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Abstract
The inflammatory pattern during Helicobacter pylori (H. pylori) infection is 
changeable and complex. During childhood, it is possible to observe a predom-
inantly regulatory response, evidenced by high concentrations of key cytokines 
for the maintenance of Treg responses such as TGF-β1 and IL-10, in addition to 
high expression of the transcription factor FOXP3. On the other hand, there is a 
predominance of cytokines associated with the Th1 and Th17 responses among H. 
pylori-positive adults. In the last few years, the participation of the Th17 response 
in the gastric inflammation against H. pylori infection has been highlighted due to 
the high levels of TGF-β1 and IL-17 found in this infectious scenario, and growing 
evidence has supported a close relationship between this immune response 
profile and unfavorable outcomes related to the infection. Moreover, this cytokine 
profile might play a pivotal role in the effectiveness of anti-H. pylori vaccines. It is 
evident that age is one of the main factors influencing the gastric inflammatory 
pattern during the infection with H. pylori, and understanding the immune 
response against the bacterium can assist in the development of alternative 
prophylactic and therapeutic strategies against the infection as well as in the 
comprehension of the pathogenesis of the outcomes related to that microor-
ganism.

Key Words: Helicobacter pylori; Inflammation; Treg response; Th1 response; Th17 
response; Gastric diseases
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Core Tip: Helicobacter pylori (H. pylori) is a bacterium acquired mainly in childhood 
that increases the risk of developing certain gastric diseases. However, the main 
complications are noticed predominantly in adulthood. This can be explained based on 
the gastric inflammatory pattern against the pathogen, which changes as long as the 
infected individual gets older, favoring, during childhood, the persistence of the 
infection and then, in adulthood, the gastric damage. This article discusses the factors 
that can influence the gastric inflammatory pattern in individuals infected with H. 
pylori.
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INTRODUCTION
Helicobacter pylori (H. pylori) is a microaerophilic, Gram-negative, rod-shaped, mobile 
bacterium of great clinical importance that is able to colonize the extremely hostile 
stomach environment[1].

Studies analyzing populations suggest that approximately 50% of the world 
population are infected with H. pylori.  In addition, most H. pylori infections appear to 
be acquired during childhood, and estimates suggest that a third of the child 
population are or will be infected with the bacterium[2,3].

H. pylori infection is associated with the development of peptic ulcer and gastric 
cancer (GC), and the interactions between the virulence factors of the pathogen and 
the host immune response seem to be crucial in the development of those diseases[1,
4]. Reviews show that 10% of those infected with H. pylori develop a peptic ulcer and 
1%-3% develop GC[3]. H. pylori is a Group I carcinogen according to the International 
Agency for Research on Cancer (IARC), with 89% of all gastric cancers being attrib-
utable to this infection[2].

The host immune response to H. pylori is complex and changeable. It is possible to 
notice during childhood a predominantly regulatory inflammatory pattern (Treg), 
with higher concentrations of TGF-β1 and IL-10 than colonized adults, in addition to 
the greater number of FOXP3+ Treg cells observed in the gastric mucosa of children. 
This predominantly regulatory pattern makes the gastric mucosa of children more 
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Figure 1 Fabrício Freire de Melo, PhD, Professor at the Universidade Federal da Bahia - Campus Anísio Teixeira, Brazil.

vulnerable to H. pylori colonization, but with milder inflammation when compared to 
what occurs in the mucosa of infected adults. As a result, the immune system of 
pediatric patients is not able to eliminate the H. pylori infection, and the bacterium 
persists in the gastric environment if left untreated. Moreover, damage to the gastric 
mucosa is less frequent during childhood, despite persistent mucosal colonization[5-8].

In adults, there is a predominant Th1 response, with higher levels of IFN-γ and IL-
12p70 in the gastric mucosa, in contrast to the predominance of the regulatory 
response found during childhood. Besides, adults have a more intense Th17 response 
when compared to children. This can be verified by the higher mucosal concentrations 
of cytokines such as IL-17A and IL-23 and lower concentrations of TGF-β1, which, 
despite participating in the Treg response, when expressed at lower levels, seems to 
synergize with IL-6, promoting the expression of IL-23 receptors (IL-23r) and favoring 
an intense Th17 response. This cytokine profile is closely associated with the 
occurrence of damage to the gastric epithelium. Therefore, adults have a higher 
susceptibility to developing peptic ulcers, gastric atrophy, and intestinal metaplasia, a 
well-known precancerous lesion[5,6,9].

Of note, an increase in pro-inflammatory cytokines such as TNFα, IL-1α, IL-1β, IL-6, 
IL-2, and IL-17A is observed in H. pylori-positive children compared to H. pylori-
negative infants. However, the Treg profile seems to overcome the inflammatory 
responses promoted by Th1 and Th17 cytokines in those individuals. This predom-
inance of a regulatory immune response observed in infants might favor the 
colonization and persistence of the infection in the gastric mucosa, whereas the Th1 
and Th17 responses induce a higher inflammatory activity in adults, leading to a 
higher risk of H. pylori-related gastric damage.

PREVALENCE
H. pylori infect about 4.4 billion people worldwide[2]. The prevalence of the infection is 
variable around the world and has changed over the last few years, with a notable 
reduction of the H. pylori-infected population, especially in developed countries[2,10-
12]. Hooi et al[2] showed, through a meta-analysis, that the seroprevalence is higher in 
underdeveloped regions, and the highest prevalences were found in Africa (79.1%), 
Latin America and the Caribbean (63.4%), and Asia (54.7%). Otherwise, developed 
regions such as North America (37.1%) and Oceania (24.4%) have lower prevalence 
rates[3].

The infection is mainly acquired during childhood, and this phenomenon is 
predominantly observed in countries with a higher prevalence of H. pylori-positive 
individuals[13-15]. Moreover, higher prevalences of H. pylori infection are associated 
with lower socioeconomic status, household overcrowding, and lower educational 
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levels[11]. Sex may also influence the risk of acquiring the infection. A higher 
prevalence of the disease is usually observed among male subjects than in females. 
This may be related to hormonal factors, especially estrogen, which stimulates the 
immune response, and to a lower exposure to environmental factors such as smoking 
among women[16,17].

Furthermore, the prevalence may vary based on ethnic groups: Indigenous people 
in most countries are more susceptible to being infected[2]; a study in the United Arab 
Emirates showed a higher H. pylori prevalence among Africans than in Asian and 
Arabic populations, and, despite living in similar conditions to other ethnic groups, 
Malays were notably less affected by H. pylori infection than other people in that 
country[18-20]. In another study, Jonaityte et al[21] found a decline in the 
seroprevalence of H. pylori among medical students from Lithuania, with 
seroprevalences of 51.7, 30.4, 26.3, and 14.2% in 1995, 2012, 2016, and 2020, 
respectively. Besides, Africa, Western Asia, and South America are the regions with 
the highest incidence of H. pylori, while Oceania, North America, and Western Europe 
have lower prevalences of the bacterium[2].

BACTERIAL DENSITY AND GASTRIC INFLAMMATION
Despite being able to colonize all regions of the stomach, H. pylori proliferates better in 
certain anatomical areas, and higher bacterial densities are found in the antrum and 
cardia. Many factors can be responsible for this difference, such as the different levels 
of acid production in each portion of the stomach. In this sense, the regions with 
slightly lower acidity (antrum and cardia) are the regions with the highest H. pylori 
density[22,23].

Margarida et al[24], when studying 21 children infected with H. pylori, found infilt-
ration of mononuclear (MN) cells in 50% of the cases. Furthermore, they did not find 
any neutrophil infiltrate in 40% of the participants, and, in 60% of the individuals, 
there was a slight eosinophilic infiltrate. Moreover, they have also found a relationship 
between bacterial density and MN and neutrophil cell counts in the stomach. Besides, 
they concluded that the infiltration of MN cells and neutrophils is lower in children 
infected with H. pylori than in H. pylori-negative adults. These findings were probably 
due to the differences between the immune response profiles predominating in each 
age group[2,9]. Thus, it is evident that the host immune response directed to the H. 
pylori can be influenced by several factors such as age and bacterial density, being 
complex and changeable.

CYTOKINE CONCENTRATIONS IN THE GASTRIC MUCOSA OF CHILDREN 
AND ADULTS 
Given that H. pylori colonization is established mainly during childhood, that severer 
clinical outcomes related to the infection tend to occur as age advances, and that the 
immune system plays pivotal roles in H. pylori-related diseases, the following question 
is raised: Is the cytokine pattern observed in the immune response against the 
bacterium influenced by the age of colonized patients?

In an investigation enrolling Brazilian children and adults, our group has 
demonstrated that, among H. pylori-infected persons, infants tend to present a gastric 
Treg-polarized cytokine profile instead of the significant expression of Th17-related 
cytokines observed in older individuals. The analysis of the expression of cytokines in 
the gastric environment evidenced that IL-10 and TGF-β1 are expressed at higher 
levels in the former group, whereas the contrary was observed regarding the 
expression of IL-1β, IL-17A, and IL-23[5]. Those findings corroborate a precedent study 
by Harris et al, which showed more intense expression of the Treg-related cytokines 
TGF-β1 and IL-10 in children than in adults in a Chilean population[8]. Another study 
carried out by our group evaluated cytokines associated with innate and Th1 immune 
response in H. pylori-positive patients from various age groups[9]. We found that the 
gastric levels of IL-1α and TNF-α were significantly higher in children than in adults, 
whereas IL-2, IL-12p70, and IFN-γ were less expressed in infants than in older 
individuals (Figure 2). Interestingly, a drop in the gastric concentrations of IFN-γ and 
IL-12p70 in adults and an increase in the gastric mucosa levels of IL-1, IL-2, IL-12p70, 
and IFN-γ in children were observed with aging.
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Figure 2 Comparison between gastric cytokines levels in children and adults.

Taken together, the aforementioned results show that age, indeed, influences the 
immune response against the bacterium and strongly suggest the occurrence of 
significant anti-inflammatory patterns among H. pylori-infected children, which might 
affect not only the development of gastric diseases but also other health-related aspects 
during the initial years of life. This hypothesis becomes even more relevant when 
considering that environmental stimuli are crucial for the development of the immune 
system in that life period, a position supported by the so-called hygiene hypothesis, 
which claims that the contact with microorganisms in early life is determinant for the 
maturation of the immune system[25]. Interestingly, a recent study by León et al[26] 
suggests that H. pylori may induce atopy modulation in children since they found that 
H. pylori-infected infants had higher expression of high-affinity IgE receptor (FcεRI) by 
peripheral dendritic cells and enhanced levels of FOXP3 and Latency Associated 
Peptide by T reg cells. The FcεRI is related to a regulatory dendritic cell profile since 
the interaction of IgE with that molecule fails to induce the maturation of these cells
[27]. The possibility of systemic effects by H. pylori infection through the induction of 
immune system regulatory mechanisms makes us question the possible impacts of H. 
pylori eradication among children over the development of future immune system-
related disorders. Although we understand and support the need for eliminating the 
bacterium, it has to be emphasized that this infection has been negatively correlated to 
the development of relevant immune system-linked diseases that are relevant among 
young people, including asthma[28]. In addition, the current scenario of widespread 
use of antibiotics and growing antimicrobial resistance among H. pylori strains should 
not be ignored[29]. Therefore, we hope that, along with the advances in the clinical 
analysis of genetic and epigenetic backgrounds, the future approaches to H. pylori 
infections and the decision on the necessity of bacterial eradication should be carried 
out in a more individualized manner, instead of the generalized, but necessary, 
treatments preconized by current guidelines.

Some studies have emphasized that immunizing agents against H. pylori should be 
able to induce a Th17 response to achieve satisfactory effectiveness. In that context, 
Velin et al induced mouse immunization using mucosally administered cholera toxin 
followed by H. felis challenge and observed that it induced a remarkable peak of 
CD4+IL-17+ T cells in the gastric mucosa[30]. Recently, a study by Chen et al[31] tried 
to immunize mice using a cyclic guanosine monophosphate-adenosine monophosp-
hate as an adjuvant for the anti-H. pylori vaccine and observed that its effectiveness 
depended on high levels of antigen-specific Th1 and, mainly, Th17 responses. These 
findings draw attention to the aforementioned results showing low levels of Th17-
related cytokines among H. pylori-infected children, which could represent an obstacle 
in the development of effective immunizing agents for that population. This is an 
important issue to be considered since the H. pylori infection is mainly acquired during 
childhood[31].
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GASTRIC HISTOLOGY AND CYTOKINE CONCENTRATIONS
In our aforementioned study evaluating the variations of the Th1 immune response to 
the infection by H. pylori according to age, we observed that the increased levels of 
IFN-γ and IL-12p70 in the gastric environment were associated with an increase in MN 
cells in the gastric corpus and antrum. Moreover, when considering the group of 
young adults, IL-12p70 was linked to an increase in the count of both MN and PMN 
cells in the gastric antrum[9]. Interestingly, another study observed that the levels of 
IFN-γ and IL-12 were higher in infected children than in uninfected children (P < 
0.001). In addition, these cytokines were positively correlated with the inflammation 
score (P < 0.01) and PMN infiltration, corroborating our findings[32]. In an analysis of 
polyclonal responses in CD4+ T cells in H. pylori-positive children, a potent production 
of IFN-γ was also observed. However, the responses were stronger in adults, due to 
their higher frequency of memory T cells[33]. Curiously, some authors have observed 
that the levels of IFN-γ mRNA in infected children were lower when compared to 
infected adults[8,34]. These data suggest an increased regulatory response conducted 
by Treg cells in children, thus reducing the inflammatory Th1 response in the gastric 
mucosa[5,8]. In a recent prospective Brazilian study, it was observed that IL-27 is 
increased in individuals with H. pylori-related duodenal ulcer and absent in patients 
with GC. Moreover, higher gastric concentrations of IL-12p70 (P < 0.001) and IFN-γ (P 
= 0.004) were observed in patients with duodenal ulcers than in those with GC. In 
addition, IL-27 is positively correlated to the expression of IL-12p70, an important 
cytokine in Th1 responses that directly influences the pattern of inflammation in the 
antral mucosa of patients with duodenal ulcer[35]. The relationship between IL-12p70 
and IFN-γ is well elucidated in the context of H. pylori infection. In a study that added 
neutralizing antibodies to IL-12 in gastric biopsy cultures, authors observed a negative 
regulation of signal transducer and activator of transcription 4 (STAT4), an important 
factor for the production of IFN-γ, leading to a significant decrease in the concen-
trations of this cytokine (P < 0.001)[36]. Therefore, considerable progress has been 
achieved in the understanding of these important interplays between cytokine 
variations between different age groups and among regions of the gastric mucosa. 
Although the presence of MN and PMN cell infiltration associated with Th1 responses 
has been described, further studies are needed to aid in the understanding of the 
dynamics and frequency of these cells in the context of the H. pylori-induced gastric 
diseases.

As aforementioned, the H. pylori gastric environment colonization leads to a 
polarization toward Th1/Th17 responses, whereas Treg cells are responsible for the 
induction of anti-inflammatory responses. Of note, the Treg cells can be divided into 
IL-10-secreting Tr1 cells, TGF-β1-producing Tr3 cells, and FOXP3-expressing 
CD4+CD25high Treg cells[37]. The latter cells seem to be crucial in the setting of H. 
pylori infection. As long as they suppress the immune response against the bacterium, 
the pathogen persistence in the gastric mucosa might be favored. In that context, when 
evaluating the host immune response against H. pylori in adults and children, our 
group found that the expression of FOXP3+ Treg cells was significantly higher in the 
antrum of H. pylori-positive patients than in H. pylori-negative individuals[38]. This 
finding corroborates a previous study by Kandulski et al[39], which reported that H. 
pylori infection leads to a remarkable proportional enhancement of FOXP3+ Treg cells 
in the gastric cardia and antrum. In addition, the study by Silva et al[40], in its turn, 
reported that the levels of FOXP3-positive cells depend on the presence of gastritis. 
They observed that individuals with active chronic gastritis have lower expression of 
this molecule than persons without gastritis. Against this background, it is possible to 
infer that those cells are crucial for the occurrence of H. pylori-related diseases since 
they are directly associated with the levels of gastric mucosa inflammation.

Another finding in our study was the significantly higher levels of Treg FOXP3+ 
cells in children than in adults in the setting of H. pylori infection. Along with the 
cytokine pattern in pediatric patients previously discussed in this paper, this data 
indicates a milder infection with the bacterium in infants than in older individuals. 
Furthermore, a recent investigation using animals observed that mice infected during 
the neonatal period are more intensely colonized with the bacterium than those 
infected during adulthood.  The neonatally infected mice had an immune response 
characterized by an intense infiltration of FOXP3+ Treg cells, and this result was VacA-
dependent. Moreover, the study identified that the presence of VacA led to enhanced 
expression of IL-10 and TGF-β in macrophages whereas it suppressed the production 
of IL-23 in dendritic cells[41]. Another subsequent study by Altobelli et al[41] corrob-
orates our hypothesis that the younger the host, the milder the inflammatory response 
against the bacterium with increased levels of FOXP3+ Treg cells. They used mice to 
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evaluate the role of the induction of the co-inhibitory receptor B7-H1 in the chronic H. 
pylori infection and demonstrated that the induction of the Treg profile as well as the 
inhibition of T cell proliferation and IL-2 production are mediated by the B7-H1 
expression, which results from the H. pylori type 4 secretion system (T4SS) action 
through the activation of the p38 MAPK pathway[42,43]. Interestingly, a recent study 
reported that animals infected with the H. pylori PMSS1 strain had higher levels of 
Treg cells and lower levels of Th17 cells than animals infected with the SS1 H. pylori 
strain[44]. Taken together, these studies show the plurality of factors influencing the 
induction of Treg cells in the gastric environment of H. pylori-positive individuals.

Notably, Wei et al[45] suggested that the immune response against H. pylori charac-
terized by the expression of Treg FOXP3+ cells and IL-10 is not only observed in the 
gastric mucosa, but it is also enhanced in both superior and inferior gastrointestinal 
tracts after 10 wk of infection, suggesting a systemic character of this regulatory 
immune response. Data from another study identified significant enhancement of 
FOXP3 expression in patients with MALT lymphoma compared to individuals with 
active chronic gastritis. Interestingly, H. pylori-positive MALT lymphoma patients with 
increased expression of Treg FOXP3+ cells were significantly more responsive to the H. 
pylori eradication therapy than those with lower expression of Treg FOXP3+ cells[46]. 
In addition, Sen et al[47] reported significant enhancement in the levels of FOXP3 
expressed by T CD25+ CD127 low/- cells in the peripheral blood of patients with GC 
compared to the control group, and the T CD25+ CD127 low/- cells were also present 
in the tumor microenvironment and contributed to the suppression of T effector cells 
against the tumor. These results suggest a relevant role of the H. pylori-induced 
immune system regulation by FOXP3-expressing cells in the scenario of the 
development and progression of malignancies associated with H. pylori gastric 
infection.

Finally, we demonstrated that children infected with H. pylori had Treg FOXP3 cell 
levels positively correlated with IL-10 expression in the gastric antrum and negatively 
correlated with the count of mononuclear and polymorphonuclear cells. Moreover, the 
levels of FOXP3+ Treg cells were also negatively correlated with mononuclear cells in 
adults. In that context, Gil et al[4] evaluated the expression of FOXP3, IL-10, TGF, and 
IL-17A as well as the dynamics of Th17/Treg FOXP3+ cells in the gastric mucosa of H. 
pylori-positive children. Their data showed that FOXP3, TGF-β1, and IL-10 were 
remarkably expressed in the infection and the number of FOXP3+ Treg cells was 
significantly enhanced among H. pylori-positive individuals compared to H. pylori-
negatives. Moreover, FOXP3 was positively related to the bacterial density as well as 
with the number of polymorphonuclear and mononuclear cells among H. pylori-
positive persons with gastritis. Therefore, the data provided by Gil et al[4] reinforce the 
influence of FOXP3 expression in the control of H. pylori-induced gastric inflammation 
and in the recruitment of mononuclear and polymorphonuclear cells, important 
components of the immune response against the pathogen and in the pathogenesis of 
diseases associated with this infection.

CONCLUSION
H. pylori infection remains an important determinant for gastric illness. Several factors 
can alter the host inflammation pattern directed to the bacterium, and it is evident that 
age is one of the most important variables in that setting. A better understanding of 
the immune system behavior at different ages, favoring, during childhood, the 
persistence of the infection and then, in adulthood, the gastric damage, can aid in the 
development of strategies aiming at the reduction of H. pylori prevalence, such as 
vaccines, and at the prevention of unfavorable infection-related clinical outcomes.
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Abstract
Irritable bowel syndrome (IBS) is a common clinical label for medically 
unexplained gastrointestinal symptoms, recently described as a disturbance of the 
microbiota-gut-brain axis. Despite decades of research, the pathophysiology of 
this highly heterogeneous disorder remains elusive. However, a dramatic change 
in the understanding of the underlying pathophysiological mechanisms surfaced 
when the importance of gut microbiota protruded the scientific picture. Are we 
getting any closer to understanding IBS’ etiology, or are we drowning in 
unspecific, conflicting data because we possess limited tools to unravel the cluster 
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of secrets our gut microbiota is concealing? In this comprehensive review we are 
discussing some of the major important features of IBS and their interaction with 
gut microbiota, clinical microbiota-altering treatment such as the low FODMAP 
diet and fecal microbiota transplantation, neuroimaging and methods in 
microbiota analyses, and current and future challenges with big data analysis in 
IBS.

Key Words: Microbiota; Neurogastroenterology; Irritable bowel syndrome; Microbiota-
gut-brain axis; Structural and functional magnetic resonance imaging; Machine learning; 
Big data analysis

©The Author(s) 2022. Published by Baishideng Publishing Group Inc. All rights reserved.

Core Tip: Molecular biology, advanced neuroimaging and computer science is 
emerging to transform our understanding of the role of gut microbiota in irritable 
bowel syndrome (IBS). Herein, we provide an overview and discuss the role of gut 
microbiota in IBS, the clinical microbiota-altering interventions the low FODMAP diet 
and fecal microbiota transplantation, the role of brain-imaging and gut microbiota 
analyses, the importance of method selection, metadata, perspectives for improving 
microbiota role predictions, and big data analysis, in the seeking of understanding IBS 
pathology.

Citation: Hillestad EMR, van der Meeren A, Nagaraja BH, Bjørsvik BR, Haleem N, Benitez-
Paez A, Sanz Y, Hausken T, Lied GA, Lundervold A, Berentsen B. Gut bless you: The 
microbiota-gut-brain axis in irritable bowel syndrome. World J Gastroenterol 2022; 28(4): 412-
431
URL: https://www.wjgnet.com/1007-9327/full/v28/i4/412.htm
DOI: https://dx.doi.org/10.3748/wjg.v28.i4.412

INTRODUCTION
Irritable bowel syndrome – a disturbance of the microbiota-gut-brain axis 
Irritable bowel syndrome (IBS) is a chronic biopsychosocial disorder manifested by 
recurrent abdominal pain and alterations in stool form or frequency[1]. The condition 
affects 4%-10% of the global population and is associated with markedly reduced 
quality of life[2,3]. In addition to genetic predisposition, adverse life events, 
psychosocial factors, chronic and acute stress, and gastrointestinal (GI) infections[1], 
mounting evidence suggests the gut microbiota play a key role in IBS.

Because of its heterogeneity and unclear etiology, clear biomarkers and therapeutic 
targets for IBS have been difficult to identify. As a term, “IBS” is collective for 
medically unexplained disturbances of the bidirectional communication between the 
gut and the brain. These disturbances are multifactorial and include visceral 
hypersensitivity, low-grade inflammatory responses, intestinal motility disturbances, 
alterations of central nervous system (CNS) processing, and alterations in gut 
microbiota composition[1]. In the gut, a well-functioning microbiota is highly adapted 
to the host and carries out biochemical and metabolic processes that are important for 
host function. Signals coming from the gut microbiota modulate aspects of 
homeostasis through neural, endocrine and immune communication pathways 
between the gut and the brain[4,5]. Together, this has established the concept of the 
microbiota-gut-brain (MGB) –axis (Figure 1).

The vagus nerve serve as a major MGB pathway modulator. It is composed of 
somatic and afferent fibers (80%) and general and special visceral efferent fibers (20%). 
Under normal circumstances, the vagus nerve sense and is activated by diet-
responsive gut microbes and metabolites such as short-chain fatty acids (SCFAs), or 
endocrine factors, enzymes, and neurotransmitters such as serotonin, dopamine, 
acetylcholine, glutamate, γ-aminobutyric acid (GABA), and noradrenaline[6-9]. Each 
of these factors are potentially affected by alterations in microbiota composition and 
are involved in IBS pathology, as shown in Figure 1. In the intestines, vagal endings 
synapse onto neurons of the enteric nervous system (ENS), which governs the function 
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of muscular, neuro-hormonal, and secretory systems of the GI tract to generate 
patterns of functional digestion. In IBS, the pathophysiology implicates altered gut 
microbiota composition, impaired intestinal mucosal integrity, and low-grade inflam-
mation[10]. In addition to pathways through the circulatory system, several of these 
factors may also trigger fluctuations in the activity of the ENS with subsequent effect 
on the brain. This relationship of reciprocal signals may be disturbed to the degree of 
chronic IBS. In the chronic IBS brain, efferent signals may be perceived as unpleasant 
or painful, potentially leading to chronic visceral discomfort or pain[11].

The heterogeneity of the “healthy gut microbiota” has made it difficult to identify a 
clear IBS microbial signature. Indeed, the composition of gut microbiota composition 
is influenced by multiple factors, e.g., geographic location, ethnicity, dietary choices, 
medication use, and pathogens, summarized by Adak et al[12]. Hence, the human gut 
microbiota composition is highly diverse. This heterogeneity makes is difficult to 
provide a clear definition to what a “healthy microbiota” is. Nevertheless, some 
features are considered important characteristics: a high level of diversity, a favorable 
amount of butyrate-producing bacteria, and resistance and resilience - the ability to 
withstand a disturbance promoting a shift in the composition and the attribute to 
return to its initial composition, functionally or taxonomical, following this 
disturbance[12,13]. On the contrary, in disease the microbiota composition is often 
associated with a decreased microbial diversity and loss of the typical balance between 
the host and the microorganisms[13], a so-called  “dysbiosis” (a debated concept[14,15]
), linked to several systemic and local human diseases.

Multiple studies have shown differences in the gut microbiota between IBS and 
healthy controls[16-20]. A comprehensive systematic review from 2019 showed that 
patients with IBS have increased levels of the bacterial families Enterobacteriaceae, 
Lactobacillaceae and Bacteroidales, whereas Bifidobacterium, Faecalibacterium, and 
Clostridiales were decreased compared to healthy controls[21]. On the contrary, 
Hugerth et al[22] recently reported no distinct microbiota signature of IBS in a random 
Swedish population of 3556 participants. Here, the between-sample divergence was 
higher in IBS compared to controls from the same population-sampling frame, but no 
clear biomarker of IBS was revealed. There are multiple individual reports on 
differences in distribution patterns of constipation predominant IBS (IBS-C), IBS with 
mixed constipation and diarrhea (IBS-M), and diarrhea predominant IBS (IBS-D), 
summarized by, among others, Liu et al[23], and Wang et al[24]. Pozuelo et al[25] found 
butyrate- and methane-producing bacteria were less abundant in IBS-D and IBS-M 
patients. However, Pittayanon et al[21] summarized six studies from 130 patients with 
IBS-M, demonstrating no significant difference between subtypes. Interestingly, 
intestinal bacterial composition has been reported to be highly dependent on sample 
type and regional localization. Also, mucosa-associated bacterial composition of the 
sigmoid colon differ between patients with IBS and healthy controls[26].

Indeed, the absence of a universal definition of what a “healthy microbiota” is, in 
addition to lack of consistency in sequencing methodology, study protocols, inter-
individual variation that dominate intra-individual variation, definitions of “controls”, 
and different statistical methodologies being used have made the search for a common 
pathological IBS microbiota signature difficult. The importance of method selection, 
metadata, and perspectives for improving microbiota role predictions are discussed 
more thoroughly in section “Intestinal microbiota analyses”, below.

