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Abstract
Despite various treatment protocols and newly recognized therapeutics, there are 
no effective treatment approaches against coronavirus disease. New therapeutic 
strategies including the use of stem cells-derived secretome as a cell-free therapy 
have been recommended for patients with critical illness. The pro-regenerative, 
pro-angiogenic, anti-inflammatory, anti-apoptotic, immunomodulatory, and 
trophic properties of stem cells-derived secretome, extracellular vesicles (EVs), 
and bioactive factors have made them suitable candidates for respiratory tract 
regeneration in coronavirus disease 2019 (COVID-19) patients. EVs including 
microvesicles and exosomes can be applied for communication at the intercellular 
level due to their abilities in the long-distance transfer of biological messages such 
as mRNAs, growth factors, transcription factors, microRNAs, and cytokines, and 
therefore, simulate the specifications of the parent cell, influencing target cells 
upon internalization and/or binding. EVs exhibit both anti-inflammatory and 
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tolerogenic immune responses by regulation of proliferation, polarization, 
activation, and migration of different immune cells. Due to effective immunomod-
ulatory and high safety including a minimum risk of immunogenicity and tumori-
genicity, mesenchymal stem cell (MSC)-EVs are more preferable to MSC-based 
therapies. Thus, as an endogenous repair and inflammation-reducing agent, MSC-
EVs could be used against COVID-19 induced morbidity and mortality after 
further mechanistic and preclinical/clinical investigations. This review is focused 
on the therapeutic perspective of the secretome of stem cells in alleviating the 
cytokine storm and organ injury in COVID-19 patients.

Key Words: COVID-19; Secretome; Mesenchymal stem cell; Exosome; Stem cell; 
Biofactors

©The Author(s) 2021. Published by Baishideng Publishing Group Inc. All rights reserved.

Core Tip: The world has witnessed unbelievable damage due to the coronavirus disease 
2019 (COVID-19) pandemic. The rapid propagation of the disease requires emerging 
therapeutic strategies. The central role of the immune system during COVID-19 
highlights the importance of a balanced immune response in order to prohibit overex-
aggerated responses and further multiorgan dysfunction. Stem cell and stem cell-
derived secretome-related therapies have gained increasing momentum in the treatment 
of a broad range of diseases in the past decade. In particular, the immunomodulatory 
properties of stem cell-derived biofactors could be a new avenue in the treatment of 
COVID-19 patients.

Citation: Ardalan M, Chodari L, Zununi Vahed S, Hosseiniyan Khatibi SM, Eftekhari A, 
Davaran S, Cucchiarini M, Roshangar L, Ahmadian E. Stem cell-derived biofactors fight 
against coronavirus infection. World J Stem Cells 2021; 13(12): 1813-1825
URL: https://www.wjgnet.com/1948-0210/full/v13/i12/1813.htm
DOI: https://dx.doi.org/10.4252/wjsc.v13.i12.1813

INTRODUCTION
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is designated as the 
etiology of coronavirus disease 2019 (COVID-19), which is a pandemic viral disease. 
The symptoms from death or acute respiratory distress syndrome (ARDS) to mild 
upper respiratory symptoms[1]. Excessive systemic immune activation of patients 
generates a cytokine storm, which is found in severely ill COVID-19 patients. Recent 
evidence indicates that the cytokine storm could play a key role in disease progression, 
resulting in the failure of various organs or even death. Hence, approaches which 
prevent the cytokine storm may be significant in mitigating COVID-19[2,3].

Complications such as cardiovascular system dysfunction, primarily acute 
myocardial injury, arrhythmia, or heart failure[4], neurological complications[5], 
gastrointestinal symptoms[6], and acute kidney injury[7] have been identified in a 
substantial proportion of COVID-19 patients. The unprecedented COVID-19 pandemic 
demands urgent therapies. Currently, multiple medicines involving anti-viral, anti-
malarial, and anti-inflammatory agents are being investigated. Regardless of the 
patient's recovery and survival due to various therapeutics, lung damage in these 
patients does not fully recover. Recently, promising stem cell therapies and 
importantly secreted extracellular vesicles (EVs) have been shown to exhibit anti-
inflammatory effects and attenuate COVID-19-related lung injury.

A new therapeutic approach which involves cellular therapies is promising in 
treating chronic and acute lung diseases due to their anti-inflammatory, immunomod-
ulatory, regenerative, pro-angiogenic, and anti-fibrotic features. Mesenchymal stem 
cell (MSC)-secretome (a paracrine mechanism) composed of EVs and free soluble 
proteins mediate those therapeutic impacts[8]. The remarkable properties of exosomes 
have gained considerable attention as a probable therapeutic option in COVID-19. In 
vivo and in vitro studies have been conducted to determine the various therapeutic 
effects of MSC-secretome in tissue regeneration, heart, and lung diseases. The inflam-
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mation suppressing effects of MSC-secretome are due to the prevention of monocyte 
differentiation into dendritic cells, prohibiting natural killer (NK) cells proliferation 
and cytotoxicity, stimulating macrophage polarization from the pro-inflammatory 
(M1) to anti-inflammatory (M2) phenotype, regulating the inflammatory character-
istics of T helper cells, and inhibiting T cell proliferation. Growth factors found in the 
MSC-secretome regenerate the damaged lung tissue by increasing proliferation and 
reducing apoptosis of resident lung epithelial and endothelial cells. Additionally, 
antimicrobial peptides (AMPs) have been observed in MSC-secretomes and 
demonstrate antimicrobial properties, whereas protease inhibitors reduce extra 
protease function in the lung, preserving the protease/anti-protease equilibrium[9]. 
Exosomes extracted from MSC act as multitargeting agents. Therefore, they diminish 
the cytokine storm and prevent the inhibition of COVID-19-related anti-viral defenses 
in hosts[10]. Exosomes may hamper the cytokine storm and inflammatory process due 
to their reparative properties and thus induce endogenous repair. Hence, MSC-
secretome might be a valuable cell-free substitute to cell-based therapies alone or in 
combination with pharmacological agents. In this review, the therapeutic potential of 
the secretome of stem cells in mitigating COVID-19-induced cytokine storm and organ 
damage is presented.

STEM CELL-BASED THERAPEUTICS
Evidence has shown the promising role of MSCs in COVID-19 pneumonia treatment. 
Human umbilical cord MSCs given to a 65-year-old female with severe COVID-19 
induced substantial recovery through modulation of the immune system and 
regeneration of damaged tissue with high safety[11]. Every three days, MSCs were 
administered intravenously by clinicians three times (5 × 107 cells each time). Leng et al
[12] demonstrated the enhancement of pulmonary function and symptom 
improvement in seven COVID-19 patients with pneumonia in only two days after 
administration of MSCs. In their study, only one administration per kilogram of 
weight containing 1 × 106 cells was performed. The authors proposed that the 
therapeutic impact mainly occurred based on the immunoregulating features of MSCs. 
Remarkably, MSCs are not virus infectable as they are angiotensin-converting enzyme 
2 negative. Hence, for treating seriously ill COVID-19 patients under certain protocols, 
MSCs can be considered a potential treatment option[13]. As the severity of this viral 
infection is closely associated with the host’s immune response, the immunomodu-
latory effects of MSCs can efficiently prohibit the cytokine storm and thus treat severe 
cases of COVID-19. Indeed the outcomes of COVID-19 patients can be enhanced by the 
transplantation of MSCs using various methods, including “as a result of their 
immunoregulatory impact, as a result of inducing regeneration and repairing tissue, 
and as a result of their antimicrobial, antifibrotic, and angiogenic properties”.

All these methods improve lung repair and prevent multiple organs from 
exaggerated immune response-derived damage. The ongoing COVID-19 clinical trials 
based on MSCs have been reviewed recently[14]. It now seems that MSCs convey their 
therapeutic effects through the paracrine pathway. As these cells can discharge 
secretome (active biological substances), therefore they can be potentially addressed as 
drug stores[15].

THE SECRETOME OF STEM CELLS: A CELL-FREE ALTERNATIVE TO 
CELL-BASED THERAPEUTICS
The secretome is defined as a stem cell secretion composed of regulatory factors and 
various soluble molecules, including AMPs, angiogenic growth factors, lipid 
mediators, and anti-inflammatory cytokines. Evidence has shown that these molecules 
are packed into EVs, also known as cell-secreted vesicles[16,17].

Common secretory mechanisms are involved in the excretion of secretomes by stem 
cells (Figure 1). Following the administration of the secretome or the culture medium 
in patients, through a paracrine signaling pathway, neighboring cells assimilate them
[18]. Two important secreted EVs, are exosomes and MVs, also known as microvesicles 
alongside the apoptotic bodies secreted by stem cells[19]. The fusing of plasma and 
multi-vesicular bodies facilitates exosome (30-100 nm) elicitation. However, cellular 
membrane budding generates MVs (100-1000 nm), which possess cellular cytoplasm. 
EVs are discharged into the extracellular microenvironment and act like soluble 
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Figure 1 The stem cell secretome. After the interaction between host angiotensin-converting enzyme 2 (ACE2) receptor and the spike S protein of severe 
acute respiratory syndrome coronavirus 2, the membrane is fused, and the viral genome is released into the cell or the virus enters the cell by clathrin-
dependent/independent endocytosis. Most of the cells in human organs including the intestine, heart, kidney, and alveolar type II (AT2) cells of the lungs express 
ACE2 receptors. Extracellular matrix metalloproteinase inhibitor (EMMPRIN or CD147) and two proteases transmembrane serine protease 2 (TMPRSS2) are required 
for virus entry into the host cell. The lungs are damaged after direct destruction of capillary endothelial cells and AT2, the renin-angiotensin system is disrupted or the 
immune response is diminished indirectly. Following virus-induced infection, pathogen-associated molecular patterns lead to recognition of the virus by the innate 
immune system, activation of nuclear factor-κappa B and IRF3 pathways, type I interferon (IFN) expression and consequently activation of the JAK/STAT pathway 
and finally the expression of IFN-stimulated genes (ISG) which have anti-viral activity. The abovementioned effective immune response is required for successful 
virus clearance and clinical disappearance of the disease. Nonetheless, the IFN response may be delayed due to evasion of IFN and ISG mediated killing by the virus 
which in turns leads to hyper-inflammatory neutrophils and macrophage infiltration at the pulmonary site accompanied by pro-inflammatory cytokines including 
granulocyte-colony stimulating factor, tumor necrosis factor, MCP1, and interleukin-1b/2/6/7/8/17[3]. This hyper-activation of T lymphocytes and the innate response 
is called the ‘cytokine storm’ and is responsible for lung disorders including acute respiratory distress syndrome, pneumonitis, viral sepsis, respiratory and organ 
failure. A high number of pro-inflammatory cytokines leads to hyaluronan synthase 2 induction which elevates hyaluronan production and fluid accumulation in the 
lungs[78]. In critical cases of coronavirus disease 2019, the virus enters the peripheral blood and translocates to various target organs including kidney, heart, and 
intestine and can cause multiple organ failure. ACE2: Angiotensin-converting enzyme 2; SARS-CoV-2: Severe acute respiratory syndrome coronavirus 2; TNF: 
Tumor necrosis factor; IL: Interleukin; DC: Dendritic cell.

components and through endocrine and paracrine methods, they express their 
biological effects. In a more general definition, MSC-secretome contains all the 
secreted bioactive factors of MSCs, with both extravesicular and the soluble elements
[20,21].

MSC-DERIVED EVS
Upon secretion, proteins, and EVs, through ligand-receptor interactions or internal-
ization, engage with the target cells and regulate cellular responses. The secretome 
stimulates endogenous stem cells and progenitor cells, prevents apoptosis, attenuates 
the inflammatory response, triggers extracellular matrix remodeling and angiogenesis, 
prevents fibrosis, and regulates chemoattraction. It was revealed that following the 
MSCs' functional mitochondria or mitochondrial DNA transfer to target cells, they 
protect cellular aerobic respiration with non-healthy mitochondria or modulate T cell 
functions[21]. By resembling their parent cells, EVs from MSCs have characteristics 
such as immunoregulatory, anti-oxidative, progenerative, pro-metabolic, anti-
apoptotic, and anti-inflammatory, in the microenvironment of damaged tissue. In 
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MSC-based therapy, extracted EVs from MSCs are considered a substantial alternative 
to cell-based treatments[22]. Their efficacy is presently under in vitro examination for 
lung damage treatment utilizing MSC-derived EVs in various preclinical experiments
[22]. EVs extracted from MSCs showed efficacy in lung injury due to influenza in a pig 
model. Studies have revealed that extracted EVs from MSCs are available 12 h after 
virus infection and diminish the levels of pro-inflammatory cytokines as well as viral 
replication[23]. Ang-1 mRNA (an angiogenic trophic factor) is found in EVs from 
MSCs. Due to this factor's role in limiting leukocytes and vessel endothelial cells' 
interaction and sustaining the vascular barrier integrity, Ang-1 mRNA is considered 
substantial in endothelial cell stabilization during the injury process. The impact of 
EVs extracted from MSCs on lipopolysaccharide-induced acute lung damage in an 
experimental mouse model sheds light on the contributions of Ang-1 mRNA transfer 
by EVs to restore pulmonary capillary permeability[24]. Furthermore, EVs extracted 
from MSCs influence inflammation by inhibiting the expression of tumor necrosis 
factor alpha (TNF-α) and stimulating interleukin (IL)-10 secretion. Upon Ang-1 mRNA 
transfer and the internalization of EVs extracted from MSCs into injured endothelium 
cells, within the damaged lung microvascular endothelium, Ang-1 mRNA partially 
preserves protein permeability[25]. EVs are increasingly regarded as a substantial 
alternative to cell-based therapy.

Secretome administration is associated with multiple advantages in comparison 
with complete MSCs therapy. The secretome lacks self-replication and is not involved 
in endogenous tumor development, as it has low immunogenicity, and upon 
intravenous injection, it contributes to low emboli formation. Therefore, the secretome 
is deemed more advantageous than cells[26]. The MSC-secretome can be altered and 
preserved more conveniently than cells with fewer costs regarding technological 
advances. It also suits emergency interventions as the product is ready-to-use[27]. 
With regard to monoclonal antibody therapy, the costs of the MSC-secretome are 
lower, which is vital in the management of a pandemic. Nonetheless, many concerns 
regarding EVs should be resolved before clinical application, and the delivery route 
(intravenous or inhalation), purification, bio-distribution, production, and character-
ization should be determined.

EXOSOMES
Exosomes are nanoparticles (40-150 nm) which have various bioactive components, 
including proteins, growth factors, lipids, microRNAs (miRNA), long noncoding 
RNAs, and transfer RNAs. The lipid contents of exosomes provide the platform for 
their infusion with neighboring cells and plasma membrane[28]. Following internal-
ization of the secretome components, neighboring cells alter several downstream 
pathways, such as fibrosis inhibition, immunoregulation, damaged tissue remodeling, 
and apoptosis suppression[8].

With regard to exosome isolation and production, MSCs discharge exosomes under 
circumstances such as cytokine treatment, serum starvation, or hypoxia[29]. 
Purification and the introduction of exosomes into the body can then take place. It has 
been shown that exosomes derived from MSCs generate an impact resembling that of 
MSCs[30]. The multiple proteins, miRNAs, and mRNAs transported from secretory 
cells to the exosomes' target cells exhibit anti-inflammatory traits[31]. Exosomes can 
stimulate regulatory cytokines, decrease the production of inflammatory cytokines, 
and prevent inflammation[32]. Impeding NK cells, CD4+ and CD8+ T cells can occur 
with MSC-exosomes[33]. They induce T cell IL-7 expression and stimulate the 
expression of IL-10 by regulatory cells, which are implicated in the suppression of 
inflammation. Furthermore, MSC-exosomes, by secreting transforming growth factor β 
(TGF-β) prevent CD4+ and CD8+ T cell differentiation and suppress inflammation in 
vivo[34]. MSC-exosomes treatment inhibits the activation and proliferation of NK cells
[35]. MSC-exosomes engage in prohibiting pro-inflammatory states by shifting M1 
macrophages to M2 phenotypes[36]. Moreover, MSC-exosomes prevent the secretion 
of pro-inflammatory factors including IL-17, interferon (IFN)-γ, IL-1β, TNF-α, and IL-6
[37], and stimulate the secretion of anti-inflammatory factors including TGF-β, IL-4, 
and IL-10[38]. Also, their function decreases the serum chemokine level[39]. The 
immunoregulatory features of MSC-exosomes are associated with their anti-inflam-
matory components, including PD-L1, HLA-G, Galectin-1, and IDO[40-42]. Fur-
thermore, MSC-exosomes, by escalating ATP levels in alveolar type II cells, increase 
their survivability[43]. In addition, exosomes possess adhesion molecules which 
accurately guide them to the damaged site. The exosome components then cross the 
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blood-brain barrier. They are low-cost and do not undergo independent self-renewal 
processes. Thus, they impede serious consequences involving tumor development and 
other adversities.

THE ADVANTAGEOUS THERAPEUTIC IMPACT OF STEM CELL-DERIVED 
SECRETOME
The therapeutic effects of MSC-derived EVs on lung and heart injuries have been 
demonstrated. There are also studies on the impact of MSC-EVs on hemagglutination 
of swine, avian, and human influenza viruses[23]. In addition, MSC-exosomes reduced 
mortality in H7N9 patients with no concomitant toxic complications during the follow-
up period[44]. One study revealed that S proteins within exosomes can be considered 
a novel vaccine for countering SARS-CoV infections[45]. In a test of S-containing 
exosomes immunogenicity in mice, the results showed amplified titers of neutralizing 
antibody. Moreover, with regard to economics, MSC-exosomes therapy was a less 
expensive treatment than maintaining and extending individualized clonal cell 
populations[46]. In the following section, we provide a general review of the present 
findings on stem-cell extracted secretomes in preclinical studies for lung and heart 
injuries (the organs most damaged by SARS-CoV-2).

STEM CELL-DERIVED SECRETOME IN THE PATHOGENESIS OF ORGANS
EVs extracted from MSCs have been shown to have an impressive impact on ARDS 
and acute lung injury. This is the result of the immunoregulatory and anti-inflam-
matory features of MSC-EVs[24], which induces shrinkage of the permeability of the 
endothelium and epithelium of alveoli[25], enhancing alveolar fluid clearance[43], 
macrophage phagocytosis improvement[47], and direct mitochondrial transfer with 
host cells promoting tissue repair.

Secretome in the blood has impressive stability, subsequent to MSC intravenous 
administration, and reaches the lungs via blood flow. It is then distributed in the 
tissues and promotes bacterial clearance, resolution of inflammation, enhances 
immune regulation, and preserves capillary barrier function[19]. The soluble 
components of MSCs inhibit inflammation, and EVs induce tissue repair. EVs secreted 
from MSCs, in particular, lung injuries, provide metabolites, DNA, miRNA, mRNA, 
and proteins to cells thus enhancing lung repair, and restoring and regenerating lung 
function[48].

Lung accumulation of MSCs occurs after systematic administration. Following 
secretion of their components, they enhance the pulmonary microenvironment, 
preserve the epithelial cells of alveoli, inhibit pulmonary fibrosis, and strengthen lung 
function[13]. Furthermore, distant affected organs (for example, the cardiovascular 
system) can take advantage of MSCs due to the secretory characteristics of these cells. 
Various studies have focused on the circulation of the cellular cargo, and preclinical 
trials revealed their capacity to manipulate diverse pathways to promote cellular 
communication. miRNA (a composition of exosomes) has been demonstrated to have a 
significant role in physiological functions, including immune modulation, de-
velopment, epigenetic modifications, and so on[49]. The manufacture and isolation of 
EVs could be a beneficial therapy in pulmonary injuries[50].

An experimental mouse model of neonatal hyperoxia showed that MSCs from 
human bone marrow and Wharton's jelly inhibited lung fibrosis, enhanced pulmonary 
vascular remodeling, and stimulated lung development in bronchopulmonary 
dysplasia. MSC-derived exosomes exhibited anti-inflammatory activity and altered the 
pro-inflammatory M1 pulmonary macrophages to anti-inflammatory M2 macrophages 
followed by inhibition of lung inflammation and the immune response facilitating 
organ development[51]. Exosomes derived from MSCs have demonstrated mitigating 
effects in an asthma and ARDS model of lung damage[52]. The potential role of 
exosomes in alveoli fluid clearance was identified during an ex vivo experiment 
involving human donor lung (not suitable for transplantation) perfusion. This was 
assisted by exosome CD-44 which was involved in the internalization mechanism in 
damaged host cells[53]. In addition, exosomes extracted from MSCs have been 
indicated in the direct inhibition of viral multiplication.

Overall, exosomes extracted from MSCs show promising effects on decreasing 
pulmonary edema and protein permeability, reversing lung inflammation, the prolif-
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eration of lung epithelium, and the polarization of lung macrophages[54]. 
Additionally, MSC-derived exosomes are effective in the treatment of cardiovascular
[55] and renal disease[56].

The therapeutic impact of MSC-EVs on acute myocardial infarction has been 
reported. This has been shown to involve the following underlying mechanisms: 
Reduction of the inflammatory response[29], reduction of cardiac fibrosis, mitigation 
of cardiomyocyte apoptosis[57], induction of angiogenesis[58] and promotion of 
cardiomyocyte autophagy[59]. It was also shown that, fibroblast growth factor, 
composed of MSC-secretome (derived from adipose tissue), inhibited viral replication 
processes[60].

STEM CELL-DERIVED EXOSOMES; A NANO-PLATFORM FOR COM-
BATING COVID-19
COVID-19 patients may develop multiorgan damage. In the initial phases of infection, 
mainly pneumocyte type II cells are infected, and other target cells may be bronchial 
cells, monocytes, macrophages, and enteric cells. Moreover, the principal SARS-CoV-2 
cardiovascular complication is acute myocardial injury[61]. Heart tissue biopsies from 
COVID-19 patients revealed mononuclear inflammatory infiltration, more commonly 
found in cardiomyocyte necrosis sites[62]. Applying stem cell-derived secretome to 
organs damaged by COVID-19 is possible, according to extracted data. Also, the 
survival rate of septic mice increased following MSC-derived exosome treatment[63]. 
With regard to MSC-derived exosomes as supportive therapy in the current pandemic, 
this can be beneficial in inhibiting the effects of COVID-19 [42] and healing organ 
damage.

Experimental studies on the biological activity of MSC secretomes have demon-
strated the possibility of applying MSC-derived secretomes for seriously ill COVID-19 
patients as a cell-free therapy. EVs and proteins contained in MSCs affect endogenous 
stem and progenitor lung cells. They promote cell differentiation and proliferation, 
inhibit the inflammatory response, prevent apoptosis, reduce fibrosis, and recover 
capillary barrier function. Due to their similarity to parental MSCs, they are also 
effective in the management of chronic and acute lung injuries[64]. Exosomes 
(ExoFloTM) derived from MSCs of allogeneic bone marrow have been proposed as a 
treatment for seriously ill COVID-19 patients according to the first prospective nonran-
domized open-cohort study conducted. ExoFlo is considered to be a hopeful 
therapeutic candidate for COVID-19 due to its capacity to restore oxygenation, 
immunity reconstitution, safety traits, and downregulation of the cytokine storm[10]. 
This study included twenty-four patients suffering from ARDS with severe and 
moderate-to-severe symptoms. Exoflo was administered intravenously in a single 
dose, with no harmful effects identified 72 h after administration. The study showed 
an 83% survival rate, cytokine storm downregulation, substantial hypoxia recovery, 
and immune restoration. Exosome-involved COVID-19 clinical trials are ongoing in 
the United States, China, Turkey, and Russia (NCT04276987, NCT04493242, 
NCT04491240, ChiCTR2000030484, ChiCTR2000030261, NCT04384445, NCT04389385).

The advantage of MSC-derived secretome therapy is its two forms (inhalable and 
injectable formulation) for potential clinical applications[9]. Both forms exist as freeze-
dried powder and can be used in patients with a severe COVID-19 lung infection. An 
examination of the inhalable secretome form for COVID-19 pneumonia was conducted 
in a clinical trial (NCT04276987) in China, and its tolerance was examined in healthy 
individuals (NCT04313647)[8]. Assessment of its therapeutic efficacy demands further 
randomized controlled trials with comprehensive delivery of the exosomes. Moreover, 
in addition to MSC-derived secretomes, the secretome of oral tissue stem cells is also 
considered to have a therapeutic impact in infected cases due to their immunoregu-
latory and anti-inflammatory characteristics. Non-invasive therapy is superior to 
invasive therapy in prophylaxis and results in minimum risk of the treatment process, 
and prevents COVID-19, offering a novel immunoregulatory pathway for COVID-19 
therapy[65].

The potential role of exosomes in treating COVID-19 can be classified into three 
general divisions. First, instead of cell therapy, the exosomes derived from multiple 
MSCs are utilized. Second, particular mRNAs and miRNAs are incorporated into the 
exosomes. Third, exosomes could be used as drug carriers in the treatment of COVID-
19[66]. The efficacy of stem cell-derived secretome therapies is the main focus of 
continuing clinical trials. Nonetheless, the effectiveness, safety, and long-term 
consequences of these therapies require further study.
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CHALLENGES IN TREATING COVID-19 USING STEM CELL-DERIVED 
SECRETOME
Administering stem-cell EVs as a possible treatment for COVID-19 is supported by 
initial examinations. However, for the sake of scientific rationale, further under-
standing and justification of MSC-EVs and other EV treatment effects on COVID-19 
are required. MSCs have demonstrated promising effects on COVID-19 pathogenesis. 
However, their resemblance to exosomes is uncertain. Regulation of the immune 
response is the main impact of MSC-EVs, rather than impeding it (Figure 2). By 
regulating the response, they moderate it. They also strengthen tolerance and improve 
homeostasis[67]. Although stimulating tolerance in graft-vs-host and other non-
infectious diseases is effective, it sometimes has an adverse effect on replicating 
pathogens. Albeit in selected models, Escherichia coli and influenza infection did not 
escalate but other replicating bacteria and viruses can experience augmented 
uncontrollable infection due to tolerance stimulation[68].

Prior to MSC-EVs application in COVID-19 patients, particular concerns must be 
resolved. The EV isolation method, purification, and characterization must be 
determined. These have a meaningful impact on the examination results, and in 
clinical trials can generate obscure conclusions. These parameters involve the origin of 
MSC-EVs. MSCs (as a heterogeneous cell essence) are derivable from various tissues. 
Even derivatives of the same tissue vary in inter-individual and clone-specific 
functions[69]. In fact, comparing four MSC-EV samples harvested from separate 
donor-derived bone marrow placed in conditioned media revealed substantial 
cytokine component differences[70]. Moreover, in one study MSCs from young 
individuals (suffering from acute lung injury), but not elderly individuals, attenuated 
lipopolysaccharide-induced acute lung injury[71].

The problem of EV heterogeneity from dissimilar resources, preparations, and other 
issues can be solved by manufacturing immortal MSC colonies that can be deliberately 
examined for potency and production of EVs[72]. Besides the problem of derived 
MSC-EVs from different origins, another consideration is their various responses to 
different disease conditions. Therefore, it is unclear whether the divergent immune 
response regulation of exosomes is due to tissue specificity. Regardless of the 
immunoregulatory properties, MSC-EVs seem to influence additional biological 
mechanisms with therapeutic functions[73] and other probable unanticipated effects. 
Recently conducted studies demonstrated that adipose-derived MSC-EVs had higher 
thrombogenic traits than bone marrow-derived MSC-EVs[74]. Accordingly, the origin 
of parental cells can potentially result in a higher thrombosis risk. The complement 
pathway stimulation accompanied by the procoagulant condition in a fraction of 
serious COVID-19 cases can result in the devastating microvascular injury syndrome
[49], and the application of MSC-EVs may be ineffective.

A further hurdle is sustaining their stability and productivity with time[75]. 
Exosomes, from MSCs at -80°C, are viable for an extended period. Nevertheless, 
exosome clustering appears after storage due to freeze-thaw cycles. Moreover, preser-
vation at low temperature during transportation and handling contributes to transla-
tional application impediments[76].

The manufacture of EVs requires living cells that are cultured under GMP-
compliant (good manufacturing practice-compliant) processes to conserve safety and 
quality standards criteria. Hence, EV manufacture resembles the ethical and scientific 
guidelines used for MSCs. Also, basing any therapy on EVs extracted from MSCs 
requires the approval of national regulatory agencies to ensure their safety and 
productivity. The International Society for Cellular and Gene Therapies and the 
International Society for Extracellular Vesicles decrease the risk of critical side effects 
by deliberately weighing the probable benefits and risks of MSC-EVs for COVID-19 
and have already provided preclinical data in connection with animal models and 
relevant MSC clinical trial-derived data. Additionally, they urge deliberate EV use 
evaluation by rational clinical trial design, applying well-characterized EV prepar-
ations generated according to strict GMP conditions and under proper regulatory 
oversight[77].

CONCLUSION
MSC-derived secretome demonstrates beneficial results as a cell-free therapy for acute 
and chronic lung diseases. It exhibits immunoregulatory, pro-angiogenic, anti-inflam-
matory, regenerative, and anti-protease characteristics. Due to the prominent role of 
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Figure 2 Immunomodulation by the stem cell secretome. The behavior of immune cells is altered by the secretion of various immunomodulatory factors. 
Mesenchymal stem cells (MSCs) secrete SOD3 which inhibits neutrophil activation and infiltration of leukocytes. Also, MSCs secrete PGE2, SDF-1, and interleukin 
(IL)-10 and lead to macrophage polarization to the M2 phenotype. Furthermore, MSCs induce HLAG5 secretion (shift to CD4β CD25β T reg population), Il-4 secretion 
(shift to Th2 population), constitutive expression of transforming growth factor β1 (TGF-β1), HGF, COX2, IL-10, IDO, and PGE2 which in turn inhibit T-cell 
proliferation. The secretion of IL-2 prevents inactivated NK cell proliferation, and secretion of HLAG5, TGF-β1, IDO, and PGE2 prevent cytokine secretion. In addition, 
MSCs cause B cells arrest in the G0/G1 phase and reduce the level of circulating immunoglobulins and secretion of CXCR4, CXCR5, CXCR7 by B cells. Due to the 
high amount of ISG gene expression, MSCs induce an antiviral response in the lungs. After secretion of immunomodulatory, anti-inflammatory, and microRNAs 
mediators and their extracellular vesicles-mediated transfer, MSCs lead to regulatory lymphocyte and M2 macrophage production. Differentiation of MSCs to various 
lung epithelial cells or differentiation of host tissue-resident stem cells lead to the secretion of numerous growth factors and angiogenic factors to stimulate 
revascularization, and consequently repair structural injury. Recovery of alveolar cell functions, their ATP stores, and metabolic capacity is feasible by direct transfer 
of functional mitochondria. Anti-fibrotic cytokines in high amounts reduce collagen fibers and subsequently hyper-inflammation and oxidative stress. A combination of 
anti-viral drugs with the immunomodulatory cargo of MSCs exosomes is a promising intervention tool in disease treatment[54]. Remdesivir is the best example of 
drug loading on exosomes[79]. Nevertheless, more studies are needed to clarify the exact mechanism of the specificity, targeted delivery and safety of exosomes.

MSC-derived exosomes in inhibiting the inflammatory response and in injured tissue 
regeneration, they may be a valuable therapeutic option in COVID-19-related 
pneumonia. Additionally, exosomes are considered potential nanocarriers, 
biomarkers, and vaccines for COVID-19 treatment. Regarding the concerns on their 
outcome, it is important to assess the risk when utilizing MSC-exosomes for COVID-19 
by determining applicable preclinical findings in vivo models.

Upon reaching the lungs, the inhalable administered secretome encounters three 
main hurdles (anatomical, pathological, and immunological) and exerts their 
therapeutic effects. Although, the advantages of cell-free therapy are significant, it is 
considered a novel approach and requires secretome optimization and standardization 
via a comprehensive investigation of its components, dosing conditions, quality 
control, formulation and preparation process, and long-term storage strategies. 
Further data on the therapeutic mechanism, new formulation strategies, scalable and 
GMP-compliant isolation processes, and the capability to convey EVs and soluble 
proteins through non-invasive pathways of administration are required. These 
challenges will be groundbreaking, and will provide impressive clinical outcomes in 
the treatment of acute and chronic lung diseases.
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Abstract
Mesenchymal stem cells (MSCs) represent the most clinically used stem cells in 
regenerative medicine. However, due to the disadvantages with primary MSCs, 
such as limited cell proliferative capacity and rarity in the tissues leading to 
limited MSCs, gradual loss of differentiation during in vitro expansion reducing 
the efficacy of MSC application, and variation among donors increasing the 
uncertainty of MSC efficacy, the clinical application of MSCs has been greatly 
hampered. MSCs derived from human pluripotent stem cells (hPSC-MSCs) can 
circumvent these problems associated with primary MSCs. Due to the infinite self-
renewal of hPSCs and their differentiation potential towards MSCs, hPSC-MSCs 
are emerging as an attractive alternative for regenerative medicine. This review 
summarizes the progress on derivation of MSCs from human pluripotent stem 
cells, disease modelling and drug screening using hPSC-MSCs, and various 
applications of hPSC-MSCs in regenerative medicine. In the end, the challenges 
and concerns with hPSC-MSC applications are also discussed.

Key Words: Human pluripotent stem cells; Differentiation; Mesenchymal stem cells; 
Regenerative medicine; Disease modelling; Drug screening
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Core Tip: Mesenchymal stem cells (MSCs) exhibit great potential in regenerative 
medicine. However, the clinical application of primary MSCs has been greatly 
hampered by the limitations of primary MSCs. MSCs derived from human pluripotent 
stem cells (hPSC-MSCs) are an attractive source of cells to overcome such problems 
with primary MSCs. This review summarizes the various derivation approaches and 
applications of hPSC-MSCs in regenerative medicine. Lastly, the challenges with the 
use of hPSC-MSCs are also discussed, which indicate that more efforts are needed for 
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INTRODUCTION
Mesenchymal stem cells (MSCs) are adult stem cells with fibroblast-like morphology 
and plastic adherence. They express MSC surface antigens such as CD73, CD90, and 
CD105 but lack hematopoietic markers such as CD11b, CD19, CD34, and CD45[1]. 
More importantly, MSCs can give rise to multiple mesenchymal lineages, including 
bone, cartilage, and fat cells[1-3]. Friedenstain and colleagues first described an 
adherent subpopulation in bone marrow termed as marrow stromal cells[4-7]. The 
term of MSCs was later introduced in 1991 to refer to these cells[8]. MSCs reside in 
nearly all tissues, including bone marrow and adipose tissues, among others. Due to 
their expandability, multipotency, immunosuppression, and limited ethical concerns 
as compared to other types of stem cells, human MSCs have emerged as an attractive 
cell source for regenerative medicine. Moreover, MSCs exhibit low expression of major 
histocompatibility (MHC) antigens, thereby reducing the need for MHC match 
between different donors and recipients in allogeneic MSC transplant. Due to these 
characteristics that MSCs possess, MSC-based allogeneic transplantation is now the 
forefront of regenerative medicine. As a fast-growing field in regenerative medicine, 
MSCs represent the most clinically used stem cells with over 1000 registered clinical 
trials with an established safety record in patients that can efficaciously treat more 
than 30 diseases. However, there are several limitations of primary MSCs that greatly 
hamper their clinical application. They include limited cell proliferative capacity, 
gradual loss of differentiation potential during in vitro expansion, variation across 
donors, rarity in organs, invasive procedures required for harvesting, etc.

Human pluripotent stem cells (hPSCs), including human embryonic stem cells 
(hESCs) and induced pluripotent stem cells (iPSCs), represent a promising solution to 
overcome the issues associated with primary MSCs. Due to the pluripotency of hPSCs, 
they exhibit unlimited proliferation ability and are able to differentiate into various 
types of cells, including MSCs. Therefore, hPSCs can provide unlimited and uniform 
MSCs as an alternative cell source to primary MSCs. This review summarizes the 
derivation approaches and various applications of hPSC-MSCs, and ultimately the 
challenges associated with safety and efficacy of hPSC-MSCs are discussed.

DERIVATION OF HPSC-MSCS
Although primary MSCs have been widely used for clinical application, the previously 
mentioned limitations with the use of primary MSCs significantly hamper their clinical 
applications. To overcome the problems with primary MSCs, substantial advan-
cements have been made to develop a number of approaches for derivation of MSCs 
from hPSCs, including hESCs and iPSCs. These approaches include spontaneous 
differentiation via coculture with OP9, fetal bovine serum (FBS)-containing media, and 
embryonic body (EB), or directed differentiation via delicate control of signalling 
pathways. The principle of these approaches is to deprive pluripotent signals of 
hPSCs, thereby driving differentiation into MSCs.

