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Abstract
Pancreatic cancer is currently the seventh leading cause of cancer death (4.5% of 
all cancer deaths) while 80%-90% of the patients suffer from unresectable disease 
at the time of diagnosis. Prognosis remains poor, with a mean survival up to 15 
mo following systemic chemotherapy. Loco-regional thermal ablative techniques 
are rarely implemented due to the increased risk of thermal injury to the adjacent 
structures, which can lead to severe adverse events. Irreversible electroporation, a 
promising novel non-thermal ablative modality, has been recently introduced in 
clinical practice for the management of inoperable pancreatic cancer as a safer and 
more effective loco-regional treatment option. Experimental and initial clinical 
data are optimistic. This review will focus on the basic principles of IRE tech-
nology, currently available data, and future directions.

Key Words: Pancreatic cancer; Interventional oncology; Irreversible electroporation; 
Ablation; Loco-regional treatment; Image-guided treatment
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Core Tip: Loco-regional thermal ablative techniques such as radiofrequency, microwave, and cryoablation 
are rarely implemented for the treatment of inoperable pancreatic cancer due to the increased risk of 
thermal injury to the adjacent structures. Irreversible electroporation is a promising novel non-thermal 
ablative modality that could provide a safer and effective ablation via the application of electric pulses to 
damage cell membranes and cell homeostasis resulting in cancer cell necrosis and apoptosis. Experimental 
and initial clinical data are optimistic, and its potential immunomodulatory effect and synergism with 
immunotherapy provides are promising.

Citation: Spiliopoulos S, Reppas L, Filippiadis D, Delvecchio A, Conticchio M, Memeo R, Inchingolo R. 
Irreversible electroporation for the management of pancreatic cancer: Current data and future directions. World J 
Gastroenterol 2023; 29(2): 223-231
URL: https://www.wjgnet.com/1007-9327/full/v29/i2/223.htm
DOI: https://dx.doi.org/10.3748/wjg.v29.i2.223

INTRODUCTION
Pancreatic cancer is currently the seventh leading cause of cancer death, representing 4.5% of all cancer 
deaths worldwide. Most importantly, overall prognosis remains extremely poor as approximately 80%-
90% of patients suffer from unresectable disease at the time of diagnosis, with a less than 8% relative 
survival rate at 5 years[1]. Systemic chemotherapy using gemcitabine or more recently FOLFIRINOX 
regimens, with or without radiotherapy, results in overall survival rates ranging from 9 to 14 mo[2,3]. 
Moreover, thermal (radiofrequency and microwave) and cryoablative techniques are not commonly 
employed due to the increased risk of severe trauma to the adjacent major anatomical structures[4]. 
Irreversible electroporation (IRE) is a promising novel percutaneous, image-guided nonthermal ablative 
modality that has been recently introduced in clinical practice for the management of pancreatic cancer.

MECHANISM OF ACTION
The phenomenon of IRE was first reported in the 1970s to describe the alteration of transmembrane 
potential leading to the increased cell membrane permeability, disruption of the dual lipid layer, and 
the creation of permanent nanoscale defects (nanopores) in the cell membrane following the application 
of high-voltage pulsed electric fields across the cell[5]. This technique results in failure of the cell 
homeostasis, electrolyte alteration, and cell death by apoptosis[6-9].

In contrast to necrosis induced by thermal ablative methods, non-thermal apoptotic active cell death 
does not incite inflammation and enables ablation with minimal distortion of the adjacent tissues. 
However, since 2006 when the first in vivo model of IRE for cancer ablation was reported, several experi-
mental studies have reported solely necrosis or mixed results of both necrosis and apoptosis following 
the application of IRE[10-13]. According to currently available experimental data, apoptosis has been 
demonstrated immediately after application of IRE in a murine cancerous pancreas model and at 7 to 14 
d in a porcine healthy pancreas model, while necrosis is evident immediately and up to 14 d later. 
Unfortunately, pathology data on human pancreatic cancer are extremely limited and as the IRE 
ablative effect is directly correlated to the physical properties of the target tissue, the significant discrep-
ancies between in vivo normal/cancer animal models, and human cancer/normal pancreatic tissues. 
This presents a major limitation regarding our knowledge on the actual effects of IRE[14-16]. Moreover, 
data indicate that IRE is not homogenously distributed along the target tissue, and various effects are 
produced with increasing voltage and time.

While apoptosis is certainly occurring in some cells within the treatment zone, Brock et al[17] suggest 
that IRE could initiate multiple types of cell death mechanisms, but the size and shape of the regions in 
which each type is experienced may vary between clinical treatments depending on differences in 
pulsing parameters, tissue type, and treatment time. Thus, there may be more than one type of cell 
death mechanism at play, and may include pyroptosis or necroptosis. Likewise, for cells at the margins 
of the treatment areas, the response observed may actually be survival signaling in response to 
reversible electroporation. In theory, this could be taken advantage of and combined with 
chemotherapy treatments to increase drug delivery, tumor penetration, and treatment of residual cancer 
cells[17,18].

IRE has significant inherent advantages over thermal ablation for the treatment of pancreatic cancer 
(Figure 1). Most importantly, IRE does not produce a temperature increase to achieve tumor destruction. 
Therefore, it does not elicit thermal injury to the superior mesenteric and portal veins, superior 
mesenteric and celiac arteries, bile duct adjacent nerves, or gastrointestinal structures, which has 
restrained the use of local thermal ablation treatment. Another significant advantage is the absence of 

https://www.wjgnet.com/1007-9327/full/v29/i2/223.htm
https://dx.doi.org/10.3748/wjg.v29.i2.223
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Figure 1 Pancreatic cancer treated with percutaneous irreversible electroporation. A: Axial computed tomography (CT) showing a lesion (arrow) in 
the body of the pancreas consistent with ductal adenocarcinoma previously treated with chemo and radiation therapy; B: Positron emission tomography (PET)-CT 
scan showed the residual active part of the lesion (arrow); C: CT coronal view with 4 parallel electrodes positioned within the lesion; D and E: 3-mo follow-up CT (D) 
and PET-CT (E) showing complete ablation of the tumor with photopenic area in the site of ablation (arrow).

the “heat sink” effect in which the flow of large blood vessels decreases the thermal ablative effect[19-
22]. According to published clinical protocols, the procedure is performed under computed tomography 
(CT) guidance, general anesthesia (complete muscle paralysis), and electrocardiography synchron-
ization due to the possibility of muscular spasms induced by high-voltage pulses[23].

IRE is induced by electrodes connected to a high-voltage pulse generator. Multiple electrode pairs can 
be used; the number of electrodes needed and their exact placement is decided during pre-procedural 
planning. For small tumors measuring up to 2 cm, three electrodes are placed at the periphery of the 
target lesion, and for lesions between 2 cm and 3 cm, four electrodes are used. However, for lesions > 3 
cm, a maximum number of six electrodes is allowed with four or five electrodes at the periphery and 
one or two at the center of the lesion. An optimal interelectrode distance between 7 mm and 24 mm has 
been described. The correct positioning of electrodes requires experience often deriving from that with 
other ablative methods. Skill is also needed in using ultrasound or CT techniques as a guide for 
positioning the electrodes and avoiding accidental damage to surrounding organs.

With respect to large vessels close to the tumor, a minimum safety distance of 2 mm is recommended 
to avoid the risk of burn damage. In cases of locally advanced pancreatic cancer with involvement of the 
mesenteric artery or vein, placing the electrodes parallel to the vessels has proven effective. Following 
electrode placement, the generator produces short, repeated pulses using predetermined voltage 
settings to reach a target current of 20-50 A. In clinical practice usually, 90 pulses per treatment cycle are 
used, with a pulse duration of 70-90 μs, and a voltage setting between 1400-1800 V/cm (maximum 
capability 3000 V/cm)[2,9,24-26]. According to standard ablation technique protocols, the aim is to 
create a safe 5 mm tumor-free IRE zone, also referred as A0 ablation (analogous to an R0 surgical 
resection).

PRE-CLINICAL DATA
To date, only a few reports on IRE for the treatment of pancreatic cancer exist in literature. Some of them 
reported the use of the technique on animal models (Table 1). These studies have used animal 
xenografts carrying human pancreatic cancer cells to understand the histological effect of IRE on 
pancreatic cancer tissue. The results following application of IRE showed evidence of both acute 
coagulative necrosis and apoptosis of pancreatic cancer tissue followed by fibrosis.

In 2010, Charpentier et al[27] reported a pilot study on IRE in a normal pancreas porcine model. They 
showed the following histological features: Initial active local inflammation, interstitial edema, and 
significant necrosis (after 7 d) followed by the development of fibrosis. However, these results were not 
significant for IRE efficacy because normal pancreatic tissues had a very different conductivity than 
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Table 1 Irreversible electroporation of pancreatic cancer in animal models

Ref. Animal model n Tumour location Histology Major complication

Charpentier et al[27], 2010 Porcine 4 NP Necrosis None

Bower et al[28], 2011 Porcine 6 Orthotopic PC Necrosis None

Joséet al[29], 2012 Mouse 24 Orthotopic PC Necrosis None

Fritz et al[33], 2015 Porcine 10 Orthotopic PC Necrosis None

Su et al[30], 2018 Mouse 22 Orthotopic PC Necrosis None

Shankara Narayanan et al[31], 2018 Mouse N/A Subcutaneous/orthotopic PC Necrosis None

Lee et al[32], 2021 Porcine N/A Orthotopic PC Necrosis None

N/A: Not available; NP: Normal pancreas; PC: Pancreatic cancer.

pancreatic tumors.
Subsequently, Bower et al[28] and José et al[29] suggested that IRE could be an effective treatment for 

locally advanced pancreatic cancer in a mouse model without systemic toxicity and major local 
complication. Su et al[30] concluded that IRE was a safer and shorter operation than traditional ablation 
and represented a promising new approach for pancreatic cancer. Narayanan et al[31] described IRE for 
a pancreatic cancer mouse model and concluded that this animal model serves as a robust system to 
study the effects and clinical efficacy of IRE. Also, Lee et al[32] demonstrated and confirmed on a 
porcine model the safety and minimal complications of IRE ablation in pancreatic cancer tissue. Finally, 
the results of IRE in animal models of the treatment of pancreatic cancer showed the ability to ablate the 
target cells while preserving the collagen architecture of vascular, biliary, and neuronal structures[12,
28].

CLINICAL DATA
The prognosis of patients with pancreatic cancer not eligible for surgery remains poor despite many 
chemoradiation protocols. Therefore, different approaches for treatment of this disease are required. 
Ablation procedures including radiofrequency ablation, microwave ablation, cryoablation, high 
intensity focused ultrasound, and IRE can offer symptomatic relief, survival benefit, and potential 
tumor downsizing. Nevertheless, thermal procedures using extreme temperatures can induce injury to 
the pancreatic duct, bile duct, and adjacent vessels, potentially resulting in fistula formation, bile leaks, 
and hemorrhage, respectively[34].

IRE is an emerging non-thermal local ablation technique that affects with electricity only target cell 
membranes and avoids the nearby vessels and vital structures. Therefore, IRE can also be used in 
tumors positioned near some vital structures or organs more safely compared to other ablative 
procedures[35]. According to the American Joint Committee on Cancer stage criteria (8th edition), the 
major current indications for the use of IRE in the treatment of pancreatic cancer are as follows: Locally 
advanced pancreatic cancer stage II or III (T4N1M0) with ≤ 3 positive regional lymph nodes; tumor size 
maximal axial diameter ≤ 5 cm; and tumors in patients not candidates for radical resection or who refuse 
this surgery. IRE also carries some absolute and relative contraindications. It cannot be used if there are 
metal implants less than 2.5 cm from the ablation area, or in patients with portal vein occlusion, portal 
hypertension, ascites, bile duct obstruction, or hyperbilirubinemia. Additionally, IRE can also affect 
myocardial contraction mechanisms and as such cannot be applied in patients with cardiac arrhythmias, 
previous heart failure, active coronary disease, or recent pacemaker implantation. Finally, IRE cannot be 
used in patients with epilepsy despite the fact that it not been proven to cause brain stimulation[35].

The indications and contraindications for IRE for the treatment of pancreatic cancer are summarized 
in Table 2. Martin et al[36] and Narayanan et al[37] described the first clinical series on the imple-
mentation of IRE for the treatment of human pancreatic cancer. Since then, the use of this technique has 
been widespread[38-40], but to date there is still no defined protocol for the use of IRE in the treatment 
of pancreatic cancer. Studies showed that IRE was a viable treatment for locally advanced pancreatic 
cancer or borderline resectable pancreatic cancer because it allowed tumor downstaging, definitive 
locoregional treatment, or adjuvant treatment following resection[41-43]. In human tumor tissue, IRE 
induces necrosis as it does in animal cancer models; however, there is no evidence of apoptosis[16]. A 
series of retrospective and prospective clinical studies on human pancreatic cancer treated with IRE 
suggested a survival benefit with a median overall survival (OS) up to 30 mo[38,39].

Combined treatments involving IRE, chemotherapy, and immunotherapy can offer a multimodal 
approach which can limit the disease progression. However, the debate is ongoing with respect to the 
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Table 2 Indication and contraindications of irreversible electroporation in pancreatic cancer

Contraindications
Indication

Absolute Relative

Biopsy-proven primary and solitary pancreatic tumors History of ventricular 
arrhythmias

Atrial fibrillation

Locally advanced pancreatic cancer. Stage II or III 
(T4N1M0) with regional positive lymph nodes ≤ 3

Implanted cardiac stimulation 
devices within 1 yr

Coronary artery disease

Tumor size maximal axial diameter ≤ 5 cm Uncontrollable hypertension Combined severe stenosis of the common hepatic artery and 
main portal vein branch

Patients not candidates for radical resection or who 
refuse the surgical operation

History of epilepsy Metallic foreign object in the ablation zone

Liver failure, portal hypertension, ascites, bile duct 
obstruction, hyperbilirubinemia

Irreversible bleeding disorders

Patients with a predictable OS longer than 3 mo, 
Karnofsky Performance Score > 50

Congestive heart failure (> 
NHYA class 2)

Uncontrolled infections; patients that have received chemo or 
immunotherapy in the 4 wk prior to treatment

OS: Overall survival; NHYA: New York Heart Association.

timing of multimodal treatment. Some studies that administered IRE before chemotherapy showed only 
a modest increase in survival; Månsson et al[40] reported a median OS of 13 mo. In contrast, studies 
using IRE after induction chemotherapy reported an increase in survival with a median OS of 27 mo
[44]. Despite improvements in radiation therapy, chemotherapy, and surgical procedures over the last 
30 years, pancreatic cancer 5-year survival rate remains at 9%.

Recently, the advanced techniques of proton radiation and carbon ion radiation therapies have been 
used for locally advanced pancreatic cancer with encouraging results. The proton beam offers 
significant physical advantages over the photon due to the Bragg peak effect with little or no output 
dose beyond the tumor target, thereby sparing any critical organs adjacent to cancer. Compared to 
proton radiation, carbon ion radiation offers similar dosimetric characteristics, but it has a substantially 
different biological property and offers greater biological efficacy in inducing complex DNA damage, 
leading to an increase in the destruction of cancer cells[44].

Despite the non-thermal effect of IRE, complications related to the production of heat near the 
electrodes (defined as secondary Joule heating) remain unavoidable[45]. The most common complic-
ations following IRE are mild acute pancreatitis, pain, diarrhea, nausea, vomiting, loss of appetite, and 
delayed gastric emptying. Serious complications after IRE related to the location and size of the 
pancreatic tumor have also been reported in the literature and include arrhythmia, severe acute pancre-
atitis, hemorrhage, portal vein thrombosis, bile or pancreatic fistula, gastrointestinal tract perforation, 
and death[16,45]. In one of the most recent reviews[16], the average rate of serious complications after 
IRE was 12%, with a maximum reported value of 42%[2]. The size of the tumor is one of the most 
important factors related to procedure complications; for example, Narayanan et al[46] treated patients 
with tumors up to 8 cm in size and reported one of the highest total complication rates of 62%. Other 
factors contributing to post IRE complications depend on the team experience, the protocol used, and 
the type of approach (open vs percutaneous)[18]. For example, the average mortality rates have been 
reported as 2% and 0% for open and percutaneous IRE, respectively[20].

Available IRE protocols in part derive from data gathered from animal studies; however, the pancreas 
tissue of animals and humans differ significantly in cellular composition and electrical impedance. In 
addition, available IRE protocols developed to date differ in recommended distance between the 
electrodes and intensity of applied voltage. Moreover, these protocols vary in the reported individual 
electrical properties of the tissue being ablated, which can have an impact on the effectiveness of the 
treatment and on the area of ablation itself[16]. This variation highlights an important knowledge gap, 
which can be attributed in part to the risks and ethics of in vivo human tissue sampling. One way to 
bridge this gap is to apply IRE to both diseased and healthy perfused human organs. Use of IRE on ex 
vivo perfused pancreas, for example, could help to shape a treatment protocol for the use of IRE in the 
treatment of pancreatic cancer[16]. Indeed, IRE is not yet widely used in clinical practice because there is 
a lack of consensus on the optimal IRE treatment protocol and for the approach required to protect 
adjacent pancreatic tissue[25]. Evaluation of the benefits following IRE are needed in pancreatic tumor 
tissue in order to establish these appropriate treatment protocols.
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Future directions
The main issue surrounding the use of IRE for the treatment of pancreatic cancer is the absence of 
randomized data. Currently, two major randomized controlled trials (RCT) are recruiting patients in 
order to provide level 1 safety and efficacy evidence vs standard of care. The PAL-PIE study is a United 
Kingdom-based multicenter RCT that will recruit 50 patients (from up to seven pancreas centers) with 
locally advanced pancreatic cancer and previous first-line chemotherapy (5-fluorouracil, leucovorin, 
irinotecan and oxaliplatin) randomized to treatment with IRE (plus chemotherapy if indicated) vs 
chemotherapy alone[47]. The DIRECT study is a randomized, multicenter, controlled, unblinded study 
to assess the safety and efficacy of the NanoKnife® system for the ablation of unresectable stage III 
pancreatic adenocarcinoma. This study will randomize over 500 patients with stage III pancreatic cancer 
to receive IRE plus chemotherapy (a modified FOLFIRINOX regimen) vs chemotherapy alone; the 
estimated completion date is December 2023 (ClinicalTrials.gov Identifier: NCT03899636).

Additionally, following positive initial clinical outcomes, researchers are currently investigating the 
interesting concept of IRE-induced immune response to cancer[48-51]. IRE has been identified as a 
potential immunomodulatory therapy due to post-ablation release of intracellular tumoral antigens that 
act as in situ immunization agents resulting in both local and systemic response to remaining cancer 
cells. Specifically, IRE can remodel the local tumor microenvironment by smoothing the extracellular 
matrix, alleviating hypoxia, and assisting in the infiltration of immune cells into residual cancer foci. 
Moreover, the combination of IRE and immunotherapy could incite potent synergistic antitumoral 
effects[24]. Nevertheless, the mechanisms involved in immunomodulation following IRE in humans 
remains unclear[52]. However, trials focusing on the potential of IRE combined with immunotherapy to 
improve prognosis of unresectable pancreatic cancer are ongoing. For example, a pilot multicenter, 
single-arm phase II trial is currently recruiting patients with metastatic pancreatic ductal adenocar-
cinoma to investigate whether the combination of IRE treatment of one liver metastasis followed by 
nivolumab treatment leads to a measurable radiological response (ClinicalTrials.gov Identifier: 
NCT04212026).

Combination therapy of IRE with chemotherapeutic regiments is also being evaluated as the rim of 
peripheral sensitivity to chemotherapy produced around central tumor necrosis following IRE typically 
presents as microscopic peripheral seeding[53]. To this end, several ongoing prospective trials such as 
the CHEMOFIRE-2 trial (Chemotherapy Followed by Irreversible Electroporation in Patients With 
Unresectable Locally Advanced Pancreatic Cancer; ClinicalTrials.gov Identifier: NCT04093141) are 
underway.

Improvements with respect to IRE technology itself are also needed. An interesting technique 
requiring further investigation is endoscopic IRE, which could provide a solution for patients without 
safe transabdominal access. A major limitation of IRE is the intent of producing a small ablation zone of 
approximately 1-1.5 cm, which requires several electrodes to produce the desired A0 ablation. This 
requirement renders the procedure more technically demanding and time-consuming compared to 
conventional thermal ablation modalities[54]. Future research should focus on the standardization and 
optimization of an IRE treatment protocol for the treatment of pancreatic cancer with the goal of 
providing maximum efficacy without damaging surrounding tissues. It should also aim to refine the 
parameters of post-treatment radiological assessment for the development of objective and measurable 
predictors of treatment outcomes following use of IRE.

CONCLUSION
As demonstrated by initial preclinical and clinical data, the unique characteristics of IRE render this 
non-thermal ablation modality most suitable for the minimally invasive treatment of locally advanced 
pancreatic cancer. The synergic effect of IRE combined with chemo- or immunotherapy could 
significantly improve outcomes. Further investigation is required to elucidate its exact mechanism of 
action, optimize treatment protocols, and provide high-quality comparative clinical data for the 
management of patients with pancreatic cancer.
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Abstract
Acute-on-chronic liver failure (ACLF) is a poorly defined syndrome characterised 
by rapid clinical deterioration in patients with chronic liver disease. Consequences 
include high short-term morbidity, mortality, and healthcare resource utilisation. 
ACLF encompasses a dysregulated, systemic inflammatory response, which can 
precipitate extra hepatic organ failures. Common precipitants include infection, 
alcoholic hepatitis, and reactivation of viral hepatitis although frequently no cause 
is identified. Heterogenous definitions, diagnostic criteria, and treatment 
guidelines, have been proposed by international hepatology societies. This can 
result in delayed or missed diagnoses of ACLF, significant variability in clinical 
management, and under-estimation of disease burden. Liver transplantation may 
be considered but the mainstay of treatment is organ support, often in the 
intensive care unit. This review will provide clarity around where are the contro-
versies and consensus in ACLF including: Epidemiology and resource utilisation, 
key clinical and diagnostic features, strategies for management, and research 
gaps.
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Core Tip: Acute-on-chronic liver failure is characterised by rapid clinical deterioration in patients with 
chronic liver disease. Consequences include high short-term morbidity, mortality, and healthcare resource 
use. Heterogenous definitions, diagnostic criteria, and treatment guidelines create further challenges to 
optimal care. This review summarises epidemiology and resource utilisation, key clinical features, 
strategies for management, and research gaps.

Citation: Ngu NLY, Flanagan E, Bell S, Le ST. Acute-on-chronic liver failure: Controversies and consensus. World 
J Gastroenterol 2023; 29(2): 232-240
URL: https://www.wjgnet.com/1007-9327/full/v29/i2/232.htm
DOI: https://dx.doi.org/10.3748/wjg.v29.i2.232

INTRODUCTION
Acute-on-chronic liver failure (ACLF) is a well-recognised syndrome of rapid clinical deterioration in 
those with chronic liver disease (CLD). It is associated with high short-term mortality of 22%-74%[1-3]. 
The prevalence and impact of ACLF is likely underestimated as there is no consensus definition nor 
diagnostic criteria[4]. The systemic inflammatory response in ACLF often results in extra-hepatic organ 
failures and frequently necessitates intensive care unit (ICU) level support[5]. The key management 
principles in the acute phase of ACLF includes the diagnosis and treatment of underlying triggers such 
as infection, and provision of organ support[1,6,7]. For those surviving to hospital discharge, there is 
limited guidance for management in the post-admission period and although comparable evidence is 
scarce, re-admission rates are likely to be 30%-40%[8,9]. In this article, we review the current areas of 
controversies and consensus with regards to ACLF epidemiology, economic impact, clinical manifest-
ations, diagnostic criteria, and management principles.

EPIDEMIOLOGY
In European populations, the CANONIC study[1] demonstrated 30% prevalence amongst patients 
admitted with cirrhosis, of which ACLF was the presenting complaint in 20% of hospital admissions 
using the European Association for the Study of the Liver criteria. In North America, one study 
demonstrated a 24% prevalence using the North American Consortium for the Study of End Stage Liver 
Disease criteria, which includes bacterial infection as a criterion[10]. In a study of 565 patients who 
underwent liver transplantation in Shanghai, China; 41% had ACLF according to Asian Pacific 
Association for the Study of the Liver (APASL) criteria[11].

The primary aetiology of underlying CLD and the precipitant for ACLF is likewise reflective of local 
region and definitions. Historically, chronic hepatitis B through vertical transmission has been the most 
frequent cause of CLD, particularly in Asian populations from which the APASL criteria was derived 
(49%-59%)[12,13]. Globally, alcohol use disorder has likely overtaken chronic hepatitis B as the most 
common aetiology for CLD and precipitant of ACLF[13]. The most common precipitating events for 
ACLF in order of frequency are bacterial infections, alcohol excess, and hepatitis B reactivation[14,15]. 
The latter remains the most common precipitant for ACLF in Asia[12]. The absence of an identifiable 
precipitant in up to 40% of patients is a significant contributor to the diagnostic uncertainty and 
variability in criterion applied[1].

ECONOMIC IMPACT
There is limited data on the total economic burden of ACLF, although this has been explored for 
cirrhosis and chronic liver disease in Australia[16] and internationally[17-19]. Current cost estimations 
are extrapolated from cirrhosis populations and mostly reported from the healthcare payer/provider 
perspective[6]. The indirect costs of ACLF such as lost productivity and disability may be significant, 
but its value has not been extensively quantified[20]. Whilst hospital-based costs or direct healthcare 
related costs can be theoretically analysed through application of diagnostic criteria or International 
Classification of Disease coding to health service records, there is a paucity of data on indirect costs 
related to disability, impact on carers, and premature mortality.

Direct healthcare costs are related to the number of organ failures, need for ICU support, and total 
length of stay. Each of these direct cost components are disproportionately higher in ACLF compared to 
decompensated cirrhosis alone[7]. A population-based cohort study in Thailand demonstrated a 3.5-fold 
average cost of hospitalization for ACLF compared to hepatic decompensation, using the North 
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American Consortium for the Study of End-Stage Liver Disease (NACSELD) definition of ACLF of two 
or more extrahepatic organ failures in patients with cirrhosis[7]. A national inpatient database study 
from the United States similarly demonstrated increasing annual liver-related hospital expenditure 
between 2001 and 2011. Inpatient costs increased 2-fold for cirrhosis to $9.8 billion and 5-fold for ACLF 
to $1.7 billion[6]. The global trend of an increasing prevalence of CLD and incidence of ACLF 
worldwide[17,21] will further compound the economic burden for healthcare systems.

There are no proven cost-effective interventions for ACLF treatment, which is primarily supportive 
care in addition to addressing underlying aetiologies and precipitants[19]. Treatments evaluated include 
intravenous human albumin transfusions which have not demonstrated a mortality benefit in ACLF[22] 
and variable mortality benefit in hepatic decompensation[23,24]. Indirect ACLF-related costs have been 
captured in large studies on the global burden of CLD. These suggest a 1.5% contribution to all 
disability-adjusted life years in 2016, which was more pronounced in countries with a lower socio-
demographic index[17,25]. This data may overlook discrepancies in outcomes in countries such as 
Australia with a higher socio-demographic index as a proxy of development, where Indigenous 
Australians with cirrhosis have disproportionately higher rates of hospital re-admission and death than 
non-Indigenous Australians[26]. To reduce healthcare-related costs, interventions for ACLF must 
achieve the Holy Grail of reduced short-term mortality, length of stay, readmission, and organ failure. 
Additionally, early use of prognostic scores such as NACSELD-ACLF[10] or chronic liver failure (CLIF)-
C ACLF[27] should be routinely applied to accurately predict those who with a poor prognosis and may 
be better suited to palliative care and thus reduce ineffectual resource allocation.

CLINICAL MANIFESTATIONS AND DIAGNOSTIC CRITERIA
There is no universally accepted set of diagnostic criteria for ACLF, with variable criteria identified by 
four major international hepatology associations[28,29]. Lack of a consensus remains problematic with 
the potential for delayed or missed diagnoses, and challenges in applying evidence-based treatment. 
There is clinical consensus that ACLF is a distinct syndrome to acute hepatic decompensation, however, 
patients may initially present with clinical features of a decompensating event including worsening of 
abdominal ascites, jaundice, gastrointestinal bleeding and hepatic encephalopathy (HE)[30]. Features of 
bacterial infection, such as urinary tract infection, pneumonia, or spontaneous bacterial peritonitis, with 
may also be present[5]. Organ failure is a hallmark of ACLF and can include renal failure and manifest-
ations of this (such as uremia, acidosis, oliguria), respiratory and circulatory failure[2]. Beyond these 
non-specific clinical manifestations, the regionally relevant set of diagnostic criteria diverge in the exact 
thresholds and subtypes of how and what they classify as ACLF.

The World Gastroenterological Organisation (WGO) has proposed criteria to identify clinical, prognostic, 
and pathophysiologic subtypes[3] and define ACLF as an independent syndrome. Five requirements 
have been stipulated including: (1) Distinction from acute liver failure; (2) distinction from hepatic 
decompensation; (3) definition of pathophysiology; (4) definition of specific clinical signs and laboratory 
tests to confirm diagnosis and exclude other disease; and (5) a validated scoring system to assess 
severity. A system categorising ACLF into three subtypes is shown in Table 1.

The APASL criteria includes a serum bilirubin level ≥ 50 mg/L and International Normalized Ratio 
(INR) ≥ 1.5 complicated by ascites and/or encephalopathy within 4 wk in a patient with previously 
diagnosed or undiagnosed chronic liver disease or cirrhosis[31].

The European Association for the Study of the Liver (EASL) and the CLIF consortium definition 
requires concomitant organ failure and provides prognostication guidance according to the grading of 
severity[1,27]. ACLF is explicitly excluded in the absence of extra-hepatic organ failure, defined as renal 
failure with serum creatinine ≥ 2.0 mg/dL or single non-kidney organ failure with HE to meet criteria 
for low grade ACLF[1]. ACLF severity grading and criteria are summarised in Table 2, with the scoring 
system and organ system involvement shown in Table 3. The 28-d mortality is graduated from 23.3% in 
grade 1 to 75.5% in grade 3[1]. Most patients meeting ACLF criteria in the latter cohort required 
intensive care unit support, highlighting the greater disease severity and associated resource utilisation 
in this diagnostic system.

The NACSELD criteria was developed as a bedside tool to predict 30-d survival in hospitalised 
patients with cirrhosis with decompensation in the context of infection[11,32]. The NACSELD-ACLF is 
defined as two or more of the following organ failures: Brain failure (West-Haven grade 3 or 4 enceph-
alopathy), renal failure (need for renal replacement therapy), respiratory failure (need for bilevel 
positive airway pressure or mechanical ventilation), and shock (the need for vasopressor support, mean 
arterial pressure < 60 mmHg, or a reduction of > 40 mmHg in systolic blood pressure from baseline 
despite adequate fluid resuscitation). Validation studies have demonstrated that the NACSELD-ACLF 
predicts survival in infected and uninfected hospitalised patients with cirrhosis, and similarly to EASL 
criteria, demonstrates that the number of organ failures strongly predicts survival[10].

The WGO clinical sub-types were proposed early in the identification of ACLF as a distinct clinical 
entity and are a useful bedside tool. However, WGO criteria have limited correlation with prognost-
icating mortality and resource use[3]. The other three definitions (APASL, CLIF-C ACLF and 
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Table 1 World Gastroenterological Organisation definitions of acute-on-chronic liver failure subtypes[30]

Type A-noncirrhotic Type B-compensated cirrhosis Type C-decompensated cirrhosis

Acute flare of noncirrhotic CLD resulting in 
liver failure including hepatic encephalopathy

Rapid deterioration of previously well-compensated cirrhosis 
after major insult such as hepatitis (drug, viral, alcoholic), 
infection, or surgery

Rapid deterioration in those with 
previous hepatic decompensation

CLD: Chronic liver disease.

Table 2 The European Association for the Study of the Liver and chronic Liver Failure Consortium grading of acute-on-chronic liver 
failure severity[12,25]

ACLF 
Grade Criteria

No ACLF No organ failure or; one organ failure (liver, coagulation, circulatory, respiratory) with serum creatinine < 1.5 mg/dL and no HE or single 
cerebral failure and serum creatinine < 1.5 mg/dL

Grade 1 Single kidney failure or single liver, coagulation, circulatory, or respiratory failure + serum creatinine 1.5-1.9 mg/dL and/or HE I-II or single 
cerebral failure (HE III-IV) + serum creatinine 1.5-1.9 mg/dL

Grade 2 2 organ failures

Grade 3 3 or more organ failures

HE: Hepatic encephalopathy; ACLF: Acute-on-chronic liver failure.

Table 3 Defining organ/system failure using Chronic Liver Failure-Acute-on-Chronic Liver Failure Sequential Organ Failure Assessment 
scoring[12]

Organ system Parameter Score = 1 Score = 2 Score = 3

Liver Serum bilirubin (mg/dL) < 6 6-12 > 12

Kidney Serum creatinine (mg/dL) < 2 2.0-3.5 ≥ 3.5 or renal replacement therapy

Brain West-Haven grade 0 I-II III-IV

Coagulation INR < 2.0 2.0-2.5 ≥ 2.5

Circulation MAP (mmHg) ≥ 70 < 70 Vasopressors

PaO2/FiO2 > 300 ≤ 300 and > 200 ≤ 200Respiratory

OR SpO2/FiO2 > 357 > 214 and ≤ 357 ≤ 214

INR: International Normalized Ratio; MAP: Mean arterial pressure, mmHg millimeters of mercury; PaO2: Partial pressure of arterial oxygen; FiO2: 
Fraction of inspired oxygen; SpO2: Pulse oximetric saturation.

NACSELD) have better correlation with mortality, primarily due to correlation with objective 
biochemical parameters, and organ failures with respect to the CLIF-C ACLF criteria. The APASL 
criteria require the presence of CLD but not necessarily cirrhosis, and that the acute precipitating event 
must be liver-related[33]. Conversely, CLIF-C ACLF criteria stipulates the presence of underlying 
cirrhosis, extra-hepatic organ failures and the acute precipitating event can be of non-hepatic origin[32]. 
Therefore, ACLF populations identified using APASL criteria may include more patients with hepatic 
decompensation, who may not have the same short-term mortality and economic burden as those with 
ACLF defined otherwise by EASL. The NACSELD criteria incorporates organ failures but does not 
specify values for pulse oximetry or arterial blood gases to guide ventilation and therefore is potentially 
more vulnerable to subjectivity compared to EASL criteria. Recent clinical guidelines published by Bajaj 
et al[34] suggest that none of the current sets of criteria are adequate to inform management. In 
summary, organ failure appears to be an important marker of mortality in ACLF and is a component of 
diagnostic criteria for two of the four major definitions described. Standardisation of ACLF definition 
and management protocols is a critical unmet clinical need. It is the cornerstone to prompt diagnosis, 
evidence-based management, and reduced population heterogeneity in the research setting.
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MANAGEMENT PRINCIPLES 
Despite high short-term mortality[35,36], ACLF management is primarily supportive and focuses on 
reversing organ failure. The key pathophysiologic drivers of systemic inflammation and paradoxical 
immunoparesis have no specific therapy at present[36], so addressing the precipitating factors, 
prevention and management of end-organ complications, and targeted organ support constitute the 
foundations of care[4,31]. However, more than 30% of patients still progress to multiorgan failure and 
death within 30 d of diagnosis. Model for End-Stage Liver Disease including serum sodium (MELD-Na) 
and Child-Pugh Scoring systems have limited prognostic integrity as they do not account for the 
cerebral, respiratory or circulatory dysfunction that accompanies ACLF[5,31].

The APASL ACLF Research Consortium (AARC) ACLF score is a prognostic model constructed from 
the AARC database. It incorporates five variables, including lactate, grade of HE, INR, bilirubin and 
serum creatinine levels[37] to stratify patients into grade 1 (score of 5-7), grade 2 (score of 8-10) or grade 
3 ACLF (score of 11-15), with 28 day mortality rates of 12.7%, 44.5%, and 85.9% respectively[30]. Grade I 
ACLF are said to have potential recovery, grade II require intensive monitoring and grade III need 
immediate intervention and consideration of transplantation[30]. Scores of > 10 should be considered 
for transplant. This has been predominantly validated in an Asian population. Alternate scoring 
systems include the CLIF-ACLF SOFA score and the CLIF-Consortium ACLF scores (CLIF-C ACLF). 
These dynamic scoring systems allow for better prognostication of 28-d mortality rate, hence assisting 
stratification of ACLF[38-40]. The CLIF-C ACLF score incorporates the CLIF-C Organ Failure score 
(bilirubin, creatinine, INR, West-Haven grade for encephalopathy, mean arterial pressure and 
PiO2/FiO2 ratio), along with age and white cell count[5,41]. This has been validated as a prognostic tool 
in ACLF[2,40], with emerging evidence for its use in guiding treatment options. A CLIF-C ACLF score > 
70 represents a subgroup in whom defining limitations of care and futility is important given their very 
poor predicted outcomes[30,39,41].

Increasingly there appears to be a role for liver transplantation (LT) in a select cohort of these 
critically ill patients. The percentage of LT performed for ACLF varies significantly between transplant 
centres and even within regions[4,41,42], which reflects the considerable debate around the concept of 
liver transplant as a therapeutic strategy. The median transplant-free mortality rate in ACLF is 30%-40% 
at 28-d[1,40], increasing to 75% for grade 3 ACLF[1], and 40%-60% overall at 6 mo[40,42]. A recent 
consensus[43,44] developed by 35 international experts from North America and Europe suggested that 
contraindications to transplant include PaO2/FiO2 < 150 mmHg, noradrenaline dose > 1 μg/kg/min 
and/or serum lactate > 9[43]. Those who recover from their initial ACLF event are at high risk of 
recurrent and more severe ACLF in the future[45]. Whilst at this stage transplantation in advanced 
ACLF is the only curative intervention available, it is associated with higher postoperative complic-
ations and longer ICU and hospital stays compared to other indications[30]. Whilst scoring systems are 
useful in defining timing for LT escalation and features suggesting futility, clinical and ethical 
challenges remain in the referral and activation of appropriate candidates.

Common precipitating events in ACLF include bacterial infection, alcoholic hepatitis, gastrointestinal 
bleeding, HE, and reactivation of hepatitis B in endemic regions[41,46]. In European cohorts, bacterial 
infection is the most common precipitant[30,41], including spontaneous bacterial peritonitis, urinary 
tract infections and pneumonia[30]. Bacterial infection also predicts the development of organ failure in 
ACLF[31], hence early detection and treatment of infection are imperative. ACLF patients have higher 
rates of multi-drug resistant bacteria and demonstrate a lower infection resolution rate[12]. Antimi-
crobial choice should incorporate local guidelines and involve prompt initiation of empiric broad 
spectrum antibiotics whilst awaiting sensitivity profiles[4,31,44].

Acute Kidney Injury (AKI) is a frequent feature of ACLF and considered a strong predictor of poor 
survival in the short and long term[36,47,48]. There is significant overlap between hepatorenal 
syndrome AKI (HRS AKI) and non-HRS AKI in ACLF. Isolated HRS is believed to only represent a 
fraction of ACLF renal complications[38]. The management of renal dysfunction in ACLF requires the 
exclusion of reversible causes, including nephrotoxic contributors, and optimising circulating blood 
volume to ensure adequate renal perfusion[38,49]. Volume expansion with intravenous albumin and 
continuous intravenous terlipressin is recommended for those meeting HRS-AKI criteria[49]. 
Continuous terlipressin infusion is preferable to bolus regimes due to the improved tolerability and 
reduction in adverse effects[38,49]. Noradrenaline is a possible alternative to terlipressin, with a 2016 
meta-analysis of four studies (154 patients) demonstrating no superiority with regards to survival in 
patients treated with terlipressin vs noradrenaline[50]. Renal replacement therapy has historically been 
restricted to patients with AKI who fail the above methods and have clinical or laboratory indications as 
per the general AKI guidelines, and this has been translated to the ACLF population given the lack of 
validated data around this specific cohort[38,49]. There are also unanswered questions regarding the 
specific benefit of rapid correction of electrolyte abnormalities and hyperammonemia in the ACLF 
cohort[38].

HE in ACLF is associated with higher mortality, correlating with increasing grades of HE[51]. 
Management involves identification and treatment of precipitants as well as specific measures for 
reducing hyperammonaemia and systemic inflammation[31]. Treatment of concomitant infection, drugs 
and electrolyte abnormalities must always be considered and excluded[38]. Cerebral imaging should be 



Ngu NLY et al. ACLF: Controversies and consensus

WJG https://www.wjgnet.com 237 January 14, 2023 Volume 29 Issue 2

performed to exclude an alternative cause of altered neurology, especially given the increased risk of 
bleeding and clotting in this cohort[38]. Ammonia lowering therapies are the cornerstone for managing 
HE with lactulose as the first line agent (oral, nasogastric or rectal preparations) followed by Rifaximin 
as second-line therapy[38]. Continuous veno-venous haemofiltration use in acute liver failure has been 
associated with clinically significant reductions in serum ammonia levels and is a recognised treatment 
for HE in these patients[52]. There have been no large randomised controlled trials to elucidate the role 
for haemofiltration or haemodialysis in lowering serum ammonia levels in ACLF[38].

Variceal and other types of bleeding can precipitate ACLF and should be managed similarly to those 
with decompensated CLD. Non-selective beta-blockers should be continued even in patients with 
ascites[30,31,53]. Their use is thought to reduce systemic inflammation and have favourable effects 
beyond their potential haemodynamic benefits[31,53] and should only be ceased in those with 
haemodynamic instability[44]. Circulatory failure should be managed with volume expansion, and if 
haemodynamic instability persists, the use of vasopressors, aiming for a mean arterial pressure of ≥ 65 
mmHg[44]. Bleeding in the ACLF cohort is predominantly secondary to portal hypertension whilst 
spontaneous haemorrhage is rare[54]. Historic plasma-based coagulation tests are poor predictors of 
bleeding in chronic liver disease[55,56]. Newer viscoelastic assays, such as thromboelastography and 
rotational thromboelastometry assess whole blood, which may be superior and preferential to standard 
laboratory testing in clinical practice but their role in ACLF management is poorly defined[38,57].

CONCLUSION
ACLF is a distinct and severe clinical entity, separate from hepatic decompensation, with high short-
term mortality, healthcare resource utilisation, and poorly defined treatment goals. Clinical diagnosis 
and management are limited by variable definitions and diagnostic criteria. Future focuses for research 
should including investigating and defining specific clinical and biomarkers for prognostication and 
classification of ACLF subtypes, standardisation of prognostic scores for both clinical management and 
population stratification in clinical trials, and further evidence to support the role for liver 
transplantation in a well-defined cohort most likely to demonstrate long term benefit.
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Abstract
The coronavirus disease 2019 (COVID-19) pandemic has been a serious threat to 
global health for nearly 3 years. In addition to pulmonary complications, liver 
injury is not uncommon in patients with novel COVID-19. Although the 
prevalence of liver injury varies widely among COVID-19 patients, its incidence is 
significantly increased in severe cases. Hence, there is an urgent need to 
understand liver injury caused by COVID-19. Clinical features of liver injury 
include detectable liver function abnormalities and liver imaging changes. Liver 
function tests, computed tomography scans, and ultrasound can help evaluate 
liver injury. Risk factors for liver injury in patients with COVID-19 include male 
sex, preexisting liver disease including liver transplantation and chronic liver 
disease, diabetes, obesity, and hypertension. To date, the mechanism of COVID-
19-related liver injury is not fully understood. Its pathophysiological basis can 
generally be explained by systemic inflammatory response, hypoxic damage, 
ischemia-reperfusion injury, and drug side effects. In this review, we systemat-
ically summarize the existing literature on liver injury caused by COVID-19, 
including clinical features, underlying mechanisms, and potential risk factors. 
Finally, we discuss clinical management and provide recommendations for the 
care of patients with liver injury.
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Core Tip: A growing body of evidence suggests that patients with coronavirus disease 2019 (COVID-19) 
may experience varying degrees of liver injury. The characteristics and mechanisms of liver injury 
associated with COVID-19 are not fully understood. In this review, we summarized the clinical features, 
mechanisms, and management strategies of liver injury associated with COVID-19. Moreover, we 
collected all the information about high risk factors for liver injury from COVID-19, which is of 
significance and help for further study of liver damage related to severe acute respiratory syndrome 
coronavirus 2.
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INTRODUCTION
Coronavirus disease 2019 (COVID-19) is an infectious disease caused by the severe acute respiratory 
syndrome coronavirus 2 (SARS-CoV-2) virus. Since the first outbreak in late December 2019 in China, it 
has unleashed a matchless public health crisis worldwide. The COVID pandemic has been going on for 
nearly 3 years, and there is still no end in sight. Initially, it was considered solely an atypical pneumonia 
until patients started to show signs of multiorgan involvement[1]. Now we know that the effects of 
COVID-19 on the body are extensive. In addition to the respiratory system, almost all systems in the 
body, including the circulatory system, cardiovascular system, urinary system, gastrointestinal and 
hepatobiliary system, endocrine system, nervous system, ophthalmic system, and skin system can be 
affected[2,3]. SARS-CoV-2 virus mainly affects the respiratory system, causing common symptoms such 
as fever, fatigue, cough, and dyspnea. Relatively, diarrhea, myalgia, hemoptysis, and sore throat are less 
common[4]. Other reports show that liver dysfunction is a common manifestation of COVID-19 and is 
associated with higher mortality[5]. It is worth mentioning that the incidence of liver injury in severe 
COVID-19 cases can reach 93%[6]. However, the exact mechanism of how COVID-19 impairs liver 
function remains unclear. This comprehensive literature review is aimed at providing useful guidance 
for diagnosis, risk factor identification, and management of liver injury associated with COVID-19.

CLINICAL FEATURES OF LIVER INJURY IN COVID-19
Liver injury is mainly manifested as abnormal liver function (ALF) indexes. Alterations in hepatocyte 
damage biomarkers (HDBs), such as alanine aminotransferase (ALT), aspartate aminotransferase (AST), 
bilirubin, alkaline phosphatase (ALP), and gamma-glutamyl transferase (GGT), are commonly used to 
evaluate COVID-19-related liver injury[6,7]. In some cases, elevated lactate dehydrogenase (LDH), 
hypoproteinemia, prolonged prothrombin time, total bilirubin (TBil), and direct bilirubin (DBiL) are also 
used to assess liver function in COVID-19 patients[8-10].

In COVID-19 patients, transaminase elevations are usually mild [1-2 times the upper limit of normal 
(ULN)][9]. These changes in laboratory values may persist for a long time, even after hospital discharge. 
ALF was defined as at least one test HDB exceeding the ULN. Xu et al[10] evaluated the proportion of 
patients with abnormal HDBs, and found on admission ALT 13.2%, AST 8.5%, ALP 2.0%, GGT 7.4%, 
LDH 37.6%, TBiL 4.0%, DBiL 7.8%, and albumin 10.1%, and peak during the hospitalization ALT 29.4%, 
AST 17.5%, ALP 2.6%, GGT 13.4%, LDH 49.4%, TBiL 10.1%, DBiL 18.0%, and albumin 30.6%. In another 
study, the proportion of patients with at least one of the HDBs and TBil exceeding the ULN for the first 
time immediately after hospitalization, before discharge, a median of 14.0 d after discharge, and 1 year 
after discharge was 32.2%, 45.8%, 54.8%, and 28.8%, respectively[11]. In addition, a single-center 
prospective cohort study found that the proportion of patients with any ALF was 25.1% at 1 mo, 13.2% 
at 3 mo, 16.7% at 6 mo, and 13.2% at 12 mo after discharge[12]. Based on these data, long-term 
monitoring of liver enzymes may be warranted in patients with a history of COVID-19.

AST is generally considered to be less specific for liver injury than ALT due to additional extra-
hepatic production[13,14]. Nevertheless, in liver damage, elevated AST levels appear earlier, and the 
increase in AST levels at admission is usually more pronounced than ALT levels. In cases of severe 
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COVID-19, however, ALT levels typically rise rapidly, exceed the ULN value and peak within 10-15 d of 
admission. Subsequently, ALT levels remained stable in all patients with liver injury and then gradually 
decreased with longer hospital stay. ALT is a more effective indicator of liver injury in COVID-19 
patients with severe manifestations[15]. However, if serum AST and LDH levels are elevated but ALT 
levels remain normal, other causes of elevated liver biochemical responses rather than liver injury 
should be considered, such as myositis (especially AST > ALT), cardiac injury, ischemia, and cytokine 
release syndrome (CRS)[16].

The reported prevalence of liver injury in COVID-19 patients varied widely across studies, ranging 
from 4.8% to 78%[17]. This is mainly due to a variety of factors, including dynamic changes in liver 
function, small sample sizes, different admission criteria, lack of adjustment for baseline chronic liver 
disease (CLD), use of different HDBs, and inconsistent definitions of “liver injury”[10,18-20]. Notably, 
almost all studies were conducted on hospitalized patients, ignoring non-hospitalized patients, thus 
resulting in unclear overall morbidity (Table 1).

LIVER INJURY AND PROGNOSIS
COVID-19 patients with moderate or severe liver injury (SLI) have an increased risk of admission to the 
intensive care unit (ICU), disease progression, and death compared with patients without elevated liver 
chemistries[9,19,23]. Cai et al[6] have reported that patients with liver injury have a 9-fold greater risk 
for developing severe COVID-19. In a retrospective cohort study, when compared with moderate liver 
injury (2-5 ULN) and no/mild liver injury (< 2 ULN), COVID-19 patients with SLI (ALT > 5 ULN) had 
more severe clinical outcomes, including higher ICU admission rates (69% vs 42% vs 16%), intubation 
(65% vs 38% vs 13%), renal replacement therapy (33% vs 15% vs 7.5%), and mortality (42% vs 23% vs 
21%). Among SLI patients, 70% required vasopressors, 12% received inotropes, 39% were paralyzed, 
10% were proned, and 2.8% required extracorporeal membrane oxygenation[19].

Changes in liver function are predictors of severity and mortality in patients with COVID-19[5,23]. 
Abnormal liver biochemical parameters are closely related to an increased risk of mortality in critically 
ill patients with COVID-19. The levels of ALT, AST, GGT, LDH, TBil, and DBil in severe patients were 
significantly higher than those in mild-moderate patients. Conversely, severe patients had significantly 
lower albumin levels than non-severe patients[5,20]. In a study of 151 hospitalized patients, 5 liver 
injury parameters, ALT, AST, TBil, DBil, and indirect bilirubin, were identified as notable prognostic 
factors, while total protein, albumin, ALP, GGT, and total bile acid appeared to be less related to 
prognosis[25]. In other studies, low albumin is also a marker of severe infection and poor prognosis[10,
26]. Lei et al[15] emphasized the association of ALF tests, especially AST and TBil, with higher mortality. 
They observed that AST was more frequently elevated than ALT in severe patients. However, elevated 
ALP and peak ALT were significantly associated with discharge to hospice and death[19,27].

ABDOMINAL IMAGING FINDINGS
Possible imaging signs of liver damage on computed tomography (CT) scans of the hepatobiliary 
system include hepatomegaly, decreased liver density, periportal edema, fat stranding around the 
gallbladder, portal lymphadenopathy, and dilated gallbladder and bile ducts[28,29]. Portal venous gas 
can be seen in patients with mesenteric ischemia, especially in critically ill patients[30]. CT-quantified 
liver density can be assessed by the liver-spleen attenuation ratio, which correlates with the severity of 
liver injury. A common manifestation of liver damage caused by COVID-19 is homogeneous or hetero-
geneous low density of the liver. Liver hypodensity is more common in critically ill cases[28]. 
Ultrasound can be easily performed in COVID-19 patients to help identify liver damage quickly and 
effectively. The most frequent sonographic finding is hepatomegaly with increased parenchymal 
echogenicity, followed by biliary disease, including gallbladder sludge and distention, gallbladder wall 
thickening, mural hyperemia, intraluminal mud, and pericholecystic fluid[29-31]. Portal venous gas 
suggests mesenteric ischemia. Further, gallbladder cholestasis is common in critically ill patients of 
COVID-19[30]. Collectively, imaging of liver injury can reveal changes in liver density, gallbladder and 
bile duct dilation, portal pneumatosis and/or mesenteric ischemia.

PROPOSED MECHANISMS OF LIVER INJURY
The pathological basis of liver injury following COVID-19 infection is puzzling and not fully 
understood. Studies suggest that direct cytotoxicity, hypoxic hepatitis, cytokine storm syndrome, 
exacerbation of preexisting liver disease, and drug-induced liver injury (DILI) may be major 
mechanisms of COVID-19-related liver injury.
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Table 1 Criteria, grading, and incidence of abnormal liver function or injury

Ref. Sample 
size Study type Criteria and grading of ALF or injury Comments

Salık et al[5] 533 Retrospective 
study

Liver biochemical parameters: ALT, AST, and TBiL > 
ULN. Liver injury: ALT and/or AST > 3 ULN, and/or 
TBiL > 3 ULN

NA

Cai et al[6] 417 Retrospective, 
single-center 
study

ALF: > ULN. Liver injury: ALT and/or AST > 3 ULN, 
ALP, GGT, and/or TBiL > 2 ULN

76.3% had ALF and 21.5% had liver injury during 
hospitalization

Fan et al[8] 148 Retrospective, 
single-center 
study

Increased levels of ALT, AST, GGT, ALP, and total 
bilirubin

37.2% had ALF at hospital admission

Kulkarni et 
al[9]

20874 Meta-analysis ELC: AST or ALT > ULN. SLI: Any elevation of 
enzymes > ULN and bilirubin over 2 ULN

ELC: 23.1% at initial presentation. 24.4% 
developed ELC during the illness

Xu et al[10] 1003 Retrospective 
cohort study

Mild liver injury: 1-2 ULN. Moderate liver injury: 2-5 
ULN. Significant liver injury: > 5 ULN

Most patients with abnormal liver function 
parameters had mild elevations (1-2 ULN) at 
admission and peak hospitalization

Hundt et al
[13]

1827 Retrospective 
observational 
cohort study

ELC: AST, ALT, ALP, TBiL, albumin: > ULN ELC at pre-hospitalization (AST 25.9%, ALT 
38.0%, ALP 56.8%, and TBiL 44.4%). Admission 
(AST 66.9%, ALT 41.6%, ALP 13.5%, and TBiL 
4.3%). Peak hospitalization (AST 83.4%, ALT 
61.6%, ALP 22.7%, and TBiL 16.1%)

Balderramo 
et al[14]

298 Multicenter study ALEx2: The elevation of at least one of the following: 
TBil, ALT, AST, GGT, or ALP > 2 ULN

During admission, 29.2% out of 298 patients 
presented ALEx2

Phipps et al
[19]

6913 Retrospective 
cohort study

Mild: ALT 1-2 ULN. Moderate: ALT between 2-5 ULN. 
Severe: ALT > 5 ULN

Among patients who tested positive, 45% had 
mild, 21% moderate, and 6.4% SLI

Wang et al
[21]

156 Retrospective, 2-
centers study

Elevated aminotransferases 41.0% patients with elevated aminotransferases

Liu et al[22] 245 Retrospective, 
single-center 
study

Mild liver dysfunction: AST ≥ ULN. Moderate liver 
dysfunction: AST ≥ ULN combined with any parameter 
being greater than the ULN values of ALT, GGT, and 
TBiL. Severe liver dysfunction: AST ≥ ULN combined 
with ALT ≥ 3 ULN and/or GGT, TBiL ≥ 2 ULN

43.7% experienced mild liver dysfunction, 40.4% 
experienced moderate liver dysfunction, and 
20.4% experienced severe liver dysfunction

Chaibi et al
[23]

281 Retrospective 
cohort study

ALF: AST, ALT, GGT, ALP or TBil > ULN 36.3 % had liver dysfunctions. Only a minority of 
patients (6.4%) had perturbations above 5 times 
the ULN

Shousha et al
[24]

547 Multicenter 
cohort study

Liver injury: Transaminase > 3 ULN 26% and 32% of patients had elevated ALT and 
AST, respectively. 4.91 and 3.70%patients, 
respectively, had AST or ALT elevation > 3 ULN

ALEx2: Abnormal liver enzymes over twice the upper limit of normal; ALF: Abnormal liver function; ALP: Alkaline phosphatase; ALT: Alanine 
aminotransferase; AST: Aspartate aminotransferase; ELC: Elevated liver chemistries; DBiL: Direct bilirubin; GGT: Gamma-glutamyl transferase; NA: Not 
available; TBil: Total bilirubin; ULN: Upper limit of normal.

Direct cytotoxicity
The dual blood supply to the liver may be a route of infection. It is speculated that retrograde liver 
infection occurs after intestinal infection with SARS-CoV-2[32,33]. It is known that the S protein of 
SARS-CoV-2 binds to the angiotensin-converting enzyme 2 (ACE2) receptor to facilitate virus entry into 
host cells. ACE2 receptors are widely expressed in multiple organs, including the liver[34]. Although 
the expression of ACE2 is much lower in hepatocytes compared to type 2 pneumocytes, its expression 
levels are similar in cholangiocytes and type 2 pneumocytes[35], indicating that the hepatobiliary 
system is a potential target organ of SARS-CoV-2.

SARS-CoV-2 RNA has been reported to be detectable in the liver of COVID-19 patients. Electron 
microscopy also revealed larger numbers of coronavirus particles in the livers of these patients[21,36]. 
Postmortem liver biopsies showed typical coronavirus particles in the cytoplasm and typical viral 
infection lesions, such as mitochondrial swelling, endoplasmic reticulum dilation, and decreased 
glycogen granules. Besides, massive hepatocyte apoptosis and some binuclear hepatocytes were also 
observed[21].

Cytokine storm syndrome
Cytokine storm refers to the rapid and massive production of various cytokines in body fluids, which 
plays an important role in acute respiratory distress syndrome and multiple organ failure. The liver 
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cannot escape the cytokine storm. The pathogenesis of cytokine-mediated liver injury may stem from 
inflammation, altered coagulation, and activation of the renin-angiotensin-aldosterone system, 
culminating in microvascular insult, hepatocyte damage, and perpetuation of inflammation[37]. It has 
been reported that plasma levels of interleukin (IL)-2, IL-6, IL-7, IL-10, interferon (IFN)-γ, granulocyte 
colony-stimulating factor, IFN-inducible protein-10, monocyte chemoattractant protein-1, recombinant 
macrophage inflammatory protein 1 alpha, and tumor necrosis factor alpha (TNF-α) were higher in 
severe COVID-19 patients than in mild and moderate cases[38,39].

The IL-6 signaling complex causes deleterious changes in hepatic sinusoidal endothelial cells and 
may promote blood clotting. This may be a possible mechanism behind liver injury in these patients
[40]. Animal experiments have demonstrated that TNF-α has a moderate contribution to ALT elevation, 
necroinflammation, and apoptosis[41]. The role of other cytokines in liver injury in COVID-19 patients 
still requires further study.

Hypoxia, endotheliitis, and coagulation dysfunction
Patients with COVID-19, especially with severe manifestations, may have varying degrees of 
hypoxemia. Interestingly, some of them have no experience with breathing difficulties[42]. In vivo and in 
vitro studies have observed the occurrence of hepatic ischemia and hypoxia, hepatic cell death, and 
inflammatory cell infiltration[43]. Moreover, studies have found that SARS-CoV-2 enters endothelial 
cells, destroys vascular endothelium, and causes diffuse endothelial inflammation that can rapidly 
induce vasoconstriction and procoagulant tendency[44,45].

Spiezia et al[46] found that COVID-19 patients with acute respiratory failure presented with severe 
hypercoagulability rather than consumptive coagulopathy. In these patients, plasma levels of fibrinogen 
and D-dimer were significantly elevated and a marked hypercoagulable thromboelastometry profile 
was observed. Rampotas and Pavord[47] examined 20 random blood films from COVID-19 patients 
receiving invasive ventilation and observed the presence of platelet aggregates and macrothrombocytes, 
indicating increased platelet activity.