Another factor to consider is the impact of the circadian rhythm on gut microbiota 
variability. Both the level of host-derived autoantibodies and peptides and nutrient 
availability give fluctuations in the gut microbiota, and both are associated with 
circadian rhythm oscillations[6]. At least 10% of operational taxonomic units may 
oscillate due to the circadian rhythm, which is important to consider when collecting 
and analyzing fecal samples[27]. Thus, we might be in the mere beginning of 
understanding how alterations in gut microbiota may lead to the disruption of the 
intricate host-gut-microbiota-interaction. Is it a cause or a result of IBS pathology? In 
the last decade, much knowledge has been gained from clinical microbiota-altering 
interventions such as the low FODMAP-diet and fecal microbiota transplantation 
(FMT), which has emerged as debatably successful treatment strategies. However, 
their effects on the MGB-axis are still far from understood.
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Figure 1 Integration of multimodal and interdisciplinary approaches for big data analysis in irritable bowel syndrome. Created with 
BioRender.com. ANS: Autonomic nervous system; CNS: Central nervous system; FODMAP: Fermentable oligosaccharides, disaccharides, monosaccharides and 
polyols; FMT: Fecal microbiota transplant; 5-HT: 5-hydroxytryptamine (serotonin); SCFAs: Short chain fatty acids; GABA: γ-aminobutyric acid; TLRs: Toll-like 
receptors.

CLINICAL MICROBIOTA-ALTERING TREATMENT IN IBS – THE LOW 
FODMAP DIET AND FECAL TRANSPLANTATION 
Dietary intervention
Diet is an environmental factor that is pivotal in shaping the architecture of gut 
bacteria. Although genetics have been assumed to be of great importance[28], a recent 
study shows that environmental factors, such as diet, are dominating[29]. In the 
symbiotic host/bacteria relationship, gut bacteria depend on host intake of complex 
polysaccharides to facilitate growth. As hosts, humans depend on gut bacteria to break 
down complex nutrients resistant to human GI metabolism and metabolites produced 
from fermentation, such as SCFAs.  In IBS, foods play an important role among the 
contributing factors to symptom induction. In fact, the majority of patients with IBS 
experience increased symptom burden after food intake[30], despite the lack of 
objective evidence for food hypersensitivity or allergies[31]. Several underlying 
mechanisms generating symptoms are proposed to be involved[32]: (1) Local effects in 
the small and large intestine are caused by fermentable oligosaccharides, 
disaccharides, monosaccharides and polyols (FODMAPs). Intake of these short-chain 
carbohydrates have an osmotic effect in the gut lumen, increasing small intestinal 
water content and introduce undigested food particles to the gut bacteria who readily 
ferment them, causing gas production in the colon leading to abdominal pain as a 
consequence of a sensitive ENS i.e.: visceral hypersensitivity[33]. In 2017, Varjú et al[34] 
compared standard dietary therapy for IBS and the low FODMAP diet in 2017. Both 
diets showed to alleviate symptoms, but the low FODMAP diet showed a better 
therapeutic effect. However, with the available data on diet interventions in IBS, a low 
FODMAP diet has the greatest evidence of efficacy[35], with the most updated 
systematic review reporting significant improvements in GI symptoms and quality of 
life compared to control diets or habitual diets[36]; (2)  Gut microbiota alterations and 
bacterial fermentation might have a role in food-related symptoms. Inexplicably, 
contradicting findings regarding different microbiota compositions between patients 
with IBS and healthy controls are often reported[21,22]. A recent matched case-control 
study from a Thai population reported no distinction in the gut microbiota between 
IBS-D and healthy subjects[37]. Here, the authors accredit the discordant results from 
those conducted in Western countries as an effect of different dietary lifestyles 
affecting the gut microbiota, suggesting that alterations in gut microbiota is not the 
main pathogenic mechanism of IBS-D in Thai patients[37]. In the Swedish random 
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population, patients with IBS showed higher heterogeneity in microbiota composition 
compared to healthy individuals[22]. However, we need to keep in mind that bacterial 
fermentation capability may be more dependent on bacterial function rather than 
composition alone[38]. Nevertheless, differences in composition may still matter 
because it could result in differences in the effectiveness of a function[39]. Despite 
good documentation of a low FODMAP diet on symptom alleviation[36], FODMAP 
restriction is of concern due to possible unhealthy changes in gut microbiota 
composition with unknown consequences. Depriving the gut bacteria of carbohydrate 
and prebiotic substrates will shift the gut microbiota to ferment e.g., proteins and/or 
some amino acids, leading to production of potentially harmful compounds, 
summarized by Oliphant and Allen-Vercoe[40]. Desai et al[41] investigated gnotobiotic 
mice colonized with human gut microbiota fed a fiber-deprived diet. Because of fiber 
deficiency, the gut microbiota fed on the colonic mucosa layer that originally acted as a 
defense barrier against pathogens, leading to heighted pathogen susceptibility. 
Multiple features of alterations in the gut microbiota composition after a low 
FODMAP diet are reported, such as a lower total bacteria load, a lower absolute 
abundance of luminal Actinobacteria, Bifidobacteria, Clostridium cluster IV, Faecalibac-
terium prausnitzii, and a lower concentration of the SCFA butyrate[42-44]. These 
studies all report on short-term interventions compared to baseline or habitual diets. 
The inconsistency of the study results are intriguing. McIntosh et al[45] comparing a 
low and a high FODMAP diet found a higher bacteria richness and diversity of 
Actinobacteria, Firmicutes, and Clostridiales in patients with IBS-D/-M in the low 
FODMAP group, while a high FODMAP diet decreased the relative abundance of gas-
producing bacteria[45]. The sparse documentation of the long-term consequences 
beyond 8-12 wk of FODMAP restrictions does evoke certain skepticism. The highly 
restrictive nature of the diet may lead to disordered eating habits and demands much 
effort and motivation from patients. These factors highlight the importance of reintro-
duction of FODMAPs after the strict phase in the clinical management of patients with 
IBS[46]. Inter-individual variability and high inconsistency between clinical findings 
have made the search for a microbiota signature to predict treatment outcome 
challenging[47]; and (3) Systemic immune and inflammation responses may also 
contribute in symptom generation in IBS. McIntosh et al[45] showed that urinary 
histamine levels were substantially reduced following a low FODMAP diet[45], 
leading to hypothesizing that a low FODMAP diet might be beneficial in a subset of 
patients with a particular microbiota profile leading to high histamine production, 
hence where histamine is being a pathophysiology modulator of importance[32,45]. 
Our group were the first to report reduced levels of pro-inflammatory IL-6 and IL-8, 
but not TNF-α, after a 3-wk low FODMAP diet. Simultaneously, selected bacteria 
associated with anti-inflammatory properties, e.g. Faecalibacterium prausnitzii and 
Bifidobacterium, total levels of SCFAs and n-butyric acid, decreased[43]. Others have 
reported that SCFAs may have anti-inflammatory and immunomodulatory effects, as 
summarized by Tan et al[48], indicating that our findings present a paradox. Indeed, 
the full connection between diet intake, gut microbiota and its metabolites, and 
immune and inflammatory responses remains elusive. Herein, the intestinal barrier, 
gut integrity and low-grade inflammation is further discussed in section “Intestinal 
barrier and gut integrity”, below.

Fecal microbiota transplantation
In fecal microbiota transplantation (FMT) screened stool from a healthy donor is 
transferred to a recipient with the purpose of altering the diversity of the gut 
microbiota. FMT is recommended as a therapeutic strategy in Clostridioides difficile 
(CDI) infection, and has also been demonstrated effective in inflammatory bowel 
disease and IBS[49]. There are multiple routes of FMT delivery available including 
colonoscopy, nasogastric tube, nasoduodenal tube, enema and oral capsules. Each of 
these modalities has been associated with varying clinical success. Additionally, 
whether the donor sample is fresh or frozen, or derived from a related or unrelated 
donor may result in different outcomes. Many recent randomized controlled trial 
(RCT) studies in IBS have been published, although with conflicting results. In a meta-
analysis of five RCTs, overall FMT did not significantly improve IBS symptoms[50]. 
Here, the results were largely contradictive; one study showed amelioration of 
symptoms with FMT over placebo, while another study demonstrated superiority of 
placebo over FMT. The explanation for such contradictory results may be due to the 
heterogeneity of the disease. Another explanation may be the route of FMT adminis-
tration. A recent double blinded RCT recruited 90 IBS patients and randomly assigned 
them to active treatment (n = 60) or placebo (n = 30) where fresh transplant was 
delivered with colonoscope to coecum[51]. FMT induced significant symptom relief in 
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patients with IBS, compared to controls. In 2020, our group investigated the effect of a 
single FMT using different stool dosages (30 g and 60 g) of frozen feces, delivered to 
the distal duodenum through a gastroscope. Placebo was the patient’s own 
(autologous) feces. Here, patients responded best to the higher dosage. This study 
concluded that utilizing a well-defined donor with a normal dysbiosis index and a 
favorable specific microbial signature is important for a successful FMT[52]. Data on 
long-term follow-up post FMT in IBS have been sparse. However, 1-year effects were 
recently reported by Holvoet et al[53]. In a doubled blinded RCT of patients with 
treatment-refractory IBS with predominant bloating, patients were randomly assigned 
to single dose nasojejunal administration of donor stools or autologous stools[53]. 
Here, FMT relieved symptoms compared to placebo (autologous transplant), although 
the effects decreased over 1 year. A second FMT restored the response in patients with 
a prior response. Evidently, fecal samples from responders had higher microbiota 
diversity before administration of donor material than fecal samples from non-
responders and distinct baseline composition, but unfortunately, no specific marker 
taxa were associated with response[53]. In addition, 5-year effects were recently 
reported in a retrospective analysis by Cui et al[54]. In this single-center retrospective 
study, patients with all subtypes of IBS were assigned to receive FMT through 
nasojejunal administration, colonoscopy administration, or freeze-dried capsules from 
healthy, screened donors[54]. Considering all patients, regardless of route of adminis-
tration, 50% of patients reported gradual symptom improvement after one month to 
70% and 75% after one and two years, respectively. After five years, 60% of patients 
experienced improvement. This decline suggests that repetitive FMT may be required 
for a sustained effect[54].

There are many hopes for the future in IBS treatment, and FMT capsules are one of 
them. Capsules are beneficial because the route of administration is much less 
demanding than endoscopy, they put much less stain on the patient, and can be orally 
administered by the patients themselves at home. Halkjær et al[55] performed a RCT 
study in patients with moderate-to-severe IBS. FMT resulted in altered gut microbiota 
composition, but patients in the placebo group experienced greater symptom relief 
compared to the treatment group after three months. Supporting this, Aroniadis et al
[56] also found that placebo capsules did not induced symptom relief compared with 
placebo. Hence, the efficacy and safety of FMT in IBS is still under evaluation. Most 
researchers and clinicians strongly believe that more research is required before the 
FMT can become an openly available treatment option. A significant question that 
remains to be answered is whether the described dysbiosis in IBS is a consequence 
rather than cause of MGB-axis dysfunction in IBS. The varying abovementioned 
results may indicate that altering gut microbiota is not enough to obtain clinical 
improvement in IBS. FMT is a highly requested treatment among patients with IBS, 
and many practitioners find it difficult to refuse patients treatment that may be 
beneficial. However, researchers are calling for caution on FMT as a treatment of IBS
[57]. With reference to safety, patients have reported adverse effects of abdominal 
pain, cramping or tenderness, diarrhea or constipation, in contrast to 2% in the placebo 
group[52]. In march 2020, the US Food and Drug Administration issued a warning of 
potential risk for serious infections due to FMT caused by enteropathogenic or 
Shigatoxin-producing E. coli that occurred following investigational use of an FMT 
product supplied by a stool bank, from pre-screened donors[58]. Hence, different 
study designs with larger cohorts are required to examine the efficacy and safety of 
FMT in IBS.

Indeed, the complex interplay between the host and gut microbiota is not fully 
elucidated, but certain features in IBS are documented to be involved, including 
luminal interactions and its pivotal role in the regulation of the immune system. 
Whether altered microbiota composition, function and abundance is the cause or a 
consequence of IBS, we need to understand more about their interplay with us as 
hosts, and importantly, the intestinal barrier and gut integrity in IBS.

INTESTINAL BARRIER AND GUT INTEGRITY 
Molecular biology has revealed the presence of structural and functional alterations of 
the intestinal epithelial barrier and mild activation of the immune system both locally 
in the intestinal mucosa and systemically, in IBS. We now know that changes in 
intestinal permeability create a passage for microbiota and their metabolites from the 
lumen to the ENS, immune cells and systemic circulation, features that are associated 
with low-grade inflammation in IBS. Intestinal barrier dysfunction is present in a 
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significant proportion of reported IBS studies, especially in the IBS-D and post-
infectious subtype[59]. The association between impaired barrier function and 
symptoms in IBS are not fully understood but visceral hypersensitivity and pain is 
possibly explained by exposure of the submucosal neuronal and immune apparatus. 
Under normal conditions, the intestinal barrier consists of a monolayer of polarised 
epithelial cells, coated with a thick layer of mucus[60]. As a part of the host defence 
system, the mucus layer entraps pathogens and is inhabited by commensal microbes 
such as Bacteroides, Firmicutes, and Lactobacillus whose products, such as IgA, 
contribute to the prevention of pathogen colonization[61]. Microbiota also produce 
proteases and protease inhibitors that can modulate the host immune response. In IBS, 
dysbiosis-derived proteases are thought to contribute to loss of barrier function, 
immune activation, and symptom generation through activation of protease-activated 
receptors (PARs)[62]. Recently, higher levels of fecal proteolytic activity has been 
identified in IBS, particularly in patients suffering from post-infectious IBS[63]. 
Notably, this was associated with changes in microbiota composition, suggesting that 
specific microbes contribute to increased production or inadequate suppression of 
proteases and subsequent activation of PARs that may lead to intestinal barrier 
dysfunction.

In normal barrier permeability, the space between epithelial cells are sealed by tight 
junctions and maintained by a complex network of protein interactions. In IBS, the 
expression levels of tight junction proteins, such as Occludin, Zonula occludens-1, and 
Claudin-1, have been found to be reduced in the duodenum, jejunum and colon[59,64]. 

Interestingly, microbiota has been found to regulate the expression of tight junction 
proteins[65], and enhanced bacterial passage over the barrier has been observed[66].

In the intestinal mucosa, mast cells comprise 2%-3% of the immune cell pool of the 
lamina propria, and increased intestinal mast cell concentration or activation is one of 
the most consistent pathological findings in IBS[67-69]. Mast cells possess a great 
number of stimulatory molecules which allow interaction with a multitude of partners, 
including immune and non-immune cells. Activated mast cells release mediators such 
as histamine, serotonin, proteases, and prostaglandins, and they also secrete cytokines 
and chemokines. Their interactions are indeed complex. Some mast cells interact with 
both the commensal microbiota and the nervous system by signalling to enteric 
neurons though serotonin while being influenced by neurotransmitters such as 
substance P or noradrenalin[70]. In IBS, mast cell-induced activation of enteric neurons 
may contribute to visceral hypersensitivity[66,71]. Indeed, some bacteria specifically 
affect mast cells function and activation, but the role of dysbiosis-mast cell-interaction 
in IBS is yet to be elucidated.

A potential marker of low-grade inflammation in IBS is altered levels of cytokines. 
Multiple cytokine profiles of patients with IBS have been reported, but they are highly 
inconsistent. Some has found increased levels of circulating pro-inflammatory 
cytokines such as IL-6, IL-8, IL-17, and TNF-α[72-74], or reduced levels of the anti-
inflammatory cytokine IL-10[72]. Other studies indicate no difference between patients 
with IBS and healthy controls [75,76]. Interestingly, associations between altered 
cytokine profiles and changes in gut microbiota have been observed. A study by 
Hustoft et al[43] found reduced levels of IL-6 and IL-8 and decreased levels of 
Actinobacteria, Bifidobacterium, and Faecalibacterium prausnitzii after three weeks of 
the low FODMAP diet. Changes in cytokine levels could thus indicate an abnormal 
mucosal immune response associated with changes in the gut microbiota.

Increased expression of Toll-like receptors (TLRs) is an interesting finding in 
patients with IBS[77,78]. These receptors are found on many different cells, including 
intestinal epithelial cells and immune cells, and they interact in close relation to neural 
and immune receptors that are involved in the homeostatic regulation in the gut 
mucosa[79]. TLRs recognise specific microbial components of both commensal and 
pathogenic bacteria and play a role in immunologic tolerance to commensals and 
defend against pathogens[80]. In association with increased levels of TLRs, changes in 
both cytokine profiles and gut microbiota have been observed in patients with IBS, 
suggesting that an altered microbiota profile may influence TLR expression and 
immune activation[78].

Indeed, dysbiosis may induce intestinal barrier loss and increased intestinal 
permeability that cause bacterial products and metabolites to permeate the epithelial 
barrier, thus triggering an inflammatory response[81].  Mast cells are ‘‘gate keepers’’, 
and they are not only involved in allergic reactions, but also in host defence including 
recruitment and activation of other immune cells which may evoke the symptom 
generation. We believe that further studies should be more focused on which 
triggering factors that are involved in the link between gut microbiota, intestinal 
permeability, and intestinal mucosal response in patients with IBS. Indeed, changes in 
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intestinal permeability create a passage for microbiota and their metabolites from the 
lumen to the ENS, immune cells, and systemic circulation, features whose effect on the 
brain should also be investigated.

NEUROIMAGNING AND GUT MICROBIOTA IN IBS
The MGB-axis represent a paradigm shift in both neuroscience, gastroenterology and 
systems medicine. See Mayer et al[82] for a visionary and integrative systems-biology-
based model approach to IBS. GI symptoms such as heartburn, indigestion, acid reflux, 
bloating, pain, constipation, and diarrhea can be triggered by emotional and 
psychosocial factors. Conversely, GI symptoms alter CNS processing in the absence of 
detectable organic disease and are implicated in neurological disorders and psychiatric 
conditions such as anxiety, depression, autism spectrum disorder (ASD), and 
Parkinson’s disease. Brain imaging modalities and techniques are valuable tools that 
can non-invasively extract both structure and function in the living brain at the 
millimeter scale and at a temporal resolution down to seconds. To study the IBS brain, 
or more generally, applying brain imaging to explore disorders of gut-brain 
interaction and relation to gut microbiota, the most important modality with whole 
brain coverage is likely magnetic resonance imaging (MRI)[83,84]. Among the plethora 
of MRI measurement techniques, there are (1) Structural MRI (sMRI), providing 3D 
images with high spatial resolution and various types of soft tissue contrast enabling 
quantitative assessment of brain morphometry such as volumes of different brain 
structures or regions, local and patch-wise cortical thickness and gyrification, and 
localized MR signal intensity patterns, e.g., radiomics[85]; (2) diffusion MRI (dMRI), 
measuring directional and tissue-dependent water diffusion at the microscopic scale 
enabling quantitative assessment of tissue microarchitecture, e.g., metrics such as 
fractional anisotropy (FA) derived from the voxel-wise diffusion tensor estimation, 
and large-scale structural connectivity between brain regions obtain by fiber-tracking 
algorithms; and (3) functional MRI (fMRI), based on blood-oxygen-level-dependent 
(BOLD) contrast imaging sensitive to local neuronal activity across the brain in 
situations where the brain is exposed to cognitive, emotional or sensory stimuli given 
under experimental control, or being in “resting state” where brain activity is assumed 
to be intrinsic due to spontaneous fluctuations in the paramagnetic BOLD signal and 
thereby detectable even in the absence of an externally prompted task or a specific 
sensory stimulus. A large proportion of neuroimaging studies, partly also targeting 
IBS, have focused on structural and functional brain connectivity using a combination 
of dMRI and/or fMRI recordings and topological network analysis based on graph 
theory[86-89], and more recently also deep learning methods and graph convolution 
approaches for functional annotation of cognitive states[90,91]. It is expected that these 
deep learning methodologies will also penetrate imaging and network-based analysis 
in IBS research[82].

Keeping the systems view on IBS, the term radiomicrobiomics was coined by De 
Santis, Moratal and Canals in their perspective paper on advancing along the gut-
brain axis through big data analysis for diagnostic and prognostic purposes[92]. The 
term was introduced with reference to the efforts of combining microbiota sequencing 
data from the gut microbiota with imaging-based features that can be obtained from 
the conversion of brain images into mineable tabular data or graph representations in 
a network context. Interestingly, the gut microbiota seems to influence complex 
physiological systems other than the gut-brain axis and the pathophysiology of IBS, 
systems that are homeostatically regulated, partly involving CNS and ANS processing. 
These are blood pressure and the development and pathogenesis of hypertension, 
glycemic control, development of obesity and diabetes, mood regulation, and anxiety 
and depression[93-96]. In all these cases, neuroimaging and network analysis will be 
an important window to the brain and its interplay with microbiota composition and 
dynamics. More specifically, exploring the associations between neuroimaging 
parameters, such as brain regional volumes and gray matter densities assessed with 
sMRI, microstructural patterns assessed with dMRI and derived FA-values, or interre-
gional functional connectivity in e.g. the salience network, visceroceptive, pain 
processing, or emotion-regulating networks assessed with resting state fMRI and 
specific gut microbiota signatures, has the potential of vastly enhancing our 
knowledge on gut-brain interactions in IBS. In neuroimaging of the IBS brain, one of 
the most consistent findings are alterations in the structure and function of key regions 
of the somatosensory network, including the globus pallidus, putamen, and caudate, 
composing the basal ganglia[83]. It has also been reported increased gray matter 
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density (GMD) in the hypothalamus and decreased GMD in the prefrontal cortex in 
the IBS brain[97]. In rectal distention experiments, patients with IBS had a differential 
brain response in the pain matrix and default mode network[89]. Neuroimaging 
studies has also revealed gender-differences in IBS brain network alterations. Female 
IBS patients showed increased cortical thickness in the pre- and post-central gyrus and 
decreased thickness in the bilateral insula and the left subgenual anterior cingulate 
cortex (sgACC), compared to healthy female controls. Connecting emotions and 
altered brain function in IBS, patients with IBS and comorbid alexithymia have 
different brain responses to rectal distention in the right insula[98]. As a first in our 
field, Norlin et al[99] recently provided evidence that the vulnerability to fatigue in IBS 
is associated with connectivity within a mesocorticolimbic network as well as immune 
activation in the form of enhanced plasma levels of TNF-α, compared to controls. 
Indeed, there has been published a large series of papers on brain imaging in IBS, and 
now, evidence for disrupted subcortical and cortical regions mediated by gut 
microbial modulation are emerging. Labus et al[100] reporting associations between 
brain region-to-region functional connectivity and microbiota found a correlation 
between Clostridia and Bacteroidia with connectivity of the thalamus, the basal 
ganglia (caudate nucleus, putamen, pallidum, nucleus accumbens), the superior part 
of the precentral gyrus, the anterior insula and ventral prefrontal regions. Recently, the 
same lab also reported on fecal metabolites and resting state fMRI[101]. Here, the 
differences in histidine, cysteine, glycine, glutamate, spermidine, and anserine were 
significantly associated with the alteration in left dorsal part of the posterior cingulate 
gyrus to the left putamen. Also, the changes in histidine, tryptophan, uracil, 2-
deoxyuridine, thymidine, and succinate were differentially associated with the 
alteration in the right superior frontal gyrus to the right putamen. Interestingly, this 
interaction may be mediated by aberrant tryptophan signaling in IBS, which is 
important because it is a substrate for serotonin synthesis.

In combining brain imaging data, molecular and genetic data, and metagenomic 
data for joint analysis, new challenges and opportunities arise in the attempt to 
elucidate the mechanisms and biomarkers of IBS. This endeavour is further described 
and discussed in the section “Big data analysis” below.

INTESTINAL MICROBIOTA ANALYSIS
Importance of method selection
Microbiome research is advancing rapidly, improving the precision of taxonomy and 
functional surveys and minimizing methodological limitations. After almost two 
decades of the earliest intestinal microbiota surveys in humans, we have advanced 
towards recommendation of quasi-standard methodological procedures to make next-
generation sequencing (NGS) data comparable across studies. Notwithstanding, the 
complete implementation of standards is challenging, given the wide variety of 
commercial options for sampling, DNA extraction, amplicon generation, library 
preparation, and DNA sequencing that users fit at their own convenience, making 
cost-effectivity prevailing. In this regard, the International Human Microbiome 
Standards consortium has agreed that stool sampling requires minimal processing (no 
addition of preservation buffers and nuclease inhibitors) to maintain microbiota DNA 
and RNA integrity, thus facilitating sampling, storage and transport logistics by 
donors and patients. Besides, stool sub-sampling was revealed to produce minimal 
variation within individuals[102,103]. Among the multiple methodological steps, DNA 
extraction introduces the larger variation across experiments, and chemical (muralytic 
enzymes) or physical cell-wall disruption (bead-beating) methods during DNA 
extraction are recommended to gain the representation of some microbial species 
during massive and parallel sequencing and taxonomy data appraisals[103,104]. 
Taxonomy surveys via amplification and sequencing of bacterial 16S rRNA gene are 
widespread because of their cost-effectivity. A large collection of tools (e.g., QIIME2, 
Mothur, DADA2, etc.) and reference repositories (SILVA, RDP, Greengenes, GTDB) 
have been developed for such an aim. However, this methodology allows reliable 
identifications mostly at the family and genus levels. Also taxonomy classification 
depends on the region amplified[105,106] and, accordingly, inconsistencies have been 
found across studies. Currently, most of the studies are sequencing the V4 or V3-V4 
hypervariable regions because of their larger genetic variation and discriminatory 
power, facilitating re-use and comparisons across different studies.
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Metagenomic analysis, based on non-targeted massive DNA sequencing, 
outperforms the 16S rRNA gene hypervariable region sequencing, although it is much 
more expensive. Gigabase-level information normally recovered from individual 
samples permit inspection of microbial species present in human samples and other 
ecologically complex environments[107,108]. The discriminatory capability of this 
approach is constantly improved thanks to the existence of comprehensive genome 
catalogues[109], compiling a huge amount of microbial genetic variability and making 
it possible sample profiling at the strain level[110]. In addition to the detailed 
taxonomy surveys, metagenomics makes functional appraisals feasible via DNA read 
mapping strategies using curated and comprehensive repositories (e.g., KEGG, COG, 
eggnog databases). The functional analysis has also been developed for 16S rRNA 
gene amplicon sequencing data (namely PICRUSt). However, the predictions made 
with such an approach have a high degree of uncertainty due to the ambiguous 
taxonomic assignments of the 16S rRNA readouts and absence of functional variation 
information at the species level (minimal gene/functions shared on multiple genome 
examinations – pangenome – within a single species).

Metadata does matter
The interpretation of microbiome data require a proper control of covariates that many 
times are not available to be incorporated into the data analysis. This could lead to 
ambiguous (relying on the generally recognized strain-specific pathogenicity traits) 
and uncertain (plenty of false-positives) associations between the microbiota and 
health and disease states, largely influenced by confounding variables[111-113]. Of 
environmental factors, the intestinal microbiota is strongly influenced by the dietary 
patterns. Therefore, the use of dietary records around the sampling time are good 
strategies to integrate such information in the data analysis. The value of this type of 
information is even more important in microbiota-based biomarker discovery for 
example for IBS given the impact of food intake on disease symptoms[114]. 
Nevertheless, not all studies have found meaningful differences in microbiota when 
using dietary records[115,116]. There is growing evidence supporting a role of energy 
and macronutrient intake on the intestinal microbiota which could affect associations 
with health and disease. Body mass index (BMI), gender and age could affect both 
dietary habits and the intestinal microbiota and change through life differently in 
women and men[117-119]. By integrating gender, BMI, diet, and age information with 
microbiota data, the results are less influenced by the subjects' idiosyncratic variation 
and signals looking for links between gut microbes and health/disease states become 
more reliable. Moreover, pharmacological treatments given to IBS patients to tackle 
symptoms should be considered as they could bias the conclusions on the microbiota 
signatures correlated and playing a role in IBS. There is indeed extensive impact of 
non-antibiotic drugs on the composition and metabolic function of the gut microbiota
[14,120]. In summary, good practices in microbiome research for clinical application 
undoubtedly involve a meticulous metadata recording covering a large set of 
individual and lifestyle information that permit uncover unquestionably the influence 
of gut microbes in our health.

