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Abstract
Ethical concerns about stem cell-based research have delayed important advances 
in many areas of medicine, including cardiology. The introduction of induced 
pluripotent stem cells (iPSCs) has supplanted the need to use human stem cells 
for most purposes, thus eliminating all ethical controversies. Since then, many 
new avenues have been opened in cardiology research, not only in approaches to 
tissue replacement but also in the design and testing of antiarrhythmic drugs. This 
methodology has advanced to the point where induced human cardiomyocyte cell 
lines can now also be obtained from commercial sources or tissue banks. Initial 
studies with readily available iPSCs have generally confirmed that their 
behavioral characteristics accurately predict the behavior of beating cardio-
myocytes in vivo. As a result, iPSCs can provide new ways to study arrhythmias 
and heart disease in general, accelerating the development of new, more effective 
antiarrhythmic drugs, clinical diagnoses, and personalized medical care. The 
focus on producing cardiomyocytes that can be used to replace damaged heart 
tissue has somewhat diverted interest in a host of other applications. This 
manuscript is intended to provide non-specialists with a brief introduction and 
overview of the research carried out in the field of heart rhythm disorders.
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Core Tip: The introduction of induced pluripotent stem cells (iPSCs) has supplanted the 
need for human stem cells, thus eliminating most ethical controversies. This 
methodology has advanced to the point where induced human cardiomyocyte cell lines 
can also be obtained from commercial sources or tissue banks. iPSCs can predict the 
behavior of cardiomyocytes in vivo, so that new ways are paved in cardiology research 
to study arrhythmias and heart disease in general, accelerating the development of new, 
more effective antiarrhythmic drugs, clinical diagnoses, and personalized medical care.

Citation: Karch SB, Fineschi V, Francia P, Scopetti M, Padovano M, Manetti F, Santurro A, 
Frati P, Volpe M. Role of induced pluripotent stem cells in diagnostic cardiology. World J Stem 
Cells 2021; 13(5): 331-341
URL: https://www.wjgnet.com/1948-0210/full/v13/i5/331.htm
DOI: https://dx.doi.org/10.4252/wjsc.v13.i5.331

INTRODUCTION
Human induced pluripotent stem cells (iPSCs) are produced by reprogramming adult 
mesenchymal cells, most often fibroblasts. The process is complicated, requiring the 
introduction and activation of four gene regulatory networks, each comprised of 
molecular regulators that interact with each other and with other substances in the cell 
to control gene expression of mRNA and protein-specific genes. Acting together these 
four transcription factors can produce mature cells that behave in a completely 
different manner to the original fibroblasts used to form them, leading to the 
formation of multiple cell types[1-3].

Myocytes created from fibroblasts are basically identical to native cardiomyocytes. 
There are three different types of native cardiomyocytes, and iPSC production yields 
all three types in variable and unpredictable proportions, presenting difficulties for 
researchers. The most obvious and most publicized cardiological application of iPSCs 
is the production of new cardiac tissue to replace tissues destroyed by infarction or 
other diseases[4-9], but this goal has yet to be successfully realized in humans. 
Initially, this was partly because the subtype of iPSCs could not be assured. Obviously, 
atrial cardiomyocytes would not be a suitable substitute for damaged ventricular 
cardiomyocytes and, regardless, there is always the danger that introducing a mixture 
of cells might lead to teratoma formation[10]. Nonetheless, substantial advances have 
already been made, and success seems to be mainly a matter of time. Once these 
problems have been fully resolved, iPSCs, in various configurations, could be used to 
repair damaged hearts. They could also be used to predict interactions between drugs 
and the cardiac conduction system.

The occurrence of any specific conduction abnormality - including QT prolongation, 
altered action potential duration, triggered activity, the blockade of human-ether-a-go-
go-related channel (hERG) and other ion conduction channels-and the occurrence of 
lethal arrhythmias-such as Torsades de Pointes (TdP)-cannot reliably be predicted 
with currently available screening methods (Langendorf preparations, patch-clamp, or 
even arterially perfused isolated rabbit left ventricular wedge)[11]. Animal models are 
problematic predictors of arrhythmia occurrence because of anatomic varia-tions[12-
16]. Such an issue poses a huge difficulty for drug makers trying to produce effective 
antiarrhythmic drugs; animal-to-human extrapolation is an uncertain process, which 
can pose a danger to patients if unrecognized differences emerge between animal and 
human models[17].

The problems associated with the use of amiodarone and sotalol illustrate the 
difficulties of drug development[18,19]. Both drugs are used to treat atrial and 
ventricular tachyarrhythmias and can be life-saving, but can also produce lethal side 
effects. Unfortunately, predicting side effects is, at this moment, impossible. 
Amiodarone’s most feared side effect is fatal pulmonary interstitial fibrosis, but 
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hepatitis, hypothyroidism (probably irreversible) and mixed sensorimotor 
polyneuropathy have all been reported with some regularity. Amiodarone’s most 
important complications are QT prolongation and TdP[20]. If new and safer 
replacement drugs are ever to be developed and approved by the United States Food 
and Drug Administration and the European Medicines Agency, developers will first 
have to establish that new drugs do not produce predictable untoward side effects or 
exacerbate the conditions they were designed to treat.

The availability of iPSCs allows researchers to make reasonably accurate predictions 
about what effect any new drug will have on the heart and its electrical system. 
Cultured iPSCs, can be used to construct in vitro models of the human cardiac 
conduction system. The effects observed in vitro can then be used to predict how, 
and/or whether, a drug will alter electrical conduction, or produce structural 
alterations in humans. The process is not as simple as it sounds and some knowledge 
of the subject is crucial to clinicians for the safe use of new drugs.

UNDERLYING PHYSIOLOGY AND CLINICAL MANIFESTATIONS
Cures for cardiac conduction diseases will only be found when their root causes are 
fully elucidated. Even physicians who have nothing to do with arrhythmia research 
should retain some knowledge of the molecular biology that underlies cardiac 
conduction.

The cardiomyocyte repolarization/depolarization cycle begins with a current 
generated by the outward flow of potassium ions through specific pores or channels. 
Potassium pores exist in all life forms and many different types have been identified 
(more than 20). Two types of potassium channels are absolutely critical to the process 
of cardiac repolarization: The rapid delayed rectifier current (identified as IKr) and the 
slow delayed rectifier current (identified as IKs). If a drug or a mutation disrupts either 
of these two currents, the action potential of the cell is prolonged with an increase in 
the time required for electrical depolarization and repolarization of the ventricles[21]. 
Prolonged repolarization leads to the occurrence of early after depolarization (EAD) 
currents. EADs are dangerous because they favor the occurrence of triggered activity 
(defined as the occurrence of spontaneous action potentials occurring during phase 2 
or phase 3 of repolarization, leading to the production of inappropriate action 
potentials and arrhythmia)[12]. Blockade of the IKr also causes the QT interval to be 
prolonged, leading to the triggered activity via a slightly different mechanism[22]. 
Such a situation is likely to occur when a drug molecule interferes with potassium 
channels as in the case of type III antiarrhythmic drugs. Slowing of the potassium 
current is associated with a repolarization dispersion, where one area of the 
myocardium recovers from depolarization faster than an adjoining region, which also 
makes TdP more likely to occur[23]. Repolarization dispersion is thought to be the 
reason that myocardial hypertrophy is associated with arrhythmias[24]. The farther 
the depolarization front has to travel, the greater the interval between depolarization 
and repolarization. Dispersion is especially likely to occur if the area of abnormal 
delay and dispersion is located within the Purkinje system or, alternatively, if the area 
is located in the mid-wall of the left ventricle where the “M cells” are located. These 
cells have prolonged action potentials that act to further increase the dispersion of 
repolarization, making the occurrence of TdP ever more likely[25]. For a new antiar-
rhythmic drug to be introduced, it must first be proven that it exerts none of the effects 
enumerated above.

Sudden cardiac death (SCD) due to ventricular tachycardia (VT) or ventricular 
fibrillation (VF) accounts for approximately half of all deaths in patients with heart 
failure (HF) and may be considered a heritable trait[26-32]. Current guidelines[33] 
recommend an implantable cardioverter-defibrillator (ICD) in patients with 
symptomatic and severe left ventricular dysfunction of any origin. However, SCD may 
occur in asymptomatic patients with only mild HF. On the contrary, as many as two-
thirds of patients with severe HF implanted with an ICD do not experience device 
interventions over 3 to 5 years follow-up[34]. A similar clinical scenario leaves 
unanswered the question of whether selected gene variants may affect the risk of SCD 
in HF patients. Genomic science provides us with new approaches to identify gene 
variants or mutations that predispose patients with inherited electrical diseases to 
SCD. However, a growing body of evidence suggests that DNA changes in the same 
genes that convey risk in primary electrical diseases may enhance susceptibility to 
VT/VF even in a polygenic condition such as HF. Sustained VT and VF often occur as 
a consequence of delayed after-depolarizations triggered by diastolic sarcoplasmic 
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reticulum (SR) calcium leak[35]. Genes encoding calcium handling proteins involved 
in electrical homeostasis of the failing heart may represent suitable candidates for 
defining individual susceptibility to life-threatening arrhythmia[26,27]. However, only 
very few genes belonging to the major candidate systems have been characterized and 
screened for possible association with SCD in HF. The cardiac ryanodine receptor 2 
(RyR2), a calcium-releasing channel located in the SR membrane, plays a key role in 
the electrical homeostasis of cardiomyocytes. RyR2 dysfunction has been described in 
both HF patients and animal models and is critical to many of the aspects of the 
disease, including life-threatening arrhythmia[36]. In a large cohort of HF patients, 
Ran et al[37] found that the A allele of RYR2 c.5656G>A was associated with an 
increased risk of SCD. Arvanitis et al[38] reported that the Ser96Ala variant in 
histidine-rich calcium-binding protein was associated with ventricular arrhythmia in 
idiopathic dilated cardiomyopathy. It is known that a serine residue replacing glycine 
at position 1886 (G1886S or rs3766871) in the RyR2 gene prompts a significant increase 
in intracellular calcium oscillation and creates a site of phosphorylation for protein 
kinase C (PKC) entailing PKC-mediated calcium diastolic leak from the SR[39,40]. 
While the RYR2 rs3766871 variant has been previously described only in the setting of 
arrhythmogenic right ventricular cardiomyopathy, a role of RyR2 rs3766871 minor 
allele for increased susceptibility to VT/VF has been recently reported also in patients 
with HF[41]. The SERCA calcium ATPase (ATP2A2) belongs to a large family of P-
type cation pumps that couple adenosine triphosphate (ATP) hydrolysis with cation 
transport across membranes[42]. Alternative splicing of the ATP2A2 gene produces 
two isoforms, SERCA2a (primarily located in the heart and slow-twitch skeletal 
muscle) and SERCA2b (present in smooth muscle and non-muscle tissues). Mutations 
in the ATP2A2 gene affect the expression level, ATP affinity, calcium affinity, and 
phosphorylation of ATP. In an attempt to investigate whether variants of the genes 
encoding major calcium handling proteins affect the occurrence of VT/VF in HF 
patients, it was found that the ATP2A2 c.2741+54G>A gene variant was associated 
with decreased susceptibility to life-threatening arrhythmia. Indeed, patients carrying 
the ATP2A2 c.2741+54A allele variant had an approximately 70% reduction in the 
relative risk of VT/VF during follow-up[43]. Defective calcium handling in failing 
cardiomyocytes has long been recognized as a cause of ventricular arrhythmia, and 
recent evidence suggests that selected calcium gene variants may modify the risk of 
SCD even in a complex and polygenic disease such as HF. While statistically 
associated with a modified risk of SCD, the biological role of many of these gene 
variants is presently unknown. The recent breakthrough discovery of iPSCs could 
enable the investigation of mutated cardiomyocytes generated from patient’s somatic 
cells, allowing functional characterization of iPSC-derived mutated cardiomyocytes. A 
similar approach represents an interesting and promising solution for the biological 
relevance of genetic substrates in secondary arrhythmogenic conditions.

Microelectrode array
Microelectrode arrays are used in many fields of study, although the basics of the 
system are the same no matter what kind of test is being performed; improvements 
and refinements in this methodology are being reported almost continuously. These 
tests are performed in wells that look just like those in any clinical laboratory test plate 
used to observe chemical reactions, however, they differ in one important respect; 
electrodes are located at the bottom of each well.

When the electrodes and iPSCs are joined together they form the backbone of the 
system. The idea was derived from earlier networking studies, designed to test neural 
interactions. Networking electrodes were originally made of titanium salts and gold 
conductors[44], but other materials have been used. The system is now so advanced 
that these wells, indeed, the entire networking system, including software, are all 
available off the shelf.

IPSCs, can either be studied singly or as part of an integrated network. For most 
intents and purposes these cells have all the same capabilities as embryonic stem cells 
that have been allowed to mature. In 2012, Shinya Yamanaka outlined a method to 
induce pluripotency by inserting genes that acted as reprogramming factors, also 
called transduction factors, by attaching them to carrier viruses and inserting the virus 
into the cells, which eventually causes the cells to express the exogenous genes. The 
cells are then cultured and finally harvested[45]. Since the technique was first 
introduced, many other iPSCs, and related transcription factors, have been identified 
and used, including, miRNAs (a type of non-coding RNA that inhibits translation in 
many species). Whatever the precise role of these diverse factors, other epigenetic 
processes are critical for the process of converting maturing stem cells back to 
inducible pluripotent cells[46].
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Once the multiple electrode arrays have been constructed, beating cardiomyocytes, 
derived from pluripotent stem cells are plated over each well, without the electrodes 
ever actually penetrating the cells. Such a methodology essentially recreates many 
aspects of a working myocardium, including the generation of waveforms not very 
different from those seen on clinical electrocardiograms. Introducing an experimental 
drug into the system, the probable effect on a beating human heart can be confirmed 
with a high degree of accuracy.

For example, experimental drugs have been tested in networked iPSCs that alter the 
duration and shape of the QT interval in almost exactly the same pattern as seen in 
humans. Not only do drugs produce the same electrocardiographic changes, but 
physiological stressors also produce changes similar to those that occur in vivo with the 
same rate and QT interval alterations seen in humans[47,48]. If animal studies suggest 
that a drug can cause dangerous QT prolongation, it is simple enough to test the drug 
on networked beating human cardiomyocytes. Another obvious application of this 
technology is the measurement of calcium transients by using fluorescence 
microscopy. Calcium indicators are introduced into the cells and the resulting 
fluorescence can be quantitated noninvasively and used to measure calcium ion flux, 
which controls inotropy. In the past, such experiments required the use of isolated 
small animal muscle[49].

The same type of cellular network can be used to study the effect of genetic 
mutations known to cause cardiac arrhythmias, including channelopathies such as 
hERG; more than 90 long QT syndrome (LQTS) mutations have been mapped to date. 
It is possible to measure the effect of mutations on IKr and IKs, although debate still 
exists over the exact mechanism by which some mutations alter potassium flow, 
answers to at least some of these questions should soon be forthcoming[50]. With the 
availability of high-throughput networked cardiomyocytes, it is now possible to 
evaluate a drug’s effects on potassium flow before it is ever given to an animal, let 
alone evaluated in human clinical trials.

IPSCs from a patient with a novel KCNQ mutation were used by Egashira et al[51] to 
identify the mutation. The patient had survived VF, thanks to the nearby presence of 
an automated external defibrillator. Using a slight variation multi-electrode array 
system (where the electrical activity of clumps of cells, rather than sheets of cells was 
measured), abnormal repolarization, as manifested by electrical field potential 
duration, was observed in the spontaneously beating iPSC cardiomyocytes. Egashira et 
al[51] then added an assortment of potassium ingress and egress blockers to prove that 
the repolarization abnormality lay within the slow inward potassium channel[51]. At 
present, the technology is too cumbersome for routine clinical use. In the future, 
however, it should be possible to use this approach when exome screening fails to 
identify one of the usual culprits.

The recent discovery of the TECRL gene, an arrhythmia-inducing gene that 
produces features of catecholaminergic VT (CPVT) and LQTS, was accomplished 
using much the same technology[52]. Three patients were studied; two with a history 
of cardiac arrest and one with an episode of recorded CPVT. Once iPSCs had been 
produced and the mutation identified and sequenced, electrophysiological studies 
were then performed. These demonstrated exactly the same features (catecholamine 
sensitivity, triggered activity, delayed afterdepolarizations as had been seen in the 
patients. The abnormalities were all reversed by the addition of flecainide, a class 1c 
antiarrhythmic drug. Had iPSCs not been available, finding a remedy would have 
been purely by empiric trial and error. However, the real significance of the study is 
that there is now a reliable methodology with which to screen drugs for effectiveness.

Even without going to the effort of creating an entire iPSCs network, it is still 
possible to clinically diagnose some disorders from the electrical behavior of a single 
iPSC. A very recent report describes two patients with known Brugada Syndrome. 
When compared to the findings in two healthy controls, it was observed that each of 
the Brugada Syndrome patients carried one of two different sodium voltage-gated 
channel alpha and subunit 5 variants. The electrical characteristics of iPSCs produced 
from the patient's own skin fibroblasts were studied. The studies showed reductions in 
inward sodium current density and reduced maximal upstroke velocity of action 
potential when compared with healthy controls. Furthermore, iPSC cardiomyocytes 
from the Brugada Syndrome patients demonstrated increased triggered activity, 
abnormal calcium (Ca2) transients, and beating interval variation, the very same 
abnormalities previously reported in other studies, using different methodologies[53]. 
Late in 2016, a study using individual iPSCs was used to confirm results observed in a 
previous knock out mouse study. The studies had suggested the existence of a new 
cardiac regulatory mechanism that appeared to play a key role in the association 
between arrhythmias and myocardial hypertrophy. When the mouse studies were 
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repeated in human iPSCs, it was possible to confirm that the same stress-activated 
kinase was operative in human cells[54].

Heart disease screening
Another obvious application for iPSCs is screening for suspected heart disease, and for 
determining the significance of a mutation once it has been identified. Hypertrophic 
cardiomyopathy (HCM) is a very good example. The clinical diagnosis can be difficult 
to make (left ventricular hypertrophy with wall thickness > 15 mm, in the absence of 
ventricular dilation or any apparent disease that could cause hypertrophy)[55]. 
Unfortunately, it is not uncommon for there to be a complete disconnect between 
phenotype and genotype: Abnormal genes may be present but symptoms and signs 
absent.

Both sarcomeric mutations and non-sarcomeric mutations in HCM can be identified 
by whole-exome sequencing, and these studies demonstrate that the same genotype 
may be responsible for sudden death in one individual, but remain asymptomatic in 
another[56]. Multiple mutations have been detected in patients with HCM: Nine 
sarcomeric genes are known to carry most HCM-related mutations and encode 
sarcomeric mutations, while an additional nine mutations code for sarcomeric Z-disc 
proteins such as muscle LIM protein, α-actinin, or telethonin[57,58].

Since iPSCs cardiomyocytes became available, the pathogenic effects of some 
mutations (MYH7 and MYBPC3) associated with HCM have already been identified
[59], and calcium blockade has been found to be an effective treatment for another 
HCM mutation (MYH7-R663H)[60]. Whole-exome sequencing almost never yields the 
identity of a single culprit gene, but rather detects multiple mutations, some of which 
may be relevant and some not. If one single mutation is responsible for the obvious 
phenotype of HCM, it has yet to be identified. It hardly needs saying, but exactly the 
same methodology used to identify culprit genes could be applied to genomic studies 
of countless other disorders, just by inducing the required cell type from transformed 
fibroblasts.

DISCUSSION
Overcoming the ethical problems related to the use of stem cells through the 
introduction of iPSCs opens up an interesting scenario on the study of the cellular 
basis of diseases[61,62]. The use of pluripotent cells makes it possible to reproduce 
models for the study of cardiological pathologies which frequently cause SCD and are 
often diagnosed post-mortem such as structural cardiomyopathies and channel-
opathies[63-66].

Furthermore, iPSCs can be exploited in the personalization of therapies in relation 
to the possibility of carrying out pharmacological tests on cells derived from the 
patient[67-70].

Although the principles are easy to understand, at present there are some important 
caveats. One is that fibroblast generated iPSCs demonstrate an immature phenotype so 
that they more closely resemble mid-gestation human fetal hearts[71-73]. These 
differences may well alter final experimental and clinical results, depending on the 
stage of development of the iPSCs being used. When used in other fields, the same 
caveat applies. Now that this difference has been recognized, finding ways to make 
sure the cells are organized and function as adult cells is the object of intense research, 
which has already begun to generate results. Recent reports indicate that iPSCs can be 
stimulated and made to mature by a combination of pacing and increasing mechanical 
stress[74-77].

Another issue that had been delaying progress is that protocols used to produce 
iPSCs do not produce just one kind of cell, but rather yield a mixed population of 
cardiomyocyte subtypes including ventricular-, atrial- and pacemaker-like cells[78-
81]. Birket and colleagues[82] made the early observation that even though the iPSCs 
can behave like normal human cardiomyocytes, the production process leads to 
unequal numbers of each of the subtypes. Obviously, different results will be 
generated depending on which type of cell predominates. Many laboratories are 
working on effective cell separation methods and standardized methods should soon 
be available.
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Figure 1 Induced pluripotent stem cells can provide new ways to study arrhythmias and heart disease in general, accelerating the 
development of new, more effective antiarrhythmic drugs, clinical diagnoses, and personalized medical care. iPSCs: Induced pluripotent stem 
cells. Figure created with BioRender (https://biorender.com).

CONCLUSION
In summary, the main applications of stem cells include disease modeling, cell 
diagnostics, and therapy personalization (Figure 1). Such tasks involve molecular 
profiling, the identification of biomarkers of the expression of the pathological 
phenotype, as well as the identification and testing of targeted therapies. The 
availability of pluripotent cardiac stem cells, especially networked beating 
cardiomyocytes, is likely to revolutionize our understanding of many cardiac rhythm 
disorders and diseases, provide a rational testing method for the development of 
drugs, permit clinicians to assess effectiveness before drug administration and, most 
importantly, save lives.
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Abstract
Tooth-related diseases and tooth loss are widespread and are a major public 
health issue. The loss of teeth can affect chewing, speech, appearance and even 
psychology. Therefore, the science of tooth regeneration has emerged, and 
attention has focused on tooth regeneration based on the principles of tooth 
development and stem cells combined with tissue engineering technology. As 
undifferentiated stem cells in normal tooth tissues, dental mesenchymal stem cells 
(DMSCs), which are a desirable source of autologous stem cells, play a significant 
role in tooth regeneration. Researchers hope to reconstruct the complete tooth 
tissues with normal functions and vascularization by utilizing the odontogenic 
differentiation potential of DMSCs. Moreover, DMSCs also have the ability to 
differentiate towards cells of other tissue types due to their multipotency. This 
review focuses on the multipotential capacity of DMSCs to differentiate into 
various tissues, such as bone, cartilage, tendon, vessels, neural tissues, muscle-like 
tissues, hepatic-like tissues, eye tissues and glands and the influence of various 
regulatory factors, such as non-coding RNAs, signaling pathways, inflammation, 
aging and exosomes, on the odontogenic/osteogenic differentiation of DMSCs in 
tooth regeneration. The application of DMSCs in regenerative medicine and tissue 
engineering will be improved if the differentiation characteristics of DMSCs can 
be fully utilized, and the factors that regulate their differentiation can be well 
controlled.

Key Words: Dental mesenchymal stem cells; Regenerative medicine; Tissue engineering; 
Multipotency; Odontogenic differentiation; Osteogenic differentiation
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Core Tip: Dental mesenchymal stem cells have been widely used in tissue engineering 
and regenerative medicine due to their multipotential differentiation ability. We herein 
discuss the multipotency of dental mesenchymal stem cells and some related factors 
influencing the odontogenic/osteogenic differentiation, which provide guidance for 
fully utilizing the multipotency of dental mesenchymal stem cells.
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INTRODUCTION
Over the past three decades, in the search for treatments for a variety of degenerative 
diseases and irreversible forms of tissue and organ damage, the emerging field of 
tissue engineering and regenerative medicine (TERM) has attracted a lot of interest, 
and great efforts have been made to realize the regeneration of different types of 
tissues and organs to restore normal physiology and body function. As one of the 
important aspects of regenerative medicine, tissue engineering mainly takes 
advantages of the following three methods: (1) Cell/biomaterial complex systems with 
cell-seeded biomaterials implanted into the body to restore and regenerate 
tissues/organs; (2) Cell systems, such as stem cell transplantation; and (3) Biomaterial 
systems implanted into the body and integrated into tissues[1]. As a vital part of 
TERM, a suitable source of stem cells is a significant initial requirement. Since the 
1990s, the field of stem cell biology has gradually developed and rapidly become a 
main research trend in regenerative medicine. Induced pluripotent stem cells, 
progenitor cells from various tissues, human embryonic stem cells and adult stem cells 
are all potential seed cells for TERM[2]. Cells derived from induced pluripotent stem 
cells or differentiated from human embryonic stem cells can be used to build related 
tissue cell models. Progenitor cells and adult stem cells from various tissues can differ-
entiate into mature tissues.

As adult stem cells, dental mesenchymal stem cells (DMSCs), including dental pulp 
stem cells (DPSCs), periodontal ligament stem cells (PDLSCs), stem cells from apical 
papilla (SCAPs), gingival mesenchymal stem cells (GMSCs), stem cells from human 
exfoliated deciduous teeth (SHED) and dental follicle stem cells (DFSCs) have been 
widely studied because of their ready availability, easy accessibility and lack of 
complex ethical issues. DMSCs have multiple differentiation potential and can differ-
entiate into a variety of tissue-like cells under specific induction conditions, providing 
potential seed cells for TERM. For example, SHED are capable of inhibiting bone loss, 
decreasing neuronal apoptosis and forming pancreatic islet-like clusters[3-5]. DPSCs 
can differentiate into myogenic lineage and corneal stromal-like constructs[6,7] and 
can also reduce bone loss in an osteoporosis mouse model, prevent retinal ganglion 
cell loss and repair spinal cord injury[8-10].

DMSCs, in particular, have great potential for application in engineering 
regeneration of dental tissues. In 2006, Sonoyama et al[11] transplanted a hydrox-
yapatite/SCAP-Gelfoam/PDLSC structure into a swine alveolar socket, which 
regenerated mineralized root-like tissue and formed periodontal ligament space[11]. In 
2012, Guo et al[12] identified a method of combining DFSCs with treated dentin matrix 
scaffolds in the alveolar fossa that proved to be a promising strategy for tooth root 
regeneration[12]. In 2013, Iohara et al[13] transplanted autologous DPSCs with 
granulocyte-colony stimulating factor into a dog pulpectomized tooth and found that 
newly formed pulp tissue, including innervation and vasculature, fully filled in the 
root canal[13].

Efforts have been made to promote tooth regeneration by DMSCs, but many factors 
affect this complex regeneration process, such as correlative non-coding RNAs, 
signaling pathways, inflammation, aging and exosomes. In the process of induced 
differentiation of DMSCs, many non-coding RNAs, including microRNAs and long 
noncoding RNAs (lncRNAs) and related signaling pathways are involved to regulate 
the expression of odontogenic/osteogenic differentiation genes. In addition, donor 
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age, cell senescence and the complex oral inflammatory microenvironment also pose 
great challenges to tooth regeneration by DMSCs. Moreover, the hot topic of research 
in recent years, exosomes, which carry a variety of contents, have also captured the 
attention of researchers in inducing the differentiation of DMSCs. If we can regulate 
these factors well, it will enable a big step forward in the application of DMSCs in the 
field of tooth regeneration. This review focuses on the multidirectional differentiation 
potential of DMSCs and the effect of the above-mentioned factors on the odontogenic/ 
osteogenic differentiation of DMSCs in the field of tooth regeneration, hoping to 
provide a reference for the efficient use of DMSCs.

DIVERSE DIFFERENTIATION OF DMSCS
In addition to the odontogenic differentiation ability of DMSCs, in recent years the 
research on the differentiation of DMSCs into other tissue-like cells, such as 
osteogenesis, chondrogenesis, angiogenesis, neurogenesis and differentiation potential 
toward tendon-like cells, insulin-producing cells, hepatic-like cells, corneal stromal-
like cells, etc. has become popular (Figure 1). To explore the diverse differentiation 
ability of DMSCs is an issue worth exploring.

DPSCs
In 2000, Gronthos et al[14] identified that DPSCs can form alizarin red-positive 
condensed nodules with high levels of calcium cultivated by L-ascorbate-2-phosphate, 
glucocorticoid, dexamethasone and inorganic phosphate[14]. As a seed cell for bone 
regeneration, DPSCs usually attached to some materials for bone defect models. For 
example, Wongsupa et al[15] fabricated a scaffold combination of poly-ε-
caprolactone–biphasic calcium phosphate with the modified melt stretching and 
multilayer deposition technique seeded with human DPSCs (hDPSCs), which 
increased the newly formed bone in calvarial defects rabbit models[15]. However, Jin 
et al[16] showed that adipose tissue-derived stem cells exhibited greater osteogenic 
differentiation potential compared to DPSCs[16].

In vitro, DPSCs can differentiate into chondroblasts, which suggests that it can be 
useful for cartilage injuries[17]. CD146 marked DPSCs can express the chondrogenic 
inducing factor transforming growth factor (TGF)-β3 and form three-dimensional 
cartilage constructs when seeded on poly-L-lactic acid/polyethylene glycol 
electrospun fiber scaffolds[18]. Costal chondrocytes are able to supply a chondro-
inductive niche that promote the DPSCs to undergo chondrogenic differentiation and 
enhance the formation of cartilage[19]. Xenotransplantation of DPSCs in platelet-rich 
plasma and 3% alginate hydrogels significantly regenerated cartilage in rabbit models 
of cartilage damage[20,21].

In 2016, Chen et al[22] first identified expression of tendon-related markers such as 
scleraxis, tenascin-C, tenomodulin, eye absent homologue 2, collagen I and collagen VI 
in dental pulp tissues. Also, DPSCs seeded in aligned polyglycolic acid fiber scaffolds 
can promote the expression of tendon-related markers under mechanical stimulation 
and form mature tendon-like tissue in a mouse model[22]. As neural crest-derived 
cells, DPSCs can be induced to differentiate into neuron-like cells with the use of 
growth factors, including basic fibroblast growth factor and epidermal growth factor, 
which are preferable to the chemical-induction method[23-25]. DPSCs transplanted 
into a rat model of middle cerebral artery occlusion, peripheral nerve injuries and 
retinal injury expressed related neuronal markers[26-28].

Three-dimensional culture promoted the differentiation of hDPSCs into insulin-
producing cells[29], and pancreatic islets were also generated from DPSCs[30]. The 
potential toward insulin-producing cells of hDPSCs was superior to human PDLSCs 
(hPDLSCs)[31]. DPSCs also exhibited angiogenic potential when implanted into 
mouse brain and into a rat model of acute myocardial infarction by promoting neovas-
culogenesis[32,33]. Furthermore, DPSCs differentiated into bladder smooth muscle 
cells in a particular culture medium[34], while the Wnt-GSK3β/β-catenin pathway 
played an important role in this process[35]. DPSCs had the potential to form a high-
purity hepatic lineage when cultured in serum-free medium[36], and DPSCs derived 
from cryopreserved dental pulp tissue of vital extracted diseased teeth also showed 
the potential to differentiate into hepatic-like cells[37]. Additionally, DPSCs had the 
capacity to differentiate into melanocyte-like cells when cultured in a specific 
melanocyte differentiating medium[38].
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Figure 1  Location of dental mesenchymal stem cells and their diverse differentiation potential. Dental mesenchymal stem cells can be isolated 
from different tissues of the teeth. Dental mesenchymal stem cells have multidifferentiation ability and can differentiate into many tissue-like cells. DPSCs: Dental pulp 
stem cells; PDLSCs: Periodontal ligament stem cells; SCAPs: Stem cells from apical papilla; GMSCs: Gingival mesenchymal stem cells; SHED: Stem cells from 
human exfoliated deciduous teeth; DFSCs: Dental follicle stem cells.

PDLSCs and GMSCs
PDLSCs have great osteogenic differentiation potential. Kato et al[39] observed that 
PDLSCs have the highest levels of some bone differentiation markers without 
osteogenic differentiation among mesenchymal stromal cells derived from bone 
marrow and adipose-derived mesenchymal stem cells[39]. Seeded on nanohydro-
xyapatite-coated genipin-chitosan conjunction scaffold, PDLSCs exhibited significantly 
greater viability and alkaline phosphatase activity and promoted calvarial bone repair
[40]. Moshaverinia et al[41,42] reported that PDLSCs and GMSCs capsulated in an 
injectable arginine-glycine-aspartic acid tripeptide-coupled alginate microsphere 
delivery system promoted bone regeneration and chondrogenesis, respectively, for a 
calvarial defect animal and subcutaneous implantation of nude mice, and PDLSCs 
showed significantly higher osteogenic and chondrogenic differentiation capability 
compared with GMSCs.

In 2021, Shen et al[43] showed that 6-bromoindir-ubin-3’-oxime promoted 
mineralized nodule formation in PDLSCs[43]. PDLSCs from beagle dogs and humans 
can both be induced to differentiate into neural-like cells by various protocols[44,45], 
and the Wnt/β-catenin signaling pathway has been implicated in this process[46]. 
Bueno et al[47] found that the nuclear shape of hPDLSC-derived neural-like cells was 
similar to cells in neurogenic niches from adult mouse brain, and no cell proliferation 
occurred in the course of neurogenesis. The potential for neurogenesis is improved by 
the addition of specific short peptides or phytocompounds[48-50]. As another stem cell 
type derived from periodontal tissue, GMSCs also have neurogenic differentiation 
potential and displayed action potential capacity when tested by a neurosphere-
mediated induction method[51], while hypoxia preconditioning activated more genes 
associated with neuronal development[52]. In addition, over prolonged passages, 
human GMSCs have been found to spontaneously differentiate into neural precursor 
cells[53].

Encapsulated PDLSCs and GMSCs in an alginate/hyaluronic acid three-
dimensional scaffold promoted the regeneration of neurogenic tissue[54]. Besides, 
PDLSCs had the ability to differentiate into corneal stromal keratocyte-like cells[55] 
and constructed a multilamellar human corneal stromal-like tissue in vitro when 
seeded onto orthogonally aligned, multilayered silk membranes and supplemented 
with the neuropeptide substance P[56]. PDLSCs also could be directed to develop into 
retinal progenitors and islet-like cell clusters with competence for photoreceptor differ-
entiation and secretion of insulin[57,58]. Moreover, both PDLSCs and GMSCs differen-
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tiated into tendon-like cells using an injectable and biodegradable arginine-glycine-
aspartic acid tripeptide-coupled alginate hydrogel scaffold[59]. The GMSCs could also 
be induced to differentiate into functional keratinocytes when treated with Acalypha 
indica in a three-dimensional microenvironment[60].

DFSCs
Human DFSCs can differentiate to osteogenic lineage cells in osteogenic induction 
medium without dexamethasone, and BMP6 is a key gene in the osteogenic differen-
tiation[61]. Plasma rich in growth factors and soluble silica can promote osteogenic 
differentiation of DFSCs[62,63]. Lucaciu et al[64] indicated that DFSCs could be used 
for promoting bone regeneration on titanium implant surfaces[64]. DFSCs were loaded 
into poly-ε-caprolactone scaffold and implanted into skulls defects of Sprague Dawley 
rats, and bone regeneration was observed[65]. Undifferentiated DFSCs expressed some 
neural markers, such as nestin, β-III-tubulin and S100β and exhibited a spindle-like 
morphology[66]. Using a two-step strategy for neuronal differentiation, DFSCs could 
be differentiated into neurosphere-like cell clusters, and finally developed a cellular 
morphology with small bodies and long cellular extrusions while exhibiting increased 
expression of neural cell markers[67].

It has been suggested that human DFSCs may have the potential to differentiation 
toward the glial lineage rather than the neuronal lineage[66]. Induced cardiomyocytes 
derived from DFSCs, which were cultured in medium with suberoylanilide 
hydroxamic acid, could be intraperitoneally injected into experimental mice and 
exhibited homing capacity into the heart muscle[68]. Comparing the differentiation 
potential toward pancreatic β cell-like cells among the stem cells from dental pulp, 
papilla and follicle, the DFSCs demonstrated higher potency and secreted more insulin 
upon glucose challenge[69]. Furthermore, epithelial stem-like cells from the human 
dental follicle were able to differentiate into salivary gland acinar and duct cells[70].

SHED
SHED represent a promising cell source for bone regeneration, which are usually 
combined with many biomaterials. Combined hydroxyapatite scaffold and SHED can 
promote alveolar bone regeneration, and interleukin-17A can enhance osteogenic 
differentiation of SHED, both due to increasing osteoprotegerin/receptor activator of 
nuclear factor κB ligand ratio[71,72]. FGF-2 pretreated SHED represent a faster 
formation of intramembranous bone after implanted in craniofacial bone defects than 
hypoxia pretreated[73]. A carbon nanomaterial named graphene oxide quantum dots 
promotes osteogenic differentiation of SHED via the Wnt/β-catenin signaling pathway
[74]. In addition, SHED have the chondrogenic differentiation ability. After 
transplantation into the subcutaneous space on the back of nude mice, SHED 
recombined with β-TCP scaffolds were able to produce new cartilage-like tissues[75].

In 2011, SHED were successfully induced to differentiate into neural-like cells by a 
simple short-term growth factor-mediated induction protocol[76], and then in 2013, a 
novel three-stage method was established[77]. Yang et al[78] found that Noggin 
overexpression combined with the Rho kinase inhibitor Y-27632 exhibited a synergistic 
effect in promoting differentiation of SHED into neuron-like cells[78]. The lncRNA 
C21orf121 promotes SHED differentiation into neuronal cells by upregulating the 
expression of BMP2, acting as a competing endogenous RNA to compete with BMP2 
binding to miR-140-5p[79]. SHED in polyglycolic acid tubes combined with 
autografting can regenerate the mandibular branch of the rat facial nerve[80]. Also, 
SHED have been used to repair a Parkinsonian rat model, an acute contused spinal 
cord injury model and a model of diabetic peripheral neuropathy[81-83].

In addition, SHED can differentiate into angiogenic endothelial cells, and when 
cultured with decellularized extracellular matrix of human umbilical vein endothelial 
cells can improve endothelial differentiation[84,85]. Using shear stress via the 
downstream pathway of vascular endothelial-derived growth factor-Notch signaling 
or by inhibiting TGF-β signaling in SHED can enhance endothelial differen-tiation[86,
87]. SHED transplanted into immunodeficient mice using Matrigel with human 
umbilical vein endothelial cells form extensive vessel-like structures[88].

SHED also have the potential for hepatic differentiation, which can be improved by 
using liquorice or angelica extracts in the culture medium[89]. CD117+ SHED 
hepatically differentiated in vitro were used to repair either acute liver injury or 
induced secondary biliary cirrhosis in a rat model[90]. Meanwhile SHED or SHED-
converted hepatocyte-like cell-based spheroids transplanted into a CCl4-induced 
chronic liver fibrosis mouse model improved hepatic dysfunction[91,92].
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Furthermore, SHED can differentiate into epidermal cells and accelerate wound 
repair when seeded onto polyvinyl alcohol/silk fibroin nanofiber dressings[93]. CD117
+ SHED also have the potential to differentiate toward all functional endocrine and 
exocrine subsets of pancreatic cells in serum-free conditions[94]. When cocultured 
with immortal corneal epithelium cells in vitro, SHED display the potential for 
transdifferentiation to corneal epithelium-like cells[95]. Li et al[96] indicated that SHED 
can transdifferentiate into retinal photoreceptor-like cells in vitro and retain good 
viability in vivo after transplantation into mice with a normal immune system[96]. 
Moreover, functional smooth muscle cells can be differentiated from SHED by TGF-β1 
induction, while the ALK5 signaling pathway may regulate this process[97].

SCAPs
In 2020, Deng et al[98] reported that platelet derived growth factor BB promoted 
SCAPs osteogenic differentiation and enhanced bone formation in calvarial defects 
combined with a thermosensitive hydrogel[98]. Both conditioned culture medium 
containing traditional Chinese herbal remedy, Yunnan Baiyao, and high glucose α-
Minimal Essential Medium can promote the odonto/osteogenic differentiation of 
SCAPs through the nuclear factor κB signaling pathway[99,100]. Depletion of lysine-
specific demethylase 2A enhanced the adipogenic and chondrogenic differentiation 
potentials of SCAPs[101]. In 2020, Yang et al[102] reported that DLX5 and HOXC8 
enhanced the expression of chondrogenic markers including type II collagen, type V 
collagen and sex-determining region Y box protein 9[102].

In 2017, Kim et al[103] first formed a three-dimensional cell-based nerve-like tissue 
with axons and myelin structures using SCAPs through a three-dimensional 
organotypic culture method[103]. The secreted frizzled-related protein 2, a Wnt 
signaling modulator, and insulin-like growth factor (IGF)-2 improved the neurogenic 
differentiation potential of SCAPs[104,105]. Adding graphene dispersion and water-
soluble single-walled carbon nanotubes to the neuroinductive medium enhanced the 
neural differentiation of SCAPs[106].

SCAPs show angiogenic potential, and SCAPs and/or DPSCs transplanted in three-
dimensional-printed hydroxyapatite scaffolds can form vascularized dentin/pulp-like 
tissue[107]. Coculture of human umbilical vein endothelial cells and SCAPs under 
hypoxic conditions promotes the construction of vessel-like structures in vitro, and 
ephrinB2 may play an important role in stabilizing the vascular-like struc-tures[108,
109]. Furthermore, erythropoietin enhances the endothelial differentiation of SCAPs
[110]. In addition, SCAPs also have hepatogenic potential[111], and mesenchymal stem 
cells derived from dental papilla can also be differentiated into pancreatic β cell-like 
cells[69].

MULTIPLE FACTORS INFLUENCING THE ODONTOGENIC/OSTEOGENIC 
DIFFERENTIATION OF DMSCS
MicroRNAs
MicroRNAs (miRNAs) play important roles in regulating the tooth regeneration 
process (Table 1). Downregulation of miR-143-5p and miR-143-3p promotes the 
odontoblastic differentiation of DPSCs through the osteoprotegerin/receptor activator 
of nuclear factor κB ligand signaling pathway[112,113]. Acting via the p38 mitogen-
activated protein kinases (MAPK) signaling pathway, downregulated miR-143-5p and 
miR-488 are capable of inducing DPSCs to differentiate into odontoblast-like cells by 
targeting MAPK14 and MAPK1, respectively[114,115]. Wang et al[116] found that miR-
125a-3p regulates odontoblastic differentiation of DPSCs in an inflammation model by 
targeting Fyn, a member of the protein tyrosine kinase Src family[116].

Meanwhile miR-let-7c-5p can restore the osteogenic differentiation of inflamed 
DPSCs by suppressing the lipopolysaccharide (LPS)-induced inflammatory 
phenomena[117]. In inflamed pulp tissues, miR-223-3p is remarkably upregulated, and 
overexpression of miR-223-3p in DPSCs can increase the protein levels of dentine 
sialophosphoprotein (DSPP) and dentine matrix protein 1[118]. Sun et al[119] found 
that during LPS-mediated odontoblastic differentiation of DPSCs, the expression of 
miR-140-5p is markedly decreased, while when miR-140-5p is expressed in DPSCs 
after LPS treatment, the odontoblastic differentiation ability is inhibited[119].

