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Abstract 
Tumors consist of a mixture of heterogeneous cell types. 
Cancer stem cells (CSCs) are a minor sub-population 
within the bulk cancer fraction which has been found 
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to reconstitute and propagate the disease and to be 
frequently resistant to chemotherapy, irradiation, cytotoxic 
drugs and probably also against immune attack. CSCs are 
considered as the seeds of tumor recurrence, driving force 
of tumorigenesis and metastases. This underlines the 
urgent need for innovative methods to identify and target 
CSCs. However, the role and existence of CSCs in therapy 
resistance and cancer recurrence remains a topic of 
intense debate. The underlying biological properties of the 
tumor stem cells are extremely dependent on numerous 
signals, and the targeted inhibition of these stem cell 
signaling pathways is one of the promising approaches of 
the new antitumor therapy approaches. This perspective 
review article summarizes the novel methods of tracing 
CSCs and discusses the hallmarks of CSC identification 
influenced by the microenvironment or by having imperfect 
detection markers. In addition, explains the known 
molecular mechanisms of therapy resistance in CSCs as 
reliable and clinically predictive markers that could enable 
the use of new targeted antitumor therapy in the sense of 
personalized medicine.

Key words: Cancer stem cells; Cancer recurrence; 
Cancer therapy; Combination therapy; Chemotherapy; 
Radiation therapy; Immunotherapy
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Core tip: Cancer stem cells (CSCs) are small subpopulation 
of the tumor that can survive from conventional treatment, 
scape from the immune system and can cause recurrence 
of cancer disease. Therefore, any attempt in detection 
and selective therapeutic targeting of CSCs will ultimately 
lead to better cancer treatments and can play an im
portant role in reducing the cancer related mortalities. 
This review highlights the trends and approaches in CSC 
tracing, isolating, characterizing and targeting, which are 
key strategies for a novel personalized molecular cancer 
therapy. 

Ramin Radpour
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INTRODUCTION
Cancer originates from deregulation of growth and 
resistance to apoptosis of transformed cells that acquire 
proliferative and metastatic capacity. While only a 
few genetic and epigenetic alterations can initiate the 
malignant transformation of healthy cells, clinically 
visible tumors are extraordinarily complex structures 
with cancer cells displaying a large number of mutations 
and altered gene expression[1]. The hierarchical model of 
tumor organization represents a similar, albeit distorted, 
arrangement of the tumor cells, as are their tissues of 
origin. The stem cell population is positioned at the top 
of the cell hierarchy and has the ability to self-renew and 
multilineage differentiate to progenitors or differentiated 
cell types whose proliferation capacity is restricted[2,3]. 

The theory of the cancer stem cell (CSC) was pos
tulated in the 1970s and was confirmed experimentally 
by the isolation of tumor-initiating cells using cellular/
molecular biomarkers that allowed the isolation of CSCs 
in acute myeloid leukemia[4]. Further, CSC has been 
demonstrated in a variety of solid tumors such as tumors 
in brain, colorectal, head and neck, liver, lung, mammary 
glands, pancreatic prostate carcinomas, melanoma and 
hematopoietic malignancies (e.g., myeloid or lymphoid 
leukemia)[5-7]. Cell lines derived from these tumors also 
contain CSCs and tumor precursor cells, which represent 
a promising model for cancer stem cell research[1]. The 
functional characterization of CSCs revealed that these 
cells represent a small subpopulation of the tumor that 
can survive from conventional treatment, scape from 
the immune system and therefore can cause recurrence 
of cancer disease. Therefore, CSCs are driving force of 
tumorigenesis and metastases (Figure 1). According to 
the concept of a stem cell, it is assumed that even a few 
surviving CSCs after tumor therapy, is sufficient to form a 
new tumor[8]. 

In each cancer cell clone, which is characterized by 
harboring different combinations of mutations or genetic 
alterations, the processes of self-renewal, and differentiation 
occur differently based on the type of genetic lesions[9]. 
Nevertheless, significant similarities between normal and 
tumorigenic, experimentally identified stem cells could be 
expected. Both stem cell types (normal or cancerous) are 
rarely active, dependent on a specific microenvironment 
(so-called “stem cell-niche”) and have a number of self-
protection mechanisms[2]. This niche enables a dynamic 
interaction between stem cells and surrounding cells 
including immune cells (“immune-niche”), cytokines and 
chemokines that regulates maintenance, quiescence, self-
renewal and differentiation of stem cells to provide an 

optimal stem cell-supporting setting. What contributes to 
formation of the niche for tumor stem cells is the subject 
of intensive research[10]. Normal stem cells are more 
microenvironment dependent in order to get dynamic 
input to balance between activation and differentiation 
or self-renewal and quiescence “extrinsic factors”[11,12]. 
Although CSCs can represent more autonomous regulatory 
characterization “intrinsic factors”, similar concept of 
stem cell niche support could also hold for them[13]. The 
majority of studies using the isolated CSCs, shows the 
dominant effect of intrinsic factors on CSC regulation. 
While, other studies propose a role for the CSC niche[12]. 
This model suggests that less malignant tumors may have 
more demand on the stem cell-niche but upon cancer 
progress this dynamic interplay might be weaken or even 
diminished[14].  

An inductor of the stem cell phenotype is hypoxia[15-17]. 
The self-protection mechanisms are due to the expression 
of numerous proteins, which reduce the effects of 
genotoxic xenobiotics. These include the members of 
efflux pumps, such as ABCB1-MDR1, ABCC1-MRP1 and 
ABCG2-BCRP, other specific detoxification systems, such 
as aldehyde dehydrogenase and increased DNA repair 
capacity. The symmetric cell division and asymmetric 
distribution of the DNA can also be regarded as part of 
stem cell self-protection mechanisms[9]. For the tumor 
stem cells, the existence of the same mechanisms is a 
crucial cause of their therapeutic resistance.

In addition to hypoxia as a triggering factor, growth 
factors play an important role, leading to epithelial-
mesenchymal transition (EMT) in cells. It is shown a 
high-level regulation of stem cell markers after the 
induction of EMT in normal epithelial cells of the breast 
gland tissue and in mammary carcinoma cells[18]. One 
of the EMT effects can be the induction of the stem cell 
phenotype[18].