Perspectives for improving microbiome role predictions
The integration of functional omics provides information on the potential role of 
intestinal microbes and the metabolic products resulting from host-diet-microbe 
interactions and allows generating human-data-driven hypotheses which could be 
latter validated in study models. These methods turn data processing more complex 
because of multidimensionality, but provide clues on the molecular mechanism driven 
by microbe-host interactions and underlying health and disease[121]. For instance, the 
correlations of gut microbes (metagenomics) with secondary bile acids (lipidomics), 
SCFAs (metabolomics), and pro-inflammatory molecules (proteomics/cytokine arrays) 
make it possible to distinguish microbial groups that plausibly explain disease states 
or the physiological response to a particular dietary components[122-124]. The high 
individual specificity and variability of the microbiome data also requires the 
application of statistical methods that minimize false-positives during biomarker 
discovery, permit an adequate covariate control and integrate other multidimensional 
datasets. In this context, the EU COST action ML4Microbiome represents an 
interesting initiative for advising, researching, and developing advanced statistical and 
machine learning approaches applied to microbiome research that could greatly 
contribute to standardizing and improving data analysis in this field[125,126].

Promising developments have also emerged to improve, for example, the accuracy 
of the dietary assessments. These are often based on self-reported data and, therefore, 
biased affecting the interpretation of its relationship with the microbiome and health 
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outcomes. In this regard, metabarcoding of plant DNA has been proposed as a method 
to tacking human plant intake more accurately than using dietary questionnaires. 
Although this strategy has been only applied to gain information on plant components 
of the human diet, it looks promising to infer the dietary intakes and the resulting diet-
microbe interactions[127].

Sequencing technological advances are also helping to improve the taxonomy 
resolution of targeted amplicon-based microbiota analysis. The emergence of single-
molecule sequencing platforms (Oxford Nanopore Technologies and PacBio) has 
permitted to generate longer DNA reads, pivotal to increase the information of gene 
markers under inspection in microbial diversity assessments and to gain resolution at 
the species-level at a lower cost than metagenomics[128,129]. This methodology has 
already demonstrated good performance on microbiota surveys despite the modest 
per-base quality of its reads compared to the classical Sequencing-by-Synthesis (SBS)-
based instruments (Illumina). Its potential is even more promising to infer strain-level 
variation pivotal to determine, for example, species engraftment after FMT[130], 
which, as mentioned above, is under investigation to treat IBS[52,131].

BIG DATA ANALYSIS 
The enormous potential of big data, when harnessed efficiently by powerful statistical 
methods, mathematical models, and machine learning algorithms, often translates into 
deeper insights in multi-factorial dynamic systems, which are otherwise complicated 
to explore, describe and comprehend. The MGB-axis is a well-suited example of such a 
complex multivariate system and data science (i.e., machine learning algorithms and 
statistical analyses) is the method of choice to approach this problem. It has become 
highly evident that no single factor underlie the heterogeneous disorder of IBS. Its 
investigation requires analysis of large datasets collected from an array of clinical 
disciplines for a deeper understanding of pathophysiological mechanisms and 
pathways, and correlations with specific symptoms and symptom severity.

The large number of factors involved both from the brain and microbiota along with 
their continuous variability, yield large amount of information. These factors are 
probed using various clinical modalities across several points in time in longitudinal 
research. The number of resulting variables can range from few hundreds to tens of 
thousands and the magnitude of data can easily approach hundreds of thousands to 
several millions of data points, even for studies recruiting several tens of participants. 
This sheer scale of data combined with larger dimensionality and significant 
variability sets up a ripe case for employing sophisticated data science methods to 
study intricate relationships between brain and gut microbiota.

The MGB scientific community appear to already recognize and acknowledge the 
importance of data science in the field of our research. For example, in their review, De 
Santis et al[92] described the potential of large amount of information emerging from 
advanced neuroimaging systems and sophisticated microbiome sequencing techniques 
to probe complex interactions in the MGB-axis. Their proposal was to combine data 
from both of these domains to analyze quantitative features for intricate relationships 
using computational analysis methods, a process they termed “radiomicrobiomics”, 
which could potentially unveil novel biological information on the MGB-axis. Similar 
ideas were expressed in another critical review whose key note suggested that 
encoding microbial information along with other necessary variables into machine 
learning algorithms could excel our understanding on GI disorders, which are 
challenging to diagnose due to multifactorial nature of underlying pathology[132]. 
Mayer et al[83,133] had stressed the need of integrating large sets of host's multi-omics 
data and microbial data with machine learning techniques to reveal novel insights into 
the MGB-axis, independent of existing theories and hypothesis. Kaur et al[134] also 
emphasized the role of machine learning in multiomics data analysis to probe MGB 
relationship and discussed a framework to move beyond prediction to prevention and 
personalized therapeutics in MGB related disorders.

In line with these proposals, reports of initiatives and on-going work where the 
MGB-axis is being explored using the discipline of data science are beginning to 
emerge. In a recent study, statistical analyses were performed on combined brain and 
microbial datasets, acquired using resting state fMRI and genetic sequencing, 
respectively[135]. Probably for the first time, clear correlation-based associations were 
drawn between certain species of microbiota and corresponding brain regions affected 
by it, a step forward in the right direction. Wu et al[136] studied the association of gut 
microbiome in ASD using an array of statistical and machine learning-based analyses 
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and realized presence of certain bacterial genera in ASD group, which could be used 
as a potential ASD biomarker. Stevens et al[137] studied association of depression 
phenotype with gut microbiome using microbial genetic information at single 
nucleotide resolution using multivariate analysis. Based on genetic data of 
microbiome, they were able to differentiate between depression and healthy cases. The 
Bergen brain-gut-microbiota study is a notable example of an on-going work that 
integrates data science with multiomics, where both brain and gut data is being 
collected from an IBS patient cohort and healthy controls, as shown in Figure 1[138]. 
BrainGutAnalytics, an advanced analysis project under the umbrella of the Bergen 
brain gut study, aims to apply sophisticated data science methods to locate IBS 
biomarkers in brain and peripheral organ systems[139].

Despite these rapidly growing applications of data science in investigating the 
MGB-axis, it appears that the full potential of data science is yet to be leveraged. Data 
science techniques, such as machine learning models, particularly thrive in scenarios 
where the sample size is high (i.e., in order of thousands or more), as it allows the 
models to adequately learn the underlying data structure by iterating over large 
number of observations. On the contrary, clinical studies are often limited by sample 
size albeit high dimensionality of data, as various studies report participant cohorts 
comprising a few tens to a few hundred subjects only[120-122]. This limited sample 
size, on one hand, impedes the development of reliable computer models and on the 
other, high feature to sample ratio could lead to overfitting of the model, which often 
result in misleading predictions[119]. One tangible way to address this problem is 
aggregation of several datasets coming from various small scale studies into a larger 
MGB-axis database, as also proposed by other researchers[80,118,121]. Such a 
collection will not only feed the needs of data starving computer models but will also 
represent diverse sectors of subject population in terms of demographics and genetic 
backgrounds, improving generalization and validation of analysis outcomes. 
However, such an initiative would only be meaningful if a highly controlled and 
uniform system of data collection could be developed and implemented across all 
participating studies. A merger of various datasets taken from isolated studies 
following their own highly customized protocols, based on variable inclusion and 
exclusion criteria, will not carry much scientific value. Similarly, an acceptable level of 
consistency in data management system across all studies is imperative for rapid data 
accessibility, interpretation and interoperability. The establishment of a larger MGB 
database would also facilitate much needed interdisciplinary collaboration in MGB 
research, as data scientists and clinicians must join forces together to solve this 
complex puzzle.

CONCLUSION
In recent years, research aiming to understand the influence of the gut microbiota on 
bidirectional interactions between the gut and brain has gained momentum. As 
described and discussed in this review, the role of microbiota in IBS is so multifaceted 
that it requires research approaches across disciplines and scientific fields, to reveal 
details of the complex interactions. Currently, most dietary or FMT interventions are 
limited to observations of transient microbial shifts within short time frames. Person-
alized responses of the host microbiota may explain some of the heterogeneity of 
research outcomes, but not all. Because IBS fluctuates between periods of remission 
and aggravation of symptoms, longitudinal sampling, multiple sample time-points, 
post-intervention follow-ups and washout periods for cross-over studies are needed to 
identify microbial changes that are missed when using cross-sectional sampling, will 
be of great importance in future studies. We know that gut microbiota profiles are 
significantly associated with alterations in intestinal gut integrity, brain micro-
structure, intrinsic neural activities, and cognitive function and mood. How this 
tremendously intricate symbiotic relationship works in IBS, remains to be unraveled. 
Multimodal and interdisciplinary clinical studies that include assessments of the gut 
microbiota composition and function in conjunction with neuroimaging and 
behavioral testing, such as the Bergen BrainGut microbiota-study[138] are necessary 
for verification of directionality and causality in the MGB-axis in IBS. Other important 
work to come are how probiotics influence gut microbiota and affect functional 
changes in the brain through gut microbiota[140]. As described in this review, the 
choice of method for analysis is important. We believe, that only through integration 
of multiple advanced techniques, such as metabolomics and neuroimaging, can we 
generate a complete picture of host and microbiota pathways in IBS.
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Abstract
Liver cancer is the second most occurring cancer worldwide and is one of the 
leading causes of cancer-related deaths. Hepatocellular carcinoma (HCC) is the 
most common (80%-90%) type among malignant liver cancers. Sarcopenia occurs 
very early in HCC and can predict and provide an opportunity to improve muscle 
health before engaging in the treatment options such as loco-regional, systemic, 
and transplant management. Multiple prognostic stating systems have been 
developed in HCC, such as Barcelona Clinic Liver Cancer, Child-Pugh score and 
Albumin-Bilirubin grade. However, the evaluation of patients’ performance status 
is a major limitation of these scoring systems. In this review, we aim to summarize 
the current knowledge and recent advances about the role of sarcopenia in 
cirrhosis in general, while focusing specifically on HCC. Additionally, the role of 
sarcopenia in predicting clinical outcomes and prognostication in HCC patients 
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undergoing loco-regional therapies, liver resection, liver transplantation and 
systematic therapy has been discussed. A literature review was performed using 
databases PubMed/MEDLINE, EMBASE, Cochrane, Web of Science, and 
CINAHL on April 1, 2021, to identify published reports on sarcopenia in HCC. 
Sarcopenia can independently predict HCC-related mortality especially in 
patients undergoing treatments such as loco-regional, surgical liver transplant-
ation and systemic therapies. Basic research is focused on evaluating a balance of 
anabolic and catabolic pathways responsible for muscle health. Early clinical 
studies have shown promising results in methods to improve sarcopenia in HCC 
which can potentially increase prognosis in these patients. As sarcopenia occurs 
very early in HCC, it can predict and provide an opportunity to improve muscle 
health before engaging in the treatment options such as loco-regional, systemic, 
and transplant management. Further, sarcopenia measurement can obviate the 
confounding caused by the abdominal ascites in these patients. The use of 
sarcopenia can add to the existing scoring systems to better prognosticate the 
HCC.

Key Words: Sarcopenia; Skeletal muscle; Hepatocellular carcinoma; Cirrhosis; Outcomes; 
Liver cancer

©The Author(s) 2022. Published by Baishideng Publishing Group Inc. All rights reserved.

Core Tip: Sarcopenia is a condition defined by the loss of skeletal muscle mass, quality 
and strength. It is commonly seen as a part of normal aging but can also be noted in 
multiple conditions such as chronic inflammation, cancers and use of drugs. Sarcopenia 
is common in liver cirrhosis and is associated with overall poor outcomes (disease-free 
survival). Recently, the adverse effects of sarcopenia in hepatocellular carcinoma 
(HCC) has been an area of intense interest. Altered bio-impedence and rapid muscle 
loss in liver diseases could alter skeletal muscle strength in these patients. Additionally, 
development of tumor-related cytokines can accelerate the sarcopenia progression 
which could provide insights into disease progression and response to various 
therapeutic options. While multiple scoring systems are available to evaluate the HCC 
progression, sarcopenia provides an additional functional status tool to further refine 
these systems. In this article, we summarize the role of sarcopenia in HCC progression 
and changes during locoregional and systemic treatments.

Citation: Perisetti A, Goyal H, Yendala R, Chandan S, Tharian B, Thandassery RB. Sarcopenia 
in hepatocellular carcinoma: Current knowledge and future directions. World J Gastroenterol 
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URL: https://www.wjgnet.com/1007-9327/full/v28/i4/432.htm
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INTRODUCTION
Primary liver cancers include hepatocellular carcinoma (HCC) and other non-HCC 
tumors. Primary liver cancers are the second most lethal cancer worldwide, fourth 
leading cause of cancer mortality and sixth frequently diagnosed cancer per year[1]. 
HCC is the most common cancers among the primary liver cancers, which constitutes 
90% of cases. HCC usually develops within a liver cirrhosis (cirrhotic-HCC, 80% of 
cases), and rarely with no appreciable cirrhosis or advance fibrosis (non-cirrhotic-
HCC, 20% of cases)[2]. Due to aggressive nature of HCC, prognosis is poor. This is 
compounded by delay in the treatment, limiting life expectancy and management 
options. Early identification of high-risk features for appropriate stratification, and 
prognostication in HCC is paramount to alter the disease course and improve survival. 
Several prognostic staging systems and biomarkers have been developed to identify 
the patients at risk of poor prognosis[3]. Some of these include Cancer of the Liver 
Italian Program, Barcelona Clinic Liver Cancer (BCLC), Child-Pugh score, Chinese 
University Prognostic Index score, the Hong-Kong Liver Cancer stating system and 
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Japan Integrated Staging. Further, biomarkers such as alpha-fetoprotein (AFP), des-γ-
carboxyprothrombin AFP-L3, vascular endothelial growth factor, and angiopoietin 2 
were used as independent prognostic factors in advanced tumors[4]. However, current 
available staging and prognosticative systems lack parameters that consider 
nutritional, functional and performance status[5]. Although long-term prognosis is 
dependent on the liver reserve and staging of the cancer, poor performance can 
significantly affect clinical outcomes in HCC patients. The use of the Eastern 
Cooperative Oncology Group classification with BCLC could provide an assessment of 
patients functional status.

Rosenberg[6] introduced the term “Sarcopenia,” which was coined from the Greek 
word “sarx,” or “flesh,” and “penia,” or “loss.” It can be defined as loss of skeletal 
muscle mass, quality, strength with a reduction in the motor unit number, atrophy of 
type muscle fibers[7], and can contribute to frailty, functional impairment, and 
disability[8-11]. Three most commonly used diagnostic criteria used for sarcopenia 
include “muscle mass” (height-adjusted), “muscle strength,” and/or “physical 
performance”[12]. A focus on muscle function has shown to be a powerful predictor of 
clinically relevant outcomes rather than muscle mass alone[13]. Recently, body mass 
index (BMI)-adjusted mass is found to be a better predictor of adverse outcomes than 
height-adjusted muscle mass[14,15]. Further, multiple muscles or groups of muscles 
could be utilized to assess sarcopenia. Some of the most commonly used muscles 
include the paraspinal muscle area (psoas muscle, quadratus lumborum, transverse 
spinal muscle, erector spinae muscles) and triceps muscles (mid-arm circumference). 
Loss of skeletal muscle mass can affect static, dynamic and isokinetic strength[16]. It 
can also be associated with a decline in the maximum oxygen consumption (at a rate of 
3%-8% per decade of life starting from 30 years) which ultimately leads to a decrease 
in overall functioning[17]. Dynamic changes in skeletal muscle mass and function can 
occur with changes in hormones (daily insulin, glucagon), anabolic steroids, corticost-
eroids, thyroid (month-to-month), and immune mediators [interleukin (IL)-1, tumor 
necrosis factor, and IL-2]. Primary sarcopenia is noted to be due to physiological states 
such as aging and secondary causes (acute or chronic illness)[18]. Individuals with 
cancer may deplete up to 80% of their muscle mass. Further, sarcopenia can be noted 
in as high as 80% and 60% of patients with upper gastrointestinal and lung cancers, 
respectively[19]. Pre-therapeutic sarcopenia is noted with highest prevalence in 
esophageal and small-cell lung cancers and could have severe consequences in terms 
of post-operative complications, chemotherapy-related toxicity, and poor overall 
survival (OS)[20].

Cross-sectional imaging is commonly performed in HCC patients for diagnosis, 
surveillance, and treatment response[19]. It is logical to use this cross-sectional 
imaging to evaluate skeletal muscle mass simultaneously for valuable information to 
assess the prognosis and treatment outcomes. Additionally, patients with cirrhosis and 
HCC commonly develop ascites spuriously increasing the abdominal girth and 
weight. Despite this increase, significant proportion of these patients have decreased 
muscle mass leading to “sarcopenic obesity[21].” Use of an objective tool (which is 
measurable and reproducible) to assess the survival of HCC patients with ascites 
remains a challenge. Furthermore, methods to assess the prognosis of HCC patients 
during/after loco-regional (radiofrequency ablation, radioembolization, chemoembol-
ization), liver transplantation, and systemic therapy (chemotherapy, immunotherapy) 
could have a long-lasting impact on these individuals. One such objective method is to 
use sarcopenia to assess the patient response and overall could assist in OS in HCC 
patients[14,22-34]. Therefore, this manuscript aims to describe the role of sarcopenia in 
the management and prognosis in HCC. Furthermore, we aim to describe and 
summarize the methods to improve sarcopenia to enhance the survival of patients 
undergoing treatment for HCC.

LITERATURE SEARCH
An electronic search was performed using databases PubMed/MEDLINE, EMBASE, 
Cochrane, Web of Science, and CINAHL on April 1, 2021, to identify published reports 
on sarcopenia in HCC. We used the following search terms- “carcinoma, hepato-
cellular” or “cancer, hepatocellular” and ”sarcopenia” or “sarcopenias”. A total of 4762 
articles were published on sarcopenia and 167571 on hepatocellular cancers. Both basic 
science and clinical studies were included. A combined search revealed 2289 articles 
over the last 12 mo. The authors AP and HG reviewed the articles independently. 
Clinical reviews, case reports, and case series were excluded. A manual search was 
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performed by evaluating the references from included studies and related articles in 
multiple databases. If any discrepancies, these articles were re-reviewed by the author 
RT. After removing non-relevant/duplicates/non-English language articles, including 
a manual search, 80 full length published articles were finally reviewed.

HCC AND SARCOPENIA
Secondary sarcopenia is a common finding in patients with cirrhosis. Reduction in 
protein synthesis can lead to a decrease in lean body mass seen in cirrhotics[26]. 
Protein catabolism seen in disease processes such as neoplasms can lead to significant 
loss of muscle mass and it can be seen up to 40% of patients with liver cirrhosis[35]. 
Sarcopenia can be associated with an increased risk of encephalopathy, post-transplant 
mortality, infections, treatment effectiveness, and quality of life[36-38]. Patients with 
cirrhosis who were diagnosis with HCC showed accelerated sarcopenia up to 30-40% 
at the time of diagnosis[39,40]. Sarcopenia in these patients can independently predict 
HCC-related mortality along with decompensated cirrhosis, performance status, TNM 
staging, and BCLC class[41,42]. However, each of these have limitations with biggest 
being lack of prognostication, inability to provide comprehensive tool to assess 
complex interactions between cirrhosis, HCC and functional capacity[43]. Further, 
factors responsible for survival differ significantly among patients with compensated 
and decompensated cirrhosis[44].

As HCC occurs over time in patients with underlying chronic liver disease, 
assessment of skeletal muscle mass and change overtime can provide important details 
about deterioration of the disease. A number of tumor-related factors (cytokines and 
myokines) can change the skeletal muscle mass which can assist to further refine these 
scoring systems. Furthermore, cirrhotic have ascites, disproportionate loss of muscle 
compared to fat (altering BMI) leading to difficulty in interpreting bioimpedance, 
anthropometric measurements. Hence use of tools to integrate degree of sarcopenia-
related measurements by CT-based techniques can offer ways to predict change in 
these patients[45,46].

BIOLOGICAL BASIS OF SARCOPENIA IN HCC
Sarcopenia is the condition characterized by loss of muscle strength, mass, and 
functional ability. The pathophysiology of this muscle loss can be multifactorial 
(hormonal, inflammatory, age-related, chronic liver and non-liver states, drug 
induced). Loss of muscle anabolic activity with nutritional deficiency can further 
worsen sarcopenia. Loss of skeletal muscle homeostasis especially between 
hypertrophy and regeneration can lead to sarcopenia. Most of the changes related to 
sarcopenia originates with normal aging process. A balance of muscle protein anabolic 
and catabolic pathways are responsible for muscle health. During sarcopenia, multiple 
cellular changes occur such as the reduction in myofibres (size and number), myoste-
atosis (development of intramuscular and intermuscular fat infiltration)[47], decreased 
number of type II fibre satellite cells. Further, loss of mitochondrial integrity, 
molecular signaling [IGF-1, mammalian target of rapamycin complex 1 (mTOR)], 
neurological (plaque formation, motor neuron loss), epigenetic change (modulated via 
microRNAs), endocrine factors (myostatin , osteocalcin and abnormal communication 
among them) and reactive oxygen species (ROS) imbalance[48] combined with 
reduced physical activity can all contribute to the muscle loss. Some of the frequent 
causes of sarcopenia are elucidated in Figure 1. Hyperammonemia, increased 
autophagy, decreased protein synthesis, abnormal mitochondrial activity, increased 
proteasomal activity, and low testosterone levels are also responsible for sarcopenia 
cirrhosis[49,50]. It is compounded by decreased metabolic substrates (especially 
branched-chain amino acids)[51], extrahepatic gluconeogenesis, and increased insulin 
resistance/pro-inflammatory cytokines (NFκB signaling, mTOR inhibition, enhanced 
apoptosis, eukaryotic initiation factor-2[52]. Portal hypertension-related complications 
and alcohol intake further worsen sarcopenia in cirrhosis[53,54].

Early sarcopenia can be seen in HCC individuals[24,55]. Myokines (myostatin, IL-6, 
follistatin) are cytokines produced and secreted by muscle fibers and can exert 
paracrine/autocrine effects[33]. Myokines can exert immunological and anti-inflam-
matory effects and facilitate proinflammatory state of liver fibrosis, cirrhosis, and HCC 
development. Although myostatin levels in HCC have been a matter of debate, high 
IL-6 and follistatin levels had a significantly lower 5-year OS rate in HCC and were 
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Figure 1 Schematic illustration showing factors contributing to sarcopenia in hepatocellular carcinoma and cirrhosis. Patients with 
hepatocellular carcinoma have increased release of cytokines, hormonal substances (GH, anabolic steroids) and altered tumor microenvironment (with hypercatabolic 
state, mutagenesis included by altered DNA, increased reactive oxygen species. Patients with HCC have underlying cirrhosis with hyperammonemia, decreased m-
TOR activity which can contribute to sarcopenia. Non-tumor factors include poor nutrition and altered amino acid or lipid metabolism. HCC: Hepatocellular carcinoma; 
IL-1: Interleukin-1; IL-6: Interleukin-6; TNF-α: Tumor necrosis factor alfa; INF-γ: Interferon gamma; GH: Growth hormone; NF: Nuclear factor kappa B; STAT-3; Signal 
transducer and activator of transcription 3; ROS: Reactive oxygen species; NOS: Nitric oxide species; PGs: Prostaglandins; mTOR: Mechanistic target of rapamycin.

related to tumor progression by BCLC/TNM staging in HCC[33]. Follistatin is a 
glycoprotein and inhibitor of the TGF-β superfamily (such as myostatin, activin), and it 
can be related to tumor stage, size and can play an oncogenic role in hepatocarcino-
genesis. These details provide important insights into potential agents such as 
myostatin inhibitors, mitochondrial protective agents, and antioxidants, which can be 
utilized for liver cirrhosis or HCC[55]. Such anti-sarcopenic treatments could be used 
to prolong or further reverse molecular, and metabolic changes noted in HCC patients.

CHANGES IN SARCOPENIA WITH HCC TREATMENTS
Sarcopenia in HCC patients undergoing various treatments (locoregional and 
systemic) has been shown to impact outcomes and survival. Multiple studies have 
reported outcomes among these patients. It has been showed that a baseline 
sarcopenia is associated with lack of response to HCC treatments, further 
decompensation episodes, and increased mortality[56]. In the following sections, we 
elaborate on studies evaluating the role of sarcopenia in HCC patients with various 
treatments such as loco-regional, surgery, transplant, and chemo/immunotherapy.

LOCO-REGIONAL THERAPY
Patients with HCC can be candidates for multiple loco-regional treatment (LRT) 
options such as radiotherapy, chemoembolization, radioembolization. Data on 
sarcopenic predicting response to LRT is sparse (Table 1)[14]. Iritani et al[15] reported 
217 HCC patients on LRT and evaluated the role of sarcopenia. In this study, L3 
skeletal muscle index (SMI) was used to define sarcopenia. Patients with low L3 SMI 
showed a significantly lower OS compared to those without sarcopenia (P = 0.004). 
Further, obese sarcopenic patients died earlier (P = 0.013)[15]. In 2015, Fujiwara et al
[57] showed a higher risk of HCC recurrence in sarcopenic patients in 515 patients 
with BCLC stage 0/A who underwent percutaneous radiofrequency ablation (RFA). In 
2017, a retrospective study of 182 patients with HCC undergoing percutaneous RFA 
therapy with curative intent was analyzed[58]. Patient with sarcopenia decreased 
pretreatment psoas muscle index (PMI) survival (overall cumulative survival) was 
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Table 1 Outcomes of hepatocellular carcinoma patients undergoing loco-regional therapy with sarcopenia

Ref. Technique n Methods and outcomes
RFA

Iritani et al[15] (2012-
2014, Japan) 

RFA 217 L3-SMI. B36.0 cm2/m2 for men and B29.0 cm2/m2 for women. Sarcopenia patients had 
lower OS than those without

Fujiwara et al[57] (2015, 
Japan) 

RFA 515 L3-SMI used. B36.2 cm2/m2 for men and B29.6 cm2/m2 for women. Sarcopenia was 
associated with a higher risk of recurrence in very early/early-stage HCC who underwent 
treatment with RFA.

Yuri et al[58] (2017, 
Japan) 

RFA 182 PMI used. 6.36 cm2/m2 for men and 3.92 cm2/m2 for women. Sarcopenia was associated 
with overall reduced HCC survival with no effect on recurrence.

TACE

Dodson et al[38] (2013, 
United States) 

TACE drug eluding 
TACE

216 TPA was used to assess sarcopenia. TPA of < 477 mm/m2 for men and < 338 mm/m2 for 
woman. Sarcopenia was independently associated with increased risk of death (lowest vs 
highest TPA quartile, HR = 1.84; P = 0.04)

Kobayashi et al[60] 
(2018, Japan)

TACE 102 L3-SMI used. 42 cm2/m2 for men and 38 cm2/m2 for women. Change in L3-SMI was an 
independent prognostic factor in patients with HCC treated with TACE.

Loosen et al[61] (2019, 
Germany) 

TACE 56 Mean PMI was 11.81 mm/m2. Low PMI (13.39 mm/m2) had significantly lower median 
overall survival (491 d) compared to high PMI (1291 d)

Fujita et al[59] (2019, 
Japan) 

TACE 179 PMI used. < 6.0 cm2/m2 for men and < 3.4 cm2/m2 for women. No difference was normal 
with low PMI and normal PMI for HCC outcomes. However, changes in PMI were 
significant after TACE with significant loss of liver function reserves post treatment. 

TARE

Faron et al[32] (2020, 
Europe) 

TARE 58 MRI derived FFMA were used to predict sarcopenia. FFMA < 3582 mm2 for men and < 
2301 mm2 for men. Low FFMA was associated with significantly reduced OS (197 vs 294, P 
= 0.02).

Studies depicting various loco-regional treatments utilized in hepatocellular carcinoma in relation to sarcopenia. RFA: Radiofrequency Ablation; TACE: 
Transarterial chemoembolization; TARE: Transarterial radiofrequency embolization; L3-SMI: Third lumbar vertebrae-skeletal muscle index; OS: Overall 
survival; HCC: Hepatocellular carcinoma; TPA: Total psoas area; FFMA: Fat-free muscle area; PMI: Psoas muscle index.

51.5% compared to 86.5% without sarcopenia (P < 0.0001. In addition to sarcopenia, 
total bilirubin ≥ 1.2 mg/dL, des-γ-carboxy prothrombin ≥ 34 mAU/mL (P = 0.009) 
were found to be adverse predictors of OS [58]. These findings were irrespective of 
CTP score or achievement of SVR in HCV-related HCC. Furthermore, above findings 
indicate the usefulness of sarcopenia to assess outcomes of HCC patients undergoing 
RFA.