During embryonic development, MSCs develop from neural crest cells (NCCs), 
lateral plate mesoderm, or paraxial mesoderm, which further develop into craniofacial 
skeleton, appendicular skeleton, and axial skeleton, respectively. The neural crest is a 
transient structure formed through epithelial-mesenchymal transition (EMT) with 
potential to differentiate into a wide range of cell types, including MSCs. It was shown 
that neural crest cells were derived from hPSCs[9-13], which were able to develop or 
differentiate into MSCs[14-16]. Morikawa et al[15] showed that MSCs in the adult bone 
marrow had at least two developmental origins, one of which was the neural crest. By 
lineage tracing, Takashima et al[16] showed that Sox1+ neuroepithelium gave rise to 
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MSCs in part through a neural crest intermediate stage. The combination of the 
glycogen synthase kinase 3 beta inhibitor and transforming growth factor-beta (TGFβ) 
inhibitor very efficiently induced hPSCs towards hNCCs (70%-80%), which further 
differentiated into MSCs with chemically defined medium[14]. The mesoderm is a 
major source of MSCs, and we recently reported a stepwise, serum-free, chemically 
defined and highly efficient protocol to generate hPSC-MSCs via lateral plate 
mesoderm. The resultant iPSC-MSCs displayed similar MSC surface antigen profile, 
gene expression profile, and epigenetic profile. iPSC-MSCs had three lineage differen-
tiation. Significantly, hPSC-MSCs were able to repair cartilage defects, similar to bone 
marrow-MSCs (BM-MSCs)[17]. Upon differentiation, mESCs gave rise to VEGFR-2+

PDGFR+ population followed by VEGFR-2-PDGFR+ population via paraxial mesoderm
[18]. hESC-derived KDR-PDGFRa+ paraxial mesoderm-like cells showed robust 
chondrogenic activity and generated a hyaline-like translucent cartilage particle 
whereas STRO1+ BM-MSCs showed relatively weaker chondrogenesis and formed 
more fibrotic cartilage particles in vitro[19].

MSCs in the placenta develop from trophoblasts in the extraembryonic tissue 
chorion[20]. MSCs can also be derived via trophoblasts. hESCs cultured in serum 
containing medium[21] and serum free medium[22] containing BMP4 and A83-01 
were able to differentiate into trophoblasts and then into MSCs. Trophoblast-derived 
MSCs produced less interleukin 6 (IL-6), C-X-C motif chemokine ligand 10, and C–C 
motif chemokine ligand 2 but more programmed death-ligand 1 in response to IFN 
gamma (IFNγ) treatment as compared with MSCs[21]. Compared with MSCs from 
serum containing medium, serum free approach took longer than serum containing 
approach to derive MSCs, but serum-free derived MSCs grew faster and produced less 
IL-6 and interleukin 8[22].

Barberi et al[23] first reported that MSCs were derived from hESCs by coculturing 
hESCs with monolayer of murine OP9 stromal cells. However, the undefined 
condition in this approach inevitably led to spontaneous differentiation, giving rise to 
an undesired type of cells. Besides MSCs, non-MSCs such as CD34 (+) primitive 
hematopoietic cells, were also present[24]. Vodyanik et al[25] showed that MSCs were 
derived from a common precursor of mesenchymal and endothelial cells called 
mesenchymoangioblast by coculturing hESCs with OP9.

Culturing hPSCs in the undefined condition of FBS-containing MSC medium is 
another way to derive hPSC-MSCs by providing growth factors required for differen-
tiation towards MSCs. When hESCs or iPSCs were cultured in FBS-containing MSC 
medium for 4 wk to derive hPSC-MSCs, hPSC-MSCs inhibited cell proliferation and 
cytolytic function of natural killer (NK) cells in the same fashion that BM-MSCs did. 
However, they were more resistant to preactivated NK cells as compared with adult 
BM-MSCs[26]. A high density of hESCs on a porcine gelatin-coated dish were cultured 
in a medium containing 10% FBS for 7 d to outgrow the cells and then enrich hESC-
MSCs by 1-2 passages[27]. Functional iPSC-MSCs were also derived on coating with 
gelatin, and the resultant iPSC-MSCs pre-induced into osteogenesis for 4 d formed 
bone in the calvaria defects confirmed by human specific nuclear antigen and 
mitochondrial antibodies[28]. hESC/iPSCs were seeded onto collagen coating and 
cultured in FBS-containing medium for 10 d to generate hESC/iPSC-MSCs[29]. 
Spontaneously differentiated cells (raclures) from feeder-free hESCs were cultured in 
FBS-containing MSC medium for 4 wk, and hESC-MSCs were enriched by following 
passage[30]. Chen et al[31] reported the derivation of hPSC-MSCs by serum-free 
medium containing TGFβ inhibitor and EMT inducer (SB431542) for 10 d to induce the 
mesoderm followed by induction of MSCs in FBS-containing MSC medium. The 
resultant hPSC-MSCs had robust osteogenesis and chondrogenesis but weaker 
adipogenesis. This approach does not require EB and feeder cell coculture.

To mimic in vivo development, Brown et al[32] derived hESC-MSCs via EB in MSC 
medium and enriched them by sorting for CD73 and CD105. EBs from iPSCs were 
exposed to TGFβ1-containing medium, and two types of MSCs were generated. 
Although early (aiMSCs) and late (tiMSCs) outgrowing cells were similar in surface 
antigen profile and three lineage differentiation, aiMSCs were better in osteogenesis 
than tiMSCs and BM-MSCs. Compared with BM-MSCs, aiMSCs were more of 
stemness whereas tiMSCs were more osteogenic, and in vivo bone formation was 
confirmed via ectopic injection[33].

The use of undefined components (such as FBS and feeder) or animal-derived 
components affects clinical applications of hPSC-MSCs. To overcome the problems 
from undefined conditions, serum-free and chemically defined protocols are desired to 
generate clinically compliant hPSC-MSCs. Lian et al[34,35] reported a clinically 
compliant protocol to generate hESC-MSCs and iPSC-MSCs. After 1 wk of differen-
tiation, MSCs were enriched by FACS for CD24- CD105+ cells. The transplanted iPSC-
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MSCs were superior to BM-MSCs in attenuating severe hindlimb ischemia, which may 
result from better in vivo survival and trophic factors of iPSC-MSCs, and higher prolif-
eration of iPSC-MSCs related to increased hEAG1 potasium channel expression[36]. 
The use of animal products, such as gelatin for coating, compromises the application 
of hPSC-MSCs. To generate xeno-free MSCs, FBS was replaced with human serum, 
and porcine gelatin was replaced with human gelatin. Transplanted hESC-MSCs into 
renal capsule formed cartilage[27]. Human platelet lysate is an alternative to FBS for 
the generation of hPSC-MSCs. Compared with the FBS-containing medium, the hPL-
supplemented medium generated significantly more MSCs[37].

COMPARISON BETWEEN PRIMARY MSCS AND HPSC-MSCS
hPSC-MSCs are similar to primary MSCs in morphology, immunophenotype, differen-
tiation potential, gene expression profile, and epigenetic modification[17,22,38-40]. 
However, there are some differences observed between primary MSCs and hPSC-
MSCs. hPSC-MSCs are smaller in size and proliferate faster than BM-MSCs and 
adipose tissue-MSCs[22,36,39-41]. hPSC-MSCs express higher levels of cell prolif-
eration-related genes whereas BM-MSCs express higher levels of immune-related 
genes, therefore hPSC-MSCs had a superior proliferative ability to BM-MSCs[39,42,
43]. In addition, iPSC-MSCs express higher levels of pluripotent genes and lower 
levels of mesodermal genes compared with original MSCs, which harbor mtDNA 
mutations from original MSCs as well as iPSCs. Compared with primary MSCs, iPSC-
MSCs express a lower level of VCAM1, leading to lower initiating cell frequency of 
HSCs after long-term culture with iPSC-MSCs as feeder[44]. Compared with dental 
tissue-derived MSCs, re-differentiated iPSC-MSCs expressed higher levels of 
pluripotent genes and lower levels of mesodermal genes, but displayed lower 
mitochondrial respiration[45]. iPSC-MSCs also express the lowest level of the HLA-II 
upon stimulation with IFNγ compared with BM-MSCs and fetal-MSCs. Compared 
with BM-MSCs, more iPSC-MSCs survived, and less inflammatory cell accumulations 
and better recovery of hind limb ischemia were also observed upon transplant. These 
suggest that iPSC-MSCs are not sensitive to IFNγ stimulation and have a stronger 
immune privilege after transplantation[46]. In differentiation potential, hPSC-MSCs 
differentiated less effectively along the adipogenic, osteogenic, or chondrogenic 
lineages compared with BM-MSCs[42], especially poorer adipogenesis[31,47,48]. Both 
hESCs and iPSCs inefficiently formed hyaline cartilage compared with BM-MSCs[43]. 
In immunosuppression, iPSC-MSCs were impaired in suppressing T cell proliferation 
compared with primary MSCs but were rejuvenated with regard to age-related DNA 
methylation, and this suggests that iPSC-MSCs reacquire incomplete immunomodu-
latory function, and MSC-specific DNA methylation pattern associates with tissue type 
and aging[38] (Table 1).

DISEASE MODELLING AND DRUG SCREENING
The understanding of the pathological mechanism is critical to developing the 
therapeutic drugs for the treatment of various genetic diseases. In vitro models to 
mimic in vivo development are very useful to investigate the pathology of human 
genetic diseases and further develop therapeutic drugs. However, due to inaccessible 
human tissues and the lack of animal models, research on human genetic diseases and 
drug screening remains very limited. With the breakthrough in iPSC technology, it 
makes it possible to model human diseases and develop their therapeutic drugs in 
vitro. The iPSC-MSC platform can recapitulate the embryonic bone and cartilage 
development, and therefore provide new insights into pathological progression of 
human genetic bone and cartilage diseases for disease modelling and further the 
development of therapeutic drugs.

Hutchinson-Gilford progeria syndrome (HGPS) is a rare but fatal genetic disorder 
caused by progerin, a truncated and farnesylated form of Lamin A, which causes 
systemic accelerated aging in children. Zhang et al[49] generated iPSC-MSCs from 
HGPS patients and showed that HGPS-iPSC-MSCs displayed abnormalities, including 
increased nuclear dysmorphology, DNA damage, and accumulation of calponin-
staining inclusion bodies, leading to their compromised viability under stress, 
especially to hypoxia. Using HGPS iPSC-MSCs platform, seven compounds were 
screened from 2800 small molecules, including all-trans retinoic acid and 13-cis-
retinoic acid, which decreased ALP activity and progerin expression[50].
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Table 1 Comparison between primary mesenchymal stem cells and mesenchymal stem cells derived from human pluripotent stem cells

Comparison Primary MSCs hPSC-MSCs Ref.

Cell number Limited Unlimited [17,36]

Proliferation Slower Faster [36,39,42,43,48,57]

Life span Shorter Longer [17]

Variation Higher Lower [119]

Differentiation potential Higher Lower, esp. adipogenesis [31,43,47,48]

Immunosuppression Higher Lower [38,46]

Pluripotent genes Lower Higher [45]

Mesenchymal genes Higher Lower [45]

VCAM1 Higher Lower [44]

HLA-II Higher Lower [46]

MSCs: Mesenchymal stem cells; hPSC-MSCs: Human pluripotent stem cells derived MSCs; VCAM1: Vascular cell adhesion molecule 1; HLA-II: Human 
leukocyte antigen gene complex class II.

Fibrodysplasia ossificans progressiva (FOP) is an inherited disease characterized by 
heterotopic endochondral ossification in soft tissues after birth and caused by a point 
mutation in ACVR1. iPSC-MSCs from FOP patients were generated, and it was found 
that SMAD1/5/8 and SMAD2/3 were activated and chondrogenesis was enhanced via 
MMP1 and PAI1 in FOP-iMSCs[51-53]. Hino et al[54] screened 6809 small molecule 
compounds using high-throughput screening, and mTOR signaling was identified to 
be a critical pathway for aberrant chondrogenesis. Further mechanism study showed 
that ectonucleotide pyrophosphatase/phosphodiesterase 2 linked FOP-ACVR1 to 
mTOR signaling, causing FOP pathogenesis.

APPLICATIONS OF HPSC-MSCS IN REGENERATIVE MEDICINE
Due to the multipotency, immunosuppression, and unlimited cell sources, hPSC-MSCs 
have been used for various applications in regenerative medicine (Table 2).

Bone regeneration
Like BM-MSCs, iPSC-MSCs had osteogenic potential, and therefore they could form 
typically calcified structure in the scaffolds[55]. iPSC-MSCs had good viability and 
osteogenic differentiation on the CPC scaffold[56]. iPSC-MSCs were similar to BM-
MSCs in preventing bone loss and promoting bone repair for the necrosis region of the 
femoral head[57]. Engineered non-native peptides increased the attachment of iPSC-
MSCs to the scaffolds and enhanced bone and vasculature formation in vivo[58]. 
Biofunctional agents, such as Arg-Gly-Asp (RGD), improved the proliferation and 
bone mineralization of iPSC-MSCs[59]. When iPSC-MSCs were treated with 
metformin, a widely used drug for diabetes, they showed enhanced bone formation 
and increased osteogenic markers and mineralized nodule formation, suggesting that 
metformin might be used to improve bone and periodontal regeneration[60]. Recently 
increasing reports have shown that MSCs exerted their pleiotropic effects by the 
secretion of soluble paracrine factors rather than their differentiation potential[61]. 
MSC-derived exosomes contain cytokines, growth factors, mRNAs, and regulatory 
miRNAs[62]. iPSC-MSC exosomes increased the proliferation, migration, and 
osteogenesis of BM-MSCs[63], significantly prevented bone loss, and promoted local 
angiogenesis by activating the PI3K/Akt signalling pathway in endothelial cells in a 
steroid-induced rat osteonecrosis model[64] (Figure 1).

Genetic modification can improve the bone formation of iPSC-MSCs. Distal-less 
homeobox 3 (DLX3) overexpression enhanced bone formation of iPSC-MSCs as shown 
by increased osteogenic genes and mineralized nodules at the expense of decreased 
proliferation[65]. Bone morphogenetic protein 2 overexpression enhanced bone 
formation on RGD-grafted calcium phosphate cement (CPC) of iPSC-MSCs[66]. Neural 
EGFL like 1 (NELL1) overexpression greatly improved osteogenesis of iPSC-MSCs on 
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Table 2 Mesenchymal stem cells and mesenchymal stem cells derived from human pluripotent stem cells

hPSC-MSCs Disease model or application Animal model or 
human Therapeutic effects Ref.

iPSC-MSCs CKD Rat Protect the kidney against CKD injury [85]

iPSC-MSCs Adriamycin nephropathy Mouse Prevent adriamycin nephropathy [82]

iPSC-MSCs Obesity-associated Kidney injury Mouse Ameliorate endoplasmic reticulum stress [83]

hPSC-MSCs UUO Mouse Protect against kidney fibrosis in vivo and in 
vitro

[84]

hESC-MSCs LN Mouse Prevent the progression of LN [81]

iPSC-MSCs TNBC Mouse Significantly decrease the incidence and burdon 
of metastases

[117]

iPSC-MSCs Breast cancer Mouse Decrease EMT, invasion, stemness, and growth 
of cancer cells

[119]

iPSC-MSCs Skin wounds, pressure ulcers, and 
osteoarthritis

Mouse Have therapeutic potential in skin wounds, 
pressure ulcers, and osteoarthritis

[127]

hESC-MSCs Arthritis Mouse Ameliorate collagen-induced arthritis by 
inducing IDO1

[72]

iPSC-MSCs Osteonecrosis of the femoral head Rat Prevent osteonecrosis of the femoral head [64]

iPSC-MSCs Vascularized composite 
allotransplantation

Rat Induce T cell hyporesponsiveness to prolong 
hind limb survival

[106]

iPSC-MSCs Limb ischemia Mouse Exosomes of iPSC-MSCs attenuate limb 
ischemia by promoting angiogenesis

[121]

iPSC-MSCs Limb ischemia Mouse Insensitivity of iPSC-MSCs to interferon γ 
potentiates repair efficiency of hind limb 
ischemia

[46]

iPSC-MSCs Limb ischemia Mouse Attenuate limb ischemia [35]

iPSC-MSCs Periodontal defects Rat Aid periodontal regeneration [68]

iPSC-MSCs Bone defects Mouse Regenerate non-union bone defects more 
efficiently than BM-MSCs upon BMP6 
overexpression

[33]

iPSC-MSCs Calvaria defects Mouse Repair calvaria defects [28]

iPSC-MSCs Osteochondral defects Rat iPSC-MSCs are able to repair cartilage defects [17]

iPSC-MSCs FOP FOP-iPSC-MSCs enhance chondrogenesis via 
activin A enhanced mTOR signalling

[53,54]

hESC-MSCs Lupus and uveitis Mouse Increase survival of lupus-prone mice and 
decrease symptoms of uveitis

[40]

hESC-MSCs EAE model of multiple sclerosis Mouse Improve EAE symptoms [101]

hESC-MSCs EAE Monkey Attenuate disease progression in a primate EAE 
model

[41]

hESC-MSCs EAU Mouse Slow down the development of EAU [103]

iPSC-MSCs Inflammatory bowel disease models Mouse Promote intestinal repair via TSG-6 [111]

hESC-MSCs Experimental inflammatory bowel 
disease

Mouse Protect against experimental inflammatory 
bowel disease

[107]

iPSC-MSCs SS Mouse Prevent the progression of SS [112]

iPSC-MSCs Allergic rhinitis Modulate T-cell phenotypes towards Th2 
suppression through inducing Treg expansion

[108]

iPSC-MSCs Asthma Inflammation Mouse Alleviate asthma inflammation by CX43-
mediated mitochondrial transfer

[110]

iPSC-MSCs Corneal injury Mouse Exert therapeutic effects in the cornea by 
reducing inflammation 

[99]

iPSC-MSC-Exos improve cutaneous wound 
healing by promoting collagen synthesis and 

iPSC-MSCs Skin wound Rat [120]
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angiogenesis.

iPSC-MSCs SR-aGvHD Human iPSC-MSCs are safe and well tolerated [114]

CKD: Chronic kidney disease; UUO: Unilateral ureteral obstruction; LN: Lupus nephritis; TNBC: Triple-negative breast cancer; EMT: 
Epithelial–mesenchymal transition; IDO1: Indoleamine 2, 3-dioxygenase 1; FOP: Fibrodysplasia ossificans progressive; mTOR: Mammalian target of 
rapamycin; EAE: Experimental autoimmune encephalomyelitis; EAU: Experimental autoimmune uveitis; TSG-6: TNFα-stimulated gene-6; SS: Sjogren’s 
syndrome; CX43: Connexin 43; Exos: Exosomes; SR-aGvHD: Acute steroid-resistant graft versus host disease.

Figure 1 Signaling pathways of mesenchymal stem cells derived from human pluripotent stem cells in improving various diseases. 
Mesenchymal stem cells derived from human pluripotent stem cells (hPSC-MSCs) improve diseases or prevent against injury through immunosuppression or 
paracrine effects. hPSC-MSCs secrete a variety of soluble paracrine factors to exert their therapeutic effects on immunosuppression, proliferation, differentiation, anti-
apoptosis, angiogenesis, etc. PI3K: Phosphoinositide 3-kinase; Akt: Protein kinase B; BDNF: Brain-derived neurotrophic factor; NGF: Nerve growth factor; HGF: 
Hepatocyte growth factor; IGFBP1: Insulin-like growth factor-binding protein 1; TNFα: Tumor necrosis factor; IL6: Interleukin 6; Bax: BCL2-associated X; SIRT6: 
Sirtuin 6; IL10: Interleukin 6; TSG6: TNFα-stimulated gene-6; IFNγ: Interferon γ; ERK1/2: Extracellular signal-regulated protein kinases 1 and 2.

RGD-CPC[67].
Due to osteogenic differentiation potential, iPSC-MSCs have the capacity for 

periodontal regeneration. When transplanted into periodontal defects, iPSC-MSCs 
formed new mineralized tissues and significantly improved regeneration, suggesting 
that iPSC-MSCs represent a promising stem cell source for clinical application in 
periodontitis[68].

Cartilage repair
Articular cartilage has limited intrinsic healing potential, leading to a loss of joint 
function. Like BM-MSCs, iPSC-MSCs can differentiate into chondrocytes in vitro[69]. In 
view that autologous chondrocytes and primary MSCs are limited in cell number, 
iPSC-MSCs are gaining attention as a new cell therapy for cartilage regeneration due 
to unlimited cells and chondrogenic differentiation potential. Our previous data 
showed that primary BM-MSCs were able to repair cartilage defects effectively[70]. 
Multiple injections of hESC-MSCs into knee joint of osteoarthritis (OA) rats induced by 
anterior cruciate ligament transection repaired cartilage better than the single dose and 
negative control groups in a rat OA model[71]. hESC-MSCs also ameliorated collagen-
induced arthritis by inducing indoleamine 2,3-dioxygenase 1 (IDO1) in mice[72]. In 
addition, exosomes from hESC-MSCs prevented cartilage destruction by maintaining 
the chondrocyte function[73]. By our defined, step-wise and chemically defined 
protocol, we generated iPSC-MSCs via lateral plate mesoderm and have shown that 
iPSC-MSCs repaired osteochondral defects similar to BM-MSCs[17].

Lung repair 
As an attractive candidate for cell-based therapy, MSCs are therapeutically beneficial 



Liu TM. Application of hPSC-MSCs in regenerative medicine

WJSC https://www.wjgnet.com 1833 December 26, 2021 Volume 13 Issue 12

to improving lung disease or repairing lung damage. iPSC-MSCs protected lung cells 
against mitochondrial dysfunction and apoptosis induced by oxidative stress to reduce 
lung injury and inflammation in in vivo models of lung disease[74]. iPSC-MSCs 
reduced airway inflammation and hyperresponsiveness to protect against lung 
diseases induced by oxidative stress, such as chronic obstructive pulmonary disease
[75]. iPSC-MSCs protected the lung against ischemia-reperfusion injury (IRI) by 
suppressing the inflammatory, oxidative stress, and autophagic signalling pathways
[76]. Treatment with iPSC-MSCs also significantly prevented airway allergic inflam-
mation, decreased Th2 cytokine levels, and changed long non-coding RNAs profiles
[77]. iPSC-MSCs ameliorated cigarette smoke (CS)-induced apoptosis and proliferation 
imbalance of airway cells partly through the paracrine section of stem cell factor (SCF)
[78]. Asthma is a chronic disease with inflamed airways. iPSC-MSCs were able to 
prevent chronic allergic airway inflammation[79]. Compared with BM-MSCs, iPSC-
MSCs transferred mitochondria to bronchial epithelial cells more effectively via 
tunnelling nanotubes. Therefore, iPSC-MSCs were superior to BM-MSCs in 
attenuating CS-induced airspace enlargement[80].

Kidney disease
hPSC-MSCs improved both acute and chronic adriamycin nephropathy (AN) by 
preventing renal function loss. hESC-MSCs prevented the progression of fatal lupus 
nephritis in a mouse model by significantly decreasing two inflammatory cytokines 
associated with systemic lupus erythematosus, tumour necrosis factor α (TNFα) and 
IL-6[81]. iPSC-MSCs prevented the apoptosis of tubular cells by downregulating B-cell 
lymphoma 2 associated X (Bax) and Bax/B-cell lymphoma 2 and upregulating 
survivin in the short-term AN model whereas iPSC-MSCs inhibited fibrosis via 
hedgehog signalling in the long-term AN model[82]. iPSC-MSCs also ameliorated 
palmitic acid-induced lipotoxic kidney injury by alleviating endoplasmic reticulum 
(ER) stress, inflammation, and apoptosis to suppress ER stress and its downstream 
pro-inflammatory and pro-apoptotic effects via hepatocyte growth factor (HGF)/c-Met 
signalling[83]. Chronic kidney disease (CKD) is characterized by a gradual loss of 
kidney function over time due to renal fibrosis[84]. Intravenously administrated iPSC-
MSCs effectively protected the kidney against CKD injury in CKD parenchyma[85]. 
iPSC-MSCs were also able to effectively protect kidney from acute ischemia-
reperfusion injury[86]. hPSC-MSC-derived exosomes reduced the renal fibrosis, 
decreased inflammatory reactions, and improved renal function in unilateral ureteral 
obstruction mice by increasing SIRT6 and decreasing β-catenin[84] (Figure 1).

Cardiovascular diseases
MSCs have the potential to improve cardiovascular diseases. Coculture with hESC-
MSCs promoted the maturation of hESC-derived cardiomyocyte microtissues[87]. 
iPSC-MSCs increased the level of M2 macrophages and deceased the level of M1 
macrophages after cardiac arrest (Figure 1), suggesting that iPSC-MSCs play a crucial 
role in immunomodulation during cardiopulmonary resuscitation[88]. iPSC-MSCs 
improved CS-induced cardiac remodelling and dysfunction better than BM-MSCs as 
shown by an increase in percentage of left ventricular ejection fraction and fractional 
shortening. iPSC-MSCs attenuated cardiac pro-inflammatory cytokines and restored 
anti-inflammatory cytokines[89]. Conditioned medium from iPSC-MSCs alleviated 
heart failure and reduced cardiomyocyte apoptosis and fibrosis better than that from 
BM-MSCs, showing that iPSC-MSCs could provide cell-free therapeutic cardio-
protection[90]. Extracellular vesicles (EVs) of iPSC-MSCs mitigated arterial ageing by 
attenuating ageing-associated vascular endothelial dysfunction, arterial stiffness, and 
hypertension[91]. In addition, overexpression of myocardin in iPSC-MSCs resulted in 
partial transdifferentiation into cardiomyocyte phenotype[92].

Neurological diseases
MSCs demonstrate significant neuroprotection and promote functional recoveries of 
the pathological nervous system. MSCs were shown to secret brain-derived 
neurotrophic factor and nerve growth factor, which supported neuronal cell survival 
and induced nerve regeneration (Figure 1). Conditional medium of hESC-MSCs could 
significantly ameliorate neurological deficits and infarct volume in middle cerebral 
artery occlusion (MCAO) rats[93]. hESC-MSCs differentiated into neural-like cells in 
standard neurogenic differentiation medium, and hESC-MSCs in sphere secreted more 
HGF and IGFBP1 than those in single-cell suspension[94] (Figure 1). hPSC-MSCs 
expressed higher levels of neural genes than BM-MSCs and rapidly differentiated into 
neural-like cells when differentiated into neural lineage[95]. Although ESC-MSCs 
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induced autophagy similar to BM-MSCs, ESC-MSCs survived better in amyloid-β (Aβ) 
-induced cellular models and reduced more intracellular Aβ levels compared with BM-
MSCs. ESC-MSCs significantly decreased Aβ-induced cell death and promoted 
autophagolysosomal clearance of Aβ in a rat model of Alzheimer's disease, leading to 
higher memory performance. Intra-arterially transplanted ESC-MSCs were safe and 
free from cerebral ischemia[96]. iPSC-MSCs markedly decreased brain-infarct volume 
and improved neurological function mainly by inhibiting inflammation[97]. ESC-
MSCs had a superior neuroprotective capacity over fetal MSCs in mouse hypoxic-
ischemic brains[98].

In addition, hESC-MSC EVs also protected retinal ganglion cells and preserved 
retinal function in a mouse model of optic nerve injury by improving retinal ganglion 
cell (RGC) survival and preventing retinal nerve fiber layer degeneration. iPSC-MSCs 
significantly reduced corneal opacity by reducing inflammation similar to BM-MSCs
[99]. Transplanted iPSC-MSCs significantly improved the survival of RGCs by 
effectively transferring functional mitochondria to RGCs[100].

Multiple sclerosis (MS) is a potentially disabling disease of the central nervous 
system caused by an attack of the protective sheath by the immune system, leading to 
communication problems between the brain and the rest of the body. As yet, there is 
no cure for MS, the most common demyelinating disease. Compared with BM-MSCs, 
hESC-MSCs improved efficacy in a mouse experimental autoimmune encephalitis 
(EAE) model of MS due to its lowered IL-6 expression. In addition, hESC-MSCs are 
less vulnerable than BM-MSCs in therapeutic capacity during in vitro culture[101]. 
After hESC-MSCs were intrathecally injected into the central nervous system of EAE-
induced monkeys, hESC-MSCs greatly decreased the clinical symptoms, brain lesions, 
and neuronal demyelination in the EAE monkeys. hESC-MSCs could transdifferentiate 
into neural cells in vivo in the CNS of the treated monkeys as shown by elevated 
expression of genes for neuronal markers, neurotrophic factors, and neuronal 
myelination[41].

Immune disease
hPSC-MSCs have a strong immune regulatory effect during anti-inflammation. 
Microphages serve as a bridge between innate and specific immune responses. hPSC-
MSCs altered macrophage polarization by suppressing the Notch-1 signalling 
pathway[102] (Figure 1). Due to the immunosuppression property of iPSC-MSCs, they 
have been used for the treatment of various immune diseases. hESC-MSCs slowed 
down the development of severe experimental autoimmune uveitis through systemic 
immune modulation[103], whereas iPSC-MSCs inhibited proliferation, shifted the 
secretome of peripheral blood mononuclear cells, and significantly suppressed CD8 T 
proliferation, activation, and differentiation[104]. iPSC-MSCs also suppressed T-cell 
effector cells of Th1/Th2 and increased regulatory T cell (Treg) response[105]. iPSC-
MSCs prolonged hind limb survival by reducing mononuclear cell infiltration, 
lowering TNFα and IFNγ, increasing interleukin 10, and thus protecting against acute 
rejection in a rat vascularized composite allotransplantation model[106] (Figure 1). 
iPSC-MSCs disrupted NK cell cytolytic machinery to prevent allograft rejection by 
decreasing activation markers and ERK1/2 signalling, leading to impaired 
immunologic synapses and secreted cytotoxic granules. However, iPSC-MSCs were 
more resistant than BM-MSCs to pro-activate NK cells[26]. hESC-MSCs could protect 
against an experimental model of inflammatory bowel disease[107]. iPSC-MSCs 
modulated T-cell phenotypes towards Th2 suppression by inhibiting lymphocyte 
proliferation and promoting Treg response, suggesting that iPSC-MSCs can treat 
allergic airway diseases[108]. iPSC-MSCs regulate T cell responses by decreasing 
secreted soluble factors[109]. iPSC-MSCs also improved asthma inflammation by 
connexin 43-mediated mitochondrial transfer[110]. iPSC-MSCs accelerated intestinal 
epithelial cell proliferation to promote intestinal repair in murine colitis through tumor 
necrosis factor-stimulated gene-6 (TSG-6) via Akt-dependent interaction between the 
extracellular matrix HA and CD44+ cells[111]. iPSC-MSC EVs prevented the 
progression of Sjogren’s syndrome (SS), a chronic autoimmune disease, by 
suppressing activation of immune cells and proinflammation factors essential for SS 
progression[112]. Due to intrinsic immunosuppression, MSCs significantly prolonged 
the survival of humanized mouse model of graft vs host disease (GvHD)[113]. The first 
iPSC-MSC clinical trial was reported in 2020. iPSC-MSCs were produced using an 
optimized and good manufacturing practice-compliant manufacturing process to treat 
steroid-resistant acute GvHD. Based on the complete response, overall response, and 
overall survival of participants, the higher dose level of iPSC-MSC showed better 
outcomes than the lower dose, and iPSC-MSCs were safe and well tolerated without 
serious adverse events reported[114].
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Cancer treatment
Like primary MSCs, hPSC-MSCs also have therapeutic potentials in treating cancer or 
repairing tissue damages caused by cancers. hPSC-MSCs can overcome the limitation 
of drug delivery. iPSC-MSCs expressing cytosine deaminase limited tumor growth 
and decreased lung metastases in a mouse xenogeneic model of human breast cancer
[115]. EVs from hPSC-MSCs also showed promising results to improve cancer 
treatment. hESC-MSC microvesicles decreased the proliferation of leukemia cells[116]. 
Treatment with iPSC-MSC nanovesicles showed no detectable immunogenicity and 
significantly decreased the incidence of metastases from triple-negative breast cancer 
in mouse models[117]. iPSC-MSC nanovesicles also significantly decreased tumor 
growth of metastatic prostate cancer[118]. These suggest that iPSC-MSC nanovesicle is 
a promising platform to improve the treatment of metastatic cancer. iPSC-MSCs can 
home to cancers with a similar efficiency as BM-MSCs. As compared with BM-MSCs, 
iPSC-MSCs expressed lower levels of interleukin-1 and TGFβ receptors, downstream 
pro-tumor factors, and hyaluronan and its cofactor TSG6, and therefore iPSC-MSCs 
have much less potential to promote tumours than BM-MSCs by promoting the EMT, 
invasion, stemness, and growth of cancer cells[119].

Other applications
hPSC-MSCs are also used for other applications. iPSC-MSC exosome improved 
cutaneous wound healing by promoting collagen synthesis and angiogenesis[120]. 
Furthermore, iPSC-MSC exosome via intramuscular injection could enhance micro-
vessel density and blood perfusion by activating angiogenesis-related molecule 
expression and promoting HUVEC migration, proliferation, and tube formation[121]. 
iPSC-MSCs supported the proliferation of hematopoietic stem and progenitor cells 
(HPCs), and maintained a primitive immunophenotype and colony forming unit of 
CD34+ HPCs. Long-term culture initiating cell frequency was lower compared with 
primary MSCs, suggesting that iPSC-MSCs are less suitable than primary MSCs as 
feeder cells[44]. iPSC-MSCs also can be used as feeder cells to culture human iPSCs. 
Human iPSCs cultured on human iPSC-MSC feeder were slightly thinner and flatter 
than the other feeder system. However, iPSC-MSCs still maintain the proliferation and 
pluripotency of iPSCs[122]. hESC-MSCs restored the structure of the injured ovarian 
structure and function in premature ovarian failure via paracrine effect and ovarian 
cell survival to rescue fertility in mice[123,124]. hESC-MSC secreted trophic factors to 
support hepatocytes on an acute liver failure model[125]. hESC-MSC EVs ameliorated 
cirrhosis in thioacetamide-induced chronic liver injury[126].

DISCUSSION
Primary MSCs have drawbacks due to their limited scalability, interdonor variability, 
and inconsistent outcomes of clinical trials. iPSC-MSCs have the potential to overcome 
the fundamental limitations of conventional and donor-derived MSC production 
processes. The derivation of hPSC-MSCs has made substantial progress with an 
increasing number of reports on the use of hPSC-MSCs for regenerative medicine over 
the past years. However, the issues and challenges related to safety and efficacy of 
hPSC-MSCs remain to be understood and addressed. These include the effects of cell 
origins and derivation approaches on hPSC-MSCs, the understanding of difference 
between hPSC-MSCs and primary MSCs, MSC stemness/potency biomarkers, the 
differentiation potential of hPSC-MSCs, choice of autologous or allogeneic hPSC-MSC 
source, manufacturing of clinical grade hPSC-MSCs, etc.

Effects of cell origins and derivation approaches on the features of hPSC-MSCs
The use of MSCs is already in various phases of clinical applications. However, little is 
known about the difference in features of hPSC-MSCs from different origins, partic-
ularly in their differentiation potential, a critical feature to their clinical application. 
Although hPSC-MSCs derived from various approaches exhibit MSC morphology and 
express MSC surface antigens, their differentiation potential is not as efficient as BM-
MSCs, especially in adipogenesis[31,47]. Due to epigenetic memory or incomplete 
reprogramming, iPSC variations exist, and iPSC-MSCs exhibit preferential differen-
tiation into their original cell lineage. Eto et al[127] showed that iPSC-MSCs via the 
mesoderm and neuroepithelium had the capacity for self-renewal and multipotency as 
well as therapeutic potential in skin wounds, pressure ulcers, and OA in a mouse 
model. However, different therapeutic effects of iPSC-MSCs from different origins 
were also observed, suggesting that the therapeutic efficacy of hPSC-MSCs is 
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dependent on cell origins. In addition, hPSC-MSCs derived by differentiation 
approaches vary extensively in their quality and efficiency. The use of fibroblast 
growth factor in the differentiation medium[27,47,128] promotes MSC proliferation at 
the expense of its differentiation potential[129]. Therefore, the effects of cell origins 
and differentiation approaches on iPSC-MSCs need to be elucidated.

Mechanisms underlying difference between hPSC-MSCs and primary MSCs
Compared with primary MSCs, hPSC-MSCs have advantages of faster proliferation, 
longer life span, more reliable and homogeneous cell source, but somehow immature 
differentiation potential and impaired immunosuppression. What are intrinsic and 
extrinsic mechanisms underlying the difference between iPSC-MSCs and primary 
MSCs?

The lack of MSC stemness/potency biomarkers to identify good quality of MSCs 
So far, little is known about regulators or biomarkers associated with MSC stemness/ 
potency, and there is no critical quality attribute available for use to distinguish good 
MSCs from bad ones before cellular manufacturing. The mechanism underlying MSC 
stemness or potency remains poorly understood, which greatly hampers the clinical 
application of hPSC-MSCs. It was shown that kindlin-2 increased the survival, prolif-
eration, stemness, and migration of iPSC-MSCs. Kindlin-2 knockdown increased 
apoptosis and differentiation response whereas kindlin-2 overexpression increased 
proliferation, decreased apoptosis, and slowed down trilineage differentiation. More 
significantly, kindlin-2 overexpression increased the migration of iPSC-MSCs in the 
wound-scratch assay[130]. In the future, substantial efforts are needed to explore MSC 
stemness/potency-related regulators or biomarkers for clinical application.

Differentiation potential of hPSC-MSCs
It is well accepted that MSCs have potential to differentiate into multiple mes-
enchymal lineages, such as osteoblasts, chondrocytes, and adipocytes. However, it is 
still controversial that MSCs can directly differentiate into other types of functional 
cells, such as cardiomyocytes-like cells[131], hepatocytes[132], neuron-like cells[133], 
and pancreatic β cells[134]. The underlying mechanism of iPSC-MSCs improving these 
conditions need to be elucidated.

