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Abstract
Gastrointestinal cancer (GIC) has high morbidity and mortality as one of the main 
causes of cancer death. Preoperative risk stratification is critical to guide patient 
management, but traditional imaging studies have difficulty predicting its 
biological behavior. The emerging field of radiomics allows the conversion of 
potential pathophysiological information in existing medical images that cannot 
be visually recognized into high-dimensional quantitative image features. Tumor 
lesion characterization, therapeutic response evaluation, and survival prediction 
can be achieved by analyzing the relationships between these features and clinical 
and genetic data. In recent years, the clinical application of radiomics to GIC has 
increased dramatically. In this editorial, we describe the latest progress in the 
application of radiomics to GIC and discuss the value of its potential clinical 
applications, as well as its limitations and future directions.
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Core Tip: In this editorial, we summarize the latest advances of radiomics in the field of gastrointestinal 
cancer diagnosis and treatment. Radiomics has great potential in precision treatment decision-making for 
gastrointestinal cancer. However, radiomics studies have had relatively marked heterogeneity in their 
workflow. In the future, it will be necessary to establish and promote an imaging data acquisition protocol, 
standardize the research workflow, and conduct multicenter prospective studies on quality control.
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INTRODUCTION
Gastrointestinal cancer (GIC) has high morbidity and mortality rates[1]. It causes approximately 
5000000 new cases and 3540000 deaths worldwide each year, making it one of the main causes of cancer 
death[1]. Because of the high heterogeneity of these tumors, it is difficult to implement precision 
treatment[2]. Lambin et al[3] proposed the concept of radiomics in 2012. The emerging field of radiomics 
can convert potential pathophysiological information in existing medical images that cannot be 
recognized by the human eye into high-dimensional quantitative image features[2-4]. By analyzing the 
relationships between these features and clinical and genetic data, we can characterize tumor lesions, 
evaluate therapeutic responses, and predict survival. In recent years, research on the application of 
radiomics to GIC has grown dramatically. With this editorial, we aim to describe the latest advances of 
radiomics in the assessment of GIC and to explore the value of its potential clinical applications, its 
limitations, and its future directions.

RADIOMICS WORKFLOW
Imaging modalities that can be used for radiomics analysis include computed tomography (CT), 
magnetic resonance imaging (MRI), and positron-emission tomography (PET). Since CT is the most 
commonly used staging method for esophageal cancer (EC) and gastric cancer (GC), most radiomics 
studies on EC and GC are based on CT images[5-9]. In contrast, as MRI is widely used for colorectal 
cancer (CRC) staging, most radiomics studies on CRC are based on MRI features[10-13].

The workflow of radiomics usually includes image acquisition, lesion segmentation, feature 
extraction and selection, model building, and validation[14]. Lesion segmentation and feature extraction 
are the most essential steps. Manual, automatic, and semiautomatic segmentation methods are often 
used to segment the region of interest (ROI) or volume OI (VOI) (2D or 3D) in a target lesion, and 
manual segmentation is the most commonly used method (gold standard)[15]. After lesion segmen-
tation, hundreds of radiomic features (shape, first-order, second-order, and higher-order radiomic 
features) can be extracted from the acquired image. Using all radiomic features to analyze an image will 
lead to overfitting; thus, feature selection is performed to reduce the number of features that are 
redundant and irrelevant. The best radiomic features can be selected by dimensionality reduction to 
improve model efficiency. After feature selection, a radiomics model must be generated. Most published 
studies use machine learning (ML) and deep learning (DL) methods to build classification and 
prediction models. Finally, the radiomics model can be validated in internal and external cohorts such 
that the model can be further optimized and the prediction performance can be maximized. The receiver 
operating characteristic (ROC) curve is the most commonly used method to evaluate model 
performance (Figure 1).

EC
Published studies have mainly investigated the predictive ability of radiomics in the staging, therapy 
response, and postoperative recurrence of EC[16-19].

Radiomic characteristics based on CT have good predictive potential for EC staging[20,21]. Yang et al
[19] reported that CT radiomic characteristics were significantly correlated with the tumor (T) stage and 
tumor length of EC and showed good predictive performance for both; the area under the ROC curve 
(AUC), sensitivity, and specificitywere 0.86, 0.77 and 0.87, respectively, and 0.95, 0.92 and 0.91. 
Radiomic features also have good efficacy in predicting EC lymphatic metastasis[7,22-24]. Liu et al[20] 
suggested that baseline CT texture is a biomarker for the preoperative assessment of T, lymph node (N), 
and overall staging of esophageal squamous cell carcinoma (ESCC). Wu et al[25] established a model 
based on the radiomic characteristics of the late arterial phase of CT, which well distinguished early (I-

https://www.wjgnet.com/1007-9327/full/v28/i42/6002.htm
https://dx.doi.org/10.3748/wjg.v28.i42.6002
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Figure 1 The framework of the proposed liver lesion classification. ROI: Region of interest; VOI: Volume of interest.

II) and late (III-IV) ESCC, and the model’s efficacy was better than that of tumor volume.
Locally advanced EC often requires neoadjuvant chemoradiotherapy (NACRT)[26], whose treatment 

outcome is associated with tumor heterogeneity[27,28]. Radiomics can extract tumor heterogeneity data 
and has good application potential in improving the treatment stratification of patients. Radiomic 
characteristics are helpful for evaluating the response of EC to NAC or NACRT, distinguishing 
responders from nonresponders, for which it performs better than traditional parameters[29-32]. A 
prospective multicenter study[33] developed and validated a three-dimensional DL model applied to 
preprocessed CT images to predict the response of patients with locally advanced thoracic esophageal 
squamous cell carcinoma (TESCC) to concurrent chemoradiotherapy. The three-dimensional DL model 
achieved good predictive performance, with an AUC in the training cohort of 0.897 [95% confidence 
interval (CI): 0.840-0.959] and an AUC in the validation cohort of 0.833 (95%CI: 0.654-1.000). It is also 
feasible to use radiomics to predict the pathological complete response (pCR) of EC[34,35]. Patients with 
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a pCR after NACRT have a higher overall survival (OS) rate[36,37], but nonresponders will not benefit 
from this therapy[38]. This information can provide guidance for personalized treatment of EC patients
[28]. A CT-based radiomics study showed that a model that combined the intratumoral and peritumoral 
radiological characteristics could improve the predictive performance of the pCR of EC NACRT. In the 
test set, the AUC was 0.852 (95%CI: 0.753-0.951), the accuracy was 84.3%, the sensitivity was 90.3%, and 
the specificity was 79.5%[35]. Several studies of radiomics based on MRI or 18F-fluorodeoxyglucose (18F-
FDG) PET also showed its efficacy in predicting the response to EC treatment[39-42]. The application of 
radiomics to immunotherapy has also achieved good response prediction value[43].

Radiomics has also made progress in predicting the recurrence and prognosis of EC patients[44-47]. 
Tang et al[48] predicted the early recurrence of locally advanced ESCC after trimodal therapy based on 
enhanced CT radiomics. The results showed that in the training cohort, the AUCs of the radiomics 
model, the clinical model, and the combined model were 0.754, 0.679, and 0.821, respectively, and they 
were 0.646, 0.658, and 0.809 in the validation cohort; the combined model was the best. Qiu et al[49] 
developed and validated a prediction model based on radiomic features extracted from contrast-
enhanced CT images to estimate the recurrence-free survival (RFS) of patients who achieved pCR 
through NACRT and surgery. The results showed that the radiomic characteristics were significantly 
correlated with RFS. In the training cohort and the validation cohort, compared with the nomograms of 
the radiomic characteristics and of clinical risk factors, the nomogram combining the radiomic charac-
teristics and clinical risk factors had optimal performance. Other studies have shown that combining the 
radiomic characteristics of primary tumors and regional lymph nodes with clinical-pathological factors 
can improve OS prediction[50].

Other studies showed that CT-based radiomics features also had good predictive performance for 
classifying patients according to histological differentiation[51-53], the expression of programmed 
death-ligand 1, and CD8+ tumor-infiltrating lymphocytes of EC[5].

GC
In recent years, some researchers have also explored the value of radiomics to the diagnosis and 
treatment of GC[9,54,55]. The CT radiomics model has high application value in the identification of GC
[54,56-58]. Feng et al[59] used a transfer learning radiomics nomogram (TLRN) with whole-slide images 
of GC as the source domain data to distinguish Borrmann type IV GC from primary gastric lymphoma 
before surgery. The TLRN that integrated transfer learning radiomics signatures (TLRS), clinical factors, 
and CT subjective findings was developed through multiple logistic regression (LR). The results showed 
that the TLRN performed better than the clinical model and the TLRS. The AUCs of the internal and two 
external validation cohorts were 0.958 (95%CI: 0.883-0.991), 0.867 (95%CI: 0.794-0.922), and 0.921 
(95%CI: 0.860-0.960), respectively[59]. Wang et al[60] reported that a DL radiomics model based on CT 
images had a potential role in the T staging of GC. For distinguishing T2 from T3/4 tumors, the AUCs 
of the arterial phase-based radiomics model in the training group and the test group were 0.899 (95%CI: 
0.812-0.955) and 0.825 (95%CI: 0.718-0.904), respectively. The AUC of the radiomics model based on the 
portal vein phase in the training and testing cohorts was 0.843 (95%CI: 0.746-0.914) and 0.818 (95%CI: 
0.711-0.899), respectively[60]. An important factor in the failure of GC treatment is lymph node 
metastasis (LNM) and cancer spread in the peritoneal cavity[61]. In GC, the most common metastatic 
sites are the distant lymph nodes (56%), liver (53%), and peritoneum (51%)[62]. Accurate assessment of 
LNM and preoperative N staging is critical for the accurate treatment of GC patients. Most studies have 
shown that CT-based radiomics models have good accuracy in predicting early GC lymph node and 
peritoneal metastasis before surgery[63-66]. A ML model based on preoperative 18F-FDG-PET/CT 
obtained similarly good results[67].

CT-based radiomic characteristics also perform well in predicting the response to NAC and 
radiotherapy in patients with advanced GC[68-71]. Jiang et al[72] showed that a DL CT signature could 
help to identify patients who might benefit from adjuvant chemotherapy for GC and improve 
prognostic prediction. A radiomics study based on 18F-FDG-PET signatures obtained similar results[73]. 
In addition, radiomics can be used to predict the histological grade of GC before surgery[74] and is 
useful for GC classification[75,76].

CRC
The application of radiomics to CRC has mainly focused on the evaluation of stage, neoadjuvant 
therapy outcome, and gene mutations[77,78].

Radiomics models are helpful for CRC staging[79-81]. LNM is an independent risk factor affecting the 
prognosis of CRC patients. Radiomics models can effectively predict LNM in CRC patients before 
surgery[82-85]. Liu et al[84] found that multiregional-based MRI radiomics combined with clinical data 
could improve the efficacy of predicting LNM. He et al[85] developed and tested five ML models based 
on the radiomic features of F-18-FDG-PET/CT and PET for their preoperative prediction of LNM in the 
CRC region: LR, support vector machine, random forest (RF), neural network, and extreme gradient 
boosting. The results showed that the LR (AUC 0.866, 95%CI: 0.808-0.925) and extreme gradient 
boosting models (AUC 0.903, 95%CI: 0.855-0.951) performed the best, outperforming F-18-FDG-PET/CT 
on both the training set and the test set[85]. Other studies have also shown that radiomics has a good 
ability to predict metastasis to distant organs, such as the liver and lung, as well as vascular and 
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perineural invasion[86,87]. It is reported that the predictive power of CT-based radiomics for the 
preoperative staging of CRC. The results showed that the radiomic features were an independent 
predictor of CRC staging. CRC was successfully divided into stages I-II and III-IV in the training and 
validation datasets. The AUC in the training dataset was 0.792 (95%CI: 0.741-0.853), the sensitivity was 
0.629, and the specificity was 0.874. The AUC in the validation dataset was 0.708 (95%CI: 0.698-0.718), 
the sensitivity was 0.611, and the specificity was 0.680[79].

Radiomics models have had excellent performance in noninvasively predicting the response to NAC 
and NACRT in patients with locally advanced CRC (including liver metastasis)[88-91]. They have also 
achieved good efficacy in predicting the response to CRC targeted therapy[77,92].

Mutations in the KRAS, NRAS, or BRAF gene indicate that CRC patients will lack a response to drugs 
targeting epidermal growth factor receptor. In 2016, the National Comprehensive Cancer Network 
guidelines recommended that all patients with suspected or confirmed metastatic CRC should be tested 
for KRAS/NRAS/BRAF mutations, but this requires pathological tissue specimens. It is gratifying that 
some radiogenomics studies have shown that the radiomic characteristics of CT and MRI may help to 
predict the genotype of CRC tumors before surgery[93-95]. Yang et al[96] reported that CT radiomic 
characteristics were associated with KRAS/NRAS/BRAF mutations. Another MRI radiomics study 
found a good correlation between quantitative features and gene mutations, while there was no 
correlation between qualitative features and gene mutations[97].

More recent studies have shown that radiomics can predict CRC histological grade before surgery[98,
99].

LIVER CANCER
The application of radiomics to hepatocellular carcinoma (HCC) involves differential diagnosis, determ-
ination of microvascular invasion (MVI) status, histological grade, gene expression status, and treatment 
response, and prognostic prediction[100-104].

Because HCC has a typical enhancement mode, dynamic contrast-enhanced CT, MRI, and ultrasound 
have played major roles in the diagnosis and differentiation of HCC[105-107]. However, it is sometimes 
difficult to distinguish some small nodules from atypical lesions[108-111]. Radiomics can achieve 
quantitative analysis of tumor biological behavior and heterogeneity, helping identify liver nodules[112-
114]. Yasaka et al[115] investigated the performance of a DL method to distinguish liver masses on 
dynamic enhanced CT. There are five types of these masses: Type A, classic HCC; type B, malignant 
liver tumors other than HCC; type C, indeterminate masses or mass-like lesions, plus rare benign liver 
masses other than hemangiomas and cysts; type D, hemangiomas; type E, cysts. The median accuracy of 
the mass identification on the test set was 0.84. The AUC that distinguished the types A-B from types C-
E was 0.92. Hamm et al[116] used a DL method to classify common liver lesions with typical imaging 
characteristics on multiphasic MRI, including a total of 494 liver lesions from six categories, which were 
divided into training (n = 434) and test groups (n = 60). Their DL system had an accuracy of 92%, a 
sensitivity of 92%, and a specificity of 98%. For HCC classification, the true-positive rate and false-
positive rate were 93.5% and 1.6%, respectively, and the AUC was 0.992[116]. Other studies have 
reached similar conclusions[108,110].

The 5-year recurrence rate of HCC resection can reach 70%[103]. Pathological features such as 
histological grade and MVI of HCC were significantly correlated with postoperative recurrence and 
prognosis[117-120]. Histological grade, MVI status[121-125], and gene expression[113,126,127] in HCC 
can be successfully predicted by radiomics models before surgery. An MRI-based radiomics study 
showed that the AUCs of the MVI nomogram in the validation cohort using the RF algorithm and LR 
analysis were 0.920 (95%CI: 0.861-0.979) and 0.879 (95%CI: 0.820-0.938), respectively[123].

Radiomics models based on contrast-enhanced CT and MRI can predict the response of middle- and 
late-stage HCC to local treatment and systemic treatment[10,128-130]and the early recurrence and the 
prognosis after HCC resection[101,102,131,132]. Zhang et al[133] evaluated the effectiveness of predi-
cting OS after HCC resection based on contrast-enhanced MR imaging features. The results showed that 
preoperative clinical features and semantic imaging features were significantly correlated with the 
survival rate; the combined model had the best predictive performance[133].

Some studies using radiomics to predict the occurrence of CRC liver metastases are particularly 
interesting[134-137]. Rao et al[137] retrospectively analyzed the primary staging CT data of 29 CRC 
patients. The patients were divided into three groups: The non-liver-metastasis group, the simultaneous 
liver metastasis (LM) group, and the metachronous LM group within 18 mo. Whole-liver texture 
analysis was performed on the liver parenchyma that was clearly disease-free on the portal vein image. 
The results showed that compared with those in nonmetastatic patients, the mean entropy 1.5 (E1.5)and 
E2.5 values of the whole liver in patients with synchronous metastasis were significantly increased, and 
the uniformity 1.5 (U1.5)and U2.5 values were significantly decreased. The AUCs for the diagnosis of 
synchronous metastasis based on E1.5, E2.5, U1.5, and U2.5 were 0.73-0.78[137]. Beckers et al[138] 
conducted a similar retrospective multicenter study. They included a total of 165 cases of CRC, which 
were also divided into the nonmetastasis group, the synchronous metastasis group, and the metastasis 
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group (within 24 mo). Univariate analysis confirmed that U, sex, tumor site, nodal stage, and carcinoem-
bryonic antigen (CEA) were potential predictive factors; multivariate analysis showed that U was still a 
factor predicting early metastasis; and none of the parameters could predict intermediate/late 
metastasis[138]. Other studies have shown no significant difference in CT texture parameters of liver 
parenchyma between CRC patients with and without liver metastasis[134,135]. The conclusions of these 
studies are inconsistent, so the prediction of LM of CRC based on the texture characteristics of the liver 
parenchyma requires further study. Recently, Liet al[139] investigated the efficacy of a radiomics model 
based on baseline CRC contrast-enhanced CT in predicting metachronous liver metastases in CRC 
patients. The AUC of the radiomics feature model was 0.78 ± 0.07, and the AUC of the clinical feature 
model was 0.79 ± 0.08. The model combining the two performed best, with AUCs of 0.79 ± 0.08 and 0.72 
± 0.07 in the internal and external validation cohorts, respectively. They believed that the radiomic 
characteristics of primary CRC lesions are often affected by fewer factors and are more stable; their 
radiomic characteristics have the potential to distinguish patients at risk of liver metastasis.

PANCREATIC CANCER (PC)
For PC, the application of radiomics mainly focuses on identification, treatment response prediction, 
and prognostic prediction[140-142]. Many studies have focused on the diagnosis and differentiation of 
pancreatic ductal adenocarcinoma (PDAC)[143-146]. Chu et al[146] investigated the utility of CT 
radiomics in distinguishing PDAC from normal pancreas. In their retrospective casecontrol study, 190 
PDAC patients and 190 healthy potential renal donors were included. The overall accuracy of RF binary 
classification was 99.2%, with an AUC of 99.9%; all PDAC cases were correctly classified. Park et al[145] 
confirmed that CT-based ML of radiomics features was helpful to distinguish between autoimmune 
pancreatitis and PDAC, with an overall accuracy of 95.2%. The radiomics model based on PET/CT also 
showed good performance in distinguishing benign autoimmune pancreatitis from malignant PDAC 
lesions[143,144].

Other studies have shown that radiomics can better predict the treatment response and prognosis of 
PC[142,147]. Simpson et al[141] evaluated the potential of MRI-based radiomics to predict the response 
to PC treatment. A total of 20 patients with unresected nonmetastatic PDAC were enrolled, all of whom 
received NAC followed by five rounds of MR-guided stereotactic body radiotherapy. Half of the 20 
patients were defined as having histopathological tumor regression or tumor response based on an 
enhanced CT. The AUC of the model based on the RF algorithm was 0.81 (95%CI: 0.594-1.000); the 
adaptive least absolute shrinkage and selection operator (LASSO) algorithm achieved AUC of 0.81 
(95%CI: 0.596-1.000). Xie et al[148] used a CT-based radiomics nomogram to predict the survival of 
patients with resected PDAC. The radiomics score developed based on CT imaging features was 
significantly correlated with disease-free survival (DFS) and OS in patients with PDAC. The radiomics 
nomogram showed good discrimination in both the training cohort and the validation cohort, being 
superior to the clinical model and the TNM staging system for survival estimation. The model 
integrating the radiomics score and clinical data had the best predictive performance, but there was no 
correlation between the radiomics score and recurrence pattern. Similar results were seen by Healy et al
[149].

LIMITATIONS AND FUTURE DIRECTIONS
In this editorial, we summarize the results of the application of radiomics to the field of GIC diagnosis 
and treatment. These results show that radiomics has great potential for decision-making about 
precision treatments for GIC. Moreover, these results have important reference value for studies of other 
systemic tumors.

However, some limitations to the clinical application of radiomics remain[150,151]. The first key 
challenge is the use of different imaging techniques by different institutions and/or scanners. To ensure 
that the academic community can obtain high-quality radiological data resources, it is necessary to 
establish and promote certain imaging acquisition protocols[149]. Second, the current research uses 
different software and different feature selection methods, focuses on different feature sets, and applies 
different statistical and bioinformatic methods for data analysis and interpretation, which limit the 
reproducibility of radiomics models[152,153]. Future research workflows need to be standardized. 
Third, many relevant radiomics studies employ single-center retrospective datasets. A quality-
controlled multicenter prospective study plan is ideal. In addition, the evidence level rating reflects the 
feasibility of incorporating radiomics research into clinical practice. Recently published guidelines and 
checklists aiming to improve the quality of radiomics studies, including the radiomics quality score, 
modified Quality Assessment of Diagnostic Accuracy Studies tool, image biomarker standardization 
initiativeguideline, and Transparent Reporting of a multivariable prediction model for Individual 
Prognosis or Diagnosis checklist, have been applied to radiomics evaluations[154-157]. These studies 
have shown that the current scientific and reporting quality of many radiomics studies is insufficient; 
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feature reproducibility, open science categories, and clinical utility analyses need to be improved; and 
study objectives, blinding, sample sizes, and missing data must be reported[154-157]. In the future, 
radiomics studies should adhere to these guidelines to facilitate the translation of radiomics research 
into clinical practice[156].