Trans-arterial interventions for the HCC can be chemoembolization (TACE) or 
radioembolization (TARE) and are increasingly being utilized for large or multifocal 
disease with metastasis or macrovascular invasion[27]. The available data are 
conflicting about the role of sarcopenia as a predictor of survival in HCC who 
underwent TACE (Table 1). Fujita et al[59] and Kobayashi et al[60] showed no 
significant association between muscle volume at baseline and clinical outcomes. On 
the contrary, Loosen et al[61] and Dodson et al[38] showed that pre-interventional 
sarcopenia was associated with poor outcomes. Significant heterogeneity was noted in 
the methods to evaluate sarcopenia in these studies. The total psoas area (TPA), PMI, 
and L3-SMI were used to evaluate the presence of sarcopenia. If sarcopenia directed 
these effects (on the TACE efficacy) beyond the patients’ general clinical condition or if 
this is mere an association, needs further evaluation in a prospective fashion. Data on 
the effects of sarcopenia on HCC patients with TARE is even more limited. Recently, 
Faron et al[32] reported 58 HCC patients using MRI-derived fat-free muscle area 
(FFMA) to predict sarcopenia. The FFMA < 3582 mm2 for men and < 2301 mm2 for 
women were used. In this study low FFMA was associated with significantly reduced 
OS (197 vs 294, P = 0.02)[32].

SURGICAL TREATMENTS
Liver resection
The role of sarcopenia in HCC patients undergoing liver resection is increasingly 
become topic of interest. Since, HCC patients often have poor nutritional status, 
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methods to reduce the catabolic state and improve protein synthesis, regeneration, Fan 
et al[62] investigated 124 patients to evaluate the role of nutrition in HCC resection. 
Nutrition therapy given prior to the liver resection with branched chain amino acids 
(BCAA), lipids, and dextrose have shown to decrease the worsening of liver function, 
sepsis-related complications, need for treatment for ascites, and overall decreased 
mortality. There was a reduction in the overall post-operative morbidity in the 
nutrition group compared to the control group (34% vs 55%; relative risk, 0.66; 95%CI: 
0.45-0.96)[62]. In 2013, Harimoto and colleagues[63] studied 186 HCC patients with 
sarcopenia using L3-SMI (< 43.75 for men, < 41.10 for women), and a significant 
correlation was noted between sarcopenia and liver dysfunction (indicated by low 
albumin levels and indocyanine green retention). In patients with and without 
sarcopenia, the 5-year OS rate was 71% and 83·7%, and the 5-year recurrence-free 
survival rate was 13% and 33·2%, respectively[63]. Additionally, studies evaluated the 
relationship between total functional liver volume (TFLV) and sarcopenia (L3-SMI) 
and found that median TFLV was significantly lower in the sarcopenic group than the 
normal group (1296 mL vs 1840 mL; P < 0.05)[64].

Sarcopenic obesity characterized by increased fat volume compared to skeletal 
muscle mass. As obesity and loss of muscle share common pathophysiological 
mechanisms, combined insult could display a poor outcome. Studies evaluated the 
effect of sarcopenic obesity in HCC and found that patients with sarcopenic obesity 
had worse median survival (84.7 mo vs 39.1 mo, P = 0.002) and worse median 
recurrence-free survival (21.4 mo vs 8.4 mo, P = 0.003)[21]. Additionally, it was 
identified as an independent risk factor for death and HCC recurrence[21]. Effect of 
sarcopenia on immediate and short-term clinical outcomes after hepatic resection was 
examined by Otsuji et al[65] Sarcopenic patients had a higher postoperative length of 
stay, higher rates of liver failure, major complications, and intra-abdominal abscess 
formation (Table 2). Multiple other studies have provided similar results with different 
modalities to evaluate sarcopenia, such as L3-SMI, TPA, and visceral-to-subcutaneous 
adipose tissue ratio (Table 2). Furthermore, these studies used differing SMI cut-off 
points to define sarcopenia. The majority of the studies point to poor outcomes in 
patients with sarcopenia, which might be due to the underlying liver dysfunction and 
HCC severity. Nevertheless, prospective data with uniform cut-off points to assess 
SMI to define sarcopenia in these studies to provide concrete evidence of the 
relationship between sarcopenia and liver resection.

Liver transplantation
Sarcopenia in patients awaiting liver transplantation (LT), perioperative and 
postoperative outcomes have been studied recently[66-71]. Multiple methods to assess 
sarcopenia were used (Table 3). For example, L3-SMI, psoas muscle thickness, MELD-
sarcopenia score, skeletal muscle mass-to-visceral fat area ratio (SVR), TPA, PMA, and 
height normalized psoas muscle thickness were used. Among these, L3-SMI is the 
most commonly used objective way of assessing sarcopenia. Further, studies evaluated 
the wait times and survival related to sarcopenia (Table 3).

Studies performed on outcomes in LT patients evaluated the preoperative status of 
the patients (listed and waiting for the transplant), procedural outcomes and post-
procedure long-term survival. Carey et al[68] in 2016 used L3-SMI with 50 cm2/m2 for 
men and 39 cm2/m2 for women and noted that individuals who died had lower SMI 
compared to those who survived (45.6 cm2/m2 vs 48.5 cm2/m2; P < 0.001), and SMI was 
associated with wait-list mortality (HR, 0.95; P < 0.001). Wada et al[67] in 2017 
considered sarcopenia for TPA of 791.6 mm2/m2 for men and 488.8 mm2/m2 for 
women. The authors compared TPV to TPA. The preoperative total psoas volume 
(TPV) was found to be a better predictor than TPA in assessing post-operative risks in 
living-donor LT recipients[67]. Multiple studies evaluated the LT outcomes and 
complications such as infections, length of stay, failure to rescue, and surgery-related 
events[72,73]. The rate of infections was assessed and compared to individuals with 
sarcopenia. Patients with sarcopenia had a higher prevalence of sepsis, bacterial 
pneumonia, longer ICU stays, and mortality[2,69]. Postoperative survival was studied 
by Van Vugt et al[69] and Kaido et al[72] who noted that sarcopenia was inversely 
associated with clinical outcomes after LT. Few studies noted sarcopenia developing 
after the LT, which is probably due to underestimation of muscle mass/strength 
estimation before LT. In addition to underlying cirrhosis, increased catabolism, tumor-
related morbidity noted in these patients, the role of immunosuppressant use cannot 
be underestimated. The use of mTOR and calcineurin inhibitors can potentially lead to 
sarcopenia[74]. Further, renal dysfunction caused by calcineurin inhibitors can 
compound these effects. The results of these studies provide an opportunity for 
improving the nutritional status in sarcopenia LT patients with dietary and exercise 
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Table 2 Outcomes of hepatocellular carcinoma patients undergoing liver resection (hepatectomy) with sarcopenia over last 5 years

Ref. Technique n Methods and outcomes

Otsuji et al[65] 
(2015, Japan)

Major hepatectomy 
and extrahepatic bile 
resection

256 Total psoas area (TPA) was used to assess sarcopenia. TPA of < 567 mm/m2 for men and < 395 mm/m
2 for woman. Length of postoperative hospital stay were longer (39 d vs 30 d, P < 0.001, high rate of 
liver failure (33% vs 16%), major complications (54% vs 37%), intra-abdominal abscess (29% vs 18% 
compared to those without sarcopenia (P < 0.05)[69]. 

Voron et al[110] 
(2015, Japan)

Hepatectomy 198 L3-SMI used 52.4 cm2/m2 for men and 38.9 cm2/m2 for women. Sarcopenia was associated with 
shorter median OS (52.3 mo vs 70.3 mo; P = 0.01 and it was an independent predictor of OS and DFS.

Yabusaki et al
[111] (2016, 
Japan) 

Primary hepatectomy 195 SMI used 43.75 cm2/m2 for men and 41.10 cm2/m2 for women. Sarcopenia was associated with poor 
cumulative recurrence rate (P = 0.13).

Takagi et al[113] 
(2016, Japan)

Curative hepatectomy 254 L3-SMI used 46.4 cm2/m2 for men and 37.6 cm2/m2 for women. The sarcopenic group had a 
significantly lower 5-yr OS rate than the non-sarcopenic group (58.2% vs 82.4%, P = 0.0002). Further it 
was an independent predictor of poor survival (HR =2.28, P = 0.002) and poor ASA status (HR = 3.17, P 
= 0.001).

Kobayashi et al
[21] (2019, Japan) 

Hepatectomy 465 L3-SMI used. 40.31 cm2/m2 for men and 30.88 cm2/m2 for women. Sarcopenic obesity as a significant 
risk factor for mortality (HR = 2.504, P = 0.005) and recurrence of HCC (HR = 2.031, P = 0.006) after 
hepatectomy for HCC.

Hamaguchi et al
[112] (2019, 
Japan) 

Hepatectomy 606 L3-SMI was used to assess the sarcopenia. SMI of < 40.31 for men and 30.88 for women were used. A 
high visceral-to-subcutaneous adipose tissue ratio, low SMI, and high IMAC contributed to an 
increased risk of death (P < 0.001) and HCC recurrence (P < 0.001) in an additive manner. 

Xu et al[22] (2020, 
China)

Hepatectomy 1420 Authors performed a meta-analysis of six studies and preoperative sarcopenia was significantly 
associated with poor OS (HR =1.58, 95%CI: 1.34-1.84, P = 0) and shorter DFS (HR =1.54, 95%CI: 1.17-
2.02, P = 0.002) in patients with HCC undergoing hepatectomy[24].

Studies, techniques and outcomes to evaluate the success of liver resection in patients with sarcopenia and hepatocellular carcinoma. L3-SMI: Third lumbar 
vertebrae- skeletal muscle Index; OS: Overall survival; SMI: Skeletal muscle index; HR: Hazards ratio; DFS: Disease free survival. HCC: Hepatocellular 
carcinoma; TPA: Total psoas area; IMAC: Intramuscular adipose tissue content; PMI: Psoas muscle index.

measures during pre, peri and post-operative period.

Systemic therapies
The use of chemotherapy and immunotherapy has become the mainstay of treatment 
for HCC lesions that are not amenable to LRT or LT. Sorafenib is the most studied and 
prescribed chemotherapeutic agent in HCC[75]. Although it can prolong survival, its 
use is limited by its adverse effects such as nausea, excessive fatigue, and diarrhea 
noted in most patients. These studies evaluated multiple outcomes such as OS, 
progression-free survival, mortality were evaluated in different studies in HCC 
patients receiving Sorafenib therapy[76-82]. While the ways to assess the sarcopenia 
differed in these studies, most commonly used method is L3-SMI. Further various cut-
off values were utilized in these studies.

Nishikawa et al[78] studied 232 patients to evaluate for OS using L3-SMI. The 
authors noted that the patients with sarcopenia had significantly low median OS of 
174 d compared to 454 d in the non-sarcopenic group (P < 0.0001). Multivariate 
analysis showed that sarcopenia was an independent predictor of OS. Similarly, 
Takada et al[81] studied 214 patients in which OS in pre-sarcopenia patients were 
worse than without pre-sarcopenia (median 252 d vs 284 d, respectively; P = 0.16). 
Saeki et al[82] reported 100 advanced HCC patients using use of L3-SMI showing 
individuals without muscle depletion had longer survival was noted (HR = 0.50, P = 
0.006). This combined with low tumor number (< 7) and lack of extrahepatic spread 
offered better survival in these patients[82]. Dynamic assessment of sarcopenia has 
assisted to compare outcomes before and after starting sorafenib. Few studies noted 
that sarcopenia worsened after the initiation of sorafenib. If this is due to the 
progression of HCC or angiogenic (or Carnitine inhibitory) properties of sorafenib 
needs further evaluation[83]. Further, Cheng et al[34] reported that pre-sarcopenia 
could independently predict the outcomes in sorafenib-failed HCC.

Use of other modalities such as fat mass indices (visceral, subcutaneous) in 
combination with L3-SMI and their relative changes (over a period of time) can assist 
in assessing sarcopenia and can predict outcomes in HCC patients receiving sorafenib
[82]. However, more studies are needed to confirm these findings. Recently newer 
agents for HCC are increasingly utilized such as Regorafenib, Lenvatinib, Nivolumab, 
the combination of gemcitabine and oxaliplatin (GEMOX regimen)[30,84-86]. Studies 
showing the effect of sarcopenia on HCC patients' survival using these agent are 
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Table 3 Outcomes of hepatocellular carcinoma patients undergoing liver transplant with sarcopenia over last 5 years

Ref. Technique n Methods and outcomes

Itoh et al[114] (2016, 
Japan) 

Living-donor LT 153 Based on SVR, patients with low SVR were had poor prognosis than without low SVR for 
OS (P = 0.03) and recurrence-free survival (P = 0.01). 

Carey et al[68] (2016, 
United States) 

Awaiting LT 396 L3-SMI used. 50 cm2/m2 for men and 39 cm2/m2 for women. Patients who died had 
lower SMI compared to those who survived (45.6 cm2/m2 vs 48.5 cm2/m2; P < 0.001), and 
SMI was associated with wait-list mortality (HR, 0.95; P < 0.001)[72].

Wada et al[67] (2017, 
Japan)

LDLT 32 TPA was used. TPA of 791.6 mm2/m2 for men and 488.8 mm2/m2 for women. TPV was 
used to compare to TPA. Preoperative TPV is a better predictor compared to TPA in 
assessing post-operative risks in LDLT recipients[71].

Golse et al[70] (2017, 
Europe) 

LT 256 PMA, L3-SMI was used. 1561 mm2 for men and 1464 mm2 for women. One and 5-yr OS 
rates were significantly poorer in the sarcopenic group than in the nonsarcopenic group 
at 59% vs 94% and 54% vs 80%, respectively (P < 0.001). Authors concluded that pre-LT 
PMA might be predict 1-yr survival post-LT[74].

Van Vugt et al[69] 
(2017, Europe) 

Listed for LT 585 L3-SMI used. 43 to 53 cm2/m2 for men based on the BMI and 41 cm2/m2 for women. 
Sarcopenia was associated with waiting list mortality in liver transplant candidates with 
cirrhosis, particularly in patients with lower MELD scores (P < 0.001) [73].

Kim et al[71] (2018, 
Japan) 

LDLT 92 Height normalized psoas muscle thickness (< 15.5 mm/m) at L3. HCC recurrence risk 
was greater in sarcopenic patients in univariable analysis [HR = 8.06 (1.06–16.70), P = 
0.044) and in multivariable analysis [HR = 9.49 (1.18–76.32), P = 0.034][75]. 

Chae et al[66] (2018, 
South Korea)

LDLT 408 This study investigated the association between a perioperative decrease in the PMI and 
patient mortality after LT. A PMI decrease ≤-11.7% between the day before surgery and 
POD-7 was an independent predictor of patient mortality after LT[70].

Techniques, methods and outcomes to evaluate the success of liver transplantation in patients with sarcopenia and hepatocellular carcinoma. LT: Liver 
transplant; LDLT: Living-donor LT; SVR: Skeletal muscle mass-to-Visceral fat area ratio; TPV: Total psoas volume; PMA: Psoas muscle area; BMI: Body 
mass index; L3-SMI: Third lumbar vertebrae- skeletal muscle index; OS: Overall survival; SMI: Skeletal muscle index; HR: Hazards ratio; DFS: Disease free 
survival; HCC: Hepatocellular carcinoma; TPA: Total psoas area; PMI: Psoas muscle index.

sparse. Lenvatinib induces minimal muscle loss after 2 years of treatment correlates 
with its low toxicity[23,30,87]. Combined effects of sarcopenia and inflammation (by 
high neutrophil-to-lymphocyte ratio and absolute lymphocyte count) have been 
studied in patients receiving nivolumab in HCC patients[28]. If inflammatory markers 
are more important than sarcopenia in patients received immunotherapy needs further 
validation[25,28]. Overall, sarcopenia can predict survival in advanced HCC patients 
receiving chemotherapeutics such as sorafenib before initiation of the treatment and 
during and after the treatment. Strategies to improve the muscle mass, nutrition can 
add to the survival in these patients. Further studies are needed to evaluate the role of 
sarcopenia for new chemotherapy and for immunotherapy.

METHODS TO IMPROVE SARCOPENIA
As sarcopenia can adversely affect the outcomes of HCC patients undergoing 
treatments, methods to improve could impact the survival of these patients. As HCC 
happens with a background of cirrhosis in up to 80%-90% of patients, improving 
sarcopenia in cirrhotics could assist in improving survival. Reversing pathophysiology 
by improving myofibres size, number, reversing myosteatosis, inhibiting mitochon-
drial integrity loss, mTOR signaling, and decreasing ROS accumulation can improve 
sarcopenia in both HCC and cirrhotics. Two major strategies exist to improve 
sarcopenia in these patients- nutritional support and physical exercise. Use of L-
carnitine, BCAA, leucine have been used in the studies to increase the nutritional 
component[88,89]. Improvement of skeletal mass (PMI) was noted after the supple-
mentation of these agents in these studies. Physical exercise can recruit more 
myofibres and at least inhibit sarcopenia. It is unclear if it can reverse the sarcopenia 
completely. Both isometric (lifting hand weights 2-3 times per week) and isotonic (30-
40 min walking 3-4 times per week) have been used to improve muscle strength in 
these patients[90-94]. Studies have shown an increased muscle cross-sectional area 
(quadriceps) with exercise in cirrhotics of at least 10%[95]. Although, testosterone 
supplementation have been reported to improve the sarcopenia, few reports of alpha-
alkylated formulation could theoretically increase the risk of HCC formation[96].
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The role of non-steroidal Selective Androgen Receptor Modulators (SARMs) is 
increasingly being recognized in the treatment of sarcopenia[97-99]. SARMs inhibit 
protein degradation and thereby could decrease the rate of sarcopenia. Multiple 
animal models have been used to evaluate mechanisms of SARMs to reverse muscle 
atrophy in degonadized mice. For instance, SARM treatment in ovariectomized rat 
model can increase muscle mass by enhanced mitochondrial biogenesis, actin and 
myosin[98]. SARMs can target androgen receptors and decrease sarcopenia via 
paracrine growth factor signaling on vimentin positive muscle fibroblasts[97]. Further, 
upregulation of mTOR, glycogen synthase kinase[99]. SARMs also exhibit anabolic 
effects, increasing the bone and muscle mass which are affected in patients with HCC. 
A combination approach of nutritional supplementation with physical exercise with a 
multidisciplinary approach has been tried in cirrhotics and HCC patients[31]. 
Significant changes in muscle volume was noted after the intervention[95]. Similarly, a 
combined approach has been tried in a few studies in HCC patients undergoing TACE
[100,101]. This approach has been studied in patients waiting or LT, with good 
response[102,103]. In conclusion, a combined multidisciplinary approach is useful and 
logical to improve the sarcopenia in cirrhotics and HCC which might eventually 
improve outcomes of these patients undergoing local, surgical and systemic therapies.

FUTURE DIRECTIONS
Although sarcopenia can offer significant details about the functional status, it can be 
further enhanced by the use of frailty (using clinical frailty scale, liver frailty index, 
Karnofsky performance status) and amount of malnutrition (by assessment of BMI, 
nutritional intake). These can be incorporated into composite scoring to better evaluate 
the functional status of HCC patients. Recently use of changes in bone resorption via 
upregulation of inflammatory cytokines opened the concept of sarcopenic osteoporosis
[104]. A crosstalk between skeletal muscle, bone homeostatic changes with underlying 
cirrhosis and HCC can provide pathways for treatments in the future. Myostatin, 
irisin, osteocalcin, activation of Wnt/β-catenin pathways have been implicated in 
sarcopenic osteoporosis. Furthermore, biomarkers such as imbalance of plasma free 
amino acids (BCAA) have been implicated in progression of HCC[105]. If this could be 
a reliable way to improve the sarcopenia in HCC patients remains to be studied.

Precision medicine tools such as use of radiomics and radiogenomics are emerging 
for assessing host and tumor-related risk factors in HCC[106,107]. Radiomics uses 
medical imaging data to develop reproducible quantitative data from qualitative 
images. This has been utilized for lung cancer assessment of tumor and non-tumor 
tissue[108]. Development of methods to quantify the amount of normal non-tumor 
liver tissue in HCC patients is essential for surgeons to evaluate resection strategies. 
Seror et al[109] noted that use of non-invasive cross-sectional imaging to assess the 
liver surface nodularity and lean body mass can act as surrogate markers for liver 
cirrhosis and sarcopenia. Patients with higher liver surface nodularity (OR 7.05, 
95%CI: 2.13-23.25) and sarcopenia (OR 6.51, 95%CI: 2.08-20.39) were associated with 
high risk of complications[109]. A step further in this direction, use of genomics 
(cellular and molecular changes) to existing radiomics can provide radiogenomic 
information which can be used to develop molecular signatures for development for 
actionable clinical targets[107]. Finally use of artificial intelligence and deep learning 
can lead to next generation biostatistical and informatic data to develop algorithms 
and pathways to identify optimal clinical patterns[106].

CONCLUSION
Sarcopenia is increasingly recognized as a predictive marker for assessing outcomes in 
HCC patients. There is increasing evidence to evaluate its role in loco-regional, 
surgical, transplant, and systemic treatment options in HCC patients. Early recognition 
to identify sarcopenia, methods to improve the muscle volume, strength, and mass 
could impact the patient outcome and OS. The use of appropriate nutritional support, 
physical activity or both could potentially improve muscle volume in these patients. 
However, it is unclear about the degree of improvement of the sarcopenia with all of 
these measurement combined. Further, prospective studies aimed at interventions that 
could potentially reverse sarcopenia to improve HCC patients' outcomes are needed in 
the future.
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Abstract
Celiac disease (CeD) is a multifactorial autoimmune disorder spread worldwide. 
The exposure to gluten, a protein found in cereals like wheat, barley and rye, is 
the main environmental factor involved in its pathogenesis. Even if the genetic 
predisposition represented by HLA-DQ2 or HLA-DQ8 haplotypes is widely 
recognised as mandatory for CeD development, it is not enough to explain the 
total predisposition for the disease. Furthermore, the onset of CeD comprehend a 
wide spectrum of symptoms, that often leads to a delay in CeD diagnosis. To 
overcome this deficiency and help detecting people with increased risk for CeD, 
also clarifying CeD traits linked to disease familiarity, different studies have tried 
to make light on other predisposing elements. These were in many cases genetic 
variants shared with other autoimmune diseases. Since inherited traits can be 
regulated by epigenetic modifications, also induced by environmental factors, the 
most recent studies focused on the potential involvement of epigenetics in CeD. 
Epigenetic factors can in fact modulate gene expression with many mechanisms, 
generating more or less stable changes in gene expression without affecting the 
DNA sequence. Here we analyze the different epigenetic modifications in CeD, in 
particular DNA methylation, histone modifications, non-coding RNAs and RNA 
methylation. Special attention is dedicated to the additional predispositions to 
CeD, the involvement of epigenetics in developing CeD complications, the 
pathogenic pathways modulated by epigenetic factors such as microRNAs and 
the potential use of epigenetic profiling as biomarker to discriminate different 
classes of patients.

Key Words: Celiac disease; Epigenetics; DNA methylation; Histone modifications; Long 
non-coding RNAs; MicroRNAs
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predisposition. An important role could be played by epigenetics, inheritable traits 
without DNA sequence alterations, which could be influenced by gluten exposure. 
DNA methylation, histone modifications and non-coding RNAs act on different gene 
expression steps, from gene transcription to post-translational ones. Epigenetic changes 
can be additional predisposition factors or specific of CeD stages (active disease, 
gluten-free diet) as recently reported. Analysis of epigenetic data and their integration 
with transcriptome (by machine learning) can help to stratify patients, or discover new 
players in CeD pathogenesis, possible focus of novel therapeutic approaches.
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INTRODUCTION
Celiac disease (CeD) is a multifactorial autoimmune enteropathy that develops in 
genetically predisposed subjects carrying the HLA-DQ2 or HLA-DQ8 haplotype. The 
prevalence of these HLA haplotypes in the general population is around 30%-40%, 
suggesting that they are necessary, but not sufficient, to induce CeD[1]. Regional 
variancies have been observed in the frequency of these haplotypes in CeD, with the 
HLA-DQ8 that ranges from about 2%-4% in western countries to 25%-30% in the 
Iranian population and in the middle East[2]. Indeed, CeD prevalence worldwide is 
about 1%-2%, with environmental factors that contribute to the regional differences, 
like the exposure to gluten, the known CeD exogenous antigen[1]. The clinical 
presentation of CeD is quite heterogeneous, ranging from classical intestinal-related 
symptoms (diarrhoea, failure to thrive) to non-intestinal manifestations (anaemia, 
dermatitis, osteoporosis), and such diverse clinical picture may delay, in some cases, 
the prompt diagnosis[3]. Even if the main mechanisms by which gluten peptides cause 
CeD intestinal lesion are now quite established, the reason why only a few of the 
genetically predisposed subjects develop the disease still needs to be clarified. In fact, 
geneticists calculated that the presence of a specific HLA accounted only for about 40% 
of the genetic predisposition, leaving most of the genes involved in the development of 
the disorder still unknown[4]. Thus the initial focus of researchers was to identify 
further genes that could constitute a “genetic background” predisposing to the 
disease. Few studies used the classical linkage analysis approach, but the obtained 
results were specific of a single population and could not be replicated[5], or the 
identified genomic region did not harbour genes that appeared to be involved in CeD 
pathogenesis[6]. The identification of additional predisposing genes was obtained 
using a different approach, i.e., Genome Wide Association Studies (GWAS) performed 
on populations of different geographical origin. These studies identified 39 Loci 
associated with CeD development, but also confirmed the role of the Human 
Leukocyte Antigen (HLA) region. Additional analyses revealed that some loci 
included more than one gene associated with CeD, thus raising the number of the 
involved polymorphisms (single nucleotide polymorphisms, SNPs) up to 57. Although 
these studies were quite extensive, the identified loci were not able to completely 
explain CeD genetic predisposition, since HLA + all these additional genes accounted 
for about 54% of the hereditability of CeD[7]. Interestingly, a great number of these 
SNPs involved genes with an immune function either in the intestine or in the thymus, 
further supporting the idea that an alteration of the immune response represents an 
essential step in CeD predisposition and pathogenesis. Moreover, a more recent paper 
was able, integrating genomic and transcriptomic data, to prioritize genes involved in 
CeD, and to identify TRAF-type zinc finger domain containing 1 (TRAFD1) as a master 
regulator of genes involved in interferon (IFN)γ signaling and MHC I antigen 
processing/presentation[8]. The different combination of these SNPs could also be 
associated with a different phenotype, as recently reported by Cerquieira et al[9], who 
identified the TLR7/ TLR8 Locus associated with disease onset before 7 years of age, 
whereas SH2B3/ATXN2, ITGA4/UBE2E3 and IL2/IL21 Loci were associated with 
later development of CeD and a more severe small bowel mucosal damage. In 
addition, SH2B3/ATXN2 was associated with type 1 diabetes; in fact some of the 
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identified SNPs are described as predisposing factors also for other autoimmune 
disorders like type 1 diabetes and Crohn’s disease[7,10], almost suggesting the 
presence of a common genetic background predisposing to autoimmunity. It must also 
be noted that, among the identified SNPs, only 5% were present in coding regions, and 
about 5% and 9% in 5’ and 3’ untranslated regions, respectively[7]. This means that 
81% of the identified SNPs were either in intergenic or intronic regions, suggesting 
that their role could be to regulate gene expression, possibly through the interaction 
with transcription factors or proteins able to regulate chromatin status, i.e., epigenetic 
modifications. Epigenetics has gained much attention in recent years, but its 
involvement in CeD still needs to be well characterized. First of all, this term has been 
used to define a wide range of concepts, and the 2008 Cold Spring Harbor meeting 
defined epigenetics as “the study of a stably heritable phenotype resulting from changes in a 
chromosome without alterations in the DNA sequence”[11]. DNA methylations, histone 
modifications resulting in chromatin remodelling and non-coding RNAs are the three 
main categories that fall into this statement. The latter one also includes microRNAs, 
that have been found deregulated in CeD patients, suggesting that the regulation of 
the expression of target mRNAs by post-transcriptional modifications is relevant in 
CeD pathogenesis[12-14]. In this direction, RNA sequencing studies are currently 
trying to identify different gene expression signatures that could help stratify patients 
based on CeD stage/presentation, or highlight new pathways implicated in CeD 
development[15-17].

In this review we will provide an update on the current knowledge about 
epigenetics in CeD and investigate the possible role of epigenetic profiling in patient 
classification and/or in determining the risk in subjects with familiarity to CeD.

