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Abstract
Kidney disease is a devastating condition that affects
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millions of people worldwide, and its prevalence is
predicted to significantly increase. The kidney is a
complex organ encompassing many diverse cell types
organized in a elaborate tissue architecture, making
regeneration a challenging feat. In recent years, there has
been a surge in the field of stem cell research to develop
regenerative therapies for various organ systems. Here,
we review some recent progressions in characterizing the
role of renal progenitors in development, regeneration,
and kidney disease in mammals. We also discuss how
the zebrafish provides a unique experimental animal
model that can provide a greater molecular and genetic
understanding of renal progenitors, which may contribute
to the development of potential regenerative therapies for
human renal afflictions.

Key words: Kidney; Renal progenitor; Nephrogenesis;
Development; Nephron; Regeneration; Zebrafish; Parietal
epithelial cell; Tubular progenitor cell

© The Author(s) 2016. Published by Baishideng Publishing
Group Inc. All rights reserved.

Core tip: The kidney is a complex organ comprised of
many diverse cell types. Damage of renal cells leads to
devastating kidney diseases because humans have limited
abilities to regenerate these cells. Here, we explore recent
research that has sought to better characterize renal
progenitors during development, to identify whether renal
stem cells exist in the adult kidney, and to understand the
enigmatic properties of renal progenitors across diverse
vertebrate species such as fish.

Chambers BE, Wingert RA. Renal progenitors: Roles in kidney
disease and regeneration. World J Stem Cells 2016; 8(11): 367-375
Available from: URL: http:/www.wjgnet.com/1948-0210/full/v8/
i11/367.htm DOT: http://dx.doi.org/10.4252/wjsc.v8.i111.367

INTRODUCTION

The kidney is a vital organ comprised of many specific
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cell types that work in conjunction to maintain body fluid
homeostasis'’. Notably, this organ is responsible for
regulating pH, secreting hormones, maintaining blood
pressure, and controlling red blood cell numbers™®. Each
human kidney contains up to 2 million functional units
called nephrons that are divided into distinct epithelial
segments'®. Nephrons are organized within an intricate
tissue architecture, where they are joined to a centralized
collecting duct (CD) network for waste excretion™. Due
to the complexity of the kidney, the coordination of
developmental events that create nephrons and their
surrounding interstitial populations from embryonic
progenitor cells remains a key question in the biomedical
field.

Previous studies using the murine animal model have
shown that the mammalian kidney is derived from Osr1*
cells of the intermediate mesoderm (IM) (Figure 1)*. The
Osrl* cells give rise to the metanephric mesenchyme
(MM), which condenses to form the cap mesenchyme
(CM) (Figure 1)®!. The CM is a self-renewing renal
stem cell population from which nephrons are crafted
through a reiterative, coordinated process that involves
inducing cohorts of CM cells to undergo a simultaneous
mesenchymal-to-epithelial transition (MET) upon
receiving differentiation signals from the adjacent ureteric
bud (UB) (Figure 1)\, A pre-tubular aggregate arises
from each cohort of these induced renal progenitors,
which ultimately becomes an epithelialized renal vesicle
(RV) (Figure 1). The activated RVs signal reciprocally
to the UB to undergo branching morphogenesis, even-
tually forming an elaborate, arborized CD network'™..
Meanwhile, the RV structures undergo proliferation and
morphogenesis, changing to form a comma-shaped body
(CSB) followed by an S-shaped body (SSB) (Figure 1),
The SSBs undergo further elongation and maturation,
becoming an intricately segmented nephron (N) structure
that connects to the CD system (Figure 1), and contains
discrete glomerular, proximal, and distal regions"..

During development, nephrogenesis involves a syn-
chronized sequence of dynamic cellular events reliant
upon the replenishment of the self-renewing CM and
the subsequent patterning of the renal progenitors.
Interestingly, nephrogenesis in mammalian and avian
species ceases either at the end of gestation or shortly
after birth, while in other vertebrates such as fish, reptiles,
and amphibians, nephrogenesis has been documented to
occur throughout the animal’s lifetime!*?, Further, the
mammialian kidney is believed to be an organ with relatively
limited regenerative potential compared to structures such
as the liver™. This is problematic, as kidney disease is
an escalating global health issue in today’s society. Upon
acute injury, however, the mammalian kidney has been
observed to undergo considerable structural remodeling
and repair™*®!, Whether an endogenous adult stem
cell population contributes to this process of epithelial
regeneration remains controversial.
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RENAL PROGENITORS DURING

MAMMALIAN DEVELOPMENT

In 2008, Kobayashi et al*® provided the first evidence
of multipotent renal progenitors in the developing
mammalian kidney. The investigators’ approach consisted
of using transgenic mice to perform lineage tracing
of Six2" cells. It had been previously shown that the
transcription factor Six2 is necessary for nephrogenesis
during murine development!”). During early stages of
nephron induction, Six2" labeled cells were observed
in the CM surrounding the UB epithelium!*®!. The CM
progenitors receive signals from the UB to either self-
renew, thus exhibiting a key stem cell attribute, or
undergo MET and differentiate into distinct epithelial
segments of the nephron™®. Under the correct signals,
these Six2" cells form RV, and subsequently the SSB.
This RV progenitor pool eventually gives rise to multiple
epithelial cell types that comprise the nephron including
proximal tubular cells, distal tubular cells, connecting
tubular cells, and podocytes. Interestingly, the Six2*
progenitors did not contribute to the CD, vasculature, or
interstitium. The transcriptional regulator, Osr1, is broadly
expressed in the IM, and was found to be required for
the formation of the Six2" progenitor population®. In
a separate study by Boyle et a'® (2008) a transgenic
strategy was employed to trace a renal progenitor pool
expressing Cited1. Similar to the previously mentioned
study™®, the Cited1™ progenitors are induced in the MM
and continually contribute to nephron formation during
kidney organogenesis. Over time, the self-renewing CM
stem cells cease to self-renew and found a final wave of
nephrons at the cortex of the metanephros'.,

In the following sections, we discuss how the main-
tenance of renal stem or progenitor cells in the adult
kidney has been debated extensively based on a series
of conflicting experimental observations. The existence
of renal stem/progenitor cells has been proposed as an
explanation for the observation that injuries to nephron
epithelial cells can be healed through replenishment with
newly proliferative cells (Figure 2). At present, however,
it remains an unsettled controversy as to whether the
adult mammalian kidney contains self-renewing renal
progenitors or can be induced to form cells that exhibit
stem cell-like behaviors in the context of renal injuries
and other disease conditions.

EARLY EVIDENCE FOR ADULT RENAL
STEM CELLS IN MAMMALS

In 2003, Maeshima et a*®! identified progenitor-like cells
scattered throughout the tubules of the adult rat kidney
by utilizing in vivo BrdU labeling. Upon ischemic injury,
the label-retaining cells underwent multiple cell divisions,
becoming positive for proliferating cell nuclear antigen!*?’,
The progeny of the BrdU* cells first expressed vimentin,
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Figure 2 Regenerative capacity of adult renal progenitors. Proposed adult
renal stem cells were isolated and transplanted into hosts with injured kidneys.
These progenitors homed to the site of injury and repopulated the renal
tubular epithelium robustly. This supports a model in which an adult stem cell
population contributes to kidney regeneration after acute injury.

a mesenchymal marker, but later began to express
E-cadherin, an epithelial cell marker'®. Collectively,
results from this study suggest that label-retaining cells
are renal progenitors that contribute to regeneration of
the rat kidney.

In a follow-up study, Kitamura et af*® (2005) dissected
a single nephron from an adult rat kidney and isolated
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Figure 1 The progression of kidney organogenesis in
mammals. The MM is derived from the IM. The MM condenses
to form the CM, a renal progenitor population. These progenitors
receive signals to self renew (dark green) or differentiate (light
green). Cells receiving differentiation signals are organized into
an epithelialized RV. Upon further maturation, these cells form a
CSB, then an SSB, and finally the N. IM: Intermediate mesoderm;
MM: Metanephric mesenchyme; UB: Ureteric bud; CM: Cap
mesenchyme; RV: Renal vesicle; CSB: Comma-shaped body;

b SSB: S-shaped body; N: Nephron; CD: Collecting duct.

a cell line (rKS56) with high proliferative potential.
Upon genetic analysis, the rKS56 cells expressed both
developmental markers and mature tubular markers®.
When these cells were transplanted into injured rat
kidneys, they readily engrafted, restored tubules, and
improved renal function®, These rat studies support
the existence of renal adult stem cells that possess the
capability to repair tissue and self-renew.

In the same year, Bussolati et af*! (2005) discovered
CD133" progenitor cells derived from the adult human
kidney. These cells expressed Pax2, which is an embryonic
kidney marker, and were capable of expansion and self-
renewal in vitro®", Interestingly, when these cells were
implanted subcutaneously into immunocompromised
mice, they formed tubules expressing renal epithelial
markers'?!. Upon intravenous injection of CD133" cells
into mice with acute tubular injury, they homed to the
kidney and assimilated into the proximal and distal
tubules®®!, These data support that an adult stem cell
population exists in the adult kidney and may participate
in regeneration after injury.

In 2006, Dekel et af*? isolated Scal*Lin” multipotent
progenitors that were distinct from hematopoietic stem
cells from the adult mouse kidney by fluorescence-
activated cell sorting. Upon transplantation of this
population into mice with ischemic injured kidneys, the
cells engrafted into the interstitial space and repopulated
the renal tubule®™. Because the Scal’Lin” progenitors
were able to contribute to tubule repair, this provides
further evidence that may suggest the existence of
resident adult renal stem/progenitor cells in mammals.