Autologous vs allogeneic hPSC-MSCs
MSCs have anti-inflammatory and immune-modulatory properties. However, patient-
derived autologous hPSC-MSCs still represent a better option for regenerative 
medicine as there are lesser concern regarding the immune response compared with 
allogeneic MSCs.

Clinical grade hPSC-MSCs
Although iPSCs are generated by integration-free methods and iPSC-MSCs are 
derived by a number of approaches, there are few approaches available to regenerate 
clinical-grade hPSC-MSCs for clinical application. Most protocols have used undefined 
components, such as FBS, feeder cells, and other animal-derived components, which 
compromise the clinical application of iPSC-MSCs. To generate clinical grade iPSC-
MSCs, reliable, efficient, scalable, and clinically compliant approaches are required 
throughout the whole manufacturing process of iPSC-MSCs. These processes include 
generation and expansion of iPSCs, freezing and thawing of iPSCs, differentiation of 
iPSCs towards MSCs, expansion of iPSC-MSCs, freezing and thawing iPSC-MSCs, etc. 
In addition, comprehensive assays should be established to evaluate the safety, 
quality, or potency of hPSC-MSCs during cellular manufacturing for clinical 
application.

CONCLUSION
hPSC-MSCs have enormous potential for regenerative medicine, and can be used for 
disease modelling, drug screening, and treatment of various diseases in regenerative 
medicine. Although multiple approaches have been reported in deriving MSCs from 
hPSCs, the use of undefined and animal-derived components greatly compromises the 
clinical application of hPSC-MSCs. Much effort is needed to derive clinically relevant 
and sufficient hPSC-MSCs with good quality for clinical application, and criteria need 
be established to evaluate the safety and efficacy of hPSC-MSCs before clinical 
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application. In addition, many issues or challenges with hPSC-MSCs also need to be 
addressed.
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Abstract
In the last few decades, stem cell-based therapies have gained attention worl-
dwide for various diseases and disorders. Adult stem cells, particularly 
mesenchymal stem cells (MSCs), are preferred due to their significant 
regenerative potential in cellular therapies and are currently involved in 
hundreds of clinical trials. Although MSCs have high self-renewal as well as 
differentiation potential, such abilities are compromised with “advanced age” and 
“disease status” of the donor. Similarly, cell-based therapies require high cell 
number for clinical applications that often require in vitro expansion of cells. It is 
pertinent to note that aged individuals are the main segment of population for 
stem cell-based therapies, however; autologous use of stem cells for such patients 
(aged and diseased) does not seem to give optimal results due to their compr-
omised potential. In vitro expansion to obtain large numbers of cells also 
negatively affects the regenerative potential of MSCs. It is therefore essential to 
improve the regenerative potential of stem cells compromised due to “in vitro 
expansion”, “donor age” and “donor disease status” for their successful 
autologous use. The current review has been organized to address the age and 
disease depleted function of resident adult stem cells, and the strategies to 
improve their potential. To combat the problem of decline in the regenerative 
potential of cells, this review focuses on the strategies that manipulate the cell 
environment such as hypoxia, heat shock, caloric restriction and preconditioning 
with different factors.
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Core Tip: Stem cell-based therapies can treat various diseases and disorders. 
Mesenchymal stem cells have high self-renewal as well as differentiation potential, 
however; their potential for cell-based therapies is severely compromised with donor 
age, disease status and extensive in vitro expansion. Thus autologous use of stem cells 
isolated from unhealthy, older donors does not seem to give optimal results. It is 
therefore essential to improve the negative effects of age and disease on resident adult 
stem cells before clinical use. We herein discuss the strategies such as hypoxia, heat 
shock, caloric restriction and preconditioning with different factors to enhance the stem 
cell function.
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INTRODUCTION
Stem cell-based therapies hold great promise for neurodegenerative diseases, 
cardiovascular diseases, immunological disorders, skin diseases and cancers. 
Mesenchymal stem cells (MSCs) are adult stem cells found in many adult (bone 
marrow, adipose tissue, dental pulp, peripheral blood, menstrual blood) and neonatal 
tissues (cord blood, cord tissue, Wharton’s jelly, Chorionic villi), have potential for 
self-renewal and multi-lineage differentiation as well as the capacity to secrete many 
therapeutic factors with chemoattractive, immunomodulatory, angiogenic and anti-
apoptotic functions[1,2]. Although MSCs originate from the mesoderm, they can 
differentiate not only into a variety of mesenchymal tissues (such as bone, cartilage, 
adipose, and haematopoietic tissue) as well as into non-mesodermal tissues (such as 
glial cells and neurons). MSCs have low immunogenicity, have immunomodulatory 
and immunoregulatory properties, are easy to isolate and culture. Due to these 
properties MSCs are considered ideal for replacing damaged or lost cells and tissues in 
the body and are currently the focus of scientists in hundreds of clinical trials (
www.clinicaltrials.gov).

The regenerative potential of MSCs, however; may be compromised with advanced 
age and disease conditions of the cell donors. Aging is a normal physiological process 
in living organisms that affects the cells, tissues, and organs of the body. The age of 
adult resident stem cells is directly proportional to the age of the donor and therefore 
the functional properties of stem cells severely deteriorate with increasing age of 
donors. As the stem cells age, their regenerative potential declines as evidenced by the 
slow healing of wounds in aged individuals[3]. It is also pertinent to note that this 
decline in regenerative potential of stem cells plays a critical role in initiation of 
number of age-related diseases in old people. With advance age, the ability of stem 
cells to properly function is compromised leading to cell apoptosis, senescence and 
complete loss or at least decline in their regenerative potential[4,5]. Studies indicate 
that the therapeutic potential of stem cells significantly declines with an increase in 
stem cell age in vitro and in vivo[3,6]. Similarly, underlying disease conditions of 
donors also seem to upset stem cell function[7]. In addition, number of adult stem cells 
is very low in their adult niches while stem cell-based therapies often require large 
number of cells for a potential positive effect. To obtain a high cell number, cells are 
usually expanded in vitro. The in vitro expansion deteriorates stem cell function and 
does not often give desired results after transplantation[8]. Thus, the regenerative 
potential of cells is significantly compromised when isolated from “old”, “unhealthy” 
persons and especially with in vitro expansion.

The main segment of the population who can get benefits from regenerative 
therapies are the aged individuals with diseases[9]. However, the autologous use of 
unhealthy stem cells derived from aged donors does not seem to give the desired 
results due to their compromised function. The solution to the problem is either to use 
cells isolated from young donors or rejuvenate the unhealthy cells before use. 
Autologous use of stem cells is preferred for cell based regenerative therapies and 
therefore use of stem cells from young donors for transplantation into aged people is 
not without problems. Autologous use of stem cells for such patients (aged and 
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diseased) does not seem to give the required results due to their age or disease status. 
This seems a major roadblock for cellular therapies and therefore it is essential to 
improve the regenerative potential of “aged” and “diseased” stem cells for their 
successful autologous use. Studies indicate that compromised stem cell function can be 
reversed using various strategies before clinical use. Previously, many strategies to 
improve the regenerative potential of stem cells were proposed and described in 
different studies. In the current review such strategies have been comprehensively 
described to address major clinical hurdles faced due to the reduced regenerative 
potential of compromised cells. The review will open new avenue for the stem cell 
based regenerative therapies for their autologous use in aged and diseased patients. In 
the current review, age and disease depleted function of resident adult stem cells, and 
the strategies to improve their potential have been described. To combat the problem 
of decline in the regenerative potential of cells, we aim to focus on the strategies that 
manipulate the cell environment such as heat shock, hypoxia, caloric restriction (CR), 
preconditioning with different factors.

STEM CELL FUNCTION DETERIORATES WITH ADVANCED AGE, 
DISEASE AND EXTENSIVE IN-VITRO EXPANSION
It has long been known that advanced age is linked with reduced reparative and 
regenerative potential (Figure 1). With increasing age, the body becomes unable to 
maintain tissue turnover and homeostasis. It is believed that reduced repair of organs 
and tissues at the organismal level is due to diminished functional capabilities of tissue 
resident stem cells[10]. Stem cells in the body reside in a special microenvironment 
called stem cell niches. Stem cells respond to the niche signals either by proliferating, 
differentiating or by remaining in quiescent state. Such a response ensures that tissues 
and organs needs are accurately met[9]. In aged individuals, this response is 
significantly delayed taking longer to repair and heal the damaged tissues and organs
[11]. Stem cells residing in the elderly are affected by the age related changes and thus 
are not as affective for tissue rejuvenation as are the cells from young donors. In a past 
study, it was found that the function of stem cells isolated from aged mice was 
adversely affected[3]. Interestingly, this decreased function of stem cells from aged 
mice was corrected by exposing the old mice to factors present in the serum of healthy 
young mice. This parabiotic pairing (shared circulatory system) of old and young mice 
restored the diminished proliferation and differentiation potential of aged cells[10]. 
The general properties of stem cells i.e., self-renewal and differentiation are 
significantly decreased with donor age making the aged stem cells less efficient to 
respond to signals from niches and growth factors. The yield, number of colonies, 
proliferation as well as differentiation potential of cells isolated from different animal 
and human tissues was negatively affected by donor age[12-15]. In addition, aged stem 
cells exhibited more senescent (p16, p21, SA-β-gal) and apoptotic (p53, annexin V, 
caspases) features as well as reduced SOD level, telomeres shortening, high ROS levels 
and diminished functional ability (wound healing, angiogenesis, migration etc.)[12-
15]. These findings of different reports indicate that donor age has negative impact on 
basic stem cells characteristics and thus adversely affect the regenerative potential of 
stem cells.

Similar to donor age, various diseases of donors particularly the age-related 
diseases such as diabetes and heart failure also make the cells unhealthy and therefore 
limit their therapeutic potential. In healthy individuals the stem cell niche is tightly 
regulated by the combined action of local and systemic factors. In diseased conditions, 
however; an altered microenvironment changes stem cell properties that result in 
compromised quality of their use for regenerative therapies. It has been shown that 
disease conditions of cell donors negatively impact the function of endogenous 
progenitor cells[16]. Diabetes (type I & II) has been shown to lower the number of 
CD34+KDR+ EPCs[17,18]. Pérez et al[19] (2018) has comprehensively discussed the 
diseases that potentially affect stem cell behavior[19]. Diseases such as osteoporosis, 
cardiovascular diseases, diabetes, obesity, hypercholesterolemia, glucocorticoid 
imbalance, arthritis, cancer and aplastic anemia have been shown to negatively impact 
a variety of stem cell types[19]. Generation of oxidative stress with certain diseases and 
the resultant compromised stem cell proliferation, differentiation and mobilization are 
well documented in literature[18-20]. Diabetes, for example, negatively regulates stem 
cell proliferation, differentiation, paracrine activity, SOD activity, chemotactic ability, 
angiogenesis and heart repair[21]. Similarly, stem cells isolated from adipose tissue of 
obese persons show low yield, impaired migration and angiogenesis[22-24]. It has 
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Figure 1 Increased donor age, disease conditions and in vitro expansion of cells reduce stem cell potential, making the cells less 
suitable for cell-based therapies. Stem cell function can be enhanced using strategies such as hypoxia, heat shock, caloric restriction and growth factor 
preconditioning. These strategies positively affect proliferation, migration, paracrine activity and differentiation potential of cells, and reduce senescence and 
apoptosis. Such pretreatment of cells makes the cells more suitable for cell based regenerative therapies.

been shown that the effects of disease conditions are similar to those that are portrayed 
by aged donors. For example, the production of ROS, telomere shortening, reduced 
expression of telomerase, high expression of apoptotic and senescent markers and 
resultant reduced repair and regenerative capability are manifested with advanced age 
and also with onset of certain diseases[25]. It is pertinent to mention here that the onset 
of diseases in aged individuals affects the regenerative potential of stem cells more 
adversely as compared to diseases in young donors.

High number of stem cells are needed for cell-based therapies to fully appreciate 
their therapeutic potential for repair of damaged tissues. However, stem cells are 
found in low numbers in most adult tissues and therefore in vitro expansion is 
required to obtain large number of cells. MSCs have high regenerative potential but 
they are also vulnerable to replicative senescence[26]. In prolonged in vitro cultures, 
stem cells become senescent and undergo deleterious changes such as reduced prolif-
eration and multi-lineage differentiation capability, shortening of telomere length and 
morphological changes. Studies indicate that passaging of the cells for prolonged times 
negatively affected their potential applications for tissue engineering and regenerative 
medicine[27]. The passaging of stem cells from “old” and “unhealthy” donors is 
particularly risky to obtain desired results as these cells already have compromised 
characteristics as mentioned above.

As stem cells are the basis of tissue engineering and regenerative medicine applic-
ations, a reduced regeneration potential of stem cells due to increased donor age, 
disease condition or in vitro expansion may compromise the efficacy of autologous cell 
therapies. Due to medical advancements, life expectancy has been significantly 
increased that resulted in a substantial increase in the aged population. Similarly, due 
to unhealthy lifestyles the frequency of occurrence of diseases has also been increased. 
As a result, stem cell based therapies are becoming more and more popular in recent 
years. It is therefore important to use different strategies to improve the stem cell 
function before use in patients to obtain the desired medical improvements.

ENHANCEMENT OF COMPROMISED STEM CELL FUNCTION 
With time researchers have adopted different methodologies and protocols in an 
attempt to enhance compromised stem cell function. These modifications include best 
source of stem cells, type of serum for culture, cell plating density, glucose concen-
tration, cell delivery method, transplant method, timing and dosages, which have 
improved some aspects of cell therapy but not up to the optimal level. The limited 
improvement is due to low numbers or poor survival of the cells after transplantation 



Choudhery MS. Strategies to improve MSC function

WJSC https://www.wjgnet.com 1849 December 26, 2021 Volume 13 Issue 12

due to a harsh ischemic environment at the host site[3,28,29]. To compensate for the 
reduced functions of stem cells, researchers were encouraged to investigate novel 
strategies to improve the compromised stem cell function to maximize the therapeutic 
effect of stem cells. In this regard significant attention has been given to strategies that 
manipulate the culture conditions such as hypoxia, heat shock, CR, and precondi-
tioning with different factors.

Hypoxic preconditioning
Oxygen concentration can be adjusted during cell culturing to optimize cell function 
for cell based regenerative therapies[30]. Naturally stem cells reside in niches inside 
the body where oxygen concentrations are significantly lower as compared to normal 
oxygen concentrations. Studies indicate that oxygen concentration in different tissues 
and organs depends on the distance from the capillaries. Oxygen tension in the lungs 
for example is 20% which lowers to 2% to 9% when entering other organs and tissues. 
Oxygen concentration in tissues that are important stem cell sources (such as adipose 
tissue, bone marrow, placenta, cord tissue etc.) is variable and is low as compared to 
normoxic conditions (Table 1). For example, it is 2%-10% in adipose tissue[31] and 1%-
6% in bone marrow[32,33]. So, although stem cells reside in anatomical sites that are 
relatively oxygen deficient, conventionally they are cultured in vitro under normoxic 
conditions (20%-21%) in CO2 incubators regardless of their source and oxygen concen-
tration in the tissues from where they are isolated. So hypoxic physiological niches in 
which most type of stem cells normally reside are largely ignored which may make the 
cells unhappy and unhealthy.

Being an important component of the stem cell microenvironment, oxygen tension 
provides signals for maintenance of stem cell properties[34]. Studies indicate that the 
cells may grow better if the same in vivo oxygen concentrations are provided to them 
for in vitro culturing. Stem cell culturing under hypoxia is physiologically more 
relevant to their niche and thus can affect the regenerative potential of cells. Culturing 
the cells under hypoxic conditions may improve their regenerative potential in terms 
of their improved proliferation, differentiation, adhesion, angiogenesis and growth 
factor secretion.

There is a clear consensus on the fact that hypoxia promotes the proliferative 
potential of cells. It has been shown that hypoxic insult significantly improves 
survival, stemness and proliferation of MSCs derived from adipose tissue[35] and 
bone marrow derived stem cells[36,37]. Proliferative potential of MSCs was 
significantly higher in hypoxic culture condition as compared to normoxic conditions
[38] in long term cultures. Oxygen concentrations of 1%-5% has been demonstrated to 
significantly increase the proliferation of MSCs while maintaining their normal 
morphology[36,37]. Similarly, the proliferative potential of BM-MSCs was significantly 
enhanced under hypoxia[39]. In this study, 1% hypoxia significantly enhanced the 
proliferative potential of BM-MSCs. Collectively, these studies indicate that hypoxic 
insult increases the self-renewal potential of stem cells. Some studies however indicate 
that initially hypoxia has a negative affect on cell viability and proliferation, however, 
reoxygenation following hypoxia promotes these processes[40].

Low oxygen concentrations also help maintenance of stemness characteristics of 
cells. In periodontal ligament cells[41], adipose tissue MSCs[42] and dental pulp cells
[41], 2% hypoxia maintained the cell stemness for prolonged periods of time. Under 
24-h hypoxic conditions mRNA expression of pluripotency markers Oct-4, Sox-2 and 
c-Myc upregulated significantly concomitant with increased protein expression of 
these markers[41].

The effect of hypoxia on differentiation of stem cells has also been investigated by 
number of researchers with conflicting reports and therefore the role of hypoxia in the 
differentiation of stem cells remain controversial. Regarding differentiation of stem 
cells into adipocytes, culturing the cells under hypoxic conditions seems to inhibit it
[39]. Carrière et al[43] (2004), reported decreased adipocyte differentiation of 3T3-
F442A preadipocytes in 1% hypoxia[43]. Similarly, Hung et al[39], 2012 observed 
compromised adipogenic potential of bone marrow derived MSCs when hypoxia was 
applied for 4 wk[39]. In another study, it has been demonstrated that hypoxia 
negatively regulates the differentiation of ASCs. The authors demonstrated that 
hypoxia reversibly arrested ASCs in an undifferentiated state and maintains the 
expression of pre-adipocyte factor 1 (Pref-1) that has been shown to negatively 
regulate adipogenic differentiation[44]. Contrary to these findings an extreme hypoxia 
(0.2%) induced more adipogenic differentiation that resulted in more lipid droplets 
accumulation and upregulation of adipocyte specific genes such as LPL, CFD, PGAR 
and HIG2[45]. Under severe hypoxia, significantly lower adipogenic differentiation 
was observed as compared to differentiation of BM-MSCs in normoxic conditions[46]. 
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Table 1 Oxygen concentrations in various stem cells niches

Tissue/Organ Oxygen concentration Ref.

Adipose tissue (source: ASCs) 2%-10% [31]

Bone marrow (source: MSCs) 1%-6% [32,33]

Eye (retina, corpus vitreous) (Source: Limbal stem cells) 1%-5% [119,120]

Brain (source: Neural stem cells) 0.5%-8% [121,122]

Heart (source: Cardiac progenitor cells) 4%-14% [123]

Kidney (source: Renal stem/progenitor cells) 4%-14% [124]

Liver (source: Liver stem cells) 4%-14% [125]

Umbilical veins and arteries 2.4%-3.8% [126]

MSCs: Mesenchymal stem cells.

However, as indicated in another report, hypoxic preconditioning (2% oxygen) of 
adipose tissue derived MSCs induces more adipocyte differentiation[47].

Hypoxia however favors differentiation of MSCs into osteocytes. Studies indicate 
that hypoxia promotes osteogenic differentiation of MSCs[39]. In another report 
hypoxia positively regulated osteogenesis of MSCs derived from rat bone marrow. In 
this study, hypoxic preconditioned rat derived MSCs produced more bone when 
implanted into rats[48]. Moreover, Tsai et al[49], (2011) demonstrated that culturing of 
cells under hypoxic conditions significantly promoted their osteogenesis and chondro-
genesis in vitro and their bone repair ability in vivo[49]. Similarly, in a number of 
studies 1% to 5% oxygen enhanced the chondrogenic differentiation of ASCs[50-53]. 
Interestingly, Jurgens et al[53], 2012 found that hypoxia can promote differentiation of 
cells into chondrocytes to the same extent as transforming growth factor-b1[53] and 
enhance the expression of hypoxia inducible transcription factor-2a, SOX5, SOX6, and 
SOX9, and that of aggrecan, versican, and collagens II, IX, X, and XI[54]. Contrary to 
these results D’Ippolito et al[55] (2006) reported reduced osteogenic commitment of 
human bone marrow derived MSCs when cultured and differentiated under hypoxic 
conditions[55]. These interesting findings indicate that hypoxic effect may be cell 
source and species specific. Chen et al[56], 2015 set the hypoxic conditions at 0.2% and 
found that this extreme hypoxia can impair the osteogenic differentiation as indicated 
by the attenuation of alkaline phosphatase (ALP) activity and the reduced expression 
of osteogenic markers osteocalcin and osteopontin[56].

The key regulators that alter the cellular and molecular functions of stem cells 
during hypoxia are reactive oxygen species, HIF-1a and micro RNAs. The electron-
transport chain within the mitochondria is the major source of ROS production in the 
cells. Although accumulation of high ROS levels in the cells may cause adverse effects 
in terms of genetic and physiological dysfunction, and induction of senescence and 
apoptosis[57-59], low ROS levels function as signaling molecule and positively affect 
cell characteristics by serving as second messengers, triggering the phosphorylation of 
signaling molecules[60,61] such as tyrosine kinase. Activation of tyrosine kinases leads 
to the activation of the PI3K/Akt and MAPK signaling pathways that also can alter 
stem cells characteristics. Different microRNAs such as miR-210 have been found to 
consistently induced during hypoxia. miRNA-210 is regulated by HIF-1a and ROS-
related pathways during hypoxia[62]. HIF-1a is a master transcription factor that 
regulates many genes involved in the differentiation of cells. It becomes activated 
during hypoxia and directly binds with the HIF-responsive element (HRE) to alter 
stem cell functions.

In conclusion, hypoxia has a profound impact on the biological and functional 
properties of stem cells and could be used as a strategy to improve their regenerative 
potential before clinical use (Figure 1). Hypoxia not only enhances the self-renewal 
potential of cells but also their differentiation into multiple cell types. However, it 
must be noted that the inconsistent or controversial reports in the literature are 
probably due to the use of different hypoxia levels, variable durations of exposures 
and a variety of cell types. The question is not if hypoxia alters stem cell function but 
rather the use of the correct hypoxic preconditioning for different cell types for an 
accurate period of time that is most important. In addition, it is important to note that 
previous studies have often been performed using H2O2 for short time periods. 
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However, development of sophisticated trigas CO2 incubators now provide a more 
refined way of culturing the cells under hypoxia for long periods of time (Figure 2).

Heat shock
Hormesis is a phenomenon in which low doses of a harmful stressor produce a 
cascade of beneficial biological effects. Temperature is one such stressor that has 
recently been used to manipulate the cell functionality. The hormetic effect of high and 
low temperature for a short period of time has been shown to effect in vivo-as well as 
in vitro-age-related dysfunction in cells. Temperatures below and above the standard 
culture temperature (32 ℃ and 41 ℃) have been shown to prevent or reverse aging 
and age related impairment, and significantly impact the regenerative potential of 
cells. Adult stem cells exhibit therapeutic potential for regenerative medicine and 
tissue engineering applications. However, age related changes may make these cells 
less effective for medical use to treat various diseases and disorders (Figure 1). 
Similarly, in vitro expansion of adult cells negatively affects the regenerative potential 
of cells as indicated by a decline in adipogenic, osteogenic, chondrogenic and 
myogenic differentiation potential of MSCs with in vitro passaging (Figure 1). Adult 
stem cells are found in low numbers in their niche but are required in large number for 
clinical use and therefore many promising tissue engineering and regenerative 
medicine applications require expansion to obtain large numbers of cells. The 
expansion of cells results in increased senescence and apoptosis, and reduced 
regenerative potential representing a severe limitation for their use. Expansion of cell 
at high or low temperatures can significantly enhance the regenerative potential of 
stem cells and thus could be used as a strategy to enhance their potential.

The anti-aging effect of heat shock treatment has been well documented in a series 
of studies with interesting results. Heat shock treatment has been found to maintain 
the long, spindle shaped morphology of MSCs by preventing or reducing age-related 
alterations such as the irregularly enlarged and flattened shape of cells[63,64]. Similar 
results were obtained by Choudhery et al[65], (2015) in a study in which the stressed 
cells (HS at 41 ℃) exhibited more thin, long and spindle shaped morphology of MSCs 
as compared to control cells that had more flattened morphology (a typical age-related 
alteration)[65]. Heat shock also enhanced viability of cells at different passages during 
expansion of cells. There were significantly more viable cells at passage 5 and passage 
8 when a mild heat shock was applied as compared to non-treated cells[65]. In this 
study, the percentage viability as determined by the trypan blue exclusion assay as 
well as flow cytometry using 7-AAD/Annexin V was significantly higher at different 
passages[65].

A significant increase in the proliferative potential of cells was observed when cells 
were treated with mild heat shock. The number of cumulative population doublings 
were increased 10% to 15% as a result of heat shock treatment for a short period of 
time[64]. In another study, the maximum population doublings were higher for cells 
that underwent heat shock at 41 ℃ for 60 min once in a week. The cells that were 
treated with heat shock achieved 36.0 ± 3.4 doublings while the cells in control group 
achieved only 26.2 ± 1.1 doublings. The doubling time was also shorter for heat 
shocked MSCs (2.1 ± 0.2 d) as compared to those that were not treated with heat shock 
(3.2 ± 0.2 d)[65]. Self-renewal is a complex regulatory process under the control of 
various transcription factors such as Nanog, Oct4, Sox2, STAT3 and others[66]. These 
transcription factors work in collaboration to regulate self-renewal of cells. 
Interestingly, the heat-shock proteins expressed as a result of stress (e.g. heat shock 
stress) interact with these transcription factors to regulate normal cell development 
and functioning[67]. HSP90, HSP70 and HSP27 are also particularly involved in cell 
self-renewal[68].

The anti-aging effect of repeated mild heat stress on cell growth and other cellular 
and biochemical characteristics has been well documented[63]. In another study, heat 
shock alleviated apoptosis in BMSCs and improved survival[69]. The protective effects 
of heat shock in this study were attributed to elevated levels of heat shock proteins 
HSP70 and HSP90 along with attenuation of autophagy. Heat shock has been shown to 
enhance the survival of transplanted cells concomitant with reduced apoptosis and 
senescence[65,70]. After heat shock treatment, the expression of senescent associated 
markers such as β-galactosidase, P16 and P21 were significantly downregulated in 
cultures of cells that were subjected to heat shock[65]. Feng et al[71], (2010) explored 
the cytoprotective effects of HSP90 on rat MSCs. In this study apoptosis was induced 
with hypoxia and serum deprivation, and heat shock improved viability, paracrine 
effect and elevated Bcl-2/Bax and Bcl-xL/Bax expression in MSCs[71].
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Figure 2 Challenges and limitations in using preconditioning strategies such as hypoxia, heat shock, caloric restriction and growth 
factor & cytokine. Certain challenges are common for all these preconditioning strategies. Selection of correct strategy for correct duration for preconditioning of 
mesenchymal stem cells (MSCs) isolated from different sources is important. Assessment of the use of more than one strategies at the same time, use of 
sophisticated equipment for application of these strategies and evaluation of tumorigenicity after use of preconditioned strategies is required. The figure insets further 
describe the specific challenges in using specific strategies for preconditioning of MSCs.

It is pertinent to note that differentiation of MSCs into various lineages was also 
elevated after heat shock treatment. MSCs, under exposure to heat shock produced 
more extracellular matrix (that stained black with von Kossa staining) as compared to 
non-heat-shocked MSCs. The expression of lineage-specific osteogenic genes such as 
ALP, osterix, ostepontin, bone morphogenetic protein 2 (BMP2) and osteocalcin as 
assessed with RT-PCR was also upregulated in heat-shocked MSCs[56,65]. Adipogenic 
induced MSCs cultures that were exposed to repeat heat shock showed more oil red O 
uptake and expression of markers of adipogenesis such as peroxisome proliferator-
activated-receptor-g (PPAR-g) and lipoprotein lipase (LPL)[65]. Similarly, in pellet 
culture a periodic heat shock enhanced the chondrogenic differentiation of human 
MSCs as depicted by increased sulfated glycosaminoglycan and increased expression 
of collagen type II and aggrecan in heat-shocked pellets than non-heat-shocked cell 
pellets[57]. Besides the above-mentioned effects, the novel effects of heat shock have 
been explored on in vitro wound healing[72], angiogenesis[73], neuroprotection and 
neurodegeneration[74]. Furthermore, heat shock treatment seems to be an effective 
way to protect the cells even after transplantation. Recently it has been shown that 
mild heat stress significantly enhanced the viability concomitant with reduced 
apoptosis and senescence of transplanted cells[65,70]. Chen et al[75], (2018) dem-
onstrated that heat stressed bone marrow derived MSCs inhibited apoptosis of ovarian 
granulosa cells and enhanced their repair effect when transplanted in a chemotherapy 
induced rat model. In this study, the chemotherapy-induced rat model was established 
by intraperitoneal injection of cyclophosphamide by giving an initial dose of 50 mg/kg 
followed by a dose of 8 mg/kg for 14 d[75].

Heat shock response is an evolutionary conserved genetic response to various 
physiological, pathological, chemical and environmental stresses[76]. This response of 
heat shock (and other stressors) leads to the induction of special type of proteins in 
cells called heat shock proteins (HSPs). HSPs may function as molecular chaperones 
and can help in stabilization of intracellular proteins, repairing damaged proteins, and 
assisting in protein translocation[68,77-80]. Studies indicate that HSPs can interact with 
various transcription factors and thus are involved in various cell signaling pathways. 
Therefore, alterations in the expression of HSPs directly affect stem cell characteristics 
such as their proliferation capacity as well as differentiation and aging.

In conclusion, it is clear that hormetic effects of mild heat shock can affect the 
regenerative potential of adult stem cells in vitro and these effects help in better 
performance of these cells after transplantation (Figure 1). However, applying the 
correct hormetic conditions for stem cells from different sources is challenging. The 
temperature as well as the duration of heat shock treatment is important for optimal 
results. In addition, it is also important to select a method of application of heat shock 
in cell cultures. Instead of incubators, water baths may be more useful for this purpose 
for quick heat transfer.
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GROWTH FACTORS AND CYTOKINES 
The use of growth factors and cytokine preconditioning (Figure 1) can also influence 
the therapeutic potential of stem cells by improving self-renewal, cell survival, 
paracrine activity and differentiation potential concomitant with reduced senescence 
and apoptosis[81,82]. The growth factors interact with the receptors present on the 
cells and activate various downstream signaling pathways to influence numerous cell 
characteristics. Stem cells particularly MSCs release a number of growth factors and 
cytokines that influence the cells and tissues in an autocrine or paracrine manner. The 
half-life of these growth factors, however; is very short and therefore their stable 
therapeutic effects are limited.

BM-MSCs when preconditioned with stromal derived factor 1 showed enhanced 
survival, proliferation, migration, secretion of pro-survival genes (AKT-1, BCL-2, Erk) 
and pro-angiogenic factors (bFGF, VEGF) concomitant with reduced apoptosis and 
senescence[83]. In another study, BM-MSCs were treated with 0.05 μg/mL of SDF-1 
that enhanced cell survival, engraftment and vascular density and suppressed 
apoptosis. Further, injection of the SDF-1 preconditioned MSCs in a rat model of left 
anterior descending artery ligation also improved myocardial function by increasing 
cell proliferation and reducing infarct size and fibrosis via SDF/CXCR4 signaling[84]. 
Preconditioning of BM-MSCs with 10 ng/mL to 100 ng/mL of SDF-1 also reduced 
hypoxia induced apoptosis[85]. TGF-Beta inhibits differentiation of BM-MSCs into 
adipocytes and osteocytes. Interestingly, however, the same growth factor promotes 
osteogenesis in the presence of IBMX (usually present in adipogenic differentiation 
medium). TGF-β1 is a potent stimulator of tissue regeneration[86] and it can switch 
adipogenic differentiation into osteogenic differentiation. Pretreatment of MSCs with 
TGF-β1 improves wound healing in a murine wound model by adhesion and 
migration to the wound site[87]. Further, TGF-β1 enhanced fibronectin production as 
well as survival of human umbilical cord-derived MSCs in a rat model of lipopolysac-
charide-induced acute lung injury[88]. However, a previous study demonstrated that 
TGF-β1 induces senescence through production of ROS in periodontal ligament stem 
cells[89]. A 3 d preconditioning of AT-MSCs with tumor necrosis factor-alpha (TNF-α) 
significantly promoted proliferation, mobilization and differentiation into osteocytes 
via activation of ERK1/2 and MAPK signaling pathways. These results were 
confirmed by gene silencing with siRNA that partially inhibited ERK1/2 signaling and 
osteogenic differentiation of MSCs[90]. TNF-α preconditioning has been shown to 
improve in vitro bone regeneration by up-regulating BMP2. Further, it stimulated the 
cell proliferation and differentiation[91]. IFN-γ pretreatment improved the therapeutic 
efficacy of MSCs by enhancing the secretion of immunomodulatory molecules such as 
PGE2, HGF, TGF-β, and MCP-1[92]. MSCs pretreated with IFN-γ inhibited natural 
killer cell activation and NK mediated cytotoxicity by upregulating the synthesis of 
indoleamine 2,3-dioxygenase (IDO) and prostaglandin E2[93]. In another study MSCs 
were pre-stimulated with IFN-γ to enhance their immunosuppressive and therapeutic 
properties in vitro and in vivo[94]. A combination of different growth factors may 
produce contrary results. For example, a combination of interleukin (IL)-1 and TNF-α 
in in vitro cultures of MSCs inhibited the osteogenesis and adipocyte via activating the 
canonical nuclear factor-kappa B (NF-kB) signaling[95]. Similarly, when cells were 
treated with a combination of bFGF and steroid hormones an enhanced neural differ-
entiation was observed as indicated by upregulation of beta III-tubulin (β-III tubulin) 
and microtubule-associated proteins-2 (MAP-2) during 4 d of treatment[96].

Certain cytokines have also been shown to influence the regenerative potential of 
stem cells. IL-1β preconditioning of MSCs activated several biological processes such 
as cell survival, cell migration, cell adhesion, chemokine production, angiogenesis and 
modulation of the immune response[96]. More specifically MSC preconditioning with 
IL-1β significantly upregulated the expression of certain cytokines (TNF-α, IL-6, IL-8 
and IL-23A), chemokines (CCL5, CCL20, CXCL1, CXCL3, CXCL5, CXCL6, CXCL10 
and CXCL11) and adhesion molecules [vascular cell adhesion molecule (VCAM)-1, 
intercellular adhesion molecule (ICAM)-1 and ICAM-4][96]. In another study, synovial 
MSCs when pretreated with IL-1β, showed significantly higher proliferation as well as 
chondrogenic potential[97]. To induce these results, TGF-β seemed to activate Akt, 
extracellular signal-regulated kinase 1/2 (ERK1/2), focal adhesion kinase (FAK), and 
p38, via TGF-β type I receptor in MSCs[97]. Xinaris et al[98], preconditioned MSCs with 
insulin-like growth factor-1 (IGF-1) before administration and found it effective in 
terms of migration and homing of cells which was required for the restoration of renal 
function following acute kidney injury[98]. Interestingly when the diabetic MSCs were 
preconditioned with a combination of IGF-1 (50 ng/mL) and fibroblast growth factor-2 
(FGF-2) (50 ng/mL), upregulation of IGF-1, FGF-2, Akt, GATA-4, Nkx 2.5 and 
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downregulation of p16INK4a, p66shc, p53, Bax and Bak occurred[99].
In conclusion, preconditioning of cells with different growth factors and cytokines 

may enhance regenerative potential of stem cells (Figure 1). Although preconditioning 
of MSCs with different growth factors and cytokines can influence significantly the 
biological properties of MSCs, there are number of challenges to use this strategy 
successfully for optimum benefits. For example, will the same dose or concentration of 
cytokines and growth factors influence MSCs isolated from different sources? Some 
growth factors and cytokines may influence MSC function synergistically and 
antagonistically when used in combination[40]. Therefore, optimization of 
amalgamation of growth factors and cytokines as well as their concentrations is 
required for better results. Similarly, MSCs behave differently in culture conditions 
such as in 3D cultures and hypoxic conditions and therefore preconditioning in such 
conditions should be optimized (Figure 2).

CR
CR refers to consuming significantly reduced calories as compared to calories taken ad 
libitum. At the organismal level, it was first reported in 1935 that reduced caloric 
intake can extend the mean and maximum life span in rodents[100]. Since then 
beneficial effects of CR were observed in animals of other species such as rats, mice, 
dogs, fish, flies, worms, yeast and humans[101-103]. CR is now an established anti-
aging strategy for prolonging lifespan and has also been applied on stem cells to 
rejuvenate them. CR as a non-genetic dietary intervention reduces the energy 
metabolism in cells and can positively affect regenerative potential of cells by 
extending their life span and making the cells healthy.