LITERATURE SEARCH 
The literature search was carried out on PubMed, searching the key words 
“epigenetics”, “histones -acetylation, -methylation, -phosphorylation, -ubiquitination”, 
“chromatine”, “non-coding RNA”, “lncRNA”, “miRNA”, “microRNA”, “RNA 
methylation” AND “celiac disease”. The reviewed papers were original research 
articles published from 2010 to October 2021. All articles that were considered relevant 
to the purpose of the present review were included, whereas the ones that did not add 
novelty or did not give clear results were excluded during the critical revision of the 
literature.

DNA METHYLATION
DNA methylation is the most known epigenetic modification, that sees the family of 
DNA methyltransferase (DNMTs) enzymes transfer methyl-groups to the C-5 residue 
of cytosine pyrimidine ring. This phenomenon occurs in particular in CpG-rich regions 
(CpG islands), mainly localized in promoters and regulatory regions. Being the 
methylated DNA physically less accessible for transcription, this causes the 
inactivation of the nearby genes[18]. The majority of gene promoters are normally 
methylated to guarantee a fine regulation of transcription in different tissues or cell 
types. Like most of the epigenetic modifications, it does not directly alter the DNA 
sequence, but a typical methylation profile can usually be inherited. Hypo-methylation 
or hyper-methylation of specific genomic loci has been reported to predispose to 
disease and cancer[19]; for this reason, the first studies on DNA methylation in CeD 
analyzed the predisposition to develop small bowel adenocarcinomas. In particular, 
Bergmann et al[20] found a high level of CpGs methylation and microsatellite 
instability correlated to the loss of MLH1 expression in three different small bowel 
carcinomas in CeD patients, whereas this feature was not present in non-CeD patients. 
A similar finding was observed by Diosdado et al[21], who also detected an hyper-
methylation of the APC gene promoter that caused defects in the mismatch repair 
mechanisms in these patients. Further studies were conducted by Rizzo et al[22], who 
were able to identify four different CpG Island Methylator Phenotypes, with two of 
them being specific for CeD patients.

Although these data highlight a typical methylation pattern in CeD complications, 
the identification of a methylation profile associated with the predisposition for 
developing CeD is essential. Since GWAS pointed out the presence of many risk 
variants common to other autoimmune diseases, it has been hypothesised that they 
could also share common methylation patterns. Hammaker et al[23] focused on the 
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specific risk variant rs906868, shared between CeD and rheumatoid arthritis and 
mapping in the promoter of LBH, gene with a regulatory function on the Wnt 
pathway, essential for differentiation and development. Interestingly, the authors 
detected a differential methylation pattern in the two diseases, thus suggesting the 
possibility of a disease-specific profile[23]. Methylation can also occur only on one 
allele, thus not causing a complete silencing of the gene but its modulation. 
Hutchinson et al[24] investigated allele-specific methylation (ASM) on CpG islands 
localized throughout the genome, detecting four of them as implicated in complex 
diseases. In particular, rs2762051, a C/T risk variant that maps in the non-coding RNA 
DLEU1, undergoes ASM in CeD[24]. It is interesting to note that this variant belongs to 
the group of SNPs previously identified as significantly associated to CeD predis-
position[7], thus further supporting the need for an integration between the genetic 
and epigenetic profile. A specific gene methylation could also be associated to a 
different phenotype, in particular if the methylation site is able to influence the 
expression of disease-related proteins. In fact, a lower level of methylation was 
detected in different IFNγ CpGs in patients with ulcerative colitis (UC) and a more 
severe phenotype[25], suggesting that methylation can regulate this UC pivotal 
pathogenetic pathway. Fernandez-Jimenez et al[26] demonstrated that this can also 
happen in CeD, since they observed not only a different methylation profile in the 
genes of the core NFkB pathway in active CeD subjects as compared to controls, but 
also an inter-mediate pattern in CeD patients on gluten-free diet (GFD). Although it 
was not clear if gliadin could directly affect the methylation of these specific genes, 
long exposure to gliadin could be able to affect the methylation pattern, since proline-
rich peptides seem to act as opioid-like molecules causing a modulation in glutathione 
activity and DNA methylation[27].

It is also known that methylation profiles can be cell type-specific, thus a single cell 
methylation analysis could provide essential information. However, the methods 
employed to obtain single cell preparations can sometimes alter the DNA methylation 
patterns as described by Jenke et al[28], thus pointing out the importance of 
considering this aspect in designing this kind of studies. Another potential bias of 
methylation studies regards the preferential amplification of an allele or a strand, 
based on its methylation degree. For this reason Ochoa et al[29] realized a new Bayesan 
calibration method and validated it also on CeD patients samples, and the most recent 
studies on methylation in CeD considered these techniques. Fernandez-Jimenez et al
[30] compared the whole methylome of the epithelium and immune cells from CeD 
and controls biopsies, finding a cell-specific methylation pattern, with 43 (11 hypo-, 32 
hyper-methylated) and 310 (40 hypo-, 270 hyper-methylated) differentially methylated 
positions (DMP) in the epithelium and in immune cells respectively. It is important to 
note that only a portion of the DMPs was shared between the two cellular compo-
nents, highlighting a cell-specific, disease-driven modification. Cielo et al[31] used a 
different approach, separating the epithelium from the lamina propria and analysing 
the expression and methylation of genes known to be altered in CeD. Among the 
candidate genes, they found a decreased methylation in SB2H3 and IL21, that coupled 
with their increased expression in the epithelium and lamina propria respectively, but 
only in active CeD compared to controls. Since these genes take part in the pathways 
mainly involved in inflammation and barrier integrity in CeD, identifying a different 
signature in patients and controls may partially explain the abnormal response to food 
antigens and help patient stratification[31]. Finally, the most recent study in this field 
by Hearn et al[32] compared methylation profiles in saliva samples obtained from CeD 
patients on a GFD and controls with the use of a beadchip array, finding a different 
methylation pattern in HLA-DQB1 and in specific loci near SLC17A3 gene in a pilot 
cohort, data not confirmed in a larger study group. Being this collection method non-
invasive, it could be a great tool for patient discrimination, especially in the screening 
of predisposed subjects, once a different and discriminatory methylation profile has 
been clearly established. Moreover, the patient histological classification needs to be 
taken into account, even if a partial concordance in methylation patterns in saliva and 
intestine has been observed in a small group of patients[33]. In this direction, 
encouraging results come from studies on inflammatory bowel diseases (IBDs) from 
Howell et al[34], that were able to statistically discriminate different classes of patients 
by analysing the transcriptome and the methylation status in the intestinal epithelium, 
correlating them with the disease outcome. Indeed, methylation profiling can be an 
asset to study different aspects of CeD, both to understand its pathogenesis and as a 
biomarker. A graphical representation of DNA methylation is present in Figure 1, 
whereas its highlights in CeD are reported in Table 1.
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Table 1 DNA methylation features in celiac disease

Predisposition to CeD What Result Highlight in CeD

Allele-specific methylation (ASM)
[24]

ASM in rs2762051 in DLEU1 gene Linked to CeD phenotype

Different methylation in rs906868 can 
predispose to CeD or RA 

Rs906868 in LBH gene promoter
[23]

Risk variant shared with 
RA

Disease-specific methylation

→ influence on Wnt signalling

Methylation patterns in HLA regionMethylation in HLA region in 
CeD[30]

Specific patterns in 
epithelial and immune 
cells

Genotype-independent methylation 
(except for HLA-DPB2)

→ CeD predisposition

Potential methylation-based screeningMethylation profiling in HLA-
DQB1 and SLC17A3[32]

Bead-chip on saliva 
samples

Different methylation profiles, not 
confirmed in bigger cohort

Major validation needed

Opioid like-effect of gliadin[27] Modulation of glutathione and DNA 
methylation

Predisposition to inflammation and oxidation

CeD pathogenesis

Disruption of regulatory equilibriumMethylation in NFkB-related 
genes[26]

NFkB pathway↑↑ Co-methylation patterns typical of active 
CeD in NFkB pathway genes

Epithelium → 43 DMPCell-specific methylation[30]

Immune cells → 310 DMP

Cell-specific methylation signature & gene 
expression in CeD vs controls

Methylation of SB2H3 → epithelium

Methylation of IL21 → lamina propria

Different methylation of SB2H3, 
IL-21, cREL and TNFAIP3[31]

Epithelium and lamina 
propria - specificity

Correlation with pro-inflammatory(↑) and 
cell adhesion(↓) pathways

Typical of CeD samples.

Tumor development

↑CpGs methylation[20] Microsatellite instability ↓MLH1 expression Typical in CeD-related small bowel 
adenocarcinoma

Defects in mismatch repairMLH1 deregulation[21] APC gene hyper-
methylation

Chromosomal aberrations/microsatellite 
instability

Typical in CeD-related small bowel 
adenocarcinomas

Microsatellite instability[22] Typical CpGs methylator 
phenotype

Methylation profiling → phenotypical 
classification 

Mesenchymal and immune phenotypes are 
common in CeD-related small bowel 
carcinoma

CeD: Celiac disease; ASM: Allele specific methylation; RA: Rheumatoid arthritis; DMP: Differentially methylated positions; CpGs: CpG islands.

HISTONE MODIFICATIONS
A further step in gene expression regulation in the nucleus is represented by histone 
modifications. Histones are key proteins of chromatin, able to modify its structure 
making the DNA more or less accessible to transcription. The most common histone 
modifications are acetylation, phosphorylation, ubiquitination and methylation. Gene 
expression analysis studies performed on CeD biopsies compared to controls, pointed 
out a differential regulation of histone-modifying enzymes, thus suggesting the 
presence of a disease-related epigenetic signature involving histone modifications[16,
17].

Histone acetylation, governed by acetyltransferase (HATs) and deacetylase 
(HDACs) enzymes, usually result in active gene transcription due to chromatin 
relaxation[35]. Zorro et al[36] analyzed the transcriptomic and epigenetic responses to 
IL-15, IFNβ and IL-21 stimulation in primary cytotoxic T lymphocytes derived from 
CeD biopsies. Specific transcriptomic patterns were identified for the different 
cytokine stimulation, but also different levels of histone acetylation (H3K27ac) were 
detected. Interestingly, the increase in transcription after IFNβ stimulation was 
associated, in about 60% of the cases, with an increase in H3K27ac in promoter and 
enhancer regions, whereas this was not the case after IL-15 stimulation, pointing 
towards the presence of a different regulatory mechanism. In fact, upon IL-15 
stimulation a relevant number of differentially expressed genes were ncRNAs, 
suggesting their potential regulatory role independently from H3K27ac modifications
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Figure 1 Schematic representation of DNA methylation and histone modifications. Histone modifications are many and determine a different 
chromatin status, modifying DNA accessibility and interfering with gene transcription. Methylation can also happen directly on the DNA sequence, mainly resulting in 
gene silencing. The image is original and was created with the use of Servier Medical Art modified templates, licensed under a Creative Common Attribution 3.0 
Unported License (https://smart.servier.com). DNMT: DNA methyltransferase.

[36].
Histone methylation is more complex and mainly linked to repression, but the 

specific methylations H3K4me1, H3K4me3 and H3K36me3 are commonly found in 
actively transcribed regions[35]. In fact, H3K4me3 was used as a marker of active 
transcription by Gutierrez-Achury et al[37]; the authors firstly identified SNPs 
associated with both CeD and rheumatoid arthritis, but also SNPs specific for each 
disease. The combination of these data with H3K4me3 profiles available in public 
databases allowed the authors to detect similar histone enrichment corresponding to 
the common SNPs in less specialized immune cell types, whereas disease-specific 
SNPs overlapped with H3K4me3 profiles in more specialized cells[37]. H3K36me3 
signature was investigated by Moffitt et al[38] in the enteropathy associated T cell 
lymphoma (EATL), the most common neoplastic consequence of CeD. The histone-
lysine N-methyltransferase SETD2 is the responsible for this kind of methylation and it 
was silenced in 32% of EATL in CeD subjects. In fact, in vivo studies with a knock out 
model for SETD2 in T cells carried a decreased H3K36me3 pattern along with γδ-T 
cells expansion[38]. H3K27me3 was instead used as gene silencing signature by 
Oittinen et al[39] in determining the involvement of the polycomb repressive complex 
2 (PRC2) in controlling Wnt signalling in the intestine. They found a H3K27me3 
pattern which differed according to the cell position/differentiation along the 
crypt/villus axis, and involved also genes related to proliferation and differentiation 
in the epithelium. Thus PRC2-driven tri-methylation is important to maintain the 
homeostasis driven by Wnt; however, since Wnt pathway deregulation has been 
connected to CeD pathogenesis, they also hypothesise that a Wnt/PRC2 disrupted axis 
could cause the development of crypts hyperplasia in CeD[39] (Table 2). However, 
among the external factors that can influence the epigenetic regulation, the interaction 
with the microbiota needs also to be considered, since changes in the gut bacterial 
populations can affect the activity of enzymes involved in epigenetic regulation[40,41].

https://smart.servier.com
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Table 2 Celiac disease-relevant histone modifications

Modification Focus Result Relevance in CeD 

Strong association between H3K27ac and gene 
expression IFNβ-induced

H3K27ac
[36]

Activation and 
enhancing of 
transcription

Profiling in stimulated 
CTLs from CeD subjects

IL-15, IFNβ and IL-21 induce 
specific acetylation profiles in 
CTLs

IL-15-derived changes related to lncRNAs

H3K4me3
[37]

Active transcription 
marker

Shared variants between 
CeD and RA

Similar histone enrichment in 
shared variants in simple cells

Different histone enrichment in disease-related 
specialized cells

H3K36me3
[38]

Active transcription 
marker

SETD2 silenced in 32% of 
EATL

↓H3K36me3 → γδT cells 
expansion

Predisposition to lymphomagenesis

Villi → H3K27me3 on 
proliferation and differentiation 
genes

H3K27me3
[39]

Gene silencing PRC2–driven 
trimethylation

Crypts → H3K27me3 on 
nutrient transport and cell 
killing genes

PRC2 methylation help maintenance of Wnt 
homeostasis → deregulation linked to CeD crypts 
hyperplasia 

CeD: Celiac disease; CTLs: Cytotoxic T lymphocytes; LncRNAs: Long non-coding RNAs; ECM: Extracellular matrix; RA: Rheumatoid arthritis; EATL: 
Enteropathy associated T cell lymphoma; PRC2: Polycomb repressive complex 2.

LONG NON-CODING RNAS
Long non-coding RNAs (lncRNAs) have emerged in recent years as a class of 
transcripts with a wide spectrum of mechanisms of action that can affect gene 
expression regulation both at transcriptional and post-transcriptional level, in the 
nucleus and in the cytosol. Their genomic location is various, either being intergenic or 
within the introns of coding genes. Among their many mechanisms of action, the most 
frequent are direct DNA sequence interaction, transcription factor sequestration, 
chromatin rearrangement, regulation of histone modifications and microRNA 
sponging (Figure 2)[42,43]. Being implicated in so many regulatory patterns, they have 
been studied in cancer and in many other diseases, also with an autoimmune 
background[44].

The pathogenesis of CeD involves several different mechanisms, i.e., the passage of 
the gluten peptides across the intestinal barrier, but also the activation of innate and 
adaptive immune response. LncRNAs can influence all these processes, but the 
expression of these RNAs can, in turn, be affected by the presence of SNPs.

A typical aspect in CeD pathogenesis is the loosening of the tight junctions (TJ), that 
increases the intestinal permeability[45]. Jauregi-Miguel et al[46] identified, in a 
genomic region associated with CeD, a lncRNA named RP4-587D13.2. This is located 
in an intron of MAGI2 gene, a scaffold protein present in the tight junction plaque and 
able to regulate epithelial integrity. Interestingly, RP4-587D13.2 can regulate MAGI2 
expression, altering the downstream TJ-related proteins like CLDN1 and ZAK. RP4-
587D13.2 and MAGI2 resulted also downregulated in CeD samples (both with active 
CeD and on a GFD) and it seems that gliadin stimulation can reinforce this effects[46].

Ricaño-Ponce et al[47] identified genes located in close proximity to autoimmune-
related SNPs, revealing that 42 of these SNPs could specifically affect the expression of 
53 non-coding RNAs. In particular, two lncRNAs were associated to CeD-specific 
SNPs, namely AP002954.4 and AC104820.2. In both cases the SNPs were able to affect 
the expression of these lncRNAs, which had a role in the immune response[47]. 
Interestingly, AC104820.2 had already been detected upregulated in active CeD 
patients intestinal mucosa by Plaza-Izurieta et al[48], who also identified the SNP 
rs1018326 as associated with this lncRNA. These data thus support the involvement of 
lncRNAs in the immune response in CeD, however there are aspects that must be kept 
in mind, as also reported by Hrdlickova et al[49]. In fact, although the authors 
suggested the lncRNAs RP3-395 M20.9 and IL21-AS to be relevant in CeD, and linked 
them to TNF and IL-21 pathways, they also reported that the same lncRNAs are 
involved in different autoimmune disorders. In addition, some lncRNAs were detected 
only in some specific cell subtypes, underlying the need for a cell-specific analysis[49].

Castellanos-Rubio et al[50] identified lnc13 as associated to the susceptibility to 
celiac disease, demonstrating also the functional role of this lncRNA. Lnc13 binds the 
nuclear ribonucleoprotein hnRNPD and histone deacetylase 1, forming a complex that 
acts as a repressor of inflammatory gene expression. The presence of inflammatory 
stimuli activate the NFkB pathway that reduces lnc13, thus removing the repression 
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Figure 2 Main mechanisms of action of long non-coding RNAs in the cell. Cytoplasm - microRNA sponging: microRNAs are sequestered from their 
mRNA targets, resulting in mRNA translation; Interaction with signalling mediators: binding to pathway mediators can modulate downstream targets activation. 
Nucleus - chromatin remodeling: Long non-coding RNAs (lncRNAs) interact with chromatin and modify its conformation; histone modifications: lncRNAs influence the 
activity of the enzymes responsible for histone modifications; sequence interaction: lncRNAs act on nearby genes transcription; transcription start site (TSS) binding 
complex: lncRNAs bind ribonucleoproteins, interfering with gene transcription; transcription factor (TF) sequestration in nuclear bodies: TF are moved to nuclear 
bodies from the promoter region of target genes, influencing gene transcription. Nuclear bodies like paraspeckles consist in a lncRNA scaffold and target proteins; 
alternative splicing: lncRNAs determine a preferential splicing in favour of an isoform respect to another one. The so-far investigated lncRNAs in celiac disease (CeD) 
are reported near their known mechanism of action, respecting their main cellular localization. lncRNAs in green were reported to be downregulated in CeD, whereas 
the ones in red were found upregulated in a specific cell compartment. The image is original and was created with the use of Servier Medical Art modified templates, 
licensed under a Creative Common Attribution 3.0 Unported License (https://smart.servier.com). TSS: Transcription start site; TF: Transcription factor.

on gene transcription. Interestingly, in CeD patients, not only lnc13 expression is 
reduced, but there is also a SNP that generates a lnc13 variant that binds hnRNPD less 
effectively, possibly contributing to CeD development[50]. NFkB activation is central 
in CeD-driven inflammation, and it is able to induce the expression of another 
lncRNA, i.e., Carlr. This molecule is localized in the nucleus, but it translocates in the 
cytosol after the activation of the NFkB pathway, and it seems essential for the 
induction of downstream genes such as IL-1β in macrophages. However, differently 
from what expected, Carlr was downregulated in total biopsies from active CeD 
patients, although its cytosolic fraction was increased; this observation thus needs 
further evaluation to determine the real role of this lncRNA in the intestinal tissue[51].

Finally, it is known that IL-15 production has a central role in CeD pathogenesis
[52]. Zorro et al[36] in their work highlighted a subset of ncRNAs that were downreg-
ulated by IL-15 stimulation, suggesting the involvement of this class of transcripts in 
IL-15 response. A recent study by our group demonstrated that gliadin induces TUG1 
and NEAT1 expression in biopsies obtained from CeD patients on gluten-free diet, 
mechanism that depends on innate immunity activation in the case of NEAT1. In fact, 
IL-15 can trigger NEAT1 expression both ex vivo and in vitro, through the newly 
identified axis IL-15/STAT3/NEAT1[53]. The effects of NEAT1 upregulation deserve 
more investigation, since this lncRNA localizes in the nucleus and is able to bind 
transcription factors, thus sequestering them and, in turn, regulating the expression of 
several genes, such as IL-8[54].

https://smart.servier.com
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RNA METHYLATION
A further regulation can be played by RNA modifications. In fact, recent findings are 
pointing out that direct sequence methylation can also happen at RNA level. 
Differently from DNA, RNA can undergo many more kinds of methylation (up to 72), 
involving both mRNA and non-coding RNAs. Previous studies found RNA 
methylation linked to biological and immune processes, as well as complex 
pathologies like obesity[55]. Up to now, the main limitation in RNA methylation 
studies was the difficulty to perform a site-specific detection and quantification. Using 
a recently developed method that allows to detect m6A, the most frequent RNA 
modification, Olazagoitia-Garmendia et al[56] characterised the CeD-associated SNP 
rs3087898, located in the 5’ untranslated region of exportin1 gene, a modulator of 
NFkB pathway. The mRNA derived from the CeD-associated variant was preferen-
tially methylated with respect to the normal one, and this modification was able to 
increase the protein production, resulting in an inflammatory microenvironment. 
Besides, gliadin was able to increase this modification and exportin1 protein levels, 
both in vitro and in CeD patients samples[56]. Altogether, these studies suggest that 
attention should be given also to this kind of modifications when focusing on gene 
expression regulation in CeD.

MICRORNAS 
MicroRNAs (miRNAs) are short RNA sequences (20-25 nucleotides) accounting for 
about 30% of gene expression regulation, affecting various processes, including 
chromatin conformation and transcription, as well as mRNA stability and translation. 
Usually they present an inverse relationship with their targets, inducing their 
downregulation.

miRNAs can also be detected in the plasma, and for this reason they have been 
evaluated in a large number of different disorders, in the attempt to identify specific 
biomarkers for early diagnosis or follow up. Initial papers on CeD screened the 
duodenal tissue to identify a specific signature representative of the events in the 
mucosa, and to determine whether the “signature” miRNAs were returning to normal 
levels in patients on GFD. Capuano et al[57] evaluated biopsies of children with CeD at 
diagnosis or on GFD, identifying about 20% of the analyzed miRNAs as differentially 
regulated. The authors then focused on the upregulation of miR-449a[57], which 
targets Notch1 and KLF4, genes involved in intestinal cell proliferation and differen-
tiation. Indeed Notch1 expression was significantly downregulated in CeD biopsies, 
confirming the regulatory role of miRNAs also on proliferation in CeD. Other miRNAs 
were also downregulated, i.e., miR-124a, miR-189, miR-299-5p and miR-379, similarly 
to what reported in Crohn’s disease[58].

Studies on adult CeD patients identified different subset of miRNAs according to 
the clinical picture or the severity of intestinal damage[12,14]. A significant downregu-
lation of miR-31-5p was observed in all the CeD groups, whereas miR-192-3p and miR-
192-5p were downregulated in CeD patients with anemia and a severe histological 
lesion, respectively. miR-192-5p targeted two different molecules involved in the 
innate immunity, i.e., NOD2 and CXCL2, that were upregulated in CeD patients, in 
particular in severe cases[12]. On the other hand, miR-31-5p had as a target Foxp3, 
essential for Treg development; again, a significant inverse correlation was observed 
between the miRNA and the target mRNA. These changes were induced by gliadin, as 
demonstrated by in vitro stimulation of biopsies of patients on GFD[12]. It is 
interesting to note that the data on miR-192 are similar to those observed in IBDs, in 
which miR-192 regulated NOD2 expression[59].

However, a more comprehensive approach was needed, and a recent paper 
correlated, in the duodenal mucosa of celiac subjects, the miRNA and mRNA 
expression patterns obtained by sequencing[17]. The data analysis revealed the 
presence of a complex network involving various pathways known to be deregulated 
in CeD, such as immunity (interferon), suggesting that CeD-associated miRNAs play a 
central role in causing the intestinal damage.

The identification of a specific miRNA plasma signature remains elusive at the 
present time. An analysis performed in pediatric CeDs revealed the presence of a trend 
similar to that observed in duodenal biopsies for miR-192-5p, miR-31-5p and miR-21-
5p. However none of these miRNAs could be defined as a marker able to evaluate the 
recovery of the mucosa on GFD, since there was no return to normal levels (miR192-
5p) or a clear cut-off could not be established (miR-31-5p and miR-21-5p)[13]. A 
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further study performed by Amr et al[60] analyzed the same miRNAs, i.e., miR-21 and 
miR-31, identifying a cutoff value and determining a sensitivity and specificity of 
82.4%and 80.8% for miR-21 and 93.8% and 72% for miR-31. Another recent paper 
confirmed the value of plasmatic miR-21 as a marker, with a sensitivity and specificity 
of 0.65 and 0.83, but better results were obtained considering miR-155 (0.94 and 0.87, 
respectively)[61]. Although encouraging, these results need further validation in larger 
cohorts; moreover even for miR-21 the identified cutoff values were quite dissimilar, 
thus suggesting the need to determine the cutoff according to the method and 
equipment employed for the analysis. Last but not least, the data obtained in CeD 
patients will have to be compared with those obtained from subjects with other inflam-
matory disorders such as IBDs, to confirm the specificity of the findings.

MACHINE LEARNING 
As described, the evaluation of the epigenome generates large datasets, and the data 
increases when the integration of different datasets (such as those derived from 
methylome and long/short non-coding RNA transcriptome) is required. The 
generation of a large quantity of data allows to move towards a data-driven analysis, 
i.e., machine learning or artificial intelligence (these terms are now regarded as 
interchangeable). Machine learning can, through statistical methods and algorithms, 
make classifications or predictions of input data, such as recognize a specific 
endoscopy pattern and classify the patient as celiac or non-celiac. In simpler machine 
learning approaches supervised learning is commonly used, i.e., the use of labeled 
datasets designed to train or “supervise” algorithms into classifying data or predicting 
outcomes. In the medical field this obviously requires training datasets selected by 
specialized clinicians (for example the identification of endoscopic images charac-
teristic of celiac disease). Deep learning is a subset of machine learning, in which the 
algorithms are more complex and include more than one layer in the neuronal 
network. For deep learning the presence of a labeled training dataset is not required, 
since these algorithms can analyze data in the raw form and determine the features 
that distinguish the various groups.

With regards to CeD, the machine learning approach has been originally used to 
analyze endoscopic data, either those generated by upper endoscopy[62] or by 
videocapsule and, in this latter case, the deep learning approach was able to reach a 
high sensitivity and specificity in the diagnosis of CeD using the video capsule images
[63,64]. Although these data seem quite encouraging, it must be kept in mind that the 
gastrointestinal tract is a complex environment, and several factors can affect the 
obtained images, as discussed in depth by Hegenbart et al[65]. The deep learning 
approach could be useful also in the evaluation of duodenal biopsies, as demonstrated 
by different authors that were able to develop artificial intelligence-based methods for 
the correct classification of duodenal samples[66-68]. Machine learning has also been 
employed to improve the diagnosis based on B/T cell repertoire[69,70]; although the 
data obtained in the latter case are quite interesting, this approach is not easily 
applicable for routine diagnosis.

A machine learning approach could have a very important clinical application 
should it be able to predict who, within a risk population, will develop the disease. An 
encouraging study that analyzes this aspect has recently been published by Piccialli et 
al[71], who tested different models in order to predict the development of an overt 
CeD in childen with potential CeD. The use of a machine learning approach towards 
basic science data obtained from duodenal biopsies of CeD patients has recently been 
published by Wolf et al[16], who analyzed not only the trascriptomic profiles but also 
the expression of some lncRNAs and miRNAs. Moreover, the authors focused on gene 
expression signatures which associate with transcription factor (TF)-activity and 
chromatin state, as well as DNA and histone methylation pattern, thus providing an 
indirect measure of epigenetic modifications. This comprehensive analysis revealed, 
for example, a different role of miRNAs and lncRNAs in the regulation of gene 
expression, correlating the latter category with more subtle adjustments of the 
transcription under control of epigenetic mechanisms.