PARIETAL EPITHELIAL CELLS AS RENAL
PROGENITORS

Previous findings suggest that renal progenitor cells
(RPCs) are present in humans and may be the origin
of podocyte replacement (Figure 3)?*%?%, In humans,
these RPCs are a subset of parietal epithelial cells (PECs)
located in Bowman'’s capsule that coexpress species-
specific surface markers CD133 and CD24. Under correct
culture conditions, CD133"CD24" PECs have the potential
to differentiate into podocytes or tubular epithelium™*.
However, in some cases activation of RPCs can be harmful,
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as they have been shown to contribute to hyperplastic
lesions within the glomerulus leading to degenerative
disease®’,

Wanner et af*® (2014) investigated the regenerative
role of RPCs during glomerular aging and injury. The
researchers further characterized the function of PECs
during kidney development by using a transgenic mouse
system where upon administration of doxycycline, PECs
become genetically labeled with membrane-tagged
green fluorescent protein. Upon further analysis, mice
exposed to doxycycline from days E8.5 to P28 exhibited
mG-labeled cells with foot processes, indicating that PECs
can give rise to fully differentiated podocytes. Then, the
researchers induced acute podocyte loss in an mT/mG
reporter strain of mice by utilizing an inducible diptheria
toxin receptor system. In this context, only podocytes
coexpressing mG and the diptheria toxin receptor are
ablated. Upon flow cytometric analysis of kidneys four
weeks after ablation, it was observed that there was a
significant increase in the numbers of resident mT-labeled
podocytes. This data illustrates how podocytes possess
regenerative capacity after acute injury. Alternatively,
in a unilateral nephrectomy damage context, podocyte
turnover was not detected. In addition, it was observed
that during aging, podocyte renewal does not occur.
Taken together, these results suggest that podocyte
regeneration seems to be limited to developmental
and acute injury contexts. This study was the first to
report that PECs can form fully differentiated podocytes,
however their model does not identify the source of the
new podocyte population after acute injury.

In a recent study conducted by Lasagni et af*”? (2015)
the regenerative potential of these RPCs in response
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Figure 3 A model of podocyte maintenance and re-
generation. Parietal epithelial cells (green) line the inside of
Bowman’s capsule, and are suggested to serve as a renal
progenitor population. Upon acute injury, parietal epithelial
cells have been observed to give rise to fully differentiated
podocytes (blue).

Endothelial cell

Mesangial cell

to podocyte injury was studied in mice. In order to
examine if the generation of new podocytes influences
disease outcome, an inducible transgenic mouse model
(NPHS2.iCreER™; mT/mG) was used. Upon tamoxifen
administration, podocytes were genetically labeled
with GFP, while all other kidney cells were labeled with
TomRed. Although, after tamoxifen withdrawal, newly
generated podocytes are labeled with TomRed. Mice
were injected with doxorubicin to induce Adriamycin
nephropathy and later biopsied, where the humbers of
GFP*/Syn* cells (pre-existing podocytes) and TomRed*/
Syn* cells (newly generated podocytes) were counted. It
was found that a significant increase of newly generated
podocytes occurred after injury. In addition, it was
determined that remission of proteinuria in these mice is
associated with the generation of new podocytes. These
data suggest that RPCs may play a role in the remission
of glomerular disease in mice.

Further, a model for RPC lineage tracing was esta-
blished by Lasagni et al*”? (2015) using an inducible
transgenic mouse line where green, yellow, cyan, or
red are randomly expressed under the control of
the Pax2 promoter. It was observed that Pax2* cells
localized in the parietal epithelium of the glomerulus
are progenitors that give rise to podocytes during
postnatal kidney development. Interestingly, nascent
podocytes were labeled with different colors, indicating
that these cells did not arise due to clonal division of a
single progenitor. These Pax2™ RPCs were found to be
responsible for podocyte regeneration in the Adriamycin
nephropathy disease context. Mice with proteinuria
remission exhibited abundant intraglomerular Pax2* cells
surrounding capillaries. Conversely, mice with persistent
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DCT
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Figure 4 The fate of tubular progenitors. Tubular progenitors are believed to be involved in renal tissue maintenance and regeneration. This stem cell population is
lineage-restricted to a specific segment of the nephron. For example, the red progenitor is predestined to become PCT, the green progenitor is predestined to become
DCT, and the yellow progenitor is predestined to become CD. PCT: Proximal convoluted tubule; DCT: Distal convoluted tubule; CD: Collecting duct.

proteinuria exhibited virtually no intraglomerular Pax2*
cells. Furthermore, treating diseased animals with the
GSK3 inhibitor BIO significantly increased the number of
Pax2"Syn" cells. All eight BIO-treated mice underwent
proteinuria remission, where only two DMSO-treated
mice exhibited proteinuria remission. Significantly, the
differentiation of RPCs into podocytes can be pharma-
cologically driven in order to reverse glomerular disease.

RESIDENT TUBULAR PROGENITOR CELLS

In 2011, Lindgren et a/*® provided the first evidence
for the existence of tubular progenitor cells in humans
(Figure 4). In this study, progenitor cells were isolated
from renal tissue by cell sorting for high ALDH enzymatic
activity. It was observed that these progenitors were
scattered throughout the proximal tubules and displayed
stem cell properties such as sphere formation and an-
chorage-independent growth”®. Human tubular pro-
genitors are localized in the proximal tubule and distal
convoluted tubule and possess the following expression
profile: CD133*CD24"CD106". Upon injection of these
progenitors into SCID mice with acute kidney injury,
these cells were able to engraft, form new tubule cells,
and improve renal function®®.

Recently, Rinkevich et af*” (2014) sought to further
characterize renal tubular progenitor involvement in
development, maintenance, and regeneration. The inve-
stigators crossed Actin CrER mice with “Rainbow” mice
in order to genetically trace individual epithelial cells
within the adult kidney. Offspring were injected with
tamoxifen at 12 wk old, and were sacrificed at varying
time points for clonal analysis. After 1 mo, 2-3 cell clones
were scattered throughout the renal cortex, medulla, and
papillae. These singly colored clones later grew in size
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and contributed to existing tubules. The composition of
these clones was further examined by immunostaining
for segment-specific markers, where it was determined
that they did not expand into different segments. These
results suggest a model in which tissue-restricted pro-
genitor cells are responsible for kidney maintenance.

In addition, the researchers performed similar clo-
nal analysis during kidney development, where they
traced embryonic renal progenitors from E13.5 to P1°%,
Resulting tubules were observed to be polyclonal, in-
dicating several progenitor cells are present during
organogenesis. Immunostaining for segment-specific
markers revealed clones separately composed of
proximal tubule, distal tubule, or CD fates. These results
support that renal progenitors during development are
lineage-restricted to a specific tubule type. Furthermore,
the clonal response to acute injury was studied by
performing unilateral ischemia/reperfusion to the left
kidneys of adult animals. After 2 mo, single colored
clones appeared restricted to specific tubule segments.
In damaged areas, significant tubule regeneration was
observed where clones contributed circumferentially to
the entire tubule. The clones expanded longitudinally and
perpendicularly within the same tubule, however they
did not extend into adjacent segments of the nephron
or invade into neighboring nephrons. Upon long-term
fate analysis, clones maintained the identity of a single
epithelial lineage. These adult renal clones were found
to originate from Wnt-responsive precursors that form
segment specific tubules. Harvested kidneys from
transgenic animals were dissociated into single cells and
cultured in Matrigel to form organoids. Each monoclonal
renal sphere was comprised of a distinct epithelial cell
type. Collectively, data from this study supports the
existence of fate-restricted progenitors that function in
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Figure 5 Neonephrogenesis in the adult zebrafish. Adult zebrafish possess the unique ability to generate new nephrons during adulthood. Neonephrogenesis in
zebrafish mimics the cellular dynamics of nephrogenesis during mammalian kidney development. Renal progenitors cluster to create a PTA. This aggregate changes
morphology as it first forms a comma-shape followed by an S-shape. The SSB differentiates into specific cell types that comprise the blood filter and tubules of a
mature nephron. CD: Collecting duct; G: Glomerulus; PTA: Pre-tubular aggregate; CSB: Comma-shaped body; SSB: S-shaped body.

maintaining and regenerating the mammalian kidney*".

FISH AS A MIODEL TO STUDY RENAL
PROGENITORS AND REGENERATION

Renal progenitors exist in the adult kidney across many
different vertebrate species, such as fish (Figure 5)!*.
In lower vertebrates, renal regeneration and structural
remodeling occurs in response to injury due to the
presence of potent renal progenitors. Interestingly, the
presence of these progenitors can result in the formation
of new nephrons during adult growth as well as during
regeneration, in a process termed neonephrogenesis'™.
In stark contrast, mammals cease the generation of
new nephrons at birth or shortly after”®), While we have
previously discussed observations that have led the
hypothesis that renal progenitors may exist in the adult
mammialian kidney, there are alternative views including
the generation of scattered progenitors in response to
injury™". Despite such controversies, it is well accepted
that the mammalian kidney responds to resection with
compensatory glomerular and tubular hypertrophy2.

To date, the existence of renal progenitors capable of
neonephrogenesis has been most extensively documented
in a number of fish species including skate, zebrafish,
dodfish, rainbow trout, catfish, goldfish, toadfish, and
tilapia®™4. A deeper understanding of the molecular
mechanisms driving neonephrogenesis in these fish may
provide novel insights in the pathogenesis of human
kidney diseases and potential regenerative therapeutics.

In a study by Elger et al***' (2003) partial nephr-
ectomy was performed to characterize kidney rege-
neration in Leucoraja erinacea, a species of skatel*,
Interestingly, upon resection a neonephrogenic zone was
identified that resembles the mammalian embryonic
metanephric kidney. This zone encompassed stem cell-
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like mesenchymal cells that were observed to aggregate
around the CD tips. These cells proceeded to epithelialize
and form cysts of varying morphologies, which appeared
similar to mammalian metanephric structures such as
RVs, comma-shaped bodies, and S-shaped bodies. The
cysts progressively differentiated into distinct nephron
segments, and vascularization of the glomerulus occurred.
Neonephrogenesis not only occurred within the injured
kidney, but also occurred within the uninjured contralateral
kidney. Because neonephrogenesis in fish proceeds
through similar stages as mammals, this suggests that
genes regulating these events are conserved™. This study
presents a possible model where renal stem cells persist in
the adult kidney of skates and lower vertebrates™*”,

In 2011, Diep et a*"! performed the first extensive
molecular analysis of adult nephron progenitors in the
adult zebrafish kidney and assessed their self-renewal
capacity through transplantation studies as well. First,
the researchers isolated whole-kidney marrow (WKM)
cells from transgenic animals that express fluorescent
reporters in the distal nephron. Upon transplant of
these cells into immunocompromised, gentamicin tre-
ated recipients, many donor-derived nephrons were
observed. The donor-derived nephrons were capable
of blood filtration, indicating integration of the new
structures in the recipient’s tissue. These results
support that renal progenitors are present in the adult
zebrafish kidney and are able to engraft and give rise
to new nephrons after transplantation. When a mix of
EGFP* and mCherry* WKM cells was transplanted into
conditioned recipients, mosaic nephrons resulted. This
indicates that multiple progenitors can contribute to an
individual nephron, consistent with similar data from
mouse studies™®. In addition, serial transplantation
of WKM revealed that nephron progenitors are a self-
renewing population possessing substantial proliferative
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potential. It was determined that /hx1a™ cellular ag-
gregates are comprised of renal progenitors, and when
these aggregates are ablated, nephrogenesis is ter-
minated. Transplantation of a single Ixh1a® cellular
aggregate was sufficient to form multiple nephrons. This
study illustrates /hx1a* progenitors in adult zebrafish
act comparably to the Six2" CM cells during mammalian
development. Although zebrafish /hx1a™ progenitors
and mouse Six2" progenitors possess distinct global
gene expression profiles, several factors associated with
renal development and stem cell potential were found
to be conserved between the two cell populations. Using
zebrafish as a model to elucidate molecular pathways
regulating renal progenitors may be translatable in
the establishment of novel stem cell therapies to treat
human kidney diseases.

