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Abstract

Tumors consist of a mixture of heterogeneous cell types.
Cancer stem cells (CSCs) are a minor sub-population
within the bulk cancer fraction which has been found
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to reconstitute and propagate the disease and to be
frequently resistant to chemotherapy, irradiation, cytotoxic
drugs and probably also against immune attack. CSCs are
considered as the seeds of tumor recurrence, driving force
of tumorigenesis and metastases. This underlines the
urgent need for innovative methods to identify and target
CSCs. However, the role and existence of CSCs in therapy
resistance and cancer recurrence remains a topic of
intense debate. The underlying biological properties of the
tumor stem cells are extremely dependent on numerous
signals, and the targeted inhibition of these stem cell
signaling pathways is one of the promising approaches of
the new antitumor therapy approaches. This perspective
review article summarizes the novel methods of tracing
CSCs and discusses the hallmarks of CSC identification
influenced by the microenvironment or by having imperfect
detection markers. In addition, explains the known
molecular mechanisms of therapy resistance in CSCs as
reliable and clinically predictive markers that could enable
the use of new targeted antitumor therapy in the sense of
personalized medicine.

Key words: Cancer stem cells; Cancer recurrence;
Cancer therapy; Combination therapy; Chemotherapy;
Radiation therapy; Immunotherapy

© The Author(s) 2017. Published by Baishideng Publishing
Group Inc. All rights reserved.

Core tip: Cancer stem cells (CSCs) are small subpopulation
of the tumor that can survive from conventional treatment,
scape from the immune system and can cause recurrence
of cancer disease. Therefore, any attempt in detection
and selective therapeutic targeting of CSCs will ultimately
lead to better cancer treatments and can play an im-
portant role in reducing the cancer related mortalities.
This review highlights the trends and approaches in CSC
tracing, isolating, characterizing and targeting, which are
key strategies for a novel personalized molecular cancer
therapy.
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INTRODUCTION

Cancer originates from deregulation of growth and
resistance to apoptosis of transformed cells that acquire
proliferative and metastatic capacity. While only a
few genetic and epigenetic alterations can initiate the
malignant transformation of healthy cells, clinically
visible tumors are extraordinarily complex structures
with cancer cells displaying a large number of mutations
and altered gene expression!"). The hierarchical model of
tumor organization represents a similar, albeit distorted,
arrangement of the tumor cells, as are their tissues of
origin. The stem cell population is positioned at the top
of the cell hierarchy and has the ability to self-renew and
multilineage differentiate to progenitors or differentiated
cell types whose proliferation capacity is restricted™?,

The theory of the cancer stem cell (CSC) was pos-
tulated in the 1970s and was confirmed experimentally
by the isolation of tumor-initiating cells using cellular/
molecular biomarkers that allowed the isolation of CSCs
in acute myeloid leukemia!®. Further, CSC has been
demonstrated in a variety of solid tumors such as tumors
in brain, colorectal, head and neck, liver, lung, mammary
glands, pancreatic prostate carcinomas, melanoma and
hematopoietic malignancies (e.g., myeloid or lymphoid
leukemia)™”. Cell lines derived from these tumors also
contain CSCs and tumor precursor cells, which represent
a promising model for cancer stem cell research!’!, The
functional characterization of CSCs revealed that these
cells represent a small subpopulation of the tumor that
can survive from conventional treatment, scape from
the immune system and therefore can cause recurrence
of cancer disease. Therefore, CSCs are driving force of
tumorigenesis and metastases (Figure 1). According to
the concept of a stem cell, it is assumed that even a few
surviving CSCs after tumor therapy, is sufficient to form a
new tumor®®.

In each cancer cell clone, which is characterized by
harboring different combinations of mutations or genetic
alterations, the processes of self-renewal, and differentiation
occur differently based on the type of genetic lesions.
Nevertheless, significant similarities between normal and
tumorigenic, experimentally identified stem cells could be
expected. Both stem cell types (normal or cancerous) are
rarely active, dependent on a specific microenvironment
(so-called “stem cell-niche”) and have a number of self-
protection mechanisms'®. This niche enables a dynamic
interaction between stem cells and surrounding cells
including immune cells (“immune-niche”), cytokines and
chemokines that regulates maintenance, quiescence, self-
renewal and differentiation of stem cells to provide an
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optimal stem cell-supporting setting. What contributes to
formation of the niche for tumor stem cells is the subject
of intensive research™. Normal stem cells are more
microenvironment dependent in order to get dynamic
input to balance between activation and differentiation
or self-renewal and quiescence “extrinsic factors™ %,
Although CSCs can represent more autonomous regulatory
characterization “intrinsic factors”, similar concept of
stem cell niche support could also hold for them™. The
majority of studies using the isolated CSCs, shows the
dominant effect of intrinsic factors on CSC regulation.
While, other studies propose a role for the CSC niche™?.
This model suggests that less malignant tumors may have
more demand on the stem cell-niche but upon cancer
progress this dynamic interplay might be weaken or even
diminished™*.

An inductor of the stem cell phenotype is hypoxiat>*",
The self-protection mechanisms are due to the expression
of numerous proteins, which reduce the effects of
genotoxic xenobiotics. These include the members of
efflux pumps, such as ABCB1-MDR1, ABCC1-MRP1 and
ABCG2-BCRP, other specific detoxification systems, such
as aldehyde dehydrogenase and increased DNA repair
capacity. The symmetric cell division and asymmetric
distribution of the DNA can also be regarded as part of
stem cell self-protection mechanisms™. For the tumor
stem cells, the existence of the same mechanisms is a
crucial cause of their therapeutic resistance.

In addition to hypoxia as a triggering factor, growth
factors play an important role, leading to epithelial-
mesenchymal transition (EMT) in cells. It is shown a
high-level regulation of stem cell markers after the
induction of EMT in normal epithelial cells of the breast
gland tissue and in mammary carcinoma cells'*®!, One
of the EMT effects can be the induction of the stem cell
phenotype!*®.

Numerous findings could show that routine tumor
therapy approaches (classical chemotherapy or radiation
therapy) and even the majority of currently used targ-
eted antitumor drugs, so-called biological therapy, have
little effect on the tumor stem cells even in chemo- or
radio-sensitive tumors™®., While, the stationary tumor
stem cells largely retain their epithelial character and are
therefore responsible for the primary tumor growth or
recurrence, the migrating tumor stem cells exhibit ability
for invasion and distance metastasis. This highlights the
above-mentioned plasticity of the tumor stem cells (Figure
1).

