and Drug Adminis-

http://www.ema.europa.eu


Yamamoto-Furusho JK et al. Emerging therapies in IBD

WJG https://www.wjgnet.com 8245 December 28, 2021 Volume 27 Issue 48

tration: www.fda.gov) to obtain details on study characteristics or outcomes.

NEW ANTI-TNF-α THERAPY
AVX-470 
This is a polyclonal anti-TNF antibody, currently in development and it has been 
tested in patients with moderate to severe disease UC activity. There is few 
information about its mechanism of action, it has been proposed to act locally in the 
gastrointestinal tract named AVX-470 has shown to inhibit gut inflammation in mice
[4]. It is considered a large weight molecule of 160–900 kDa, with an oral adminis-
tration which can avoid systemic adverse events. In phase 1 clinical trial, patients 
receive AVX-470 at doses of 0.2, 1.6 or 3.5 g a day, clinical response was an 
achievement in 7 (25.9%) with AVX-470 groups vs 1 (11.1%) in the placebo group and a 
significant reduction in serum C reactive protein (CRP) and IL-6. Low levels of anti-
TNF antibodies were observed in patients who received this treatment, the antibody 
levels were lower compared to other anti-TNF therapies, having less immunogenicity 
avoiding future loss of response to this treatment, with a good safety profile, there 
were no serious adverse events in this human trial[5]. The phases of clinical trials of 
these new treatments are listed in Table 1.

ANTI-INTEGRIN THERAPY
Integrins are receptors found on the cell surface for cell proliferation, signaling, and 
migration, its subunits binds to cell adhesion molecules (CAMs). The α4β1 integrin 
heterodimer binds VCAM-1 or fibronectin, α4β7 integrin heterodimer binds mucosal 
vascular addressin (MAd) CAM-1 and the αEβ7 integrin heterodimer binds E-cadherin
[6]. Inhibiting these molecules have a therapeutic effect since it decreases the cell 
migration of pro-inflammatory cells in the gastrointestinal tract[7].

Ontamalimab (SHP647, PF-00547659)
This is a fully human anti-MAdCAM-1 antibody, reducing lymphocyte migration. In a 
phase 2 study (TURANDOT trial) in patients with moderate to severe UC who failed 
conventional treatment, were randomized to receive ontamalimab subcutaneously 
(SC) at a dose of 7.5 mg, 22.5 mg, 75 mg, 225 mg or placebo every 4 wk, clinical 
remission was presented in 8 (11.3%), 12 (16.7%), 11 (15.5%) and 4 (5.7%) in the groups 
respectively and in the placebo group only in 2.7% of patients[8]. In the open label 
study for UC patients (TURANDOT II trial) mucosal healing increased from 20.3% 
from baseline to 28.5% at week 16 and was maintained until week 144 of follow-up[9]. 
The phase 3 study for patients with UC is currently recruiting patients[10]. In the 
phase 2 study (OPERA) in patients with CD, the results did not show significant 
differences compared to the placebo group[11], therefore, the phase 3 study in CD was 
suspended by the sponsor[12].

Etrolizumab (rhuMAbBeta7)
This is a humanized IgG1 monoclonal antibody (mAb) for the β7 integrin subunit and 
blocks the interactions of α4β7 with MAdCAM-1 and αEβ7 with E-cadherin[13]. This 
therapy suppresses the trafficking of lymphocytes in the intestine and the retention of 
lymphocytes in the intraepithelial compartment. In a phase 2 study, its efficacy for 
induction of remission in patients with UC was demonstrated previously with 
subcutaneous administration[11]. Currently, the phase 3 study is underway for 
patients with UC and CD with moderate to severe activity, it is composed of multiple 
randomized control trials HIBISCUS I and II, GARDENIA, LAUREL, HICKORY, 
ERGAMOT and open-label extension trials COTTONWOOD and JUNIPER. Also the 
purpose of these studies is not only to verify its efficacy and safety, but to compare 
with other biological treatments such as adalimumab and infliximab[14].

Abrilumab (AMG 181)
This is a fully humanized IgG2 mAb, with the same mechanism of action like 
vedolizumab, against the integrin α4β7[15]. A phase 2 study was conducted in patients 
with moderate to severe UC refractory to anti-TNF alpha and immunomodulatory 
therapy, were randomized to receive abrilumab SC at doses of 7, 21 or 70 mg on day 1, 
week 2 and 4, then every 4 wk, abrilumab 210 mg on day 1 or placebo. The clinical 

http://www.fda.gov
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Table 1 Phase of clinical trials for emerging therapeutic options for inflammatory bowel

Treatment UC CD Treatment UC CD Treatment UC CD Treatment UC CD

Anti-IL Anti-integrin JAK inhibitors Other therapies

Rizankinumab III III Ontamalimab III II Upadacitinib III III AVX-470 I

Mirikizumab III II Etrolizumab III III Filgotinib III III Laquinimod - II

Brazikumab II III Abrilumab II II Peficitinib II - Cobitolimod III -

Guselkumab II III AJM300 III - TD-1473 II II BL-7040 II -

Briakinumab - II Cytokine blockade Modulation of SIP1 Phosphatidylcholine III -

PTG 200 - II Vercirnon - III Ozanimod III III Apremilast II -

Secukinumab - II Eldelumab II II Etrasimod III - Mongersen - II

Brodalumab - II GSK3050002 I - Amiselimod - II GATA3 DNAzyme II -

PF-04236921 - II KRP-203 II - STNM01 II

UC: Ulcerative colitis; CD: Crohn´s disease; IL: Interleukin; JAK: Janus kinase; S1P1: Sphingosine-1-phosphate.

remission rates were 98 (13.3%), 79 (12.7%) and 116 (4.3%) (P ≤ 0.05) for abrilumab 70 
mg, 210 mg and for placebo respectively at week 8. No serious adverse events 
occurred during the study. The most frequent adverse events reported for both groups 
was the reaction at the injection site, nasopharyngitis, headache, and arthralgias[16] . 
For patients with CD, a phase 2 study was conducted and were randomized to receive 
placebo or abrilumab at doses of 21 mg or 70 mg SC on day 1, weeks 2 and 4, and 
every 4 wk for 24 wk or only one dose of 210 mg SC on day 1, the primary endpoint 
was not reached and there were no significant differences in clinical remission 
compared to the placebo group[17].

AJM300
AJM300 is an oral small molecule antagonist of α4 and target α4β7 and α4β1 integrin. 
Previous studies have demonstrated, a significant decrease in the number of T 
lymphocytes in the lamina propria in mice[18]. The therapeutic efficacy and safety of 
AJM300 were tested in a phase 2a study with 102 UC patients and were administered 
960 mg orally for 8 wk, 3 times a day or placebo, to evaluate the induction to clinical 
remission. Clinical response rates were 32 (62.7%) and 13 (25.5%) (P = 0.0002), clinical 
remission in 12 (23.5%) and 2 (3.9%) (P = 0.0099), mucosal healing in 30 (58.8%) and 15 
(29.4%) (P = 0.0014) at week 8 in the AJM300 and placebo group, respectively. This 
study demonstrated a significant improvement in clinical response, endoscopic 
remission, and histological response. No serious adverse effects were documented and 
only the most common adverse event was nasopharyngitis[19]. A phase 3 study with 
the same doses is currently being conducted to evaluate the efficacy and safety in 
patients with UC[20].

CYTOKINE BLOCKADE
Vercirnon (CCX282-B)
This is an antagonist against the receptor CCR9, inhibiting leukocyte traffic to the 
small intestine[21]. In a study phase 2 in patients with CD, subjects received 250 mg 
once daily, 250 mg twice daily, or 500 mg once daily of vercirnon or placebo for 12 wk 
as induction therapy and then they receive 250 mg of vercirnon through week 16 if 
they response were randomly assigned to receive 250 mg of vercirnon twice a day or 
placebo for 36 wk. Response rates for the induction therapy at week 12 was about 55 
(56.0%, P = 0.168), 47 (49.0%, P = 0.792), 59 (61.0%, P = 0.039) in vercinon groups and 
68 (47%) in the placebo group. In the maintenance period, 68 (47%) of subjects on 
vercirnon were in remission vs 29 (31%) in the placebo group (P = 0.012)[22] During 
the phase 3 study, patients were randomized into three groups to receive vercirnon 
500 mg once a day, 500 twice a day, or placebo, clinical response at week 12 was in 56 
(27.6%, P = 0.546), 55 (27.2%, P = 0.648) and 51 (25.1%), respectively. The most frequent 
adverse events were headache, worsening of CD and abdominal pain. This treatment 
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failed to show the effectiveness of previous studies and no significant differences 
between the all study groups[23], so subsequent studies were canceled.

Eldelumab (BMS-936557)
Eldelumab is a fully human mAb against the chemokine CXCL10, this chemokine is 
also involved in the traffic of leukocytes to the colon, its receptor CXCR3 is expressed 
on most T cells. In a phase 2 study in patients with UC, they receive 10 mg/kg of 
eldelumab or placebo intravenously (IV) every other week. The primary and 
secondary endpoints of clinical response, clinical remission and mucosal healing at 
day 57 were not met, but the clinical response and clinical remission rates were 
associated with higher drug exposure[24]. A phase 2 trial in patients with CD receives 
eldelumab 10 mg, 20 mg or placebo at days 1 and 8 and alternate weeks. Clinical 
remission was 29.3%, 22.5% and 20.0% in the 20 mg/kg, 10 mg/kg and placebo groups 
at week 11, but they were not significantly superior to the placebo group[25]. Despite 
the encouraging results of the clinical response related to drug exposure and a good 
safety profile, the response rates were lower, so further studies were not continued in 
IBD.

GSK3050002
This is a mAb IgG1 with affinity to chemokine CCL20, binds to its receptor CCR6 
expressed mainly in dendritic cells and B cells. The chemokine CCL20 is up-regulated 
in active IBD[26]. Currently, there are only phase 1 studies focused on patients with 
UC. In a study with healthy volunteers, they were administered, dose escalation of IV 
GSK3050002. With a half-life time of 2 wk, with a dose dependent decrease in CCR6, 
and a good safety profile at doses from 0.1 to 20 mg/kg[27].

ANTI-IL THERAPY
Anti- IL-23
In genome association studies, a strong association with the production of IL-17 and 
IL-23 has been shown, especially in patients with CD[28,29], as well as an increase in 
the expression of messenger RNA of these molecules and their intracellular proteins in 
the lamina propria of the gastrointestinal tract of patients with IBD[30,31].

Risankizumab (BI-655066)
This is a mAb that targets the p19 subunit, specific for IL-23. In the phase 2 studies for 
the induction of clinical remission in patients with moderate to severe CD, risank-
izumab was administered at doses of 200 and 600 mg IV where clinical remission was 
obtained in 12 (31%) vs 6 (15%) patients in the placebo group at week 12[32]. The 
maintenance of clinical remission with risankizumab in patients with CD, it was 
maintained in 44 (71%) of patients, 50 (81%) patients had a clinical response, 22 (35%) 
obtained endoscopic remission, 15 (24%) mucosal healing and 18 (29%) achieved 
clinical and endoscopic (deep) remission at week 52[33]. A phase 2 and 3 studies are 
currently recruiting patients with moderate to severe UC activity, with IV induction 
doses and subcutaneous maintenance SC doses[34], a phase 3 study of maintenance of 
remission is planned for patients who achieved clinical response and remission in the 
induction study[35]. A phase 3 study for induction of remission in CD and its 
maintenance until week 52[36].

Mirikizumab (LY3074828)
This is a mAb that blocks selectively the p19 subunit of IL-23. In the phase 2 study in 
patients with moderate to severe activity of UC were randomized into four groups to 
receive doses at 50 mg, 200 mg, 600 mg and placebo SC at 4 and 8 wk. Clinical 
remission was obtained in 10 (15.9%), 14 (22.6%) and in 7 (11.5%) patients, 
respectively, compared with only 3 (4.8%) patients in the placebo group at week 12. 
The maintenance of clinical remission at doses of 200 mg every 4 wk, 200 mg every 12 
wk and placebo, with 22 (46.8%), 17 (37.0%) and 1 (7.7%) of patients at week 52 in the 
maintenance of clinical remission[37]. The most frequently reported adverse effects 
were nasopharyngitis, nausea and worsening of UC. A phase 3 study (LUCENT 1) for 
induction of remission in 12 wk for UC patients with moderate to severe activity is 
currently under recruitment[38], as well as maintenance of remission (LUCENT 3)[39]. 
A phase 2 study for patients with CD (SERENITY) and a phase 3 study with an active 
arm for ustekinumab[40].
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Brazikumab (MEDI2070)
This is a mAb selectively directed to the p19 subunit of IL-23. Efficacy was evaluated 
in patients with CD and moderate to severe activity, who had a failure to anti-TNF-α, 
they were randomized with a dose of brazikumab of 700 mg IV or placebo at weeks 0 
and 4. Followed by maintenance doses of 210 mg SC every 4 wk from weeks 12 to 112. 
Clinical response was measured in 29 (49.2%) vs 16 (26.7%) response from the placebo 
group at week 8. At week 24, the clinical response of 28 (53.8%) in the brazikumab 
group vs 30 (57.7%) in patients in the placebo group. A secondary outcome was to 
measure the expression of IL-22, a pro-inflammatory cytokine induced by the action of 
IL-23. Patients with a higher expression of IL-22 at the start of treatment was 
associated with a higher probability of response to brazikumab compared to the 
placebo group. The most frequently adverse effects were headache, nasopharyngitis, 
abdominal pain, arthralgia and proctalgia[41]. In patients with UC with moderate to 
severe activity named the EXPEDITION, which is a long-term phase 2 study of 
brazikumab in patients with UC with moderate to severe activity, is underway with IV 
brazikumab on days 1, 15 and 43, followed by brazikumab SC starting on day 71 every 
4 wk[42]. It is also being evaluated in CD patients in a phase 3 study with severe 
activity, with IV brazikumab on days 1, 29, and 57, followed by SC brazikumab. For 
CD, a phase 3 study with an active arm is being recruited to compare adalimumab in 
which IL-22 was also included as a prognostic factor of response to treatment[43].

Guselkumab
This is a mAb against the p19 subunit, whose efficacy has been proven and was 
approved for psoriasis treatment[44]. There are no data available so far on its efficacy 
and safety in patients with IBD, data are only available in patients with psoriasis and 
psoriatic arthritis where it has shown successful results with few adverse effects. There 
is an ongoing phase 2 study with combined therapy with guselkumab and golimumab 
in patients with moderate to severe UC activity. Participants will receive guselkumab 
at first dose as an IV infusion and the second one as a SC injection in addition to 
golimumab two doses as an SC injection and placebo[45]. For CD, a phase 2 study 
(GALAXI 1) is underway, participants will be assigned to five treatment groups, 
where groups 1 to 3will receive two doses of guselkumab IV and SC; group 4 will 
receive ustekinumab IV infusion followed by SC dosing, and group 5 will receive IV 
placebo at week 12. Those patients who do not respond will receive two doses of 
ustekinumab IV and SC. In GALAXI 2 and 3 studies, participants will be randomized 
to guselkumab, ustekinumab, or placebo[46]. A phase 3 study, is ongoing in patients 
with moderate to severe CD activity with IV guselkumab (3 doses) followed by SC 
guselkumab[47].

Briakinumab
This is a mAb antibody against the p40 subunit of IL-12 and 23. Early studies, showed 
significant decreased in Th1 Lymphocytes in the gastrointestinal tract[48]. Currently it 
is only being evaluated for the treatment of psoriasis. In a phase 2 study, patients with 
CD were included in four treatment groups, they received briakinumab doses of 200 
mg, 400 mg, 700 mg and placebo at weeks 0, 4 and 8. Patients who responded with 
doses of 400 mg and 700 mg were included in the maintenance phase at doses of 200 
mg, 400 mg, 700 mg and placebo at weeks 12, 16 and 20. At week 24, 21 (43%), 21 
(48%), 21 (57%) and 14 (29%) patients were in remission in the respectively groups. 
The most frequent adverse effect reported were respiratory infections in 20.7%, nausea 
in 17.3%, abdominal pain and headache 14.3%[49]. No current studies are undergoing 
in patients with CD and briakinumab.

PTG200 (JNJ67864238) 
This is a selective inhibitor blocks the IL-23 receptor, it has the main advantage of oral 
administration. In vivo studies, have demonstrated that a high concentration of this 
molecule at the gastrointestinal level and a minimum concentration at the systemic 
level. Phase 1 trials in healthy volunteers showed few adverse effects, none of them 
serious, with a half-life of approximately 1.5 h[50]. A phase 2 study is currently 
underway in patients with CD with moderate to severe activity to evaluate the efficacy 
and safety for 12 wk, with daily oral administration of PTG-200[51].

Anti-IL-17
The IL-23 is involved in the signaling pathway of Th17 cells, these lymphocytes are 
producers of cytokines that enhance or regulate immune responses by interacting with 
other inflammatory cells such as macrophages, neutrophils, eosinophils, and 
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basophils. These cells participate in the expression of subsets regulatory T cells and 
Th1, Th2, and Th17 lymphocytes[52]. Stimulation of neutrophil activation and IL-23-
mediated induction of IL-17 and IL-22 production by neutrophils. All IL-17 producing 
cells predominate in patients with UC, mainly in the lamina propria, and CD 
transmurally[30].

Secukinumab (AIN457)
Is a mAb of the IgG type which binds selectively to IL-17, preventing its union with its 
receptor, with this action the inflammatory process caused by this cytokine. In a phase 
2 study carried out in patients with CD with moderate to severe active disease in 
which 59 patients were included who received IV secukinumab or placebo, 31% of 
patients in the secukinumab group discontinued the study prematurely due to lack of 
response to treatment. Higher rates of adverse effects were observed compared to the 
placebo group, 29 (74.4%) vs 10 (50%) patients. The most frequent adverse event were 
infections, worsening of CD, abdominal pain and arthralgias[53]. Secukinumab was 
approved for the treatment of psoriasis, but have been reported cases of IBD after the 
application of these biological in this group of patients[54,55], therefore, its use in 
patients with known IBD is not recommended and no new studies are undergoing.

Brodalumab (AMG 827)
Is a mAb that acts directed against the IL-17 receptor, inhibiting the inflammatory 
activity of this interleukin with high affinity[56]. Its availability is limited to psoriasis 
patients with moderate to severe disease. In the phase 2 study, patients with moderate 
to severe CD were enrolled to receive different doses of brodalumab 210, 350 and 700 
mg at weeks 0 and 4 compared to a placebo group. This study was interrupted for 
aggravation of CD activity. Only 130 patients were randomized to receive treatment 
groups with clinical response in 1 (3.1%), 5 (15.2%), 3 (9.1%) and 1 (3.1%) in the 
brodalumab at 210 mg, 350 mg, 700 mg and placebo respectively at week 6. The most 
frequent adverse effect was worsening activity of CD[57]. There are no ongoing 
studies for Brodalumab in IBD.

Anti-IL-6
This cytokine has inflammatory effects and inhibits apoptosis of T lymphocytes in the 
gastrointestinal mucosa[58]. Serum IL-6 concentrations are elevated in patients, with 
CD and correlates with CRP levels[59].

PF-04236921
The PF-04236921 molecule is a IgG2 mAb that inhibits the action of IL-6, it has an 
approximate half-life of 36 to 51 d. The induction of clinical remission was evaluated 
with doses of 10 mg, 50 mg, 200 mg and placebo. The response rate at dose of 50 mg 
was 49.3% vs 30.6% (P ≤ 0.05) in the placebo group at week 8 and 27.4% and 10.9% (P ≤ 
0.05) respectively at week 12. Common adverse effects were headache, abdominal pain 
and nasopharyngitis while serious adverse effects were presented in 3 (4.5%), in 7 
(9.9%), in 8 (20%) patients in the 10 mg, 50 mg and 200 mg groups respectively, which 
include perforation and abscess formation[60].

IL-22 THERAPY
Unlike the previous interleukins, IL-22 has an anti-inflammatory mechanism, it is 
elevated during inflammatory processes, with multiple functions such as regulation of 
the interaction between bacteria-host, protection and healing of the mucosa[59]. In 
patients with CD, it is higher compared to patients with UC, since previous studies 
have shown greater expression in the small intestine[61,62] and patients with active 
UC[63].

UTTR1147A
In a phase 1 stage in healthy volunteers, ascending doses of this molecule were used 
by IV and SC routes where they showed adequate pharmacokinetics with a good level 
of safety[64]. A phase 2 study is currently being recruited in patients with moderate to 
severe active UC, which will also include active arms with vedolizumab for the 
induction of clinical remission at week 8 as well as a maintenance phase will be 
evaluated as the primary objective until week 30[65].
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JAK INHIBITORS
Upadacitinib
This is a selective oral inhibitor of JAK1 compared to JAK2, JAK3 and TYK-2[66,67]. 
Upadacitinib down-regulates multiple pro-inflammatory cytokines, including the 
following interleukins: IL-2, 4, 6, 7, 9, 15, 21, and interferon gamma that are relevant to 
the pathogenesis of IBD[68]. A total of 220 patients were included to evaluate the 
induction of clinical remission in patients with CD who received upadacitinib orally 
twice a day, the clinical remission was reach in 39 (13%) with 3 mg, in 37 (27%, P < 0.1) 
with 6 mg, in 36 (11%) with 12 mg, 35 (14%) with 24 mg and 37 (11%) in the placebo 
group once a day at week 16. Endoscopic remission was greater the higher the dose, 
but not the clinical remission[66]. These results are similar for UC at doses of 7.5 mg, 
15 mg, 30 mg or 45 mg once a day, with clinical remission in 4 (8.5%, P = 0.052), in 
(14.3%, P = 0.013), in 7 (13.5%, P = 0.011), in 11 (19.6%, P = 0.002) respectively and 0% 
in the placebo group at week 8[69]. Currently are conducting phase 3 studies for both 
diseases[70,71].

Filgotinib
This is an inhibitor with higher selectivity for JAK1 over JAK2 and JAK3[72] in order 
to assess the induction of remission in patients with moderate to severe CD, 200 mg 
orally was administered once daily against placebo over a period of 10 wk, in 60 
patients (47%) who received filgotinib achieved clinical remission at week 10 vs 10 
(23%, P = 0.0077) patients in the placebo group, the most frequent adverse effects were: 
nasopharyngitis and urinary tract infections[73]. It is currently in recruitment in phase 
3 study for patients with CD[74] and UC[75] with moderate to severe activity naïve to 
biological therapy or who had failure or intolerance to any other biological treatment.

Peficitinib
Peficitinib inhibits selectively for JAK3 over JAK1, JAK2, and TYK2[76]. In phase 2 
with UC patients, it was evaluated the efficacy at doses of 25 mg, 75 mg, 150 mg once a 
day, 75 mg twice a day and placebo orally. The primary endpoint of dose-response 
was not reached at week 8, but the clinical response, clinical remission and mucosal 
healing were higher at doses of ≥ 75 mg. Biochemical markers like fecal calprotectin 
and CRP were not significantly reduced with peficitinib. The most frequent adverse 
events were worsening of UC, increased blood creatine phosphokinase and anemia
[77].

TD-1473
TD-1473 is a gut-selective pan-JAK inhibitor, administered orally, inhibits cytokine 
signaling directly in the gastrointestinal tract avoiding systemic effects. Phase 1 in mice 
and healthy volunteers show high intestinal drug exposure compared with plasma. 
The Phase 1 study was done in UC with moderate to severe active disease, and 
evaluate 3 doses 20 mg, 80 mg and 270 mg orally once a day after an overnight fast for 
28 d, no efficacy analysis was carried out but tendencies to decrease UC activity were 
found[78]. A phase 2 study is currently being carried out in patients with CD (DIONE)
[79] and a phase 2 and 3 for patients with UC (RHEA)[80].

MODULATION OF SIP1
Small molecule drugs have intrinsic properties that distinguish them from biological 
therapies: they are administered orally, have a short half-life and a low risk of 
immunogenicity[81].

Ozanimod
This is an oral agonist of the S1P1 and 5 receptors, decreasing the number of activated 
lymphocytes circulating to the gastrointestinal tract. The clinical remission occurred in 
11 (16%, P = 0.048) who received 1 mg ozanimod and in 9 (14%, P = 0.14) who received 
0.5 mg ozanimod, compared with 4 (6%) patients who received placebo at week 8. In 
the maintenance period, the clinical remission was in 14 (21%, P = 0.01) in the 
ozanimod 1 mg group, 17 (26%, P = 0.002) in the 0.5 mg group, and 6% in the placebo 
group at week 32. The main adverse effects presented were anemia and headache[82]. 
Preliminary results in CD receiving ozanimod 1 mg orally daily showed improvement 
in mucosal healing in patients with moderate to severe CD treated for 12 wk[83]. A 
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phase 3 study, is currently being carried out to evaluate the induction and 
maintenance of clinical remission for CD and a phase 3 for UC is completed pending 
publication of official results[84,85].

Etrasimod (APD334)
This is a selective modulator of the S1P1, S1P4 and S1P5 sphingosine receptors, 
decreasing the production of several cytokines[86]. After treatment with etrasimod 2 
mg once daily, an approximately 53% decreased in mean lymphocyte count was 
observed in healthy volunteer patients on day 3, with a continuous decrease in 69% of 
patients by day 21. In a phase 2 study in UC, were randomized in 3 groups: 1 mg, 2 mg 
and placebo for 12 wk orally once a day, the primary endpoint was an improvement in 
the modified Mayo index that evaluates the frequency of stools, rectal bleeding and 
endoscopic findings. Clinical remission was observed in 33.0% (P ≤ 0.001) of the 
etrasimod 2 mg group compared with 8.1% of the placebo group. Endoscopic 
improvement occurred in 41.8% (P = 0.003) in the 2 mg group. No significant 
differences were found concerning adverse effects compared with the placebo group
[87]. A phase 3 study is recruiting patients, with UC for the administration of 
etrasimod 2 mg orally for 52 wk[88].

Amiselimod (MT-1303)
This is a S1P1 receptor modulator, with more favorable cardiac safety profile than 
other S1P1 receptor modulators[89]. It was evaluated in patients with CD, with 
clinically active disease and elevated biomarkers, in patients who were previously 
treated with steroids, immunomodulators and/or anti-TNF-α treatment. The dose 
evaluated was 0.4 mg orally once a day for 14 wk. The primary endpoint of CDAI100 
was achieved in 19 (48.7%) in the amiselimod group vs 20 (54.1%) patients in the 
placebo group. Adverse effects were observed in both groups, infections occurred in 
26% vs 13% of the placebo group. Cardiac disorders such as ventricular tachycardia, 
bradycardia, ventricular extrasystoles were observed[90].

KRP-203 
This is a S1P1, 4, 5 receptor agonist and partial agonist of S1P3 receptor. In a phase 2 
with moderate UC activity and 5-aminosalicylate refractory patients. They received 1.2 
mg of KRP203 or placebo daily for 8 wk. No statistically significant differences were 
found between both groups, but the frequency of clinical remission was 14% and 0% in 
the placebo group. No adverse cardiac events were reported during the study, the 
most frequent adverse events were gastrointestinal disorders and headache[91].

OTHER MECANISM OF ACTION
Laquinimod
This an oral small-molecule with a direct inhibitory effect on T cells and causes a 
decreased pro-inflammatory cytokines in the gastrointestinal tract[92]. In a phase 2 
study in patients with active CD, they receive 0.5 mg, 1.5 mg, or 2 mg a day of 
laquinimod or a placebo, for 8 wk. The primary endpoint was a clinical response of 70 
or 100 points of CDAI reduction from baseline or remission and no treatment failure. 
A dose of 0.5 mg showed improvement on remission rates in 14 patients (48.3%) vs 10 
patients (15.9%), a response of 100 CDAI of 55.2% vs 31.7% and response CDAI 70 in 
62.1% vs 34.9% in the placebo group. The most frequents adverse events were 
headache and abdominal pain[93].

TLR agonist
The TLR-9 is mainly expressed on dendritic cells and macrophages, the TLR recognize 
pathogenic molecules to release anti-inflammatory mechanisms. TLR-9 expression is 
upregulated in the mucosa of the rectum in UC patients with active disease compared 
with healthy controls and patients with UC in remission. Activation of the TLR-9 
receptor has been proposed to stimulate intestinal mucosal healing[94].

Cobitolimod (DIMS0150)
This is a TLR-9 agonist which is a synthetic oligonucleotide that induced the 
production of IL-10 and other anti-inflammatory cytokines[95]. Furthermore, it has 
been seen in cell studies to increase steroid sensitivity in patients with steroid-resistant 
UC patients[96]. In UC patients refractory to conventional treatment and anti-TNF-α 
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therapy, were included to receive rectally DIMS0150 30 mg or placebo. No statistical 
differences between 30 mg and placebo were found, with the induction of clinical 
remission at week 12 in 44.4% and 46.5% respectively. With symptomatic remission in 
32.1% vs 14.0% in the 30 mg and placebo group (P = 0.020) at week 4, and 44.4% vs 
27.9% at week 8 (P = 0.061). Mucosal healing at week 4 in 21.0% vs 4.7% (P = 0.01), 
there were no major safety events during study development[97]. A phase 2 trial 
(CONDUCT study) patients were randomized to receive rectal enemas at doses of 31 
mg, 125 mg or 250 mg at weeks 0 and 3, and cobitolimod at doses of 125 mg or placebo 
at week 0, 1, 2 and 3. There were statistically significant differences for clinical 
remission at week 6 in the 250 mg group in the 21.0% vs 7% in placebo (P = 0.0025)[98].

BL-7040
This is a TLR-9 modulator, in phase 2, in UC with moderate clinical activity, received 
BL-7040 orally, 12 mg for 19–21 d followed by 40 mg for an additional 14 d, clinical 
remission was achieved in 12.5%, mucosal healing was achieved in 50%, and was well 
tolerated with one serious adverse event not related to the study[99].

FOCUSED THERAPY ON THE INTEGRITY OF THE EPITHELIAL BARRIER
Phosphatidylcholine (LT-02)
Is usually found in the intestinal barrier, maintaining its integrity, it is decreased in 
patients with UC and cause epithelial permeability[100], these changes have 
developed in mice models and a probable role in the pathogenesis of IBD development 
has been demonstrated[101]. In a phase 2 study in UC patients, the treatment was 
administered orally with pellets, four times daily at doses of 0, 0.8, 1.6, or 3.2 g. 
Clinical remission was achieved in the 31.4% of 3.2 g vs 15.0% in the placebo group (P 
= 0.089). Mucosal healing was achieved in 47.4% vs 32.5% (P = 0.098), histologic 
remission in 47 (40.5%) vs 8 (20.0%) respectively (P = 0.016)[102]. A phase 3 study was 
recently conducted (PROTECT-2) compared with mesalamine and placebo for the 
maintenance of remission in patients with UC, but the results have not been published 
so far[103]. The study for induction of remission (PROTECT-3) in UC was terminated 
because it did not show any efficacy for achieving induction of remission[104].

PDE4 inhibitor
Apremilast: This an oral small molecule that specifically inhibits PDE4[105] ,with 
activation of intracellular cAMP levels and an increase the production of anti-inflam-
matory cytokines with effects on innate inmmunity[106] and is currently approved for 
the use in psoriasis. In the phase 2 study in patients with UC, patients were 
randomized to receive apremilast 30 mg, 40 mg or placebo twice daily for 12 wk and 
subsequently randomized to receive 30 or 40 mg for 40 wk. Clinical remission was 
achieved in 31.6% and in 12.1%, (P = 0.01) in the groups of 30 mg and placebo, 
respectively at week 12, without significant differences for the group of 40 mg. During 
the maintenance period, clinical remission was achieved in 40.4% in the 30 mg group 
vs 32.7% in the 40 mg group[107].

Antisense oligonucleotide therapy
Mongersen GED0301: TGF-β is an important cytokine with an anti-inflammatory 
functions, with a regulatory function of T cells[108]. The activation of this factor causes 
a phosphorylation of the SMAD2/3complex complex, in this pathway SMAD7 acts, 
which is responsible for downregulating TGF-Β, blocking the activation of the 
SMAD2/3complex complex. TGF-Β is normally produced in patients with IBD but it 
did not achieve its anti-inflammatory effect due to the high production of SMAD7 in 
these patients[109]. Mongersen is an anti-SMAD7 oligonucleotide, against SMAD7 
mRNA, decreasing the production of this inhibitor[110]. Mongersen is for oral use and 
binds to the TGF-β receptor inhibiting the signal of SMAD2 and 3[111], and reduce pro 
inflammatory cytokines[112]. A phase 2 study of Mongersen was conducted in CD 
patients with doses of 10, 40, 160 and placebo, clinical remission at 2 wk was archived 
in 55% and 65% in the groups of 40 and 160 mg respectively (P ≤ 0.001), with no 
significant differences in the 10 mg group[113]. A subsequent study was performed, 
with a dose of 160 mg in three groups 4, 8 and 12 wk of follow-up with clinical 
remission in 32%, 35% and 48% respectively[114]. In the phase 3 study was cancelled 
for findings of non-effectiveness in this group of CD patients[115].
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GATA3 DNAzyme (SB010) 
The inflammatory process is regulated by lymphocytes Th2 and the production of IL-4, 
5 and 13 in UC. In CD the response is characterized by Th1 and release of interferon 
gamma and TNF. This treatment was first studied in patients with asthma and the 
evidence was shown a decrease in IL production[116]. GATA3 is a transcription factor 
for the transcription of cytokines of Th2 response[117], and GATA3 RNA transcripts 
are higher in colonic UC biopsies[116]. Animal models treated with a DNAzyme anti-
GATA3 with intrarectal administration showed a reduction in the production of pro-
inflammatory cytokines[118]. Phase 2 was conducted to evaluate the efficacy and 
safety of a topical formulation by enema in patients with moderate to severe active 
UC, but results have not been published yet[119].

STNM01
In patients with CD, the development of fibrotic stenoses is common due to the 
chronic inflammation that causes a remodeling process. The treatment of this issue is 
endoscopic or surgical resection. In recent years, the enzyme carbohydrate sulfotrans-
ferase 15 (CHST15) was discovered, is responsible for regulating the production of 
glycosaminoglycans that cause the fibrotic process in patients with CD[109]. STNM01 
is an RNA oligonucleotide against CHST15, inhibits the expression of mRNA with less 
production of glycosaminoglycans in the colon. The first studies in mice were carried 
out using direct submucosal injections into the colon[120]. The study in CD patients 
with ulcerative lesions was randomized to receive a single submucosal injection by 
endoscopic route or placebo, in the largest ulcerated lesion that was visualized by 
colonoscopy. A decrease in the extent of fibrosis was documented by histology, and no 
adverse effects were documented during the study[121]. A phase 2a study was 
conducted in patients with refractory and left-sided UC in 24 patients. They were 
randomized into 3 groups to receive a single dose of 25 nM, 250 nM or placebo by 
submucosal injection. The primary endpoint was mucosal healing on days 14 and 25, 
which was achieved in 62.5% vs 28.6% in the 250 nM and placebo group, respectively. 
Clinical response was shown by 62.5% in the STNM01 250 nM group (P = 0.3200) vs 
28.6% in the placebo group and clinical remission in 50.0% in the 250 nM vs 14.3% in 
the placebo group (P = 0.04), with a good safety profile[122].

Alicaforsen
This a 20-base ICAM-1 human antisense oligonucleotide that targets the mRNA of 
ICAM-1 and causes its inactivation[123]. Initially, it was used in patients with CD, IV 
and SC with few results, in recent years alicaforsen was reformulate to its use in 
enemas for patients with UC and pouchitis. A randomized phase 2 study was carried 
out in patients with UC with mild to moderate distal disease, they received a 60 mL 
enema with 0.1, 0.5, 2 or 4 mg/mL or placebo once daily for 28 d. Alicaforsen 
improves the disease activity index in 70% vs 28% patients in the placebo group (P = 
0.004) at day 29. The most frequent adverse events were asthenia, infections, and 
nausea. No serious adverse events related to the medical treatment[124]. In another 
phase 2 clinical trial, no significant difference was observed between treatment arms 
and placebo in the primary endpoint[125]. In a case series in patients with refractory 
pouchitis, clinical improvement was achieved in 84.6%, but 81.8% patients had a 
relapse after a median of 16 wk[126]. A phase 3 study was performed in patients with 
pouchitis who failed at least one course of antibiotics and received alicaforsen 240 mg 
or placebo once daily for 6 wk. Preliminary results showed reduction in the stool 
frequency in 33.8% and 26.2% in the treatment group vs placebo, respectively[127].

