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Abstract
Tumor necrosis factor-α (TNF-α) antagonists, the first biologics approved for 
treating patients with inflammatory bowel disease (IBD), are effective for the 
induction and maintenance of remission and significantly improving prognosis. 
However, up to one-third of treated patients show primary nonresponse (PNR) to 
anti-TNF-α therapies, and 23%-50% of IBD patients experience loss of response 
(LOR) to these biologics during subsequent treatment. There is still no recognized 
predictor for evaluating the efficacy of anti-TNF drugs. This review summarizes 
the existing predictors of PNR and LOR to anti-TNF in IBD patients. Most 
predictors remain controversial, and only previous surgical history, disease mani-
festations, drug concentrations, antidrug antibodies, serum albumin, some 
biologic markers, and some genetic markers may be potentially predictive. In 
addition, we also discuss the next steps of treatment for patients with PNR or 
LOR to TNF antagonists. Therapeutic drug monitoring plays an important role in 
treatment selection. Dose escalation, combination therapy, switching to a different 
anti-TNF drug, or switching to a biologic with a different mechanism of action can 
be selected based on the concentration of the drug and/or antidrug antibodies.

Key Words: Predictor; Management; Tumor necrosis factor antagonist; Primary 
nonresponse; Secondary nonresponse; Inflammatory bowel disease
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Core Tip: Tumor necrosis factor-α (TNF-α) antagonists play an essential role in the management of inflammatory bowel 
disease (IBD). However, a significant number of patients experience primary or secondary nonresponse to these drugs. Here, 
we summarize relevant predictors of anti-TNF nonresponse in IBD and discuss the next steps for treating patients with 
primary or secondary nonresponse to anti-TNF agents.

Citation: Wang LF, Chen PR, He SK, Duan SH, Zhang Y. Predictors and optimal management of tumor necrosis factor antagonist 
nonresponse in inflammatory bowel disease: A literature review. World J Gastroenterol 2023; 29(29): 4481-4498
URL: https://www.wjgnet.com/1007-9327/full/v29/i29/4481.htm
DOI: https://dx.doi.org/10.3748/wjg.v29.i29.4481

INTRODUCTION
Inflammatory bowel disease (IBD), an immune-mediated inflammation of the gastrointestinal tract characterized by 
repeated remission and relapse, comprises Crohn's disease (CD) and ulcerative colitis (UC). Traditionally, IBD has been 
considered a disease of the Western world, but the newly industrialized countries of Asia, Africa, and South America are 
experiencing a rapid increase in incidence[1-3]; therefore, IBD has become a global disease[4,5].

IBD is a lifelong disease and is incurable. Currently, medical therapy for IBD mainly includes traditional therapeutics 
such as 5-aminosalicylates, thiopurines, and steroids, biologics such as antitumor necrosis factor (anti-TNF) therapy, 
vedolizumab and ustekinumab, and novel small-molecule drugs such as Janus kinase (JAK) inhibitors.

Anti-TNF therapies, the first biologics approved for the treatment of patients with IBD, are effective for the induction 
and maintenance of remission and significantly improve prognosis[6-8]. The development of anti-TNF therapies revolu-
tionized the treatment of IBD and was a landmark event. Anti-TNF drugs are still the most commonly used biological 
agents in IBD at present[6]. Four TNF antagonists have been used in the treatment of IBD: infliximab, adalimumab, certol-
izumab, and golimumab[9]. However, up to one-third of treated patients show no primary response to anti-TNF-α 
therapies[10], and 23%-50% of IBD patients experience loss of response (LOR) to these biologics during subsequent 
treatment[11,12]. These patients not only fail to benefit from anti-TNF therapies but also suffer from the side effects of 
anti-TNF drugs, including increased susceptibility to infection, autoimmune diseases, and malignant tumors[13,14]. In 
addition, they face a serious financial burden. A retrospective study reported that direct healthcare expenditures 
increased significantly after the initiation of anti-TNF therapy and remained higher than preinitiation costs for up to 5 
years[15].

Hence, it is important to assess the therapeutic response to anti-TNF agents in IBD before initiating treatment. In this 
review, we conducted a comprehensive search of studies to summarize relevant predictors of anti-TNF nonresponse in 
IBD and discuss the next steps of treatment for patients with primary or secondary nonresponse (SNR) to anti-TNF 
agents.

LITERATURE SEARCH STRATEGY
We conducted a search on PubMed and Web of Science. Keywords used include “inflammatory bowel disease”, “Crohn's 
disease”, “Ulcerative colitis”, “Tumor necrosis factor antagonists”, “anti-TNF”, “infliximab”, “adalimumab”, “certol-
izumab”, “golimumab”, “primary nonresponse”, “secondary nonresponse”, and “loss of response”. This review included 
articles, reviews and guidelines that investigated predictors of failure of TNF antagonists in IBD or optimized treatment 
(Supplementary Figure 1).

DEFINITION
Primary nonresponse
There is no consensus on the definition of primary nonresponse (PNR) in IBD patients as definitions vary across studies. 
Papamichael et al[11] defined PNR as a lack of objectively assessed improvement in baseline inflammatory signs after 
induction treatment in the presence of adequate concentrations of the drug and in the absence of antidrug antibodies 
(ADAs). In a cohort study, PNR was classified as treatment failure or use of corticosteroids (new prescription or previous 
dose not discontinued) or failure to reduce C-reactive protein (CRP) to 3 mg/L or less or to decrease by 50% or more from 
baseline and failure to decrease Harvey-Bradshaw Index score to 4 or less or by 3 or more from baseline before week 14
[16]. In general, PNR refers to the absence of improvement in clinical symptoms or objective measures during the 
induction phase[17-19]. The incidence of PNR has been reported to range from 13%-40%[7,20,21].

Secondary nonresponse
SNR, also named LOR, describes the clinical phenomenon of patients who have an initial response to biologics but then 
subsequently lose this response[22]. Notably, the two features of the SNR are that the patient's symptoms improved 

https://www.wjgnet.com/1007-9327/full/v29/i29/4481.htm
https://dx.doi.org/10.3748/wjg.v29.i29.4481
https://f6publishing.blob.core.windows.net/6d87049e-b818-4ef7-bb3d-174428efde07/WJG-29-4481-supplementary-material.pdf
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during the initial treatment and that the recurrence of symptoms can only be due to the inflammatory response of IBD 
and not due to concurrent infection, fibrous stenosis, etc.[23]. SNR eventually occurs in 20%-50% of patients[12,24,25]. A 
recent meta-analysis found that the mean percentages of patients with SNR to infliximab, adalimumab, and certolizumab 
were 37.8%, 35.4%, and 43.3%, respectively[26].

PREDICTORS OF PNR
Clinical features
Age: Real-world data suggest that elderly individuals with CD benefit less from infliximab and adalimumab at 12 wk
[27]. In the precision-3 study, CD patients treated with certolizumab had a reduced probability of achieving a primary 
response as they aged[28]. However, several other studies have reported no correlation between age and PNR to anti-
TNF in CD[21,29]. In UC patients, Arias et al[30] found that the benefit was greater when the baseline age was less than 40 
years, whereas other studies did not show the impact of age on the efficacy[31,32]. Differences between the results may 
have originated from variations in designs and how outcomes were defined.

Gender: A single-center study in Britain involving CD patients reported that men were significantly less likely to PNR to 
infliximab[21]. Another Korean study showed that among CD patients, men benefited from clinical remission at week 14 
more than women[29]. However, many researchers have not found an association between sex and PNR to anti-TNF 
therapy in CD[33-35]. Similarly, the influence of gender on anti-TNF therapy cannot be clearly defined in UC patients. 
Sandborn et al[36] reported that women responded better when assessing the efficacy of golimumab at week 6. Other 
studies did not report that sex could predict TNF antagonists response in UC[30,37].

Smoking: Smoking is an environmental risk factor for CD[38] and appears to be associated with nonresponse to anti-TNF 
therapy in CD patients. Analysis from the precision-3 study suggested that nonsmokers are more likely to achieve early 
clinical remission than smokers[28]. Zorzi et al[39] identified a positive association between smoking and anti-TNF 
nonresponse in CD patients by Cox proportional hazards regression. In addition, a meta-analysis published in 2021 
revealed that when smoking status was defined smoking was significantly associated with a reduction in response to 
infliximab or adalimumab in patients with CD[40]. However, the negative effect of smoking on response was not found in 
another earlier meta-analysis[41]. Studies of UC have also reported inconsistent results. One Italian study found a 
significantly lower response to infliximab in ex-smokers[42], while others did not reach this conclusion[37,43]. The 
conflicting findings may be due to different definitions of smoking among the studies. In summary, smoking cessation is 
recommended for current smokers diagnosed with IBD[44].

Previous surgery: Although treatment strategies for IBD have changed, 17.4%-25% of patients with CD still require 
surgery[45-47]. Macaluso et al[27] used a logistic regression model to identify a history of previous surgery as an 
independent risk factor for PNR in CD patients. Another group reported similar results, showing that CD patients 
without previous surgery had a greater chance of achieving initial remission than patients with previous surgery, with a 
hazard ratio of 1.387[28]. CD patients with previous surgery had a lower response rate[48]. A study involving 201 CD 
patients also demonstrated that previous surgery was an independent predictor of PNR[34].

Disease duration: The analysis of pooled data from CD studies indicates that CD with a shorter disease duration is 
associated with a superior early response[49]. In the MODIFY study, patients who received early adalimumab achieved a 
higher clinical response and remission rate at week 26 than those who received delayed treatment[50]. This correlation 
has also been confirmed by a recent meta-analysis[51]. Studies have reported that among UC patients, a shorter disease 
duration is associated with a better response to anti-TNF drugs[32,52]. However, in general, authors did not find a 
positive association between long disease duration and anti-TNF nonresponse[31,48,53]. Although the current studies 
available cannot explain the underlying reasons for poorer response to anti-TNF in IBD with a longer disease duration, it 
is intuitive that a longer disease duration may contribute to the development of fibrosis, making earlier treatment 
attractive to patients[54].

Phenotype: The disease phenotype seems to be related to anti-TNF treatment response. In CD patients, isolated ileitis was 
inversely associated with the anti-TNF response, whereas the opposite was true for isolated colitis[29,48].

Pharmacokinetic
The pharmacokinetic (PK) of anti-TNF consists of four processes: absorption, distribution, metabolism, and elimination
[55]. PK failures are characterized by undetectable or subtherapeutic drug concentrations associated with rapid 
nonimmune clearance or immunogenicity as well as the development of ADAs[56].

Drug concentration and antidrug antibodies: Several studies have demonstrated that subtherapeutic drug concentration 
is a predictor of PNR, with drug concentrations lower in IBD patients who failed to respond to anti-TNF therapy than in 
responders[16,57]. Post hoc analysis of data from the MUSIC trial data showed that CD patients with higher levels of 
certolizumab were more likely to achieve endoscopic response and remission at week 10[58]. Ding et al[17] suggested that 
low anti-TNF levels and the formation of ADAs could predict PNR in CD patients. The same results were reported in 
another study involving patients with UC[59].
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Weight: Weight is a predictor of anti-TNF nonresponse. In a multicenter cohort study, high body mass index (BMI) at 
baseline in CD patients was associated with an increased risk of PNR[16]. Similar results were reported in another study
[60]. In UC patients, Kurnool et al[61] reported that an increase in BMI had a negative impact on the response to anti-TNF 
drug therapy. The reason may be that, on the one hand, obesity induces a proinflammatory state[62], and on the other 
hand, the proteolytic clearance of immunoglobulins is usually related to weight, that is, the higher the weight is, the faster 
the clearance[63,64].

Serum albumin: Serum albumin levels predict the PK of anti-TNF therapy. A recent prospective study noted that low 
albumin levels at baseline in IBD patients predicted low infliximab concentrations at week 14[16]. Several other studies 
have reached similar conclusions[57,63]. One study of patients with UC found significantly higher serum albumin in 
responders than in primary nonresponders[65]. This effect occurs because albumin is the main transporter of drugs in 
blood, and serum albumin binds anti-TNF drugs to protect against degradation[66].

Fcγ receptor type IIIA: Single nucleotide substitutions within the Fcγ receptor type IIIA (FCGR3A) gene result in allelic 
variations, one valine (V) or one phenylalanine (F) at amino acid position 158. Functional polymorphisms in FCGR3A are 
significantly associated with response to anti-TNF therapy in CD patients[67]. Bek et al[67] used mono-compartmental 
population modeling to describe the PK of infliximab and found that the FCGR3A-158V/V genotype was associated with 
increased elimination of infliximab[67]. Further studies identified the FCGR3A VV phenotype as an independent 
predictor of ADAs generation and associated with a reduced clinical response in IBD patients at the end of induction[68].

Pharmacodynamic
Pharmacodynamic (PD) failure is associated with underlying non-TNF-driven inflammation characterized by no 
improvement in symptoms even at sufficient concentrations and without ADAs[56].

Pharmacokinetic/pharmacodynamic modeling: Kimura et al[69] developed Pharmacokinetic/pharmacodynamic (PK/
PD) modeling to predict IBD response to infliximab during induction therapy. Another team of researchers in Japan 
developed a PK/PD model to calculate the Kanti-TNFα

0/Kelse ratio to predict the PNR to TNF in IBD patients at the second 
administration[70]. The validity of this model remains to be tested in larger populations.

Biologic markers
C-reactive protein: Several studies have investigated the relationship between CRP levels and anti-TNF responses. A 
multicenter retrospective study in Korea demonstrated that UC patients with CRP ≥ 3 mg/dL were more likely to achieve 
clinical remission at week 8[71]. This was also observed in CD treated with certolizumab[72]. However, opposite results 
were reported in another retrospective study of CD patients[73]. Presumably, high baseline CRP will exclude some 
patients with noninflammatory functional symptoms and predict a higher response, but it may also reflect a higher 
inflammatory load with increased drug loss[74].

Antineutrophil cytoplasmic antibody and anti-Saccharomyces cerevisiae antibody: In a cohort study involving 90 UC 
patients, a greater proportion of antineutrophil cytoplasmic antibody (ANCA)-negative patients achieved clinical 
response during infliximab induction than ANCA-positive patients[75]. Another study in CD patients found that positive 
perinuclear ANCN (pANCA) is a predictor of anti-TNF nonresponse[76]. In a meta-analysis, pooled results showed that 
pANCA-negative patients with IBD had a nearly twofold higher response to anti-TNF therapy than pANCA -positive 
patients[77]. A single-center study evaluating pANCA and anti-Saccharomyces cerevisiae antibody (ASCA) simultaneously 
found that pANCA+/ASCA- serotypes significantly reduced early clinical response to infliximab in CD patients[78].

Fecal calprotectin: Fecal calprotectin (FC) is an indicator of gut inflammation and disease burden in IBD. Beltrán et al[79] 
noted that FC was higher in PNR patients with CD than in responders at weeks 0, 6, and 14, with a statistically significant 
difference only at week 0. Another study in UC patients also showed that early high FC was predictive of infliximab 
nonresponse[52]. Pavlidis et al[80] suggested that a decrease in FC of less than 70% after induction with anti-TNF drugs 
could predict PNR in patients with CD. However, some authors have not shown a relationship between FC and anti-TNF 
PNR in UC patients[81,82].

Fecal lactoferrin: Fecal lactoferrin (FL) can be used to monitor intestinal inflammation in IBD[83]. A retrospective study 
involving IBD demonstrated that dynamic monitoring of FL could distinguish responders from primary nonresponders, 
with two sustained drops in FL observed in responders during induction therapy[84].

Genetic markers
TNF and TNF-receptor superfamily genes: Genetic polymorphisms associated with TNF and TNF receptors have been 
widely studied for their ability to predict the response to anti-TNF therapy. In a clinical trial studying CD, patients 
homozygous for the TNF/Lymphotoxin alpha (LTA) polymorphism, the LTA NcoI-TNFc-aa13L-aa26 haplotype 1-1-1-1, 
showed early nonresponse to infliximab[76]. Another study demonstrated that TNF-308 (rs1800629) was associated with 
response to anti-TNF therapy, and the presence of the minor allele (A) was associated with increased odds of 
nonresponse to anti-TNF therapy in IBD[85]. For TNF-receptor superfamilies (TNFRSF), Steenholdt et al[86] found that 
CD patients carrying the TNFRSF1B minor allele rs1061622 had a better response to infliximab induction therapy. In a 
Japanese study, TNFRSF1A (rs767455_G) and TNFRSF1B (rs1061624_A-rs3397_T) were associated with poor response in 
CD patients[87] and these results were replicated in another Spanish study[88]. Additionally, a meta-analysis indicated 
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that TNFRSF1A (rs4149570) significantly improved anti-TNF responses in IBD[67].

Autophagy-related 16 like 1: Autophagy-related 16 like 1 (ATG16L1) is a risk factor for CD[89]. Koder et al[90] found a 
strong association between ATG16L1 (rs10210302) and response to adalimumab treatment in the CD population, with the 
TT genotype showing a better response after 12 wk of adalimumab treatment. Future studies on the relationship between 
ATG16L1 and the anti-TNF response are necessary to clarify these effects.

Apoptosis genes: Infliximab and adalimumab induce apoptosis by binding to membrane-bound TNF-α, which is the 
main mechanism of their efficacy[54]. An earlier study observed the strongest association between the Fas ligand -843 TT 
genotype and nonresponse to infliximab in CD patients[91]. Furthermore, Hlavaty et al[92] developed a novel apoptotic 
pharmacogenetic index based on three single nucleotide polymorphisms (Fas ligand-843 C/T, Fas-670 G/A, and 
Caspase9 93 C/T), with a higher score indicating a better response to anti-TNF therapy.

Nucleotide-binding oligomerization domain 2: Nucleotide-binding oligomerization domain 2 (NOD2) mutations predict 
an increased risk of complications related to CD[93]. Further studies showed that NOD2 mutations were less responsive 
to anti-TNF therapy than wild-type NOD2 in CD patients[94]. Another study demonstrated that CD patients with either 
NOD2 variants alone or in combination with ATG16L1 variants were more likely to receive intensive biologic therapy, 
which may indicate that NOD2 variants have a negative impact on response to biologic therapy[95]. However, this effect 
was not observed in another trial[96].

Cytokines
Interleukin: One study conducted in CD patients found that primary nonresponders had significantly higher interleukin-
8 (IL-8) concentrations at baseline[97]. In addition, the level of IL-6 in responders was significantly lower than that in 
primary nonresponders at week 2 and week 6[97]. Another study of CD noted that IL17A and IL1B expression was 
significantly upregulated in anti-TNF refractory patients during anti-TNF therapy[98]. Oncostatin M (OSM), a member of 
the IL-6 cytokine family, has been shown to disrupt epithelial barrier function and drive intestinal inflammation[99]. An 
analysis of more than 200 IBD patients treated with anti-TNF therapy found higher baseline levels of OSM expression in 
those who failed anti-TNF therapy[100]. A cross-sectional study suggested that higher levels of OSM in the colon were 
associated with PNR to anti-TNF in patients with IBD[101].

Triggering receptor expressed on myeloid cells 1: Triggering receptor expressed on myeloid cells 1 (TREM1) expression 
has been proposed as a potential marker for predicting response to anti-TNF therapy in IBD patients. Gaujoux et al[102] 
demonstrated that TREM1 can be an ex-ante predictor of the anti-TNF response and that TREM1 Levels were downreg-
ulated in nonresponders, with a prediction accuracy of 94%. This phenomenon is also found in the inflamed mucosa.

Gut microbes
Several studies have shown that gut microbes predict nonresponse to anti-TNF treatment in IBD. Magnusson et al[103] 
found that responders had lower dysbiosis indexes, a higher abundance of Faecalibacterium prausnitzii (F. prausnitzii) at 
baseline, and an increase in the abundance of F. prausnitzii during induction therapy compared with nonresponders. 
Another study found that high abundances of the genera Blautia, Faecalibacterium, Roseburia, and Negativibacillus at 
baseline were inversely associated with responsiveness to infliximab in CD[104]. In the same study, a high abundance of 
Sutterella, Roseburia, and Intenstinibacter appeared to predict response to infliximab in UC patients[104]. Alatawi et al[105] 
detected a reduction in the abundance of short-chain fatty acid-producing bacteria, including Anaerostipes, Coprococcus, 
Lachnospira, Roseburia, and Ruminococcus, in IBD patients unresponsive to anti-TNF therapy[105]. Nevertheless, a 
European multicenter study found no differences in the microbiota of anti-TNF therapy responders vs nonresponders in 
IBD[106]. Indicators that predict PNR to anti-TNF agents in patients with IBD are listed in Table 1.

PREDICTORS OF SECONDARY NONRESPONSE
Clinical features
Gender: A retrospective study identified that women were more likely to develop SNR to anti-TNF[107]. Another 
multicenter retrospective study found a similar result in the CD subgroup[108]. An earlier systematic review noted the 
male sex was a predictor of LOR in CD[109]. A single-center study demonstrated a significantly higher likelihood of SNR 
in men with UC[110]. However, no association has been reported between gender and SNR in most studies[21,30,31,37].

Smoking: Sandborn et al[28] found that current smoking was associated with LOR in individuals diagnosed with CD. 
This result was also validated in another single-center study[39]. Chaparro et al[111] reported that smoking was 
associated with the occurrence of LOR in CD.

Previous surgery: A Sicilian study of CD reported that previous surgery was associated with a low rate of clinical 
remission at 1 year[27]. However, many studies have not demonstrated a relationship between previous surgical history 
and SNR to anti-TNF therapy in CD[16,112].

Disease duration: Panaccione et al[49] showed that patients with CD whose duration was less than 1 year benefited more 
in maintaining remission. A retrospective cohort study reported that CD patients with a disease duration of more than 2 
years had a significantly higher rate of SNR[113]. A subgroup analysis of the placebo-controlled CHARM trial also 
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Table 1 Predictors of primary nonresponse in Crohn’s disease and ulcerative colitis

Predictor Crohn’s disease Ulcerative colitis
Clinical features

Age Yes: Older[27,28]; No[21,29] Yes: Older[30]; No[31,32]

Gender Yes: Male[21], female[29]; No[33-35] Yes: Male[36]; No[30,37]

Smoking Yes: Smoker[28,39,40]; No[41] Yes: Ex-smoker[42]; No[37,43]

Previous surgery Yes[27,28,34,48] 

Disease duration Yes: Longer[49-51]; No[48] Yes: Longer[32,52]; No[30,53]

Phenotype Yes: Isolated ileitis[29,48]

Pharmacokinetic

Drug concentration Yes: Low[16,17,57,58] Yes: Low[57,59]

Antidrug antibodies Yes[17] Yes[59]

Weight Yes: High[16,60] Yes: High[61]

Serum albumin Yes: Low[57] Yes: Low[57,65]

FCGR3A Yes: FCGR3A-158V/V[67,68] Yes: FCGR3A-158V/V[68]

Pharmacodynamic

PK/PD model Yes[69,70] Yes[69,70]

Biologic markers

CRP Yes: Low[72], High[73] Yes: Low[71]

ANCA and ASCA Yes: pANCA+[76,77] Yes: ANCA+[75], pANCA+[77], pANCA+/ASCA-[78]

Fecal calprotectin Yes: High[79] Yes: High[52]; No[81,82]

Fecal lactoferrin Yes: High[84] Yes: High[84]

Genetic markers

TNF genes Yes: Lymphotoxin alpha NcoI-TNFc-aa13L-aa26 
haplotype 1-1-1-1[76], TNF-308A[85]

Yes: TNF-308A[85]

TNFRSF Yes: TNFRSF1A (rs767455_G)[87], TNFRSF1B 
(rs1061624_A-rs3397_T)[87]

ATG16L1 Yes: ATG16L1 (rs10210302_CC)[90]

Apoptosis genes Yes: Fas ligand-843 TT genotype[91]

NOD2 Yes: NOD2 mutation[94,95]

Cytokines

Interleukin Yes: IL-8 (high)[97], IL-6 (low)[97], IL17A (high)[98], 
IL1B (high)[98], OSM (high)[100,101]

Yes: OSM (high)[100,101]

TREM1 Yes: Low[102] Yes: Low[102]

Gut microbes Yes: Abundance of short-chain fatty acid-producing 
bacteria (decreased)[105]

Yes: Dysbiosis indexes (high)[103]; Abundance of short-
chain fatty acid-producing bacteria(decreased)[105]

FCGR3A: Fcγ receptor type IIIA; PK/PD model: Pharmacokinetic/pharmacodynamic modeling; CRP: C-reactive protein; ANCA: Antineutrophil 
cytoplasmic antibody; ASCA: Anti-Saccharomyces cerevisiae antibody; pANCA: Perinuclear anti-neutrophil cytoplasmic antibody; TNF: Tumor necrosis 
factor; TNFRSF: TNF-receptor superfamily; ATG16L1: Autophagy-related 16 like 1; NOD2: Nucleotide-binding oligomerization domain 2; OSM: 
Oncostatin M; TREM1: Triggering receptor expressed on myeloid cells 1.

obtained a similar conclusion[114].

Phenotype: A recent study reported that accumulation of the upper digestive tract and the presence of fistulas at baseline 
were associated with SNR to adalimumab and infliximab in CD patients[27]. Another study involving 93 individuals 
verified that nonstructuring nonpenetrating CD was associated with sustained remission[39]. CD with concurrent fistula 
or stenosis had a lower clinical remission rate[115].
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Pharmacokinetic
Drug concentration and antidrug antibodies: A multicenter cohort study confirmed that concentrations of infliximab < 7 
mg/L and adalimumab < 12 mg/L were independently associated with SNR in CD patients[16]. A prospective study 
indicated that the trough level (TL) of infliximab < 5.5 µg/mL in patients with IBD was the best threshold to predict LOR
[116]. Alternatively, the generation of ADAs, which in combination with circulating drugs also leads to a reduction in 
drug concentration, is associated with anti-TNF LOR in IBD[117].

Weight: Kennedy et al[16] found that obesity at baseline was associated with adalimumab treatment failure at week 54 in 
patients with CD. Another study also reported that IBD patients with a high BMI displayed a high rate of LOR[118]. In 
IBD patients treated with adalimumab, SNR was increased in those with BMI ≥ 30 kg/m2 compared with those with BMI 
< 30 kg/m2[119].

Serum albumin: In CD patients treated with certolizumab, low albumin predicted SNR[28]. Higher albumin levels were 
associated with lower LOR in IBD patients treated with infliximab[119]. A prospective study found that IBD patients with 
low albumin serum concentrations at baseline had a significantly increased risk for SNR to anti-TNF and that normal-
ization of albumin levels during treatment did not reduce this risk[120].

Serum γ-globulin: A German study from IBD found a positive association between elevated serum γ-globulin concen-
trations and the risk of SNR to anti-TNF therapy[120]. Higher γ-globulin concentrations imply increased B-cell activity, 
resulting in increased ADAs production[120].

Matrix metalloproteinase 3: Matrix metalloproteinase 3 (MMP3) expression is significantly upregulated in inflamed 
colonic segments of IBD patients, suggesting the possible involvement of this enzyme in the inflammatory process[121,
122]. A retrospective study from Italy showed that in IBD patients, MMP3 levels were significantly lower in responders 
(11.48 ng/mL) than in nonresponders (25.96 ng/mL) at week 52[123]. In the same study, MMP3 levels tended to be 
higher in patients without ADAs than in those with ADAs[123]. According to a previous report, MMP3 cleaved 
infliximab and adalimumab which may result in reduced drug efficacy[124].

Fcγ receptor type IIIA: A Spanish team found higher serum concentration levels of both infliximab and adalimumab in 
FCGR3A FF carriers than in FCGR3A VV carriers during maintenance therapy in IBD and found that the proportion of 
VV patients who developed ADAs was significantly higher than that of FF patients diagnosed with IBD[125].

Human leukocyte antigen: The value of human leukocyte antigen-DQA1*05 (HLA-DQA1*05) in predicting anti-TNF-
ADAs production has been reported in several studies. A genome-wide analysis of 1240 subjects in the PANTS cohort 
revealed that approximately 40% of Europeans carried HLA-DQA1*05 and significantly increased rates of ADAs 
production[126]. Wilson et al[127], using genotypic analysis, showed that HLADQA1*05 was independently associated 
with LOR to infliximab and increased ADAs in IBD.

Biologic markers
C-reactive protein: Post hoc analysis of ACCENT I, indicated that high levels of CRP before treatment predicted an 
increased likelihood of maintaining remission[128]. A study of IBD found that CRP > 5 mg/L was an independent 
predictor of SNR[116]. However, a Hungarian study reported that low levels of CRP at week 12 were associated with 
clinical remission at week 52 in CD patients on adalimumab[129]. Additionally, Angelison et al[82] did not find an 
association between CRP and SNR to anti-TNF agents in UC.

Antinuclear antibody: Among patients with IBD, those with positive antinuclear antibody (ANA) at baseline had higher 
odds of LOR to anti-TNF[130]. More studies are needed to investigate the relationship between ANA and response to 
anti-TNF therapy in the future.

Fecal calprotectin: Analyses from the 7-year PRECiSE 3 study revealed that an increase in FC implies an increased risk of 
LOR to anti-TNF[28]. However, Deshpande et al[131] reported that FC levels at week 14 could not predict the recurrence 
of CD one year later. Differences in the timing of FC measurement and sample size may have contributed to this 
discrepancy.

Fecal lactoferrin: Sorrentino et al[132] found that FL levels before and after anti-TNF treatment could be used to 
distinguish responders, partial responders, and nonresponders in IBD patients with suspected LOR[132]. In the same 
study, they proposed that responders had normal FL both before and after administration, partial responders had 
elevated FL before administration, partial FL decreased after administration but remained well above the normal 
threshold, and FL increased after LOR administration[132].

Genetic markers
TNF and TNF-receptor superfamily genes: Currently, only a retrospective cohort study of CD has demonstrated that 
carrying the TNFRSF1B minor allele rs976881 was associated with LOR to infliximab[86]. More studies are urgently 
needed to explore the relationship between TNF and TNFRSF genes and SNR to anti-TNF therapy.

Cytokines
Interleukin: Higher baseline OSM in IBD patients with SNR to infliximab was found in a UK study[100]. Bertani et al[133] 
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demonstrated that in CD patients treated with infliximab, those with low OSM levels at baseline and week 14 were more 
likely to achieve clinical remission at week 54[133]. Moreover, the level of OSM in patients with mucosal healing was 
significantly lower than that in patients without mucosal healing at week 54[133]. We summarize the predictors of SNR in 
Table 2.

OPTIMAL MANAGEMENT OF ANTI-TNF NONRESPONSE
Assessment
PNR or SNR to anti-TNF therapy was determined according to clinical symptoms, laboratory tests, endoscopy, imaging 
examinations, etc. It is worth noting that conditions such as poor adherence[134], improper drug storage medication 
storage[135], and co-infection[23] need to be excluded during assessment.

Therapeutic drug monitoring
The British Society of Gastroenterology consensus defines therapeutic drug monitoring (TDM) as, the measurement of the 
drug (± ADAs) levels to assess compliance, drug metabolism, and immunogenicity with a view to guide dose 
adjustments or switch off therapy[136]. TDM can be used reactively or proactively. The American Gastroenterological 
Association recommends reactive TDM for adults who fail to respond to anti-TNF therapy[9]. A target TL of at least 5 
μg/mL, 7.5 μg/mL, and 20.0 μg/mL for infliximab, adalimumab, and certolizumab, respectively, is suggested[9]. 
Papamichael et al[137] recommend a minimum drug concentration of at least 2.5 μg/mL at week 6 and a trough concen-
tration of at least 1 μg/mL of golimumab during maintenance therapy. Several recent reviews showed that TDM was 
more beneficial than empirical strategies in terms of cost-effectiveness[138-140]. TDM plays an important role in 
optimizing anti-TNF therapy.

Management of PNR
There is no consensus on the optimal management of PNR to TNF antagonists. A review proposed that the management 
of IBD patients with PNR to anti-TNF therapy consists of three major steps: prediction, prevention, and therapeutic 
intervention[11]. Clinical features, pharmacokinetics, genetic phenotypes, etc., can predict the development of PNR. 
Preventive measures to avoid PNR to anti-TNF include counseling patients to quit smoking, weight intervention, etc.[11,
17]. For IBD patients with PNR, empirical intervention can be performed, switching to another TNF antagonist, or 
switching to a biological agent of a different mechanism, is desirable[141]. Ding et al[17] suggested that a second TNF 
antagonist be administered when the patient is PNR to the first TNF antagonist. If the treatment fails again, switching out 
of class should be considered.

Some scholars have also proposed that the medication of primary nonresponders can be adjusted according to TDM. 
With the help of TDM, rational and optimal treatment can be provided[136]. If patients have low TLs and no or low titer 
ADAs formation, dose optimization or the addition of an immunomodulator is recommended. When TLs are low and 
high-titer ADAs are detected, switching to another TNF antagonist or biologic agent with a different mechanism may be 
considered. For patients with therapeutic concentrations, switching out of class is suggested (Figure 1).

Management of secondary nonresponse
The detection of TNF antagonist and ADAs concentration is helpful to guide the next treatment of SNR (Figure 2).

Dose escalation: Dose intensification can reverse nonresponse to anti-TNF in IBD patients with subtherapeutic concen-
trations and no or low concentrations of ADAs. A meta-analysis reported a 34% need for anti-TNF dose escalation in CD 
at a median follow-up of 1 year, with pooled rates of 38%, 32%, and 2% for infliximab, adalimumab, and certolizumab, 
respectively[26]. A multicenter cohort study in Belgium found that 34% of CD patients treated with adalimumab required 
an increased dose to maintain clinical response, and clinical response was induced again in 67% of these patients[142]. 
Billioud et al[109] concluded that among CD patients who experienced LOR to adalimumab, 71.4% regained response and 
39.9% achieved remission after dose optimization. Interestingly, a post hoc analysis of the TAXIT trial showed a 
significantly higher rate of clinical response with dose intensification, regardless of the presence of ADAs[143]. 
Meanwhile, Bodini et al[144] have suggested that, based on clinical need, anti-TNF doses can be increased, even in older 
patients of patients receiving combination therapy, with little risk of adverse reactions occurring.

Addition of an immunomodulator: The addition of an immunomodulator is a good option for IBD patients receiving 
anti-TNF therapy in whom subtherapeutic and no or low concentrations of ADAs are detected. For example, van Schaik 
et al[145] observed a significant increase in mean trough concentrations and a significant decrease in the incidence of 
ADAs in the infliximab combined with azathioprine group compared with infliximab alone in patients with IBD, whereas 
no differences were observed in the adalimumab combination vs monotherapy groups[145]. Another study involving 
patients with CD reported that, for both infliximab and adalimumab, combined immunomodulators reduced the risk of 
ADAs formation[16]. In the SONIC trial, the response rate in corticosteroid-free clinical remission at week 50 was 
significantly higher with infliximab adding immunomodulator than with monotherapy (55.6% vs 39.6%)[146]. In the UC-
SUCCESS trial, infliximab plus an immunomodulator was also superior in achieving corticosteroid-free clinical remission
[147]. In a 2-year cohort study of 46 patients with IBD, the addition of a low-dose immunomodulator, either azathioprine, 
methotrexate, or mycophenolate mofetil, reversed clinical response in approximately 50% of IBD patients who had failed 
to respond to anti-TNF monotherapy[148]. With regard to when to discontinue immunomodulators, Drobne et al[149] 
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Table 2 Predictors of secondary nonresponse in Crohn’s disease and ulcerative colitis

Predictor Crohn’s disease Ulcerative colitis
Clinical features

Gender Yes: Female[107,108], male[109]; No[21] Yes: Female[107], male[110]; No[31,37]

Smoking Yes: Smoker[28,39,111]; No[41]

Previous surgery Yes[27]; No[16,112]

Disease duration Yes: Longer[49,113,114] 

Phenotype Yes: Upper digestive tract[27], fistula[27,115], stenosis[115]

Pharmacokinetic

Drug concentration Yes: Low[16,116] Yes: Low[116]

Antidrug antibodies Yes[117] Yes[117]

Weight Yes: High[16,118,119] Yes: High[118,119]

Serum albumin Yes: Low[28,119,120] Yes: Low[119,120]

Serum γ-globulin Yes: High[120] Yes: High[120]

MMP3 Yes: High[123] Yes: High[123]

FCGR3A Yes: FCGR3A VV[125] Yes: FCGR3A VV[125]

HLA Yes: HLADQA1*05[127] Yes: HLADQA1*05[127]

Biologic markers

CRP Yes: Low[128], high[129] No[82]

ANA Yes: ANA+ [130] Yes: ANA[130]

Fecal calprotectin Yes: High[28]; No[131]

Fecal lactoferrin Yes: High[132] Yes: High[132]

Genetic markers

TNFRSF Yes: TNFRSF1B (rs976881)[86]

Cytokines

Interleukin Yes: OSM (high)[100,133] Yes: OSM (high)[100] 

MMP3: Matrix metalloproteinase 3; FCGR3A: Fcγ receptor type IIIA; HLA: Human leukocyte antigen; CRP: C-reactive protein; ANA: Antinuclear 
antibody; TNFRSF: Tumor necrosis factor receptor superfamily; OSM: Oncostatin M.

suggest that at least 6 mo of combination therapy is required. Mahmoud et al[150] compared different durations of 
combination therapy in relation to LOR and found no significant difference between durations of combination therapy (< 
0.5 years, 0.5-1 year, 1-2 years, and > 2 years); however, durations of combination therapy longer than 2 years were 
associated with a lower risk of ADAs formation.

Switch within class: In the case of subtherapeutic concentrations with high titers of ADAs, switching within class to 
another anti-TNF agent should be considered. A retrospective study of IBD showed that when ADA titers of infliximab 
and adalimumab were > 9 μg/mL and 4 μg/mL, respectively, switching within class achieved a longer duration of 
response compared with dose intensification[151]. In another study of IBD, switching patients positive for ADAs to 
another anti-TNF agent achieved a response rate of 92%, whereas dose optimization achieved a response rate of 17%
[152]. In cases where the first anti-TNF drug failed, switching to another drug achieved remission in approximately 50% 
of patients, an effect that has been reported in several other studies[153,154]. Moreover, a systematic review reported that 
switching to a second anti-TNF agent led to successful induction of remission in 46% of patients with IBD who had failed 
the first anti-TNF agent[155]. Of note, the previous generation of anti-TNF antibodies increases the risk of the generation 
of a second anti-TNF antibody in IBD[156]. Therefore, when switching to another anti-TNF agent, a combination of 
immunosuppressive agents is appropriate[136,157].

Switch out of class: If TL is sufficient with high ADAs, it is recommended that the patient switches to a drug that exerts 
its effects through another mechanism of action, considering that TNF-α is not the primary pathogenesis. Alternatively, 
for low TLs with high titers of ADAs, switching out of class is also effective. Subgroup analyses of trials investigating 
vedolizumab[158], ustekinumab[159,160], and tofacitinib[161] all showed that patients who had failed anti-TNF therapy 
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Figure 1 Flow diagram for management of primary nonresponse to tumor necrosis factor antagonists. PNR: Primary nonresponse; TNF: Tumor 
necrosis factor; TL: Trough level; ADA: Antidrug antibody.

Figure 2 Flow diagram for management of secondary nonresponse to tumor necrosis factor antagonists. SNR: Secondary nonresponse; TNF: 
Tumor necrosis factor; TL: Trough level; ADA: Antidrug antibody.

benefited from treatment with a novel agent. One study involving 128 CD patients who had failed previous anti-TNF 
therapy reported that the corticosteroid-free clinical response rates of vedolizumab and ustekinumab treatment at weeks 
12, 24, and 52 were 22.7%, 29.7%, 26.8% and 27.1%, 42.4%, 45.9% respectively[162]. Furthermore, propensity score 
matching concluded that patients who failed anti-TNF therapy benefited more from ustekinumab than vedolizumab[162].

CONCLUSION
IBD is incurable, and anti-TNF therapy plays an important role in IBD. Although existing studies have found that 
previous surgical history, disease manifestations, drug concentrations, ADAs, serum albumin, ANCA, p-ANCA, ANA, 
etc. have potential predictive effects, to date, there are no practically available indicators that can predict response to TNF 
antagonists in patients with IBD. Further research is needed to verify the accuracy of existing predictors or discover new 
biomarkers to achieve personalized treatment for patients with IBD.