Additionally, during odontogenesis of hDPSCs, the expression of miR-508-5p 
decreases gradually, while significant inhibition of odontogenesis is observed after 
overexpression of miR-508-5p, which targets glycoprotein nonmetastatic melanomal 
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Table 1 Summary of the microRNAs influencing the odontogenic/osteogenic differentiation of dental mesenchymal stem cells

Ref. MicroRNA Cell type Signaling pathway or 
targets Outcome

Zhan et al[112], 2018 miR-143-5p DPSCs OPG/RANKL Downregulation promoted 
odontoblastic differentiation

Yang et al[113], 2020 miR-143-3p DPSCs OPG/RANKL Downregulation promoted 
odontogenic differentiation

Wang et al[114], 2019 miR-143-5p DPSCs MAPK14 Downregulation promoted 
odontoblastic differentiation

Yu et al[115], 2019 miR-488 DPSCs MAPK1 Downregulation enhanced 
odontoblastic differentiation

Wang et al[116], 2020 miR-125a-3p DPSCs Fyn Regulated odontoblastic differentiation 
in an inflammation model

Yuan et al[117], 2019 miR-let-7c-5p Inflamed human 
DPSCs

- Restored the osteogenic differentiation

Huang et al[118], 2019 miR-223-3p Inflamed human 
DPSCs

- Increased the proteins levels of DSPP 
and DMP-1

Sun et al[119], 2017 miR-140-5p DPSCs - Inhibited odontoblastic differentiation 
after LPS treated

Liu et al[120], 2019 miR-508-5p DPSCs GPNMB Inhibited odontogenic differentiation

Xu et al[121], 2018 miR-21 DPSCs STAT3 Downregulation caused the decreasing 
expression of DMP-1 and DSPP

Qiu et al[122], 2019 miR-146a-5p STRO-1 + human 
DPSCs

- Promoted osteo/odontogenic 
differentiation

Zhang et al[123], 2018 miR-143 DPSCs TNF-α/NF-κB Suppressed the osteogenic 
differentiation

Yao et al[124], 2019 miR-215, miR-219a-1-3p DPSCs HspB8 Inhibited the osteogenic differentiation

Wei et al[125], 2017 miR-21 PDLSCs Smad5 Inhibited osteogenesis

Li et al[126], 2019 miR-24-3p PDLSCs Smad5 Inhibited osteogenic differentiation

Wei et al[127], 2015 miR-21 PDLSCs ACVR2B Performed a positive function in 
mediating the stretch-induced 
osteogenic differentiation

Yao et al[128], 2017; Cao et al
[129], 2017

miR-214 PDLSCs ATF4, Wnt/β-catenin Downregulation decreased the 
osteogenic differentiation

Bao et al[130], 2019 miR-148a PDLSCs - Downregulation rescued the inhibition 
of osteogenesis triggered by LPS 
stimulation

Yan et al[131], 2017 miR-22 PDLSCs HDAC6 Promoted osteogenesis

Li et al[132], 2018 miR-17 PDLSCs HDAC9 Promoted osteogenesis in an 
inflammation condition

Xu et al[133], 2019 miR-132 PDLSCs GDF5, NF-κB Inhibited the osteogenesis

Zhen et al[134], 2017 miR-31 PDLSCs Satb2 Took part in the high glucose-
suppressed osteogenic differentiation

Wan et al[135], 2012 miR-34a Human dental papilla 
cells

- Increased the expression of DSPP and 
decreased the expression of ALP

Sun et al[136], 2014 miR-34a SCAPs - Upregulated odonto/osteogenic 
markers

Wang et al[137], 2018 miR hsa-let-7b SCAPs MMP1 Suppressed the odonto/osteogenic 
differentiation

Dernowsek et al[138], 2017 miR-450a-5p,miR-28-5p SHED - Supported the osteogenesis

Klingelhöffer et al[139], 2016 miR-101 DFSCs - Enhanced the osteogenic 
differentiation

Han et al[140], 2019 miR-3940-5p GMSCs - Promoted the osteo/dentinogenic 
differentiation
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DPSCs: Dental pulp stem cells; PDLSCs: Periodontal ligament stem cells; SCAPs: Stem cells from apical papilla; MAPK: Mitogen-activated protein kinases; 
OPG/RANKL: Osteoprotegerin/receptor activator of nuclear factor κB ligand; GPNMB: Glycoprotein nonmetastatic melanomal protein B; TNF-α: Tumor 
necrosis factor-α; NF-κB: Nuclear factor κB; ATF4: Activating transcription factor 4; LPS: Lipopolysaccharide; DSPP: Dentine sialophosphoprotein; ALP: 
Alkaline phosphatase; SHED: Stem cells from human exfoliated deciduous; GMSCs: Gingival mesenchymal stem cells; DFSCs: Dental follicle stem cells; 
HspB8: Heat shock protein B8; ACVR2B: Activin receptor type IIB; GDF5: Growth differentiation factor 5; MMP1: Matrix metalloproteinase 1; miR: 
MicroRNA; DMP-1: Dentine matrix protein 1; Smad5: SMAD family member 5.

protein B[120]. Xu et al[121] reported that during odontoblast differentiation of DPSCs, 
the expression of miR-21 can be regulated by treating with TNF-α, while downregu-
lation of miR-21 causes a decrease in the expression of dentine matrix protein 1 and 
DSPP by interacting with STAT3[121]. Moreover, miR-146a-5p promotes odontogenic/ 
osteogenic differentiation of STRO-1+ DPSCs[122]. miR-143 suppresses the osteogenic 
differentiation of DPSCs by regulating the TNF-α/nuclear factor κB pathway[123], 
while miR-215 and miR-219a-1-3p inhibit the osteogenic differentiation capability of 
DPSCs by downregulation of heat shock protein B8[124].

During osteogenic differentiation of PDLSCs, the expression of miR-21 and miR-24-
3p decrease, and their downregulation markedly inhibits osteogenesis of hPDLSCs by 
targeting SMAD family member 5 (Smad5)[125,126]. miR-21 also performs a positive 
function in mediating the stretch-induced osteogenic differentiation of hPDLSCs by 
regulating the expression of activin receptor type IIB[127]. Inhibition of miR-214 in 
PDLSCs can decrease osteogenic differentiation by targeting activating transcription 
factor 4 and regulating the Wnt/β-catenin signaling pathway[128,129]. Downregu-
lation of miR-148a in PDLSCs rescues the inhibition of osteogenesis triggered by LPS 
stimulation[130]. miR-22 and miR-17 promote osteogenesis of PDLSCs by inhibiting 
HDAC6 and HDAC9 expression, respectively, the latter under inflammatory 
conditions[131,132]. In addition, in osteogenic differentiation of PDLSCs, miR-132 
decreases, and overexpression of miR-132 inhibits osteogenesis by targeting growth 
differentiation factor 5 and activating the nuclear factor κB signaling pathway[133]. 
Meanwhile miR-31 plays a role in the high glucose-suppressed osteogenic differen-
tiation of PDLSCs by targeting Satb2[134].

Upregulation of miR-34a in human fetal dental papilla cells increases the expression 
of DSPP and decreases the expression of alkaline phosphatase (ALP)[135]. In addition, 
miR-34a mimic transfection in SCAPs significantly upregulates odontogenic/ 
osteogenic markers[136]. miR-hsa-let-7b suppresses the odontogenic/ osteogenic 
differentiation of SCAPs partly by targeting matrix metalloproteinase 1[137]. 
Moreover, overexpression of miR-450a-5p or miR-28-5p in SHED supports 
osteogenesis[138]. miR-101 enhances osteogenic differentiation in human DFSCs[139], 
and miR-3940-5p promotes the osteo/dentinogenic differentiation of GMSCs[140].

LncRNAs
LncRNAs significantly regulate the multiple differentiations of mesenchymal stem 
cells, and there are several reports of the regulatory effect of lncRNAs in regenerative 
engineering of dental-tissue-derived stem cells (Table 2). In 2020, Liu et al[141] 
identified a total of 89 lncRNAs differentially expressed after osteo/odontogenic 
induction of hDPSCs, and downregulation of lncRNA SNHG7 was found to inhibit the 
differentiation of DPSCs, upregulating the expression of miR-1226-3p and miR-210-5p 
at the same time[141]. In 2020, Chen et al[142] reported that 132 lncRNAs were differ-
entially expressed between the odontoblastic-differentiated and undifferentiated 
hDPSCs and that lncRNA-G043225 exerted a positive regulatory effect through miR-
588 and fibrillin 1[142]. Additionally, 47 lncRNAs were differentially expressed in 
hDPSCs between normoxic and hypoxic induction conditions, and 561 lncRNAs were 
differentially expressed between young and old donors in hDPSCs after osteoin-
duction[143,144]. Overexpression of lncRNAs CCAT1 and lncRNA H19 promotes 
odontogenic differentiation of hDPSCs by inhibiting expression of miR-218 and 
regulating expression of the DLX3 gene, respectively[145,146]. Knockdown of lncRNA 
STL and lncRNA X-inactive specific transcript inhibits the osteogenic potential of 
DPSCs, and the latter is essential for efficient osteogenic differentiation induced by 
TNF-α[143,147].

In 2016, Qu et al[148] demonstrated that 2171 lncRNAs were differentially expressed 
between osteogenic-differentiated and undifferentiated PDLSCs, and 393 lncRNAs 
were strongly associated with osteogenesis-related mRNAs[148]. Zheng et al[149] 
indicated that downregulation of lncRNA maternally-expressed 8 and lncRNA 
MIR22HG markedly suppressed the osteogenic differentiation of PDLSCs[149]. 
Knockdown of lncRNA maternally-expressed 3 inhibits the osteogenesis of PDLSCs in 
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Table 2 Summary of the long noncoding RNAs influencing the odontogenic/osteogenic differentiation of dental mesenchymal stem 
cells

Ref. LncRNA Cell type Signaling pathway or targets Outcome

Liu et al[141], 2020 lncRNA SNHG7 DPSCs miR-1226-3p, miR-210-5p Downregulation inhibited osteo/odontogenic 
differentiation

Chen et al[142], 2020 lncRNA-G043225 DPSCs miR-588, FBN1 Positively regulated odontoblastic 
differentiation

Zhong et al[145], 2019 lncRNA CCAT1 DPSCs miR-218 Overexpression promoted odontogenic 
differentiation

Zeng et al[146], 2018 lncRNA H19 DPSCs DLX3 Upregulation enhanced odontogenic 
differentiation

Shi et al[143], 2019 lncRNA STL DPSCs - Knockdown inhibited osteogenesis

Tao et al[147], 2019 lncRNA XIST DPSCs - Downregulation inhibited osteogenic 
differentiation

Zheng et al[149], 2018 lncRNA MEG8, 
lncRNA MIR22HG

PDLSCs - Downregulation suppressed osteogenic 
differentiation

Liu et al[150], 2019; Deng 
et al[151], 2018

lncRNA MEG3 PDLSCs miR-27a-3p/IGF1 axis, Wnt/β-
catenin

Knockdown inhibited osteogenesis

Wang et al[152], 2016 lncRNA-POIR PDLSCs miR-182 Enhanced osteogenic differentiation

Xu et al[153], 2019 lncRNA-TWIST1 PDLSCs TWIST1 Improved osteogenic differentiation

Jia et al[154], 2019 lncPCAT1 PDLSCs - Reversed the suppression effect of 
osteogenesis caused by miR-106a-5p 
overexpression

Huang et al[155], 2020 lncRNA FER1L4 PDLSCs miR-874-3p Promoted osteogenic differentiation

Feng et al[156], 2020 lncRNA XIST PDLSCs miR-214-3p Enhanced osteogenic differentiation

He et al[160], 2018 lncRNA TUG1 PDLSCs lin-28 homolog A Improved osteogenic differentiation

Wang et al[161], 2020 lncRNA DANCR PDLSCs - Positively regulated osteogenic 
differentiation

Li et al[162], 2019 lncRNA H19 SCAPs lncRNA-H19/miR-
141/SPAG9/MAPK

Promoted the osteo/odontogenesis

Jia et al[157], 2016; Jia et al
[158], 2015; Peng et al
[159], 2018

lncRNA ANCR DPSCs, PDLSCs, 
SCAPs

Wnt, lncRNA-ANCR/miR-
758/Notch2 (PDLSCs)

Downregulation facilitated osteogenic 
differentiation

DPSCs: Dental pulp stem cells; FBN1: Fibrillin 1; lncRNAs: Long noncoding RNAs; MAPK: Mitogen-activated protein kinases; MEG3/8: Maternally-
expressed 3/8; miR: MicroRNA; IGF1: Insulin-like growth factor 1; PDLSCs: Periodontal ligament stem cells; SCAPs: Stem cells from apical papilla; XIST: 
X-inactive specific transcript.

periodontitis via the miR-27a-3p/IGF1 axis, while it plays a positive role in human 
DFSCs by activating the Wnt/β-catenin signaling pathway[150,151]. In 2016, Wang et 
al[152] identified a novel lncRNA named lncRNA-POIR, while Xu et al[153] first 
named lncRNA-TWIST1 in 2019; both are osteogenesis impairment-related lncRNAs of 
PDLSCs from periodontitis patients and can enhance the osteogenic differentiation of 
PDLSCs from healthy individuals and periodontitis patients by interacting with miR-
182 and inhibiting TWIST1 expression, respectively[152,153]. Prostate cancer-
associated ncRNA transcript-1 upregulation reverses the suppression effect of 
osteogenic differentiation in PDLSCs caused by miR-106a-5p overexpression[154].

LncRNA FER1L4 and lncRNA X-inactive specific transcript can promote the 
osteogenesis of PDLSCs by sponging miR-874-3p and miR-214-3p, respec-tively[155,
156]. In addition, downregulation of antidifferentiation noncoding RNA can facilitate 
the osteogenic differentiation of DPSCs, PDLSCs and SCAPs[157], while this 
regulatory effect on PDLSCs is related to the canonical Wnt signaling pathway[158]. 
The antidifferentiation noncoding RNA/miR-758/Notch2 axis may also participate
[159]. Furthermore, lncRNA TUG1 improves osteogenic differentiation of PDLSCs by 
regulating the expression of lin-28 homolog A[160]. Knockdown of lncRNA differen-
tiation antagonizing nonprotein coding RNA positively regulates the osteogenic differ-
entiation of PDLSCs[161]. Moreover, lncRNA H19 overexpression promotes the 
osteo/odontogenesis of SCAPs via the lncRNA-H19/miR-141/SPAG9/MAPK positive 
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feedback loop[162].

Signaling pathways
Wnt signaling pathway: The Wnt/β-catenin signaling pathway plays an important 
role in regulating DMSC differentiation, which is a key signaling pathway. For 
odontoblastic differentiation, activating the Wnt/β-catenin signaling pathway 
partially reverses the vacuolar protein sorting 4B knockdown-driven suppression of 
odontoblastic differentiation of hDPSCs[163] and rescues the osteoblastic/odonto-
blastic differentiation of stathmin-deletion hDPSCs[164]. These studies revealed that 
activation of the Wnt signaling pathway promotes osteogenic/odontoblastic differen-
tiation of DPSCs. However, Scheller et al[165] first reported that Wnt/β-catenin 
inhibits odontoblastic differentiation of DPSCs in 2008[165]. The reason for the 
conflicting effects of Wnt signaling on odontoblastic differentiation in these studies is 
undefined and needs to be further explored. For osteoblastic differentiation, Rolph et al
[166] confirmed that ferutinin promoted osteoblastic differentiation of DPSCs by 
modulating the Wnt/β-catenin signaling pathway[166] when Wnt5a was reported to 
inhibit osteoblastic differentiation of human periodontal ligament stem cell-like cells
[167].

MAPK signaling pathway: The MAPK signaling pathway includes the ERK signaling 
pathway and the p38/MAPK signaling pathway[168]. In odontoblastic differentiation, 
one study showed that a combination of mineral trioxide aggregate and propolis 
significantly promoted the expression of DSPP and Dentine matrix protein 1 as well as 
mineralized nodule formation through activating the ERK signaling pathway in 
hDPSCs[169]. Kong et al[170] confirmed that a magnesium-enriched microenvir-
onment enhanced the odontoblastic differentiation of hDPSCs by activating the 
ERK/BMP2/Smad signaling pathway[170]. In osteoblastic differentiation, berberine 
was reported to bind to epidermal growth factor receptor in hPDLSCs to activate the 
ERK signaling pathway and upregulate the nuclear-related gene FOS, thus promoting 
osteoblastic differentiation of PDLSCs[171]. In addition, mineral trioxide aggregate 
was confirmed to promote osteo/odontoblastic differentiation of SCAP through 
activation of the p38 and ERK signaling pathway. Another study showed that 
parathyroid hormone promoted the osteo/odontoblastic differentiation of DPSCs by 
activating the ERK and p38 signaling pathway[172].

Mechanistic target of rapamycin signaling pathway: Mechanistic target of rapamycin 
(mTOR), a highly conserved serine/threonine protein kinase, is involved in regulating 
interactions between proteins[173]. The mTOR signaling pathway has been confirmed 
to play a significant role in the osteo/odontoblastic differentiation of DMSCs. Tanaka 
et al[174] confirmed that inhibiting mTOR signaling promoted osteo/odontoblastic 
differentiation of SCAPs[174]. However, activation of the mTOR signaling pathway 
promoted osteogenic differentiation of hDPSCs in the process regulated by IGF-1 in 
which rapamycin blocked osteogenic differentiation induced by IGF-1[175] while 
inhibiting mTORC1 limited mineralized nodule formation by SHED[176]. Taken 
together, these data suggest that the mTOR signaling pathway plays different roles in 
different cell types of DMSCs.

AKT signaling pathway: The AKT signaling pathway is critical for cell proliferation, 
growth, metabolism and differentiation, especially in differentiation of DMSCs. Recent 
studies have shown that metformin and miR-let-7c-5p enhance the osteogenic differen-
tiation of PDLSCs by activation of the AKT signaling pathway[117,177]. Another study 
reported that activation of the AKT signaling pathway could enhance the osteogenic 
differentiation of DPSCs in LPS-induced inflammation. In short, the AKT signaling 
pathway may play a positive role in odontogenic/osteogenic differentiation of 
DMSCs.

Notch and shh signaling pathway: The Notch signaling pathway is critical for 
development and cell differentiation. Notch signaling has been confirmed to inhibit 
odontoblastic differentiation of hDPSCs[178]. Interestingly, another study showed that 
overexpression of CCN3 activated the Notch signaling pathway to promote odonto-
blastic differentiation of DPSCs, which suggested that Notch signaling pathway 
activation promotes odontoblastic differentiation of DPSCs[179]. The reasons for these 
contradictory effects in odontoblastic differentiation of DPSCs remain undefined and 
need to be explored.

It is worth noting that the Shh signaling pathway is also involved in odontogenic/ 
osteogenic differentiation of DMSCs. A recent study has shown that stathmin 
regulates odontogenic/osteogenic differentiation of DPSCs via the Shh signaling 
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pathway[180].

Inflammation
In an inflammatory microenvironment, DMSCs from inflamed tissue contact and 
interact closely with extrinsic irritants, local cells or their components, immune cells 
and multiple soluble regulatory molecules[181]. For example, dental caries are one 
such gram-negative microbial infection that is primarily responsible for pulpal inflam-
mation. LPS was used to create in vitro inflammatory conditions that initiate infection-
stem cell interaction, which has been used widely to induce an inflammatory microen-
vironment[182].

Immunophenotyping of cell surface antigens by flow cytometry showed that 
DMSCs and inflamed DMSCs have similar expression patterns of surface markers[181,
183]. The cells are positive for STRO-1, CD105, CD73, CD90, CD29 and CD44[184] and 
negative for CD45, CD34, CD14 and HLA-DR, indicating a mesenchymal stem cell 
phenotype[183,185-187]. In addition, inflamed DMSCs have the potential to differ-
entiate into multiple lineages. Mesenchymal stem cells isolated from inflamed pulp 
possess stemness and multidifferentiation potential similar to DPSCs from healthy 
pulp[185]. Like DPSCs, inflamed DPSCs are capable of adipogenic and 
osteo/dentinogenic differentiation under the corresponding in vitro induction 
conditions. However, chronic inflammation impairs differentiation of DPSCs[188]. On 
the other hand, inflamed DPSCs show increased ALP and osteocalcin. In the inflam-
matory microenvironment, PDLSCs from inflamed periodontal tissue show higher 
proliferation rates but express lower levels of osteogenic differentiation markers[189-
191]. Both inflamed hPDLSCs and hPDLSCs have been successfully differentiated 
under osteogenic and adipogenic conditions[192]. Because of evident similarities in 
their immunomodulatory properties, inflamed PDLSCs can provide a promising 
alternative to PDLSCs[193]. Cells isolated from human periapical cysts demonstrate a 
strong osteogenic but weak adipogenic capacity[184,194]. Osteogenic differentiation of 
inflamed DFSCs results in decreased ALP activity and alizarin red S staining 
compared to normal DFSCs[195]. Similarly, the osteogenic differentiation of LPS-
treated DFSCs is suppressed, and the cells display low levels of TGF-β1 and high 
levels of TGF-β2.

Aging
Aging is an intricate degenerative process during which the regenerative capacity of 
MSCs progressively declines[196]. Unavoidably, DMSCs also undergo physiological 
age-related changes with declines in proliferation and osteo/odontogenic differen-
tiation potentials with increased age[197,198]. Improving the performance of aging 
DMSCs is important for tissue regeneration engineering. Yi et al[144] demonstrated 
that the osteogenic potential of DPSCs from young donors was superior to that of 
those from old donors, and 304 mRNAs and 561 LncRNAs were differentially 
expressed between age-groups[144]. Wang et al[199] found that miR-433 may be one of 
the important senescence-related miRNAs of human dental pulp cells, which inhibits 
mineralization of human dental pulp cells by negatively regulating GRB2 and the 
RAS–MAPK signaling pathway[199]. SHED and DPSCs undergo senescence, 
including declines in the proliferation rate and osteogenic differentiation capability, 
following serial expansion from P4 to P20. SHED exhibit a better performance than 
DPSCs, which indicates that mineralization capacity is related to replicative senescence 
in vitro and to donor age[200].

As a significant factor regulating the function of differentiated odontoblasts[201], 
sclerostin advances the aging process of human dental pulp cells through the Wnt/β-
catenin pathway and reduces the proliferation and odontoblastic differentiation 
capability of senescent human dental pulp cells[202]. The Wnt/β-catenin signaling 
pathway is one of the important pathways that regulates cell differentiation, increasing 
the osteogenic/dentinogenic differentiation potential of DPSCs[203]. It has been 
reported that the rate of dentin deposition and neurogenic differentiation potential 
declines with advanced age, which may be related to a decrease in endogenous 
Wnt/β-catenin signaling[204,205].

In 2014, Feng et al[206] compared the characteristics of DPSCs from five different 
age groups (5–12 years, 12–20 years, 20–35 years, 35–50 years and > 50 years) and 
found that the expression of p16INK4A markedly increased with age and inhibited 
osteogenic/odontogenic differentiation when upregulated[206]. Then in 2017, Mas-
Bargues et al[207] indicated that p16INK4A also played a part in oxidative stress-related 
premature senescence of DPSCs caused by long-term culture in 21% ambient oxygen 
tension compared with 3%-6% physiological oxygen tension[207]. Replicative 
senescence of DPSCs resulted in decreases of B-lymphoma Mo-MLV insertion region 



Yin JY et al. Multi-differentiation potential of DMSCs

WJSC https://www.wjgnet.com 353 May 26, 2021 Volume 13 Issue 5

1, organic carbon, DSP and bone sialoprotein compared with rapidly proliferating cells 
and increases of p16INK4A, while B-lymphoma Mo-MLV insertion region 1 transduction 
promoted the expression of organic carbon and DSP, ALP activity and mineralized 
nodule formation. Therefore, this may indicate that the odontogenic differentiation 
potential of DPSCs weakens during senescence, partly due to decreased B-lymphoma 
Mo-MLV insertion region 1 expression[208].

In contrast, Ma et al[209] reported that adult DPSCs cultured in juvenile dental pulp 
cell-conditioned medium demonstrated decreased osteogenic differentiation 
capability, whereas juvenile DPSCs induced by adult dental pulp cell-conditioned 
medium showed improved osteogenic differentiation capability, indicating that the 
activity of DPSCs can be modulated by the extrinsic microenvironment[209]. A certain 
degree of inflammatory stimulation promoted the proliferation and mineralization of 
both adult and juvenile rat DPSCs, but this effect declined with age[210]. Furthermore, 
Horibe et al[211] isolated a type of mobilized dental pulp stem cells induced by 
granulocyte colony-stimulating factor from young and old donors, which showed 
minimal characteristic changes with aging, suggesting that mobilized dental pulp stem 
cells act as an advantaged source in dental pulp regeneration[211].

Exosomes
Exosomes are vesicles secreted by different cells with a diameter of 30–100 nm. They 
can function as carriers for different components to impact intercellular 
communication, including various miRNAs, lncRNAs and proteins. Exosomes play an 
important role in mediating some signaling pathways to influence the physiological 
function of cells. In recent years, increasing research into the effect of exosomes on the 
odontoblastic/osteogenic differentiation of DMSCs has been proposed (Figure 2).

In 2016, Huang et al[212] indicated that the exosomes derived from hDPSCs 
cultured with growth (DPSC-Exo) or odontogenic differentiation media (DPSC-OD-
Exo) enhanced the odontogenic differentiation of DPSCs in vitro, and DPSC-OD-Exo 
showed stronger induction differentiation-inducing ability than exosomes derived 
from hDPSCs cultured with growth media in a three-dimensional environment 
consisting of type I collagen hydrogels and a tooth root-slice regeneration model[212]. 
In 2019, Hu et al[213] further identified the miRNA profile of human exosomes derived 
from hDPSCs cultured with growth media and DPSC-OD-Exo by miRNA sequencing, 
and the results indicated that miR-27a-5p was highly expressed in DPSC-OD-Exo, 
promoting odontogenic differentiation of DPSCs through the TGF-β1/Smad signaling 
pathway[213].

In 2019, Chew et al[214] reported that human MSC exosome-loaded collagen sponge 
used in an immunocompetent rat model with periodontal intrabony defects 
significantly repaired the defects by regenerating newly formed bone and periodontal 
ligament as a result of periodontal ligament cell migration and proliferation[214]. 
Meanwhile in 2020, Wang et al[215] reported that conditioned SHED-Exos derived 
from a 3 d osteogenic supernatant improved the osteogenic ability of PDLSCs by 
activating the BMP/Smad and Wnt/β-catenin signaling pathways and that BMP2 and 
Wnt3a carried by SHED-Exos played a pivotal part in this process[215].

Moreover, extracellular vesicles (EVs) are a type of mixed vesicles, consisting of 
endosome-derived exosomes and cell membrane-derived ectosomes. In 2017, Li et al
[216] demonstrated that the EVs derived from Schwann cells promoted the osteogenic 
differentiation of hDPSCs[216]. In 2019, Čebatariūnienė et al[217] indicated that 
hPDLSC EVs did not influence osteogenic mineralization of PDLSCs but reversed the 
inhibitory effect on PDLSC osteogenic differentiation of an anti-TLR4 blocking Ab. 
They also revealed that the EVs may have a potential regulatory ability of genes 
related to osteogenesis and interfere with TLR4 signaling[217]. Additionally, 
Pizzicannella et al[218] reported that EVs derived from human GMSCs combined with 
a three-dimensional polylactide biomaterial enhanced the osteogenic differentiation of 
human GMSCs in vitro[218].

CONCLUSION
At present, most studies of the multidirectional differentiation of DMSCs focus on the 
following areas: the regeneration of teeth, bone, cartilage, tendon and blood vessels; 
the repair of nerve injury; the formation of retina and cornea; and the secretion of 
insulin. Different types of DMSCs have different abilities towards differentiation into 
diverse lineages. It is significant to explore the potential of DMSCs to differentiate into 
various tissues. In addition to the application of oral tissue regeneration, these studies 
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Figure 2  Reported extracellular vesicles that mainly contributed to the odontogenic/osteogenic differentiation process of dental 
mesenchymal stem cells. Extracellular vesicles (EVs) from a variety of cell sources can influence the osteogenic, adipogenic and neurogenic differentiation 
process of dental mesenchymal stem cells. Exo: Exosomes; DFSCs: Dental follicle stem cells; LPL: Lipoprotein lipase; MSC: Mesenchymal stem cells; PDLSCs: 
Periodontal ligament stem cells; PPAR-γ: Peroxisome proliferator-activated receptor-γ; SHED: Stem cells from human exfoliated deciduous teeth; TGFβ1: 
Transforming growth factor β1.

are helpful to the future application of DMSCs in neurovascular injury-related 
diseases, retinal and corneal injury-related diseases and endocrine diseases such as 
diabetes. The induction of DMSCs to differentiate insulin-producing cells and neuron-
like cells in vitro requires the conditioned-culture medium with a variety of auxiliary 
inducing factors, like some growth factors and peptides, and sometimes it needs to be 
induced in several steps, which takes a long time and is relatively complex. The cells 
induced by the conditioned culture medium express the specific molecules of related 
tissue-like cells. Researchers detect the specific expression molecules to determine 
whether the cells differentiate into specific tissue-like cells. Such in vitro differentiation 
is often limited and may not represent the true differentiation of the cell itself. It is of 
great significance to improve the induction mode and shorten the induction time for 
the application of DMSCs in the future. In addition, combining DMSCs with materials 
possessing good biological compatibility may provide a better approach to tissue 
regeneration.

Making full use of the odontogenic/osteogenic differentiation ability of DMSCs is of 
great significance to the application of DMSCs in dental tissue regeneration 
engineering. In this review, some factors related to the regulation of DMSCs in 
odontogenic/osteogenic differentiation are reviewed. The regulation process of DMSC 
odontogenic/osteogenic differentiation is complex. A variety of non-coding RNAs and 
multiple signaling pathways participate in the differentiation process of DMSCs. The 
application of DMSCs should consider the donor age and cell aging. With increasing 
donor age and number of cell passages, differentiation ability may decrease 
accordingly. At the same time, the future clinical application of DMSCs should account 
for the impact of the inflammatory microenvironment. How to increase the anti-
inflammatory ability of DMSCs is a difficult problem for clinical application of DMSCs 
in the future. In addition, exosomes, as a crucial medium for communication and 
transmission of information between cells, have become a hotspot in recent years. In 
the process of normal tooth development, exosomes also seem to play an important 
role in regulating gene expression of target cells through their rich and varied 
contents. Utilizing the characteristics of exosomes endocytosed by cells, discovering 
other exosomes or transforming contents to promote DMSC odontogenic/osteogenic 
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differentiation will be a future research direction. If we can positively regulate the 
related factors that advance the odontogenic/osteogenic differentiation of DMSCs and 
make full use of their differentiation potential, there will be great progress in the 
application of DMSCs in dental tissue regeneration engineering. Future research 
should emphasize effectively combining the various types of DMSCs with 
odontogenic/osteogenic, neurogenic, vascularization and other multipotencies to 
provide a potential scheme for dental tissue regeneration with normal functions.
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Abstract
Stem cell therapies are successfully used in various fields of medicine. This new 
approach of research is also expanding in ophthalmology. Huge investments, 
resources and important clinical trials have been performed in stem cell research 
and in potential therapies. In recent years, great strides have been made in genetic 
research, which permitted and enhanced the differentiation of stem cells. 
Moreover, the possibility of exploiting stem cells from other districts (such as 
adipose, dental pulp, bone marrow stem cells, etc.) for the treatment of ophthalmic 
diseases, renders this topic fascinating. Furthermore, great strides have been made 
in biomedical engineering, which have proposed new materials and three-
dimensional structures useful for cell therapy of the eye. The encouraging results 
obtained on clinical trials conducted on animals have given a significant boost in 
the creation of study protocols also in humans. Results are limited to date, but 
clinical trials continue to evolve. Our attention is centered on the literature 
reported over the past 20 years, considering animal (the most represented in 
literature) and human clinical trials, which are limiting. The aim of our review is 
to present a brief overview of the main types of treatments based on stem cells in 
the field of ophthalmic pathologies.

Key Words: Stem cells; Multipotent mesenchymal cells; Adipose stem cells; Novel 
therapies; Eye pathology; Cornea; Cell therapies; New materials
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Core Tip: Stem cell therapies have shown great potential in ophthalmopathies. 
Interesting results have arisen in the treatment of ocular surface diseases and for their 
neuroprotective effect. Stem cells can be transplanted, injected or topically applied. 
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The main goals of treatments include preventing vision loss, restoring sight, recreating 
the connections with the central nervous system, and regenerating eye tissues. Recent 
discoveries have permitted the use of stem cells taken from other districts. From 
literature analysis, it is clear that stem cells can provide a potentially successful 
solution; however, ethical issues, costs and possible long term side effects limit the 
current use.
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INTRODUCTION
Numerous studies in scientific medical literature continually show that cell therapy 
tends to be an effective alternative and innovative method to regenerate damaged 
tissue[1]. In the last decades, studies have shown that stem cell therapies can bring 
substantial benefits to patients suffering from a wide range of diseases and injuries[2]. 
For this reason, huge investments, resources and important clinical trials have been 
performed in stem cell research and potential therapies based on stem cells. In these 
past years, there has been a continuing expansion in the number and types of stem 
cells assessed for potential treatment use. Stem cells are now being used in various 
fields of medicine, ranging from hematology to cardiology, in addition to neurology, 
plastic surgery, dentistry, etc.[3-5]. Although literature has reported limited success to 
date, clinical trials continue to evolve as our understanding enhances regarding the 
physiology and mechanisms underlying potential healing benefits behind stem cells. 
Recent advancements in regenerative medicine have also considered the use of stem 
cells for cellular repair and regeneration[6].

Stem cell therapies have shown great potential in numerous studies reported in 
literature concerning injuries and diseases of the eye[3]. This progress is a result of 
several factors, including the relatively small numbers of cells required, easy access-
ibility for surgery and straightforward assessment and visualization of grafts. 
Numerous types of cells have been used in clinical trials for the eye[2]. Research on 
stem cell therapies has been applied to almost all parts of the eye.

Based on our preliminary animal experiments regarding stem cells therapies in 
corneal healing[3,7], and the growing number of studies that show great clinical 
potentials of stem cells for this therapeutic approach, we decided to assess the 
literature reported in the last 20 years. Considering that the number of studies 
reported in literature since 2000 is immense, and our experience in this field is limiting, 
we do not intend to provide an exhaustive meta-analysis, but a quick overview of the 
use of stem cells for ophthalmology treatment; thus, we apologize in advance if 
opinion leaders and experts in this field of study have not been cited in our paper. The 
aim of our review is to present a brief overview of the main types of treatments based 
on stem cells in the field of ophthalmic pathologies, by briefly addressing the what, 
why, which, how, when and where of this issue. We have tried to concentrate or 
review on pertinent human studies; however, considering most of the literature to date 
tends to be based on animal experimentation, mention has also been made regarding 
this vast body of literature.

MATERIALS AND METHODS
We conducted a search of the literature published between January 1, 2000, to 
December 20, 2020, using MEDLINE (PubMed). The database was first searched using 
the key words “stem, cell and eye”, in which 7486 studies were found. We considered 
only studies in English and those referring to humans, thus reducing the count to 3941. 
The reference lists of all retrieved articles were scanned to identify additional relevant 
studies. We then considered only articles based on “stem cells therapy” (2194 papers), 
and we excluded “case reports”, “case series”, “conference papers”, “letters” and “in 
vitro” (1179 articles). Results were then divided and sorted by when/where stem cells 
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were used, which included: Ocular surface; corneal epithelium, stroma, endothelium, 
limbus; trabecular meshwork; lens; optic nerve; retina. The details regarding the 
selection of papers considered in the manuscript are listed in Figure 1.

Only articles with abstracts were considered (1148 articles). After a selection by title 
and abstract, 185 articles were analyzed. A quality score was calculated for each article 
using a checklist from the American Society of Plastic Surgeons guidelines for 
therapeutic studies[7]. Each study was appraised by at least two reviewers (GM and 
MZ), and rating decisions were based on the consensus of the reviewing authors. A 
summary of the most significant studies and conclusions is reported in Tables 1 and 2.

What are stem cells
In brief, stem cells are undifferentiated cells that are present in the embryonic, fetal 
and adult stages of life and give rise to differentiated cells, which are the building 
blocks of tissue and organs. In the post-natal and adult stages of life, tissue-specific 
stem cells are found in differentiated organs and are instrumental in repair following 
injury to the organ. The main characteristics of stem cells are self-renewal (the ability 
to proliferate extensively), clonality (usually arising from a single cell) and potency 
(the ability to differentiate into different cell types)[8].

Stem cells can be classified as totipotent (zygote), pluripotent [embryonic stem cells 
(ESCs) and induced pluripotent stem cells (iPSCs)], multipotent [mesenchymal stem 
cells (MSCs)] and oligopotent. Totipotent cells form embryonic and extra-embryonic 
tissues. Pluripotent cells form all three germ layers, while multipotent cells generate 
cells limited to one germ layer.

The human body develops from the zygote and blastocyst from which ESCs are 
derived into germ layers endoderm, mesoderm and ectoderm. Specific organs arise 
from germ layers. Some of the progenitor cells that have contributed to organ 
formation do not terminally differentiate but are retained as tissue stem cells and can 
be found in bone marrow, bone, blood, muscle, liver, brain, adipose tissue, skin and 
gastrointestinal tract[9]. The tissue stem cells may be called progenitor cells since they 
give rise to terminally differentiated and specialized cells of the tissue or organ. These 
cells may be dormant within tissues; however, have the ability to proliferate under 
circumstances of injury and repair[10]. The dynamics of tissue stem cells or progenitor 
cells varies from tissue to tissue. In bone marrow, liver, lung and gut, for example, 
stem cells regularly proliferate to supplement cells during normal turnover of cells or 
tissue injury. In other organs, however, like pancreas, heart or nervous system, stem 
cells proliferate to replace damaged cells following injury[11,12].

Why use stem cells in ocular diseases 
The human eye is a remarkable structure produced from the coordinated development 
of multiple tissues. It is the result of a combination of tissues deriving from neuroecto-
dermal (e.g., retina), ectodermal (e.g., lens and cornea) and mesodermal lines. Diseases 
and injuries that compromise the function of any of these major ocular tissues can lead 
to blindness[13,14]. Considering the fundamental importance and influence on quality 
of life of sight, research has invested enormous resources and studies towards the 
search for new therapies to prevent and treat ocular disorders. There is a notable 
history of trail-blazing work in ocular medicine, exemplified by tissue transplantation, 
the use of laser therapy, the recent gene-therapy and cell therapy[14]. Due to burden of 
eye disease, and its relative ease of accessibility, the eye is a prime target for stem cell 
transplantation therapies, in which complications tend to be rare (e.g., overgrowth and 
tumor formation)[15]. In addition, advanced methods currently exist to examine easily 
and thoroughly assess the clinical results of eye transplant therapies. Modern 
technology is readily available to provide a non-invasive quantifiable visualization of 
most structures of the eye, and visual functions can routinely be assessed rapidly, 
quantitatively and accurately.

Which stem cells can be considered for treatment in ophthalmology
Human pluripotent stem cells: ESCs and iPSCs: Human pluripotent stem cells 
(hPSCs) have been considered promising sources for regenerating damaged tissues 
and organs because of their ability to differentiate into cells from three embryonic 
germ layers[16]. These cells can also be maintained in an undifferentiated state for a 
prolonged period in culture[8]. There are numerous scientific studies regarding 
therapy with hPSCs, specifically, in the form of iPSCs. Several studies have reported 
the use of iPSCs in retinal degenerative pathologies[2,17,18]. hPSCs have the greatest 
potential for cell replacement and can be successfully pre-differentiated prior to 
transplantation in the eye. iPSCs are pluripotent stem cells generated from somatic 
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Table 1 Clinical trials in ocular diseases

Ophthalmic disease Ref. Stem cells used In animals or 
humans Conclusions

Ocular surface, cornea 
and limbus

Kenyon and Tseng[52], 
1989

Limbal tissue autograft 
transplantation (LSCs)

Humans Patients have consistently shown improved visual 
acuity, rapid surface healing, stable epithelial 
adhesion without recurrent erosion, arrest or 
regression of corneal neovascularization

Lindberg et al[53], 1993 LSCs Humans Corneal epithelial stem cells are located in the 
limbus and indicate that cultured autologous 
limbal cells may function as grafts to permanently 
restore the corneal epithelium after severe ocular 
surface injury

Ma et al[54], 2006 MSCs like LSCs on 
amniotic membrane

Animals Therapeutic effect due to the inhibition of 
inflammation and neovascularization

Kwitko et al[57], 1995 Conjunctival autograft 
transplantation

Humans Conjunctival transplantation proved to be an 
adequate method of treating severe bilateral 
surface disorders, with minimal complications

Croasdale et al[58], 1999 Keratolimbal allograft Humans KLAL transplantation for patients with severe 
ocular-surface disease is an important 
management option

Tsai et al[59], 2000 Limbal epithelial cells Humans By 1 mo, the ocular surface was covered with 
corneal epithelium, and the clarity of the cornea 
was improved in 83% of patients

Sangwan et al[60], 2012 Limbal tissue Humans After surgery, a completely epithelialized, 
avascular and stable corneal surface was seen in 
all recipient eyes by 6 wk

Kushnerev et al[61], 2016 Dental pulp stem cells Animals Dental pulp stem cells were successfully isolated, 
labeled, and delivered to the corneal surface

Chan et al[66], 2013 iPSCs Animals hES cells can be induced to differentiate into 
keratocytes in vitro. Pluripotent stem cells may 
provide a renewable source of material for 
development of treatment of corneal stromal 
opacities

Susaimanickam et al[67], 
2017

iPSCs Animals PSC-derived corneal epithelial cells offer an 
alternative tissue source for regenerating different 
layers of the cornea and eliminate the need for 
complicated cell enrichment procedures

Zeppier et al[3], 2017 MSCs Animals Better corneal repair in epithelium and stromal 
layers in stem cell treated eyes

Reinshagen et al[68], 2011 BM-MSCs Animals BM-MSCs could differentiate into cornel epithelial 
like cells in vivo in rat damaged corneas

Gu et al[70], 2009 BM-MSCs Animals BM-MSCs could differentiate into cornel epithelial 
like cells

Beyazyildiz et al[46], 2014 MSCs Animals Topical application of MSCs could be a safe and 
effective method for the treatment of DES

Reza et al[73], 2011 LSCs Animals Transplantation of a bioengineered CLEC-muc 
sheet in limbal stem cell-deficient rabbit eyes 
resulted in regeneration of a smooth, clear corneal 
surface

Nishida et al[76], 2004 Oral mucosal stem cells Humans Complete reepithelialization of the corneal 
surfaces occurred within 1 wk in all four treated 
eyes. Corneal transparency was restored and 
postoperative visual acuity improved

Corneal stroma and 
endothelium

Sepsakos et al[79], 2017 Ocular surface SCs Humans Without addressing the underlying stem cell 
deficiency, keratoplasty in patients with total 
limbal stem cell deficiency will ultimately fail in 
all cases

Naylor et al[81], 2016 iPSCs Humans The hiPSC-derived NCCs acquired a keratocyte-
like morphology and an expression profile similar 
to corneal keratocytes in vivo

Safety of corneal stromal transplantation of 
autologous ASCs in humans, showing cell 

Alió Del Barrio et al[84], 
2017

ASCs Humans
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survival in vivo and the ability of these cells to 
produce a low amount of new collagen in patients 
with advanced keratoconus

Coulson-Thomas et al
[85], 2013

UC-MSCs Animals UC-MSCs transplantation may be a feasible 
alternative to keratoplasty in treating congenital 
disorders of the cornea secondary to keratocyte 
dysfunction

Yam et al[88], 2018 Perodontal ligament SCs Animals Potential translation of PDL cells for regenerative 
corneal cell therapy for corneal opacities

Joyce et al[89], 2012 UC-MSCs Animals UCB MSCs are able to "home" to areas of injured 
corneal endothelium and that the phenotype of 
UCB MSCs can be altered toward that of HCEC-
like cells

Trabecular meshwork Abu-Hassan et al[93], 
2015

iPSCs Animals TM-like iPSCs became similar to TM cells in both 
morphology and expression patterns. When 
transplanted, they were able to fully restore 
intraocular pressure homeostatic function

Manuguerra-Gagnéet al
[95], 2013

MSCs Animals MSC and their secreted factors induced 
reactivation of a progenitor cell pool found in the 
ciliary body and increased cellular proliferation

Lens Lin et al[96], 2016 LECs Both Surgical method of cataract removal that 
preserves endogenous LECs and achieves 
functional lens regeneration in rabbits and 
macaques, as well as in human infants with 
cataracts

Murphy et al[98], 2018 PSCs Animals We demonstrate large-scale production of light-
focusing human micro-lenses from spheroidal 
masses of human lens epithelial cells purified 
from differentiating pluripotent stem cells

ON Kuwahara et al[102], 2015 hESCs Animals Multipotent stem cells within the CM contribute 
to de novo retinal tissue growth

Mesentier-Louro et al
[105], 2019

iPSCs Animals Between 1% and 7% of iPSCs-derived RGCs 
integrated into the ganglion cell layer after 
intravitreal injection, and about 20% after 
combined injection of RGCs and iPSCs

Zhang et al[107], 2015 UC-MSCs Animals Human umbilical cord blood stem cells and brain-
derived neurotrophic factor effectively repair the 
injured optical nerve, improve biomechanical 
properties, and contribute to the recovery after 
injury

ASC: Adipose-derived stem cell; BM-MSC: Bone marrow-mesenchymal stem cell; CLEs: Cutaneous lupus erythematosus; CM: Ciliary margin; DES: 
Discrete event simulation; HCEC: Human corneal endothelial cell; hESCs: Human embryonic stem cells; hiPSC: Human-induced pluripotent stem cells; 
iPSC: induced pluripotent stem cell; KLAL: Keratolimbal allograft; LEC: Lens epithelial stem/progenitor cell; LSC: Limbal stem cell; MSC: Mesenchymal 
stem cell; NCC: Neurocysticercosis; ON: Optic nerve; PDL: Periodontal ligament; PSC: Pluripotent stem cell; RGC: Retinal ganglion cell; TM: Trabecular 
meshwork; UC-MSCs: Umbilical cord-mesenchymal stem cell; UCB: Umbilical cord blood.

cells by cellular genetic reprogramming using defined transcription factors[8]. First 
described in 2007 by Takahashi et al[19], iPSCs used in the experiments were derived 
from skin fibroblasts produced using retroviral technology[19]. iPSCs provide a 
unique in vitro model that allows the generation of retinal progenitor cells. An 
advantage of iPSCs made from a patient’s own cells could reduce the need for 
immunoprotective regimens post-transplantation[15]. It has been demonstrated that 
these iPSCs have similar characteristics features of PSCs, conserving the possibility to 
generate tissues from each of the three germ layers[20]. The greatest problem reported 
regarding iPSCs was genomic instability, which may induce teratoma. The aim of 
research in recent years has been to create safety protocols capable of guaranteeing 
genomic stability[21]. The greatest success of hPSCs has been in retinal pigment 
epithelial cell (RPE)/photoreceptor replacement for aged-related macular 
degeneration (AMD), but studies have also reported the potential successful use in 
almost all structures of the eye[22,23].