THERAPY RESISTANCE IN CSCs

A small number of immortal cells within the bulk tumor
with a character of CSC causes the chemo/radiotherapy
resistance. Such cells with stem cell characteristics, seem
to grow aggressively and metastasize easily. It is not yet
clear how CSCs are formed, whether they develop from
tissue stem cells or are formed from differentiated cells
by recovering embryonic properties. Chemotherapeutic
agents and radiotherapy mainly destroy dividing cells™..
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Figure 1 Complex organization of cancer initiation, progress, remission and relapse. CSCs are capable of undergoing extensive cell proliferation after acquiring
different pathologic genetic/epigenetic changes while retaining their stemness and giving rise to differentiated progenies. Acquiring further genetic/epigenetic changes
during different stages of tumor progression will evolve CSCs, but this may also be advanced through having dynamic interplay with the stem cell-niche. Both CSCs
and non-CSCs can be found at the invasive front of primary tumors, which is linked to the process of EMT. However, only CSCs are capable of surviving from immune-
surveillance or conventional tumor therapies and are able to give rise to distance metastasis or cause cancer recurrence. The potential eradication of tumor cells and
CSCs can be resulted only upon combination targeted therapeutic approaches. Tumor stem cell-targeting drugs should able to prolong the efficacy of cytotoxic tumor
therapy and reduce the recurrence risk. CSC: Cancer stem cell; CC: Cancer cell; NC: Normal cell; EMT: Epithelial-mesenchymal transition.

Since CSCs are particularly dormant, in one hand they
are not detected by the routine screening measures, and
in the other hand, they are positively selected upon the
routine therapy approaches.

MOLECULAR MECHANISMS OF THE
THERAPY RESISTANCE OF CSCs

Central regulators of the cellular response to DNA da-
mage are checkpoint kinases 1 and 2 (Chk1/2), which are
activated after genotoxic stress and stop cell proliferation
to allow DNA repair. Activation of Chk1 as a response to
DNA damage by ionizing radiation or chemotherapy agents
can be detected preferentially in CD133" glioblastoma
precursor cells®”. By pharmacological inhibition of Chk1,
it was possible to increase the sensitivity of CD133"
glioblastoma precursor cells against therapy®!..

An efficient inactivation of reactive oxygen species
(ROS) is another feature of CSCs. The excessive pro-
duction of ROS under chemo/radiotherapy leads to a cell
damage because of its interaction with DNA and proteins
and triggering the cell death. In some tumors, including
mammary carcinoma and gastrointestinal carcinoma,
fewer amounts of ROS were detected in CSCs with
a simultaneously increased amount of free-radical
scavenger compared to the cell populations without
CSC phenotype'®. In addition, the expression of stem
cell marker CD44 in tumor cells was associated with an
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increased expression of the glutathione as a free-radical
scavenger®?*, Pharmacologically induced reduction
in the concentration of free-radical scavenger in tumor
cells can significantly increase their sensitivity to the
chemoy/radiotherapy™.. It remains unclear whether the
increased CD44 expression as a biomarker is suitable for
the detection of ROS-resistant CSCs and thus can identify
patients who can benefit from therapy with inhibitors of
free-radical scavengers in combination with the chemo/
radiotherapy.

Another factor contributing to the chemo/radiotherapy
resistance of CSCs is hypoxia. Among other factors,
hypoxia is the most common cause of therapy-resistance
CSCs, which activates the hypoxia inducible factor
signaling pathway and triggers cellular processes that can
lead to a better survival and expansion of CSCs™®. The
presence of hypoxia in the tumor tissue or its decrease
by reoxygenation in the course of chemo/radiotherapy
could be correlated with an accelerated repopulation of
CSCs with therapy-resistance phenotype®”.,

There are several critical proliferation-promoting and
survival-inducing pathways triggering the maintenance
and survival of CSCs. The canonical Wnt pathway, which
is central signaling pathway for stem cell maintenance
and development, is constitutively active in breast cancer;
colorectal cancer, myeloid leukemia, lung cancer and
skin cancer®®*?, Hedgehog Signaling (HH), which has
three different homologues desert Hedgehog, Indian
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Figure 2 Crosstalk between cancer and cancer stem cell-related pathways. Predicted crosstalk among Wnt signaling, Notch pathway, Hedgehog signaling and
other cancer-related pathways like EGF/VEGF signaling in CSCs and cancer. Gene networks and canonical pathways were assessed using the Ariadne Genomics
Pathway Studio® program and database (Elsevier). EGF: Epidermal growth factor; VEGF: Vascular endothelial growth factor; WNT: Wnt signaling pathways; PI3K:
Phosphoinositide 3-kinase; PIP3: Phosphatidylinositol 3,4,5 trisphosphate; CSC: Cancer stem cell; SHH: Sonic Hedgehog.

Hedgehog and Sonic Hedgehog is essential in a variety of
molecular and cellular processes during tissue homeostasis,
development or embryogenesis. Aberrant HH activation
which regulates the CSC’s maintenance and potential
proliferation, is reported in different cancers including
acute myeloid leukemia (AML), breast cancer, chronic
myeloid leukemia (CML), glioblastoma, lung carcinoma,
myeloma, pancreatic adenocarcinoma~***!, Canonical
Notch signaling is the other conserved signaling pathway in
tissue homeostasis and development. Activation of Notch
signaling upon binding of the extracellular ligands, regulates
the expression of target genes involving in CSC self-renewal
such as Myc, Nanog, Oct-4, and Sox2"?, Abnormal Notch
activation plays a critical role in breast cancer, myeloid
leukemia (AML and CML), glioblastoma, lung cancer and
pancreatic cancer’”*>*!, phosphoinositide-3-kinase/protein
kinase B, canonical and non-canonical nuclear factor-«<B
(NF-«B), stromal-derived factor-10/CXCR4, ErbB signaling
and hedgehog/glioma-associated oncogene are other
critical pathways that regulates CSC-related maintenance
and proliferation® !, The majority of cancer and CSC-
related pathways do not act as isolated units but rather
often interact with other pathways as a linked biological
network. The predicted crosstalk among Wnt signaling,
Notch pathway, Hedgehog signaling and other pathways
like EGF/VEGF signaling is illustrated in the Figure 2.
Therefore, therapies that target CSCs could be more
effective than therapies targeting a general reduction
in tumor mass. Thus, it can be postulated that the
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efficacy of the chemo/radiotherapy to eradicate CSCs,
can be enhanced by a combination therapy with drugs
specifically targeting CSCs (Figure 1).