CONCLUSION
Radiomics has great potential in precision treatment decision-making for gastrointestinal cancer. 
However, radiomics studies have had relatively marked heterogeneity in their workflow. In the future, 
it will be necessary to establish and promote an imaging data acquisition protocol, standardize the 
research workflow, and conduct multicenter prospective studies on quality control. In addition, the 
combination of radiomics with multiomics may lead to a major breakthrough in individualized medical 
treatment of tumors.
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Abstract
Liver injury is an increasingly recognized extra-pulmonary manifestation of 
severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection. Corona-
virus disease 2019 (COVID-19) associated liver injury (COVALI) is a clinical 
syndrome encompassing all patients with biochemical liver injury identified in 
the setting of SARS-CoV-2 infection. Despite profound clinical implications, its 
pathophysiology is poorly understood. Unfortunately, most information on 
COVALI is derived from the general population and may not be applicable to 
individuals under-represented in research, including pregnant individuals. This 
manuscript reviews: Clinical features of COVALI, leading theories of COVALI, 
and existing literature on COVALI during pregnancy, a topic not widely explored 
in the literature. Ultimately, we synthesized data from the general and perinatal 
populations that demonstrates COVALI to be a hepatocellular transaminitis that 
is likely induced by systemic inflammation and that is strongly associated with 
disease severity and poorer clinical outcome, and offered perspective on 
approaching transaminitis in the potentially COVID-19 positive patient in the 
obstetric setting.

Key Words: COVID-19 liver injury; Pregnancy; Perinatal liver disease; Systemic 
inflammation; Special populations
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Core Tip: Liver injury is an increasingly recognized extra-pulmonary manifestation of coronavirus disease 
2019 (COVID-19). COVID-19 associated liver injury (COVALI) is a clinical syndrome encompassing all 
patients with COVID-19 infection and biochemical liver injury. Unfortunately, most information on 
COVALI is derived from the general population and may not be applicable to individuals under-
represented in research, including pregnant individuals. In this review we summarize clinical features of 
COVALI and the leading theories of pathophysiology and present existing literature on COVALI during 
pregnancy, a topic not widely explored in the literature.

Citation: Cooper KM, Colletta A, Asirwatham AM, Moore Simas TA, Devuni D. COVID-19 associated liver 
injury: A general review with special consideration of pregnancy and obstetric outcomes. World J Gastroenterol 
2022; 28(42): 6017-6033
URL: https://www.wjgnet.com/1007-9327/full/v28/i42/6017.htm
DOI: https://dx.doi.org/10.3748/wjg.v28.i42.6017

INTRODUCTION
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) disease pandemic (COVID-19) is 
responsible for and upwards of 6.3 million fatalities worldwide[1]. The SARS-CoV-2 virus is a member 
of the Coronaviridae family, a diverse family of single-stranded positive RNA viruses[2]. Coronaviruses 
are frequently implicated in mild upper respiratory infections and cause 15%-30% of cases of the 
“common cold”[3,4]. However, Coronaviridae viruses have also demonstrated an ability to infect the 
lower respiratory tract and cause severe lung disease associated with substantial mortality[5,6].

Mortality associated with COVID-19 is usually secondary to lung pathology that causes severe 
respiratory distress syndrome[7-9]. However, patients infected with SARS-CoV-2 often suffer other 
devastating end-organ injuries[10], suggesting the virus causes systemic infection and inflammation. 
These observations have prompted interest in the extra-pulmonary manifestations of COVID-19[11], 
including those in the heart[12,13], intestines[14,15], kidney[16], reproductive system[17,18], and the 
liver, where the effect of SARS-CoV-2 is poorly understood[19,20].

COVID-19 associated liver injury (COVALI) is a clinical entity encompassing any abnormal liver 
function test present in individuals positive for SARS-CoV-2[20]. Currently there are no specific or 
unique diagnostic criteria for COVALI relative to other causes of transaminitis[21] which complicates 
the process of synthesizing evidence from clinical studies. This is most salient when applying available 
data to those underrepresented in the literature, such as pregnant and birthing persons.

In the first section of this review, we will summarize clinical features of COVALI and the leading 
theories on the mechanism of liver damage in the general population. In the second section, we present 
existing literature on liver injury in SARS-CoV-2 positive pregnant persons, a topic not widely explored 
in the literature despite significant clinical relevance. Ultimately, we aim to synthesize data on COVALI 
in the general and perinatal populations and offer perspective on approaching this problem in the 
obstetric setting.

GENERAL POPULATION
Background
At the present time, COVALI is an umbrella term that applies to all patients with SARS-CoV-2 infection 
and transaminitis. Meta-analyses estimate that one in four patients with COVID-19 develop acute liver 
injury[22-24], but this figure is variable across studies and ranges from 14%-74%[25-27]. There seem to 
be no demographic factors to account for this variability, which may ultimately be due to differences in 
the study timeline or definition of liver injury[28]. Interestingly, only one of the three cited meta-
analyses on COVALI included a study involving pregnant patients (n = 9)[29]. In the following sections 
we will review clinical and pathophysiologic considerations for COVALI in the general population.

Clinical Considerations
COVID-19 associated liver injury is a hepatocellular or mixed pattern liver injury with aspartate 
aminotransferase (AST) predominant transaminitis[28,30-33]. Most studies report mild liver injury with 
liver enzymes that peak at values less than five times the upper limit of normal[34-38]. Conversely, 
some reports suggest up to 25% of patients’ aminotransaminases exceed this threshold[39,40] and there 
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is mounting evidence that liver enzymes can increase to the thousands (U/L) in patients with severe 
COVID-19[26,38,41-45]. The timeline of developing liver injury is not fully elucidated and has varied 
between studies[32,33].

Non-transaminase laboratory evidence of liver damage has also been identified, but is reported less 
consistently in the literature. Specifically, total bilirubin and alkaline phosphatase have been reported to 
be elevated in 1%-53%[46-48] and 0.3%-80.0%[48,49] of patients, respectively. This variability may be 
due to study timeline relative to the temporal course of laboratory changes in patients with COVALI. 
For example, it has been shown that alkaline phosphatase elevations begin and peak later in the disease 
course than aminotransaminases and may not be captured by studies that don’t follow laboratory data 
for extended periods[50,51].

The interest in COVALI is rooted in its association with disease severity and negative patient 
outcomes. First, patients with elevated liver enzymes at presentation or at hospital admission are more 
likely to develop severe COVID-19 lung disease[5,52-54]. Additionally, a large study by Guan et al[55] 
reported laboratory data from patients at over 500 hospitals and found patients with severe COVID-19 
were more likely to have transaminitis compared to patients with non-severe COVID-19. Going further, 
Bloom et al[31] studied trends in aminotransaminase levels from time of admission to peak in patients 
hospitalized for COVID-19 and found that in addition to higher mean AST and alanine aminotrans-
ferase (ALT), there was a greater change from baseline to peak transaminases in patients with severe 
compared to non-severe COVID-19. A small single center study found that elevated AST was observed 
more often in patients who required intensive level care compared to those who did not require 
intensive care[56]. Further, in a cohort of 1611 hospitalized patients across 11 Latin American countries, 
abnormal liver enzymes conferred a 2.6-fold risk for severe COVID-19 pneumonia and a 1.5-fold risk of 
death[37].

Within the umbrella of COVALI, AST has been shown to have specific prognostic value[29,37,57]. For 
example, the numeric value for serum AST has been incorporated in clinical calculators created to 
predict progression from mild or moderate to severe COVID-19 disease[57]. Moreover, elevated AST 
has been found to be independently associated with increased risk of death, apart from other markers of 
hepatic dysfunction[29,34,50,58,59]. In a study including 206 patients across 26 institutions in Brazil, 
AST level greater than twice the upper limit of normal significantly increased the risk of in-hospital 
mortality when adjusted for age and biologic sex[29]. However, is important to note that when elevated, 
bilirubin may be a stronger predictor of death than AST in some cohorts[34].

Given the association with poor patient outcomes, identifying potential risk factors for COVALI is 
imperative. We found one meta-analysis that sought to define predictors for the development of 
COVALI. In this study Harapan et al[60] pooled data from 16 studies (n = 6253) to assess whether any of 
the following were associated with development of severe liver injury in patients infected with SARS-
CoV-2: Age, biologic sex, body mass index (BMI), diabetes mellitus, coronary artery disease, 
hypertension, underling liver disease, white blood cell count, lymphocyte count, and neutrophil count. 
They observed significant association between male sex, higher BMI, presence underlying liver disease, 
elevated white blood cell, and elevated lymphocyte counts with development of acute liver injury. After 
controlling for bias introduced by the meta-analysis, they concluded male sex and lymphocyte count 
were found to be independent risk factors for COVALI[60]. Not evaluated in this meta-analysis, inflam-
matory markers have also been shown to be a risk factor associated with liver injury[61-64]. For 
example, multiple studies have inflammatory markers directly correlate with liver enzymes[64] and that 
liver injury can be predicted using inflammatory markers such as ferritin and C-reactive protein[61,62].

Professional societies recommend clinically relevant work up for other causes of liver injury in 
patients who develop COVALI[21,65-68]. The American and Asian Pacific Association(s) for the Study 
of Liver Diseases suggest ruling out other causes of viral and toxin-mediated hepatitis in all COVID-19 
patients with liver injury[21,66]. More nuanced suggestions include considering cytokine-syndrome, 
myositis, or cardiac injury in patients with disproportionally elevated AST, and primary sclerosing 
cholangitis in critically ill patients with cholestatic liver injury[21,65,66]. They advise trending liver 
enzymes of patients hospitalized with COVID-19, those with known chronic liver disease diagnosed 
with COVID-19 and of those receiving anti-retroviral medications for treatment of COVID-19 
pneumonia[66]. Patients with chronic hepatitis B may be at particularly high risk both due to risk of 
severe infection and viral reactivation when receiving immunosuppressive therapy[66,69]. However, 
they do not recommend changing management and offer no specific intervention for liver injury in most 
cases of COVALI. They endorse targeting the viral illness in the acute setting is sufficient for liver injury 
and encourage work up for chronic liver disease when illness is resolved.

Pathophysiology
The underlying mechanism(s) of liver injury in COVID-19 are not fully understood. While there is 
increasing literature on this topic, the absence of explicit diagnostic criteria has resulted in heterogeneity 
in clinical studies and has impeded recognition of specific mechanisms of injury. There is consensus that 
COVALI is likely multifactorial and due to a combination of exacerbation of underlying liver disease, 
direct cytotoxicity, hypoxic liver injury, drug induced injury and systemic inflammation with immune 
dysregulation[28,70].
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Early theories focused on exacerbation of underlying liver disease and toxicity from pharmacologic 
agents used to treat severe COVID-19 infection as a sources of liver injury. It is true that patients with 
cirrhosis are at risk for developing severe pneumonia and hepatic decompensation during SARS-CoV-2 
infection[21]. Likewise, some antiviral medications used to treat COVID-19 have hepatotoxic properties 
and have been associated with abnormal liver function during the pandemic (e.g., lopinavir/ritonavir)
[27,40,61,71]. In a combination of these, SARS-CoV2 infection treated with corticosteroids or tocilizumab 
has been showed facilitate reactivation and accelerate liver injury in patients with chronic hepatitis B
[72]. However, these two factors are unable to explain most of this phenomena as: (1) Over 90% of 
patients with COVALI have no evidence of underlying liver disease; and (2) transaminitis is often 
present at baseline prior to administration of medications[73]. While it is possible that liver injury 
during SARS-CoV-2 infection may be exacerbated by these factors, COVALI is likely a distinct clinical 
entity.

Diverse studies have demonstrated direct viral infection of the liver can occur during COVID-19 
infection. In a study including 156 autopsy samples, postmortem hepatic tissue evaluation revealed 
typical coronavirus particles in hepatocyte cytoplasm with associated mitochondrial swelling and 
endoplasmic reticulum dilatation in patients who died with COVID-19[74]. Other reports have shown 
SARS-CoV-2 nuclear material in liver tissue, including RNA in hepatocytes of live patients who 
underwent liver biopsy during SARS-CoV-2 infection[75]. Some of the most convincing data comes 
from a recent paper by Wanner et al[76] who demonstrated SARS-CoV-2 can be detected in up to three-
fourths of post-mortem liver biopsies using reverse transcriptase-polymerase chain reaction. Ultimately, 
there is irrefutable histologic evidence that SARS-CoV-2 directly infects hepatocytes, providing strong 
evidence that SARS-CoV-2-mediated cytopathy plays a role in COVALI. It is thought that angiotensin 
converting enzyme 2 and/or its receptor (ACE-2) may mediate cytopathy by enabling viral access to the 
liver[76,77]. However, the understanding of SARS-CoV-2 hepatotropism of is still evolving.

Epidemiology-based correlates support direct ACE-2 mediated entry into hepatocytes based on data 
that shows groups at increased risk of COVALI also have increased hepatic ACE-2 expression. For 
example, ACE-2 Levels are higher in males than females[78] and ACE-2 is upregulated in decom-
pensated cirrhosis[79]. Interestingly, it has been shown that ACE-2 is dominantly expressed in cholan-
giocytes relative to hepatocytes and that infection of cholangiocytes may occur more often than infection 
of hepatocytes[80]. While this may seem to contradict direct cytotoxicity, it is possible that cholangiocyte 
infection can still result in direct viral access to the liver. In-vitro infection with SARS-CoV-2 has been 
associated with decreased expression of the cholangiocellular tight junctions that usually protect 
parenchymal liver cells from toxins in the biliary tree[81]. It has been further speculated that reduced 
barrier function of cholangiocytes during active COVID-19 infection may lead to hepatic injury through 
leakage of toxic bile into the adjacent liver parenchyma[81]. Lastly, it is known that ACE-2 can mediate 
viral entry into endothelial cells[82]. Viral infection of the portal systems and vascular cells in the liver 
may contribute to the endothelitis, microvascular changes, and intravascular thrombosis visualized in 
post-mortem examination of hepatic tissue in patients who died from COVID-19[83].

Reduced blood oxygen, which can negatively affect the liver, occurs in up to 50% of patients with 
COVID-19 infection[84]. However, only a small percentage of patients have transaminitis to the degree 
expected in ischemic hepatitis[34-38]. While ischemia from low blood oxygen seems to have a limited 
direct role in COVALI pathophysiology, the relationship between hypoxia and inflammatory pathways 
is significant. Specifically, hypoxia can trigger and amplify immune dysregulation via inflammatory 
pathways mediated by hypoxia inducible factor and tumor necrosis factor[85]. This may explain the link 
between severity of lung disease with liver injury and provide support for and transition to the inflam-
matory hypotheses of COVALI[86].

There is substantial data suggesting systemic inflammation and associated immune dysregulation, 
endotheliopathy and thrombosis are central to the pathophysiology of COVALI[87,88]. It is well 
established that severe COVID-19 infection induces systemic inflammation and that concentrations of 
several clinically evaluated inflammatory markers are increased in patients with COVID-19, such as D-
dimer, C-reactive protein, procalcitonin, ferritin, and interleukin-6 (IL-6)[89-92]. Inflammatory markers 
are also higher in COVID-19 positive patients with biochemical liver derangements compared to 
COVID-19 positive patients without such derangements across, suggesting a link between liver injury 
and inflammation[61,62,92-94]. For example, a large retrospective analysis (n = 800) showed patients 
with COVID-19 complicated by COVALI had higher levels of C-reactive protein, procalcitonin, D-
dimer, and serum ferritin compared to patients without COVALI[61]. In a unique study, Diaz-Louzao et 
al[86] used joint regression modeling to evaluate the temporal relationship between increases in markers 
of liver injury and inflammation. They found that elevation of inflammatory markers precedes elevation 
of liver enzymes. Ultimately they created a statistical model that implicates inflammation in causation of 
liver injury. The specific inflammatory markers increased during COVALI are known to be involved in 
in vivo endotheliopathy and hypercoagulability[95,96], as has been visualized in hepatic tissue of 
patients with liver injury secondary to COVID-19. Further, histologic findings of macrovesicular 
steatosis, mild acute hepatitis, portal inflammation and portal/sinusoidal thrombosis in hepatic tissue of 
patients who have direct viral infection of the liver support that even with direct cytopathy, inflam-
mation may have a preceding role[83,97-100].
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Interleukin-6 is an inflammatory cytokine associated with endotheliopathy and a hallmark indicator 
of severe COVID-19. It has been shown that IL-6 can activate platelets and precipitate endothelitis in 
multiple organs during systemic COVID-19 infection, particularly those with a predilection for 
intravascular clot formation (e.g., the liver)[95]. Due to its association with biochemical liver injury[85,
101-103] and known function[85,101,102], IL-6 has received interest as a likely active contributor to 
development of liver injury in COVID-19[103]. Recent work by McConnell et al[102] found a potential 
mechanism for this in that activating a soluble form of the IL-6 receptor triggers downstream pro-
inflammatory and pro-coagulation pathways in the liver[102,104]. Further, that IL-6 signaling induces a 
hypercoagulable state in liver sinusoidal cells[85,104], which may contribute to the known endothelitis 
and thrombosis in hepatic tissue of patients with COVALI. Similarly, increased staining of a well-known 
platelet marker (CD-61) has been identified within dilated sinusoids in COVID-19 patients with elevated 
liver enzymes, suggesting activated platelets and endotheliopathy are critical in liver injury during 
COVID-19[85]. These findings are consistent with studies showing portal or sinusoidal vascular 
thrombosis is present in hepatic tissue of up to 50% of patients with COVID-19[83]. In context of 
literature on inflammatory markers in COVALI, Il-6 shows true mechanistic potential and bolsters the 
theory that inflammation, endotheliopathy and thrombosis are at the crux of this clinical syndrome.

OBSTETRIC POPULATION 
Background
Liver injury is a rare and potentially serious complication of pregnancy that is estimated to affect 3%-5% 
of birthing persons[105]. The differential diagnosis for hepatic dysfunction in this population includes 
specific pregnancy related (perinatal) liver diseases[106], such as pre-eclampsia/eclampsia, hemolysis 
elevated liver enzymes and low platelet (HELLP) syndrome, acute fatty liver of pregnancy and 
intrahepatic cholestasis of pregnancy (obstetric cholestasis), and non-pregnancy related liver diseases, 
such as auto-immune hepatitis, viral hepatitis, non-alcoholic steatohepatitis, and now COVALI[107-
109]. Perinatal liver diseases are associated with significant mortality and often require prompt delivery 
of the fetus for safety of the mother (summarized in Table 1). Because liver injury can strongly influence 
decisions regarding delivery[107], COVALI during pregnancy is of serious clinical significance.

Clinical considerations
General clinical course: Clinical characteristics of COVID-19 during pregnancy given current 
knowledge are well represented in the literature, but there is limited data specific to the course of liver 
injury. In the obstetric setting, COVALI is an AST-predominant transaminitis that affects 13%-42% of 
COVID-19 positive pregnant patients[108,110-112]. While these statistics are comparable to the general 
population, a meta-analysis that included pregnant patients reported key differences. They found (1) 
higher prevalence of COVALI in pregnant patients compared to non-pregnant patients; and (2) more 
severely elevated liver enzymes in pregnant patients with COVALI compared to non-pregnant patients 
with COVALI[113]. This was confirmed in a study that directly compared laboratory values of COVID-
19 positive pregnant patients with non-pregnant counterparts and found COVALI was more common in 
pregnancy[110]. The authors of this study cautioned that many of their observations were likely related 
to physiological changes of pregnancy, but they concluded the rate of COVID-19 positive pregnant 
individuals with acute liver injury was out of proportion to expected physiologic changes. This may 
indicate that COVID-19 confers an increased risk of liver injury specific to pregnancy.

Clinical Cases: Obstetric providers are tasked with differentiating liver disease that necessitates urgent 
delivery for the health and safety of the pregnant person vs that which can be managed expectantly and 
will be stable or resolve without delivery. Multiple reports illustrate this dilemma through cases of 
pregnant patients with acute liver injury who are COVID-19 positive and have concurrent features of 
high-risk perinatal liver diseases[114-120]. We identified seven cases and classified them according to 
the pattern in which liver enzymes improved throughout the clinical course: A, improved without 
delivery; B, improved with delivery; C, other (no improvement within 72 h of delivery, no timeline of 
COVID-19 symptoms) (Table 2). We will discuss cases that improved without delivery and highlight 
features that favored COVALI relative to perinatal liver diseases.