Adult stem cells: The use of adult stem cells represents an easier route to regenerative-
cell therapies. The ability of some adult tissues (i.e. skin, haemopoietic system, bone, 
liver, etc.) to repair or renew, indicates the presence of stem or progenitor cells[9]. 
Numerous clinical trials based on the use of adult stem cells have also been developed 
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Table 2 Retinal diseases and therapies

Ophthalmic 
disease Ref. Stem cells 

used

In animals or 
in humans     
   

Conclusions

Retina Van Meurs et al
[109], 2004

RPE cells Humans A pigmented area was seen in the extraction bed of the neovascular membrane in 
only one patient

Tucker et al
[110], 2011

iPSCs Animals Adult fibroblast-derived iPSCs provide a viable source for the production of 
retinal precursors to be used for transplantation and treatment of retinal 
degenerative disease

Lamba et al
[111], 2006

hESCs Animals hES cell derived retinal progenitors integrate with the degenerated mouse retina 
and increase in their expression of photoreceptor-specific markers

Nakano et al
[48], 2012

IPSCs/hESCs Humans We demonstrate that an optic cup structure can form by self-organization in hESC 
culture

Gonzalez-
Cordero et al
[113], 2013

ESCs Animals We show that rod precursors integrate within degenerate retinas of adult mice 
and mature into outer segment-bearing photoreceptors

Schwartz et al
[40], 2015

hESCs Humans First evidence of the medium-term to long-term safety, graft survival, and possible 
biological activity of pluripotent stem cell progeny in individuals with macular 
diseases

Schwartz et al
[114], 2012

hESCs Humans The hESC-derived RPE cells showed no signs of hyperproliferation, 
tumorigenicity, ectopic tissue formation, or apparent rejection after 4 mo

Gaddam et al
[120], 2019

Adult stem 
cells

Humans The paracrine nature of adipose stem cells, in particular, has been highlighted as a 
potential solution to the lack of a homing and conducive environment that poses a 
challenge to the implantation of exogenous stem cells in the target tissue

hESCs: Human embryonic stem cells; iPSC: induced pluripotent stem cell; RPE: Retinal pigment epithelium.

in the field of ophthalmology.
Considering that the component of the eye, mainly the retina, is directly derived 

from the central nervous system (CNS), studies regarding cell therapy have shown to 
be difficult, limiting, yet potentially fascinating. The nervous system was thought to be 
rigidly constructed, with no capacity for physical repair. However, studies of nerve 
development have led to isolation of cells from the developing and mature 
mammalian CNS that shows numerous properties of stem cells [neural stem cells 
(NSCs)][9]. NSCs have been studied with success in spinal cord injury and traumatic 
brain injury[24]. NSCs secrete trophic factors, and therapies involving these cells may 
have potential for the neuroprotection of photoreceptors rather than replacement of 
retinal neurons, including retinal ganglion cells (RGC)[22,25].

Bone marrow stem cells (BMSCs) are progenitors of bone, cartilage and skeletal 
tissues, in addition to the hematopoiesis-supporting stroma and adipocyte cells. These 
cells can differentiate into mesenchymal cells, visceral mesoderm, neuroectoderm and 
endoderm characteristics in vitro[26]. In ophthalmology, BMSCs can be used to prevent 
graft vs host disease in corneal transplantation. These cells have also been studied in 
retinal diseases. The rationale for exploring the use of BMSCs as a potential therapy is 
a paracrine trophic effect on degenerating ischemic retina[22,27].

The previous view of adult stem cells has been that the differentiation potential was 
strictly limited to cell lineages found within the tissue of origin studied in tissues such 
as skin and bone marrow. During the past few years, this view has changed. Several 
studies have shown apparent plasticity of adult stem cells, like the ability to differ-
entiate to cell types other than the tissue of origin[9]. This remarkable finding 
challenged the long-held assumption that truly multipotent or pluripotent stem cells 
did not persist beyond early stages in embryogenesis.

Multipotent stem cells can be inserted in this context because they express markers 
of pluripotency previously seen only in ESCs or pregastrulation embryos[9]. The most 
commonly studied multipotent SCs in ophthalmopathies are MSCs. MSCs are 
classically the “post-natal, self-renewing and multipotent stem cells giving rise to all 
skeletal tissues”[2]. They have been found in different fetal tissues, in extraembryonic 
tissues [placenta, umbilical cord (UC) and amniotic fluid] and in adult tissues (bone 
marrow, peripheral blood, adipose tissue, dermis, synovium, periosteoum, cartilage, 
skeletal muscle, fallopian tubes, menstrual blood, gingiva and dental tissue and eye)
[28]. Placental and adipose-derived MSCs are, by far, considered in the largest number 
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Figure 1 The selection of PubMed literature published from 2000 to 2020, which was considered in the manuscript.

of clinical trials.
Fetal MSCs are scarcely considered in reported studies probably due to the 

difficulties in achieving sufficient cell numbers after expansion[29].
UC-MSCs have excellent proliferation and differentiation properties. These cells are 

readily available in large quantities and cultured rapidly. Moreover, UC incorporates 
both mesenchymal and epithelial stem cells with anti-inflammatory and immune-
privilege properties that can be differentiated into corneal epithelial, stromal and 
endothelial cells[29].

Human adipose-derived stem cells (ASCs) are an easily accessible autologous stem 
cell source. They have been shown to support the growth of many types of stem cells 
including human embryonic stem cells (hESCs), iPSCs and limbal stem cells (LSCs)
[30]. ASCs resemble BMSCs in terms of morphology, proliferation and multipotency
[31]. These cells have been considered for various ocular disorders, from retinal 
degeneration (neuroprotection and neurogenesis)[22,31] to corneal dise-ases[1,3,32].

Dental pulp stem cells (DPSCs) were the first human dental stem cells isolated from 
the dental pulp of permanent teeth[33]. These cells show the unique characteristic of 
the potential to differentiate into not only typical mesodermal cell lineages but also 
ectodermal and endodermal cell lineages. DPSCs have exhibited the potential to differ-
entiate into active neurons, cardiomyocytes, myocytes, melanocytes and hepatocyte-
like cells. These cells have shown higher angiogenic, neurogenic and regenerative 
potential when compared to BMSCs. In the field of ophthalmology, these cells have 
been studied for corneal repair[34], treatment of glaucoma and retinal diseases[35].

Going even more specifically, let us analyze the eye structure. Within the healthy 
eye, different types of adult stem cells can be found, which can be considered as eye 
stem cells. Retinal pigment epithelium stem cells (RPESCs) represent one of the latest 
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discoveries in terms of stem cells of the eye. Retinal epithelium arises from the CNS 
neuro-epithelium. Interestingly, studies have shown how these cells can proliferate in 
some animal species and in certain conditions (e.g., injury). Salero et al[36] identified a 
subpopulation of RPE cells that can be activated to self-renew and that exhibit 
multipotentially, producing either stable RPE progeny or neural, osteo, chondro or 
adipo-lineage mesenchymal progeny[36]. Studies have demonstrated how RPESCs, to 
date unknown, can proliferate pathologically in specific conditions, giving rise to 
retinal disorders. RPESCs are considered as a new type of SC capable of producing 
both CNS and mesoderm-associated lineages[36]. Autologous RPE cell replacement 
has provided proof-of-concept evidence that cell therapy may have promising applic-
ations for retinal degenerative diseases. RPE cell source, however, is restricted for 
applications in RPE cell replacement due to the limited number of donor eyes and 
ethical issues concerning this type of treatment[37].

Hallmark features of the corneal epithelium include the high regenerative potential 
and the capacity for rapid ocular surface repair through proliferation and centripetal 
migration of progenitor cell populations residing at the border of the cornea and the 
sclera in a location called limbus. LSCs represent a quiescent cell population with high 
proliferative potential, which enables efficient corneal regeneration and repair[38]. 
LSCs are fundamental for corneal homeostasis. A loss or deficiency [LSC deficiency 
(LSCD)] of these cells causes the disruption of homeostasis[39]. LSCs can be collected 
using biopsy and expanded in culture, and then they can be transplanted in the 
diseased eye[1].

Criteria for selecting stem cells type: As explained above, stem cells for the treatment 
of ocular disorders can be obtained from the same eye (or fellow eye), from other 
tissues of the patient, or from a donor. As with all treatments, clinicians seek safe, 
widely available and economically viable therapies. Obtaining SCs from the patient’s 
own tissues have changed the therapeutic perspectives. This option has the advantage 
of not requiring immunosuppressive therapies and guarantees no immune reactions
[40]. Another element that guides the choice of SCs is the availability of cells. Altern-
atives to pluripotent stem and eye tissue cells have been considered in literature, 
however, these options tend to be limiting due to ethical constraints, possible 
unknown adverse effects, little availability and unsustainable costs[21,37]. Autologous 
sources, such as MSCs (UC and adipose stem cells in particular), have been widely 
studied in recent years because of the large availability and the confirmed safety in 
other medical uses[3,4], and seem at the moment to preferential options for the future.

How can stem cells be used in clinical research
Multiple techniques to approach stem cell therapy for ophthalmic disorders have been 
described and studied over time.

Transplantation is the most used technique for stem cell therapy in the eye. SCs can 
be transplanted either as a cell suspension[40] or on different substrates, like 
autologous sheets of cells, biomaterial-based patches or three-dimensional (3D) 
structures[41,42]. SC transplantation is a technique substantially used in all eye 
structures. The key sites currently targeted include: The cornea, mainly the clear tissue 
covering the front of the eye that helps focus the incoming light; the neural retina, 
which contains the photoreceptors; and the RPE, a single layer of pigmented cells that 
plays a key role in maintaining the photoreceptor cells and the blood-retina barrier[15,
41,42].

Stem cells injection (pluripotent, MSCs or hematopoietic stem cells)[27,40] is a 
procedure still under study today, considered especially for the treatment of AMD. To 
date, these therapies are not yet proven to be safe and effective in ophthalmic use, 
however, have shown to be widely validated in other body districts[43]. Several 
clinical experiments have proposed the injection of SCs into the intravitreal space 
(exploiting the paracrine effect of SCs) or in the subretinal space; however, results 
were not as expected, and several collateral effects have been reported in literature[44] 
that have partially “extinguished” the enthusiasm for results obtained in animal 
clinical trials.

Topical stem cells therapies (eye drops) have been extensively studied to treat 
ocular surface diseases. Hematopoietic stem cells from UC blood serum[45] have been 
proposed for topical treatment of ocular surface diseases. The rationale for applying 
serum to the ocular surface is that, compared to conventional lubricant treatments, it 
more closely resembles natural tears due to several of its biochemical constituents. It 
has produced satisfactory results in terms of efficacy and safety. Moreover, MSCs (in 
particular BMSCs[46] and ASCs[3]) have been used topically for dry eye syndrome or 
other corneal injuries or diseases with promising results. The rationale for MSCs eye 
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drops is the wide-ranging differentiation potential, anti-inflammatory and 
immunomodulatory effects of MSCs[46-49].

In what ocular disorders can stem cells be used
Ocular surface, cornea and limbus: The ocular surface is the interface between the 
functioning eye and the environment. This surface provides anatomic, physiologic and 
immunologic protection and comprises the palpebral and bulbar conjunctival 
epithelium, the corneoscleral limbus, the corneal epithelium and the tear film[50]. The 
functions of ocular surface include maintaining optical clarity of the cornea and 
protection of the structures of the eye from microbes, trauma and toxins. Disorders of 
the ocular surface include a variety of conditions. The most common are dry-eye 
disease, blepharitis, ocular allergies and pterygia. Less common diseases are LSCD and 
ocular surface diseases due to systemic diseases. The narrow zone between cornea and 
bulbar conjunctiva is defined as limbus, which contains layers of cells populated by 
Langerhans cells, melanocytes and LSCs (the stem cells that generate corneal 
epithelium). If a patient has an extensive destruction of the limbus, a functional 
corneal epithelium can no longer be formed, and the cornea reacquires an epithelium 
by invasion of bulbar conjunctival cells. The only way to prevent the corneal 
conjunctivation is indeed to restore the limbus. Keratoplasty has been considered the 
conventional gold standard treatment before the introducing of regenerative medicine
[51].

The first attempt to restore limbus, using free limbal tissue grafts from the uninjured 
eye, was published by Kenyon and Tseng in 1989[52]. The potential of limbus grafts 
promoted additional studies in this field, which brought the discovery of LSCs[38,53]. 
In 2006, Ma et al[54] showed how transplantation of human MSCs on amniotic 
membrane, like LSCs on amniotic membrane, could reconstruct severely damaged rat 
corneal surface. They demonstrated how the therapeutic effect did not come from 
epithelial differentiation of MSCs but was probably due to the inhibition of inflam-
mation and neovascularization.

Since then, cultures of LSCs have been used to treat corneal diseases and injuries, 
initially engrafting the injured eye from the uninjured one[55], then treating bilateral 
pathologies with expanded cultures of LSCs[56]. The fragility and limited number of 
active SCs of the corneal epithelium in culture, in addition to the induction of 
iatrogenic damage to the healthy fellow eye, however, tend to slow-down and limit the 
clinical application of LSCs. For these reasons, several materials have been proposed to 
enhance results, which include fibrin glue, amniotic membrane, polymers, collagen 
sponges or strips and devitalized membrane or polymers[57].

LSCD is the most challenging disease of the ocular surface for ophthalmologists. 
Corneal LSC grafting procedures have been utilized. This procedure involves either 
direct transplantation of limbal tissue or transplantation of in vitro expanded cells on a 
variety of biological or synthetic carrier materials[29]. These techniques include 
conjunctival limbal autograft, living-related conjunctival allograft[57], keratolimbal 
allograft[58], autologous ex vivo cultivated limbal epithelial transplantation[59], simple 
limbal epithelial transplantation[60], cultivated oral mucosal epithelial trans-
plantation[61] and transplan-tation of peripheral corneal cells[62]. Clinical studies 
using conjunctival limbal autografts have shown excellent short-term and good long-
term results, however, with high risks of complications, which mainly include induced 
damage to the donor eye[63]. For these reason, other types of stem cells have been 
proposed to produce LSCs and corneal epithelium cells.

In 2012, an efficient protocol, with positive preliminary results, was proposed to 
produce corneal epithelial cells from human-iPSCs (hiPSCs)\ESCs obtained from hair 
follicles or dermal fibroblasts[64]. Results were also then confirmed in successive 
studies[65,66]. The evolution of this approach led to the creation of corneal organoids 
from iPSCs[23], initially in two-dimensional, and then in 3D culture systems, with 
promising results as alternative for the treatment of bilateral LSCD[67].

MSCs have also been considered for ocular surface therapy[3,55]. Preliminary 
results in animal experiments are encouraging, and the potential is great. Studies have 
shown how bone marrow-MSCs (BM-MSCs) are safe and can restore corneal epithelia 
from LSCD with the same results of cultivated limbal epithelial transplantation[68]. 
BM-MSC associated with amniotic membranes have successfully been evaluated in 
LSD[69]. Gu et al[70] demonstrated how BM-MSCs could differentiate into cornel 
epithelial like cells in vivo in rat damaged corneas[70]. MSCs have been proposed also 
to promote graft survival[71,72]. This can be explained by the potent immunomodu-
latory properties of SC, suppressing maturation and activation of atrial premature 
complexes and dendritic cells and cytotoxicity of natural killer cells. Several studies 
have attempted to exploit these features of MSCs and have shown interesting results 
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by using topical therapies with eye drops containing MSCs (mainly BM-MSC and 
ASCs)[45,46]. Topical application of MSCs can lead to an increase in aqueous tear 
volume and improvement in ocular surface evaluation tests. Moreover, it is a safe and 
easy applicable method.

Cells derived from epithelial UC-MSCs are capable of forming a stratified epithelial 
layer when seeded on artificial matrices. Reza et al[73] first described the properties of 
UC-MSCs, finding how they have similar characteristics of LSCs[73]. Garzón et al[74] 
utilized an epidermal growth factor enriched medium to induce UC-MSCs to transdif-
ferentiate into corneal epithelial cells on a 3D human artificial anterior cornea model
[74]. The aim of the use of UC-MSCs derived epithelial cells is to circumvent the 
problem of the limited amount of limbal tissue available for transplantation, especially 
in cases of bilateral LSCD[29].

With regards to MSCs, human immature dental pulp and oral mucosa stem cells 
have been reported to be a promising cell source to correct LSCD, as described by 
Hassan and AbdelAziz[75] and Nishida et al[76]. Studies about ocular surface diseases 
and their treatment are reported in Table 1.

Research is currently searching for new ways of applications of stem cells therapy. 
As described above, MSCs derived exosomes is one of these[28]. The other way 
recently described to facilitate and carry cells to the ocular surface is the use of contact 
lenses[77].

Corneal stroma and endothelium: The corneal stroma is the thickest corneal layer 
(approximately 90% of corneal thickness) and is composed of specialized extracellular 
matrix components and collagen fibrils. Corneal stromal keratinocytes (CSKs) are the 
major cell type in corneal stroma and are located between the collagenous lamellae, 
which are generally quiescent[29]. Corneal insults cause death of CSKs at the injured 
site. Surviving CSKs near the injured site are activated to proliferate, while some 
fibroblasts are induced to transform in highly contractile myofibroblasts. When 
fibroblasts action prevails, scaring and consequent opacity of cornea can occur. The 
presence of dense opacities and persisting scars can interfere with the passage of light 
and cause an important loss of visual acuity if the opacity is large and localized in the 
center of the visual axis of the cornea, thus have an important burden on quality of life 
of patients[78].

Keratoplasty is a primary treatment option and current gold standard to treat 
numerous corneal conditions, including corneal injury, corneal dystrophy, 
keratoconus and corneal infractions. The ever-increasing number of patients needing 
keratoplasty has led to the shortfall of viable donor corneas. Moreover, it is important 
to note that post-surgical complications include important and sight threatening 
conditions, in addition to the risks of transplant rejections and elevated permanently 
induced astigmatism[23]. Sepsakos et al[79] demonstrated that patients who under-
went an ocular surface SCs transplantation (e.g., with LSCs) before keratoplasty have 
better results than patients that did not do that[79].

Various trials (Table 1) trying to obtain keratinocytes derived from hiPSCs have 
been proposed in the past several years[80,81]; however, the genetic reprogramming of 
iPSCs tends to be quite intricate. The differentiation of iPSCs to keratinocytes involves 
two steps[81]. The possibility of obtaining CSKs from iPSCs is very interesting in 
animal models; to date, clinical studies involving injection in humans are lacking in 
literature[82].

MSCs express high levels of hepatocyte growth factor (HGF) in an inflamed 
environment, as is the case in an injured cornea. HGF inhibits the generation of 
opacity-inducing myofibroblasts and, alone, can restore corneal transparency in an in 
vivo model of eye injury[83]. This is the rationale that has been proposed for the use of 
these cells. All MSCs seem to have similar behavior in vivo, being able to achieve 
keratocyte differentiation and modulate the corneal stroma. ASCs have been 
demonstrated to be an ideal source of autologous stem cells, while BM-MSCs have the 
same profile, but the extraction by bone marrow puncture is more complicated, not 
free of risks and painful. A pilot study by del Barrio et al[84] demonstrated the 
apparent safety of corneal stromal transplantation of autologous ASCs in humans, 
showing cell survival in vivo and the ability of these cells to produce a low amount of 
new collagen in patients with advanced keratoconus. Several studies on animals have 
suggested that UC-MSC transplantation may be a feasible alternative to keratoplasty 
in treating congenital disorders of the cornea secondary to keratocyte dysfunction such 
as mucopolysaccharidoses, giving rise to potential future possibilities[85,86]. UC-
MSCs could represent an attractive alternative, but the autologous use of these cells 
tends to be expensive and currently almost impossible.
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An alternative stem cell population currently reported in clinical trials for the 
therapy of corneal stroma disorders include corneal stromal stem cells (CSSCs). These 
cells show similar properties of MSCs and can be obtained by specific cultures of LSCs. 
Experimental studies have shown that CSSCs can differentiate in CSKs after injection 
in the stroma[87].

Periodontal ligament stem cells and DPSCs could differentiate in CSKs and prove to 
be of potential clinical use[28,88].

The corneal endothelium is the posterior corneal surface. It is formed by a 
monolayer of endothelial cells (CECs) that regulate the stromal hydration, preventing 
edema and maintaining corneal deturgescence, which are all fundamental for normal 
vision. These cells are non-mitotic and have limited regenerative capacity. Diseases 
that affect the corneal endothelium cause stromal edema, central opacity and vision 
loss. Full thickness or partial corneal transplantation has been the gold standard for 
endothelial diseases to date; however, preliminary studies have shown that stem cells 
therapies could be of potential clinical use[28,29]. MSCs could serve as a potential 
source to generate corneal endothelial cells for the treatment of corneal endothelial 
diseases, like Fuchs’ endothelial dystrophy and aphakic/pseudophakic bullous 
keratopathy. Joyce et al[89] demonstrated the potential of UC-MSCs to differentiate in 
CECs when treated in particular cultures[89]. At this moment, however, there are no 
concrete data in current literature on the possible application of SCs in human 
endothelial disorders, which remains to be the primary cause of corneal trans-
plantation[29].

Trabecular meshwork: Glaucoma is a degenerative optic neuropathy affecting 
approximately 70 million people worldwide. The most frequent cause of glaucoma is 
the increase of intraocular pressure (IOP) due to an alteration of aqueous outflow. 
Humor aqueous is continuously produced, and its outflow is controlled by the 
trabecular meshwork (TM), an avascular tissue located within the uvea and posterior 
to the corneal margin[90]. TM is populated by specialized cells that decline in number 
with age, and these cells are particularly low in individuals with primary open 
glaucoma. It is probable that TM cells become dysfunctional prior to death and 
increasingly fail to carry out the physiological roles, leading to enhanced aqueous 
humor outflow resistance and the development of pathologically elevated IOP[91]. 
Despite the importance of controlling IOP, the ultimate cause of glaucoma-associated 
vision loss includes axonal damage and the progressive loss of RGCs, the axons of 
retinal neurons that make up the optic nerve and transmit visual information from the 
eye to the brain[91]. The presence of MSCs in TM have been suspected for years and 
then confirmed and propagated in vitro[92].

TM cells are difficult to obtain from a living eye. Studies have faced this problem by 
using iPSCs generated via genetic reprogramming of adult somatic cells[19]. To date, 
the use of TM-like cells derived from iPSCs from a patient’s own dermal fibroblasts 
may offer the best solution to the challenge of TM cell replacement therapy[92]. Abu-
Hassan et al[93] evaluated the results of iPSCs derived TM cell transplantation. The 
study showed that iPSCs differentiate to resemble TM cells in several keyways and 
have the potential to restore the primary TM cell function, thus maintaining IOP 
homeostasis[93].

Recently, other stem cells have been proposed to find the possibility of obtaining 
TM cells (Table 1). MSCs have been used in attempt to repair TM tissue predominantly 
in animals[94]. Kumar et al[31] described the differentiation of ASCs in TM cells[31], 
and Manuguerra-Gagné et al[95] studied the regeneration of TM from BM-MSCs with 
encouraging results[95]. Data in stem cell models are of utmost importance and the 
basis when designing future studies with potential clinical benefits.

Lens: Cataracts are the leading cause of blindness in the world. The current standard 
of care in congenital cataracts involves surgical removal of the cataractous lens and 
implantation of an artificial intraocular lens. Surgery is not free of complications, 
especially in patients with complicated cataracts and with other underlying 
ophthalmic conditions.

Human lens regeneration has not been demonstrated yet, however, lens epithelial 
stem\progenitor cells (LECs) have been isolated[96]. The most significant functions of 
LECs are sustained self-renewal and protective capacities against external injuries[97,
98]. Li et al[99] have recently reported clinical trials on animals and humans (Table 1). 
They showed that with a new minimally invasive surgical procedure, with preser-
vation of LECs, lens regeneration can be achieved with increased visual axis 
transparency and decreased rate of complications. The same conclusion has also been 
reported by Li et al[99]. A further possibility of obtaining lenses through cell differen-
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tiation has been proposed by Murphy et al[98], who showed the possibility of creating 
micro-lenses starting from iPSC differentiation.

Optic nerve
RGCs are a population of CNS neurons located in the innermost layer of the retina and 
convey visual signals from the retina along their axons to the brain. Axonal injury 
leads to the functional loss of RGCs and subsequently induces death of neurons. Axon 
growth is essential for the restoration of neuronal connectivity and reestablishment of 
a functional visual system after optic nerve injury[100]. Some optic neuropathies are 
very common, like glaucoma that is the first cause of irreversible blindness; while 
other conditions tend to be rare. Leber’s hereditary optic neuropathy is just one 
example of this heterogeneous category of ophthalmic pathologies. There is currently 
no treatment available for inherited optic neuropathies such as Leber’s hereditary 
optic neuropathy or dominant optic atrophy. With regards to glaucoma, current 
treatments aim at lowering the IOP. It is well known how the regenerative potential of 
the mammalian CNS is very limited. Research regarding the regeneration of elements 
of the nervous system is thus fascinating and usually limited to animal models.

There are two main objectives of cell therapy, including the delivery of a trophic 
and neuroprotective support[22,27] and (more ambitious) replacement of lost cells and 
functional restoration[101]. The first step in developing cell replacement-based 
strategies for optic nerve regeneration requires a reliable, high-volume source of 
healthy RGCs[102].

iPSCs\ESCs represent the first source studied for the optical nerve regeneration. 
Takahashi et al[19] in 2007 reported a remarkable break-through technology whereby 
adult fibroblasts could be reprogrammed into iPSCs. These transdifferentiated cells 
exhibit similar characteristics to hESCs, including the ability to propagate indefinitely 
and the ability to differentiate into many different cell types, including RGCs. As 
explained by Gokoffski et al[100], there are two different methods for generating RGSs 
from pluripotent stem cells: Organoid differentiation and planar differentiation. 
Organoids are self-organized 3D miniature organs developed in vitro from PSCs. 
Kuwahara et al[102] first developed 3D retinal organoids from hESCs[102]. Planar-
derived RGCs are transdifferentiated from traditional two-dimensional cell culture 
techniques[103,104]. One of the limitations of this technique is the ability of 
iPSCs\ESCs to integrate into the ganglion cell layer. Preliminary results by Mesentier-
Louro et al[105] reported that between 1% to 7% of iPSCs-derived RGCs integrated into 
the ganglion cell layer after intravitreal injection and about 20% after combined 
injection of RGCs and iPSCs[105] (Table 1).

The other limitation regarding the use of iPSCs currently being studied involves the 
possibility of formation of synaptic connections. Axonogenesis of derived RGCs is 
another crucial point: Neurotrophic factors, which theoretically could promote it, keep 
RGCs alive longer. The ideal local cellular environment is essential to permit and 
enhance RGCs in creating new axons; however, neuronal survival does not equate to 
new axon formation[106]. An additional unresolved question involves the possibility 
of new axons in establishing functional synapse.

To overcome the difficulties in integrating RGCs, gene therapy has developed 
possible solutions, which are currently under investigation. Zhang et al[107] 
demonstrated the utility of pigment epithelium-derived factor[107]. It is constitutively 
expressed by various ocular tissues, but its exogenous delivery is therapeutically 
advantageous to promote RGCs survival and axon regeneration. Zhang et al[107] used 
NSCs as cellular vectors to deliver continuously pigment epithelium-derived factor to 
adult retinas after optic nerve injury. These studies showed the utility of genetically 
modified NSCs to protect RGCs and promote axonal regeneration.

The effects of MSCs on RGCs have also been studied (mainly in animals). MSCs 
provide neuroprotection against RGC death; however, studies showed that these SCs 
did not tend to integrate[14]. Preliminary studies by Zhang et al[107] have described 
the possible usefulness of UC-MSCs, which have shown a partial recovery of injured 
optic nerve.

Retina: Visual signalling starts in photoreceptor cells. In the human retina, rods and 
cones are responsible for dim light vision and daylight vision, respectively. Rods are 
located mainly in the peripheral retina, while cones are concentrated in a small portion 
of the retina, called macula. Bipolar cells receive visual signals from photoreceptors 
and transmit it to RGCs. RPE cells form a monolayer underneath the outer segment of 
the photoreceptors, constituting the outer blood-retinal barrier. In the visual system, 
RPE cells play diverse roles, which include absorption of scattered light, regulation of 
nutrients, ions and solutes, secretion of growth factors, regulation of the retinal cycle 
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and phagocytosis of photoreceptor outer segment.
Retinal degenerative diseases are characterized by retinal cell loss, such as RPE 

and/or photoreceptor cell loss in AMD and retinitis pigmentosa, and RGC death in 
glaucoma, as seen previously. Studies that report retinal diseases and treatment are 
summarized in Table 2.

Binder et al[108] and van Meurs et al[109] described the therapeutic potential of 
autologous RPE cells taken from the peripheral region of the retina in AMD. These 
promising results have prompted research towards stem cell therapies to extend it to 
degenerative retinal diseases, where cell replacement is needed[37]. Retinal 
degenerative disorders requiring cell replacement include AMD, retinitis pigmentosa, 
Stargardt’s disease and glaucoma, which represent current challenges in cell therapy. 
RPE cell source is restricted for applications in RPE cell replacement, thus stem cells 
have been studied to solve this limitation.

The greatest potential for cell replacement has been seen with ESC/iPSCs[19], which 
can be successfully pre-differentiated prior to transplantation in the eye, with the 
greatest success shown in RPE/photoreceptor replacement for AMD[22]. Studies 
involving cell reprogramming by Tucker et al[110] and Lamba et al[111] have shown 
the possibility of creating ESC/iPSC-derived retinal progenitors capable of maturing 
in RPE or photoreceptors and capable of integrating in the retina[112]. The same 
results, but with hESCs and hiPSCs, were confirmed by Nakano et al[48] and 
Gonzalez-Cordero et al[113]. The first clinical trials in humans have been done by 
Schwartz et al[40,114] in 2012 and 2015[40,114]: They successfully used hESCs-derived 
RPE cells in Stargardt’s disease without collateral effects (also noted by Mandai et al
[17]). Cell reprogramming allows the use of autologous PSCs, which guarantee no 
immune reactions with respect to allogenic cells. One of the observed collateral effects 
is the long-term hyperpigmentation of the macula[114]. Potential future alternative 
approaches include the implant of stem cell derived RPE growing on a bioengineered 
scaffold, which can improve stability and maintain cell polarization[14].

Considering the functions of RPE on the overlying retina, it is fundamental to know 
that subretinal RPE transplantation aims at replacing these functions. Transplantation 
of non-RPE cells has been pursued with the rationale that they may counter disease 
through trophic factor secretion. For this reason, clinical trials with subretinal UC-
MSCs, NSCs and retinal progenitor cells are based on trophic support mechanism of 
action. These procedures, however, need further studies considering the potential 
increase of complications[115].

The future of retinal therapies could involve bioengineering. Stern et al[14] have 
reported that incorporating bioengineering approaches may better preserve retinal 
layering and integration in vivo models. The possibilities of this approach have been 
successfully seen in animal clinical trials[116]. Nakano et al[48] has described the 
formation of optic cup and stratified retina from hPSCs. Several successive studies 
have confirmed the possibility of creating retinal organoids and layers of differentiated 
photoreceptors, which can develop outer segment structures[117]. Organoids may 
prove valuable in producing specific retinal cell types or 3D retinal structures for 
transplantation. This is particularly important for conditions such as geographic 
atrophy[14].

An alternative approach to retinal degenerative pathologies with SCs is the 
possibility of exploiting the paracrine capacities of some type of cells. This stem cell 
therapy is not disease specific and can have broad clinical applications, as seen 
previously. This is the potential of BM-MSCs and places them as a candidate cellular 
therapy to combat ocular neurodegeneration, even if these cells are less ideal for 
replacement cell therapy[22,27]. Transplantation of BM-MSCs in experimentally 
induced glaucoma and optic nerve transection show no evidence of the differentiation 
into mature retinal cells (RPE or photoreceptors), despite some integration into the 
retina; but, improvement of retinal function by preserving photoreceptors and RPE cell 
viability have described[118].

ASCs have also been studied for this clinical use, which could prove to be beneficial 
in eye therapies for the paracrine effects, as seen for disorders of the SNC. Several 
studies suggest that ASCs have therapeutic potential for neurodegenerative conditions 
through neurotrophic factor production, with several of the active factors being 
different from those produced by BM-MSCs and DPSCs[27,119]. ASCs and BM-MSCs 
have recently been evaluated with promising results in diabetic retinopathy. ASCs 
have shown the potential to be therapeutically effective in early-stage of diabetic 
retinopathy through paracrine factors and physical contact with endothelial cells[120].
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Limits and why not
Stem cell therapy in ocular diseases certainly represents the future in the treatment of 
numerous serious eye diseases, especially if organ transplantation can be avoided. One 
of the main problems of these therapies, mainly the immunological tolerance to 
transplanted cells, has been solved thanks to the use of autologous cells[17]. Graft vs 
host disease has been limited in this way. Despite all the advantages and promising 
results, what we know about stem cells therapies is still incomplete, especially 
concerning the possible side effects. The tumorigenicity of transplanted stem cells, to 
date, remains to be the most concerning issue for cell transplantation. Advances in 
genetic research and reprogramming have made it possible to reduce the incidence of 
this event[20]. Other side effects may be caused by tissue sampling, particularly if 
performed in the contralateral, healthy eye. This can be avoided using SCs derived 
from other tissues, like ASCs[32].

Stem cell transplantation has the huge limit of the survival and engraftment of cells. 
To improve outcomes, methods considered include pre-treating the host tissue or the 
SCs culture with growth factors or cytokines, embedding SCs in biomaterials or 
expanding SCs in culture. Obtaining an adequate number of SCs is fundamental. For 
example, the expansion of ASCs in culture has been considered, but extensive cultures 
may change the properties of SCs in vivo, rendering them unfit for restoring injured or 
diseased tissues. Genetic research is thus of fundamental importance in this field. A 
further problem related to SCs treatment is the cost of this type of therapy, which is 
still very high today due to limited cost efficient technology to render this therapy 
available on a large scale[37]. Conserving samples of one’s own tissue (i.e. adipose 
stem cells, which are the most represented) taken during other operations, similar to 
the methods used during lipofilling for aesthetic or reconstructive aims, could be a 
possible solution. Moreover, the ethical problem of the use and collection of certain 
cell types, such as ESCs, UC-MSCs and NSCs, remains considerable, which further 
limits SCs use in clinical trials.

Future prospectives
The vast literature and resources used to date underline the importance of stem cell 
therapies, especially for the future. To date, the results are still primordial, but the 
conditions seem leading to an important turning point. Further studies are surely 
needed to provide additional knowledge behind the mysterious physiological and 
potentially curative properties of stem cells, which can pave the way to clinical applic-
ations in ophthalmic care. Numerous current trials have been proposing different 
perspectives for the future of cell therapy in ophthalmic diseases. The therapeutic 
effects of MSCs in regenerative medicine, for example, can also be attributed to 
exosomes, which are secreted soluble factors[45]. Exosomes are extracellular vesicles 
that are produced in the endosomal compartment of most eukaryotic cells and contain 
proteins that regulate tissues biogenesis. Several studies have considered the injection 
of MSCs exosomes in ocular tissues, with interesting results[28]. Research should not 
only be limited at stem cell studies alone but also need to include a whole series of 
innovations brought on by bioengineering and nanotechnology[14,48,118]. Modern 
studies seem to be aimed at the 3D development of fundamental parts of the eye, the 
use of specific vectors that can guarantee the replacing of tissues, and organoids[67]. 
Novel studies are geared at the possibility of reproducing eye tissues in a normal 3D 
configuration. Transplantation of sophisticated multicellular 3D tissues can be an 
exciting opportunity. Nakano et al[48] have shown that hPSCs can generate differen-
tiated 3D structures similar to the embryonic eye cup, containing RPE and neural 
retina. Garzón et al[74] described the generation of the anterior cornea by tissue 
engineering. In addition, bioengineers have proposed to build ocular structures by 
incorporating biocompatible materials with stem cells products, for example to create 
TM or RPE monolayer[47]. Bioengineering is fundamental for the development of 
optimal cell culture biomaterials for the expansion of SCs and the differentiation into 
ocular cells[16]. Modified cultures (e.g., using growth factors, biomaterials, injectable 
hydrogels, scaffolds or membranes containing cells) allow the maturation of cells and 
dedifferentiation, recreating the micro-environment of the host tissue. Consequently, 
there is an easier integration and a better survival of these SCs in the recipient site[42]. 
The advantage of these approaches is to guarantee a reduction of the culture time to 
obtain a viable ocular tissue (such as a cornea[75]), thus avoiding massive tissue 
harvesting (preserving LSCs, for example[75]).
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CONCLUSION
The potential therapeutic goals include being able to restore the sense of sight in 
patients who have lost it, by replacing or recreating the damaged eye structures, 
including restoration of physiological and functional connections with the CNS. Stem 
cell therapies seem to be interesting and promising, even concerning the more external 
structures, including the ocular surface and cornea. Finally, the possibility of using 
these cells topically, without having to subject patients to surgery, organ transplan-
tation or hospitalization, is an element of great importance and hope.
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Abstract
Stem cell-based therapy raises hopes for a better approach to promoting tissue 
repair and functional recovery. However, transplanted stem cells show a high 
death percentage, creating challenges to successful transplantation and prognosis. 
Thus, it is necessary to investigate the mechanisms underlying stem cell death, 
such as apoptotic cascade activation, excessive autophagy, inflammatory 
response, reactive oxygen species, excitotoxicity, and ischemia/hypoxia. 
Targeting the molecular pathways involved may be an efficient strategy to 
enhance stem cell viability and maximize transplantation success. Notably, a more 
complex network of cell death receives more attention than one crucial pathway 
in determining stem cell fate, highlighting the challenges in exploring 
mechanisms and therapeutic targets. In this review, we focus on programmed cell 
death in transplanted stem cells. We also discuss some promising strategies and 
challenges in promoting survival for further study.
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INTRODUCTION
Cell-based therapies have raised tremendous expectations and presented favorable 
curative effects in repairing damaged tissue and enhancing functional repair[1-3]. 
Stem cells (SCs) could serve as a cellular reservoir to maintain, produce, repair, and 
even regenerate multiple tissues with the characteristic properties of self-renewal and 
differentiation. Thus, SCs are developed as the preferred sources for cell-based 
therapies due to their ability to differentiate into a wide range of cell types and their 
capacity of secretion regulated by the microenvironment, also termed the “niche”[4]. 
Based on the stage of development, SCs can be divided into three types: Embryonic 
SCs (ESCs), induced pluripotent SCs (IPSCs), and adult SCs (ASCs)[5]. ESCs are 
derived from the inner cell mass of a blastocyst[6]. There are ethical limitations to the 
use of ESCs in therapy[7]. Compared with ESCs, IPSCs derived from mature body cells 
could be regulated to dedifferentiate into pluripotent SCs as a renewable source of 
alternative cells and tissues[8]. ASCs or somatic SCs (SSCs) can be found in various 
adult tissues, including neural SCs (NSCs), hematopoietic SCs (HSCs), mesenchymal 
SCs (MSCs), and epidermal SCs. Many trials have shown that ASCs can be used to 
treat diseases[9,10]. For example, bone marrow mononuclear cells[11], NSCs[12], and 
MSCs[13] are usually used to treat stroke.

SCs-based therapies are widely used in the treatment of various diseases[14-18]. 
Limbal stem cell therapy is used for treating burn-related corneal destruction[19], 
NSCs in gastrointestinal tract disorders[20], bone marrow-derived mesenchymal SCs 
(BM-MSCs) in diabetic cardiomyopathy[21], and MSCs in multiple sclerosis[22] and 
several clinical conditions. However, SC-based therapies also have limitations. 
Impaired cell homing regulated via various factors (such as chemokines) causes in situ 
tissue regeneration failure[23]. Also, a high death rate of transplanted SCs limits the 
therapies[24,25]. After MSC injection, over 99% of injected cells die in the left 
ventricular myocardium within 4 d[26].

Accumulated evidence shows a close tie between multiple types of programmed cell 
death (PCD) and SCs, including apoptosis, autophagy, ferroptosis, pyroptosis, and 
necroptosis. Studies demonstrate that p53 induces apoptosis of human ESCs (hESCs) 
through a mitochondrial pathway shown to be extremely sensitive to FasL-induced 
cell death in MSCs[27,28]. Ohgushi et al[29] observed that Rho-associated coiled-coil-
containing protein kinase (ROCK)-dependent hyperactivation of myosin directly 
caused dissociation-induced apoptosis in hESCs and immediate activation of the 
Rho/ROCK/MLC2 signaling cascade. In 2010, the María group found that inhibitors 
of apoptosis proteins (IAPs) could promote the numbers of hematopoietic stem and 
progenitor cells and improve resistance to cell death[30]. Moreover, reports suggest 
that high levels of pro-apoptotic B-cell lymphoma 2 (Bcl-2) family members were 
overexpressed in hESCs[31]. Autophagy in SCs traces its history to 1980 where 
marrow cells revealed several abnormalities within an intrinsic myeloid precursor cell 
defect[32]. Lately, the role of autophagy in SC fate and aging is drawing attention due 
to the ability of the autophagy activator rapamycin to restore the biological properties 
of aged SCs by increasing their differentiation and proliferation capacity and 
decreasing adipogenic differentiation capacity, including the molecular mechanisms 
targeting 5′ AMP-activated protein kinase (AMPK) and rapamycin (mTOR)[33,34]. 
Research on necroptosis in SCs started relatively late but progressed rapidly to show 
that tumor necrosis factor α (TNF-α) could act on HSCs and progenitors for facilitating 
hematopoietic clearance and promoting regeneration. Furthermore, pharmaceutical 
inhibition of receptor-interacting protein kinase-3 (RIP3) showed a curative effect in 
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promoting SCs, such as targeting necroptosis of intestinal SCs[35]. Some other cell 
death-related molecules have been increasingly recognized in SCs, such as the 
PI3K/AKT signaling pathway[36], MAP kinases ERK[37], JNK, and p38[38].

Some methods have been used to control programmed cell death in SCs. The 
concept of preconditioning was proposed by Charles E. Murry in 1986[39]. Presently, 
several strategies, such as using heat shock, free radical scavengers, over-expressing 
anti-apoptotic proteins, anti-inflammatory therapy, and co-delivery of extracellular 
matrix molecules, have been introduced[40-45]. Besides genetic strategies, three-
dimensional culture technology and co-transplantation are novel ideas to enhance SC-
based therapies.

Exploring cell death mechanisms in SCs and targeting these potential therapeutic 
molecules are vital to successful SC-based therapies (shown in Table 1[19-21,46-92]). In 
this review, we highlight the conditions or reasons leading to cell death in SC-based 
therapeutic approaches. Also, we demonstrate the cell death mechanism in SCs, which 
may provide a novel, efficient, reliable, and potential strategy in promoting SC-based 
therapy.

