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Abstract
Colorectal cancer (CRC) is the third most diagnosed malignancy and a major 
leading cause of cancer-related deaths worldwide. Despite advances in therapeu-
tic regimens, the number of patients presenting with metastatic CRC (mCRC) is 
increasing due to resistance to therapy, conferred by a small population of cancer 
cells, known as cancer stem cells. Targeted therapies have been highly successful 
in prolonging the overall survival of patients with mCRC. Agents are being 
developed to target key molecules involved in drug-resistance and metastasis of 
CRC, and these include vascular endothelial growth factor, epidermal growth 
factor receptor, human epidermal growth factor receptor-2, mitogen-activated 
extracellular signal-regulated kinase, in addition to immune checkpoints. 
Currently, there are several ongoing clinical trials of newly developed targeted 
agents, which have shown considerable clinical efficacy and have improved the 
prognosis of patients who do not benefit from conventional chemotherapy. In this 
review, we highlight recent developments in the use of existing and novel 
targeted agents against drug-resistant CRC and mCRC. Furthermore, we discuss 
limitations and challenges associated with targeted therapy and strategies to 
combat intrinsic and acquired resistance to these therapies, in addition to the 
importance of implementing better preclinical models and the application of 
personalized therapy based on predictive biomarkers for treatment selection.

Key Words: Colorectal cancer; Metastatic colorectal cancer; Targeted therapy; Drug-
resistance; Personalized medicine
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Core Tip: Efforts in cancer research has yielded significant advances in our understanding of the molecular 
mechanisms underlying colorectal cancer (CRC) resistance and metastasis. Therapeutic strategies centered 
on targeted molecules involved in CRC progression have been shown to be highly promising in 
overcoming resistance to conventional treatments. Targeted agents are currently being evaluated in 
preclinical and clinical studies to identify novel pharmacological targets and to study the efficacy of 
personalized medicine-based approaches.

Citation: Al Bitar S, El-Sabban M, Doughan S, Abou-Kheir W. Molecular mechanisms targeting drug-resistance 
and metastasis in colorectal cancer: Updates and beyond. World J Gastroenterol 2023; 29(9): 1395-1426
URL: https://www.wjgnet.com/1007-9327/full/v29/i9/1395.htm
DOI: https://dx.doi.org/10.3748/wjg.v29.i9.1395

INTRODUCTION
Colorectal cancer (CRC) is among the most prevalent malignancies in the world and the third most 
frequent cause of cancer-related death in the US and Europe[1,2]. Estimates from the American Cancer 
Society indicate that over 100000 new cases of CRC will be diagnosed in 2022 in the US and 53000 deaths 
will result from CRC in the same year. In addition to the increased incidence of CRC, the number of 
patients presenting with advanced, metastatic CRC (mCRC) is increasing[3]. In fact, it has been 
estimated that 25% of CRC patients have mCRC at the time of diagnosis and 50% of patients 
subsequently develop mCRC[4].

Lifestyle factors are thought to be a major factor in the increased incidence of CRC, and they include 
unhealthy diet, lack of physical activity, smoking, and alcohol consumption[3]. Other factors include 
heredity and family history which contribute to 30% of cases and genetic mutations and variations 
which contribute to 10% of cases[3]. It is important for health care providers and individuals to 
understand the causes and risk factors of CRC, in addition to the prevention strategies that could reduce 
the incidence. Screening can reduce CRC incidence and death through early detection and treatment of 
disease[3]. Colonoscopy is the standard screening method for CRC[5]. Other imaging-based tests are 
also available and include computed tomography colonography, colon capsule, and flexible 
sigmoidoscopy. In addition, screening modalities include stool-based tests, such as fecal immuno-
chemical testing and the multitarget stool DNA test[5].

Conventional therapy for CRC includes surgery, chemotherapy, and radiotherapy[6]. 5-fluorouracil 
(5-FU) is the standard treatment for mCRC. It is now being combined with other chemotherapeutic 
drugs to improve patient survival. 5-FU, leucovorin, and irinotecan (FOLFIRI), 5-FU, leucovorin, 
oxaliplatin, and irinotecan, and 5-FU, oxaliplatin, and leucovorin (FOLFOX4) have been used as 
multidrug chemotherapy regimens. Although these treatment strategies have improved overall survival 
(OS), intrinsic and acquired resistance has been a major limitation in the effectiveness of these 
treatments in 90% of patients with mCRC[6]. Innate resistance is usually noted during early treatment or 
in early clinical trials. Acquired resistance may occur through different molecular mechanisms, and is 
specific to each therapy; however, acquired resistance to one drug sometimes results in resistance to 
other drugs with the same or different mechanism of action. This is known as multidrug resistance and 
is responsible for multiple cross-resistance towards different drugs[7].

Chemotherapy targets rapidly dividing cells by blocking DNA replication or tubulin assembly, and 
thus is not specific to cancer cells and is associated with toxicity to healthy tissues[8]. In the last 15 years, 
major attempts have been made to develop targeted or biological therapies that kill cancer cells by 
targeting specific pathways implicated in tumor growth. Targeted therapies against cancer cells include 
mainly monoclonal antibodies (mAbs) that bind membrane growth factor receptors or their ligands, and 
small molecules that cross the cell membrane and inhibit cell growth and survival[9].

With the development and advancement of next generation sequencing (NGS) and omics techno-
logies[10], it has been possible to determine molecular mechanisms underlying resistance and to 
develop new strategies to overcome this resistance. Over the past decade, new discoveries in the field of 
CRC led to the introduction of targeted therapies in clinical practice, which resulted in significant 
therapeutic efficacy and prolonged survival. New drugs whose action is directed at specific pathways 
implicated in CRC pathogenesis, including the epidermal growth factor receptor (EGFR) pathway, have 
been tested in preclinical models and in clinical trials. Yet, the best combination of standard 
chemotherapy and targeted therapy for the first-line treatment of mCRC has been debated for several 
years.

Understanding the mechanisms of acquired drug resistance to targeted therapies is critical for the 
development of novel and effective treatment combinations and will help guide future therapies. In this 
article, we review mechanisms of resistance to conventional therapy, we discuss the efficacy of novel 
targeted therapies against drug-resistant and mCRC and challenges associated with them, in addition to 

https://www.wjgnet.com/1007-9327/full/v29/i9/1395.htm
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strategies to overcome resistance to targeted therapy. We conclude by highlighting lessons learned from 
molecular studies and their clinical relevance, as well as the importance of employing novel preclinical 
models to facilitate the development of effective targeted therapy.

RESISTANCE TO THERAPY
Resistance to conventional treatment is one of the most challenging problems in cancer therapy, 
resulting in poor prognosis, recurrence, and metastasis. It is attributed to several intrinsic and acquired 
factors in tumor cells and in the microenvironment they reside in.

Cancer stem cells
CRC treatment requires surgical intervention, which is accompanied by the application of 
chemotherapy or radiotherapy, before or after surgery, as neoadjuvant or adjuvant treatment to ensure 
maximum reduction of tumor size[11]. These treatments are effective against cancer cells but spare the 
more resistant cancer stem cells (CSCs). Mechanisms of resistance are still unclear, but several factors 
are known to contribute to it. For example, CSCs are quiescent and do not enter the cell cycle, therefore 
they are not targeted by conventional therapy that kills highly proliferating cells[12]. Different 
molecular mechanisms are involved in CRC drug-resistance[13], as shown in Figure 1, and are 
summarized in this paper.

CSCs express high levels of ATP-binding cassette (ABC) transporters that mediate drug efflux and 
resistance to chemotherapy[14,15]. The first identified ABC member is ABCB1 or P-glycoprotein, which 
is expressed in normal intestinal cells. The overexpression of ABCB1 has been reported in preclinical 
and clinical studies of CRC and is associated with resistance to chemotherapy[16,17]. First-, second-, and 
third-generation inhibitors have been designed against ABCB1 and have been shown to have high 
affinity; however, their effectiveness is limited and needs further improvement[18]. Other ABC 
members include ABCC6, ABCC11, ABCF1, and ABCF2 and their upregulation has been documented in 
CRC tumor tissues[19], suggesting that these transporters may serve as potential targets for reversing 
drug-resistance in CRC.

The anti-cancer effect of chemotherapeutic drugs can be reduced by impaired drug metabolism. 
Capecitabine is a chemotherapeutic agent used for the treatment of mCRC. Upon administration, it is 
converted into 5-FU by thymidine phosphorylase (TP)[20]. It has been shown that methylation of the 
gene encoding TP inhibits its translation and results in resistance to capecitabine[20]. 5-FU acts by 
inhibiting thymidylate synthase and incorporating its metabolites into DNA and RNA[21]. Several 
enzymes, such as orotate phosphoribosyl-transferase and uridine monophosphate synthetase, mediate 
the conversion of 5-FU into its active metabolites[22]. Interestingly, lower expression of these enzymes is 
associated with resistance to 5-FU in CRC[23]. Additionally, TP converts 5-FU into 5-fluoro-2’ 
deoxyuridine and it has been shown to predict good response to 5-FU treatment and is associated with 
higher progression-free survival (PFS) in patients with high expression of TP[24]. Another enzyme that 
has been reported to affect response to chemotherapy is carboxylesterase 2. This metabolic enzyme 
plays a major role in the activation of irinotecan and its high expression and activity improves the 
efficacy of irinotecan[25]. On the other hand, uridine diphosphate glucuronosyltransferase 1A1 and β-
glucuronidase inactivate irinotecan, and their alteration results in reduced irinotecan activity, 
suggesting that targeting these enzymes may reverse resistance to irinotecan[26,27]. Similarly, 
dihydropyrimidine dehydrogenase is a metabolic enzyme that mediates the catabolism of 5-FU to its 
inactive metabolite, and its high expression has been associated with resistance to 5-FU in CRC[28,29].

In cancers, including CRC, the DNA damage response (DDR) is activated and aberrant. This damage 
response consists of several kinase-dependent signaling pathways and is important for maintaining 
genome integrity and stability. Damage sensing is usually mediated by DDR sensors, followed by 
transduction of damage signals to DDR mediators and downstream molecules, leading to either cell 
cycle arrest, DNA damage repair, or apoptosis[30]. Ataxia telangiectasia mutated and ATM and Rad3-
related protein, members of the phosphatidyl-inositol 3-kinase (PI3K) like family of protein kinases, are 
the main regulators of DDR. They interact with p53 and checkpoint pathways that regulate Cdc25[31]. 
Several mechanisms attribute to resistance of CSCs to DNA damage and include cell cycle checkpoint 
alteration and activation of an efficient scavenging system that protects against reactive oxygen species 
(ROS), which are induced by therapy[32]. Three main pathways that contribute to CRC development are 
unsensed or repaired by the aberrant DDR. These pathways are chromosomal instability (CIN), CpG 
island hypermethylation phenotype, and microsatellite instability (MSI) pathways. CIN is common in 
80% of CRC cases while MSI results from inactivation of mismatch repair genes (MMR) and is common 
in sporadic CRC[33]. Notably, DNA repair induced by oxaliplatin is mainly mediated by the nucleotide 
excision repair pathway[34]. The upregulation of excision repair cross-complementing 1 has been linked 
to oxaliplatin resistance in CRC[34] and its mRNA expression level is a predictive marker of survival in 
patients treated with 5-FU and oxaliplatin[35]. These results suggest that the expression levels of DNA 
repair proteins may serve as treatment response biomarkers, and the reduction of their expression can 
enhance the effect of DNA-damaging agents, leading to eradication of resistant CSCs.
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Figure 1 Major mechanisms of cancer stem cell resistance. Cancer stem cell (CSC) resistance has been associated with CSC characteristics including 
quiescence, upregulation of ATP-binding cassette transporters, altered drug metabolism, enhanced DNA damage response, and activation of pro survival pathways. 
The tumor microenvironment (TME) plays a major role in the resistance of CSCs to therapy. CD8 T cells, tumor associated macrophages, and cancer associated 
fibroblasts (CAFs) are major components of the TME and contribute to tumor progression and metastasis through the secretion of cytokines, growth factors, and 
angiogenic factors. Additionally, gut microbiota, such as Fusobacterium nucleatum and Enterobacter secrete inflammatory molecules that modulate the TME and 
contribute to therapy resistance. All of these mechanisms contribute to tumor invasion, angiogenesis, epithelial-to-mesenchymal transition, immunosuppression, drug 
resistance and survival following treatment. TAMs: Tumor associated macrophages; CAFs: Cancer associated fibroblasts; EMT: Epithelial-to-mesenchymal transition.

Intrinsic and acquired resistance to apoptosis is one of the characteristics of CSCs. Apoptosis is 
regulated by a balance between pro-apoptotic, anti-apoptotic, and pro-survival mechanisms[36], which 
is frequently altered in cancer, including CRC[34,37]. p53 plays a key role in the induction of apoptosis 
in response to DNA damage by chemotherapy[34]. However, p53 is mutated in 85% of CRC cases and is 
linked to resistance to 5-FU and oxaliplatin[38].  In addition, the expression of high levels of anti-
apoptotic proteins, including Bcl-2 family members, is a characteristic of CSCs and results in resistance 
to cell death by apoptosis[39]. Frameshift mutations in the BAX gene result in the loss of expression and 
activity of the anti-apoptotic protein BAX, leading to chemoresistance[34]. Other anti-apoptotic proteins 
that are implicated in chemoresistance include Bcl-XL and the FLICE-inhibitory protein[40].

Moreover, several pro survival signaling pathways are activated in CRC. One major pathway is the 
Wnt/β-catenin pathway, which is important for stemness and resistance. Binding of Wnt ligand to the 
Frizzled receptor results in activation of β catenin, a key effector in this pathway[41]. Activation of the 
Wnt pathway induces proliferation and differentiation of CSCs, which is partly mediated by activation 
of several molecules that are recognized as putative CSC markers and include Lgr5, CD44, CD133, and 
Epcam[42]. All of these markers are associated with CSC resistance to chemo- and radiotherapy. Other 
pathways that are involved in stemness include the Notch and Hedgehog pathways[42].

Tumor microenvironment
CRC resistance has been also linked to the tumor microenvironment (TME) that is also involved in the 
multistep process that encompasses the development of adenomatous polyps from normal colonic 
epithelium, finally leading to invasive CRC[43,44]. The TME consists mainly of immune cells, 
endothelial cells, stromal cells, extracellular matrix (ECM), and signaling molecules[45]. Solid tumors, 
including CRC are infiltrated by different cells, such as dendritic cells, monocytes, neutrophils, CD8 and 
CD4 T cells, cancer-associated fibroblasts (CAFs), tumor-associated macrophages (TAMs), and 
mesenchymal stem cells. During tumor formation, interactions between tumor and stromal cells and 
secretion of soluble inflammatory molecules mediate the attraction of immune cells that promote tumor 
cell survival and metastasis[45,46]. The most important tumor-promoting cells are TAMs and CAFs. 
These cells facilitate tumor progression through direct contact with other cells or through secretion of 
cytokines, growth factors, and angiogenic factors, thereby promoting ECM formation, tumor invasion, 
angiogenesis, epithelial-to-mesenchymal transition (EMT), and immunosuppression[43,45].

Gut microbiota
Strong evidence is emerging to support the role of gut microbiota in the progression and resistance of 
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CRC and interventions made in this regard may hold promises for improving CRC treatment[47]. 
Fusobacterium nucleatum has been shown to contribute to CRC chemoresistance through activation of 
innate immune signals that stimulate the autophagy pathway[48]. The use of antibiotics can increase 
pathogenic bacteria such as Enterobacter and has been shown to reduce the anti-cancer effect of 
oxaliplatin through modulation of cytokine secretion and ROS production in the TME[49]. On the other 
hand, the effect of immunotherapy has been shown to be enhanced by intestinal microbiota, such as 
Faecalibacterium, Clostridiales, and Bifidobacterium spp[50,51]. The exact mechanism of action is still 
unclear but has been attributed to direct interactions between these bacteria and immune cells[52], in 
addition to a possible role for microbial metabolites, such as butyrate and propionate[53].

TARGETED THERAPY
Targeted agents can directly inhibit the proliferation and migration of cancer cells (Figure 2). They could 
also target the TME, thereby limiting tumor growth and enhancing immune surveillance. Small 
molecules play a major role in such treatments, as they can penetrate cells to selectively inactivate 
specific enzymes involved in tumor proliferation induction and apoptosis inhibition[54].

Targeting EGFR
EGFR belongs to the ErbB family of receptor tyrosine kinases and is involved in cellular proliferation, 
survival, migration, adhesion, and angiogenesis[55,56]. 80% of CRCs express or upregulate the EGFR 
gene[57,58], and this expression is associated with a risk of metastasis[59], therefore inhibiting EGFR 
could be a possible strategy to reduce cellular proliferation.

EGFR activation can be blocked by mAbs or tyrosine kinase inhibitors (TKIs). EGFR mAbs include 
cetuximab and panitumumab, which are currently used in parallel with FOLFOX or FOLFIRI regimens 
in the treatment of patients with KRAS or NRAS wild-type (WT) tumors[60]. In RAS-mutant tumors, 
constitutive activation of signaling pathways downstream of EGFR limits the effectiveness of EGFR 
inhibitors[61].

Cetuximab is a chimeric murine human IgG1 mAb that binds to the extracellular domain of EGFR 
and inhibits its pro-oncogenic action in cancer cells[62,63] (Table 1 and Figure 2). It also binds to natural 
killer cells and induces antibody-dependent cell-mediated cytotoxicity[62]. In a study that involved 
patients with advanced CRC after treatment with irinotecan, treatment with cetuximab alone or in 
combination with irinotecan showed significant clinical activity, with an enhanced rate of response and 
median survival time in the combination groups[64]. Combining cetuximab with FOLFIRI reduced the 
risk of progression of mCRC by 15% in first-line treatment of patients with KRAS WT tumors, when 
compared to FOLFIRI alone[65]. Complete or partial tumor responses were observed in 46.9% of 
patients treated with combination therapy and in 38.7% of patients treated with FOLFIRI alone[65]. 
Another treatment regimen that was tested in the first-line treatment of mCRC included FOLFOX4 and 
cetuximab[66]. Results from this randomized study showed an increased chance of response and lower 
risk of disease progression in the combination-treated group when compared to FOLFOX4 alone in 
KRAS WT patients[66]. A more recent randomized phase 3 Medical Research Council COIN trial 
showed that adding cetuximab to oxaliplatin-based chemotherapy increased the response rate in 
patients with advanced CRC; yet no enhancement of PFS or OS was shown[67].

Similar to cetuximab, treatment with panitumumab alone or in combination with standard 
chemotherapy has shown promising results in several clinical trials[60,68]. Panitumumab monotherapy 
was effective in CRC patients with KRAS WT tumors, with a response rate of 17%[69]. In an open-label 
phase III trial that involved patients with chemotherapy-refractory mCRC, panitumumab plus best 
supportive care (BSC) significantly prolonged PFS when compared to BSC alone. Response rates were 
10% for panitumumab and 0% for BSC, with no difference observed in OS[70]. Several clinical trials 
were conducted to compare the efficacy of panitumumab and FOLFOX4 in comparison to FOLFOX4 
alone[60,68]. Results from a phase III trial showed that combination treatment significantly improved 
PFS whereas the increase in OS was insignificant when compared to FOLFOX4 alone in KRAS WT 
tumors[60]. Except for the toxicities that are usually associated with EGFR inhibitors, adverse event 
rates were comparable between these treatments[60]. The very recent PARLIM trial showed that PFS 
and OS were improved upon the addition of panitumumab to FOLFOX in KRAS WT CRC patients with 
R0/1-resected liver metastases. Importantly, no new adverse events were observed in the combination-
treated group[71].

The most common side effects observed in trials of these EGFR mAbs were skin toxicity, abdominal 
pain, nausea, diarrhea, infusion reactions, fatigue, and hypomagnesemia. Rare adverse events included 
pulmonary fibrosis, sepsis, severe skin toxicity, and anaphylaxis[72].

EGFR TKIs are small molecules derived from quinazolines that block the tyrosine kinase domain of 
different receptors, including EGFR. Erlotinib is specific to EGFR alone and is used to block ligand-
induced EGFR receptor phosphorylation[73]. Gefitinib is another EGFR TKI that has a similar 
mechanism of action to erlotinib, but also targets other pathways, such as the extracellular signal-related 
kinases 1/2 (ERK1/2) pathway in mesothelioma cell lines[73].
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Table 1 Agents targeting epidermal growth factor receptors and downstream molecules under clinical investigation for the treatment of 
drug-resistant and metastatic colorectal cancer

Agent Targeted molecule Condition Study phase Clinical trial 
identifier

Erlotinib EGFR First-line treatment for mCRC Phase III NCT01229813

Futuximab/Modotuximab (Sym-
004)

EGFR mCRC Phase II NCT02083653

Gefitinib EGFR Refractory CRC Phase I/II NCT00242788

Refractory mCRC Phase II NCT01919879

Advanced CRC Phase II NCT00801294

Afatinib EGFR

mCRC Phase II NCT01152437

mCRC Phase II NCT03668431Dabrafenib (GSK2118436) BRAF

mCRC Phase II NCT03428126

BMS-908662 BRAF K-RAS/BRAF-mutated CRC Phase I/II NCT01086267

Encorafenib Wild-type and BRAF 
V600E

Previously untreated BRAF-mutant mCRC Phase II NCT03693170

Vemurafenib Mutated BRAF V600E BRAF V600E mutated advanced CRC Phase II NCT03727763

PX-866 PI3K mCRC Phase I/II NCT01252628

KRAS/NRAS-wild-type mCRC Phase II NCT01925274Gedatolisib PI3K/mTOR

mCRC Phase I/II NCT01937715

KRAS-mutated mCRC Phase II NCT00827684Temsirolimus CCI-770 mTOR

Cetuximab-refractory CRC Phase I NCT00593060

mCRC Phase II NCT01387880

mCRC Phase I/II NCT01058655

Advanced mCRC Phase I/II NCT01139138

Everolimus (RAD001) mTOR

Refractory mCRC Phase I NCT01154335

MK-2206 AKT Advanced CRC Phase II NCT01333475

Napabucasin (BBI608) STAT3 Previously treated mCRC Phase III NCT03522649

Cobimetinib MAPK mCRC Phase III NCT02788279

Selumetinib MEK mCRC Phase II NCT00514761

Binimetinib MEK Previously untreated BRAF-mutant mCRC Phase II NCT03693170

Neratinib EGFR/HER2/4 KRAS/NRAS/BRAF/PIK3CA-wild-type 
mCRC

Phase II NCT03457896

Sapitinib (AZD-8931) EGFR/HER2/3 mCRC Phase II NCT01862003

Duligotuzumab (MEHD7945A) EGFR/HER3 KRAS-mutated mCRC Phase II NCT01652482

Trastuzumab HER2 First-line HER2-positive mCRC Phase III NCT05253651

Tucatinib HER2 First-line HER2-positive mCRC Phase III NCT05253651

HER2-positive advanced CRC Phase II NCT05493683Disitamab Vedotin HER2

HER2-expressing mCRC Phase II NCT05333809

Trastuzumab-emtansine HER2 HER2-positive mCRC progressing after 
trastuzumab and lapatinib

Phase II NCT03418558

EGFR: Epidermal growth factor receptor; mCRC: Metastatic colorectal cancer; PI3K: Phosphoinositide 3-kinases; mTOR: Mammalian target of rapamycin; 
STAT3: Signal transducer and activator of transcription 3; AKT: Protein kinase B; MAPK: Mitogen-activated protein kinases; MEK: Mitogen-activated 
extracellular signal-regulated kinase; HER2: Human epidermal growth factor receptor 2.
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Figure 2 Targeted therapies under investigation for the treatment of drug-resistant and metastatic colorectal cancer. Anti-epidermal growth factor receptor, anti-vascular endothelial growth factor/vascular endothelial growth factor 
receptor, and anti-human epidermal growth factor receptor 2 agents inhibit their respective targets and thus, the downstream effector pathways, PI3K/Akt and RAS/RAF. Other agents directly target and inhibit PI3K, AKT, mammalian target of rapamycin, 
RAF, mitogen-activated extracellular signal-regulated kinase, or mitogen-activated protein kinases. In addition, anti-hepatocyte growth factor/mesenchymal epithelial transition factor receptor agents target this pathway to inhibit signal transducer and 
activator of transcription, which is also targeted by Napabucasin. Several novel agents that are aimed at other pathways implicated in colorectal cancer proliferation, survival, resistance, and metastasis are also being evaluated. Targeted pathways 
include Wnt, Notch, Hedgehog, insulin growth factor/insulin growth factor receptor-1, and transforming growth factor beta. Moreover, immune escape can be hindered through immunotherapy which targets co-inhibitory molecules, mainly programmed 
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death-1/programmed death ligand-1, cytotoxic T lymphocyte-associated antigen 4, and lymphocyte activation gene 3. EFGR: Epidermal growth factor receptor; VEGF: Vascular endothelial growth factor; VEGFR: Vascular endothelial growth factor 
receptor; HER2: Human epidermal growth factor receptor 2; mTOR: Mammalian target of rapamycin; MEK: Mitogen-activated extracellular signal-regulated kinase; MAPK: Mitogen-activated protein kinases; HGF: Hepatocyte growth factor; MET: 
Mesenchymal epithelial transition factor receptor; STAT3: Signal transducer and activator of transcription; CRC: Colorectal cancer; IGF: Insulin growth factor; IGF-1R: Insulin growth factor receptor-1; TGF-β: Transforming growth factor beta; PD-1: 
Programmed death-1; PD-L1: Programmed death ligand-1; CTLA-4: Cytotoxic T lymphocyte-associated antigen 4; LAG-3: Lymphocyte activation gene 3; EGF: Epidermal growth factor; TGFβRI/II: Transforming growth factor-Beta type I/II.

It is important to note that studies investigating the efficacy of EGFR targeted therapy vary widely in 
clinical context, and some focus on the effect of EGFR monotherapy while others compare it to a 
combination of various chemotherapy regimens. One important factor to be taken into consideration is 
KRAS status, which could be used as a biomarker to predict the effectiveness of a treatment. Several 
inhibitors targeting EGFR or downstream molecules are currently under clinical investigation and are 
summarized in Table 1.

Targeting HER
Human EGFR 2 (HER2) is emerging as a key driver in CRC. It acts similar to EGFR, as they both share 
common downstream pathways, such as RAS/RAF/MEK and PI3K/AKT, which explains the link 
between HER2 overexpression and resistance to EGFR inhibitors[74,75]. The HER2/neu oncogene 
encodes a receptor with intrinsic tyrosine kinase activity[76]. HER2 lacks an endogenous ligand unlike 
other members of the HER/EGFR/ERBB system[77]. Homodimerization or heterodimerization with 
other EGFR family receptors, HER3 and EGFR, results in transphosphorylation of tyrosine residues 
within the cytoplasmic domain of HER2, thus leading to its activation[77,78]. HER2-HER3 heterodimers 
activate the PI3K/AKT pathway which is implicated in cancer cell growth and survival[79].

Different rates of HER2 amplification have been reported in CRC[80-82], with rates of membranous 
expression ranging from 2.1% to 11%[80,83,84], and that of cytoplasmic expression  ranging from 47.4 to 
68.5%[80,85,86]. Several factors may account for this variability, including small sample size, different 
antibodies used for immunohistochemistry (IHC), and analysis of different subgroups of patients with 
multiple clinical characteristics[87]. The efficacy of targeted agents against HER2-expressing CRC was 
determined in several clinical trials. Ramanathan et al[88] reported the detection of HER2/neu overex-
pression in only 8% of screened tumors in patients with advanced CRC and this low overexpression rate 
limited the study of irinotecan and trastuzumab, a humanized mAb targeting the HER2/neu receptor, 
in a phase II clinical study. Yet, partial response was observed in some patients, and the response was 
maintained for approximately six wk[88]. In a proof-of-concept study that exploited patient-derived 
xenografts (PDX), HER2 was identified as an effective therapeutic target in cetuximab-resistant mCRC
[89]. HER2 amplification was detected in clinically unresponsive KRAS WT patients, and the 
combination of lapatinib (a dual EGFR/HER2 TKI) and pertuzumab induced an increase in response 
rate and tumor regression, in agreement with clinical studies in patients with similar clinicopathological 
characteristics[89]. The synergic antiproliferative effect of HER2 and EGFR blockade was also 
demonstrated in cetuximab-resistant CRC cell lines[74,90]. Interestingly, HER2 activating mutations 
were identified in CRC PDX and were shown to be highly sensitive to HER2/EGFR TKIs neratinib and 
afatinib and resulted in tumor regression when subjected to dual HER2 targeted therapy with 
trastuzumab plus TKIs[91]. It was also reported that these mutations cause oncogenic transformation of 
colon epithelial cells and resistance to anti-EGFR monotherapy[91]. Various clinical trials targeting 
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HER2 alterations in combination with chemotherapeutic therapies in patients with mCRC have 
validated findings from preclinical studies. High toxicity[92] and poor accrual[88,93] were the reasons 
behind halting earlier clinical studies evaluating the addition of HER2 mAbs (trastuzumab or 
pertuzumab) to cetuximab or chemotherapy (i.e., irinotecan, 5-FU, and oxaliplatin).  In a phase I trial 
involving patients with HER2-positive refractory tumors, none of the CRC patients responded to the 
combination of trastuzumab, paclitaxel, and interleukin (IL)-12[94]. More recently, a study that followed 
the stringent HERACLES criteria reported that the combination of trastuzumab and lapatinib achieved 
an objective response rate of 30% and was well tolerated in KRAS codon 12/13 WT, HER2-positive 
mCRC patients[95]. Within the same project, HERACLES-B phase II trial assessed the efficacy of 
pertuzumab and trastuzumab emtansine; however, it did not reach its primary endpoint of response 
rate. Yet, this combination can be considered a potential therapeutic strategy for HER2-positive mCRC, 
based on the high disease control achieved, in addition to the enhanced PFS and low toxicity[96]. The 
MyPathway trial assessed the combination of pertuzumab and trastuzumab in pretreated HER2-
amplified mCRC patients and further supported the efficacy of the dual blockage of HER2[97,98]. 
Several agents targeting HER and EGFR are currently under clinical investigation (Table 1).

Targeting VEGF
Angiogenesis is the formation of new blood vessels from endothelial cells. It is mediated by vascular 
endothelial growth factor (VEGF), together with platelet-derived growth factor (PDGF) and fibroblast 
growth factor (FGF)[99]. Angiogenesis plays an important role in tumor initiation, growth, and 
metastasis. The VEGF system consists of six ligands and three receptors known as VEGF receptors 
(VEGFR). VEGF-A is secreted by multiple cell types, including cancer cells, and plays a major role in 
survival, growth, differentiation, and migration of endothelial cells[100]. VEGF-A mediates its effect by 
binding to VEGFR2, which is the major signal transducer of angiogenesis and is expressed by 
endothelial cells. On the other hand, VEGFR1 is a strong VEGF inhibitor[101]. Hypoxia is a key 
regulator of angiogenesis in cancer through hypoxia-inducible factors, which induce transcription of 
several genes, including VEGF-A[102].

VEGF levels and VEGFR activity are elevated in patients with CRC and are associated with poor 
prognosis[103]. The activation of this system is important both in local sites to support tumor 
progression and in metastatic sites to support neovascularization and tumor survival; therefore, a 
targeted therapy against VEGF/VEGFR might be developed at all stages of tumor progression and 
metastasis. Like EGFR, targeted therapy against angiogenesis consists of mAbs and TKIs. mAbs bind to 
VEGF-A or block the extracellular domain of its receptor. mAbs that bind VEGF-A include bevacizumab 
and aflibercept, thereby preventing activation of their receptors. Ramucirumab binds to the VEGFR2 
extracellular domain, inhibiting the binding of VEGF ligands, thereby inhibiting receptor activation
[104].

Bevacizumab as a monotherapy has a limited effect and is therefore used in combination with 
chemotherapy in first- and later-lines of mCRC treatment[105]. It is the first Food And Drug Adminis-
tration (FDA)-approved VEGF-targeted agent for mCRC[105]. The first randomized clinical trial showed 
that bevacizumab improves response rate, PFS, and OS, thereby enhancing chemotherapy efficacy[106]. 
Combining bevacizumab (5 mg per kg of body weight every two wk) with irinotecan, 5-FU, and 
leucovorin (IFL) enhanced median duration of survival and PFS, as compared to IFL treatment alone, 
corresponding to a hazard ratio for death of 0.66 and for disease progression of 0.54, respectively[106]. 
The results also showed that median duration of the response to combination treatment was 10.4 mo as 
compared to 7.1 mo in the group treated with IFL and placebo[106]. A major adverse event was grade 3 
hypertension which was more common in the group treated with IFL and bevacizumab but was easily 
managed. More recent trials showed that modern combination regimens were better substitutes for IFL; 
however, the efficacy of combining bevacizumab with first-line treatment of mCRC has been contro-
versial. Several recent clinical trials demonstrated the promising efficiency of combining bevacizumab 
with trifluridine/tipiracil, which is usually better tolerated than capecitabine, especially in elderly 
patients with mCRC[107-109]. Notably, promising results were reported in the phase II TASCO study 
that assessed the effectiveness of combining bevacizumab with trifluridine/tipiracil as first-line 
treatment in untreated patients with unresectable mCRC[110]. This combination treatment achieved 
better median PFS and OS when compared to patients receiving bevacizumab plus capecitabine. On the 
other hand, Chen et al[111] carried out a meta-analysis that showed no improvement in OS upon the 
addition of bevacizumab to FOLFOX/FOLFIRI/capecitabine plus oxaliplatin (XELOX) regimens when 
compared to chemotherapy alone, unless PFS is considered, specifically in capecitabine-based regimens. 
This exception was established based on two trials, the NO16966 study[112] and ITACA trial[113], 
which used PFS as an endpoint measurement. These studies showed that adding bevacizumab to 
oxaliplatin-based therapy (XELOX or FOLFOX4) significantly improved PFS in patients with mCRC
[112]. OS and response rate were not changed by the addition of bevacizumab, suggesting that 
prolonged treatment may be needed for optimal combination efficacy[112]. Interestingly, it has been 
documented that both patients with KRAS mutations and with WT KRAS may benefit from adding 
bevacizumab to chemotherapy[114,115]. The efficacy of the second-line application of bevacizumab has 
also been validated in several trials that showed longer PFS and OS, and a better response rate, 
compared with standard chemotherapy alone in the E3200 study[116] and III ML18147 trial[117].
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The addition of aflibercept to FOLFIRI enhanced the survival of patients progressing who were 
previously given oxaliplatin-based regimens[118]. Combination treatment resulted in a 9% increase in 
response rate, accompanied by an improvement in PFS from 4.7 to 6.9 mo and OS from 12.1 to 13.5 mo
[118].

Ramucirumab was approved by the FDA for second-line treatment of mCRC based on the phase III 
RAISE trial[119]. Data from this study showed that the addition of ramucirumab significantly prolonged 
PFS and OS but not response rate, following first-line treatment with 5-FU, oxaliplatin, and 
bevacizumab[119].

Few VEGF TKIs have been proven to be effective in patients with mCRC. These include regorafenib, 
which was approved by FDA for the treatment of mCRC[120]. Yet, regorafenib has multiple targets, 
other than VEGF, whereby it also inhibits PDGF receptor, FGF receptor, and BRAF[120]. Notably, 
treatment of mCRC patients with regorafenib was associated with enhanced OS[121]. A more significant 
OS benefit was observed when combining regorafenib with its major metabolites, M-2 and M-5, in 
concentrations ranging between 2.5 and 5.5 mg/L[121]. While no improvement in the response rate was 
shown upon adding regorafenib to FOLFOX in mCRC patients as compared to chemotherapy alone
[120], better median OS and PFS were achieved using regorafenib alone than placebo for refractory 
mCRC treatment in the phase III CORRECT trial[122]. These results were also validated in an Asian 
population in the CONCUR trial[123]. Anlotinib, a novel TKI that inhibits VEGFR1/2/3, among other 
kinases, showed an enhanced overall rate response and PFS when combined with capecitabine and 
oxaliplatin in the first-line treatment of mCRC[124]. Other TKI agents have been developed in the last 
few years, these include fruquintinib[125] and famitinib[126], in addition to other agents that are under 
clinical investigation and are summarized in Table 2.

Targeting MEK and mutant BRAF
BRAF mutations are found in 8% to 12% of mCRC cases, and the V600E-activating mutations, which are 
the most prevalent mutations, are most commonly located in right-colon tumors, and confer a worse 
prognosis for mCRC[127,128]. BRAF mutations are generally mutually exclusive with KRAS and NRAS 
mutations. Notably, BRAF and RAS are the only available biomarkers for advanced CRC that are used 
in clinical practice[129].

BRAF is a downstream effector of RAS in the EGFR pathway and several preclinical studies have 
shown that BRAF inhibition may induce EGFR overactivation and that EGFR inhibition is important for 
sensitizing resistant cell lines to anti-BRAF agents[130]. In fact, BRAF inhibitor monotherapy in CRCs 
harboring V600E-activating mutations is ineffective with a response rate of only 5%[131]. Capalbo et al
[132] reported the first clinical evidence that combining anti-EGFR (panitumumab) and an inhibitor of 
BRAF V600 kinase (vemurafenib) achieves strong disease control and is well tolerated in patients with 
mCRC that progressed on standard lines of treatment. However, this is only achieved in RAS and BRAF 
WT tumors, as RAS and BRAF mutations lead to the constitutive activation of downstream transducers 
of EGFR, circumventing EGFR inhibition, resulting in failure of anti-EGFR therapy[133-135]. A very 
recent randomized trial reported that the addition of vemurafenib to irinotecan combined with 
cetuximab improved PFS (hazard ratio of 0.50) in patients with BRAF-mutated, RAS WT mCRC. The 
response rate was 17% upon addition of vemurafenib and 4% without vemurafenib[136]. Disease 
control rate was also improved by 44%, suggesting that blocking signaling activity of EGFR using 
cetuximab prevents its feedback upregulation by vemurafenib. Interestingly, treatment with EGFR and 
BRAF inhibitors led to a decline in circulating tumor DNA (ctDNA) BRAF V600E variant allele 
frequency in 87% of the studied population[136]. In the phase III BEACON CRC trial, twenty-nine 
patients with BRAF V600E-mutant mCRC who had experienced treatment failure with chemotherapy 
were selected to assess the safety of the encorafenib, binimetinib, and cetuximab regimen. The results 
showed that the tolerability of this treatment regimen was acceptable, with an overall response rate of 
48%, median PFS of 8.0 mo, and median OS of 15.3 mo[137].

BRAF V600E mutations result in constitutive activation of BRAF kinase, which results in activation of 
mitogen-activated protein kinase (MAPK) kinases MEK1 and MEK2. The latter phosphorylates and 
activates ERK kinases, resulting in phosphorylation and activation of key molecules involved in prolif-
eration and survival[138].

Studies have shown that combination therapies targeting RAF and EGFR or RAF and MEK can 
inhibit feedback reactivation of the MAPK signaling pathway, resulting in more robust inhibition and 
improved efficacy of the treatment in BRAF-mutant CRC[139,140]. Combining RAF and MEK inhibitors 
produced a 12% partial response and 2% complete response, with a more than 36 mo duration of 
response, whereby 56% of the patients achieved stable disease. Interestingly, 9 patients who remained in 
the study for more than 6 mo had reduced levels of phosphorylated ERK during treatment, relative to 
pretreatment biopsies[141]. A clinical trial of combined inhibition of BRAF, EGFR, and MEK with 
dabrafenib, panitumumab, and trametinib, respectively, showed improved efficacy in patients with 
BRAF V600E-mutant CRC[140]. Interestingly, the triplet regimen achieved a response rate of 21% that 
was higher than dabrafenib and panitumumab (10%) or panitumumab and trametinib (0%)[140]. The 
BEACON trial reported similar results, whereby a triple treatment consisting of cetuximab, encorafenib, 
and binimetinib (a MEK inhibitor) significantly prolonged OS and achieved a higher response rate than 
standard chemotherapy, with a comparable rate of adverse events[142]. Few agents targeting mutant 
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Table 2 Agents targeting vascular endothelial growth factor/vascular endothelial growth factor receptor under clinical investigation for 
the treatment of drug-resistant and metastatic colorectal cancer

Agent Targeted molecule Condition Study phase Clinical trial identifier

Vanucizumab VEGF-A/angiopoietin-2 mCRC Phase II NCT02141295

mCRC Phase II NCT03251612

Previously treated mCRC Phase II NCT01471353

mCRC Phase II NCT00826540

Sorafenib VEGFR

KRAS-mutated mCRC Phase II NCT01715441

Untreated mCRC Phase II NCT02141295Bevacizumab VEGF

Advanced CRC Phase II NCT02487992

Linifanib ABT-869 VEGFR Advanced CRC Phase II NCT00707889

mCRC Phase III NCT00056446Vatalanib VEGFR

mCRC Phase III NCT00056459

Famitinib VEGFR2/3 Advanced CRC Phase II NCT01762293

Cediranib VEGFR2 First-line mCRC Phase III NCT00399035

mCRC Phase III NCT00004252Semaxanib VEGFR

Advanced CRC Phase I/II NCT00005818

Nintedanib VEGFR Refractory mCRC Phase III NCT02149108

Ramucirumab VEGFR2 Chemotherapy refractory mCRC Phase III NCT03520946

Refractory CRC Phase II NCT03190616

mCRC NA NCT03743428

Apatinib VEGFR2

End-stage CRC Phase II NCT02829385

Brivanib VEGFR2 KRAS-wild-type mCRC Phase III NCT00640471

Later-lines treatment of mCRC Phase III NCT05328908Regorafenib VEGFR1/2/3

mCRC Phase III NCT05425940

Surufatinib VEGFR1/2/3 Advanced CRC Phase II NCT05372198

Lenvatinib VEGFR1/2/3 mCRC Phase III NCT04776148

Fruquitinib VEGFR tyrosine kinase Non-MSI-H/dMMR mCRC Phase II NCT04866862

mCRC Phase I NCT00532090

mCRC Phase II NCT00500292

Vandetanib VEGF/VEGFR

Advanced CRC Phase I NCT00496509

VEGF: Vascular endothelial growth factor; VEGFR: Vascular endothelial growth factor receptor; mCRC: Metastatic colorectal cancer; MSI: Microsatellite 
instability; dMMR: mismatch repair deficient.

BRAF or MEK have been tested in clinical settings in the context of mCRC (Table 1).
The most common adverse events associated with BRAF inhibition include rash, fatigue, arthralgia, 

and diarrhea. When combined with MEK inhibitors, toxicities include pulmonary toxicities and 
ophthalmic changes[143].

Targeting c-MET and HGF
MET is activated by hepatocyte growth factor (HGF) that is secreted by cells of mesenchymal lineage
[144]. The MET pathway is frequently aberrantly activated in CRC, in which its overexpression has been 
reported in up to 70% of cases[144]. MET has been proposed to be a major contributor to resistance to 
anti-angiogenic therapy and is associated with progression, metastasis, and poor prognosis[145,146], 
due to c-MET activation of several proteins, such as surviving and x-linked inhibitor of apoptosis 
protein[147]. In fact, inhibition of the VEGF pathway results in upregulation of MET. A study reported 
that resistance to cetuximab was caused by MET locus amplification in CRC PDX and that treatment 
with a MET inhibitor led to an anti-tumor effect[148].
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Various mAbs and small molecules with different mechanisms of action have been developed to 
target the HGF-MET pathway in mCRC[9]. Some drugs are directed at blocking HGF activation and 
production, while other drugs inhibit the binding of HGF to MET receptors. Agents that interfere with 
the binding of HGF to MET can be classified as MET antagonists, which competitively bind to MET 
receptors or as MET TKIs, which inhibit intracellular tyrosine kinase activity[9].

Cabozantinib is a multi-kinase inhibitor that targets MET and VEGFR2, in addition to other kinases
[146]. A study reported a potent growth inhibitory effect of cabozantinib in 80% of tumors treated using 
a CRC PDX model and this inhibition was mostly observed in tumors with PIK3CA mutation. Mechan-
istically, cabozantinib inhibited Akt activation and decreased the expression of genes involved in the 
PI3K pathway[146]. Several clinical trials assessed the efficacy of agents that neutralize HGF and block 
its ability to bind to the MET receptor. A randomized phase Ib/II trial of panitumumab  in combination 
with rilotumumab (a human mAb against HGF), ganitumab (a human mAb against insulin-like growth 
factor 1 receptor), or placebo in patients with KRAS WT mCRC showed a significant increase in overall 
response rate of 10% when combining panitumumab with rilotumumab[149]. However, the 
enhancement in response rate did not translate into significant improvement in OS and PFS. Agents, 
such as onartuzumab, that compete with HGF for binding to MET have been developed and tested in 
various solid tumors, including CRC. A phase II randomized trial of first-line FOLFOX plus 
bevacizumab with or without onartuzumab (MET inhibitor) reported an improvement in PFS in the 
MET IHC-negative population with mCRC, as compared to those receiving treatment without 
onartuzumab[150]. However, the addition of onartuzumab did not improve OS or response rate in this 
population[150]. Tivantinib is an oral small molecule allosteric receptor TKI that selectively keeps MET 
in the inactive state[151]. In the case of mCRC, clinical trials of tivantinib are insufficient to evaluate its 
efficacy. A phase I/II trial involving CRC patients with WT KRAS receiving tivantinib or placebo plus 
cetuximab and irinotecan found no PFS improvement[152]. A recent phase II trial of tivantinib and 
cetuximab in patients with MET-high KRAS WT mCRC did not meet its primary endpoint; yet, results 
suggested some efficacy of the combination, with approximately 10% of patients achieving an objective 
response[153]. Merestinib, an oral multikinase inhibitor, demonstrated an acceptable safety profile and 
potential anti-tumor effect in a recent first-in-human phase I study involving patients with advanced 
cancer, including CRC[154]. Findings from this study warrant further investigation to determine the 
efficacy of this agent in patients with KRAS WT mCRC.

Mild adverse events have been reported for the above-mentioned agents, including fatigue, poor 
appetite, allergic reactions, edema, skin rash, and neutropenia[155,156].

AMG-337, an oral ATP-competitive TKI specific to MET, is being investigated in a CRC phase I trial 
(Table 3). Crizotinib targets TKIs of MET, in addition to macrophage-stimulating 1 receptor and ROS 
proto-oncogene[157]. Although there is a lack of clinical evidence for crizotinib in CRC, a series of trials 
are in progress[158] (Table 3). The use of crizotinib might enhance the response to radiation therapy in 
KRAS-mutant CRC cell lines, and a combination of crizotinib with mitomycin C seemed to have a 
synergistic effect against CRC in preclinical results, which showed promise for future anti-CRC 
treatments[159]. Few MET inhibitors are under clinical investigation for the treatment of mCRC, and 
several new agents are being tested in patients with CRC (Table 3).