In a case described by Azimi et al[115], a 27-year-old Gravida (G) 2 Para (P) 1 woman presented at 30-
wk’ gestation with a headache and was found to have abnormal liver enzymes, low platelets, increased 
inflammatory markers (LDH, ferritin D-dimer), and chest radiograph showing diffuse ground glass 
opacities, concerning for autoimmune disease vs HELLP vs systemic COVID-19. Pending extensive 
laboratory evaluation that was negative for autoantibodies and signs of hemolysis, the patient was 
noted to be improving with only supportive care. She was discharged at 33-wk’ gestation and 
underwent normal delivery at 39-wk’ gestation. The next case was that of a 35-year-old G2 P1 with prior 
obstetric cholestasis presenting at 28-wk’ gestation with progressive fever and cough who was found to 
have high ALT and elevated serum bile acids[114]. The patient denied pruritis and had normal labs at 
her 20-wk appointment which reduced the likelihood of obstetric cholestasis; she subsequently tested 
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Table 1 Clinical characteristics and management of COVID-19 and perinatal liver diseases

COVID-19 PEC/severe PEC HELLP ICHP AFLP

Epidemiology - 5.0%-7.5% 1% 0.3%-5.6% 0.005%-0.010%

Symptoms Respiratory +/- GI 
symptoms

Variable: Headache, 
swelling, vision changes 
(or none)

Variable: Headache, 
nausea, vomiting, 
RUQ pain (or none)

Pruritis; starting at 
palms + soles (can be 
diffuse)

Nausea, vomiting, 
abdominal pain

Pathophysiology of 
liver disease

SARS-CoV-2 infection 
and systemic inflam-
mation

Inflammation and 
imbalanced endothelial 
activity

Thrombotic micro-
angiopathy

Hormonal cholan-
giopathy

Mitochondrial 
dysfunction + fatty acid 
accumulation in 
hepatocytes

Increased transam-
inases

13%-42%, 2-5 × ULN Approximately 50%, > 2 
× ULN

Typical, > 2 × ULN Typical, > 2 × ULN Always, < 10 × ULN

Jaundice Rare (unclear%) Rare Rare (< 5%) Uncommon (< 25%) Mostly (> 70%)

Other  findings Radiographic lung 
disease

HTN, ↑ sFLT-1/PIGF ↓ PLC; ↓ haptoglobin; ↑ 
LDH ↑ D-dimer

↑ ALP; ↑ bile acids Coagulopathy; 
hypoglycemia

Diagnosis Viral antigen PCR or 
Nucleic acid 
amplification test 
(NAAT)

HTN ≥ 140/90 + organ 
dysfunction (proteinuria 
not required)

Tennessee or 
Mississippi classi-
fication

Bile acids (BA); > 10 
umol/L

Swansea criteria; biopsy 
if unclear

Management Anti-virals +/- 
Steroids Mono-clonal 
antibodies

HTN control; delivery if 
> 37 wk GA or > 34 wk if 
severe

Delivery after 34 wk 
GA

Ursodiol; delivery at 36 
wk GA if BA > 100 or 
36-39 wk if BA < 100

Prompt delivery

Complications ↑ Risk of post-partum 
hemorrhage; ↑ multi-
systemic organ failure

↑ Complications; 
mortality: 1%-5%; ↑ 
Neonatal respiratory 
distress + mortality

↑ Complications 
Mortality: 1%-3%

↑ Neonatal complic-
ations

↑ Maternal + neonatal 
complications; morality: 
20% (mother); 6%-77% 
(neonate)

Comparison of the clinical presentation and management of Coronavirus disease 2019 (COVID-19) complicated by COVID-19 associated liver injury 
(COVALI) in pregnant compared to liver diseases specific to pregnancy[105-107,134-138]. Many of the diseases present along a spectrum however, they 
each have features that can help narrow the differential diagnosis. Importantly, management of perinatal liver diseases includes early delivery in most 
cases based on American College of Obstetrics and Gynecology recommendations, whereas management of COVALI does not involve decisions about 
pregnancy delivery. SARS-CoV-2: Severe acute respiratory syndrome coronavirus 2; PEC: Pre-ec clampsia; HELLP: Hemolysis, elevated liver enzymes, low 
platelets; Ahellp: atypical HELLP; AFLP: Acute fatty liver of pregnancy; ICHP: Intrahepatic cholestasis of pregnancy/obstetric cholestasis; LDH: Lactate 
dehydrogenase; PLC: Platelet count.

positive for COVID-19 which was then thought to be the source of her liver injury. The final case is that 
of a 39-year-old G5P1 presenting at 26 wk’ gestation with progressive dry cough and dyspnea. She was 
found to have new hypertension (BP 152/132), severe transaminitis (AST 1154 U/L, ALT 864 U/L), and 
PCR proven COVID-19 infection, concerning for pre-eclampsia with severe features vs systemic COVID-
19[116]. Based on high suspicion for pre-eclampsia, the patient received betamethasone and 
dexamethasone to assist fetal lung maturation. Surprisingly, the patient’s blood pressure was noted to 
be improving, inconsistent with pre-eclampsia which requires delivery to return to normotension. To 
further evaluate this, serum maternal placental growth factor was tested and normal. Normal maternal 
placental growth factor effectively ruled out pre-eclampsia and favored a diagnosis of COVID-19 with 
COVALI. This patient went on to deliver a healthy full-term fetus. In each case hypertension and liver 
injury improved with conservative management for COVID-19 and did not require delivery as is the 
case with perinatal liver diseases.

Cases in the latter two sections demonstrate complicated cases that are difficult to parse out based on 
clinical course. For example, in the case by Arslan et al[118], the patient’s proteinuria was concerning for 
pre-eclampsia and liver enzymes trended down as expected after cesarean delivery, though both 
maternal and neonatal outcomes were poor which complicates interpretation of the case. Similarly, in 
the case by Choudhary et al[111], hypoglycemia and elevated bilirubin were highly suspicious for AFLP, 
but liver enzymes remained elevated for multiple days after delivery.

Outcomes: COVID-19 associated liver injury correlates with worse clinical outcomes and increased 
mortality in the obstetric setting. A retrospective cohort study of 122 COVID-19 positive pregnant 
patients in Istanbul found acute liver injury conferred a 3.5-fold risk of becoming critically ill during 
hospitalization[112]. Maternal mortality is reportedly more common in pregnant patients who delivered 
while COVID-19 positive with acute liver injury than COVID-19 positive without liver injury[111].

The largest published study evaluating COVALI in pregnancy is a 249-patient prospective cohort 
study performed at large tertiary care hospital in eastern India[111]. Unlike in previous studies, patients 
with hypertensive disorders, diabetic disorders, or concern for intrahepatic cholestasis were not 
excluded. Overall, 107 (42.1%) had evidence of hepatic dysfunction, but liver injury was more common 



Cooper KM et al. COVID-19 liver injury in pregnancy

WJG https://www.wjgnet.com 6023 November 14, 2022 Volume 28 Issue 42

Table 2 Summary of case reports

Ref. Patient Case information Laboratory data Clinical course
Improved without delivery

AST Normal bile acids @ GA 20

ALT 571 ↑ Bile acids and NO itch

Bilirubin 0.76 Conservative management

PLC 135 LFTs resolved with COVID-10

CRP 60 Discharged home

LDH 194 Healthy delivery at GA 391

Anness and Siddiqui
[114], 2020

35 y/o G2P1, GA 
285w, PMH: IHCP

CC: Progressive dyspnea and cough; 
vitals: HR 133, RR 42, O2 96%; chest 
CT: Patchy peri-hilar inflammatory 
changes; differential: ICHP vs ICHP 
+ COVID-19 vs COVID-19

Ferritin

AST 126 No delivery

ALT 89 LFTs resolved with COVID-19

Bilirubin 2.3 Discharged at GA 33

PLC 220 Healthy delivery at GA 39

CRP 114

LDH 1036

Azimi et al[115], 2021 27 y/o G2P1, GA 
30 wk

CC: Headache and lower limb pain; 
vitals: BP 100/70, HR 90-100; chest 
CT: Peripheral GGO’s + consol-
idation; differential: HELLP vs 
systemic lupus vs COVID-19

Ferritin 1360

AST 1154 Evaluated for PEC with PIGF

ALT 864 PIGF 158 (high)→No delivery

Bilirubin LFTs resolving with COVID-10

PLC WNL Discharged HD13; AST 331

CRP Healthy delivery at GA 392

LDH 1018

Naeh et al[116], 2022 39 y/o G5P1, GA 
264 wk

CC: Dry cough and dyspnea; vitals: 
BP 152/132, HR 141, RR 20, SpO2 
96%; chest CT: Patchy multi-focal 
GGO’s; differential: PEC with severe 
features vs COVID-19

Ferritin

Improved with delivery

AST 1687 5 d earlier normal labs

ALT 348 Delivery on HD2 @ GA 326

Bilirubin 1.23 LFTs trend down after delivery

PLC 122

CRP 136

LDH 2039

Ronnje et al[117], 2020 26 y/o, G2P1, GA 
321 wk

CC: Cough, fever. Dyspnea, 
abdominal pain; vitals: BP 116/71, 
HR 113, RR 22, SpO2 95; chest CT 
bilateral diffuse GGO; differential: 
aHELLP vs COVID-19

Ferritin 875

AST 146 HD 2: BP 185/120, + proteinuria, 
intubated, IV nitroprusside

ALT 102 HD 3: Cardiac injury, ↓ PLC, ↑ 
fetal distress→ Cesarean section

Bilirubin 2.54 HD4: LFTs improved

PLC 59 Patient + child died

CRP 215

LDH 697

Arslan et al[118], 2022 30 y/o G3P2, GA 
32 wk

CC: 6 d of chills, cough, dyspnea; 
vitals: RR 26, SpO2 84%; chest CT 
bilateral GGO’s + peripheral 
thickening; differential: HELLP vs 
PEC vs AFLP vs SLE vs COVID-19

Ferritin

Delivery without improvement in 24-72 h of delivery (or other)

AST 589 Suspicion of HELLP→ Cesarean 
section

CC: RUQ pain and headache; vitals: 
BP 160/100, HR 98, SpO2 95%; chest 

Madaan et al[119], 
2022

26 y/o G1P0, GA 
39w
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ALT 300 Improved over hospitalization 
and LFTs trended down (no 
timeline given)

Bilirubin 9.4

PLC 90

CRP 78.5

LDH 3100

CT: Bilateral diffuse GGO’s; differ-
ential: Not given

Ferritin 734

AST 728.5 Suspicion of aHELLP→Cesarean-
section

ALT 473.2 POD 0: Hypo-glycemia, altered 
mentation, ↑ bilirubin→AFLP

Bilirubin 4.9 Transfer to ICU + IV labetalol

PLC 162 POD 8 discharged, normal LFT’s

CRP 22

LDH 96.9

Choudhary et al[120], 
2021

27 y/o G1P0, GA 
35 wk, di-di twins

CC: Cough, fever, abdominal pain; 
vitals: BP 142/94, HR 88, RR 20. 
SpO2 98%; chest X-ray: Bilateral 
basal opacities; differential: aHELLP 
vs PEC vs AFLP vs COVID 19

Ferritin 120

Gestational age is noted as weekd. Vitals reported as: BP: Blood pressure (mmHg); HR: Heart rate (beats per minute); RR: Respiratory rate (breaths per 
minute); Spo2: Oxygen saturation (%). Laboratory values are reported with the following standardized units: AST: Aspartate aminotransaminase (U/L); 
ALT: Alanine aminotransaminase (U/L); bilirubin (mg/dL); PLC: Platelet count (× 103/ mm); CRP: C-reactive protein (mg/dL); LDH: Lactate 
dehydrogenase (u/L); ferritin (ng/dL). PEC: Pre-ec clampsia; HELLP: Hemolysis, elevated liver enzymes, low platelets; Ahellp: Atypical HELLP; AFLP: 
Acute fatty liver of pregnancy; ICHP: Intrahepatic cholestasis of pregnancy/obstetric cholestasis; CT: Computed tomography; GGO: Ground glass 
opacities; GA: Gestational age; WNL: Within normal limits; LFTs: Liver function tests; HD: Hospital day; C-section: Cesarean section; POD: Post-operative 
day; ICU: Intensive care unit.

in patients with perinatal hypertensive, diabetic, or cholestatic disorders (47/87, 54%) compared to 
those without (60/162, 37%). Although no statistical metric of significance was provided by the study, it 
appears that COVID-19 may increase risk of or exacerbate underlying obstetric conditions associated 
with liver injury. The primary aim of the study was to evaluate the relationship between liver injury in 
COVID-19 and obstetric outcomes. While no associations between liver injury and mode of delivery or 
neonatal outcomes were identified, those with liver injury tended to deliver pre-term and/or require 
cesarean delivery more often, both of which increase morbidity. Their key finding was that obstetric 
complications were significantly higher in COVID-19 positive pregnant patients with liver injury, 
despite no differences in maternal or gestational age[111]. Specifically, pregnant persons with COVALI 
were less likely to have a normal vaginal delivery than those without liver injury (18.7% vs 30.3%). 
Further, postpartum hemorrhage, sepsis, and death were more common in those who delivered while 
COVID-19 positive with acute liver injury[111].

Pathophysiology
The pathophysiology COVID-19 is not well studied outside the general population and thus the 
pathophysiology of COVALI in pregnancy is not well understood. Studies comparing COVID-19 
positive pregnant individuals with acute liver injury and COVID-19 positive pregnant individuals with 
normal liver enzymes are crucial to build understanding of disease mechanisms in this cohort. 
However, there are only a handful of published studies on this to date[111,112,121]. We first use these 
studies to establish that relationships relevant to pathophysiology in the general population also exist in 
the obstetric population.

Specifically: (1) What is the relationship between severe COVID-19 disease and COVALI in pregnant 
patients? Patients with severe COVID-19 are more likely to develop COVALI. A prospective cohort 
study found that 87.5% of pregnant patients with severe COVID-19 pneumonia during hospitalization 
developed abnormal liver enzymes after having normal liver enzymes at baseline[122]. A later study 
demonstrated pregnant patients with liver injury had more severe disease and two thirds of this cohort 
ultimately died due to COVID-19 lung disease[111]; (2) what is the relationship between COVALI and 
markers of inflammation in pregnant patients? COVALI during pregnancy has been associated with 
elevated markers of inflammation. COVID-19 positive pregnant patients with liver injury have higher 
serum ferritin than expected in normal pregnancy, where a state of physiologic anemia is to be expected
[112]. Furthermore, a study by Deng et al[121] evaluating liver chemistries in 37 COVID-19 positive 
pregnant patients found those with liver injury had higher inflammatory markers, such as procalcitonin 
and IL-6; and (3) what is the relationship between COVALI and systemic inflammatory manifestations 
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of COVID-19? Research by Choudhary et al[111] showed that obstetric complications were found to be 
more common in patients with COVALI. Most of these complications were related to inflammation, 
endotheliopathy, and coagulopathy. For example, they found pregnant persons with liver injury had 
higher prothrombin time and were more likely to experience postpartum hemorrhage requiring blood 
transfusion. Further, systemic inflammation was more common in those who delivered while COVID-19 
positive with acute liver injury, as evidence by increased risk of sepsis with multi-organ failure[111].

Overall, these studies suggest the relationships between liver injury and disease severity, patient 
outcomes, and inflammation identified in the general population persist in the obstetric population. 
While pathophysiology is likely stable across cohorts, considering the increased risk of COVALI during 
pregnancy could help further elucidate pathophysiology.

One potential link to the increased risk is the upregulation of ACE-2 to increased plasma levels above 
non-pregnant individuals, secondary to increase in estrogen production[123,124]. During pregnancy 
ACE-2 is highly expressed in the placenta and helps regulate blood pressure via systemic vascular 
resistance. This suggests there is increased activity of ACE-2 in the endothelium of pregnant patients
[125] leading to the placenta as a potential target for COVID-19 infection. The interruption of the 
physiologic function of ACE-2 in pregnancy has been postulated to be a major contributing factor to the 
development of complications[126]. Lower levels of ACE-2 have been detected in the placentas from 
COVID-19 positive patients, suggesting that COVID-19 infection may alter ACE-2 expression and its 
biologic function in both the placenta and more widely in maternal circulation[124], potentially causing 
endothelial dysregulation as seen in COVALI.

Based on clinical manifestations, it is also reasonable to consider that pathophysiology of COVALI 
resembles or amplifies that of obstetric hepatobiliary pathology. This is exhibited in the case reports 
narrating the difficulty of differentiating COVALI from obstetric disorders that cause transaminitis in 
the clinical setting. Overall, the greatest overlap occurs between severe pre-eclampsia and the extra-
pulmonary manifestations of COVID-19, and pre-eclampsia has been diagnosed more often in pregnant 
persons with COVID-19 compared to pregnant persons without COVID-19[127,128]. A potential link to 
the increased risk is alpha-1-antitrypsin, an enzyme that can inhibit SARS-CoV-2 infection and protects 
endothelial cells from oxidative stress during pregnancy, which is reduced in seen in pregnant patients 
with pre-eclampsia[129,130].

Work by Mendoza et al[122] sought to determine the prevalence of “pre-eclampsia findings” in 42 
COVID-19 positive pregnant women. Eight women had severe pneumonia secondary to COVID-19 of 
which seven (87.5%) had elevated liver enzymes consistent with COVALI and five (62.5%) had 
hypertension meeting criteria for pre-eclampsia. However, sonographic evidence of placental hypoper-
fusion was only found in one patient who ultimately required delivery to prompt resolution of 
hypertension and liver injury. The remaining patients did not require delivery and instead, liver injury 
and hypertension improved in parallel with symptoms of pneumonia due to COVID-19. They measured 
ratio of soluble fms-like tyrosine kinase-1 (sFlt-1) ad serum placental growth factor (PIGF), which has 
been shown to be predictive of pre-eclampsia[131], and found sFlt-1/PIGF normal ratio in patients who 
did not require delivery compared to an elevated sFlt-1/PIGF ratio in the patient with evidence of 
placental hypoperfusion who required delivery. These findings suggest severe COVID-19 complicated 
by COVALI can mimic hypertensive disease of pregnancy and may represent shared disease 
mechanisms (Figure 1).

Literature that was published during the writing of this review directly compared the patho-
physiology of pre-eclampsia and COVID-19. In this study, Palomo et al[132] compared endothelial 
inflammation and angiogenesis in pregnant patients with pre-eclampsia vs COVID-19 pneumonia vs 
normotensive controls. They measured circulating inflammatory markers in patient blood and found 
different biomarker profiles of coagulopathy, endothelial inflammation, and angiogenesis. Both COVID-
19 and pre-eclampsia had increased vascular cell adhesion molecules expression relative to controls and 
increased markers of innate immunity. Fortunately, there were multiple factors helpful in differentiating 
pre-eclampsia and COVID-19: (1) COVID-19 had higher von Willebrand factor and soluble tumor 
necrosis factor-receptor but lower PIGF; and (2) Pre-eclampsia had higher soluble tumor necrosis factor-
receptor and sFlt-1but lower von Willebrand factor. They observed altered sFlt-1 to PlGF ratio was 
predictive of pre-eclampsia, consistent with findings of Mendoza et al[122] In the latter part of their 
study they observed how sera from each patient cohort induced change when applied to human dermal 
microvascular cells. Despite different angiogenic and endothelial profiles, sera from both cohorts 
activated a common downstream pathway associated with endothelial inflammation, potentially 
indicating a shared end-pathway. While liver injury was not specifically evaluated in this study, these 
findings can be interpreted as evidence supporting endothelial dysfunction and inflammation as drivers 
of systemic manifestations of COVID-19 that are also present in pre-eclampsia, such as liver injury. 
Shared histologic findings in COVALI and pre-eclampsia including microvascular changes and signs of 
platelet activation, further support this theory[106,133].
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Figure 1 Mechanisms of COVID-19-associated liver injury: Inter-organ crosstalk. Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) 
enters host cells via interaction of its spike protein with the receptor angiotensin converting enzyme 2 in the presence of TMPRSS2 in many tissues. Proposed 
mechanisms for SARS-CoV-2-mediaded liver injury include: (1) Direct viral cytopathic effect; (2) IL-6 trans-signaling in liver sinusoidal endothelial cells which leads to 
endotheliopathy; (3) cytokine storm-induced damage; and (4) hypoxemic injury. There is also a lung-gut crosstalk which promotes an increased inflammatory state as 
well as dysbiosis which increases intestinal permeability, thus facilitating viral entry. Furthermore, direct viral injury to the vascular endothelium leads to increased 
cytokine release, enhanced reactive oxygen species production and thrombo-embolic events involving both micro and macro circulation. In a similar fashion, pre-
eclampsia spectrum syndromes cause inflammation and endotheliopathy that pre-disposes to liver injury and can be synergistic coronavirus disease 2019 (COVID-
19) and COVID-19 associated liver injury. Original figure was created with BioRender.com.

CONCLUSION
In this paper we reviewed COVID-19 associated liver injury with a special focus on pregnancy. We 
demonstrated COVALI to be an inflammatory mediated AST-predominant transaminitis associated 
with COVID-19 disease severity and poorer patient outcomes. Emerging research in the general and 
obstetric populations supports inflammation and endothelial dysfunction as central to pathophysiology 
in systemic COVID-19 and COVALI. Figure 1 summarizes proposed mechanisms of COVALI and 
illustrates how some physiologic changes in pregnancy can pre-dispose or exacerbate processes of liver 
injury during COVID-19. There is significant opportunity to improve understanding of COVALI during 
pregnancy. At present COVALI appears to be independently associated with worse post-partum 
outcomes, though this has not been fully parsed on in the literature. Further research should be done to 
elucidate the relationship between post-partum outcomes and COVALI, relevant to short and long-term 
outcomes. There is also data supporting the use of specific of circulating biomarkers to differentiate 
systemic COVID-19 from other causes of transaminitis in pregnancy, but further research is required to 
define criteria that can guide management.
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Abstract
The disease burden related to hepatocellular carcinoma (HCC) is increasing. Most 
HCC patients are diagnosed at the advanced stage and multikinase inhibitors 
have been the only treatment choice for them. Recently, the approval of immune 
checkpoint inhibitors (ICIs) has provided a new therapeutic strategy for HCC. It is 
noteworthy that the positive outcomes of the phase III clinical trial IMBrave150 
[atezolizumab (anti-programmed cell death ligand 1 antibody) combined with 
bevacizumab (anti-vascular endothelial growth factor monoclonal antibody)], 
showed that overall survival and progression-free survival were significantly 
better with sorafenib. This combination therapy has become the new standard 
therapy for advanced HCC and has also attracted more attention in the treatment 
of HCC with anti-angiogenesis-immune combination therapy. Currently, the 
synergistic antitumor efficacy of this combination has been shown in many 
preclinical and clinical studies. In this review, we discuss the mechanism and 
clinical application of anti-angiogenics and immunotherapy in HCC, outline the 
relevant mechanism and rationality of the combined application of anti-
angiogenics and ICIs, and point out the existing challenges of the combination 
therapy.