METHODS FOR SCREENING OF CSCs

Over the past decade, different CSC markers were
identified in a wide range of hematopoietic malignancies
and solid tumors®**®, A widely used method for
characterizing CSC-related markers is multiparameter flow
cytometry. This method, which is originally developed for
the analysis of blood cells and hematopoietic stem cells,
offers the possibility to detect CSCs by means of specific
surface markers that are stained with fluorescence-
coupled antibodies. Frequently, the expression of CD133
or CD44 alone or in combination with further markers such
as CD20, CD24, CD90 or a2-Bl-integrin is used as a CSC-
specific marker (Figure 3). Functional detection of CSC
is also possible and is based on the increased expression
of detoxification enzyme aldehyde dehydrogenase 1
(ALDH1) or the high activity of multidrug resistance
transport proteins. These CSC-specific staining methods
allow the isolation of single CSCs for further molecular
characterization using single cell based molecular
approaches (Figure 3). However, identified markers are
not always reliable and none of the reported markers
solely identify CSCs, therefore need to be used with
caution (Table 1).

For example, inter- or intra-tumor heterogeneity
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Figure 3 Tracing and targeting cancer stem cells. A: The complex process of distant metastasis including invasion of the tumor microenvironment, EMT, shedding
of CSCs into the blood stream (intravasation), MET and invasion of circulating CTCs to the other tissues (extravasation). Only circulating CSCs are able to survive
in the circulating blood, escape from immune-surveillance and home to secondary organs; B: The list of known compilation CSC-related molecular markers for
different solid tumors and hematopoietic malignancies. The level of specificity of these markers differs per each type of tumor. Markers are ordered alphabetically
and not according to their sensitivity or specificity; C: Four important approaches of CSC-targeted therapy. CSC: Cancer stem cell; CC: Cancer cell; NC: Normal cell;
EMT: Epithelial-mesenchymal transition; MET: Mesenchymal-epithelial transition; PI3K: Phosphoinositide 3-kinase; MAPK: Mitogen-activated protein kinase; TGF:
Transforming growth factor; mTOR: Mechanistic target of rapamycin; RAS: Ras-activated signaling; PD-1: Programmed death 1; PD-L1: Programmed death-ligand 1;
EpCAM: Epithelial cell adhesion molecule.

may completely render CSC markers inapt. Such tumor agents. The screening of large substance banks has
heterogeneity can be the result of different genetically identified many valuable compounds that can be used to
distinct clones within the tumor due to having various modulate biological systems in cancer cells™'. In order to
genetic lesions or dysregulation of markers via pathologic systematically identify the genes that regulate the death
epigenetic regulations™™®*”*!, For example, CD133 marker  and differentiation of CSCs, high-throughput screenings
is frequently inactivated due to the DNA methylation and of RNA interference (RNAi) or chemical substance libraries
therefore often inadequate™*. Inactivation of specific are carried out using different approaches. The readout of
markers due to any scape mechanism in a particular clone such screen approaches can be survival analysis, reporter
may render these CSCs undetectable in the absence of assays, luminescence or fluorescence-based analyzes of
other distinct markers. particular genes or pathways and imaging methods, in
While high-throughput genetic screening studies which several cellular properties can be examined on a
provide essential information about genes which are single cell level.
associated with a particular phenotype, molecular phar- Since CSCs only make up a small fraction in the
macology can play an important role in development entire tumor cell pool (Figure 1), appropriate enrichment
of a specific molecular therapy. Low molecular weight methods must be applied. Gupta et al*® enriched
substances (“small molecules”) show a higher penetrance CD44"/CD24" cells within the CSC population of mam-
in cell-based screening methods. Therefore, small mary carcinoma cell lines by inducing the EMT. After
molecules are one of the most frequently used therapeutic treatment with inhibitors, the survival of the enriched and
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Table 1 Hallmarks of using cancer stem cell-related markers

Problems Potential solutions

CSC-related markers may not be specific by their own for a certain type of Combined used of different markers may be the solution
tumor

Some of CSC-related markers may be down-regulated or suppressed in a given Using of distinct markers or a combination them
tumor due to different genetic or epigenetic regulatory mechanisms

Splice variants of some CSC-related markers may render detection difficult The exact splice variant should be considered for the detection
Markers can be detected using one method (e.g., FACS), but not with other Stringent selection of related markers might be required

methods (e.g., immunohistochemistry)

Different tumors have clonal variation and heterogeneous cell population. Less ~ Using more specific and sensitive methods, isolate more enriched
malignant clones may harbor CSCs that express different markers. Therefore, CSC populations

CSC-related markers may be differentially regulated within different clone or be

completely missed

Many of reported CSC-related markers are not validated, since they derived Markers should be validated in xenotransplants or primary human
from cell-line or mouse model studies materials

CSC: Cancer stem cell; FACS: Fluorescence-activated cell sorting.

the non-selected cell population was investigated using a characterization in an independent manner™®. Less

luminescence-based reporter assay. This study was able malignant tumors may have more demand on the
to identify salinomycin as a selective inhibitor of the CSC stem cell-niche but upon cancer progress this dynamic
population in breast carcinoma®’. interplay might be weaken or even diminished™*. It

Recent advances in computer-based image analysis is known that dormant cancer cells via reducing their
have enabled rapid achievements in the development immunogenicity, can escape the immune surveillance®”.
of image-based high-throughput analysis approaches. Therefore, targeting CSC microenvironment may stim-
The direct visualization of cellular features and biological ulate the host antitumor responses™".. Strategies to hit the

processes allows a more comprehensive measurement tumor-promoting inflammation are under investigation.
of responses to interferences. Xia et af*”! have developed Production of prostaglandin E2 (PGE2) by tumor cells in
a novel fluorescence imaging method to identify cancer breast cancer, colorectal cancer and melanoma has a key
cells with CSC properties through their increased ability role in the escape phase as it suppresses immunity and
to deliver fluorescent dyes via dedicated molecular induces inflammation™. Therefore, the use of antagonists
transporters. Based on this method, a library of active of PGE2 receptor (PTGER4) has proven successful in
substances was examined for their effect in CSCs. It was blocking immuno-suppression and preventing cancer
possible to identify substances that selectively inhibit the metastases””.