Immune checkpoint inhibitors
In addition to developing agents to directly target pathways involved in tumor growth and metastasis, 
there is great interest in modulating other pathways involved in immune recognition and responses 
against cancer cells (Table 4). Immune escape has been frequently identified in various cancers, 
including CRC[160]. Underlying mechanisms include secretion of immunosuppressive cytokines 
(transforming growth factor beta (TGFβ), IL-6, CXCL3, CXCL4, and high mobility group box-1), 
recruitment of regulatory T cells, and loss of immunogenicity via downregulation of major histocompat-
ibility complex-I (MHC-I)[161,162]. Tumor activation of co-inhibitory receptors, also known as immune 
checkpoint receptors, on the surface of T cells results in T cell inactivation and exhaustion[163]. These 
receptors include programmed death-1 (PD-1) and cytotoxic T lymphocyte antigen 4 (CTLA-4)[164]. PD-
1 is expressed on peritumoral lymphocytes and is activated by its ligands [programmed death ligand-1 
(PD-L1) or PD-L2], which are expressed on tumor cells, to suppress immune functions[165]. mCRC 
lesions express higher levels of PD-L1 than primary lesions[166], paving the way for promising clinical 
benefits.  Six antibodies against PD-1 or PD-L1 have been approved by the FDA as an anti-cancer 
treatment, among which some have been evaluated in mCRC patients[167,168]. Metastatic DNA 
mismatch repair-deficient (dMMR)/MSI-high (MSI-H) CRC has a poor prognosis and is less responsive 
to conventional chemotherapy, which could be linked to BRAF mutation[169,170]. Importantly, patients 
who have high mutational tumor burden, with dMMR or MSI-H, respond to immune checkpoint 
targeted therapy[171-173], most probably due to the fact that mutations result in tumor neoantigens that 
attract T cell infiltration[174].  Pembrolizumab was the first PD-1 inhibitor to be approved by the FDA 
for the treatment of mCRC. The KEYNOTE-016 study showed that MSI-H mCRC patients responded to 
pembrolizumab treatment and showed a response rate of 40% and PFS of 78%[168]. The efficacy of 
pembrolizumab for the treatment of MSI-H mCRC was also validated in another phase I clinical trial
[175]. The more recent trial, KEYNOTE-164, showed that when given in the second-line setting, 
pembrolizumab resulted in an objective response rate of 33%, PFS of 2.3 mo, and OS of 31.4 mo[176]. 
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Table 3 Agents targeting mesenchymal epithelial transition factor receptor under clinical investigation for the treatment of colorectal 
cancer and metastatic colorectal cancer

Agent Targeted molecule Condition Study phase Clinical trial identifier

Savolitinib MET mCRC Phase II NCT03592641

Tivantinib MET mCRC Phase I/II NCT01075048

Onartuzumab MET CRC Phase II NCT01418222

CRC Phase I NCT02008383

mCRC Phase I NCT03798626

Cabozantinib MET/RET/VEGFR-2

Refractory mCRC Phase II NCT03542877

Rilotumumab HGF KRAS wild-type mCRC Phase I/II NCT00788957

MET: Mesenchymal epithelial transition factor receptor; mCRC: Metastatic colorectal cancer; CRC: Colorectal cancer; VEGFR: Vascular endothelial growth 
factor receptor; HGF: Hepatocyte growth factor; RET: Rearranged during transfection.

The clinical benefit of PD-1 blockade in dMMR mCRC was also documented in the CheckMate 142 
phase I trial of nivolumab in patients with refractory solid tumors, 14 of whom had mCRC. A durable 
complete response was achieved in one patient with mCRC, after receiving five doses of 3 mg/kg 
nivolumab[177]. This study led to the FDA approval of nivolumab for dMMR or MSI-H mCRC. 
Combined therapy with nivolumab and the CTLA-4 inhibitor ipilimumab produced durable clinical 
benefits and helped previously treated patients who had MSI-H or dMMR reach high PFS and OS rates
[178,179]. The potential of PD-1 blockade using the single-agent dostarlimab was also evaluated in a 
very recent phase II study in patients selected for having dMMR stage II or III rectal adenocarcinoma. 
Administration of dostarlimab every three wk for six mo in twelve patients, who had not received 
chemoradiotherapy or undergone surgery, resulted in a clinical complete response in all patients with 
no evidence of progression or recurrence during the six to twenty-five mo follow-up[180]. Several 
preclinical studies are evaluating other potential immunotherapy agents. A novel antibody (LBL-007), 
recently characterized by Yu et al[181], targets lymphocyte activation gene 3 (LAG-3) expressed on 
activated T cells, natural killer cells, and B cells, and functions to negatively regulate these cells. This 
antibody was found to bind activated T cells and prevent LAG-3 binding to MHC class II molecules, 
blocking downstream signaling induction in vitro. In vivo results showed that treating mice bearing CRC 
with LBL-007 significantly delayed tumor growth and combining it with an anti-PD-1 antibody led to a 
more effective inhibition. Serum LBL-007 levels were high in monkeys injected with LBL-007 at 3, 10, or 
30 mg/kg[181]. Another negative regulator of the immune system, T cell immunoglobulin and mucin 
domain 3, has been shown to be expressed in mCRC and plays an important role in cancer progression
[181], and therefore might be a potential target for immunotherapy.

Pathways offering potential for targeted therapy
Several clinical trials have been initiated to evaluate the efficacy of agents targeting other pathways, yet 
no meaningful results have been presented so far. RO4929097 is a selective inhibitor of γ-secretase, a 
proteolytic enzyme that produces an activated intracellular Notch[182]. Notch is an attractive drug 
target as it is involved in CRC progression; however, a study of RO4929097 showed that no objective 
radiographic responses were observed and only a few mCRC patients had stable disease, although 
positive staining for intracellular Notch and its receptor was demonstrated in tissues[182].  A 
randomized phase II trial of vismodegib, a Hedgehog pathway inhibitor, reported no added benefit in 
combination with FOLFIRI or FOLFOX, and was instead associated with increased toxicity in mCRC 
patients[183]. The expression of morphogenetic protein 4 (BMP-4) has been shown to be upregulated in 
human CRC tissue and inhibition of BMP-4 by BMP type I receptor inhibitor, LDN-193189, induced 
apoptosis and inhibited tumor formation in mice injected with CRC cells[184]. The progress in the 
development of agents targeting TGF-β, Wnt, and ATP-binding cassette member B5 is still limited and 
needs further investigation[185-187]. Limitations in targeted therapy against these pathways are 
attributed to the existence of crosstalk between pathways, in addition to difficulty selecting patients, 
identifying predictive biomarkers, and specifically blocking targeted molecules. However, several 
clinical trials are investigating novel agents, which are summarized in Table 5.

BEATING RESISTANCE TO TARGETED THERAPY
Although multiple targeted therapy agents have demonstrated significant potency in mCRC patients, 
several challenges hinder the effectiveness of these therapies. Such therapies are associated with 
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Table 4 Agents targeting immune checkpoints under clinical investigation for the treatment of drug-resistant and metastatic colorectal 
cancer

Agent Targeted molecule Condition Study phase Clinical trial identifier

Non-MSI-H/dMMR mCRC Phase II NCT04866862Camrelizumab PD-1

mCRC Phase II NCT03912857

Tislelizumab PD-1 HER2-Positive Advanced CRC Phase II NCT05493683

Later-lines treatment of mCRC Phase III NCT05328908

Advanced CRC Phase I NCT02991196

Metastatic MSS CRC Phase I NCT03993626

Nivolumab PD-1

mCRC Phase II NCT04166383

MSI-H/dMMR CRC Phase III NCT05239741

mCRC Phase III NCT04776148

MMR-proficient mCRC Phase II NCT03519412

HER2-expressing mCRC Phase II NCT03631407

Pembrolizumab (MK-3475) PD-1

HER2-expressing mCRC Phase II NCT05333809

mCRC Phase I NCT03081494PDR-001 PD-1/PD-L1

First-line mCRC Phase I NCT03176264

Toripalimab PD-1/PD-L1 mCRC Phase II NCT03927898

mCRC Phase II NCT03150706Avelumab PD-1/PD-L1

mCRC Phase II NCT03258398

mCRC Phase III NCT05425940

mCRC Phase III NCT02788279

First-line mCRC Phase II NCT02291289

Atezolizumab PD-L1

Refractory CRC Phase II NCT02873195

Relatlimab LAG-3 Later-lines treatment of mCRC Phase III NCT05328908

mCRC Phase I/II NCT03202758

mCRC Phase II NCT03122509

mCRC Phase II NCT03428126

Tremelimumab CTLA-4

mCRC Phase II NCT03435107

PD-1: Programmed death-1; PD-L1: Programmed death ligand-1; mCRC: metastatic colorectal cancer; MSI-H/dMMR: Microsatellite instability-
high/mismatch repair deficient; MSS: Microsatellite stable; HER2: Human epidermal growth factor receptor 2; LAG-3: Lymphocyte activation gene 3; 
CTLA-4: Cytotoxic T lymphocyte-associated antigen 4.

intrinsic and acquired resistance and a thorough understanding of resistance mechanisms is essential for 
developing effective drugs (Figure 3). For example, EGFR inhibitors are effective against KRAS WT 
mCRC but not KRAS mutated mCRC and there is a need for effective agents in this poor prognosis 
group. Several clinical trials have assessed the combination of VEGF and chemotherapy, but no 
attractive results have been shown[9,188].

Overcoming resistance to EGFR
Administration of EGFR antibodies with MEK inhibitors has been tested in preclinical models, but 
clinical data are still limited[189]. Alterations in ctDNA in the following genes: KRAS, NRAS, MET, 
ERBB2, FLT3, EGFR, and MAP2K1 have been identified in patients with primary or secondary resistance 
to EGFR inhibition[190]. Thus, determining the ctDNA profiles of patients with mCRC might help 
predict patient response[191]. Güttlein et al[192] recently tested NRAS, KRAS, and BRAF mutations in 
liquid plasma biopsies of patients with mCRC and reported a 12- and 4-mo median PFS of RAS/BRAF 
WT and RAS/BRAF mutated patients, respectively. The frequency of plasma mutations was highest for 
KRAS (34%). This study suggested that analysis of these mutations in the plasma of mCRC patients can 
be used to predict OS. The REVEAL study identified multiple actionable targets by performing NGS 
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Table 5 Agents targeting other pathways under clinical investigation for the treatment of drug-resistant and metastatic colorectal 
cancer

Agent Targeted 
molecule Condition Study phase Clinical trial 

identifier

CB-103 Notch Resistant to oxaliplatin or irinotecan-based therapy advanced 
or mCRC

Phase I/II NCT03422679

RO4929097 Notch mCRC Phase II NCT01116687

WNT974 Wnt BRAF-mutant mCRC Phase I/II NCT02278133

FOXY-5 Wnt mCRC Phase I NCT02020291

LGK974 Wnt BRAF mutant CRC Phase I NCT01351103

First-line therapy mCRC Phase II NCT00636610Vismodegib (GDC-0449) Hedgehog

mCRC Phase II NCT00959647

LDE225 Hedgehog mCRC Phase I NCT01576666

NIS793 TGF Advanced CRC Phase I NCT02947165

LY3200882 TGF Advanced chemotherapy -resistant CRC with an activated 
TGF-beta Signature

Phase I/II NCT04031872

KRAS wild-type mCRC Phase I/II NCT00788957Ganitumab IGF-1R

KRAS-mutant mCRC Phase II NCT00813605

Dalotuzumab (MK-0646) IGF-1R mCRC Phase II NCT00614393

Cixutumumab (IMC-
A12)

IGF-1R mCRC resistant to EGFR therapy Phase II NCT00503685

Wnt: Wingless-related integration site; mCRC: Metastatic colorectal cancer; TGF: Transforming growth factor; IGF-1R: Insulin growth factor receptor-1; 
EGFR: Epidermal growth factor receptor.

and transcriptional analysis of tumor and liquid biopsies during and after standard first-line 
chemotherapy treatment of patients with mCRC[193]. Differentially identified genes reported by this 
study were associated with EMT, ECM modulation, metabolism regulation, and several oncogenic 
pathways, such as PI3K/AKT and MAPK[193]. This study also reported the secreted phosphoprotein 1/
osteopontin gene as a potentially druggable target whose inhibition also modulates the previously 
mentioned oncogenic pathways. Interestingly, the approach devised in this study aids in identifying 
mutations and transcriptional changes following first-line treatment, and thus can be used to predict 
novel resistance mechanisms and manage them by administering the appropriate targeted agents. 
Several clinical studies are underway to determine patient subsets who can benefit from anti-EGFR 
therapy[194,195]; however, sensitivity thresholds in PCR should be taken into consideration since they 
can affect the genotyping of KRAS, NRAS, BRAF and PIK3C. This would improve the selection of 
treatment for mCRC with anti-EGFR therapy, as shown by the ULTRA trial[196]. A prospective-
retrospective cohort study documented that ctDNA KRAS tested using Digital PCR showed consistency 
with tumor tissues obtained from mCRC patients and predicted responses to EGFR inhibition[197]. 
Notably, recent studies have demonstrated that while left-sided KRAS WT mCRC should be preferen-
tially treated with anti-EGFR agents, right-sided tumors might respond better to bevacizumab plus 
chemotherapy; however, optimization of treatment for these subsets of tumors is yet to be achieved[198-
200]. Reversal strategies have emerged to overcome intrinsic resistance, and these include development 
of new EGFR inhibitors, combination of anti-EGFR with multitargeted inhibitors, development of small 
molecules that enhance the effect of anti-EGFR agents, and the implementation of metabolic regulators
[201]. The development of EGFR mAbs that bind to mutated extracellular domains may enhance the 
efficacy of these treatments. A study involving CRC patients showed that MM-151, a mAb that binds to 
different regions of EGFR, significantly inhibits EGFR signaling and decreases mutations in ctDNA
[202]. The FDA-approved anti-EGFR agent, necitumumab, was developed to bind to EGFR that harbors 
the most common cetuximab-resistant variant[203]. The first-in-class anti-EGFR non-overlapping mAbs 
mixture Sym004 has been documented to suppress mutant EGFR signaling in cetuximab-resistant cell 
lines and in xenograft models, contrary to cetuximab and panitumumab[204]. Interestingly, Sym004 is 
currently under clinical investigation for the treatment of mCRC (Table 1 and Figure 1). Notably, 
recombinant protein-based therapeutics have become an interesting therapeutic option for the treatment 
of resistant mCRC. A very recent study showed that PEPDG278D, a recombinant human protein that 
induces the degradation of both EGFR and HER2, exerts strong anti-tumor activity and overcomes 
resistance to anti-EGFR therapy in CRC PDX[205]. As for patients with KRAS-mutant CRC, a fully 
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Figure 3 Mechanisms of resistance to targeted therapy and strategies to overcome resistance in colorectal cancer. A: Resistance 
mechanisms; B: Strategies to overcome resistance. EGFR: Epidermal growth factor receptor; HER2: Human epidermal growth factor receptor 2; VEGF: Vascular 
endothelial growth factor; MEK: Mitogen-activated extracellular signal-regulated kinase; MAP2K1: Mitogen-Activated Protein Kinase 1; PI3KCA: Phosphoinositide 3-
kinases catalytic subunit alpha; MAP2K1: Mitogen-activated protein kinase 1; HGF: Hepatocyte growth factor; MET: Mesenchymal epithelial transition; ERBB2: Erb-B2 
Receptor Tyrosine Kinase 2; TME: Tumor microenvironment; FGF: Fibroblast growth factor; PDGF: Platelet-derived growth factor; PD-1: Programmed death-1; PD-L1: 
Programmed death ligand-1; CTLA-4: cytotoxic T lymphocyte-associated antigen 4.

humanized EGFR mAb (GC1118) showed significant inhibitory effects against KRAS-mutant CRC PDX
[206] and hopes are now placed on the use of this novel compound for better targeting of these tumors.

Extrinsic resistance is mainly mediated by changes in the TME, specifically immune cells and CAFs, 
in addition to novel development of KRAS mutations and activation of angiogenesis[207,208]. Strategies 
to remodel the TME are usually beneficial to increase the efficacy of anti-EGFR antibodies and they may 
include activation of T cells and natural killer cells, suppression of CAFs, and inhibition of angiogenesis 
through VEGF blockade[201].

Interestingly, rechallenge and reintroduction strategies have been implemented in recent years and 
have been tested on patients with mCRC who have received an anti-EGFR therapy and whose treatment 
was halted[209]. Rechallenge refers to anti-EGFR re-treatment of KRAS WT mCRC patients who have 
initially received and benefited from first-line anti-EGFR therapy before disease progression and 
receiving a different treatment. Reintroduction refers to re-exposure after prior discontinuation of anti-
EGFR therapy due to toxicity, intolerance, and other factors[209,210]. Very recently, Schulz et al[210] 
reported real-world evidence supporting the benefits of anti-EGFR treatment re-exposure in patients 
with mCRC, regardless of the reason for discontinuation of anti-EGFR therapy. The reintroduction or 
rechallenge of this treatment was associated with high OS and PFS[210], suggesting that the adminis-
tration of more than one-line of treatment with anti-EGFR could be a promising tool to manage disease 
progression, given the limitations in the current treatment options.

Overcoming resistance to anti-HER2 therapy
Several strategies have been tested to combat resistance to anti-HER2 therapy (Figure 3). These include 
dual HER2 and EGFR inhibition in the first-line setting and increasing sensitivity to HER2 blockade 
following resistance to trastuzumab-based therapy[190,211]. Patients with HER2-amplified mCRC that 
harbor RAS, BRAF, or PIK3CA mutations show limited response to HER2 inhibitors[211], and therefore 
require a novel therapeutic strategy that would concomitantly block feedback loops involving EGFR, 
BRAF, and KRAS in mutated mCRC. In terms of the first strategy, several compounds are currently 
under clinical investigation and new drugs are being proposed as candidates to inhibit both molecules 
and improve efficacy of CRC targeted therapy, particularly in HER2-positive mCRC[212,213] (Table 1). 
In fact, HER2 amplification has been linked with resistance to EGFR inhibition[214] and thus, may serve 
as a biomarker for these treatment regimens. Moreover, combinations of HER2 and PD-1 inhibitors are 
also being investigated in HER2 expressing advanced CRC or mCRC (Table 6).  As for patients with 
trastuzumab-refractory disease, a possible strategy would be to switch to another anti-HER2 agent. A 
novel antibody-drug conjugate (T-DM1) consisting of a mAb covalently linked to the cytotoxic agent 
DM1 has shown robust activity in patients with trastuzumab-resistant HER2-positive breast cancer
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Table 6 Combination of targeted therapies under clinical investigation for the treatment of drug-resistant and metastatic colorectal 
cancer

Agents Targeted molecule (s) Condition Study phase Clinical trial identifier

Encorafenib + Binimetinib + 
Cetuximab

Wild type plus BRAF V600E and 
MEK, EGFR

Previously untreated BRAF-
mutant mCRC

Phase II NCT03693170

Tucatinib + Trastuzumab HER2 First-line HER2-positive mCRC Phase III NCT05253651

Disitamab + Vedotin + Tislel-
izumab

HER2 and PD-1 HER2-positive advanced CRC Phase II NCT05493683

Vanucizumab + Bevacizumab VEGF-A/angiopoietin-2 and 
VEGF

mCRC Phase II NCT02141295

Regorafenib + Nivolumab VEGFR1/2/3 and PD-1 Later-lines treatment of mCRC Phase III NCT05328908

Lenvatinib + Pembrolizumab VEGFR1/2/3 and PD-1 mCRC Phase III NCT04776148

Fruquitinib + Camrelizumab VEGFR tyrosine kinase and PD-1 Non-MSI-H/dMMR mCRC Phase II NCT04866862

Disitamab + Vedotin + Pembrol-
izumab

HER2 and PD-1 HER2-expressing mCRC Phase II NCT05333809

Cobimetinib + Atezolizumab MAPK and PD-L1 mCRC Phase III NCT02788279

Cetuximab + Vemurafenib EGFR and mutated BRAF V600E BRAF V600E Mutated 
Advanced CRC

Phase II NCT03727763

Penpulimab + Anlotinib PD-1 and VEGFR1/2/3 Refractory mCRC Phase II NCT04970914

Favezelimab LAG-3 and PD-1 Previously treated metastatic 
PD-L1 positive CRC

Phase III NCT05064059

MEN1611 + Cetuximab PI3K and EGFR mCRC Phase I/II NCT04495621

Encorafenib + Cetuximab + 
Pembrolizumab

BRAF V600E, as well as wild-type 
BRAF, EGFR, andPD-1

Previously untreated mCRC Phase II NCT05217446

RXC004 + Nivolumab Porcupine (wnt activator) and 
PD1

RNF43 or RSPO aberrated, 
metastatic, MSS CRC after 
progression on SOC

Phase II NCT04907539

Regorafenib + Pembrolizumab VEGFR1/2/3PD1 Advanced or mCRC Phase I/II NCT03657641

Isatuximab + Atezolizumab Epitope on CD38, and PD-L1 mCRC Phase I/II NCT03555149

Atezolizumab + Selicrelumab + 
Bevacizumab

PD-L1, CD40 antigen, and VEGF mCRC Phase I/II NCT03555149

Atezolizumab + Idasanutlin PD-L1 and MDM2 mCRC Phase I/II NCT03555149

Atezolizumab + Regorafenib PD-L1 andVEGFR1/2/3 mCRC Phase I/II NCT03555149

Olaparib (MK-7339) + 
Bevacizumab

PARP and VEGF Unresectable or mCRC Phase III NCT04456699

Nivolumab + Ipilimumab PD-1 andCTLA-4 dMMR and/or MSI mCRC 
resistant to anti-PD1 
monotherapy

Phase II NCT05310643

Nivolumab + Ipilimumab PD-1 and CTLA-4 dMMR and/or MSI mCRC Phase II NCT04730544

Surufatinib + Sintilimab VEGFR1/2/3 and PD-1 Advanced MSS-Type CRC Phase II NCT04764006

Camrelizumab + Apatinib PD-1 and VEGFR-2 Advanced CRC Phase I/II NCT04067986

Fruquintinib + Tislelizumab + 
Stereotactic ablative 
radiotherapy

VEGFR1/2/3 and PD-1 mCRC Phase II NCT04948034

Avelumab + Cetuximab + 
mFOLFOXIRI

PD-1/PD-L1 and EGFR Unresectable mCRC Phase II NCT04513951

Geptanolimab (GB226) + 
Fruquintinib

PD-1 and VEGFR1/2/3 mCRC Phase I NCT03977090

Selinexor + Pembrolizumab Exportin 1 and PD-1 Previously treated mCRC with 
RAS mutations

Phase II NCT04854434

Panitumumab + Rilotumumab EGFR and HGF wild-type KRAS mCRC Phase I/II NCT00788957



Al Bitar S et al. Treating mCRC using targeted agents

WJG https://www.wjgnet.com 1412 March 7, 2023 Volume 29 Issue 9

Panitumumab + Ganitumab EGFR and IGF-1R wild-type KRAS mCRC Phase I/II NCT00788957

MEK: Mitogen-activated extracellular signal-regulated kinase; EGFR: Epidermal growth factor receptor; mCRC: Metastatic colorectal cancer; HER2: 
Human epidermal growth factor receptor 2; PD-1: Programmed death-1; PD-L1: Programmed death ligand-1; VEGF-A: Vascular endothelial growth factor-
A; VEGFR: Vascular endothelial growth factor receptor; MSI-H/dMMR: Microsatellite instability-high/mismatch repair deficient; MSS: Microsatellite 
stable; MAPK: mitogen-activated protein kinases; LAG-3 Lymphocyte activation gene 3; PI3K: Phosphoinositide 3-kinases; RNF43: Ring Finger Protein 43; 
RSPO: R-spondin; SOC: Standard of Care; PARP: Poly ADP ribose polymerase; CTLA-4: Cytotoxic T lymphocyte-associated antigen 4; HGF: Hepatocyte 
growth factor; IGF-1R: Insulin growth factor receptor-1.

[215]. A clinical trial is currently evaluating the efficacy of this new compound in HER2-positive mCRC 
progressing after trastuzumab and lapatinib (Table 1).

Overcoming resistance to anti-VEGF therapy
The major mechanisms of resistance to anti-VEGF therapy are still not fully elucidated. Redundancy in 
angiogenic signaling pathways and compensation through activation of other pathways may contribute 
to this resistance (Figure 3). Several agents are currently under development for the purpose of 
improving anti-angiogenic therapy efficacy (Table 2). Importantly, it has recently been shown that the 
location of the primary tumor affects the choice of targeted therapy for the treatment of mCRC, whereby 
left-sided tumors benefit more than right-sided tumors from EGFR inhibition[198,200]. As mentioned 
before, combining anti-angiogenic agents with immune checkpoint inhibitors has been shown to restore 
vascular-immune crosstalk to establish a strong anti-tumor immune response[216]. In addition to 
VEGF/VEGFR, targeting alternative angiogenic pathways such as FGF, PDGF, and angiopoietins can 
inhibit VEGF-independent angiogenic pathways that are activated in response to VEGF blockade[217]. 
In mCRC patients, increased plasma levels of FGF, PDGF, and placental growth factor were linked to 
disease progression during bevacizumab-based therapy[217]. The clinical efficacy of the dual inhibition 
of VEGF-A and angiopoietin-2 using vanucizumab is still under phase II clinical trials, though with 
promising results[218] (Table 2).  It is important to note that additional factors, including hypoxia and 
the limited blood supply restrict the delivery of drugs to the tumor site, resulting in resistance. In 
addition, cancer resistance to anti-VEGF therapy has been linked to activation of the HGF/c-MET 
pathway[219]. The latter activates key pathways involved in CRC metastasis and drug-resistance, 
including MAPK/ERK, STAT3, NF-κB, and PI3K/Akt[219]. Several MET inhibitors are being evaluated 
in the clinic for the purpose of blocking MET to overcome resistance to anti-VEGFR treatment (Table 3). 
This approach has produced effective results in other types of cancer, including advanced renal cell 
carcinoma[220]. Dual inhibition of MET and VEGFR2 using cabozantinib showed a strong anti-tumor 
effect in a preclinical CRC PDX model and the effect was greatest in tumors that possessed a mutation in 
the PIK3CA gene[146]. Several trials have been initiated to evaluate the efficacy of this compound in 
mCRC (Table 3).

Overcoming resistance to immunotherapy
Evading the immune system is an important hallmark of cancer, including CRC and is linked to 
immunotherapy and targeted therapy resistance[221].  Intrinsic resistance to immunotherapy is mainly 
conferred by changes in anti-tumor immune response, aberrant expression of tumor antigens, functional 
gene mutations, alterations in antigen presentation and other signaling pathways in tumor cells, in 
addition to secretion of inhibitory molecules by tumor cells[222] (Figure 3). Extrinsic mechanisms 
include activation of immunosuppressive cells in the TME and abnormal tumor vascularization[222]. 
One of the most effective strategies to deal with resistance to immunotherapy involves increasing tumor 
visibility and infiltration by T cells, through induction of immunogenic cell death by targeted agents 
and other therapies. The success of combining anti-angiogenic agents with immunotherapy has been 
shown in several cancers and is being evaluated in phase III clinical studies involving patients with 
advanced or metastatic and/or refractory CRC (Table 6). In addition, the efficacy of combining immune 
checkpoint inhibitors with chemokines that mediate the recruitment of T cells into the TME warrants 
investigation in mCRC. This could also be achieved by the administration of VEGF inhibitors that 
would normalize tumor vasculature and permit T-cell infiltration[223].

Enhancing the immune system function is also a good strategy to activate effector T cells and inhibit 
immunosuppressive immune cells.  An emerging approach is the dual or combinatory inhibition of PD-
1/PD-L1 and CTLA-4 to concomitantly block immune system inhibitory pathways and has shown 
promising results in preclinical[224,225] and clinical[226] (Table 6) models of mCRC. Ongoing trials are 
also addressing genomic and epigenetic alterations by evaluating the efficacy of anti-PD-1 agents in 
combination with VEGFR or CTLA-4 inhibitors in dMMR and/or MSI mCRC (Table 6).

Implementation of better preclinical models
The importance of preclinical models has been highlighted in the case of mCRC. The rapidly emerging 
role of patient-derived tumor samples may be considered one of the revolutionizing approaches to 
improve treatment strategies. Such samples can be propagated in mice to produce PDXs or in three-
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dimensional cultures to produce patient-derived organoids (PDOs)[227-230]. These models are 
important for understanding and predicting treatment responses in drug-resistant CRC and mCRC. 
Molecular response predictors are usually identified in clinical trials by employing a statistically 
significant enrichment for a genetic mutation and correlating it with a clinical outcome in responsive 
and non-responsive patients. A major limitation of this approach is the inability to elucidate the 
mechanisms underlying this correlation and to validate whether these predictors influence response to 
treatment. Cancer cell line cultures have made it possible to gain insight into the functional processes; 
however, they do not recapitulate the in vivo structure, in addition to the genomic and functional hetero-
geneity of mCRC. Therefore, patient-derived models are ideal platforms with clinical fidelity and good 
reflection of disease diversity. These models are being used for target discovery and for characterization 
of response biomarkers to combat drug-resistance and to predict treatment response[228]. For example, 
PDX were used to validate the correlation between KRAS mutations in exon 2 and de novo resistance to 
EGFR inhibition and to identify HER2 as a potential target in cetuximab-resistant mCRC[89,231]. 
Additionally, these models were the first to identify KRAS exon 3 and 4 mutations as predictors of 
resistance to EGFR mAbs[89]. Both PDX and PDOs have clinical relevance; however, PDOs are easier to 
cultivate and are useful for high-throughput drug screening[232]. Subsequently, PDOs have been used 
to model CRC and study mechanisms of resistance. In addition, the newly emerging CRISPR/Cas9 
genome-editing tool has been applied to introduce mutations in normal human colorectal organoids and 
has confirmed the role of these mutations in CSC maintenance, in addition to metastasis and resistance 
to therapy[233,234]. The association between KRAS mutation and lack of response to EGFR blockade has 
been also validated in organoids derived from mCRC[235]. Importantly, results from PDOs have been 
shown to recapitulate clinical response to targeted therapies, including cetuximab and regorafenib[236]. 
Notably, PDO-based drug screening has been used to improve the accuracy and effectiveness of 
precision medicine, paving the way for PDO-based personalized therapy[237]. CRC PDOs can be also 
used to identify patients that benefit from a specific targeted therapy.

CONCLUSION
Given the high molecular heterogeneity associated with CRC, different mechanisms of resistance may 
develop. A multi-targeted approach to therapy and the use of combination targeted therapy as a first-
line treatment, rather than after the patients demonstrate drug-resistance and progress on treatment, 
have been an active area of research based on the efficacy of these strategies in preclinical models. 
Several clinical trials have investigated the efficacy of combination therapies targeted at two or three 
pathways; however, the high toxicity levels associated with these therapies is a limitation to bear in 
mind as it represents a critical challenge to the development of effective therapies for the treatment of 
drug-resistant and mCRC. Nevertheless, data from clinical studies are showing promising signs of 
efficacy. This has been made possible through targeting adaptive feedback pathways and the discovery 
and implementation of predictive biomarkers for targeted therapy, which are critical in identifying 
patients that could benefit from combination targeted therapy. Biomarker detection computational 
algorithms and tools are being designed for this purpose and should be followed by clinical validation 
and approval. Importantly, personalized treatment could be developed to promote survival and 
prognosis of CRC patients without causing adverse events. With the advancement of NGS and genome 
profiling, it has been possible to decipher predictive responses to anti-cancer treatments and to select the 
appropriate treatment for each individual, depending on the genetic characteristics and clinical tumor 
features. Strategic planning of treatment regimens is essential to enhance the effectiveness of targeted 
agents and to decrease the possibility of side effects. Conjugation of inhibitory molecules using 
Nanoparticle technology is an attractive approach in this case. Nanoparticles are being used for the 
targeted delivery of drugs to the affected tissues and optimization methods can be applied to increase 
their uptake efficiency.

Other tools that could help improve personalized medicine include the triphasic enhanced computed 
tomography radiomics signature that was recently tested by Cao et al[238] and has been shown to be 
effective in predicting CRC MSI status with 0.837 and 0.821 accuracy and sensitivity, respectively. 
Moreover, whole genome sequencing, multi-region whole exome sequencing, simultaneous single-cell 
RNA-sequencing, and single-cell targeted cDNA Sanger sequencing are being used to obtain single-cell 
genomic and transcriptomic landscapes of adjacent normal tissues, primary tumors, and metastatic 
tumors[239], which could also improve individualized treatment.

Given the importance of the gut microbiota in the progression of CRC, microbiome profiles can be 
integrated with other genomic and epigenomic profiles to enhance personalized targeted therapies 
against CRC, resulting in better clinical outcomes. Nonetheless, this adds another level of complexity to 
the application of this approach. Interestingly, modification of the gut microbiota through targeted 
inhibition of pathogenic bacteria can be used to prepare patients for CRC treatment by augmenting the 
host immune system.

Changes in mutations or transcription should be monitored during administration of treatment, in 
addition to changes in immune responses and inflammatory molecules that can influence the choice of 
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treatment. These immune signatures may be indispensable for improving clinical outcome. 
Interestingly, it has been reported that the peripheral blood repertoire of T cell receptor changes during 
the course of chemotherapy in patients with mCRC, and thus could have a prognostic value[12].

In summary, the application of personalized medicine requires the integration of tumor mutations 
and epigenetic modifications, TME gene expression, host immune proficiency, and their changes during 
disease progression and treatment. The constant search for novel targets involved in drug-resistance 
and metastasis will lead to the identification of interesting molecular traits that can be modulated using 
biomarker-driven treatments to overcome resistance to therapy.
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Abstract
Artificial intelligence (AI) has experienced substantial progress over the last ten 
years in many fields of application, including healthcare. In hepatology and 
pancreatology, major attention to date has been paid to its application to the 
assisted or even automated interpretation of radiological images, where AI can 
generate accurate and reproducible imaging diagnosis, reducing the physicians’ 
workload. AI can provide automatic or semi-automatic segmentation and 
registration of the liver and pancreatic glands and lesions. Furthermore, using 
radiomics, AI can introduce new quantitative information which is not visible to 
the human eye to radiological reports. AI has been applied in the detection and 
characterization of focal lesions and diffuse diseases of the liver and pancreas, 
such as neoplasms, chronic hepatic disease, or acute or chronic pancreatitis, 
among others. These solutions have been applied to different imaging techniques 
commonly used to diagnose liver and pancreatic diseases, such as ultrasound, 
endoscopic ultrasonography, computerized tomography (CT), magnetic 
resonance imaging, and positron emission tomography/CT. However, AI is also 
applied in this context to many other relevant steps involved in a comprehensive 
clinical scenario to manage a gastroenterological patient. AI can also be applied to 
choose the most convenient test prescription, to improve image quality or 
accelerate its acquisition, and to predict patient prognosis and treatment response. 
In this review, we summarize the current evidence on the application of AI to 
hepatic and pancreatic radiology, not only in regard to the interpretation of 
images, but also to all the steps involved in the radiological workflow in a broader 
sense. Lastly, we discuss the challenges and future directions of the clinical 
application of AI methods.
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Core Tip: The gastroenterology field is changing with the application of artificial intelligence (AI) 
solutions capable of assisting and even automating the interpretation of radiological images (ultrasound, 
endoscopic ultrasound, computerized tomography, magnetic resonance imaging, and positron emission 
tomography), generating accurate and reproducible diagnoses. AI can further be applied to other steps of 
the radiological workflow beyond image interpretation, including test selection, image quality 
improvement, acceleration of image acquisition, and prediction of patient prognosis and outcome. We 
herein discuss the current evidence, challenges, and future directions on the application of AI to hepatic 
and pancreatic radiology.

Citation: Berbís MA, Paulano Godino F, Royuela del Val J, Alcalá Mata L, Luna A. Clinical impact of artificial 
intelligence-based solutions on imaging of the pancreas and liver. World J Gastroenterol 2023; 29(9): 1427-1445
URL: https://www.wjgnet.com/1007-9327/full/v29/i9/1427.htm
DOI: https://dx.doi.org/10.3748/wjg.v29.i9.1427

INTRODUCTION
Malignant tumors of the liver and pancreas are among the most common and lethal types of cancer. 
According to the recent GLOBOCAN 2020 data[1], liver and pancreas are the 6th and 12th most common 
sites for primary cancer, with 905677 and 495773 new cases in 2020, respectively. However, they also 
represent the 3rd and 7th neoplasia with the highest mortality, causing 830180 and 466003 deaths 
worldwide in 2020, respectively. If taken combined, cancer at the liver or pancreas thus represents the 
5th most incident and the second most lethal one.

Cancer at these locations account for almost as many deaths as cases. Five-year survival rates are 20% 
for liver cancer[2] and as low as 11% for pancreatic cancer[3], making them two of the cancer sites with 
the poorest prognosis. Other non-oncologic diseases affecting these organs are also highly prevalent, 
such as diffuse liver disease, including chronic liver disease, which affects tens of millions of people 
globally and represents a substantial socioeconomic burden[4].

Clinical outcomes of patients with these types of disease depend on a variety of factors, including 
stage and disease extension as assessed by imaging, and correct election of treatment. Thus, there is an 
unmet need for new tools capable of assisting specialists in early detection, characterization, and 
management of these diseases.

In recent years, artificial intelligence (AI) has shown promise in different areas of healthcare. The 
evaluation of medical images by machine learning (ML) approaches is a leading research field which, in 
gastroenterology, has applications in automatic analysis of different types of images, such as radiology, 
pathology, and endoscopy studies[5].

The first applications of AI to radiology have been dominated by anatomic locations such as the brain 
or the breast. Image analysis of abdominal organs, such as the liver and pancreas, are more challenging. 
Magnetic resonance imaging (MRI) in these locations, especially at 3 T, is prone to motion and field 
inhomogeneity artifacts, which are aggravated by larger fields of view[6]. As a result, advances in 
automatic analyses of abdominal images have gathered comparatively less attention. Nonetheless, the 
application of AI in liver and pancreas imaging is also gaining increasing interest (Figure 1). The goal of 
this review is to summarize the current experience on the use of AI to assist radiologists in their 
workflow, acquisition, and interpretation of medical images of the liver and pancreas.

AI IN RADIOLOGY: BASIC PRINCIPLES
Artificial intelligence is expected to revolutionize the medical field, deeply impacting the hospital and 
clinical settings by potentially improving diagnostic accuracy, treatment delivery, and allowing a more 
personalized medical care[7]. Radiology will arguably be one the most changed areas of medicine 
because of AI implementation in its workflows, as the information-rich images generated in this field 
are an excellent source of data for the development of AI algorithms. Broadly, the term AI refers to a 
wide range of technologies and computing processes capable of imitating human intelligence to extract 
information from input data to solve a problem. This rapidly evolving area has a vocabulary of its own 
(Figure 2) that can be daunting to those not familiar with the field, including terms that are oftentimes 

https://www.wjgnet.com/1007-9327/full/v29/i9/1427.htm
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Figure 1 PubMed results by year using the search terms. A and B: Artificial intelligence radiology (top) and artificial intelligence AND (liver OR pancreas) 
(bottom).

Figure 2 Relation between artificial intelligence and related subdisciplines, neural network architectures, and/or techniques. ANN: Artificial 
neural network; FCN: Fully convolutional network; CNN: Convolutional neural network; GAN: Generation adversarial network.

used as synonyms to AI, such as ML.
ML is actually a subset of AI consisting of those methods capable of training a computer system to 

perform a given task based on provided information or experience without explicit programming, thus 
conferring machines the ability to learn[8]. The aim of ML is to predict an output based on a given input 
(a training dataset). Common ML applications in radiology include classification, image segmentation, 
regression, and clustering[9]. ML can be sub-divided into supervised and unsupervised learning[10]. In 
supervised learning, the most common type used in medical research, the algorithm is trained with 
labeled examples (i.e., the correct output for these training data, known as ground truth, is already 
known). Among the methods employed in supervised learning, random forest (RF), and specially, 
support vector machine (SVM), are powerful algorithms frequently used for the classification of images
[7], including image segmentation. Conversely, in unsupervised learning, the ground truth is not 
known, as the algorithm is trained with unlabeled data that must be classified by the algorithm itself.

Artificial neural networks (ANNs), named after their brain-inspired structure and functioning 
process, can be trained via both supervised and unsupervised ML. In these ANNs, input information 
flows through a variable number of layers composed of artificial neurons, joined by weighted 
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connectors, that process the data to obtain an output that matches the ground truth as closely as 
possible. Generative adversarial networks (GANs) are an example of ANN trained via unsupervised 
learning. GANs include two networks: One which creates new data based on input examples (i.e., 
generator), and one which distinguishes between different types of data (i.e., discriminator)[11]. These 
networks can be used to produce realistic, synthetic images as a strategy for data augmentation[12]. 
Similarly, the structure of convolutional neural networks (CNNs), a type of ANN specially designed for 
computer vision tasks, is based on that of the animal visual cortex. Typically used in image recognition 
and classification, in CNNs the input information is filtered and analyzed through a convolutional layer, 
and the size of the resulting image is subsequently reduced by a pooling layer. This two-step process 
will be repeated as many times as layers integrate the CNN, with a final step in which an ANN will 
classify the image (Figure 3). Fully convolutional networks (FCNs, a type of ANN that only performs 
the convolution step) are the basis for U-net, a modified architecture that consists of a contracting path 
including several convolutional and pooling layers to capture context, followed by a symmetric 
expanding path including a number of up-sampling and convolutional layers to enable accurate 
localization. U-net is a popular network for the development of automatic segmentation algorithms, as it 
requires relatively small datasets for algorithm training[13].

Deep learning (DL) is a section of ML that utilizes multi-layered ANNs, referred to as deep neural 
networks (DNN), allowing the exploration of more complex data[14]. DL algorithms are gaining 
attention and raising considerable enthusiasm thanks to their scalability, easy accessibility, and ability to 
extract relevant information from the data without further indications other than input data. The 
recently developed nnU-Net, a publicly available DL-based segmentation tool capable of automatically 
configuring itself, has set a new state-of-the-art standard thanks to the systematization of the config-
uration process, which used to be a manual, complicated, and oftentimes limited task in previous 
approaches[15]. Improvement of the computational resources and the development of cloud techno-
logies are also contributing to the application of DL architectures in a wide variety of research fields 
beyond medicine[14].

Closely related to the development of AI, the term radiomics refers to the computational extraction (
via ML and DL algorithms) of quantitative data from radiological image features[16]. A particularly 
useful and valuable application of radiomics is the analysis of radiologic textures, defined as the 
differences in the grayscale intensities in the area of interest, which have been associated with 
intratumor heterogeneity[17] and that can potentially provide clinically relevant information that 
otherwise would remain unknown.

IMAGE ACQUISITION
The ultimate aim of computerized tomography (CT) and MRI is to unveil clinically relevant 
information; thus, the importance of this information relies heavily on the quality of the image. For CT, 
radiation dose is a parameter as important as image quality, and both are closely related to acquisition 
and reconstruction times. Iterative reconstruction (IR) algorithms[18] are the current technique of choice 
to transform the raw data into a 3D volume presented as an anatomical image. These algorithms 
generate an image estimate that is projected forward into a synthetic sinogram; subsequently, this image 
estimate is iteratively rectified by comparison with the real raw data sinogram until the algorithm’s 
predefined endpoint condition is met, resulting in enhanced image quality and thus allowing an 
important dose reduction[19]. DL reconstruction algorithms (DLR) are currently being developed with 
the aim to further improve image quality, therefore further reducing radiation doses. Compared to IR 
algorithms, DLR algorithms trained with low-dose data offer an improved signal-to-noise (SNR) ratio, 
as demonstrated by the U-net-based CNN developed by Jin et al[20], thus facilitating the detection of 
lesions of any kind and the increased use of low-dose imaging. Currently, there are two commercially 
available DLRs: TrueFidelity (GE Healthcare, Chicago, IL, United States) and AiCE (Canon Medical 
Systems, Otawara, Japan). Akagi et al[21] employed AiCE in their study and reported improved 
contrast-to-noise ratio and image quality in CT images, compared to images created with a hybrid IR 
algorithm. Although the preliminary results are exciting, further validation for these DLR algorithms is 
required, and real dose reduction in the clinical setting has yet to be demonstrated.

An important setback of MRI is the long acquisition time, forcing the patient to lay still for a relatively 
long period and with any movement affecting the quality of the image. One way to reduce acquisition 
time is compressed sensing, based on the idea that if signal information is only present in a small 
portion of pixels, that sparsity can be used to reconstruct a high-definition image from considerably less 
collected data (undersampling). Kaga et al[22] evaluated the usefulness of the Compressed SENSE 
algorithm (Philips, Amsterdam, The Netherlands) in MRI of the abdomen using diffusion weighted 
images (DWIs) and reported a significantly improved image noise and contour of the liver and pancreas 
and higher apparent diffusion coefficient values, thus offering superior image quality compared to 
parallel imaging (PI)-DWI[22].

AI applications have also been designed to automate MRI and CT protocol selection with the aim to 
standardize workflows and increase effectiveness in the radiology setting. The selection of an 
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Figure 3 Diagram of a convolutional neural network used for the classification of a focal liver lesion in a computerized tomography 
image. HCC: Hepatocellular carcinoma; CT: Computed tomography.

appropriate imaging protocol requires taking into account factors including the type of procedure, 
clinical indication, and the patient’s medical history. The increasing incorporation of electronic medical 
records and other digital content has opened opportunities for the application of natural language 
processing (NLP) methods to extract structured data from unstructured radiology reports. López-Úbeda 
et al[23] developed an NLP-based classification system for automated protocol assignment that offered 
an overall accuracy of 92.25% for the CT and 86.91% for the MRI datasets. This system has already been 
successfully implemented and is currently in use at the HT Médica centers.

Information about the respiration of the patient can be used for functional studies, overall 
monitoring, or motion compensation during the performance of an MRI. Typically, breathing is 
measured via belts or nasal sensors that can potentially alter the raw MRI data. Using adaptive 
intelligence, the laser-based VitalEye system (Philips) registers a contactless continuous respiratory 
signal, with up to 50 body locations analyzed simultaneously and in real time, thus producing a more 
robust respiratory trace compared to traditional respiratory belts[24]. Moreover, as soon as the patient is 
lying on the table, the BioMatrix Respiratory Sensors (Siemens AG, Munich, Germany) embedded in the 
spinal coil produce a local magnetic field that changes with the variation of lung volume during 
breathing. These changes are registered, and the breathing pattern is integrated to optimize image 
quality[25]. By standardizing and accelerating the workflow, these advances allow technicians and 
radiologists to concentrate on the patient.

IMAGE ANALYSIS
Segmentation of liver and pancreas
Image analysis has experimented a huge progression with the advent of AI, and especially with DL, 
reaching state-of-art performances in many biomedical image analysis tasks[26-28] (Table 1). Among 
them, segmentation is one of the most important in radiology. For instance, accurate pancreas 
segmentation has applications in surgical planning, assessment of diabetes, and detection and analysis 
of pancreatic tumors[29]. Another key application of organ and lesion contouring is treatment volume 
calculation for radiotherapy planning. However, boundary delimitation of anatomical structures in 
medical images remains a challenge due to their complexity, particularly in the upper abdominal cavity, 
where there are constant changes in the position of the different organs with the respiratory cycle, as 
well as the occurrence of anatomical variants and pathological changes of organs[30].

The intersubject variability and complexity of the pancreas make segmentation of this organ a 
demanding task. Segmentation of pancreatic cancer lesions is particularly challenging because of their 
limited contrast and blurred boundaries against the background pancreatic parenchyma in CT and MR 
images[31]. In addition, other factors such as body mass index, visceral abdominal fat, volume of the 
pancreas, standard deviation of CT attenuation within pancreas, and median and average CT 
attenuation in the immediate neighborhood of the pancreas may affect segmentation accuracy[29,32].