Key Words: Anti-angiogenesis; Immunotherapy; Combination therapy; Vascular 
endothelial growth factor; Immune checkpoint blockade; Hepatocellular carcinoma
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Core Tip: Anti-angiogenesis combined with immunotherapy in hepatocellular carcinoma (HCC) has 
attracted extensive attention. Although the mechanism of these combinations is largely understood, the 
biomarkers for predicting treatment response are still lacking. Thus, we outline the relevant mechanism 
and rationality of the combined application of anti-angiogenics and immune checkpoint inhibitors, and 
further explore the biomarkers that are associated with treatment response, which are critical in studies of 
HCC.

Citation: Li SQ, Yang Y, Ye LS. Angiogenesis and immune checkpoint dual blockade: Opportunities and 
challenges for hepatocellular carcinoma therapy. World J Gastroenterol 2022; 28(42): 6034-6044
URL: https://www.wjgnet.com/1007-9327/full/v28/i42/6034.htm
DOI: https://dx.doi.org/10.3748/wjg.v28.i42.6034

INTRODUCTION
According to the statistics from the National Cancer Center of China, the incidence and mortality of 
hepatocellular carcinoma (HCC) are increasing annually[1]. The World Health Organization (WHO) 
estimates that, from 2015 to 2030, approximately 10 million people in China will die due to liver 
cirrhosis and HCC. Although early-stage disease can be cured by surgical removed, transplantation, or 
interventional therapy, most patients have unresectable disease at the time of diagnosis[2], and current 
treatments are insufficient to prevent the high metastasis and recurrence rates after HCC treatment.

Currently, immunotherapy is receiving a great deal of attention in the treatment of tumors. Among 
the immunotherapy options, immune checkpoint blockade (ICB)-based immunotherapy which 
reactivates dysfunctional or exhausted T cells has shown excellent efficacy in a variety of solid cancers 
and hematological tumors[3-7]. However, 50%-80% of cancer patients still do not benefit from immuno-
therapy, and many of them suffer serious adverse events (AEs) during treatment[8]. In fact, there is still 
no clear mechanism to explain the tolerance of many cancers to immune checkpoint inhibitors (ICIs). 
HCC is a solid tumor with complex pathophysiological barriers. It is difficult for external lymphocytes 
to penetrate and infiltrate into tumor tissue. In addition, the rapidly growing tumor cells release 
immunosuppressive factors, which result in HCC forming an immunosuppressive immune microenvir-
onment, which greatly limits the efficacy of immunotherapy[9]. In addition, the rapidly growing tumor 
cells release several factors, which result in HCC forming an immunosuppressive immune microenvir-
onment, that greatly limits the efficacy of immunotherapy[10,11]. Therefore, normalizing tumor 
vasculature and improving the tumor hypoxic microenvironment is expected to reverse the immun-
osuppressive microenvironment of HCC and promote HCC immunotherapy.

The TME is mainly composed of the vasculature, resident or infiltrating immune cells and various 
stromal cells. Previous studies have shown that abnormal tumor vasculature promotes the formation of 
an immunosuppressive TME[11]. Therefore, therapies that promote normalization of the vasculature are 
of great significance for enhancing immunotherapy of HCC. This review outlines measures to normalize 
the vasculature of HCC and the common immunotherapy regimens for HCC, and further describes and 
discusses how to normalize the tumor vasculature to improve the efficacy of immunotherapy in HCC 
(especially ICB). Additionally, we discuss the challenges associated with emerging combinations of 
vascular normalization therapy and immunotherapy for HCC.

ABNORMAL ANGIOGENESIS AND VASCULAR NORMALIZATION MEASURES FOR HCC
Abnormal angiogenesis and vascular endothelial growth factor/vascular endothelial growth factor 
receptor
The excessive growth and abnormal proliferation of tumor cells depend on rapid tumor angiogenesis. 
Tumor angiogenesis not only provides tumor cells with oxygen, nutrients and removes waste, but also 
serves as a channel for metastasis of tumor cells and immune cell infiltration[12,13]. However, 
compared with vessels in normal tissues, tumor neo-vessels have obvious aberrations in both structure 
and function[11]. Leakage is one of the most notable features of tumor vessels. On the one hand, this 
property can lead to tumor hypoxia and decreased intra-tumoral pH by impairing perfusion, and on the 
other hand, leakage will increase interstitial pressure in the TME[10]. Tumor cells overcome these harsh 
conditions through multiple mechanisms to gain a survival advantage[11]. Abnormal vessels limit the 
circulation of drugs and immune cells into the tumor, thereby limiting anti-tumor activity[11]. The 
hypoxia and pH reduction in the tumor caused by abnormal vessels will further lead to abnormal 
neovascularization, forming a vicious circle.

https://www.wjgnet.com/1007-9327/full/v28/i42/6034.htm
https://dx.doi.org/10.3748/wjg.v28.i42.6034
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In the field of cancer research, most studies on angiogenesis has focused on the increased expression 
of angiogenesis factors [such as vascular endothelial growth factor (VEGF), platelet-derived growth 
factor (PDGF), fibroblast growth factor (FGF), angiopoietin, hepatocyte growth factor, endoglin (CD105, 
etc)] and decreased expression of anti-angiogenesis factors, such as angiostatin, endostatin, and 
thrombospondin 1, which is mainly caused by upregulation of the hypoxia-inducible factor protein. 
Among these, VEGF/VEGF receptor (VEGFR) axis are widely known to play a major role in vascular 
abnormalities and are crucial for the occurrence and progression of HCC[14-16]. The VEGF family 
consists of VEGFA, VEGFB, VEGFC, VEGFD and placental growth factor (PlGF) 1-4, which are involved 
in tumor angiogenesis (VEGFA, PlGF), maintenance of new blood vessels (VEGFB), lymph-angiogenesis 
and angiogenesis (VEGFC/D), vascular permeability (VEGFA/C), chemotaxis (VEGFB), migration 
(VEGFA, PlGF), differentiation (VEGFD) and survival (VEGFA/B/C, PlGF)[17,18]. VEGFR mainly 
includes VEGFR1, VEGFR2, and VEGFR3[15]. Of these, VEGFR2 is the critical receptor of this family, 
which is expressed on almost all endothelial cells and is activated by binding to VEGFA, VEGFC or 
VEGFD, and VEGFA is its major ligand[19]. This binding results in the phosphorylation cascade that 
triggers downstream cellular pathways, ultimately leading to endothelial cell proliferation and 
migration, and the formation and branching of new tumor blood vessels[19]. These neo-vessels often 
manifest as abnormal leaky vasculature, resulting in high interstitial pressure and severe hypoxia or 
necrosis in tissue regions, further promoting the malignant potential of tumor cells[20]. Previous studies 
have shown that circulating VEGF levels are increased in HCC, and increased VEGFA has been shown 
to be associated with angiogenesis in HCC[21,22]. In addition, related studies also observed a positive 
association between increased local and circulating VEGF and high tumor micro-vessel density with 
rapid disease progression and decreased survival. These findings support the application of therapies 
that target the VEGF/VEGFR pathway in HCC[21,22].

Vascular normalization measures in HCC and targeting of the VEGF/VEGFR axis
Various molecular and physical mechanisms have been reported to contribute to tumor vascular 
dysfunction, the most prominent of which is the imbalance of angiogenic signaling mediated by pro- 
and anti-angiogenic molecules[11,23]. In normal tissue, this balance is precisely maintained to ensure 
normal vascular morphology and function[24]. However, during the process of carcinogenesis, this 
balance usually tends to angiogenesis, and the generated neo-vessels are immature abnormal vessels 
without complete structure[24]. In view of the key role of the VEGF/VEGFR axis in abnormal 
angiogenesis of HCC, rational targeting of this axis can promote the normalization of tissue vessels and 
limit the occurrence and development of HCC.

In the past few decades, the development of anti-angiogenesis therapy has mainly focused on 
blocking VEGF[17,18]. Several studies have also focused on blocking VEGF signaling by silencing 
VEGFA expression at the transcriptional and post-transcriptional levels. For example, Zou et al[25] 
identified emodin that could greatly increase seryl-tRNA synthetase expression in tripe-negative breast 
cancer (TNBC) cells, consequently reducing VEGFA transcription, and emodin potently inhibited 
vascular development of zebrafish and blocked tumor angiogenesis in TNBC-bearing mice, greatly 
improving the survival. Li et al[26] and Ding et al[27] raised that VEGF small interference RNA can 
precisely and efficiently silence VEGF expression and block VEGF signal pathway, leading to a 
significant decrease in tumor blood vessels and suppression of tumor growth and metastasis. However, 
these studies have only been tested in animals. Preclinical evidence suggests that monotherapy which 
blocks VEGF reduces micro-vessel density, inhibits tumor growth in many cancerous subcutaneous 
xenografts, and even inhibits tumor cell metastasis[28,29]. Ferrara et al[30] researched and developed the 
first anti-angiogenesis inhibitor (bevacizumab), a recombinant humanized monoclonal antibody that 
blocks VEGFA. Bevacizumab binds to VEGF in the bloodstream, thereby inhibiting the interaction 
between VEGF and VEGFR. In clinical trials of combination therapy for HCC, multiple lines of evidence 
suggest that bevacizumab has a potential therapeutic effect[31,32].

On the other hand, many anti-angiogenesis therapies in HCC focus on targeting VEGFR. Multikinase 
inhibitors (MKIs) and monoclonal antibodies (mAbs) were developed to inhibit VEGFR and its 
downstream targets to inhibit endothelial cell proliferation, thereby reducing the nutrient and oxygen 
supply required by tumors. Currently, the VEGFR-targeted MKIs and mAbs used in advanced HCC 
mainly include sorafenib, regorafenib, lenvatinib, cabozantinib, and ramucirumab (Table 1).

Sorafenib is an oral MKI that blocks VEGFR1-3, c-Kit, PDGF receptor (PDGFR)-b, and FMS-like 
tyrosine kinase-3 (FLT-3)[33]. The phase III clinical trial SHARP showed a 2.8-mo survival advantage for 
sorafenib over placebo in patients with advanced HCC. This recent study also showed that sorafenib 
can benefit patients with HCC regardless of etiology, and patients with hepatitis C appeared to 
experience greater benefit[34]. Treatment-related AEs were more common in the sorafenib group than 
in the placebo group (80% vs 52%), and the incidence of dose reductions and interruptions was high 
during treatment. The MKI regorafenib also targets VEGFR, RET, c-Kit, B-Raf, FGFR1 and PDGFR[33]. It 
is the first therapy to demonstrate a survival benefit in advanced HCC patients who have progressed on 
sorafenib[35]. Fatigue, hypertension, diarrhea and hand-foot skin reactions were common AEs in the 
regorafenib-treated group. Other analyses showed that the survival benefit of first line sorafenib and 
second line regorafenib was more than 24 mo[35]. The targets of lenvatinib include VEGFR1-3, FGFR1-4, 
PDGFRa, RET and c-Kit. Recently, a phase III study of lenvatinib vs sorafenib in patients with 
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Table 1 Currently approved anti-angiogenic therapy for advanced hepatocellular carcinoma

Therapy Type Line of therapy Target Study name
Primary outcome 
in the study (mo) 
(95%CI)

Adverse events in the study 
[affected/at risk (%)]

Anti-VEGFA

Bevacizumab 
(combination with 
atezolizumab)

mAb First line (plus 
atezolizumab)

VEGF-A IMBrave150 OS at CCOD 30 mo: 
19.2 (17.0-23.7); PFS: 
6.8 (5.6-8.3)

Gastrointestinal perforation [1/329 
(0.30%)], haemorrhage [40/329 (12.15%)], 
hypertension [2/329 (0.61%)] and 
proteinuria [100/329 (30.40%)], etc.

Anti-VEGFR

Sorafenib TKIs First line VEGFR1-3, c-Kit, 
PDGFR-b, and 
FLT-3

SHARP OS: 10.8 (9.5-13.5); 
TTSP: 4.2 (3.5-4.2)

Diarrhea [166/297 (55.89%)], hand-foot skin 
reactions [2/297 (0.67%)], fatigue [145/297 
(48.82%)], etc.

Lenvatinib TKIs First line VEGFR1-3, 
FGFR1-4, 
PDGFRa, RET 
and c-Kit

REFLECT OS: 13.6 (12.1–14.9); 
PFS: 7.4 (6.9–8.8)

Diarrhea [154/468 (33%)], decreased 
appetite [204/468 (44%)], etc.

Regorafenib TKIs Second line VEGFR, RET, c-
Kit, B-Raf, 
FGFR1 and 
PDGFR

RESORCE OS: 10.7 (9.2-12.3); 
TTP:3.9 (2.9-4.26)

Toxicities were manageable this sorafenib- 
tolerant population and were similar to 
those observed with sorafenib, including 
diarrhea [163/374 (43.58%)], etc.

Cabozantinib TKIs Second and third 
line

VEGFR2, c-Kit, 
RET, FLT-3, Tie2, 
and Axl

CELESTIAL OS: 10.2 (9.1-12.0) Hypertension [137/467 (29.34%)]. 
Pneumonia [16/467 (3.43%)], etc.

Ramucirumab mAb Second line and 
AFP ≥ 400 ng/mL

VEGFR2 REACH-2 OS: 8.5 (7.0-10.6) Hypertension [48/197 (24.37%)], 
hyponatremia [11/197 (5.58%)], etc.

TKIs: Tyrosine kinase inhibitor; CCOD: Clinical cut off date; OS: Overall survival; PFS: Progression free survival; TTSP: Time to symptomatic progression; 
TTP: Time to progression; CI: Confidence interval; AFP: Alpha fetoprotein; VEGFR: Vascular endothelial growth factor receptor; FLT: FMS related tyrosine 
kinase 1; FGFR: Fibroblast growth factor receptor; PDGFR: Platelet-derived growth factor receptor.

unresectable HCC showed that overall survival (OS) with lenvatinib was non-inferior to sorafenib[36]. 
The most common AEs in the lenvatinib group were diarrhea, fatigue, etc[36]. It should be noted that 
patients with tumors with more than 50% hepatic masses or involvement of branches of the main portal 
vein were excluded from the trial (NCT01761266); thus, further clinical trials should be conducted. 
Despite this problem, lenvatinib remains the only drug in first-line clinical trials that was positive 
against the proven active control, sorafenib. In addition to targeting VEGFR2, c-Kit, RET, FLT-3, Tie2, 
and Axl, cabozantinib has the unique property of inhibiting c-Met, and its potential activity was 
observed in phase II trials[37]. The subsequent phase III clinical trial, which compared cabozantinib to 
placebo in advanced HCC, met its primary endpoint of improved OS after up to two prior treatments, 
one of which included sorafenib[38]. Hypertension, pneumonia were common AEs in the cabozantinib 
group[38]. Ramucirumab, the mAb that antagonizes VEGFR2, improved OS in a phase III study in 
patients with sorafenib progression or intolerance with baseline alpha-fetoprotein (AFP) ≥ 400 ng/mL
[39]. Hypertension and hyponatremia were the only over grade 3 AEs in patients of the test group[39]. 
Based on the results of the previous phase III study, patients can be selected for treatment based on 
baseline AFP values. A survival benefit was observed with ramucirumab in a subgroup of patients with 
higher baseline AFP (400 ng/mL), which is the first positive clinical trial in the biomarker-selected HCC 
population[39].

IMMUNOTHERAPY IN HCC
Driven by the success of ICB therapy in melanoma, ICB has been extensively studied in a variety of 
malignancies including HCC[40,41]. Long-term liver injury or chronic hepatitis infection often leaves 
the liver in a state of chronic inflammation[42]. Moderate inflammation can defend against pathogens 
and repair tissue damage, whereas persistent liver inflammation can disturb the microenvironment, 
thus favoring carcinogenesis. On the one hand, hepatic endocrine cytokines play a key role in tumori-
genesis through regulating regulatory T cells (Tregs) that inhibit CD8+ T cell activation[43]. It was 
previously reported that Tregs derived from hepatitis B virus-positive HCC tumors exhibited higher 
programmed cell death protein 1 (PD-1) expression and superior inhibitory capacity against CD8+ T 
cells. On the other hand, cytotoxic immune populations frequently express markers of exhaustion such 
as PD-1, cytotoxic t-lymphocyte associated antigen 4 (CTLA-4) and lymphocyte activating gene 3[44]. 



Li SQ et al. Anti-angiogenics and immunotherapy in HCC

WJG https://www.wjgnet.com 6038 November 14, 2022 Volume 28 Issue 42

Under normal conditions, these molecules inhibit T cell activation to maintain inflammatory 
homeostasis, protect tissue integrity, and prevent unnecessary autoimmunity[45]. However, in tumors, 
expression of these markers of exhaustion is inversely correlated with their function, making them a 
prime target for ICBs to revitalize and restore the cytotoxic capacity of CD8+ T cells[43]. At the same 
time, the expression of PD-1 and its ligand (PD-L1) in tumor cells is upregulated, and when it binds to 
PD-1 expressed by T cells activated by tumor infiltration, it induces T cell exhaustion and suppresses the 
anti-tumor immune activity of these immune cells, thereby enabling tumor cells to evade immunity[46]. 
ICBs generate robust multitarget immune responses and can even induce long-lasting tumor remissions 
in some patients. Inhibition of the PD-1/PD-L1 interaction reverses the depleted state of these cytotoxic 
immune cells and reactivates their antitumor activity[46,47]. In HCC, the mAbs pembrolizumab and 
nivolumab that target PD-1, and nivolumab combined with ipilimumab (a mAb directed against CTLA-
4), has been approved in the United States for sorafenib-treated patients, based on promising results 
from clinical trials[48-50]. A clinical trial confirmed the efficacy and safety of PD-1-targeting immuno-
therapy in HCC[51]. However, subsequent phase III trials of nivolumab vs sorafenib in first-line therapy 
failed to meet the primary survival endpoints[50,52]. The combination of phase III nivolumab and 
ipilimumab is currently under evaluation (NCT04039607).

In the current phase III clinical treatment of HCC, immune combination therapy has attracted consid-
erable attention, especially the combination of ICIs and anti-angiogenic inhibitors (Table 2). Lenvatinib 
combined with pembrolizumab, bevacizumab combined with atezolizumab (PD-L1-targeting mAb) 
(T+A combination), and cabozantinib combined with atezolizumab have all obtained encouraging 
results in clinical studies[53-55]. Of these, the combination of bevacizumab and atezolizumab has been 
successful in phase III clinical trials of first-line treatment of HCC (IMbrave150). Compared with 
sorafenib, this combination improved the primary endpoints: OS and progression-free survival, and this 
combination was shown to be safe and improved quality of life[56]. Hypertension and proteinuria were 
typical side effects of bevacizumab and were the top two AEs in this test group. Upper gastrointestinal 
bleeding, another known side effect of bevacizumab, occurred in 7% of patients in this group, and was 
within the range of previous evaluations of bevacizumab AEs for the treatment of HCC[57,58]. Elevated 
transaminases and pruritus are common side effects of atezolizumab[32]. As this study applied the 
usual inclusion criteria in HCC clinical trials and included only Child-Pugh A patients, further clinical 
trials are pending[32].

Angiogenesis and immune checkpoint combination blockade in HCC
As shown above, the success of the phase III trial (IMbrave150) with the combination of atezolizumab 
and bevacizumab in advanced HCC is groundbreaking as it is the first treatment with a better survival 
rate than sorafenib since the approval of sorafenib in 2007 and is also the only successful first-line 
immunotherapy combination therapy for HCC in the world[32]. Antibodies targeting VEGF not only 
inhibit tumor growth but also reprogram the TME from immunosuppressive to immune activation[8,
59]. Based on these findings, PD-1/PD-L1 inhibitors combined with VEGF/VEGFR inhibitors have 
attracted extensive attention in the treatment of HCC. Next, we will outline the mechanism and 
rationality of PD-1/PD-L1 inhibitors combined with VEGF/VEGFR inhibitor therapy, and the 
biomarkers of response to targeted immune combination therapy.

Mechanism and rationality
In the tumor area, VEGF released by hypoxic cancer cells promotes tumor cell growth and metastasis by 
angiogenesis[8]. On the other hand, VEGF can also promote the malignant progression of tumors by 
affecting the TME (Figure 1). The tumor immune cycle mainly includes seven steps, the release of tumor 
antigens, the uptake and presentation of tumor antigens by dendritic cells (DCs), the initiation and 
activation of T cells, the migration of T cells to tumors, the invasion of T cells against tumors, the 
recognition of tumor cells by T cells, and the attack of tumor cells by T cells[60]. VEGF is involved in 
almost every step of the tumor immune cycle and finally promotes tumor immune escape[61-64]. VEGF 
enhances the mobilization and proliferation of immunosuppressive cells, including Tregs, tumor-
associated macrophages (TAMs), and myeloid-derived suppressor cells (MDSCs) etc, enhances the 
release of immunosuppressive cytokines[8,59], and promotes M1-TAMs to M2 type polarization. In 
addition, Tregs and TAMs release immunosuppressive factors, such as VEGF and angiopoietin 2, which 
form positive feedback to further promote tumor progression[65]. Furthermore, VEGF inhibits the 
maturation and antigen presentation of DCs. Thus, even in the presence of neoantigens, VEGF can 
reduce the proliferation and activation of naive CD8+ cells by inhibiting DCs[65]. VEGF prevents 
antigen activated CD8+ T cells from infiltrating tumor tissue by promoting the formation of abnormal 
tumor vessels. In addition, VEGF forms an immunosuppressive TME that inhibits the function of T cells 
in tumors during the effector phase of the immune response[65]. Therefore, inhibition of VEGF/VEGFR 
interaction not only normalizes vessels but also enhances antitumor immunity.