Glucose is an essential source of energy for all types of cells in the body although 
elevated levels of glucose have been shown to be associated with reduced mob-
ilization, proliferation, homing and repair potential[104,105]. Similarly, stem cells 
isolated from diabetic patients and animals exhibited reduced yield, viability, prolif-
eration, angiogenesis, differentiation and wound healing ability[106,107]. Cells are 
cultured in stem cell media that contain various components including glucose to 
ensure proper functioning and maintenance of cell characteristics. However, cells 
cultured in vitro in media with high glucose concentration show impaired regenerative 
potential of cells[108]. High glucose concentration in stem cell culture media was 
found to negatively impact a cell’s viability, differentiation and self-renewal potential
[109,110]. Based on the findings it was found that the conventional media used to 
expand cells was not appropriate for long term expansion of cells as it adversely 
impacted the biological properties of cells[110,111]. Thus induction of CR in cells by 
culturing in low glucose concentration is another area of interest for the enhancement 
of stem cell function before transplantation. Different protocols ranging from glucose 
depletion[109] to varying glucose levels[110] were adopted in this regard.

Al-Qarakhli et al[112] comprehensively studied the effect of glucose concentration 
on expansion as well as differentiation of mesenchymal stromal cells. They found that 
hyperglycemia negatively impact the proliferation, and osteogenic and adipogenic 
differentiation of cells with more senescence features in culture[112]. To investigate the 
effect of CR, Stolzing et al[110] (2006) used media with different glucose concentrations 
for MSC culturing. In this study MSCs cultured in medium with low glucose concen-
trations were functionally more active as evidenced by enhanced viability, prolif-
eration and differentiation of cells when cultured in caloric restricted media[110]. 
When the biological characteristics of cells cultured in low glucose and` high glucose 
concentrations were compared, there was significantly more proliferation, colony-
forming ability, homing and wound healing potential of cells in low glucose concen-
trations as compared to high glucose concentration. In addition, high glucose 
decreased expression of stemness genes (SOX-2, Nanog, Oct-4), survival genes (Sirt-1, 
Sirt-6, HIF-1α), glucose transporter 1 (Glut-1) concomitant with increases apoptosis 
and senescence in cells[113]. Choudhery et al[109], (2012) cultured the BM-MSCs in 
glucose free conditioned and optimized the time to perform further in vitro and in in 
vivo studies[109]. In this study aged MSCs were pre-conditioned with glucose 
depletion for 60 min to enhance the age depleted function of stem cells. Pre-
conditioning of aged MSCs with glucose depletion resulted in upregulation of IGF-1, 
AKT and SIRT-1 concomitant with enhanced viability, proliferation and delayed 
senescence. Interestingly, the preconditioned aged MSCs after transplantation into 
heart showed increased expression of paracrine factors (IGF-1, FGF-2, VEGF and SDF-
1a) that was associated with significantly improved cardiac performance in mouse 
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Table 2 Effect of glucose concentrations on cells

Glucose concentration Major findings Cell types Ref.

Glucose free and 4.5 g/L Glucose depletion enhances 
proliferation, delays senescence 
and restores ability of aged cells 
to repair senescent infarcted 
myocardium

Mouse bone marrow derived MSCs [109]

0.25, 0.5, 1.0 and 4.5 g/L High glucose decreases viability 
while low glucose concentration 
retains high proliferative and 
differentiation capability of cells

Rat bone marrow derived MSCs [110]

5.56 mmol/L, 13.9 mmol/L, 27.8 
mmol/L, and 55.6 mmol/L

Decrease in population doublings 
and CFUs. Increased senescence 
in high glucose

Human adipose tissue derived MSCs [111]

5.5 mM and 25 mM No negative impact on 
population doublings and 
expansion. Increased senescence, 
inhibit osteogenic and adipogenic 
differentiation potential

Endosteal niche lining compact bone cells (CB-MSCs) [112]

1 g/L and 4.5 g/L Decreased proliferation, increased 
apoptosis and senescence

Nucleus pulpous-derived MSCs [113]

5.5 mM and 35 mM Increased apoptosis Human periodontal ligament fibroblasts [114]

5 mM/L and 25 mM/L Increased oxidative stress Mesangial cells [118]

MSCs: Mesenchymal stem cells.

model of myocardial infarction[109]. High glucose concentrations can impair cell 
function and induce apoptosis and represent a potential limitation for therapeutic 
strategies based on ex vivo expansion of stem cells[114]. In parallel to these findings 
some studies suggested a significantly increased apoptosis of β-cells in diabetic 
patients that resulted in β-cell dysfunction and reduced β-cell mass[115,116].

There are a number of cellular responses to high glucose (Table 2) that ultimately 
result in functional impairment and cell death[117]. High glucose results in generation 
of reactive oxygen and nitrogen species such as superoxide, nitric oxide and per-
oxynitrite and their derivatives[117,118]. This high glucose induced ROS species 
results in high glucose-mediated apoptosis and necrosis and ultimately cell death. ROS 
species produced by high glucose may increase the activity of NF-kB in various cell 
types and leads to cell apoptosis and death in a process that involves Bax and caspase 
activation[117]. In addition, high glucose concentration in the cell microenvironment 
activate those proteins that are related to apoptotic cell death including members of 
the caspase and Bcl-2 families[117].

In conclusion, the biological properties of cells are influenced by the glucose concen-
tration in the culture medium (Figure 1). Previous studies indicate that low glucose 
concentration in the culture medium enhances cell proliferation, viability and differen-
tiation potential of cells concurrent with reduced senescence and apoptosis. However, 
not only the glucose concentration but the duration of preconditioning of cells are 
important parameters to consider. For example, although 1 h preconditioning of MSCs 
with glucose depletion (0g/L) produced beneficial effects in Choudhery et al[109]’s 
study[109], culturing of cells without glucose for longer time will definitely produce 
deleterious effects in cell. Therefore evaluation of the effects of glucose concentrations 
with respect to time must the carefully considered for preconditioning of different 
types of cells (Figure 2).

CONCLUSION
Conclusion and future perspectives
Stem cell-based therapies are gaining interest of patients and doctors for their potential 
to treat diseases that cannot be cured with conventional medicines. Aged patients are 
the major candidates for stem cell-based therapies. However, studies clearly indicate 
that stem cell potential for autologous use deteriorates with donor age. The number of 
regenerative cells in aged and unhealthy individuals is very low, however, for the 
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success of stem cell based regenerative therapies large numbers of cells are required. 
Cells are usually expanded in vitro to obtain high numbers, however, this expansion 
further decreases stem cell function and does not give desired results after 
transplantation. Overall, with increasing donor age, disease condition of donors and in 
vitro expansion of cells, regenerative potential of stem cell decreases and it represents a 
major limitation for the success of cell therapies. To combat the problem of decline in 
regenerative potential of cells different strategies such as heat shock, hypoxia, caloric 
restriction and preconditioning with different factors can be applied in vitro before 
transplantation of cells. The correct application of these strategies have a profound 
effect on stem cell characteristics to enhance their therapeutic functions. These 
strategies may be used to enhance the self-renewal, repair and differentiation potential 
of cells and to keep the cells healthy. Use of these strategies also enhances cell survival 
and engraftment in hostile microenvironment of the target tissue. The inconsistent 
reports are due to the use of different levels of factors (hypoxia, glucose, temperature, 
growth factors & cytokine), variable durations and variety of cell types used in studies. 
The question is not if these strategies alters stem cell function but rather the use of the 
correct strategy and condition for an accurate period of time that is most important.
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Abstract
Current research data reveal microenvironment as a significant modifier of 
physical functions, pathologic changes, as well as the therapeutic effects of stem 
cells. When comparing regeneration potential of various stem cell types used for 
cytotherapy and tissue engineering, mesenchymal stem cells (MSCs) are currently 
the most attractive cell source for bone and tooth regeneration due to their differ-
entiation and immunomodulatory potential and lack of ethical issues associated 
with their use. The microenvironment of donors and recipients selected in 
cytotherapy plays a crucial role in regenerative potential of transplanted MSCs, 
indicating interactions of cells with their microenvironment indispensable in 
MSC-mediated bone and dental regeneration. Since a variety of MSC populations 
have been procured from different parts of the tooth and tooth-supporting tissues, 
MSCs of dental origin and their achievements in capacity to reconstitute various 
dental tissues have gained attention of many research groups over the years. This 
review discusses recent advances in comparative analyses of dental MSC 
regeneration potential with regards to their tissue origin and specific microenvir-
onmental conditions, giving additional insight into the current clinical application 
of these cells.
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Core Tip: This review discusses recent advances in comparative analyses of dental 
mesenchymal stem cell (MSC) regeneration potential. We have summarized the 
available research evidence concerning the effects of hypoxic and inflammatory 
microenvironmental factors on dental MSC differentiation capacity. Existing investig-
ations indicate the very important aspect of the recipient microenvironment niche in 
terms of therapeutic efficacy of transplanted dental MSCs. However, some of the data 
for the same cell type (especially in hypoxic in vitro conditions) are conflicting, so it is 
important to point out that the biology of MSCs is not yet fully known, and further 
research in this area is needed.
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INTRODUCTION
Bone defects and dental loss connected with either disease or trauma seriously 
influence the quality of life of the whole population, including emotional, physical, 
and financial load on the society. For the medical treatment of oral diseases, 
periodontal treatment, dental implants, and dental protheses are the gold standards
[1]. Since these oral therapies can only maintain the current state and stop further 
complications of the disease, failing to influence complete tissue regeneration, new 
technologies are needed to overcome these limitations at various tissue regeneration 
steps[2]. Currently, tissue engineering represents a promising future approach for 
recovering the function and integrity of tooth’s hard tissue[3]. The microenvironment 
of dental tissues, containing dental immune cells, blood vessels, extracellular matrix 
(ECM), numerous secreted soluble mediators, and various stromal cells, essentially 
influences the healing process of diseased dental tissue[4,5]. In terms of regenerative 
features, mesenchymal stem cells (MSCs) are the most prominent among stromal cells. 
Their clinical application in the treatment of dental diseases is still at the beginning 
since the exact mechanism of their therapeutic properties is not yet clear.

MSCs are the population of multipotent stromal cells present in many adults, 
perinatal and fetal tissues, where they participate in homeostasis maintenance. They 
were initially isolated from bone marrow and characterized as fibroblast-like cells[6]. 
After a while, their presence has been demonstrated in various fetal and adult tissues, 
such as peripheral blood, umbilical cord, placenta, adipose tissue, and others[7,8]. In 
the past two decades, a variety of MSC populations have also been procured from 
different parts of the tooth and tooth-supporting tissues (Figure 1): Dental pulp stem 
cells (DPSCs), stem cells from human exfoliated deciduous teeth (SHEDs), periodontal 
ligament stem cells (PDLSCs), dental follicle stem cells (DFSCs), gingival MSCs 
(GMSCs), and stem cells from the dental apical papilla (SCAPs)[9]. These cells are 
particularly suitable for research, given the easy availability of tissues through non-
invasive dental procedures and simple methods for their isolation. According to the 
International Society for Cellular Therapy, minimal criteria to characterize MSC 
population consider the positive expression of surface markers CD73, CD90, and 
CD105 and negative expression of CD11b, CD19, CD79α, CD34, CD31, CD45, and 
human leukocyte antigen-DR isotype, along with their self-renewal and multilineage 
differentiation capacity into cells of osteogenic, chondrogenic, and adipogenic lineages
[10] (Figure 2). Yet, the defining characteristics of MSCs are inconsistent among 
researchers. In addition to their regenerative role, MSCs exert immunomodulatory 
properties by affecting cells of the innate and adaptive immune system through direct 
intercellular contacts and/or secretion of soluble mediators (Figure 2). Moreover, 
MSCs express multiple paracrine functions, thus modulating surrounding microenvir-
onment response to numerous autoimmune and inflammatory diseases[11]. Previous 
research has shown that MSCs suppress activation and proliferation of CD4+ helper 
and CD8+ cytotoxic T lymphocytes, B lymphocytes[12,13], dendritic cells, and natural 
killer cells[14], while increasing the production of regulatory T-lymphocytes[15]. In 
addition, it has been determined that MSCs modulate microenvironment in the injured 
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Figure 1 Schematic drawing illustrating sources of human dental tissue-derived mesenchymal stem cells. DFSCs: Dental follicle stem cells; 
DPSCs: Dental pulp stem cells; GMSCs: Gingival mesenchymal stem cells; PDLSCs: Periodontal ligament stem cells; SCAPs: Stem cells from the dental apical 
papilla; SHEDs: Stem cells from human exfoliated deciduous teeth.

Figure 2 Properties of mesenchymal stem cells. mesenchymal stem cells are the population of multipotent stromal cells present in adult and perinatal 
tissues where they participate in maintaining of homeostasis. Due to their self-renewal capacity, differentiation potential into specialized cells of mesodermal origin 
and immunomodulatory features, these undifferentiated cells can be potentially applied in regenerative medicine and cell therapy.

tissue by releasing anti-inflammatory and anti-apoptotic molecules[16].
It is well known that MSCs’ behavior depends on the context of the microenvir-

onment in which they reside and function. These physiologically defined comp-
artments, named stem cell niches, are the sites of external cues integration that 
determine the fate of MSCs and govern them towards specific functions[17]. Therefore, 
a better understanding of the effects of specific microenvironmental conditions on 
MSCs’ fate is of great importance for getting a real insight into their biology and 
optimizing the conditions for their successful use.

Oxygen (O2) represents an important factor in the stem cell niche necessary for cell 
activity and metabolism. Unlike laboratory standard conditions that correspond to the 
atmospheric (21%) O2 levels, physiological oxygenation in tissues is hypoxic, ranging 
from 1%-14% with an average of about 5%[18]. Response to O2 level changes in 
mammals is mainly regulated by hypoxia-inducible factor 1 (HIF-1)-α, an ubiquitously 
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expressed transcription factor subunit that translocates to the nucleus under hypoxic 
conditions where it binds to HIF-1β to regulate target genes[19]. Different O2 levels 
affect various MSCs features[20,21]. Moreover, the hypoxia effects depend on cell type, 
oxygen concentration, and experimental design; thus, many studies gave contradictory 
results, especially considering short-term exposure to hypoxia[20]. In dental and 
dental-supporting tissue derived cells, low oxygen levels (1%) increase the formation 
of reactive oxygen species, leading to oxidative stress, specifically in periodontal 
ligament (PDL) cells[22]. The reactive oxygen species level multiplies when the 
bacterial inflammation occurs within a hypoxic environment[23]. A unique feature of 
the oral cavity is the presence of plenty of microorganisms such as bacteria, fungi, 
protozoa, or viruses, organized in the complex communities, termed as oral 
microbiome. These microorganisms coexist with the host in a symbiotic way. 
Depending on the mouth area, the microbiome's composition is diverse, with the 
dental tissues (including teeth and teeth supportive tissues) being the habitat of many 
microorganisms (dental plaque). As the composition of the oral microbiome changes 
dynamically[24,25], physiological balance can be disrupted, consequently encouraging 
the infection development in the host[26,27].

This review provides a detailed summary of currently available data concerning 
dental MSC regeneration potential in terms of the tissue origin and influence of 
hypoxic and proinflammatory microenvironments. Furthermore, it analyzes current 
evidence regarding clinical applicability of dental MSCs.

DENTAL MSCS REGENERATIVE PROPERTIES WITH REGARDS TO THEIR 
TISSUE ORIGIN
The term dental tissue refers to the tooth and tooth-supporting tissues (periodontium). 
There are two major constitutive parts of the tooth, a crown (mostly visible part of the 
tooth) and a root. The crown is formed of three hard tissues, enamel, dentin, and 
cementum, and one soft tissue, dental pulp[28]. Enamel, dentin, and cementum are 
tissues with limited or no possibility to regenerate[29], while the dental pulp is a loose 
connective tissue profusely vascularized and innervated. Structurally, dental pulp is 
divided into three main regions that form a continuum: The peripheral odontoblastic 
and the sub-odontoblastic layer and the central pulp[30,31]. In terms of cellularity, the 
most common dental pulp cell types are fibroblasts, peripheral odontoblasts, and 
DPSCs, whereas collagens I and III represent extracellular pulpal matrix key protein 
components[32]. Moreover, the proportion of cellularity to collagen with aging favors 
collagen[30].

Dental pulp MSCs, with their extensive proliferation and multipotential differen-
tiation capability, have an intrinsic role in dental pulp regeneration potential 
(Figure 3). They were first discovered by Gronthos et al[33] in 2000 as MSCs derived 
from the pulp of the permanent, impacted third molars and supernumerary teeth, 
commonly considered as medical waste. Like other dental MSCs, DPSCs express 
osteoblastic markers such as alkaline phosphatase (ALP), collagen type I (COL1A1), 
and osteocalcin (OCN) and are able to differentiate into osteoblast-like cells. 
Furthermore, DPSCs are essential for postnatal tooth homeostasis through 
implementation of odontoblasts in the dentin restoration process. When dental injuries 
or odontoblast apoptosis occur, DPSCs rapidly proliferate, migrate, and differentiate 
into odontoblast cells. Moreover, being of neural crest origin, DPSCs can differentiate 
into functionally active neurons and glial cells[34]. Importantly, recent studies have 
revealed that DPSCs reside in neurovascular niche where they secrete an array of 
angiogenic regulatory factors and generate capillary-like structures demonstrating 
strong angiogenic ability[35]. Overall, neurovascular and MSC-like properties make 
DPSCs good candidates for bone and tooth regeneration.

Stem cells from the pulp tissue of human exfoliated deciduous teeth (Figure 3), 
firstly isolated by Miura et al[36] in 2003, are capable of forming dentin-like structures. 
Moreover, they show higher proliferative, odontogenic, and osteogenic differentiation 
potential than DPSCs[37]. Furthermore, these cells have a higher doubling time[38] 
than DPSCs and higher expression of collagens I and III as well as of pluripotency 
markers such as octamer-binding transcription factor-3/4, sex determining region Y-
box-2, and Nanog homeobox[39]. SHEDs are also able to differentiate into neural and 
glial cells under appropriate conditions. Being able to demonstrate regenerative 
potential even 2 years after cryopreservation[40] and, because of their easy access-
ibility, SHEDs represent good candidates for bone and tooth regeneration.
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Figure 3 Functional properties and differences among dental mesenchymal stem cells. Dental mesenchymal stem cells (MSCs) are involved in 
dental tissues regeneration which is influenced by local microenvironment of the tissues they reside in. Overall, all dental MSCs represent good candidates for tissue 
regeneration, however their capacities differ (shown in table on the right). > , < and ~ represent higher, lower or similar capacity/rate respectively; The numbers in 
square brackets indicate the references. DFSCs: Dental follicle stem cells; DPSCs: Dental pulp stem cells; GMSCs: Gingival mesenchymal stem cells; PDLSCs: 
Periodontal ligament stem cells; SCAPs: Stem cells from the dental apical papilla; SHEDs: Stem cells from human exfoliated deciduous teeth.

However, the possibility of dental pulp tissue regeneration is restricted by several 
factors. Since dental pulp has collateral blood circulation due to the anatomical 
organization of the pulp chamber, the efficacy of the immune response to infection is 
limited[41]. Thus, the localization of DPSCs in perivascular and perineural pulp 
regions and consequent contacts with different microenvironments, along with their 
high immunomodulatory activity[42], makes them good candidates for modulating 
the immune response to infection. Furthermore, when comparing cellular density in 
specific tooth regions of dental pulp tissue from different teeth, higher density was 
observed in the coronal region of deciduous and premolar teeth compared with 
supernumerary and third molars. In contrast, a high cell density was observed in the 
apical region of supernumeraries and premolars compared with third molar teeth[43]. 
Overall, supernumerary dental pulp as source for DPSCs has the best morphometric 
parameters, and its cell density is comparable to that of deciduous tooth pulp.

Periodontium is a specialized connective tooth-supporting tissue that surrounds the 
root of the tooth. It has the role of attaching the tooth to the jawbone, amortizing the 
mechanical pressure that occurs during chewing and speech but also in the formation 
and resorption of bone tissue. Periodontium involves two soft tissues—PDL and gums, 
and two hard tissues—alveolar bone and cementum[44]. The PDL is a connective 
tissue with high cellularity and amount of ECM components. As for cellular con-
stituents, PDL consists mainly of fibroblasts, osteoblasts, osteoclasts, cementoblasts, 
and cementocytes. Other cells present in PDL include epithelial cell rests of Malassez, 
macrophages, nerve cells, endothelial cells, as well as MSCs. PDLSCs represent a 
unique population of somatic stem cells of mesenchymal origin with the regenerative 
potential reflected by self-renewal and multipotent differentiation ability as well as 
potency for the formation of tissues that support the teeth, including the PDL and 
cement (Figure 3). On the other hand, the rich ECM of PDL is formed of collagen type 
I, II, and XII fibers, proteoglycans, and a vast vascular network[45]. Interestingly, 
collagen type I is the most widely used scaffold material for dental pulp regeneration
[46], and PDLSCs have shown higher expression of COL1A1 compared to DPSCs[47]. 
Taken together, these features qualify PDLSCs for use in the regeneration/reco-
nstruction of tooth-supporting tissue in periodontal disease.

Like PDL, the gingival connective tissue also has a rich ECM. Collagen fibers and 
ground substances make up 60% and 35% of gingival ECM, respectively, and only 
about 5% of gingival connective tissue consists of various cells like fibroblasts, mast 
cells, macrophages, and inflammatory cells[48]. Structurally and functionally, the 
gingiva is different from PDL, displaying an even higher collagen turnover rate than 
PDL and having a distinct composition and organization of ECM. It was noticed that 
compared to PDL fibroblasts, gingival fibroblasts have a significantly lower level of 
ALP expression, an increased potential to stimulate epithelial growth, as well as a 
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distinctive property of regulating cytokeratin expression by epithelial cells[49]. 
Furthermore, the gingival tissue is highly vascularized, thanks to the high number of 
anastomoses[50]. Moreover, due to the activities of local microenvironment factors, 
including transforming growth factor-α, transforming growth factor-β, insulin-like 
growth factor, nerve growth factor, epidermal growth factor, and fibroblast growth 
factor, gingiva has a particularly high wound-healing capacity. Other local factors, 
such as mechanical signals from the ECM to the cells, may be involved as well[49]. All 
of these structural characteristics provide gingival tissue with a great therapeutic 
potential in regenerative therapy especially in terms of GMSCs. In contrast to MSCs 
from other sources, GMSCs isolated from the gingival lamina propria are profuse and 
easily procured cells through minimally invasive cell isolation techniques, which make 
them suitable cells for regenerative purposes[51]. Compared to PDLSCs, GMSCs have 
a higher rate of proliferation while also exerting a higher capacity to proliferate, 
migrate, and form angiogenic tubules in comparison to DPSCs (Figure 3)[52].

The alveolar bone is located on the jaw bones that hold the teeth, and it arises in the 
process of immature tooth root development from the dental follicle (DF), one of the 
multipotent tissues[53]. The DF is made up of MSCs and fibers surrounding the 
enamel organ and dental papilla of a developing tooth[54]. It is a vascular fibrous sac 
of ectomesenchymal origin. Histologically, DF is characterized by fibrous connective 
tissue with variable amounts of lining epithelium, including enamel, cuboidal, 
squamous, and, rarely, respiratory epithelium. The type of lining epithelium seems to 
be related to the patient’s age[55]. DFSCs, originating from this developing tissue, 
possess higher plasticity than other dental stem cells[56]. Recently, isolated DFSCs 
were also found to have the ability to form salivary gland cells and ductal cells[56] 
(Figure 3).

Another immature dental tissue is the apical papilla, a tissue only present during 
root development before the tooth erupts into the oral cavity[57]. In comparison to the 
dental pulp, the apical papilla has less cellular and vascular components[57], and the 
tissue is more immature since it contains a higher number of MSCs than mature dental 
pulp tissue. Moreover, the apical papilla performs a key role in the differentiation of 
odontoblasts into cells capable of secreting the primary dentin matrix[58] . 
Furthermore, the localization of the apical papilla in the apical root of the tooth can 
benefit by its apical collateral circulation and thus survive during the pulp necrosis 
process, which additionally explains why immature teeth with necrotic pulps can 
undergo completion of root development[59]. SCAPs reside in the apical papilla of 
permanent immature teeth and appear to be the source of odontoblasts that are 
responsible for the formation of root dentin (Figure 3). Conservation of SCAPs when 
treating immature teeth may allow the continuous formation of the root to completion.

Overall, among adult tissues easily available through non-invasive dental 
procedures, SHEDs have a higher doubling time than DPSCs[39]. However, PDLSCs 
showed a significantly higher in vitro osteogenic differentiation potential than both 
SHEDs and DPSCs (Figure 3), as evidenced by functional studies and gene expression 
indicating the complex influence of stem cell origin on their regenerative potential[60].

MODULATION OF DENTAL MSCS REGENERATIVE PROPERTIES IN 
HYPOXIC MICROENVIRONMENT
In the oral cavity, O2 levels are shown to range from 0.7% and 3.8% in human per-
iodontal pockets[61] and approximately 3% O2 in the pulp tissue of rats[62]; therefore, 
given the therapeutic potential of dental MSCs, a number of studies have focused on 
examining their functions in such microenvironments. According to the published 
data, dental MSCs have been intensively investigated with regard to different O2 

levels, and detailed outcomes are shown in Table 1.
Although most studies showed that hypoxia stimulated proliferation of DPSCs[63], 

PDLSCs[64-67], SHEDs[68,69], and SCAPs[70], some reported it had no[71,72] or a 
negative effect[73,74]. Also, results concerning the influence of hypoxia on differen-
tiation capacity of MSCs derived from dental and dental supportive tissues are 
diverse. It was shown that under hypoxia, osteogenic differentiation of DPSCs was 
strongly suppressed compared to normoxia[75]; however, there are studies showing 
increased osteogenic[63,71], adipogenic and chondrogenic differentiation[71] at low O2 
levels. In order to mimic the native microenvironment of DPSCs, Labedz-Maslowska et 
al[73] grew hydrogel-encapsulated cells in the presence of 2% O2. They showed up-
regulation of osteogenic differentiation in hypoxic conditions, but calcium deposition 
was, in the case of two-dimensional culture, more prominent under normoxia. 
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Table 1 Effects of different oxygen levels on regenerative potential of human dental mesenchymal stem cells

Hypoxia level Outcome Ref.

DPSCs

< 1% O2 Weak ALP activity, weak calcium deposition Janjić et al[75], 2019

Proliferation↑; odontogenic differentiation↑; angiogenesis↑; in vivo: 
Angiogenesis inside the pulp chamber↑, the formation of odontoblast-like 
cells lining along the dentin–pulp interface↑

Kuang et al[76], 2016

No change in proliferation; calcium deposits↑; proteoglycan deposition↑; 
lipid droplets↑; PPAR𝛾2 mRNA↑

Zhou et al[71], 2014

2% O2

Proliferation↓; Runx2 mRNA expression↑ (both 2D and 3D conditions); 
Runx2 and Col1A mRNA expression, osteopontin in 2D culture↑, calcium 
deposition in 3D culture↑, calcium deposition in 2D culture↓

Labedz-Maslowska et al[73], 2020

3% O2 BMP2, OCN and RUNX2 protein expression↑; calcium deposits↑; RunX2 
and Sp-7 mRNA expression↑; in vivo: In a mouse apical periodontitis bone 
destruction model, hDPSC recruitment and recovery of alveolar bone mass 
in infected periapical tissue↑, osteogenesis and bone mineralization↑

Wu et al[77], 2016

5% O2 Proliferation↑; mineralization↑ Kwon et al[63], 2017

PDLSCs

1.5%-2% O2 ALP activity↓; SPARC protein expression↓; ALP, OCN, and BMP-2 mRNA 
expression↓; proliferation↓

Hou et al[79], 2009

Calcium deposition, proteoglycan deposition↑; lipid droplets↑; Runx2, 
Sox9 mRNA expression↑

Zhou et al[71], 2014 

ALP activity↑; Runx2 and Sp7 mRNA and protein expression↑; 
mineralization↑

Wu et al[80], 2013

SPP1, RUNX2, SP7 mRNAs and protein expression↑ Li et al[65], 2014

Proliferation↑; RUNX-2 and ALP protein expression↑; no effect on 
adipogenic differentiation; in vivo: Stronger bone regeneration region in 
male nude mice, more mineralized tissue in a periodontal defect model

Yu et al[64], 2016

Proliferation↑; Runx2, osteopontin and osteocalcin mRNA expression↑; in 
vivo: After 12 wk of transplantation, hypoxia-treated cells differentiated 
into osteoblast-like cells that formed bone-like structures

Zhang et al[66], 2014

2% O2

ALP activity↑; Runx2 mRNA expression↑ Chen et al[81], 2017

Proliferation↑; osteogenic and adipogenic differentiation↓; chondrogenic 
differentiation↑; preconditioning: Osteogenic and adipogenic 
differentiation↑

Murabayashi et al[72], 20173% O2

Runx2, Alp, Col1, and Ocn mRNA expression↑; RUNX2 protein ex vivo and 
in situ↑

Xu et al[82], 2019

5% O2 ALP activity↓ Matsuda et al[78], 1998

5% O2; 1% O2 Proliferation↓; ALP activity↑; Opn, Alp mRNA expression↑; Cemp1, Cap 
mRNA expression↑

Xiao et al[74], 2017

8% O2 Proliferation↑; Cemp1, Ocn mRNA expression↑; CEMP protein expression
↑; mineral deposition↑; ALP activity↑; in vivo: CEMP1 protein expression in 
mouse PDL spaces↑

Choi et al[67], 2014

SHEDs

1% O2 Proliferation↑; mineralization↑; ALP activity↑; OPN and DMP1 protein 
expression↑; in vivo: After implantation in immunodeficient mice, the 
tissue-engineered constructs seeded with hypoxia primed SHED mediated 
faster intramembranous bone formation into critical size calvarial defects

Novais et al[69], 2019

2.3% O2 Proliferation↑; no effect on adipogenic and osteogenic differentiation Kanafi et al[68], 2013

SCAPs

1% O2 No effect on proliferation; RunX2, Alp, TGF-1↑; neuronal differentiation 
(CNP, NSE, and SNAIL mRNA expression↑; angiogenesis (VEGF A and B)
↑; adipocyte lipid binding protein (ALBP)↓

Vanacker et al[70], 2014

3% O2 ALP activity↑; mineralization↑; Dspp, Dmp1 and Bsp mRNA expression↑ Yang et al[83], 2020

Chemical hypoxia
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DPSCs

100 μM CoCl2 No effect on proliferation; SOX9 and VCAN; no expression Col2a1, Acan↑, 
Col 10 mRNA expression↓; proteoglycans↓

Teti et al[85], 2018

Short term: RUNX2, ALP, OCN, COL1A1 mRNA and protein expression↑; 
long term: RUNX2, ALP, OCN, COL1A1 mRNA and protein expression↓

Zheng et al[89], 2021100 mM CoCl2

ALP activity↓; Alp, Ocn, and Runx2 mRNA expression↓; mineralization↓ Osathanon et al[86], 2014

200 μM CoCl2 ALP activity↓; Runx2, Alp, Ocn and Col-1 mRNA and protein expression↓; 
mineralization↓

Song et al[87], 2017

PDLCs

200 μM; 400 μM CoCl2 Proliferation↓; ALP, RUNX2, collagen I↓ Dong et al[88], 2014

1 mM DMOG No effect on proliferation; COL1, RUNX2 and CEMP1 protein expression↑ Li et al[92], 2016

0, 5, 10, 20 μM deferoxamine Proliferation↓; Runx2, Opn and Col1 mRNA expression↑; calcium 
deposition↑

Mu et al[91], 2017

SHED

50 or 100 μM CoCl2 ALP activity↓; calcium deposition↓; Alp, Runx2, and ColI mRNA 
expression↓

Chen et al[90], 2019

↑ and ↓ represent increasing or decreasing effect, respectively. ACAN: Aggrecan; ALBP: Adipocyte lipid binding protein; ALP: Alkaline phosphatase; 
BMP-2: Bone morphogenetic protein 2; BSP: Bone sialoprotein; CEMP 1: Cementum protein 1; COL-1: Collagen-1; DMOG: Dimethyloxalylglycine; DMP1: 
Dentin matrix protein 1; DPSCs: Dental pulp stem cells; DSPP: Dentin sialophosphoprotein; OCN: Osteocalcin; OPN: Osteopontin; PDLSCs: Periodontal 
ligament stem cells; PPAR𝛾2: Peroxisome proliferator-activated receptor gamma; RunX2: Runt-related transcription factor 2; SCAPs: Stem cells from the 
dental apical papilla; SHEDs: Stem cells from human exfoliated deciduous teeth; Sox-9: SRY-box transcription factor 9; Sp-7: Osterix; SPARC: Secreted 
protein acidic and rich in cysteine; TGF-β: Transforming growth factor-beta; VEGF: Vascular endothelial growth factor.

Another study seeded DPSCs into nanofibrous spongy microspheres and showed that 
their priming at 2% O2 prior to implantation significantly promoted the formation of 
odontoblast-like cells lining along the dentin–pulp interface of mice[76]. On the other 
hand, Wu et al[77] showed that preconditioning of cells at 3% O2 enhanced DPSC 
osteogenic differentiation in vitro and more importantly upregulated their recruitment 
in mouse apical periodontitis bone destruction model and enhanced osteogenesis and 
bone mineralization.

While there is evidence that hypoxia decreased osteogenic differentiation of 
PDLSCs[65,78,79], it was demonstrated that it can also increase it[66,71,74,80,81] as 
well as adipogenic and chondrogenic differentiation[71]. Interesting observations in 
some of these studies were that HIF1α promoted osteogenic differentiation of PDLSCs, 
while HIF1A antisense long noncoding RNA 2 had a negative effect on it[81] and that 
the stimulative effect of 2% O2 on osteogenic differentiation of PDLSCs was mediated 
by extracellular signal-regulated kinase and even more rapidly and vigorously by p38 
mitogen-activated protein kinase[80]. The 24 h long pretreatment of PDLSCs under 2% 
O2 increased osteogenesis, whereas cotreatment with tumor necrosis factor (TNF)-α 
and interleukin (IL)-β significantly reduced this effect, and no significant effects on 
adipogenic differentiation were observed[64]. Importantly, the transplants containing 
hypoxic pretreated-PDLSCs led to significantly stronger bone regeneration when 
subcutaneously placed into the dorsal region of male nude mice as well as more 
mineralized tissue in a periodontal defect model[64]. Similarly, PDLSCs grown at 2% 
O2 differentiated into osteoblast-like cells that formed bone-like structures after 
transplantation into the backs of mice[66]. Cultivation of these cells at 3% O2 inhibited 
their differentiation capacity to osteogenic and adipogenic lineages, whereas it 
enhanced chondrogenic differentiation[72]. However, the authors indicated that 
subsequent switch of 2 wk hypoxic preconditioned PDLSCs to normoxia allowed 
successful differentiation into osteogenic and adipogenic lineages. In contrast, Xu et al
[82] found that 3% O2 increased osteogenic markers expression in vitro and augmented 
runt-related transcription factor (RUNX) 2 protein expression ex vivo and in situ via 
HIF-1α-induced vascular endothelial growth factor, suggesting a positive role for HIF-
1α in the early stage of osteogenesis of PDLSCs. Reduced O2 tension besides oste-
ogenic, increased cementogenic differentiation capability of PDLSCs[67,74], probably 
via the Wnt/b-catenin signaling pathway[74]. It was found that HIF-1 activity is 
required to stimulate the differentiation response in vitro and, more importantly, 
cementum protein 1 expression in mouse PDL spaces in vivo[67].
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Although no difference in adipogenic and osteogenic differentiation potential of 
SHEDs was detected at 2.3% O2 in comparison to normoxia[68], significantly higher 
osteogenesis was documented at 1% O2 compared to control in SHEDs incorporated 
into plastically compressed collagen hydrogels[69]. Moreover, after implantation in 
immunodeficient mice, these hypoxia-primed SHED constructs mediated faster 
intramembranous bone formation into critical size calvaria defects. Hypoxia 
significantly increased the osteogenic[70,83], neural, and angiogenic marker expression 
in SCAPs and suppressed their adipogenic differentiation[70].

When establishing hypoxic conditions in the laboratory, researchers sometimes 
encounter lots of technical difficulties (e.g., media changes), especially in long-term 
cultures, and therefore the use of chemical mimetic to induce hypoxic response has 
been an attractive alternative. Cobalt chloride (CoCl2) stabilizes HIF-1α and HIF-2α 
under normoxic conditions, and it is the most investigated hypoxia-mimetic agent[84]. 
Supplementation of DPSCs with CoCl2 had no effect on cell proliferation and reduced 
their chondrogenic[85] and osteogenic differentiation[86-88]. Interestingly, it was 
observed that enamel matrix proteins[87] or apigenin, an HIF-1a inhibitor[86], could 
reverse the effect of CoCl2 on osteogenic differentiation. Zheng et al[89] demonstrated 
that osteogenic differentiation of PDLSCs was activated by short-term exposure to 
CoCl2 but was inhibited following prolonged exposure, which might be mediated by 
circular RNA circCDK8. CoCl2 had the same osteo-reducing effect on SHEDs given the 
significantly decreased ALP activity, calcium deposition, and osteogenic marker 
messenger RNA expression[90]. It was confirmed that deferoxamine[91] and dimethyl-
oxalylglycine[92] promoted HIF1α expression in PDLSCs, and it was demonstrated 
that while proliferation was inhibited by deferoxamine, osteogenic differentiation was 
significantly promoted by both agents. The Wnt signaling pathways might be involved 
in dimethyloxalylglycine-induced differentiation of cells[92].