These problems lead to high segmentation uncertainty and inaccurate results. To tackle these 
problems, Zheng et al[33] proposed a 2D, DL-based method that describes the uncertain regions of 
pancreatic MR images based on shadowed sets theory. It demonstrated high accuracy, with a dice 
similarity coefficient (DSC) of 73.88% on a cancer MRI dataset and 84.37% on the National Institutes of 
Health (NIH) Pancreas dataset (which contains 82 CT scans of healthy pancreas), respectively. The same 
authors reported[34] a more sophisticated 2.5D network that benefits from multi-level slice interaction. 
They surpassed state-of-art performances in the NIH dataset, with a DSC of 86.21% ± 4.37%, sensitivity 
of 87.49% ± 6.38%, and a specificity of 85.11% ± 6.49%.
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Table 1 Works proposed for automated image analysis

Image analysis Anatomical area Modality AI model Ref.

CNN [33,34,110]

UDCGAN [111]

Pancreas MRI

3D-Unet [112]

SSC (no AI) [36]CT

PA (Atlas-no AI) [39]

CNN [37,38,42,113]

Segmentation

Liver

MRI

GAN [43]

CNN [47]

SG-DIR (no AI) [48]

CT, MRI

Cycle-GAN + UR-Net [46]

Registration Liver

4D-MRI Non-rigid [49]

MRI: Magnetic resonance imaging; CT: Computerized tomography; 4D-MRI: Four-dimensional magnetic resonance imaging; CNN: Convolutional neural 
network; UDCGAN: U-Type densely connected generation adversarial network; SCC: Sparse shape composition; AI: Artificial intelligence; PA: 
Probabilistic atlas; GAN: Generation adversarial network; SG-DIR: Structure-guided deformable image registration; UR-Net: Unsupervised registration 
network.

The liver is also a popular target for automated segmentation algorithms. Automatic segmentation of 
this organ is regarded as somewhat less challenging than that of the pancreas, with reported DSC scores 
typically in the > 0.90 range[35].

Li et al[36] presented a liver segmentation method from abdominal CT volumes for both healthy and 
pathological tissues, based on the level set and sparse shape composition (SSC) method. The 
experiments, performed using public databases SILVER07 and 3Dicardb, showed good results, with 
mean ASD, RMSD, MSD, VOE, and RVD of 0.9 mm, 1.8 mm, 19.4 mm, 5.1%, and 0.1%, respectively. 
Moreover, Winther et al[37] used a 3D DNN for automatic liver segmentation along with a Gd-EOB-
DTPA-enhanced liver MR images dataset. Results show an intraclass correlation coefficient (ICC) of 
0.987, DSC of 96.7% ± 1.9%, and a Hausdorff distance of 24.9 mm ± 14.7 mm compared with two expert 
readers who corresponded to an ICC of 0.973 and a DSC of 95.2% ± 2.8%. Finally, Mohagheghi et al[38] 
used a CNN but further incorporated prior knowledge. The model learnt the global shape information 
as prior knowledge by using a convolutional denoising auto-encoder; then, this knowledge was used to 
define a loss function and combine it with the Dice loss in the main segmentation model. This model 
with prior knowledge improved the performance of the 3D U-Net model and reached a DSC of 97.62% 
segmenting CT images of the Silver07-liver dataset.

Organ segmentation is even more challenging in pediatric patients studied with CT, as it is acquired 
at a low dose to minimize harmful radiation to children, thus having a lower SNR. Nakayama et al[39] 
proposed a liver segmentation algorithm for pediatric CT scans using a patient-specific level set distri-
bution model to generate a probabilistic atlas, obtaining a DSC index of 88.21% in the segmentation. 
This approach may be useful for low dose studies in general, i.e., also in the adult population.

Algorithms for automatic segmentation of the liver using MR images have proven equally efficient. 
For instance, Bobo et al[40] used a 2D FCN architecture to segment livers on T2-weighted MR images 
with a DSC score of 0.913. In a recent paper, Saunders et al[41] systematically analyzed the performance 
of different types of MR images in the training of CNN for liver segmentation, using a 3D U-net 
architecture. Water and fat images outperformed other modalities, such as T2* images, with a DSC of 
0.94.

Conversely, high-quality automatic segmentation of liver lesions is not an easy task, since the low 
contrast between tumors and healthy liver parenchyma in CT images, their inhomogeneity, and its 
complexity pose a challenge for liver tumor segmentation. In addition, motion-induced phase errors due 
to peristaltic and respiratory movements negatively affect image quality and assessment of liver lesions 
in MR images. A 3D CNN was used by Meng et al[42] where a special three-dimensional dual path 
multiscale convolutional neural network (TDP-CNN) was designed for liver tumor segmentation. 
Results achieved in the LiTS public dataset were a DSC of 68.9%, Hausdorff distance of 7.96 mm, and 
average distance of 1.07 mm for liver tumor segmentation and a DSC of 96.5%, Hausdorff distance of 
29.162 mm, and average distance of 0.197 mm for liver segmentation. A different approach for liver 
tumor segmentation was proposed by Chen et al[43]. In this work, an adversarial densely connected 
network algorithm was trained and evaluated using the Liver Tumor Segmentation challenge dataset. 
Results revealed an average Dice score of 68.4% and ASD, MSD, VOE, and RVD of 21 mm, 124 mm, 
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0.46%, and 0.73%, respectively.
Automatic contouring of hepatic tumor volumes has also been reported using CT scans, a modified 

SegNet CNN[44], and dynamic contrast enhanced (DCE)-MRI images in a U-net-like architecture[45], 
for example.

Some medical imaging vendors incorporate solutions for liver segmentation and hepatic lesion 
characterization integrated in the proprietary radiologist’s workflow. For instance, the Liver Analysis 
research application from Siemens Healthcare (Erlangen, Germany) aims to provide AI support for liver 
MRI and CT reading. The tool includes DL-based algorithms for automatic segmentation of the whole 
liver, functional liver segments, and other abdominal organs like the spleen and kidneys (Figure 4A). It 
also features an AI method to automatically detect and segment focal liver lesions, providing lesion 
diameter, volume, and 3D contours (Figure 4B).

Registration
Medical image registration seeks to find an optimal spatial transformation that best aligns the 
underlying anatomical structures. Medical image registration is used in many clinical applications such 
as image guidance systems (IGS), motion tracking, segmentation, dose accumulation, image 
reconstruction, etc[28]. In clinical practice, image registration is a major problem in image-guided liver 
interventions, especially for the soft-tissues, where organ shape changes occurring between pre-
procedural and intra-procedural imaging pose significant challenges[46]. Schneider et al[47] showed 
how semi-automatic registration in IGS may improve patient safety by enabling 3D visualization of 
critical intra- and extra-hepatic structures. A novel IGS (SmartLiver) offering augmented reality visual-
ization was developed to provide intuitive visualization by using DL algorithms for semi-automatic 
image registration. Results showed a mean registration accuracy of 10.9 mm ± 4.2 mm (manual) vs 13.9 
mm ± 4.4 mm (semi-automatic), hence significantly improving the manual registration. Kuznetsova et al
[48] assessed the performance of structure-guided deformable image registration (SG-DIR) relative to 
rigid registration and DIR using TG-132 recommendations for 14 patients with liver tumors to whom 
stereotactic body radiation therapy (SBRT) was applied. The median DSC for rigid registration was 88% 
and 89% for DIR, and 90% for both SG-DIR using liver contours only and using liver structures along 
with anatomical landmarks. However, most of the existing volumetric registration algorithms are not 
suitable for the intra-procedural stage, as they involve time-consuming optimization. In the report by 
Wei et al[46], a fast MR-CT image registration method was proposed for overlaying pre-procedural MR 
(pMR) and pre-procedural CT (pCT) images onto an intra-procedural CT (iCT) image to guide thermal 
ablation of liver tumors. This method, consisting of four DL-based modules and one conventional ANTs 
registration module, showed higher Dice ratios (around 7% improvement) over tumors and compatible 
Dice ratios over livers. However, its main advantage was the computational time cost of around 7 s in 
the intra-procedural stage, which is only 0.1% runtime in the conventional way (i.e., ANTs).

Treatment planning concepts using the mid-ventilation and internal-target volume concept are based 
on the extent of tumor motion between expiration and inspiration. Therefore, four-dimensional (4D) 
imaging is required to provide the necessary information about the individual respiration-associated 
motion pattern. Weick et al[49] proposed a method to increase the image quality of the end-expiratory 
and end-inspiratory phases of retrospective respiratory self-gated 4D MRI data sets using two different 
non-rigid image registration schemes for improved target delineation of moving liver tumors. In the 
first scheme, all phases were registered directly (dir-Reg), while in the second next neighbors were 
successively registered until the target was reached (nn-Reg). Results showed that the Median dir-Reg 
coefficient of variation of all regions of interest (ROIs) was 5.6% lower for expiration and 7.0% lower for 
inspiration compared with nn-Reg. Statistically significant differences were found in all comparisons.

DIAGNOSIS
Two decades ago, the methods proposed for ML-based diagnosis required manually extracting the 
features from the images. This tedious step has been partially relieved with the irruption of CNNs. 
However, techniques such as radiomics are still in use to try to improve the performance of novel AI 
methods for medical diagnosis. Radiomics concerns the high throughput extracting of comprehensible 
features from radiological images that can be further analyzed by ML algorithms for classification or 
regression tasks. In this section, different methods proposed for liver and pancreas imaging diagnosis 
are reviewed (Table 2).

Liver-CT
Starting with chronic liver disease, Choi et al[50] presented a CNN model for staging liver fibrosis from 
contrast-enhanced CT images. Before using the CT image as input for the CNN, the liver is segmented. 
The testing dataset included 891 patients and the CNN achieved a staging accuracy of 79.4% and an 
AUC of 96%, 97%, and 95% for diagnosing significant fibrosis, advanced fibrosis, and cirrhosis, 
respectively. A different approach was proposed by Nayak et al[51], where SVM was used instead of 
CNN for aiding in the diagnosis of cirrhosis and hepatocellular carcinoma (HCC) from multi-phase 
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Table 2 Summary of works based on artificial intelligence for automated diagnosis of pancreas and hepatobiliary system diseases

Anatomical area Modality AI model What is diagnosed? Ref.

Liver Scintiscan ANN Chronic hepatitis and cirrhosis [114]

CT ANN HCC, intra-hepatic peripheral cholangiocar-
cinoma, hemangioma, metastases

[52]

CNN HCC, malignant liver tumors, indeterminate 
mases, hemangiomas, cysts

[53]

Liver fibrosis [50,115]

SVM Cirrhosis and HCC [51]

Malignant liver tumors [54]

KNN, SVM, RF HCC [116]

MRI CNN HCC [55]

Simple cyst, cavernous hemangioma, FNH, HCC, 
ICC

[56,57]

Extremely randomized trees Adenomas, cysts, hemangiomas, HCC, 
metastases

[58]

US PNN Benign and malignant focal liver lesions [65]

SVM Fatty liver [68]

HCC [66]

CNN Focal liver lesions: Angioma, metastasis, HCC, 
cyst, FNH

[67]

Liver fibrosis stages [69]

Biliary system MRI ANN Cholangiocarcinoma [59,60]

Lymph node status in ICC [117]

Pancreas CT Hybrid SVM-RF Pancreas cancer [76]

SVM Serous cystic neoplasms [72]

CNN IPMN, mucinous cystic neoplasm, serous cystic 
neoplasm, solid pseudopapillary tumor

[73]

MRI SVM IPMN [78]

US ANN Chronic pancreatitis, pancreatic adenocarcinoma [81]

CNN Malignancy in IPMN [82]

Autoimmune pancreatitis, pancreatic ductal 
adenocarcinoma, chronic pancreatitis

[83]

CT: Computerized tomography; MRI: Magnetic resonance imaging; US: Ultrasound; ANN: Artificial neural network; CNN: Convolutional neural network; 
SVM: Support vector machine; KNN: K-nearest neighbors; RF: Random forest; PNN: Probabilistic neural network; HCC: Hepatocellular carcinoma; FNH: 
Focal nodular hyperplasia; ICC: Intrahepatic cholangiocarcinoma; IPMN: Intra-ductal papillary mucinous neoplasm.

abdomen CT. Features were extracted from the segmented liver in all the phases, which were previously 
registered. Using 5-fold cross validation, they reported an accuracy of 86.9% and 81% for the detection 
of cirrhosis and HCC, respectively.

There are also several reports exploring the role of DL in the characterization of focal liver lesions 
(Figure 5). In this sense, Matake et al[52] applied an ANN to assist in the diagnosis of hepatic mases 
using clinical and radiological parameters extracted from CT images. The authors used 120 cases of liver 
diseases and implemented a leave-one-out cross-validation method for training and testing the ANN, 
reporting an AUC of 96.1%. Also using CT images, Yasaka et al[53] used a CNN for the differentiation of 
five different types of liver masses from contrast-enhanced CT. For testing, they used 100 liver mass 
images, reporting an accuracy of 84%. Similarly, Khan and Narejo[54] proposed Fuzzy Linguistic 
Constant (FLC) to enhance low contrast CT images of the liver before training a SVM to distinguish 
between cancerous or non-cancerous lesions. The reported classification accuracy was 98.3%. The 
proposed method also showed the ability to automatically segment the tumor with an improved 
detection rate of 78% and a precision value of 60%.
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Figure 4 In-house experience on liver assessment with artificial intelligence. Magnetic resonance studies of a patient with liver focal 
lesions (liver hemangiomas), processed with the Liver Analysis research application from Siemens Healthcare. A: Automatic segmentation of 
the whole liver, liver segments, and other abdominal organs; B: Automatic detection, segmentation, and measurement of the two liver hemangiomas.

Liver and biliary system MRI
Techniques concerning MR images have also been developed for the diagnosis and classification of focal 
liver lesions (Figure 6). Zhou et al[55] proposed a method using a novel CNN to grade HCC from DWIs. 
They applied a 2D CNN to log maps generated from different b-value images. In their work, they 
reported a validation AUC of 83% using 40 cases. A CNN was also trained by Hamm et al[56] and Wang 
et al[57] to classify six different focal hepatic lesions from T1-weighted MR images in the postcontrast 
phase. They used 60 cases for testing and reported a sensitivity and specificity of 90% and 98%, 
respectively. In the second part of their study, they transformed it into an “interpretable” DL system by 
analyzing the relative contributions of specific imaging features to its predictions in order to shed light 
on the factors involved in the network’s decision-making process. Finally, DCE-MRI and T2-weighted 
MRI, together with risk factor features, were applied to build an extremely randomized trees classifier 
for focal liver lesions[58], achieving an overall accuracy of 77%.

Some advancements have also been reached in the automatic diagnosis of lesions in the biliary system 
from MR cholangiopancreatography (MRCP) sequences. Logeswaran[59,60] trained an ANN classifier 
for assisting in the diagnosis of cholangiocarcinoma. He utilized 55 MRCP studies for testing and 
reported an accuracy of 94% when differentiating healthy and tumor images and of 88% in multi-
disease tests.

MRI is a superior technique in the evaluation of chronic liver disease in comparison with CT, but 
making the most of it requires considerable skills and optimization at the acquisition, post-processing, 
and interpretation phases[61]. AI has proved useful to assist radiologists in the MR-guided diagnosis 
and grading of these diseases, including liver fibrosis and non-alcoholic fatty liver disease[62].
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Figure 5 Computerized tomography scan of a 61-year-old male patient with colon carcinoma and liver metastases. The intensity histograms of 
regions with and without metastases are different; hence, the first order radiomics features[109], which are based on the intensity histogram will potentially be 
different.

Figure 6 Sixty-seven-year-old patient with pancreatic carcinoma and liver metastases treated with chemotherapy. The Digital Oncology 
Companion (Siemens Healthineers, Germany) artificial intelligence-based prototype automatically segments liver, portal and hepatic vessels, lesions, and 
surrounding anatomical structures. From left to right: screenshots of the segmented liver, vessels, and lesions; and generated 3D models.

Radiomics studies have been proposed to aid in the diagnosis of liver fibrosis. Kato et al[63] 
performed texture analysis of the liver parenchyma processed by an ANN to detect and grade hepatic 
fibrosis, with varying success depending on the type of MR sequence used (AUC of 0.801, 0.597, and 
0.525 for gadolinium-enhanced equilibrium phase, T1-weighted, and T2-weighted images, respectively).

Later, Hectors et al[64] developed a DL algorithm for liver fibrosis staging using gadolinium 
enhancement sequences acquired in the hepatobiliary phase, which showed good to excellent diagnostic 
performance, comparable to that of MR elastography.

Liver-US
Ultrasound (US) and endoscopic ultrasonography (EUS) are commonly used in the diagnostic work-up 
of several pancreatic and liver lesions. AI-based solutions have also been applied to US images in the 
assessment of focal and diffuse liver diseases in order to enhance their diagnostic capabilities. Acharya 
et al[65] suggested a method for aiding in the diagnosis of focal liver lesions from liver US images. The 
authors extracted features from US images and trained several classifiers, obtaining the highest AUC 
(94.1%) using a probabilistic neural network (PNN) classifier. Another approach is shown in Yao et al
[66], where a radiomics analysis was established for the diagnosis and clinical behavior prediction of 
HCC, showing an AUC of 94% for benign and malignant classification. Rightly, CNN architectures have 
also been developed for US images as in the report by Schmauch et al[67], where a CNN was employed 
to help in the diagnosis of focal liver lesions from US images. The authors used a dataset composed by 
367 2D US images for training and another dataset from 177 patients for testing, reporting a mean score 
of 89.1%.
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There is limited experience in the use of AI with US images with regards to diffuse liver disease. Li et 
al[68] used a SVM classifier to help in the diagnosis of fatty liver from US images. Input features were 
computed from ROIs selected by examiners. A total of 93 images were used for training and testing 
using leave-one-out cross-validation. The authors reported an 84% accuracy for normal livers and 97.1% 
for fatty livers. Moreover, a mix of radiomics features and DL techniques were used with two-
dimensional shear waver elastography (2D-SWE) for assessing liver fibrosis stages in Wang et al[69]. 
Results reached AUCs of 97% for cirrhosis, 98% for advanced fibrosis, and 85% for significant fibrosis.

Pancreas CT and PET/CT
The role of AI in the detection of pancreatic lesions from CT has been extensively investigated. 
Pancreatic cancer detection is a challenging task for radiologists and its improvement is a hot research 
topic. Chen et al[70] developed a DL-based tool including a segmentation CNN and a 5-CNN classifier 
for the detection of pancreatic cancer lesions, with a special focus on lesions smaller than 2 cm, in 
abdominal CT scans. Their model was able to distinguish between cancer and control scans with an 
AUC of 0.95, 89.7% sensitivity, and 92.8% specificity. Sensitivity for the detection of lesions smaller than 
2 cm was 74.7%[70]. Still focused on the identification of lesions smaller than 2 cm, Alves et al[71] 
proposed an automatic framework for pancreatic ductal adenocarcinoma (PDAC) detection based on 
state-of-the-art DL models. They trained an nnUnet (nnUnet_T) on a dataset including contrast-
enhanced CT scans from 119 PDAC patients and 123 healthy individuals for automatic lesion detection 
and segmentation. Additionally, two other nnUnets were trained to investigate the impact of anatomy 
integration, with nnUnet_TP segmenting both the pancreas and the tumor and nnUnet_MS segmenting 
the pancreas, tumor, and adjacent anatomical structures. All three networks were compared on an open 
access external dataset, with nnUnet_MS offering the best results with an AUC of 0.91 for the entire 
dataset and of 0.88 for lesions smaller than 2 cm[71]. Several studies have focused on the role of AI-
based solutions in the detection of pancreatic cystic lesions. Wei et al[72] presented a ML-based 
computer-aided diagnosis system to help in the diagnosis of pancreas serous cystic neoplasms from CT 
images. They extracted radiomic features from manual ROIs outlining the peripheral margin of each 
neoplasm. After selecting the most important features by using least absolute shrinkage selection 
operator regression, they trained a SVM classifier by a 5-fold cross validation with 200 patients. The 
authors used a validation cohort of 60 patients and reported and AUC of 83.7%, a sensitivity of 66.7%, 
and a specificity of 81.8%. Along the same lines, Li et al[73] also proposed a computer-aided framework 
for early differential diagnosis of pancreatic cysts without pre-segmenting the lesions by using densely 
connected convolutional networks (Dense-Net). In this approach, saliency maps were integrated in the 
framework to assist physicians to understand the decisions of the DL methods. Accuracy reported on a 
cohort of 206 patients with four pathologically confirmed subtypes of pancreatic cysts was 72.8%, 
significantly higher than the baseline of 48.1% according to the authors. Park et al[74] developed a 3D 
nnU-Net-based model for the automatic diagnosis of solid and cystic pancreatic neoplasms on 
abdominal CT scans. The model was trained on CT scans (852 patients) from both patients who 
underwent resection for pancreatic lesions and subjects without any pancreatic abnormalities, and 
performance was evaluated using receiver operating characteristic analysis in a temporally independent 
cohort (test set 1, including 603 patients) and a temporally and spatially independent cohort (test set 2, 
including 589 patients). This approach showed a remarkable capacity to identify solid and cystic 
pancreatic lesions on CT, with an AUC of 0.91 for the test set 1 and 0.87 for the test set 2. Furthermore, it 
offered a high sensitivity in the identification of solid lesions of any size (98%-100%) and cystic lesions 
of at least 1 cm (92%-93%)[74].

In the pursuit of more accurate models, some authors have combined CT images with other 
biomarkers, such as molecular markers or multimodal images. For example, Qiao et al[75] used CT scans 
and serum tumor markers (including serum carbohydrate antigens 50, 199, and 242) to train different 
types of networks (CNN, FCN, and U-Net) to diagnose pancreatic cancer with high sensitivity and 
specificity. Li et al[76] also used a hybrid SVM-RF model to classify normal and pancreas cancer from 
PET/CT images. First, they segmented the pancreas from CT images and registered the CT and PET 
series, then they extracted features from the segmented ROI in both types of studies. The authors tested 
the model using 10-fold cross validation with 80 cases and achieved 96.47% accuracy, 95.23% sensitivity, 
and 97.51% specificity.

Pancreas-MRI
MR is the technique of election for the assessment of complex pancreatic conditions. Thus, its 
association with AI is regarded as promising to help radiologists in diagnostic dilemmas regarding this 
organ. For instance, radiomics has been proposed as a way to predict the malignant potential of 
pancreatic cystic lesions, differentiating benign cysts from those likely to transform into pancreatic 
cancer[77].

There is limited experience with the use of AI in the detection of focal lesions with pancreatic MR 
studies. Corral et al[78] proposed the use of SVM to classify intraductal papillary mucinous neoplasms 
(IPMN). First, features were extracted using a CNN from T2-weighted and post-contrast T1-weighted 
MR images. For validation, authors used 10-fold cross-validation using 139 cases. They achieved an 
AUC of 78%. Kaissis et al[79] also developed a supervised ML algorithm which predicted the above-



Berbís MA et al. AI impact on hepatopancreatic imaging

WJG https://www.wjgnet.com 1438 March 7, 2023 Volume 29 Issue 9

versus-below median overall survival of patients with pancreatic ductal adenocarcinoma, with 87% 
sensitivity and 80% specificity, using preoperative DWIs.

Lastly, the generation of synthetic MR images of pancreatic neuroendocrine tumors (PNET) has been 
explored using GANs. This data augmentation technique can alleviate the relative low abundance of 
these type of pancreatic tumors in order to train AI models. Gao and Wang then used the synthetic 
images to evaluate the performance of a CNN in the prediction of PNET grading on contrast-enhanced 
images[80].

Pancreas-EUS
Application of AI to EUS has focused on the differentiation of focal pancreatic lesions. In this sense, 
Săftoiu et al[81] developed an ANN to help in the difficult differentiation between PDAC and focal 
chronic pancreatitis (CP) with EUS-elastography. They included 258 patients in the study and reported 
84.27% testing accuracy using 10-fold cross-validation. In addition, Kuwahara et al[82] used a CNN to 
assist in the distinction between benign and malignant IPMNs of the pancreas from EUS images. For 
testing, the authors used images from 50 patients, obtaining an AUC of 98% and sensitivity, specificity, 
and accuracy values of 95.7%, 92.6%, and 94%, respectively. Finally, in the report by Marya et al[83] an 
EUS-based CNN model was trained to differentiate autoimmune pancreatitis (AIP) from PDAC, CP, 
and normal pancreas (NP). Results obtained from 583 patients (146 AIP, 292 PDAC, 72 CP, and 73 NP) 
demonstrated a sensitivity of 99% and a specificity of 98% to distinguish between AIP and NP, 94% and 
71% for AIP and CP, and 90% and 93% for AIP and PDAC. Furthermore, the sensitivity and specificity 
to distinguish AIP from all study conditions (i.e., PDAC, CP, and NP) were 90% and 85%, respectively. 
In view of these results, the application of AI to EUS in the assessment of focal pancreatic lesions is 
promising, although limited due to the short number of available databases for algorithm training and 
validation[84].

TREATMENT PREDICTION
Prediction of treatment response and patient outcome based on AI is a very appealing idea which has 
been explored in a number of liver and pancreatic diseases, particularly in patients with HCC (Table 3).

The idea of using ML to predict the prognosis of patients with HCC emerged decades ago. Already in 
1995 the progression of hepatectomized patients with HCC was analyzed using ANN[85]. Liver volume, 
which was measured in CT studies, was used, among others, as an input parameter. Fifty-four example 
cases were used to train an ANN composed of three layers, and the model was successfully used to 
predict the prognosis of 11 patients. Nevertheless, the model was not tested with enough cases to 
determine its usefulness in actual clinical activity. However, the rise of AI has prompted many more 
works to be developed in the last few years. The response to intra-arterial treatment of HCC prior to 
intervention has been predicted using ML[86,87]. Specifically, logistic regression (LR) and RF models 
were trained with 35 patients using features extracted from clinical data and the segmentations of liver 
and liver lesions in a contrast-enhanced 3D fat-suppressed spoiled gradient-echo T1-weighted sequence 
in the arterial phase. Both trained models predicted treatment response with an overall accuracy of 78% 
(62.5% sensitivity, 82.1% specificity). Other authors tried to predict the early recurrence of HCC 
employing a CNN model based on the combination of CT images and clinical data[88]. They used 10-
fold cross-validation with data from 167 patients and reported an AUC of 0.825. A RestNet CNN model 
was also trained for preoperative response prediction of patients with intermediate-stage HCC 
undergoing transarterial chemoembolization[89]. The model used the segmented ROI of the tumor area 
in a CT study as input. The training cohort included 162 patients and the two validation cohorts 
included 89 and 138 patients, respectively. The authors reported an accuracy of 85.1% and 82.8% in the 
two evaluation datasets.

Radiomics has also been applied to predict treatment response of HCC to different therapies based on 
studies of several imaging modalities. The early recurrence of HCC after curative treatment was 
evaluated using an LR model based on radiomics features[90], which were extracted from manually 
delineated peritumoral areas in CT images. They used 109 patients for training and 47 patients for 
validation, reporting an AUC of 0.79 with the validation dataset. Guo et al[91] also predicted the 
recurrence of HCC after liver transplantation. For that purpose, authors extracted radiomic features 
from ROIs delineated around the lesion in arterial-phase CT images. Then, they combined clinical risk 
factors and radiomic features to build a multivariable Cox regression model. The authors used a training 
dataset of 93 patients and a validation dataset of 40 patients and they reported a C-index of 0.789 in the 
validation dataset.

ML models have also been used to predict hepatobiliary toxicity after liver SBRT[92]. The authors 
built a CNN model which was previously pretrained using CT images of human organs. Then, using 
transfer learning, the model was trained with liver SBRT cases. They used 125 patients for training and 
validation using a 20-fold cross-validation approach, reporting an AUC of 0.79.

Regarding the pancreas, postoperative pancreatic fistulas were predicted using ML-based texture 
analysis[93] performed to extract features from ROIs segmented in non-contrast CT images. Then, after 
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Table 3 Summary of the works proposed to predict patient prognosis using artificial intelligence

Anatomical area Pathology Modality AI model What is prognosed? Ref.

ANN Progression of hepatectomized patients with 
HCC

[85]

Early recurrence of HCC [88]CNN

Response to transarterial chemoembolization for 
patients with intermediate-stage HCC

[89]

Early recurrence of HCC [90]

Recurrence of HCC after liver transplantation [91]

CT

LASSO Cox 
regression

Recurrence of HCC after resection [118]

MRI LR, RF Response to intra-arterial treatment of HCC [86,87]

Liver HCC

US CNN, SVM Response to transarterial chemoembolization for 
patients with HCC

[119]

Biliary system Liver metastases, HCC, cholan-
giocarcinoma

CT CNN Prediction of hepatobiliary toxicity after liver 
SBRT

[92]

Pancreas Postoperative pancreatic fistula CT RepTree Prediction of postoperative pancreas fistulas 
after pancreatoduodenectomy

[93]

HCC: Hepatocellular carcinoma; CT: Computerized tomography; MRI: Magnetic resonance imaging; US: Ultrasound; ANN: Artificial neural network; 
CNN: Convolutional neural network; LR: Logistic regression; RF: Random forest; SVM: Support vector machine; SBRT: Stereotactic body radiotherapy.

dimension reduction, several ML classifiers were built using Auto-WEKA 2.0, obtaining the best results 
using a REPTree classifier. The authors used 10-fold cross-validation using data from 110 patients, and 
reported an AUC of 0.95, sensitivity of 96%, and specificity of 98%.

DISCUSSION
In recent years, a large number of AI-based solutions have been developed with the aim of easing and 
streamlining the radiologist’s workflow. Many of these tools are focused on imaging of the liver, biliary 
system, and pancreas. The developed tools range from improving image quality to the prediction of the 
patient’s prognosis after treatment. The literature shows that many AI-based solutions targeting liver 
and pancreas imaging allow for improved disease detection and characterization, lower inter-reader 
variability, and increased diagnostic efficiency. A key factor for their success in the clinical setting is to 
attain a seamless integration in the radiologist’s workflow, requiring minimal additional work by the 
radiologist and adding significant value to the radiologist’s work. In this sense, it is crucial that there is a 
fluid collaboration between the radiologists, technicians, and bioengineers in charge of the tools.

Image analysis and processing are transversal parts of most AI methods described in this review. 
Improving their performance is thus a key task. Unfortunately, some image processing techniques such 
as registration are still time-consuming, hence making the incorporation of some of these procedures in 
clinical practice unfeasible. Some new methods are arising to minimize this impact[94], especially in 
critical applications like image IGS. Semi-automatic or even automatic segmentation is another 
important step that some of the AI tools may incorporate for diagnosis or prognosis purposes[95]. 
Therefore, it is of paramount importance for these algorithms to achieve a high level of performance.

The literature reports many applications of AI to aid in the detection and characterization of 
pancreatic and liver focal lesions using a variety of imaging modalities as input, either single (e.g., T1-
weighted MRI) or in combination with other techniques and data (e.g., T2-weighted and DCE-MRI plus 
risk factors). In chronic liver disease, radiomics-based tools have been developed to assist in the 
diagnosis and grading of hepatic fibrosis, among others. These models have been built using different 
imaging modalities, such as MRI or US.

With regard to the prognosis of liver, biliary or pancreatic diseases, tools based on radiological 
information have hardly been developed. Many of these tools are focused on the prognosis of HCC 
based on information extracted from CT[96]. In this field of research, literature shows a clear trend 
toward integrating genetic information[97-101]. There are also studies that try to include variables 
extracted from clinical data and laboratory values[102,103]. In a scenario that advances towards 
integrated diagnosis, increasing volumes of data of different nature are available. This should allow for 
the generation of more accurate predictive models of clinical prognosis using information from many 
sources.
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For the AI-based tools developed to be used in daily clinical practice, they must obtain regulatory 
clearance, such as Food and Drug Administration (FDA) approval in the United States or CE marking in 
Europe. Despite the explosive production of such tools in the last years, to date only a small group of 
them have obtained this approval. One of the main problems is the lack of appropriately annotated 
data. Without large datasets of properly labeled studies, the performance of data-hungry algorithms like 
CNNs will not be sufficient to be massively deployed in clinical environments. Furthermore, algorithms 
demand diverse data, such as multi-centric and multi-vendor, to avoid selection biases that would 
challenge their implementation in a real-world environment[104]. Another limitation of most AI-based 
tools found today is that they are aimed at a very concrete application (narrow AI applications), within 
a specific imaging modality, rather than being valid for a wide range of tasks at the radiologist’s work 
practice.

Yet, the general attitude of radiology staff toward AI is positive. In a recent survey, European 
radiographers declared excitement about AI (83%), although only 8% had been taught on this matter in 
their qualification studies[105].

In another survey, European radiologists regarded the outcomes of AI algorithms for diagnostic 
purposes as generally reliable (75.7%), and algorithms for workload prioritization as very helpful 
(23.4%) or moderately helpful (62.2%) to reduce the workload of the medical staff[106].

The sentiment of gastroenterologists toward AI is also generally favorable, with a wide majority of 
United Kingdom[107] and European[108] specialists perceiving it as beneficial to key aspects of their 
clinical practice. Their main concerns according to these studies are related to algorithm bias, lack of 
guidelines, and potential increase in procedural times and operator dependence.

CONCLUSION
The rapid advance of AI is already transforming the gastrointestinal field with the development of 
applications aimed to assist and streamline image diagnosis. Traditional diagnostic imaging techniques 
such as US, EUS, CT, MRI, and PET/CT are already benefitting from a variety of AI algorithms that can 
perform automatic or semi-automatic segmentation and registration of the liver and pancreas and their 
lesions, aid the diagnosis and characterization of pancreatic and liver focal lesions and diffuse illnesses, 
improve image quality, accelerate image acquisition, and anticipate treatment response and patient 
prognosis. Moreover, with the use of radiomics, AI can add quantitative information previously 
undetected by radiologists to radiological reports. The massive adoption of AI in radiology of pancreatic 
and liver diseases is still incipient, but irreversible, and the sector is clearly moving in this direction. 
Advances in the field, such as the availability of regulatory cleared, robust algorithms trained and 
validated multicentrically, increased awareness on AI by the medical staff, and access to products that 
seamlessly integrate with their workflow should pave the way for a rapid adoption of AI in the clinical 
practice, impacting the outcomes of hepatic and pancreatic patients for the better.
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Abstract
Liver fibrosis is a wound-healing response following chronic liver injury caused 
by hepatitis virus infection, obesity, or excessive alcohol. It is a dynamic and 
reversible process characterized by the activation of hepatic stellate cells and 
excess accumulation of extracellular matrix. Advanced fibrosis could lead to 
cirrhosis and even liver cancer, which has become a significant health burden 
worldwide. Many studies have revealed that noncoding RNAs (ncRNAs), 
including microRNAs, long noncoding RNAs and circular RNAs, are involved in 
the pathogenesis and development of liver fibrosis by regulating signaling 
pathways including transforming growth factor-β pathway, phosphatidylinositol 
3-kinase/protein kinase B pathway, and Wnt/β-catenin pathway. NcRNAs in 
serum or exosomes have been reported to tentatively applied in the diagnosis and 
staging of liver fibrosis and combined with elastography to improve the accuracy 
of diagnosis. NcRNAs mimics, ncRNAs in mesenchymal stem cell-derived 
exosomes, and lipid nanoparticles-encapsulated ncRNAs have become promising 
therapeutic approaches for the treatment of liver fibrosis. In this review, we 
update the latest knowledge on ncRNAs in the pathogenesis and progression of 
liver fibrosis, and discuss the potentials and challenges to use these ncRNAs for 
diagnosis, staging and treatment of liver fibrosis. All these will help us to develop 
a comprehensive understanding of the role of ncRNAs in liver fibrosis.
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Core Tip: Liver fibrosis is an inevitable stage in the development of various chronic liver diseases, and 
manifests as an imbalance between the formation and degradation of extracellular matrix. The key 
mechanism of liver fibrosis is the activation of hepatic stellate cells, which is coordinately regulated by a 
variety of cytokines, inflammatory factors and chemokines involved in multiple cells signaling pathways. 
In this review, we discuss the role of noncoding RNAs (ncRNAs) in regulating the signaling pathways in 
the formation and regression of liver fibrosis, and the limitations, challenges, and prospects of ncRNAs in 
the diagnosis and treatment of liver fibrosis.

Citation: Li QY, Gong T, Huang YK, Kang L, Warner CA, Xie H, Chen LM, Duan XQ. Role of noncoding RNAs 
in liver fibrosis. World J Gastroenterol 2023; 29(9): 1446-1459
URL: https://www.wjgnet.com/1007-9327/full/v29/i9/1446.htm
DOI: https://dx.doi.org/10.3748/wjg.v29.i9.1446

INTRODUCTION
Liver fibrosis is the result of excessive accumulation of extracellular matrix (ECM) caused by continuous 
liver injuries that promote wound healing[1]. Liver injuries can be caused by many factors including 
persistent hepatitis B virus (HBV)/hepatitis C virus (HCV) infections, excessive alcohol consumption, 
metabolic diseases, drugs, genetic diseases, cholestasis, and autoimmune diseases. Due to an increase in 
the prevalence of obesity and type 2 diabetes, liver fibrosis caused by nonalcoholic steatohepatitis 
(NASH) has been increasing annually in recent years[2]. Liver fibrosis can resolve at an early stage if the 
injuries subside. Progressive fibrosis is associated with architectural changes to hepatic lobules and may 
lead to cirrhosis, liver failure, portal hypertension, and even hepatocellular carcinoma (HCC).

Hepatic stellate cells (HSCs) play a central role in liver fibrosis. HSCs, also known as perisinusoidal 
cells, are located in the Disse space under healthy conditions. When injury occurs, HSCs are activated 
and transdifferentiate into myofibroblast-like cells which are the main source of ECM[3]. Hepatic 
fibrosis is a dynamic process coordinated by multiple cells in the liver. Acute injury, such as viral 
infection, induces an inflammatory response, necrosis, and apoptosis in hepatocytes which leads to liver 
regeneration and limited ECM deposition. However, if the damage persists, the injured hepatocytes 
attract an infiltration of inflammatory cells such as T lymphocytes and neutrophils, which will in turn 
activate HSCs by releasing cytokines, chemokines, and reactive oxygen species (ROS). Activated HSCs 
can maintain the active state by the mediators produced by the autocrine and paracrine system. In 
addition, platelet-derived growth factor (PDGF) secreted by liver macrophages (Kupffer cells) 
stimulates the continuous proliferation of HSCs. Therefore, inhibiting the activation and proliferation of 
HSCs, promoting the apoptosis of activated HSCs, and reducing the expression of fibrogenic factors are 
considered to be the key measures for the successful treatment of liver fibrosis.

Noncoding RNAs (ncRNAs) refer to RNAs that are transcribed from the genome but do not normally 
encode proteins, although some of them have recently been reported to encode small proteins[4]. 
According to their length, ncRNAs can be divided into short ncRNAs and long ncRNAs (lncRNAs). 
MicroRNAs (miRNAs) are a class of short ncRNAs of approximately 22 nucleotides in length that act as 
gene repressors by complementary binding to the 3' untranslated region of target mRNA to degrade or 
prevent it from being translated to protein[5,6]. LncRNAs are defined as ncRNAs longer than 200 bp 
with 5’-end m7G caps and 3’-end poly(A) tails. LncRNAs can regulate gene expression in cis or trans, 
change the structure and function of chromatin via interaction with proteins, or act as competitive 
endogenous RNAs (ce-RNAs) for post-transcriptional regulation[7]. Circular RNAs (circRNAs) are a 
novel form of ncRNAs with a covalently closed single-stranded structure, which is formed by back-
splicing of the 3' and 5' ends of mRNAs[8]. Depending on their subcellular localization, circRNAs have 
different biological functions: interfering with signal transduction pathways and regulating the 
transcription and translation of target genes, sponge proteins and miRNAs[9].

In this review, we summarize the latest findings about miRNAs, lncRNAs, and circRNAs in the 
pathogenesis and progression of liver fibrosis and discuss the potential of ncRNAs as biomarkers for 
diagnosis and as therapeutic targets for liver fibrosis.

https://www.wjgnet.com/1007-9327/full/v29/i9/1446.htm
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NCRNAS IN THE PATHOGENESIS AND PROGRESSION OF LIVER FIBROSIS
The activation and proliferation of HSCs are essential steps in the development of liver fibrosis. 
Numerous studies have shown that ncRNAs exert profibrotic effects by regulating genes in the 
activation and proliferation signaling pathways of HSCs. Signaling pathways closely related to liver 
fibrosis mainly include transforming growth factor-β (TGF-β)/Smad, phosphatidylinositol 3-kinase 
(PI3K)/serine/threonine kinase 1 (AKT), Wnt/β-catenin, and nuclear factor κ light chain enhancer of 
activated B cells (NF-κB) pathways. Although some miRNAs[10] and lncRNAs[11] involved in liver 
fibrosis have been reviewed elsewhere, we focus on the most recent data published in the past 3 years as 
summarized in Figure 1.

ncRNAs regulating TGF-β/Smad signaling pathway in liver fibrosis
Transforming growth factor-β1 (TGF-β1) is a well-recognized fibrogenic cytokine that is widely 
expressed in damaged hepatocytes, Kupffer cells, HSCs, sinusoidal endothelial cells, and platelets. TGF-
β1 promotes HSC activation through a canonical (Smad) or noncanonical pathway[12]. In the TGF-β1/
Smad signaling pathway, TGF-β1 binds to the TGF-β type II receptor (TGF-βRII) on the cell membrane 
and then recruits the TGF-β type I receptor (TGF-βRI) to form a heterotetrameric complex. This complex 
induces the phosphorylation of intracellular Smad2 and Smad3, which then bind with Smad4 and 
translocate to the nucleus to regulate expression of target genes[13-15]. In addition, TGF-β1 induces the 
expression of Smad7, which maintains the balance between profibrotic and antifibrosis by negatively 
regulating TGF-βRI and Smad2[13].

Many miRNAs are involved in the regulation of the TGF-β/Smad signaling pathway and liver 
fibrosis. These miRNAs include miR-21, miR-497, miR-16, miR-98-5p, miR-199a-3p, miR-29a, and miR-
130a-3p. MiR-21 is expressed abundantly in liver, is present in serum, and is positively associated with 
liver inflammation, fibrosis, and cancer[16]. TGF-β1 induces transcription, processing and maturation of 
pri-miR-21 through a Smad3-dependent pathway, while mature miR-21 promotes the development of 
fibrosis by targeting the inhibitory Smad gene-small mothers against decapentaplegic7[15]. Clonorchis 
sinensis promotes hepatic fibrosis by inducing miR-497 and activating the TGF-β/Smad pathway[17]. 
Pan et al[18] revealed that miR-16 plays an essential role in the phenotypic remodeling of myofibro-
blasts. Overexpression of miR-16 restored the phenotype of HSCs and led to fibrotic regression by 
targeting Smad2 and Wnt3a to interfere with TGF-β and Wnt signaling pathways, respectively[18]. In 
patients with chronic HBV-induced liver fibrosis, expression of miR-98-5p was significantly downreg-
ulated. Further studies indicated that overexpression of miR-98-5p significantly inhibited HSC 
activation through targeting the TGF-β1/Smad3 signaling pathway[19]. Yang et al[20] demonstrated 
that expression of miR-199a-3p was upregulated in carbon tetrachloride (CCl4)-induced liver fibrotic 
rats, and miR-199a-3p activated HSCs by targeting caveolin-2 (CAV2) to increase expression of TGF-βRI. 
Stimulation with TGF-β resulted in the downregulation of miR-29a, which increased follistatin-like 1 
expression and accelerated the progression of fibrosis by enhanced phosphorylation of Smad2[21]. MiR-
130a-3p was significantly decreased in liver fibrosis caused by Schistosoma japonicum[22]. It has been 
shown that miR-130a-3p attenuates fibrosis by inhibiting the activation and proliferation of HSCs and 
promoting their apoptosis through regulation of mitogen-activated protein kinase 1 and TGF-βRI/II 
both in vitro and in vivo[22].