Numerous findings could show that routine tumor 
therapy approaches (classical chemotherapy or radiation 
therapy) and even the majority of currently used targ
eted antitumor drugs, so-called biological therapy, have 
little effect on the tumor stem cells even in chemo- or 
radio-sensitive tumors[19]. While, the stationary tumor 
stem cells largely retain their epithelial character and are 
therefore responsible for the primary tumor growth or 
recurrence, the migrating tumor stem cells exhibit ability 
for invasion and distance metastasis. This highlights the 
above-mentioned plasticity of the tumor stem cells (Figure 
1). 

THERAPY RESISTANCE IN CSCs
A small number of immortal cells within the bulk tumor 
with a character of CSC causes the chemo/radiotherapy 
resistance. Such cells with stem cell characteristics, seem 
to grow aggressively and metastasize easily. It is not yet 
clear how CSCs are formed, whether they develop from 
tissue stem cells or are formed from differentiated cells 
by recovering embryonic properties. Chemotherapeutic 
agents and radiotherapy mainly destroy dividing cells[20]. 
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Since CSCs are particularly dormant, in one hand they 
are not detected by the routine screening measures, and 
in the other hand, they are positively selected upon the 
routine therapy approaches. 

MOLECULAR MECHANISMS OF THE 
THERAPY RESISTANCE OF CSCs
Central regulators of the cellular response to DNA da
mage are checkpoint kinases 1 and 2 (Chk1/2), which are 
activated after genotoxic stress and stop cell proliferation 
to allow DNA repair. Activation of Chk1 as a response to 
DNA damage by ionizing radiation or chemotherapy agents 
can be detected preferentially in CD133+ glioblastoma 
precursor cells[21]. By pharmacological inhibition of Chk1, 
it was possible to increase the sensitivity of CD133+ 
glioblastoma precursor cells against therapy[21].

An efficient inactivation of reactive oxygen species 
(ROS) is another feature of CSCs. The excessive pro
duction of ROS under chemo/radiotherapy leads to a cell 
damage because of its interaction with DNA and proteins 
and triggering the cell death. In some tumors, including 
mammary carcinoma and gastrointestinal carcinoma, 
fewer amounts of ROS were detected in CSCs with 
a simultaneously increased amount of free-radical 
scavenger compared to the cell populations without 
CSC phenotype[22]. In addition, the expression of stem 
cell marker CD44 in tumor cells was associated with an 

increased expression of the glutathione as a free-radical 
scavenger[23,24]. Pharmacologically induced reduction 
in the concentration of free-radical scavenger in tumor 
cells can significantly increase their sensitivity to the 
chemo/radiotherapy[25]. It remains unclear whether the 
increased CD44 expression as a biomarker is suitable for 
the detection of ROS-resistant CSCs and thus can identify 
patients who can benefit from therapy with inhibitors of 
free-radical scavengers in combination with the chemo/
radiotherapy.

Another factor contributing to the chemo/radiotherapy 
resistance of CSCs is hypoxia. Among other factors, 
hypoxia is the most common cause of therapy-resistance 
CSCs, which activates the hypoxia inducible factor 
signaling pathway and triggers cellular processes that can 
lead to a better survival and expansion of CSCs[26]. The 
presence of hypoxia in the tumor tissue or its decrease 
by reoxygenation in the course of chemo/radiotherapy 
could be correlated with an accelerated repopulation of 
CSCs with therapy-resistance phenotype[27]. 

There are several critical proliferation-promoting and 
survival-inducing pathways triggering the maintenance 
and survival of CSCs. The canonical Wnt pathway, which 
is central signaling pathway for stem cell maintenance 
and development, is constitutively active in breast cancer, 
colorectal cancer, myeloid leukemia, lung cancer and 
skin cancer[28,29]. Hedgehog Signaling (HH), which has 
three different homologues desert Hedgehog, Indian 
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Figure 1  Complex organization of cancer initiation, progress, remission and relapse. CSCs are capable of undergoing extensive cell proliferation after acquiring 
different pathologic genetic/epigenetic changes while retaining their stemness and giving rise to differentiated progenies. Acquiring further genetic/epigenetic changes 
during different stages of tumor progression will evolve CSCs, but this may also be advanced through having dynamic interplay with the stem cell-niche. Both CSCs 
and non-CSCs can be found at the invasive front of primary tumors, which is linked to the process of EMT. However, only CSCs are capable of surviving from immune-
surveillance or conventional tumor therapies and are able to give rise to distance metastasis or cause cancer recurrence. The potential eradication of tumor cells and 
CSCs can be resulted only upon combination targeted therapeutic approaches. Tumor stem cell-targeting drugs should able to prolong the efficacy of cytotoxic tumor 
therapy and reduce the recurrence risk. CSC: Cancer stem cell; CC: Cancer cell; NC: Normal cell; EMT: Epithelial-mesenchymal transition.
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Hedgehog and Sonic Hedgehog is essential in a variety of 
molecular and cellular processes during tissue homeostasis, 
development or embryogenesis. Aberrant HH activation 
which regulates the CSC’s maintenance and potential 
proliferation, is reported in different cancers including 
acute myeloid leukemia (AML), breast cancer, chronic 
myeloid leukemia (CML), glioblastoma, lung carcinoma, 
myeloma, pancreatic adenocarcinoma[7,30,31]. Canonical 
Notch signaling is the other conserved signaling pathway in 
tissue homeostasis and development. Activation of Notch 
signaling upon binding of the extracellular ligands, regulates 
the expression of target genes involving in CSC self-renewal 
such as Myc, Nanog, Oct-4, and Sox2[32]. Abnormal Notch 
activation plays a critical role in breast cancer, myeloid 
leukemia (AML and CML), glioblastoma, lung cancer and 
pancreatic cancer[7,32,33]. Phosphoinositide-3-kinase/protein 
kinase B, canonical and non-canonical nuclear factor-kB 
(NF-kB), stromal-derived factor-1a/CXCR4, ErbB signaling 
and hedgehog/glioma-associated oncogene are other 
critical pathways that regulates CSC-related maintenance 
and proliferation[34-38]. The majority of cancer and CSC-
related pathways do not act as isolated units but rather 
often interact with other pathways as a linked biological 
network. The predicted crosstalk among Wnt signaling, 
Notch pathway, Hedgehog signaling and other pathways 
like EGF/VEGF signaling is illustrated in the Figure 2. 

Therefore, therapies that target CSCs could be more 
effective than therapies targeting a general reduction 
in tumor mass. Thus, it can be postulated that the 

efficacy of the chemo/radiotherapy to eradicate CSCs, 
can be enhanced by a combination therapy with drugs 
specifically targeting CSCs (Figure 1). 