CONCLUSION
The clinical course of the disease in IBD may change in the coming years with the 
evolution of the new therapies that are being studied at this time. Most of these new 
therapies are in advanced phases of study with promising results, with similar 
response rates to currently approved therapies. The purpose of these new therapeutic 
targets will allow us to personalize medicine to treat IBD, according to the charac-
teristic pathogenesis of each patient. More studies are needed to verify their efficacy 
and safety, as well as studies comparing these therapies with emerging or approved 
therapies to have accurate results.
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Abstract
Gastric cancer (GC) remains a serious oncological problem, ranking third in the 
structure of mortality from malignant neoplasms. Improving treatment outcomes 
for this pathology largely depends on understanding the pathogenesis and 
biological characteristics of GC, including the identification and characterization 
of diagnostic, prognostic, predictive, and therapeutic biomarkers. It is known that 
the main cause of death from malignant neoplasms and GC, in particular, is 
tumor metastasis. Given that angiogenesis is a critical process for tumor growth 
and metastasis, it is now considered an important marker of disease prognosis 
and sensitivity to anticancer therapy. In the presented review, modern concepts of 
the mechanisms of tumor vessel formation and the peculiarities of their 
morphology are considered; data on numerous factors influencing the formation 
of tumor microvessels and their role in GC progression are summarized; and 
various approaches to the classification of tumor vessels, as well as the methods 
for assessing angiogenesis activity in a tumor, are highlighted. Here, results from 
studies on the prognostic and predictive significance of tumor microvessels in GC 
are also discussed, and a new classification of tumor microvessels in GC, based on 
their morphology and clinical significance, is proposed for consideration.

Key Words: Gastric cancer; Angiogenesis; Tumor microvessels; Vascular endothelial 
growth factor; Hypoxia; Prognosis
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Core Tip: In this review, data on the factors associated with the activation of 
angiogenesis in tumors, the mechanisms of tumor microvessel formation and the 
features of their morphology, methods for assessing the activity of angiogenesis in a 
tumor, and their role in the progression of gastric cancer (GC) are discussed. A new 

https://www.f6publishing.com
https://dx.doi.org/10.3748/wjg.v27.i48.8262
http://orcid.org/0000-0001-8371-740X
http://orcid.org/0000-0001-8371-740X
mailto:masenchukova@yandex.com


Senchukova MA. Tumor microvessels in gastric cancer

WJG https://www.wjgnet.com 8263 December 28, 2021 Volume 27 Issue 48

and license their derivative works 
on different terms, provided the 
original work is properly cited and 
the use is non-commercial. See: htt
p://creativecommons.org/License
s/by-nc/4.0/

Received: March 25, 2021 
Peer-review started: March 25, 2021 
First decision: June 26, 2021 
Revised: July 2, 2021 
Accepted: December 7, 2021 
Article in press: December 7, 2021 
Published online: December 28, 
2021

P-Reviewer: da Costa AC 
S-Editor: Zhang H 
L-Editor: A 
P-Editor: Zhang H

classification of tumor microvessels in GC based on their morphology and clinical 
significance is proposed. Considering the different types of tumor microvessels can 
have different sensitivities to antiangiogenic therapy, further study of their prognostic 
and predictive value is undoubtedly relevant.
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INTRODUCTION
Gastric cancer (GC) remains a serious oncological problem, ranking third in the 
structure of mortality from malignant neoplasms. The disease is biologically hetero-
geneous, and the oncogenic mechanisms remain poorly understood[1-3]. In this 
regard, a deep understanding of the pathogenesis and biological characteristics of GC, 
including the identification and characterization of diagnostic, prognostic, predictive, 
and therapeutic biomarkers, is important to improve the results of treatment.

Angiogenesis is a critical process for tumor growth and metastasis, including in GC. 
Currently, its assessment is considered an important marker of disease prognosis and 
sensitivity to anticancer therapy[4-9]. The study of angiogenesis is of fundamental 
importance, not only in terms of predicting disease outcome but also in determining 
tumor sensitivity to systemic therapy, such as chemotherapy, targeted therapy, and 
antiangiogenic therapy. In this case, not only is a quantitative assessment of 
angiogenesis of great importance but also an assessment of the functional adequacy of 
vessels, in view of the fact that vessels are the pathways for the delivery of anticancer 
drugs to tumor cells. In connection with the above, this review will discuss modern 
concepts of the mechanisms of tumor vessel formation and the peculiarities of their 
morphology, various approaches to the classification of tumor vessels and methods for 
assessing angiogenesis activity in tumors, and the results of studies on the prognostic 
and predictive significance of tumor microvessels in GC. Additionally, a new classi-
fication of tumor microvessels in GC, based on their morphology and clinical 
significance, is proposed for consideration.

ACTIVATION FACTORS OF TUMOR ANGIOGENESIS
Vascular endothelial growth factor
The formation of new vessels is associated with the activation of various factors, and 
among them, vascular endothelial growth factor (VEGF), which is expressed by tumor 
cells, immune cells, tumor-associated fibroblasts, and endothelial cells (ECs), plays a 
special role. There are five subtypes of VEGF family proteins, namely, VEGF-A, -B, -C, 
-D, and placental growth factor, among which VEGF-A is a key protein responsible for 
the proliferation, survival, and mobilization of endothelial progenitor cells from the 
bone marrow into the peripheral circulation, as well as for the increased permeability 
of tumor vessels, which is important for the formation of tumor stroma[10-12]. VEGF-
A affects the development of new blood vessels and survival of immature blood 
vessels[13], while VEGF-C and VEGF-D stimulate the formation, proliferation, and 
germination of lymphatic ECs[14]. It is believed that ECs of existing lymphatic vessels, 
bone marrow cells, myeloid progenitors, and finally differentiated macrophages can 
participate in the formation of tumor lymphatic vessels[15,16].

VEGF signaling is mediated through membrane tyrosine kinase receptors (VEGFR-
1, -2 and -3) located on tumor cells and ECs[11,17,18], which leads to the activation of 
signal transducer and activator of transcription 3 (STAT3), phosphoinositide 3-kinase, 
extracellular signal-regulated kinase (ERK)/protein kinase B (AKT) and other 
signaling pathways[8,11,18,19]. An increase in VEGF expression attracts monocytes 
and macrophages to the tumor stroma, which promotes the activation of matrix 
metalloproteinases (MMPs) and cell adhesion molecules[20-23] to function in the 
degradation of the extracellular matrix and initiation of the processes of invasion, 
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metastasis, and angiogenesis[24-26]. Along the invasive edge of the tumor, the active 
processes of formation and lysis of the extracellular matrix components proceed, 
which leads to the formation of channels that facilitate the formation of blood vessels, 
invasion, and metastasis of tumor cells[27].

Hypoxia
The most powerful stimulant of tumor angiogenesis is hypoxia, which is constantly 
experienced by cells of growing neoplasms under conditions of insufficient blood 
supply. One of the key transcription factors responsible for the regulation of gene 
expression during hypoxia and ischemia is hypoxia-inducible factor-1 alpha (HIF-1α). 
HIF-1α expression is regulated by the activation of the nuclear factor-kappa B (NF-
κB)/HIF-1α/VEGF pathway[28]. Thus, HIF-1α is the main regulator of transcription in 
the adaptive response to hypoxia, directly participating in the activation of the 
mechanisms of angiogenesis, invasion, and metastasis of malignant neoplasms, 
including GC[29].

It has been established that hypoxia can stimulate cells to secrete more exosomes 
and extracellular vesicles[30,31], containing pro-angiogenic cytokines[30]. Extracellular 
vesicles originating from cancer cells, under hypoxic conditions, directly transport 
VEGF or activate the VEGF pathway in ECs, which leads to tumor angiogenesis[31].

Modern technologies of RNA sequencing (RNAseq) have made it possible to create 
a complete annotation of microRNAs (miRNAs), which are expressed by two-
dimensional cultured human ECs under normal[32] or hypoxic[33] conditions. It has 
been shown that miR-130a is a mediator of the hypoxic response in human primary 
endothelial colony-forming cells. Under hypoxic conditions of 1% O2, an increase in 
the expression and biological activity of miR-130a in ECs was observed, which led to 
the activation of VEGFR2 and STAT3 and the accumulation of HIF-1α. As a result, 
there was an increase in the clonogenic potential, proliferative and migratory capacity, 
and survival of ECs, as well as their ability for two-dimensional migration and tubulo-
genesis. EC tubulogenesis is also facilitated by the expression of miR-210 associated 
with hypoxia[34]. Interestingly, under conditions of normoxia, overexpression of miR-
130a does not cause such effects[35].

It is important to note that HIF-1α can directly regulate the expression of many 
molecules associated with vasculogenic mimicry (VM), such as VEGF, twist-related 
protein, MMP2, and others[36]. The hypoxic microenvironment promotes VM by 
enhancing the differentiation of cancer stem cells, activating epithelial-endothelial 
transition (EMT), and remodeling the extracellular matrix[36,37].

In addition to VEGF and HIF-1α, many other proangiogenic factors are known. 
These include epidermal growth factor, main fibroblast growth factor, platelet growth 
factor, interleukin-1b (IL-1b), and hepatocyte growth factor (HGF), among others. 
Table 1 summarizes the role of the most studied factors associated with the activation 
of angiogenesis[38-67].

The role of exosomes and microRNAs in the regulation of angiogenesis
When assessing the role of various factors in angiogenesis activation, it is important to 
understand that exosomes are the main mediators of the cross-interaction of tumor 
cells with ECs, immune cells, fibroblasts, and other stromal cells. Exosomes are 
involved in the transport of numerous proangiogenic biomolecules, such as VEGF, 
MMP, microRNAs, and long noncoding RNAs, among others. In addition, exosomes 
promote angiogenesis by suppressing the expression of factor-inhibiting HIF-1[68].

Currently, miRNAs that both activate and suppress the expression of genes 
responsible for angiogenesis have been identified. The activation of angiogenesis 
during hypoxia is associated with the upregulation of miR-26, miR-130a, miR-130b, 
miR-126, and miR-210[69]. MiR-135b, delivered by exosomes from stomach tumors to 
ECs, suppresses the expression of the forkhead box O1 protein and promotes 
angiogenesis in GC[70]. Exosomal miR-155, obtained from GC cells, promotes VEGF 
expression and the formation of EC tubes. In human umbilical vein endothelial cell 
culture, miR-155 increases cell proliferation, migration, and ring formation[71]. An 
oncogenic, long noncoding RNA MALAT1  regulates the expression of VE-cadherin, β-
catenin, MMP 2 and 9, MT1-MMP, p-ERK, p-focal adhesion kinase (FAK), and p-
paxillin, which have been recognized as classic markers of VM and angiogenesis[72]. 
IL-1α mRNA enhances the metastatic potential of GC by activating the IL-1α/VEGF 
signaling pathways[73].

The number of miRNAs associated with angiogenesis suppression is usually 
reduced in GC patients[74,75]. For example, miR-590 has been shown to inhibit the 
migration, invasion, and proliferation of GC cells in vivo and in vitro by targeting 
VEGFR1/2[75]. Likewise, overexpression of miR-1 in GC cells inhibited proliferation, 
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Table 1 Factors associated with the activation of tumor angiogenesis

Factor Signaling pathways Effects Ref.

p38 MAPK, HIF-1α, VEGF Enhanced angiogenesis, increased VEGF expression, 
and MMP-1

[38]

EGFR EMT activation [39]

PI3K/Akt/mTOR EMT activation [40]

Notch and MAPK Enhanced ECs proliferation, vascular growth and 
development, increased vascular permeability, 
inhibition of apoptosis

[41]

EGF and EGFR

Increased expression level in GC patients with 
peritoneal metastases

[42]

PIGF VEGF/VEGFR A high level of PIGF in plasma is associated with 
enhanced ECs proliferation and decreased survival of 
GC patients

[4]

The formation of blood vessels from preexisting, 
maturation of blood vessels, migration, adhesion, and 
survival of ECs

[43]

Plasma Ang-2 level correlated with liver metastases 
in patients with GC

[44]

Angs (Ang-1, -2, -3, -4) Ang/Tie

A high level of angiopoietin-like protein 2 in serum is 
associated with a high risk of early recurrence of GC

[45]

In the intestinal-type GC, higher MVD was correlated 
to overexpression, intensity, and proportion of PDGF-
B, but not of VEGF-A. PDGF-B plays a more 
important role in angiogenesis in intestinal-type 
gastric carcinomas than VEGF-A

[46]

STAT3, AKT, ERK1/2, mTOR and GSK-3β PDGF-D promoted the migration, proliferation, 
adhesion, and tube formation of endothelial 
progenitor cells

[47]

STAT3, AKT, ERK1/2, mTOR and GSK-3β PDGF-BB could activate VEGF-A expression [48]

PDGF-β; PDGF-D; PDGF-BB 
and other

A high level of PDGFR-β gene expression in tumor is 
associated with decreased 5-year overall survival rate 
in GC patients

[49]

AKT and Notch Increased VEGF expression [50]

Snail The effect of FGF-1 on ECs culture is associated with 
overexpression of Snai1, increased expression of 
CD31, CD34, and VWF, and formation of tubes

[51]

WNT and Twist1 EMT activation [52]

Serum FGF level was related to MVD, tumor size, 
infiltration degree, TNM staging, lymph node 
metastasis, and distant metastasis

[53]

FGFs and FGFR

High levels of FGF2 expression in the tumor is 
associated with advanced TNM stage and decreased 
survival of GC patients

[54]

Tryptase AKT and ERK, PAR-2 and MAPK The density of mast cells positive to tryptase is 
associated MVD in GC patients 

[55-57]

Induction of expression of VEGF-A, VEGFR-1, and 
VEGFR-2; stimulation of proliferation, survival, and 
migration of ECs, activation of MMP production

[58]IL-8 Src/Vav2/Rac1/PAK1 

Stimulation of ECs migration [59]

Expression of HER2 (2+ and 3+) in gastric tumors is 
associated with an increase in MVD

[60]HER2

Expression of HER2 in a tumor is associated with an 
increase in MVD and a decrease in the survival rate of 
GC patients

[61]

Overexpression of ITGAX in HUVEC is associated 
with induction of VEGF-A and VEGFR-2 expression, 
enhanced HUVEC proliferation, migration, and tube 

ITGAX PI3k/Akt [62]



Senchukova MA. Tumor microvessels in gastric cancer

WJG https://www.wjgnet.com 8266 December 28, 2021 Volume 27 Issue 48

formation, as well as promoted angiogenesis and 
ovarian tumor growth

IGF2 and IGF1R Enhances sprouting angiogenesis and affects tip cell 
phenotype

[63]

MCU MCU was related with the activation of EMT 
mechanisms and HIF-1α and VEGF expression. High 
level of MCU expression in the tumor was associated 
with the advanced TNM stage and decreased survival 
of GC patients

[64]

Helicobacter pylori Wnt/beta-catenin VEGF and MVD levels were significantly higher in H. 
pylori-positive tissues

[65]

Epstein-Barr virus PI3K/AKT/mTOR/HIF-1α EBV is associated with the formation of vasculogenic 
mimicry

[66,67]

AKT: Protein kinase B; Ang: Angiopoietin; ECs: Endothelial cells; EGF: Epidermal growth factor; EGFR: Epidermal growth factor receptor; EMT: Epithelial-
endothelial transition; ERK: Extracellular signal-regulated kinase; FGF: Fibroblast growth factor; FGFR: Fibroblast growth factor receptor; GC: Gastric 
cancer; HER2: Human epidermal growth factor receptor 2; HIF: Hypoxia-inducible factor; HUVEC: Human umbilical vein endothelial cells; IGF2: Insulin-
like growth factor 2; IGF1R: Insulin-like growth factor 1 receptor; IL-8: Interleukin-8; ITGAX: Integrin alpha x; MAPK: Mitogen-activated protein kinase; 
MCU: Mitochondrial calcium uniporter; MMP: Matrix metalloproteinase; MVD: Microvessel density; PAR: Protease-activated receptor; PI3K: 
Phosphoinositide 3-kinase; PIGF: Placental grow factor; PDGF: Platelet-derived growth factors; STAT3: Signal transducer and activator of transcription 3; 
VEGF: Vascular endothelial growth factor; VWF: Von Willebrand factor.

migration, and formation of EC tubes by suppressing the expression of VEGF-A and 
endothelin 1[76].

KEY PROANGIOGENIC SIGNALING PATHWAYS
It has been established that proangiogenic and pro-oncogenic pathways are linked to 
each other. In this context, the activation of these signaling pathways leads to a 
cascade of interrelated events: proliferation and migration of tumors and ECs, antiap-
optosis, EMT, invasion, and tumor metastasis[8]. The most studied proangiogenic and 
pro-oncogenic signaling pathways are STAT3 and NF-κB. The STAT3 signaling 
pathway induces angiogenesis by activating VEGF expression[77]. Activation of the 
signaling pathways can be mediated not only by hypoxia but also by the expression of 
the cytokines IL-17A and IL-6. For example, the activation of the transcription factor 
STAT3 by IL-17A promoted an increase in the expression of VEGF and microvessel 
density (MVD) and was associated with a deterioration in the prognosis of GC[78]. In 
vitro IL-6 increased the levels of JKA, STAT3, p-STAT3, and VEGF-C proteins in GC 
cells, promoting growth, invasion, and lymphangiogenesis in GC[79]. Macrophages 
treated with lipopolysaccharides induced the production of tumor necrosis factor 
(TNF)-α, IL-6, IL-1β, and IL-8 and promoted the activation of the NF-κB and STAT3 
signaling pathways[80]. These data are of particular interest since they can contribute 
to understanding the mechanisms of angiogenesis activation and factors of GC 
progression in patients with Helicobacter pylori and Epstein-Barr virus infections[65-
67]. Inhibition of STAT3 decreased VEGF expression[81]. At the same time, it should 
be noted that in a number of studies, there were no correlations between STAT3 
activation and the expression levels of VEGF, HIF-1α, β-catenin, and MVD[82].

NF-κB belongs to a group of transcription factors that form homo and heterodimers 
and increase or suppress the expression of many genes[83]. NF-κB activation occurs in 
response to various stimuli, including growth factors, cytokines, hormones, and 
microbial and chemical compounds, and leads to the synthesis of proangiogenic 
factors, such as IL-1, IL-8, TNF, IL-6, VEGF, MMP-2, and MMP-9[31].

Signaling pathways associated with the activation of angiogenesis, invasion, EMT, 
and metastasis also include ITGB1/FAK[84], Wnt/β-catenin[85], NF-κB-MMP-
9/VEGF[86], ERK/AKT[11], and other pathways. Knock down of these pathways 
leads to a decrease in angiogenesis and metastasis.

MECHANISMS OF TUMOR VESSEL FORMATION
It should be noted that the origin of tumor vessels is an important factor affecting their 
morphology, participation in tumor progression, and tumor sensitivity to antian-
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giogenic therapy. Currently, several methods of angiogenesis formation have been 
described, while different types of pathological vascularization can be observed 
simultaneously in the tumor stroma[87-89].

Sprouting angiogenesis is the growth of new capillary vessels from pre-existing 
vessels. This type of angiogenesis is characteristic of all malignant neoplasms, and its 
routine assessment is carried out by determining the expression of VEGF and MVD in 
the tumor and adjacent tissues[57,90-94].

The formation of "endothelial sprouts" occurs in several stages and in close 
interaction with the components of the extracellular matrix. Under the influence of 
angiogenesis mediators, the basement membrane of the vessels is destabilized, and 
ECs acquire the ability to proliferate, migrate, and invade. The release of MMPs causes 
degradation of the basement membrane and leads to directed migration and prolif-
eration of ECs, which differentiate into tip and stalk cells. Within the germinating 
capillaries, tip cells express high levels of VEGFR2. In response to VEGF, tip cells form 
characteristic protrusions (filopodia) that are rich in actin. As a result of the 
polarization of moving ECs, the lumen of the vessel is formed, after which remodeling 
and maturation occur due to the recruitment of pericytes and synthesis of a new 
basement membrane[95,96].

It should be noted that the shape and number of this type of vessel depend on the 
density and composition of the extracellular matrix[97,98], the formation of which is 
influenced by the permeability of newly formed vessels. Their abnormal permeability 
increases the density of stromal cells, which leads to an increase in tissue hypoxia and 
interstitial hypertension, which promotes the entry of cancer cells into the blood and 
their further spread to distant organs with the formation of metastases[99].

Intussusceptive angiogenesis, this type of angiogenesis is an intravascular process 
that is invisible under standard light microscopy. It consists of the formation of new 
capillaries due to the formation of a septum inside their lumen[100-102]. Despite the 
fact that at present, its role in tumor progression has not been adequately studied, in a 
number of works, it was noted that in the process of radiation therapy or antian-
giogenic therapy, there is a "switch" from sprouting angiogenesis to intussusceptive 
angiogenesis. The authors believe that the described "switch" can explain the 
development of tumor resistance to therapy and continued tumor growth after 
termination of treatment[103,104]. In GC, this type of angiogenesis has not been 
studied.

Vasculogenesis is a de novo process of blood vessel formation involving progenitor 
ECs or angioblasts[105]. Its induction in the postnatal period may be due to tissue 
hypoxia associated with tissue damage or tumor growth. Under physiological 
conditions, progenitor ECs rest, but under the influence of hypoxia, growth factors, 
and cytokines, they leave the bone marrow and travel into the peripheral blood, 
acquiring the ability to circulate, proliferate, and differentiate into mature ECs 
involved in the formation of new vessels. A number of studies have shown that the 
number of progenitor ECs in the blood of cancer patients is significantly higher than 
that in healthy individuals[106,107], and their high content is associated with 
advanced stages and poor prognosis of the disease[108], including GC[109].

Vessel co-option is a nonangiogenic type of tumor vascularization in which cancer 
cells use pre-existing blood vessels instead of inducing new blood vessel formation
[90]. Thus, the development of a tumor can proceed without the formation of new 
vessels due to co-option with the vessels of the organ and VM[110]. Currently, vessel 
co-option, in which the perivascular arrangement of tumor cells is observed[111], is 
considered the main mechanism for the development of chemoresistance in malignant 
neoplasms[112].

High endothelial venules (HEVs) are also an example of vessel co-option. HEVs are 
located in sentinel lymph nodes and serve as a gateway for cancer cells to enter the 
bloodstream, thereby facilitating distant metastases[87]. HEVs are postcapillary 
venules characterized by active lymphocyte trafficking and are usually observed in 
secondary lymphoid organs, excluding the spleen. They are detected using the HEV-
specific antibody MECA-79, which is associated with adhesion and transendothelial 
migration of lymphocytes along the HEV wall[113]. HEVs have been identified in 
lymphoid infiltrates in breast, ovary, lung, colon, and other carcinomas. In breast 
cancer and melanoma, high HEV density has been associated with a favorable 
prognosis, possibly due to an increase in tumor-infiltrating lymphocytes (TILs) and 
their phenotypes[114,115]. In GC, the number of CD8+ TILs was significantly higher in 
the HEV-positive group of patients than in the HEV-negative group (P = 0.027), 
whereas the levels of Foxp3+ and CD20+ TILs did not depend on the presence of 
HEVs. Overall survival was significantly greater only in the CD8+ TILs- and HEV-
positive group. The other combinations were not associated with the survival of 
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patients with GC[113]. However, in the CD8+ TILs and HEV-positive group, there 
were significantly fewer patients with lymph node metastases (45.7% and 68.0%, in the 
CD8+ TILs and HEV-positive group and CD8- TIL and HEV-negative group, 
respectively; P = 0.048). Therefore, it is not entirely clear whether this combination is a 
sign of a more favorable prognosis of GC or if an improvement in survival is 
associated with a lower node stage.

VM is the formation of a vessel-like network by tumor cells. This type of 
angiogenesis is closely associated with extracellular matrix deposition[116]. Originally, 
the term VM was used to describe the process by which tumor cells form a network of 
tubular structures with the ability to conduct fluids. Later, VM was understood as any 
fluid-conducting structures that do not contain ECs (that is, not blood vessels). It is 
believed that vasculogenesis occurs due to the ability of ECs to self-assemble into a 
three-dimensional vascular network under the influence of VEGF, FGF-2, and other 
activators of angiogenesis[117].

In addition to tumor cells, macrophages can take part in the formation of VM 
structures. Macrophages that form the vasculature have been found to express genes 
for a variety of cytokines, HIF-1α, and genes commonly associated with ECs, including 
PECAM-1, endoglin, VE-cadherin, and neuropilins-1, 2. In addition, during the 
cultivation of lymphatic ECs, tubule-like structures (tubulogenesis) were formed only 
when cocultivated with macrophages. Macrophages isolated from GC and from 
metastatic lymph nodes more intensively secrete lymphangiogenic factors, including 
inflammatory cytokines, MMPs, adhesion molecules, and VEGFs[118]. In GC, patients 
with PAS+ structures are predisposed to a higher histological class, metastases, distant 
relapses, and a decrease in overall and disease-free survival[119-121].

Interestingly, VM is associated with the overexpression of MMP-2, MMP-9, VEGF-
A, and VEGFR-1 but not with VEGFR-2[122,123], while sprouting angiogenesis is 
characterized by the overexpression of MMP7, MMP9, and MMP13[124].

At the same time, a number of researchers have questioned the existence of VM in 
malignant tumors[125]. They argue that the PAS-positive structures observed in VM 
that do not contain ECs are nothing more than an “artifact”, forming as a result of the 
unstable structure of the tumor endothelium and accumulation of blood originating 
from microbleeds[125,126]. The reason for the disagreement is believed to be the lack 
of reliable markers of BM until recently, and the presence of filamentous PAS+ 
structures in the tumor stroma does not always indicate that these structures are 
hollow structures capable of performing circulatory functions[116].

FEATURES OF TUMOR VESSELS
In evaluating angiogenesis in malignant growth, it should be considered that tumor 
vessels have some morphological features distinguishing them from normal vessels:

Tumor vessels are often located chaotically. Tortuosity, the formation of vascular 
rings and pathological partitions, abnormal arteriovenous shunts, and vascular 
lacunae are typical. The size of the vessels varies from severe dilatation to sharp 
narrowing, with possible alternation of expanded and constricted areas[127-129]. 
Tumor vasculature often has bidirectional blood flow[42,130].

Some authors have noted the absence of pericytes in tumor vessels, which are cells 
that are functionally related to the vascular endothelium and extremely important for 
the stabilization and maturation of vascular structures[131,132].

Tumor vessels (mainly of the capillary type) are characterized by increased prolif-
eration of ECs and have impaired endothelial linings and discontinuous basal 
membranes and abnormal processes[133-135].

Tumor vessels are characterized by increased permeability, which plays an 
important role in the activation of tumor angiogenesis[99,136].

In the lumen of blood and lymph vessels of the tumor, tumor emboli are often 
observed, the presence of which is an unfavorable prognostic factor[137-142].

These features determine the oxygen heterogeneity of tumor tissue, which affects 
the growth and metastasis of malignant tumors[143], as well as the sensitivity of tumor 
cells to chemotherapy and radiation therapy[144].

RESULTS OF ANGIOGENESIS ACTIVITY ASSESSMENT IN GC
To assess the activity of angiogenesis, in vitro and in vivo models, as well as immuno-
histochemical and molecular genetic studies on clinical material, can be used[90,145,
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146].

VEGF and VEGFR
Evaluation of the clinical significance of VEGF levels in the blood serum of GC patients 
showed that these signaling proteins can be used as prognostic, but not diagnostic, 
biomarkers[147]. Thus, the level of VEGF-C associated with lymphangiogenesis was 
significantly higher in the serum of GC patients than in the control group[148]. High 
VEGF-C levels were associated with poorly differentiated cancers, advanced stages, a 
higher density of lymphatic vessels in the tumor, and the presence of metastases to 
regional lymph nodes and distant organs[149,150]. In addition, high levels of the 
marker predicted a decrease in the survival rate of GC patients[148,149], especially in 
Caucasian patients[151]. However, in contrast, some authors noted lower serum levels 
of VEGF-C in patients with GC than in the control group[152].

A high level of VEGF-A and a low level of Ang-1 in serum were associated with a 
decrease in the overall survival of patients with GC, but the differences were not 
statistically significant. However, a 25% decrease in serum VEGF-A levels after two 
courses of chemotherapy (docetaxel, cisplatin, and fluorouracil), compared to baseline 
values, was associated with a better response to treatment and improved overall 
survival[4,153]. The predictive value of VEGF-A was also noted by other researchers
[5]. At the same time, a high level of Ang-2 was associated with a decrease in the 
overall survival of patients with GC but did not predict the efficacy of bevacizumab 
alone or in combination with the initial VEGF level[154].

In tumor tissue, the level of VEGF-A expression positively correlated with tumor, 
node and metastasis (TNM) stage, tumor size, lymph node metastases, and 
lymphovascular invasion (LVI), as well as a decrease in overall survival[155]. Similar 
data were obtained by other authors[90-92]. In addition, a positive correlation of 
VEGF-A with the levels of circulating progenitor ECs and ECs was noted[91]. In turn, 
the level of VEGF-C expression in a tumor positively correlated with the presence of 
metastases, MVD, density of lymphatic vessels, and stage of GC but not with age, sex, 
or grade[156]. Interestingly, although no significant correlations were found between 
the levels of VEGF and VEGFR-2 expression in tumors, overexpression of VEGFR-2 
was associated with a decrease in survival in intestinal GC but not in diffuse GC[157].

MVD
Evaluation of MVD is performed in vascular hotspots using panendothelial immuno-
histochemistry markers, such as von Willebrand factor, Ulex Europaeus, or antibodies 
against CD31, CD34 and, less commonly, VE-cadherin, αvβ3-integrin, CD105, or type 
IV collagen[158,159]. However, it should be noted that these markers do not allow 
differentiation between mature and immature vessels, which may be important for 
identifying vessel co-option[160]. In addition, interobserver variability in MVD scoring 
methods can affect study results, which can be reduced by applying strict scoring rules 
and consistent training of individual observers[161].

Comparative analysis of MVD in patients with normal gastric mucosa, gastric 
ulcers, and GC showed that MVD in GC was significantly higher than that in benign 
processes in the stomach. MVD also correlated with the expression of fibroblast 
activation protein (FAP) and HGF[53]. FAP, HGF, and MVD were significantly 
correlated with the depth of tumor invasion and TNM stage.

In GC, endocan-expressing MVD was associated with tumor size, Borrmann type, 
tumor differentiation, tumor invasion, lymph node metastases, TNM stage and VEGF 
and VEGFR2 expression. Patients with high levels of endocan-MVD had significantly 
lower overall survival[6]. Similar results in assessing MVD in patients with GC were 
obtained by other researchers[57,90,93,94]. However, in patients with a more 
aggressive diffuse type of GC, there was a decrease in the expression of MVD in the 
tumor compared with GC of the intestinal type, and this decrease was associated with 
advanced TNM stage of the disease. There were no differences in VEGF expression in 
GC of diffuse and intestinal types[162].

For the assessment of lymphatic vessel density, one should consider the fact that 
lymphatic vessels can play a dual role in malignant tumors[163,164] in that they can 
promote cancer metastasis, and their high density correlates with a decrease in patient 
survival[165,166]. Thus, in GC, high lymphatic vessel density was associated with 
metastases to the lymph nodes and LVI[9]. The presence of functional lymphatic 
vessels also enhances the antitumor immune response and facilitates the delivery of 
chemotherapeutic agents, enhancing their action[167,168]. Interestingly, in GC, vessels 
that stained for both the D2-40 antibody (a marker of lymphatic vessels) and factor VIII 
(a marker of blood vessels) were identified. The authors noted that MVD in the tumor 
was higher than in nontumor tissue, but there were no differences in MVD in mucosal 
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carcinoma and submucosa-invasive carcinoma tissues[169].

Expression of cancer stem cell markers
In GC, upregulated expression of CD44 and CD133 correlated with high TNM stage, 
high depth of invasion, lymph node metastasis, vascular invasion, distant metastasis, 
and poor five-year overall survival[170].

LVI and perineural invasion
When assessing LVI, it is important to exclude false-positive and false-negative cases 
of LVI, which is possible when using the immunohistochemical method of staining 
tumor tissue[171]. In a group of patients with LVI+/perineural invasion (PNI)+, the 
overall and relapse-free survival rates were significantly lower than in the group of 
patients who were LVI-/PNI-[137-140], including in patients with lymph node-
negative GC[141,142] and in patients who received neoadjuvant chemotherapy[172]. 
Interestingly, adjuvant chemotherapy significantly improved overall and disease-free 
survival in PNI+ but not PNI- patients, and these results were not influenced by 
disease stage[173].

It is important to note that at present, extravascular mechanisms of tumor cell 
spread, including PNI, are being considered. Recently, the term angiotropism was 
introduced, which indicates the tendency of tumor cells to spread through continuous 
migration along the abluminal surfaces of vessels or other pathways to nearby or more 
distant sites without entering the vascular channels[174].

VM
In patients with GC, the presence of VM was associated with poor overall and disease-
free survival, high tumor grade, advanced stage, lymph node metastasis, deep tumor 
invasion, and distant metastasis[94,120,123,175-177]. Positive correlations were found 
between VM and the expression of the stem cell markers CD133 and Lgr5. The cancer 
stem cells responsible for the formation of VM are believed to be able to determine the 
chemotherapy and radioresistance of malignant neoplasms[94,175-177].

In experimental oncology, the migration ability of ECs[178-180], the three-
dimensional model for calculating MVD[181,182], methods of three-dimensional 
spheroids for EC cocultivation with monocytes, fibroblasts and other cells of the tumor 
microenvironment, EC metabolism, identification of progenitor ECs and other 
methods of analysis are also used to assess angiogenesis. They can be reproduced both 
in vitro and in vivo. However, these methods are hardly applicable in wide clinical 
practice due to the need to perform laborious and complex manipulations using 
immunodeficient animals and expensive equipment. A detailed analysis of methods 
for assessing angiogenesis is presented in the "Consensus guidelines for the use and 
interpretation of angiogenesis assays"[117].

HETEROGENICITY OF TUMOR MICROVESSELS IN GC
The unsatisfactory results of antiangiogenic therapy highlight the relevance of further 
studies on angiogenesis for disease prognosis and tumor response to therapy, as well 
as for the search of new directions in the treatment of malignant neoplasms[183]. It 
should be noted that at present, in clinical practice, preference is given to the 
quantitative assessment of angiogenesis, which include the determination of MVD, 
level of VEGF expression, and other markers, in GC[4-7,156]. At the same time, tumor 
vessels are known to be heterogeneous in their origin and morphology, and various 
types of vessels may differ not only in clinical significance but also in their sensitivity 
to antiangiogenic therapy[130,133,184-186].

Despite the fact that heterogeneity of tumor vessels has been confirmed by 
numerous studies, a standard classification of vessels has not yet been developed, 
which would consider not only morphological features but also the relationship with 
the clinical and morphological characteristics of the pathological process, long-term 
treatment results and sensitivity to therapy. The proposed classifications are aimed 
primarily at determining the sensitivity of malignant neoplasms to antiangiogenic 
therapy. Thus, Gee et al[187] proposed distinguishing tumor microvessels by their 
degree of maturity. The authors, depending on the size, perfusion, EC proliferation, 
and presence of pericytes, identified three types of microvessels: (1) highly prolif-
erative, nonperfused EC sprouts emanating from functional vessels; (2) small, 
perfused vessels that, like angiogenic sprouts, were not covered by pericytes; and (3) 
larger vessels, which were predominantly pericyte-covered with quiescent ECs and 
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few associated sprouts. Only type 1 and type 2 vessels were sensitive to anti-vascular 
agents[187,188].

Another classification of microvessels based on their morphological features was 
proposed by Nagy et al[130]. The researchers identified six types of microvessels, 
which, in their opinion, developed sequentially over time: mother vessels, glomeruloid 
microvascular proliferations, vascular malformations, capillaries, feeding arteries, and 
draining veins[99,130]. Only immature mother vessels and glomeruloid microvascular 
proliferations were sensitive to therapy with antiangiogenic drugs[185,186].

Furthermore, Kuczynski et al[184], in an investigation of vessels in hepatocellular 
carcinoma, identified five types of vessels: (1) tumor-embedded vessels, defined as 
CD31+ vessels bordered only by lamin A/C+ tumor cells; (2) connective tissue vessels, 
which were CD31+ vessels bordered by fibroblasts; (3) hepatocyte vessels, which were 
CD31+ vessels bordered by hepatocytes; (4) hepatic central veins; and (5) normal 
vessels of the portal triads. The authors considered the presence of vessel types 3 
through 5  in the tumor as evidence for vessel co-option since these vessels were 
present in the structure of the normal liver and their presence was believed to be 
associated with resistance to sorafenib treatment.

First, it should be noted that the above classifications took into account the degree of 
tumor microvessel maturity and their sensitivity to antiangiogenic therapy. These 
classifications do not allow distinction between tumor microvessels, depending on 
their prognostic significance. Considering that tumor microvessels have different 
origins and are heterogeneous in morphology, we set the goal of classifying them 
according to morphology and clinical significance. For this, we studied the features of 
tumor microvessel morphology in 73 patients with GC and compared the data 
obtained with the clinical characteristics and prognosis of the disease[189]. As a result 
of the study, five types of microvessels and structures with endothelial lining were 
identified (Figure 1).

Normal capillaries
Vessels 5–40 microns in diameter lined with EC with flat, hyperchromic nuclei. The 
correlations between the vessels of this type and the factors of GC progression were 
not revealed.

Dilated capillaries
Large vessels of predominantly round or oval shape with a diameter of 40 microns or 
more that possessed clear, even contours and endothelial lining formed both by cells 
with flattened, hyperchromic nuclei and cells with large, pale nuclei with fine-netted 
chromatin structure. The cytoplasm of the lining cells was evenly stained by CD34. We 
also found no correlations between the vessels of this type and the factors of GC 
progression.

