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Abstract
Characterized by dysfunction of tissues, organs, organ 
systems and the whole organism, aging results from 
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the reduced function of effective stem cell populations. 
Recent advances in aging research have demonstrated 
that old tissue stem cells can be rejuvenated for the 
purpose of maintaining the old-organ function by youth
ful re-calibration of the environment where stem cells 
reside. Biochemical cues regulating tissue stem cell 
function include molecular signaling pathways that 
interact between stem cells themselves and their niches. 
Historically, plasma fractions have been shown to 
contain factors capable of controlling age phenotypes; 
subsequently, signaling pathways involved in the aging 
process have been identified. Consequently, modulation 
of signaling pathways such as Notch/Delta, Wnt, 
transforming growth factor-β, JAK/STAT, mammalian 
target of rapamycin and p38 mitogen-activated protein 
kinase has demonstrated potential to rejuvenate 
stem cell function leading to organismic rejuvenation. 
Several synthetic agents and natural sources, such as 
phytochemicals and flavonoids, have been proposed to 
rejuvenate old stem cells by targeting these pathways. 
However, several concerns still remain to achieve 
effective organismic rejuvenation in clinical settings, 
such as possible carcinogenic actions; thus, further 
research is still required.

Key words: Aging; Stem cell; Niche; Rejuvenation; Sig
naling pathway

© The Author(s) 2017. Published by Baishideng Publishing 
Group Inc. All rights reserved.

Core tip: Functional loss of stem cells plays an important 
role in organismic aging processes. Recent advances 
in aging research have uncovered the molecular 
mechanisms of aging, specifically signaling pathways 
involved in interactions between stem cells and their 
environment, the so-called “stem cell niche”. Investigating 
plasma fraction factors has revealed several key pathways 
involved in this process, including Notch/Delta, Wnt, 
transforming growth factor-β, JAK/STAT, mammalian 
target of rapamycin and p38 mitogen-activated protein 

Kanya Honoki



� January 26, 2017|Volume 9|Issue 1|WJSC|www.wjgnet.com

Honoki K. Anti-aging with stem cell rejuvenation

kinase signaling. Stem cell rejuvenation has the potential 
to lead organismic rejuvenation by modulating these 
pathways, hopefully by synthetic or natural agents such 
as phytochemicals and flavonoids.

Honoki K. Preventing aging with stem cell rejuvenation: Feasible 
or infeasible? World J Stem Cells 2017; 9(1): 1-8  Available from: 
URL: http://www.wjgnet.com/1948-0210/full/v9/i1/1.htm  DOI: 
http://dx.doi.org/10.4252/wjsc.v9.i1.1

INTRODUCTION
Preventing pathological conditions caused by aging, 
including cancer, osteoporosis, sarcopenia, and cognitive 
disorders, is one of the most important issues for 
human health, especially in societies with large aging 
populations. Although aging, defined by functional 
decline of cells/organs or accumulation of cell/organ 
damage, is one of the most recognizable biological 
characteristics in all creatures, our understanding of 
mechanisms underlying the aging process remains 
incomplete. The primary cause of functional declines 
occurring along with aging is considered to be the 
exhaustion of stem cell functions in their corresponding 
tissues. Stem cell exhaustion is induced by several 
mechanisms, including accumulation of DNA damage 
and increased expression of cell cycle inhibitory factors, 
such as p16 and p21[1]. 

Meanwhile, aging at cellular, tissue, organ and 
organismic levels has been reversed by exposing tissues 
from old animals to a young environment. Recent 
studies have suggested that stem cell rejuvenation 
could reverse organismal aging phenotypes, and that 
this could be achieved by inhibiting fibroblast growth 
factor 2[2], mammalian target of rapamycin (mTOR) 
complex 1[3], guanosine triphosphatase and cell division 
control protein 42[4]. Several additional experiments, 
such as cross-age transplantation and heterochronic 
parabiosis, have revealed that some factors in the 
young systemic milieu can rejuvenate declined thymus 
gland function, as well as neural and muscle stem cell 
functions, in samples derived from elderly donors[5,6]. 
Furthermore, heterochronic parabiosis experiments 
have also shown strong inhibition of young tissue stem 
cells by the aged systemic milieu or old serum[6].

Although cumulative cellular “intrinsic changes”, 
such as DNA damage, oxidative damage, increased 
expression of cell cycle inhibitors and mitochondria 
dysfunction, have been considered likely culprits for the 
tissue decline observed with aging, cellular rejuvenation 
induced by young systemic milieu would have been 
impossible if “intrinsic changes” were the only cause 
of cellular aging. Therefore, these so-called “causes of 
aging” should be more properly regarded as effects of 
aging (i.e., these processes are not causes, but rather 
consequences of aging), the result of cellular decisions 

often defined by responses to “extrinsic stimuli”. 
Here some questions arise: If aging at the cellular 

level were reversed, would it lead to the rejuvenation 
of the animal at an organismic level? Would it result in 
prevention of aging and, eventually, life extension? In 
this editorial, the feasibility of stem cell rejuvenation 
will be discussed with specific focus on attenuation or 
reversal of tissue aging.

HISTORY OF REJUVENATION RESERACH
Numerous studies have shown experimental rejuvena
tion at cellular, tissue, organ and organismic levels. 
The first experiment to investigate the possibility of 
animal rejuvenation, performed by Mccay et al[7] used 
the uncommon technique of “parabiosis”, or surgically 
joining the circulatory systems of two animals. They 
observed old rats that had been sutured to young rats 
to establish heterochronic parabiosis appeared younger 
by visual appearance of tissues (mostly non-cellular 
cartilage). In 1972, Ludwig et al[8] performed similar, 
but more quantitative experiments demonstrating life 
extension in older animals, who benefitted from sharing 
the blood supply of younger animals. 

 Cross-age transplantation studies have also indicated 
the rejuvenation potential of tissue and organs. The first 
cross-age transplantation study of muscle, conducted 
by Carlson et al[5], showed that the mass and maxi
mum force of old muscle grafted into young hosts 
were not significantly different from those of young 
muscle grafted into the same young hosts. Conversely, 
young muscle grafted into old hosts regenerated no 
better than old muscle grafted into the same old hosts. 
Hence, they concluded that chronological age alone is 
not a limiting factor for the intrinsic ability of muscle to 
regenerate. Further, poor regeneration of muscle in old 
animals is a function of the regenerative environment 
provided by the old host[5]. A thymus transplantation 
study also showed that senescent, involute thymus 
glands became fully functional upon transplantation into 
young animals[9].

Experiments undertaken by Lanza et al[10] demon
strated that nuclei of senescent cells are repairable, 
as evidenced by the productivity of normal offspring 
from bovine ova containing nuclei transplanted from 
senescent cells.

 In 2005, Conboy et al[11] showed that stem cell 
tissues of older rats became phenotypically younger 
than age-matched controls when these animals were 
exposed to a young systemic environment. Further, 
differentiated cells can be reprogrammed to an embryo
nic-like state by transfer of nuclear contents into oocytes 
or by fusion with embryonic stem cells (ESCs). Next, 
Takahashi et al[12] demonstrated induction of pluripotent 
stem cells (iPSCs) from mouse embryonic cells or adult 
fibroblasts by introducing four factors (Oct3/4, Sox2, 
c-Myc, and Klf4) under ESC culture conditions in 2006. 
Lapasset et al[13] further demonstrated that iPSCs 
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derived from centenarians were rejuvenated such as to 
be indistinguishable from those derived from youthful 
cells. 

At the organismic level, recent heterochronic parabio
tic experiments pairing young and old rats resulted in 
increased neurogenesis and functional improvement of 
cognitive ability in the older parabiotic partner, whereas 
the younger partner exhibited decreased neurogenesis 
and cognitive abilities, consistent with that of an older 
rat[14].

All of these studies raised the question as to whether 
cellular rejuvenation would have been possible if aging 
at the cellular level only resulted from accumulation of 
damage and/or toxic metabolic byproducts. The answer 
appears to be “no”, as aging seems to be controlled in a 
more “extrinsic manner”.