DISCUSSION

Chronic kidney disease (CKD) continues to be a problem
that plagues our society, as it affects millions of individuals
worldwide™”. CKD can progress to end stage renal dis-
ease, which is ultimately an irreversible condition. The
only treatment options for patients with end stage renal
disease are organ transplant or dialysis®®. This poses a
serious problem, as the availability of donor organs is low
and dialysis is not a permanent cure. In addition to CKD, a
variety of developmental disorders affecting the renal and
urinary tract exist*®. Although these congenital conditions
are rare, they involve severe kidney malformations that
give rise to many health complications. Achieving a greater
understanding of the dynamic biological mechanisms
goveming kidney development will unravel the mysteries
of disease pathogenesis and lead to the discovery of
innovative regenerative therapies.

The identification and characterization of adult
renal progenitors paves the way for potential stem-cell
therapies. Stem cell populations, like renal progenitors,
are ideal targets for gene therapy, cell transplantation,
and tissue engineering™®. For example, it has been
shown in various studies that the transplant of renal
progenitors into injured rodents drives tissue repair and
improves kidney functionality™*?**"*),

In addition to mice, zebrafish provide a unique mo-
del system to study kidney development and regener-
ation®'>, Zebrafish are incredible animals, as they are
experts of kidney regeneration due to their extraordinary
ability to undergo neonephrogenesis throughout their adult
life, which can be induced further with well-established
injury models®>?, Although vertebrates possess kidneys of
varying organization and complexity, the genetic pathways
that regulate organogenesis are highly conserved™®.
The diverse cell types that comprise the nephron are
conserved across species, contributing to a growing
appreciation of zebrafish as a relevant model system to
study kidney development and regeneration. Furthermore,
zebrafish may help identify novel genes regulating renal
progenitors, neonephrogenesis, and regeneration. Future
studies could determine factors essential for activating
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renal progenitors in adult zebrafish, which could potentially
be translated to humans in order to induce these cells to
facilitate tissue repair in disease contexts. The discovery
of molecular mechanisms directing renal progenitor cell-
fate decisions during development and regeneration holds
great promise in advancing the fields of tissue engineering
and stem-cell therapy.
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Abstract

Retinal and optic nerve diseases are degenerative ocular
pathologies which lead to irreversible visual loss. Since
the advanced therapies availability, cell-based therapies
offer a new all-encompassing approach. Advances in the
knowledge of neuroprotection, immunomodulation and
regenerative properties of mesenchymal stem cells (MSCs)
have been obtained by several preclinical studies of
various neurodegenerative diseases. It has provided the
opportunity to perform the translation of this knowledge
to prospective treatment approaches for clinical practice.
Since 2008, several first steps projecting new treatment
approaches, have been taken regarding the use of cell
therapy in patients with neurodegenerative pathologies
of optic nerve and retina. Most of the clinical trials using
MSCs are in I /Il phase, recruiting patients or ongoing,
and they have as main objective the safety assessment of
MSCs using various routes of administration. However, it is
important to recognize that, there is still a long way to go
to reach clinical trials phase II-IV. Hence, it is necessary
to continue preclinical and clinical studies to improve
this new therapeutic tool. This paper reviews the latest
progress of MSCs in human clinical trials for retinal and
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optic nerve diseases.

Key words: Mesenchymal stem cells; Cell therapy; Optic
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Core tip: Advances in the knowledge of neuroprotection,
immunomaodulation and regenerative properties of mesen-
chymal stem cells (MSCs) are contributed by several
preclinical studies of various neurodegenerative diseases.
It has provided opportunity to perform the translation of
treatment approach to the clinical practice. Several clinical
trials in patients with retinal and optic nerve diseases have
been developed since 2008. Most of them using MSCs are
in I /I phase. However, there is still a long way to go to
reach clinical trials Phase I-IV. Hence, it is necessary to
continue with preclinical and clinical studies to improve
this new therapeutic tool.

Labrador-Velandia S, Alonso-Alonso ML, Alvarez-Sanchez S,
Gonzalez-Zamora J, Carretero-Barrio I, Pastor JC, Fernandez-
Bueno I, Srivastava GK. Mesenchymal stem cell therapy in retinal
and optic nerve diseases: An update of clinical trials. World J Stem
Cells 2016; 8(11): 376-383 Available from: URL: http://www.
wjgnet.com/1948-0210/full/v8/i11/376.htm DOI: http://dx.doi.
org/10.4252/wjsc.v8.i11.376

INTRODUCTION

Retinal dystrophies, diabetic retinopathy, age related
macular degeneration and optic nerve diseases are
chronic and degenerative ocular pathologies which
lead to irreversible visual loss. Retinal degeneration is
a leading cause of incurable low vision and blindness
worldwide!"!. Most retinal and optic nerve diseases are
caused by irreversible apoptosis of retinal neural cells or
adjacent supporting tissue. Because there is no curative
treatment for these degenerative diseases, current
therapies mainly focus on the aetiology cause or at spe-
cific situations, such as late complications. However,
most of them have low efficacy. Since the advanced
therapies availability, cell-based therapies offer a new
all-encompassing approach®.

Mesenchymal stem cells (MSCs) are multipotent and
self-renewing stem cells derived from bone marrow,
adipose tissue, and other mesenchymal tissues, which can
be induced to differentiate into bone marrow, cartilage,
muscle, lipid, myocardial cells, glial cells and neurons™?.
MSCs have some features that make them useful in cell
therapy research. These are easy to isolate and expand
rapidly after a short period of dormancy™. They are
free of ethical issues associated with the harvesting of
embryonic stem cells’®. Also, it is considered that MSCs
are “immunoprivileged” because they do not express
Major Histocompatibility Complex class II (MHC-1I) on
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their surface, associated with transplant rejections™”, and
this advantage allows its use as an autologous or allogenic
form™. Furthermore, MSCs produce several growth factors
with paracrine actions that are believed to modulate the
microenvironment of diseased tissues, promote survival
and activate endogenous repair mechanisms'.

Due to this features MSCs have been used in several
preclinical studies of retinal and optic nerve diseases,
where they have demonstrated their properties of imm-
unomodulation, neuroprotection and tissue repairt*®™,
These properties support the clinical use of MSCs as
an opportunity for tissue repair and regeneration in
several heurodegeneratives disorders. To remember, the
stages of dlinical trials for drugs in development can be
divided into four phases. The main purpose of the first
clinical stage, phase I , is to observe the tolerance and
pharmacokinetic characteristics of the drug in the human
body and to provide evidence to establish the phase II
administration protocol. The purpose of phase 1I clinical
trials is to evaluate the efficacy and safety of the drug
in patients with the target indication. In phase III, the
efficacy and safety of the drug in patients with the target
indication is further validated, providing the basis of the
evidence used for review during the drug registration
and application process. The phase IV clinical trial, which
takes place during the post marketing period, provides
further evidence regarding the drug’s efficacy and any
emerging adverse reactions under conditions of real-life
use in large numbers of patients™.

In this review, we summarize the latest progress of
MSCs in human clinical trials for retinal and optic nerve
diseases.

TISSUE SOURCES OF MSCS

Bone marrow is the first isolation source of MSCs following
by umbilical cord and adipose tissue™. Although bone
marrow is the best source of obtaining MSCs, there are
some aspects that reduced their use: Limited growth
rate, differentiation capability depending on the donor
age, and risk inherited to sample collection™’. Regarding
to umbilical cord source to obtain MSCs, it is required an
optimal protocol such as, time of recollection and process
less than 16 h, as well as, volume collection higher than 30
mL to get a success culture!’®!, MSCs obtaining by adipose
tissue source have a similar morphology and phenotype
to the bone marrow source, but these cells have a higher
capability of proliferation and adipose tissue samples are

easier to collect from liposuction procedures™”.

CRYOPRESERVATION OF MSCS

Cryopreservation consists on the interruption of cellular
metabolism regulated by processes of freezing and
thawing, maintaining a good functional and structural
cellular state. To preserve a biological sample as long
as possible, without losing their properties, cells are
immersed in liquid nitrogen at extremely low temperature
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(-196 °C), stopping the metabolic activity of the cells™®,

Cryopreservation has been performed primarily for
the purpose of preserving the hematopoietic stem cell
populations for transplantation. Currently, the use of this
procedure has been extended, allowing the preservation
of the biological potential, and to retain the biological
age at time of cryopreservation. In autologous patients,
MSCs are collected and cryopreserved for later clinical
use. In allogeneic patients, cryopreservation permits
banking of cells for human leukocyte antigen typing and
matching, facilitating the logistical transport of cellular
products to transplant centers, and allowing enough
time for the screening of transmissible diseases in the
donated cells before transplantation!*’,

CLINICAL TRIALS USING MSCS

Today, there are ongoing clinical trials of advanced
therapies’ using MSCs in various retinal and optic nerve
diseases. In these clinical trials the main route of admi-
nistration is the intravitreal injection following by subretinal
implant and then intravenous route. In all these studies it is
used autologous stem cells from bone marrow or adipose
tissue. On Table 1 it is shown all dlinical trials finished and
ongoing registered in dlinicaltrials.gov and the Intemational
Clinical Trials Registry Platform, until today (Last search
performed on 18 May 2016).

Clinical trials in retinal dystrophies: Retinitis pigmentosa
and stargardt’s disease

Retinitis pigmentosa (RP) includes some inherited dis-
eases which are characterized by a classic pattern of
difficulties in dark adaptation and night blindness in
adolescence, loss of mid-peripheral visual field in young
adulthood and central vision later in life due to the severe
loss of rod and cone photoreceptors®®. The RP is one
of the leading hereditary degenerative retinal diseases,
affecting 1 in 4000 individuals®®®. RP is characterized by
the classic triad of decreased arteriolar diameter, pigment
spicules deposits in the mid periphery of the retina and
pallor of the papilla®®®.