Reactivation of pre-existing liver disease
Liu et al[48] evaluated hepatitis B virus (HBV)-DNA viral load in 19 hospitalized patients with COVID-
19. They found that three patients had HBV reactivation (HBVr) and one patient had a high HBV-DNA 
viral load throughout the hospital stay. This study suggests that COVID-19 patients with pre-existing 
chronic HBV infection, with or without corticosteroids use, may be at risk for hepatitis B reactivation. In 
a review, Perrillo et al[49] divided the drugs that induce HBVr into three categories. High-risk drugs are 
anticipated to induce HBVr in > 10% of cases, moderate-risk drugs are anticipated to induce HBVr in 
1%-10% of cases, and low-risk drugs are anticipated to induce HBVr in < 1% of cases. Moderate/high-
dose corticosteroid therapy for ≥ 4 wk is a high-risk factor for HBVr. Anthracycline derivatives are 
moderate/high-risk drugs. Moderate-risk drugs include TNF-α and other cytokine inhibitors, integrin 
inhibitors, tyrosine kinase inhibitors, and ≥ 4 wk of low-dose corticosteroid therapy. Therefore, patients 
receiving any of these drugs for COVID-19 are at risk of inducing HBVr and its complications.

DILI
Various potentially hepatotoxic drugs such as remdesivir, lopinavir, azithromycin, hydroxychloroquine, 
acetaminophen, antibiotics, and corticosteroids are thought to induce liver injury[50,51]. In some cases, 
the extent of liver damage depends on the dose[52]. Antiviral drugs have been used against SARS-CoV-
2, examples of such antivirals are remdesivir, lopinavir-ritonavir, and others. They have all been 
documented to be potentially hepatotoxic. Although some small-scale trials have reported ALT/AST 
elevations with remdesivir, most clinical trials have not shown significant hepatotoxicity in the 
treatment of COVID-19[53]. Lopinavir/ritonavir and remdesivir have similar hepatotoxicity profiles
[54].

Dexamethasone, used for hypoxic respiratory failure in patients with COVID-19, is known to induce 
the elevation of liver enzymes, increase hepatic lipid peroxidation, and decrease antioxidant activity
[55]. The liver-damaging effects of azithromycin and acetaminophen have been proven for many years
[56,57]. Acetaminophen, an analgesic and antipyretic drug widely used for mild-to-moderate pain and 
fever, may cause dose-dependent hepatotoxicity[52].

RISK FACTORS FOR LIVER INJURY
Studies have shown that the incidence of liver injury in severe/critically ill patients is much higher than 
the incidence in moderate cases[17,58]. Apparently, male sex, older age, and higher body mass index are 
also associated with liver damage from COVID-19[6,17,58,59]. Besides, coexisting diseases such as 
hypertension, diabetes, cardiovascular disease, malignancy, and some liver diseases may all be risk 
factors for liver damage[60,61]. Currently, the susceptibility of children and pregnant women to liver 
injury is not fully understood.
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Male sex
Multiple studies show that men with COVID-19 have an increased risk of liver damage[6,17,59,62]. 
Among younger patients, men also have higher odds of severe pneumonia, acute kidney injury, and 
acute liver injury than women. However, among elderly patients, there was no difference in the 
likelihood of poor outcomes between men and women[62].

Possible mechanisms are attributed to the activity of sex hormones and X-linked genes and differ-
ential regulation of innate and adaptive immune responses to viral infection. Compared with women, 
men have higher circulating levels of ACE2 and ACE2 levels in the lungs. Moreover, testes have much 
higher levels of ACE2 than ovaries. Additionally, men have lower expression of protective cytokines but 
higher levels of pro-inflammatory cytokines and chemokines[62].

Elderly
In a study of 900 patients with COVID-19, those aged 40-69 were at particularly high risk of liver injury 
and liver-related death. COVID-19-related deaths were more frequent in patients 40-69 years and ≥ 70 
years of age with elevated AST levels. Although only a small proportion (1.7%) of patients without prior 
liver disease also died from liver-related causes, severe liver impairment and acute liver failure are rare 
but important complications of COVID-19[63]. Liver dysfunction is associated with poor prognosis in 
elderly patients with higher mortality due to liver cell damage[64].

Liver transplant
According to recent reports, liver transplant (LT) patients have a higher incidence of COVID-19, 
possibly due to long-term immunosuppression. Despite the increased risk of acquiring COVID-19, LT 
patients have lower mortality rates than matched general individuals[65]. In another study, the 
prevalence of COVID-19 in LT patients was 6.05%, twice that of the general population of the same age, 
possibly due to higher susceptibility to the virus[66]. Verbeek et al[67] suggested that organ transp-
lantation should be avoided in patients with active infection and respiratory symptoms because of the 
risk of COVID-19 progression and subsequent organ failure, as well as the risk of exposure to the virus 
for transplant operators.

Furthermore, patients with LT are at high risk for hepatic decompensation and increased mortality, 
and may suffer from severe extrahepatic sequelae of COVID-19[68,69]. Due to lack of evidence that LT 
children are at a greater risk of contracting COVID-19, routine withdrawal of immunosuppressive drugs 
is not recommended for LT children or patients with autoimmune liver disease[70]. Generally, LT 
recipients do not appear to have an increased risk of death following COVID-19 infection compared to 
the matched general population[71].

CLD
The most common cause of CLD is nonalcoholic fatty liver disease (NAFLD), followed by HBV 
infection, alcohol-related liver disease, and hepatitis C virus infection[72]. Liver injury and pre-existing 
CLD are significantly associated with disease severity and mortality in COVID-19 patients[73,74]. Yang 
et al[75] found that CLD is independently associated with COVID-19 severity and mortality, especially 
in a male-dominated elderly population. However, some studies believe that liver injury is indeed an 
independent predictor of key outcomes, but CLD and HBV infection status are not significant 
comorbidities of COVID-19[73,74,76].

Similar to other CLDs, metabolically associated fatty liver disease (MAFLD) has been shown to have 
longer viral shedding, a higher risk of disease progression, a higher all-cause mortality, and higher 
COVID-19-related mortality than patients without MAFLD[72,77]. Compared with other causes of CLD, 
patients with autoimmune hepatitis have a worse prognosis for COVID-19[78,79].

In adult studies, certain populations, such as those with cirrhosis, nonalcoholic steatohepatitis, and 
liver cancer, have been found to have an increased risk of severe COVID-19 and a poorer prognosis[69,
80-82]. In adults with COVID-19, cirrhosis is a risk factor associated with worse outcomes. A large 
survey of 220727 patients found that COVID-19 infection in patients with cirrhosis was associated with a 
2.38-fold risk of death, while cirrhosis in CLD patients with COVID-19 was associated with a 3.31-fold 
risk of death[83]. These results suggest that cirrhotic patients with COVID-19 infection are associated 
with an increased risk of all-cause mortality. Zecher et al[84] concluded that there were no differences in 
age, sex, autoimmune liver disease, and cirrhotic status between COVID-19 and non-COVID-19 cases.

Children with CLD, including obese children with suspected or confirmed NAFLD, may be at an 
increased risk for COVID-19 infection and severe COVID-19[70,85]. Children with CLD may experience 
decompensation of end-stage liver disease during COVID-19 infection[70]. Compared with LT 
recipients, children with CLD, including children with end-stage liver disease, are more likely to be 
hospitalized and require intensive care[86]. However, in the study by Di Giorgio et al[87], the suscept-
ibility of different pediatric patient groups to COVID-19 infection was similar, and underlying liver 
disease may not increase the risk of severe COVID-19. The inconsistency between these findings may be 
related to the different sample sizes collected.
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Obesity
Cumulative evidence support obesity as a risk factor for severe COVID-19 and related death, directly or 
indirectly increasing inflammation, hypercoagulability, and mechanical obstruction[88]. Obesity has 
emerged as a strong independent determinant of increased risk of morbidity and mortality in patients 
infected with COVID-19. In addition, data suggest that visceral obesity and hyperglycemia in non-
diabetic and diabetic patients may also be significant independent risk factors for severe COVID-19[89]. 
In another study, patients aged 40-69 had a higher prevalence of obesity (44.4%), suggesting that a 
certain proportion of patients with hepatic steatosis in this age group may be predisposed to COVID-19-
related liver damage[63,78,90]. Furthermore, one study showed that > 50% of COVID-19 cases in 
patients with underlying hepatic steatosis were severe, with a mortality rate of 17%[91].

Diabetes mellitus
Diabetes mellitus, whether due to insufficient pancreatic beta cells or peripheral insulin resistance, is 
considered a risk factor for COVID-19 infection. Numerous studies have shown that new-onset 
hyperglycemia, ketoacidosis, and diabetes are frequently observed in patients with COVID-19[88,89,92,
93]. Individuals with diabetes often have associated comorbidities, such as obesity, hypertension, and 
cardiovascular disease, as well as diabetic complications, including chronic kidney disease, vascular 
disease, and related immune dysfunction, all of which put them at risk for infectious complications[94]. 
In a study of 458 patients with COVID-19 and diabetes, those with liver injury and chronic kidney 
disease had significantly higher mortality rates than other complications[95]. In other words, chronic 
kidney disease and liver disease are the two main contributors to the rise in mortality among patients 
with diabetes and COVID-19.

Malignancy
Hepatocellular carcinoma (HCC) has been identified as a predictor of poor prognosis in COVID-19 
patients[72,76]. HCC is often associated with cirrhosis, suggesting that decreased immunity may 
increase the risk of severe COVID-19, and that infection with COVID-19 can exacerbate pre-existing 
liver disease, complicating cancer management[96]. Furthermore, COVID-19 vaccination is 
recommended for LT candidates and patients with CLD or HCC as they are susceptible to severe 
COVID-19[68]. Overall, cancer patients are considered to be at high risk of developing severe COVID-19 
due to comorbidities and immunosuppressive status, especially among those who have recently 
received chemotherapy or had surgery within a month[96,97].

Hypertension
In a study of 300 patients with COVID-19, 33.2% were diagnosed with hypertension at admission. These 
hypertensive patients displayed higher levels of Troponin T and creatinine near hospital discharge[93]. 
Notably, the proportion of hypertensive patients in severe COVID-19 was significantly higher, and the 
mortality rate of severe patients was higher[93]. In addition, high blood pressure may increase the risk 
of liver damage following COVID-19 infection in elderly patients without pre-existing CLD[73].

It has been reported that hypertensive patients have a higher probability of liver damage and a 
poorer prognosis. The underlying mechanism may be related to the activation of the renin-angiotensin 
system and the damage of ACE2-positive cholangiocytes and hepatocytes, which further lead to cholan-
giocyte and hepatocyte-associated disorders[69,81,98,99]. ACE2-stimulating drugs for high blood 
pressure have been hypothesized to increase the risk of fatal COVID-19. Fang et al[100] reported that 
patients using ACE2-elevating drugs for hypertension, diabetes or heart disease are at increased risk of 
COVID-19 infection.

Pregnancy
Pregnant woman with COVID-19 have significantly decreased blood lymphocytes, increased 
neutrophils, and elevated C-reactive protein and TBil levels[101]. In the study by Deng et al[102], the 
incidence of liver injury in pregnant women infected with COVID-19 was 29.7%. Despite a higher 
frequency of ICU admissions, in-hospital mortality was lower among pregnant patients compared with 
non-pregnant patients with COVID-19 viral pneumonia, at 1.1% for pregnant women and 3.5% for non-
pregnant women. Pregnancy is not an independent risk factor for in-hospital mortality in COVID-19 
patients[103]. In the study by Tunç et al[104], COVID-19-related hospitalization rates were 24.1% in the 
first trimester, 36% in the second trimester, and 57.3% in the third trimester; there was no significant 
relationship between pregnancy duration and the need for ICU admission.

However, pregnant women may have many comorbidities, including hypertension, chronic lung 
disease, diabetes, and obesity, compared with non-pregnant women[103]. Pregnant patients with 
COVID-19 and chronic complications such as hypertension and diabetes have an increased risk of 
developing inflammation and liver damage[101]. Pregnant women taking antiviral drugs have several 
options, including continuing treatment, stopping or switching to safer drugs. Patients with high 
pretreatment ALT or less than 1 year of treatment prior to pregnancy have a high risk of severe hepatitis 
flares after cessation of antiviral agents[105].



Zhao SW et al. Liver injury in COVID-19

WJG https://www.wjgnet.com 248 January 14, 2023 Volume 29 Issue 2

The perinatal outcomes of all reported cases were reassuring, with 98% live births, 78% full-term 
births without neonatal complications, and a 20% neonatal ICU admission rate. The stillbirth rate was as 
low as 1.7%, and the neonatal mortality rate was 0.8%. No vertical transmission was found in 98.4% of 
neonates[106,107].

Children
Children with COVID-19 infection often have minimal or no increase in liver enzymes[60]. COVID-19 
may impair liver function, usually resulting in transient and moderate elevations in liver markers 
without significant impairment of hepatic synthesis. COVID-19-infected patients with elevated ALT are 
at risk for a more severe disease course, including longer hospital stay and ICU stay[85]. Compared 
with adult patients, pediatric patients have relatively lower rates of lymphopenia, higher inflammatory 
markers, and possible thrombocytopenia[108].

MANAGEMENT OF LIVER INJURY IN PATIENTS WITH COVID-19
Liver injury in mild cases of COVID-19 is usually transient, self-limiting, and reversible without 
treatment. However, some COVID-19 patients who present with liver injury may become critically ill 
and require medical attention[16]. The cause of liver injury should be analyzed and judged in all 
patients. Initial screening includes careful review of preexisting liver disease, exposure to hepatotoxins 
(alcohol, drugs, herbs, and chemicals), hypoxia, and circulation status (Table 2). Liver function 
indicators including ALT, AST, TBil, DBiL, albumin, prothrombin activity, and international normalized 
ratio should be closely monitored[109,110].

Prophylactic use of hepatoprotective and enzyme-lowering drugs is not recommended[109]. Theoret-
ically, reducing viral load with antiviral therapy is the most effective way to reduce organ damage. 
However, there is currently a lack of clinical data to support it, and more attention is paid to antiviral 
drug-related liver injury. This may be one reason for the lack of particularly effective antiviral drugs 
until recently.

The management of liver injury from COVID-19 is largely empirical and mainly supportive. Patients 
with severe liver damage associated with COVID-19 should be treated with hepatoprotective, anti-
inflammatory, and jaundice-reducing agents such as glycyrrhizic acid, polyene phosphatidyl choline 
(PPC), bicyclol, and vitamin E[111,112]. Glycyrrhizic acid can effectively inhibit the replication and 
cytopathic effect of coronavirus without obvious cytotoxicity to host cells[113]. Glycyrrhizin has anti-
inflammatory properties that may offer protection against liver disease[109]. PPC may be a drug that 
enhances the hepatoprotective function through glutathione and magnesium isoglycyrrhizinate[114].

Currently, there is no specific treatment for critically ill patients with COVID-19. Effective 
suppression of the host’s uncontrolled immune response during cytokine storm may be a critical step in 
preventing disease progression and reducing mortality[115,116]. Anakinra is an IL-1 receptor antagonist 
that blocks the release of IL-β. A study concluded that early anakinra treatment is associated with 
significantly lower ICU admissions and mortality in patients with moderate/severe COVID-19[117]. 
Successful anakinra therapy includes treatment duration ≥ 10 d, dose ≥ 100 mg, intravenous adminis-
tration, and early initiation of therapy[118]. Canakinumab is a human monoclonal anti-IL-1β specific 
antibody. Studies have shown that canakinumab therapy provides rapid and durable improvement in 
oxygenation levels, reduced proinflammatory markers and reduced need for mechanical ventilation 
resulting in better outcomes[119,120].

IL-6 is one of the key mediators of cytokine storm-induced damage[121]. Currently, there are two 
main types of IL-6 inhibitors that target IL-6 itself (siltuximab) or its receptors (tocilizumab and 
sarilumab)[115]. IL-6 levels drop after administration of siltuximab, suggesting that the inhibitor may 
reduce CRS and mortality[122]. The literature supports the early use of tocilizumab as it has been 
observed to lower mortality in adults with COVID-19 pneumonia[123,124] and achieve better clinical 
recovery at day 28[125]. In another study, clinical improvement and mortality were not statistically 
different between tocilizumab and standard treatment[125]. The reason may be a higher risk of bacterial 
or fungal infection in patients within tocilizumab application[123,124,126]. Sarilumab is a high-affinity 
anti-IL-6 receptor antibody. In a phase II, open-label, randomized, controlled clinical trial of hospitalized 
patients with COVID-19, early use of sarilumab was safe and associated with a trend for better 
outcomes[127]. However, in some other studies, the efficacy of sarilumab in hospitalized patients with 
moderate-to-severe COVID-19 has not been established[128-130]. Inhibition of IL-6-mediated signaling 
may not be sufficient to reduce CRS, and the answer may lie in combination therapy and interfere with 
other related pathways. So far, conflicting results hinder efforts to use IL inhibitors to combat COVID-19 
infection[131].

Anti-TNF therapy has also shown conflicting results. In a case-cohort study, patients treated with 
anti-TNF-α inhibitors were hospitalized less frequently[132]. This was a systematic review and meta-
analysis of COVID-19 and outcomes in patients with inflammatory bowel diseases (IBD). Compared 
with patients on corticosteroids, those on anti-TNF-α therapy had a lower risk of hospitalization and 
ICU admission. Moreover, similar results were seen in patients treated with anti-TNF-α compared to 
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Table 2 Treatments of liver injury in coronavirus disease 2019

Mechanisms of 
liver damage Treatments Caution Ref.

Hepatocellular injury Hepatoprotective, anti-inflammatory, and jaundice-reducing 
agents

Preventive administration is not recommended [109,
111,
112]

Cytokine storm 
syndrome

Continuous renal replacement therapy. IL-1 inhibitor, IL-6 
inhibitor, TNF inhibitor

IL-1 or IL-6 inhibitors could reduce inflammation; 
however, they have a potential to cause DILI and 
worsen clinical conditions

[109,
139,
140]

DILI Prompt discontinuation or reduction of doses of suspected 
triggers. Medication reconciliation is important. Discontinue all 
non-vital therapy, redundant types/doses, modify course 
duration

Requires a trade-off between therapeutic effects and 
side effects

[109]

Reactivation of pre-
existing liver disease

Continue treatment for hepatitis B and hepatitis C if already on 
treatment

Difficulty distinguishing between new-onset liver 
injury and reactivation of pre-existing liver disease

[16,
109]

Hypoxic hepatitis Circulation and respiratory support Higher PEEP, which may be needed to improve 
oxygenation, may affect cardiac output, decreasing 
hepatic arterial flow, thus enhancing arterial 
dysfunction

[139,
140]

DILI: Drug-induced liver injury; IL: Interleukin; PEEP: Positive end-expiratory pressure; TNF: Tumor necrosis factor alpha.

patients treated with mesalamine[133]. Colonic ACE2 expression was downregulated after anti-TNF-α 
therapy in IBD patients[134], but no liver-related data have been reported. In another meta-analysis and 
systematic review of 84 studies, no difference was found in the risk of hospitalization in patients 
receiving anti-TNF-α therapy compared to patients not receiving anti-TNF-α therapy[135]. Foods rich in 
vitamins, minerals, polyphenols, and other bioactive compounds may decrease inflammatory pathway 
activity and prevent liver damage in COVID-19 patients[136].

Corticosteroids have a dual effect. They have been associated with DILI, especially at high doses, 
however they are used to treat drug-induced cholestatic hepatitis and DILI associated with hypersens-
itivity reactions[137,138]. The only specific antidote for acute DILI remains N-acetylcysteine for 
acetaminophen poisoning. Glycyrrhizin, ursodeoxycholic acid, and silymarin have been used for 
decades to treat DILI, but success remains anecdotal[138]. The most effective treatment for suspected 
DILI is to discontinue drug therapy before progression to irreversible liver failure, which results in 
spontaneous recovery in approximately 90% of cases[139].

CONCLUSION
Nearly 3 years later, there is still no sign that the COVID-19 pandemic is over. COVID has long-term 
devastating effects involving multiple organs. Particular attention should be given to liver injury 
associated with COVID-19. There is growing evidence that liver injury is a typical long-term effect of 
COVID-19, especially in critically ill cases, and may require monitoring after the patient is discharged. 
The exact incidence and underlying mechanism of liver damage are not well known. Fortunately, most 
patients with mild liver damage recover without special treatment. However, SLI is believed to worsen 
the prognosis and increase mortality from COVID-19. Increased research efforts are needed to identify 
those patients at higher risk of complications, better definition of liver injury, better understanding of 
the pathophysiology, and effective therapies.
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Abstract
The new coronavirus severe acute respiratory syndrome coronavirus 2 (SARS-
CoV-2) was identified in December 2019, in Wuhan, China. The virus was rapidly 
spread worldwide, causing coronavirus disease 2019 (COVID-19) pandemic. 
Although COVID-19 is presented, usually, with typical respiratory symptoms (i.e., 
dyspnea, cough) and fever, extrapulmonary manifestations are also encountered. 
Liver injury is a common feature in patients with COVID-19 and ranges from mild 
and temporary elevation of liver enzymes to severe liver injury and, even, acute 
liver failure. The pathogenesis of liver damage is not clearly defined; multiple 
mechanisms contribute to liver disorder, including direct cytopathic viral effect, 
cytokine storm and immune-mediated hepatitis, hypoxic injury, and drug-
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induced liver toxicity. Patients with underlying chronic liver disease (i.e., cirrhosis, non-alcoholic 
fatty liver disease, alcohol-related liver disease, hepatocellular carcinoma, etc.) may have greater 
risk to develop both severe COVID-19 and further liver deterioration, and, as a consequence, 
certain issues should be considered during disease management. The aim of this review is to 
present the prevalence, clinical manifestation and pathophysiological mechanisms of liver injury 
in patients with SARS-CoV-2 infection. Moreover, we overview the association between chronic 
liver disease and SARS-CoV-2 infection and we briefly discuss the management of liver injury 
during COVID-19.

Key Words: COVID-19; Liver injury; Cytokine storm; Hypoxic hepatitis; Drug-induced liver injury; Chronic 
liver disease

©The Author(s) 2023. Published by Baishideng Publishing Group Inc. All rights reserved.

Core Tip: Liver injury is a common feature in coronavirus disease 2019 (COVID-19) patients and was 
associated with disease severity and prognosis. Multiple pathophysiological mechanisms are responsible 
for liver injury, including direct viral effect, cytokine storm, hypoxia and drug hepatotoxicity, however, 
further research is needed, in order, for them, to be clearly defined. Patients with underlying chronic liver 
disease may be more susceptible to severe acute respiratory syndrome coronavirus 2 infection; 
nevertheless, evidence is still limited. It is necessary to know the mechanisms of liver injury, the clinical 
manifestations and the effect of COVID-19 in underlying liver disease, in order to design appropriate 
management programs.

Citation: Papagiouvanni I, Kotoulas SC, Pataka A, Spyratos DG, Porpodis K, Boutou AK, Papagiouvannis G, 
Grigoriou I, Vettas C, Goulis I. COVID-19 and liver injury: An ongoing challenge. World J Gastroenterol 2023; 
29(2): 257-271
URL: https://www.wjgnet.com/1007-9327/full/v29/i2/257.htm
DOI: https://dx.doi.org/10.3748/wjg.v29.i2.257

INTRODUCTION
In December 2019, severe acute respiratory syndrome coronavirus 2, (SARS-CoV-2), causing respiratory 
infection in humans, was detected in Wuhan, China[1]. The new coronavirus was spread worldwide, 
resulting in coronavirus disease 2019 (COVID-19) outbreak. On March 11, 2020, the World Health 
Organization declared COVID-19 as a global pandemic[2]. As of September 2022, over 603 million 
confirmed cases and over 6.4 million deaths have been reported worldwide[3].

Most COVID-19 patients present with typical respiratory symptoms (i.e., cough, dyspnea) and fever. 
However, abnormal liver function is often developed in patients with COVID-19, and liver injury has 
been related with severe disease[4,5]. Liver damage ranges from mild asymptomatic elevation of liver 
enzymes to severe liver injury, while a few cases of acute liver failure have also been reported[6,7].

The aim of this review is to present the prevalence and clinical manifestations of liver injury in 
COVID-19, to overview the potential pathophysiological mechanisms leading to liver damage and to 
summarize the existing literature for patients with COVID-19 and underlying chronic liver disease. 
Furthermore, the management of liver complications during SARS-CoV-2 infection is also briefly 
discussed.

PREVALENCE AND RISK FACTORS
Numerous studies have focused on liver injury induced by COVID-19 infection. However, the definition 
of liver injury in COVID-19 patients has not been clearly established yet. Some researchers defined it, as 
any increase of liver enzymes above the upper limit of normal (ULN), while others, as an increase, at 
least 2 or 3 times above the ULN[8-12]. Moreover, the different statistical time points across the studies, 
could also affect the incidence of liver injury[8]. As a consequence, the prevalence of liver damage varies 
across studies. Wang et al[13] conducted a retrospective study and found that the 41% of 156 COVID-19 
patients had abnormal liver function, while, Fan et al[10] demonstrated that 55 out of 148 patients 
(37.2%) had elevated liver enzymes on admission. In a recent retrospective study of 228 patients, 
without chronic liver disease, 29.4% had abnormal liver function on admission; the rate increased to 
56.3% during hospitalization[14]. Cai et al[15] defining liver injury as alanine transaminase (ALT) or 

https://www.wjgnet.com/1007-9327/full/v29/i2/257.htm
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aspartate aminotransferase (AST) 3 times higher than ULN or alkaline phosphatase (ALP), gamma-
glutamyl transferase (GGT), total bilirubin (TBIL) 2 times higher than ULN, observed that 41% of 
patients had abnormal liver tests and 5% had liver injury on admission. During hospitalization, patients 
with abnormal liver tests and patients with liver injury increased to 76.3% and 21.5%, respectively. Ding 
et al[16], also, demonstrated the same trend of liver function, in a large retrospective cohort study of 
2073 patients. On admission, 46.2% and 5.1% had abnormal liver tests and liver injury, respectively. Yet, 
during hospitalization, the incidence increased to 61.8% and 14.3%, respectively. Across several meta-
analyses, the pooled prevalence of liver injury ranged between 19% and 27.4%[4,5,17]. Kulkarni et al
[18], in their meta-analysis, found that the pooled incidence of abnormal liver enzymes at initial 
presentation, only slightly increased during the course of disease (from 23.1% to 24.4%). Wu et al[19] 
observed a similar trend; the pooled incidence of elevated liver tests on admission and during hospital-
ization was 27.2% and 36%, respectively.

Liver injury has been associated with severe COVID-19 disease[4,5,19-21]. Chen et al[22] demo-
nstrated that patients with deranged liver function had higher risk of systemic inflammatory response 
syndrome (53.5% vs 41.3%, P = 0.007) and higher mortality rate (28.9% vs 9.0%, P < 0.001). In another 
retrospective study, elevated AST (> 3-fold ULN) was associated with higher risk of mechanical 
ventilation and death[23]. Moreover, Wang et al[24] found that the levels of aminotransferases were 
significantly higher in ICU patients compared to non-ICU patients (ALT: 35 vs 23, normal range 9-50 
U/L, P = 0.007 and AST: 52 vs 29, normal range 5-21 U/L, P < 0.001). Kumar et al[4], in their meta-
analysis, confirmed that liver injury was higher in patients with severe COVID-19 disease, compared to 
non-severe COVID-19 disease (44.63% vs 20.02% respectively). Furthermore, Mao et al[5] conducted 
another meta-analysis and found that patients with severe COVID-19 infection exhibited a higher risk 
for abnormal liver function, including increased AST and ALT. Finally, in a recent meta-analysis of 15 
studies, patients with deranged liver function and/or histopathological findings of liver disease, 
presented a significantly higher risk of poor COVID-19 outcomes[21]. Across several studies, other risk 
factors for liver injury were found to be male gender, higher BMI, older age, severe lung disease and 
underlying chronic liver disease[11,15,25].

CLINICAL MANIFESTATIONS
In most cases, liver injury is presented as elevated liver enzymes without specific symptoms and signs. 
The elevation of AST, ALT and/or TBIL is a very common manifestation in COVID-19 patients, while 
increased GGT and/or ALP is a less usual feature, observed in later stages of the disease[6,7]. The 
elevation of the aminotransferases is usually mild; their level is mostly < 5 times ULN[26]. Furthermore, 
liver injury in COVID-19 has been noted to be transient, while hepatic biochemical tests return to 
normal within 2-3 wk[6]. Severe liver injury, with aminotransferases > 20 times ULN, has been observed 
in 0.1% of COVID-19 patients on admission and in 2% during hospitalization, while acute liver failure, 
induced by COVID-19, has been reported in extremely rare cases[27,28]. Febrile hepatitis, acute 
cholecystitis and hepatic artery thrombosis are, also, rare clinical presentations of COVID-19[29-31]. 
Moreover, in some cases reports, it is suggested that SARS-CoV-2 triggered a de novo development of 
immune-mediated liver disease, such as autoimmune hepatitis and primary bile cholangitis[32-35]. 
Interestingly, cholangiopathy, characterized by cholestasis and structural abnormalities of bile duct, has 
been reported in post-COVID-19 patients, who recovered from severe and critical disease[36,37].

MECHANISMS OF LIVER INJURY
The pathogenesis of live injury in COVID-19 disease is still unclear. According to the available 
literature, the underlying mechanisms of liver injury are multifactorial and mainly, include direct viral 
cytopathic damage, immune-mediated hepatitis, caused by cytokine storm, hypoxia and ischemic injury 
and drug-induced liver toxicity. The possible pathophysiologic mechanisms of liver injury are presented 
in Figure 1.

Direct cytopathic effect of SARS-CoV-2
Liver is a potential target of direct SARS-CoV-2 infection. Existing literature suggests that the new 
coronavirus could be detected in the liver and indicates typical histological lesions related to viral 
infection[38]. Indeed, a series of small sample size studies demonstrated that SARS-CoV-2 RNA and 
viral particles are detectable in the liver of patients with COVID-19[13,39-43]. Furthermore, in a recent 
cohort study of 45 autopsy cases, virus RNA was detected in 69% of cases[44].

SARS-CoV-2 uses angiotensin-converting enzyme 2 (ACE2) to invade into host cells, while cell entry 
is facilitated by transmembrane serine protease 2 (TMPRSS2) and paired basic amino acid cleaving 
enzyme (FURIN)[45,46]. Single-cell RNA sequencing analysis revealed that ACE2 is expressed among 
different cell types in liver; in parallel, TMPRSS2 and FURIN are, also, expressed in liver cells[47-49]. 
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Figure 1 Mechanisms of liver injury in coronavirus disease 2019. ACE2: Angiotensin-converting enzyme 2; TMPRSS2: Transmembrane serine protease 
2; FURIN: Paired basic amino acid cleaving enzyme; SIGN: Specific intercellular adhesion molecule-3-grabbing non-integrin.

The above evidence indicates that liver tissue could be susceptible to COVID-19 infection. Yet, the 
expression of ACE2 in bile duct cells is 20-fold higher than the expression level in hepatocytes[50]. 
Despite the high expression of ACE2 in cholangiocytes, which would be associated with cholestatic 
injury (i.e., elevated levels of GGT and ALP), most studies found that hepatocellular damage is the most 
common pattern in COVID-19 patients (i.e., elevated levels of ALT and AST)[17,51,52]. Therefore, 
alternative molecular pathways for liver infection cannot be excluded. The liver/Lymph node-specific 
intercellular adhesion molecule-3-grabbing integrin, a liver-specific capture receptor, and CD147, a 
receptor highly expressed in inflamed and/or pathogen-infected tissues, have been proposed as 
alternative receptors or enhancer factors, mediating in the SARS-CoV-2 cellular entry in the liver. 
Moreover, antibody-dependent enhancement may be responsible for liver infection[53]. Instead of 
neutralizing the virus completely, suboptimal non-neutralizing antibodies, attached to Fc receptor, 
promote viral entry into the liver cells[53]. In addition, existing evidence suggests that inflammatory 
signals [i.e., interleukin-6 (IL-6), type 1 interferon] and hypoxia, related to SARS-CoV-2 infection, could 
result to hepatocyte regeneration, compensatory hyperplasia and upregulated expression of ACE2, 
leading to potentially increased hepatic susceptibility to SARS-Cov-2[45,53].

Despite that virus particles have been observed in hepatocytes and molecular pathways of virus 
invasion have been suggested, further evidence is needed to clearly establish the role of direct viral 
infection in liver injury.

Immune-mediated liver injury
COVID-19 infection can trigger uncontrolled immune response, called cytokine storm, which is charac-
terized by exaggerated activation of immune cells and massive production of inflammatory mediators
[54,55]. Indeed, pro-inflammatory cytokines [i.e., IL-1β, IL-2, IL-6, IL-8, tumor necrosis factor-α, 
interferon-α (IFN-α), IFN-γ, granulocyte-macrophage colony-stimulating factor] were increased in 
severe COVID-19 disease[56]. Cytokine storm generates a process leading to tissue damage and even 
multiorgan failure[57]. Due to its anatomical location, liver is highly exposed to circulating cytokines, 
and thus, prone to inflammatory-mediated injury[58]. Furthermore, viral-induced CD8+ T cells provoke 
the activation of Kupfer cells, resulting to T cell-mediated hepatitis[58].

Several studies have demonstrated a correlation between liver injury and increased levels of inflam-
matory mediators in COVID-19 patients. In a recent cohort study of 192 patients, increased IL-6 and IL-
10 Levels and decreased number of CD4+ T cells were identified as independent risk factors for severe 
liver injury[59]. Likewise, in another retrospective cohort study, inflammatory markers, such as IL-6, 
CRP and ferritin, were significantly higher in patients with liver injury[60]. Huang et al[61], conducting 
a retrospective study of 2623 patients, found a positive correlation between IL-6 and liver enzymes (i.e., 
AST, ALT, and GGT), indicating that COVID-19-induced cytokine storm leads to hepatotoxicity. In 
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addition to that, Liao et al[62], suggested that, apart from IL-6, IL-2 and IL17A were also key inflam-
matory factors triggering liver damage.

Hypoxia-reperfusion injury
The liver is a highly aerobic organ, and, thus, it is remarkably susceptible to hypoxia[38]. Patients with 
COVID-19 can be complicated with respiratory failure, acute heart failure and systemic stress, causing 
low oxygen saturation level and/or decreased systemic arterial pressure. As a consequence, arterial 
perfusion and oxygenation of the liver can be reduced, leading to hepatic ischemia and hypoxia-
reperfusion injury[38,63]. Furthermore, systemic inflammatory response, through microvascular 
dysfunction and microthrombosis, could worsen liver hypoxia[38]. Hepatic venous congestion, caused 
by heart failure, or high positive end-respiratory pressure, used in patients with respiratory failure, can, 
also, lead to hypoxic damage in the liver cells[58].

Hypoxic injury involves a biphasic process; ischemic cell damage and reperfusion-associated inflam-
matory response. Lipid accumulation, glycogen consumption, mitochondrial damage and increased 
reactive oxygen species and their peroxidation products lead to cell death, during ischemia[53]. 
Following ischemic injury, reperfusion induces activation of immune response and release of pro-
inflammatory cytokines, resulting in further cell damage[53].

In a retrospective cohort study, hepatocellular injury pattern in COVID-19 patients was associated 
with hypoxia[64]. Likewise, Fu et al[65], in a more recent multicenter retrospective study, confirmed that 
patients with hypoxia were more likely to have abnormal liver function.

Drug-induced liver injury
The liver plays a crucial role in drug metabolism. Several drug metabolites induce liver cell 
apoptosis/necrosis and can lead to liver damage. Drug-induced liver injury (DILI) is often detected by 
liver enzymes tests, using the following thresholds: (1) ALT > 5 times ULN; (2) ALP > 2 times ULN; and 
(3) ALT > 3 times ULN and TBL > 2 times ULN[66]. Based on ALT/ALP ratio, DILI pattern can be 
defined as hepatocellular, cholestatic or mixed. DILI can also be intrinsic, which is dose-dependent and 
predictable, or idiosyncratic, which is unpredictable, with variable latency period[66]. Concerning 
prognosis, DILI ranges from mild to severe or even fatal, with approximately 10% of patients requiring 
liver transplantation[66].

At present, many drugs have been used to treat COVID-19 patients, such as corticosteroids, antiviral 
agents, immunoregulatory factors and antibiotics, leading to potential hepatotoxicity. Systemic corticos-
teroids, especially dexamethasone, were widely prescribed to both outpatients and hospitalized patients 
with COVID-19. Despite that, the prolonged use of corticosteroids is related to side effects (i.e., 
infections, hyperglycemia), DILI is uncommon[67]. Corticosteroids have been associated with liver 
steatosis, hepatomegaly, worsening non-alcoholic fatty liver disease (NAFLD) and exacerbating HBV re-
activation, however, existing literature is limited[67,68]. With regards to COVID-19, Yip et al[69] found 
that the use of corticosteroids was an independent factor of liver injury. However, this association could 
be explained by the fact that patients with more severe disease received corticosteroids.

Remdesivir is an inhibitor of viral RNA-dependent RNA polymerases, used in COVID-19 disease. 
Among its side effects, remdesivir can cause hepatotoxicity, manifested as elevated AST and ALT[67]. In 
most studies, 10%-50% of patients developed mild-to-moderate increase of aminotransferases, while 
levels > 5 times ULN were reported in 9% of patients in clinical trials[70]. Subsequently, remdesivir is 
contraindicated in patients with ALT > 5 times ULN or severe liver dysfunction[71]. The elevation of 
aminotransferases is generally reversible without clinically apparent hepatic dysfunction[67].

Tocilizumab, a humanized anti-interleukin-6 receptor (IL-6R) monoclonal antibody, is indicated in 
hospitalized COVID-19 patients with rapid respiratory deterioration[67]. Elevation of aminotransferases 
has been reported, but it is generally transient, dose-dependent, without significant liver complications
[67,72]. Anakinra, an IL-1 inhibitor, has, also, been used in severe COVID-19, but hepatotoxicity is an 
extremely uncommon side effect. In addition to that, liver enzymes levels did not significantly differ 
between anakinra and placebo in clinical trials[67,73].

More recently, nirmatrelvir/ritonavir has been prescribed in COVID-19 patients, early in the course 
of infection, as a post-exposure protection. In clinical trials, elevation of aminotransferases was 
uncommon or mild in nirmatrelvir/ritonavir group and did not differ from placebo group. However, 
clinical data are still limited and further evidence is needed[74].

Table 1 presents the most studied drugs for COVID-19 and the existing evidence concerning their 
hepatotoxicity.

CHRONIC LIVER DISEASE AND COVID-19
Most studies have not provided sufficient data about the prevalence of underlying chronic liver disease 
(CLD) in COVID-19 patients. However, in a meta-analysis of 73 studies including 24299 COVID-19 
patients, the pooled prevalence of CLD was estimated to be at 3%[75]. Patients with CLD may, already, 
have liver damage and SARS-Cov-2 infection is an additional “hit” to the liver, leading to further liver 
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Table 1 Evidence of hepatotoxicity of most studied and used drugs in coronavirus disease 2019

Drug Mechanism of action Characteristics of LI Risk of 
DILI DILI pattern

Corticosteroids[126] Anti-inflammatory Hepatomegaly, steatosis; triggering/worsening 
NAFLD; reactivation HBV (prolonged adminis-
tration)

Low Hepatocellular or 
mixed

Remdesivir[70] Antiviral; active inhibitor of viral 
RNA-dependent RNA polymerases

Mild-to-moderate ALT and AST elevations; Elevation 
> 5 times ULN in 9% (resolved with discontinuation)

Moderate Hepatocellular

Tocilizumab[72] Anti-IL-6 receptor monoclonal 
antibody

Elevation of ALT and AST; no reports of severe LI or 
HBV reactivation (in COVID-19 trials)

Moderate Hepatocellular

Anakinra[73] IL-1 inhibitor ALT elevation in < 1%; No association with HBV 
reactivation

Low Hepatocellular

Nirmatrelvir/ritonavir
[74]

Antiviral; Inhibitor of the main 
protease of SARS-CoV-2/protease 
inhibitor and potent inhibitor of the 
enzyme CYP 3A4

Mild ALT and AST elevation; no reports of clinical 
apparent LI; limited data

Low Hepatocellular

Molnupiravir[127] Antiviral; prodrug of the ribonuc-
leoside analogue N-hydroxycytidine

Mild ALT and AST elevation; no reports of clinical 
apparent LI; limited data

Low Hepatocellular

Low-molecular-weight 
heparins[128]

Anticoagulant Mild ALT and AST elevation; LI with rapid onset and 
rapid recovery, without clinical symptoms

Low Hepatocellular

NSAIDs[129] Anti-inflammatory Mild, transient and asymptomatic elevation of liver 
enzymes; more common in obese patients with 
comorbidities; reports of acute hepatitis (idiosyn-
gratic, prolonged administration)

Moderate Hepatocellular, 
cholestatic or 
mixed

Acetaminophen[130] Analgesic and antipyretic Dose-dependent; transient and asymptomatic 
elevation of ALT and AST; acute hepatitis and/or 
acute liver failure in overdose

High Hepatocellular

DILI: Drug-induced liver injury; ALT: Alanine aminotransaminase; AST: Aspartate aminotransferase; HBV: Hepatitis B virus; IL-6: Interleukin-6; IL-1: 
Interleukin-1; LI: Liver injury; NAFLD: Non-alcoholic fatty liver disease; ULN: Upper limit of normal; NSAID: Nonsteroidal antiinflammatory drugs.

functional impairment[76]. Although patients with stable CLD, without cirrhosis, are not more 
susceptible to severe COVID-19, those with cirrhosis, alcoholic liver disease (ALD), hepatocellular 
carcinoma (HCC) and NAFLD may be in a greater risk for severe disease with liver injury and poor 
outcome[6,76-78].

Cirrhosis
Patients with cirrhosis may be more susceptible to SARS-CoV-2 infection, due to their immunodeficient 
status, referred as cirrhosis-associated immune dysfunction[79]. In several studies, COVID-19 patients 
with cirrhosis presented worse prognosis, compared to patients without cirrhosis[80-85]. In a large 
multicenter study, including 745 COVID-19 patients with CLD (386 with and 359 without cirrhosis), 
cirrhotic patients exhibited higher mortality rate, compared to those without cirrhosis (32% vs 8%, P < 
0.001)[82]. Mortality was correlated with the stage of liver cirrhosis; 19% in Child- Pugh class A, 35% in 
class B, and 51% in class C. A similar trend was also observed in the rates of ICU admission, mechanical 
ventilation and renal replacement therapy. In the same study, it was noted, that the main cause of death 
was respiratory failure (71%) followed by liver complications[82].

Moreover, COVID-19 patients with cirrhosis are in increased risk for acute decompensation and 
acute-on-chronic liver failure (ACLF)[78]. Sarin et al[86], conducting a multicenter cohort study, found 
that 20% of patients with compensated cirrhosis developed acute decompensation or ACLF during 
COVID-19 disease, while 57% of patients with decompensated cirrhosis had further liver complications. 
Acute decompensation is a common clinical feature in cirrhotic patients during SARS-CoV-2 infection, 
usually presented as new or worsening ascites or hepatic encephalopathy[82]. Interestingly, liver 
complications can also be developed and in the absence of typical symptoms of respiratory system[82,
85].

Non-alcoholic fatty liver disease
Patients with NAFLD usually have other comorbidities, such as diabetes mellitus, obesity, hypertension 
and chronic cardiac disease, which are common risk factors for severe COVID-19[77]. Consequently, it is 
challenging to define an independent effect of NAFLD on COVID-19 and evidence from concomitant 
studies is controversial. More particularly, some studies did not prove an association between NAFLD 
and worse COVID-19 outcomes[87-89]. On the other hand, numerous observational studies demo-
nstrated that NAFLD is related to more severe SARS-CoV-2 infection, while three meta-analyses 
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confirmed this association[90-99]. Despite multiple confounding factors, NAFLD was considered as an 
independent risk factor for severe COVID-19. Hashemi et al[91] found that NAFLD was an independent 
risk factor for ICU admission and mechanical ventilation in COVID-19 patients. In a retrospective case-
control study, NAFLD was associated with COVID-19 severity, irrespective of metabolic syndrome[90]. 
Furthermore, Sachdeva et al[97], in their pooled analysis, reported that NAFLD was a predictor of 
COVID-19 severity, even after adjusting for obesity.

Alcoholic liver disease
Although the existing evidence is limited, few studies demonstrated that ALD is related to increased 
COVID-19 mortality. In a multicenter cohort study of 867 COVID-19 patients, reported that ALD is an 
independent risk factor of higher mortality[100]. Likewise, Marjot et al[82] identified independent 
association between ALD and COVID-19 mortality. Mallet et al[101], also, found that ALD is a risk factor 
of day-30 mortality after COVID-19. The exact mechanism leading to the aforementioned correlation is 
not clear. However, ALD-related immune dysregulation and low nutritional status may have a negative 
impact on the course of SARS-CoV-2 infection[7,79].

Viral hepatitis
The influence of viral hepatitis on COVID-19 severity and COVID-19-related liver injury has not been 
clearly established. COVID-19 patients with chronic hepatitis B (CHB) may have prolonged virus 
shedding and infection[48]. Furthermore, during SARS-CoV infection, replication of hepatitis B virus 
(HBV) was found to be enhanced, inducing more severe liver injury; similar enhancement could be 
noted during SARS-CoV-2 infection[102]. Wang et al[103], in a retrospective cohort study of 437 patients, 
found that those with co-infection SARS-CoV-2/HBV had higher risk of severe disease and mortality. 
Likewise, Zou et al[104] reported that COVID-19 patients with CHB and liver injury were more prone to 
poor outcomes. Nevertheless, other studies did not demonstrate the above associations. Chen et al[105] 
found no difference in terms of liver function and disease severity between COVID-19 patients with 
HBV and those without co-infection. Guan et al[106] also suggested that CHB does not affect COVID-19 
outcome, as only one of 23 patients with CHB developed severe disease. In addition, Yip et al[107] 
demonstrated that current and past HBV infection were not related to higher risk of liver injury or 
mortality.

Due to extended use of immunosuppressive drugs for COVID-19 treatment (i.e., tocilizumab), 
potential re-activation of HBV should be taken into consideration. Although the immunosuppressive 
therapies are short-term and results of clinical trials are contradictory, there are some clinical case 
reports of HBV re-activation in COVID-19 patients after administration of these immunosuppressive 
agents[108].

Of note, COVID-19 pandemic has disrupted the progress in the global hepatitis C virus (HCV) 
elimination program, resulting in delays in diagnosis and HCV therapy, which could extend the direct 
COVID-19-related morbidity and mortality in these patients[109].

Autoimmune liver disease
Although immunosuppressive therapy, used in patients with autoimmune liver diseases, could be 
associated with higher risk of severe disease, there is no evidence that patients with autoimmune 
hepatitis (AIH), primary biliary cholangitis (PBC) or primary sclerosing cholangitis (PSC) are more 
prone to SARS-CoV-2 infection[6,77]. In a phone-based survey, there was no difference in percentage of 
COVID-19 diagnosis in patients with autoimmune liver diseases and the general population. Most of 
patients reported a favorable disease outcome in the same survey[110]. Data derived from three 
multinational registries (SECURE-Cirrhosis, COVID-Hep and ERN RARE-LIVER) revealed that patients 
with AIH had increased risk of hospitalization compared to patients with other CLD, but there was no 
difference in adverse outcome, including ICU admission and death, despite the immunosuppressive 
treatment[111]. However, a recent retrospective study of 254 patients with COVID-19 and AIH 
demonstrated that baseline treatment with corticosteroids or azathioprine was associated with COVID-
19 severity[112]. Evidence for patients with PBC and PSC is limited and no defined association with 
COVID-19 severity has been established yet[7].

Hepatocellular carcinoma
COVID-19 patients with may have a high risk for poor outcomes. Due to chemotherapy/immuno-
therapy, HCC patients are immunosuppressed, and, subsequently, vulnerable to severe SARS-CoV-2 
infection[102]. Furthermore, most HCC patients have an underlying CLD (i.e., cirrhosis, ALD etc.), and 
as a result, they are already identified as a high-risk group[102]. However, the corresponding literature 
is limited. A small retrospective study of 28 cancer patients with COVID-19, including 2 HCC patients) 
found that these patients had worse prognosis compared to general population[113].
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VACCINATION AGAINST SARS-COV-2 IN CHRONIC LIVER DISEASE
Different types of SARS-CoV-2 vaccines have been developed, such as mRNA vaccines, adenoviral-
vectored vaccines and inactivated vaccines. In general, patients with CLD may exhibit lower immune 
response to vaccination; according to previous studies, rate of seroconversion after HBV vaccine and 
cell-mediated immunity were reduced in cirrhotic patients[114,115]. Regarding efficacy, although trials 
of both mRNA vaccines included few patients with underlying CLD, they reported significant efficacy 
in the subgroup with coexisting comorbidities[116,117]. Of note, in a large retrospective cohort study of 
cirrhotic patients, a single mRNA vaccine dose appeared to reduce not only rates of SARS-CoV-2 
infection, but also, rates of hospitalization and mortality[118]. With regard to safety, none of vaccine 
contain living virus, and subsequently, they can be used even in immunosuppressed patients[119]. 
Moreover, no significant liver-associated side effects have been reported in the vaccinated population
[120]. Given that benefits outweigh the potential risks, European Association for the Study of the Liver 
(EASL) and American Association for the Study of Liver Diseases (AASLD) recommend that patients 
with CLD should be vaccinated against SARS-CoV-2[121,122].

MANAGEMENT OF LIVER INJURY IN COVID-19
Liver injury in COVID-19 is usually mild and resolves spontaneously without any special treatment
[77]. If present, hypoxia and circulatory failure should be regulated with standard symptomatic support 
(i.e., oxygen therapy, intravenous fluids) in order to prevent further liver damage[45,123]. If liver injury 
persists, underlying chronic liver disease should be suspected[124]. With regard to DILI, there are no 
specific management guidelines. Discontinuation or dose’s reduction of suspected medication is the 
most effective treatment in case of DILI, as the only available antidote is N-acetylcysteine for 
acetaminophen overdose[67]. In the case of severe COVID-19, benefits and risks have to be weighed in 
order to decide discontinuation of systematic treatment. This dilemma hardly arises for pharmaceutical 
agents which need short administration, such as remdesivir and tocilizumab[67]. Standard guidelines 
and supportive therapy should be followed for management of acute liver failure[67].

Regarding chronic liver diseases, comprehensive recommendations related to COVID-19 mana-
gement have been published by EASL-ESCMID and AASLD[124,125]. Cirrhotic patients with acute 
decompensation or ACLF have to be tested for COVID-19, even without any other symptom[125]. 
Patients with HBV or HCV and SARS-CoV-2 coinfection should continue antiviral therapy, while in 
COVID-19 patients with chronic, occult or resolved HBV, who receive immunosuppressive agents (i.e., 
tocilizumab, corticosteroids), clinicians have to consider and prevent potential HBV re-activation[124,
125]. In COVID-19 patients with AIH, discontinuation or reduction of immunosuppressive agents is not 
recommended. Reduction is considered in special cases, such as severe COVID-19 and bacterial/fungal 
co-infection, or severe lymphopenia[124,125].

CONCLUSION
Liver abnormalities are common in COVID-19 patients, especially in patients with severe and critical 
disease. The pathogenesis of liver injury may be multifactorial involving direct cytopathic viral effect, 
inflammatory storm, hypoxic/hypoperfusion injury and drug hepatotoxicity. Liver injury is usually 
mild and transient; however, some cases of severe liver injury and acute liver failure have been 
reported. Although, patients with stable chronic liver disease are not more vulnerable to SARS-CoV-2 
infection, patients with cirrhosis, ALD, NAFLD and HCC have higher risk for severe COVID-19 and 
liver damage. Specific management issues should be taken into consideration during COVID-19 
treatment in patients with underlying CLD. Further investigation is needed in order to clarify the 
association between SARS-CoV-2 and liver dysfunction, in terms of prognosis, pathophysiology and 
treatment.
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Abstract
There is great heterogeneity among inflammatory bowel disease (IBD) patients in 
terms of pathogenesis, clinical manifestation, response to treatment, and 
prognosis, which requires the individualized and precision management of 
patients. Many studies have focused on prediction biomarkers and models for 
assessing IBD disease type, activity, severity, and prognosis. During the era of 
biologics, how to predict the response and side effects of patients to different 
treatments and how to quickly recognize the loss of response have also become 
important topics. Multiomics is a promising area for investigating the complex 
network of IBD pathogenesis. Integrating numerous amounts of data requires the 
use of artificial intelligence.

Key Words: Inflammatory bowel diseases; Precision management; Multiomics; Artificial 
intelligence
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Core Tip: Inflammatory bowel diseases (IBDs) exhibit different pathogeneses and clinical manifestations. 
Making precise and appropriate therapeutic decisions according to the condition of each patient remains 
challenging. We summarize the clustering strategies, the approaches used to apply multiomics and 
artificial intelligence to IBD precision management.
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INTRODUCTION
Since it was first proposed in 2011[1], the concept of precision medicine has become increasingly 
popular and attracted much attention. Great progress has been made, especially in the treatment of 
cancer. Precision medicine typically refers to the use of targeted therapy based on etiology and 
mechanism. The essence of the idea involves classifying individuals with common characteristics into 
the same subgroup using specific clinical features, treatment features and prognoses. Thus, this strategy 
should actually combine a wide array of data, including clinical, genetic and environmental infor-
mation, as well as multiple types of biomarkers[2]. These efforts would add to the objectivity and 
flexibility of treatment decision-making.

Inflammatory bowel disease (IBD) is a group of intestinal disorders of unknown etiology charac-
terized by inflammation that arises from a complex interaction between genetic and environmental 
factors and immune responses[3]. An increasing number of studies have reported on the great hetero-
geneity of IBD patients in terms of pathogenesis, clinical manifestation, response to treatment and 
prognosis, and IBD is currently regarded as a continuous spectrum of diseases[4]. The introduction of 
biologics has greatly improved the quality of life of IBD patients, which also embodies precision 
medicine to some extent. However, due to the complexity of pathogenesis, targeting only immune 
pathways without addressing the genome or microbiome may result in limited success[5]. The 
treatment strategies used are largely based on evidence from clinical trials, which typically do not 
stratify patients with enough precision. Additionally, the frequency of treatment may be indicated for a 
certain population, but this approach might not be the most suitable for an individual. Compared to the 
oncology field, there is still much room for precision medicine development in IBD.

In this review, we discuss the strategies used to categorize IBD patients and biomarkers for 
identifying these subgroups. We suggest that applications of multiomics and artificial intelligence (AI) 
approaches could facilitate the precision management of IBD patients (Figure 1).

THE HETEROGENEITY OF IBD AND CLUSTERING STRATEGIES FOR IBD PATIENTS
Phenotype refers to the traits that can be observed in patients, and deep phenotyping plays a key role in 
the progress of precision medicine[2]. In other disease contexts, there is also the concept of endotype, 
which is defined as the molecular mechanism underlying the visible phenotype[6]. However, clustering 
phenotypes and endotypes remains difficult in the context of IBD due to heterogeneity.

The Montreal classification is the most widely used clinical classification of IBD and considers age at 
diagnosis, location and behavioral factors[7]. The characteristics and natural history of IBD seemed to 
vary depending on the age of onset[8]. Very early onset IBD (VEO-IBD), defined as IBD occurring in 
those who are diagnosed under the age of 6 years and sometimes exhibiting a more aggressive disease 
pattern, seemed to have stronger genetic triggers with less environmental influence[9]. In addition, 
complications or extraintestinal organ involvement can also be used to identify some unique subsets of 
IBD patients. For example, IBD patients who experienced complications with primary sclerosing 
cholangitis (PSC) have been shown to exhibit higher rates of colectomy, cancer and death than non-PSC-
IBD patients[10]. However, current clinical classification is far from the precise identification of IBD 
phenotypes.

Some specific genetic factors have been found to determine disease progression, which is difficult to 
assess by clinical manifestations. Next-generation sequencing has been used to identify more than 100 
monogenic causes that could manifest as IBD-like phenotypes. The genes involved in monogenic IBD 
disorders are generally classified into six categories according to the mechanisms: Epithelial barrier 
defects; T-cell and B-cell defects; hyperinflammatory and autoinflammatory disorders; phagocytic 
defects; immunoregulation defects; and others[11]. For example, mutations in the IL-10 pathway could 
lead to neonatal or infantile VEO-IBD with severe enterocolitis and crissum disease by impairing IL-10-

https://www.wjgnet.com/1007-9327/full/v29/i2/272.htm
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Figure 1 Flow gram of the precision management strategies of inflammatory bowel disease. IBD: Inflammatory bowel disease; PSC: Primary 
sclerosing cholangitis; VEO: Very early onset.

mediated control of inflammatory responses involving IL-1 and IL-23. Mutations in CYBB could lead to 
chronic granulomatous disease characterized by intestinal inflammation and autoimmune disease due 
to impaired antimicrobial activity caused by defects in NADPH oxidase[12,13]. Conventional treatment 
in patients with the subsets of IBD that are largely driven by genetic factors often exhibit unsatisfactory 
efficacy, and these patients have poor prognosis. These various mechanisms that underlie the effects of 
monogenic mutations also have some crossover with the mechanisms involved in sporadic and 
multifactorial IBD, which reflects the divergence and convergence of the mechanisms. For precision 
treatment of IBD, strategies should not be limited to therapies targeting upstream etiology; therapy 
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based on more superficial mechanisms should also be pursued.
The etiology of monogenic causes, which account for only a small percentage of IBD cases, is 

complex, but sporadic IBD involves many more factors. More than 260 risk loci have been identified to 
be associated with sporadic IBD by genome-wide association studies (GWASs)[14], yet these loci only 
explained approximately 20% of the genetic heritability in complex adult-onset IBD[15]. This finding is 
easy to understand because there are also environmental, microbiota or other factors involved in the 
pathogenesis of IBD. IBD cannot be classified by a single factor, but the application of biomarkers can 
aid in the advancement of the precision management of IBD to some extent.

BIOMARKERS
Due to the rising incidence of IBD and the inconvenience of endoscopy, there is an urgent need for 
noninvasive, accessible and cost-efficient biomarkers. Precision medicine should cover the whole 
management process of IBD patients, including the early identification of patients at potential risk for 
disease progression and enabling appropriate adjustments in response to ongoing assessments of 
treatment efficacy. Such a strategy should be a highly sophisticated process, not just the endpoint of a 
single stratification approach[16]. Accordingly, we reviewed two categories of biomarkers (mainly from 
serum and feces) for IBD: Those used to identify disease progression risk and activity and those used to 
predict treatment responses.

Identifying disease progression risk and activity
C-reactive protein (CRP) is the most widely used serum biomarker for inflammation in IBD[17]. It 
reflects both clinical disease activity and endoscopic inflammation in IBD patients[18]. Additionally, the 
level of CRP is not influenced by treatments and thus is also suitable for monitoring treatment response
[19]. However, it is not a specific biomarker, and its levels might be elevated in other diseases, including 
noninflammatory conditions. Additionally, up to 25% of Crohn’s disease (CD) patients with endoscop-
ically proven activity could not be identified by CRP[20]. Fecal calprotectin (FC) is another important 
noninvasive biomarker widely used in clinical practice. In the assessment of endoscopically defined 
disease activity in IBD, FC analysis exhibits higher sensitivity in the context of both ulcerative colitis 
(UC) and CD, especially in UC[21,22]. In particular, FC analysis could be used in the early prediction of 
relapse risk 6 and even 12 mo in advance[23]. A meta-analysis reported 78% sensitivity and 73% 
specificity when using FC at remission to predict IBD relapse, with cutoffs varying between 120 μg/g 
and 340 μg/g[24]. However, this biomarker also faces the problem of limited specificity; inflammation 
in the gut that is not associated with IBD, such as during infection, necrotizing enterocolitis and drug-
induced enteropathy, could confound the results[25]. For patients with borderline FC levels, combining 
FC analysis with other metrics, such as clinical activity indices or CRP levels, could help the assessment
[26]. The levels of serum calprotectin (SC), as an indirect marker of inflammatory activity in UC[27], can 
indicate the involvement of other extraintestinal organs. Another well-accepted fecal biomarker is fecal 
lactoferrin (FL), the levels of which could also reflect IBD activity and be used to predict disease relapse. 
Unlike the analysis of FC levels, the advantage of FL is its specificity[28], and combined analysis of these 
biomarkers might result in better assessment. In addition, some secondary biomarkers measured using 
simple laboratory tests, such as the CRP-albumin ratio, neutrophil-lymphocyte ratio (NLR), platelet-
lymphocyte ratio (PLR) and lymphocyte-monocyte ratio (LMR), can also be used to infer the activity of 
IBD[29,30].