TARGETD SIGNALS CONTROLLING AGE 
PHENOTYPE
Signaling pathways involving Notch, transforming 
growth factor-β (TGF-β), JAK/STAT, p38 mitogen-
activated protein kinase (MAPK), oxytocin/MAOI and 
mTOR regulate tissue stem cell functions, and their 
changes with age could affect tissue maintenance 
and repair systems. Proper modulation of these path
ways enhanced the tissue regenerative capacity of 
experimental animals.

 Based on the fact that broad rejuvenation of aging 
by young systemic milieu has been shown in deriva
tives from all three germ layers, i.e., muscle[15], liver[6] 

and brain[16], as well as pancreas[17] and heart[18], it 
can be speculated that young blood serum and its 
chemical components may contain molecules involved 
in signals controlling the aging phenotype. However, 
only a few potential systemic factors responsible for 
this phenomenon have been identified, as the positive 
effects of young systemic milieu on old age are very 
limited[11]. Further, aged systemic milieu or old serum 
can inhibit young tissue stem cell function[15], sug
gesting inhibitory components may also exist in the 
aged circulatory system. Thus, removal or neutralization 
of these inhibitory systemic components would be 
necessary to rejuvenate tissue or cellular function.

In this regard, circulating factors that are increased 
or decreased in old animals represent potential targe
table signals and pathways against aging. For instance, 
several TGF-β and Wnt signaling pathway effectors 
increased in older animals have been identified as pro-
aging circulatory factors capable of deteriorating muscle 
regeneration[15,19]. TGF-β and bone morphological protein 
pathways increase with age, activate p38 MAPK, and 
also act through SMADs. Inhibition of p38 MAPK and 
SMADs has been found to relieve some of the negative 
effects of pathogenic activation of these pathways 
occurring with age[20]. 

JAK/STAT is a cytokine receptor pathway that 
increases with age. Many inflammatory cytokines 

act through this pathway and its inhibition has been 
shown to restore stem cell symmetric expansion in 
muscle satellite stem cells[21]. C-C motif chemokine 11 
(CCL11) is also increased in elderly individuals, whereby 
it impairs neurogenesis and decreases cognitive 
capacity[14]. 

Activation of Sirtuin family members is also related 
to rejuvenation, especially Sirtuin 6 (SIRT6), which is an 
important anti-aging factor in various cells. Downregu
lation of SIRT6 in bone marrow mesenchymal stem cells 
(BM-MSCs) impaired the proliferatory, migratory and 
oxidative stress resistance potentials of these cells. SIRT6 
downregulation also enabled cellular senescence through 
increased senescence-associated β-galactosidase activity 
and p16 expression; although, SIRT6 is compensatorily 
overexpressed in aged BM-MSCs[22]. 

In contrast, Delta/Notch signaling decreases with 
age, and activation of this pathway restores regenera
tive potential in old muscle[23]. Oxytocin signaling also 
decreases with age, and restoring this signaling path
way has been shown to improve aged stem cell function 
in mesenchymal and muscle satellite stem cells through 
activation of the MAPK/extracellular signal-regulated 
kinase (ERK) signaling pathway[24,25]. 

However, therapeutic modulation of these key 
pathways is not easy. For instance, long-term activation 
of the Notch signaling pathway or downregulation of 
TGF-β/SMAD and Wnt signaling pathways has been 
shown to be successful in rejuvenation; however, 
several side effects also occurred including oncogenic 
transformation, inadequate hematopoiesis and immune 
deregulation[26]. Administration of oxytocin has also 
shown potential to stimulate malignant cell prolifera
tion[27]. 

One thing that must be emphasized is that these 
signaling pathways are highly interactive with each other. 
TGF-β acts through SMADs to influence downstream 
cytokine production that acts on the JAK/STAT pathway. 
SMAD3 and the Notch intracellular domain directly 
interact to form a nuclear complex capable of binding 
specific DNA sequences[28]. The MAPK/ERK pathway is 
activated by oxytocin, as previously described, and the 
MAPK pathway is known to activate Notch signaling[29]. 
Raf/MAPK/ERK and phosphoinositide 3-kinase (PI3K)/
protein kinase B (Akt) signaling cascades also interact 
with several pathways through various mechanisms, 
such as crosstalk with TGF-β, Notch and Wnt pathways 
through Groucho/transducin-like enhancer of split 
or SMADs[30,31]. PI3K/Akt signaling interacts with the 
Wnt pathway via the signaling molecule 14-3-3η, 
which facilitates β-catenin activation by Akt and stabi
lizes the β-catenin complex to promote its nuclear 
translocation[32]. This crosstalk of pathways with each 
other is largely mediated through mTOR signaling. Given 
that targeting these pathways is very complicated, 
further studies will be required to confirm the absence of 
safety issues prior to clinical applications.
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PLASMA FRACTIONS/FACTORS 
CONTROLLING AGE PHENOTYPE
Regarding effects of the systemic environment on 
aging, as previously described, aged stem cells were 
rejuvenated by young plasma and young stem cells were 
aged by exposure to plasma from old animals[23]. Thus, 
the presence of positive factors that promote young 
phenotypes in young plasma or negative factors that 
promote aging phenotypes in old plasma is speculated. 
Another possibility could be the presence of factors 
in young plasma that inhibit or neutralize “negative” 
or “aging” factors. For instance, naturally decreasing 
levels of interleukin 15 cause aging symptoms such 
as sarcopenia and obesity, suggesting this cytokine 
could be a “positive” factor for young phenotypes[33]. In 
contrast, injection of CCL11/eotaxin, which is reduced 
by interleukin 15, into the systemic circulation of young 
animals caused a dysfunction in neurogenesis that 
resulted in brain aging and loss of cognitive function, 
suggesting this cytokine possesses pro-aging effects[14]. 

Additional examples of aging factors include oxytocin 
and lamin A (specifically, progerin, a truncated form of 
lamin A). As previously described, oxytocin signaling 
decreases with age; however, restoring this signaling 
pathway improved the function of aged mesenchymal 
and muscle satellite stem cells through activation of 
the MAPK/ERK signaling pathway, suggesting oxytocin 
could be a systemically acting anti-aging molecule[24,25]. 
Whereas, experimental induction of progerin reduced 
the regenerative capacity of cells by significantly 
disrupting the expression and localization of self-renewal 
markers, in part by deregulating Oct1, which perturbs 
both mTOR and autophagy pathways[34,35]. 

Another example of concern is the case of growth 
differentiation factor 11 (GDF11); however, age-
related levels of GDF11 and its function have generated 
an apparent controversy. Sinha et al[36] argued that 
systemic GDF11 levels normally decline with age, and 
supplementation of GDF11 reversed functional impair
ments and restored genomic integrity in aged muscle 
satellite stem cells. Increased GDF11 levels in aged mice 
also improved muscle structural and functional features, 
and increased strength and endurance exercise capacity. 
However, Egerman et al[37] claimed that there was a 
trend toward increased GDF11 levels in the sera of aged 
rats and humans, and GDF11 mRNA also increased in rat 
muscle with age. They argued that GDF11 and myostatin 
both mechanistically induce SMAD2/3 phosphorylation, 
inhibit myoblast differentiation, and regulate identical 
downstream signaling. GDF11 significantly inhibited 
muscle regeneration and decreased muscle satellite stem 
cell expansion in mice. Thus, they concluded GDF11 
could be a target for pharmacologic blockade to treat 
age-related sarcopenia.

One conclusion from these observations is that 
rejuvenation might require the presence, absence or a 
required concentration of a number of different factors, 

such that a cell placed in a young or old environment 
could assume the age phenotype appropriate to 
that environment. However, conclusions regarding 
whether an increase in positive factors, decrease in 
negative factors (possibly by dilution in young plasma), 
or their combination results in rejuvenation is still 
under investigation. Hopefully, further elucidation 
of the molecular mechanisms underlying aging and 
rejuvenation will narrow the search so researchers 
can focus on not only investigating serum or plasma 
fractionation, but also molecules and agents that affect 
the aging/rejuvenation process.