A QUICK LOOK AT PCD
According to the death inducers, cell morphologic changes, and molecular 
mechanisms, cell death can be divided into two types: Non-programmed cell death 
caused by an external injury leading to instantaneous and irreversible cell damage[93,
94], and PCD (e.g., apoptosis, autophagy, necroptosis, and pyroptosis), a common 
occurrence in the development of organisms without strong immune responses[95].

PCD occurs extensively during the development of pathology in various tissues. It 
is closely related to the therapeutic efficacy and prognosis of SC-based treatment. 
Robey et al[25] indicated that most cell death occurs in the first week post-
transplantation. In NSC transplantation for neurological disorders in the brain, less 
than 4%-10% of primary NSCs survived within the first few days[96]. Similarly, 
Yasuda and Hayashi’s groups showed that 15% of transplanted cells survived at 1 wk 
and 9% at 4 wk in a rat infarction model[97]. A significantly high death rate occurred, 
and over 99% of MSCs died within 4 d after transplantation into the left ventricular 
myocardium of mice[26]. Thus, cell death may be a significant concern that needs 
attention.

Apoptosis
Apoptosis is the classic form of PCD without spillage of contents into the surrounding 
environment[98]. Apoptosis plays an important role in the orderly and efficient 
removal of damaged SCs to prevent cancer through two classical apoptotic pathways: 
The intrinsic pathway and the extrinsic pathway[99]. The intrinsic pathway, also called 
the mitochondrial pathway, shows a close relation with SCs[100,101]. It is closely 
regulated by a group of cytokines, especially the Bcl-2 family[102,103]. The extrinsic 
pathway is triggered by ligand-receptor binding. TNF-family receptors and cysteine-
aspartic proteases, known as caspases, play a vital role in the extrinsic pathway[104].

Autophagy
Autophagy is a eukaryotic cell recycling process involving the degradation of 
cytoplasmic organelles, proteins, and macromolecules with the recycling of 
decomposition products via the mTOR/Ras-cAMP-PKA axis to maintain cellular 
homeostasis and enhance stem cell survival[105]. Autophagy is divided into three 
major types: Microautophagy, macroautophagy, and chaperone-mediated autophagy 
(CMA)[106]. During microautophagy, cargos are captured by lysosomal membrane 
invaginations or protrusions[107]. In macroautophagy, autophagosomes are regarded 
as typical signatures[108]. CMA focuses on molecular chaperones to identify cargo 
proteins containing specific pentapeptide sequences without using membrane 
structures to isolate cargo[109].

Necroptosis 
Necroptosis is a pro-inflammatory lytic form of PCD. Necroptosis could be induced 
through several innate immune signaling pathways triggered by stimulating RIG-I-
like receptors, TLRs, and death receptors[110,111]. Receptor-interacting serine-
threonine kinases 1 and 3 (RIPK1 and 3) are phosphorylated and activated through 
these signaling pathways[112]. Subsequently, mixed lineage kinase domain-like 
(MLKL) could be activated[113].
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Table 1 Summary of programmed cell deaths in stem cell-based therapy

Disease SCs Therapy models Therapeutic effects PCDs in SCs Ref.

Myocardial infarction MSCs Canine; porcine; 
mice; human

Inducing  cardiac regeneration; increasing 
angiogenesis; repair by differentiating into 
cardiomyocytes

Apoptosis, 
autophagy, 
pyroptosis

[46-48]

iPSCs Porcine; murine; 
rats; mice; non-
human primates

Showing heart regeneration potential; 
regenerating the injured tissues; promoting a 
cardiomyogenic and angiogenic response

Apoptosis, 
autophagy, 
ferroptosis

[48,49]

ESCs Non-human 
primates

Showing heart regeneration potential; increasing 
angiogenic differentiation

Apoptosis, 
autophagy, 
pyroptosis

[48,50]

Intracerebral hemorrhage MSCs Rats; primates; 
human

Repairing via differentiating into neurons or 
neuron-like cells; promoting axonal regeneration, 
neurogenesis, and angiogenesis

Apoptosis, 
autophagy, 
pyroptosis

[51-54]

NSCs Mice, rats Differentiating into neurons or glial cells; 
promoting neurogenesis and angiogenesis; 
promoting regeneration

Apoptosis, 
autophagy

[51,55-
57]

ESCs Rats Differentiating into neurons or glial cells; 
promoting neurogenesis and angiogenesis

Apoptosis, 
autophagy, 
pyroptosis

[51,58,
59]

iPSCs Rats Differentiating into neuroepithelium-
like/neuroepithelioid SCs and neural cells; 
promoting neurogenesis and angiogenesis

Apoptosis, 
autophagy, 
ferroptosis

[51,60-
62]

Corneal reconstruction LSCs Human Regenerating the corneal epithelium; 
differentiating into cells of the corneal epithelium

Apoptosis. [19]

MSCs Mice; rats; rabbits; 
human

Regenerating the corneal epithelium and corneal 
stroma; angiogenesis

Apoptosis, 
autophagy, 
pyroptosis

[63]

Neurodegenerative 
disorders of the 
gastrointestinal tract 

ESCs Mice Differentiating into enteric neuronal and glial 
cells

Apoptosis, 
autophagy, 
pyroptosis

[20,64]

iPSCs Rats, mice Differentiating into neural and glial cells Apoptosis, 
autophagy, 
ferroptosis

[20,65]

CNS-NSCs Mice Differentiating into neurons; regenerating and 
repairing ENS

Apoptosis, 
autophagy

[20,66,
67]

ENSCs Mice; rats Stimulating a local regenerative response; 
regenerating and repairing ENS; differentiating 
into new neurons

Apoptosis, 
autophagy

[20,68,
69]

Diabetic cardiomyopathy MSCs Mice; rats Promoting angiogenesis; regenerating tissues; 
differentiating into cardiomyocytes and 
vasculature cells

Apoptosis, 
autophagy, 
pyroptosis

[21,70]

EPCs Rats Differentiating into endothelial cells to form new 
blood vessels and promoting neovascularization

Apoptosis [70,71]

CSCs/CPCs Rats Differentiating into newborn cardiomyocyte; 
promoting heart regeneration

Apoptosis [70,72]

iPSCs Rats; mice Attenuating oxidative stress and fibrosis; 
diminishing pro-oxidant expression and 
enhancing antioxidant (catalase and MnSOD) 
concentration; promoting heart regeneration

Apoptosis, 
autophagy, 
ferroptosis

[70,73]

Diabetic retinopathy ASCs Rats; mice Promoting angiogenesis; improving ischemia; 
offering protection against nerve damage; 
differentiating into photoreceptor and glial-like 
cells in the retina

Apoptosis [74-77]

HSCs Murine; rats Promoting angiogenesis Apoptosis, 
autophagy

[74,78]

BM-MSCs Murine; rats; mice Differentiating into retinal glial cells; stimulating 
angiogenesis; promoting resident neural 
progenitors to regenerate neuro-retinal tissue

Apoptosis, 
autophagy, 
pyroptosis

[74,79,
80]

Differentiating into cells expressing features of 
retinal pigment epithelial cells, retinal progenitor 

Anti-apoptosis, 
autophagy, 

iPSCs Rats; mice [75,81]
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cells, and retinal ganglion cells, and slowing 
down retinal degeneration

ferroptosis

Neurological disorders NSCs Mice, rats, 
monkeys, pigs, 
human

Differentiating into neurons and supporting glial 
cells; releasing angiogenic factors to promote 
local tissue regeneration

Apoptosis, 
autophagy

[82-85]

HSCs Human Promoting cell survival; stimulating proliferation 
and migration of NSCs; inducing regeneration of 
damaged brain cells; promoting angiogenesis

Apoptosis, 
autophagy

[82,86]

MSCs Human Promoting neuronal regeneration; promoting 
angiogenesis

Apoptosis, 
autophagy, 
pyroptosis

[82,86]

Diabetes ESCs Mice, rats Differentiating into cluster of insulin producing 
beta cells

Apoptosis, 
autophagy, 
pyroptosis

[87-89]

Hepatic and 
intestinal stem 
cells

Mice Differentiating into beta cells in response to high 
glucose concentration

Apoptosis [87,90]

Spleen stem cells Mice Differentiating into insulin secreting beta cells; 
regenerating islet

Apoptosis [87,91]

HSCs Mice Differentiating into beta cells and vascular 
endothelial cells of the pancreas; inducing beta 
cell regeneration from the host cells residing in 
pancreas

Apoptosis, 
autophagy

[87,92]

SC: Stem cell; MSCs: Mesenchymal stem cells; NSCs: Neural stem cells; ESCs: Embryonic stem cells; iPSCs: Induced pluripotent stem cells; LSCs: Limbal 
stem cells; CNS-NSCs: CNS-derived NSCs; ENSCs: Enteric neural stem cells; CSCs/CPC: Cardiac stem/progenitor cells; ASCs: Adipose stem cells; HSCs: 
Hematopoietic stem cells; BM-MSCs: Bone marrow derived mesenchymal stem cells; ENS: Enteric nervous system; EPCs: Endothelial progenitor cells; 
PCD: Programmed cell death.

Others
Pyroptosis, dependent on multiple molecules, such as caspase-1 and caspase-11, is 
widely believed to play an important role in resisting the invasion of pathogens[114]. 
Ferroptosis, an iron-dependent form of regulated cell death (RCD), is induced through 
an excessive accumulation (e.g., ROS and lipid peroxidation products) characterized by 
mitochondria shrinkage or dysmorphic small mitochondria[115,116]. Moreover, other 
types of cell death are also crucial during a series of events, such as failures in SC-
based therapies. The biological correlations between the different PCD pathways are 
complex, where it is especially significant as a network among these pathways 
regarding PCD of transplanted SCs[117,118].

PCD AND ITS KEY MOLECULES IN STEM CELLS FOR TRANS-
PLANTATION THERAPY
PCD of SCs is usually caused by a hostile pathological environment created due to 
multiple conditions, including apoptotic cascade activation, excessive autophagy, 
inflammatory response, ROS, excitotoxicity, and ischemia/hypoxia[39]. This section 
systematically reviews the molecular mechanisms involved in cell death pathways and 
we also summarize these key molecules in Table 2[35,38,119-134].

Apoptosis 
Recently, an emerging body of evidence has highlighted a vital role of the apoptosis 
effect on several cell types, including SCs[135]. Hence, it is crucial to investigate and 
understand the mechanisms underlying apoptosis for analysis of SC transplantation 
and the development of drugs targeting specific apoptotic molecules. According to the 
inducing signaling, apoptosis could be divided into two types: Intrinsic pathway 
initiated by intracellular stresses (shown in Figure 1), and extrinsic pathway 
responding to extracellular cues (shown in Figure 2).

The intrinsic pathway of apoptosis: In the intrinsic pathway, the initiators (e.g., ROS 
and radiation induced DNA damage) cause various cascade reactions resulting in the 
release of cytochrome C (cyt C), p53, and mitochondrial outer membrane permeabil-
ization (MOMP). For example, hematopoietic stem and progenitor cells (HSPCs) are 
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Table 2 Molecular mechanisms and therapeutic targets of programmed cell deaths in stem cells

PCDs SCs Molecular pathways of PCDs Therapeutic 
target(s) Therapeutic effects Ref.

Apoptosis hESCs Mitochondrial priming and p53 signaling 
pathway

Bcl-2 Preventing damaged cells from 
compromising the genomic 
integrity of the population

[119]

HSCs ASPP1 stimulated p53 signaling pathway ASPP1, RUNX1 Preventing hematological 
malignancies

[120]

ISCs ARTS/XIAP/caspase 9 axis XIAP Controlling ISC numbers and 
preventing the propagation of 
abnormal progeny

[121]

MSCs p38 MAPK regulated early apoptosis 
while JNK regulated late apoptosis

p38 Protecting MSCs from oxidative 
stress damage

[38]

NSCs p38 MAPK signaling TNF-α, p38 Impairing cell viability, decreasing 
therapeutic effects

[122]

Autophagy iPSCs AMPK/mTOR/ULK1 complex/PI3K 
complex/conjugation cascade complexes 
with LC3 and Atg9 during 
macroautophagy;KFERQ domain/Hsc 
70/LAMP2A during CMA

LC3 Removing unnecessary or 
dysfunctional components

[123]

HSCs type III PI3K mammalian 
Atg6/PIP3/(Atg12-Atg5-Atg16) or 
(Atg4/LC3-I/Atg7/Atg3/LC3-II/PE) axis

LC3-II Recycling cytoplasmic 
constituents and restoring 
metabolic homeostasis, and 
maintaining cells survival under 
harsh conditions

[124]

NSCs PI3K-AKT-mTOR/ULK1/the class III PI3-
kinase-Beclin1 complex/PI3/PI3P/ the 
complex of Atg12–Atg5–Atg16L1/LC3-
I/LC3-II axis

mTOR Being involved in modulation of 
the embryonic neurogenesis as 
well as the injury repair of adult 
brain

[125]

MSCs PI3K/AKT/mTOR/ULK1/the class III 
PI3-kinase-Beclin1 complex/PI3/PI3P/the 
complex of Atg12–Atg5–Atg16L1/LC3-
I/LC3-II axis

AKT, mTOR Eliminating damaged organelles 
and biomacromolecules to 
maintain cellular homeostasis

[126,127]

ESCs AMPK/ mTORC1/ULK1 axis Atg5, Atg12 Maintaining the undifferentiated 
state of ESCs in vitro

[128]

Necroptosis ISCs ZBP1/RIP3/MLKL axis ZBP1 Disrupting homeostasis of the 
epithelial barrier and promoting 
bowel inflammation

[35,129]

SSCs RIP1 signaling pathway RIP1 Using Nec-1 to target RIP1 for 
reducing both necroptosis and 
apoptosis, which benefits for 
recovery rate and proliferation 
potential

[130]

NPSCs RIPK1/RIPK3/MLKL axis HSP90 Protecting SCs from PCD via 
alleviating mitochondrial 
dysfunction (mitochondrial 
membrane potential loss and ATP 
depletion) and oxidative stress 
(production of mitochondrial 
ROS), cellular total ROS and 
MDA, and downregulation of 
superoxide dismutase

[131]

Pyroptosis MSCs Exosome/circHIPK3/ FOXO3a axis circHIPK3 Preventing pyroptosis and 
repairing ischemic muscle injury 
through a novel exosome

[132]

ESCs Caspase-1 signaling pathway N/A Embryonic stem cell-derived 
exosomes inhibit doxorubicin-
induced pyroptosis

[133]

Ferroptosis NPCs and 
IPSCs

Ferritin/ROS/lipid peroxidation axis NCOA4, p53 Decreasing stem cells and 
triggering neuronal death

[134]

ISCs: Intestinal stem cells; iPCs: Induced pluripotent stem cells; HSCs: Hematopoietic stem cells; ESCs: Embryonic stem cells; NSCs: Neural stem cells; 
MSCs: Mesenchymal stem cells; EPCs: Endothelial progenitor cells; CPCs: Cardiac progenitor cells; IPSC: Pluripotent stem cells; ZBP1: Z-DNA-binding 
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protein 1; RIP3: Receptor-interacting serine/threonine kinase 3; MLKL: Mixed lineage kinase domain like protein; PUMA: p53 upregulated modulator of 
apoptosis; NOXA: Known as PMAIP1, phorbol-12-myristate-13-acetate-induced protein 1; Bax: Bcl-2 associated X protein; Bak: Bcl-2 antagonist/killer 1 
protein; cyt c: Cytochrome C; Apaf-1: Apoptosis protease activating factor-1; casp: Caspase; FADD: Fas-associated death domain; Bcl-2: B-cell lymphoma 2; 
AMPK: AMP-activated protein kinase; mTOR: Mammalian target of rapamycin; ULK1: Unc-51-like kinase complex; ROS: Reactive oxygen species; MDA: 
Malondialdehyde; GPX4: Glutathione peroxidase 4; circHIPK3: One of the most abundant circRNA in muscle; FOXO3a: A transcription factor of the O 
subclass of the forkhead family; LncRNA: Long non-coding RNAs; KLF3-AS1: Localize at chromosome 4p14 according to the exocarta database; mTOR: 
Mammalian target of rapamycin; ULK1: Atg1/unc-51-like kinase; LC3: Light chain 3; PI3K: Beclin-1/class III phosphatidylinositol 3-kinase; CMA: 
Chaperone-mediated autophagy; Hsc 70: Heat shock cognate71 kDa protein; LAMP2A: Lysosomal-associated membrane protein type 2; Atg: 
Autophagyassociated gene; Atg6: Vps34/Beclin-1; PIP3: Phosphatidylinositol (3,4,5) P3; PE: Phosphatidyl ethanolamine; SSCs: Spermatogonial stem cells; 
Nec-1: Necrostatin-1, a necroptosis inhibitor; NPSCs: Nucleus pulposus-derived stem/progenitor cells; HSP90: Heat shock protein 90; ROS: Reactive 
oxygen species; PCD: Programmed cell death.

Figure 1 Mechanisms of intrinsic apoptotic pathways in stem cells. Cell stress from various damage causes a rapid response leading to apoptosis via 
BH3-only activator (Way I) or active Bax directly from the Golgi (Way II) to the mitochondria, which subsequently induces a co-pathway [MOMP, cytochrome C (cyt C) 
releasing, etc.]. I: Stress inducers, such as DNA damage could stabilize and activate p53, which leads to p53 nuclear translocation. Subsequently, p53 exerts an 
impact on transcription of apoptotic genes via DNA-binding activity and its transcriptional activity (e.g., PUMA, NOXA, and Bax); II: Bax, which is monomeric in the 
cytoplasm, could be activated via stabilized p53 and active-Bax translocates from the Golgi to the mitochondrion. Once instigated with the apoptotic signals, active-
Bax could lead to the alteration of MOMP, which undergoes dimerization and transfers to the OMM, so that relevant proteins (such as cyt C) are released into the 
cytosol usually confined in the intermembrane space. The released cyt C is involved in apoptosome formation via binding to the cytosolic Apaf-1. This complex 
recruits and activates initiator pro-casp-9, and then act-casp-9 activates downstream executor casp-3/-6/-7, leading to apoptotic cell death. In the cytoplasm, IAP 
antagonists (e.g., SMAC, ARTS, and HTRA2) could bind and suppress XIAP, causing the activation of casp-9 for the apoptotic pathway. The T-shaped lines indicate 
inhibitory interactions involved in this pathway, while the solid arrows indicate activating interactions. Bax: Apoptosis regulator Bcl-2 associated X protein; OMM: 
Outer membrane permeabilization; MOMP: Mitochondrial outer membrane permeabilization, cyt C: Cytochrome C; PUMA: p53 upregulated modulator of apoptosis, 
NOXA: Pro-apoptotic BH3-only protein, also known as PMAIP1, phorbol-12-myristate-13-acetate-induced protein 1; Apaf-1: Apoptosis protease activating factor-1; 
IAP: Inhibitor of apoptosis; SMAC: Second mitochondria-derived activator of caspase; ARTS: Apoptosis-related protein in the transforming growth factor-β signaling 
pathway; HTRA2: High-temperature-required protein A2.

used for treating acquired and primary immunodeficiencies, thalassemia, and sickle 
cell disease. However, the presence of intrinsic apoptosis is shown in HSPC-based 
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Figure 2 Mechanisms of extrinsic apoptotic pathways in stem cells. The extrinsic apoptotic pathway (also known as the death receptor-dependent 
pathway) is induced by the connection between death receptors exposed on the cell surface [tumor necrosis factor (TNF) receptor] and the specific TNF family 
ligands. Subsequently, this signaling causes a conformational change leading to the recruitment of Fas-associated death domain (FADD) and allows interactions 
between FADD and casp-8 and/or the casp-10, resulting in the cleavage and activation of casp-3 and casp-7 through their death domain. Finally, the active and 
cleaved casp-3 induces changes in phosphatidylserine exposure, DNA fragmentation, and the formation of apoptotic bodies. Also, casp-8 can target the BH3-only 
protein Bid and cleave Bid to a truncated fragment t-Bid, which could connect to the extrinsic apoptotic pathways. The T-shaped lines indicate inhibitory interactions 
involved in this pathway, while the solid arrows indicate activating interactions. FADD: Fas-associated death domain.

therapy in which excess DNA damage can trigger cumulative p53 pathway, 
constraining proliferation, yield, and engraftment of HSPCs, while moderate damage 
can lead to reversible function impairment by transient p53 inhibition[136]. According 
to the downstream activators of p53, two main pathways could be described: BH3-
only activator (Way I shown in the left part of Figure 1) and active BAX from the Golgi 
(Way II shown in the right part of Figure 1) to the mitochondria.

Part I during the intrinsic pathway: During the intrinsic pathways, DNA damage, as a 
significant inducer, can stabilize and activate p53 by phosphorylation (for example, the 
phosphorylation of p53 at Ser46 can induce the p53-dependent apoptotic pathway 
caused by DNA damage[137]), leading to p53 nuclear translocation[119]. 
Subsequently, p53 exerts an impact on transcription of apoptotic proteins (namely, the 
related proteins) via DNA-binding activity and its transcriptional activity, such as the 
pro-apoptotic proteins p53 upregulated modulator of apoptosis (PUMA), NOXA (the 
pro-apoptotic BH3-only proteins, also known as PMAIP1 [phorbol-12-myristate-13-
acetate-induced protein 1]), and apoptosis regulator Bcl-2 associated X protein (Bax)
[138,139].

PUMA and NOXA can bind and activate Bax and Bcl-2 antagonist/killer-1 protein 
(Bak) in the cytoplasm, resulting in MOMP and release of cyt C[140]. Further, p53 can 
directly interact with Bax and Bak to modulate MOMP[141,142]. Of note, in the 
absence of cellular stress, p53 could rapidly produce and degrade in human 
pluripotent SCs (hPSCs), and the stabilization of p53 occurred upon DNA damage or 
via inhibition of MDM2 (the E3 ubiquitin ligase mouse double minute 2 homolog, 
which maintains low p53 levels through triggering p53 degradation)[143,144]. 
Interestingly, the activation of p53 is also involved in other types of cell death, such as 
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ferroptosis[134].

Part II during the intrinsic pathway: Typically, Bax is monomeric in the cytoplasm. 
Studies show that active Bax localized to the Golgi held away from the mitochondrion 
in some hPSC lines, whereas active BAX could transform the mitochondria after cell 
stress as DNA damage via a rapid p53-dependent pathway during apoptosis[145]. 
Once instigated with the apoptotic signals, Bax could undergo dimerization and 
transfer to the outer membrane of mitochondria, leading to the alteration of MOMP
[146], so that relevant proteins (such as cyt C) were released into the cytosol usually 
confined in the intermembrane space[147]. The released cyt C is involved in 
apoptosome formation via binding to the cytosolic apoptosis protease activating factor-
1 (Apaf-1)[148]. This complex recruits and activates initiator pro-caspase-9, and then 
act-caspase-9 activates downstream executor caspases-3/-6/-7, leading to apoptotic 
cell death[148,149]. In the cytoplasm, the inhibitor of apoptosis (IAP) antagonists could 
bind and suppress XIAP (X-linked inhibitor of apoptosis, E3 ubiquitin-protein ligase), 
causing the activation of caspase-9 for the apoptotic pathway[121]. These IAP 
antagonists include second mitochondria-derived activator of caspase (SMAC), 
apoptosis-related protein in the transforming growth factor-β signaling pathway 
(ARTS), and mitochondrial serine protease high-temperature-required protein A2 
(HTRA2)[121,148]. Koren et al[121] found highly expressed ARTS in cells comprising 
the intestinal SC niche, which protects Paneth cells from undergoing apoptosis.

The extrinsic pathway of apoptosis: The extrinsic apoptotic pathway is also known as 
the death receptor-dependent pathway induced via the connection between death 
receptors exposed on the cell surface (one of the numbers in the tumor necrosis factor 
receptor (TNFR) family) and the specific TNF family ligands mentioned above[150]. 
Previous research reported the effect of TNFα on the development of human 
hematopoietic progenitors in vitro within the role of inhibition[151] or promotion[152]. 
These TNFα-driven mechanisms play a vital role in HSC response to inflammatory 
stress for removing damaged cells and activating SCs[153]. Recently, HSC 
transplantation for malignancy has shown anti-tumor activity via TNFα-driven 
pathways[153,154]. Death receptors and their ligands cause a conformational change, 
which leads to the recruitment of Fas-associated death domain (FADD)[155] and 
allows interactions between FADD and caspase-8 and/or the caspase-10, resulting in 
the cleavage and activation of caspase-3 and caspase-7 through interactions between 
their death domain (DD)[156]. Finally, the active and cleaved caspase-3 induces 
changes in phosphatidylserine exposure, DNA fragmentation, and the formation of 
apoptotic bodies. However, reports suggest that caspase-3 activity could be elevated in 
nonapoptotic pathways in neural SCs[157].

Remarkably, caspase-8 can target the BH3-only protein Bid (BH3-interacting 
domain death agonist) and cleave Bid to a truncated fragment t-Bid[158]. Capper et al
[159] and Jia et al[160] showed that decreased Bid could inhibit apoptosis, promote 
proliferation, and delay senescence in human periodontal ligament SCs (h-PDLSCs) 
via activated Yes-associated protein, and low levels of caspase-8 were detected in stem 
cell features through hypermethylation. Subsequently, t-Bid could directly translocate 
to the outer mitochondrial membrane after activating apoptotic regulator Bax and 
inhibiting Bcl-2, leading to co-engages between the intrinsic apoptotic pathway and 
the extrinsic apoptotic pathway[158]. Some evidence shows that activation of the 
extrinsic pathway and inhibition of caspase-8 can induce necroptosis[161,162].

Emerging findings indicate that Bcl-2 family proteins play a vital role in SCs (e.g., 
overexpression of Bcl-2 in MSCs[163], ESCs[164], and neuroepithelial SCs (NESCs)
[165] improved their survival). The three functional groups Bak and Bax, BH3-only 
proteins, and Bcl-2 maintain a balance between SC survival and death. For example, 
high levels of Bcl-2 were measured in HFSCs for antiapoptosis in contrast to differen-
tiated cells[166,167]. In the SCs, Bax performs as an activated conformation 
sequestered in the Golgi apparatus held away from the mitochondrion. Following 
stresses such as DNA damage, active Bax translocates to the mitochondrial outer 
membrane to initiate MOMP and the apoptotic cascade, which bypasses the conven-
tional intrinsic and extrinsic apoptotic pathways[168,169]. However, the mechanism 
underlying the localization of active Bax at the Golgi and active Bax-induced pore 
formation in the Golgi stacks is unclear.

Autophagy 
As a self-protective catabolic mechanism within the cells, autophagy exerts a key 
influence in sustaining SC homeostasis by maintaining stemness, upregulating 
quiescence, managing differentiation via remodeling, and self-renewal via metabolic 
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reprogramming[170-173]. Autophagy contributes to metabolic regulation through 
increased glycolysis to generate ATP in the hypoxic milieu for balancing SC fate[174,
175]. For example, autophagy plays a vital role in maintaining the quiescence of SCs (
e.g., HSCs and muscle SCs (MuSCs)) via rejuvenating aged quiescent SCs controlled by 
various autophagy pathways such as the p38/mitogen-activated protein kinase 
(MAPK) signaling pathway[176,177]. Uncovering the autophagy mechanisms 
underlying SC quiescence presents novel therapeutic strategies to release the cells out 
of the quiescent state, promoting their proliferation and differentiation (such as 
induced activation of quiescent NSCs for neuron injury), or re-establishing quiescence 
to prevent aberrant proliferation and differentiation or premature senescence (such as 
anti-cancer therapeutics), which carry the risk of cancer SCs (CSCs)[178,179]. These 
stressors (e.g., starvation, oxidative stress, infection, and hypoxia) stimulate the 
cascade of autophagy as follows (shown in Figure 3)[180].

During autophagy, the formation of multi-protein complexes is associated with 
morphologic changes (shown in Figure 3). Initiation of autophagy is controlled by 
nutrient sensors, namely, mTOR and AMPK[173,181]. Typically, the mTORC1 complex 
functions as an inhibitor for autophagy. Under environmental stresses and 
physiological stressors, AMPK is activated to inhibit the activity of mTORC1, leading 
to a release of the ULK1 (Unc-51-like kinase complex, also known as ATG1) complex to 
induce autophagy, which is usually inhibited by mTORC1[182]. This initiation process 
is known as the phagophore assembly site (PAS) formation, which is regarded as 
indispensable for nucleation in the next stage. Compared with somatic mouse 
embryonic fibroblasts, whole-cell extracts of iPSCs and ESCs express high levels of 
AMPK and phosphorylated AMPK[183]. Interestingly, AMPK inhibition in mouse 
bone marrow-derived MSCs can upregulate both autophagy and apoptosis in hypoxia 
and serum deprivation conditions, suggesting crosstalk between autophagy and 
apoptosis through AMPK-ULK1 pathways[184,185]. Mutations in mTOR lead to 
smaller brains in mouse cortical development, and fewer proliferating neural 
progenitors result from disruption of NSC self-renewal[181].

Next, PI3 is phosphorylated to PI3P via the class III PI3-kinase-Beclin1 complex 
formed by core subunits of Beclin1 (Atg6), Atg14 L, and Vps34-Vps15, resulting in 
autophagosome formation[186,187]. The Atg12-Atg5-Atg16L1 complex acts as a 
regulator for enveloping and translocating the cytoplasmic cargo to the lysosome 
within misfolded-protein degradation[188]. Atg4 can cleave LC3 (Atg8) to generate 
cytosolic LC3-I. Atg3 (E2 enzymes) and Atg7 (E1-like enzymes) can lead the 
conjugation of PE to LC3-I to form lipidated LC3-II, which is combined with the 
autophagosome membrane to complete and elongate autophagosome formation[189]. 
Finally, the autophagosome contents undergo degradation due to low lysosomal pH. 
Some evidence demonstrates that autophagy plays an important role in 
reprogramming to form iPSCs, while iPSCs colony formation shows reprogramming 
failure due to the lack of Atg3, Atg5, or Atg7[190,191]. Autophagy is necessary for SC 
survival and sustenance. It is critical for SC differentiation in which co-localized dots 
of Tuj1-positive and GFP-LC3-positive cells are monitored and progress increasingly 
during NSC differentiation[192].

In microautophagy, misfolded or/and toxic proteins can be directly engulfed by the 
lysosomal membrane and degraded in the lysosome[193]. During chaperone-mediated 
autophagy, the heat shock cognate 70 kDa protein (HSC70) chaperones attach to the 
pentapeptide motif KFERQ (namely Lys-Phe-Glu-Arg-Gln) for delivery to lysosomes 
via a specific receptor LAMP2A. Reports suggest that targeting peptide HSC70 during 
autophagy can dramatically decrease amyloid-β (Aβ) oligomers in iPSCs with superior 
neuroprotective activity[194]. However, the molecular mechanism between autophagy 
and SCs is still unclear and remains to be further explored.

Apart from these vital targets, key transcription factors are closely linked to the 
stem cell state and the occurrence of autophagy (shown in Figure 3). For example, 
FOXO3A can enhance autophagosome formation via autophagy gene expression in 
hematopoietic SCs and breast cancer stem-like cells, which is needed to mitigate an 
energy crisis and allow cell survival[182,195]. Moreover, an elevated level of SOX2 is 
detected in NSCs, which is important for self-renewal; downregulation of SOX2 is 
observed in differentiated neurons and glia[196]. Besides SOX2, other transcription 
factors such as STAT3, OCT4, KLF4, and c-Myc are also vital for reprogramming in the 
initial creation of iPSCs at the genetic level[197].

Necroptosis
The occurrence of necroptosis in SCs has recently been reported. Wang et al[35] found 
that gut stem cell necroptosis resulting from genome instability triggered bowel 
inflammation. Moreover, TNF-α could promote the survival and myeloid differen-
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Figure 3 Overview of the mechanisms during autophagy in stem cells. There are three types of autophagy [macroautophagy (section a), 
microautophagy (section b), and chaperone-mediated autophagy (section c)] based on different pathways; however, they produce the same results. Besides these 
proteins, key transcription factors closely related to autophagy are shown. The T-shaped lines indicate inhibitory interactions involved in this pathway, while the solid 
arrows indicate activating interactions. A: Typically, the mTORC1 complex functions as an inhibitor to control the initiation of autophagy. Under environmental 
stresses and physiological stressors, AMPK is activated to inhibit the activity of mTORC1, leading to a release of the ULK1 (Unc-51-like kinase complex, also known 
as ATG1) complex to induce autophagy. This initiation process is known as the phagophore assembly site (PAS) formation. Next, PI3 is phosphorylated to PI3P via 
the class III PI3-kinase-Beclin1 complex formed by core subunits of Beclin1 (Atg6), Atg14 L, and Vps34-Vps15, resulting in autophagosome formation. The Atg12-
Atg5-Atg16L1 complex acts as a regulator for enveloping and translocating the cytoplasmic cargo to the lysosome in misfolded-protein degradation. Atg4 can cleave 
LC3 (Atg8) to generate cytosolic LC3-I. Atg3 (E2 enzymes) and Atg7 (E1-like enzymes) can lead the conjugation of PE to LC3-I to form lipidated LC3-II, which is 
combined with the autophagosome membrane to complete and elongate autophagosome formation. Finally, the autophagosome contents undergo degradation due 
to low lysosomal pH; B: In microautophagy, misfolded or/and toxic proteins can be directly engulfed by the lysosomal membrane and degraded in the lysosome; C: 
During chaperone-mediated autophagy, the heat shock cognate 70 kDa protein (HSC70) chaperones attach to the pentapeptide motif KFERQ (namely Lys-Phe-Glu-
Arg-Gln) for delivery to lysosomes via a specific receptor LAMP2A. Also, some of the key transcription factors are closely linked to the stem cell state and the 
occurrence of autophagy (bottom). FOXO3A can enhance autophagosome formation via autophagy gene expression in hematopoietic stem cells and breast cancer 
stem-like cells, which is needed to mitigate an energy crisis and allow cell survival. Besides FOXO3A, other transcription factors such as SOX2, STAT3, OCT4, KLF4, 
and c-Myc are also vital for reprogramming in the initial creation of stem cells at the genetic level during autophagy.

tiation of HSC via activating a strong and specific p65-nuclear factor κB (NF-κB)-
dependent gene program that prevents necroptosis rather than apoptosis to poise 
HSCs for myeloid cell production[153].

Others 
In addition to apoptosis and autophagy (mentioned above), reports on other cell death 
types have led to studies exploring cell death mechanisms, such as ferroptosis and 
pyroptosis[35,132,198-203]. Notably, different cell death mechanisms can simultan-
eously occur in disease (termed as ‘PANoptosis’), suggesting a complex but practical 
integrated network between various cell death mechanisms in SCs[204,205].

Ferroptosis had been observed in SCs with an imbalance of iron homeostasis, a 
significant upregulation of cytosolic free iron content, and DNA/protein/lipid 
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oxidative damage, leading to an obvious senescence phenotype and spontaneous 
death in iPSC-derived neuronal precursor cells (NPCs)[134,206]. iPSCs and gene-
correction are used for treating Pelizaeus-Merzbacher disease (PMD) but subsequently 
undergo cell death after the pre-myelinating stage with evidence for caspase-3-
dependent apoptosis in approximately 40% of cells and ferroptosis[205]. Thus, iron 
chelators and lipophilic antioxidants can lead to downregulation of apoptosis and 
ferroptosis[205]. Further, transfusional iron overload (IOL) may have clinical 
importance as a character close to transplant-related mortality in hematopoietic stem 
cell transplantation (SCT) for hematologic malignancies (HM)[198].

For pyroptosis (TLR4-NLRP3-mediated cell death pathway), a large body of 
evidence shows that stem cell transplantation can function as an inhibitor for 
pyroptosis, suggesting a novel approach called stem cell-derived exosome treatment
[207,208], and numerous molecular pathways, such as exosome/LncRNA KLF3-
AS1/miR-138-5p/Sirt1 axis and exosome/circHIPK3/FOXO3a axis, are presented[132,
133,209].

All kinds of RCDs contribute to making a constant effort to maintain a homoeostatic 
balance, in which it is especially significant for the therapeutic effects of SC-based 
therapy. As for apoptosis in SCs, the intrinsic and extrinsic pathways play a synergistic 
role in ensuring the multi-cellular organisms to keep normal cells, and remove 
abnormally proliferating cells or other defective cells. Failure to regulate apoptosis 
would lead to the uncontrolled growth and division of cells during pathological 
process. In this regard, whether the SCs that we utilized in transplantation would be 
uncontrolled someday is also a potential challenge. Compared with apoptosis, 
autophagy could be regarded as a source of energy through digestion of cellular 
structures and/or organelles against multiple stresses such as nutrient deprivation 
(caloric restriction). These two main RCD pathways are widely studied and also some 
novel ways such as active-Bax in Golgi to inducing apoptosis will be further dug out. 
Remarkably, Bcl-2 as a co-regulator during these two pathways might be a potential 
target not only for apoptosis but also for autophagy. Others RCDs such as neroptosis, 
pyroptosis, and ferroptosis are also found in transplanted SCs, but their detail 
signaling and application need to keep digging. All in all, various cell death 
mechanisms are under investigation (apart from the cell death types described). 
Notably, it is necessary to focus on the overall network between different molecular 
cell death pathways.

STRATEGIES TO PROMOTE STEM CELL SURVIVAL FOR TRANS-
PLANTATION THERAPY
As mentioned above, the microenvironment exerts a vital role in the survival of SCs. 
Many studies have contributed to providing a wide range of strategies to enhance 
stem cell transplantation therapy via improving the microenvironment, including 
preconditioning strategy (e.g., exposure to oxidative stress, heat shock, and 
ischemic/hypoxic injury), pretreatment (e.g., drug treatment, cytokines, antioxidants, 
nitric oxide, glucose deprivation, growth factors, miRNAs, and exosomes), genetic 
modification, and co-transplantation of different cell types (shown in Figure 4 and 
Table 3[210-228).

Preconditioning strategy
Preconditioning strategies mainly help to promote tolerance of SCs and progenitor 
cells derived from SCs. These triggers aim to alter cell signaling and metabolism for 
adaptation to appropriate and mild stress conditions and sublethal insults [e.g., 
ischemic preconditioning (IPC), hypoxia, anoxia, hydrogen sulfide (H2S), hydrogen 
dioxide (H2O2), and carbon monoxide (CO)].

In detail, IPC of SCs is considered an efficient method to promote cell survival. After 
a repeated short cycle of ischemic/reperfusion (I/R), some of the chemical signals (
e.g., ROS, NO, and adenosine) can release and trigger cell protection via a cascade of 
survival factors such as the activation of protein kinase C (PKC), protective protein 
kinase B (PKB or Akt), nuclear factor κB (NF-κB), and Src protein tyrosine kinases, and 
subsequent upregulation of cyclooxygenase-2 (COX-2), inducible NO synthase (iNOS), 
heme oxygenase-1 [HO-1], Mn superoxide dismutase, aldose reductase, and anti-
apoptotic genes (Bcl-xL, Mcl-1, c-FLIPS, and c-FLIPL)[210]. During ischemia/hypoxia 
or heat shock preconditioning, the level of Hsp70 and Hsp90 is upregulated. Reports 
suggest that Hsp70/90 can inhibit SMAC in the myocardium to prevent activation of 
caspase-3/9 (pathway described above)[211,212].
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Table 3 Strategies to enhance stem cell transplantation therapy

Strategy Method Target Effects Molecular mechanisms Ref.
Preconditioning Short repeated 

ischemia/reperfusion 
ESCs Enhancing the tolerance of subsequent prolonged lethal 

ischemia
Promoting the expression of trophic factors, inducing the release and activation 
of PKC, PKB, or Akt, NF-κB and Src protein tyrosine kinases, and subsequently 
upregulating COX-2, iNOS, HO-1, Mn superoxide dismutase, aldose reductase, 
and antiapoptotic genes

[210-212]

Hypoxia MSCs Promoting mesenchymal stem cell migration and survival Increasing the expression of lncRNA-p21, HIF-1α, and CXCR4/7(both were 
chemokine SDF-1 receptors)

[213]

CSCs Promoting survival and cardiogenic differentiation Inducing the activation of the HIF-1α/apelin/APJ axis [214]

NSCs Promoting survival and neuroprotective properties, and 
facilitating functional recovery in vivo

Upregulating HIF1-α and HIF target genes such as EPO and VEGF and 
neurotrophic, and growth factors

[215]

Hydrogen peroxide 
preconditioning

BMSCs Improving the therapeutic potential for wound healing Upregulating cyclin D1, SDF-1, and its receptors CXCR4/7 expression, and 
activating the PI3K/Akt/mTOR pathway, but inhibiting the expression of p16 
and GSK-3β

[216]

Nitric oxide donor 
preconditioning

hCSCs Enhancing survival Upregulating phosphorylation of NRF2, NFκB, STAT3, ERK, and AKT, as well 
as increasing the protein expression of HO-1 and COX2

[217]

Heat shocking MSCs Promoting migration Triggering the activation of ERK and PI3K/Akt signaling pathways via HSP90 [218]

Pretreatment Oxytocin MSCs Antiapoptosis and cell protection Increasing the expression of Akt and phospho-ERK1/2 proteins, rapid calcium 
mobilization, and upregulation of antiapoptotic and angiogenic genes 
including HSP27/32/70, TIMP-1/2/3, VEGF, thrombospondin, and matrix 
metalloproteinase-2

[219]

Minocycline NSCs Increasing the capacity of migration, proliferation, and 
differentiation to improve neurological recovery

Increasing the expression of Nrf2 [220,221]

Melatonin MSCs Inducing fewer fibrotic damage Downregulating the levels of TNF-α, TGF-β, and α-SMA, and upregulating the 
expression of E-cadherin

[222]

Extremely low-level lasers MSCs Enhancing the migration of MSCs; promoting the 
proliferation rate of SCs

Allowing the FAK and ERK1/2 pathways and increasing PDGF and HGF; 
inducing the up-regulation of mitochondrial ROS and NO

[223,224]

Genetic strategies Overexpressing pro-survival 
factors 

hNSCs Improving short- and long-term survival Overexpression of Bcl-2, Bcl-xl, Hif1a, or/and Akt1 [225]

Genetic modification MSCs Potentiating MSC survival Overexpression of ERBB4 and ILK [226]

3D technology Hydrogels mimicking MSCs, ESCs, 
EPCs

Role in stem cell differentiation, changing matrix stiffness, 
mechanical stress and strain, nonlinear elastic, 
microenvironments and viscoelastic microenvironments

N/A [227]

Co-transplantation Co-transplantation of MSCs and 
HSCs

MSCs HSCs Enhancing therapeutic effects N/A [228]

ESCs: Embryonic stem cells; NSCs: Neural stem cells; MSCs: Mesenchymal stem cells; HSCs: Hematopoietic stem cells; EPCs: Endothelial progenitor cells; hNSCs: Human neural stem cells; SCs: Stem cells; Hsp70/90: Heat shock protein 
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70/90; ERK: Extracellular regulated protein kinases; Nrf2: Nuclear factor erythroid 2; TNF: Tumor necrosis factor; TGF: Tumor growth factor; SMA: Smooth muscle actin; HGF: Hepatocyte growth factor; ROS: Reactive oxygen species; Bcl-
2: B-cell lymphoma 2; ERBB4: Erb-b2 receptor tyrosine kinase 4; ILK: Integrin-linked kinase; SDF-1: Stromal-derived factor-1; EPO: Erythropoietin; VEGF: Vascular endothelial growth factor; TIMP: Tissue inhibitor of metalloproteinase; 
PDGF: Platelet-derived growth factor.

Similarly, hypoxia-inducible factor (HIF-1) is upregulated during hypoxia precondi-
tioning to inhibit tumor suppressor p53, reduce oxidative phosphorylation, upregulate 
VEGF receptor levels, and promote the activation of Akt to target caspases and Bcl-2 
for anti-apoptosis[229,230]. Recent findings reveal that OM-MSC (olfactory mucosa 
mesenchymal SC) with hypoxic preconditioning functions as an inhibitor for apoptosis 
and pyroptosis in microglial cells through activation of HIF-1α in vitro[231]. Hypoxia-
preconditioned SCs can also upregulate paracrine activity, and their exosomes are also 
considered a novel transplantation therapy. For example, MSC-derived exosomes with 
hypoxia preconditioning show promising potential as an effective means for 
optimized bone fracture healing via exosomal miR-126 and the SPRED1/Ras/Erk 
signaling pathway[232].