Atypical dilated capillaries
Vessels of an irregular shape with a diameter of 40 microns or more with indistinct, 
uneven contours. The endothelial lining of such vessels was formed by randomly 
located cells of irregular shape, unevenly accumulating the CD34 marker. In the lumen 
of such vessels, tumor emboli were often found.

Structures with partial endothelial linings (previously, cavitary structures of type-1)
Their characteristic feature was the chaotic arrangement of ECs with irregular shape, 
uneven contours, and uneven expression of CD34 markers. In GC, multiple, atypical, 
dilated capillaries and structures with partial endothelial linings were significantly 
more frequently observed at stages T3–4 (P = 0.001) and N2 (P = 0.001). With or 
without multiple structures with partial endothelial lining, the three-year overall 
survival was 52.7% and 93.9%, respectively (P = 0.0013), and the relapse-free survival 
was 32.4% and 87.7%, respectively (P = 0.0001).

Dilated capillaries with weak expression of CD34 (previously, cavitary structures of 
type-2)
Vessels located in the gastric submucosa adjacent to the tumor. The presence of these 
vessels was observed more often in patients with lymphatic metastases (P = 0.01) and 
in grade 3–4 tumors (P = 0.04) and was associated with a decrease in three-year 
relapse-free and overall survival (P = 0.049 and P = 0.008, respectively).

It should be noted that we changed the names of some vessels, which made it 
possible to more accurately characterize the features of their morphology. In 
particular, cavitary structures of type-1 were renamed structures with partial 
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Figure 1 Different types of tumor microvessels in gastric cancer. A: Normal capillaries in the gastric mucosa adjacent to the tumor [hematoxylin and 
eosin (HE), 600×]; B: Dilated capillary formed by endothelial cells with large, pale nuclei with fine-netted chromatin structure (arrows) in the gastric mucosa adjacent 
to the tumor [immunohistochemistry (IHC) staining with antibodies to CD34, 400×]; C: Atypical dilated capillary with tumor emboli in the lumen (IHC staining with 
antibodies to CD34, 600×); D: Structure with partial endothelial linings (IHC staining with antibodies to CD34, 600×); E: Dilated capillaries with low expression of 
CD34 (black arrows) and dilated capillary (red arrow) in the gastric submucosa adjacent to the tumor (HE, 200×); F: Dilated capillaries with low expression of CD34 in 
the gastric submucosa adjacent to the tumor (IHC staining with antibodies to CD34, 600×).

endothelial linings, and cavitary structures of type-1 were renamed dilated capillaries 
with weak expression of CD34. In further studies, it was shown that the proposed 
classification of tumor microvessels can be used for other localizations of malignant 
neoplasms[190,191].

CONCLUSION
Overall, angiogenesis plays a key role in tumor progression, affecting the growth and 
metastasis of malignant neoplasms. At the same time, the origin, degree of maturity, 
morphological features, and functionality of tumor microvessels are of decisive 
importance for the delivery of drugs to the tumor, and in addition, they determine the 
sensitivity of tumor microvessels to angiogenic therapy. Most of the proposed classific-
ations of tumor microvessels are based on assessing the degree of their maturity and 
do not take into account the different roles of individual types of microvessels in 
tumor progression. In contrast to the classifications proposed by other authors, our 
classification considers not only the morphology of the vessels but also their clinical 
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significance. We believe, however, that further studies are needed to understand 
angiogenesis mechanisms in GC and verify the hypotheses made regarding the role of 
different types of tumor vessels in the progression of GC and GC chemoresistance.
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Abstract
A symbiotic relationship has set up between the gut microbiota and its host in the 
course of evolution, forming an interkingdom consortium. The gut offers a 
favorable ecological niche for microbial communities, with the whole body and 
external factors (e.g., diet or medications) contributing to modulating this 
microenvironment. Reciprocally, the gut microbiota is important for maintaining 
health by acting not only on the gut mucosa but also on other organs. However, 
failure in one or another of these two partners can lead to the breakdown in their 
symbiotic equilibrium and contribute to disease onset and/or progression. Several 
microbial and host processes are devoted to facing up the stress that could alter 
the symbiosis, ensuring the resilience of the ecosystem. Among these processes, 
autophagy is a host catabolic process integrating a wide range of stress in order to 
maintain cell survival and homeostasis. This cytoprotective mechanism, which is 
ubiquitous and operates at basal level in all tissues, can be rapidly down- or up-
regulated at the transcriptional, post-transcriptional, or post-translational levels, 
to respond to various stress conditions. Because of its sensitivity to all, metabolic-, 
immune-, and microbial-derived stimuli, autophagy is at the crossroad of the 
dialogue between changes occurring in the gut microbiota and the host responses. 
In this review, we first delineate the modulation of host autophagy by the gut 
microbiota locally in the gut and in peripheral organs. Then, we describe the 
autophagy-related mechanisms affecting the gut microbiota. We conclude this 
review with the current challenges and an outlook toward the future 
interventions aiming at modulating host autophagy by targeting the gut 
microbiota.
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Core Tip: We are now aware that maintaining a fine equilibrium between the host and 
its gut microbiota is a prerequisite to maintain host homeostasis and promote long-term 
health. Several host and microbial processes interact dynamically to respond to 
external stresses. Among these processes, host autophagy acts as a cytoprotective 
mechanism responsive to a wide range of stress conditions, including metabolic, 
immune, and microbial stimuli. Autophagy was initially described as a degradative 
process active upon nutrient starvation. However, this process fulfils a wide range of 
other functions that are essential to host homeostasis. We discuss herein reciprocal 
interactions of autophagy with the gut microbiota in health and disease conditions.
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INTRODUCTION
The commensal microbiota living in the human gut is a unique ecosystem that has co-
evolved with human to establish a symbiotic relationship. This microbial community 
is estimated to encompass about 1014 resident microorganisms, dominated by bacteria, 
but containing also populations of archaea, fungi, protozoa, and viruses[1]. The host 
provides nutrients and a favorable environment (i.e., ecological niches) for its 
microbial inhabitants. In return, the gut microbiota plays multiple roles that contribute 
to the host whole-body homeostasis, in particular by metabolizing dietary nutrients, 
by preventing colonization by enteric pathogens, and by regulating the host immune 
system and metabolism. The gut microbiota is, for instance, essential for the synthesis 
of vitamins (e.g., K and B-group vitamins) and the fermentation of dietary fibers and 
carbohydrates, which generate short-chain fatty acids (SCFAs). These fermentation 
products are used as energy source by organs and are also involved in the regulation 
of various cellular processes (e.g., intestinal barrier integrity, mucus production, and 
inflammation)[2,3].

Through their interactions with the host, gut microbes and their derived products 
are involved not only in the physiological regulation of the gut mucosa but also in that 
of organs located at distance from the gut mucosa, as illustrated by the studies 
detailing molecular features of the gut-microbiota-brain axis[4-6]. Keeping the 
mutualistic relationship between the gut microbiota and the host throughout host’s life 
is thus essential to maintain the health status of the host[7]. Deleterious shifts in the 
composition of the gut microbiota, called dysbiosis, can unbalance its functions, 
leading to the disruption of host homeostasis. This is particularly well illustrated by 
the ability of fecal microbiota transplantation (FMT) to transmit detrimental metabolic 
and/or pro-inflammatory traits from a sick donor to healthy recipient mice[8-10]. In 
addition to environmental stresses, the symbiotic equilibrium of the gut microbiota 
and the host can also be broken by dysfunctions/alterations in the host metabolism 
and immune system, which are conditions that can contribute to dysbiosis[8,11,12]. In 
this context, the roles of autophagy in strengthening the intestinal barrier and in 
maintaining host metabolic and inflammatory balance position it as the cornerstone of 
the symbiotic relationship between the gut microbiota and the host[4,13].

Macroautophagy/autophagy is an intracellular and multistep process starting with 
the formation of a membranous cup-shaped structure, called phagophore, which 
engulfs portions of the cytoplasm. The phagophore elongates and finally closes to 
form a sealed double-membraned vacuole, called autophagosome, whose maturation 
ends by its fusion with lysosomes[14-16]. Autophagy was initially described as a 
lysosomal catabolic process occurring under starvation that degrades and recycles 
cytoplasmic macromolecules (e.g., proteins, lipids, and carbohydrates) for the biosyn-
thesis of essential cellular components and to restore energy balance[17]. Nowadays, 
autophagy process and autophagy-related proteins are recognized as key cellular 
components whose roles are not restricted to the regulation of energy balance[18,19]. 
These roles include, but are not limited to, the regulation of the inflammatory 
response, the cytoprotection by preventing the accumulation of intracellular waste (
e.g., damaged organelles and misfolded or aggregated proteins), the protection against 

https://creativecommons.org/Licenses/by-nc/4.0/
https://creativecommons.org/Licenses/by-nc/4.0/
https://creativecommons.org/Licenses/by-nc/4.0/
https://www.wjgnet.com/1007-9327/full/v27/i48/8283.htm
https://dx.doi.org/10.3748/wjg.v27.i48.8283


Lapaquette P et al. Microbiota and autophagy

WJG https://www.wjgnet.com 8285 December 28, 2021 Volume 27 Issue 48

intracellular pathogens (e.g., bacteria, fungi, or viruses), the membrane dynamic (e.g., 
transport or secretion), and the regulation of cell differentiation and survival. 
Autophagy also regulates specific functions related to the features of organs. For 
example, at the gut mucosa - the first tissue at the interface between the gut microbiota 
and the host - autophagy is involved in the regulation of the functions of the secretory 
cells and of the intestinal stem cell[4]. In the central nervous system, autophagy plays 
roles in neuronal development and survival and other various functions[20]. The 
central role of autophagy in maintaining homeostasis, and thus the health status, is 
supported by the observed embryonic or neonatal lethality of mice deficient for most 
autophagy-related (Atg) core genes (Becn1, Vps34, Atg9a, Ulk1/2, Atg3, Atg5, Atg7, and 
Atg16l1) as well as association of numerous diseases and disorders with autophagy 
defects[19,21].

Of note, a growing number of recent studies highlight that most of the proteins of 
the autophagy machinery also mediate autophagy-independent functions, including 
phagocytosis, exocytosis, cytokinesis, DNA repair, or innate and adaptive immune 
signaling[22]. To exert their numerous functions, the machineries involving autophagy 
proteins are intricated with molecular sensors specialized in the detection of various 
stimuli such as microbial sensors [e.g., Toll-like receptors (TLR) and Nod-like receptors 
(NLR)], stress sensors (e.g., HMGB1, Sestrins, ER-stress sensor proteins, P2XR, and 
cGAS-STING pathway), or energy status sensors (e.g., AMPK and mTOR pathways)
[23-29].

In this review, we summarize the current knowledge on how the gut microbiota 
influences host autophagy locally in the gut mucosa or remotely in peripheral organs 
(brain, heart, liver, or muscles), and how autophagy or autophagy-related proteins can 
reciprocally shape the gut microbiota composition and modify its functions (Figure 1). 
We finally discuss the potential of targeting the gut microbiota as a strategy to 
modulate autophagy or restore its functionality in pathological context.

INFLUENCE OF THE MICROBIOTA ON GUT AUTOPHAGY
A first clue that points out a direct implication of the gut microbiota in the regulation 
of host autophagy has been provided by analyzing autophagy in germ-free mice (i.e., 
mice lacking microorganisms and bred in isolators without any microbial exposure). 
Basal autophagy was decreased in the colonic epithelium of germ-free mice compared 
to conventionally raised mice, suggesting that the gut microbiota influences intestinal 
autophagy in physiological condition[30]. The increase in basal activity of autophagy 
in germ-free mice was attributed to an energy-deprived status of colonocytes. 
Treatment of these cells with butyrate, a SCFA generated by some gut bacteria and 
serving as main energy source for colonocytes, was sufficient to reverse the phenotype. 
In vivo, colonization of germ-free mice with the butyrate-producing bacterial strain 
Butyrivibrio fibrisolvens was sufficient to restore autophagy steady state. In addition to 
butyrate, other bacteria-derived metabolites may have the ability to reduce basal 
autophagy in the colon. They include indole-3-lactate, which is a tryptophan 
metabolite produced notably by the bacteria belonging to the Lacticaseibacillus, Lactoba-
cillus, Bifidobacterium, Megamonas, Roseburia, or Ruminococcus genus[31,32].

Pathogen-associated molecular patterns (PAMPs), which are conserved microbial 
molecules, are also able to modulate autophagy usually by stimulating the process
[23]. These effects have been particularly well described for pathogens. PAMPs mainly 
act by interacting with specific host cell receptors that belong to the TLR and NLR 
families. This has been illustrated by the ability of the lipopolysaccharide (LPS) from 
Gram negative bacteria to stimulate autophagy through its binding to TLR4[33], or the 
peptidoglycan (PGN) from Gram positive bacteria through NOD1-, NOD2-, and TLR2-
associated signaling[34,35]. Besides those of bacteria, fungal PAMPs can also mobilize 
components of the autophagy machinery. This is true for β-glucans that are found in 
fungal cell walls and stimulate autophagy-related processes though their binding to 
the host receptor Dectin-1[36,37]. Trehalose, a non-reducing disaccharide produced by 
bacteria and fungi, is also a potent autophagy inducer, for which the ability to 
stimulate colonic autophagy during colitis in mice has been described[38,39]. In 
addition, in-depth studies of the infectious cycle of some pathogenic bacteria have 
shed the light on the existence of secreted bacterial effectors able to activate (e.g., Ats-1 
protein from Anaplasma phagocytophilum) or inhibit (e.g., RavZ protein from Legionella 
pneumophila) autophagy at various stages of the process[40,41]. It is not excluded that 
some commensal microorganisms in the gut express such proteins that influence host 
autophagy.
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Figure 1 Complex interplay between gut microbiota and autophagy. The interactions between the gut microbiota and autophagy are bidirectional. 
Autophagy is involved in the regulation of several mechanisms (grey boxes) that shape the gut microbiota. Reciprocally, some bacterial- (blue), fungal- (orange), or 
viral-derived (pink) compounds are able to modulate autophagy in the gut mucosa as well as in distant organs through systemic pathways (circulatory system, 
nervous system …). Modulation of autophagy by the gut microbiota involves microbiota-derived products such as microbial compounds (lipopolysaccharide, 
peptidoglycan …), microbial derived-compounds (short chain fatty acids, secondary biliary acids …), or signaling molecules (cytokines, hormones ...). They stimulate 
a wide range of host molecular sensors (pattern recognition receptors, stress sensors, and energy sensors; grey hexagons) located in the gut or peripheral organs. 
PRR: Pattern recognition receptor; TLR: Toll-like receptor; NLR: Nod-like receptor.

Given the influence of gut microbiota-related factors on autophagy, one could 
expect that alterations in the composition of the gut microbiota would affect 
autophagy in the gut mucosa. Indeed, an increase in the expression of some 
autophagy-related proteins (FoxO1, FoxO3, GABARAP, and ATG7) and LC3-II/LC3-I 
ratio and a decrease in AKT activation have been reported in newborn piglets 
receiving FMT[42]. In addition, alteration of the gut microbiota resulting from the 
administration of a cocktail of broad-spectrum antibiotics increased the basal activity 
of autophagy as well as the expression of some autophagy-related proteins (ATG16L1, 
ATG5, and IRGM1) in the ileal mucosa of mice[43,44]. Interestingly, oral adminis-
tration of a single bacterial species (e.g., Desulfovibrio spp., Fusobacterium nucleatum, or 
Escherichia coli) in conventional mice can also be sufficient to modulate gut autophagy
[42,44,45]. Altogether, these studies suggest that autophagy regulatory network is 
sensitive to changes in the gut microbiota.

SYSTEMIC EFFECTS OF THE GUT MICROBIOTA ON HOST AUTOPHAGY
Microbial-derived metabolites (e.g., PAMPs), compounds that are issued from the gut 
microbiota metabolism (e.g., neuroactive compounds and SCFAs) and host bioactive 
molecules that are produced in response to its interaction with the gut microbiota (e.g., 
cytokines), can have large systemic effects and modulate the physiology of organs that 
are distant from the gut. Influence of the gut microbiota on the brain is a well-
documented example of such effects[6]. Several communication routes (immune 
system, autonomic nervous system, neuroendocrine system, hypothalamic – pituitary 
– adrenal axis, and other metabolic pathways) between the microbiota and the brain 
have been identified[6]. It is very likely that similar pathways and microbiota-derived 
players, or at least some of them, modulate as well the physiology of other organs in 
the body. Evidence is accumulating on the modulation of autophagy by the gut 



Lapaquette P et al. Microbiota and autophagy

WJG https://www.wjgnet.com 8287 December 28, 2021 Volume 27 Issue 48

microbiota in distant organs and several of these are presented below (Table 1).

Modulation of autophagy in nervous tissues
Although few studies are available on this emerging topic, they suggest that the gut 
microbiota could influence autophagy in the brain throughout life in both 
physiological and pathological conditions.

Diet is a key environmental factor that drives the composition and metabolic 
functions of the gut microbiota[46,47]. In particular, maternal diet can influence post-
natal gut microbiota and neurological development of the offspring[48]. In a recent 
study, Wang and colleagues reported that feeding mothers with a high sugar and high 
fat (HSHF) diet, a condition that modifies the gut microbiota of the offspring, 
modulates also the expression of neuronal and autophagy markers in the brain during 
early life stage[49]. Particularly, they observed that the LC3A and LC3B levels were 
modified in the brain of the offspring in the HSHF group compared to controls before 
28 d of age, and then decreased, meaning that autophagy may be differentially 
regulated in HSHF offspring[49].

Aging is associated with a decline of host autophagy including in the brain[50]. 
Influence of the gut microbiota on brain autophagy in aging has been evidenced in in 
vivo models. Alteration of autophagy has been reported in the brain of D-gal-treated 
mice, a model of accelerated aging[51,52]. These alterations were characterized by 
decreases in the LC3-II/LC3-I ratio and in the expression of ATG7 and SIRT1, as well 
as by increased phosphorylation of the master negative regulator of autophagy mTOR 
(S2448) and expression of p62 in the hippocampus tissue of D-gal-induced aging mice
[52]. Interestingly, the administration of urolithin A (UA), a bioactive metabolite 
generated by the gut microbiota, was efficient in rescuing these autophagy-related 
defects. To note, UA administration also allowed to reverse increases in the LC3-
II/LC3-I ratio, the expression of p62, and the phosphorylation of mTOR (S2448), as 
well as the decreased expression of Sirt-1 and ATG7 observed in the hippocampus of 
12-mo-old mice[52].

Autophagy defect is thought to play a role in neurodegenerative processes 
associated with numerous diseases, including Alzheimer’s disease (AD)[53]. 
Interestingly, although a causal relationship remains to be demonstrated, a few studies 
suggest that dysbiosis associated with AD could influence brain autophagy[54]. 
Decreased Beclin-1 expression and increased expression of p62 have been observed in 
the brain of old 3xTg-AD mice (a transgenic mouse model of AD) compared to young 
control mice, indicating alterations in autophagy[55]. Interestingly, in addition to 
modifying the composition and predicted function of the gut microbiota, oral supple-
mentation of old 3xTg-AD mice with a combination of nine probiotic strains (Strepto-
coccus thermophilus, Bifidobacterium longum, B. breve, B. infantis, Lactobacillus acidophilus, 
Lactiplantibacillus plantarum, Lacticaseibacillus paracasei, Lactobacillus delbrueckii subsp. 
bulgaricus, and Levilactobacillus brevis; SLAB51 formulation) also partially restored 
defects in autophagy[55]. Moreover, SLAB51 was also effective in restoring the 
impaired expression level and activity of SIRT1, a positive regulator of autophagy, in 
the brain of 3xTg-AD mice[56,57].

In another context, changes in the composition of the fecal microbiota have been 
reported in patients with acute ischemic stroke (AIS), a common cerebrovascular 
disease caused by sudden loss of blood circulation in a specific brain area[58,59]. 
Interestingly, anal administration of the fecal supernatant obtained from an AIS 
patient to antibiotics-treated mice resulted in increased expression of genes encoding 
Beclin-1, ATG12, and LC3 as well as increased expression of Beclin-1 at the protein 
level and an increased level of LC3-II in brain tissue compared to antibiotics-treated 
mice that received the fecal supernatant of healthy controls[59].

The retina, which is the light sensitive neural tissue that lines the back of the eyes, 
displays numerous similarities with the brain either anatomically or functionally[60]. 
Neurodegenerative conditions that affect the brain seem to compromise the retina, and 
vice versa[60-62]. Similarly to the brain, the retina is also highly sensitive to nutritional 
variations[63]. Retina autophagy[64,65] as well as modifications in the gut microbiota
[66-69] is suspected to contribute to retinal diseases such as diabetic retinopathy, age-
related macular degeneration, and glaucoma. Although no causal relationship has 
been yet established, one can assume that, as in the brain, the gut microbiota might 
influence retinal autophagy and that changes in its composition might alter retinal 
autophagy and contribute to the development of retinopathies.

Modulation of liver autophagy 
Evidence of the influence of the gut microbiota on liver autophagy came from studies 
in gut microbiota-deprived mouse models. Comparison of germ-free mice and altered 
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Table 1 Data supporting the existence of a systemic regulation of autophagy by the gut microbiota

Impact on autophagy
Ref.

Brain Liver Muscles

[49,74-
76]

Diet-induced 
changes in the gut 
microbiota

Feeding of mother mice with an HSHF diet: Changes 
in the expression levels of LC3A-I/LC3A-II/ LC3B-
I/LC3B-II in the offspring.

Feeding mice or rats with an HF diet: Changes in the expression levels of LC3, 
p62, mTOR, and p-AKT and modulation of the LC3-II amount. 

AD mice1: Modulation of the lysosomal activity 
(Cathepsin L) and SIRT1 activity and changes in the 
expression levels of Beclin-1, p62, and SIRT1.

ASF colonized mice: Changes in the expression of a set of genes related to 
autophagy/membrane trafficking (Uvrag, Atg14, Becn1, Bcl2l1, and Pik3c3) and 
lysosomal functions (Chmp4c and Chmp2a) compared to germ-free mice.

[55,56,
59,70]

Mice with specific 
gut microbiota

FMT from patients with AIS to mice: Changes in the 
expression levels of Becn1, ATG12, and LC3 
expression and in the amount of LC3-II.

[71,79] Germ free or 
antibiotic-treated 
animals

Antibiotic treatment of mice fed a normal diet: Alteration of the basal expression 
of LC3 compared to controls.

Germ free piglets: Changes in the expression levels of LC3A, 
LC3B, and Becn1 and of mTOR, p-mTOR, AKT, and p-AKT 
levels compared to normal and/or FMT piglets.

[55,56,
75,76,
78]

Probiotics SLAB512: Modulation of SIRT1 activity and changes 
in the expression levels of Beclin-1, p62, and SIRT-1 
as well as in the LC3-II amount in AD mice1.

Limosilactobacillus reuteri: Modulation of the expression levels of mTOR and p-
AKT in HFD-fed rats. 

Lacticaseibacillus rhamnosus, Pediococcus acidilactici, 
Bifidobacterium adolescentis: Changes in the expression levels of 
LC3 and ATG7 in rats fed a high-calorie diet.

SCFAs: Activation of the PPARγ-UCP2-AMPK pathway, and induction of 
autophagy flux and lysosomal activity in mouse hepatocyte AML-12 cells. 

UA: Induction of mitophagy in Caenorhabditis elegans and in 
rodents.

[52,71,
74,77,
80]

Gut microbiota-
derived products

UA: Modulation of LC3-II/LC3-I and p-
mTOR/mTOR ratio and changes in the expression 
levels of ATG7 and p62 in mouse models of aging3.

FXR and TGR54: Involved in autophagy modulation. UB: Modulation of LC3-II/LC3-I, p-mTOR/mTOR and p-
ULK1/ULK1 ratio and change in the expression level of p62 in 
a rat model of ischemia/reperfusion injury.

1AD mice: Mouse model of Alzheimer’s disease (3xTg-AD mice).
2SLAB51: A combination of nine probiotic strains (Streptococcus thermophilus, Bifidobacterium longum, B. breve, B. infantis, Lactobacillus acidophilus, Lactiplantibacillus plantarum, Lacticaseibacillus paracasei, Lactobacillus delbrueckii subsp. 
bulgaricus, and Levilactobacillus brevis).
3D-gal-treated mice and 12-mo-old mice.
4FXR and TGR5: Bile acid receptors.
HSHF diet: High sugar and high fat diet; HF diet: High fat diet; FMT: Fecal microbiota transplantation; SCFAs: Short chain fatty acids (propionate and butyrate); AIS: Acute ischemic stroke; ASF: Altered Schaedler’s flora; UA: Urolithin 
A; UB: urolithin B.

Schaedler’s flora (a community of eight bacterial species) colonized mice revealed that 
absence of the gut microbiota altered hepatic expression of genes involved in 
autophagy and lysosomal functions[70]. In another study, a decrease in the expression 
of LC3 at the protein level has been reported in the liver of mice deprived from gut 
microbiota as a consequence of chronic treatment with antibiotics (ampicillin and 
neomycin) compared to control mice[71]. In addition, those authors showed that 
microbial-derived SCFAs (propionate and butyrate) activated autophagy, induced 
lysosomal activity, and increased autophagy flux in vitro in mouse hepatocyte AML-12 
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cells[71]. The mechanism involves the activation of the PPARγ-UCP2-AMPK pathway
[71].

Primary bile acids are synthesized from cholesterol in the liver and are converted 
into secondary bile acids by the gut microbiota[72]. Bile acids are signaling molecules 
that can activate nuclear hormone receptors including FXR and TGR5 (also known as 
GPBAR1), which is a cell-surface receptor of the G protein-coupled receptor family
[73]. These two bile acid receptors have been described to modulate autophagy in the 
liver and adipose tissue in fed and fasted states[74].

Several alterations of autophagy, including a decreased amount of LC3 mRNA and 
LC3-II and an increased amount of p62, have been observed in the liver of mice fed a 
high-fat diet (HFD), a potent inducer of dysbiosis[74]. Chronic exposure of rats to an 
HFD can lead to NASH (non-alcoholic fatty steatohepatitis). Development of this liver 
disease has been associated with dysbiosis and alterations in autophagy, particularly 
increased expression of hepatic mTOR and p-AKT[75,76]. Interestingly, supple-
mentation of an HFD with a probiotic strain (Limosilactobacillus reuteri) and/or 
treatment of NASH mice with antibiotics (metronidazole) tended to normalize the 
hepatic content of these two autophagy-related proteins, as well as SCFAs and 
Firmicutes and Bacteroidetes fecal contents, thus suggesting a role of the gut microbiota 
in the modulation of hepatic autophagy[75,76]. To note, some data suggest a role for 
TGR5 in the regulation of autophagy in response to HFD[74].

Modulation of autophagy in muscle tissues 
An induction of autophagy, characterized by decreased phosphorylation of mTOR 
(S2448) and ULK1 (S757), an increased amount of LC3-II, and decreased expression of 
p62, has been reported in a rat model of ischemia/reperfusion injury[77]. Interestingly, 
intraperitoneal injection of urolithin B (UB), a gut microbiota-derived metabolite, was 
able to reverse this phenotype[77].  The inhibitory effect of UB on autophagy is 
thought to activate the Nrf2-related antioxidant response by increasing p62 accumu-
lation and favoring p62-Keap1interaction[77]. Another argument that suggests the 
influence of the gut microbiota on heart autophagy has been provided by changes in 
the expression levels of LC3 and ATG7 observed in heart tissue of rats fed a high-
calorie diet supplemented with probiotics (Lacticaseibacillus rhamnosus, Pediococcus 
acidilactici, and Bifidobacterium adolescentis)[78].

In addition to the heart, autophagy might be regulated by the gut microbiota in 
other muscles. Recently, high-throughput RNA-seq analysis revealed that the 
expression levels of autophagy-related genes (LC3A, LC3B, and Beclin-1) were 
modulated in the skeletal muscles of germ-free piglets compared to control piglets
[79]. Moreover, germ-free piglets harbored decreased expression of mTOR and AKT 
and their phosphorylated forms, phospho-mTOR (S2448) and phospho-AKT (S473), 
respectively, compared to control piglets[79]. FMT of germ-free piglets with stools 
collected on healthy donors pigs was effective in restoring the amounts of phospho-
AKT and mTOR to a level similar to that of controls[79]. Some microbial-derived 
metabolites able to influence the muscle autophagy have been identified. For example, 
a role of UA as a mitophagy (selective degradation of mitochondria by autophagy) 
inducer in the muscle tissue has been described in the model organism Caenorhabditis 
elegans and in rodents[80].

SHAPING OF THE GUT MICROBIOTA BY AUTOPHAGY
As developed in the first part of this review, the gut microbiota is able to influence 
host autophagy by several pathways and through complex regulatory networks 
governing the autophagy machinery. Reciprocally, autophagy and autophagy-related 
proteins can shape the gut microbiota (Figure 1). This is particularly well illustrated by 
changes in the gut microbiota composition observed in mice conditionally deficient for 
autophagy (Atg5-/-, Atg7-/-, and ATG16L1 T300A knock-in) in the gut[81-83]. 
Interestingly, alterations of autophagy in peripheral organs such as the liver have been 
shown to influence the composition of the gut microbiota[84].

A first overall reason that would explain why autophagy activity in the gut mucosa 
can modulate the abundance of gut microorganisms is that this process is essential to 
maintain homeostasis of their ecological niche. Indeed, basal autophagy is crucial to 
maintain the integrity of Lgr5-positive intestinal stem cells that give rise to all differen-
tiated lineages of the intestinal epithelium throughout life[85]. In addition, autophagy 
contributes to the maintaining of intestinal barrier integrity, particularly by regulating 
proteins involved in tight junctions (e.g., Claudin-2 and Occludin) on the apical side of 
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intestinal epithelial cells and by promoting cell survival upon various stress (e.g., 
bacterial or viral infection, inflammation, or chemical stress)[4,86-88].

The main cellular mechanisms by which host autophagy shapes the gut microbiota 
(including pathosymbionts) are described below.

Clearance of pathogens
Autophagy mediates the bulk or selective lysosomal degradation of cellular 
components. In selective autophagy, selective autophagy receptors (SARs) recognize 
and bind specific cargoes to promote phagophore formation around them, ultimately 
leading to their degradation into a mature autolysosome. These specific cargoes can be 
for instance mitochondria (mitophagy), lipid droplets (lipophagy), protein aggregates 
(aggrephagy), or peroxysomes (pexophagy)[89]. A selective form of autophagy termed 
xenophagy is dedicated to the elimination of intracellular pathogens (e.g., bacteria, 
viruses, fungi, or protozoa) and is supported by the expression of several SARs 
including NDP52, Optineurin, p62, TAX1BP1, Galectin 8, and TECPR1[90]. Xenophagy 
has been shown to restrict or avoid the intracellular persistence and the replication of 
various human pathogenic or pathosymbiotic bacteria, residing either in damaged 
vacuoles [e.g., Salmonella Typhimurium or adherent-invasive Escherichia coli (AIEC)] or 
free in the host cytosol (Group A Streptococcus)[91-93]. Thus, by limiting the dissem-
ination of invasive pathogens from the gut lumen to extra-intestinal sites, autophagy 
also restrains their persistency in the gut microbiota[94,95]. Defects in xenophagy are 
thought to contribute to the etiology of Crohn’s disease (CD) an inflammatory bowel 
disease (IBD) characterized by chronic and severe intestinal inflammation associated 
with dysbiosis[96]. In particular, a coding polymorphism (Thr300Ala) in the 
autophagy-related gene ATG16L1 that confers an increased risk for the development of 
CD has been shown in vitro and in vivo to alter the xenophagy process, thus favoring 
persistency of the CD-associated AIEC bacteria[92,97,98]. CD risk polymorphisms 
have also been identified in other autophagy-related genes, including core autophagy 
genes (IRGM, ULK1, ATG4a, and ATG4d) and genes involved more specifically in 
xenophagy (NOD2 and NDP52)[99-101].

One important point is that, besides xenophagy, non-canonical autophagy such as 
LC3-associated phagocytosis (LAP) can also contribute to the clearance of intracellular 
pathogens. This specific form of phagocytosis requires an important set of core 
autophagy proteins (UVRAG, BECN1, VPS34, LC3, ATG3, ATG4, ATG5, ATG7, 
ATG12, and ATG16L1), but some other proteins involved in canonical autophagy 
remain dispensable (ATG14, ULK1, FIP200, and AMBRA1). LAP also distinguishes 
from canonical autophagy by the formation of single-membrane vacuoles called 
LAPosomes[102]. Efficiency of LAP to increase clearance of pathogens such as Listeria 
monocytogenes or Aspergillus fumigatus has been shown[103,104].

Mucus layer maintenance
A mucus layer composed of highly glycosylated proteins (mucins) overlays the gut 
epithelium and represents an important physical barrier limiting the contact of 
luminal microbes with the epithelium, thus avoiding their potential translocation into 
underlying tissues[105]. The mucus layer differs between the small and large intestine 
in terms of physicochemical properties (e.g., thickness, density, and composition) and 
it is under the influence of numerous factors, including the gut microbiota and the diet
[106-108]. Whereas in the small intestine the mucus is non-attached and constitutes a 
discontinuous layer, it is organized in two layers - the inner and outer mucus layers - 
in the large intestine. Compared to the intestinal lumen, only few bacterial species are 
able to live and to persist in the mucus layer. This is partly due to the important 
amount of various antimicrobial compounds (e.g., IgA, lysozyme, defensins, REG3γ, 
and phospholipase A2-IIA) found in the mucus layer, particularly in the small 
intestine. However, some commensal bacteria are molecularly equipped to bind, 
degrade the mucus glycans, and/or harvest the oligosaccharides, giving them a 
selective advantage in colonizing this particular ecological niche[109]. Among others, 
mucin-degrading specialists include species belonging to the genera Bacteroides (e.g., B. 
thetaiotaomicron and B. fragilis), Ruminococcus (e.g., R. gnavus and R. torques), and 
Akkermansia (e.g., A. muciniphila). Interestingly, A. muciniphila, a bacterial species 
belonging to the phylum Verrucomicrobia, is considered as a healthy marker of the 
intestine since its presence in high abundance is associated with a healthy mucosa 
whereas reduction of its abundance is associated with intestinal disorders (e.g., obesity 
and IBD)[110,111]. Studies suggest that the composition of mucus-associated 
microbiota differs depending on the intestinal segment or the mucus layer (outer or 
inner layer) that is considered[105]. Bacteria belonging to the phylum Firmicutes have 
been found in higher abundance in the mucus layer than Bacteroidetes, both in 
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humans and in rodents[105].
Mucus plays a critical role in the maintenance of the symbiotic relationship between 

the host and the gut microbiota[112]. Deletion of the Muc2 gene in mice results in 
changes in the gut microbiota composition characterized in particular by an increase in 
the abundance of potential pathobionts (e.g., Desulfovibrio, Escherichia, and Erysipelo-
trichaceae), and the reduction of beneficial bacteria (e.g., Lactobacilli) and Lachnospiraceae
[112]. In addition to ensuring an habitat and energy sources for a specific part of the 
gut microbiota, the mucus constitutes a protective layer against pathogen invasion and 
infection, although some pathogenic bacteria have developed efficient strategies to 
colonize this special environment and reach the intestinal epithelium (e.g., Shigella 
flexneri and AIEC)[113,114]. Thus, modifications in mucus layer structure or 
composition by genetic and environmental factors, such as diet, can modify the gut 
microbiota[105]. These changes can be beneficial when they strengthen the mucus 
barrier properties, but they can also be deleterious by favoring emergence of 
pathobionts, by bringing harmful bacteria closer to the epithelial barrier and by 
destabilizing the symbiotic relationship between the gut microbiota and the host, at 
the gut mucosa as well as at systemic levels[107].

Mucus secretion into the gut lumen is achieved by specialized secretory cells, the 
goblet cells. Mucins, the proteins forming the mucus, are packed into secretory 
granules that are localized on the apical side of the goblet cells and constitutively 
secreted by fusion of the granules with the plasma membrane. Proteins belonging to 
the core autophagy machinery (ATG5, ATG7, and LC3B) are critical in mice for the 
release of these secretory granules by supporting the generation of reactive oxygen 
species[115].

The NLRP6 inflammasome has been identified, among others roles, as a key factor 
involved in autophagy-induced regulation of goblet cell secretory functions[116,117]. 
NLRP6-deficient mice exhibit defective autophagy in intestinal cells including in 
goblet cells, a phenotype that is associated with impaired mucus layer formation. This 
mucus alteration may contribute, together with the other NLRP6-related defects, to 
modulating the composition of the gut microbiota and abnormally bring microbes 
closer to the epithelial barrier in NLRP6-deficient mice. Analyses of the gut microbiota 
in NLRP6-deficient mice revealed an abnormal representation of the bacterial phyla 
Bacteroidetes (Prevotellaceae) and Saccharibacteria (formerly known as TM7)[116]. In 
addition, alteration of the mucus layer in NLRP6-deficient mice enables Citrobacter 
rodentium, a mouse-specific pathogen, to penetrate deeper into the crypts and be more 
invasive[117]. The role of autophagy in shaping the gut microbiota through the 
regulation of mucus layer maintenance is also supported by observations made in 
Atg7-deficient mice. Secretion of mucins from goblet cells was diminished in colonic-
epithelial cell-specific Atg7 knock-out mice[82]. This phenotype was associated with an 
abnormal composition of the gut microbiota characterized in particular by an 
increased abundance of Clostridia and Prevotellaceae in Atg7-deficient mice. In addition, 
those authors observed an increased bacterial burden in the colon, a phenotype that 
could contribute to the exacerbated sensitivity to experimental colitis observed in Atg7 
knock-out mice. Interestingly, stimulation of the autophagy-related process, either by a 
beneficial bacterial strain (Bifidobacterium dentium) or by a polyphenol (oxyresveratrol), 
has been shown to enhance mucin production by goblet cells in in vivo and in vitro 
models[118,119].