Stargardt’s disease (SD) is the most common form of
inherited juvenile macular degenerations. Its prevalence
worldwide is estimated to be 1 in 10000 individuals®®".
Patients initially present with reduced central vision. The
pathology is defined by the accumulation of lipofuscin
in the apical zone of the RPE cells. The patients present
decreased vision to legal blindness and secondary
choroidal neovascularization, with bilateral gradual in-
volvement of vision™".

There are nine clinical trials that use MSCs to treat
this kind retinal dystrophies (6 for RP, 2 for SD and RP
and 1 for RP and other diseases) (Table 1). Although
most clinical trials are in recruitment phase, there are two
completed to treat retinitis pigmentosa, both were held at
Hospital das Clinicas (Medical school Ribeirao Preto, Sao
Paulo) - (NCT01068561 phase I, NCT01560715 phase
1T ). The cells used were autologous bone marrow-derived
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MSCs, which were administered through intravitreal
injection containing 10 x 10° cells/0.1 mL. The MSCs
were obtained through aspiration of 10 mL bone marrow
tissue from the posterior iliac crest and were separated
by Ficoll-Hypaque gradient centrifugation. Regarding to
the clinical trial NCT01068561 (phase I ), there is a case
reported®. The case is about one recruited patient of
this study, who had macular oedema associated with
RP, which showed complete resolution of the oedema 7
d after injection, and the effect remained for one month
of follow-up with optical coherence tomography. They
concluded that the adult stem cells can restore the blood
ocular barrier due their paracrine effects or by osmotic
gradient allowing the absorption of macular oedema™.
The trial NCT01560715 (phase 1) is completed and
also have published results™®, they concluded that the
therapy with intravitreal use MSC can improve the quality
of life of patients with RP, although the improvement is
lost with time. Patient’s improvement has been evaluated
with vision-related quality of life test (NEI VFG-25) before
therapy and 3 and 12 mo later. There was a statistically
significant improvement 3 mo after treatment, whereas
by 12" month there was no significant difference from
baseline'®.

At the hospital Virgen de la Arrixaca, Murcia (Spain), it
is being carried out a phase I clinical trial with autologous
bone marrow stem cells in patients with RP. This clinical
trial continues recruiting patients. Regarding to the other
clinical trials for RP and Stargardt’s disease (NCT01531348,
NCT017336059, NCT01914913, NCT02280135, NCT027
09876 and NCT01518127), they are on phase I or I /II,
and they are recruiting patients (Table 1).

Clinical trials in diabetic retinopathy and age macular
degeneration

Diabetic retinopathy (DR) is a prevalent microvascular
complication of diabetes, and remains the leading cause
of preventable blindness in working-aged people (20-74
years)®, About 30% all diabetics have signs of diabetic
retinopathy, and 30% of these might have vision-thre-
atening retinopathy, defined as severe retinopathy or
macular edema®'. The current standard treatment for
management of these disorders relies mainly on laser
therapy, which is inherently destructive, or antiangiogenic
therapy, both associated with unavoidable ocular/sy-
stemic side-effects™’,

Age-related macular degeneration (AMD) is a pro-
gressive chronic disease of the central retina and a leading
cause of vision loss worldwide, it accounts for 8% of all
blindness worldwide and is the most common cause of
blindness in developed countries®®, particularly in people
older than 60 years. Its prevalence is likely to increase as
a consequence of exponential population ageing. There
have been significant advances in the management of
exudative AMD with the introduction of anti-angiogenesis
therapy, and patients now have effective treatment
options that can prevent blindness and, in many cases,
restore vision””). However antiangiogenic treatment
doesn't stop the progression nor serves to treat dry AMD.
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Table 1 Clinical trials for retinal and optic nerve diseases

Clinical trial Condition Cells Route of Dose Estimated Recruitment Study Country Start
administration enrollment status phase date
NCT01068561" Retinosis pigmentaria ABMSC  Intravitreal injection 10 x 10° B Completed I Brazil 2010
cells/0.1 mL
NCT01531348 Retinosis pigmentaria ABMMSC Intravitreal injection 1 x 10° 10 Enrolling by I Tailandia 2012
cells/0.1 mL invitation
NCT01560715 Retinosis pigmentaria ABMSC Intravitreal injection 10 x 10° 50 Recruiting I Brasil 2012
cells/0.1 mL
NCT01736059° Retinosis pigmentaria, ABMSC  Intravitreal injection 3.4 x 10° 15 Enrolling by I EEUU 2012
AMD, DR, VO cells/0.1 mL invitation
NCT01914913 Retinosis pigmentaria ABMSC - = 15 Recruiting I /1 India 2014
NCT02280135 Retinosis pigmentaria ABMSC  Intravitreal injection 30 x 10° 10 Recruiting I Spain 2014
cells/0.1 mL
NCT02709876 Retinosis pigmentaria ABMSC  Intravitreal injection - 50 Recruiting I/0 Arabia 2014
NCT01518127 Stargardt’s disease ABMSC  Intravitreal injection 10 x 10° 10 Recruiting I /1 Brazil 2011
and AMD cells/0.1 mL
NCT01736059° Stargardt’s ABMSC  Intravitreal injection 3.4 x 10° 15 Recruiting I EEUU 2012
disease, AMD, DR, cells/0.1 mL
VO, RP
Carta al editor Act. Diabetic retinopathy ABMSC  Intravitreal injection 18 x 10" 1 Completed I Germany 2008
Opht* cells/0.5 mL
NCT01518842 Diabetic retinopathy ABMSC  Intravitreal injection 2 x 10* 30 Unknown 1 /1 Brasil 2011
cells/0.1 mL
IRCT201111291414N29 Diabetic retinopathy ABMMSC Intravenous 2x10°cells/ 20 Ongoing 1/1 Iran 2011
kg
NCT01736059° Diabetic retinopathy, ABMSC Intravitreal injection 3.4 x 10° 15 Recruiting I EEUU 2012
VO, HRD cells/0.1 mL
ChiCTR- Diabetic retinopathy ASMSC - = 30 Recruiting 1 /1 China 2013
ONC-16008055
NCT01518127 AMD, Stargardt’s ABMSC  Intravitreal injection 10 x 10° 10 Recruiting I /1 Brasil 2011
disease cells/0.1 mL
NCT01736059° AMD, DR, VO, HRD ABMSC Intravitreal injection 3.4 x 10° 15 Recruiting I EEUU 2012
cells/0.1 mL
NCT02016508 AMD ABMSC  Intravitreal injection - 1 Unknown 1/1 Egypt 2013
NCT02024269 AMD AASC Intravitreal injection - = Withdrawn I EEUU 2013
NCT00787722 Neuromielitis 6ptica AHSC Intravenous = 10 Recruiting I EEUU 2008
NCTO01364246 Neuromielitis 6ptica UC-MSC  Intravenous - 20 Unknown I /1 China 2010
NCT01339455 Neuromielitis 6ptica  AHSC Intravenous - 3 Ongoing I /1l Canada 2011
NCT02249676 Neuromielitis 6ptica ABMMSC Intravenous 2x10°cells/ 15 Recruiting II China 2014
kg
NCT02638714 Optic nerve atrophy ~ AHSC - - 100 Ongoing I /1 Jordania 2013
NCT01834079 Optic nerve atrophy ABMSC  Intrathecal 10 x 107 cells/ 24 Recruiting I /1 India 2014
dose
ChiCTR-TRC-14005093 Traumatic optic UC-MSC  Endonasal = 70 Recruiting 1 /1 China 2014
neuropathy
NCT02330978 Glaucoma ABMMSC Intravitreal injection 1 x 10° 10 Recruiting I Brasil 2014
cells/0.1 mL
NCT02144103 Glaucoma AASC Subtenon injection 0.5 mL 16 Enrolling by I Russia 2014
invitation
NCT01920867° Retinal diseases, ABMSC  Retrobulbar, 12x10" 300 Recruiting I Estados 2013
Macular degeneration, subtenon, cells/15 mL Unidos
HRD, OND, glaucoma intravenous,
intravitreal and
intraocular injection
Last search performed in Clinicaltrials.gov and the International Clinical Trials Registry Platform, 18 May 2016. 'Case reported™; *Case reported™’; *Case

reported””; *Case reported”; °Case reported””. ABMSC: Autologous bone-marrow stem cells; ABMMSC: Autologous bone-marrow mesenchymal stem
cells; ASMSC: Autologous stromal mesenchymal stem cells; AASC: Autologous adipose stem cells; AHSC: Autologous hematopoietic stem cells; UC-MSC:
Umbilical cord mesenchymal stem cells; AMD: Age-related macular degeneration; DR: Diabetic retinopathy; HRD: Hereditary retinal diseases; OND: Optic
nerve diseases; RP: Retinitis pigmentosa; VO: Vein occlusions.

Thus, new approaches like stem cell therapy are needed.
The use of bone marrow derived stem cells (BMDSC)

therapy for the DR has been evaluated™?*! and

there are five ongoing clinical trials (NCT01518842,
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IRCT 201111291414N29, NCT01736059, ChiCTR-
ONC-16008055 and NCT01920867) (Table 1). In relation
to this therapy for the AMD, it has been evaluated in
four (4) ongoing clinical trials (NCT02016508, NCTO1
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920867, NCT01736059 y NCT01518127). One of
them (NCT01736059) has published results in the AMD
patients®”, Bone marrow stem cells used in these clinical
trials was harvested from the patient’s own iliac crest
(autologous use) with an average final volume of 50 mL
(20-100 mL). Then, mononucdlear cells were separated by
Ficoll-gradient centrifugation. The dose of cells is between
2 x 10*-1.8 x 10° suspended in 0.1 mL buffered saline
solution. A trial using adipose derived stems cells (ADSC)
has been withdrawn prior to enrollment (NCT02024269),
however they don't explain the reasons.