In recent years, an increasing number of novel serum and fecal biomarkers with application potential 
have been discovered. The levels of leucine-rich glycoprotein, a glycoprotein that is also related to IBD 
activity, could be elevated in patients with normal CRP levels during the active period of UC[31]. Some 
serum antibodies resulting from autoimmunity and loss of immune tolerance to microbial antigens have 
been considered in the diagnosis and assessment of IBD[32]. For example, anti-Saccharomyces cerevisiae 
antibody (ASCA) and perinuclear anti-neutrophil cytoplasmic antibody (pANCA), which are antibodies 
of microbial antigens and autoantibodies, respectively[33], are two extensively studied antibodies with 
high specificity for IBD[34]. They could help identify potential CD patients five years before diagnosis 
when combined with the analysis of other protein markers[35]. In addition to enabling diagnosis, a 
higher ASCA titer was related to more aggressive fibrosis and stenosis and internal penetrating disease 
behaviors[36], while the pANCA titer changed with the activity of UC[37]. In addition, cytokines such 
as granulocyte colony-stimulating factor were associated with endoscopically active disease[38], while 
IL-6 and IL-2 Levels could also be used to predict the course of disease relapse 12 mo in advance in 
quiescent CD patients[39]. Circulating noncoding RNAs, including microRNAs (miRNAs) and long 
ncRNAs (lncRNAs), also play a role in IBD, and the analysis of miRNAs might help monitor disease 
activity and stricture phenotypes[32]. Other newly emerging biomarkers for disease progression risk 
and activity include cathelicidin[40], trefoil factor 3[41], and 25-hydroxyvitamin D3[42]. Several 
extracellular matrix (ECM) components and growth factors are important biomarkers indicating 
intestinal fibrosis and stenosis[32]. The analysis of fecal biomarkers, cytokines and other indicators of 
inflammation could also help with the identification of IBD activity[43]. Fecal myeloperoxidase, another 
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biomarker related to neutrophil inflammation in addition to FC, was recently reported to accurately 
indicate endoscopic activity in IBD and predict the disease course during follow-up[44]. However, all 
these novel biomarkers are mainly used in research and remain far from clinical use (Table 1).

Predicting treatment responses
The mainstream therapeutic drugs for IBD include aminosalicylates (ASAs), glucocorticoids (GCs) and 
immunosuppressive agents[45]. The treatment of IBD has greatly advanced since the recent introduction 
of biologics, including tumour necrosis factor-α (TNF-α) inhibitors (such as infliximab and adali-
mumab), integrin inhibitors (such as vedolizumab and etrolizumab) and IL-12/IL-23 inhibitors (such as 
ustekinumab). However, selecting among these therapies largely depends on the clinical characteristics, 
comorbidities, and patients’ preferences or concerns, and this decision-making process lacks a uniform 
objective standard for indicating the path of treatment. Thus, effective biomarkers for predicting 
treatment responses are urgently needed.

For 5-ASA, a multicenter prospective cohort study in pediatric UC patients developed a predictive 
model with initial clinical activity and early treatment response to 5-ASA to predict long-term corticos-
teroid-free remission[46]. The baseline FC level and UC endoscopic index of severity could be used to 
predict the early outcome of GCs treatment[47].

Clinical responses to biologics are even more varied. However, the application of biologics is usually 
tried in a certain order by experienced physicians without effective biomarkers used to influence the 
selection of different kinds of biologics, which is of concern in research. Some laboratory test results are 
taken into consideration. For example, a clinical trial revealed that using CRP and FC levels in 
combination with clinical symptoms could result in better clinical and endoscopic outcomes than 
considering only clinical symptoms[48]. These downstream indicators of active inflammation could 
suggest a response to anti-inflammatory TNF-α inhibitors, but they are still not enough for accurate 
prediction of the likelihood of remission in a given patient in a real clinical environment[49]. Thus, we 
need to explore more biomarkers that could reveal the molecular heterogeneity of patients treated with 
different biologics.

Existing biologics can be briefly classified into two groups according to underlying mechanisms: 
inhibitors of cytokines and inhibitors of lymphocyte migration. TNF-α is considered to be a downstream 
inflammatory pathway effector in multiple immune-related diseases[50]. It is rational to speculate that 
IBD patients with increased TNF-α levels might have a good response to anti-TNF-α agents. Detecting 
membrane-bound TNF (mTNF) by endoscopy with the aid of fluorescence labeling has been used to 
successfully predict the efficacy of anti-TNF-α treatment[51]. Another study also reached this goal by 
measuring the TNF production capacity of peripheral blood mononuclear cells (PBMCs)[52]. A lack of 
response to anti-TNF-α therapy might indicate the activation of other inflammatory pathways. Baseline 
levels of serum oncostatin M, a member of the IL-6 family that might mediate inflammation in another 
manner, have been reported to be elevated in anti-TNF-α nonresponders and could be used to predict 
the efficacy of this treatment[53,54]. In addition, low triggering receptor expressed on myeloid cells 1 
(TREM1) expression in both whole peripheral blood samples and intestinal biopsy samples, which 
indicated a complete macrophage autophagy pathway, could be used to predict a good anti-TNF 
response in IBD patients[55]. Antibodies including anti-drug antibodies (ADA), pANCA and anti-
OmpC (Escherichia coli outer membrane porin) were also found to be associated with the response to 
infliximab[56]. In the aspect of relapse after discontinuation of anti-TNF therapy, mucosal TNF gene 
expression and IL1RL1-transcripts might play a role[57].

The IL23/Th17 pathway is also a central cytokine pathway involved in IBD in addition to TNF-α. The 
levels of IL-22 and IL-17, the downstream factors involved in this pathway, are potential molecular 
predictors of the response to IL-23 blockers[58]. Another category of biologics for IBD is integrin 
inhibitors, which act by inhibiting gut-selective lymphocyte homing. The most widely used integrin 
inhibitor, vedolizumab, works by blocking the binding of the α4β7 integrin heterodimer on lymphocytes 
to MAdCAM1 on the gut[59]. Higher expression levels of α4β7 on T, B, and NK cells as well as the 
presence of α4β7+ intestinal mucosa cells could be used to predict responses to vedolizumab[60,61]. 
However, the predictive role of serum α4β7, VCAM-1 and ICAM-1 remains controversial[62,63]. In 
addition, higher IL-6 and IL-8 Levels have been reported to be associated with the response to 
vedolizumab[64] (Table 2).

Sometimes, simply by assessing early responses to biologics, we can judge the potential future 
efficacy to some extent[65]. Therapeutic drug monitoring (TDM) is another tool for the assessment of 
biologic therapeutic outcomes based on the findings that drug concentrations correlate with biologic 
efficacy. However, due to the long time required for detection and the lack of an instructive reference 
range, there is still no consensus for the use of TDM[66,67].

FUTURE OF PRECISION MANAGEMENT IN IBD: MULTIOMICS
In addition to simple serum and fecal biomarkers, emerging high-throughput analytical technologies 
offer opportunities for the improved management of IBD. Omics strategies, often including genomics, 
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Table 1 Biomarkers of serum or feces identifying disease progression risk and activity

Sample Biomarker Outcome Characteristic

CRP[17-20] Monitor disease activity and mucosal 
healing

Widely used and low-cost; lack of specificity 
for intestinal inflammation; relatively low 
sensitivity

SC[27] Disease burden, prognosis, and relapse More representative of systemic inflam-
mation

LRG[31] Monitor disease activity and mucosal 
healing

More correlated to activity in UC than CRP

Serum antibodies

ASCA[35,36] More aggressive fibro stenosing and 
internal penetrating disease behaviors

CD specificity

pANCA[35,37] UC disease activity UC specificity

Cytokines

G-CSF, IL-1Ra, PDGF-BB[38] Endoscopically active disease -

IL-6, IL-2[39] Predict disease relapse in quiescent CD -

Noncoding RNAs[32] Monitor disease activity and stricture 
phenotypes

-

ECM components[32] Intestinal fibrosis and stenosis -

Growth factors[32] Intestinal fibrosis and stenosis -

Cathelicidin[40] Mucosal disease activity in UC, risk of 
intestinal stricture in CD, and clinical 
prognosis in IBD

-

Trefoil Factor 3[41] Monitor disease activity -

Vitamin D[42] Disease activity -

Serum

Secondary biomarkers (CRP-
albumin ratio, NLR, PLR, LMR)[29,
30]

IBD activity Easy to obtain; fluctuates greatly

FC[21-26] Monitor disease activity and mucosal 
healing; early prediction of relapse risk

Higher sensitivity than CRP; confounding of 
non-IBD gut inflammation

FL[28] Monitor disease activity and predict 
disease relapse

Higher specificity than fecal calprotectin

Feces

MPO[44] Endoscopic activity in IBD and predict the 
disease course during follow-up

-

ASCA: Anti-Saccharomyces cerevisiae antibody; CD: Crohn’s disease; CRP: C-reactive protein; ECM: Extracellular matrix; FC: Fecal calprotectin; FL: Fecal 
lactoferrin; G-CSF: Granulocyte colony-stimulating factor; IL-1Ra: Interleukin 1 receptor antagonist; IBD: Inflammatory bowel disease; LMR: Lymphocyte-
monocyte ratio; LRG: Leucine-rich alpha-2 glycoprotein; MPO: Myeloperoxidase; NLR: Neutrophil-lymphocyte ratio; pANCA: Perinuclear anti-neutrophil 
cytoplasmic antibody; PDGF-BB: Platelet-derived growth factor BB; PLR: Platelet-lymphocyte ratio; SC: Serum calprotectin; UC: Ulcerative colitis.

transcriptomics, proteomics, metabolomics, epigenomics and microbiomics, have completely 
transformed the trajectory of medicine. These different omics approaches might also provide some 
insights into IBD from different perspectives.

Genomics
Genomics aims to characterize and quantify all the genetic information of an organism. Numerous 
variations in factors of genetic susceptibility involved in many complex diseases have been identified. 
Different genes have been reported to associate with IBD severity and activity. NOD2/CARD15 is the 
most classic CD-related gene found in Western countries[68,69] and is also associated with stricturing 
behaviors and the need for operation[70,71]. However, it was not found to be related to CD 
development in East Asian cohorts[72]. Regarding UC, a GWAS developed a risk score based on 46 
single nucleotide polymorphisms to identify medically refractory UC that needed colectomy[73]. 
Regarding therapeutic efficacy, HLA-DQA1*05 carriage was reported to be associated with ADAs for 
TNF-α inhibitors in CD and suggested the need for combination therapy[74]. In addition, polymor-
phisms in TLR2, TLR4, TLR9, TNFRSF1A, IFNG, IL6, IL1B, TNF-α and apoptosis-associated genes (Fas 
ligand and caspase-6) were also potential genetic biomarkers for the anti-TNF treatment response[75-
77]. HLA-DQA1-HLA-DRB1, nudix hydrolase 15 and thiopurine-S-methyltransferase variants were 
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Table 2 Biomarkers predicting treatment responses

Type of agent Biomarker Sample Outcome

5-ASA Initial clinical activity, early treatment 
response of 5-ASA[46]

- Predict long-term corticosteroid-free 
remission

GCs FC, UCEIS[47] Feces Predict the early outcome of GCs treatment

Biologics

mTNF[51] Endoscopy Predict anti-TNF-α efficacy

TNF production capacity of PBMCs[52] Blood Predict anti-TNF-α efficacy

OSM[53,54] Serum Upregulate in anti-TNF-α non-responders

TREM1 expression[55] Blood and intestinal biopsies Predict anti-TNF-α efficacy

Antibodies: ADA, pANCA, anti-OmpC
[56]

Serum Associate with the response to infliximab

TNF-α inhibitors

Mucosal TNF gene expression and 
IL1RL1- transcripts[57]

Intestinal biopsies Predict long-term remission after discon-
tinuation of anti-TNF-α therapy

IL-23 inhibitors IL-22, IL-17[58] Serum Predict anti-IL-23 efficacy

α4β7 on T, B, and NK cells[60,61] Blood and endoscopy Predict responses to vedolizumab

α4β7, VCAM-1, ICAM-1[62,63] Serum Remain controversial

Integrin inhibitors

IL-6, IL-8[64] Serum Associate with the response to vedolizumab

ADA: Anti-drug antibodies; ASA: Aminosalicylates; FC: Fecal calprotectin; GCs: Glucocorticoids; ICAM-1: Intercellular adhesion molecule-1; mTNF: 
Membrane-bound tumour necrosis factor; OmpC: Escherichia coli outer membrane porin; OSM: Oncostatin M; pANCA: Perinuclear anti-neutrophil 
cytoplasmic antibody; PBMC: Peripheral blood mononuclear cell; UCEIS: Ulcerative Colitis Endoscopic Index of Severity; VCAM-1: Vascular cell adhesion 
molecule-1; TREM1: Triggering receptor expressed on myeloid cells 1.

found to be associated with thiopurine-related adverse events[53]. However, the utility of genomics 
alone is limited due to the complexity of IBD pathogenesis.

Transcriptomics/proteomics/epigenomics: From genes to phenotypes
In exploring the pathogenesis of complex diseases such as IBD, the limitations of using a single 
genomics approach are becoming increasingly apparent. The same gene variation might lead to distinct 
phenotypes by epigenetic modification and transcriptional and translational regulation. Transcrip-
tomics, proteomics and epigenomics could better reflect the gene expression profiles, which combine 
genetic and environmental factors and thus perform better than simple genomics.

In particular, numerous transcriptomic studies have provided insights into the prediction of IBD 
progression. Researchers found that the expression of ECM accumulation-associated genes in the ileum 
was associated with stricturing behaviors in pediatric CD patients. After combining age, race, disease 
location, and antimicrobial serology factors, they established a competing-risk model that reached a 
specificity of 71%[78]. However, ileum samples are difficult to access, which poses a barrier to the utility 
of this approach. Studies on blood samples are thus warranted. Transcriptional profiling of circulating 
CD8+ T cells successfully distinguished patients with a risk of aggressive disease mainly based on the 
expression of genes involved in T-cell responses[79]. Furthermore, this classification was also feasible 
for use in whole blood samples with transcriptional signatures based on 17 genes[80]. The transcrip-
tional risk score, which represented the summation of risk alleles for CD from ileum or blood samples, 
could be used to identify patients who would progress to complicated disease[81]. Regarding treatment, 
UC patients could be clustered into different groups with distinct transcriptomic profiles of the rectum 
and showed different responses to anti-TNF therapy[82].

Unlike transcriptomics, the use of proteomics in the context of IBD is still in its infancy. Some studies 
have sought to detect proteins involved in early inflammatory mechanisms of IBD, and some proteome 
analyses have been performed in studies with small sample sizes to investigate the differentiation of 
disease behavior as well as the prediction of response to biological treatment[83,84]. In the Proteomic 
Evaluation and Discovery in an IBD Cohort of Tri-service Subjects (PREDICTS) study, a series of protein 
biomarkers involved in the complement cascade, lysosomes, innate immune response, and glycosa-
minoglycan metabolism along with some antibodies were able to be used to predict potential CD 
patients 5 years in advance[35]. Another study revealed that MMP10, CXCL9, CXCL11, and MCP1 were 
upregulated in UC patients before disease onset[85]. However, there is still a long way to go before 
these approaches are applied clinically.
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Epigenetic mechanisms mainly include DNA methylation, histone modifications, and noncoding 
RNAs. The complement of methylated DNA in the genome is called the methylome. Epigenetic 
alterations have been detected when IBD patients were compared with healthy individuals[86]. The 
number of epigenomic studies investigating IBD subgroup identification is still limited. The earliest 
finding observed in this area involved the assessment of cancer risk in the context of UC[87]. In future 
research, epigenomics studies might provide useful biomarkers for the early detection of cancer 
development in UC patients.

Microbiomics: Perspective of the environment
All of the above strategies provide omics analysis of the host. As mentioned previously, the gut 
microbiota, as an environmental factor, also plays an important role in the pathogenesis of IBD. Due to 
the convenience of fecal sample collection, microbiomics is promising for monitoring and managing IBD 
patients. The microbiota might also be able to be used to predict relapse risk. For example, a deficit in 
some bacterial groups or species, such as Faecalibacterium prausnitzii and Bacteroides, could be a 
predictive factor for relapse of CD after ileal resection or infliximab cessation[88,89]. Another study 
revealed that Ruminococcus and Veillonella were associated with stricturing and penetrating complic-
ations, respectively[78]. A recent prospective study classified CD patients into different subgroups with 
different clinical relapse risk based on microbiota[90]. Additionally, microbial analysis revealed distinct 
microbiota compositions between patients with different responses to anti-TNF-α therapy[84,91] as well 
as anti-integrin therapy[92]. Furthermore, manipulation of the microbiota might be a direction for IBD 
treatment.

However, this method is easily influenced by environmental factors such as diet and confounded by 
the causal relationship between microbiota and IBD; thus, its reliability is questionable. Recent findings 
are still at a superficial stage of providing simple differences in microbial abundance, and there has been 
a lack of in-depth analysis of microbial networks and microbiota-host interactions, as well as solid and 
effective prediction models.

Metabolomics
Metabolomics generally includes serum and fecal metabolomics. As a combination of host metabolic 
factors and environmental gut microbiota factors, it is also a potential technique for use in future IBD 
research and clinical practice. Several studies have applied metabolic profiling for the diagnosis and 
classification of IBD[32]. A serum metabolomics study identified altered lipid and amino acid 
metabolism in parallel with CD activity[93]. Short-chain fatty acids (SCFAs) have been widely validated 
to be beneficial metabolites[94], among which butyrate is one of the most important. Studies have 
confirmed that fecal SCFA levels were reduced during active IBD[95]. Butyrate levels were associated 
with the efficacy of azathioprine, TNF-α inhibitors and integrin antibodies[92,96,97]. Other metabolites, 
such as bile acids and tryptophan, are also worth studying for future use[94].

APPLICATION OF ARTIFICIAL INTELLIGENCE FOR INTEGRATED OMICS
Due to the complexity of IBD pathogenesis, interpretation of a single set of omics data often fails to 
provide insight into complex biological phenomena; thus, the omics approaches discussed above must 
be considered as a whole. Integrating multiple omics strategies into a network would contribute to the 
elucidation of the pathway involved in pathogenesis and facilitate the identification of different 
subgroups and the optimization of therapy regimens in IBD. The analysis of different molecules, 
including at the genomic, transcriptomic, proteomic, microbiome, epigenetic and metabolomic levels, 
could be performed simultaneously, and the results could be further integrated into multiomics models
[98]. By this approach, we could obtain more insight into disease pathogenesis, identify more promising 
predictive biomarkers and facilitate early diagnosis[99]. Some multiomics projects are ongoing and are 
investigating IBD heterogeneity to improve precision management[53].

These high-throughput data need to be modeled by AI algorithms with the aid of advanced computa-
tional techniques. Machine learning is a subset of AI where machines can learn from experience 
provided by the data without the need for programming. Machine learning includes supervised and 
unsupervised algorithms. Supervised algorithms are often used for classification or prediction using 
example data, while unsupervised algorithms are often used for clustering according to similarity[100]. 
These approaches could be well applied to address the need for patient clustering and predictions and 
the detection of novel biomarkers. Progress made in machine learning has benefited the integrated 
analysis of multiomics data; these strategies mainly include concatenation-, model- and transformation-
based methods[101]. In addition, deep neural networks have been used in the integration of multiomics 
data for the prediction of drug efficacy in cancer therapy[102], which indicates progress may be made in 
the context of IBD.

However, due to the obscure nature of machine learning, the robustness of the models established is 
sometimes uncertain. Thus, testing in independent cohorts and even clinical trials are needed before this 
approach is employed in a clinical setting. Additionally, products that are easy to implement in clinical 
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settings need to be developed from research.

CONCLUSION
The pathogenesis of IBD remains uncertain, which challenges the clustering and precision management 
of patients. Genetic, environmental and immune factors are all involved in the complex process of IBD 
development. Thus, the future direction of IBD management may largely rely on the development of 
multiomics analysis. Numerous data processing workflows require the help of AI.
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Abstract
Liver cancer is the sixth most commonly diagnosed cancer worldwide, with 
hepatocellular carcinoma (HCC) comprising most cases. Besides hepatitis B and C 
viral infections, heavy alcohol use, and nonalcoholic steatohepatitis (NASH)-
associated advanced fibrosis/cirrhosis, several other risk factors for HCC have 
been identified (i.e. old age, obesity, insulin resistance, type 2 diabetes). These 
might in fact partially explain the occurrence of HCC in non-cirrhotic patients 
without viral infection. HCC surveillance through effective screening programs is 
still an unmet need for many nonalcoholic fatty liver disease (NAFLD) patients, 
and identification of pre-cirrhotic individuals who progress to HCC represents a 
substantial challenge in clinical practice at the moment. Patients with NASH-
cirrhosis should undergo systematic HCC surveillance, while this might be 
considered in patients with advanced fibrosis based on individual risk 
assessment. In this context, interventions that potentially prevent NAFLD/ 
NASH-associated HCC are needed. This paper provided an overview of evidence 
related to lifestyle changes (i.e. weight loss, physical exercise, adherence to healthy 
dietary patterns, intake of certain dietary components, etc.) and pharmacological 
interventions that might play a protective role by targeting the underlying 
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causative factors and pathogenetic mechanisms. However, well-designed prospective studies 
specifically dedicated to NAFLD/NASH patients are still needed to clarify the relationship with 
HCC risk.

Key Words: Nonalcoholic fatty liver disease; Nonalcoholic steatohepatitis; Hepatocellular carcinoma; Risk 
stratification; Lifestyle interventions; Prevention

©The Author(s) 2023. Published by Baishideng Publishing Group Inc. All rights reserved.

Core Tip: Nonalcoholic fatty liver disease (NAFLD) is a public health problem, especially in developed 
countries. This condition, depending on certain associated risk factors, can ultimately lead to liver 
cirrhosis and hepatocellular carcinoma (HCC). Having the necessary tools and knowing the characteristics 
of patients in whom the disease progresses more quickly, effective monitoring programs can be developed. 
Primary prevention of NAFLD/nonalcoholic steatohepatitis (NASH)-associated HCC relies on controlling 
the main modifiable risk factors. Some pharmacological (e.g., metformin, statins, aspirin) and non-
pharmacological interventions (weight loss, physical exercise, healthy diet, avoiding heavy drinking and 
smoking) might have protective effects. Herein, we emphasized the need for continued investigations to 
find the optimal methods for NAFLD/NASH-associated prevention.

Citation: Cernea S, Onișor D. Screening and interventions to prevent nonalcoholic fatty liver disease/nonalcoholic 
steatohepatitis-associated hepatocellular carcinoma. World J Gastroenterol 2023; 29(2): 286-309
URL: https://www.wjgnet.com/1007-9327/full/v29/i2/286.htm
DOI: https://dx.doi.org/10.3748/wjg.v29.i2.286

INTRODUCTION
Primary liver cancer was estimated to be the fourth leading cause of cancer-related deaths and the sixth 
most commonly diagnosed cancer in 2018 worldwide, with hepatocellular carcinoma (HCC) comprising 
most cases (75%-85%)[1]. The main risk factors for HCC are chronic infection with hepatitis C virus 
(HCV) and hepatitis B virus (HBV), and non-viral factors, such as heavy alcohol drinking or nonal-
coholic fatty liver disease (NAFLD)/nonalcoholic steatohepatitis (NASH) and associated metabolic 
disorders [like type 2 diabetes mellitus (T2DM), obesity], which have emerged as important determ-
inants of the disease[2]. In fact, while the incidence and mortality rate related to viral-associated HCC is 
decreasing lately, NAFLD/NASH has become a major cause of cirrhosis and HCC[3]. This is relevant 
considering the increased prevalence of NAFLD, which affects about one-quarter of the adult 
population worldwide[4]. Even if the HCC risk is lower in NAFLD patients compared to the HCV-
infected patients, it is still seven times higher in comparison with the general population[5,6].

Besides NASH/advanced fibrosis and cirrhosis, several other risk factors for HCC have been 
identified (Figure 1). Among these, T2DM appears to be strongly and independently associated with 
both NAFLD/NASH and HCC[7]. In fact, the prevalence of NAFLD in patients with T2DM is twice as 
high, and the prevalence of NASH is about seven-ten times higher, while the risk of HCC is 2.0-2.5 fold 
higher than in the general population[4,8,9]. Some studies suggest that a longer duration of diabetes can 
increase the risk of HCC[10]. The underlying mechanisms that link T2DM to HCC are complex and not 
fully elucidated, but insulin resistance, chronic inflammation, lipotoxicity, and oxidative stress may play 
a substantial role by promoting DNA damage, angiogenesis, cellular growth and proliferation, and 
decreasing cellular apoptosis[11-13]. In fact, insulin resistance seems to play an important role in HCC 
development (through associated proinflammatory, vasoactive, and pro-oxidative environment), and it 
might explain in part the occurrence of HCC in non-cirrhotic NAFLD patients[6,13].

Although not unanimous, the overall evidence is suggestive of an increased risk of HCC in 
individuals with obesity [as evaluated by the body mass index (BMI)][7,14,15]. A case-control study 
performed in the United States has identified obesity in early adulthood (mid-20s to mid-40s) as a 
significant HCC risk factor [odds ratio (OR): 2.6, 95% confidence interval (CI): 1.4-4.4], as each unit of 
increased BMI was associated with a 3.89-mo decrease in age of HCC diagnosis (P < 0.001)[16]. 
Moreover, obesity in childhood (ages 7-13-years-old) was reported to be associated with higher HCC 
risk later in life in a retrospective cohort comprising 285884 Danish children[17]. Visceral obesity 
appears to be particularly significant as an HCC risk, regardless of BMI[18,19]. The gut-liver axis seems 
to play an important role in the obesity-associated HCC, as gut microbiota creates a tumor-promoting 
microenvironment by transferring its metabolites/components, which further trigger the release of 
proinflammatory cytokines (like tumor necrosis factor alpha, interleukin-1β, interleukin-6, etc.), 
suppress the anti-tumor immunity, and modify the bile acid metabolism[20-22].
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Figure 1 Risk factors for nonalcoholic fatty liver disease/nonalcoholic steatohepatitis -associated hepatocellular carcinoma. HCC: 
Hepatocellular carcinoma; NAFLD: Nonalcoholic fatty liver disease; NASH: Non-alcoholic steatohepatitis; T2DM: Type 2 diabetes mellitus.

Other risk factors for NAFLD-related HCC are male sex, older age, smoking, genetic predisposition (
i.e. PNPLA3 polymorphism, etc.) (Figure 1)[6,23-27]. In addition, dyslipidemia, ethnicity, intestinal 
dysbiosis, and sedentary lifestyle may also contribute (Figure 1)[3,6,26,28-30]. Apparently, the presence 
of multiple risk factors increases the risk of liver cancer synergistically[6].

In fact, multiple hits drive the development of the NAFLD/NASH-associated HCC through 
activation of various metabolic, endocrine, and immunological pathways (i.e. increased free fatty acids 
levels/impaired lipid metabolism, hyperinsulinemia, oxidative stress, endoplasmic reticulum stress, 
and hyperleptinemia and increased production of proinflammatory cytokines, altered immune 
response, release of pro-fibrinogenic mediators, etc.) on a background of genetic/epigenetic alterations
[31].

RISK STRATIFICATION AND PREDICTION
The goal of HCC surveillance in NAFLD/NASH patients is to reduce the HCC-related mortality by 
promoting early tumor detection[32]. Controversy still exists regarding which NAFLD patients would 
benefit most from the HCC surveillance[6]. In NAFLD patients, the risk of liver-related and all-cause 
mortality raises exponentially with higher fibrosis stage (from F1 to F4)[33]. The meta-analysis by Dulai 
et al[33] indicated that compared to F0, the rate ratio of the all-cause mortality was 1.58 (in stage 1), 2.52 
(in stage 2), 3.48 (in stage 3), and 6.40 (in stage 4), and the same trend was seen for liver-related 
mortality. However, it should be noted that the evolution of fibrosis is not linear, as it progresses and 
regresses in about 20%-30% of patients over 5 years[34]. Among patients with NAFLD, those with 
cirrhosis are at greatest risk, with an annual HCC incidence rate of 10.6/1000 person-years (PY) 
compared to 0.08/1000 PY in patients without cirrhosis[5]. Furthermore, HCC incidence rates are higher 
in patients with decompensated cirrhosis than in those with compensated cirrhosis[28].

Nevertheless, NAFLD patients without cirrhosis are still at risk of developing HCC. The analysis of 
data obtained from a cohort of 1500 patients with HCC showed that about 13% of them did not have 
cirrhosis, and patients with NAFLD had a five-fold increased risk of developing HCC in the absence of 
cirrhosis compared with those with HCV-related HCC[35]. A lower proportion of patients with 
NAFLD-associated HCC presented cirrhosis than patients with HCV- or alcohol-related HCC (58% vs 
85.6% and 72.4%, respectively)[35]. The same was basically shown by the meta-analysis by Tan et al[36] 
(61 studies; 94636 patients). They reported that NAFLD-related HCC patients were more likely to be 
non-cirrhotic (38.5% vs 14.6%, P < 0.0001) and had larger tumor diameters (P = 0.0087)[36]. Moreover, 
these patients had undergone surveillance in a lower proportion than patients with HCC secondary to 
other causes (32.8% vs 55.7%, P < 0.0001)[36].

Poor HCC surveillance is a significant problem for patients with NAFLD, and in fact, identification of 
pre-cirrhotic NAFLD individuals with high HCC risk remains a significant challenge at the moment. A 
prospective multicenter study performed in Italian secondary care centers that included 756 patients 
with NAFLD- or HCV-related HCC has shown that HCC was diagnosed though regular ultrasound/ 
specific surveillance in a lower proportion of NAFLD patients compared to HCV patients (47.7% vs 
63.3%, P < 0.0001), resulting in a more advanced HCC burden at diagnosis in the former group[37]. 
Similarly, the analysis of data from the United States Veterans Administration HCC cohort study 
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showed that more patients with NAFLD-HCC did not benefit from HCC surveillance 3 years before 
diagnosis (43.3%) compared to patients with alcohol abuse- or HCV-related HCC (40.2%, and 13.3%, 
respectively)[38].

Solid data and guidance regarding risk stratification in non-cirrhotic NAFLD patients who might 
benefit from HCC surveillance are limited, and specific recommendations in this area are urgently 
needed due to the growing epidemic of NAFLD[39].

How to perform the screening?
Liver biopsy remains the “gold standard” for the diagnosis of NASH, but it cannot be routinely used in 
practice as a screening method to diagnose NAFLD, given its multiple limitations: It is expensive, the 
procedure is subject to interpretation errors, and it is potentially associated with adverse effects such as 
pain, bleeding, and infection[40,41]. The emergence of non-invasive methods for quantifying fibrosis 
and their validation has led to a decrease in the need for liver biopsies[42-44]. The Asia-Pacific and the 
American Gastroenterology Association guidelines agree that the combined use of serum tests and 
imaging tools may provide more reliable information than using either method alone[30,45]. The 
American Association for the Study of Liver Diseases guideline also consider the non-invasive methods 
as first-line tests for the investigation of fibrosis, but it does not recommend a specific diagnostic 
algorithm or follow-up strategies[43].

Identification of fibrosis and risk stratification is an essential step for HCC surveillance, as the 
guidelines clearly recommend screening in patients with cirrhosis, while patients with advanced fibrosis 
(F3) might also undergo surveillance based on individualized evaluation.

Currently, the primary imaging method for HCC detection is ultrasound (US)[40,46,47]. However, 
recent studies have highlighted the limitations of this examination[28]. For example, a study comprising 
941 patients with cirrhosis who underwent ultrasonography reported that 20% of examinations had an 
inadequate quality to exclude images showing possible focal points[48]. Therefore, other methods 
(computer tomography, magnetic resonance imaging) might be used[45,47]. For these two investig-
ations, the follow-up interval is not clearly established nor are the benefits of the association with 
measurement of alpha-fetoprotein (AFP) levels[49].

It has been questioned whether the addition of AFP quantification to routine biannual US examin-
ations would increase the detection rate of HCC during screening. However, only about three-quarters 
of HCC patients are AFP positive[50]. In fact, the probability of having elevated AFP levels (i.e. > 10 
ng/mL) in patients with early NAFLD-associated HCC without cirrhosis and normal transferase levels 
was only 17.5%-24.0% compared with 86.5%-90.5% in patients with viral-associated cirrhosis and 
advanced HCC with increased transaminases values, as showed in an Italian study that included 4123 
HCC patients[51]. The use of AFP measurement as a screening tool for HCC might result in earlier 
diagnosis, but it does not seem to improve the mortality rate[52]. The European guidelines do not 
currently recommended AFP as a surveillance parameter for the detection of HCC in patients with 
NAFLD. The American guidelines recommend ultrasound screening with or without AFP, while Asia 
Pacific Society guidelines recommend screening with AFP[30,47,53]. Other biomarkers such as 
microRNAs (e.g., miR-34a, miR-221) are under investigation for early detection of HCC but need further 
validation[54].

HCC screening in low risk NAFLD-patients
Most patients screened in a primary care setting have a low risk of clinically significant liver fibrosis, 
defined as having a Fibrosis-4 (FIB-4) score < 1.3, liver stiffness measurement (LSM) < 8.0 kPa on 
transient elastography, or a liver biopsy fibrosis stage of F0–F1[44,55-57]. Systematic HCC screening 
may not be prudent and is currently not recommended by the American Association for the Study of 
Liver Diseases, American Gastroenterology Association, and the European Association for the Study of 
the Liver in non-cirrhotic NAFLD patients (Figure 2)[42-44].

HCC screening in indeterminate risk-NAFLD patients
An estimated 30%–40% of screened patients have an indeterminate risk of clinically significant 
(advanced) liver fibrosis, defined as FIB-4 score of 1.3-2.67 and/or a LSM of 8.0-12.0 kPa on transient 
elastography[44,55-57]. The estimated incidence of HCC in non-cirrhotic NASH seems to be too low to 
justify systematic screening[58]. Apparently, non-cirrhotic NAFLD patients with multiple features of 
metabolic syndrome are at higher risk of HCC development and need special attention[5,35]. It is 
argued that additional triggers (such as active inflammation and fibrosis) are needed to promote 
carcinogenesis[6].

The current guidelines recommend the referral of these patients to a hepatologist for further 
evaluation by magnetic resonance elastography or liver biopsy[30,42,43]. The decision should be taken 
by mutual agreement and on the basis of an individual assessment (presence/absence of comorbidities, 
degree of fibrosis, etc.)[44]. The European Association for the Study of the Liver guidelines recommend 
that patients with liver disease and advanced fibrosis (F3) might be considered for HCC surveillance 
based on the individual risk, while the Asian Pacific and American Association for the Study of Liver 
Diseases clinical practice guidelines do not provide a specific recommendation for surveillance in 
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Figure 2 Recommended hepatocellular carcinoma screening approach in nonalcoholic fatty liver disease/nonalcoholic steatohepatitis 
patients according to the risk category. AASLD: the American Association for the Study of Liver Diseases; AFP: Alpha-fetoprotein; AGA: American 
Gastroenterology Association; EASL: The European Association for the Study of the Liver; FIB-4: Fibrosis-4; HCC: Hepatocellular carcinoma; LSM: Liver stiffness 
measurement; NASH: Nonalcoholic steatohepatitis; MRE: Magnetic resonance elastography; US: Ultrasonography.

patients with NAFLD without cirrhosis[30,43].

HCC screening in high risk-NAFLD patients
Nearly 10% of screened patients have a high risk of advanced liver fibrosis, defined as a FIB-4 score > 
2.67, LSM > 12.0 kPa, or a liver biopsy showing clinically significant liver fibrosis (≥ F2)[44,55-57]. 
Patients with cirrhosis are at the highest risk for HCC. The meta-analysis and meta-regression by Orci et 
al[59] involving 470404 patients showed that the incidence rate of HCC was 0.03/100 PY in patients with 
NAFLD at a pre-cirrhotic stage and 3.78/100 PY in those with cirrhosis, while in patients with cirrhosis 
undergoing regular screening for HCC, it was 4.62/100 PY.

Some data suggested that HCC surveillance might not be associated with improved clinical 
outcomes. For example, a matched case-control study from the United States Veterans Affairs health 
system failed to find an association between screening (by US, AFP, either test, or both tests) and rate of 
HCC-related mortality[60]. However, the lack of benefit may have not been related to the failure of 
surveillance but rather to other causes, such as underuse of HCC treatment or applying surveillance in 
patients who were not candidates for HCC treatment. On the other hand, a meta-analysis of 59 cohort 
studies indicated that HCC surveillance was associated with improved early HCC detection, receiving 
curative therapy, and survival in patients with cirrhosis but with heterogeneity in pooled estimates[32]. 
Thus, available data is in favor of HCC surveillance in patients with cirrhosis, although it still needs 
further confirmation[32].

Surveillance programs by regular US (and AFP) in patients with compensated cirrhosis are cost 
effective[61]. In fact, cost-effectiveness analyses indicate that HCC screening should be considered for 
patients with Child-Pugh A and B (compensated) cirrhosis and decompensated liver cirrhosis patients 
waiting for liver transplantation[47].

In patients with NASH-cirrhosis, all three liver study societies recommend the use of an HCC 
surveillance program at 6-mo intervals, with US exams, with or without AFP[30,42,43]. The same was 
endorsed by the recommendations of American Gastroenterology Association Clinical Practice[40].

INTERVENTIONS TO PREVENT NAFLD/NASH-ASSOCIATED HCC
The NAFLD/NASH-associated HCC primary prevention relies on controlling the main modifiable risk 
factors, i.e. obesity, T2DM/insulin resistance, gut dysbiosis, disease activity/fibrosis (disease 
progression), that have been associated with activation of various oncogenic pathways finally leading to 
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hepatocarcinogenesis[62]. There is no clearly effective intervention for HCC prevention available for 
NAFLD/NASH patients at the moment, although some pharmacological and non-pharmacological 
approaches might indeed be useful by addressing the predisposing factors/causes and underlying 
pathogenetic mechanisms (Table 1)[63].

Weight loss and bariatric surgery
Weight loss through lifestyle intervention represents the cornerstone for NAFLD management, as it has 
been associated with the regression of steatosis, steatohepatitis, and even fibrosis (for > 10% weight loss)
[64]. The analysis of two randomized controlled trials (RCTs) indicated that each lost kg was associated 
with a 7% increase in odds of obtaining NASH resolution without worsening of fibrosis, and a 5% 
increase in odds of obtaining fibrosis improvement without worsening of NASH[65]. The meta-analysis 
by Koutoukidis et al[66], which included 2588 NAFLD subjects who underwent weight loss inter-
ventions (through behavioral programs, pharmacotherapy, or bariatric surgery), indicated that these 
interventions were associated with the improvement of liver steatosis, histologic NAFLD activity score 
(NAS) and presence of NASH (OR: 0.14, 95%CI: 0.04-0.49) but not of fibrosis.

Preliminary results from a retrospective analysis of a database containing 72 million unique patients 
reported that weight loss medications reduced the risk of HCC in obese populations (OR: 0.07), with 
orlistat and liraglutide showing statistically significant decreases (OR: 0.13, and 0.35, respectively)[67]. 
In addition, the meta-analysis by Ramai et al[68], which included data from major databases, indicated 
that bariatric surgery was associated with a reduced risk of HCC (pooled unadjusted OR: 0.40), 
although with high heterogeneity (I2: 79%).

Although there is limited evidence regarding the impact of weight loss on the risk of developing 
HCC, it is intuitive and reasonable to encourage overweight/obese patients to decrease their weight. 
Weight loss is associated with the improvement of metabolic health (or indirect outcomes, such as the 
decrease of insulin resistance, inflammation, oxidative stress, etc.), which may translate into liver health 
benefits[69-72]. However, a recent RCT in patients with NAFLD demonstrated that a modest weight loss 
(-4 kg) through a calory-restricted diet was accompanied by reduction in transaminases, but the liver 
steatosis grade or the markers of oxidative stress were not significantly changed in comparison with the 
controls[73]. Thus, the liver benefits still have to be demonstrated by prospective data, which should 
clarify the direct effect of weight loss on long-term NAFLD/NASH progression and primary HCC 
prevention.

The effects of bariatric surgery on liver outcomes might be explained in part by weight loss, although 
other contributing mechanisms cannot be excluded [e.g., increase in glucagon-like peptide-1 (GLP-1) 
concentrations after intervention][74]. The meta-analysis by Lee et al[75], which analyzed the data of 32 
cohort studies (n = 3093 liver biopsies from NAFLD patients with obesity that underwent bariatric 
surgery) showed that surgical intervention resulted in an absolute percentage BMI reduction of 24.98% 
(from 48.68 ± 2.92 to 34.2 ± 3.53 kg/m2). This was accompanied by steatosis resolution in 66% of patients 
as well as the resolution of inflammation (in 50% of patients), ballooning degeneration (in 76%), and 
fibrosis (in 40%)[75]. However, 12% of the subjects presented new or worsening fibrosis after the 
intervention[75].

The more recent meta-analysis by Ramai et al[68] included nine studies (19514750 patients) and 
reported that bariatric surgery was associated with a reduced risk of HCC (pooled unadjusted OR: 0.40, 
95%CI: 0.28-0.57 and adjusted OR: 0.63, 95%CI: 0.53-0.75). So far there is no clear indication regarding 
the type of surgical intervention that would be most beneficial in terms of liver health.

Lifestyle changes
A large prospective cohort study has demonstrated the association of unhealthy lifestyle (assessed by a 
composite score comprising BMI, alternative Mediterranean diet, alcohol intake, smoking, and sleep 
duration) with the risk of HCC: Higher composite scores (5, 6, 7, 8) representing healthier lifestyle were 
associated with a lower risk of HCC (0.67, 0.61, 0.49, and 0.13, respectively; Ptrend < 0.0001) compared 
with lower scores (0-4) over a mean follow-up of 17.7 years[76]. As unhealthy lifestyle is associated with 
a higher risk of NAFLD/NASH and HCC, it is reasonable to assume that correcting these behaviors will 
potentially protect against the development of HCC.

However, there is insufficient direct evidence to indicate that changes in lifestyle reduce the risk of 
HCC in NAFLD/NASH patients. A meta-analysis of 30 RCTs in NAFLD patients (n = 3280), which 
evaluated the effect of diet, exercise, or their combination on the liver and metabolic markers, reported 
that a combination of diet and exercise resulted in a greater decrease of ALT [mean difference (MD): -
13.27], AST (MD: -7.02) and Homeostatic Model Assessment for insulin resistance (MD: -2.07) compared 
to either of them[77]. However, no histological or imaging data were available. Moreover, an umbrella 
review of evidence from observational studies and RCTs looking at the association between lifestyle and 
NAFLD with regards to risk and treatment (41 meta-analysis from observational studies and 81 meta-
analysis from RCTs) suggested that some interventions [i.e. green tea, omega 3 polyunsaturated fatty 
acids (PUFA), and exercise] were associated with some improvement in metabolic and hepatic markers, 
but more robust RCTs are needed to investigate the effect of lifestyle changes on liver outcomes[78]. In 
addition, the network meta-analysis by Buzzetti et al[79] (59 RCTs, 3631 participants; 2-24 mo of follow-
up) could not draw a definite conclusion regarding the effect of the lifestyle interventions on any of the 
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Table 1 Summary of lifestyle and pharmacological intervention with potential preventive effects against developing nonalcoholic fatty 
liver disease/nonalcoholic steatohepatitis-associated hepatocellular carcinoma

Interventions with potential protective effects

Weight loss

Dietary changes

Adherence to healthy eating patterns: Mediterranean diet, traditional Cantonese dietary pattern; 
Chinese Healthy Eating Index

Reduced intake of: Saturated fats, sugar-sweetened beverages, alcohol

Increased intake of: Vegetables, coffee; possibly fiber, white meat and fish, omega-3 polyunsaturated 
fatty acids, vitamin E

Physical exercise

Lifestyle interventions

Smoking cessation

Metformin

Statins

Aspirin

Pharmacological interventions

Possibly also: Pioglitazone, GLP-1 RA, vitamin E (in nondiabetic individuals?), obeticholic acid

GLP-1 RA: Glucagon-like peptide-1 receptor agonists.

clinical liver outcomes (including HCC), as the number of events was too low (probably due to short 
duration of follow-up).

Diet: There is limited information regarding the impact of diet/dietary components on liver histology in 
patients with NAFLD/NASH and on the risk of progression to HCC. Most studies report data related to 
liver biomarkers/fat content or risk of liver cancer in overall population/patients with chronic liver 
diseases, regardless of etiology. The relationship between HCC and several nutrients, foods, and dietary 
patterns has been evaluated mostly in observational studies, but few data exist exclusively in patients 
with NAFLD/NASH[80]. There is a lack of high-quality data from large RCTs in this population, but it 
should be noted that it is quite challenging to evaluate dietary determinants of the disease in the context 
of multiple confounding effects of other lifestyle factors[81].

Dietary patterns represent a complex combination of foods/nutrients and beverages that are 
habitually consumed, and their evaluation may capture in a more integrated way the effect of diet on 
health outcomes[82]. A recent systematic review of 30 observational studies (5222534 participants from 
Asia, America, and Europe) investigated the association between diet and risk of HCC and found 
differences with regards to geographical regions and dietary patterns[83]. Specifically, the Mediter-
ranean diet appeared to be protective for the European and American populations, while the Chinese 
Healthy Eating Index and the Cantonese Dietary Pattern seemed to be associated with lower risk of 
HCC in Asian countries[83].

Analysis of combined data from two case-control studies demonstrated that better adherence to the 
Mediterranean diet was associated with a lower risk of HCC (ORs: 0.66 and 0.51, P < 0.001 for trend)
[84]. In addition, the Alternate Mediterranean diet score (an adaptation of the original Mediterranean 
diet score) was associated with a decreased risk of HCC [hazard ratio (HR): 0.68; P = 0.02], as indicated 
by a multiethnic cohort prospective study[85]. Another study has shown a suggestive but nonsignificant 
association with lower risk (HR: 0.75; Ptrend = 0.18)[86]. The Singapore Chinese Health Study data also 
indicated that higher Alternate Mediterranean diet scores as well as higher scores of Alternative 
Healthy Eating Index-2010 (AHEI-2010) and Dietary Approaches to Stop Hypertension, representing a 
better dietary quality, were associated with a lower risk of HCC (Ptrend < 0.05)[76]. The results were in 
agreement with the report of the National Institutes of Health-AARP Diet and Health study, indicating 
that higher HEI-2010 and Alternate Mediterranean diet score were significantly associated with lower 
HCC risk (HR: 0.72; Ptrend = 0.03 and HR: 0.62; Ptrend = 0.0002, respectively)[87].

Similarly, better adherence to the Chinese Dietary Guidelines, as assessed by the Chinese Healthy 
Eating Index, was shown to be associated with a lower risk of HCC (OR: 0.43; P < 0.001), even in the 
stratified analysis by risk factors[88]. The study by Lan et al[89] that enrolled 782 patients with primary 
liver cancer and evaluated their habitual dietary intake found that an urban prudent dietary pattern 
(consisting of higher intake of eggs, mushrooms, dairy products, soy foods and nuts, and lower intake 
of refined grains) and a traditional Cantonese dietary pattern (characterized by a high intake of fruit and 
vegetables, Cantonese soup, fish, and Chinese herb tea) have been associated with a lower risk of 
primary liver cancer (OR: 0.25 and 0.61, respectively), while a diet rich in meat and preserved foods 
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increased the risk (OR: 1.98). Moreover, a prospective study that enrolled 887 patients with newly 
diagnosed HCC suggested that a higher adherence to the 2016 Chinese Dietary Guidelines was 
associated with a lower risk of HCC-specific mortality (HR: 0.74) and all-cause mortality (HR: 0.75)[90].

Inflammation is a key pathogenetic mechanism that influences NASH progression and hepatocarci-
nogenesis. Two studies have evaluated the correlation between dietary inflammatory score/index (that 
reflect the overall inflammatory potential of a diet) and the risk of HCC/primary liver cancer mortality. 
The first one showed that higher dietary inflammatory index values (indicating a proinflammatory diet) 
were associated with an increased risk of liver cancer (HR: 2.05) and liver cancer-associated mortality 
(HR: 1.97)[91]. The second study reported that higher adherence to empirical dietary inflammatory 
pattern score (indicating a proinflammatory potential of the diet) was associated with an increased risk 
of HCC (HR: 2.03; Ptrend = 0.001)[92]. The same study reported that several other scores (empirical dietary 
index/lifestyle pattern score for hyperinsulinemia and insulin resistance) indicating a higher insulin 
resistance potential of a diet were also correlated with a higher risk of HCC[92].

Thus, a healthy dietary pattern (generally characterized by an increased intake of vegetables, fruits, 
nuts, and whole grains and a decreased intake of red and processed meats) appears to be protective 
against HCC and HCC-related mortality. However, more specific evaluations are needed to confirm the 
data and assess the strength of these associations in patients with NAFLD/NASH.

There is little evidence with respect to the impact of dietary macro- and micronutrients upon liver 
histology in patients with NAFLD/NASH (e.g., reversal of fibrosis) and the risk of progression to HCC.

Data coming from observational studies are heterogenous. Some studies showed that increased 
carbohydrate intake was associated with higher aminotransferases levels, liver fat, and NASH, while 
others indicated the opposite or were neutral[81,93-97]. A meta-analysis of ten RCTs concluded that 
low-carb diets significantly reduced the intrahepatic lipid content but did not change the serum liver 
enzyme concentrations in patients with NAFLD[98]. There is also sparse and inconsistent evidence 
regarding the association between food glycemic index and load with HCC[35]. Data from the European 
Prospective Investigation into Cancer and Nutrition cohort (EPIC) study (477206 subjects) did not find 
significant associations between dietary glycemic index or glycemic load or total carbohydrate intake 
with risk of liver cancer[99]. However, the risk of HCC in correlation with types of carbohydrates 
appeared to be divergent: 43% higher risk per 50 g total sugar intake/d and 30% lower per 50 g 
starch/d[99]. The analysis of the Shanghai Women’s Health Study and the Shanghai Men’s Health 
Study data also indicated no consistent association between dietary carbohydrates, glycemic index, and 
glycemic load and risk of liver cancer[100].

On the other hand, higher intake of dietary fructose/sugar-sweetened beverages (surrogate for free 
sugars) has been associated with NAFLD, independent of other risk factors in several studies, as well as 
with higher intrahepatic lipid content, mainly when consumed in the context of excessive caloric intake
[81,101-105]. The meta-analysis by Li et al[106] (71 observational studies) reported that higher sugar-
sweetened beverages intake was associated with higher overall cancer risk [relative risk (RR): 1.12; P = 
0.000] and mortality risk (RR: 1.07; P = 0.029) as well as higher risk of HCC (RR: 2.00; P = 0.001) (but 
HCC results were based only on two studies). Interestingly, the EPIC study data suggested that 
consumption of > 6 servings of combined soft drinks per week was associated with higher HCC risk 
(HR: 1.83; Ptrend = 0.01) but artificially-sweetened rather than sugar-sweetened soft drinks intake 
appeared to be deleterious[107]. A significant positive association between carbonated beverages 
consumption and HCC risk was also seen in a case-control study of 582 cirrhotic patients (181 with 
HCC) (OR: 2.44; Ptrend = 0.021)[108].

The same study showed an inverse correlation of HCC risk with fiber intake (OR: 0.49; Ptrend = 0.012), 
which is in accordance with the EPIC study results indicating a 30% HCC risk reduction per 10 g/d of 
total dietary fiber intake, even in viral hepatitis-free individuals[99,108]. However, the analysis of data 
from two United States cohort studies (125455 participants) did not find a significant association of HCC 
risk with cereal, fruit, or vegetable fiber intake[109]. On the other hand, lower daily (mainly soluble) 
fiber intake was observed in patients with NAFLD/NASH in several observational studies[94,96,110].

There is inconsistent evidence with regards to the role of dietary proteins (types, amount) in the 
progression of NAFLD/NASH and occurrence of HCC. The Rotterdam Study which included 3882 
individuals (1337 with NAFLD) showed that animal protein intake was significantly associated with 
overweight NAFLD after adjustment for metabolic covariates (OR: 1.36)[111]. Indirect evidence, in line 
with these results, was provided by another cross-sectional study that showed that total and animal 
protein consumption was positively associated with estimates of liver steatosis (OR: 1.25 and 1.27, 
respectively), while vegetable proteins had an inverse association with these (OR: 0.81)[112]. On the 
other hand, a recent RCT that evaluated the effect of a low-carbohydrate high-protein diet on liver fat in 
72 T2DM patients demonstrated that it reduced the liver fat content to a slightly greater extent 
compared to a conventional diet (64% vs 51%, P = 0.051) beyond the effects of (similar) weight loss[73]. 
Similarly, a small prospective study in NAFLD patients with T2DM showed that high protein diets (30% 
of total caloric daily intake), either animal or plant-based, significantly reduced liver fat independent of 
change in body weight, and decreased the serum levels of fibroblast growth factor 21[113]. The animal 
protein diet determined a greater increase in postprandial levels of methionine and branched chain 
amino acids but this was not accompanied by beneficial or deleterious effects[113]. Some experimental 
data suggested potential benefits of branched chain amino acids in terms of hepatocarcinogenesis 
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inhibition (changes in growth factors gene expression, inhibition of proliferation), increased apoptosis in 
liver cancer cell lines, and improvement of fibrosis[82,114,115]. In addition, few Japanese clinical studies 
suggested that branched chain amino acid supplementation in patients with HCC may reduce cancer 
recurrence after hepatic resection (mainly in patients with higher insulin resistance), but others showed 
no effect[116-119]. Certainly, additional good-quality evidence is needed regarding the role of dietary 
proteins/amino acids in the progression of NAFLD/NASH and associated HCC.

Most studies concerning dietary fats in NAFLD/NASH and HCC evaluated the role of type rather 
than amount of fats[120]. Observational studies seem to indicate that total dietary fat intake is not 
correlated with HCC risk[121-123]. Some but not all results suggested that vegetable fats might be 
associated with reduced HCC risk[121,123]. Higher consumption of saturated fatty acids however was 
shown to be associated with hepatic steatosis/NAFLD and NASH[81,95,124]. A large Chinese 
prospective cohort study also indicated that dietary saturated fats were associated with higher liver 
cancer risk [adjusted HR (aHR): 1.14; P = 0.005], but results from the EPIC study and a hospital-based 
case-control study from the United States did not support a direct association of saturated fats intake 
with HCC[125-127]. However, a meta-analysis of 14 studies by Zhao et al[128] demonstrated that higher 
dietary intake of saturated fats was associated with an increased risk of liver cancer (RR: 1.34 for highest 
vs lowest intake) in a dose-dependent manner.

On the other hand, the same United States case-control study showed that monounsaturated fatty 
acids (MUFA) but not total PUFA intake was inversely correlated with the risk of HCC (OR: 0.49 and 
1.82)[122]. This was in contrast with the study by Yang et al[123] that showed that PUFA was inversely 
associated with HCC risk (aHR: 0.83; P = 0.03) (with MUFA being neutral). The study by Li et al[125] 
indicated that MUFA had a neutral effect (aHR: 1.26, 95%CI: 0.96-1.65; P = 0.034), while PUFA intake 
was associated with higher HCC risk (aHR: 1.41, 95%CI: 1.07-1.86 for highest vs lowest quartile; P = 
0.005). Thus, data on MUFA and total PUFA seems quite heterogenous (maybe explained in part by 
dietary source, type of study, and study population).

In a NASH animal model, dietary intake of docosahexaenoic acid appeared to be superior to that of 
eicosapentaenoic acid in attenuating Western-diet induced liver injury, oxidative stress and fibrosis, and 
potentially in reducing the risk of HCC, thus suggesting differential effects of the two dietary omega-3 
PUFAs[129]. Evidence is more convergent regarding the effect of omega-3 PUFA supplementation on 
liver fat content. Two meta-analyses actually showed that it decreased liver fat, and this was confirmed 
by a small histologic study in non-cirrhotic NASH patients that received 3000 mg/d omega-3 PUFA for 
1 year[130-132]. However, the study did not reach the primary end-point (i.e. NAS reduction of ≥ 2 
points without fibrosis progression)[132].

In addition, the evidence regarding the effect of omega-3 PUFA on HCC risk is not unequivocal. The 
case-control study by Moussa et al[127] demonstrated an inverse association between dietary omega-3 
intake and HCC risk (OR: 0.50), but other epidemiological data seemed to indicate a neutral effect (HR: 
0.63; Ptrend = 0.14 and aHR: 0.89, 95%CI: 0.75–1.04; P = 0.14, respectively)[122,123,125]. Some observa-
tional studies showed a positive relationship between dietary intake of omega-6 PUFA and HCC risk 
(adjusted OR: 2.29 for highest vs lowest tertile, and OR: 4.36), indicating a potentially negative effect, 
although other data showed an inverse association (HR: 0.54; Ptrend = 0.02)[123,127,133]. Linoleic acid 
intake might be inversely associated with HCC risk (OR: 0.35, P < 0.01)[122].

Even if the role of micronutrients in preventing the progression of NASH to HCC might be hypothet-
ically explained from a pathogenetic perspective (i.e. antioxidant, anti-inflammatory, anti-fibrotic 
effects), and the experimental data is quite consistent. There is insufficient good quality clinical research 
regarding their dietary intake or supplementation effect in NAFLD patients[134].

Two United States prospective studies have shown an inverse relationship between (dietary and 
supplemental) magnesium intake and risk of liver cancer (HR: 0.65 and HR: 0.44; Ptrend = 0.0065, 
respectively)[135,136]. Results from two large cohort studies in China demonstrated an inverse 
association between dietary manganese intake and liver cancer risk long-term (HR: 0.51; Ptrend = 0.001), 
even after adjustment for HBV infection[137]. The case-control study by Rizk et al[108] also found that 
manganese intake was significantly lower in HCC patients vs controls (OR: 0.56; Ptrend = 0.038) as well as 
potassium intake (OR: 0.44; Ptrend = 0.004). On the other hand, the sodium intake was significantly higher
[104]. Nevertheless, more studies are needed to clarify the role of minerals in NASH and HCC.

The same above-mentioned case-control study also indicated lower intake of vitamins E and B9 in 
HCC patients[108]. In the same sense, a report from two Chinese cohort studies showed that dietary 
vitamin E intake and supplement use were inversely associated with the risk of liver cancer (HR: 0.52)
[138]. The effect of therapeutic intervention with vitamin E will be discussed below. An inverse 
association between HCC risk and (β) carotenes/vitamin A was noted in several studies (with OR: 0.48 
for β carotene, 0.34 for vitamin A, and 0.35 for carotenes)[122,139].

Food items/groups have been evaluated with regards to their association with HCC risk. We will 
only briefly mention the main findings here. Several systematic reviews and meta-analyses have 
evaluated data regarding the association between meat consumption and risk of HCC. Even if not 
totally in agreement, they seem to indicate that read meat consumption is associated with increased 
HCC risk (RR: 1.22) or is neutral (RR: 1.04 and 1.10), and there is an increased HCC risk associated with 
processed meat consumption (RR: 1.20, and 1.01)[140-142]. Total meat intake had no significant effect
[140-142]. On the contrary, white meat and fish intake were found to be inversely associated with the 
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risk of HCC (RR: 0.69, 0.76 for white meat and RR: 0.78, 0.91 for fish)[141,142]. Some epidemiological 
data suggested that increased dairy product intake (mainly milk and high-fat diary) was associated with 
a higher risk of HCC, although not all studies agreed (yogurt seemed to be associated with a decreased 
risk or had a neutral effect)[121,143-145]. Two meta-analyses indicated that increased vegetable 
consumption was associated with a lower risk of HCC[146,147]. For other food items, there is insuffi-
ciently consistent evidence so far.

There have been suggestions for the use of many herbal and dietary natural compounds, such as 
prebiotics/polyphenols, resveratrol, and curcumin in NAFLD/NASH therapy, including for HCC 
prevention, with some small studies suggesting anti-inflammatory effects of prebiotics, but until now 
there is very limited data from clinical trials, and no clear conclusion can be drawn[134,148-150]. 
Preclinical data demonstrated the anti-inflammatory effects of the catechin-rich green tea extract that 
may attenuate NASH-associated liver injury through a decrease of hepatic nuclear factor kappa-B 
activation but also indirectly through prebiotic and antimicrobial effects on gut microbiota, resulting in 
decreased translocation of the gut-derived endotoxins[151]. Green tea contains several bioactive 
compounds that may exert anticarcinogenic properties (e.g., flavonoids, caffeine, polyphenols, etc.) 
through modulation of different signaling transduction and metabolic pathways (reduction of chronic 
inflammation, oxidative stress, insulin resistance, liver steatosis, etc.)[80,152]. The EPIC study data 
showed an inverse association between tea consumption and HCC risk (HR: 0.41, 95%CI: 0.22-0.78; Ptrend 

= 0.003), while a meta-analysis of 15 RCTs demonstrated that green tea reduced the liver enzymes 
values in NAFLD patients[153,154].