METHODS FOR SCREENING OF CSCs
Over the past decade, different CSC markers were 
identified in a wide range of hematopoietic malignancies 
and solid tumors[39,40]. A widely used method for 
characterizing CSC-related markers is multiparameter flow 
cytometry. This method, which is originally developed for 
the analysis of blood cells and hematopoietic stem cells, 
offers the possibility to detect CSCs by means of specific 
surface markers that are stained with fluorescence-
coupled antibodies. Frequently, the expression of CD133 
or CD44 alone or in combination with further markers such 
as CD20, CD24, CD90 or α2-β1-integrin is used as a CSC-
specific marker (Figure 3). Functional detection of CSC 
is also possible and is based on the increased expression 
of detoxification enzyme aldehyde dehydrogenase 1 
(ALDH1) or the high activity of multidrug resistance 
transport proteins. These CSC-specific staining methods 
allow the isolation of single CSCs for further molecular 
characterization using single cell based molecular 
approaches (Figure 3). However, identified markers are 
not always reliable and none of the reported markers 
solely identify CSCs, therefore need to be used with 
caution (Table 1). 

For example, inter- or intra-tumor heterogeneity 

Figure 2  Crosstalk between cancer and cancer stem cell-related pathways. Predicted crosstalk among Wnt signaling, Notch pathway, Hedgehog signaling and 
other cancer-related pathways like EGF/VEGF signaling in CSCs and cancer. Gene networks and canonical pathways were assessed using the Ariadne Genomics 
Pathway Studio® program and database (Elsevier). EGF: Epidermal growth factor; VEGF: Vascular endothelial growth factor; WNT: Wnt signaling pathways; PI3K: 
Phosphoinositide 3-kinase; PIP3: Phosphatidylinositol 3,4,5 trisphosphate; CSC: Cancer stem cell; SHH: Sonic Hedgehog.
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may completely render CSC markers inapt. Such tumor 
heterogeneity can be the result of different genetically 
distinct clones within the tumor due to having various 
genetic lesions or dysregulation of markers via pathologic 
epigenetic regulations[16,37-43]. For example, CD133 marker 
is frequently inactivated due to the DNA methylation and 
therefore often inadequate[44]. Inactivation of specific 
markers due to any scape mechanism in a particular clone 
may render these CSCs undetectable in the absence of 
other distinct markers. 

While high-throughput genetic screening studies 
provide essential information about genes which are 
associated with a particular phenotype, molecular phar
macology can play an important role in development 
of a specific molecular therapy. Low molecular weight 
substances (“small molecules”) show a higher penetrance 
in cell-based screening methods. Therefore, small 
molecules are one of the most frequently used therapeutic 

agents. The screening of large substance banks has 
identified many valuable compounds that can be used to 
modulate biological systems in cancer cells[45]. In order to 
systematically identify the genes that regulate the death 
and differentiation of CSCs, high-throughput screenings 
of RNA interference (RNAi) or chemical substance libraries 
are carried out using different approaches. The readout of 
such screen approaches can be survival analysis, reporter 
assays, luminescence or fluorescence-based analyzes of 
particular genes or pathways and imaging methods, in 
which several cellular properties can be examined on a 
single cell level. 

Since CSCs only make up a small fraction in the 
entire tumor cell pool (Figure 1), appropriate enrichment 
methods must be applied. Gupta et al[46] enriched 
CD44hi/CD24lo cells within the CSC population of mam
mary carcinoma cell lines by inducing the EMT. After 
treatment with inhibitors, the survival of the enriched and 

Figure 3  Tracing and targeting cancer stem cells. A: The complex process of distant metastasis including invasion of the tumor microenvironment, EMT, shedding 
of CSCs into the blood stream (intravasation), MET and invasion of circulating CTCs to the other tissues (extravasation). Only circulating CSCs are able to survive 
in the circulating blood, escape from immune-surveillance and home to secondary organs; B: The list of known compilation CSC-related molecular markers for 
different solid tumors and hematopoietic malignancies. The level of specificity of these markers differs per each type of tumor. Markers are ordered alphabetically 
and not according to their sensitivity or specificity; C: Four important approaches of CSC-targeted therapy. CSC: Cancer stem cell; CC: Cancer cell; NC: Normal cell; 
EMT: Epithelial-mesenchymal transition; MET: Mesenchymal-epithelial transition; PI3K: Phosphoinositide 3-kinase; MAPK: Mitogen-activated protein kinase; TGF: 
Transforming growth factor; mTOR: Mechanistic target of rapamycin; RAS: Ras-activated signaling; PD-1: Programmed death 1; PD-L1: Programmed death-ligand 1; 
EpCAM: Epithelial cell adhesion molecule.
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the non-selected cell population was investigated using a 
luminescence-based reporter assay. This study was able 
to identify salinomycin as a selective inhibitor of the CSC 
population in breast carcinoma[46].

Recent advances in computer-based image analysis 
have enabled rapid achievements in the development 
of image-based high-throughput analysis approaches. 
The direct visualization of cellular features and biological 
processes allows a more comprehensive measurement 
of responses to interferences. Xia et al[47] have developed 
a novel fluorescence imaging method to identify cancer 
cells with CSC properties through their increased ability 
to deliver fluorescent dyes via dedicated molecular 
transporters. Based on this method, a library of active 
substances was examined for their effect in CSCs. It was 
possible to identify substances that selectively inhibit the 
molecular transporters[47]. 

A further high-throughput method has recently 
been developed to characterize the biochemical and 
biophysical environmental conditions of CSCs. Microarray 
glass slides with over 2000 test chambers can be used to 
cultivate stem cells in different cell densities in a hydrogel 
of polyethylene glycol, to which different biological 
molecules have been coupled by robot technology[48]. 
Using the microscopic imaging, cell proliferation, mor
phology and differentiation can be monitored at a single 
cell level. This method as a platform for the investigation 
of individual stem cells in a microfluid culture system 
with simultaneous live-cell microscopy, represents an 
important step towards the miniaturization of the cellular 
processes as a high-throughput screening approach[49].