Previous studies have shown that inhibition of VEGF/VEGFR can enhance antitumor immunity. 
Gabrilovich et al[63] found that the targeted drugs which inhibit VEGF/VEGFR lead to an enhanced 
antigen-presenting capacity of DCs. In addition, studies also found that these drugs inhibit the 
production of Tregs, TAMs and MDSCs at tumor sites, and negatively regulate the expression of 
immunosuppressive cytokines such as transforming growth factor-beta and interleukin-10[66]. 
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Table 2 Phase III clinical trials of combinations of anti-angiogenic inhibitors and immune checkpoint inhibitors in hepatocellular 
carcinoma

Trial name Treatment Setting Primary 
endpoints Current status Enrollment, 

n

NCT03434379 Atezolizumab + bevacizumab Advanced HCC; first line OS, PFS Active, not 
recruiting

558

NCT04770896 Atezolizumab + lenvatinib/sorafenib versus 
lenvatinib/sorafenib

Unresectable HCC; 
second line

OS Recruiting 554

NCT03713593 Pembrolizumab + lenvatinib versus lenvatinib Advanced HCC; first line OS, PFS Active, not 
recruiting

794

NCT03755791 Atezolizumab + cabozantinib versus sorafenib Advanced HCC; first line OS, PFS Recruiting 740

OS: Overall survival; PFS: Progression free survival; HCC: Hepatocellular carcinoma.

Figure 1 Vascular endothelial growth factor promotes the formation of an immune suppressive microenvironment. VEGF: Vascular 
endothelial growth factor; DCs: Dendritic cells; MDSCs: Myeloid-derived suppressor cells; TAMs: Tumor-associated macrophages; Tregs: Regulatory T cells.

Therefore, blocking VEGF/VEGFR reprograms the immunosuppressive TME[67]. At the same time, the 
combination of PD-1/PD-L1 antibody can further enhance the antitumor activity of T cells. First, by 
reversing the VEGF-mediated suppression of DCs maturation resulting in efficient priming and 
activation of T cells[67,68]; second, by normalizing tumor vasculature and promoting efficient T cell 
infiltration into tumors[69]; and third, VEGF/VEGFR inhibitors inhibit the activity of MDSCs, Tregs, 
and TAMs, leading to the reprogramming of the immunosuppressive microenvironment to immune 
activation[61]. Finally, PD-1/PD-L1 inhibitors enhance the ability of T cells to attack tumor cells. These 
four aspects can lead to effective antitumor immunity and tumor growth inhibition. As described above, 
the use of molecularly targeted drugs against VEGF/VEGFR reactivates the aberrant immunosup-
pressive TME caused by VEGF, and finally allows the tumor cells to be effectively attacked[60,62]. A 
recent study of T+A therapy showed that the improved outcome of the combination of bevacizumab 
and atezolizumab compared with atezolizumab alone was mainly related to higher Tregs expression, 
suggesting that bevacizumab inhibits VEGF-enhanced antitumor immunity mainly related to inhibiting 
the function of Tregs[70]. Notably, previous studies have shown that anti-PD-1 therapy can increase 
tumor blood perfusion by normalizing blood vessels in breast and colorectal cancer models, which is 
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closely related to its antitumor efficacy[71]. These studies form the rationale for the combination of 
VEGF/VEGFR inhibitors and PD-1/PD-L1 inhibitors.

Biomarkers to assess the response of targeted immunotherapy
A major factor limiting the benefit of angiogenesis and immune checkpoint dual blockade for HCC is 
the lack of biomarkers to predict patients who can benefit from treatment. PD-L1 expression in tumor 
specimens was not associated with prognosis in HCC patients treated with nivolumab[48]. This study 
demonstrated that further comprehensive tumor and stromal immune scores, or tumor gene signatures 
should be explored. A recent study showed that pre-existing immunity (high expression of CD274, T-
effector signature and intra-tumoral CD8+ T cell density) was positively associated with better clinical 
outcomes with the T+A combination and reduced clinical benefit was associated with a high Treg to 
effector T cell (Teff) ratio and expression of oncofetal genes (GPC3, AFP)[70]. Hatanaka et al[72] reported 
that C-reactive protein and AFP could be useful for predicting therapeutic outcomes and treatment-
related AEs in HCC patients treated with the T+A combination. These results indicate that the clinical 
studies of bevacizumab combined with atezolizumab, lenvatinib combined with pembrolizumab, 
cabozantinib combined with atezolizumab and other combination therapies are a valuable platform for 
the analysis of other potential biomarkers of response to targeted immunotherapy and offer several new 
possibilities for identifying subpopulations of patients who benefit from these treatments. In several 
cancers, tumor mutational burden (TMB) and microsatellite instability (MSI) are associated with longer 
OS after ICB therapy. Considering the low frequency of TMB and MSI in HCC, their predictive applic-
ations in HCC are limited. However, it is worth noting that studies have shown that HCC with high 
TMB and low MSI responded to nivolumab for more than 2 years[73]. Thus, much more research is 
needed to determine the biomarkers of targeted immunotherapy in HCC.

CONCLUSION
The global disease burden of HCC is increasing year by year. According to statistics, the annual 
incidence of HCC may exceed 1 million cases in the near future, and most patients are in advanced 
stages at diagnosis. Currently, only reasonable systemic treatment can effectively delay the progression 
of HCC. This article describes the characteristics and treatment strategies of abnormal angiogenesis in 
HCC, and briefly reviews the immunotherapy of HCC. The strategy and rationality of angiogenesis and 
immune checkpoint dual blockade are further discussed. Among these combinatorial strategies, the 
success of the IMBrave150 clinical trial demonstrated that bevacizumab altered the tumor immune 
microenvironment, enabling greater responses to ICB, successfully transforming the immunosup-
pressive TME to an immune-activated microenvironment. Therefore, the efficacy achieved by the 
combination of anti-PD-1/PD-L1 antibody and VEGF/VEGFR inhibitor may be due to normalization of 
the TME. In addition to the combination of atezolizumab and bevacizumab, other combination therapies 
targeting the same mechanism have also received attention. While the clinical development of 
VEGF/VEGFR-targeted drugs is due to their anti-angiogenesis inhibitory effects, the potential of this 
class of drugs is as immunomodulators in combination with immunotherapy.

In the post-sorafenib era of advanced HCC treatment, a great number of combination therapies are 
being studied. However, one of the biggest challenges with combination therapy is the discovery of 
predictive biomarkers to accurately identify patients most likely to respond to treatment. In the study of 
HCC, anti-angiogenesis therapy has been used for more than a decade and ICB has been approved for 
several years, but these two therapies still lack convincing biomarkers. Therefore, for combination 
therapy, a better understanding of the mechanism of synergistic therapeutic effect and the discovery of 
predictive biomarkers will help to design more precise treatment regimens.
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Abstract
BACKGROUND 
Assessment of liver reserve function (LRF) is essential for predicting the prognosis 
of patients with chronic liver disease (CLD) and determines the extent of liver 
resection in patients with hepatocellular carcinoma.

AIM 
To establish noninvasive models for LRF assessment based on liver stiffness 
measurement (LSM) and to evaluate their clinical performance.

METHODS 
A total of 360 patients with compensated CLD were retrospectively analyzed as 
the training cohort. The new predictive models were established through logistic 
regression analysis and were validated internally in a prospective cohort (132 
patients).

RESULTS 
Our study defined indocyanine green retention rate at 15 min (ICGR15) ≥ 10% as 
mildly impaired LRF and ICGR15 ≥ 20% as severely impaired LRF. We constru-
cted predictive models of LRF, named the mLPaM and sLPaM, which involved 
only LSM, prothrombin time international normalized ratio to albumin ratio 
(PTAR), age and model for end-stage liver disease (MELD). The area under the 
curve of the mLPaM model (0.855, 0.872, respectively) and sLPaM model (0.869, 
0.876, respectively) were higher than that of the methods for MELD, albumin-
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bilirubin grade and PTAR in the two cohorts, and their sensitivity and negative predictive value 
were the highest among these methods in the training cohort. In addition, the new models showed 
good sensitivity and accuracy for the diagnosis of LRF impairment in the validation cohort.

CONCLUSION 
The new models had a good predictive performance for LRF and could replace the indocyanine 
green (ICG) clearance test, especially in patients who are unable to undergo ICG testing.

Key Words: Liver stiffness measurement; Chronic liver disease; Liver reserve function; Indocyanine green 
clearance test; Predictive model

©The Author(s) 2022. Published by Baishideng Publishing Group Inc. All rights reserved.

Core Tip: This study aimed to establish predictive models of liver stiffness measurement (LSM) in patients 
with compensated chronic liver disease based on LSM and evaluate their clinical value. The results 
showed that the new models had a good predictive performance for liver reserve function (LRF). The area 
under the curve of the models was higher than that of the model for end-stage liver disease, albumin-
bilirubin grade and prothrombin time international normalized ratio to albumin ratio. Moreover, the 
predictive performance of the new models was validated in a prospective cohort. We believe that these 
models could replace the indocyanine green (ICG) clearance test to assess LRF, especially in patients who 
are unable to undergo ICG testing.

Citation: Lai RM, Wang MM, Lin XY, Zheng Q, Chen J. Clinical value of predictive models based on liver 
stiffness measurement in predicting liver reserve function of compensated chronic liver disease. World J 
Gastroenterol 2022; 28(42): 6045-6055
URL: https://www.wjgnet.com/1007-9327/full/v28/i42/6045.htm
DOI: https://dx.doi.org/10.3748/wjg.v28.i42.6045

INTRODUCTION
The high prevalence of chronic liver disease (CLD) in China has become a severe public health problem. 
Cirrhosis, hepatocellular carcinoma (HCC), hepatic encephalopathy and other decompensated complic-
ations are the leading causes of mortality in CLD patients without treatment. Liver reserve function 
(LRF) is defined as the compensated ability of the liver to maintain normal physiological functions in 
the presence of injury, which mainly depends on the quality and quantity of hepatocytes in the remnant 
liver[1,2]. There are no obvious clinical symptoms in CLD patients in the early stage, but their LRF may 
be impaired. Early evaluation of LRF is of great help in identifying disease progression, timely 
implementation of interventions and appropriate treatment strategies in CLD patients. Several scoring 
systems, including the Child-Turcotte-Pugh (CTP), model for end-stage liver disease (MELD), albumin-
bilirubin (ALBI) and APRI, can be used to evaluate LRF[1,3-5]. Although the CTP score is widely used to 
assess LRF, it includes subjective criteria, such as ascites and hepatic encephalopathy. The MELD score 
is initially used as a standard model to assess the prognosis of patients with decompensated cirrhosis, 
but its creatinine (Cr) value can be significantly affected by age and gender.

The indocyanine green (ICG) clearance test is commonly used for LRF assessment, which is 
considered the most valuable method for evaluating LRF. ICGR15 had become a standard dynamic 
preoperative instrument to evaluate the hepatic functional reserve before liver resection and predict 
post-hepatectomy liver failure[6,7]. However, the ICG clearance test process is tedious and requires a 
technical operator; thus, most of these tests can only be carried out in major hospitals. In addition, some 
patients are allergic to ICG, which can lead to failure of the test. Due to impossible implementation of 
the ICG clearance test in CLD patients, a new method to accurately assess LRF is needed.

Liver stiffness measurement (LSM) is commonly used to evaluate the degree of liver fibrosis, and due 
to its non-invasiveness, cost-efficiency and safety, it has been widely applied in clinical treatment. 
Previous studies have shown that LSM can predict the occurrence of liver failure after HCC resection[8-
10]. Therefore, LSM has potential value in evaluating hepatic functional reserve.

The purpose of this study was to analyze the association between LSM and ICGR15 in evaluating 
LRF. We constructed the predictive models based on LSM and examined their clinical application value 
in evaluating LRF in compensated CLD patients.

https://www.wjgnet.com/1007-9327/full/v28/i42/6045.htm
https://dx.doi.org/10.3748/wjg.v28.i42.6045
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MATERIALS AND METHODS
Research population
All patients with CLD (≥ 18 years old) consecutively observed in the inpatient department of the 
Hepatology Research Institute of the First Affiliated Hospital, Fujian Medical University, China, from 
March 2016 to June 2019 were retrospectively analyzed as the training cohort. From September 2019 to 
August 2020, patients with CLD were prospectively evaluated to validate the new models. Information 
regarding the patients’ demographics, ICG clearance test, laboratory data and Fibro-scan examination 
was abstracted from the electronic medical record system of the First Affiliated Hospital of Fujian 
Medical University. Patients with the following conditions were excluded: (1) Decompensated cirrhosis 
with CTP grade B and C; (2) insufficient data; and (3) complicated with other tumors, or gestation. After 
exclusion, 492 patients were identified for study inclusion, comprising 389 chronic hepatitis B patients, 
35 fatty liver disease patients, 21 autoimmune liver disease patients, 8 hepatitis C virus patients and 39 
patients with other etiologies. All enrolled patients were divided into the training cohort (360 patients) 
and validation cohort (132 patients), including 105 HCC patients who met the diagnostic criteria in the 
guidelines for diagnosis and treatment of primary liver cancer in China (2019 edition)[11].

Clinical and laboratory parameters 
The demographic data collected included age and gender. The clinical laboratory information included 
prothrombin time (PT), international normalized ratio (INR), total bilirubin (TBIL), aspartate 
aminotransferase, alanine aminotransferase, albumin (ALB), glomerular filtration rate, alkaline 
phosphatase, gamma-glutamyltransferase, cholinesterase, platelet count, and hemoglobin. The 
parameters were detected using an Olympus AU2700 automatic biochemical analyzer. The calculation 
of CTP score included five items, namely ALB, TBIL, PT, hepatic encephalopathy and ascites[12]. The 
CTP classifications were defined as grade A (5-6 points), grade B (7-9 points), and grade C (10-15 
points). The MELD score was calculated by the formula 3.78 × ln[TBIL (mg/dL)] + 11.2 × ln (INR) + 9.57 
× ln[Cr (mg/dL)] + 6.43 × etiology (0 for cholestasis and alcohol, and 1 for others)[13]. The prothrombin 
time international normalized ratio to albumin ratio (PTAR) score was calculated by the formula 
INR/ALB (g/dL)[14]. The ALBI score was calculated by the formula ln[TBIL (mol/L)] × 0.66 + ln[ALB 
(g/L)]-0.0852[15].

All patients received the ICG clearance test after overnight fasting, a dose of 0.5 mg/kg of ICG was 
rapidly injected into patients via a peripheral vein in the forearm. An optical probe attached to the 
patient’s nose was used to monitor plasma ICG concentrations, and the value of ICGR15 was calculated 
by a Pulse Dye Densito-Graph Analyzer (DDG-3300K, Nihon Kohden, Tokyo, Japan)[16]. The LRF was 
defined as normal if ICGR15 < 10%, mild impairment if ICGR15 ≥ 10%, and severe impairment if 
ICGR15 ≥ 20%.

The Fibro-Scan 502 Touch (Echosens, Paris, France) was performed by the same trained operator 
according to the manufacturer’s instructions. LSM was performed on the right lobe of the liver through 
the intercostal spaces. Ten successful acquisitions were performed for each patient. The success rate (≥ 
60%) was calculated as the number of successful measurements divided by the total number of 
measurements recorded[17]. LSM was expressed as the median and IQR [in kilopascals (kPa)] of all 
valid measurements obtained. A LSM was considered reliable if 10 valid acquisitions were obtained. 
Patients with poorly reliable measurements (IQR/median ratio > 0.30 with a median LSM > 7.1 kPa) 
were excluded[18]. This retrospective study was approved by the ethics committee of the First Affiliated 
Hospital of Fujian Medical University, China.

Statistical analysis
Statistical analyses were performed using SPSS 23.0. The normally distributed continuous variables are 
presented as mean ± SD, which were further evaluated by Student’s t-test in the different groups. 
Whereas, variables showing skewed distributions were evaluated by the Mann-Whitney U test, and are 
presented as median (interquartile range). Categorical variables are described using frequencies and 
proportions, and the Pearson’s chi-squared test was used to compare categorical variables.

Multivariable analyses were conducted on variables that reached P < 0.1 at univariate analysis. 
Multivariate analysis was performed using the logistic regression analysis, and we established 
regression prediction models to predict the hepatic functional reserve. The continuous variables (cut-off 
value of LSM was 12.4 and PTAR was 0.280) were transformed into dichotomous variables. In order to 
avoid collinearity of some clinical indicators, stepwise forward regression was used in multivariate 
analysis. The optimal cut-off level of the model was determined by a receiver operator characteristic 
curve analysis. The areas under the curve (AUCs) were measured and compared to evaluate the 
discrimination ability of different models. The final predictive model was fitted on an internal 
validation dataset and on the entire prospective population. A two sided P value less than 0.05 was 
considered significant.
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RESULTS
Summary of baseline clinical and demographic data of chronic liver disease patients
Overall, 492 patients were included in the study, including 103 patients with HCC (Table 1). 350 
(71.14%) of 492 patients were male, the predominant etiology of liver disease was related to HBV (n = 
389, 79.07%). Patients in the validation cohort were older than those in the training cohort (mean age, 
54.84 ± 27.70 vs 48.71 ± 13.34, P < 0.001), and there was a statistically significant difference in ALB and 
TBIL levels. However, the two cohorts had a similar level of LSM and MELD (P = 0.066, P = 0.241, 
respectively).

Construction of the LRF predictive model based on LSM
With ICGR15 ≥ 10% and ICGR15 ≥ 20% as the predictive points, the new models of mildly impaired LRF 
(mLPaM) and severely impaired LRF (sLPaM) were constructed based on LSM. In the training cohort, 
360 patient variables were included in the multivariate logistic stepwise regression analysis. LSM (OR = 
4.357, 95%CI: 2.248-8.445), PTAR (OR = 3.544, 95%CI: 1.838-6.835), age (OR = 1.048, 95%CI: 1.024-1.073) 
and MELD score (OR = 1.340, 95%CI: 1.150-1.562) were independent influencing factors of ICGR15 ≥ 
10% (Table 2). LSM (OR = 3.120, 95%CI: 1.125-8.656), PTAR (OR = 3.524, 95%CI: 1.267-9.801), age (OR = 
1.059, 95%CI: 1.024-1.096) and MELD score (OR = 1.377, 95%CI: 1.146-1.655) were independent 
influencing factors of ICGR15 ≥ 20% (Table 3). The predictive models using the above 4 variables were 
constructed as follows: mLPaM = 1.472 LSM (LSM ≥ 12.4 = 2, LSM < 12.4 = 1) + 1.265 PTAR (PTAR ≥ 
0.280 = 2, PTAR < 0.280 = 1) + 0.047 age (years) + 0.291 MELD-7.600 and sLPaM = 1.138 LSM (LSM ≥ 
12.4 = 2, LSM < 12.4 = 1) + 1.260 PTAR (PTAR ≥ 0.280 = 2, PTAR < 0.280 = 1) + 0.058 age (years) + 0.320 
MELD-9.750.

A comparison of the predictive performance of the constructed model and other methods in the 
training cohort
The AUC values of the mLPaM model (0.855) and sLPaM model (0.872) were greater than that of MELD 
score, PTAR and ALBI evaluation tools, and their sensitivity and negative predictive values were better 
than these evaluation methods (Table 4 and Figure 1).

Internal validation of the new predictive model in the validation cohort
132 CLD patients were prospectively considered for enrollment in the internal validation cohort. The 
performance of the various methods at predicting LRF is reported in Table 5. The AUC values of the 
mLPaM model (0.869) and sLPaM model (0.876) were greater than other LRF predictive methods. The 
mLPaM model showed good sensitivity (89.1%) and optimal accuracy (78.94%) for the diagnosis of mild 
LRF impairment, and the sLPaM model showed optimal sensitivity (92.9%) for the diagnosis of severe 
LRF impairment (Table 5 and Figure 2).

DISCUSSION
To date, accurate evaluation of LRF has been a hot topic in national and international research. As 
classic scoring systems, the CTP score and MELD score have been widely used in clinical practice. The 
CTP has introduced an element of bias into the scoring system due to the subjective nature of how 
clinical encephalopathy and ascites variables may be graded[19]. The MELD score is a continuous 
variable, and each indicator is given a corresponding weight through statistical analysis, which has 
further accuracy in evaluating LRF. In recent years, the ALBI and PTAR models have been gradually 
applied in clinical practice, which better evaluated LRF[20,21]. However, the ICG clearance test is 
currently considered the most valuable test in assessing LRF.

Although the ICG clearance test is a simple and helpful tool to assess individual LRF, it is an invasive 
and complex procedure, and the result is influenced by many factors (such as biliary excretion disorder 
and low proteinemia). In particular, the ICG clearance test is not applicable in pregnant women, patients 
with a history of iodine allergy or hyperthyroidism[22]. Transient elastography (TE) is a non-invasive 
and reproducible technique for assessing liver fibrosis, and is even a replacement for liver biopsy[23,
24]. The Baveno VII Consensus showed that TE was an accurate tool for the prediction of CSPH[25]. In a 
previous study, it was found that LSM could predict postoperative liver failure in patients with HCC
[26]. Therefore, LSM is considered to have a strong relationship with liver function.