Besides preconditioning with ischemia and hypoxia, oxidative stress and heat 
shocking are also the most common preconditions for SCs within a similar rationale. 
Chronic exposure to oxidative stress (e.g., H2O2, H2S, and CO) produces protective 
effects by activating mitochondrial ROS production, resulting in ERK activation and 
anti-apoptotic protein expression for cell proliferation, migration, anoikis, autophagy, 
and survival[216,233,234]. Moreover, heat shocking precondition of mesenchymal SCs 
can induce HSPs to activate ERK and PI3K/Akt signaling pathways, resulting in 
increased expression of trophic factors, proteins, and genes for cell protection[218].

Pretreatment strategy
Pretreatment is a strategy for successfully protecting transplantable SCs, using various 
factors before implantation, whereas preconditioning refers to providing a specific 
environment within sublethal insults. These factors include antioxidants, cytokines, 
growth factors, and drug therapy (phosphodiesterase inhibitors, glucose deprivation, 
pro-survival protein expression, and anti-apoptotic proteins).

To date, various drugs have been developed for the pretreatment of SCs. 
Pretreatment with pharmacological inhibitors can result in increased expression of 
survival signaling and a high Bcl-2/Bax ratio in the early phase (2 h), and activation of 
the JAK/STAT signaling pathway in the late phase (24 h) for cardioprotection[210]. 
Also, Ji group has reported the protective effect of histochrome pretreatment against 
oxidative stress in cardiac progenitor cells (CPCs) via upregulating Bcl-2 and Bcl-xL 
and downregulating Bax and H2O2-induced cleaved caspase-3[235]. Moreover, short-
term incubation either with an antioxidant N-acetyl-L-cysteine (NAC) or a specific 
inhibitor of TNFR 1 signaling can prevent TNF-α-mediated ROS accumulation in 
HSCs[154]. MSC pretreatment with oxytocin (OT) [10(-10) to 10(-6) M] in response to 
signaling events can induce Akt and phospho-Ras-dependent extracellular signal-
regulated kinase (ERK)1/2, rapid calcium mobilization, and upregulation of anti-
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Figure 4 Overview of key strategies to enhance stem cell transplantation therapy. The steps of stem cell-based transplantation therapy include 
drawing the materials, isolation, culture, proliferation, and transplantation. Compared with the classic approaches, pre-strategies could enhance survival of stem cells. 
These pre-strategies mainly include preconditioning, pretreatment, genetic strategies, and other methods. They can effectively activate various signaling pathways for 
protecting cells from injury and promoting survival.

apoptotic and angiogenic genes, including HSP27/32/70, tissue inhibitor of metallo-
proteinase (TIMP)-1/2/3, vascular endothelial growth factor, thrombospondin, and 
matrix metalloproteinase-2[219]. Minocycline preconditioning increases Nrf2 
expression and neuroprotective paracrine secretion. It promotes migration, prolif-
eration, and differentiation of NSCs to improve neurological recovery after NSC 
transplantation[220,221]. The molecular mechanism involves upregulation of 
antioxidant genes and reduced oxidative stress grafted cell death following 
transplantation, resulting in low-rate cell death[221]. Some studies have shown the 
benefits of melatonin pretreatment on MSC-based therapy with a reduction in the 
levels of TNF-α, TGF-β, and α-SMA, and upregulation of E-cadherin expression that 
induces less fibrotic damage[222].

Trophic factors and cytokines are also considered effective pretreatment approaches 
for regulating MSC fate. For example, SC pretreatment with IL-1β can promote 
migration and survival of MSCs and improve function in type 2 diabetes, acute 
myocardial infarction, and neural disorders via upregulating the expression of various 
cytokines, chemokines, and adhesion molecules [e.g., IL-6/8/23A, TNF-α, CCL5/20, 
CXCL1/3/5/6/10/11, VCA-1 (vascular cell adhesion molecule 1), and ICAM-1/4 
(intercellular adhesion molecule 1 and 4)]. IL-1β can induce phosphorylation of NF-κB, 
but not PI3K/AKT and ERK1/2 pathways[236]. In the NSC pretreatment strategy, a 
series of experiments using IL-6 show that it can reprogram NSCs to tolerate hostile 
environments via activating STAT3 to increase the levels of superoxide dismutase 2 
(SOD2) for anti-apoptosis against inflammatory cytokines and oxidative stress via 
mitochondrial-dependent apoptotic pathways[237,238]. Some other molecular targets, 
including Rho-associated kinase inhibition, TGF-β2 treatment, SDF-1 signaling of 
PI3K/Akt, and p38 MAPK inhibition via anti-apoptotic pathways, also enhanced SC 
survival during treatment[239].
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Compared with chemical pretreatment methods discussed above, physical factors 
such as extremely low-level lasers, pulsed electromagnetic fields (PEMF), mechanical 
stretch, and nanochelating-based nanocomplexes (e.g., GFc7) are also used as 
pretreatment methods to enhance SC-based therapy[240-243]. For example, 
pretreatment with extremely low-level lasers improves the migration ability of MSCs 
via activation of FAK and ERK1/2 pathways and increased expression of platelet-
derived growth factor (PDGF) and HGF. Furthermore, it also promotes the prolif-
eration rate of SCs by inducing the upregulation of mitochondrial ROS and NO and 
enhancing the expression of the S-phase proportion in MSCs[223,224].

Genetic strategy
Genetic strategies have raised hopes for better SCs-based therapy since they were 
introduced more than a decade ago[244,245]. The core idea of this technology is to 
target key genes and the expression of factors related to the fate of SCs. Under 
different death stimuli, overexpression of various factors such as TNFR, Akt1, stromal 
cell-derived factor-1 (SDF-1), and hepatocyte growth factor (HGF) is beneficial for the 
repopulation of SCs[246]. Studies on modified transplanted hNSCs show improved 
short- and long-term survival of transplanted hNSCs via overexpression of these pro-
survival factors, including Bcl-2, Bcl-xl, Hif1a, or/and Akt1[225]. Genetic modification 
for ERBB4 (erb-b2 receptor tyrosine kinase 4) and ILK overexpression could potentiate 
MSC survival[226]. In recent years, the CRISPR/Cas9 system has been widely used for 
genome editing applied in genetic modification of SCs for in vivo applications such as 
neural regeneration, bone regeneration, treatment of blood disorders, and cartilage 
tissue engineering[247]. Although gene modification promises to enhance tolerance to 
damage "at the root," there are still formidable predictability challenges and potential 
long-term side effects.

Others
Recently, three-dimensional culture technologies (e.g., MSC encapsulation technique) 
mimicking the physical environment to sustain the viability of SCs to induce multi-
lineage differentiation are used to protect SCs from PCD as an innate immune system 
and provide favorable mediators such as cytokines and growth factors[227,248]. 
However, the time, cost, and labor efficiency of three-dimensional technologies for SCs 
may be non-negligible challenges, and a combination of biocompatible materials based 
on simple and easy methods is needed for SC-based therapy. Moreover, co-
transplantation of different cell types offers an alternative strategy to improve 
outcomes of SC-based treatment. Studies show promising results with co-
transplantation of human fetal mesenchymal and hematopoietic SCs in type 1 
diabetes, epidermal neural crest SCs (EPI-NCSC), and olfactory ensheathing cells 
(OEC)[228,249]. However, the significance of co-transplantation for SC-based therapy 
is still unclear[250,251].

As described above, these pre-strategies could provide transplanted stem cell with a 
certain microenvironment to improve the survival. The core ideas of these methods are 
to upregulate the survival factors (e.g., Bcl-2, Akt, SMAC, mTOR, SOD2, STAT3, HSC 
70, ERK, and Nrf2) and downregulate the death catalyzers (e.g., caspase, p53, TNFa, 
Bax, cyt C, XIAP, MAPK, and Atg) (shown in Figure 5). Bcl-2 might be regarded as a 
key molecule that raised tremendous expectations, which plays a vital role in both 
apoptotic and autophagy pathways. Given the fact that gene strategies seem to be 
hardly accepted in clinical trials to improve effectiveness of SC-based transplantation, 
preconditioning and pretreatment may provide a cost-effective and handy option. 
Remarkably, distinct types of transplanted cells or distinct aiming organs show 
noticeable differences not only in their signaling but also their response to the local 
area, so studies need to find a right composition as well as an effective target of any 
applied transplanted SC system.

CONCLUSION
The SC pool plays a driving role in tissue homeostasis and harm repair. Lately, SC-
based therapies may be regarded as a potential strategy that raised tremendous 
expectations and presented favorable curative effects in enhancing functional repair 
and repairing damaged tissue. Given the fact that a considerable number of studies on 
SC-based therapy verify that RCDs occur extensively during the development of the 
transplanted SCs, RCDs show a crucial role in the therapeutic efficacy and progression 
of this treatment. Also, RCD interventions may offer opportunities for a better clinical 
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Figure 5 Specific pre-strategies and their key molecule targets for enhancing stem cell transplantation therapy. These pre-strategies mainly 
include preconditioning (e.g., exposure to oxidative stress, heat shock, and ischemic/hypoxic injury), pretreatment (e.g., drug treatment, cytokines, antioxidants, nitric 
oxide, glucose deprivation, growth factors, miRNAs, and exosomes), genetic strategies (e.g., AAV vector mediated transfection, Liposome-based transfection, and 
CRISPR/Cas9-based genome editing), and other methods (e.g., 3D culture technologies, co-transplantation, and nanotechnology). The core ideas of these pre-
strategies are to upregulate the survival factors (e.g., Bcl-2, Akt, SMAC, mTOR, SOD2, STAT3, HSC 70, ERK, and Nrf2) and downregulate the death catalyzers (
e.g., caspase, p53, TNFa, Bax, Cyt c, XIAP, MAPK, and Atg). However, there are few methods targeting all of these molecules at the same time during the co-
network. Also, studies pay more attention to certain signaling such as Bcl-2 and mTOR, and other signals such as Atg or XIAP still need further mining.

application.
Recently, there have been tremendous strides in understanding the fate of SCs post-

transplantation related to self-condition and microenvironment. Along this line, 
targeting multiple signal transduction pathways in PCDs and survival processes 
would provide novel approaches for enhancing SC-based therapies. However, the 
interactions are complex and involve multiple networks rather than one crucial 
pathway (as the recent term ‘PANoptosis’), thus necessitating further research. 
Moreover, various factors involved in specific pathways may change during stem cell 
differentiation or show microenvironmental divergence in different cell types, stages 
of development, and stimuli.

Several approaches can prevent the loss of a vast majority of transplanted SCs, such 
as preconditioning, pretreatment, and genetic strategies. Important insights into the 
molecular pathways that control PCD of SCs may unlock novel and potential avenues 
for regenerative drugs and more efficient therapy. These pre-strategies provide SCs 
with harsh or nutrient-rich environment to improve the SCs via upregulating the 
survival factors and downregulating the death catalyzers. A summary diagram is 
shown in Figure 6. Recently, some of the novel technologies such as 3D culture techno-
logies, co-transplantation, and nanotechnology also show promising prospects. 
Furthermore, safer use, better results, and highly feasible and beneficial methods are 
required for clinical applications.
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Figure 6 Role of regulated cell deaths in stem cell-based transplantation and therapeutic pre-strategies to improve the therapy. Stem cell-
based therapy has been used in various diseases. A number of stimuli may induce regulated cell deaths (RCDs) in transplanted stem cells (SCs), which results in 
poorer outcomes. Different signals involved in distinct types of RCDs may provide some targets to improve SC-based transplantation. These therapeutic strategies 
include preconditioning, pretreatment, gene strategies, and so on. IPC: Ischemic preconditioning; PCD: Programmed cell death; MLKL: Mixed lineage kinase domain 
like protein; GSDME: Gasdermin E.
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INTRODUCTION
Embryonic stem cells (ESCs) are derived from pluripotent cells in the inner cell mass of 
the blastocyst[1,2]. ESCs are highly proliferative cells that can self-renew indefinitely in 
vitro. In addition to replication stress due to an abbreviated cell cycle[3], it has been 
shown that ESCs are transcriptionally hyperactive[4]. The increased replication and 
transcriptional burdens in ESCs promote genome instability[5-8]. Therefore, ESCs are 
under increased pressure to conduct transcription and DNA repair efficiently to 
maintain stem cell identity and genome integrity. Deciphering the mechanisms by 
which ESCs safeguard transcriptional and genomic fidelity is important for 
understanding pluripotency, and for translating stem cell-based therapies.

In response to developmental signals, ESCs exit from self-renewal and undergo 
differentiation to generate every cell type in the body. This highly dynamic process 
requires coordinated changes in gene expression patterns. Genes required for stem cell 
self-renewal are silenced, while genes encoding developmental regulators that are 
normally repressed are reactivated to direct the differentiation of ESCs into cell types 
representing the three embryonic germ layers[9]. Wholesale changes in gene 
expression are accompanied by reconfiguration of chromatin structure in differen-
tiating ESCs, whereby previously euchromatic regions associated with pluripotency 
genes are packaged into repressive heterochromatin[10,11]. Conversely, genomic loci 
associated with lineage-specific genes become euchromatic, thus permissive to 
transcriptional activation[12].

A fundamental problem in stem cell biology (and cell biology in general) is how 
complex biochemical reactions (e.g., transcription, DNA replication, repair, chromatin 
remodeling, and signal transduction) are organized and regulated inside a densely 
packed cellular space. While specific cellular reactions can be compartmentalized 
within classic membrane-enclosed organelles such as endoplasmic reticulum and 
Golgi apparatus, those that occur inside the nucleus present a unique challenge 
because the nucleus lacks such organelles to spatially and temporally control 
biological reactions, where inadvertent “mixing” of these reactions could prove fatal to 
a cell. Indeed, it has been shown that proteins in the nucleus are often enriched in 
discrete membraneless compartments. For example, factors involved in mRNA 
splicing are concentrated in the Cajal bodies to facilitate assembly of spliceosomal 
machinery[13]. Nucleoli are sites of ribosome biogenesis enriched in factors required 
for ribosomal RNA transcription and processing[14], and were recently identified as a 
protein quality control compartment[15]. Under specific conditions such as 
biomolecular concentration, temperature, pH, and salt concentration, biomolecules can 
coalesce and separate from bulk solution in cells, as condensates reminiscent of oil 
droplets in water[16-18]. This process, termed liquid-liquid phase separation (LLPS), 
underlies the formation of membraneless compartments such as the nucleolus and 
Cajal body[19,20]. Recent work also implicates biomolecular condensates in a wide 
range of cellular processes, enriching specific macromolecules within distinct 
compartments and increasing local concentration to overcome activation barriers[13,
14,21-23].

In this review, we examine the emerging roles of protein hub formation and 
condensation in compartmentalizing and coordinating biochemical reactions in the 
complex nuclear environment. We discuss how protein condensates enhance cellular 
reactions critical for stem cell function, facilitate crosstalk between cellular processes to 
generate complex responses to changing cellular environment, and how these 
responses collectively safeguard stem cell fidelity.

PHASE SEPARATION OF PROTEINS CONTAINING INTRINSICALLY 
DISORDERED REGIONS
Intrinsically disordered regions (IDRs) are prevalent in eukaryotic proteome, partic-
ularly among regulatory proteins such as transcription factors[24]. These unstructured 
regions are often composed of low-complexity sequences limited in amino acid 
diversity. Low complexity domains (LCDs) are enriched in glycine, and polar residues 
such as serine, asparagine, glutamine, and tyrosine. Other IDRs are characterized by 
clusters of positively and negative charged amino acid (e.g. lysine, glutamic acid) 
interspersed with hydrophobic residues such as phenylalanine[25]. These unique 
amino acid compositions found in LCDs have been shown to promote LLPS by polar 
or charge-charge intermolecular interactions in a concentration dependent manner[25,
26]. In addition, the flexible nature of LCDs is thought to facilitate their interaction 
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with multiple protein partners, by rapidly adopting an ensemble of conformations[27,
28] Indeed, LCD’s ability to bind multiple proteins, also known as multivalency, is a 
major driving force of LLPS by lowering threshold concentration[29]. It is worth 
emphasizing that while LCDs are unstructured sequences, they do not always bind 
promiscuously to any proteins; instead, they can be selective for binding partners[30-
32]. More importantly, because these selective multivalent interactions are usually 
weak and transient, as opposed to the high affinity (but low valency) “lock-and-key” 
interactions found in ligand-receptor complexes, they allow dynamic regulation of 
LLPS properties, condensate composition, and biochemical reactions that take place 
inside these bodies. In the following sections, we discuss examples wherein LCD-
driven interactions play a critical role in regulating cellular processes relevant to ESC 
biology.

LCDS IN TRANSCRIPTIONAL ACTIVATION AND REPRESSION IN ESCS
Transcriptional activation
During early embryonic development, pluripotent cells in the inner cell mass of the 
blastocyst rapidly expand through self-renewal[33]. Buttressing this critical develop-
mental period is a robust gene regulatory network that functions to maintain 
pluripotency in these cells[34-36]. High transcriptional activity in ESCs has been 
shown to skew towards genes that encode transcription factors and chromatin 
remodeling machinery[4], likely as an adaptive measure to meet the increased 
transcriptional demand. How expression of these factors stabilizes the pluripotent 
state in ESCs has become apparent through a number of seminal studies. Transcription 
factors octamer-binding transcription factor 4 (OCT4) and sex-determining region Y-
box 2 (SOX2) play a pivotal role in activating stem cell pluripotency[37-42]. 
Cooperative binding of OCT4 and SOX2 along with a wide array of transcription 
factors and transcriptional coactivators at gene enhancers lead to the formation of 
“super enhancers.” Super enhancers differ from typical enhancers by their unusually 
high density of transcription factors spread over a relatively large genomic region 
measured in kilobases[43-45]. These transcription factor-rich domains are thought to 
fuel higher transcriptional output by the RNA polymerase II (Pol II) machinery. The 
cooperative nature of transcription factor assembly at super enhancers is thought to 
allow the formation or collapse of super enhancers over a relatively small concen-
tration range of transcription factors[44], and is therefore proposed to play an 
important role in dynamic gene expression during ESC self-renewal and differen-
tiation. Recent studies on LCDs, which are highly enriched in transcription factors, 
provide important insights into how these high-density transcription factor hubs are 
formed to drive cell-specific transcription in ESCs (Table 1) [46-54].

Mediator
The ubiquitous transcriptional coactivator Mediator is a large, multisubunit complex 
that is required for transcription of most Pol II genes, by virtue of its ability to interact 
with a wide array of transcription factors and Pol II[55,56]. Mediator stimulates 
transcription by functionally and physically connecting transcription factors at 
enhancers to the Pol II machinery at promoters[57], where distal enhancers are 
brought to proximity to their target promoters through DNA looping by cohesion-
CTCF (CCCTC-binding factor)[58,59] (Figure 1A). Small hairpin RNA-mediated 
screens indicated that downregulation of subunits of the Mediator complex 
compromises expression of OCT4/SOX2-dependent genes in mouse ESCs[60]. 
Consistent with its role as a coactivator for OCT4/SOX2, Mediator colocalizes 
extensively with OCT4 and SOX2 across the ESC genome[61].

The mediator complex subunit 1 (MED1) of the Mediator complex contains an LCD 
at the C-terminus that is rich in serine residues[62]. Studies have shown that MED1 
LCD and Mediator holocomplex undergo LLPS in vitro. Substitution of serine residues 
in MED1 with alanine abolishes phase separation, indicating the importance of serine-
mediated polar intermolecular interactions in LLPS. To examine the mechanism by 
which Mediator interacts with OCT4 and SOX2, in vitro droplet assays showed that 
MED1 LLPS droplets readily incorporate OCT4 and SOX2[46]. Furthermore, mutations 
of acidic amino acids in the activation domain of OCT4, which abrogate 
transactivation activity, also compromise its ability to phase separate with MED1. 
These observations indicate a functional correlation between MED1-OCT4 LLPS and 
transcriptional activation, and suggest LCD-dependent phase separation as a potential 
mechanism by which activator-coactivator complexes are assembled at gene enhancers 
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Table 1 Low complexity domain-containing proteins in transcriptional activation and repression in embryonic stem cells

Experimentally confirmed
Ref. LCD-Factors LCD-domain Nature of LCD

In vitro In vivo
Modifications

Boija et al[46] MED1 C-terminus Polar Yes Yes1 NA

Boija et al[46] Brehm et al
[47]

OCT4 N- and C-terminal 
domains

Acidic amino acids 
(electrostatic)

Yes Yes1 Phosphorylation

Boija et al[46] Xue et al[48] SOX2 N-terminus NA Yes NA NA

Boija et al[46] Metallo et al
[49]

c-MYC Entire polypeptide NA Yes NA NA

Boija et al[46] Jenkins et al
[50]; Oldfield et al[51]

p53 N- and C-terminal 
domains

Acidic amino acids (N-
terminus)

Yes NA Phosphorylation

Boija et al[46] Xue et al[48] NANOG N- and C-terminal 
domains

NA Yes NA NA

Boija et al[46] ER NA NA Yes NA NA

Choi et al[30] ABCF1 N-terminus NA Yes Yes2 NA

Boehning et al[52] RNA Pol II C-terminus Hydrophobic and 
electrostatic

Yes Yes1 Phosphorylation

Lau et al[53] HP1α N-terminus Acidic amino acids Yes Yes1 Phosphorylation

Plys et al[54] CBX2 Entire polypeptide Positively charged Yes Yes2 Phosphorylation

1Endogenously-tagged fluorescent protein-fusion.
2Overexpression of protein fused with fluorescent tag. LCD: Low complexity domain; MED1: Mediator complex subunit 1; OCT4: Octamer-binding 
transcription factor 4; SOX2: Sex-determining region Y-box 2; ABCF1: ATP-binding cassette subfamily F member 1; CBX2: Chromobox 2; ER: Estrogen 
receptor; NA: Not available.

(Figure 1B). It is worth noting that diverse transcription factors (e.g. p53, myelocyto-
matosis viral oncogene homolog, NANOG, estrogen receptor) can also phase separate 
with MED1 in vitro[46]. These results demonstrate that the LCD of MED1 is rather 
promiscuous in binding, consistent with Mediator acting as a ubiquitous coactivator.

RNA Pol II: Carboxy-terminal domain
Biochemical studies demonstrated that Mediator interacts with RNA Pol II through the 
carboxy-terminal domain (CTD) of the largest subunit of Pol II complex[63,64]. 
Mammalian CTD contains 52 heptad repeats of the consensus sequence Y1S2P3T4S5P6S7. 
This LCD plays important roles at all steps of transcription from initiation to 
elongation to termination[65]. Initiation requires the assembly of the preinitiation 
complex (PIC), composed of general transcription factors (GTFs), Mediator, and Pol II 
with unphosphorylated CTD, at gene promoters[66,67]. As Pol II leaves the promoter 
and initiates transcription, the CTD becomes phosphorylated on serine 5 (Ser5) by GTF 
TFIIH-associated kinase, cyclin dependent kinase 7 (CDK7)[68-71]. It is known that 
Mediator interacts preferentially with the unphosphorylated CTD[72,73] (Figure 1A). 
This suggests that phosphorylation of Pol II CTD may disrupt its interaction with 
Mediator, thus providing a mechanism by which Pol II can dissociate from PIC to 
initiate transcription. Two recent studies support this notion and implicated LLPS in 
regulating Mediator-Pol II interaction[32,52]. They demonstrated that the ability of the 
CTD to undergo LLPS by itself, or with MED1, is disrupted by phosphorylation of Ser5 
by CDK7. Therefore, Mediator-Pol II interaction and promoter-enhancer 
communication can be modulated by phosphorylation status of the CTD during the 
transcription cycle.

Positive transcription elongation factor b
After Pol II escapes the promoter, the CTD becomes hyperphosphorylated at Ser2 by 
CDK9 of the positive transcription elongation factor b (P-TEFb), while Ser5 previously 
phosphorylated by TFIIH is gradually removed by phosphatases[74-76]. This switch in 
Ser phosphorylation pattern is thought to promote elongation by aiding the 
recruitment of elongation and chromatin-modifying factors to the transcribing Pol II
[75] (Figure 1A). A recent study indicated that the histidine-rich LCD of the cyclin T1 
subunit of P-TEFb (a heterodimer of CDK9 and cyclin T1) stabilizes the binding of P-
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Figure 1 Models depicting the mechanisms by which low-complexity sequence domain-driven interactions between transcription factors 
and coactivators at gene enhancers contribute to transcriptional activation. A: Mechanism of transcriptional activation in somatic cells. Low 
complexity domain (LCD)-mediated interactions between Mediator and TFs, Mediator-bromodomain-containing protein 4 (BRD4), and Mediator-RNA polymerase II 
(Pol II), as well as binding of BRD4 to acetylated histones, facilitate the formation of a transcription factor-rich compartment at proximal enhancer, and at distal 
enhancers brought into close proximity through DNA looping by cohesion-CTCF. Increasing local concentration of these factors promotes the formation of the pre-
initiation complex composed of general transcription factors and Pol II. Phosphorylation of the C-terminal domain (CTD) at serine 5 (S5P) of Pol II by cyclin-
dependent kinase 7/TFIIH disrupts Mediator-Pol II condensates, allowing transcriptional initiation and promoter escape by Pol II. During the early elongation phase of 
transcription, positive transcription elongation factor b preferentially forms condensates with S5P CTD of Pol II. This results in efficient hyperphosphorylation of the 
CTD at serine 2 and productive transcription elongation by Pol II; B: Optimal activation of pluripotency genes by stem cell-specific transcription factors octamer-
binding transcription factor 4 (OCT4) and SOX2 in ESCs requires cell-specific coactivators ATP-binding cassette subfamily F member 1 (ABCF1), xeroderma 
pigmentosum, complementation group C (XPC), and dyskerin (DKC1). The LCD of ABCF1 forms selective multivalent interactions with SOX2, XPC, DKC1 and Pol II 
to promote the assembly of Pol II transcription machinery at pluripotency genes. Activation of OCT4/SOX2-target genes in vivo likely requires both promiscuous LCD-
mediated interactions by Mediator and selective LCD-dependent interactions by ABCF1. LCDs are represented by wavy lines. ABCF1: ATP-binding cassette 
subfamily F member 1; Ac: Acetylated; BRD4: Bromodomain-containing protein 4; CDK: Cyclin-dependent kinase; DE: Distal enhancer; DKC1: Dyskerin; GTFs: 
General transcription factors; ESC: Embryonic stem cell; General transcription factors; LCD: Low complexity domain; OCT4: Octamer-binding transcription factor 4; 
P-TEFb: Positive transcription elongation factor b; PE: Proximal enhancer; S2P: Phosphorylated serine 2; S5P: Phosphorylated serine 5; SOX2: SRY-box 2; TF: 
Transcription factor; XPC: Xeroderma pigmentosum, complementation group C.
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TEFb to active genes and to the Pol II CTD to catalyze Ser2 hyperphosphorylation[77]. 
They showed that cyclin T1 forms liquid-like puncta in the nucleus in an LCD-
dependent manner. Formation of these nuclear condensates and the ability of P-TEFb 
to hyperphosphorylate the CTD are sensitive to 1,6-hexanediol that disrupts LLPS. 
Consistent with these observations, the LCD is also required for phase separation of 
cyclin T1 with CTD in vitro. Interestingly, pre-phosphorylation of the CTD by 
CDK7/TFIIH significantly enhances cyclin T1-CTD LLPS, suggesting that a potential 
function of Ser5 phosphorylation by TFIIH after promoter escape is to prime LLPS of 
P-TEFb with the CTD, thereby increasing the efficiency of Ser2 phosphorylation. Taken 
together, these observations underscore the role of LCD-mediated interactions in 
regulating transition from transcriptional initiation to elongation.

Chromatin readers
Bromodomain-containing protein 4 (BRD4) is a critical transcriptional and epigenetic 
regulator in ESCs[78-80]. It contains two bromodomains that recognize acetylated 
lysines on histone H3 and H4 that are associated with active gene promoters[81]. BRD4 
also acts as a scaffold for recruiting P-TEFb and chromatin remodeling proteins to 
facilitate transcription by Pol II[78,82,83]. BRD4 has been shown to colocalize with 
Mediator at super enhancers that control genes important for stem cell identity[62] 
(Figure 1B). BRD4 contains an LCD at its C-terminus with high proline and glutamine 
content. Studies showed that BRD4 LCD by itself can form LLPS droplets in vitro and 
can be incorporated into MED1 condensates. These results suggest that LLPS between 
Mediator and BRD4 represents a mechanism by which they are concentrated at super 
enhancers[62,84]. This is supported by the observation that treatment of cells with 1,6-
hexanediol reduced their occupancy at enhancers. It would be interesting to examine 
whether binding of BRD4 to acetylated nucleosomal DNA promotes its LLPS with 
Mediator, due to increased valency (i.e., cooperativity) in interactions by BRD4[85]. 
While the mechanism by which BRD4 recruits P-TEFb to gene promoters is unknown, 
it is tempting to speculate that their interaction could be promoted by their respective 
LCD.

Stem cell-specific coactivators
Most if not all of the regulatory factors described thus far are utilized by many 
transcription factors to activate their target genes in both ESCs and somatic cells. Our 
work and others indicated that robust transcriptional activation by OCT4 and SOX2 in 
ESCs requires additional coactivators that are distinct from Mediator[30,86-88]. Using 
a fully reconstituted in vitro transcription assay, we detected multiple novel 
coactivators that work in concert with OCT4 and SOX2 to activate pluripotency gene 
transcription. Biochemical purification of these coactivators led to the discovery of 
three stem cell-specific coactivators - the nucleotide excision repair protein xeroderma 
pigmentosum, complementation group C (XPC)[87-90], dyskerin (DKC1) ribonucleo-
protein complex[86], and the ATP-binding cassette subfamily F member 1 (ABCF1)[30] 
(Figure 1B). We found that the ability of XPC and DKC1 to stimulate OCT4/SOX2-
activated transcription is strongly dependent on ABCF1, indicating a pivotal role of 
ABCF1 in mediating stem cell-specific transcription.

ABCF1 contains an LCD at the N-terminus that is unusually rich in charged amino 
acids, of which about 40% are divided between lysine and glutamic acid residues. 
These clusters of positively and negatively charged amino acid, interspersed with 
hydrophobic residues such as phenylalanine, are known to promote LLPS[91,92]. 
Indeed, we showed that ABCF1 undergoes LLPS in an LCD-dependent manner. More 
importantly, the LCD is also required for transcriptional activity in vitro and in ESCs, 
due to its ability to selectively interact with SOX2 (but not OCT4), its co-dependent 
coactivators XPC and DKC1 as well as Pol II. These LCD-driven interactions are also 
detected at OCT4/SOX2-target gene enhancers and are sensitive to disruption by 1,6-
hexanediol treatment. It is worth noting that the conformationally flexible XPC protein 
also contains several highly disordered regions that we found, however, to be 
dispensable for transcriptional activation[87-90]. These observations revealed the 
unique ability of ABCF1 LCD to integrate multiple lines of information encoded by 
SOX2, XPC, DKC1, and the Pol II machinery, likely by forming a hub of these factors at 
target gene promoters through selective multivalent interactions (Figure 1B). In 
summary, cell type-specific transcriptional activation in ESCs requires an intercon-
nected network of LCD-driven interactions by both general and cell-specific 
coactivators for optimal and gene-specific transcriptional activation.
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Transcriptional repression
During stem cell self-renewal, developmental genes must be properly silenced. Failure 
to repress these genomic regions compromises stem cell identity and pluripotency of 
ESCs[93-96]. Studies have shown that heterochromatin is essential for silencing the 
autosomal imprinted genomic loci, HOX gene clusters and other differentiation-
associated genes[97,98]. Heterochromatic regions are characterized by hypoacetylated 
histones and repressive modifications such as trimethylated histone H3 Lysine 9 
(H3K9me3), trimethylated histone H3 Lysine 27 (H3K27me3), and mono-ubiquit-
ination of histone H2A lysine 119 (H2AK119ub)[99-103]. These modifications not only 
control nucleosomal interactions but also regulate the association of non-histone 
chromosomal proteins that together influence nucleosomal packaging and gene 
repression. For example, heterochromatic regions are established and protected by 
chromatin components and trans-acting factors such as heterochromatin protein 1 
(HP1) and Polycomb repressive complexes 1 and 2 (PRC1, PRC2)[104] (Table 1). 
Understanding how histone binding proteins and histone modifying enzymes are 
assembled at heterochromatin will elucidate the mechanisms by which a repressed 
chromatin state is initiated and maintained to silence developmental genes during 
stem cell self-renewal, and how these heterochromatic regions are decondensed to 
facilitate their reactivation when ESCs undergo differentiation (Figure 2A). The highly 
compact heterochromatin structure has led to a number of studies that evoke LLPS for 
heterochromatin domain formation.

HP1 
Compaction of chromatin is a key process in maintaining the repressed state of hetero-
chromatin. HP1 recognizes H3K9me3 modifications through its chromo shadow 
domain and nucleates chromatin condensation[105,106]. Underscoring a direct role of 
HP1 in chromatin condensation, artificial targeting of HP1 to a genomic locus is 
sufficient to cause local condensation and formation of high-order chromatin structure
[107]. In mammals, HP1 exists in three isoforms: HP1α, β and γ. HP1α is commonly 
associated with silenced heterochromatic regions, while the other two isoforms appear 
to have both gene silencing and activating functions[108-111]. These HP1 proteins 
possess three LCDs (LCD1, 2, and 3). Interaction between LCD1 and LCD2 has been 
shown to contribute to multivalent interactions with nucleo-somes[112-114]. HP1α 
LCD1 in N-terminal extension (NTE) region has also been shown to bind DNA, which 
in turn induces DNA compaction and phase separation in vitro and in cells (Figure 2B). 
Phosphorylation of NTE of HP1α was shown to disrupt the cooperative binding 
between HP1α and DNA, resulting in reduced DNA compaction with less defined 
compaction domains and slower compaction rate[115,116]. These observations are 
consistent with another study demonstrating that specific loss of HP1α leads to 
dysregulation in establishing heterochromatin domains[117]. Interestingly, these 
phosphorylation sites are absent in HP1β and HP1γ, making regulation of HP1 LLPS 
and chromatin compaction by phosphorylation a unique property of the α isoform
[118]. However, a recent study challenges the role of phase separation of HP1 in 
heterochromatin formation[119]. They demonstrated that HP1 proteins do not form 
stable LLPS droplets in mouse cells and do not regulate the size, accessibility, and 
chromatin compaction. Chromatin compaction tolerates loss of HP1 and H3K9me3. 
Relaxation of heterochromatin upon transcriptional reactivation occurs independent of 
HP1/H3K9me3. Future studies will be required to resolve the apparent discrepancy.

PRCs
The recruitment of PRC1 complexes to chromatin drives nucleosome compaction and 
transcriptional silencing[10,103,120,121]. This is mediated by the chromobox 2 (CBX2) 
subunit of PRC1, which recognizes H3K27me3 that is deposited by histone methyl-
transferase Enhancer of zeste homolog 2 subunit of the PRC2 complex[122,123]. Once 
PRC1 is recruited to H3K27me3, it monoubiquitinates H2A at lysine 119 
(H2AK119ub), which is essential for maintaining gene repression in ESCs[124]. It has 
long been observed that PRC1 complexes form concentrated nuclear compartments 
known as Polycomb bodies[54,125]. Recent studies indicated that CBX2 is responsible 
for PRC1 LLPS and chromatin compaction[54] (Figure 2C). CBX2 is a low-complexity 
disordered protein containing a serine-rich patch and positively charged amino acid 
rich region. It has been shown that phosphorylation of serine residues by casein kinase 
2 enhances CBX2 LLPS in vitro, likely by facilitating electrostatic intermolecular 
interactions between phosphorylated serines and positively charged lysines. 
Consistent with this hypothesis, mutation of 23 Lysine and arginine residues to alanine 
abolishes CBX2 LLPS in vitro. Importantly, lysine to alanine substitutions in CBX2 
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Figure 2 Models showing the role of low complexity domain-mediated protein condensation in gene silencing by heterochromatin 
formation. A: Euchromatic regions showing nucleosome-depleted regions containing transcription factor binding sites such as enhancers. Nucleosome-free regions 
are accessible by transcription factors and thus permissive to gene activation; B: Formation of constitutive heterochromatin requires interactions between 
heterochromatin protein 1 (HP1) and histone H3 Lysine 9 trimethylation and low complexity domain (LCD)-driven condensation of HP1 with DNA; C: Establishment of 
facultative heterochromatin is initiated by deposition of histone 3 Lysine 27 trimethylation (H3K27me3) by the histone methyltransferase subunit of polycomb 
repressive group 2 (PRC2), enhancer of zeste homolog 2. Binding of PRC2 to chromatin is regulated by non-core subunits (e.g., Jumonji and AT-rich interaction 
domain containing 2, polycomb-likes) which act as recruitment factors[178]. Chromatin compaction is then mediated by the recruitment of PRC1, through recognition 
of H3K27me3 by its subunit chromobox 2 (CBX2). CBX2 contains an LCD that drives phase separation of PRC1 and is required for proper heterochromatin formation. 
Subsequent mono-ubiquitination of histone 2A lysine 119 by the ring finger protein 1 subunit of PRC1 is essential for gene silencing. CBX2: Chromobox 2; EZH2: 
Enhancer of zeste homolog 2; H3K9me3: Histone 3 Lysine 9 trimethylation; H3K27me3: Histone 3 Lysine 27 trimethylation; HP1: Heterochromatin protein 1; JARID2: 
Jumonji and AT-rich interaction domain containing 2; PCL: Polycomb-like; PRC: Polycomb repressive group; RING1: Ring finger protein 1.
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result in axial patterning defects in mice, indicating altered Hox gene expression 
patterns during development[53]. Thus, these results support a functional link 
between CBX2 LLPS and gene silencing. Taken together, these studies suggest a role of 
LLPS in gene repression through LCD-driven chromatin condensation, and in the 
proper reactivation of developmental genes in a spatially and temporally regulated 
manner. It appears that LLPS may play a role in concentrating factors that are critical 
for chromatin compaction and maintenance of the repressed chromatin state, and in 
excluding factors that would otherwise gain access to these repressed domains and 
interfere with gene silencing[115].

INTEGRATION OF SIGNALING PATHWAYS AND TRANSCRIPTION BY 
LCDS
In mouse ESCs, Hippo/Yes-associated protein (YAP)/transcriptional coactivator with 
PDZ-binding motif (TAZ), Janus kinase (JAK)/signal transducer and activator of 
transcription (STAT), Wingless-related integration site (Wnt)/β-catenin, and 
transforming growth factor beta (TGF-β) pathways play important roles in supporting 
stem cell self-renewal and pluripotency[126-130]. How ESCs integrate and interpret 
these signals and generate an appropriate transcriptional response to these cues are 
key to understanding fundamental mechanism governing self-renewal vs differen-
tiation cell fate decision.

Hippo 
The Hippo pathway controls cell proliferation and survival by regulating the activity 
of YAP, a transcriptional coactivator for transcriptional enhancer factors (TEFs)[131-
133]. The Hippo pathway regulates YAP activity primarily by controlling its nucleo-
cytoplasmic shuttling through phosphorylation. Activation of the Hippo pathway by 
signals derived from cell-cell contact, mechanosensing (i.e., substrate stiffness), and 
cellular stress inhibits YAP by phosphorylation at serine 127, leading to its sequest-
ration in the cytoplasm. When Hippo signaling is inactivated, YAP translocates to the 
nucleus and stimulates TEF-activated transcription by forming complexes with 
Mediator and BRD4/P-TEFb[134,135]. Other studies added complexity to this model, 
by showing that hyperosmotic stress also activates nemo-like kinase, which leads to 
YAP phosphorylation at serine 128 and, unexpectedly, translocation to the nucleus and 
activation of YAP-dependent genes, despite simultaneous phosphorylation at serine 
127 by the Hippo pathway[136,137].

YAP is enriched in pluripotent ESCs but its level significantly decreases upon differ-
entiation and is further inactivated by phosphorylation at serine 127[127]. YAP 
supports stem cell maintenance by binding to key pluripotency-associated genes such 
as Nanog, Oct4, and Sox2 and regulate their expression. How YAP stimulates the 
transcription of these genes was unknown but recent studies implicated phase 
separation of YAP and its paralogue TAZ as a key mechanism. In one study, YAP was 
shown to form liquid-like condensates with TAZ and TEF in the nucleus upon 
hyperosmotic stress[138]. In another study, TAZ but not YAP was shown to undergo 
LLPS when the Hippo pathway is inhibited, even though YAP and TAZ show 
extensive sequence similarities[139]. Formation of TAZ condensates in cells is 
regulated by Hippo pathway, where signals that promote nuclear retention of TAZ 
induce the formation of nuclear puncta that colocalize with Pol II, BRD4, MED1 and 
CDK9/P-TEFb, indicating that these condensates likely represent transcriptionally 
active compartments. Protein domain swapping experiments demonstrated that the 
ww and coiled-coil (cc) domains of TAZ (but not YAP) contribute to LLPS. This result 
is in contrast to studies by Cai et al[138] showing that YAP can in fact phase separate in 
vitro. Differences in protein preparation, concentration, and in vitro droplet formation 
assay condition may explain the apparent discrepancy. Nevertheless, both studies 
demonstrated that the ability of YAP or TAZ to activate its target genes requires their 
LCDs, suggesting that transcriptional activation by TEF is facilitated by LCD-mediated 
interaction with YAP/TAZ.

Wnt, TGF-β, JAK/STAT pathways
Master transcription factors such as OCT4 and SOX2 define ESC identity in part by 
integrating extracellular signals at gene enhancers to drive cell-specific transcription. It 
has been shown that terminal effectors of the Wnt, TGF-β, and JAK/STAT signaling 
pathways, β-catenin, small mothers against decapentaplegics (SMADs), and STAT3, 
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respectively, converge onto cell-specific super enhancers[140]. How these enhancers 
“hijack” signal-regulated transcription factors are not well-understood. A recent study 
showed that these signaling effectors synergize with OCT4, SOX2, and Mediator by 
forming transcription condensates at super enhancers[141]. Upon activation of the 
signaling pathways, β-catenin, SMADs, and STAT3 translocate to the nucleus and 
form condensates at super enhancer at the Nanog locus in mouse ESCs (Figure 3). By 
contrast, activation of Wnt signaling was not sufficient to target β-catenin to the 
transcriptionally silenced Nanog locus in the muscle cell line C2C12. These results 
indicate that recruitment of β-catenin to Nanog enhancer likely requires open 
chromatin, active transcription, and presence of other transcription factors bound at 
active enhancers. Perhaps the high density of transcription factors and abundance of 
LCD-mediated multivalent interactions at super enhancers promote efficient concen-
tration of signal-dependent transcription factors. Indeed, β-catenin, SMADs, and 
STAT3 were shown to form condensates with Mediator in vitro through their LCDs. 
Mutations that disrupt β-catenin LLPS also compromise recruitment to its target gene 
enhancers and transcriptional activation, supporting a functional correlation between 
LLPS propensity and transcription factor recruitment and gene activation. Compart-
mentalization of these signaling effectors not only concentrates these factors at the 
appropriate enhancers but may also insulate these factors from activating the wrong 
targets. These LCD-dependent multivalent interactions at enhancers likely permit 
dynamic regulation of transcription - a key feature of regulated gene expression in 
response to extracellular signaling.

LCDS IN DNA REPAIR AND DNA DAMAGE RESPONSE
Unlike terminally differentiated somatic cells, the fast replication rate of ESCs makes 
them prone to replication stress-induced DNA damage such as double strand breaks 
(DSBs)[142-144]. At the same time, high proliferation rate poses significant challenge to 
DNA repair because DNA lesions that are left unrepaired prior to cell division will be 
inherited by daughter stem cells and then propagated to their progenitors, likely 
leading to deleterious effect in development[145]. Therefore, ESCs are under increased 
pressure to efficiently and accurately repair DNA damages. Indeed, it has been shown 
that ESCs express higher levels of DNA repair factors and favor high fidelity DSB 
repair by homologous recombination (HR)[28]. It has also been shown that ESCs are 
hypersensitive to DNA damage and readily undergo spontaneous differentiation and 
apoptosis[145,146]. This is likely a fail-safe mechanism by eliminating compromised 
ESCs from the self-renewing population. In the following sections, we will examine 
the role of LCD and LLPS in DNA repair and DNA damage response (DDR) and 
discuss how they safeguard stem cell genome integrity.