The use of probiotics in NAFLD/NASH, cirrhosis, and HCC has been reported in several studies and 
indicated that they can improve aminotransferases and insulin resistance and have anti-inflammatory 
effects, but there is no evidence so far with regards to HCC prevention[150,155]. A meta-analysis of 21 
RCTs (1252 participants) suggested that the use of probiotics/synbiotics was associated with a decrease 
of inflammation markers, liver stiffness, and steatosis in subjects with NAFLD[156]. However, well-
designed RCTs are further needed to fully understand their protective effect in patients with NASH.

Coffee: Eight meta-analyses of prospective cohort and case-control studies provided consistent evidence 
regarding an inverse relationship between coffee drinking and risk of HCC (RR ranging between 0.54 
and 0.78), with only one meta-analysis indicating a neutral effect (RR: 0.93)[157-164]. Caffeinated rather 
than decaffeinated coffee seemed to have a more consistent effect on HCC[158,161]. Also, the association 
appeared to be related to the amount of daily coffee intake. The beneficial effects generally started at 
two cups/d. An extra cup of coffee/d reduced the cancer risk by about 15%-25% (RRs between 0.75 and 
0.85), and two extra cups/d by about 14%-44% (RRs between 0.56 and 0.86)[157-164].

Alcohol: Alcohol is a major risk factor for HCC, and it has synergistic effects with the metabolic risk 
factors (T2DM, obesity) in inducing carcinogenic mechanisms[80,165]. Evidence suggests that a modest 
alcohol intake is protective against fatty liver, NASH, and fibrosis, but it was not firmly established if it 
is also protective against HCC[82,166]. A meta-analysis of 19 cohorts (4445 incident cases of liver cancer) 
showed neutral effects of moderate drinking (< 3 drinks/d) on liver cancer risk (RR: 0.91, 95%CI: 0.81-
1.02) compared to no drinking, while heavy drinking (defined as ≥ 3 drinks/d) significantly increased 
the risk (RR: 1.16, 95%CI: 1.01-1.34)[167]. In line with these results, a prospective evaluation of 8345 
subjects with hepatic steatosis (mean follow-up duration of 11.1 years) demonstrated a dose-response 
relationship for advanced liver outcomes/liver cancer that became significant at ≥ 10 g of alcohol 
intake/d (for liver outcomes) and ≥ 30 g/d (for liver cancer) after multivariate adjustments[168]. The 
decrease in risk of HCC after alcohol drinking cessation is uncertain, but a meta-analysis of four studies 
suggested a decline of HCC risk with 6%-7%/year, although caution was advised in data interpretation
[169].

Physical activity: The benefits of physical activity in reducing insulin resistance and hepatic liver 
content in NAFLD patients are well known[170,171]. The meta-analysis by Golabi et al[170] (eight 
studies with 8 to 48 wk duration) reported that aerobic and resistance exercises determined a liver fat 
reduction of 30.2%.

Physical exercise intervenes at multiple levels in the pathogenic pathways of NAFLD by reducing the 
free fatty acid (FFA) flux to the liver, FFA hepatic synthesis, the mitochondrial and cellular damage, 
oxidative stress, damage-associated molecular patterns release, and hepatic stellate cell activation and 
by increasing the FFA oxidation and activating the AMP-activated protein kinase-regulated pathways, 
etc.[172]. Physical exercise also improved mitochondrial function (i.e. autophagy, biogenesis) and 
modulated the carcinogenic signaling pathways[80,173,174]. Taken together, these might explain the 
potential protective effects of exercise in NAFLD/NASH and HCC. Indeed, a meta-analysis of 14 
prospective studies indicated that physical activity was inversely correlated with the risk of liver cancer 
(HR for high vs low physical activity: 0.75, 95%CI: 0.63-0.89)[175]. These results were in accordance with 
the EPIC study that reported an aHR of 0.55, 95%CI: 0.38–0.80 for HCC in active vs inactive individuals
[176]. The associations seemed to be at least in part mediated by obesity[176]. However, no prospective 
study evaluated the effect of physical exercise on HCC risk, as this might be rather difficult to perform
[172].
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Smoking cessation: Data from the Liver Cancer Pooling Project, a consortium of 14 prospective cohort 
studies comprising 1518741 individuals indicated that cigarette smoking significantly increased the risk 
of HCC (HR: 1.86, 95%CI: 1.57–2.20)[177]. It also demonstrated that in individuals who quit smoking for 
> 30 years, the risk of HCC decreased to values almost similar to non-smokers (HR: 1.09, 95%CI: 
0.74–1.61)[177]. In addition, quitters seemed to have a lower risk of HCC-related mortality (HR, 0.62, 
95%CI: 0.39-0.97), but this was seen in subjects without diabetes[178].

Pharmacological interventions
Several drugs have been suggested to bring benefits for NAFLD/NASH and to potentially reduce the 
risk of associated HCC, although there is limited evidence for HCC chemoprevention. It is assumed 
however that by improving histological features associated with NASH and the primary drivers of 
fibrogenesis ultimately leading to cirrhosis (and HCC), the disease progression will be attenuated, and 
HCC occurrence eventually prevented[179].

Metformin: Metformin does not seem to improve NASH/fibrosis, but several meta-analyses suggested 
that it might reduce the risk of HCC in patients with T2DM[180-182]. A recent meta-analysis of 24 
studies including 1.4 million individuals reported that metformin was associated with a 41% lower risk 
of HCC in DM patients treated with metformin (P < 0.001) and a significant reduction of all-cause 
mortality (HR: 0.74, 95%CI: 0.66-0.83; P = 0.037)[180]. Moreover, a network meta-analysis that compared 
several antidiabetic medications has shown that in comparison with sulphonylureas and insulin, 
metformin significantly decreased the risk of HCC (RR: 0.45, 95%CI: 0.27–0.74 and RR: 0.28, 95%CI: 
0.17–0.47)[181]. Postulated mechanisms of chemoprotective effects of metformin are the activation of 
AMP-activated protein kinase and inhibition of the mammalian target of rapamycin pathway, the 
inhibition of angiogenesis and induction of apoptosis[183]. It was also suggested that metformin may 
inhibit the progression of high fat diet-induced HCC by modulating the innate immune-mediated 
inflammation and restoring tumor surveillance[184]. However, these data should be interpreted with 
caution, and there is still need for further substantiation.

Thiazolidinediones: The meta-analysis by Musso et al[185] has delineated the effects of the two 
thiazolidinediones (TZDs), indicating that only pioglitazone (30/45 mg/d, for 6 to 24 mo) was 
associated with improvement in fibrosis (even advanced fibrosis) and NASH resolution in patients with 
or without diabetes. In addition to increasing adiponectin levels and decreasing excessive lipolysis and 
FFA flux into the liver, pioglitazone attenuated oxidative stress and inflammation and, the activation 
and proliferation of hepatic stellate cells, extracellular matrix deposition, fibrosis, etc[12,186-188]. The 
possible role of the TZDs in hepatic chemoprevention is further suggested by in vitro data, showing that 
they may inhibit hepatocarcinogenesis by the regulation of nucleophosmin, a ubiquitously expressed 
cellular phosphoprotein involved in both proliferation and growth-suppression pathways[189,190]. 
Animal data also showed that pioglitazone reduced the HCC development, possibly through the 
upregulation of the AMP-activated protein kinase pathway and the reduction of the mitogen-activated 
protein kinase activation[191]. However, data in humans are scarce, and no definite conclusions can be 
drawn yet. The results of the network meta-analysis by Zhou et al[181] suggested possible beneficial 
effects of TZDs in reducing HCC incidence, but these were seen only in comparison with sulpho-
nylureas (RR: 0.47, 95%CI: 0.22–0.97) and with insulin (RR: 0.30, 95%CI: 0.14–0.61), but not vs 
observation alone.

GLP-1 receptor agonists: Two histological studies with GLP-1 receptor agonists (GLP-1 RAs) 
(liraglutide and semaglutide) in patients with or without T2DM have proven NASH resolution, but 
results regarding fibrosis were inconclusive[192,193]. Preclinical studies have suggested potential 
chemoprotective effects of the GLP-1 RAs through various mechanisms like enhancing natural killer 
cell-mediated cytotoxicity and, inducing autophagy and senescence of the HCC cells by the increase of 
transforming growth factor β1, promoting their apoptosis though activation of the JNK signaling 
pathway, etc[194-196]. There is very limited information regarding the long-term effect of GLP-1 RAs on 
HCC incidence in humans so far.

Statins: Two recent meta-analyses of observational and interventional studies have confirmed liver 
safety for statin use in patients with NAFLD and even a reduction of transaminases levels[197,198]. 
Moreover, the meta-analysis by Fatima et al[198], which also analyzed the liver histology outcomes, 
reported a significant reduction of steatosis grade, necro-inflammatory stage, and of significant fibrosis 
but not the fibrosis stage. Several meta-analyses (mostly of observational studies) have consistently 
reported reduced risk of HCC in statin users (RRs/ORs/HR between 0.52-0.75 for all statins), with some 
indication of differences between them[199-208]. In particular, it seemed that the lipophilic statins exert 
preventive effects (OR: 0.51, 95%CI: 0.46-0.57 and HR:0.49, 95%CI: 0.39–0.62) rather than the hydrophilic 
statins (OR: 0.77, 95%CI: 0.58-1.02 and HR: 0.73, 95%CI: 0.40–1.34)[205,208]. Higher doses appeared to be 
associated with better protective effects (HR: 0.38 vs 0.55)[195]. Moreover, a meta-analysis of nine 
retrospective cohort studies also reported a lower risk of HCC-related mortality (RR: 0.78, P = 0.001) and 
reduced HCC recurrence (RR: 0.55, P < 0.001) with statin use[208]. However, another meta-analysis 
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indicated that statin usage decreased the risk of all-cause mortality (HR: 0.80, 95%CI: 0.68-0.94; P < 
0.0001) but not of HCC-specific mortality (HR: 0.80, 95%CI: 0.62-1.03; P = 0.002)[200].

Apart from exerting lipid-lowering effects, statins have anti-inflammatory, antioxidant, anti-prolif-
erative, and anti-angiogenic properties[12,209,210]. Their potential anti-tumor effects might be mediated 
through the downregulation of the RAF/mitogen-activated protein kinase 1/extracellular signal 
regulated kinase and nuclear factor kappa-B pathways, limitation of the cyclin-dependent kinase 
inhibitors (p21 and p27) degradation, prevention of the c-Myc activation, reduction of proinflammatory 
cytokines, etc., which determine apoptotic responses, tumor-suppressor effects, cell survival reduction, 
and cell growth inhibition[183,211]. Nevertheless, data from well-designed RCTs (that limit the effect of 
confounding factors) in support of the HCC chemopreventive effects of statins in NAFLD/NASH 
population is scant.

For the other anti-hyperglycemic and lipid-lowering drug classes there is no consistent evidence so 
far regarding potential HCC protective effects.

Resmetirom is a thyroid hormone receptor β-selective agonist, which was shown to significantly 
reduce the liver fat after 12 and 36 wk of treatment[212]. It is currently under evaluation for safety and 
efficacy in improving NASH and preventing progression to cirrhosis and/or advanced liver disease in a 
phase 3 RCT (MAESTRO-NASH; NCT03900429)[213].

Aspirin: Growing evidence coming from preclinical and clinical observational studies suggest that 
aspirin might play a role in HCC prevention[80,165]. The mechanisms are related to inhibition of 
selective cyclooxygenase-2 as well as of platelet-derived growth factor, P4HA2, nuclear factor kappa-B 
activation, and protein kinase 3 signaling, etc., which may prevent proliferation of liver cancer cells and 
angiogenesis and promote fibrosis resolution[80,165]. Several meta-analyses have explored the potential 
HCC protective effect of aspirin and have shown that it is associated with reduced incidence/risk of 
HCC (RRs/HRs/ORs between 0.74 and 0.51)[214-219]. The meta-analysis by Memel et al[214] implied 
stronger association after adjustment for metformin/statin use and accounting for cirrhosis. Also, an 
inverse relationship seems to exist between aspirin dose/duration of use and HCC risk, but this should 
be further confirmed[215,219]. There was no evidence of higher risk of bleeding with aspirin use, 
including in patients with HCC in most meta-analyses except one[216-220]. Moreover, the systematic 
review and meta-analysis by Tan et al[216] showed that aspirin use was associated with improved liver-
related mortality (OR: 0.32, 95%CI: 0.15-0.70) and reduced risk of HCC recurrence (HR: 0.80, 95%CI: 
0.75-0.86). The same was observed in the meta-analysis by Li et al[220], which demonstrated a reduced 
risk of HCC recurrence (RR: 0.74, 95%CI: 0.59-0.93; P = 0.01) and all-cause mortality (RR: 0.59, 95%CI: 
0.47-0.73; P < 0.001). Although the evidence points toward a potential benefit of aspirin use in 
prevention of HCC, further prospective data is still necessary in the NAFLD/NASH population.

Vitamin E has anti-oxidative properties, and it might modulate fibrogenesis through inhibition of 
transforming growth factor β1[12,221]. A recent meta-analysis of eight RCTs reported that vitamin E 
supplementation (400-800 IU/d, between 8-96 wk) was associated with reduction of fibrosis score (MD 
vs placebo: -0.26, 95%CI: -0.47 to -0.04; P = 0.02) as well as a decrease in steatosis, lobular inflammation, 
and hepatocellular ballooning compared with placebo[222]. However, only one study included patients 
with T2DM. In fact, the study by Bril et al[223] that randomized 105 T2DM patients with biopsy-proven 
NASH to vitamin E 400 IU b.i.d., vitamin E 400 IU b.i.d. plus pioglitazone 45 mg/d, or placebo did not 
reach the primary outcome (two-point reduction of NAS from two different parameters, without 
worsening of fibrosis) in patients receiving vitamin E vs placebo but resulted in improvement of 
steatosis. Thus, it is not clear if the benefit of vitamin E supplementation is restricted to individuals 
without diabetes, and more data is needed in the T2DM population.

Experimental studies have suggested that antifibrotic therapies may serve as HCC preventive 
interventions by addressing the underlying cause of carcinogenesis onset[224,225]. Unfortunately, no 
anti-fibrotic drug has been approved so far by the European Medicines Agency or by the United States 
Food and Drug Administration for NASH treatment.

Obethicolic acid (OCA) is a farnesoid X receptor agonist shown to improve fibrosis without 
worsening NASH in an interim analysis of a phase 3 RCT (REGENERATE; NCT02548351)[226,227]. In 
this analysis, a significantly higher proportion of patients treated with OCA 25 mg daily presented 
improvement in fibrosis by ≥ 1 stage with no worsening of NASH (23% vs 12% in placebo group, P = 
0.0002)[227]. In the analysis that included patients receiving at least 15 mo of therapy, three times more 
patients in the OCA 25 mg/d group obtained ≥ 1 stage improvement in fibrosis (38%) vs progression of 
fibrosis (13%) compared with the placebo group, in which similar proportions of patients presented 
improvement (23%) vs worsening (21%) of fibrosis[227]. The FLINT (Farnesoid X Receptor Ligand 
Obeticholic Acid in NASH Treatment) trial had previously shown that treatment with OCA 25 mg/d for 
72 wk improved liver histology (RR: 1.9, 95%CI: 1.3-2.8; P = 0.0002) in patients with biopsy-proven 
NASH[228]. However, in both trials, a higher proportion of patients treated with OCA presented 
pruritus (23% in FLINT study and 51% in REGENERATE study) in a dose-dependent manner[227,228]. 
In addition, OCA therapy was associated with increased low-density lipoprotein cholesterol levels, but 
this could be attenuated by concomitant statin therapy[80,229]. HCC animal model data suggested that 
the OCA might attenuate the development and progression of NASH-associated HCC by upregulating 
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sirtuin-1 and modulating the SOCS3/Jak2/STAT3 pathway[230].

Pentoxifylline: Although few small histological studies have suggested liver-related benefits with 
pentoxifylline 400 mg t.i.d. treatment [i.e. improvement of steatosis, lobular inflammation, and liver 
fibrosis score (mean change: -0.2 vs +0.4 on placebo, P = 0.038)] and regression of fibrosis when 
combined with vitamin E (P = 0.003), data is still scarce and not consistent[231,232]. Four meta-analyses 
have reported conflicting results with regards to the effect of pentoxifylline on liver fibrosis, with only 
two of them suggesting benefits[233-236]. Therefore, additional data is required.

Two other initially promising anti-fibrotic medications have failed to prove a significant impact on 
hepatic fibrosis in phase 3 clinical trials. Elafibranor, an agonist of PPAR-α/δ, reduced steatohepatitis 
without worsening fibrosis in a phase 2 trial in NASH patients, but the primary end-point was not met
[237]. The phase 3 RCT (RESOLVE-IT-NCT02704403) was prematurely discontinued due to limited 
efficacy at the time of the interim analysis[238]. Cenicriviroc, a dual inhibitor of C–C motif chemokine 
receptor 2/5, reduced liver fibrosis in NASH patients but did not reach the primary outcome in a phase 
2b study[239]. This was followed by a phase 3 trial (AURORA-NCT03028740), which was also 
terminated early due to lack of efficacy resulting from the planned interim analysis[240]. Several other 
drugs with potential anti-fibrotic effects are currently in development/evaluation, and the results are 
expected with interest[241].

CONCLUSION
Regardless of the risk status, all NAFLD/NASH patients should consider adopting lifestyle changes 
(healthy diet and physical exercise) and controlling their body weight, as these are the cornerstone 
interventions for NAFLD/NASH management and possibly through altering the natural course of the 
disease for HCC prevention.

Data suggest a possible role of comprehensive lifestyle changes in reducing the risk of HCC, but 
specific evidence in NAFLD/NASH patients is rather limited at this point and not sufficient to clearly 
indicate preventive effects on NAFLD/NASH-associated HCC. Moreover, there is no consensus 
regarding the composition of a protective diet but decreasing the intake of deleterious nutrients/foods 
and beverages (i.e. saturated fats, sugar-sweetened beverages, alcohol), increasing the beneficial 
nutrients/foods/beverages (vegetables, coffee, dietary fiber, omega-3 PUFA), and adherence to a 
healthy dietary pattern (such as the Mediterranean diet or traditional Cantonese dietary pattern) are 
reasonable and safe approaches. However, their role in HCC prevention still needs to be confirmed by 
further well-designed prospective studies and experimental research.

Several drug classes (metformin, statins, and aspirin and possibly TZDs, GLP-1 RA, vitamin E, and 
obeticholic acid) might exert chemopreventive effects by addressing the underlying mechanisms of the 
disease, but direct evidence regarding their role in NAFLD/NASH-associated HCC prevention is 
insufficient at the moment.

A timing combination of therapies/non-pharmacological interventions and perhaps adapting them to 
the stage of disease and/or patient particularities will be necessary to obtain disease resolution and 
prevention of cirrhosis/NASH-associated HCC.
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Abstract
Inflammatory bowel diseases (IBDs) comprising ulcerative colitis, Crohn’s disease 
and microscopic colitis are characterized by chronic inflammation of the 
gastrointestinal tract. IBD has spread around the world and is becoming more 
prevalent at an alarming rate in developing countries whose societies have 
become more westernized. Cell therapy, intestinal microecology, apheresis 
therapy, exosome therapy and small molecules are emerging therapeutic options 
for IBD. Currently, it is thought that low-molecular-mass substances with good 
oral bio-availability and the ability to permeate the cell membrane to regulate the 
action of elements of the inflammatory signaling pathway are effective 
therapeutic options for the treatment of IBD. Several small molecule inhibitors are 
being developed as a promising alternative for IBD therapy. The use of highly 
efficient and time-saving techniques, such as computational methods, is still a 
viable option for the development of these small molecule drugs. The computer-
aided (in silico) discovery approach is one drug development technique that has 
mostly proven efficacy. Computational approaches when combined with 
traditional drug development methodology dramatically boost the likelihood of 
drug discovery in a sustainable and cost-effective manner. This review focuses on 
the modern drug discovery approaches for the design of novel IBD drugs with an 
emphasis on the role of computational methods. Some computational approaches 
to IBD genomic studies, target identification, and virtual screening for the 
discovery of new drugs and in the repurposing of existing drugs are discussed.

Key Words: Inflammatory bowel disease; Computer-aided drug design; Janus Kinase; 
Molecular docking; Genome-wide association study; Molecular dynamics simulation
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Core Tip: For the design of small molecule drugs to treat inflammatory bowel disease (IBD), highly 
effective and time-saving approaches, such as computational methods, are still a viable choice. By 
complementing experimental studies with computational approaches, the probability of successful drug 
discovery is increased while simultaneously reducing associated costs. This article provides a summary of 
the current drug discovery pipeline for IBD, with special emphasis on the part played by computational 
methods. The use of in silico genomic studies, target identification, and virtual screening to find new drugs 
and repurpose existing drugs for the treatment of IBD are discussed.
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INTRODUCTION
Inflammatory bowel disease (IBD) refers to a group of disorders characterized by chronic inflammation 
of the gastrointestinal tract that is oftentimes triggered by unknown causes. Crohn’s disease (CD) and 
ulcerative colitis (UC) are the two most prevalent IBDs[1]. The clinical courses are characterized by 
consistent relapses and recoveries, linked to destructive idiopathic inflammation of the digestive tract. 
Despite the fact that the precise causes of IBD are still being investigated, it is believed to be the result of 
an intricate relationship between various parameters, including immune system dysfunction, microbial 
dysbiosis, a genetic susceptibility, and some environmental factors[2,3].

As the etiology of IBD continues to be a “crossword” to solve, its prevalence and significant global 
impact continue to rise[4-6]. Globally, the prevalence of IBD increased by 85.1% between 1990 and 2017, 
and the number of people diagnosed with the disease increased by 95%, as reported by the Global 
Burden of Disease 2017 Inflammatory Bowel Disease Collaborators. Since 1990, the incidence of IBD has 
risen in newly industrialized countries in Africa, Asia and South America, including Brazil, to the extent 
that at the turn of the 21st century this idiopathic disease[7] has become a global disease with 
accelerating incidence in countries whose societies have become more westernized[8]. Also of interest is 
the increasing prevalence of microscopic colitis, a subtype of IBD characterized by chronic watery 
diarrhea caused by colon inflammation. The disease has recently gained more attention due to the 
availability of more information about its pathogenesis, diagnosis and therapy. The incidence of 
microscopic colitis is progressively on the rise, approaching that of CD and UC in some populations[9].

Treatments options for IBDs, especially CD and UC, have made significant progress in the last few 
years[5]. A wide range of anti-inflammatory and symptom-relieving drugs is available for patients with 
UC. Recent treatments aim to improve the patient’s quality of life by alleviating symptoms like 
abdominal pain and diarrhea and bringing the disease under control as a whole[10]. Conventional 
treatments include aminosalicylates, corticosteroids, immunomodulators and biologics as part of the 
pharmacotherapy to control symptoms. When necessary, they also include some general procedures, 
including surgery. The advent of biologics and other therapeutic advancements in recent years has 
altered not only the treatment modalities but also the perception of IBD therapy. While symptom 
remission, complication avoidance and complication treatment are all important, mucosal healing is also 
a major target. Healing of the mucosa occurs when inflammation in that area subsides and the mucosal 
lining is returned to its normal structure[11]. Emerging evidence suggests that mucosal healing is linked 
to improved long-term outcomes, including lower rates of clinical recurrence, hospitalization, surgery, 
and disability[12,13].

Many patients with IBD have seen a dramatic improvement in their long-term outcomes, both 
regarding disability and quality of life since the introduction of monoclonal antibodies targeting tumor 
necrosis factor (TNF) about 20 years ago. However, despite these developments, there are still many 
unfulfilled needs. For instance, less than a third of treated patients who begin a biologic therapy achieve 
and maintain drug remission at 1 year. Even in cases when clinical and endoscopic criteria for remission 
have been met, symptoms such as diarrhea, stomach discomfort, joint problems, and exhaustion may 
still be experienced[14]. Also, the lack of responsiveness to biologic therapies, which can be caused in 
part by the protein's immunogenicity upon administration, and the need to discontinue drugs because 
of intolerance or side effects show that a better generation of therapeutic alternatives is still needed. To 
achieve the desired results of immune homeostasis restoration and better symptom control, additional 
progress is still required. Emerging treatment options for IBD include cell therapy, intestinal microe-
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cology, apheresis therapy, exosome therapy, and small molecules[15]. Low-molecular-mass compounds 
with excellent oral bioavailability and the capacity to cross the cell membrane to modulate the functions 
of parts of the inflammatory signaling pathway are now regarded to be promising therapeutic altern-
atives for the treatment of IBD. Several small molecule inhibitors are being explored as a possible 
treatment option for IBD, such as inhibitors of Janus kinase (JAK) enzymes[1]. For the development of 
these small molecule drugs, the use of highly effective and time-saving techniques, such as computa-
tional methods, remain a viable option.

Owing to the intricate nature of the molecular mechanisms involved in disease pathogenesis, the 
process of developing small molecule drugs is complicated[16,17]. The traditional methods of drug 
design and development require time-consuming, costly and laborious scientific procedures. On the 
other hand, computational tools hold great promise as a viable option for the design and development 
of new small molecules of biomedical relevance[18]. Computer-aided drug design (CADD) employs 
computer processing power, statistics, mathematics and three-dimensional (3D) graphics to elucidate 
the affinity and binding mode of small molecules against therapeutic targets.

As a whole, computational methods aid in the identification of candidate target proteins for drug 
screening and design by searching through large amounts of genomic data for the most important genes
[19,20]. In combination with experimental data, protein structures can be predicted with some accuracy
[21]. In order to find drug binding sites and understand how drugs work, it is necessary to conduct 
research into the structural and thermodynamic features of target proteins, both of which can be 
accomplished with biomolecular simulations using multiscale models[22]. Next, chemical libraries are 
explored using virtual screening to identify potential drug candidates based on the ligand binding sites 
on target proteins[23]. With a significantly reduced number of potential drug candidates, in vitro and/or 
in vivo experiments can be used to further assess the effectiveness of these molecules. Another CADD 
approach, besides virtual screening, is provided by de novo drug design techniques, which produce 
highly specific small molecules with good synthetic accessibility[24].

Medicinal chemists use CADD methods to help in rationalizing the selection of hit compounds and in 
hit-to-lead optimization. CADD has been used as an efficient method for identifying potential lead 
compounds toward the development of drugs for a wide range of diseases, including IBDs. A variety of 
computational approaches, such as molecular docking, molecular dynamic (MD) simulation, 
quantitative structure-activity relationship (QSAR) and pharmacophore modeling, are used to rationally 
design potent therapeutics with higher efficacies and fewer side effects[25]. The availability of more 
information about the molecular basis of IBD pathogenesis has further enhanced the use of computa-
tional methods in the design of small molecule drugs for IBD treatment. In the pathogenesis of IBD, 
there is an interplay between various factors such that any stimulus can lead to a cascade of events or 
even a vicious cycle. This gives a variety of therapeutic targets for which IBD drugs can be designed.

MOLECULAR ASPECTS OF IBD PATHOGENESIS
An interplay of genetic, epithelial and immune factors in the presence of intestinal microbiota are 
believed to be responsible for the development of the IBD[26].

Genetic factors
The genetic factors causing IBD were initially established through family and twin studies. The disease 
was observed to cluster in families, with a relative risk of 13-36 for siblings of CD patients and 7-17 for 
UC patients[27]. Hence, the prevalence of IBD is much higher among first-degree relatives of those with 
IBD than it is among the general population, suggesting a role for genetic factors in the pathogenesis of 
the condition. Monozygotic twins exhibit a much higher rate of disease concordance than dizygotic 
twins, and there are significant differences in the incidence and prevalence of IBD among various 
populations, according to the twin studies[27]. In CD, the concordance rate for monozygotic twins is 
approximately 50% compared to 15% for dizygotic twins. Meanwhile, the concordance of monozygotic 
twins for UC is only 16%, suggesting that genetic factors are less dominant in this form of IBD. In 
general, there is a growing number of genetic markers linked with the pathogenesis of IBD at various 
levels including innate immunity, epithelial integrity, antigen presentation, cell adhesion, and drug 
transporter. Along with environmental and immune system factors, the genetic markers at the different 
levels play a major role in genetic susceptibility to IBD[28].

Epithelial defects
Nucleotide-binding oligomerization domain-containing protein 2 (NOD2) is a cytoplasmic protein that 
is induced in epithelial cells[29] and is constitutively expressed in neutrophils, macrophages, and 
dendritic cells[30]. Specifically, the leucine-rich repeat domain of NOD2 is necessary for recognition of 
muramyl dipeptide, a fragment of peptidoglycan present in bacterial cell walls. Ultimately, muramyl 
dipeptide causes nuclear factor kappa B activation and the induction of proinflammatory cytokines[31,
32]. Activation of the innate and adaptive mucosal immune responses as a result of NOD2 poly-
morphism causes the synthesis of cytokines, metalloproteinases and enzymes, which subsequently 
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results in tissue destruction and epithelial barrier defect.
Evidence from genome-wide association studies (GWAS)[33,34] also shows the involvement of 

hepatocyte nuclear factor 4α (HNF4α) in the pathogenesis of UC. HNF4α is a member of the nuclear 
receptor superfamily of ligand-dependent transcription factors that is highly conserved and well 
expressed in liver and gastrointestinal organs. Several studies have linked HNF4α to intestinal epithelial 
differentiation, lipid metabolism and epithelial junctions[27,35], which are important components in 
colon development[36]. A zebrafish model suggests that the gut microbiota negatively regulates 
expression levels of HNF4α[37]. There is evidence linking alterations in HNF4 expression and activity, 
as well as germline variants, to IBD and colorectal cancer[38,39]. In UC, polymorphisms of HNF4α result 
in defects of epithelial tight junctions and intestinal permeability. Due to these epithelial barrier defects, 
there is transepithelial influx of bacteria, activation of the immune responses, release of cytokines, and 
further increase in epithelial junction permeability[40-42].

The development of UC has also been linked to a decrease in fatty acid oxidation in the colonic 
mucosal epithelium. Carnitine is a necessary cofactor in lipid metabolism and may be transported by the 
organic cation transporter (OCTN), a family of transporter proteins for organic cations. Carnitine helps 
shuttle long-chain fats into the mitochondria. Both OCTN1 and OCTN2 have been linked to CD-causing 
mutations: SLC22A4 1672C/T for OCTN1 and SLC22A5 +207G/C for OCTN2. The TC haplotype, 
formed by the presence of one or more of these mutations, is linked to the development of ileal, colonic 
and perineal symptoms and the requirement for surgical treatment of CD[28,43].

A number of tissues including the colon, small intestine, placenta, liver, heart and skeletal muscle 
contain high levels of Drosophila long disc homologue 5. The Drosophila long disc homologue 5 gene 
belongs to the membrane-associated guanylate kinase gene family, which encodes cell scaffolding 
proteins. It is thought to be involved in the maintenance of epithelial cell integrity and in signal 
transduction. Mutations in this gene have been linked to an increase in intestinal permeability[28]. The 
D haplotypes were found to be associated with UC and CD in a European cohort[44]. CD patients in 
Japan also showed another form of this gene (rs37462)[45]. Patients with IBD were found to have an 
excess transmission of haplotype D, which is defined by the haplotype-tagging single nucleotide 
polymorphisms (SNPs) G113A[28].

Mucosal immune responses
In normal intestinal mucosal immune response, the presence of gut microbiota has conditioned the 
dendritic cells present in the epithelium so that there is activation of T regulator cells that produce anti-
inflammatory cytokines interleukin (IL)-10 and transforming growth factor-beta (TGF-β) as well as 
suppression of T effector cells. However, in IBD, the dendritic cells respond to gut microbiota by 
activating CD4+ T effector cells that differentiate into T helper (Th1, Th2 and Th17) cells depending on 
the IBD type[40,42]. Recently, the proinflammatory cytokine IL-12 family, which includes IL-22, IL-23, 
IL-25, and IL-27, has been linked to the pathophysiology of CD and other immune-mediated disorders
[46]. The IL-12 family is responsible for the differentiation of Th cells into Th1 cells. IL-12 and IL-23 are 
heterodimeric proteins with a unique subunit linked to a shared p40 subunit. Patients with CD have 
elevated levels of these subunits[47,48]. Ustekinumab, a Food and Drug Administration (FDA)-
approved drug for moderate-severe CD, inhibits IL-12 and IL-23 receptors on T cells, natural killer cells, 
and antigen-presenting cells[49]. In addition, several monoclonal antibodies have been discovered that 
target the Th1/Th17 pathway via IL-23. However, none of them have progressed to phase 3 trials[50,51].

The upregulation of IL-13, another crucial cytokine in the Th2 immune response, is considered to be a 
major trigger of mucosal inflammation in UC patients[52,53]. Research in mice revealed an increase in 
IL-13 in colitis, and this increase could be mitigated by inhibiting the ability of IL-13 to bind to its 
signaling receptor[54]. Tralokinumab is a human immunoglobulin G4 monoclonal antibody that binds 
to IL-13 and inhibits its activity.

Molecular studies have also identified NOD2 as a susceptibility gene in CD. The gene encodes a 
protein that transduces signals to activate nuclear factor kappa B in monocytes and functions as an 
intracellular receptor for bacterial products. Muramyl dipeptide activates NOD2, leading to autophagy 
in dendritic cells. Defective autophagy induction and decreased bacterial localisation in 
autophagolysosomes are observed in CD patients with susceptibility polymorphisms in the NOD2 gene. 
Genetic analyses have identified two other genes that are involved in autophagy and intracellular 
bacteria clearance, namely IRGM and ATG16L1, demonstrating the importance of autophagy in IBD 
immune responses. Other genes related with autoimmune disease, such as IL23R and PTPN2, reveal an 
additional feature of CD pathophysiology[38,40].

Another major player in IBD pathogenesis is TGF-β1, an essential factor in the healing of intestinal 
cells and the reduction of inflammation[55]. It is an immunosuppressive cytokine with the ability to 
inhibit pathogenic T cell activity and antigen-presenting cell responses. Increased levels of Mothers 
against decapentaplegic homolog 7 (SMAD7), an intracellular protein that binds TGF-β1 receptor and 
prevents TGF-β1- and SMAD-associated signaling, are believed to account for the deficiency in TGF-β1 
activity observed in IBD patients. Mongersen, an oral medication that inhibits SMAD7 activity after 
administration to the terminal ileum and right colon is being investigated for efficacy in CD[56]. In its 
current form, the site of action is limited to the terminal ileum and right colon, hence it may not be 
beneficial for patients with more complicated CD or post-operative recurrence[57].
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The involvement of the JAK family of intracellular non-receptor tyrosine protein kinases in the 
pathogenesis of a number of autoimmune diseases has also been demonstrated[58]. Many autoimmune 
diseases, including IBD, have been linked to specific SNPs in the genome, and the, JAK/signal 
transducer and activator of transcription proteins (JAK/STAT) signaling pathway has yielded several 
cytokines and receptors as potential treatment targets[59]. The JAK/STAT pathway interferes with a 
couple of inflammatory pathways and development of disease as seen in CD and UC patients is charac-
terized by imbalanced effector T cells, leading to increased effector Th cells (Th1, Th2 and Th17 cells), 
thus mediating the inflammation[60]. Figure 1 shows a schematic description of the JAK/STAT 
pathway leading to the expression of genes encoding some inflammatory markers. Inhibition of JAK 
leads to the inhibition of signaling of a specific subset of cytokines, which are implicated in inflam-
mation[61]. Some small molecule inhibitors of the JAK/STAT pathway with good oral bioavailability 
have been developed. A very good example is tofacitinib. When compared to monoclonal antibodies, 
JAK inhibitors have the therapeutic advantage of being able to target multiple downstream signaling 
pathways induced by inflammatory cytokines, whereas monoclonal antibodies can only block a single 
molecule[62].

The successful development of tofacitinib, as well as the promising results of other JAK inhibitors in 
both UC and CD (as shown in Figure 2), demonstrate that JAK inhibition has a role in the treatment of 
IBD. However, long-term safety studies in people with rheumatoid arthritis and UC who took 
tofacitinib showed a higher risk of reactivation of herpes zoster, especially at higher doses[63]. This 
increased risk is likely a class effect of JAK inhibitors and related to IFN and IL-15 inhibition. Also, there 
might be a possible thrombogenic risk, as shown by patients with rheumatoid arthritis[64]. More 
selective JAK-1, JAK-3 or tyrosine kinase 2 inhibitors are expected to improve safety while maintaining 
efficacy. However, these drugs are still systemic; a gut-selective JAK inhibitor with high intestinal 
exposure and target engagement but no systemic effects are still needed for treating people with IBD. 
Continued progress is being made in all of these areas[65].

IBD DRUG DISCOVERY AND DEVELOPMENT
The process of identifying a therapeutic agent for extensive study as a potential drug candidate is 
known as drug discovery[66]. In general, the modern drug discovery process involves identifying a 
condition to be treated and its unfulfilled medical necessity, selecting a druggable molecular target and 
validating it, developing in vitro assays followed by high-throughput screening of compound libraries 
against the target to identify hits and optimizing hits to create lead compounds with acceptable potency 
and selectivity towards the biological target and demonstrated efficacy in an animal model. Following 
that, the lead compounds are further refined to improve their effectiveness and pharmacokinetics before 
moving further with drug development (Figure 3). The discovery and development of innovative drugs 
is a complex process that takes around 12 years and an average of $1.8 billion to bring a new medication 
to market[66,67].

The process of IBD drug discovery begins with target discovery and selection followed by biological 
confirmation in cellular and animal models[68]; this is usually the pre-clinical phase. Several therapeutic 
targets of IBD have been identified, and some are listed in Table 1. Target identification in IBDs is based 
on qualitative relevance to the pathogenesis of the disease as well as increased magnitude of expression
[68]. Biochemical pathways and specific proteins are targeted, and the drugs are developed based on the 
understanding of the mechanism of action of these targets. This is followed by pharmaceutical 
developments such as screening for safety, toxicity, pharmacokinetics and efficacy. At the preclinical 
stage, drugs are tested with targets to investigate levels of interactions and outcomes. Models and 
methods used differ between laboratories based on specific targets of interest.

For instance, in IBD, targets such as JAK/STAT and inflammatory mediator interleukins  such as IL-
12, IL-23, IL-6, IL-22Fc[69], tyrosine kinase and toll-like receptors[70] are explored using biologic agents 
at different stages of development. Following the in vivo studies using murine and human T cells, 
JAK/STAT inhibition by tofacitinib[71] has led to further application of the drug in several clinical 
trials. Integrins, a class of receptors that facilitate T lymphocyte trafficking into the gut[72] are targets as 
well. Integrins facilitate adhesive interactions between lymphocytes and endothelial cells, which leads 
to the trafficking[73] and can lead to T cell-dependent chronic intestinal inflammation in IBD[70]. 
Etrolizumab, an anti-adhesion agent approved by the FDA for treatment of IBD was subjected to in vitro 
testing, where it internalized β7 integrin using cell culture models[74]. Etrolizumab selectively inhibits α
4β7 and αEβ7, which are involved in T lymphocyte homing in the gut[75]. Although there are challenges 
involved in the use of in vivo and in vitro methods in establishing IBD[68], conditions for the studies of 
potential drugs are optimized. The molecules with desired preclinical effect on the target go into clinical 
trial.

In clinical trials, drugs that scale through preclinical studies are expected to maintain remission in 
long-term mucosal healing. Clinical trial phases are regarded as long and extensive periods that take 
years from the point of research to the stage of approval of a candidate drug. Prior to these trials, 
detailed protocols that show the characteristics of the studies are provided[76]. The clinical phase comes 



Johnson TO et al. Computational methods for IBD drug development

WJG https://www.wjgnet.com 315 January 14, 2023 Volume 29 Issue 2

Table 1 Molecular targets for inflammatory bowel disease drug discovery

Target name Abbreviation Description Disease implication Modulatory 
effect of drug

Integrin alpha-4 ITGA4 A member of the family of integrins. Integrins alpha-
4/beta-1 (VLA-4) and alpha-4/beta-7 are fibronectin and 
VCAM1 receptors. Integrin alpha-4/beta-7 is also a 
MADCAM1 receptor. On activated endothelial cells, VLA-4 
integrin induces homotypic aggregation in the majority of 
VLA-4-positive leukocyte cell lines. ITGA4: ITGB1 binds 
fractalkine (CX3CL1) and may function as its coreceptor in 
fractalkine signaling dependent on CX3CR1[123]

ITGA4 upregulated in 
irritable bowel disease 
(IBD)

Inhibition

Interleukin 12B IL12B IL12B is also known as natural killer cell stimulatory factor 
2 or p40, and it associates with IL23A to form IL23, a 
known stimulator of the JAK/signal transducer and 
activator of transcription (STAT) signaling pathway and a 
pathway with proven importance in IBD[124]

IL12B upregulated in 
IBD

Inhibition

Tumor necrosis factor TNF A type of cytokine, which binds to TNFRSF1A/TNFR1 and 
TNFRSF1B/TNFBR. It is secreted by macrophages and is 
capable of triggering cell death of most tumor cell lines, 
although capable of promoting cell proliferation and 
induce cell differentiation under certain conditions[123]

TNF upregulated in 
IBD

Inhibition

Janus kinase 2 JAK2 A class of kinase, a non-receptor kinase that 
phosphorylates specific tyrosine residues on the 
cytoplasmic tails of the receptor. In the cytoplasm, JAK2 
plays a pivotal role in signal transduction via its association 
with type I receptors such as growth hormone (GHR), 
prolactin (PRLR), leptin (LEPR), erythropoietin (EPOR), 
thrombopoietin (THPO) or type II receptors including IFN-
alpha, IFN-beta, IFN-gamma, and multiple interleukins. It 
stimulates cell growth, development, differentiation or 
histone modification[123]

JAK2 upregulated in 
IBD

Inhibition

Prostaglandin-
endoperoxide synthase 
1 and 2

PTGS1/2 Also referred to as cyclooxygenase; are the primary 
enzymes involved in the synthesis of prostaglandin. They 
act both as a dioxygenase and as peroxidase, having two 
isozymes PTGS1 and PTGS2. This gene encodes the PTGS2 
inducible isozyme. Its involvement in prostanoid-
dependent inflammation and mitogenesis can be related to 
their regulation by specific stimulation[123]

PTGS1/2 upregulated 
in IBD

Inhibition

Peroxisome proliferator 
activated receptor 
gamma

PPARγ A nuclear receptor. It consists of a group of approximately 
50 transcription factors involved in many biological 
processes. It controls some regulatory genes involved in 
lipid metabolism and insulin sensitization as well as in 
inflammation and cell proliferation. It is highly expressed 
in the colon and majorly involved in bacterial-induced 
inflammation, also mediating the common aminosalicylate 
activities in IBD[125]. It acts as a critical regulator of gut 
homeostasis by suppressing nuclear factor-kappa B-
mediated proinflammatory responses

PPARγ downreg-
ulated in IBD, mostly 
ulcerative colitis

Activation

Integrin subunit beta 7 ITGB7 Integrin alpha-4/beta-7 is an adhesion molecule that 
mediates lymphocyte migration and homing to gut-
associated lymphoid tissue (GALT). The vascular 
endothelium of the gastrointestinal tract expresses 
MADCAM1, an adhesion molecule, which is the medium 
integrin alpha-4/beta-7 interacts with the gastrointestinal 
tract. VCAM1 and fibronectin found on the extracellular 
matrix of the cell also interacts with the integrin. 
Interaction with fibronectin is due to the CS-1 region[123]

ITGB7 upregulated in 
IBD

Inhibition

Nuclear receptor 
subfamily 3 group C 
member 1

NR3C1 This is a receptor recognized by glucocorticoids. It 
modulates the activities of cortisol and acts as a 
transcription factor that modulates the expression of its 
target genes[126]. It modulates inflammatory responses, 
cellular proliferation and differentiation in target tissues

NR3C1 downreg-
ulated in IBD 

Activation

Janus kinase 3 JAK3 Non-receptor tyrosine kinase involved in signal 
transduction in the cytoplasm via its association with type I 
receptors sharing the common subunit gamma such as 
IL2R, IL4R, IL7R, IL9R, IL15R, and IL21R. It also plays a 
vital role in STAT5 activation. IBD pathology is associated 
with receptor-mediated signaling through the JAK and 
STAT DNA-binding families of proteins[127]

JAK3 upregulated in 
IBD

Inhibition

ALOX5, an important member of the lipoxygenase gene 
family, exclusively involved in IBD development[128]. 

ALOX5 upregulated in 
IBD, especially 

Arachidonate 5-lipoxy-
genase

ALOX5 Inhibition
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Catalyzes the oxygenation of arachidonate 
(5Z,8Z,11Z,14Z)- eicosatetraenoate) to 5-hydroper-
oxyeicosatetraenoate (5-HPETE) followed by the 
dehydration to 5,6- epoxyeicosatetraenoate (leukotriene 
A4/LTA4), the steps in the biosynthesis of leukotrienes, 
that mediates inflammation[123]

ulcerative colitis

Tyrosine kinase 2 TYK2 A non-receptor kinase that carries out both structural and 
catalytic roles in numerous cytokines and interferons 
signaling. TYK2 plays a key role in mediating signaling 
and functional responses downstream of the IL-12, IL-23, 
and type I interferon (IFN) receptors and TYK2-mediated 
IL-12, IL-23 and type I IFN signaling activates STAT-
dependent transcription, which promotes chronic inflam-
mation[129]

TYK2 upregulated in 
IBD

Inhibition

Phosphoribosyl 
pyrophosphate 
aminotransferase

PPAT PPAT is a key rate-limiting reaction in purine biosynthesis, 
transferring gamma-nitrogen from glutamine to 5-
phosphoribosyl pyrophosphate (PRPP)[130]

PPAT upregulated in 
IBD

Inhibition

Vitamin D receptor VDR A nuclear, ligand-dependent transcription factor that 
regulates the expression of T cells and genes involved in 
different physiological functions when in complex with 
hormonally active vitamin D, 1,25(OH)2D3[131]. VDR 
plays a multifaceted role in the pathogenesis of IBD and is 
crucial in regulating autophagy, immune response, tight 
junctions, gut microbiome, and metabolites[132]

VDR downregulated 
in Crohn’s disease

Activation

Matrix metallopeptidase 
1

MMP1 An interstitial collagenase, that digests the spiral structure 
of collagen types I, II, III and X, subjecting them to 
hydrolysis by gelatinase and are major players in 
extracellular matrix degradation[123]

MMP1 upregulated in 
IBD

Inhibition

Matrix metallopeptidase 
7

MMP7 A metallopeptidase member necessary for neutrophil 
migration into the airspaces by cleaving syndecan-1, a 
heparin sulfate proteoglycan necessary for the 
establishment of a neutrophil chemokine gradient[133]. 
Degrades casein, gelatins I, III, IV and V, and fibronectin 
and is responsible for the activation of procollagenase[123]

MMP7 upregulated in 
IBD

Inhibition

Dihydrofolate reductase DHFR An enzyme that converts dihydrofolate to tetrahydrofolate 
in folate metabolism and involved in purine and 
mitochondrial thymidylate biosynthesis[123]

DHFR upregulated in 
Crohn’s disease

Inhibition

Matrix metallopeptidase 
13

MMP13 A member of the family of collagenases. Matrix substrates 
of MMP13 include native collagen, gelatin and aggrecan. 
Lipopolysaccharide (LPS)-induced shock and dioctyl 
sodium sulfosuccinate (DSS)-induced colitis induce 
MMP13 upregulation in the gut, which results in MMP13-
mediated shedding of transmembrane-bound TNF and 
release of bioactive, soluble TNF, thus triggering a cascade 
that leads to leakage of intestinal components, which 
increases systemic inflammation and subsequent organ 
damage[134]

MMP13 upregulated 
in IBD

Inhibition

Sphingosine-1-
phosphate receptor 1

S1PR1 A type of G-protein-coupled receptor. S1P binds to the 
S1PR1, which triggers angiogenesis, endothelial barrier 
enhancement, blood vessel constriction, heart rate 
modulation and lymphocyte trafficking[135]

S1PR1 downregulated 
in IBD

Activation

ATPase H+/K+ 
transporting subunit 
alpha

ATP4A A P-type cation-transporting ATPase. The gastric H+, K+-
ATPase is a heterodimer made of high molecular, weight 
catalytic alpha subunit with a glycosylated beta subunit. It 
is a proton pump that catalyzes the hydrolysis of ATP 
coupled with the exchange of H (+) for K (+) ions across the 
plasma membrane and also responsible for gastric acid 
secretion due to its ability to generate proton gradient 
across the membrane[123]

ATP4A upregulated in 
IBD

Inhibition

IBD: Inflammatory Bowel Disease; ITGA4: Integrin alpha-4; IL: Interleukin; TNF: Tumor necrosis factor; JAK: Janus kinase; PTGS1/2: Prostaglandin-
endoperoxide synthase 1 and 2; PPARγ: Peroxisome proliferator activated receptor gamma; ITGB7: Integrin subunit beta 7; NR3C1: Nuclear receptor 
subfamily 3 group C member; ALOX5: Arachidonate 5-lipoxygenase; TYK2: Tyrosine kinase 2; PPAT: Phosphoribosyl pyrophosphate aminotransferase; 
VDR: Vitamin D receptor; MMP: Matrix metallopeptidase; DHFR: Dihydrofolate reductase; S1PR1: Sphingosine-1-phosphate receptor 1; ATP4A: ATPase 
H+/K+ transporting subunit alpha; VLA-4: Very late antigen-4; VCAM 1: Vascular cell adhesion molecule 1; MADCAM1: Mucosal vascular addressin cell 
adhesion molecule 1; CX3CL1: C-X3-C Motif Chemokine Ligand 1; CX3CR1: C-X3-C Motif Chemokine Receptor 1; STAT: Signal transducer and activator of 
transcription; TNFRSF: Tumor necrosis factor receptor superfamily; GHR: Growth hormone receptor; PRLR: Prolactin receptor; LEPR: Leptin receptor, 
EPOR: Erythropoietin receptor; THPO: Thrombopoietin; IFN: Interferon; PTGS1&2: Prostaglandin G/H synthase 1 & 2; GALT: Gut-associated lymphoid 
tissue; 5-HPETE: 5-hydroperoxyeicosatetraenoate; LTA4: Leukotriene A4; prpp: Phosphoribosyl pyrophosphate.
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Figure 1 A schematic description of the Janus kinase/STAT pathway. 1: Cytokine and cytokine receptor before interaction; 2: Ligand-reception 
interaction brings about conformational change that recruits the second cytokine receptor to dimerize with the first cytokine receptor; 3: The activated dimeric receptor 
recruits Janus kinase (JAK); 4: Thereby causing JAK to phosphorylate itself and the cytoplasmic tail of the cytokine receptor on the tyrosine residue; 5: Activated JAK 
phosphorylates monomeric STAT transcription factor, hence causing it to disengage from its endogenous inhibitor and dimerize; 6: The activated dimeric signal 
transducer and activator of transcription translocates to the nucleus; 7: Where it binds to a promoter; 8: That causes the gene expression of some inflammatory 
markers. JAK: Janus kinase; STAT: Signal transducer and activator of transcription.

after certainty has been established that the drugs/molecules are effective and non-toxic. Clinical trials 
involve three main phases before approval, known as phase I, phase II, and phase III. The first two 
phases are early phases.

The phase I is the stage in drug development when testing and pharmacokinetics studies are carried 
out using healthy or ill subjects[76] to ascertain safety level of the drugs. The pharmacokinetics and 
pharmacodynamics of the drugs are determined using volunteer patients or patients who are not 
responsive to previous treatments in order to determine drug safety alongside desired clinical activities 
and an Absorption, Digestion, Metabolism and Excretion (ADME) profile[68]. For instance, a phase I 
study of Japanese patients with UC treated with vedolizumab, an anti-integrin antibody, showed an 
appreciable level of tolerance in the desired clinical activity of the drug as well as a satisfactory level of 
pharmacodynamics and pharmacokinetics[77]. The outcome of this phase determines whether the drug 
scales through to the next phase. The phase I studies can last for up to many years and part of the 
process involves identification of adverse effects or events other than the occurrence(s) observed in the 
preclinical stage. Foreknowledge of a possible mechanism of action of a drug can also guide expect-
ations in clinical trials.

The phase II is the stage that involves dose ranging. The efficacy of the drugs are determined 
alongside the optimum dose that would be considered safe[76]. At the point of dose determination, the 
outcome of the effect of different doses would guide the decision to proceed to the next phase. A phase 
II study of varied doses of ozanimod, an agent that targets sphingosine-1-phosphate receptors 1 and 5, 
was used to treat adult patients with moderate to severe CD based on an uncontrolled multicenter trial 
within 12 wk and the effects of different doses at different intervals were observed[78]. A drug that 
scales through is launched into the third phase.

Phase III is the stage whereby the efficacy of the drug is compared with that of an already established 
standard. Patients recruited for this phase are usually from the general population compared to phase I 
and II. The side effects of the drugs are studied as well as their effectiveness, comparing them with 
common treatments to help guide safety and proper use. Currently, etrolizumab, is undergoing a phase 
III clinical trial for treatment of IBD using six multicenter prospective randomized controlled trials and 
two open-label extension studies[75]. Upon conclusion of the studies, the drugs are considered for 
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Figure 2 Putative representations. 1: Janus kinase (JAK) 1, 2 or 3, and tyrosine kinase 2 (TYK2) with their respective catalytic/ATP-binding/Janus homology 
(JH) 1 site, regulatory/allosteric/JH2 site and autoinhibition loop; 2: List of anti-JAK drug family differentiated with green, pink and blue shapes; 3: Different modes of 
action of the drugs differentiated with the colors of the shape: (A) Drugs in group A (e.g., tofacitinib, baricitinib, ruxolitinib, upadacitinib and filgotinib) block the ATP-
binding site of either/both JAK 1 or 2, while the inhibition loop is disengaged; (B) Drugs in group B (e.g., deucravacitinib) bind to the allosteric site of TYK2, thereby 
stabilizing the autoinhibition loop from disengaging from the catalytic domain; (C) Drugs in group C (e.g., brepocitinib and ropsacitinib) are dual inhibitors and have a 
similar mode of action as “A” by binding to the catalytic site of their targets but blocking the catalytic site of both JAK 1 and TYK2 or JAK2 and TYK2, respectively. 
JAK: Janus kinase; TYK: Tyrosine kinase; JH: Janus homology.

Figure 3 Overview of the drug discovery and development process. IND: Investigated new drug application; NDA: New drug application; UMN: Unmet 
medical needs.

approval based on FDA standards. Drugs are reviewed by the FDA based on the evidence of preclinical 
and clinical outcomes and approved for marketing based on the terms of the FDA.

ROLE OF COMPUTATIONAL METHODS IN IBD DRUG DISCOVERY
The use of computational methods has become a crucial part of the drug discovery process[18]. A 
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number of commercially available medications as well as several clinical candidates have been 
discovered or improved with the help of molecular modeling techniques. CADD combines multiple 
chemical-molecular and quantum approaches to the discovery, design and development of drugs. 
Structure-activity relationships form the basis of many CADD methods. The objectives of CADD are 
multidisciplinary in nature, with the end goal being the modification of bioactive molecules, the 
formation of therapeutic alternatives and the knowledge of biological events at the molecular level[79].

From drug identification to pharmacological role discovery and from preclinical testing to drug 
marketing, computers have played a fundamental role in the entire drug discovery and development 
process[15]. In addition, CADD opens the door to the possibility of drug repurposing, which is the 
systematic identification of new potential uses from drugs that have already been approved for other 
indications[79]. According to the results of a computational drug repurposing study conducted by Bai et 
al[80], atorvastatin shows promise as a novel treatment approach for improving symptoms in patients 
with UC. They developed a framework for systematically integrating publicly accessible heterogeneous 
molecular data with clinical data on a large scale in order to repurpose FDA-approved drugs for a wide 
variety of human diseases.

Computational methods are useful in various aspects of modern drug discovery for IBD. These 
include but are not limited to genetic studies for the identification of pathways linked to IBD 
pathogenesis, target identification, and virtual screening.

IBD genetic studies
Computational methods have made tremendous contributions to the field of IBD genetic studies. As 
mentioned earlier, genetic factors contribute to the pathogenesis of IBD and the understanding of the 
molecular events are important for target identification. The advent of GWAS is a turning point in the 
history of genetic research into complex human disease. GWAS is a technique for identifying genetic 
markers that are linked to an increased probability of developing a disease or exhibiting a certain trait. 
The strategy entails analyzing the genomes of a large number of people to identify genetic variations 
that are more common in people who have a disease or a particular trait than in those who do not. 
Following the discovery of such genomic variants, researchers often use GWAS to search for other 
potentially causal variants located in close proximity[81]. IBD is a prime example of the usefulness of 
GWAS and related analyses. Using GWAS based on SNPs, researchers were able to identify 163 genetic 
loci and numerous signaling pathways that are linked to IBD[82]. Many of these loci have pleiotropic 
effects, and risk prediction models were developed using a wide variety of genetic variations. Key 
contributions of the gut microbiome and important interactions between genes and the environment are 
emerging as a result of these studies[83].

The development of computational methods has contributed significantly to the identification of the 
vast quantity of genetic determinants. There are a number of different software packages available for 
use in GWAS research[84], and a common example is PLINK. In addition to standard GWAS features 
like quality control filtering and SNP association testing, PLINK also includes more advanced tools like 
gene-based analysis, annotation and epistasis testing in a compact, user-friendly package. PLINK 
initially discovered the actin-related protein 2/3 complex subunit 2[85], IL10, HNF4a, cadherin-3, 
cadherin-1 and laminin subunit beta-1[33] loci and recently discovered 163 IBD loci[82]. In the majority 
of GWAS-based genetic studies of IBD, PLINK has served as the primary analytical tool. A linear mixed 
model, which accounts for both fixed and random effects, has been used in GWAS in recent years. 
Factored Spectrally Transformed Linear Mixed Models[86], Efficient Mixed-Model Association 
expedited[87] and Genome-wide efficient mixed-model association (GEMMA)[88] are all examples of 
linear mixed model-based software. They are able to adjust for both overt and covert connections within 
a population simultaneously. Multiple correlated phenotypes can be analyzed with GEMMA as well.

There is a plethora of pathway analysis software packages available, many of which are based on 
GWAS[89]. The development and implementation of GWAS-based pathway software has frequently 
been illustrated with CD as an example. To examine the CD dataset from the Wellcome Trust Case 
Control Consortium, Wang et al[90] used the GenGen software to find significant associations of the 
IL12/IL23 pathway with CD status in multiple cohorts genotyped with different SNP chips and from 
different ethnic backgrounds[91]. This was among the first analyses of IBD pathways based on GWAS 
data. IL3 activation and signaling pathway were also linked to CD, based on the research by Torkamani 
et al[92]. They used the MetaCore program, which is a for-profit product created by GeneGo Inc. (St. 
Joseph, MI, United States).

Using the statistical technique of Simes/false discovery rate, Peng et al[93] discovered significant 
enrichment of the JAK/STAT signaling pathway, as well as the cytokine-cytokine receptor interaction. 
With a model-based strategy, Carbonetto et al[94] found a similar result for a number of cytokine 
signaling pathways. Holmans et al[95] used the software ALIGATOR to discover the involvement of 
MHC genes in addition to IL/cytokine signaling. Similarly, Jostins et al[82] examined the largest IBD 
GWAS to date for enrichment of canonical pathways or Gene Ontology terms and discovered significant 
enrichment of Gene Ontology terms pertaining to the regulation of cytokine production, lymphocyte 
activation, and the JAK/STAT signaling pathway.
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It is possible that the differences between the studies can be attributed to the different statistical 
methods and/or the different pathway databases used in their studies. However, all of these pathways 
were related to interleukins and the immune system. Torkamani et al[92] found a significant association 
between calcium signaling and the carbohydrate response element binding protein regulation pathway; 
Peng et al[93] found a significant association between ABC transporters and the extracellular matrix 
receptor interaction. Numerous user-friendly web-based software programs, such as improved Gene Set 
Enrichment Analysis for (i-GSEA4) GWAS[96] and GSEA-SNP[97], have been developed for pathway 
analysis using GWAS data.