POSSIBLITY OF ORGANISMIC 
REJUVENATION
As previously described, cross-age transplantation 
studies and parabiosis experiments revealed that the 
environment provided by young blood or plasma is 
capable of rejuvenating aged cells in vivo, and young 
plasma is sufficient to rejuvenate old stem cells in 
vitro or vice versa, i.e., old plasma accelerates aging 
of young cells. Therefore, stem cells assumed the age 
phenotype of the “age environment” they are in, i.e., 
either young or old. As such, aging could be caused 
by an accumulation of negative factors (aging factors) 
or by a decrease of positive factors (youth phenotype-
promoting factors). Examples of negative (pro-aging) 
factors are p16INK4a, TGF-β and TNF-α, and positive 
(anti-aging) factors are Notch/Delta and Wnt pathways. 
We will discuss about the details later in this section.

In this context, organismic rejuvenation is potentially 
achieved by either removing deleterious substances 
from old plasma and stem cell niches, or by providing 
factors that promote young phenotypes in old plasma; 
indeed, both might be beneficial. In cross-age organ 
transplantation, the recipient organ experiences an 
environment that is entirely young or old, although, this 
method might not be clinically feasible. 

If aging is a programmed process coordinated 
by plasma-borne factors, then exposing cells to the 
plasma of a particular age should make those cells 
exhibit a corresponding age phenotype in terms of 
gene expression profiles. Thus, it is considered that 
organismic rejuvenation could be achieved by exchange 
of as much blood or plasma as possible to reduce the 
effects of original blood or plasma, i.e., heterochronic 
plasma exchange. Experimentally, the presence of 
positive, youth-promoting factors in young plasma has 
been demonstrated to rejuvenate neurogenesis and 
cognitive function by mere injection of young plasma 
into old mice[38]. This suggests plasma replacement 
could be a treatment option for age-related diseases 
including dementia. The problem is that it is necessary 
to neutralize or remove inhibitory components occurring 
within the aged circulation in order for small volumes of 
young plasma to effectively enhance tissue regeneration 
in the elderly. Additionally, it is unclear which levels 
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of circulatory molecules are necessary and sufficient 
for pro-regenerative activity to occur in old stem cells. 
However, plasma from young animals should have 
sufficient factors/molecules for all signaling pathways 
described above to rejuvenate all stem cell types. 
Another potential issue could be that most or many of 
the important signaling molecules associated with age 
phenotype determination may have short half-lives, and 
would therefore be easily replaced by molecules from 
the recipient’s body. 

An issue of greater concern is the stem cell niches, 
as the age of stem cells appears to be determined 
by the age of their niche or environment, rather than 
the age of the stem cell for many tissues, such that 
young local and/or systemic environments promoted 
effective regeneration of old stem cells[11]. Additionally, 
homeostasis of stem cell tissue maintenance and repair 
mechanisms would be regulated by the differentiated 
niches emanating signals, a feature that changes with 
age, such that niche cells also experience intrinsic aging, 
resulting in changed extrinsic influences on tissue stem 
cells. Considering these points, organismic rejuvenation 
must be performed by rejuvenating both stem cells 
and their niches. Most likely, rejuvenated niches could 
rejuvenate the stem cells already residing within them.

In that sense, plasma exchange, a replacement 
of plasma in an old body with plasma from a younger 
body, would be a potential means to rejuvenate old 
stem cells in vivo, although proper volumes and 
scheduling must be sufficient to allow cleansing of stem 
cell niches. The risks and costs of this process should 
also be weighed against potential benefits, as the 
effectiveness as well as safety issue of plasma exchange 
in rejuvenating stem cells has not yet been examined 

in humans. Thus, there remains a major hurdle to 
applying this technique in clinical settings.

Molecularly, activation of Notch/Delta and Wnt 
pathways, and inhibition of TGF-β and TNF-α are all 
restored to the aged muscle niche to rejuvenate muscle 
satellite stem cells[11], and down-modulation of mTOR 
rejuvenates hematopoietic stem cells[3]. Exposure to 
youthful circulation, especially CD45+ hematopoietic 
cells, modulates Wnt/β-catenin signaling to rejuvenate 
bone repair capacity[39]. Insulin/insulin-like growth factor 
1 (IGF-1) signaling molecules that have been linked 
to longevity in mammals include daf-2, InR and their 
homologues. Inactivation of these corresponding genes 
has been shown to increase the life span of nematodes, 
fruit flies and mice[40]. If it is possible to target these 
molecular pathways by synthetic agents or natural 
sources, stem cell rejuvenation will be more feasible 
than plasma exchange; indeed, some agonists or 
antagonists of specific signaling pathways have already 
been developed and approved by the United States Food 
and Drug Administration. For instance, with the synthetic 
agents, activation of Notch and MAPK by attenuation of 
JAK/STAT signaling rejuvenates myogenesis[21]; whereas, 
a TGF-β inhibitor simultaneously rejuvenates myogenesis 
and hippocampal neurogenesis[41,42]. Attenuation of 
mTOR with rapamycin could also be a multi-faceted anti-
aging strategy against senescence-associated cell cycle 
arrest to enhance tissue regeneration[43,44]. Attenuation 
of the IGF-1 pathway with metformin has shown life-
extending potential[39]. Varieties of natural products such 
as phytochemicals, flavonoids or other plant extracts 
have also shown anti-aging effects by targeting various 
pathways including NF-κB, mTOR, IGF-1 and PI3K/Akt 
pathways. For instance, the polyphenols resveratrol and 

Aging stem cells

Accumulation of
toxic metabolites

Inhibition of mTOR, p38
Activation of SIRT6

Activation of Delta/Notch, Wnt
Inhibition of IGF-1, JAK/STAT, PI3K/Akt

Chronic inflammation Interaction with niches

Inhibition of p16

Circulating factors

Activation of oxytocin, CCL11
Inhibition of progerin, GDF11?

Inhibition of NF-kB, TGF-b, TNF-a

Figure 1  Possible targets for rejuvenating strategy in aging stem cells. Which cell types (i.e., stem, progenitor, cycling and/or senescent) are capable of being 
rejuvenated and what modulation of signaling pathways can produce such cellular rejuvenation must be identified to make stem cell rejuvenation feasible. mTOR: 
Mammalian target of rapamycin; NF-κB: Nuclear factor-κB; TGF-β: Transforming growth factor-β; TNF-α: Tumor necrosis factor-α.
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curcumin and the flavonoid genistein could be potential 
therapeutic agents to target signaling pathways involved 
in aging. Curcumin targets NF-κB, STAT3, PI3K/Akt[45] 
and mTOR[46] signaling; whereas, resveratrol targets 
PI3K/Akt signaling by downregulating cyclin-dependent 
kinase 2, cyclin D1, proliferative cell nuclear antigen, 
and Akt-ERK signaling[47]. Effective inhibition of multiple 
pathways involved in the aging process, including NF-κB, 
mTOR, IGF-1 and PI3K/Akt, can possibly be achieved by 
appropriately combining these chemicals to rejuvenate 
stem cell populations.

Although all stem and progenitor cell populations 
(not to mention their niches) might not be rejuvenated, 
the rejuvenation of some cell populations including 
muscle satellite cells, bone marrow stromal cells and 
hematopoietic stem cells, will benefit the elderly popu
lation by increasing their quality of life. Eventually, it may 
also result in the prevention of aging by increasing the 
duration of youthful health.

CONCLUSION
The population of elderly individuals is dramatically 
increasing worldwide; thus, the importance of extending 
healthy life expectancy has been emphasized, especially 
in the rapidly aging societies of many developed 
countries. Aging affects multiple signaling pathways and 
their crosstalk, and changes the interaction between 
stem cells and their niches. As described, recent ad
vances in aging research have indicated the possibility of 
rejuvenation at cellular, tissue and organismic levels, and 
suggested that rejuvenation of tissue stem cells through 
modulation of specific pathways plays an important role 
in this phenomenon. 