molecular transporters™”’,

A further high-throughput method has recently Targeting efflux transporters
been developed to characterize the biochemical and Membrane efflux transporters, which are mainly located

biophysical environmental conditions of CSCs. Microarray in blood-brain barrier, hepatocytes, intestinal cells or
glass slides with over 2000 test chambers can be used to kidney proximal tubules, play important roles in drug
cultivate stem cells in different cell densities in a hydrogel metabolism, availability, and toxicity of drugs in human
of polyethylene glycol, to which different biological body™". Several studies indicate that transporter-
molecules have been coupled by robot technology™®. mediated drug disposition plays an important role in
Using the microscopic imaging, cell proliferation, mor- mediating chemo-sensitivity and -resistance of cancer
phology and differentiation can be monitored at a single  cells and CSCs"™*.. The interaction between efflux trans-
cell level. This method as a platform for the investigation porters and chemotherapeutic drugs on cancer cells is
of individual stem cells in @ microfluid culture system significantly linked to the efficacy of cancer therapy. Two
with simultaneous live-cell microscopy, represents an major superfamilies of efflux transporters are the ATP-
important step towards the miniaturization of the cellular binding cassette (ABC) transporters [ABCB1 (MDR1),
processes as a high-throughput screening approach™, ABCC1 (MRP1), ABCC2 (MRP2) and ABCG2 (BCRP)] and

the solute carrier (SLC) transporters [SLC19A1 (RFC1)
and SLCO1B1 (SLC21A6)]. Therefore, targeting efflux
TARGETING CSCs transporters within cancer therapy combined with routine
Targeting tumor microenvironment therapies could significantly increase the eradication rate
The heterogeneous tumor microenvironment or cancer  Of resistant cancer cells™.

cell-niche, provides different self-protection mechanisms

which enables a dynamic interaction with surrounding Targeting key signaling pathways

cells including immune cells, cytokines and chemokines The CSC phenotype depends on various cellular signals,
to regulate proliferation, maintenance and self-renewal of which are triggered by the underlying genetic lesions
CSCs. CSCs can represent more autonomous regulatory and by the support of the stem cell niche. Some of
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these signals have already been identified; the most
disease cussed signaling pathways are the classic Wnt-
B-catenin, Notch and Sonic Hedgehog signaling™ . For
these three pathways, pharmacological inhibitors have
been developed which are now undergoing clinical trials
in many independent studies®®. However, the clinical
effect is largely depending on the tumor type and not
all three pathways are equally important in all types of
tumors. It has been shown that, although some signaling
pathways are highly tumor-promoting in a certain type
of cancers (which makes it a suitable therapeutic target),
they might react as tumor suppressive in another tumor
type; therefore, their inhibition may become dangerous
(e.g., Notch-1 has been identified as a tumor suppressor
in urinary bladder carcinoma)®®. High Wnt pathway
activity marks colon or leukemia CSCs and is required
for stemness signature as a prognostic markert®”%%,
In addition, Wnt activity is associated with the CSC
markers CD133, CD44 and LGR5 in colon cancer™®?
whereas Hedgehog activity is linked to ABC transporter
expression in esophageal and prostate cancert’®"
TGF-B signaling via the family members Nodal and
Activin is attributed to pancreatic CSCs™®, The effect of
Hedgehog inhibitors is actually the most evident in the
basal cell carcinoma. In addition, inhibition of Hedgehog
pathway blocks stemness in breast CSCs, whereas its
activation enhances self-renewal®. It is also necessary
to distinguish whether those signaling pathway has
been activated within CSCs only because of harbored
genetic lesions®”. If only the CSCs are targeted, it is
hardly possible to expect a dramatic tumor shrinkage
as in classical successful chemo/radiotherapy; rather,
this would be a disease stabilization and a slowing of the
progression (Figure 1).

Disulfiram was developed as an inhibitor of aldehyde
dehydrogenase for the treatment of alcoholism. This
inhibition leads to the accumulation of acetaldehyde
after alcohol consumption, resulting in a marked nausea
that should reduce the probability of further alcohol
consumption™®, The same enzymatic activity - aldehyde
dehydrogenase - is, however, a component of the self-
protection of the CSCs, and thus disulfiram was used
for the elimination of CSCs. Thioridazine is an inhibitor
of dopamine receptors, and is a standard medication
for mental disorders such as schizophrenia. Its rational
use in tumor therapy is based on the finding that CSCs
in several types of tumors (e.g., AML, breast carcinoma,
glioblastoma), in contrast to the corresponding nor-
mal tissue stem cells, upregulate the expression of
dopamine receptors'®”.

Niclosamide was identified that specifically targeted
Wnt-p-catenin signaling pathways'”®.. Interestingly,
niclosamide is known as an antiparasitic and inhibitor
of oxidative phosphorylation, which has been used in
human medicine for almost 50 years”". However, what
has emerged is that these two antiparasitics are inhibitors
of numerous other signaling pathways. Niclosamide
inhibits not only the Wnt-p-catenin signaling pathway,
but also the Notch, PI3'K-Akt - mTOR, STAT-3 and
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NFkB signaling pathways, which are essential for tumor
stem cells”?. Salinomycin was similarly described as
an inhibitor of ABC efflux pumps and the Wnt-B-catenin
signaling pathway'?.. Not enough, analogous effects
have been discovered for disulfiram and thioridazine.
Disulfiram has not only proved to be an effective inhibitor
of aldehyde dehydrogenase, but also polo-like kinase
1 and O6-methylguanine methyltransferase as well as
NFkB"*7%,

The advantages of identifying such new indications
for old drugs are obvious. These drugs have long been
out of patent protection and their use should therefore
be much cheaper than for newly developed drugs, which
is an important aspect in the current discussion on costs
of tumor treatment. In addition, they have already
undergone clinical trials, their potential toxicity, side
effects, pharmacokinetics, contraindications, and possible
drug-drug interactions are known. Therefore, their use in
tumor therapy should be relatively easy. Perhaps the best
opportunity to see how the effects of tumor stem cell-
targeted therapy can be demonstrated is in the area of
combination therapy (Figure 1). Tumor stem cell-directed
drugs should be able to prolong the efficacy of cytotoxic
therapy and reduce recurrence risk’®””, On the other
hand, combined administration has significantly greater
chances of total elimination of all tumor cells. Taken
together, there are many possibilities for therapeutic
treatment for the elimination of tumor stem cells, both
from the group of newly developed inhibitors of some
stem cell-specific signaling pathways as well as for
some old drugs that can find a new application in tumor
therapy.

Targeting cellular surface markers (tumor
immunotherapy and cancer vaccination)

Many types of normal cells like immune cells infiltrate
tumors. Over the last years, immune infiltration has
become a central focus in cancer research®™. It is in-
creasingly recognized that cancer cells and CSCs need
to escape immune recognition. IL-6/JAK/STAT3 signaling
an important pathway in many solid tumors. Anti-IL-6
mADb siltux-imab was tested on various cancer types,
which was not able to provide promising outcome to
improve overall survival of patients with multiple myeloma
according to a recent Phase II clinical trial on patients™.
While, checkpoint blockade antibodies such as cytotoxic
T-lymphocyte antigen 4 (CTLA-4) or programmed death-
ligand 1 (PD-1/PD-L1) like ipilimumab or nivolumab could
provide marked clinical benefits for lung adenocarcinoma,
melanoma or Hodgkin lymphomas”®®”, These agents can
boost the immune system and display clinical benefits for
a fraction of patients®™".