TARGETING CSCs
Targeting tumor microenvironment
The heterogeneous tumor microenvironment or cancer 
cell-niche, provides different self-protection mechanisms 
which enables a dynamic interaction with surrounding 
cells including immune cells, cytokines and chemokines 
to regulate proliferation, maintenance and self-renewal of 
CSCs. CSCs can represent more autonomous regulatory 

characterization in an independent manner[13]. Less 
malignant tumors may have more demand on the 
stem cell-niche but upon cancer progress this dynamic 
interplay might be weaken or even diminished[14]. It 
is known that dormant cancer cells via reducing their 
immunogenicity, can escape the immune surveillance[50]. 
Therefore, targeting CSC microenvironment may stim
ulate the host antitumor responses[51]. Strategies to hit the 
tumor-promoting inflammation are under investigation. 
Production of prostaglandin E2 (PGE2) by tumor cells in 
breast cancer, colorectal cancer and melanoma has a key 
role in the escape phase as it suppresses immunity and 
induces inflammation[52]. Therefore, the use of antagonists 
of PGE2 receptor (PTGER4) has proven successful in 
blocking immuno-suppression and preventing cancer 
metastases[53]. 

Targeting efflux transporters
Membrane efflux transporters, which are mainly located 
in blood-brain barrier, hepatocytes, intestinal cells or 
kidney proximal tubules, play important roles in drug 
metabolism, availability, and toxicity of drugs in human 
body[54]. Several studies indicate that transporter-
mediated drug disposition plays an important role in 
mediating chemo-sensitivity and -resistance of cancer 
cells and CSCs[55]. The interaction between efflux trans
porters and chemotherapeutic drugs on cancer cells is 
significantly linked to the efficacy of cancer therapy. Two 
major superfamilies of efflux transporters are the ATP-
binding cassette (ABC) transporters [ABCB1 (MDR1), 
ABCC1 (MRP1), ABCC2 (MRP2) and ABCG2 (BCRP)] and 
the solute carrier (SLC) transporters [SLC19A1 (RFC1) 
and SLCO1B1 (SLC21A6)]. Therefore, targeting efflux 
transporters within cancer therapy combined with routine 
therapies could significantly increase the eradication rate 
of resistant cancer cells[56]. 

Targeting key signaling pathways
The CSC phenotype depends on various cellular signals, 
which are triggered by the underlying genetic lesions 
and by the support of the stem cell niche. Some of 

Table 1  Hallmarks of using cancer stem cell-related markers

Problems Potential solutions 

CSC-related markers may not be specific by their own for a certain type of 
tumor

Combined used of different markers may be the solution

Some of CSC-related markers may be down-regulated or suppressed in a given 
tumor due to different genetic or epigenetic regulatory mechanisms

Using of distinct markers or a combination them

Splice variants of some CSC-related markers may render detection difficult The exact splice variant should be considered for the detection
Markers can be detected using one method (e.g., FACS), but not with other 
methods (e.g., immunohistochemistry)

Stringent selection of related markers might be required

Different tumors have clonal variation and heterogeneous cell population. Less 
malignant clones may harbor CSCs that express different markers. Therefore, 
CSC-related markers may be differentially regulated within different clone or be 
completely missed

Using more specific and sensitive methods, isolate more enriched 
CSC populations

Many of reported CSC-related markers are not validated, since they derived 
from cell-line or mouse model studies

Markers should be validated in xenotransplants or primary human 
materials

CSC: Cancer stem cell; FACS: Fluorescence-activated cell sorting.
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these signals have already been identified; the most 
disease cussed signaling pathways are the classic Wnt-
β-catenin, Notch and Sonic Hedgehog signaling[57-59]. For 
these three pathways, pharmacological inhibitors have 
been developed which are now undergoing clinical trials 
in many independent studies[60]. However, the clinical 
effect is largely depending on the tumor type and not 
all three pathways are equally important in all types of 
tumors. It has been shown that, although some signaling 
pathways are highly tumor-promoting in a certain type 
of cancers (which makes it a suitable therapeutic target), 
they might react as tumor suppressive in another tumor 
type; therefore, their inhibition may become dangerous 
(e.g., Notch-1 has been identified as a tumor suppressor 
in urinary bladder carcinoma)[61]. High Wnt pathway 
activity marks colon or leukemia CSCs and is required 
for stemness signature as a prognostic marker[6,7,62]. 
In addition, Wnt activity is associated with the CSC 
markers CD133, CD44 and LGR5 in colon cancer[63] 
whereas Hedgehog activity is linked to ABC transporter 
expression in esophageal and prostate cancer[17,64] 
TGF-β signaling via the family members Nodal and 
Activin is attributed to pancreatic CSCs[65]. The effect of 
Hedgehog inhibitors is actually the most evident in the 
basal cell carcinoma. In addition, inhibition of Hedgehog 
pathway blocks stemness in breast CSCs, whereas its 
activation enhances self-renewal[66]. It is also necessary 
to distinguish whether those signaling pathway has 
been activated within CSCs only because of harbored 
genetic lesions[67]. If only the CSCs are targeted, it is 
hardly possible to expect a dramatic tumor shrinkage 
as in classical successful chemo/radiotherapy; rather, 
this would be a disease stabilization and a slowing of the 
progression (Figure 1).

Disulfiram was developed as an inhibitor of aldehyde 
dehydrogenase for the treatment of alcoholism. This 
inhibition leads to the accumulation of acetaldehyde 
after alcohol consumption, resulting in a marked nausea 
that should reduce the probability of further alcohol 
consumption[68]. The same enzymatic activity - aldehyde 
dehydrogenase - is, however, a component of the self-
protection of the CSCs, and thus disulfiram was used 
for the elimination of CSCs. Thioridazine is an inhibitor 
of dopamine receptors, and is a standard medication 
for mental disorders such as schizophrenia. Its rational 
use in tumor therapy is based on the finding that CSCs 
in several types of tumors (e.g., AML, breast carcinoma, 
glioblastoma), in contrast to the corresponding nor
mal tissue stem cells, upregulate the expression of 
dopamine receptors[69].

Niclosamide was identified that specifically targeted 
Wnt-β-catenin signaling pathways[70]. Interestingly, 
niclosamide is known as an antiparasitic and inhibitor 
of oxidative phosphorylation, which has been used in 
human medicine for almost 50 years[71]. However, what 
has emerged is that these two antiparasitics are inhibitors 
of numerous other signaling pathways. Niclosamide 
inhibits not only the Wnt-β-catenin signaling pathway, 
but also the Notch, PI3’K-Akt - mTOR, STAT-3 and 

NFkB signaling pathways, which are essential for tumor 
stem cells[72]. Salinomycin was similarly described as 
an inhibitor of ABC efflux pumps and the Wnt-β-catenin 
signaling pathway[73]. Not enough, analogous effects 
have been discovered for disulfiram and thioridazine. 
Disulfiram has not only proved to be an effective inhibitor 
of aldehyde dehydrogenase, but also polo-like kinase 
1 and O6-methylguanine methyltransferase as well as 
NFkB[74,75]. 