In addition to miRNAs, lncRNAs and circRNAs are associated with the TGF-β pathway and liver 
fibrogenesis. LncRNA small Cajal body-specific RNA 10 (lncRNA SCARNA10) was found to inhibit the 
expression of polycomb repressive complex 2 to induce hepatocytes apoptosis and HSC activation, 
thereby stimulating the TGF-β pathway and liver fibrogenesis[23]. CircRNA mitochondrial tRNA 
translation optimization 1 (circMTO1) was reported to inhibit liver fibrosis through interaction with 
miR-17-5p and Smad7[24].

ncRNAs regulating PI3K/AKT signaling pathway in liver fibrosis
The PI3K/AKT pathway is an essential intracellular signaling pathway in the regulation of the cell 
cycle. The AKT cascade can be activated by cytokine receptors such as receptors of TGF-β and PDGF. 
PI3K is activated to induce phosphorylation of Phosphatidylinositol-4,5-biophosphate (PIP2) on the cell 
surface, leading to production of phosphatidylinositol-3,4,5-trisphosphate (PIP3). AKT (also known as 
protein kinase B, PKB) binds to PIP3 and they are co-translocated to the nucleus, where they regulate 
target gene expression to stimulate cell proliferation and inhibit apoptosis. Phosphatase and tensin 
homology deleted on chromosome ten (PTEN) increases the number of activated HSCs by catalyzing 
dephosphorylation of PIP3 and downregulating the PI3K/AKT signaling pathway. A variety of 
miRNAs regulate the PI3K/AKT signaling pathway. MiR-21 is significantly upregulated in liver fibrosis 
induced by cadmium exposure, which leads to the progression of fibrosis by activating the PI3K/AKT 
pathway[25]. Lipotoxic hepatocyte-derived exosomal miR-1297 promotes HSC proliferation and 
activation by inhibiting expression of PTEN[26]. MiR-23a-5p activates the PI3K/AKT/mammalian 
target of rapamycin (mTOR) signaling pathway by inhibiting PTEN and can be targeted by lncRNA 
LOC102551149 to reduce liver fibrosis[27]. All these results indicate that ncRNAs, especially miRNAs 
and lncRNAs, play important roles in liver fibrosis through targeting the PI3K/AKT pathway.
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Figure 1 Reported pathways and targets of noncoding RNAs involved in liver fibrosis. Noncoding RNAs regulate the target gene transcription in the 
pathogenesis and progression of liver fibrosis through inhibiting or activating the key genes in different signaling pathways. PI3K: Phosphatidylinositol 3-kinase; AKT: 
Serine/threonine kinase 1; PIP2: Phosphatidylinositol-4,5-biophosphate; PTEN: Phosphatase and tensin homology deleted on chromosome ten; Col1A1: Collagen 
1A1; TIMP1: Targeted tissue inhibitor of metalloproteinase1; α-SMA: α-smooth muscle actin; PIP3: Phosphatidylinositol-3,4,5-trisphosphate; TGF-β: Transforming 
growth factor-β; TGF-βRII: TGF-β type II receptor; MSC: Mesenchymal stem cell; hB-MSC: Human bone MSC; hT-MSC: Human tonsil-derived MSC; 3DhESC: 3D-
cultured human embryonic stem cells;PVT1: Plasmacytoma variant translocation 1; SNHG7: Small nucleolar RNA host gene 7; DIDO1: Death inducer-obliterator 1; 
CDK13: Cyclin dependent kinase 13; MTO1: Mitochondrial tRNA translation optimization 1; SCARNA10: Small Cajal body-specific RNA 10; MALAT1: Metastasis-
associated lung adenocarcinoma transcript1; NEAT1: Nuclear enriched abundant transcript1; Lfar1: Liver fibrosis associated lncRNA1; GAS5: Growth arrest-special 
transcript 5; ROR: Regulator of reprogramming.

ncRNAs regulating Wnt/β-catenin signaling pathway in liver fibrosis
Wnt/β-catenin is involved in the development of fibrosis of several tissues, including kidney, lung, skin, 
and liver. Wnt proteins are cysteine-rich glycoproteins generally secreted to the ECM. β-Catenin is a 
cytoplasmic protein that can be activated by Wnt and is translocated to the nucleus to activate 
transcription of target genes, thereby regulating occurrence of fibrosis[28]. Yang et al[29] demonstrated 
that expression of miR-708 was downregulated in fibrotic liver tissue. The authors further demonstrated 
that overexpression of miR-708 inhibited activation of HSCs by targeting zinc finger E-box binding 
homeobox 1 and regulating the Wnt/β-catenin signaling pathway[29]. Different forms of ncRNAs may 
work together to have a synergistic effect in the pathogenesis and progression of liver fibrosis. For 
example, lncRNA nuclear enriched abundant transcript1 (lncRNA NEAT1) and miR-139-5p have a 
synergistic effect that exacerbates the development of liver fibrosis[30]. Another study has revealed that 
lncRNA metastasis-associated lung adenocarcinoma transcript1 (lncRNA MALAT1) upregulates 
expression of β-catenin and promotes liver fibrosis through the Wnt/β-catenin pathway[31].

ncRNAs regulating NF-κB signaling pathway in liver fibrosis
NF-κB is one of the transcription factors that regulates important cellular events, particularly inflam-
mation. NF-κB consists of two subunits p50 and p65, which can be activated by extracellular signals. 
Activated NF-κB translocate to the nucleus to regulate expression of various cytokines, growth factors, 
and other target genes. LncRNA NEAT1 plays critical roles in hepatic fibrosis of different etiologies by 
targeting various miRNAs associated with NF-κB signaling pathways. In NASH-induced liver fibrotic 
mice, Zhang et al[32] found that lncRNA NEAT1 stimulated expression of paternally expressed gene 3 
(PEG3) by inhibiting miR-129-5p, which reduced HSC apoptosis through the NF-κB (p65/p50) signaling 
pathway. The effect of the lncRNA NEAT1/miR-129-5p axis on liver fibrosis had also been confirmed in 
alcoholic steatohepatitis mice by targeting suppressor of cytokine signaling 2[33]. In addition, lncRNA 
NEAT1 also promotes fibrosis via inhibition of miR-148a-3p and miR-22-3p and regulation of cytohesin 
3 expression[34]. LncRNA liver fibrosis associated lncRNA1 (lncRNA Lfar1) was demonstrated to 
promote hepatic fibrosis through activation of HSCs, probably by way of its regulatory effect on 
macrophages through the NF-κB signaling pathway[35]. Overexpression of lncRNA growth arrest-



Li QY et al. Role of ncRNAs in liver fibrosis

WJG https://www.wjgnet.com 1450 March 7, 2023 Volume 29 Issue 9

special transcript 5 (lncRNA GAS5) decreased expression of miR-433-3p, which then intercepted the NF-
κB signaling pathway through targeting of toll-like receptor 10[36]. In addition, lncRNA maternally 
expressed gene 3 (lncRNA MEG3) targeted NLR Family CARD Domain Containing 5 (NLRC5) to 
reverse liver fibrosis[37]. All of these results indicate that ncRNAs regulating liver fibrosis through 
targeting the NF-κB pathway are mainly lncRNAs, including lncRNAs NEAT1, Lfar1, GAS5, and MEG3.

ncRNAs regulating autophagy pathway in liver fibrosis
Autophagy is a process that regulates self-metabolism and maintains cellular homeostasis by removing 
cell debris, misfolded proteins and lipid droplets[38]. Activation of autophagy promotes liver fibrosis by 
increasing the digestion of lipid droplets and activating multiple signaling pathways, which implies that 
promoting regeneration of lipid droplets and restraining expression of proinflammatory factors inhibits 
liver fibrosis[38]. In hypoxic conditions, lncRNA plasmacytoma variant translocation 1 (lncRNA PVT1) 
regulates expression levels of autophagy-related gene (ATG)14 by decreasing miR-152, thereby 
activating HSCs through the autophagy pathway[39]. LncRNA small nucleolar RNA host gene 7 
(lncRNA SNHG7) increased DNA methyltransferase 3 alpha (DNMT3A) expression through binding to 
miR-29b, which is involved in liver fibrosis and autophagy. Inhibition of lncRNA SNHG7 significantly 
decreases expression of collagen and autophagy factors, leading to inhibition of liver fibrosis[40]. In 
addition to lncRNAs, circRNAs are also associated with autophagy and mitophagy. Xu et al[41] 
illustrated that circRNA608/miR-222 regulates PTEN-induced putative kinase 1-mediated mitophagy 
and liver fibrosis in NASH-induced fibrotic mice.

Other ncRNAs targeting host genes involved in liver fibrosis
Chen et al[42] demonstrated that miR-451 and miR-185 were downregulated in activated HSCs, and they 
exerted antifibrotic effects synergistically by targeting erythropoietin-producing hepatocellular receptor 
B2. MiR-451 upregulated expression of miR-185. This occurs at the post-transcriptional level by 
targeting nuclear export receptor exportin 1 (XPO-1). Zhao et al[43] demonstrated that lncRNA molecule 
interacting with CasL2 (lncRNA Mical2) upregulated p66 Src homologous-collagen homologue (p66Shc) 
through sponging miR-203a-3p, which promoted reactive oxygen species (ROS)-mediated 
epithelial–mesenchymal transition and liver fibrosis. It has been reported that lncRNA X-inactive-
specific transcript (lncRNA XIST) damages mitochondrial function and increases ROS production to 
promote HSC activation by regulating miR-539-3p and ADAM metallopeptidase with thrombospondin 
type 1 motif 5 (ADAMTS5)[44]. Studies from cholestatic liver injury caused by biliary atresia have 
indicated that expression of lncRNA H19 is significantly upregulated in exosomes derived from liver 
and serum. LncRNA H19 deficiency protects mice from liver fibrosis by inhibiting sphingosine-1-
phosphate receptor 2/sphingosine kinase 2 activation and by sponging let-7 to upregulate high-mobility 
group AT-hook 2 expression[45]. It has also been reported that depletion of macrophages significantly 
reduced lncRNA H19 and inhibited cholestatic liver injury in bile duct ligation mice[46]. LncRNA actin 
alpha 2-antisense RNA 1 (lncRNA ACTA2-AS1) accelerated liver fibrosis and epigenetic activation by 
targeting the p300/ETS transcription factor (ELK1) complex in biliary diseases[47]. CircRNA F-box and 
WD repeat domain containing 4 (circFBXW4) was downregulated significantly in HSCs of mice with 
liver fibrosis. Overexpression of circFBXW4 inhibited HSC activation by targeting miR-18b-3p to 
increase FBXW7 expression[48]. Similarly, CircRNA CREB binding protein (circCREBBP) inhibited liver 
fibrosis by targeting miR-1291 to regulate the expression of left-right determinant cluster 2 (LEFTY2)
[49]. Hsa_circ_0071410 inhibited activation of HSCs by binding to miR-9-5p in irradiation-induce liver 
fibrosis[50]. All these ncRNAs in the pathogenesis and progression of liver fibrosis are summarized in 
Table 1[51-60].

POTENTIAL APPLICATION OF NCRNAS IN THE DIAGNOSIS OF LIVER FIBROSIS 
Liver-related mortality increases with the progression of fibrosis. Therefore, it is essential for the early 
diagnosis of liver fibrosis. At present, the gold standard for the diagnosis of liver fibrosis is still liver 
biopsy, although it has some limitations such as sampling error, inter- and intra-observer variability
[61], invasiveness to patients, and many other complications. Several noninvasive examinations have 
been introduced in clinical settings, including serum markers, combined indices or scores, and imaging 
techniques. Hepascore and enhanced liver fibrosis score are based on serum liver fibrosis markers such 
as tissue metalloproteinases and hyaluronic acid [62]. Elastography, including ultrasound elastography 
and magnetic resonance elastography, is a method to access liver stiffness quantitatively and it is more 
accurate than serological markers for diagnosis of advanced liver fibrosis. However, elastography has 
disadvantages such as unreliable results due to high body mass index (BMI) and high cost, making it 
unsuitable for population screening[62]. As ncRNAs in the blood are easily accessible for detection, they 
have potential as novel noninvasive biomarkers for diagnosis of liver fibrosis.

Recent research has shown that stimulation of HSCs with TGF-β and PDGF-BB decreased the 
intracellular miR-29 expression level but significantly increased miR-29 level in the supernatant vesicles
[63]. They verified the results in serum from patients with HCV-related liver fibrosis and mice with CCl4
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Table 1 Noncoding RNAs in the pathogenesis and progression of liver fibrosis

ncRNAs Target genes Signaling pathways Ref.

miR-199a-3p CAV2 TGF-β/Smad [20]

miR-497 Smad7 TGF-β/Smad [17] 

miR-21 Smad2/3/7 TGF-β/Smad [15] 

TGF-β PI3K/AKT [25]

- PPARα [51]

- PDCD4/AP-1 [51,52]

- Smad7/Smad2/3/NOX4, Spry1/ERK/NF-κB [51,53]

- HIF-1α/VEGF [54]

miR-16 Smad2, Wnt3a TGF-β/Smad, Wnt [18]

miR-130a-3p TGF-βRI, TGF-βRII; MAPK1 TGF-β; MAPK [22] 

miR-98-5p TGF-βRI TGF-β1/Smad3 [19]

miR-6133-5p TGF-βRII, FGFRI TGF-β/Smad2/3, AKT/ERK/JNK [55]

miR-708 ZEB1 Wnt/β-catenin [29]

exo-miR-1297 PTEN PI3K/AKT [26]

miR-350 SPRY2 PI3K/AKT and ERK [56] 

miR-34c ACSL1 - [57] 

miR-200c HAS2 - [58] 

miR-451, miR-185 EphB2 - [42] 

miR-20b-5p STAT3 STAT3 [97]

lncRNA SNHG7 miR-29b, DNMT3A Autophagy pathway [40] 

lncRNA PVT1 miR-152, ATG14 Autophagy pathway [39]

lncRNA SCARNA10 PRC2 TGF-β [23]

lncRNA LOC102551149 miR-23a-5p, PTEN PI3K/AKT/mTOR/Snail [27]

lncRNA MALAT1 - Wnt/β-catenin [31]

lncRNA NEAT1 miR-139-5p, β-catenin β-catenin/SOX9/TGF-β1 [30] 

miR-129-5p, PEG3 NF-κB [32] 

miR-129-5p, SOCS2 - [33]

miR-148a-3p, miR-22-3p, Cyth3 - [34]

lncRNA Lfar1 - NF-κB [35]

lncRNA GAS5 miR-433-3p, TLR10 NF-κB [36]

lncRNA-ROR miR-6499-3p NF-κB [99]

lncRNA Airn EZH2 KLF2-eNOS-sGC [98]

lncRNA MEG3 NLRC5 - [37]

lncRNA NORAD miR-495-3p, S1PR3 - [60]

lncRNA XIST miR-539-3p, ADAMTS5 - [44]

lncRNA Mical2 miR-203a-3p, p66Shc - [43]

circRNA608 miR222, PINK1 Autophagy pathway [41]

circMTO1 miR-17-5p, Smad7 - [24]

circFBXW4 miR-18b-3p, FBXW7 - [48] 

circCREBBP miR-1291, LEFTY2 - [49]

circ_0071410 miR-9-5p - [50]
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circUbe2k miR-149-5p, TGF-β2 - [59]

ncRNAs: Noncoding RNAs; CAV2: Caveolin-2; TGF-β: Transforming growth factor-β; PI3K: Phosphatidylinositol 3-kinase; AKT: Serine/threonine kinase 
1; PPAR: Peroxisome proliferator-activated receptor; PDCD4: Programmed cell death protein 4; AP-1: Activation protein-1; NOX4: Nicotinamide adenine 
dinucleotide phosphate oxidase 4; Spry1: Sprouty 1; ERK: Extracellular regulated kinase; NF-κB: Nuclear factor κ light chain enhancer of activated B cells; 
HIF-1α: Hypoxia-inducible factor-1α; VEGF: Vascular endothelial growth factor; TGF-βRI: TGF-β type I receptor; MAPK: Mitogen-activated protein kinase; 
FGFR: Fibroblast growth factor receptor; JNK: c-Jun N-terminal kinase; ZEB1: Zinc finger E-box binding homeobox 1; PTEN: Phosphatase and tensin 
homology deleted on chromosome ten; ACSL1: Acyl-CoA synthetase long chain family member 1; HAS2: Hyaluronic acid synthase; EphB2: 
Erythropoietin-producing hepatocellular receptor B2; SNHG7: Small nucleolar RNA host gene 7; DNMT3A: DNA methyltransferase 3 alpha; PVT1: 
Plasmacytoma variant translocation 1; ATG: Autophagy-related gene; SCARNA10: Small Cajal body-specific RNA 10; PRC2: Polycomb repressive complex 
2; mTOR: Mammalian target of rapamycin; MALAT1: Metastasis-associated lung adenocarcinoma transcript1; NEAT1: Nuclear enriched abundant 
transcript1; SOX9: SRY-related high mobility group-box gene9; PEG3: Paternally expressed gene 3; SOCS2: Suppressor of cytokine signaling 2; Cyth3: 
Cytohesin 3; Lfar1: Liver fibrosis associated lncRNA1; GAS5: Growth arrest-special transcript 5; TLR: Toll-like receptor; MEG3: Materally expressed gene 3; 
NLRC5: NLR Family CARD Domain Containing 5; NORAD: Non-coding RNA activated by DNA damage; S1PR3: Sphingosine 1-phosphate receptor 3; 
XIST: X-inactive-specific transcript; ADAMTS5: ADAM metallopeptidase with thrombospondin type 1 motif 5; Mical2: Molecule interacting with CasL2; 
Shc: Src homologous-collagen homologue; PINK1: PTEN-induced putative kinase 1; MTO1: Mitochondrial tRNA translation optimization 1; FBXW4: F-box 
and WD repeat domain containing 4; CREBBP: CREB binding protein; LEFTY2: Left-right determinant cluster 2; Ube2k:Ubiquitin conjugating enzyme E2 
K; STAT3: Signal transducer and activator of transcription 3; Airn: Antisense Igf2r RNA; ROR: Regulator of reprogramming; EZH2: Enhancer of zeste 
homolog 2; KLF2: Krüppel-like transcription factor 2; eNOS: Endothelial nitric oxide synthase; sGC: Soluble guanylate cyclase.

-induced fibrosis[63]. These findings indicate that elevated miR-29 Level in serum may be a promising 
biomarker for diagnosis of liver fibrosis[63]. Another set of biomarkers (NIS4) consisting of miR-34a-5p, 
α-2 macroglobulin, YKL-40 and glycated hemoglobin have been developed to successfully identify 
patients who have a higher risk of disease progression with non-alcoholic fatty liver disease and liver 
fibrosis. The diagnostic value of the NIS4 algorithm was not affected by age, gender, BMI and transa-
minase[64]. Similarly, Azar et al[65] constructed a miRNA regulatory network using bioinformatics tools 
and identified five upregulated miRNAs (miR-21-5p, miR-222-3p, miR-221-3p, miR-181b-5p, and miR-
17-5p) that targeted tissue inhibitor of metalloproteinase 3 in activated HSCs, and these results have 
been verified in a mouse model of liver fibrosis. Zhang et al[66] performed a logistic regression analysis 
to show that miR-1225-3p, miR-1238, miR-3162-3p, miR-4721, and miR-H7 could distinguish, with high 
sensitivity and specificity, nonsignificant fibrosis from significant fibrosis in chronic hepatitis B (CHB) 
patients. Some researchers screened miRNAs in serum from HCV-related liver fibrosis patients and 
found that miR-484 was significantly downregulated in advanced liver fibrosis compared to early liver 
fibrosis and liver cancer[67], which indicates that miR-484 may be used as a biomarker for staging liver 
fibrosis in patients with HCV. Besheer et al[68] performed diffusion-weighted magnetic resonance 
imaging of livers in patients with liver fibrosis caused by chronic hepatitis C and compared the 
apparent diffusion coefficient (ADC) with miRNA expression pattern in liver biopsies. They found that 
ADC was closely associated with expression of miR-200b, miR-21, and miR-29, and the accuracy of ADC 
combined with miR-200b to distinguish early and late liver fibrosis was 80.2%[68]. In a discovery cohort 
of 183 patients with non-alcoholic fatty liver disease, scientists identified that plasma miR-193a-5p was 
consistently maintained at a high level and was closely associated with grade of fibrosis, which was 
verified in a cohort of 372 additional cases[69]. Results from another study confirmed that miR-103a-3p 
and miR-425-5p were stably expressed in exosomes of serum derived from mice and humans infected 
with schistosomiasis[70]. MiR-146a-5p could distinguish mild (grades 0 and I) and severe fibrosis 
(grades II and III) and could be used for staging liver fibrosis[70].

LncRNAs are useful in the diagnosis of liver fibrosis. A study compared lncRNAs profiles of serum 
exosomes from patients with liver fibrosis and healthy controls and found that the expression level of 
lncRNA MALAT1 was significantly increased in the serum of fibrotic patients[31]. Serum lncRNA GAS5 
was significantly upregulated in patients with advanced liver fibrosis compared with nonfibrotic 
patients[71]. Serum lncRNA-p21 had 70% specificity and 100% sensitivity in diagnosing liver fibrosis in 
patients with CHB[72]. LncRNA SCARNA10 was higher in liver and serum samples in patients with 
advanced liver fibrosis compared with healthy controls[23].

In addition to miRNAs and lncRNAs, circRNAs have shown differential expression in patients with 
liver fibrosis. The expression level of circRNA death inducer-obliterator 1 (circDIDO1) was decreased in 
serous exosomes derived from patients with liver fibrosis[73], while serum circMTO1 was negatively 
correlated with the degree of liver fibrosis in patients with CHB[24]. All these findings suggest that 
ncRNAs have potential as novel noninvasive biomarkers for the diagnosis and staging of liver fibrosis 
with high sensitivity and specificity.

POTENTIAL APPLICATION OF NCRNAS FOR THE TREATMENT OF LIVER FIBROSIS 
Early liver fibrosis is deemed to be reversible. When the injury is removed, activated HSCs (myofibro-
blasts) are reduced through deactivation or apoptosis to slow down the fibrotic process and even lead to 
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regression. Studies have shown that patients with chronic hepatitis B or chronic hepatitis C have 
reduced liver fibrosis after receiving antiviral therapy[74]. In addition, therapies such as antioxidants, 
renin–angiotensin system inhibitors, and traditional Chinese medicine[75] are also considered 
promising for treatment of liver fibrosis, although more clinical trials are needed to confirm their safety 
and efficacy. As extensive cytokines and signaling pathways are involved in the pathogenesis and 
progression of liver fibrosis, ncRNA-based therapies that target various signaling pathways are being 
developed based on the outstanding gene silencing effect of miRNAs and the sponging effect of 
lncRNAs and circRNAs.

With strong inhibitory effects on a variety of fibrotic diseases such as myocardial fibrosis[76], 
pulmonary fibrosis[77], and renal fibrosis[78], miR-29 families are regarded as a potential therapeutic 
target for fibrosis. Yang et al[79] reported that miR-29a reduced liver fibrosis and ECM by directly 
targeting PI3KP85α in cholestatic liver fibrosis, and this supports the potential of miR-29a for the 
treatment of liver fibrosis. However, recent studies showed that, even though upregulation of miR-29 
inhibited fibrosis, it could also lead to type 2 diabetes and insulin resistance[80]. Researchers have 
assessed the therapeutic effect of a synthetic miR-223 analog in a murine NASH model and have found 
that miR-223 treatment inhibited HSC activation through the downregulation of transcription of 
proinflammatory cytokines and chemokines together with NOD-like receptor 3 (NLRP3) inflammasome
[81]. In addition, miR-223 was reported to inhibit the activation and proliferation of HSCs by targeting 
Gliotactin family zinc finger 2 (GLI2) and PDGFRα/β in CCl4-induced liver fibrotic mice[82]. These 
studies clearly demonstrate the potential of miR-223 as a therapeutic strategy for liver fibrosis, although 
the underlying mechanisms vary.

Exosomes are small vesicles that are stable in body fluids, low in immunogenicity, can be engulfed by 
cells, and have been used as delivery vectors for easily degradable molecules such as RNA to treat 
diseases like liver cancer[83]. Exosomes have also been explored in treating liver fibrosis. Gao et al[84] 
found that miR-690 produced by Kupffer cells could be delivered to HSCs by exosomes to inhibit 
fibrosis by targeting nicotinamide adenine dinucleotide kinase. In a murine NASH model, miR-690 
mimics decreased liver fibrosis markers and alleviated NASH phenotypes significantly. Exosomal miR-
223 derived from natural killer cells has also been shown to target ATG7 in HSCs by inhibiting 
autophagy, leading to reduced fibrosis[85]. In addition, mesenchymal stem cell (MSC)-derived 
exosomes have been well studied as a promising treatment option for liver fibrosis[86]. Human bone 
MSCs (hB-MSCs)-derived exosomal miR-618[87] and human tonsil-derived MSCs (hT-MSCs)-derived 
exosomal miR-486[88] have been shown to alleviate liver fibrosis by targeting Smad4 and smoothened (
Smo) genes, respectively. MiR-6766-3p derived from 3D-cultured human embryonic stem cells were 
enriched in exosomes and attenuated TGFβ1/SMADs by targeting TGFβRII to inhibit proliferation of 
HSCs[89]. In another study, adipose-derived stromal cells were transfected with miR-150, and the 
culture supernatants were collected to treat HSCs or infuse into mice with liver fibrosis. Expression of 
several fibrosis markers such as Collagen 1A1 and α-smooth muscle actin (α-SMA), as well as the levels 
of systemic inflammatory cytokines such as interleukin-6 and tumor necrosis factor-α were significantly 
decreased in miR-150-treated mice compared with the control group[90]. This indicates that the 
exosomal miR-150 has antifibrotic activity through targeting of the TGF-β pathway. Zhou et al[91] co-
cultured HSCs with human umbilical cord MSCs and found that expression of miR-148a-5p in HSCs 
was significantly upregulated, which decreased liver fibrosis by inhibiting Notch2 in vivo and in vitro.

Bone marrow MSCs have also been shown to reduce liver fibrosis by altering expression of lncRNAs. 
One such example comes from lncRNA BIHAA1 derived from bone marrow MSC-treated HSCs. Bone 
marrow MSCs inhibited liver fibrosis by lncRNA BIHAA1 targeting miR-667-5p[92]. Sun et al[93] found 
that silencing lncRNA SNHG promoted differentiation of bone marrow MSCs into hepatocyte-like cells 
and reduced cirrhosis through the miR-15a/Smad ubiquitin regulatory factor 1 (SMURF1)/UV 
radiation resistance associated gene (UVRAG)/ATG5/Wnt5a axis.

CircRNAs have also been investigated to treat liver fibrosis. Ma et al[73] reported that circDIDO1 in 
exosomes derived from MSCs regulated the PTEN/AKT pathway by sponging miR-141-3p, thereby 
inhibiting activation of HSCs and reducing expression of α-SMA and Collagen I to alleviate liver 
fibrosis. Similarly, MSC-derived exosomal circRNA cyclin dependent kinase 13 (circCDK13) inhibited 
activation of PI3K/AKT and NF-κB signaling pathways to reduce liver fibrosis by regulating miR-17-5p 
and its target gene K (lysine) acetyltransferase 2B (KAT2B)[94].

Delivery systems are one of the key issues to be resolved in order to protect ncRNAs from being 
degraded. Lipid nanoparticles (NPs) for ncRNAs delivery have been developed. Hu et al[95] 
encapsulated miR-30a-5p and an antifibrotic peptide Relaxin into NPs and injected them into fibrotic 
mice. NPs increased the exosomal miR-30a-5p level, which in turn reversed the activated HSCs into a 
quiescent state by targeting liver macrophages[95]. Furthermore, NPs encapsulated with miR-29b and 
Germacrone, a major component of the traditional Chinese medicine Rhizoma curcuma, have been shown 
to have robust antifibrotic activity in vitro and in vivo[96]. The ncRNAs showed the potential for the 
treatment of liver fibrosis are collected in Table 2.
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Table 2 Noncoding RNAs for the potential treatment of liver fibrosis

ncRNAs Target genes Signaling pathways Ref.

miR-29a PI3KP85α PI3K/AKT [79]

Fstl TGF-β/Smad2, JNK [21]

miR-223 NLRP3 inflammasome NOD signaling pathway [81] 

GLI2, PDGFRα/β Hedgehog, PDGF [82]

hB-MSCs-derived exo-miR-618 Smad4 TGF-β/Smad2 [87]

3DhESCs-derived exo-miR-6766-3p TGFβRII TGF-β/Smad [89]

hT-MSCs-derived exo-miR-486 Smo Hedgehog/GlI2 [88]

NK cells-derived exo-miR-223 ATG7 Autophagy pathway [85]

KCs-derived exo-miR-690 NADK - [84] 

lncRNA SNHG miR-15a, MURF1 UVRAG/ATG5/Wnt5a [93]

lncRNA BIHAA1 miR-667-5p - [92]

MSCs-derived exo-circDIDO1 miR-141-3p PTEN/AKT [73]

MSCs-derived exo-circCDK13 miR-17-5p, KAT2B PI3K/AKT, NF-κB [94]

ncRNAs: Noncoding RNAs; PI3K: Phosphatidylinositol 3-kinase; AKT: Serine/threonine kinase 1; Fstl: Follistatin-like 1; TGF-β: Transforming growth 
factor-β; JNK: c-Jun N-terminal kinase; NLRP3: NOD-like receptor family, pyrin domain containing 3; Smo: Smoothened; GLI2: Gliotactin family zinc 
finger 2; PDGFR: Platelet-derived growth factor receptor; MSC: Mesenchymal stem cell; hB-MSC: Human bone MSC; hT-MSC: Human tonsil-derived MSC; 
3DhESC: 3D-cultured human embryonic stem cells; TGF-βRII: TGF-β type II receptor; ATG: Autophagy-related gene; KCs: Kupffer cells; NADK: NAD 
kinase; SNHG: Small nucleolar RNA host gene; SMURF1: Smad ubiquitin regulatory factor 1; UVRAG: UV radiation resistance associated gene; DIDO1: 
Death inducer-obliterator 1; PTEN: Phosphatase and tensin homology deleted on chromosome ten; CDK13: Cyclin dependent kinase 13; KAT2B: K (lysine) 
acetyltransferase 2B.

CONCLUSION
It is well known that persistent liver fibrosis leads to irreversible fibrosis, decompensated cirrhosis, and 
even HCC, which emphasizes the importance of treatment during early-stage fibrosis to prevent disease 
progression. Therefore, it is important to diagnose liver fibrosis before clinical symptoms appear. 
Although liver biopsy is considered the gold standard for the diagnosis of liver fibrosis, its invasive 
nature limits its clinical use, especially in early disease stages. Although some ncRNAs are closely 
associated with the pathogenesis and progression of liver fibrosis, there is still insufficient evidence for 
diagnosing and staging liver fibrosis using ncRNAs alone. Some studies have suggested combining 
ncRNAs with other indicators (biomarkers) in blood or with imaging techniques to increase the 
accuracy of liver fibrosis diagnosis. There is no specific anti-hepatic fibrosis drug in clinical use, 
although several candidates have already been enrolled in clinical trials. The main strategy for 
antifibrosis therapy is to treat the etiology and alleviate liver inflammation. NcRNAs are able to target 
various inflammation-related signaling pathways to reduce liver fibrosis. The latest studies have found 
that miR-20b-5p[97] and lncRNA Antisense Igf2r RNA (lncRNA Airn)[98] can inhibit HSCs activation to 
alleviate liver fibrosis process. Salvianolic acid B treatment relieved the activation of HSCs through 
decreasing the expression of lncRNA regulator of reprogramming (lncRNA-ROR)[99], which providing 
new targets for the treatment of liver fibrosis. Although most of these findings are based on in vitro 
studies, and therefore, need validation in vivo. With the rapid progress of techniques such as gene 
editing, NP-based delivery systems, and synthetic biology, MSC-derived exosomal ncRNAs may 
become promising treatment options for liver fibrosis in the near future.
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Abstract
Viscoelastic tests, specifically thromboelastography and rotational thromboelast-
ometry, are increasingly being used in the management of postoperative bleeding 
in surgical intensive care units (ICUs). However, life-threatening bleeds may 
complicate the clinical course of many patients admitted to medical ICUs, 
especially those with underlying liver dysfunction. Patients with cirrhosis have 
multiple coagulation abnormalities that can lead to bleeding or thrombotic 
complications. Compared to conventional coagulation tests, a comprehensive 
depiction of the coagulation process and point-of-care availability are advantages 
favoring these devices, which may aid physicians in making a rapid diagnosis and 
instituting early interventions. These tests may help predict bleeding and 
rationalize the use of blood products in these patients.

Key Words: Bleeding; Chronic liver disease; Cirrhosis; Thromboelastography; Viscoelastic 
tests

©The Author(s) 2023. Published by Baishideng Publishing Group Inc. All rights reserved.

Core Tip: Viscoelastic hemostatic assays are increasingly used as “point-of-care” tests, 
providing real-time, dynamic insight into the complex coagulation aberrations seen in 
cirrhotic patients. In cirrhosis, all patients undergoing a high-risk invasive procedure or 
who are actively bleeding should undergo thromboelastography (TEG) on initial 
evaluation, if this testing is available. Any reasonable TEG-based strategy will likely 
represent an improvement over strategies using traditional coagulation tests. The best 
approach will be to use TEG supplemented by standard platelet count and fibrinogen 
testing. TEG is a promising diagnostic modality and may help in predicting bleeding 
and aid in the rationalization of the use of blood products in these patients.
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INTRODUCTION
The liver is essential in maintaining hemostasis[1]. Patients with cirrhosis may demonstrate altered 
coagulation and are often considered “auto-anticoagulated”[2]. However, the current understanding of 
coagulopathy is that patients with cirrhosis have a rebalanced coagulation status[3]. This balance is 
precarious due to alterations in the hepatic synthesis of pro- and anticoagulant factors. The resilience of 
the hemostatic system can be further decreased in cirrhotic patients by acute clinical conditions like 
systemic infection, altered volume status, and impaired renal function.

Given our current understanding of coagulation status in cirrhosis patients, there is considerable 
interest in tests of coagulation that could provide a truly global view of the coagulation system. Conven-
tional coagulation tests (CCTs), like prothrombin time (PT) and activated partial thromboplastin time 
(aPTT), are indicators of general liver dysfunction. However, these tests fail to depict the totality of in 
vivo coagulation dysfunction, and lack insight into factors such as blood flow dynamics, endothelial 
tissue factor (TF), platelet function. They are also limited in their ability to aid in the decision of whether 
to administer plasma or whole blood[4,5]. Despite such concerns, these CCTs are commonly used to 
drive clinical decisions.

Thromboelastography (TEG) provides a more physiologically accurate assessment of the coagulation 
system. TEG has been used effectively as a rapid point-of-care test to assess hypercoagulable, hypoco-
agulable, and rebalanced coagulation states to evaluate blood transfusion requirements, suggest 
whether anticoagulation is required, and, if so, aid in the selection of anticoagulant therapy[6].

However, the ideal strategy for using TEG to guide the determination of blood product transfusion is 
unclear. Although the literature is replete with prospective data demonstrating the superiority of TEG 
over CCTs for non-surgical patients in terms of the requirement of blood transfusion, a mortality benefit 
has not been established[7-9]. The present article aims to review the current evidence supporting the use 
of TEG and the clinical significance of this testing modality in the guidance of blood transfusion in 
cirrhosis patients.

HEMOSTATIC SYSTEM IN LIVER DISEASE
Per the cell-based model of hemostasis, coagulation occurs not as a “cascade” but in 3 overlapping 
stages: (1) The initiation phase ensues on tissue factor (TF)-carrying cells. If the procoagulant stimulus is 
sufficiently strong, factors Xa, IXa, and thrombin are formed in adequate levels to initiate the 
coagulation process; (2) The amplification phase occurs as the activity moves from the TF-carrying cell 
to the platelet surface. The procoagulant stimulus is intensified causing platelets to attach, activate, and 
hoard activated cofactors on their surfaces; and (3) The propagation phase in which the “tenase” and 
“prothrombinase” complexes gather on the platelet surface and generate the large amounts of thrombin 
necessary to form a hemostatic fibrin clot[10].

In cirrhosis, all three phases are limited by hepatic synthetic dysfunction and portal hypertension, 
resulting in a delicate state of “new equilibrium” (Figure 1)[11]. However, this balance can be altered by 
concomitant conditions such as sepsis or acute kidney injury (AKI) as a result of the interaction between 
platelets and released inflammatory mediators (Figure 2). Thus, the coagulation profile in cirrhotic 
patients is dynamic, with possible resolution of global coagulation deficiencies once the acute critical 
illness resolves. The cell-based model of coagulation also explains why regional hemostatic changes at 
an injury site do not override the systemic hemostatic equilibrium. Accordingly, CCTs may remain 
unchanged in patients with liver dysfunction, even with clinically evident bleeding.

According to Hoffman's concept of the cell-based coagulation model, bleeding can arise from 
disorders of primary hemostasis (abnormal platelet plug formation) or secondary hemostasis (reduced 
thrombin generation and subsequent fibrin clot formation). The liver plays a critical role in maintaining 
both primary and secondary hemostasis[11]. In fact, the liver is the site of synthesis of most coagulation 
factors, with the exception of von Willebrand factor (vWF), factor VIII (only partly synthesized in the 
liver), and calcium[12].

Bleeding complications in cirrhotic patients may occur due to hemostatic failure or non-hemostatic 
causes. The term “spontaneous hemostasis-related bleeding” has recently been introduced to 
distinguish bleeding due to hemostatic anomalies from that related to portal hypertension, trauma, or 
peptic ulcers. It is defined as an unprovoked hemorrhage of unexplained cause. However, it should be 
emphasized that spontaneous bleeding is uncommon in patients with cirrhosis, and bleeding is typically 
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Figure 1 Rebalanced hemostasis in cirrhosis. ACLF: Acute-on-chronic liver failure; AKI: Acute kidney injury; DIC: Disseminated intravascular coagulation.

related to portal hypertension caused by increased portal pressure rather than hemostatic failure. This 
was conclusively demonstrated by the inability of recombinant factor VII to achieve better control of 
variceal rebleeding[13,14]. Notably, a bleed not primarily caused by hemostatic failure can evolve into a 
hemostatic bleed due to severe blood loss and consumptive coagulopathy. Bleeding (tertiary hemostasis 
disorder) can also be due to premature platelet or fibrin clot dissolution or excessive fibrinolysis, which 
in cirrhotic patients has been termed “accelerated intravascular coagulation and fibrinolysis” (AICF). 
AICF manifests as mucosal or puncture wound bleeding, and the pathophysiology of this disorder is 
not entirely understood. Hyperfibrinolysis parallels the severity of liver disease: mild systemic 
fibrinolysis is encountered in 30%-45% of cirrhotic patients, with clinically detectable fibrinolysis in only 
5%-10%. AICF can be distinguished from disseminated intravascular coagulation by increased factor 
VIII levels (Figure 1)[15,16]. The 3 phases of coagulation in liver disease resulting in a “rebalancing” of 
hemostasis are summarized in Table 1[17,18].

For the past several decades, bleeding has been a major concern in the management of cirrhotic 
patients. However, thrombotic complications are being increasingly acknowledged and are attributed to 
shifts in hemostatic balance. In one case-control study, the relative risk of venous thromboembolism 
(VTE) in patients with cirrhosis was 1.74 (95%CI: 1.54-1.95)[19]. These conclusions were mirrored in a 
study by Wu et al[20], which showed an increased likelihood of VTE in cirrhosis [odds ratio (OR) 1.23 in 
compensated cirrhotic patients; OR 1.39 in decompensated cirrhotic patients]. Dysfibrinogenemia (i.e. 
altered fibrinogen) may result in decreased permeability of the formed clot, as well as other factors that 
contribute to coagulopathy. It may even confer hypercoagulable features, manifesting as macro- and 
micro-thrombotic complications. A hypercoagulable state also frequently occurs in cirrhosis patients 
due to concomitant primary biliary cholangitis, non-alcoholic fatty liver disease, or primary sclerosing 
cholangitis[21].

The most common macro-thrombotic presentation in liver disease is portal vein thrombosis (PVT), 
occurring in 8% to 18% of cirrhosis patients[18]. The incidence of PVT increases with deteriorating liver 
function and decreased portal flow. Deep venous thrombosis and pulmonary embolism (PE) are other 
macro-thrombotic complications, which have been reported in 5% of hospitalized patients with chronic 
liver disease (CLD)[17,22]. Micro-thrombotic complications include intrahepatic microthrombi 
(“parenchymal extinction”), resulting in nodules, porto-pulmonary hypertension, and cirrhosis arising 
as an ischemic/reinjury process. These complications often merit exigent consideration of anticoagulant 
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Table 1 Three phases of coagulation in liver disease

Hemostasis stage Hypocoagulable state Hypercoagulable state

Primary hemostasis: Platelet 
activation and interaction 
with injured endothelium

Thrombocytopenia: (1) Decreased amount: Splenic sequestration, decreased 
thrombopoietin levels, bone marrow suppression, autoantibody destruction; 
and (2) Poor function: Uremia, changes to the vessel wall phospholipid 
composition, anemia (Hgb < 7 g/dL), decreased margination

Low levels of ADAMTS-13; Increased 
levels of vWF; Increased number of 
activated platelets

Secondary hemostasis: 
Fibrin clot formation

Low levels of factors II, V, VII, IX, X, and XI; Low levels of fibrinogen; Vitamin 
K deficiency (malabsorption in cholestatic disorders)

Elevated levels of factor VIII; Decreased 
levels of proteins C and S; Decreased 
levels of antithrombin, and heparin 
cofactor II

Fibrinolysis Accelerated intravascular coagulation and fibrinolysis: (1) Low levels of factor 
XIII and thrombin-activated fibrinolysis inhibitor; (2) Elevated levels of tPA; (3) 
Decreased level of α2-antiplasmin; and (4) Dysfibrinogenemia

Low plasminogen levels; Dysfibrino-
genemia; High plasminogen activator 
inhibitor

Hgb: Hemoglobin; tPA: Tissue plasminogen activator; vWF: von Willebrand factor.

Figure 2 Dynamic coagulation profile in cirrhosis. ACLF: Acute-on-chronic liver failure; DAMP: Damage-associated molecular patterns; PAMP: Pathogen-
associated molecular patterns; TF: Tissue factor.

usage.

TESTS OF COAGULATION IN CIRRHOSIS
As of this article, all available laboratory hemostasis measures have significant limitations when applied 
to patients with liver disease. The paradigm of this phenomenon is the cirrhotic patient, for which PT 
and international normalized ratio (INR) were developed to monitor warfarin-treated patients by 
measuring the activity of an added commercially available thromboplastin reagent. PT and aPTT 
indicate the onset of thrombin generation; however, they do not reflect enzymatic coagulation. PT/INR 
has been validated as a prognostic marker for mortality in liver disease, but has never been validated to 
predict bleeding risk or guide transfusion of blood products, especially for pre-procedure risk 
mitigation[14]. Nonetheless, this measure has been used for decades as a surrogate for bleeding risk in 
cirrhosis despite the fact that the arbitrary cut-off points used as clinical targets for the prevention of 
bleeding are not supported by scientific evidence. Furthermore, using fresh frozen plasma (FFP) to 
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normalize a raised INR in cirrhosis does not alter thrombin (factor II) production, but exacerbates portal 
hypertension[23-25].

Thrombocytopenia is the most common hematological abnormality in patients with liver disease. 
Platelet count thresholds are often specified for invasive procedures in patients with severe cirrhosis-
related thrombocytopenia. In vitro data suggest that a threshold of 50-55 × 109/L is necessary for 
adequate platelet activity, and levels below this range fail to promote thrombin generation[26]. 
However, the platelet function associated with primary hemostasis (i.e. adhesiveness and aggregation) 
has not been evaluated. Current guidelines and expert opinion recommend considering platelet-raising 
treatments before high-risk procedures, or in patients with active bleeding with platelet counts < 50 × 
109/L. However, there is no firm evidence that prophylactic platelet transfusion to achieve this target 
enhances hemostasis[15,23].

As mentioned previously, platelet count alone does not account for other factors affecting platelet 
function in cirrhosis[27]. For example, uremic platelet dysfunction (e.g., hepatorenal syndrome) can 
result in impaired platelet activity with decreased serotonin in alpha granules and dysregulated 
metabolism of thromboxane A2. Anemia can also affect platelet function. In patients with hematocrit < 
25%, erythrocyte concentration is inadequate to facilitate platelet margination, impairing the clotting 
process. Sepsis and endotoxemia due to bacterial translocation also can affect platelet function.

Recently, fibrinogen levels have replaced INR to couple with platelet count in the evaluation of 
bleeding risk. The Clauss method for detecting fibrinogen is turbidimetric and relies on thrombin-
induced fibrin formation. Nevertheless, fibrinogen levels do not account for the synthesis of abnormal 
fibrinogen in cirrhotic patients caused by hypersialylation of the fibrinogen, leading to impaired 
fibrinogen-to-fibrin conversion[28]. In trauma surgery patients without underlying liver disorder, 
administration of fibrinogen factor to accomplish levels of fibrinogen > 200 mg/dL is associated with 
improved hemostasis. However, in routine clinical practice, the most agreed-upon cut-off for fibrinogen 
in cirrhotic patients with active bleeding is > 120 mg/dL[29]. In cirrhotic patients, spontaneous or 
procedure-related bleeding is relatively common when plasma fibrinogen levels are less than 100 mg/
dL. Whether this relationship is causal or reflects disease severity is unclear. As such, the available 
evidence suggests that tests measuring clot formation and strength (i.e. fibrinogen) may have better 
predictive value for bleeding events than coagulation initiation tests[29,30].

Primary hyperfibrinolysis is an increasingly vital pathophysiological process in CLD, resulting in an 
increased risk of variceal bleeding. D-dimer is a nonspecific marker of fibrin degradation. While 
evidence suggests that elevated D-dimer indicates hyperfibrinolysis and can predict gastrointestinal 
bleeding in this population, elevated D-dimer alone provides limited information regarding an 
individual's fibrinolytic state[31,32].

Thrombin generation assays (TGAs) evaluate the time of thrombin generation and its decline when 
plasma is triggered by TF and phospholipids. Thus, TGA can reflect the activity of both pro- and antico-
agulant factors[33,34]. Nevertheless, clinical trials are needed to test this conjecture. Similar to PT and 
aPTT, TGA is performed on plasma rather than whole blood. However, because of their method, TGAs 
approximate the in vivo coagulation balance better than CCTs.

TEG quantitatively assesses the capability of whole blood to form a clot, providing a comprehensive 
picture of coagulation status compared to standard laboratory tests, which are confined to developing 
the first fibrin strands. However, TEG is insensitive to the platelet adhesion and aggregation activity of 
vWF and the anticoagulant actions of protein C and protein S; therefore, it may lead to an underes-
timation of hemostatic capacity[17] (Table 2).

PRINCIPLES OF TEG 
The principle of the in vitro TEG test is to detect and quantify dynamic changes in the viscoelastic 
properties of whole blood during clotting under low shear stress (Figure 3A). TEG results are depicted 
as 2-dimensional graphs, with time on the x-axis and amplitude (in millimeters) on the y-axis 
(Figure 3B). A normal TEG trace appears similar to a cognac glass lying on its side (Figure 4)[17]. An 
evident prolongation of R is associated with clotting factor levels of 30% or less[35]. Different activators 
can be added to the blood to better assess various aspects of the clotting cascade (Table 3). Conventional 
TEG involves clot initiation by adding kaolin, simulating the intrinsic coagulation pathway. In contrast, 
rapid TEG involves the addition of kaolin and TF, causing massive thrombin burst and providing initial 
results (K time) within 6 min and alpha angle/MA within 15 min[36,37]. Thus, the results of rapid TEG 
can be achieved approximately 10 min earlier than the kaolin TEG and about 30 min earlier than CCTs
[37]. This could guide critical resuscitations more competently, enabling real-time monitoring and goal-
directed therapy. Though the activators reduce the test turnaround time (e.g., kaolin), the sensitivity of 
viscoelastic tests (VETs) could be blunted, and subtle changes in coagulation and clot lysis might not be 
detected[17] (Table 4).

Correlation of CCTs and VETs
A strong correlation between TEG measures of clot formation and clot strength and conventional 
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Table 2 Thromboelastography components and their clinical implications

Nomenclature Definition Function Significance Most closely 
related CCT

Reaction time or 
R-time 

Time (min) to reach 
an amplitude of 2 mm 

Clot 
initiation

Informs about enzymatic reaction leading to thrombin and fibrin generation. 
Increased R-time, factor deficiency or reduced function, resulting in hypoco-
agulability; Shortened R-time, factor hypercoagulability

PT and aPTT

K-time Time (min) from 2-20 
mm amplitude 

Clot 
kinetics

Depicts rate of clot development–fibrin polymerization, cross-linking, and 
platelet interaction. Long K-time, hypocoagulability; Short K-time, hyperco-
agulability

Fibrinogen level 
and platelet count

Angle or α Slope between R and 
K

Clot 
kinetics

Also depicts the kinetics of clot development. Low-angle, hypocoagulability; 
High-angle, hypercoagulability 

MA Highest level of 
amplitude achieved 
by the clot 

Clot 
strength

Provides assessment of overall clot strength Platelet count and 
fibrinogen levels

Coagulation 
index 

Composite indicator 
of coagulation profile 

A linear combination of the above parameters serving as a global view of 
the patient’s hemostatic profile. Increased in hypercoagulable states; 
Decreased in hypocoagulable states

LY30 Degree of lysis (%) 30 
min after MA is 
reached 

Clot 
stability

Measure of fibrinolysis. Above normal LY30 suggests hyperfibrinolysis No equivalent 
test

aPTT: Activated partial thromboplastin time; CCT: Conventional coagulation test; MA: Maximum amplitude; PT: Prothrombin time.

