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Abstract
Acute myeloid leukemia (AML) is an aggressive ma
lignant disease defined by abnormal expansion of 
myeloid blasts. Despite recent advances in understan
ding AML pathogenesis and identifying their molecular 
subtypes based on somatic mutations, AML is still ch
aracterized by poor outcomes, with a 5-year survival 
rate of only 30%-40%, the majority of the patients 
dying due to AML relapse. Leukemia stem cells (LSC) 
are considered to be at the root of chemotherapeutic 
resistance and AML relapse. Although numerous stu
dies have tried to better characterize LSCs in terms of 
surface and molecular markers, a specific marker of 
LSC has not been found, and still the most universally 
accepted phenotypic signature remains the surface 
antigens CD34+CD38- that is shared with normal hem
atopoietic stem cells. Animal models provides the means 
to investigate the factors responsible for leukemic 
transformation, the intrinsic differences between seco
ndary post-myeloproliferative neoplasm AML and de 
novo AML, especially the signaling pathways involved in 
inflammation and hematopoiesis. However, AML proved 
to be one of the hematological malignancies that is dif
ficult to engraft even in the most immunodeficient mice 
strains, and numerous ongoing attempts are focused 
to develop “humanized mice” that can support the en
graftment of LSC. This present review is aiming to in

Cristina Mambet, Mihaela Chivu-Economescu, Lilia Matei, Laura Georgiana Necula, Denisa Laura Dragu, 
Coralia Bleotu, Carmen Cristina Diaconu



troduce the field of AML pathogenesis and the concept 
of LSC, to present the current knowledge on leukemic 
blasts surface markers and recent attempts to develop 
best AML animal models.

Key words: Acute myeloid leukemia; Leukemia-initiating 
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Core tip: The review is aiming to introduce the field 
of acute myeloid leukemia (AML) pathogenesis, the 
concept of leukemic stem cells, and also to present the 
current attempts to develop best AML animal models as 
means to investigate the factors responsible for leukemic 
transformation. Due to difficulties in engraftment of less 
aggressive AML samples, it is currently being attempted 
to develop humanized mice by introducing supporting 
human stromal cells as a source of proper cytokines, in 
a challenge to mimic an appropriate bone marrow niche 
able to support leukemic stem cells engraftment.

Mambet C, Chivu-Economescu M, Matei L, Necula LG, Dragu 
DL, Bleotu C, Diaconu CC. Murine models based on acute 
myeloid leukemia-initiating stem cells xenografting. World J 
Stem Cells 2018; 10(6): 57-65  Available from: URL: http://www.
wjgnet.com/1948-0210/full/v10/i6/57.htm  DOI: http://dx.doi.
org/10.4252/wjsc.v10.i6.57

INTRODUCTION
Acute myeloid leukemia (AML) is an aggressive cancer 
characterized by unrestricted proliferation of functionally 
immature myeloid cells. High heterogeneity and var­
iable expansion capacity of multiple clones within each 
patient[1,2], clinical and molecular differences between 
de novo and secondary AML, complicate even more 
treatment choices and make targeted therapy a goal 
yet to far to reach without using models that are able 
to simplify the multitude of mechanisms that might be 
involved in leukemogenesis. 

In the last decades, murine models become very 
important tools in the field of preclinical research in 
oncology, hematology, and immunology, providing a 
platform for study of tumor biology and for in vivo ev­
aluation of drugs in patient-derived xenograft tumors 
(PDX). Nowadays, a large variety of immunodeficient 
mice strains have emerged, able to support the xen­
ografting and development of a complex human hem­
ato-lymphoid system. The most difficult to reproduce 
is the immune system and the bone marrow (BM) 
microenvironment, mostly because of the differences 
between the signaling molecules responsible for the 
maturation of different hematopoietic cell populations[3]. 
Although the field of animal models has experienced a 
recent exponential growth through the development of 
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IL2rgnull immunodeficiency mice, AML remains one of 
the hematologic malignancies difficult to engraft into the 
existing strains of mice due to the lack of a proper BM 
niche and absence of specific human growth factors and 
supporting stromal cells[4]. As a result several attempts 
were made to develop “humanized mice” that can 
better support myeloid leukemia-initiating stem cells 
xenografting. 

This review is aiming to introduce AML pathogenesis 
and the concept of leukemic stem cells and the current 
most advanced strategies to overcome challenges in 
obtaining AML murine models.

AML PATHOGENESIS AND THE 
CONCEPT OF LEUKEMIC STEM CELLS
AML is a heterogeneous hematopoietic malignancy de­
fined by clonal expansion of abnormally differentiated 
or undifferentiated myeloid progenitors (blasts) that 
accumulate in the BM and impair hematopoiesis, lea­
ding to multi-lineage cytopenias[5,6]. Blasts can also 
migrate from BM into peripheral blood and infiltrate 
other tissues[5].

AML can be divided in 3 categories taking into acc­
ount their clinical ontogeny: Secondary AML (s-AML) 
occurred after leukemic transformation of a pre-exi­
sting myelodysplastic syndrome or myeloproliferative 
neoplasm, therapy-related AML (t-AML) developed in 
patients that received leukemogenic chemotherapy 
for antecedent non-myeloid malignancies and de novo 
AML generated in the absence of a previous stem cell 
disorder or a therapeutic exposure to cytotoxic drugs[7].

Despite recent progress in understanding AML pat­
hogenesis and recognizing molecular subtypes of AML 
that have prognostic impact, AML is still characterized 
by poor outcomes, with a 5-year survival rate of only 
30%-40%. The dismal prognosis is mainly related to 
high rate of relapse and refractory disease[2,8]. Patients 
with s-AML and t-AML display even a much worse pro­
gnosis, the median overall survival rate being 7 months. 
Notably, somatic mutations in SRSF2, SF3B1, U2AF1, 
ZRSR2, ASXL1, EZH2, BCOR, or STAG2 proved to 
be highly specific for s-AML. They are acquired early 
in leukemogenesis and tend to persist during clonal 
remissions[7].

Increasing evidence support the concept that a mi­
nor population of stem cells, named leukemia stem cells 
(LSCs), is responsible for leukemia initiation, disease 
progression and relapse, as well as drug resistance[9]. 
AML was among the first diseases in which the exis­
tence of cancer stem cells was documented using xe­
nograft animal models[10].

LSCs are derived from transformed hematopoietic 
stem cells (HSCs) or downstream committed proge­
nitors[11]. They are able to initiate the disease after 
transplantation into immunodeficient mice and are ch­
aracterized by both unlimited self-renewal potential in­
ducing disease in serial transplantation and capacity to 
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partially differentiate into non-LSC blasts that lack self-
renewal properties and possibility of engraftment[12]. 
Although LSCs and non-LSC blasts harbor a common 
set of mutations there are epigenetic differences bet­
ween them. A predominant hypo-methylation of HOXA 
gene cluster that has been involved in leukemogenesis 
represents a main feature of LSCs[13].

It is thought that, similarly to normal hematopoietic 
system, AML displays a hierarchical organization with 
LSCs on the top, being able to generate the whole 
population of AML blast cells[10]. Signaling pathways that 
control self-renewal of HSCs, such as Wnt/β-catenin, 
PI3K/Akt/mTOR, or Hedgehog, are also involved in LSC 
survival and expansion and can serve as therapeutic 
targets to facilitate eradication of LSCs[8,11]. Moreover, 
LSCs might escape apoptosis through up-regulation 
of NF-κB or downregulation of Fas/CD95. Additionally, 
CXCL12-CXCR4 axis promotes retaining of LSCs within 
the protective BM microenvironment[11].