The advantages of identifying such new indications 
for old drugs are obvious. These drugs have long been 
out of patent protection and their use should therefore 
be much cheaper than for newly developed drugs, which 
is an important aspect in the current discussion on costs 
of tumor treatment. In addition, they have already 
undergone clinical trials, their potential toxicity, side 
effects, pharmacokinetics, contraindications, and possible 
drug-drug interactions are known. Therefore, their use in 
tumor therapy should be relatively easy. Perhaps the best 
opportunity to see how the effects of tumor stem cell-
targeted therapy can be demonstrated is in the area of ​​
combination therapy (Figure 1). Tumor stem cell-directed 
drugs should be able to prolong the efficacy of cytotoxic 
therapy and reduce recurrence risk[76,77]. On the other 
hand, combined administration has significantly greater 
chances of total elimination of all tumor cells. Taken 
together, there are many possibilities for therapeutic 
treatment for the elimination of tumor stem cells, both 
from the group of newly developed inhibitors of some 
stem cell-specific signaling pathways as well as for 
some old drugs that can find a new application in tumor 
therapy. 

Targeting cellular surface markers (tumor 
immunotherapy and cancer vaccination)
Many types of normal cells like immune cells infiltrate 
tumors. Over the last years, immune infiltration has 
become a central focus in cancer research[50]. It is in
creasingly recognized that cancer cells and CSCs need 
to escape immune recognition. IL-6/JAK/STAT3 signaling 
an important pathway in many solid tumors. Anti-IL-6 
mAb siltux-imab was tested on various cancer types, 
which was not able to provide promising outcome to 
improve overall survival of patients with multiple myeloma 
according to a recent Phase II clinical trial on patients[78]. 
While, checkpoint blockade antibodies such as cytotoxic 
T-lymphocyte antigen 4 (CTLA-4) or programmed death-
ligand 1 (PD-1/PD-L1) like ipilimumab or nivolumab could 
provide marked clinical benefits for lung adenocarcinoma, 
melanoma or Hodgkin lymphomas[79,80]. These agents can 
boost the immune system and display clinical benefits for 
a fraction of patients[50]. 

Many tumors cells including CSCs, alter the ex
pression of their genes or down-modulate of antigen 
processing and presentation to build an immuno-sup
pressive microenvironment that creates physical or 
chemical barriers against immune cells[81]. Indeed, 
CSCs by low express of MHC-I, and over expressing 
of IL-4 are escaping from cytotoxic T lymphocytes[82]. 
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Boosting T-cell response can be a promising approach to 
eradicate CSCs. This can be achieved by boosting neo-
antigens within CSCs, considered as tumor vaccination. 
Adoptive transfer of CSC-specific T-cells into tumor-
bearing mice could show a success[83]. In addition, 
genetically modified T cells to express chimeric antigen 
receptors (CAR T-cells) upon adaptive transfer could 
provide remarkable benefit for patients suffering from 
different solid tumors or leukemia[84]. Therefore, the 
major goal of immunotherapy is to thwart these barriers 
in order to enhance pre-existing or elicit a new immune 
response against cancer.

CONCLUSION
Because of the CSCs’ ability to therapy resistance and 
initiate a recurrence after therapy, cancer stem cell is an 
important therapeutic target. Future research is essential to 
elucidate how CSCs dictate metastasis, therapy-resistance 
or immune-scape signature. However, without having 
reliable markers it will be a challenging pursuit. An exact 
molecular characterization of this small subpopulation in 
the tumor tissue requires the development of specific CSC 
markers and suitable enrichment methods. Particularly 
from innovative high-throughput screening technologies, 
we can expect valuable insights regarding suitable CSC-
associated biomarkers and new therapeutic approaches 
to target CSCs. This could be an important step towards 
individualized cancer therapy.
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Abstract
AIM
To identify and characterize functionally distinct sub
population of adipose-derived stem cells (ADSCs).

METHODS
ADSCs cultured from mouse subcutaneous adipose tissue 
were sorted fluorescence-activated cell sorter based on 
aldehyde dehydrogenase (ALDH) activity, a widely used 
stem cell marker. Differentiation potentials were analyzed 
by utilizing immunocytofluorescece and its quantitative 
analysis.

RESULTS
Approximately 15% of bulk ADSCs showed high ALDH 
activity in flow cytometric analysis. Although significant 
difference was not seen in proliferation capacity, the 
adipogenic and osteogenic differentiation capacity was 
higher in ALDHHi subpopulations than in ALDHLo. Gene set 
enrichment analysis revealed that ribosome-related gene 
sets were enriched in the ALDHHi subpopulation. 

CONCLUSION
High ALDH activity is a useful marker for identifying 
functionally different subpopulations in murine ADSCs. 
Additionally, we suggested the importance of ribosome for 
differentiation of ADSCs by gene set enrichment analysis.

Key words: Adipose-derived stem/stromal cell; Aldehyde 
dehydrogenase activity; Flow cytometry; Subpopulation; 
Ribosome

© The Author(s) 2017. Published by Baishideng Publishing 
Group Inc. All rights reserved.