Secretion of antimicrobial compounds in the gut lumen
Autophagy and autophagy-related proteins can also affect the composition of the gut 
microbiota by regulating the secretion of some antimicrobial compounds released into 
the gut lumen by enterocytes, Paneth cells, or immune cells. Among them, immuno-
globulins of the A class (IgAs) are daily released in huge amount (several grams per 
day) into the gut lumen and shape the composition of the gut microbiota. Alterations 
of the gut microbial ecosystem have been reported in the absence of hypermutated 
intestinal IgA in mice with deficiency of activation-induced cytidine deaminase[120-
122]. Changes in the gut microbiota were particularly characterized by expansion of 
anaerobic bacteria in the small intestine, with a domination by segmented filamentous 
bacteria[121]. Several other studies in mouse models support the role of IgAs in 
regulating the diversity and composition of microbiota[123,124]. Data obtained in 
humans showed that selective IgA-deficiency (sIgAd) is associated with a mild 
intestinal dysbiosis, characterized by expansion of pro-inflammatory bacteria (e.g., E. 
coli, Prevotella), reduction of anti-inflammatory commensals (e.g., Faecalibacterium), and 
perturbation of bacterial dependency association network[125]. In addition, Catanzaro 
and colleagues reported also a trend toward a decreased alpha diversity and shifts in 
the relative abundance of some taxa (e.g., increase in Eubacterium dolichum and Rumino-
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coccus bromii and decrease in Paraprevotellaceae) in human sIgAd subjects compared to 
controls[126]. IgAs are produced by gut-resident antibody-secreting plasma cells (PCs) 
that display important metabolic adaptations and endoplasmic reticulum expansion to 
cope with the stress of producing very large amounts of IgAs[127]. Some studies 
suggest that autophagy is required for sustainable production of immunoglobulins by 
PCs since mice with conditional deficiency of Atg5 in B cells had defective antibody 
responses, with an increased sensitivity of PCs to cell death[128]. In addition, mice 
deficient for Atg5 in B cells harbored a decreased number of IgA-secreting PCs isolated 
from the gut-associated lamina propria, Peyer’s patches, and mesenteric lymph nodes 
in comparison to control mice[129].

Another important antimicrobial compound to which commensal bacteria are 
directly exposed in the gut lumen is the lysozyme secreted by Paneth cells, which are 
secretory epithelial cells located at the bottom of the crypts in the small intestine. This 
antimicrobial protein is also produced by macrophages and neutrophils in the lamina 
propria. Three types of lysozyme have been described so far across the animal 
kingdom[130]. Lysozyme causes bacterial lysis by hydrolyzing bacterial cell wall PGN, 
but it can also induce cationic killing of bacteria by inserting into and forming pores 
into the lipid bilayer of the bacterial cell membrane. This is the case with c-type 
lysozyme expressed in human[130]. Not all bacteria are equally sensitive to lysozyme 
and some pathogenic bacteria have developed strategies to escape its antimicrobial 
activity[130]. The contribution of lysozyme in shaping the gut microbiota is illustrated 
by the dysbiosis observed in lysozyme-deficient mice (Lyz1−/− mice) that is charac-
terized by the expansion of some mucolytic bacteria such as Blautia gnavus (formerly 
known as Ruminococcus gnavus)[130,131]. No change in luminal bacterial load and 
alpha-diversity was observed in the cecum- and mucosal-associated bacteria in the 
ileum and the colon of Lyz1−/− mice[131]. However, changes occurred in the 
composition of the fecal microbiota (expansion of Dorea formicigenerans and reduction 
of Candidatus Arthromitus) as well as the ileal microbiota (expansion of B. gnavus and 
D. formicigenerans and reduction of C.  Arthromitus) in Lyz1−/− mice[131].

Alpha-defensins (also called crypt defensins or cryptdins) are another example of 
antimicrobial factors that are produced by Paneth cells, whose roles in host defense 
against enteric pathogens and regulation of the composition of the gut indigenous 
microbiota have been described[132]. Interestingly, abnormal packaging and secretion 
of antimicrobial compounds by Paneth cells have been reported in mice harboring 
Paneth cells deficient for the autophagy-related genes Atg5, Atg7, and Atg16l1 and in 
patients with CD-associated NOD2 and ATG16L1 variants[133-135]. Of note, this 
defect in lysozyme packaging in autophagy-deficient mice required an infectious (viral 
or bacterial) trigger[136,137].

Even if canonical autophagy is considered as a degradative process, some infectious 
agents such as Salmonella Typhimurium can trigger a secretory autophagy resulting in 
the formation of LC3-positive, double-membraned lysozyme granules[136]. These 
autophagosome-like vacuoles are not directed for the fusion with the lysosomes but 
instead reach the plasma membrane for the release of their content into the gut lumen. 
Thus, the autophagy machinery participates in the unconventional protein secretion of 
lysozyme, thereby affecting the composition of the gut microbiota by counter-selecting 
the lysozyme-sensitive bacteria. In this context, it has been suggested that vitamin D, 
via binding to the vitamin D receptor expressed by Paneth cells, can sustain autophagy 
activities in these cells[138]. To note, several studies suggest that expression and 
secretion of other antimicrobial peptides than lyzozyme, such as the defensins and 
cathelicidins, would be regulated by autophagy. However, the exact molecular 
mechanisms remain to be determined[82,139].

Modulation of inflammation
Cell stimulation by microorganisms (e.g., invasive pathogens) or danger signals (e.g., 
extracellular ATP, uric acid, or HMGB1) are usually associated with the triggering of 
inflammatory processes through the release of cytokines and chemokines. Inflam-
mation is a protective response that results in tissue repair. However, this response 
needs to be tightly regulated in order to avoid excessive and/or chronic inflammation 
that could be detrimental for host tissues. In the gut mucosa, immune tolerance toward 
the resident gut microbiota should be maintained to avoid chronic gut inflammation 
and sustain homeostasis[140]. Unbalanced inflammatory responses can also alter the 
gut microbiota as shown in mouse models of colitis that mimic human IBD, in which 
inflammation induces microbial dysbiosis[141,142]. Chronic inflammatory state was 
also suggested to contribute to dysbiosis in IBD patients[143]. This inflammation-
driven bacterial dysbiosis is commonly characterized by an overall decrease in 
bacterial diversity, especially in Firmicutes (Clostridium groups) and an overgrowth of 
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species belonging to Enterobacteriaceae[143,144].
Autophagy machinery and autophagy-related proteins are key contributors to the 

regulation of the inflammatory processes. Thus, one could assume that modulation of 
inflammation by autophagy could influence the composition of the gut microbiota. 
Autophagy is usually considered as an anti-inflammatory process, particularly since it 
controls activation of inflammasomes that are multimeric protein complexes involved 
in the maturation of pro-inflammatory cytokines[145]. Mice deficient for Atg16l1 in 
haematopoietic cells have been shown to be highly sensitive to chemically-induced 
colitis and produce increased levels of IL-1β and IL-18, two cytokines processed by 
inflammasomes[146]. Atg16l1-deficient macrophages that were stimulated by LPS also 
produced higher amounts of these cytokines compared to wild-type macrophages. 
Autophagy can alleviate activation of inflammasomes, at least by removing stimuli 
that induced them (e.g., intracellular infectious agents) and by degrading some inflam-
masome components (e.g., NLRP1, NLRP3, AIM2, or pro-CASP1)[147]. Interestingly, 
alterations of the gut microbiota (e.g., increased abundance of Bacteroidetes) as well as 
enhancement of the local Th1 and Th17 immune responses have been reported in mice 
with dextran sodium sulfate (DSS) colitis that express the CD risk allele ATG16L1 
T300A - a genetic context known to impair some autophagy-related functions - 
compared to DSS-treated wild-type mice[81]. Similar observations have been made in 
gnotobiotic mice expressing the CD risk allele ATG16L1 T300A and inoculated with 
human stools from active CD patients[81]. These data illustrated how a subtle 
polymorphism in an autophagy-related gene could deeply impact the equilibrium 
between immune responses and the gut microbiota.

Autophagy is also able to modulate signaling of interferons, notably by degrading 
key players of type-I interferon responses (e.g., RIG-I, STING, MDA5, IRF3, MAVS, 
and cGAS)[148]. Abnormal regulation of interferon signaling can lead to alterations of 
the gut microbiota as described in knock-out mice and viral infection models[149]. 
Interestingly, the gut microbiota has been described to stimulate intestinal autophagy 
via the induction of the type-II interferon, and this microbiota-mediated activation of 
autophagy has been shown to protect the host against infection by the protozoan 
parasite Toxoplasma gondii by limiting the deleterious production of the pro-inflam-
matory cytokine TNF-α[150]. Autophagy has also been described to limit the 
production and the secretion of various cytokines including TNF-α, IL-1β, IL-23, IL-6, 
TGF-β, and MIF[151,152]. However, the molecular mechanisms by which autophagy 
regulates their expression remain elusive. In many cases, autophagy reduces secretion 
of cytokines by simply alleviating cellular stress that triggers the inflammatory 
responses.

CONCLUSION
Given its crucial role in regulating homeostasis at both cell and tissue levels, it is not 
surprising that alterations of autophagy are connected to a large number of disorders (
e.g., IBD, cancers, and neurodegenerative diseases). To assume its various functions, 
autophagy activation is tightly regulated and the gut microbiota has recently emerged 
as a contributor in its regulatory networks in both the gut mucosa and other tissues. 
This advance in the understanding of the molecular mechanisms supporting this 
highly integrated cellular process that tip the balance between health and disease 
offers new opportunities to develop preventive or therapeutic tools. Indeed, the gut 
microbiota appears as a promising target to restore functional autophagy or to prevent 
its alterations in various disease conditions. The growing interest that was aroused 
from the discovery of such a hub position occupied by the gut microbiota in 
maintaining physical and mental health status has led to the conceptualization, 
development, and/or examination of various tools to manipulate the gut microbiota 
(probiotics, prebiotics, synbiotics, postbiotics, FMT, Crispr/Cas9, diet…). In the era of 
personalized medicine, such a toolbox could constitute a key element that could be 
integrated in the therapeutic strategies. However, further explorations of the interplay 
between the gut microbiota and autophagy are needed. Important advances have been 
made in understanding the local dialogue between the gut microbiota and autophagy 
at the level of the gut mucosa, but less is known about how and in which extent they 
communicate at the systemic level. Bi-directionality of the interactions between the gut 
microbiota and the autophagy network, plasticity and complexity of the gut 
microbiota and its multiple effects on host, as well as pleiotropy of the functions of 
autophagy are all factors that increase the level of complexity of the system. Better 
characterization of the cellular and molecular actors from both sides - the gut 
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microbiota and autophagy - that contribute and regulate the framework of their 
interactions to maintain homeostasis constitutes a prerequisite to propose new 
preventive and therapeutic tools in pathological conditions associated with dysbiosis 
and/or autophagy dysfunction.
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Abstract
BACKGROUND 
Hepatocellular carcinoma (HCC) is one of the most common malignant tumors. 
The association of hepatitis B virus (HBV) infection with HCC is hitherto 
documented. Exosomal miRNAs contribute to cancer progression and chemores-
istance. HBV X protein has been known to modulate miRNAs that facilitate cell 
proliferation and the process of hepatocarcinogenesis. However, there has been no 
report on hepatitis B core antigen (HBc) regulating exosomal miRNAs to induce 
drug resistance of HCC cells.

AIM 
To elucidate the mechanism by which HBc promotes Doxorubicin hydrochloride 
(Dox) resistance in HCC.

METHODS 
Exosomes were isolated by ultracentrifugation. The morphology and size of 
exosomes were evaluated by Dynamic Light Scattering (DLS) and transmission 
electron microscopy (TEM). The miRNAs differentially expressed in HCC were 
identified using The Cancer Genome Atlas (TCGA) database. The level of miR-
135a-5p in patient tissue samples was detected by quantitative polymerase chain 
reaction. TargetScan and luciferase assay were used to predict and prove the 
target gene of miR-135a-5p. Finally, we identified the effects of miR-135a-5p on 
anti-apoptosis and the proliferation of HCC in the presence or absence of Dox 
using flow cytometry, Cell counting kit 8 (CCK-8) assay and western blot.

RESULTS 
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We found that HBc increased the expression of exosomal miR-135a-5p. Integrated 
analysis of bioinformatics and patient samples found that miR-135a-5p was 
increased in HCC tissues in comparison with paracancerous tissues. Bioinformatic 
analysis and in vitro validation identified vesicle-associated membrane protein 2 
(VAMP2) as a novel target gene of miR-135a-5p. Functional assays showed that 
exosomal miR-135a-5p induced apoptosis protection, cell proliferation, and 
chemotherapy resistance in HCC. In addition, the rescue experiment 
demonstrated that VAMP2 reversed apoptosis protection, cell growth, and drug 
resistance by miR-135a-5p. Finally, HBc promoted HCC anti-apoptosis, prolif-
eration, and drug resistance and prevented Dox-induced apoptosis via the miR-
135a-5p/VAMP2 axis.

CONCLUSION 
These data suggested that HBc upregulated the expression of exosomal miR-135a-
5p and promoted anti-apoptosis, cell proliferation, and chemical resistance 
through miR-135a-5p/VAMP2. Thus, our work indicated an essential role of the 
miR-135a-5p/VAMP2 regulatory axis in chemotherapy resistance of HCC and a 
potential molecular therapeutic target for HCC.

Key Words: Hepatocellular carcinoma; Exosomes; miR-135a-5p; Anti-apoptosis; 
Proliferation; Chemoresistance

©The Author(s) 2021. Published by Baishideng Publishing Group Inc. All rights reserved.

Core Tip: Hepatitis B virus infection is the most common cause of hepatocellular 
carcinoma (HCC). Drug resistance is the primary reason for the high mortality of HCC 
patients. We demonstrated that hepatitis B core antigen (HBc) increased exosomal 
miR-135a-5p. Tissue samples showed that the level of miR-135a-5p was significantly 
elevated in HCC tissues. Vesicle-associated membrane protein 2 (VAMP2) was 
demonstrated to be a target gene of miR-135a-5p. Further investigation recommended 
that HBc enhanced the anti-apoptosis, cell proliferation, and chemotherapy resistance 
of HCC cells through exosomal miR-135a-5p by targeting VAMP2. Our findings 
reveal that HBc can cause anti-cancer drug resistance in HCC and provide us with a 
novel mechanism underlying drug resistance in cancer chemotherapy.

Citation: Wei XC, Xia YR, Zhou P, Xue X, Ding S, Liu LJ, Zhu F. Hepatitis B core antigen 
modulates exosomal miR-135a to target vesicle-associated membrane protein 2 promoting 
chemoresistance in hepatocellular carcinoma. World J Gastroenterol 2021; 27(48): 8302-8322
URL: https://www.wjgnet.com/1007-9327/full/v27/i48/8302.htm
DOI: https://dx.doi.org/10.3748/wjg.v27.i48.8302

INTRODUCTION
Hepatocellular carcinoma (HCC) is the fourth leading cause of cancer-related death 
worldwide, accounting for 90% of primary liver cancer[1]. Approximately 383000 
individuals die from liver cancer every year in China, accounting for 51% of liver 
cancer deaths worldwide[2]. Surgical resection is the cornerstone of treatment for HCC 
patients with early stages. However, most patients with HCC are diagnosed at an 
advanced stage, which prevents surgical management. Chemotherapy is the primary 
treatment for patients with advanced HCC. Nevertheless, drug resistance has become 
more and more prominent in HCC[3]. Therefore, it is essential to understand the 
mechanism of pathology and drug resistance in HCC.

Hepatitis B virus (HBV) is one of the major causes of HCC development in Asia, 
including China[4]. Studies have shown that exosomes are critical mediators of cell-to-
cell communication in HBV infection[5]. Exosomes are a class of lipid bilayer vesicles 
30-150 nm in size and are secreted from cells into the extracellular environment[6]. 
Almost all cells can secrete exosomes. The number of circulating exosomes is elevated 
in various diseases, including cancers. However, exosomes from different cells contain 
several marker proteins (CD9, CD63, and CD81)[7]. Additionally, exosomes carry 
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some signaling molecules, such as proteins, lipids, nucleic acids, and non-coding 
RNAs, to the recipient cell to perform their functions[8]. Among these cargos carried 
by exosomes, miRNAs receive sufficient attention due to their high conservation 
across species and extensive regulatory roles in gene expression[9].

MicroRNAs (miRNAs) belong to small non-coding RNAs, about 19-25 nucleotides 
in length. MiRNAs regulate posttranscriptional gene expression by binding to the 3’ 
untranslated regions (3’ UTRs) of messenger RNA to induce gene silencing or 
degradation[10]. In cancer, exosomal miRNAs play an essential role in cell apoptosis, 
proliferation, and chemical resistance[11,12]. Studies have shown that abnormal 
expression of miRNA is closely related to HBV-associated HCC[13]. The abnormal 
expression of miRNAs can affect the apoptosis, proliferation, and drug resistance in 
HCC[14,15]. In recent years, miR-135a has emerged as a critical miRNA in several 
cancers[16]. Several data suggest a markedly downregulated expression of miR-135a 
in some diseases and cancers[17,18]. Nonetheless, a high level of miR-135a-5p is 
associated with postoperative recurrence of HCC[19]. Hepatitis C virus (HCV) can 
drive the occurrence of HCV-associated hepatocarcinogenesis by upregulating miR-
135a-5p[20]. Nevertheless, there is no existing literature on the roles and molecular 
mechanisms of miR-135a-5p in HCC chemotherapy resistance and the relationship 
between miR-135a-5p and HBV.

In this study, we discovered that Hepatitis B core antigen (HBc) changed the 
exosomes release and enhanced the expression of exosomal miR-135a-5p. Tissues and 
bioinformatics analysis revealed that the level of miR-135a-5p in HCC was higher than 
that in normal tissues. Vesicle-associated membrane protein 2 (VAMP2) was identified 
as the target gene of miR-135a-5p via the online prediction website TargetScan (
http://www.targetscan.org) and luciferase assay. In vitro studies indicated that miR-
135a-5p promoted anti-apoptosis, proliferation, and chemoresistance in HCC by 
targeting VAMP2. Additional experiments revealed that HBc enhanced anti-apoptosis, 
cell proliferation, and chemotherapy resistance in HCC via miR-135a-5p/VAMP2. In 
general, this study revealed a novel mechanism of HBV which counteracted apoptosis, 
enhanced cell proliferation, and developed chemotherapy resistance in HCC. Our 
findings also suggested that miR-135a-5p might be a potential therapeutic target in the 
treatment of HCC chemoresistance.

MATERIALS AND METHODS
The Cancer Genome Atlas dataset
The Cancer Genome Atlas (TCGA) database (http://cancergenome.nih.gov/) was 
used to analyze the differentially expressed miRNAs in HCC. We analyzed the data 
obtained from TCGA through the R package (ggplot2, rjson, ggpubr, dplyr, limma, 
stringr) and determined the expression of miR-135a in HCC tissues and normal 
tissues.

Tissue samples
Eighteen paired HCC and adjacent tissues were collected during surgical procedures 
at Ren-Min Hospital of Wuhan University in China. Samples were obtained under a 
consensus agreement approved by the Institutional Review Committee of the School of 
Medicine of Wuhan University. The samples were stored at -80℃ until experiments 
were carried out. Table 1 shows the patients’ information.

Cell culture and Doxorubicin treatment
The HepG2 cell line was purchased from American Type Culture Collection 
(Manassas, VA, United States). The HBV-transfected HepG2.2.15 cell line was obtained 
from the Japanese Collection of Research Bioresources Cell Bank (JCRB, Osaka, Japan). 
The cells were incubated at 37℃ in a humidified atmosphere with 5% CO2 in 
Dulbecco’s modified Eagle’s medium (DMEM; Gibco, United States) with fetal bovine 
serum (10%, Biological Industries, China), streptomycin (0.1 mg/mL, Gibco, United 
States) and penicillin (100 units/mL, Gibco, United States).

Doxorubicin hydrochloride (Dox) for injection was from Shenzhen Main Luck 
Pharmaceutical Company (10 mg, China). Cells were treated with Dox at a concen-
tration of 1.2 μmol/L.

Plasmid construction, synthesis of mimic and inhibitor, and transfection
The HBV (strain ayw) genome (NC_003977.2; c1903-2454) was amplified using pUC18-

http://www.targetscan.org
http://cancergenome.nih.gov/
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Table 1 Clinical sample information

miR-135a-5p
Characteristics Total

Negative Positive
P value

Age (yr)

< 55 12 3 9

≥ 55 6 2 4

0.82

Gender 

Male 8 1 7

Female 10 3 7

0.291

Hepatitis B s antigen

Negative -

Positive 18 5 13 -

HBV1.3 according to sequences in NCBI and cloned into the pcDNA3.1 (-) vector. 
Human VAMP2 (NM_001330125.1) gene was amplified from HepG2 cDNA and 
cloned into the pcDNA3.1 (-)  vector.  Wild-type (WT) VAMP2 3’UTR 
(NM_001330125.1) and mutant (MUT) VAMP2 3’UTR (70-76: AGCCATA to 
ACGTGCA) luciferase reporter vectors were constructed and subcloned into the 
pmiRGLO dual-luciferase miRNA target expression vector (Promega, Wisconsin, 
United States). All synthesized plasmids were sequenced at Sangon Biotech, Shanghai, 
China, and the sequences are completely consistent.

MiR-135a-5p mimic, miR-135a-5p inhibitor, and the negative controls were 
synthesized at Sangon Biotech, Shanghai, China (the specific sequence is listed in 
Table 2). Cells with 80%-90% confluency were transfected using Lipofectamine 2000 
Reagent (Invitrogen, Carlsbad, CA, United States) according to the manufacturer’s 
instructions.

Isolation of exosomes
Exosomes were separated from the supernatant of cell cultures via ultracentrifugation, 
slightly modified, as reported[21]. Ultracentrifugation was performed using a fixed 
angle 70 Ti rotor (Beckman optimal L-100XP, CA, United States) with a speed of 
110000 × g at 4°C for 70 min. The precipitate was refrigerated at -80℃ until it was used 
in the experiment.

Exosome detection and characterization
For transmission electron microscopy (TEM), 10 μL of exosome suspension was 
absorbed onto carbon-coated copper grids (200 mesh) for 5 min. Samples were stained 
with 2% uranyl acetate for 2 min. After air drying, the sample was visualized under a 
microscope at 80 kV in TEM (HT7700, Tokyo, Japan).

Particle size distribution of purified exosomes was evaluated using dynamic light 
scattering (DLS). Briefly, about 200 μL of exosome sample was diluted in 1.5 mL PBS. 
DLS measurement was conducted using a Zetasizer Nano ZSP (Malvern Instruments 
Ltd., United Kingdom).

Cellular uptake of PKH67-labeled exosomes
Exosomes isolated from HepG2 cells transfected with miR-135a-5p mimic were stained 
with PKH67 membrane dye (UR52303, Umibio, Shanghai, China) according to the 
manufacturer’s instructions. HepG2 cells were cultured in confocal Petri dishes 20 mm 
in diameter (801001, Nest Scientific USA Inc.). When confluency of 70%-80% was 
reached, 2.5 μg of PKH67-labeled exosomes was added to each well. After incubation 
for 4 h, the cells were washed with PBS and then stained with 0.5 μg of 4’, 6-
diamidino-2-phenylindole (DAPI, Solarbio, Beijing, China) at 37°C. Cellular uptake of 
PKH67-labeled exosomes was visualized using confocal laser scanning microscopy 
LCS SP8 (Leica, Wetzlar, Germany).

RNA extraction and quantitative real-time polymerase chain reaction
Total RNA was extracted from HCC tissues, HCC cell lines and exosomes using 
TRIzol reagent (Invitrogen, Carlsbad, CA, United States) and complementary DNA 
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Table 2 Sequences and primers for vector construction

Category Sequence (5’-3’)

F-UAUGGCUUUUUAUUCCUAUGUGA miR-135a-5p mimic

R-UCACAUAGGAAUAAAAAGCCAUA

miR-135a-5p inhibitor UCACAUAGGAAUAAAAAGCCAUA

F-CTAGCTAGCATGGACAGGTCTGCTACVAMP2 (NM_001330125.1)

R-CGCGGATCCTTAAGTGCTGAAGT

F-CTAGCTAGCATCCCCGAGGAGTCTVAMP2 3’-UTR-WT

R-ACGCGTCGACAGAGAGGGGTGAAG

F-GTTCCTCCACCTCTCACGTGCATCTTTCAGCC CCVAMP2 3’-UTR-MUT

R-GGGGCTGAAAGATGCACGTGAGAGGTGGAGGAAC

F-CTAGCTAGCGCCACCATGGACATCGACCCTTHepatitis B virus-1903/2454

R-CCGCTCGAGCTAACATTGAGATTCCCGAGAT

VAMP2: Vesicle-associated membrane protein 2; WT: Wild-type; MUT: Mutant.

(cDNA) was synthesized using ReverTra Ace quantitative real-time polymerase chain 
reaction (qPCR) RT Master Mix with gDNA Remover (TOYOBO, Osaka, Japan). qPCR 
was carried out using SYBR Green I dye master mix (Invitrogen, Carlsbad, CA, United 
States). The primer sequences are listed in Table 2. The mRNA expression levels of 
genes were normalized by glyceraldehyde-3-phosphate dehydrogenase (GAPDH) or 
U6.

Primer Premier 5.0 software (Premier, Delaware, Canada) was used to design the 
primers (primers for vector construction are listed in Table 2; qPCR Primers are listed 
in Table 3).

Western blotting
Cells were collected for protein extraction using M-PER reagents (Pierce Chemical, 
Rockford, IL, United States) after 48 h transfection. Total protein content was 
quantified using the BCA Protein Quantification kit (Thermo Fisher Scientific, 
Waltham, MA, United States). Protein samples were separated on 12% SDS-polyac-
rylamide gel and transferred to polyvinylidene fluoride membranes (Millipore, United 
States). After blocking, the membranes were incubated with primary antibodies 
overnight at 4℃ and then with secondary antibodies for 1 h at room temperature. 
Using ECL chemiluminescence solution (Biosharp, Hefei, China), the band signal was 
visualized in an automatic chemiluminescence system (Tanon5200, Shanghai, China). 
The antibodies used in this article were all purchased from ABclonal (Wuhan, China), 
including anti-GAPDH (AC002), anti-VAMP2 (A1249), anti-CD63 (A5271), anti-CD9 
(A1703), anti- Calnexin (CANX, A15631), anti-proliferating cell nuclear antigen 
(PCNA, A0264), anti-mini-chromosome maintenance protein-2 (MCM2, A1056), anti-
B-cell lymphoma-2 (Bcl-2, A0208).

Luciferase reporter assay
The luciferase reporter vectors containing the 3'UTR-WT or 3'UTR-MUT of VAMP2, 
along with miR-135a-5p mimics or negative control (NC), respectively, were co-
transfected into HepG2 cells. Luciferase activities were assessed using the Dual Glo 
Luciferase Assay System (Promega, Madison, WI, United States) according to the 
manufacturer’s instructions.

Flow cytometry
After washing and collecting, cells were treated with the Annexin V-FITC/PI 
Apoptosis Assay Kit (Zomanbio, Beijing, China) according to the manufacturer's 
instructions. The apoptosis rate of cells was analyzed by flow cytometry (FACS Aria 
III, BD, United States) with FlowJo v10 software (Leonard Herzenberg, United States).

Cell proliferation assay
Cell counting kit 8 (CCK-8) (Zomanbio, Beijing, China) was used to assess cell prolif-
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Table 3 Primers for quantitative polymerase chain reaction

Primer Product size Sequence (5’-3’)

F-GGTCTCTCCTGCGTTCCCVAMP2 (NM_001330125.1) 182 bp

R-TCGACCCGAAAAGACAGGC

F-GGAGCGAGATCCCTCCAAAATGAPDH (NM_002046.7) 197 bp

R-GGCTGTTGTCATACTTCTCATGG

F-CTCGCTTCGGCAGCACAU6 (NR_004394.1) 94 bp

R-AACGCTTCACGAATTTGCGT

F-ACACTCCAGCTGGGTATGGCTTTTTATTCCTmiR135a (NR_029677.1) 68 bp

R-TGGTGTCGTGGAGTCG

VAMP2: Vesicle-associated membrane protein 2; GAPDH: Glyceraldehyde-3-phosphate dehydrogenase.

eration according to the manufacturer’s instructions. Generally, 5 × 10³ cells were 
allowed to grow in 96-well plates. After incubation with Dox or tumor-derived 
exosomes for 0 h, 24 h, and 48 h, 10 μL CCK-8 solution was added to each sample and 
incubated for a further 30 min. The absorbance value was measured at 450 nm using 
the micro-plate reader.

Statistical analysis
Each experiment was carried out using at least three replicates. Clinical data analysis 
was performed using SPSS25.0. R software for bioinformatics analysis. Other data 
analysis was carried out with GraphPad Prism 5 software (GraphPad Software Inc., 
San Diego, CA, United States), and data were mentioned as mean ± standard error of 
the mean (SEM). The t-test was implemented to compare the data between 2 groups. P 
< 0.05 was considered to represent a statistically significant difference (aP < 0.05, bP < 
0.01, cP < 0.001).

RESULTS
HBV may upregulate the expression levels of miR-135a-5p in exosomes
HBV infection changes the release of extracellular vesicles (EVs) from hepatocytes[22]. 
In this study, we extracted EVs from HepG2 cells and HepG2.2.15 cells. The TEM 
image showed that the EVs had a classic “cup” or “dish” morphology[23] (Figure 1A). 
EVs secreted from HepG2.2.15 cells with HBV replication contained exosomes, 
subviral particles, and virions[24]. Therefore, western blotting was utilized to verify 
the marker proteins of exosomes. The results revealed that CD63 and CD9, which 
commonly serve as specific marker proteins of exosomes, were present in purified EVs 
(Figure 1B). The negative control Calnexin was detected only in the cell lysate. 
Furthermore, DLS results demonstrated that the distribution of isolated EVs ranged 
from 30 nm to 150 nm (Figure 1C). These results suggested that we successfully 
isolated exosomes from HepG2 cells and HepG2.2.15 cells.

The miRNA content in exosomes is likely responsible for cancer progression, 
including anti-apoptosis, cell proliferation, and chemoresistance[12]. Notably, we 
detected the expression of several miRNAs in exosomes purified from HepG2 cells 
and HepG2.2.15 cells. The qPCR results indicated that the expression level of miR-
135a-5p in exosomes isolated from HepG2.2.15 cells was significantly higher than that 
of HepG2 cells (Figure 1D). The same results were derived in cells (Figure 1E).

HCV promotes the expression of miR-135a-5p in HCC[25]. To our knowledge, there 
is no report on the effect of HBV on miR-135a-5p. Here, we found that high expression 
of HBc (Figure 1F) could significantly upregulate the level of miR-135a-5p (Figure 1G) 
in HCC cells and exosomes (Figure 1H). Moreover, patient tissue samples showed 
increased expression of miR-135a-5p in HCC tissues compared to paracancerous 
tissues (Figure 1I). TCGA data analysis identified high expression of miR-135a-5p in 
HCC tissues (Figure 1J). These results indicated that HBc might upregulate the 
expression of miR-135a-5p in HCC cell-derived exosomes.
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Figure 1 Hepatitis B virus upregulated the expression levels of miR-135a-5p in exosomes. A: Transmission electron microscopy image of 
exosomes; B: Western blotting indicated proteins in exosomes; C: Analysis of particle size distribution of exosomes; D and E: Quantitative polymerase chain reaction 
(qPCR) assay examined the expression of miR-135a-5p in exosomes derived from cancer cells and in HCC cell lines; F: Overexpression of Hepatitis B core antigen 
(HBc) in HepG2 cells was detected by qPCR; G and H: The qRCP assay identified the level of miR-135a-5p in HepG2 cells overexpressed HBc and exosomes 
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isolated from HepG2 cells after transfected with pcDNA3.1-HBc plasmids; I: Detection of miR-135a-5p in adjacent and tumor tissues from 18 patients; J: Expression 
of miR-135a-5p obtained from TCGA in HCC. aP < 0.05; cP < 0.001. HBc: Hepatitis B core antigen.

VAMP2 is one of the potential target genes of miR-135a-5p in HCC cells
Generally, miRNAs exert their functions by inhibiting downstream target genes[26]. 
Thus, it is important to identify the biological targets of miR-135a-5p. Subsequently, 
TargetScan[27] and DIANA[28] predicted a potential binding site of miR-135a-5p on 
the 3’-UTR of VAMP2 (Figure 2A). To validate this bioinformatic prediction, HepG2 
cells were transfected with miR-135a-5p mimics (mimic-HepG2). A high level of miR-
135a-5p was found in HepG2 cells by qPCR assays (Figure 2B) and a down-regulation 
was seen when miR-135a-5p inhibitor was involved. The results of qPCR and western 
blot indicated miR-135a-5p inhibited the expression of VAMP2 (Figure 2C and D) and 
elevated VAMP2 mRNA and protein were observed (Figure 2F and G) when miR-
135a-5p was knocked down (Figure 2E). Moreover, the fluorescence intensity in the 
cells co-transfected with miR-135a-5p and EGFP-VAMP2-3′UTR was significantly 
decreased as compared with that in the controls (Figure 2F), indicating that miR-135a-
5p interacted with VAMP2. These results suggested that VAMP2 might be a target 
gene of miR-135a-5p.

MiR-135a-5p exerts anti-apoptotic and proliferative effects by targeting VAMP2 in 
HCC cells
Our molecular analysis of patient tissue samples found that miR-135a-5p increased in 
HCC. Apoptosis can eliminate cancer cells. Apoptosis resistance commonly occurs in 
HCC[29]. Our experiment demonstrated reduced apoptosis in mimic-HepG2 cells 
when compared to the control group (Figure 3A). Moreover, miR-135a-5p inhibitor 
effectively increased apoptosis compared to control (Figure 3B). Western blot showed 
that miR-135a-5p enhanced the expression of Bcl-2 protein, one of the most common 
anti-apoptotic proteins[30] (Figure 3C), while the level of Bcl-2 protein was decreased 
in HepG2 cells transfected with miR-135a-5p inhibitor (inhibitor-HepG2) (Figure 3D).

Suppression of apoptosis can lead to cell proliferation[31], one of the prerequisites 
for cancer progression or carcinogenesis[32]. We found that miR-135a-5p promoted 
HCC cell proliferation as compared with the control group (Figure 3E). Subsequently, 
miR-135a-5p inhibitor suppressed cell proliferation in HepG2 cells (Figure 3F). PCNA
[33] and MCM2[34] are the traditional proliferating protein molecules. MiR-135a-5p 
upregulated the expression levels of PCNA and MCM2 (Figure 3G), while miR-135a-
5p inhibitor downregulated the levels of these two genes in HepG2 cells (Figure 3H).

Our previous study suggested increased miR-135a-5p in exosomes from HepG2.2.15 
cells. Here, we found that these purified exosomes from HepG2 cells transfected with 
miR-135a-5p mimic (mimic-loaded EXO) could be absorbed by HepG2 cells 
(Figure 3I). QPCR showed an increased level of miR-135a-5p and a decreased 
expression of VAMP2 in the recipient cells (Supplementary Figure 1). It is worth 
mentioning that after absorbing exosomes, the recipient cells exerted anti-apoptotic 
(Figure 3J) and proliferative effects (Figure 3K). Interestingly, the protein expression 
levels of Bcl-2, PCNA, and MCM2 increased in the recipient cells, while target gene 
VAMP2 decreased (Figure 3L).

As the target gene of miR-135a-5p, increased VAMP2 (Supplementary Figure 2) 
induced the apoptosis in HepG2 cells (Figure 4A). As miR-135a-5p induced anti-
apoptosis, we also measured the apoptosis rates in mimic-HepG2 cells co-transfected 
with pcDNA3.1-VAMP2 or pcDNA3.1 and found that VAMP2 led to excessive 
apoptosis (Figure 4B). Western blot demonstrated that VAMP2 markedly down-
regulated the Bcl-2 protein (Figure 4C). The CCK-8 assay further demonstrated that 
VAMP2 restrained the proliferation of HCC cells (Figure 4D). In addition, VAMP2 
suppressed the protein levels of PCNA and MCM2 in HepG2 cells (Figure 4E).