The existence of a preleukemic stage in AML was 
proven by isolating from leukemia patients a population 
of HSCs that was found to bear some, but not all, of 
the mutations identified in the downstream leukemia. 
These preleukemic HSCs, that can be distinguished 
from LSCs by the surface antigen markers, TIM3 and 
CD99, are capable to generate bi-lineage engraftment 
in NOD.Cg-PrkdcscidIl2rgtm1Wjl (NSG) mice and the derived 
lymphoid and myeloid progeny display the same 
preleukemia mutations[14]. According to the currently 
proposed model of preleukemic clonal evolution, the 
first leukemia-related mutation has to occur in a cell 
that possesses self-renewal capacity or, alternatively, 
must confer self-renewal properties to a more diff­
erentiated progenitor[15]. By single-cell analysis it was 
shown that during the process of leukemogenesis, the 
preleukemic HSCs gradually acquire somatic mutations 
in a nonrandom pattern[16]. Thus, in the early phases 
of AML evolution there is enrichment for mutations in 
epigenetic modifiers such as TET2, DNMT3A, IDH1/2, 
and ASXL1. On the other hand, mutations in genes 
involved in signaling pathways and proliferation, su­
ch as FLT3 and KRAS occur in later stages. Other le­
ukemogenic mutations in genes like NPM1, CEBPA, and 
WT1 can be found in preleukemic phase as well as in 
later stages[15,16]. 

The preleukemic HSCs that eventually give rise to 
AML persist in patient samples at diagnosis and are 
resistant to current chemotherapy, thus representing a 
source of disease recurrence[17]. 

LEUKEMIA-INITIATING STEM CELLS AND 
BLASTS
The identification of LSCs in AML plays an important 
role in disease diagnosis, prognosis and AML therapy 
monitoring, and also represents an important step in 
development of targeted therapy and drug discovery[9]. 
Although initial studies suggested that LSCs were 

CD34+CD38- and did not expressed other lineage 
markers[18-21], later studies proved that the LSC phe­
notype was more complex and heterogeneous[22,23]. At 
present, it is established that LSCs are characterized by 
increased or decreased expression of surface markers 
of normal myeloid precursors (CD34, CD38, CD33, 
CD13, CD117, and CD123), asynchronous expression of 
antigens determined by AML morphological subtype and 
by the LSC stage of differentiation (CD4, CD11b, CD14, 
CD15, CD36, CD61, CD64, CD71, etc.), as well as by 
aberrant expression of lymphoid antigens (cross-lineage 
expression) (CD2, CD5, CD7, CD19, CD22, CD56, 
Tim3, etc.)[24-30]. LSCs reside mainly in CD34+CD38- 
population, but may be present also in other cellular 
fractions, usually CD34+CD38+, and in some cases, 
in CD34- population[12,31]. Additional markers, more 
specific for the advanced characterization of cellular 
subpopulations in AML, include: CD90[32], CD96[33], 
CD123[34,35], CD47[36], CD44, C-type lectin-like mo­
lecule-1 (CLL1)[37], aldehyde dehydrogenase, etc[38]. 
Currently, standard diagnosis and sub-classification 
of AML integrate the study of cell morphology, gene­
tics/cytogenetics and multi-parametric immuno-phe­
notyping. The antibody panels for surface markers used 
for sub-classification of each AML group are showed in 
Figure 1.

Methods commonly used to assess HSC properties 
are colony-forming cell (CFC) assay, long term culture 
(LTC), flow cytometry and competitive repopulation.

The CFC assay is an important tool used to evaluate 
the ability of the progenitor cells to proliferate and 
differentiate into multiple lineages. In order to produce 
colonies, cells are cultured in a semisolid medium, in the 
presence of appropriate cytokines for 7-14 d. Colonies 
are counted and characterized according to morphologic 
and phenotypic criteria. Although this short-term colony 
assay can determine the frequencies of hematopoietic 
progenitor cells in analyzed populations, still, it is not 
able to detect more immature progenitors or HSCs/
LSCs. To overcome this limitation, the cells can be 
cultured for 5-8 wk on a stromal feeder layer that can 
provide a substrate and a source of cytokines and 
growth factors, in effort to mimic the in vivo niche con­
ditions[39]. The long-term culture-initiating cells (LTC-ICs) 
can be evaluated by their capacity to generate CFCs in 
culture supernatant after 5 wk. This period allows CFCs 
present in the inoculum to terminally differentiate and 
the remaining CFCs may represent the progeny of LTC-
ICs. Subsequent limiting dilution tests can be performed 
to determine the LTC-IC frequency[40]. Although this 
method facilitates the detection of more immature 
progenitor cells, it is time consuming and the presence 
of stromal cells can induce procedure variations and 
different outcomes[41,42].

Competitive repopulation represents the best me­
thod to assess the functional abilities of immature 
progenitor/stem cells by serial transplants in immunoc­
ompromised mice. This method is based on the ability 
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of cells that are investigated to compete with non-
manipulated standard cells to repopulate the BM of an 
irradiated recipient[43].

MURINE MODELS - WHICH ARE THE 
BEST CHOICE? 
Animal models are used as replacement for human bi­
ological niches due to ethical restrictions in the use of 
human tissue samples from donors. Moreover, animal 
models accurately recapitulate human disease and have 
been an important tool in advancing the understanding 
of human pathology, and development of pre-clinical 
therapy. Small animals, such as mice and rats, are often 
used as a model for various diseases because of their 
ease in breeding, maintenance, and manipulation. In 
spite of these many advantages, there are limitations 
due to the disparities between the murine and human 
biological systems. Human immune system and the 
BM microenvironment are the most difficult to be re­
produced in mouse models because of the differences in 
the signaling molecules responsible for the maturation 
of various hematopoietic cell populations[3]. As a result, 
many malignant hematopoietic and other hematologic 
disorders do not successfully engraft in conventional 
mice models. 

AML is one of these hematologic malignancies 

that fail to properly graft into the existing strains of 
mice due to the lack of a proper BM niche, homing 
elements, absence of specific human growth factors 
and supporting stromal cells[4]. As a result, several at­
tempts have been made to develop murine models 
that reproduce with fidelity human hematopoiesis, par­
ticularly the development of the myeloid line.

Early attempts to increase the support for myel­
opoiesis involved the use of mice injected with IL-3, GM-
CSF, SCF[44], mice producing human TPO[45] or MISTRG 
mice strain which produces human tumor necrosis fac­
tor and IL-6[46]. These confirmed that the introduction 
of human genes into mice led to the production of fu­
nctional proteins capable of supporting engraftment and 
proliferation of human grafts. 

The following attempts were aimed to develop next-
generation mouse models genetically engineered to 
support myeloid differentiation from human HSC. Thus, 
it was necessary to act at three major levels in order to 
induce tolerance in the murine host, provide a supportive 
niche, and support hematopoiesis/proliferation with 
appropriate growth factors and cytokines. 