TDM forms the core of an optimal strategy for treating IBD. It is recommended to optimize the dose or add 
immunomodulators when patients with low TLs and no or low titer ADAs. For nonresponders with low TLs and high 
titer ADAs, switching to another TNF antagonist or biologic agent with a different mechanism can be suggested. When 
TLs are sufficient, patients can consider switching to another biological agent. In the future, more large randomized 
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controlled trials are needed to investigate the efficacy of different next-step therapies for IBD patients who do not respond 
to anti-TNF.
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Abstract
Cancer cells exhibit metabolic reprogramming and bioenergetic alteration, 
utilizing glucose fermentation for energy production, known as the Warburg 
effect. However, there are a lack of comprehensive reviews summarizing the me-
tabolic reprogramming, bioenergetic alteration, and their oncogenetic links in 
gastrointestinal (GI) cancers. Furthermore, the efficacy and treatment potential of 
emerging anticancer drugs targeting these alterations in GI cancers require further 
evaluation. This review highlights the interplay between aerobic glycolysis, the 
tricarboxylic acid (TCA) cycle, and oxidative phosphorylation (OXPHOS) in 
cancer cells, as well as hypotheses on the molecular mechanisms that trigger this 
alteration. The role of hypoxia-inducible transcription factors, tumor suppressors, 
and the oncogenetic link between hypoxia-related enzymes, bioenergetic changes, 
and GI cancer are also discussed. This review emphasizes the potential of targe-
ting bioenergetic regulators for anti-cancer therapy, particularly for GI cancers. 
Emphasizing the potential of targeting bioenergetic regulators for GI cancer 
therapy, the review categorizes these regulators into aerobic glycolysis/ lactate 
biosynthesis/transportation and TCA cycle/coupled OXPHOS. We also detail 
various anti-cancer drugs and strategies that have produced pre-clinical and/or 
clinical evidence in treating GI cancers, as well as the challenges posed by these 
drugs. Here we highlight that understanding dysregulated cancer cell bioener-
getics is critical for effective treatments, although the diverse metabolic patterns 
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present challenges for targeted therapies. Further research is needed to comprehend the specific mechanisms of 
inhibiting bioenergetic enzymes, address side effects, and leverage high-throughput multi-omics and spatial omics 
to gain insights into cancer cell heterogeneity for targeted bioenergetic therapies.

Key Words: Energy metabolism; Mitochondria; Hypoxia; Oxidative phosphorylation; Glycolysis; Gastrointestinal neoplasms
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Core Tip: This review discusses the bioenergetic alteration and metabolic reprogramming in gastrointestinal (GI) cancers, 
including the interplay between aerobic glycolysis, tricarboxylic acid cycle, and oxidative phosphorylation. The review also 
highlights potential strategies for targeting bioenergetic regulators for anti-cancer therapy in GI cancers, summarizing the 
efficacy and challenges of several drugs.
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INTRODUCTION
Cells require energy to carry out their functions, and the most common form of cellular energy is adenosine triphosphate 
(ATP). This energy is typically produced by oxidative phosphorylation (OXPHOS) in the mitochondria of normal cells[1]. 
However, in cancer cells, there is a shift in the way energy is generated. Instead of using OXPHOS, cancer cells use 
glycolysis, a process that results in increased uptake of glucose and secretion of lactate[2]. This phenomenon is known as 
the Warburg effect and is observed in many types of cancer[3,4]. By understanding the altered energy metabolism in 
cancer cells, researchers can gain new insights into cancer cell biology and identify potential targets for cancer therapy.

Glycolysis is the process by which glucose is broken down to produce ATP, and it does not require oxygen (Figure 1). 
Glucose enters cells through glucose transporters and is converted to glucose-6-phosphate (G6P) by hexokinase (HK). 
Glucose-6-phosphate isomerase (G6PI) converts G6P to fructose-6-phosphate (F6P), which is used in both the glycolytic 
pathway to generate pyruvate or lactate and the pentose phosphate pathway (PPP) to produce nucleotides and nicoti-
namide adenine dinucleotide phosphate (NADPH). Phosphofructokinase-1 (PFK1) converts F6P and fructose-2,6-
bisphosphate (F2,6BP), a metabolite from a branch driven by fructose-2,6-biphosphatase 3 (PFKBP3), to fructose-1,6-
bisphosphate (F1,6BP), which is further processed by aldolase to generate glyceraldehyde-3-phosphate (G3P) and 
dihydroxyacetone phosphate (DHAP). G3P is converted by glyceraldehyde 3-phosphate dehydrogenase (GAPDH) to 1,3-
bisphosphoglycerate (1,3BPG), which is further converted to 3-phosphoglycerate (3PG) by phosphoglycerate kinase 
(PGK1). The 3PG is subsequently converted by phosphoglycerate mutase (PGAM) to 2-phosphoglycerate (2PG). The 2PG 
then serves as a substrate for enolase (ENO) to convert to phosphoenolpyruvate (PEP). Pyruvate kinase isozyme M1/M2 
(PKM1/2) catalyzes the conversion of PEP to pyruvate, which can be converted to acetyl-CoA or lactate. This process 
generates NAD+ from NADH, which is important for the continuation of the glycolysis process. Although glycolysis 
itself does not require oxygen, the fate of the pyruvate produced by glycolysis depends on the availability of oxygen, and 
the overall efficiency of ATP production is much higher when oxygen is present[5].

Pyruvate, a product of glycolysis, enters the mitochondria where it is converted to acetyl-CoA. The resulting acetyl-
CoA can then enter the tricarboxylic acid (TCA) cycle, also known as the Krebs cycle, which plays a pivotal role in 
generating ATP through the electron transport chain (ETC). The TCA cycle completes the breakdown of glucose by 
breaking down acetyl-CoA into carbon dioxide (CO2) and water, releasing energy in the form of NADH and flavin 
adenine dinucleotide (FADH2). NADH and FADH2 donate their electrons to the ETC at Complex I and II, respectively. 
The ETC, specifically Complexes I-IV, transfers electrons from NADH and FADH2 to generate a proton gradient across 
the inner mitochondrial membrane. This gradient is then used by ATP synthase to produce ATP. Complex I, also known 
as NADH dehydrogenase or NADH ubiquinone oxidoreductase, is the largest of the five mitochondrial complexes and 
marks the initiation of the ETC[6]. Electrons are transferred from Complex I to coenzyme Q (CoQ) across the inner 
mitochondrial membrane and then from CoQ to Complex III, although an alternative pathway exists via Complex II, 
succinate dehydrogenase (SDH)[7,8]. Following reduction of succinate by Complex II, electrons are transported to CoQ 
and then transferred to Complex III. Complex III and cytochrome c transfer electrons to Complex IV, cytochrome c 
oxidase (COX). The ETC complexes act as proton pumps, creating an electrochemical gradient across the inner mito-
chondrial membrane, and this energy is harnessed by Complex V, ATP synthase, which generates ATP by using the 
energy from the movement of protons down their electrochemical gradient. This whole process is known as OXPHOS 
and is a time-consuming process compared to glycolysis, but is the most efficient way to generate ATP in the cell, 
producing up to 36-38 ATP molecules per glucose molecule. Complexes I-IV are known as the ETC, while Complex V 
(ATP synthase) does not (Figure 1). Except for Complex II, all OXPHOS-related complexes are partially encoded by 
mitochondrial DNA (mtDNA)[9]. Unfortunately, OXPHOS also produces reactive oxygen species (ROS) as a byproduct, 
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Figure 1 Illustration of the pathway of glucose metabolism. Glucose is taken up by cells and undergoes a series of reactions to convert it to pyruvate via 
the process of glycolysis. Pyruvate can then enter the tricarboxylic acid cycle in the mitochondria to produce energy, or it can be converted to lactate in the cytosol 
under anaerobic conditions. The key enzymes involved in these reactions are highlighted in pale-purple, and linked pathways are depicted in pale-green. The 
mitochondrial complexes that are critical for oxidative phosphorylation and adenosine triphosphate production are shown in pale-blue. GLUT: Glucose transporter; 
HK: Hexokinase; G6P: Glucose-6-phosphate; G6PI: Glucose-6-phosphate isomerase; F6P: Fructose-6-phosphate; NADPH: Nicotinamide adenine dinucleotide 
phosphate; PFK1: Phosphofructokinase-1; F2,6BP: Fructose-2,6-bisphosphate; PFKBP3: Fructose-2,6-biphosphatase 3; F1,6BP: Fructose-1,6-bisphosphate; G3P: 
Glyceraldehyde-3-phosphate; DHAP: Dihydroxyacetone phosphate; GAPDH: Glyceraldehyde 3-phosphate dehydrogenase; 1,3BPG: 1,3-bisphosphoglycerate; 3PG: 
3-phosphoglycerate; PGK: Phosphoglycerate kinase; PGAM: Phosphoglycerate mutase; 2PG: 2-phosphoglycerate; ENO: Enolase; PEP: Phosphoenolpyruvate; 
PKM1/2: Pyruvate kinase isozyme M1/M2; LDH: Lactate dehydrogenase; MCT: Monocarboxylate transporter family; PDH: Pyruvate dehydrogenase; IDH: Isocitrate 
dehydrogenase; α-KG: α-ketoglutarate; OAA: Oxaloacetate; SDH: Succinate dehydrogenase; FH: Fumarate hydratase; I: Mitochondrial complex I; II: Mitochondrial 
complex II; III: Mitochondrial complex III; IV: Mitochondrial complex IV; V: Mitochondrial complex V; Q: Co-enzyme Q; cyto C: Cytochrome c; ATP: Adenosine 
triphosphate; ADP: Adenosine diphosphate; FADH2: Flavin adenine dinucleotide; e-: Electrons.

which can cause damage to mitochondrial or nuclear DNA and activate oncogenic signaling pathways, potentially 
leading to diseases and carcinogenesis[10-12]. Mutations in mtDNA are also implicated in cancer[13]. Overall, the process 
of OXPHOS is vital for cellular energy production, but careful regulation is necessary to prevent the damaging effects of 
ROS production.

In cancer cells, certain enzymes and molecules involved in the conversion of glucose to energy are upregulated, which 
provides an attractive target for anti-cancer therapies[14]. Disrupting this process could prevent cancer cells from 
producing energy and lead to their death. In addition to the upregulation of these enzymes, alterations in certain 
mitochondrial enzymes and oncometabolites have been identified in cancer cells. Oncometabolites are small molecules 
that are produced in cancer cells and contribute to their growth and proliferation[15]. These alterations can be caused by 
genetic and epigenetic changes in the genes involved in energy production[13,16]. Recent research has focused on 
understanding these bioenergetic alterations in gastrointestinal (GI) cancers, such as esophageal cancer (ESCA), gastric 
cancer (GC), hepatocellular carcinoma (HCC), cholangiocarcinoma (CCA), pancreatic cancer (PAC), and colorectal cancer 
(CRC). Understanding these specific metabolic changes in cancer cells can provide insight into developing more effective 
targeted therapies for GI cancers. In addition to the potential for targeted therapy, these metabolic changes could also 
serve as biomarkers for cancer diagnosis and prognosis. By identifying alterations in the genes and molecules involved in 
energy production, clinicians may be able to more accurately diagnose and predict the course of the disease. Overall, 
understanding the bioenergetic alterations in cancer cells is a promising avenue for developing new therapies and 
improving cancer diagnosis and treatment. In this review, we summarize the latest findings on bioenergetic alterations in 
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various GI cancers, and discuss the potential therapeutic strategies that target these alterations. Such strategies may 
include inhibitors of specific enzymes or molecules involved in energy production, as well as interventions aimed at 
modulating the metabolic environment of cancer cells. Further research in this area could lead to new and more effective 
treatments for GI cancers.

BIOENERGETIC ALTERATION AND THE WARBURG EFFECT
The process of bioenergetic alteration in cancer involves changes in the way cancer cells generate energy. One well-
known component of bioenergetic alteration is the Warburg effect. This phenomenon describes how cancer cells prefer to 
use glucose fermentation to produce energy even in the presence of oxygen[2]. This process, called aerobic glycolysis, is 
less efficient than mitochondrial OXPHOS in terms of ATP production[17,18]. However, it has been noted that respiration 
alone can maintain tumor viability, suggesting that glucose and oxygen must be eliminated to kill cancer cells by 
depriving them of energy[2]. The underlying mechanisms of the Warburg effect have been investigated for decades. Otto 
Warburg originally proposed that mitochondrial dysfunction could be responsible for aerobic glycolysis[19]. This theory 
was later confirmed and explored by another group that demonstrated the Warburg effect could be caused by an 
imbalance of intracellular pH and mitochondrial ATPase dysfunction[20]. Moreover, it was observed that aerobic 
glycolysis could be controlled by cascade signaling mediated by growth factors and oncogenes, questioning whether the 
Warburg effect was a mere bystander in the pathogenesis of cancer[21-24]. It was not until later that the Warburg effect 
was discovered to be crucial for tumor growth in genetic and pharmacological studies[25,26].

Scientists have been trying to understand why cancer cells prefer aerobic glycolysis to mitochondrial OXPHOS for 
decades, given that the ATP generated by aerobic glycolysis is much lower than that produced by mitochondrial 
OXPHOS[27-29]. Recent studies have shed light on this phenomenon. For example, when changes in the cellular 
environment increase ATP demand through alteration of ATP-dependent membrane activity, aerobic glycolysis increases 
rapidly and OXPHOS remains unchanged[30]. Another study showed high aerobic glycolysis as a metabolic strategy 
which cancer cells use to optimally respond to fluctuating energy availability[31]. Together, this literature suggests that 
the Warburg effect is a metabolic strategy that allows flexibility among cancer cells under an unpredictable tumor 
microenvironment.

THE DYNAMIC INTERPLAY BETWEEN OXPHOS AND AEROBIC GLYCOLYSIS
Not all pyruvate produced during glycolysis is converted to lactate. Indeed, a significant amount of pyruvate can enter 
the TCA cycle for oxidation and further metabolism. The intermediates generated during the TCA cycle, such as NAD+/
NADH and NADP+/NADPH, can continue to enter the OXPHOS pathway, which can further generate bioenergy[32,
33]. Although the role of the Warburg effect in cancers remains controversial, interfering with tumor metabolism and 
targeting both aerobic glycolysis and mitochondrial OXPHOS pathways have been shown to be necessary[34-37]. It is 
evident from current literature that there exists crosstalk between aerobic glycolysis, the TCA cycle, and coupled 
OXPHOS, suggesting cooperative and competitive roles in cancer. Interestingly, some studies suggest that targeting 
mitochondrial metabolism alone may not be sufficient to inhibit tumor growth, as cancer cells can redirect their 
metabolism to rely on other energy sources. In such cases, blocking both the glycolytic and mitochondrial pathways may 
be necessary to prevent cancer cell growth[34-37]. Therefore, a better understanding of the metabolic pathways in cancer 
cells and their interactions is required to develop effective cancer therapies.

Although the exact molecular mechanism that triggers the Warburg effect in cancer remains unclear, multiple 
hypotheses have been proposed, including the involvement of tumor suppressors (e.g., p53) and oncogenes (e.g., PI3K, 
AKT, mTOR), all of which appear to converge on the role of hypoxia-inducible transcription factors (HIFs), particularly 
HIF-1. HIF-1 is a transcription factor that regulates cellular responses to oxygen deprivation, and it was initially identified 
as a protein that is present only under hypoxic conditions[38-41]. However, it was later discovered that HIF-1 can also be 
stabilized under normoxia in a microenvironment with high lactate concentration[42,43]. Under normal conditions, HIF-1
α, a subunit of HIF-1, is targeted for degradation by prolyl hydroxylases (PHDs), which utilize molecular oxygen to 
hydroxylate HIF-1α, leading to its recognition by the von Hippel-Lindau tumor suppressor (VHL), and degradation via 
proteasome-mediated pathways[44-47].

HIF-1 regulates the expression of several key glycolytic enzymes, such as glucose transporter-1 (GLUT1), GLUT3, HK, 
aldolase A (ALDOA), PGK1, PKM1/2, ENO1, pyruvate dehydrogenase kinase (PDKs), and lactate dehydrogenase 
subunit A (LDHA), by directly promoting their expression[48-54]. This leads to an increased level of pyruvate, the final 
product of glycolysis. However, it is important to note that cancer cells with high glycolytic activity are not guaranteed to 
catabolize all pyruvate to lactate, as significant amounts of pyruvate can enter the TCA cycle for oxidation and 
metabolism. In cancer cells, it is suggested that the HIF-1 induced increased expression of PDKs can inhibit the function 
of pyruvate dehydrogenase (PDH), which blocks pyruvate entry into the TCA cycle and promotes lactate production. 
Since HIF-1 also promotes the expression of LDHA, an important subunit of LDH necessary for lactate biosynthesis from 
pyruvate, it is thought to be crucial in cancers affecting terminal lactate levels[55] (Figure 2). Therefore, HIF-1 plays a 
significant role in the Warburg effect, which may have implications for cancer diagnosis and treatment. While the precise 
molecular mechanism behind the Warburg effect remains to be elucidated, the involvement of HIF-1 is clear. 
Understanding the interplay between HIF-1, glycolysis, and OXPHOS in cancer cells may lead to the development of 
novel cancer therapies that target both pathways.
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Figure 2 The complex interplay between glycolysis and oxidative phosphorylation in cancer cells. This figure highlights the signaling networks and metabolic regulation in both Warburg-like and oxidative cancer cells. p53 induces 
PTEN and represses PI3K activity, which inhibits glycolysis and opposes the Warburg effect. Hypoxia and the subsequent activation of hypoxia-inducible factor 1 (HIF-1) play a crucial role in modulating various aspects of cancer cell metabolism, 
including glycolysis, lactate production, and the tricarboxylic acid (TCA) cycle. Hypoxia counteracts the degradation of HIF-1 by prolyl hydroxylases and von Hippel-Lindau, which stabilizes and activates HIF-1. HIF-1 then transcriptionally activates genes 
such as hexokinase, phosphofructokinase-1, aldolase A, PGK1, PGAM1, ENO1, and LDHA, as indicated by the red arrows. During glycolysis, excessive lactate can be exported to the extracellular environment, leading to microenvironmental changes 
such as a lower pH. Intracellular lactate can also be transferred to adjacent cells and re-converted to pyruvate, which can enter the TCA cycle and drive oxidative phosphorylation in oxidative cancer cells. GLUT: Glucose transporter; HK: Hexokinase; 
G6P: Glucose-6-phosphate; G6PI: Glucose-6-phosphate isomerase; F6P: Fructose-6-phosphate; NADPH: Nicotinamide adenine dinucleotide phosphate; PFK1: Phosphofructokinase-1; F2,6BP: Fructose-2,6-bisphosphate; PFKBP3: Fructose-2,6-
biphosphatase 3; F1,6BP: Fructose-1,6-bisphosphate; G3P: Glyceraldehyde-3-phosphate; DHAP: Dihydroxyacetone phosphate; GAPDH: Glyceraldehyde 3-phosphate dehydrogenase; 1,3BPG: 1,3-bisphosphoglycerate; 3PG: 3-phosphoglycerate; PGK: 
Phosphoglycerate kinase; PGAM: Phosphoglycerate mutase; 2PG: 2-phosphoglycerate; ENO: Enolase; PEP: Phosphoenolpyruvate; PKM1/2: Pyruvate kinase isozyme M1/M2; LDH: Lactate dehydrogenase; MCT: Monocarboxylate transporter family; 
PDH: Pyruvate dehydrogenase; IDH: Isocitrate dehydrogenase; α-KG: α-ketoglutarate; OAA: Oxaloacetate; SDH: Succinate dehydrogenase; FH: Fumarate hydratase; I: Mitochondrial complex I; II: Mitochondrial complex II; III: Mitochondrial complex III; 
IV: Mitochondrial complex IV; V: Mitochondrial complex V; Q: Co-enzyme Q; cyto C: Cytochrome c; HIF-1: Hypoxia-inducible factor 1; PHD: Prolyl hydroxylases; VHL: Von Hippel-Lindau.
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The concept of lactate as a metabolic waste product has been revised with the latest findings in lactate metabolism and 
transport. It is now known that lactate can serve as an alternative fuel for certain types of cells, including cancer cells[56,
57]. In cancer, the excess lactate is transported between the intracellular and extracellular matrix by the monocarboxylate 
transporter family (MCT1-4), which depends on the gradients of the protons and monocarboxylate ions[58,59]. Imported 
extracellular lactate can be converted to pyruvate via LDH primarily composed by the LDHB subunit[60,61]. In oxidative 
cancer cells with a functional TCA cycle and OXPHOS, pyruvate can be further converted to acetyl-CoA through PDH, 
thus linking aerobic glycolysis and OXPHOS[62,63]. It has been demonstrated that HIF-1 and downstream oncometa-
bolite lactate play causal roles in these regulatory events. Therefore, current findings provide a possible explanation for 
the Warburg effect and crosstalk of bioenergetic homeostatic transition between aerobic glycolysis and OXPHOS 
observed in cancer. The importance of lactate in cancer metabolism and its potential as a therapeutic target have been 
recognized by others in the field. Thus, a better understanding of the metabolic pathways and their interactions could 
lead to the development of new strategies for cancer treatment.

THE LINK BETWEEN HYPOXIA-RELATED ENZYMES, BIOENERGETIC CHANGES, AND GI CANCER: A 
GENETIC AND EPIGENETIC PERSPECTIVE
Cancer cells often undergo a metabolic shift characterized by increased glycolysis and decreased mitochondrial 
respiration, a phenomenon known as the Warburg effect. This metabolic reprogramming has been linked to the activity of 
HIF-1 under low-oxygen conditions[64,65]. Genetic and epigenetic alterations in HIF-1 regulatory genes contribute to the 
development of the Warburg effect in cancer. Methylation-induced epigenetic changes can drive transcriptional changes, 
leading to impaired expression of key enzymes involved in bioenergetic homeostasis. Additionally, mutations in nuclear 
and mitochondrial genomes may cause a loss of function or decreased expression of glycolytic/OXPHOS enzymes. 
Therefore, mutations, transcriptional changes, or epigenetic alterations that enhance HIF-1 stability or activity can lead to 
increased aerobic glycolysis, resembling the Warburg effect (Table 1).

Studies have found that alterations in PHD enzymes, which target HIF-1 for degradation, contribute to cancer 
development and progression. Reduced expression or loss-of-function due to PHD2 mutations lead to constitutive 
activation of HIF-1 and have been found to stimulate HCC and CC development and progression in mouse models[66,
67]. In contrast, decreased PHD1-3 expression correlates with increased HIF-1 and vascular endothelial growth factor 
(VEGF) levels, invasive tumor behavior, and poor prognosis in certain GI cancers such as HCC[68], GC[69-71], and CRC
[72]. Interestingly, the opposite effect has been observed in patients with PAC[73]. Another protein involved in HIF-1 
stabilization, VHL, also plays a role in GI cancers. Mutations or promoter methylation within the VHL gene lead to 
increased cytoplasmic HIF-1 levels and an unfavorable prognosis in patients with PAC and CRC[74,75]. However, the 
general status of VHL protein expression in GI cancers remains unclear, with the exception of HCC, whose levels have 
been shown to decrease, and low levels correlate with poor prognosis[76]. Further investigation is needed to determine 
the impact of mutations, genetic, or epigenetic alterations in these hypoxia-associated enzymes on bioenergetic alterations 
in GI cancers, since understanding the mechanisms behind the Warburg effect and the role of HIF-1 regulatory genes 
could potentially provide new therapeutic targets for treating GI cancers.

THE LINK BETWEEN MITOCHONDRIAL AND NUCLEAR GENE EXPRESSION, BIOENERGETIC 
HOMEOSTASIS, AND THE PROGRESSION OF GI CANCERS
Cancer development and progression are often accompanied by changes in cellular metabolism that contribute to tumor 
growth and survival. In addition to genetic and epigenetic alterations in hypoxia-associated regulatory enzymes that 
promote aerobic glycolysis, emerging evidence suggests that changes in nuclear-encoded genes for enzymes and subunits 
involved in OXPHOS and the TCA cycle may also play a role in driving the switch to glycolysis and altering bioenergetic 
homeostasis in cancer. Studies have shown that changes in the expression of key enzymes involved in OXPHOS, such as 
cytochrome c oxidase (COX) and ATP synthase, as well as the TCA cycle enzymes isocitrate dehydrogenase (IDH), 
fumarate hydratase (FH), and succinate dehydrogenase (SDH), may contribute to glycolysis transition and cancer 
progression[77-80]. Furthermore, mutations and copy number alterations in mtDNA have also been identified as 
important factors in the development and progression of GI cancer by altering bioenergetic homeostasis[81]. These 
emerging factors and their potential contribution to the complex mechanisms underlying the progression of GI cancer are 
discussed in more detail in the following sections.

ROLE OF MITOCHONDRIAL-NUCLEAR ENCODED COX SUBUNITS IN BIOENERGETIC CHANGES AND 
PROGRESSION OF GI CANCERS
The COX complex, also known as respiratory chain complex IV, is a multi-subunit enzyme complex, consisting of 14 
subunits, and a vital component of the final step in the mitochondrial ETC responsible for catalyzing the transfer of 
electrons from cytochrome c to oxygen, a crucial step in the process of OXPHOS[82]. Recent studies have shown that 
alterations in the expression of both mtDNA-encoded and nuclear-encoded COX subunits are associated with tumori-
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Table 1 Genetic and epigenetic alterations in hypoxia-related enzymes correlated with the development and progression of 
gastrointestinal cancers

Cancer 
type Gene Type of change Consequence Model Ref.

HCC and 
CCA

PHD2 Haplo-deficiency Stabilized HIF-1 and promoted carcinogenesis and progression of HCC/CCA Mice [66,
67]

HCC PHD3 Reduced tumor level Correlated with elevated levels of HIF-1, aggressive tumor behavior, and a poor 
prognosis in HCC patients

HCC 
patient

[68]

GC PHD3 Reduced tumor level Correlated negatively with tumor size and stage, as well as HIF-1 and VEGF 
expression

GC 
patient

[69,
70]

GC PHD2 Reduced tumor level Correlated with shortened overall survival GC 
patient

[71]

CRC PHD1-
3

Reduced tumor level Although not correlated with HIF-1 expression, PHD2 was the only factor found to 
be associated with unfavorable overall survival

CRC 
patient

[72]

PAC PHD1-
3

Increased tumor level PHD1-3 expression was elevated, and specifically PHD3 expression was found to 
be associated with unfavorable overall disease-specific survival

PAC 
patient

[73]

PAC VHL Promoter methylation or 
deletion of VHL

Correlated with decreased VHL expression and poor prognosis PAC 
patient

[74]

CRC VHL VHL mutation Elevated cytoplasmic expression of HIF-1 in tumors CRC 
patient

[75]

HCC VHL Reduced tumor level Negative VHL expression was correlated with an unfavorable prognosis HCC 
patient

[76]

ESCA: Esophageal cancer; GC: Gastric cancer; HCC: Hepatocellular carcinoma; CCA: Cholangiocarcinoma; PAC: Pancreatic cancer; CRC: Colorectal 
cancer; PHD: Prolyl hydroxylase; VHL: Von Hippel-Lindau tumor suppressor.

genesis, cancer progression, and bioenergetic homeostasis in cancer. In GI cancers, alterations in the expression of the 
mitochondrial-nuclear encoded subunits of the COX complex have been implicated in driving disease progression. 
Studies have shown that the overall levels of the COX complex are increased in GI cancers, and higher levels have been 
associated with poor clinical outcomes[83,84]. Of the three mtDNA-encoded core subunits essential for the basic functions 
of the COX complex, including MTCO1, MTCO2, and MTCO3[85], MTCO1 is the most frequently investigated in GI 
cancers (Table 2). In ESCA, MTCO1 expression was found to be elevated but did not correlate with clinicopathological 
variables or survival[86]. On the other hand, elevated levels of MTCO1 were associated with diffuse GC types, suggesting 
a link between MTCO1 expression and GC carcinogenesis, de-differentiation, and distant metastasis[87,88]. In contrast, 
defective MTCO1 expression was observed in patients with HCC and CCA, while MTCO1 levels have been shown to 
predict postoperative survival in patients with HCC[89,90]. Elevated MTCO3 levels have been observed only in HCC, 
especially among patients with hepatitis B virus (HBV)-related HCC. This is likely due to the ability of the HBV X protein 
(HBx) to interact and increase MTCO3 expression[91,92]. Additionally, genetic variants identified within MTCO1 and 
MTCO3 are associated with increased carcinogenic risk in CRC[93,94], GC[95], and HCC[96], possibly due to reduced 
COX activity leading to intrinsic proton leak and a reduction in overall bioenergetic production efficiency[93,94]. 
However, studies on the expression or genetic variation of MTCO2 in GI cancers are relatively few and need further 
investigation.

While the three core mtDNA-encoded COX subunits have been extensively studied, 11 nuclear-encoded protein 
subunits are also required for the full functionality of the COX complex[97]. Of these 11 subunits, six can be replaced by 
isoforms, leading to heterogeneity in the composition and activity of this large complex[98]. In GI cancers, altered 
expression of nuclear-encoded COX subunits has been shown to play a crucial role in the switch to glycolysis and the 
promotion of tumor growth and progression (Table 2). For example, in ESCA, the silencing of COX4I1 and COX5B has 
been shown to promote bioenergetic changes and increased aggressiveness of ESCA cells in vitro[99]. In HCC and CRC, 
COX5B levels were found to correlate with prognosis, and changes in COX5B expression were associated with alterations 
in bioenergetics, cell proliferation, tumor growth, migration, and chemosensitivity. HCC and CRC, however, showed 
different COX5B expression patterns[100-102]. Similarly in CRC, increased COX4I2 has been shown to promote cell prolif-
eration, migration, tumorigenesis, and angiogenesis[103]. COX6C and COX6B2 were also found to be increased in PAC, 
with changes in expression levels of COX6C affecting COX activity and cell growth in vitro. Meanwhile, COX6B2 levels 
were associated with prognosis, metastatic potential in PAC cells, and altered bioenergetic homeostasis[104,105].

The roles of remaining subunits in GI cancer are currently unknown, and studies focusing on the level of nuclear-
encoded COX subunit in GI cancer largely suggest that altered expression leads to decreased OXPHOS activity in a 
Warburg effect-like phenotype. Increased GI cancer growth and/or progression is also suggested. Together, these 
findings highlight the crucial role COX subunits play in GI cancer progression and underscore the need for continued 
research. The identification of altered COX subunit expression and function may lead to the development of novel 
therapeutic targets for the treatment of GI cancers. Therefore, further research on the COX complex and its subunits is 
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Table 2 Defects in cytochrome c oxidase subunits correlated with bioenergetic alterations and the growth or progression of 
gastrointestinal cancers

Type Gene Type of defect Consequence Model Ref.

GC Full COX complex Increased expression Correlated with poor prognosis GC patient [83]

CRC Full COX complex Increased expression May be involved in the initiation of carcino-
genesis, but not in cancer progression

CRC patient [84]

ESCA MTCO1 Increased expression There is no correlation with clinical variables or 
survival

ESCA patient [86]

GC MTCO1 Increased expression Correlated with gastric tumorigenesis, de-
differentiation, and distant metastasis, but 
showed no significant correlation with 
prognosis

GC patient [87,88]

HCC MTCO1 Reduced expression Correlated with postoperative prognosis HCC patient [89]

CCA MTCO1 Reduced expression Reduced MTCO1 correlates with increased 
VDAC1 expression but not with other 
clinicopathological factors

CCA patient [90]

HCC MTCO3 Increased expression HBx interacted with MTCO3, leading to an 
increase in MTCO3 expression levels and an 
enhancement in OXPHOS activity

Cell line [91,92]

CRC MTCO1 Genetic variation The Gly125Asp substitution in MTCO1 
correlated with an increased risk of CRC and 
caused proton leak in COX

CRC patient [93,94]

GC MTCO3 Genetic variation Polymorphisms at mtDNA positions 9540 and 
9548 correlated with an increased risk of GC

GC patient [95]

HCC MTCO3 Genetic variation Polymorphisms at mtDNA position 9545 
correlated with an increased risk of HCC

HCC patient [96]

ESCA COX4I1 Expression silenced Promotes alterations in cellular bioenergetics 
and increases cancer cell aggressiveness

ESCA Cell line [99]

ESCA COX5B Expression silenced Promotes alterations in cellular bioenergetics 
and increases cancer cell aggressiveness

ESCA Cell line [99]

HCC COX5B Increased in tumor Correlated with prognosis, regulated 
bioenergetic alterations, and influenced cell 
proliferation, tumor growth, and migration

HCC patient, cell line, 
mouse model

[100]

CRC COX5B Reduced in tumor Correlated with prognosis, modulated COX 
activity, and controlled cell proliferation, 
apoptosis, and response to chemotherapy

CRC patient and cell 
line

[101,102]

CRC COX4I2 Increased in tumor Promoted cell proliferation, migration, tumori-
genesis, and angiogenesis

CRC patient and cell 
line

[103]

PAC COX6C Increased expression Modulated COX activity and cell proliferation PAC cell line [104]

PAC COX6B2 Increased in tumor Correlated with prognosis, and modulated 
cancer cell metastatic potential, and altered 
bioenergetic homeostasis

PCA patient and cell 
line

[105]

COX: Cytochrome c oxidase; GI: Gastrointestinal; ESCA: Esophageal cancer; GC: Gastric cancer; HCC: Hepatocellular carcinoma; CCA: 
Cholangiocarcinoma; PAC: Pancreatic cancer; CRC: Colorectal cancer; MTCO1: Mitochondrially encoded cytochrome c oxidase I; MTCO2: Mitochondrially 
encoded cytochrome c oxidase II; MTCO3: Mitochondrially encoded cytochrome c oxidase III; COX4I1: Cytochrome c oxidase subunit 4I1; COX4I2: 
Cytochrome c oxidase subunit 4I2; COX5B: Cytochrome c oxidase subunit 5B; COX6C: Cytochrome c oxidase subunit 6C; COX6B2: Cytochrome c oxidase 
subunit 6B2.

needed to fully elucidate their role in GI cancer.

THE ROLE OF ATP SYNTHASE SUBUNITS IN DRIVING BIOENERGETIC CHANGES AND GI CANCER 
PROGRESSION
ATP synthase, also known as Complex V, is a crucial mitochondrial protein complex that plays a vital role in cellular ATP 
synthesis. The F1 beta-catalytic subunit (ATP5F1B) is a critical component that has been extensively studied to find a 
significant reduction in various cancer types, including GI cancers[106] (Table 3). However, the expression patterns of 
ATP5F1B in patients with GC remain controversial. While one study reported increased ATP5F1B expression in tumors, 
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Table 3 Implications of defects in adenosine triphosphate synthase subunits on bioenergetic alterations and the development or 
progression of gastrointestinal cancer

Type Gene Type of defect Consequence Model Ref.

GC ATP5F1B Increased in tumor Higher ATP5B expression correlated with poor prognosis. 
Over-expression of ATP5F1B increased intracellular and 
extracellular ATP levels, cell proliferation, migration, and 
invasion

GC patient, cell line, and 
xeno-transplantation mouse 
model

[107]

GC ATP5F1B Reduced in tumor Reduced ATP5F1B expression correlated with elevated 
glycolytic enzyme levels

GC patient [108]

HCC ATP5F1B Reduced in tumor Reduced ATP5F1B expression correlated with impaired 
OXPHOS

HCC patient [109,
110]

ESCA ATP5F1B Reduced in tumor Reduced ATP5F1B expression correlated with elevated 
glycolytic enzyme levels

ESCA patient [108]

CRC ATP5F1B Reduced in tumor Reduced ATP5F1B expression correlated with poor prognosis 
in CRC patients

CRC patient [109]

PAC ATP5F1B Reduced in tumor Unknown PAC patient and cell line [111]

CRC ATP5F1A Increased in liver 
metastasized tumor

Silencing of ATP5F1A inhibited cell invasion and reduced cell 
proliferation in CRC cancer cells

CRC patient and cell line [112]

CRC ATP5F1E Increased in tumor Higher ATP5E levels correlated with poor prognosis. 
Silencing of ATP5F1E inhibited cancer cell migration and 
invasion in vitro, and distal metastasis in vivo

CRC patient, cell line, and tail 
vein injected mouse model

[113]

CRC ATP5F1D Increased in liver 
metastasized tumor

Higher ATP5F1D expression correlated with poor prognosis, 
and silencing of ATP5F1D inhibited cell invasion

CRC patient and cell line [112]

ATP: Adenosine triphosphate; GI: Gastrointestinal; ESCA: Esophageal cancer; GC: Gastric cancer; HCC: Hepatocellular carcinoma; CCA: 
Cholangiocarcinoma; PAC: Pancreatic cancer; CRC: Colorectal cancer; ATP5F1A: ATP synthase F1 subunit alpha; ATP5F1B: ATP synthase F1 subunit beta; 
ATP5F1D: ATP synthase F1 subunit delta; ATP5F1E: ATP synthase F1 subunit epsilon.

correlating with poor prognosis[107], consistent findings from other GI cancer studies indicate that decreased ATP5F1B 
expression results in reduced ATP production efficiency from OXPHOS and a subsequent shift towards the glycolysis-
dependent Warburg effect phenotype[108-111]. These findings highlight the critical role of ATP synthase in GI cancer 
progression, suggesting that mitochondrial defects in ATP synthesis may contribute to the bioenergetic alterations 
observed in these cancers.

Apart from the F1 beta-subunit, other subunits of the ATP synthase F1 region have been implicated as crucial to CRC 
carcinogenesis/progression. Interestingly, in contrast to the finding that ATP5F1B generally decreases in tumors, 
ATP5F1A, ATP5F1E, and ATP5F1D were found to be increased in patients with CRC. Moreover, higher levels correlated 
with poorer prognosis as well as increased risk of CRC liver metastasis[112,113]. Currently, there are no reports on the 
expression patterns or role of ATP synthase subunits in CCA. The mechanisms underlying opposing expression patterns 
in ATP synthase subunits are thus unknown pending further investigation.

To provide more insight into the development of novel therapeutic targets for the treatment of GI cancers, further 
research on ATP synthase expression and function is necessary. In this regard, potential avenues of research may focus on 
clarifying the controversial findings regarding ATP5F1B expression patterns in GC and elucidating the mechanisms 
underlying these opposing expression patterns seen in differing ATP synthase subunits in CRC. Such research may 
uncover novel therapeutic targets, leading to improved treatment outcomes.

LINKING IDH, FH, AND SDH TO BIOENERGETICS AND GI CANCER PROGRESSION
Fumarate and succinate are critical metabolites that are produced during the TCA cycle, which is an essential process for 
energy production in cells. While these metabolites are important for normal cellular function, they have been shown to 
act as oncometabolites in various types of cancer by inducing pseudohypoxia[114]. Specifically, aberrant fumarate and 
succinate accumulation resulting from mutations or abnormal expression in FH and SDH, respectively, can impede the 
production of α-ketoglutarate in the TCA cycle, which is a key substrate in tumor suppression pathways. Similarly, 
mutations in IDH enzymes, which are responsible for α-ketoglutarate synthesis, can directly reduce the levels of α-
ketoglutarate. This reduction in α-ketoglutarate can limit the availability of substrate for the hydroxylation of HIF-1 by 
PHDs for subsequent degradation by the proteasome. Consequently, stabilized HIFs activate the transcription of genes 
involved in cancer-related processes such as angiogenesis, glucose metabolism, and cell proliferation, thereby promoting 
cancer development and progression[114].

In addition to their effects on HIFs, high levels of fumarate and succinate have been shown to cause abnormal 
methylation of DNA and histones, leading to dysregulation of gene expression and cell function. This is due to 
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attenuation of enzymes responsible for DNA and histone demethylation such as tet-eleven translocation methyl-cytosine 
dioxygenase (TET) and lysine demethylase (KDM, also known as the Jumonji C domain-containing histone demethylase, 
JHDM)). Dysregulation of gene expression, increased carcinogenicity, and cancer progression can result from decreased α
-ketoglutarate under high fumarate and succinate levels[115,116] (Figure 3).

The FH and SDH enzymes responsible for the catabolism of fumarate and succinate have been implicated as tumor 
suppressors[117]. Genetic variants in FH or SDH complex subunits, including SDHA, SDHB, SDHC, and SDHD, have 
been associated with increased risk of certain cancers such as hereditary leiomyomatosis and renal cell cancer (HLRCC)
[118,119] as well as paraganglioma and pheochromocytoma[120-123]. Although there is limited evidence involving 
genetic mutants of FH or SDH complex subunit genes in GI cancer, an unusual mutation of the FH gene was found to be 
associated with the development of gastric leiomyoma following cutaneous and uterine leiomyomatosis[124]. Except for 
loss-of-function mutations, some researchers have revealed FH and SDH complex subunit gene single nucleotide 
polymorphisms (SNP) in patients with HCC and CRC[125,126]. Interestingly, FH was found to be downregulated in HCC 
patients with portal vein thrombosis due to currently unknown underlying mechanisms[127]. However, the role of FH 
and SDH in GI cancer remains largely unknown. Further investigation is thus necessary.

Understanding the role of oncometabolites in GI cancer could provide valuable insights into the development of novel 
therapeutic targets for the treatment of these cancers. Further research should be conducted to investigate the potential 
roles of FH and SDH in the development and progression of GI cancer and explore the possible therapeutic targets 
associated with the regulation of these enzymes. By gaining a better understanding of oncometabolites in GI cancer, we 
may be able to develop more effective therapies and improve patient outcome.