HBc protects HCC cells against apoptosis and promotes proliferation by miR-135a-
5p/VAMP2 

HBc has been reported to inhibit apoptosis[35] and promote HCC proliferation[36]. 
Our data also confirmed this (Supplementary Figure 3). Combined with our data that 
suggested that HBc upregulated miR-135a-5p, we attempted to determine the 
functions of miR-135a-5p and its target VAMP2 in the process of anti-apoptosis and 
proliferation induced by HBc. HBc restrained the expression of VAMP2 in HCC 
(Figure 5A). Noticeably, we found that miR-135a-5p inhibitors recovered the level of 
VAMP2 (Figure 5B). To further investigate the role of the miR-135a-5p/VAMP2 axis in 
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Figure 2 miR-135a-5p targeted vesicle-associated membrane protein 2 in hepatocellular carcinoma cells. A: Prediction results of target gene of 
miR-135a-5p; B: The expression of miR-135a-5p was measured by quantitative polymerase chain reaction (qPCR) in HepG2 cells transfected with miR-135a-5p 
mimics; C and D: The mRNA and protein levels of vesicle-associated membrane protein 2 (VAMP2) were detected in the overexpressed miR-135a-5p cells; E: 
Quantification of miR-135a-5p in HepG2 cells transfected with miR-135a-5p inhibitors; F and G: qPCR and western blot analyses of VAMP2 level in HepG2 cells 
transfected with miR-135a-5p inhibitors; H: Luciferase assay in HepG2 cells. aP < 0.05; bP < 0.01; NS: Not Statistically Significant. GAPDH: glyceraldehyde-3-
phosphate dehydrogenase; VAMP2: Vesicle-associated membrane protein 2; WT: Wild-type; MUT: Mutant.

the effect of HBc on anti-apoptosis, we co-transfected HBc and miR-135a-5p inhibitors 
or VAMP2 into HepG2 cells. The data showed that the expression of miR-135a-5p was 
decreased (Supplementary Figure 4A), and VAMP2 was upregulated (Supplementary
Figure 5). As expected, both miR-135a-5p inhibitors (Figure 5C) and VAMP2 
(Figure 5D) reversed the effect of HBc against apoptosis. Western blotting showed that 
anti-apoptotic protein decreased (Figure 5E and F). Subsequently, both miR-135a-5p 
inhibitors (Figure 5G) and VAMP2 (Figure 5H) impaired the enhancement of HCC cell 
proliferation by HBc. In addition, MCM2 and PCNA decreased (Figure 5I and J). These 
results suggested that HBc protects HCC cells against apoptosis and promotes prolif-
eration by miR-135a-5p/VAMP2.
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Figure 3 miR-135a-5p suppressed apoptosis and promoted proliferation. A and B: Annexin V-FITC/PI assay for the effect of overexpression or 
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knockdown of miR-135a-5p on apoptosis of HepG2 cells; C and D: The protein expression of B-cell lymphoma-2 (Bcl-2) in the group with overexpression of miR-
135a-5p and the miR-135a-5p inhibited group; E and F: Cell counting kit 8 assays were used to determine the proliferation of HepG2 cells transfected with miR-135a-
5p mimics and miR-135a-5p inhibitors; G and H: Western blot analyses of the level of mini-chromosome maintenance protein-2 (MCM2) and proliferating cell nuclear 
antigen (PCNA) in the group with overexpression of miR-135a-5p and the miR-135a-5p inhibited group; I: Confocal image showing that HepG2 cells were treated with 
exosomes rich in miR-135a-5p; J: Flow cytometry analysis of the effect of exosomal miR-135a-5p on cell apoptosis; K: Cell counting assay was performed to 
determine the proliferation of HepG2 cells treated with exosomes with overexpressed miR-135a-5p; L: Western blot analyses of Bcl-2, MCM2, PCNA and vesicle-
associated membrane protein 2 in HepG2 cells incubated with mimic-loaded EXO or NC-loaded EXO. aP < 0.05; bP < 0.01. Bcl-2: B-cell lymphoma-2; MCM2: Mini-
chromosome maintenance protein-2; PCNA: Proliferating cell nuclear antigen.

MiR-135a-5p blocks Dox-induced apoptosis by downregulating VAMP2 in HCC
Cell survival and proliferation usually counter the chemotherapy drug effect[37]. 
Herein, we tried to demonstrate whether miR-135a-5p/VAMP2 is involved in the 
resistance to anti-cancer drugs. Intriguingly, miR-135a-5p reversed the apoptosis 
caused by Dox (Figure 6A). Mimic-loaded EXO confirmed this result (Figure 6B). On 
the contrary, VAMP2 enhanced the effect of Dox-induced apoptosis in HepG2 cells 
(Figure 6C). The results from co-transfected miR-135a-5p mimics and pcDNA3.1-
VAMP2 suggested that VAMP2 reversed Dox resistance induced by miR-135a-5p 
(Figure 6D).

Similarly, miR-135a-5p recovered cell proliferation in HepG2 cells treated with Dox 
(Figure 6E and F). Moreover, VAMP2 played a critical role in the Dox resistance 
triggered by miR-135a-5p (Figure 6G and H). Taken together, these results suggest that 
miR-135a-5p could be transported to other cells by exosomes and lead to Dox 
resistance of recipient cells by down-regulating VAMP2.

HBc mediates resistance of HCC cells to Dox via miR-135a-5p/VAMP2
Dox can directly promote HBV replication[38]. However, there are no publicly 
available data on the effect of HBV or HBV proteins on the chemotherapy resistance of 
HCC. We noted that HBc protects HCC cells against apoptosis in the Dox treatment 
groups (Figure 7A). Since HBc increased miR-135a-5p and decreased VAMP2, we co-
transfected HBc and miR-135a-5p inhibitors or VAMP2 in HepG2 cells. Flow 
cytometry revealed that the apoptosis rate was higher in HepG2 cells co-transfected 
with pcDNA3.1-HBc plasmid and miR-135a-5p inhibitors than in the control after 
treatment with Dox (Figure 7B). Similarly, VAMP2 also recovered the apoptosis rate 
(Figure 7C), suggesting that miR-135a-5p/VAMP2 participated in the HBc-mediated 
chemotherapy resistance of HCC.

The cell proliferation assay further demonstrated that HBc mediated resistance of 
HCC cells to Dox (Figure 7D) and miR-135a-5p/VAMP2 played an essential role in 
this (Figure 7E and F). In summary, HBc mediated Dox resistance in HCC cells via 
miR-135a-5p/VAMP2.

DISCUSSION
Chronic HBV infection is still a significant risk factor for HCC. Various studies have 
underlined the usefulness of exosomal miRNAs as potential biomarkers to detect early 
stages of HBV-related HCC[39]. Hepatitis B virus X protein (HBx) has been reported to 
modulate several exosomal miRNAs that facilitate the process of hepatocarcinogenesis
[22]. A recent finding revealed that HBc promotes liver cancer metastasis through the 
miR-382-5p/DLC-1 axis[40]. However, it is less clear on the effect of HBc on drug 
resistance in HCC. Here, we reported that HBc reduced apoptosis, induced cell prolif-
eration, and mediated resistance of HCC to chemotherapeutic drugs by increasing and 
modulating exosomal miR-135a-5p to target VAMP2.

Viral infections can induce exosomal cargos, including miRNAs, to change them 
profoundly[41]. This study successfully isolated exosomes from HepG2 cells and 
HepG2.2.15 cells and found that HBc could induce the overexpression of miR-135a-5p 
in exosomes. HBV-associated miRNAs can distinguish HBV-related HCC from healthy 
controls[39]. Our clinical data revealed that miR-135a was upregulated in liver cancer 
tissues, consistent with other studies.

As a small non-coding RNA, miRNA mainly inhibits the expression of downstream 
target genes. Most miRNAs may regulate more than one target gene[42]. Forkhead box 
O1 (FOXO1)[43], protein tyrosine phosphatase receptor delta (PTPRD)[20], Kruppel-
like factor-4 (KLF4)[44], signal transducer and activator of transcription 6 (STAT6)[45], 
ELK1 and ELK3[46] have been proven to be direct target genes of miR-135a-5p. We 
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Figure 4 Vesicle-associated membrane protein 2 contributed to anti-apoptosis and proliferation induced by miR-135a-5p. A and B: Cell 
apoptosis was examined by flow cytometry in HepG2 cells transfected with the specific plasmid combinations; C: B-cell lymphoma-2 expression was detected by 
Western blot in HepG2 cells after transfection with the indicated plasmids; D: Cell counting kit 8 assay showed the proliferation of HepG2 cells after transfection with 
the plasmid combination shown above; E: The protein level of mini-chromosome maintenance protein-2 and proliferating cell nuclear antigen was measured by 
Western blot in HepG2 cells transfected with the plasmid group shown in the figure above. aP < 0.05; bP < 0.01. Bcl-2: B-cell lymphoma-2; MCM2: Mini-chromosome 
maintenance protein-2; PCNA: Proliferating cell nuclear antigen; GAPDH: glyceraldehyde-3-phosphate dehydrogenase; VAMP2: Vesicle-associated membrane 
protein 2.

tried to identify a novel target gene of miR-135a-5p in HCC. Both TargetScan and 
DIANA predicted VAMP2 as a candidate target gene of miR-135a-5p. The present 
study verified the prediction and added VAMP2 as one more target gene of miR-135a-
5p.

Exosomal miRNAs have a significant function in the regulation of tumor 
progression[47]. Numerous studies have suggested that miR-135a has shown 
protective effects under some conditions[46,48,49]. Zhou and his collaborators showed 
that apoptosis was induced by miR-135a through the Janus kinase 2 (JAK2)/signal 
transducer and activator of transcription 3 (STAT3) signaling pathway in human renal 
cancer cells[50]. Moreover, miR-135a-5p also induces the apoptosis of glioma[48] and 
cardiomyocyte cells[51], whereas miR-135a-5p inhibitor significantly protects nerve 
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Figure 5 Hepatitis B core antigen induced anti-apoptosis and proliferation via miR-135a-5p and its target gene vesicle-associated 
membrane protein 2. A and B: Quantitative polymerase chain reaction and western blot analyses of the level of vesicle-associated membrane protein 2 in HepG2 
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cells after transfection with the specific plasmid combinations; C and D: Annexin V-FITC/PI assay was performed to assess cell apoptosis in HepG2 cells after 
transfected with the indicated plasmids; E and F: Western blot was performed to analyze the level of B-cell lymphoma-2 in HepG2 cells after transfection with the 
plasmid combination shown above; G and H: Cell counting kit 8 assay was performed to assess cell proliferation in HepG2 cells transfected with the specific plasmid 
combinations; I and J: Western blot analyses of mini-chromosome maintenance protein-2 and proliferating cell nuclear antigen in HepG2 cells transfected with the 
plasmid group shown in the figure above. aP < 0.05; bP < 0.01. Bcl-2: B-cell lymphoma-2; MCM2: Mini-chromosome maintenance protein-2; PCNA: Proliferating cell 
nuclear antigen; GAPDH: glyceraldehyde-3-phosphate dehydrogenase; VAMP2: Vesicle-associated membrane protein 2.

cells against epilepsy-induced apoptosis[52]. However, our findings suggested an 
opposite role of miR-135a-5p in mediating cell apoptosis, indicating that miR-135a-5p 
might serve a dual role as a regulator of cancer progression. In gastric cancer, miR-
135a has been reported to have an anti-apoptotic effect consistent with our results[53].

Abnormal cell apoptosis is one of the causes of excessive proliferation and 
oncogenesis[31]. It is interesting to note that miR-135a-5p also exerts different 
functions in cell proliferation. It is clear that miR-135a-5p acts as a tumor suppressor 
miRNA in some cancers, including prostate cancer[45], renal carcinoma cells[50], 
nasopharyngeal carcinoma[54], and as an oncogenic miRNA in bladder cancer[55] and 
HCC[19,44]. Our experimental results also demonstrated that miR-135a-5p acts as an 
onco-miRNA to promote HCC proliferation via inhibition of VAMP2. Many recent 
studies showed that the same individual miRNA has different purposes in different 
diseases[56]. This study also showed that miR-135a has a distinct purpose in HCC, 
implying that miR-135a might also play diverse roles in different cancers. Therefore, 
the effects of miR-135a on diseases depend on its target genes.

There are two different conclusions regarding the effect of HBc on apoptosis in HCC
[57,58]. Several studies report that HBc, involved in HBV self-regulation, can inhibit 
apoptosis or enhance anti-apoptosis in HCC[35,57]. Liu and his partners reported that 
HBc inhibits Fas-mediated hepatocyte apoptosis[35]. Du et al[57] found that HBc 
enhances anti-apoptosis of hepatocytes by blocking death receptor 5 (DR5) expression. 
On the contrary, researchers in the Institut Pasteur of Shanghai revealed that HBc 
increases tumor necrosis factor alpha (TNF-α) -induced apoptosis in HCC cells[58]. 
Our experimental results showed that HBc prevented cell apoptosis and promoted cell 
proliferation through the miR-135a-5p/VAMP2 axis in HCC cells, which is similar to 
the report that HBc fosters the proliferation of HCC by upregulating the expression of 
c-Ets2[36].

Chemotherapy is the primary treatment for patients with advanced cancer. 
Exosomes secreted by drug-resistant cell lines can deliver miRNAs to sensitive cells 
and induce drug-resistant characteristics[59]. A few articles describe that miR-135a 
increases chemical resistance in some cancers[60-62]. Upregulation of miR-135a 
contributes to paclitaxel resistance in human non-small cell lung cancer cells[60]. High 
levels of miR-135b-5p promote resistance to cisplatin treatment in endometrial cancer 
cells[62] and gastric cancer cells[63]. MiR-135a also seems to have different effects on 
drug resistance, as well as cell apoptosis. A report from Nanjing Medical University 
shows that enforced miR-135a/b expression sensitizes A549/Cisplatin (CDDP) cells to 
CDDP-induced apoptosis[64]. Our results suggested that miR-135a-5p could resist 
Dox-induced apoptosis by targeting VAMP2 in HCC.

Our research group and other groups have published several articles on HBx 
protein promoted chemotherapeutic resistance in HCC[65-67]. A recently published 
paper concludes that HBx protein leads to resistance to the chemotherapy drug 5-
Fluorouracil in HCC by downregulating SHIP2 through SKP2[65]. We also reported 
that HBx protein can promote Dox chemoresistance in HCC through overexpression of 
Variant 1 of KIAA0101[66] and Transcript variant 2 of the chemokine-like factor 
(CKLF1)[67]. However, there is no relevant study to assess the effect of HBc on HCC 
drug resistance. Herein, we found that HBc protected HCC from Dox-induced 
apoptosis through the miR-135a-5p/VAMP2 axis.

CONCLUSION
HBc could upregulate the expression of miR-135a-5p in HBV-infected hepatocytes. 
Then, miR-135a-5p was packaged into exosomes. After adjacent or distant recipient 
cells absorbed these exosomes, miR-135a-5p was delivered into recipient cells and led 
to a decrease in VAMP2 transcription, a novel target gene. The decreased VAMP2 
facilitated tumor anti-apoptosis, cell proliferation, and drug resistance in HCC 
(Figure 8).
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Figure 6 miR-135a-5p enhanced Dox-resistance and reduced cell apoptosis of hepatocellular carcinoma cells by down-regulating vesicle-
associated membrane protein 2. A: The apoptosis rate of HepG2 cells after treatment with Doxorubicin hydrochloride (Dox). Flow cytometry was used to 
detected the effect of HepG2 cells with overexpressed miR-135a-5p after treatment with Dox; B: Annexin V-FITC/PI assay was used to discover the rate of apoptosis 
in HepG2 cells cultured with mimic-loaded exosomes; C and D: Flow cytometry was used to detect the rate of Dox-induced apoptosis in HepG2 cells after transfected 
with the plasmid group shown in the figure above; E and F: Cell counting kit 8 assay was used to determine the proliferation rate of HepG2 cells transfected with miR-
135a-5p mimics after treated with Dox; G and H: Cell counting assay was performed to determine the proliferation of HepG2 cells transfected with pcDNA3.1-vesicle-
associated membrane protein 2. aP < 0.05; bP < 0.01. Dox: Doxorubicin hydrochloride; VAMP2: Vesicle-associated membrane protein 2.
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Figure 7 Hepatitis B core antigen mediated resistance of hepatocellular carcinoma cells to Doxorubicin hydrochloride via miR-135a-
5p/vesicle-associated membrane protein 2. A: HepG2 cells were transfected with pcDNA3.1-hepatitis B core antigen (HBc) plasmids, flow cytometry was 
used to determine the rate of Doxorubicin hydrochloride (Dox)-induced apoptosis; B and C: Cell apoptosis rate was measured in HepG2 cells treated with Dox by flow 
cytometry after transfection with the indicated plasmid; D: Cell counting assay was performed to determine the proliferation of HepG2 cells transfected with 
pcDNA3.1-HBc plasmids after treatment with Dox; E: Cell proliferation in HepG2 cells co-transfected with pcDNA3.1-HBc plasmids and miR-135a-5p inhibitors 
assessed by the cell counting kit 8 assay; F: Cell counting assay used to determine the proliferation of HepG2 cells co-transfected with pcDNA3.1-HBc and 
pcDNA3.1-vesicle-associated membrane protein 2 plasmids after treatment with Dox. aP < 0.05; bP < 0.01; cP < 0.001. HBc: Hepatitis B core antigen; VAMP2: 
Vesicle-associated membrane protein 2; Dox: Doxorubicin hydrochloride.
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Figure 8 Hepatitis B core antigen promoted tumor anti-apoptosis, proliferation and chemoresistance in hepatocellular carcinoma cells by 
the miR-135a-5p/vesicle-associated membrane protein 2 axis. HBV: Hepatitis B virus; HBc: Hepatitis B core antigen; Bcl-2: B-cell lymphoma-2; MCM2: 
Mini-chromosome maintenance protein-2; PCNA: Proliferating cell nuclear antigen; VAMP2: Vesicle-associated membrane protein 2; Dox: Doxorubicin hydrochloride; 
MVB: Multivesicular body; ER: Endoplasmic reticulum.

ARTICLE HIGHLIGHTS
Research background
Hepatocellular carcinoma (HCC) is a frequently diagnosed malignant tumor caused by 
its main risk factor, hepatitis B virus (HBV) infection. HBV infection alters the level of 
miRNA in cells, which can be delivered to surrounding cells by exosomes to affect 
disease progression.

Research motivation
HCC is a common malignant tumor with relatively insipid early symptoms, rapid 
disease progression, burdensome treatment, and poor prognosis. Since HBV infection 
is still one of the major causes of HCC in China, the mechanism of HBV in HCC 
resistance remains unclear.

Research objectives
To explore the role of hepatitis B core antigen (HBc) on Dox-induced HCC resistance 
and the underlying mechanism.

Research methods
Exosomes were isolated by ultracentrifugation. The miRNAs differentially expressed 
in HCC were identified using the Cancer Genome Atlas (TCGA) database. The level of 
miR-135a-5p in patient tissues and exosomes was detected by quantitative polymerase 
chain reaction. After transfection with the indicated plasmids, cell functions affected 
by the HBV-regulated miR-135a/vesicle-associated membrane protein 2 (VAMP2) axis 
were assessed by flow cytometry and cell counting kit 8 assay.

Research results
miR-135a-5p expression was upregulated in HCC tissues and cells. HBc increased the 
expression of exosomal miR-135a-5p. VAMP2 is one of the potential target genes of 
miR-135a-5p, and functional assays showed that HBc mediated the miR-135a/VAMP2 
axis to induce apoptosis protection, cell proliferation, and chemotherapy resistance in 
HCC.

Research conclusions
HBc elevated the expression of exosomal miR-135a-5p and promoted anti-apoptosis, 
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cell proliferation, and chemical resistance through miR-135a-5p/VAMP2 in HCC.

Research perspectives
The role of the miR-135a-5p/VAMP2 regulatory axis in chemotherapy resistance of 
HCC may serve as a potential molecular therapeutic target for HCC.
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Abstract
BACKGROUND 
Hepatic overload of gut-derived lipopolysaccharide dictates the progression of 
alcoholic liver disease (ALD) by inducing oxidative stress and activating Kupffer 
cells and hepatic stellate cells through toll-like receptor 4 signaling. Therefore, 
targeting the maintenance of intestinal barrier integrity has attracted attention for 
the treatment of ALD. Zinc acetate and rifaximin, which is a nonabsorbable 
antibiotic, had been clinically used for patients with cirrhosis, particularly those 
with hepatic encephalopathy, and had been known to improve intestinal barrier 
dysfunction. However, only few studies focused on their efficacies in preventing 
the ALD-related fibrosis development.

AIM 
To investigate the effects of a combined zinc acetate with rifaximin on liver 
fibrosis in a mouse ALD model.

METHODS 
To induce ALD-related liver fibrosis, female C57BL/6J mice were fed a 2.5% (v/v) 
ethanol-containing Lieber-DeCarli liquid diet and received intraperitoneal carbon 
tetrachloride (CCl4) injection twice weekly (1 mL/kg) for 8 wk. Zinc acetate (100 
mg/L) and/or rifaximin (100 mg/L) were orally administered during experi-
mental period. Hepatic steatosis, inflammation and fibrosis as well as intestinal 
barrier function were evaluated by histological and molecular analyses. Moreover, 
the direct effects of both agents on Caco-2 barrier function were assessed by in 
vitro assays.

RESULTS 
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In the ethanol plus CCl4-treated mice, combination of zinc acetate and rifaximin 
attenuated oxidative lipid peroxidation with downregulation of Nox2 and Nox4. 
This combination significantly inhibited the Kupffer cells expansion and the 
proinflammatory response with blunted hepatic exposure of lipopolysaccharide 
and the toll-like receptor 4/nuclear factor kB pathway. Consequently, liver 
fibrosis and hepatic stellate cells activation were efficiently suppressed with 
downregulation of Mmp-2, -9, -13, and Timp1. Both agents improved the atrophic 
changes and permeability in the ileum, with restoration of tight junction proteins 
(TJPs) by decreasing the expressions of tumor necrosis factor α and myosin light 
chain kinase. In the in vitro assay, both agents directly reinforced ethanol or 
lipopolysaccharide-stimulated paracellular permeability and upregulated TJPs in 
Caco-2 cells.

CONCLUSION 
Dual therapy with zinc acetate and rifaximin may serve as a strategy to prevent 
ALD-related fibrosis by maintaining intestinal barrier integrity.

Key Words: Liver fibrosis; Intestinal permeability; Alcoholic liver disease; Lipopoly-
saccharide; Toll-like receptor; Tight junction protein

©The Author(s) 2021. Published by Baishideng Publishing Group Inc. All rights reserved.

Core Tip: Gut-derived lipopolysaccharide dictates the progression of alcoholic liver 
disease (ALD) hence the maintenance of intestinal barrier integrity has attracted 
attention for the treatment of ALD. This study elucidates the preventive effect of 
combined zinc supplementation and rifaximin from ALD-related liver fibrosis induced 
by ethanol plus carbon tetrachloride in mice. This effect is involved in the multifaceted 
regulatory functions that maintain intestinal barrier integrity and reduce hepatic 
lipopolysaccharide exposure, thereby, leading to Kupffer cell expansion and hepatic 
stellate cell activation by inhibiting the toll-like receptor 4 pathway, highlighting that 
this regimen may represent a potential novel strategy against ALD-related liver 
fibrosis.

Citation: Fujimoto Y, Kaji K, Nishimura N, Enomoto M, Murata K, Takeda S, Takaya H, 
Kawaratani H, Moriya K, Namisaki T, Akahane T, Yoshiji H. Dual therapy with zinc acetate 
and rifaximin prevents from ethanol-induced liver fibrosis by maintaining intestinal barrier 
integrity. World J Gastroenterol 2021; 27(48): 8323-8342
URL: https://www.wjgnet.com/1007-9327/full/v27/i48/8323.htm
DOI: https://dx.doi.org/10.3748/wjg.v27.i48.8323

INTRODUCTION
Alcoholic liver disease (ALD), which is the most common and serious complication of 
excessive alcohol consumption, includes a spectrum of disorders, such as acute or 
chronic hepatitis, fatty liver disease, cirrhosis, and hepatocellular carcinoma[1,2]. The 
increasing mortality from ALD has become a major health problem in both Western 
and Asian countries[3]. Currently, limiting alcohol intake remains the most effective 
therapy for patients in all stages of ALD, although only few individuals succeed in 
substantially abstaining from alcohol consumption. Therefore, novel efficacious 
medications are urgently required to prevent the development of ALD.

ALD is known to progress through several communications between the liver and 
several physiologic systems in other organs[4,5]. Among various factors that mediate 
these cross-talks, the gut-derived endotoxin lipopolysaccharide (LPS), which is 
produced by gram-negative bacteria, particularly plays a pivotal role in inflammation 
and fibrosis in ALD[6]. Accumulation of LPS in response to alcohol consumption may 
be attributed to the functional impairment of intestinal barrier integrity, including 
intestinal hyperpermeability secondary to disrupted tight junction[7]. LPS is 
transported into the liver and activates Kupffer cells and macrophages that had been 
recruited in the liver through toll-like receptor 4 (TLR4) and its coreceptor CD14, 
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which in turn force these cells to produce inflammatory cytokines[8]. Moreover, gut-
derived LPS triggers hepatic stellate cell (HSC) activation by increasing its suscept-
ibility to acetaldehyde and transforming growth factor (TGF)-b and leading to 
extracellular matrix (ECM) deposition, intrahepatic inflammation, and fibrosis[9]. 
Therefore, maintenance of intestinal barrier integrity and blockage of the transfer of 
LPS from the intestine to the liver may be a therapeutic strategy to prevent alcohol-
induced liver fibrosis.

Zinc is the second most abundant trace metal in humans after iron and is the only 
metal that appears in all enzyme classes[10]. Zinc deficiency is often observed in 
patients with ALD and usually becomes evident with increasing severity and with the 
progression of ALD from steatosis to cirrhosis[11,12]. Zinc supplementation in patients 
with cirrhosis provides metabolic effects that assist in the improvement of liver 
function, hepatic encephalopathy, and nutritional status[13-15]. Notably, Zhong et al[16] 
have documented that zinc deficiency induced by chronic alcohol exposure 
augmented epithelial barrier dysfunction with subsequent increase in gut permeability 
and development of endotoxemia in alcoholic liver injury. Meanwhile, several animal 
studies have shown that zinc supplementation could ameliorate intestinal barrier 
dysfunction[17,18]. However, supplementation with zinc alone was considered to only 
partially improve the outcome of patients with chronic liver diseases, including ALD
[19]. Therefore, we postulated that a combination of zinc and another agent with 
antifibrotic effects would add benefits in the treatment of alcohol-induced liver 
fibrosis.

Rifaximin is an antibiotic that is minimally absorbed, has broad-spectrum activity 
against gram-positive and gram-negative aerobic and anaerobic enteric bacteria, and is 
clinically available for hepatic encephalopathy or travelers’ diarrhea[20,21]. Our recent 
clinical studies have elucidated that rifaximin significantly decreased serum endotoxin 
activity and potentially improved intestinal permeability without modifying the gut 
microbiome in patients with cirrhosis[22]. Moreover, a recent study demonstrated that 
rifaximin inhibited toxin-induced apoptosis and deprivation of tight junction proteins 
(TJPs) in human intestinal cells through pregnane X receptor (PXR)-dependent 
inhibition of the TLR4/MyD88/nuclear factor kB (NF-kB) pathway[23]. However, the 
therapeutic potential of rifaximin against alcohol-induced liver fibrosis had been 
obscure.

This study aimed to investigate the combined effects of zinc supplementation and 
rifaximin on liver fibrosis induced by ethanol plus carbon tetrachloride (CCl4) in 
connection with their protective properties against intestinal barrier disruption.

MATERIALS AND METHODS
Animals and experimental protocol
Ten-week-old female C57BL/6J mice (CLEA Japan, Osaka, Japan) were housed under 
23 °C ± 3 °C with 50% ± 20% humidity and a 12-h light/12-h dark cycle. All 
experiments were performed over an 8-wk period, since our previous report has 
shown that administration of ethanol plus CCl4 for this period definitely developed 
ALD-related liver fibrosis[24].

The mice were divided into five treatment groups (Figure 1). The control group 
(C/V; n = 10) were fed non-ethanol liquid diet (Research Diets, New Brunswick, NJ, 
United States). The E/V group (n = 10) were fed a 2.5% (v/v) ethanol-containing 
Lieber–DeCarli liquid diet (research diets) and received intraperitoneal injection of 
CCl4 (FUJIFILM, Wako Pure Chemical Corporation, Osaka, Japan) twice a week (1 
mL/kg body weight)[25]. The E/Zn (n = 10) and E/RFX (n = 10) groups were fed 
ethanol diet with 100 mg/L of zinc acetate (FUJIFILM, Wako Pure Chemical 
Corporation) and 100 mg/L of rifaximin (ASKA Pharmaceutical Co. Ltd., Tokyo, 
Japan), respectively[26,27], and received intraperitoneal CCl4 injection twice weekly. 
The E/both group (n = 10) were fed ethanol diet that contained a combination of zinc 
acetate and rifaximin and received intraperitoneal CCl4 injection. The same amount of 
lactose hydrate (FUJIFILM, Wako Pure Chemical Corporation) was used as vehicle for 
the C/V and E/V groups. Another set of mice groups were used to measure intestinal 
permeability, as described in Measurement of in vivo intestinal permeability. For 
sample collection, all mice underwent the following procedures: anesthesia with 
barbiturate overdose (intravenous injection, 150 mg/kg pentobarbital sodium), blood 
collection from the cervical artery and harvesting of the liver and ileum immediately 
after sacrifice. Serum biologic markers were measured by SRL, Inc. (Tokyo, Japan). The 
animal care and experimental procedures were approved by the ethics committee of 
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Figure 1 Zinc acetate and rifaximin against hepatic steatosis in alcoholic liver disease mice. A: Experimental protocols; B: Changes in body 
weights during experimental period; C: Ratio of liver weight to body weight at the end of experiment; D: Zinc concentrations of the serum (left) and the liver (right); E: 
Serum levels of aspartate aminotransferase (left) and alanine aminotransferase (right); F: Representative macroscopic appearances (upper), microphotographs of 
hematoxylin and eosin (middle) and Oil Red O staining (lower) of the livers in the experimental mice. Scale bar: 25 μm; G: Semi-quantification of lipid accumulation 
stained by Oil Red O in high-power field by NIH imageJ software. Histochemical quantitative analyses included five fields per section. Quantitative values are 
indicated as fold changes to the values of C/V group; H: Hepatic concentrations of triglyceride. Data are mean ± SD (n = 10), aP < 0.05 and bP < 0.01 vs C/V group; c

P < 0.05 and dP < 0.01 vs E/V group; eP < 0.05 and fP < 0.01 vs E/Zn group; gP < 0.05 and hP < 0.01 vs E/RFX group. AST: Aspartate aminotransferase; ALT: Alanine 
aminotransferase; HE: Hematoxylin and eosin.
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Experimental Animal Care of Nara Medical University, Kashihara, Japan (author-
ization numbers: 12734).

Histologic and immunohistochemical analyses
The liver and ileum specimens were fixed in 10% formalin and embedded in paraffin, 
and other liver specimens were fixed with 4% paraformaldehyde for 24 h, then frozen 
in a Cryomold with Tissue-Tek OCT compound (Sakura Finetek Japan, Tokyo, Japan) 
for frozen sections. Paraffin-embedded sections of 5-µm thickness were stained with 
hematoxylin and eosin (HE) for the liver and ileum and with Sirius Red for the liver 
and frozen liver sections were stained with Oil Red O at Narabyouri Research Co. 
(Nara, Japan). To evaluate the morphologic changes in the ileum, 10 well-oriented 
crypt–villus units were examined per slide under a microscope. Immunohisto-
chemistry was performed as described previously and α-smooth muscle actin (SMA) 
(#ab5694; 1:200, Abcam, Cambridge, United Kingdom), F4/80 (#ab100790; 1:100, 
Abcam) and COL-1 (#14695-1-AP; 1:500, Proteintech, Rosemont, IL, United States) 
were used as primary antibodies[28,29]. Immunofluorescence test for zonula 
occludens-1 (ZO-1) (#61-7300; 1:250, Invitrogen, Carlsbad, CA, United States) and 
Occludin (#ab216327; 1:200, Abcam) was performed on the paraffin-embedded ileum 
sections. Primary antibodies were detected using Alexa Fluor-conjugated secondary 
antibodies (Invitrogen). Images were captured using a BX53 (Olympus, Tokyo, Japan) 
for histology and immunohistochemistry and a BZ-X700 (Keyence, Osaka, Japan) for 
immunofluorescence. Semiquantitative analysis was performed using Image J 
software version 64 (National Institutes of Health, Bethesda, MD, United States).

Intrahepatic zinc and triglyceride concentration
Intrahepatic zinc and triglyceride concentrations were measured in 100 mg of frozen 
liver tissue per mouse using the Metalloassay Kit (Metallogenics, Chiba, Japan) and 
Triglyceride-Glo™ Assay (Promega, Madison, WI, United States), respectively, 
according to the manufacturer’s instructions.

Intrahepatic alcohol dehydrogenase 1, aldehyde dehydrogenase 2 and cytochrome 
P450 2E1 (CYP2E1) activity
Intrahepatic alcohol dehydrogenase 1 (ADH1) and aldehyde dehydrogenase 2 
(ALDH2) activities were measured by using Alcohol Dehydrogenase Activity Colori-
metric Assay Kit (BioVision, Milpitas, CA, United States) and ALDH2 activity assay kit 
(Abcam), respectively, according to the manufacturer’s instructions. Intrahepatic 
CYP2E1 activity was determined by measuring the hydroxylation of p-nitrophenol in 
whole liver extract as described[30].

Intrahepatic catalase, superoxide dismutase, and malondialdehyde concentration
Intrahepatic levels of catalase (CAT), superoxide dismutase (SOD) and malondial-
dehyde (MDA) were measured in 25 mg frozen liver tissue in each mouse using 
Mouse catalase ELISA Kit (CUnited StatesBIO, Houston, TX, United States), Mouse 
Super Oxidase Dimutase, SOD ELISA Kit (CUnited StatesBIO) and OxiSelectTM TBARS 
Assay Kit (Cell Biolabs, Inc., San Diego, CA, United States), according to the 
manufacturer’s protocol.

Mouse matrix metalloproteinase-9 activity assay
Intrahepatic matrix metalloproteinase (MMP)-9 activities were evaluated in frozen 
liver tissue per mouse by the Mouse MMP-9 Activity Assay Kit (QuickZyme 
Biosciences, Leiden, Netherlands), according to the manufacturers protocol.

Measurement of in vivo intestinal permeability
In vivo intestinal permeability was determined as previously described with brief 
modifications[31]. Six hours after initiating fasting conditions, the mice (n = 5) were 
orally given 600 mg/kg body weight of fluorescein isothiocyanate (FITC)-dextran (4 
kDa) (TdB Labs, Uppsala, Sweden). Blood was collected from the portal vein 4 h after 
FITC-dextran administration. To evaluate the degree of gut permeability, plasma was 
analyzed by fluorescence measurement of the concentration of FITC-labeled dextran at 
an excitation wavelength of 490 nm and an emission wavelength of 520 nm.

Cell culture
To explore in vitro effects of zinc acetate and rifaximin on enterocytes, we used the 
human colorectal adenocarcinoma line Caco-2. Caco-2 cells were obtained from Riken 
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BRC Cell Bank (Ibaraki, Japan) and were cultured, as described previously[32]. The 
cells were cultured in Dulbecco’s modified Eagle’s medium supplemented with 100 
U/mL of penicillin, 100 g/mL of streptomycin, 0.1-mM nonessential amino acids, 10-
mM HEPES, and 10% fetal bovine serum at 37 °C in an environment with 5% carbon 
dioxide. Culture medium was replaced every 2 d. Caco-2 cells were subcultured after 
partial digestion with 0.25% trypsin-EDTA, and passages 19–30 were used. For alcohol 
intoxication, 5% ethanol was added to the culture medium for 3 h, with or without the 
addition of different concentrations of zinc acetate (1−100 μM) and/or rifaximin 
(0.1−10 μM) 30 min before alcohol intoxication. A previous report has shown that 5% 
ethanol significantly affected the Caco-2 monolayer barrier function[33]. For tumor 
necrosis factor (TNF)α stimulation, recombinant human TNFα (100 ng/mL, Abcam) 
was added to the Caco-2 cell monolayers for 6 h, with or without zinc acetate (100 μM) 
or rifaximin (10 μM) 30 minutes prior. For LPS stimulation, LPS (O55:B5) (2 μg/mL; 
Sigma-Aldrich, St. Louis, MO, United States) was added to the Caco-2 cell monolayers 
with and without zinc acetate (100 μM) or rifaximin (10 μM) for 24 h. The phosphoin-
ositide 3-kinase (PI3K) inhibitor LY294002 (10 μM, ChemScene, Monmouth Junction, 
NJ, United States) or the human PXR antagonist, SPA70 (510 μM, Axon Medchem, 
Groningen, Netherlands) was added to the culture media that had been treated with 
zinc acetate or rifaximin, respectively[34,35].