 To make organismic rejuvenation effective, we 
must see which cell types (i.e., stem, progenitor, cycling 
and/or senescent) are capable of being rejuvenated 
and what modulation of signaling pathways can 
produce such cellular rejuvenation. Among multicellular 
organisms with reparable or regenerative tissues, 
aging entails another feature that causes a gain of 
function that allows cells to inappropriately proliferate 
and subsequently acquire phenotypes with increased 
ability to proliferate, migrate, colonize and survive in 
ectopic sites, as well as evade attacks by host immune 
surveillance systems. Thus, aging is one of the major 
drivers of malignant transformation. In contrast, in 
aging and cancer development processes, a stress 
response termed “cellular senescence” may be linked 
to multiple pathogeneses of both degenerative and 
hyperplastic diseases. In this regard, cellular senescence 
is generally considered to be a potent anti-carcinogenic 
program, and hyperplastic or neoplastic transformation 
possibly involves a series of events that bypass the 
senescence process[48]. 

Figure 1 illustrates the possible targets for rejuvena
ting strategy in aging stem cells. To make stem cell 
rejuvenation more feasible and achieve the prevention 

or delay of aging, a better understanding of aging 
in terms of molecular signaling networks for cellular 
communication involved in tissue homeostasis, main
tenance and repair mechanisms is still required. 
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Abstract
Cell therapy has the potential to improve healing of 
ischemic heart, repopulate injured myocardium and 
restore cardiac function. The tremendous hope and 
potential of stem cell therapy is well understood, yet 
recent trials involving cell therapy for cardiovascular 
diseases have yielded mixed results with inconsistent 
data thereby readdressing controversies and unresolved 
questions regarding stem cell efficacy for ischemic 
cardiac disease treatment. These controversies are 
believed to arise by the lack of uniformity of the 
clinical trial methodologies, uncertainty regarding the 
underlying reparative mechanisms of stem cells, ques
tions concerning the most appropriate cell population to 
use, the proper delivery method and timing in relation 
to the moment of infarction, as well as the poor stem 
cell survival and engraftment especially in a diseased 
microenvironment which is collectively acknowledged as 
a major hindrance to any form of cell therapy. Indeed, 
the microenvironment of the failing heart exhibits 
pathological hypoxic, oxidative and inflammatory 
stressors impairing the survival of transplanted cells. 
Therefore, in order to observe any significant therapeutic 
benefit there is a need to increase resilience of stem 
cells to death in the transplant microenvironment while 
preserving or better yet improving their reparative 
functionality. Although stem cell differentiation into 
cardiomyocytes has been observed in some instance, 
the prevailing reparative benefits are afforded through 
paracrine mechanisms that promote angiogenesis, 
cell survival, transdifferentiate host cells and modulate 
immune responses. Therefore, to maximize their repara
tive functionality, ex vivo  manipulation of stem cells 
through physical, genetic and pharmacological means 
have shown promise to enable cells to thrive in the post-
ischemic transplant microenvironment. In the present 
work, we will overview the current status of stem cell 
therapy for ischemic heart disease, discuss the most 
recurring cell populations employed, the mechanisms 
by which stem cells deliver a therapeutic benefit and 
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strategies that have been used to optimize and increase 
survival and functionality of stem cells including ex vivo 
preconditioning with drugs and a novel “pharmaco-
optimizer” as well as genetic modifications.

Key words: Stem cell; Regenerative medicine; Cellular 
cardiomyoplasty; Preconditioning; Myocardial infarction; 
Heart failure; Viability; Paracrine activity; Transplan
tation; Pharmaco-optimizer
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Core tip: Cell therapy has the potential to improve 
healing of the ischemic heart, to repopulate injured 
myocardium and restore cardiac function in ischemic 
and non-ischemic cardiomyopathy. However, one of the 
biggest impediments lessening clinical effectiveness 
of cell therapy is the poor viability, retention and 
functionality of transplanted cells. This review looks as 
various stem cell ex vivo preconditioning and reprogram
ming methods aimed at enhancing the therapeutic 
potential of stem cells for heart failure treatment.

Der Sarkissian S, Lévesque T, Noiseux N. Optimizing stem cells 
for cardiac repair: Current status and new frontiers in regenerative 
cardiology. World J Stem Cells 2017; 9(1): 9-25  Available from: 
URL: http://www.wjgnet.com/1948-0210/full/v9/i1/9.htm  DOI: 
http://dx.doi.org/10.4252/wjsc.v9.i1.9

STEM CELL THERAPY FOR ISCHEMIC 
HEART DISEASE
Considering the elevated morbidity and mortality of 
ischemic heart diseases, there is a pressing need to 
develop new therapeutic solutions to reduce ventricular 
remodeling, improve cardiac function and prevent 
development of heart failure (HF) following myo­
cardial infarction (MI). For many of the patients, heart 
transplantation is a last resort option and its use is 
limited due to the scarcity of available donors. Therefore, 
myocardial stem cell therapy or cellular cardiomyoplasty 
is an approach that aims at inducing neoangiogenesis 
and even generating new functional myocardium. Many 
preclinical studies have involved transplanting cells in the 
border region of the infarcted myocardium to improve 
vascular supply, increase or preserve cardiomyocytes 
and repair damaged ones, and based on many positive 
findings, cell therapy has long been proposed as a 
potential treatment for HF[1-3]. However, recent clinical 
trials have reported much less remarkable results with 
meta-analyses indicating a mean increase in ejection 
fraction (EF) of approximately 3% to < 6%, with 
better results in patients with low EF, or if cell infusion 
is delayed at least 5 d after MI[4-7]. Randomized trials 
have also shown that the composite end point of death, 
infarction, revascularization, is significantly decreased at 

12 mo, others have reported sustained benefits up to 
5 years with reduced death and infarct size, improved 
myocardial perfusion and global cardiac function, 
whereas some have not found any profound long-term 
clinical benefit thereby advocating for cautious optimism 
in regards to cell therapy[5,8-10].

Clearly evidence shows there is much room for 
improvement that can only be achieved through the 
fundamental understanding of the stem cell biology 
and mechanisms for the therapeutic benefit afforded 
by these cells. We now understand that only a small 
portion of cells are retained in the myocardium and 
that their paracrine activity will promote cardiac repair 
through production of anti-inflammatory, pro-survival 
and angiogenic factors[11]. Indeed studies have shown 
that injection of stem cell conditioned media rich in 
these factors improve cardiac repair in HF models[12]. 
These factors are able to attenuate tissue injury, 
inhibit fibrotic remodeling, stimulate recruitment of 
endogenous stem cells and reduce oxidative stress[13]. 
Therefore, cell therapy can be viewed as providing 
cellular units releasing paracrine mediators to promote 
a beneficial effect[14]. This is true of course only if the 
cells are retained long enough and remain viable in the 
transplant environment for this to occur.

STEM CELLS USED IN REGENERATIVE 

MEDICINE 
Stem cells possess the capacity for prolonged pro­
liferation, multilineage differentiation as well as trophic 
functions which enables tissue and organ repair[15-17]. 
Cell types used for cardiac repair include unfractionated 
bone marrow cells (BMCs) and mononuclear cells, 
mesenchymal stem cells (MSCs), hematopoietic stem 
cells (HSCs), endothelial progenitor cells (EPCs), skeletal 
myoblasts (SkMbs), cardiac progenitor cells (CPCs), fetal 
cardiomyocytes, and embryonic stem cells (ESCs)[18-20]. 
Each cell type has its advantages and disadvantages for 
cell therapy applications. Therapeutic injection of stem 
cells into a host requires accurate cell selection based 
on differentiation potential, relative ease of isolation, 
availability in large quantities, in vitro expansion[21,22]. 
These cells are isolated from various sources. For 
instance, SkMbs are isolated by skeletal muscle biopsies 
and expanded in vitro. EPCs have shown the greatest 
potential for angiogenesis[23], can be isolated from the 
blood. Resident cardiac stem cells or cardiospheres 
could be isolated from biopsies, clonally expanded in 
vitro and differentiated into cardiomyocytes[24]. Bone 
marrow contains a heterogeneous cell population 
that includes differentiated cells and stem cells, such 
as HSCs, MSCs and EPCs. Due to its relative ease of 
accessibility and processing, as well as its ability to 
transdifferentiate into myocardial or vascular cells, 
BMCs have been readily used in clinical trials. However, 
contradictory benefits have been reported mainly since 
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either unfractionated or sub-populations of BMCs with 
or without in vitro culture steps have been employed in 
various studies[25,26]. 