EXPLORING BIOENERGETIC REGULATORS AS TARGETS FOR GI CANCER THERAPY
Our current understanding of metabolic reprogramming and bioenergetic alterations in cancer has led to the emergence 
of several potential drugs that target the bioenergetics of cancer cells, offering a promising avenue for anti-cancer therapy. 
These drugs can be classified into two main categories based on their mode of action: targeting aerobic glycolysis/lactate 
biosynthesis and transportation, or targeting the TCA cycle and coupled OXPHOS (Figure 4).

To target aerobic glycolysis, several strategies have been developed including blocking glucose import by targeting 
GLUT1, reducing glycolysis activity by targeting hexokinase 2 (HK2), PKMFB3, and PKM2, inhibiting lactate biosynthesis 
by targeting LDHA and PDK, and blocking lactate transportation through targeting MCT1/2. Targeting the TCA cycle 
and OXPHOS involves PDH and mitochondrial complex inhibitors. Several bioenergetic-targeted drugs have provided 
pre-clinical or clinical evidence in treating GI cancers. Table 4 provides a summary of these drugs. In the following 
sections, we will discuss the details of such strategies and the drugs used to target bioenergetic regulators during GI 
cancer therapy.

UNLOCKING THE POTENTIAL OF GLUCOSE METABOLISM TARGETS IN GI CANCER THERAPY
Cancer cells typically rely on increased glucose uptake, a phenomenon known as the Warburg effect, to meet energy 
requirements, making glucose uptake a promising target for anti-cancer therapy. As a result, GLUT1 has been identified 
as a potential drug target for blocking glucose uptake. Several GLUT1 inhibitors, including genistein, apigenin, fasentin, 
WZB117, WZB27, WZB115, STF-31, and BAY-876 have shown an ability to block glucose uptake[14]. Genistein and 
apigenin are natural compounds belonging to the flavonoid group, and they have been shown to inhibit hypoxia-
inducible factor 1A (HIF1A) mRNA and protein expression, which leads to inactivation of downstream genes such as 
GLUT1 and HK2, thereby attenuating glycolysis activity[128-130]. In GI cancers, these compounds have demonstrated the 
ability to inhibit cancer cell proliferation, cell cycle progression, colony formation, migration, invasion, angiogenesis, 
stemness, spheroid formation, EMT, and to enhance cell death[131-146]. Although the majority of evidence pertaining to 
efficacy comes from in vitro cell-based assays, genistein and apigenin have entered clinical trials as a combination anti-
cancer therapy for patients with CRC (NCT10985763 and NCT00609310) and PAC (NCT02336087, NCT00376948 and 
NCT00882765). Moreover, dietary supplementation with apigenin has been shown to significantly prevent CRC 
recurrence in a prospective study[147]. Fasentin, WZB117, WZB27, WZB115, STF-31, and BAY-876 are synthetic chemicals 
with selective activity on GLUT1 inhibition. Fasentin, WZB27, and WZB115 have shown anti-cancer potential in other 
pre-clinical cancer models, although there is currently little to no research on GI cancers. WZB117 has been shown to 
reduce glucose uptake, inhibit cell proliferation/invasion, and enhance chemosensitivity in GI cancer cell lines, as well as 
in xenograft models[148-151]. STF-31 has been implicated in reducing cancer stem cell stemness, cell proliferation, 
viability, and tumor growth in PAC and CRC cell lines, as well as in xenograft models[152,153]. BAY-876 has been found 
to inhibit cell proliferation, tumor growth, glucose uptake, and promote chemosensitivity in ESCA, PCA, and CRC cell 
lines, and in xenograft mouse models[154-156]. Although these findings are promising, WZB117, STF-31, and BAY-876 
are not currently in clinical trials for GI cancer. Thus, their safety, dosage, and therapeutic response in GI cancer patients 
remain to be determined in future studies.

Another strategy to block glycolysis is by targeting glycolytic enzymes or attenuating glycolytic activity. A well-
studied example of this strategy is the use of 2-deoxy-D-glucose (2-DG), a glucose molecule with a 2-hydroxyl group 
replaced by hydrogen. 2-DG is taken up by cells with high glucose uptake ability, such as cancer cells, where it serves as a 
competitive inhibitor of glucose[157]. Once inside the cell, 2-DG enters the glycolytic pathway and is phosphorylated by 
HK2 to become 2-DG-6-phosphate (2-DG-6-P), which cannot be further processed by G6P isomerase and therefore 
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Figure 3 Tricarboxylic acid cycle dysfunction in cancer and its role in carcinogenesis, progression, and anti-cancer drug resistance. The 
left panel depicts the tricarboxylic acid cycle, with succinate dehydrogenase and fumarate hydratase as key regulatory enzymes responsible for the formation of 
oncometabolites succinate and fumarate. The isocitrate dehydrogenase enzyme synthesizes α-ketoglutarate, which serves as a substrate for tumor suppressor 
pathways, such as hypoxia-inducible factor 1 hydroxylation for degradation, as well as histone and DNA demethylation. These processes can lead to pseudohypoxia 
and aberrant gene expression, promoting carcinogenesis, progression, and anti-cancer drug resistance. The right panel provides a summary of these relationships. 
OAA: Oxaloacetate; SDH: Succinate dehydrogenase; FH: Fumarate hydratase; PDH: Pyruvate dehydrogenase; IDH: Isocitrate dehydrogenase; α-KG: α-
ketoglutarate; HIF-1: Hypoxia-inducible factor 1.

accumulates. Accumulated 2-DG-6-P reversely negatively inhibits HK2 activity, leading to a reduction in glycolytic 
activity. A derivative of 2-DG, fluorodeoxyglucose (18F-FDG), has been extensively employed in positron emission 
tomography (PET) to visualize the location and status of certain types of cancers[158]. In pre-clinical studies using GI 
cancer cell lines, as well as xenograft models and rat HCC and hamster PAC models, 2-DG has been shown to inhibit cell 
proliferation, tumor growth, and promote chemosensitivity[159-165]. Although 2-DG has entered clinical trials for other 
cancer types, only a phase I trial (NCT00096707) was conducted for patients with PAC, and the safety, dose, and efficacy 
of 2-DG in treating patients with other GI cancers are unknown.

Several other chemical drugs have been claimed to inhibit HK2 function, but their roles in GI cancers are unclear, with 
the exception of 3-bromopyruvate (3-BrPA) and lonidamine (LND). 3-BrPA is an analog of both lactate and pyruvate and 
shows an inhibitory effect on HK2, possibly due to its ability to induce protein alkylation[166,167]. In pre-clinical studies 
of GI cancers, 3-BrPA has shown its ability to inhibit cellular ATP generation, cell proliferation, tumor growth, induce 
mitochondrial depolarization, reduce animal serum VEGF levels, and promote cell death and chemosensitivity in GC, 
HCC, PAC, and CRC cell lines, as well as rabbit, transgenic mice, and xenograft mouse models[167-171]. Therapeutic 
efficacy and safety were only evaluated in a case report study, providing a safe and tolerable dose of 3-BrPA in patients 
with fibrolamellar HCC[172].

LND is an indazole derivative that was previously utilized as an anti-spermatogenic agent. In drug re-purposing 
studies, LND was found to have anti-cancer activity by affecting bioenergetic homeostasis, including the glycolytic 
pathway, through targeting HK2 via currently unclear mechanisms[173]. LND showed promising therapeutic efficacy by 
inhibiting cell proliferation, migration, invasion, cell cycle progression, and increasing chemosensitivity in HCC, CCA, 
and CRC cell lines, as well as in a hamster CCA model[174-179]. Encouraging results were observed in a clinical trial 
recruiting patients with GC, showing improved overall response rate and duration of disease progression[174]. Reversely, 
it was reported that administration of LND was ineffective and toxic in clinical trials recruiting patients with CRC[178,
179].

Targeting PFKFB3 is another approach to block cancer glycolysis, as it is considered an oncogene in cancers due to its 
high expression and role in glycolysis[180]. PFKFB3 is activated by multiple cancer-associated stimuli, including 
cytokines, chemokines, growth factors, and hypoxia, and then participates in glycolysis through catalyzing fructose-6-P to 
become F2,6BP, which can further positively enhance PFK1 activity and thus accelerate glycolysis[180]. Accordingly, 
PFKFB3 drugs have been identified and tested in pre-clinical and clinical studies. Among the list of candidate drugs that 
target PFKFB3, 3-(3-pyridinyl)-1-(4-pyridinyl)-2-propen-1-one (3PO), 1-(4-pyridinyl)-3-(2-quinolinyl)-2-propen-1-one 
(PFK15), and 1-pyridin-4-yl-3-[7-(trifluoromethyl)-quinolin-2-yl]-prop-2-en-1-one (PFK158) have drawn more attention 
than others[181]. It was found that 3PO and PFK15 inhibit cell proliferation, reduce tumor growth, attenuate angio-
genesis, prevent fibrogenesis, and increase cell death in pre-clinical studies using GI cancer cell lines, transgenic mice, 
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Figure 4 Potent bioenergetic-targeting drugs for gastrointestinal cancers. Promising bioenergetic drugs for gastrointestinal cancers can be classified 
into two main categories based on their mode of action. The first category involves targeting aerobic glycolysis and lactate biosynthesis/transportation, while the 
second category involves targeting the tricarboxylic acid (TCA) cycle and oxidative phosphorylation (OXPHOS). Strategies to target aerobic glycolysis include 
blocking glucose importation through the targeting of glucose transporter 1 with compounds such as genistein, apigenin, WZB117, STF-31, and BAY-876, reducing 
glycolysis activity by targeting HK2 with compounds such as 2-DG, 3-BrPA, and LND, and targeting PKMFB3 and PKM2 with compounds such as 3PO, PFK15, 
PFK158, shikonin, and TT-232. Lactate biosynthesis can be inhibited by targeting LDHA with compounds such as compound 24c, PSTMB, oxamate, galloflavin, 
FX11, and AT-101, and PDK with DCA. Lactate transportation can be blocked by targeting MCT1/2 with compounds such as AZD3965 and AR-C155858. Targeting 
the TCA cycle and OXPHOS involves using inhibitors of pyruvate dehydrogenase, such as CPI-613, and mitochondrial complex I with metformin, tamoxifen, IM156, 
IACS-010759, and complex III with atovaquone. GLUT: Glucose transporter; HK: Hexokinase; G6P: Glucose-6-phosphate; G6PI: Glucose-6-phosphate isomerase; 
F6P: Fructose-6-phosphate; NADPH: Nicotinamide adenine dinucleotide phosphate; PFK1: Phosphofructokinase-1; F2,6BP: Fructose-2,6-bisphosphate; PFKBP3: 
Fructose-2,6-biphosphatase 3; F1,6BP: Fructose-1,6-bisphosphate; G3P: Glyceraldehyde-3-phosphate; DHAP: Dihydroxyacetone phosphate; GAPDH: 
Glyceraldehyde 3-phosphate dehydrogenase; 1,3BPG: 1,3-bisphosphoglycerate; 3PG: 3-phosphoglycerate; PGK: Phosphoglycerate kinase; PGAM: 
Phosphoglycerate mutase; 2PG: 2-phosphoglycerate; ENO: Enolase; PEP: Phosphoenolpyruvate; PKM1/2: Pyruvate kinase isozyme M1/M2; LDH: Lactate 
dehydrogenase; MCT: Monocarboxylate transporter family; PDH: Pyruvate dehydrogenase; IDH: Isocitrate dehydrogenase; α-KG: α-ketoglutarate; OAA: 
Oxaloacetate; SDH: Succinate dehydrogenase; FH: Fumarate hydratase; I: Mitochondrial complex I; II: Mitochondrial complex II; III: Mitochondrial complex III; IV: 
Mitochondrial complex IV; V: Mitochondrial complex V; Q: Co-enzyme Q; cyto C: Cytochrome c; KGDHC: α-ketoglutarate dehydrogenase complex.

xenograft mouse models, and HCC rat models[182-189]. Intriguingly, it was also found that 3PO suppresses glucose 
uptake via a 14C-2-DG tracing system[184]. Although there is no pre-clinical evidence of efficacy in GI cancers, the safety, 
tolerated dose, and therapeutic efficacy of PKF158 have been evaluated in a Phase I clinical trial (NCT02044861) that 
involved patients with solid tumors[190].

One strategy proposed to inhibit glycolysis activity is to target the last enzyme in the glycolytic pathway –PKM2. 
PKM2 targeting is based on its glycolysis role as well as aberrant expression in cancer-associated events[191]. While many 
drugs have shown the ability to inhibit PKM activity, only two, TT-232 and Shikonin, have been confirmed efficacious in 
pre-clinical studies. Both TT-232 and Shikonin have been found to inhibit GI cancer cell proliferation, migration, invasion, 
cell cycle progression, and tumor growth, as well as enhance cell death[192-200]. However, the efficacy of these drugs in 
treating GI cancers is still unclear and requires further investigation. Both drugs have entered clinical trials for specific 
cancers, showing promise as cancer therapy targets.
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Table 4 Promising novel bioenergetics targeting drugs for gastrointestinal cancer therapy

Inhibitor Target GI model Consequence Clinical trial Ref.
Targeting glucose transportation

Genistein HIF1A, 
GLUT1 and 
HK2

GC, ESCA, HCC, 
CCA, PCA, and 
CRC cell lines

Inhibited cancer cell proliferation, cell cycle 
progression, migration, invasion, 
angiogenesis, stemness, spheroid 
formation, EMT, and promoted apoptosis

CRC patient, phase I/II (NCT10985763), 
and PAC patient, phase I/II 
(NCT02336087, NCT00376948 and 
NCT00882765)

[131-
140]

Apigenin HIF1A, 
GLUT1 and 
HK2

GC, ESCA, HCC, 
CCA, PCA, and 
CRC cell lines

Inhibited cancer cell proliferation, colony-
forming, cell cycle progression, migration, 
invasion, angiogenesis, and induced 
apoptosis

CRC patient, phase II (NCT00609310) [141-
146]

WZB117 GLUT1 HCC, CCA, 
PAC, and CRC 
cell lines, and 
xenograft 
models

Reduced glucose uptake, inhibits cell prolif-
eration, and invasion, and enhanced 
chemosensitivity

None in GI cancers [148-
151]

STF-31 GLUT1 PAC and CRC 
cell lines, and 
xenograft model

Reduced cancer stem cell properties, such 
as stemness, and inhibits cell proliferation, 
viability, and tumor growth

None in GI cancers [152,
153]

BAY-876 GLUT1 ESCA, PCA, and 
CRC cell lines, 
and xenograft 
mouse models

Reduced cancer cell proliferation, tumor 
growth, and glucose uptake, while also 
increased chemosensitivity

None in GI cancers [154-
156]

Targeting glucose metabolism

2-Deoxy-D-glucose 
(2-DG)

HK2 GC, ESCA, HCC, 
PAC and CRC 
cell lines, 
xenograft 
models, and rat 
HCC and 
hamster PAC 
models

Inhibited cell proliferation, tumor growth, 
and promoted chemosensitivity

PAC patient, phase I (NCT00096707) [159-
165]

3-Bromopyruvate (3-
BrPA)

HK2 GC, HCC, PCA, 
and CRC cell 
lines, and rabbit, 
transgenic 
mouse and 
xenograft mouse 
models

Inhibited cellular ATP generation, cell 
proliferation, and tumor growth. Also 
induced mitochondrial depolarization, 
reduced animal serum VEGF levels, and 
promoted cell death and chemosensitivity

HCC patient, case report[170] [167-
170]

Lonidamine (LND) HK2 HCC, CCA, and 
CRC cell lines, 
hamster CCA 
model, and GC 
and CRC 
patients

Inhibited cell proliferation, migration, 
invasion, and cell cycle progression. 
Increased chemosensitivity, patient overall 
response rate, and duration of disease 
progression in GC patients. However, was 
ineffective and toxic in advanced CRC 
patients

GC patient, phase II[172], CRC patients, 
phase II[176,177]

[174-
179]

3-(3-pyridinyl)-1-(4-
pyridinyl)-2-propen-
1-one (3PO)

PFKFB3 HCC, PAC, and 
CRC cell lines, 
and transgenic 
and xenograft 
mouse models

Inhibited glucose uptake, cell proliferation, 
tumor growth, angiogenesis, fibrogenesis, 
and promoted cell death

None in GI cancers [182-
184]

1-(4-pyridinyl)-3-(2-
quinolinyl)-2-propen-
1-one (PFK15)

PFKFB3 GC, HCC, PAC, 
and CRC cell 
lines, xenograft 
models, and 
HCC rat model

Inhibited cell proliferation, migration, 
invasion, cell cycle progression, tumor 
growth, and enhanced cell death

None in GI cancers [185-
189]

1-pyridin-4-yl-3-[7-
(trifluoromethyl)-
quinolin-2-yl]-prop-
2-en-1-one (PFK158)

PFKFB3 None in GI 
cancers

None in GI cancers Solid tumor patients, phase I 
(NCT02044861)

[190]

Shikonin PKM2 GC, ESCA, HCC, 
CCA, PCA, and 
CRC cell lines, 
and xenograft 
mouse models

Inhibited cell proliferation, migration, 
invasion, cell cycle progression, tumor 
growth, and enhanced cell death

None in GI cancers [192-
197]

HCC, PAC, and 
CRC cell lines, 

TT-232 PKM2 Inhibited cell proliferation, tumor growth, 
and enhanced cell death

None in GI cancers [198-
200]
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and xenograft 
mouse models

Targeting lactate biosynthesis

Dichloroacetate 
(DCA)

PDK GC, ESCA, HCC, 
PAC, and CRC 
cell lines, 
xenograft 
models, and 
B6C3F1 mice

Reduced lactate production, cell prolif-
eration, migration, and increased 
chemosensitivity. Showed synergistic anti-
cancer effects in HCC. However, promoted 
hepatocarcinogenesis in B6C3F1 mice

CRC patient, phase I (NCT00566410) [203-
207]

Compound 24c LDHA PAC cell lines, 
and xenograft 
model

Suppressed cell proliferation, colony 
formation, enhanced cell apoptosis, arrested 
cell at G2 phase, repressed xenograft 
growth, and re-programmed cancer 
metabolism, with minimal impact on mouse 
weight

None in GI cancers [210]

1-(Phenylseleno)-4-
(Trifluoromethyl) 
Benzene (PSTMB)

LDHA HCC and CRC 
cell lines

Inhibited cell proliferation, reduced cell 
viability, attenuated LDHA activity, 
lowered lactate levels, and induced 
mitochondria-mediated apoptosis

None in GI cancers [211]

Oxamate LDHA GC, ESCA, HCC, 
PCA, and CRC 
cell lines

Suppressed LDHA activity, lactate 
production, cell proliferation, migration, 
MMP9 expression, pro-inflammatory 
cytokines, EMT transition, and 
AKT/ERK/mTOR signaling pathways, 
while enhanced apoptosis, senescence, 
protective autophagy, and metabolic 
rewiring

None in GI cancers [212-
218]

Galloflavin LDHA HCC, PCA, and 
CRC cell lines

Reduced ATPase activity and expression 
levels of heat shock proteins, inhibited cell 
proliferation, lactate production, pro-
inflammatory cytokines, and EMT 
transition, while promoting apoptosis and 
senescence

None in GI cancers [215,
218-
220]

FX11 LDHA HCC, PCA, and 
CRC cell lines, 
and xenograft 
mouse models

FX11 reduced lactate production and ATP 
levels, suppressed cell proliferation, 
migration, invasion, and xenograft tumor 
growth, while enhancing apoptosis. 
However, in a PCA patient-derived mouse 
xenograft model, FX11 was only effective in 
attenuating tumor growth in the presence 
of mutant TP53

None in GI cancers [221-
225]

Gossypol (AT-101) or 
its derivatives

LDHA GC, ESCA, HCC, 
PAC and CRC 
cell lines, GC 
and xenograft 
mouse models, 
and ESCA 
patient

Reduced cell viability, suppressed cell 
proliferation, migration, and tumor growth, 
down-regulated cancer stem cell markers 
CD133, Nanog, LC3, and YAP-1, enhanced 
apoptosis, protective autophagy. and 
complete response rate/prognosis

ESCA patient, phase I/II (NCT00561197) [226-
240]

Targeting lactate transportation

AZD3965 MCT1/2 GC, ESCA, HCC, 
CRC cell lines

Inhibited cell proliferation and tumor 
growth, while increasing intracellular 
lactate concentration, TCA-related 
metabolites, mitochondrial metabolism, and 
chemosensitivity. Also decreased 
intracellular pH

None in GI cancers [242-
246]

AR-C155858 MCT1/2 GC, PAC, and 
CRC cell lines, 
and xenograft 
mouse models

Inhibited cell proliferation, spheroid 
forming ability, and tumor growth, while 
decreased glycolysis and increased 
intracellular lactate concentration, TCA-
related metabolites, mitochondrial 
metabolism, and chemosensitivity

None in GI cancers [247-
249]

Targeting mitochondrial OXPHOS

Metformin Mitochondrial 
complex I

GC, ESCA, HCC, 
CCA, PAC, and 
CRC cell lines, 
xenograft 
models, and 
ESCA, HCC, 
CCA, PCA and 
CRC patients

Suppressed cell proliferation, migration, 
cell cycle progression, and tumor growth 
while increasing chemosensitivity and cell 
death. Also re-programmed the tumor 
immune microenvironment in ESCA 
patients

ESCA patient, phase II (ChiCTR-ICR-
15005940), HCC patient, phase I 
(CTRI/2018/07/014865), CCA patient, 
phase Ib (NCT0249674), PCA patient, 
phase II (NCT01210911 and 
NCT01167738), and CRC patient, phase 
II (NCT01312467, NCT03047837, and 
NCT01941953)

[252-
265]
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Tamoxifen Mitochondrial 
complex I

GC, ESCA, HCC, 
CCA, PAC and 
CRC cell lines, 
CRC murine 
model, and 
ESCA, HCC and 
PAC patients

Inhibited cell proliferation, tumor growth, 
metastasis, and increased chemosensitivity. 
However, no prolonged survival benefits 
have been observed in HCC patients, and in 
some cases, there may even be a higher risk 
of death

ESCA patient, phase I (NCT02513849), 
PAC patient, phase II[272-274], and HCC 
patient, phase III (NCT00003424)

[267-
273,
277]

IM156 Mitochondrial 
complex I

GC and CRC 
patients

Considered tolerable in human subjects, 
with stable disease being the most common 
response. Combinatorial therapy may be 
necessary for improved efficacy

GC and CRC patients, phase I 
(NCT03272256), and PAC patient, phase 
Ib (NCT05497778)

[278]

IACS-010759 Mitochondrial 
complex I

PAC cell lines, 
and CCA, PAC, 
and CRC 
patients

Reduced cell viability and generally well 
tolerated, but may induce neurotoxicity, 
peripheral neuropathy, and 
behavioral/physiological changes in mice. 
Increased blood lactate levels

CCA, PAC, and CRC patient, phase I 
(NCT03291938)

[279,
280]

Atovaquone Mitochondrial 
complex III

GC, HCC, PAC 
and CRC cell 
lines, and 
xenograft 
models

Reduced OXPHOS, oxygen consumption 
rate, cell viability, cell proliferation, and cell 
cycle progression. Inhibited tumor growth 
and enhanced cell death

None in GI cancers [283-
285]

Targeting TCA cycle

CPI-613 PDH and 
KGDHC

GC, ESCA, PAC 
and CRC cell 
lines, xenograft 
mouse models, 
and GC mouse 
model

Inhibited cell proliferation, cell viability, 
tumor growth, and metastasis, while 
increased cell death and chemosensitivity. 
In PAC patients, also increased the overall 
response rate

PAC patient, phase I (NCT01835041) and 
III (NCT03504423), HCC and CCA 
patients, phase I/II (NCT01766219), and 
CRC patients, phase I (NCT05070104 and 
NCT02232152)

[287-
291]

GI: Gastrointestinal; ESCA: Esophageal cancer; GC: Gastric cancer; HCC: Hepatocellular carcinoma; CCA: Cholangiocarcinoma; PAC: Pancreatic cancer; 
CRC: Colorectal cancer; LDHA: Lactate dehydrogenase subunit A; MCT1/2: Monocarboxylate transporter family 1/2; HIF1A: Hypoxia inducible factor 1A; 
GLUT1: Glucose transporter 1; HK2: Hexokinase 2; PFKFB3: Fructose-2,6-biphosphatase 3; PKM2: Pyruvate kinase isozyme M2; PDK: Pyruvate 
dehydrogenase kinase; PDH: Pyruvate dehydrogenase; KGDHC: Alpha-ketoglutarate dehydrogenase complex; EMT: Epithelial-mesenchymal transition; 
OXPHOS: Oxidative phosphorylation.

EXPLORING LACTATE BIOSYNTHESIS AND TRANSPORT AS A POTENTIAL STRATEGY FOR GI  
CANCER THERAPY
As mentioned above, the Warburg effect is a common phenomenon in many cancers for which glycolysis is upregulated 
even in the presence of oxygen. This results in the accumulation of lactate, which is the last product of glycolysis. The 
PDK class of enzymes play a key role in deciding whether pyruvate is converted to lactate or enters the TCA cycle. Under 
hypoxia, PDKs are transcriptionally upregulated by HIF1A in cancers, promoting the inactivation of PDH through PDK-
mediated phosphorylation. This leads to elevated lactate biosynthesis, resulting in excessive lactate levels that can 
promote carcinogenesis or progression[201]. Therefore, targeting PDKs is a potential strategy to inhibit lactate synthesis. 
Although several candidate drugs that target PDKs have been proposed, dichloroacetate (DCA) has been the most 
convincing inactivator of PDKs[202]. DCA has been shown in numerous pre-clinical studies on GI cancer to reduce lactate 
production, cell proliferation, migration, and increase chemosensitivity[203-207]. It has also shown synergistic anti-cancer 
activity in HCC despite concerns that it may promote hepatic carcinogenesis in B6C3F1 mice[205,208]. Despite promising 
pre-clinical results, clinical studies are still necessary to determine the efficacy and safety of DCA during cancer therapy. 
A clinical trial recruiting patients with CRC has been conducted to evaluate DCA as a potential anti-cancer drug 
(NCT00566410).

In previous studies on lactic acid inhibitors for anti-cancer therapy, the focus has been on inhibiting the enzymes 
responsible for lactate biosynthesis, namely LDH. TLDH complex composition has been investigated as a crucial factor in 
determining the fate of lactate biosynthesis or catabolism, and LDHA homo-tetramer (LDH5 or A4) has been considered 
the most effective complex for lactate biosynthesis. Accordingly, the currently established strategy is to identify LDH 
inhibitors with high selectivity against LDHA[209]. Although many candidates exist, including small peptides, small 
interfering RNAs (siRNAs), small chemical molecules, and natural compounds, only a few have progressed towards 
clinical use in anti-cancer therapy. Compound 24c and 1-(Phenylseleno)-4-(Trifluoromethyl) Benzene (PSTMB) are small 
compounds that have recently been identified as capable of selectively inhibiting LDHA, suppressing cancer cell aggress-
iveness, and enhancing cell death in both PCA cells and xenograft mouse models[210] as well as HCC and CRC cells
[211]. Notably, Compound 24c has little effect on mouse weight, perhaps due to its relatively strong activity to reprogram 
metabolic profiling[210]. In contrast, oxamate, galloflavin, and FX11 have a longer history than Compound 24c and 
PSTMB in targeting LDHA. Pre-clinical evidence shows promise in suppressing GI cancer cell aggressiveness by targeting 
LDHA and other cancer-associated signaling pathways, suggesting possible treatment of GI cancers[212-225]. Despite this 
evidence, there is still a lack of clinical results to support the safety and efficacy of these LDHA-targeting drugs in GI 
cancer patients. An early natural compound, gossypol (AT-101), derived from the cotton plant, is one exception. Gossypol 
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and its derivatives have proven potent inhibitors of LDHA[226]. Gossypol not only reduces the aggressiveness of GI and 
other cancers, but also has a strong cytotoxic effect on cancer cells[226-240]. Most importantly, gossypol has entered a 
phase I/II clinical trial (NCT00561197) to evaluate its safety and efficacy in treating patients with esophageal cancer, 
showing significant improvement in complete response and survival rates[231]. Therefore, gossypol may be the most 
promising clinical drug targeting LDHA to date for use in GI cancers.

Excessive intracellular accumulation of lactate is a hallmark of many cancer types, which necessitates MCTs in 
transporting lactate from highly glycolytic cancer cells. Secretory lactate can acidify the extracellular microenvironment, 
which can impact the tumor microenvironment[241]. While secretory lactate was initially considered a waste product of 
cancer cells, recent evidence has suggested that it serves as an alternative fuel for oxidative cancer cells, leading to 
enhanced aggressiveness[56]. Therefore, MCT targets have emerged as an alternative strategy for anti-cancer therapy
[241]. Among the various compounds proposed to target MCTs in cancer, AZD3965 and AR-C155858 have received more 
attention from researchers. Both drugs have demonstrated potential in targeting MCTs, inhibiting GI cancer cell aggress-
iveness, and stunting tumor growth both in vitro and in vivo[242-249]. While AZD3965 has entered the clinical trial phase, 
further investigation is needed to determine the safety and therapeutic efficacy of these drugs in patients with GI cancer. 
Notably, the development of MCT inhibitors has faced several challenges, including the presence of MCT isoforms and 
the need for inhibitors that selectively target cancer cells without affecting normal tissues[58,250]. In this regard, 
approaches and strategies to develop selective MCT inhibitors are being actively pursued. While MCT inhibitors hold 
promise as a potential anti-cancer therapy, further research is needed to fully understand their mechanisms of action and 
optimize their clinical applications.

TARGETING OXPHOS AS A POTENTIAL THERAPEUTIC STRATEGY FOR GI CANCER
Excessive OXPHOS activity has been observed in certain cancers and has been associated with more aggressive 
phenotypes/unfavorable clinical outcomes, making it a novel target for anti-cancer therapy[251]. Attenuating OXPHOS 
activity has been proposed as the best strategy to target OXPHOS, leading to the identification of a large number of 
candidate compounds that target mitochondrial complex I. Metformin, a compound that has long been used to treat 
diabetes, has been reported to exhibit mitochondrial complex I inhibition activity and can impact cancer cell aggress-
iveness/tumor growth in both GI cancer cell lines and xenograft models[252-265]. Metformin has advanced to clinical 
trials in combination with other anti-cancer regimens for patients with GI cancers, such as ESCA patients in Phase II 
(ChiCTR-ICR-15005940), HCC patients in Phase I (CTRI/2018/07/014865), CCA patients in Phase Ib (NCT0249674), PCA 
patients in Phase II (NCT01210911 and NCT01167738), and CRC patients in Phase II (NCT01312467, NCT03047837, and 
NCT01941953). It was found that metformin combination therapy can provide benefit to patients, perhaps through 
reprogramming the tumor immune microenvironment[258].

Recent studies have proposed several candidates as mitochondrial complex I-targeting compounds in addition to 
metformin. Among them, tamoxifen, IM156, and IACS-010759 have gained attention as potential anti-cancer agents. 
Tamoxifen is an anti-estrogen agent that has been clinically used to treat breast cancer patients with positive estrogen-
receptor (ER) expression[266]. Interestingly, tamoxifen has also been shown to inhibit cancer cell aggressiveness, tumor 
growth, metastasis, and increase chemosensitivity in GI cancers[267-273]. This effect is thought to be through an ER-
independent anti-cancer pathway[269]. Tamoxifen has been used as a monotherapy or combined therapy in several 
clinical trials, including an early phase trial in ESCA patients, Phase II trials in PAC patients[274-276], and a Phase III trial 
in HCC patients (NCT00003424). Tamoxifen has been found to be tolerable, safe, and with manageable adverse effects, 
while a Phase III trial in HCC patients found that tamoxifen monotherapy either offered no effect or decreased survival in 
patients with unresectable HCC[277]. This result has slowed the advancement of tamoxifen in GI cancers and requires 
further investigation.

IM156 and IACS-010759 are two novel mitochondria-targeting drugs that specifically inhibit mitochondrial complex I. 
While both compounds have shown promising results in pre-clinical studies against certain cancer cell lines, their 
potential in treating GI cancers involves limited evidence. Interestingly, IM156 has entered Phase I clinical trials in 
patients with GC, CRC and PCA (NCT03272256 and Janku et al[278]), demonstrating tolerability and safety. However, 
IM156 monotherapy in patients with GC and CRC offered only disease stabilization, indicating the need for further study.

On the other hand, IACS-010759 has shown significant cell viability reduction in PCA cell lines[279], leading to the 
initiation of a Phase I clinical trial (NCT03291938) to evaluate clinical efficacy and safety in patients with solid tumors due 
to CCA, PAC, and CRC. However, a recent publication reported that although IACS-010759 was tolerable and safe, it 
increased blood lactate levels and neurotoxicity while offering only limited anti-cancer efficacy. A reverse translational 
study using mice also found IACS-010759 to induce behavioral and physiological changes indicative of peripheral 
neuropathy, minimizing the possibility of combined therapy with specific anti-cancer compounds (e.g., histone 
deacetylase 6 inhibitor). The development of mitochondrial complex I inhibitors is ongoing[280].

While the mitochondrial complex I inhibitors metformin, tamoxifen, IM156, and IACS-010759 hold promise as potential 
treatments for GI cancer, further studies are needed to evaluate their efficacy and safety, particularly in combination with 
other anti-cancer compounds. The development of more selective and potent mitochondrial complex I inhibitors may 
help overcome side effects and improve efficacy in cancer treatment.

The targeting of mitochondrial complexes other than complex I has also been proposed as a strategy for anti-cancer 
therapy[281]. One such compound of note is atovaquone, which was identified as a mitochondrial complex III inhibitor 
during a drug re-purposing study[282]. Pre-clinical studies have evaluated the potential of atovaquone as an anti-cancer 
agent in GI cancer cell lines and xenograft models, and have shown its ability to reduce OXPHOS, OCR, cell viability, cell 
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proliferation, cell cycle progression, and tumor growth, while enhancing cell death[283-285]. Despite promising results, 
atovaquone is currently in clinical trials for patients with non-small cell lung cancer (NCT04648033) and acute myeloid 
leukemia (NCT03568994) but not for patients with GI cancer. Further studies are needed to determine drug tolerability, 
safety, and therapeutic efficacy in patients with GI cancer. Nonetheless, the potential benefits of targeting OXPHOS make 
for a promising strategy in GI cancer therapy. However, the potential toxicity of these inhibitors in normal cells must be 
carefully evaluated before being considered as viable anti-cancer agents. In addition, the development of resistance to 
mitochondrial inhibitors, similar to the resistance seen with other anti-cancer agents, highlights the need for combination 
therapy.

POTENTIAL OF TCA CYCLE TARGETS IN GI CANCER THERAPY
The TCA cycle is a critical metabolic pathway that fuels bioenergetic processes in cells. Targeting the TCA cycle has 
emerged as a potential strategy for anti-cancer therapy[286]. Various agents have been tested for their anti-cancer efficacy, 
including AGI-5195, AG-221, AG-881, and CPI-613[286]. Among these compounds, CPI-613 is the only PDH and alpha-
ketoglutarate dehydrogenase complex (KGDHC) dual targeting agent that has shown promising anti-cancer properties in 
GI cancer models both in vitro and in vivo[287-291]. The tolerability and safety of CPI-613, alone or in combination with 
other agents, has been evaluated or is currently being studied in patients with HCC, CCA, and CRC (NCT01766219, 
NCT05070104 and NCT02232152). However, a recent Phase III trial (NCT03504423) evaluating the anti-cancer efficacy of 
CPI-613 in patients with advanced PAC failed to improve survival rate but improved overall response rate[292]. This 
outcome is disappointing, combining CPI-613 with other drugs such as gemcitabine or nab-paclitaxel may provide better 
results.

The TCA cycle is a complex pathway, and there are multiple enzymes and metabolites that could be targeted for anti-
cancer therapy. For example, the isocitrate dehydrogenase 1 and 2 (IDH1/2) enzymes play a crucial role in the TCA cycle, 
and mutations in these enzymes have been observed in several types of cancer, including gliomas and acute myeloid 
leukemia (AML)[293]. Enasidenib and ivosidenib are two IDH1/2 inhibitors that have been approved for the treatment of 
relapsed or refractory AML[294,295]. In GI cancers, however, the efficacy of IDH1/2 inhibitors is still under investigation
[296]. In addition to IDH1/2 inhibitors, other TCA cycle inhibitors are being explored for anti-cancer therapy. For 
example, IDH1/2 mutant tumors are sensitive to glutaminase inhibitor CB-839, which targets glutamine metabolism
[297]. Another TCA cycle inhibitor, BPTES, has shown anti-cancer efficacy in pre-clinical studies by blocking the activity 
of the glutaminase enzyme[298]. However, our understanding of these inhibitors in GI cancer treatment is still limited.

Targeting the TCA cycle and associated bioenergetic processes is a promising approach for anti-cancer therapy. While 
CPI-613 has shown some success in GI cancer models, the failure in Phase III trial underscores the need for continued 
research and combination therapy. Other TCA cycle inhibitors, such as IDH1/2 and glutaminase inhibitors, are being 
evaluated for their anti-cancer efficacy in GI cancers, offering hope for future treatments.

DISCUSSION AND FUTURE PERSPECTIVE
Cancer cells undergo significant metabolic changes which involve alteration to the nuclear and mitochondrial genomes as 
well as cell microenvironment. Understanding the molecular mechanisms behind these alterations is critical for the 
development of effective cancer therapies. Next-generation technologies such as metabolic profiling, single-cell 
sequencing, and metabolic tracing can provide insights into the regulation of mitochondrial metabolism in different 
cancer types. However, developing therapies based on altered metabolism is challenging due to the diverse metabolic 
patterns observed across different cancer cells.

Simply targeting a single bioenergetic enzyme or pathway may not be enough to effectively inhibit cancer cell growth, 
as metabolic symbiosis enables cancer cells to adapt to harsh tumor environments. One potential strategy is to treat the 
metabolic patterns of different cellular subpopulations in the tumor microenvironment to create a homogeneous 
metabolic population for targeting.

Bioenergetic enzymes have been explored as a way to inhibit cancer cell growth, with some small-molecule inhibitors 
of glucose metabolism showing significant inhibition in various cancers. However, clinical translation of these inhibitors 
has been limited by side effects. Other small-molecule inhibitors and natural products that regulate key bioenergy 
enzymes have also shown promise, but their specific mechanisms and targets require further investigation. Developing 
anticancer drugs targeting bioenergetic enzymes remains a significant challenge due to the unique metabolic features of 
cancer cells. Targeted drugs have shown anticancer effects in various tumor models, and combining them with conven-
tional anticancer drugs is a promising strategy.

High-throughput multi-omics and spatial omics can help elucidate the heterogeneity of cancer cells and provide 
opportunities for therapeutic drugs targeting the bioenergetics of malignant tumors. Unbiased CRISPR-Cas9 synthetic 
lethality screening of metabolic genes that favor anti-cancer responses, particularly in vivo, could provide an avenue 
towards the identification of bioenergetic targets of interest. The ultimate goal is to develop drugs that simultaneously 
disable cancer cells while synergizing with targeted therapies.

However, while targeting bioenergetic pathways in cancer cells shows promise, it also has the potential to affect 
normal cells and tissues that rely on these pathways. Therefore, careful consideration and further research are needed to 
ensure that therapies targeting bioenergetics in cancer cells are specific and effective while minimizing potential side 
effects on normal cells and tissues. Additionally, combination therapies that target multiple pathways may be necessary 
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to achieve optimal therapeutic effects.

CONCLUSION
The metabolic reprogramming and bioenergetic alteration of cancer cells, particularly their utilization of glucose 
fermentation (the Warburg effect) for energy production, are well-known phenomena. However, comprehensive 
summaries of these alterations and their oncogenetic links in GI cancers are lacking. This review provides a summary of 
the interplay between aerobic glycolysis, the TCA cycle, and OXPHOS in cancer cells, including the molecular 
mechanisms that trigger these alterations. It also explores the role of HIFs, tumor suppressors, and the oncogenetic link 
between hypoxia-related enzymes, bioenergetic changes, and GI cancer. Additionally, this review details various anti-
cancer drugs and strategies for treating GI cancers, along with the challenges associated with them. Understanding 
dysregulated cancer cell bioenergetics is critical for effective treatments, although the diverse metabolic patterns present 
challenges for targeted therapies. Further research is needed to comprehensively understand the specific mechanisms of 
inhibiting bioenergetic enzymes, address side effects, and utilize high-throughput multi-omics and spatial omics for 
insights into the heterogeneity of GI cancer cells in targeted bioenergetic therapies.
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Abstract
BACKGROUND 
Obesity plays a vital role in the occurrence and development of non-alcoholic 
steatohepatitis (NASH). However, the underlining mechanism is still unclear, 
where adipose tissue (AT) derived exosomes may actively participate. 
MicroRNAs (miRNAs) are commonly secreted from exosomes for cell commu-
nication. Though the regulation of miR-103 on insulin sensitivity has been 
reported, the specific role of AT-derived exosomes miR-103 in NASH is still vague 
and further investigation may provide novel therapeutic choices.