HP1 and F-actin
The abundance of repetitive sequences in heterochromatin poses unique challenges to 
DNA repair due to increased risks of aberrant recombination induced by DSBs, which 
can lead to deletion, duplication, and translocation[147]. Cells have developed 
elaborate mechanisms to promote efficient and error-free DNA repair by taking 
advantage of LLPS. Upon DSB, it has been shown that phosphorylation of threonine 51 
in HP1 Leads to dissociation of HP1 from heterochromatin, as evidenced by loss of 
binding to H3K9me3 and dispersal of HP1 nuclear puncta[115]. Dissociation of HP1 
Likely alters LLPS status at DSBs, which in turn facilitates chromatin relaxation and 
engagement of downstream effectors to initiate DNA repair[148]. In another study 
using Drosophila as a model system, phase separated heterochromatic domain at DSBs 
appears to be able to exclude repair factors such as Ku80 that are involved in error-
prone non-homologous end joining (NHEJ), and enrich factors required for the initial 
steps of HR repair[149]. It was proposed that such exclusion mechanism favors repair 
by error-free HR, assuming that HR repair factors can still efficiently assess the 
damaged site. It will be interesting to test whether this exclusion mechanism is 
mediated by selective interaction between HP1 condensates and repair factors in HR 
but not NHEJ pathway.

Expansion of the HP1-organized heterochromatin domain is also thought to 
facilitate the physical relocation of the DSB DNAs to the nuclear periphery in 
Drosophila or to the heterochromatin domain periphery in mouse cells, locations that 
are believed to be more conducive to repair by HR[150,151]. Studies demonstrated that 
physical movement of heterochromatic DSBs depends on polymerization of F-actin 
and mobilization of DSB DNAs by tethering the DNA and ‘walking’ along the F-actin 



Vodnala M et al. LCD proteins and pluripotency

WJSC https://www.wjgnet.com 426 May 26, 2021 Volume 13 Issue 5

Figure 3 Activation of the wingless-related integration site, transforming growth factor beta, and Janus kinase/signal transducers and 
activators of transcription signaling pathways leads to nuclear translocation of their respective terminal signaling effectors: β-catenin, 
SMAD family member 3, and signal transducers and activators of transcription 3. These low complexity domain (LCD)-containing transcription 
factors bind their respective signal-responsive elements in pluripotency gene promoters and form LCD-mediated condensates with Mediator to modulate ESC-specific 
transcriptional activation in a signal-dependent manner. JAK: Janus kinase; STAT: Signal transducers and activators of transcription; SMAD3: SMAD family member 
3; TGF-β: Transforming growth factor beta; Wnt: Wingless-related integration site.

filaments by myosins[150]. It has been shown that F-actin crosslinked by filamin 
spontaneously assembled into phase-separated F-actin filament bundles that can 
extend and contract[152]. We speculate that changes in actin filament dynamics driven 
by phase separation could facilitate the relocation of heterochromatic DSBs to 
appropriate subcellular compartments as DSB repair progresses.

DDR factors and post-translational modifications
Fused in sarcoma, phosphorylation, and poly-adenosine diphosphate (ADP)-
ribosylation: Fused in sarcoma (FUS, also known as translocated in liposarcoma, TLS) 
is one of the most studied proteins known to undergo phase separation. Its 
unstructured N-terminal prion-like domain is required for phase separation[153-155]. 
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In addition to its role in RNA metabolism, recent studies highlighted a role of FUS in 
DDR. Upon DNA damage, FUS is rapidly recruited to DSB sites[156,157]. It has been 
shown that poly-ADP-ribosylation (PARylation) at DSBs by poly-ADP-ribose 
polymerase enzymes triggers the translocation of cytoplasmic FUS to the nucleus and 
formation of large phase separated FUS-containing compartments at DSB sites[158-
160] (Figure 4A). These FUS compartments are thought to contribute to DNA repair by 
facilitating the recruitment of downstream effectors of DNA repair such as p53-
binding protein 1 (53BP1)[161] (Figure 4B). The C-terminal arginine-glycine-glycine 
repeat (RGG) domain of FUS likely plays a role in LLPS by directly binding PAR[159]. 
Therefore, the high propensity of FUS to generate large phase separated domains in 
cells could be due to increased valency in interaction using both the N-terminal prion-
like LCD as well as C-terminal RGG domain when PAR accumulates at DSBs. It is 
worth to stress that these phase separated compartments are not static structures. 
Indeed, it has been shown that multivalent interactions by FUS can be destabilized by 
phosphorylation of the prion-like LCD[162] and PAR hydrolysis by PARG[158]. The 
reversible nature of FUS LLPS compartments is likely a necessary feature of DNA 
repair where recruitment of repair factors to and exclusion from damaged sites must 
be dynamically regulated.

53BP1: In addition to PARylation at DSBs, phosphorylation of histone variant 2AX is 
another early event in DDR and is required for the recruitment of 53BP1 to DSB sites
[163] (Figure 4B). 53BP1 has been shown to generate sizeable chromatin domains in the 
nucleus that persist throughout the repair process[164] and is thought to recruit 
downstream effectors to regulate DDR and repair (Figure 4C)[163]. Recent studies 
demonstrated that these 53BP1 domains display liquid-like properties[164,165]. In one 
study, it showed that 53BP1 can concentrate p53 into 53BP1 condensates and activates 
p53-target gene expression, thereby inducing a cell cycle checkpoint DDR[164] 
(Figure 4D). They showed that conditions that perturb 53BP1 condensate formation 
also compromise p53 signaling, indicating that the recruitment of p53 to 53BP1 
condensates is likely important for proper activation of a p53 response in damaged 
cells. It will be interesting to examine whether 53BP1-dependent activation of p53 
contributes to repression of pluripotency genes and activation of differentiation-
associated genes observed in damaged ESCs[166]. Surprisingly, while 53BP1 contains a 
largely unstructured N-terminal domain, it is dispensable for LLPS in vitro[164]. Rather, 
the structured Tudor domain is required for phase separation by 53BP1. It is 
speculated that multivalent interactions between tyrosines (Y) and arginines (R) in 
Tudor domain promote LLPS, similar to what was observed regarding the role of Y/R 
in phase separation of the FET (FUS, Ewing sarcoma breakpoint region 1, TATA-box 
binding protein associated factor 15) protein family[167]. Future mutagenesis studies 
should help clarify the LLPS mechanism employed by 53BP1. The ability of 53BP1 
Tudor domain to undergo LLPS demonstrated that structured domains can also 
contribute to phase separation. Another study highlighted the involvement of 
damaged-induced long non-coding RNA (dilncRNA) at DSBs in organizing 53BP1 
condensates[165]. They showed that PIC assembly at DSBs containing Pol II, Mediator, 
and P-TEFb, and transcription of dilncRNAs facilitate molecular crowding and phase 
separation of DDR factors including 53BP1 (Figure 4E). Supporting this notion, 
inhibition of dilncRNA transcription reduces the size 53BP1 condensates and repair 
efficiency. Given that FUS binds RNA[168] and phase separates with Pol II CTD[155], 
it is tempting to speculate that transcription of dilncRNAs by Pol II at DSBs may also 
facilitate the incorporation of FUS into repair condensates.

ABCF1 and intracellular DNA sensing: ABCF1 was previously identified as a sensor 
for intracellular DNAs that arise from infection or DNA damage[169]. Binding of these 
DNAs by ABCF1 triggers an innate immune response in somatic cells. However, 
because ESCs lack a canonical innate immune response to DNAs[170-172], the 
functional consequence of DNA sensing by ABCF1 in ESCs is unknown. Our identi-
fication of ABCF1 as a critical stem cell coactivator prompted us to examine whether 
ABCF1 can couple DNA sensing with stem cell transcription in response to DNA 
damage[30] (Figure 5A). We found that ABCF1 specifically binds double-stranded (ds) 
but not single-stranded (ss) DNAs in an LCD-dependent manner. Remarkably, 
binding of ABCF1 to dsDNAs dramatically stimulates LLPS in vitro. These results 
suggest that upon DNA damage, ABCF1 may preferentially form condensates with 
dsDNAs in damaged ESCs instead of binding SOX2 and Pol II. Consistent with this 
model, we found that ABCF1’s interaction with SOX2 and assembly of Pol II 
transcription machinery at pluripotency gene promoters are disrupted upon DNA 
damage, resulting in downregulation of pluripotency genes critical for stem cell 



Vodnala M et al. LCD proteins and pluripotency

WJSC https://www.wjgnet.com 428 May 26, 2021 Volume 13 Issue 5

Figure 4 Role of low complexity domain-driven condensate formation in DNA damage response and DNA repair. A: Double strand break (DSB) 
triggers phosphorylation of histone variant H2AX (γ-H2AX) and poly-ADP-ribosylation (PARylation) by PARP-1. PARylation facilitates the recruitment of fused in 
sarcoma (FUS) to DSB site through its RGG domain and formation of FUS condensates driven by its prion-like low complexity domain (LCD); B: γ-H2AX and FUS 
condensates at DSBs promote the incorporation of a critical downstream effector of DSB repair factor, p53-binding protein 1 (53BP1). However, the Tudor domain but 
not its disordered region of 53BP1 is required for 53BP1 phase separation; C: Formation of 53BP1/FUS condensates facilitate the recruitment of downstream repair 
machinery such as meiotic recombination 11 homolog. RAD50 homolog, double strand break repair protein, and Nijmegen breakage syndrome 1 involved in 
homologous recombination repair of DSBs; D: p53 is incorporated into 53BP1 condensates and activate a p53-dependenent gene expression that results in cell cycle 
arrest. Disruption of 53BP1 condensates blunts p53-dependent response to DNA damage; E: Assembly of Pol II, mediator and cyclin dependent kinase 9/positive 
transcription elongation factor b at DSBs leads to transcription of dilncRNAs. dilncRNAs facilitates molecular crowding and phase separation of 53BP1 and other 
repair factors. It is likely that a network of LCD-mediated protein-protein and protein-nucleic acid interactions drives the formation of repair condensates at DSBs. 
53BP1: p53-binding protein 1; dilncRNA: Damage-induced long non-coding RNA; DSB: Double strand break; FUS: Fused in sarcoma; H2AX: Histone variant 2AX; 
MRE11: Meiotic recombination 11 homolog; NBS1: Nijmegen breakage syndrome 1; PARP-1: Poly-ADP-ribose polymerase-1; RAD50: RAD50 homolog, double 
strand break repair protein.
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Figure 5 ATP-binding cassette subfamily F member 1 couples stem cell-specific transcription with DNA sensing in Embryonic stem cells. 
A: ATP-binding cassette subfamily F member 1 (ABCF1) low complexity domain promotes specific clustering and formation of a hub comprising of sex-determining 
region Y-box 2 (SOX2), xeroderma pigmentosum, complementation group C (XPC), dyskerin (DKC1), and RNA polymerase II (Pol II) molecules at target gene 
promoter to stimulate transcription, presumably by increasing local concentration of these factors; B: ABCF1 proteins available for transcription are diverted to bind 
intracellular double-stranded DNA (dsDNAs) generated from genome instability, due to increased propensity of ABCF1 to form condensates with dsDNAs. Decrease 
in ABCF1 at gene promoters destabilizes the multivalent interactions between SOX2, XPC, DKC1, and Pol II. This leads to disruption of the protein hub and decrease 
in gene transcription by Pol II. Downregulation of pluripotency-associated genes promotes differentiation of compromised ESCs and their elimination from the self-
renewing population, thereby preserving genome fidelity in ESCs. LCD: Low complexity domain; TF: Transcription factor; dsDNA: Double-stranded DNA; Pol II: RNA 
Polymerase II; ABCF1: ATP-binding cassette subfamily F member 1; SOX2: Sex-determining region Y-box 2.

maintenance (Figure 5B). We propose that ESCs may leverage ABCF1’s ability to 
switch between transcription factor and dsDNA condensates to modulate pluripotency 
gene transcription. Direct coupling of DNA sensing and stem cell-specific transcription 
via ABCF1 may represent an effective strategy to safeguard genome integrity by 
eliminating compromised ESCs from the self-renewing population through enforced 
differentiation.
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CONCLUSION
A growing number of factors have been shown to form condensates with the MED1 
subunit of the Mediator complex. Less clear are the mechanisms by which MED1 
forms these numerous, functionally distinct condensates. Changes in their composition 
upon signaling pathway activation, and at different stages of gene transcription where 
“cargoes” are handed off from one condensate (e.g. initiation) to another (e.g. 
elongation) must be tightly regulated. A key challenge is how to avoid accidental 
mixing of these MED1 condensates. Post-translational modifications of the CTD of Pol 
II provide one such strategy wherein different phosphorylated forms of the CTD (Ser5 
vs Ser2) condense preferentially with regulatory factors in initiation or elongation. In 
addition, we propose that the requirement of coactivators such as ABCF1 to form stem 
cell-specific multivalent interactions adds another layer of specificity for gene 
regulation in ESCs.

Evidence of LLPS in cells, particularly with respect to transcription factors, relies in 
part on observations of their phase separation behaviors in vitro, that they are spherical 
in shape, can fuse and fission, and allow exchange of biomolecules. However, these 
properties are not unique to LLPS. Indeed, a recent study on Pol II compartment 
formation during herpes simplex virus type 1 infection highlighted that, despite 
sharing several properties that are consistent with phase separated condensates, these 
Pol II compartments are formed by non-specific interactions with viral genomic DNA, 
distinct from behaviors typically attributed to Pol II condensates[173]. In another 
study, it was shown that at physiological concentration, TFs activate Pol II 
transcription at endogenous genomic loci by forming dynamic LCD-driven hubs in the 
absence of LLPS[31]. Therefore, there are likely multiple pathways with which 
clustering of biomolecules in cells can be achieved without undergoing LLPS. In fact, a 
recent study provides evidence that formation of transcription factor droplets can 
actually be counterproductive to gene activation[174], suggesting that the topology 
and binding dynamics of multivalent interactions are critical for protein function in 
transcription and likely other cellular processes. For discussion on the role of phase 
separation in biological reactions, we recommend several excellent reviews on 
evidence for and against LLPS in cells[23,175-177].

Whether or not these LCD-driven domains in cells meet the criteria of LLPS, it is 
evident that an intricate network of multivalent interactions controls various steps in 
transcription, their integration with signaling pathways, and in DNA repair and DDR -
processes essential for maintenance of stem cell pluripotency and genome integrity. 
Transient and weak protein-protein and protein-nucleic acid interactions mediated by 
LCDs in regulatory factors enhance efficiency of biological reactions by enriching 
relevant factors in distinct hubs or compartments, specificity by combinatorial 
assembly, and dynamic regulation in response to changing cellular environment by 
modulating LCD-LCD interaction affinity and specificity.
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Abstract
On February 11, 2020, the World Health Organization officially announced the 
coronavirus disease 2019 (COVID-19) caused by the severe acute respiratory 
syndrome coronavirus 2 (SARS-CoV-2), as an emerging recent pandemic illness, 
which currently has approximately taken the life of two million persons in more 
than 200 countries. Medical, clinical, and scientific efforts have focused on 
searching for new prevention and treatment strategies. Regenerative medicine 
and tissue engineering focused on using stem cells (SCs) have become a 
promising tool, and the regenerative and immunoregulatory capabilities of 
mesenchymal SCs (MSCs) and their exosomes have been demonstrated. 
Moreover, it has been essential to establishing models to reproduce the viral life 
cycle and mimic the pathology of COVID-19 to understand the virus's behavior. 
The fields of pluripotent SCs (PSCs), induced PSCs (iPSCs), and artificial iPSCs 
have been used for this purpose in the development of infection models or 
organoids. Nevertheless, some inconveniences have been declared in SC use; for 
example, it has been reported that SARS-CoV-2 enters human cells through the 
angiotensin-converting enzyme 2 receptor, which is highly expressed in MSCs, so 
it is important to continue investigating the employment of SCs in COVID-19, 
taking into consideration their advantages and disadvantages. In this review, we 
expose the use of different kinds of SCs and their derivatives for studying the 
SARS-CoV-2 behavior and develop treatments to counter COVID-19.
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Mesenchymal stem cells; Artificial stem cells

https://www.f6publishing.com
https://dx.doi.org/10.4252/wjsc.v13.i5.439
http://orcid.org/0000-0002-1811-4511
http://orcid.org/0000-0002-1811-4511
http://orcid.org/0000-0003-4371-0486
http://orcid.org/0000-0003-4371-0486
http://orcid.org/0000-0003-4371-0486
http://orcid.org/0000-0002-6657-0722
http://orcid.org/0000-0002-6657-0722
http://creativecommons.org/Licenses/by-nc/4.0/
http://creativecommons.org/Licenses/by-nc/4.0/
http://creativecommons.org/Licenses/by-nc/4.0/
mailto:gus1202@hotmail.com


Mata-Miranda MM et al. SCs for SARS-CoV-2 treatments

WJSC https://www.wjgnet.com 440 May 26, 2021 Volume 13 Issue 5

Country/Territory of origin: Mexico

Peer-review report’s scientific 
quality classification
Grade A (Excellent): 0 
Grade B (Very good): 0 
Grade C (Good): C, C, C 
Grade D (Fair): 0 
Grade E (Poor): 0

Received: January 16, 2021 
Peer-review started: January 16, 
2021 
First decision: February 14, 2021 
Revised: February 27, 2021 
Accepted: April 22, 2021 
Article in press: April 22, 2021 
Published online: May 26, 2021

P-Reviewer: Chen J, Nabil A, Wang 
DW 
S-Editor: Zhang L 
L-Editor: A 
P-Editor: Xing YX

©The Author(s) 2021. Published by Baishideng Publishing Group Inc. All rights reserved.

Core Tip: The use of stem cells (SCs) to address the coronavirus disease 2019 (COVID-
19) pandemic has been widely studied in various fields; for example, human embryonic 
SCs and human induced pluripotent SCs have been used to generate functional human 
cells, tissues, and organoids that are used for modeling COVID-19 and discovering 
drugs. Mesenchymal SCs and their exosomes have been used in clinical trials to 
control the severe acute respiratory syndrome coronavirus 2 immune response, 
showing absorption of pulmonary lesions and clinical improvement.

Citation: Mata-Miranda MM, Sanchez-Brito M, Vazquez-Zapien GJ. Different kinds of stem 
cells in the development of SARS-CoV-2 treatments. World J Stem Cells 2021; 13(5): 439-451
URL: https://www.wjgnet.com/1948-0210/full/v13/i5/439.htm
DOI: https://dx.doi.org/10.4252/wjsc.v13.i5.439

INTRODUCTION
In the last two decades, humanity has experienced outbreaks of Ebola, Severe acute 
respiratory syndrome (SARS), H1N1, and now severe acute respiratory syndrome 
coronavirus 2 (SARS-CoV-2). On February 11, 2020, the World Health Organization 
(WHO) and the International Committee on Taxonomy of Viruses officially announced 
coronavirus disease 2019 (COVID-19) and designated the virus SARS-CoV-2[1,2]. 
Although the majority of patients evolve clinically well and recover quickly, showing 
mild symptoms, a significant portion of the affected patients develop acute lung injury 
(ALI), devastating pulmonary edema and atelectasis caused by capillary membrane 
injury, which can subsequently trigger a cascade of serious complications, such as 
severe pneumonia with acute respiratory distress syndrome (ARDS), resulting in 
multiorgan failure and death[3-6].

Cases of this pandemic illness have been reported in more than 200 countries, taking 
the lives of more than two million persons, which is the reason that medical, clinical, 
and scientific efforts are needed[4,6]. Currently, basic research and clinical invest-
igation are urgently required. For basic research, it is essential to establish models to 
reproduce the viral life cycle and mimic the pathology of COVID-19[7] and to develop 
new prevention or treatment strategies. In this sense, regenerative medicine and tissue 
engineering focusing on the use of stem cells (SCs) have become promising tools. In 
these approaches, cells are utilized to replace or rebuild damaged organs and tissues. 
There are currently 1135 clinical trials related to COVID-19 registered in the Interna-
tional Clinical Trials Registry Platform (ICTRP), which is an initiative of the WHO, and 
16 of these 1135 trials involve the use of SCs[2]. On the other hand, in a recent review 
in ClinicalTrials.gov (February 2021), a resource provided by the United States. 
National Library of Medicine, 4793 COVID-19 studies were reported; 88 of them used 
different types of SCs or their derivatives. However, it is essential to mention that the 
use of SCs in this pandemic illness is focused not only on treatment options but also on 
organoids’ development to study the virus’s behavior.

In this review, we expose the use of different kinds of SCs and their derivatives for 
studying the SARS-CoV-2 behavior and develop treatments to counter COVID-19 
(Figure 1).

SCs GENERALITIES
SCs are unspecialized cells with the potential to differentiate into any organism’s cell 
and have the capability of self-renewal. According to their origin, SCs can divide into 
embryonic and adult cells. Embryonic SCs (ESCs) can be obtained from the zygote, 
morula, or the blastocyst's inner cell mass and possess high potentiality (range of 
differentiation potential). Contrary, adult SCs can be isolated from neonatal and adult 
tissues such as the umbilical cord, placenta, bone marrow, adipose tissue, dental pulp, 
and peripheral blood; adult SCs show restricted potentiality. Regarding their 
potentiality, they are divided into totipotent, pluripotent, multipotent, and oligopotent 

https://www.wjgnet.com/1948-0210/full/v13/i5/439.htm
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Figure 1 Stem cells in the development of severe acute respiratory syndrome coronavirus 2 treatments. Different kinds of stem cells (SCs), such 
as embryonic, mesenchymal, or artificial induced pluripotent SCs (iPSCs) or their products (SC exosomes), have been used in clinical trials and basic research to 
understand severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) behavior in humans. For example, Embryonic SCs (which can be differentiated in lung 
airway, lung alveolar, and intestinal epithelial cells or used for organoid development) and artificial iPSCs have been used in the progress of organogenesis 
knowledge, the comprehension of genetic alterations, pharmacological treatments or interactions, and the combination of SARS-CoV-2 in different kinds of cells 
(infection model). Mesenchymal SCs and SC exosomes have mainly been used in clinical trials as immunoregulators, and some authors have also stated their 
regeneration capability. SCs: Stem cells; iPSCs: Induced pluripotent SCs; SARS-CoV-2: Severe acute respiratory syndrome coronavirus 2; ESCs: Embryonic stem 
cells; MSCs: Mesenchymal SCs.

SCs (Figure 2)[4,8].

Totipotent
SCs have the highest differentiation potential; there are two definitions for totipotency. 
One declares that a totipotent cell is a single cell that can give rise to a new organism 
given appropriate maternal support, and the other states that a totipotent cell can give 
rise to all the extraembryonic tissues plus all the tissues of the body, differentiating 
into any of the three germ layers. One example of a totipotent cell is the zygote[8,9].

Pluripotent SCs
Pluripotent SCs (PSCs) are defined by their capability of differentiating into cell types 
derived from the three embryonic germ layers but not extraembryonic structures. 
PSCs were initially established in culture as ESCs and obtained from the morula or the 
blastocyst's inner cell mass (4-14 d after oocyte fertilization). Induced pluripotent SCs 
(iPSCs) are also a type of PSC derived from adult somatic cells that have been 
genetically reprogrammed into PSCs. The advantage of reprogramming iPSCs has 
created new opportunities for understanding human diseases and physiopathology, 
including a growing number of viral infections[6].

Multipotent SCs
Multipotent SCs (MSCs) have a narrower spectrum of differentiation than PSCs. 
However, they can differentiate into all cell types of one particular lineage; one 
example is a hematopoietic stem cell, which can differentiate into several blood cells.

Oligopotent SCs
Oligopotent SCs are characterized by the narrowest differentiation capabilities and 
have the competency to differentiate into only one lineage[8,10,11]. Considering the 
characteristics mentioned above, we will discuss some clinical trials and basic science 
assays focused on using SCs and their derivatives in COVID-19.

ESCs AND COVID-19 INFECTION MODEL
Human pluripotent SCs (hPSCs), human embryonic SCs (hESCs), and human induced 
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Figure 2 Stem cells classification. According to their origin, stem cells (SCs) are divided into embryonic and adult cells. Embryonic SCs can be obtained from 
the zygote, morula, or the blastocyst's inner cell mass and possess high potentiality. Adult SCs can be isolated from neonatal and adult tissues (umbilical cord, 
placenta, bone marrow, adipose tissue, among others). Likewise, the induced pluripotent SCs are considered another kind of adult SCs once they are derived from 
adult somatic cells but have been genetically reprogrammed. Concerning their potentiality, SCs are divided into totipotent, pluripotent, multipotent, and oligopotent 
SCs. Thanks to artificial intelligence, the generation of artificial induced pluripotent SCs was reported. iPSCs: Induced pluripotent stem cells.

pluripotent SCs (hiPSCs) are being used to generate functional human cells, tissues, 
and organoids that are used for modeling human disease and drug discovery, 
including modeling infectious disease. hPSC derived neuronal progenitor cells 
(hNPCs), and brain organoids were used to study the Zika virus's impact on human 
brain development[12]. Likewise, another research group demonstrated the infection 
capacity of the protozoan Trypanosoma cruzi in hiPSC-derived cardiomyocytes, 
demonstrating the potential of these cells as a human model for studying cardiomy-
opathy in Chagas disease and for the development of new therapies against the 
parasite. In the same way, these cells have been used to study hepatitis B[11].

Considering those mentioned above, currently, the use of these cells has been 
proposed in differentiation protocols for generating lung airway, lung alveolar, and 
intestinal epithelial cells. Abo et al[13] declared that iPSC-derived lung and intestinal 
epithelial cells derived in their protocols could be banked and used to generate 
multiple organ lineages from a single individual cell. Likewise, these cells can 
recapitulate appropriate cell-intrinsic phenotypes of a genetic disease and respond to 
immune stimuli. Moreover, it is essential to mention that they established a novel 
iPSC-derived alveolar epithelial type 2 cell air-liquid interface culture system to enable 
modeling of environmental exposures of the human alveolar epithelium, including 
viral infection, observing the expression of angiotensin-converting enzyme 2 (ACE2) 
and TMPRSS2, two genes encoding host cell proteins essential for SARS-CoV-2 cell 
entry in the iPSC-derived airway, alveolar, and intestinal epithelial cells.

PSCs AND ORGANOIDS FOR SARS-CoV-2
In biological research history, one of the significant challenges to understanding 
human biology and disease and the clinical development of novel drugs includes a 
limited number of suitable animal models, which try to recapitulate human 
physiology in vivo. However, there are significant differences in metabolism between 
humans and laboratory models, and common drugs for humans, such as ibuprofen 
and warfarin, are toxic to rats, highlighting that humans are not inbred in contrast to 
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all animal models[5,14].
The most used models for SARS-CoV-2 studies have been African green monkey-

derived Vero cells or human cancer cell lines, which show limitations for modeling 
complex human organ systems. Therefore, relevant human models to study SARS-
CoV-2 infection are critically important[15,16]. Recently, with the discovery of PSCs, 
knowledge about human development and morphogenesis in healthy and disease 
contexts has significantly improved. With the recapitulation of human organogenesis 
in vitro, the concept of an “organoid” emerged. Currently, the term organoid refers to 
three-dimensional systems formed by self-assembly of SCs in vitro that allow the 
recreation of the architecture and physiology of human organs in detail; as the 
functions are similar to natural organs in the body, organoids have provided 
opportunities for studying human diseases, infectious diseases, genetic disorders, and 
cancers[14,17,18].

The use of these organoids in SARS-CoV-2 research is not an exception. Pei et al[18] 
developed an optimized method to differentiate human airway organoids and alveolar 
organoids from hESCs, carrying out differentiation through six stages (ESCs, definitive 
endoderm, anterior foregut endoderm, ventralized anterior foregut endoderm, lung 
progenitors, and human airway or alveolar organoids), demonstrating that SARS-
CoV-2 infects and extensively replicates in these organoids.

In the same way, Han et al[16] developed a lung organoid model and colonic 
organoids using hPSCs, reporting a robust induction of chemokines following SARS-
CoV-2 infection in the lung organoid, similar to what is seen in patients with COVID-
19, and that multiple colonic cell types, especially enterocytes, express ACE2 and are 
permissive to SARS-CoV-2 infection.

Therefore, organoids recapitulate many biological parameters, including the spatial 
organization of heterogeneous tissue-specific cells, cell-cell interactions, cell-matrix 
interactions, and certain physiological functions generated by tissue-specific cells 
within the organoid. Moreover, organoids provide a stable system amenable to 
extended cultivation and manipulation while being more representative of in vivo 
physiology[19,20] and thereby have significant advantages in studying this pandemic 
illness. Table 1 resumes the organoid infection models developed for the SARS-CoV-2 
study.

Although significant advances have been reported in the use of organoids in SARS-
CoV-2, one possible concern is whether hPSC-derived cells can recapitulate the 
biology of SARS-CoV-2 infection in adults since the vertical infection of the fetus is not 
entirely clear[15]. Moreover, Tindle et al[21] have declared that existing lung organoid 
models available for modeling COVID-19 do not recapitulate all the heterogeneous 
epithelial cellularity of both proximal and distal airways, lack propagability, and/or 
cannot be reproducibly generated for biobanking. Similarly, Monteil et al[22] have 
stated that their studies' design focuses on the early stages of infection, limiting 
predictions concerning the effect in later phases. So, organoids remain rudimentary 
compared to the adult human organ[21].

ARTIFICIALLY IPSCs IN COVID-19
Despite significant advances in iPSCs, cellular reprogramming remains a challenge 
due to the high costs, time-consuming, and the tendency of iPSCs to revert to their 
original somatic genotypes over time, adding ethical limitations; reason by which new 
technologies have been used to avoid these limitations. Artificial intelligence (AI) has 
demonstrated that it can shorten the process and increase efficiency.

AI is the way to model human intelligence to accomplish specific tasks without 
much intervention of human beings. It is defined as “the science and engineering of 
making intelligent machines.” The term was first used in 1956 with The Logic Theorist 
program, designed to simulate human beings' problem-solving ability. Since then, a 
significant subset of AI called machine learning (ML) has emerged at the forefront of 
AI research. An ML is conceptualized as "a field of study that gives the computer the 
ability to self-learn without being explicitly programmed.” The impact of AI has been 
transferred to the field of healthcare with its use in pharmaceutical and biomedical 
studies[23,24], is useful in a wide range of applications across public health, disease 
prediction, and drug development, including the analysis of real-time data for disease 
detection, and ML-based disease risk models. Moreover, AI has also helped model 
human behavior[25], and currently, SCs have also been evolved in this field.

Esmail and Danter[6] created the DeepNEU platform, a validated hybrid deep-
machine learning system[6]. This platform enables the generation of artificial iPSCs 
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Table 1 Resume of organoid infection models developed for severe acute respiratory syndrome coronavirus 2 study

Ref. Organoid infection model Reported advantages

Yang et al
[15]

hPSC-derived cells/organoids, including pancreatic endocrine cells, 
liver organoids, endothelial cells, cardiomyocytes, macrophages, 
microglia, cortical neurons, and dopaminergic neurons

Permissiveness to SARS-CoV-2 infection; ACE2 expression was 
detected; Chemokine induction

hPSC-LOs hPSC-LOs (particularly alveolar type-II-like cells) are permissive to 
SARS-CoV-2 infection; Robust chemokine induction; Discovery and 
test therapeutic drugs

Han et al
[16]

hPSC-COs Permissiveness to SARS-CoV-2 infection hPSC-Cos especially 
enterocytes, express ACE2; Discovery and test therapeutic drugs

Pei et al
[18]

hAWOs and hALOs from hESCs Permissiveness to SARS-CoV-2 infection and replication; Infected cells 
express ACE2 but not all ACE2 expressing cells were infected; 
Chemokine induction; Discovery and test therapeutic drugs

Yiangou et 
al[20]

hPSC-derived cardiac models Permissiveness to SARS-CoV-2 infection; Activation of the innate 
inflammatory response; Show contractility, electrophysiology, and 
sarcomeric fragmentation

Monteil et 
al[22]

Human capillary organoids from iPSCs; Kidney organoids from 
hESCs

Permissiveness to SARS-CoV-2 infection and significantly inhibited by 
human recombinant soluble ACE2. ACE2 expression

hPSC: Human pluripotent stem cells; SARS-CoV-2: Severe acute respiratory syndrome coronavirus 2; ACE2: Angiotensin-converting enzyme 2; hPSC-LOs: 
Lung organoid model using human pluripotent stem cells; hPSC-Cos: hPSC-derived colonic organoids; hAWOs: Human airway organoids; hALOs: 
Alveolar organoids; iPSCs: Induced pluripotent stem cells; hESCs: Human embryonic stem cells.

(aiPSCs) (Figure 2). In the same way, they also reported the generation of artificially 
induced neural SCs and artificially induced cardiomyocytes from aiPSCs[23]. The 
authors have also used DeepNEU v5.0 for creating computer simulations of artificially 
induced type 1 (AT1) and type 2 (AT2) alveolar lung cells (aiLUNGs). Moreover, they 
exposed aiLUNGs to the simulated SARS-CoV-2, reproducing the genotypic and 
phenotypic profiles associated with the infection. Furthermore, these infected cells 
were treated with drug repurposing of a small group of approved drugs with well-
known action mechanisms. This study also demonstrated that aiLUNG-COVID-19 
simulations could be used to rapidly repurpose novel and known drug combinations 
with anti-SARS-CoV-2 therapeutic potential for animal and human trial validation[6].

Nonetheless, this technology's employment must consider ethical and societal 
implications, in addition to the requirement of systematic examination (e.g., issues 
around security, privacy, and confidentiality). Even though significant advances have 
been developed, it is mandatory to recognize that AI is still at the early stages of its 
development for its application across the healthcare industry[25].

MSCs AND THEIR IMMUNOMODULATORY RESPONSE IN SARS-CoV-2
As previously mentioned, MSCs have high proliferative potential and limited differen-
tiation capacity; nevertheless, one of their most promising characteristics is their 
immunomodulatory properties because they secrete many types of cytokines by 
paracrine secretion or make direct interactions with immune cells, leading to 
immunomodulation. In this sense, these cells help modulate the proliferation, 
activation, and function of various immune cells, altering innate and adaptive immune 
responses. These immunomodulatory effects are triggered by the activation of TLRs in 
MSCs stimulated by pathogen-associated molecules such as lipopolysaccharides[4,26].

It has been reported that MSCs, as well as human bone marrow SCs (BMSCs), 
possess anti-inflammatory properties, which have also been demonstrated in virus-
induced lung injury models. Intravenous injection of mouse BMSCs into H9N2 virus-
infected mice reduced inflammatory cell recruitment into the lungs and provoked a 
reduction in chemokine and proinflammatory cytokine levels. Similarly, human 
umbilical cord-derived MSCs showed a similar effect on the inflammatory response, 
secreting growth factors in an in vitro lung injury model induced by the H5N1 virus[5].

MSC therapeutic effectiveness is probably limited to a niche of immunological 
disorders and immune-mediated illnesses such as graft-vs-host-disease, for which 
MSCs have demonstrated varying levels of efficacy in phase 1/2 clinical studies[27].
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In SARS-CoV-2 research, it has been reported that inflammation is the driving force 
behind coronavirus infections. The majority of deaths caused by COVID-19 are the 
result of ALI and ARDS due to rapid virus replication, massive inflammatory cell 
infiltration, and elevated proinflammatory cytokine/chemokine responses (cytokine 
storm), which are events that are associated with a dysregulation of the immune 
response and are crucial to controlling inflammation as early as possible[4,28]. ALI and 
ARDS are severe clinical manifestations of COVID-19, and while administration of 
MSCs to subjects with ARDS was well tolerated, efficacy data at the clinical level is not 
as compelling[27].

Due to no pharmacological therapies halt the disease and progress very fast, 
immunomodulation using SCs seems to be an effective therapy. In this sense, MSCs 
represent one of the most promising candidates since their safety and efficacy have 
been shown in pre-clinical models of ARDS[1].

For the reasons mentioned above, MSCs have been widely used in cell-based 
therapy, from basic research to clinical trials, highlighting that most of the trials that 
use MSCs are focused on the immune response; for example, the clinical trial reported 
by Leng et al[26] showed that the inflammatory and immune functions were corrected, 
based on measurement of cytokine levels [i.e., tumor necrosis factor (TNF)-α, IL-10] 
and a subset of immune cells (D4, CD8, NK, DC cells) without adverse effects.

SCs and exosomes
All cells in the organism release exosomes, described as extracellular vesicles enclosed 
by a membrane, transporting biologically active molecules, such as lipids, chemokines, 
growth factors, nucleic acids, metabolites, and proteins. The molecular contents of 
exosomes differ depending on their cellular origin, environment, developmental 
phase, and epigenetic modification, among other factors. Active molecules are taken 
up by surrounding cells or circulate in the blood and eventually are taken up by 
distant cells, mediating autocrine, paracrine, and endocrine effects that can be 
exploited therapeutically[29-31].

The terms “exosomes,” “microvesicles,” “microparticles” are used interchangeably, 
including all extracellular vesicles produced by SCs. These were first described in the 
1970s. Exosomes' therapeutic potential was first described in MSC exosomes when it 
was observed that they were cardioprotective in a murine model of acute myocardial 
ischemia/reperfusion injury[32,33].

In this sense, many research types have focused on SC exosomes, emerging the 
exciting prospect of “cell therapy without the cells”[29]. In addition to the great 
regenerative potential, the content of SC exosomes has anti-inflammatory and 
immunomodulatory properties. Moreover, unlike SCs, exosomes do not raise 
immunological reactions, survive in an inflamed medium, do not develop teratomas, 
and protect their content against degrading enzymes[34].

It is also important to mention that exosomes play a significant role in intercellular 
communication and trigger physiological responses, and also have the ability to 
transfer horizontal micro ribonucleic acid. All these processes are facilitated through 
the exosome׳s cargo function[33]; they deliver their cargo to the cell of interest, enter 
the cell, interact with cellular organelles, and contribute to chemical reactions at the 
cellular level with their enzymes, respectively. For this reason, the employment of 
exosomes to living tissues is more feasible and less threatening in comparison to SCs
[34].

As of June 13, 2020, 174 clinical trials have been registered to utilize exosomes 
(Clinicaltrials.gov). However, there are no Food and Drug Administration-approved 
exosome products available on the market[28].

Moreover, preclinical studies have shown encouraging effects of exosomes in 
animal models of acute respiratory distress syndrome and other respiratory diseases, 
showing reduced alveolar inflammation and restoration of leaky epithelial membranes
[4]. Besides, it has been reported that the MSC secretome can be administered through 
inhalation, which is a beneficial characteristic of respiratory diseases. Preliminary 
studies suggest that MSC exosomes might also be efficient for the treatment of 
COVID-19[35].

Nevertheless, it is essential to mention that some other authors have declared the 
role of exosomes in COVID-19 reinfection or reactivation[36], supporting this 
declaration of basic virus biology and physiopathology. Viruses enter the cells using 
the endocytic pathway and exit the host cell by direct budding through the membrane. 
During viral infections, exosomes incorporate pathogen-derived nucleic acids, 
proteins, and lipids, becoming a vector of viral materials for the “Trojan exosome 
hypothesis,” promoting the viral spread and evading the immune response, which 
discourages the use of exosomes[35].
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As a perspective, these exosomes could also be considered for the design of SARS-
CoV-2 vaccine trials, since a research group in Italy at the Istituto Superiore di Sanità 
in Rome declared that they might have a platform for vaccines for the emerging 
diseases based on exosomes, using deoxyribonucleic acid vectors where the antigen is 
fused to an exosome-anchoring protein, which was demonstrated for the Ebola and 
influenza virus, as well as Crimean-Congo hemorrhagic fever, West Nile virus, and 
hepatitis C virus[37].

SARS-CoV-2 CLINICAL TRIALS EMPLOYING SCs OR THEIR 
DERIVATIVES
Many countries, including the United States, Italy, the United Kingdom, France, 
Germany, Brazil, and Jordon, have proposed SCs as a COVID-19 treatment; as 
expected, China hosts almost 50% of these trials. As of June 12, 2020, over 2100 clinical 
trials were officially registered for COVID-19 treatment (ClinicalTrials.gov). These 
clinical trials range from the application of antiviral drugs to novel therapies such as 
cell therapies. At the same time, 169 “cell therapy” trials were registered on Clinical-
Trials.gov. As of August 2020, 38 registered clinical trials were using MSCs, of which 
seven used exosomes for the treatment of COVID-19 (https://clinicaltrials.gov/)[11,
35]; only 16 trials were registered in the ICTRP[2,4,29].

In a recent review in ClinicalTrials.gov (February 2021), we found 4793 COVID-19 
studies, 88 of them used different types of SCs or their derivatives (one employing 
ESCs, two PSCs, three SC exosomes, and 82 MSCs), highlighting that nine of these 
studies are reported as completed, which are summarized in Table 2.

One of these trials was conducted in Beijing's YouAn Hospital in China, from 
January 23, 2020, to February 16, 2020, and seven confirmed COVID-19 patients were 
included in the study and received an intravenous transplant of 1 × 106 MSCs per 
kilogram body weight. The patients had a clinical follow-up of 14 d in which no 
adverse effects were observed, reporting a decreased ratio of serum proinflammatory 
cytokine TNF-α and a subset of immune cells; in the same way, the symptoms of these 
seven patients improved two days after MSC transplantation[1,27].

In another case report, Liang et al[38] administered three doses of UCMSCs to a 65-
year-old woman who had tested positive for SARS-CoV-2 and had clinical signs of ALI 
and severe organ injury caused by an inflammatory response; no side effects were 
reported, and most of the laboratory indexes and computed tomography (CT) images 
showed remission of the inflammation symptoms. The patient was subsequently 
transferred out of the intensive care unit (ICU), and the throat swab test was negative 
four days later. Sánchez-Guijo et al[39] described an additional case report in which 13 
adult COVID-19 patients under invasive mechanical ventilation were included. All the 
patients previously received antiviral and/or anti-inflammatory treatments, including 
steroids. Ten out of thirteen patients received two doses of allogenic adipose tissue-
derived MSCs (AT-MSCs), two patients received one dose, and one patient received 
three doses. Each dose contained 0.98 × 106 AT-MSCs/kg of body weight. As a result, 
no adverse effects were reported, and 70% of the patients exhibited clinical 
improvement and were discharged from the ICU; however, four patients remained 
intubated, and two patients died.

As previously mentioned, MSC exosomes have also been used in clinical trials. Chu 
et al[40], from February 26, 2020, to April 30, 2020, recruited six patients diagnosed 
with COVID-19 pneumonia (two patients with severe symptoms and four patients 
with minor symptoms) who received nebulization of MSC-derived exosomes in 
different modalities at the end of the beginning of antiviral treatment for a while. No 
acute allergic reactions or secondary allergic reactions were observed. Their results 
indicated that MSC-derived exosome nebulization is a safe and feasible therapeutic 
approach for treating patients with COVID-19 pneumonia, showing clinical benefits. 
Moreover, chest CT revealed absorption of pulmonary lesions. Although the research 
has shortcomings, it is considered an essential antecedent for further research.