CONCLUSION
Understanding the epigenetics of celiac disease remains mandatory in order to 
completely clarify the pathogenetic processes behind its development and the 
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Figure 3  Potential use of epigenetics studies in celiac disease. The image is original and was created with the use of Servier Medical Art modified 
templates, licensed under a Creative Common Attribution 3.0 Unported License (https://smart.servier.com). CeD: Celiac disease.

spectrum of its manifestations. The data here reviewed demonstrate that epigenetic 
changes occur in celiac disease, however further data are still needed before the identi-
fication of these changes could be used to screen or better categorize the patients, as 
depicted in Figure 3. In particular it will be essential to verify that the characteristics 
detected at a peripheral level (i.e., blood or saliva) correspond to those present in the 
intestinal mucosa. In this regard, data seem encouraging for miRNAs, but the identi-
fication of a specific signature will probably require the combination of more than one 
of them to provide an excellent sensitivity and specificity.
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Abstract
BACKGROUND 
Esophageal squamous cell carcinoma (ESCC) is one of the most prevalent 
malignancies that seriously threaten people’s health worldwide. DEAD-box 
helicase 51 (DDX51) is a member of the DEAD-box (DDX) RNA helicase family, 
and drives or inhibits tumor progression in multiple cancer types.

AIM 
To determine whether DDX51 affects the biological behavior of ESCC.

METHODS 
The expression of DDX51 in ESCC tumor tissues and adjacent normal tissues was 
detected by Immunohistochemistry (IHC) analyses and quantitative PCR (qPCR). 
We knocked down DDX51 in ESCC cell lines by using a small interfering RNA 
(siRNA) transfection. The proliferation, apoptosis, and mobility of DDX51 siRNA-
transfected cells were detected. The effect of DDX51 on the phosphoinositide 3-
kinase (PI3K)/AKT pathway was investigated by western blot analysis. A mouse 
xenograft model was established to investigate the effects of DDX51 knockdown 
on ESCC tumor growth.

RESULTS 
DDX51 exhibited high expression in ESCC tissues compared with normal tissues 
and represented a poor prognosis in patients with ESCC. Knockdown of DDX51 
induced inhibition of ESCC cell proliferation and promoted apoptosis. Moreover, 
DDX51 siRNA-expressing cells also exhibited lower migration and invasion rates. 
Investigations into the underlying mechanisms suggested that DDX51 knock-
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down induced inactivation of the PI3K/AKT pathway, including decreased 
phosphorylation levels of phosphate and tensin homolog, PI3K, AKT, and 
mammalian target of rapamycin. Rescue experiments demonstrated that the AKT 
activator insulin-like growth factor 1 could reverse the inhibitory effects of DDX51 
on ESCC malignant development. Finally, we injected DDX51 siRNA-transfected 
TE-1 cells into an animal model, which resulted in slower tumor growth.

CONCLUSION 
Our study suggests for the first time that DDX51 promotes cancer cell prolif-
eration by regulating the PI3K/AKT pathway; thus, DDX51 might be a 
therapeutic target for ESCC.

Key Words: Esophageal squamous cell carcinoma; DDX51; PI3K/AKT pathway; Tumor 
growth; Therapeutic target

©The Author(s) 2022. Published by Baishideng Publishing Group Inc. All rights reserved.

Core Tip: Our study revealed that DEAD-box helicase 51 was upregulated in 
esophageal squamous cell carcinoma (ESCC) tumor tissues and promoted tumor prolif-
eration and development by upregulating the phosphorylation of phosphoinositide 3-
kinase/AKT pathway members. These data extend our knowledge of the function and 
molecular mechanism of the DEAD-box family in tumor biology and provide a 
potential therapeutic target for ESCC treatment.

Citation: Hu DX, Sun QF, Xu L, Lu HD, Zhang F, Li ZM, Zhang MY. Knockdown of DEAD-
box 51 inhibits tumor growth of esophageal squamous cell carcinoma via the PI3K/AKT 
pathway. World J Gastroenterol 2022; 28(4): 464-478
URL: https://www.wjgnet.com/1007-9327/full/v28/i4/464.htm
DOI: https://dx.doi.org/10.3748/wjg.v28.i4.464

INTRODUCTION
Esophageal squamous cell carcinoma (ESCC) is the sixth leading cause of cancer-
related deaths, causing approximately 300,000 deaths each year[1-3]. China has the 
highest incidence of ESCC globally, caused by multiple factors such as diet and the 
environment. At present, surgical treatment is the most effective means to cure ESCC. 
However, surgical treatment is highly challenging due to the close distance between 
the esophagus and life-supporting structures such as the respiratory system[4]. 
Chemotherapy and radiation therapy are commonly used as adjuvant treatments. The 
main problem with these two treatments is inherent resistance, and even local ESCC is 
often resistant[5,6]. Due to the extremely high tumor recurrence rate (about 40%) and 
frequent local lymph node metastases, the prognosis of ESCC patients is very poor, 
with a 5-year survival rate of only 10%-30%[1]. Molecular targeted therapy has shown 
good application prospects in ESCC patients in recent years. To improve the survival 
of ESCC patients, it is essential to explore effective molecular targets for ESCC 
treatment.

DEAD-box (DDX) RNA helicases, belonging to helicase superfamily 2, comprise the 
largest group of RNA helicases[7]. There are at least 31 members of DDX family in 
humans, including DEAD-box helicase 51 (DDX51). DDX proteins are highly 
conserved helicases that catalyze duplex unwinding and structural remodeling of 
RNA or ribonucleoprotein complexes[8]. They play important roles in nearly all 
aspects of RNA metabolism including RNA transcription, post-transcriptional splicing, 
ribosome assembly, and RNA degradation[9]. In recent years, DDX family members 
have been identified to be dysregulated and function as tumor oncogenes or 
suppressors in various tumor types[10]. For example, knockdown of DDX5 exerts 
inhibitory effects on the proliferation and epithelial-to-mesenchymal transition of 
ESCC cells by downregulating β-catenin, c-Myc, and cyclin D1[11]. DDX51 is a 
recently identified member of the DDX family. DDX51 is mainly responsible for 
maturation of the 3’ end of 28S and its proliferation-promoting activities have been 
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demonstrated in non-small cell lung cancer (NSCLC) and breast cancer[12,13]. 
However, whether DDX51 plays a role in the progression of ESCC is still unclear.

In this study, we investigated the function of DDX51 in ESCC cell proliferation and 
tumor growth by using a small interfering RNA (siRNA) silencing approach.

MATERIALS AND METHODS
Tumor specimen collection and immunohistochemistry analysis
ESCC tumor tissues and adjacent normal tissues (n = 118) were obtained from patients 
with ESCC between 2016 to 2020 in Shandong Provincial Hospital Affiliated to 
Shandong First Medical University (Shandong, China). The Research Ethics 
Committee approved all experimental procedures of Shandong Provincial Hospital 
Affiliated to Shandong First Medical University. Patients or their guardians wrote the 
informed consents. The clinicopathological parameters of ESCC patients were 
collected. Immunohistochemistry (IHC) staining was performed to investigate the 
expression of DDX51 in ESCC tissues and adjacent normal tissues, and the experi-
mental procedure is described in a previous report[14].

Cell culture and transfection
The ESCC cell lines Eca109 and TE-1 were purchased from the Cell Bank of the 
Chinese Academy. The cells were cultured in RPMI-1640 medium (Gibco, Carlsbad, 
CA, United States) supplemented with 10% fetal bovine serum (FBS; Gibco) and 1% 
penicillin/streptomycin in a 37 °C cell incubator. When cells were grown to 70% 
confluence, si-DDX51 or negative control siRNA (si-NC) was transfected into Eca109 
and TE-1 cells using Lipofectamine 2000 reagent (Invitrogen, Carlsbad, CA, United 
States) according to the corresponding experimental groups. The stable DDX51 
knockdown ESCC cell line was established by using lentivirus transfection. Lentivirus 
expressing si-DDX51 or si-NC was purchased from Genechem (Shanghai, China). 
After 48 h of transfection, cells were collected and analyzed for DDX51 expression 
using quantitative PCR (qPCR) and western blot analysis.

RNA extraction and qPCR
Total RNA was extracted from ESCC tumor tissues and cell lines using Trizol reagent 
(Thermo Fisher Scientific, Waltham, MA, United States). Then 1 μg total RNA was 
reverse-transcribed to cDNA using the PrimeScript RT Master Mix (Takara Biotech-
nology Co., Ltd., Dalian, China). The expression of DDX51 was determined via qPCR 
with the FastStart Universal SYBR Green Master (Roche, Germany). The experiment 
was performed on the C1000 Thermal Cycler (Bio-Rad, Hercules, CA, United States). 
The PCR reaction conditions were as follows: Pre-degeneration at 95 °C for 5 min, 
followed by 45 cycles of 95 °C for 5 s, 60 °C for 10s, and 72 °C for 10 s. GAPDH was 
used as an internal control.

Cell Counting Kit-8 assay
After transfection, Eca109 and TE-1 cells were seeded into 96-well plates at a density of 
3000 cells per well. Each group had three wells. The Cell Counting Kit-8 (CCK-8; 
Dojindo, Kyushu, Japan) was used to detect the cell viability of transfected cells. At 
specific time points (24, 48, 72, and 96 h), 10 μL CCK-8 reagent was added to each well 
and incubated at 37 °C for 2 h. Cell viability was represented by the absorbance at 450 
nm, which was detected on a spectrophotometer (Molecular Devices, San Jose, CA, 
United States).

Flow cytometry 
Cell apoptosis was detected by using the Annexin V-FITC/Propidium Iodide (PI) 
Apoptosis Detection Kit I (BD Biosciences, San Jose, CA, United States) following the 
manufacturer’s instructions. The transfected cells were digested with 0.25% EDTA-free 
trypsin and resuspended in binding buffer. Then 100 μL cell suspension was incubated 
with 5 μL AnnexinV-FITC and 5 μL PI for 30 min. The incubation was performed at 37 
°C in the dark. The apoptosis percentage was analyzed by flow cytometry (Becton 
Dickinson, Franklin Lakes, NJ, United States).

Scratch assay
A scratch assay evaluated the effect of cell transfection on its migration ability. Eca109 
and TE-1 cells were seeded in a 6-well plate at a density of 1 × 105 cells/mL. Then cells 
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were transfected as described as before. After 16 h, cell transfection was stopped and 
cells were continuously cultured to 100% confluence. Then a single-line scratch was 
created on the cell monolayer using a sterile micropipette tip. Phosphate-buffered 
saline was used to wash the cell debris, and serum-free medium was added to the 
plates. Cells were photographed at 0 and 24 h under an inverted fluorescence 
microscope (IX-71). The width of the scratch was measured. All experiments were 
performed in triplicate and repeated at least three times.

Transwell invasion assay
Cell invasion was detected using a transwell assay. Transwell inserts (6.5 mm, 8 μm 
pore size; CoStar Group, Washington, DC, United States) were added to the 24-well 
transwell plates. The inserts were coated with 50 μL of 1 mg/mL Matrigel matrix (BD 
Biosciences). Eca109 and TE-1 cells were transfected as described above and the cell 
density was adjusted to 106 cells/mL. Then 200 μL cell suspension was added to the 
upper chamber of the transwell inserts, while 600 μL medium with 10% FBS was 
added to the lower well. Cells were cultured at 37 °C for 24 h, followed by fixation and 
staining with 1% crystal violet. The invasive cells were observed under a light 
microscope, and five random fields were selected to take pictures.

Western blot
Total proteins from transfected ESCC cells were extracted using radioimmunoprecip-
itation assay buffer with a 1% protease inhibitor. The protein concentration in the 
extraction solution was determined using the bicinchoninic acid assay. Then 20 μg 
total protein was separated by sodium dodecyl sulfate polyacrylamide gel electro-
phoresis and proteins were electrotransferred to a PVDF membrane. The membrane 
was blocked in 5% bovine serum albumin containing Tris-buffered saline with Tween 
20 (TBST) (10 mmol/L Tris–HCl, pH 7.4, 150 mmol/L NaCl, 0.05% Tween-20) at room 
temperature for 2 h, and then incubated with primary antibodies at 4 °C overnight. 
The primary antibodies included phosphatase and tensin homolog (PTEN) (1:1000, 
ab267787; Abcam, Cambridge, MA, United States), phosphoinositide 3-kinase (PI3K) 
(1:1000, CY5355; Abways, Shanghai, P.R. China), phosphorylated PI3K (p-PI3K) 
(1:1000, CY6427; Abways), AKT (1:1000, AF6261; Affinity Biosciences, Cincinnati, OH, 
United States), p-AKT (1:1000, AF016; Affinity Biosciences), mammalian target of 
rapamycin (mTOR) (1:1000, ab134903), p-mTOR (1:1000, ab137133; Abcam), and anti-
GAPDH (1:5,000; ab8245; Abcam). After washing with TBST buffer four times every 5 
min, the membrane was incubated with secondary antibodies (Santa Cruz, CA, United 
States) for 1 h at room temperature and washed with TBST another four times. Finally, 
proteins were visualized by chemiluminescence (Santa Cruz Biotechnology, Dallas, 
TX, United States).

In vivo tumorigenesis assay
Male nude mice (6-wk-old) were obtained from Shanghai SIPPR-BK Laboratory 
Animal Co. Ltd. (Shanghai, P.R. China). All animal experiments were approved by the 
Shandong Provincial Hospital Affiliated to Shandong First Medical University. The 
animals were maintained in specific pathogen-free conditions in accordance with the 
institutional animal care and use committee regulations. ESCC cells were transfected 
with lentivirus-NC or lentivirus-si-DDX51 for 48 h and then resuspended in a serum-
free medium. The cell density was adjusted to 2 × 107/mL. Each mouse was 
subcutaneously injected with 5 × 106 of ESCC cells. The tumor length and width were 
monitored every other day and length × width2/2 represented tumor volume. On day 
28, nude mice were sacrificed by carbon dioxide asphyxiation.

Statistical analyses
All experimental data are expressed as the mean ± standard deviation from three 
independent experiments. The difference between the two groups was analyzed using 
the Student’s t-test. The difference among multiple groups was evaluated using one-
way analysis of variance. P < 0.05 was considered statistically significant. GraphPad 
Prism 5 Software (GraphPad, San Diego, CA, United States) was used for all statistical 
analyses. All data in this study satisfied parametric test assumptions.
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RESULTS
DDX51 is highly expressed in ESCC tumor tissues and is associated with a poor 
prognosis in ESCC patients
DDX51 is upregulated in breast cancer. Here, we detected the expression of DDX51 in 
ESCC tissues, which might provide insights into its role in ESCC. As shown in 
Figure 1A, we performed IHC analysis of DDX51 expression in the tumor tissues and 
adjacent normal tissues of patients with ESCC. The results showed strong IHC staining 
of ESCC tissues, which was very weak in the normal controls. Meanwhile, DDX51 
expression was detected by qPCR, which also showed significantly higher expression 
in ESCC tumor tissues than in normal adjacent tissues (Figure 1B). Furthermore, the 
correlation between DDX51 expression with patients’ clinicopathological features was 
analyzed. As shown in Table 1, DDX51 expression did not correlate with patients’ age, 
sex, tumor size, or T stage, but was associated with tumor differentiation degree, N 
stage and tumor-node-metastasis (TNM) stage. Survival analysis results indicated that 
ESCC patients with high expression of DDX51 had lower survival rates compared to 
those with low expression of DDX51 (Figure 1C). These results suggest that DDX51 
exhibits high expression in ESCC tumor tissues and may be associated with a poor 
prognosis in patients with ESCC (Table 2).

Knockdown of DDX51 plays an anti-tumor role in ESCC cells
To investigate the function of DDX51 in ESCC progression, we performed a 
knockdown experiment in Eca109 and TE-1 cells using siRNA transfection. The 
transfection efficiencies are shown in Figure 2A-C. The qPCR results indicated that, 
compared with the NC group, the mRNA expression of DDX51 in the si-DDX51 group 
was decreased to 44.5% in Eca109 cells and 18.8% in TE-1 cells (Figure 2A and B, both 
aP < 0.05). Western blot analysis showed that si-DDX51 transfection led to a decrease in 
DDX51 protein expression to 49.2% in Eca109 cells and 52.7% in TE-1 cells (Figure 2C, 
both aP < 0.05), demonstrating the effective knockdown of DDX51 in both cell lines. 
Next, we investigated the effects of DDX51 knockdown on the malignant progression 
of ESCC cells. Cell viability and flow cytometry results suggested that the proliferation 
rates of Eca109 and TE-1 cells were significantly inhibited by DDX51 knockdown 
(Figure 2D and E), with a significant increase in cell apoptotic rates (Figure 3A and B). 
Furthermore, the wound healing rates and invasive cell number were significantly 
decreased in the si-DDX51 group compared with the NC group (Figure 3C-F). Taken 
together, these data show that DDX51 functions as an oncogene in ESCC progression.

The anti-tumor effects of DDX51 knockdown on ESCC are partly mediated by the 
PI3K/AKT signaling pathway
The PI3K/AKT signaling pathway is constitutively activated in multiple cancer types 
and extensively participates in tumor cell proliferation, apoptosis, metastasis, and 
other malignant phenotypes. Here, we determined whether the oncogenic function of 
DDX51 in ESCC involves the PI3K/AKT signaling pathway. As shown in Figure 4A-E, 
the expression of members in the PI3K/AKT signaling pathway including PTEN, p-
PTEN, PI3K, p-PI3K, AKT, p-AKT, mTOR, and p-mTOR was evaluated by western 
blotting. The results showed that DDX51 knockdown induced a significant decrease in 
the phosphorylation levels of PTEN, PI3K, AKT, and mTOR, while the total protein 
was not affected, suggesting that the PI3K/AKT signaling pathway was inactivated in 
DDX51-knockdown ESCC cells. To further elucidate the role of the PI3K/AKT 
signaling pathway in the function of DDX51, we applied an AKT agonist insulin-like 
growth factor 1 (IGF-1), which induced persistent activation of the AKT pathway. IGF-
1 treatment reversed the anti-proliferation and pro-apoptotic effects of DDX51 
knockdown in ESCC cells (Figure 4F and G). Meanwhile, the migration and invasion 
abilities were also increased to the NC level when ESCC cells were treated with both 
si-DDX51 and IGF-1 (Figure 5). These results suggest that the anti-tumor effects of 
DDX51 knockdown in ESCC are, at least in part, mediated by the PI3K/AKT signaling 
pathway.

Knockdown of DDX51 slows down the growth of ESCC cells
We further investigated the effects of DDX51 knockdown on ESCC tumor growth in 
vivo. TE-1 cells were transfected with lv-si-DDX51 or lv-NC for 48 h and 
subcutaneously injected into the right flanks of nude mice. Six repeats were designed 
for each group. The tumor volume was measured and analyzed every other day. At 
the end of the experiment, tumor weights were measured and DDX51 expression was 
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Table 1 Correlation of DDX51 expression with the clinicopathologic features of ESCC patients

DDX51 expression level
Characteristics Cases (n = 118)

Low (n = 52) High (n = 66)
P value

Age (yr) 0.740

< 50 30 14 16

≥ 50 88 38 50

Gender 0.201

Male 91 43 48

Female 27 9 18

Tumor size 0.194

< 30 mm 20 12 8

30-50 mm 66 29 37

≥ 50 mm 32 11 21

Differentiation degree 0.025a

High 26 11 15

Moderate 53 30 23

Low 39 11 28

pT 0.154

T1 8 6 2

T2 51 23 28

T3 + T4 59 23 36

pN 0.012a

N0 42 25 17

N1 + N2 76 27 49

pTNM 0.002a

I + II 37 24 13

III + IV 81 28 53

aP < 0.05 indicated statistical significance. Statistical analysis was performed using the chi-square test. TNM: Tumor-node-metastasis.

Table 2 Comparison of Kaplan–Meier survival curves

B SE Wald P value HR 95%CI

Differentiation 0.052 0.157 0.110 0.740 1.053 0.774-1.433

pN 0.029 0.451 0.004 0.949 1.029 0.425-2.491

pTNM 1.078 0.518 4.323 0.038 2.939 1.064-8.119

DDX51 0.893 0.241 13.686 < 0.01 2.443 1.522-3.921

analyzed by IHC analysis. The results are shown in Figure 6, which indicated that the 
tumor volume of the lv-si-DDX51 group (1639.35 ± 674.36 mm3) was significantly 
decreased compared with that of the NC group (1013.03 ± 264.51 mm3) on day 28. The 
weight of the NC group (0.442 ± 0.116 g) was also significantly higher than that of the 
lv-si-DDX51 group (0.715 ± 0.156 g). These results showed that DDX51 knockdown 
inhibited ESCC tumor growth in the mouse xenograft model.
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Figure 1 Expression and prognostic value of DEAD-box helicase 51 in esophageal cancer. A: Immunohistochemistry analysis of DEAD-box 
helicase 51 (DDX51) expression in tumor tissues and paired normal tissues of patients with esophageal squamous cell carcinoma (ESCC); B: Quantitative PCR 
detection of DDX51 mRNA expression in the tumor tissues (n = 118) and paired normal tissues (n = 118) of patients with ESCC, aP < 0.05; C: Survival curves of 
ESCC patients with high or low expression (P = 0.0036).

DISCUSSION
The DDX family, which has activities of RNA unwinding and structure remodeling, 
regulates nearly all aspects of RNA-related biology, from synthesis to degradation
[10]. Since mRNA serves as an intermediate between DNA genetic information and 
proteins, the DDX family plays crucial roles in multiple cellular processes such as cell 
proliferation, apoptosis, and malignant transformation[15-19]. DDX proteins 
ordinarily exert their function by forming a large multi-protein complex. Therefore, 
their exact function is probably impacted by their interacting partners and is 
profoundly context dependent[20,21]. The most important characteristic of a tumor is 
heterogeneity, which might explain the diverse functions of DDX proteins in tumors, 
as an oncogene or tumor suppressor[22,23]. DDX51 is a recently identified member of 
DDX family, which shows pro-proliferation activity in the progression of NSCLC and 
breast cancer[12,13].

Here we demonstrated that DDX51 was upregulated in ESCC tumor tissues and 
promoted tumor proliferation and metastasis. The results also suggested that the 
oncogenic function of DDX51 in ESCC was a result of activation of the PI3K/AKT 
signaling pathway, which is consistent with previous reports that revealed the 
regulatory action of other DDX proteins on the AKT pathway.

DDX family members are dysregulated in various tumor types, including ESCC
[10]. For example, gene microarray data of breast cancer showed that DDX1 upregu-
lation is associated with tumor occurrence and early recurrence and serves as an 
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Figure 2 Anti-proliferation effects of DEAD-box helicase 51 in esophageal cancer. Negative control (NC) small interfering RNA (siRNA) and DEAD-
box helicase 51 (DDX51) siRNA were synthesized and transfected into Eca109 and TE-1 cells. A and B: Quantitative PCR assay was used for the detection of 
knockdown efficiencies; C: Western blot analysis of DDX51 expression in DDX51 siRNA-expressing cells; D and E: The effects of DDX51 on the viability of 
esophageal squamous cell carcinoma cells. aP < 0.05. All data were obtained from at least three independent experiments. NC was a scrambled siRNA.

independent prognostic biomarker for patients’ survival[24]. Wang et al[12] invest-
igated the expression of DDX51 in NSCLC patients. The results showed that DDX51 
expression was associated with patient age but no other risk factors. In breast cancer, 
DDX51 also exhibits high expression in tumor tissues and predicts a high TNM stage 
and poor prognosis in patients[13]. Here, our results showed that DDX51 was 
upregulated in ESCC tumor tissues and was negatively correlated with patient 
survival, which was consistent with previous studies on DDX51 in tumors. Our study 
identified that the upregulated expression of DDX51 in ESCC is associated with the 
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Figure 3 Effects of DEAD-box helicase 51 small interfering RNA on cell apoptosis, migration, and invasion of esophageal squamous cell 
carcinoma cells. A and B: Cell apoptosis percentage of DEAD-box helicase 51 (DDX51) small interfering RNA (siRNA)-expressing esophageal squamous cell 
carcinoma (ESCC) cells; C and D: Scratch assays for cell migration analysis of the DDX51 siRNA-expressing ESCC cells; E and F: Transwell assays for cell invasion 
analysis of DDX51 siRNA-expressing ESCC cells. aP < 0.05. All data were obtained from at least three independent experiments. Negative control was a scrambled 
siRNA.

degree of differentiation, pathological N stage, and pathological TNM stage. The 
above findings suggest that DDX51 overexpression may serve as an independent 
prognostic factor in ESCC. However, it is currently unclear if this is an indication of 
the severity of the cancer itself. Further study should be performed to investigate the 
prognostic value of DDX51 in a larger number of specimens.

As RNA synthesis and decay involve the regulation of broad-spectrum protein 
expression, it is not surprising that the dysregulation of DDX proteins in tumors 
affects different signaling pathways. In a review reported in 2021, the signaling 
regulation network of DDX family in tumorigenesis was summarized including Wnt/
β-catenin pathway, Snail/E-cadherin pathway, hypoxia inducible factor 1 
alpha/DDX3/E-cadherin and so on[10]. For DDX51, microarray analyses revealed that 
DDX51 siRNA-expressing cells expressed higher levels of transforming growth factor 
beta receptor, interleukin 1 receptor, and c-FOS in NSCLC[12]. The Wnt/β-catenin 
pathway is also downregulated by DDX51 siRNA in breast cancer[13]. Here, we found 
that DDX51 siRNA resulted in the inactivation of the PI3K/AKT pathway, including 
decreased phosphorylation levels of PTEN, PI3K, AKT, and mTOR. The PI3K/AKT 
pathway is constitutively activated in many tumor types including ESCC, and 
participates in tumor cell proliferation, apoptosis, and progression[25-27]. In a 
previous study, DDX5 was demonstrated to occupy the AKT promoter with β-catenin 
as well as nuclear factor kappa B, and induces the mRNA and protein expression of 
AKT[28]. However, in gastric cancer miR-5590-3p targets DDX5, which further 
decreases the phosphorylation levels of AKT and does not affect AKT protein 
expression[29]. These results suggest that DDX proteins can regulate the AKT pathway 
through either protein expression or phosphorylation level. In the future, we intend to 
investigate the effects of DDX51 on transcriptome and proteome expression in tumor 
progression, which will provide more information on the mechanism of action of this 
protein.

CONCLUSION
This study had some limitations. First, in vivo experiments were not performed to 
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Figure 4 Knockdown of DEAD-box helicase 51 induced inactivation of the phosphoinositide 3-kinase/AKT signaling pathway. A-E: 
Expression of phosphoinositide 3-kinase (PI3K)/AKT pathway members, including phosphatase and tenin homolog (PTEN), phosphorylated PTEN (p-PTEN), PI3K, p-
PI3K, AKT, p-AKT, mammalian target of rapamycin (mTOR) and p-mTOR, was detected by western blot analysis; F: AKT activator insulin-like growth factor 1 (IGF-1) 
reversed the inhibitory effect of DDX51 knockdown on the proliferation of TE-1 cells; G: AKT activator IGF-1 reversed the pro-apoptotic effect of DDX51 knockdown 
on the proliferation of TE-1 cells. aP < 0.05. All data were obtained from at least three independent experiments. Negative control was a scrambled small interfering 
RNA.
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Figure 5 Anti-migration and anti-invasion effects of DEAD-box helicase 51 knockdown was mediated by the AKT pathway. A and B: AKT 
activator insulin-like growth factor 1 (IGF-1) reversed the anti-migration effect of DDX51 knockdown on the proliferation of TE-1 cells; C and D: AKT activator IGF-1 
reversed the anti-invasion effect of DDX51 knockdown on the proliferation of TE-1 cells. aP < 0.05. All data were obtained from at least three independent 
experiments. Negative control was a scrambled small interfering RNA.

further confirm the effect of DDX51 knockdown on lung and lymph node metastases. 
Second, the exact regulatory mechanism of DDX51 in ESCC was not explored. Future 
studies are required to further confirm the potential of DDX51 as a therapeutic target 
for the targeted treatment of ESCC.
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Figure 6 DEAD-Box helicase 51 knockdown inhibited the tumor growth of esophageal squamous cell carcinoma in vivo. TE-1 cells 
transfected with lentivirus-small interfering-negative control (lv-si-NC) (n = 6) or lv-si-DEAD-box helicase 51 (DDX51) (n = 6) were injected into nude mice and tumor 
volumes were monitored. A: The photographs of mice with esophageal squamous cell carcinoma tumor of TE-1 cells transfected with lv-si-NC or lv-si-DDX51; B: 
Tumor growth curves; C: At the end of experiments, mice were executed, tumors were excised and tumor weights were measured. aP < 0.05. Negative control was a 
scrambled siRNA.

ARTICLE HIGHLIGHTS
Research background
Esophageal squamous cell carcinoma (ESCC) is one of the most prevalent 
malignancies that seriously threatens people’s health worldwide. DDX51 is a member 
of the DEAD-box (DDX) RNA helicase family, which drives or inhibits tumor 
progression in multiple cancer types.