Core tip: Aldehyde dehydrogenase (ALDH) activity is 
widely used as a stem cell marker in several types of 
normal or malignant tissues. However, there was no report 
of ALDH activity in murine adipose-derived stem cells 
(ADSCs). Here, our study demonstrated a subpopulation 
defined by high ALDH activity within murine ADSCs. The 
subpopulation with high ALDH activity (ALDHHi) showed 
enhanced differentiation potentials into adipocyte and 
osteocyte. Furthermore, gene set enrichment analysis 
revealed that ribosome-related gene sets were enriched 
in ALDHHi of murine ADSCs. We showed relationship 
between ALDHHi and ribosome biosynthesis, providing a 
novel insight of mesenchymal stem cell biology. 
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INTRODUCTION
Stem cells can self-renew and differentiate into spe
cialized cells of various tissues[1]. Therefore, these cells, 
for example, embryonic stem cells (ESCs), induced plu
ripotent stem cells (iPSCs), hematopoietic stem cells, and 
mesenchymal stem cells (MSCs), have been the object of 
basic research and clinical applications. Among these types 
of stem cells, MSCs, as represented by adipose-derived 
stem/stromal cells (ADSCs) and bone marrow-derived 
stem/stromal cells (BMSCs), have been recognized as 
useful material for cell-based therapy[2]. MSCs have been 
isolated from various tissues, including adipose tissue, 
the bone marrow, peripheral blood, cord blood, the liver, 
dental pulp, and fetal tissue; of these, adipose tissue is one 
of the most abundant source of MSCs[3]. ADSCs possess 
multipotency and have the potential to differentiate into 
cell types such as adipocytes, osteocytes, chondrocytes, 
neurons, vascular endothelial cells, cardiomyocytes, 
myoblasts, and islet β-cells under appropriate conditions[4].

The researches have suggested that ADSCs are hetero
geneous and comprise phenotypically and/or functionally 
different subpopulations[5-7]. For example, the cluster 
of differentiation (CD)73+ subpopulation of murine AD
SCs possesses increased potential for cardiomyocyte 
differentiation[6]. The CD90+ subpopulation of murine 
ADSCs has higher tube-forming ability than the CD90– 
subpopulation, which has high adipogenic potential[8]. The 
CD90+ subpopulation also exhibits higher efficiency of 
iPSC induction than the CD90– subpopulation[5]. Human 
ADSCs also include the CD105Lo subpopulation, which has 
high osteogenic potential[7]. Some studies have identified 
different subpopulations in ADSCs on the basis of surface 
antigen markers[5-7]. However, it is unclear how these 
markers (e.g., CD90 and CD105) are functionally related 
to cell differentiation. 

In mice, aldehyde dehydrogenase (ALDH) is a sup
erfamily comprising 20 intracellular enzymes and is 
responsible for the oxidization of various aldehydes[9]. High 
ALDH activity has been shown in normal hematopoietic 
stem cells, neural stem cells, and cancer stem cells in 
various types of neoplastic diseases[10]. Therefore, high 
ALDH activity is considered to be a common marker for 
normal and malignant stem cells. In human ADSCs, 
however, only one study has been performed on the 
ALDHHi subpopulation, whose significance in differentiation 
potential is unclear[11]. Moreover, to our knowledge, the 
existence of the ALDHHi subpopulation within murine 
ADSCs has not yet been reported. 

In the current study, the ALDHHi and ALDHLo sub
populations of murine ADSCs were sorted using flow 
cytometry. The differentiation potential and proliferation 
of the sorted ALDHHi and ALDHLo subpopulations were 
analyzed. Furthermore, we analyzed the transcriptional 
profiles of the ALDHHi and ALDHLo subpopulations by 
utilizing gene set enrichment analysis (GSEA).
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MATERIALS AND METHODS
Animals and ADSC isolation
C57BL/6J mice were purchased from Kyudo Co., Ltd 
(Saga, Japan). All animal experiments were carried out in 
accordance with the National Institutes of Health guide for 
the care and use of Laboratory animals (NIH Publications 
No. 8023, revised 1978) and the institutional guidelines 
of Yamaguchi University. The animal experiments were 
approved by the institutional animal experiment ethics 
committee of Yamaguchi University.

Murine ADSCs were isolated from twenty of C57BL/6J 
female mice of 4- to 6-wk-old, as previously described[8]. 
Briefly, the subcutaneous adipose tissue was resected, 
washed with Dulbecco’s phosphate-buffered saline 
(DPBS; Wako, Osaka, Japan), and cut into small pieces. 
The adipose tissue pieces were digested in high glucose 
Dulbecco’s modified Eagle’s medium (DMEM; Wako, 
Osaka, Japan) containing 1.0 mg/mL collagenase 
type Ⅰ (Sigma-Aldrich, St. Louis, MO, United States), 
10% fetal bovine serum (FBS; Sigma-Aldrich), and 
antibiotic-antimycotic agents (PSM; penicillin: 100 U/mL, 
streptomycin: 100 µg/mL, and amphotericin B: 0.25 µg/
mL, final concentrations; Nacalai Tesque, Kyoto, Japan), 
using a shaking incubator at 37.5 ℃ and 250 rpm for 1 h. 
The digested tissue was filtered through a sterile ø100-
µm nylon mesh (EASYstrainer, 100 µm; Greiner Bio-One 
Japan, Tokyo, Japan), followed by centrifugation at 400 
× g for 5 min in DPBS supplemented with 1% FBS and 
1 mmol/L EDTA∙3Na (Wako, Osaka, Japan). The pellet 
was resuspended in DMEM supplemented with 10% FBS 
and antibacterial/antimycotic agent and was cultured 
at 37.0 ℃ in a 5% CO2 atmosphere, using ø10 cm dish 
(Corning, NY, United States). When the cultures reached 
80%-90% confluence, the ADSCs were dissociated from 
the dish by using Accutase solution (Innovative Cell 
Technologies, San Diego, United States), and seeded into 
new dishes.

Flow cytometry analysis
Adherent ADSCs from passage 4 were dissociated using 
Accutase solution; 1 × 106 cells were resuspended 
and incubated for 5 min on ice with 2 µL of anti-mouse 
CD16/32 rat monoclonal antibody (BioLegend, San 
Diego, CA, United States). Cells were stained with 1 
µL viability probe (Zombie NIR, Biolegend) for 20 min 
at room temperature to stain dead cells. ALDH activity 
was assessed by utilizing the ALDEFLUOR kit (Stemcell 
Technologies, Vancouver, Canada) according to the 
manufacturer’s instructions. Briefly, 1 × 106 cells were 
resuspended in 1 mL assay buffer and 5 µL ALDEFLUOR 
reagent was added after thorough mixing; then, 0.5 mL 
of the cell suspension was transferred to a new tube with 
5 µL diethylaminobenzaldehyde (DEAB) reagent (ALDH 
inhibitor) for negative control of ALDH activity. Flow 
cytometric analysis and cell sorting were performed using 
Accuri C6 (BD Bioscience, San Jose, CA, United States) 
and the SH800 cell sorter (Sony, Tokyo, Japan). Flow 
cytometric data were analyzed with the FlowJo (Tree Star, 

Ashland, OR, United States) software. 