AIM 
To determine the specific role of AT-derived exosomes miR-103 in developing 
NASH through various methods.

METHODS 
The expression levels of miR-103 in the AT-derived exosomes and livers were 
detected and compared between NASH mice and control. The effect of miR-103 
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on NASH progression was also explored by antagonizing miR-103, including steatosis and inflammation degree 
changes. The interaction between miR-103 and the autophagy-related gene phosphatase and tensin homolog 
(PTEN) was confirmed by dual-luciferase reporter assay. The role of the interaction between miR-103 and PTEN on 
autophagy was verified in NASH-like cells. Finally, the effects of miR-103 from adipose-derived exosomes on 
NASH and autophagy were analyzed through animal experiments.

RESULTS 
The expression of miR-103 was increased in NASH mice, compared to the control, and inhibition of miR-103 could 
alleviate NASH. The results of the dual-luciferase reporter assay showed miR-103 could interact with PTEN. MiR-
103-anta decreased p-AMPKa, p-mammalian target of rapamycin (mTOR), and p62 but increased the protein levels 
of PTEN and LC3-II/I and the number of autophagosomes in NASH mice. Similar results were also observed in 
NASH-like cells, and further experiments showed PTEN silencing inhibited the effect of miR-103-anta. AT derived-
exosome miR-103 aggravated NASH and increased the expressions of p-AMPKa, p-mTOR, and p62 but decreased 
the protein levels of PTEN and LC3-II/I and the number of autophagosomes in mice.

CONCLUSION 
AT derived-exosome increased the levels of miR-103 in the liver, and miR-103 aggravated NASH. Mechanically, 
miR-103 could interact with PTEN and inhibit autophagy.

Key Words: Non-alcoholic steatohepatitis; Nonalcoholic fatty liver disease; Exosomes; Phosphatase and tensin homolog

©The Author(s) 2023. Published by Baishideng Publishing Group Inc. All rights reserved.

Core Tip: Our study confirms the important role of miR-103-phosphatase and tensin homolog-autophagy axis in the 
pathogenesis of non-alcoholic steatohepatitis (NASH). More importantly, the elevation of miR-103 in the liver of NASH 
mice is partly due to adipose tissue exosome secretion and integration, which also partially explains the mechanism of 
obesity leading to NASH.

Citation: Lu MM, Ren Y, Zhou YW, Xu LL, Zhang MM, Ding LP, Cheng WX, Jin X. Antagonizing adipose tissue-derived exosome 
miR-103-hepatocyte phosphatase and tensin homolog pathway alleviates autophagy in non-alcoholic steatohepatitis: A trans-cellular 
crosstalk. World J Gastroenterol 2023; 29(29): 4528-4541
URL: https://www.wjgnet.com/1007-9327/full/v29/i29/4528.htm
DOI: https://dx.doi.org/10.3748/wjg.v29.i29.4528

INTRODUCTION
Non-alcoholic fatty liver disease (NAFLD) is recognized as the hepatocellular manifestation of metabolic syndrome, 
characterized by hepatic lipid accumulation and inflammation, and precluded with secondary causes, such as chronic 
viral hepatitis, significant alcohol consumption, long-term use of steatogenic medication, and other chronic liver diseases 
including autoimmune hepatitis, hemochromatosis, Wilson’s disease[1]. NAFLD is categorized into NAFL, non-alcoholic 
steatohepatitis (NASH), fibrosis, and even cirrhosis according to histological changes in different disease stages. Among 
them, NASH is considered the watershed in NAFLD and is defined as the presence of 5% hepatic steatosis and ensuing 
hepatocyte injury[1]. According to a previous meta-analysis, the pooled overall global prevalence of NAFLD was 
estimated to be 25.24% [95% confidence interval (CI): 22.10-28.65], while the pooled overall NASH prevalence among 
biopsied NAFLD patients was 59.10% (95%CI: 47.55-69.73)[2]. Moreover, fibrosis, which is closely related to liver 
cirrhosis, liver cancer, and other end-stage liver diseases, is more likely to occur in NASH patients than NAFL patients
[3]. Those findings support the importance of NASH and suggest that the burden of disease caused by NASH needs to be 
paid adequate attention. NASH has become one of the leading causes of cirrhosis and the second leading cause of liver 
transplantation in the United States[4,5].

NAFLD is commonly associated with metabolic comorbidities such as obesity, diabetes mellitus, and dyslipidemia[2,
6]. The prevalence of obesity is as high as 51.34% (95%CI: 41.38-61.20) and 81.83% (95%CI: 55.16-94.28) among NAFLD 
and NASH patients, respectively[2]. The effect of obesity on NAFLD has been intensively explored. On the one hand, the 
expansion of adipose tissue (AT) in obese people leads to increased circulating free fatty acids (FFAs) and leptin and 
decreased adiponectin, which leads to intrahepatic fat accumulation. On the other hand, the chronic inflammatory state 
caused by obesity will further lead to the infiltration of inflammatory cells in the liver, resulting in the progression of 
NAFLD[7]. Due to the important role of obesity in the occurrence and development of NAFLD, in-depth research on the 
mechanism of obesity leading to NASH may provide new therapeutic targets.

Exosomes are extracellular vesicles secreted by various cells and serve as an essential means of intercellular 
communication by delivering microRNAs (miRNAs), bioactive lipids, and regulatory proteins from one cell to another
[8]. Previous studies have shown that AT-derived exosomes are essential in regulating insulin sensitivity[9,10], a common 
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manifestation of metabolic syndrome in patients with NAFLD. Previous studies have also shown that AT-derived 
exosome miRNAs are involved in the occurrence and development of various metabolic-related diseases[11]. Among 
them, miR-103 attracted our attention since previous studies have shown that miR-103 is involved in regulating insulin 
sensitivity[12]. The specific role of AT-derived exosomes in the development of NASH also deserves further study. 
Therefore, in this study, we focused on the specific role of AT-derived exosomes miR-103 in developing NASH through 
various methods.

MATERIALS AND METHODS
Ethics statement
This study followed the guidelines for the Care and Use of Laboratory Animals of the National Institute of Health. The 
animal protocol was approved by the institutional review board of the Tab of Animal Experimental Ethical Inspection of 
the First Affiliated Hospital of Zhejiang University. The Reference Number is 2020-1407.

The successful construction of NASH animal and cell models
C57BL/6 mice were routinely fed a high-fat diet for 12 wk to establish the NASH animal model. According to different 
treatments, they were initially divided into the control group (12% kcal fat, 66% kcal carbohydrate, 22% kcal protein) and 
the model group (60% kcal fat, 20% kcal carbohydrate, 20% kcal protein)[13]. Starting from the 13th wk, 40 mg/kg miR-
negative control (NC)-anta and miR-103-anta were injected into the mice from the model group (dissolved in 0.2 mL 
normal saline) through the tail vein every 2 d thrice to construct miR-NC-anta model group and miR-103-anta model 
group. The control and model groups were injected with blank normal saline thrice (n = 10 in each group). Finally, the 
mice were sacrificed, where liver tissue, abdominal AT, and serum were collected and stored in a cryostorage tube at -80 
°C for further analysis.

NASH-like cell model was constructed by conventional oleic acid (OA)-palmitic acid (PA) mixture culture (OA:PA = 
2:1)[14]. Firstly, 128.2 mg PA (molecular weight: 256.42) was sequentially retrieved on a precision balance, 1 mL 1 M OA 
was added, vortex dissolved, and mixed in a small whirlpool, and then completely dissolved in a water bath at 55 °C-65 
°C to obtain 1.5 M FFA mixture. After that, 1.5 M FFA with DMSO was dissolved into 0.1 M working solution. In the 
model group, Alpha mouse liver 12 (AML-12) cells were added with 400 μM FFA and cultured for 24 h, followed by 
transfection with miR-103-anta and its sh-phosphatase and tensin homolog (PTEN) and their relative controls. All further 
in vitro experiments were performed on those cells.

Exosome isolation and confirmation
Exosomes were extracted from the filtrate according to the manufacturer’s instructions[15]. The diluted exosomes were 
subjected to NanoFCM (China) for transmission electron microscopy (TEM) and size distribution analysis for further 
confirmation.

Quantitative real-time polymerase chain reaction, ELISA, and western blotting
Total RNA was isolated using Trizol (Invitrogen, United States) and reverse-transcribed into cDNA using the First Strand 
cDNA Synthesis Kit (TransGen, China) following the manufacturer’s instructions. Quantitative real-time polymerase 
chain reaction (qRT-PCR) was routinely performed using the SYBR Premix Ex Taq qPCR kit (TaKaRa, Japan). The alanine 
aminotransferase (ALT), aspartate aminotransferase (AST), total triglycerides (TG), total cholesterol (CHOL), superoxide 
dismutase (SOD), malondialdehyde (MDA), and H2O2 concentrations were detected using test kits according to the 
manufacturer’s instructions. Total protein was isolated using radioimmune precipitation assay buffer (TaKaRa, Japan) 
supplemented with a protease inhibitor (Roche, Switzerland). After quantification using the BCA Protein Assay Kit 
(Thermo, United States), the proteins were separated by sodium-dodecyl sulfate gel electrophoresis and transferred onto 
polyvinylidene fluoride membranes. The membranes were blocked and incubated overnight with antibodies against 
PTEN (9188T, CST), p-AMPK (ab32047, Abcam), p-mammalian target of rapamycin (mTOR) (CSB-PA271384, Cusabio), 
LC3 (12741T, CST), p62 (ab91526, Abcam), and GAPDH (ab245355, Abcam) at 4 °C. The membranes were incubated with 
HRP-conjugated secondary antibodies (ab205718, Abcam). Finally, the protein bands were detected using enhanced 
chemiluminescence (ECL) kits (Thermo, United States).

Hematoxylin and eosin staining and oil red staining
The hematoxylin and eosin (HE) staining was performed using the HE staining kit (C0105S, Beyotime) according to the 
manufacturer’s instructions. Oil red staining was performed using an oil red staining solution (G 1262, Solarbio; C0157S, 
Beyotime). Briefly, 5-10 μm thick fresh frozen tissue was placed on the slide and dried at room temperature for 30-60 min. 
The sections were fixed with 10% paraformaldehyde for 10 min, washed thrice with distilled water, and dried for several 
minutes. After that, the oil red was diluted with deionized water in a 3:2 ratio, with impurities removed by filter paper, 
and left for 10 min at room temperature. Preheated oil red was used for tissue dye in a 6 °C temperature box for 8-10 min. 
After the 85% propylene glycol solution was differentiated for 2-5 min, it was washed twice with distilled water and 
restained with hematoxylin for 30 s. After rinsing with running water for 3 min, the tablets can be sealed with glycerine 
gelatin.
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Luciferase reporter assay and TEM
The luciferase reporter assay was performed according to the manufacturer’s instructions of Pierce™ Cypridina-Firefly 
Luciferase Dual Assay Kit (16184, Thermo). Briefly, AML-12 cells were co-transfected with a 10 nM miR-103 or NC 
control, a 2 ng pRL-CMV, and a 20 ng firefly luciferase reporter plasmid containing PTEN of the wild-type or mutant 30-
untranslated region. Then, 48 h after transfection, the cell lysates were determined by luciferase to observe the interaction 
between miR-103 and PTEN. The liver tissues with the size of 1 mm × 1 mm × 1 mm were fixed, dehydrated, 
impregnated, and embedded to make ultrathin sections (50-70 nm) and then stained with uranium acetate and lead 
citrate successively and dried for observation under TEM.

Immunofluorescence
The frozen slices of 5-10 μm thick liver tissue were dried at room temperature for 30-60 min. They were sequentially fixed 
with 10% paraformaldehyde for 10 min, rinsed thrice with distilled water, and dried for several minutes. After that, the 
antigen was repaired by microwave at 92 °C-96 °C for 10-15 min, cooled to room temperature naturally, and sealed with 
5% BSA at 37 °C for 60 min. After pouring the excess serum, LC3-II/I antibody was diluted at 1:100, added into samples, 
and incubated at 4 °C overnight. Rinsed with phosphate buffered saline (PBS) the next day, samples were added to the 
mixture of the fluorescent secondary antibody and 4’,6-diamidino-2-phenylindole at a ratio of 1:200 and incubated for 60 
min at room temperature. After washing with PBS, laser confocal scanning for immunofluorescence was performed.

Transwell analysis
3T3-L1 cells were first routinely induced to differentiate into adipocytes to identify the transfer of miR-103 from 
adipocytes to AML-12 cells. After that, Cy3-labeled miR-103 was transfected and then co-cultured with the underlying 
AML-12 cells through a transwell chamber. AML-12 cells were then isolated, and immunofluorescence determined the 
red fluorescence value.

Cell transfection
Cells for transfection were incubated into a 6-well plate. 5-10 μL miR-NC-anta and miR-103-anta were absorbed and 
diluted into 250 μL Opti-MEMⅠ reduced serum medium, mixed gently, and incubated at room temperature for 5 min. 
Then, 3-6 μL Lipofectamine® 2000 Reagent was diluted to 250 μL of Opti-MempI reduced-serum medium, lightly mixed, 
and incubated at room temperature for 5 min. Diluted miR-NC-anta, miR-103-anta, and diluted Lipofectamine® 2000 
Reagent were carefully mixed, gently blended, and incubated at room temperature for 20 min to form the reagent 
complex. After that, cells were washed with 2 mL serum-free medium, added with 2 mL of Opti-MEMI low serum 
medium to each well, and then added to 500 μL of miR-NC-anta and miR-103-anta-Lipofectamine® 2000 Reagent 
complex. These reagents were gently mixed and prepared for use.

Statistical analysis
All data are presented as mean ± SD. Differences between the two groups were analyzed using the student’s t-test for 
categorical data and the chi-square method for numerical data. All statistical analyses were performed using GraphPad 
9.0.2 software. Statistical significance between groups was set at P < 0.05.

RESULTS
The expression of miR-103 was increased in NASH mice, and inhibition of miR-103 could alleviate NASH
First, we successfully constructed animal models of NASH. Compared with the control, ALT, AST, TG, and CHOL were 
increased in NASH mice (Figure 1A). Hepatocyte ballooning, inflammatory cell infiltration, and hepatic lipid accumu-
lation were observed in the livers of NASH mice (Figures 1B and C). Furthermore, we successfully extracted and 
confirmed AT-derived and circulating exosomes (Supplementary Figure 1). Subsequently, the expression of miR-103 in 
the livers, AT-derived exosomes, and circulating exosomes was detected by qRT-PCR. MiR-103 expression levels in the 
livers, AT-derived exosomes, and circulating exosomes were significantly increased in the NASH model group compared 
with the control group. Antagonizing miR-103 decreased miR-103 expression in NASH mice, but miR-NC-anta had no 
significant effect in NASH mice (Figure 1D). In addition, compared with miR-NC-anta and the model group, miR-103-
anta treatment significantly reduced serum ALT and AST, decreased serum CHOL and TG, and alleviated oxidative 
stress (Figure 1A). Histologically, HE and oil red staining of the liver also indicated that inhibition of miR-103 alleviated 
hepatocyte ballooning, inflammatory cell infiltration, and hepatic lipid accumulation. (Figures 1B and C). Our above 
results indicate that the miR-103 level is elevated in NASH model mice, and reducing the expression of miR-103 can 
alleviate NASH, suggesting the potential involvement of miR-103.

The interaction between miR-103 and PTEN is involved in the process of autophagy
To further investigate the regulatory mechanism of miR-103 on NASH, we used TargetScan to predict its downstream 
targets[16]. The predicted results showed that PTEN, a gene that plays an essential role in autophagy, might interact with 
miR-103. Therefore, we used a dual-luciferase reporting experiment to further confirm their interaction (Figure 2A). The 
wild-type PTEN could interact with miR-103, while the mutant PTEN could not. Next, the protein content of PTEN and 
autophagy-related proteins such as p-AMPKa, p-mTOR, LC3-II/I, and p62 were determined by western blot. The results 
showed that compared with the control group, the expressions of p-AMPKa, p-mTOR, and p62 were significantly 
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Figure 1 The effect of miR-103 on the development of non-alcoholic steatohepatitis in mice. A: The results of ELISA to measure serum alanine 
aminotransferase (ALT), aspartate aminotransferase, total triglycerides, total cholesterol, superoxide dismutase, malondialdehyde, and H2O2; B: Hematoxylin and 
eosin staining of mice liver from different groups; C: Oil-red staining of mice liver from different groups; D: The expression of miR-103 in the liver, circulating 
exosomes, and adipose tissue-derived exosomes. aP < 0.01 vs control; bP < 0.01 vs model. ALT: Alanine aminotransferase; AST: Aspartate aminotransferase; TG: 
Total triglycerides; CHOL: Cholesterol; SOD: Superoxide dismutase; MDA: Malondialdehyde.

increased in the model group, while the protein levels of PTEN and LC3-II/I were decreased (Figure 2B). In addition, 
TEM and immunofluorescence staining showed that the number of autophagosomes in the liver of NASH model mice 
was significantly reduced compared with control mice (Figures 2C and D). However, compared with the model and miR-
NC-anta groups, p-AMPKa, p-mTOR, p62, and the number of autophagosomes were significantly decreased in the miR-
103-anta group. Similarly, the protein levels of PTEN and LC3-II/I was increased (Figures 2C and D). All these results 
indicate that autophagy is inhibited in the development of NASH, while miR-103-anta treatment could antagonize those 
changes. These results indicate that miR-103 interacts with PTEN and interferes with the downstream autophagy process, 
suggesting that the inhibition of autophagy in NASH may be attributed to the increased expression of miR-103.

MiR-103 participates in the development of NASH by inhibiting autophagy via interacting with PTEN
We then conducted in vitro experiments to further confirm our hypothesis. The results showed that inhibition of miR-103 
expression could reduce the accumulation of lipids in NASH model cells, decrease the release of ALT and AST, and 
relieve oxidative stress. However, the effect of miR-103-anta was partially eliminated by silencing PTEN (Figures 3A and 
B). The above results indicate that miR-103 is involved in NASH formation partially through its interaction with PTEN. In 
addition, we detected the expression of autophagy-related proteins. We found that the expression of p-AMPKa, p-mTOR, 
and p62 was increased in NASH cells, while the expression of PTEN and LC3-II/I was decreased. Treatment with miR-
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Figure 2 The capacity of miR-103 in targeting phosphatase and tensin homolog gene and affecting autophagy. A: The luciferase reporter assay 
results verified the interaction between miR-103 and phosphatase and tensin homolog; B: Western blotting showed the differential expression of the autophagy-
related protein; C: Transmission electron microscopy images of autophagosomes (red arrowhead) in the liver; D: The results of immunofluorescence staining showed 
liver autophagosomes in different groups. aP < 0.01 vs control; bP < 0.01 vs model; cP < 0.01 vs miR-103; dP < 0.05 vs model. PTEN: Phosphatase and tensin 
homolog; WT: Wild type; MUT: Mutant; DAPI: 4’,6-diamidino-2-phenylindole; mTOR: Mammalian target of rapamycin; NC: Negative control.
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Figure 3 In vitro experiments confirmed the interaction between miR-103 and phosphatase and tensin homolog gene. A: Oil-red staining of 
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cells from different groups showed different lipid droplet accumulation and inflammatory cell infiltration; B: The results of ELISA to measure serum alanine 
aminotransferase, aspartate aminotransferase, superoxide dismutase and malondialdehyde; C: Western blotting detected the expression of the autophagy-related 
protein of cells from different groups; D: Transmission electron microscopy pictures of autophagosomes (red arrowhead) in cells from different groups. aP < 0.05, bP < 
0.01, ns: No significance. NASH: Non-alcoholic steatohepatitis; PTEN: Phosphatase and tensin homolog; NC: Negative control; ALT: Alanine aminotransferase; AST: 
Aspartate aminotransferase; TG: Total triglycerides; CHOL: Cholesterol; SOD: Superoxide dismutase; MDA: Malondialdehyde.

Figure 4 MiR-103 transfers from adipocytes to hepatocytes. A: The fluorescence of liver tissue of mice injected with adipose tissue (AT)-exosomes or 
phosphate buffered saline; B: AT exosomes can be absorbed into alpha mouse liver 12 (AML-12) cells; C: Circulating exosomes can be absorbed into AML-12 cells; 
D: Transewell assay confirmed that miR-103 could be transferred from adipocytes to AML-12 cells. BAT: Brown adipose tissue; Exo: Exosomes; DIR: 1,1-dioctadecyl-
3,3,3,3-tetramethylindotricarbocyaine iodide; Cir: Circulating; PBS: Phosphate buffered saline; DAPI: 4’,6-diamidino-2-phenylindole; AML-12: Alpha mouse liver 12.

103-anta elevated the expression of PTEN and LC3-II/I and reduced the expression of p-AMPKa, p-mTOR, and p62 in 
NASH cells, while PTEN silencing inhibited the effect of miR-103-anta (Figure 3C). Finally, we also found that the 
number of autophagosomes decreased in NASH cells, and such declination was partially antagonized after the inhibition 
of miR-103. Similarly, PTEN silencing inhibited the effect of miR-103-anta (Figure 3D). To sum up, we confirmed the role 
of the miR-103-PTEN-autophagy axis in NASH through in vitro experiments.

Hepatocyte absorption of AT-derived exosome miR-103
To confirm that AT-derived exosomes can encapsulate miR-103 and target the liver, we conducted in vivo and in vitro 
experiments. In the in vivo experiment, AT and circulating exosomes of mice were extracted. The exo-DIR complex 
collected by centrifugation was injected into the tail vein of mice, and the PBS group was used as a control. The 
fluorescence of liver tissue was observed after mice scarification. There was no fluorescence in the PBS group but 
observed in AT-exo-DIR and cir-exo-DIR groups, with similar fluorescence intensity (Figure 4A). In the part of the in vitro 
experiment, the AT exosomes and circulating exosomes were detected by the FISH probe to migrate into AML-12 cells 
(Figures 4B and C). Further transewell assay showed that Cy3-labeled miR-103 could be transferred from adipocytes to 
AML-12 cells (Figure 4D).

Role of AT-derived exosome miR-103 in NASH
To verify the role of AT-derived exosome miR-103 in NASH through in vivo experiments, we extracted exosomes from 
mouse AT. We injected the extracted exosomes without other treatments and with miR-103-anta or miR-NC-anta into 
mice through the tail vein. Firstly, we found that injection of AT-derived exosomes increased the level of miR-103 in the 
liver, serum, and AT compared with the control group (Figure 5A). In addition, compared with the control group, 
treating AT-derived exosomes can increase serum ALT, AST, CHOL, and TG levels and aggravate oxidative stress 
(Figure 5B). Histologically, HE and oil red staining of the liver showed that treating AT-derived exosomes could 
aggravate hepatocyte ballooning, inflammatory cell infiltration, and intrahepatic lipid accumulation (Figures 5C and D). 
However, miR-103-anta treatment could partially eliminate such an effect while miR-NC-anta treatment could not, 
suggesting that AT-derived exosome aggravates NASH, and this effect is partly dependent on its encapsulated miR-103.

AT derived-exosome miR-103 inhibits autophagy in hepatocytes
To further verify in vivo that miR-103 in AT-derived exosomes is involved in NASH formation by influencing autophagy, 
we detected the expression of autophagy-related proteins in the liver of mice in each group. We found that compared 
with the control group, the expression of p-AMPKa, p-mTOR, and p62 in the livers of AT exosome-treated group was 
increased, while the expression of PTEN and LC3-II/I was decreased. Further miR-103-anta treatment increased the 
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Figure 5 The effect of adipose tissue-derived exosomes miR-103 on the development of non-alcoholic steatohepatitis in mice. A: The 
expression of miR-103 in the liver, serum, and adipose tissue; B: The results of ELISA to measure serum alanine aminotransferase, aspartate aminotransferase, total 
triglycerides, total cholesterol, superoxide dismutase, malondialdehyde, and H2O2; C: Hematoxylin and eosin staining of mice liver from different groups; D: Oil-red 
staining of mice liver from different groups. aP < 0.01 vs control; bP < 0.05 vs exosomes; cP < 0.01 vs exosomes. Exo: Exosomes; NC: Negative control; ALT: Alanine 
aminotransferase; AST: Aspartate aminotransferase; TG: Total triglycerides; CHOL: Cholesterol; SOD: Superoxide dismutase; MDA: Malondialdehyde.

expression level of PTEN and LC3-II/I and reduced the expression level of p-AMPKa, p-mTOR, and p62, while miR-NC-
anta had no similar effect (Figures 6A and B). Finally, through TEM and immunofluorescence, we found that the number 
of autophagosomes in the livers of mice treated with AT-derived exosomes was decreased, while miR-103-anta could 
partially antagonize such effect (Figures 6C and D).

DISCUSSION
NASH is considered the watershed in the progress of NAFLD, which is more closely related to the occurrence of liver 
cirrhosis and other complications. The prevalence of NASH has been increasing in recent years, resulting in a big 
challenge in disease burden and patient suffering. For instance, the lifetime cost of care for patients with NASH was 
around US $222 billion in 2017 in the United States[17]. More intriguingly, many NASH patients are obese and tend to 
have higher healthcare costs than non-obese NASH patients[18], but the etiology is still vague. Therefore, it is necessary 
to study the role and underlying mechanisms of obesity on NASH and further provide possible therapeutic targets. In 
this study, we confirmed the important role of AT-derived exosomes miR-103 in NASH and preliminary revealed its 
regulation on hepatocyte autophagy through targeting PTEN, which might partially provide the mechanisms by which 
obesity affects NASH.

MiRNA belongs to the family of non-coding RNA, which generally consists of 22 nucleotides[19] and regulates the 
mRNA levels of target genes[20]. Previous studies have identified a variety of miRNAs involved in metabolism-related 
diseases[21]. For example, miR-200 and miR-29 families play an important role in maintaining the balance between the 
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Figure 6 The effect of adipose tissue-derived exosomes miR-103 on autophagy in mice. A and B: Western blotting detected the expression of the 
autophagy-related protein; C: The results of immunofluorescence staining to observe autophagosomes in the liver from different groups; D: Transmission electron 
microscopy images of autophagosomes (red arrowhead) in the liver from different groups. aP < 0.05 vs control; bP < 0.01 vs control; cP < 0.05 vs exosomes; dP < 0.01 
vs exosomes. Exo: Exosomes; PTEN: Phosphatase and tensin homolog; DAPI: 4’,6-diamidino-2-phenylindole; mTOR: Mammalian target of rapamycin; NC: Negative 
control.

proliferation and differentiation of pancreatic β cells[22,23]. MiR-33a and miR-33b are involved in cholesterol and lipid 
metabolism[24,25]. Furthermore, several miRNAs are also targeting the liver to regulate metabolic processes. For 
instance, miR-122, one of the most abundant miRNAs in the liver, is involved in hepatic cholesterol and lipid metabolism
[26,27]. Besides, miR-103, the focus of our study, has also been confirmed to be closely related to hepatic insulin 
sensitivity and the regulation of glucose homeostasis in previous studies[12]. Since NAFLD is the hepatic manifestation of 
metabolic syndrome, it is theoretically possible that miR-103 participates in NAFLD, but related research is still lacking. 
NASH was linked to menopause[28], and miR-103 was found to be linked to G protein-coupled estrogen receptor 1[29]. 
Therefore, the estrogen signaling pathway is the potential mechanism where miR-103 promotes NASH. However, in this 
study, for the first time, we showed that the miR-103 level in the liver of NASH mice was significantly increased while 
inhibiting miR-103 expression could alleviate NASH, suggesting that miR-103 is one of the potential targets for NASH 
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Figure 7 The hypothesis of obesity-induced non-alcoholic steatohepatitis. The increased adipocyte tissue will secret more adipose tissue (AT)-derived 
exosomes, which include various contents, and miR-103 is our focus. The increased AT-derived exosomes miR-103 could be absorbed by hepatocytes and further 
regulate non-alcoholic steatohepatitis progression by affecting the autophagy process by targeting phosphatase and tensin homolog gene. AT: Adipose tissue; NASH: 
Non-alcoholic steatohepatitis; Exo: Exosomes; PTEN: Phosphatase and tensin homolog.

treatment.
We further identified the AT-derived exosomes as the source of miR-103 upregulation in the NASH mouse model. 

There have been many studies on the role of AT-derived exosomes in the development of NAFLD in obese people[30]. 
For instance, Fuchs et al[31] showed that the concentration of free exosomes is significantly higher in obese with NAFLD 
(OB-NAFLD) patients compared with lean with normal intrahepatic triglyceride content (LEAN) and obese with normal 
intrahepatic triglyceride content (OB-NL) populations and that these exosomes are at least partially derived from AT. 
Compared with exosomes derived from the LEAN and OB-NL groups, plasma and AT-derived exosomes from the OB-
NAFLD group caused insulin resistance in both myotubes and hepatocytes, demonstrated by impaired insulin signaling. 
However, the underlying mechanism of the above effects of AT-derived exosomes in NAFLD patients has not been 
further explored. Our results complement this by revealing the effect of AT-derived exosomes through the miR-103-PTEN 
pathway, which broadens our understanding of NASH pathogenesis from the angle of trans-cellular crosstalk.

We also confirmed that autophagy is the downstream of the action of miR-103 through in vivo and in vitro experiments. 
Autophagy is an evolutionarily conserved cellular degradation process that delivers some intracellular components to 
lysosomes for degradation[32]. Current studies suggest that autophagy includes three subtypes: Macroautophagy, 
microautophagy, and chaperon-mediated autophagy[33]. Autophagy plays a vital role in the liver. It involves many basic 
liver functions, such as glycogenolysis, gluconeogenesis, and β-oxidation[34]. Previous studies have also shown that 
autophagy is hampered in NAFLD patients. Our previous study also revealed that autophagy inhibition plays an 
important role in NASH development[35]. Furthermore, restoring autophagy through certain drugs (trehalose, 
rapamycin, carbamazepine, or other pharmaceutical agents) or gene targets (overexpression of Atg7 or TFEB) can also 
alleviate NAFLD[36]. In addition, thyroxine[37] and caffeine[38] were also identified to reduce NAFLD by regulating 
liver autophagy. Therefore, miR-103 is expected to be one of the therapeutic targets for its autophagy regulation capacity 
and needs further clinical investigation in the future.

Some limitations in this study should be acknowledged. Firstly, AT-derived exosomes contain many non-coding 
RNAs, and we did not detect changes in the expression of other non-coding RNAs. Moreover, inhibition of miR-103 only 
partially inhibited the effect of AT-derived exosomes. Therefore, the above results suggest that AT-derived exosomes 
promote the development of NASH in multiple ways, and miR-103 is only one of them. Further research is needed on 
other reasons why AT-derived exosomes promote the development of NASH. Secondly, we did not design in vivo 
experiments to verify whether inhibition of autophagy could abolish the role of miR-103 in NASH. Therefore, in future 
studies, we may improve this part of the experiment and further explore the mechanism of miR-103 affecting autophagy. 
Finally, the preliminary data on the hepatocyte absorption of AT-derived exosome miR-103 needs further verification.

CONCLUSION
To sum up, our study confirms the important role of miR-103-PTEN - autophagy axis in NASH, and the elevation of miR-
103 in the liver of the NASH model is partly due to hepatocyte absorption of AT derived-exosomes, which also partially 
explains the underlining mechanism of obesity leading to NASH (Figure 7).
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ARTICLE HIGHLIGHTS
Research background
Non-alcoholic steatohepatitis (NASH) has become one of the leading causes of cirrhosis and the second leading cause of 
liver transplantation. miR-103 is involved in regulating insulin sensitivity, a common manifestation of metabolic 
syndrome in patients with NASH.

Research motivation
The specific role of miR-103 in the development of NASH also deserves further study.

Research objectives
To explore the specific role of miR-103 in the development of NASH and provide new therapeutic targets for NASH.

Research methods
The expression levels of miR-103 were detected and compared between NASH mice and control. The effect of miR-103 on 
NASH progression was explored by miR-103 antagonizing, including both changes of steatosis and inflammation degree. 
The interaction between miR-103 and the autophagy-related gene phosphatase and tensin homolog (PTEN) was 
confirmed by dual-luciferase reporter assay. The role of the interaction between miR-103 and PTEN on autophagy was 
verified in NASH cells. Finally, the effects of miR-103 from adipose tissue (AT)-derived exosomes on NASH and 
autophagy were analyzed through animal experiments.

Research results
The expression of miR-103 was increased in NASH mice, compared with the control, and inhibition of miR-103 could 
alleviate NASH. MiR-103 could interact with PTEN. MiR-103-anta inhibited autophagy in NASH mice. Further 
experiments showed PTEN silencing inhibited the effect of miR-103-anta. AT-derived exosome miR-103 aggravated 
NASH and inhibited autophagy in mice.

Research conclusions
AT derived-exosome increased the levels of miR-103 in the liver, and miR-103 aggravated NASH. Mechanically speaking, 
miR-103 could interact with PTEN and inhibit autophagy.

Research perspectives
MiR-103 may be a potential target for NASH treatment in the future.
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Abstract
BACKGROUND 
Gastric carcinoma (GC) is the third most frequent cause of cancer-related death, 
highlighting the pressing need for novel clinical treatment options. In this regard, 
microRNAs (miRNAs) have emerged as a promising therapeutic strategy. Studies 
have shown that miRNAs can regulate related signaling pathways, acting as 
tumor suppressors or tumor promoters.

AIM 
To explore the effect of miR-204-3p on GC cells.

METHODS 
We measured the expression levels of miR-204-3p in GC cells using quantitative 
real-time polymerase chain reaction, followed by the delivery of miR-204-3p 
overexpression and miR-204-3p knockdown vectors into GC cells. CCK-8 was 
used to detect the effect of miR-204-3p on the proliferation of GC cells, and the 
colony formation ability of GC cells was detected by the clonal formation assay. 
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The effects of miR-204-3p on GC cell cycle and apoptosis were detected by flow cytometry. The BABL/c nude 
mouse subcutaneous tumor model using MKN-45 cells was constructed to verify the effect of miR-204-3p on the 
tumorigenicity of GC cells. Furthermore, the study investigated the effects of miR-204-3p on various proteins 
related to the MAPK signaling pathway, necroptosis signaling pathway and apoptosis signaling pathway on GC 
cells using Western blot techniques.

RESULTS 
Firstly, we found that the expression of miR-204-3p in GC was low. When treated with the lentivirus overex-
pression vector, miR-204-3p expression significantly increased, but the lentivirus knockout vector had no 
significant effect on miR-204-3p. In vitro experiments confirmed that miR-204-3p overexpression inhibited GC cell 
viability, promoted cell apoptosis, blocked the cell cycle, and inhibited colony formation ability. In vivo animal 
experiments confirmed that miR-204-3p overexpression inhibited subcutaneous tumorigenesis ability in BABL/c 
nude mice. Simultaneously, our results verified that miR-204-3p overexpression can inhibit GC cell proliferation by 
inhibiting protein expression levels of KRAS and p-ERK1/2 in the MAPK pathway, as well as inhibiting protein 
expression levels of p-RIP1 and p-MLK1 in the necroptosis pathway to promote the BCL-2/BAX/Caspase-3 
apoptosis pathway.

CONCLUSION 
MiR-204-3p overexpression inhibited GC cell proliferation by inhibiting the MAPK pathway and necroptosis 
pathway to promote apoptosis of GC cells. Thus, miR-204-3p may represent a new potential therapeutic target for 
GC.

Key Words: miR-204-3p; Gastric carcinoma; MAPK signaling pathway; Apoptosis; Necroptosis

©The Author(s) 2023. Published by Baishideng Publishing Group Inc. All rights reserved.

Core Tip: Gastric carcinoma (GC) is a global health problem that seriously endangers human life; therefore, it is important to 
identify effective treatment targets. In this regard, microRNAs (miRNAs) have emerged as a promising therapeutic strategy. 
Studies have shown that miRNAs regulated signaling pathways, acting as tumor suppressors or tumor promoters. In this 
study, we first verified the inhibitory effect of miR-204-3p overexpression on GC cells through in vitro and in vivo 
experiments. Simultaneously, miR-204-3p overexpression induced GC cell apoptosis by inhibiting the MAPK pathway and 
the necroptosis pathway. Thus, miR-204-3p may represent a new potential therapeutic target for GC.
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INTRODUCTION
Gastric carcinoma (GC) is a gastrointestinal tumor and the third major cause of cancer-related death[1,2]. Early clinical 
symptoms are mild or asymptomatic, resulting in difficult diagnosis and a low patient survival rate[3,4]. Currently, the 
clinical therapy of GC primarily consists of radiotherapy, chemotherapy, and surgical excision, but the therapeutic effect 
is unsatisfactory[5,6]. Therefore, feasible targeted therapies are particularly important for GC patients. As research has 
progressed, molecular targets have been found to have a role in the occurrence and development of GC.

MicroRNAs (miRNAs) are small non-coding RNAs that regulate gene expression by binding to the 3'-untranslated 
region of target mRNA[7]. With further study in genetic engineering, it has been confirmed that miRNAs regulate 
different signaling pathways to take part in important cellular processes[8]. miRNAs can act as tumor promoters or 
inhibitors to target mRNA to regulate GC proliferation, metastasis, angiogenesis, and drug resistance[9-11]. Conse-
quently, it is necessary to strengthen miRNA research for the diagnosis and clinical treatment of GC.

MiR-204-3p has demonstrated efficacy in treating various pathologies, including retinopathy, diabetes, and cancer[12-
15]. Crucially, miR-204-3p is underexpressed in melanoma, thyroid carcinoma, glioma and bladder carcinoma, and is 
related to patient prognosis[16-19]. However, the mechanism of miR-204-3p in GC remains unclear.

Our team's previous research confirmed that the expression of miR-204-3p in GC tissue is low and is associated with 
poor prognosis in GC patients. In addition, we also verified that KRAS is its direct target[20]. However, the anti-GC effect 
of miR-204-3p still requires further research to support the possibility of miR-204-3p becoming a new target for the 
treatment of GC. In this study, we focused on determining the impact of miR-204-3p on GC cells phenotype and its anti-
GC molecular mechanism, to provide theoretical support for the treatment of GC by miR-204-3p.
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Table 1 Primer sequences

Primer Forward sequence (5’-3’) Reverse sequence (5’-3’)
KRAS TGTGGACGAATATGATCCAACA GCAAATACACAAAGAAAGCCCT

ERK1 ATGTCATCGGCATCCGAGAC GGATCTGGTAGAGGAAGTAGCA

ERK2 TACACCAACCTCTCGTACATCG ATGTCTGAAGCGCAGTAAGATT

GAPDH CACCCACTCCTCCACCTTTGA TCTCTCTTCCTCTTGTGCTCTCTTGC

miR-204-3p CAAGTCGCTGGGAAGGCAA CAGTGCAGGGTCCGAGGT

U6 CTCGCTTCGGCAGCACA AACGCTTCACGAATTTGCGT

MATERIALS AND METHODS
Cell culture and cell transfection
A normal human gastric epithelial cell line (GES-1) and three GC cell lines (HGC-27, AGS and MKN-45) were acquired 
from BNCC (Beijing, China). MKN-45 and HGC-27 cells were cultured in RPIM-1640 medium, AGS cells in DMEM/F-12 
medium and GES-1 cells in DMEM medium. All culture media were purchased from Gibco (United States), and were 
supplemented with 1% penicillin-streptomycin and 10% fetal bovine serum. Genechem (Shanghai, China) provided the 
green fluorescent protein-labeled miR-204-3p overexpression lentiviral vector (OE group), miR-204-3p knockdown 
lentiviral vector (KD group) and empty lentiviral vector (NC group), which were then transfected into HGC-27, MKN-45 
and AGS cells using the tool virus user manual as a guide.

CCK-8 assay
Cell viability was evaluated using the CCK-8 assay. Specifically, lentivirus-transfected AGS and HGC-27 cells were 
seeded into 96-well plates (5000 cells/well) and cultured for 24 h, 48 h and 72 h, respectively. Following this step, each 
well was treated with 10 μL CCK-8 reagent (MedChemExpress, United States), and a microplate reader was used to 
measure the value at 450 nm following incubation for 2 h at 37°C.

Colony formation assay
Lentivirus-transfected AGS and HGC-27 cells were inoculated into 6-well plates (500 cells/well), and fixed with 4% 
paraformaldehyde for 30 min after 2 wk of continuous culture. Next, the fixing solution was washed off and the cells 
were stained using 0.5% crystal violet for 10 min. Finally, the cell clones were photographed and statistically analyzed 
based on clone sizes (diameter > 1 mm).