Measurement of transepithelial electrical resistance
To assess the in vitro Caco-2 monolayer barrier function, we measured the 
transepithelial electrical resistance (TEER) using an electrical resistance system 
(Millicell-ERS®; Millipore Corporation, Bedford, MA, United States), as reported 
previously[36]. The electrical resistance was expressed in units of Ω/cm2 using the 
surface area of the Trans-well insert.

Cell viability assay
In vitro cell viability was determined using the Premix WST-1 Cell Proliferation Assay 
system (Takara Bio, Kusatsu, Japan), according to the manufacturer's protocol. Cell 
viability was calculated as the relative value to the start of exposure to each agent.

Quantitative real-time polymerase chain reaction assay
Total RNA was extracted from the liver and ileum tissues and cultured Caco-2 cells 
using the RNeasy Mini Kit (Qiagen, Hilden, Germany). After assessing the quality and 
concentration, 2 μg of total RNA was subjected to cDNA synthesis using the High-
Capacity RNA-to-cDNA kit (Applied Biosystems, Foster City, CA, United States). 
Quantitative real-time polymerase chain reaction (qRT-PCR) with gene-specific primer 
pairs (Supplementary Table 1) was performed using the StepOnePlus Real-time PCR 
system and SYBR Green (Applied Biosystems). The levels of mRNA expression were 
normalized according to the internal control of the housekeeping gene glyceraldehyde 
3-phosphate dehydrogenase. All reactions were performed using 1:10 diluted cDNA; 
mRNA expression levels were estimated using the 2−ΔΔCT method and were presented 
as fold changes relative to the controls for each experiment.

Protein extraction and western blotting
Proteins were extracted from frozen liver tissues and Caco-2 cells using T-PER Tissue 
Protein Extraction Reagent supplemented with proteinase and phosphatase inhibitors 
(Thermo Scientific, Rockford, IL, United States). Western blot was performed, as 
described previously[37]. The membranes were incubated overnight with antibodies 
against phospho-IKKα/β (Ser176/180) (#2697; Cell Signaling Technology, Danvers, 
MA, United States), IKKβ (#2370; CST), IkBα (#4812; CST), NF-kB p65 (#8242; CST), 
phospho-NF-kB p65 (Ser536) (#3033; CST), COL-1 (#14695-1-AP; Proteintech), ZO-1 
(#61-7300; Invitrogen), Occludin (#ab216327; Abcam), AKT (#9272; CST), phospho-
AKT (Ser473) (#9271; CST), and β actin (#4967). Densitometric analysis was performed 
using ImageJ software version 64.

Statistical analyses
Continuous variables are presented as mean ± SD. Statistical significance was analyzed 
with a 2-sided Student's t-test or one-way analysis of variance, followed by 
Bonferroni’s multiple comparison test, as appropriate. Statistical analyses were 
performed using Prism, version 9.1.2 (GraphPad Software, La Jolla, CA, United States). 
P values of < 0.05 were considered to indicate statistical significance.

https://f6publishing.blob.core.windows.net/84ba663b-ca24-467e-928b-c10539855f57/WJG-27-8323-supplementary-material.pdf
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RESULTS
Combination of zinc acetate and rifaximin improved liver dysfunction and 
suppressed hepatic steatosis in ethanol plus CCl4-treated mice
Figure 1A shows our initial examination of the effects of zinc acetate and rifaximin on 
ALD-related fibrosis induced via combined ethanol and CCl4 administration in mice. 
After 8 wk, the administration of ethanol plus CCl4 group had remarkable delay in 
body weight gain, compared with that in the control group, and this delay in body 
weight gain could not be prevented by treatments with zinc acetate and rifaximin 
(Figure 1B). Conversely, the relative liver weights increased in the ethanol plus CCl4-
treated mice, and combined treatment with zinc acetate and rifaximin efficiently 
attenuated hepatomegaly (Figure 1C). To confirm the effect of zinc supplementation, 
we measured the serum and hepatic levels of zinc in the experimental groups. As 
shown in Figure 1D, the ethanol plus CCl4-treated mice, compared with the control 
group, showed almost equivalent levels of serum zinc but lower levels of hepatic zinc, 
and treatment with zinc acetate significantly increased both the serum and hepatic 
zinc levels in the ethanol plus CCl4-treated mice. Administration of zinc acetate (100 
mg/L) and rifaximin (100 mg/L) at the present doses did not cause hypocupremia and 
renal dysfunction, respectively (Supplementary Figure 1A and B). The serum levels of 
aspartate aminotransferase (AST) and alanine aminotransferase (ALT) were increased 
by chronic ethanol exposure and CCl4 administration (Figure 1E). Interestingly, 
combined treatment with zinc acetate and rifaximin lowered the AST and ALT levels 
in the ethanol plus CCl4-treated mice (Figure 1E). Serum γ-glutamyl transpeptidase 
levels were elevated in the ethanol plus CCl4-treated mice and remained unchanged by 
treatments with both agents (Supplementary Figure 1C). Meanwhile, serum alkaline 
phosphatase and albumin levels were not affected by chronic ethanol exposure and 
CCl4 administration (Supplementary Figure 1C). In serum lipid test, serum triglyceride 
levels were elevated in the ethanol plus CCl4-treated mice that were attenuated by 
treatments with zinc acetate and rifaximin. However, there were no significant 
differences in serum total-, high density lipoprotein (HDL)-, and low density 
l ipoprotein (LDL)-cholesterol  levels  among the experimental  groups 
(Supplementary Figure 1D and E).

Histologic assessment on HE and Oil Red O staining revealed hepatic steatosis in 
the ethanol plus CCl4-treated mice (Figure 1F and G). Notably, treatment with zinc 
acetate and rifaximin remarkably attenuated hepatic fat accumulation, and 
consistently combined treatment with both agents attenuated the hepatic level of 
triglyceride (Figure 1F-H).

Zinc acetate and rifaximin prevented the accumulation of oxidative stress in ethanol 
plus CCl4-treated mice
Next, we evaluated the changes in the activities of metabolic enzymes related to 
alcohol, acetaldehyde, and cytochrome CYP2E1 in the liver tissues of experimental 
group. As shown in Figure 2A and B, ethanol and CCl4 administration significantly 
decreased both ADH1 and ALDH2 activities. Treatment with zinc acetate significantly 
suppressed the decline of ADH1 activity but did not affect ALDH2 in the ethanol plus 
CCl4-treated mice. However, neither ADH1 nor ALDH2 activities changed after 
treatment with rifaximin. CYP2E1 activity was increased in the ethanol plus CCl4-
treated mice, and zinc acetate significantly suppressed the increase of CYP2E1 activity 
but rifaximin did not affected (Figure 2C). These findings indicate that zinc acetate 
would attenuate CYP2E1-mediated accumulation of oxidative stress.

In the ethanol plus CCl4-treated mice, hepatic levels of antioxidant enzymes CAT 
and SOD were decreased as compared to control mice, and treatments with zinc 
acetate and rifaximin significantly prevented the decreases in CAT and SOD levels 
(Figure 2D and E). The chronic ethanol exposure and CCl4 administration also induced 
the increase in hepatic levels of MDA, one of the final products of polyunsaturated 
fatty acids peroxidation (Figure 2F). It was noteworthy that treatments with zinc 
acetate and rifaximin suppressed the alteration in the levels of MDA (Figure 2F).

Moreover, compared with the control mice, the ethanol plus CCl4-treated mice 
exhibited higher mRNA levels of the hepatic nicotinamide adenine dinucleotide 
phosphate oxidase (Nox) gene family members (i.e., Nox1, Nox2, and Nox4); treatment 
with zinc acetate and rifaximin reduced the observed increase in the mRNA levels of 
Nox2 and Nox4 (Figure 2G).

https://f6publishing.blob.core.windows.net/84ba663b-ca24-467e-928b-c10539855f57/WJG-27-8323-supplementary-material.pdf
https://f6publishing.blob.core.windows.net/84ba663b-ca24-467e-928b-c10539855f57/WJG-27-8323-supplementary-material.pdf
https://f6publishing.blob.core.windows.net/84ba663b-ca24-467e-928b-c10539855f57/WJG-27-8323-supplementary-material.pdf
https://f6publishing.blob.core.windows.net/84ba663b-ca24-467e-928b-c10539855f57/WJG-27-8323-supplementary-material.pdf
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Figure 2 Zinc acetate and rifaximin on ethanol metabolism and accumulation of oxidative stress in alcoholic liver disease mice. A-C: 
Hepatic activity of alcohol dehydrogenase 1 (A), aldehyde dehydrogenase 2 (B) and cytochrome P450 2E1 (CYP2E1) (C). Quantitative values are indicated as fold 
changes to the values of C/V group; D-F: Hepatic levels of of catalase (D), superoxide dismutase (E) and malondialdehyde (F); G: Relative mRNA expression levels 
of Nox1, Nox2 and Nox4 in the liver of experimental mice. The mRNA expression levels were measured by RT-qPCR, and Gapdh was used as internal control. 
Quantitative values are indicated as fold changes to the values of C/V group. Data are mean ± SD (n = 10), aP < 0.05 and bP < 0.01 vs C/V group; cP < 0.05 and dP < 
0.01 vs E/V group; eP < 0.05 and fP < 0.01 vs E/Zn group; gP < 0.05 and hP < 0.01 vs E/RFX group. ADH1: Alcohol dehydrogenase 1; ALDH2: Aldehyde 
dehydrogenase 2; CAT: Catalase; SOD: Superoxide dismutase; MDA: Malondialdehyde.

Zinc acetate and rifaximin attenuated Kupffer cell expansion and the 
lipopolysaccharide/TLR4 signaling activation in ethanol plus CCl4-treated mice
On the basis of the suppressions in ethanol plus CCl4-induced steatosis and inflam-
mation following zinc acetate and rifaximin treatment, we next evaluated the 
proinflammatory status of the liver in the experimental mice. We observed extensive 
infiltration of F4/80-positive Kupffer cells and an increased mRNA levels of Cd68 in 
the liver of ethanol plus CCl4-treated mice (Figure 3A–C). Treatment with zinc acetate 
and rifaximin attenuated the expanded Kupffer cell infiltration and reduced the 
mRNA expression of Cd68 which were robustly boosted by combination of the two 
agents (Figure 3A-C). We also observed that the combination treatment significantly 
suppressed the increases of M1-polarized macrophages while it had little effect on M2-
polarized macrophages in the liver of ethanol plus CCl4-treated mice (Figure 3D and 
E).

We further assessed to the effect of zinc acetate and rifaximin on the hepatic 
LPS/TLR4 signaling. Administration of ethanol plus CCl4 caused an upregulation of 
hepatic LPS-binding protein (LBP), which forms a complex with LPS to interact with 
the macrophage receptor and initiate a proinflammatory host response (Figure 3F). In 
accordance with the upregulated hepatic Lbp expression, the mRNA levels of Tlr4 and 
its coreceptor Cd14, which function to detect LPS, were increased in the ethanol plus 
CCl4-treated mice (Figure 3G). Notably, treatment with zinc acetate and rifaximin 
ameliorated these increases, suggesting that both agents could reduce the load of LPS 
to the liver (Figure 3F and G). In the ethanol plus CCl4-treaed mice, the hepatic 
overload of LPS induced the IKKα/β phosphorylation and in turn promoted the IkBα 
degradation; NF-kB p65 Levels were consequently increased as a sequence of the 
LBP/CD14/TLR4 pathway (Figure 3H). The combination of both agents efficiently 
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Figure 3 Zinc acetate and rifaximin against toll-like receptor 4-mediated pro-inflammatory response in alcoholic liver disease mice. A: 
Representative microphotographs of liver sections stained with F4/80. Scale bar: 50 μm. B: Semi-quantitation of F4/80 immuno-positive Kupffer cells in high-power 
field by NIH imageJ software. Histochemical quantitative analyses included five fields per section; C-G: Relative mRNA expression level of Cd68 (C), M1-polarized 
macrophage-related genes (Il1b, Il6, Tnfa and Nos2) (D), M2-polarized macrophage-related genes (Il10, Arg1 and Cd163) (E), Lbp (F), Tlr4 and Cd14 (G) in the liver 
of experimental mice. The mRNA expression levels were measured by RT-qPCR, and Gapdh was used as internal control. Quantitative values are indicated as fold 
changes to the values of C/V group; H: Western blots for p-IKKα/β, IKKβ, IkBα and NF-kB p65 in the liver of experimental mice. Actin was used as internal control. 
Data are mean ± SD (B-G; n = 10), aP < 0.05 and bP < 0.01 vs C/V group; cP < 0.05 and dP < 0.01 vs E/V group; eP < 0.05 and fP < 0.01 vs E/Zn group; gP < 0.05 and 
hP < 0.01 vs E/RFX group. pv: Portal vein.
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inhibited these LPS-triggered accumulation of NF-kB in the ethanol plus CCl4-treaed 
mice (Figure 3H).

Zinc acetate and rifaximin inhibited liver fibrosis development in ethanol plus CCl4-
treated mice
Given the antiinflammatory properties of rifaximin and zinc acetate, we evaluated 
their effects on the development of liver fibrosis. The ethanol plus CCl4-treated mice 
showed extensive development of fibrous septa on Sirius Red staining (Figure 4A). 
Treatment with either zinc acetate or rifaximin alone significantly attenuated the 
ethanol plus CCl4-induced fibrosis, and the antifibrotic effect was augmented by 
parallel use of both agents combined (Figure 4A). Correspondingly, there was a 
remarkable reduction in the α-SMA-immunopositive areas, which represented 
activation of HSCs, after treatment with zinc acetate and rifaximin (Figure 4A). 
Semiquantitative analysis demonstrated that the combination treatment caused more 
than 50% reduction in the areas of fibrotic septa and α-SMA-positive activated HSCs in 
the ethanol plus CCl4-treated mice (Figure 4B and 4C). We also found that COL-1-
immunopositive ECM deposition was decreased in parallel with the attenuation of 
liver fibrosis after treatment with both agents in the ethanol plus CCl4-treated mice 
(Figure 4A and D). The western blot results substantiated that the hepatic expression 
of COL-1 protein was reduced via treatment with both agents (Figure 4E). 
Consistently, the hepatic gene expressions of profibrotic markers (i.e., Acta2, Col1a1, 
and Tgfb1) were decreased after treatment with zinc acetate and rifaximin (Figure 4F). 
We further assessed the hepatic expressions of MMPs and TIMPs in the experimental 
groups. The ethanol plus CCl4-treated mice showed increase in the hepatic mRNA 
levels of Mmp2, Mmp9, and Mmp13 as liver fibrosis developed (Figure 4G). In line with 
the improvement of liver fibrosis, these MMP expressions were reduced after 
treatment with zinc acetate and rifaximin (Figure 4G). In response to this, the hepatic 
mRNA level of Timp1 also varied according to liver fibrosis development (Figure 4H).

Based on the fact that zinc is essential as a component of the catalytic domain in 
MMPs[38], we investigated the effect of zinc supplementation on MMP activity. 
Interestingly, MMP-9 activity, which was indicated by active/pro MMP-9, was 
increased in the liver of the zinc acetate-treated groups, compared with that in the liver 
of the vehicle-treated group (Figure 4I).

Zinc acetate and rifaximin recovered the intestinal barrier function in ethanol plus 
CCl4-treated mice
Both zinc acetate and rifaximin efficiently prevented the accumulation of LPS in the 
liver, as indicated by the reduced hepatic mRNA level of Lbp (Figure 3D). To uncover 
the mechanism of these effects, we next evaluated intestinal barrier integrity in the 
experimental groups. In the ethanol plus CCl4-treated mice, the intestinal mucosal 
architecture was not significantly different from that of the controls, and epithelial 
shedding was absent. However, there was a decrease in the villus height of the ileum 
mucosa in the ethanol plus CCl4-treated mice (Figure 5A and B). Conversely, we found 
an increase in the crypt depth of the ileum in the ethanol plus CCl4-treated mice 
(Figure 5A and C). Notably, these atrophic changes were suppressed by treatment 
with zinc acetate and rifaximin (Figure 5A and B). Immunofluorescent analysis 
showed that in the ethanol plus CCl4-treated mice, the intestinal expressions of ZO-1 
and Occludin, which are the markers of TJP, were markedly decreased but were 
effectively restored by treatment with zinc acetate and rifaximin (Figure 5A and C). 
The western blot results confirmed the restoration of intestinal ZO-1 and Occludin 
protein expressions through treatment with both agents (Figure 5D). Along with these 
findings, RT-qPCR analysis revealed that combination treatment with both agents 
increased the intestinal mRNA expressions of the other TJP markers Cldn1, and Cldn4, 
which encode for Claudin1, and Claudin4, respectively, as well as Zo1 and Ocln 
(Figure 5E). To examine the functional consequence of altered cellular junctions, we 
determined the flux through the leak pathway, which is responsible for the 
paracellular movement of larger molecules, including LPS. Inversely proportional to 
the loss of TJPs, leakage of plasma FITC-dextran (4 kDa) increased by more than two-
fold in the ethanol plus CCl4-treated mice, compared with that in the control mice 
(Figure 5F). In correspondence with the improvement of TJP expression, leakage of 
FITC-dextran was significantly alleviated by treatment with both agents (Figure 5F). 
Moreover, we measured the intestinal mRNA levels of Tnfα as a downstream cytokine 
of TLR4, which plays a key role in ethanol-mediated disruption of the intestinal barrier 
function in ALD[39]. As shown in Figure 5G, intestinal Tnfα mRNA levels increased by 
three-fold in the ethanol plus CCl4-treated mice, compared with those in the control 
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Figure 4 Zinc acetate and rifaximin against liver fibrosis development in alcoholic liver disease mice. A: Representative microphotographs of 
liver sections stained with Sirius-Red, α-smooth muscle actin (αSMA) and COL-1. Scale bar: 50 μm; B-D: Semi-quantitation of Sirius-Red-stained fibrotic area (B), α-
SMA (C) and COL-1 (D) immuno-positive areas in high-power field (HPF) by NIH imageJ software. Histochemical quantitative analyses included five fields per 
section; E: Western blots for COL-1 in the liver of experimental mice. Actin was used as internal control; F-H: Relative mRNA expression levels of Acta2, Col1a1 and 
Tgfb1 (F), Mmp-2, -9 and -13 (G), and Timp1 (H) in the liver of experimental mice. The mRNA expression levels were measured by RT-qPCR, and Gapdh was used 
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as internal control; I: Intrahepatic MMP-9 activity determined by ELISA. Quantitative values are indicated as fold changes to the values of E/V (B-D and I) or C/V 
group (F-H). Data are mean ± SD (n = 10), aP < 0.05 and bP < 0.01 vs C/V group; cP < 0.05 and dP < 0.01 vs E/V group; eP < 0.05 and fP < 0.01 vs E/Zn group; g P < 
0.05 and h P < 0.01 vs E/RFX group. ND: Not detected; αSMA: α-smooth muscle actin.

mice; moreover, combination of zinc acetate and rifaximin reduced these mRNA levels 
by approximately 50% of the levels after vehicle treatment (Figure 5G).

Myosin light chain kinase (MLCK) is known to play a key role in intestinal barrier 
disruption as a downstream target of TNFα following alcohol stimulation[40]. 
Therefore, we further investigated the intestinal Mylk mRNA levels in the experi-
mental groups. The ethanol plus CCl4-treated mice showed marked increase in the 
intestinal Mylk mRNA levels; interestingly, both zinc acetate and rifaximin reduced 
these mRNA levels in parallel with downregulation of TNFα (Figure 5H).

Direct effects of zinc acetate and rifaximin on ethanol-induced barrier dysfunction in 
human enterocytes
Next, we assessed the effects of zinc acetate and rifaximin on enterocytes by in vitro 
assays using Caco-2 cells. The stimulation of 5% ethanol reduced the TEER values in 
the Caco-2 cells ,  but it  did not affect cell  viability (Figure 6A, B and 
Supplementary Figure 2A); this result indicated that this 5% ethanol-induced barrier 
dysfunction without cell death. The ethanol-induced reduction of TEER values was 
efficiently attenuated by treatment with zinc acetate, and the PI3K inhibitor LY294002 
was shown to negate the zinc-mediated recovery of electrical resistance in the ethanol-
stimulated Caco-2 cells (Figure 6A). It was noteworthy that rifaximin likewise dose-
dependently improved the ethanol-stimulated decrease in the TEER values of the 
Caco-2 cells, which was sufficiently offset by treatment with a known as a PXR 
inhibitor SPA70 (Figure 6B). Moreover, zinc acetate or rifaximin also attenuated the 
LPS-stimulated decrease in the TEER values, and these attenuations were negated by 
treatments with LY294002 or SPA70, respectively (Figure 6C and D). At the concen-
trations used in the present assays, both zinc acetate and rifaximin did not affect Caco-
2 cell viability (Supplementary Figure 2B). In parallel with the increase in TEER values, 
both zinc acetate and rifaximin restored the intestinal protein expressions of TJPs, 
including ZO-1 and Occludin in either ethanol- or LPS-stimulated Caco-2 cells 
(Figure 6E and F). Interestingly, the abovementioned methods of restoring TJPs via 
zinc acetate administration was accompanied by the augmentation of AKT 
phosphorylation and negated by treatments with LY294002 in either ethanol- or LPS-
stimulated Caco-2 cells (Figure 6E). Notably, we found that rifaximin-mediated TJPs 
restoration involved the amelioration of p65 phosphorylation and negated by 
treatments with SPA70 in either ethanol- or LPS-stimulated Caco-2 cells (Figure 6F). 
These findings suggest that zinc acetate and rifaximin reintegrate the gut barrier 
function via the activation of PI3K/AKT signaling and the PXR-mediated inhibition of 
TLR4/NF-kB, respectively.

Additionally, the TNFα-stimulated MYLK expressions were not altered by treatment 
with zinc acetate but reduced by that with rifaximin (Figure 6G and H). Since this 
effect of rifaximin was also canceled by SPA-mediated PXR inhibition, rifaximin could 
be suggested to protect the intestinal barrier function against ethanol and LPS through 
PXR activation (Figure 6H).

DISCUSSION
The gut–liver axis is an operative unit that works to protect the human body against 
potentially harmful substances and microorganisms, thereby, maintaining the 
homeostasis of the immune system[41,42]. In patients with cirrhosis, the intestine often 
becomes a leaky gut, which is characterized by increased permeability with defects in 
the intestinal TJPs[43]. Leaky gut allows the translocation of bacteria, bacterial 
products, and fragments, including LPS, into the portal circulation and can trigger 
hepatic inflammation and fibrosis[6,7,41,42]. In the present study, we elucidated that 
combination of zinc acetate with rifaximin additively attenuated steatosis, inflam-
mation, and fibrosis and reduced oxidative stress in the liver of ethanol plus CCl4-
treated mice. As an underlying mechanism of these hepatoprotective effects mediated 
by both agents, we focused on the maintenance of intestinal barrier integrity, which 
resulted in reduced hepatic exposure of LPS.

https://f6publishing.blob.core.windows.net/84ba663b-ca24-467e-928b-c10539855f57/WJG-27-8323-supplementary-material.pdf
https://f6publishing.blob.core.windows.net/84ba663b-ca24-467e-928b-c10539855f57/WJG-27-8323-supplementary-material.pdf
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Figure 5 Zinc acetate and rifaximin on intestinal barrier function in alcoholic liver disease mice. A: Representative microphotographs of ileum 
sections stained with hematoxylin-eosin (upper), zonula occludens-1 (ZO-1) (middle) and Occludin (lower) in the experimental groups. Boxes are selected regions for 
magnified. Nuclei counterstained with 4',6-diamidino-2-phenylindole. Scale Bar: 50 µm; B: Villus height (upper) and crypt depth (lower) of the ileum in the 
experimental mice; C: Semi-quantitation of ZO-1 and Occludin immuno-positive areas in high-power field by NIH imageJ software; D: Western blots for ZO-1 and 
Occludin in the liver of experimental mice. Actin was used as internal control; E: Relative mRNA expression levels of Zo1, Ocln, Cldn1 and Cldn4 in the ileum of 
experimental mice; F: Blood levels of fluorescein isothiocyanate (FITC)-dextran (4kDa) 4 h after oral administration; G and H): Relative mRNA expression levels of 
Tnfa (G) and Mylk (H) in the ileum of experimental mice. Histochemical quantitative analyses included five fields per section (B and C). The mRNA expression levels 
were measured by RT-qPCR, and Gapdh was used as internal control (E, G and H). Quantitative values are indicated as fold changes to the values of C/V group (C, 
E, G and H). Data are mean ± SD (B, C, E, G and H; n = 10, F; n = 5), aP < 0.05 and bP < 0.01 vs C/V group; cP < 0.05 and dP < 0.01 vs E/V group; eP < 0.05 and fP 
< 0.01 vs E/Zn group; gP < 0.05 and hP < 0.01 vs E/RFX group. DAPI: 4',6-diamidino-2-phenylindole; ZO-1: Zonula occludens; HE: Hematoxylin and eosin.
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Figure 6 Effects of zinc acetate and rifaximin on in vitro EtOH/LPS/TNF-α-stimulated Caco-2 cells. A-D: In vitro paracellular permeability in ethanol 
(EtOH) (A and B)- or lipopolysaccharide (LPS) (C and D)-stimulated Caco-2 cells determined as transepithelial electrical resistance; E and F: Western blots for the 
effects of zinc acetate (100 μM) on ZO-1, Occludin, p-AKT and AKT expressions (E) and rifaximin (10 μM) on ZO-1, Occludin, p-p65 and p65 expressions (F) in the 
whole cell lysate of Caco-2 cells. Actin was used as internal control; G and H: Relative mRNA expression levels of MYLK in TNF-α-stimulated Caco-2 cells. The 
mRNA expression levels were measured by RT-qPCR, and GAPDH was used as internal control. Quantitative values are indicated as fold changes to the values of 
non-treatment group. Caco-2 were treated with each agent as following; (A, C, E and G) zinc acetate (Zn) and/or PI3K inhibitor, LY294002, (B, D, F and H) rifaximin 
(RFX) and/or human PXR inhibitor, SPA70. Data are mean ± SD (A-D; n = 6, G and H; n = 8), aP < 0.01 vs non-treated groups (A-D, G and H), bP < 0.01 vs EtOH (A 
and B) or LPS-treated groups (C and D), cP < 0.01 vs EtOH with Zn (100 μM) (A), EtOH with RFX (10 μM) (B), LPS with Zn (100 μM) (C) or LPS with RFX (10 μM) 
(D)-treated groups, dP < 0.01 vs TNF-α-treated group (H), eP < 0.01 vs TNF-α with RFX (10 μM)-treated group (H). LPS: Lipopolysaccharide; TEER: Transepithelial 
electrical resistance; EtOH: Ethanol; ZO-1: Zonula occludens.
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The presence of alcohol and its metabolites, such as acetaldehyde, in the 
bloodstream is known to injure intestinal epithelial cells directly and indirectly[44]. 
Alcohol binge at high concentrations causes intestinal cellular damage, and chronic 
exposure to ethanol decreases the expressions of TJPs in between colon epithelial cells
[44]. In this context, recent clinical evidences have shown that acute alcohol binge 
drinking significantly increased serum endotoxin levels in healthy human volunteers 
and that serum endotoxin was elevated in patients with chronic alcohol consumption 
and ALD[45,46]. A previous study on rodents showed that exposure of ethanol and 
CCl4 reduced the diversity of gut microbiota which resulted in bacterial translocation
[47]. Similarly, our current model was observed to have remarkable increase in the 
hepatic Lbp expression, in accordance with decreased intestinal TJP expression and 
increased leakage of plasma FITC-dextran, which indicated augmentation of LPS 
exposure to the liver along with intestinal hyperpermeability. These features were 
supported by our results on the in vitro assay, which showed that the ethanol-stimulus 
profoundly weakened epithelial resistance and reduced TJP expressions in Caco-2 
cells, in agreement with previous reports.

Our therapeutic models showed that both zinc acetate and rifaximin reinforced the 
tight junctions in the intestine of ethanol plus CCl4-treated mice. We assumed the 
involvement of multifunctional pathways in these effects of both agents (Figure 7). 
First, both drugs suppressed the intestinal TNFα and MLCK expressions in mice. Chen 
et al[40] demonstrated that dysbiosis triggered by chronic alcohol administration 
induced TNFα production in the inflammatory cells of the intestinal lamina propria 
and that the TNFα/TNF receptor I axis potentially regulated tight junction disruption 
through activation of MLCK. Thus, the decrease of intestinal TNFα mediated by both 
agents participates in the improved intestinal barrier function. Moreover, Garg et al[48] 
documented that rifaximin attenuated TNFα-induced MLCK expression through PXR 
activation in human enterocytes. Accordingly, our in vitro assay in Caco-2 cells 
validated the inhibitory effect of rifaximin on TNFα-stimulated upregulation of MLCK 
through PXR activation. These results indicated that suppression of TNFα/MLCK 
pathway was partially associated with the reinforced tight junctions in the ethanol 
plus CCl4-treated mice. Second, both zinc acetate and rifaximin also improved the LPS-
stimulated intestinal barrier dysfunction. Zinc has been reported to enhance intestinal 
epithelial barrier function by directly affecting enterocytes through activation of 
PI3K/AKT/mTOR signaling[34]. He et al[49] demonstrated that the pharmacological 
activation of PI3K/AKT could inhibit the LPS-induced downregulation of TJP 
expressions in Caco-2 cells. Meanwhile, rifaximin-mediated PXR activation has been 
suggested to attenuate the LPS-stimulated barrier dysfunction in intestinal epithelial 
cells through the inhibition of TLR4/NF-kB p65 pathway as well as the abovemen-
tioned TNFα/MLCK pathway[50]. Consistently, our in vitro study found that zinc 
acetate or rifaximin suppressed the LPS-stimulated disruption of intestinal barrier 
function, which was mitigated by inhibition of PI3K or PXR, respectively in the Caco-2 
cells. These findings support that both agents protect the intestinal barrier breakdown 
triggered by LPS. Other than the above, a variety of molecular mechanisms have been 
supposed to be relevant to the zinc-mediated alteration of intestinal barrier 
permeability and TJP expression. Zinc-induced activation of different signaling 
pathways such as PKCd or MAPK/ERK has been reported to improve epithelial 
integrity[51,52]. Moreover, dietary zinc supplementation could promote the 
metabolism of acetaldehyde in the gut by enhancing ALDH1B1 activity[53]. To explore 
the possible involvement of these molecular mechanisms in the present model, further 
investigations are required.

In addition to intestinal barrier maintenance, several pharmacologic actions have 
been suggested to be associated with the antifibrotic properties of zinc. Szuster-
Ciesielska et al[54] demonstrated that zinc supplementation could silence ethanol- or 
acetaldehyde-mediated HSC activation by acting as an antioxidant and inhibitor of 
MAPK, TGFβ, and NF-kB transduction signaling. In our models, the increased hepatic 
zinc levels and hepatic MMP-9 activity after zinc acetate treatment implied that the 
antifibrotic effect was at least partially associated with a direct effect on the 
profibrogenic activity of HSCs. However, detailed consideration by analyzing the 
molecular mechanisms in HSCs isolated from the liver of the experimental groups 
would be needed.

When considering the results of this study, several important limitations should be 
acknowledged. First, although our study addressed the effects of zinc acetate and 
rifaximin on intestinal barrier integrity in the ethanol plus CCl4-treated mice, their 
effects on microbial profiles were not clarified. Several studies have indicated the 
impacts of both agents on the gut microbiota. Zhang et al[55] showed that zinc 
modified the cecal microbial community in broilers by making abundant in the 
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Figure 7 Graphic summary of the effect of zinc acetate and rifaximin on the alcoholic liver disease-related liver fibrosis. ALD: Alcoholic liver 
disease; TLR4: Toll-like receptor 4; MDA: Malondialdehyde; LPS: Lipopolysaccharide; HSC: Hepatic stellate cell; TNFα: Tumor necrosis factor α; MLCK: Myosin light 
chain kinase; NF-kB: Nuclear factor kB; PXR: Pregnane X receptor.

populations of total bacteria, including Lactobacillus, and reducing the populations of 
Salmonella. Foligné et al[56] suggested that zinc supplementation provided a 
significant increase in endogenous Clostridiaceae in mice. Meanwhile, in a mouse 
steatohepatitis model, Kitagawa et al[27] have recently demonstrated that rifaximin 
improved ethanol-induced liver injury with drastic modification of the small intestine 
microbiota; they elucidated that rifaximin decreased the relative abundance of 
Erysipelotrichales and increased Bacteroidales. Given these evidences, additional 
analyses are necessary to determine the interaction between microbial alterations by 
both agents and the therapeutic effects in our model. Second, this study elucidated the 
preventive effects of zinc acetate and rifaximin on the progression of ethanol plus CCl4

-induced liver fibrosis; however, the pharmacologic properties of fibrinolysis and liver 
regeneration in an established model of liver fibrosis remain obscure. Future studies 
should address whether both drugs could induce fibrinolysis and efficient liver 
regeneration in other models of cirrhosis.

CONCLUSION
Taken together, our results indicated that combination of zinc acetate and rifaximin 
exerted a preventive effect on the ALD-related liver fibrosis in a mouse model treated 
with ethanol plus CCl4. We believed that this antifibrotic effect is involved in the 
multifaceted regulatory functions that maintain intestinal barrier integrity and reduce 
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hepatic LPS exposure, thereby, leading to Kupffer cell expansion and HSC activation 
by inhibition of the TLR4 signaling pathway. We emphasize that both drugs are 
clinically available for patients with chronic liver diseases and that the abovemen-
tioned effects on alcohol-related liver fibrosis were achieved using the pharmacologic 
doses, without adverse effects, such as hypocupremia or renal dysfunction. Therefore, 
the results of this study demonstrated that this combination regimen could be 
beneficial as a form of chemoprevention against alcohol-related liver fibrosis.

ARTICLE HIGHLIGHTS
Research background
Liver fibrosis related to alcoholic liver disease (ALD) is one of the most critical health 
issues. Alcohol cessation is the therapeutic mainstay for patients with all stages of 
ALD, whereas pharmacological strategies for liver fibrosis have not been established. 
It has been recognized that the gut-derived endotoxin lipopolysaccharide (LPS), which 
is a key player of gut-liver axis, particularly exacerbates the inflammation and fibrosis 
via activation of toll-like receptor 4 (TLR4)/nuclear factor kB (NF-kB) signaling 
pathway in ALD. Thus, blockage of the transfer of LPS to the liver by maintaining gut 
barrier has gained attention for a therapeutic strategy to prevent ALD-related liver 
fibrosis.

Research motivation
Currently, zinc acetate and rifaximin are often used for the cirrhotic patients in the 
clinical practice. Several clinical and basic studies have demonstrated that both agents 
also could suppress the intestinal hyperpermeability. Although these evidences 
suggest that combination of zinc acetate and rifaximin should exert beneficial effects 
on the ALD-related liver fibrosis through inhibition of LPS/TLR4/NF-kB signaling, its 
effects on ALD-related liver fibrosis remain to be fully elucidated.

Research objectives
To determine the efficacy of dual therapy with zinc acetate and rifaximin for liver 
fibrosis and explore its underlying mechanisms with the linkage of gut barrier 
function in a mouse ALD model.

Research methods
Female C57BL/6J mice were fed a 2.5% ethanol-containing liquid diet and 
administered carbon tetrachloride (CCl4) twice weekly (1 mL/kg; ip) for 8 wk to 
induce ALD-related liver fibrosis, and zinc acetate (100 mg/L) and/or rifaximin (100 
mg/L) were orally administered during experimental period. Histological changes in 
hepatic steatosis, inflammation and fibrosis, oxidative markers, and LPS/TLR4/NF-kB 
signaling as well as intestinal permeability and tight junction proteins (TJPs) were 
evaluated. Additionally, in vitro assays were performed to investigate the direct effects 
of both agents on Caco-2 barrier function.

Research results
The ethanol plus CCl4-treated mice showed significantly increased transaminases, 
hepatic fat accumulation, lipid peroxidation (malondialdehyde), F4/80-positive 
Kupffer cell expansion and increased proinflammatory response, liver fibrosis 
development and HSC activation. The combination with zinc acetate and rifaximin 
attenuated these phenotypic changes with with blunted hepatic exposure of LPS and 
the TLR4/NF-kB signaling pathway. This combination therapy improved the atrophic 
changes and permeability in the ileum and restored the TJPs (ZO-1, Occludin, 
Claudin1 and Claudin4) with decreased levels of tumor necrosis factor α and myosin 
light chain kinase. Moreover, in vitro assay revealed that zinc acetate and rifaximin 
directly reinforced ethanol or LPS-stimulated paracellular permeability and 
upregulated TJPs in Caco-2 cells by modulating different pathways, i.e., induction of 
AKT phosphorylation by zinc acetate and pregnane X receptor activation by rifaximin.

Research conclusions
The combination of zinc acetate and rifaximin exerted a preventive effect on the ALD-
related liver fibrosis in a mouse ALD model by maintaining intestinal barrier integrity 
and reduce hepatic LPS exposure, thereby, leading to Kupffer cell expansion and HSC 
activation by inhibition of the TLR4 signaling pathway.
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Research perspectives
By indicating that zinc acetate and rifaximin inhibits ALD-related liver fibrosis 
development through the gut-liver axis, the results of this study demonstrated that 
this combination regimen could be beneficial as a form of chemoprevention against 
ALD-related liver fibrosis.
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precision medicine era.