Table 3 Procedural bleeding risk in patients with cirrhosis

High-risk procedures Intermediate-risk procedures Lower-risk procedures 

Intrabdominal/orthopedic/cardiac surgery Percutaneous endoscopic gastrostomy Paracentesis

Brain or spinal surgery Percutaneous or transjugular liver biopsy Thoracentesis

Intracranial catheter insertion Transjugular intrahepatic portosystemic shunt Central line placement 

Endoscopic mucosal resection or endoscopic 
submucosal dissection

Endoscopy (e.g., percutaneous gastrostomy placement, 
cystogastrostomy, biliary sphincterotomy)

Endoscopy (e.g., diagnostic, variceal 
ligation, uncomplicated polypectomy) 

Complicated polypectomy Percutaneous biopsy of extra-hepatic organ or lesions Cardiac catheterization

Natural orifice transluminal endoscopic surgery Trans-arterial or percutaneous hepatocellular carcinoma 
therapies 

Hepatic venous pressure gradient 
measurement

Lumbar puncture

Table 4 Various types of thromboelastography assays

TEG channel Activator Function

Native TEG None Theoretically most sensitive to subtle coagulopathic changes and hyperfibrinolysis

Conventional TEG Kaolin Activates clotting cascade to expedite results

Rapid TEG Tissue factor + kaolin Activates clotting cascade to expedite results 

Functional fibrinogen 
TEG 

Glycoprotein IIb/IIIa 
inhibitor 

Inhibits platelets to isolate the contribution of fibrinogen 

Heparinase TEG Heparinase Inhibits heparin; the presence of heparin (endogenous or exogenous) is suggested when this channel 
shows improved clotting compared to other channels

TEG: Thromboelastography.

fibrinogen level has been observed in CLD patients who are critically ill. Nevertheless, weak or 
unpredictable correlations exist between TEG and CCTs in measuring coagulation initiation (i.e. TEG R-
time and PT/INR/aPTT), TEG and conventional platelet count, and measures of fibrinolysis (TEG LY30 
and traditional D-dimer)[38-40]. The absence of a correlation between PT/INR and R may be explained 
by several elements, such as the use of different activators, the use of whole blood vs plasma, and the 
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Figure 3 Basis and results of the thromboelastography. A: Basis of the thromboelastography (TEG) test; B: TEG tracing and relevant parameters (kaolin-
activated). MA: Maximum amplitude.

Figure 4 Tracing of thromboelastography in various clinical conditions. A: Low clotting factors; B: Normal trace; C: Enzymatic hypercoagulability; D: 
Low fibrinogen levels; E: Primary fibrinolysis; F: Platelet hypercoagulability; G: Low platelet function; H: Secondary fibrinolysis; I: Enzymatic and platelet 
hypercoagulability.

fact that R-time, unlike INR, reflects the balance of both pro- and anticoagulant factors. This supports 
the evidence that clotting initiation and speed measures are challenging to interpret in this cohort, while 
TEG maximum amplitude (MA) and conventional fibrinogen may be more reliable. Nonetheless, the 
results of these tests should always be correlated with the clinical situation.

CLINICAL APPLICATIONS OF TEG IN LIVER DISEASE
TEG and invasive procedures in patients with cirrhosis
Bleeding complications after invasive procedures are always a concern in cirrhotic patients, though the 
incidence varies widely[41]. Although the risk of bleeding after the procedure is related to alterations in 
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clotting factors, the risk is also inherent to a given procedure (Table 3) and the given clinical situation
[41]. In cirrhotic patients with acute illness or acute-on-chronic liver failure, the association between 
clotting tests and bleeding may not be as apparent or evident as in stable patients. Moreover, managing 
complications, such as sepsis or AKI, instead of correcting hemostatic abnormality, may result in 
improved outcomes. A retrospective study revealed that AKI was the only independent risk factor for 
post-paracentesis hemoperitoneum. In contrast, no significant difference was observed in CCTs (platelet 
count and INR levels) between patients with or without this complication[42].

Three recent randomized trials conducted in cirrhotic patients undergoing invasive procedures 
demonstrated a decreased requirement for prophylactic blood product transfusions using TEG-guided 
transfusions compared to standard test-based protocols[7-9]. However, they could not demonstrate any 
relationship between abnormal TEG tracing and bleeding, primarily due to the scarcity of documented 
bleeding events. Similarly, TEG did not help to predict the inability to control bleeding or prevent 
rebleeding. Also, no impact on other clinically relevant outcomes was observed. Moreover, each study 
used a different transfusion protocol, making it difficult to know whether the lower cutoff for 
transfusion would have been more beneficial. In another study of cirrhotic patients undergoing various 
invasive procedures without prophylactic administration of blood products, even with abnormal CCT 
and TEG R-time and MA, 1 patient experienced bleeding (0.7%)[43]. Also, a recent study in 90 patients 
with cirrhosis undergoing central venous cannulation demonstrated that a prolonged TEG K-time (≥ 
3.05 min) could not predict bleeding complications (accuracy 69.4%, P = 0.047)[44]. These studies 
indicate that post-procedural bleeding events are rare, implying that uncorrected coagulopathy does not 
modify the post-procedural outcome. Nevertheless, coagulation tests can be utilized to evaluate the 
severity of liver disease or the patient's baseline hemostatic function and to provide a baseline to guide 
management in the case of post-procedural bleeding.

Most of the latest guidelines recommend against using CCTs and correction of coagulopathy before 
undergoing common gastrointestinal procedures in patients with stable cirrhosis. Also, there are no 
recommendations for or against using TEG in such patient populations (Table 5)[15,23,45,46]. However, 
in patients with severely abnormal coagulation parameters or thrombocytopenia undergoing a 
moderate- to high-risk procedure, clinical judgment regarding prophylactic blood transfusion should 
consider the possible benefits and risks (Figure 5)[7,15].

Use of TEG in cirrhosis with active bleeding
Bleeding related to portal hypertension, variceal and non-variceal, is primarily managed with local 
measures such as endoscopic band ligation, laser or injection therapy, and by lowering portal pressure 
using vasoactive drugs than pro-hemostatic therapy. The observation that variceal bleeding in patients 
on anticoagulants was not severe or associated with worse outcomes compared to patients who are not 
on anticoagulants confirms that the role of the hemostatic system in variceal bleeding, if present, is 
minor[47]. Randomized controlled studies have shown that in cirrhotic patients with variceal and non-
variceal bleeding, using VETs to guide blood product transfusion did not result in superior control of 
bleeding nor any morbidity or mortality benefit compared to CCTs[48-50]. However, the transfusion 
requirement was significantly lower in the VET group. Although the study by Kumar et al[51] 
demonstrated significantly shorter ICU stays using TEG-guided resuscitation, there was no difference in 
other outcomes. Nevertheless, it is questionable whether in active variceal bleeding, VETs-guided pro-
hemostatic therapy is beneficial or contributes to the control of bleeding when the standard treatment 
with vasoactive drugs and endoscopic therapy is provided.

If local measures and portal pressure-lowering drugs cannot contain bleeding, the decision to correct 
coagulopathy by transfusing blood products should be considered on a case-by-case basis[13]. Since 
VETs are quicker and more accurate than CCTs and provide a more practical understanding of 
fibrinolysis, which may indicate the need to start antifibrinolytic therapy, they have a theoretical 
advantage over CCTs in guiding the management of active bleeding.

Unlike pressure-driven bleeding, AICF arises due to disturbed hemostatic mechanisms[15]. Antifib-
rinolytic therapy, such as epsilon aminocaproic acid or tranexamic acid, is potentially effective, 
inhibiting the fibrin clot's dissolution. Neither agent is thought to have inherent hypercoagulable risk, 
except in the case of a preexisting pathological thrombus such as PVT. The “native TEG” can detect this 
condition in liver disease patients by the presence of an increase in LY30[17].

TEG-based algorithms may allow targeted and specific blood product transfusions in patients with 
severe bleeding (e.g., FFP or cryoprecipitates)[17]. However, the threshold values of various VETs to 
trigger transfusion are yet to be validated in appropriate clinical studies.

Heparin-like effect in cirrhosis
A stressful condition such as surgery or sepsis can trigger the release of endogenous glycosa-
minoglycans (GAGs) (e.g., heparin sulfate and dermatan sulfate) from the endothelium glycocalyx layer 
or mast cell, which, when shed, retain their anticoagulant activity[52,53]. This is thought to be an 
adaptive reaction to maintain the patency of progressively procoagulant microvasculature through 
endogenous heparinization, thus preventing spontaneous thrombosis.
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Table 5 Thresholds for coagulation parameters prior to high-risk procedures in patients with cirrhosis

Parameters EASL 2022 ISTH 2021 AASLD 2021 AGA 2021

PT/INR Against routine evaluation and 
correction

Against correction Against correction Against routine evaluation and 
correctiona

Platelet count Against correctionb Against correctionb Against correction Against routine evaluation and 
correctiona

Fibrinogen Against routine correction Against routine evaluation Against correction No specific recommendation

TEG Against routine evaluationc Do not use routinely Do not use routinely No specific recommendation

aIn case of severe coagulopathy, prophylactic blood transfusions should be considered on case-to-case basis by evaluating potential benefits and risks in 
consultation with a hematologist.
bIf the bleeding cannot be controlled by the local hemostasis method, administration of platelet concentrate or thrombopoietin receptor agonist can be 
considered if the platelet count is < 50000 × 106/L.
cMay provide a baseline coagulation status and guide in the case of bleeding events.
AASLD: American Association for the Study of Liver Diseases; AGA: American Gastroenterological Association; EASL: European Association for the 
Study of the Liver; INR: International normalized ratio; ISTH: International Society on Thrombosis and Hemostasis; PT: Prothrombin time; TEG: 
Thromboelastography.

Figure 5 Algorithm for coagulation factor administration in the cirrhotic patient with coagulopathy undergoing an invasive procedure. FF: 
Functional fibrinogen; FFP: Fresh frozen plasma; MA: Maximum amplitude; TEG: Thromboelastography; TPO: Thrombopoietin.

Endogenous GAGs may increase the bleeding risk in some patients. This was illustrated by Senzolo et 
al[54], where GAGs affected hemostasis in cirrhotic patients with sepsis. Another prospective analysis 
further confirmed the presence of an endogenous heparinoid in patients with cirrhosis and acute 
variceal bleeding and was found to be associated with bleeding-related mortality[55]. After appropriate 
therapy, endogenous heparinoids are cleared with normalization of the coagulation profile, 
emphasizing the association between the coagulation cascade and inflammatory pathways.

Although CCTs are insensitive to this effect, the native TEG is extremely sensitive to the presence of 
heparin and heparin-like substances, which is detectable by an increased R-time on TEG analysis[56]. 
Adding heparinase I, which cleaves heparin-like compounds, can demonstrate a heparin-like effect due 
to elevated GAGs, correlating with an anti-Xa activity[57]. Therefore, heparinase TEG will normalize the 
prolongation of the R-value observed with native TEG. Thus, TEG helps differentiate between a 
coagulation factor deficiency and heparin-produced coagulopathy by using heparinase-modified TEG 
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and the native TEG (Table 4).

TEG in orthotopic liver transplant
Kang et al[58] at the University of Pittsburgh introduced TEG-based algorithms to guide blood product 
transfusion for correcting coagulopathy in orthotopic liver transplantation in the early 1980s (Figure 6). 
It was shown that TEG reduced transfusion requirements by 33% compared with a historical cohort. 
Secondary endpoints like re-intervention for bleeding, AKI, or hemodynamic instability were 
significantly lower in the VET group. Although numerous studies have described the usefulness of VET 
in lowering transfusion requirements in liver transplant (LT), most of these studies commonly 
compared the results with historical cohorts having a relatively high baseline transfusion rate[59,60]. A 
recent study of 60 LT patients showed no significant differences with and without VET monitoring 
though overall transfusion was low, with many patients receiving no transfusion[61]. As bleeding and 
transfusion management continues to evolve, the results of these earlier studies cannot be easily 
employed in the present era. Also, the thresholds described for VET for initiating transfusion are still to 
be established, and values may be substantially above the normal ranges before an intervention is 
advised.

A significant proportion of patients undergoing LT will inevitably have enormous blood loss, and 
VET can be helpful in such occasions to enable goal-targeted treatment and assess the effectiveness of 
any therapeutic intervention. The short turnaround times of VET (10-20 min) are vital for directing 
therapy and averting inappropriate transfusion during surgery and in the ICU. Monitoring coagulation 
with functional fibrinogen TEG (Table 4) for goal-directed fibrinogen substitution seems more 
appropriate and avoids unnecessary platelet transfusions. This is particularly important in LT, as 
platelet administration is associated with a substantial decline in 1-year survival[62].

Fibrinolysis and orthotopic liver transplant
It is well known that increased fibrinolytic activity can occur at any juncture during LT. However, it is 
significantly enhanced during the anhepatic period due to a lack of tissue plasminogen activator (tPA) 
clearance[63]. Also, it may become most pronounced in the post-reperfusion stage by an erratic upsurge 
in tPA, leading to diffuse uncontrolled bleeding due to primary hyperfibrinolysis[64]. If the graft 
function is good, hyperfibrinolysis after reperfusion is usually self-limiting and does not require 
treatment. However, in the presence of an inadequately functioning graft, it may persist[65]. During LT, 
prophylactic antifibrinolytic agents were often used in earlier years because of the high mortality 
associated with tremendous blood loss, and the potential peril associated with antifibrinolytics was 
minor. As massive bleeding is currently less frequent, there is a preference towards the selective use of 
antifibrinolytics only in high-risk patients. Systemic fibrinolysis can be efficiently detected using VETs 
(demonstrated by increased or worsening LY30 and LY60), which may not be possible with CCTs. Thus, 
the transfusion requirement may be decreased with VET use in liver transplantation, where hyperfib-
rinolysis commonly occurs.

TEG and hypercoagulability
The risk of developing VTE is similar in cirrhotic and non-cirrhotic patients[15,23]. Hypercoagulability 
detected on TEG can either be due to shortened R or K, enhanced clot strength (MA), or a combination 
of both. Huang et al[66] observed a significantly shorter R in cirrhosis with non-malignancy PVT. 
Zanetto et al[67] found that elevated MA was associated with PVT in cirrhotic patients with hepato-
cellular carcinoma. Given that malignancy itself could also cause hypercoagulation, the clinical use of 
TEG in this setting may be questionable. In another study, hypercoagulability was defined as the 
presence of at least 2 of the following criteria: reduced R, reduced K, raised α, or increased MA. 
Hypercoagulability was not associated with PVT in cirrhosis[68].

In cirrhotic patients with elevated CCTs, we tend to avoid prophylactic anticoagulation in hospit-
alized patients. Presently, the European Association for the Study of the Liver Clinical Practice 
Guidelines in cirrhosis does not recommend using VETs to identify the risk of VTE[23]. Further 
prospective studies may explore the utility of TEG in predicting the risk of VTE during hospitalization.

Acute intracardiac thrombi and PEs are rare, although a well-recognized, potentially fatal 
complication of LT, associated with high mortality. Krzanicki et al[69] demonstrated that a hyperco-
agulable state is quite common during liver transplantation. A review of 27 case reports of TE in 
orthotopic LT showed that TEG indicated hypercoagulability in greater than 70% of cases[70]. Also, 
hypercoagulable TEG patterns correlated well with the formation of intracardiac thrombi. Indeed, a 
quick inspection of the rapid TEG after 5 or 10 min of clotting time might predict thrombosis, 
demonstrated by the increase in the MA. The clinical importance of hypercoagulability on TEG during 
LT is yet to be recognized. However, it would appear unreasonable to transfuse blood products or avoid 
anticoagulants based on raised CCTs when a hypercoagulable state is seen on TEG.

Patients with cirrhosis and VTE should be treated with anticoagulation, similar to other non-cirrhotic 
patients. In patients at increased risk of bleeding, unfractionated heparin (UFH) is the preferred antico-
agulant, owing to its shorter half-life (45 min) and the availability of an effective antidote (protamine 
sulfate). aPTT is the most commonly used test to monitor UFH therapy. Although the anti-Xa activity 
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Figure 6 Algorithm for guiding blood product transfusion by thromboelastography. Cryo: Cryoprecipitate; FFP: Fresh frozen plasma; Hep R: 
Heparinase R-Time; MA: Maximum amplitude; TEG: Thromboelastography.

assay is used explicitly for monitoring low molecular weight heparins, as they primarily inhibit factor 
Xa, it may also be superior to aPTT for titrating UFH[71].

Given that heparin activity mainly depends on the liver-derived activity of the heparin cofactor 
antithrombin III, monitoring heparin therapy with CCT in patients with cirrhosis is challenging. TEG 
may provide a better representation of the in vivo heparin effect than aPTT[72,73]. A higher concen-
tration of heparin tends to be associated with larger R-values with dose-dependence. Levels of anti-
factor Xa activity correlate with the R-value of TEG. In addition, TEG can help diagnose and treat 
heparin-induced coagulopathy. Thus, platelet and enzymatic hypercoagulability demonstrated with 
TEG mandates aggressive treatment with a direct thrombin inhibitor.

LIMITATIONS OF TEG
Like any other test, TEG is associated with certain limitations. It measures blood coagulation in vitro 
instead of during flow within the vasculature, and as such does not reflect the endothelium's function in 
coagulation. Inherently, the test is less sensitive to platelet adhesion and interactions between vWF and 
protein C and S system. TEG results do not correlate with the effects of hypothermia, as TEG is 
performed at 37 °C. Kaolin cannot effectively detect alterations in the extrinsic coagulation pathway, as 
it only activates the intrinsic coagulation pathway. Thus, INR is still the gold standard for monitoring 
warfarin therapy, and TEG may overlook a clinically significant coagulopathy. TEG detects fibrinolysis 
only when tPA levels are 5 times normal. Studies have shown that using plasmin-α2-antiplasmin as a 
biomarker for fibrinolysis can detect fibrinolytic activation in over 80% of severely injured patients, 
whereas TEG detected hyperfibrinolysis in only 5%-18%. Each TEG run generally takes 30 min to an 
hour, and only a few tests can run simultaneously, unlike CCT. The optimization of TEG is essential in 
providing appropriate patient laboratory testing. Additionally, testing should be performed by trained 
personnel and is susceptible to technical variations.
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CONCLUSION
VETs are increasingly used as “point-of-care” tests, providing a real-time, dynamic picture of complex 
coagulation aberrations (e.g., hypocoagulability, hypercoagulability and hyperfibrinolysis) in cirrhotic 
patients. In cirrhosis, all patients undergoing a high-risk invasive procedure or who are actively 
bleeding should undergo TEG at initial evaluation, if this testing is available. Any reasonable TEG-
based strategy will likely represent an improvement over strategies using traditional coagulation tests. 
The best approach will be to use TEG supplemented by platelet count and fibrinogen measures. TEG is a 
promising diagnostic modality, but given the limited clinical trials, there are no consensus guidelines for 
its use. Further prospective studies are required to validate TEG algorithms for use in the context of 
patients with cirrhosis.
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Abstract
BACKGROUND 
Immunological dysfunction-induced low-grade inflammation is regarded as one 
of the predominant pathogenetic mechanisms in post-infectious irritable bowel 
syndrome (PI-IBS). γδ T cells play a crucial role in innate and adaptive immunity. 
Adenosine receptors expressed on the surface of γδ T cells participate in intestinal 
inflammation and immunity regulation.

AIM 
To investigate the role of γδ T cell regulated by adenosine 2A receptor (A2AR) in 
PI-IBS.

METHODS 
The PI-IBS mouse model has been established with Trichinella spiralis (T. spiralis) 
infection. The intestinal A2AR and A2AR in γδ T cells were detected by immuno-
histochemistry, and the inflammatory cytokines were measured by western blot. 
The role of A2AR on the isolated γδ T cells, including proliferation, apoptosis, and 
cytokine production, were evaluated in vitro. Their A2AR expression was 
measured by western blot and reverse transcription polymerase chain reaction 
(RT-PCR). The animals were administered with A2AR agonist, or A2AR anta-
gonist. Besides, γδ T cells were also injected back into the animals, and the 
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parameters described above were examined, as well as the clinical features. Furthermore, the 
A2AR-associated signaling pathway molecules were assessed by western blot and RT-PCR.

RESULTS 
PI-IBS mice exhibited elevated ATP content and A2AR expression (P < 0.05), and suppression of 
A2AR enhanced PI-IBS clinical characteristics, indicated by the abdominal withdrawal reflex and 
colon transportation test. PI-IBS was associated with an increase in intestinal T cells, and cytokine 
levels of interleukin-1 (IL-1), IL-6, IL-17A, and interferon-α (IFN-α). Also, γδ T cells expressed 
A2AR in vitro and generated IL-1, IL-6, IL-17A, and IFN-α, which can be controlled by A2AR 
agonist and antagonist. Mechanistic studies demonstrated that the A2AR antagonist improved the 
function of γδ T cells through the PKA/CREB/NF-κB signaling pathway.

CONCLUSION 
Our results revealed that A2AR contributes to the facilitation of PI-IBS by regulating the function 
of γδ T cells via the PKA/CREB/NF-κB signaling pathway.

Key Words: Irritable bowel syndrome; Adenosine 2A receptor; γδ T cells; Post-infectious irritable bowel 
syndrome; Signaling pathway; Regulation

©The Author(s) 2023. Published by Baishideng Publishing Group Inc. All rights reserved.

Core Tip: Immunological dysfunction-induced low-grade inflammation is regarded as one of the most 
important pathogenetic mechanisms in post-infectious irritable bowel syndrome. γδ T cells play a crucial 
role in innate and adaptive immunity. The adenosine molecule and receptors regulate intestinal inflam-
mation and immunity. Through the PKA/CREB/NF-κB signaling pathway, we showed that adenosine 2A 
receptor contributes to the facilitation of post-infectious irritable bowel syndrome by T cells.

Citation: Dong LW, Chen YY, Chen CC, Ma ZC, Fu J, Huang BL, Liu FJ, Liang DC, Sun DM, Lan C. Adenosine 
2A receptor contributes to the facilitation of post-infectious irritable bowel syndrome by γδ T cells via the 
PKA/CREB/NF-κB signaling pathway. World J Gastroenterol 2023; 29(9): 1475-1491
URL: https://www.wjgnet.com/1007-9327/full/v29/i9/1475.htm
DOI: https://dx.doi.org/10.3748/wjg.v29.i9.1475

INTRODUCTION
Irritable bowel syndrome (IBS), a functional gastrointestinal disorder with abnormal bowel habits and/
or faecal traits, has been increasing in prevalence in developing countries since 1990[1]. The concept of 
post-infectious IBS (PI-IBS) was derived from clinical observations of patients with previous acute 
gastrointestinal infections[2]. Patients often suffer from refractory discomfort, low quality of life, and 
high healthcare economic burden, but current treatments reap unsatisfactory therapeutic results due to 
the lack of specific targets[3]. Numerous studies in the literature have shown that 1/3 of IBS patients 
have a history of gastrointestinal infection, suggesting that a persistent inflammatory response may 
explain the inconsistency between the intestinal response of PI-IBS patients and the normal gut[4]. 
Therefore, researchers generally agree that PI-IBS is also essentially a post-inflammatory immune 
dysfunction[5] and that reducing the intestinal inflammatory response is expected to improve clinical 
symptoms and life quality. For the potential therapeutic target of PI-IBS, upregulation of EphA2 
expression and activation of the NF-κB signaling pathway have been reported to alleviate PI-IBS-related 
symptoms[6], while miRNA-510 has also been proved to regulate the intestinal inflammatory response 
in PI-IBS by targeting PRDX1[7].

γδ T cells are a subpopulation of T lymphocytes with a distinct phenotype and function, although 
they represent only a small proportion of the total T cells. γδ T cells bridge the gap between innate and 
adaptive immunity, determining the type of immune response and maintaining homeostasis in mucosal 
tissues. In inflammatory and immune responses, γδ T cells play a complex dual role depending on the 
context. On the one hand, γδ T cells present antigens to immune cells and trigger the recognition of 
these antigens by immune cells, leading to an adaptive immune response, promoting the secretion of 
chemokines and cytokines, and recruiting inflammatory cells[8,9]. On the other hand, γδ T cells inhibit 
the inflammatory process by conducting regulatory cytokines such as interferon-α (IFN-α), interleukin-
10 (IL-10), tumor necrosis factor-α (TNF-α), and IL-17 and eliminating over-activated inflammatory 
effector cells such as macrophages and polymorphonuclear leukocytes through cytotoxic effects[10]. In 
animal models of experimental autoimmune encephalomyelitis, rheumatoid arthritis and non-fatty 
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diabetes, γδ T cells are proved to be the causative factor whereas rats with colitis and sepsis and mice 
with EAU were found to benefit from their presence[11]. According to our previous research, we have 
demonstrated that γδ T cells could alleviate PI-IBS through promoting Th17 polarization via their HSP70 
receptor[12].

One of the many receptors expressed on the surface of γδ T cells is adenosine 2A receptor (A2AR), a 
classical G protein-coupled receptor with a high affinity for adenosine (ADO)[13]. A2AR is expressed in 
many immune cells, such as regulatory T cells, cytotoxic T cells, macrophages, etc. Its homologous 
family members include four isoforms, namely A1R, A2aR, A2bR, and A3R. These ARs are distributed 
in different tissues. For example, A1R is in the small intestine, A2aR and A2bR are in the cecum and 
colon, and A3R is in the ileum and colon[14]. A2AR forms the CD39-CD73-A2AR adenosine metabolic 
pathway with CD39 and CD73: first, CD39 cleaves extracellular ATP into AMP, which then binds to 
CD73 and is converted to ADO by CD73. ADO then binds to A2AR, which in turn interacts with Gs 
family proteins to increase intracellular cAMP levels and activate the downstream PKA/CREB-related 
pathway. Thus, the adenosine-A2AR pathway plays an important role in protecting normal organs and 
tissues from the autoimmune response of immune cells[15-17]. There are fewer reports on A2AR and 
intestinal inflammatory injury. Researchers have found that ADO can inhibit intestinal inflammatory 
injury in chronically septic mice via interacting with A1AR and A2AR[18]. And according to the 
research from Hou et al[19], electroacupuncture reduced visceral pain in rats with inflammatory bowel 
disease by interfering with adenosine receptors. However, there are no studies correlating A2AR with 
the pathogenesis of IBS, especially PI-IBS. Recently, Sun et al[20] reported that A2AR is able to bind to 
mGluR5 and exhibits a unique role in maintaining the function of the intestinal barrier in enteric glial 
cells against hypoxia-induced cellular damage. The above findings suggest that ARs, especially the 
A2AR isoform, may play a key role in the pathogenesis of PI-IBS and could potentially be a novel target 
for intervention in PI-IBS progression.

Hence, considering that the correlation between A2AR and PI-IBS remains unclear, the function of 
A2AR on the surface of γδ T cells has not been fully elucidated, and the precise A2AR-related signaling 
pathway mediating PI-IBS progression in γδ T cells awaits to be explored. It is an urgent issue to 
evaluate the role of A2AR in regulating γδ T cells on PI-IBS pathogenesis.

MATERIALS AND METHODS
Animals and experimental design
Ninety-six female 57BL/6 mice were provided by the Medical Animal Center of the Hainan Medical 
College. All animals were housed in a sterile, suitable environment and fed ad libitum with food and 
water that met cleanliness standards. The animals used in the experiments were cared for and handled 
by the Chinese Guide for Laboratory Animals. The experimental procedures were examined and 
approved by the Animal Care and Utilization Committee of Hainan.

Animals were randomly divided into 4 groups (n = 24 per group): The control group, the PI-IBS 
group, the IBS + SCH58261 group, and the IBS + CGS21680 group. A quarter of mice were killed in each 
group, then intestinal A2AR protein and mRNA levels, cytokine expression and secretion plus signaling 
pathway activation were investigated, respectively. Another six mice were used for γδ T cell isolation. 
The remaining mice were used for A2AR lentivirus infection and cell reinfusion assay.

PI-IBS Model
The Trichinella spiralis (T. spiralis) infected the mice as described earlier in Lanzhou Animal Medical 
Institute[21,22]. Briefly, parasite larvae were isolated from cysts of SD rats, which have been infected 
with T. spiralis for 60 d and digested with 1.5% pepsin. Mice were then fed with larvae, which were 
resuspended in 0.2 mL of saline (300 larvae per mouse). At the same time, the control group was only 
fed with 0.9% saline.

Histopathological analysis
After 8 wk of infection, animals were euthanized, meanwhile, their ileal tissues were fixed with 10% 
formalin at 4 °C for 10 d, then dried in ethanol, and embedded in paraffin. The 5 micrometers sections 
were made. After dewaxing and hydration, they were stained with hematoxylin-eosin (HE). In addition, 
HE staining was used to assess inflammation scores according to a previous scoring system[23].

Abdominal withdrawal reflex 
The abdominal withdrawal reflex (AWR) was administered to assess visceral hypersensitivity[24]. A 
catheter and air chamber were introduced via the anus of sedated animals. The air chamber was inflated 
to a capacity of 0.25/0.35/0.5/0.66 mL in 15 min on a number of occasions. The animals were allowed 30 
s of rest between each distending period. The AWR criterion for scoring: When stimulated, the animals' 
mood is stable, 0 points; if they are unstable, occasionally bending their necks, 1 point; slightly 
contracting their abdomen and back muscles, 2 points; intensively contracting their abdomen muscles 
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and lifting the abdomen from the ground, 3 points; intensively contracting abdomen muscles, bowing 
abdomen, and lifting abdomen and perineum, 4 points.

Colon transportation test and stool scale
The colon transit test (CTT) was used to assess intestinal motility. After ingesting 0.4 mL of active 
carbon, the timing was documented. The entire feces collected during 8 h were graded using the Bristol 
stool scale: 1 point for normal-shaped stools; 2 points for stools that are soft or malformed; 3 points for 
stools that are watery[25].

Immunohistochemistry
Immunohistochemistry was performed on the cells as previously described[26]. Briefly, cells were fixed 
in suspension with 4% PFA for uniform distribution on the slides. After rinsing in phosphate-buffered 
saline (PBS), slides were incubated with anti-mouse A2AR monoclonal antibody (1:150; Abcam, 
Cambridge, United Kingdom) overnight at 4 °C and then with HRP secondary antibody (SP-9001, 
Beijing Sequoia Jinqiao, Beijing, China) for 1 h at room temperature. Reactivity was detected using the 
DAB reagent (Beijing Sequoia Jinqiao, Beijing, China). The primary antibody was substituted with PBS 
as a negative control. As the cell membrane was the main localization site of A2AR, the expression of 
A2AR was evaluated by a semi-quantitative integration technique. A2AR protein expression staining 
intensity was rated as 0 (no staining), 1 (weak staining), 2 (moderate staining), and 3 (strong staining). 
The percentage of positively stained cells in the visual field was categorized as 0 (5%), 1 (5%-25%), 2 
(26%-50%), 3 (51%-75%), or 4 (> 75%). The evaluation was represented as the product of the positive rate 
score and staining intensity score, with a score of greater than or equal to 6 indicating a favorable 
evaluation. The above staining was examined using Nikon DR-Si2 cell counting software and digital 
image analysis was employed. Moreover, the scoring was done in a double-blind way, which was 
confirmed by two pathologists who were not involved in this study and unaware of the clinical-
pathological data.

Western blotting
Western blot was used to detect altered protein expression. Ileal tissue samples were lysed with RIPA 
coupled with brief ultrasonic pulverization. After lysis was completed, the homogenate was centrifuged 
at 4 °C for 30 min, the precipitate was discarded and the supernatant was retained. The protein content 
of the supernatant was determined by the Bradford method. 40 μg of protein was taken for SDS-PAGE 
gel electrophoresis, and the protein blot was transferred to the PVDF membrane. Transfer conditions: β-
actin, A2AR (200 mA, 90 min); PKA, p-PKA (200 mA, 120 min followed by 300 mA, 30 min); CREB, p-
CREB (200 mA, 20 min followed by 300 mA, 15 min); NF-κB (200 mA, 120 min); claudin-1 (200 mA, 70 
min), occludin (200 mA, 120 min); ZO-1 (200 mA, 120 min followed by 300 mA, 60 min); IL-1β (200 mA, 
50 min); IL-6 (200 mA, 70 min); IL-17A (200 mA, 50 min); IFN-α (200 mA, 60 min). The primary 
antibodies presented in Table 1 were rabbit anti-mouse multi-clonal.

The diluted primary antibodies were incubated with the PVDF membrane at 4 °C for over 12 h. On 
the following day, the membrane was rinsed with TBST for three times, and ECL chemiluminescent test 
was performed. In a dark setting, the grayscale value was identified by improved chemiluminescence. 
The protein/actin grayscale value represented the relative protein expression level.

Real-time quantitative polymerase chain reaction 
mRNA alteration was determined through Real-time quantitative polymerase chain reaction (PCR). 
Briefly, RNA was extracted from the tissue of the terminal ileum by using Trizol and DNase I. Primers 
were constructed based on the gene sequences of mice (Table 2). β-Actin served as an internal reference. 
The RNA was then reverse transcribed to cDNA according to the steps of the TAKARA PrimeScript kit 
(TAKARA-RR047A), and real-time quantitative PCR was performed according to the following 
procedure: pre-denaturation at 94 °C for 5 min; denaturation at 94 °C for 1 min; 30 cycles of 
amplification and qualification at 57 °C and 60 °C; the ultimate step was prolongation at 72 °C for 7 min. 
Results are expressed as the ratio of target genes to control genes.

Measurement of ATP concentration
The tissue samples were sonicated and centrifuged at 4 °C for 15 min followed by the addition of double 
distilled water (1:9). The 10% homogenate was continued to be centrifuged at 3000 rpm for another 10 
min. The supernatant was collected for subsequent analysis.

The ATP concentration was determined by the colorimetric method. Specifically, the OD value of the 
liquid in the colorimetric tube was measured at 636 nm. ATP concentration was calculated as: ATP 
concentration (mol/g prot) = (measured OD - control OD)/(standard OD - blank OD) × standard 
concentration (1000 mol/L)/sample concentration (g prot/L).

Isolation and purification of γδ T cells
γδ T cells were extracted from the spleen of animals[27]. Spleens were collected aseptically from 8 to 10-
week female mice and stored in 1 × PBS on ice. Splenocytes were then isolated and red blood cells were 
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Table 1 The dilution ratio for primary antibodies

Primary antibodies Dilution ratio

β-actin 1:1000

A2AR 1:500

NF-κB 1:2000

PKA 1:1000

p-PKA 1:2000

CREB 1:1000

p-CREB 1:1000

ZO-1 1:1000

Occludin 1:1000

Claudin-1 1:1000

IL-1β 1:1000

IL-6 1:1000

IL-17A 1:500

IFN-α 1:1000

A2AR: Adenosine 2A receptor; IL: Interleukin; IFN-α: Interferon-α.

Table 2 Primers used in this study

Name Primer Sequence Size

Forward 5’-CACGATGGAGGGGCCGGACTCATC-3’β-actin

Reverse 5’-TAAAGACCTCTATGCCAACACAGT-3’

240 bp

Forward 5’-CACCGGATTGAAGAGAAGCG-3’NF-κB

Reverse 5’-AAGTTGATGGTGCTGAGGGA-3’

194 bp

Forward 5’-GCTGGCTAACAATGGTACGG-3’CREB

Reverse 5’-CCATAACAACTCCAGGGGCA-3’

230 bp

Forward 5’-GGGCGTGCTGATCTATGAGA -3’PKA

Reverse 5’-TCGCTTTGTCAGATCCACCT-3’

169 bp

Forward 5’-GCCTCTTCTTCGCCTGCTTTGTCC-3’A2AR

Reverse 5’-GCCCTTCGCCCTCATACCCGTCAC-3’

140 bp

lysed with a hypotonic solution. γδ TCR cells were selected by depletion of CD11b, B220, CD4 and CD8 
cells, negative selection using biotinylated antibodies and EasySep Biotin Positive Selection Kit 
(StemCell) according to the manufacturer's protocol.

The magnetic separation process was carried out as follows: Biotin Anti-CD11b, Biotin Anti-B220, 
Biotin Anti-CD4, and Biotin Anti-CD8 (1/100 × dilution, 10 μL/mL) were added respectively, then the 
whole system was mixed thoroughly and incubated at room temperature for 15 min. After that, 10 mL 1 
× PBS + 0.526 mmol/L EDTA + 2% FBS was added and rotated at 1.4 k for 5 min at 4 °C. Discarding the 
supernatant and then the cells were resuspended at 1 × 108 cells/mL in the mentioned buffer. Then, 
Biotin Select Cocktail (100 μL/mL) was added and mixed thoroughly, following the incubation at room 
temperature for 15 min. Next, the beads from the EasySep kit were vortexed for 15 to 30 min and added 
(50 μL/mL), the new system was mixed thoroughly and incubated at room temperature for 10 min. At 
room temperature, tubes were placed into silver EasySep magnets, incubated for 5 min, and the 
supernatant fraction was poured into a new 15 mL tube. Then the cells were counted for further cell 
sorting.

The antibodies for sorting were as follows: γδTCR Alexa 488 (1/100 × dilution), CD8 PE (1/100 × 
dilution), CD4 PerCP Cy5.5 (1/100 × dilution), CD11b APC (1/100 × dilution) and B220 PEcy7 (1/100 × 
dilution). Before sorting, cells were stained at 4 °C for 30 min on ice with the mentioned antibodies. 
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Then, we washed the cells with 1 × PBS and resuspended to 5 × 106 cells/mL for sorting[28].

Cell proliferation assays
The proliferation of isolated γδ T cells was detected by CCK8 assay. Cells were resuspended in 100 μL of 
the medium at the density of 5 × 104 cells per well, then added to 96-well plates and waited for the cells 
to stick. After that, 100 nmol/L CGS-21680 or 1 μnmol/L SCH58261 was added to different wells of the 
96-well plate, and the cells were continued to be cultured at 37 °C with 5% CO2 for more than half an 
hour. Finally, 20 μL CCK8 was added to each well and the incubation was continued at 37 °C, 5% CO2 
for another 2 h, and the OD value at 450 nm was measured by Multiscan Spectrum.

Cell apoptosis assays
The extracted γδ T cells were uniformly distributed in six-well plates (5 × 105 cells/well). Subsequently, 
100 nnmol/L CGS-21680 or 1 μnmol/L SCH58261 were added, respectively, and incubated at 37 °C with 
5% CO2 for 0.5 h. After that, the apoptosis rate was detected by fluorescence-activated cell sorting 
(FACS).

Cytokines production
ELISA was performed to determine the levels of IL-1β, IL-6, IL-17A, and IFN-α in cultivated γδ T cells 
and colonic tissue supernatants. Specifically, the original supernatant was removed and replaced with a 
new medium (RPMI-1640), and typical culture conditions were re-established for another 24 h. The 
content of cytokine proteins in the supernatant was quantitatively analyzed by using IL-1, IL-6, IL-17A, 
and IFN-α high sensitivity (0.25-16 pg/mL sensitivity range) ELISA kits (R&D Systems, Minneapolis, 
Minnesota, United States) according to the manufacturer's instructions.

Cell reinfusion
Isolated γδ T cells were treated with SCH58261 or CGS21680 at 37 °C, 5% CO2 for 48 h. The cell concen-
tration was then adjusted to 2 × 106 cells/mL with RMPI-1640. Mice were injected separately with γδ T 
cells at an inoculum of 2 × 106 cells per mouse. Clinical characteristics were observed as described 
previously.

Transient transfection
LV-mA2AR-shRNA was synthesized by Fubio (Suzhou) Biopharmaceutical Technology Co., Ltd. and 
Suzhou Genepharma Co., Ltd. The sequence is as follows: the sense is 5'-GGAGACAGCUGA-
AGCAGAUTT-3'; the antisense sequence is 5'- AUCUGCUUCAGCUCUCUCCTT-3'. The HEK293T 
A2AR knock-down cell line was obtained by transfecting LV-mA2AR-shRNA with γδ T cells and 
incubating at 37 °C for 48 h after transfection. Similarly, the HEK293T cell line infected with a negative 
control sequence (sh-NC) was constructed.

Statistical analysis 
Data are represented as mean ± SD. All data were analyzed using Grubb’s test, followed by one-way 
analysis of variance (ANOVA) and Levene's test to assess the homogeneity of variance, and finally 
Ducan's multiple comparison test for multiple comparisons (SPSS 22.0 software). P < 0.05 were 
considered statistically significant.

RESULTS
The establishment of PI-IBS mouse model and the impact of A2AR on PI-IBS
First, we chose the T. spiralis infection to construct the PI-IBS mouse model. On day 56 after the T. spiralis 
infection, the model was evaluated, which demonstrated that there was no obvious inflammation in the 
animal colon (Figure 1), but the AWR rating was significantly higher than that of the control group, and 
the results of CTT experiment were significantly abnormal, as shown by the shortened first black stool 
time and a higher Bristol stool level (Tables 3 and 4). This indicated that a successful PI-IBS mouse 
model has been established.

After that, we applied the A2AR agonist or antagonist to PI-IBS mice in order to find potential 
interventions for curing PI-IBS. A further novel finding was that only the injection of A2AR antagonist 
SCH58261 significantly relieved the severe clinical manifestations of the model animal whereas A2AR 
agonist CGS21680 could not. At this stage of understanding, these findings suggest that A2AR may 
have a crucial impact on the development of PI-IBS.

The intestinal levels of ATP and A2AR expression are upregulated in PI-IBS mice 
To further assess the relationship between A2AR and PI-IBS, we compared the altered expression of 
A2AR and ATP content in mice with PI-IBS or in normal mice, as A2AR plays a vital role in the 
conversion of ATP. From the results, it is clear that compared with the control group, intestinal ATP 
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Table 3 The effect of adenosine 2A receptor on the abdominal withdrawal reflex score in post-infectious irritable bowel syndrome 
mouse

AWR
Distending air volume (mL)

0.25 0.35 0.5 0.65

Control (n = 6) 0.00 ± 0.00 1.67 ± 0.05 2.52 ± 0.18 3.65 ± 0.08

PI-IBS (n = 6) 0.00 ± 0.00 2.13 ± 0.12a 3.15 ± 0.14 3.90 ± 0.15

IBS + SCH58261 (n = 6) 0.00 ± 0.00 1.79 ± 0.12c 2.90 ± 0.25 3.57 ± 0.05

IBS + CGS21680 (n = 6) 0.00 ± 0.00 2.01 ± 0.42 3.09 ± 0.53 3.62 ± 0.11

aP < 0.05 vs the control group.
cP < 0.05 vs the PI-IBS group.
AWR: Abdominal withdrawal reflex; PI-IBS: Post-infectious irritable bowel syndrome.

Table 4 The effect of adenosine 2A receptor on the intestinal mobility in post-infectious irritable bowel syndrome mouse

Group First black stool time (min) Bristol stool grade

Control (n = 6) 407 ± 10.33 1.00 ± 0.00

PI-IBS (n = 6) 132 ± 12.59a 2.67 ± 0.52a

IBS + SCH58261 (n = 6) 246 ± 14.20c 1.33 ± 0.51c

IBS + CGS21680 (n = 6) 168 ± 11.38 2.66 ± 0.54

aP < 0.05 vs the control group.
cP < 0.05 vs the PI-IBS group.
PI-IBS: Post-infectious irritable bowel syndrome.

levels in PI-IBS mice rose considerably (P < 0.01, Figure 2A) as did A2AR protein expression (P < 0.01, 
Figure 2B-D). Intestinal ATP levels and A2AR expression were further enhanced when the PI-IBS mice 
were treated with the A2AR agonist CGS21680 (P < 0.05, Figure 2A-D). At the same time, the levels of 
inflammatory factors such as IL-1, IL-6, IL-17, and IFN-α were also further boosted compared to the PI-
IBS model group (Figure 2E-G). Interestingly, when SCH58261, an antagonist of A2AR, was 
administered in PI-IBS mice, the significant increase in ATP levels and the up-regulation of A2AR 
expression triggered by PI-IBS was reversed (Figure 2A-D), followed by the drop of inflammatory 
factors’ expression compared with the PI-IBS group, including IL-1, IL-6, IL-17 and IFN-α (Figure 2E-G).

Intestinal epithelial tight junctions (TJs) proteins, such as ZO-1, Occludin, and Claudin-1, play a vital 
role in maintaining the epithelial barrier function to restrict the paracellular movement of harmful 
substances across intestinal mucosa[29]. The disrup- tion of the TJs barrier could increase dysregulated 
immune reactions, such as the activation of mucosal immune response and the permeation of noxious 
molecules, and thus inducing gut inflammation[30,31]. Thus, we next tested the change of ZO-1, 
occludin, and claudin-1 expression. As we can see, the expression of TJ proteins ZO-1, Occludin, and 
Claudin-1 was sharply reduced in PI-IBS mice compared to the control, while agonism of A2AR further 
inhibited the expression of the proteins mentioned above. In line with the results in Figure 2A-D, 
treatment with the antagonism of A2AR SCH58261 also reversed the decreased expression of ZO-1, 
Occludin, and Claudin-1 in the PI-IBS group (Figure 2H-I). The results of the experiment found clear 
support for the hypothesis that A2AR is crucial to the pathophysiology of PI-IBS.

The upregulated A2AR in γδ T cells attributes to PI-IBS progression
It has been previously reported that the intestinal γδ T cells could exert an important role in a PI-IBS 
mouse model[32]. However, we wanted to further corroborate whether it is the altered A2AR 
expression in γδ T cells that directly influences the pathogenesis of PI-IBS. Before starting the 
exploration, we first purified γδ T cells. Figure 3A-C depicts the extraction and purification of γδ T cells 
from the spleen of PI-IBS mice for subsequent in vitro functional assessment through FACS sorting. 
Presently, we examined the A2AR expression in unpurified γδ T cells (the control group) and purified 
γδ T cells (the γδ T cell group) by immunohistochemical staining, respectively. The results were 
presented in Figure 3D and E. Notably, the A2AR expression level of γδ T cells was significantly higher 
than that in the control group, suggesting that A2AR was mainly highly expressed in γδ T cells. 
Furthermore, we treated γδ T cells with A2AR agonist CGS21680 and A2AR antagonist SCH58261, 
respectively, and we can visualize through Figure 3F and G that the A2AR expression level was further 
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Figure 1 The effect of adenosine 2A receptor on the histopathological changes in post-infectious irritable bowel syndrome mouse. A and 
B: The Post-infectious irritable bowel syndrome (PI-IBS) model (B) exhibits no substantial inflammatory alterations in its colon tissue compared to the control animal 
(A); C: Adenosine 2A receptor (A2AR) agonist CGS21680 leads to some inflammatory alterations in the colon tissue of the PI-IBS model mice, including the 
infiltration of certain inflammatory cells; D: A2AR antagonist SCH58261 relieves inflammation in the colon tissue of the PI-IBS model mice. A2AR: Adenosine 2A 
receptor; PI-IBS: Post-infectious irritable bowel syndrome. Scale bars, 50 μm.

enhanced in T cells treated with A2AR agonists, while the A2AR expression in T cells was significantly 
downregulated after the administration of SCH58261 to inhibit A2AR.

Besides, western blot and reverse transcription PCR results further confirmed the immunohisto-
chemical findings: the agonist significantly increased both A2AR protein and mRNA level in γδ T cells, 
whereas the antagonist did the opposite (Figure 3H-J). Taken together, these results revealed that γδ T 
cells were the main immune cell subtype mediating the upregulation of A2AR expression in the 
intestinal immune microenvironment. By interfering with A2AR expression within γδ T cells, the 
function of γδ T cells might be affected, which could in turn interfere with disease progression 
throughout PI-IBS.