Results of stem cell-treatment for the DR are limited
to the report on two patients. A 43-year-old patient
with very advanced atrophy of the retina and optic
nerve caused by the DR and vision limited to defective
light perception, after cell treatment patient have im-
provement but no signs of any side-effects, such as
inflammation or infection®®. The other reports a patient
with macular oedema associated with macular ischemia,
and describe the decrease of macular oedema and
the improvement of retinal function after intravitreal
injection of BMDSC™,

Moreover, the only clinical results of MSCs therapy
for the AMDP” describes two patients who start from a
visual acuity (VA) of 20/200. After intravitreal injection,
they had an improvement with its new VA of 20/80
and 20/160. The patient with VA 20/80 kept it during
first six months and the other patient with VA 20/160
worsened to its initial state of 20/200. A slight growth
of extrafoveal geographic atrophy in both eyes of both
patients was detected by fluorescein angiography. The
results of electroretinography showed a slight worsening
of the macular function of both eyes that could be
attributed to the disease progression. In analysis by
OCT hyperdense deposits were evident within the
retinal layers after a month of therapy that correspond
in size with CD34" cells, however, more studies are
needed to prove whether it corresponds to intraretinal
incorporation of CD34" cells. The results suggest that
this cell therapy in patients with the AMD, especially in
advanced stages, would not stop the progression®.

Clinical trials of MSCs for optic neuropathies

Optic neuropathies are characterized by damage to the
optic nerve and they can be due to various causes, such
as glaucoma, autoimmune diseases, inflammation, in-
fections, traumas, ischemia or compression. Glaucoma
is the most common cause of optic nerve-related visual
loss in adults, followed by nonarteritic anterior ischaemic
optic neuropathy (NAION)™". The treatment for glaucoma
is based on drugs and surgery that reduce intraocular
pressure, whereas there is no treatment for NAION, nor
to reverse the process nor for its recurrence®®, Traumatic
optic neuropathy is a cause of severe visual loss and it has
no reliable treatment™. Neuromyelitis optica, also known
as Devic's disease, is an autoimmune, demylienating
disorder which causes optic neuritis. Its prevalence is
about 1-3/100000%*. Nowadays neuromyelitis optica
treatment is based in corticosteroids and plasma exchange
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for the acute attacks and immunosuppressant drugs for
the maintenance therapy™.

Currently, there are two dlinical trials at phase 1 using
MSCs to treat glaucoma (NCT02330978 and NCT021
44103), both of them are recruiting patients at the
moment. One of them is being held at Medical School
Ribeirao Preto, University of Sdo Paulo, Brazil (NCT023
30978), and the other one in Burnasyan Federal Medical
Biophysical Center, Russia (NCT02144103). The Brazilian
one uses an intravitreal injection of 10° autologous bone
marrow derived mesenchymal stem cells (BMMSCs) to
assess the safety of the procedure and how it improves
visual field and visual acuity. The Russian one uses a
sub Tenon administration of autologous adipose-derived
regenerative cells that have been extracted from the
patient’s front abdominal wall. There are still no published
results of these studies.

In the SCOTS dlinical trial (NCT01920867), held at the
Johns Hopkins Hospital, United States, there is one case
reported of autoimmune optic neuropathy™®. They made
a vitrectomy and intra-optic injection of autologous bone
marrow stem cells (BMSCs) in one patient’s eye and
retrobulbar, sub Tenon and intravitreal injection in the
other eye, improving the visual acuity, macular thickness
and fast retinal nerve fiber layer thickness. In this clinical
trial there is also a case reported of idiopathic bilateral
optic neuritis'), The patient received a retrobulbar
injection, sub Tenon injection and intravitreal injection of
autologous BMSCs for the right eye (OD), and vitrectomy
and direct intra-optic nerve injection of autologous
BMSCs for the left eye (0S), followed by intravenous
infusion. After this procedure, there was an improvement
in visual acuity in both eyes and remained stable at the
12 mo post-operative®”,

For neuromyelitis optica there is one active clinical
trial at Foothills Medical Centre, University of Calgary,
Canada (NCT01339455), two recruiting patients at
Northwestern University, United States (NCT00787722),
one ongoing clinical trial in Tianjin Medical University
General Hospital, China (NCT02249676), and one with
unknown status at Nanjing University Medical College
Affiliated Drum Tower Hospital, China (NCT01364246).
Most of them, active and recruiting clinical trials, use
immunosuppressive treatment followed by an auto-
logous hematopoietic stem cells transplantation. While
the Nanjing University uses human umbilical cord mes-
enchymal stem cells transplantation. In this clinical
trial (NCT01364246), 5 patients were followed for 18
mo including evaluation of Expanded Disability Status
Scale (EDSS) levels, dlinical course, magnetic resonance
imaging (MRI) characteristics and adverse events. and
they reported an improvement in the symptoms and
signs of neuromyelitis optica in four out of five patients
treated™®, There is another dlinical trial for secondary
progressive multiple sclerosis with evidence of optic
nerve involvement (NCT00395200), in which patients
were treated with autologous bone marrow stem cells
transplantation and that resulted in an increase in visual
acuity, visual evoked response latency, and optic nerve
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area™. Some individual cases with neuromyelitis optica
treated with allogeneic hematopoietic stem cells have
been reported™”.

Traumatic optic neuropathy is being studied in a
clinical trial in China, by the Cell Biotherapy Center,
Daping Hospital, Third Military Medical University (ChiCTR-
TRC-14005093). Currently, they are recruiting patients
and will use human umbilical cord derived mesenchymal
stem cells transplantation. There are still no results.

There are also clinical trials for optic neuropathies,
without considering what caused it. One of them is
currently active (NCT02638714) and is held by Stem
Cells of Arabia, Jordan. The patients will be treated with a
transplantation of purified adult autologous bone marrow
derived CD34", CD133", and CD271" stem cells due to
their diverse potentialities to differentiate into specific
functional cell types to regenerate damaged optic nerves,
supporting tissues and vasculature. They will use clinical-
grade purification system (CliniMACS) and Microbeads
to purify the target cell populations. There is another
clinical trial on optic atrophy, currently recruiting patients
(NCT01834079) in Chaitanya Hospital in Pune, India.
Patients will receive three intrathecal injections of 100
million autologous bone marrow derived mononuclear
cells per dose at intervals of 7 d. There are no results
posted yet of these studies.

DISCUSSION

Advances in the knowledge of neuroprotective, immuno-
modulative and regenerative properties of MSCs are
continuously generated by several preclinical studies in vitro
and in vivo in animal models of various neurodegenerative
diseases, including optic nerve and retinal diseases. It
has given the opportunity to perform the translation of
treatment approaches to the dlinical practice. Since 2008,
several first steps, projecting new treatment approaches,
have been taken regarding the use of cell therapy in
patients with neurodegenerative pathologies of optic nerve
and retina. It is about Phase I or I /1T clinical trials, which
have as main objective the safety assessment of MSCs
using various routes of administration, where the main
route used is the intravitreal injection.

Nevertheless, of the 24 clinical trials registered on
clinicaltrials.gov, there are only 2 clinical trials finished,
3 are ongoing, 15 are in recruiting patients phase, 3 are
in unknown state and 1 clinical trial has been withdrawn
without knowing the reasons for this decision. Most of
the results published to date, are reduced to 6 cases
reported in various retinal/optic nerve pathologies, their
number of patients is very low, and these are exceptional
cases, so, there is not enough evidence to get any valid
and scientific conclusion.

Furthermore, most of these clinical trials use autolo-
gous cells, obtaining by bone marrow aspirates, so the
final content to be administered is a concentrate of
mononuclear cells, containing a very small percentage
of MSCs (0.1%)™*, only four dlinical trials use a specific
concentration of MSCs without added another cell
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type. It is surprising that, although MSCs derived from
adipose tissue are easier to obtain and in a higher
concentration™”, there are only 2 clinical trials using this
cell type, and one of them has been withdrawn without
explanation. Regarding the use of allogenic MSCs, is
limited to 2 clinical trials, which use MSCs derived from
umbilical cord, however, it is not known whether their
patients will receive immunosuppressive therapy.

Regarding to cell dose used in various clinical trials,
there is a great variation from one to another. There is
no consensus regarding the calculation of cell dose for
the use of these cells through intravitreal injection. The
clinical trials which use mononuclear cells aspirate, the
doses are usually high (between 3 x 10°cells/0.1 mL
and 30 x 10°cells/0.1 mL), whereas dlinical trials using
a concentrated purified of MSCs, doses are lower (1 X
10° cells/0.1 mL). However, the information collected
by clinical trials.gov and the International Clinical Trials
Registry Platform not specify the cell dose calculation or
the cell production process.

CONCLUSION

It is important to know the development of cell therapy
in relation to its use in the dinical practice. However, it is
also important to recognize that, there is still a long way
to go to reach dlinical trials phase II-IV. One of the factors
necessary to move forward is to establish unified criteria
for the dose to be used, another important factor is the use
of only MSCs without another cells added, because MSCs
are immunoprivileged cells, and do not produce rejection.
It is also important to use more frequently allogeneic
MSC associated with cryopreservation processes. It can
be the key to a better bioavailability of these cells, getting
greater advantages of MSCs derived from adipose tissue,
which are easier in obtaining and production. Therefore, it
is necessary to continue predlinical and clinical studies to
improve this new therapeutic tool.

Limitations

Most of the clinical trials using MSCs are in I /II phase,
recruiting patients or ongoing. The information available
in clinicaltrials.gov about the procedure obtaining cells
or the dose used in each clinical trial is not described in
all cases. Hence, there are not enough published results
to have scientific evidence about the use of these cells
in retinal and optic nerve diseases.
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Abstract

AIM

To investigate B-catenin (CTNNBL1) signaling in cancer
and stem cells, the gene expression and pathway were
analyzed using bioinformatics.

METHODS

The expression of the catenin B 1 (C7TVVBI) gene, which
codes for B-catenin, was analyzed in mesenchymal stem
cells (MSCs) and gastric cancer (GC) cells. Beta-catenin
signaling and the mutation of related proteins were also
analyzed using the cBioPortal for Cancer Genomics and
HOMology modeling of Complex Structure (HOMCOS)
databases.

RESULTS

The expression of the CTAVNVB1 gene was up-regulated
in GC cells compared to MSCs. The expression of EPH
receptor A8 (EPHASB), synovial sarcoma translocation
chromosome 18 (SS18), interactor of little elongation
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complex ELL subunit 1 (ICE1), patched 1 (PTCH1), mutS
homolog 3 (MSH3) and caspase recruitment domain
family member 11 (CARD11) were also shown to be
altered in GC cells in the cBioPortal for Cancer Genomics
analysis. 3D complex structures were reported for
E-cadherin 1 (CDH1), lymphoid enhancer binding factor
1 (LEF1), transcription factor 7 like 2 (TCF7L2) and
adenomatous polyposis coli protein (APC) with B-catenin.