Many tumors cells including CSCs, alter the ex-
pression of their genes or down-modulate of antigen
processing and presentation to build an immuno-sup-
pressive microenvironment that creates physical or
chemical barriers against immune cells®®!. Indeed,
CSCs by low express of MHC-I, and over expressing
of IL-4 are escaping from cytotoxic T lymphocytes®,
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Boosting T-cell response can be a promising approach to
eradicate CSCs. This can be achieved by boosting neo-
antigens within CSCs, considered as tumor vaccination.
Adoptive transfer of CSC-specific T-cells into tumor-
bearing mice could show a success®. In addition,
genetically modified T cells to express chimeric antigen
receptors (CAR T-cells) upon adaptive transfer could
provide remarkable benefit for patients suffering from
different solid tumors or leukemia®. Therefore, the
major goal of immunotherapy is to thwart these barriers
in order to enhance pre-existing or elicit a new immune
response against cancer.

CONCLUSION

Because of the CSCs’ ability to therapy resistance and
initiate a recurrence after therapy, cancer stem cell is an
important therapeutic target. Future research is essential to
elucidate how CSCs dictate metastasis, therapy-resistance
or immune-scape signature. However, without having
reliable markers it will be a challenging pursuit. An exact
molecular characterization of this small subpopulation in
the tumor tissue requires the development of specific CSC
markers and suitable enrichment methods. Particularly
from innovative high-throughput screening technologies,
we can expect valuable insights regarding suitable CSC-
associated biomarkers and new therapeutic approaches
to target CSCs. This could be an important step towards
individualized cancer therapy.
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Abstract

AIM
To identify and characterize functionally distinct sub-
population of adipose-derived stem cells (ADSCs).

METHODS

ADSCs cultured from mouse subcutaneous adipose tissue
were sorted fluorescence-activated cell sorter based on
aldehyde dehydrogenase (ALDH) activity, a widely used
stem cell marker. Differentiation potentials were analyzed
by utilizing immunocytofluorescece and its quantitative
analysis.

RESULTS

Approximately 15% of bulk ADSCs showed high ALDH
activity in flow cytometric analysis. Although significant
difference was not seen in proliferation capacity, the
adipogenic and osteogenic differentiation capacity was
higher in ALDH™ subpopulations than in ALDH". Gene set
enrichment analysis revealed that ribosome-related gene
sets were enriched in the ALDH" subpopulation.

CONCLUSION

High ALDH activity is a useful marker for identifying
functionally different subpopulations in murine ADSCs.
Additionally, we suggested the importance of ribosome for
differentiation of ADSCs by gene set enrichment analysis.

Key words: Adipose-derived stem/stromal cell; Aldehyde
dehydrogenase activity; Flow cytometry; Subpopulation;
Ribosome

© The Author(s) 2017. Published by Baishideng Publishing
Group Inc. All rights reserved.

Core tip: Aldehyde dehydrogenase (ALDH) activity is
widely used as a stem cell marker in several types of
normal or malignant tissues. However, there was no report
of ALDH activity in murine adipose-derived stem cells
(ADSCs). Here, our study demonstrated a subpopulation
defined by high ALDH activity within murine ADSCs. The
subpopulation with high ALDH activity (ALDH™) showed
enhanced differentiation potentials into adipocyte and
osteocyte. Furthermore, gene set enrichment analysis
revealed that ribosome-related gene sets were enriched
in ALDH™ of murine ADSCs. We showed relationship
between ALDH™ and ribosome biosynthesis, providing a
novel insight of mesenchymal stem cell biology.

Itoh H, Nishikawa S, Haraguchi T, Arikawa Y, Eto S, Hiyama M,
Iseri T, Itoh Y, Nakaichi M, Sakai Y, Tani K, Taura Y, Itamoto K.
Aldehyde dehydrogenase activity helps identify a subpopulation of
murine adipose-derived stem cells with enhanced adipogenic and
osteogenic differentiation potential. World J Stem Cells 2017; 9(10):
179-186 Available from: URL: http://www.wjgnet.com/1948-0210/

Raishidenge ~ WJSC | www.wjgnet.com

full/v9/i110/179.htm DOIL: http://dx.doi.org/10.4252/wjsc.v9.i110.179

INTRODUCTION

Stem cells can self-renew and differentiate into spe-
cialized cells of various tissues'”. Therefore, these cells,
for example, embryonic stem cells (ESCs), induced plu-
ripotent stem cells (iPSCs), hematopoietic stem cells, and
mesenchymal stem cells (MSCs), have been the object of
basic research and dlinical applications. Among these types
of stem cells, MSCs, as represented by adipose-derived
stem/stromal cells (ADSCs) and bone marrow-derived
stem/stromal cells (BMSCs), have been recognized as
useful material for cell-based therapy'?. MSCs have been
isolated from various tissues, including adipose tissue,
the bone marrow, peripheral blood, cord blood, the liver,
dental pulp, and fetal tissue; of these, adipose tissue is one
of the most abundant source of MSCs™. ADSCs possess
multipotency and have the potential to differentiate into
cell types such as adipocytes, osteocytes, chondrocytes,
neurons, vascular endothelial cells, cardiomyocytes,
myoblasts, and islet B-cells under appropriate conditions™..

The researches have suggested that ADSCs are hetero-
geneous and comprise phenotypically and/or functionally
different subpopulations®”. For example, the cluster
of differentiation (CD)73" subpopulation of murine AD-
SCs possesses increased potential for cardiomyocyte
differentiation™. The CD90" subpopulation of murine
ADSCs has higher tube-forming ability than the CD90"
subpopulation, which has high adipogenic potential®®. The
CD90" subpopulation also exhibits higher efficiency of
iPSC induction than the CD90™ subpopulation™. Human
ADSCs also include the CD105" subpopulation, which has
high osteogenic potentiall”’. Some studies have identified
different subpopulations in ADSCs on the basis of surface
antigen markers®”). However, it is unclear how these
markers (e.g., CD90 and CD105) are functionally related
to cell differentiation.

In mice, aldehyde dehydrogenase (ALDH) is a sup-
erfamily comprising 20 intracellular enzymes and is
responsible for the oxidization of various aldehydes!”’. High
ALDH activity has been shown in normal hematopoietic
stem cells, neural stem cells, and cancer stem cells in
various types of neoplastic diseases!'”. Therefore, high
ALDH activity is considered to be a common marker for
normal and malignant stem cells. In human ADSCs,
however, only one study has been performed on the
ALDH" subpopulation, whose significance in differentiation
potential is unclear’!), Moreover, to our knowledge, the
existence of the ALDH" subpopulation within murine
ADSCs has not yet been reported.