The viability and function maintenance of γδ T cells is closely related to A2AR 
To verify the conjecture of the previous chapter, we would like to further unveil the effect of A2AR on 
γδ T-cells’ viability and function. First, we assessed the correlation between A2AR and γδ T-cell viability 
by the measurement of altered ATP content in γδ T cells and the percentage of proliferating γδ T cells. 
The results are shown in Figure 4A and B. When we treated γδ T cells with the A2AR agonist CGS21680, 
both the intracellular ATP content and the percentage of proliferating cells increased compared with the 
control γδ T cells, suggesting that A2AR activation could enhance the cell viability of γδ T cells; whereas 
the intracellular ATP content and proliferating percentage both decreased when the antagonist of 
cellular A2AR, SCH58261, was given. Subsequently, we further evaluated whether the apoptosis of γδ T 
cells was affected by A2AR, and the results demonstrated that inhibition of A2AR promoted the 
apoptosis of γδ T cells, while activation of A2AR greatly inhibited the apoptosis process (Figure 4C and 
D). Finally, we examined the function of γδ T cells. To be specific, we reinfused γδ T cells that have been 
treated differently into PI-IBS mice. A similar pattern of results was obtained in the expression of 
inflammatory factors, including IL-1β, IL-6, IL-17A and IFN-α in γδ T cells. Virtually, the addition of 
A2AR agonist CGS21680 promoted the expression of IL-1β, IL-6, IL-17A and IFN-α, while A2AR 
antagonist SCH58261 inhibited the expression of the above-mentioned inflammatory factors (P < 0.05, 
Figure 4E). The above results suggest that A2AR has an important effect on the viability and function of 
γδ T cells, especially on the secretion of inflammatory factors.
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Figure 2 The intestinal ATP and adenosine 2A receptor expression in post-infectious irritable bowel syndrome mouse. A: The level of ATP in 
post-infectious irritable bowel syndrome (PI-IBS) mouse. The results were independently repeated three times; B and C: The intestinal levels of adenosine 2A 
receptor (A2AR) in PI-IBS mouse; D: The mRNA relative ratio of A2AR in PI-IBS mouse. The results were independently repeated three times; E and F: The intestinal 
levels of the inflammatory cytokines in PI-IBS mice were measured by ELISA and western blot, respectively. The ELISA results were obtained from six mice; G: The 
mRNA relative ratio of the intestinal cytokines in PI-IBS mouse. The samples were from mice mentioned in E and F. The results were independently repeated three 
times; H and I: The intestinal levels of tight junction proteins in PI-IBS mice were tested through western blot and quantified by image J software. β-Actin is used as 
the loading control for both western blot and reverse transcription polymerase chain reaction. aP < 0.05, bP < 0.01, eP < 0.001 vs the Control group; cP < 0.05, dP < 
0.01, fP < 0.001 vs the PI-IBS group.

The regulation of A2AR on γδ T cells relies on the PKA/CREB/NF-κB signaling pathway 
As ADO binds to A2AR, A2AR then interacts with Gs family proteins to increase intracellular cAMP 
levels and activate downstream PKA/CREB-related pathways[33], we next investigated the activation 
of signaling pathways in γδ T cells by western blot. The change of PKA/p-PKA, CREB/p-CREB, NF-
κB/p-NF-κB protein level, and quantitative results elucidated that compared to control γδ T cells, 
treatment of γδ T cells with the A2AR antagonist SCH58261 significantly decreased the expression of 
PKA/CREB/NF-κB and reduced the phosphorylation levels of the above proteins; whereas the 
introduction of A2AR agonist CGS21680 further promoted the protein expression of PKA/CREB/NF-κB 
as well as the phosphorylation activation level of the above proteins (Figure 5A-D). Therefore, given the 
above results, we can safely draw the conclusion that the PKA/CREB/NF-κB pathway is the key 
downstream signaling pathway for γδ T cells to regulate the relevant clinical manifestations via A2AR 
during PI-IBS disease progression.

A2AR knockdown inhibits the inflammatory response
To further clarify the effect of A2AR on the expression of inflammatory factors, we constructed A2AR-
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Figure 3 γδ T cells’ isolation and functional evaluation. A-C: Based on the results of fluorescence-activated cell sorting, γδ T cells were effectively 
extracted and purified. P2, unpurified γδ T cells; P3, purified γδ T cells; D-G: Immunohistochemistry labeling of adenosine 2A receptor (A2AR) expression in γδT cells. 
Scale bars, 100 μm; H: Western blot analysis of A2AR expression levels in γδ T cells. β-Actin is used as the loading control; I: The quantitive result of A2AR 
expression level in γδ T cells was analyzed from data shown in H. Results from three times of independently repeated experiments were analysed; J: Reverse 
transcription polymerase chain reaction analysis of the expression level of A2AR mRNA in γδ T cells. The results were independently repeated three times. A2AR: 
Adenosine 2A receptor. aP < 0.05, bP < 0.01 vs the γδ T cell group.

shRNA and inhibited the expression of A2AR by plasmid transfection. The results illustrated that A2AR 
expression was greatly boosted in the PI-IBS group compared with the control group; when transfected 
with shRNA, A2AR expression was significantly reduced in the IBS + shRNA group. Moreover, when 
IBS tissue cells were co-incubated with γδ T cells, the A2AR expression level was further increased. 
Meanwhile, silencing A2AR downregulated A2AR expression in the IBS + shRNA + γδ T cells group 
compared with the IBS + γδ T cells group (Figure 6A). After clarifying the silencing efficiency, we 
examined the effect of silencing A2AR on the expression level of inflammatory factors. From the results 
in Figure 6B, we can clearly see that the inflammatory factor levels, which were originally higher in the 
PI-IBS model group, were dramatically reduced due to A2AR knockdown. At the same time, given that 
the reduced expression of TJ proteins leads to increased intestinal permeability, we also evaluated the 
altered expression levels of TJ proteins and found that the originally suppressed TJ protein expression in 
PI-IBS mice was significantly reversed after A2AR silencing (Figure 6C). Taken together, the above 
findings demonstrate that downregulation of A2AR can reduce γδ T cell-induced inflammatory 
cytokine production and release.
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Figure 4 Functional evaluation of γδ T cells in vitro. A: The ATP level changed by differently treated γδ T cells from post-infectious irritable bowel syndrome 
(PI-IBS) mice. The data was obtained from six mice in each group; B: The proliferation percent of γδ T cells from PI-IBS mouse was analysed through CCK8 assay. 
The samples were taken from six mice in each group; C: The apoptosis percent of γδ T cells from PI-IBS mouse measured by fluorescence-activated cell sorting. The 
γδ T cells were taken from six mice in each group; D: Apoptosis rates were detected according to Annexin V and PI double-staining method; E: The cytokines level of 
IL-1β, IL-6, IL-17A and IFN-α from PI-IBS mice after reinfusing control γδ T cells and γδ T cells treated with CGS21680 or SCH58261, respectively. The data was 
obtained from six mice in each group. PI-IBS: Post-infectious irritable bowel syndrome. aP < 0.05, bP < 0.01, eP < 0.001 vs the γδ T cell group.

DISCUSSION
Persistent intestinal low-degree inflammation occurs in IBS due to complex disorders in the immune 
system, especially in PI-IBS, leading to minor biochemical and pathological changes but continuous 
clinical symptoms in patients[34]. Nevertheless, the precise immune regulatory mechanism in PI-IBS 
remains unknown. We have previously reported that γδ T cells could alleviate PI-IBS through 
promoting Th17 polarization via HSP70 receptor[12]. This study is a follow-up study on the patho-
genesis of PI-IBS with the aim of finding new immunomodulatory proteins that directly regulate the 
intestinal microenvironment and interfere with PI-IBS disease progression.

Few literatures have been reported the relationship between adenosine receptor and PI-IBS. 
According to our research, an increase in intestinal ATP level is followed by the upregulation of 
intestinal A2AR in PI-IBS, suggesting that ATP and A2AR may be involved in the pathophysiology of 
PI-IBS. It is unclear if the quantitative alterations of intestinal A2AR originated from PI-IBS could lead to 
exacerbated PI-IBS. After being administered with the A2AR antagonist, the digestive tissue of the 
animals remained unchanged, but their clinical symptoms improved. This discovery contradicted earlier 
notions that A2AR antagonist exhibits a protective function in inflammation[35]. Moreover, an A2AR 
antagonist may activate an unidentified pathway to control the equilibrium, and an extended 
persistence of elevated adenosine levels can be deleterious, contributing to the formation of an 
immunosuppressed niche that is conducive to the initiation and development of neoplasia[36]. These 
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Figure 5 Adenosine 2A receptor mediated signaling pathway that could regulate the function of γδ T cells. A: The PKA/p-PKA, CREB/p-CREB, 
NF-κB/p-NF-κB protein levels in γδ T cells of post-infectious irritable bowel syndrome (PI-IBS) mice. β-Actin is used as the loading control; B: The relative PKA level 
in γδ T cells from mice with PI-IBS; C: The relative CREB level in γδ T cells from PI-IBS mice; D: The relative NF-κB level in γδ T cells from mice with PI-IBS. The 
results from three times of independently repeated experiments were gathered and analyzed. PI-IBS: Post-infectious irritable bowel syndrome. aP < 0.05, bP < 0.01, 
eP < 0.001 vs the γδ T cell group.

findings also indicate the complexity of PI-IBS.
IL-6, IL-17A, and IFN-α are important pro-inflammatory factors. IL-17A can increase the permeability 

of cells by binding to specific receptors and can stimulate various types of cells to produce chemokines, 
IFN-α, and IL-1β to stimulate inflammatory reactions. IFN-α can interrupt the function of intestinal 
epithelial cells, leading to intestinal epithelial barrier dysfunction[37]. IL-6 is mainly manifested in 
maintaining regulatory T cells and effector T cells and inhibiting the apoptosis of CD4+ T cells in the 
inflammatory response[38]. Our study suggested that the levels of pro-inflammatory factors IL-6, IL-
17A, and IFN-α were significantly elevated in PI-IBS mice. This indicated that there was a low-grade 
inflammatory response in the intestinal mucosa, resulting in a defect in the epithelial barrier. The 
epithelial barrier dysfunction can lead to an increase in intestinal permeability, which further promotes 
the increase and activation of immune cells[39]. TJ proteins such as ZO-1, Claudin-1, and Occludin form 
a tight junction structure between adjacent intestinal epithelial cells as the structural basis of the 
mechanical intestinal barrier, thereby defending against external damaging factors and maintaining 
intestinal mucosal homeostasis[40,41]. Under the stimulation of severe infection and surgical blows, the 
tight junction structure between the intestinal epithelium can be destructed, The damaged mechanical 
barrier and the translocation of intestinal flora into the blood then cause bacteremia and sepsis to 
stimulate the release of systemic inflammatory factors, leading to systemic inflammatory response 
syndrome and multiple organ dysfunction[42]. In this study, the expression of ZO-1, Claudin-1, and 
Occludin was reduced substantially, suggesting that PI-IBS mice had impaired intestinal epithelial 
barrier function, and were susceptible to stimulation by various etiologies to activate the intestinal 
epithelial immune system and lead to intestinal inflammatory responses.

The uneven distribution of γδ T cells in normal and inflammatory tissues plays an important role in 
autoimmunity[43]. In some patients with autoimmune diseases, the proportion of γδ T cells in infilt-
rating T cells is abnormally increased. γδ T cells are the main source of proinflammatory cytokines IL-
17, IL-23, IFN-α, and TGF-β. These inflammatory molecules are responsible for creating an inflammatory 
environment that enhances disease progression through different pathways[44]. The relationship 
between different disease phenotypes and γδT cells can be clearly discerned. γδT cells acquire the 
ability to produce IL-17 during embryonic thymus development, and T cells expressing γδT cell 
receptors are an important innate source of the pro-inflammatory cytokine IL-17. The potent inflam-
matory effects of IL-17 are mainly related to its ability to recruit immune cells and synergistic effects 
with other pro-inflammatory cytokines[45]. Hence, it is no exaggeration to say that γδ T cells play a 
crucial role in regulating inflammation and the immune response. In our results, we firstly found that 
the number of γδ T cells markedly increased, accompanied by the increased A2AR expressed on their 
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Figure 6 The inflammatory response alteration after adenosine 2A receptor knockdown. A: The altered level of adenosine 2A receptor (A2AR) 
expression after A2AR-shRNA transfection or γδ T cell reinfusion in post-infectious irritable bowel syndrome (PI-IBS) mice was assessed. The results were obtained 
from three times of independently repeated experiments; B: The relative ratio of the intestinal cytokine level in PI-IBS mice (n = 6, per group); C: The degree of TJ 
(tight junction protein) protein expression in PI-IBS mice (n = 6, per group). aP < 0.05, bP < 0.01, eP < 0.001 vs the PI-IBS group; cP < 0.05, dP < 0.01, fP < 0.001 vs 
the IBS + γδ T group.

surfaces. Secondly, the agonist of A2AR boosted the quantity of γδ T cells together with upregulated 
A2AR expression. Thirdly, the A2AR antagonist reduced γδ T cells’ number and impaired their 
function. These findings demonstrated that γδ T cells participated in intestinal inflammation mediated 
by A2AR.

At present, the anti-inflammatory mechanism of A2AR mainly includes: (1) Inhibition of neutrophils 
and release of peroxidase[46,47]; (2) promotion of the production of IL-10 by monocytes and 
macrophages; (3) inhibition of the release of IL-12 and TNF-α[48]; and (4) phosphorylation of cAMP 
response element-binding (CREB) protein by activating the cAMP-PKA pathway, in which phosphory-
lated CREB competes with the p65 subunit of NF-κB and the NF-κB coactivator CREB-binding protein 
combined to inhibit the transcriptional regulation of NF-κB on target genes, thereby blocking the 
production of inflammatory mediators[49,50]. Excessive release of inflammatory mediators is the main 
mechanism that causes uncontrolled inflammatory responses in the body. Therefore, the A2AR-cAMP-
PKA-CREB-NF-κB signaling pathway is the main mechanism and classical pathway for A2AR mediated 
function of γδ T cells to inhibit inflammation. Furthermore, we revealed that the A2AR agonist 
CGS21680 could increase both protein and mRNA expression levels of PKA, CREB and NF-κB, and their 
phosphorylation activation levels were elevated as well in γδ T cells from PI-IBS mice. Apart from that, 
we also observed the opposite effects after the treatment of A2AR antagonist SCH58261 in γδ T cells 
compared with results in A2AR agonist CGS21680 treatment group. Thus, we illustrated that the A2AR-
PKA-CREB-NF-κB pathway is the crucial intracellular signaling pathway for A2AR-induced γδ T cells’ 
role in PI-IBS. However, whether there are other signaling pathways at play still needs to be studied.

Furthermore, we decreased the A2AR expression with LV-A2AR-shRNA, which alleviated the 
symptoms of PI-IBS in model mice. Meanwhile, we then reinfused the γδ T cell to PI-IBS mice, the 
disease became severer. Interestingly, when the PI-IBS mice reinfused with sh-A2AR γδ T cells, the 
severity of their clinical symptoms was lessened. Besides, we also observed the alterations in the 
cytokines and TJ protein expression, and the results were in accordance with the changes in the clinical 
symptoms. These data suggested that γδ T cells participated in PI-IBS via the A2AR mediated signaling 
pathway.

Our study included a few drawbacks as well. The type of visceral hypersensitivity was not invest-
igated in PI-IBS mice, and the water content from the feces of mice was not examined. Due to the 
difficulties of isolating T cells directly from the gut, we utilized spleen-isolated T cells, likely resulting in 
a greater degree of variety than their intestinal counterparts.
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CONCLUSION
In the present study, we found higher expression of A2AR in PI-IBS mice than normal mice, which 
initially suggested the relevance of A2AR to PI-IBS disease development. Further mechanistic studies 
demonstrated that A2AR, which located on the surface of γδ T cells, could regulate the function of γδ T 
cells. Notably, A2AR regulated T cell viability and increased the secretion of inflammatory factors, 
mainly through the PKA/CREB/NF-κB signaling pathway, which followed by the progression of PI-
IBS. Fortunately, the application of A2AR antagonists could markedly reduce the inflammatory 
response and improve PI-IBS symptoms by regulating the function of γδ T cells.

In summary, through our study, we identified A2AR, a key protein that promotes disease 
progression in PI-IBS, and demonstrated the feasibility of antagonizing A2AR to intervene in PI-IBS, 
thus providing a new therapeutic target for PI-IBS treatment.

ARTICLE HIGHLIGHTS
Research background
Persistent low level of inflammation due to immune dysfunction is regarded as one of the prime 
pathogenic mechanisms of post-infectious irritable bowel syndrome (PI-IBS). γδ T cells play a key role in 
innate and adaptive immunity. Adenosine and its receptors expressed on γδ T cells are involved in 
intestinal inflammation and immune regulation.

Research motivation
To unveil the role of γδ T cells regulated by adenosine 2A receptor (A2AR) in the pathogenesis of PI-IBS.

Research objectives
This study aims to investigate the role of A2AR in γδ T cells and γδ T cells in PI-IBS.

Research methods
A PI-IBS mouse model was established with Trichinella spiralis (T. spiralis) infection. Intestinal A2AR 
and A2AR in γδ T cells were detected through immunohistochemistry, and inflammatory cytokines 
were detected through western blot. The role of A2AR on isolated γδ T cells, including γδ T cell prolif-
eration, apoptosis and γδ T cell-mediated cytokine secretion, was assessed in vitro. A2AR expression in 
γδ T cells was determined by western blot and reverse transcription polymerase chain reaction (RT-
PCR). Mice were injected with A2AR agonist or A2AR antagonist and cultured γδ T cells were also 
reinfused into the animals, and then the above parameters and clinical features were examined again. In 
addition, alterations in A2AR-related signaling pathway molecules were detected by western blot and 
RT-PCR.

Research results
The expression levels of ATP and A2AR were increased in PI-IBS mice (P < 0.01), and inhibition of 
A2AR further enhanced the clinical features of PI-IBS, as reflected by the abdominal withdrawal reflex 
and colonic transport test results. The development of PI-IBS was associated with an increase in 
intestinal γδ T cells and cytokines including interleukin-1 (IL-1), IL-6, IL-17A and interferon-α (IFN-α). 
In addition, γδ T cells obtained by purification in vitro could express A2AR and promote IL-1, IL-6, IL-
17A and IFN-α secretion, which is also regulated by A2AR agonists and antagonists. We also found that 
A2AR antagonists improved γδ T cell function through the PKA/CREB/NF-κB signaling pathway.

Research conclusions
Our results suggested that A2AR contributes to the development of PI-IBS after T. spiralis infection via 
the PKA/CREB/NF-κB signaling pathway by γδ T cells.

Research perspectives
Hypo-inflammation caused by immune dysfunction is considered to be one of the main pathogenic 
mechanisms of PI-IBS. In this study, we discovered that A2AR on the surface of γδ T cells can regulate 
the function of γδ T cell, thereby increasing inflammatory factor secretion and promoting PI-IBS 
progression. Luckily, the utilization of A2AR antagonists can improve PI-IBS symptoms by promoting 
γδ T cells’ function. Through our study, we identified A2AR, a key protein that promotes PI-IBS disease 
progression, and demonstrated the feasibility of antagonizing A2AR to intervene in PI-IBS, thus 
providing a novel therapeutic target and an effective intervention strategy for PI-IBS treatment.
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Abstract
BACKGROUND 
Since its complete roll-out in 2009, the French colorectal cancer screening program 
(CRCSP) experienced 3 major constraints [use of a less efficient Guaiac-test 
(gFOBT), stopping the supply of Fecal-Immunochemical-Test kits (FIT), and 
suspension of the program due to the coronavirus disease 2019 (COVID-19)] 
affecting its effectiveness.
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AIM 
To describe the impact of the constraints in terms of changes in the quality of screening-
colonoscopy (Quali-Colo).

METHODS 
This retrospective cohort study included screening-colonoscopies performed by gastroentero-
logists between Jan-2010 and Dec-2020 in people aged 50-74 living in Ile-de-France (France). The 
changes in Quali-colo (Proportion of colonoscopies performed beyond 7 mo (Colo_7 mo), 
Frequency of serious adverse events (SAE) and Colonoscopy detection rate) were described in a 
cohort of Gastroenterologists who performed at least one colonoscopy over each of the four 
periods defined according to the chronology of the constraints [gFOBT: Normal progress of the 
CRCSP using gFOBT (2010-2014); FIT: Normal progress of the CRCSP using FIT (2015-2018); 
STOP-FIT: Year (2019) during which the CRCSP experienced the cessation of the supply of test 
kits; COVID: Program suspension due to the COVID-19 health crisis (2020)]. The link between 
each dependent variable (Colo_7 mo; SAE occurrence, neoplasm detection rate) and the predictive 
factors was analyzed in a two-level multivariate hierarchical model.

RESULTS 
The 533 gastroenterologists (cohort) achieved 21509 screening colonoscopies over gFOBT period, 
38352 over FIT, 7342 over STOP-FIT and 7995 over COVID period. The frequency of SAE did not 
change between periods (gFOBT: 0.3%; FIT: 0.3%; STOP-FIT: 0.3%; and COVID: 0.2%; P = 0.10). 
The risk of Colo_7 mo doubled between FIT [adjusted odds ratio (aOR): 1.2 (1.1; 1.2)] and STOP-
FIT [aOR: 2.4 (2.1; 2.6)]; then, decreased by 40% between STOP-FIT and COVID [aOR: 2.0 (1.8; 
2.2)]. Regardless of the period, this Colo_7 mo’s risk was twice as high for screening colonoscopy 
performed in a public hospital [aOR: 2.1 (1.3; 3.6)] compared to screening-colonoscopy performed 
in a private clinic. The neoplasm detection, which increased by 60% between gFOBT and FIT [aOR: 
1.6 (1.5; 1.7)], decreased by 40% between FIT and COVID [aOR: 1.1 (1.0; 1.3)].

CONCLUSION 
The constraints likely affected the time-to-colonoscopy as well as the colonoscopy detection rate 
without impacting the SAE’s occurrence, highlighting the need for a respectable reference time-to-
colonoscopy in CRCSP.

Key Words: Colorectal cancer screening; Screening colonoscopy; Faecal immunochemical test; Guaiac faecal 
occult blood test; Quality of colonoscopy; Severity of tumor lesions

©The Author(s) 2023. Published by Baishideng Publishing Group Inc. All rights reserved.

Core Tip: The study showed that the detection rate of colonoscopy dropped significantly in France during 
the years 2019 and 2020, probably due to the coronavirus disease health crisis. The risk of a long delay (> 
7 mo) in performing the colonoscopy was twice as high in a public hospital compared to colonoscopies 
performed in a private endoscopy practice. The constraints likely affected the time to colonoscopy as well 
as the colonoscopy detection rate without impacting the occurrence of serious adverse events.

Citation: Koïvogui A, Vincelet C, Abihsera G, Ait-Hadad H, Delattre H, Le Trung T, Bernoux A, Carroll R, 
Nicolet J. Supply and quality of colonoscopy according to the characteristics of gastroenterologists in the French 
population-based colorectal-cancer screening program. World J Gastroenterol 2023; 29(9): 1492-1508
URL: https://www.wjgnet.com/1007-9327/full/v29/i9/1492.htm
DOI: https://dx.doi.org/10.3748/wjg.v29.i9.1492

INTRODUCTION
The impact of the Screening program on controlling colorectal cancer (CRC) morbidity and mortality 
has been widely proved[1-4]. But since its complete roll-out in France in 2009, the population-based 
colorectal cancer screening program (CRCSP) has continued to face constraints affecting its effect-
iveness. Despite the existence of the fecal immunochemical test (FIT) in certain European programs (i.e., 
Italy, Czech Republic) when the program roll-out was completed in France[5], the health authority 
chose the Guaiac Hemoccult II test® (gFOBT). It later turned out that gFOBT only identified 50% of 
colorectal cancer (CRC) lesions and a third of adenomas[6], which led some GPs to be wary of it, at the 
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risk of seeing some of their patients fall through the cracks[6,7].
To consider this first constraint induced using a low sensitivity/specificity screening test, the health 

authority decided to replace gFOBT in 2015, with the FIT (Threshold set at 150 ng hemoglobin/mL of 
stool, “Institut National du Cancer”, www.e-cancer.fr). While admitting an improvement in 
participation with FIT compared to gFOBT, most studies published in France have confirmed the high 
sensitivity (detection of advanced adenomas and CRC) of FIT and its better acceptability by the 
population and GPs[8-12]. This performance of the FIT inevitably leads to an increase in colonoscopy 
requests in the screened population and subsequently to an extension of the time to colonoscopy after a 
positive FIT result[13]. However, these analyses of the time to colonoscopy only considered the charac-
teristics of the target population without any adjustment to the characteristics of the colonoscopy 
supply.

On April 25, 2018, the Paris Administrative Court cancelled, during an appeal session, the contract 
concluded in 2014 between the Health Insurance Agency and the Cerba-Daklapack® consortium (
www.slbc.fr). This contract, which related to the supply of screening test kits and the laboratory analysis 
of the tests carried out, had thus been cancelled only three years after the introduction of the FIT in 
CRCSP. This legal and administrative confusion led to a market shutdown between March and 
September 2019. In the Ile-de-France (IDF) region, this shutdown led to a drastic decrease in the number 
of tests carried out in 2019, compared to forecasts (annual activity report 2019).

Only a few months after the resumption of the test kits’ market, the World Health Organization 
(WHO) announced the pandemic of COVID-19[14]. This pandemic constraint required a relocation of 
health care resources to control this global health crisis. Screening programs, in particular the CRCSP, 
were suspended in many countries. The aim of this study was to describe the impact of the constraints 
listed above in terms of changes to the quality of screening colonoscopies (Quali-colo) in a cohort of 
gastroenterologists (GEs) practicing in IDF.

MATERIALS AND METHODS
This retrospective cohort study included all screening colonoscopies, performed between 01/01/2010 
and 31/12/2020 by GEs in the IDF region and collected by the eight sites (Paris, Seine-et-Marne, 
Yvelines, Essonne, Hauts-de-Seine, Seine-Saint-Denis, Val-de-Marne and Val-d’Oise) of the IDF CRCSP 
Coordination Centre (CRCDC-IDF). These screening colonoscopies were performed following a positive 
screening test in people aged 50-74, living in IDF, France.

Considering the chronology of the constraints in the CRCSP, four periods for carrying out the 
colonoscopy were distinguished (Figure 1). The first period (gFOBT) corresponded to the five years 
(2010-2014) of normal progress of the CRCSP using gFOBT. The second period (FIT) corresponded to the 
four years (2015-2018) of normal progress of the CRCSP using FIT. The third (FIT-STOP) corresponded 
to the year (2019) during which the CRCSP experienced the cessation of the supply of test kits and the 
fourth (COVID) corresponded to the program suspension due to the COVID-19 health crisis (2020).

The supply of screening colonoscopy was described by the number and type of practice of GEs 
practicing in IDF and having performed a screening colonoscopy in a person living in IDF. The Quali-
colo was described in terms of time to colonoscopy, yield of colonoscopy and frequency of undesirable 
events (incidents/accidents, incomplete colonoscopy, refusal of 2nd colonoscopy).

Descriptive and evolutive analyses (supply and Quali-colo) were carried out between the periods 
(gFOBT, FIT, FIT-STOP, and COVID). These changes were first described according to the character-
istics of the GEs who performed the screening colonoscopies. Secondly, the impact of constraints was 
described in terms of changes in Quali-colo indicators between the four periods, in a cohort of GEs 
(Cohort-GE) who performed at least one colonoscopy in each of the four periods.

Screening organization and study data collection 
The National Council of the Order of Physicians (Research and Statistics Study Department) provided 
the medical demographic data. Screening data were extracted from CRCDC-IDF departmental 
databases. Over the study period, the CRCSP campaigns were organized following the CRCSP specific-
ations[15,16]. As a preliminary to each campaign in each study department, an update of the files of 
eligible people was made after the transmission of individual data by the partners (Health Insurance 
plans, Medical Information Services of hospitals, Pathologists, GEs, Surgeons, GPs, patients). Anyone 
who had a screening test did not need a screening colonoscopy if the test result was negative. In case of 
a positive test result, the person was subsequently invited five years after a normal colonoscopy or 
excluded from the CRCSP after a positive colonoscopy result (polyp or CRC).

Definition of variables
The screening colonoscopy (complete or incomplete) was considered completed only if the result was 
provided with or without a completion date. When the completion date was provided, the time to 
screening colonoscopy was expressed as the number of months between the date of completion of the 
screening test and the date of completion of the colonoscopy. In the cases where several colonoscopies 

http://www.e-cancer.fr
http://www.slbc.fr
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Figure 1 Evolution of the colorectal cancer screening program indicators (target population of the campaigns, number of tests carried 
out, number and proportion of positive tests, rate of completion of colonoscopy) over the 4 study periods (guaiac fecal occult blood test, 
fecal immunochemical test, STOP-fecal immunochemical test, and COVID). The asterisk (*) is the target population at the start of the period. The 
colonoscopy completion rate was estimated based on data extraction as of January 31, 2022. gFOBT: Guaiac fecal occult blood test; COVID: Coronavirus disease; 
FIT: Fecal immunochemical test; Nb: Number; CRCSP: Colorectal cancer screening program.

were carried out to investigate the same positive test, the time to screening colonoscopy was that related 
to the first colonoscopy. The proportion of screening colonoscopies with an abnormally long time to 
access colonoscopy (Long-delay-colo) was estimated by the frequency of colonoscopies performed 
beyond a 7-mo delay among the screening colonoscopies for which the completion date was provided. 
This delay threshold considers the fact that the risk of colorectal cancer is increased by about 40% for 
any colonoscopy performed after a waiting period of 7-12 mo[17].

The screening colonoscopy was complete when the colon was examined until crossing the Bauhin 
valve. The reasons for an incomplete colonoscopy were: Insufficient preparation, Anatomical 
(dolichocolon, Presence of an obstructive lesion requiring a second colonoscopy or surgery). The 
accidents related to screening colonoscopy were: exterior hemorrhage with or without transfusion, 
perforation, death. Incidents related to anesthesia or general condition (cardiorespiratory disorders) 
were distinguished from those related to endoscopy (i.e., difficulty crossing a cul-de-sac, placement of 
clips to stop bleeding after a polypectomy). The proportion of serious adverse events (SAEs) was 
estimated by the frequency of screening colonoscopies during which an incident/accident was notified.

The screening colonoscopy was classified as positive when a neoplasm (Polyp/adenoma/CRC) was 
discovered, negative if not. The screening colonoscopy detection rate (yield of colonoscopy) was 
estimated by the proportion of positive colonoscopies among the screening colonoscopies performed. 
The CRC and polyps/adenomas diagnoses were those coded C18-C20 and D12 according to the 10th 
version of the WHO International Classification of Diseases (ICD10)[18]. The CRC was considered “seen 
at colonoscopy” when an ulcerative-budding/ulcerative-necrotizing lesion was described by the GE. 
The high-risk polyps were adenomatous or scalloped polyps with a diameter of ≥ 10 mm (except 
hyperplastic polyps), high-grade dysplasia adenomas, villous or tubulo-villous adenomas. The TNM 
classification[19] has been used to define CRC severity. Any CRC ≥ T3 (subserous invaded) or ≥ N1 (at 
least one regional node invaded) or M1 (with metastasis) was considered severe CRC.

For each GE practicing in IDF region, having performed at least one screening colonoscopy, the 
factors studied were: (1) The existence of a gastroenterology consultation carried out before the 
screening colonoscopy completion date; (2) the annual number of screening colonoscopies performed (1, 
2-30, 31-100, and > 100 colonoscopies); (3) the place of performance of the screening colonoscopy (1-
Private clinic in the IDF; 2-Private hospitals in the IDF; 3-Public hospital in the IDF including: The Public 
Assistance of Paris hospitals -APHP-, Other public hospitals in the IDF including army hospitals and 
municipal health centers). The colonoscopies performed by GEs practicing in ≥ 2 locations, the locations 
of which had not been specified (n = 2), were attributed to the locations most frequented by these GEs 
over the period. Similarly, Colo for which the location was specified but for which the GEs were not 
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specified (n = 6), were attributed to the GEs who performed the greatest number of colonoscopies on the 
location and over the period. Colo performed in a country other than France were classified as “Place 
Unspecified”. Colonoscopies performed in another region of France were classified “Outside-IDF”; (4) 
the annual number of colonoscopy locations (1 Location, ≥ 2 Locations); (5) the density of GEs in the 
municipality where the GE performed the screening colonoscopy. The density (D) of GEs was estimated 
as number of GEs/100000 inhabitants. Each colonoscopy year, with reference to a regional average 
density (M) and standard deviation (SD). Low density of GE was: D < M-SD, average-density of GE 
was: D in M ± SD, high density of GE was: D > M + SD; (6) the seniority of the GE (for any year “A”, the 
GE having no screening colonoscopy in the years prior to “A” was considered a new GE); (7) the 
residence of the CRCSP target patient treated by the GE (1-the Colonoscopy’s supply municipality, 2-
other municipality in the Colonoscopy’s supply department, 3-other IDF departments). As a reminder, 
in 2018, The National Institute of Statistics and Economic Studies (INSEE) counted 1267 municipalities 
in IDF in addition to the city of Paris; and (8) the age of the CRCSP target patient treated by the GE (50-
54, 55-59, 60-64, 65-69, and ≥ 70 years).

Statistical analysis
The proportions (Colo performed within one month or after a waiting delay > 7 mo, incomplete and 
redone Colo, incidents/accidents, positive Colo, high_risk_polyp, CRC seen at Colo, CRC with 
provided status, severe CRC) were described and compared between periods (gFOBT, FIT, FIT-STOP, 
and COVID) by the Pearson’ Chi-2 test. In the strata defined according to the characteristics of the 
cohort-GE, the time to perform the screening colonoscopy (in months) was analyzed in terms of average 
and confidence interval (CI) then, an analysis of variance (ANOVA on repeated measures) was used to 
compare the average delays between periods (gFOBT, FIT, FIT-STOP vs COVID). In the strata defined 
according to the characteristics of the cohort-GE, the proportions (colonoscopies performed after > 7 mo 
delay, proportion of SAEs, yield of screening colonoscopy) were compared between periods (gFOBT, 
FIT, FIT-STOP vs COVID) by Cochran’s Q test.

The link between each dependent variable (binary variables 0/1: Long-delay-colo; SAEs, Yield of 
screening colonoscopy) and the predictive factors (annual number of screening colonoscopies 
performed, Place of performance of the screening colonoscopy, Annual number of colonoscopy 
locations, Density of GE, Residence of the patient, Age of the patient) was analyzed in a multivariate 
and two level (colonoscopy and GE) hierarchical regression model. The generalized linear model 
(family: Bernoulli, link: Logit) with mixed effect was preferred. This multivariate analysis was 
performed using a model with all covariates regardless of their relationship in univariate analysis. In 
addition, a strong correlation existed between several covariates (i.e., annual number of screening 
colonoscopies and Place of performance, Annual number of screening colonoscopies and Municipal 
density of GEs, Annual number of screening colonoscopies and Period), the model was extended to 
these terms of interaction between covariates. Only the significant interaction terms (P < 0.05 in 
univariate analysis) were kept in the final model evaluated by the likelihood ratio test. A biomedical 
statistician performed the statistical review. All the analyses were carried out at the 5% threshold with 
version 13 of the STATA software (College Station, TX, United States).

Regulatory issues
Before analysis, all data were anonymized. The screening database had a favourable opinion from the 
institution that oversees the ethics of data collection (“Commission nationale de l’informatique et des 
libertés”: CNIL)[20]. According to the current French legislation, a study that does not change the care of 
patients did not require the opinion of the Clinical Research Centre’s Ethics Committee.

RESULTS
Descriptive and evolutive analyses
Out of a total of 1267 municipalities listed in the IDF region, only 155 municipalities had at least one GE 
in 2010. This number of municipalities having at least one GE falling from 155 in 2010 to 142 in 2020. In 
the municipalities having at least one GE, the average annual density of GEs fluctuated between a 
minimum of 6.3 (in 2014) and a maximum of 6.5 GE/100000 inhabitants over the study period (Table 1).

The gap between the number of GEs registered in the medical demographic database and the number 
of GEs having performed at least one screening colonoscopy, increased from 134 in 2010 (761 registered 
vs 627 having performed ≥ 1 screening colonoscopy), to 206 in 2015 (776 vs 570) before being reduced to 
123 in 2019 (798 vs 675). The proportion of GEs performing screening colonoscopies at two or more 
locations varied from 20.6% in 2010 to 13.9% in 2015, then 21.8% in 2019. The proportion of new GEs 
decreased from 12.6% in 2011 to 7.7% in 2015, then increased to 13.5% in 2016 and further decreased to 
4.7% in 2019. In 2016, a total of 727 GEs performed at least one colonoscopy. Among them, 97 GE 
performed only one screening colonoscopy and 8 GEs exceeded an annual number of 100 screening 
colonoscopies (Table 1).
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Table 1 Evolution of the regional offer in number of gastroenterologists and the number of gastroenterologists having performed at least one colonoscopy, by year of performance of the screening 
colonoscopy

Nb of GE in IDF1 Number of gastroenterologists who performed a screening colonoscopy2

Number of GE by 
seniority 

Number of GE by density of GE in the 
municipality of practice of the GE

Number of GE by place of 
performance of the colonoscopy

Number of GE by annual number 
(A) of colonoscopies performedYear of 

colonoscopy
Nb of GE 
(density)3

Nb of 
municipalities with 
GE

Senior New (% 
in n) Low Average High Private 

clinic
Private 
Hop.

Public 
Hop. A = 1 A = 2-

30
A = 30-
100 A > 100

Total (n) of GE in 
IDF (% GE ≥ 2 
location)

2010 761 (6.5) 155 627 - 134 85 493 415 114 214 119 473 35 - 627 (20.6)

2011 756 (6.4) 156 534 77 (12.6) 140 71 474 408 117 201 106 465 40 - 611 (17.2)

2012 759 (6.4) 155 538 57 (9.6) 116 79 473 383 112 206 117 454 24 - 595 (16.8)

2013 761 (6.4) 154 539 30 (5.3) 98 92 442 378 115 181 107 448 14 - 569 (16.5)

2014 757 (6.3) 155 522 63 (10.8) 129 75 451 384 106 193 123 448 14 - 585 (17.4)

2015 776 (6.4) 154 526 44 (7.7) 117 53 449 379 103 178 140 419 11 - 570 (13.9)

2016 784 (6.5) 154 629 98 (13.5) 128 65 628 432 143 312 97 447 175 8 727 (18.8)

2017 793 (6.5) 152 642 72 (10.1) 142 56 603 418 142 312 93 486 134 1 714 (19.9)

2018 799 (6.5) 149 665 64 (8.8) 141 51 626 424 151 312 100 488 139 2 729 (20.7)

2019 798 (6.5) 147 643 32 (4.7) 123 63 574 388 152 287 92 512 71 - 675 (21.8)

2020 802 (6.5) 142 619 76 (10.9) 147 50 582 412 162 265 124 475 96 - 695 (19.7)

1Number of gastroenterologists (GE) registered in the region (source: National Council of the Order of Physicians).
2Number of gastroenterologists who performed a screening colonoscopy during the calendar year (regardless of the type of test and regardless of the date of the screening test).
3Density in Number of GE/100000 inhabitants: Regional average density (5.5 à 7.5 GE/100000 inhabitants) Low density of GE (< 5.5 GE/100000 habitants) and high density of GE (> 7.5 GE/100000 inhabitants).
GE: Gastroenterologist; Hop: Hospital; IDF: Ile-de-France; Nb: Number.

In 2011, out of a total of 6428 colonoscopies performed in IDF, the proportion of colonoscopies 
performed by new GEs was 2.0%, the proportion of colonoscopies performed in a municipality with a 
high density of GEs was 62.2%, the proportion of colonoscopies performed in a public hospital was 
12.5%. In 2016, 1041 screening colonoscopies were performed by the GEs having an annual volume of > 
100 screening colonoscopies and 9148 (58.9%) screening colonoscopies were performed by the GEs 
having an annual volume of 30-100 screening colonoscopies. Compared to 2010 (1.7%), the proportion of 
screening colonoscopies performed outside the IDF region was significantly higher in 2020 (2.5%; P < 
0.0001). Similarly, compared to 2019 (16.8%), the proportion of screening colonoscopies performed in 
public hospitals decreased significantly in 2020 (13.0%, P < 0.0001) (Table 2).
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Table 2 Evolution of the number of colonoscopies performed according to the characteristics of the gastroenterologist, by year of performance of the screening colonoscopy, n (%)

Number of colonoscopies performed according to GE characteristics

Number of 
colonoscopies by 
seniority of GE

Number of colonoscopies by 
density of GE in the municipality 
of practice of the GE1

Number of colonoscopies by 
place of performance of the 
colonoscopy

Number of colonoscopies by GE’s 
annual number (A) of colonoscopies 
performed 

Total
Year of 
colonoscopy

Senior New Low Average High Clinic Private 
Hop.

Public 
Hop. A = 1 A = 2-30 A = 31-100 A > 

100

Nb (n) of Colo 
performed in IDF 
(average Nb of Colo 
by GE)

Nb of Colo with 
place specified 
(% outside IDF)

Nb of Colo (% 
Place 
unspecified)

2010 6059 - 1535 900 (14.9) 3624 (59.8) 4507 830 (13.7) 722 (11.9) 119 4493 (74.2) 1447 (23.9) - 6059 (11) 6161 (1.7) 6441 (4.4)

2011 6300 128 (2.0) 1684 712 (11.1) 4032 (62.7) 4677 946 (14.7) 805 (12.5) 106 4578 (71.2) 1744 (27.1) - 6428 (12) 6543 (1.8) 6928 (5.6)

2012 5355 76 (1.4) 1186 766 (14.1) 3479 (64.1) 3818 830 (15.3) 783 (14.4) 117 4284 (78.9) 1030 (19.0) - 5431 (11) 5533 (1.8) 5852 (5.5)

2013 4309 47 (1.1) 1045 737 (16.9) 2574 (59.1) 3156 660 (15.2) 540 (12.4) 107 3725 (85.5) 524 (12.0) - 4356 (9) 4409 (1.2) 4712 (6.4)

2014 4320 132 (3.0) 1104 611 (13.7) 2737 (61.5) 3199 650 (14.6) 603 (13.5) 123 3718(83.5) 611 (13.7) - 4452 (9) 4515 (1.4) 4746 (4.9)

2015 3712 63 (1.7) 879 446 (11.8) 2450 (64.9) 2692 604 (16.0) 479 (12.7) 140 3198 (84.7) 437 (11.6) - 3775 (8) 3818 (1.1) 4034 (5.4)

2016 15196 333 (2.1) 3406 1862 (12.0) 10261 
(66.1)

10886 2527 (16.3) 2116 (13.6) 97 5243 (33.8) 9148 (58.9) 1041 15529 (25) 15811 (1.8) 16651 (5.0)

2017 11519 192 (1.6) 2876 1262 (10.8) 7573 (64.7) 7919 1937 (16.5) 1855 (15.8) 93 5370 (45.9) 6137(52.4) 111 11711 (18) 11920 (1.8) 12345 (3.4)

2018 12181 164 (1.3) 2758 1190 (9.6) 8397 (68.0) 8233 2300 (18.6) 1812 (14.7) 100 5331 (43.2) 6684 (54.1) 230 12345 (19) 12602 (2.0) 13057 (3.5)

2019 8189 98 (1.2) 1582 932 (11.3) 5773 (69.7) 5365 1532 (18.5) 1390 (16.8) 92 5261 (63.5) 2934 (35.4) - 8287 (13) 8487 (2.4) 8767 (3.2)

2020 9103 158 (1.7) 2088 755 (8.2) 6418 (69.3) 6654 1900 (20.5) 1199 (13.0) 124 5049 (54.5) 4088 (44.1) - 9261 (15) 9501 (2.5) 9793 (3.0)

1Density in Number of GE/100000 inhabitants: Regional average density (5.5 à 7.5 GE/100000 inhabitants), low density of GE (< 5.5 GE/100000 habitants) et High density of GE (> 7.5 GE/100000 inhabitants).
Colo: Screening colonoscopy; GE: Gastroenterologist; Hop.: Hospital; IDF: Ile-de-France; Nb: Number.

Overall, the time to screening colonoscopy was significantly longer over STOP-FIT (gFOBT: 2.6 ± 2.9 
vs FIT: 3.0 ± 3.0; STOP-FIT: 3.9 ± 3.9, COVID: 3.5 ± 3.9, P < 0.0001). Over the gFOBT period, 3.1% of the 
28679 colonoscopies performed were incomplete (20.7% were redone) for reasons: Anatomical (60.6%), 
insufficient preparation (16.1%). The proportion of incomplete and redone colonoscopies was 
significantly higher over FIT (P < 0.001). Although one case of death was reported during the gFOBT 
period, the proportion of adverse events was not significantly related to the period (0.05). The 
proportion of cancers seen at colonoscopy was lower over FIT (gFOBT: 61.4%, vs FIT: 55.2% or STOP-
FIT: 57.5% or COVID: 56.1%; P < 0.0001) (Table 3).
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Table 3 Quality indicators and results of colonoscopies by period of performance of colonoscopy in people aged 50-74, residing in Ile-
de-France, n (%)

Period
Quality indicator

gFOBT FIT STOP-FIT COVID P value1

Total number (n) of colonoscopies 28679 46087 8767 9783

Existence of a GE consultation before colonoscopy

Nb (A) colonoscopies with date of consultation 5267 (18.4) 1517 (3.3) 406 (4.6) 198 (2.0) < 10-3

Date of consultation ≠ Date of colonoscopy

Nb colonoscopies of which date of consultation ≠ colon date (% 
in A)

298.4 (56.7) 883 (58.2) 402 (99.0) 191 (96.5) < 10-3

Time to colonoscopy

Average (in mean ± SD) 2.6 ± 2.9 3.0 ± 3.0 3.9 ± 3.9 3.5 ± 2.9 < 10-3*

Number of colonoscopies performed within one month 4957 (17.3) 4572 (9.9) 458 (5.2) 726 (7.4) < 10-3

Number of colonoscopies performed beyond 7 mo 1520 (5.3) 2949 (6.4) 1034 (11.8) 933 (9.5) < 10-3

Complete colonoscopy < 10-3

Nb colonoscopies without information on performance 1263 (4.4) 2360 (5.1) 410 (4.7) 432 (4.4)

Number of complete colonoscopies 26530 (92.5) 41695(90.5) 8004 (91.3) 8981 (91.8)

Nb (B) of incomplete colonoscopies 886 (3.1) 2032 (4.4) 357 (4.1) 376 (3.8)

Reasons for incomplete colonoscopies < 10-3

Unspecified: n (% in B) 206 (23.3) 617 (30.4) 109 (30.5) 114 (30.3)

Anatomical reason/Obstruction by lesion: n (% in B) 537 (60.6) 845 (41.6) 150 (42.0) 161 (42.8)

Insufficient preparation: n (% in B) 143 (16.1) 570 (28.1) 98 (27.5) 101 (26.9)

Redone incomplete colonoscopy

Number of redone colonoscopies (% B) 183 (20.7) 960 (47.2) 158 (44.3) 163 (43.3) < 10-3

Frequency of incidents 0.14

No incidents reported: n 28873 (99.6) 45947 (99.7) 8740 (99.7) 9763 (99.8)

Related to anaesthesia/general condition: n 18 (0.06) 24 (0.05) 3 (0.03) 2 (0.02)

Related to endoscopy: n 88 (0.3) 116 (0.3) 22 (0.3) 18 (0.2)

Frequency of accidents 0.17

No accidents reported: n 28589 (99.7) 45970 (99.8) 8749 (99.8) 9763 (99.8)

Suspected complication: n 24 (0.08) 23 (0.05) 5 (0.04) 3 (0.03)

Exterior bleeding: n 57 (0.2) 66 (0.1) 14 (0.2) 12 (0.1)

Perforation: n 8 (0.03) 28 (0.06) 3 (0.03) 4 (0.04)

Deaths: n 1 (0.0) 0 0 0

Colonoscopies results 

Detection rate: Nb of lesions 14857 (51.8) 29843 (64.8) 5565 (63.5) 5967 (60.1) < 10-3

Nb Polyps (% HRP) 12947 (44.2) 26624 (56.4) 5040 (53.3) 5425 (51.8) < 10-3

Nb of CRC (% CRC seen at colonoscopy) 1910 (61.4) 3219 (55.2) 525 (57.3) 542 (56.1) < 10-3

% CRC with severity stage specified among Nb CRC2 90.3 80.5 74.3 72.3 < 10-3

Nb CRC with severity stage specified (% severe CRC) 2 1724 (50.7) 2592 (40.9) 390 (39.5) 392 (39.5) < 10-3

1Pearson’s χ2/Fisher’s exact test of proportion or Fisher’s F test (ANOVA).
2Any CRC ≥ T3 (subserous invaded) or ≥ N1 (at least one regional node invaded) or M1 (with metastasis) was considered severe colorectal cancer.
CRC: Colorectal cancer; FIT: Fecal immunochemical test; GE: Gastroenterologist; gFOBT: Guaiac fecal occult blood test; HRP: High risk polyps (advanced 
adenoma); Nb: Number.
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Changes in Quali-colo indicators between the four periods, in a cohort of GEs
The cohort of 533 GE achieved 21509 Screening colonoscopies over the gFOBT period, 38352 over FIT, 
7342 over STOP-FIT and 7995 over the COVID period. In this cohort, the difference in time (months) to 
screening colonoscopy between periods was globally significant [gFOBT: 2.6 (2.5; 2.6) vs FIT: 3.0 (2.9; 
3.0); STOP-FIT: 3.9 (3.8; 4.0) and COVID: 3.5 (3.4; 3.6); P < 0.0001]. The average time to colonoscopy was 
longer in public hospitals compared to clinics or private hospital, regardless of the period. This average 
time was paradoxically shorter over the COVID period compared to the STOP-FIT period, regardless of 
the type of establishment [in STOP-FIT clinic: 3.7 (3.6; 3.7) vs COVID: 3.4 (3.3-3.5) in public hospitals 
STOP-FIT: 5.1 (4.7-5.9) vs COVID: 4.2 (3.8; 4.7)]. The average time to colonoscopy was significantly lower 
among GEs practicing in low-density areas of GEs compared to those practicing in high-density areas of 
GEs, over the gFOBT and FIT periods, conversely, depending on the density area the confidence 
intervals were not significant over the STOP-FIT and COVID periods (Table 4).