Flow cytometric analysis
Cell cycle was confirmed using the cell cycle kit (KeyGEN BioTECH, China). Lentivirus-transfected HGC-27 and AGS 
cells were collected at 1 × 106 cells/mL, and then fixed overnight at 37℃ with 4% paraformaldehyde. On the second day, 
the fixing solution was washed off with PBS and 500 μL cell cycle detection working solution (Rnase A:PI = 1:9) was 
added. The distribution of various groups of cells in the cell cycle was detected after they had reacted for 30 min.

The Annexin V-APC/7-AAD double staining kit (KeyGEN BioTECH, China) was used to confirm apoptosis (early 
apoptosis and late apoptosis) in each group. Lentivirus-transfected AGS and HGC-27 cells were collected, and 500 μL 
Binding Buffer, 5 μL Annexin V-APC and 5 μL 7-AAD were added sequentially and gently mixed. Apoptosis was 
observed after the cells had reacted for 10 min.

Western blot
The expression of related proteins in lentivirus-transfected AGS and HGC-27 cells was detected. Firstly, total protein was 
extracted with RIPA (Epizyme Biotech, China) from GC cells and their content was confirmed using the BCA assay 
(Epizyme Biotech, China). Next, the proteins were isolated and transferred onto a polyvinylidene fluoride membrane, 
which was sealed with 5% skim milk powder, soaked in primary antibody and incubated overnight. On the second day, it 
was washed with TBST and soaked in HRP-linked secondary antibody (1:1000, 7074/7076, CST, United States) for 1 h. 
Finally, protein bands were visualized with ECL reagent (KeyGEN BioTECH, China), and the gray values of the protein 
bands were analyzed using Image J. GAPDH or β-tubulin was used as an internal control to standardize target proteins. 
p-ERK1/2 (1:5000, 4370), ERK1/2 (1:5000, 9102), RIP1 (1:1000, 3493), p-RIP1 (1:1000, 65746), MLK1 (1:1000, 5029) and p-
MLK1 (1:1000, 91689) antibodies were purchased from CST. BAX (1:2000, ab32503), Caspase-3 (1:1000, ab13847), BCL-2 
(1:5000, ab182858) and KRAS (1:1000, ab275876) antibodies were purchased from Abcam.

Quantitative real-time polymerase chain reaction
The related genes expressed in each group of GC cells were determined using quantitative real-time polymerase chain 
reaction (qRT-PCR). Briefly, total RNA was extracted from GC cells using TRIzol reagent (Invitrogen, United States), then 
cDNA was synthesized (Takara Bio, Japan) and gene expression levels were measured (Takara Bio, Japan). The primer 
sequences are shown in Table 1. U6 or GAPDH was used as a housekeeping gene, and target genes were calculated using 
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Figure 1 Expression of miR-204-3p in gastric carcinoma. A: The expression level of miR-204-3p in gastric carcinoma tissues and para-carcinoma tissues 
was analyzed by the GEO database; B: The expression level of miR-204-3p in normal gastric mucosal epithelial cells and gastric carcinoma cells, cP < 0.001.

the 2-ΔΔCt method.

Tumor xenograft experiment
BABL/c nude mice (male, 4 wk, SPF) were provided by the Animal Laboratory Center of Ningxia Medical University. 
The animal protocol (IACUC-NYLAC-2022-251) was approved by the Institutional Animal Care and Use Committee of 
Ningxia Medical University. Following 7 d of adaptive feeding in BALB/c nude mice, lentivirus-transfected MKN-45 cells 
were cultured, and the cell concentration adjusted to 5 × 107 cells/mL. A suspension containing 100 μL cells was slowly 
subcutaneously injected into the back of nude mice, which were then returned to their cage for feeding. Growth of the 
subcutaneous tumor and mouse body weight were observed daily. The tumor volume (V) was calculated by V = (W2 × 
L)/2 (long diameter: L; short diameter: W). When the tumor on the back grew to an appropriate size and conformed to 
animal ethics, the animals were killed by CO2 and photographed.

Differential expression analysis of miRNAs
We used the GEO database (https://www.ncbi.nlm.nih.gov/geo/) to screen differentially expressed miRNAs. We 
searched the keywords " miRNAs" and "gastric carcinoma, and downloaded Differential expression microarrays of 
miRNAs (series: GES79973). Then adjusted for P < 0.05, |log2 (fold change)| > 1, and analyzed significant miRNAs.

Statistical analysis
The statistical methods used in this study were reviewed by Li-Qun Wang from the Department of Epidemiology, 
Department of Medical Statistics, Institute of Public Health and Management, Ningxia Medical University. All data 
represent the mean ± SD of at least three independent samples. Statistical analysis was conducted using SPSS 27.0 and 
GraphPad Prism 8.0. One-way analysis of variance was used to analyze the differences between groups. P < 0.05 
indicated a statistically significant difference.

RESULTS
MiR-204-3p was underexpressed in GC
In our previous study, we analyzed 40 pairs of tissue samples and discovered that miR-204-3p expression was lower in 
GC tissues compared to normal tissues[20]. To further validate this finding, we utilized the GEO database to identify 
differentially expressed miRNAs in GC tissues and paracancerous tissues, which confirmed the downregulation of miR-
204-3p in GC tissues (Figure 1A). Subsequently, we investigated miR-204-3p expression between GC cell lines (AGS, 
MKN-45 and HGC-27) and the normal gastric epithelial cell line GES-1. The results revealed that miR-204-3p was 
underexpressed in MKN-45, AGS, and HGC-27 cells compared to GES-1 cells (Figure 1B).

MiR-204-3p inhibited GC cell viability
Lentivirus transfection caused miR-204-3p overexpression and miR-204-3p knockdown in AGS and HGC-27 cells. The 
transfection rate was found to be approximately 90% after 72 h, indicating high transfection efficiency (Figure 2A). The 
qRT-PCR results demonstrated that the miR-204-3p overexpression lentivirus significantly upregulated its expression 
compared to the NC group in AGS and HGC-27 cells, but the miR-204-3p knockdown lentivirus did not result in 
downregulation of its expression (Figure 2B and C). These findings indicated that miR-204-3p overexpression in GC cells 
was highly satisfactory, while miR-204-3p knockdown does not yield meaningful outcomes. Subsequently, the cell 
viability assay showed that miR-204-3p overexpression significantly inhibited GC cell viability (Figure 2D and E).

https://www.ncbi.nlm.nih.gov/geo/
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Figure 2 Effect of miR-204-3p on AGS and HGC-27 cell viability. A: Transfection efficiency of lentiviral vector. Scale bar: 1000 μm, with representative 
images shown, fluorescence distribution of green fluorescent protein in cells indicating transfection efficiency; B and C: The expression level of miR-204-3p in 
lentivirus transfected AGS and HGC-27 cells; D and E: Effect of miR-204-3p on AGS and HGC-27 cell viability. aP < 0.05, cP < 0.001. NC: Empty lentiviral vector; KD: 
miR-204-3p knockdown lentiviral vector; OE: miR-204-3p overexpression lentiviral vector.

MiR-204-3p inhibited the colony forming ability of GC cells
The impact of miR-204-3p on the colony forming ability of GC cells was evaluated. The crystal violet positive staining in 
the miR-204-3p overexpression group decreased (Figure 3A and B), and simultaneously, the number of clones formed in 
AGS and HGC-27 cells was distinctly reduced compared to the NC group (Figure 3C and D). This indicated that miR-204-
3p overexpression inhibited the colony forming ability of GC cells.

MiR-204-3p promoted GC cell apoptosis
We evaluated apoptosis by collecting cells from each group (Figure 4). The apoptosis rates of AGS cells were 2.53 ± 0.12%, 
3.73 ± 0.83% and 10.6 ± 0.70% in the NC, KD and OE groups, respectively (Figure 4A and C). Among HGC-27 cells, the 
apoptosis rates were 9.47 ± 0.58%, 7.87 ± 1.63% and 18.40 ± 1.27% in the NC, KD and OE groups, respectively (Figure 4B 
and D). The findings revealed that HGC-27 and AGS cells with miR-204-3p overexpression had a notably higher 
apoptosis rate, which indicated that miR-204-3p overexpression stimulated GC cell apoptosis.
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Figure 3 Effect of miR-204-3p on colony forming ability in AGS and HGC-27 cells. A and B: Crystal violet staining diagram of AGS and HGC-27 cells; 
C and D: Statistical results of colony forming ability in AGS and HGC-27 cells. cP < 0.001. NC: Empty lentiviral vector; KD: miR-204-3p knockdown lentiviral vector; 
OE: miR-204-3p overexpression lentiviral vector.

MiR-204-3p retarded GC cell cycle
We analyzed cell cycle distribution to investigate whether miR-204-3p inhibited GC cell proliferation by mediating the 
cell cycle (Figure 5). Among AGS cells, the G0/G1 phase percentages were 44.91 ± 1.15%, 45.36 ± 0.70% and 49.30 ± 0.41% 
in the NC, KD and OE groups, respectively (Figure 5A and C). Among HGC-27 cells, the G0/G1 phase percentages were 
29.36 ± 0.29%, 29.57 ± 1.11% and 41.03 ± 0.47% in the NC, KD and OE groups, respectively (Figure 5B and D). These 
results revealed that AGS and HGC-27 cells with miR-204-3p overexpression had a notably higher number of cells in G0/
G1 phase, which indicated that miR-204-3p overexpression blocked GC cell cycle in the G0/G1 phase.

MiR-204-3p inhibited the formation of subcutaneous tumor in BABL/c nude mice
A subcutaneous tumor formation experiment was conducted in BABL/c nude mice using lentivirus-transfected MKN-45 
cells to observe the changes in tumor size and body weight. The results revealed that the OE group had smaller tumors 
compared to the NC group (Figure 6A and B). According to tumor growth data, it was found that back tumor growth was 
notably slower in the OE group compared to the NC group (Figure 6C). Additionally, the weight of BABL/c nude mice in 
the OE group increased significantly (Figure 6D), which indicated that miR-204-3p overexpression suppressed 
subcutaneous tumorigenesis in BABL/c nude mice.

Effect of miR-204-3p on the MAPK signaling pathway
We investigated the effect of miR-204-3p on the MAPK signaling pathway. Firstly, the impact of miR-204-3p on the 
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Figure 4 Effects of miR-204-3p on apoptosis in AGS and HGC-27 cells. A and B: Flow cytometry was used to analyze apoptosis of AGS and HGC-27 
cells; C and D: Statistical results of AGS and HGC-27 cell apoptosis. cP < 0.001. NC: Empty lentiviral vector; KD: miR-204-3p knockdown lentiviral vector; OE: miR-
204-3p overexpression lentiviral vector.

mRNA levels of KRAS, ERK1 and ERK2 was detected using qRT-PCR. The results revealed that miR-204-3p overex-
pression resulted in a significant decrease in KRAS, ERK1 and ERK2 in AGS and HGC-27 cells (Figure 7A and B). We 
further investigated the impact of miR-204-3p on the MAPK signaling pathway-related proteins, including KRAS, ERK1/
2, and p-ERK1/2. The results showed that in HGC-27 and AGS cells, miR-204-3p overexpression caused noteworthy 
lower levels of KRAS and p-ERK1/2, but no significant difference was observed in ERK1/2 (Figure 7C-F). These findings 
indicated that miR-204-3p overexpression effectively inhibited GC cell proliferation, and this effect was achieved through 
the inhibition of KRAS, which subsequently prevented the phosphorylation of downstream effector protein ERK1/2 in 
the MAPK signaling pathway.

Effects of miR-204-3p on apoptosis-related proteins
The effect of miR-204-3p on apoptosis-related proteins in GC cells was investigated. The results indicated a reduction in 
BCL-2 and the BCL-2/BAX ratio, as well as an increase in Caspase-3 in the OE group (Figure 8A-D), which confirmed that 
miR-204-3p overexpression stimulated GC cell apoptosis via the BCL-2/BAX signaling pathway.
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Figure 5 Effects of miR-204-3p on the cell cycle in AGS and HGC-27 cells. A and B: Cell cycle analysis in AGS and HGC-27 cells by flow cytometry; C 
and D: Percentage of cell cycle distribution in AGS and HGC-27 cells. bP < 0.01, cP < 0.001. NC: Empty lentiviral vector; KD: miR-204-3p knockdown lentiviral vector; 
OE: miR-204-3p overexpression lentiviral vector.

Effect of miR-204-3p on necroptosis-related proteins
We examined the protein changes in RIP1, p-RIP1, MLK1 and p-MLK1 during necroptosis and investigated the impact of 
miR-204-3p on GC cells necroptosis. The results revealed that miR-204-3p overexpression significantly inhibited the 
protein expression levels of p-RIP1 and p-MLK1 (Figure 8E-H), which confirmed that miR-204-3p overexpression 
inhibited GC cells necroptosis via the RIP1/MLK1 signaling pathway.

DISCUSSION
MiR-204-3p plays a crucial role in various diseases. Some studies have confirmed that miR-204-3p upregulation can be 
targeted to inhibit Nox4 to reduce memory deficits[21]. Moreover, its overexpression inhibited high glucose induced lens 
epithelial cells migration and epithelial-mesenchymal transition (EMT), and inhibited high glucose induced podocytes 
apoptosis and dysfunction[13,15]. Notably, miR-204-3p upregulation inhibited malignant melanoma migration, invasion 
and EMT progression by targeting inhibition of PAX2[19], its upregulation also inhibited hepatocellular carcinoma cell 
proliferation by targeting inhibition of FN1[22]. MiR-204-3p was found to be underexpressed in bladder cancer tissues 
and was related to poor prognosis, it regulated bladder cancer cell proliferation by targeting LDHA mediated glycolysis
[16]. Apoptosis of glioma cells is induced by miR-204-3p targeting IGFBP2[23]. Furthermore, LINC00963 was overex-
pressed in osteosarcoma tissues and was related to poor prognosis, miR-204-3p reversed LINC00963 in promoted 
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Figure 6 Effect of miR-204-3p on tumor size in BABL/c nude mice. A: Comparison of gastric carcinoma tumor xenograft models in BABL/c nude mice; B: 
Comparison of subcutaneous tumors on the back in BABL/c nude mice; C: Statistical graph of tumor growth curve for gastric carcinoma tumor xenograft models in 
BABL/c nude mice; D: Statistical graph of body weight growth curve in BABL/c nude mice. cP < 0.001. NC: Empty lentiviral vector; KD: miR-204-3p knockdown 
lentiviral vector; OE: miR-204-3p overexpression lentiviral vector.

osteosarcoma cell proliferation and inhibited migration and invasion[24]. LINC00514 was upregulated in GC tissues, its 
overexpression stimulated GC cell growth and inhibited EMT by sponging miR-204-3p/KRAS[20]. These results suggest 
that miR-204-3p may be a new target for cancer therapy.

Firstly, we found that the expression of miR-204-3p was low in GC cells, and its overexpression resulted in the 
inhibition of cell proliferation, colony formation ability, and the cell cycle, while promoting apoptosis. In vivo tumor 
formation experiments in 4-week-old BABL/c nude mice verified that miR-204-3p overexpression inhibited subcutaneous 
tumor growth. Thus, both in vitro and in vivo experiments demonstrated the inhibitory influence of miR-204-3p overex-
pression on GC cells.

Apoptosis, a programmed cell death, is a natural barrier against tumorigenesis. However, in cancer, abnormal exp-
ression of anti-apoptotic or pro-apoptotic proteins causes inhibition of apoptotic pathways[25]. For instance, BCL-2 
functions as an anti-apoptotic protein, preventing cytochrome C liberation from mitochondria, thereby inhibiting 
apoptosis. On the other hand, BAX is a common pro-apoptotic protein that can form homodimers or bind to BCL-2 to 
form heterodimers that activate Caspase-3 to promote apoptosis[26]. The BCL-2/BAX ratio is closely related to tumor 
progression, and a lower ratio indicates a stronger apoptosis effect. Therefore, most anti-cancer drugs rely on the BCL-2/
BAX mechanism to kill cancer cells[27]. This study verified that miR-204-3p overexpression led to the upregulation of 
Caspase-3 in GC cells, while downregulating BCL-2 and the BCL-2/BAX ratio. These findings provide evidence that miR-
204-3p overexpression can stimulate apoptosis and inhibit GC cell proliferation through the BCL-2/BAX/Caspase-3 
apoptosis pathway.

In tumors, the MAPK pathway is frequently activated to control apoptosis, cell growth, and cell division[28]. Signal 
transmission of the MAPK signaling pathway follows a three-step enzyme-linked reaction. KRAS, as an upstream 
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Figure 7 Effect of miR-204-3p on the MAPK signaling pathway in AGS and HGC-27 cells. A and B: Effects of miR-204-3p on mRNA levels of KRAS, 
ERK1 and ERK2 in AGS and HGC-27 cells; C and D: Effects of miR-204-3p on protein levels of KRAS, ERK1/2 and p-ERK1/2 in AGS cells; E and F: Effects of miR-
204-3p on protein levels of KRAS, ERK1/2 and p-ERK1/2 in HGC-27 cells. aP < 0.05, bP < 0.01, cP < 0.001. NC: Empty lentiviral vector; KD: miR-204-3p knockdown 
lentiviral vector; OE: miR-204-3p overexpression lentiviral vector.

activation protein, is activated when bound to GTP. This change causes the recruitment of KRAS to RAF on the cell 
membrane and promotes RAF activation. Activated RAF phosphorylates and activates MEK, while MEK phosphorylates 
and further activates ERK, which is located at the end of the signaling pathway and can transfer into the nucleus and bind 
to transcription factors, thereby regulating transcription programs and mediating cell growth, migration and differen-
tiation[29-31]. Previously, we established that miR-204-3p targeted KRAS[20]. The current study confirmed that miR-204-
3p upregulation can inhibit KRAS and p-ERK1/2, which suggested that miR-204-3p overexpression could inhibit the 
MAPK signaling pathway.

Necroptosis is a newly discovered mechanism of programmed cell death that has the potential to regulate tumori-
genesis[32]. This process is primarily regulated by three proteins: RIP1, RIP3 and MLK1. Specifically, RIP1 is activated 
through phosphorylation, which then recruits RIP3[33]. Once activated, phosphorylated RIP3 can oligomerize MLK1 and 
transfer it to the plasma membrane, ultimately resulting in necroptosis characterized by cell swelling and organelle 
damage[34,35]. Interestingly, necroptosis has been found to both promote and inhibit cancer growth. As a form of cell 
death, necroptosis inhibits the development of tumors, yet it may also incite an inflammatory reaction that encourages 
cancer metastasis and immunosuppression. Research has revealed that glioblastoma, pancreatic cancer, and lung cancer 
can be impacted by the upregulation of RIP1, RIP3, and MLK1[36-38]. It was found that downregulation of MLK1 
inhibited tumor cell growth and increased sensitivity to radiotherapy in both GC and ovarian cancer[39,40]. We detected 
necroptosis-related proteins and discovered that miR-204-3p overexpression decreased p-RIP1 and p-MLK1. These 
findings suggest that miR-204-3p overexpression can inhibit necroptosis through the RIP1/MLK1 pathway, ultimately 
inhibiting GC cell proliferation.

To sum up, our study verified that miR-204-3p is underexpressed in GC, and that its overexpression inhibits GC cell 
proliferation, promotes apoptosis, arrests the cell cycle in the G0/G1 phase, inhibits cell colony formation and the 
formation of subcutaneous tumors. Necroptosis is typically initiated by tumor necrosis factor (TNF) stimulation[41]. RIP1 
binds to FADD, which then recruits caspase-8. The activation of caspase-8 promotes the process of RIP1-dependent 
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Figure 8 Effects of miR-204-3p on apoptosis-related proteins and necroptosis-related proteins in AGS and HGC-27 cells. A and B: Effect of 
miR-204-3p on apoptosis-related proteins BCL-2, BAX and Caspase-3 in AGS cells; C and D: Effect of miR-204-3p on apoptosis-related proteins BCL-2, BAX and 
Caspase-3 in HGC-27 cells; E and F: Effects of miR-204-3p on necroptosis-related proteins RIP1, p-RIP1, MLK1, and p-MLK1 in AGS cells; G and H: Effects of miR-
204-3p on necroptosis-related proteins RIP1, p-RIP1, MLK1, and p-MLK1 in HGC-27 cells. aP < 0.05, bP < 0.01, cP < 0.001. NC: Empty lentiviral vector; KD: miR-204-
3p knockdown lentiviral vector; OE: miR-204-3p overexpression lentiviral vector.

apoptosis[32]. Additionally, RIP1 activates ERK to regulate the MAPK signaling pathway[42-44]. In the MAPK signaling 
pathway, phosphorylation of ERK can activate BCL-2, which in turn stimulates the apoptosis pathway and accelerates the 
process of apoptosis[45,46]. We verified that miR-204-3p overexpression can inhibit GC cell proliferation by inhibiting the 
MAPK signaling pathway and inhibiting the RIP1/MLK1 necroptosis pathway to promote the BCL-2/BAX/Caspase-3 
apoptosis pathway (Figure 9).

CONCLUSION
MiR-204-3p overexpression inhibited GC cell proliferation by inhibiting the MAPK pathway and necroptosis pathway to 
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Figure 9 Mechanism of the effect of miR-204-3p on the MAPK signaling pathway, apoptosis and necroptosis. TNF: Tumor necrosis factor; GF: 
Germ-free.

promote GC cell apoptosis. Thus, miR-204-3p may represent a new potential therapeutic target for GC.

ARTICLE HIGHLIGHTS
Research background
Gastric carcinoma (GC) is a common gastrointestinal malignancy worldwide. Based on the cancer-related mortality, the 
current prevention and treatment strategies for GC still show poor clinical results. Therefore, it is important to find 
effective treatment targets.

Research motivation
At present, the main treatment for GC is surgery, chemotherapy and radiotherapy, but the therapeutic effect is not ideal.

Research objectives
To explore the effect of miR-204-3p on GC cells.

Research methods
We determined the expression level of miR-204-3p in GC, and then used an miR-204-3p overexpression vector and an 
miR-204-3p knockdown vector in GC cells. The influence of miR-204-3p on the changes in cell phenotype and tumori-
genicity in vivo was assessed. Furthermore, the effects of miR-204-3p on various proteins related to the MAPK signaling 
pathway, necroptosis signaling pathway and apoptosis signaling pathway in GC cells were investigated.

Research results
It was found that miR-204-3p was underexpressed in GC, and miR-204-3p overexpression inhibited GC cell viability, 
promoted cell apoptosis, blocked the cell cycle, inhibited colony formation ability and inhibited tumorigenicity in vivo. It 
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was also verified that miR-204-3p overexpression can promote apoptosis by inhibiting the MAPK pathway and the 
necroptosis pathway, thus inhibiting GC cell proliferation.

Research conclusions
MiR-204-3p overexpression inhibited GC cell proliferation by inhibiting the MAPK pathway and the necroptosis pathway 
to promote GC cell apoptosis.

Research perspectives
MiR-204-3p can be used for targeted therapy of GC, and can also be used as a new biomarker for GC.
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Abstract
BACKGROUND 
Hydrogen sulfide (H2S) is a recently discovered gaseous neurotransmitter in the 
nervous and gastrointestinal systems. It exerts its effects through multiple sig-
naling pathways, impacting various physiological activities. The nucleus tractus 
solitarius (NTS), a vital nucleus involved in visceral sensation, was investigated in 
this study to understand the role of H2S in regulating gastric function in rats.

AIM 
To examine whether H2S affects the nuclear factor kappa-B (NF-κB) and transient 
receptor potential vanilloid 1 pathways and the neurokinin 1 (NK1) receptor in 
the NTS.

METHODS 
Immunohistochemical and fluorescent double-labeling techniques were employed 
to identify cystathionine beta-synthase (CBS) and c-Fos co-expressed positive 
neurons in the NTS during rat stress. Gastric motility curves were recorded by 
inserting a pressure-sensing balloon into the pylorus through the stomach fundus. 
Changes in gastric motility were observed before and after injecting different 
doses of NaHS (4 nmol and 8 nmol), physiological saline, Capsazepine (4 nmol) + 
NaHS (4 nmol), pyrrolidine dithiocarbamate (PDTC, 4 nmol) + NaHS (4 nmol), 
and L703606 (4 nmol) + NaHS (4 nmol).

RESULTS 
We identified a significant increase in the co-expression of c-Fos and CBS positive 
neurons in the NTS after 1 h and 3 h of restraint water-immersion stress compared 
to the expressions observed in the control group. Intra-NTS injection of NaHS at 
different doses significantly inhibited gastric motility in rats (P < 0.01). However, 
injection of saline, first injection NF-κB inhibitor PDTC or transient receptor 
potential vanilloid 1 (TRPV1) antagonist Capsazepine or NK1 receptor blockers 
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L703606 and then injection NaHS did not produce significant changes (P > 0.05).

CONCLUSION 
NTS contains neurons co-expressing CBS and c-Fos, and the injection of NaHS into the NTS can suppress gastric 
motility in rats. This effect may be mediated by activating TRPV1 and NK1 receptors via the NF-κB channel.

Key Words: Nucleus tractus solitarius; Hydrogen sulfide; Gastric motility; Nuclear factor kappa-B; Transient receptor potential 
vanilloid 1

©The Author(s) 2023. Published by Baishideng Publishing Group Inc. All rights reserved.

Core Tip: This study revealed a significant inhibitory effect of exogenous hydrogen sulfide on gastric motility in rats. This 
effect appeared to involve the release of substance P, potentially activating the transient receptor potential vanilloid 1 
pathway mediated by nuclear factor kappa-B channels.
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INTRODUCTION
The number of patients with stress-induced gastric ulcers has increased dramatically[1], and stress is highly associated 
with several functional gastrointestinal disorders, such as functional dyspepsia and irritable bowel syndrome[2]. The 
nucleus tractus solitarius (NTS) is a relay nucleus for visceral primary afferent neural signaling. It receives sensory 
afferents from visceral organs and projects to the spinal cord to regulate respiratory and cardiovascular activity. The NTS 
is also closely connected with various brain nuclei[3]. Recent studies have demonstrated the role of the NTS in 
cardiovascular and respiratory regulation and the reflex regulation of intragastric pressure. Synapses mediate the vagal-
dependent gastric reflex between vagal afferent fibers and NTS neurons, and through the vagal preganglionic parasym-
pathetic neurons in the dorsal vagal complex[4]. Neuronal firing studies in the NTS have shown that H2S increases NTS-
evoked postsynaptic currents by enhancing presynaptic glutamate release and affects the membrane potential of NTS 
neurons in a concentration-dependent manner[5].

Vagal afferent transmission primarily terminates in the NTS[6], which may act as a relay activator to inhibit spinal 
neuronal activity. Vagal-mediated glutamate release can regulate homeostasis by activating NTS neurons and meta-
botropic glutamate receptors, contributing to homeostatic regulation. Injection of oxytocin in the NTS has been observed 
to inhibit gastric smooth muscle diastole in rats, possibly through the cAMP-PKA signaling pathway[7]. The microin-
jection of monosodium glutamate in the NTS and the activation of NTS opioid receptors inhibit gastric motility and 
significant c-Fos expression in the dorsal motor nucleus of the vagus (DMV) neurons[8].

However, hydrogen sulfide (H2S) is a recently discovered gas transmitter endogenously produced in the human and 
animal brain and organ tissues. Cystathionine beta-synthase (CBS) mainly synthesizes H2S in the central nervous system 
and plays a significant physiological role[9] and has a protective role in neurodegenerative diseases such as Parkinson’s 
disease[10] and Alzheimer’s disease[11]. CBS is present in neurons and glial cells of the NTS, exerting excitatory effects 
and modulating synaptic neuronal activity[12]. Blocking CBS attenuates synaptic transmission in NTS neurons. Applying 
the H2S donor NaHS also enhances synaptic transmission in NTS neurons. H2S in the NTS plays an equally important role 
as a gaseous neuromodulator in maintaining or modulating autonomicand other systems[13]. In vitro experiments have 
shown that H2S relaxes gastrointestinal smooth muscles, inhibiting spontaneous movements and responses to chemical or 
electrical stimuli[14]. H2S also plays a role in other types of smooth muscle relaxation via K+-ATP channels[15], suggesting 
that endogenous H2S has a regulatory role in the gastrointestinal tract’s motor function.

The nuclear factor kappa-B (NF-κB) pathway is activated by various factors and plays a crucial role in the immune 
response and inflammation. A study found that NaHS administration in the rat intraperitoneal via sulfhydration caused 
NF-κB activation and lung inflammation, a significant increase in p65 protein levels, vascular congestion, and neutrophil 
infiltration. Also, slight neuronal degeneration was observed in the rat heart, liver, and brain, suggesting that H2S acts on 
NF-κB channels for messaging[16]. H2S also interacts with nitric oxide to cause vasodilation, down-regulates NF-kB 
pathway-induced inflammation, fibrosis and damage from prolonged or intense oxidative stress; protects tissues from 
ischemia- and reperfusion-induced injury; and reduces immune rejection by reducing oxygen free radicals produced in 
vivo[17]. Additionally, H2S demonstrates antioxidant and anti-apoptotic effects on neurons and glial cells[18].

Transient receptor potential vanilloid type 1 (TRPV1) is a non-selective calcium channel associated with nociceptive 
sensations in peripheral nerves. Its activation can lead to neurokinin 1 (NK1) receptor activation, pain, local neurogenic 
inflammation, and systemic anti-inflammatory/analgesic effects, and enhanced transmitter release in the NTS. TRPV1 
involves various physiological and pathological processes[19,20]. Electrophysiological studies have shown that the 
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activation of TRPV1 by capsaicin enhances glutamate release to visceral sensory neurons, affecting NTS preganglionic 
neurons[21]. H2S can cause peripheral inflammation and synaptic enhancement of glutamatergic signaling in the spinal 
cord by activating TRPV1 channels, thus stimulating other receptors at the terminals of capsaicin-sensitive neurons[22]. 
TRPV1 activation also leads to the release of substance P (SP), while NK1 receptors are responsible for neurally mediated 
digestive secretion and contributes to brain homeostasis and sensory neuronal transmission associated with depression, 
stress, anxiety and vomiting[23]. H2S causes gastric juice secretion by stimulating TRPV1 receptors on primary afferent 
nerve fibers and modulates cholinergic neurons by releasing SP to act on NK1, NK2, or NK3 receptors[24]. Therefore, we 
speculate that TRPV1 channels may be involved in the effect of H2S donors on gastric emptying.

SP is a neuroactive peptide involved in pain and inflammation[25]. It is widely present in the mammalian organism in 
the central, peripheral, and gastrointestinal nervous systems[26] and other tissues, participating in various physiopatho-
logical processes, including stress, emotional anxiety, and immune regulation. NK1 receptors are the primary receptors 
for SP and are widely expressed in the brain, contributing to stress and emotional anxiety[27]. SP is widely expressed in 
the NTS, mainly in the primary sensory neurons in the peripheral nervous system, and intrinsic neurons of the 
gastrointestinal tract. It has been shown to have neurotransmitter effects in the central and peripheral nervous systems 
and is associated with immune and inflammatory diseases of the respiratory and gastrointestinal systems[28].

Herein, we investigated the regulatory effects of H2S in the NTS on rat gastric function and explore whether these 
effects were mediated by SP release via NF-κB channel-dependent activation of the TRPV1 pathway.

MATERIALS AND METHODS
Animal
The animals used in this experiment were 240-280 g adult male Wistar rats purchased from Jinan Panyue Experimental 
Animal Breeding Co and housed in separate cages at a constant temperature (22 °C ± 2 °C) given appropriate food and 
water based on their body weight. To allow them to acclimate to their surroundings, the rats were exposed to natural 
rhythmic light for one week before the start of the experiment.

Before the experiment, the rats underwent a 24-h fasting period, during which they were allowed to freely drink. The 
other environmental conditions remained consistent throughout the experiment. The Experimental Animal Ethics 
Committee of Qilu Normal University approved the experiment. All experiments complied with internationally accepted 
ethical standards. The study also adhered to the guidelines set by the International Association for the Study of Pain[29].

Chemicals
NaHS, L703606, PDTC, Capsazepine, and protamine sky blue were purchased from Sigma-Aldrich (St. Louis, MO, United 
States). NaHS was dissolved in 0.9% saline, while the other chemicals were dissolved in dimethyl sulfoxide and 
reconstituted in saline. For the immunohistochemical fluorescence double labeling, the following reagents were 
purchased from Servicebio (Wuhan, China): Goat serum, anti-CBS rabbit pAb, FITC-conjugated goat anti-rabbit IgG, Cy3-
conjugated goat anti-mouse IgG, and anti-c-Fos mouse pAb.

Immunohistochemical fluorescence double labeling
We used the restraint water immersion stress model to investigate acute stress-induced gastric mucosal injury in rats. 
This acute compound stress model causes changes in gastric function in rats under stress through enhanced parasym-
pathetic activity in the innervated stomach[30]. Once anesthetized, the rats were swiftly removed from the bottle and 
secured to a wooden board using medical tape to immobilize their limbs and teeth. When awake, the rats were then 
immersed in cold water (21 °C ± 1 °C) with the sternal process aligned with the water level. To minimize experimental 
error, consistent time points were selected for each experiment.

The rats were randomly divided into three groups (n = 6) based on the duration of restraint water-immersion stress 
(RWIS) (0 h, 1 h, or 3 h). Cardiac perfusion was performed using 500 mL of prepared 0.01 mol/L phosphate-buffered 
saline (PBS) followed by 500 mL of 4% 0.1 mol/L paraformaldehyde (PFA). After administering an overdose of isoflurane 
to sacrifice the rat, the thoracic cavity was opened along the sternal process, and the heart was exposed. The infuser 
needle was inserted into the heart’s left ventricle, securing the heart, while the right auricle was incised to allow blood to 
drain. The rat’s liver was flushed with 0.01 mol/L PBS buffer until it turned white, followed by perfusion with 4% PFA 
solution using a “fast and then slow” principle, gradually reducing the flow rate when the rat’s limbs twitched.

Upon completion of perfusion, the rat’s head was severed, and the brain was extracted. The brain was placed in a small 
wide-mouth flask containing 4% PFA and kept at 4 °C for 24 h. Subsequently, the fixed rat brain was transferred to a 0.1 
mol/L 30% sucrose solution for dehydration. The frozen target nuclei region was then sectioned into 30 μm thick coronal 
sections using a sectioning machine and stored in 0.01 mol/L PBS.

Next, each well of a multi-well plate was filled with 500 μL of 0.01 mol/L PBS buffer to clean the brain slices and 
remove impurities. A methanolic solution of 3% H2O2 was added to block endogenous peroxidase activity. The wells 
were then incubated with a goat serum closure solution for 1 h to enhance cell membrane permeability. Subsequently, 500 
μL of each primary antibody working solution was added, consisting of mouse anti-c-Fos (diluted at 1:500) and rabbit 
anti-CBS (diluted at 1:500), and incubated overnight at 4 °C.

Finally, 500 μL of each fluorescent secondary antibody working solution was added for 1 h. Any residual fluorescent 
secondary antibody was washed off with PBST. Previously treated with chromium-vanadium gelatin, the brain slides 
were placed on glass slides and allowed to dry naturally. The slides were sealed with an anti-fluorescence quencher, 
ensuring the removal of air bubbles using a vacuum. Finally, the sealed fluorescent glass slide was placed under an 
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Olympus Fluorescence confocal microscopy to observe and compare the brain atlas to determine the position of the NTS, 
observe the CBS and c-Fos-positive neurons number, and take pictures. The expression of c-Fos and CBS in the NTS was 
counted using Image Pro-Plus 6.0 software (Number/0.01 mm2).

Experimental grouping
We evaluated the following subgroups to investigate the regulatory effects of NaHS in the NTS on gastric function and its 
underlying mechanisms. The chosen doses were based on pre-experiments and relevant literature[31]: (1) The effect of 
microinjection of NaHS (0.1 µL, 4 nmol; n = 6) in NTS on gastric motility; (2) the effect of microinjection of NaHS (0.1 µL, 8 
nmol; n = 6) in NTS on gastric motility; (3) the effect of microinjection of saline (0.1 µL; n = 6) in NTS on gastric motility as 
a control group; (4) the effect of microinjection of NaHS (0.1 µL, 4 nmol) + PDTC (0.1 µL; n = 6) in NTS on gastric motility; 
(5) microinjection of NaHS (0.1 µL, 4 nmol) + Capsazepine (0.1 µL, 4 nmol; n = 6) in NTS on gastric motility; and (6) 
microinjection of NaHS (0.1 µL, 4 nmol) + L703606 (0.1 µL, 4 nmol; n = 6) in NTS on gastric motility.

Microinjection
Before conducting the experiments, the rats were anesthetized with 4% chloral hydrate at (400 mg/kg body weight) by 
intraperitoneal injection until the eyelids and corneal reflexes disappeared, the muscles were relaxed, and the breathing 
was uniform. The anesthetized rat head was fixed on a brain stereotaxic apparatus (Stoelting 68002, Shenzhen Ruiwode 
Company, China).

Next, the animal was fixed according to the rat brain stereotaxic atlas (Paxinos and Watson, 2007) using the three 
points of the animal’s bilateral inner ear holes and incisors. With the left and right ear rods reading the same, fontanelle 
and bregma were kept at the same level with an error of no more than 0.3 mm.

The head hair was removed with hair clippers to expose the scalp and disinfected with 75% alcohol. Then, the scalp 
was cut along the sagittal suture of the skull with ophthalmic clippers to expose the skull, the excess connective tissue 
around the skull was cut away, and the surface of the skull was gently wiped with saline until the fontanelle and her-
ringbone suture were exposed. The three-dimensional coordinates of fontanelle were used as the zero point. A small hole 
of approximately 2 mm in diameter was drilled in the skull ipsilateral to the coordinates of the NTS center point (13.3 mm 
posterior to fontanelle, 0.8 mm paracentral opening, 7.9 mm subdural) in the atlas using an electric cranial drill. A glass 
microelectrode with a tip of approximately 30 μm was placed into the brain at the depth of the coordinates.

Recording gastric motility
The anesthetized rats were placed abdomen side up, and a small incision was made in the fundus of the stomach to clean 
the gastric residue. A 5 mm diameter balloon filled with warm water was inserted into the pylorus of the gastric sinus 
and kept at a constant baseline pressure. The balloon inserted into the rat’s stomach was connected to the pressure 
transducer and BL-420 (Biological Function Experimental System; Chengdu Taimeng Company, China) via a 
polyethylene plastic tube. The stimulation parameters of the transducer were adjusted to 25 mm/min speed, 0.5 mV/cm 
sensitivity, and 10 Hz filter. Once the gastric motility curve was stabilized, the drug’s microinjections and contaminate 
sky blue were administered. A heat lamp was used throughout the experiment to maintain a constant ambient 
temperature, and gastric motility was recorded.

Histological identification of the microinjection site
After gastric motility recording, 2% pontamine sky blue (0.1 µL) was injected into the NTS, the rats were executed with an 
excess of sodium pentobarbital, and the thorax was opened for cardiac perfusion. After perfusion, the heads of the rats 
were cut off, and the brain tissues were removed and placed in a 4% formaldehyde solution for fixation.

Subsequently, the brain tissues were frozen at -16 °C for 30 min and sectioned into successive coronal sections with a 
thickness of 16 μm. The brainstem sections were stained, allowing for the identification of injection sites. The brain slices 
on slides were treated with a neutral red stain and dehydrated to achieve transparency. The sections were observed and 
photographed using a microscope (Nikon Optiphot, Nikon, Shanghai, China) and photographed with a digital camera 
(Magnafire; Optronics, Goleta, CA, United States) connected to a computer. The blue dot marking the precise location of 
the NTS was identified for further statistical analysis.

Data analysis and statistics
The gastric motility of the rats was assessed by counting the number of contractions before and 5 min after injection were 
counted respectively. The total duration of contraction waves (T.D.C.W) within 5 min, the total amplitude of contraction 
waves (T.A.C.W) within 5 min and the gastric motility index (the product of amplitude and duration) before and after the 
5-min microinjection were evaluated statistically. To calculate the inhibition rate of gastric motility, the following formula 
was used: Inhibition rate (%) = (pre-injection value-post-injection value) × 100%/pre-injection value. The height between 
the highest point of the contraction curve and the baseline is the amplitude of the contraction wave. The time duration 
between the starting point and the ending point of the contraction wave is the time duration of the contraction wave.

Statistical analysis was performed using SPSS v25.0 (IBM SPSS Inc., Chicago, IL, United States) using Student’s t-test or 
one-way ANOVA, followed by a posthoc test using the Student-Newman-Keuls test. All data are presented as mean ± SE. 
A P value less than 0.05 was considered statistically significant.
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RESULTS
Observation of c-Fos and CBS expression in NTS at different times in RWIS
In this experiment, the number of CBS and c-Fos co-expressing neurons in the NTS (Figure 1, n = 6) was revealed by 
immunohistochemical fluorescence double-labeling. The expression of c-Fos protein in the NTS showed varying degrees 
of increase at 1 h (7.00 ± 0.37) and 3 h (4.83 ± 0.31) after RWIS compared to the control group at 0 h (1.83 ± 0.30) (P < 0.01). 
This finding indicates that CBS neurons in the NTS of rats were activated during the RWIS procedure.