In the current study, the ALDH™ and ALDH" sub-
populations of murine ADSCs were sorted using flow
cytometry. The differentiation potential and proliferation
of the sorted ALDH" and ALDH"“ subpopulations were
analyzed. Furthermore, we analyzed the transcriptional
profiles of the ALDH" and ALDH"“ subpopulations by
utilizing gene set enrichment analysis (GSEA).
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MATERIALS AND METHODS

Animals and ADSC isolation

C57BL/6] mice were purchased from Kyudo Co., Ltd
(Saga, Japan). All animal experiments were carried out in
accordance with the National Institutes of Health guide for
the care and use of Laboratory animals (NIH Publications
No. 8023, revised 1978) and the institutional guidelines
of Yamaguchi University. The animal experiments were
approved by the institutional animal experiment ethics
committee of Yamaguchi University.

Murine ADSCs were isolated from twenty of C57BL/6]
female mice of 4- to 6-wk-old, as previously described®.
Briefly, the subcutaneous adipose tissue was resected,
washed with Dulbecco’s phosphate-buffered saline
(DPBS; Wako, Osaka, Japan), and cut into small pieces.
The adipose tissue pieces were digested in high glucose
Dulbecco’s modified Eagle’s medium (DMEM; Wako,
Osaka, Japan) containing 1.0 mg/mL collagenase
type I (Sigma-Aldrich, St. Louis, MO, United States),
10% fetal bovine serum (FBS; Sigma-Aldrich), and
antibiotic-antimycotic agents (PSM; penicillin: 100 U/mL,
streptomycin: 100 ug/mL, and amphotericin B: 0.25 ug/
mL, final concentrations; Nacalai Tesque, Kyoto, Japan),
using a shaking incubator at 37.5 °C and 250 rpm for 1 h.
The digested tissue was filtered through a sterile 100-
um nylon mesh (EASYstrainer, 100 um; Greiner Bio-One
Japan, Tokyo, Japan), followed by centrifugation at 400
x g for 5 min in DPBS supplemented with 1% FBS and
1 mmol/L EDTA:3Na (Wako, Osaka, Japan). The pellet
was resuspended in DMEM supplemented with 10% FBS
and antibacterial/antimycotic agent and was cultured
at 37.0 C in a 5% CO: atmosphere, using 10 cm dish
(Corning, NY, United States). When the cultures reached
80%-90% confluence, the ADSCs were dissociated from
the dish by using Accutase solution (Innovative Cell
Technologies, San Diego, United States), and seeded into
new dishes.

Flow cytometry analysis

Adherent ADSCs from passage 4 were dissociated using
Accutase solution; 1 x 10° cells were resuspended
and incubated for 5 min on ice with 2 uL of anti-mouse
CD16/32 rat monoclonal antibody (BioLegend, San
Diego, CA, United States). Cells were stained with 1
uL viability probe (Zombie NIR, Biolegend) for 20 min
at room temperature to stain dead cells. ALDH activity
was assessed by utilizing the ALDEFLUOR kit (Stemcell
Technologies, Vancouver, Canada) according to the
manufacturer’s instructions. Briefly, 1 x 10° cells were
resuspended in 1 mL assay buffer and 5 uL ALDEFLUOR
reagent was added after thorough mixing; then, 0.5 mL
of the cell suspension was transferred to a new tube with
5 uL diethylaminobenzaldehyde (DEAB) reagent (ALDH
inhibitor) for negative control of ALDH activity. Flow
cytometric analysis and cell sorting were performed using
Accuri C6 (BD Bioscience, San Jose, CA, United States)
and the SH800 cell sorter (Sony, Tokyo, Japan). Flow
cytometric data were analyzed with the FlowJo (Tree Star,
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Ashland, OR, United States) software.

Measurement of proliferation potential

To assess the viability of the ADSC subpopulations, we
used a cell WST-8 assay (Cell Counting Kit-8; Dojindo
Laboratories, Kumamoto, Japan) according to the
manufacturer’s instructions. Briefly, sorted ALDH™ or
ALDH" murine ADSCs were seeded in 96-well plates at
a density of 3 x 10° cells/well. After 12, 24, 48, and 72
h, 100 pL fresh medium containing 10 uL CCK-8 solution
was added to each well, followed by incubation at 37 °C
for 1 h. The absorbance of each well at 450 nm was
measured using an Epoch microplate spectrophotometer
(BioTek Instruments, Winooski, VT, United States). Six
replicates were prepared for each group.

Cell differentiation and immunofluorescence staining
The adipogenic and osteogenic differentiations of ADSCs
were characterized using a Mouse Mesenchymal Stem
Cell Functional Identification Kit (R and D Systems,
Minneapolis, MN, United States) according to the manu-
facturer’s instructions. Briefly, for adipogenic differentiation,
cells (3 x 10°/well) were cultured at 37 °C in a 5% CO:z
atmosphere in a 96-well plate in 100 uL adipogenic
differentiation medium composed of o-minimal essential
medium («MEM) supplemented with 10% FBS, 1% PSM,
L-glutamine, and 50 uL adipogenic supplement containing
hydrocortisone, isobutylmethylxanthine, and indomethacin
for 15din 37 °C and a 5% CO:zatmosphere.

For osteogenic differentiation, cells were cultured in
osteogenic differentiation medium composed of 5 mL
o-MEM basal medium and 250 pL osteogenic supplement
containing ascorbate-phosphate, B-glycerolphosphate,
and recombinant human bone morphogenetic protein-2
for 15din 37 °C and a 5% CO:atmosphere. The medium
was replaced every 2-3 d.

To assess adipogenic and osteogenic differentiation
by immunocytochemistry, cultured cells were fixed in
4% paraformaldehyde phosphate buffer solution (Wako,
Osaka, Japan) for 20 min. After the cells were washed with
DPBS, they were permeabilized and blocked with DPBS
supplemented with 0.3% Triton X-100 (Sigma-Aldrich), and
10% FBS for 45 min. The cells were subsequently incubated
for 1 h in DPBS containing 10 pg/mL goat anti-mouse
fatty acid binding protein (FABP) 4 polyclonal antibody
to label adipocytes or were incubated with 10 pg/mL
goat anti-mouse osteopontin polyclonal antibody to label
osteocytes. They were then washed with DPBS and
incubated for 1 h in DPBS containing phycoerythrin (PE)-
conjugated rabbit anti-goat IgG antibody [rabbit F(ab’)2
anti-goat IgG-H and L (PE), pre-adsorbed, Abcam,
Cambridge, United Kingdom]. Nuclei were stained with 5
ug/mL Hoechst 33342 (Dojindo Laboratories, Kumamoto,
Japan). Photographs were obtained and analyzed using
a fluorescence microscope (BZ-9000; Keyence, Osaka,
Japan) and its analysis software.