Regardless of the GE’s characteristics, the proportion of screening colonoscopy performed in > 7 mo 
delay was significantly higher over STOP-FIT (P < 0.001). The proportion of colonoscopies performed in 
> 7 mo delay was higher in public hospitals compared to clinics and private hospitals, regardless of the 
period (P < 0.001 in each period). This proportion of colonoscopies performed in > 7 mo delay decreased 
during the COVID period compared to the STOP-FIT period, regardless of the place of colonoscopy P < 
0.001 for each place). The proportion of colonoscopies performed in > 7 mo delay was higher in the 50-
54 age group, regardless of the period P < 0.001 in each period) (Table 5).

Whatever the characteristics of the Cohort-GE, the decline in colonoscopy detection rate was 
significant between the FIT and COVID period (Table 6). The risk of having a long delay to colonoscopy 
was twice as high for screening-colonoscopy performed in a public hospital [adjusted odds ratio (aOR): 
2.1 (1.3; 3.6)] compared to screening colonoscopy performed in a private IDF clinic. Except for the 
patient’s age, the risk of adverse events was not related to any other predictive factor. Compared to 
patients aged 50-54, patients aged 70 had a 70% increased risk of neoplasm detection. The risk of 
neoplasm detection decreased by about 40% between the periods FIT [aOR: 1.6 (1.5; 1.7)] and COVID 
[aOR: 1.1 (1.0; 1.3)] (Table 7).

DISCUSSION
The European guide for quality assurance of colorectal cancer screening recommends performing a 
colonoscopy within 31 d following a positive test result[21]. In our Cohort-GE, if the increase in the time 
to screening colonoscopy between the first and the second period was attributable to the introduction of 
FIT, its increase after the second period was attributable to the malfunction of the program due to the 
slowdown of the kit market and the COVID-19 health crisis. There is certainly no relationship between 
the kit market and the colonoscopy offer, but the unexplained increase in the time to perform 
colonoscopy during a year that saw a market slowdown can be explained factually by this market crisis. 
The hypothesis would be that general practitioners reacted to the market crisis by relaxing the program, 
in particular the follow-up of people who had a positive test. Indeed, in France, in addition to the distri-
bution of the test kit, the training doctors are real facilitators of access to colonoscopy (helping the 
patient to make an appointment with a gastroenterologist, motivating the patient to have the 
colonoscopy). This hypothesis is confirmed by the slight decrease in the time to colonoscopy in 2020 
compared to 2019, despite the COVID-19 health crisis. The year 2020 was moreover affected by this kit 
market crisis than by the COVID-19 health crisis. Indeed, after the resumption of the kit market in 
September 2019, several people who had a positive test during the last quarter of 2019 were inevitably 
the first to be affected by colonoscopy postponements at the start of the first confinement in March 2020. 
However, the improvement in the time to colonoscopy during the pandemic (compared to the STOP-FIT 
period) could also be linked to the fact that people have refocused their concerns on their health. 
Regardless of the characteristics of the Cohort-GE, the screening colonoscopy detection rate dropped 
significantly between the STOP-FIT and COVID periods, while the proportions of SAEs stayed 
unchanged.

The long delay to access colonoscopy observed on the gFOBT and FIT periods converges with the 
results of another French study[22], although it is clearly higher than those observed elsewhere[23,24]. 
The definition of a reference delay and the obligation of compliance with it by all GEs taking part in 
CRCSP would effectively reduce the delay in France. This reframing is necessary, especially since the 
number of GEs is large, but with an increased disparity in terms of the number of screening colono-
scopies performed by GEs.

Despite this longer waiting time to colonoscopy, the proportion of colonoscopies during which a SAE 
was reported did not change between periods. Although high, the frequency of perforations remains 
lower than that (1.1%) found in Alsace[25]. In the program, there was no nationally standardized forms 
for collecting screening colonoscopy data. Information concerning the date of consultation before the 
colonoscopy, or the progress of the examination can sometimes be missed or be considered irrelevant 
during this collection. Therefore, the low frequency of SAEs reported in this study could be the 
consequence of under-reporting.
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Table 4 Average time (in months) to colonoscopy according to the characteristics of the cohort of gastroenterologists who performed 
at least one colonoscopy over each of the four periods (guaiac fecal occult blood test, fecal immunochemical test, STOP-fecal 
immunochemical test, and COVID)

Average time (in months) to colonoscopy, by period

gFOBT FIT STOP-FIT COVIDCharacteristics of the 
cohort of 
gastroenterologists

Nb of 
GE Nb of 

Colo
Average, 
95%CI

Nb of 
Colo

Average, 
95%CI

Nb of 
Colo

Average, 
95%CI

Nb of 
Colo

Average, 
95%CI

P1

Overall 533 21509 2.6 [2.5; 2.6] 38352 3.0 [2.9; 3.0] 7342 3.9 [3.8; 4.0] 7995 3.5 [3.4; 3.6] < 10-3

Annual Nb of Colo

1 2012 304 3.1 [2.8; 3.5] 150 3.3 [2.7; 3.8] 38 4.3 [3.1; 4.8] 51 4.0 [3.5; 4.6] 0.08

2-30 4812 16819 2.6 [2.5; 2.6] 15970 3.0 [3.0; 3.1] 4887 3.9 [3.8; 4.0] 4211 3.5 [3.4; 3.6] < 10-3

31-100 442 4386 2.4 [2.3; 2.5] 21137 3.0 [2.9; 3.0] 2817 3.8 [3.6; 3.9] 3733 3.5 [3.4; 3.6] < 10-3

> 100 0 0 1095 2.5 [2.3; 2.6] 0 0

Place of S-colo performance

Clinic 3552 15745 2.4 [2.4; 2.5] 27003 2.9 [2.8; 2.9] 5039 3.7 [3.6; 3.7] 5560 3.4 [3.3; 3.5] < 10-3

Private hospital 1252 3041 2.5 [2.4; 2.6] 6500 2.9 [2.8; 3.0] 1359 3.6 [3.5; 3.7] 1621 3.4 [3.3; 3.5] < 10-3

Public hospital 2352 2723 3.3 [3.2; 3.4] 4849 3.8 [3.7; 3.9] 940 5.1 [4.7; 5.9] 795 4.2 [3.8; 4.7] < 10-3

Average density of GE 
(GE/100000iHbts) 

Low 1272 4643 2.4 [2.3; 2.5] 8419 2.9 [2.8; 2.9] 1519 3.9 [3.8; 4.1] 1800 3.4 [3.3; 3.5] < 10-3

Average 1082 3245 2.5 [2.4; 2.5] 4314 2.9 [2.8; 2.9] 810 4.1 [3.8; 4.4] 781 3.6 [3.4; 3.9] < 10-3

High 4672 13621 2.6 [2.6; 2.7] 25619 3.0 [3.0; 3.1] 5009 3.8 [3.7; 3.9] 5395 3.5 [3.4; 3.6] < 10-3

Annual Nb of Colo locations 

1 location 4832 14437 2.6 [2.6; 2.7] 24851 3.0 [3.0; 3.1] 4763 3.8 [3.7; 3.9] 5160 3.5 [3.4; 3.6] < 10-3

≥ 2 locations 1532 7072 2.4 [2.4; 2.5] 13501 2.9 [2.9; 3.0] 2575 4.0 [3.9; 4.1] 2816 3.5 [3.4; 3.7] < 10-3

Residence of the patient

Colonoscopy’s supply 
municipality

3382 4947 2.5 [2.4; 2.5] 7775 2.9 [2.9; 3.0] 1502 3.9 [3.7; 4.1] 1530 3.5 [3.3; 3.6] < 10-3

Other municipality in 
Colonoscopy’s supply 
department

4802 13259 2.5 [2.5; 2.6] 23754 3.0 [3.0; 3.1] 4401 3.9 [3.8; 4.0] 4982 3.5 [3.4; 3.6] < 10-3

Other departments in IDF 4192 3303 2.7 [2.6; 2.8] 6823 2.9[2.9; 3.0] 1435 3.8 [3.6; 4.0] 1464 3.6 [3.5; 3.8] < 10-3

Age (in yr) of the patients

50-54 4852 4995 2.7 [2.6; 2.8] 8018 3.1 [3.0; 3.2] 1695 4.1 [3.9; 4.2] 1616 3.8 [3.7; 4.0] < 10-3

55-59 4522 4669 2.6 [2.5; 2.7] 7355 3.1 [3.0; 3.1] 1446 3.9 [3.7; 4.1] 1560 3.6 [3.4; 3.7] < 10-3

60-64 4662 4889 2.5 [2.4; 2.6] 7851 3.0 [2.9; 3.0] 1478 3.7 [3.5; 3.9] 1531 3.5 [3.4; 3.7] < 10-3

65-69 4642 3766 2.5 [2.4; 2.5] 8511 2.9 [2.8; 2.9] 1403 3.8 [3.6; 4.0] 1590 3.3 [3.1; 3.5] < 10-3

≥ 70 4312 3190 2.4 [2.3; 2.5] 6617 2.9 [2.8; 3.0] 1316 3.7 [3.5; 3.8] 1679 3.4 [3.3; 3.6] < 10-3

1(Prob > F) ANOVA.
2This is the number of gastroenterologists (GEs) having performed a colonoscopy over the guaiac fecal occult blood test period, the same GE can be present 
in all of the modalities, for example the same GE having performed colonoscopies at 3 different sites corresponding to each of the density zones (low 
average high).
95%CI: 95% confidence interval; Colo: Screening colonoscopy; FIT: Fecal immunochemical test; GE: Gastroenterologist; gFOBT: Guaiac fecal occult blood 
test; iHbts: Inhabitants; IDF: Ile-De-France; Nb: Number.

The high proportion of incomplete colonoscopies due to insufficient preparation should alert to the 
need to set up a specific preparation protocol for screening colonoscopy. To date, it is impossible to 
evaluate with relevance the preparation of a colonoscopy in outpatients, who are not hospitalized at the 
time of the preparation. Similarly, there is no standard preparation scheme imposed in the French 
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Table 5 Proportion of colonoscopies performed beyond 7 mo and proportion of serious adverse events, according to the 
characteristics of the cohort of gastroenterologists who performed at least one colonoscopy in each of the three periods (guaiac fecal 
occult blood test, fecal immunochemical test, STOP-fecal immunochemical test, and COVID)

Proportion of colonoscopies performed beyond 7 mo by 
period Proportion of serious adverse events by period

gFOBT FIT STOP-FIT COVID gFOBT FIT STOP-
FIT COVIDCharacteristics of the 

cohort of 
gastroenterologists

Nb of Colo 
(% > 7 mo)

Nb of 
Colo (% > 
7 mo)

Nb of Colo 
(% > 7mo)

Nb of Colo 
(% > 7 mo)

P1

%EI %EI %EI
P1

Overall 21509 (5.3) 38352 (6.2) 7342 (11.3) 7995 (9.2) < 10-3 0.3 0.3 0.3 0.2 0.10

Annual Nb of Colo

1 304 (10.1) 150 (11.8) 38 (18.4) 51 (12.0) < 10-3 0.3 0 0 0 0.67

2-30 16819 (5.5) 15970 (6.9) 4887 (11.8) 4211 (9.4) < 10-3 0.3 0.4 0.3 0.1 0.09

31-100 4386 (4.1) 21137 (5.7) 2817 (10.6) 3733 (9.0) < 10-3 0.4 0.2 0.3 0.2 0.25

> 100 1095 (3.7) 0.2

Place of Colo performance

Clinic 15745 (4.8) 27003 (5.4) 5039 (10.4) 5560 (8.3) < 10-3 0.3 0.3 0.3 0.1 0.16

Private hospital 3041 (5.1) 6500 (5.9) 1359 (9.6) 1621 (9.5) < 10-3 0.3 0.2 0.2 0.2 0.71

Public hospital 2723 (8.5) 4849 (10.6) 940 (18.8) 795 (15.1) < 10-3 0.6 0.6 0.2 0.4 0.48

Average density of GE 
(GE/100000 iHbts) 

Low 4643 (5.1) 8419 (5.8) 1519 (11.5) 1800 (9.1) < 10-3 0.3 0.2 0.3 0.1 0.59

Average 3245 (4.9) 4314 (6.5) 810 (11.0) 781 (9.9) < 10-3 0.2 0.3 0.1 0.5 0.48

High 13621 (5.5) 25619 (6.2) 5009 (11.3) 5395 (9.2) < 10-3 0.4 0.3 0.3 0.1 0.04

Annual Nb of Colo locations 

1 location 14437 (5.6) 24851 (6.3) 4763 (10.6) 5160 (9.5) < 10-3 0.4 0.3 0.3 0.2 0.17

≥ 2 location 7072 (4.8) 13501 (6.0) 2575 (12.7) 2816 (8.7) < 10-3 0.2 0.2 0.2 0.1 0.80

Residence of the patient

Colonoscopy’s supply 
municipality

4947 (4.9) 7775 (5.9) 1502 (11.6) 1530 (8.0) < 10-3 0.2 0.3 0.3 0.0 0.18

Other municipality in 
Colonoscopy’s supply 
department

13259 (5.1) 23754 (6.0) 4401 (11.0) 4982 (9.6) < 10-3 0.4 0.3 0.2 0.2 0.02

Other departments in IDF 3303 (6.6) 6823 (6.9) 1435 (12.1) 1464 (9.2) < 10-3 0.3 0.4 0.4 0.3 0.80

Age (in yr) of the patients

50-54 4995 (6.7) 8018 (7.0) 1695 (12.2) 1616 (11.0) < 10-3 0.2 0.2 0.1 0.1 0.43

55-59 4669 (5.7) 7355 (6.6) 1446 (11.8) 1560 (9.9) < 10-3 0.3 0.3 0.4 0.2 0.79

60-64 4889 (4.7) 7851 (5.9) 1478 (10.3) 1531 (8.9) < 10-3 0.4 0.3 0.5 0.3 0.76

65-69 3766 (4.4) 8511 (5.5) 1403 (11.7) 1590 (8.2) < 10-3 0.4 0.3 0.3 0.1 0.20

≥ 70 3190 (4.6) 6617 (5.7) 1316 (10.6) 1679 (8.2) < 10-3 0.5 0.4 0.2 0.2 0.49

1Cochran Q test.
Colo: Screening colonoscopy; Colo+: Positive screening colonoscopy; FIT: Fecal immunochemical test; GE: Gastroenterologist; gFOBT: Guaiac fecal occult 
blood test; iHbts: Inhabitants; IDF: Ile-De-France; Nb: Number.

screening program, each GE proposing the method of his choice to the patient. However, although a 
non-superiority of a preparation scheme (Enema vs Oral preparation) was argued[21], studies admitted 
that a short time (1-6 h vs > 8 h) between the colic preparation and colonoscopy is associated with a 
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Table 6 Neoplasm detection rate at colonoscopy, according to the characteristics of the cohort of gastroenterologists who performed 
at least one colonoscopy in each of the three periods (guaiac fecal occult blood test, fecal immunochemical test, STOP-fecal 
immunochemical test, and COVID)

Neoplasm detection rate at colonoscopy by period

gFOBT FIT-1 STOP-FIT COVIDCharacteristics of the cohort of 
gastroenterologists Nb of Colo (% 

Colo+)
Nb of Colo (% 
Colo+)

Nb of Colo (% 
Colo+)

Nb of Colo (% 
Colo+)

P1

Overall 21509 (52.3) 38352 (65.0) 7342 (63.3) 7995 (60.1) < 10-3

Annual Nb of Colo

1 304 (50.7) 150 (62.0) 38 (71.1) 51 (51.0) 0.02

2-30 16819 (53.6) 15970 (64.5) 4887 (63.7) 4211 (59.6) < 10-3

31-100 4386 (47.6) 21137 (65.8) 2817 (62.5) 3733 (61.8) < 10-3

> 100 1095 (58.6) 0 0

Place of S-colo performance

Clinic 15745 (52.4) 27 003 (64.9) 5039 (62.8) 5560 (60.1) < 10-3

Private hospital 3041 (54.3) 6500 (65.0) 1359 (64.8) 1621 (62.7) < 10-3

Public hospital 2723 (49.8) 4849 (65.6) 940 (63.7) 795 (59.5) < 10-3

Average Density of GE (GE/100000iHbts) 

Low 4643 (53.0) 8419 (64.5) 1519 (61.7) 1800 (58.4) < 10-3

Average 3245 (53.1) 4314 (64.1) 810 (65.2) 781 (61.1) < 10-3

High 13621 (51.9) 25619 (65.4) 5009 (63.4) 5395 (61.2) < 10-3

Annual Nb of S-colo locations 

1 location 14437 (52.8) 24851 (64.8) 4763 (63.0) 5160 (60.8) < 10-3

≥ 2 locations 7072 (51.3) 13501 (65.6) 2575 (63.8) 2816 (60.2) < 10-3

Residence of the patient

Colonoscopy’s supply municipality 4947 (53.4) 7775 (65.3) 1502 (61.1) 1530 (59.5) < 10-3

Other municipality in Colonoscopy’s 
supply department

13259 (51.7) 23754 (65.0) 4401 (64.2) 4982 (61.2) < 10-3

Other departments in IDF 3303 (53.1) 6823 (64.9) 1435 (62.8) 1464 (59.6) < 10-3

Age (in yrs) of the patients

50-54 4995 (44.9) 8018 (56.5) 1695 (55.2) 1616 (52.9) < 10-3

55-59 4669 (50.8) 7355 (63.1) 1446 (61.3) 1560 (58.9) < 10-3

60-64 4889 (54.2) 7851 (67.9) 1478 (65.5) 1531 (63.1) < 10-3

65-69 3766 (57.1) 8511 (68.9) 1403 (68.3) 1590 (65.3) < 10-3

≥ 70 3190 (57.5) 6617 (69.2) 1316 (67.9) 1679 (62.8) < 10-3

1Cochran Q test.
Colo: Screening colonoscopy; Colo+: Positive screening colonoscopy; FIT: Fecal immunochemical test; GE: Gastroenterologist; gFOBT: Guaiac fecal occult 
blood test; iHbts: Inhabitants; IDF: Ile-De-France; Nb: Number.

better quality of colonic preparation[26].
Compared to gFOBT, the high proportion of 2nd colonoscopies over the FIT period would confirm the 

literature on the performance of FIT in screening for precancerous lesions[27], which most often only 
require endoscopic resection. However, in addition to a high proportion of obstructive lesions, the 
proportion of severe cancers was significantly higher over the gFOBT period.

Several study results converge on a link between the long delay in access to colonoscopy and the CRC 
risk. Forbes et al[28] propose that wherever possible, colonoscopy should not be delayed beyond 6 mo of 
positive fecal testing as an aspirational target (with 9 mo as an upper limit). In the Kaiser Permanente 
(California) health plan members, the risk of CRC was increased by about 40% for any colonoscopy 
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Table 7 Multivariate analysis of the relationship between each dependent variable (binary variables 0/1: Screening colonoscopy 
performed beyond 7-mo; Serious adverse events, Yield of neoplasm at screening colonoscopy) and the predictive factors

Colo performed beyond a 7-
mo risk analysis

Serious adverse events risk 
analysis Neoplasms risk analysisCharacteristics of the cohort of 

gastroenterologists
ORa, 95%CI P1 ORa, 95%CI P1 ORa, 95%CI P1

Annual Nb of Colo (Ref: 1 Colo)

2-30 0.7 [0.6; 1.0] 0.002 2.5 [0.3; 18.2] 0.37 0.9 [0.7; 1.1] 0.41

> 30 0.7 [0.3; 0.9] 0.008 2.9 [0.9; 23.0] 0.05 0.8 [0.6; 1.1] 0.32

Place of S-colo performance (Ref: Clinic)

Private hospital 1.2 [0.9; 1.6] 0.18 0.7 [0.3; 1.8] 0.47 1.1 [0.9; 1.3] 0.41

Public hospital 2.1 [1.3; 3.6] 0.001 1.6 [0.3; 8.7] 0.60 1.1 [0.8; 1.4] 0.20

Density of GE (Ref: Low)

Average 0.9 [0.8; 1.0] 0.05 1.2 [0.6; 2.2] 0.59 1.0 [0.9; 1.1] 0.76

High 1.0 [1.0; 1.2] 0.28 1.2 [0.6; 2.3] 0.65 0.9 [0.8; 1.0] 0.04

Annual Nb of S-colo locations (Ref: 1 location)

≥ 2 locations 1.1 [0.8; 1.5] 0.11 1.6 [0.5; 4;4] 0.41 1.0 [0.8; 1.3] 0.84

Residence of the patient (Ref: Colonoscopy’s 
supply municipality)

Other municipality in Colonoscopy’s supply 
department

1.0 [0.9; 1.0] 0.30 1.0 [0.5; 2.1] 0.97 1.0 [0.9; 1.0] 0.31

Other departments in IDF 1.2 [1.1; 1.3] < 10-3 1.2 [0.3; 5.2] 0.81 0.9 [0.8; 1.0] 0.13

Age (yrs) of the patients (Ref: 50-54 yr)

55-59 0.9 [0.8; 1.0] 0.03 1.6 [1.0; 2.6] 0.04 1.3 [1.2; 1.4] < 10-3

60-64 0.8 [0.7; 0.9] 0.001 2.0 [1.2; 3.1] 0.006 1.6 [1.5; 1.6] < 10-3

65-69 0.7 [0.7; 0.8] < 10-3 1.9 [1.2; 3.0] 0.01 1.7 [1.6; 1.8] < 10-3

≥ 70 0.7 [0.6; 0.8] 0.003 2.1 [1.3; 3.4] 0.002 1.7 [1.6; 1.8] < 10-3

Period (Ref.: gFOBT)

FIT 1.2 [1.1; 1.2] < 10-3 0.8 [0.4; 1.5] 0.11 1.6 [1.5; 1.7] < 10-3

STOP-FIT 2.4 [2.1; 2.6] < 10-3 0.8 [0.5; 1.3] 0.27 1.3 [1.1; 1.5] < 10-3

COVID 2.0 [1.8; 2.2] < 10-3 0.5 [0.3; 0.9] 0.02 1.1 [1.0; 1.3] 0.08

1P > |z|.
95%CI: 95% confidence interval; Colo: Screening colonoscopy; FIT: Fecal immunochemical test; GE: Gastroenterologist; gFOBT: Guaiac fecal occult blood 
test; IDF: Ile-De-France; ORa: Adjusted odds-ratio.

performed after a waiting period of 7-12 mo[17]. A recent meta-analysis shows that the risk of colorectal 
cancer is increased by 42%, and that the risk of cancer at an advanced stage was multiplied by 2 or even 
more, when colonoscopy was performed more than 6 mo after a positive test[29]. In this study, the time 
to access colonoscopy as well as its lengthening, induced first by the change of the test and then by the 
health crisis, had no impact in terms of the CRC severity, probably because of the discriminatory 
approach prioritizing patients with already existing symptoms. As a reminder, the French Society of 
Digestive Endoscopy had made, in mid-April 2020, the specific recommendation to postpone by 6 wk 
any colonoscopy following a positive screening test result, if there was no clinical nor biological sign of 
CCR[30]. In addition, since FIT was introduced in 2015 in a population screened biannually with 
gFOBT, the severe CRC screened by FIT are likely to be those not detected at an early stage by gFOBT. 
This hypothesis is confirmed by the drop in the colonoscopy detection rate and by the proportion of 
severe CRC over STOP-FIT and COVID periods.

To celebrate the tenth anniversary of the first atlas of medical demography, the National Council of 
the Order of Physicians focused on the gradual transfer from liberal activity to salaried activity. The 
focus also mentioned the widening of territorial inequalities to the detriment of regions and 
departments already in difficulty in terms of medical density[31]. Although the number of GEs is 
unevenly distributed over the 1268 IDF municipalities, the density of GEs in the IDF region was well 
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above the range (4.2 to 4.9) of the national average observed in 2017[31].
Each GE participating in a CRCSP must perform at least 300 colonoscopies per year[21]. Despite the 

superiority of the regional offer compared to the national average, the annual number of colonoscopies 
per GE stays very disparate and below 300, especially for GEs in public hospitals. The main limitation of 
this study is the fact that it only gives an opinion on screening colonoscopies. Indeed, screening colono-
scopies only represented 5.5% of all colonoscopies performed in France in 2012 (gFOBT-period) and 
about 10% in 2016 (FIT-period)[32]. Since the patient base of a GE is not limited to the population of the 
region of practice, several GEs in the IDF region could reach or exceed this recommended annual 
number, in particular GEs practicing in a private clinic. The other limit of the study would come from 
the fact that the measurements of the indicators cannot be generalized over the whole of France. Indeed, 
the density of gastroenterologists and the types of practice (clinical hospital, etc.) may vary from one 
municipality (or department or region) to another. Only access to databases for the reimbursement of 
colonoscopy procedures could allow the exhaustive evaluation of such a quality indicator.

CONCLUSION
Although GEs are unevenly distributed over the municipalities of the IDF region, the supply of colono-
scopies has remained almost constant between 2010 and 2020. The increase in colonoscopy requests 
induced by the change of the test kit has led to an increase in the average annual number of colono-
scopies performed by GEs at the start of the FIT period. This very disparate annual average number 
between GEs fell over the STOP-FIT and COVID periods, due to the decrease in demand induced by the 
shutdown of the test kit market and the COVID-19 health crisis. The definition of a reference time and 
the obligation to respect it by all GEs would effectively reduce the time to access screening colonoscopy 
in France. The increase in the time to colonoscopy between the first and the second period was attrib-
utable to the introduction of the FIT, its increase after the second period was probably attributable to the 
malfunction of the program due to the slowdown of the kit market and the COVID-19 health crisis. 
Regardless of the characteristics of the GEs, the colonoscopy detection rate dropped significantly 
between the STOP-FIT and COVID periods, while the proportions of SAEs remained unchanged. 
However, the time to colonoscopy as well as its lengthening induced by the constraints had no impact in 
terms of CRC severity, probably because of a discriminatory approach prioritizing patients with existing 
symptoms.

ARTICLE HIGHLIGHTS
Research background
The impact of the Screening program on controlling the colorectal cancer (CRC) morbidity and mortality 
has been proved. But since its complete roll-out in 2009, the French population-based colorectal cancer 
screening program (CRCSP) experienced 3 major constraints [use of a less efficient Guaiac-test (gFOBT), 
Stopping the supply of Faecal-Immunochemical-Test kits (FIT), Suspension of the program due to the 
coronavirus disease 2019 (COVID-19)] affecting its effectiveness.

Research motivation
At this time when all the spotlights are focused on the impact of the health crisis linked to COVID-19, 
our motivation was to warn of the continued deterioration in the quality of screening colonoscopies in 
France.

Research objectives
To describe the impact of the constraints in terms of changes to the quality of screening colonoscopies.

Research methods
This retrospective cohort study included screening colonoscopies performed by the gastroenterologists 
between January 2010 and December 2020 in people aged 50-74 Living in Ile-de-France (France). The 
changes to the quality of screening colonoscopy (proportion of colonoscopies performed beyond 7 mo, 
Frequency of serious adverse events and the colonoscopy detection rate) were described in a cohort of 
Gastroenterologists who performed at least one colonoscopy over each of the four periods defined 
according to the chronology of the constraints [gFOBT: Normal progress of the CRCSP using gFOBT 
(2010-2014); FIT: Normal progress of the CRCSP using FIT(2015-2018); STOP-FIT: Year (2019) during 
which the CRCSP experienced the cessation of the supply of test kits; COVID: program suspension due 
to the COVID-19 health crisis (2020)]. The link between each dependent variable (Colo_7 mo; SAE 
Occurrence, Neoplasm detection rate) and the predictive factors was analyzed in a two-level 
multivariate hierarchical model.
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Research results
The retrospective cohort was made up of 533 gastroenterologists. These 533 gastroenterologists achieved 
21509 screening colonoscopies over the gFOBT period, 38,352 over FIT, 7342 over STOP-FIT and 7995 
over the COVID period. The frequency of serious adverse events did not change between periods 
(gFOBT: 0.3%; FIT: 0.3%; STOP-FIT: 0.3%, and COVID: 0.2%; P = 0.10). The risk of colonoscopies 
performed beyond 7 mo doubled between FIT [adjusted-odds-ratio (aOR): 1.2 (1.1; 1.2)] and STOP-FIT 
[aOR: 2.4 (2.1; 2.6)], then decreased by 40% between STOP-FIT and COVID [aOR: 2.0 (1.8; 2.2)]. 
Regardless of the period, this Colo_7 mo’s risk was twice as high for screening colonoscopy performed 
in a public hospital [aOR: 2.1 (1.3; 3.6)] compared to screening-colonoscopy performed in a private 
clinic. The neoplasm detection, which increased by 60% between gFOBT and FIT [aOR: 1.6 (1.5; 1.7)], 
decreased by 40% between FIT and COVID [aOR: 1.1 (1.0; 1.3)].

Research conclusions
The study showed that the constraints likely affected the time-to-colonoscopy as well as the colonoscopy 
detection rate without impacting the occurrence of the serious adverse events, highlighting the need for 
a respectable reference time-to-colonoscopy in CRCSP.

Research perspectives
At the end of this study, we initially aim to develop, evaluate, and validate a standard form for 
collecting data from screening colonoscopies in France. In a second step, we will evaluate the impact of 
the patient’s motivation by the attending physician on the time taken to perform the colonoscopy.
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Abstract
BACKGROUND 
Small bowel obstruction (SBO) still imposes a substantial burden on the health 
care system. Traditional evaluation systems for SBO outcomes only focus on a 
single element. The comprehensive evaluation of outcomes for patients with SBO 
remains poorly studied. Early intensive clinical care would effectively improve 
the short-term outcomes for SBO, however, the full spectrum of the potential risk 
status regarding the high complication-cost burden is undetermined.

AIM 
We aim to construct a novel system for the evaluation of SBO outcomes and the 
identification of potential risk status.

METHODS 
Patients who were diagnosed with SBO were enrolled and stratified into the 
simple SBO (SiBO) group and the strangulated SBO (StBO) group. A principal 
component (PC) analysis was applied for data simplification and the extraction of 
patient characteristics, followed by separation of the high PC score group and the 
low PC score group. We identified independent risk status on admission via a 
binary logistic regression and then constructed predictive models for worsened 
management outcomes. Receiver operating characteristic curves were drawn, and 
the areas under the curve (AUCs) were calculated to assess the effectiveness of the 
predictive models.

RESULTS 
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Of the 281 patients, 45 patients (16.0%) were found to have StBO, whereas 236 patients (84.0%) had 
SiBO. Regarding standardized length of stay (LOS), total hospital cost and the presence of severe 
adverse events (SAEs), a novel principal component was extracted (PC score = 0.429 × LOS + 0.444 
× total hospital cost + 0.291 × SAE). In the multivariate analysis, risk statuses related to poor 
results for SiBO patients, including a low lymphocyte to monocyte ratio (OR = 0.656), radiological 
features of a lack of small bowel feces signs (OR = 0.316) and mural thickening (OR = 1.338), were 
identified as risk factors. For the StBO group, higher BUN levels (OR = 1.478) and lower 
lymphocytes levels (OR = 0.071) were observed. The AUCs of the predictive models for poor 
outcomes were 0.715 (95%CI: 0.635-0.795) and 0.874 (95%CI: 0.762-0.986) for SiBO and StBO strati-
fication, respectively.

CONCLUSION 
The novel PC indicator provided a comprehensive scoring system for evaluating SBO outcomes on 
the foundation of complication-cost burden. According to the relative risk factors, early tailored 
intervention would improve the short-term outcomes.

Key Words: Principal component analysis; Small bowel obstruction; Outcome evaluation system; Risk 
factors; Intensive clinical care; Radiomics
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Core Tip: A novel outcome indicator based on the standardized length of stay, total hospital cost and the 
presence of severe adverse events provided a comprehensive system for evaluating small bowel 
obstruction (SBO) outcomes. Furthermore, risk statuses associated with poor results were identified; 
specifically, for simple SBO patients, a low lymphocyte to monocyte ratio, as well as radiological features 
of a lack of small bowel feces signs and mural thickening, should be noticeable. For the strangulated SBO 
group, higher blood urea nitrogen levels and lower lymphocytes levels were recognized. Accordingly, 
early clinical intensive care was applicable for outcome improvement.
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INTRODUCTION
Small bowel obstructions (SBO) result in over 300000 hospitalizations per year in the United States[1]. 
With the increasing public health burden, the average cost for SBOs ranges from $30000-$38000 
individually, and the total cost for SBOs is estimated to be approximately 9-11.4 billion dollars[2,3]. 
Recently, the short outcomes of SBO were evaluated by using in-hospital mortality, major complications 
and the length of hospital stay[3-6]. There is still lack of an integrative medical-economic system to 
evaluate the overall outcomes for SBO, even though previous studies have confirmed the relationship 
between worse outcomes and higher hospital costs[7,8]. Furthermore, the question of how to compre-
hensively evaluate outcomes for patients with SBO remains uncharted.

Principal component analysis (PCA) is commonly used for dimension reduction[9,10], linear 
correlation resolution and data simplification. By summarizing and maximizing the information 
encoding a set of outcome variables, a novel principal component for evaluating the clinical and 
economic effects on SBO is available. For SBO, patients’ statuses on admission, including longer pain 
duration, acute kidney injury and malnutrition, were found to be closely correlated with severe adverse 
events (SAEs), based on previous studies[3,5,7,11]. However, the risk factors for the integrative scoring 
system, including clinical and economic adverse events, have not been extensively evaluated. The 
method of how to fully evaluate the potential risk status regarding the high complication-cost burden is 
urgently needed.

As an urgent life-threatening problem, the physical status of strangulated SBO is considerably deteri-
orating[12-14]. To control this confounding factor[15,16] and to further identify the risk admission 
status, we divided patients into a simple bowel obstruction group and a strangulated bowel obstruction 
group for the stratification analysis. We also constructed a novel indicator combining standardized 
SAEs, length of stay (LOS) and total hospital cost for defining outcomes of SBO. Furthermore, we 
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established a representative model to distinguish high-risk statuses for both the simple small bowel 
obstruction (SiBO) and strangulated small bowel obstruction (StBO) groups to guide clinical intensive 
care for SBO.

MATERIALS AND METHODS
Patient population
From October 2016 to February 2021, 479 patients diagnosed with intestinal obstructions at Fujian 
Medical University Union Hospital were included in the study. After excluding 180 cases with large 
bowel obstructions, 4 cases with missing computed tomography (CT) images and 13 cases with 
incomplete clinical data, 281 patients were recruited for the final study (shown in Figure 1). The 
following stratification was made according to the pathological confirmation of intestinal ischemia: A 
simple bowel obstruction (SiBO, n = 236) group and a strangulated bowel obstruction (StBO, n = 45) 
group. For patients without acute peritonitis, conservative treatment was applied. Once patients with 
highly suspect of bowel ischemia or failure to conservative treatment, laparoscopy as well as 
laparotomy was adopted for SBO patients according to different intrabdominal pressures (shown in 
Table 1). The study protocol was approved by the Institutional Review Board of Fujian Medical 
University Union Hospital (Approval No. 2021YF005-02), and all of the patients provided written 
informed consent for the procedure.

CT findings
All of the patients with suspected SBO underwent CT scans before receiving treatment. The features of 
the CT scans that were recorded in this study were separated into mesenteric fluid, ascites, spiral signs, 
concentric circle signs, small bowel feces signs and edema of the bowel wall categories[17-20]. All of the 
CT scan images were cross-reviewed and evaluated by two senior general surgeons (Chen XQ and 
Zhang JR, and both surgeons had abundant experience in abdominal emergency surgery. The 
definitions of CT characteristics are shown in Supplementary Figure 1 and supplied in Supplementary 
Table 1[21-25].

Clinical characteristics and laboratory tests
Baseline demographics consisted of sex, age, body mass index (BMI), comorbidity, temperature, pain 
duration and history of abdominal pain. Biochemical parameters, including white blood cell count, 
neutrophil percentage, lymphocyte concentration, monocyte concentration, hemoglobin concentration, 
platelet concentration, albumin, alanine aminotransferase, aspartate aminotransferase (AST), calcium 
concentration, chloride concentration, potassium concentration, sodium concentration, blood urea 
nitrogen (BUN), serum creatinine, glucose, prothrombin time (PT), activated partial thromboplastin 
time (APTT), D-dimer (DDI) and fibrinogen, were collected within 24 h of admission. Combinations of 
inflammatory parameters, such as the neutrophil to lymphocyte ratio and lymphocyte to monocyte ratio 
(LMR), were calculated and recorded accordingly.

Outcome definition
Posttreatment outcomes were both clinically and economically evaluated.

Postoperative complications were defined as any deviation from the normal postoperative course 
during the index admission for SBO treatment, which was guided by the European Perioperative 
Clinical Outcome definitions[7,26]. The severity of complications was graded according to the Clavien-
Dindo (CD) system[27], which is a validated classification system that categorizes complication severity 
based on the level of required treatment. Grade I was defined as complications without the need for 
pharmacological treatment or surgical, endoscopic and radiological interventions, as well as only minor 
interventions such as vomiting; grade II was defined as complications requiring pharmacological or 
other treatments, such as blood transfusions and total parenteral nutrition; grade III was defined as 
complications requiring surgical interventions or other interventional treatments; grade IV was defined 
as life-threatening complications, including central nervous system, cardiac and pulmonary complic-
ations, as well as renal failure and those interventions requiring intensive care unit (ICU) management; 
and grade V was defined as death. CD grade I to grade III were classified as non-SAE, and CD grade IV 
to grade V were classified as SAE.

The LOS was defined as the number of days from admission to discharge. Total hospital cost was 
defined as the total expenditure for medical resource utilization during hospitalizations, which included 
fees for operations (materials and occupancy of the operating room), medications, radiology, laboratory 
tests, microbiology tests, ward stay, ICU days, feeding and blood products[28].

PCA
PCA was used to achieve data simplification by expressing multivariate outcome indicators with fewer 
dimensions. With standardized LOS, total hospital cost and the presence of SAEs, a novel principal 

https://f6publishing.blob.core.windows.net/a8d6d245-cc83-4ff1-801c-ec4cc4ae610f/WJG-29-1509-supplementary-material.pdf
https://f6publishing.blob.core.windows.net/a8d6d245-cc83-4ff1-801c-ec4cc4ae610f/WJG-29-1509-supplementary-material.pdf
https://f6publishing.blob.core.windows.net/a8d6d245-cc83-4ff1-801c-ec4cc4ae610f/WJG-29-1509-supplementary-material.pdf
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Table 1 Compared the clinical and laboratory characteristics of the patients with low or high principal component score

Simple obstruction (n = 236) Strangulated obstruction (n = 45)
Characteristics

Low PC score High PC score
P value

Low PC score High PC score
P value

Baseline data

Gender, n (%) 1.0001 0.4212

    Male 117 (69.2%) 39 (69.6%) 18 (52.9%) 8 (72.7%)

    Female 52 (30.8%) 17 (30.4%) 16 (47.1%) 3 (27.3%)

Age (yr) 60 (47, 69) 65 (53, 71) 0.081 63 (52.25, 70.00) (61.0, 71.5) 0.321

BMI (kg/m2) 20.70 (18.83, 22.98) 20.94 (18.21, 22.65) 0.196 20.20 (18.16, 22.00) 18.75 (17.72, 19.81) 0.228

Comorbidity, n (%) 0.2451 1.0002

    None 128 (75.7%) 38 (67.9%) 27 (79.4%) 9 (81.8%)

    Yes 41 (24.3%) 18 (32.1%) 7 (20.6%) 2 (18.2%)

Pain duration (d) 2 (1, 5) 6 (3, 12.5) < 0.000 2.00 (1.00, 3.75) 2.0 (1.0, 4.0) 0.989

History of abdominal 
operation, n (%)

0.4711 0.6032

    None 43 (25.4%) 17 (30.4%) 11 (32.4%) 2 (18.2%)

    Yes 126 (74.6) 39 (69.6%) 23 (67.6%) 9 (81.8%)

Temperature (degrees 
Celsius)

36.6 (36.5, 36.8) 36.6 (36.5, 36.8) 0.401 36.6 (36.5, 36.8) 36.60 (36.50, 36.75) 0.956

CT characteristics

Mesenteric fluid (%) 0.430 0.9852

    None 32 (18.9%) 8 (14.3%) 1 (2.9%) 1 (9.1%)

    Yes 137 (81.1%) 48 (85.7%) 33 (97.1%) 10 (90.9%)

Ascites (%) 0.849 1.0002

    None 58 (34.3%) 20 (35.7%) 4 (11.8%) 1 (9.1%)

    Yes 111 (65.7%) 36 (64.3%) 30 (88.2%) 10 (90.9%)

Spiral signs (%) 0.6122 0.4362

    None 151 (89.3%) 52 (92.9%) 22 (64.7%) 5 (45.5%)

    Yes 18 (10.7%) 4 (7.1%) 12 (35.3%) 6 (54.5%)

Concentric circle sign (%) 0.1322 0.7452

    None 164 (97.0%) 51 (91.1%) 31 (91.2%) 11 (100%)

    Yes 5 (3.0%) 5 (8.9%) 3 (8.8%) 0 (0%)

Small bowel feces sign (%) 0.006 1.0002

    None 70 (41.4%) 35 (62.5%) 17 (50.0%) 5 (45.5%)

    Yes 99 (58.6%) 21 (37.5%) 17 (50.0%) 5 (54.5%)

Mural thickness (median) 3.28 (2.30, 3.75) 3.63 (2.97, 4.53) 0.002 3.51 (3.16, 4.12) 3.42 (2.67, 4.07) 0.634

Laboratory data

WBC (109/L) 6.770 (4.89, 9.52) 7.345 (4.87, 11.18) 0.387 8.70 (5.89, 12.23) 6.83 (10.01, 18.25) 0.384

NE% 75.50 (65.9, 83.3) 77.45 (68.5, 84.03) 0.422 83.60 (69.05, 86.90) 77.50 (73.30, 90.25) 0.853

Lymphocyte (109/L) 1.01 (0.74, 1.42) 0.94 (0.64, 1.34) 0.240 0.96 (0.65, 1.34) 0.60 (0.42, 0.76) 0.020

Monocyte (109/L) 0.420 (0.30, 0.58) 0.565 (0.34, 0.73) 0.011 0.570 (0.407, 0.735) 0.540 (0.33, 0.760) 0.721

NLR (ratio) 4.650 (3.03, 8.07) 6.115 (3.74, 9.30) 0.159 7.750 (4.085, 
12.922)

9.030 (4.990, 15.565) 0.491

LMR (ratio) 2.286 (1.67, 3.42) 1.591 (1.13, 2.84) 0.002 1.681 (2.131, 1.141) 1.482 (0.957, 1.933) 0.459
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Hb (g/L) 128.0 (115, 142) 120.5 (108, 133) 0.016 131.0 (110.0, 137.7) 129.0 (120.5, 145.0) 0.587

PLT (109/L) 205.5 (162.50, 250.75) 250.5 (180.25, 307.25) 0.002 213 (163, 260) 180.0 (152.0, 242.5) 0.256

Albumin (g/L) 35.9 (32.30, 40.45) 36.1 (31.80, 39.45) 0.403 34.6 (31.7, 39.6) 37.1 (28.6, 42.0) 0.977

ALT (U/L) 16 (11, 24) 16 (11, 22) 0.727 15.00 (12.00, 21.75) 15.00 (13.25, 27.75) 0.612

AST (U/L) 20 (16, 26) 21 (17, 25.5) 0.619 19.50 (17.00, 23.75) 36.50 (20.75, 45.25) 0.022

Ca (mmol/L) 2.19 (2.04,2.32) 2.15 (2.02,2.26) 0.152 2.19 (2.09, 2.31) 2.05 (1.95, 2.20) 0.062

Cl (mmol/L) 102.30 (100.0, 104.1) 100.15 (96.85, 104.03) 0.015 100.85 (98.13, 
103.85)

102.00 (101.35, 
104.15)

0.296

K (mmol/L) 4.035 (3.78, 4.34) 3.985 (3.74, 4.43) 0.957 4.00 (3.56, 4.31) 4.36 (3.62, 5.07) 0.290

Na (mmol/L) 138.40 (136.68, 
140.48)

138.15 (135.50, 
141.23)

0.533 138.05 (134.13, 
140.30)

135.60 (134.75, 
137.75)

0.334

BUN (mmol/L) 5.5 (4.3, 7.2) 5.4 (3.68, 8.23) 0.872 6.45 (4.00, 8.57) 10.6 (7.3, 15.3) 0.002

Glu (mmol/L) 6.78 (5.30, 8.67) 6.59 (5.16, 9.51) 0.515 8.165 (6.963, 9.300) 8.66 (6.78, 11.04) 0.428

PT (s) 13.6 (13.1, 14.3) 13.6 (13.28, 14.43) 0.825 13.45 (12.90, 13.90) 15.40 (14.20, 16.65) 0.004

APTT (s) 35.6 (33.3, 38.3) 36.1 (34.0, 40.9) 0.184 35.15 (32.18, 37.10) 41.6 (36.1, 45.0) 0.012

DDI (mg/L) 1.45 (0.71, 2.52) 1.94 (0.79, 4.67) 0.151 1.64 (0.88, 3.50) 5.75 (2.39, 6.72) 0.024

Fib (g/L) 3.49 (2.92, 4.37) 3.78 (3.25, 4.59) 0.150 3.69 (2.71, 4.60) 3.89 (3.17, 4.82) 0.548

Creatinine (umol/L) 70.0 (56, 81) 70.5 (54.75, 88.00) 0.512 67 (57, 76) 93 (80, 147) 0.003

Management < 0.0002 0.2152

    Conservative treatment 155 (91.7%) 17 (30.4%) 1 (2.9%) 0 (0%)

    Laparoscopy 11 (6.5%) 8 (14.3%) 8 (23.5%) 0 (0%)

    Laparotomy 3 (1.8%) 31 (55.4%) 25 (73.5%) 11 (100%)

CD, n (%) < 0.0002 < 0.0002

    Grade I 141 (83.4%) 20 (35.7%) 5 (14.7%) 0 (0%)

    Grade II 28 (16.6%) 32 (57.1%) 28 (82.4%) 2 (18.2%)

    Grade III 0 (0%) 1 (1.8%) 1 (2.9%) 0 (0%)

    Grade IV 0 (0%) 3 (5.4%) 0 (0%) 9 (81.8%)

    Grade V 0 (0%) 0 (0%) 0 (0%) 0 (0%)

SAE, n (%) 0.0182 < 0.0002

    None 169 (100%) 53 (94.6%) 34 (100%) 2 (18.2%)

    Yes 0 (0%) 3 (5.4%) 0 (0%) 9 (81.8%)

Fee (¥) 12070 (8830, 19935) 54322 (41370, 74623) < 0.000 51828 (33575, 
66954)

83553.0 (74146.0, 
142409.5)

< 0.000

Length of stay (d) 5 (4, 8) 16 (13.75, 22.50) < 0.000 14.00 (10.25, 17.00) 28.0 (18.5, 35.5) < 0.000

1were compared using the χ2 test.
2were adjusted P values or Fisher’s exact test.
SiBO: Simple small bowel obstruction; StBO: Strangulated small bowel obstruction; PC score: Principle component score; BMI: Body mass index; WBC: 
White blood cell; NE%: Neutrophil percentage; NLR: Neutrophil to lymphocyte ratio; LMR: Lymphocyte to monocyte ratio; Hb: Hemoglobi; PLT: Platelet; 
ALT: Alanine aminotransferase, AST: Aspartate aminotransferase; Ca: Calcium; Cl: Chloride; K: Potassiun; Na: Sodium; BUN: Blood urea nitrogen; Glu: 
Glucose; PT: Prothrombin time; APTT: Activated partial thromboplastin time; DDI: D-dimer; Fib: Fibrinogen; CD: Clavien-Dindo; SAE: Severe adverse 
event.

component was extracted: PC score = 0.429 × LOS + 0.444 × total hospital cost + 0.291 × SAE. 
Furthermore, the patient population was classified in the following manner according to the quartile PC 
score: The low PC score group (below the 75% quartile) and the high PC score group (in the upper 75% 
quartile). This analysis was performed in R V.4.1.3 (R Foundation for Statistical Programming, Vienna, 
Austria) by using the psych packages.
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Figure 1 Workflow of this study. CT: Computed tomography; PC: Principal component; LOS: Length of stay; SAE: Severe adverse event.