IBD target identification
Following the discovery of the biological basis of a disease, the next step in drug discovery is the identi-
fication of potential drug targets. The most promising targets for drug discovery are hypothesized to be 
highly prevalent in the disease-affected population, to have a well-established function in the 
underlying pathology and to be directly linked to the disease of interest. Potential drug targets are 
defined as disease-modifying rather than disease-causing. In the present day, a wide range of methods, 
both experimental and computational, are used to identify drug targets. The experimental methods rely 
heavily on comparative genomics, with phenotype and gene association analysis serving as comple-
mentary tools. All experimental methods yield credible findings, but they have significant drawbacks, 
including the high cost and extensive scientific labor needed to experimentally probe the entire space of 
chemical compounds to identify viable drug targets[98]. In light of these drawbacks, researchers and 
pharmaceutical companies increasingly rely on computational methods for initial investigations before 
turning to experimental approaches for validation and other purposes.

Various bioinformatics resources are available for the identification of drug targets as illustrated in 
Table 2. These programs efficiently process a large volume of data from genomic, transcriptomic and 
proteomic databases and ultimately provide potential drug targets in a short period of time and at a low 
cost. Several computational methods are currently accessible, each of which makes use of a unique type 
of molecular information, such as a gene or genomic sequence, molecular interaction data or the 3D 
structure of a protein[98]. There are strong connections between most of these methods.

Mohan et al[99] reported using genetic databases to find new molecular targets for IBD. They used 
four different genetic databases to categorize the protein-coding genes associated with UC (3783 genes), 
CD (3980 genes), uveitis (1043 genes), arthritis (5583 genes), primary sclerosing cholangitis (1313 genes), 
and pyoderma gangrenosum (119 genes). The databases used were Genecards: The Human Gene 
Database, DisGeNET, the Comparative Toxicogenomics Database, and the Universal Protein Resource. 
Then, they used Network Data Exchange to map a distinct signal pathway based on the identified 
common genes underlying the aforementioned diseases. Across UC, CD, uveitis, arthritis, pyoderma 
gangrenosum and primary sclerosing cholangitis, they identified a distinct set of 20 genes with the 
highest probability of overlap. Different disease processes were linked to some unique immune 
modulators. IL-25 and monensin-resistant homolog 2 were observed in UC, CD, pyoderma gan-
grenosum, and arthritis. Arachidonate 5-lipoxygenase was found to contribute to the development of 
UC, CD, and arthritis. The involvement of solute carrier organic anion transporter family member 1B3 is 
unique to pyoderma gangrenosum, UC, and CD. TNF was found to be involved in the pathogenesis of 
UC, CD, psoriatic spondylitis, and arthritis.

Virtual screening
Drug discovery relies heavily on the physical screening of large chemical libraries for biological targets 
in order to find new lead compounds. High-throughput screening is a method for finding active 
molecules in experiments by analyzing more than a million compounds biochemically. However, 
developing and deploying this technology takes a long time and a sizable investment. Therefore, virtual 
high-throughput screening was developed as a more affordable and effective calculation method. This 
technique has seen extensive use in the earliest stages of drug discovery. The goal is to search through 
huge compound libraries to find the structure of a novel, active small molecule. To some extent, this 
supports the goals of high-throughput screening. Virtual screening saves money by reducing the 
number of compounds used to measure pharmacological activity, while high-throughput screening uses 
all compounds in the database[18,24,100]. In this sub-section, we will go over the various virtual 
screening techniques that are commonly used in IBD drug discovery.

Molecular docking: Molecular docking is commonly used in the drug discovery and development 
process because of its ability to predict interaction patterns between proteins and small molecules as 
well as proteins[18,101,102]. The principle behind this phenomenon proposes that ligand and receptor 
recognition is predicated on a similarity in spatial shape and energy. Understanding the action 
mechanism of a drug requires first establishing its binding conformation to a specific protein receptor
[24]. The goal of docking is to accurately assess the strength of binding by fitting the structure of a 
ligand within the requirements of a receptor binding site[103]. The most frequently cited molecular 
docking software packages for use in drug discovery are summarized in Table 3.
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Table 2 Bioinformatics resources for the identification of drug targets

Tool/Database Description

Open Targets Platform To facilitate systematic target identification and prioritization for drug discovery based on underlying evidence, the Open 
Targets Platform offers users a searchable knowledgebase and user interface[123]

SELF-BLM A self-training support vector machine-based bipartite local model that predicts drug-target interactions[136]

iDTIESBoost A model for detecting drug-target interactions based on evolutionary and structural features[137]

GEO Database that stores array- and sequence-based transcriptomics data that can be applied to functional genomics[138]

DASPfind Predicts drug-target protein interactions that stem from shared structural features[139]

NetCBP Network methods for predicting drug-target interactions. Furthermore, it suggests new drugs even when no data on their 
interactions with their targets are available[140]

DbMDR Offers a database of multidrug resistance (MDR) genes and their orthologs, which could be used to develop new treatments
[141]

TDR targets Drug development molecular target identification and prioritization[142]

DrugBank An extensive drug database with annotations covering drug targets and mechanisms of action[143]

PDTD Database of potential proteins for in silico drug target identification[144]

DEG Contains all known essential genes from different organisms[145]

TTD Publicly accessible cross-links database that provides inclusive information about known therapeutic targets with related 
information, i.e. pathway information and the corresponding drugs/ligands[146]

KEGG Offers information about the pathway, gene and ligands in three different databases, i.e. Pathway, Gene and Ligand[147]

Genecards Officially known as Genecards: The Human Gene Database, it is an all-inclusive, authoritative compilation of annotative 
information about human genes[148]

DisGeNET A public resource that houses a massive database of genetic variants and their links to human disease[149]

CTD The Comparative Toxicogenomics Database is a vast, freely accessible database with the objective of increasing understanding 
of the effects of environmental exposures on human health. It includes information on chemical-gene/protein interactions, 
chemical-disease relationships and gene-disease links that has been curated by humans[150]

UniProt The Universal Protein Resource is the world’s most comprehensive, high-quality and freely accessible database of protein 
sequence and functional information[151]

SELF-BLM: Self-training bipartite local model; GEO: Gene Expression Omnibus; UniProt: Universal Protein Resource; CTD: Comparative Toxicogenomics 
Database; KEGG: Kyoto Encyclopedia of Genes and Genomes; TTD: Therapeutic Target Database; DEG: Database of Essential Genes; PDTD: Potential 
Drug Target Database; DbMDR: Database of multidrug resistance: NetCBP: Network-Consistency-based Prediction.

Keretsu et al[104] used computational methods to design new JAK1 inhibitors from a series of 
pyrrolopyridine derivatives. Autodock 4.2 was utilized to predict the protein-ligand binding. 
Tofacitinib, an established ligand, which was co-crystallized with the structure of JAK1 (protein data 
bank ID: 3EYG) obtained from the protein data bank (www.rcsb.org), was used as a reference 
compound to validate the docking procedure. The docked conformation of tofacitinib closely matched 
that of one obtained in the crystal structure. The binding affinity of compound 42 for JAK1 was found to 
be -10.2 kcal/mol. The F958 and L959 residues of the protein formed H-bond interactions with the 
pyrrolopyridine moiety. As a result, the methyl group of the methyl piperidine moiety protruded 
beyond the binding pocket and into the bulk solvent. The chlorobenzyl group slid into the hydrophobic 
pocket made by the residues of the activation loop, the α-helix and the P-loop. The selected binding 
conformation was prepared for further MD simulation study. The finding of the study was presented as 
a possible guide in the design of more effective JAK1 inhibitors[104].

In order to identify the bioactive compounds of the Phyllanthus nivosus leaf responsible for its activity 
against UC for further drug design, Johnson et al[101] combined molecular docking with an in vivo 
study. Levels of TNF-α, IL-6, nitric oxide, malondialdehyde, reduced glutathione, superoxide dismutase 
and catalase in the serum of rats experimentally induced with UC and treated with Phyllanthus nivosus 
were monitored. The bioactive ingredients of the most active fraction were identified using gas chroma-
tography-mass spectrometry followed by molecular docking against IL-1b converting enzyme (caspase-
1), beta-2 adrenergic receptor, cyclooxygenase-2 and TNF-α. The study led to the identification of ethyl 
iso-allocholate cholest-22-ene-21-ol, 3,5-dehydro-6-methoxy-, pivalate and alpha-cadinol as promising 
compounds for further development into drugs for the treatment of UC[101].

In another study, Halder et al[105] used molecular docking in combination with other in silico 
techniques for the repurposing of FDA-approved medications and provided a framework for drug 
exploration and computational methods in the discovery of drugs for the treatment of IBD. After being 
imported and processed using Protein Preparation Wizard and LigPrep, respectively, the molecular 

http://www.rcsb.org
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Table 3 Molecular docking programs most frequently employed in drug discovery

Program Description Website

AutoDock
[152]

A docking toolkit. It is meant to foretell the binding mode of small molecules to a receptor with a 
known 3D structure, such as a substrate or a drug candidate. There have been multiple engines 
developed, and it has undergone constant evolution and refinement over the years to incorporate new 
features

https://autodock.scripps.edu/

AutoDock 
Vina[153]

One of the AutoDock Suite’s docking engines. It is a free and open-source molecular docking software. 
Dr. Oleg Trott of The Scripps Research Institute’s Molecular Graphics Lab (now CCSB) created and 
initially implemented the system. The most recent version of AutoDock Vina is v.1.2.0

https://vina.scripps.edu/

Hex[154] Invented by Dave Ritchie and is a program for molecular superposition and protein docking. Hex can 
read protein and DNA structures in the Protein Data Bank format as well as small-molecule SDF files. It 
has been downloaded over 40000 times as of December 2015

http://hex.loria.fr/

MOE[155] Integrated computer-aided molecular design platform for small molecule and biological therapeutics. 
Common platform for chemists, biologists and crystallographers. Small Molecules - Peptides – 
Biologics

https://www.chemcomp.com/

Glide 
Schrodinger
[156]

Provides a full range of speed vs accuracy options, ranging from the high-throughput virtual screening 
mode that efficiently enriches million compound libraries to the standard precision) mode that reliably 
docks tens to hundreds of thousands of ligands with high accuracy to the extra precision mode that 
eliminates false positives by sampling more extensively and using more advanced scoring, resulting in 
even higher enrichment

https://www.schrodinger.com/

CCSB: Center for Computational Structural Biology; SDF: Structure data files; DNA: Deoxyribonucleic Acid; MOE: Molecular operating environment.

target TNF (protein data bank ID: 2AZ5) with a small molecule inhibitor and the FDA-approved drugs 
(from the Zinc database) were subjected to molecular docking, ADMET analysis and binding free-
energy calculation [Molecular mechanics with generalised Born and surface area solvation (MMGBSA)]. 
Following that, the medications were ranked based on docking score, ADMET parameters and 
MMGBSA dG binding score. The selected drugs were then subjected to an induced-fit docking study. 
The MD simulation study was conducted on the two most promising compounds, iopromide 
(ZINC000003830957) and deferoxamine (ZINC000003830635). Finally, the bioisosteric substitution was 
applied to enhance the ADMET properties of these compounds[105].

Pharmacophore modelling: Virtual screening of databases with the pharmacophore model has become 
one of the most important ways to find new lead compounds as compound databases and computing 
power have advanced. A pharmacophore is a conceptual description of the molecular features required 
for molecular recognition of a ligand by a biological macromolecule, which describes how structurally 
distinct ligands can bind to the same receptor site. To achieve therapeutic efficacy, drug molecules adopt 
an active conformation that is both geometrically and energetically complementary to that of the target 
macromolecule.

Medicinal chemists have discovered that modifications to specific chemical groups in drug molecules 
greatly affect the interaction between drugs and targets, while modifications to other groups have little 
to no effect[106]. Additionally, it was discovered that molecules exhibiting the same activity share 
common properties. Accordingly, Ehrlich proposed the idea of pharmacophores in 1909[107], which 
referred to the molecular framework of atoms with active essential characteristics. In 1977, Gund[108] 
provided further elaboration on the concept of pharmacophores as a class of molecules that recognize 
receptors and form structural features of molecular biological activity.

Pharmacophores can be discovered using one of two common approaches. If the structure of the 
target molecule is known, then the structure of the pharmacophore can be inferred using techniques like 
conformational analysis and molecular folding[109]. The pharmacophore recognition procedure will 
then choose an active compound that can be used to create the model. Conversely, pharmacophore 
studies are conducted on a number of compounds when either the structure of the target or its action 
mechanism is still unknown; this allows for a summary of data on certain groups that are crucial to the 
activity of the compound[24].

Babu et al[110] combined ligand-based pharmacophore modeling with virtual screening and 
molecular docking to find JAK1 inhibitors with high potency and selectivity. In the first step, they 
developed ligand-based pharmacophore models and checked them for accuracy with potency and 
selectivity validation techniques. A pharmacophore-based virtual screening was carried out on eight 
selected pharmacophore models using six different databases. ADME prediction and molecular docking 
were used to narrow down the hits found during screening. Docking results were verified using the 
binding free-energy calculation and induced fit docking techniques. A cross docking analysis was then 
performed to determine which lead compounds are selective for JAK1. In the end, five promising 
compounds were chosen and subjected to further investigation using MD and density functional theory. 
T5923555 and T5923531 were identified as the most promising leads among the five compounds and 
will be pursued for additional validation via in vitro and in vivo techniques.

https://autodock.scripps.edu/
https://vina.scripps.edu/
http://hex.loria.fr/
https://www.chemcomp.com/
https://www.schrodinger.com/
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QSAR: QSAR is frequently used in the drug discovery process to find compounds with desirable 
inhibitory effects on target proteins, with minimal side effects (nonspecific activity). The QSAR model is 
a quantitative investigation into the relationships that exist between small organic molecules and large 
biological macromolecules. The calculated properties of molecules (such as the absorption, distribution 
and metabolism of small organic molecules in living organisms) are correlated with their biological 
activity, as determined experimentally[111]. QSAR is the most precise and efficient approach to drug 
design when the structure of the receptor being targeted is unknown.

In the 1980s, 3D structural information was incorporated into the quantitative structure-activity 
relationship to form the 3D-QSAR method. Since the 1990s, structure-based drug design has 
increasingly replaced QSAR in the area of drug design due to the increase in computational power and 
the availability of the 3D structure of many biomolecules. However, QSAR with its advantages of small 
amount of calculation and good predictive ability[112], continues to play an important role in pharma-
ceutical studies.

3D-QSAR enables the investigation of the three-dimensional structure of bioactive compounds and 
the correct representation of energy changes and interaction patterns between bioactive molecules and 
receptors. Different drugs are evaluated by fitting their physicochemical and 3D structural parameters 
to the quantitative relationship. The structures of the newly created compounds are subsequently 
predicted and improved upon. 3D-QSAR analysis is a research method that integrates QSAR with 
computational chemistry and molecular graphics. It is an effective method for determining the nature of 
drug-target interactions, creating hypothetical images of simulated targets, determining the correlation 
between drug structure and activity and developing new medications. In addition, predictive 2D-QSAR 
models, 3D-QSAR models and 3D target and ligand-based approaches have all been developed for the 
purpose of finding IBD drugs[24].

Yang et al[113] incorporated molecular docking and QSAR study in the design of a series of TNF-α 
converting enzyme (TACE) inhibitors with the ability to bind in the S1’ pocket of the enzyme. A total of 
12 analogues were synthesized by altering the chain length and alkylation pattern on the aromatic ring 
of the side chain. Most compounds inhibited cellular TNF-α production and TACE in vitro. The most 
promising compound from in vitro and in vivo pharmacokinetic studies had a moderate systemic 
clearance and a good oral bioavailability of 42%. It was also tested in a rat model of carrageenan-
induced paw edema and found to be effective at reducing edema in the animal’s paws. The series of α-
alkoxyaryl alkyl substituted chromen-based analogues was then validated by means of a QSAR study 
and docking. Coumarin core TACE inhibitors with long, bulky α-substituent groups are able to enter the 
S1’ and S3’ pockets, where they form van der Waals interactions, with increased inhibitory activity. The 
docking study of the compound demonstrated its dual-function inhibitory activity toward TACE and 
matrix metallopeptidase-3. Based on the resulting QSAR descriptors, new α-substituted chromen-based 
TACE inhibitors with enhanced TACE inhibitory activity can be developed.

MD simulation in IBD drug discovery: MD simulation[102,114-116] is another popular approach to 
studying biomolecules; it is based on Newtonian mechanics and applies empirical molecular mechanics 
force fields. The drug discovery process can be aided by using explicit/implicit solvent models, which 
allow for simulations of time and space, and all-atom, united-atom and coarse-grained MD simulations
[117,118]. MD simulations have typically been used to identify potential drug binding sites on target 
proteins, calculate the binding free energy between proteins and ligands, determine the mechanism of 
action of drug molecules, and more[119,120].

Taldaev et al[121] used MD to create structural representations of the arrangement of binding sites for 
the JAK family enzymes in order to elucidate the selectivity of upadacitinib for JAK1 among other 
isoforms. They found that the high affinity of upadacitinib was due to its ability to form four hydrogen 
bonds with amino acid residues in the hinge region of JAK1 as opposed to just two with other JAK 
isoforms. Structural features of the JAK1 binding site, including the unique residues S963 and E966, are 
responsible for stabilizing the molecule at the hinge region, as proposed by the authors. Hydrogen 
bonding with the JAK1 (E883) and JAK2 (N859) amino acid residues in the glycine loops was reported 
to increase the affinity. The research findings were presented as having the potential to direct the 
creation of more selective and effective next-generation JAK inhibitors, thereby enhancing the treatment 
of a wide range of cytokine-mediated diseases.

In another MD simulation research conducted by Du et al[122], the interaction mechanism between 
oncostatin M (OSM) and its receptor (OSMR) at the atomic level was predicted. Binding of OSM to 
OSMR is said to be implicated in the pathogenesis of IBD. The OSMR interaction domain was built 
using the homology modeling approach. Docking was used to establish the near-native structure of the 
OSM-OSMR complex, and long-time scale MD simulation in an explicit solvent was used to sample the 
conformations when OSM binds to OSMR. Following the equilibration of the simulated system, the per-
residue energy contribution was determined to describe the key residues for the formation of the OSM-
OSMR complex. Premised on these key residues, eight residues (OSM: Arg100, Leu103, Phe160, and 
Gln161; OSMR: Tyr214, Ser223, Asp262 and Trp267) were identified as “hot spots” by computational 
alanine mutagenesis analysis and confirmed by further MD simulation of the R100A (one of the 
discovered “hotspots”) mutant. Furthermore, the FTMap analysis revealed six cavities at the OSM-
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OSMR interface, which were proposed as key binding sites. The predicted 3D structure of the OSM-
OSMR complex and the discovered “hotspots” provide useful information in understanding the OSM-
OSMR interactions, and the identified locations serve as potential targets in designing small molecules 
to inhibit the interactions[122].

CONCLUSION
The global prevalence of IBD is increasing, with developing countries experiencing an increase due to 
modernization. There is still a need for a new generation of alternative therapies due to the loss of 
response to biologic drugs, which can be caused in part by the immunogenicity of the administered 
protein as well as the need to discontinue drugs due to intolerance or side effects. The development of 
small molecule drugs is difficult because of the complexity of the molecular pathways involved in the 
progression of disease. The conventional drug design and development processes are lengthy, 
expensive and filled with arduous scientific procedures. However, computational tools show consid-
erable promise as a practical means of creating new small molecules with biomedical application. There 
have been a number of groundbreaking successes with drugs for several diseases developed using 
CADD. Many of these drugs are either FDA-approved or under clinical trials. However, computational 
methods appear to be underutilized for IBD drug research, as observed during this literature search. To 
hasten efforts in finding treatments for IBD, more scientists need to turn to computational methods. The 
modern drug discovery process for IBD makes use of a wide range of computational tools, some of 
which are geared toward specific tasks such as genomic studies, target identification, and virtual 
screening.
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Abstract
Magnesium (Mg2+) has an important role in numerous biological functions, and 
Mg2+ deficiency is associated with several diseases. Therefore, adequate intestinal 
absorption of Mg2+ is vital for health. The small intestine was previously thought 
to absorb digested Mg2+ exclusively through an unregulated paracellular 
mechanism, which is responsible for approximately 90% of total Mg2+ absorption. 
Recent studies, however, have revealed that the duodenum, jejunum, and ileum 
absorb Mg2+ through both transcellular and paracellular routes. Several regulatory 
factors of small intestinal Mg2+ uptake also have been explored, e.g., parathyroid 
hormone, fibroblast growth factor-23, apical acidity, proton pump inhibitor, and 
pH-sensing channel and receptors. The mechanistic factors underlying proton 
pump inhibitor suppression of small intestinal Mg2+, such as magnesiotropic 
protein dysfunction, higher mucosal bicarbonate secretion, Paneth cell 
dysfunction, and intestinal inflammation, are currently being explored. The 
potential role of small intestinal microbiomes in Mg2+ absorption has also been 
proposed. In this article, we reviewed the current knowledge on the mechanisms 
and regulatory factors of small intestinal Mg2+ absorption.

Key Words: Hormone; Magnesium absorption; Paneth cells; Proton pump inhibitor; 
Regulation; Small intestine
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Core Tip: Small intestinal epithelium absorbs digested magnesium (Mg2+) through both transcellular active 
and paracellular passive mechanisms. Several regulatory factors of small intestinal Mg2+ uptake have been 
reported. Parathyroid hormone and fibroblast growth factor-23 directly inhibit transcellular Mg2+ 
absorption in the duodenum, jejunum, and ileum. The apical proton triggers acid-sensing ion-channel 1a 
and purinergic P2Y2 receptor activities, which stimulates mucosal bicarbonate secretion and induces 
MgCO3 precipitation to suppress absorption. Omeprazole suppresses Mg2+ absorption in the duodenum, 
jejunum, and ileum.

Citation: Chamniansawat S, Suksridechacin N, Thongon N. Current opinion on the regulation of small intestinal 
magnesium absorption. World J Gastroenterol 2023; 29(2): 332-342
URL: https://www.wjgnet.com/1007-9327/full/v29/i2/332.htm
DOI: https://dx.doi.org/10.3748/wjg.v29.i2.332

INTRODUCTION
Magnesium (Mg2+) has an essential role in numerous cellular biochemical functions ranging from DNA 
structure stability and repairing, cell proliferation, neuronal excitability, bronchodilatation, 
vasodilatation, muscle contraction, myocardial excitability, bone hydroxyapatite formation, and anti-
inflammatory function to exocrine and endocrine function of the pancreas[1]. Mg2+ deficiency has been 
implicated in several diseases, such as Alzheimer’s disease[2], osteoporosis[3], hypertension[4], diabetes 
mellitus[5], and cancer[6]. Therefore, its plasma level is tightly regulated within a narrow range (0.7–1.1 
mmol/L) by the collaborative actions of intestinally digested Mg2+ absorption, bone and muscle Mg2+ 
storage, and excess renal Mg2+ excretion[1]. The mechanism underlying regulation of transepithelial 
Mg2+ transport has been extensively explored in the renal tubular epithelium[1]. However, few research 
articles on the mechanism and regulatory factors of intestinal Mg2+ absorption have been published.

Since dietary intake is the sole source of Mg2+ in humans, adequate intestinal absorption of Mg2+ is 
vital for normal Mg2+ balance. It was previously hypothesized that bulk Mg2+ uptake occurs in the small 
intestine through an unregulated paracellular pathway, whereas fine-tuning of colonic Mg2+ absorption 
occurs through a regulated transcellular mechanism[1,7,8]. Colonic Mg2+ absorption can be modulated 
by dietary Mg2+ content and inulin fibers[7,9] but not by hormones[1,7]. In contrast, recent studies have 
provided new insights into the mechanisms and modulatory factors of small intestinal Mg2+ uptake. The 
aim of this article was to review the current knowledge of the mechanisms and regulatory factors of 
small intestinal Mg2+ absorption.

MECHANISM OF SMALL INTESTINAL MG2+ ABSORPTION
The mechanism of small intestinal Mg2+ absorption is currently under debate. One research group has 
proposed that transient receptor potential melastatin 6 homodimer channel (TRPM6) mRNA expression 
and transcellular Mg2+ absorption were not present in the small intestine[1,7,8]. However, a study from 
the same group showed positive immunofluorescence staining of TRPM6 protein in the absorptive cells 
along the brush border membrane of the villi in the duodenum[10]. Another group has proposed that 
the small intestinal epithelium absorbs Mg2+ through transcellular active and paracellular passive 
transport mechanisms[11-13]. In an Ussing chamber study, transport of transcellular and paracellular 
Mg2+ was detected in the duodenum, jejunum, and ileum[11-13]. The proposed mechanism of small 
intestinal Mg2+ absorption is shown in Figure 1.

Transcellular Mg2+ absorption
Transcellular Mg2+ absorption occurs through mucosal Mg2+ uptake by TRPM6 and TRPM7 homodimer 
channel, both of which were markedly detected in the small intestinal epithelium of human and murine 
cells[10-14]. In addition, recent mass spectrometric peptide sequence analysis confirmed the expression 
of TRPM6 and TRPM7 in the duodenum and jejunum[15]. The channel activities of both homodimers of 
TRPM6 and of TRPM7 are negatively regulated by physiological Mg·ATP and Mg2+ levels[10,16-19]. A 
recent study reported the expression of a heterodimer TRPM6/7 channel in the plasma membrane of 
duodenal and jejunal epithelium[15]; therefore, Mg2+ enters the small intestinal epithelial cells through 
TRPM6/7, TRMP6, and TRPM7. However, the heterodimer TRPM6/7 channels do not respond to 
physiological intracellular Mg2+ and Mg·ATP[17,19]; thus, continuous epithelial Mg2+ absorption can 
occur through the TRPM6/7 channel, regardless of intracellular Mg2+ and concentrations. Basolateral 
Mg2+ extrusion from the small intestinal epithelium occurs through cystathionine β-synthase domain 
divalent metal cation transport mediator 4[11-13,20] by means of a sodium (Na+) gradient-dependent 
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Figure 1 Magnesium absorption in the small intestine through two absorption pathways. The transcellular transport mechanism involves 
magnesium (Mg2+) influx into enterocytes through the transient receptor potential melastatin 6 homodimer channel (TRPM6), transient receptor potential melastatin 7 
homodimer channel (TRPM7), and transient receptor potential melastatin 6/7 heterodimer channel (TRPM6/7). Cystathionine β-synthase domain divalent metal cation 
transport mediator 4 (CNNM4) mediates basolateral Mg2+ extrusion by means of secondary active transport. In the paracellular mechanism, Mg2+ moves through 
tight-associated paracellular pores of Claudin 7 (Cldn 7) and Claudin 12 (Cldn 12).

secondary active transport[20]. However, mutation of cystathionine β-synthase domain divalent metal 
cation transport mediator 4 does not affect the plasma concentration in humans[21,22], suggesting that 
other Mg2+ extrusion mechanisms probably occur.

Paracellular Mg2+ absorption 
It has been suggested that paracellular Mg2+ absorption is responsible for 90% of total intestinal Mg2+ 
uptake[23]. Paracellular permeability is regulated by the paracellular claudin (Cldn) channel of the tight 
junction[24]. In 1999, the first discovery of a paracellular channel at the tight junction was Cldn-19 or 
paracellin-1, which form a paracellular Mg2+ channel[25]. It is thought that paracellular Mg2+ channels in 
epithelial tissues are formed by Cldn-16 and -19[25-27]; mutations in these genes lead to severe 
hypomagnesemia. The small intestinal epithelium expresses Cldn-1–5, -7, -8, -12, and -15 but not -16 and 
-19[28,29]. A previous study proposed that Cldn-7 and -12 modulated intestinal paracellular Mg2+ 
absorption[30]. However, the processes involving Cldn-regulated paracellular Mg2+ absorption in the 
small intestine still must be elucidated.

REGULATORY FACTORS OF SMALL INTESTINAL MG2+ ABSORPTION
Hormones
In general, hormones mainly modulate the transcellular electrolyte transport to regulate epithelial 
electrolyte absorption or secretion. Hormonal regulation of small intestinal Mg2+ absorption also 
modulates transcellular Mg2+ absorption. A recent study reported that parathyroid hormone (PTH) and 
fibroblast growth factor-23 (FGF-23) systemically and directly inhibited transcellular, but not 
paracellular, Mg2+ absorption in the duodenum, jejunum, and ileum[13]. There was no additional effect 
of PTH and FGF-23, suggesting that they acted through the same intracellular signaling molecule. Both 
PTH and FGF-23 activate their corresponding receptors that further stimulate the same protein kinase C 
pathway to suppress plasma membrane-associated TRPM6 expression (Figure 2). Since native TRPM6 
primarily functions as a subunit of heteromeric TRPM6/7 channels[31], the suppression of plasma 
membrane TRPM6 probably suppresses plasma TRPM6/7 heterodimer expression. The suppression of 
plasma TRPM6 and TRPM6/7 activity leads to diminution of transcellular Mg2+ absorption[13]. The 
inhibitory effect of PTH and FGF-23 could be nullified by Gö 6850[13], which inhibits the conventional (
α, β1, β2, and γ) and novel (δ and ε) protein kinase C isoforms. However, the exact signaling pathway of 
PTH and FGF-23 inhibition of small intestinal transcellular Mg2+ absorption requires further study.

The proposed physiologically relevant magnesiotropic actions of PTH and FGF-23 are shown in 
Figure 3. During hypocalcemia, the parathyroid gland actively secretes PTH into the blood stream. PTH 
stimulates the bone resorption process, which increases plasma calcium (Ca2+), inorganic phosphate (Pi), 
and Mg2+ levels[32,33]. PTH stimulates renal 1,25-dihydroxy vitamin D3 [1,25(OH)2D3] production, 
which subsequently induces small intestinal Ca2+ absorption[34]. PTH also activates renal tubular Ca2+ 
and Mg2+ reabsorption[32]. Plasma Pi and PTH trigger bone-derived FGF-23 release, which acts as a 
negative feedback regulator to abolish 1,25(OH)2D3-induced intestinal Ca2+ absorption[33]. PTH and 
FGF-23 synergistically suppress the small intestinal absorption of dietary Mg2+[13] to prevent hypermag-
nesemia. PTH and FGF-23 downregulate the Na2+-dependent Pi cotransporters, (NaPi)-IIa and NaPi-IIc, 
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Figure 2 Fibroblast growth factor-23 and parathyroid hormone regulate magnesium absorption in the small intestine. Fibroblast growth 
factor-23 (FGF-23) and parathyroid hormone (PTH) act through their corresponding receptors to suppress magnesium absorption in the protein kinase C (PKC)-
dependent pathway; they suppressed membrane transient receptor potential melastatin 6 homodimer channel (TRPM6) expression, which leads to the suppression of 
membrane transient receptor potential melastatin 6/7 (TRPM6/7) expression. FGF-23 and PTH also increase cytosolic cystathionine β-synthase domain divalent 
metal cation transport mediator 4 (CNNM4) expression. TRPM7: Transient receptor potential melastatin 7 homodimer channel; FGFR: Fibroblast growth factor 
receptor; PTHR: Parathyroid hormone receptor.

Figure 3 Integrated magnesiotropic action of fibroblast growth factor-23 and parathyroid hormone. Parathyroid hormone (PTH) stimulates the 
bone resorption process, which increases plasma calcium (Ca2+), inorganic phosphate (Pi), and magnesium (Mg2+) levels. PTH stimulates the release of 1,25-
dihydroxy vitamin D3 (1,25(OH)2D3) to subsequently induce small-intestinal Ca2+ absorption. PTH also activates renal tubular Ca2+ and Mg2+ reabsorption. Plasma Pi 
and PTH trigger the release of fibroblast growth factor-23 (FGF-23) to abolish 1,25(OH)2D3-induced intestinal Ca2+ absorption. PTH and FGF-23 synergistically 
suppress small intestinal absorption of dietary Mg2+. PTH and FGF-23 induce urinary Pi excretion.

and increase urinary Pi excretion[32] to prevent hyperphosphatemia. Therefore, PTH and FGF-23 exert 
their calcemic effect by preventing hyperphosphatemia and hypermagnesemia.

Luminal acidity
The hypothesis that apical acidity and mucosal bicarbonate secretion (MBS) affect luminal Mg2+ 
solubility and intestinal Mg2+ absorption was previously proposed in 2014[11,35], which was confirmed 
in a recent review article[36]. The luminal acidity along the entire human and rodent small bowel varies 
from pH 5.0–7.3[12,37]. The luminal protons provide an appropriate environment for mineral 
absorption by stabilizing their ionized forms[38]. The elevation of luminal pH led to a lower soluble 
Mg2+, which decreased from 79.61% of total luminal Mg content at pH 5.15% to 8.71% of total luminal 
Mg at pH 7.8[39]. Therefore, luminal acidity enhances Mg2+ absorption in the human small intestine[40] 
and epithelial-like Caco-2 monolayers[30,35]. The MBS and luminal pH elevation diminished duodenal, 
jejunal, and ileal Mg2+ absorption[11,12].
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pH-sensing channel and receptor
Small intestinal enterocytes are regularly exposed to strong gastric acid. When luminal protons are 
present in the duodenal lumen, the intestinal epithelium cells can directly detect and modulate their 
cellular response through the proton-sensing channels, e.g., the acid-sensing ion-channel 1a (ASIC1a) or 
proton-sensing receptors, such as ovarian cancer G protein-coupled receptor 1 (OGR1) and P2Y2 purino-
ceptor[41-44].

OGR1, also known as GPR68, is expressed in the human small intestine, spleen, testes, brain, lungs, 
placenta, heart, and kidneys but not in the colon[44]. OGR1 is a proton-sensitive receptor with pH 
values at half activation (pH0.5) and full activation of 7.2 and 6.8, respectively[45-47]. When the luminal 
pH decreases to 6.5, OGR1 activity is inactivated[45]. Activation of OGR1 triggers the phospholipase 
C–protein kinase C signaling pathway to activate intestinal Mg2+ absorption[35] (Figure 4).

ASIC1a is a proton-sensitive Ca2+ channel with a pH0.5 of 6.2[41,43]. Activation of ASIC1a activates 
intracellular Ca2+ signaling and subsequently induces MBS. In the intestinal epithelium, luminal proton 
stimulates ASIC1a activity that further activates MBS in a Ca2+ signaling-cystic fibrosis transmembrane 
conductance regulator-dependent mechanism[35] (Figure 4). Secreted bicarbonate has previously been 
found to reduce luminal protons[48] and induce precipitation of luminal free Mg2+[49], thus reducing 
free soluble Mg2+ and suppressing intestinal Mg2+ absorption.

Purinergic regulation of luminal pH and electrolyte transport in the small intestine have been 
described[50-52]. Duodenocytes regularly secrete ATP into its lumen. If luminal pH is low, luminal 
alkaline phosphatase activity is diminished and luminal ATP increases, which subsequently activates 
P2Y2 purinoceptor. Simultaneously, P2Y2 is a proton-sensitive receptor that is activated by luminal 
protons[42]. Active P2Y2 purinoceptors further activate MBS to increase luminal pH. A previous study 
showed that P2Y2 activation induced MBS through a cystic fibrosis transmembrane conductance 
regulator- and Na+-HCO3

− cotransporter-1-dependent mechanism, which subsequently suppressed 
intestinal Mg2+ absorption[53] (Figure 5).

Proton pump inhibitor
Proton pump inhibitor (PPI)-induced hypomagnesemia (PPIH) and hypomagnesuria in humans have 
been reported since 2006[54-57]. Intravenous Mg2+ supplementation or withdrawal of the PPI was able 
to rapidly normalize plasma and urinary Mg2+ levels in PPIH patients, though oral Mg2+ supple-
mentation could not. Clinical assessments have reported that PPIH patients had normal renal Mg2+ 
handling[54,56,57]. These findings suggest that PPIs could suppress intestinal Mg2+ absorption. Our 
group has extensively studied the underlying mechanisms of PPI-suppressed intestinal Mg2+ absorption 
for a decade[11,12,15,30,35,53,58,59]. Our results suggest that PPIs mainly suppressed small intestinal 
Mg2+ absorption.

Omeprazole, the first introduced PPI, significantly suppressed total, transcellular, and paracellular 
Mg2+ absorption in the duodenum, jejunum, ilium, and colon of PPIH rats[11,12]. Regarding the percent 
suppression of total Mg2+ absorption in the duodenum (81.86%), jejunum (70.59%), ileum (69.45%), and 
colon (39.25%), the small intestine is the segment most adversely affected by prolonged PPI adminis-
tration. However, previous articles have proposed that PPIs mainly inhibit colonic Mg2+ absorption[36,
60,61], but those study results remain controversial[60,61]. They also proposed that colonic fermentation 
of dietary fibers probably increased serum Mg2+ and cured patients with PPIH[36]. A previous study 
clearly showed that dietary inulin fibers significantly induced cecal and colonic fermentation, but not 
plasma Mg2+ levels, in control and PPIH mice[61]. In contrast, dietary inulin fibers significantly induced 
renal Mg2+ excretion in PPIH mice[61], which should aggravate hypomagnesemia in PPIH. Therefore, 
the large intestine may not be a suitable intestinal segment that should be modulated to counteract 
PPIH.

The proposed mechanism of PPI-suppression of small intestinal Mg2+ absorption is shown in Figure 6. 
PPIs markedly suppress membranous TRPM7 and TRPM6/7[15]. Membranous TRPM6-channel activity 
is suppressed by hyperphosphorylation at the T1851 residue and hyperoxidation at the M1755 residue
[15]. Phosphorylation of the T1851 residue of the TRPM6 protein induces TRPM6-channel suppression 
by intracellular free Mg2+ and activated 5 C-kinase 1[62]. Oxidation of the M1755 residue in the TRPM6 
protein also suppresses its channel permeability[63]. Suppression of membranous TRPM6, TRPM7, and 
TRPM6/7 disrupts mucosal Mg2+ entry into the small intestinal epithelium and then inhibits 
transcellular Mg2+ absorption[11,12]. Plasma FGF-23 was markedly increased in PPIH rats[12]. The 
mechanism by which FGF-23 inhibits transcellular small intestinal Mg2+ absorption is described in the 
above section[13]. Therefore, PPI-suppressed transcellular Mg2+ absorption is due, at least in part, to 
FGF-23.

PPIs suppress paracellular Mg2+ absorption (Figure 6). The small intestinal epithelium only expresses 
Cldn-1, -2, -3, -4, -5, -7, -8, -12, and -15[28,29]. Overexpression of Cldn proteins and higher paracellular 
resistance have been demonstrated in the small intestines of PPIH rats[11,12]. Paracellular tight junction 
width was significantly decreased in the small intestine of PPIH rats[58]. PPIs also suppress epithelial 
paracellular Mg2+ permeability and cation selectivity[30,59]. These results shed light on the mechanism 
of PPI-suppressed paracellular Mg2+ absorption in the small intestine.
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Figure 4 Ovarian cancer G protein-coupled receptor 1 and acid-sensing ion-channel 1a modulate intestinal magnesium absorption. 
Activation of ovarian cancer G protein-coupled receptor 1 (OGR1) triggers the phospholipase C (PLC)–protein kinase C (PKC) signaling pathway to activate intestinal 
magnesium (Mg2+) absorption. Activation of acid-sensing ion-channel 1a (ASIC1a) activates intracellular calcium (Ca2+) signaling to induce mucosal bicarbonate 
secretion in a cystic fibrosis transmembrane conductance regulator (CFTR)-dependent mechanism. Secreted bicarbonate (HCO3

−) reduces free soluble Mg2+ and 
suppresses intestinal Mg2+ absorption. H: Hydrogen.

Figure 5 P2Y2 purinoceptors modulate intestinal magnesium absorption. Activation of P2Y2 purinoceptor stimulates luminal cystic fibrosis 
transmembrane conductance regulator and basolateral Na+-HCO3

− cotransporter-1 (NBCe1) activities through a phospholipase C (PLC)-dependent mechanism. 
Active cystic fibrosis transmembrane conductance regulator (CFTR) and Na+-HCO3

− cotransporter-1 induce mucosal bicarbonate (HCO3
−) secretion, which reduces 

luminal free magnesium (Mg2+) and suppresses Mg2+ absorption. Ca2+: Calcium; H: Hydrogen; K: Potassium; Na+: Sodium.

PPI-induced small intestinal MBS (Figure 6) has been reported in humans[64], PPIH rats[11], and PPI-
treated Caco-2 monolayers[35,53]. PPIs have also been shown to significantly increase ASIC1a and P2Y2 
expression in PPI-treated epithelium[35,53]. Active ASIC1a and P2Y2 trigger MBS. Higher secreted 
bicarbonate in PPIH small intestines reduces free soluble Mg2+, which disrupts Mg2+ absorption 
(Figure 6). Inhibition of MBS significantly increases duodenal Mg2+ absorption in PPIH rats[11].

In addition to the change in magnesiotropic protein expression and function and MBS, PPIs have 
been shown to induce structural change in the absorptive epithelium of the small intestine[58]. 
Prolonged PPI administration markedly decreased the villous length and absorptive area in the 
duodenal, jejunal, and ilial epithelium of PPIH rats. The underlying mechanism involves Paneth cell 
dysfunction in the small intestine[58]. Paneth cells have an important role in host-microorganism 
homeostasis in the small intestine by providing antimicrobial -defensin peptides[65,66]. Disruption of 
the secretory function of Paneth cells leads to infection and chronic inflammation of the small intestine
[65,66]. In PPIH rats, a reduction in secretory granules and metaplasia of Paneth cells occurs in the 
duodenum, jejunum, and ileum, suggesting Paneth cell secretory dysfunction[58]. Chronic inflam-
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Figure 6 Mechanism of proton pump inhibitor-suppressed small intestinal magnesium absorption in proton pump inhibitor-induced 
hypomagnesemia rats. Proton pump inhibitor (PPI) suppresses membrane transient receptor potential melastatin 7 homodimer channel (TRPM7) and transient 
receptor potential melastatin 6/7 homodimer channel (TRPM6/7) expression but increases membrane transient receptor potential melastatin 6 homodimer channel 
(TRPM6) and cystathionine β-synthase domain divalent metal cation transport mediator 4 (CNNM4) expression. PPI induces phosphorylation of the T1851 residue 
and oxidation of the M1755 residue of the membrane TRPM6 channel, which reduces their channel permeability. These PPI effects reduce transcellular magnesium 
(Mg2+) absorption. Overexpression of claudin 2 (Cldn2), claudin 7 (Cldn7), claudin 12 (Cldn12), and claudin 15 (Cldn15) reduces paracellular permeability, which 
suppresses paracellular Mg2+ absorption. PPI also enhances P2Y2- and acid-sensing ion-channel 1a (ASIC1a)-suppressed intestinal Mg2+ absorption. CFTR: Cystic 
fibrosis transmembrane conductance regulator; HCO3

−: Bicarbonate; NBCe1: Na+-HCO3
− cotransporter-1.

mation in the small intestinal epithelium leads to villous atrophy and reduction of the absorptive area in 
the small intestine of PPIH rats[58].

Gut microbiota
The potential role of gut microbiota in colonic Mg2+ absorption has previously been proposed[36]. 
However, it is currently unknown how the small intestinal microbiome affects small intestinal Mg2+ 
absorption. Previous studies have shown that the small intestine is colonized by a complex gut 
microbiota community and is less numerous and diverse (approximately 103–107 microbial cells/gram) 
than in the colon (approximately 1012 microbial cells/gram)[67]. The dominant bacterial phyla in the 
small intestine are Streptococcus sp., Lactobacillaceae, and Enterobacteriaceae, whereas in the colon, the 
dominant phyla are Bacteroidaceae, Prevotellaceae, Rikenellaceae, Lachnospiraceae, and Ruminococcaceae[68,
69]. Prolonged PPI treatment can lead to gut microbiota dysbiosis, such as the reduction of Actinobacteria 
and Bifidobacteria spp., which are responsible for maintaining the mucosal barrier function[68].

Furthermore, long-term treatment with PPIs causes small intestinal bacterial overgrowth because of 
the loss of the gastric acid defensive barrier[70]. The jejunal samples of small intestinal bacterial 
overgrowth patients regularly showed increased production of toxic agents, such as serum endotoxin 
and bacterial compounds that stimulate the secretion of proinflammatory cytokines[71]. Apart from 
these findings, our previous study showed Paneth dysfunction and chronic inflammation in the small 
intestine of PPIH rats[58]. From the perspective of relevant gut microbiota, Paneth cell defects have been 
found to be associated with increased Bacteroidetes and Enterococcus and decreased Bifidobacterium[72], 
whereas Bifidobacterium longum has been found to promote cell proliferation and expression of Lgr5 and 
Wnt3a in intestinal organoids and alleviate microbiota dysbiosis by regulating the functions of Paneth 
cells[73]. It is also possible that the synthesis of gut microbiota metabolites could lead to changes in the 
absorptive surface in the gut and/or stimulate gene expression[74].

In the colon, bifidobacterial fermentation leads to acidification of the colon, which shows beneficial 
absorption of Mg2+[9,61,75]. In humans, small intestinal microbiota can also ferment the available 
carbohydrates and induce intestinal acidification[76]. In the human small intestine, a dominant bacterial 
phylum is Streptococcus sp.[77,78], which is an anaerobe that can ferment relatively simple carbohydrates 
at a high rate[79]. According to the above, luminal acidity markedly induces small intestinal Mg2+ 
absorption. Therefore, small intestinal fermentation should induce small intestinal Mg2+ absorption.

CONCLUSION
Bulk absorption of digested Mg2+ occurs in the small intestine through transcellular active and 
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paracellular passive mechanisms. PTH, FGF-23, luminal protons, ASIC1a, OGR1, P2Y2, PPIs, and the 
microbiome have recently been proposed as regulatory factors of small intestinal Mg2+ uptake. 
However, the regulatory mechanism of small intestinal Mg2+ requires additional extensive studies.
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Abstract
Cirrhosis is an emerging major cause of the development of hepatocellular 
carcinoma (HCC), but in non-alcoholic fatty liver disease (NAFLD), up to 50% of 
patients with HCC had no clinical or histological evidence of cirrhosis. It is 
currently challenging to propose general recommendations for screening patients 
with NAFLD without cirrhosis, and each patient should be evaluated on a case-
by-case basis based on the profile of specific risk factors identified. For HCC 
screening in NAFLD, a valid precision-based screening is needed. Currently, 
when evaluating this population of patients, the use of non-invasive methods can 
guide the selection of those who should undergo a screening and surveillance 
program. Hence, the objective of the present study is to review the epidemiology, 
the pathophysiology, the histopathological aspects, the current recommendations, 
and novel perspectives in the surveillance of non-cirrhotic NAFLD-related HCC.

Key Words: Non-alcoholic fatty liver disease; Non-alcoholic steatohepatitis; Hepatocellular 
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Core Tip: Cirrhosis is an emerging major cause of the development of hepatocellular carcinoma (HCC), but 
in non-alcoholic fatty liver disease (NAFLD), up to 50% of patients with HCC had no clinical or 
histological evidence of cirrhosis. In the present study, we evaluated data regarding the epidemiology, the 
pathophysiology, the histopathological aspects, the current recommendations, and novel perspectives in 
the surveillance of non-cirrhotic NAFLD-related HCC. We believe that using non-invasive methods can 
guide the selection of patients who need to undergo screening and a surveillance program.

Citation: Tovo CV, de Mattos AZ, Coral GP, Sartori GDP, Nogueira LV, Both GT, Villela-Nogueira CA, de 
Mattos AA. Hepatocellular carcinoma in non-alcoholic steatohepatitis without cirrhosis. World J Gastroenterol 
2023; 29(2): 343-356
URL: https://www.wjgnet.com/1007-9327/full/v29/i2/343.htm
DOI: https://dx.doi.org/10.3748/wjg.v29.i2.343

INTRODUCTION
Non-alcoholic fatty liver disease (NAFLD) has been traditionally defined by the evidence of hepatic 
steatosis by imaging or histology and by the lack of secondary causes of hepatic fat accumulation such 
as significant alcohol consumption, long-term use of steatogenic medications, hereditary disorders and 
other causes of chronic liver diseases[1]. Recently, there has been a proposal to rename NAFLD to 
metabolic associated fatty liver disease (MAFLD), thus eliminating the need to exclude other causes of 
liver diseases and adopting inclusive criteria according to coexistence with other liver diseases[2]. The 
diagnosis of MAFLD is based on histological, imaging or blood biomarker evidence of fat accumulation 
in the liver (steatosis) in addition to one of the following criteria, namely overweight/obesity, type 2 
diabetes mellitus (DM) or evidence of metabolic dysregulation[2].

NAFLD is a well-known cause of chronic liver disease, compromising more than 25% of the global 
population, and up to 25% may have nonalcoholic steatohepatitis (NASH) with or without fibrosis. 
NASH with fibrosis is the most active form of disease which is associated with significant morbidity and 
mortality due to complications of liver cirrhosis, hepatic decompensation, and hepatocellular carcinoma 
(HCC)[3].

Cirrhosis is an emerging major cause of the development of HCC, but in NAFLD, up to 50% of 
patients with HCC had no clinical or histological evidence of cirrhosis[4-6].

NAFLD and the components of metabolic syndrome, especially obesity and DM, are independently 
associated with HCC development and contribute to the risk of HCC in a non-cirrhotic liver[7,8]. Non-
cirrhotic NAFLD patients have a 2.5-fold higher risk of developing HCC than other etiologies of chronic 
liver disease without cirrhosis[9].

The objective of the present study is to review the epidemiology, the pathophysiology, the histopath-
ological aspects, the current recommendations and novel perspectives in the surveillance of non-
cirrhotic NAFLD-related HCC.

EPIDEMIOLOGY OF NAFLD-RELATED HCC
Liver cancer, most of which corresponds to HCC[10,11], ranks sixth among the most common 
malignancies and second among the leading causes of cancer-related death worldwide. HCC affected 
11.6/100000 individuals in 2020, leading to a mortality rate of 10.7/100000[12]. Remarkably, despite 
major advances in the treatment of viral hepatitis, it is estimated that the incidence rate of liver cancer 
will keep increasing until 2030, which can be partly explained by a striking increase in the incidence of 
NAFLD-related HCC[13].

NAFLD affects approximately one-fourth of individuals in the world[14], reinforcing its importance 
in the etiology of HCC[15]. In 2019, 36300 new cases of HCC and 34700 HCC-related deaths were 
attributed to NAFLD[16]. The increasing burden of NAFLD will probably lead to a growth in the age-
standardized incidence rate of NAFLD-related liver cancer, with an estimated average percentage 
change of 2.12 between 2018 and 2030[13]. The growing importance of NAFLD as a cause of HCC 
becomes apparent when two cohorts from South America, a continent with a high prevalence of 
NAFLD, are compared. While from 2005 to 2015, 9% of HCC cases were attributed to NAFLD[17], 34% 
of cases were associated with NAFLD from 2019 to 2020[18].

Most cases of HCC develop in cirrhotic livers. Nevertheless, it is noteworthy that HCC may also 
occur in NAFLD without cirrhosis[15,19-21]. Aside from cirrhosis, diabetes and other metabolic traits, 
older age, male sex, alcohol consumption and tobacco smoking also seem to be risk factors for 
developing HCC in patients with NAFLD[10,22-24]. In cirrhosis associated with NAFLD, the annual 
incidence of HCC is reported as 0.5% and 2.6%[25,26].

https://www.wjgnet.com/1007-9327/full/v29/i2/343.htm
https://dx.doi.org/10.3748/wjg.v29.i2.343
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In a large retrospective cohort study of European primary care databases, including 136703 patients 
with NAFLD and matched controls, the incidence rate of HCC was 0.3 per 1000 person-years among 
individuals with NAFLD, which was significantly higher than among controls, with a hazard ratio of 
3.51. The risk of developing HCC was higher according to the Fibrosis-4 (FIB-4) score, which might 
reflect the odds of having cirrhosis[22].

In another retrospective cohort study performed using a large American administrative database, 
including 296707 individuals with NAFLD and an equal number of matched controls, HCC was 
diagnosed in 490 patients with NAFLD and 55 controls. This translated into an annual incidence rate of 
HCC of 0.21 cases per 1000 person-years among individuals with NAFLD, which was significantly 
higher than among controls (0.02 cases per 1000 person-years). In a subgroup analysis, the annual 
incidence rate of HCC was 10.6 per 1000 person-years among individuals with cirrhosis, 0.08 per 1000 
person-years among those with NAFLD without cirrhosis and 0.02 per 1000 person-years among 
controls[27]. Nonetheless, the study had substantial methodological limitations, especially regarding 
misclassification risks and lack of database granularity. Therefore, its results should be interpreted with 
caution.

Regarding non-cirrhotic HCC, a meta-analysis has demonstrated that around 38% of NAFLD-related 
HCCs are diagnosed in individuals without cirrhosis[9]. However, it should be emphasized that the risk 
of liver cancer is substantially higher in patients with NAFLD and cirrhosis when compared to those 
without cirrhosis. A recent meta-analysis found an incidence of 3.78 vs 0.03/100 person-years in patients 
with non-cirrhotic NAFLD[28].

Table 1 shows the studies that evaluated the incidence/prevalence of HCC and risk factors in patients 
with NAFLD without cirrhosis.

PATHOPHYSIOLOGY OF NAFLD-RELATED HCC
The pathophysiology and etiology of NASH progression to HCC are not entirely known, and many 
mechanisms have been proposed. Neoplastic transformation of NAFLD is driven by metabolic 
imbalance, lipotoxicity consequent to hepatocyte lipid overload, oxidative stress and immunological 
aspects, whereas many other factors such as genetic markers, gut dysbiosis and alcohol or tobacco abuse 
may interact as risk modifiers[29].

Genetic factors
Three main single-nucleotide polymorphisms (SNPs) have been described as associated with a higher 
risk of steatosis, fibrosis and even HCC, Patatin-like phospholipase domain-containing 3 (PNPLA3), 
membrane-bound o-acyltransferase domain-containing 7 (MBOAT7), and transmembrane 6 superfamily 
member 2 (TM6SF2) genes[30].

The variant in the PNPLA3 gene is the strongest genetic variant predisposing from fatty liver to HCC, 
and its frequency ranges from 17% to 49% according to ethnicity and the geographic distribution of 
NAFLD[31]. This variant codifies adiponutrin, a protein responsible for the export of lipids from the 
liver. The substitution of a single nucleotide (from isoleucine to methionine – I148M) modifies the 
function of adiponutrin, leading to the accumulation of triglycerides, retinyl esters in lipid droplets in 
both hepatocytes and hepatic stellate cells, leading to fibrogenesis and tumorigenesis. Patients with at 
least one G allele, primarily those with GG homozygosis, have a higher risk of developing steatosis, 
fibrosis and HCC[32]. A subgroup analysis from a systematic review involving 9915 patients showed an 
association between the PNPLA3 rs738409 SNP and HCC among patients with NASH or alcohol-related 
cirrhosis with an odds ratio of 1.67 and a 95% confidence interval of 1.27-2.21, but not among patients 
with cirrhosis of other etiologies[33].

Studies investigating MBOAT7 association with HCC are scarce. In a cohort of 765 Italian patients 
with NAFLD, especially those without advanced fibrosis, the MBOAT7 rs641738 variant was strongly 
associated with HCC. On the other hand, it showed no association with HCC in a validation cohort of 
358 patients with NAFLD without cirrhosis in the United Kingdom[34].

TM6SF2 polymorphism is also associated with increased liver fat content in NASH, advanced hepatic 
fibrosis and cirrhosis. TM6SF2 variants have a moderate to significant effect on the risk of NAFLD. 
Additionally, the E167K allele has an allelic odds ratio of 1.82 for steatosis[30]. Whether or not the 
variant is associated with an increased risk of NAFLD-related fibrosis and HCC remains to be 
determined.

Recently, the odd-skipped related transcription factor 1 (Osr1) has been reported as a novel tumor 
suppressor gene, as well as a potential prognostic biomarker in gastric cancer. Some authors suggest 
that Osr1 plays an essential role in regulating cell survival, cell inflammation, and macrophage 
migration in the liver. Accordingly, Osr1 was identified as a novel repressor gene in the progression of 
NAFLD/NASH[35]. So far, the role of Osr1 in the progression of NAFLD towards HCC development is 
not established.

Human telomerase reverse transcriptase (hTERT) mutations are associated with familial liver 
diseases. Telomere length and germline hTERT mutations were evaluated to determine their association 
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Table 1 Studies that included the incidence/prevalence and risk factors for hepatocellular carcinoma in non-alcoholic fatty liver disease 
without cirrhosis

Ref. Study design Aim Number of patients Results and conclusion

Mohamad et 
al[5], 2016

Retrospective To characterize patients with 
NAFLD and HCC comparing 
cirrhotic vs non-cirrhotic patients

All patients with 
NAFLD and HCC 
between 2003-2012 (n 
= 83)

36 (43.4%) NAFLD HCC non-cirrhotic vs 47 (56.6%) 
NAFLD HCC cirrhotic patients. HCC patients without 
cirrhosis are more likely to present at an older age with 
larger tumor and higher rates of tumor recurrence

Piscaglia et 
al[6], 2016

Multicenter 
observational 
prospective

To assess the clinical features of 
patients with NAFLD-related HCC 
and to compare to those with HCV 
related HCC

N = 756 (145 NAFLD 
vs 611 HCV)

Cirrhosis was present in about 50% of NAFLD-HCC 
patients, in contrast to the near totality of HCV-HCC. 
Survival was significantly shorter in patients with 
NAFLD-HCC than in those with HCV-HCC (25.5 mo vs 
33.7 mo)

Stine et al
[9], 2018

Systematic 
review with 
meta-analysis

To compare the prevalence of 
NAFLD-related HCC to other 
chronic liver diseases

19 studies (n = 
168571)

The prevalence of NAFLD-related HCC in patients with 
NASH without cirrhosis is approximately 38% 
compared with 14% for other liver diseases

Tobari et al
[24], 2020

Prospective To evaluate the characteristics of 
HCC in non-cirrhotic NAFLD

48 non-cirrhotic HCC 
vs 71 cirrhotic HCC 
patients

In patients with non-cirrhotic NAFLD, important risk 
factors for HCC were male gender, alcohol 
consumption, and the FIB-4 index. HCC recurrence and 
survival were only influenced by the tumor stage

Kanwal et al
[27], 2018

Retrospective To estimate the risk of incident HCC 
among patients with NAFLD

296707 NAFLD vs 
296707 matched 
controls

NAFLD individuals with cirrhosis had the highest 
annual incidence of HCC. 20% of NAFLD patients with 
HCC had no evidence of cirrhosis. The absolute risk of 
HCC in patients without cirrhosis is too low to 
recommend HCC surveillance

Orci et al
[28], 2022

Systematic 
review with 
meta-analysis

Evaluate the pooled HCC incidence 
in patients with NAFLD at distinct 
severity stages

18 studies (470404 
individuals)

Evidence documenting the risk in patients with NASH 
or simple steatosis is limited, but the incidence of HCC 
in these populations may lie below thresholds used to 
recommend a screening (0.03 per 100 person-years)

Donati et al
[34], 2017

Sectional To evaluate whether the MBOAT7 
rs641738 risk T allele predisposes to 
HCC in NAFLD patients stratified by 
the presence of severe fibrosis

765 Italian NAFLD 
patients

The MBOAT7 rs641738 T allele is associated with 
reduced MBOAT7 expression and may predispose to 
HCC in patients without cirrhosis

Demirtaş et 
al[71], 2021

Retrospective To investigate the characteristics and 
survival course of non-cirrhotic 
individuals with HCC

N = 384 HCC; 43 
(11.2%) without 
cirrhosis; 10 (23%) 
with NAFLD

HCC in non-cirrhotic liver is diagnosed at more 
advanced stage and with larger tumor size. The overall 
survival is shorter in HCC without cirrhosis, due to late 
recognition

NAFLD: Non-alcoholic fatty liver disease; NASH: Non-alcoholic steatohepatitis; HCC: Hepatocellular carcinoma; HCV: Hepatitis C virus; MBOAT7: 
Membrane-bound o-acyltransferase domain-containing 7.

with NAFLD-HCC. The authors observed an association between shorter peripheral blood telomeres 
and NAFLD-HCC development and found that rare germline mutations in hTERT predispose NAFLD 
progression to HCC, potentially assisting the identification of high-risk individuals[36].

Metabolic imbalance
Insulin resistance (IR) is the key pathogenic event associated with the development of hepatic steatosis 
and is also related to the development of HCC[37].

Hyperinsulinemia can promote the synthesis and activity of insulin-like growth factor-1, inhibiting 
cell proliferation and apoptosis[38], which increases the risk of hepatocellular carcinogenesis. 
Hyperglycemia provides a substrate for energy metabolism in tumor cells and leads to a glycosylation 
reaction activating the inflammatory signaling cascades and generating reactive oxygen species (ROS) to 
induce HCC development[39]. IR may also directly accelerate hepatocarcinogenesis by stimulating 
hepatic neovascularization[40].