The first request was fulfilled by the development 
of mice that lacked the adaptive and innate immune 
compartment like NSG and NODShi.Cg-PrkdcscidIl2rgtm1Sug 

mice strains. These strains were developed on NOD 
scid immunodeficient mice by modifying them to bear 
mutations in the IL-2 receptor gamma chain gene th­

AML without 
maturation

MPO +; CD13 +
CD33 +; CD117+

CD34 +/-

AML with 
minimal 

differentiation
CD13 +; CD33 +

CD11b +; CD11c +
CD14 +; CD15 +

Acute 
megakaryocytic 

leukemia
CD41 +; CD61 +
CD42 +; CD13 +
CD33 +; CD34 +

Acute erythroid 
leukemia

CD13 +; CD33 +; 
CD15 +

Glycophorin A +
Glycophorin C +

Leukemia stem cell
CD34 + CD38-

AML with 
maturation

MPO +; CD34 +/-
CD13 +; CD15 +

HLA-DR +/-
Sudan black +

CD117 +/-
Promyelocytic 

leukemia
CD13 +; CD33 +
HLA-DR -; CD34 -

Acute 
myelomonocytic 

leukemia
CD13 +; CD15 +
CD33 +; CD11b +
CD11c +; CD14 +
CD64 +; CD4 +

Acute 
monocytic 
leukemia

CD14 +; CD68 +
CD4 +; CD11c +

HLA-DR +; CD64 +

Clonogenic leukemic 
progenitor 

CD34 + CD38 + 

Figure 1  Advanced characterization of leukemic stem cell, clonogenic leukemic progenitors and various cellular subpopulations in acute myeloid 
leukemia. AML: Acute myeloid leukemia.
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at induced either the absence or the presence of an 
nonfunctional truncated form of the receptor subunit. 
The gamma chain subunit is a major component of 
the IL2, IL4, IL7, IL9, IL15 and IL21 receptors, and 
is indispensable for binding and signaling of these 
cytokines[47,48]. 

The second condition, involved the ablation of mouse 
cells to create open niches for human transplanted cells. 
These were achieved through irradiation or depletion of 
mouse stroma via introducing mutations in c-Kit gene 
encoding for SCF receptor. SCF plays an important role 
in the maintenance and differentiation of HSCs[49]. The 
c-kit mutated mice strain, known as NODB6.SCID Il2rγ-/- 

Kit (W41/W41) (NBSGW) mice, supports engraftment 
studies with human HSCs without prior irradiation. 
McIntosh et al[49] showed that in peripheral blood, the 
median human CD45+ count in non-irradiated NBSGW 
mice was similar to the count in irradiated NSG. In BM 
a significant increase in CD45+ was observed in non-
irradiated NBSGW (97%) compared to non-irradiated 
NSG (30%). 

The third constraint regarding the need for sup­
portive myeloid cytokines was overcome using animal 
models with transgenic expression of hSCF, hGM-CSF 
and hIL-3 on the NOD SCID background resulting the 
NSG-SGM3 mouse strain [also known as NOD.Cg-
PrkdcscidIl2rgtm1Wj1Tg(CMV-IL3,CSF2,KITLG)/1Eav)]. 
Wunderlich et al[4] reported the development and use 
of NSG-SGM3 mouse for the engraftment of normal 
CD34+ and AML xenografts. The results showed an 
improvement in the expansion of normal human myel­
oid cells, as well as an enhanced engraftment of primary 
human AML samples. They injected five samples of 
primary AML in sub-lethally irradiated NGS and NSG-
SGM3 mice. Only three samples from five engrafted 
in NSG mice, compared to five samples in NSG-SGM3 
mice, showing variability in the engraftment potential 
across the AML samples, and that NSG-SGM3 strain 
was a better host for some subsets of AML, relative to 
NSG mice. Moreover, three of five samples with primary 
AML had higher BM engraftment level in NSG-SGM3[4]. 
Similar results regarding variable engraftment potential 
in immunodeficient mice strains were obtained by Klco 
et al[50] They injected blasts from six AML samples in tail 
vein of non-irradiated NSG and NSG-SGM3. The results 
showed that four samples had higher BM engraftment 
and CD34+ expression level in NSG-SGM3 than NSG 
mice.

Finally, we can conclude that next-generation hum­
anized mouse models are able to support myeloid blast 
development and differentiation.

XENOGRAFT MOUSE MODELS USED 
FOR ACUTE MYELOID LEUKEMIA 
Cell line derived xenografts 
AML represents a heterogeneous disease including 
several subtypes which are characterized by specific 

fusion oncogenes as a result of chromosome abnorma­
lities. The fusion oncogenes in AML are associated 
with different clinical and laboratory characteristics, 
highlighting the different ways of malignant transfor­
mation in this disease. A study focused on the ev­
aluation of four important AML fusion oncogenes rep­
orted that MLL-AF9 and NUP98-HOXA9 had very similar 
effects in vitro on primary human CD34+ cells, resulting 
in erythroid hyperplasia and an obvious blockage in 
erythroid and myeloid maturation while AML1-ETO and 
PML-RARA produced only modest effects on myeloid and 
erythroid differentiation. Moreover, MLL-AF9, NUP98-
HOXA9 and AML1-ETO fusion oncogenes generated a 
significant increase in long-term proliferation and self-
renewal of CD34+ cells. The characterization of gene 
profiles determined by AML fusion oncogenes can be 
considered an important tool for the discovery of new 
potential drug targets. In this study, two different ti­
me patterns of gene deregulation as result of fusion 
of these oncogenes were observed: MLL-AF9 and 
NUP98-HOXA9, caused gene deregulation 3 d after 
transduction, while gene deregulation by AML1-ETO 
and PML-RARA appeared within 6 h. Interestingly, p53 
inhibitor MDM2 was upregulated by AML1-ETO at 6 h 
suggesting that MDM2 upregulation was involved in cell 
transformation, being related to AML1-ETO[51].

Wei et al[52] evaluated the in vitro and in vivo effects 
of MLL-AF9 gene fusion in human CD34+ cord blood 
cells using retroviral vectors. Thus, MA9 transduced ce­
lls became immortal and doubled in number every 2-3 
d. The expression of CD33, CD11b, CD13, CD14 and 
CD15 suggested a myelo-monocytic lineage. Moreover, 
long-term cultured MA9 cells failed to differentiate 
towards the erythroid or B lymphoid lineages, remaining 
cytokine and FLT3L dependent for growth. In non-obese 
diabetic/severe combined immunodeficient [NOD/SCID 
(NS)], NS-β2M-/- (NS-B2M) and NS mice, MA9 cells 
induced acute myeloid, lymphoid, or mixed-lineage leu­
kemia with blast cells present in the peripheral blood, 
BM, spleen and liver. Gene expression profile of MLL-AF9 
transduced cells was similar to human AML with 11q23 
translocations, Rac signaling pathway being the most 
affected pathway and a promising therapeutic target in 
MLL-rearranged AML[52].

Another AML subtype with a particularly poor outcome 
is characterized by the t(6;9)(p22;q34) chromosome 
rearrangement which generates DEK-NUP214 chimeric 
gene. Qin et al[53] developed an AML model harboring 
DEK-NUP214, using CD34+ human hematopoietic 
progenitor cells and MO7e cell lines xenografted into 
immunocompromised mice that expressed human myeloid 
cell growth factors. The M07e human megakaryoblastic 
leukemia cell line was strictly dependent on either IL-3 or 
GM-CSF for survival; retroviral expression of this fusion 
gene in IL-3 dependent M07e cell line induced a cytokine 
independence and increased colony formation ability 
in soft-agar. DEK-NUP214 expression also modified the 
differentiation of human cord blood CD34+ progenitor 
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cells, which expressed myeloid lineage markers (CD13+), 
with small subsets showing T- (CD3+) and B- (CD19+) 
cell linage markers. The obtained results suggested that 
DEK-NUP214 was involved in leukemic transformation 
and differentiation of myeloid cells. In this study, CD34+ 
progenitor cells obtained from three different umbilical 
cord blood samples and transduced with chimeric DEK-
NUP214 were engrafted in NSG-SGM3 mice strain. 
Interestingly, two months after transplantation, almost 
20% of peripheral blood cells from the transplanted mice 
displayed a human-specific CD45 immuno-phenotype 
with CD45+CD13+CD34+CD38+ cells. The analysis 
of peripheral blood smears also showed the typical 
human AML cell morphology with a larger nucleus and 
reduced cytoplasmic ratio. Therefore, the study dem­
onstrated that DEK-NUP214 could transform human 
CD34+ progenitor cells and induced human AML in 
vivo. Gene profiling of this model revealed that several 
genes of HOX family (HOXA9, 10, B3, B4 and PBX3) 
were highly upregulated. In this AML model pathways 
involving KRAS, BRCA1 and ALK were significantly 
dysregulated[53].