As liver function impairment is the primary determinant of the development of post-hepatectomy 
liver failure, the vast majority of candidates for liver resection had CTP grade A[27]. According to the 
CTP classification, the majority of patients with HCC were classified as grade A, but their liver function 
may vary significantly[15]. A previous study revealed that ICGR15 was more accurate than the CTP 
score and MELD score in predicting hepatic functional reserve before hepatectomy[3]. The study 
showed that ICGR15 > 15% was an accurate method of predicting postoperative hepatic decompen-
sation in patients with CTP grade A[28]. In patients with an ICGR15 > 20%, a previous study 
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Table 1 Comparison of demographic and clinical characteristics of chronic liver disease patients in the training cohort and validation 
cohort

Validation cohort, n = 132 Training cohort, n = 360 P value

Gender (male/female, n) 90/42 260/100 0.381

Age (yr) 54.84 ± 27.70 48.71 ± 13.34 0.001

Etiology 0.097

HBV 111 278

Others 21 82

HCC (n) 42 63 0.001

HB (g/dL) 14.28 ± 10.86 13.71 ± 2.16 0.346

PLT (× 109/L) 174.96 ± 83.93 170.95 ± 74.69 0.610

PT (s) 13.21 ± 1.66 12.84 ± 1.67 0.030

APTT (s) 33.28 ± 7.73 32.54 ± 6.14 0.273

INR 1.16 ± 0.16 1.09 ± 0.16 0.000

AST (U/L) 72.14 ± 78.19 86.16 ± 135.81 0.264

ALT (U/L) 106.35 ± 166.60 136.73 ± 247.37 0.192

ALB (g/L) 38.03 ± 5.22 40.03 ± 5.08 0.000

TBIL (μmol/L) 28.29 ± 31.05 19.94 ± 16.99 0.000

CHE (U/L) 6163.11 ± 2647.19 6748.44 ± 2127.44 0.015

ALP (U/L) 118.60 ± 95.93 179.64 ± 721.94 0.334

GGT (U/L) 128.91 ± 201.79 116.89 ± 188.75 0.539

GLO (g/L) 28.70 ± 4.81 29.02 ± 5.19 0.534

Cr (μmol/L) 65.36 ± 23.23 65.68 ± 15.38 0.860

MELD 8.14 ± 3.46 7.80 ± 2.56 0.241

ALBI -2.36 ± 0.54 -2.60 ± 0.48 0.000

PTAR 0.31 ± 0.07 0.28 ± 0.07 0.000

ICGR15 (%) 11.55 ± 11.82 8.16 ± 8.56 0.000

LSM (kPa) 19.54 ± 18.28 16.34 ± 16.62 0.066

HBV: Hepatitis B virus; HCC: Hepatocellular carcinoma; HB: Hemoglobin; PLT: Platelet count; PT: Prothrombin time; APTT: Active prothrombin time; 
INR: International normalized ratio; AST: Aspartate transaminase; ALT: Alanine aminotransaminase; ALB: Albumin; TBIL: Total bilirubin; CHE: 
Cholinesterase; ALP: Alkaline phosphatase; GGT: Gamma-glutamyltransferase; GLO: Globulin; Cr: Creatinine; MELD: Model for end-stage liver disease; 
ALBI: Albumin-bilirubin grade; PTAR: Prothrombin time international normalized ratio to albumin ratio; ICGR15: Indocyanine green retention rate at 15 
min; LSM: Liver stiffness measurement.

recommended non-anatomical resection rather than anatomical resection for the treatment of a solitary 
2–5-cm-diameter HCC without macroscopic vascular invasion[29]. Therefore, it is essential to assess 
LRF before HCC hepatectomy, thereby assisting clinical decision-making.

Our research constructed new models for clinical prediction of LRF impairment based on LSM, and 
the models were superior to other existing methods for predicting LRF (Table 4 and Figure 1). 
Moreover, compared to the other four methods, the models also showed better performance for 
predicting LRF in the prospective validation cohort (Table 5 and Figure 2). Therefore, based on the 
analysis of the above research results, these models could be an alternative tool for LRF assessment, 
especially in evaluating a population almost entirely stratified as CTP grade A.

Limitations of the study
Despite the significant findings in this study, our research also had a few limitations. First, the study 
was limited by its single-center prospective cohort nature. The patients were recruited from the same 
medical facility, and not all patients with complete clinical data were obtained from a treatment 
database. Second, most of the patients in this study were Asians with B viral hepatitis. Therefore, the 
performance of the model in patients of other ethnicities (e.g., Caucasians, Africans, etc.) still needs 
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Table 2 Multivariate logistic stepwise regression analysis of indocyanine green retention rate at 15 min ≥ 10% in the training cohort

Variable B SE Wald P value OR (95%CI)

LSM (kPa) 1.472 0.338 19.008 < 0.001 4.357 (2.248-8.445)

PTAR 1.265 0.335 14.260 < 0.001 3.544 (1.838-6.835)

Age (yr) 0.047 0.012 15.329 < 0.001 1.048 (1.024-1.073)

MELD 0.291 0.078 13.844 < 0.001 1.337 (1.147-1.558)

Constant -7.600 1.022 55.302 < 0.001 0.007

LSM: Liver stiffness measurement; PTAR: Prothrombin time international normalized ratio to albumin ratio; MELD: Model for end-stage liver disease.

Table 3 Multivariate logistic stepwise regression analysis of indocyanine green retention rate at 15 min ≥ 20% in the training cohort

Variable B SE Wald P value OR (95%CI)

LSM (kPa) 1.138 0.520 4.778 0.029 3.120 (1.125-8.656)

PTAR 1.260 0.521 5.825 0.016 3.524 (1.267-9.801)

Age (yr) 0.058 0.017 11.226 0.001 1.059 (1.024-1.096)

MELD 0.320 0.094 11.652 0.001 1.377 (1.146-1.655)

Constant -9.750 -1.454 44.963 < 0.001 0.001

LSM: Liver stiffness measurement; PTAR: Prothrombin time international normalized ratio to albumin ratio; MELD: Model for end-stage liver disease.

Table 4 Comparison of the predictive performance of the new constructed models (mLPaM and sLPaM) and other models in the 
assessment of impaired liver reserve function in the training cohort

AUC (95%CI) Optimal cut-off Sensitivity (%) Specificity (%) PPV (%) NPV (%) Accuracy (%)

mLPaM 0.855 (0.809-0.901) 0.135 91.3 66.4 36.09 97.35 70.68

MELD 0.752 (0.688-0.817) 7.662 80.0 61.4 31.25 93.33 54.75

ALBI 0.776 (0.717-0.835) -2.557 76.3 67.9 37.67 91.85 69.90

PTAR 0.728 (0.664-0.791) 0.150 73.8 71.8 42.11 90.79 72.24

LSM (kPa) 0.733 (0.672-0.794) 1.50 78.8 67.9 37.67 92.86 70.05

sLPaM 0.872 (0.823-0.921) 0.046 96.8 64.6 14.83 99.69 66.53

MELD 0.786 (0.687-0.886) 9.380 71.0 85.2 35.45 96.25 83.74

ALBI 0.798 (0.706-0.890) -2.220 64.5 87.4 39.81 95.01 84.78

PTAR 0.731 (0.644-0.818) 0.150 80.6 65.5 15.33 97.76 66.59

LSM (kPa) 0.706 (0.618-0.795) 1.50 80.6 60.6 12.79 97.76 61.94

MELD: Model for end-stage liver disease; ALBI: Albumin-bilirubin grade; PTAR: Prothrombin time international normalized ratio to albumin ratio; LSM: 
Liver stiffness measurement; AUC: Area under the cure; CI: Confidence interval; NPV: Negative predictive value; PPV: Positive predictive value; mLPaM: 
Mildly impaired liver reserve function model; sLPaM: Severely impaired liver reserve function model.

further investigation. Third, the models were mainly used to evaluate LRF in patients with compensated 
CLD, and their predictive value in patients with decompensated stage needs further evaluation. Finally, 
although the formula for the models was relatively complex, a mobile app or web-based calculator 
could calculate the score easily and rapidly in the current high-tech era. Despite these limitations, this 
study provided the first accurate models for evaluating LRF based on LSM in China.
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Table 5 Comparison of the predictive performance of the new constructed models (mLPaM and sLPaM) and other models in the 
assessment of impaired liver reserve function in the prospective validation cohort

AUC (95%CI) Optimal cut-off Sensitivity (%) Specificity (%) PPV (%) NPV (%) Accuracy (%)

mLPaM 0.869 (0.810-0.929) 0.240 89.1 74.4 60.85 93.86 78.94

MELD 0.729 (0.633-0.824) 9.743 43.5 96.5 93.65 59.01 67.74

ALBI 0.824 (0.749-0.900) -2.315 78.3 76.7 63.78 87.09 77.25

PTAR 0.672 (0.580-0.765) 1.500 89.1 45.3 30.70 93.86 54.66

LSM (kPa) 0.782 (0.702-0.862) 1.500 91.3 65.1 49.93 95.15 72.33

sLPaM 0.876 (0.812-0.940) 0.073 92.9 68.3 49.94 95.15 72.33

MELD 0.803 (0.701-0.904) 9.187 64.3 85.6 61.54 87.00 79.98

ALBI 0.836 (0.743-0.929) -1.897 71.4 88.5 67.44 90.27 84.22

PTAR 0.666 (0.566-0.767) 1.500 92.9 59.6 28.43 97.98 64.50

LSM (kPa) 0.743 (0.653-0.833) 1.500 92.9 55.8 25.37 97.98 60.96

MELD: Model for end-stage liver disease; ALBI: Albumin-bilirubin grade; PTAR: Prothrombin time international normalized ratio to albumin ratio; LSM: 
Liver stiffness measurement; AUC: Area under the cure; CI: Confidence interval; NPV: Negative predictive value; PPV: Positive predictive value; mLPaM: 
Mildly impaired liver reserve function model; sLPaM: Severely impaired liver reserve function model.

Figure 1 Comparison of different liver reserve function assessment methods by receiver operator characteristic curves in the training 
cohort. A: mLPaM is indocyanine green retention rate at 15 min (ICGR15) ≥ 10%; B: sLPaM is ICGR15 ≥ 20%. ROC: Receiver operator characteristic; MELD: 
Model for end-stage liver disease; ALBI: Albumin-bilirubin grade; PTAR: Prothrombin time international normalized ratio to albumin ratio; LSM: Liver stiffness 
measurement; mLPaM: Mildly impaired liver reserve function model; sLPaM: Severely impaired liver reserve function model.

CONCLUSION
The first predicted models based on LSM could facilitate accurate, reliable and simple-to-use prediction 
of LRF irrespective of etiology. They are entirely objective based on routine clinical and laboratory 
parameters. These models would be a useful tool for realizing individualized LRF evaluation to 
improve the popularity of testing and avoid possible risks during the ICG clearance test, ultimately 
achieving a clinically feasible and safe LRF test.
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Figure 2 Comparison of different liver reserve function assessment methods by area under the curves in the validation cohort. A: mLPaM is 
indocyanine green retention rate at 15 min (ICGR15) ≥ 10%; B: sLPaM is ICGR15 ≥ 20%. ROC: Receiver operator characteristic; MELD: Model for end-stage liver 
disease; ALBI: Albumin-bilirubin grade; PTAR: Prothrombin time international normalized ratio to albumin ratio; LSM: Liver stiffness measurement; mLPaM: Mildly 
impaired liver reserve function model; sLPaM: Severely impaired liver reserve function model.

ARTICLE HIGHLIGHTS
Research background
There are no obvious clinical symptoms in chronic liver disease (CLD) patients at the early stage, but 
their liver reserve function (LRF) may be impaired. Early evaluation of LRF is of great help in 
identifying disease progression. Assessment of LRF is essential for predicting the prognosis of patients 
with CLD and determines the extent of liver resection in patients with hepatocellular carcinoma (HCC).

Research motivation
Liver function impairment is the primary determinant in the development of post-hepatectomy liver 
failure. There are no obvious clinical symptoms in CLD patients at Child-Turcotte-Pugh A stage, but 
their LRF may be impaired. Due to impossible implementation of the indocyanine green (ICG) clearance 
test in some CLD patients, a new method to accurately assess LRF is needed.

Research objectives
This study aimed to establish noninvasive models of LRF assessment based on LSM. The new predictive 
models were established through logistic regression analysis and were validated internally in a 
prospective cohort. The new models had a good predictive performance on LRF and could replace the 
ICG clearance test, especially in the patients who are unable to undergo ICG testing.

Research methods
Clinical data from 360 patients with compensated CLD were retrospectively collected and analyzed in 
the training cohort. The new predictive models were established through logistic regression analysis 
and were validated internally in a prospective cohort (132 patients). The areas under the ROC curve 
(AUCs) were measured and compared to evaluate the discrimination ability of different models.

Research results
Our study defined the indocyanine green retention rate at 15 min (ICGR15) ≥ 10% as mildly impaired 
LRF and ICGR15 ≥ 20% as severely impaired LRF. We constructed predictive models of LRF, named the 
mLPaM and sLPaM, which involved only LSM, prothrombin time international normalized ratio to 
albumin ratio, age and model for end-stage liver disease. The AUC of the mLPaM model (0.855, 0.872, 
respectively) and sLPaM model (0.869, 0.876, respectively) were higher than that of other methods in the 
two cohorts. In addition, the new models showed good sensitivity and accuracy for the diagnosis of LRF 
impairment in the validation cohort.

Research conclusions
Our study found that the new models had a good predictive performance for LRF and could replace the 
ICG clearance test, especially in patients who are unable to undergo ICG testing.
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Research perspectives
This was not a multicenter study and most of the CLD patients in this study were Asians. Therefore, a 
multi-center prospective cohort study could further evaluate the performance of the predictive models, 
and the models in patients of other ethnicities need further investigation. The predictive value of the 
models in patients with a decompensated stage need further evaluation.
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Abstract
BACKGROUND 
Chylous ascites (CA) presents a challenge as a relatively common postoperative 
complication in gastric cancer (GC). Primary conservative therapy involved total 
parenteral nutrition, continuous low-pressure drainage, somatostatin, and a low-
fat diet. Drainage tube (DT) clamping has been presented as a potential alternative 
conservative treatment for GC patients with CA.

AIM 
To propose novel conservative treatment strategies for CA following GC surgery.

METHODS 
The data of patients with CA after GC surgery performed at the Fudan University 
Shanghai Cancer Center between 2006 and 2021 were evaluated retrospectively.

RESULTS 
53 patients underwent surgery for GC and exhibited postoperative CA during the 
study period. Postoperative hospitalization and time of DT removal showed a 
significant positive association (R2 = 0.979, P < 0.001). We further observed that 
delayed DT removal significantly extended the total and postoperative hospital-
ization, antibiotic usage duration, and hospitalization cost (postoperative hospital-
ization: 25.8 d vs 15.5 d, P < 0.001; total hospitalization: 33.2 d vs 24.7 d, P < 0.01; 
antibiotic usage duration: 10.8 d vs 6.2 d, P < 0.01; hospitalization cost: ¥9.2 × 104 
vs ¥6.5 × 104, P < 0.01). Multivariate analysis demonstrated that postoperative 
infection and antibiotic usage were independent factors for delayed DT removal. 
Furthermore, DT removal times were shorter in seven patients who underwent 
DT clamping (clamped DT vs normal group, 11.8 d vs 13.6 d, P = 0.047; clamped 
DT vs delayed group, 13.6 d vs 27.4 d, P < 0.001). In addition, our results indicated 
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that removal of the DT may be possible after three consecutive days of drainage volumes less than 
300 mL in GC patients with CA.

CONCLUSION 
Infection and antibiotic usage were vital independent factors that influenced delayed DT removal 
in patients with CA. Appropriate standards for DT removal can significantly reduce the duration 
of hospitalization. Furthermore, DT clamping might be a recommended option for conservative 
treatment of postoperative CA.

Key Words: Gastric cancer; Chylous ascites; Conservative treatment; Drainage tube

©The Author(s) 2022. Published by Baishideng Publishing Group Inc. All rights reserved.

Core Tip: Chylous ascites (CA) is one of uncommon postoperative complication in the patients received 
gastric cancer (GC) surgery. Previously, the primary treatment for CA was conservative therapy, which 
mainly involved total parenteral nutrition, continuous low-pressure drainage, somatostatin, and a low-fat 
diet. Therefore, we retrospectively analyzed the patients with CA after GC surgery in our center, aiming to 
explore the vital factors that influence CA treatment and recommend novel conservative treatment 
strategies for postoperative CA in GC.

Citation: Kong PF, Xu YH, Lai ZH, Ma MZ, Duan YT, Sun B, Xu DZ. Novel management indications for 
conservative treatment of chylous ascites after gastric cancer surgery. World J Gastroenterol 2022; 28(42): 6056-
6067
URL: https://www.wjgnet.com/1007-9327/full/v28/i42/6056.htm
DOI: https://dx.doi.org/10.3748/wjg.v28.i42.6056

INTRODUCTION
Chylous ascites (CA) was first reported by Morton in 1691 and is defined as the leakage of milk-like 
fluid that contains high level of triglyceride (TG)[1,2]. Gastric cancer (GC) is one of the most common 
malignant tumors worldwide, and a standardized protocol for radical surgical resection has been 
widely accepted as a safe and effective treatment[3,4]. CA generally occurs following abdominal 
surgery, the incidence of postoperative CA ranges from 2.06% to 11.80% in GC patients[5-7], as a result 
of disturbance of the cisterna chyli or its major tributaries[8,9]. The increased incidence of CA is 
considered to be likely due to the increased number of cancer patients undergoing more aggressive 
surgical interventions in addition to laparoscopic surgery[10]. CA presents a challenge as a relatively 
common postoperative complication and impacts subsequent adjuvant treatments in GC. In addition, 
massive and prolonged CA may lead to infection, malnutrition and immunodeficiency[11].

To date, treatment options for CA have included dietary measures, use of pharmacological agents 
and surgical or percutaneous interventions. A high-protein and low-fat diet with medium-chain trigly-
cerides is often recommended for patients with CA[12]. Patients who do not respond to dietary 
restriction should receive total parenteral nutrition (TPN), which bypasses the bowel and may thus 
reduce lymph flow[13]. Continuous low-pressure drainage and somatostatin also represent effective 
conservative treatment for postoperative CA[6,14]. CA can be cured by lymphangiography and 
adjunctive embolization techniques that include direct percutaneous injection of glue into the leakage 
site or into the surrounding lymphoid tissue[15]. Furthermore, the use of surgical measures to 
successfully treat CA has been reported in patients with cirrhosis and CA that is resistant to conser-
vative therapy[1].

In this study, we retrospectively analyzed 53 patients with CA after GC surgery, aiming to explore 
the vital factors that influence CA treatment and recommend novel conservative treatment strategies for 
postoperative CA in GC.

MATERIALS AND METHODS
Patients
We retrospectively reviewed all patients with CA who had undergone surgery for GC at our institution 
from 1 March 2006 to 31 May 2021. Three investigators performed a thorough review of all available 
data from the Fudan University Shanghai Cancer Center (FUSCC) medical record system, using RED 
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Cap electronic data capture tools. In this cohort, 53 patients were admitted for gastric resection and 
lymphadenectomy: 2 underwent palliative resection and 51 underwent radical gastric resection with 
curative intent. This study was approved by the FUSCC review board in accordance with Chinese 
bioethical regulations, and all enrolled patients signed informed consent forms.

Definitions
CA was defined as the presence of milky or creamy peritoneal fluid in the drainage tubes, at a volume 
of ≥ 200 mL/d and a TG levels ≥ 110 mg/dL[1,11]. Additionally, the chyle test was routinely performed 
if the milky peritoneal fluid was suspected to be CA[16]. Clinical and pathological data, including the 
age, gender, AJCC (American Joint Committee on Cancer) stage, surgical procedure, lymph node 
dissection, drainage tube (DT) removal, time of oral feeding, time to CA onset, drainage duration, and 
hospitalization duration were collected and analyzed. All patients with CA were managed conser-
vatively; the conservative treatments included TPN, continuous low-pressure drainage, somatostatin, 
DT clamping, and a low-fat diet. The time to CA onset was defined as the interval between the surgical 
procedure and the appearance of CA. Delay DT removal was defined as a DT removal time > 16 d after 
surgery for all patients or patients discharge with DT. Additionally, white blood cell counts, body 
temperature measurement, and germiculture were performed to diagnose CA combined with infection. 
DT clamping is defined as physical closing of the abdominal DT, with a daily open drainage time of 
about 2 h.

Statistical analysis
Categorical variable analysis was performed using the χ2 test or Fisher’s exact test, and continuous 
variables were compared using Student’s t test. We used univariate logistic regression models to 
evaluate the risk factors of delayed DT removal in GC patients with postoperative CA, and a Cox 
regression model was used to perform multivariable analysis to calculate relative risk. All values were 
categorized into groups according to medians. All results were considered clinically significant at a P 
value < 0.05. Statistical analyses were performed using SPSS software version 19.0.

RESULTS
Clinical characteristics of gastric cancer patients with postoperative chylous ascites
Between 1 March 2006 and 31 May 2021, 16074 GC patients were hospitalized in our department and 
7081 patients underwent gastrectomy and lymphadenectomy. Of these patients, 53 underwent surgical 
resection for GC and developed CA. The main characteristics and patient selection are shown in Table 1 
and Figure 1. The patients had an average age of 61.0 ± 11.3 years, a high ratio of male and advanced 
stage of disease (Male vs female: 77.40% vs 22.60%, early stage vs advanced stage: 39.6% vs 60.4%), 51 
underwent radical surgery, 43 underwent D2 lymph node dissection, and 13 were discharged with DT. 
The average oral feeding and CA onset times after surgery were 3.8 and 7.5 d, respectively. The average 
durations of DT drainage and postoperative hospitalization were 14.3 and 21.9 d, respectively.