Statistical analysis
Categorical variables were compared by using the χ2 test or Fisher’s exact test between the two groups. 
Data are presented as the mean ± SD or median for continuous variables. Independent t tests or 
Kruskal-Wallis tests were applied according to the characteristics of the variables. The association of 
admission status with higher PC scores was evaluated by using univariate logistic regression and 
summarized with an odds ratio (OR) and 95% confidence interval (CI). After setting the variables with a 
significance level of P < 0.05 and variance inflation factors < 5, a multivariate logistic regression with 
“binomial” method was performed, and independent risk factors were determined. We extracted the 
following risk score formulas based on these independent risk factors: Risk score 1 (RS1) = [0.291 × 
(bowel wall thickness) - 1.150 × (small bowel feces sign) - 0.421 × (LMR)] and RS2 = [-2.632 × 
(lymphocyte concentration) + 0.391 × (BUN concentration)] for the SiBO group and StBO group, 
respectively. Receiver operating characteristic curves and the area under the curve were calculated to 
assess the accuracy of the models. All of the statistical analyses were performed in R Version.4.1.3. The 
statistical methods of this study were reviewed by Yin YR.

RESULTS
Outcome analysis
For 281 patients with SBO who were included in this study, posttreatment outcomes were evaluated by 
LOS, total hospital cost and the presence of SAEs. Via the univariate analysis, admission risk status, 
including lower LMR (P = 0.005), higher BUN concentration (P = 0.022), higher glucose concentration (P 
= 0.007) and higher DDI concentration (P = 0.001), was significantly associated with higher hospital 
costs. Patients with SAE had lower levels of lymphocyte concentration (P = 0.003), higher levels of AST (
P = 0.027), higher levels of potassium (P < 0.000), higher levels of BUN (P < 0.000), higher levels of 
serum creatinine (P < 0.000) and coagulation and fibrinolysis disturbances, including longer PT (P = 
0.001), APTT (P = 0.012) and higher levels of DDI (P < 0.000). Furthermore, at admission, lower LMR (P 
= 0.003), higher monocyte concentration (P = 0.003), lower hemoglobin concentration (P = 0.038), higher 
level of glucose (P = 0.049), higher level of DDI (P = 0.004) and abnormal electrolyte and metabolic 
changes, such as lower calcium concentration (P = 0.042), lower chloride concentration (P = 0.003) and 
lower sodium concentration (P = 0.043), were closely related to a longer LOS (Figure 2 and Supplemen-

https://f6publishing.blob.core.windows.net/a8d6d245-cc83-4ff1-801c-ec4cc4ae610f/WJG-29-1509-supplementary-material.pdf
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Figure 2 Risk factors for worse outcome of small bowel obstruction. Risk estimates for high hospital cost; Risk estimates for severe adverse event; Risk estimates for longer length of stay. OR: Odds ratio; CI: Confidence interval; BMI: 
Body mass index; WBC: White blood cell; NE%: Neutrophil percentage; NLR: Neutrophil to lymphocyte ratio; LMR: Lymphocyte to monocyte ratio; Hb: Hemoglobin; PLT: Platelet, ALT: Alanine aminotransferase; AST: Aspartate aminotransferase; Ca: 
Calcium; Cl: Chloride; K: Potassiun; Na: Sodium; BUN: Blood urea nitrogen; Glu: Glucose; PT: Prothrombin time; APTT: Activated partial thromboplastin time; DDI: D-dimer; Fib: Fibrinogen; SAE: Severe adverse event; LOS: Length of stay.

tary Table 2).

PCA
After maximizing the possible information and variation of the above-mentioned outcome indicators, 
including total hospital cost, LOS and SAEs, data simplification was performed. Via PCA, one principal 
component was extracted (Supplementary Figure 2). The PC score was calculated according to weights 
given to each outcome indicator: PC score = 0.429 × LOS + 0.444 × total hospital cost + 0.291 × SAE 
(Figure 1).

https://f6publishing.blob.core.windows.net/a8d6d245-cc83-4ff1-801c-ec4cc4ae610f/WJG-29-1509-supplementary-material.pdf
https://f6publishing.blob.core.windows.net/a8d6d245-cc83-4ff1-801c-ec4cc4ae610f/WJG-29-1509-supplementary-material.pdf
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Of the 281 patients with SBO who were included in this study, 45 patients (16.0%) were found to have 
StBO, whereas 236 patients (84.0%) were found to have SiBO. The low PC score group (< 75% quartile) 
and high PC score group (> 75% quartile) were identified according to the quartile PC score. For both 
the SiBO and StBO groups, no significant difference was observed between the two PC score groups for 
sex, age, BMI, comorbidity status, temperature or history of abdominal operation (all P values > 0.05, 
Table 1). For patients with SiBO, a higher PC score was significantly related to longer pain duration (P < 
0.000), higher monocyte concentration (P = 0.011), lower LMR (P = 0.002), lower hemoglobin concen-
tration (P = 0.016), lower platelet count (P = 0.002) and low level of chloride (P = 0.015). Through the 
univariate analysis of radiological characteristics, we determined that a lack of small bowel feces signs 
and mural thickening were risk factors for a high PC score. In contrast, in the StBO group, low levels of 
lymphocytes (P = 0.020), high levels of AST (P = 0.022), high levels of BUN (P = 0.002) and coagulation 
and fibrinolysis disturbances, including abnormal DDI concentrations (P = 0.024), PTs (P = 0.004) and 
APTTs (P = 0.012), were significantly associated with higher PC scores. None of the risk radiological 
characteristics were observed in this stratification.

Univariate and multivariate analyses of risk statuses
Via the univariate analysis of the admission clinical-laboratory features, we determined potential risk 
status, including longer pain duration (P = 0.048), higher monocyte concentration (P = 0.003), lower 
LMR (P = 0.006), lower hemoglobin concentration (P = 0.033), lower platelet count (P = 0.036) and low 
level of chloride (P = 0.031), as well as radiological characteristics of mural thickening (P = 0.033) and 
lack of small bowel feces sign (P = 0.006), for high PC scores in the SiBO stratification. Via the 
multivariate analysis, independent risk factors consisting of radiological findings of small bowel feces 
sign (OR = 0.316), mural thickening (OR = 1.338) and LMR (OR = 0.656) were identified (all P values < 
0.05, Table 2 and Figure 3). For StBO stratification, low levels of lymphocytes (P = 0.038), high levels of 
AST (P = 0.027), longer PTs (P = 0.015), high levels of BUN (P = 0.004) and creatinine (P = 0.022) seemed 
to be related to high PC scores. Finally, we found that only lymphocytes (OR = 0.071) and BUN 
(OR=1.478) were independent risk factors for high PC scores (all P values < 0.05, Table 2 and Figure 3).

Based on the regression coefficient for each factor, we calculated risk scores and built prediction 
models for worse outcomes: RS1 = [0.291 × (bowel wall thickness) - 1.150 × (small bowel feces sign) - 
0.421 × (LMR)] for the SiBO group and RS2 = [-2.632 × (lymphocyte concentration) + 0.391 × (BUN 
concentration)] for the StBO group. Furthermore, receiver operating characteristic curves were drawn 
with areas under the curve of 0.715 (95%CI: 0.635-0.795) and 0.874 (95%CI: 0.762-0.986) for the SiBO and 
StBO stratifications, respectively (Figure 4).

DISCUSSION
Given that approximately 9-11.4 billion dollars are the costs per year in the United States, SBO still 
imposes a substantial burden on the health care system[2]. In contrast to the traditional evaluation 
systems that only focus on a single element[3-6], in this study, the standardized LOS, total hospital cost 
and the presence of SAEs were considered as integrative systems to evaluate the clinical-economic 
outcomes of SBO via PCA[9]. Previous studies have confirmed the close relationship between patients’ 
statuses on admission (including longer pain duration, acute kidney injury and malnutrition) and 
adverse outcomes, which provides a potential target for improving outcomes[3,5,7,11]. Commonly, 
severe statuses, including severe inflammatory reactions, electrolyte disturbances and hemostatic 
abnormalities, tend to occur in strangulated bowel obstruction[22]. Following the formula that assigned 
weights to each component, we determined PC score = 0.429 × LOS + 0.444 × total hospital cost + 0.291 
× SAE; thus, the posttreatment outcome of SBO could be calculated and precisely evaluated (Figure 1).

For people with SiBO, only low LMR is observed, as radiological features (such as a lack of small 
bowel feces signs and mural thickening) were independent risk factors for high PC scores via the 
multivariate analysis. The  area under the curve (AUC) of the predictive model based on the compre-
hensive scores for SiBO was 0.715 (95%CI: 0.635-0.795). As acute intestinal failure accompanies the 
obstructive bowel[26], when mechanical obstruction develops, the bowel lumen dilates along with the 
accumulation of air and intestinal fluid; thus, enteric stasis initiates bacterial proliferation with the 
intestinal gas produced by the fermentation of ingested food[22]. Conversely, when obstruction is 
incomplete or mild, the lasting bowel absorptive function can allow for fluid reabsorption across the 
bowel wall, thus leading to the small bowel feces sign as an independent protective factor for SBO[18,
29]. Furthermore, progressive bowel dilation accompanied by compromised venous reflux increases 
intramural tension, which causes mural edema, secondary intestinal absorptive dysfunction and the loss 
of mucosal integrity (both functionally and physically)[22,30]. Similarly, as a potential effect on 
decreasing mural edema, the use of gastrografin challenge has been identified as the standardized 
management for SBO[31,32]. Moreover, in this study, the LMR was much lower in the high PC group, 
which may be due to the immune system becoming weakened as a result of the underlying 
malnutrition, as well as an excessive compensatory anti-inflammatory response[33-37].
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Table 2 Univariate and multivariate analyses of risk factors for high principal component score

Simple obstruction (n = 236) Strangulated obstruction (n = 45)

Univariate Multivariate Univariate MultivariateCharacteristics

OR (95%CI) P value OR (95%CI) P value OR (95%CI) P value OR (95%CI) P value

Pain duration (d) 1.019 (1.002, 1.041) 0.0481

Small bowel feces sign (+)/(-) 0.424 (0.225, 0.783) 0.0061 0.316 (0.158, 0.612) < 0.0001

Mural thickening (cm) 2.119 (1.084, 4.375) 0.0331 1.338 (1.098, 1.664) 0.0031

Lymphocyte (109/L) 0.097 (0.007, 0.665) 0.0381 0.071 (0.003, 0.539) 0.0331

Monocyte (109/L) 5.472 (1.809, 17.780) 0.0031

LMR (ratio) 0.708 (0.541, 0.891) 0.0061 0.656 (0.496, 0.836) 0.0011

Hb (g/L) 0.983 (0.969, 0.998) 0.0331

PLT (109/L) 1.003 (1.001, 1.007) 0.0361

AST (U/L) 1.075 (1.018, 1.156) 0.0271

Cl (mmol/L) 0.931 (0.871, 0.993) 0.0311

BUN (mmol/L) 1.383 (1.133, 1.786) 0.0041 1.478 (1.169, 2.061) 0.0041

PT (s) 1.568 (1.141, 2.418) 0.0151

APTT (s) 1.109 (0.999, 1.264) 0.076

DDI (mg/L) 1.196 (1.006, 1.513) 0.067

Creatinine (umol/L) 1.034 (1.011, 1.071) 0.0221

1indicates that the parameters have statistical difference (P < 0.05).
SiBO: Simple small bowel obstruction; StBO: Strangulated small bowel obstruction; OR: Odds ratio; CI: Confidence interval; LMR: Lymphocyte to monocyte ratio; Hb: Hemoglobin; PLT: Platelet; AST: Aspartate aminotransferase; Cl: 
Chloride; BUN: Blood urea nitrogen; PT: Prothrombin time; APTT: Activated partial thromboplastin time; DDI: D-dimer.

Once SiBO deteriorated into StBO, the risk factors were dynamically changed. None of the 
radiological characteristics were found to be related to the outcomes. In particular, coagulation and 
fibrinolysis disturbances (including abnormal DDI, PT and APTT), kidney injury (such as increasing 
BUN and creatinine levels) and relevant lymphocytes were confirmed as being risk factors. Finally, only 
BUN and lower lymphocyte counts were identified as being independent risk factors for high PC. 
Partially due to the impaired mucosal barriers[22,38], lactic acid from intestinal anaerobic glycolysis 
gradually accumulates, which adversely deteriorates renal function with increasing levels of BUN in the 
peripheral blood[39]. Similarly, it is difficult to correct conventional enteral interventions and intestinal 
mucosal malnutrition due to the weakened immune status[33,40], which may explain why a lower level 
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Figure 3 Receiver operating characteristic curve for high principal component score prediction. The areas under the curve were 0.715 (95%CI: 
0.635-0.795), 0.874 (95%CI: 0.762-0.986), respectively. A: Receiver operating characteristic curve of simple small bowel obstruction group for high principal 
component score prediction. B: Receiver operating characteristic curve of strangulated small bowel obstruction group for high principal component score prediction. 
ROC: Receiver operating characteristic.

Figure 4 Proposal early clinical intensive care for small bowel obstruction patients on admission. SBO: Small bowel obstruction; SiBO: simple 
small bowel obstruction; StBO: Strangulated small bowel obstruction; LMR: Lymphocyte to monocyte ratio; BUN: Blood urea nitrogen.

of lymphocytes is a risk factor for poorer outcomes. The predictive model for StBO yielded an AUC of 
0.874 (95%CI: 0.762-0.986), which provided an excellent differentiating ability.

There were a few limitations to the present study. Primarily, this was a retrospective study conducted 
in a single center. In addition, the sample size of the initial models was relatively small. However, in 
both group (SiBO or StBO) the patients evaluated were consecutively enrolled and this could reproduce 
a real-world situation. Adequately powered and well-designed studies are required to confirm these 
findings and to establish causality.
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CONCLUSION
The novel PC indicator provided a comprehensive scoring system for evaluating SBO outcomes on the 
foundation of complication-cost burden. According to the relative risk factors, early tailored 
intervention would improve the short-term outcomes.

ARTICLE HIGHLIGHTS
Research background
Small bowel obstruction (SBO) still imposes a substantial burden on the health care system. Traditional 
evaluation systems for SBO outcomes only focus on a single element. There is still lack of an integrative 
medical-economic system to evaluate the overall outcomes for SBO. Moreover, patients’ statuses on 
admission, including longer pain duration, acute kidney injury and malnutrition, were found to be 
closely correlated with severe adverse events (SAEs). However, the risk factors for the integrative 
scoring system, including clinical and economic adverse events, have not been extensively evaluated.

Research motivation
SBO still imposes a substantial burden on the health care system. Traditional evaluation systems for 
SBO outcomes only focus on a single element. The comprehensive evaluation of outcomes for patients 
with SBO remains poorly studied. Early intensive clinical care would effectively improve the short-term 
outcomes for SBO, however, the full spectrum of the potential risk status regarding the high 
complication-cost burden is undetermined.

Research objectives
In this study, we aim to construct a novel indicator combining standardized SAEs, length of stay (LOS) 
and total hospital cost for defining outcomes of SBO. Furthermore, we established a representative 
model for distinguishing high-risk statuses on admission for the simple SBO (SiBO) or strangulated SBO 
(StBO) groups. Given that SBO still imposes a substantial burden on the health care system, we believe 
our findings will provide a new insight for comprehensively evaluation outcomes of SBO as well as a 
guideline for early intervention.

Research methods
In this study, we evaluated posttreatment outcomes of SBO both clinically and economically. Principal 
component analysis (PCA) was used to achieve data simplification by expressing multivariate outcome 
indicators with fewer dimensions. By summarizing and maximizing the information encoding in 
standardized LOS, total hospital cost and the presence of SAEs, a novel principal component was 
extracted: PC score = 0.429 × LOS + 0.444 × total hospital cost + 0.291 × SAE. Furthermore, the patient 
population was classified in the following manner according to the quartile PC score: The low PC score 
group (below the 75% quartile) and the high PC score group (in the upper 75% quartile).

Research results
In this study, a novel outcome indicator based on the standardized LOS, total hospital cost and the 
presence of SAEs provided a comprehensive system for evaluating SBO outcomes (PC score = 0.429 × 
LOS + 0.444 × total hospital cost + 0.291 × SAE). Furthermore, risk statuses associated with poor results 
were identified; specifically, for SiBO patients, a low LMR, as well as radiological features of a lack of 
small bowel feces signs and mural thickening, should be noticeable. For the StBO group, higher blood 
urea nitrogen levels and lower lymphocytes levels were recognized. Accordingly, early clinical intensive 
care was applicable for outcome improvement. In the future, adequately powered and well-designed 
studies are required to confirm these findings and to establish causality.

Research conclusions
In this study, PCA was innovatively used for dimension reduction, linear correlation resolution and 
data simplification. Furthermore, a novel comprehensive system for the evaluation of SBO outcomes 
was constructed and the potential risk status associated with poor results were identified.

Research perspectives
Large-scale and prospective studies are going to be designed to confirm these findings and to establish 
causality.
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Abstract
BACKGROUND 
The intestinal microcirculation functions in food absorption and metabolic 
substance exchanges. Accumulating evidence indicates that intestinal microcircu-
latory dysfunction is a significant source of multiple gastrointestinal diseases. To 
date, there has not been a scientometric analysis of intestinal microcirculatory 
research.

AIM 
To investigate the current status, development trends, and frontiers of intestinal 
microcirculatory research based on bibliometric analysis.

METHODS 
VOSviewer and CiteSpace 6.1.R2 were used to identify the overall characteristics 
and knowledge map of intestinal microcirculatory research based on the core 
literature published from 2000 to 2021 in the Web of Science database. The charac-
teristics of each article, country of origin, institution, journal, cocitations, and 
other information were analyzed and visualized.

RESULTS 
There were 1364 publications enrolled in the bibliometric analysis, exhibiting an 
upward trend from 2000 to 2021 with increased participation worldwide. The 
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United States and Dalhousie University took the lead among countries and institutions, 
respectively. Shock was the most prolific journal, and Nature Reviews Microbiology Clinical had the 
most citations. The topical hotspots and frontiers in intestinal microcirculatory research were 
centered on the pathological processes of functional impairment of intestinal microvessels, diverse 
intestinal illnesses, and clinical treatment.

CONCLUSION 
Our study highlights insights into trends of the published research on the intestinal microcircu-
lation and offers serviceable guidance to researchers by summarizing the prolific areas in intestinal 
disease research to date.

Key Words: Intestinal microcirculation; Bibliometric analysis; CiteSpace; VOSviewer; Visualization

©The Author(s) 2023. Published by Baishideng Publishing Group Inc. All rights reserved.

Core Tip: This bibliometric analysis of the research directions and important literature related to the 
intestinal microcirculation over the last 22 years documents the current status, development trends, and 
frontiers of intestinal microcirculatory research and provides information that may guide future research 
efforts.
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INTRODUCTION
The intestines function in food absorption and metabolic substance exchange. Approximately 20%-25% 
of cardiac output is directed toward the digestive tract under physiological conditions. Among them, 
about 60%-80% flow to the submucosal and mucosal layers[1], providing the highly metabolically active 
epithelial, immune with nutrients and oxygen. Intestinal microvessels and lymph capillaries serve as an 
integrated system (so-called intestinal microcirculation) providing multiple bidirectional transport 
processes while defending the lumen against the threat of chemicals and bacteria. The intestinal 
microcirculation regulates a variety of metabolic and physiological processes involved in diseases such 
as shock, sepsis[2,3], gastrointestinal diseases[4], and diabetes mellitus[5].

Recent studies have shown that intestinal microcirculatory dysfunction is characterized by nutritive 
perfusion failure, inflammatory cell responses, surges in proinflammatory mediators, and breakdown of 
epithelial barrier function, as well as bacterial translocation and the development of systemic inflam-
matory responses[6-8]. Notably, there is widespread consensus that ischemic injury and severe microcir-
culatory dysfunction in the highly vascularized gut are significant sources of multiple organ 
dysfunction and even death[9,10]. Moreover, the intestinal microcirculation behaves as an isolated area 
in patients with postoperative abdominal sepsis[11], suggesting that the intestinal microcirculation does 
not always correlate with systemic hemodynamic variables (for example, blood pressure)[12] in 
gastrointestinal diseases. Therefore, it is rational to have a comprehensive scenario that depicting the 
functional status of intestinal microcirculation in discussing the specific issues. However, there have 
been few attempts to systematically assess the scientific findings and current networks in this field from 
a worldwide perspective.

Bibliometrics analyzes the quantitative relationships, distribution structure, and cocitation patterns of 
publications using mathematical and statistical methods, revealing the disciplinary development 
direction and research dynamics of related fields and illustrating the key paths and knowledge nodes of 
disciplinary field evolution[13]. This study provided a bibliometric analysis of the research process and 
important literature related to the intestinal microcirculation over the last 22 years to provide 
information for future research on the intestinal microcirculation.

https://www.wjgnet.com/1007-9327/full/v29/i9/1523.htm
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Figure 1 The flow chart for the search and selection strategy of the study.

MATERIALS AND METHODS
Search strategies
The literature data for this study were retrieved from Clarivate Analytics’ Web of Science Core 
Collection (WOSCC). The key topic for retrieval was TS = (intestinal microcirculation) OR (intestinal 
microvascular*). The timespan was limited from January 1, 2000 to December 31, 2021. The data were 
obtained within one day to avoid any potential discrepancies due to daily updates of the database. Only 
English-language original articles and reviews were selected. Consequently, a total of 1364 publications, 
comprising 1192 articles and 172 reviews, were retrieved, and each literature record included relevant 
information such as title, author, keywords, abstract, year, organization, and citation. A summary of the 
search and selection methodology for the study can be found in Figure 1.

Data analysis and visualization
In this current study, CiteSpace 6.1.R2 (https://citespace.podia.com) was adopted to map cooperation 
networks (institutions) and document cocitation clustering, and keyword clustering. The set of 
parameters was as follows: The time slice was set to one year for articles published from 2000 to 2021, 
and the node types were “institution”, “reference”, and “keyword”, with a g-index k value of 25. 
Different parameters were set following different node types, and the visualization map was drawn.

VOSviewer (1.6.18) (www.vosviewer.com) was used to identify and illustrate the co-occurring 
countries/regions, cocitation analysis of journals and references, and analysis of keyword co-
occurrence. The screening condition and thresholds were as follows: The counting method was set as 
“Full counting” with a minimum number of 5 and a maximum of 1000 items.

RESULTS
Characteristics and trends of publications
The annual publication trend reflects the development level of intestinal microcirculatory research[14]. 
From 2000 to 2021, a total of 1364 intestinal microcirculation-related articles met the retrieval standard. 
Subsequently, we illustrated the article counts per year with a histogram. According to Figure 2, the 
annual number of relevant publications was rather consistent, with a mean of 65 publications, indicating 
sustained attention from 2000-2021. Although articles accounted for most of the literature, there was a 
considerable increase in reviews from 2019-2021, indicating a growing interest in the intestinal microcir-
culation.

Contributions by countries/regions and institutions
The number of papers published by research groups according to country/region and institution can 
reflect the distribution of research forces in the field of intestinal microcirculatory research. In Table 1, 
the top 10 countries and institutions were ranked based on the number of publications related to the 
intestinal microcirculation. With 420 publications accounting for 30.79% of the total, the United States 
was the top-producing nation, followed by Germany (231, 16.94%) and China (164, 12.02%). The co-
occurrence map demonstrated that the United States attached great importance to cooperation and 
worked closely with Germany, England, Canada, and other European countries (Figure 3). In addition, 

https://citespace.podia.com
http://www.vosviewer.com


Fu SJ et al. 22 years of intestinal microcirculation

WJG https://www.wjgnet.com 1526 March 7, 2023 Volume 29 Issue 9

Table 1 The top 10 countries and institutions contributed to publications on intestinal microcirculation

Rank Country Count Institution Count

1 United States 420 Dalhousie Univ 41

2 Germany 231 Univ Szeged 35

3 China 164 Univ Amsterdam 33

4 Japan 113 Louisiana State Univ 31

5 England 77 Med Coll Wisconsin 29

6 Canada 69 Univ Louisville 29

7 Italy 67 Univ Munster 23

8 Netherlands 63 Univ Sao Paulo 23

9 France 51 China Agr Univ 20

10 Sweden 47 Lund Univ 20

Table 2 The top 10 journals and cited journals of intestinal microcirculation research

Rank Journal Count Cited-journal Count

1 Shock 53 Nature Reviews Microbiology 2930

2 Journal of Surgical Research 37 Clinical Microbiology Reviews 1533

3 World Journal of Gastroenterology 36 Journal of Pathology 1520

4 American Journal of Physiology-Gastrointestinal and Liver 
Physiology

34 Critical Care Medicine 1499

5 Critical Care Medicine 34 Gastroenterology 1372

6 Clinical Hemorheology and Microcirculation 27 American Journal of Physiology-Gastrointestinal and Liver 
Physiology

1175

7 Microcirculation 20 World Journal of Gastroenterology 1126

8 Microvascular Research 95 Science 968

9 Plos One 73 Shock 965

10 American Journal of Physiology-Heart and Circulatory Physiology 70 Journal of Immunology 937

colleges and universities were the major sources of intestinal microcirculatory research. Dalhousie 
University was identified as the most productive scientific institution, with the most papers (41), 
followed by the University of Szeged (35) and the University of Amsterdam (33). These findings 
highlighted useful information on prominent research teams and established collaborative ties.

Analysis of journals and cited journals
Table 2 lists the top 10 most prolific journals and most-cited journals. Shock (53) published the most 
papers about the intestinal microcirculation, followed by the Journal of Pathology (37), and the World 
Journal of Gastroenterology (36). Nature Reviews Microbiology had the highest number of local citations 
(2930 local citations) in the field, Clinical Microbiology Reviews was the second-cited journal (1533 local 
citations) and the Journal of Pathology (1520 local citations) was the third. Additionally, a dual-map 
overlay of journals with four colored pathways was established to reflect the disciplinary distribution of 
academic journals (Figure 4). Most clusters of citing and cited journals are located in medicine, clinical, 
molecular, biology, and immunology.

Analysis of co-cited references
The landmark literature and the rapid development of this field can be clarified through the cocitation 
analysis of relevant publications[15]. We then established the co-cited reference network map 
(Figure 5A), and through cluster analysis, similar references were categorized into knowledge units 
(Figure 5B). Additionally, the modularity value (Q value) and the mean silhouette value (S value) were 
used to evaluate the effect of the literature cocitation mapping.

With more than 5000 references cited in the last 22 years, the top 10 most cited articles about the 
intestinal microcirculation are listed in Table 3. (Binion DG, 1997), which had a citation count of 65, was 
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Table 3 Top 10 highly cited publications in intestinal microcirculation

Rank Title Citations Journal First author Published 
year

1 Enhanced Leukocyte Binding by Intestinal Microvascular 
Endothelial Cells in Inflammatory Bowel Disease 

65 Gastroenterology David G. 
Binion 

1997

2 Intestinal mucosal lesion in low-flow states 62 Archives of Surgery Chu-Jeng Chiu 1970

3 The microcirculation is the motor of sepsis 49 Critical care Can Ince 2005

4 Microvascular Blood Flow Is Altered in Patients with Sepsis 46 American Journal of Respiratory and 
Critical Care Medicine

Daniel De 
Backer 

2002

5 How to evaluate the microcirculation: report of a round table 
conference

45 Critical care Daniel De 
Backer 

2007

6 Preparation of rat intestinal muscle and mucosa for quantitative 
microcirculatory studies

43 Microcirculation research H.Glenn 
Bohlen

1976

7 Persistent microcirculatory alterations are associated with organ 
failure and death in patients with septic shock 

42 Critical care medicine Yasser Sakr 2004

8 Microcirculatory oxygenation and shunting in sepsis and shock 34 Critical care medicine Can Ince 1999

9 Angiogenesis as a Novel Component of Inflammatory Bowel 
Disease Pathogenesis 

32 Gastroenterology Silvio Danese 2006

10 Ischemia–Reperfusion Injury of the Intestine and Protective 
Strategies Against Injury 

32 Digestive Diseases and Sciences Ismail Hameed 
Mallick 

2004

Table 4 Top 10 keywords in terms of frequency

Rank Frequency Centrality Keywords

1 136 0.05 Expression

2 136 0.04 Nitric oxide

3 134 0.06 Blood flow

4 109 0.05 Rat

5 106 0.03 Injury

6 100 0.04 Microvascular endothelial cell

7 100 0.08 Inflammatory bowel disease

8 92 0.06 Microcirculation

9 85 0.08 Sepsis

10 85 0.05 Septic shock

the top-ranked article. (Chiu CJ, 1970), with 62 citations, and (Ince C, 2005), with 49 citations, followed. 
Moreover, 9 clusters were identified for mitochondrial respiration, sepsis, tissue oxygen tension, 
ischemia-reperfusion injury, hemorrhagic shock, endothelium, adenosine 5-triphosphate, gut, and no-
reflow. The Q value of the clustering map was 0.9342, and the S value was 0.9579, confirming that the 
structured network was well mapped and that the clustering results were effective and reliable.

Analysis of keywords
Keywords refer to a high-level overview and refinement of the study topic and article content[16]. In 
terms of frequency, the top 10 keywords in the intestinal microcirculatory research from 2000 to 2021 
were determined by creating a graphical map of keyword co-occurrence (Figure 6A and Table 4). The 
top keywords were “expression”, “nitric oxide”, “blood flow”, “rat”, “injury”, “microvascular 
endothelial cell”, “inflammatory bowel disease”, “microcirculation”, “sepsis” and “sepsis shock”. 
Clustering analysis was carried out based on the above results and the following 10 clusters were 
identified (Figure 6B), which represented the key research areas. Specifically, the clusters “nitric oxide”, 
“Shiga toxin” and “alkaline phosphatase” explored the mechanisms and pathological basis of damage to 
the intestinal microcirculation; the clusters “septic shock” and “inflammatory bowel disease” were 
diseases related to the intestinal microcirculation; the cluster “intravital microscopy” represented an 
effective measurement technique; and the clusters “cytokine therapy” and “negative pressure wound 
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Figure 2 Distribution of articles published in the intestinal microcirculatory research from 2000 to 2021. The chart showed trends in annual 
publishing during the previous 22 years. Purple bars represent the number of articles related to intestinal microcirculation per year, while green bars represent the 
number of reviews.

Figure 3 The network of countries/regions engaged in the intestinal microcirculatory research. The collaborations were generated after a 
minimum of five publications per country. Of the 62 countries active in this field, 32 countries meet this criterion. The size of the node represents the number of posts, 
and the links between the nodes represent the connection or cooperation between the countries. The transition from blue to yellow in the color bar depicts the years 
2000 to 2021.

therapy” involve effective and reliable countermeasures for intestinal microcirculatory dysfunction.
Burst keywords also highlight hotspots and developing trends; hence, the detection of keywords with 

the fastest increase in citations (citation bursts) denotes the emerging focus in dynamic domains[17]. 
Our analysis revealed the top 25 keywords for the strongest citation bursts from 2000 to 2021 (Figure 7). 
Among them, the highest burst strength (10.34) was found for “multiple organ failure” since 2000, and 
also the longest-lasting burst term was “endothelial growth factor” (2007-2019). From 2000 to 2005, the 
mechanism tended to be more actively researched based on the main keywords “neutrophil”, 
“adhesion”, “free radical”, and “platelet-activating factor”. Since 2006, researchers have begun to 
investigate the potential correlation between clinical gut illnesses and microcirculation, with the main 



Fu SJ et al. 22 years of intestinal microcirculation

WJG https://www.wjgnet.com 1529 March 7, 2023 Volume 29 Issue 9

Figure 4 The dual-map overlay of journals in the intestinal microcirculatory research. The left panel shows the map of citing journals while the right panel represents the map of the cited journals. The labels represent the scientific 
subject covered by the journals. Colored paths indicate the citation relationships, with the thicker lines representing the main pathways.

keywords being “ulcerative colitis”, “Crohn's disease”, and “necrotizing enterocolitis”. In addition, the 
keyword for the most recent burst was “gut microbiota” (2019), suggesting it has been in the spotlight 
so far.

DISCUSSION
This study performed a scientometric analysis of publications on the intestinal microcirculation 
published from 2000 to 2021 using CiteSpace and VOSviewer. The findings provided insight into recent 
developments in global research collaborations, the most active journals, the core research areas, and 
emerging research areas.
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Figure 5 The network map of co-cited references in the intestinal microcirculatory research. A: The network map of co-cited references. Nodes in the visualized network represent co-cited references and lines between nodes 
represent co-cited links; B: The network map of co-cited clusters. 9 clusters with diversified research themes were formed and illustrated in different colors. Silhouette = 0.9828. Modularity Q = 0.9342.

In total, 1364 publications about the intestinal microcirculation were extracted from WOSCC. 
Although the trend of annual publications from 2000 to 2021 reflected the continued interest of scholars 
in intestinal microcirculatory research, in comparison to research on the microcirculation of other tissues 
and organs, the annual number of papers on the intestinal microcirculation is relatively low, which may 
be associated with the technical and clinical challenges involved in the research. The United States and 
Germany are thriving hubs of intestinal microcirculatory research due to increased collaborations and 
strengthened citation links between several European countries, suggesting that a strong level of collab-
oration promotes academic influence.

Notably, journals focusing on clinical practice and published reviews and articles on the crucial role 
of the intestinal microcirculation in the progression of gastrointestinal diseases. Additionally, a dual-
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Figure 6 The network map of keywords in the intestinal microcirculatory research. A: The co-occurrence map of keywords in the intestinal microcirculatory research. The graphical mapping of terms was created when setting the 
minimum number of keyword occurrences to 5. Of the 6607 keywords in the field, 572 reached this threshold. Each node represents a keyword, and the sizes of the node denote the number of occurrences of the keywords map. The transition from blue 
to yellow in the color bar depicts the years 2000 to 2021; B: The clustering map of keywords in the intestinal microcirculatory research. 10 clusters with diversified themes were formed and illustrated in different colors. Colors represent clusters of the 
close-working network. Silhouette = 0.3238. Modularity Q = 0.6912.

map overlay of journals demonstrated that the research was focused on basic and clinical medicine, 
thus, multidisciplinary efforts are needed to support the development of the intestinal microcirculatory 
field. Co-cited references revealed that (Binion DG, 1997), with the highest frequency of citations, was a 
representative reference that laid the foundation for intestinal microcirculatory mechanisms in inflam-
matory bowel disease. Other landmark publications such as (Ince C, 2005) and (Daniel DB, 2002), 
outlined mechanisms of interaction between sepsis and microcirculation. In addition, (Daniel DB, 2007) 
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Figure 7 Top 25 keywords with the strongest citation bursts. Keywords bursts identify as indicators of emerging trends in the intestinal microcirculatory 
field to a published article. In the burst detection, “begin” represented the year the reference began to have a citation burst, and “end” represented the year ended the 
citation burst. The red line is the time of duration and the “strength” is the intensity of the citation burst.

reported the results of a roundtable organized in Amsterdam, reaching a formal consensus on the 
acquisition and analysis of microcirculatory images. These references provided a solid theoretical 
foundation for future research.

Based on the analysis of keywords, we sought to identify research interests and focus related to the 
intestinal microcirculation. Keywords revealed by the co-occurrence map were classified into two 
categories: Pathophysiology-related research and clinical disease-related research, which is also 
consistent with the clustering of the cocitation references. The keywords “expression”, “blood flow”, 
“microvascular endothelial cell” and “nitric oxide” were associated with the pathophysiology of the 
intestinal microcirculation. Endothelial cell activation, hemorheological alterations, and altered vasore-
activity were just a few examples of functional and structural modifications[18-20]. Additionally, 
pathological situations significantly disrupted the nitric oxide (NO) system, which is essential to the 
autoregulatory control of microcirculatory patency and could result in pathological flow shunting. 
These conspicuous keywords indicated that further research on microcirculatory mechanisms is needed.

Previous research has revealed that intestinal microcirculatory dysfunction can occur early in patients 
with shock and sepsis[21]. Necrotizing enterocolitis and inflammatory bowel disease are included as 
examples resulting from the pathologic changes in the intestinal microcirculation[22]. Several studies 
have shown that microvascular remodeling and angiogenesis, vasodilatation microvascular dys-
function, and infiltration of immune cells play a role in the pathogenesis of inflammatory bowel disease 
and necrotizing enterocolitis[23-25]. Additionally, the imbalance among vascular mediators such as NO, 
catecholamines, and endothelin regulates neonatal intestinal vascular resistance and may influence the 
pathophysiology of these gut diseases[26,27]. Thus, the intestinal microcirculation as a new therapeutic 
target offers possibilities for treating these diseases.

Largely ignored throughout history, the intestinal microcirculation has recently been identified as the 
center of various pathophysiological processes. The determinants of oxygen delivery, tissue oxygen 
tension, blood flow regulation, and mitochondrial well-being have yet to be fully understood. The origin 
of intestinal microcirculatory failure in necrotizing enterocolitis and inflammatory bowel disease that is 
not responsive to therapy is represented by the dysfunction of the integrated intestinal microcirculation 
rather than systemic hemodynamic variables. Therefore, a new area of outcomes and the potential for 
discovering novel therapeutic targets has been made possible by introducing improved tools into 
clinical practice that permit the examination of integrated intestinal microcirculation. Small-molecule 
drugs (melatonin[28], L-citrulline[29], heparin[30], and potential vasoactive Chinese traditional 
medicines such as Weiqi decoction[31]), as well as novel therapeutic approaches such as remote 
ischemic conditioning[32] are recommended. Furthermore, research that determines whether these 
medicines are effective at enhancing the outcome of patients by ameliorating the intestinal microcircu-
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lation should be investigated in the future.
However, our study also has certain limitations. First, this analysis was restricted to English papers in 

the WOSCC database which may contain fewer established articles than other databases, future research 
may consider embedding expanded literature databases, such as Scopus. Second, non-English literature 
was not included in the database or analysis, possibly resulting in linguistic source bias. Finally, biblio-
metric data that change over time might lead to a different conclusion. In an updated analysis, it will be 
necessary to follow the most recent primary studies and non-English investigations dynamically.

CONCLUSION
The intestinal microcirculation has important academic value and clinical application prospects in 
health and diseases. We illustrated the global developing trends, influential articles, thematic keywords, 
and research frontiers from 2000 to 2021 in this field. In coauthorship analyses, the patterns of scientific 
cooperation were found across countries/regions, institutions, and journals. Moreover, the current state 
and potential future directions were detected by the reference cocitation analysis, burst references, and 
keyword identification. We now have a deeper grasp of the pathophysiologic mechanisms underlying 
the intestinal microcirculation, and optimal diagnosis, prognosis assessment, and clinical therapies are 
the features and trends of the field. Multidisciplinary collaborations will be critical to advancing 
intestinal microcirculatory research.

ARTICLE HIGHLIGHTS
Research background
The intestinal microcirculation plays an important role in food absorption and metabolic substance 
exchange. And it is beneficial to comprehensively describe the progress of intestinal microcirculation 
research and provide information that may guide future research efforts.

Research motivation
Few attempts have been made to systematically assess scientific findings and current networks in the 
field of intestinal microcirculation. It is difficult to identify potential research hotspots or emerging 
research frontiers.

Research objectives
To investigate the research status, development trend, and frontier dynamics of intestinal microcircu-
lation in the past 22 years (2000-2021).

Research methods
Based on the core literature published in the Web of Science database from 2000-2021, VOSviewer and 
CiteSpace 6.1.R2 were used to analyze and visualize the overall characteristics, source countries, 
institutions, journals, and citation frequencies of intestinal microcirculatory research.

Research results
A total of 1364 publications were included in the bibliometric analysis, showing an upward trend from 
2000 to 2021. The United States and Dalhousie University ranked first among all countries and 
institutions. Most of the publications were released in Shock, and the most cited journal was Nature 
Reviews Microbiology Clinical. The topical hotspots and frontiers of intestinal microcirculation focused 
on the pathological processes of functional impairment on intestinal micro-vessels, diverse intestinal 
illnesses, and clinical treatment.

Research conclusions
Our study reveals research trends in the field of intestinal microcirculation and offers serviceable 
guidance to researchers by providing the prolific areas for intestinal disease research to date.

Research perspectives
Our analysis systematically assesses the scientific findings and current networks in this study of 
intestinal microcirculation from a worldwide perspective. Optimization of diagnosis, prognostic 
assessment, and clinical treatment are features and trends in this field. Multidisciplinary collaboration is 
essential to facilitate intestinal microcirculation research.
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Core Tip: Inflammatory bowel disease (IBD) patients recommended for anti-tumor 
necrosis factor (anti-TNF) therapy need to be tested for latent tuberculosis (TB) prior to 
treatment. Azathioprine monotherapy is also an independent risk factor for active TB in 
patients with IBD. However, the recommendations of the Brazilian Public Health 
Guideline for Tuberculosis Prevention do not include patients who are receiving 
immunosuppressive therapy in the risk group for screening for latent TB. We evaluated 
301 patients with IBD, and the use of azathioprine treatment increased the risk by 6.87-
fold compared to patients without this treatment. The use of anti-TNF therapy had a 
10.34-fold increased risk of TB, and the combination of both increased the risk by 
17.81-fold.
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TO THE EDITOR
It is known that immunosuppression increases the risk of tuberculosis, especially in countries with a 
high frequency of active tuberculosis. We read with interest the article published by Fortes et al[1], who 
performed a retrospective cohort study among Inflammatory bowel disease (IBD) patients at a reference 
center in Brazil, which is a country with a moderate incidence of TB. A total of 301 IBD patients were 
evaluated; 61.8% had ulcerative colitis, and 38.2% had Crohn's disease. Twenty-seven (9.0%) patients 
received anti-tumor necrosis factor (anti-TNFα) as a monotherapy, 31 (10.3%) patients received anti-TNF
α associated with azathioprine, 3 (1.0%) patients received anti-TNFα treatment associated with 
methotrexate, and 70 (23.3%) patients received only azathioprine. The use of azathioprine treatment 
increased the risk by 6.87-fold in comparison to patients without this treatment. The use of anti-TNF 
therapy showed a 10.34-fold increased risk of TB in this sample, and the association of both increased 
the risk to 17.81.

Advances in the treatment of IBD have been adopted worldwide. Some post marketing adverse 
events have been reported, including active tuberculosis (TB) during anti-TNF therapy. It has already 
been established that the incidence of active TB in this scenario is associated with the TB burden in the 
geographic region of the study. Brazil is one of the 20 countries in which TB presents a high incidence 
along with countries from Africa and Asia[2].

IBD patients with a recommendation for anti-TNF therapy need to test for latent TB before treatment. 
The TNF alpha blocking mechanism, which is critical in stabilizing granulomas during TB infection, 
would explain this increase in risk. An unanswered question is whether azathioprine in monotherapy is 
an independent risk factor for active TB in IBD patients[1,3]. A case report published by van 
Wijngaarden et al[4] already drew attention to the development of pleural tuberculosis in a patient with 
Crohn’s disease while receiving azathioprine as the sole immunosuppressive treatment.

Considering that transplant recipients need substantial immunosuppression and azathioprine is one 
of the drugs used, studies among transplant recipients receiving immunosuppressive therapy helped 
guide physicians in the care of IBD patients. A Spanish group evaluated the risk factors for active TB 
after lung transplantation and concluded that the use of azathioprine was identified as an independent 
risk factor[5].

The recommendations of the Brazilian Public Health Guideline for Tuberculosis Prevention, reviewed 
in 2020, did not include patients receiving immunosuppressive therapy in the risk group for screening 
of latent TB[6]. However, consensus from endemic countries suggests investigation and treatment of 
latent TB before starting immunosuppressive therapy[7-9].

These findings suggest that in areas with a high burden of TB, the use of thiopurines is an 
independent risk factor for active TB in IBD patients. This evidence needs to be considered when using 
this therapy for these patients, especially those from countries with a high TB burden. We suggest 
giving attention to and treating patients with latent tuberculosis and guiding prevention with possible 
contacts with active tuberculosis. New studies reporting the risk of active TB among IBD patients 
receiving immunosuppressive therapy from countries with different incidence rates of TB are needed.
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