Similar results were obtained in case of t(8;13)­
(p11;q12) chromosome translocation which led to ZM­
YM2-FGFR1 chimeric kinase, characteristic for another 
AML subtype. Human CD34+ cells harboring ZMYM2-
FGFR1 transplanted into immune-compromised mice 
developed myeloproliferative disease that progressed to 
AML. Mice displayed hepatosplenomegaly, hypercellular 
BM and a CD45 + CD34 + CD13+ immunophenotype[54].

Preclinical cancer research remains essential for the 
discovery and the development of new therapies in case 
of the most advanced cancers. Various cancer cell lines 
have been developed and used for the study of cancer 
but with a great disadvantage that they do not really 
reflect the behavior of the original cancer cells, due to 
the artificial nature of their culture conditions. 

Patient derived xenografts - patient stem-cells derived 
xenografts
PDX models established by transplanting patient can­
cer cells into immunocompromised mice represent an 
important tool in cancer research. They have a great 
potential to offer important information on cancer bi­
ology and to guide the therapeutic approach. Unlike 
cell lines derived from primary tumors that might have 
lost their original characteristics due to a prolonged in 
vitro growth, PDX mouse models seemed to be able to 
overcome this issue[55,56]. Many studies demonstrated 
that PDX models kept the most important features of 
the original tumor including histology, genomic pattern, 
cellular heterogeneity, and more important, drug resp­
onsiveness or personalized drug selection[57].

The development of PDX models of AML allows us 
to monitor in vivo the progression of the disease and to 
evaluate the efficacy of an experimental treatment on 
tumor growth using imaging techniques[58].

A first full study on the engraftment ability of a 

large cohort of AML samples in immunodeficient anim­
al models was published by Kennedy et al[59] who tra­
nsplanted BM or peripheral blood cells from 307 AML 
patients intra-femorally into sublethally irradiated NOD.
SCID mice pre-treated with an anti-CD122 antibody. 
AML xenografts were obtained in 44% of cases, le­
ukemic engraftment being associated with a higher 
white cell count in peripheral blood (mean of 92 x 109/L 
in engrafters vs 67 x 109/L in non-engrafters, P = 0.01). 
Moreover, results showed that complete remission was 
achieved in only 51% of patients whose diagnostic 
samples established AML xenografts, compared to 
80% of non-engrafting samples (P < 0.0001). As a 
conclusion, AML xenografting was successful when 
using samples from AML patients with aggressive di­
sease and with a poor response to standard induction 
therapy. 

OVERCOMING CHALLENGES IN PATIENT-
DERIVED XENOGRAFTS OF AML 
Recent experiments are trying to improve mouse ex­
perimental models of AML, aiming to engraft with a 
higher success rate even less aggressive leukemia 
samples. Most of them are based on immunodeficient 
mice with humanized microenvironment created by 
injection of human mesenchymal stem cell (MSC) that 
provide a better niche for leukemic blast engraftment.

An interesting approach was that of Reinisch et al[60], 
who used human MSC grafts injected subcutaneously 
in NSG mice to form a humanized microenvironment 
named “ossicles”, in which they subsequently injected 
(8 wk later) human HSCs and AML blasts. The final aim 
was to analyze the engraftment capacity the resulting 
niche. After 6-10 wk, the “ossicles” showed human BM–
like functions and morphology and allowed enhanced 
engraftment of primary patient-derived AML.

A further attempt employed humanized niches based 
on genetically modified MSCs to express huIL-3 and 
TPO. Carretta et al[61] implanted subcutaneously these 
human MSCs in ceramic scaffolds or Matrigel in NGS 
mice, and 6 to 8 wk later transplanted CD34+ enriched 
AML blasts in the ectopically engineered BM niches. The 
engraftment capacity was then compared with the one 
from non-engineered MSC niches. The results showed 
that leukemic blasts efficiently engrafted in both models 
with no significant differences. An unexpected result 
was that CD33+-sorted myeloid clones from the animal 
model failed to self-renew in secondary recipients, 
probably due to overexpressed IL-3 and TPO cytokines 
from modified microenvironment that might have aff­
ected a proper self-renewal of myeloid blasts.

An important challenge for obtaining mouse models 
valuable as preclinical models is the capability of PDX 
cells to authentically mimic the heterogeneity of the 
initial disease. The xenograft mouse model of AML has 
been used mainly to study primary transplantation 
and further serial experiments were performed to 
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verify self-renewal competence or stability of gene 
expression profiles of engrafted cells. However, this 
model was rarely employed to investigate deeply AML 
biology or therapy[62]. Most of the published results re­
vealed that PDX cells resembled the primary samples 
in terms of gene expression profiles but sub-clonal 
profiles were often not reflecting the primary sample. 
Another important drawback was the inability of the 
most proposed models to sensitively and repetitively 
monitor disease progression or drug effects. These were 
determined at single time points by invasive procedures 
or post mortem. However, researchers tried to overcome 
these challenges by proposing a better control of PDX 
cells. This control aimed to check the pattern of alt­
erations in mutational or antigen expression possibly 
occurred during engraftment. For better monitoring 
disease progression or drug effects, recombinant lu­
ciferase enabled bioluminescence in vivo imaging has 
been proposed to facilitate in vivo monitoring of PDX 
AML cells as a quantitative, sensitive, reliable method for 
quantifying leukemia initiating cells[62].

CONCLUSION
Mouse models were of tremendous importance for unde­
rstanding the molecular etiology of leukemia, proven to be 
valuable tools to facilitate preclinical in vivo studies. 

Most of the studies verified that PDX models kept the 
most important features of the original tumor. However, 
mouse models should be controlled more carefully be­
fore and after xenotransplantation, especially in serial 
transplantation experiments, in order to ensure that 
the heterogeneity of the original sample is conserved 
and genetic drift is not modifying genetic, phenotypic or 
functional characteristics of the original disease. 

Prospectively, advancements allowing repetitive, 
reliable, sensitive and fast studies, able to evaluate the 
efficacy of an experimental treatment in well genetically 
defined and heterogeneous subgroups of AML, will re­
present valuable tools to improve the individualized 
xenograft mouse model of AML and drastically reduce the 
number of mice to be used in these kind of experiments. 
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Abstract
A simple overview of daily orthodontic practice involves 
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use of brackets, wires and elastomeric modules. However, 
investigating the underlying effect of orthodontic forc
es shows various molecular and cellular changes. Al
so, orthodontics is in close relation with dentofacial 
orthopedics which involves bone regeneration. In this 
review current and future applications of stem cells 
(SCs) in orthodontics and dentofacial orthopedics have 
been discussed. For craniofacial anomalies, SCs have 
been applied to regenerate hard tissue (such as treatment 
of alveolar cleft) and soft tissue (such as treatment of 
hemifacial macrosomia). Several attempts have been 
done to reconstruct impaired temporomandibular joint. 
Also, SCs with or without bone scaffolds and growth 
factors have been used to regenerate bone following di
straction osteogenesis of mandibular bone or maxillary 
expansion. Current evidence shows that SCs also have 
potential to be used to regenerate infrabony alveolar 
defects and move the teeth into regenerated areas. Fu
ture application of SCs in orthodontics could involve ac
celerating tooth movement, regenerating resorbed roots 
and expanding tooth movement limitations. However, 
evidence supporting these roles is weak and further st
udies are required to evaluate the possibility of these 
ideas.