Research motivation
To identify the role of DDX51 in ESCC and the molecular mechanisms involved.

Research objectives
To explore the effect of DDX51 on ESCC progression.

Research methods
The expression of DDX51 in ESCC tumor tissues and adjacent normal tissues was 
detected by immunohistochemistry analysis and quantitative PCR (qPCR). We 
knocked down DDX51 in ESCC cell lines using small interfering RNA (siRNA) 
transfection. The proliferation, apoptosis, and mobility of DDX51 siRNA-transfected 
cells were detected. The effects of DDX51 on the phosphoinositide 3-kinase 
(PI3K)/AKT pathway were investigated using western blot analysis. A mouse 
xenograft model was established to investigate the effects of DDX51 knockdown on 
ESCC tumor growth.

Research results
DDX51 exhibited high expression in ESCC tissues compared with normal tissues and 
was associated with a poor prognosis in patients with ESCC. Knockdown of DDX51 
induced inhibition of ESCC cell proliferation and promoted apoptosis. Moreover, 
DDX51 siRNA-expressing cells also exhibited lower migration and invasion rates. 
Investigation into the mechanism of action suggested that DDX51 knockdown induced 
inactivation of the PI3K/AKT pathway including decreased phosphorylation levels of 
PTEN, PI3K, AKT and mTOR. Rescue experiments demonstrated that the AKT 
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activator insulin-like growth factor 1 could reverse the inhibitory effects of DDX51 on 
ESCC malignant development. Finally, we injected DDX51 siRNA transfected TE-1 cell 
into an animal model, which resulted in slower tumor growth.

Research conclusions
Our study suggests for the first time that DDX51 contributes to ESCC cell proliferation 
by regulating the PI3K/AKT signaling pathway.

Research perspectives
DDX51 may serve as a potential therapeutic target for the treatment of ESCC.
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Abstract
BACKGROUND 
Heterogeneous macrophages play an important role in multiple liver diseases, 
including viral fulminant hepatitis (VFH). Fibrinogen-like protein 2 (FGL2) is 
expressed on macrophages and regulates VFH pathogenesis; however, the 
underlying mechanism remains unclear.

AIM 
To explore how FGL2 regulates macrophage function and subsequent liver injury 
during VFH.

METHODS 
Murine hepatitis virus strain 3 (MHV-3) was used to induce VFH in FGL2-
deficient (Fgl2-/-) and wild-type (WT) mice. The dynamic constitution of hepatic 
macrophages was examined. Adoptive transfer of Fgl2-/- or WT bone marrow-
derived macrophages (BMDMs) into WT recipients with macrophages depleted 
prior to infection was carried out and the consequent degree of liver damage was 
compared. The signaling cascades that may be regulated by FGL2 were detected 
in macrophages.

RESULTS 
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Following MHV-3 infection, hepatic macrophages were largely replenished by 
proinflammatory monocyte-derived macrophages (MoMFs), which expressed 
high levels of FGL2. In Fgl2-/- mice, the number of infiltrating inflammatory 
MoMFs was reduced compared with that in WT mice after viral infection. 
Macrophage depletion ameliorated liver damage in WT mice and further 
alleviated liver damage in Fgl2-/- mice. Adoptive transfer of Fgl2-/- BMDMs into 
macrophage-removed recipients significantly reduced the degree of liver damage. 
Inhibition of monocyte infiltration also significantly ameliorated liver damage. 
Functionally, Fgl2 deletion impaired macrophage phagocytosis and the antigen 
presentation potential and attenuated the proinflammatory phenotype. At the 
molecular level, FGL2 deficiency impaired IRF3, IRF7, and p38 phosphorylation, 
along with NF-κB activation in BMDMs in response to viral infection.

CONCLUSION 
Infiltrated MoMFs represent a major source of hepatic inflammation during VFH 
progression, and FGL2 expression on MoMFs maintains the proinflammatory 
phenotype via p38-dependent positive feedback, contributing to VFH patho-
genesis.

Key Words: Viral fulminant hepatitis; Fibrinogen-like protein 2; Proinflammatory macro-
phages; Infiltrating macrophages; P38
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Core Tip: In this study, we demonstrate that: (1) Monocytes infiltrating the liver 
represent a major source of hepatic inflammation, which has a decisive effect on the 
pathogenesis of viral fulminant hepatitis; (2) Viral infection induces FGL2 expression 
on macrophages, which is required for maintaining the inflammatory phenotype and 
cell function; and (3) FGL2 generates a positive feedback loop of an inflammatory 
cascade in macrophages in response to viral infection.

Citation: Xiao F, Wang HW, Hu JJ, Tao R, Weng XX, Wang P, Wu D, Wang XJ, Yan WM, Xi 
D, Luo XP, Wan XY, Ning Q. Fibrinogen-like protein 2 deficiency inhibits virus-induced 
fulminant hepatitis through abrogating inflammatory macrophage activation. World J 
Gastroenterol 2022; 28(4): 479-496
URL: https://www.wjgnet.com/1007-9327/full/v28/i4/479.htm
DOI: https://dx.doi.org/10.3748/wjg.v28.i4.479

INTRODUCTION
Viral fulminant hepatitis (VFH) is a type of acute liver failure (ALF) that can develop 
after viral infection in patients with hepatitis A, hepatitis B, and hepatitis E. VFH is a 
devastating syndrome characterized by severe liver injury with coagulation 
abnormalities and hepatic encephalopathy[1]. Pathologically, acute liver injury and 
subsequent massive hepatocyte loss are caused by hyperactivation of the innate 
immune response, followed by an excessive adaptive immune response to viral 
infection, leading to systemic inflammation. Innate immune cells, activated by 
pathogen-associated molecular patterns (PAMPs) from invading pathogens, damage-
associated molecular patterns (DAMPs) released from necrotic cells, and afferent 
endotoxins from the portal vein, are dominant in conditions of sterile inflammation 
and non-virus-associated ALF[2,3]. Adaptive immunity activated by PAMPs seems to 
play a more important role in VFH than innate immunity because of the exposure to 
abundant viral antigens presented by antigen-presenting cells[4,5]. However, the 
extent of the contribution of innate immunity in generating viral antigens or DAMPs 
in VFH is not well defined.

Liver-resident macrophages, also known as Kupffer cells (KCs), are the largest 
population of hepatic immune cells that play an essential role in maintaining liver 
homeostasis and ensure rapid responses to hepatic insults[6]. Monocyte-derived 
macrophages (MoMFs) are an ontologically distinct subpopulation of hepatic 

https://creativecommons.org/Licenses/by-nc/4.0/
https://creativecommons.org/Licenses/by-nc/4.0/
https://www.wjgnet.com/1007-9327/full/v28/i4/479.htm
https://dx.doi.org/10.3748/wjg.v28.i4.479


Xiao F et al. FGL2 regulate macrophages in fulminant hepatitis

WJG https://www.wjgnet.com 481 January 28, 2022 Volume 28 Issue 4

es/by-nc/4.0/

Received: August 18, 2021 
Peer-review started: August 18, 
2021 
First decision: December 4, 2021 
Revised: December 18, 2021 
Accepted: January 8, 2022 
Article in press: January 8, 2022 
Published online: January 28, 2022

P-Reviewer: Makishima M 
S-Editor: Wang LL 
L-Editor: A 
P-Editor: Guo X

macrophages, which are found in only small numbers under physiological conditions 
and then serve to replenish the macrophage population during liver injury[7]. 
Macrophages are generally classified into proinflammatory (M1) and anti-inflam-
matory (M2) macrophages (or alternatively activated macrophages), phenotypically 
corresponding to T helper (Th)1 and Th2 responses, respectively. However, the 
spectrum of macrophage classification remains obscure as the transition between 
macrophage subtypes occurs in response to microenvironment mediators[8,9]. 
Dynamic alterations in KC and MoMF populations were observed in the context of 
sterile inflammation in an experimental model of ALF induced by acetaminophen 
overdose, with replacement of KCs by MoMFs during disease progression[10]. Further 
analyses of this model revealed differential subsets of macrophages showing the 
protective and detrimental characteristics of KCs and MoMFs during the course of 
acetaminophen-induced ALF[10,11]. Moreover, an increase in the number of MoMFs 
with potent activity has been observed in non-pregnant patients with hepatitis E-
associated ALF compared with that in pregnant patients. In a model of experimental 
VFH, hepatic leukocyte numbers were found to increase at an early stage of liver 
injury[12], suggesting the involvement of macrophages in disease progression. 
However, further investigation is needed to elucidate the precise roles of the distinct 
subpopulations of hepatic macrophages in VFH.

Fibrinogen-like protein 2 (FGL2), a membrane protein with prothrombinase at the 
N-terminal, is expressed in a variety of cells, such as macrophages, dendritic cells, and 
endothelial cells, and can be induced robustly and exclusively in macrophages in 
response to stimulation with cytokines [interferon (IFN)-gamma or tumor necrosis 
factor (TNF)-α), viral infection, and lipopolysaccharide (LPS)[7,13]. This suggests that 
FGL2 itself is a critical mediator of inflammation in that the interaction between 
inflammation and coagulation is reciprocally exacerbated in terms of inflammatory 
cytokine production and tissue factor secretion[11]. FGL2 deficiency was shown to 
prevent the development of VFH in mice following experimental murine hepatitis 
virus strain 3 (MHV-3) infection; this effect was speculated to be mainly dependent on 
its ability to regulate procoagulant activity, as evidenced by concomitant expression of 
FGL2 and fibrinogen production[14]. Emerging evidence suggests that FGL2 is a 
downstream effector molecule in the inflammatory cascades associated with VFH 
development and progression, which involve C5aR, TNF-α, and MSR1[7,12,15,16]. 
Interestingly, complement activation, a critical step for inflammation initiation, has 
also been observed in FGL2-deficient mice following MHV-3 infection[16], 
highlighting a complex regulatory network of inflammation involving FGL2 and other 
effectors. Therefore, we hypothesized that FGL2 plays a role in the reconstitution of 
hepatic macrophages to regulate proinflammatory macrophage activation that 
contributes to VFH progression and exacerbation. To test this hypothesis, we first 
explored the hepatic macrophage composition and expression pattern of FGL2 during 
the progression of VFH in patients with and without hepatitis B virus (HBV)-
associated acute-on-chronic liver failure (ACLF), since the pathology of ACLF closely 
resembles that of ALF[17]. To explore the role of FGL2 in VFH progression and the 
underlying mechanism, we determined alterations in hepatic macrophage populations 
during progression of VFH in FGL2-deficient (Fgl2-/-) and wild-type (WT) mice 
intraperitoneally injected with MHV-3 at different stages after infection.

MATERIALS AND METHODS
Ethics statement
All studies on human subjects were approved by the Ethics Committee of Tongji 
Medical College of Huazhong University of Science and Technology (permit number: 
TJ-C20170924), and all participants provided informed consent in compliance with the 
Helsinki Declaration revised in 1983.

The animal experiments were approved by the Institutional Animal Care and Use 
Committee of Tongji Hospital (permit number: TJ-A20171008) and were conducted in 
accordance with state guidelines from the Ministry of Science and Technology of 
China.

Patient samples
Seven patients with ACLF, as defined by the Asian Pacific Association for Study of the 
Liver (APASL) guidelines[18], who were undergoing liver transplantation were 
included in the study; liver samples were obtained during the surgery. The clinical 
features of the patients are summarized in Table 1. Control samples (n = 3) were 

https://creativecommons.org/Licenses/by-nc/4.0/


Xiao F et al. FGL2 regulate macrophages in fulminant hepatitis

WJG https://www.wjgnet.com 482 January 28, 2022 Volume 28 Issue 4

Table 1 Clinical characteristics of patients and controls

Characteristics ACLF (n = 7) Healthy controls (n = 3)

Age (year) 47.14 ± 3.3a 30.33 ± 3.4

Sex (male:female) 6:1 3:0

Laboratory evaluation

ALT (U/L) 642.9 ± 360.3 8.67 ± 1.76

Tbil (μmol/L) 429.8 ± 70.53a 17 ± 2.34

PTA (%) 30.29 ± 3.3a 118 ± 12.17

HBsAg (ng/mL) 3870 ± 1600 0

HBV-DNA (106 copies/mL) 8.18 ± 6.78 0

Ascites and/or Encephalopathy 7 0

aP < 0.5 vs controls.
Age, Serum alanine aminotransferase, total bilirubin, prothrombin time activity shown as mean ± SD. ACLF: Acute on chronic liver failure; ALT: Alanine 
aminotransferase; Tbil: Total bilirubin; PTA: Prothrombin time activity.

obtained from a healthy liver donor and from the paratumor tissues of a patient with 
hepatic hemangioma and a patient with hepatocellular carcinoma without cirrhosis.

Animals, viral infection, macrophage depletion, and inhibitor treatment
Female BALB/c mice (HFK Bioscience Company Ltd., Beijing, China) at 6-8 weeks of 
age were used in all animal experiments. The mice were housed in a controlled 
environment (specific pathogen-free, 12 h light/dark cycle, 21 ± 2 °C, humidity 50 ± 
10%) and had free access to food and water. Fgl2-/- mice were generated by 
introducing a deletion at the N-terminal of the open reading frame of the Fgl2 locus 
using CRISPR/Cas9 technology. WT BALB/c mice were used as controls. To establish 
the fulminant hepatitis model, 100 plaque-forming unit (PFUs) of MHV-3 (American 
Type Culture Collection, Manassas, VA, USA) dissolved in 200 µL saline was injected 
into the WT and Fgl2-/- mice intraperitoneally. To deplete macrophages, mice were 
intravenously injected with 200 µL clodronate liposomes or phosphate-buffered saline 
(PBS)-liposomes as a control (Liposome B.V., the Netherlands) 24 h prior to MHV-3 
injection. To inhibit MoMF infiltration, a chemokine receptor-2 (CCR2) inhibitor 
(cenicriviroc; 10 mg/kg) was intraperitoneally injected 24 h prior to MHV-3 infection. 
WT or Fgl2-/- mice were randomly selected to be sacrificed at 0, 24, 48, and 72 h 
following MHV-3 injection, and liver and blood samples were harvested for analysis.

Cell isolation
Hepatic mononuclear non-parenchymal cells from WT and Fgl2-/- mice were isolated 
via liver perfusion, enzymatic digestion, and differential centrifugation, as described 
previously[19]. Peritoneal exudate macrophages (PEMs) were isolated from the mice 3 
d after intraperitoneal injection of 3% starch broth (1 mL/mice). Bone marrow-derived 
macrophages (BMDMs) were differentiated from hematopoietic stem cells isolated 
from the femurs cultured in Dulbecco’s modified Eagle medium (DMEM) containing 
10% fetal bovine serum (FBS) and macrophage-colony stimulating factor (30 μg/mL, 
Peprotech) for 7 days. BMDMs or PEMs were maintained in DMEM supplemented 
with 10% FBS and treated with LPS (100 ng/mL), interleukin (IL)-4 (20 ng/mL), or 
MHV-3 (5 × 105 PFU/mL).

Macrophage adoptive transfer
KCs are the largest population of hepatic resident non-parenchymal cells and the first 
line of defense against pathogens and toxins[6]. The priming of KCs may therefore be 
involved in initiation of the hepatic immune response, a critical step for subsequent 
exacerbation of inflammatory accumulation. Accordingly, we also assessed liver 
damage following MHV-3 infection with depletion of macrophages by clodronate 
liposomes. WT mice were treated with 200 µL clodronate liposomes or PBS-liposomes 
as a control to deplete macrophages, which then served as the recipient mice for 
adoptive transfer. Harvested BMDMs from WT and Fgl2-/- mice were intravenously 
injected into the recipient mice at 5 × 105 cells/mouse. MHV-3 (100 PFU/mouse) 
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injection was performed 24 h later. Liver and blood samples were harvested at 48 h 
post MHV-3 infection for further analyses.

Flow cytometry
Single-cell suspensions were blocked with 2 μg/mL anti-CD16/CD32, followed by 
staining with fluorescence-conjugated antibody cocktails. For intracellular staining, 
surface-stained cells were fixed and permeabilized using Cytofix/Cytoperm 
Fixation/Permeabilization Kit (No. 554714, BD Pharmingen) prior to incubation with 
target antibodies. Data were acquired on a BD FACS Canto II flow cytometer (BD 
Bioscience, San Jose, CA) and analyzed using FACS Diva software.

Detailed procedures and other materials are described in the supporting 
information.

Statistical analyses
Statistical testing was performed using GraphPad Prism 5.0 software (GraphPad 
Software Inc., San Diego, CA, United States). Comparisons between WT and Fgl2−/− 
mice (or other situations where only two groups are compared) were performed using 
Student’s unpaired t-test; one-way analysis of variance with Tukey’s post-hoc test or 
Mann-Whitney U test was used for multiple comparisons (unless otherwise indicated). 
Data are presented as mean ± standard deviation; P < 0.05 was considered to indicate a 
statistically significant difference.

RESULTS
The number of proinflammatory macrophages with elevated FGL2 expression 
increases in patients with hepatitis virus-induced liver failure
Marked infiltration of leukocytes was observed in samples of the patients with ACLF, 
along with massive necrosis in the parenchymal lobules (Figure 1A). CD68+ 
macrophages markedly accumulated in the periportal areas (Figure 1B, Supple-
mentary Figure 1), suggesting widespread liver damage[20]. Furthermore, macro-
phages were polarized to proinflammatory macrophages, as confirmed by the 
expression of S100A9 (Figure 1C), an alarmin molecule expressed in proinflammatory 
macrophages, activated neutrophils, and granulocytes, which is often used as a 
biomarker of inflammation[21]. Interestingly, the majority of S100A-positive activated 
proinflammatory macrophages also expressed FGL2 in consecutive sections of liver 
samples from patients with HBV-related liver failure (Figure 1D). These data suggest 
that a high expression level of FGL2 could be an important molecular event of hepatic 
macrophage polarization during viral liver failure.

Ly6Chigh MoMFs dominate the hepatic macrophage population during VFH 
progression
In the experimental fulminant hepatitis mouse model, pathogenesis was divided into 
an early stage without global liver damage at 24 h post-infection of MHV-3, a 
progression phase with continuous enlargement of block necrosis and increased 
transaminase levels, and an end stage defined at 72 h post-infection when the animals 
were near death (Figure 2A and B). At the early stage of infection, hematoxylin and 
eosin staining showed that the hepatic architecture was intact and no obvious 
macrophages infiltration was noted (Figure 2A). Aggregating plots of the CD11b 
F4/80-expressing flow cytometry panel[22] showed a continuous increase in the 
number of hepatic MoMFs (CD11bhigh F4/80int) and a decline in the number of KCs 
(CD11blow F4/80high) over the course of infection, accompanied by enlarged lesions until 
confluent necrosis of the liver lobules occurred at the later stage (Figure 2A and C). 
Notably, KCs constituted the dominant hepatic macrophage population at the early 
stage of infection, with an increased M1 macrophage subset [induced nitric oxide 
synthase (iNOS+) KCs] (Figure 2D, Supplementary Figure 2A and C). However, 
MoMFs subsequently dominated the hepatic macrophage population, characterized by 
an increased ratio of Ly6Chigh cells; however, the Ly6Chigh/Ly6Clow ratio decreased at 
the end stage of the disease (Figure 2E, Supplementary Figure 2A), implying a 
transition from Ly6Chigh MoMFs to Ly6Clow MoMFs. The dynamic alterations in hepatic 
macrophage populations were also revealed by an increase in the levels of proinflam-
matory cytokines TNF-α and IL-6 during progression, which then decreased at the end 
stage, along with a continued decrease in transforming growth factor (TGF)-β levels in 
macrophages (Supplementary Figure 2D). Consistent with the reconstitution of hepatic 

https://f6publishing.blob.core.windows.net/5e8afe49-76da-45c1-bc0d-5852ff77ae18/WJG-28-479-supplementary-material.pdf
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Figure 1 Fibrinogen-like protein 2 was expressed on proinflammatory macrophages in patients with hepatitis B virus-associated liver 
failure. A: Representative image of liver sections (200×) subjected to Hematoxylin and eosin staining (H&E); Black circles point to transparent necrosis, red circles 
point to infiltrating leukocytes; B: Calculation of CD68+ macrophages at periportal and lobular areas; C: Immunofluorescence against CD68, S100A9 on liver sections 
(200×) from patients of hepatitis B virus-associated acute chronic-on liver failure (acute-on-chronic liver failure (ACLF), n = 7) and healthy controls (n = 3); D: 
Immunofluorescence against S100A9 and fibrinogen-like protein 2 on liver sections (200×) from ACLF patients (n = 7) and healthy controls (n = 3), representative 
images on the left and statistical columns on the right. Data are expressed as mean ± SD.

macrophage populations in which Ly6Chigh MoMFs are more inflammatory with an 
expanded spectrum of cytokine and chemokine expression compared with M1 
macrophages[23], the serum MCP-1 level was remarkably increased during infection-
induced liver failure progression (Supplementary Figure 2B).

Potent induction of FGL2 is associated with the proinflammatory phenotype of both 
KCs and MoMFs in response to viral infection
As shown in Figure 3A, over 90% of FGL2-positive KCs were found in iNOS+ 
macrophages based on flow cytometry. Moreover, Ly6Chigh MoMFs constituted the 
major population of FGL2-positive MoMFs, and the expression level of FGL2 was 
remarkably higher in Ly6Chigh MoMFs than in Ly6Clow MoMFs (Figure 3B). After viral 
infection, sequential induction of FGL2 expression was observed in both polarized M1 
KCs and Ly6Chigh MoMFs during disease progression, although a slight decrease in the 
expression level was observed when the KC and MoMF populations were somewhat 
exhausted at 48 and 72 h post viral infection, respectively (Figure 3C and D). However, 
FGL2 expression was maintained at low levels in Ly6Clow populations (Figure 3D). 
Together, these data suggested that FGL2 is markedly induced in proinflammatory 
macrophages upon viral infection.

FGL2 deficiency prevents proinflammatory macrophage activation after MHV-3 
infection
In Fgl2-/- mice (Supplementary Figure 3A), liver damage following MHV-3 infection 
was significantly attenuated, as revealed by narrowed necrosis foci and lower alanine 
transaminase (ALT) and aspartate transaminase (AST) levels compared with those in 
WT mice (Figure 4A and B). In addition, viral titers were reduced in Flg2-/- mice 
compared with those in their WT counterparts (Supplementary Figure 3B). Consistent 
with the pathology results, monocyte infiltration was significantly reduced in Flg2-/- 
mice, whereas a large number of KCs was maintained during VFH progression 
(Figure 4C). To determine whether Fgl2 was required for proinflammatory 

https://f6publishing.blob.core.windows.net/5e8afe49-76da-45c1-bc0d-5852ff77ae18/WJG-28-479-supplementary-material.pdf
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Figure 2 Dynamic alteration of macrophage subsets during viral fulminant hepatitis progression. A: Time-course H&E staining on liver sections of 
mice after murine hepatitis virus strain 3 infection. Arrowheads indicated hepatocyte cytoplasmic destruction, Circles pointed to necrosis; B: ALT and AST levels from 
serum of mice post-viral infection; C: Flow cytometry of KCs (CD45+ F4/80high), MoMFs (CD45+ Ly6C+ F4/80int) of cells (left), and their percentage in the liver at 
various time point after viral infection; D: Flow cytometry of KCs (left) and frequency of M1 (iNOS+), M2 (CD206+) macrophages in KCs (right); E: Representative 
image of MoMFs (left) and frequency of Ly6Chigh and Ly6Clow MoMFs at different time point after viral infection. Data are presented as mean ± SD (n = 5). These 
experiments were repeated at least three times. KCs: Kuffer cells; MoMFs: Monocyte derived macrophages.

macrophage activation, we investigated the polarization of KCs at the early stage of 
VFH when KC populations were reserved. We found a decrease in the M1 KC subset 
and an increase in the M2 KC numbers in FGL2-deficient mice before and after MHV-3 
infection (Figure 4D), suggesting that FGL2 depletion impaired inflammatory 
macrophage activation and favored the M2 phenotype. As expected, a small Ly6Chigh 
subset was also observed in the MoMF population in FGL2-deficient mice after viral 
infection, implying that Fgl2 loss predisposed MoMFs to the Ly6Clow phenotype 
(Figure 4E). This interpretation was further supported by the reduced levels of TNF-α 
and IL-6 and the increased levels of TGF-β on KCs from Fgl2-/- mice after viral 
infection compared with those in WT mice (Supplementary Figure 3C).

FGL2 induces KC polarization for initiation of inflammatory events after viral 
infection
Macrophage depletion by clodronate liposomes significantly relieved liver injury, as 
shown by decreased necrosis foci and ALT/AST levels, in both WT and FGL2-deficient 

https://f6publishing.blob.core.windows.net/5e8afe49-76da-45c1-bc0d-5852ff77ae18/WJG-28-479-supplementary-material.pdf
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Figure 3 Fibrinogen-like protein 2 expression was robustly inducted upon proinflammatory macrophage activation. A: Flow cytometry of 
fibrinogen-like protein 2 (Fgl2) +KCs expressing iNOS and CD206 under homeostatic conditions (left), and frequency of iNOS+ and CD206+ cells subsets (right); B: 
Representative image of Fgl2+MoMFs expressing Ly6C (left), and relative expression level of Fgl2 in Ly6ChiMoMFs and Ly6Clo MoMFs under physiological 
conditions (right); C: Time course-presentation of Fgl2 expression in M1 polarized KCs (left), and expression level of Fgl2 in Ly6ChiMoMFs and Ly6Clow MoMFs, 
respectively (right); D: Cell counts of Fgl2+ MoMFs (left), and relative level of Fgl2 expression on both MoMFs subset (right) following viral infection. Data are 
presented as mean ± SD (n = 5). These experiments were repeated at least three times. MFI: Mean fluorescence intensity.

mice (Figure 5A and B). Notably, further reduction in liver ALT/AST levels and fewer 
necrotic hepatocytes were observed in FGL2-deficient mice after viral infection, 
suggesting the requirement of FGL2 for macrophage polarization and disease 
progression. To determine whether FGL2 regulates macrophage polarization directly, 
BMDMs from WT and Fgl2-/- mice were transferred into WT recipient mice with self-
BMDMs depleted in advance in the VFH model. Interestingly, Fgl2-/- BMDMs 
exhibited reduced numbers of inflammatory polarized macrophages and increased 
numbers of anti-inflammatory macrophages (Figure 5D and E). Moreover, recipient 
mice adoptively transferred with Fgl2-/- BMDMs exhibited reduced liver injury, as 
revealed by histological analysis (Figure 5A) and ALT/AST levels (Figure 5C), when 
compared with that in recipients transferred with WT BMDMs.

As depicted in Supplementary Figure 3D and E, smaller numbers of MPOhigh 
myeloid cells, which are considered to be neutrophils, were observed in liver sections 
from mice with macrophage depletion or in FGL2-deficient mice compared with those 
from untreated WT mice following MHV-3 infection. However, no significant 
difference in neutrophil abundance was observed between WT and Fgl2-/- mice with 
macrophage depletion.

Because MoMFs formed the largest component of myeloid cells during the acute 
stage and CCR2 is mainly expressed in proinflammatory monocytes (Ly6Chigh)[24], we 
speculated that MoMF-derived inflammation is a major source of hepatic inflam-
mation. Indeed, treatment with the CCR2 inhibitor cenicriviroc significantly reduced 
the virus-induced liver damage (Figure 5F and G). Collectively, these data suggest that 
FGL2 directly regulates proinflammatory macrophage polarization and that infiltrated 
MoMFs are the major source of hepatic inflammation during acute liver injury.