Another clinical trial that evaluates the use of exosomes is being developed in Ruijin 
Hospital Shanghai Jiao Tong University School of Medicine in Shanghai, China, by Qu 
et al[41], who evaluate aerosol's safety and efficiency inhalation of allogenic AT-MSC-
derived exosomes in the treatment of severe COVID-19 pneumonia patients. In this 
research, participants will receive conventional treatment plus one dose of aerosol 
inhalation of MSC-derived exosomes a day at 2 × 108 nanovesicles/3 mL for five 
consecutive days.

https://clinicaltrials.gov/
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Table 2 Clinical trials completed using different types of stem cells or their derivatives

No. Title Conditions Interventions Locations

1 Study Evaluating the Safety and 
Efficacy of Autologous Non-
Hematopoietic Peripheral Blood 
SCs in COVID-19

COVID-19 Biological: Autologous NHPBSC; Drug: 
COVID-19 standard care

Abu Dhabi SCs Center, Abu Dhabi, 
United Arab Emirates

2 Mesenchymal SCs Therapy in 
Patients With COVID-19 
Pneumonia

COVID-19, 
Pneumonia

Other: Mesenchymal SCs University of Health Sciences, Istanbul, 
Turkey

3 Treatment with Human Umbilical 
Cord-derived Mesenchymal SCs for 
Severe Corona Virus Disease 2019 
(COVID-19)

COVID-19 Biological: UC-MSCs; Biological: Saline 
containing 1% Human serum albumin 
solution without UC-MSCs

General Hospital of Central Theater 
Command, Wuhan, Hubei, China

4 Mesenchymal SCs for the 
Treatment of COVID-19

COVID-19, 
Prophylaxis

Biological: PrimePro (UC-MSCs); Other: 
Placebo

Southern California Hospital at Culver 
City/Southern California Hospital at 
Hollywood, Culver City, California, 
United States

5 Use of UC-MSCs for COVID-19 
Patients

COVID-19, ARDS Biological: Umbilical Cord Mesenchymal; 
SCs + Heparin along with best supportive 
care. Other: Vehicle + Heparin along with 
best supportive care

Diabetes Research Institute, University 
of Miami Miller School of Medicine, 
Miami, Florida, United States

6 Therapeutic Study to Evaluate the 
Safety and Efficacy of DWMSC in 
COVID-19 Patients

COVID-19, SAR Drug: allogeneic mesenchymal stem cell; 
Other: Placebo

Site 550: University of Hassanudin/Dr. 
Wahidin Sudirohusodo Hospital, 
Makassar, Indonesia

7 Investigational Treatments for 
COVID-19 in Tertiary Care Hospital 
of Pakistan

COVID-19, Cytokine 
Release Syndrome, 
Critical Illness, ARDS

Procedure: Therapeutic Plasma exchange; 
Biological: Convalescent Plasma; Drug: 
Tocilizumab; Drug: Remdesivir; Biological: 
Mesenchymal stem cell therapy

Pak Emirates Military Hospital, 
Rawalpindi, Punjab, Pakistan

8 Evaluation of Safety and Efficiency 
of Method of Exosome Inhalation in 
SARS-CoV-2 Associated 
Pneumonia.

COVID-19, 
Pneumonia

Drug: EXO 1 inhalation; Drug: EXO 2 
inhalation; Drug: Placebo inhalation

Medical Centre Dinasty, Samara, 
Russian Federation

9 A Pilot Clinical Study on Inhalation 
of Mesenchymal SCs Exosomes 
Treating Severe Novel Coronavirus 
Pneumonia

COVID-19 Biological: MSCs-derived exosomes Ruijin Hospital Shanghai Jiao Tong 
University School of Medicine, 
Shanghai, Shanghai, China

United States National Library of Medicine, ClinicalTrials.gov, 02/21/2021. COVID-19: Coronavirus disease 2019; NHPBSC: Non hematopoietic peripheral 
blood SCs; SCs: Stem cells; MSCs: Mesenchymal stem cells; UC-MSCs: Umbilical cord-derived MSCs; ARDS: Acute respiratory distress syndrome; SARS-
CoV-2: Severe acute respiratory syndrome coronavirus 2.

One published study used BMSC-derived exosomes in COVID-19-infected patients 
and evaluated the treatment's safety and effectiveness, reporting an overall 
improvement in clinical symptoms and laboratory tests within 3-4 d after treatment 
without adverse effects[36].

However, it is crucial to recognize that all these clinical trials have shown 
advantages and disadvantages as any other treatment in development, which are 
resumed in Table 3.

THE INCONVENIENCE OF USING MSCs IN COVID-19
As previously mentioned, the use of MSCs as an immunomodulatory and regenerative 
treatment has been suggested to treat COVID-19. Nevertheless, there are many 
challenges associated with MSC therapy, including low in vivo survival rates, dosing, 
cell isolation and growth strategies, and donor variability issues[27]. Moreover, it is 
essential to mention the intervention of the ACE2 receptor in COVID-19, as Desterke et 
al[42] reported that ACE2 is highly expressed in MSCs from adult bone marrow, 
adipose tissue, or umbilical cord[42].

ACE2 is a type I transmembrane metallocarboxypeptidase that is homologous to 
ACE, an enzyme that plays a vital role in the renin-angiotensin system. It is mainly 
expressed in alveolar type I and II cells, fibroblasts, endothelial cells, and 
macrophages. Currently, ACE2 protein expression has also been reported in the 
kidney and gastrointestinal tract, tissues that have been shown to harbor SARS-CoV-2, 
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Table 3 Advantages and disadvantages of stem cells in clinical trials

Advantages Disadvantages

ESCs

High differentiation capability which can recapitulate appropriate cell-intrinsic phenotypes Ethical dilemma

Grow up in the laboratory from a single cell for later transplantation Tumorigenesis risk

MSCs

Immunomodulatory properties A narrower spectrum of differentiation

Widespread availability and accessibility High expression of ACE2 receptor

Limited ethical concerns Expression of MHC I and II

ESCs: Embryonic stem cells; MSCs: Mesenchymal stem cells; ACE2: Angiotensin-converting enzyme 2; MHC: Major histocompatibility complex.

highlighting treatments with ACE inhibitors or the receptor antagonist angiotensin II 
notably increase the expression of ACE2. The reason is that patients with these 
pathologies who are treated with these medicines have an increased risk of developing 
COVID-19[42].

Some studies have demonstrated that SARS-CoV-2 enters the human cell through 
the receptor ACE2, acting as a receptor-binding domain for the virus spike complex, 
allowing viral attachment, fusion, intracellular entry, and COVID-19 infection[43,44]. 
Once the virus reaches the circulatory system, after replicating in type II pneumocytes, 
it infects other organs that express ACE2, which can generate multiple organ failure
[45].

Considering the abovementioned findings, the expression level of ACE2 in MSCs 
could make MSCs not beneficial in COVID-19 patients if its expression is high. 
Currently, there are no data concerning ACE2 expression levels in MSCs of different 
origins used for therapy. Moreover, Desterke et al[42] reported that ACE2 expression 
was significantly higher in MSCs derived from adipose tissue and adult bone marrow, 
and lower expression levels were found in placenta-derived MSCs but only in early 
passages of cultures. However, it is imperative to highlight that Desterke et al[42] have 
also declared that hESCs and hiPSCs express deficient levels of ACE2. Therefore, it is 
crucial to determine if the SC population that would be transfused to patients could 
also be a target for SARS-CoV-2 entry into the human body.

ETHICAL RISK OF THE SCs USE IN CLINIC
As previously mentioned, many clinical trials employ SCs in the COVID-19 illness. 
Nevertheless, there has always been insecurity in the use of this type of cells. The ESCs 
show the disadvantage of tumorigenesis risk, widely discussed in the literature[46]. 
However, a fact of great weight that limits its use is the ethical dilemma. Since the 
beginning of the ESCs use in the research field, the thought of human embryo 
destruction has existed. Being the fundamental question: whether it is morally 
acceptable to pursue novel therapies for curing illnesses at the expense of destroying 
an early human embryo? Reason by which many countries such as Italy and United 
States have forbidden the research using hESCs. Since then, new strategies to avoid 
this problem have been proposed; in this sense, iPSCs technology has provided new 
opportunities[47].

Moreover, MSCs have arisen as a leading contender for cell sources due to their 
limited ethical concerns and low risk of tumor formation. Additionally, MSCs show 
widespread availability and accessibility[48]. However, no matter what type of SCs are 
used as novel treatments, there is a concern in the unproven commercial practices 
marketing that involve SC treatments, reason by which the International Society for 
Stem Cell Research in 2007 established a task force of scientific, medical, and bioethical 
experts to develop guidelines for the clinical translation of SC research. These 
guidelines address any attempt to develop novel clinical applications of SCs and their 
direct derivatives[49]. It is essential to mention that there are two central aspects to the 
definition of innovative therapies: the departure from standard medical therapy and 
that the employed therapy has not been validated or there is not enough available 
evidence to support the safety and efficiency of the therapy. Moreover, the only adult 
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stem cell therapy currently accepted for therapeutic use as standard best practice are 
hematopoietic SCs[50].

CONCLUSION
With all the above, pre-clinical and clinical trials in early-stage have demonstrated the 
efficiency and safety of SC treatment in COVID-19 patients; however, it is important to 
continue investigating different types of SCs and their derivatives in large-scale 
researches to confirm and validate the safety and efficacy profile of these therapies 
with reliable evidence. Likewise, considering their advantages and disadvantages, it is 
essential to change the paradigm using some types of SCs that could help obtain better 
results and are not used by the persistence of some taboos.

Finally, it is imperative to recognize that we are not prepared to face outbreaks of 
this magnitude. Worldwide medicine must be prepared for future pandemics since it 
needs to face globalization and the factors it carries, such as international travel, global 
economic exchange, and social behavior. We must advance in regenerative medicine 
and SCs therapies to improve the immune response, regenerate damaged tissues or 
systems, and understand virus behaviors in cultured cells and organoids.
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Abstract
BACKGROUND 
The development of regenerative therapy for human spinal cord injury (SCI) is 
dramatically restricted by two main challenges: the need for a safe source of 
functionally active and reproducible neural stem cells and the need of adequate 
animal models for preclinical testing. Direct reprogramming of somatic cells into 
neuronal and glial precursors might be a promising solution to the first challenge. 
The use of non-human primates for preclinical studies exploring new treatment 
paradigms in SCI results in data with more translational relevance to human SCI.

AIM 
To investigate the safety and efficacy of intraspinal transplantation of directly 
reprogrammed neural precursor cells (drNPCs).

METHODS 
Seven non-human primates with verified complete thoracic SCI were divided into 
two groups: drNPC group (n = 4) was subjected to intraspinal transplantation of 5 
million drNPCs rostral and caudal to the lesion site 2 wk post injury, and lesion 
control (n = 3) was injected identically with the equivalent volume of vehicle.

RESULTS 
Follow-up for 12 wk revealed that animals in the drNPC group demonstrated a 
significant recovery of the paralyzed hindlimb as well as recovery of somato-
sensory evoked potential and motor evoked potential of injured pathways. 
Magnetic resonance diffusion tensor imaging data confirmed the intraspinal 
transplantation of drNPCs did not adversely affect the morphology of the central 
nervous system or cerebrospinal fluid circulation. Subsequent immunohisto-
chemical analysis showed that drNPCs maintained SOX2 expression characteristic 
of multipotency in the transplanted spinal cord for at least 12 wk, migrating to 
areas of axon growth cones.

CONCLUSION 
Our data demonstrated that drNPC transplantation was safe and contributed to 
improvement of spinal cord function after acute SCI, based on neurological status 
assessment and neurophysiological recovery within 12 wk after transplantation. 
The functional improvement described was not associated with neuronal differen-
tiation of the allogeneic drNPCs. Instead, directed drNPCs migration to the areas 
of active growth cone formation may provide exosome and paracrine trophic 
support, thereby further supporting the regeneration processes.

Key Words: Direct cell reprogramming; Neural precursor cells; Directly reprogrammed 
neural precursor cells; Spinal cord injury; Nonhuman primates; Regenerative therapy, 
Evoked potentials

©The Author(s) 2021. Published by Baishideng Publishing Group Inc. All rights reserved.

Core Tip: Here, we describe a novel regenerative therapy of spinal cord injury by means 
of intraspinal transplantation of directly reprogrammed neural precursor cells 
(drNPCs). We showed that after transplantation of drNPC non-human primates 
demonstrated a significant recovery of the paralyzed hindlimb and recovery of somato-
sensory and motor evoked potential of injured pathways. Immunohistochemical 
analysis showed that drNPCs maintained multipotency in the transplanted spinal cord 
for at least 12 wk, migrating to areas of axon growth cones. Our data demonstrated that 
drNPCs transplantation was safe and contributed to improvement of spinal cord 
function after acute complete spinal cord injury in non-human primates.
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INTRODUCTION
Traumatic spinal cord injury (SCI) is a severe and often incurable disease of the central 
nervous system, with an annual age-standardized incidence rate of 13 (11-16) per 
100000[1]. Every year nearly 500000 or even more new people suffer an SCI[1,2]. Due 
to the extremely high degree of disability it causes, SCI is considered to be the highest 
priority candidate for the development of regenerative approaches for clinically unmet 
needs[3]. All current approaches to medical rehabilitation (physical neurorehabil-
itation, neurostimulation, kinesiotherapy, etc.) after severe complete SCI (severe ASIA 
A and B) have poor efficacy, providing no noticeable restoration of lost function[4].

Neural stem cell (NSC)/neural progenitor cell (NPC) transplantation is generally 
considered one of the most promising future therapies for SCI[5-10]. Development of 
methods for generating autologous human NSCs/NPCs by direct reprogramming of 
somatic cells[11-15] has offered fundamentally new possibilities for this approach. 
Several studies on animal models of SCI (including primates) have established proof of 
efficacy for allogeneic or even xenogeneic NSC/NPC transplantation[9,12,16,17]. 
However, there are still very few clinical trials using these cells, and therefore the 
possibility of functional restoration after spinal cord injury remains an open question
[7,10].

Autologous NSCs obtained by directly reprogramming cells from various starting 
cell types are the most promising for clinical use because of better genome stability 
and lower risk of tumor transformation compared to induced pluripotent stem derived 
NPCs. Recently it has been shown that directly reprogrammed neural precursor cells 
(drNPCs) obtained through transient transfection of bone marrow mononuclear cells 
with non-integrating synthetic plasmids expressing musashi-1, neurogenin-2, and 
methyl-CpG binding domain protein 2 demonstrated normal karyotype and all 
fundamental features of neural stem cells[11]. Transplantation studies in small animal 
models have provided very promising preliminary results for the use of human 
drNPCs in the treatment of experimental SCI and stroke[12,13] prompting us to 
initiate a study in non-human primates (NHP).

Previously we described the novel model of controlled complete SCI on NHP[18]. 
The goal of the current study was to investigate the safety and efficacy of intraspinal 
transplantation of allogeneic drNPCs in this NHP (Macaca mulatta) model of complete 
subacute SCI.

MATERIALS AND METHODS
Directly reprogrammed neural precursor cells
Allogeneic drNPCs were created from the bone marrow mononuclear cells of one 
female Macaca mulatta according to methods previously described[11]. The bone 
marrow (5 mL) was collected from the head of the humerus under ketamine anesthesia 
(10 mg/kg). Briefly, direct reprogramming was made by means of transient 
transfection of a cocktail of three transcription factors: musashi-1, neurogenin-2, and 
methyl-CpG binding domain protein 2.

Two weeks before transplantation, the cryopreserved drNPC cells were thawed and 
seeded onto laminin-coated plates and expanded in neuro Cult-XF basal medium 
(Stem Cell Technologies) with 1% Pen-Strep (Gibco), 1 × B-27 Supplement (50 ×) 
(Gibco), 20 ng/mL of bFGF (Peprotech), and 20 ng/mL of epidermal growth factor 
(Peprotech) (complete growth medium). The cells were incubated at 37 ºС in 5% СО2 
and 5% О2. Shortly before intraspinal injection, the cells were detached from the plates 
with Stem Pro Accutase (Thermo Fisher Scientific). A sample was taken for flow 
cytometry analysis, and the rest were divided into two vials. Cells from one vial were 
seeded onto laminin-coated cover glass Petri dishes for immunocytochemistry (ICC) 
analysis, as described below. The cells from the other vial were tested for viability 
using a Luna 2 cell counter and injected into animals. Viability was no less than 98% in 
all cell preparations, and lapsed time between formulation and injection did not 
exceed 20 min.
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Immunophenotyping of drNPCs
Cells were cultured for 14 d in complete growth medium followed by fixation with ice-
cold buffered 4% paraformaldehyde for 30 min. For flow cytometry cells were 
detached with Stem Pro Accutase followed by fixation with ice-cold buffered 4% 
paraformaldehyde for 10 min. The following antibodies were used: nestin (R and D 
and Abcam), SOX2 (BD Biosciences), βIII-tubulin (R&D), microtubule associated 
protein 2 (MAP2) (Sigma-Aldrich), glial fibrillary acidic protein (GFAP) (DAKO), NF-
200 (Sigma-Aldrich), macro H2A.1 (Abcam), human leukocyte antigen (HLA)-ABC 
(BD Pharmingen), and HLA-DR (Miltenyi Biotec). For flow cytometry, directly labeled 
primary antibodies were used at a concentration of 10 µg/mL. For ICC, all primary 
antibodies were diluted in PBS-TT (PBS with 0.2% Tween 20, 0.3% Triton X-100, and 
1.0% normal goat serum) at a concentration of 1-5 µg/mL. Goat anti-mouse IgG (H + 
L) labeled with Alexa Fluor 488 and goat anti-rabbit IgG (H + L) labeled with Alexa 
Fluor 633 (Life Tech, United States), all diluted at 1:400 in PBS-TT, served as secondary 
antibodies. Cell nuclei were counterstained with Hoechst (1 µg/mL; Invitrogen, 
United States). A Nikon A1 scanning laser confocal microscope (Nikon Company, 
Japan) was used to evaluate all ICC, while an S3e cytometer (Bio-Rad) was used for 
flow cytometry.

Animals
Seven mature Macaca mulatta male NHPs were enrolled in this study. Animals were 
kept under natural light conditions with free access to water and fed two times a day. 
All procedures were performed in accordance with the European Convention for the 
Protection of Vertebrate Animals used for Experimental and Other Scientific Purposes 
(European Treaty Series No. 123, Strasbourg, March 18, 1986; Directive 2010/63/EU of 
the European Parliament and Council of 22 September 2010 On the Protection of 
Animals Used for Scientific Purposes). The protocol of the study was approved by the 
Bioethics Committee of Research Institute of Medical Primatology (Statement from 
July 13, 2016), and the Local Ethical Committee of the FRCC of FMBA of Russia 
(Statement No. 10b of September 12, 2016).

Prior to surgery, NHPs were housed in an open-air cage (20 m2 enclosure with 
enriched environment such as climbing/hanging gear and toys providing an 
opportunity for games and socialization) at the Sochi Institute of Medical Primatology. 
After surgery, NHPs were housed in large individual cages with toys and 
climbing/hanging gear, adopted for the animals with distal paralysis in one limb. The 
cages were near each other, which allowed physical contacts between NHPs and their 
socialization. The length of the study was minimized. Subjects were kept under 
natural light conditions with free access to water and fed two times a day. To avoid 
distress, NHPs were contacted only with the staff they knew well, whom they allowed 
to do intramuscular injections. All manipulations out of the cage [preparation for the 
surgery, detection of the evoked potentials, neurological examination of the paralyzed 
left limb, magnetic resonance diffusion tensor imaging (MRI), etc.] were conducted 
under sedation by ketamine (10 mg/kg, intramuscular). Health and well-being of the 
animals were monitored daily by vet staff using exterior, activity, and appetite as 
criteria and were followed by medical examination, if necessary.

The animals were randomly assigned to two groups: the lesion control group [(LC), 
n = 3] and drNPC transplantation group (NPC, n = 4) (Table 1).

SCI induction
SCI induction was performed as described before[18]. Briefly, animals were 
anesthetized by endotracheal inhalation with isoflurane (1.2–2.0 vol%). After skin 
incision and paraspinal muscle separation, Th 8 interlaminectomy was performed. The 
dura mater was dissected, and the spinal cord exposed. Guided by intraoperative 
recording of somatosensory evoked potentials (SSEPs) and motor evoked potentials 
(MEPs), 25% of the spinal cord cross-section in the projection of the left dorsal 
funiculus and left lateral corticospinal tract was excised with a length of about 5 mm. 
Further excision was continued until the SSEPs and MEPs from the corresponding 
segments of the left hindlimb disappeared. Before closing the wound, duraplasty was 
performed using the autofascia, followed by sealing with neurosurgical fibrin glue. In 
the postoperative period, all animals received antibiotic therapy (ceftriaxone, 50 
mg/kg, intramuscular, once a day). Pain was managed by the administration of 
ketonal (15 mg/kg).

Implantation of drNPCs
All NHPs underwent a second surgery 2 wk after the SCI induction. In the experi-
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Table 1 Characteristics of experimental groups

Group No/Age1/Weight2 First surgery (Week 0)

Second 
surgery (2 wk 
after the 
injury)

Hindlimb 
score MRI SSEPs, MEPs Histology 

and IHC

Lesion 
control

LC1/4.3/5.2 
LC2/4.2/5.3 
LC3/4.1/5.1

Sham surgery + 
vehicle

NPC NPC1/3.3/4.1 
NPC2/4.3/4.6 
NPC3/3.8/4.6 
NPC4/3.6/4.1

Resection of  25% area of 
spinal cord in the 
projections of lateral 
pyramidal tracts and the 
dorsal column at the 
level Th 7-8 (as 
described)

Implantation of 
5 × 106 drNPCs

Before 
transplant and 
2, 4, 6, 8, and 12 
wk post 
transplant

Before 
transplant and 
2, 4, 8, and 12 
wk post 
transplant

Before lesion, 
(intraoperatively, D0), 2 
wk after lesion (D14), 8 
and 12 wk post 
transplant

Nissl, van 
Gieso; IHC: 
GFAP, NF200, 
BDNF

1Age in years.
2Weight in kilograms at the beginning of the experiment. BDNF: Brain derived neurotrophic factor; drNPCs: Directly reprogrammed neural precursor cells; 
GFAP: Glial fibrillary acidic protein; IHC: Immunohistochemistry; MEP: Motor evoked potential; MRI: Magnetic resonance imaging; NPC: Neural 
progenitor cell group; SSEP: Somatosensory evoked potential.

mental (drNPC) group, the spinal cord around the injury was exposed again, and a 
drNPC suspension was injected into the perifocal zone in the projection of the dorsal 
funiculus and lateral corticospinal tract above and below the lesion (Supplementary 
Figure 1). A dose of 5 × 106 cells, resuspended in a total volume of 100 mL in Hanks’ 
solution, was injected at four sites at a rate of 5 mL/min (25 mL per injection) by 
means of a sterile system consisting of a silicone tube and a 28G needle attached to a 
Hamilton 500 microsyringe, which was connected to a nanoinjector (Leica 
Microsystems). After each injection, the needle was left in the spinal cord tissue for 3 
min and then slowly withdrawn. To prevent spinal cord compression by the scar 
tissue of the dura mater, duraplasty with the autofascia was repeated. In the control 
(LC) group, the same surgery was performed, with the equivalent number of injections 
and volume of Hanks’ solution. No immunosuppression therapy was administered for 
either group.

Neurophysiological and imaging assessment
Hindlimb function: The degree of neurological deficit was determined using the NHP 
hindlimb score system suggested with our modifications[18] to assess the severity of 
lower monoplegia. The scores were assessed for the ipsilateral (left) limb. The score 
included an assessment of active flexion in large joints, reliance on the limb, tendon 
and periosteal reflexes, muscle tones, toe gripping, activity, and movement 
coordination.

MRI morphometry: MRI morphometry was conducted as described previously[18]. 
Briefly, T2-weighted images were obtained in two orthogonal planes at the thoracic 
and cervical level as well as at the level of the head. The structures were measured 
using the RadiAnt software (Medixant). The area was calculated using the ImageJ 
freeware package (National Institutes of Health, Bethesda, MD, United States).

Neurophysiological examination: Intraoperative monitoring of transcranial myogenic 
electrical potentials, MEPs and SSEPs, was performed during all the surgical 
interventions using the Neuro-IOM system (Neurosoft, Russia), as described 
previously[18]. Briefly, the registration of the latency and amplitude of the muscle 
response for abductor hallucis (AH), musculus tibialis anterior (TA), and musculus 
quadriceps femoris (QF) was performed with the active electrode placed in the region 
of the motor point. The amplitude and latency parameters of the cortical SSEP 
response of the hindlimbs in the form of the first positive (P1) and negative (N1) peaks 
were evaluated by sequential stimulation of nervus tibialis. The absolute values of the 
SSEP and MEP parameters varied in different animals and different muscle groups; 
therefore, we used a scoring system from the study[19] modified by us[18] from 0 (no 
evoked potentials) to 5 [the amplitude is 50%–100% of the baseline (before the injury) 
and the latency is no higher than 110% of the baseline] for SSEP-nervus tibialis as well 
as MEP-AH, MEP-TA, and MEP-QF.

Animal termination
Twelve weeks post transplantation, all animals were deeply anesthetized with an 

https://f6publishing.blob.core.windows.net/2f38dc39-a3f6-49c5-91ae-2fb17a8c069d/WJSC-13-452-supplementary-material.pdf
https://f6publishing.blob.core.windows.net/2f38dc39-a3f6-49c5-91ae-2fb17a8c069d/WJSC-13-452-supplementary-material.pdf
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intravenous administration of ketamine (20 mg/kg) followed by infusion of a single 
extra-high dose of propofol (5 mL of a 1% solution). Transcardial perfusion was 
performed with a buffered, cooled 10% formalin solution as described previously[18]. 
The vertebral columns were post-fixed for 24 h in the same solution at 4 °C. The 
spinals cords were isolated from the fixed preparations and sagittal sections 
(vibratome, 100 µm and paraffin 5–7 µm) were prepared from the region of injury and 
transplantation.

Histological and immunohistochemical analysis
Morphological studies were carried out on cresyl violet (Nissl), and hematoxylin and 
eosin stained paraffin sections, as described previously[18]. Immunohistochemical 
staining was performed on 3–5 μm paraffin sections as well as on 50–100 μm 
vibratome sections, both using fluorescence detection. Sections of the spinal cord were 
stained with antibodies to β-tubulin III (2 μg/mL), nestin (2 μg/mL; R&D), SOX2 (5 
μg/mL; BD Biosciences), MAP2 (5 μg/mL; Sigma-Aldrich), NF200 (5 μg/mL; Sigma-
Aldrich), GFAP (2 μg/mL; DAKO), brain derived neurotrophic factor (5 μg/mL; 
Abcam), and macro H2A.1 (Abcam). Secondary antibodies used were Alexa Fluor 488 
goat anti-mouse IgG (H + L) and Alexa Fluor 633 goat anti-rabbit IgG (H + L) (highly 
cross-absorbed, all dilutions 1:400; Invitrogen, United States); counterstaining was 
done with Hoechst. Fluorescence was detected by a confocal microscope Nikon A1 
(Nikon, Japan). For the quantification of positive cells, we used NIS Elements software 
(Nikon).

Statistical analysis
Statistical analysis of the hindlimb score, SSEP, MEP, and MRI was carried out on the 
three NHPs of the LC group and the four NHPs of the NPC group at each time point. 
The data were summarized as the median and the first and third quartiles or as the 
mean ± SD.

To compare baseline data in the groups, the nonparametric Mann–Whitney test for 
quantitative data and the χ2 or Fisher exact test for qualitative data were used. The 
correlation between quantitative variables was estimated by Spearman’s method. The 
hindlimb score and MEP/SSEP score data were analyzed by calculating Pearson’s 
linear correlation coefficient.

For the main analyses (hindlimb score, MEPs, SSEPs), we used a mixed linear model 
with time points as nested data, the group and timeline being fixed factors; their 
interaction was also estimated. A two-sided probability threshold of 0.05 was used to 
determine statistical significance. The analyses were performed using IBM® SPSS® 
Statistics Version 23.0.

RESULTS
Immunophenotyping of drNPCs
Flow cytometry and immunocytochemical characterization of cultured allogeneic 
Macaca mulatta drNPCs was performed prior to transplantation. Expression of the 
immature neural stem/progenitor markers SOX2 and nestin was detected in 85.6% 
and 90.5% of the cells, respectively, as determined by flow cytometry, while GFAP 
expression was ubiquitous with up to 99.4% of the cells positive for this marker. The 
neuronal markers βIII-tubulin and MAP2 were detected in 85.8% and 58.6% of the 
cells, respectively (Figure 1A-C). Human leukocyte antigen DR expression was 
detected in a very small subpopulation, not more than 4.4% (Figure 1A), while HLA-
ABC was not detected in a noninflammatory environment at all (Supplementary 
Figure 2). When drNPC were cultured on laminin coated plastic in complete growth 
media most cells coexpressed nestin and GFAP (Figure 1B). A smaller GFAP positive 
population appeared to have decreased nestin expression, indicating glial fate differ-
entiation. drNPC cultures exhibited spontaneous early differentiation with formation 
of βIII-tubulin and MAP2 positive networks (Figure 1C-E) with most cells maintaining 
SOX2 expression, confirming their immature status. Taken together, flow cytometry 
and ICC demonstrated that drNPC cells are a relatively homogeneous neural 
stem/progenitor population that can initiate neuronal and glial differentiation in 
culture.

Time course of neurological deficit
Analysis of hindlimb score changes with time showed no noticeable improvement of 

https://f6publishing.blob.core.windows.net/2f38dc39-a3f6-49c5-91ae-2fb17a8c069d/WJSC-13-452-supplementary-material.pdf
https://f6publishing.blob.core.windows.net/2f38dc39-a3f6-49c5-91ae-2fb17a8c069d/WJSC-13-452-supplementary-material.pdf
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Figure 1 Phenotypic characterization of directly reprogrammed neural precursor cells by flow cytometry and immunocytochemistry. A: 
Flow cytometry: blue peaks-negative control (isotype immunoglobulins); from left to right, top to bottom: Glial fibrillary acidic protein, nestin, βIII-tubulin SRY-box 
transcription factor 2 (SOX2), microtubule associated protein 2 (MAP2), human leukocyte antigen (HLA)-DR; B: Nestin and glial fibrillary acidic protein staining (most 
cells are double positive); C: βIII-tubulin (green); D: βIII-tubulin (green) and SOX2 (red); E: MAP2 (red) and SOX2 (green) (D and E: Partial spontaneous 
differentiation of directly reprogrammed neural precursor cells on laminin/poly-L-lysine coated plastic). In all panels, nuclei are counterstained with Hoechst (blue). 
Scale bar, 50 μm (B, C, and E) and 100 μm (D).

the neurological state of control animals (LC group) that underwent SCI induction 
surgery and were administered vehicle. In contrast, the animals with implanted 
drNPCs (NPC group) exhibited recovery of motor function beginning on the fourth 
week after transplantation. Statistical analysis showed that the time course of the 
hindlimb score recovery was significantly different in the NPC group (P < 0.01, as 
estimated using the mixed linear model) as compared to the LC group (Figure 2).
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Figure 2 Changes in the hindlimb score in the experimental groups up to 12 wk after directly reprogrammed neural precursor cell 
transplantation or vehicle injection. A: Hindlimb scores of individual animals; B: Box plots of the parameters in the lesion control (LC) group and neural 
progenitor cell (NPC) groups (the median, the minimum, and maximum values and the first and third quartiles). The hindlimb scores of the LC group did not change 
over time. However, the hindlimb scores in the NPC group significantly increased over time and were statistically significant at 4, 8, and 12 wk post transplantation 
when compared to the pretransplantation time point (P < 0.01). Differences between the LC and NPC groups are significant from the 4th wk (P < 0.01, as estimated 
using the mixed linear model).

Analysis of individual parameters of the hindlimb score in drNPC treated animals 
showed that the muscle tone and the tendon and periosteal reflexes were normalized 
by 12 wk after transplantation (Supplementary Table 1). By that time, all NHPs were 
able to flex the hindlimb at large joints, use the hindlimb when walking, and use its 
digits for grip when climbing. Two of the four animals (NPC1 and NPC4) exhibited 
the most significant functional recovery as they were able to jump using the ipsilateral 
hindlimb for support and actively use this limb when climbing. In general, their 
behavior differed little, if at all, from that of healthy NHPs, indicating near complete 
recovery of function.

Analysis of SSEPs and MEPs
Estimation of MEPs and SSEPs both immediately after the injury and 2 wk post injury 
showed that the SSEPs from nervus tibialis of the left hindlimb and MEPs from the left 
AH and TA were either absent (NPC3, NPC4) or had amplitudes decreased by more 
than 80% (LC1-3, NPC1, NPC2) in all of the seven animals shortly before the second 
surgery and implantation, indicating a complete SCI (Supplementary Table 2 and 
Figure 3A). The absolute values of amplitude and latency varied substantially in 
different animals and different groups of muscles (Supplementary Tables 2-4); 
therefore, when performing comparative analysis, we took the values of these 
parameters in each animal before the injury to be 100%. We also used the point scale 
for estimation of SSEPs and MEPs suggested by Ye et al[19], which we adapted for our 
model[18] (Supplementary Table 5). In both groups the amplitude of SSEP, MEP-AH, 
and MEP-TA at day 14 (before the second surgery) varied from 0 points (absence of 
EP) to 1 point in the EP score (the maximal value was 17.4% in NHP LC2) (Supple-
mentary Table 2). Due to this heterogeneity, we decided to define, as criteria for 
recovery at week 12, an increase in amplitude of 1 point or more. In the LC group, 
neither MEP nor SSEP parameters changed considerably at 12 wk after the vehicle 
injection. Even though NHPs in the LC group had residual MEP-AH (from 10% to 
17%, 1 point) at day 14, we did not find MEP-AH at week 12 in two of the three NHPs 
(LC1, LC3), indicating deterioration over time. In LC2, which had 17.4% of residual 
MEP-AH amplitude at day 14, we detected MEPs from the left AH; however, their 
amplitude was as low as 4% of the baseline value, i.e. lower than the residual MEP-AH 
(Figure 3A and Supplementary Table 2). In contrast, the amplitude of the MEPs of the 
ipsilateral AH recovered over 50% of the baseline value in two of the four NHPs with 
implanted drNPCs (NPC1, NPC2) and to 14% and 17%, respectively, in the other two 
NHPs (NPC3, NPC4) (Figure 3A and Supplementary Table 2). Thus, all NHPs in the 
NPC group demonstrated recovery of MEP-AH by our criteria: from 1 to 3 points for 
NPC1 and NPC2 [NPC1: 9% (day 14)–56% (week 12); NPC2: 11% (day 14)–55% (week 

https://f6publishing.blob.core.windows.net/2f38dc39-a3f6-49c5-91ae-2fb17a8c069d/WJSC-13-452-supplementary-material.pdf
https://f6publishing.blob.core.windows.net/2f38dc39-a3f6-49c5-91ae-2fb17a8c069d/WJSC-13-452-supplementary-material.pdf
https://f6publishing.blob.core.windows.net/2f38dc39-a3f6-49c5-91ae-2fb17a8c069d/WJSC-13-452-supplementary-material.pdf
https://f6publishing.blob.core.windows.net/2f38dc39-a3f6-49c5-91ae-2fb17a8c069d/WJSC-13-452-supplementary-material.pdf
https://f6publishing.blob.core.windows.net/2f38dc39-a3f6-49c5-91ae-2fb17a8c069d/WJSC-13-452-supplementary-material.pdf
https://f6publishing.blob.core.windows.net/2f38dc39-a3f6-49c5-91ae-2fb17a8c069d/WJSC-13-452-supplementary-material.pdf
https://f6publishing.blob.core.windows.net/2f38dc39-a3f6-49c5-91ae-2fb17a8c069d/WJSC-13-452-supplementary-material.pdf
https://f6publishing.blob.core.windows.net/2f38dc39-a3f6-49c5-91ae-2fb17a8c069d/WJSC-13-452-supplementary-material.pdf
https://f6publishing.blob.core.windows.net/2f38dc39-a3f6-49c5-91ae-2fb17a8c069d/WJSC-13-452-supplementary-material.pdf


Baklaushev VP et al. SCI treatment by directly reprogrammed neural precursors

WJSC https://www.wjgnet.com 460 May 26, 2021 Volume 13 Issue 5

Figure 3 Functional assessment. A: Examples of somatosensory evoked potential (SSEP) and motor evoked potential (MEP) from all animals in the lesion 
control (LC) group and neural progenitor cell (NPC) group. Red circles indicate lack of recovery. Green arrows indicate recovery by 1 point of the EP scale. The MEP-
musculus quadriceps femoris (QF) served as an internal control as the neighboring quadriceps femoris pathways were not specifically dissected and thus minimally 
affected. The MEP-quadriceps femoris showed no deterioration over time indicating the safety of the transplant procedure and the directly reprogrammed NPCs; B: 
Box plots of evoked potential scores in the LC and NPC groups (median, minimum, and maximum values and first and third quartiles). Differences between the 
groups 12 wk after the transplantation were significant (P < 0.01, as estimated using the mixed linear model); C: Semiquantitative analysis of the MEP-abductor 
hallucis and MEP-tibialis anterior latencies on the ipsilateral side 12 wk after directly reprogrammed NPC transplantation or vehicle injection. AH: Musculus abductor 
hallucis; TA: Musculus tibialis anterior.

12)]; and from 0 to 1 point for NPC3 and NPC4 (from 0 at day 14 to 14% and 17% at 
week 12 for NPC3 and NPC4, respectively) (Supplementary Table 5).

In the LC group only one NHP (LC1) demonstrated some spontaneous recovery of 
MEP-TA from 0 at day 14 to 1 point (6%) at week 12 (Figure 3A and Supplementary 
Table 3). MEP-TA amplitude in the other two NHPs did not change from day 14 to 
week 12. In contrast, all NHPs of the NPC group demonstrated recovery from 1 point 
at day 14 to 3 points at week 12 (Supplementary Table 3).

The differences between the NPC and LC groups in the degree of recovery of the 
MEPs from AH became significant at 12 wk (P < 0.05, as estimated using the mixed 
linear model, Figure 3B). There were no significant differences between groups in the 
MEPs from the ipsilateral TA. In both groups the MEPs from musculus quadriceps 
spontaneously recovered up to 3–5 points at day 14 indicating that the intersection of 
the medial corticospinal tract fibers was not complete (Figure 3A). We decided to 
analyze MEP-QF at all timepoints as an internal control. The amplitude and the 
latency of MEP-QF did not differ significantly between timepoints or treatment 

https://f6publishing.blob.core.windows.net/2f38dc39-a3f6-49c5-91ae-2fb17a8c069d/WJSC-13-452-supplementary-material.pdf
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groups, demonstrating safety of the drNPC injection.
None of the animals in the LC group exhibited SSEPs at 12 wk after vehicle 

injection; SSEPs were absent even in the animal LC2 that retained residual (approx-
imately 10%) evoked potentials 2 wk after the injury. In three of the NHPs with 
implanted drNPCs (NPC1, NPC2, NPC4), the SSEP amplitude recovered to 63.1%, 
27.7%, and 21.8% of the baseline level, respectively. NPC3 did not show any recovery 
of SSEP.

Statistical analysis showed significant differences between the LC and NPC groups 
in the ipsilateral nervus tibialis SSEP amplitude 12 wk post drNPC transplantation (P 
< 0.05, as estimated using the mixed linear model). Qualitative comparison of the 
MEP-AH and MEP-TA latencies at 4 and 12 wk post transplantation showed that the 
groups significantly differed in these parameters as well (P < 0.01 and P < 0.05 for the 
MEP-AH and MEP-TA latencies, respectively, as estimated by the χ2 test) (Figure 3C). 
Statistical analysis of the SSEP/MEP scale showed significant differences between the 
treatment groups in the total score 12 wk post transplantation (P < 0.01, as estimated 
using the mixed linear model) (Figure 3B). Taken together, our data showed that 12 wk 
after drNPCs intraspinal transplantation of three of the four animals exhibited SSEP 
recovery, and all animals had recovery of MEP-AH and MEP-TA by at least 1 point. 
We detected no impairment of residual EP from TA or QF or any other negative 
adverse effects to innervation both in the ipsilateral and contralateral sides of all 
animals in the study.

MRI morphometry
To examine the potential tumorigenic effect of drNPCs and any impact on cerebral 
liquid flow after intraspinal drNPCs transplantation, the brain and spinal cord were 
evaluated by MRI followed by morphometry of the cerebral ventricles and aqueduct, 
the anterior and posterior subarachnoid spaces, and central canal at 2 wk after the SCI 
induction and 4, 8, and 12 wk post intervention (drNPC transplantation or vehicle 
injection) (Figure 4A). Additionally, we used postmortem high-resolution MRI for 
morphological investigation of SCI volume after drNPC transplantation in comparison 
with the vehicle control group (Figure 4B). None of the animals displayed signs of 
hydrocephalus syndrome or morphological signs of syringomyelia; there were no 
noted alterations in the cerebral ventricles or subarachnoid spaces at 12 wk in all four 
animals (Figure 4A, 4C and 4D). Dilation of the central canal was observed in one 
NHP in the vehicle control group (Supplementary Figure 3) and appeared dependent 
on the degree of postoperative epidural fibrosis.

To investigate possible structural alterations of the spinal cord after intraspinal 
drNPC transplantation, we determined the spinal cord area at the site of the injury as 
well as below and above it before the transplantation and for the 12 wk post 
intervention (Figure 4F). Statistical analysis of these data did not show significant 
differences in morphometric parameters between the LC and NPC groups, indicating 
that all animals tolerated the injection procedure and the drNPC transplantation.

At week 12 post intervention, the volume of injury (the sum of all areas with 
pathological hyperintense signals in T2 weighted coronal sections, Figure 4B) was in 
the range of 28.0-36.5 mL and did not differ significantly between groups (Figure 4G). 
This suggests that drNPCs transplantation did not add measurable volume to the 
spinal cord nor contribute significantly to a gliomesodermal scar at the macroscopic 
level.

Taken together, our MRI data confirmed the relative consistency of the SCI lesion in 
the LC and NPC groups and demonstrated that the intraspinal transplantation of 
drNPCs did not adversely affect the morphology of the central nervous system or 
cerebrospinal fluid circulation.

Immunohistochemical analysis
We next sought to detect transplanted cells and to investigate their fate post 
transplantation using IHC. The allogeneic drNPCs were derived from the bone 
marrow of a donor female, whereas the recipient NHPs were males. By using an 
antibody against macro-H2A.1, a histone overexpressed in the inactivated Х 
chromosome of female cells[20], we were able to distinguish donor cells from the 
recipient. We determined that macro-H2A.1 expression levels reliably differentiated 
between the transplanted female cells and the host male cells (Figure 5A, 5B, and 5D). 
Macro-H2A.1-positive cells were found both in the white and grey matter of the 
injured spinal cord in all animals of the NPC group. Double staining with macro-
H2A.1 and SOX2 antibodies revealed that the majority of the cells were positive for 
both markers (Figure 5B), as confirmed using the colocalization feature of the NIS 
elements application (Pearson correlation = 0.78). The donor cells were predominantly 
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Figure 4 T2 weighted magnetic resonance imaging and the results of the brain and spinal cord morphometry. A: Sagittal sections of the brain 
and the cervical and thoracic spinal cord of animal NPC1 before the lesion (left column), 2 wk after the lesion, just before the transplantation (middle column) and 12 
wk after the transplantation (right column). The site of the injury is shown by white arrows; B: Postmortem high-resolution magnetic resonance diffusion tensor 
imaging of the spinal cord of animal NPC1. Left column: sagittal sections, right column: coronal sections from the upper part, middle part, and lower part of the injury 
(from top to bottom). The projection planes of coronal sections shown by yellow lines on corresponding sagittal sections. The middle part of the injury was shown by 
green arrow; C: Coronal sections of the brain, animal NPC2; D: Morphometry of the brain ventricles monitored 12 wk after the transplantation in animals of the lesion 
control (LC) group and neural progenitor cell (NPC) group; E: Morphometry of the spinal cord area in the lesion site, and two segments above and below; F: The 
example of sagittal (left column) and coronal (right column) sections with highlighted spinal cord and injury areas. The projection planes of coronal sections shown by 
red lines of the sagittal one; G: The results of spinal cord lesion volume calculation at week 12.

localized around endogenous NF200-positive growth cones (Figure 5C and 5D) as well 
as around reactive astrocytes (Figure 5B and 5F). In the LC group, neither expression 
of macro-H2A.1 nor SOX2 was detected (Supplementary Figures 4-6). Quantification 

https://f6publishing.blob.core.windows.net/2f38dc39-a3f6-49c5-91ae-2fb17a8c069d/WJSC-13-452-supplementary-material.pdf


Baklaushev VP et al. SCI treatment by directly reprogrammed neural precursors

WJSC https://www.wjgnet.com 463 May 26, 2021 Volume 13 Issue 5

Figure 5 Immunohistochemical analysis on spinal cord sagittal sections 12 wk after transplantation. A: Large image showing the center of injury 
(white arrow) of animal NPC1 stained with antibodies to NF200 (green) glial fibrillary acidic protein (GFAP) (red) and macro H2A.1 (magenta; staining is visible only in 
enlarged panels). Squares show approximate localization of enlarged panels B, D, and E (B and E stained with different antibody cocktails); B: Enlarged fragment of a 
sagittal section of animal NPC 1 stained for SRY-box transcription factor 2 (SOX2) (green), GFAP (red) and macro-H2A.1 (magenta). SOX2 and macro H2A.1 
colocalized in the same cells (Pearson correlation = 0.78); C: Enlarged fragment of sagittal section of animal NPC4 stained for NF200 (red) and SOX2 (green). NF200 
and SOX2 did not colocalize (Pearson correlation = 0.20); D: Enlarged fragment of sagittal section stained for NF200 (green, growth cones are shown), GFAP (red, 
astrogliosis area), and macro H2A.1 (magenta), animal NPC1. NF200 and macro H2A.1 did not colocalize (Pearson correlation = 0.20); E: Enlarged fragment of 
sagittal section stained for synaptophysin (green) and brain derived neurotrophic factor (red), animal NPC1; F: A sagittal section of animal NPC4 spinal cord near the 
injury epicenter stained for SOX2 (green) and GFAP (red). Size bar 50 µm (A-D), and 2 µm (E-F).
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of the number of drNPC-derived cells in confocal images revealed that the density of 
macro-H2A.1 and SOX2-positive cells was almost 2-fold higher around damaged 
axons, which formed growth cones and presented high intensity NF200 staining vs 
areas of low NF200 staining intensity (Figure 6). The estimated total number of 
transplanted cells in a tissue slice was less than 1000. Taking into consideration a slice 
thickness of 100 μm and that the area of transplantation did not exceed 2 mm, it 
appears that the total number of surviving cells was less than 20 × 103 cells per NHP, 
indicating an estimated survival rate of less than 1% at 12 wk.