These findings provide important insights into capacity of dental MSCs to adapt to 
physiological conditions of low oxygenation in vitro by changing their regenerative 
properties.

MODULATION OF MSC REGENERATIVE PROPERTIES IN THE 
INFLAMMATORY MICROENVIRONMENT
In the human population, dental chronic inflammatory diseases are very common. For 
example, caries that cause progressive destruction of dental hard tissue[93] are one of 
the most frequent conditions in the oral cavity[94], particularly in childhood[95], while 
periodontal diseases—oral infections of tooth supportive tissue (gingivitis and period-
ontitis)—affect 20%-50% of the world population[96]. If left untreated, these conditions 
can cause significant damage to the oral cavity and consequently cause major 
problems in the processes of chewing, swallowing, digestion, and speech and create 
aesthetic problems[93]. Therefore, to consider the possibilities for regeneration and 
recovery of damaged oral tissue, it is necessary to perceive the regenerative potential 
of dental MSCs in the context of the inflammatory microenvironment.

Viewed from the perspective of physiological or pathological conditions, 
endogenous, resident MSCs respond to factors present in the immediate vicinity[57]. 
Thus, inflammation caused by caries or periodontal disease may significantly affect 
regenerative capacity of dental MSCs, including their proliferation, migration, colony 
forming capacity, and differentiation. However, data related to the properties of MSCs 
isolated form inflamed dental tissues are not consistent (Table 2). Namely, recent 
results of Inostroza et al[97] showed no significant differences between immu-
nophenotype, trilineage differentiation, colony-formation, and proliferation of the 
DPSCs derived from healthy and inflamed pulp, although immunomodulatory 
functions of DPSCs from inflamed pulp were altered—showing decreased capacity to 
suppress CD3 T cell proliferation. Absence of CD34 and CD45 markers, along with 
high expression of MSC-associated markers between DPSCs extracted from normal 
and diseased pulp, was also observed in Park et al[98]. Besides, in comparison to 
control cells, DPSCs from inflamed tissue manifested higher osteogenesis (stronger 
mineralization and expression of osteogenic markers OCN and RUNX2) but lower 
neurogenesis (decreased expression of neurogenic markers microtubule-associated 
protein 2, neuronal nuclear protein, and glutamate decarboxylase 6), along with higher 
level of IL-6 expression. This study also shows the significance of IL-6, as a strong 
inflammatory factor, to modulate DPSCs function. Namely, the IL-6 treatment of 
DPSCs derived from healthy tissue stimulated their osteogenic differentiation and 
reduced neurogenic differentiation, while IL-6 blocking in DPSCs of inflamed tissue 
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Table 2 Effects of inflammatory microenvironment on regenerative potential of human dental mesenchymal stem cells

Inflammation level Outcome Ref.

DPSCs

Irreversible pulpitis No change in proliferation; no change in differentiation; not being able to supress CD3 
proliferation; IDO activity↓

Inostroza et al[97], 2020

Decayed and pain affected tissue No change in immunophenotype; proliferation↓; Ca deposition↑, OCN and RunX2 
protein expression↑; MAP2 and NeuN protein expression↓; IL-6 expression and IL-6- 
induced osteogenesis↑

Park et al[98], 2019

Irreversible pulpitis Population doubling time↓; STRO 1, CD90, CD105 and CD146 levels↑; Ca deposition↓
; OCN and RUNX2 mRNA expression↓; LPL and PPARγ2 mRNA expression↓; in vivo: 
Retaining their stem cell potency

Alongi et al[99], 2010

Severe periodontal disease Proliferation↑; Stro-1+, CD146, SSEA-4 levels↑; Ca deposition↑, OCN, RUNX2 and 
mRNA expression↑ (also upon stimulation with proinflammatory cytokines IL-1β and 
TNF-α)

Tomasello et al[101], 2017

GMSCs

Severe periodontal disease Proliferation↑; Stro-1+, CD146, SSEA-4 levels↑; Ca deposition↑, OCN, RUNX2 and 
mRNA expression↑ (also upon stimulation with proinflammatory cytokines IL-1β and 
TNF-α)

Tomasello et al[101], 2017

Dental plaque-induced gingival 
hyperplasia

Proliferation↑; Runx2 and OCN mRNA expression↓; ALP activity↓; PPARγ mRNA 
expression↓

Li et al[102], 2013

PDLSCs

Chronic peridontitis No change in Runx2, OCN and ALP mRNA expression; no change in PPARγ and aP2 
mRNA expression; no change in proliferation; in vivo: Smaller newly formed 
cementum

Park et al[105], 2011

Chronic periodontitis Proliferation↑; migration↑; Ca deposition↓, Runx2, ALP and OCN mRNA expression↓; 
no change in lipid droplets level and PPARγ mRNA expression

Tang et al[106], 2016

Periodontitis with alveolar bone 
loss

Proliferation↑; RUNX2 mRNA expression↓; PPARγ mRNA expression↓ Liu et al[107], 2011

Chronic periodontitis viability and proliferation↓ Soheilifar et al[108], 2016

↑ and ↓ represent increasing or decreasing effect, respectively. ALP: Alkaline phosphatase; aP2: Adipocyte protein 2; DPSCs: Dental pulp stem cells; 
GMSCs: Gingival mesenchymal stem cells; IDO: Indoleamine 2,3-dioxygenase; NeuN: Neuronal nuclei; OCN: Osteocalcin; PDLSCs: Periodontal ligament 
stem cells; PPAR𝛾2: Peroxisome proliferator-activated receptor gamma; RunX2: Runt-related transcription factor 2.

annulled their osteogenic/neurogenic capacity[98].
Contrary to these studies, compared to the control cells, DPSCs isolated from 

inflamed pulp expressed higher levels of MSC markers, while their capacity to 
proliferate was increased with reduced osteo/dentinogenic differentiation potential in 
vitro. Still, as well as DPSCs from healthy pulp, DPSCs of inflamed tissue retained their 
capacity to form pulp/dentin complexes after transplantation into immunocom-
promised mice, i.e. their regenerative capacity was preserved[99]. In the context of 
optimal dental MSC isolation, Tsai et al[100] demonstrated that dental diseases 
represent significant factors that affect MSC isolation and quality, given that successful 
MSCs yield was less pronounced from carious deciduous tooth or tooth with pulpitis. 
As for dental MSCs isolated from inflamed tooth supportive tissue, Tomasello et al
[101] showed that DPSCs and GMSCs derived from the tissue affected by periodontitis 
proliferate faster and possess more pronounced mineralization. Also, no changes in 
negative MSC marker expression or in high expression of a positive MSC marker 
(CD29) were detected, while expression of other positive MSCs markers, such as Stro-
1, CD146, and stage-specific embryonic antigen-4, was higher in DPSCs and GMSCs of 
inflamed tissues. In another study, increased proliferation, but with reduced 
osteogenic and adipogenic differentiation, of GMSCs under inflammatory conditions 
was observed[102]. Also, higher levels of matrix metalloproteinases (MMP)-1, MMP-2, 
IL-1, IL-6, TNF-α and type COL1A1 were detected in GMSCs collected from inflamed 
gingival tissues, indicating the potential of inflammatory environment to shift differ-
entiation capacity toward pro-fibrotic phenotype, thus representing possible 
mechanism of gingival hyperplasia development during inflammation[102].

A recently published article provided a comprehensive review of papers related to 
the characteristics of GMSCs from healthy and inflamed tissue, altogether suggesting 
that GMSCs of inflamed tissues could be a reliable source of MSCs when compared to 
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the healthy gingiva[103]. Inflammatory environment can also alter properties of 
PDLSCs[104], however findings are not clear since other publications suggest that 
there are no significant differences between PDLSCs of healthy and diseased 
periodontal tissue[105]. Enhanced proliferation but reduced differentiation of dental 
MSCs derived from inflamed tissue has been detected for PDLSCs isolated from 
diseased tooth supportive tissue[106,107], while the study of Tang et al[106] also 
demonstrated increased migration of PDLSCs originating from inflamed periodontal 
tissue. Higher migratory potential with preserved osteogenic/cementogenic and 
adipogenic differentiation was reported in Park et al[105], and in an in vivo 
transplantation model, they showed that PDLSCs from inflamed periodontal tissue 
possess a preserved ability to form new cementum-like tissue and related periodontal 
fibers. However, similar to the findings of Tsai et al[100], related to the yield of MSCs 
derived from diseased tooth, Soheilifar et al[108] reported that viability and prolif-
eration rate of PDLSCs isolated from the periodontitis-affected teeth were significantly 
lower in comparison to the control PDLSCs.

Having in mind that the regenerative ability of transplanted dental MSCs strongly 
depend on the donor/recipient microenvironment niche, gaining successful the-
rapeutic effect in diseased microenvironment is the biggest challenge[56]. Further 
understanding the influence of the diseased tissue microenvironment on MSC 
regenerative potential would help the establishment of healing procedures.

CLINICAL RELEVANCE OF DENTAL MSCS
Numerous in vivo studies on animals and human clinical trials with various types of 
dental stem cells show a way to encourage novel tissue engineering strategies for 
therapies of dental diseases[109]. However, a long road is still ahead, as clinical trials 
are in their early phases. Despite abundance of preclinical studies, only a few clinical 
trials have been completed and published. One of the main reasons that stalls 
successful clinical application of dental stem cells resides in the fact that the exact 
mechanism of their therapeutic properties is not yet clear. The other challenges for 
clinical use of dental stem cells are strict regulations, high costs of cell processing, and 
lack of uniformity in approaches for isolation, expansion, and application of these 
cells. The therapeutic efficacy of transplanted dental MSCs is also compromised by the 
diseased microenvironment of the recipients[56].

DPSCs, as the first discovered dental tissue-derived stem cells, are also the most 
studied stem cells for dental tissue reparation[110]. Even though there are many 
studies in large animal models showing promising results in dental tissue 
regeneration, especially in dentin and dental pulp regeneration[110], results of clinical 
studies are less conclusive. The first study to achieve successful reparation of alveolar 
bone defect in humans was done by d’Aquino et al[111]. They used autologous DPSCs 
from third maxillar molars seeded onto a collagen sponge scaffold to fill the space left 
after the extraction of an impacted mandibular molar from the same patient (7 patients 
in total). A contralateral extraction site filled with sponge without cells served as a 
control (a split-mouth study design). Clinical and radiographic assessment after 3 mo 
and 1 year revealed optimal vertical repair and complete restoration of periodontal 
tissue[111]. In a pilot clinical study, Nakashima et al[112] demonstrated a safe and 
efficacious method for complete pulp regeneration in 5 patients with irreversible 
pulpitis using autologous DPSCs transplanted with granulocyte colony-stimulating 
factor in atelocollagen into pulpectomized teeth. However, a split-mouth randomized 
clinical trial on 32 patients, aiming to assess the efficacy of autologous DPSCs 
delivered in a collagen matrix for post-extraction socket healing, failed to show 
significant reduction in the socket bone resorption in the treated group compared to 
control[113]. It is noteworthy that, unlike in the other cited studies, in this trial a 
proprietary medical device and protocol (Rigenera®) for direct isolation of DPSCs from 
dental pulp was used, without prior expansion in culture.

DPSCs from deciduous teeth are also frequently used in dental tissue regeneration 
studies. In a randomized control clinical trial, Xuan et al[114] isolated autologous 
SHEDs from deciduous canine tooth pulp and implanted them in the form of 
aggregates, into an injured incisor of the patient with pulp necrosis secondary to 
trauma. Control patients were treated with standard apexification (a procedure that 
induces tooth root development and closure of the root apex through hard tissue 
deposition). After 12 mo follow-up, SHED implantation treatment led to regeneration 
of functional dental pulp with blood vessels and sensory nerves. In another study, 
Tanikawa et al[115] used SHEDs associated with HA-collagen sponge for closing 
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alveolar defects in patients with unilateral alveolar cleft defects and demonstrated that 
this therapy leads to bone regeneration with dental eruption and reduced morbidity 
compared to traditional iliac crest bone grafting and rhBMP-2.

Among other dental stem cells, alveolar bone derived MSCs also represent great 
promise in regenerative therapy. A pilot clinical trial evaluated treatment of maxillary 
radicular cysts in 9 patients using autologous alveolar bone-derived MSCs seeded onto 
a glutaraldehyde-cross-linked autologous serum scaffold and subjected to osteogenic 
differentiation[116]. It demonstrated a significant promotion of bone growth in all 
MSC-treated cysts.

In addition to osteal defects and pulp necrosis, periodontal diseases make up a large 
proportion of dental ailments targeted for regenerative therapy. A retrospective pilot 
study examined feasibility and safety of reconstructing the periodontal intrabony 
defects in 16 teeth of 3 patients with implantation of autologous PDLSCs mixed with a 
HA-based bone-grafting material[117]. After 32-72 mo follow-up period, clinical 
examination indicated improvement of probing depth, clinical attachment level, and 
gingival recession. In a randomized controlled study, Ferrarotti et al[118] used a 
biocomplex of autologous dental pulp micrografts (Rigenera®) with collagen sponge to 
fill intrabony defects of 29 chronic periodontal patients randomly allocated to test (n = 
15) and control (n = 14) groups[118]. This treatment significantly improved clinical 
parameters of periodontal regeneration 1 year after the procedure. A novel approach 
using cell sheets of cultured autologous PDLSCs to treat periodontitis was assessed in 
a case series study involving 10 patients with chronic periodontitis[119]. Triple layered 
PDL-derived cell sheets with PGA mesh were transplanted on the root surface, and β-
tricalcium phosphate (β-TCP) granules were used to fill in bony defects. In all 10 cases, 
clinical as well as radiographic endpoint parameters improved 6 mo after the 
treatment. On the other hand, a randomized clinical trial on 30 patients, with 41 teeth 
in total, using autologous PDLSCs in combination with grafting materials to treat 
periodontal intraosseus defects, revealed radiologically and clinically greater, but not 
statistically significant, regeneration of alveolar bone in cell-treated group compared to 
control group[120].

A recent pilot trial evaluated the safety and efficacy of autologous PDLSC 
transplanted with a commercial xenogeneic (porcine) bone substitute as a matrix for 
the regeneration of intrabony defects of 19 patients with chronic periodontitis[121]. 
The study confirmed the safety of the treatment, but the results have not demonstrated 
a significant additional clinical benefit compared to control, after 12 mo follow-up. In a 
randomized clinical trial designed to investigate the use of gingival fibroblasts and 
GMSCs in the treatment of intrabony periodontal defects, a total of 20 patients with 
periodontitis were evenly assigned into two groups[122]. Experimental group received 
cultured autologous gingival fibroblasts/GMSCs on β-TCP scaffold, covered by a 
collagen membrane, and the control group received β-TCP without the cells. After 6 
mo, the study showed significant improvement of clinical and radiological parameters 
in comparison to the control group.

CONCLUSION
Dental tissues represent valuable sources of MSCs for possible use in regenerative 
therapy, especially of diseases associated with bone defects and dental loss. Given the 
different structures and compositions of the tissues they reside in, various dental 
MSCs exhibit diverse biological and functional features. Therefore, in this review, we 
have summarized the available research evidence concerning the effects of hypoxic 
and inflammatory microenvironmental factors on dental MSCs differentiation 
capacity. We can conclude that the existing investigations indicate very important 
aspects of the recipient microenvironment niche in terms of therapeutic efficacy of 
transplanted dental MSCs. Moreover, the therapeutic potential of dental MSCs in in 
vitro conditions mimicking native hypoxic and inflammatory microenvironment can 
lead to significant development of cell-based therapies.

However, some of the data for the same cell type (especially in hypoxic in vitro 
conditions) are conflicting, which is a trend noticed for other MSCs as well[20]. 
Therefore, it is important to point out that the biology of MSCs is not yet fully known. 
As MSC populations exhibit functional heterogeneity and a hierarchy in the terms of 
proliferative and differentiation potential and metabolic properties of the cells 
composing the tissues[123], they can behave differently even within the same tissue of 
healthy individuals. Moreover, the cultivation conditions affect their characteristics, 
and not all studies covered by this review used the same cell isolation methods and/or 
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the same cell passages. It should be also taken into account that inflammation doesn’t 
solely contribute to these contradictory findings, given the lack of data on specificity of 
the inflamed tissues in the terms of proinflammatory factors involved. In addition, the 
reason for inconsistencies in results related to the same O2 levels can be found in 
different experimental settings such as the duration of the hypoxic treatment. Taken 
together, we suggest further research in this area, but with synchronized cell isolation 
methods, cultivation conditions, and experimental designs among research groups.
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Abstract
Lower back pain is a leading cause of disability and is one of the reasons for the 
substantial socioeconomic burden. The etiology of intervertebral disc (IVD) 
degeneration is complicated, and its mechanism is still not completely unde-
rstood. Factors such as aging, systemic inflammation, biochemical mediators, 
toxic environmental factors, physical injuries, and genetic factors are involved in 
the progression of its pathophysiology. Currently, no therapy for restoring 
degenerated IVD is available except pain management, reduced physical 
activities, and surgical intervention. Therefore, it is imperative to establish 
regenerative medicine-based approaches to heal and repair the injured disc, 
repopulate the cell types to retain water content, synthesize extracellular matrix, 
and strengthen the disc to restore normal spine flexion. Cellular therapy has 
gained attention for IVD management as an alternative therapeutic option. In this 
review, we present an overview of the anatomical and molecular structure and 
the surrounding pathophysiology of the IVD. Modern therapeutic approaches, 
including proteins and growth factors, cellular and gene therapy, and cell fate 
regulators are reviewed. Similarly, small molecules that modulate the fate of stem 
cells for their differentiation into chondrocytes and notochordal cell types are 
highlighted.

Key Words: Stem cell; Intervertebral disc; Degeneration; Inflammation; Cell therapy; Gene 
modification
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Core Tip: In this review, we presented a precise overview of the anatomical and 
molecular structure and surrounding pathophysiology of the intervertebral disc (IVD). 
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Modern therapeutic approaches including proteins and growth factors, cellular and 
gene therapy, and cell fate regulators are highlighted. In addition, different types of 
stem cells used for the implantation in IVD are reviewed. Furthermore, small 
molecules that modulate the fate of stem cells for their differentiation into 
chondrocytes and notochordal cell types are presented. In conclusion, this review 
highlights regenerative medicine-based approaches for the regeneration of interver-
tebral disc degeneration.
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INTRODUCTION
Intervertebral disc (IVD) degeneration is a progressive, inflammation-driven cascade 
that leads to structural and mechanical failure, strongly associated with lower back 
pain (LBP), representing a global health burden. The worst aspect(s) of degenerative 
disc disease (DDD) is/are pain, discomfort, emotional distress, and functional 
disability, affecting the quality of life and causing socioeconomic burden[1]. Altered 
cellular microenvironment within the disc, reduced cell viability due to structural 
failure, and functional inadequacy are the leading causes of the adverse condition in 
LBP[2,3]. IVD degeneration (IVDD) treatments can only mitigate painful symptoms 
and improve flexibility and body movements[4].

Around 84% of the population experience an event of LBP sooner or later in their 
life span; 50% of them are younger age group (18 to 44 years), otherwise adulthood (45 
to 64-years), and generate almost 80% of health care expenditure[5]. Even though the 
correct etiology of LBP remains obscure[6], IVDD results due to the loss of nucleus 
pulposus (NP) and/or annulus fibrosus (AF), which leads to the reduction in water 
content, diminished glycosaminoglycans (GAGs), and extracellular matrix (ECM), and 
collagen II deterioration in the NP region[7]. This remodeling results in reduced IVD 
height, osteophyte development, facet joint arthritis, and bending of vertebral bodies, 
which are  reflected through magnetic resonance imaging (MRI)[8]. Spine fusion is the 
only available option, but it greatly reduces the flexion of the body. With the disease 
advancement, pharmaceutical or otherwise postoperative intervention is needed to 
reduce symptomatic pain and reserve the flexion of the spine[9]. Despite the inn-
ovations in IVD surgery, patients with the progressive disorder cannot receive the 
benefits of surgical intervention because of the associated morbidities.

Perinatal stem cells and their derivatives can offer an improved therapeutic 
approach for the treatment of disc degenerated diseases. Mesenchymal stem cells 
(MSCs) are being utilized to rectify the pathogenesis of DDD[10]. This review presents 
an overview of IVD biology and how cellular signaling plays a role in IVD 
homeostasis. We also review the opportunities and challenges for the utilization of 
cell-based therapy for IVD regeneration.

CELLULAR SIGNAL IN IVD
The development of IVD in embryogenesis relies on the coordinated network of 
molecular signals arising in the notochord and neural tube plate[11]. Following 
signaling pathways are involved in the IVD.

Sonic hedgehog
Sonic hedgehog (Shh) signaling plays a vital role in tissue morphogenesis, regulation, 
presenting information about embryonic patterning, and degree of cell fate differen-
tiation and proliferation[12,13]. Somite stalks evolve in response to Shh and Wnt 
(wingless-related integration site) dependent regulatory pathways, while a sclerotome 
tissue generates only under the activating impact of the Shh pathway[14]. A specific 
attribute of the Shh intracellular signaling cascade works through synergistic 
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interaction with Noggin-cascade, a direct antagonist of the bone morphogenetic 
proteins (BMPs) pathway in the induction of sclerotome growth[14,15]. Noggin 
molecules are primitively expressed by the notochord cells blocking BMP signaling 
from developing vertebral bodies till the formation of the AF[16,17].

Paired box genes
Paired box (Pax) genes encode transcription regulators for proliferation, differen-
tiation, apoptosis, and migration of pluripotent cells during embryogenesis. 
Expression of Pax genes plays an essential role in subsequent cell differentiation of 
distinct populations of IVD[18-20]. It is proved that Pax1 and Pax9 genes are entirely 
involved in the IVD formation. When these genes are obliterated, IVD and vertebral 
bodies do not develop, forming an irregular cartilaginous core[21]. Pax1 gene 
expression in all sclerotome tissues is intervened by the activity of Shh and Noggin 
regulatory pathways in the notochord cells[22,23]. After IVD development, expression 
of the Pax1 gene arises exclusively in the tissue of IVD primordium (precursor of the 
AF) enclosing the notochord. Hence, the Pax1 gene impacts the notochord adva-
ncement by activating cell expansion which turns into the NP.

SRY-box genes
The SRY-box (Sox) family is involved in developing the vertebral column[24,25]. Sox5, 
Sox6, and Sox9 genes are of significant importance for IVD development and growth. 
Sox5 and Sox6 are present in the cells of the notochord and the sclerotome[26]. In the 
mice deprived of Sox5 and Sox6 genes, the development of the notochordal membrane 
was weakened. This is associated with the evidence that these genes are key players in 
genesis  IVD and intercellular proteins, including collagen II and aggrecan[26,27]. Lack 
of notochordal membrane prompts apoptosis of the notochordal cells (NCs) and 
disrupts the development of IVD segments. In the cells with knockout Sox9, notochord 
development starts, which is degraded due to the deprivation of the notochordal 
membrane matrix and inhibits the formation of sclerotome[28].

Transforming growth factor-β genes
Transforming growth factor-β (TGF-β) signaling pathways are effectively involved in 
advancing IVD and vertebral bodies. TGF-β intercellular signaling cascade stimulates 
cellular migration, proliferation, differentiation, and IVD matrix synthesis[29]. TGF-β3 
is actively synthesized in the perichordal membrane during the condensation stage of 
embryogenesis and promotes the development of the AF and vertebral bodies. 
Blockage of the TGF-β2 receptors inhibits the synthesis of type II collagen leading to 
defective NP, the exterior part of the AF, and inadequate IVD mineralization. TGF-β2 
receptors participate in the differentiation of IVD tissue and vertebral bodies, 
producing spine[30].

IVDD
DDD is a complex, multifactorial process, the etiology of which is not well known. 
Thus, there are no particular criteria to differentiate the IVDD from the physiological 
retardation of development, maturation, or adaptive tissue remodeling[31]. IVDD has 
perhaps been best defined as an “aberrant cell-mediated response to progressive 
structural failure”[32]. Heredities, ecological causes, mechanical factors, aging, 
systemic and toxic mediators are identified as risk factors[33]. This mechanism begins 
with alterations to the cellular IVD microenvironment leading to structural and 
functional failure[34]. Interestingly, evidence showed that the early disappearance of 
NC density in NP is crucial for IVD stability and induces impairment in the ECM 
anabolic/catabolic proportion, resulting in the change of the IVD mechanical 
properties[25,35]. IVDD is related to expanded ECM disruption[36], abnormal matrix 
formation[37], cellular apoptosis[38], inflammation[39], and regulation of sensory 
nerve and blood vessel in-growth into a normal avascular and neural tissue[40].

The onset of the IVDD is believed to be mainly in the NP[41]. The decline of the key 
essential proteoglycan, aggrecan[42], reduces additional ECM production in the NP, 
and causes decreased hydration[43], a deficit of IVD height, and general failure to 
resist compressive burden[44]. Compression pressures are hence dispensed through 
the NP to the adjacent AF, which leads to altered biomechanical function of AF and 
structural failure with radial and circumferential tears in the AF[45]. These fissures 
and tears facilitate the in-growth of nociceptive nerves and blood vessels, resulting in 
the secretion of inflammatory pain-related mediators, thus leads to radial disc bulges 
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or herniation of the NP into the contiguous spine, causing LBP[34].
Although the IVDs degenerate with aging and can be asymptomatic, a pathological 

process of IVDD is followed by pain. It has been revealed that a large number of 
people with no pain show degenerative disc changes that further complicate the differ-
entiation of typical age-related degeneration from pathological conditions[46]. An 
increase in catabolic action of matrix-degrading proteases, pro-inflammatory 
cytokines, and contemporary immune cell infiltration is proposed to define disc 
degeneration factors[39]. Furthermore, lower disc pH, reduced nutrition, and calcified 
cartilaginous endplate (CEP) create an unfavorable environment for restoring the disc
[47]. Presently, there are symptomatic cures for advanced phases of DDD but no 
effective disease-modifying therapies[48].

Inflammation in degenerated IVD
Degenerated IVD cells produce higher concentrations of pro-inflammatory mediators, 
which suggest their role in the pathogenesis of IVD. A variety of cytokines, 
chemokines, and enzymes have been associated with IVDD, including interleukins 
(IL), interferons, tumor necrosis factor-alpha (TNF-α), matrix metalloproteinases 
(MMPs), prostaglandin E2 (PGE2), nitric oxide (NO), and aggrecanase. Among these, 
TNF-α and cytokines of the IL-1 family have been most widely investigated. Both TNF-
α and IL-1β are produced by IVD cells, and they acquire strong association in the 
pathogenesis of IVDD[49,50]. Degenerated and herniated discs exhibit upregulated 
expression of both pro-inflammatory chemokines, TNF-α and IL-1β[51]. Both have 
been found to activate ECM degrading enzymes and reduce ECM constituent 
synthesis in vitro[49,52]. Recent studies showed that both TNF-α and IL-1β molecules 
induce increased MMP expression, particularly MMP-1, -2, -3, -7, -8, and -13. These 
MMPs are well recognized for their proteolytic activity towards collagen and 
proteoglycans (PGs)[53]. Also, IL-1β, as a pro-inflammatory cytokine, upregulates the 
vascular endothelial growth factor (VEGF), brain-derived neurotrophic factor, and 
nerve growth factor expressions to stimulate the neovascularization and neoi-
nnervation of IVD that eventually lead to inflammation and discogenic pain[24]. 
Another study concluded that IL-1β is a master regulator in the disc cells that influence 
other cytokines and chemokines[54]. IL-1β and TNF-α in NP cells contribute to the 
secretion of chemoattractant molecules such as C-C motif ligand 5/regulated 5 
(CCL5/CCR5), regulated upon activation, normal T cell expressed and presumably 
secreted (CCL5/RANTES) or chemokine C-X-C motif ligand 6 (CXCL6)[55], and are 
involved in the migration of MSCs.

Another pro-inflammatory cytokine that has been involved in the pathogenesis of 
IVDD is IL-6, which is also secreted by NP cells[56]. Indeed, degenerated IVD tissue 
samples contain a significantly higher expression of IL-6[57]. Notably, numerous 
genetic variations in cytokine genes have been correlated with IVD degeneration. 
Traditionally, inflammation has mainly been considered as a primary reaction to 
infection at the site of tissue injury; however, it is not sure if it is a cause or outcome of 
IVD degeneration and herniation[58]. During degeneration, increased aggrecan and 
collagen breakdown occur within the disc tissue with significant changes in IVD cell 
phenotype and increased levels of inflammatory cytokines[47]. With an advanced 
degeneration phase, clefts and tears are developed in the AF and NP, which leak into 
the external environment. This allows immune cell activation and the invading blood 
vessels to pervade the IVD through the clefts and tears of the AF[59].

THERAPEUTICS FOR DEGENERATIVE INTERVERTEBRAL DISCS
Modern treatments for IVDD remain a subject of debate. Despite the known con-
sequences of the IVD pathological cascade, the treatment options for IVDD are limited. 
The traditional conservative therapy for chronic LBP involves a wide range of 
treatment modalities, including bed rest, physiotherapy, analgesic and anti-inflam-
matory medications, acupuncture, and chiropractic[60]. Approximately, 75%-90% of 
chronic LBP patients obtain satisfactory results with conservative treatment[34,61]. The 
pain symptoms can be overcome by administering anti-inflammatory mediators, for 
example, opioids, steroids, non-steroidal anti-inflammatory drugs, and muscle 
relaxants[39]. These anti-inflammatory drugs have effective short-term alleviation for 
back pain, but they cannot reverse the progression of IVDD[62]. If conservative 
management does not have the desired effect, the constant pain sensation progresses 
because of the nerve compression[63].
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Interventional procedures for IVDD include spinal surgical interventions, such as 
discectomy, spine fusion, and total disc replacement to manage the degenerated disc. 
The main surgical treatment alternatives for IVDD are spinal fusion and the 
replacement of the whole disc. Spinal fusion surgery, fusing two vertebrae, provides 
stability to the spine, which can be attained by a range of surgical interventions, such 
as posterolateral fusion, anterior and posterior lumbar interbody fusion. The 
minimally invasive methods to the lumbar spine for interbody fusion include lateral 
lumbar interbody fusion[64]. Spinal fusion is considered as a gold standard treatment 
option for LBP[65]. The results of three randomized controlled trials, which compared 
spinal fusion with conservative treatment, showed substantial clinical improvement in 
only a limited number of patients[45].

Moreover, spinal fusion could accelerate the degenerative process in adjacent 
vertebrae[66], and it mitigates painful symptoms, irrespective of repairing disc 
structure and mechanics; therefore, its efficacy remains controversial. Disc arthroplasty 
has the advantage of removing the degenerated IVD and restoring it with a prosthesis 
that can permit flexibility between the discs[67]. Moreover, disc arthroplasty does not 
restore the mechanical movement of the native joint[61]. The additional motion-
preserving surgical procedure includes posterior dynamic stabilization. These surgical 
procedures contain the installation of pedicle screws over a motion segment associated 
with a flexible graft. These devices intend to limit motion over the interspace to control 
discogenic pain[68]. The disadvantages of the surgical therapies can be extreme 
invasiveness, the increased possibility of recurrences, and failure of mechanical 
properties with contiguous segment degeneration. In most cases, some surgical 
intrusions and conservative treatments have low efficiency with lack of sustainable 
long-term effects. Instead of targeting the pathophysiology of the degenerative 
progression, they target the clinical symptoms[69].

Recent surgical treatment options for symptomatic degenerated IVD are still far 
from optimal outcomes. Hence, there is a substantial necessity for new therapies that 
focus on relieving painful symptoms and reestablishing IVD structure and mechanical 
loading capacity by explicitly addressing the underlying biological causes of DDD.

NOVEL THERAPEUTIC APPROACHES
The advancements in research and development have encouraged scientists to search 
for innovative pharmacological therapies in the regeneration of the IVD that mitigate 
painful symptoms by restoring and maintaining mechanical function. Depending on 
the stage of degeneration, different biological treatment options are used that alter the 
cascaded events at the molecular level. Figure 1 summarizes various therapeutic 
options for disc degeneration diseases. The three major groups of biological 
approaches for disc regeneration are divided as follows: (1) In the early stage of IVDD 
(grade II-III), growth factor injections may be effective; (2) In the intermediate stage of 
degeneration (grade IV), gene therapy or cell therapy may be required; and (3) In the 
advanced stage of IVDD (grade V), tissue engineering approaches are needed[70].

Growth factor therapy
The therapeutic use of growth factors enhances the matrix synthesis and delay 
degeneration by reducing inflammation[71,72]. Growth factors are the peptides or 
polypeptides that target specific receptors present on the surface of the cell, thereby 
influencing cell proliferation, differentiation and increasing their ability to synthesize 
the ECM[73,74]. Specific growth factors that include BMPs and TGF-β family members 
are used to stimulate osteogenic and chondrogenic differentiation[75,76].

The first successful exogenous administration of TGF-β1 in animal models showed 
the enhanced synthesis of PGs in the NP. Several in vitro and in vivo analyses on BMP-
2 and -7, TGF-β, epidermal growth factor (EGF), basic fibroblast growth factor (bFGF), 
growth and differentiate factor 5 (GDF-5), and insulin-like growth factor 1 (IGF-1) 
revealed that they stimulate the synthesis of ECM[77-82].

In chronic conditions of IVDD, cocktails of growth factors may be needed because 
the growth factors have a short half-life and are unstable that limits their use as direct 
injection into the IVD. The administration of multiple injections of growth factors 
could enhance gradual release at target site or gene-based delivery system to obtain 
the desired effect. Currently, the primary focus is on platelet-rich plasma (PRP) that is 
used as a possible therapeutic option to promote IVD regeneration[83-86]. Some 
limitations like the absence of standardization of the dosage, the process of 
preparation, and identification of mode of action need to be settled[87].
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Figure 1 Different approaches used for restoring a degenerated disc. MSCs: Mesenchymal stem cells; ESCs: Embryonic stem cells; iPSCs: Induced 
pluripotent stem cells; IVD: Intervertebral disc; HSCs: Hematopoietic stem cells; PRP: Platelet-rich plasma.

Gene-based therapy
In the last few decades, gene-based therapy has achieved wide research applications to 
focus on the regeneration of the IVD structures. The introduction of genes encoding 
the chondrocyte-specific proteins is directly transferred into the effectual host tissues
[88]. The gene-dose impact needs to be characterized for a safe and effective treatment. 
In contrast, certain findings have revealed inadequate outcomes of direct gene 
approach into the host cells[89]. Nonetheless, there are limited investigations that 
support the efficacy of this approach[90-93]. Recently, lentiviruses are believed to be 
competent vectors for gene transfer because they can deliver a substantial quantity of 
genetic material into the host cell's genome. The most frequently studied factors are 
TGF-β3, Sox-9, GDF-5, BMP family including 2, 7, and 12, connective tissue growth 
factor (CTGF), Wnt, IL-1, tissue inhibitor of metalloproteinases (TIMP-1), and LIM 
mineralization protein 1 (LMP-1), that are reported to enhance the synthesis of 
collagen type II and aggrecan in NP cells[94-106]. Genes involved in the development 
of IVD are summarized in Table 1.

Cell therapy approaches
Regardless of the development of various treatment alternatives, the conservative and 
surgical therapeutic approaches are not exceptionally valuable for treating deg-
enerated disc disease. These are usually incapable of delivering any solution to 
reestablish the structural and mechanical function of degenerated IVD. This situation 
has prompted the advancement of a regenerative medicine-based approach that 
substitutes the apoptotic and necrotic cells and limits cell death in IVD by targeting 
different cellular and molecular events[107]. Out of several approved cellular and 
molecular approaches, the utilization of stem cell therapies has shown superior 
outcomes, and stem cell transplantation is being used to restore the degenerated IVDs
[70]. Stem cells are undifferentiated cells that can differentiate into particular cell types 
and are broadly utilized as a cell therapy approach. Stem cells exist in a quiescent 
condition, and they self-renew in the propagation process. Stem cells are being 
researched in vitro and in vivo according to the need for the desired effect. Stem cell 
research has reformed the eventual fate of regenerative medicine because of its 
capability to recover impaired and damaged organs from treating various debilitating 
syndromes. The sources of stem cells and their properties are summarized in Table 2. 
Investigations are being made to comprehend the mechanism of regeneration at the 
molecular level to address the possible solutions for degenerative diseases and 
understand the basic pathogenesis and progression of different disorders.
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Table 1 Modifying genes essential for the development of intervertebral disc

Ref. Protein (Gene) Key findings

Choi et al[14], 2012 Sonic Hedgehog (SHH) Sclerotome tissue formation, annulus fibrosus formation, chondrogenesis of sclerotome 
cells 

Wijgerde et al[15], 
2005

Noggin (NOG) Antagonist of the BMP pathway, promotes Shh intracellular signaling cascade and Pax1 
gene activation

Murtaugh et al[16], 
1999

Bone Morphogenetic Protein (BMP) 
family 

In the presence of Shh, promotes chondrocyte differentiation of somite-derived IVD 
progenitors

Peters et al[21], 1999 Paired Box 1 (PAX1) Chondrogenic commitment of sclerotome cells

Sugimoto et al[27], 
2013

SRY-Box 9 (SOX) Regulates IVD tissue growth and development

Sohn et al[30], 2010 Transforming growth factor-β (TGF-β) Development of vertebral bodies

Pearson et al[31], 2005 Homeodomain Protein (HOX) Somite Patterning

IVD: Intervertebral disc.