Gene expression array analysis and GSEA
Gene expression array analysis and GSEA were performed
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Figure 1 Detection of aldehyde dehydrogenase-positive subpopulations of murine adipose-derived stem cells and evaluation of proliferation rates. A: Flow
cytometric analysis of murine ADSCs. Baseline fluorescence was established by adding the ALDH inhibitor diethylaminobenzaldehyde; B: Cell proliferation rates were
not significantly different between the ALDH™ and ALDH' subpopulations. Values have been expressed in terms of mean + SE (n = 5). ns: Not significant; ALDH:
Aldehyde dehydrogenase; ADSCs: Adipose-derived stem cells; DEAB: Diethylaminobenzaldehyde.

on the published gene expression profile of C57BL/6
mice divided by ALDH™ and ALDH" subpopulations of
ADSCs. About 3 x 10° cells from each subpopulation
were lysed and total RNA was isolated using the RNeasy
Mini Kit (Qiagen, Hilden, Germany). Cyanine-3 (Cy3)-
labeled cRNA was prepared from 0.1 ug total RNA by
using the Low Input Quick Amp Labeling Kit (Agilent
Technologies, Santa Clara, CA, United States) according
to the manufacturer’s instructions; this was followed by
RNeasy column purification (Qiagen). Dye incorporation
and cRNA yield were checked with the NanoDrop
ND-2000 Spectrophotometer (Thermo Fisher Scientific,
Waltham, MA, United States). Cy3-labelled cRNA (0.6 pg)
was fragmented at 60 ‘C for 30 min in a reaction volume
of 25 uL containing 1 x Agilent fragmentation buffer and
2 x Agilent blocking agent following the manufacturer’s
instructions. On completion of the fragmentation reaction,
25 uL of 2 x Agilent hybridization buffer was added to
the fragmentation mixture and hybridized to SurePrint
G3 Mouse GE 8 x 60 K Verl.0 (Agilent Technologies)
for 17 h at 65°C in a rotating Agilent hybridization
oven. After hybridization, the microarrays were washed
for 1 min at room temperature with GE Wash Buffer 1
(Agilent Technologies) and 1 min with 37°C GE Wash
buffer 2 (Agilent Technologies). The slides were scanned
immediately after washing on the Agilent SureScan
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Microarray Scanner (G2600D), using one color scan
setting for 8 x 60 k array slides (scan area, 61 x 21.6
mm; scan resolution, 3 um; dye channel set for Green
PMT was set to 100%). The scanned images were
analyzed with Feature Extraction Software 11.5.1.1 (Agilent
Technologies), using default parameters to obtain the
subtracted background and spatially detrended Processed
Signal intensities.

Statistical analysis

Statistical analysis was performed using GraphPad Prism
version 6.01 for Windows (GraphPad Software, La Jolla,
CA, United States). The results have been expressed
in terms of mean = SE. Comparisons of two groups
were performed with the independent t-test. Multiple
comparisons were performed with one-way analysis of
variance. Data were considered statistically significant
when the P value was < 0.05.

RESULTS

ALDH activity of murine ADSCs

To identify the subpopulation defined by ALDH activity
in murine ADSCs, single-cell suspensions of cultured
murine ADSCs were stained using the ALDEFLUOR kit
and analyzed with flow cytometry. A small subpopulation

October 26, 2017 | Volume 9 | Issue 10 |



Itoh H et a/. ALDH activity helps identify a subpopulation of murine ADSCs

ALDH"

FABP4

Osteopontin

e}
1
—
N

—
o

oo}

Relative FABP4" area (au)
D
T
Relative osteopontin® area (au)
(o)}

ALDH"™

ALDH"™

ALDH"

ALDH"™

ALDH"™
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osteopontin (C, D) expression in ADSCs (red) following adipogenic (A, B) and osteogenic (C, D) differentiation of ALDH™ and ALDH" subpopulations, as determined
by immunocytochemistry. The nuclei were stained with Hoechst 33342 (blue). Quantitative analysis of differentiation-marker-positive areas in differentiated ADSCs.
FABP4-positive (E) and osteopontin-positive (F) area ratios relative to respective areas of nuclear staining for ALDH" and ALDH" subpopulations of ADSCs after
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dehydrogenase; ADSCs: Adipose-derived stem cells; FABP: Fatty acid binding protein.

with distinctively high ALDH activity (ALDH™ cells) was
detected within the bulk populations of ADSCs (Figure
1A). The percentage of ALDH™ cells was approximately
15% of the bulk murine ADSC population (Figure
1A). However, on adding the ALDH inhibitor N,N-die-
thylaminobenzaldehyde (DEAB), a distinct ALDH" sub-
population was not detected (Figure 1A). To assess the
difference in the proliferation potentials of the ALDH" and
ALDH"™ subpopulations, we measured the proliferation
rate of each subpopulation by using the WST assay. The
proliferation potential of the ALDH™ subpopulation of
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ADSCs was not significantly different compared to the
ALDH" subpopulation (Figure 1B).

Cell differentiation to adipocytes and osteocytes

To assess the adipogenic and osteogenic differentiation
potential of the two subpopulations, sorted ALDH"
and ALDH" cells were cultured under adipogenic or
osteogenic differentiation conditions. After in vitro dif-
ferentiation, immunofluorescence staining for FABP4
(marker of adipocytes) and immunofluorescence staining
for osteopontin (marker of osteocytes) were performed
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Figure 3 Gene set enrichment analysis of each ALDH" and ALDH"® subpopulation. A: Heat map of enrichment profile of ribosomal protein mRNAs for ALDH"
and ALDH"™ subpopulations; B: Gene set enrichment analysis of transcription data related to structural constituents of ribosomes for the ALDH" and ALDH"™
subpopulations. Normalized enrichment score and nominal P values are shown. ALDH: Aldehyde dehydrogenase.

(Figure 2A-D). ADSCs that differentiated into adipocytes
appeared as accumulated lipid droplets in the cytosol
in each ALDH" and ALDH"™ subpopulation (Figure 2A
and B). Furthermore, immunofluorescence staining for
osteopontin revealed that ADSCs that differentiated into
osteocytes appeared as accumulated granules in the
cytosol in each ALDH™ and ALDH"™ subpopulation (Figure
2C and D).