Key words: Alveolar bone grafting; Dentofacial deformities; 
Distraction osteogenesis; Guided tissue regeneration; 
Orthodontics; Orthodontic tooth movement; Orthognathic 
surgery; Periodontitis; Root resorption; Stem cells
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Core tip: Stem cell therapy has multiple applications in 
the field of orthodontics and dentofacial orthopedics. 
Recent researches have demonstrated advantageous 
use of stem cells (SCs) for correction of craniofacial 
anomalies, rapid consolidation phase of distraction ost
eogenesis, reconstruction of temporomandibular joint 
and stability of palatal expansion. SCs also could be 
used to regenerate infrabony alveolar defects and move 
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the teeth into regenerated areas. Future application 
of SCs in orthodontics could involve accelerating tooth 
movement, regenerating resorbed roots and expanding 
tooth movement limitations.

Safari S, Mahdian A, Motamedian SR. Applications of stem 
cells in orthodontics and dentofacial orthopedics: Current trends 
and future perspectives. World J Stem Cells 2018; 10(6): 66-77  
Available from: URL: http://www.wjgnet.com/1948-0210/full/
v10/i6/66.htm  DOI: http://dx.doi.org/10.4252/wjsc.v10.i6.66

INTRODUCTION
Orthodontics involves treatment of dental malocclusions 
and correction of dentofacial deformities. The aim of 
orthodontic treatment is to achieve facial aesthetics 
and improve oral health related quality of life[1,2]. The 
prevalence of dental malocclusion varies in different 
communities and have been reported to be 22.5% to 
93%[3-6]. Orthodontic treatment of malocclusions has 
several shortcomings such as prolonged treatment ti
me, apical root resorption, tooth movement limited to 
alveolar bone and difficulties to overcome periodontal 
defects.

Although facial anomalies and jaw base deformities are 
less frequent compared to simple dental malocclusions, 
they are more burdensome[7]. About 5% of orthodontic 
patients could be considered as handicapped and ne
ed multidisciplinary treatments[8]. Current treatment 
modalities of craniofacial deformities can reduce the 
severity of these deformities but their final aesthetic 
outcomes are still not pleasing.

Stem cells (SCs) are self-renewal cells that could 
differentiate toward various cells under suitable con
ditions[9]. Various sources for harvesting SCs have been 
introduced such as muscle, dermis, bone marrow, adi
pose tissue, periosteum, blood, umbilical cord, synovial 
membrane and teeth[10,11]. Among these sources, some 
are easily accessible in orthodontics. As extraction of 
primary teeth or permanent premolar or wisdom teeth 
is common interventions in orthodontic treatment of 
malocclusions, SCs sources from the teeth could be 
gained without extra morbidity. Several studies have 
revealed differentiation and proliferation potential of 
mesenchymal stem cells (MSCs) obtained from dental 
pulp, periodontal ligament or human exfoliated deciduous 
teeth[12-15].

Nowadays, MSCs could be considered as “research 
trends” in the field of biology and medicine and their 
application in regenerative medicine is growing. Some 
modalities involve direct plantation of MSCs into the 
defect site while others use proper scaffolds to support 
the cells. In bone tissue engineering, MSCs are carried 
by an osteoconductive scaffold and differentiated toward 
osteogenic cells using osteoinductive growth factors[16]. 
Several types of scaffolds and growth factors have be
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en used for regeneration of craniofacial bone defects 
including orthodontic related bone defects[17-19]. The aim 
of the current study was to review applications of SCs 
in treatment of dentofacial defects and deformities and 
to propose possible advantages of SC therapy in en
hancing orthodontic treatments.

APPLICATIONS IN DENTOFACIAL 
ORTHOPEDICS
To evaluate the uses of SCs in dentofacial orthopedics, 
application of SCs in treatment of dentofacial anomalies 
and temporomandibular joint (TMJ) disorders as well as 
their possible role in distraction osteogenesis (DO) and 
maxillary expansion have been discussed (Figure 1).

Dentofacial anomalies
Craniofacial deformities such as congenital and de
velopmental malformation and those resulting from 
trauma, tumor resection and nonunion of fractures, are 
common clinical problems in craniofacial surgery, which 
are difficult to remedy. Current surgical techniques in 
various combinations, autogenous, allogeneic, and pr
osthetic materials have been used to achieve bone and 
soft tissue reconstruction[20]. These approaches have 
several complications such as insufficient autogenous 
resources, donor site morbidity, contour irregularities, 
postoperative pain, additional cost, long surgical time and 
postsurgical reabsorption, disease transmission, major 
histoincompatibility, graft versus-host disease (GVHD), 
immunosuppression, unpredictable outcome for tissue 
formation and infection of foreign material[21-24]. In order 
to overcome these complications, stem cell-based tissue 
regeneration offers a promising approach to provide an 
advanced and reliable therapeutic strategy for craniofacial 
tissue reconstruction[25]. In the current review, regen
erative approaches for two types of craniofacial anomalies 
are presented; cleft lip and palate (CLP) (for hard tissue 
regeneration) and hemifacial microsomia (HFM) (for soft 
tissue regeneration).

CLP is one of the most prevalent congenital anomalies 
which results from fusion failure of nasal process and 
oropalatal shelves. The prevalence of this malformation 
is 0.36-0.83 in 1000 live-born infants[26]. Alveolar bone 
defect, problem in swallowing and pronunciation, facial 
deformity, missing teeth, and maxillary deformity can 
be seen in CLP patients[27]. Repair of the malformed 
alveolar bone is critical for oronasal fistula closure, ma­
xilla unification, tooth eruption, and support of the alar 
base[28,29]. The gold standard treatment for alveolar 
reconstruction in CLP patients is autogenous cancellous 
bone grafts[30] since they are immunologically inert 
and potential suppliers of cells with osteoconductive 
and osteoinductive properties[31,32]. The commonest 
site for acquiring autogenous bone for grafting is the 
anterior iliac crest[33]. An overall success rate for iliac 
crest bone grafting to the alveolar cleft with respect to 
bone resorption is 88%[34]. With the advent of tissue en
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gineering techniques, alternatives to the traditional iliac 
crest bone grafting techniques are available. MSCs have 
been shown to have the ability to form new bone when 
transplanted[35].

Some case reports and case series studies reported 
results of MSCs usage to regenerate alveolar cleft[36]. 
Composite scaffold of demineralized bone mineral and 
calcium phosphate loaded with MSCs showed 34.5% 
regenerated bone in the cleft area in one case and in the 
other there was 25.6% presentation of bone integrity[37]. 
About 50% fill of the bone defect was measured after 
placement of the scaffold, growth factor and MSCs in 
cleft area[38], whereas 79.1% bone regeneration has 
been reported in the another study[22]. Autogenous 
osteoblasts cultured on demineralized bone matrix sh
owed more reduction in defect size in comparison to 
control group[39]. About 90% defect correction of soft 
palate defect has been reported 14 d after injection 
of autologous MSCs[40]. Biomaterial seeded with auto
genous osteogenic cells into the alveolar cleft resulted 
in spontaneously eruption of canine in its proper place 
after eighteen months[41]. Poly-L-lactic acid with os
teogenically differentiated fat-derived stem cells showed 
substantial bone regeneration in palatal defect[42]. The 
mean pain score, including both intensity and pain fr
equency and donor site morbidity was greatest at all-
time points in traditional iliac crest bone graft and least 
at all-time points in tissue engineering[31].