These events affect cell growth by inducing the transcription of the protooncogenes, so fibrosis and 
carcinogenesis are promoted in the liver. Additionally, hyperinsulinemia increases hepatic lipid 
accumulation and leads to oxidative stress due to the increased beta-oxidation of free fatty acids and the 
formation of ROS. There is positive feedback between oxidative stress in mitochondria and endoplasmic 
reticulum (ER) through ER stress, further contributing to cell injury and carcinogenesis in NASH. In 
contrast to insulin-mediated apoptosis inhibition, hepatic lipotoxicity activates proapoptotic cell signals. 
Another recently discovered mechanism involves the association between lipolysis and autophagy, with 
conflicting evidence due to its double-natured, divergent role in NASH-associated HCC[41].

Lipotoxicity
Lipotoxicity is the dysregulation of intracellular lipid components resulting in the accumulation of 



Tovo CV et al. Non-cirrhotic NAFLD related HCC

WJG https://www.wjgnet.com 347 January 14, 2023 Volume 29 Issue 2

harmful lipids, which are associated with cellular damage and death[42]. Lipotoxicity causes cellular 
damage as lipids alter the biology and function of intracellular organelles, such as the ER and 
mitochondria. Also, a direct modification of intracellular signaling pathways may occur, deregulating 
the metabolic and inflammatory pathways[43].

The ER is an intracellular organelle that engages in many critical cellular processes, including folding 
membranes and secreted proteins, synthesizing lipids and sterols, and storing free calcium. Disturbance 
of any of these processes results in stress on the ER and interrupts the protein folding process. When ER 
stress cannot be restored, the apoptotic pathway is stimulated, leading to cell death to eliminate the 
stressed cells[44].

ER stress is linked to the development and progression of liver inflammation. Because it is a crucial 
mediator of liver inflammation, the immunoglobulin protein promotes the inflammatory response 
associated with NASH[45]. ER stress has been identified as a mediator of NAFLD-promoted HCC in 
vitro. Also, enhanced ER stress increases tumor necrosis factor production by macrophages, leading to 
tumor formation[46].

Oxidative stress
Oxidative stress results from an imbalance between the excessive formation of prooxidants (ROS and/or 
reactive nitrogen species) and limited antioxidant defenses, leading to cell death and tissue damage[47].

In NAFLD, there are some mechanisms for producing mitochondrial ROS. Thus, mitochondrial 
dysfunction and ROS production are exacerbated. In this context, some hepatocytes may develop 
adaptive cell survival and proliferation mechanisms that promote precancerous transformation and/or 
tumor growth[48].

Immunological aspects
During the progression of NAFLD from steatosis to NASH and more advanced stages of NASH with 
liver fibrosis, the immune system plays an important role. There are inflammation triggers within 
hepatic (lipid overload, lipotoxicity, oxidative stress) and extra-hepatic systems (gut-liver axis, adipose 
tissue, skeletal muscle), resulting in unique immune-mediated pathomechanisms in NAFLD[49].

Immune cells play a role in hepatocarcinogenesis through processes that are independent of fibrosis. 
Hepatocyte damage promotes neutrophil infiltration in the liver, resulting in DNA damage to other 
hepatocytes and promoting HCC development without fibrosis. Furthermore, lymphoid aggregates are 
often present in the setting of chronic inflammation. Additionally, the selective loss of CD4+ T 
lymphocytes occurs, which was shown to be critical for the progression of HCC[41].

Although immunological response can promote HCC, the immune system also plays an important 
role in suppressing tumor growth through immunosurveillance. Furthermore, HCC actively promotes 
tumor tolerance by inducing immunosuppression, and the fibrotic microenvironment leads to the 
overproduction of transforming growth factor beta, a potent immunosuppressant, thereby promoting 
disease progression[41].

Microbiota
Increased gut permeability and altered microbiome composition are associated with NAFLD and its 
disease severity, contributing to hepatocarcinogenesis[50].

The gut microbiota has been described as a cofactor in liver disease progression and in the 
development of HCC through the interaction with immune compartments via the gut–liver axis. 
Dysbiosis characterizes the microbiota of patients with NAFLD-cirrhosis, with compositional and 
functional shifts occurring with HCC development. It has been suggested that the gut microbiota in 
NAFLD-HCC is characterized by a distinctive microbiome/metabolomic profile and can modulate the 
peripheral immune response[50]. Human metagenomic data support an emerging core microbiome 
signature that characterizes NAFLD-cirrhosis, with increased Ruminococcus gnavus, Clostridium bolteae, 
Streptococcus parasanguinis, and Klebsiella pneumoniae, and a reduced number of beneficial species, 
including Faecalibacterium prausnitzii, Alistipes putredinis, and Eubacterium eligens. Furthermore, Veillonella 
parvula and Bacteroides caecimuris are also identified to distinguish NAFLD-HCC from NAFLD-cirrhosis. 
In agreement with these findings, rRNA analyses of patients with NAFLD-HCC have detected 
enrichment in Bacteroides and Ruminococcaceae, which correlated with several systemic inflammatory and 
immune markers[51]. Ren et al[52] also observed a decrease in butyrate-producing bacterial families, 
namely Ruminococcus, Oscillibacter, Faecalibacterium, Clostridium IV, and Coprococcus in patients with 
HCC.

Increased intestinal permeability, intestinal bacterial overgrowth and elevated serum endotoxin have 
been reported in NAFLD and NAFLD-HCC[53]. Endotoxemia-induced toll-like receptor 2 induction 
leads to cyclooxygenase-2 (COX2) mediated prostaglandin E (PGE) production, which suppresses 
antitumor immunity by inhibiting antitumor cytokine production from liver immune cells leading to 
HCC progression in a mouse model. In human non-cirrhotic NAFLD-related HCC, COX2 overex-
pression and excess PGE production are detected. Although these findings suggest that hepatocellular 
inflammation may be secondary to altered intestinal permeability and translocation of either intact 
bacteria or microbial cell components into the circulation, the causal link between them is not entirely 
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clarified[53,54].

Other factors
Many factors have been associated with the potential to increase the risk of HCC in NAFLD, such as 
male gender, older age, ethnicity, presence of type 2 DM, obesity, any degree of alcohol consumption 
and smoking[27,55].

Among these, risk factors for NAFLD-related HCC, which have long been recognized, are male sex, 
older age and Latino ethnicity[56]. Kanwal et al[27] described in a large cohort study involving 296707 
patients with NAFLD that age above 65 years was an independent risk factor for HCC. It was more 
often identified in men and was higher in Hispanic individuals compared to white (0.21 per 1000 
patient-years) and African American individuals (0.12 per 1000 patient-years)[27].

Clinical variables such as diagnosis of type 2 DM and obesity are also significant risk factors among 
patients with NAFLD. They can act independently or jointly with NAFLD to increase the risk of HCC 
development[56]. Type 2 DM doubled the risk of developing this outcome[19]. DM is a recognized risk 
factor for HCC regardless of the etiology of liver disease, and some authors suggest that DM has the 
strongest association with HCC[57], being related to the duration of DM and adequate glycemic control
[58]. On the other hand, it is unclear if the correlation between DM and HCC in patients without 
cirrhosis applies, as a recent study evaluating the differences between cirrhotic and non-cirrhotic HCC 
in NAFLD found an inverse association between DM and HCC in the non-cirrhotic group, emphasizing 
that non-cirrhotic HCC tended to occur in older patients and those with a lower body mass index[59].

Obese patients with cirrhosis were 47 times more likely to have HCC than persons without liver 
disease, and there is strong evidence that obesity impacts HCC development and promotes an increase 
in mortality, especially in those with early age onset and the presence of visceral fat[58].

Obesity is a well-known risk factor for many cancers but is significantly linked to liver cancer[60]. A 
study from the Mayo Clinic has shown that the diagnosis of type 2 DM increased the risk of HCC by 
fourfold. Therefore, it is recommended that type 2 DM in every individual with NAFLD should be 
investigated due to its association with more advanced disease and increased risk of HCC[61].

Alcohol consumption is independently associated with a higher risk of HCC in individuals with 
NAFLD[62]. Some studies suggest that the increased risk would apply only to those with heavy alcohol 
use (e.g., > 50 g/d or ≥ 3 drinks/d or ≥ 7 drinks/d), better supporting the recent definition of MAFLD 
instead of NAFLD. The additive effect of alcohol in those with NAFLD might explain the increase of 
HCC in this specific group[63].

The study by Ascha et al[64] suggested that any degree of alcohol consumption may increase the risk 
of HCC occurrence in patients who, by the classic definition, do not have a significant intake. The 
deleterious effects of continuous and excessive ethanol intake on the liver are well established; however, 
there is uncertainty regarding the impact of mild to moderate ethanol consumption[65].

In the same way, elevated alanine aminotransferase has been proposed as an independent factor 
associated with an increased HCC risk[65].

Environmental factors such as tobacco smoking are associated with insulin resistance, the 
development of NAFLD and liver cancer. Current and former smoking is associated with a 70% and 
40% increased risk of liver cancer, respectively[66]. Similarly, in a meta-analysis of 81 studies, the pooled 
odds ratios for HCC development were 1.55 in current smokers vs 1.39 in former smokers[67]. 
Currently, there is no specific data on the risk of smoking in NAFLD-related HCC.

Many studies[22,27,54,57,64,65,68] have assessed the risk of HCC or other liver complications in 
patients with non-cirrhotic NAFLD, but they have many limitations. Most of them were retrospective 
and heterogeneous in terms of the inclusion criteria; did not have data on liver fibrosis stages; or had a 
short follow-up to assess complex outcomes such as HCC or complications of cirrhosis. In addition, 
most of them had relatively few cases of HCC diagnosed.

HISTOPATHOLOGICAL ASPECTS OF NAFLD-RELATED HCC
Patients with NAFLD and HCC without cirrhosis have larger tumors, but more often, they have well-
differentiated tumors and a single nodule compared to those with cirrhosis[59,69,70]. On the other hand, 
due to late diagnosis, some cases have a higher rate of vascular invasion and extra-hepatic metastasis
[71]. Frequently, the nontumor liver has significant steatosis and histological findings of steatohepatitis
[72] (Figure 1).

Paradis et al[69], studying patients with HCC and metabolic risk factors, demonstrated that the 
neoplasia in 5 of 31 patients with NASH without cirrhosis developed on a preexisting liver cell 
adenoma.

Approximately 90% of HCCs are the conventional subtype, but patients with NAFLD with or without 
cirrhosis or patients with metabolic risks can present a histological subtype of HCC identified as a 
steatohepatitis-related variant[73]. Macroscopically, the nodule is golden-yellow in color and slightly 
firm because of steatosis and fibrosis[74].
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Figure 1 Histopathological aspect of a non-alcoholic fatty liver disease-related hepatocellular carcinoma in a non-cirrhotic liver. On the left 
side: Non-cirrhotic liver with steatosis. On the right side: Hepatocellular carcinoma, steatohepatitis variant with steatosis, hepatocellular ballooning and macro-
trabecular arrangement.

The histologic features of this subtype are macrovesicular steatosis, ballooning malignant 
hepatocytes, lymphocytic inflammation, Mallory Denk bodies and pericellular fibrosis, often with a 
“chicken-wire pattern”[75]. More frequently, neoplasia has a trabecular arrangement and minimal 
mitotic activity[74,75].

Regarding immunohistochemistry, a study evaluating 62 cases demonstrated a similarity between 
steatohepatitis HCC in non-cirrhotic livers and inflammatory liver cell adenomas, demonstrating a 
higher expression of C-reactive protein and serum amyloid A[70].

These tumors also have distinct molecular features: They frequently showed IL-6/JAK/STAT 
activation and less often Wnt/β catenin/CTNNB1 and P53 pathway alterations[76].

CURRENT RECOMMENDATIONS ON SURVEILLANCE FOR HCC IN NAFLD
HCC in the setting of NASH is known to occur even in the absence of liver cirrhosis, an event 
previously mainly related to hepatitis B virus infection. Thus, knowing whom to screen for HCC and 
which patient population deserves surveillance is essential.

The objective of screening and surveillance in patients with cirrhosis is to reduce mortality, as this 
patient population will develop HCC. Cost-effectiveness studies suggest that an incidence of 1.5% per 
year or more would warrant HCC surveillance in cirrhotic patients, regardless of etiology[23,77]. Recent 
analysis has confirmed the importance of surveillance in patients with cirrhosis, resulting in longer 
survival[78]. In Brazil, when we performed screening in a population of more than 500 patients with 
cirrhosis, the prevalence of HCC was around 5%[79]. Likewise, when we followed a cohort of 450 
patients with cirrhosis, the estimated cumulative incidence of HCC was 2.6% in the first year, 15.4% in 
the fifth year and 28.8% in the tenth year, demonstrating the relevance of carrying out a surveillance 
program[80].

NAFLD, with or without NASH, is a hepatic manifestation of metabolic syndrome and predisposes to 
HCC in cirrhotic and non-cirrhotic patients. Despite the high prevalence of NAFLD in the general 
population, as previously mentioned, it is believed that the incidence of HCC in these patients with non-
advanced disease is not sufficiently high for a universal surveillance program to be proposed. In a 
systematic review, considering only studies that include patients with or without cirrhosis, the 
incidence of HCC in NAFLD patients with cirrhosis was 15% at 10 years, while the incidence in NAFLD 
patients without cirrhosis was 2.7% and 23 per 100000 person-years[81]. Given the lowest risk of HCC in 
non-cirrhotic livers (approximately 0.1 to 0.8 per 1000 patient-years), the development of cost-effective 
HCC surveillance strategies to identify high-risk NAFLD patients without cirrhosis are needed[58].

Although type 2 DM and obesity have been implicated as independent risk factors for HCC, studies 
establishing a clear link with HCC in non-cirrhotic livers are scarce[82]. Therefore, it becomes essential 
to assess the benefits of predictive models based on clinical data to identify patients with HCC in the 
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population of NAFLD patients without cirrhosis.
Some authors use different tools to stratify patients according to the risk of developing HCC. Thus, 

FIB-4 was evaluated in European databases, including more than 18 million individuals. When the 
NAFLD group was classified according to the FIB-4 score, it was possible to identify which patients 
were at greater risk. When compared to individuals with a FIB-4 score < 1.30, those with a score 
between 1.30 and 2.67 had a risk ratio for HCC of 3.74, and those with a score > 2.67 had a risk ratio for 
HCC of 25.2[22]. Although not accepted by all[27], it is possible that the FIB-4 score can be used in 
selected patients for surveillance.

In a European longitudinal study, Younes et al[83] applied various scores (NAFLD fibrosis score - 
NFS, FIB-4, BARD, APRI) and the Hepamet fibrosis score to predict HCC in 1173 patients with NAFLD 
(75% non-cirrhotic). These patients were followed for a mean period of 81 mo, with 17 patients (1.5%) 
developing HCC. The NFS performed significantly better than the other non-invasive scores (C-index: 
0.901 ± 0.0302; AUROC = 0.889 ± 0.048)[83].

The latest European Association for the Study of the Liver guideline recommends surveillance in 
patients with metabolic syndrome or NASH in the presence of significant fibrosis on histology or 
elastography. However, it is noted that the role of surveillance for NAFLD patients without cirrhosis is 
unclear[84].

Recently, at a meeting of experts, an evidence-based review was performed addressing the risk of 
HCC in patients with NAFLD. This review concluded that NAFLD patients with evidence of advanced 
fibrosis, even when suggested by non-invasive markers, should be considered for HCC screening. Thus, 
the need for surveillance would be indicated when there is an agreement between two non-invasive 
tests with different methodologies (FIB-4 and elastography, for example). These results were endorsed 
by the American Gastroenterological Association[85].

NOVEL PERSPECTIVES IN SURVEILLANCE FOR HCC IN NAFLD
The most validated predictive factor for HCC development in NAFLD is the presence of advanced 
fibrosis. However, many other factors may be considered to identify those at high risk for liver cancer, 
even though we still do not have enough evidence to change HCC surveillance strategies in NAFLD[86].

In addition to surveillance based on imaging and serological methods, mainly ultrasound and alpha-
fetoprotein, there are no scores or predictive models with enough strength to use in the daily 
surveillance of NAFLD-related HCC. The development of novel tools might help risk stratification and 
accurately identify high-risk patients, even those without cirrhosis, leading to individualized 
surveillance strategies.

In future studies, some of these clinical scores should be combined with genetic risk factors for risk 
stratification of patients with NAFLD, since the genetic markers currently available still have 
limitations. As noted, different genetic polymorphisms have varying effects on HCC risks; the 17-β 
hydroxysteroid dehydrogenase 13-HSD17B13, for example, has protective effects, while others such as 
the PNPLA3 (variant I148M) increase HCC risk[58].

The combination of genetic polymorphisms to determine a genetic risk score has shown a low 
accuracy with a sensitivity of 43% and specificity of 79% in the prediction of HCC with an AUROC of 
only 0.65[85]. Moreover, the genetic polymorphisms are not ready to be used in clinical routine due to 
high cost and low availability. Another large study by Bianco et al[87] investigated the polygenic risk 
score (PRS) in a German and an Italian cohort with NAFLD compared to the general population 
regarding the development of HCC. The polygenic risk score (PRS) was composed of TM6SF2-GCKR-
MBOAT7 combined in hepatic fat PRS (PRSHFC), further adjusted for HSD17B13 (PRS-5). This study 
showed a strong association between hepatic fat and HCC. The PRS improved the accuracy of HCC 
detection and may help stratify HCC risk in individuals with dysmetabolism, including those without 
severe liver fibrosis[87].

Also, multiple new panels, including biomarkers such as multiprotein-based and circulating tumor-
derived DNA-based (“liquid biopsy”) panels[88], as well as abbreviated magnetic resonance imaging 
protocols and other imaging-based protocols, are currently under investigation as potential screening 
tests. Studies investigating the accuracy of liquid biopsies are ongoing. Liquid biopsy strategies for 
sampling tumor products in the bloodstream include substances such as circulating tumor cells (CTCs), 
circulating tumor DNA (ct-DNA) and extracellular vesicles (EVs)[88]. CTCs include cells released from 
primary or metastatic tumor sites, CT-DNA consists of DNA from cellular necrosis or apoptosis, and 
EVs are cell membrane-derived particles such as apoptotic bodies, micro-vesicles and exosomes, 
containing molecular cargoes specific to the origin cell with an essential role in cell-to-cell 
communication[88]. Data from a systematic review with 67 studies evaluated liquid biopsy techniques 
for early-stage HCC detection, including studies evaluating CTCs, ct-DNA and EVs. They have shown 
good accuracy for HCC detection, with higher accuracy than alpha-fetoprotein (AFP) for distinguishing 
patients with HCC from controls and the capacity to identify AFP-negative HCC patients. In this study, 
combinations with AFP were superior to AFP alone[62]. When included in a panel, a liquid biopsy was 
also associated with poorer survival (EVs and ct-DNA)[89] and with tumor progression.
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Some blood-based biomarkers, such as lectin-bound AFP (AFP-L3) and des-gamma carboxypro-
thrombin (DCP), have been proposed for detecting HCC in some regions like Japan and are under 
investigation in other countries. Moreover, there is an increased interest in early detection panels using 
multiple combined biomarkers. The best example is GALAD, which combines demographic and clinical 
variables with blood-based biomarkers such as gender, age, AFP, AFP-L3, and DCP[90]. In a multina-
tional case-control study, its sensitivity was 60%–80% for detecting early-stage HCC[90]. The GALAD 
panel was recently evaluated in a case-control study of 125 patients with NAFLD. It showed a similar 
diagnostic performance at a cut-off of -0.63, with a sensitivity and specificity of 68% and 95%, 
respectively, for early-stage HCC[91]. Interestingly, in the prospective study arm, the GALAD score 
identified patients who developed HCC as early as 1.5 years before their diagnosis[91]. However, 
although it is a promising tool, it is not yet available for clinical use since it still needs to be validated in 
phase III and IV studies.

After basic serological tests, elastographic techniques are the cornerstone for NAFLD's non-invasive 
staging of liver fibrosis. Vibration-controlled transient elastography (VCTE) can also assess steatosis 
through the controlled attenuation parameter and is considered the point of care method among 
elastography-related techniques[40]. 2D-Shear wave elastography and point-shear wave elastography 
have the additional capacity to evaluate the macroscopic aspect of the liver and identify nodular lesions 
as patients with NAFLD-related cirrhosis should have an ultrasound every six months to screen for 
HCC. Thus, the elastography evaluation and the evaluation of liver lesions have been studied as 
additional methods for HCC surveillance[92]. A recent study in type 2 DM individuals with NAFLD 
who had VCTE at baseline and were followed for 50 mo has shown that those with liver stiffness > 13 
kPa had a higher incidence of liver decompensation and HCC[93].

Boursier et al[94] evaluated the prognostic significance of liver stiffness in NAFLD. They proposed 
defining a new fibrosis classification stage based on liver stiffness by VCTE categorized in seven 
different classes of liver fibrosis: LSM1 (2.0 to 4.6 kPa), LSM2 (4.6 to 6.1 kPa), LSM3 (6.1 to 8.8 kPa), 
LSM4 (8.8 to 12.0 kPa), LSM5 (12.0 to 18.0 kPa), LSM6 (18.0 to 38.6 kPa) and LSM7 (greater than 38.6 kPa 
to 75 kPa). In this study, overall survival decreased as liver stiffness increased. For instance, overall 
survival for LSM1 in ten years was close to 100%, whereas, for LSM7, it was near 30%. The authors 
evaluated liver-related deaths in this study, not specifically HCC[94]. As a reflection, based on the data 
presented, we could suggest performing elastography in patients with NAFLD, and, when a greater 
liver stiffness is evidenced, they would be selected to join a screening and surveillance program.

CONCLUSION
It is currently challenging to propose general recommendations for screening patients with NAFLD 
without cirrhosis, and each patient should be evaluated on a case-by-case basis based on the profile of 
specific risk factors identified. For HCC screening in NAFLD, a valid precision-based screening is 
needed.

Currently, when evaluating this population of patients, we believe that the use of non-invasive 
methods can guide the selection of patients who will undergo a screening and surveillance program. So 
far, ultrasound with or without AFP is still the screening method of choice and should be used for all 
NAFLD patients with advanced fibrosis. In the future, it is possible that new technologies and liquid 
biopsy methods might add precision in screening these large populations, including those without 
cirrhosis.
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Abstract
The biliary tract has been considered for several decades a passive system just 
leading the hepatic bile to the intestine. Nowadays several researches 
demonstrated an important role of biliary epithelia (i.e. cholangiocytes) in bile 
formation. The study of biliary processes therefore maintains a continuous 
interest since the possible important implications regarding chronic cholestatic 
human diseases, such as primary biliary cholangitis or primary sclerosing 
cholangitis. Bile acids (BAs), produced by the liver, are the most represented 
organic molecules in bile. The physiologic importance of BAs was initially 
attributed to their behavior as natural detergents but several studies now 
demonstrate they are also important signaling molecules. In this minireview the 
effect of BAs on the biliary epithelia are reported focusing in particular on 
secondary (deriving by bacterial manipulation of primary molecules) ones. This 
class of BAs is demonstrated to have relevant biological effects, ranging from toxic 
to therapeutic ones. In this family ursodeoxycholic and lithocholic acid present the 
most interesting features. The molecular mechanisms linking ursodeoxycholic 
acid to its beneficial effects on the biliary tract are discussed in details as well as 
data on the processes leading to lithocholic damage. These findings suggest that 
expansion of research in the field of BAs/cholangiocytes interaction may increase 
our understanding of cholestatic diseases and should be helpful in designing 
more effective therapies for biliary disorders.

Key Words: Cholangiocytes; Biliary secretion; Cholestasis; Bile acids; Secondary bile 
acids; Ursodeoxycholic acid; Lithocholic acid
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Core Tip: The biliary epithelia present important physiologic activities that are of interest with regard to 
chronic cholestatic liver diseases. Secondary bile acids (BAs) are derived by bacterial manipulation of the 
primary BAs produced by the liver. This review summarizes the most important recent findings with 
regard to secondary BAs interaction with biliary epithelia.
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INTRODUCTION
The biliary system is composed of a delicate structure of anastomosing ducts, leading the bile from the 
liver toward the intestine[1]. While for several years this anatomical apparatus was considered just as an 
inert route for bile transport, recently several studies have demonstrated that important qualitative/ 
quantitative bile changes occur within the biliary tract. The isolation and characterization of the biliary 
epithelia (composed of bile duct cells or cholangiocytes) has deepened our understanding of several 
important molecular process involving the biliary tree, also shedding some light on the mechanisms 
leading to chronic cholestatic liver diseases.

Bile acids (BAs) are the main organic molecules secreted in bile[2]. Their physiological importance, 
which in the beginning was identified only with regard to the physicochemical processes leading to 
micelle formation[3], nowadays has been expanded by the evidence that BAs are also essential signaling 
molecules[4]. In this minireview, the most important findings involving secondary BAs and biliary 
epithelia will be reported together with the possible implications of these mechanisms in human liver 
diseases.

SECONDARY BAS
BAs are synthesized by the liver starting from cholesterol and are the most represented lipidic 
component in bile[5]. Taurine or glycine conjugation, occurring after synthesis, confers increased water 
solubility to these molecules in bile. BAs are traditionally classified as primary (produced by the liver) 
or secondary (derived by primary BAs after bacterial dehydroxylation in the intestine)[6]. In humans, 
the primary BAs are cholic (CA) and chenodeoxycholic (CDCA) acid, while the most represented 
secondary ones are deoxycholic (DCA) and lithocholic (LCA) acid. The removal of a hydroxyl group (C-
7 position) in general determines reduced water solubility and increased detergency in comparison with 
primary precursors. The hydrophilic or hydrophobic character of a specific BA has been put in relation 
with its potential cytotoxicity and damaging effects[7]. In this perspective, secondary BAs are generally 
regarded as possibly damaging molecules when they reach adequate concentrations since their 
detergent/destabilizing effect on cell membranes. Being the bile a mixture of different (primary and 
secondary) BAs, the concept of hydrophilic/hydrophobic balance of the bile (and so the net concen-
tration of secondary BAs) has been related with possible liver injury in some conditions[8]. The most 
hydrophobic human BA is the monohydrate LCA. Sulfation of this molecule by the liver greatly reduces 
its intestinal absorption (also enhancing its hydrophilicity and urine elimination) and the consequent 
damage induced by LCA enterohepatic recirculation[9]. It in fact represents less than 5% of total BAs in 
human bile[6]. The number of hydroxyl groups, however, is not the only determinant of the specific 
hydrophilic/hydrophobic character of a specific BA. In fact, another secondary BA, ursodeoxycholic 
acid (UDCA), despite having an equal number of OH groups (two) in comparison with CDCA and one 
less than CA, is more hydrophilic in comparison with the latter molecules. This physico-chemical 
characteristic is related to the fact that, differently from CDCA (3α, 7α), in UDCA, the two hydroxyl 
groups are not on the same plane (3α, 7β). See Table 1 for a quick reference on hydroxyl group number 
and position, together with some other features, of the principal BAs found in human bile. On Figure 1 
the approximate amount of each individual BA in human bile is reported.

BILIARY EPITHELIA
Together with hepatocytes, cholangiocytes constitute the liver epithelial compartment. These latter cells, 
lining the intrahepatic and extrahepatic biliary ducts, despite representing less than 10% of liver mass, 
are able to support nearly 50% of bile volume under stimulation[10]. They in fact contribute almost 
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Table 1 Some physico-chemical features of the most relevant primary and secondary bile acids in human bile

Hydroxil groups 
number and position

Solubility in water 
(protonated form, µM)1

Critical micellar concentration 
(sodium salt, mM)1

Hydrophobicity index 
(taurine conjugated)2

Primary bile acids

Cholic acid 3 (3, 7, 12) 273 13 0

Chenodeoxycholic 
acid

2 (3, 7) 27 9 0.46

Secondary bile acids

Deoxycholic acid 2 (3, 12) 28 10 0.59

Lithocholic acid 1 (3) 0.05 0.9 1

Ursodeoxycolic acid 2 (3, 7) 0.9 19 -0.47

1Values assessed in water as reported by Hofmann et al[44].
2Cholic acid and Lithocholic acid were assumed to have (by definition) a value of 0 and 1 respectively[8].

Figure 1 The relative amount of individual bile acids in human bile is depicted. For each bile acid the extent of conjugation with glicine vs taurine is 
approximately 3 to 1.

exclusively to the so-called BA-independent bile flow. Cholangiocytes are heterogeneous in size and 
function; the larger ones represent the physiologically functional compartment, while smaller cells 
(harboring small branches) may replace large ones when the latter are injured[11]. The most studied 
mechanism of bile duct secretion concerns the interaction between secretin (Sec) and a specific Sec 
receptor (SR) expressed by cholangiocytes only within the liver. The subsequent downstream molecular 
mechanisms are characterized by increased intracellular cAMP in bile duct cells, followed by PKC 
phosphorylation, extrusion of Cl- by the cystic fibrosis transmembrane regulator and finally its 
reabsorption and exchange with bicarbonate operated by the Cl-/HCO3

- exchanger (AE2)[12]. With this 
process, a bicarbonate-enriched choleresis is obtained. See Figure 2 for a schematic representation of this 
mechanism. However, several hormones and neuropeptides (such as somatostatin, histamine, 
melatonin, gastrin and others) may regulate bile duct cell activity, as these cells have been demonstrated 
to express the corresponding receptors[13]. BA receptors and transporters are also present on cholan-
giocytes. They are responsible for important physiological mechanisms.

BAS/BILIARY EPITHELIA INTERACTIONS
The biliary epithelium is constantly exposed to significant concentrations (mM) of BAs. This strict 
connection is at the basis of important processes under both normal and pathological conditions. As 
previously stated, BAs are mainly present in bile as glycine or taurine conjugates; however, more than 
30 years ago, the possibility that unconjugated BAs may cross the biliary epithelium and recirculate in 
the liver (the so-called chole-hepatic shunt) was hypothesized, thereby inducing increased choleresis 
with multiple passages[14]. Later, uptake of BAs by the biliary epithelium was demonstrated by the 
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Figure 2 A step by step representation of secretin-induced biliary secretion is depicted. 1: Secretin (Sec) bind to specific Sec receptor on 
cholangiocytes; 2 and 3: Increased intracellular levels of cAMP stimulate formation of p-PKA; 4: Cystic fibrosis transmembrane regulator is opened determining Cl- 
efflux; 5: chloride-bicarbonate exchanger (AE2) favors reuptake of Cl- and releases HCO3- (osmotically recalling water) in the canalicular space. CFTR: Cystic fibrosis 
transmembrane regulator; Sec: Secretin; SR: Secretin receptor.

identification of the apical sodium-dependent BA transporter (ASBT) on cholangiocytes[15]. ASBT in the 
same study was demonstrated to be expressed only by cholangiocytes within the liver and to prompt 
unidirectional BA transport from the apical to the basolateral cellular domain. ASBT is also expressed in 
the small intestine, actively reabsorbing BAs and having a major role in maintaining the appropriate 
entero-hepatic recirculation of these molecules. Gene disruption of this transporter, in fact, nearly 
completely abolished intestinal recovery of BAs[16], even if a reduced proportion of unconjugated 
protonated BAs is absorbed by passive uptake in the colon[17]. ASBT function in cholangiocytes, 
however, remains less clear. In one study, it was demonstrated that Sec stimulation of cholangiocytes 
was able to increase choleresis, also promoting the transfer of ASBT from the plasma membrane to the 
apical domain and supporting the original concept of the BA cholehepatic shunt[18]. In another study, a 
relationship between biliary BAs concentration and ASBT expression was found, suggesting a possible 
regulatory mechanism of this transporter in maintaining an appropriate biliary BAs concentration[19]. 
At present, ASBT inhibitors are under study to reduce the BA pool in diseases possibly related to its 
pathological increment, such as primary biliary cholangitis (PBC)[20].

Further information regarding BAs and cholangiocyte molecular interactions came after the identi-
fication of the TGR5, specific for BAs[20]. While in the liver the FXR is mainly expressed in the 
hepatocyte nucleus where it regulates the transcripts for the synthesis of these molecules[21], on the 
other hand, TGR5 is prevalently found on the cholangiocyte apical domain[22]. Studies on TGR5(-/-) 
mice showed an effect on body weight, the immune system and glucose homeostasis[23]. With regard to 
the biliary tree, TGR5 seems to be an important regulator of cell proliferation with the opposite effect 
when it is activated in ciliated vs non-ciliated cells[24]. In fact, activation of TGR5 on cholangiocyte cilia 
depresses cAMP formation and proliferation while the same signal in non-ciliated cholangiocytes 
enhances intracellular cAMP and cell growth. The important role of TGR5 as a possible regulator of 
biliary mass suggests that this receptor is a possible target in human diseases characterized by 
uncontrolled cholangiocyte growth, such as cholangiocarcinoma[25] or polycystic liver disease[26]. 
More recently, other BA receptors, such as the S1PR2, have been identified on cholangiocytes[27]. These 
signals enhance biliary growth upon stimulation with taurocholic acid (TCA), employing an ERK1/2 
dependent mechanism. In conclusion, accumulating evidence demonstrates that the role of BAs in bile is 
not restricted to lipid dissolution. In fact, BAs are also important molecular signaling molecules.

SECONDARY BAS AND THE BILIARY EPITHELIA
As previously reported, secondary BAs originate from manipulation of the original molecules 
synthesized by the hepatocytes, by intestinal bacteria. However, within this family, molecules with 
opposite physicochemical and biological characteristics cohabit. The extremities of this class of organic 
compounds, in terms of heterogeneity, are represented by UDCA and LCA. At the same time, these two 
BAs seem particularly interesting and relevant with regard to human biliary diseases, as evidenced by 
several studies.
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UDCA (the good one) 
UDCA was first detected as primary BA in Chinese black bear bile, and later also identified in human 
bile as a secondary BA, in small amounts (≤ 3%)[28]. Interest in UDCA was first focused on its 
therapeutic potential for cholesterol gallstone dissolution[29,30]. However, its clinical efficacy for 
gallstone treatment is: (1) Limited to small (≤ 1 cm) non-calcified stones; and (2) affected by frequent 
recurrent disease when UDCA is withdrawn. On the other hand, early studies on gallstone dissolution, 
conducted in patients with concurrent chronic hepatitis, also demonstrated the capabilities of UDCA in 
improving liver function[31].

UDCA beneficial effects on biliary epithelia (general)
Some clinical studies specifically underscored the UDCA beneficial effects in diseases targeting biliary 
cells and causing an impaired biliary secretion (i.e. cholestasis), such as PBC[32]. UDCA (oral dose 13 to 
15 mg/kg/day) is in fact, nowadays, a first line treatment for this disease[33,34]. Several mechanisms 
seem responsible for the improved clinical picture when UDCA is employed in biliary cholestasis[35]. 
First, due to its intrinsic hydrophilicity, UDCA seems able to reduce the cytotoxicity/hydrophobicity of 
the total BA pool against bile duct cells. Second, increased biliary secretion is observed if UDCA 
enrichment occurs in bile. Finally, immune-modulatory and antiapoptotic effects have been 
demonstrated[32]. Moreover, also regarding PBC, impairment of AE2 and consequent inadequate 
formation of a delicate bicarbonate film in the canalicular biliary space (the so-called bicarbonate 
umbrella) has been suggested to facilitate biliary damage by protonated BAs. In this setting, UDCA 
seems to be able to reconstitute adequate bicarbonate secretion, thus mitigating PBC injury[36] and also 
reducing the endoplasmic reticulum stress and autophagy acting as a chaperone[37]. With regard to the 
biliary epithelium, experimental studies have elucidated some important mechanisms.

Molecular basis of UDCA beneficial effects 
In early research, conducted in the cholestatic model of the bile duct ligated (BDL) rat (a condition 
inducing a hyperplastic growth of the biliary tree), UDCA feeding was able to attenuate biliary mass 
proliferation[38]. A subsequent study using the same model (BDL) clarified that both pathologically 
enhanced proliferative and secretive processes of cholangiocytes were mitigated by UDCA, as 
demonstrated by reduced H3 histone, protein cellular nuclear antigen (PCNA) and SR gene expression, 
and decreased Sec-induced choleresis[39]. Decreased proliferation was not related to cholangiocyte 
apoptosis and was dependent (as was decreased secretion) on PKCα activation. Another molecular 
aspect characterizing the effects of UDCA was the decreased ASBT cholangiocyte expression leading to 
reduced intracellular BA influx. These findings were extended in a more complex model combining rat 
BDL and vagotomy. In fact, when vagotomy was performed in the BDL rat, the consequent lack of 
cholinergic stimuli impaired the hyperplastic cholangiocyte response to cholestasis and led to apoptosis 
in bile duct cells[40]. When UDCA was administered in this model, it was able to counterbalance bile 
duct cell loss and apoptosis by a PKCα/Ca2+ dependent mechanism[41].

UDCA effects in animal model of human biliary disease
Further information regarding UDCA and biliary epithelia came from the Mdr2(-/-) mice model. This 
mouse is not able to transport phospholipids in bile and develops a chronic cholestasis, resembling the 
human primary sclerosing cholangitis (PSC), with similar scars and strictures within the biliary tree[42]. 
In Mdr2(-/-) mice UDCA attenuated reactive cholangiocyte proliferation as well as inflammatory and 
fibrotic processes. These effects were in part related to the inhibition of mast cells, which are activated 
during experimental and human PSC[43].

LCA (the bad one) 
LCA is a monohydrate secondary BA that is known for its particular hydrophobicity, remaining water 
insoluble in its free form while it presents a very low critical micellar concentration (concentration at 
which micelles are spontaneously formed) in saline[44]. According to its physico-chemical properties, 
LCA has longer been known as a cholestatic and injurious agent in animal experiments[45,46] and, in 
parallel with this, increased levels of this BA have been found in human with chronic liver disease[47].

General mechanisms of LCA-induced cholestasis
Several mechanisms were identified at the basis of LCA-induced cholestasis such as: (1) Impairment of 
bile secretion (both BAs dependent and independent)[48]; (2) bile salt export pump translocation from 
apical membrane to cytosol with its consequent reduced activity[49]; (3) changes in apical membrane 
fluidity and tight junction permeability[50]; and (4) impairment of canalicular contraction[51].

LCA effects on biliary epithelia
With regard to biliary epithelia, a study on LCA feeding in Swiss albino mice evidenced interesting 
features[52]. After 4 d of a 1% LCA diet, destructive cholangitis characterized by stenosis of biliary 
ducts, solid crystal precipitation and bile infarcts was observed. Neutrophil infiltration surrounded the 
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Table 2 Main findings regarding secondary bile acids and biliary epithelia

Model Administration route Main results Main molecular, immunologic findings Ref.

Ursodeoxycholic acid

BDL rat Feeding (both the unconjugated 
and taurine-conjugated form)

Decreased biliary proliferation 
and secretion. No apoptosis

Decreased H3-histone. PCNA, SR and ASBT 
expression. No apoptosis. Increased PKC α 
expression

[38,
39]

BDL + vagotomy rat Feeding (both unconjugated and 
taurine-conjugated form)

Reversal of duct loss and 
apoptosis induced by vagotomy

PKCα/Ca2+ dependent mechanism [41]

Mdr2(-/-) mice Feeding Decreased proliferation, inflam-
mation and fibrosis

Inhibition of mast cells activity [43]

Lithocolic acid

Mouse Feeding Destructive cholangitis, bile duct 
stenosis, bilary infarcts 

Damage related to direct toxic effect and not 
to neutrophil infiltration 

[52,
53]

In vivo rat and isolated 
cholagiocytes

Feeding (cholic acid or 
Lithocholic acid both taurine 
conjugated)

Similar effect in increasing prolif-
eration and secretion

Effect restricted to large cholangiocytes [54,
55]

In vivo rat and isolated 
cholagiocytes

Feeding (cholic acid or 
Lithocholic acid both taurine 
conjugated)

Cholangiocytes proliferation Dependent by PKA-mediated ASBT 
expression

[56]

Deoxycholic acid

Human gallbladder cancer 
(specimens and cell lines)

In vitro exposure Increased concentration 
associated with inhibition of 
tumor growth

Reduced miR-92b-3p inhibits PI3K/AKT 
activity

[60]

ASBT: Apical sodium bile acids transporter; BDL: Bile duct ligated; PCNA: Protein cellular nuclear antigen; SR: Secretin receptor.

small biliary branches and periductal fibroblast activation with collagen deposition was reported. A 
subsequent study, conducted in the same experimental system, helped to clarify that LCA-related 
biliary damage was dependent on direct toxicity of this BA and not to the immune response since 
neutrophil inhibition did not significantly change the pathological picture[53]. With regard to secretive 
and proliferative cholangiocyte activities, in vitro experiments demonstrated that LCA and CA (taurine 
conjugated) had similar effects in promoting biliary growth and Sec-stimulated bile output[54]. These 
results were observed with the large cholangiocyte population, which is well-known as the main 
functional pool in the biliary tree. Similar results were later confirmed in in vivo experiments[55]. In fact, 
TCA or TLCA rat feeding (1% diet, 1-4 wk) both similarly increased biliary mass and enhanced cholan-
giocyte biliary secretion. Further experiments suggested that the TLCA stimulation of cholangiocytes 
function (similarly to TCA) was associated with increased ASBT activity and consequently enhanced 
intracellular (PKCα/Ca2+ dependent) BA trafficking[56]. This process, with regard to LCA, due to the 
changes in Ca2+ flux, was also related to impaired gap junction permeability and consequent cholestasis
[57].

Other secondary BAs
With regard to other secondary BAs that may play a role in human biliary physio-pathology, DCA is the 
only one possibly reaching significant concentrations (10%-35% of total BAs pool) in human bile[58]. 
DCA liver toxicity has been well-established since the early 1990s and, in a study on rat feeding, this 
was enhanced in comparison to LCA due to its increased intestinal reabsorption and bile enrichment
[59]. Despite this and concerning the biliary epithelia, one study has raised interest by showing the 
suppression of gallbladder cancer growth by DCA, possibly due to interference with miR-92b-3p[60]. 
This miR in fact would be responsible of the activation PI3K/AKT pathway that is enhanced in several 
tumors and also represents a target for anticancer treatment[61]. Several other secondary BAs may be 
found in different species[62]. For instance in rodents the main represented primary BA is β-muricholic 
acid (β-MCA; 3α, 6β, 7β)[63]. Bacterial manipulation of β-MCA may give origin to different secondary 
BAs including HDCA (3α, 6α)[64]. HDCA is reported as the strongest regulator of BA-sensitive ion 
channel (BASIC) that is normally expressed in brain, intestine and cholangiocytes only, within the liver
[65]. While the exact physiologic function of cholangiocyte BASIC has not been well established, 
evidences demonstrate enhanced activity of this channel, with increased trans-epithelial ion transport, 
after exposure to HDCA[66]. This suggests BASIC as a further possible regulator of biliary secretion. 
Table 2 summarizes the main findings regarding secondary human BAs and biliary epithelia.
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CONCLUSION
BAs are important organic molecules. For several decades, researchers have focused on their physico-
chemical characteristics, due to their reported detergent properties. From this perspective, the 
hydrophilic or hydrophobic character of a BA has been considered in the past as the main determinants 
of physiologic effect. This preliminary view is clearly challenged nowadays, with many studies 
demonstrating the important molecular signaling systems activated by BAs, not only in the hepatocytes 
but also in the biliary epithelium. Artificial manipulation of native BA molecules, moreover, has led to 
the discovery of new agents, such as obeticholic acid, that may be helpful for human therapy[67]. Given 
all the above, it is clear that the original classification of BAs as primary and secondary compounds only 
expresses aspects of their synthesis and not necessarily beneficial or negative physiologic effects. 
Similarly, the division of secondary BAs as good or bad ones (as reported in this review) is questionable, 
since this does not adequately recapitulate the multitude of effects (probably discovered just in part at 
the present stage) these molecules may have. In fact, UDCA (generally supposed as beneficial) has been 
demonstrated to be detrimental in experimental obstructive cholestasis as it can lead to bile infarcts and 
should not be administered in this clinical condition[68]. On the other hand, LCA has shown interesting 
curative properties and anti-tumoral and anti-inflammatory effects on intestinal environment, in some 
studies[69]. In conclusion, UDCA and LCA clearly represent the extremities of a field in which research 
may growth and a revision in our present beliefs regarding these secondary BAs remains therefore 
possible in the near future. With regard to normal human physiology and in practice, however, LCA 
accumulation is prevented by a detoxification system while UDCA is formed only in trace amounts. 
However, bile enrichment is possible when BAs are exogenously administered to manipulate the BAs 
pool for therapeutic purposes.
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Abstract
The pandemics of coronavirus disease 2019 (COVID-19) and non-alcoholic fatty 
liver disease (NAFLD) coexist. Elevated liver function tests are frequent in 
COVID-19 and may influence liver damage in NAFLD, while preexisting liver 
damage from NAFLD may influence the course of COVID-19. However, the 
prognostic relevance of this interaction, though, is unclear. Obesity is a risk factor 
for the presence of NAFLD as well as a severe course of COVID-19. Cohort 
studies reveal conflicting results regarding the influence of NAFLD presence on 
COVID-19 illness severity. Striking molecular similarities of cytokine pathways in 
both diseases, including postacute sequelae of COVID-19, suggest common 
pathways for chronic low-activity inflammation. This review will summarize 
existing data regarding the interaction of both diseases and discuss possible 
mechanisms of the influence of one disease on the other.

Key Words: COVID-19; Postacute sequelae of COVID-19; Non-alcoholic fatty liver 
disease; Non-alcoholic steatohepatitis; Inflammation; Fatty liver

©The Author(s) 2023. Published by Baishideng Publishing Group Inc. All rights reserved.

https://www.f6publishing.com
https://dx.doi.org/10.3748/wjg.v29.i2.367
mailto:christoph.g.dietrich@gmail.com


Dietrich CG et al. NAFLD and COVID-19

WJG https://www.wjgnet.com 368 January 14, 2023 Volume 29 Issue 2

Core Tip: The “colliding” pandemics of coronavirus disease 2019 (COVID-19) and non-alcoholic fatty 
liver disease (NAFLD) influence each other in several ways. Molecular similarities of cytokine pathways 
in both diseases including postacute sequelae of COVID-19 (PASC) may be responsible for amplification 
of chronic low-active inflammation. While there are conflicting data regarding the clinical influence of 
NAFLD on acute COVID-19 and vice versa, further research is necessary to study the long-term influence 
of COVID-19 hygienic measures and PASC on NAFLD.

Citation: Dietrich CG, Geier A, Merle U. Non-alcoholic fatty liver disease and COVID-19: Harmless companions 
or disease intensifier? World J Gastroenterol 2023; 29(2): 367-377
URL: https://www.wjgnet.com/1007-9327/full/v29/i2/367.htm
DOI: https://dx.doi.org/10.3748/wjg.v29.i2.367

INTRODUCTION
The prevalence of non-alcoholic fatty liver disease (NAFLD) has increased rapidly over the past 30 
years, particularly in Western countries. This is due to a lifestyle with hypercaloric diets and obesity 
leading to a concomitant increase in metabolic syndrome[1]. It is estimated that approximately 30% of 
people in Western countries have NAFLD, and approximately 5% have non-alcoholic steatohepatitis 
(NASH), the inflammatory variant of fatty liver[2]. NAFLD and NASH represent chronic liver diseases 
with high morbidity and potential mortality.

The coronavirus disease 2019 (COVID-19) pandemic began in Wuhan, China, in late 2019. From there, 
the disease spread rapidly throughout the world. To date, over 500 million people have contracted 
COVID-19 and over 6 million people have died from it[3]. Despite effective vaccination, it is foreseeable 
that the coronavirus cannot be eradicated. While vaccination protects against a severe course, it cannot 
completely prevent infection and minor disease. To that extent, COVID-19 is likely to persist in the 
world as a disease, its severity depending on the prevailing variants, and to impact the population and 
preexisting concomitant diseases in an individual. After acute COVID-19 resolves, a proportion of 
COVID-19 patients suffer from postacute sequelae of COVID-19 (PASC) also named “long COVID” - as 
a range of new, returning, or ongoing health problems people can experience four or more weeks 
following initial severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection[4,5]. 
Therefore, in addition to acute COVID-19, postacute sequelae from COVID-19 are an emerging global 
health crisis, and there are hints that metabolic factors and a chronic inflammatory state (both character-
istics of NAFLD) predispose patients to PASC[6].

While NAFLD is a noninfectious disease whose pandemic spread depends on people’s lifestyle, 
especially dietary habits, COVID-19 has an acute course due to its nature as an infectious disease. This 
leads to waves of infection that have prompted epidemic hygiene countermeasures to contain the 
infection, especially in the past 2 years (2020 and 2021). Lockdowns have occurred in numerous 
countries to restrict the mobility of people and thus prevent the spread of the coronavirus. The harsh 
isolation and lockdown measures in the past 2 years under the more pathogenic previous variants had 
significant sociological and psychological effects. Thus, in addition to the direct viral effects of COVID-
19 on the liver, there are also indirect effects on the liver or liver disease, which may play an important 
role in the further development of these diseases. As COVID-19 can still cause renewed lockdowns and 
isolation measures in the future, for example, when more lethal mutations arise again or due to newly 
emerging infectious diseases, such effects should also be modeled and taken into account in the future.

NAFLD and COVID-19 can be referred to as “syndemic”[7]. They represent, in a sense, “colliding 
pandemics”[8] due to the various possible interactions, which have different dynamics but some 
molecular and pathogenetic commonalities. These effects are summarized in this review and the current 
state of the evidence is evaluated. Between August and September 2022, we searched PubMed using the 
terms coronavirus, COVID-19, SARS-CoV-2, NAFLD, fatty liver, NASH, MAFLD. We analyzed all 
retrieved abstracts and obtained the full papers, if the study was dedicated to the connection between 
COVID-19 and NAFLD.

MOLECULAR SIMILARITIES OF BOTH DISEASES
NAFLD covers a wide spectrum of severity, ranging from bland fatty liver without any inflammation 
(NAFL) and with little or no tendency to progress all the way to NASH with inflammatory reactions 
and hepatocyte damage with or without fibrosis. A total of 5% to 20% of patients with NAFLD develop 
NASH, which undergoes a further transition to higher-grade fibrosis and eventually liver cirrhosis in 
10% to 20% of cases[9]. These clinical features of NAFLD are the background for chronic low inflam-
matory activity of the disease. Intestinal barrier dysfunction plays a major role in triggering and 
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amplifying these inflammatory processes, leading to translocation of bacteria or bacterial components 
into the portal circulation and induction of hepatic inflammation[10]. Obesity induced by an unhealthy 
lifestyle (insufficient exercise and hypercaloric diet) leads to increased secretion of proinflammatory 
leptin, interleukin (IL)-6, and tumor necrosis factor (TNF)-α from peripheral adipose tissue, while 
secretion of adiponectin, an inhibitor of human stellate cell proliferation, is decreased[11]. The massive 
disruption of lipid metabolism due to the disturbed balance between lipolysis, oxidation, secretion, and 
uptake of lipids between adipose tissue and liver contributes to hepatic steatosis as well as lipotoxicity, 
affecting key cellular elements such as the endoplasmic reticulum or mitochondrial function[12]. In 
terms of a vicious cycle, hepatic metabolic pathways (especially β-oxidation) are dysregulated and 
further reinforce the imbalance in lipid metabolism[13] and thus lipotoxicity. Activation of human 
stellate cells and cytokine production by Kupffer cells follows, with IL-1β, TNF-α, IL-6, interferon (IFN)-
γ, nuclear factor-kappaB, and reactive oxygen species being key extracellular and/or intracellular 
proinflammatory mediators that maintain chronic low-activity inflammation and induce the 
development of fibrosis[14,15].

Interestingly, several of these factors also appear to play important roles in COVID-19 pathogenesis 
in the context of systemic inflammatory response syndrome. IL-1β, TNF-α, IL-6, and IFN-γ are elevated 
during acute COVID-19 disease[16], and IL-6 in particular may be considered a central cytokine for the 
hepatic effects of COVID-19 due to its principal role in the negative acute phase response. After acute 
COVID-19 resolves, chronic systemic inflammatory responses may persist in patients with sequelae 
after acute disease, although the exact molecular drivers of PASC are largely unknown. Recently, 
Schultheiß et al[17] showed that PASC is associated with chronic elevation of IL-1β, TNF-α, and IL-6 
levels. Phetsouphanh et al[18] even demonstrated elevation of IFN-γ (and other proinflammatory 
cytokines) in patients 4 mo after SARS-CoV-2 infection, irrespective of whether they had PASC 
symptoms.

It is therefore straightforward to speculate that low-activity NAFLD inflammation may be amplified 
or exacerbated by the acute phase of COVID-19 and chronic systemic inflammatory responses in at least 
some patients after acute COVID-19, resulting in interactions between the two diseases at the molecular 
level (see Figure 1).

CLINICAL EFFECTS OF COVID-19 ON THE LIVER AND THEIR MECHANISMS
Because COVID-19 is an aerosol-transmitted disease, clinical symptoms of respiratory disease have 
always been the primary clinical focus. However, many case series and clinical studies show that 
COVID-19 also has systemic effects. These include vascular inflammation, thrombosis, and other organ 
involvement. Liver inflammation is therefore only part of a systemic inflammatory component of SARS-
CoV-2 and is almost never the primary clinical symptom.

In a comprehensive review, it was shown that COVID-19 leads to elevations in liver enzymes in 
approximately 17%-58% of patients[19]. Elevations of transaminases (“hepatitis”) dominate, and 
cholestatic constellations are much less frequent, suggesting predominantly hepatocytic damage[19]. 
Frequently, this concomitant COVID hepatitis is clinically inapparent. In a recent meta-analysis 
involving over 77000 patients, the prevalence of clinically overt liver damage was shown to be 
correlated with the severity of COVID-19. In this analysis, liver damage was described in 40%-47% of 
severe COVID-19 cases, whereas patients with a milder course were affected in only 10% on average
[20]. COVID-19 may trigger acute-on-chronic liver failure in patients with liver cirrhosis due to NAFLD
[21]. In contrast, severe hepatic inflammation with impairment of liver function does not seem to occur 
in patients without advanced preexisting fibrosis[22].

Intracellular uptake of SARS-CoV-2 requires binding of the virus with the spike protein to 
angiotensin-converting enzyme 2 (ACE2). Further molecular interactions with transmembrane serine 
protease 2, among others, lead to priming of the S protein and internalization of the virus and its genetic 
material into the cell[23].

Hepatic tropism of SARS-CoV-2 has been shown recently[24]. However, the exact mechanism of 
infection of the liver is unclear. Although ACE2 protein expression was observed in the liver, this 
expression is predominantly located in Kupffer cells (and only at relatively low levels in hepatocytes). In 
line with that, the SARS-CoV-2 spike protein could be detected in Kupffer and parenchymal cells (for 
example, hepatocytes)[24,25]. As a potential mechanism of hepatocyte infection, alternative hepatocyte 
cell entry facilitators are under discussion, e.g., high-density lipoprotein scavenger receptor class B 
member 1[24] and the asialoglycoprotein receptor[26].

Several mechanisms of liver cell damage are conceivable (see also Figure 1). A direct cytotoxic effect 
does not appear to be the dominant mechanism of damage in the normal liver. Healthy hepatocytes 
express almost no ACE2, whereas in liver cirrhosis, ACE2 expression and activity are significantly 
higher[27]. These molecular regulatory mechanisms tend to argue against direct cytotoxic effects of 
SARS-CoV-2 in healthy liver but could explain why cirrhotic patients are more susceptible to (further) 
liver damage or more severe COVID-19 disease overall.
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Figure 1 Possible mechanisms of coronavirus disease-induced liver injury and the interplay between molecular pathways of 
inflammation in both diseases (in pre-existing non-alcoholic fatty liver disease). F. VIII: Factor VIII; vWF: von Willebrand factor; HIF: Hypoxemia-
inducible factor; IL-1β: Interleukin-1β; IL-6: Interleukin-6; NO: Nitric oxide; PAI-1: Plasminogen activator inhibitor 1; ROS: Reactive oxygen species; TNF: Tumor 
necrosis factor; SARS-CoV-2: Severe acute respiratory syndrome coronavirus-2; ACE2: Angiotensin converting enzyme-2; TMPRSS2: Transmembrane serine 
protease 2.

Inflamed hepatocytes (as well as other somatic cells) may exhibit mitochondrial dysfunction in 
NAFLD or NASH[28,29], which in turn favors ACE2 upregulation[30] and could support viral infection. 
Conversely, COVID-19 also appears to directly affect mitochondrial function[31]; thus, these effects may 
amplify each other and induce a more severe course of both diseases.

Another pathogenetic mechanism is the additional fat storage in hepatocytes triggered by SARS-CoV-
2. COVID-19 causes dyslipidemia[32] and autopsy studies show a high proportion of steatosis in 
COVID-19 patients[33-35]. However, it remains unclear in many cases whether steatosis was already 
preexisting or triggered upon infection. NAFLD patients apparently express ACE2 and various serine 
proteases at higher levels in the liver[36]; thus, preexisting steatosis may promote COVID-19-induced 
damage. In turn, COVID-19 may exacerbate steatosis. Whether these dynamics are quantitatively 
significant effects must remain open for now and deserves future research.

The most significant hypothesis of hepatocyte injury based on clinical characteristics concerns inflam-
matory cytokine-mediated pathways[37], with commonalities between acutely mediated COVID-19 
effects and NAFLD-mediated chronic liver inflammation (especially IL-6; see above). ACE2 expression 
on Kupffer cells[38] may be the origin of virus-mediated, locally amplified liver inflammation.

Autopsy studies also support possible vascular-associated mechanisms for COVID-19-mediated liver 
injury[35,39]. One early series of postmortem liver biopsies from patients with COVID-19 reported 
portal or sinusoidal vascular thrombosis in at least 50% of patients[39]. Patients with COVID-19 exhibit 
coagulopathy and endotheliopathy, characterized by elevated levels of von Willebrand factor and factor 
VIII[40]. As factor VIII is produced primarily by liver sinusoidal endothelial cells (LSECs)[41], hyperco-
agulable LSECs might play an additional role in COVID-19-related liver injury. Of note, endothe-
liopathy has been reported to be sustained following COVID-19[42], suggesting not only acute but also 
long-term interactions and consequences of endothelial-mediated inflammation with chronic liver 
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diseases such as NAFLD. Another direct link between COVID-19 and NAFLD may be via plasminogen 
activator inhibitor 1 (PAI-1). PAI-1 has been shown to be elevated among COVID-19 patients[43]. This 
role of PAI-1 in COVID-19 liver injury is potentially interesting, especially in NAFLD patients, as 
elevated PAI-1 has been associated with NAFLD and NASH[44]; therefore, COVID-19-induced PAI-1 
elevation may aggravate NAFLD.

The mechanisms described above partly overlap or influence each other, as indicated by the arrows in 
Figure 1. The pathogenic significance of these molecular associations is not clear in most cases. There are 
many hints to suggest that the effects of COVID-19 on the liver and especially NAFLD are multifactorial 
and may also differ individually. Despite these different possible mechanisms, severe liver injury and 
liver failure are rare even in prediseased liver patients[22].

INFLUENCE OF NAFLD ON COVID-19
Numerous studies of varying quality have addressed the risk for morbidity and mortality of COVID-19 
in subjects with NAFLD (Table 1). The studies are extraordinarily heterogeneous, making reliable 
conclusions difficult. Numerous studies were published only as letters to the editor, not as full articles. 
Almost all studies are retrospective and include low numbers of patients. Definitions of 
NAFLD/metabolic syndrome-associated fatty liver disease (MAFLD) vary considerably; in some cases, 
only blood-based surrogate scores for steatosis and liver fibrosis (such as the hepatic steatosis index, 
NAFLD fibrosis score, or Dallas steatosis index) were applied. Imaging with ultrasound or computed 
tomography (CT) is mostly used as the criterion for the presence of fatty liver. Biopsy-proven NAFLD is 
a rare exception. Importantly, data on alcohol consumption are lacking in many studies. No statements 
are found on inflammatory activity of fatty liver (i.e., on the presence of NASH). Definitions of severe 
COVID progression are also inconsistent. Studies that define NAFLD only by scores or by imaging 
(ultrasound, CT) during the course of hospitalization for COVID-19 cannot provide information about 
the presence of fatty liver before COVID-19 emergence. Control groups almost invariably contain fewer 
patients with classic metabolic factors, such as diabetes mellitus and obesity, than the respective NAFLD 
groups; this metabolic imbalance of study groups cannot easily be controlled by multivariate analysis.