MSC 
MSCs are one of the best candidates for heart disease 
cell therapy due to their easy isolation, rapid expansion 
and safety[27]. MSCs retain their growth potential over 
several passages[28,29] and have the ability to differ­
entiate into osteoblasts, chondrocytes, myocytes, 
fibroblasts, adipocytes and other mesenchymal pheno­
types in vitro and in vivo[28,30-32]. In addition, MSCs 
are also immune-privileged because they express low 
levels of MHC II compared with MHC I[33]. They display 
immunosuppressive effects allowing successful allogenic 
transplantation. Many reports have shown improved 
recovery of ventricular function following MI with trans­
plantation of MSCs in animal models[34] as well as an 
improvement in cardiac function and infarct size in 
human trials[29,35-38]. 

The safety and feasibility of intra-coronary MSC 
infusion and intra-myocardial delivery during coronary 
bypass grafting in post-MI patients has been demon­
strated[33,39]. However, MSC-based therapy has the 
fatal limitation of poor viability of MSCs after cell 
transplantation[31]. Only approximately 5% of trans­
planted MSCs survive for 14 d in the infarcted porcine 
heart[40], whereas survival rate of human MSCs trans­
planted in an uninjured mouse heart is less than 
0.5% at 4 d[31]. Similar results were obtained from 
studies using different cell types. For instance, about 
7% of SkMb, 15% of smooth muscle cells, and 6% of 
unfractionated BMCs survived at 3 d to 1 wk in infarcted 
animal hearts[41-43]. Consequently, cell viability is likely a 
common barrier for any cell therapy approach for MI.

HEMATOPOIETIC AND ENDOTHELIAL 
PRECURSOR STEM CELLS
HSCs count for perhaps as few as 1:10000 bone-
marrow cells and are known for their positivity for the 
CD34 cell surface marker. EPCs also residing in the bone 
marrow, have originally been defined by their expression 
of the CD133, CD34, and the vascular endothelial 
growth factor receptor-2 (VEGFR-2) markers. CD133 or 
prominin-1 is a highly conserved stem cell glycoprotein 
antigen described as marker for identification of early 
immature EPCs[44]. CD133+ cells migrate upon gradients 
of vascular endothelial growth factor (VEGF) and 
stromal-derived factor (SDF) in vitro and in vivo[45-47]. 
CD133+ cells in vitro differentiate into endothelial cells 
and release paracrine angiogenic cytokines. Differ­
entiated CD133+ are capable of inducing capillary 
tubes in vitro[46,48-51] and several clinical trials have 
reported promising effects following infusion or direct 
intramyocardial injection of autologous CD133+ cells into 

ischemic hearts[52-56]. 

TRANSPLANT CELL DEATH IN THE 
INFARCTED HEART
One of the prime challenges of stem cell therapy consists 
in the survival, retention and differentiation of cells 
delivered in the harsh microenvironment of diseased 
tissues or organs[31,57-59]. Poor retention and survival 
of transplanted cells in the heart which can decrease 
to 39% at 1 h following injection as seen in human 
studies[60-64] or reach at most 21% in animal models 
following intramyocardial injection[65,66], further decrease 
exponentially thereafter due to apoptosis[31,57,67,68]. The 
increased cell death is swayed by various inflammatory 
response mediators, mechanical injury, hypoxia and 
ischemia-reperfusion stressors, and influenced as well 
by the donor cell source and quality[69]. Indeed, the 
cause of death of implanted cells may begin during the 
preparation step where MSCs for example, which are 
normally grown attached, are prepared in suspension 
in order to be injected. The loss of matrix attachments 
causes programmed cell death called “anoikis”[69-73]. 
Adhesion of cells to the matrix predominantly via integ­
rin molecules represses apoptotic signaling, whereas 
detachment has the opposite effect. This effect is com­
pounded by the hostile microenvironment of diseased 
myocardium which includes deprivation of nutrients 
and oxygen, upregulation of inflammatory mediators 
and low pH leading to poor transplant survival[70,74,75]. 
Moreover, myocardial injury generates an inflammatory 
response involving neutrophils and macrophages[76] 
which themselves produce inflammatory cytokines and 
reactive oxygen species (ROS) that may intensify the 
inflammatory response and anoikis signals and lead to 
cell death as well[77-79]. Indeed, co-injection of SkMbs 
with the ROS scavenger superoxide dismutase (CuZn-
SOD) increases graft survival[43]. 

MECHANISMS OF INFARCT REPAIR BY 
STEM CELLS: PARACRINE MODULATION 
OF ISCHEMIC ENVIRONMENT
Several studies have shown that recruitment of endo­
genous stem cells or their delivery to injury sites 
results in structural regeneration and functional impro­
vement[80]. While the original thesis regarding the 
beneficial mechanism pointed to stem cells and their 
differentiation within the host myocardium, we now 
understand that few if no exogenously administered 
cells engraft and differentiate[81-84]. It is rather the 
paracrine biomolecules produced by stem cells which 
account for the bulk of observed functional repair 
and these molecules also reduce cell death in cardio­
myocytes and other populations thereby benefiting 
the diseased host tissue[85-89]. Stem cells secrete an 
array of cytokines, growth factors and extracellular 
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matrix (ECM) components that act in an autocrine or 
paracrine manner. Cytokines are signaling and immune-
modulating agents involved in cellular communication, 
whereas chemokines also produced by stem cells are 
involved in chemotaxis, while growth factors stimulate 
cell growth, proliferation and differentiation. Moreover, 
antioxidants, anti-apoptotic, anti-inflammatory or im­
munosuppressive molecules also secreted by stem 
cells can protect the cellular niche and transplant micro­
environment from damaging mediators such as ROS. 
Finally, angiogenic and antifibrotic factors secreted by 
stem cells are responsible for tissue repair. In view of the 
numerous bioactive molecules produced and secreted 
by stem cells, current research using transcriptomic 
and proteomic technologies is poised at identifying the 
precise beneficial mediators and developing ways to 
harness these powerful pathways and mechanisms of 
repair[80,90-94]. 

The cardioprotective panel of stem cell secreted 
factors include bFGF/FGF-2, IL-1β, IL-10, PDGF, VEGF, 
HGF, IGF-1, SDF-1, thymosin-β4, Wnt5a, Ang-1 and 
Ang-2, MIP-1, EPO and PDGF[21,85-89,95]. FGF-2 reduces 
ischemia-induced myocardial apoptosis, cell death and 
arrhythmias, and stimulates increased expression of anti-
apoptotic Bcl-2[96,97]. HGF, bFGF, Ang-1 and -2, and VEGF 
secreted by BMMSCs lead to augmented vascular density 
and blood flow in the ischemic heart[91,98,99], whereas 
SDF-1, IGF-1, HGF facilitate circulating progenitor cell 
recruitment to injury sites thereby promoting repair 
and regeneration[100-103]. Stem cells also secrete ECM 
components including collagens, TGF-β, matrix metallo­
proteinases (MMPs) and tissue-derived inhibitors (TIMPs) 
that inhibit fibrosis[104-106] and may thereby benefit 
cardiac tissue remodeling post-MI. 