Thus, it can be concluded that SCs seem to possess 
favorable potential for bone regeneration in oral and 
maxillofacial region and use of them in alveolar defect 
repair, reduce defect size by bone formation[37,39,42], have 
less postoperative morbidity compared to autogenous 
bone grafting[31] and help the teeth in the defect area to 
erupt in their proper position[41].

HFM is a rare, multi-systemic congenital disease. It 
is considered to be the product of unilateral abnormal 

morphogenesis of the first and second pharyngeal arc­
hes. HFM is a frequently encountered form of congenital 
facial malformation, ranking second only to cleft lip and 
palate[43]. The fundamental features of HFM include 
unilateral hypoplasia of the craniofacial skeleton and 
its overlying soft tissue[44]. Autologous fat grafting is 
considered to reconstruct soft tissue defect in the tre
atment of congenital malformations as well as post-
traumatic malformations[45]. To overcome problems as
sociated with fat grafting, such as unpredictable clinical 
results and a low rate of graft survival, many innovative 
efforts and refinements of surgical techniques have 
been reported[46]. Use of adipose derived stromal cells 
(ASCs) for tissue regeneration has attracted attention 
recently. 

Patients with HFM which have been grafted with 
supplementation of ASCs Showed 88% of fat volume 
surviving after 6 mo in comparison to control group 
which was 54%[46]. Also, residual graft volumes of ASCs 
enriched grafts was significantly higher in comparison to 
control group[45]. 

Studies are ongoing, and as results are reported, 
it will be crucial to evaluate the long term outcome of 
such procedures. The current evidence suggests that 
use of ASCs for soft tissue reconstruction may enhance 
angiogenesis[47], improve the survival of grafts[45,46] and 
thus reduce atrophy[47].

Temporomandibular joint disorders
The temporomandibular joint (TMJ) is comprised of 
both osseous and cartilaginous structures. It is enclosed 
in a capsule that is lubricated with synovial fluid and 
serves as an important growth site during postnatal 
development with two articular surfaces that can adapt 
to changing environment conditions[48,49]. The mandibular 
condyle grows by proliferation of the progenitor/SCs that 
differentiate into chondrocytes[49,50] leading to formation 

Bone scaffold Stem cells

Dentofacial anomalies Temporomandibular
joint disorders

Distraction osteogenesis Rapid maxillary
expansion

Figure 1  Applications of stem cells (alone or in conjugation with bone scaffolds) in dentofacial orthopedics.
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and increase of cartilage matrix, which will be replaced 
with lamellar trabecular bone[51]. As SCs possess the 
ability to differentiate into chondrogenic and osteogenic 
cells, they could be used for both maintenance of man
dible in new position and repair of TMJ lesions.

Forward positioning of mandible, for example in 
functional therapy, leads to increase in the number 
of mesenchymal cells (stem/progenitor cells) in the 
temporal fossa, which resulted in new cortical bone fo
rmation[52]. Thus, the question arises as to whether the 
injection of SCs into articular space accelerates bone 
formation in the temporal fossa? This issue requires 
Further targeted researches.

TMJ is prone to injuries, tumors, osteoarthritis, 
rheumatoid arthritis and congenital anomalies. App
roximately 10 million individuals in the United States 
have been affected by temporomandibular disorders 
(TMD)[53]. TMD manifest as pain, myalgia, headaches, 
and structural destruction, collectively known as deg
enerative joint disease[54]. The primary methods used to 
reconstruct the TMJ includes autogenous bone grafting 
such as harvesting from the rib, or the use of alloplastic 
materials, with neither being ideally suited for the task 
and sometimes leading to unwanted adverse effects. 
The major and final option for those patients with ad­
vanced degenerative diseases is surgical replacement 
of the mandibular condyle[55]. These approaches have 
complications such as immunorejection, infection, im
plant wear, dislocation, suboptimal biocompatibility, do
nor site limitation and morbidity, and potential pathogen 
transmission[56,57]. To overcome these disadvantages, 
strategies have been found to engineer osteochondral 
tissue, such as that found in the TMJ, will produce tissue 
that is both biologically and mechanically functional us
ed. Recently, these cells have attracted much interest to 
joint reconstruction.

Engineering a TMJ-like osteochondral graft has 
been studied in several studies. The culture of human 
umbilical cord matrix (HUCM) SCs in growth medium 
containing chondrogenic factors, showed the HUCM 
SCs can outperform the TMJ condylar cartilage cells[58]. 
Rat bone marrow MSCs which encapsulated in poly 
(ethylene glycol)-based hydrogel molded into the shape 
of a cadaver human mandibular condyle, demonstrated 
two stratified layers of histogenesis of cartilaginous and 
osseous phenotypes[59,60]. Porcine MSCs which had been 
cultured in osteogenic induction medium and were seeded 
onto a poly DL-lactic–co-glycolic acid scaffold, formed 
the construct had a shape that closely resembled to the 
model condyle and it’s radiodensity was between that of 
the normal condyle and that of control scaffolds[61].

Because of fibrocartilaginous structure of disk, there 
has been little success in the manufacture of synthetic 
TMJ discs rather than bone and cartilage and attention 
has turned to tissue engineering to reconstruct the 
disc[62]. In one study, Combination of polylactide acid 
discs with adipose tissue stem cell demonstrated the 
potential to development a tissue-engineered TMJ 
disc[63]. 

While animal studies are in progress to replicate 
bone the osteochondral interface to engineer TMJ, yet 
no clinical trials on humans have been done. These data 
revealed possibility of application of SCs in combination 
with different scaffolds as a promising approach to re
generate osteochondral tissues of TMJ and ultimately 
the joint disk.

Distraction osteogenesis
DO which is regarded as “endogenous bone tissue en
gineering” has been widely applied in orthopedic surgery 
for correction of limb length and also in the treatment 
of many craniofacial deformities[64]. DO is done by cr
eating a corticotomy, placing a rigid distractor across 
the cut bone and gradually activating the device[65]. The 
mechanism of osteogenesis and gap repair initiated by 
an immediate inflammatory response that leads to the 
recruitment of MSCs and subsequent differentiation into 
chondrocytes that produce cartilage and osteoblasts 
which form bone[66]. Despite its great advantages, long 
treatment periods and fibrous union or even non-union 
of bone are possible major draw backs impeding its 
widespread clinical application[67,68].

Efforts have been made to accelerate osteogenesis 
in the distraction Gap, shorten the consolidation period 
and reduce complications such as the development of 
nonunion, infection, or fracture. 

Recently, because of the role of MSCs in osteo
genesis, many researchers have successfully docu
mented the ability of SCs on promoting bone formation 
and shortening the consolidation period during DO. For 
this purpose various sources of SCs such as human exf
oliated deciduous teeth (SHED)[69], bone marrow[70-77] 
and adipose tissue[78-80] have been used in studies. In 
some studies, alone MSCs[71,79,81,82], in the others, gene 
transferred MSCs[72,76-78,83] and factors[75,84,85] have been 
used to enhance bone regeneration following distraction 
osteogenesis. The modifications such as use of sca
ffolds[75], demineralized bone matrix[74] and Platelet-rich 
Plasma[73] have been done in some studies.