Delayed drainage tube removal has an important influence on gastric cancer patients with 
postoperative chylous ascites
In our data, 40 patients (75%) had their DTs removed during the hospitalization period, and 13 patients 
(25%) were discharged with DT (Figure 2A). As shown in Figure 2B and Supplementary Figure 1, both 
postoperative (R2 = 0.979, P < 0.001) and total hospitalization time (R2 = 0.791, P < 0.001) had a 
significant positive association with DT removal time. Moreover, the median postoperative DT removal 
time of the patients discharged with or without DT was 30 and 16 d, respectively (Figure 2C and 
Supplementary Figure 2). We defined the patients’ DT removal time > the median time (16 d) or the 
patients discharged with DT as delayed DT removal, and the patients were categorized into either the 
delayed DT removal or normal group (Figure 2D). Comparing the delayed and normal groups, delayed 
DT removal significantly extended the total and postoperative hospitalization times, duration of 
antibiotic usage, and hospitalization costs in the GC patients (postoperative hospitalization duration: 
25.8 d vs 15.5 d, P < 0.001; total hospitalization duration: 33.2 d vs 24.7 d, P < 0.01; antibiotic usage: 10.8 d 
vs 6.2 d, P < 0.01; hospitalization cost: ¥9.2 × 104 vs ¥6.5 × 104, P < 0.01) (Figure 2E).

Characteristic differences between the normal and delayed drainage tube removal groups in gastric 
cancer patients with postoperative chylous ascites
We present the characteristic differences between the normal and delayed DT removal groups in 
Figure 3, Table 2 and Supplementary Table 1. First, we evaluated the clinical characteristics and detected 
that there were no differences between the two groups regarding gender, age, tumor size or location, 
lymphadenectomy, and AJCC stage. Second, the treatment-related features were further explored. Of 
note, the patients in the normal group were more likely to undergo DT clamping than the delayed DT 
removal group (35.0% vs 0%, P < 0.001). In addition, compared with the patients in the delayed group, a 
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Table 1 Clinical characteristics of gastric cancer patients with postoperative chylous ascites

Characteristics Cases

Age, yr 61.0 ± 11.3

Gender, n (%)

Male 41 (77.4)

Female 12 (22.6)

Tumor location, n (%)

Upper 18 (40.0)

Middle 11 (20.6)

Bottom 24 (45.3)

AJCC 8th stage, n (%)

I 21 (39.6)

II 11 (20.8)

III 18 (34.0)

IV 3 (5.7)

Type of surgery, n (%)

Radical 51 (96.2)

Non-radical 2 (3.8)

LN dissection, n (%)

D1 8 (15.1)

D2 43 (81.1)

D3 2 (3.8)

Discharged without DT, n (%) 

Yes 40 (75.5)

No 13 (24.5)

Postoperative time of oral feeding (d) 3.8 ± 1.0

Postoperative time of CA appearance (d) 7.5 ± 2.4

DT removal duration (d) 14.3 ± 12.6

Postoperative hospitalization duration (d) 21.9 ± 11.1

SD: Standard deviation; AJCC: American Joint Committee on Cancer; LN: Lymph node; DT: Drainage tube; CA: Chylous ascites.

shorter duration of low-fat diet were slightly shared in the normal group patients (40.0% vs 63.6%, P = 
0.082). Third, we estimated the DT drainage variation between the two groups. Obviously, the delayed 
DT removal group generally had a longer duration of DT drainage than the normal group; however, the 
CA onset time and maximum drainage volumes were not significantly different between the two 
groups.

Infection and antibiotic usage were key independent factors influencing the delay of drainage tube 
removal
As shown in Table 3 and Figure 4, the univariate analysis revealed that early postoperative intake (RR: 
2.22, 1.10–4.48, P = 0.031), postoperative infection (RR: 2.20, 1.21-4.61, P = 0.003), and antibiotic usage 
(RR: 0.45, 0.22–0.91, P = 0.009) were significantly associated with delayed DT removal in GC patients 
with CA. However, the baseline characteristics (age, gender, and AJCC stage), lymph node dissection, 
CA onset time, maximum drainage volume, postoperative albumin, postoperative hemoglobin, and DT 
clamping were not significantly associated with delayed DT removal (all P > 0.05). Furthermore, 
multivariate analysis demonstrated that postoperative infection (HR: 2.40, 1.63-4.14, P = 0.007) and 
antibiotic usage (HR: 0.86, 0.76-0.96, P = 0.009) were independent factors that influenced delayed DT 
removal in GC patients with postoperative CA.
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Table 2 Clinical characteristics differences between the normal and delayed drainage tube removal groups

No. of patients
Subgroup

Normal (n = 20) Delayed DT removal (n = 33)

Clamp DT

Yes 7 0

No 13 0

Preoperative HGB, g/L

≤ 130 12 15

> 130 8 18

Preoperative ALB, g/L

≤ 41 9 17

> 41 11 16

Maximum drainage, mL

≤ 540 13 13

> 540 7 20

Postoperative intake1, d

≤ 3 10 17

> 3 10 16

CA onset time, d

≤ 7 15 16

> 7 5 17

Antibiotic usage, d

≤ 5 12 16

> 5 8 17

Postoperative infection

Yes 8 12

No 12 21

AJCC stage

Early 8 13

Advanced 12 20

LN dissection

D1 6 2

D2+ 14 31

Age, yr

≤ 60 8 15

> 60 12 18

Gender

Male 15 26

Female 5 7

1Time of oral feeding after gastric surgery.
HGB: Hemoglobin; ALB: Albumin; AJCC: American Joint Committee on Cancer; LN: Lymph node; DT: Drainage tube; CA: Chylous ascites.
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Table 3 Postoperative infection-related complications significantly affect gastric cancer patients with postoperative chylous ascites to 
remove abdominal drainage tubes in time

Univariate analysis Multivariate analysis

HR (95%CI) P value HR (95%CI) P value

DT clamping 0.39 (0.11-1.72) 0.281 - -

Postoperative HGB 1.49 (0.72-3.08) 0.283 - -

Postoperative ALB 1.82 (0.88-3.76) 0.303 1.09 (0.98-1.21) 0.127

Maximum drainage 0.98 (0.47-2.05) 0.367 - -

Postoperative intake time 2.22 (1.10-4.48) 0.031 1.86 (0.94-4.21) 0.234

CA onset time 0.81 (0.40-1.62) 0.486 - -

Duration of antibiotic usage 0.45 (0.22-0.91) 0.009 0.86 (0.76-0.96) 0.009

Postoperative infection 2.20 (1.21-4.61) 0.003 2.40 (1.63-4.14) 0.007

AJCC Stage 0.95 (0.75-1.21) 0.676 - -

LN dissection 0.87 (0.53-1.42) 0.595 - -

Age 1.34 (0.66-2.70) 0.471 - -

Gender 2.02 (0.85-4.78) 0.141 3.13 (0.85-11.1) 0.187

HR: Hazard ratio; CI: Confidence interval; HGB: Hemoglobin; ALB: Albumin; AJCC: American Joint Committee on Cancer; LN: Lymph node; DT: 
Drainage tube; CA: Chylous ascites.

Figure 1 Flowchart of study included patients. 1Include the patients underwent neo-adjuvant, adjuvant, and palliative chemotherapy. 2Include the patients 
with anastomotic stenosis and fistula, except for the patients with anastomotic bleeding. 3The patients with all infection events except abdominal infection. GC: Gastric 
cancer; DT: Drainage tube; TG: Triglyceride.

Drainage tube clamping is a favorable method for the gastric cancer patients with postoperative 
chylous ascites
In Figure 5A, we describe comprehensive treatment for GC patients with postoperative CA; the the-
rapies included DT clamping, somatostatin, antibiotic, TPN, low-fat diet, and continuous low-pressure 
drainage. DT clamping was performed for seven patients during the hospitalization period when 
postoperative CA occurred, and the clamped DT patients had a shorter DT removal time than the nor-
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Figure 2 Delayed drainage tube removal has an important influence on gastric cancer patients with postoperative chylous ascites. bP < 
0.01. cP < 0.001. A: The status of drainage tube (DT) after discharged in gastric cancer (GC) patients with postoperative chylous ascites (CA); B: Postoperative 
hospitalization have a significantly positive correlation with the time of removal DT in GC patients discharged without DT; C: Time of removal DT in GC patients with 
postoperative CA who discharged without DT; D: The definition of delayed DT removal in GC patients with postoperative CA; E: Delayed DT removal obviously 
increase medical resources consumption and economic burden in GC patients with postoperative CA. GC: Gastric cancer; CA: Chylous ascites; DT: Drainage tube; 
PHD: Postoperative hospitalization duration; THD: Total hospitalization duration; AU: time of antibiotic usage; HC: Hospitalization cost.

mal and delayed removal groups (clamped DT group vs normal group, 11.8 d vs 13.6 d, P = 0.047; clam-
ped DT group vs delayed group, 13.6 d vs 27.4 d, P < 0.001) (Figure 5B and Supplementary Figure 3). 
Moreover, similar clinical characteristics and treatment strategies were present in the three sub-groups 
(Supplementary Table 2). Our result further indicated that DT clamping significantly decreased total 
and postoperative hospitalization time, duration of antibiotic usage, and hospitalization costs in the GC 
patients with CA (Supplementary Figure 4). In Figure 5C, we dynamically observed the variation in 
daily drainage volume before DT removal (day 1 to day 7). Compared with the delayed removal group, 
start from day 3 before remove DT, the normal group and the clamped-DT group had relatively high 
drainage volumes. Additionally, the results of the drainage variation analysis indicated that 3 
consecutive days of drainage volume less than 300 mL may be a suitable remove DT threshold in the GC 
patients with postoperative CA. Among two patients underwent DT clamping, computed tomography 
imaging of the abdomen showed that, after about 1 wk of DT clamping, the fluid in the abdominal 
cavity was reduced (Figure 5D).

Novel conservative therapeutic strategies for gastric cancer patients with postoperative chylous 
ascites
As the results mentioned above, we subsequently summarized the experiences of the GC patients with 
postoperative CA treatment in our department (Figure 6). First, the CA patients were divided into two 
sub-groups according to their postoperative infection status. Second, in the patients with infection, 
based on traditional treatments, antibiotic therapy was a vital supplement. Third, in the patients 
without infection, DT clamping was a viable option. Finally, for patients with 3 consecutive days of 
drainage less than 300 mL, DT removal might be the appropriate management.

DISCUSSION
In this study, we retrospectively analyzed 53 cases of GC with postoperative CA at the FUSCC. Our 
results indicated that hospitalization duration was closely associated with DT removal time. 
Furthermore, postoperative infection and antibiotic usage were important independent factors that 

https://f6publishing.blob.core.windows.net/9df64b46-4de7-45e0-8165-b1f02ff183d5/WJG-28-6056-supplementary-material.pdf
https://f6publishing.blob.core.windows.net/9df64b46-4de7-45e0-8165-b1f02ff183d5/WJG-28-6056-supplementary-material.pdf
https://f6publishing.blob.core.windows.net/9df64b46-4de7-45e0-8165-b1f02ff183d5/WJG-28-6056-supplementary-material.pdf
https://f6publishing.blob.core.windows.net/9df64b46-4de7-45e0-8165-b1f02ff183d5/WJG-28-6056-supplementary-material.pdf
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Figure 3 Overview of characteristic differences between the normal and delayed drainage tube removal groups in gastric cancer patients 
with postoperative chylous ascites. GC: Gastric cancer; DT: Drainage tube; LN: Lymph node; CA: Chylous ascites.

Figure 4 Exploration of multiple factors influence drainage tube removal in gastric cancer patients with postoperative chylous ascites. 
GC: Gastric cancer; DT: Drainage tube; LN: Lymph node; CA: Chylous ascites.

influenced delayed DT removal in GC patients with postoperative CA. Our study also implied that DT 
clamping was an appropriate method of postoperative CA treatment for patients without postoperative 
infection. More importantly, appropriate and lenient indications for DT removal can significantly 
reduce the duration of hospitalization.
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Figure 5 Drainage tube clamping is a favorable method for the gastric cancer patients with postoperative chylous ascites. A: Overview of 
overall treatment in the gastric cancer (GC) patients with postoperative chylous ascites; B: The drainage tube (DT) drainage variation of the GC patients underwent the 
treatment of DT clamping; C: The drainage of GC patients with postoperative chylous ascites in different groups before DT removal; D: Computed tomography scan 
indicate that the fluid in abdominal cavity was clearly reduced after the DT was clamped. THD: Total hospitalization duration; TPN: Total parenteral nutrition; CLD: 
Continuous low-pressure drainage; GC: Gastric cancer; DT: Drainage tube; CA: Chylous ascites; LN: Lymph node. aP < 0.05. cP < 0.001.

Figure 6 Novel conservative therapeutic strategies for gastric cancer patients with postoperative chylous ascites. TPN: Total parenteral 
nutrition; CLD: Continuous low-pressure drainage; GC: Gastric cancer; DT: Drainage tube; CA: Chylous ascites.

In most of the GC patients, postoperative CA cannot be discharged at a routine time and have a 
significant impact on subsequent adjuvant treatment[6,7]. Normally, patients are discharged within 7 d 
after undergoing GC surgery and most start adjuvant treatment within 30 d at our center. However, in 
the 53 patients with postoperative CA in our study, the average postoperative hospitalization duration 
was 21.9 d, and 8 patients’ postoperative hospital stays were longer than 30 d. As previously reported, 
lymphadenectomy was a key influencing factor in GC patients with postoperative CA[5,9]. As shown in 
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Supplementary Table 3, the clinical characteristics of patients with CA tended to be consistent among 
those who underwent variety of lymphadenectomy, similar with previous studies that CA was found to 
be a rare complication even for gastric carcinoma patients undergoing D3 dissection[5,17].

Our results clearly indicated that hospitalization duration is mainly dependent on the time of DT 
removal in GC patients with CA. A multi-center prospective study recommended the criterion for DT 
removal be drainage flow between 500 and 1000 mL/d[6]. In fact, we previous performed relatively 
rigorous standards for DT removal in the patients with CA. Usually, while the volume of drainage less 
than 100 mL/d, the DT removal will be truly considered. Although all the patients’ DTs were removed 
until the flow volume less than 300 mL/d, and the delayed removal group preferred to perform a 
significantly high criterion. Therefore, we have a sufficient reason to conclude that, after excluding the 
influence of postoperative infection, early DT removal is a better choice in GC patients with CA. 
Moreover, our study found that postoperative infection and antibiotic usage were vital independent 
factors that influenced delayed DT removal in patients with CA, and clearly clarified anti-infection were 
an effective supplemental therapy for conservative treatment of postoperative CA. Similarly, Lu et al[7] 
reported the patients with CA had a certain higher level of postoperative white blood cell counts than 
the other patients in GC.

Previously, the primary treatment for CA was conservative therapy, which mainly involved TPN, 
continuous low-pressure drainage, somatostatin, and a low-fat diet[18]. Recently, DT clamping has been 
presented as a potential alternative for patients with CA in other malignancies[19]. In this study, the 
DTs of 7 patients were clamped until the daily drainage was less than 500 mL/d (or ½ the maximum 
drainage). After DT clamping, the flow amount was significantly reduced, and the patients were 
successfully discharged without DT. For the reason of clamping DT facilitates DT removal, previous 
research has demonstrated absorption and lymphatic drainage increase along with the interstitial 
hydrostatic pressure[20]. Furthermore, DT clamping could help to evaluate the feasibility of DT removal 
by conveniently simulating the removal and conversion back to drainage[21]. Several studies have 
suggested DT clamping as an important alternative, and the detailed suggestion was daily drainage 
ranging from 1000 to 1500 mL[6,22]. However, a consensus on the threshold of drainage volume for DT 
clamping has not yet been reached. Therefore, determination of an appropriate criterion for DT removal 
and DT clamping is urgently needed for GC patients with postoperative CA.

There are certain limitations to our study. First, due to the retrospective study design, it was difficult 
to individually balance a variety of influencing factors; thus, various biases were unavoidable. Second, 
despite routine chyle test and TG were measured, the definition of CA is slightly less rigorous. In 
particular, CA with co-infection cannot fully rule-out the influence of pancreatic and anastomotic 
leakage, and other infection-related complications. In addition, small-volume CA (i.e., daily drainage 
volume ranging from 30 to 200 mL) was not considered in this study.

CONCLUSION
In conclusion, postoperative infection and antibiotic usage were vital independent factors that 
influenced delayed DT removal in GC patients with CA. Appropriate and lenient standards for DT 
removal can significantly reduce the duration of hospitalization. Furthermore, DT clamping might be a 
recommend alternative for conservative treatment of postoperative CA.

ARTICLE HIGHLIGHTS
Research background
Chylous ascites (CA) is relatively common postoperative complication in patients undergoing received 
gastric cancer (GC) surgery that obviously prolongs hospitalization and has a major impacts on 
subsequent adjuvant treatments.

Research motivation
Drainage tube (DT) clamping has been presented as a potential alternative conservative treatment for 
GC patients with CA.

Research objectives
This study aimed to explore key factors influencing CA treatment and recommend novel conservative 
treatment strategies for postoperative CA in GC patients.

Research methods
Data from patients with CA after GC surgery performed at the Fudan University Shanghai Cancer 
Center between 2006 and 2021 were retrospectively evaluated. Patients were classified into two distinct 

https://f6publishing.blob.core.windows.net/9df64b46-4de7-45e0-8165-b1f02ff183d5/WJG-28-6056-supplementary-material.pdf
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groups with respect to DT removal time. We further explored the differences in clinical-pathological 
features of the different DT removal groups.

Research results
Fifty-three patients underwent surgery for GC and experienced postoperative CA during the study 
period. Postoperative hospitalization and DT removal time showed a significant positive association (R2 
= 0.979, P < 0.001), while delayed DT removal significantly extended total and postoperative hospital-
ization times, antibiotic usage duration, and hospitalization cost. In addition, postoperative infection 
and antibiotic usage were independent factors for delayed DT removal.

Research conclusions
Postoperative infection and antibiotic usage were vital independent factors that influenced delayed DT 
removal in GC patients with CA. Appropriate and lenient standards for DT removal may significantly 
reduce the duration of hospitalization.

Research perspectives
DT clamping could be recommended as an alternative for conservative treatment of postoperative CA.
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Abstract
BACKGROUND 
Hepatic venous pressure gradient (HVPG) is the gold standard for diagnosis of 
portal hypertension (PH). However, its use can be limited because it is an invasive 
procedure. Therefore, it is necessary to explore a non-invasive method to assess 
PH.

AIM 
To investigate the correlation of computed tomography (CT) perfusion of the liver 
with HVPG and Child-Pugh score in hepatitis B virus (HBV)-related PH.

METHODS 
Twenty-eight patients (4 female, 24 male) with gastroesophageal variceal bleeding 
induced by HBV-related PH were recruited in our study. All patients received CT 
perfusion of the liver before transjugular intrahepatic portosystemic stent-shunt 
(TIPS) therapy. Quantitative parameters of CT perfusion of the liver, including 
liver blood flow (LBF), liver blood volume (LBV), hepatic artery fraction, splenic 
blood flow and splenic blood volume were measured. HVPG was recorded 
during TIPS therapy. Correlation of liver perfusion with Child-Pugh score and 
HVPG were analyzed, and the receiver operating characteristic curve was 
analyzed. Based on HVPG (> 12 mmHg vs ≤ 12 mmHg), patients were divided 
into moderate and severe groups, and all parameters were compared.

https://www.f6publishing.com
https://dx.doi.org/10.3748/wjg.v28.i42.6068
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RESULTS 
Based on HVPG, 18 patients were classified into the moderate group and 10 patients were 
classified into the severe group. The Child-Pugh score, HVPG, LBF and LBV were significantly 
higher in the moderate group compared to the severe group (all P < 0.05). LBF and LBV were 
negatively associated with HVPG (r = -0.473, P < 0.05 and r = -0.503, P < 0.01, respectively), 
whereas splenic blood flow was positively associated with hepatic artery fraction (r = 0.434, P < 
0.05). LBV was negatively correlated with Child-Pugh score. Child-Pugh score was not related to 
HVPG. Using a cutoff value of 17.85 mL/min/100 g for LBV, the sensitivity and specificity of 
HVPG ≥ 12 mmHg for diagnosis were 80% and 89%, respectively.

CONCLUSION 
LBV and LBF were negatively correlated with HVPG and Child-Pugh scores. CT perfusion 
imaging is a potential non-invasive quantitative predictor for PH in HBV-related liver cirrhosis.

Key Words: Hepatic venous pressure gradient; Portal hypertension; Computed tomography perfusion; 
Hepatitis B; Liver cirrhosis

©The Author(s) 2022. Published by Baishideng Publishing Group Inc. All rights reserved.

Core Tip: Hepatic venous pressure gradient (HVPG) is the gold standard for the diagnosis of portal 
hypertension (PH), but its use is limited because it is an invasive procedure. Non-invasive assessment of 
HVPG requires further research. Computed tomography perfusion of the liver may be a useful tool for the 
evaluation of HVPG. Our results showed that a cutoff of 17.85 mL/min/100 g for liver blood volume 
yielded an 80% sensitivity and 89% specificity for severe PH. Therefore, computed tomography perfusion 
of the liver has the potential as a non-invasive quantitative predictor for PH in hepatitis B virus-related 
liver cirrhosis.