STRATEGIES TO ENHANCE STEM CELL 
SURVIVAL 
It is clear that the injected stem cells must survive and 
thrive in the injured or diseased transplant environ­
ment for any significant repair to occur. Acute cardiac 
ischemia results in a hypoxic and inflammatory 
microenvironment which makes it extremely difficult 
for the injured area to be functionally repaired[107-109]. 
Consequently the injected cells will need to be tolerant 
of these deleterious conditions[110-113]. For this, ex 
vivo manipulation of cells has been used to overcome 
cell survival issues as well as to enhance metabolic 
characteristics in order to confer cells with a powerful 
advantage in the critical early days after transplantation. 
Preconditioning, or pre-treating and reprograming cells 
by physical/environmental, pharmacological, genetic 
manipulations or with cytokine and growth factor 
treatments has shown great potential to prime cells to 
withstand the rigors of the transplant microenvironment 
post-ischemia and maximize the cells’ biological and 
functional properties. In addition, there are strategies 
to modify the transplant environment through immune 

modulation and even by increasing cell retention with 
bio-scaffolds. 

PRECONDITIONING STEM CELLS 
USING PHYSICAL/ENVIRONMENTAL 
CHALLENGES 
Beneficial effect of preconditioning was first demon­
strated by treating healthy heart with intermittent 
cycles of non-lethal ischemia followed by reperfusion. 
This manipulation protected the myocardium from 
a subsequent important ischemic episode[114]. Subse­
quently, various strategies including hypoxic, oxidative 
and thermal conditioning challenges have been studied 
in an attempt to improve stem cell survival[115-118]. Low 
oxygen culture conditions (0.5% O2 for 24 h) have been 
shown to trigger survival pathways in MSCs before their 
engraftment in vivo[119]. MSCs exposed to hypoxia in 
vitro showed upregulation of Bcl-2 and Bcl-XL survival 
genes, promoting reduced infarct size and enhanced 
cardiac function[119]. Hypoxia preconditioning also 
increases in vitro expression of antiapoptotic genes such 
as Akt and eNOS[81,88,116]. Hypoxia treated cells show 
significantly improved survival post-engraftment in the 
infarcted heart[119]. Also, during ischemic preconditioning, 
hypoxia inducible factor-1α (HIF-1α), a master regu­
lator of genes responsible for low oxygen survival 
signaling[119-121], stimulates the transcription of VEGF and 
erythrogenin that increase cellular oxygen availability 
by promoting angiogenesis and erythropoiesis[122,123]. 
In addition to VEGF, temporary exposure to hypoxia 
increases expression of many growth factors including 
bFGF, HGF, IGF-1, and thymosin-β4[124,125] which are 
implicated in cell mobilisation and apoptosis. 

In addition to promoting pro-survival and cytopro­
tective effects, hypoxic preconditioning supports 
cells to preserve their stemness and promote their 
differentiation and proliferation potential post-engraft­
ment[116,126-129]. Furthermore, BMMSCs exposed to anoxic 
conditions and transplanted into infarcted myocardium 
have been shown to exert increased protective effects 
on cardiomyocytes[130]. Thus, hypoxic treatment may 
lead to enhanced donor and host cell survival in ischemic 
environments and provide functional benefits.

Burst exposure to low levels of oxidative stress 
in vitro also increases stem cell viability as seen for 
example by the exposure of CPCs in vitro to low con­
centration of H2O2 prior to implantation in ischemic rat 
hearts[131]. Similarly, NPCs exposed to non-cytotoxic 
low dose treatment of H2O2 demonstrated improved 
resistance to lethal oxidative stress[132], and MSCs 
preconditioned with H2O2 and transplanted in the 
ischemic heart display increased viability and functional 
improvement[133]. 

Heat shock treatment is also an interesting appro­
ach to enhance cell survival. Heat shock protein (HSP) 
generation can be achieved by exposing cells to ele­
vated temperatures (39 ℃ to 45 ℃). Thermal shock 
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of primary cardiomyocytes has been shown to result 
in increased expression of HSP70 thereby protecting 
the cells from in vitro and in vivo oxidant stress[134,135]. 
Transplantation of human ESC-derived cardiomyocytes 
treated by 30 to 60 min of 43 ℃ heat upregulates 
HSPs such as HSP60, 70, and 90 has been shown 
to improve graft functionality in a rat model of MI 
injury[136,137]. Exposing MSCs to elevated temperature 
(43 ℃) also induces secretion of HSPs, including HSP27 
and HSP70[138] which may contribute to increased cell 
survival. Similarly, culture of CPCs at 42 ℃ has been 
shown to reduce apoptosis, increase functionality, and 
reduce fibrosis of mouse ischemic myocardium[139]. 
Considering the role of HSPs in cell protection and 
immune modulation, thermal conditioning represents 
an easy and effective means of increasing cell viability, 
retention and consequently improving stem cell graft 
function.

PRECONDITIONING STEM CELLS WITH 
DRUGS
The effectiveness of preconditioning on cell viability 
and function can also be achieved by pharmacological 
treatments[118]. Other than the initiation of survival 
signaling, treating cells with conditioning mimetics 
causes release of growth factors and cytokines that exert 
protective and angiomyogenic effects. Preconditioned 
cells show greater release of growth factors including 
VEGF, Ang-1, SDF-1α, HGF, and IGF[118]. Several drugs 
including mitochondrial potassium channel openers that 
promote influx of K+ through ATP-sensitive K+ channels 
(mitoKATP) are useful agents altering the apoptotic 
cascade by preventing cytochrome c release[140-143]. 
Pinacidil or Diazoxide, well-known non-selective mito­
KATP channel openers have been demonstrated to 
suppress apoptosis[144-146]. SkMbs and BMMSCs treated 
with Diazoxide demonstrated increased cell survival 
in ischemic environment, and increased secretion of 
Ang-1, bFGF, HGF and VEGF by preconditioning was 
proposed to augment angiomyogenesis[146,147]. 

HMG CoA reductase inhibitors (Statins) appear 
promising in blocking apoptosis, prolonging stem cell 
survival and improving organ repair. Treatment with 
atorvastatin for example enhances cell survival and 
differentiation into cardiomyocytes, decreases the 
infarcted area, promotes angiogenesis, and reverses 
the ventricular remodeling processes[148]. Also, ex 
vivo statin treatment has been shown to prevent 
impairment of the functionality of EPCs in vitro as well 
as the loss of telomere repeat-binding factor 2, whose 
expression is reduced in end-stage human HF, and 
functions to prevent cells from entering in apoptosis or 
senescence[149,150]. A recent review provides encouraging 
basis for the use of statins to increase the number and/
or function of MSCs and EPCs for cell therapy[151].

Preconditioning cells with naturally occurring 
hormones such as Oxytocin (OT) or its synthetic analog 

drug (Pitocin) is another means for stem cell optimi­
zation. Indeed, OT preconditioning of various cell types 
makes them resistant to oxidative stress[152], and 
primes stem cell differentiation into cardiomyocytes[153] 
and vascular cells[154]. MSC express a functional OT 
receptor which mediates glucose uptake[155] and cell 
differentiation[156] it has been shown that OT modulates 
gene expression for adhesion molecules and MMPs 
involved in cellular migration[154,157,158]. Our group 
showed that OT treated MSC respond with rapid 
calcium mobilization and upregulation of the protective 
pAkt and pErk1/2 proteins. Functional analyses 
revealed the involvement of these kinase pathways 
in cell proliferation, migration, and protection against 
apoptotic effects of hypoxia and serum starvation. OT 
preconditioning increased upregulation of genes with 
angiogenic, anti-apoptotic and cardiac anti-remodeling 
properties such as HSP27, HSP32, HSP70, VEGF, 
thrombospondin, TIMPs and MMPs, and co-culture of 
cardiomyocytes with OT-preconditioned MSC reduced 
apoptosis[159].

Various other classes of drugs and chemicals have 
also shown potential for use as stem cell ex vivo 
conditioning agents. Treatment of BMMSCs with trime­
tazidine (1-[2,3,4-trimethoxybenzyl] piperazine), an 
anti-ischemic drug for angina treatment has been 
shown to increase cell viability in response to oxida­
tive stress[160]. Also, treatment of rat BMMSCs with 
β-mercaptoethanol was shown to upregulate HSP72 
resulting in improved resistance to oxidative injury[161] 
Also, the pan caspase inhibitor ZVAD-fmk has been 
shown to increase engraftment of HSC during intra-
bone marrow transplantation procedure in allogeneic 
mice[162]. This said, one has to be mindful of the 
balance between enhancing stem cell survival and 
enabling unintended carcinogenic effects when selecting 
compounds in the development of stem cell conditioning 
agents.