Table 2 Variation in properties of different sources of stem cell types

Properties MSCs ESCs iPSCs

Sources Perinatal and adult tissues Embryo at blastocyst stage Genetically reprogrammed specialized cells

Plasticity Multipotent Pluripotent Pluripotent

Teratoma formation No Yes Yes

Growth Limited High High

Ethical concerns No Yes No

Immune rejection No Yes No

Cell transplantation Autologous and allogenic Allogenic Autologous

Clinical trials in human patients Ongoing Limited In vitro/in vivo only

Use in genetic disorder Deficient (Carry mutated gene) Superior Deficient (Carry mutated gene)

Ease of isolation Yes No No

MSCs: Mesenchymal stem cells; ESCs: Embryonic stem cells; iPSCs: Induced pluripotent stem cells.

STEM CELLS FOR IVD REGENERATION
Stem cells from different sources are involved in the regeneration of disc diseases. A 
comparison of MSCs and other cell types is presented in Table 3. Different cellular 
approaches used for the regeneration of IVDs are highlighted in Table 4.

Hematopoietic stem cells
Hematopoietic stem cells (HSCs) possess the capability to differentiate into blood cells. 
HSCs express CD34 molecules, while non-hematopoietic stem cells, including MSCs, 
do not show CD34 expression. These cells were injected into the rat IVDD model to 
investigate which population of cells might acquire disc-identical cells for treating 
IVDD. It is reported that HSCs can survive in the NP of host IVDs up to 42 d, while 
non-HSCs were detected up to 21 d only[108]. However, this was nullified by further 
confirmation that HSCs cannot cure DDD. Although HSCs can only induce blood cells 
and cannot differentiate into chondrocyte-like cells and repair disintegrated NP, this 
has begun a novel era of scientific investigation for tissue regeneration. It is demo-
nstrated that HSC transplantation of autologous pelvic bone marrow (BM) cells for the 
degenerated disc in clinical trials yielded no efficient recovery[109].

MSCs
The therapeutic use of MSCs is based on their two basic characteristics, i.e., they can be 
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Table 3 Human umbilical cord-derived mesenchymal stem cells compared with other stem cells sources

Properties Perinatal Adult Embryonic

Ability to differentiate into various cell type √ √ √

Plastic adherence √ √

High in vitro proliferation ability √ √

Low risk of tumorigenicity √ √

Ethical issues √

Lower risk of viral contamination √ √

Capacity for autologous transplantation √ √

Established/proven treatment in human patients √ √

Ease of collection √ √

Less need for stringent antigen typing √ √

used to treat different diseases and can be isolated from the autologous source. MSCs 
are considered as a treatment choice for several diseases like DDD, stroke, myocardial 
ischemia, diabetes, and neurodegenerative diseases[110-113]. MSCs can be readily 
isolated due to their adherent property. MSCs possess the excellent capability to differ-
entiate into three mature lineages, namely bone, adipose, and cartilage, as well as into 
endothelial, myogenic[114-116], epithelial[117], and neural cell types[118] under 
specific conditions when guided by appropriate growth factors or pharmacological 
inducers. They possess the remarkable proliferative capability in cell culture with 
excellent stability in their phenotype and differentiation potential[119].

Furthermore, they can be smoothly transformed with the ability to home at the 
transplantation site. MSCs are immunologically inactive, which makes them ideal 
candidates for transplantation[120]. MSCs have great capability to differentiate into 
chondrocyte-like cells that phenotypically resemble NP cells in chondrogenic 
induction conditions[121-123]. MSCs promote the regeneration of endogenous tissue 
by secreting cell survival factors[124].

Tissue-specific stem cells
CEP, AF, and NP-derived stem cells are isolated from the adult IVD, namely cartilage 
endplate stem cells, AF stem cells, and nucleus pulposus stem cells (NPSCs), 
respectively. These cells are effective candidates for IVD recovery. Trials with disc 
stem cells revealed remarkable advantages in homing and retention in the IVD niche, 
differentiation capability, and functional competency. However, limitations in 
harvesting, separation, and proliferation of disc stem cells and low potency hinder 
researchers from using them for therapy[125]. Studies to overcome IVD injury using 
disc derived stem cells showed their ability to replace affected tissue by producing 
disc-specific collagen type II and proteoglycan, and restoring disc hydration to 
physiological state[126,127].

Embryonic stem cells
Embryonic stem cells (ESCs) originate from the inner cell mass of blastula and possess 
an excellent tendency to differentiate into different cell types. They proved themselves 
as stable and relatively better source for disc regeneration involving in vitro production 
of NCs. These NCs are the first to form NP during the embryogenesis of the disc. 
Researchers have successfully differentiated ESCs into chondrocyte-like cells[128]. 
However, ESCs display tumorigenic properties, can cause teratoma formation, and 
also pose ethical concerns because of their embryonic origin, which limit their 
application for IVDD therapy[69].

Induced pluripotent stem cells
Induced pluripotent stem cells (iPSCs) are derived from genetically reprogrammed 
somatic cells to an embryonic-like state. The introduction of pluripotency genes and 
factors in adult terminally differentiated cells is a major discovery of this era. In 2006, 
mouse iPSCs were first reported by Shinya Yamanaka together with his co-invest-
igators who revealed that fibroblasts might be reprogrammed to an ESC-like cells by 
four pluripotent gene-induced expressions i.e. Sox2, octamer-binding transcription 
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Table 4 Summary of studies on cellular therapeutic approaches for regenerative potential of the degenerated disc

Type of stem cells Gene Preconditioning outcomes Ref.

In vitro human cultured NP cells and 
MSCs

TGF-β1 TGF-β1 stimulates collagen-1 expression in 
cultured NP cells and in MSCs, increased collagen-
1 and sox-9 expression. Co-cultured MSCs with NP 
cells showed high expression of collagen-1, 
aggrecan and sox-9 expression via TGF-β-
dependent effect

[126]

Chick periosteum-derived MSCs 
Rabbit bone marrow-derived MSCs 
Rat MSCs

TGF-β1 Stimulate chondrogenesis and inhibits 
osteogenesis. Facilitates in vitro chondrogenic 
differentiation of rabbit BM-MSCs. Increased 
MAPK activity and upregulation of mRNA 
expression of sox-9, aggrecan, and collagen type II

[190,122,123]

Human adipose-derived MSCs and 
bone marrow-derived MSCs

TGF-β3, GDF-5, or GDF-6 In the presence of GDF-6, AD-MSCs leads to 
differentiation into an NP-like phenotype and 
results in a richer proteoglycan matrix with low 
rigidity

[158]

Human bone marrow-derived MSCs TGF-β1, and GDF-5 Hypoxic TGF-β1 and GDF-5 both increased 
aggrecan and collagen II mRNA levels and GAGs 
accumulation

[159]

In vitro human bone marrow-derived 
MSCs

TGF-β3, dexamethasone, and 
ascorbate

Preconditioned BM-MSCs expressed higher level of 
chondrocytes differentiation markers than culture-
expanded human IVD cells and articular 
chondrocytes

[193]

In vivo murine IVD cells TGF-β3, GDF-5, FGF, or IGF-1 After four weeks of GDF-5 treatment, showed 
significantly increase in IVD height

[72]

Human adipose-derived MSCs TGF-β1 and GDF-5 Both distinctly efficient in promoting an NP cell 
phenotype

[160]

Human cultured NP cells TGF-β1, and IL-1β TGF-β1 improved NP cell proliferation, 
downregulation of mRNA expression of ADAMTS-
4 and -5, upregulation expression of TIMP-3. IL-1β 
inhibited NP cells proliferation, increase of 
ADAMTS-4 and -5

[161]

Canine cultured NP cells TGF-β, and IL-10 Suppressed IL1-β and TNF-α expression inhibiting 
inflammatory reaction

[200]

In vitro human cultured NP cells. E19 
rat cultured AF cell

TGF-β1, and IGF-1 Stimulation of human NP cells in a dose and time-
dependent manner. TGF-β1 pushed AF cells to 
fibrocartilaginous phenotype. IGF-1 showed an 
upregulation of ECM

[79,162]

Murine ESCs TGF-β, IGF, ascorbic acid, and cis-
retinoic acid

All promotes differentiation toward chondrogenic 
lineage

[175]

Human bone marrow-derived 
stromal cells

TGF-β1, rhGDF-5, or bovine NPCs Stimulates cytokeratin-19 and aggrecan/type II 
collagen ratio distinguish chondrogenic from IVD 
cell phenotype

[163]

Human bone marrow-derived MSCs TGF-β3, and dexamethasone Notochordal cell conditioned medium expressed 
higher level of NP-like phenotype markers and 
GAGs deposition than chondrogenic medium or 
TGF-β groups

[194]

Human cultured NP cells TGF-β3, and dexamethasone Enhanced NP proliferation, cell metabolism and 
reduce catabolism

[195]

Rabbit cultured NP cells TGF-β1, and BMP-2 Robust restoration of ECM. Increased mRNA 
expression of aggrecan, type I and type II collagen

[133]

In vitro porcine cultured AF cells BMP-2, and TGF-β1 Decrease in MMP-1 and increase in aggrecan 
synthesis

[73]

Mouse MSCs BMP-2, 7, 13 Proliferate and differentiate into osteoblastic and 
chondrogenic lineages and no adverse effects on 
proliferation on undifferentiated MSCs

[164]

Human bone marrow-derived MSCs BMP-7 Promotes both chondrogenic and osteogenic 
differentiation of MSCs

[165]

In vitro rat cultured AF cells BMP-2 Increased mRNA expression of aggrecan and type 
II collagen. Also, up-regulates BMP-7 and TGFβ-3 
mRNA expression

[166]
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Mouse embryonic-derived MSCs BMP-4, Insulin, triiodothyronine, or 
TGF-β3

All BMP-4, Insulin, and triiodothyronine 
suppressed adipogenesis and develop osteogenic 
phenotype. TGFβ-3 promotes chondrogenesis

[128]

In vitro human bone marrow-derived 
MSC cocultured with human 
cultured NP cells

BMP2, BMP4, BMP6, and BMP7 BMP4 showed a high potential for IVDs 
regeneration. Although, BMP2 and BMP7 showed 
no potent inducer for degenerated human NP cell’s 
regeneration

[167]

Human bone marrow-derived MSCs BMP-13 Inhibited osteogenic differentiation of human BM-
MSCs and increased proteoglycan synthesis

[168]

Human adult MSCs BMP-3, and TGFβ-1 Enhanced cell proliferation, GAGs content and 
differentiation into NP-like phenotype. 
Upregulated smad-3 signaling pathway

[126]

Human adipose tissue-derived MSCs BMP-2, BMP-6, BMP-7, and TGF-β2 Both TGFβ-2 and BMP-7 induces chondrogenic 
potential

[76]

Human cultured NP and AF IVD 
cells

rhBMP-2, rhBMP-12, and 
adenoviralBMP-12

Both rhBMP-2 and rhBMP-12 increased NP 
collagen and proteoglycan but least effects on AF. 
Though, adenoviral BMP-12 increased ECM 
protein formation in equally NP and AF

[99]

Human and bovine cultured NP cells BMP-7/OP-1 with BMP-2 Enhanced GAGs production and NP cells 
proliferation

[77]

Human cultured NP cells rhBMP-7 Inhibited apoptotic effects, decreased caspase-3 
activity and maintained ECM production

[169]

Bovine cultured NP cells BMP-7, and IGF-1 Both BMP-7 and IGF-1 induces Smad signaling 
pathways and suppresses noggin expression via 
PI3-kinase/Akt pathways

[170]

Human cultured NP and AF IVD 
cells

BMP-2 Improved newly synthesized proteoglycan and 
increased mRNA expression of aggrecan, type I 
and type II collagen

[171]

In vitro cultured NP cells IGF-1 Increase of matrix synthesis in well-nourished 
regions

[180]

In vitro canine cultured IVD cells IGF-1, FGF, EGF, or TGF-β3 TGF-β3 and EGF both produced higher 
proliferative responses than FGF. Also, IGF-1 
showed a slightly significant responses in NP but 
no contribution in AF and transition zone

[74]

Horse cultured articular cartilage 
cells. Bovine cultured NP cells

IGF-1 Maintained differentiated chondrocyte 
morphology and enhanced synthesis of ECM 
molecules. Increased proteoglycan synthesis

[178,191]

Bovine cultured AF and NP cells IGF-1, bFGF, and PDGF Strengthened cell proliferation [81]

Human cultured AF cells IGF-1, and PDGF Significant reduced in apoptotic cell level [182]

Chondroitinase ABC injection rabbit 
model

OP-1 Increase in disk height and matrix synthesis [172]

Rabbit cultured NP and AF IVD cells OP-1 Restored collagens and upregulated proteoglycan 
synthesis

[173]

Human cultured NP and AF cells OP-1 Improved in the proteoglycan contents, total DNA, 
and collagen

[174]

Human cultured NP cells OP-1 Partially repaired GAGs content, depends on a 
very high doses

[175]

Gene therapy, in vitro human IVD 
cells. Gene therapy, in vivo rabbit IVD

TIMP-1 Increased proteoglycan synthesis. Less MRI and 
histologic evidence of degeneration

[102,103]

In vitro cultured AF cells and 
chondrocytes

LMP-1 Increased proteoglycan synthesis, upregulation of 
mRNA expression of aggrecan, collagen types I 
and II, BMP-2 and -7

[105]

Human synovium derived stem cells FGF-2, and FGF-10 FGF-2 stimulates chondrogenic gene expression, 
GAGs deposition and promotes both chondrogenic 
and osteogenic lineages

[176]

Ovine bone marrow-derived MSCs FGF-2, and FGF-18 Promotes both chondrogenic and osteogenic 
lineages of MSCs

[177]

In vitro cultured human NP cells FGF2 Increased proliferative potential, redifferentiation 
gene expression and GAGs deposition

[178]

Greater survival and repair effect on the Bone marrow-derived MSCs bFGF, TGFβ-1 and TCH gel [179]
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degenerated IVDs

In vitro rat cultured NP cells rGDF-5 Dose-dependency high expression of aggrecan and 
collagen type II genes was induced by rGDF-5 disc 
cells from GDF-5-deficient mouse

[82]

In vitro bovine cultured. NP and AF 
cells, in vivo rabbit IVD model

rhGDF-5 Increased DNA and proteoglycan level in vitro. In 
vivo, rhGDF-5 injection improved IVD height, MRI 
and histological grade score

[183]

In vivo mice and rabbit model GDF-5 Structural and functional maintenance of IVD [184]

Canine BM peri-adipocyte cells (BM-
PACs)

GDF-5, TGFβ-1, BMP-2, and IGF-1 GDF-5 promoted GAGs production and collagen 
type II without increasing collagen-10 mRNA 
expression

[199]

Adult bone marrow-derived MSCs EGF In the presence of EGF, promotes osteogenic 
differentiation and enhance paracrine secretion of 
BM-MSCs both in vitro and in vivo

[80]

In vivo rat bone marrow-derived 
MSCs

rhGCSF Increase of end plates cell proliferation but no 
contribution in IVD regeneration or maintenance

[185]

Human synovium-derived MSCs IL-1β, and TNF-α Enhanced synovial MSCs proliferation and 
chondrogenic ability

[205,206]

Human bone marrow-derived MSCs. 
In vitro cultured porcine AF cells

IL-1β, and TNF-α Both IL-1β and TNF-α suppressed chondrogenesis 
in a dose-selective manner. Increased expression of 
MMP-1

[73,207]

Gene therapy, in vitro cultured NP 
cells

IL-1 and IL-1Ra IL-1Ra decreased extracellular matrix degradation [101]

Mouse bone marrow-derived MSCs SOX-9 Stimulate chondrogenesis [95]

Gene therapy, in vivo in rabbit IVD SOX-9 Chondrocyte phenotype of IVD, restored 
architecture of NP

[96]

Gene therapy, in vitro bovine AF cells Sox-9, and BMP Increased proteoglycan and/or collagen type II 
synthesis

[97]

Gene therapy, in vitro human NP 
cells

WNT-3A, WNT-5A, and WNT-11 Increased expression of redifferentiation NP genes 
and GAGs accumulation

[100]

Human bone marrow-derived MSCs WNT-3A and FGF2 Synergistically both promoted MSC proliferation, 
chondrogenesis and cartilage formation

[186]

VEGFR-1 and VEGFR-2 lacZ/+ NP 
cells

VEGF Raise NP survival [208]

Rhesus monkey cultured NP cells CTGF Stimulation of collagen type II and proteoglycan 
synthesis

[187]

Human cultured NP cells PRP Enhanced NP proliferation and differentiation into 
chondrogenic lineage

[134]

Porcine cultured NP and AF cells; 
Porcine IVDD organ

PRP Stimulation of IVDD cells proliferation. Increased 
mRNA expression levels of chondrogenesis and 
matrix formation

[83,84]

Bovine cultured AF cells PRP Upregulation of cell numbers and matrix synthesis [85]

In vitro porcine cultured AF cells PRP and other cytokines Decreased enzymes expression causing 
degradation and increased matrix proteins 
synthesis

[86]

IVD: Intervertebral disc; BMP: Bone morphogenetic protein; EGF: Epidermal growth factor; FGF: Fibroblast growth factor; IGF-1: Insulin-like growth 
factor-1; OP-1: Osteogenic protein-1; PDGF: Platelet-derived growth factor; TGF-β1: Transforming growth factor-β1; ADAMTS: A disintegrin and 
metalloproteinase with thrombospondin motifs; TIMP: Tissue inhibitor of metalloproteinases; TNF-α: Tumor necrosis factor-α; MMP: Matrix 
metalloproteinase; IL-1β: Interleukin-1 beta; IL-1Ra: IL-1 receptor antagonist; SOX-9: SRY-box transcription factor-9; rhGDF-5: Recombinant human growth 
and differentiation factor-5; LMP-1: LIM mineralization protein-1; WNTs: Wingless-related integration site; VEGFR: Vascular endothelial growth factor 
receptor; LacZ: β-galactosidase; CTGF: Connective tissue growth factor; GCSF: Granulocyte colony-stimulating factor; PRP: Platelet-rich plasma; AF: 
Annulus fibrosus; GAGs: Glycosaminoglycans; NP: Nucleus pulposus; ECM: Extracellular matrix; IVDD: Intervertebral disc degeneration; MSCs: 
Mesenchymal stem cells; BM: Bone marrow; AD: Adipose tissue; ESCs: Embryonic stem cells; NPCs: Nucleus pulposus cells; MRI: Magnetic resonance 
imaging; DNA: Deoxyribonucleic acid; mRNA: Messenger ribonucleic acid; TCH: Temperature-responsive chitosan hydrogel; MAPK: Mitogen-activated 
protein kinase; PI3: Phosphatidylinositol 3; Akt: Protein kinase B.

factor 3/4 (Oct3/4), Kruppel-like factor 4 (Klf4) and Myelocytomatosis (c-myc). These 
iPSCs were identical to the mouse ESCs because they express pluripotent markers and 
can differentiate into any cell lineage[119,129]. In subsequent years, they performed 
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several experiments using human fibroblasts and successfully reprogrammed them to 
iPSCs by applying the same factors. A different team of researchers attained a similar 
achievement with minor alterations of Lin-28 and Nanog rather than c-myc and Klf4
[130]. iPSCs possess a great tendency to differentiate into each of the three germ layer 
cells containing NCs[131,132]. Despite their ability to induce chondrogenesis, iPSCs 
might be susceptible to tumorigenesis because of their extreme pluripotent nature.

Tissue engineering-based therapy 
MSCs face challenges like survival following transplantation, inadequate paracrine 
secretion, and limitations in cell homing. These hindrances in the effectiveness of 
MSCs can be overcome by improving their potential of migration, homing, 
propagation, and differentiation into the preferred cell type. Thus, selecting an 
appropriate scaffold for stem cells can better serve for the re-development of the lost 
tissue. Injectable bio-materials or micro and nanoscale scaffolds are preferable for 
biocompatibility, cell infiltration, and remodeling of the transplanted cells. Upon 
preconditioning, the fully biocompatible material can also target cell attachment, 
proliferation, normal morphology, and elevated expression of desired factors. Thus, 
the strategy has the advantage of inducing differentiation in vitro and transplanting 
cells in vivo[133,134].

CURRENT ISSUES RELATED TO TREATING DEGENERATIVE INTER-
VERTEBRAL DISC
IVD is the largest avascular structure in the human body that has limited efficiency for 
regeneration. Due to a vascular nature of IVD, tendency to develop strategy for their 
treatment and regeneration is low[135]. Rehabilitation, surgical interventions, post-
trial treatment, and standardized procedures for the subjects should be deemed 
mandatory. In the case of the local treatment, a small incision should be made[136]. 
Therefore, surgeries for injecting therapeutic cells should be minimally invasive. In 
addition, safety concerns such as high intensity of neuropathic pain and secondary 
infections and genuine diagnosis of complications are significant. One of the critical 
aspects of designing clinical trials with lower back injuries is the level of injury-
induced cases[137]. In selecting subjects with an exclusively specific level of damage, 
the distance of the injured spinal segment, route of administration, and phenomenal 
interaction of cell or drug action should be considered[138]. Therefore, long term 
patient follow-up with standardized measurement scales, such as the American Spinal 
Injury Association Scale for neurological levels, Normal Rating Scale (pain and spinal 
cord independence level), Modified Ashworth Scale (for spasticity), and International 
Association of Neurorestoratology Spinal Cord Injury Functional Rating Scale (for the 
report of functionality) are essential[139]. Current IVDD animal models are of limited 
significance as most are different from human disc degeneration[140]. Factual 
information can be obtained from animal models; however, the limitations are that the 
studies were generally applied on young rodents with the recently damaged disc in 
which normal tissue repair mechanisms are still active to heal the degeneration. It is 
also difficult to quantify the amount of pain. Therefore, researchers use alternate 
methods to examine disc regeneration or repair success by performing biochemical, 
molecular, and histological assessments.

Few ethical concerns should be considered while performing pre-clinical studies to 
translate into clinical trials. Using scientific validity, fair subject selection, favorable 
distribution of risks-benefits ratio, and informed consent is necessary to make clinical 
research ethical, which is considered challenging in disc diseases[141]. Typical 
successful measurements comprise proportions of morphology (e.g., IVDs height, AF 
delamination, and IVD degeneration grade through MRI and histology), cellularity, 
ECM quality and quantity, cytokine levels, and biomechanics (e.g. pressure/volume 
testing, compressive strength, and range of motion)[142]. Further, leakage of the 
delivering cells or drugs is a concern because small escape is possible while injecting. 
Cell therapy may upregulate the production of some growth factors, which may not be 
suitable for disc repair, as the cells intrinsically express a high level of growth factors, 
for example, TGF-β1 and bFGF, that can mediate blood vessel formation, trigger 
inflammatory mechanism and regulate abnormal disc cell differentiation. Therefore, 
extensive studies related to the toxicity of biochemical factors in the intervertebral disc 
are necessary before they are applied in clinical trials. Furthermore, safety with any 
type of gene therapy is a major consideration. These limitations make direct 
application of biological approaches difficult to treat disc injuries from animals to 
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humans[143,144].

ENHANCING THE IVD REGENERATION POTENTIAL BY HUMAN 
PERINATAL MSCs
The implantation of MSCs is considered a promising therapeutic approach for IVD 
regeneration. MSCs are primarily found in adipose tissue, dental pulp, BM, and 
peripheral blood. Recent advances with MSCs have shown that they can be isolated 
from a variety of postnatal organs such as skin, bone, cartilage, periodontium, 
pancreatic islets, skeletal muscle, periosteum, and synovial membrane/fluid as well as 
from perinatal tissues like umbilical cord tissue, umbilical cord blood (UCB), AF, and 
placenta[107,145,146]. The human perinatal umbilical cord is an optimistic source of 
MSCs. Like BM stem cells, human umbilical cord-derived MSCs (hUC-MSCs) are the 
noncontroversial source. The cells have rapid self-renewal properties and possess 
various advantages, making them promising therapeutic candidates[147]. Some of the 
advantages are as follows: (1) They are accessible in massive amounts, considering 
plenty of umbilical cord (UC) with around 135 million births globally every year; (2) 
They can be effectively collected and manipulated without any adverse effect on the 
infant or mother; (3) There are no predetermined ethical issues that need to be 
managed in contrast with ESCs; (4) They show more significant proliferative potential 
compared to BM-MSCs[148]; (5) They possess minimal immunogenicity[149]; (6) There 
is minimal possibility of viral contamination[150]; (7) They possess a relatively large 
harvest size as compared to MSCs from BM[151]; and (8) They need less stringent 
antigenic typing, and there may be less rejection[152].

Studies have shown that MSC isolation and characterization from Wharton’s jelly 
(WJ) tissue can be easily performed[153,154]. In addition, several current clinical trials 
explain the utilization of UC matrix-derived MSCs. It is early to relate in vivo research 
of tissue regeneration utilizing MSCs derived from UCB compared to other sources to 
understand better the capability of hUC-MSCs to regenerate degenerative discs. 
Clinical trials showed that hUC-MSC transplantation could be a promising substitute 
for the treatment of prolonged discogenic LBP[155] due to better survival in the 
avascular niche of the IVD[156] with differently manipulating transplanting cells[157].

DIFFERENTIATION of MSCs TOWARDS CHONDROGENESIS 
Stem cells have been treated with small molecules to improve their renewing 
capability. Numerous proteins and small molecules have been examined in this 
perspective such as TGF-β[158-163], BMPs[164-171], osteogenic protein (OP)[172-175], 
bFGF[176-179], IGF[180-182], GDF-5[183,184], granulocyte colony-stimulating factor 
(GCSF)[185], Wnt[186], CTGF[187], decalpenic acid, β-glycerophosphate, isobutyl 
methylxanthine, purmorphamine, ascorbic acid, and heparin-binding growth-
associated molecule (HB-GAM)[188,189]. TGF-β has been found to lead periosteum-
derived stem cells towards chondrogenic lineage and inhibit osteogenic differentiation 
in extreme density culture[190]. High concentrations of IGF-1 can impose the 
expression of chondrogenic proteins in BM-derived MSCs[191]. Ascorbic acid, non-
organic phosphates, and dexamethasone increase the differentiation potential of BM-
derived stem cells towards osteoblasts in CEPs[192-195]. Similarly, pleiotrophin (PTN) 
has also been reported to differentiate stem cells derived from human BM into 
chondrocytes[196]. Dexamethasone, insulin, and soluble factors have also been shown 
to stimulate chondrogenic differentiation of MSCs in vitro[197].

Chemical treatment to improve cell survival
Cell survival at the transplantation site is the most critical challenge. Numerous cells 
die soon after implantation at the site of injury[156]. Direct stimulation of stem cells 
into specific lineage by using growth factors and small molecules to increase their 
survival in host tissue is the most practical approach. Investigations showed that the 
expression of particular cell survival factors could enhance cell feasibility and survival 
in diseased tissue[198,199]. TGF-β is a growth factor associated with several cellular 
processes including cell proliferation and differentiation[200]. The rabbit model of 
IVDD induced through nucleus aspiration and infused with a combination of TGF-β1, 
fibrin glue, and rabbit MSCs, produced improved results[201]. Similarly, in vitro trans-
differentiation phenomenon of MSCs into different cell types showed that tra-
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nsplanted cells could combine with native cells to give better performance in the 
damaged tissue[202].

Chemical treatment to improve stem cell homing 
For enhanced regeneration, proficient cell homing is essential because the curative 
impact primarily depends on the effective cell engraftment following transplantation. 
Various investigators have utilized chemokine/cytokines receptors associated with 
MSC homing to enhance cell attachment at degenerated tissues[203], including CCR1, 
2, 4, 7, 9, and in addition, CXC chemokine receptor-5, -6[204]. CCL5/RANTES has 
been identified as a chemoattractant secreted by degenerative IVD in organ culture
[55]. Moreover, the possibility of different cytokines associated with the pathogenesis 
of IVD degeneration, specifically TNF-α and IL-1β, play an important role in 
controlling MSC recruitment to the IVD[101,205-207]. In vitro and in vivo research 
studies showed that molecular pre-requisite of MSCs with growth factors like TNF-α 
and stromal-derived-factor-1 (SDF-1) represent primary signaling cues to elevate 
VEGF production[208]. MSC conditioned medium improved neuronal survival in 
several neurological disorders such as neurodegenerative diseases, stroke, and spinal 
injuries[209]. Moreover, the conditioned medium acquired from articular cartilage 
stimulated the chondrogenic potential of MSCs and ECM development. The paracrine 
influence of prominin-1 or CD133+ endothelial progenitor cells from cord blood 
releases biologically active molecules in the conditioned medium along with 
microvesicles, which stimulate cell growth and homing. CD133+ cell derivatives with 
microvesicles possess messenger RNAs for various pro-angiopoietins and anti-
apoptotic factors, containing bFGF, receptor tyrosine kinase (c-kit) ligand, IGF-1, 
VEGF, and IL-8, contributing to withstand harsh microenvironment of the disc[210].

CONCLUSION
In conclusion, this review highlights regenerative medicine-based approaches for the 
regeneration of IVDD. Numerous potential therapeutic options were identified for the 
development of cellular therapies. The harsh microenvironment of the degenerative 
disc poses challenge to the survival of implanted cells. Therefore, possible strategies 
are needed to enhance the ability of the transplanted cells by preconditioning, 
chemical modification, genetic manipulation, and augmentation of growth and 
survival factors to help cells withstand the harsh disc microenvironment. The ultimate 
goal is to ensure that the transplanted cells survive, integrate and differentiate into 
desired cell types to regenerate and restore the normal physiological function of the 
IVD.
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Abstract
BACKGROUND 
As a cellular mode of therapy, bone marrow mesenchymal stem cells (BMSCs) are 
used to treat stroke. However, their mechanisms in stroke treatment have not 
been established. Recent evidence suggests that regulation of dysregulated gut 
flora after stroke affects stroke outcomes.

AIM 
To investigate the effects of BMSCs on gut microbiota after ischemic stroke.

METHODS 
A total of 30 Sprague-Dawley rats were randomly divided into three groups, 
including sham operation control group, transient middle cerebral artery 
occlusion (MCAO) group, and MCAO with BMSC treatment group. The modified 
Neurological Severity Score (mNSS), beam walking test, and Morris water maze 
test were used to evaluate neurological function recovery after BMSC 
transplantation. Nissl staining was performed to elucidate on the pathology of 
nerve cells in the hippocampus. Feces from each group of rats were collected and 
analyzed by 16s rDNA sequencing.

RESULTS 
BMSC transplantation significantly reduced mNSS (P < 0.01). Rats performed 
better in the beam walking test in the BMSC group than in the MCAO group (P < 
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0.01). The Morris water maze test revealed that the BMSC treatment group 
exhibited a significant improvement in learning and memory. Nissl staining for 
neuronal damage assessment after stroke showed that in the BMSC group, cells 
were orderly arranged with significantly reduced necrosis. Moreover, BMSCs 
regulated microbial structure composition. In rats treated with BMSCs, the 
abundance of potential short-chain fatty acid producing bacteria and Lactobacillus 
was increased.

CONCLUSION 
BMSC transplantation is a potential therapeutic option for ischemic stroke, and it 
promotes neurological functions by regulating gut microbiota dysbiosis.

Key Words: Ischemic stroke; Bone marrow mesenchymal stem cells; Neurological 
function; Gut microbiota
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Core Tip: Bone marrow mesenchymal stem cell (BMSC) transplantation provides a 
novel approach for ischemic stroke therapy. Studies on the “gut-brain axis” indicate 
that gut microbiota dysbiosis affects stroke prognosis. We investigated the interactions 
between BMSCs and gut microbiota. Our findings indicate that the therapeutic 
mechanism of BMSCs on ischemic stroke treatment may involve the regulation of 
microbiome structure and function.

Citation: Zhao LN, Ma SW, Xiao J, Yang LJ, Xu SX, Zhao L. Bone marrow mesenchymal stem 
cell therapy regulates gut microbiota to improve post-stroke neurological function recovery in 
rats. World J Stem Cells 2021; 13(12): 1905-1917
URL: https://www.wjgnet.com/1948-0210/full/v13/i12/1905.htm
DOI: https://dx.doi.org/10.4252/wjsc.v13.i12.1905

INTRODUCTION
Globally, stroke is a lethal disability-causing disease that affects up to 13 million 
people annually[1]. The latest data from the American Heart Association shows that in 
the United States, one person suffers a stroke after every 40 s[2]. Stroke patients exhibit 
recurrent attacks, which exerts a huge socio-economic burden on the society and 
families. Ischemic stroke is the most prevalent stroke type, accounting for 70%-80% of 
all stroke types[3]. Intravenous thrombolysis and endovascular thrombectomy are the 
primary treatment options for stroke. However, they are associated with time and 
technical limitations[4,5]. Therefore, it is important to develop novel therapeutic 
approaches for ischemic stroke.

Stem cell transplantation is considered a potential therapeutic strategy for patients 
after ischemic stroke[6]. Bone marrow mesenchymal stem cells (BMSCs) are a group of 
stem cells with various characteristics, including autologous harvesting, rapid prolif-
eration, easy in vitro culture, and low immunogenicity. Moreover, they are not limited 
by ethical restrictions. BMSCs have the effects of neuroprotection, modulation of 
inflammation, immune responses, endogenous neurogenesis, and astrogenesis[7]. 
Specifically, their inflammatory regulatory function has been investigated in various 
inflammatory diseases.

An estimated 100 trillion microorganisms reside in the human gut. They are closely 
associated with human health and diseases[8]. The understanding of gut microbiota is 
only at the rudimentary stage; however, studies have confirmed the existence of 
bidirectional communication in the microbiota-gut-brain axis, which influences stroke 
treatment and prognosis[9-11]. After a stroke, the central nervous system (CNS) is 
injured, then, as a stress response mechanism, the hypothalamic-pituitary-adrenal axis 
triggers the release of adrenocorticotropic hormone-releasing factor (CRF) and 
glucocorticoids[12]. Sympathetic and parasympathetic nerves directly affect 
gastrointestinal functions via communication with the enteric nervous system[10]. This 
induces suppressed gut motility, increased gut permeability, gut microbiota dysbiosis, 
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and immune cell activation. Studies have documented significant microbial diversity 
changes in feces of stroke patients[13,14]. Severe stroke destroys the intestinal barrier, 
therefore, commensal gut microbiota migrates to other organs; this is the primary 
cause of systemic infections after stroke[15]. A few bacterial species in gut microbiota 
or their metabolites regulate intestinal immunity, which regulates post-stroke 
immunity[16]. Animal model experiments have established that changing the gut 
microbiota improves the prognosis of stroke[17,18]. Despite the documented efficacy 
of stem cell therapy in altering the populations of gut microbiota in several inflam-
matory diseases, it has not determined whether it has a similar effect on ischemic 
stroke.

Therefore, we used a rat model of transient middle cerebral artery occlusion 
(MCAO) to investigate whether BMSCs can improve abnormal intestinal flora after 
ischemic stroke.

MATERIALS AND METHODS
Animals
Adult male Sprague-Dawley (SD) rats, 5-6 week old, weighing 220–250 g, were 
purchased from Beijing Huafukang Biotechnology Company (Beijing, China). The rats 
were housed in pathogen-free conditions under a 12 h-light/12 h-dark cycle at 25 °C. 
The Ethics Committee of Tianjin University of Traditional Chinese Medicine approved 
this study (approval number: TCM-LAEC2019038).

BMSC isolation, culture, and identification
In this study, 4-wk-old SD rats were cervically dislocated. The femur and tibia were 
isolated and removed under sterile conditions. The Dulbecco's modified Eagle 
medium (DMEM) was used for flushing the bone marrow cavity, and the bone 
marrow flush was collected. The isolated cell suspension was sieved through a 200-
mesh nylon sieve and then centrifuged (1000 r/min) for 10 min at 4 °C. The 
supernatant was discarded, and the cells were re-suspended with DMEM containing 
10% fetal bovine serum (FBS; BI). The cell density was adjusted to 2 × 106 cells into 25 
cm2  culture flasks and incubated in a cell incubator (37 °C, 5% CO2). The cells were 
passaged every 3-4 d, and the third-passage cells were used for further experiments. 
BMSCs were incubated with fluorescence antibodies, including CD90-PE, CD29-APC, 
CD45-PerCP, and CD31-FITC (1:100, Miltenyi, Germany), to identify the phenotype by 
flow cytometry (FACS Calibur, BD, San Jose, CA, United States).

Experimental design
Rats were randomly divided into three groups (n = 10 each): Sham operation control 
group (Sham), transient MCAO group, and MCAO with BMSC treatment group. The 
Sham and MCAO groups were injected with normal saline (PBS), and the BMSCs 
group was injected with 1 × 106 BMSCs through the tail vein 24 h after reperfusion. 
Rats were killed after 21 d of reperfusion to collect feces and brain tissue for analysis 
(Figure 1A).

MCAO
The intraluminal filament model was used to induce transient MCAO as described by 
Jackman et al[19]. Rats were anesthetized with 4% isoflurane and fixed in a supine 
position, and a longitudinal incision was made 0.3 cm to the right of the midline of 
their neck. Then, the muscles and tissues were separated to expose the right common 
carotid artery (CCA), external carotid artery (ECA), and internal carotid artery (ICA). 
Subsequently, a filament nylon suture was inserted into the right ECA and pushed 
until the middle cerebral artery (MCA) was obstructed. After 90 min of ischemia, the 
filament was removed carefully and reperfusion performed. During surgery, the rats 
were placed on a thermostat system to maintain body temperature.