Citation: Wang L, Zhang Y, Wu YF, Yue ZD, Fan ZH, Zhang CY, Liu FQ, Dong J. Computed tomography 
perfusion in liver and spleen for hepatitis B virus-related portal hypertension: A correlation study with hepatic 
venous pressure gradient. World J Gastroenterol 2022; 28(42): 6068-6077
URL: https://www.wjgnet.com/1007-9327/full/v28/i42/6068.htm
DOI: https://dx.doi.org/10.3748/wjg.v28.i42.6068

INTRODUCTION
Gastroesophageal variceal bleeding is a common complication of portal hypertension (PH) in 
decompensated liver cirrhosis. There is a 60% recurrence rate and 20% mortality rate in the 1st year, and 
it is the leading cause of liver transplantation and mortality[1-4]. The diagnostic criteria for PH include 
hepatic venous pressure gradient (HVPG) ≥ 5 mmHg. Notably, when HVPG is higher than 12 mmHg, 
patients have a significantly increased risk of gastroesophageal bleeding. It was reported that HVPG 
was positively associated with individual risk of gastroesophageal variceal bleeding, and the incidence 
of variceal bleeding increased proportionally with an increase in HVPG[1,5-8]. In addition, HVPG can 
be applied clinically for risk stratification, therapeutic adoption, drug efficacy and adverse events for PH
[4,9-12]. However, HVPG is an invasive procedure, which has limited its wide application for the 
evaluation of therapeutic effects or long-term follow-up. Therefore, studies continue to focus on non-
invasive evaluation of HVPG, including anatomy (e.g., liver volume, maximal diameter of spleen), lab 
results (e.g., platelet level, coagulation function), liver function (e.g., Child-Pugh score, model for end-
stage liver disease [commonly known as MELD] score), liver and spleen stiffness (e.g., FibroScan, 
FibroTouch, magnetic resonance elastography), and even computation simulation modeling. However, 
none of these methods has demonstrated satisfactory accuracy and reproducibility.

Computed tomography (CT) perfusion of the liver is traditionally utilized to evaluate liver cancer, 
metastatic tumors, and liver cirrhosis. Decreased blood flow perfusion from the portal vein system and 
increased blood flow perfusion from the hepatic artery system can be identified with CT perfusion of 
the liver[13-16]. Furthermore, liver blood perfusion after transjugular intrahepatic portosystemic stent-
shunt (TIPS) can be quantitatively assessed with CT perfusion[17]. However, very few reports have 
focused on the correlation between HVPG and CT perfusion in gastroesophageal bleeding. Talakić et al
[13] reported that HVPG had no correlation with CT perfusion in end-stage cirrhosis. Therefore, we 
aimed to explore the relationship between quantitative indices of CT perfusion with HVPG and the 
Child-Pugh score and to investigate the feasibility of CT perfusion as a non-invasive imaging tool for 

https://www.wjgnet.com/1007-9327/full/v28/i42/6068.htm
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HVPG in gastroesophageal variceal bleeding induced by hepatitis B virus (HBV)-related PH.

MATERIALS AND METHODS
Patients
This prospective study was approved by the Institutional Ethics Committee at our hospital, and all 
written informed consents were obtained from each participant. Patients with recurrent gastroeso-
phageal variceal bleeding resulting from HBV-related PH were randomly recruited from January 1, 2019 
to June 30, 2019. All patients previously underwent drug and/or endoscopic therapy and were prepared 
for the TIPS procedure. The inclusion criteria were as follows: (1) Gastroesophageal bleeding as a 
consequence of HBV-related PH; (2) CT perfusion and Child-Pugh score available 1 wk before TIPS 
surgery; and (3) HVPG measured during TIPS and HVPG ≥ 5 mmHg. The exclusion criteria were as 
follows: (1) Gastroesophageal bleeding caused by any other etiology; (2) liver tumors, including primary 
and metastatic; (3) any other conditions leading to hemodynamic changes in the liver, such as partial 
hepatectomy, splenectomy, hepatic tumor surgery, TIPS, etc; (4) any factors affecting liver blood 
perfusion, such as portal vein thrombosis, cavernous transformation, Budd-Chiari syndrome, etc; (5) 
dysfunction in vital organs, such as cardiac, renal or respiratory damage/failure; and (6) any factors that 
reduced the quality of CT images, such as motion and metal artifacts.

CT perfusion and post-processing
CT perfusion was performed by a Revolution CT scanner (GE Healthcare, Chicago, IL, United States) 
with 16 cm Z-axis coverage axial scanning mode to cover most parts of the liver. Scanning parameters 
were set as tube voltage 100 kVp, automatic tube current from 50 mA to 200 mA with noise index as 14, 
slice thickness of 5 mm, rotation speed of 1.0 sec, helical pitch of 0.992:1.000 and 80% adaptive statistical 
iterative reconstruction (commonly known as ASIR). Initially, 50 mL nonionic contrast media 
(Omnipaque 350; GE Healthcare) followed by a 50-mL saline chaser were injected through the 
antecubital vein at a rate of 5 mL/sec, using a dual-head pump injector (Stellant; Medtron, Saarbrucken, 
Germany). The scanning was fixed with a 9-sec time delay after injection. Then, CT perfusion was 
performed. The CT perfusion was compromised of 26 pass acquisitions and 25 interscan gap without 
table movement, including 10 early acquisitions with an interscan gap of 1 sec, 12 acquisitions with an 
interscan gap of 2 sec, and 4 acquisitions with an interscan gap of 4 sec. Thus, total scanning time was 80 
sec. All patients were instructed to avoid deep and irregular breathing during the procedure. A band 
compressing the upper abdomen was used to reduce respiratory motion artifacts.

Raw data generated by CT perfusion were reconstructed with a thickness of 2.5 mm. Post-processing 
was performed separately by two radiologists with 11 years and 7 years respectively of experience in 
the CT perfusion procedure. First, iterative registration reconstruction was performed to correct 
respiratory motion between each dynamic acquisition. Second, corrected data were post-processed with 
a commercial software (CT Perfusion 4D AW 4.7; GE Healthcare). Third, regions of interest were placed 
in the abdominal aorta and portal vein separately for liver perfusion (Figure 1). The region of interest 
was placed in the abdominal aorta only for splenic perfusion (Figure 2). Then, the perfusion map would 
be generated automatically for the liver and spleen (Figures 1 and 2). Finally, three volumes-of-interest 
would be selected in the left and right liver parenchyma without any hepatic vessels. By contrast, three 
volumes-of-interest were also selected in the superior, medial and inferior splenic parenchyma. Then, 
average values of perfusion parameters, including liver blood volume (LBV) (mL/100 mL), liver blood 
flow (LBF) (mL/100 mL/min), hepatic arterial fraction (HAF) (%), splenic blood volume (SBV) (mL/100 
mL/min) and splenic blood flow (SBF) (mL/100 mL/min) were calculated and recorded.

HVPG measurement
HVPG was measured according to established standards[18,19] during the TIPS procedure. After fasting 
for more than 8 h, all patients underwent local anesthesia. The right internal jugular vein was 
cannulated using the Seldinger technique, and a 5-French balloon catheter (Edwards Lifesciences LLC, 
Irvine, CA, United States) was placed into the right hepatic vein, and the wedged and free hepatic 
venous pressure was measured three times in each patient. Then, HVPG was calculated as the difference 
between average wedged and free hepatic venous pressure.

Statistical analysis
Statistical analysis was performed with SPSS 24.0 software (IBM Corp., Armonk, NY, United States). All 
data were described as mean ± SD or range [95% confidence interval (CI)]. Kolmogorov-Smirnov was 
performed for the normal distribution test. Pearson or Spearman was used to evaluate the relationship 
among quantitative indices. Kappa was applied to analyze the agreement between observers. Patients 
were classified into two groups according to the HVPG value [> 12 mmHg (moderate) vs ≤ 12 mmHg 
(severe)]. Quantitative indices, including LBV, HAF, LBF, and SBV, were compared between the two 
groups. Receiver operating characteristic (ROC) was performed to calculate a cutoff value for differen-
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Figure 1 Computed tomography perfusion of the liver post-processing data. A: Regions of interest were placed in the abdominal aorta and main 
portal vein as the input blood vessels for calculation of liver computed tomography perfusion; B-D: The parameters of liver computed tomography perfusion were 
calculated automatically to include hepatic artery fraction (B), liver blood flow (C), and liver blood volume (D).

tiation between moderate and severe PH. A P value of less than 0.05 was considered significant.

RESULTS
General data analysis
Initially, 35 patients had portal vein thrombosis. Then, 13 patients with splenectomy, 3 patients with 
liver tumors and 2 patients with motion artifacts (leading to unavailable CT perfusion) were excluded. 
Finally, 28 patients (4 female and 24 male) were included in our study, with an age range of 28-years-old 
to 68-years-old and an average age of 53.7 years ± 10.4 years. Patient characteristics are summarized in 
Table 1, including demographics, medical history, Child-Pugh class, and HVPG.

Comparisons of Child-Pugh scores in different types of PH
Ten patients had moderate PH (HVPG < 12 mmHg), and the remaining eighteen patients had severe PH 
(HVPG ≥ 12 mmHg). The median HVPG was 10 mmHg (interquartile range: 9.0 mmHg; range: 8.0-11.0 
mmHg) in the moderate PH group and 21 mmHg (interquartile range: 17.5 mmHg; range: 14.0-31.0 
mmHg) in the severe PH group. In the moderate PH group, 6 patients were Child-Pugh A and 4 
patients were Child-Pugh B. In the severe PH group, 5 patients were Child-Pugh A, 12 patients were 
Child-Pugh B, and 1 patient was Child-Pugh C. For the moderate PH group, HVPG and Child-Pugh 
scores were lower than those in the severe PH group (9.6 mmHg ± 1.3 mmHg vs 18.9 mmHg ± 4.4 
mmHg, P < 0.001) (Table 2).

Correlation of CT perfusion parameters with HVPG
The two radiologists demonstrated good agreement (Kappa = 0.821, P < 0.01) in the evaluation of the CT 
perfusion parameters. Quantitative parameters of CT perfusion of the liver are summarized in Table 2. 
Both LBF and LBV in moderate PH were higher than in severe PH (114.6 ± 36.0 vs 87.9 ± 24.8 and 19.7 ± 
3.0 vs 15.5 ± 2.2, respectively, all P < 0.05). No significant difference was observed between the two 
groups for the other indices (Table 2).

LBF was negatively associated with HVPG (r = -0.398, P < 0.05). LBV was negatively related to HVPG 
(r = -0.504, P < 0.01) and Child-Pugh (r = -0.563, P < 0.01). SBF was positively related to HAF (r = 0.498, P 
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Table 1 Characteristics of the patients

Characteristic Value

Sex as female/male, n 4/24

Age, yr, mean ± SD 53.7 ± 10.4

Height, cm, mean ± SD 169.4 ± 5.8

Weight, kg, mean ± SD 62.9 ± 11.6

Previous episodes of variceal bleeding, mean ± SD 3 ± 2

Treatment history, n (%)

β blockade only 3 (10.7)

Sclera therapy only 4 (14.3)

β blockade and sclerotherapy 21 (75.0)

Child-Pugh stage, n (%)

A 11 (39.3)

B 16 (57.1)

C 1 (3.6)

Ascites, n (%)

None 17 (60.7)

Mild 2 (7.1)

Severe 9 (32.1)

HVPG, mmHg, n (%)

< 12 10 (35.7)

≥ 12 18 (64.3)

HVPG: Hepatic venous pressure gradient; SD: Standard deviation.

< 0.01). No association was observed among HAF, SBV, SBF, Child-Pugh score and HVPG. The ROC of 
LBV for differentiation between moderate and severe PH resulted in an area under the curve of 0.864 
with a standard error of 0.075 (95%CI: 0.72-1.00) (Figure 3). Using a cutoff value of 17.85 mL/min/100 
mL for LBV, the sensitivity and specificity for detection of severe PH was 80% and 89%, respectively. 
ROC of LBF resulted in an area under the curve of 0.797 with a standard error of 0.100 (95%CI: 0.60-1.00) 
(Figure 3). Using a cutoff value of 111.3 mL/min/100 mL for LBF, the sensitivity and specificity for 
detection of severe PH was 60% and 94%, respectively.

DISCUSSION
HVPG is the gold standard for diagnosis of liver cirrhosis-induced PH and is an independent risk factor 
for evaluating the prognosis of decompensated liver cirrhosis[5,19,20]. However, as an invasive 
measurement requiring a complex operation, wide clinical application of HVPG has been limited. It was 
reported that quantitative parameters (e.g., LBF, LBV) from CT perfusion of the liver can be used to 
evaluate the blood supply changes in the liver and spleen with good sensitivity and specificity[13,21,
22]. Therefore, our study investigated the correlation of CT perfusion for quantitative assessment of PH 
in HBV-related PH. Our results suggested that LBV and LBF were negatively correlated with HVPG and 
Child-Pugh scores, and CT perfusion imaging is a potential non-invasive quantitative predictor for PH 
in HBV-related liver cirrhosis.

In our study, LBV and LBF were negatively correlated with HVPG. This was explained by a 
significant decrease in hepatic flow[20-22] after hepatitis B infection when patients were suffering from 
cirrhosis-induced PH. A decrease in hepatic flow results from hepatocyte damage caused by HBV, 
deconstruction in normal liver structure, deposition of collagen fibers in the perisinusoidal space and 
formation of pseudo-lobules and fibroses, which together remarkably increases the resistance of the 
portal vein blood flow into the liver[1,4]. In this study, LBV and LBF were negatively related to HVPG. 
It is possible that the decrease of LBV and LBF is the consequence of the increase of HVPG, suggesting 
significantly reduced blood perfusion in the liver as PH increases. Therefore, CT perfusion is potentially 
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Table 2 Comparison of the moderate and severe portal hypertension groups

Index Moderate PH Severe PH P value

Sex as female/male 2/8 2/16 0.520

Age, yr 54.2 ± 10.9 53.4 ± 10.5 0.848

Height, cm 168.0 ± 6.0 170.1 ± 5.6 0.362

Weight, kg 64.8 ± 12.3 61.8 ± 11.4 0.528

Child-Pugh score 7.1 ± 1.9 7.8 ± 1.8 0.023

HVPG 9.6 ± 1.3 18.9 ± 4.4 0.000

Perfusion CT

LBF 114.6 ± 36.0 87.9 ± 24.8 0.029

LBV 19.7 ± 3.0 15.5 ± 2.2 0.000

HAF as × 10-2 8.2 ± 2.3 8.7 ± 4.7 0.731

SBF 96.0 ± 30.0 108.7 ± 31.4 0.308

SBV 13.9 ± 2.9 11.9 ± 2.5 0.084

Data are presented as n or mean ± SD. CT: Computed tomography; HAF: Hepatic arterial fraction; HVPG: Hepatic venous pressure gradient; LBF: Liver 
blood flow; LBV: Liver blood volume; PH: Portal hypertension; SBF: Splenic blood flow; SBV: Splenic blood volume.

Figure 2 Computed tomography perfusion of the spleen post-processing data. A: Regions of interest were placed in the abdominal aorta as the input 
blood vessel; B: The time-density curve was generated automatically for calculation of splenic perfusion; C and D: The parameters of computed tomography perfusion 
of the spleen were calculated automatically, including splenic blood flow (C) and splenic blood volume (D).

feasible for the non-invasive evaluation of HVPG using LBV and LBF in patients with HBV-related PH.
In this study, liver blood perfusion parameters (e.g., LBV and LBF) in the moderate PH group were 

significantly higher than those in the severe PH group. For distinguishing moderate PH from severe PH, 
LBV had a ROC curve with a sensitivity and specificity of 80% and 89%, respectively. LBF had a 
sensitivity and specificity of 60% and 94%, respectively. Therefore, CT perfusion parameters (LBV and 
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Figure 3 Receiver operating characteristic curves to differentiate moderate and severe portal hypertension. For discriminating severe portal 
hypertension, liver blood volume had an area under the curve of 0.864 with a standard error of 0.075 [95% confidence interval (CI): 0.72-1.00], while liver blood flow 
had an area under the curve of 0.797 with a standard error of 0.100 (95%CI: 0.60-1.00). LBF: Liver blood flow; LBV: Liver blood volume; ROC: Receiver operating 
characteristic.

LBF) can be used to distinguish moderate PH and severe PH in PH-induced gastroesophageal variceal 
bleeding in patients with HBV-related PH.

LBV was negatively correlated with Child-Pugh score, suggesting that liver reserve function 
decreases with reduced LBV. Moreover, the Child-Pugh score in the moderate PH group was 
significantly lower than that in the severe PH group. Similarly, liver reserve function was better in the 
moderate PH group than the severe PH group. This was related to pathophysiological mechanisms 
underlying hepatitis B cirrhosis and PH. In addition, HVPG in the severe PH group was significantly 
higher than the moderate PH group. The intrahepatic portal venous system pressure in severe PH may 
increase, leading to progressively decreased blood flow and gradually weakening the reserve capacity 
of liver function. However, in this study, the Child-Pugh score was not associated with HVPG, which 
was consistent with previous studies[3,7,10,23]. The Child-Pugh score is mainly used to evaluate liver 
reserve function, which can only provide a crude evaluation of PH.

HAF was not related to HVPG, suggesting no correlation between the hepatic artery perfusion ratio 
and PH in liver cirrhosis. HAF mainly indicates the proportion of hepatic artery blood supply to the 
total liver blood supply in cirrhosis. When cirrhosis occurs due to damage in the liver sinusoid and liver 
lobule structure, the blood in the portal vein meets increasing resistance against its return to the liver. 
When portal vein pressure increases, the blood supply flowing to the liver is reduced. Likewise, 
compensatory hepatic artery blood perfusion can increase. However, the portal vein blood supply 
accounts for about three-quarters of the total liver blood supply[24]. The compensatory increase in 
hepatic artery blood supply could not compensate for a substantial decrease in blood flow in the liver 
caused by reduced portal vein blood supply. This buffering effect is not enough to maintain the hepatic 
blood supply[22-24]. In addition, HAF is affected by various factors, such as blood pressure, blood 
volume and cardiac function. This might explain why HAF was not correlated with HVPG.

The perfusion parameters of the spleen (e.g., SBF, SBV) were not related to HVPG and Child-Pugh 
classification. This was consistent with a previous study. However, in that cohort, blood flow and blood 
volume of the liver were not associated with HVPG[13]. This may be related to different samples 
included in our study, where patients suffering from liver cirrhosis caused by hepatitis B were classified 
as relatively moderate cases. Among them, according to the Child-Pugh classification, 11 cases were 
defined as grade A, 16 cases as grade B, and 1 case as grade C. By contrast, patients included in the 
previous study were primarily suffering from alcoholic cirrhosis with Child-Pugh grade B and C. 
Furthermore, in the previous study, all patients were suffering from more severe diseases and were 
planning for liver transplantation as treatment. Moreover, our study excluded factors that may affect 
portal vein hemodynamics (such as splenic resection, portal vein thrombosis), which may explain the 
differences between the two studies.
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Limitations existed in our study. First, our study only included cases of HBV-related PH, with a 
remarkable disproportion in patient sex. The majority of patients were Child-Pugh A and Child-Pugh B. 
A larger sample size is required to identify the clinical application of CT perfusion in patients with 
different causes of cirrhosis and higher Child-Pugh scores, including alcoholic cirrhosis, drug-induced 
metabolic liver disease and autoimmune liver disease. Second, our study primarily targeted patients 
who were suffering from gastric fundus esophageal variceal bleeding as a consequence of PH and 
excluded other factors like thrombosis, cavernous transformation and splenectomy that could affect 
liver hemodynamics. Nonetheless, further research is required to determine its application in PH with 
multiple complications. Finally, our study did not focus on pathology, laboratory and comparative 
imaging evaluation (such as volume and elasticity of the liver and spleen). Thus, further research is 
required.

CONCLUSION
Quantitative parameters of CT perfusion imaging, in particular LBV and LBF, were negatively 
correlated with HVPG and Child-Pugh scores. Therefore, CT perfusion imaging is a potential 
application for non-invasive quantitative evaluation of HVPG in patients with HBV-related PH.

ARTICLE HIGHLIGHTS
Research background
Hepatic venous pressure gradient (HVPG) is the gold standard for diagnosis of portal hypertension 
(PH), but the measurement of HVPG is an invasive procedure, which has limited its widespread use. 
Therefore, we aimed to investigate the feasibility of computed tomography (CT) perfusion as a non-
invasive imaging tool for HVPG in PH.

Research motivation
To date, no satisfactory non-invasive method has been proposed as an alternative for HVPG. 
Determining the feasibility of CT perfusion indices as a non-invasive tool to assess HVPG would be 
beneficial to patients.

Research objectives
To investigate the correlation of CT perfusion of the liver with HVPG and Child-Pugh score in hepatitis 
B virus (HBV)-related PH.

Research methods
We prospectively selected 28 HBV-related PH patients in our hospital from January 2019 to June 2019. 
CT perfusion was performed in all patients, and quantitative parameters of CT perfusion were applied 
to evaluate HVPG non-invasively. Quantitative indices, including liver blood volume (LBV), liver blood 
flow (LBF), hepatic artery fraction, splenic blood volume and splenic blood flow, were calculated. The 
correlation analysis was calculated, and receiver operating characteristic curve analysis was performed.

Research results
Quantitative parameters of CT perfusion imaging, in particular LBV and LBF, were negatively 
correlated with HVPG and Child-Pugh scores.

Research conclusions
Our findings showed that CT perfusion parameters, LBV and LBF, were negatively correlated with 
HVPG and Child-Pugh scores. CT perfusion imaging showed potential as a non-invasive quantitative 
method for the evaluation of HVPG in HBV-related PH.

Research perspectives
Non-invasive assessment of HVPG has been an area of interest for decades, and multi-modality research 
should be explored in the future, including CT perfusion, anatomical information, lab results, liver and 
spleen stiffness and computation simulation modeling.
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