Despite the abundance of macro-H2A.1+ cells in areas positive for NF200, there was 
no colocalization of the markers (Pearson correlation = 0.20), indicating that none of 
the surviving drNPC derived cells were terminally differentiated neurons. 
Interestingly, we found high expression of synaptophysin and brain derived 
neurotrophic factor in the axonal growth cone-rich areas where macro H2A.1/SOX2-
positive cells were located (Figure 5E). In astrogliosis foci, the SOX2-positive cells were 
located along GFAP-positive processes of reactive astrocytes and appeared GFAP-
positive (Figure 7A). However, three dimensional reconstruction of confocal z-stacks 
showed that some SOX2/macro H2A.1-positive cells were GFAP negative (Figure 7B-
D) and oftentimes were surrounded by GFAP-positive processes (Figure 7D). Taken 
together, our careful single cell analysis indicated that surviving SOX2-positive cells 
had not differentiated into astrocytes.

DISCUSSION
Research focused on regenerative approaches for central nervous system diseases in 
general and SCI in particular indicates upon close examination of the published 
literature on this topic that one of the most important aspects driving clinical 
translation of promising preclinical data is the choice of the in vivo models. The data 
obtained in small rodents has not always been successfully reproduced in large 
animals, and therefore its extrapolation to humans is still challenging[21,22]. Because 
of this, research conducted on anthropoid primates has experienced renewed interest 
from the scientific community based on the rationale that the phylogenetic proximity 
of NHPs to humans may provide a basis for more successful clinical trans-lation[19,21-
23]. Based on these considerations, we had previously developed a bioethically 
acceptable NHP model of regionally complete SCI with the use of intraoperative EP 
detection, resulting in a regionally complete and irreversible model of SCI[18]. This 
was evidenced in the current study by the absence of EP from nervus tibialis, AH, and 
TA both intraoperatively, i.e. immediately after excision of a fragment of the spinal 
cord, as well as 2 wk after surgery, except for some residual potentials.

In the current study we used allogeneic rather than autologous drNPC cells because 
that allowed us to carefully characterize donor cell behavior postmortem without 
relying on permanent genetic modification of the donor cells or pretransplant physical 
labeling that may lend itself to errors in the case of cell fusion or endocytosis of the 
label by host cells. This likely resulted in a lower number of surviving cells at 12 wk 
post transplantation and likely did not allow for the survival of any differentiated 
cells. The surviving SOX2+ donor cells nevertheless allowed for significant functional 
recovery by supporting neurogenesis and synaptogenesis of the host neurons despite 
the absence of immunosuppression.

Previous studies in NHPs addressing the safety and efficacy of cell-based therapies 
in SCI have showed that xenogeneic (human) neural stem cells might improve spinal 
cord regeneration[9], but for clinical purposes, we argue that the most desirable cell 
type is autologous[7]. The potential challenges of using nonautologous cells in the 
clinic was demonstrated in a recent study whereby pharmacological immunosup-
pression did not provide adequate long-term survival of transplanted cells and failed 
to improve functional recovery after SCI[24], indicating that both longer term and 
more extensive immunosuppression may be required than previously thought for 
nonautologous cell transplants for SCI. This may not be feasible for SCI patients who 
are already more prone to suffer from infections. To provide a solution to the 
challenge of generating autologous neural progenitor cells for large scale clinical use in 
SCI repair, a realistic source of such autologous cells are the patient’s own somatic 
cells that are obtained, e.g., from the bone marrow and directly reprogrammed into 
neural precursor cells[11-13]. Direct reprogramming skips the pluripotent state and 
therefore rapidly generates cells with considerable safety advantages over pluripotent 
derived cells[14].
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Figure 6 Immunohistochemical analysis of NF200 and SRY-box transcription factor 2 on spinal cord sagittal sections 12 wk after 
transplantation (animal NPC4). A: Large image showing the center of injury (arrow). Squares show approximate localization of enlarged panels B and C; B: 
Enlarged image of SRY-box transcription factor 2 (SOX2) (green) and NF200 (red) staining; C: Enlarged image of synaptophysin (green) and NF200 (red) staining; D: 
The results of quantification of NF200 (blue) and SOX2 (magenta); binary selection; and E: Upper images: yellow dots-number of SOX2-positive cells in the high 
intensity zone of NF200 fluorescence (area of growth cones); Lower images: yellow dots-number of SOX2-positive cells in the low intensity zone of NF200 
fluorescence. Bar size 500–1000 µm.

Based on the hindlimb score[22], modified for our model, we observed restoration 
of function in the paralyzed limb for all animals in the drNPC transplanted group 
(NPC group), while the vehicle control group showed no recovery. The best recovery 
was observed in subject NPC1, which correlated with the restoration of MEP to over 
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Figure 7 Immunohistochemical analysis of SRY-box transcription factor 2 (green) and glial fibrillary acidic protein (red) on sagittal 
sections of animal NPC4 spinal cord. A: Large image showing that in the site of astrogliosis SRY-box transcription factor 2 (SOX2)-positive cells 
predominantly localized along glial fibrillary acidic protein (GFAP)-positive processes; B and C: Three dimensional reconstruction revealed that SOX2 was not 
expressed by GFAP positive cells; and D: High resolution three dimensional reconstruction. Arrows show the GFAP-positive processes, surrounding SOX2-positive 
cells. Bar size 100 µm.

50% of baseline (preinjury) levels. Importantly, none of the three control animals 
showed any recovery of SSEP and MEP up to 12 wk post vehicle injection. Therefore, 
the MEP restoration observed in all four animals and the SSEP restoration observed in 
three animals in the drNPC transplanted group suggests preliminary efficacy of 
drNPCs transplantation in SCI.

Because we transplanted female drNPCs into males, we used antibodies against 
macro H2A.1, a histone marker overexpressed in the inactivated X chromosome of 
female cells[20] to identify the donor cells. Transplanted cells could be identified by 
the high fluorescence intensity of macro H2A.1; it was further confirmed that the 
bright macro H2A.1-positive cells were indeed female drNPCs because they were also 
labelled with SOX2, a specific marker of neural multipotency that is not expressed in 
the naïve adult spinal cord[25]. This was further confirmed by the absence of any 
SOX2+ cells in the vehicle transplanted LC NHPs (Supplementary Figures 4-6). Using 
this approach, we were able to detect double positive macro H2A.1 and SOX2+ cells 
(drNPCs) that mainly accumulated in the formation zone of axonal growth cones. This 
biased distribution of grafted drNPCs suggests active migration towards the spinal 
cord regeneration zone. Interestingly, our histology data estimated that less than 1% of 
the transplanted drNPC cells were detected at 12 wk post transplantation. Although 
the drNPC retained neural multipotency (SOX2 expression) and low human leukocyte 
antigen DR expression, the use of allogeneic rather than autologous drNPCs in the 
absence of immunosuppressive therapy (a major limitation of this study) may help 
explain the low survival rate of the graft. The development and testing of autologous 
NHP drNPC in SCI is the subject of ongoing studies.

Despite the regenerating axonal environment into which donor cells integrated, we 
were unable to detect macro H2A.1-positive cells that expressed neuronal markers. We 
cannot rule out the possibility that neuronal differentiation did occur before early 
immune detection and elimination by the host immune system. Nevertheless, our 
study suggests that drNPC-based efficacy does not depend on substantial survival of 
the grafted cells nor neuronal differentiation. While unravelling the mechanism of 
drNPC based efficacy was beyond the scope of our study, it is anticipated that it 
involves various factors, of which neurite outgrowth and synaptogenesis appear 
significant, as previously discovered in a recent study employing the cells in an 
unrelated rodent model of stroke[13]. The mechanism may also have similarities to 
spinal cord regeneration mechanisms seen in more primitive vertebrates[26]. The 
hypothesis according to which transplanted NPCs must undergo neuronal differen-
tiation, integrate into functioning neural networks (i.e. be directly involved in 
conducting an electrical impulse[9,17]) to provide meaningful clinical benefit is the 
focus of intense debate and investigation. Our study with drNPCs suggests that 
significant functional recovery of anatomically disturbed pathways can potentially be 
accomplished through a regeneration mechanism that may be unique to drNPC-like 
cells.

https://f6publishing.blob.core.windows.net/2f38dc39-a3f6-49c5-91ae-2fb17a8c069d/WJSC-13-452-supplementary-material.pdf
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CONCLUSION
There was no evidence of safety concerns regarding drNPC transplantation into the 
spinal cord for at least 12 wk post transplantation, as evidenced by the absence of 
pathological changes in the spinal cord and cerebrospinal fluid as assessed by MRI 
and histological analysis. There were also no observed ectopic cell colonies.

drNPCs injection contributed to significant improvement of spinal cord function 
after subacute complete SCI, based on neurological status assessments and 
neurophysiological recovery during 12 wk post transplantation. Functional 
improvement was not associated with the neuronal or glial differentiation of drNPCs 
but rather by the presence of multipotent SOX2+ drNPCs. Directed drNPC migration to 
the areas of active host growth cone formation, including in the areas of corticospinal 
axons, may provide some paracrine trophic support that activate the regeneration 
processes.

ARTICLE HIGHLIGHTS
Research background
The research is based on two points: the discovery of direct reprogrammed neural 
progenitor cells (drNPCs) and the development of an evoked potential-driven model 
of spinal cord injury in non-human primates.

Research motivation
The key problem to be solved is the restoration of brain-spinal cord connection and 
functions after the complete spinal cord injury.

Research objectives
The main objective of the study was to investigate the safety and efficacy of intraspinal 
transplantation of drNPCs in the treatment of complete spinal cord injury on non-
human primates.

Research methods
Experiments were conducted on non-human primates with behavioral, 
neurophysiological, histological, and immunohistochemical assessment.

Research results
Injections of drNPCs were accompanied by restoration of anatomically resected 
afferent and efferent neuronal pathways. No evidence was found that drNPCs were 
directly involved in the restoration of neuronal pathways.

Research conclusions
Using a primate evoked potential guided spinal cord injury model we demonstrated 
safety and efficacy of intraspinal injections of allogeneic drNPCs.

Research perspectives
At the next stages of research, it is necessary to increase the survival rate of 
transplanted cells, such as by transplanting predifferentiated tissue-engineered 
constructs.
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Hypoxic-ischemic encephalopathy (HIE) is one of the leading causes of death and 
long-term neurological impairment in the pediatric population. Despite a limited 
number of treatments to cure HIE, stem cell therapies appear to be a potential 
treatment option for brain injury resulting from HIE.

AIM 
To investigate the efficacy and safety of stem cell-based therapies in pediatric 
patients with HIE.

METHODS 
The study inclusion criteria were determined as the presence of substantial deficit 
and disability caused by HIE. Wharton’s jelly-derived mesenchymal stem cells 
(WJ-MSCs) were intrathecally (IT), intramuscularly (IM), and intravenously 
administered to participants at a dose of 1 × 106/kg for each administration route 
twice monthly for 2 mo. In different follow-up durations, the effect of WJ-MSCs 
administration on HIE, the quality of life, prognosis of patients, and side effects 
were investigated, and patients were evaluated for neurological, cognitive 
functions, and spasticity using the Wee Functional Independence Measure (Wee 
FIM) Scale and Modified Ashworth (MA) Scale.

RESULTS 
For all participants (n = 6), the mean duration of exposure to hypoxia was 39.17 + 
18.82 min, the mean time interval after HIE was 21.83 ± 26.60 mo, the mean 
baseline Wee FIM scale score was 13.5 ± 0.55, and the mean baseline MA scale 
score was 35 ± 9.08. Three patients developed only early complications such as 
low-grade fever, mild headache associated with IT injection, and muscle pain 
associated with IM injection, all of which were transient and disappeared within 
24 h. The treatment was evaluated to be safe and effective as demonstrated by 
magnetic resonance imaging examinations, electroencephalographies, laboratory 
tests, and neurological and functional scores of patients. Patients exhibited 
significant improvements in all neurological functions through a 12-mo follow-up. 
The mean Wee FIM scale score of participants increased from 13.5 ± 0.55 to 15.17 ± 
1.6 points (mean ± SD) at 1 mo (z = - 1.826, P = 0.068) and to 23.5 ± 3.39 points at 
12 mo (z = -2.207, P = 0.027) post-treatment. The percentage of patients who 
achieved an excellent functional improvement (Wee FIM scale total score = 126) 
increased from 10.71% (at baseline) to 12.03% at 1 mo and to 18.65% at 12 mo post-
treatment.

CONCLUSION 
Both the triple-route and multiple WJ-MSC implantations were safe and effective 
in pediatric patients with HIE with significant neurological and functional 
improvements. The results of this study support conducting further randomized, 
placebo-controlled studies on this treatment in the pediatric population.

Key Words: Hypoxic-ischemic encephalopathy; Pediatric; Stem cell; Wharton jelly

©The Author(s) 2021. Published by Baishideng Publishing Group Inc. All rights reserved.

Core Tip: Hypoxic-ischemic encephalopathy (HIE) emerges as one of the leading 
causes of morbidity and mortality in children. There are a limited number of options 
for treating HIE. Recently, stem cell and cellular therapies appear to be a potential 
treatment option for ischemic brain injury caused by HIE. The aim of this phase I 
open-label clinical study is to investigate the efficacy and safety of one of these stem 
cell-based therapies in a group of pediatric patients with HIE. Both the triple-route and 
multiple Wharton`s jelly-derived mesenchymal stem cells administrations were safe 
and effective in pediatric patients with HIE with significant neurological and functional 
improvements.
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INTRODUCTION
Hypoxic-ischemic encephalopathy (HIE) is a type of ischemic brain injury especially in 
pediatric population. It is caused by a lack of oxygen supply to the brain, resulting in 
oxygen deprivation. HIE has high morbidity and mortality rates[1]. Today, there is a 
limited number of treatment options for HIE e.g., cooling[2]. Different therapeutic 
approaches have been used to treat and improve functional and neurological 
outcomes of HIE patients. Among these approaches, stem cell therapies combined 
with new protocols are an adopted method to prevent ischemic brain injury caused by 
HIE[1,2]. Bone marrow (BM) is used as the most common source to derive 
mesenchymal stem cells (MSCs). Yet, taking MSCs from BM requires a highly invasive 
procedure, and the age of the donor is an effective factor for the maximal life span of 
obtained cells. Nowadays, Wharton's jelly (WJ), an umbilical cord (UC) tissue, comes 
to the fore as a potential source of stem cells since this tissue is discarded at birth, 
providing an opportunity for the isolation of MSCs. With their immune-privileged 
status, high proliferation capacity, and absence of ethical issues, UC-MSCs appear to 
be an optimal therapeutic tool[3].

The issue of selecting the most appropriate route for MSC implantation is of critical 
importance and needs to be discussed to successfully treat HIE. Each strategy has its 
advantages and disadvantages, for example, the intravenous (IV) route of 
transplanting MSC might provide diffuse implementation while avoiding adverse 
reactions associated with invasive approaches. Notwithstanding, when systemically 
transplanted, MSCs are able to cross the blood-brain barrier; however, they can also 
reach to other organs such as the liver, lungs, kidneys, and spleen and be retained by 
them[4]. For this reason, carrying out transplantation through multiple routes can be 
more effective than the use of a single route. Patients tolerated the IV and intrathecally 
(IT) administrations well with no adverse reactions or side effects in 24 wk after 
treatment[5]. In our previous study, we evaluated the safety, efficacy, and practic-
ability of both the triple-route and multiple administrations of WJ-MSCs with this 
treatment approach in a patient with HIE, traumatic brain injury, and cerebral palsy[6-
8]. As further studies have been conducted on this subject, it is now possible to use WJ-
MSCs for the clinical treatment of HIE.

The present study was designed as a phase I clinical trial to investigate the effects of 
both triple-route and multiple administrations of WJ-MSC. The study population was 
selected as pediatric HIE patients with significant functional impairments who have a 
limited number of treatment options. The primary outcome of the study was to 
investigate the safety of this treatment with magnetic resonance imaging examin-
ations, electroencephalographies, laboratory tests, and neurological and functional 
scores of patients. The efficacy of this treatment was also studied.

MATERIALS AND METHODS
Study design
The present study was designed as a phase I open-label, multi-center study. The aim of 
the study was to assess the safety and efficacy of both triple-route and multiple 
administrations of WJ-MSCs. The study inclusion criteria are given in Table 1. 
Pediatric patients with radiologically confirmed HIE and significant functional and 
cognitive impairments were included in the study. Participants were followed up for a 
period of 1 year following the administration of WJ-MSCs. Participants were not 
restricted in terms of receiving any kind of medical therapy or treatment (occupa-
tional, physical, or speech therapy) during their follow-ups. The legal representatives 
of participants were informed about the procedure and gave written informed consent 
in accordance with the principles of the Helsinki Declaration. The study protocol was 
approved by the Turkish Ministry of Health, General Directorate of Health Services, 
Department of Tissue, Organ Transplantation and Dialysis Services, Scientific 
Committee with the protocol number of 56733164- 203-E.2351. The data of patients are 
given in detail in Table 2.

https://www.wjgnet.com/1948-0210/full/v13/i5/470.htm
https://dx.doi.org/10.4252/wjsc.v13.i5.470
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Table 1 Enrollment criteria

No. Inclusion criteria

1 Age < 18

2 HIE radiologically confirmed at initial diagnosis and at study enrollment

3 The patients who does not have any chronic illness (cancer, kidney, heart/hepatic failure etc.) other than HIE. Adequate systemic organ function 
confirmed by normal ranged laboratory values

4 Life expectancy > 12 mo

5 No substiantial improvement despite of a treatment in neurological/functional status for the 3 mo before study enrollment

6 Severe disability defined as subject confined to a wheelchair/required to have home nursing care/needing assistance with activities of daily living

7 Expectation that the patient will receive standard post-treatment care and attend all visits

8 Signing in the written informed consent form for confirming to that know the treatment to be applied and to be willing by their parents/a surrogate

Exclusion criteria

1 Presence of any other clinically significant medical/psychiatric condition, or laboratory abnormality, for which study participation would pose a 
safety risk in the judgment of the investigator/sponsor or history within the past year of drug/alcohol abuse

2 Recently diagnosed severe infection (meningitis, etc.)/development of liver, kidney/heart failure/sepsis or skin infection at the i.v. infusion site or 
positive for hepatitis B, C/HIV

3 History of uncontrolled seizure disorder

4 History of cerebral neoplasm, or cancer within the past 5 yr, with the exception of localized basal or squamous cell carcinoma

5 Having clinic symptoms that formation of white sphere number ≥ 15000/μL or platelet count ≤ 100.000/μL

6 Serum aspartate aminotransferase and serum alanine aminotransferase > 3× upper limit of normal/creatinine > 1.5× upper limit of normal

7 Participation in an another investigational stem cell study before treatment

8 The patient/parents decides to abandon the treatment or the patient death

HIE: Hypoxic-ischemic encephalopathy; HIV: Human immunodeficiency virus.

Procedure
Ethical considerations and consent: UCs were supplied from the Good Manufacturing 
Practice facility of LivMedCell (Istanbul, Turkey). In line with the approval of an 
institutional regulatory board (LivMedCell), various donors donated the UCs after 
they were informed about the purpose of the study and gave written informed 
consent. Postnatal UCs were obtained from full-term pregnant women who donated 
UCs[6-8].

UC processing and quality control
Phosphate-buffered saline (Invitrogen/Gibco, Paisley, United Kingdom) was used to 
wash the UCs. Tissue samples were cut into pieces of 5-10 mm3 in the form of explants 
following the removal of blood vessels. The explants were placed into dishes and 
cultured under humanized culture conditions at 37 °C with 5% CO2 until the migration 
of cells. When the resulting cells reached 70% to 80% confluency, they were collected 
and subjected to characterization tests at passage 3. The standards of the Turkish 
Medicines and Medical Devices Agency were followed to carry out quality control and 
quality assurance to produce these cells[6-8].

Characterization of WJ-MSCs by flow cytometry
Expressed surface antigens were analyzed by flow cytometry, which revealed that the 
cells were consistently positive for CD44, CD73, CD90, and CD105 and negative for the 
hematopoietic lineage markers of CD34, CD45, and Human Leukocyte class II DR 
antigens. The telomerase activities of WJ-MSCs were found to remain stable during the 
culture process with a large and flat cellular morphology[6-8].

Cell differentiation and karyotying procedure
Some stem cell expressions and the differentiation markers of TERT, SOX2, POU5F1, 
CD44, ZFP42, VIM, ICAM1, THY1, VCAM1, BMP2, RUNX-1, and NES were identified. 
These cells were confirmed to have trilineage (chondrocytes, osteoblasts, and 
adipocytes) differentiation capacity by differentiation analyses. Karyotyping studies 
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Table 2 Study population

Frequency Percent

1.00 1 16.7

6.00 2 33.3

7.00 1 16.7

9.00 1 16.7

Age

12.00 1 16.7

F 4 66.7Sex

M 2 33.3

Acute meningitis 1 16.7

Cardiac arrest after an orthopedic surgery 1 16.7

Cardiac arrest due to long QT syndrome 1 16.7

Cardiac arrest, unknown etiology 1 16.7

Drowning in water 1 16.7

Cause of hypoxia

Foreign body aspiration 1 16.7

25.00 1 16.7

30.00 3 50.0

45.00 1 16.7

Duration of Hypoxia

75.00 1 16.7

Long QT syndrome 1 16.7

no 4 66.7

Comorbidity

Osteogenesis imperfecta 1 16.7

6.00 3 50.0

9.00 1 16.7

32.00 1 16.7

Duration Between Hypoxia & First SCT

72.00 1 16.7

SCT: Stem cell therapy.

showed no numerical or structural chromosomal abnormalities for these cells[6-8].

Pre-transplantation process: The final WJ-MSC preparations to be used for 
implantation were collected from passage 3 of cultures and kept in normal saline at 
final densities of 1 × 106 in 3 mL, 1 × 106 in 20 mL, 1 × 106 in 30 mL[6-8].

WJ-MSC transplantation and surgical procedures: Before initiating treatment, 
patients were examined by a physician team consisting of a pediatrician and a 
pediatric neurologist, as well as experts in neurosurgery, anesthesia and reanimation, 
and physical therapy and rehabilitation. Before the implantation procedure of WJ-
MSCs, patients were evaluated for contraindications to sedoanalgesia or general 
anesthesia as well as severe infectious diseases like sepsis, and the procedure was then 
performed when they were stable[6-8].

In the procedure, allogeneic WJ-MSCs were administered IT, intramuscularly (IM), 
and IV, respectively, in the operating room by the same physician team (Kabatas S, 
Kaplan N, Can H, and Genç A), following the standard protocol of the MSC treatment 
trial (Table 3). IT administration of WJ-MSCs was performed through a lumbar 
puncture as described by previous studies[9]. IM administration of WJ-MSCs was 
performed under the guidance of ultrasound for each muscle, while IV infusion was 
slowly administered in 30 min. Following the completion of the procedure, patients 
were transferred to intensive care unit (1st level). A day later, patients were transferred 
to Neurosurgery Department for follow-up and initiated on physical therapy and 
rehabilitation. Patients did not perform exercises during the days of stem cell adminis-
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Table 3 Administration schedule

Rounds Route WJ-MSC

IT 1 × 106/kg in 3 mL

IV 1 × 106/kg in 30 mL

Round 1

IM 1 × 106/kg in 20 mL

IT 1 × 106/kg in 3 mL

IV 1 × 106/kg in 30 mL

Round 2 (2nd week)

IM 1 × 106/kg in 20 mL

IT 1 × 106/kg in 3 mL

IV 1 × 106/kg in 30 mL

Round 3 (4th week)

IM 1 × 106/kg in 20 mL

IT 1 × 106/kg in 3 mL

IV 1 × 106/kg in 30 mL

Round 4 (6th week)

IM 1 × 106/kg in 20 mL

WJ-MSC: Wharton’s jelly-derived mesenchymal stem cells; IT: Intrathecal; IV: Intravenosus; IM: Intramuscular.

tration. The same protocol was followed before and after every administration.

Pretreatment neurological examination
Patients were evaluated before treatment with a comprehensive examination by a 
physician team consisting of medical and rehabilitation doctors. Each step of the 
neurological and functional evaluation was documented in detail. Patients were 
evaluated for spasticity with the Modified Ashworth (MA) scale and for quality of life 
with the Wee Functional Independence Measure (Wee FIM) scale based on the 
statements of their parents[10].

Safety evaluation criteria
The safety criteria for the procedure were determined as follows: Any evidence of 
infection, headache, fever, pain, allergic reactions or shock, leukocytosis, an elevated 
level of C-reactive protein, and perioperative complications (wound site infections, 
analgesia, and anesthesia-related complications) during 7-14 d post-treatment. The 
safety criteria for WJ-MSC administration were determined as follows: Any evidence 
of infection, development of cancer, neuropathic pain, and worsening neurological 
status during the 1-year follow-up[6,8].

Follow-up assessment of treatment success
For follow-up assessment of treatment success, patients were evaluated neurologically 
and functionally in detail. They were evaluated for spasticity with the MA Scale and 
for quality of life with the Wee FIM Scale[11,12]. Moreover, patients were also 
evaluated for secondary infections, neuropathic pain, urinary tract infections, or 
decubitus ulcers.

Statistical analysis
The non-parametric tests of Friedman Test and Wilcoxon Signed Ranks Test were 
employed to measure the change in the pre-treatment and post-treatment Wee FIM 
and MA Scale scores of patients. As the number of data was not sufficient for 
parametric tests, nonparametric tests were carried out.

RESULTS
Safety of procedure and adverse events
The procedure was well tolerated by patients with no severe adverse events associated 
with the procedure. Three patients developed only early complications such as low-
grade fever, mild headache associated with IT injection, and muscle pain associated 



Kabatas S et al. Stem cell transplantation in pediatric HIE

WJSC https://www.wjgnet.com 476 May 26, 2021 Volume 13 Issue 5

with IM injection, all of which were transient and disappeared within 24 h (Table 4). 
No other adverse events or safety issues were reported during the 1-year follow-up 
period.

Wee FIM scale score
Despite a slight increase in the post-treatment 4-mo and 12-mo Wee FIM Motor scores 
of patients, the increase in their cognitive scores continued throughout the post-
treatment follow-up period.

The analysis as shown in Table 5 revealed that participants had a statistically 
significant difference in their pre-treatment and post-treatment Jee FIM Motor scores (
χ2 = 23.444, P < 0.001). The differences between binary measurements were determined 
by the Wilcoxon signed-rank test. As a result of the analysis, there was no significant 
difference between pretest and one-week posttest scores (z = 0.000, P > 0.05); between 
one-week posttest and one-month posttest scores (z = 0.000, P > 0.05); between one-
month posttest and two-month posttest scores (z = -1.414, P > 0.05); between two-
month posttest and four-month posttest scores (z = -2.070, P < 0.05); and between the 
four-month posttest and 12-mo posttest scores (z = -1.633, P > 0.05). On the other hand, 
when the pretest score and subsequent measurements were compared, no significant 
difference was observed between the pretest score and one-week posttest (z = 0.000, P 
> 0.05), one-month posttest (z = 0.000, P > 0.05), two-month posttest (z = -1.414, P > 
0.05) 12-mo posttest (z = -2.041, P < 0.05) scores whereas there was a significant 
difference between the pretest score and four-month posttest (z = -2.236, P < 0.05) 
scores. In other words, while there was no difference in the Wee FIM Motor scores of 
the patients until the 4th postoperative month, a significant increase was observed in 
the 4th month (Figure 1 and Table 5).

The analysis as shown in Table 6 revealed that participants had a statistically 
significant difference in their pre-treatment and post-treatment Wee FIM cognitive 
scores (χ2 = 28.255, P < 0.001). The differences between binary measurements were 
determined by the Wilcoxon signed-rank test. As a result of the analysis, no significant 
difference was observed between pretest and one-week posttest scores (z = -1.000, P > 
0.05); between one-week posttest and one-month posttest scores (z = -1.841, P > 0.05); 
between two-month posttest and four-month posttest scores (z = -2.041, P < 0.05); and 
between the four-month posttest and 12-mo posttest scores (z = -2.264, P < 0.05), 
whereas the difference between the one-month posttest and two-month posttest scores 
was significant (z = -2.070, P < 0.05). On the other hand, when the pretest score and 
subsequent measurements were compared, no significant difference was observed 
between the pretest score and one-week posttest (z = -1.000, P > 0.05), one-month 
posttest (z = -1.826, P > 0.05) scores, whereas there was a significant difference 
between the pretest score and two-month (z = -2.023, P < 0.05), four-month (z = -2.207, 
P < 0.05) and 12-mo posttest (z = -2.201, P < 0.05) posttest scores. While there was no 
difference in the Wee FIM Cognitive scores of the patients until the second 
postoperative month, a significant increase was observed in the second month 
(Figure 1 and Table 6).

MA scale score
Patients had a continuous decrease in their MA scale right and left scores throughout 
the follow-up period, which was indicative of improvement.

The analysis as shown in Table 7 revealed that patients had a statistically significant 
difference in their pre-treatment and post-treatment macrophage activation syndrome 
(MAS) right scores (χ2 = 29.439, P < 0.001). The differences between binary 
measurements were determined by the Wilcoxon signed-rank test. As a result of the 
analysis, no significant difference was observed between pretest and one-week 
posttest scores (z = -1.841, P > 0.05) and between two-month posttest and four-month 
posttest scores (z = -1.857, P > 0.05), whereas there were significant differences 
between the one-week posttest and one-month posttest scores (z = -2.214, P < 0.05); 
between the one-month posttest and two-month posttest scores (z = - 2.041, P < 0.05); 
and between four-month posttest and 12-mo posttest scores (z = -2.264, P < 0.05). In 
other words, while there was no significant difference in patients' MAS Right values in 
the first post-treatment week, the values started to decrease significantly in parallel 
with the recovery after the first week (Figure 2 and Table 7).

The analysis as shown in Table 8 revealed that patients had a statistically significant 
difference in their pre-treatment and post-treatment MAS left scores (z = 29.000, P < 
0.001). Wilcoxon Signed Ranks Test was performed between the binary measurements 
to identify the differences between variables. As a result of the analysis, no significant 
difference was observed between pretest and one-week posttest scores (z = -1.342, P > 
0.05) and between two-month posttest and four-month posttest scores (z = -1.841, P > 
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Table 4 Early and late complications of the procedures

Patient No. 1 Patient No. 2 Patient No. 3 Patient No. 4 Patient No. 5 Patient No. 6

Administration Administration Administration Administration Administration AdministrationComplications

1st 2nd 3rd 4th 1st 2nd 3rd 4th 1st 2nd 3rd 4th 1st 2nd 3rd 4th 1st 2nd 3rd 4th 1st 2nd 3rd 4th

Infection - - - - - - - - - - - - - - - - - - - - - - - -

Fever - - - - - - - - - + - - - + - - + + - - - - - -

Pain - - - - - - - - + - + - + + - - + - - - - - - -

Headache - - - - - - - - - - + - + - - - - - - - - - - -

Increased level of C-reactive protein - - - - - - - - - - - - - - - - - - - - - - - -

Leukocytosis - - - - - - - - - - - - - - - - - - - - - - - -

Allergic reaction or shock - - - - - - - - - - - - - - - - - - - - - - - -

Early

Perioperative complications - - - - - - - - - - - - - - - - - - - - - - - -

Secondary infections - - - - - - - - - - - - - - - - - - - - - - - -

Urinary tract infections - - - - - - - - - - - - - - - - - - - - - - - -

Deterioration of neurological status - - - - - - - - - - - - - - - - - - - - - - - -

Neuropathic pain - - - - - - - - - - - - - - - - - - - - - - - -

Late

Carcinogenesis - - - - - - - - - - - - - - - - - - - - - - - -

–: Not present; +: Present.

0.05), whereas there were significant differences between the one-week posttest and 
one-month posttest scores (z = -2.041, P < 0.05); between the one-month posttest and 
two-month posttest scores (z = - 2.032, P < 0.05); and between four-month posttest and 
12-mo posttest scores (z = -2.264, P < 0.05). In other words, while there was no 
significant difference in patients’ MAS Left values in the first post-treatment week, the 
values started to decrease significantly in parallel with the recovery after the first week 
(Figure 2 and Table 8).

DISCUSSION
HIE is one of the leading causes of death and long-term neurological impairment in 
the pediatric population. Today, there is a limited number of treatment options for 
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Table 5 Friedman test results regarding the change in the Wee Functional Independence Measure Motor scores of the patients before 
and after the operation

n Mean SD Mean rank χ2 df P value

Pre-test 6 8.00 0.00 2.50

Post-test 1 wk 6 8.00 0.00 2.50

Post-test 1 mo 6 8.00 0.00 2.50

Post-test 2 mo 6 8.33 0.52 3.17

Post-test 4 mo 6 9.67 0.82 4.92

Post-test 12 mo 6 10.50 1.52 5.42

23.444 5 0.000

SD: Standard deviation.

Table 6 Friedman test results regarding the change in the Wee Functional Independence Measure cognitive scores of the patients 
before and after the operation

n Mean SD Mean rank χ2 df P value

Pre-test 6 5.50 0.55 1.67

Post-test 1 wk 6 5.67 0.82 1.83

Post-test 1 mo 6 7.17 1.60 2.75

Post-test 2 mo 6 8.33 2.25 3.83

Post-test 4 mo 6 10.17 3.06 4.92

Post-test 12 mo 6 13.00 2.83 6.00

28.255 5 0.000

SD: Standard deviation.

Table 7 Friedman test results regarding the change in the macrophage activation syndrome right scores of the patients before and after 
the operation

n Mean SD Mean rank χ2 df P value

Pre-test 6 18.67 4.72 5.83

Post-test 1 wk 6 16.83 6.15 5.17

Post-test 1 mo 6 14.00 7.62 3.92

Post-test 2 mo 6 12.17 6.94 2.92

Post-test 4 mo 6 10.17 6.65 2.17

Post-test 12 mo 6 7.67 6.12 1.00

29.439 5 0.000

SD: Standard deviation.

HIE, e.g., cooling. Different therapeutic approaches have been used to treat and 
improve functional and neurological outcomes of HIE patients. Among these 
approaches, MSCs come to the fore as a potential treatment option for ischemic brain 
injury caused by HIE[13]. MSCs are the most frequently used regenerative cells in 
clinical trials since they have a relatively safe profile, ease of isolation, and ability to 
reduce cell apoptosis, ameliorate oxidative stress and inflammation, and recover 
energy failure[14]. Results of a meta-analysis of preclinical studies on HIE showed the 
potential of treatment with mesenchymal stromal cells for improving neurological 
functions[15].

Furthermore, although regenerative cells are characterized by a low level of 
immunogenicity, autologous transplantation probably appears to be linked with a 
lower risk of immune rejection and infection development[16]. Allogeneic stem cell 
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Table 8 Friedman test results regarding the change in the macrophage activation syndrome left scores of the patients before and after 
the operation

n Mean SD Mean rank χ2 df P value

Pre-test 6 16.33 5.13 5.58

Post-test 1 wk 6 15.67 5.89 5.25

Post-test 1 mo 6 13.17 7.33 4.08

Post-test 2 mo 6 11.33 6.31 2.92

Post-test 4 mo 6 9.17 5.74 2.17

Post-test 12 mo 6 7.00 5.33 1.00

29.000 5 0.000

SD: Standard deviation.

Figure 1 Change in the mean pretest and posttest the Wee Functional Independence Measure Motor and cognitive scores of the patients. 
Wee FIM: Wee Functional Independence Measure.

transplantation might provide significant advantages in terms of practicability[17]. In 
recent years, the UC comes to the fore as the most commonly used tissue to harvest 
regenerative[18,19]. In preclinical studies, UC-MSCs administration has been 
suggested to enhance axonal regeneration and nerve fiber remyelination and promote 
sensorimotor functions with better long-term neurological outcomes[20-23]. Stem cell 
transplantation for ischaemic stroke, a Cochrane review, evaluated three small trials 
conducted on adults[24]. There is one Cochrane review on MSC-based therapies for 
the prevention and treatment of bronchopulmonary dysplasia in preterm infants[25]. 
There are also early phase trials on the use of cord blood cells and MSCs or (or the 
combination of both) for severe intraventricular hemorrhage (NCT02274428), 
bronchopulmonary dysplasia, and HIE[26,27].

Despite the promising potential of stem cells and progenitor cells for HIE in experi-
mental and clinical pilot studies, cell therapy in humans still remains in the initial 
stage[28]. The study by Miao et al[9] reported that 47 patients (47%), including 12 
patients with spinal cord injury, 11 patients with cerebral palsy, 9 patients with post-
brain infarction syndrome, 9 patients with post-traumatic brain syndrome, 3 patients 
with motor neuron disease, and 3 patients with spinocerebellar ataxia had an 
improvement in their functional indices a year after the intrathecal administration of 
UC-MSCs[9]. Preclinical studies have shown substantial favorable effects of intraar-
terial, intracisternal, intratracheal, intravenous, or intracerebral administrations of 
allogeneic WJ-MSCs[29]. The present study demonstrated that both triple-route and 
multiple administrations of allogeneic WJ-MSCs were safe and improved the 
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Figure 2 Change in the mean pretest and posttest macrophage activation syndrome right and left scores of the patients.

functional status of patients.
The current study is the largest trial of both triple route and multiple implantations 

of allogeneic WJ-MSC in pediatric patients with HIE and the first to evaluate 
allogeneic WJ-MSC therapy in this population regardless of our previous pilot study
[6]. With a dose of 1 × 106/kg for each route, patients developed mild adverse 
reactions, all of which were transient and disappeared with 24 h. Three patients 
developed only early complications such as low-grade fever, mild headache associated 
with IT injection, and muscle pain associated with IM injection, all of which were 
transient and disappeared within 24 h.

Patients with chronic HIE usually exhibit functional deterioration but pediatric 
patients included in this study exhibited a constant functional improvement through 
the 12-mo follow-up. HIE-related impairments usually show a bimodal recovery 
pattern. The majority of HIE survivors first exhibit a little spontaneous recovery, for 
instance, improvement in the motor system during the first months. However, they 
experience a significant deterioration in functional status a year after the onset of HIE. 
This is of note as there is a limited number of treatment options for patients with 
chronic HIE.

In the current study, functional gains were seen, though were modest in magnitude. 
Although moderate, patients included in the present study showed functional 
improvements. Despite that, a 2.5-point increase in the Wee FIM Scale motor scores of 
chronic HIE patients are of great value (Table 5). Although patients had a low increase 
in their Wee FIM motor scores, they achieved an increase of 7.5 points in their post-
treatment cognitive scores (Table 6). This continuous improvement through the 12-mo 
follow-up indicates the broad effects of MSC on brain functions. There is a need for 
larger, placebo-controlled studies to verify these results; however, these results also 
support that this treatment can be used as a promising approach to improve the 
functions of patients with chronic HIE. Treatment-specific outcome measures may be 
the subject of future studies to obtain more detailed estimates of behavioral 
improvements in the neural systems of patients. In the present study, the percentage of 
patients who achieved an excellent functional improvement (Wee FIM scale total score 
= 126) increased from 10.71% (at baseline) to 12.03% at 1 mo and to 18.65% at 12 mo 
post-treatment (Tables 5 and 6). Preclinical studies conducted with animal models of 
HIE have shown a significant improvement in the functions of treatment groups with 
MSCs. The potential of MSC therapies to treat neurologic conditions is associated with 
their ability to restore energy failure, inhibit the inflammatory response, and enhance 
neurogenesis as well as angiogenesis in the hypoxic brain area. Our study is in line 
with preclinical studies on HIE in terms of continuous improvement in functions 
through the 12-mo follow-up[15].

The present study has several strengths. The study population consisted of chronic 
HIE patients with substantial functional impairments, who have a limited number of 
treatment options. However, optimization of regenerative cells requires considering 
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several factors. Some examples of these factors are the source to derive stem cells, 
processing of cells, number of passage, frequency, dose, timing, and administration 
route, all of which have an effect on treatment efficacy[30]. Moreover, various 
laboratory processing techniques, including cell expansion medium, oxygen tension, 
number of passage, the use of cryopreserved or fresh cells, also have an effect on the 
therapeutic potential of regenerative cells[31-33]. Since the use of multiple passages 
may damage cellular functions, fewer passages should be preferred as much as 
possible[34,35]. In the present study, the cells used in infusion were allogeneic so the 
requirement for immunosuppressive therapy was excluded when compared with 
autologous cell therapies. This comparatively immune-privileged feature of MSC 
makes it possible to use this approach in a large pediatric population with HIE. The 
safety of the treatment was evaluated by including both triple-route and multiple 
administrations of WJ-MSC in the study protocol. The limit of cell culture was set at 3 
passages, which provided an important advantage considering that the use of multiple 
passages may damage cellular functions of MSCs such as differentiation, proliferation, 
viability, and homing. The safety evaluation also included comprehensive laboratory 
tests through a 1-year follow-up.

The study also has several limitations, which are not including a control group to 
compare behavioral gains since the study was designed as a safety study, and not 
studying the mechanism of action. Stem cell therapies to improve outcomes of patients 
with chronic HIE are likely to act through multiple mechanisms, including the release 
of growth factors and anti-inflammatory effects, and probably exosomes. Future 
studies can focus on this. Patients with HIE can benefit from restorative therapies to a 
maximum extent when they combine the treatment with training, which was not given 
to patients included in this study. The present study showed that both triple-route and 
multiple administrations of WJ-MSC were safe in the pediatric HIE population 
suffering from substantial functional impairments. The results of this study also 
demonstrate the functional benefit of WJ-MSC therapy, which should be verified in 
controlled studies. Collectively, the results of this study support future studies to 
evaluate both triple-route and multiple administrations of WJ-MSC in pediatric HIE 
with its mechanism of action.

CONCLUSION
Stem cell therapies appear to be a potential treatment option for brain injury resulting 
from HIE. In recent years, stem cell therapies, especially WJ-MSCs therapy, have led to 
the development of novel treatment protocols for ischemic brain injury. However, 
many unanswered questions on stem cell therapies still remain. There is a need for 
much effort to devote to thoroughly elucidating how stem cell therapy works, what 
paracrine mediators are important, when and what type of therapy should be used, 
and which patients are eligible candidates for this treatment. Therefore, there is a need 
for further preclinical studies to optimize the treatment protocol as well as multicenter 
clinical trials to confirm safety and efficacy.

ARTICLE HIGHLIGHTS
Research background
Hypoxic-ischemic encephalopathy (HIE) is one of the leading causes of death and 
long-term neurological impairment in the pediatric population.

Research motivation
Despite a limited number of treatments to cure HIE, stem cell therapies appear to be a 
potential treatment option for brain injury resulting from HIE.

Research objectives
The present study investigated the efficacy and safety of stem cell-based therapies in 
pediatric patients with HIE.

Research methods
Wharton’s jelly-derived mesenchymal stem cells (WJ-MSCs) were intrathecally, 
intramuscularly, and intravenously administered to participants at a dose of 1 × 106
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/kg for each administration route twice monthly for 2 mo. In different follow-up 
durations, the effect of WJ-MSCs administration on HIE as well as the quality of life 
and prognosis of patients was investigated, and patients were evaluated for 
neurological, cognitive functions, and spasticity using the Wee Functional 
Independence Measure Scale and Modified Ashworth Scale to determine the 
associated adverse reactions.

Research results
Three patients developed only early complications which were transient and 
disappeared within 24 h. The treatment was evaluated to be safe and effective as 
demonstrated by magnetic resonance imaging examinations, electroencephalo-
graphies, laboratory tests, and neurological and functional scores of patients. Patients 
exhibited significant improvements in all neurological functions during the 12-mo 
follow-up period.

Research conclusions
Multiple triple-route WJ-MSC administrations were found to be safe for pediatric HIE 
patients, indicating neurological and functional improvement.

Research perspectives
More comprehensive randomized and placebo-controlled studies can be conducted to 
further support the results of this study.
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