Neurobehavioral scores
The Longa 5-point scale was used to judge whether MCAO surgery is successful: 4, the 
animal died; 3, the animal could not walk in a straight line, and its body was tilted to 
one side; 2, the animal turned to one side during crawling; 1, the animal could not 
straighten its limbs and was stiff; 0, the animal was normal. If the score was 1-3, the 
model was considered successful, and the experiment can be carried out later; 0 and 4 
were rejected. Animals with a score of 1 to 3 will be grouped for later experiments.



Zhao LN et al. Ischemic stroke

WJSC https://www.wjgnet.com 1908 December 26, 2021 Volume 13 Issue 12

Figure 1 Bone marrow mesenchymal stem cells improve neurological function after stroke. A: Experimental design. Rats (3-5 wk) were randomly 
divided into three groups: Sham, middle cerebral artery occlusion (MCAO), and bone marrow mesenchymal stem cells (BMSCs). BMSCs or PBS were injected 
through the tail vein 1 d after MCAO. The modified Neurological Severity Score (mNSS), the beam walking test, and the Morris water maze test were evaluated 
before rats were killed after 21 d of reperfusion; B: mNSS was performed at days 1 and 21 after MCAO (aP < 0.05; bP < 0.01); C: Beam walking test were performed 
at days 7, 14, and 21 after MCAO (bP < 0.01); D-H: Morris water maze test. The time that rats needed to escape latency to find the hidden platform (D). aP < 0.01 
when Sham vs MCAO; bP < 0.01 when Sham vs BMSCs; cP < 0.01 when Sham vs BMSCs; dP < 0.01 when MCAO vs BMSCs; eP < 0.01 when MCAO vs BMSCs. 
The number of rats crossing over the target platform on the sixth day (aP < 0.05; bP < 0.01) (E). The data are expressed as the mean ± SEM (n = 10). The tracks of 
each group on the sixth day (F-H). BMSCs: Bone marrow mesenchymal stem cells; MCAO: Middle cerebral artery occlusion.

The modified Neurological Severity Score (mNSS) was used to score the neur-
ological function of the rats on days 1 and 21 after reperfusion, which included motor, 
sensory, reflex, and balance tests with a total score of 18[20]; the higher scores mean 
more severe injuries.

Behavioral analysis 
Two blinded investigators observed all behavioral tests at regular times of the day. 
The apparatus was washed with 70% ethanol after each animal was tested to eliminate 
olfactory cues.

Beam walking test: For detecting motor coordination and balance, the beam walking 
test was evaluated at 7, 14, and 21 d after reperfusion. The rats were placed on a 
balance beam that was 1 m long, 2.5 cm wide, and 20 cm high from the ground. A soft 
cushion was placed under the balance beam to prevent the mouse from falling. Every 
mouse was scored according to the following rules: (1) If the rat crossed the balance 
beam smoothly without the hind limbs slipping; (2) If the rat gripped the edge of the 
balance beam, but the hind limbs did not dangle; (3) If the rat clutched the balance 
beam, and one limb dropped from the balance beam; (4) If the rat clutched the balance 
beam, and two limbs dropped from the balance beam or rotated on the balance beam 
(> 60 s); (5) If the rat tried to balance on the balance beam but fell (> 40 s); (6) If the rat 
tried to balance on the balance beam but failed (> 20 s); and (7) If the rats fell and did 
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not attempt to balance on the beam (< 20 s).

Morris water maze test: The Morris water maze test was performed 14 d after surgery 
for six consecutive days to test rats' spatial memory ability. The water maze was a 
circular black pool (Shanghai Xinsoft Information Technology Co., Ltd.), 150 cm in 
diameter, 50 cm high, and 25 cm deep, with the water temperature maintained at 20 ± 
1 °C. The pool was divided into four quadrants (1, 2, 3, and 4), and the circular 
platform was located in quadrant 1, 2 cm below the water surface. The rats were tested 
twice daily for 60 s for the first 5 d and were allowed to remain on the platform for 10 s 
after each test. On day 6, a probe trial was performed by removing the platform and 
allowing the rat to swim freely in the pool for the 60 s. The time and route taken by the 
rats to complete the task were recorded. Finally, the data were exported and analyzed 
using Morris water maze analysis software.

Histological analysis of rat brain 
The rats were fixed by perfusion in 4% paraformaldehyde (PFA). The brains were 
quickly removed and fixed in 4% PFA at 4 °C for 24 h. After dehydration, they were 
embedded in paraffin and serially sectioned into 4 μm tissue sections for histological 
analysis. Nissl staining was performed to evaluate neuron damage. The histo-
pathology of the hippocampus of brain tissues was observed with a microscope (BX43; 
Olympus).

Microbiome 16S rDNA sequencing and analysis
The rat feces from each group were collected into 2 mL sterile freezing tubes on day 21 
and stored at -80 °C until the bacterial DNA was extracted. Total bacterial DNA was 
extracted using DNA Extraction Kit (QIAGEN, Germany) following the manuf-
acturer’s instructions. To ensure the quality and quantity of DNA, extracted DNA was 
detected by agarose gel electrophoresis and stored at -20 °C until further processing. 
The diluted DNA was used as the template for PCR amplification of bacterial 16s 
rRNA genes with the barcoded primers (V3-V4 regions) and Takara Ex Taq (Takara). 
The PCR product was purified with AMPure XP beads (Beckman Coulter Genomics, 
United States) and quantified using a Qubit dsDNA assay kit (Life Technologies, 
United States). According to the standard protocols, equal amounts of purified 
amplicon were sequenced using the Illumina Miseq sequencer PE250 (Illumina, United 
States). The raw data were processed sequentially with the software Trimmomatic 
(version 0.35), Flash (version 1.2.11), QIIME (version 1.8.0), and UCHIME (version 
2.4.2) to get the operational taxonomic units (OTUs). The valid tags were classified at a 
97% similarity cutoff to analyze the gut microbiota diversity.

α-diversity is a measure of the abundance and diversity of microbial communities in 
a sample. In this paper, the Shannon index and Chao index were used to represent α-
diversity[21,22]. The Shannon index is an alpha diversity statistic for estimating the 
index of microbial diversity in a sample. A higher value indicates that the community 
is more diverse. The Chao index assesses the number of OTUs in a sample. The larger 
the Chao index, the higher the number of OTUs, indicating that the number of species 
in the sample is more numerous. The functional pathways of microbial communities 
for each sample were inferred using Phylogenetic Investigation of Communities by 
Reconstruction of Unobserved States (PICRUSt) software[23]. The PICRUSt software 
predicts the metabolic function of microorganisms by comparing the resulting 16S 
sequencing data with a genomic reference database of microorganisms with known 
metabolic functions.

Statistical analysis
The results are expressed as the mean ± SEM. The data were analyzed using one-way 
analysis of variance (ANOVA) and t-test. The difference was considered significant at 
P < 0.05.

RESULTS
BMSCs improve neurological function after ischemic stroke
The mNSS, beam walking test, and Morris water maze test were used to estimate the 
neurological function after ischemic stroke. The neurological deficit scores of each 
group of rats were evaluated at 1 and 21 d after ischemia-reperfusion (Figure 1B). 
Compared with the MCAO group, the BMSCs group had significantly improved 
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neurological function. The mNSS scores of both the MCAO and BMSCs groups were 
substantially lower at 21 d than on the first day (P < 0.01). However, the BMSCs group 
had a more significant decrease in mNSS scores at day 21 than the MCAO group (P < 
0.01). Beam walking test showed that rats subjected to BMSCs transplantation 
presented a larger motor functional improvement (14 d, P < 0.05; 21 d, P < 0.01; 
Figure 1C)

To assess the spatial learning and memory capacity of BMSC-treated rats after 
stroke, the Morris water maze test was used to detect the escape latency of a random 
search for the hidden platform during the first 5 d. Compared to the MCAO group, the 
BMSCs group showed a significantly shorter duration of escaping latency (P < 0.05; 
Figure 1D). After removing the hidden platform at 6 d, rats of the BMSCs group were 
easier to find the previous location of the platform site compared to those of the 
MCAO group, which passed over the platform site more times (P < 0.05; Figure 1E). 
The typical swimming tracks of each group (Figure 1F-H) also indicated that rats 
treated with BMSCs had significantly improved spatial memory.

BMSCs alleviate neuronal loss in the hippocampus after ischemic stroke
Nissl staining demonstrated no significant changes in neurons in the hippocampal 
CA1 area of the brain in the Sham group on day 21. In the MCAO group, the 
boundaries of the hippocampal CA1 area were irregular, the number of Nissl bodies 
was reduced, and a large number of neurons underwent necrosis. Compared with the 
MCAO group, the rat hippocampal neurons in the group treated with BMSCs were 
arranged in an orderly manner, and necrotic cells were significantly reduced 
(Figure 2). These results suggest that stroke causes severe neuronal damage in rats and 
that BMSC treatment can effectively protect neurons and prevent neuronal loss.

Effect of BMSCs on microbial α-diversity and structure after ischemic stroke
To identify whether treatment with BMSCs influences the gut microbiota after 
ischemic stroke, we analyzed differences in species complexity and bacterial 
communities between populations based on OTUS and species annotation results. We 
obtained a total of 1494295 quality filtered 16s rRNA gene sequences from three 
groups of 30 samples, with an average of 49810 ± 1281 reads per sample. We compared 
microbial α-diversity between the Sham, MCAO, and BMSCs groups, and both 
Shannon and Chao index results showed no statistical difference between the three 
groups (Figure 3A and B).

We calculated inter-sample distances between the three groups to analyze the 
differences in community species composition among individual samples within each 
group. We demonstrate the nonmetric multi-dimensional scaling (nMDS) plot, and the 
principle co-ordinates analysis (PCoA) plots in Figure 3C and D. Different groups are 
presented in different colors in the figure, and samples from the same group are 
clustered together. The nMDS analysis and PCoA showed that MCAO and BMSCs 
could alter the microbiota composition significantly compared to the Sham group. 
However, there was no significant difference in microbiota structure between the two 
groups of MCAO and BMSCs. To further investigate the variability of microbial 
communities between the two groups, the ANOSIM test was used to test both Bray-
Curtis and Unweighted Unifrac algorithms (Bray-Curtis, r = 0.0769, P = 0.042; 
Unweighted Unifrac, r = 0.0679, P = 0.0415, respectively). The results showed 
significant differences in the microbial communities between the two groups.

BMSCs modulate gut microbiota after ischemic stroke
We next sought to explore the effect of treatment with BMSCs on the composition of 
the microbial structure. Figure 4A shows the abundance of microorganisms in the 
three groups, in which Bacteroidetes, Firmicutes, Proteobacteria, and Epsilonbac-
teraeota were the most significant contributors at the microbial phylum level. 
Compared with the Sham group, MCAO and BMSC increased the relative abundance 
of Proteobacteria, suggesting significant differences in the gut microbiota structure 
after stroke. Furthermore, we analyzed the differences in the relative abundance of 
microorganisms between the three groups at the level of genus (Figure 4B). The data 
showed that the relative abundance of Ruminococcaceae_UCG−005, Mycoplasma, 
Ruminiclostridium_5, Oceanimonas, and Marvinbryantia was significantly decreased, and 
the relative abundance of Escherichia−Shigella, Alloprevotella, Butyricimonas, ASF356, 
and Enterococcus was increased in the MCAO group compared with the Sham group. 
BMSC treatment increased the relative abundance of Ruminiclostridium_5 and 
decreased Butyricimonas and ASF356 at the species level. The dominant bacteria of 
MCAO and BMSCs are shown separately at the species level in Figure 4C and D. We 
concluded that species enriched in the BH group included Clostridium spp and Lachno-
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Figure 2 Histopathological changes in brain tissue of rats. Nissl staining in the hippocampal CA1 region for the Sham, middle cerebral artery occlusion, 
and bone marrow mesenchymal stem cells group exhibited brain injury after 21 d post-stroke (n = 3). Pathological observation of the hippocampus (magnification, × 
40). CA1 region of the hippocampus (magnification, × 100). The morphologies of neurons in the hippocampal CA1 region (magnification, × 400). BMSCs: Bone 
marrow mesenchymal stem cells; MCAO: Middle cerebral artery occlusion.

spiraceae spp, which are the potential species to produce short-chain fatty acid (SCFA). 
A comparison of potential SCFA producing bacteria in the feces revealed that 
depletion occurred in the MCAO group (Figure 4E). Additionally, it was observed that 
the relative abundance of Lactobacillus was significantly increased at the genus level 
after BMSC treatment (Figure 4F).

Predictive analysis of gut microbiota function
PICRUSt functional prediction analysis was based on 16S sequencing data annotated 
in the Greengenes database. Using PICRUSt software can predict the composition of 
known microbial gene functions and thus statistically different functions between 
groups. In this study, the Kyoto Encyclopedia of Genes and Genomes (KEGG) was 
used to assess microbial function, and 25 differentially KEGG functional pathways 
were identified between MCAO and BMSCs (Figure 5). The gut microbiota of BMSCs 
influenced the pathways of metabolism, including “Carbohydrate Metabolism”, 
“Biosynthesis of Other Secondary Metabolites”, “Glycan Biosynthesis and 
Metabolism”, “Lipid Metabolism”, “Metabolism of Cofactors and Vitamins”, 
“Metabolism of Other Amino Acids”, and “Xenobiotics Biodegradation and 
Metabolism”. We also found that BMSCs-enriched function pathways were associated 
with “Membrane Transport”, “Signaling Molecules and Interaction”, “Transport and 
Catabolism”, and “Transcription”.
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Figure 3 Abundance and structures analysis of intestinal microecology. A and B: Shannon and Chao index to present α-diversity of gut microbiota; C 
and D: mNDS and PCoA plot to illustrate the dissimilarities among microbiota structures. BMSCs: Bone marrow mesenchymal stem cells; MCAO: Middle cerebral 
artery occlusion.

DISCUSSION
For the first time, this study showed changes in gut microbiota after ischemic stroke 
treatment using BMSCs. BMSCs disrupted the composition and structure of gut 
microbiota, thereby affecting metabolic pathways in ischemic stroke.

Evidence from basic and clinical studies show that BMSCs can effectively treat 
patients with ischemic stroke[24]. Transplantation of BMSCs significantly enhances 
neurological functions after stroke[25], consistent with our results. We established that 
treatment with BMSCs significantly reduced mNSS scores and enhanced balance, 
coordination abilities, and learning memory in rats. Notably, cerebral ischemia caused 
neuronal damage in the hippocampus, striatum, thalamus, and cerebral and cerebellar 
cortices, with the CA1 region of the hippocampus being one of the most sensitive brain 
regions. Nissl staining revealed serious neuronal damage in rats after ischemic stroke, 
which explains memory impairment in the Morris water maze test. In contrast, BMSCs 
effectively protected the nerve cells.

Studies have confirmed complex interactions between gut microbiota and stroke. 
Xia et al[26] reported that Parabacteroides, Oscillospira, and Enterobacteriaceae among 
others were enriched in stroke patients, whereas Prevotella, Roseburia, and Fecalibac-
terium were enriched in healthy individuals[26]. In stroke patients, dysbiosis is closely 
associated with metabolism and inflammation. Besides, a specific genus of gut 
microbiota and associated metabolites are used as potential indicators for stroke 
prediction and prognosis[13,27]. In stroke animal models, similar alterations in gut 
microbiota have been detected. Singh et al[9] found that the most abundant phyla of 
Firmicutes, Bacteroidetes, and Actinobacteria overgrew in MCAO mice[9]. Chen et al[28] 
reported that after stroke, rats exhibited an increase in the abundance of opportunistic 
pathogens, including Alistipes, Bacteroides, Klebsiella, Shuttleworthia, Haemophilus, 
Fusobacterium, Faecalibacterium, Proteus, and Papillibacter[28]. After transplantation of 
BMSCs, we analyzed the changes in gut microbiota to investigate the role of gut 



Zhao LN et al. Ischemic stroke

WJSC https://www.wjgnet.com 1913 December 26, 2021 Volume 13 Issue 12

Figure 4 Bone marrow mesenchymal stem cells modulate the composition of gut microbiota. A: Taxonomic composition at the phylum level; B: 
Taxonomic composition at the genus level; C and D: Significantly different abundances at the species level between middle cerebral artery occlusion (MCAO) and 
bone marrow mesenchymal stem cells groups; E: Comparison of the abundance of potential short-chain fatty acid-producing species in the MCAO and BH groups; F: 
Relative abundances of Lactobacillus at the genus level between the MCAO and BH groups (aP < 0.05). The data are expressed as the mean ± SEM (n = 10). 
BMSCs: Bone marrow mesenchymal stem cells; MCAO: Middle cerebral artery occlusion.

microbiota in post-stroke rats. We found that BMSCs did not alter the α-diversity and 
structure of gut microbiota after stroke. Further assessments of the composition of 
microbiota structure suggested that BMSCs significantly increased the abundance of 
potential SCFA-producing bacteria.

Lachnospiraceae and Clostridium are the main groups of SCFA-producing bacteria
[29]. For mammals, SCFA is a critical gut microbial metabolite. It can be used as a 
substrate for the metabolism of cholesterol, glucose, and lipids, which provide nearly 
10% of daily caloric requirements[30]. Besides, it achieves its anti-inflammatory effects 
by activating G protein-coupled receptors (GPCR) to regulate T cells[31]. Additionally, 
SCFA protects and repairs the intestinal mucosal barrier by secreting mucus and 
stimulating tight junction protein expression[32].
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Figure 5 Alterations of microbial function. Heatmap illustrates the difference of Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways (KEGG level 
3) between middle cerebral artery occlusion and bone marrow mesenchymal stem cells groups. Welch's t-test was used for statistical analysis, and the pathways is 
displayed when P< 0.05. BMSCs: Bone marrow mesenchymal stem cells; MCAO: Middle cerebral artery occlusion.

The abundance of Lactobacillus has been shown to be significantly increased in 
cerebral infarction patients[33]. Interestingly, we found a significantly high abundance 
of Lactobacillus in the fecal matter of the BMSCs group. Bourriaud et al[34] realized that 
butyrate-producing bacteria ferment lactic acid to produce butyrate, which reduces 
inflammatory responses, thereby protecting the injured brain[34]. Given that BMSCs 
increase the abundance of potential SCFA-producing bacteria, an increase in Lactoba-
cillus leads to the production of more lactic acid to be fermented to butyrate, thereby 
improving neuroinflammation during stroke.

CONCLUSION
This is the first study to elucidate on alterations in gut microbiota after BMSC 
treatment in an ischemic stroke condition. We found that BMSCs potentially improve 
neurological damage after stroke by regulating gut microbiota. This provides a basis 
for future research into the role of BMSCs from the perspective of the "gut-brain axis".

ARTICLE HIGHLIGHTS
Research background
Ischemic stroke is a highly lethal and disabling disease that has a severe impact on the 
quality of life of patients. Gut microbiota is closely related to the treatment and 
prognosis of stroke. The improvement of neurological function by bone marrow 
mesenchymal stem cells (BMSCs) may be related to the regulation of gut microbiota.

Research motivation
Many studies have shown that gut microbiota plays an important role in immunity 
after stroke through the gut-brain axis.

Research objectives
To observe the regulation of gut microbiota after BMSC treatment.

Research methods
Rats were divided into three groups [Sham, middle cerebral artery occlusion (MCAO), 
and BMSCs]. Recovery of neurological function in rats after BMSC transplantation was 
observed by the modified Neurological Severity Scores (mNSS), beam walking test, 
and Morris water maze test. Pathological observation of hippocampal neuronal cells 
was conducted by Nissl staining. 16S rDNA sequencing was used to analyze the 
composition of gut microbiota.
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Research results
Transplantation of BMSCs significantly reduced mNSS scores (P < 0.01), and improved 
balance and coordination (P < 0.01), learning, and memory in rats. The structure of the 
C1 region of the hippocampus was clear and necrotic cells were significantly reduced 
after the intervention of BMSCs. Compared with the MCAO group, BMSCs effectively 
increased the relative abundance of short-chain fatty acid-producing bacteria and 
Lactobacillus in feces.

Research conclusions
Transplantation of BMSCs can regulate gut microbiota, which provides a potential 
therapeutic mechanism for stroke treatment.

Research perspectives
We demonstrated the modulatory effect of BMSCs on the gut microbiota after stroke, 
which provided an experimental basis for elucidating the gut-brain axis.
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Abstract
BACKGROUND 
One of the most challenging tasks of modern biology concerns the real-time 
tracking and quantification of mRNA expression in living cells. On this matter, a 
novel platform called SmartFlareTM has taken advantage of fluorophore-linked 
nanoconstructs for targeting RNA transcripts. Although fluorescence emission 
does not account for the spatial mRNA distribution, NanoFlare technology has 
grown a range of theranostic applications starting from detecting biomarkers 
related to diseases, such as cancer, neurodegenerative pathologies or embryonic 
developmental disorders.

AIM 
To investigate the potential of SmartFlareTM in determining time-dependent 
mRNA expression of prominin 1 (CD133) and octamer-binding transcription 
factor 4 (OCT4) in single living cells through differentiation.

METHODS 
Brain fragments from the striatum of aborted human fetuses aged 8 wk postcon-
ception were processed to obtain neurospheres. For the in vitro differentiation, 
neurospheres were gently dissociated with Accutase solution. Single cells were 
resuspended in a basic medium enriched with fetal bovine serum, plated on poly-
L-lysine-coated glass coverslips, and grown in a lapse of time from 1 to 4 wk. Live 
cell mRNA detection was performed using SmartFlareTM probes (CD133, Oct4, 
Actin, and Scramble). All the samples were incubated at 37 °C for 24 h. For 
nuclear staining, Hoechst 33342 was added. SmartFlareTM CD133- and OCT4-
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specific fluorescence signal was assessed using a semiquantitative visual 
approach, taking into account the fluorescence intensity and the number of 
labeled cells.

RESULTS 
In agreement with previous PCR experiments, a unique expression trend was 
observed for CD133 and OCT4 genes until 7 d in vitro (DIV). Fluorescence resulted 
in a mixture of diffuse cytoplasmic and spotted-like pattern, also detectable in the 
contacting neural branches. From 15 to 30 DIV, only few cells showed a scattered 
fluorescent pattern, in line with the differentiation progression and coherent with 
mRNA downregulation of these stemness-related genes.

CONCLUSION 
SmartFlareTM appears to be a reliable, easy-to-handle tool for investigating CD133 
and OCT4 expression in a neural stem cell model, preserving cell biological 
properties in anticipation of downstream experiments.

Key Words: mRNA detection; SmartFlareTM; NanoFlare; Live staining; Nanotechnology; 
Neural stem cell genes.

©The Author(s) 2021. Published by Baishideng Publishing Group Inc. All rights reserved.

Core Tip: The detection of RNA transcripts in living cells is a challenge in embryonic 
development and cancer related studies. In the last decade, a straightforward and 
noninvasive approach has emerged, exploiting the combination of nanotechnology and 
the physiological behavior of stem cells. Although SmartFlareTM technology is far from 
providing an unambiguous localization of specific mRNAs, it might help in elucidating 
the time-dependent dynamics of RNA expression at single-cell level, where results are 
coherent with those coming from both qRT-PCR and fluorescence in situ hybridization 
(FISH), the gold standards for mRNA analysis.

Citation: Diana A, Setzu MD, Kokaia Z, Nat R, Maxia C, Murtas D. SmartFlareTM is a reliable 
method for assessing mRNA expression in single neural stem cells. World J Stem Cells 2021; 
13(12): 1918-1927
URL: https://www.wjgnet.com/1948-0210/full/v13/i12/1918.htm
DOI: https://dx.doi.org/10.4252/wjsc.v13.i12.1918

INTRODUCTION
During the last decades, the proper signature of neural stem cells and their derivatives 
has been accomplished by tracking both proteins and mRNAs. Thus, the experimental 
setting is a real challenge when the production of certain proteins is scarce and the 
sensitivity threshold of the laboratory methods is inadequate. Furthermore, a snapshot 
of this phenomenon does not account for the pathway dynamics, such as axonal 
transport, fast secretion, and developmental mechanisms orchestrated by molecular 
gradients.

Historically, simultaneous detection at single-cell level by means of immuno-
chemical and FISH techniques can provide ultimate confirmation for the presence of a 
variety of signaling molecules. Nevertheless, the real-time monitoring of specific RNA 
transcripts and downstream proteins is limited by cell fixation and permeabilization 
dictated by the above techniques and the required lysis of tissues to extract RNA for 
qRT-PCR. This last molecular option provides information about gene expression 
levels, in heterogeneous populations, hiding the small but relevant differences and 
changes taking place in individual cells. Ultimately, the aforementioned methodo-
logies make incompatible further analysis (e.g., cell sorting and collection) particularly 
meaningful for addressing developmental issues. Within this context, an affordable 
and reproducible method aiming at encompassing both the kinetics and quantification 
of endogenous RNAs at cellular level has been brought by a group of researchers[1,2]. 
SmartFlareTM technology combines the high sensitivity of oligonucleotide-linked 
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nanoparticles with natural receptor-mediated endocytosis to uptake the same 
nanoconstructs. In particular, target RNA-specific complementary single stranded 
RNA (capture strand) is hybridized with a complementary “reporter” sequence bound 
to a fluorophore (Cy3 or Cy5) at its 5' -end that, for vicinity to the central gold particle, 
is permanently quenched. Only upon pairing with the target RNA sequence, the 
reporter strand can be released and consequently gain the feature to flare with 
fluorescent emission at the proper wavelength and intensity, consistent with the 
expression level of the target RNA. Since the introduction of the SmartFlareTM concept
[2-4], this molecular procedure has been successfully exploited for the identification 
and assessment of both tumor and immune cell subsets[5-8]. Interestingly, the 
SmartFlareTM technique could provide a wide spectrum of research applications, as 
identifying RNAs into mammalian conceptuses at different developmental stages has 
already been used as a proper model[9]. Indeed, SmartFlareTM allows the detection of 
RNAs specific for hereditary diseases, sex determination, performance and con-
formation traits in early embryonic stages[1,10-13], and the expression of pluripotency 
genes in embryonic stem cells and induced pluripotent stem cells (iPSCs) of murine, 
porcine and human origin[14]. Nevertheless, the ultimate confirmation of these 
experiments still relies on detecting the same transcripts by qRT-PCR.

To answer to some developmental issues related to the expression of the 
transcription factor Octamer-Binding Transcription Factor 4 (OCT4), involved in the 
differentiation process of human neurospheres in a time-dependent fashion[15,16], the 
mRNA pattern of OCT4 at single-cell level was analyzed from 3 to 30 d in vitro (DIV) 
using specific SmartFlareTM probes to assess a possible downregulation strictly linked 
to cellular maturation from stem/progenitor to neural phenotype. In parallel, a 
SmartFlareTM probe for Prominin 1 (CD133), encoding for a transmembrane gly-
coprotein widely recognized as a marker of neural progenitor cells, was tested[17,18].

Our findings suggest that SmartFlareTM technology is a straightforward tool for 
discriminating gene transcripts specifically related to some neural stem cell markers.

MATERIALS AND METHODS
Forebrain tissues were obtained from aborted human fetuses aged 8 wk postcon-
ception (Lund and Malmö University Hospitals) in accordance with guidelines 
approved by the Lund/Malmö Ethical Committee (ethical permit No. Dnr 6.1.8-
2887/2017). Brain fragments from the striatum were subjected to microdissection 
under a stereomicroscope (Leica, Germany), incubated for 30 min in an expansion 
medium at 37 °C, and then mechanically dissociated in order to obtain a single-cell 
suspension. Expansion medium DMEM/F-12 (1:1; InVitrogen, Life Technologies, 
United States), 2.92 g/100 mL L-glutamine, 23.8 mg/100 mL HEPES, 7.5% NaHCO3, 
0.6% glucose, and 2% heparin (all from Sigma-Aldrich, United States) contained B27 
supplement (1%; InVitrogen), human Leukemia Inhibitory Factor (LIF; 10 ng/mL; 
Sigma-Aldrich), Epidermal Growth Factor (EGF; R&D Systems, United States), and 
Fibroblast Growth Factor (20 ng/mL and 10 ng/mL, respectively; R&D Systems, 
United States). Live cells were thereafter counted by the Trypan Blue dye exclusion 
method before plating in culture flasks at the fixed density of 50.000 cells/mL, at 37 °C 
in a humidified atmosphere with 5% CO2. After several weeks, neurospheres were 
developed and supplied by the Laboratory of Stem Cells and Restorative Neurology 
(Lund). To determine the capacity of cells to form secondary spheres, single neu-
rospheres were first passaged and then plated for 1 wk. The newly shaped 
neurospheres were enzymatically dissociated with Accutase solution (Sigma-Aldrich) 
when at least 70% of them were below 100 μm in radial size or, if smaller, when before 
their inner core faded to dark, indicating an activated oxidative process and 
subsequent cell death.

For in vitro differentiation, pelleted neurospheres were incubated with Accutase 
solution for gentle dissociation for 10 min at room temperature (RT), followed by 
DMEM/F-12 addition for halting the enzymatic activity. After centrifugation, single 
cells were resuspended in 500 μL basic medium (without growth factors and heparin) 
containing 1% fetal bovine serum (FBS; differentiation medium) and plated on poly-L-
lysine-coated glass coverslips (5000-10000 cells/cm2)[16,19]. During the differentiation 
period (1-4 wk), the specific medium was refreshed every third day.

Live-cell mRNA detection was performed using SmartFlareTM probes, according to 
the manufacturer’s protocol (Merck Millipore, Temecula, CA, United States). Briefly, 
all the used probes were rehydrated by 50 μL of sterile nuclease-free double-distilled 
water to each vial and kept in the dark until needed. Immediately before the use, the 
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stock solutions were diluted 1:20 in sterile phosphate-buffered saline. Four μL of the 
same solutions were added to 200 μL of the medium for each tested probe. For each 
experiment, performed in triplicate, two control samples were run in parallel: a 
negative one made of a scramble construct that, therefore, does not recognize any 
cellular sequence and used to quantify the unspecific background (Scramble 
SmartFlareTM Probe); a positive control (uptake SmartFlareTM Probe) that permanently 
emits fluorescence supplying the information that the SmartFlareTM particles are 
uptaken by the target cell type. The following reagents were used: CD133 Hu-Cy3 
SmartFlareTM RNA Probe (SF-958), Oct4 Hu-Cy3 SmartFlareTM RNA Probe (SF-438), 
Actin-Cy3 SmartFlareTM RNA Probe (SF-145), Scramble-Cy3 SmartFlareTM RNA Probe 
(SF-103), and uptake-Cy3 SmartFlareTM RNA Probe (SF-114), all provided by Merck 
Millipore. All samples were incubated at 37 °C in a humidified atmosphere with 5% 
CO2 for 24 h, since in previous experiments the suggested 16 h incubation was 
evaluated not sufficient for the complete probe internalization. For nuclear staining, 10 
μg/mL Hoechst 33342 (InVitrogen) was added 5 min before evaluation. Observations 
were made using an inverted microscope (IX 71; Olympus, Tokyo, Japan) with a x40 
planapochromatic objective (PlanApo series; Olympus), taking care to grab all images 
with the same exposure time and filter set. Images (12-bit) were taken with a cooled 
monochrome CCD camera (Moticam Pro285D, Motic, China) with a 1360 × 1024 pixel 
chip. Image processing and analysis were performed using the Image-Pro Plus 
software (Media Cybernetics, United States).

SmartFlareTM CD133- and OCT4-specific fluorescence signal was assessed using a 
semiquantitative visual approach by three observers in a blinded fashion. This 
evaluation took into account both the fluorescence intensity and the number of labeled 
cells.

RESULTS
CD133 and OCT4 gene expression was analyzed by SmartFlareTM technology in 
dissociated human neurospheres upon differentiation commitment, accomplished by 
switching to growth factor withdrawn media along one-month time frame (from 3 to 
30 DIV), with 3 DIV as the minimum time needed by cells both to adhere to the 
substrate and to grow cytoplasmic area and processes. At 3 DIV, after incubation with 
specific SmartFlareTM probes, the morphological expression pattern for CD133 and 
OCT4 mRNAs (Figure 1A and B) was consistent with the Actin-positive cells 
(Figure 1C). Remarkably, when Hoechst-stained cells were not massively clustered but 
discernible as single elements, it was possible to evaluate that all cells displayed a 
diffuse but strong fluorescent signal, sometimes visible as converging single dots 
filling the thin cytoplasmic processes too. Similarly, the fluorescence of the CD133 
reporter probe was as intense as that of Oct4. The Actin housekeeping probe was 
clearly internalized as a fluorescent patch distributed from the perinuclear area to the 
peripheral branches, where it appeared as a granular content connecting distant cells 
(Figure 1C). Fluorescence detection in those living cells was considered a specific 
marker for mRNAs presence when compared to scramble experiments (Figure 1D), 
where any background was undetectable in most cells.

At 7 DIV, microscopic images exhibited a clear fluorescence both with CD133 and 
Oct4 probes (Figure 2A and B). Although the robust arborization network was still 
detected, in visible branches of very few cells it was observed the presence of 
fluorescent dots, representative of the molecular beacon-associated mRNAs. The 
reliability of the results was confirmed by the positive and negative controls 
(Figure 2C and D).

Cells grown for 15 DIV presented a marked decrease in the SmartFlareTM flu-
orescence signal, as it was limited to less than half of the analyzed cells, irrespective of 
the CD133 or Oct4 probe incubation (Figure 3A and B). In addition, the mRNA-like 
presence was confined to the cytoplasmic domain and always in the shape of tiny and 
few grains.

Finally, after 30 DIV, even fewer positive cells with specific signal were noticed and 
again the only morphological feature consisted of single dot-like elements, both in 
CD133 and Oct4 probe-treated cells (Figure 4A and B). Accordingly, in the last two 
experiments (15 and 30 DIV), Actin (Figure 3C and 4C, respectively) and Scramble 
(Figure 3D and 4D, respectively) signals were representative of the specificity of the 
resulting fluorescence.
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Figure 1 SmartFlareTM detection in 3 d in vitro neural stem cells. A and B: The expression pattern for both SmartFlareTM CD133 and Oct4 probes showed 
a diffuse and spotted-like fluorescence from the perinuclear area to the peripheral cytological processes; C: SmartFlareTM probe for Actin showed a robust and overall 
localization of red fluorescence as indicative of positive mRNA expression; D: Scramble probe-treated cells were almost completely lacking in unspecific red 
background. Nuclei were stained by Hoechst dye. Scale bar: 50 μm.

DISCUSSION
In this study, we carried out a simple and noninvasive RNA-based approach to 
monitor intracellular gene expression in living cells by fluorescent SmartFlareTM 

probes. In detail, this study focused on human neurospheres as neural stem cell 
reservoir, as this is a well-established model to study the progression of differentiation 
events giving rise to both neuronal and glial lineages. This is a very interesting topic to 
address, since it involves OCT4, one of the key genes implicated in encoding 
transcription factors prone to convert somatic cells into iPSCs and, therefore, necessary 
for the commitment of embryological events[20]. The rationale behind the present 
investigation dates back to a previous study, where the immunohistochemical 
presence of Oct4 protein was observed in neural stem cells during the first week of 
differentiation but disappeared after 4 wk. Coherently, in the same research, RT-PCR 
experiments supported OCT4 mRNA downregulation, as illustrated by the blurred 
bands of the electrophoretic assay[16]. Therefore, the advantage of SmartFlareTM probe 
uptake has emerged for challenging the quantification of mRNA gradient in specific 
and individual cells. Moreover, the same technique could be useful for identifying 
neural stem/progenitor cells eventually sorted for further characterization, avoiding 
any minimal alteration of morpho-functional and biochemical properties. With regard 
to Oct4, there are some further but possibly misinterpreting studies describing 
cytoplasmic staining due to splicing variants that make it critical to distinguish 
transcriptional products[21-24]. For this reason, this study conceived the experimental 
design of choosing the cell surface antigen CD133 as an alternative positive marker of 
neural stem cells[25]. The localization of OCT4 mRNA within cells has already been 
addressed by some researchers[26] using molecular beacon transfection in differen-
tiated human mesencephalic-derived neurospheres. However, after dissociation, 
adherent differentiated monolayers resulted lacking OCT4 expression. Interestingly, 
monolayered cells grown from neurospheres revealed the complete absence of mRNA 
expression just before the first week of differentiation, as further confirmed by 
immunocytochemistry. Indeed, the initial enthusiasm of the scientific community was 
damped by some studies reporting “A total lack of correlation between fluorescence 
intensities of SmartFlare probes and the level of corresponding RNAs assessed by RT-
qPCR”[27]. Recent data might explain the resulting different amounts of mRNA 
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Figure 2 SmartFlareTM detection in 7 d in vitro neural stem cells. A and B: SmartFlareTM CD133 and Oct4 probes fluorescence was less intense than the 
signal detected in 3 d in vitro neural stem cells, but still present in almost all cells; C: SmartFlareTM probe for Actin showed a robust and overall localization of red 
fluorescence as indicative of positive mRNA expression; D: Scramble probe-treated cells showed a very faint unspecific red background. Nuclei were stained by 
Hoechst dye. Scale bar: 50 μm.

detected by SmartFlareTM and qRT-PCR, due to cytoplasmic stress granules where 
mRNA can be sequestered and made unavailable to be processed for translation[28].