Evaluation of differentiation

Adipogenic and osteogenic differentiation of each ALDH"
and ALDH"™ subpopulation was quantitatively assessed
using the BZ-9000 microscope and its analysis software.
Ten visual fields were taken randomly for every 3 wells,
and the immunofluorescence-staining positive-areas in
30 visual fields were analyzed. Subsequently, the immuno-
fluorescence-staining-positive area was divided by the
Hoechst 33342-positive area for each of the 30 visual fields.
The ALDH" subpopulation was found to have significantly
more adipogenic and osteogenic relative-differentiation-
marker-positive areas than the ALDH" subpopulation (Figure
2E and F).

GSEA
To identify the sets of gene that were up- or down-
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regulated in the ALDH" subpopulations, we performed
GSEA for the published gene expression profile of
C57BL/6 mice divided by the ALDH™ and ALDH" sub-
populations of ADSCs. Intriguingly, high gene set
enrichment scores were obtained for the structural con-
stituents of ribosomes (Figure 3).

DISCUSSION

MSCs are reported to commonly express CD29, CD73,
CD90, and CD105 and to be negative for markers such
as CD45 and CD56!"**%., There have been many studies
on cell surface antigen markers of ADSCs, such as CD34
and CD44">**™), Recently, however, studies have shown
that some markers such as CD90 or CD105 are not
expressed homogenously in bulk ADSC populations but
are expressed in small ADSC subpopulations, suggesting
that ADSCs are phenotypically heterogeneous®™”®., In our
current study, we detected ALDH activity as a stem cell
marker in murine ADSCs. High ALDH activity has been
reported as a marker for cells such as hematopoietic
stem cells and cancer stem cells"'®. However, not many
studies have been performed on ALDH activity and cell
differentiation potential in MSCs. In one of these studies,
Estes et al'" showed the presence of a subpopulation
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with high ALDH activity in human ADSCs; however, no
difference was found in terms of differentiation potential.
In our present study, the cultured murine bulk ADSC
population contained approximately 15% of the ALDH"
subpopulation. Additionally, in the induction experiment
for adipogenic and osteogenic differentiation for each
sorted ALDH™ and ALDH “° subpopulation, significantly
higher adipogenic and osteogenic potentials were found
in the ALDH™ subpopulation. The ALDH"™ subpopulation
had higher cell differentiation potential than the ALDH"™
subpopulation. To the best of our knowledge, this is
the first report on the functionally distinguishable sub-
population defined by ALDH activity within murine ADSCs.
Relationships between ribosome biogenesis and stem
cells have been described only recently. For example,
it was reported that the transition from self-renewal to
differentiation depends on the enhancement of ribosome
biogenesis accompanied by increased protein synthesis in
female Drosophila germline stem cells™'. Slow growth, low
biosynthesis and markedly reduced ribosome biogenesis
were observed in hematopoietic stem cells that lacked
RUNX1, which is known to promote the transcription
of essential ribosome-related proteins™”.. We have few
reports about relationship between ribosome biogenesis
and MSCs. One of these reports presented one of core
proteins of 60S ribosome is necessary for differentiation
of osteocyte from MSCs!"®. In our current study, GSEA
revealed the significant enrichment of ribosome-related
genes in the ALDH™ subpopulation compared to that
in the ALDH" subpopulation, suggesting that ribosome
biogenesis is part of the mechanism underlying the higher
differentiation potential of the ALDH™ subpopulation.
ADSCs can be obtained in a less invasive manner
from adipose tissue. Therefore, ADSCs are considered
to be a promising source of cell-based therapy in the
clinical setting. ADSCs have already been used in clinical
studies for cardiovascular disease, breast reconstruction
after mastectomy, spinal cord injury, cirrhosis, renal
insufficiency, skin fistula after surgery, and skin fistula
with Crohn’s disease™'**”. Some of those trials reported
the therapy to be safe and effective; however, there is
obvious room for improvement. For instance, in a phase
3 trial for therapy with allogeneic expanded ADSCs for
treatment-refractory complex perianal fistulas in patients
with Crohn’s disease (ADMIRE-CD trial), approximately
50% of patients who received ADSC-therapy experienced
remissions'!). Although this is a significant achievement,
further research and development are required in relation
to the patients who did not respond to this trial.
Purification of specific subpopulations and engineering
of ADSCs into cells that are highly efficient in differentiating
into specific tissues might help obtain basic knowledge
for cell-based therapy, which is more specific to individual
disease conditions of each organ for which ADSCs are
used. Further investigation is required to identify the
underlying mechanisms that regulate ribosome biogenesis
and differentiation in ALDH™ ADSCs.
In conclusion, we demonstrated that murine ADSCs
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have a distinct subpopulation defined by ALDH activity.
Furthermore, the ALDH" subpopulation had higher oste-
ogenic and adipogenic differentiation potential than the
ALDH" subpopulation. Ribosome biosynthesis is suggested
to be a remarkable difference between ALDH™ and ALDH"
subpopulations.

COMMENTS

Background

Adipose-derived stem cells (ADSCs) are recognized as useful materials for
regenerative therapy. Recent study revealed the existence of subpopulations
in ADSCs by surface antigen markers. However, functions of these markers
remain elusive. Aldehyde dehydrogenase (ALDH) activity is commonly used as
functional marker to identify human and mouse hematopoietic stem cell, though
there has been no report about identification of a subpopulation(s) in murine
ADSCs using ALDH.

Research frontiers

Several surface antigen markers are reported to be capable of prospectively
identifying distinct ADSCs subpopulations in human and murine. However,
the function(s) of those reported markers are poorly understood. ALDH has its
known function, such as a protective effect to hematopoietic stem cells through
acetaldehyde detoxification, although it is not known in ADSCs.

Innovations and breakthroughs

The authors suggest a novel area of research consisted of ALDH, stem cell,
and ribosome biosynthesis, by reporting here ALDH™ murine ADSCs are highly
capable of differentiation, and have enriched ribosome-related gene sets.

Applications

The authors current findings of ALDH™ subpopulation of ADSCs might provide
future application for enrichment of more useful cells which is applicable to
an efficient cell-based therapy. Moreover, by elucidating mechanisms of the
higher differentiation potentials shown in ALDH™ subpopulation of ADSCs might
provide knowledge of a key regulator(s) of differentiation, and links between
ribosome biosynthesis.

Terminology

ADSCs: Adipose-derived stem cells can be obtained from adipose tissues and
induced to differentiate into adipocytes, osteocytes and chondrocytes; ALDH:
ALDH is a superfamily comprising 20 intracellular enzymes and is responsible
for the oxidization of various aldehydes. Some reports identified ALDH is a
marker that detect hematopoietic stem cells and cancer stem cells; GSEA:
Gene set enrichment analysis is a comprehensive analysis of gene expression
by a computational method.
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