Finally, a means to favor stem cell differentiation 
would constitute an interesting pharmacological condi­
tioning method for improving graft function. Small 
molecules such as 5-Azacytidine, a DNA demethylating 
agent[32], have been shown to prime cardiac differ­
entiation in MSCs. Other molecules including the HSP90 
inhibitor Geldanamycin[163], the kinase inhibitor Imatinib 
Mesylate[164] and the proteasome inhibitor Bortezomid[165] 
have been shown to instruct stem cell commitment to 
various lineages. 

A NOVEL STEM CELL 
PHARMACO-OPTIMIZER
Stem cell “pharmaco-optimization” as we term it, is the 
process of contacting stem cells ex vivo with drugs in 
order to enhance their innate therapeutic qualities and 
develop a desirable phenotypic profile with enhanced 
cellular functions and viability favored in the context of 
stem cell therapy.
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Celastrol is an antioxidant molecule extracted from 
the root of a vine (Tripterygium wilfordii) which has 
showed beneficial effects in the treatment of various 
diseases including cancer, neurodegenerative disea­
ses, autoimmune diseases, and inflammatory condi­
tions[166-171]. We are the first to report Celastrol’s efficacy 
as a potent infarct sparing agent[172] and we propose 
its use as a stem cell pharmaco-optimizer  considering 
in part Celastrol’s targeting and activation of two very 
potent cellular defence mechanisms: The heat shock 
response (HSR) and the antioxidant response (AR). 
HSR leads to cell protection against various physiological 
stresses[173,174] via activation of HSP. HSR is regulated at 
the transcriptional level by the activation of heat shock 
factors with heat shock factor 1 (HSF1) being the master 
switch for HSP expression[174]. The AR is mediated 
by the transcription factor nuclear factor (erythroid-
derived 2)-like 2 (NRF2). NRF2 is a key controller 
of the redox homeostatic gene regulatory network 
including antioxidant proteins and phase II enzymes 
such as glutathione S-transferase, heme oxygenase 1 
(HO1), NADPH-quinone oxidoreductase 1, superoxide 
dismutase 1-3 (SOD1-3), catalase (CAT), thioredoxin, 
glutathione peroxidase (GPx), and non-enzymatic 
antioxidants such as glutathione which exert protective, 
antioxidant, and anti-inflammatory effects[173-176]. Under 
homeostatic conditions, HSF1 is bound and silenced by 
its natural repressor HSP90 chaperone, and NRF2 is 
similarly repressed by KEAP1 (Kelch-like ECH-associated 
protein1). During oxidative and electrophilic stress (ROS 
increase), NRF2 is liberated from KEAP1 and binds to 
antioxidant response elements in the promoter region 
of genes including HO-1. Similarly, during cellular stress, 
HSF1 translocates to the nucleus where it binds to heat 
shock elements as a phosphorylated-trimer and drives 
the transcriptional activity of HSPs[177].

Briefly, Celastrol targets the interaction between 
HSP90 and its essential cofactors (i.e., Cdc37)[178], and 
through HSP90 functional inhibition, Celastrol promotes 
HSF1 release and HSR activation. Similarly, through 
a ROS/KEAP1/NRF2 pathway Celastrol activates the 
AR[179]. Together, Celastrol activates the two evolutionary 
conserved cellular protective mechanisms as detailed 
above and is able to stimulate a powerful endogenous 
protective effect that could be harnessed to increase 
viability and therapeutic efficiency of stem cells.

PRECONDITIONING STEM CELLS WITH 
GROWTH FACTORS AND CYTOKINES
Pre-treating stem cells with growth factor (GF) is a 
simple and safe strategy to improve cellular survival, 
proliferation and differentiation. For example, precon­
ditioning EPCs by culturing them in medium supple­
mented with VEGF, activates Akt and significantly 
reduces apoptosis in a dose-dependent manner[180]. 
Also, by exploiting the SDF-1/CXCR4 ligand/receptor 
interaction which modulates cell growth, proliferation, 

survival, migration and transcriptional activation[21,181-184], 
SDF-1 can be used as a preconditioning chemokine[185]. 
Indeed, treatment with recombinant SDF-1 enhanced 
vascular density and survival of cells under anoxic 
condition in vitro and following engraftment in the 
infarcted heart[185]. Also, it has been shown that IGF-1 
preconditioning of bone marrow-derived Sca-1+ cells 
upregulates connexin 43 which improves survival and 
integration of cells with host myocytes[186]. The anti-
apoptotic effects of IGF-1 are mediated by IGF-1/IGF-
1R ligand/receptor interaction which involves PI3K/Akt 
and MAPK/Erk1/2 activation, whereas knockdown of 
connexin 43 rescinds cell viability to hypoxia in vitro and 
in vivo in the infarcted heart.

An additional strategy may consist of preconditioning 
cells with anti-inflammatory cytokines such as 
interleukin-10 (IL-10) which promotes multiple effects 
including down-regulation of Th1 cytokines such as 
IL-2, IFN-γ, TNF-α, and increase expression of the 
cell survival gene Bcl-2 thereby increasing stem cell 
survival[187]. It also has been demonstrated in vitro and 
in vivo that in the presence of IFN-γ, MSCs suppress 
T-cells and graft vs host disease[188-190]. 

EX VIVO GENETIC OPTIMIZATION OF 
STEM CELLS
Survival, differentiation and angiogenesis as targets
Stem cells are excellent vehicles for therapeutic gene 
delivery and can be genetically engineered for gene 
overexpression. Transgenes can encode for a myriad 
of beneficial factors including angiogenic and chemoat­
tractant factors, anti-apoptotic proteins and growth 
factor(s) of interest[181,191-193] and serve as a continuous 
source for these to mediate sustained intracrine, 
autocrine, and paracrine effects. Indeed, molecules 
secreted by transgene-modified MSCs may have different 
therapeutic profiles compared with normal MSCs. For 
example, transformation of stem cells to overexpress 
IGF-1 promotes donor cell survival, engraftment, and 
differentiation in cardiac cell therapy[194-196]. IGF-1 
induces expression of the pro-survival genes PI3-kinase, 
Akt, Bcl-xL and SDF-1 which is a potent chemoattractant 
of stem cells. Indeed, IGF-1 transformed MSC improve 
EF and fractional shortening in an infarct model[197]. Cells 
have also been manipulated to overexpress Ang-1, HGF, 
VEGF and MyoD for post-MI myocardial repair. Results 
show increased cell engraftment, angiogenesis and 
commitment to the myogenic lineage in the ischemic 
region[100,198-205]. Indeed, any therapeutic approach 
aimed at increasing vascularization within the ischaemic 
heart tissue will improve functional repair and recovery 
of the infarcted myocardium. One of the key proteins is 
VEGF whose overexpression will promote a strong pro-
angiogenic signal. VEGF has been shown to promote 
endothelial cell survival[206,207], and myocardial transfer 
of VEGF-transfected MSCs lead to better improvement 
of myocardial perfusion and heart function following 
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ischemia[192,208]. Studies evaluating other angiogenic 
and myogenic genes with various VEGF isoforms, 
PDGF and TGF-β1, have also suggested enhancement 
of cell therapy efficacy[209]. VEGF is itself regulated by 
the transcription factor HIF-1α which plays a critical 
role in the stabilization of VEGF transcription during 
hypoxia[210,211]. Therefore, HIF-1α overexpression has 
also been evaluated as an means to optimize BMMSCs 
for increased VEGF expression[212]. 