NTS injection site identification
Following neutral red staining, the brain slices were examined under a light microscope to determine the localization of 
the injected blue spots and drugs within the NTS. The observed data regarding the gastric motility of rats in the correct 
position were analyzed. Figure 2 presents the diagram for identifying the degree of tissue localization.

NaHS inhibits gastrointestinal motility within NTS
The microinjection of physiological saline (PS) (0.1 µL, n = 6) under the same conditions did not produce a significant 
change in gastric motility (Figure 3A). In contrast, the microinjection of NaHS at different concentrations (4 nmol and 8 
nmol, 0.1 µL, n = 6) into the rat NTS resulted in significant inhibition of gastric motility (Figure 3B and C).

We compared gastric motility curves measured before and 5 min after the drug injection and after 4 nmol NaHS 
injection in the NTS. The T.A.C.W. decreased from 553.08 mm 5 min-1 ± 9.59 mm 5 min-1 to 421.30 mm 5 min-1 ± 10.58 mm 
5 min-1 (P < 0.01). The T.D.C.W. decreased from 179.79 s 5 min-1 ± 13.33 s 5 min-1 to 132.56 s 5 min-1 ± 6.67 s 5 min-1 (P < 
0.01), and the gastric motility index (G.M.I.) decreased from 5219.88 ± 182.11 to 4250.28 ± 159.03 (P < 0.01). At a NTS 
microinjection dose of 8 nmol NaHS, the T.A.C.W. decreased from 587.62 mm 5 min-1 ± 9.58 mm 5 min-1 to 407.44 mm 5 
min-1 ± 10.61 mm 5 min-1 (P < 0.01) and the T.D.C.W. decreased from 234.11 s 5 min-1 ± 11.74 s 5 min-1 to 145.13 s 5 min-1 ± 
3.93 s 5 min-1 (P < 0.01) and the G.M.I. decreased from 5906.07 ± 181.71 to 4105.60 ± 49.35. After PS injection in the NTS, 
the T.A.C.W. decreased from 468.72 mm 5 min-1 ± 6.42 mm 5 min-1 to 467.34 mm 5 min-1 ± 5.04 mm 5 min-1 (P > 0.05), the 
T.D.C.W. from 236.96 s 5 min-1 ± 8.51 s 5 min-1 to 232.38 s 5 min-1 ± 16.31 s 5 min-1 (P > 0.05), and the G.M.I. from 5797.17 ± 
141.87 to 5778.08 ± 125.32 (P > 0.05) (Figure 4A-C).

The inhibition rates of the T.A.C.W. in the 4 nmol NaHS, 8 nmol NaHS, and saline groups were 23.83%, 30.69%, and 
0.27%, respectively. The inhibition rates of T.D.C.W. in the 4 nmol NaHS, 8 nmol NaHS, and saline groups were 26.21%, 
37.43%, and 2.06%, respectively. The inhibition rates of G.M.I. in the 4 nmol NaHS, 8 nmol NaHS, and saline groups were 
18.55%, 30.17%, and 0.30%, respectively (Figure 4D). The data indicated that the inhibition rates of T.A.C.W., T.D.C.W., 
and G.M.I. were significantly higher in the 8 nmol NaHS group compared to the 4 nmol NaHS group. These findings 
suggest a dose-dependent inhibitory effect of NTS injection of NaHS on gastric motility.

PDTC eliminates the inhibitory effect of NaHS on gastric motility
Injection of PDTC followed by NaHS into the NTS eliminated the inhibitory effect of NaHS on gastric motility (Figure 5A, 
n = 6). The T.A.C.W. changed from 500.15 mm 5 min-1 ± 7.56 mm 5 min-1 to 491.06 mm 5 min-1 ± 17.19 mm 5 min-1 (P > 
0.05), the T.D.C.W. changed from 169.84 s 5 min-1 ± 3.40 s 5 min-1 (P > 0.05), and the G.M.I. changed from 5494.78 ± 140.32 
to 5490.60 ± 88.80 after PDTC followed by NaHS injection (P > 0.05) (Figure 5B-D). These data suggest that NaHS can 
regulate gastric motility through the NF-κB signaling pathway.

Capsazepine eliminates the inhibitory effect of NaHS on gastric motility
Injection of Capsazepine followed by NaHS into the NTS eliminated the inhibitory effect of NaHS on gastric motility 
(Figure 6A, n = 6). As a result, the T.A.C.W. changed from 514.46 mm 5 min-1 ± 6.56 mm 5 min-1 to 523.87 mm 5 min-1 ± 
9.21 mm 5 min-1 (P > 0.05), the T.D.C.W. changed from 175.90 s 5 min-1 ± 4.22 s 5 min-1 to 172.13 s 5 min-1 ± 4.68 s 5 min-1 (P 
> 0.05), and the G.M.I. changed from 5932.97 ± 104.93 to 5946.45 ± 184.14 (P > 0.05) (Figure 6B-D). These data suggest that 
NaHS can regulate gastric motility through TRPV1 channels.

L703606 eliminates the inhibitory effect of NaHS on gastric motility
Injection of L703606 followed by NaHS into the NTS eliminated the inhibitory effect of NaHS on gastric motility 
(Figure 7A, n = 6). The T.A.C.W. changed from 494.46 mm 5 min-1 ± 11.86 mm 5 min-1 to 490.53 mm 5 min-1 ± 14.00 mm 5 
min-1 (P > 0.05), the T.D.C.W. changed from 164.10 s 5 min-1 ± 5.53 s 5 min-1 to 158.39 s 5 min-1 ± 10.64 s 5 min-1 (P > 0.05), 
and the G.M.I. changed from 5827.59 ± 133.74 to 5762.80 ± 114.34 (P > 0.05) (Figure 7B-D). These data suggest that NaHS 
can act on NK1 receptors to regulate gastric motility.

DISCUSSION
Endogenous H2S concentrations in the brain range between 10 nM and 160 nM[32], and approximately 33% of H2S is 
produced by volatilization in NaHS solutions when measurements are made in a closed environment. H2S (10 mmol/L) 
in NTS neurons can maintain excitatory postsynaptic potential excitation for 10 minutes, which is equivalent to the time it 
takes for a microinjection NaHS to work[33]. Moreover, H2S can cross the cell membrane by free diffusion to modulate 
cellular properties[34]. We selected NaHS as an exogenous H2S rapid drug-delivery donor.
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Figure 1 Co-expression of cystathionine beta-synthase (green) and c-Fos (red) neurons in the nucleus tractus solitarius at different times 
of restraint water-immersion stress. A: Expression of cystathionine beta-synthase (CBS) and c-Fos in restraint water-immersion stress (RWIS) at 0 h; B: 
Expressions of CBS and c-Fos in RWIS at 1 h; C: Expression of CBS and c-Fos in RWIS at 3 h; D: Quantification of neurons co-expressing CBS and c-Fos in the 
nucleus tractus solitarius (n = 6). aP < 0.01 vs RWIS 0 h group. NTS: Nucleus tractus solitarius; RWIS: Restraint water-immersion stress; CBS: Cystathionine beta-
synthase.

Figure 2 Histological identification of microinjections located at the nucleus tractus solitarius in the brain. A: Location of the nucleus tractus 
solitarius (NTS) in the brain atlas; B: Neutral red stained brain section with blue dot sites representing injection into the NTS. NTS: Nucleus tractus solitarius.

H2S, an emerging gaseous signaling molecule, plays an important role in regulating digestion and the nervous system
[35]. Placing coronal NTS slices into NaHS solution was found to cause rapid concentration-dependent depolarization of 
neurons at NTS sites, with H2S increasing the postsynaptic currents in NTS neurons by promoting presynaptic glutamate 
release[36]. Herein, we observed a significant increase in the co-expression of neurons between CBS and c-Fos in rat NTS 
after RWIS, indicating that H2S in the NTS is involved in gastrointestinal regulation and stress.

In this experiment, we found that the amplitude and duration of gastric motility and the index of gastric motility were 
significantly lower in the NTS than in the control group, in a dose-dependent manner, after the injection of different 
concentrations of NaHS in rats. Sensory information from the upper gastrointestinal tract is transmitted to the NTS via 
vagal afferent fibers, and c-Fos-positive neurons are significantly increased in the NTS following stressful processes. 
Glutamate release from vagal afferent fibers activates NTS neurons, which can regulate gastrointestinal activity by 
inhibiting the vagal excitatory cholinergic efferent pathway via the inhibitory neurotransmitter GABA or by exciting the 
vagal inhibitory non-adrenergic non-cholinergic (NANC) efferent pathway[37]. In addition, vagal afferent nerves from 
the gastrointestinal tract can activate the NANC efferent pathway leading to gastric smooth muscle relaxation. Vagal 
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Figure 3 Effect of microinjection of drugs in the nucleus tractus solitarius on gastric motility in rats. A: Gastric motility curves were recorded in 
rats microinjected with saline at the nucleus tractus solitarius (NTS); B: Gastric motility curves were recorded in rats microinjected with 4 nmol NaHS in the NTS; C: 
Gastric motility curves were recorded in rats microinjected with 8 nmol NaHS in the NTS. PS: Physiological saline.

efferent fibers activate the noradrenergic neurons in the NTS, which in turn activate the NANC pathway neurons in the 
DMV. These NANC-DMV neurons transmit to the gastrointestinal plexus to activate postganglionic cholinergic neurons, 
thus causing gastric relaxation[38].

In vivo studies found that the microinjection of D-glucose into the NTS resulted in decreased gastric motility and 
increased intragastric pressure in rats via K+-ATP channel relaxation of the smooth muscles and increased firing of 
GABAergic neurons[39]. Injection of cholecystokinin in the rat NTS modulates the gastrointestinal motility and secretory 
function in the upper gastrointestinal tract by activating postganglionic cholinergic excitatory or NANC inhibitory 
pathways[40]. Increased glutamate content within the NTS directly activates excitatory postsynaptic potentials in NTS 
neurons, which in turn stimulates local circuit GABAergic and glutamatergic neurons. GABAergic signals at the NTS 
determine the state of the gastric tone and contraction and mediate changes in gastric mechanical function at the onset of 
the vagal-vagal reflex[41,42]. The intra-NTS injection of GLP-1 reduces the gastric tone by activating NANC and delays 
gastric emptying in a dose-dependent manner[43]. Therefore, NaHS injection in the rat NTS may inhibit gastric motility 
by releasing inhibitory neurotransmitters such as GABA from preganglionic cholinergic neurons.

The activation of TRPV1 leads to the release of various pro-inflammatory cytokines, which can activate NF-kB translo-
cation to the nucleus. Our experiments revealed that the injection of the NF-κB pathway blocker PDTC followed by NaHS 
eliminated the modulation of gastric function by NaHS. H2S is mainly synthesized in the brain by the CBS enzyme, 
andwe found that NaHS injection in both the ambiguous and paraventricular nuclei inhibited gastric motility in rats via 
the NF-κB pathway[44,45], that the injection of NaHS to the brain blocked inflammation-associated apoptosis, and that 
treatment with NaHS reduced the expression of inflammatory factors in astrocytes and microglia due to Alzheimer’s 
disease[46]. H2S reduces the levels of phosphorylated p38 MAPK and phosphorylated p65 NF-κB in vivo. NaHS also 
reduces LPS-induced inflammation by inhibiting p38 MAPK and p65 NF-κB in rat cells[47]. SP is the main presyn-
aptically released excitatory transmitter from injured primary afferent fibers. It binds to NK1 receptors on the 
postsynaptic membrane to activate NF-kB-induced inflammatory factor synthesis. NF-κB is reportedly involved in the 
transcriptional regulation of various response-related genes, including gastrointestinal mucosal damage, and that the 
downregulation of NF-κB signaling can inhibit stress-induced local inflammatory responses in the gastric mucosa and can 
repair local lesions in the gastric mucosa[48,49]. Therefore, physiological concentrations of H2S can modulate the inflam-
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Figure 4 Effects of the microinjection of NaHS (4 nmol and 8 nmol) and physiological saline into the nucleus tractus solitarius before and 
after the gastric motility data. A: Total amplitude of the contraction wave (T.A.C.W.); B: Total duration of the contraction wave (T.D.C.W.); C: Gastric motility 
index (G.M.I.); D: Inhibition rates of T.A.C.W., T.D.C.W., and G.M.I. aP < 0.01 vs before injection. PS: Physiological saline; T.A.C.W.: Total amplitude of the 
contraction wave; T.D.C.W.: Total duration of the contraction wave; G.M.I.: Gastric motility index.

matory process and regulate gastric dysfunction by down-regulating the inflammatory response.
To investigate the signaling pathways involved in H2S regulation, we focused on the TRPV1-SP-NF-kB pathway[50]. 

TRPV1 activation, enhanced pro-inflammatory cytokine expression, and oxidative stress via the NF-kB pathway led to 
reduced phosphorylation of the ERK signaling pathway, activation of PAG involved in the ERK-NF-kB pathway, and 
production of SP, which in turn regulated TRPV1-mediated neurogenic inflammation[51]. Our experiments showed that 
the administration of the TRPV1 blocker Capsazepine followed by NaHS eliminated the modulation of gastric function by 
NaHS. TRPV1 is widely expressed in spinal and vagal afferent neurons. It innervates the gastrointestinal tract, and its 
upregulated sensitivity may be associated with the pathophysiological functions of diseases such as visceral pain, irritable 
bowel syndrome, inflammatory bowel disease and pancreatitis[52]. TRPV1 presents two sides to inflammation. There are 
even studies showing the alternating effects of TRPV1 on inflammation[53]. Capsaicin induces inflammation in the 
stomach by activating TRPV1, damages the gastrointestinal mucosa, causes structural changes in the intestinal barrier 
and further leads to other gastrointestinal symptoms[54-56]. It also decreases the expression of anti-inflammatory 
cytokines in the stomach and intestine and promotes the release of gastrointestinal neuropeptide SP, which is closely 
associated with gastrointestinal visceral pain[57]. The findings suggest that the TRPV1 receptor antagonist caspofungin 
abrogates H2S donor-induced enhancement of gastric emptying and that TRPV1-dependent pathways have been shown 
to produce modulation of vagally mediated muscle contractions in the gastrointestinal tract[58]. Capsaicin also activates 
the enterocholinergic neurons in guinea pig’s small intestine and induces contractile effects and inhibition of gastric 
emptying, thus inducing the relaxation of smooth muscles of the fundus[59]. Capsazepine was also found to inhibit 
NaHS-induced pyloric smooth muscle relaxation, indicating that the effect of H2S donors on enhancing gastric emptying 
and inducing pyloric sphincter relaxation is mediated by the activation of TRPV1 receptors. Although there are many 
mechanisms by which this effect can be manifested, our data support the theory of smooth muscle relaxation induced by 
afferent neuronal TRPV1 receptor activation[45,60].

TRPV1 receptors may act as molecular sensors involved in processing cardiac injury information in spinal neurons. 
Harmful environmental stimuli can activate TRPV1 to produce pro-inflammatory mediators in the epithelial cells, thus 
triggering neurogenic inflammatory responses. TRPV1 antagonists reportedly inhibited H2S-induced neuropeptide 
release and bronchoconstriction in vitro, whereas H2S induced the release of an endogenous tachykinin, SP, by stimu-
lating sensory nerve endings, and that NaHS-induced SP release is significantly reduced when the TRPV1 blocker 
Capsazepine is applied[61]. Capsaicin also slows down gastric motility through TRPV1-induced excitation of gastric 
sensory nerve fibers[62]. A possible role of capsaicin-sensitive vagal afferent nerves in gastric mucosal injury and 
prevention has been demonstrated and is associated with the release of SP[31].
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Figure 5 Effect of microinjection of 4 nmol NaHS and 4 nmol NaHS + pyrrolidine dithiocarbamate into the nucleus tractus solitarius on 
gastric motility in rats. A: Gastric motility curve recorded in rats with 4 nmol NaHS + pyrrolidine dithiocarbamate microinjection in nucleus tractus solitarius; B: 
Data of total amplitude of the contraction wave; C: Data of total duration of the contraction wave; D: Data of gastric motility index. aP < 0.01 vs before injection. PDTC: 
Pyrrolidine dithiocarbamate; T.A.C.W.: Total amplitude of the contraction wave; T.D.C.W.: Total duration of the contraction wave.

Figure 6 Effects of microinjection of 4 nmol NaHS and 4 nmol NaHS + Capsazepine into the nucleus tractus solitarius on gastric motility 
in rats. A: Gastric motility curve recorded in rats with 4 nmol NaHS + Capsazepine microinjection in nucleus tractus solitarius; B: Data of total amplitude of the 
contraction wave; C: Data of total duration of the contraction wave; D: Data of gastric motility index. aP < 0.01 vs before injection. T.A.C.W.: Total amplitude of the 
contraction wave; T.D.C.W.: Total duration of the contraction wave.

We eliminated the inhibitory effect of NaHS on gastric motility in our experiments by injecting the NK1 receptor 
blocker L703606 followed by NaHS. SP is a brain-gut peptide abundant in mammals that acts as a neurotransmitter for 
specific receptors to mediate NANC expression in the autonomic nervous system. Numerous studies have shown its role 
in stress and nociceptive transmission[63]. Injection of exogenous SP into the NTS resulted in the reduction of gastric 
motility. In contrast, injection of NK1 blockers enhanced the gastric motility. Therefore, SP in the NTS may play a 
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Figure 7 Effects of microinjection of 4 nmol NaHS and 4 nmol NaHS + L703606 into the nucleus tractus solitarius on gastric motility in 
rats. A: Gastric motility curve recorded in rats with 4 nmol NaHS + L703606 microinjection in nucleus tractus solitarius; B: Data of total amplitude of the contraction 
wave; C: Data of total duration of the contraction wave; D: Data of gastric motility index. aP < 0.01 vs before injection. T.A.C.W.: Total amplitude of the contraction 
wave; T.D.C.W.: Total duration of the contraction wave.

predominantly inhibitory role in gastrointestinal regulation. Administration of NK1 receptor antagonists also prevented 
H2S-induced contractile responses, indicating that SP released from sensory nerve endings is the ultimate mediator of H2

S-induced excitation of smooth muscle in rats, possibly leading to altered gastric motility and the formation of gastric 
ulcers[64]. Injection of glutamate and SP in the NTS modulates gastric motility and emptying, and leads to a dose-
dependent decrease in tonic gastric pressure and inhibition of gastric motility[65,66]. It has been shown that glutamate, 
acting through N-methyl-D-aspartic acid receptors with glutamate ion channels, and tachykinin, acting through NK1 and 
NK2 receptors, act synergistically in the transmission of acid stimuli from the gastric mucosa to the NTS[67]. SP regulates 
gastric smooth muscle contraction by both inhibition and enhancement mechanisms. Studies have found that SP microin-
jections in the brain have inhibitory effects on gastric motility. Furthermore, microinjections of SP in the rat DMV 
inhibited gastric EMG fast waves and gastric motility. These effects could be abolished by SP receptor antagonists and by 
severing the vagus nerve, respectively[68]. SP in the brain plays a role in stress-induced physiological and behavioral 
activity. The effects of NK1 can be blocked using injectable drugs or knockout methods[69-71]. Moreover, c-Fos exp-
ression can be downregulated, with the nucleus involved in stress in the brain and pain, causing pain through increased 
SP release in the hypothalamic and spinal cord tissue. This results in a sterile inflammatory response, with persistent pain 
leading to increased levels of SP receptors in the posterior horn of the spinal cord[72]. SP also plays a role in transmitting 
injurious information, with low doses given ventrally to produce analgesia, acting in a neuroendocrine manner on 
various immune cells involved in immune regulation and enhancing immune function[73]. We, therefore, consider that 
H2S enhances the inhibitory effect of SP on gastric motility by excitation of NTS neurons which are then transmitted to the 
DMV.

CONCLUSION
Our experiments revealed that CBSergic neurons affecting gastric function were present in the NTS and were activated by 
stress. Furthermore, exogenous H2S in the NTS significantly inhibited gastric motility in rats, possibly by activating the 
TRPV1 pathway through NF-κB channels to release SP. This is the first study to report that H2S in the NTS may regulate 
gastric function. It provides an important experimental basis for the clinical prevention and treatment of gastric ulcers.
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ARTICLE HIGHLIGHTS
Research background
Recent studies have revealed that hydrogen sulfide is the third class of gas signaling molecules after nitric oxide (NO) 
and carbon monoxide (CO). The high level of endogenous hydrogen sulfide found in the brain, which is mainly produced 
by cystathionine beta-synthase, suggests that it may have a physiological function, and the nucleus tractus solitarius is 
important nucleus that regulates the function of internal organs, so we want to elucidate the role of hydrogen sulfide in 
the NTS in regulating gastric function in rats.

Research motivation
To investigate whether hydrogen sulfide in the nucleus tractus solitarius is involved in the regulation of gastric 
dysfunction by restraint water-immersion stress, this study will examine the role of hydrogen sulfide in the nucleus 
tractus solitarius in the regulation of gastric motility.

Research objectives
It is the first time to propose that hydrogen sulfide in the nucleus tractus solitarius has a regulatory effect on the gastric 
motility caused by restraint water-immersion stress, and to investigate its mechanism of action, which can not only 
elucidate the mechanism of regulation of gastric dysfunction by hydrogen sulfide in the nucleus tractus solitarius, and 
also provide an important experimental basis for the prevention and treatment of stress gastric ulcer from the central 
aspect in clinical practice.

Research methods
We used immunohistochemical, fluorescent double-labeling technique and restraint water-immersion stress model to 
confirm the involvement of hydrogen sulfide-producing cystathionine beta-synthase neurons in the nucleus tractus 
solitarius in the regulation of gastric function, and physiological methods to record changes in gastric motility before and 
after their brain injection.

Research results
After restraint water-immersion stress, cystathionine beta-synthase neurons containing c-Fos were significantly increased 
and gastric motility was inhibited in rats after nucleus tractus solitarius injection of NaHS, and this inhibitory effect was 
eliminated after pre-injection of transient receptor potential vanilloid 1 channels, NF-κB channel blockers, and NK1 
receptor antagonists followed by NaHS injection.

Research conclusions
Injection NaHS into the nucleus tractus solitarius can inhibit gastric motility in rats and this effect may be mediated by 
TRPV1 and NK1 receptors via NF-κB channel-dependent activation.

Research perspectives
Our next step will be to continue our work on the effects of endogenous hydrogen sulfide in the nucleus tractus solitarius 
on gastric function.
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Abstract
BACKGROUND 
Prophylactic enterostomy surgery is a common surgical approach used to reduce 
the risk of anastomotic leakage in patients who have undergone partial intestinal 
resection due to trauma or tumors. However, the traditional interrupted suturing 
technique used in enterostomy closure surgery has several issues, including lon-
ger surgical incisions and higher incision tension, which can increase the risk of 
postoperative complications. To address these issues, scholars have proposed the 
use of a “gunsight suture” technique. This technique involves using a gunsight 
incision instead of a traditional linear incision, leaving a gap in the center for the 
drainage of blood and fluid to reduce the risk of infection. Building on this 
technique, we propose an improved gunsight suture technique. A drainage tube is 
placed at the lowest point of the incision and close the gap in the center of the 
gunsight suture, which theoretically facilitates early postoperative mobility and 
reduces the burden of dressing changes, thereby reducing the risk of posto-
perative complications.

AIM 
To compare the effectiveness of improved gunsight suture technique with 
traditional interrupted suture in closing intestinal stomas.

METHODS 
In this study, a retrospective, single-center case analysis was conducted on 270 
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patients who underwent prophylactic ileostomy closure surgery at the Department of Colorectal Surgery of Qilu 
Hospital from April 2017 to December 2021. The patients were divided into two groups: 135 patients received 
sutures using the improved gunsight method, while the remaining 135 patients were sutured with the traditional 
interrupted suture method. We collected data on a variety of parameters, such as operation time, postoperative 
pain score, body temperature, length of hospital stays, laboratory indicators, incidence of incisional complications, 
number of wound dressing changes, and hospitalization costs. Non-parametric tests and chi-square tests were 
utilized for data analysis.

RESULTS 
There were no statistically significant differences in general patient information between the two groups, including 
the interval between the first surgery and the stoma closure [132 (105, 184) d vs 134 (109, 181) d, P = 0.63], gender 
ratio (0.64 vs 0.69, P = 0.44), age [62 (52, 68) years vs 60 (52, 68) years, P = 0.33], preoperative body mass index (BMI) 
[23.83 (21.60, 25.95) kg/m² vs 23.12 (20.94, 25.06) kg/m², P = 0.17]. The incidence of incision infection in the 
improved gunsight suture group tended to be lower than that in the traditional interrupted suture group [ (n = 
2/135, 1.4%) vs (n = 10/135, 7.4%), P < 0.05], and the postoperative hospital stay in the improved gunsight suture 
group was significantly shorter than that in the traditional interrupted suture group [5 (4, 7) d vs 7 (6, 8) d, P < 
0.05]. Additionally, the surgical cost in the modified gunsight suture group was slightly lower than that in the 
traditional suture group [4840 (4330, 5138) yuan vs 4980 (4726, 5221) yuan, P > 0.05], but there was no significant 
difference in the total hospitalization cost between the two groups.

CONCLUSION 
In stoma closure surgery, the improved gunsight technique can reduce the incision infection rate, shorten the 
postoperative hospital stay, reduce wound tension, and provide better wound cosmetic effects compared to 
traditional interrupted suture.

Key Words: Enterostomy; Abdominal wound closure technique; Suture techniques; Surgical wound infection; Hospital costs; 
Hospital stay

©The Author(s) 2023. Published by Baishideng Publishing Group Inc. All rights reserved.

Core Tip: Based on the gunsight technique, we proposed an improved gunsight closure method for enterostomy surgery in 
this study. This closure method can reduce the incision tension, lower the risk of incision infection, decrease the length of 
hospital stay, and reduce hospitalization costs. Additionally, it requires less postoperative wound care and provides a better 
cosmetic outcome.

Citation: Chen C, Zhang X, Cheng ZQ, Zhang BB, Li X, Wang KX, Dai Y, Wang YL. Comparison of modified gunsight suture 
technique and traditional interrupted suture in enterostomy closure. World J Gastroenterol 2023; 29(29): 4571-4579
URL: https://www.wjgnet.com/1007-9327/full/v29/i29/4571.htm
DOI: https://dx.doi.org/10.3748/wjg.v29.i29.4571

INTRODUCTION
Patients with colon cancer, inflammatory bowel disease, or intestinal trauma may require partial bowel resection. 
However, a simple one-stage surgery may result in complications such as anastomotic leakage, significantly affecting 
patient health and increasing the economic burden. To reduce this risk, a prophylactic intestinal stoma is often performed 
in patients at high risk for anastomotic leakage during routine surgery[1,2]. After 2-3 mo, the patient’s condition was 
evaluated and a second-stage anastomosis was performed to restore gastrointestinal continuity[3]. Although prophylactic 
intestinal stoma can reduce complications such as anastomotic leakage[4], second-stage anastomotic surgery also has its 
own risks, including incision infection, intestinal obstruction, and incisional hernia[5-8]. Unlike Class II incisions in other 
gastrointestinal surgeries, the skin around the colostomy site is continuously exposed to feces, classifying it as a Class III 
incision. Incision infections are particularly common, with an incidence of up to 41% reported[9]. Due to factors, such as 
contamination of the intestinal contents, preventing incision infections may be challenging.

According to guidelines published by different countries, surgical site infection increases hospital stay and the risk of 
death by 2-11 times[10-13]. To address this issue, researchers have proposed improved surgical methods, such as placing 
drainage tubes at the incision site, selecting special suture materials, and modifying the suture technique[14-19]. Some 
special antimicrobial suture materials and techniques are highly regarded; however, there is currently no recognized 
surgical procedure to reduce the incidence of incision infections. Studies have shown that compared with traditional 
interrupted sutures, the purse-string suture technique can effectively drain subcutaneous fluid and significantly reduce 
the incidence of incision infections. However, owing to the high tension at the center of the incision[20-22], the healing 
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process of the abdominal incision after closure may take up to 3 wk.
In 2010, Lim et al[23] proposed a suture technique called “gunsight suture” that can reduce tension at the incision site 

and leave a smaller drainage gap at the center of the incision. This technique can effectively drain subcutaneous blood 
and fluid, reduce infection rate, and provide good cosmetic results with minimal scarring[20,24,25]. However, it is 
difficult to drain all the subcutaneous blood and fluid by placing a drainage tube or strip at an angle in the central gap. In 
addition, the vertical placement of the drainage tube significantly affects the postoperative activity range, and frequent 
dressing changes are required owing to leakage at the center of the incision, which can cause serious psychological and 
economic burdens on patients. Moreover, fixing the drainage tube in the central gap of the gunsight suture incision is 
challenging; therefore, drainage strips are often used, resulting in a shorter drainage time and a slightly inferior drainage 
effect.

Therefore, in our hospital, we reserve a smaller gap (approximately 0.2 cm) at the center and place a drainage tube 
through the entire subcutaneous gap in a small incision next to the incision. The catheter was left in place for approx-
imately 14 d and removed after the incision healed (Figure 1). This design effectively drained the subcutaneous fluid and 
reduced the local tension at the incision site (Figure 1C). Theoretically, it can reduce the incidence of incision infection, 
shorten the postoperative hospital stay, provide better cosmetic results, and reduce hospitalization costs. To verify the 
significance of the improved gunsight suture method in clinical practice, data were collected from 270 patients who 
underwent ileostomy closure surgery between April 2017 and December 2022. Our findings are reported below.

MATERIALS AND METHODS
Study design
This retrospective case-control study was conducted between April 2017 and December 2022 to evaluate the effectiveness 
of a modified surgical technique for ileostomy closure and lateral ileal anastomosis. This study was approved by the 
Ethics Committee of Qilu Hospital, Shandong University (Approval No: KYLL-2020-120).

Participants
A total of 270 patients who underwent ileostomy closure and ileo-ileal lateral anastomosis surgery at the Department of 
Colorectal Surgery at Qilu Hospital were included in this study.

Inclusion criteria: Age > 18 years, patients who underwent ileostomy closure and ileo-ileal lateral anastomosis surgery, 
no stenosis of the intestinal lumen near the stoma on preoperative colonoscopy, and no concomitant colitis.

Exclusion criteria: Patients who required hernia repair due to concomitant incisional hernia, patients with mental 
dysfunction, and patients with other tumors, serious illnesses, or severe abdominal adhesions.

Preoperative preparation
The day before surgery, the patient underwent mechanical bowel preparation with polyethylene glycol and rectal 
cleansing enema. This procedure improved the patient’s general condition, eliminated distant obstruction, and controlled 
the inflammation around the stoma. Prophylactic antibiotics were administered 30 min before surgery to prevent 
infection.

Surgical procedure
After the patients were fully anesthetized, they were placed in the supine position. First, a 2-0 silk suture was used to 
close the ileostomy and prevent intestinal contents from spilling out during the reduction process. After re-disinfecting, 
an appropriate stoma incision was made using the suturing method. The tissues surrounding the stoma were separated 
layer by layer to avoid damage to the intestinal wall. The freed intestine was then separated in all directions, and the 
direction with less adhesion was chosen to cut open the peritoneum and enter the abdominal cavity where the adhesions 
were loosened. The two ends of the freed intestinal tube were pulled out of the abdominal wall by > 5 cm, and a linear 
cutting closure device was used to perform a side-to-side anastomosis of the proximal and distal ends of the ileum to 
restore intestinal continuity. The 4-0 absorbable suture (Vycrl, Ethicon) was used to intermittently suture and reinforce 
the ileal muscularis layers. The bowel is returned to the abdominal cavity without placement of an abdominal drainage 
tube. Subsequently, a continuous suture is performed using 2-0 absorbable antibacterial sutures (VCP-603) to close the 
peritoneum and rectal sheath, leaving a subcutaneous drainage tube in place. The appropriate skin closure method is 
chosen based on the group.

Simple interrupted suture group (A, B): No or only minimal trimming is required at the site of repositioning. A 2-0 
suture is used for full-thickness vertical mattress suturing, with a needle margin of 1 cm, a stitch spacing of 2 cm, and 
avoiding residual ineffective cavities. Reinforcement sutures can be placed between every two stitches, with a needle 
margin of 0.5 cm. This approach can better support skin closure and reduce tension on the surgical incision. After 
disinfection, sterile auxiliary materials are used for compression and bandaging.

Modified gunsight suture group (C, D): The incision was marked at the 3, 6, 9, and 12 o’clock positions, and the skin 
tissue between the marked points was triangularly excised to form a gunsight incision. A 2-0 silk suture was used to 
suture the subcutaneous tissue at the four marked points, and the skin was tightened and knotted after closure. The 
central part of the incision was brought together as closely as possible without leaving or leaving a gap of approximately 
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Figure 1 Surgical stitching result diagram. A: Photo of incision closed with traditional interrupted suture; B: Postoperative photo of incision healing after 
traditional interrupted suture; C: Photo of incision closed with improved gunsight suture; D: Postoperative photo of incision healing after improved gunsight suture.

0.2 cm. Finally, a 2-0 silk suture was used to suture the midpoints of the four edges of the gunsight incision to complete 
the reinforcement. After disinfection, sterile auxiliary materials were applied for compression and bandaging.

Observation indicators
The patients’ baseline data included age, sex, surgery time, postoperative pain score, postoperative temperature changes, 
hospitalization time, postoperative laboratory indicators, incision infection rate, and hospitalization costs. The 
temperature was recorded for 3 d after surgery. The Numeric Rating Scale (NRS) was used to assess the pain scores.

Statistical analysis
Data analysis was performed using the SPSS 26 statistical software. Normally distributed metric data were expressed as 
mean ± SD and intergroup comparisons were performed using independent sample t-tests. Non-normally distributed 
quantitative data were expressed as median (interquartile range) [M (IQR)], and intergroup comparisons were performed 
using the Mann-Whitney U test. Categorical variables were expressed as frequencies, and intergroup comparisons were 
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performed using Chi-squared test or Fisher’s exact test. Statistical significance was set at P < 0.05.

RESULTS
The study included 270 patients who underwent stoma closure surgery at Qilu Hospital. All the patients completed the 
procedure without anastomotic leakage. Among them, 135 patients received modified Gunsight sutures, and 135 received 
traditional simple interrupted sutures. Statistical comparisons showed no significant differences in sex ratio, age, 
preoperative BMI, or the proportion of patients with diabetes between the two groups (Table 1).

Laboratory indicators included the systemic immune inflammation index (SII), red blood cell count, and hemoglobin 
levels. The SII was calculated as the platelet count multiplied by the ratio of neutrophils to lymphocytes and was used as 
a simple and effective evaluation index to assess the immune and inflammatory status and prognosis of patients before 
and after colorectal surgery. Previous studies have shown that the SII is an independent risk factor for the prognosis of 
colorectal cancer patients. There were no statistically significant differences in the laboratory indicators between the two 
groups[26-28].

According to the comparison of the main observation indicators (Table 2), the incidence of surgical site infection (SSI) 
in the modified gunsight suture group was lower than that in the traditional simple interrupted suture group [ (n = 2/
135, 1.4%) vs (n = 10/135, 7.4%), P < 0.05], and the length of hospital stay and the number of dressing changes were also 
significantly better than those in the traditional simple interrupted suture group. However, there were no significant 
differences in the postoperative body temperature, pain score, or postoperative first bowel gas passage time between the 
two groups (P > 0.05). In addition, we compared the surgical and hospitalization costs between the two groups and found 
that the surgical cost in the modified Gunsight suture group was slightly lower than that in the traditional suture group 
[4840 (4330, 5138) yuan vs 4980 (4726, 5221) yuan, P > 0.05], but there was no significant difference in the total hospital-
ization cost between the two groups. Furthermore, scar formation after incision healing was significantly lower in the 
modified Gunsight suture group than in the control group (Figure 1B and D).

DISCUSSION
During stoma closure surgery in patients who undergo preventive ostomy, there is a high incidence of incisional 
infections due to environmental contamination, subcutaneous fluid accumulation, and other reasons, with reported rates 
ranging from 3% to 41%[29]. This delay in wound healing can severely affect patients’ quality of life. To reduce the risk of 
postoperative incisional infections, many clinicians have proposed improvements in the suture method of the incision
[20], among which the modified Gunsight suture technique has shown promise.

Reid et al[30] conducted a randomized controlled clinical trial involving 61 patients to compare postoperative complic-
ations of the purse-string suture technique with those of the traditional simple interrupted suture technique. They found 
that purse-string sutures had fewer surgical site infections than conventional sutures, with two out of 30 patients experi-
encing infections compared to 12 out of 31 patients in the conventional suture group[30]. In a multicenter prospective 
study by Han et al[20], the effectiveness of the gunsight and purse-string suture techniques in closing skin incisions was 
compared. This study found that the gunsight suture technique has a lower incision infection rate, similar to that of the 
purse-string suture technique. Additionally, patients in the Gunsight suture group had shorter incision healing times and 
higher patient satisfaction[20]. In a case-review study of 233 patients, Li et al[31] compared the clinical characteristics 
between patients with traditional simple interrupted sutures and those with gunsight sutures. The incidence of surgical 
site infections was significantly lower in the Gunsight suture group than in the traditional simple interrupted suture 
group. Gunsight sutures were identified as an independent protective risk factor for surgical site infections, with a 
dominance ratio of 0.212 and a P value of 0.048.

This study showed that our modified Gunsight suture technique is associated with a lower incidence of surgical site 
infection when compared with the traditional simple interrupted suture technique. Specifically, 10 patients in the 
traditional simple interrupted suture group experienced postoperative incisional infections, with three of these patients 
requiring a second surgical intervention and wound resuturing after failed conservative treatment. In contrast, only two 
patients in the modified gunsight suture group developed postoperative incisional infections, which resolved after 
conservative treatment. These findings provide evidence supporting the effectiveness of the modified Gunsight suture 
technique in reducing the risk of incisional infection.

In addition to the reduced incidence of SSI, patients in the modified Gunsight suture group also experienced shorter 
postoperative hospitalization days than those in the simple interrupted suture group. This difference in hospitalization 
time may be due to an increased risk of incision infection and the need for more frequent and longer wound care, such as 
wet alcohol dressing, in the simple interrupted suture group.

Furthermore, the surgical costs for patients in the gunsight suture group were slightly lower than those in the 
traditional suture group, and there was no significant difference in total hospitalization costs between the two groups. 
Furthermore, there were no significant differences between the two groups in terms of postoperative pain scores, exhaust 
time, and related laboratory indicators. Postoperative pain scores were evaluated using the NRS, with most patients 
scoring between 1 and 3 indicating mild pain. This may explain the lack of significant differences between the two 
groups. Additionally, the postoperative exhaust time and laboratory test results were not significantly associated with 
wound closure.
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Table 1 General information

Group Gunsight suture Traditional suture Statistical quantity P value

Case number 135 135 - -

Male (%) 86 (63.7) 92 (68.1) χ2 = 0.59 0.440

Age in yr (IQR) 62 (52, 68) 60 (52, 68) Z = -0.97 0.332

BMI (IQR) 23.83 (21.60, 25.95) 23.12 (20.94, 25.06) Z = -1.377 0.169

DM (%) 17 (12.6) 23 (17.0) χ2 = 1.06 0.300

Length of time between two 
surgeries, d (IQR)

132 (105, 184) 134 (109, 181) Z = -0.489 0.625

BMI: Body mass index [a commonly used index to assess the relationship between weight and height, usually expressed in units of kilograms per square 
meter (kg/m²)]; DM: Diabetes mellitus (a chronic metabolic disease characterized by prolonged high blood sugar levels); IQR: Interquartile range [a 
statistical measure used to describe the spread of a dataset, it represents the span of the middle 50% of the data and is calculated as the difference between 
the first quartile (Q1) and the third quartile (Q3)].