CONCLUSION

The results indicate that the epithelial-mesenchymal
transition (EMT)-related gene C7TAVNBI plays an important
role in the regulation of stem cell pluripotency and cancer
signaling.

Key words: -catenin; CTNNB1; Epithelial-mesenchymal
transition; Mesenchymal stem cell; Stem cell

© The Author(s) 2016. Published by Baishideng Publishing
Group Inc. All rights reserved.

Core tip: B-catenin signaling consists of several pathway
cascades, such as those that are involved in pluripotent
stem cell generation and cancer. Several genes, including
EPHAS8, S518, ICE1, PTCH1, MSH3 and CARD11, are
mutated along with C7TANBI. The expression of the
CTINNBI1, CDH1, MYC, LEFI and TCF/L2 genes, which are
related to the C7TVNVBI network, is up-regulated in diffuse-
type GC cells compared to MSCs. 3D complex structures
for B-catenin (CTNB1_HUMAN) with LEF_MOUSE and
TF7L2_HUMAN were found using the HOMCOS database.
The EMT-related gene C7NVNBI plays an important role in
pluripotent stem cell signaling and cancer signaling.

Tanabe S, Kawabata T, Aoyagi K, Yokozaki H, Sasaki H. Gene
expression and pathway analysis of CTNNBI in cancer and stem
cells. World J Stem Cells 2016; 8(11): 384-395 Available from:
URL: http://www.wjgnet.com/1948-0210/full/v8/111/384.htm
DOIL: http://dx.doi.org/10.4252/wjsc.v8.i11.384

INTRODUCTION

Changes in the phenotypes of cancer and stem cells
are related to changes in gene expression and protein
signaling. This study aims to reveal the B-catenin (CTNB1)
regulation in diffuse-type gastric cancer (GC) cells and
mesenchymal stem cells (MSCs). Wnt/B-catenin signaling
is necessary for epithelial-mesenchymal transitions
(EMT)™, Stem cell division is strongly correlated with
cancer risk, and this highlights the importance of molecular
signaling in stem cells and cancer cells'”’. Epigenetics and
stem cell functions are regulated by several exogenous
stimuli, including cell-cell and cell-matrix interactions”®. To
ensure the safety of therapeutic stem cell applications in
terms of stem cell modification, an understanding of the
regulation of the stem cells and their niche is necessary™.
In the case of bone metastasis, the tissue-specific stromal
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response for prostate cancer can be identified by a
molecular signature for which a novel mechanism has
been revealed in hematopoietic and prostate epithelial
stem cell niches™.

Cancer stem cell (CSC) maintenance requires hypo-
xia-inducible factor (HIF)-a transcription factors and the
inhibitor of DNA binding 2 (ID2)®®.. The down-regulated
expression of ID2 is associated with a poor prognosis in
hepatocellular carcinoma'”’.

Because the compendium of gene expression,
chromosomal copy number and sequencing data from
human cancer cell lines, which is called the Cancer Cell
Line Encyclopedia (CCLE), has revealed that genomic
data are capable of predicting anti-cancer drug sensitivity,
molecular and network analyses should be carried out'®.,
It has been reported that cadherin 1 (CDH1) is up-
regulated in diffuse-type GC cells compared to MSCs'.,
However, CDH2 was down-regulated in diffuse-type GC
cells compared to MSCs; this provides a useful indicator -
the ratio of CDHZ2 to CDH1 expression - to distinguish the
mesenchymal and epithelial phenotypes of the cells™. It
has been reported that catenin g 1 (CTNNB1) is mutated
in hepatocellular carcinoma™®*!. To further elucidate the
EMT phenotype and the molecules that are involved in
B-catenin signaling in cancer, the CTNNB1 network and
the p-catenin binding partners have been investigated in
this report using biocinformatics tools such as microarray
analysis and databases.

MATERIALS AND METHODS

Gene expression analysis of MSCs and diffuse-type GC
cells

Gene expression in MSCs (n = 12) and diffuse-type GC
cells (n = 5) was analyzed using Human Genome U133
Plus 2.0 microarrays, as previously described®*?. In brief,
total RNA was purified from the cells, biotinylated and
hybridized to microarrays. The signal intensity of each
gene transcript was analyzed and compared between
MSCs and diffuse-type GC cells. The microarray data for
MSCs and diffuse-type GC cells are available to the public
in NCBI's Gene Expression Omnibus (GEO) database
and are accessible via GEO Series accession number
GSE7888 (https://www.ncbi.nlm.nih.gov/geo/query/
acc.cgi?acc=GSE7888) and GSE42252 (https://www.
ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE42252),
respectively®*?,

Diffuse-type GC tissues

Diffuse-type GC tissues were originally provided by the
National Cancer Center Hospital after obtaining written
informed consent from each patient and approval by
National Cancer Center Institutional Review Board. All
cancer specimens were reviewed and classified histo-
pathologically according to the Japanese Classification of
Gastric Cancer. Tissue specimens were immediately frozen
with liquid nitrogen after surgical extraction, and stored
at -80°C until microarray analysis®*®, The existing data
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Table 1 3D complex structures of B-catenin (CTNNB1) and interacting proteins

pdb_id B-catenin (CTNNB1) Proteins that interact with B-catenin
ChainlD Length UniProtID Molecule ChainlD Length UniProtID Contact protein  Regulation of gene expression
name in GC cells compared to MSCs
1thl B 513 CTNBI_HUMAN APC D 54 APC_HUMAN Adenomatous Not changed/-
polyposis coli
protein
1qz7 A 524 CTNBI_HUMAN  AXIN1 B 17 AXN_XENLA Axin-1
3s19 B 165 CTNBI_HUMAN BCL9 D 23 BCL9_HUMAN B-cell CLL/
lymphoma 9 protein
1i7w C 509  CTNB1_MOUSE CDH1 D 60 CADHI_MOUSE Cadherin-1 Up-regulated
Imle A 512 CTNB1_MOUSE CTNNBIP1 B 65  CNBP1_HUMAN Beta-catenin- -
interacting protein 1
3oux A 503  CTNB1_MOUSE LEF1 B 47 LEF1_MOUSE Lymphoid Up-regulated
enhancer-binding
factor 1
3tx7 A 504 CTNBI_HUMAN  NR5A2 B 218 NR5A2 HUMAN  Nuclear receptor -
subfamily 5 group
A member 2
1g3j A 439 CINBI_HUMAN TCF7L1 B 34 T7L1A_XENLA Transcription factor
7-like 1-A
1jdh A 508 CTNBI_HUMAN  TCF7L2 B 38 TF7L2_HUMAN Transcription factor Up-regulated
7-like 2
1dow B 32 CTNB1_MOUSE CTNNA1 A 205 CTNAI_MOUSE Catenin alpha-1 Not changed/-
4ons D 56 CTNB1_MOUSE CTNNA2 C 230 CTNA2_MOUSE Catenin alpha-2 -

already available to the public were analyzed in the article.

Analysis of cancer genomics using cBioPortal

The cancer genomics data analysis was performed relative
to CTNNB1 using the cBioPortal for Cancer Genomics
(http://www.cbioportal.org)™***!. The term “"CTNNB1” was
searched in the cBioPortal for Cancer Genomics database,
and a cross-cancer alteration summary was obtained for
CTNNB1. A study on stomach adenocarcinoma was further
analyzed for enrichments!*®!, Genes with mutations that
were enriched in samples that contained altered CTNNB1
were selected in the cBioPortal for cancer genomics for
further study.

3D complex structures

3D complex structures were searched in the HOMology
modeling of COmplex Structure (HOMCOS) database
(http://homcos.pdbj.org) using the search engine that
was provided by the VaProS server (http://pford.info/
vapros)™”). The UniProtID “CTNB_HUMAN” was input as
the query for the “searching contact molecule” field of the
HOMCOS. Only close homologues (sequence identity >
95%) were selected. The complex structures that were
found were superimposed using the MATRAS program!*®,

Statistical analysis

The data were expressed as the mean = SE. For the
statistics, Student’s t test was used. P < 0.01 was con-
sidered as statistically significant.

RESULTS

Expression of EMT-related genes in MSCs and diffuse-
type GC cells
The expression of EMT-related genes in MSCs and
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diffuse-type GC cells is shown in Figure 1. The genes for
which probe sets included the “EMT” term in the Gene
Ontology (GO) Biological Process field were selected as
EMT-related genes. The average signal intensity for early-
stage MSCs, late-stage MSCs, or GC cells was greater
than 500. Panel A shows the results of a cluster analysis
of 39 probe sets that were up-regulated in diffuse-type
GC cells compared to early-stage MSCs (n = 6 in early-
stage MSCs, n = 6 in late-stage MSCs, n = 5 in GC).
Panel B shows the results of a cluster analysis of 46
probe sets that were down-regulated in diffuse-type
GC cells compared to early-stage MSCs (n = 6 in early-
stage MSCs, n = 6 in late-stage MSCs, n = 5 in GC). To
evaluate CTIVNB1 expression in cancer and stem cells,
the expression of the CTNNB1 gene was compared in
MSCs and diffuse-type GC cells, and the results indicate
that CTNNB1 is up-regulated in GC cells (Figure 2). One
of the probe sets was up-regulated more than 8-fold
over its expression level in MSCs, whereas the other
probe sets showed no increases in expression in GC cells
compared to MSCs.

3D complex structures of 3-catenin

To verify and explore protein-protein interactions with
B-catenin, 3D complex structures of p-catenin were
found using the HOMCOS database (http://homcos.
pdbj.org)""”’ and are summarized in Table 1. Figure 3
shows the superimposed 3D structure of the complex.
Most of the proteins bind to the inner concave surface of
the armadillo repeat region of B-catenin by using their
40-60 residue length extended peptides [adenomatous
polyposis coli protein (APC), E-cadherin 1 (CDH1), cat-
enin beta interacting protein 1 (CTNNBIP1), lymphoid
enhancer binding factor 1 (LEF1), transcription factor 7
like 1 (TCF7L1) and transcription factor 7 like 2 (TCF7L2)].
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Figure 1 Expression of epithelial-mesenchymal transition-related genes in mesenchymal stem cells and diffuse-type gastric cancer cells. Cluster analysis
of gene expression in mesenchymal stem cells (MSCs) and diffuse-type gastric cancer (GC) cells. A: The result of the cluster analysis of 39 probe sets that were up-
regulated in diffuse-type GC cells compared to early-stage MSCs (n = 6 in early-stage MSCs, n = 6 in late-stage MSCs, n = 5 in GC); B: The result of the cluster
analysis of 46 probe sets that were down-regulated in diffuse-type GC cells compared to early-stage MSCs (n = 6 in early-stage MSCs, n = 6 in late-stage MSCs, n =
5in GC). The probe sets with epithelial to mesenchymal transition in the Gene Ontology Biological Process were selected (the average signal intensity in early-stage

MSCs, late-stage MSCs, or GC cells is greater than 500).
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Figure 2 CTNNB1 expression in mesenchymal stem cells and diffuse-
type gastric cancer cells. CTNNB1 gene expression was up-regulated in GC
cells compared to MSCs. The signal intensity of probe set ID 223679_at was up-
regulated more than 8-fold in GC cells compared to MSCs, whereas the signal
intensity in probe set ID 201533_at was unchanged (n = 12 in MSC, n =5 in GC,
°P<0.01in t test). GC: Gastric cancer; MSCs: Mesenchymal stem cells.