These conditions do not allow confident conclusions to be drawn at this time. Presently, the data 
suggest that NAFLD alone is not a relevant risk factor for severe COVID-19 progression or mortality. In 
particular, registry studies from large liver collectives with different etiologies tend not to support a 
special role for NAFLD[54,63,64,66]. However, available studies also show that the presence of liver 
fibrosis or cirrhosis is associated with a higher risk of severe COVID-19 disease[61,69]. In this respect, 
the increase in risk for a more severe course of COVID-19 may not be attributed to NAFLD per se but 
rather to advanced liver disease irrespective of the underlying etiology in general.

INFLUENCE OF EPIDEMIC HYGIENIC COVID-19 MEASURES ON NAFLD
Disease hygiene measures in the context of the infectious waves probably represent an important factor 
in the influence of the COVID-19 pandemic on NAFLD. The psychosocial impact of the COVID-19 
pandemic resulted in measurable exacerbations of metabolic comorbidities of NAFLD. A United States 
cohort study examined 111 NAFLD patients and found decreases in physical activity in 51%, weight 
increase in 34%, and increases in alcohol consumption in 5% during the COVID-19 pandemic[72]. A 
Spanish study screened over 6000 workers for metabolic factors and found significant increases in body 
mass index, insulin resistance, and low-density lipoprotein during the pandemic. The average fatty liver 
index (FLI) as a surrogate for NAFLD increased from 25.2 to 33 in this study[73]. Another Spanish study 
showed a decrease in physical activity during lockdown with a consecutive increase in FLI and 
worsening of metabolic status[74]. In an Italian cohort study, 48% of 357 NAFLD patients gained weight 
during lockdown, and this weight gain was associated with abandonment of a Mediterranean diet and 
decreased physical activity in univariate analysis and various multivariate models. Interestingly, in 
PNPLA3-GG polymorphism patients, this genotype represented the only favoring factor for weight gain
[75]. A Japanese study examined 973 patients with health checks in 2018 and 2020. In this study, the 
absolute number of MAFLD patients increased from 261 to 305; however, as the authors identified 
predominantly higher alcohol consumption as a risk factor for this development, there is actually a 
definition problem of MAFLD in the strict sense[76]. Overall, these studies show a decrease in physical 
activity and an increase in weight in the general population. It can be assumed, though not yet clearly 
shown, that this favors the de novo development or exacerbation of steatosis and inflammation in 
NAFLD, that fibrosis in turn may be further advanced and that the prognosis of the liver disease overall 
is thus worsened at the end. Long-term studies into these effects of pandemic-associated lifestyle 
changes are necessary.
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Table 1 Studies with data regarding the risk of non-alcoholic fatty liver disease/metabolic syndrome-associated fatty liver disease for 
severe coronavirus disease 2019

Ref. Study type and number of NAFLD 
patients Results Appraisal

Zhou et al[45], 2020 Retrospective, matched cohorts, n = 55 
per group

More severe COVID-19 in MAFLD OR = 4.07 Poor matching regarding metabolic 
status, more male pat in MAFLD group

Targher et al[46], 
2020

Retrospective, cohort study n = 94 (216 
w/o MAFLD)

More severe COVID-19 with higher FIB-4 or 
NFS

No matching, no full paper

Ji et al[47], 2020 Retrospective, cohort study n = 202 NAFLD 87 % in progressive COVID-19 (n = 39) 
vs 26 % in stable COVID-19 (n = 163)

Comorbidities highly different between 
groups, no full paper, NAFLD 
definition only via HSI

Hashemi et al[48], 
2020

Retrospective, CLD cohort with 55 
NAFLD patients (294 w/o 
CLD/NAFLD)

Presence of CLD and NAFLD higher risk for 
mechanical ventilation (OR = 2.15) and ICU 
admission (OR = 2.3), cirrhosis risk factor for 
mortality

Imbalance in metabolic status, NAFLD 
diagnosis relying on prior imaging

Huang et al[49], 2020 Retrospective, cohort n = 86 (194 w/o 
NAFLD)

Only higher ALT in NAFLD patients, course of 
disease comparable to controls

NAFLD only defined by HSI, imbalance 
in metabolic status

Forlano et al[50], 
2020

Retrospective, cohort n = 61 (132 w/o 
NAFLD)

NAFLD pat with higher CRP, younger age. 
Fibrosis or cirrhosis no risk for more severe 
COVID-19

Only hospitalized patients, higher BMI 
in NAFLD, diagnosis by imaging (US or 
CT)

Lopez-Mendez et al
[51], 2021

Retrospective, cohort study n = 66 (89 
w/o steatosis)

Presence of steatosis (and/or liver fibrosis) not 
related to severity or mortality of COVID-19

Steatosis only defined by HSI, 
imbalance on metabolic status

Zheng et al[52], 2020 Retrospective, cohort study n = 66 (45 
with and 21 w/o obesity)

Obesity risk factor for COVID severity in 
MAFLD patients (OR = 6.3)

Diagnosis of MAFLD by CT and clinical 
criteria, no controls w/o MAFLD, no 
full paper

Zhou et al[53], 2020 Retrospective, cohort study n = 93 (out 
of 327 total patients)

Younger MAFLD patients with relatively 
higher risk for severe COVID

No full paper, small number of older 
patients, CT data

Valenti et al[54], 2020 Retrospective, United Kingdom 
Biobank cohort (Mendelian random-
ization), total n > 500000

No evidence for NAFLD as risk factor for 
severe COVID-19

Data errors possible, partly little charac-
terization of patients, no full paper

Mahamid et al[55], 
2021

Retrospective, cohort study n = 22 (49 
w/o MAFLD)

8/22 with severe COVID-19 vs 5/49 w/o 
MAFLD

CT data, large differences in metabolic 
status between groups

Chen et al[56], 2021 Retrospective, cohort study n = 178 
(164 w/o hepatic steatosis)

More intubation and vasopressors in steatosis, 
but lower mortality

Only hospitalized patients, HSI or 
imaging, rel. high percentage of 
steatosis in cohort, metabolic status not 
balanced

Gao et al[57], 2021 Retrospective, matched cohorts, n = 65 OR = 4.07 for severe COVID-19 only in non-
diabetic patients

Poor matching regarding metabolic 
status, NAFLD diagnosis by CT and 
clinical criteria, duplicate patients with 
Zhou et al[45]

Marjot et al[58], 2021 Retrospective CLD cohort with 322 
NAFLD patients

No higher mortality for NAFLD patients in 
multivariate analysis

Control group matched only to 
complete CLD cohort, not specifically to 
NAFLD patients. Unclear definition of 
NAFLD

Parlak et al[59], 2021 Retrospective, cohort study n = 55 (288 
w/o fatty liver)

Presence of fatty liver risk factor (OR = 3.9) for 
severe COVID-19 

CT data, no data regarding BMI, no 
data comparison NAFLD vs non-
NAFLD

Mushtaq et al[60], 
2021

Retrospective, cohort study n = 320 
(269 w/o NAFLD)

NAFLD predictor for mild or moderate liver 
injury, but not for disease severity or mortality

NAFLD only defined by HIS, imbalance 
on metabolic status, no full paper

Campos-Murguía et 
al[61], 2021

Retrospective, cohort study n = 176 
(256 w/o MAFLD)

Liver fibrosis, not MAFLD alone, predictor for 
severity and mortality of COVID-19

CT data, relatively good obesity 
matching to controls

Kim et al[62], 2021 Retrospective, CLD cohort with 456 
NAFLD patients

NAFLD no risk factor for severe course or 
mortality of COVID-19

No control cohort w/o liver disease, 
tertiary centers only, NAFLD ICD-
diagnosis

Simon et al[63], 2021 Large Swedish CLD cohort (total n = 
42320), biopsy confirmed, with unclear 
number of NAFLD patients

CLD presence as risk factor for hospitalization, 
but not for severe COVID (including cirrhosis)

Historic cohort with possible drop-outs, 
underlying CLD in controls may have 
been missed

Roca-Fernández et al
[64], 2021

United Kingdom Biobank cohort, with 
prospective data on infection and 
hospitalization for COVID

Fatty liver with increased risk for testing 
COVID-positive, obesity and fatty liver with 
higher risk for hospitalization, but not obesity 
alone

Data errors possible, little character-
ization of patients, small number of 
patients with severe COVID
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Ziaee et al[65], 2021 Retrospective Iranian cohort n = 218 
(357 patients w/o NAFLD, additional 
control group w/o COVID)

Fatty liver significant more prevalent in COVID 
group compared to control group (38% vs 9%). 
Longer hospital stay and larger pulmonal 
involvement in NAFLD patients

Very low percentage of fatty liver in 
control group. Control group with 
missing data

Liu et al[66], 2022 COVID-19 HGI and United Kingdom 
Biobank cohorts (Mendelian random-
ization), retrospective data, total n > 
2500000

No evidence for NAFLD as risk factor for 
severe COVID-19

Data errors possible, little character-
ization of patients, no full paper

Chang et al[67], 2022 South Korean COVID-19 cohort with 
FLI score (total n = 3122)

Highest FLI tertile with higher risk for severe 
COVID-19, but not for higher mortality

No NAFLD-specific case definition, FLI 
score tertile cutoff low

Vrsaljko et al[68], 
2022

Prospective cohort study n = 120 (96 
w/o NAFLD)

NAFLD with higher risk for severe COVID-19 
including pulmonary thrombosis

No data regarding fibrosis

Tripon et al[69], 2022 Retrospective French cohort n = 311 
(408 w/o NAFLD)

NAFLD with higher risk for hospitalization, 
high FIB-4 with higher risk for severe COVID-
19

NAFLD only defined by NFS, 
important data missing in cohort 
patients

Moctezuma-Velá
zquez et al[70], 2022

Retrospective Mexican cohort n = 359 
(111 w/o NAFLD)

NAFLD associated with mortality, ICU 
admission and mechanical ventilation, but CT-
determined liver steatosis was not

NAFLD definition based on DSI, small 
number of control patients, only hospit-
alized patients

Okuhama et al[71], 
2022

Retrospective Japanese cohort n = 89 
(133 w/o fatty liver)

Fatty liver associated with severe COVID-19 CT data, no data regarding dyslip-
idemia, only hospitalized patients

BMI: Body mass index; CLD: Clinical liver disease; CT: Computed tomography; DSI: Dallas steatosis index; FLI: Fatty liver index; HIS: Hepatic steatosis 
index; MAFLD: Metabolic syndrome-associated fatty liver disease; NFS: Non-alcoholic fatty liver disease fibrosis score; pat: Patients; US: Ultrasound; 
NAFLD: Non-alcoholic fatty liver disease; OR: Odds ratio; ICU: Intensive care unit; COVID-19: Coronavirus disease 2019; HGI: Haemoglobin glycation 
index; ICD: International Classification of Diseases; CRP: C-reactive protein; ALT: Alanine aminotransferase.

CONCLUSION
NAFLD and COVID-19 have both taken a pandemic course in their own ways. Whereas infectious 
disease essentially causes short-term disease, NAFLD represents a chronic pandemic. Interestingly, the 
molecular mechanisms of inflammation are similar, although NAFLD is more of a chronic low-activity 
inflammation while COVID-19 is an acute inflammatory condition. However, in NAFLD patients with 
ongoing PASC both conditions may chronically interact with unknown mutual effects.

Obesity certainly represents an important unifying clinical factor of both diseases, as obesity is an 
important risk factor for the development of NAFLD and the severe course of COVID-19. In contrast, 
the presence of NAFLD per se does not appear to be a relevant risk factor for particularly severe 
COVID-19. The effects of COVID-19 on liver disease are more complex and still poorly understood. 
While the direct viral effect on NAFLD may be limited, probably because of the short duration of the 
acute viral infection, the individual effects associated with lockdowns and isolation are potential risk 
factors for disease progression due to a reported decrease in physical activity together with an increase 
in obesity. European Association for the study of the liver position papers provide valuable 
recommendations for liver patients after the outbreak of the pandemic, including specific recommend-
ations for NAFLD patients[77,78].
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BACKGROUND 
Histological remission is increasingly accepted as a treatment endpoint in the 
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management of ulcerative colitis (UC). However, the knowledge of histology guidelines and the 
attitudes towards their use in clinical practice by gastroenterologists and pathologists is unknown.

AIM 
To evaluate the knowledge of histology guidelines and attitudes towards the use of histology in 
UC by gastroenterologists and pathologists.

METHODS 
A prospective, cross-sectional nationwide survey of gastroenterologists and pathologists who 
analyse UC specimens was conducted. The survey consisted of 34 questions to assess gastroentero-
logists’ and pathologists’ knowledge (score out of 19) and attitudes towards histological 
assessment in UC. Survey questions were formulated using the European Crohn’s and Colitis 
position paper on histopathology and the British Society of Gastroenterology biopsy reporting 
guidelines. It included knowledge of histological assessment of disease activity and dysplasia, 
knowledge of histological scoring systems for ulcerative colitis, uptake of histology scoring 
systems in routine practice, attitudes towards the role of histological activity, and the use of 
histological activity in clinical scenarios.

RESULTS 
Of 89 responders (77 gastroenterologists, 12 pathologists), there was almost universal acceptance 
that histological assessment should form part of UC evaluation [95% gastroenterologists, 92% 
pathologists]. However, gastroenterologists reported that 92% of their pathologists do not use a 
histological scoring system. Utilisation of a formal histological scoring system was preferred by 
77% of gastroenterologists and 58% of pathologists. Both groups lacked awareness of the Geboes 
Score, Nancy Index and Robarts Histopathological Index scoring systems with 91%, 87%, and 92% 
of gastroenterologists respectively; and 83%, 83%, and 92% pathologists respectively, being 
uncertain of scoring systems’ remission definitions. Histology knowledge score was not 
significantly different between gastroenterologists and pathologists [9/19 (IQR: 8-11) vs 8/19 (IQR: 
7-10), P = 0.54]. Higher knowledge scores were predicted by hospital attending gastroenterologists 
(P = 0.004), participation in inflammatory bowel disease (IBD) multidisciplinary teams (P = 0.009), 
and self-declared IBD sub-specialist (P = 0.03).

CONCLUSION 
Histological remission is a recognised target for both gastroenterologists and pathologists. Despite 
this, knowledge of histological scoring systems and their utilisation is poor.

Key Words: Histology; Scoring system; Ulcerative colitis; Survey

©The Author(s) 2023. Published by Baishideng Publishing Group Inc. All rights reserved.

Core Tip: This manuscript describes, for the first time, the knowledge and attitudes of gastroenterologists 
and pathologists towards the use of histology in clinical practice. Given the increasing literature and use of 
histology in trials, there is a need to understand the current perceptions of using histology in the real-
world. Using a novel Inflammatory Bowel Disease Knowledge score, we demonstrate that although 
histology is an accepted endpoint, knowledge is poor, particularly relating to histological scoring systems. 
As such, these results illustrate a pressing need and opportunity to improve knowledge around histology 
scores amongst gastroenterologists and pathologists and develop consensus agreements on a reporting 
approach.

Citation: Pudipeddi A, Fung C, Christensen B, Bryant RV, Subramaniam K, Chetwood J, Paramsothy S, Leong 
RW. Knowledge and attitudes towards the use of histological assessments in ulcerative colitis by 
gastroenterologists vs pathologists. World J Gastroenterol 2023; 29(2): 378-389
URL: https://www.wjgnet.com/1007-9327/full/v29/i2/378.htm
DOI: https://dx.doi.org/10.3748/wjg.v29.i2.378

INTRODUCTION
Ulcerative colitis (UC) is a chronic inflammatory disease characterised by a relapsing and remitting 
course[1]. Disease activity is typically evaluated using clinical, biochemical and endoscopic assessments. 
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Treatment goals have evolved over time, and current consensus guidelines from the Selecting 
Therapeutic Targets in Inflammatory Bowel Disease initiative (STRIDE-II) recommend achieving clinical 
and endoscopic remission[2]. However, up to 40% of patients who achieve these therapeutic endpoints 
may have persistent histological inflammatory activity[3,4].

Despite endoscopic normalization, ongoing active histological activity may be associated with poorer 
clinical outcomes including higher clinical relapse rates, corticosteroid requirement, hospitalization, 
colectomy and development of colorectal neoplasia[3-7]. Although histological remission is currently 
not a formal treatment target by consensus expert-opinion, STRIDE-II guidelines do recommend that 
formal histological assessment take place to determine the depth of remission and help prognosticate 
patient outcomes. Further, it is increasingly incorporated into clinical drug trials, with central reading to 
reduce bias, to provide objective scoring of inflammatory activity[2]. Standardized histological scoring 
systems with varying levels of validity have been developed to quantify the degree of microscopic 
inflammatory activity and provide a more accurate assessment of mucosal inflammation[8-12]. The 
three most commonly used are the Geboes score, Nancy index and Robarts histopathology index due to 
evidence of their content validity and reliability in evaluating histological features[13].

Although accepted in modern clinical drug trials and research settings, histological disease activity 
and scoring systems have not been incorporated in routine clinical practice. It is not known whether 
gastroenterologists understand these scoring systems or if they welcome their incorporation into routine 
clinical care. Achieving consensus in a formal reporting scoring system will require agreement by 
pathologists, but their knowledge of these scoring systems and willingness to use them is also 
unknown. Many pathologists use written descriptions of UC activity in their reports. Whether this 
translates to a numerical value, if they favour a particular scoring system, or their attitude towards 
synaptic reporting of histological activity, is not known. This cross-sectional survey study evaluated 
gastroenterologist and pathologist knowledge of histological findings and scoring systems, together 
with their attitudes towards the role of histology in UC management. We hypothesised that based on 
their dedicated training, knowledge of histological scoring systems would be significantly higher in 
pathologists than gastroenterologists.

MATERIALS AND METHODS
Study cohort
This was a prospective cross-sectional survey of Australian gastroenterologists and pathologists from 
July 2021 to January 2022. Gastroenterologists were contacted by proxy through the Gastroenterological 
Society of Australia, and pathologists who review UC specimens were contacted by their associated 
gastroenterologists to participate in the survey.

Survey questionnaire and inflammatory bowel disease histology knowledge score
A survey was developed to explore the knowledge and attitudes towards the use of histology in inflam-
matory bowel disease (IBD) for both gastroenterologists and pathologists. The European Crohn’s and 
Colitis Organisation (ECCO) position paper on histopathology and the British Society of Gastroen-
terology (BSG) biopsy reporting guidelines were utilised to formulate questions and quantify 
knowledge[14,15]. The structured survey was designed by a focus group of three gastroenterologists 
and comprised of 34 questions. It included knowledge of histological assessment of disease activity and 
dysplasia, knowledge of histological scoring systems for ulcerative colitis, uptake of histology scoring 
systems in routine practice, attitudes towards the role of histological activity, and the use of histological 
activity in clinical scenarios (Supplementary Data 1). Questionnaire language and ambiguity were 
evaluated by the focus group. A novel IBD Histology Knowledge Score was created that was derived 
from the survey as a tool to measure overall performance and tested for construct validity and 
discriminant ability (Supplementary Table 1). The IBD Histology Knowledge Score was calculated as the 
sum of correct responses to survey questions that aligned with the ECCO position paper on 
histopathology and the BSG reporting guidelines on IBD biopsies[14,15]. The maximum possible score 
was nineteen. For construct validity, a high-performance score had to represent a good understanding 
of histological findings. During the development phase, the survey was administered to senior gastroen-
terologists and pathologists not directly involved in designing the study, and they were deemed as 
criterion standards. The survey was then administered to gastroenterology fellows, junior resident 
medical officers and non-medical staff. Senior staff scored significantly higher (P = 0.001) than junior 
doctors, establishing content validity. Discriminant validity compared the knowledge scores of those 
who followed published guidelines vs those who did not.

Statistical analysis
The IBD Histology Knowledge Score was analysed as a non-parametric continuous variable, described 
as medians with interquartile ranges and compared using Mann-Whitney U-test and Kruskal-Wallis 
test. Parametric continuous variables were described as means and compared using the t-test and 
ANOVA test. Predictors of the IBD histology knowledge score were determined using linear regression 
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with backward elimination regression modelling. A P-value of < 0.05 was deemed statistically 
significant. Statistical analyses were performed with SPSS version 27 (SPSS Inc, Chicago, IL, United 
States).

Ethics approval
The study was approved by the Sydney Local Health District Human Research Ethics Committee 
(HREC CH62/6/2021-055).

RESULTS
Study cohort
A total of 89 responses were obtained, comprising 77 gastroenterologists and 12 pathologists. The 
response rate for gastroenterologists was 25% (n = 77/310). Subspecialty breakdown of gastroentero-
logists is shown in Figure 1. Gastroenterologists listed their predominant work as 31% public hospital 
staff specialists, 30% private practice, 21% trainee gastroenterologists, 17% visiting medical officers and 
1% research-based gastroenterologist. Ninety-four percent of respondents saw > 2 IBD patients each 
week and 30% saw > 10 patients each week. Forty-five percent of gastroenterologists were involved in a 
regular IBD multidisciplinary team. Full study cohort characteristics are shown in Table 1.

Of the 12 surveyed pathologists, 83% worked in tertiary teaching hospitals and 17% were solely in 
private practice. Half of all pathologists were involved in regular IBD multidisciplinary meetings. Full 
study cohort characteristics are shown in Table 1.

Attitudes towards histology and scoring systems in UC
Histological activity was considered to have an ‘emerging’ or ‘established’ role in UC by 40% and 55% 
of gastroenterologists respectively. Proportions for pathologists were 33% and 58% respectively. 
Histological remission was considered more important to achieve than endoscopic remission by 65% of 
gastroenterologists (‘somewhat agree’ and ‘agree’) (Table 2).

The proportion of gastroenterologists who want to use a histological scoring system at least 
‘sometimes’ or ‘always’ was 59%, and 50% for pathologists. Gastroenterologists reported that 92% of 
their pathologists do not routinely use a histological scoring system, whilst 83% pathologists report not 
routinely using a scoring system. More than half of gastroenterologists (64%) and pathologists (58%) did 
not know which scoring systems had undergone the most validation (Table 2).

For the Geboes score, 91% of gastroenterologists and 83% of pathologists did not know the defined 
histological remission score of ‘< 2.1’[14]. For the Nancy index, 87% of gastroenterologists and 83% of 
pathologists did not know the defined histological remission score of ‘0’[14]. For the Robarts 
histopathology index (RHI), 92% of gastroenterologists and pathologists did not know the defined 
histological remission score of ‘≤ 3’[14] (Table 2 and Figure 2).

Impact of histological activity on treatment decisions in clinical scenarios
The impact of histological disease activity on gastroenterologists’ decisions to escalate treatment or de-
escalate in particular scenarios is summarized in Table 3. In the setting of clinical and endoscopic 
remission, but histological activity alone, 10% of gastroenterologists would escalate therapy (‘often’ or 
‘always’). When combined with an elevated faecal calprotectin, 30% of gastroenterologists would 
escalate treatment. A greater proportion of gastroenterologists would de-escalate treatment if two 
consecutive colonoscopies showed endoscopic and histological remission, compared with a single 
episode of endoscopic and histological remission (53% vs 19% respectively). A greater proportion of 
gastroenterologists would aim for histological remission if a patient with UC had other risk factors for 
colon cancer (71%).

IBD histology knowledge score
Gastroenterologists and pathologists had similar IBD histology knowledge scores [8.0 (IQR: 6.5-10.0) vs 
9.0 (IQR: 7.8-11.0), P = 0.54] (Table 4). Within gastroenterologists, IBD sub-specialists had higher 
knowledge scores compared with other gastroenterologists [10.5 (IQR: 7.3-14) vs 9.0 (IQR: 7.8-10.0), P = 
0.02] (Figure 3A). Public hospital staff specialists had higher knowledge scores than visiting medical 
officers [11.0 (IQR: 9.0-13.0) vs 8.0 (IQR: 8.0-9.0), P = 0.003] and those in private practice [11.0 (IQR: 9.0-
13.0) vs 8.0 (IQR: 6.3-9.8), P = 0.002] (Figure 3B). Gastroenterologists with a PhD had higher knowledge 
scores than those whose highest level of education was a bachelor degree [11.0 (IQR: 7.0-14.0) vs 9.0 
(IQR: 8.0-10.0), P = 0.01] (Figure 3C). Involvement in an IBD multidisciplinary team was associated with 
a higher knowledge score [9.5 (IQR: 8.0-11.0) vs 8.0 (IQR: 6.0-10.0), P = 0.002] (Figure 3D).

On univariate analysis, subspecialty type (P = 0.005), predominant practice (p=0.004), involvement in 
an IBD multidisciplinary team (P = 0.002) and a higher level of education (P = 0.02) were all significantly 
associated with higher IBD histology knowledge scores (Table 5). On multivariate analysis, subspecialty 
type (P = 0.03), predominant practice (P = 0.005) and involvement in an IBD multidisciplinary team (P = 
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Table 1 Demographics and study cohort characteristics, n (%)

Gastroenterologists (n = 77) Pathologists (n = 12)

Age (yr)

< 30 4 (5.2) 0 (0.0)

30-40 30 (39.0) 1 (8.3)

41-50 15 (19.5) 4 (33.3)

51-60 19 (24.7) 4 (33.3)

> 60 9 (11.7) 3 (25.0)

Location

New South Wales 46 (59.7) 8 (66.7)

Victoria 11 (14.3) 2 (16.7)

Queensland 11 (14.3) 2 (16.7)

Western Australia 8 (10.4) 0 (0.0)

Australian Capital Territory 1 (1.3) 0 (0.0)

Highest level of education

Bachelor of medicine/bachelor of surgery 51 (66.2) 11 (91.7)

Masters 10 (13.0) 0 (0.0)

PhD 16 (20.8) 1 (8.3)

What is your predominant practice

Staff specialist 24 (31.2) 10 (83.3)

University academic work 1 (1.3) 0 (0.0)

Visiting medical officer 13 (16.9) 0 (0.0)

Private practice 23 (29.9) 2 (16.7)

In training program 16 (20.8) 0 (0.0)

How many IBD patients do you see each week

0-1 5 (6.5) N/A

2-5 31 (40.3) N/A

6-10 18 (23.4) N/A

> 10 23 (29.9) N/A

Involved in regular IBD multidisciplinary meeting

Yes 35 (45.5) 6 (50.0)

No 42 (54.5) 6 (50.0)

IBD: Inflammatory bowel disease; N/A: Not applicable.

0.009) remained significant predictors for higher IBD histology knowledge scores (Table 5).

DISCUSSION
Therapeutic goals in UC have evolved from achieving clinical response to attaining objective targets of 
resolution of inflammation beyond symptoms such as biochemical and endoscopic remission. However, 
histological remission outside of the research setting has yet to be adopted by gastroenterologists and 
pathologists. Our study revealed firstly that histological activity is a recognised treatment goal for 
gastroenterologists who wish to use histology results in combination with other endpoints to guide 
management decisions. Secondly and conversely, despite this awareness and use of histology, there is a 
poor knowledge of histological scoring systems in UC not only by gastroenterologists, but by 
pathologists as well. As such there is an opportunity to develop consensus guidelines incorporating 
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Table 2 Attitudes towards histology and histological scoring systems, n (%)

Gastroenterologists (n = 
77)

Pathologists (n = 
12)

The role of histological activity in IBD is

Not established 3 (3.9) 1 (8.3)

Preliminary 1 (1.3) 0 (0.0)

Emerging 31 (40.3) 4 (33.3)

Established 42 (54.5) 7 (58.3)

Histological remission is more important to achieve than endoscopic remission

Disagree 4 (5.2) N/A

Somewhat disagree 13 (16.9) N/A

Neither agree nor disagree 10 (13.0) N/A

Somewhat agree 36 (46.8) N/A

Agree 14 (18.2) N/A

What histological scoring system does your pathologist routinely or frequently use in their 
reports

Geboes 2 (2.6) 0 (0.0)

Nancy index 3 (3.9) 1 (8.3)

RHI 1 (1.3) 0 (0.0)

They do not routinely use a scoring system 71 (92.2) 10 (83.3)

Other IBD-DCA score (n = 1)

I would like to use a histological scoring system for my IBD patients

Never 8 (10.4) 4 (33.3)

Rarely 10 (13.0) 1 (8.3)

Occasionally 14 (18.2) 1 (8.3)

Sometimes 23 (29.9) 3 (25.0)

Always 22 (28.6) 3 (25.0)

Which scoring systems have undergone the most validation

Modified Riley score 1 (1.3) 1 (8.3)

Geboes score 13 (16.9) 3 (25.0)

Nancy index 20 (26.0) 5 (41.7)

RHI 9 (11.7) 3 (25.0)

Truelove and Richards score 5 (6.5) 0 (0.0)

Not sure 49 (63.6) 7 (58.3)

What Geboes score is considered histological remission

< 1.1 2 (2.6) 1 (8.3)

< 2.1 7 (9.1) 2 (16.7)

< 3.1 4 (5.2) 0 (0.0)

< 4.1 1 (1.3) 0 (0.0)

Not sure 63 (81.8) 9 (75.0)

What Nancy index is considered histological remission

0 10 (13.0) 2 (16.7)

≤ 1 4 (5.2) 3 (25.0)
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≤ 2 0 (0.0) 0 (0.0)

≤ 3 0 (0.0) 0 (0.0)

Not sure 63 (81.8) 7 (58.3)

What Robarts histopathology index is considered histological remission

≤ 2 4 (5.2) 1 (8.3)

≤ 3 6 (7.8) 1 (8.3)

≤ 4 0 (0.0) 0 (0.0)

≤ 5 0 (0.0) 1 (8.3)

Not sure 67 (87.0) 9 (75.0)

RHI: Robarts histopathology index; IBD: Inflammatory bowel disease; N/A: Not applicable.

Table 3 Impact of histological disease activity on treatment management in clinical scenarios, n (%)

Scenario Never Not 
often Sometimes Often Always 

If a patient is in clinical and endoscopic remission, but has histological activity, then I will escalate 
medical therapy

14 
(18.2)

35 (45.5) 20 (26.0) 5 (6.5) 3 (3.9)

If a patient is in clinical and endoscopic remission, but has an elevated faecal calprotectin (> 100 
μg/g) and histological activity, then I will escalate medical therapy

4 (5.2) 18 (23.4) 31 (40.3) 19 
(24.7)

5 (6.5)

If a patient is in clinical, endoscopic and histological remission, (but prior colonoscopy showed 
Mayo 1 endoscopic disease), then I will de-escalate medical therapy

7 (9.1) 19 (24.7) 36 (46.8) 15 
(19.5)

0 (0.0)

If a patient is in clinical remission, with their last 2 colonoscopies showing endoscopic and 
histological remission, then I will de-escalate medical therapy

2 (2.6) 2 (2.6) 31 (40.3) 38 
(49.4)

4 (5.2)

If a patient with ulcerative colitis has other risk factors for colon cancer, then I will aim to achieve 
histological remission

0 (0.0) 7 (9.1) 14 (18.2) 27 
(35.1)

29 (37.7)

Figure 1 Subspeciality characteristics of gastroenterologists.

gastroenterologists and pathologists that are adopted by the respective societies to further this evolving 
field.

Our study showed 95% of gastroenterologists believe histological activity plays a role in the 
management of UC, with 76% wanting to use a histological scoring system in clinical practice. Further 
evidence on the role of UC histological activity scores is required as only a small proportion of gastroen-
terologists currently make treatment decisions based solely on histological activity. In UC patients with 
clinical and endoscopic remission but ongoing histological disease activity, 10% of gastroenterologists 
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Table 4 Inflammatory bowel disease histology knowledge scores

Gastroenterologists (n = 77) Pathologists (n = 12)

IBD histology knowledge score [median (IQR)] 9.0 (7.8-11.0) 8.0 (6.5-10.0)

Type of subspecialist

General gastroenterologist 8.0 (7.0-9.0) N/A

IBD subspecialist 10.5 (7.3-14) N/A

Interventional endoscopist 9.0 (4.5-9.8) N/A

Hepatologist 10.5 (8.5-11) N/A

Gastroenterology trainee 8.5 (6.0-10.0) N/A

Predominant practice

Staff specialist 11.0 (9.0-13.0) N/A

Visiting medical officer 8.0 (8.0-9.0) N/A

Private practice 8.0 (6.3-9.8) N/A

In training program 8.5 (6.0-10.0) N/A

Highest level of education

Bachelor degree 9.0 (8.0-10.0) N/A

Masters 8.0 (7.0-11.0) N/A

PhD 11.0 (7.0-14.0) N/A

Involved in regular IBD multidisciplinary meeting 35 (45.5%) 6 (50.0%)

Yes 9.5 (8.0-11.0) N/A

No 8.0 (6.0-10.0) N/A

IQR: Interquartile range; N/A: Not applicable; IBD: Inflammatory bowel disease.

Table 5 Significant predictors of inflammatory bowel disease histology knowledge score for gastroenterologists on univariate and 
multivariate analyses

Univariate analysis P value Multivariate analysis P value

Type of subspecialty 0.005 0.03

Predominant practice 0.004 0.005

Involvement in IBD MDT 0.002 0.009

Highest level of education 0.02

IBD: Inflammatory bowel disease; MDT: Multidisciplinary team.

would escalate medical therapy. However, when histological activity coincides with elevated faecal 
calprotectin, 30% were prepared to escalate treatment. These decisions match the current STRIDE-II 
guidelines given that histological activity is not currently an accepted target, but shows that gastroenter-
ologists are prepared to include this endpoint as a treatment target[2]. Histological remission becomes 
even more important if a patient with UC had other risk factors for colon cancer, with 72% prepared to 
escalate treatment, given that histological activity increases the risk of colorectal neoplasia (odds ratio 
3.0, 95%CI: 1.4-6.3)[5]. Therefore, when UC subjects have greater colonic disease extent, more prolonged 
duration of UC, presence of primary sclerosing cholangitis, or presence of a family history of colorectal 
cancer, gastroenterologists might escalate treatment in the presence of histological disease activity 
irrespective of symptoms.

Despite the awareness of the importance of histology in UC, our survey demonstrated a lack of 
knowledge of histological scoring systems by gastroenterologists. Clinical trials have used Nancy index, 
RHI and the Geboes score but recent European Crohn’s and Colitis Organisation (ECCO) guidelines 
recommended the use of the Nancy index and RHI for randomised clinical trials, and the Nancy index 
for clinical practice given its ease of use[14]. Gastroenterologists did not know which scoring systems 
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Figure 2 Knowledge of histological remission definitions for scoring systems by gastroenterologists and pathologists. RHI: Robarts 
histopathology index.

Figure 3 Comparisons of inflammatory bowel disease histology knowledge score for gastroenterologists. A: Subspecialty type; B: Predominant 
practice; C: Highest education level; and D: Involvement in inflammatory bowel disease multidisciplinary team. IBD: Inflammatory bowel disease; IQR: Interquartile 
range; MDT: Multidisciplinary team.

had undergone the most validation, or were unaware of the histological remission scores for the Geboes 
score (91%), Nancy index (87%) and RHI (92%). Despite the increasing interest and evolving role of 
histological scoring systems in UC, there is an opportunity to educate gastroenterologists about these 
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scoring systems and how to apply them in clinical practice. Predictors for higher knowledge included 
employment as a public hospital staff specialist and involvement in an IBD multidisciplinary team. As 
such, it is likely working in public hospitals within an IBD team would lead to increased exposure to the 
understanding of common histological scoring systems in UC. Conversely, gastroenterologists working 
in private practice would have less exposure to these scoring systems and their utility in UC 
management, contributing to lower knowledge scores.

Few studies have evaluated pathologists’ views on histological activity, but most believe that they 
have a role in evaluating UC. However, pathologists’ knowledge of UC histology was comparable to 
gastroenterologists [median knowledge score 8.0 (IQR: 6.5-10.0) vs 9.0 (IQR: 7.8-11.0) P = 0.54]. Similar to 
gastroenterologists, they also lacked knowledge of histological scoring systems and their remission 
definitions. There is an opportunity, therefore, to improve the utilisation of histological activity scoring 
for both pathologists and gastroenterologists. A harmonised approach to histological assessment in UC 
is lacking[16]. Future directions should include the development of histology consensus guidelines in 
consultation with pathologists to ensure homogeneity in reporting across hospitals to permit compar-
ability of mucosal biopsies across different sites.

This study has several limitations. First, responder bias may have played a role, whereby responders 
having greater knowledge were more likely to take part on the survey. However, this would indicate a 
greater unawareness of histological activity scoring in the assessment of UC and a greater need for 
education and a harmonized approach towards the adoption of a scoring system. Secondly, a smaller 
respondent number for pathologists was surveyed. However, we demonstrated statistically that 
pathologists did not differ in their knowledge of histological scoring systems in UC despite expertise in 
reading biopsy histology. Thirdly, the results may lack worldwide generalisability given the survey was 
sent to Australian health professionals.

Strengths of this study included: (1) Being the first to report gastroenterologists’ knowledge and 
attitudes towards the use of histology in UC; (2) recruitment of pathologists to compare their awareness 
against gastroenterologists; and (3) to target respondents nationwide to demonstrate generalisability.

CONCLUSION
The study highlights that while there is an acknowledgment of the importance of histological 
assessment in UC, there is a lack of knowledge of histological scoring systems. It indicates areas of 
educational need in the field of UC histology, and the importance of including pathologists in 
developing future consensus guidelines on the use of histology in clinical practice.

ARTICLE HIGHLIGHTS
Research background
The role of histology in ulcerative colitis has evolved over time. Histological activity despite endoscopic 
remission is associated with poorer clinical outcomes, and various histological scoring systems have 
been developed. However, the knowledge and attitudes towards the use of histology in the 
management of ulcerative colitis by gastroenterologists and pathologists is unknown.

Research motivation
Although there has been an increasing literature into the use of histology in ulcerative colitis, it is 
unknown whether this has translated into knowledge and use by gastroenterologists and pathologists in 
clinical practice.

Research objectives
The main objective was to evaluate the knowledge of histology guidelines and attitudes towards the use 
of histology in ulcerative colitis by gastroenterologists and pathologists.

Research methods
A prospective, cross-sectional survey of gastroenterologists and pathologists was conducted in 
Australia. The survey was formulated by using peer-reviewed guidelines.

Research results
Of 89 responders (77 gastroenterologists, 12 pathologists), there was almost complete acceptance that 
histological assessment should form part of ulcerative colitis evaluation (95% gastroenterologists, 92% 
pathologists). However, the majority of both groups lacked awareness of the Geboes score, Nancy index 
and Robarts histopathological index. Higher knowledge scores were predicted by public hospital 
attending gastroenterologists and involvement in an inflammatory bowel disease meeting.
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Research conclusions
Histological remission is a recognised target for both gastroenterologists and pathologists. However 
knowledge of histological scoring systems was poor.

Research perspectives
Future research should involve the development of consensus guidelines in consultation with 
pathologists on the use of histology in ulcerative colitis management. This should include an agreement 
on a standardised scoring system to ensure homogenity in reporting across hospitals to permit compar-
ability of biopsies.
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Abstract
BACKGROUND 
Due to increasing resistance rates of Helicobacter pylori (H. pylori) to different 
antibiotics, failures in eradication therapies are becoming more frequent. Even 
though eradication criteria and treatment algorithms for first-line and second-line 
therapy against H. pylori infection are well-established, there is no clear recom-
mendation for third-line and rescue therapy in refractory H. pylori infection.

AIM 
To perform a systematic review evaluating the efficacy and safety of rescue 
therapies against refractory H. pylori infection.

METHODS 
A systematic search of available rescue treatments for refractory H. pylori infection 
was conducted on the National Library of Medicine’s PubMed search platform 
based on Preferred Reporting Items for Systematic Reviews and Meta-Analyses 
guidelines. Randomized or non-randomized clinical trials and observational 
studies evaluating the effectiveness of H. pylori infection rescue therapies were 
included.

RESULTS 
Twenty-eight studies were included in the analysis of mean eradication rates as 
rescue therapy, and 21 of these were selected for analysis of mean eradication rate 
as third-line treatment. For rifabutin-, sitafloxacin-, levofloxacin-, or metroni-
dazole-based triple-therapy as third-line treatment, mean eradication rates of 
81.6% and 84.4%, 79.4% and 81.5%, 55.7% and 60.6%, and 62.0% and 63.0% were 
found in intention-to-treat (ITT) and per-protocol (PP) analysis, respectively. For 
third-line quadruple therapy, mean eradication rates of 69.2% and 72.1% were 
found for bismuth quadruple therapy (BQT), 88.9% and 90.9% for bismuth qua-
druple therapy, three-in-one, Pylera® (BQT-Pylera), and 61.3% and 64.2% for non-
BQT) in ITT and PP analysis, respectively. For rifabutin-, sitafloxacin-, levofloxa-
cin-, or metronidazole-based triple therapy as rescue therapy, mean eradication 
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rates of 75.4% and 78.8%, 79.4 and 81.5%, 55.7% and 60.6%, and 62.0% and 63.0% were found in 
ITT and PP analysis, respectively. For quadruple therapy as rescue treatment, mean eradication 
rates of 76.7% and 79.2% for BQT, 84.9% and 87.8% for BQT-Pylera, and 61.3% and 64.2% for non-
BQT were found in ITT and PP analysis, respectively. For susceptibility-guided therapy, mean 
eradication rates as third-line and rescue treatment were 75.0% in ITT and 79.2% in PP analysis.

CONCLUSION 
We recommend sitafloxacin-based triple therapy containing vonoprazan in regions with low 
macrolide resistance profile. In regions with known resistance to macrolides or unavailability of 
bismuth, rifabutin-based triple therapy is recommended.

Key Words: Helicobacter pylori; Refractory infection; Third-line therapy; Rescue therapy; Eradication; 
Treatment

©The Author(s) 2023. Published by Baishideng Publishing Group Inc. All rights reserved.

Core Tip: The eradication of Helicobacter pylori is widely discussed given the high prevalence and 
incidence of its infection. Even with established criteria in the V Maastricht Consensus for the eradication 
of infection and treatment algorithms for choosing first-line and second-line therapeutic regimens, 
therapeutic failure is frequent. Therefore, establishing safe, effective, and accessible third-line and rescue 
therapies for patients in need of eradication is necessary in the management of such infection. Due to this 
need, the present systematic review performed a systematic review evaluating the efficacy and safety of 
rescue therapies against refractory Helicobacter pylori infection.

Citation: de Moraes Andrade PV, Monteiro YM, Chehter EZ. Third-line and rescue therapy for refractory 
Helicobacter pylori infection: A systematic review. World J Gastroenterol 2023; 29(2): 390-409
URL: https://www.wjgnet.com/1007-9327/full/v29/i2/390.htm
DOI: https://dx.doi.org/10.3748/wjg.v29.i2.390

INTRODUCTION
Helicobacter pylori (H. pylori) is a Gram-negative microaerophilic bacterium with a wide genomic 
diversity, which are the product of mutations, recombination, migrations, and genetic drift that favored 
the emergence of multiple populations and subpopulations of this bacterium[1-3]. H. pylori is a microor-
ganism of global relevance, infecting about 50% of the world population[4].

Exclusive or multifactorial infection by H. pylori is associated with the onset of multiple diseases. The 
exclusive action of H. pylori through its virulence factors is related to the development of peptic ulcer, 
duodenal ulcer, gastritis, and consequently, dyspepsia[5-7]. Although H. pylori infection is often the 
primary cause of gastric cancers, the development of this pathological process results from a 
multifactorial interaction between bacterial, host, and environmental factors[8]. Furthermore, H. pylori 
can also stimulate lymphocytic infiltration in the gastric mucosa, which combined with high-risk 
genotypes may be associated with a neoplastic transformation into mucosa-associated lymphoid tissue 
lymphoma[9,10].

According to the IV Brazilian Consensus on Infection by H. pylori and the Maastricht V/Florence 
Consensus, the eradication of H. pylori is recommended in cases of peptic ulcer, mucosa-associated 
lymphoid tissue lymphoma, atrophic gastritis, after gastric cancer resection and in patients with first-
degree relatives with gastric cancer. However, in addition to its adverse effects, the eradication of H. 
pylori can result in changes in the stomach, intestine, pancreas, and other systems and allow the 
colonization of other bacteria. Therefore, the risk/benefit ratio of this therapy must be evaluated by the 
physician[11,12].

Treatment of H. pylori infection is based on a combination of antimicrobials and antisecretory agents 
that promote an increase in gastric pH, enabling the action of antimicrobials. The increasing rates of H. 
pylori resistance to the classes of antimicrobials commonly used in conventional therapeutic regimens 
has reduced the effectiveness of these drugs, and failures in eradication therapies have become 
increasingly frequent. In an attempt to combat the growing resistance to antimicrobials, new therapeutic 
regimens have been used as an alternative to conventional regimens. The association of bismuth, the use 
of new classes of antisecretory agents such as the competitive inhibitor of potassium channels, and the 
adoption of new antimicrobials have acted as an alternative to standard therapeutic regimens.

https://www.wjgnet.com/1007-9327/full/v29/i2/390.htm
https://dx.doi.org/10.3748/wjg.v29.i2.390
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Although the Maastricht V/Florence Consensus presents very well-established criteria for the 
eradication of infection and treatment algorithms for the choice of first-line and second-line therapeutic 
regimens (Figure 1) against H. pylori infection, there is no clear recommendation for third-line and 
rescue regimens in refractory H. pylori infection. Given the need to establish safe, effective, and 
accessible therapies for patients, the aim of this study was to evaluate the efficacy and safety of third-
line and rescue therapies in refractory H. pylori infection.

MATERIALS AND METHODS
Although no review protocol was registered, the present review was conducted in accordance with 
Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) 2009 guideline, from a 
survey of available rescue treatments for refractory H. pylori infection in scientific articles on the 
PubMed search platform of the National Library of Medicine. The search was performed between April 
22, 2021 and August 20, 2021. Different descriptors were used throughout the study for maximization of 
the database, namely: Helicobacter pylori multidrug resistance and rescue therapy; H. pylori multiresistant 
and rescue treatment; Helicobacter pylori multidrug resistance and rescue treatment; Helicobacter pylori 
rescue therapy; Helicobacter pylori and third line treatment; and fourth line therapy and Helicobacter pylori
. After applying the inclusion and exclusion criteria, the selected articles were analyzed in two stages: 
first by two independent reviewers and later by the senior reviewer in order to minimize the possibility 
of errors and bias by the authors.

Information from articles selected and approved in both stages was extracted by reviewers 
independently to ensure reliable data detection and collection. A statistical analysis was performed from 
relevant data to the objective of this review to compare the results found in the studies. In addition to 
the analysis of eradication rates both by intention to treat (ITT) and per protocol (PP), a comparative 
analysis on adverse effects found in the different therapeutic approaches was also performed to assess 
their feasibility in clinical practice.

Due to the heterogeneity pool of objectives in the articles (most of them evaluated different classes or 
combinations of antibiotics), the level of evidence, grade rating, and bias analysis required in the 
PRISMA protocol could not be analyzed. Therefore, some items of the PRISMA checklist could not be 
applied. All articles selected according to our inclusion and exclusion criteria were included in this 
review, despite their PRISMA rating grade, evidence level, or bias. It was equally challenging to present 
their risk of bias, outcome level assessment, and strength of evidence, even with a two-phase analysis. 
Therefore, some of this information may be lacking in this review, but all articles included were 
analyzed in detail to minimize the inclusion of low evidence information.

Inclusion criteria
The present review included randomized or non-randomized clinical trials and observational studies 
that evaluated the efficacy of rescue therapies in refractory H. pylori infection published from 2014 
onwards in the search platforms defined by the authors.

Exclusion criteria
Exclusion criteria adopted in the selection of articles of the present study were the following: Studies 
with pediatric patients; studies exclusively with patients who had only one failed eradication attempt; 
studies including patients with two or more previous failed eradication therapies, in which eradication 
rates for these patients were not specified; studies that did not fully discriminate the therapeutic 
approach used; studies without evidence of infection by H. pylori using methods of high sensitivity and 
specificity (13C-UBT and/or biopsy); and studies in which there was no subsequent follow-up of 
patients.

RESULTS
Selection of articles
The initial search in the PubMed database resulted in 751 potential articles. After excluding those 
published before January 1, 2014, 362 articles remained. After temporal delimitation and reading the 
abstracts of the remaining articles, 271 articles did not contain relevant information about rescue 
treatment. Of the 91 remaining articles containing relevant information on rescue treatment, 38 were 
excluded after a double check with reviewers and the senior reviewer because they were duplicates 
and/or statistical information related to eradication rates of third-line and rescue therapies was lacking. 
Articles without data on adverse effects but with eradication rates were included in this review. At the 
end of this stage, 53 articles were selected for analysis and read in full by the authors. Finally, 25 articles 
were excluded in the final stage because they did not meet the inclusion criteria in full or met any of the 
exclusion criteria, leaving 28 articles for inclusion. The selection process is presented in the PRISMA 
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Figure 1 Therapeutic regimens recommended by Maastricht V/Florence consensus report as first-line and second-line treatment. PPI: 
Proton pump inhibitor.

diagram of included articles. PRISMA flow diagram reported in Figure 2.

Eradication rate
The different approaches used in the selected articles and their eradication rates can be seen in Table 1
[13-40].

Among the 28 selected articles, different active principles and therapeutic approaches were used as 
rescue treatment, achieving different eradication rates. Twenty-one studies were selected for analysis of 
the mean eradication rate as third-line treatment. Regarding the analysis of mean eradication rates of 
rescue therapies, studies containing patients with two or more previous failed eradications were 
included; the 28 studies presented in Table 1 were used. The analysis of eradication rates of regimens 
used as third-line treatment and rescue therapy were stratified into three subgroups based on the 
therapeutic regimens used, namely triple therapy, quadruple therapy, and susceptibility-guided 
therapy (SGT). Note that in the analysis of mean eradication rates of therapies performed in our study, 
therapeutic regimens were not discriminated based on the duration and dosage of the drugs used. In the 
absence of studies evaluating the effectiveness of therapeutic approaches as fourth-line or more, the 
third-line was considered as rescue therapy.

Triple therapy: Eradication rates found for triple therapy as third-line treatment were 81.6% and 84.4% 
for rifabutin-based regimens, 79.4% and 81.5% for sitafloxacin-based regimens, 55.7 % and 60.6% for 
levofloxacin-based regimens, and 62.0% and 63.0% for metronidazole-based regimen by ITT and PP, 
respectively (Figure 3). Regarding triple therapy as rescue treatment, mean eradication rates of 75.4% 
and 78.8% were found for rifabutin-based regimens, 79.4% and 81.5% for sitafloxacin-based regimens, 
55.7% and 60.6% for levofloxacin-based regimens, and 62.0% and 63.0% for metronidazole-based 
regimen by ITT and PP, respectively (Figure 4).

Quadruple therapy: Eradication rates found for quadruple therapy as third-line treatment were 69.2% 
and 72.1% for bismuth quadruple therapy (BQT), 88.9% and 90.9% for bismuth quadruple therapy, 
three-in-one Pylera® (BQT-Pylera®), and 61.3% and 64.2% for non-BQT by ITT and PP, respectively 
(Figure 5). Regarding quadruple therapy as rescue treatment, mean eradication rates of 76.7% and 79.2% 
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Table 1 Eradication rates by therapeutic regimen

Year Ref. Type of study Rescue therapy Duration Eradication rate

2014 Lim et al[13] Randomized 
clinical trial

Group A: lansoprazole (30 mg, 12/12 h), amoxicillin (1 g, 8/8 h), and 
rifabutin 150 mg (12/12 h)

7 d ITT: 78.1%; PP: 
80.6%

2014 Lim et al[13] Randomized 
clinical trial

Group B: lansoprazole (60 mg, 12/12 h), amoxicillin (1 g, 8/8 h), and 
rifabutin 150 mg (12/12 h)

7 d ITT: 96.3%; PP: 
100%

2014 Furuta et al
[14]

Randomized 
clinical trial

RAS: rabeprazole (10 mg, 8/8 h or 12/12 h), amoxicillin (500 mg, 6/6 h), 
sitafloxacin (100 mg, 12/12 h)

7 d ITT: 84.1%; PP: 
86.4%

2014 Furuta et al
[14]

Randomized 
clinical trial

RAS: rabeprazole, amoxicillin (500 mg, 6/6 h), sitafloxacin (100 mg, 
12/12 h)

14 d ITT: 88.9%; PP: 
90.9%

2014 Furuta et al
[14]

Randomized 
clinical trial

RMS: rabeprazole, metronidazole (250 mg, 12/12 h), sitafloxacin (100 mg, 
12/12 h)

7 d ITT: 90.9%; PP: 
90.9%

2014 Furuta et al
[14]

Randomized 
clinical trial

RMS: rabeprazole, metronidazole (250 mg, 12/12 h), sitafloxacin (100 mg, 
12/12 h)

14 d ITT: 87.2%; PP: 
91.1%

2014 Gisbert et al
[15]

Prospective 
multicenter 
observational 
study

PPI (standard dose, 12/12 h), bismuth subcitrate (120 mg 8/8 h or 240 
mg, 12/12 h), tetracycline (250 mg, 6/6 h or 500 mg 8/8 h or 500 mg, 6/6 
h), and metronidazole (250 mg, 8/8 h or 250 mg, 6/6 h or 500 mg, 8/8 h 
or 500 mg, 6/6 h)

7-14 d ITT: 65.0%; PP: 
67.0%

2014 Okimoto et 
al[16]

Randomized 
clinical trial

RAL: rabeprazole (10 mg, 12/12 h), amoxicillin (750 mg, 12/12 h), 
levofloxacin (500 mg, 24/24 h)

10 d ITT: 45.8%; PP: 
45.8%

2014 Okimoto et 
al[16]

Randomized 
clinical trial

RA: rabeprazole (10 mg, 6/6 h) and amoxicillin (500 mg, 6/6 h) 14 d ITT: 40.7%; PP: 
45.8%

2015 Paoluzi et al
[17]

Randomized 
clinical trial

Esomeprazole (20 mg, 12/12 h), levofloxacin (500 mg, 12/12 h), 
doxycycline (100 mg, 12/12 h)

7 d ITT: 40.0%; PP: 
43.0%

2015 Paoluzi et al
[17]

Randomized 
clinical trial

Esomeprazole (20 mg, 12/12 h), levofloxacin (500 mg, 12/12 h), 
doxycycline (100 mg, 12/12 h), Lactobacillus casei DG (24 billion units)

7 d ITT: 54%; PP: 55%

2016 Muller et al
[18]

Non-randomized 
clinical trial

Pylera® (140 mg potassium bismuth subcitrate, 125 mg metronidazole, 
125 mg tetracycline, 6/6 h), omeprazole (20 mg, 12/12 h)

10 d ITT: 83.0%; PP: 
87.0%

2016 Mori et al
[19]

Randomized 
clinical trial

Third-line: esomeprazole (20 mg, 6/6 h), amoxicillin (500 mg, 6/6 h), and 
rifabutin (300 mg, 24/24 h)

10 d ITT: 83.3%; PP: 
81.8%

2016 Mori et al
[19]

Randomized 
clinical trial

Third-line: esomeprazole (20 mg, 6/6 h), amoxicillin (500 mg, 6/6 h), and 
rifabutin (300 mg, 24/24 h)

14 d ITT: 94.1%; PP: 
91.7%

2016 Mori et al
[19]

Randomized 
clinical trial

Fourth-line: esomeprazole (20 mg, 6/6 h), amoxicillin (500 mg, 6/6 h), 
and rifabutin (300 mg, 24/24 h)

10 d ITT: 77.9%; PP: 
77.9%

2016 Mori et al
[19]

Randomized 
clinical trial

Fourth-line: esomeprazole (20 mg, 6/6 h), amoxicillin (500 mg, 6/6 h), 
and rifabutin (300 mg, 24/24 h)

14 d ITT:90.9%; PP: 
90.9%

2016 Mori et al
[20]

Randomized 
clinical trial

Esomeprazole (20 mg, 12/12 h), amoxicillin (500 mg, 6/6 h), and 
sitafloxacin (100 mg, 12/12 h)

10 d ITT: 81.0%; PP: 
82.0%

2016 Mori et al
[20]

Randomized 
clinical trial

Esomeprazole (20 mg, 12/12 h), metronidazole (250 mg, 12/12 h), and 
sitafloxacin (100 mg, 12/12 h)

10 d ITT: 72.4%; PP: 
76.4%

2016 Chen et al
[21]

Randomized 
clinical trial

Lansoprazole (30 mg, 12/12 h), potassium bismuth subcitrate (220 mg, 
12/12 h), metronidazole (400 mg, 6/6 h), and amoxicillin (1 g, 8/8 h)

14 d ITT: 88.5%; PP: 
93.7%

2016 Chen et al
[21]

Randomized 
clinical trial

Lansoprazole (30 mg, 12/12 h), potassium bismuth subcitrate (220 mg, 
12/12 h), metronidazole (400 mg, 6/6 h), and tetracycline (500 mg, 6/6 h)

14 d ITT: 87.2%; PP: 
95.3%

2016 Noh et al[22] Non-randomized 
clinical trial

PPI (standard dose, 12/12 h), levofloxacin (500 mg, 24/24 h), and 
amoxicillin (1 g, 12/12 h)

7 d ITT: 58.3%; PP: 
58.3%

2016 Noh et al[22] Non-randomized 
clinical trial

PPI (standard dose, 12/12 h), levofloxacin (500 mg, 24/24 h), and 
amoxicillin (1 g, 12/12 h)

10 d ITT: 62.5%; PP: 
68.2%

2016 Noh et al[22] Non-randomized 
clinical trial

PPI (standard dose, 12/12 h), levofloxacin (500 mg, 24/24 h), and 
amoxicillin (1 g, 12/12 h)

14 d ITT: 73.7%; PP: 
93.3%

2016 Hirata et al
[23]

Non-randomized 
clinical trial

Esomeprazole (20 mg, 12/12 h), amoxicillin (750 mg, 12/12 h), 
sitafloxacin (100 mg, 12/12 h)

7 d ITT: 83.0%; PP: 
83.0%

2017 Rodríguez 
de Santiago 
et al[24]

Multicenter 
observational 
prospective 
study

Pylera® (140 mg potassium bismuth subcitrate, 125 mg metronidazole, 
125 mg tetracycline, 3 capsules, 6/6 h) and esomeprazole (40 mg, 12/12 
h) or omeprazole (40 mg, 12/12 h)

10 d ITT: 80.2%; PP: 
84.4%



de Moraes Andrade PV et al. Helicobacter pylori infection rescue therapy

WJG https://www.wjgnet.com 395 January 14, 2023 Volume 29 Issue 2

2017 Costa et al
[25]

Single-center 
observational 
retrospective 
study

SGT - ITT: 59.5%; PP: 
61.5%

2017 Puig et al
[26]

Multicenter 
observational 
prospective 
study

Esomeprazole (40 mg, 12/12 h), amoxicillin (1 g, 8/8 h), and 
metronidazole (500 mg, 8/8 h)

14 d ITT: 62.0%; PP: 
63.0%

2018 Fiorini et al
[27]

Non-randomized 
clinical trial

Esomeprazole (40 mg, 12/12 h), amoxicillin (1 g, 12/12 h), rifabutin (150 
mg, 24/24 h)

12 d PP: 87.9%

2018 Liou et al
[28]

Randomized 
clinical trial

Clinical trial 1: sequential susceptibility-guided therapy: esomeprazole 
(40 mg, 12/12 h) and amoxicillin (1 g, 12/12 h), for the first 7 d followed 
by metronidazole (500 mg, 12/12 h) and levofloxacin (250 mg, 12/12 h) 
or clarithromycin (500 mg, 12/12 h) or doxycycline (100 mg, 12/12 h), for 
another 7 d. Sequential empirical therapy: esomeprazole (40 mg, 12/12 h) 
and amoxicillin (1 g, 12/12 h) for the first 7 d, followed by metronidazole 
(500 mg, 12/12 h) and doxycycline (100 mg, 12/12 h), for another 7 d

14 d SGT ITT: 81.0%, PP: 
80.0%; Sequential 
empirical therapy 
ITT: 60.0%, PP: 
60.0%