The injection of MSCs 1 d before onset of distra
ction resulted in increase in new bone volume in the 
distracted callus and the bone mineral density (BMD)[81], 
MSCs injection after distraction was complete showed 
higher radiodensity of the distraction zone and grater 
histologically callus, new bone volume and thickness 
of the new trabeculae[71] and doing this intervention 
on the first day of consolidation resulted in greater 
biomechanical strength and increase in total and co
mpact bone ratio in regenerate bone[82]. The injection 
of SHED during osteotomy period showed higher pe
rcentage of newly formed bone after 2, 4, and 6 wk[69]. 
One study revealed that callus density, the ossification 
rate, quality of newly formed bone and the number 
of active cells in bone formation were higher in group 
which osteoblast-differentiated stem cell were injected 
to distraction site compared to control group and stem 
cell group[79]. Addition of MSCs sheet fragments yielded 
significant increases in bony union, more intensive 
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bone formation on histomorphometric analysis and 
higher peak load on biomechanical testing[70]. MSCs tra
nsfected with bFGF showed excellent bone formation 
and higher BMD and bone mineral content (BMC) in 
the distracted callus[76]. The use of MSCs osteogenic 
differentiation using FGF-2 and confirm cell integration 
with a gelatin-based Gelfoam scaffold, demonstrated 
less interfragmentary mobility, more advanced gap 
obliteration, higher mineral content and faster mineral 
apposition[75]. One study suggested that gene therapy 
using rhRunx2-modified ASCs promoted new bone 
formation during osteoporotic mandibular DO[78]. App
lication of ASCs transfected with pEGFP-OSX showed 
the highest BMD, thickness of new trabecula (TNT), and 
the volumes of the newly generated cortical bone (NBV1) 
and the cancellous bone (NBV2) in the distraction 
zones[78]. Excellent bone formation and highest BMD, 
TNT and NBV in the distraction zones was observed in 
groups that MSCs transfected with OSX[72]. The injection 
of MSCs transfected with Bone Morphogenic Protein 
(BMP) showed greater bone formation and earlier 
mineralization in the distracted callus[77], more mature 
medullary cavity[83], better bone quality and higher tra
becular parameters (trabecular thickness, trabecular 
number, volumetric bone mineral density at tissue, 
and bone volume fraction) at the second and fourth 
weeks of the consolidation period[86] and acceleration 
of osteogenesis[87]. The use of stromal cell-derived 
factor-1 (SDF-1) facilitated migration of MSCs into os
teogenesis site[84]. The addition of MSCs transfected 
with recombinant plasmids pIRES-hBMP2-hVEGF165 at 
the beginning of distraction is more ideal than the start 
of latency period[85].

These data shows that SCs from Various sources, 
alone or in combination of genes and factors, in diff
erent phases of treatment can lead to an increase in 
new bone volume and quality[69,71,72,77,78,81,86], bone mi
neral density[71,72,76,78,81], trabecular thickness[71,78,86], 
biomechanical strength[70,82].

Rapid maxillary expansion
Maxillary constriction can be associated with several 
problems that include occlusal disharmony and esthetics 
as well as such functional difficulties as narrowing of 
the pharyngeal airway, increased nasal resistance, and 
alterations in tongue posture, resulting in retroglossal 
airway narrowing and mouth breathing[88-90]. Maxillary 
constriction can be corrected with slow orthodontic ex
pansion, rapid maxillary expansion (RME), surgically 
assisted rapid palatal expansion or a two-segmented 
Le Fort I-type osteotomy with expansion[91]. RME is in
dicated in patients younger than 12 years, who have 
lateral discrepancies involving several teeth, whether 
the constriction is skeletal, dental or a combination of 
both[92]. It is an effective orthopedic procedure to open 
the midpalatal suture, providing appropriate and stable 
maxillary width increase and re-stablish balance be
tween the width of the jaws[93,94].

RME is similar to DO histologically. During RME, a gap 
in the midpalatal suture is created which is filled with 
blood and granulated tissue and followed by active bone 
formation. The expanded arch width relapses unless 
followed by an appropriate retention period. Therefore, 
providing a strategy to accelerate bone formation in the 
midpalatal suture might shorten treatment and retention 
period, achieve stability and prevent relapse. Because 
of the ability of SCs to differentiate into osteogenic cells, 
injection of SCs seems to have the ability to accelerate 
the process of bone formation. This was studies in one 
study by Ekizer et al[95]. In their animal study, local in
jection of MSCs into intermaxillary suture after force 
application resulted in increased new bone formation in 
the suture by increasing the number of osteoblasts and 
new vessel formation[95]. Thus, locally applied MCSs to 
the expanded maxilla might be a useful and practical 
treatment strategy to accelerate new bone formation 
in midpalatal suture and to shorten the treatment and 
retention period for patients undergoing orthopedic 
maxillary expansion.

APPLICATIONS IN ORTHODONTICS
To evaluate the uses of SCs in orthodontics, current ev
idence regarding application of SCs in expanding the 
limitations of orthodontic tooth movement (OTM), tooth 
movement into periodontal defects, accelerating OTM 
and treatment of external root resorption (ERR) have 
been reviewed (Figure 2). 

Expanded envelope of discrepancy
The extent of OTM is limited by several factors including 
the anatomy of the alveolar bone, pressures exerted 
by soft tissues, periodontal tissue attachment levels, 
neuromuscular forces and lip–tooth relationships[96,97]. 
The anteroposterior, vertical, and transverse millimetric 
range of treatment possibilities in orthodontics can be 
expressed as an “envelope of discrepancy”[98] Gingival 
recession occurs secondarily to an alveolar bone de
hiscence, if overlying tissues are stressed during OTM 
beyond this envelope. Sites in which the buccal or lingual 
bone cortex and covering gingival tissue are thin, such 
as lower incisors in patients with a prominent chin and 
compensation in the form of lingual tipping of these teeth 
are at particular risk of bone defects like fenestrations 
and dehiscence[99,100].

SCs have the potential to generate different tissues, 
including bone, thereby stem cell therapy is a promising 
approach to alveolar bone regeneration[101]. Some 
researches have applied stem cell therapy in case of 
bone ridge augmentation in humans and mainly used 
bone marrow cells[102-104]. The outcome of alveolar bone 
regeneration showed a tendency to enhance bone for
mation[105]. Hence, bone regeneration methods using SCs 
might provide an approach for expanding limitations of 
envelope of discrepancy.

As a hypothesis, relying on the results of alveolar 
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bone augmentation studies, it might be possible with 
the aid of stem cell based osteogenesis to horizontally 
augment the ridge in order to extend the tooth mo
vement extent and to overcome some anatomical 
boundaries.

Periodontal regeneration
Periodontal complications are one of the most actual 
side effects linked to the orthodontics. It can be found 
in various forms, from gingivitis to periodontitis, de
hiscence, fenestrations, interdental fold, gingival rec
ession or overgrowth, black triangles[100]. Periodontal 
regeneration has been defined as the formation of new 
cementum, alveolar bone, and a functional periodontal 
ligament on a previously diseased root surface[106]. The 
current treatment approaches include the use of surgery, 
guided tissue regeneration (GTR), bone fillers and gr
owth factors and application of bioactive molecules to 
induce regeneration[107,108]. Based on the differential po
tential capability of SCs and their ability of renewal via 
mitosis[109], they have the quality to regenerate damaged 
tissues, hence they can be used for regeneration of 
periodontium.