Table 2 Patient observation indicators

Group Gunsight suture 
(IQR)

Traditional suture 
(IQR) Statistical quantity P value

SII (postoperative/preoperative) 3.24 (2.16, 4.78) 3.14 (2.10, 5.47) Z = -0.592 0.554

Red blood cell (postoperative/preoperative) 0.90 (0.84, 0.95) 0.91 (0.87, 9.96) Z = -1.445 0.148

Haemoglobin (postoperative/postoperative) 0.91 (0.85, 0.97) 0.92 (0.88, 0.96) Z = -1.231 0.218

SSI (%) 2 (1.4) 10 (7.4) χ2 = -5.580 0.018

Postoperative intestinal exhaust time (d) 3 (2, 3) 3 (2, 3) Z = -1.171 0.242

Total cost of hospitalization (Yuan) 33569 (30545, 36757) 32782 (29134, 36199) Z = -1.199 0.230

Cost of surgery (Yuan) 4840 (4330, 5138) 4980 (4726, 5221) Z = -2.745 0.006

Number of dressing changes for surgical incision 2 (1, 3) 4 (3, 6) Z = -2.460 < 0.001

Operation time 80 (70, 90) 80 (70, 85) Z = -1.210 0.220

DAY1 3 (3, 3) 3 (3, 3) Z = -1.145 0.252

DAY2 2 (2, 2) 2 (2, 2) Z = -0.044 0.965

Early postoperative pain score 
(NRS)

DAY3 2.0 (1.5, 2.0) 1.5 (1.5, 2.0) Z = -0.603 0.547

DAY1 36.7 (36.4, 36.9) 36.7 (36.4, 36.9) Z = -0.476 0.634

DAY2 37.4 (37.1, 37.9) 37.6 (37.1, 38.1) Z = -1.769 0.077

DAY3 37.1 (36.9, 37.4) 37.20 (36.85, 37.50) Z = -1.385 0.166

Early postoperative body 
temperature (°C)

DAY4 36.9 (36.7, 37.1) 36.9 (36.7, 37.3) Z = -1.315 0.189

Postoperative hospital stay (d) 5 (4, 7) 7 (6, 8) Z = -5.181 < 0.001

SII: Systemic immune inflammation index (a composite index based on peripheral blood neutrophil, lymphocyte, and platelet counts, used to reflect the 
systemic inflammatory response in patients with various diseases); SSI: Surgical site infection (an infection that occurs after surgery in the part of the body 
where the surgery took place); Postoperative Pain Score (NRS): Numeric Rating Scale (a commonly used tool to assess the intensity of postoperative pain. It 
consists of a scale from 0 to 10, where 0 represents no pain and 10 represents the worst possible pain).

CONCLUSION
The modified Gunsight suture technique is an effective method for reducing the risk of surgical site infection and 
shortening postoperative hospitalization. Although this technique may require additional surgical steps, the reduced 
incidence of SSI and lower surgical costs make it a viable option for wound closure. Further research is needed to 
investigate the potential benefits of this technique in larger patient populations and evaluate its long-term effectiveness.
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ARTICLE HIGHLIGHTS
Research background
In the traditional intestinal stoma closure surgery, the interrupted suturing technique used has some issues, such as 
longer incisions and higher tension on the incision, which may increase the risk of postoperative complications. To 
address these concerns, scholars have proposed the use of the “gunsight suture” technique. This method involves using a 
gun-shaped incision instead of the conventional linear incision, leaving a gap in the center for drainage of blood and 
fluids to reduce the risk of infection. Building on this, we have proposed an improved gunsight suture technique.

Research motivation
Motivated by the need to enhance patient outcomes, this study focuses on developing an improved prophylactic stoma 
reversal abdominal closure suturing technique. Our goal is to reduce incision infection rates and alleviate patient burden, 
improving a key issue in stoma closure methods. We strive to contribute to the advancement of surgical research and 
help shape safer and more effective surgical practices in the future.

Research objectives
To compare the outcomes of the improved gunsight suture technique with traditional interrupted suture techniques in 
enterostomy closure. The objective is to minimize complications and related burdens following prophylactic ileostomy 
closure.

Research methods
This study analyzed 270 patients who underwent prophylactic ileostomy closure surgery at Qilu Hospital from April 
2017 to December 2021. The patients were divided into two groups, one group received sutures using the improved 
gunsight method while the other group was sutured with the traditional interrupted suture method, and data on various 
parameters such as operation time, postoperative pain score, and hospitalization costs were collected. Non-parametric 
tests and chi-square tests were used for data analysis.

Research results
This retrospective study compared two suture methods for prophylactic ileostomy closure surgery in 270 patients. The 
modified gunsight suture group had better outcomes, including lower incidence of surgical site infections, shorter 
hospital stays, and fewer dressing changes than the traditional simple interrupted suture group. Laboratory parameters, 
postoperative temperature, pain scores, and time to first bowel gas passage did not differ significantly. The modified 
gunsight suture group had slightly lower surgical costs and significantly lower scar formation after incision healing.

Research conclusions
The modified Gunsight suture technique reduces the risk of surgical site infection and shortens postoperative hospital-
ization. Despite requiring additional surgical steps, the technique lowers surgical costs and is a viable option for wound 
closure.

Research perspectives
Despite the study’s retrospective design and challenges in obtaining accurate data on bowel obstruction incidence and 
long-term complications like incisional hernias, it provides valuable insights. However, the single-center data source may 
introduce bias during data collection and analysis. Further research on larger patient populations is needed to evaluate 
the technique’s long-term effectiveness and potential benefits.
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Abstract
BACKGROUND 
Osteoporosis is an extrahepatic complication of primary biliary cholangitis (PBC) 
that increases the risk of fractures and mortality. However, Epidemiological 
studies of osteoporosis in patients with PBC in China and the Asia-Pacific region 
is lack.

AIM 
To assess the prevalence and clinical characteristics of osteoporosis in Chinese 
patients with PBC.

METHODS 
This retrospective analysis included consecutive patients with PBC from a tertiary 
care center in China who underwent bone mineral density (BMD) assessment 
using dual-energy X-ray absorptiometry between January 2013 and December 
2021. We defined subjects with T-scores ≤ -2.5 in any sites (L1 to L4, femoral neck, 
or total hip) as having osteoporosis. Demographic, serological, clinical, and 
histological data were collected. Independent risk factors for osteoporosis were 
identified by multivariate logistic regression analysis.

RESULTS 
A total of 268 patients with PBC [236 women (88.1%); mean age, 56.7 ± 10.6 years; 
163 liver biopsies (60.8%)] were included. The overall prevalence of osteoporosis 
in patients with PBC was 45.5% (122/268), with the prevalence of osteoporosis in 
women and men being 47.0% and 34.4%, respectively. The prevalence of 
osteoporosis in postmenopausal women was significantly higher than that in 
premenopausal women (56.3% vs 21.0%, P < 0.001). Osteoporosis in patients with 
PBC is associated with age, fatigue, menopausal status, previous steroid therapy, 
body mass index (BMI), splenomegaly, gastroesophageal varices, ascites, Mayo 
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risk score, histological stage, alanine aminotransferase, albumin, bilirubin, platelet and prothrombin activity. 
Multivariate regression analysis identified that older age, lower BMI, previous steroid therapy, higher Mayo risk 
score, and advanced histological stage as the main independent risk factors for osteoporosis in PBC.

CONCLUSION 
Osteoporosis is very common in Chinese patients with PBC, allowing for prior screening of BMD in those PBC 
patients with older age, lower BMI, previous steroid therapy and advanced liver disease.

Key Words: Primary biliary cholangitis; Osteoporosis; Bone mineral density; Dual-energy X-ray absorptiometry; Prevalence; 
Chinese

©The Author(s) 2023. Published by Baishideng Publishing Group Inc. All rights reserved.

Core Tip: In this paper, we reported for the first large-sample study to explore the prevalence and potential risk factors for 
osteoporosis in Chinese patients with primary biliary cholangitis (PBC). The prevalence of osteoporosis in Chinese patients 
with PBC was 45.5%. Osteoporosis in PBC is strongly associated with older age, lower body mass index, previous steroid 
use, the severity of liver disease, and advanced histological stage. This study provides reference information for future PBC-
related guideline development and public policy formulation in China and the Asia-Pacific region.

Citation: Chen JL, Liu Y, Bi YF, Wang XB. Prevalence and risk factors of osteoporosis detected by dual-energy X-ray absorptiometry 
among Chinese patients with primary biliary cholangitis. World J Gastroenterol 2023; 29(29): 4580-4592
URL: https://www.wjgnet.com/1007-9327/full/v29/i29/4580.htm
DOI: https://dx.doi.org/10.3748/wjg.v29.i29.4580

INTRODUCTION
Primary biliary cholangitis (PBC, also known as primary biliary cirrhosis) is a chronic immune-mediated, progressive 
cholestatic liver disease characterized by nonsuppurative destructive intrahepatic cholangitis focused on the small bile 
ducts, which mainly affects middle-aged women over 40 years old, typically manifested as fatigue, pruritus and even 
metabolic bone disease[1,2]. Currently, ursodeoxycholic acid (UDCA) is its first-line treatment drug, and untreated PBC 
may eventually lead to cirrhosis and liver failure, requiring liver transplantation[3]. Moreover, PBC affects all races and 
ethnicities with significant regional differences[1,4]. It is estimated that at least 1 in 1000 women older than 40 years 
globally has PBC[5], and the prevalence and incidence of PBC in Europe and the United States are higher than that in the 
Asia-Pacific region[6]. However, the prevalence of PBC in China ranks second only to Japan in the Asia-Pacific region and 
is increasing[6].

Osteoporosis is a disease characterized by decreased bone density or bone loss, leading to an increased risk of fracture
[7]. The prevalence of osteoporosis in patients with PBC is at least three times that of age- or sex-matched controls[8,9]. 
Thus, osteoporosis is considered an extrahepatic complication of PBC[10]. Unlike increased bone resorption in postmeno-
pausal osteoporosis, osteoporosis in PBC is mainly caused by decreased bone formation[11]. Moreover, recently, a large 
cohort study indicated that the risk of fracture and post-fracture mortality of PBC patients were significantly higher than 
those of the control group in the general population[12]. Prevention and timely diagnosis of osteoporosis are key to 
reducing the associated complications for patients with PBC. With the increasing prevalence of PBC, most likely due to 
the improvement of diagnosis and awareness, it is likely that the incidence and prevalence of PBC-related osteoporosis 
will also increase[11]. According to previous studies from Europe, Africa and North America, the prevalence of osteo-
porosis in patients with PBC is approximately 30% (range 20%-52%) and higher in postmenopause or advanced stages of 
liver disease[8,9,13-18], and up to 44% of patients waiting for liver transplantation[16]. However, to our knowledge, in 
China and other Asia–Pacific regions, the prevalence and clinical features of osteoporosis in patients with PBC, including 
men and women, have not been well defined.

Therefore, this study aimed to investigate the prevalence and clinical features of osteoporosis and independent risk 
factors associated with osteoporosis using bone mineral density (BMD) detected by dual-energy X-ray absorptiometry 
(DEXA) in a large series of Chinese patients with PBC.

MATERIALS AND METHODS
Study design
We carried out a retrospective observational study of all consecutive PBC patients between January 2013 and December 
2021 from Beijing Ditan Hospital, China. The baseline date was the first admission with a diagnosis of PBC and 
completion of a BMD examination in the hospital. The study protocol was approved by the Ethics Committee of Beijing 
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Ditan Hospital, Beijing, China (No. DTEC-KT2022-010-01).
The inclusion criteria were as follows: (1) Age greater than 18 years old; (2) at least two of the following: Elevated γ-

glutamyl transpeptidase (GGT) or alkaline phosphatase (ALP), positive antimitochondrial antibody (AMA) or gp210, 
sp100, and pathological features of non-suppurative cholangitis or small bile duct destruction[19]; and (3) complete BMD 
examination using DEXA method at baseline. The exclusion criteria were as follows: (1) Alcoholic liver disease, non-
alcoholic fatty liver disease, viral hepatitis, drug-induced liver injury, or inherited liver disease; (2) liver transplantation, 
liver cancer, or other malignant lesions; (3) evidence of intrahepatic or extrahepatic biliary obstruction; (4) severe cardiac 
or renal insufficiency; (5) previous or current hormone replacement therapy; and (6) pregnancy or breast-feeding.

Data collection
A history of UDCA or steroid treatment, prior fractures, and comorbidities were recorded. Symptoms of chronic 
cholestasis, such as fatigue and pruritus, and physical signs of liver disease, such as splenomegaly, hepatomegaly, edema 
and ascites, were collected. Blood was collected for hematological, biochemical and immunological tests after an 
overnight fast and tested at the Laboratory of Beijing Ditan Hospital using standard methods. These laboratory 
parameters include serum bilirubin, albumin, ALP, GGT, calcium, phosphorus, creatinine, 25-hydroxyvitamin D, 
aspartate aminotransferase, alanine aminotransferase (ALT), prothrombin activity (PTA), platelet count (PLT), immuno-
globulin G, serum immunoglobulin M, and autoantibodies [AMA, antinuclear antibody (ANA), anti-centromere antibody 
(ACA), gp210, and sp100] were measured at the time of the first BMD examination. Age, smoking status, body mass 
index (BMI), menopausal status, duration of PBC, histological stage, and cirrhosis status were recorded. Esophagogast-
roscopy and abdominal ultrasonography were also evaluated. The Mayo risk score (MRS) was calculated using the 
previous algorithm[20]. The liver histological stage was determined according to Ludwig’s criteria[21].

BMD measurement
Certified technicians measured BMD at the lumbar spine (L1 to L4), femoral neck, and total hip using a DEXA scanner 
(Lunar, GE Healthcare, United States). The diagnoses of osteopenia and osteoporosis were based on the World Health 
Organization thresholds: T-score is between -1.0 and -2.5 and ≤ -2.5, respectively[22]. T-score were presented as absolute 
values (g/cm2) and the number of SD lower than the average peak value of young sex-matched normal individuals. Z-
score are also presented as the number of SD from normal values corrected for sex and age. We defined patients with T-
scores ≤ -2.5 in any sites (L1 to L4, femoral neck, or total hip) as having osteoporosis[23].

Statistical analysis
All statistical analyses were performed using SPSS 20.0 (SPSS Inc., Chicago, IL, United States). Quantitative data are 
expressed as mean ± SD or median and interquartile range, and categorical data are expressed as frequencies with 
percentages. Student t-test or Mann-Whitney U test was used to analyse differences in continuous variables. Chi-squared 
or Fisher’s exact tests were used for categorical variables. The independent risk factor of significant variable associated 
with osteoporosis with (P value < 0.05) in univariate analyses was determined using multivariate logistic regression with 
the backward stepwise selection method (the criteria for entering and removing variables were P < 0.05 and > 0.10, 
respectively). Statistical significance was defined as a two-tailed P value < 0.05.

RESULTS
Demographic and clinical characteristics
From January 2013 to December 2021, we retrospectively enrolled 268 subjects in the final analysis who had undergone 
BMD examination by DEXA scanner from 1272 patients with PBC. Figure 1 summarizes the enrolment process. The 
demographic, clinical, serological, histological, and BMD characteristics of all patients with PBC are shown in Table 1. 
The mean age of the overall patients was 56.7 ± 10.6 years (range 29-94 years). The ratio of women:men was 7.38:1. Liver 
biopsies were performed in 60.8% of patients. Among the women, 73.7% were postmenopausal. Prior fractures had 
occurred in 11 patients, including six vertebral fractures and five peripheral fractures. Compared with women, men PBC 
patients had more smoker, UDCA-treated patients, fewer ACA positive, lower serum calcium, and higher serum 
creatinine as well as BMD absolute value (all P < 0.05). However, there was no difference between men and women in the 
T- and Z-score (P > 0.05).

Prevalence of osteoporosis
There were significant differences in the BMD value, T-score, and Z-score at any sites (L1 to L4, femoral neck, or total hip) 
in patients with osteoporosis compared to those without (all P < 0.001) (Supplementary Table 1). The prevalence of 
osteoporosis and osteopenia in the lumbar spine (L1 to L4), femoral neck and total hip were 40.3% and 35.8%, 29.1% and 
45.9%, 16.8% and 47.4%, respectively (Table 1). Overall, the prevalence of osteoporosis was 45.5% (122/268) in all PBC 
patients, considering the lowest BMD values at the lumbar spine, femoral neck and total hip (Table 1 and Sup-
plementary Table 2). The prevalence of osteoporosis 47.0% (111/236) was higher among women than among men 34.4% 
(11/32), but it was not statistically significant (P = 0.177) (Supplementary Table 2 and Figure 2). The prevalence of 
osteoporosis in postmenopausal women was significantly higher than that in premenopausal women (56.3% vs 21.0%, P < 
0.001) (Supplementary Table 2 and Figure 2). The prevalence of osteoporosis was assessed according to age, cirrhosis 
status, histological stage and BMI. Regardless of overall patients or only women patients, the prevalence of osteoporosis 
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Table 1 Demographic, clinical, laboratory, and bone mineral density data in patients with primary biliary cholangitis

Characteristics Overall (n = 268) Men (n = 32) Women (n = 236) P value

Age (years) (range) 56.7 ± 10.6 (29-94) 60.0 ± 9.3 (38-79) 56.3 ± 10.7 (29-94) 0.059

Age group (years), n (%) 0.201

    29-39 13 (4.9) 1 (3.1) 12 (5.1)

    40-49 53 (19.8) 2 (6.3) 51 (21.6)

    50-59 93 (34.7) 11 (34.4) 82 (34.7)

    60-69 77 (28.7) 12 (37.5) 65 (27.5)

    ≥ 70 32 (11.9) 6 (18.8) 26 (11.0)

Duration of PBC (years) 3.0 (1.0-6.0) 4.0 (1.6-6.8) 3.0 (1.0-6.0) 0.246

Smoking, n (%) 20 (7.5) 17 (53.1) 3 (1.3) < 0.001

Postmenopausal, n (%) 174 (73.7) 174 (73.7)

Pruritus, n (%) 45 (16.8) 4 (12.5) 41 (17.4) 0.489

Fatigue, n (%) 91 (34.0) 10 (31.3) 81 (34.3) 0.731

Hepatomegaly, n (%) 9 (3.4) 1 (3.1) 8 (3.4) 1.000

Splenomegaly, n (%) 187 (69.8) 20 (62.5) 167 (70.8) 0.340

Gastroesophageal varices, n (%) 110 (41.0) 14 (43.8) 96 (40.7) 0.740

Ascites, n (%) 103 (38.4) 11 (34.4) 92 (39.0) 0.615

Prior fractures, n (%) 11 (4.1) 0 (0.0) 11 (4.7) 0.371

BMI (kg/m2) 22.6 ± 3.3 22.1 ± 3.0 22.7 ± 3.4 0.367

Comorbidities

    Diabetes mellitus, n (%) 46 (17.2) 8 (25.0) 38 (16.1) 0.210

    Hypertension, n (%) 58 (21.6) 7 (21.9) 51 (21.6) 0.973

    Hashimoto's thyroiditis, n (%) 66 (24.6) 7 (21.9) 59 (25.0) 0.700

    Rheumatoid arthritis, n (%) 8 (3.0) 0 (0.0) 8 (3.4) 0.602

    Sicca syndrome, n (%) 18 (6.7) 1 (3.1) 17 (7.2) 0.706

Previous medication, n (%)

    UDCA use 155 (57.8) 24 (75.0) 131 (55.5) 0.036

    Steroid use 32 (11.9) 3 (9.4) 29 (12.3) 0.633

Cirrhosis status, n (%) 0.661

    Non-cirrhosis 107 (39.9) 15 (46.9) 92 (39.0)

    Compensated 53 (19.8) 5 (15.6) 48 (20.3)

    Decompensated 108 (40.3) 12 (37.5) 96 (40.7)

PBC-AIH overlap syndrome, n (%) 42 (15.7) 5 (15.6) 37 (15.7) 0.994

Mayo risk score 5.2 ± 1.4 5.4 ± 1.4 5.1 ± 1.5 0.301

Histological stage, n (%)1 0.630

    Ⅰ-Ⅱ 65 (39.9) 6 (46.2) 59 (39.3)

    Ⅲ-Ⅳ 98 (60.1) 7 (53.8) 91 (60.7)

Laboratory data

    ALT (U/L) 36.2 (22.2-70.0) 42.8 (29.0-74.4) 35.8 (21.3-69.7) 0.236

    AST (U/L) 46.4 (29.2-88.7) 39.2 (30.1-62.2) 48.1 (29.0-87.7) 0.642

    Bilirubin (mg/dL) 1.1 (0.7-1.9) 0.9 (0.7-1.5) 1.1 (0.7-2.0) 0.708

    Albumin (g/L) 37.2 ± 6.6 35.5 ± 6.0 37.4 ± 6.6 0.124
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    ALP (U/L) 157.2 (101.7-263.1) 166.3 (102.8-315.8) 156.5 (101.2-262.4) 0.747

    GGT (U/L) 118.2 (48.0-276.3) 146.3 (52.3-321.2) 117.0 (47.6-276.3) 0.568

    PTA (%) 93.0 ± 20.6 92.6 ± 19.9 93.0 ± 20.8 0.922

    PLT (× 109/L) 140.2 ± 79.4 140.7 ± 80.1 136.2 ± 74.4 0.761

    Calcium (mmol/L) 2.22 ± 0.14 2.17 ± 0.16 2.23 ± 0.14 0.018

    Phosphorous (mmol/L) 1.14 ± 0.24 1.09 ± 0.17 1.15 ± 0.25 0.201

    25-hydroxyvitamin D (ng/mL)2 14.3 ± 6.9 17.2 ± 6.6 13.6 ± 6.9 0.224

    Creatinine (μmol/L) 56.4 (49.5-65.9) 67.1 (60.2-86.6) 55.0 (48.6-63.6) < 0.001

    IgM (g/L) 2.86 (1.60-4.40) 2.55 (1.16-4.14) 2.87 (1.64-4.49) 0.240

    IgG (g/L) 15.3 (12.0-19.1) 15.0 (11.9-19.3) 15.6 (12.0-19.1) 0.674

    gp210 (+), n (%) 99 (36.9) 10 (31.3) 89 (37.7) 0.477

    Sp100 (+), n (%) 38 (14.2) 1 (12.5) 34 (14.4) 0.772

    ACA, n (%) 54 (20.1) 2 (6.3) 52 (22.0) 0.037

    ANA, n (%) 165 (61.6) 21 (65.6) 144 (61.0) 0.615

Lumbar spine BMD (L1-L4), g/cm2 0.828 ± 0.142 0.893 ± 0.146 0.818 ± 0.139 0.005

    T-score -2.04 ± 1.27 -1.81 ± 1.31 -2.1 ± 1.27 0.267

    Z-score -0.929 ± 1.182 -1.18 ± 1.33 -0.89 ± 1.16 0.198

    BMD classification, n (%) 0.536

        Osteoporosis 108 (40.3) 10 (31.3) 98 (41.5)

        Osteopenia 96 (35.8) 13 (40.6) 83 (35.2)

        Normal 64 (23.9) 9 (28.1) 55 (23.3)

Femoral neck BMD, g/cm2 0.654 ± 0.128 0.714 ± 0.139 0.646 ± 0.125 0.005

    T-score -1.80 ± 1.12 -1.59 ± 1.03 -1.83 ± 1.13 0.262

    Z-score -0.73 ± 1.02 -0.63 ± 0.99 -0.74 ± 1.03 0.590

    BMD classification, n (%) 0.374

        Osteoporosis 78 (29.1) 7 (21.9) 71 (30.1)

        Osteopenia 123 (45.9) 14 (43.8) 109 (46.2)

        Normal 67 (25.0) 11 (34.4) 56 (23.7)

Total Hip BMD, g/cm2 0.784 ± 0.153 0.855 ± 0.148 0.774 ± 0.152 0.005

    T-score -1.42 ± 1.06 -1.19 ± 0.98 -1.45 ± 1.07 0.198

    Z-score -0.64 ± 0.98 -0.70 ± 0.96 -0.63 ± 1.00 0.714

    BMD classification, n (%) 0.601

        Osteoporosis 45 (16.8) 5 (15.6) 40 (16.9)

        Osteopenia 127 (47.4) 13 (40.6) 114 (48.3)

        Normal 96 (35.8) 14 (43.8) 82 (34.7)

Osteoporosis lumbar or neck or hip 122 (45.5) 11 (34.4) 111 (47.0) 0.177

1Available in 163 patients.
2Available in 46 patients.
Data are presented as mean ± SD or median (interquartile range) or n (%). ACA: Anti-centromere antibody; AIH: Autoimmune hepatitis; ALP: Alkaline 
phosphatase; ALT: Alanine aminotransferase; ANA: Antinuclear antibody; AST: Aspartate aminotransferase; BMD: Bone mineral density; BMI: Body mass 
index; GGT: γ-glutamyl transpeptidase; IgG: Immunoglobulin G; IgM: Immunoglobulin M; PBC: Primary biliary cholangitis; PLT: Platelet count; PTA: 
Prothrombin activity; UDCA: Ursodeoxycholic acid.

increased with age, cirrhosis status, and histological stage, but decreased with BMI (all P for trend < 0.001) (Sup-
plementary Table 2, Figures 2 and 3).

https://f6publishing.blob.core.windows.net/a253a62a-320f-45e2-8dff-83ac2b79449c/WJG-29-4580-supplementary-material.pdf
https://f6publishing.blob.core.windows.net/a253a62a-320f-45e2-8dff-83ac2b79449c/WJG-29-4580-supplementary-material.pdf


Chen JL et al. Prevalence of osteoporosis in Chinese PBC

WJG https://www.wjgnet.com 4585 August 7, 2023 Volume 29 Issue 29

Figure 1 The flowchart of patient enrolment. PBC: Primary biliary cholangitis; BMD: Bone mineral density.

Figure 2 Prevalence of osteoporosis in different subgroups for overall patients with primary biliary cholangitis (n = 268). A: Sex; B: Age; C: 
Cirrhosis status; D: Histological stage; E: Body mass index.

Risk factors of osteoporosis
Table 2 shows the results of univariate analysis of the association between osteoporosis and potential risk factors in 
patients with PBC. In the univariate analysis, osteoporosis was correlated with older age, fatigue, postmenopausal status, 
previous steroids use, splenomegaly, gastroesophageal varices, ascites, advanced histological stage (Ⅲ or Ⅳ), higher MRS 
and bilirubin levels, and lower BMI, ALT, albumin, PTA, and PLT regardless of overall or women patients (all P < 0.05). 
However, there was no association between osteoporosis and other biochemical parameters or immunological indicators 
such as immunoglobulin, gp210, sp100, ACA, PBC-autoimmune hepatitis (AIH) overlap syndrome, or extrahepatic 
autoimmune diseases.

In multivariate analysis, older age [odds ratio (OR), 1.80; 95%CI (confidence interval): 1.33-2.44, P < 0.001] per 10 years, 
gastroesophageal varices (OR, 2.11; 95%CI: 1.14-3.92, P = 0.018), lower BMI (OR, 0.85; 95%CI: 0.77-0.93, P < 0.001), 
previous steroid use (OR, 4.19; 95%CI: 1.66-10.56, P = 0.002), higher MRS (OR, 1.36; 95%CI: 1.08-1.71, P = 0.009) were the 
independent risk factors associated with the presence of osteoporosis in all patients with PBC (Table 3). In addition, when 
the histological stage was included in the multivariate analysis, higher bilirubin (OR, 1.20; 95%CI: 1.0-1.42, P = 0.044) and 
advanced histological stage (OR, 3.74; 95%CI: 1.60-8.77, P = 0.002) gained statistical significance, but the effects of 
gastroesophageal varices, previous steroid use, and higher MRS were removed. When menopausal status was included in 
the multivariate analysis (only for female patients), the splenomegaly (OR, 2.62; 95%CI: 1.18-5.80, P = 0.018) and postmen-
opausal (OR, 2.92; 95%CI: 1.02-8.38, P = 0.046) gained statistical significance. When both menopausal status and 
histological stage were included in the multivariate analysis, advanced histological stage, older age, lower BMI, previous 



Chen JL et al. Prevalence of osteoporosis in Chinese PBC

WJG https://www.wjgnet.com 4586 August 7, 2023 Volume 29 Issue 29

Table 2 Univariate analysis of risk factors for osteoporosis in overall and women patients with primary biliary cholangitis

Overall patients (n = 268) Women patients (n = 236)
Variables Osteoporosis (n = 

122)
No osteoporosis (n 
= 146)

P value Osteoporosis (n = 
111)

No osteoporosis (n 
= 125)

P value

Women, n (%) 111 (91.0) 125 (85.6) 0.177 111 (100) 125 (100)

Age (year) 60.5 ± 10.5 53.6 ± 9.7 < 0.001 60.4 ± 10.7 52.6 ± 9.4 < 0.001

Duration of PBC (year) 3.0 (1.0-7.0) 2.3 (1.0-5.0) 0.125 3.0 (1.0-7.0) 2.0 (1.0-5.0) 0.217

Smoking, n (%) 9 (7.4) 11 (7.5) 0.961 2 (1.8) 1 (1.6) 0.602

Postmenopausal, n (%) 98 (88.3) 76 (60.8) < 0.001 98 (88.3) 76 (60.8) < 0.001

Pruritus, n (%) 22 (18.0) 23 (15.8) 0.619 21 (18.9) 20 (16.0) 0.555

Fatigue, n (%) 50 (41.0) 41 (28.1) 0.026 48 (43.2) 33 (26.4) 0.007

Hepatomegaly, n (%) 2 (1.6) 7 (4.8) 0.188 2 (1.8) 6 (4.8) 0.204

Splenomegaly, n (%) 103 (84.4) 84 (57.5) < 0.001 96 (86.5) 71 (56.8) < 0.001

Gastroesophageal varices, 
n (%)

72 (59.0) 38 (26.0) < 0.001 66 (59.5) 30 (24.0) < 0.001

Ascites, n (%) 67 (54.9) 36 (24.7) < 0.001 61 (55.0) 31 (24.8) < 0.001

Prior fractures, n (%) 8 (5.0) 3 (2.1) 0.064 8 (7.2) 3 (2.4) 0.080

BMI (kg/m2) 21.6 ± 3.2 23.4 ± 3.3 < 0.001 21.8 ± 3.1 23.4 ± 3.4 < 0.001

Comorbidities

    Diabetes mellitus, n (%) 23 (18.9) 23 (15.8) 0.503 20 (18.0) 18 (14.4) 0.450

    Hypertension, n (%) 28 (23.0) 30 (20.5) 0.634 26 (23.4) 25 (20.0) 0.524

    Hashimoto's 
thyroiditis, n (%)

27 (22.1) 39 (26.7) 0.386 26 (23.4) 33 (26.4) 0.598

    Rheumatoid arthritis, n 
(%)

4 (3.3) 4 (2.7) 0.796 4 (3.6) 4 (3.2) 0.864

    Sicca syndrome, n (%) 8 (6.6) 10 (6.8) 0.924 8 (7.2) 9 (7.2) 0.998

Previous medication

    UDCA use, n (%) 78 (63.9) 77 (52.7) 0.065 69 (62.2) 62 (49.6) 0.053

    Steroid use, n (%) 23 (18.9) 9 (6.2) 0.001 21 (18.9) 8 (6.4) 0.003

PBC-AIH overlap 
syndrome, n (%)

17 (13.9) 25 (17.1) 0.475 17 (15.3) 20 (16.0) 0.885

Mayo risk score 5.7 ± 1.5 4.7 ± 1.3 < 0.001 5.7 ± 1.4 4.6 ± 1.2 < 0.001

Histological stage, n (%)1 < 0.001 < 0.001

    Ⅰ-Ⅱ 10 (17.2) 55 (52.4) 9 (16.1) 50 (53.2)

    Ⅲ-Ⅳ 48 (82.8) 50 (47.6) 47 (83.9) 44 (46.8)

ALT (U/L) 32.0 (20.8-54.8) 43.7 (23.7-84.4) 0.007 31.2 (20.5-31.2) 46.3 (29.1-84.4) 0.013

AST (U/L) 44.0 (29.1-83.7) 49.5 (29.2-91.5) 0.782 46.3 (29.1-84.4) 50.9 (28.7-91.5) 0.899

Bilirubin (mg/dL) 1.2 (0.8-2.40 0.9 (0.7-1.7) 0.002 1.2 (0.8-2.5) 0.9 (0.7-1.6) 0.001

Albumin (g/L) 35.5 ± 6.9 38.7 ± 5.9 < 0.001 35.7 ± 6.9 39.0 ± 5.9 < 0.001

ALP (U/L) 164.2 (110.8-266.3) 149.3 (94.4-261.5) 0.180 164.3 (112.3-265.0) 144.5 (93.6-257.4) 0.175

GGT (U/L) 107.7 (47.9-237.1) 143.1 (47.7-307.3) 0.320 108.5 (45.4-242.5) 129.1 (48.6-303.3) 0.432

PTA (%) 87.9 ± 20.2 97.2 ± 20.1 < 0.001 87.6 ± 20.2 97.8 ± 20.1 < 0.001

PLT (× 109/L) 119.3 ± 71.4 157.7 ± 81.7 < 0.001 116.4 ± 67.4 162.4 ± 84.5 < 0.001

Calcium (mmol/L) 2.20 ± 0.15 2.24 ± 0.13 0.065 2.21 ± 0.14 2.24 ± 0.13 0.100

Phosphorous (mmol/L) 1.15 ± 0.30 1.14 ± 0.17 0.703 1.15 ± 0.31 1.15 ± 0.17 0.869
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25-hydroxyvitamin D 
(ng/mL)2 

14.0 ± 7.8 14.5 ± 6.2 0.823 14.1 ± 8.0 13.4 ± 5.8 0.748

Creatinine (μmol/L) 58.4 (47.2-67.5) 56.2 (50.6-65.4) 0.724 55.9 (46.9-67.5) 54.9 (49.9-60.7) 0.710

IgM (g/L) 2.80 (1.53-4.39) 2.87 (1.64-4.63) 0.497 2.87 (1.61-4.49) 2.93 (1.65-4.49) 0.776

IgG (g/L) 15.7 (12.0-19.5) 15.2 (11.9-18.9) 0.453 15.7 (12.3-19.6) 15.3 (11.8-18.6) 0.420

gp210 (+), n (%) 48 (39.3) 51 (34.9) 0.456 45 (40.5) 44 (35.2) 0.398

Sp100 (+), n (%) 19 (15.6) 19 (13.0) 0.550 18 (16.2) 16 (12.8) 0.456

ACA, n (%) 30 (24.6) 24 (16.4) 0.098 29 (26.1) 23 (18.4) 0.153

ANA, n (%) 74 (60.7) 91 (62.3) 0.779 69 (62.2) 75 (60.0) 0.734

1Available in 163 patients.
2Available in 46 patients.
Data are presented as mean ± SD or median (interquartile range) or n (%). ACA: Anti-centromere antibody; AIH: Autoimmune hepatitis; ALP: Alkaline 
phosphatase; ALT: Alanine aminotransferase; ANA: Antinuclear antibody; AST: Aspartate aminotransferase; BMI: Body mass index; GGT: γ-glutamyl 
transpeptidase; IgG: Immunoglobulin G; IgM: Immunoglobulin M; PBC: Primary biliary cholangitis; PLT: Platelet count; PTA: Prothrombin activity; 
UDCA: Ursodeoxycholic acid.

Table 3 Multivariate analysis of risk factors for osteoporosis in overall and women patients with primary biliary cholangitis

Overall patients (n = 
268)

Overall patients underwent liver 
biopsy (n = 163)

Women patients (n = 
236)

Women patients underwent liver 
biopsy (n = 150)

Variables
OR (95%CI) P 

value OR (95%CI) P value OR (95%CI) P 
value OR (95%CI) P value

Age, per 10 years 1.80 (1.33-
2.44)

< 0.001 1.95 (1.30-2.92) 0.001 1.63 (1.04-
2.57)

0.035 2.02 (1.27-3.20) 0.003

Fatigue NS NS NS NS

Splenomegaly NS NS 2.62 (1.18-
5.80)

0.018 NS

Gastroesophageal 
varices

2.11 (1.14-
3.92)

0.018 NS NS NS

Ascites NS NS NS NS

BMI 0.85 (0.77-
0.93)

< 0.001 0.87 (0.77-0.98) 0.023 0.83 (0.75-
0.92)

< 0.001 0.85 (0.74-0.97) 0.014

Previous steroid use 4.19 (1.66-
10.56)

0.002 NS 4.01 (1.42-
11.31)

0.009 3.99 (1.24-12.87) 0.020

Mayo risk score 1.36 (1.08-
1.71)

0.009 NS 1.61 (1.22-
2.14)

0.001 1.64 (1.12-2.41) 0.011

ALT NS NS NS NS

Bilirubin NS 1.20 (1.01-1.42) 0.044 NS NS

Albumin NS NS NS NS

PTA NS NS NS NS

PLT NS NS NS NS

Postmenopausal 2.92 (1.02-
8.38)

0.046 NS

Histological stage Ⅲ 
or Ⅳ

3.74 (1.60-8.77) 0.002 3.02 (1.13-8.06) 0.027

ALT: Alanine aminotransferase; BMI: Body mass index; CI: Confidence interval; NS: Not significant; OR: Odds ratio; PLT: Platelet count; PTA: 
Prothrombin activity.

steroid use, and higher MRS were identified as independent risk factors for osteoporosis. However, menopausal status 
and other variables, such as bilirubin, were not entered as independent factors of osteoporosis in the final model.
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Figure 3 Prevalence of osteoporosis in different subgroups for women patients with primary biliary cholangitis (n = 236). A: Postmenopausal 
status; B: Age; C: Cirrhosis status; D: Histological stage; E: Body mass index.

DISCUSSION
To our knowledge, this observational study is the largest population study on BMD in PBC among currently published 
studies, whether in China, the Asia-Pacific region, or globally. Moreover, this is the first large-sample study to explore the 
prevalence and potential risk factors for osteoporosis in Asian patients with PBC. PBC patients with advanced stage 
(Ludwig Ⅲ/Ⅳ) had more than 2-fold increased risk of osteoporosis compared to patients with early stage (Ludwig Ⅰ/Ⅱ). 
The main independent risk factors identified for osteoporosis include older age, lower BMI, previous steroid use, liver 
disease severity determined by the MRS, and advanced histological stage. These factors are consistent with those of 
previous studies in Europe and the United States[8,9].

A recent meta-analysis indicated that the risk of osteoporosis increased by 1.8 times in PBC patients compared with 
non-PBC participants[24]. Similar to this result, our study indicated a 2.3-time increased risk of osteoporosis in PBC 
patients aged 40 years or older, accounting for 95% of the total patients, compared to age-matched controls in China[23]. 
However, by searching the literature, we found that since 2001, the prevalence of PBC osteoporosis evaluated by DEXA 
has been verified in European, African, and American populations but not in Asian populations (Supplementary Table 3). 
As is well known, genetic factors play a crucial role in the pathogenesis of PBC[1], it is imperative to explore the preva-
lence of PBC osteoporosis in Asian populations. The findings of our study fill the gap in the epidemiological data on PBC-
related osteoporosis in China and Asia. Notably, in our study, the prevalence of osteoporosis (45.5%) in PBC patients was 
higher than that of PBC patients in Europe and America (approximately 30%). The reason for this difference may be 
ethnic differences or a high proportion of patients with cirrhosis (60.1%) or decompensated cirrhosis (40.3%) in our study. 
However, the prevalence of osteoporosis in noncirrhotic PBC patients (23.4%) in our study was similar to that reported in 
Europe and the United States.

It has been recognized that glucocorticoid administration can significantly increase the risk of osteoporosis and bone 
fragility[25]. Consistently, our study found that the osteoporosis rate of PBC patients previously treated with steroid was 
significantly higher than that of patients without steroid treatment (71.9% vs 41.0%, P = 0.001). However, although many 
patients in our study were treated with UDCA (64%), it had no effect on the prevalence of osteoporosis. Previous studies 
have also shown that the treatment of PBC itself has not been shown to improve BMD[10]. In addition, PBC-related 
osteoporosis is strongly correlated with the severity of liver disease[8,9,14]. Our study results also showed that the more 
severe liver disease determined by MRS and histological stage in PBC, the more prone the individual is to osteoporosis. 
Moreover, the univariate analysis in this study demonstrated that osteoporosis in PBC was related to fatigue, higher 
bilirubin, lower albumin, PTA, and features of portal hypertension, including splenomegaly, gastroesophageal varices, 
ascites and thrombocytopenia, which are also common clinical indicators of liver disease severity. Moreover, although the 
pathogenesis of hepatic osteodystrophy has not been clarified, it is generally believed that chronic cholestasis itself may 
lead to bone loss in PBC patients[14]. Bilirubin inhibits the function of osteoblasts in vitro, which may be related to the 
low bone formation rate of PBC patients[26]. In our study, bilirubin levels were also statistically significant when the 
histological stage was considered as a variable in multivariate analysis. Similarly, Menon et al[9] found that higher 
baseline bilirubin level rather than the histological stage was the only variable independently related to bone loss rate 

https://f6publishing.blob.core.windows.net/a253a62a-320f-45e2-8dff-83ac2b79449c/WJG-29-4580-supplementary-material.pdf
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after 3 years of follow up[9].
In addition, lower BMI and older age are recognized risk factors for osteoporosis in postmenopausal women as well as 

in the general population[27]. Our study also verified the association between lower BMI and older age in PBC and 
osteoporosis, thus further proving that this may be associated with similar pathogenesis in the general population. 
However, although the menopausal status was not statistically significant when including histological stage in our 
multivariate analysis, it was selected as an independent indicator of osteoporosis when excluding histological stage from 
the model, indicating that histological stage captured the impact of menopausal status when the two variables competed 
in the model. Interestingly, lower ALT levels were also found to be related to a higher osteoporosis rate in the current 
univariate analysis, which is similar to our previous study that indicated that the biochemical response rate of PBC 
patients with lower ALT levels at baseline were worse than that of patients with higher ALT levels[28]. However, the 
ALT level was not an independent factor of osteoporosis in multivariate analysis.