Measurement of proliferation potential
To assess the viability of the ADSC subpopulations, we 
used a cell WST-8 assay (Cell Counting Kit-8; Dojindo 
Laboratories, Kumamoto, Japan) according to the 
manufacturer’s instructions. Briefly, sorted ALDHHi or 
ALDHLo murine ADSCs were seeded in 96-well plates at 
a density of 3 × 103 cells/well. After 12, 24, 48, and 72 
h, 100 µL fresh medium containing 10 µL CCK-8 solution 
was added to each well, followed by incubation at 37 ℃ 
for 1 h. The absorbance of each well at 450 nm was 
measured using an Epoch microplate spectrophotometer 
(BioTek Instruments, Winooski, VT, United States). Six 
replicates were prepared for each group. 

Cell differentiation and immunofluorescence staining
The adipogenic and osteogenic differentiations of ADSCs 
were characterized using a Mouse Mesenchymal Stem 
Cell Functional Identification Kit (R and D Systems, 
Minneapolis, MN, United States) according to the manu
facturer’s instructions. Briefly, for adipogenic differentiation, 
cells (3 × 103/well) were cultured at 37 ℃ in a 5% CO2 
atmosphere in a 96-well plate in 100 µL adipogenic 
differentiation medium composed of α-minimal essential 
medium (αMEM) supplemented with 10% FBS, 1% PSM, 
L-glutamine, and 50 µL adipogenic supplement containing 
hydrocortisone, isobutylmethylxanthine, and indomethacin 
for 15 d in 37 ℃ and a 5% CO2 atmosphere. 

For osteogenic differentiation, cells were cultured in 
osteogenic differentiation medium composed of 5 mL 
α-MEM basal medium and 250 µL osteogenic supplement 
containing ascorbate-phosphate, β-glycerolphosphate, 
and recombinant human bone morphogenetic protein-2 
for 15 d in 37 ℃ and a 5% CO2 atmosphere. The medium 
was replaced every 2-3 d.

To assess adipogenic and osteogenic differentiation 
by immunocytochemistry, cultured cells were fixed in 
4% paraformaldehyde phosphate buffer solution (Wako, 
Osaka, Japan) for 20 min. After the cells were washed with 
DPBS, they were permeabilized and blocked with DPBS 
supplemented with 0.3% Triton X-100 (Sigma-Aldrich), and 
10% FBS for 45 min. The cells were subsequently incubated 
for 1 h in DPBS containing 10 µg/mL goat anti-mouse 
fatty acid binding protein (FABP) 4 polyclonal antibody 
to label adipocytes or were incubated with 10 µg/mL 
goat anti-mouse osteopontin polyclonal antibody to label 
osteocytes. They were then washed with DPBS and 
incubated for 1 h in DPBS containing phycoerythrin (PE)-
conjugated rabbit anti-goat IgG antibody [rabbit F(ab’)2 
anti-goat IgG-H and L (PE), pre-adsorbed, Abcam, 
Cambridge, United Kingdom]. Nuclei were stained with 5 
µg/mL Hoechst 33342 (Dojindo Laboratories, Kumamoto, 
Japan). Photographs were obtained and analyzed using 
a fluorescence microscope (BZ-9000; Keyence, Osaka, 
Japan) and its analysis software.

Gene expression array analysis and GSEA
Gene expression array analysis and GSEA were performed 
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on the published gene expression profile of C57BL/6 
mice divided by ALDHhi and ALDHlo subpopulations of 
ADSCs. About 3 × 106 cells from each subpopulation 
were lysed and total RNA was isolated using the RNeasy 
Mini Kit (Qiagen, Hilden, Germany). Cyanine-3 (Cy3)-
labeled cRNA was prepared from 0.1 µg total RNA by 
using the Low Input Quick Amp Labeling Kit (Agilent 
Technologies, Santa Clara, CA, United States) according 
to the manufacturer’s instructions; this was followed by 
RNeasy column purification (Qiagen). Dye incorporation 
and cRNA yield were checked with the NanoDrop 
ND-2000 Spectrophotometer (Thermo Fisher Scientific, 
Waltham, MA, United States). Cy3-labelled cRNA (0.6 µg) 
was fragmented at 60 ℃ for 30 min in a reaction volume 
of 25 µL containing 1 × Agilent fragmentation buffer and 
2 × Agilent blocking agent following the manufacturer’s 
instructions. On completion of the fragmentation reaction, 
25 µL of 2 × Agilent hybridization buffer was added to 
the fragmentation mixture and hybridized to SurePrint 
G3 Mouse GE 8 × 60 K Ver1.0 (Agilent Technologies) 
for 17 h at 65 ℃ in a rotating Agilent hybridization 
oven. After hybridization, the microarrays were washed 
for 1 min at room temperature with GE Wash Buffer 1 
(Agilent Technologies) and 1 min with 37 ℃ GE Wash 
buffer 2 (Agilent Technologies). The slides were scanned 
immediately after washing on the Agilent SureScan 

Microarray Scanner (G2600D), using one color scan 
setting for 8 × 60 k array slides (scan area, 61 × 21.6 
mm; scan resolution, 3 µm; dye channel set for Green 
PMT was set to 100%). The scanned images were 
analyzed with Feature Extraction Software 11.5.1.1 (Agilent 
Technologies), using default parameters to obtain the 
subtracted background and spatially detrended Processed 
Signal intensities. 

Statistical analysis
Statistical analysis was performed using GraphPad Prism 
version 6.01 for Windows (GraphPad Software, La Jolla, 
CA, United States). The results have been expressed 
in terms of mean ± SE. Comparisons of two groups 
were performed with the independent t-test. Multiple 
comparisons were performed with one-way analysis of 
variance. Data were considered statistically significant 
when the P value was ≤ 0.05.

RESULTS
ALDH activity of murine ADSCs
To identify the subpopulation defined by ALDH activity 
in murine ADSCs, single-cell suspensions of cultured 
murine ADSCs were stained using the ALDEFLUOR kit 
and analyzed with flow cytometry. A small subpopulation 
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with distinctively high ALDH activity (ALDHHi cells) was 
detected within the bulk populations of ADSCs (Figure 
1A). The percentage of ALDHHi cells was approximately 
15% of the bulk murine ADSC population (Figure 
1A). However, on adding the ALDH inhibitor N,N-die
thylaminobenzaldehyde (DEAB), a distinct ALDHHi sub
population was not detected (Figure 1A). To assess the 
difference in the proliferation potentials of the ALDHHi and 
ALDHLo subpopulations, we measured the proliferation 
rate of each subpopulation by using the WST assay. The 
proliferation potential of the ALDHHi subpopulation of 

ADSCs was not significantly different compared to the 
ALDHLo subpopulation (Figure 1B). 