FGL2 deficiency attenuates macrophage M1 polarization in vitro
To further determine whether FGL2 regulates macrophage polarization directly in 
vitro, we examined its regulatory effect on BMDMs and PEMs by LPS stimulation or 
MHV-3 infection. As expected, in WT BMDMs, robust production of cytokines and 
chemokines, such as IL-1β, TNF-α, IL-6, IL-12, and MCP-1, and reactive species, such 
as the NO-derived nitrite product (NO2

-), were observed in response to either LPS 
treatment or MHV-3 infection. In contrast, the levels of such products were markedly 

https://f6publishing.blob.core.windows.net/5e8afe49-76da-45c1-bc0d-5852ff77ae18/WJG-28-479-supplementary-material.pdf
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Figure 4 Fibrinogen-like protein 2 promotes pro-inflammatory macrophage polarization following murine hepatitis virus strain 3 infection. 
A: H&E staining on liver sections from wild type (WT) and fibrinogen-like protein 2 (Fgl2-/-) mice at 48 and 72 h post viral infection. Circled field represented bulk 
necrosis. Arrows point to necrotic cells; B: Serum alanine transaminase and aspartate transaminase levels at 0, 24, 48, and 72 h post viral infection in WT and Fgl2-/- 
mice; C: Flow cytometry of KCs and MoMFs in hepatic CD45+ leukocytes at steady condition and 48 h following viral fulminant hepatitis in WT and Fgl2-/- mice (left); 
and respective frequency at 48 h post infection; D: Frequency of polarized M1 (iNOS+), M2 (CD206+) KCs at 0 and 24 h post murine hepatitis virus strain 3 (MHV-3) 
infection; E: Frequency of Ly6Chi and Ly6Clow MoMFs at 0 and 48 h post MHV-3 infection. Data are presented as mean ± SD (n = 5). These experiments were 
repeated at least three times.

reduced in BMDMs from Fgl2-/- mice under the same condition (Figure 6A). 
Consistently, the transcription levels of M1 indicators, such as NOS2, TNF-α, IL-6, IL-1
β, IL-12, and Marco, were significantly reduced in BMDMs of Fgl2-/- mice compared 
with those in BMDMs from WT mice in response to either LPS stimulation or MHV-3 
infection (Figure 6B and C). In contrast, both IL-10 production and the transcriptional 
levels of M2 markers were significantly higher in Fgl2-/- BMDMs than in WT BMDMs 
in response to IL-4 treatment (Figure 6D and E). Similar results were also obtained in 
Fgl2-/- PEMs in response to LPS treatment (Supplementary Figure 4). Taken together, 
these data suggest that FGL2 deficiency impairs the proinflammatory polarization of 
macrophages and promotes an alternative activated phenotype in response to IL-4 
stimulation.

FGL2 deficiency reduces the antigen presentation and phagocytosis of 
macrophages
A critical function of hepatic macrophages during homeostasis maintenance is to 
engulf pathogens, endotoxins, and debris of dead cells via a process called 

https://f6publishing.blob.core.windows.net/5e8afe49-76da-45c1-bc0d-5852ff77ae18/WJG-28-479-supplementary-material.pdf
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Figure 5 Depletion of macrophages in fibrinogen-like protein 2 synergically attenuated liver damage after viral infection. A: H&E staining on 
liver sections from mice administered with either clodronate liposomes (CL) (b and d on the right) or PBS-liposomes (PBS) (a and c on the left) at 48 h post murine 
hepatitis virus strain 3 (MHV-3) infection; e-f, liver sections from bone marrow-derived macrophages (BMDMs) adoptive transferred mice at 48 h post MHV-3 infection 
(e: WT BMDM donor; f: Fibrinogen-like protein 2 (Fgl2-/-) BMDM donor); B: Serum ALT and AST levels from clodronate liposomes-treated WT and Fgl2-/- mice at 48 
h post MHV-3 infection; C: Serum AST and ALT levels from WT and Fgl2-/- BMDM chimeric mice; D: representative F4/80+ iNOS+ and F4/80+ CD206+ donor 
macrophages from WT and Fgl2-/- BMDM chimeric mice at 48 h post infection; E: statistical analysis of iNOS+ and CD206+ donor macrophages in chimeric mice at 
48 h post infection; F: H&E-stained liver section from mice which were treated with Cenicriviroc (CVC) in advance and subjected to MHV-3 infection for 48 h. Arrows 
represented necrotic cells, circles represent areas of hepatocyte necrosis. Image magnificence: 200×; G: aminotransferase levels of CVC treated viral fulminant 
hepatitis mice and its control. Data were presented as mean ± SD (n = 5). These experiments were repeated at least three times. BMDM: Bone marrow derived 
macrophages.

phagocytosis, followed by antigen presentation by major histocompatibility complex 
(MHC) II for T cells. We therefore cultured E. coli labeled with red fluorescence 
together with peritoneal macrophages to examine their phagocytic capabilities. The 
number of engulfed bacteria was notably smaller in macrophages from FGL2-deficient 
mice than in macrophages from WT mice, although more macrophages were detected 
in Fgl2-/- mice (Figure 7A and B). Furthermore, surface expression of MHC II was 
more severely impaired in FGL2-deficient macrophages than in WT macrophages 
under normal conditions or after viral stimulation (Figure 7C), whereas expression of 
CD80, CD86, or MHC I was not altered (data not shown). These data suggest that 
FGL2 deficiency attenuates both the phagocytic capacity and antigen presentation 
potential of macrophages.
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Figure 6 Fibrinogen-like protein 2 promoted bone marrow-derived macrophages M1 polarization in vitro. A: Supernatant concentration of NO2-, 
IL-1β, TNF-α, IL -6, IL-12 and MCP-1 released by bone marrow-derived macrophages (BMDMs) after LPS (100 ng/mL) treatment or murine hepatitis virus strain 3 
(MHV-3) infection for 24 h; B: Relative transcriptional level of M1 markers (NOS2, IL-6, IL-12, IL-1β, TNF-α and marco) of WT and fibrinogen-like protein 2 (Fgl2-/-) 
BMDMs after the stimulation of LPS for 6 hours; C: Relative transcriptional level of M1 markers of WT and Fgl2-/- BMDMs after MHV-3 infection for 8 hours; D: 
Supernatant IL-10 concentration of BMDMs culture after the IL-4 stimulation (20 ng/mL) for 72 h; E: mRNA expression of M2 markers (Fizz1, ARG1, YM-1, MRC1, IL-
10 and TGF-β) of WT and Fgl2 -/- BMDMs after of IL-4 treatment for 72 h. All data are presented as mean ± SD (n > 3). These experiments were repeated at least 
three times.

FGL2 modulates the inflammatory signaling cascade by activating NF-κB, IRF3, 
IRF7, and p38 
To explore how FGL2 modulates inflammatory cascades, we examined the serial 
components of inflammatory signaling pathways in BMDMs by mimicking invading 
pathogen infections in vitro. Consistent with the results from MoMFs in the VFH 
model, FGL2 was robustly induced in BMDMs following LPS treatment and MHV-3 
infection (Figure 8A). In addition, phosphorylation of IκBα, p65, IRF3, and IRF7, which 
are critical modulators of NF-κB activation and IFN expression, was remarkably 
impaired in Fgl2-/- BMDMs in response to LPS treatment and viral infection 
(Figure 8B, Supplementary Figure 5). However, the expression of adaptor proteins 
such as TRIF and MyD88 was not altered under the same conditions (Figure 8B). 
Among mitogen-activated protein kinases (MAPKs), the level of phosphorylated p38 
was reduced, whereas the levels of activated (phosphorylated) JNK and ERK were not 

https://f6publishing.blob.core.windows.net/5e8afe49-76da-45c1-bc0d-5852ff77ae18/WJG-28-479-supplementary-material.pdf
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Figure 7 Fibrinogen-like protein 2 deficiency resulted in low expression of major histocompatibility complex II and impaired 
phagocytosis of macrophage. A: Absolute number of PEMs under the stimulation of 3% starch broth or murine hepatitis virus strain 3 (MHV-3) extracted from 
wild-type (WT) and fibrinogen-like protein 2 (Fgl2-/-) mice; B: MFI of FITC+ phagocyted E.Coli by PEMs from WT and Fgl2-/- mice at different time points; C: 
Expression of major histocompatibility complex II on WT and Fgl2-/- PEMs under the stimulation of 3% starch broth or MHV-3 infection. All data are presented as 
mean ± SD. These experiments were repeated at least three times. PEMs: Peritoneal exudate macrophages.

affected in Fgl2-/- BMDMs compared with those in WT BMDMs following LPS 
treatment and viral infection (Figure 8C, Supplementary Figure 5), suggesting that 
FGL2 induces a positive feedback proinflammatory loop through p38 activation. 
Phosphorylation of p65 at Ser276 by c-Raf1 enables the recruitment of acetyltransferase 
CREB-binding protein (CBP) and p300, which leads to the acetylation of p65 and thus 
an enhanced NF-κB transcription rate[16]. Interestingly, phosphorylation of c-Raf1 and 
p65 (Ser276) and acetylation of p65 were reduced in Fgl2-/- BMDMs compared with 
those in WT BMDMs following either LPS stimulation or viral infection (Figure 8D). 
Phosphorylation of TBK, a modulator downstream of SYK that is involved in C-type 
lectin receptor (CLR)/Toll-like receptor (TLR) signaling-mediated innate immunity
[25], did not differ between WT and Fgl2-/- BMDMs following LPS and MHV-3 
challenge (Figure 8E). Taken together, our data suggest that induction of FGL2 in 
macrophages regulates inflammatory signaling by modulating p38, IRF3, IRF7, and 
p65 phosphorylation.

DISCUSSION
Fulminant hepatitis, the most severe form of acute viral hepatitis, is a type of ALF 
induced by viral infection. Mounting evidence suggests that leukocyte infiltration 
initiates inflammation and liver damage in chronic viral hepatitis and alcoholic and 
non-alcoholic hepatitis with acute liver injury. However, there is no ideal experimental 
model to completely mimic the specific clinical manifestations of acute viral hepatitis. 
Most studies to date have focused on acute hepatitis B, in which virus-specific 
cytotoxic T lymphocytes (CTLs) mediate liver damage subsequent to viremia[26,27]. 
Similarly, non-virus-specific CD8+ T cells with innate-like cytolytic activity promote 
liver damage in patients with acute hepatitis A[28]. The innate immune response is 
involved in the early stage of viral clearance. Among innate immune cells, natural 
killer (NK) cells are preferentially studied because of their potent capacity to direct 
viral clearance as well as liver injury. Evidence from experimental VFH models and 
patients with acute viral hepatitis has revealed the detrimental contribution of NK 
cells to disease outcome[29,30]. Macrophages are the largest population of non-
parenchymal immune cells in the liver, which proliferate and are activated in patients 

https://f6publishing.blob.core.windows.net/5e8afe49-76da-45c1-bc0d-5852ff77ae18/WJG-28-479-supplementary-material.pdf
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Figure 8 Fibrinogen-like protein 2 deficiency impaired inflammatory cascade in response to lipopolysaccharide treatment of viral 
infection. A: Immunoblot for fibrinogen-like protein 2 (Fgl2) and β-actin expression in wild-type (WT) BMDMs in response lipopolysaccharide (LPS) stimulation and 
murine hepatitis virus strain 3 (MHV-3) infection. B-E: Immunoblot for proteins panels from lysates of WT and Fgl2-/- BMDMs in response to LPS treatment and MHV-
3 infection; B: MyD88, TRIF, IκBα, phosphorylated IκBα, phosphorylated p65 (S468) and IRF3, phosphorylated IRF3, and IRF7; C: p38, JNK, ERK and 
phosphorylated p38, JNK, ERK; D: Phosphorylated c-Raf, phosphorylated p65 (S276), acetyl p65 (lys310); E: BTK, and phosphorylated BTK (Y223), BTK (Tyr550). 
These experiments were repeated at least three times.

with acute hepatitis E virus infection and associated ALF, although their function is 
somewhat impaired[31]. The development of VFH is associated with hepatic 
macrophage replenishment by infiltrating macrophages, suggesting that macrophage 
infiltration is a fundamental event in VFH progression[32]. However, the pathological 
involvement of innate immunity in the liver damage occurring during acute viral 
hepatitis is not fully understood.

Experimental VFH established by either the coronavirus MHV-3 or infection with 
other hepatitis-causing viruses induces acute liver injury followed by ALF in 3-5 d in 
different strains of mice[12,14]. This suggests that adaptive immunity may not be the 
central event in disease progression, because of the rapid mortality despite infiltration 
of T cells to the liver[33]. In addition to monocytes, dendritic cells and neutrophils are 
also recruited to the liver during the progression of VFH, although the characteristics 
of the infiltrating leukocytes and their respective contributions to inflammation are 
unclear[12]. Neutrophils are a small subset of leukocytes that are required for 
monocyte infiltration during liver injury in mouse models of non-alcoholic steatohep-
atitis, acetaminophen overdose, and hepatitis virus infection[9,12,24]. In this study, we 
found that MoMFs dominated the population of infiltrating leukocytes, with a 
proinflammatory Ly6Chigh MoMF subset comprising the majority of the population, 
suggesting that targeting the transition from Ly6Chigh MoMFs to Ly6Clow MoMFs may 
be a promising strategy for treating VFH. Notably, the continued decrease in KC 
numbers during VFH suggests that necrosis occurred not only in hepatocytes but also 
in non-parenchymal cells.
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FGL2 deficiency has been shown to prevent fulminant hepatitis following MHV-3 
infection, which otherwise causes ALF with 100% mortality[14]. Moreover, FGL2 
expression is largely distributed in and robustly induced by macrophages, in spite of 
moderate expression in dendritic cells and endothelial cells following viral infection
[7]. The mechanism by which FGL2 contributes to VFH is generally considered to 
involve its procoagulant activity[14,34]. However, reciprocal activation between 
inflammation mediators or cytokines and tissue factor-mediated fibrin deposition and 
thrombin generation, the major contributor to inflammation-initiated coagulation, is 
largely dependent on IL-6[11,35]. It is therefore difficult to determine whether co-
localization between fibrin deposition and FGL2 expression solely results from the 
prothrombinase activity of FGL2. In addition, inflammation may be induced by tissue 
factors secreted by local endothelial and immune cells[36]. Proinflammatory 
macrophage polarization is a process resulting from the Th1 response and pattern 
recognition receptor (PRR)-mediated signaling events initiated by PAMPs or DAMPs
[37]. Unlike soluble FGL2 expressed by regulatory T cells and Th2-like immune cells 
with immunosuppressive activity, membrane FGL2 can amplify the classical inflam-
matory cascades and may act as a co-receptor to cooperate with TLRs or other PPRs for 
signal transduction. Our results suggest that FGL2 deficiency may foster a default 
transition from proinflammatory macrophages to an alternative activated phenotype 
because more M2 macrophages and Ly6Clo MoMFs were observed under normal 
conditions. The inflammatory cytokines secreted by endothelial and dendritic cells in 
which FGL2 is expressed may also play a role; however, compared to macrophages, 
these cells are in relatively low abundance[38].

The innate immune responses triggered by viral infection are largely regulated by 
PPR-mediated signaling, which depends on cytosolic adaptors (e.g., TRIF and MyD88) 
and kinase-dependent factors[39]. Macrophage M1 polarization promotes the 
activation and translocation of NF-κB and the IRF3/IRF7 complex to initiate the 
transcription of Th1-associated gene targets[40]. p38 MAPKs are known to modulate 
PPR signaling by collaborating with NF-κB-mediated transcription[33]. CLRs are 
another type of PPR that modulate TLR-mediated signaling in the defense against 
invading pathogens[14]. In invertebrates, numerous molecules containing fibrinogen-
related domains participate in immune response transcription and have been shown to 
act as PPRs in defense processes, such as agglutination, and to cooperate with CLRs to 
synergistically clear pathogens[41]. Thus, we questioned whether FGL2 regulated TLR 
signaling in a CTL-like manner. MyD88-dependent PPR signaling involves activation 
of members of the IRAK family, which in turn stimulates the E3 ligase activity of 
TRAF6, enabling activation of the downstream ubiquitin-dependent kinase TAK1[42]. 
Upon activation, TAK1 activates MAPK and its downstream kinase IKK, which in turn 
phosphorylates the NF-κB inhibitor IκBα, leading to ubiquitin-dependent IκBα 
degradation and subsequent NF-κB activation[42]. Thus, TRIF-dependent PPR 
signaling involves TRAF3 recruitment and activation of TBK1 and IKK , which 
stimulate IRF3 phosphorylation and NF-κB activation, thereby leading to the 
transcriptional induction of type I IFNs and inflammatory cytokines[43]. Membrane 
proteins that regulate membrane PPR-mediated signaling function as co-receptors or 
factors involved in TLR assembly, internalization, or trafficking[44-47]. Accordingly, 
FGL2 may act as an assembly factor, could interact with PPRs for ligand-receptor 
binding, or even mediate the trafficking between the membrane and endosome, 
thereby facilitating inflammatory signaling transduction. Previous data showed that 
MHV-3-induced FGL2 expression in macrophages relies on p38 activation[48]. In this 
work, we found that FGL2 is needed for p38 phosphorylation, suggesting that FGL2 
expression provides a positive feedback loop for proinflammatory aggregation in 
macrophages.

The exact role of resident macrophages and MoMFs in VFH is obscure. We 
speculate that resident macrophages may initiate liver inflammation during the early 
stage of viral infection because MoMFs exacerbate liver damage during the acute 
phase. Resident macrophages represent the first line of defense against viral infection. 
Once primed, resident macrophages produce chemotaxins and cytokines that recruit 
and activate the MoMFs, and our results suggest that FGL2 expression on macro-
phages prompts and enhances their inflammatory phenotype.

CONCLUSION
Our data revealed, for the first time, that Ly6Chigh MoMF infiltration is a critical event 
for hepatic inflammatory accumulation and subsequent liver damage during virus-
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induced hepatitis progression. FGL2 expression is required for maintaining the 
proinflammatory Ly6Chigh MoMF phenotype by mediating IRF3, p65, and p38 
phosphorylation, thereby forming a positive feedback loop of inflammatory accumu-
lation in the liver.

ARTICLE HIGHLIGHTS
Research background
Viral fulminant hepatitis (VFH) is a devastating syndrome that pathologically caused 
by excessive activation of both innate and adaptive immunity. However, the extent of 
contribution of innate immunity in VFH is not well defined. Macrophage polarization 
have been implicated in host defense and the pathogenesis of various hepatic diseases. 
Fibrinogen-like protein 2 (FGL2) can be induced robustly and exclusively in macro-
phages in response to cytokines or viral infection. Exploring their roles in VFH can 
greatly improve our understanding of the disease and thus seek the therapeutic 
approaches.

Research motivation
Hepatic macrophages are attractive therapeutic targets because their functions can be 
inhibited or augmented to alter disease outcomes. A better understanding of their 
biological properties and immunologic function in liver homeostasis and pathology 
may pave the way for new diagnostic and therapeutic approaches for liver failure or 
other liver diseases.

Research objectives
To evaluate the role of Fgl2 in the reconstitution of hepatic macrophages during VFH 
progression by the VFH mouse model.

Research methods
Liver sections of liver failure patients and controls were immuno-stained for 
macrophages examination. Murine hepatitis virus strain 3 (MHV-3) was used to 
induce VFH experimental model in wild type and Fgl2-/- mice. Adoptive transfer or 
depletion of macrophages were employed to assess liver damage and hepatic macro-
phages alteration. Signal cascade induced by LPS or MHV-3 were detected in 
macrophages.

Research results
Infiltrated MoMFs is a major source of hepatic inflammation during VFH progression. 
Fgl2 expression on macrophages prompts and enhances the inflammatory phenotype 
of hepatic macrophages, which breaks the previous understanding that the mechanism 
of Fgl2 during VFH is generally considered to be procoagulant activity.

Research conclusions
We revealed for the first time that pro-inflammatory monocyte-derived macrophages 
(MoMFs) infiltration is critical event for hepatic inflammatory accumulation and 
subsequent liver damage during virus-induced hepatitis progression and Fgl2 is 
required for maintaining the pro-inflammatory hepatic macrophages phenotype.

Research perspectives
Macrophages are ‘keystones’ of liver architecture in both homeostasis and disease. The 
development of potential therapies highly depends on a fundamental knowledge 
about the mechanisms that trigger the polarization and control the fate of hepatic 
macrophages. We believe that a better understanding of the specific mechanisms 
underlying macrophages participation in diseases will definitely result in the 
increased efficacy of these therapies.
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Abstract
Elaboration of carotid atherosclerosis in the setting of hepatitis B virus (HBV) 
infection should emphasize the significance of extrahepatic manifestations of the 
infection pathogenesis. Diverse processes comprise the pathoevolution of HBV 
infection, rendering it a multi-systemic disease in its essence. Our work not only 
exemplified atherosclerosis as an often-underestimated contributor to the severity 
of HBV infection but has also highlighted the bidirectional relationship between 
the two. Therefore, it is suggested that HBV-induced inflammation is one of the 
root causes of atherosclerosis, which in turn has a consequent effect on the 
severity of the chronic infection disease state, creating a vicious cycle. Addi-
tionally, we coupled prior data with the current concepts of HBV infection to 
postulate intriguing perspectives and theories.
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Core Tip: Hepatitis B virus (HBV) infection is a multifaceted disease, with significant 
cardiovascular morbidity. Our innovative approach to this pathophysiologic 

https://www.f6publishing.com
https://dx.doi.org/10.3748/wjg.v28.i4.497
http://orcid.org/0000-0002-5767-3914
http://orcid.org/0000-0002-5767-3914
http://orcid.org/0000-0002-5767-3914
http://orcid.org/0000-0003-3601-7528
http://orcid.org/0000-0003-3601-7528
http://orcid.org/0000-0002-7899-5322
http://orcid.org/0000-0002-7899-5322
http://orcid.org/0000-0003-1938-8298
http://orcid.org/0000-0003-1938-8298
http://orcid.org/0000-0003-1938-8298
mailto:bezmarevicm@gmail.com


Ranković I et al. Hepatitis B infection and atherosclerosis

WJG https://www.wjgnet.com 498 January 28, 2022 Volume 28 Issue 4

fully peer-reviewed by external 
reviewers. It is distributed in 
accordance with the Creative 
Commons Attribution 
NonCommercial (CC BY-NC 4.0) 
license, which permits others to 
distribute, remix, adapt, build 
upon this work non-commercially, 
and license their derivative works 
on different terms, provided the 
original work is properly cited and 
the use is non-commercial. See: htt
ps://creativecommons.org/Licens
es/by-nc/4.0/

Received: September 20, 2021 
Peer-review started: September 20, 
2021 
First decision: November 7, 2021 
Revised: November 17, 2021 
Accepted: January 14, 2022 
Article in press: January 14, 2022 
Published online: January 28, 2022

P-Reviewer: Cao X, Ghoneim S 
S-Editor: Fan JR 
L-Editor: A 
P-Editor: Fan JR

relationship harbors several key ideas. First, HBV infection may carry a specific 
atherosclerosis distribution pattern, with predilection for carotid arteries. Second, we 
propose wider use of more sensitive inflammatory markers, such as high-sensitivity C-
reactive protein and homocysteine. Third, macrophage phenotype function should be 
investigated, utilizing its potential role as an atherosclerosis biomarker in HBV 
infection and therapeutic target. Last but not least, we reason that statins should be 
exploited more in current practice, due to their favorable pleotropic effects.
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TO THE EDITOR
We read with interest the study of Riveiro-Barciela et al[1] which elucidates the 
possible interplay between hepatitis B virus (HBV) infection and carotid athero-
sclerosis. It has high-yield trial properties due to its large sample size and prospective 
method. Although its inclusion and exclusion criteria were precise and broad, as with 
any case-control study, there remains the possibility of bias as a consequence of 
inferring causation from statistically significant correlations which can be complicated 
by difficulty in determining the chronological order of exposure to HBV (i.e. the 
starting time of infection and latency).

The authors concluded that the presence of subclinical atherosclerosis and carotid 
plaques were more frequent in patients with HBV infection than in controls and that 
liver damage was an independent factor associated with subclinical atherosclerosis 
and carotid plaques, regardless of the presence of classical cardiovascular factors.

In general, we agree with the authors, since many of our patients render a similar 
atherosclerotic disease profile which cannot be attributed solely, sui generis, to the 
cardiovascular substrate. Therefore, their study’s findings have the capacity not only 
to raise the index of suspicion of a practicing clinician but to optimize the established 
diagnostic framework of HBV patients in order to prevent atherosclerosis occurrence 
and complications.

Furthermore, the study implicates chronic HBV infection (i.e. the specific point of 
the naïve hepatitis B e antigen (HBeAg)-negative phase) as being an important athero-
sclerotic contributor. Conversely, a prior study by Tong et al[2] has concluded that 
HBV infection not only negatively correlates with C-reactive protein (CRP) levels but 
seems to not be associated with coronary atherosclerosis. Additionally, Kiechl et al[3] 
found no significant association between chronic hepatitis and the development of 
new carotid atherosclerotic plaques; although, they did not specify the type of 
hepatitis virus. Of course, these conflicting results have to be considered cautiously, as 
they originate from patients in different phases of the HBV infection and divergent 
research materials and methods. With all this said, it may be that the window of 
opportunity for early atherosclerosis detection and preemptive therapeutic 
intervention in HBV could represent the subpopulation of naïve and HBeAg-negative 
patients.

However, the general discrepancies in the conclusions of the aforementioned trials 
made us postulate some intriguing perspective theories. First, it may be that HBV 
infection harbors specific propensity towards anatomically different vascular 
structures, thereby affecting carotid arteries more often than coronary arteries. This 
notion is in concordance with the previously published data inferring that viruses 
have different sites of endothelial predilection[4]. Second, we may utilize other, more 
sophisticated inflammatory markers, namely high-sensitivity (hs-)CRP with or without 
homocysteine for optimal HBV patient stratification regarding atherosclerosis risk[5]. 
Third, the potential role of macrophage phenotype variation during HBV infection 
may be one of the crossroads between the processes of atherosclerosis and HBV 
infection[6]. Current cardiology investigations have revealed the significant role of 
macrophages, encompassing their local, endothelial, as well as systemic effects via T-
helper lymphocytes and cytokine release modulation[7]. Having stated that, we 
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postulate that HBV infection may trigger macrophage phenotype alteration, rendering 
it to be a contributive precipitant of atherosclerotic disease as well as the crosslink 
point between the two diseases. Last but not least, the study of Riveiro-Barciela et al[1] 
may open the door for broader statin use, addressing two end goals concomitantly: 
Lowering the risk of cirrhosis and hepatocellular carcinoma in viral hepatitis patients
[8], and engaging in the prevention and treatment of atherosclerosis and its complic-
ations.

We believe that prospects in this field should be diversified in the manner that one-
size does not fit all. Upcoming trials and future viewpoints should render better 
comprehension of the delicate HBV pathodynamics from which implementation of 
optimized and specific therapy would be more feasible.

Our group envisions many possible pathways between HBV infection and athero-
sclerosis, i.e. cardiovascular diseases which may be potential targets for clinical 
management, and thus encourages future research work in this field.
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Abstract
Evaluation of response to chemotherapy in colorectal cancer patients with 
synchronous liver metastases is important in terms of treatment management. In 
this Letter to the Editor, several issues in the article are discussed. For the 
comparison of carbohydrate antigen 19-9 (CA19-9) values referenced in the study, 
the patient group was not matched for cancer stage. Therefore, it may be more 
appropriate to select and compare CA19-9 values in patients with same-stage 
cancer.
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Core Tip: It is important to evaluate synchronous liver metastases of colorectal cancer 
(CRC) and to determine the response to chemotherapy in patients. Based on findings 
from such, the optimal treatment method is selected for each patient. The scoring 
system described in the study, created through a combination of radiology and 
laboratory parameters, can guide treatment. However, we think that it would be more 
appropriate to discuss the results of this study in the context of other studies conducted 
with patients with stage IV CRC.
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TO THE EDITOR
Ma et al[1] recently published a retrospective study on the emerging role of a magnetic 
resonance imaging (MRI)-radiomics signature to detect the predictive efficiency of 
models for chemotherapeutic response in colorectal cancer (CRC) patients with 
synchronous liver metastasis (SLM) and avoid ineffective chemotherapy.

Carbohydrate antigen 19-9 (CA19-9) has been routinely studied in patients with 
CRC, and in the study by Ma et al[1] the measurement of CA19-9 was found to be 
significant between the disease non-response (non-DR) and disease response (DR) to 
chemotherapy groups (P = 0.045). The authors showed that CA19-9 Levels were higher 
in the DR (63.3%) group than in the non-DR group (43.4%). The authors reported that 
CA19-9 is a promising indicator for predicting response to chemotherapy, citing the 
study by Zhou et al[2]. However, the study design used by Zhou et al[2] had included 
patients with stage III CRC, while the study by Ma et al[1] focused on patients with 
stage IV CRC.

Although it is known that high CA19-9 Levels are a poor-prognosis factor in 
untreated stage IV CRC patients, routine measurement of CA19-9 in colon cancers is 
not recommended by the American Society of Clinical Oncology (ASCO) guidelines 
due to insufficient evidence[3,4]. As such, we believe that it would be more 
appropriate to discuss the results of the study by Ma et al[1] in the context of other 
studies conducted with stage IV CRC patients[4,5].
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