In addition, one advantage of our study was that it explored the correlation between immune indicators and PBC 
osteoporosis, which has not been discussed in previous studies. Anti-gp210 and sp100 antibodies are two specific ANAs 
for PBC diagnosis[2]. Previous studies showed that gp210-positive is associated with poor prognosis in PBC patients[29]. 
Meanwhile, PBC is an immune-mediated cholangitis with complex pathogenesis, which often occurs concomitantly with 
PBC-AIH overlap syndrome and other extrahepatic autoimmune diseases such as sicca syndrome, rheumatoid arthritis, 
and Hashimoto's thyroiditis[2,30]. However, our study showed that osteoporosis in PBC patients was not related to these 
immunological features.

Up to now, the pathogenesis of PBC osteoporosis is still unclear. Most experts believed that it seems to be mainly 
caused by reduced bone formation, although increased bone resorption may play a role in certain situations, such as in 
post-menopausal women and patients with hypogonadism[10]. Osteoblast mediated bone formation and osteoclast 
dependent bone resorption are two opposite processes that affect bone mass: when absorption exceeds formation, bone 
mass will inevitably decrease, and this negative balance will lead to bone loss and osteoporosis[31]. Several studies 
assessing bone histomorphometry have shown that most of the osteoporosis patients with PBC had reduced tetracycline 
double labeling, bone formation rate, osteoblasts numbers, and reduced serum osteocalcin level, all of which indicate that 
osteoblast dysfunction and bone formation deficiency are the core of the pathogenesis of PBC-related osteoporosis[32-
34]. In addition, other changes, increased levels of bilirubin and bile salts, and production of fibronectin may also reduce 
bone formation by inhibiting the proliferation and survival of osteoblasts in PBC or cholestasis[26,35]. Other conditions of 
PBC patients, including increased formation of osteoclast, low vitamin D levels, calcium malabsorption and sarcopenia, 
may be contributing factors to the panorama of PBC osteopathy[31,33,36,37].

Nevertheless, our study has several limitations. First, despite being the largest DEXA-based BMD measurement cohort 
of PBC to date, the sample size was relatively small, especially for men. Thus, it would be interesting and necessary to 
explore the same objective for larger sample size with a fairly balanced number of women and men. Second, this was a 
single-center, retrospective study. As a tertiary care center in China, our patients come from different regions of China 
and may not be representative of those at primary or secondary medical institutions. Prospective studies in Chinese 
populations may validate our findings. Third, a history of use of anti-osteoporosis treatments such as bisphosphonate, 
Vitamin D, and calcium supplementation was not included in this study for the analysis of the factors influencing 
osteoporosis. However, data on osteoporosis therapies related to PBC are insufficient and controversial, and the overall 
quality of evidence is low[11]. Therefore, we do not think that receiving anti-osteoporosis treatments in the past affected 
our results. In the future, it is necessary to conduct high-quality research and explore PBC specific therapies focused on 
improving bone formation.

CONCLUSION
In summary, we found a significantly higher prevalence of osteoporosis in Chinese patients with PBC. Osteoporosis in 
PBC is strongly associated with older age, lower BMI, previous steroid use, the severity of liver disease, and advanced 
histological stage. Thus, this study contributes to identifying PBC patients who require early screening for BMD, and 
potential interventions to diminish the risk of osteoporosis and fractures. This study may help to provide reference 
information for the development and formulation of future PBC-related guideline and public health policy in China and 
the Asia-Pacific region.

ARTICLE HIGHLIGHTS
Research background
Primary biliary cholangitis (PBC) is a chronic immune-mediated, progressive cholestatic liver disease. Osteoporosis is an 
extrahepatic complication of PBC that increases the risk of fractures and mortality.

Research motivation
Although the prevalence of osteoporosis in PBC is high in Europe and North America, relevant epidemiological studies 
of osteoporosis in patients with PBC in China and the Asia-Pacific region is lack.



Chen JL et al. Prevalence of osteoporosis in Chinese PBC

WJG https://www.wjgnet.com 4590 August 7, 2023 Volume 29 Issue 29

Research objectives
To assess the prevalence and clinical characteristics of osteoporosis in Chinese patients with PBC.

Research methods
We performed a retrospective observational study to evaluation the prevalence and risk factors of osteoporosis in Chinese 
patients with PBC from a tertiary care center who underwent bone mineral density (BMD) assessment using dual-energy 
X-ray absorptiometry between January 2013 and December 2021. Demographic, serological, clinical, and histological data 
were collected. Independent risk factors for osteoporosis were identified by multivariate logistic regression analysis.

Research results
The prevalence of osteoporosis in Chinese patients with PBC was 45.5%. Osteoporosis in PBC is strongly associated with 
older age, lower body mass index (BMI), previous steroid use, the severity of liver disease, and advanced histological 
stage.

Research conclusions
Osteoporosis is very common in Chinese patients with PBC, allowing for prior screening of BMD in those PBC patients 
with older age, lower BMI, previous steroid therapy, and advanced liver disease.

Research perspectives
This study provides reference information for future PBC-related guideline development and public policy formulation 
in China and the Asia-Pacific region.
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Abstract
BACKGROUND 
Several scoring systems are used to assess fecal incontinence (FI), among which, 
the most commonly used are Wexner and Vaizey’s scoring systems. However, 
there are significant lacunae in these scoring systems, due to which they are 
neither accurate nor comprehensive.

AIM 
To develop a new scoring system for FI that is accurate, comprehensive, and easy 
to use.

METHODS 
A pro forma was made in which six types of FI were included: solid, liquid, flatus, 
mucous, stress, and urge. The weight for each FI was determined by asking a 
group of patients and laypersons to give a disability score to each type of FI from 
0 to 100 (0- least, 100- maximum disability). The disability was assessed on a 
modified EQ-5D+ (EuroQol) description system, 4D3L (4 dimensions and 3 levels) 
for each FI. The average score of each FI was calculated, divided by 10, and 
rounded off to determine the weight of each FI type. The scores for the three 
levels of frequency of each FI were assigned as never = 0 (No episode of FI ever), 
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occasional = 1 (≤ 1 episode of FI/ wk), and common = 2 (> 1 episode of FI/ wk), and was termed as frequency 
score. The score for each FI would be derived by multiplying the frequency score and the weight for that FI type. In 
the second phase of the study, a group of colorectal surgeons was asked to rank the six FI types in order of severity, 
and their ranking was compared with the patient and laypersons’ rankings.

RESULTS 
Fifty patients and 50 laypersons participated in the study. The weight was assigned to each FI (solid-8, liquid-8, 
urge-7, flatus-6, mucus-6, and stress-5), and an new scoring system was formulated. The maximum possible score 
was 80 (total incontinence), and the least 0 (no incontinence). The surgeons’ ranking of FI severity did not correlate 
well with patients’ and laypersons’ rankings of FI, highlighting that surgeons and patients may perceive the 
severity of FI differently.

CONCLUSION 
A new scoring system for FI was formulated, which was simple, logical, comprehensive, and easy to use, and 
eliminated previous shortcomings. Patients’ and surgeons’ perceptions of FI severity of FI did not correlate well.

Key Words: Feal incontinence; Scoring system; Urge; Stress; Flatus

©The Author(s) 2023. Published by Baishideng Publishing Group Inc. All rights reserved.

Core tip: There are several scoring systems to assess fecal incontinence (FI), among which, the most commonly used are 
Wexner’s, Vaizey’s, and FI Severity Index scoring systems. However, there are major lacunae and shortcomings in these 
scoring systems, due to which, they are neither accurate and scientific nor comprehensive. We have developed a new scoring 
system to assess FI, which is better and more accurate than the existing scoring systems. The new system is more compre-
hensive and simple and easy to use, and most shortcomings of previous scoring systems have been addressed.

Citation: Garg P, Sudol-Szopinska I, Kolodziejczak M, Bhattacharya K, Kaur G. New objective scoring system to clinically assess 
fecal incontinence. World J Gastroenterol 2023; 29(29): 4593-4603
URL: https://www.wjgnet.com/1007-9327/full/v29/i29/4593.htm
DOI: https://dx.doi.org/10.3748/wjg.v29.i29.4593

INTRODUCTION
Fecal incontinence (FI) is defined as the accidental leakage of stools, flatus, or mucus and is a common gastrointestinal 
disorder. It affects between 1% and 16% of the population[1-7]. FI drastically impacts the quality of life, and cause embar-
rassment, anxiety, fear, or reluctance to go out, often leading to social isolation and the need to carry clothes or wear 
incontinence pads regularly[1,3,8-13]. The sensitive nature of FI makes it a taboo subject, and many people are reluctant 
to discuss these with family members or even doctors[2,9,14-16].

There are three scoring systems commonly used to assess FI: Cleveland Clinic or Wexner[17] (Table 1), St. Marks 
Hospital or Vaizey’s[18] (Table 2), and FI Severity Index (FISI)[19] (Table 3). The Wexner and Vaizey scores are the most 
commonly used[20]. However, there are major lacunae in these scoring systems, due to which they are not an accurate 
reflection of incontinence level and its correlation with the quality of life.

First, the existing scoring systems are not comprehensive. Wexner scores evaluate only three parameters: solid, liquid, 
and flatus (gas) FI[17], and Vaizey scores include only four parameters: solid, gas, flatus, and urge (lack of ability to defer 
defecation for 15 min due to sudden need to defecate)[18]. FISI scores include mucus FI (leakage) as the fifth parameter to 
evaluate FI but do not include urge FI[19]. None of the scoring systems includes stress FI (leakage of fecal matter or flatus 
on increasing intraabdominal pressure like coughing, lifting weights, etc.) as a parameter to evaluate FI.

Stress FI is an essential independent parameter that should be included in a scoring system. The prevention of stress FI 
primarily depends on the proper functioning of the external anal sphincter (EAS) and intact straining puborectalis reflex
[21]. The latter is a coordinated contraction of EAS and puborectalis muscle on coughing or straining. The damage to EAS 
and puborectalis during surgery or by peripheral neuritis due to any condition (like diabetes, etc.) can cause disruption of 
straining puborectalis reflex and lead to stress FI[22]. Stress FI is prevalent and is independent of other FIs with distinct 
etiopathogenesis and treatment, and therefore should be separately evaluated in all patients of FI[22].

Second, the different types of FIs are assigned the same weights in Wexner and Vaizey scoring system[17,18]. This 
implies that uncontrolled passage of flatus is given equal weight to uncontrolled leakage of solid motion. It does not seem 
logical and scientifically sound to equate and give equal weights to different types of FI. This was perhaps done for the 
sake of simplicity[20]. Keeping a scoring system simple and easy to use should be a priority, but it is not justified at the 
cost of accuracy and sacrifice of scientific principles.

https://www.wjgnet.com/1007-9327/full/v29/i29/4593.htm
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Table 1 Wexner scoring

Never Rarely Sometimes Usually Always 

Solid 0 1 2 3 4

Liquid 0 1 2 3 4

Gas 0 1 2 3 4

Wears a pad 0 1 2 3 4

Lifestyle alteration 0 1 2 3 4

Rarely: < 1/mo; sometimes: < 1/wk to ≥ 1/mo; usually: < 1/d to ≥ l/wk; always: ≥ l/d.

Table 2 Vaizey’s scoring

Never Rarely Sometimes Weekly Daily

Solid stool incontinence 0 1 2 3 4

Liquid stool incontinence 0 1 2 3 4

Gas incontinence 0 1 2 3 4

Alteration in lifestyle 0 1 2 3 4

No Yes

Need to wear a pad or plug 0 2

Constipating medication 0 2

Lack of ability to defer defecation for 15 min 0 4

Never: No episodes in last 4 wk; rarely: 1 episode in last 4 wk; sometimes: ≥ 1 in last 4 wk but < 1/wk; weekly: ≥ 1/wk to < 1/d; always: ≥ 1/d.

Table 3 Fecal incontinence Severity Index scoring

≥ 2 times/day 
(patient/surgeon scores)

Once/day 
(patient/surgeon 
scores)

≥ 2 times/week 
(patient/surgeon scores)

Once/week 
(patient/surgeon)

1-3 times/month 
(patient/surgeon scores)

Gas 12/9 11/8 8/6 6/4 4/2

Mucous 12/11 10/9 7/7 5/7 3/5

Liquid 19/18 17/16 13/14 10/13 8/10

Solid 18/19 16/17 13/16 10/14 8/11

Third, there are parameters included in the existing scoring systems that are not a direct measure of the degree or 
severity of FI. This leads to error (confounding bias). The same symptom is scored multiple times due to the inclusion of 
parameters like “Need to wear a pad”[17,18], “Alteration in lifestyle”[17,18], and “Need to take a constipating medicine”
[18] in the Wexner and Vaizey scoring systems. For example, a patient having liquid or stool FI would also wear a pad 
daily, would have an alteration in lifestyle, and could also be taking constipating medicines to counter the symptom. This 
way, the patient with liquid or solid FI would be scored four times for the same symptom. These included questions are 
not independent types of FI but are corrective actions taken to control the symptoms of FI. So, apart from being the 
indirect measures, they would cause a multiplicity of scoring as the primary direct symptom (liquid or solid FI) would 
anyway be getting points.

Fourth, the patient perceptions were not taken into consideration while developing these scoring systems. As any FI 
scoring system is being developed for the patients, the latter’s perception is paramount. It would be incorrect to assume 
that the surgeons’ perception of different FIs would be similar to that of the patients. The FISI scoring system is the only 
one that has compared the surgeons’ and patients’ perceptions and found them to be different, yet they failed to 
formulate a simple and clear scoring system that was patient-centric[19]. There were several other discrepancies in the 
FISI study[23]. The sample size was small (26 surgeons and 34 patients)[19]. The forms were filled by interview as well as 
through mail. The standard definitions and the disability parameters on the basis of which scoring was made were not 
used[19]. The lack of proper statistical methods, the scoring system becoming too complex, and no proper weights being 
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allotted to each FI type were important shortcomings of the FISI system (Table 3). These could be the reasons that the FISI 
scoring system did not become popular with gastroenterologists and surgeons[19].

Due to these major lacunae in the existing scoring systems (not comprehensive, the different types of FIs were assigned 
the same weights, parameters included were not a direct measure of the degree or severity of FI, the patient perceptions 
were not taken into consideration while developing these scoring systems, etc.), a need was felt to develop a new scoring 
system that would be comprehensive, based primarily on patients’ and laypersons’ perceptions, was scientifically sound, 
accurate (free of bias or overlapping parameters), faithfully reflected the degree of disability, and yet would be simple 
and easy to use. Against this background, this study was done in two phases. In the first phase, a new scoring system was 
developed based on patients’ and laypersons’ perceptions, and in the second phase, it was analyzed to determine 
whether patients’ perception and surgeons’ assessments of the disability of different FIs were similar or not.

MATERIALS AND METHODS
The study was designed in two phases. In the first phase, the assignment of weights to six types of FI and the formulation 
of a new scoring system based on patients’ and laypersons’ perceptions were performed. In the second phase, the 
colorectal surgeons were also interviewed, and their assessment of the severity of different FI types was compared with 
the rankings of patients and laypersons.

First phase of the study: development of new scoring system
Study group: The first phase of the study comprised the patients and laypersons.

Patients group: (1) Inclusion criteria: the patients were defined as those who knew about FI and could potentially 
develop it secondary to the treatment of the disease condition they were suffering from. Therefore, patients suffering 
from anal fistula were included. Since they were experiencing the fear of incontinence, their perception was relevant; and 
(2) Exclusion criteria: the patients already suffering from any FI were excluded as they would rate their type of 
incontinence worse than other types.

Laypersons group: The layperson group was included because the patients with FI were expected to be emotionally 
involved. Therefore, a group that was not directly involved in the disease process was also included. Inclusion criteria: 
the relatives of the patients suffering from a disease, the treatment of which could potentially cause FI (anal fistula), were 
included. These persons were aware of the details and the risk of FI in their close relatives but were not actually directly 
afflicted by the disease. Therefore, they would balance out any extreme response by the patients.

Parameters of FI
The six parameters directly reflecting FI were included: solid, liquid, flatus (gas), urge, stress, and mucus.

Study methodology
Measuring weight for each FI type: The six FI parameters were defined in simple language (English as well as the native 
language, Hindi), which a patient and layperson could easily understand (Table 4). An interviewer was assigned to 
interview each person. Both the interviewer and interviewee (study subject) were blinded to the goals or the purpose of 
the study. The interviewees were shown the proforma, and after they understood the definitions of six FI parameters, 
they were asked to arrange the six parameters in order of decreasing severity. After this, each parameter was to be 
assigned numbers (disability score) between 0 and 100. The disability score was the measure of the impact of FI on all 
aspects of the life of the person. The worst parameter would be assigned a disability score of 100, and all other parameters 
would be assigned disability scores according to that. The same weight could be assigned to different parameters if the 
interviewee perceived them as of equal magnitude. In order to guide the interviewee regarding the weight assignment, a 
modified EQ-5D+ (EuroQol) description system was utilized[24]. EQ-5D+ includes a structured approach in which each 
health state parameter is described in terms of dimensions and severity levels within each dimension. In the present 
study, a 4D3L (4 dimensions, 3 levels) description system was used (Table 5). The impact of FI type on four dimensions of 
daily life, usual routine activity, anxiety/depression, self-esteem, and social life, was assessed, and a maximum of 25 
points were assigned to each dimension. Each dimension had three levels, and depending on the severity level of that 
dimension, the points out of 25 were to be assigned to that dimension (Table 5). For example, an interviewee assessing 
liquid FI assigns 18 points to usual routine activity (out of 25), 20 points to anxiety/depression (out of 25), 15 points to 
self-esteem (out of 25), and 22 points to social life dimension (out of 25), then the total disability score assigned to liquid 
FI would be 75 (out of 100) for that interviewee (Table 5). Similarly, every interviewee would assign disability scores to 
each of the six types of fecal FIs. The 4D3L system was used to make the procedure objective and also helped the 
interviewee to fill the proforma easily. The two dimensions, self-esteem and anxiety, are relevant to evaluate the impact 
of a medical condition and were not given much importance in earlier scoring systems[25,26]. The inclusion of the 
parameters used as independent parameters in previous scoring systems like “Need to wear a pad”[17,18], “Alteration in 
lifestyle”[17,18], and “Need to take a constipating medicine”[18], were included as a part of the 4D3L proforma and 
therefore had an influence on assigning disability score to each type of FI. As discussed above, these parameters are not a 
type of incontinence, and their independent inclusion in the scoring system would have led to the error.

A pilot study was done before commencing the main study to assess any shortcomings. This was helpful in removing 
questions that were irrelevant or difficult to comprehend, improving the proforma’s content, and making the language 
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Table 4 Detailed description of different types of incontinence [it was also translated into the local language (Hindi)]

Incontinence Description

Urge Whenever there is an urge to pass motion, normally, a person can hold the motion for a few minutes. In urge IC, the person faces 
difficulty holding the motions whenever there is an urge of passing motions. Although the motion does not come out, the feeling and fear 
that it will come out force the patient to rush to the toilet

Stress Whenever there is an increase in pressure inside the tummy like in coughing or lifting weights, a person with normal anal sphincters can 
tighten his sphincters and hold the motions. A person can hold the motion for a few minutes. In stress IC, on increasing the pressure 
inside the tummy like in coughing or lifting weights, a little bit of motion or flatus leak from the anus

Mucus A person with normal anal sphincters has a good anal tone due to which no leakage of mucus (normally present in the rectum as there is 
saliva in the mouth) occurs. However, in a person with weak sphincters, some mucus may leak out into the area around the anus spontan-
eously

Flatus A person with normal anal sphincters has a good anal tone due to which he/she has control over the passage of gas/flatus. The person 
can hold the gas/flatus for some time. However, in a person with weak sphincters, gas/flatus may leak out of the anus with the person 
having no control over it

Liquid A person with normal anal sphincters has a good anal tone due to which no leakage of liquid stool occurs. However, in a person with 
weak sphincters, some amount of liquid stool may leak out into the area around the anus spontaneously

Solid A person with normal anal sphincters has a good anal tone due to which no leakage of solid stool occurs. However, in a person with weak 
sphincters, some amount of solid stool may leak out into the area around the anus spontaneously

Table 5 Four dimensions, 3 levels [modified EQ-5D+ (EuroQol)] description system utilized in the study and assignment of disability 
score for each fecal incontinence

Dimension Dimension description Perception of severity level

Minimal problems with performing usual 
activities (0–5)

Some problems with performing usual activities 
and moderate alteration in lifestyle (6–15)

Usual routine activity Performance of usual role activities such as working at a job, housework, 
child care, volunteer work, etc. Need to wear a pad, take a constipating 
medicine

Unable to perform usual activities and severe 
alteration in lifestyle (16–25)

Minimal anxiety or depression (0–5)

Moderate anxiety or depression (social isolation 
and loss of appetite) (6–15)

Anxiety/depression Negative psychological states include anxiety, depression, behavioral, 
emotional control, loneliness, etc.

Extremely anxious or depressed (suicidal 
ideation) (16–25)

Minimal loss of self-esteem (0–5)

Some loss of self-esteem (6–15)

Self-esteem Perception about self

Marked loss of self-esteem (16–25)

Minimal impact on social life (0–5)

Some loss of social life (6–15)

Social life How frequently the person goes out for socializing, like going to the 
cinema to watch a movie, going to a party, going out of the station for 
vacation

Marked curtailment of social life (16–25)

For example, an interviewee assessing liquid fecal incontinence assigns 18 points to Usual routine activity (out of 25), 20 points to anxiety/depression (out 
of 25), 15 points to self-esteem (out of 25), and 22 points to social life dimension (out of 25), then the total disability score assigned to liquid FI would be 75 
(out of 100).

simpler. The subjects in the pilot study were not included in the final study.

Calculating the final weight for each FI type: The data of patients and laypersons were combined. The disability scores 
for each FI type were tabulated, and the average disability score for each FI type was calculated. Th weight for that FI was 
calculated by dividing the average disability score by 10 and rounding off the number to the nearest whole number 
(Table 6). This was done for simplicity, as a numbers with decimals would would have been difficult to use.

Development of a scoring system: Once the weights for each FI type were determined based on patients’ and laypersons’ 
perceptions, the three frequencies of each FI type were fixed as never (No episode of FI ever), occasional (≤ 1 episode of 
FI/ wk) or common (> 1 episode of FI/ wk). These were assigned linear scores of 0, 1 and 2, respectively. The frequency 
system of never, daily, weekly, monthly or yearly was not used for a few reasons. First, the patients found it difficult to 
calculate the frequency when there were too many columns. Secondly, the frequency of any FI type could vary in 
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Table 6 Weight assignment to different types of incontinence by study group

Solid Liquid Flatus Mucous Stress Urge

Patients’ (n = 50) average disability score 82.5 ± 19.1 84.8 ± 15.4 58.1 ± 23.6 55.3 ± 21.2 52.0 ± 23.9 68.5 ± 23.5

Laypersons’ (n = 50) average disability score 83.0 ± 22.4 81.4 ± 19.2 54.6 ± 21.1 55.2 ± 19.3 48.8 ± 22.0 68.3 ± 22.8

Total average disability score 82.7 ± 20.7 83.1 ± 17.4 56.3 ± 22.3 55.2 ± 20.1 50.4 ± 22.9 68.4 ± 23.0

Division by 10 8.27 8.31 5.63 5.52 5.04 6.84

Final weight (after rounding-off) 8 8 6 6 5 7

frequency over a period of time. Third, increasing the columns would have made the scoring system more cumbersome.

Second phase of the study: comparison of ranking of six types of FI according to severity by patients, laypersons and 
surgeons
In this phase, the assessment of FI was done by surgeons, and FI ranking in decreasing order of severity was done by 
three participating groups: patients, laypersons and surgeons. As discussed above, this was not done to assign weights or 
for formulation of the new scoring system but to check whether there was a correlation between patients, laypersons and 
colorectal surgeons regarding perception of severity of different types of FI.

Surgeons: Inclusion criteria: colorectal surgeons who had performed at least 30 anal fistula procedures in their surgical 
career were included. The persons in each group (patients, laypersons and surgeons) were asked to rank the six FI in 
decreasing order of severity. The most severe FI was given a rank of 6, and the least severe FI was given a rank of 1. The 
other types of FI were given ranks between 2 and 5, depending on the severity. The average of each FI type in each group 
was calculated, and the final ranking of FI in the groups was tabulated and compared (Table 7).

Ethics
The study was approved by the Ethics Committee of Adesh Medical College and Hospital, Shahbad, India (reference 
number AMCH/IEC/2022/02/04).

Statistical analysis
The categorical variables were compared by performing the χ2 or Fisher’s exact test. For normally distributed data, the 
continuous variables were tested by Student’s t test when there were two samples, and analysis of variance (ANOVA) 
there were three or more samples. For non-normally distributed data, the Wilcoxon signed-rank test was performed for 
paired samples, and Mann–Whitney U test for unpaired samples. The significant cut-off point was set at P < 0.05.

RESULTS
Fifty patients and 50 laypersons were included in the first phase of the study. All the proformas were filled over a period 
of 1 year by the same interviewer between March 2022 and March 2023. The mean age was 40.7 ± 11.7 years (41.7 ± 12.0 in 
patients and 39.8 ± 11.4 in laypersons), and 71 were male (44 in patients and 27 in the laypersons groups).

The mean disability scores assigned to solid, liquid, flatus, mucous, stress, and urge FI by the patients were 82.5 ± 19.1, 
84.8 ± 15.4, 58.1 ± 23.6, 55.3 ± 21.2, 52.0 ± 23.9, and 68.5 ± 23.5 respectively and by the laypersons were 83.0 ± 22.4, 81.4 ± 
19.2, 54.6 ± 21.1, 55.2 ± 19.3, 48.8 ± 22.0, and 68.3 ± 22.8 respectively (Table 6). The overall mean disability scores assigned 
to solid, liquid, flatus, mucous, stress, and urge FI were 82.7 ± 20.7, 83.1 ± 17.4, 56.3 ± 22.3, 55.2 ± 20.1, 50.4 ± 22.9, and 68.4 
± 23.0 respectively (Table 6). After dividing these by 10 and rounding them off, the final weights assigned to solid, liquid, 
flatus, mucous, stress, and urge FI were 8, 8, 6, 6, 5, and 7, respectively (Table 6).

The three frequencies fixed for all FIs were never, occasional and common and were assigned points of 0, 1 and 2, 
respectively (Table 8). Thus, a new scoring system was finalized (Table 8). The maximum possible score was 80, which 
implied total incontinence, and the minimum score possible was 0, which implied normal continence (no incontinence) 
(Table 8).

In the second phase of the study, 50 patients and 50 laypersons from the first phase of the study were included, and 33 
colorectal surgeons were interviewed to rank the six different types of FI according to severity. The ranking of the 
surgeons, patients and laypersons was compared. The perception of the patients and the laypersons correlated well, 
whereas it did not correlate with the surgeons’ perception (Tables 7 and 9). The patients rated liquid FI, while the 
surgeons perceived solid FI as the most severe (Table 7). After solid and liquid FI, the patients and laypersons ranked 
urge FI as the most severe, whereas the surgeons ranked stress FI at that level (Table 7). The severity perception of the 
patients and laypersons regarding solid and urge FI was significantly different from the surgeons (P < 0.00001, ANOVA) 
(Table 9).
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Table 7 Comparison of ranking of six types of fecal incontinence as per severity perceived by patients, laypersons and surgeons

Ranking Patients (n = 50) Laypersons (n = 50) Surgeons (n = 33)

Most severe to least 
severe

Type of FI Ranking mean ± SD Type of FI Ranking mean ± SD Type of FI Ranking mean ± SD

6 Liquid 4.73 ± 1.25 Solid 4.80 ± 1.50 Solid 6.0 ± 0.0

5 Solid 4.51 ± 1.50 Liquid 4.64 ± 1.35 Liquid 5.0 ± 0.0

4 Urge 3.65 ± 1.52 Urge 3.70 ± 1.44 Stress 2.90 ± 1.07

3 Flatus 2.87 ± 1.50 Flatus 2.72 ± 1.45 Mucous 2.81 ± 0.91

2 Mucous 2.57 ± 1.38 Mucous 2.70 ± 1.44 Flatus 2.57 ± 1.06

1 Stress 2.53 ± 1.53 Stress 2.46 ± 1.38 Urge 1.69 ± 1.07

The persons in each group (patients, laypersons and surgeons) were asked to rank the six types of fecal incontinence (FI) in decreasing order of severity. 
The most severe was given 6 points, and the least severe FI was given 1 point. The average of each FI type in each group was calculated, and the final 
ranking of FI in that group was calculated.

Table 8 New scoring system

Frequency
Incontinence type Weight

Never (points) Occasional (points)  
(≤ 1 episode/ wk)

Common (points)  
(> 1 episode/ wk)

Maximum score

Solid 8 0 1 2 16

Liquid 8 0 1 2 16

Urge 7 0 1 2 14

Flatus 6 0 1 2 12

Mucus 6 0 1 2 12

Stress 5 0 1 2 10

Total 80

Score in a cell = Weight for that incontinence type × frequency points. For example, a person with occasional liquid incontinence would have an 8 × 1 = 8 
score. Maximum possible score = 80 (total incontinence), minimum score possible = 0 (no incontinence).

Table 9 Difference in mean ranking six types of fecal incontinence as per severity perceived by patients, laypersons and surgeons

Ranking mean ± SD Significance 
Type of FI

Patients (n = 50) Laypersons (n = 50) Surgeons (n = 33) (ANOVA)

Solid 4.51 ± 1.50 4.80 ± 1.50 6.00 ± 0.00 P < 0.00001

Liquid 4.73 ± 1.25 4.64 ± 1.35 5.00 ± 0.00 P = 0.35

Urge 3.65 ± 1.52 3.70 ± 1.44 1.69 ± 1.07 P < 0.00001

Flatus 2.87 ± 1.50 2.72 ± 1.45 2.57 ± 1.06 P = 0.88

Mucous 2.57 ± 1.38 2.70 ± 1.44 2.81 ± 0.91 P = 0.90

Stress 2.53 ± 1.53 2.46 ± 1.38 2.90 ± 1.07 P = 0.29

The persons in each group (patients, laypersons, and surgeons) were asked to rank the six fecal incontinence (FI) in decreasing order of severity. The most 
severe was given 6, and the least severe FI was given 1 point. The average of each FI type in each group was calculated and compared.

DISCUSSION
The objective scoring of FI is an important and necessary tool, especially for gastroenterologists, gastrointestinal and 
colorectal surgeons, and neurologists. Out of the few scoring systems published, the Wexner and Vaizey scoring systems 
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are the most popular and commonly used[17,18]. However, as discussed above, there are a few major shortcomings in 
these scoring systems, due to which they are not accurate, comprehensive, and bias-free. In the present system, it was 
attempted to remove the lacunae of existing scoring systems (Table 10).

FI missed out in previous scoring systems, such as urge in Wexner, mucous in Wexner and Vaizey, and stress FI in all 
previous systems, were included in the new scoring system[18]. The new system is the first in which all six types of FI 
were included: solid, liquid, flatus, mucus, stress, and urge. It is logical to include all these six FI in a scoring system as all 
of these are distinct, and the presence of any of these indicates a malfunction in the coordinated function of a portion of 
the sphincter mechanism.

The biggest lacuna in the Wexner and Vaizey scores is that all types of FIs are assigned the same weight (Tables 1 and 
2)[17,18]. In fact, no attempt was made to assign differential weights to different types of FI[18]. It is difficult to 
understand how all types of FI could be assigned exactly the same scores when all six FI types are different. The present 
study highlighted that weights calculated for different FIs could have significant variations ranging from 5 (urge FI) to 8 
(liquid and solid FI) (Tables 6 and 8). Therefore, assigning these FIs equal weight was too simplistic and a source of 
significant error.

In the past, patients’ perceptions were not given due importance, or it was assumed that surgeons’ and patients’ 
perceptions would be similar. We were of the opinion that the patients’ subjective perception should be the basis of any 
FI scoring system. If there is any discrepancy between surgeons’ and patients’ perceptions regarding FI, then the patients’ 
perceptions should be given priority over surgeons’ perceptions. Even taking an average of both would be inappropriate. 
This is because, ultimately, the patients are the sufferers, and before making any decision regarding a treatment/surgery, 
fellow patients’ perceptions would be of more relevance to any patient. Therefore, we did not include surgeons’ 
perceptions in determining the weight of the different types of FI. In the second phase of the study, we compared the 
severity ranking of different FI according to the patients, laypersons, and surgeons’ perceptions. The patients’ and 
layperson’s ranking of different FI was similar, but both were significantly different from the surgeons’ rankings (Tables 7 
and 9).

In the FISI scoring system, as in the present study, the surgeons’ and patients’ perceptions were different as the 
surgeons gave more importance to solid than liquid FI (Tables 3, 7, and 9). The reason mentioned in the FISI study was 
that surgeons viewed solid FI as a reflection of sphincter integrity and the adequacy of surgical repairs[19]. It was further 
discussed that professionals tended to assign a higher value to more severe elements, whereas patients placed greater 
importance on more common events[19,27]. In such a scenario where discrepancy arises, the patients’ perception should 
be given priority in formulating a scoring system, and it would be inappropriate to force surgeons’ opinions on the 
patients.

The FISI study also had several lacunae. When compared to the present study, the sample size in the FISI study was 
smaller (n = 34 vs 100 in the present study)[19]. About one-third of patients (12/34) in the FISI study completed the 
questionnaire through email[19]. Also, their questionnaire was not detailed and contained a single 20-cell table that was 
to be filled by the patients (Table 3)[19]. Each cell had to be assigned a number between 1 and 20 according to the 
severity, and no number could be repeated (Table 3)[19]. This step in their methodology could lead to error as two 
different cells could be perceived to be of similar severity by patients and could have deserved the same number (e.g., 
mucus leakage once weekly could be perceived as severe as gas leakage once daily by the patient). Also, the present study 
showed that detailed definitions (Table 4) and the EuroQol descriptive system (Table 5) helped to guide the patients to 
understand the parameters properly and filling the charts accordingly. In our study, the interviewer took at least 1 h in 
every case to accurately fill out the chart. It seemed highly improbable that such detailed charts could be filled 
appropriately via email, as was done in the FISI study[19]. The proper statistical methods were also not followed in the 
FISI study, such as assigning weights to each FI type, linear increase in scores on the increasing frequency of symptoms, 
etc. Therefore, the end result of FISI scoring was haphazard and not amenable to usage (Table 3). This was perhaps the 
main reason that the FISI scoring system did not become popular and was not widely utilized. All the existing lacunae 
were removed in the present study, and the latter utilized detailed and sound scientific methods and in a much larger 
sample than in the FISI study (Table 10).

In the present study, like in the FISI study[19], the surgeons perceived solid FI as the worst, while the patients 
perceived liquid FI as the worst. Another interesting aspect was that after excluding solid and liquid FI, the surgeons 
perceived stress FI while patients and laypersons perceived urge FI as the worst (Table 7). On detailed questioning, most 
surgeons opined that in stress FI, there was actual leakage of fecal matter, while in urge FI, one had to rush to the toilet, 
and actual leakage could be prevented in most cases. In contrast, the patients and laypersons opined that stress FI would 
only happen when there was stress (lifting weights, and coughing, etc.), and many times, such stressful situations (and 
hence stress FI) could be avoided (not lifting weights) or curtailed (coughing lightly) but in urge FI, the person had to 
rush to the toilet every time, and this would hamper the quality of life in a bigger way. It was difficult to ascertain the 
reason behind this difference in perception between the surgeons and patients.

The parameters included in the existing scoring systems (Wexner and Vaizey) which were not a type of FI and were 
not a direct measure of the degree of FI like “Need to wear a pad”[17,18], “Alteration in lifestyle”[17,18], and “Need to 
take a constipating medicine”[18], which led to error, were excluded as parameters in the new scoring system. Rather, 
these were included in the 4D3L [modified EQ-5D+ (EuroQol)] description system (Table 5), which served as the basis for 
assigning weights to different types of FI. As discussed above, these parameters are the outcome/side effects of FI, and 
adding them as separate parameters for scoring was leading to a confounding bias.

It is pertinent that there is an optimal balance between scientific soundness and simplicity of a scoring system. Steps 
were taken to simplify the new scoring system, such as rounding off the assigned weights to the nearest whole number 
and decreasing the frequency of FI episodes from 5 (earlier scoring systems) (daily, weekly, monthly, yearly and never) to 
3 (common, occasional and never). During the pilot study, it was realized that dividing the symptoms (episodes) into 
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Table 10 Comparison of existing scoring systems with new scoring system

Wexner Vaizey FISI NSS

Comprehensive No No No Yes

FI type included: urge FI No Yes No Yes

FI type included: mucous FI No No Yes Yes

Presence of confounding parameters like “Need to wear a pad”, “Need to take constipating 
medicine”, and “Alteration of lifestyle”

Yes Yes No No

Assigning weights to each FI by an objective method No No No Yes

Inclusion of patient perceptions (n) 0 0 34 50

Inclusion of laypersons’ perceptions (n) 0 0 0 50

Simple and easy to use +++++ +++++ + +++++

Detailed structured definitions No No No Yes

In-depth disability scores based on an objective description system No No No 4D3L [modified EQ-5D+ 
(EuroQol)] used

FI: Fecal incontinence.

daily, weekly or monthly was difficult for the patients as the frequency of FI episodes is not strictly regular or periodic. 
Therefore, the broad categories of FI episodes as common or occasional made the scoring task easier for the patient while 
also simplifying the system without significantly impacting the scientific quotient. In contrast, giving equal weight to all 
types of FI for the sake of simplicity would be inappropriate as that would significantly compromise accuracy.

The subjective evaluation of study subjects could lead to deviation of the results. Therefore, several steps were taken to 
maximize objectivity while developing the new scoring system. First, in the proforma, the six FI parameters were defined 
in simple as well as two languages (English and the native language, Hindi), which a patient and layperson could easily 
understand. Second, both the interviewer and interviewee were blinded to the goals or purpose of the study. Third, all 
the proformas were filled out by the same interviewer. Fourth, to increase objectivity while filling out the proforma by the 
study subjects, a modified EQ-5D+ (EuroQol), 4D3L descriptive system was utilized. Scoring (0–25) was also utilized in 
each dimension to guide study subjects and to increase objectivity.

The study had some limitations. The new scoring system was not tested for inter- and intra-observer variability and 
test–retest reliability. However, these are planned for the next phase of the study. The validity of the new scoring system 
could not be checked because there was no gold standard against which it could be validated. The system was based on 
assigning weights and had more types of FI, due to which it was fundamentally different from the commonly used 
Wexner and Vaizey scoring systems. Nonetheless, this was a single-center study, and the new scoring system should be 
validated in a larger sample, preferably in multiple centers.

CONCLUSION
The new scoring system to objectively assess and grade FI clinically is more accurate than the existing scoring systems. It 
is simple and easy to use, and addresses most of the shortcomings of previous scoring systems. However, further studies 
are needed to corroborate the results of the present study.
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ARTICLE HIGHLIGHTS
Research background
Fecal incontinence (FI) is a common problem. Its assessment is difficult, and an objective scoring system needs to be 
developed so that FI can be evaluated uniformly all across the globe.

Research objectives
To develop a new effective, and scientifically sound scoring system in which the shortcomings of the existing scoring 
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systems are removed.

Research motivation
The existing scoring systems had many lacunae, due to which they were not scientifically accurate.

Research methods
A proforma was made in simple language in which all definitions of FI were included so that the study participants 
(patients and laypersons) could understand them. The study participants were then assigned disability scores (ranging 
from 0 to 100) for each type of FI based on a modified EQ-5D+ (EuroQol) descriptive system. The average score of each 
type of FI was calculated, divided by 10, and rounded off to determine the weight of each type. In the second phase of the 
study, a group of colorectal surgeons was asked to rank the six FI types in order of severity, and their ranking was 
compared with that of the patients and laypersons.

Research results
One hundred participants (50 patients and 50 laypersons) were included in the study. A new scoring system was 
formulated in which the maximum possible score was 80 (total incontinence), and the least 0 (no incontinence). The 
surgeons’ ranking of FI severity differed significantly from the patients’ and the laypersons’ rankings, highlighting that 
the surgeons and the patients may perceive the severity of different FIs differently.

Research conclusions
A new scoring system for FI was formulated, which was simple, logical, comprehensive, and easy to use. The perceptions 
of patients and surgeons regarding the severity of different FIs differed significantly.

Research perspectives
The new scoring system would be useful for clinicians worldwide to objectively assess FI in the clinical setting.
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