CDH1 and B-cell CLL/lymphoma 9 (BCL9) bind to the
N-terminal region of the repeat that has the alpha-helical
peptides. The nuclear receptor subfamily 5 group A
member 2 (NR5A2) ligand binding domain binds to the
middle of the armadillo repeat region. Of these binding
factors, the transcription of the CDH1, LEF1 and TCF7L2
genes was up-regulated in GC cells (Table 1). It has
been reported that a small molecule antagonist of the
B-catenin/T-cell transcription factor 4 [TCF4; official name
is transcription factor 7 like 2 (TCF7L2)] interaction inhibits
self-renewal of CSCs and suppresses tumorigenesis!'®.
The 3D complex structures of B-catenin and TCF7L2 are
available™?", The complex structure of NR5A2 has also
been reported®. NR5A2 (or liver receptor homolog-1;
LRH1) is a member of the nuclear hormone receptor
family of transcription factors that play essential roles in
development, metabolism, and cancer and are implicated
in Wnt/p-catenin signaling™. NR5A2 is essential for
the early development and maintenance of pluripotent
mouse embryonic stem (ES) cells®*?*, Network models
for CTNNB1, the Wnt signaling pathway, Hippo signaling
pathway and adherens junction signaling in cancer are
shown in Figure 4. CTNNB1 binds to CDH1 near the
cellular membrane or to TCF to transcribe anti-apoptotic
or pro-proliferation genes, such as SRY-box 2 (SOX2) or
v-myc avian myelocytomatosis viral oncogene homolog
(MYC) (Figure 4). Wnt stimulation prevents glycogen
synthase kinase 3 beta (GSK3p) from phosphorylating
CTNNB1 and leads to CTNNB1 translocation into the
nucleus to induce transcription. The 3D complex structure
(PDB code: 1mle) clearly shows how CDH1 binds to
CTNNBL1 in the mouse model.

CTNNBT1 pathway (Kyoto Encyclopedia of Genes and
Genomes)

CTNNB1 is listed in 21 pathways in Kyoto Encyclopedia
of Genes and Genomes (KEGG), including the Rapl
signaling pathway, Wnt signaling pathway, Hippo signaling
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pathway, focal adhesion regulation, adherens junction
regulation, tight junction regulation, signaling pathways
that regulate the pluripotency of stem cells, leukocyte
transendothelial migration, melanogenesis, the thyroid
hormone signaling pathway; bacterial invasion of epithelial
cells, pathogenic Escherichia coli infection, HTLV-I infection,
and various cancer pathways. The following conditions
use the aforementioned pathways and are also thus
implicated: Proteoglycans in cancer, colorectal cancer,
endometrial cancer, prostate cancer, thyroid cancer, basal
cell carcinoma, and arrhythmogenic right ventricular
cardiomyopathy (ARVC) (http://www.genome.jp/dbget-
bin/www_bget?hsa:1499). The inhibition of GSK3p
kinase activates p-catenin, which stimulates endoderm
induction via the degradation of Tcf7I1 and forkhead
box A2 (FoxA2) expression”. Wnt signaling induces
intracellular B-catenin signaling via GSK3p kinase inhibition
and dephosphorylation of p-catenin®?®. The inhibition of
B-catenin decreases proliferation and induces apoptosis in
the mantle cell lymphoma cell line*. Noncanonical Wnt
signaling is activated in circulating tumor cells from the
prostate that are anti-androgen-resistant™®”.

Mutations in CTNNB1 and related genes (cBioPortal:
Stomach adenocarcinoma)

The Cancer Genome Atlas Research Network project has
indicated that there is a characteristic molecular signature
for ras homolog family member A (RHOA) mutations in
diffuse type stomach adenocarcinoma®. Two-hundred
and ninety-five primary gastric adenocarcinomas have
been investigated, and mutations in RHOA have been
enriched in genomically stable subtype, diffuse-type GC
cells™®, The analysis with cBioPortal showed that CTNIVB1
was altered in 24 (8%) of 287 cases/patients in stomach
adenocarcinoma: 4 amplifications, 2 deep deletions, 12
missense mutations, 5 truncating mutations and 1 inframe
mutation. Several gene mutations occurred concurrently
with CTNNBI alterations in stomach adenocarcinoma (Table
2). The development of mutations in EPH receptor A8
(EPHAS8), synovial sarcoma translocation chromosome 18
(5518), interactor of little elongator complex ELL subunit 1
(ICE1), patched 1 (PTCH1), mutS homolog 3 (MSH3) and
caspase recruitment domain family member 11 (CARD11)
occurred alongside the CTNNBI alterations (Table 2). Of
the mutated genes, PTCH1 expression was up-regulated
in GC cells compared to MSCs (Table 2). The GO of the
mutated genes is shown in Table 3. EPHA8 possesses
kinase activity, SS18 is involved in cell morphogenesis,
ICE1 may play a role in positive regulation of intracellular
protein transport, PTCH1 is involved in morphogenesis
and cell growth, MSH3 is involved in mismatch repair, and
CARD11 regulates B cell proliferation, apoptosis and NF-xB
signaling, according to GO biological process (Table 3). GO
biological process terms in Table 3 are based on Affymetrix
annotation (http://www.affymetrix.com/estore/) and gene
information in NCBI (http://www.ncbi.nlm.nih.gov/).

S-catenin signaling model
Several B-catenin-binding proteins, such as LEF1 or
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Table 2 Genes mutated along with the CTNNB/ alteration

Gene symbol Gene title Cytoband Mutation percentage Log P-value Ratio of GC cells to
ratio MSCs
In altered group  In unaltered group

EPHAS8 EPH receptor A8 1p36.12 29.17% 2.28% 3.68  1.45E-05 Signal intensity is low
5518 Synovial sarcoma translocation ~ 18q11.2 16.67% 0.00% >10  3.84E-05 0.6

Chromosome 18 14
ICE1 Interactor of little elongator 5p15.32 33.33% 4.56% 2.87  4.74E-05 1.5

complex ELL subunit 1

PTCH1 Patched 1 9q22.3 29.17% 3.42% 3.09  8.16E-05 16.6
MSH3 MutS homolog 3 5q14.1 20.83% 1.14% 419  1.28E-04 Signal intensity is low
CARD11 Caspase recruitment domain 7p22 29.17% 4.18% 2.8 2.03E-04 Signal intensity is low

family, member 11

Table 3 Gene ontology of mutated genes along with CTNNB/ alteration

Gene symbol

Gene ontology biological process

EPHAS

SS18

ICE1

PTCH1

MSH3

CARD11

Protein phosphorylation // substrate-dependent cell migration // cell adhesion // transmembrane receptor protein tyrosine

kinase signaling pathway // multicellular organismal development // nervous system development // axon guidance //
phosphorylation // neuron remodeling // peptidyl-tyrosine phosphorylation // regulation of cell adhesion // neuron projection
development // regulation of cell adhesion mediated by integrin // positive regulation of MAPK cascade // positive regulation of
phosphatidylinositol 3-kinase activity // protein autophosphorylation // ephrin receptor signaling pathway

Microtubule cytoskeleton organization // cell morphogenesis // transcription, DNA-templated // regulation of transcription, DNA-
templated // cytoskeleton organization // response to drug // positive regulation of transcription from RNA polymerase II promoter
// ephrin receptor signaling pathway

Positive regulation of intracellular protein transport // positive regulation of protein complex assembly // positive regulation of
transcription from RNA polymerase III promoter // snRNA transcription from RNA polymerase II promoter // snRNA transcription
from RNA polymerase III promoter

Negative regulation of transcription from RNA polymerase II promoter // branching involved in ureteric bud morphogenesis //
neural tube formation // neural tube closure // heart morphogenesis // signal transduction // smoothened signaling pathway

// smoothened signaling pathway // regulation of mitotic cell cycle // pattern specification process // brain development //
negative regulation of cell proliferation // epidermis development // regulation of smoothened signaling pathway // response to
mechanical stimulus // organ morphogenesis // dorsal/ventral pattern formation // response to chlorate // positive regulation

of cholesterol efflux // response to organic cyclic compound // protein processing // spinal cord motor neuron differentiation //
neural tube patterning // dorsal/ventral neural tube patterning // neural plate axis specification // embryonic limb morphogenesis
// mammary gland development // response to estradiol // response to retinoic acid // regulation of protein localization // limb
morphogenesis // hindlimb morphogenesis // regulation of growth // negative regulation of multicellular organism growth //
regulation of cell proliferation // response to drug // glucose homeostasis // negative regulation of sequence-specific DNA binding
transcription factor activity // keratinocyte proliferation // negative regulation of osteoblast differentiation // negative regulation
of smoothened signaling pathway // negative regulation of smoothened signaling pathway // negative regulation of epithelial cell
proliferation // negative regulation of cell division // pharyngeal system development // mammary gland duct morphogenesis //
mammary gland epithelial cell differentiation // smoothened signaling pathway involved in dorsal/ventral neural tube patterning //
cell differentiation involved in kidney development // somite development // cellular response to cholesterol // cellular response to
cholesterol // renal system development // cell proliferation involved in metanephros development // protein targeting to plasma
membrane

Meiotic mismatch repair // ATP catabolic process // DNA repair // mismatch repair // cellular response to DNA damage stimulus
// reciprocal meiotic recombination // somatic recombination of immunoglobulin gene segments // maintenance of DNA repeat
elements // negative regulation of DNA recombination // positive regulation of helicase activity