Periodontal defects could be a challenging situation 
both pre and post orthodontic treatment. On one ha
nd, because of the increasing number of adult patients 
seeking orthodontic treatment, encountering the pe
riodontally involved patients may be a potential problem 
for every practitioner. It has been suggested that, by 
moving the teeth into infrabony defects, we can achieve 
the regeneration of the attachment apparatus[110]. 
Accordingly with the combination of periodontal rege
neration treatments such as GTR and OTM, it might 
be possible to reduce infrabony defect and upgrade 
periodontal health[111]. On the other hand, periodontal 
defects such as fenestration, dehiscence and attachment 

loss are among common complications of orthodontic 
treatments[112].

Several reports on application of SCs for regeneration 
of periodontal tissues have been published. In a study, 
induced pluripotent SCs have been implanted into a 
mouse periodontal fenestration defect model with a 
silk fibroin scaffold in combination with enamel matrix 
derivative gel. As a result, higher rate of cementum 
and alveolar bone formation was observed[113]. Also, 
it has been shown that the bone marrow derived me
senchymal stem cells (BM-MSC)-treated wounds ex
hibited significantly accelerated wound closure, with 
increased re-epithelialization, cellularity, and angio
genesis[114]. In another study conditioned medium (CM) 
obtained from PDLSCs were transplanted into a rat 
periodontal defect model and consequently PDLSC-
CM enhanced periodontal regeneration by suppressing 
the inflammatory response via TNF-a production[115]. 
Incubation of induced PDLSCs with dentin non collag
enous proteins in vivo revealed that cementum-
like tissues formed along the chemical-conditioned 
root dentin surface, enhanced alkaline phosphatase 
(ALP) activity, increased matrix mineralization, and 
upregulated expression of mineralization-associated 
genes[116]. One study has revealed that autologous 
PDLSCs obtained from extracted teeth of the miniature 
pigs which were transplanted into the surgically created 
periodontal defect areas were capable of regenerating 
periodontal tissues, leading to a favorable treatment for 
periodontitis[117]. PDLSCs were delivered onto suitable 
collagen sponges and implanted into periodontal defects 
of immunodeficient nude rats in an in vivo study, as a 
result reformation of periodontal ligament-like tissue, 
collagen fibers, and elements of bone was observed[118]. 
In another in vivo study, PDLSCs sheet were transferred 
to a miniature pig periodontitis model. Significant peri­

Bone scaffold Stem cells

Expanded envelope of
discrepancy

Tooth movement into
intrabony defects

Accelerated orthodontic
tooth movement

Apical root resorption

Figure 2  Possible applications of stem cells (alone or in conjugation with bone scaffolds) in orthodontics.

June 26, 2018|Volume 10|Issue 6|

Safari S et al . Stem cells in orthodontics



72WJSC|www.wjgnet.com

odontal tissue regeneration was achieved in both the 
autologous and the allogeneic PDLSCs transplantation[119]. 
Using amniotic membrane for transferring PDLSCs for 
periodontal regeneration in a rat periodontal model as a 
new method of transplantation is also being suggested 
in a study[120].

According to aforesaid studies, human adult PDL
SCs are capable of regenerating elements of bone 
and collagen, since the periodontitis is a chronic dise
ase, it may benefit from such stem cell based ther
apies[114,117-119]. Thus the use of PDLSC transplantation 
in periodontal therapies can reduce treatment time and 
better outcomes followed by patient comfort, however, 
due to complex structure of periodontium, regeneration 
is a feasible and yet complicated procedure and may 
need pluripotent SCs and more investigations.

Accelerated OTM
OTM is achieved by the remodeling of periodontal ligam
ent (PDL) and alveolar bone in response to mechanical 
loading[121,122]. The initiating inflammatory event at 
compression sites is caused by constriction of the PDL 
microvasculature, resulting in a focal necrosis, followed 
by recruiting of osteoclasts from the adjacent marrow 
spaces[123]. These osteoclasts are mostly derived from 
hematopoietic SCs[124]. Hence, SCs could be used to ac
celerate OTM by providing progenitor cells.

The development of new methods to accelerate 
OTM has been sought by clinicians as a way to shorten 
treatment times, reduce adverse effects such as pain, 
discomfort, dental caries, and periodontal diseases, and 
minimize iatrogenic damages such as root resorption and 
the subsequent development of non-vital teeth[125]. There 
are surgical methods like surgically-facilitated orthodontic 
therapy or corticotomy[126], periodontally accelerated 
osteogenic orthodontics[127] and some nonsurgical pro
cedures such as systemic/local administration of chemical 
substances like epidermal growth factor, parathyroid 
hormone, 1,25-dihydroxyvitamin d 3, osteocalcin and 
prostaglandins, resonance vibration, static or pulsed 
magnetic field, low-intensity laser irradiation therapy[128].

In a study, increased PDL progenitor cells with su
ppressed expression of type Ⅰ collagen (Col-I) were 
observed during orthodontic force application, whilst 
after force withdrawal they increase in Col-I expression, 
which suggests that PDLSCs are able to respond to 
orthodontic mechanical forces with suppressed collagen 
expression[129]. This ability of SCs could be used to 
accelerate OTM in response to orthodontic forces. Wh
en orthodontic force is applied, tooth movement is 
hindered until the necrosis is removed, leading to the 
clinical manifestation of a delay period. Hypothetically, 
transplantation of SCs in pressure sites may speed up 
the process, resulting in accelerated OTM.

ERR
ERR is a common and unfavorable side effect of ort
hodontic treatment[130,131], which any specialist may en

counter. Many factors seems to be involved in ERR such 
as genetics, individual biological variability, age, sex, 
and orthodontic forces and treatment duration[132,133]. 
Orthodontic forces yet seem to be the main etiologic 
factors. ERR may lead to loss of tooth structure such 
as cementum and in more advanced stages, dentin, 
however no specific treatment has been introduced 
so far. One possible treatment modality could be reg
eneration of resorbed roots by application SCs and 
tissue engineering.

In severe cases ERR may cause poor prognosis of 
tooth, resulting in tooth loss. Regeneration of these 
lesions increases the longevity of tooth and may play an 
important role in facilitating the treatment. In a study 
designed to induce de novo cementum formation by 
SC therapy, MSCs driven from periodontal ligament 
in in vivo transplantation were able to form cellular 
cementum-like hard tissue containing embedded ost
eocalcin-positive cells[134]. According to studies in which 
the whole tooth structure has been bioengineered and 
transplanted into Rodent[135,136] and beagle dogs[137] 
models, it might be possible to regenerate the damaged 
tooth structure such as dentin and cementum and in 
the future to achieve a bioengineered functional human 
tooth structure.

Although it seems that there is a long way until reg
eneration of the teeth materials, cementogenesis and 
regeneration of dental structures through stem cell ba
sed therapies could be anticipated.

CONCLUSION
The current review showed application of SCs alone 
or in conjugation with bone scaffold or growth factors 
in surgical correction of dentofacial deformities, TMJ 
defects, and alveolar bone lesions. Recent studies show 
that SCs could improve treatment results and reduce 
treatment duration. Use of SCs is associated with acc
elerated healing and less morbidity compared to current 
surgical approached. Also, SCs could be used in DO 
surgeries and RME to increase consolidation rate and 
reduce relapse.

The contemporary evidence reveals feasibility of 
use of SCs for accelerating OTM, regenerating resorbed 
roots, expanding limitations of OTM while preserving 
periodontal health. In addition, SCs could be used 
for regeneration of periodontal tissues both pre and 
post OTM. In vivo studies are required to assess the 
possibility of such interventions.
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