Stem and progenitor cells have also been engi­
neered to survive and engraft more effectively in hostile 
environments[213,214]. Transfection of MSCs with growth 
factors such as bFGF shows increased survival in hypoxic 
conditions. These transformed cells also improve neovas­
cularization compared to non-transformed MSCs[215]. 
Interestingly, Akt-modified BMMSCs exhibit resilience to 
apoptosis through secretion of growth factors such as 
bFGF, HGF, IGF-1 and VEGF, as well as secreted frizzled-
related protein 2 (Sfrp2) which exerts a beneficial effect 
on the infarcted heart post-engraftment by antagonizing 
pro-apoptotic properties of Wnt3a. Together, secretion 
of these factors known to exert pro-angiogenetic, 
cardioprotective and inotropic actions[125] is increased 
under hypoxic conditions[81,125,216]. Transplantation of 
Akt-modified BMMSCs in the infarcted myocardium 
safeguards surviving myocardium for up to 2 wk post-
MI at least in part through paracrine actions[217]. In 
another study, MSCs overexpressing Akt with Ang-1 
provide long-term therapeutic benefits for preventing 
apoptosis in an ischemic heart up to three months after 
initial transplantation[218]. This said, it is interesting to 
note that medium from BMMSCs overexpressing Akt 
cultured under hypoxic conditions show an increase 
of many beneficial molecules including VEGF, FGF-2, 
HGF, IGF-1, and TB4, and trigger an increase in 
contractile response of cultured rat cardiomyocytes as 
well as improves ventricular function in a rat infarction 
model[125]. In addition to Akt overexpression, BMMSCs 
have been engineered with anti-apoptotic genes such 
as Bcl-2 and HO-1. Bcl-2 overexpression in BMMSC 
decrease apoptosis of BMMSCs and increases VEGF 
secretion and capillary density in the infarct border 
zone thereby increasing functional recovery in ischemic 
myocardium[124]. HO-1 exerts potent antioxidant and 
cytoprotective activity in the ischemic environment[219,220]. 
HO-1 transfected MSCs are resistant to apoptosis and 
inflammatory injury and display improved tolerance 
to ischemia-reoxygenation injury harsh transplant 
microenvironments[221]. Another opportunity to enhance 
transplanted cell survival in the damaged heart is to 
transfect them with recombinant HSPs, that represents 
a family of inducible and constitutively expressed 
proteins responsible for potent increase in cell tolerance 
to environmental stress including ischemia, hypoxia, 
oxidative injury, heat stress, and ischemia-reperfusion 
injury[222]. Indeed, cells transfected with HSP encoding 
genes, namely HSP70, are protected from ischemic 
injury in vitro and in vivo[223-226].

In order to procure a holistic coverage of survival 
and growth effects, combination treatment of stem 
and progenitor cells can be achieved prior to their 
transplantation. As mentioned, combined overexpression 
of Akt and Ang-1 has been attempted in MSC. Ang-1, 
a potent modulator of vascular development activates 
survival signaling[227-229], and co-expression with Akt 
was shown to be more effective for cytoprotection in 
the context of lethal anoxia[230]. Simultaneous over­
expression of Akt and Ang-1 in MSC transplanted in 
infarcted rat heart conferred better engraftment, and 
cells were able to adopt myogenic and endothelial 
phenotypes. Combination treatments may also be more 
ambitious by including various components such as a 
collagen matrix (matrigel) to increase retention and 
prevent anoikis, Bcl-xL and Cyclosporine A to block 
mitochondrial death pathways, an inducer of mitoKATP 
channel opening such as Pinacidil or Diazoxide to mimic 
ischemic conditioning, a caspase inhibitor such as zVAD-
fmk and IGF-1 to activate Akt pathways as previously 
described[136]. 

Adhesion as a target
Adhesion is necessary for cell survival and is a key 
factor for MSC differentiation. Disruption of cell-ECM 
contact with trypsinization may facilitate apoptosis once 
cells are transplanted. Therefore, over-expression of 
adhesion molecules may enhance cell retention and 
improve viability. For example, tissue transglutaminase 
(tTG) over-expression in MSC leads to increased survival 
via an integrin-dependent mechanism[231]. tTG also acts 
as a coreceptor for fibronectin (Fn)[232,233] and enhances 
adhesion by bridging integrins and Fn or by mediating 
formation of ternary complexes[234]. Compared to simple 
MSC transplantation, tTG transformed MSCs have been 
shown to better restore cardiac function of infarcted 
myocardium[231]. Also, transfection of the integrin-linked 
kinase (ILK), a 59-kDa Ser/Thr kinase that binds to the 
cytoplasmic domain of b-integrin and participates in cell 
adhesion, growth, and ECM assembly, activates Erk and 
Akt phosphorylation which play important roles in cell 
survival during hypoxia[77,235-238]. Transplantation of ILK-
MSCs has been shown to further reduce infarct size, 
improve left ventricle function and increase microvessel 
density[239]. 

Stem cell rejuvenation as a target
Increasing evidence supports the concept of senescence 
affecting tissue resident stem cells and diminishing 
regenerative capacity of organs[240-242]. Cellular sene­
scence is induced by multitude of stressors including 
hypoxia and oxidative conditions[243-245] which reduces 
the cell’s proliferative, differentiation and metabolic 
potential, and upregulates apoptotic markers[246-255]. 
At the genomic level, aging appears associated 
with increase in p53-associated genes in addition to 
modulation of telomere, mitochondrial and apoptotic 
process[255,256]. These age related changes limit the 
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ability of stem cells to secrete angiogenic factors thereby 
reducing their regenerative potential. It has been 
shown that MSCs from old patients are less effective in 
preventing ventricular remodelling and inducing new 
vessel formation post-MI[248]. Old donors exhibit reduced 
tolerance to ischemia and decreased transplant survival 
within ischemic muscle[251]. Similarly, older recipients 
have a diminished therapeutic response to receiving 
stem cells from donors of any age[251,254]. To overcome 
these effects related to cellular senescence, many 
strategies are being developed as recently reviewed[257]. 
In this regard, modifications to improve regenerative 
capacity have been sought[30,81,258,259] and include genetic 
modification of human CPCs with Pim-1, a pro-survival 
downstream effector of cytokine signalling pathways[260] 
including Akt[261], in order to improve cellular metabolic 
activity[262]. The WNT/β-catenin pathway has also been 
studied as a potential target for MSC rejuvenation[263]. 
While increasing age is associated with reduced MSC 
proliferation, differentiation capacity and WNT/β-catenin 
signalling, lithium treatment which increases β-catenin 
bioavailability restores the impaired function of these 
cells[257].

CONCLUSION 
The use of stem cells to regenerate heart muscle has 
revolutionized the clinical practice for ischemic heart 
disease treatment. While safety and feasibility of 
cell therapy has been demonstrated in experimental 
and clinical studies, and the technology is making its 
way from bench to bedside, in order to reap the full 
regenerative potential afforded by stem cells, there is 
a necessity to develop the tools and the understanding 
required to ameliorate clinical efficacy. Most importantly, 
in order to harness the full therapeutic potential of 
these cells for cell therapy or any regenerative medicine 
application, optimization of cell viability, retention and 
functionality are of utmost importance. As summarized 
here, many groups are currently investigating various 
avenues of stem cell optimization. These methods 
include cell preconditioning using environmental stres­
sors, genetic manipulations to enhance survival path­
ways, increase angiogenesis and cell adhesion, as 
well as preconditioning methodologies involving ex 
vivo stimulation of stem cells with growth hormones, 
cytokines and pharmacological agents such as statins 
and conditioning mimetics. The latter pharmacological 
method may be one of the safest, quickest, most 
reproducible, reliable and readily transferable method to 
the clinic used for producing optimized cell populations 
for patients. It is also foreseeable that in order to further 
enhance the therapeutic quality of these cells, multiple 
cellular pathways and effectors may be targeted, 
drug cocktails may be developed, or even conditioned 
cells may be combined with hydrogel technologies to 
encapsulate cells in a favorable environment to further 
promote retention, limit anoikis and facilitate cell-cell 

and cell-matrix interactions. All of these upcoming 
advances in stem cell optimization will greatly benefit 
patients and the promising field of regenerative 
medicine in the coming years.
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