AIM 
To determine the role of the combination of SCCA-IgM and AFP in predicting 
mid- and long-term appearance of HCC.

METHODS 
Two-hundred and three cirrhotic patients (Child A 74.9%, B 21.2%, C 3.9%) were 
followed-up prospectively every six months to screen HCC by ultrasound and 
AFP according to European Association for the Study of the Liver guidelines. The 
estimation cohort was recruited in Italy (30.5%; 62/203) and validation cohort 
from Spain (69.5%; 141/203). Patients underwent to evaluate SCCA-IgM by 
enzyme-linked immunosorbent assay (Hepa-IC, Xeptagen, Italy) and AFP levels 
at baseline. Patients were followed-up for 60 mo, being censored at the time of the 
appearance of HCC.

RESULTS 
There were 10.8% and 23.1% of HCC development at two- and five-years follow-
up. Patients with HCC showed higher levels of SCCA-IgM than those without it 
(425.72 ± 568.33 AU/mL vs 195.93 ± 188.40 AU/mL, P = 0.009) during the five-
year follow-up. In multivariate analysis, after adjusting by age, sex, aspartate 
transaminase and Child-Pugh, the following factors were independently 
associated with HCC: SCCA-IgM [Hazard ratio (HR) = 1.001, 95%CI: 1.000-1.002; 
P = 0.003], AFP (HR = 1.028, 95%CI: 1.009-1.046; P = 0.003) and creatinine (HR = 
1.564 95%CI: 1.151-2.124; P = 0.004). The log-rank test of the combination resulted 
in 7.488 (P = 0.024) in estimation cohort and 11.061 (P = 0.004) in the validation 
cohort, and a 100% of correctly classified rate identifying a low-risk group in both 
cohorts in the two-year follow-up.

CONCLUSION 
We have constructed a predictive model based on the combination of SCCA-IgM 
and AFP that provides a new HCC screening method, which could be followed by 
tailored HCC surveillance for individual patients, especially for those cirrhotic 
patients belonging to the subgroup identified as low-risk of HCC development.

Key Words: Squamous cell carcinoma antigen; Hepatocellular carcinoma prediction; 
Precision medicine; Stratification of cirrhotic patient

©The Author(s) 2021. Published by Baishideng Publishing Group Inc. All rights reserved.

Core Tip: Current screening programs of hepatocellular carcinoma (HCC) for all 
cirrhotic patients are controversial and a personalized strategy is an unmet need in the 
precision medicine era. By studying circulating biomarkers in two-hundred and three 
cirrhotic patients followed-up for 60 mo, we found that the combination of circulating 
alpha-fetoprotein and squamous cell carcinoma antigen immunocomplex resulted in a 
100% of correctly classified rate identifying a low-risk group of HCC at two years of 
follow-up in two different cohorts. This predictive model provides a new screening 
method, which could be followed by tailored HCC surveillance for individual patients.

Citation: Gil-Gómez A, Rojas Á, Liu CH, Gallego-Duran R, Muñoz-Hernandez R, Fassina G, 
Pontisso P, Ampuero J, Romero-Gómez M. Combination of squamous cell carcinoma antigen 
immunocomplex and alpha-fetoprotein in mid- and long-term prediction of hepatocellular 
carcinoma among cirrhotic patients. World J Gastroenterol 2021; 27(48): 8343-8356
URL: https://www.wjgnet.com/1007-9327/full/v27/i48/8343.htm
DOI: https://dx.doi.org/10.3748/wjg.v27.i48.8343

https://www.wjgnet.com/1007-9327/full/v27/i48/8343.htm
https://dx.doi.org/10.3748/wjg.v27.i48.8343


Gil-Gómez A et al. Predictive model of HCC in cirrhosis

WJG https://www.wjgnet.com 8345 December 28, 2021 Volume 27 Issue 48

open-access article that was 
selected by an in-house editor and 
fully peer-reviewed by external 
reviewers. It is distributed in 
accordance with the Creative 
Commons Attribution 
NonCommercial (CC BY-NC 4.0) 
license, which permits others to 
distribute, remix, adapt, build 
upon this work non-commercially, 
and license their derivative works 
on different terms, provided the 
original work is properly cited and 
the use is non-commercial. See: htt
ps://creativecommons.org/Licens
es/by-nc/4.0/

Received: April 22, 2021 
Peer-review started: April 22, 2021 
First decision: June 13, 2021 
Revised: June 27, 2021 
Accepted: December 8, 2021 
Article in press: December 8, 2021 
Published online: December 28, 
2021

P-Reviewer: Shousha HI 
S-Editor: Wang JL 
L-Editor: A 
P-Editor: Wang JL

INTRODUCTION
Hepatocellular carcinoma (HCC) is the most common malignant primary liver tumor 
and the second leading cause of cancer-related death in the world, according to the 
World Health Organization[1].

Up to 90% of HCCs in the Western world seem to occur in patients with cirrhosis, 
with an annual incidence ranging from 2% to 4% with differences in age, gender, 
etiology and duration of the cirrhosis[2,3]. According to the Barcelona Clinic Liver 
Cancer stratification, patients diagnosed on stage 0 and A of HCC have a 
tremendously better five-year HCC-free rate (93%) than those patients diagnosed on 
the advanced stage (5%) due to the availability of curative therapies such as surgical 
resection or liver transplantation[4]. However, the vast majority of HCC patients are 
diagnosed at advanced stages[5] and only a small proportion of new HCC patients are 
diagnosed through the surveillance[6]. Tumor stage at diagnosis can be impacted by 
several factors in clinical practice, including low surveillance rates and compliance and 
delays in follow-up of abnormal screening tests[4]. Therefore, in order to diagnose 
HCC at the early stage, besides having an accurate diagnostic tool, an appropriate 
strategy of HCC surveillance specifically focusing on well-defined high-risk 
population is essential and indispensable.

Current guidelines[7,8] recommend HCC screening by abdominal ultrasound at 6-
month intervals in cirrhotic patients. However, the practice guideline-recommended 
“one-size-fits-all” HCC screening program for early tumor detection is performed in 
less than 20% of the target population and its implementation in clinical practice is far 
from satisfactory due to multiple patient- and provider-related factors[9]. More 
importantly, the risk of developing HCC is likely not uniform across all cirrhotic 
patients[10,11]. Therefore, an individual HCC risk prediction followed by tailoring the 
personalized surveillance strategy is expected to overcome the challenge in the era of 
precision medicine[9,12].

SERPINB3 and SERPINB4, formerly known as squamous cell carcinoma antigen 1-2 
(SCCA1/2), are two isoforms of Clade B Serine Protease Inhibitors that are found 
physiologically in the spinous and granular layers of normal squamous epithelium 
such as tongue, esophagus, lung and uterus among others, while become highly 
expressed in squamous cell carcinomas of these organs[13,14]. Recent evidences found 
the plasma levels of both SCCA[15] and immunoglobulin M complex (SCCA-IgM)[16] 
associated with liver tumor development, suggesting that monitoring of SCCA and 
SCCA-IgM levels might be useful for identifying cirrhotic patients at higher risk of 
developing HCC[15]. A large number of studies further supported the usefulness of 
SCCA-IgM for the diagnosis[17] and monitoring of chronic liver disease[18-20] 
including the histological response after antiviral treatments. A recent meta-analysis 
concluded that both SCCA and SCCA-IgM had a similar moderate diagnostic accuracy 
(0.7-0.9) for HCC screening; however, a combination of SCCA and SCCA-IgM was the 
best diagnostic option[17]. Pozzan et al[21] proved that SCCA-IgM alone was able to 
predict HCC-free and progression-free survival for intermediate-stage patients treated 
by transcatheter arterial chemoembolization. Lately, Biasiolo et al[22] showed that 
SCCA-IgM alone but not AFP was significant to predict the HCC-free survival in a 
prospective cohort. However, the previous study did not assess the combination of 
SCCA-IgM and AFP, and there was no external validation study that further 
confirmed those results. More importantly, the majority of previous studies were 
performed only in Italian cohorts with a dominant hepatitis C etiology by a uni-center 
design. The present study aims to evaluate the potential role of the combination of 
SCCA-IgM and AFP as a biomarker in the mid-term and long-term prediction of HCC 
among patients with cirrhosis by using a multi-center and internal-external-validation 
study design.

MATERIALS AND METHODS
Patients
From January 2007 to March 2016, 62 cirrhotic patients (30.5%; 62/203) were enrolled 
from the outpatient clinics of the Azienda Ospedaliera di Padova (Padova, Italy) as 
estimation cohort and 155 cirrhotic patients (69.5%; 141/203) were included at Valme 
University Hospital (Seville, Spain) as validation cohort. The study was retrospectively 
performed on prospectively collected sera. Patients were followed-up every six 
months for HCC screening according to European Association for the Study of the 
Liver guidelines[7]. The study was performed by following the ethical guidelines 
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expressed in the Declaration of Helsinki and the International Conference on Harmon-
ization Guidelines for Good Clinical Practice. Human samples were collected after 
obtaining a signed informed consent as approved by the Ethical Committee of both 
hospitals.

Cirrhosis was diagnosed by documenting at least one of the following: clinical 
(esophageal varices, liver dysfunction, or previous ascites or variceal bleeding), 
pathological (liver biopsy) or radiological (coarse/nodular/lobar redistribution on 
ultrasound) markers of cirrhosis. Demographic, clinical and laboratory parameters 
were recorded at the first visit including age, sex, etiology of cirrhosis, aspartate 
transaminase (AST), alanine aminotransferase, bilirubin, albumin, creatinine and 
platelet levels. Patients with both chronic viral hepatitis and a history of alcohol intake 
were categorized as having viral hepatitis. Similarly, patients with steatohepatitis were 
included as alcoholic cirrhosis if alcohol was determined as the cause of liver disease 
in the clinical record. Non-alcoholic steatohepatitis, as well as autoimmune liver 
diseases such as autoimmune hepatitis, primary biliary cirrhosis or primary sclerosing 
cholangitis, were categorized as “Others”. Follow-up time was censored at the last 
clinic visit, death, liver transplantation or diagnosis of HCC within the term of 60 mo. 
HCC was diagnosed without biopsy in the majority of the cases because of current 
clinical diagnostic approaches, including ultrasonography, computed tomography, 
magnetic resonance imaging were sufficient to diagnose HCC[7,8].

Sample storage and assays
Peripheral blood sample was collected from each patient at the time of the first clinic 
visit. Plasma and serum aliquots were stored in cryovials at -80ºC after centrifugation 
for 10 min at 1500 ×g at 4ºC. Serum AFP and SCCA-IgM were measured for each 
patient by an experienced technician who was blind to the clinical information. AFP 
levels were determined by an electrochemiluminescence immunoassay using an 
automatized analyzer Elecsys (Roche, Switzerland) and SCCA-IgM was measured in 
duplicate using commercially available enzyme-linked immunosorbent assay kits 
according to the manufacturer’s instructions (Hepa-IC, Xeptagen, Venice, Italy). The 
amount of SCCA-IgM immune complexes was expressed in arbitrary units (AU)/mL 
by interpolation of samples absorbance on the calibration curves plotted with SCCA-
IgM calibrators.

Statistical analysis
Cox proportional hazards regression was used to estimate the hazard ratio (HR) and 
CI. Comparisons between categorical variables were made by the Chi-square or Fisher 
test. Results are presented as frequencies and percentages for categorical variables, 
means ± SDs for normal continuous variables and median, quartile 1 and 3 for not 
normal continuous variables. Missing data was listwise deleted (complete-case 
analysis). Those factors showing statistical (P < 0.05) association to HCC in univariate 
analyses were combined in a backwards stepwise multivariable model. Factors not 
significant but of potential clinical relevance such as age and sex were also included in 
order to avoid confounding. In the estimation cohort, we used two-year follow-up 
data to perform the univariate and multivariate analysis to assess the factors 
independently associated with HCC-free survival because cirrhotic patients need to be 
screened at least every two years. Akaike’s information criterion (AIC) was 
additionally computed to select the most robust predictors. The predictive cut-off of 
SCCA-IgM was established by means of receiver operating characteristic (ROC) curve 
method at a value that maximized specificity and sensitivity according to Youden 
index. The same AFP cut-off value derived from estimation cohort (5 ng/mL) was 
used in validation cohort. Categorical variables were compared by means of the 
Kaplan-Meier method, with curves compared using the log-rank test. The Harrell’s 
concordance index (C-index) was used to assess the score’s discrimination ability. C-
index values and the corresponding 95%CIs were estimated for each main study time 
point. The sensitivity, specificity, positive predictive value and negative predictive 
value were calculated to demonstrate the predictive ability. SPSS (version 25.0; SPSS 
Inc., IL, the United States) and Stata 11 (StataCorp, College Station, TX) statistical 
packages were used.
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RESULTS
Identification of the study cohort and baseline characteristics
The baseline characteristics and biochemical parameters of the overall cohort, as well 
as estimation and validation cohorts, are shown in Table 1. Briefly, a total of 203 
patients with liver cirrhosis were included in the study, with 74.9% Child-Pugh A, 
21.2%B, and 3.9% Child-Pugh C. The most common etiology of cirrhosis was alcohol 
(54.2%), followed by HCV (27.1%) and HBV (8.4%). HCC development was observed 
in 22 patients (10.8%) during the two-year follow-up (22.1 ± 5.11) and 47 patients 
(23.2%) during the five-year follow-up (41.9 ± 16.0 mo). The baseline values of serum 
SCCA-IgM were significantly higher in patients who developed HCC than in those 
who did not (514.17 ± 714.43 AU/mL vs 216.92 ± 233.51 AU/mL, P < 0.001) during the 
two-year follow-up, as well as AFP (23.91 ± 41.37 ng/mL vs 6.16 ±10.49 ng/mL, P < 
0.001).

Identification of risk factors for HCC development
Univariate analysis showed that the levels of SCCA-IgM (P = 0.004), AFP (P < 0.001), 
AST (P = 0.021) and creatinine (P = 0.018) were associated with two-year HCC-free 
survival in the estimation cohort (Table 2). Nevertheless, Child-Pugh classification, 
platelets count and other biochemical parameters were similar between both groups of 
patients. By using a multivariate Cox regression, after adjusting for age, gender, AST 
and Child-Pugh, SCCA-IgM (HR = 1.001, 95%CI: 1.000-1.002; P = 0.003), AFP (HR = 
1.028, 95%CI: 1.009-1.046; P = 0.003) and creatinine (HR = 1.564, 95%CI: 1.151-2.124; P = 
0.004) were independently associated with increased two-year risk of HCC.

Internal estimation of the combination of SCCA-IgM and AFP
After multivariate analysis, the model including SCCA-IgM, AFP and creatinine was 
the most robust for the prediction of HCC development (AIC: 44.83); however, no 
statistical significance was observed in ROC curve analysis (P = 0.234) so the second 
model consisting of the combination of SCCA-IgM and AFP was chosen (AIC: 55.54). 
Therefore, we performed ROC curve to explore the ability of SCCA-IgM and AFP in 
predicting the patients with cirrhosis to develop HCC during the two-year follow-up. 
By establishing a cut-off of 124 AU/mL for SCCA-IgM (sensitivity of 75% and 
specificity of 76%) and using a cut-off of 5 ng/mL for AFP (sensitivity of 75% and 
specificity of 48%), we obtained AUROCs of 0.74 (95%CI: 0.55-0.93; P = 0.029) and 0.73 
(95%CI: 0.52-0.95; P = 0.034), respectively. However, although the predictive ability of 
the combination of SCCA-IgM and AFP was also significant [AUROC 0.77 (95%CI: 
0.63-0.92; P = 0.013)], we observed no statistical significance when comparing the 
combinatory model to SCCA-IgM (P = 0.669) or AFP (P = 0.715) alone (Figure 1).

This combination allowed us to stratify the cohort into low-risk group (AFP < 5 
ng/mL and SCCA-IgM < 124 AU/mL), intermediate-risk group (AFP > 5 ng/mL or 
SCCA-IgM > 124 AU/mL) and high-risk group (AF P> 5 ng/mL and SCCA-IgM > 124 
AU/mL). The predicted mean survival curves were compared by Kaplan-Meier at 
two- and five-years follow-up in the estimation cohort (Figure 2). Notably, we found 
that the low-risk group that was stratified by the combination of SCCA-IgM and AFP 
correctly identified a 100% of HCC-free survival rate in two-year followed-up which 
was further confirmed in the five-year follow-up (100%) (Figure 2C).

External validation
The same cut-off values were used for the validation cohort to confirm the results of 
the predictive ability of HCC-free survival. Again, the low-risk group showed a 100% 
of two-year and 96.2% of five-year follow-up of HCC-free survival rate (Figure 3C). 
However, there were no differences between the combination and SCCA-IgM or AFP 
alone in the comparative C-index estimates for the validation data cohort (Table 3), as 
are the results of the conrmatory analysis of the predictive ability of both the two- 
and five-year HCC-free survival.

For practical applications, we calculated sensitivity, specicity, positive predictive 
value (PPV), negative predictive value and likelihood ratio (LR) of the combination of 
SCCA-IgM and AFP to demonstrate the predictive ability (Table 4). An LR- of 0 were 
obtained in both estimation and validation cohort in two-year follow-up, so the low-
risk group of patients who did not develop HCC could be accurately ruled-out. The 
correctly classified rate increased from 75.3% (estimation cohort) to 78.8% (validation 
cohort) in two-year follow-up and from 61.1% (estimation cohort) to 68.5% (validation 
cohort) in five-year follow-up.
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Table 1 Characteristics of included patients

Global (n = 203) Italian (n = 62) (Estimation 
cohort)

Spanish (n = 141) 
(Validation cohort) Univariable analysis

Gender (Male) 73.4% (149/203) 74.2% (46/62) 73.0% (103/141) 0.865 

mean age (yr) 57.93 ± 9.76 55.77 ± 10.51 58.87 ± 9.22

Etiology 0.001 

Alcohol 54.2% (110/203) 41.9% (26/62) 59.6% (84/141)

HCV 27.1% (55/203) 38.7% (24/62) 22.0% (31/141)

HBV 8.4% (17/203) 16.1% (10/62) 5% (7/144)

Others 10.3% (21/203) 3.2% (2/62) 13.5% (19/141)

Child-Pugh 0.340 

A 74.9% (152/203) 64.5% (40/62) 79.4% (112/141)

B 21.2% (43/203) 27.4% (17/62) 18.4% (26/141)

C 3.9% (8/203) 8.1% (5/62) 2.1% (3/141)

AST (IU/mL) 51.69 ± 38.49 69.17 ± 47.74 44.50 ± 31.44 0.001 

ALT (IU/mL) 42.54 ± 38.68 61.09 ± 56.11 34.91 ± 25.16 0.000 

Tot. Bilirubin (mg/dL) 1.60 ±1.87 1.94 ± 2.87 1.45 ± 1.22 0.215 

Creatinine (mg/dL) 0.86 ± 0.68 0.98 ± 1.21 0.81 ± 0.22 0.292 

Platelets (× 109/mL) 116.00 ± 58.10 100.53 ± 43.11 122.45 ± 62.32 0.005 

Albumin (mg/dL) 3885.19 ± 586.66 3810.34 ± 613.79 3916.34 ± 574.96 0.248 

AFP (ng/mL) 8.09 ± 17.50 12.00 ± 25.43 6.69 ± 12.82 0.101 

SCCA-IgM (AU/mL) 249.13 ± 332.01 197.73 ± 431.13 271.73 ± 276.35 0.144 

Two-year HCC (Yes) 10.8% (22/203) 12.9% (8/62) 9.9% (14/141) 0.530 

Five-year HCC (Yes) 23.2% (47/203) 21.0% (13/62) 24.1% (34/141) 0.625 

Comparisons between groups were made using the Mann-Whitney U test or the Student t-test for continuous variables, and the χ2 test or the Fisher’s exact 
test for categorical data. P values represent the statistical signicance of the differences between both subsets. Data are expressed as numbers of patients 
(%) or mean ± SD. ALT: Alanine aminotransferase; AST: Aspartate aminotransferase; HCV: Hepatitis C virus; HBV: Hepatitis B virus; AFP: Alpha-
fetoprotein; SCCA-IgM: Squamous cell carcinoma antigen and its immune complexes; Child-Pugh: The Child–Turcotte–Pugh score or Child Criteria; HCC: 
Hepatocellular carcinoma.

DISCUSSION
In the present study, we revealed an enhanced HCC risk assessment by using the 
combination of SCCA-IgM and AFP serum levels. A low-risk subgroup of cirrhotic 
patients with 100% of internal-external validated two-year follow-up (mid-term) of 
HCC-free survival rate was correctly identified. This strategy may enable to 
personalize intensity of HCC screening. Moreover, a high HCC-free survival rate 
(96.2%) at five-year follow-up (long-term) further confirmed our proposed surveillance 
strategy with patients at low-risk of HCC development. Although prior studies have 
proposed SCCA-IgM for HCC prediction[21,22], our study is the first to internal-
externally validate the proposed biomarkers. Validation is an important aspect of 
predictive model development, because of the performance of regression models is 
generally substantially higher in the estimation cohort than in validation cohort[23]. 
An inconsistency of correctly classified rate from estimation to validation cohorts 
further explains and highlights the urgent need of a well-defined cut-off developed by 
multi-center larger-population based studies in the future[17].

Combination of clinical symptoms, laboratory variables and molecular biomarkers 
have been investigated to develop HCC risk predictive models; however, their 
performance is still debated and not yet adopted in clinical practice. A recent disease-
specific Toronto HCC Risk Index revealed that the 10-year cumulative incidence of 
HCC differed from etiologic category ranging from 22% to 5%, and further allowed to 
stratify patients into three groups according to the HCC risk estimation with a 10-year 
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Table 2 Univariable and multivariable analysis regarding two-year hepatocellular carcinoma disease-free survival in the estimation 
cohort

Covariate Non-HCC (n = 54) HCC (n = 8) Univariable analysis HR 
(95%CI; P value)

Multivariable analysis HR 
(95%CI; P value)

Gender (Male) 75.9% (41/54) 62.5% (5/8) 0.571 (0.137-2.392; 0.444)

mean age (yr) 55.96 ± 10.82 54.5 ± 8.5 0.987 (0.924-1.055; 0.706)

Etiology (alcohol/HCV/HBV/other) 25/17/10/2 1/7/0/0 1.075 (0.481-2.405; 0.859)

Child-Pugh (A/B/C) 35/14/5 5/3/0 0.922 (0.290-2.935; 0.891)

AST (IU/mL) 63.94 ± 42.21 107.29 ± 69.83 1.013 (1.002-1.024; 0.021)

ALT (IU/mL) 58.86 ± 55.48 77.29 ± 62.52 1.004 (0.993-1.015; 0.452)

Tot. Bilirubin (mg/dL) 1.97 ± 3.05 1.75 ± 1.02 0.983 (0.734-1.316; 0.906)

Creatinine (mg/dL) 0.83 ± 0.20 2.04 ± 3.44 1.363 (1.055-1762; 0.018) 1.564 (1.151-2.124; 0.004)

Platelets (× 109/mL) 102.25 ± 43.28 88.00 ± 42.89 0.992 (0.974-1.010; 0.387)

Albumin (mg/dL) 3833 ± 625 3642 ± 525 1.000 (0.998-1.001; 0.394)

AFP (ng/mL) 7.80 ± 9.25 40.38 ± 62.71 1.024 (1.010-1.038; 0.001) 1.028 (1.009-1.046; 0.003)

SCCA-IgM (AU/mL) 136.83 ± 163.44 608.75 ± 1093.53 1.001 (1.000-1.002; 0.004) 1.001 (1.000-1.002; 0.003)

Cox proportional hazards model was used to estimate the hazard ratios and CIs in the multivariable analysis. Data are numbers of patients (%) or mean ± 
SD. ALT: Alanine aminotransferase; AST: Aspartate aminotransferase; HCV: Hepatitis C virus; HBV: Hepatitis B virus; AFP: Alfa-fetoprotein; SCCA-IgM: 
Squamous cell carcinoma antigen and its immune complexes; Child-Pugh score: The Child–Turcotte–Pugh score or Child Criteria; HCC: Hepatocellular 
carcinoma; HR: Hazard ratio.

Table 3 Predictive discrimination ability of the combination of squamous cell carcinoma antigen immunocomplex and alfa-fetoprotein 
as compared with squamous cell carcinoma antigen immunocomplex or alfa-fetoprotein alone in both estimation and validation 
cohorts

Total patients (n = 203) Combination of SCCA-IgM and AFP 
(95%CI) SCCA-IgM (95%CI; P value) AFP (95%CI; P value)

Estimation cohort (n = 62)

Two-year HCC-free survival 0.787 (0.620-0.955) 0.727 (0.526-0.927; 0.451) 0.705 (0.464-0.946; 0.398)

Five-year HCC-free survival 0.744 (0.613-0.876) 0.686 (0.535-0.837; 0.299) 0.705 (0.539-0.871; 0.581)

Validation cohort (n = 141)

Two-year HCC-free survival 0.773 (0.659-0.887) 0.706 (0.588-0.827; 0.122) 0.748 (0.617-0.880; 0.701)

Five-year HCC-free survival 0.730 (0.648-0.813) 0.706 (0.623-0.788; 0.297) 0.646 (0.548-0.734; 0.067)

C-index values and the corresponding 95% CIs were estimated for each main study time point to assess the model’s discrimination ability. P values 
represent the statistical signicance of the differences between the combination and the squamous cell carcinoma antigen immunocomplex or alfa-
fetoprotein alone. AFP: Alfa-fetoprotein; SCCA-IgM: Squamous cell carcinoma antigen and its immune complexes; HCC: Hepatocellular carcinoma.

incidence of HCC of 3%, 10% and 32%, respectively[10]. The AFP has been currently 
removed from the clinical practice guidelines because of its low PPV, which 
potentially results in “overdoing” the follow-up testing (e.g., computed tomography, 
magnetic resonance imaging), in the frequently encountered patients with mildly 
elevated AFP[24]. However, El-Serag et al[24] constructed an AFP-based algorithm to 
identify patients at risk for HCC, and further suggested that the wide availability of 
AFP tests, high level of laboratory standardization and low cost made AFP still a 
feasible strategy to predict HCC. Moreover, three recent meta-analyses have proved 
the usefulness of the combination of AFP with SCCA-IgM[17], Des-gamma-
carboxyprothrombin and Golgi protein 73[25,26] for hepatocellular carcinoma 
diagnosis, suggesting the combinations of biomarkers a feasible strategy of HCC 
screening. Therefore, the consideration remaining to us is not whether to use AFP for 
HCC screening and predicting or not, but how to use it appropriately.
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Table 4 Operating characteristics for the combination of squamous cell carcinoma antigen immunocomplex and alfa-fetoprotein 
regarding two- and five-year hepatocellular carcinoma disease-free survival

Two-year incidence in validation cohort Five-year incidence in validation cohort

Estimation cohort Validation cohort Estimation cohort Validation cohortVariables

Low-risk High risk Low-risk High risk Low-risk High risk Low-risk High risk

Cut-off AFP < 5 
ng/mL and 
SCCA-IgM < 
124 AU/mL

AFP > 5 
ng/mL and 
SCCA-IgM > 
124 AU/mL

AFP < 5 
ng/mL and 
SCCA-IgM < 
124 AU/mL

AFP > 5 
ng/mL and 
SCCA-IgM > 
124 AU/mL

AFP < 5 
ng/mL and 
SCCA-IgM < 
124 AU/mL

AFP > 5 
ng/mL and 
SCCA-IgM > 
124 AU/mL

AFP < 5 
ng/mL and 
SCCA-IgM < 
124 AU/mL

AFP > 5 
ng/mL and 
SCCA-IgM > 
124 AU/mL

True 
positive

8 4 14 7 13 5 33 12

False 
positive

33 8 101 21 28 7 82 16

True 
negative

21 46 26 106 21 42 25 91

False 
negative

0 4 0 7 0 8 1 22

Sensitivity 100% 50% 100% 50% 100% 38% 96% 35%

Specificity 39% 85% 20% 83% 43% 86% 23% 85%

PPV 20% 33% 12% 25% 32% 42% 29% 43%

NPV 100% 92% 100% 94% 100% 84% 96% 81%

LR+ 1.64 3.38 1.26 3.02 1.75 2.69 1.27 2.36

LR- 0.00 0.59 0.00 0.60 0.00 0.72 0.13 0.76

Correctly 
classified

75.8% 78.8% 61.1% 68.5%

PPV: positive predictive values; NPV: negative predictive values; LR: likelihood ratio.

By using the present combination of SCCA-IgM and AFP, we will enable rational 
allocation of the limited medical resources to the high-risk patients who most need to 
be screened, and avoid wasteful and unnecessary distribution to low-risk individuals 
who had 100% of HCC-free survival rate in the two-year follow-up. Moreover, the 
disordered PPV that was influenced by the low prevalence of HCC development 
through using current "one-size-fits-all" surveillance program, further strengthen the 
necessity of altering surveillance to a subgroup of high-risk population inside the 
cirrhotic patients that will ensure a high pre-test probability[27]. Currently there have 
not been any randomized controlled trial of HCC surveillance in patients with 
cirrhosis[6]. Cirrhotic patients are older, have more comorbidities and abdominal 
ultrasound has low sensitivity for HCC detection in a nodular cirrhotic liver. Several 
cohort studies demonstrated that surveillance was associated with increased early 
tumor detection, curative treatment option and it improved the overall survival[28]. In 
contrast, other studies reported that HCC surveillance was not associated with 
decreased HCC-related mortality, adding to the existing controversy surrounding the 
benefits of HCC surveillance[29,30]. Nevertheless, modifying HCC screening 
frequency according to estimated individual HCC risk by using the present 
combination of biomarkers may enable more efficient early tumor detection because of 
high-risk subjects are more likely develop HCC.

In this sense, the combination of SCCA-IgM and AFP, classifying a low-risk group 
with 100% of HCC-free survival, will enable us to exclude those patients from 
surveillance programs or to extend the intensity of screening to two years. This 
strategy will enable rational allocation of medical resources, cost-effective and accurate 
preventive intervention, which will substantially improve the dismal prognosis of 
HCC and will uphold the spirit of advancing with time in the era of precision 
medicine. Furthermore, a recent cost-effectiveness study has further verified that 
tailored HCC surveillance strategies according to estimated patient’s risk stratification 
indeed revealed superior cost-effectiveness[31]. The present strategy of SCCA-IgM and 
AFP should be further implemented and verified in the clinical setting through future 
well-designed prospective studies. Moreover, an easy-to-use and outpatient-based 
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Figure 1 Receiver operating characteristic curves of the combination of squamous cell carcinoma antigen immunocomplex and alpha-
fetoprotein as compared to squamous cell carcinoma antigen immunocomplex and alpha-fetoprotein in predicting two-year mortality in 
the estimation cohort. The clinical relevance of squamous cell carcinoma antigen immunocomplex and alpha-fetoprotein in patients with cirrhosis was 
determined by the calculation of the area under the receiver operating characteristic. Baseline serum levels distribution above the cut-off of the two biomarkers in 
patients who developed hepatocellular carcinoma vs patients who did not was compared. AUROC, area under the receiver operating characteristic. Comparison of 
the AUROCs estimated for each set. AFP: Alpha-fetoprotein; SCCA-IgM: Squamous cell carcinoma antigen immunocomplex.

instead of laboratory-based kit will optimize the performance of the combination of 
the present biomarkers.

There were several limitations in the present study. First, the present study did not 
used biopsy to ultimately confirm HCC. Second, the definition of cirrhosis was not 
reached from liver biopsies. This can lead to an underestimation of subclinical 
cirrhosis of the population studied. However, according to the current clinical practice 
guidelines there is no need to perform biopsy for the diagnosis of HCC and cirrhosis, 
and the ethic concern prohibited certain studies design to perform the biopsy[32]. In 
fact, the recent technological approach with typical radiological characteristics on 
contrast-enhanced cross-sectional imaging have a positive predictive value of almost 
100%[33]. Third, lead time bias and length time bias were always a crucial consid-
eration of diagnostic accuracy experimental design.

CONCLUSION
In summary, we have proved that the combination of SCCA-IgM and AFP enhanced 
the predictive value for detecting HCC, which could be followed by tailored HCC 
surveillance for individual patients, especially for those cirrhotic patients belonging to 
the subgroup identified as low-risk of HCC development.
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Figure 2 Estimating two- and five-year hepatocellular carcinoma disease-free survival by using Kaplan-Meier method according to the 
squamous cell carcinoma antigen immunocomplex, alpha-fetoprotein and combination of those in estimation cohort. A: Squamous cell 
carcinoma antigen immunocomplex (SCCA-IgM); low-risk: < 124 AU/mL, high-risk: > 124 AU/mL; B: Alpha-fetoprotein (AFP); low-risk: < 5 ng/mL, high-risk: > 5 
ng/mL; C: Combination of SCCA-IgM and AFP. AFP: Alpha-fetoprotein; SCCA-IgM: Squamous cell carcinoma antigen immunocomplex.
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Figure 3 Estimating two- and five-year hepatocellular carcinoma disease-free survival by using Kaplan-Meier method according to the 
squamous cell carcinoma antigen immunocomplex, alpha-fetoprotein and combination of those both in validation cohort. A: Squamous cell 
carcinoma antigen immunocomplex (SCCA-IgM); low-risk: < 124 AU/mL, high-risk: > 124 AU/mL; B: Alpha-fetoprotein (AFP); low-risk: < 5 ng/mL, high-risk: > 5 
ng/mL; C: Combination of SCCA-IgM and AFP. AFP: Alpha-fetoprotein; SCCA-IgM: Squamous cell carcinoma antigen immunocomplex.
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ARTICLE HIGHLIGHTS
Research background
Early diagnosis or prediction of hepatocellular carcinoma (HCC) development would 
have a major impact on the prognosis of patients under surveillance.

Research motivation
Current screening programs for HCC are far from being satisfactory due to patient- 
and provider-related factors. Individualizing the program according to the risk of 
HCC development could be a strategy to overcome these challenges in the era of 
precision medicine.

Research objectives
This study aimed to evaluate non-invasive biomarkers in the prediction of HCC 
among patients with cirrhosis.

Research methods
Retrospective cohort study analyzing the association of baseline serum biomarkers 
with the development of HCC in the mid- and long-term in cirrhotic patients of 
different etiologies.

Research results
Squamous cell carcinoma antigen immunocomplex (SCCA-IgM) serum levels are 
associated to the development of HCC at mid- long-term, independently of previously 
known predictors.

Research conclusions
A predictive model based on the combination of alpha-fetoprotein and SCCA-IgM 
levels could provide a new HCC screening method, optimizing surveillance for 
individual patients, especially for cirrhotic patients allocated in the low-risk group.

Research perspectives
Tailored HCC surveillance assessed by non-invasive biomarkers in individual patients 
would help to better allocate the resources to those patients at higher risk of 
developing HCC.
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Abstract
BACKGROUND 
New prognostic factors have been reported in patients with metastatic or 
recurrent gastric cancer (MRGC), necessitating modifications to the previous 
prognostic model.

AIM 
To develop a new model, MRGC patients who received fluoropyrimidines/ 
platinum doublet chemotherapy between 2008 and 2015 were analyzed.

METHODS 
A total of 1883 patients was divided into a training set (n = 937) and an 
independent validation set (n = 946).

RESULTS 
Multivariate analysis showed that the following six factors were associated with 
poor overall survival (OS) in the training set: Eastern Cooperative Oncology 
Group performance score ≥ 2 and bone metastasis (2 points each), peritoneal 
metastasis, high alkaline phosphatase level, low albumin level, and high 
neutrophil-lymphocyte ratio (1 point each). A prognostic model was developed by 
stratifying patients into good (0-1 point), moderate (2-3 points), and poor (≥ 4 
points) risk groups. In the validation set, the median OS of the three risk groups 
was 15.8, 10.1, and 5.7 mo, respectively, and those differences were significant (P 
< 0.001).

CONCLUSION 
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We identified six factors readily measured in clinical practice that are predictive of 
poor prognosis in patients with MRGC. The new model is simpler than the old 
and more easily predicts OS.
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Core Tip: A new prognostic model for patients with metastatic or recurrent gastric 
cancer was developed using six clinicopathological elements (poor Eastern 
Cooperative Oncology Group performance score, bone metastasis, peritoneal 
metastasis, high alkaline phosphatase level, low albumin level, and high neutrophil-
lymphocyte ratio).

Citation: Koo DH, Ryu MH, Lee MY, Moon MS, Kang YK. New prognostic model for patients 
with advanced gastric cancer: Fluoropyrimidine/platinum doublet for first-line chemotherapy. 
World J Gastroenterol 2021; 27(48): 8357-8369
URL: https://www.wjgnet.com/1007-9327/full/v27/i48/8357.htm
DOI: https://dx.doi.org/10.3748/wjg.v27.i48.8357

INTRODUCTION
Gastric cancer is one of the most common causes of cancer-related mortality 
worldwide and the fifth-ranked cancer in terms of associated mortality in Korea[1,2]. 
When gastric cancer is diagnosed at an advanced stage or in recurrent status, systemic 
therapy is considered the primary treatment; however, its outcome often is unsatis-
factory[1,3].