Cell differentiation to adipocytes and osteocytes
To assess the adipogenic and osteogenic differentiation 
potential of the two subpopulations, sorted ALDHHi 
and ALDHLo cells were cultured under adipogenic or 
osteogenic differentiation conditions. After in vitro dif
ferentiation, immunofluorescence staining for FABP4 
(marker of adipocytes) and immunofluorescence staining 
for osteopontin (marker of osteocytes) were performed 
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(Figure 2A-D). ADSCs that differentiated into adipocytes 
appeared as accumulated lipid droplets in the cytosol 
in each ALDHHi and ALDHLo subpopulation (Figure 2A 
and B). Furthermore, immunofluorescence staining for 
osteopontin revealed that ADSCs that differentiated into 
osteocytes appeared as accumulated granules in the 
cytosol in each ALDHHi and ALDHLo subpopulation (Figure 
2C and D).

Evaluation of differentiation
Adipogenic and osteogenic differentiation of each ALDHHi 
and ALDHLo subpopulation was quantitatively assessed 
using the BZ-9000 microscope and its analysis software. 
Ten visual fields were taken randomly for every 3 wells, 
and the immunofluorescence-staining positive-areas in 
30 visual fields were analyzed. Subsequently, the immuno
fluorescence-staining-positive area was divided by the 
Hoechst 33342-positive area for each of the 30 visual fields. 
The ALDHHi subpopulation was found to have significantly 
more adipogenic and osteogenic relative-differentiation-
marker-positive areas than the ALDHLo subpopulation (Figure 
2E and F). 

GSEA
To identify the sets of gene that were up- or down-

regulated in the ALDHHi subpopulations, we performed 
GSEA for the published gene expression profile of 
C57BL/6 mice divided by the ALDHHi and ALDHLo sub
populations of ADSCs. Intriguingly, high gene set 
enrichment scores were obtained for the structural con
stituents of ribosomes (Figure 3).

DISCUSSION
MSCs are reported to commonly express CD29, CD73, 
CD90, and CD105 and to be negative for markers such 
as CD45 and CD56[12,13]. There have been many studies 
on cell surface antigen markers of ADSCs, such as CD34 
and CD44[12,14,15]. Recently, however, studies have shown 
that some markers such as CD90 or CD105 are not 
expressed homogenously in bulk ADSC populations but 
are expressed in small ADSC subpopulations, suggesting 
that ADSCs are phenotypically heterogeneous[5,7,8]. In our 
current study, we detected ALDH activity as a stem cell 
marker in murine ADSCs. High ALDH activity has been 
reported as a marker for cells such as hematopoietic 
stem cells and cancer stem cells[10]. However, not many 
studies have been performed on ALDH activity and cell 
differentiation potential in MSCs. In one of these studies, 
Estes et al[11] showed the presence of a subpopulation 
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with high ALDH activity in human ADSCs; however, no 
difference was found in terms of differentiation potential. 
In our present study, the cultured murine bulk ADSC 
population contained approximately 15% of the ALDHHi 
subpopulation. Additionally, in the induction experiment 
for adipogenic and osteogenic differentiation for each 
sorted ALDHHi and ALDH Lo subpopulation, significantly 
higher adipogenic and osteogenic potentials were found 
in the ALDHHi subpopulation. The ALDHHi subpopulation 
had higher cell differentiation potential than the ALDHLo 
subpopulation. To the best of our knowledge, this is 
the first report on the functionally distinguishable sub
population defined by ALDH activity within murine ADSCs. 

Relationships between ribosome biogenesis and stem 
cells have been described only recently. For example, 
it was reported that the transition from self-renewal to 
differentiation depends on the enhancement of ribosome 
biogenesis accompanied by increased protein synthesis in 
female Drosophila germline stem cells[16]. Slow growth, low 
biosynthesis and markedly reduced ribosome biogenesis 
were observed in hematopoietic stem cells that lacked 
RUNX1, which is known to promote the transcription 
of essential ribosome-related proteins[17]. We have few 
reports about relationship between ribosome biogenesis 
and MSCs. One of these reports presented one of core 
proteins of 60S ribosome is necessary for differentiation 
of osteocyte from MSCs[18]. In our current study, GSEA 
revealed the significant enrichment of ribosome-related 
genes in the ALDHHi subpopulation compared to that 
in the ALDHLo subpopulation, suggesting that ribosome 
biogenesis is part of the mechanism underlying the higher 
differentiation potential of the ALDHHi subpopulation. 

ADSCs can be obtained in a less invasive manner 
from adipose tissue. Therefore, ADSCs are considered 
to be a promising source of cell-based therapy in the 
clinical setting. ADSCs have already been used in clinical 
studies for cardiovascular disease, breast reconstruction 
after mastectomy, spinal cord injury, cirrhosis, renal 
insufficiency, skin fistula after surgery, and skin fistula 
with Crohn’s disease[4,19,20]. Some of those trials reported 
the therapy to be safe and effective; however, there is 
obvious room for improvement. For instance, in a phase 
3 trial for therapy with allogeneic expanded ADSCs for 
treatment-refractory complex perianal fistulas in patients 
with Crohn’s disease (ADMIRE-CD trial), approximately 
50% of patients who received ADSC-therapy experienced 
remissions[21]. Although this is a significant achievement, 
further research and development are required in relation 
to the patients who did not respond to this trial. 

Purification of specific subpopulations and engineering 
of ADSCs into cells that are highly efficient in differentiating 
into specific tissues might help obtain basic knowledge 
for cell-based therapy, which is more specific to individual 
disease conditions of each organ for which ADSCs are 
used. Further investigation is required to identify the 
underlying mechanisms that regulate ribosome biogenesis 
and differentiation in ALDHHi ADSCs.

In conclusion, we demonstrated that murine ADSCs 

have a distinct subpopulation defined by ALDH activity. 
Furthermore, the ALDHHi subpopulation had higher oste
ogenic and adipogenic differentiation potential than the 
ALDHLo subpopulation. Ribosome biosynthesis is suggested 
to be a remarkable difference between ALDHHi and ALDHLo 
subpopulations.
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