2018 Liou et al
[28]

Randomized 
clinical trial

Clinical trial 2: sequential SGT: esomeprazole (40 mg, 12/12 h) and 
amoxicillin (1 g, 12/12 h) for the first 7 d followed by metronidazole (500 
mg, 12/12 h) and levofloxacin (250 mg, 12/12 h) or clarithromycin (500 
mg, 12/12 h) or tetracycline (500 mg, 12/12 h) for another 7 d. Sequential 
empirical therapy: esomeprazole (40 mg, 12/12 h) and amoxicillin (1 g, 
12/12 h) for the first 7 d followed by metronidazole (500 mg, 12/12 h) 
and tetracycline (100 mg, 12/12 h) for another 7 d

14 d SGT ITT: 78.0%, PP: 
78.4%; Sequential 
empirical therapy 
ITT: 72.2%, PP: 
74.4%

2018 Huang et al
[29]

Non-randomized 
clinical trial

SGT: esomeprazole (40 mg, 12/12 h), amoxicillin (1 g, 12/12 h) and 
tetracycline (500 mg, 6/6 h) or metronidazole (500 mg, 8/8 h) or 
levofloxacin (500 mg, 24/24 h)

14 d ITT: 81.4%; PP: 
89.7%

2018 Huang et al
[29]

Non-randomized 
clinical trial

Empirical quadruple therapy: esomeprazole (40 mg, 12/12 h), amoxicillin 
(1 g, 12/12 h), tetracycline (500 mg, 6/6 h), and metronidazole (500 mg, 
8/8 h)

14 d ITT: 51.8%; PP: 
58.3%

2019 Saito et al
[30]

Non-randomized 
clinical trial

Esomeprazole (20 mg, 12/12 h), amoxicillin (750 mg, 12/12 h), and 
sitafloxacin (100 mg, 12/12 h)

7 d ITT: 54.2%; PP: 
56.5%

2019 Saito et al
[30]

Non-randomized 
clinical trial

Vonoprazan (20 mg, 12/12 h), amoxicillin (750 mg, 12/12 h), and 
sitafloxacin (100 mg, 12/12 h)

7 d ITT: 93.0%; PP: 
93.0%

2019 Sue et al[31] Randomized 
clinical trial

Vonoprazan (20 mg, 12/12 h) amoxicillin 750 mg, (12/12 h), and 
sitafloxacin (100 mg, 12/12 h)

7 d ITT: 75.8%; PP: 
83.3%

2019 Sue et al[31] Randomized 
clinical trial

Lansoprazole (30 mg, 12/12 h) or rabeprazole (10 mg, 12/12 h) or 
esomeprazole (20 mg, 12/12 h), amoxicillin (750 mg, 12/12 h), and 
sitafloxacin 100 mg, 12/12 h)

7 d ITT: 53.3%; PP: 
57.1%

2019 Ribaldone et 
al[32]

Non-randomized 
clinical trial

Fifth-line: rifabutin (150 mg, 12/12 h), amoxicillin (1 g, 12/12 h), and 
omeprazole (20 mg, 12/12 h), esomeprazole (40 mg, 12/12 h), 
pantoprazole (40 mg, 12/12 h) rabeprazole (40 mg, 12/12 h), or 
lansoprazole (30 mg, 12/12 h)

14 d ITT: 71.5%; PP: 
72.7%

2020 Liu et al[33] Single center 
observational 
retrospective 
study

Lactobacilli acidophilus (1g, 8/8 h), esomeprazole (20mg, 12/12 h), 
potassium bismuth subcitrate (220 mg, 12/12 h), tetracycline (750 mg, 
12/12 h), and furazolidone (100 mg, 12/12 h)

Lactobacilli 
acidophilus for 
14 d and the 
others for 10 d

ITT: 92.0%; PP: 
91.8%

2020 Sugimoto et 
al[34]

Single center 
observational 
retrospective 
study

Vonoprazan (20mg, 12/12 h), amoxicillin (500 mg, 6/6 h), and 
sitafloxacin (100 mg, 12/12 h)

7 d ITT: 87.5%; PP: 
87.5%

2020 Saracino et 
al[35]

Single center 
observational 
retrospective 
study

Third-line: esomeprazole (40 mg, 12/12 h), amoxicillin (1 g, 12/12 h), and 
rifabutin (150 mg, 24/24 h)

12 d ITT: 56.1%; PP: 
68.5%

2020 Saracino et 
al[35]

Single center 
observational 
retrospective 
study

Fourth-line: esomeprazole (40 mg, 12/12 h), amoxicillin (1 g, 12/12 h), 
and rifabutin (150 mg, 24/24 h)

12 d ITT: 54.5%; PP: 
63.1%

2020 Saracino et 
al[35]

Single center 
observational 
retrospective 
study

Fifth-line or more: esomeprazole (40 mg, 12/12 h), amoxicillin (1 g, 12/12 
h), and rifabutin (150 mg, 24/24 h)

12 d ITT: 24.4%; PP: 
30.3%

Single center 
observational 
retrospective 

2020 Saracino et 
al[35]

Third-line: Pylera® (140 mg potassium bismuth subcitrate, 125 mg 
metronidazole, 125 mg tetracycline, 6/6 h) and esomeprazole (20 mg, 
12/12 h)

10 d ITT: 87.5%; PP: 
91.3%
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study

2020 Saracino et 
al[35]

Single center 
observational 
retrospective 
study

Fourth-line: Pylera® (140 mg potassium bismuth subcitrate, 125 mg de 
metronidazole, 125 mg tetracycline, 3 capsules, 6/6 h) and esomeprazole 
(20 mg, 12/12 h)

10 d ITT: 83.9%; PP: 
89.6%

2020 Saracino et 
al[35]

Single center 
observational 
retrospective 
study

Fifth-line or more: Pylera® (140 mg potassium bismuth subcitrate, 125 mg 
metronidazole, 125 mg tetracycline, 3 capsules, 6/6 h) and esomeprazole 
(20 mg, 12/12 h)

10 d ITT: 71.9%; PP: 
74.2%

2020 Hirata et al
[36]

Non-randomized 
clinical trial

Fourth-line: vonoprazan (20 mg, 12/12 h), amoxicillin (750 mg, 12/12 h), 
and rifabutin (150 mg, 12/12 h)

10 d ITT: 100.0%; PP: 
100.0%

2020 Ji et al[37] Randomized 
clinical trial

Susceptibility-guided quadruple therapy: rabeprazole (10 mg, 12/12 h), 
colloidal bismuth (200 mg, 12/12 h), 2 sensitive antibiotics

14 d PP: 86.49%

2020 Ji et al[37] Randomized 
clinical trial

Rabeprazole (10 mg, 12/12 h), colloidal bismuth (200 mg, 12/12 h), 
amoxicillin (1 g, 12/12 h), levofloxacin (500 mg, 24/24 h), or furazolidone 
(100 mg, 12/12 h)

14 d PP: 82.4%

2020 Mori et al
[38]

Non-randomized 
clinical trial

Esomeprazole (20 mg, 12/12 h), amoxicillin (500 mg, 6/6 h), and 
sitafloxacin (100 mg, 12/12 h)

10 d ITT: 81.6%; PP: 
81.6%

2020 Nyssen et al
[39]

Multicentric 
observational 
retrospective 
study

Bismuth and tetracycline-based quadruple therapy: PPI, bismuth salts 
(120 mg, 6/6 h or 240 mg, 12/12 h), metronidazole (500 mg, 8/8 h), and 
tetracycline (500 mg, 6/6 h)

10 d ITT: 66.0%; PP: 
66.0%

2020 Nyssen et al
[39]

Multicentric 
observational 
retrospective 
study

Bismuth and tetracycline-based quadruple therapy: PPI, bismuth salts 
(120 mg, 6/6 h or 240 mg, 12/12 h), metronidazole (500 mg, 8/8 h), and 
tetracycline (500 mg, 6/6 h)

14 d ITT: 82.0%; PP: 
83.0%

2020 Nyssen et al
[39]

Multicentric 
observational 
retrospective 
study

Bismuth and doxycycline-based quadruple therapy: PPI, bismuth salts 
(120 mg, 6/6 h or 240 mg, 12/12 h), metronidazole (500 mg, 8/8 h), and 
doxycycline (100 mg, 12/12 h)

10 d ITT: 63.0%; PP: 
63.0%

2020 Nyssen et al
[39]

Multicentric 
observational 
retrospective 
study

Bismuth and doxycycline-based quadruple therapy: PPI, bismuth salts 
(120 mg, 6/6 h or 240 mg, 12/12 h), metronidazole (500 mg, 8/8 h), and 
doxycycline (100 mg, 12/12 h)

14 d ITT: 70.0%; PP: 
71.0%

2020 Nyssen et al
[39]

Multicentric 
observational 
retrospective 
study

Bismuth-based quadruple therapy, three-in-one, Pylera®: PPI and Pylera
®

10 d ITT: 88.0%; PP: 
88.0%

2020 Nyssen et al
[39]

Multicentric 
observational 
retrospective 
study

Bismuth-based quadruple therapy, three-in-one, Pylera®: PPI and Pylera
®

14 d ITT: 100.0%; PP: 
100.0%

2020 Kuo et al[40] Non-randomized 
clinical trial

Rifabutin (150 mg, 12/12 h), amoxicillin (1 g, 12/12 h), and esomeprazole 
(40 mg, 12/12 h)

10 d ITT: 77.5%; PP: 
79.5%

ITT: Intention to treat; PP: Per protocol; PPI: Proton pump inhibitor; RAS: Rabeprazole, amoxicillin, and sitafloxacin; RMS: Rabeprazole, metronidazole, 
and sitafloxacin; SGT: Susceptibility-guided therapy.

were found for BQT, 84.9% and 87.8% for BQT-Pylera®, and 61.3% and 64.2% for non-BQT regimens by 
ITT and PP, respectively (Figure 6).

SGT: Eradication rates found for SGT as third-line treatment and rescue therapy were 75% and 79.2% 
by ITT and PP, respectively.

Adverse effects: From the reading of selected articles, information on adverse effects found in different 
therapeutic approaches was extracted, as shown in Table 2. The mean adverse effects rate for rifabutin-, 
sitafloxacin-, levofloxacin-, and metronidazole-based triple therapy in patients with two or more 
previous failed eradications was 53.70%, 52.36%, 13.93%, and 58.00%, respectively. With respect to 
adverse effects for BQT, BQT-Pylera, and non-BQT regimens, mean rates were 34.0%, 65.0%, and 45.0%, 
respectively. The safety of SGT was not evaluated in the present study since the choice of the 
therapeutic regimen was dependent on results obtained by susceptibility and genotypic resistance tests.
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Table 2 Adverse effects

Ref. Therapeutic scheme Adverse effects, n Total 
rate

Okimoto et al
[16], 2014

Dual therapy: rabeprazole 
and amoxicillin

n = 24. Loose stools/diarrhea: 5 (20.8%); nausea: 1 (4.2%); skin rash: 0 (0%) 25%

Okimoto et al
[16], 2014

Triple therapy: rabeprazole, 
amoxicillin, and levofloxacin

n = 24. Loose stools/diarrhea: 5 (20.8%); nausea: 0 (0%); skin rash: 1 (4.2%) 25%

Lim et al[13], 
2014

Triple therapy: lansoprazole, 
amoxicillin, and rifabutin

Group A (n = 32). Epigastric pain: 3 (9.3%); epigastric discomfort: 2 (6.2%); asthenia: 1 (3.1%); 
nausea: 1 (3.1%); change in urine color: 1 (3.1%); drowsiness: 1 (3.1%); lip discomfort: 1 (3.1%); 
treatment was discontinued because of adverse effects: 1 (3.1%)

Lim et al[13], 
2014

Triple therapy: lansoprazole, 
amoxicillin, and rifabutin

Group B (n = 27). Epigastric pain: 1 (3.7); epigastric discomfort: 1 (3.7); asthenia: 0 (0%); nausea: 1 
(3.7); urine color change: 0 (0%); drowsiness: 0 (0%), lip discomfort: 0 (0%)

15.5%

Furuta et al
[14], 2014

Triple therapy: rabeprazole, 
sitafloxacin, and amoxicillin 
or metronidazole

RAS, 7 d (n = 44). Diarrhea: 9 (20.4%); loose stools: 20 (45.4%) 65.9%

Furuta et al
[14], 2014

Triple therapy: rabeprazole, 
sitafloxacin, and amoxicillin 
or metronidazole

RAS, 14 d (n = 45). Diarrhea: 12 (26.6%); loose stools: 17 (37.7%) 64.4%

Furuta et al
[14], 2014

Triple therapy: rabeprazole, 
sitafloxacin, and amoxicillin 
or metronidazole

RMS, 7 d (n = 44). Diarrhea: 8 (18.2%); loose stools: 17 (38.6%) 56.8%

Furuta et al
[14], 2014

Triple therapy: rabeprazole, 
sitafloxacin, and amoxicillin 
or metronidazole

RMS, 14 d (n = 47). Diarrhea: 12 (25.5%); loose stools: 26 (55.3%) 86.3%

Paoluzi et al
[17], 2015

Triple therapy: 
esomeprazole, levofloxacin, 
and doxycycline

n = 142. Swelling:; flavor perversion; mild diarrhea; treatment was discontinued because of 
adverse effects: 1 (0.7%)

7.7%

Mori et al
[19], 2016

Triple therapy: 
esomeprazole, amoxicillin, 
and rifabutin

10-d group (n = 12). Fever: 2 (16.6%); diarrhea: 0 (0%); headache: 3 (25%); liver dysfunction: 2 
(16.6%); loose stools: 2 (16.6%); urine discoloration: 1 (8.3%); allergy: 1 (8.3%); leukopenia: 1 (8.3%); 
stomatitis: 1 (8.3%); dysgeusia: 1 (8.3%); vertigo: 0 (0%); fatigue: 0 (0%); photophobia: 0 (0%); 
treatment was discontinued because of adverse effects: 1 (8.3%)

75%

Mori et al
[19], 2016

Triple therapy: 
esomeprazole, amoxicillin, 
and rifabutin

14-d group (n = 17). Fever: 6 (35%); diarrhea: 5 (29.4%); headache: 3 (17.7%); liver dysfunction: 3 
(17.7%); loose stools: 2 (11.8%); urine discoloration: 3 (17.7%); allergy: 2 (11.8%); leukopenia: 1 
(5.9%); stomatitis: 0 (0%); dysgeusia: 0 (0%); vertigo: 1 (5.9%); fatigue: 1 (5.9%); photophobia: 1 
(5.9%); treatment was discontinued because of adverse effects: 5 (29.4%)

94.1%

Mori et al
[20], 2016

Triple therapy: 
esomeprazole, amoxicillin, 
and sitafloxacin

EAS (n = 63). Diarrhea: 11 (17.5%); loose stools: 9 (14.2%); constipation: 1 (1.5%); abdominal pain: 3 
(4.8%); dyspepsia: 2 (3.2%); dysgeusia: 7 (11.1%); stomatitis: 3 (4.8);; allergy: 2 (3.2%); pruritus: 1 
(1.5%); headache: 0 (0%); fatigue: 1 (1.5%); fever: 0 (0%); treatment was discontinued because of 
adverse effects: 1 (1.5%)

47.6%

Mori et al
[20], 2016

Triple therapy: 
esomeprazole, 
metronidazole, and 
sitafloxacin

EMS (n = 58). Diarrhea: 15 (25.8%); loose stools: 8 (13.8%); constipation: 2 (3.4%); abdominal pain: 
2 (3.4%); dyspepsia: 1 (1.7%); dysgeusia: 5 (8.6%); stomatitis: 2 (3.4%); ; allergy: 1 (1.7%); pruritus: 1 
(1.7%); headache: 2 (3.4%); fatigue: 0; fever: 1 (1.7%); treatment was discontinued because of 
adverse effects: 1 (1.7%)

51.7%

Noh et al[22], 
2016

Triple therapy: PPI, 
amoxicillin, and levofloxacin

- -

Hirata et al
[23], 2016

Triple therapy: 
esomeprazole, amoxicillin, 
and sitafloxacin

n = 30. Diarrhea: 5 (15.7%); rash: 1 (3.3%); asthma attack: 1 (3.3%); stomatitis: 1 (3.3%); cystitis: 1 
(3.3%)

26.6%

Puig et al[26], 
2017

Triple therapy: 
esomeprazole, amoxicillin, 
and metronidazole

n = 68. Diarrhea: 13 (20.0%); swelling: 3 (4.0%); dyspepsia: 14 (21.0%); taste disturbance: 23 
(35.0%); nausea/vomiting: 10 (15.0%); asthenia: 4 (6.0%); others: 3 (4.0%); treatment was discon-
tinued because of adverse effects: 2 (3.0%)

58.0%

Fiorini et al
[27], 2018

Triple therapy: 
esomeprazole, amoxicillin, 
and rifabutin

n = 254. Nausea or vomiting: 6 (2.5%); abdominal pain: 13 (5.4%); mild diarrhea: 12 (5.1%); 
headache: 4 (1.6%); itching: 4 (1.6%); taste change: 4 (1.6%); myalgia: 1 (0.5%)

18.3%

Saito et al
[30], 2019

Triple therapy: 
esomeprazole, amoxicillin, 
and sitafloxacin

- -

Saito et al
[30], 2019

Triple therapy: vonoprazan, 
amoxicillin, and sitafloxacin

- -

n = 33. Diarrhea: 16 (50%); dysgeusia: 5 (15%); nausea: 1 (4%); anorexia: 3 (8%); abdominal pain: 5 
(15%); heartburn: 6 (19%); headache: 4 (12%); eructations: 12 (35%); general malaise: 5 (16%); 

Sue et al[31], 
2019

Triple therapy: vonoprazan, 
amoxicillin, and sitafloxacin

-
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abdominal swelling: 12 (35%); urticaria: 3 (8%); treatment was suspended because of adverse 
effects: 2 (6.0%)

Sue et al[31], 
2019

Triple therapy: lansoprazole 
or rabeprazole or 
esomeprazole, amoxicillin, 
and sitafloxacin

n = 30. Diarrhea: 15 (51%); dysgeusia: 5 (17%); nausea: 5 (17%); anorexia: 4 (13%); abdominal pain: 
6 (21%); heartburn: 4 (13%); headache: 2 (8%); eructations: 2 (8%); general malaise: 2 (8%); 
abdominal swelling: 6 (21%); urticaria: 2 (8%)

-

Ribaldone et 
al[32], 2019

Triple therapy: omeprazole 
or esomeprazole or 
pantoprazole or rabeprazole 
or lansoprazole, amoxicillin, 
and rifabutin

n = 302. Abdominal/epigastric pain: 9 (3.0%); nausea/vomiting: 7 (2.3%); diarrhea: 2 (0.7%); 
fatigue: 1 (0.3%); headache: 1 (0.3%); oral candidiasis: 1 (0.3%); allergy: 1 (0.3%); treatment was 
discontinued because of adverse effects: 4 (1.3%)

7.3%

Sugimoto et 
al[34], 2020

Triple therapy: vonoprazan, 
amoxicillin, and sitafloxacin

n = 32. Diarrhea: 4 (12.5%); loose stools: 2 (6.2%); abdominal pain: 2 (6.2%); allergic reaction: 0 
(0%); others: 1 (3.1%)

28.1%

Saracino et al
[35], 2020

Triple therapy: 
esomeprazole, amoxicillin, 
and rifabutin

n = 270. Diarrhea: 21 (9.3%); abdominal pain: 20 (8.8%); nausea: 17 (7.7%); headache: 15 (6.6%); 
dyspepsia: 14 (6.0%); treatment was discontinued because of adverse effects: 3 (1.3%)

46.4%

Saracino et al
[35], 2020

BQT-Pylera: Pylera® and 
esomeprazole

n = 153. Nausea: 43 (29.7); drowsiness: 35 (24.1%); asthenia: 33 (22.8%); dyspepsia: 28 (19.3%); 
diarrhea: 26 (17.9%); treatment was discontinued because of adverse effects: 8 (5.2%)

65.5%

Hirata et al
[36], 2020

Triple therapy: vonoprazan, 
amoxicillin, and rifabutin 

n = 19. Diarrhea: 4 (21.0%); headache: 1 (5.2%); taste change: 1 (5.2%); ear fullness: 1 (5.2%) 42.0%

Gisbert et al
[15], 2014

BQT: Bismuth, PPI, 
tetracycline, and 
metronidazole

n = 192. Nausea: 24 (12%); abdominal pain: 22 (11%); metallic taste: 17 (8.5%); diarrhea: 16 (8%); 
asthenia: 15 (7.5%); vomiting: 13 (6.5%); headache: 2 (1%); oral injury: 1 (0.5%); dizziness: 1 (0.5%); 
myalgia: 1 (0.5%)

22.0%

Chen et al
[21], 2016

BQT: bismuth, lansoprazole, 
metronidazole, and 
amoxicillin

n = 156. Flavor distortion: 2 (1.3%); dyspepsia: 2 (1.3%); nausea: 30 (19.2%); vomiting: 4 (2.6%); 
abdominal pain: 1 (0.7%); swelling: 8 (5.1%); diarrhea: 1 (0.7%); dizziness: 10 (6.4%); headache: 2 
(1.3%); skin rash: 3 (1.9%); fatigue: 2 (1.3%); fever: 1 (0.7%); treatment was discontinued because of 
adverse effects: 8 (5.2%)

34.0%

Rodríguez de 
Santiago et al
[24], 2017

BQT-Pylera: Pylera® and 
esomeprazole or omeprazole

n = 101. Dyspepsia: 43 (43.9%); asthenia: 35 (35.7%); dysgeusia: 34 (34.7%); nausea: 26 (26.5%); 
abdominal pain: 25 (25.5%); abdominal swelling: 20 (20.4%); hyporexia: 19 (19.4%); diarrhea: 14 
(14.3%); headache: 13 (13.3%); myalgia: 13 (13.3%); heartburn: 7 (7.1%); flatulence: 8 (8.1%); 
urticaria/eczema: 5 (5.1%); paresthesia: 4 (4.1%); arthralgia: 4 (4.1%); drowsiness: 3 (3.1%); cough: 
3 (3.1%); depression: 3 (3.1%); oral aphthous ulcers: 2 (2.7%); itching: 2 (2.7%); mucous candidiasis: 
2 (2.7%); insomnia: 1 (1.4%); constipation: 1 (1.4%); hypertensive crisis: 1 (1.4%)

67.3%

Huang et al
[29], 2018

N-BQT: esomeprazole, 
amoxicillin, tetracycline, and 
metronidazole

n = 24. Abdominal pain: 3 (12.5%); nausea/vomiting: 3 (12.5%); constipation: 1 (4.2%); dizziness: 1 
(4.2%); headache: 1 (4.2%); skin rash: 0 (0%); diarrhea: 0 (0%)

29.2%

Huang et al
[29], 2018

Susceptibility-guided therapy n = 39, Abdominal pain: 3 (7.7%); nausea/vomiting: 3 (7.7%); constipation: 2 (5.1%); dizziness: 0 
(0%); headache: 1 (2.6%); skin rash: 1 (2.6%); diarrhea: 0 (0%)

25.6%

Liu et al[33], 
2020

BQT: bismuth, esomeprazole, 
tetracycline, furazolidone, 
and Lactobacillus acidophilus

n = 50. Loose stools: 1 (2.0%); dizziness: 4 (8.0%); skin rash: 2 (4.0%); foot joint pain: 1 (2.0%); dry 
mouth: 3 (6.0%)

20.0%

Ji et al[37], 
2020

BQT: bismuth, rabeprazole, 
amoxicillin, levofloxacin or 
furazolidone

n = 191. Abdominal pain: 4 (2.09%); constipation: 2 (1.04%); nausea: 11 (5.7); diarrhea: 5 (2.6%); 
flatulence: 7 (3.6%); skin rash: 5 (2.6%); pruritus: 1 (0.5%); dysgeusia: 1 (0.5%); headache: 3 (1.6%); 
anorexia: 0 (0%); dizziness: 8 (4.1%); dyspepsia: 6 (3.1%); drowsiness: 0 (0%); Fever: 2 (1.0%); 
paresthesia: 1 (0.5%); tachycardia: 2 (1.0%); vomiting: 1 (0.5%); fatigue: 2 (1.0%); suspended 
treatment because of adverse effects: 6 (3.1%)

20.4%

Ji et al[37], 
2020

Susceptibility-guided therapy n = 163. Abdominal pain: 8 (4.9%); constipation: 2 (1.2%); nausea: 10 (6.2%); diarrhea: 3 (1.8%); 
flatulence: 9 (5.5%); skin rash: 2 (1.2%); pruritus: 3 (1.8%); dysgeusia: 6 (3.7%); headache: 2 (1.2%); 
anorexia: 1 (0.6%); dizziness: 3 (1.8%); dyspepsia: 1 (0.6%); drowsiness: 1 (0.6%); fever: 1 (0.6%); 
paresthesia: 0 (0%); tachycardia: 0 (0%); vomiting: 0 (0%); fatigue: 0 (0%); treatment was discon-
tinued because of adverse effects: 2 (1.2%)

23.3%

Nyssen et al
[39], 2020

BQT-Pylera: Pylera® and PPI n = 275. Nausea: 45 (16.0%); metallic taste: 13 (4.7%); diarrhea: 44 (16.0%); vomiting: 27 (9.8%); 
fatigue: 33 (12.0%); abdominal pain: 22 (8.0%); anorexia: 32 (12.0%)

42.0%

Nyssen et al
[39], 2020

BQT: bismuth, PPI, 
metronidazole, and 
tetracycline

n = 85.  nausea: 35 (41.0%); metallic taste: 30 (35.0%); diarrhea: 22 (26.0%); vomiting: 15 (18.0%); 
fatigue: 10 (12.0%); abdominal pain: 5 (5.9%); anorexia: 6 (7.1%)

52.0%

Nyssen et al
[39], 2020

BQT: bismuth, PPI, 
metronidazole, and 
doxycycline

n = 94. nausea: 12 (13.0%); metallic taste: 5 (5.3%); diarrhea: 3 (3.2%); vomiting: 3 (3.2%); fatigue: 4 
(4.3%); abdominal pain: 4 (4.3%); anorexia: 0 (0%)

30.0%

Costa et al
[25], 2017

Susceptibility-guided therapy n = 42. Abdominal pain: 7 (16.7%); diarrhea: 5 (11.9%); nausea: 4 (9.5%); vomiting: 3 (7.1%); change 
in taste sensation: 1 (2.3%); treatment was discontinued because of adverse effects: 2 (4.7%)

35.7%

Liou et al[28], 
2018

Susceptibility-guided therapy Clinical Trial 1 (n = 21). Rash: 0 (0%); dizziness: 4 (19.0%); headache: 1 (4.8%); taste distortion: 0 
(0%); swelling: 1 (4.8%); abdominal pain: 0 (0%); nausea: 1 (4.8%); vomiting: 0 (0.0%); diarrhea: 2 
(9.5%); constipation: 0 (0.0%)

42.9%
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Liou et al[28], 
2018

Susceptibility-guided therapy Clinical Trial 2 (n = 202). Skin rash: 5 (2.5%); dizziness: 25 (12.4%); headache: 8 (4.0%); taste 
distortion: 7 (3.5%); swelling: 22 (10.9%); abdominal pain: 9 (4.5%); nausea: 38 (18.8%); vomiting: 
14 (6.9%); diarrhea: 4 (2.0%); constipation: 1 (0.5%)

51.0%

Liou et al[28], 
2018

N-BQT: esomeprazole, 
amoxicillin, metronidazole, 
and tetracycline

Clinical Trial 2 (n = 202). Skin rash: 3 (1.5%); dizziness: 18 (8.9%); headache: 11 (5.5%); taste 
distortion: 9 (4.5%); swelling: 11 (5.5%); abdominal pain: 6 (3.0%); nausea: 30 (14.9%); vomiting: 6 
(3.0%); diarrhea: 14 (6.9%); constipation: 4 (2.0%)

50.5%

Liou et al[28], 
2018

N-BQT: esomeprazole, 
amoxicillin, metronidazole, 
and doxycycline

Clinical Trial 1 (n = 20). Rash: 0 (0%); dizziness: 3 (15.0%); headache: 2 (10.0%); taste distortion: 1 
(5.0%); swelling: 0 (0%); abdominal pain: 2 (10.0%); nausea: 1 (5.0%); vomiting: 0 (0%); diarrhea: 3 
(15.0%); constipation: 1 (5.0%)

55.0%

BQT: Bismuth quadruple therapy; EAS: Esomeprazole, amoxicillin, and sitafloxacin; EMS: Esomeprazole, metronidazole, and sitafloxacin; N-BQT: Non-
bismuth quadruple therapy; PPI: Proton pump inhibitor; RAS: Rabeprazole, amoxicillin, and sitafloxacin; RMS: Rabeprazole, metronidazole, and 
sitafloxacin.

Figure 2 Preferred Reporting Items for Systematic reviews and Meta-Analyzes flow diagram. H. pylori: Helicobacter pylori.

Figure 3 Third-line triple therapy eradication rates. A: Triple therapy as third line (per protocol); B: Triple therapy as third line (intention to treat).

DISCUSSION
Given the high prevalence and incidence of H. pylori infection, its eradication is widely discussed in the 
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Figure 4 Triple therapy eradication rates as rescue treatment. A: Triple therapy as rescue treatment (per protocol); B: Triple therapy as rescue treatment 
(intention to treat).

Figure 5 Third-line quadruple therapy eradication rates. A: Quadruple therapy as third-line treatment (per protocol); B: Quadruple therapy as third-line 
treatment (intention to treat). BQT: Bismuth quadruple therapy; N-BQT: Non-bismuth quadruple therapy.

Figure 6 Quadruple therapy eradication rates as rescue treatment. A: Quadruple therapy as rescue treatment (per protocol); B: Quadruple therapy as 
rescue treatment (intention to treat). BQT: Bismuth quadruple therapy; N-BQT: Non-bismuth quadruple therapy.

current scenario. Even with very well-established criteria for eradicating the infection and treatment 
algorithms for choosing first-line and second-line regimens against H. pylori infection, therapeutic 
failure is still very frequent. Possible causes responsible for failure to eradicate H. pylori include factors 
related to the microorganism, host, or the treatment itself, such as poor adherence of patients because of 
adverse effects and complexity of therapeutic regimens[41-43]. Thus, it is necessary to establish safe, 
effective, and accessible third-line and rescue therapies for patients.

The Maastricht V/Florence Consensus states that after failure of a first-line therapy containing 
clarithromycin and BQT second-line, SGT or an empirical therapy based on fluoroquinolones should be 
used or a combination of different antibiotics with bismuth in regions with a profile of known 
fluoroquinolone resistance. In cases of failure of first-line treatment based on triple or quadruple 
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therapy without bismuth and second-line treatment containing fluoroquinolones, the use of BQT as 
third-line is recommended. After failure to use BQT as first-line and therapy containing fluor-
oquinolones as second-line, the use of clarithromycin-based triple therapy or quadruple therapy is 
recommended. However, given the low level of evidence and recommendation of all these statements, 
their incorporation in clinical practice is difficult[12].

Triple therapy
Rifabutin: Rifabutin-based triple therapy regimens have been widely discussed as an alternative for the 
rescue treatment of H. pylori infection. In the present review, most rifabutin-based triple therapy 
regimens used rifabutin 300 mg (150 mg twice daily or 300 mg once daily) plus amoxicillin (variable 
daily dosage) and a proton pump inhibitor (PPI) (variable daily dosage) lasting 7-14 d. The mean overall 
eradication rate of these third-line regimens was 81.6% and 84.4% by ITT and PP, respectively. 
Regarding the use of rifabutin-based triple therapy as a rescue regimen, i.e. in patients with two or more 
previous failed eradications, the mean overall eradication rate was 75.4% and 78.8% by ITT and PP, 
respectively.

In the prospective study conducted by Lim et al[13], the effectiveness of rifabutin-based triple therapy 
was evaluated according to the PPI dosage. In this study, patients who received a rifabutin-based triple 
therapy regimen with higher doses of PPIs had eradication rates of 96.3% and 100% by ITT and PP, 
respectively, whereas patients who received standard dose PPIs showed eradication rates of 78.1% and 
80.6% by ITT and PP, respectively. In turn, Mori et al[19] performed a comparative analysis between the 
duration of rifabutin-based triple therapy regimens. In this study, longer duration regimens had higher 
eradication rates compared to shorter duration regimens, and eradication ranged from 83.3% to 94.1% 
and from 81.8% to 91.7% by ITT and PP, respectively. Both studies were in line with the review 
performed by Gisbert et al[42], which suggested increasing the dose of PPIs and the duration of the 
therapeutic regimen as a strategy for optimizing rifabutin-based treatment.

On the other hand, in studies conducted by Ribaldone et al[32] and Saracino et al[35], lower 
eradication rates than those of the other studies included in the present review were found, with values 
of 71.5% and 68.5% by ITT and 72.7% and 56.1% by PP, respectively. These results corroborate the mean 
eradication rate found in the same study conducted by Gisbert et al[42] in 2020, in which, based on an 
analysis of 678 patients using rifabutin-based triple therapy, an eradication rate of 69% was found for 
this regimen as third-line treatment. Regarding rifabutin-based triple therapy as fourth-line treatment, 
in the prospective study by Hirata et al[36] from 2020, an association between amoxicillin, rifabutin, and 
vonoprazan (a competitive inhibitor of potassium) was used in patients who used sitafloxacin-based 
third-line. The eradication rate found by Hirata et al[36] was 100% by ITT and PP.

Regarding adverse effects related to rifabutin-based triple therapy, the literature presents contro-
versial consequences of this regimen. In our review, an average of 53.7% of patients using this approach 
had at least one adverse effect. Although most cases are related to mild and transient adverse effects, 
such as gastrointestinal discomfort, there is a lot of divergence between studies. In therapies with 
prolonged use of rifabutin, for example, Mori et al[19] reported a high rate of adverse effects, with 94.1% 
of patients having at least one effect and discontinuation of treatment by 29.4% of patients. On the other 
hand, Ribaldone et al[32] reported that only 7.3% of patients had at least one adverse effect, and 
treatment was discontinued by 1.3% of patients. In addition, the use of rifabutin is associated with 
serious adverse effects such as myelotoxicity[41]. However, only one of the studies included in this 
review[19] presented patients with myelotoxicity, and 6.8% of patients had transient leukopenia with 
recovery of hematological patterns after 1 wk of treatment.

The mean eradication rates of rifabutin-based triple therapies found in the present review are 
encouraging. However, the heterogeneity of studies, whether related to eradication rates or adverse 
effects, makes it difficult to assess the real efficacy and safety of using rifabutin-based triple therapy as 
third-line treatment and rescue regimen. In addition, rifabutin is used mainly for the treatment of 
tuberculosis and other mycobacteria, especially in the context of immunodeficiency or HIV infection, 
and a possible acquisition of resistance to rifabutin is a limitation to its widespread use. Resistance to 
rifabutin has been reported in patients with low CD4 lymphocyte counts and when intermittent dosages 
were used[44]. Although the use of rifabutin in the management of refractory H. pylori infection 
involves a risk, rifabutin-based therapies act as an important alternative for third-line treatment and 
rescue regimens, especially in regions of previously known resistance to quinolones.

Sitafloxacin: Sitafloxacin is a quinolone with low minimum inhibitory concentration for H. pylori that 
has been used as rescue therapy[14]. In the present study, most sitafloxacin-based triple therapy 
regimens had a treatment regimen with sitafloxacin 200 mg (100 mg twice daily) plus amoxicillin (750 
mg twice daily or 500 mg four times daily) or metronidazole (250 mg twice daily) and a PPI (variable 
daily dose) or vonoprazan (20 mg twice daily) for 7-14 d. The mean overall eradication rate of these 
regimens as third-line treatment was 79.4% and 81.5% by ITT and PP, respectively.

Although eradication rates in the studies included in the present review showed satisfactory results 
for the use of sitafloxacin-based triple therapy as third-line treatment, results were not homogeneous 
between studies. In a retrospective study, Saito et al[30] compared the efficacy of using sitafloxacin-
based therapy associated with amoxicillin and esomeprazole or vonoprazan for 7 d as third-line 
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treatment. In this study, the eradication rate found in the sitafloxacin-esomeprazole association was 
54.2% and 56.5% by ITT and PP, respectively. The same therapeutic regimen was used in two other 
studies showing discrepant eradication rates. While in the prospective study by Hirata et al[23], 
eradication rates of 83.0% by ITT and PP were found, in the randomized clinical trial performed by Sue 
et al[31], eradication rates were 53.3% by ITT and 57.1% by PP.

In a systematic review[45] from 2021, 12 clinical trials were analyzed. A mean eradication rate of 
80.6% was found for sitafloxacin-based therapies containing PPIs or vonoprazan for a period of 7 d, 
corroborating the findings in the present study. Regarding the heterogeneity of studies included in our 
review, discrepancies may be based on the presence of bacterial strains with mutation in the gyrA gene. 
Mutations in this gene are responsible for conferring resistance to quinolones, leading to a lower 
eradication rate. The relevance of the gyrA gene mutation status in eradication rates of quinolone-
containing regimens was expressed in the review by Mori et al[46]. Thus, it is recommended to identify 
the mutation in the gyrA gene before using regimens containing quinolones such as sitafloxacin, 
especially in regions of known previous resistance to quinolones.

Although equivalent therapeutic regimens between different studies present heterogeneous 
eradication rates, there is agreement regarding no statistically significant difference between the efficacy 
of the association of sitafloxacin with metronidazole or amoxicillin and between 7-d and 10-d duration 
regimens. In two studies, eradication rates between regimens containing sitafloxacin-amoxicillin and 
sitafloxacin-metronidazole as third-line treatment were compared, finding similar results. Furuta et al
[14] found eradication rates for the use of amoxicillin and metronidazole, respectively, of 84.1% and 
90.9% by ITT and 86.4% and 90.9% by PP for 7-d regimens and 88.9% and 87.2% by ITT and 90.9% and 
91.1% by PP for 14-d regimens. Similarly, for a 10-d regimen, Mori et al[20] found eradication rates of 
81% and 72.4% by ITT and 82% and 76.4% by PP for amoxicillin and metronidazole, respectively. 
Regarding the duration of therapeutic regimens, in the present study, eradication rates of 73.1%, 78.3%, 
and 88.0% by ITT and 74.8%, 80.0%, and 91.0% by PP were found in regimens of 7 d, 10 d, and 14 d, 
respectively. Both the results related to the duration of regimens and the results related to the 
association of sitafloxacin with amoxicillin or metronidazole were in agreement with data presented by 
Mori et al[46] in a review conducted in 2020. In this study, eradication rates of 82.0% and 76.4% were 
found for 10-d regimens containing amoxicillin or metronidazole, respectively, with no statistically 
significant difference between therapeutic regimens. In addition, as in the present review, no statist-
ically significant difference was found between eradication rates of sitafloxacin-based treatments in 
regimens of 7-d and 10-d duration. Thus, the choice between the association of sitafloxacin with 
amoxicillin or metronidazole should be based on the availability of drugs, knowledge of previously 
used regimens, and the presence of penicillin allergy. The choice of therapeutic regimens with a 7-d 
duration is also recommended to obtain greater adherence to treatment.

The present review also showed that triple therapy based on sitafloxacin plus vonoprazan is more 
effective than regimens containing conventional PPIs. Two studies conducted in 2019 compared the 
efficacy between regimens containing vonoprazan and regimens containing PPIs. Among 63 patients 
involved in one of the studies[31], 33 used a regimen containing vonoprazan and 31 used a regimen 
containing PPIs, with eradication rates of 75.8% by ITT and 83.3% by PP with the use of vonoprazan and 
53.3% by ITT and 57.1% by PP with the use of PPIs. The superiority of vonoprazan in relation to PPIs 
was also observed in the study by Saito et al[30], in which, among 81 patients with two previous failed 
therapies, 93.0% of those who used vonoprazan obtained successful eradication of H. pylori, while with 
the use of esomeprazole, eradication rates were 54.2% by ITT and 56.5% by PP. In a review[45] from 
2021, a comparative analysis between therapies containing PPIs or vonoprazan was performed, finding 
eradication rates of 70.1% and 88.9%, respectively, demonstrating the superiority of regimens containing 
vonoprazan. Therefore, the association of sitafloxacin with vonoprazan is recommended for greater 
treatment efficacy when available.

Regarding adverse effects related to sitafloxacin-based triple therapy, an overall adverse event rate of 
52.4% was found in our review. However, most adverse effects found were mild and transient 
gastrointestinal disorders. The intensity and duration of these adverse effects were also evaluated in two 
reviews[45,46] that reported mild and transient effects. Therefore, the use of sitafloxacin-based regimens 
as third-line treatment may act as a safe and effective alternative for the eradication of refractory H. 
pylori infection.

Levofloxacin: The mean eradication rate found for levofloxacin-based triple therapy as third-line 
treatment was 55.7% by ITT and 60.6% by PP. This unsatisfactory eradication rate was homogeneous 
among studies included in the present review, with the exception of a non-randomized clinical trial[22] 
that compared the efficacy of levofloxacin-based regimens with 7-d, 10-d, and 14-d duration as third-
line treatment. In this clinical trial, from the use of a levofloxacin-based triple therapy for a 14-d period, 
an eradication rate of 73.7% by ITT and 93.3% by PP was reported. However, for 7-d and 10-d regimens, 
eradication rates were 58.3% and 62.5% by ITT and 58.3% and 68.2% by PP, respectively. These unsatis-
factory rates were also found by Okimoto et al[16] in 2014 and by Paoluzi et al[17] in 2015 (see Table 1).

In a prospective observational study[47], 500 patients in third-line treatment were followed, reporting 
an eradication rate of 75.0% for levofloxacin-based triple therapy, which was different from the findings 
of the present review. However, this divergence can be explained by the increasing resistance to 
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levofloxacin, which acts as an important factor in the failure of therapeutic regimens, as demonstrated 
by the meta-analysis performed by Chen et al[21]. The overall adverse effect rate related to levofloxacin-
based triple therapy found in our review was 13.9%. Most adverse effects related to levofloxacin-based 
triple therapy regimens reported gastrointestinal tract disturbances of mild intensity and transient 
nature. As in one of the studies[22] in the present review, the follow-up of treatment-related adverse 
effects was not performed, and it was not included in the overall mean rate of adverse effects. Therefore, 
the safety of this therapeutic regimen in a 14-d regimen has not been evaluated.

Although BQT is recommended as second-line treatment by most guidelines, levofloxacin-based 
triple therapy is proposed as a potential alternative by the Maastricht V/Florence Consensus[12]. In 
addition to being associated with a wide incidence of adverse effects, BQT is also difficult to use because 
of the availability of bismuth in different regions. The association of these factors, together with the 
efficacy and safety of levofloxacin-based second-line therapies demonstrated in the systematic review 
by Gisbert et al[48], allow the use of these regimens as second-line treatment in regions with no bismuth 
availability or in regions with previously known resistance to clarithromycin regimens. Thus, the use of 
levofloxacin-based triple therapy as a third-line treatment and rescue therapy is not recommended in 7-
d and 10-d regimens given the possibility of its use as a second-line treatment and low treatment 
efficacy. In turn, 14-d regimens require randomized clinical trials for a more accurate assessment of the 
efficacy and safety of this regimen as third-line treatment and rescue therapy.

Quadruple therapy
BQT: In the present review, BQT regimens featured a treatment regimen with bismuth subcitrate 
(variable dose) plus a PPI (variable dose) and two antibiotics (amoxicillin, metronidazole, tetracycline, 
levofloxacin, furazolidone, and doxycycline, variable dose) with 7-14 d duration (see Table 1). The mean 
overall eradication rate of these third-line regimens was 69.2% by ITT and 72.1% by PP, with the mean 
overall rate of rescue treatment being 76.7% by ITT and 79.2% by PP.

In the multicenter observational study by Gisbert et al[15], the effectiveness and safety of BQT was 
investigated in 200 patients with two previous failed eradications with clarithromycin- and levofloxacin-
based regimens. In this study, administration of a BQT regimen as third-line resulted in a common 
eradication rate of 65.0% by ITT and 67.0% by PP for regimens of 7 d, 10 d, and 14 d, with no increase in 
therapeutic efficacy with the extension of regimens. In contrast, in the study carried out by Nyssen et al
[39], eradication rates of 66.0% by ITT and PP for a 10-d regimen and 82.0% by ITT and 83.0% by PP for 
a 14-d regimen were found, reporting an increase in therapeutic efficacy with prolonged regimens. An 
observational study by Hsu et al[49] reported eradication rates of 84.0% by ITT and PP for a 10-d BQT. 
Thus, the expansion of the effectiveness of therapeutic regimens based on their prolongation presents 
heterogeneous results among studies included in our review. More comparative studies should be 
performed with the objective of evaluating a possible optimization of regimens based on the increase in 
their duration.

In addition to this possible optimization of the quadruple therapy by increasing the regimen 
duration, the association of different antimicrobials, such as furazolidone proved to be effective, as 
demonstrated by Ji et al[37] and Liu et al[33] in 2020. Similarly, a non-inferiority randomized clinical trial
[21] reported satisfactory and similar eradication rates between conventional BQT and an alternative 
BQT containing amoxicillin, although the alternative therapy reported better adherence and safety. 
These studies highlight the need to perform clinical trials comparing different combinations of antimi-
crobials in order to accurately assess the effectiveness of these regimens.

The evaluation of the efficacy of BQT regimens in our study showed heterogeneous results given the 
multiple antimicrobial combinations used in therapeutic regimens. The association of these different 
regimens, which were equivalently accounted to find the overall mean eradication rate of BQT, acts as a 
limitation of our study. Therefore, the use of BQT as third-line treatment and rescue therapy requires 
further investigation regarding the combination of antimicrobials and duration of regimens since in our 
review the mean eradication rates were unsatisfactory and heterogeneous.

In addition to the conventional use of BQT, the use of BQT-Pylera was also evaluated. In the present 
review, three-in-one quadruple therapy regimens featured a treatment regimen with Pylera® (140 mg 
potassium bismuth subcitrate, 125 mg metronidazole, 125 mg tetracycline, three capsules, 6/6 h) plus a 
PPI (variable dose) lasting 10-14 d. The mean overall eradication rate of this regimen as third-line was 
88.9% and 90.9% by ITT and PP, respectively, while the mean overall rate of rescue treatment was 84.9% 
by ITT and 87.8% by PP.

In the study performed by Nyssen et al[39] in 2020, 222 patients with two previous failed eradications 
used BQT-Pylera for 10 d and 5 patients for 14 d, and eradication was observed in 88.0% of patients by 
ITT and PP, and 100% by ITT and PP, respectively. Both Rodríguez de Santiago et al[24] in 2017 and 
Saracino et al[35] in 2020 found similar eradication rates for the use of BQT-Pylera for a period of 10 d, 
with 80.2% and 87.5% by ITT and 84.4% and 91.3% by PP, respectively. Although eradication rates 
found in the present review are satisfactory, it is important to evaluate optimization strategies for these 
regimens.

The review performed by Liou et al[43] suggested the increase in the dose of PPIs and the 
prolongation of therapeutic approaches for 14-d regimens as optimization strategies for the treatment of 
refractory H. pylori infections. However, in our review, no statistical differences were observed in the 
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use of these strategies for BQT-Pylera. The increase in the dose of PPI used was evaluated in the study 
by Rodríguez de Santiago et al[24], and it did not report results superior to those found by Saracino et al
[35] in a regimen of equivalent duration. Regarding the prolongation of the therapeutic approach, even 
though the comparative evaluation performed by Nyssen et al[39] was encouraging, it had only 5 
patients in the 14-d regimen. Hence, further comparative studies are needed to determine the most 
effective duration of this treatment regimen as triple and rescue therapy.

Regarding adverse effects of BQT, an overall rate of 34.0% was found in conventional therapy and a 
rate of 65.0% for BQT-Pylera. Among studies included in the present review, Rodríguez de Santiago et al
[24] reported that 97.0% of patients had at least one adverse effect, and despite the high proportion, no 
impact was reported on treatment adherence related to these events. Note that most adverse effects 
found by the studies were mild and transient gastrointestinal disorders, which did not pose a significant 
limitation to the use of these therapeutic approaches. Thus, the use of BQT, either conventional or BQT-
Pylera, is an effective and safe alternative for its use as rescue therapy. However, BQT is recommended 
by consensus[11,12] as second-line after failure of a first-line containing clarithromycin or as first-line in 
regions with clarithromycin resistance greater than 15%. Thus, the use of this approach as third-line, 
despite showing encouraging rates, is limited not only by the use of these therapies as first-line or 
second-line but also by the limited availability of bismuth salts in multiple regions.

Non-BQT: In the present review, non-BQT regimens featured a treatment regimen with a PPI (variable 
dose, see Table 1) plus amoxicillin (1 g, 12/12 h), metronidazole (variable dose, see Table 1), and 
tetracycline (variable dose, see Table 1) or doxycycline (100 mg, 12/12 h) for 14 d. The mean overall 
eradication rate of these regimens as third-line was 61.3% and 64.2% by ITT and PP, respectively.

In the clinical trial by Huang et al[29], the use of a non-BQT was analyzed in a sequential regimen 
with tetracycline in 27 patients, finding an eradication rate of 51.8% and 58.3% by ITT and PP, 
respectively. Ineffective eradication rates were also found by Liou et al[28] in a clinical trial from 2018. In 
this study, two clinical trials comparing quadruple therapies containing tetracycline or doxycycline 
were performed, resulting in eradication rates of 72.2% and 60.0% by ITT and 74.4% and 60.0% by PP, 
respectively. Regarding the safety of this therapeutic approach, the mean rate of adverse effects of 
44.90% was found and most were mild and transient gastrointestinal effects.

Our results show that the use of non-BQT is safe but ineffective as third-line treatment. As only two 
studies with this therapeutic regimen were included in our review and none of them evaluated the use 
of this therapy in patients with three or more previous failed eradications, more clinical trials are 
needed for a more accurate assessment of the efficacy and safety of these regimens as third-line 
treatment and rescue therapy.

SGT
In the present review, SGT as third-line treatment had an overall mean eradication rate of 75.0% and 
79.2% by ITT and PP, respectively, and these same values were found for the use of this therapy as 
rescue treatment. These findings, in turn, are in line with the systematic review performed by Puig et al
[50], which found moderate results with a mean eradication rate of 72.0% by ITT and PP.

The reviews carried out by Liou et al[43] and Puig et al[50] agree with the recommendation of the 
Maastricht V/Florence Consensus, which suggests that SGT is recommended after failure of a second-
line therapy whenever possible. However, both reviews have reservations regarding the use of this 
therapy as third-line treatment and as rescue therapy since the adoption of this regimen must account 
for the availability of tests, costs, and the patient’s preference. In addition to these limitations, 
comparative studies between SGT and empirical regimens are limited, acting as a further obstacle to 
assess the practical use of this therapeutic approach as third-line and rescue therapy.

Two studies[28,37] included in the present review concluded there is no superiority in the use of SGT 
compared to regimens based on drug history. In the randomized clinical trial performed by Liou et al
[28], the effectiveness of an empirical quadruple therapy and an SGT was compared in two trials. In the 
first clinical trial, eradication rates of 81.0% and 60.0% by ITT and 80.0% and 60.0% by PP were found 
for SGT regimens and empirical therapy, respectively. In the second clinical trial, eradication rates were 
78.0% and 72.2% by ITT and 78.4% and 74.4% by PP, for SGT regimens and empirical therapy, 
respectively, concluding the non-superiority of SGT compared to empirical therapy. In contrast, the 
comparative clinical trial developed by Huang et al[29] in 2018 found the superiority of SGT in relation 
to empirical therapy. In this study, the eradication rate of the group that performed susceptibility tests 
was 81.4% and 89.7% by ITT and PP, respectively, while for the empirical group, rates were 51.8% and 
58.3% by ITT and PP, respectively.

Thus, although there are not enough comparative studies to determine the real effectiveness of SGT 
as rescue therapy and the results presented were heterogeneous, the present review agrees with the 
recommendation of the Maastricht V/Florence Consensus[12]. Even if results do not show superiority in 
relation to empirical therapy, the use of susceptibility and genotypic resistance tests should be 
performed whenever possible as they provide an alternative to the growing bacterial resistance to 
antimicrobials.
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Figure 7 Recommendation diagram.

CONCLUSION
The present review highlighted the need to carry out a greater range of comparative studies on third-
line treatment and rescue regimens in refractory H. pylori infection, given the increasing resistance to 
antimicrobials and reduction in eradication rates of therapeutic regimens. In view of recommendations 
of the Maastricht V/Florence Consensus, after two previous failed eradication attempts, our study also 
recommends performing susceptibility tests whenever possible. However, given the difficulties related 
to test availability, costs, and patient preference, this therapeutic approach is not always an option. 
Thus, the establishment of effective and safe empirical therapies is fundamental for the management of 
refractory H. pylori infection.

Among the therapeutic regimens evaluated as alternatives to third-line treatment and rescue therapy, 
rifabutin- or sitafloxacin-based triple therapies as well as BQT-Pylera were shown to be safe and 
effective. On the other hand, BQT or non-BQT and levofloxacin-based triple therapy did not present 
satisfactory eradication rates or presented limitations regarding their use. Therefore, although safe, their 
use in therapeutic management should be avoided. Note that studies related to BQT showed hetero-
geneous results, and further investigations regarding its use as third-line treatment and rescue therapy 
are necessary. Furthermore, it is also necessary to develop studies evaluating both the efficacy and the 
safety of regimens with levofloxacin for 14 d. As in the present review, encouraging results were found 
when using this regimen as third-line treatment.

From the comparison between therapeutic approaches that obtained satisfactory results as third-line 
treatment, the alternative with better eradication rates was the rifabutin-based triple therapy, with a 
mean overall eradication rate of 84.4% for third-line treatment. However, the use of rifabutin as third-
line presents the risk of development of resistance by Mycobacterium tuberculosis as a possible limitation, 
and its use as third-line treatment and rescue therapy is encouraged in specific situations. Based on the 
encouraging results found in our study, triple therapy based on sitafloxacin containing vonoprazan is 
recommended as third-line treatment in regions with a low profile of macrolide resistance, and the 
association with amoxicillin or metronidazole should be based on availability of drugs, knowledge of 
previously used regimens, and the presence of allergy to penicillin since this approach had an 
eradication rate of at least 83.3%. Based on the promising results reported from the comparison between 
conventional PPIs and vonoprazan, it is important that new clinical trials are developed in order to 
assess the efficacy of regimens with different associations between antimicrobials and vonoprazan.

In regions with previously known resistance to macrolides or low availability of bismuth, quinolone-
based therapies are used as second-line treatment, and the use of sitafloxacin-based therapies as third-
line treatment and rescue therapy is not recommended. In these cases, rifabutin-based triple therapy 
should be used, and in cases of therapeutic failure, an evaluation of the susceptibility profile should be 
chosen. These recommendations can be seen in the recommendation diagram (Figure 7).

As a final consideration, despite the satisfactory mean eradication rates found with BQT-Pylera, BQTs 
are recommended by guidelines as second-line treatment after failure of a first-line containing clarith-



de Moraes Andrade PV et al. Helicobacter pylori infection rescue therapy

WJG https://www.wjgnet.com 406 January 14, 2023 Volume 29 Issue 2

romycin or as first-line in regions with greater than 15% clarithromycin resistance, limiting its use as 
third-line treatment and rescue therapy. Note that the combination of three-in-one therapy drugs is 
related to the increase in positive outcomes in eradication, and this combination of BQT should be used 
instead of standardized BQTs as first- or second-line, when available.

ARTICLE HIGHLIGHTS
Research background
The eradication of Helicobacter pylori (H. pylori) is widely discussed given the high prevalence and 
incidence of its infection and since therapeutic failure is frequent establishing safe, effective, and 
accessible third-line and rescue therapies for patients in need of eradication is necessary in the 
management of such infection.

Research motivation
Even though eradication criteria and treatment algorithms for first-line and second-line therapy against 
H. pylori infection are well-established, there is no clear recommendation for third-line and rescue 
therapy in refractory H. pylori infection.

Research objectives
To evaluate the efficacy and safety of rescue therapies against refractory H. pylori infection and to 
establish safe, effective, and accessible third-line and rescue therapies for patients in need of eradication.

Research methods
A systematic search of available rescue treatments for refractory H. pylori infection was conducted on 
the National Library of Medicine’s PubMed search platform based on Preferred Reporting Items for 
Systematic reviews and Meta-Analyses guidelines. Different descriptors were used throughout the 
study for maximization of the database, namely: Helicobacter pylori multidrug resistance and rescue 
therapy; H. pylori multiresistant and rescue treatment; Helicobacter pylori multidrug resistance and rescue 
treatment; Helicobacter pylori rescue therapy; Helicobacter pylori and third line treatment; and fourth line 
therapy and Helicobacter pylori. Upon reliable data detection and collection, a statistical analysis was 
performed to compare eradication rates both by intention to treat and per protocol, and adverse effects 
found in the different therapeutic approaches to assess their feasibility in clinical practice.

Research results
Twenty-eight studies were included in the analysis of mean eradication rates as rescue therapy, and 21 
of these were selected for mean eradication rate analysis as third-line treatment. Rifabutin-, sitafloxacin-, 
levofloxacin-, and metronidazole-based triple therapies, bismuth quadruple therapy (BQT), BQT, three-
in-one, Pylera® (BQT-Pylera), non-BQT, and susceptibility-guided therapy were assessed. Furthermore, 
sitafloxacin-based and rifabutin-based triple therapies achieved higher efficacy than other therapeutic 
approaches.

Research conclusions
We managed to create a recommendation flowchart regarding rescue therapies in different situations, 
such as regions with previously known resistance to macrolides and in areas where bismuth is 
unavailable. These results can aid the clinical management of the H. pylori infection and furthermore 
prevent an increase in resistance rates to different antibiotics.

Research perspectives
New clinical trials should be developed in order to assess the efficacy of regimens with different associ-
ations between antimicrobials and vonoprazan, based on the promising results reported from the 
comparison between conventional proton pump inhibitors and vonoprazan.
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Abstract
We write a letter to the editor commenting the article “Who to screen and how to 
screen for celiac disease”. We discuss the present literature on cirrhosis and celiac 
disease (CD) and recommend screening and treating CD in individuals with 
cryptogenic cirrhosis.
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Core Tip: We discuss reasons for recommendation of celiac disease screening in patients 
with cryptogenic cirrhosis.
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TO THE EDITOR
We read with interest the article by Singh et al[1]. Liver cirrhosis is a disease with 
potential morbidity, which can progress to decompensation, hepatocellular carcinoma 
and death. A high proportion (9.15%) of patients with cryptogenic hypertransam-
inasemia is affected by asymptomatic celiac disease (CD)[2]. It has been proposed that 
the hepatic manifestation of CD is a nonspecific chronic hepatitis[3], called by some 
authors celiac hepatitis[4]. A higher prevalence of CD has been demonstrated in 
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individuals with autoimmune hepatitis[5], and anti-actin antibodies may be present in both diseases, as 
they are reliable for the diagnosis of type-1 autoimmune hepatitis[6] and can also be associated with 
severe intestinal mucosa damage in CD patients[7]. This could support an immunological link between 
CD and liver injury. Despite these findings, it is not known for sure whether liver disease associated 
with celiac has the potential to progress to liver cirrhosis, although CD is twice as common in 
individuals with cirrhosis of the liver as in the general population[8,9]. In this sense, studies suggest that 
CD can be a cause of cryptogenic cirrhosis[10,11]. Most importantly, it has been reported that a gluten-
free diet (GFD) treatment can reverse the decompensation of cirrhosis and remove the patient from liver 
transplantation waiting list[12-14]. Joshi et al[9] evaluated 84 patients with chronic liver disease, and 
13% were diagnosed with CD. An improvement in liver function tests and Child-Pugh score was 
observed after GFD treatment. Demir et al[10] reported five cases of children with cryptogenic cirrhosis 
and CD. Treatment with GFD leaded to clinical and biochemical improvement, followed by a decrease 
in liver and spleen size. The most important sample was reported by Wakim-Fleming et al[8]. They have 
evaluated 204 patients with biopsy proven cirrhosis of different causes, and 2.5% were diagnosed with 
CD. After a GFD, patients with CD showed a return to normal levels of their celiac antibodies, small 
bowel biopsy and liver enzymes, and none received a liver transplant[8]. The European Society for the 
Study of Celiac Disease states that patients with unexplained elevation of liver enzymes should be 
assessed for CD and recognizes that CD can be associated with severe liver disease and even liver 
failure[15].

For the aforementioned reasons, and because liver cirrhosis has a high potential for morbidity and 
mortality, we recommend screening and treating CD in individuals with cryptogenic cirrhosis[16]. And 
one should consider screening for celiac antibodies in patients with decompensated cirrhosis on the 
liver transplantation waiting list, whatever are the mechanisms involved in the deterioration of liver 
function.
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