Many novel agents that inhibit several pathways, combination strategies, and strict 
patient selection criteria are being evaluated in clinical trials to improve patient 
response to systemic therapies and to achieve better clinical outcomes[4]. It is 
necessary to allocate evenly patients with similar clinical characteristics and expected 
survival times to derive reliable results from clinical trials. Therefore, many invest-
igators have attempted to develop prognostic models to predict accurate overall 
survival (OS). Nonetheless, existing prognostic models have certain limitations, such 
as lack of validation[5] or enrolling patients who do not represent patients in real 
practice[6]. In addition, some patients were included regardless of type of 
chemotherapy (e.g., single, doublet, or triplet chemotherapy with/without 
trastuzumab)[7].

Systemic chemotherapy for metastatic or recurrent gastric cancer (MRGC) has 
undergone significant changes in terms of standard treatment. Although various kinds 
of drugs have been trialed for use as first-line chemotherapy[8], the fluoropyrimidines 
plus platinum combination doublet has become the standard of care[9]. Second-line 
chemotherapy has emerged as another standard treatment[10]. The use of immuno-
oncology agents has been accepted as a standard of care during third-line treatment 
and is emerging as a standard of care in the first-line setting based on positive results
[11,12]. Furthermore, the use of human epidermal growth factor receptor 2 (HER2)-
targeted therapies in select patients has shown excellent therapeutic efficacy and 
prolonged survival[13,14]. Overall, patient prognosis varies according to type of 
treatment[9]. Therefore, prognostic factors should be investigated in each treatment 
group, particularly patients who receive fluoropyrimidine/platinum doublet 
chemotherapy, which is considered the standard first-line treatment for HER2-
negative MRGC.

Early in the 2000s, we developed a prognostic model for MRGC[7]. That model used 
a scoring system with eight prognostic factors [Eastern Cooperative Oncology Group 
(ECOG) performance score (PS) ≥ 2, bone metastasis (2 points each), no gastrectomy, 
peritoneal metastasis, lung metastasis, alkaline phosphatase (ALP) > 120 IU/L, 
albumin < 3.3 g/dL, and total bilirubin > 1.2 mg/dL (1 point each)], and patients were 
divided into good (0-1 point), moderate (2-3 points), and poor (≥ 4 points) risk groups. 
However, those factors were identified when few active chemotherapeutic agents were 
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available and no standard chemotherapy had been established. Furthermore, those 
eight factors might need to be reduced to enable easier prognostic model application in 
clinical practice.

The neutrophil-lymphocyte ratio (NLR) is a representative blood marker of the 
systemic inflammatory response that reflects tumor progression, invasion, and 
metastasis in cancer patients[15]. The NLR is a relatively new prognostic factor that 
has been applied to several solid tumors[16]. Recent studies have demonstrated a close 
relationship between NLR status and poor prognosis in MRGC; even NLR changes 
during immuno-oncologic therapy can predict poor outcomes[17]. In addition, a recent 
meta-analysis reported that histologic type was a significant variable for OS in the 
first-line treatment setting[18].

Therefore, we modified our previous prognostic model by introducing NLR and 
histology using a cohort of MRGC patients who received first-line fluoropyrimidine/ 
platinum doublet chemotherapy, and we validated our new model in a different 
cohort.

MATERIALS AND METHODS
Patients and data collection
We previously reported trends in chemotherapy patterns and survival in MRGC 
patients during the 16 years from 2000-2015, separated into four-year intervals[9]. 
During the last two of those intervals (2008-2015), more than 60% of MRGC patients 
received doublet treatment, and more than 55% underwent second-/third-line 
anticancer therapies. We developed our new model from those recent cohorts. The 
Stomach Cancer Registry was examined to identify all patients who received first-line 
palliative chemotherapy for advanced gastric cancer at Asan Medical Center (Seoul, 
South Korea) between January 2008 and December 2015. Patients aged 18 years or 
older with histologically confirmed adenocarcinoma of the stomach who received at 
least one palliative chemotherapy cycle were included. Patients were excluded if they 
received treatment other than doublet chemotherapy (such as single, triplet, or doublet 
with trastuzumab) or a novel agent in clinical trials, if they had a history of other 
malignancies, if they started first-line chemotherapy at another hospital, or if they 
underwent R1 resection for microscopic residual tumors just before chemotherapy. Of 
the 2931 patients screened, 1883 met our criteria. Patients’ medical records, stored in a 
prospectively collected registry, were reviewed for demographic data, tumor charac-
teristics, treatment types, treatment responses, and survival. Patients were followed 
until the date of death or cessation of follow-up in October 2018. The Institutional 
Review Board of Asan Medical Center approved the study protocol (2020-0574). Our 
analysis was a retrospective design using fully anonymized data, so the IRB waived 
the requirement for informed consent.

Statistical analysis
Model development and validation were based on a split-sample method according to 
time period. During the last four-year period (2012-2015), trastuzumab in HER2-
positive MRGC had been accepted as a standard of care in Korea, and ramucirumab 
and immunotherapy had been introduced as second-/third-line anticancer therapies. 
Therefore, study participants were separated by treatment period and assigned to a 
training set (2012-2015; n = 937) or an independent validation set (2008-2011; n = 946). 
The prognostic model was developed using the training set. OS was measured from 
the date of first-line chemotherapy until death from any cause. Progression-free 
survival (PFS) was measured from the date of first-line chemotherapy until tumor 
progression or death from any cause other than the cancer. The Kaplan–Meier method 
was used to estimate OS and PFS. Laboratory variables were dichotomized, using the 
normal value for each as the cutoff point, and survival rates were compared using the 
log-rank test. NLR was defined as the neutrophil count divided by the lymphocyte 
count. The sensitivity and specificity values of NLR were evaluated in the training set 
using receiver operating characteristic (ROC) curve analysis [area under the ROC 
curve (AUC): 0.651; 95% confidence interval (CI): 0.60-0.71]. The optimal value of NLR 
was 3.11 (sensitivity: 41.2%; specificity: 83.1%) according to Youden's J statistic. We 
selected 3.0 as the cutoff value, which had sensitivity and specificity values of 42.6% 
and 80.9%, respectively, for all further analyses (Supplementary Figure 1). We 
developed a new prognostic model by adding and deleting variables from our 
previous model, analyzing those variables through univariate analyses, and 
performing multivariate analysis using a Cox proportional hazards regression model. 
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A risk score based on the hazard ratio (HR) was developed from the final multivariate 
model and validated using the validation set. A nomogram to predict OS probability 
was established in the training set, and its calibration was accomplished by comparing 
the predicted and observed probabilities. The prediction accuracy of the old and new 
prognostic models was compared using Harrell’s C-index; an ROC curve analysis; and 
a decision curve analysis (DCA), which is a method for evaluating prognostic 
strategies that can visualize the clinical effectiveness of a prediction model[19]. A two-
sided P value < 0.05 was considered statistically significant, and 95%CIs were 
calculated. All statistical analyses were performed using R language (R Core Team, R 
Foundation for Statistical Computing, Vienna, Austria) and the Statistical Package for 
the Social Sciences version 25.0 (IBM Corporation, Armonk, NY, United States).

RESULTS
Patient baseline characteristics
A total of 1883 patients received palliative doublet chemotherapy as first-line 
treatment for MRGC between 2008 and 2015. Overall, 1746 patients (92.7%) died, and 
the median survival time was 11.9 mo (95%CI: 11.3-12.5). The median follow-up 
duration of the 137 surviving patients was 54.6 mo (interquartile range: 35.7-84.3 mo). 
When we compared patient characteristics between training and validation sets, 
proportion of men, histology findings, and occurrence of liver metastasis differed 
significantly between the two groups (Table 1).

Development of a new prognostic model and nomogram
In the training set of 937 patients, 848 (90.5%) died. Univariate analyses for OS were 
performed for NLR (≥ 3 vs < 3), histologic type (poorly differentiated/signet-ring 
cell/undifferentiated vs well or moderately differentiated), and the eight factors in the 
previous model. A high NLR was statistically significant in the training set, but poor 
histology, no prior gastrectomy, lung metastases, and high total bilirubin were not. 
Multivariate analysis confirmed that six factors were significantly associated with poor 
OS (Table 2): Poor ECOG PS, peritoneal metastasis, bone metastasis, high ALP level, 
low albumin level, and high NLR. Risk scores were assigned based on HRs from the 
final multivariate model, with two points awarded for HR > 1.5 and one point 
awarded for HR < 1.5. Based on the resulting scores, patients were assigned to three 
risk categories: good (0-1 point), moderate (2-3 points), and poor (≥ 4 points). The C-
index for the new model was 0.657 (95%CI: 0.637-0.677). In addition, we built a 
nomogram using those six factors to establish a more convenient and accurate method 
for survival prediction and used calibration plots to verify it (Figure 1).

Validation and comparison of survival prediction with the previous model
We validated the new model using a separate validation set of 946 patients (2008-
2011). Among them, 898 patients (94.9%) died. The proportions of patients classified 
into each risk category were similar. The observed OS and PFS curves in patients in 
each risk category showed significant differences in both the training and validation 
sets (P < 0.001, log-rank test) (Table 3 and Figure 2). The old prognostic model using 
eight factors also had significantly different OS and PFS outcomes in each risk 
category. When we compared the OS predictions of the new and old models using the 
validation set, the C-indexes of the two models were similar [0.638 (95%CI: 0.618-
0.658) and 0.635 (95%CI: 0.615-0.655), respectively]. DCA and ROC curve analyses 
were performed to compare the prediction accuracies of each of the six prognostic 
factors and the old and new models. The DCA curve showed that the old and new 
models both had stronger predictive accuracy than the individual prognostic factors, 
and the performance of the two models was similar (Figure 3). The ROC curve analysis 
also showed that the two models had similar AUCs at one year [0.598 (95%CI: 0.581-
0.617) and 0.600 (95%CI: 0.582-0.620), respectively]. Interestingly, NLR had the largest 
AUC at one year (0.567; 95%CI: 0.552-0.582) among the six prognostic factors. 
Although the explanatory power of the two models did not differ, the new model uses 
two fewer factors and might be more feasible for use in clinical trials or real practice.

Risk group reclassification in the new model
When we compared how the new and old models assigned the patients in the 
validation set to risk groups, we found that most patients were classified similarly 
(Supplementary Table 1). However, 35% of the moderate risk group in the old model 
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Table 1 Patient characteristics during first-line doublet chemotherapy according to treatment period

Clinical characteristics Training set (2012-2015), n = 937 Validation set (2008-2011), n = 946 P value

Sex, male, n (%) 583 (62.2) 637 (67.3) 0.020

Age

Median, range 56 (19-91) 57 (20-85) 0.785

≥ 65 yr, n (%) 257 (27.4) 259 (27.4) 0.981

ECOG PS, n (%)

0/1 799 (85.6) 817 (86.6)

2/3 134 (14.4) 126 (13.4)

0.531

Prior gastrectomy performed 389 (41.5) 412 (43.6) 0.372

Histology, n (%)

WD/MD 212 (22.6) 256 (27.1)

PD/SRC/undifferentiated 691 (73.7) 590 (62.4)

Unclassified 34 (3.6) 100 (10.6)

< 0.001

Status, n (%)

Recurrent 318 (33.9) 334 (35.3)

Initial metastatic 619 (66.1) 612 (64.7)

0.533

Metastasis No., 2 or more 385 (41.5) 363 (38.9) 0.249

Peritoneal metastasis 518 (55.6) 524 (55.9) 0.902

Liver metastasis 160 (17.2) 226 (24.1) < 0.001

Lung metastasis 45 (4.9) 43 (4.6) 0.795

PALN metastasis 346 (37.3) 352 (37.5) 0.942

Bone metastasis 93 (10.0) 70 (7.5) 0.051

ALP > 120 IU/L, n (%) 201 (21.5) 197 (21.2) 0.868

Albumin < 3.3 g/dL, n (%) 279 (29.8) 249 (26.8) 0.150

Total bilirubin > 1.2 mg/dL, n (%) 62 (6.6) 77 (8.3) 0.177

NLR ≥ 3, n (%) 381 (40.7) 375 (40.3) 0.881

ECOG PS: Eastern Cooperative Oncology Group performance status; WD: Well differentiated; MD: Moderately differentiated; PD: Poorly differentiated; 
SRC: Signet ring cell; PALN: Para-aortic lymph node; ALP: Alkaline phosphatase; NLR: Neutrophil-lymphocyte ratio.

(15% of the total patients) was reclassified into the good risk group in the new model, 
and the median predicted OS of those patients increased to 14.1 mo from 10.6 mo 
(Supplementary Figure 2).

DISCUSSION
This study evaluated several clinicopathological factors associated with the prognosis 
of patients with MRGC. We developed a new prognostic model using six clinicopatho-
logical elements with a nomogram in a training set and validated its appropriateness 
using C-index, DCA, and ROC curve analyses in a different cohort. The six factors 
were poor ECOG PS, bone metastasis, peritoneal metastasis, high ALP level, low 
albumin level, and high NLR. Combining those factors into a simple prognostic model 
enabled MRGC patients to be classified into three risk groups. Our old and new 
models showed similar prediction performance in the validation set; however, the new 
model is simpler and easier to apply than the old because it uses two fewer factors.

Doublet first-line chemotherapy as a standard of care
Previous prognostic models were developed based on heterogeneous treatment 

https://f6publishing.blob.core.windows.net/94fdbe4f-7c73-4d00-8565-601fd56a2872/WJG-27-8357-supplementary-material.pdf
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Table 2 Comparison between the old model and new model developed from the training set

Old model Univariate analysis Multivariate analysis New model
Factors

Score HR P value HR P value Score

Poor PS 2 1.983 < 0.001 2.005 < 0.001 2

No gastrectomy 1 1.046 0.542 - - -

Peritoneal metastasis 1 1.355 < 0.001 1.355 < 0.001 1

Bone metastasis 2 1.605 < 0.001 1.651 < 0.001 2

Lung metastasis 1 1.249 0.188 - - -

High ALP 1 1.435 < 0.001 1.406 < 0.001 1

Low albumin 1 1.410 < 0.001 1.447 < 0.001 1

High total bilirubin 1 0.965 0.806 - - -

High NLR - 1.445 < 0.001 1.461 < 0.001 1

Poor histology - 1.104 0.253 - - -

HR: Hazard ratio; poor PS: Performance status 2/3; high ALP: Alkaline phosphatase > 120 IU/L; low albumin: Albumin < 3.3 g/dL; high NLR: Neutrophil-
lymphocyte ratio ≥ 3.

groups, but first-line fluoropyrimidine/platinum doublet chemotherapy has become a 
standard of care. Although 5-fluorouracil (5-FU) is one of the cytotoxic agents most 
commonly used for MRGC, randomized phase III studies have demonstrated that the 
oral fluoropyrimidines capecitabine[20] and S-1[21] are just as effective. Therefore, oral 
fluoropyrimidines (capecitabine or S-1) could be used instead of 5-FU in therapeutic 
combination with platinum compounds. Also, oxaliplatin-based regimens were 
suggested to be noninferior to cisplatin-based regimens in terms of OS in the REAL-2 
study[22]. Further randomized trials have suggested that oxaliplatin is as effective for 
prolonging survival and generally better tolerated than cisplatin[23]. Cisplatin-free 
regimens in combination with oral fluoropyrimidine could offer more convenience by 
preventing hyperhydration, central catheterization, and hospitalization. On the other 
hand, triplet chemotherapy, which includes taxane to maximize efficacy, carries a 
limited survival benefit and increases the risk of grade 3/4 toxicities[24]. Patients 
treated with a single agent, either fluoropyrimidine or taxane, were considered to be 
intolerant of combination chemotherapy or to have recurrent disease resistant to prior 
adjuvant chemotherapy with fluoropyrimidine ± platinum; therefore, those patients 
receive less frequent subsequent chemotherapy, resulting in poor prognosis[9]. 
Prognostic factor analyses should be performed in patients receiving the same 
treatment course because the prognosis varies according to first-line chemotherapy 
regimen.

NLR as a new prognostic factor
High NLR status, a well-known biomarker of cancer-associated inflammation, has 
shown a significant correlation with poor prognosis in many solid tumors[16]. NLR 
can be considered a surrogate of the balance between activation of the protumor 
inflammatory pathway and antitumor immune function.

Neutrophilia increases the number of inflammatory markers, including 
proangiogenic factors such as vascular endothelial growth factor, growth factors such 
as interleukin-8, proteases such as tissue inhibitors of metalloproteinase, and antiap-
optotic markers such as nuclear factor kappa B, that support tumor growth and 
progression[25]. Lymphopenia represents a significant decline in the cell-mediated 
immune system, which is demonstrated by marked decrease in T4 helper and T8 
suppressor lymphocytes. Although no exact NLR cutoff point has been defined, we 
chose an NLR cutoff value of 3.0 based on our ROC curve analysis. The patients in the 
validation set who had high NLRs had significantly worse OS and PFS (median: 8.4 
and 4.8 mo) than those with low NLRs (14.4 and 6.9 mo; P < 0.001) 
(Supplementary Figure 3). NLR status might be a key factor in predicting the survival 
outcomes of MRGC patients because it is a surrogate of immune status and is 
convenient, inexpensive, and reproducible in practice. It also might help clinicians 
discern when to expect a response to further chemotherapy and immunotherapy in 
patients with MRGC[26].

https://f6publishing.blob.core.windows.net/94fdbe4f-7c73-4d00-8565-601fd56a2872/WJG-27-8357-supplementary-material.pdf
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Table 3 Survival outcomes of first-line doublet regimens in the training and validation sets according to the new prognostic model

Risk group Good risk, 0-1 point(s) Moderate risk, 2-3 points Poor risk, ≥ 4 points P value
Training set (2012-2015)

No. of patients 449 (48.8%) 319 (34.7%) 152 (16.5%)

Hazard ratio (95%CI) Reference 1.628 (1.40-1.90) 4.013 (3.30-4.88) < 0.001

Median OS, mo (95%CI) 15.9 (14.5-17.4) 10.6 (9.3-11.9) 4.7 (4.0-5.5) < 0.001

Median PFS, mo (95%CI) 8.3 (7.4-9.1) 5.9 (5.1-6.6) 2.4 (1.8-2.9) < 0.001

Survival rate (%)

At 6 mo 90.0% (87.2-92.8) 74.0% (69.2-78.8) 37.5% (29.8-45.2)

At 12 mo 63.2% (58.7-67.7) 44.0% (38.6-49.4) 16.1% (10.3-21.9)

At 18 mo 42.9% (38.3-47.5) 23.4% (18.8-28.0) 6.3% (2.4-10.2)

At 24 mo 31.2% (26.9-35.5) 16.4% (12.3-20.5) 2.8% (0.2-5.4)

Validation set (2008-2011)

No. of patients 474 (52.0%) 291 (31.9%) 147 (16.1%)

Hazard ratio (95%CI) Reference 1.634 (1.41-1.90) 2.963 (2.45-3.59) < 0.001

Median OS, mo (95%CI) 15.8 (14.8-16.9) 10.1 (8.7-11.5) 5.7 (4.7-6.6) < 0.001

Median PFS, mo (95%CI) 7.0 (6.3-7.7) 5.6 (5.1-6.1) 3.2 (2.5-3.9) < 0.001

Survival rate (%)

At 6 mo 88.6% (85.7-91.5) 72.2% (67.1-77.3) 47.6% (39.6-55.7)

At 12 mo 64.3% (60.0-68.6) 42.3% (36.6-48.0) 17.0% (10.9-23.1)

At 18 mo 40.1% (35.7-44.5) 22.0% (17.2-26.8) 6.1% (2.2-10.0)

At 24 mo 25.9% (22.0-29.8) 13.1% (9.2-17.0) 4.8% (1.3-8.3)

Validation set (2008-2011) according to old model

No. of patients 393 (41.7%) 390 (41.4%) 160 (16.9%)

Hazard ratio (95%CI) Reference 1.493 (1.29-1.73) 3.281 (2.71-3.98) < 0.001

Median OS, mo (95%CI) 16.2 (15.3-17.1) 10.7 (9.5-12.0) 5.5 (4.5-6.5) < 0.001

Median PFS, mo (95%CI) 7.1 (6.3-7.9) 5.6 (5.1-6.2) 3.3 (2.5-4.0) < 0.001

Survival rate (%)

At 6 mo 90.3% (87.4-93.2) 75.8% (71.5-80.1) 47.5% (39.8-55.2)

At 12 mo 68.2% (63.6-72.8) 45.5% (40.6-50.4) 16.3% (10.6-22.0)

At 18 mo 41.3% (36.4-46.2) 26.5% (22.1-30.9) 5.6% (2.0-9.2)

At 24 mo 27.4% (23.0-31.8) 17.0% (13.3-20.7) 3.1% (0.4-5.8)

OS: Overall survival; PFS: Progression-free survival; CI: Confidence interval.

Prior gastrectomy as an unneeded prognostic factor 
Gastrectomy in this study refers to upfront gastrectomy performed before first-line 
chemotherapy or prior gastrectomy before recurrence. Several retrospective studies 
have reported that primary tumor resection in advanced gastric cancer could lessen 
the tumor burden, or so-called resected metastatic status, and result in a survival 
benefit[27]. However, most of those studies included patients treated in the early 
2000s, when active chemotherapeutic agents were limited, and sequential 
chemotherapy was not established. Also, most included patients underwent both 
upfront gastrectomy and conversion surgery after palliative chemotherapy. In a recent 
prospective randomized study (the REGATTA trial), incurable gastrectomy before 
chemotherapy failed to show a survival benefit, and so it is no longer recommended
[28]. A retrospective comparison study between an initially metastatic group and a 
recurrent metastatic group reported that prior gastrectomy did not affect prognosis



Koo DH et al. New prognostic model of AGC patients

WJG https://www.wjgnet.com 8364 December 28, 2021 Volume 27 Issue 48

Figure 1 The nomogram using six factors to predict survival rates in the training set. A: The nomogram was applied by summing the scores 
projected onto the corresponding scale for each factor. The total number of scores projected onto the bottom scale represents the probability of one-, two-, and three-
year overall survival; B: The calibration plots of the nomogram, where the X-axis represents the survival rate predicted by the nomogram, and the Y-axis represents 
the actual survival rate calculated by a Kaplan–Meier analysis. ALP: Alkaline phosphatase; NLR: Neutrophil-lymphocyte ratio; ECOG PS: Eastern Cooperative 
Oncology Group performance score.

[29]. Because our old model was developed from a cohort treated in the early 2000s, 
prior gastrectomy might have been a significant favorable prognostic factor. In this 
study, however, patients in the training set received chemotherapy between 2012 and 
2015, when many more active chemotherapeutic agents were available. Therefore, 
prior gastrectomy would not be expected to significantly affect the prognosis of those 
patients.

Advantages of the new prognostic model
The new model described herein has several advantages. First, it was derived by 
analyzing a homogeneous population treated with recent doublet first-line 
chemotherapy. Second, prognostic factors such as bone metastasis, which are difficult 
to obtain from electronic medical records, were evaluated based on clinical data 
sourced from a prospectively collected registry. Third, we validated our new model in 
a separate cohort of about 1000 patients and found that its performance was as good in 
the validation set as it was in the training set.
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Figure 2 Overall survival and progression-free survival curves according to the new prognostic model. A: In the training set; B: In the validation 
set; C: According to the old prognostic model in the validation set.

Limitations of this study
Our study also has several limitations. First, despite a large number of patients, the 
generalizability of this study is limited by its single-center, retrospective design and 
the single ethnicity of its population. Second, our new prognostic model does not 
apply to patients who received treatment other than doublet chemotherapy, such as 
single, triplet, or doublet with trastuzumab. Third, this study does not include other 
critical factors that affect treatment or prognosis, such as molecular biomarkers.

CONCLUSION
In conclusion, we identified six factors readily measured in clinical practice and 
predictive of poor prognosis in patients with MRGC. Our new prognostic model uses a 
scoring system that incorporates those six factors and could be used to classify patients 
into three groups with significantly different survival outcomes. This model 
performed well with a validation set and could help to predict life expectancy, guide 
treatment plans, analyze the findings of clinical studies, and support the design of 
future clinical trials.
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Figure 3 Decision curve analysis curves and time-dependent receiver operating characteristic curves for the nomogram in the validation 
set. A: The calculated net benefit (Y-axis) corresponds to the threshold probability of survival on the X-axis; B: The time-dependent receiver operating characteristic 
curve assesses the accuracy of the nomogram. ALP: Alkaline phosphatase; NLR: Neutrophil-lymphocyte ratio; ECOG PS: Eastern Cooperative Oncology Group 
performance score.

ARTICLE HIGHLIGHTS
Research background
Since systemic chemotherapy for metastatic or recurrent gastric cancer (MRGC) has 
become standardized, prognostic factors for MRGC patients should be investigated in 
patients who receive fluoropyrimidine/platinum doublet chemotherapy, which is 
considered the standard first-line treatment for human epidermal growth factor 
receptor 2-negative MRGC.

Research motivation
The neutrophil-lymphocyte ratio (NLR) is a representative blood marker of the 
systemic inflammatory response that reflects tumor progression, invasion, and 
metastasis in cancer patients. This is a relatively new prognostic factor in MRGC, and 
its change was reported to predict poor outcomes during immuno-oncologic therapy.
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Research objectives
We modified our previous prognostic model by introducing NLR and histology using 
a cohort of MRGC patients, and we validated our new model in a different cohort.

Research methods
Model development and validation were based on a split-sample method according to 
time period. Patients were separated by treatment period and assigned to a training set 
(2012-2015; n = 937) or an independent validation set (2008-2011; n = 946). The 
prognostic model was developed using the training set.

Research results
Multivariate analysis confirmed that six factors were significantly associated with poor 
overall survival as follow: poor performance, peritoneal metastasis, bone metastasis, 
high alkaline phosphatase level, low albumin level, and high NLR. The observed 
overall survival and progression-free survival curves in patients in each risk category 
showed significant differences in both the training and validation sets (P < 0.001, log-
rank test).

Research conclusions
We identified six factors readily measured in clinical practice and predictive of poor 
prognosis in patients with MRGC. Our new prognostic model uses a scoring system 
that incorporates those six factors and could be used to classify patients into three 
groups with significantly different survival outcomes.

Research perspectives
Our model could help to predict life expectancy, guide treatment plans, analyze the 
findings of clinical studies, and support the design of future clinical trials in MRGC 
patients.
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Abstract
Investigational treatments/drugs for coronavirus disease 2019 (COVID-19) have 
been applied, with repurposed or newly developed drugs, and their effectiveness 
has been evaluated. Some of these drugs may be hepatotoxic, and each 
monotherapy or combination therapy may increase the risk of drug-induced liver 
injury (DILI). We should aim to control dysregulation of liver function, as well as 
the progression of COVID-19, as much as possible. We discussed the potential 
risks of investigational treatments/drugs and promising drugs for both COVID-
19 and DILI due to investigational treatments/drugs.
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Core Tip: To cope with dysregulation of liver function in coronavirus disease 2019 
(COVID-19), drug-induced liver injury (DILI) due to investigational treatments/drugs 
or drug-drug or drug-disease interactions should be considered. We described useful 
information associated with clinical practice. We discussed the potential hepatotoxicity 
of dexamethasone or remdesivir as representative investigational treatments/drugs for 
COVID-19. These drugs are predicted to be used for a certain time in monotherapy or 
combination therapy. We also reported glycyrrhizic acid and ursodeoxycholic acid as 
therapeutic candidates for the control of DILI due to investigational treatments/drugs, 
as well as COVID-19.
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TO THE EDITOR
We read with great interest the review by Huang et al[1], which summarized the 
current understanding and perspectives on dysregulation of liver function in patients 
with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection.We 
generally agree with the authors’ comprehensive review. Additional information 
regarding the potential hepatotoxicity of investigational treatments/drugs for 
coronavirus disease 2019 (COVID-19) and the strategy for dealing with drug-induced 
liver injury (DILI) associated with investigational treatments/drugs is useful in clinical 
practice.

The investigators[1] cited that the synthetic corticosteroid dexamethasone worsens 
outcomes in patients with COVID-19 who show milder respiratory symptoms, which 
was reported in the RECOVERY trial[2]. However, to be technically accurate, 
dexamethasone therapy had several strengths in reducing the 28-d mortality rate, 
increasing the rate of patients who were discharged alive from hospital within 28 d, 
and reducing progression to invasive mechanical ventilation or death in comparison to 
those with usual care, while these merits were not observed in patients who did not 
receive oxygen[2]. The World Health Organization (WHO) announced guidelines 
regarding dexamethasone therapy for COVID-19[3]. Corticosteroids (i.e., dexame-
thasone, hydrocortisone or prednisone) were recommended for the treatment of 
patients with severe and critical but not nonsevere COVID-19 on September 2, 2020[3]. 
The current situation has changed with the emergence of new genetic variants of 
SARS-CoV-2[4]. SARS-CoV-2 mutation may facilitate transmissibility or virulence, 
reduce neutralization by antibodies produced in response to natural infection or 
vaccination, promote the ability to evade detection, or decrease the effectiveness of 
therapeutics or vaccination[4]. They may affect the disease progression of COVID-19, 
and thus, we believe that the treatment strategy has a more important role in the 
control of COVID-19.

The role of dexamethasone is to ameliorate inflammatory organ injury in viral 
pneumonia[2]. However, dexamethasone is a cytochrome P450 (CYP3A4) inducer and 
has a high chance of drug-drug interactions with investigational treatments/drugs or 
agents used to treat comorbidities, especially CYP3A4 substrates. Importantly, CYP 
enzymes can be inhibited by an increase in infection-related cytokine levels and 
inflammation[5]. Both investigational treatments/drugs and agents used to treat 
comorbidities can be affected by compromised CYP-mediated hepatic metabolism, 
irrespective of the onset/Length of COVID-19 and the extent of liver dysfunction[5]. 
Subsequently, these drug-drug and drug-disease interactions and dysfunctional CYP-
mediated hepatic metabolism might cause dysregulation of liver function, including 
drug-induced liver injury (DILI)[5]. In addition, dexamethasone therapy caused 
elevated liver enzymes, increased hepatic lipid peroxidation, and decreased 
antioxidant activities in rats[6]. On the other hand, dexamethasone is a type of 
corticosteroid that can be used to treat drug-induced cholestatic hepatitis[7]; in 
particular, corticosteroids are used for the treatment of DILI associated with 
hypersensitivity features[8]. The mechanism of dexamethasone against DILI might be 
involved in alleviation of tissue damage caused by inflammatory responses of the 
immune system within the liver[7]. Thus, dexamethasone has pros and cons in relation 
to liver injury. Dexamethasone could be used in combination with antiviral drugs, 
such as remdesivir (RDV), for COVID-19 patients, although the WHO announced a 
conditional recommendation against the use of RDV in hospitalized patients on 
November 20, 2020[9]. As a direct role of RDV in hepatocellular toxicity was suggested
[10], combination therapy with dexamethasone and RDV is more likely to cause liver 
dysfunction, especially for patients with comorbidities, and we should perform careful 
observation during combination therapy or each monotherapy.

Regarding the treatment of DILI due to investigational treatments/drugs, 
glycyrrhizic acid was advocated as a treatment candidate for COVID-19 patients, 
especially those with complex liver injury[11]. In Japan, glycyrrhizic acid has been 
used for more than 40 years as a treatment for liver diseases[11]. It works as a hepato-
protective drug for a variety of liver diseases, including DILI[11], and has safe and 
economical features[11]. The possible mechanism of monoammonium glycyrrhizin, 
the main component of glycyrrhizin, against drug-induced hepatotoxicity involves 
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Table 1 Anti-coronavirus disease 2019 drugs and drugs for drug-induced liver injury

Name Type Mechanisms as anti-COVID-19 drugs and/or 
drugs for drug-induced liver injury Mechanisms of hepatotoxicity Ref.

Anti-COVID-19 drugs

Dexamethasone Anti-
inflammatory 
drug

Amelioration of inflammatory organ injury in viral 
pneumonia. Alleviation of tissue damage caused by 
inflammatory responses of the immune system within 
the liver.

Drug-drug interactions due to cytochrome P450 
induction. Elevation of liver enzyme levels, 
increase in hepatic lipid peroxidation, and decrease 
in antioxidant activities.

[2,6,
7]

Remdesivir Antiviral drug Inhibition of RNA polymerase, as a nucleotide analog. Hepatocellular toxicity. [10]

Drugs for drug-induced liver injury

Glycyrrhizic acid Hepatoprotector Regulation of the expression of hepatobiliary 
membrane transporters.

[12]

Ursodeoxycholic 
acid

Hepatoprotector Anti-inflammatory, antioxidant, immunomodulatory 
and antiapoptotic profiles. Inhibition of 
proinflammatory cytokine production.

[14]

COVID-19: Coronavirus disease 2019.

regulating the expression of hepatobiliary membrane transporters[12].
Another therapeutic candidate for DILI due to investigational treatments/drugs is 

ursodeoxycholic acid (UDCA), which has been used in cholestatic DILI to reduce the 
time to resolution[13]. UDCA is a hydrophilic bile acid that has anti-inflammatory, 
antioxidant, immunomodulatory and antiapoptotic profiles[14] and inhibits 
proinflammatory cytokine production[14]. Thus, UDCA is also beneficial for cytokine 
storm syndrome, which is caused by a sudden, abnormal release of inflammatory 
cytokines due to overreaction of innate immunity[14], which is one of the critical 
pathogeneses of COVID-19. UDCA has been promoted as a candidate therapeutic 
agent for COVID-19[14,15]. Anti-COVID-19 drugs and drugs for DILI are summarized 
in Table 1.

We should manage dysregulation of liver function regardless of the association with 
treatment for COVID-19. We introduced the potential risks of investigational 
treatments/drugs and promising drugs for both COVID-19 and DILI due to investiga-
tional treatments/drugs. Further studies should confirm this hypothesis and may help 
to establish an effective strategy for the management of COVID-19 and DILI due to 
investigational treatments/drugs.
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Abstract
In a recent systematic review and meta-analysis of observational studies, the 
author found potential errors in the selection and extraction processes. The 
recalculated summary relative risks and the results of a dose-response meta-
analysis showed that oral contraceptive use may not be associated with the risk of 
pancreatic cancer in women.
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Core Tip: A systematic review and meta-analysis of observational studies conducted 
recently concluded that oral contraceptive use was associated with a decreased risk of 
pancreatic cancer in women. However, the author found potential errors in the 
selection and extraction processes. The recalculated summary relative risks and the 
results of a dose-response meta-analysis showed that oral contraceptive use may not be 
associated with the risk of pancreatic cancer in women. As this conclusion contradicted 
that reported recently, it is necessary to re-evaluate the direction and statistical 
significance of this risk through an updated meta-analysis in the future.
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TO THE EDITOR
I recently read the systematic review and meta-analysis conducted by Ilic et al[1] 
comprising 10 case-control studies and 11 cohort studies, which concluded that the use 
of oral contraceptives (OCU) was associated with a decreased risk of pancreatic cancer 
in women (PCW) [summary relative risk (sRR) = 0.85; 95% confidence intervals (CI) = 
0.73-0.98; P = 0.03]. Interestingly, the subgroup analysis according to the study design 
showed no statistical significance in case-control studies but showed borderline 
statistical significance in cohort studies (sRR = 0.84; 95%CI = 0.70-1.00; P = 0.05).

However, while reviewing the results of the 11 selected cohort studies, I found the 
following potential errors. First, among the 11 selected studies, the study by Teras et al
[2] was a cohort study that analyzed the mortality of PCW; therefore, excluding this 
study would be valid based on the research hypothesis; second, it would be necessary 
to include the two cohort studies[3,4] that were considered in other studies on the risk 
of various cancers associated with OCU[5,6]; finally, in the two studies that did not 
provide an RR for the ever group[7,8], the RR's direction was opposite to that of the 
forest plot shown in the study by Ilic et al[1].

Considering these issues, I recalculated the sRR of the longest duration (LD) group 
as well as the ever group. The statistical significance disappeared in both groups, and 
the sRRs were 1 or higher (Figure 1). Egger’s test was performed to evaluate 
publication bias, and no statistical significance was noted in either group (P = 0.439 
and 0.817 in the ever group and LD group, respectively).

Eight of the 12 selected cohorts[3,7-13] provided the information necessary for 
performing a dose-response meta-analysis. A two-stage random-effects dose-response 
model was used with a dosing unit of 1 year (P of goodness-of-fit = 0.041). The results 
showed borderline statistical significance with a linear dose-response relationship 
between OCU duration and PCW risk (sRR = 1.015; 95%CI = 0.999-1.030; P = 0.057) 
(Figure 2).

Based on the results of the recalculated sRRs and DRMA, the OCU may not be 
associated with the risk of PCW. Because my conclusion contradicts that reported by 
Ilic et al[1], it is necessary to re-evaluate the direction and statistical significance of risk 
through an updated meta-analysis in the future.

Figure 1 Forest plots in the ever and the longest duration group.
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Figure 2 The linear dose-response relationship between duration (year) of oral contraceptive 
usage and risk of pancreatic cancer in women. RR: Relative risk.
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