Positive regulation of cytokine production // signal transduction // positive regulation of B cell proliferation // T cell costimulation
// Fe-epsilon receptor signaling pathway // positive regulation of T cell proliferation // regulation of apoptotic process // positive
regulation of I-kappaB kinase/NF-kappaB signaling // thymic T cell selection // positive regulation of interleukin-2 biosynthetic
process // innate immune response // regulation of B cell differentiation // regulation of T cell differentiation // nucleotide
phosphorylation // regulation of immune response // T cell receptor signaling pathway // positive regulation of T cell activation //
positive regulation of NF-kappaB transcription factor activity

TCF7L2, share high mobility group (HMG)-box domains,
which suggests that B-catenin signaling switches
mechanisms with the binding of different transcription
factors. 3D complex structures show that CDH1, LEF1 and
TCF7L2 bind to B-catenin. The role of B-catenin signaling in
the pluripotentcy pathway should be investigated to reveal
its mechanism in cancer and stem cells. The Wnt pathway
is located upstream, and TCF, downstream of CTNNB1 in
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the cascade™®". The merged network model of the p-catenin
signaling network and CDH1, together with molecules
in the 3D complex structures and genes mutated along
with the CTIWNB1 alteration is shown in Figure 5A. The
merged network model of the CTNNB1, Wnt, and TCF
signaling networks and CDH1, together with molecules
in the 3D complex structures and genes mutated along
with the CTIWNB1 alteration is shown in Figure 5B. Of
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CTNNBIP1

Figure 3 3D structures of B-catenin (CTNNB1) binding proteins. Each CTNNB1 complex structure was superimposed onto the CTNNB1 structure in a complex
with APC (PDB code: 1th1), using the program MATRAS (From Ref. [18]). Colors and PDB codes are summarized as follows: White: CTNNB1 (CTNB1_HUMAN,
1th1); red: APC (APC_HUMAN, 1th1); orange: AXIN1 (AXN_XELNA, 1gz7); hot pink: BCL9 (BCL9_HUMAN, 3sl9); green: CDH1 (CADH1_MOUSE. 1i7w); cyan:
CTNNBIP1 (CNBP1_HUMAN, 1m1e); magenta: LEF1 (LEF1_MOUSE, 3oux); forest green: NR5A2 (NR5A2_HUMAN, 3tx7); yellow: TCF7L1 (T7TL1A_XENLA, 1g3j);
blue: TCF7L2 (TF7L2_HUMAN, 1jdh).

CTNNB1

A

Adherens junction

Anti-apoptotic genes
Pro-proliferation genes

Axin (AXIN1, Cell contact inhibitio

low S1, AXIN2, - Organ size confrol
@ up-regulated) YAP/TAZ 9
7 14-3-3

Wnt signaling pathway @

\

Figure 4 Network model for CTNNB1. The molecular network model for CTNNB1 signaling is shown. The extracted networks for pathways in cancer, Hippo
signaling pathway and the Wnt signaling pathway (KEGG) were merged and are shown in a molecular network model. Wnt signaling and adherens junction molecules
cross-talk via CTNNB1. Activated CTNNB1 induces the transcription of anti-apoptosis genes and pro-proliferation genes.

the common genes, EPHA8, SS18 and PTCH1 interact subfamily a, member 4 (SMARCA4), and GLI family
with phosphatidylinositol-4,5-bisphosphate-3-kinase zinc finger 1 (GLI1), respectively, whereas CARD11,
catalytic subunit gamma (PIK3CG), SWI/SNF related, ICE1, MSH3 have no known interactions with molecules
matrix associated, actin dependent regulator of chromatin, in the CTNNB1 network. The networks for stomach
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Figure 5 Network model for CTNNB1 and related genes. A: Network model for CTNNB1 and genes mutated along with CTNNB1. The networks of extracted
CTNNB1 with other mutated genes plus that of extracted CTNNB1 alone are shown (cBioPortal-oriented, Stomach Adenocarcinoma)™; B: Network model for

CTNNB1 and 6 mutated genes. Wnt and LEF/TCF signaling are merged in CTNNB1 signaling (cBioPortal-oriented, Stomach Adenocarcinoma) ™.

adenocarcinoma that were generated using cBioPortal
for Cancer Genomics for CTNNBL1 alone and for CTNNB1
with the 6 genes that are mutated along with the CTNNB1
alteration have been partially merged in Figure 5. Catenin
delta 2 (CTNNDZ2) and erb-b2 receptor tyrosine kinase 2
(ERBB2) showed a relatively high frequency of mutation
(> 15% in 287 tumor samples) in the analysis using
cBioPortal for Cancer Genomics of the CTNNB1 network
in stomach adenocarcinoma (TCGA, Nature 2014)M¢,
The genes that were up-regulated in GC cells compared
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[16]

to MSCs are shown in red, whereas the down-regulated
genes are shown in light blue (Fold change > 2, P < 0.05,
n =12 in MSCs, n = 5 in GC; the average signal intensity
of MSCs or GC cells is greater than 500). The expression
of the CTNNB1, CDH1, notchl (NOTCH1), hepatocyte
growth factor (HGF), PTCH1, discs large homolog 1,
scribble cell polarity complex component (DLG1), LEF1,
CTNND1, SMARCA4, nuclear receptor coactivator 2
(NCOA2), SMAD family member 4 (SMAD4), MYC,
junction plakoglobin (JUP), TCF7L2 and ERBBZ2 genes
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was up-regulated in GC cells compared to MSCs, whereas
the expression of twist family bHLH transcription factor
1 (TWIST1) was down-regulated in GC cells compared
to MSCs. The expression of EPHA2 was up-regulated
in some GC samples. The expression of the IQ motif-
containing GTPase activating protein 1 (IQGAP1), SS18,
ICE1, cortactin (CTTN), RHOA, CREB binding protein
(CREBBP) and protein tyrosine phosphatase, non-receptor
(PTPN1) genes was not altered in MSCs and GC cells. The
expression of the EPHAS8, PIK3CG, CARD11, MSH3, GLI1,
epidermal growth factor receptor (EGFR), snail family zinc
finger 1 (SNAI1) and CTNND2 genes was not examined
due to a low signal intensity. The alteration frequencies
of CTNND2 and ERBB?Z are relatively high in the CTNNB1
network (> 15%), according to the cBioPortal for Cancer
Genomics. Interestingly, IQGAP2 was up-regulated in GC
cells compared to MSCs.

DISCUSSION

In summary, the CTNNB1 gene expression was up-
regulated in diffuse-type GC compared to MSC. The
various molecules are regulated with CTIWNNB1, which
suggests the CTNNB1 signaling network in cancer and
stem cells. EMT-related genes have been reported to
be induced by transforming growth factor (TGF)-B or
epidermal growth factor (EGF), and genes in the Wnt
signaling pathway are mutated in non-small cell lung
cancer®>%, The expression of f-catenin was up-regulated
in the TGF-B1-induced EMT model and was inhibited by
cucurbitacin B treatment®”. Solid tumors induce hypoxia,
leading to HIF-1a protein regulation of molecules that are
involved in angiogenesis, erythropoiesis, metabolism, cell
survival and cell proliferation™. SNAI2 and TWIST1 were
down-regulated in GC cells compared to MSCs, whereas
SNAI1 expression was not detected because of low signal
intensity>**"). Because SNAI and TWIST are associated
with EMT, the regulation of their expression is important
for understanding EMT mechanisms. Although 3D
complex structures of SNAI2 and TWIST1 with B-catenin
are not available, some indirect B-catenin signaling
cascade may be involved in the SNAI2 and TWIST1
pathway™***, TGFB is also an important factor in EMT™*”,
TGFB regulates osteoblast differentiation, whereas
calycosin-7-0-B-D-glucopyranoside-induced osteoblast
differentiation is regulated via the bone morphogenetic
protein (BMP) and Wnt/p-catenin-signaling pathway™".
The TGFB-induced nuclear translocation of p-catenin has
been reported to be one of the key factors that activates
the EMT program'®**), Wnt/p-catenin is regulated in
stem cells, and Wnt target genes are controlled by the
TCF/B-catenin complex™®..

In gastrointestinal cancer, somatic mutations that
provoke an immune response have been found in tumor-
infiltrating lymphocytes, which may be very specific to the
individual and are targets for cancer immunotherapy™”’.
KRAS-mutation-specific T cells, as well as personalized
mutation-specific T cells, have been identified, and these

Raishidenge ~ WJSC | www.wjgnet.com

393

Tanabe S et a/. Gene and pathway analysis of C7TVNB!

may be useful in the future for individual cancer immuno-
therapeutics'”. It has been reported that Helicobacter
pylori up-regulates Nanog and Oct4 expression via Wnt/
B-catenin signaling™®. Wnt/p-catenin signaling and the
phosphorylation of B-catenin may be involved in stemness
in gastric cancert®®.,

In conclusion, CTNNBL1 plays an important role in the
regulation of stem cell pluripotency and cancer signaling.
For future direction, precise analyses of Wnt signaling,
Notch signaling, and Ephrin signaling are needed to
reveal the entire picture of pB-catenin signaling in cancer
and stem cells. RHO mutations, and regulator of G-protein
signaling, with network analysis tools, such as Cytoscape,
must be investigated for a greater understanding of this
process.
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COMMENTS

Background

[B-catenin signaling is essential in pluripotent stem cells and cancer. It is also
involved in the epithelial-mesenchymal transitions (EMT). CTNNB1 is activated
by Wnt, and the binding of CTNNBH1 to transcription factors leads to pluripotent
gene regulation.

Research frontiers

The regulation of pluripotency and proliferation is important for elucidating
the mechanism of cell phenotype transitions. The EMT mechanism should be
investigated to better understand cancer resistance to therapeutics.

Innovations and breakthroughs

The 3D complex structures of B-catenin and related molecules were studied
using molecular networks, which is an innovation in the field. The mutated
genes that were altered along with CTNNB1 in stomach adenocarcinoma
samples were also investigated.

Applications

These results may affect the study of the pluripotency mechanism and potential
therapeutic predictions of gastric cancer. The genes in the molecular network
that are related to CTNNB1 may be the targets of predictive medicine for cancer
and disease using pluripotent cells.

Terminology

EMT is a cellular phenotype of a transition from an epithelial to a mesenchymal
cell type. EMT is regulated in cancer metastasis and malignancy, and it is related
to the acquisition of resistance in cancer cells to therapeutics. It is important
to understand the EMT mechanism to understand the mechanisms of cancer
resistance.

Peer-review
In general, the manuscript is interesting not only for scientific reasons, but also
due to its potential clinical relevance, since it provides some light about the
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relationships between stem and cancer cells.
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