Mason et al[29] argued about the SmartFlareTM probes sequestration by the 
lysosomal machinery. However, by specific matching Lysosome-associated Membrane 
Protein 1 (LAMP-1) SmartFlareTM, these authors found a very low overlap (mean 
Manders’ coefficient 0.26), concluding that the unspecific SmartFlareTM fluorescence 
localized in lysosomes could be negligible compared to cytoplasmic staining. Our 
findings agree with the heterogeneity of SmartFlareTM expression, either diffuse 
cytoplasmic or spotted from the perinuclear site to peripheral processes (dendrites and 
axons). Moreover, ultrastructural evidence of gold nanoparticles, encapsulated within 
endosomal/lysosomal compartments, does not explain the spotted fluorescent pattern, 
unless enzyme digestion would degrade and remove the nanostructure links, 
ultimately quenching the fluorescence signal. So far, there is still no experimental 
evidence for that degradative machinery, and, on the other hand, it cannot be ruled 
out whether there are some alternative routes either passively or actively driven by 
cells.

By means of a qualitative analysis, the strength of the SmartFlareTM technology 
would not be affected by the decrease of the fluorescence intensity as a reflection of a 
reduced lysosomal activity, which occurs during cell differentiation[30]. Actually, as 
shown by our results, it is unlikely to detect all the cells in the same stage of replication 
or differentiation within single timepoints.

Although FISH is a well-established and reliable qualitative molecular method, the 
advantages of SmartFlareTM technology could reside in the opportunity of analyzing 
unfixed single living cells, retaining their viability, morpho-functional and biochemical 
properties and allowing downstream experiments[31]. In particular, this approach 
could help to detect and count stem/progenitor living cells, expressing markers of 
stemness, in terms of differential expression of the relative mRNAs, as well as 
microRNAs, which could find application in the profiling of tumor cell heterogeneity
[32,33]. Moreover, from an empirical perspective, the SmartFlareTM could be a quicker, 
easier and less expensive method than techniques involving RNA isolation. Thus, in 
agreement with the findings by Mason et al[29], our results might validate the 
SmartFlareTM technology as a reliable and easy-to-handle tool, at least in the qualitative 
analysis framework, although, in some cases, as usually happens, the possibility of an 
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Figure 3 SmartFlareTM detection in 15 d in vitro neural stem cells. A and B: SmartFlareTM CD133 and Oct4 probes showed a dramatic fluorescence 
downregulation that was limited to small cytoplasmic granules in less than half of the observed cells; C: SmartFlareTM probe for Actin showed a robust and overall 
localization of red fluorescence as indicative of positive mRNA expression; D: Scramble probe-treated cells were almost completely lacking in unspecific red 
background. Nuclei were stained by Hoechst dye. Scale bar: 50 μm.

Figure 4 SmartFlareTM detection in 30 d in vitro neural stem cells. A and B: SmartFlareTM CD133 and Oct4 probes showed few cells expressing a tiny 
granular pattern in the cytoplasmic domain; C: SmartFlareTM probe for Actin showed an abundant red fluorescence in all observed cells; D: Scramble probe-treated 
cells were almost completely lacking in unspecific red background. Nuclei were stained by Hoechst dye. Scale bar: 50 μm.
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artifact detection may arise.
In the prospect of controversial negative results, it should be considered that FBS 

supplementation in the culture medium could dramatically play a crucial role in the 
interpretation of target mRNA detection by SmartFlareTM technology, in terms of 
cytoplasmic distribution and localization. This methodological issue could partially 
explain the documentation failure by many research groups[19].

Despite the above-described unsolved criticism, some recent data on molecules and 
cells involved in immunological and inflammation response against cancer have 
renewed the interest in an innovative and effective platform to investigate some 
mRNA functions[34-36]. Besides, it cannot be denied that SmartFlareTM probe detection 
is not indicative of the real localization of single mRNA molecules. Nevertheless, those 
NanoFlare probes have paved the way to inspire a novel theranostic wave arising 
some new sticky-flares for in situ monitoring of human telomerase RNA[37], adopting 
photoactivation to detect mRNA in specific cells[38].

CONCLUSION
In conclusion, this new age of NanoFlare compounds has opened up or, at least, 
broadened biomedical applications, paying attention to preserving the physiological 
integrity of cellular systems with an excellent grade of selectivity and specificity[39].

ARTICLE HIGHLIGHTS
Research background
Although mRNA analysis is still conventionally achieved by fluorescence in situ 
hybridization and qRT-PCR, there is a strong need for real-time monitoring of specific 
RNA transcripts in living cells, both for a qualitative and quantitative assessment. 
Within this context, SmartFlareTM technology is a reliable tool for evaluating the 
presence and the upregulation/downregulation of mRNAs in individual living cells. 
In addition, this nanotechnology offers the advantages of retaining cell viability, 
morpho-functional and biochemical properties and allowing downstream 
experiments.

Research motivation
SmartFlareTM technology is a devoted and straightforward method for the spati-
otemporal investigation of the in situ mRNA expression in living cells.

Research objectives
To study the dynamics of differentiation-related RNA transcripts in human neural 
stem cells.

Research methods
The presence of CD133 and OCT4 mRNA-linked nanoprobes in neurosphere-derived 
cells (from 3 to 30 DIV) was investigated by SmartFlareTM as a reliable insight into 
neural stem cell differentiation.

Research results
Until 7 DIV, all the cells displayed a strong SmartFlareTM fluorescent signal indicative 
of CD133 and OCT4 mRNA expression, as single dots encompassing both the 
cytoplasmic domain and the related processes. Upon 15 DIV, cells showed a marked 
decrease in the fluorescence, both for CD133 and Oct4 probes. In cells grown for 30 
DIV, the CD133 and Oct4 probe uptake was very scant but still consisted of single dot-
like elements, representative of a downregulation of the same genes.

Research conclusions
Our findings propose the SmartFlareTM technology as a reliable and straightforward 
tool in the context of a qualitative expression analysis applied to a broad panel of 
mRNAs in single living stem cells.

Research perspectives
The NanoFlare technology, such as SmartFlareTM, could enhance the scenario of 
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biomedical applications in the field of marker identification mirroring both normal 
and pathological conditions, with the advantage of ensuring the physiological 
integrity of cellular systems.
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Abstract
BACKGROUND 
In degenerative intervertebral disc (IVD), an unfavorable IVD environment leads 
to increased senescence of nucleus pulposus (NP)-derived mesenchymal stem 
cells (NPMSCs) and the inability to complete the differentiation from NPMSCs to 
NP cells, leading to further aggravation of IVD degeneration (IDD). Urolithin A 
(UA) has been proven to have obvious effects in delaying cell senescence and 
resisting oxidative stress.

AIM 
To explore whether UA can alleviate NPMSCs senescence and to elucidate the 
underlying mechanism.
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METHODS 
In vitro, we harvested NPMSCs from rat tails, and divided NPMSCs into four 
groups: the control group, H2O2 group, H2O2 + UA group, and H2O2 + UA + SR-
18292 group. Senescence-associated β-Galactosidase (SA-β-Gal) activity, cell cycle, 
cell proliferation ability, and the expression of senescence-related and silent 
information regulator of transcription 1/PPAR gamma coactivator-1α (SIRT1/ 
PGC-1α) pathway-related proteins and mRNA were used to evaluate the 
protective effects of UA. In vivo, an animal model of IDD was constructed, and X-
rays, magnetic resonance imaging, and histological analysis were used to assess 
whether UA could alleviate IDD in vivo.

RESULTS 
We found that H2O2 can cause NPMSCs senescence changes, such as cell cycle 
arrest, reduced cell proliferation ability, increased SA-β-Gal activity, and 
increased expression of senescence-related proteins and mRNA. After UA 
pretreatment, the abovementioned senescence indicators were significantly 
alleviated. To further demonstrate the mechanism of UA, we evaluated the 
mitochondrial membrane potential and the SIRT1/PGC-1α pathway that regulates 
mitochondrial function. UA protected mitochondrial function and delayed 
NPMSCs senescence by activating the SIRT1/PGC-1α pathway. In vivo, we found 
that UA treatment alleviated an animal model of IDD by assessing the disc height 
index, Pfirrmann grade and the histological score.

CONCLUSION 
In summary, UA could activate the SIRT1/PGC-1α signaling pathway to protect 
mitochondrial function and alleviate cell senescence and IDD in vivo and vitro.

Key Words: Urolithin A; Mitochondrial function; Oxidative stress; Senescence; Nucleus 
pulposus-derived Mesenchymal stem cells; The silent information regulator of transc-
ription 1/PPAR gamma coactivator-1α pathway
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Core Tip: In degenerative intervertebral disc (IVD), an unfavorable IVD environment 
leads to increased senescence of nucleus pulposus-derived mesenchymal stem cells 
(NPMSCs), which seriously affects endogenous repair of IVD. Urolithin A (UA) 
alleviated oxidative stress-induced NPMSCs senescence by activating the silent 
information regulator of transcription 1/PPAR gamma coactivator-1α signaling 
pathway and protecting mitochondrial function in vitro. UA could also delay 
extracellular matrix degradation and IVD degeneration (IDD) in vivo. The results 
provide the possibility to promote endogenous repair and retard IDD.

Citation: Shi PZ, Wang JW, Wang PC, Han B, Lu XH, Ren YX, Feng XM, Cheng XF, Zhang 
L. Urolithin a alleviates oxidative stress-induced senescence in nucleus pulposus-derived 
mesenchymal stem cells through SIRT1/PGC-1α pathway. World J Stem Cells 2021; 13(12): 
1928-1946
URL: https://www.wjgnet.com/1948-0210/full/v13/i12/1928.htm
DOI: https://dx.doi.org/10.4252/wjsc.v13.i12.1928

INTRODUCTION
Low back pain seriously affects the quality of life and increases the economic burden 
on families and society[1,2]. Intervertebral disc degeneration (IDD) is the main 
pathogenic factor of low back pain, but its pathological mechanism has not yet been 
elucidated[3]. Therefore, exploring the pathological mechanism of IDD and seeking 
new methods for the prevention and treatment of degenerative disc diseases is of great 
significance to human health and social development.
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Nucleus pulposus (NP) cells play an important role by secreting a large amount of 
extracellular matrix (ECM) such as aggrecan and collagen type II to maintain the 
normal physiological function of the intervertebral disc (IVD) under physiological 
conditions. However, NP cells are terminal cells with low proliferation ability and no 
differentiation and self-renewal ability. In degenerative IVD, the number of NP cells is 
reduced, and their function is impaired, leading to a decrease in ECM secretion and 
aggravation of IDD. Endogenous repair is a specific repair mediated by tissue-specific 
stem cells and has been found to exist in a variety of tissues, such as the skin, liver and 
nervous system[4,5]. In 2007, Risbud et al[6] isolated and identified NP-derived 
mesenchymal stem cells (NPMSCs) in degenerative IVD, which provided a basis for 
the endogenous repair of IDD. However, the unfavorable microenvironment of 
degenerative IVD, such as inflammation, oxidative stress, and increased catabolism, 
leads to increased senescence and apoptosis of NPMSCs, which seriously affects 
endogenous repair[7]. Therefore, rescuing the activity of NPMSCs and delaying cell 
senescence is of great significance to alleviate IDD.

To date, natural metabolically active products have been widely found as important 
sources for drug discovery in antiaging and senescence-related diseases. Urolithin is a 
type of dibenzopyran-6-one derivative with different phenolic hydroxyl groups 
produced by intestinal microbial metabolism from foods rich in ellagitannins 
(pomegranate, strawberry, walnut, raspberry, etc.)[8]. Among them, urolithin A (UA) 
(Figure 1) was the first to be isolated and identified from the feces and urine of mice 
fed ellagic acid[9]. Previous studies found that UA can show biological effects, such as 
regulating estrogen secretion and antioxidant and anti-inflammatory activities[10-12]. 
Recently, the antiaging effect of UA has drawn considerable attention. Ryu et al[13] 
found that UA has a unique effect in inducing mitophagy, prolonging the lifespan of 
C. elegans and increasing muscle function in rodents. A previous study also found that 
UA could exert antiapoptotic and antiaging effects on NP cells[14,15].

However, there are few studies of the protective effect of UA on NPMSCs to date. In 
this study, we investigated whether UA could alleviate H2O2-induced NPMSCs 
senescence in vitro and in IDD animal models in vivo and elucidated the mechanisms 
involved in this progress.

MATERIALS AND METHODS
Isolation and culture of NPMSCs
This study was approved by the Ethical Committee of the Clinical Medical College of 
Yangzhou University (SBYY2020-023). Sprague-Dawley (SD) rats (weight, 200-300 g; 
age, 4-6 mo) were purchased from the Shanghai Institute of Family Planning Science 
[License No. SCXK (Hu) 2018-0006]. NPMSCs were harvested from the coccygeal IVD 
tissues of SD rats. Then, the NP tissues were isolated under a dissecting microscope 
and digested in 0.2% type II collagenase (Gibco, United States, catalog No. 17101015) 
for 12 h at 37 °C with 5% CO2. Then, the obtained cells and partially digested tissues 
were washed with phosphate-buffered saline (PBS) twice, and centrifuged at 1000 
r/min for 5 min, and then cultured in Mesenchymal Stem Cell Complete Medium 
(Cyagen, United States, catalog No. RASMX-90011) at 37 °C with 5% CO2. The culture 
medium was changed every three days. The cells were passaged at a 1:3 ratio at 80%-
90% confluence. NPMSCs used in the followed study was passage 3.

Surface marker identification of NPMSCs
The mesenchymal stem cell (MSC)-associated surface markers were examined by 
immunofluorescent staining. Cell slides with a diameter of 25 mm containing 
polylysine were placed in a 12-well plate, and NPMSCs were seeded and cultured in 
MSC complete medium. Then, the cells were fixed with 4% paraformaldehyde for 15 
min and washed twice with PBS containing 0.5% Triton X-100 for 15 min. Then, the 
cells were blocked with 10% bovine serum albumin for 1 h at 37 °C and incubated with 
primary antibodies against CD 105 (Proteintech, China, catalog No. 10862-1-AP), CD90 
(ABclonal, China, catalog No. A2126), CD73 (ABclonal, China, catalog No. A2029), 
CD34 (ABclonal, China, catalog No. A7429) and CD45 (ABclonal, China, catalog No. 
A2115) (1:100) at 4 °C overnight. The cell slides were washed twice with PBS and then 
incubated with secondary antibodies (Abcam, United Kingdom, catalog No. ab150077, 
ab150078) (1:500) for 1 h at room temperature. After treatment with the antifade 
mounting medium with 4’,6-diamidino-2’-phenylindole for 10 min, the cell slides were 
observed and recorded using a fluorescence microscope (Leica, Wetzlar, Germany).

http://creativecommons.org/Licenses/by-nc/4.0/
http://creativecommons.org/Licenses/by-nc/4.0/
http://creativecommons.org/Licenses/by-nc/4.0/
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Figure 1 Chemical structure of Urolithin A.

Multilineage differentiation
To demonstrate the multilineage differentiation potential of NPMSCs, osteogenic, 
adipogenic and chondrogenic differentiation was induced. NPMSCs were seeded in 6-
well plates and cultured until reaching approximately 80% confluency. Then, the 
culture medium was changed to osteogenic, cartilage and adipogenic differentiation 
medium (Cyagen, China, catalog No. RASMX-90021, RASMX-9004, RASMX-90031), 
and the medium was changed every 3 d according to the manufacturer’s instructions. 
After reaching the deadline of induction, the cells were washed with PBS and fixed 
with 4% paraformaldehyde for 20 min, and then the cells were processed with oil red 
O, alizarin red and alcian blue. Finally, the staining results were observed and imaged 
under a fluorescence microscope.

Cell viability assay
NPMSCs were seeded in 96-well plates at a density of 2 × 103 cells per well and 
incubated in complete medium overnight at 37 °C with 5% CO2. Then, NPMSCs were 
treated with different concentrations ((0-80 μM, 0-48 h) of UA (MedChem Express, 
China, catalog No. 1143-70-0). After that, 10% cell counting kit-8 (CCK-8) (Dojindo, 
Japan, catalog No. CK04) was added to each well at different time points, and the 
optical density (OD) value was read after 1 h of incubation at 480 nm by a microplate 
reader (Bio-Rad, United States). Cell viability was calculated as follows: Cell viability 
(of control) = [(Ae-Ab)/(Ac-Ab)]. Ae, Ab, and Ac represent the OD value of the 
treatment, blank and control groups, respectively. Similarly, to further determine 
whether UA works through the silent information regulator of transcription 1/PPAR 
gamma coactivator-1α (SIRT1/PGC-1α) pathway, different concentrations (0-160 μM, 
0-36 h) of the PGC-1α inhibitor SR-18292 (MedChem Express, China, catalog No. HY-
101491) were cocultured with NPMSCs.

NPMSCs were divided into four groups in the following examinations: (1) Control 
group; (2) H2O2 group (80 μM H2O2); (3) H2O2 + UA group (80 μM H2O2 + 20 μM UA); 
and (4) H2O2 + UA + SR-18292 group (80 μM H2O2 + 20 μM UA + 20 μM SR-18292).

Cell proliferation assay
NPMSCs (5 × 104 cells/well) were seeded in a 12-well plate and cultured in MSC 
complete medium. An EdU Cell Proliferation Kit (Beyotime, China, catalog No. 
C0071S) was used to detect cell proliferation. Subsequently, NPMSCs were incubated 
with EdU for 2 h and fixed with 4% paraformaldehyde for 15 min, and then cells were 
incubated with 0.3% Triton X-100 for 10 min according to the manufacturer’s 
instructions. Then, the cells were incubated with Click Reaction Mixture for 30 min 
and then incubated with Hoechst 33342 for 10 min in the dark. Finally, cells were 
observed and recorded using a fluorescence microscope and analyzed by ImageJ 
software (NIH, United States).

Cytotoxicity assay
Cytotoxicity was measured by the lactate dehydrogenase (LDH) activity in the 
supernatant using the LDH cytotoxicity assay kit (Beyotime, China, catalog No. C0016) 
according to the protocol. NPMSCs were seeded in 96-well plates (5 × 103 cells/well) 
and incubated in complete medium overnight at 37 °C with 5% CO2. Then, NPMSCs 
were treated with 80 μM H2O2, 80 μM H2O2 + 20 μM UA and 80 μM H2O2 + 20 μM UA 
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+ 20 μM SR-18292 in the H2O2 group, H2O2 + UA group and H2O2 + UA + SR-18292 
group, respectively. After that, 10% LDH release reagent was added to each well and 
incubated for 1 h. Then, the supernatant was transferred to a new 96-well plate and 
mixed with LDH detection working solution in the dark for 30 min. Finally, the OD 
value was detected at 490 nm by a microplate reader. The cytotoxicity was calculated 
as follows: Cytotoxicity (of control) = [(Ae-Ab)/(Ac-Ab)]. Ae, Ab, and Ac represent the 
OD values of the treatment, blank and control groups, respectively.

Senescence-associated β-Galactosidase staining
NPMSCs were seeded in a 6-well plate (1 × 104 cells/well), and senescence-associated β
-Galactosidase (SA-β-Gal) staining was performed according to the manufacturer’s 
instructions from the SA-β-Gal staining Kit (Beyotime, China, catalog No. C0602). 
NPMSCs were observed under a fluorescence microscope and analyzed by ImageJ 
software.

Cell cycle assay
NPMSCs were seeded in 6-well plates with serum-free medium overnight. After that, 
cells were collected and fixed with 75% ethanol overnight. Then, the cells were 
incubated with a mixed solution of propidium iodide (PI) dye and RNase A (Keygen, 
China, catalog No. KGA511) for 30 min, and the cell cycle phases were analyzed by 
flow cytometry (BD Company, United States).

JC-1 assay for mitochondrial membrane potential
Mitochondrial membrane potential (MMP) was measured using the JC-1 (5,5’,6,6’-
tetrachloro-1,1’,3,3’-tetraethylbenzimidazolcarbocyanine iodide) Detection Kit 
(Keygen, China, catalog No. KGA603). NPMSCs from different groups were washed 
with PBS and incubated with 2 μM JC-1 dye for 20 min. Then, the cells were washed 
twice with incubation buffer and observed using a fluorescence microscope. The ratio 
of green (depolarization) to red (polarized) fluorescence intensity was calculated using 
ImageJ.

Reactive oxygen species
The level of intracellular reactive oxygen species (ROS) in NPMSCs was measured by a 
ROS detection fluorescent probe-DHE kit (Keygen, China, catalog No. KGAF019). 
After different interventions in a 12-well plate, NPMSCs were washed twice with PBS 
and incubated with 20 μM DHE for 1 h at 37 °C according to the manufacturer’s 
instructions. Then, the cells were observed using a fluorescence microscope and 
analyzed by ImageJ.

Quantitative real-time polymerase chain reaction
Total RNA was extracted using TRIzol reagent (Invitrogen, United States, catalog No. 
15596-026). Reverse transcription from whole RNA to complementary DNA (cDNA) 
and amplification of the cDNA were performed using a Prime Script-RT reagent kit 
(Vazyme Biotech, China, catalog No. R123-01) and SYBR Premix Ex Taq (Vazyme 
Biotech, China, catalog No. Q111-02) according to the manufacturer’s instructions. The 
expression of target genes of NPMSCs in different groups was calculated by the 
comparative Ct method. The primers were designed according to the sequences in 
GenBank using Prime 5.0 software and are listed in Table 1.

Western blot assay
Total protein was extracted from NPMSCs by Whole Cell Lysis Assay (Keygen, China, 
catalog No. KGP250), and the protein concentration was measured using the BCA 
protein assay kit (Beyotime, China, catalog No. P0010). Then, an equal protein sample 
of each group was subjected to sodium dodecyl sulfate polyacrylamide gel electro-
phoresis and transferred onto a polyvinylidene fluoride membrane. After that, the 
membranes were blocked with 5% nonfat milk for 2 h at room temperature and then 
incubated with primary antibodies against β-actin (Proteintech, China, catalog No. 
20536-1-AP) (1:3000), p16 (Proteintech, China, catalog No. 10883-1-AP) (1:1000) and 
p21 (Proteintech, China, catalog 10355-1-AP) (1:1000) overnight at 4 °C. After washing 
three times with Tris-buffered saline and 0.1% Tween 20 (TBST), the membranes were 
incubated with secondary antibodies (Proteintech, China, catalog No. SA00001-2) 
(1:5000) for 2 h on a shaker at room temperature. Then, the membranes were vis-
ualized using an enhanced chemiluminescence system, and the relative amount of 
protein was analyzed using ImageJ software.
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Table 1 Sequences of primers used for real-time PCR

Gene Primer sequence

GAPDH Forward 5'-CTGGAGAAACCTGCCAAGTATG-3'Reverse 5'-GGTGGAAGAATGGGAGTTGCT-3'

P16 Forward 5'-CCGATACAGGTGATGATGATGG-3'Reverse 5'-CGGAGGAGAGTAGATACCGCAAA-3'

P21 Forward 5'-AGTTGGAGCTGGTGGCGTAG-3'Reverse 5'-AATACACAAAGAAAGCCCTCCC-3'

SIRT1 Forward 5'-AGATTTCAAGGCTGTTGGTTCC-3'Reverse 5'-CAGCATCATCTTCCAAGCCATT-3'

PGC-1α Forward 5'-GAGAAGCGGGAGTCTGAAAGG-3'Reverse 5'-GTCACAGGTGTAACGGTAGGTAATG-3'

GAPDH: Glyceraldehyde-3-phosphate dehydrogenase; SIRT1: Silent information regulator of transcription 1; PGC-1α: PPAR gamma coactivator-1α.

IDD animal model induction
Fifteen SD rats (weight, 200-300 g; age, 4-6 mo) were randomly divided into three 
groups (n = 5 per group): the control group (no operation), IDD group (punctured and 
DMSO treatment), and UA group (punctured and UA treatment). The SD rat IDD 
model was established according to a previous method[16]. Briefly, the rats were 
anesthetized by an overdose of pentobarbital. After sterilization with povidone iodine, 
the coccygeal IVD (CO6-7) was percutaneously punctured by a 21 G needle at a depth 
of 5 mm, followed by rotation at 360° and holding for 30 s. The UA group was given 
water containing UA (25 mg/kg/d, dissolved in DMSO and diluted in water) for 4 wk 
from the first day after surgery[13]. The control group and IDD group were given an 
equivalent volume of DMSO for 4 wk.

Radiographic and magnetic resonance imaging evaluation
Radiographic and MRI scans were taken prepuncture and 4 wk after puncture, 
respectively. The rats were placed in a prone position after anesthesia by inhalation of 
2% isoflurane. X-ray scans were performed, and the disc height index (DHI) was 
measured by ImageJ software[17].

The signal and structural change of the IVD were obtained by a 3.0-T clinical MR 
scanning system (Philips Intera Achieva 3.0 MR, Netherlands). Briefly, SD rats were 
maintained after inhalation of 2% isoflurane and then placed in a prone position. 
Sagittal T2-weighted images were evaluated according to the Pfirrmann grade[18].

Histologic analysis
All SD rats were euthanized by an overdose of pentobarbital after 4 wk of puncture. 
The IVD specimens were harvested and fixed with 4% paraformaldehyde, decalcified 
with 10% ethylenediaminetetraacetic acid solution, and embedded in paraffin. The 
specimens were cut into 5-μm sections, and the slices were stained with hematoxylin-
eosin (HE), toluidine blue and safranin-O stains. Histologic images of HE were 
evaluated following histologic grading scale criteria reported by Norcross et al[19].

Immunofluorescent staining
After the rats were killed, IVD specimens were harvested and cut into 5 μm sections 
with a freezing microtome (Leica, Wetzlar, Germany). The sections were then fixed in 
4% paraformaldehyde for 15 min and washed twice with PBS. Then, the sections were 
blocked with 10% bovine serum albumin for 1 h at 37 °C and incubated with primary 
antibodies at 4 °C overnight: rabbit polyclonal anti-collagen type II (ABclonal, China, 
Catalog No. A1560) (1:1000) and anti-aggrecan (ABclonal, China, Catalog No. A8536) 
(1:1000). After that, the sections were washed twice with PBS and incubated with 
secondary antibodies (Abcam, United Kingdom, catalog No. ab150077, ab150078) 
(1:500) for 1 h at room temperature in the dark. The sections were photographed by a 
fluorescence microscope and analyzed by ImageJ software.

Statistical analysis
All data were analyzed by Statistical Package for the Social Sciences (SPSS) software 
(version 26; IBM, Chicago, Illinois). The quantitative data are expressed as the mean ± 
SD. The data of multiple independent groups were analyzed by one-way ANOVA. 
Student’s t-test was used to analyze the differences between the two groups. P value < 
0.05 was significant.
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RESULTS
Identification of NPMSCs
The cells isolated from the rat coccygeal IVD presented with a long spindle shape and 
grew in flower formation (Figure 2A). As shown in Figure 2B, MSC-associated surface 
markers were identified by cellular immunofluorescence. CD105, CD90, and CD73 
showed high fluorescent expression, but CD34 and CD45 showed low fluorescent 
expression. The multilineage differentiation ability was confirmed by multilineage 
differentiation in vitro (Figure 2C). The results indicated that the cells isolated from the 
rat NP meet the appraisal standards of stem cells proposed by the International Society 
for Cellular Therapy (ISCT).

Measurement of cell viability
An appropriate concentration of H2O2 to induce oxidative stress damage in NPMSCs 
was confirmed in our previous study[20]. The viability effects of UA and the PGC-1α 
inhibitor SR-18292 on NPMSCs were analyzed using a CCK-8 assay. NPMSCs were 
cocultured with different concentrations of UA and SR-18292 supplemented culture 
media at different time points. As shown in Figure 3A, UA (0-20 μM) showed an 
appropriate inhibitory effect on cell viability for 24 h, but UA (> 40 μM) exerted a 
significant inhibitory effect (P < 0.05). Therefore, 20 μM UA was used as the final drug 
intervention concentration. Similarly, after incubation with different concentrations of 
SR-18292 at different time points, 20 μM SR-18292 for 24 h exhibited appropriate 
inhibition of cell viability and was used as the final drug concentration and 
intervention time (Figure 3B) (P < 0.05).

Measurement of cell proliferation and cytotoxicity
To elucidate the effect of H2O2, UA and SR-18292 on the proliferation ability of 
NPMSCs, we performed EdU staining of NPMSCs. As shown in Figure 3C-D, the 
EdU-positive rate of the H2O2 group was significantly lower than that of the control 
group (32.1% ± 5.4% vs 47.9% ± 5.8%, P < 0.05), and EdU-positive rate was increased 
by 12% after UA pretreatment. However, the protective effects of UA were reversed by 
SR-18292 (44.9% ± 5.7% vs 34.4% ± 5.9%, P < 0.05).

LDH release is regarded as an important indicator of cell membrane integrity and is 
widely used to assess cytotoxicity. As a common oxidative stress-inducing agent, 80 
μM H2O2 still had cytotoxicity compared to the control group (P < 0.01). However, the 
cytotoxicity induced by H2O2 was alleviated after pretreatment with 20 μM UA, which 
indicates that LDH release was alleviated after UA pretreatment (P < 0.05). After 
treatment with SR-18292, the protective effect of UA was partly blocked (Figure 3E) (P 
< 0.01).

Measurement of SA-β-Gal staining
SA-β-Gal is a parameter evaluating cellular senescence, and senescence cells with high 
SA-β-Gal activity are stained blue. NPMSCs of the H2O2 group demonstrated a higher 
percentage of SA-β-Gal staining positive than the control group (P < 0.01). The 
percentage of positive cells was decreased after UA pretreatment (P < 0.01). The 
percentage of SA-β-Gal-positive cells was increased when NPMSCs were cocultured 
with UA and SR-18292 before H2O2 treatment (Figure 4A-B) (P < 0.05).

Measurement of cell cycle
Cell cycle arrest is one of the common features of senescent cells. As shown in 
Figure 4C-D, a higher percentage of NPMSCs showed cell cycle arrest in G2/M phase 
in the H2O2 group than in the control group. The percentage of NPMSCs arrested in 
G2/M phase decreased after pretreatment with UA, indicating that UA could 
attenuate H2O2-induced cell cycle arrest. However, the percentage of cells arrested in 
G2/M phase increased after treatment with SR-18292 compared with UA pretreatment 
alone.

Measurement of MMP and ROS levels
The polarized MMP was stained orange-red fluorescence in the control group, 
whereas the red fluorescence intensity was weakened, and the green fluorescence was 
enhanced after H2O2 treatment (P < 0.01). Compared with the H2O2 group, the MMP of 
NPMSCs pretreated with UA was still in the orange-red polarization state (Figure 5A-
B) (P < 0.01).
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Figure 2 Identification of nucleus pulposus-derived mesenchymal stem cells. A: Isolated primary cells presented with a long spindle shape and grew 
in flower formation; B: Nucleus pulposus-derived mesenchymal stem cells (NPMSCs) exhibited high fluorescent expression of CD73, CD90, and CD105, but low 
fluorescent expression of CD34 and CD45; C: NPMSCs was positive for Alizarin red, Oil Red O, and Alcian blue staining after induced differentiation. Scale bar = 50 
μm. NPMSCs: Nucleus pulposus-derived mesenchymal stem cells.

Excessive generation of ROS damages mitochondrial dynamics. As shown in 
Figure 5C-D, the ROS level of NPMSCs in the H2O2 group was significantly higher than 
that of the control group, and the ROS level of the H2O2 + UA group was significantly 
lower than that of the H2O2 group (P < 0.01). However, the protective effect of UA 
decreased after treatment with SR-18292 (P < 0.01). This result indicated that UA 
protected the dynamics of mitochondria through the PGC-1α signaling pathway and 
avoided the accumulation of ROS.
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Figure 3 Cell viability assay, cell proliferation assay and cytotoxicity assay. A: Cell counting kit-8 (CCK-8) results of nucleus pulposus-derived 
mesenchymal stem cells (NPMSCs) treated with different concentrations and times of urolithin A (UA); B: CCK-8 results of NPMSCs treated with different 
concentrations and times of SR-18292; C: EdU assay results of NPMSCs in different groups. Green fluorescence represents cells in a proliferating state, and blue 
fluorescence represents cell nucleus (scale bar = 25 μm); D: Quantitative analysis of EdU results; E: Cytotoxicity results of NPMSCs treated with H2O2, H2O2 + UA 
and H2O2 + UA + SR-18292. All data are expressed as the mean ± SD. aP < 0.05, bP < 0.01 compared with control group; cP < 0.05, dP < 0.01 compared with H2O2 

group; eP < 0.05, fP < 0.01 compared with H2O2 + UA group. CCK-8: Cell counting kit-8; NPMSCs: Nucleus pulposus-derived mesenchymal stem cells; UA: Urolithin 
A.

Measurement of senescence-related and SIRT1/PGC-1α pathway-related mRNA and 
proteins
We further evaluated the expression of senescence-related mRNA and proteins (P16 
and P21) by western blotting and quantitative real-time polymerase chain reaction. As 
shown in Figure 6A-E, the expression of P16 and P21 in the H2O2 group was 
significantly increased compared with that in the control group (P < 0.05). However, 
the increased expression of P16 and P21 was alleviated by pretreatment with UA (P < 
0.05). Moreover, pretreatment with SR-18292 weakened this protective effect of UA 
and decreased the expression of P16 and P21 (P < 0.05).

To investigate whether UA plays a role by activating the SIRT1/PGC-1α signaling 
pathway, related mRNA expression was evaluated. The results showed that the 
mRNA expression of SIRT1 and PGC-1α decreased after H2O2 treatment, but their 
expression was upregulated after UA treatment (P < 0.05). Then, pathway-related 
mRNA expression was reversed by treatment with the inhibitor SR-18292, which 
indicated that UA might exert a protective effect by activating the SIRT1/PGC-1α 
pathway (Figure 6F-G) (P < 0.05).
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Figure 4 Senescence-associated β-Galactosidase staining assay and cell cycle assay. A: Senescence-associated β-Galactosidase (SA-β-Gal) 
staining results of nucleus pulposus-derived mesenchymal stem cells (NPMSCs) in different groups. Senescent cells exhibit blue-stained high expression of SA-β-
Gal. (scale bar = 25 μm); B: Quantitative analysis of SA-β-Gal staining results; C: Cell cycle results of NPMSCs in different groups; D: Quantitative analysis of cell 
cycle results. All data are expressed as the mean ± SD. aP < 0.05, bP < 0.01 compared with control group; cP < 0.05, dP < 0.01 compared with H2O2 group; eP < 0.05, f
P < 0.01 compared with H2O2 + UA group. SA-β-Gal: Senescence-associated β-Galactosidase; NPMSCs: Nucleus pulposus-derived mesenchymal stem cells; UA: 
Urolithin A.

Radiographic and MRI evaluation
X-ray images were performed to evaluate disc height at 0 wk and 4 wk after needle 
puncture, and DHI was used to assess the disc height. As shown in Figure 7A-B, there 
was no significant difference in DHI among the three groups at 0 wk (P > 0.05). 
However, the DHI of the IDD group (0.040 ± 0.001) was significantly decreased 
compared with that of the control group (0.104 ± 0.005) at 4 wk (P < 0.01). 
Furthermore, the DHI of the UA group (0.068 ± 0.003) was significantly higher than 
that of the IDD group (P < 0.01).

The degree of IVD degeneration was measured by MRI according to the Pfirrmann 
grade at 0 and 4 wk after puncture. As shown in Figure 7C-D, the Pfirrmann grade 
scores at 0 wk among the three groups did not show any significant difference (P > 
0.05). However, the Pfirrmann grade scores of the IDD group were significantly higher 
than those of the control group, and the Pfirrmann grade scores of the UA group were 
lower than those of the IDD group at 4 wk (P < 0.01). The results indicated that UA 
intervention could alleviate IDD in vivo.
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Figure 5 Mitochondrial membrane potential assay and reactive oxygen species assay. A: Results of mitochondrial membrane potential (MMP) in 
different groups detected by fluorescence. Red fluorescence represents the mitochondrial aggregate JC-1 and green fluorescence indicates the monomeric JC-1 
(scale bar = 50 μm); B: Quantitative analysis of MMP results; C: Results of reactive oxygen species (ROS) in different groups detected by fluorescence. Red 
fluorescence represents high level of ROS (scale bar = 50 μm); D: Quantitative analysis of ROS results. All data are expressed as the mean ± SD. aP < 0.05, bP < 
0.01 compared with control group; cP < 0.05, dP < 0.01 compared with H2O2 group; eP < 0.05, fP < 0.01 compared with H2O2 + UA group. MMP: Mitochondrial 
membrane potential; ROS: Reactive oxygen species; UA: Urolithin A.

Histological analysis
As shown in Figure 8A-B, HE staining clearly showed inner well-structured gel-like 
NP and outer concentric ring-like annulus fibrosis, inner NP and cartilage endplates in 
the control group. In contrast, the well-structured IVD tissue was destroyed, and the 
NP tissue almost disappeared in the IDD group. However, a small number of NP cells 
and ECM still existed in the UA group. The histological score of the IDD group was 
also significantly lower than that of the control group, but UA treatment increased the 
histological score (P < 0.01).

Safranin-O staining showed that the proteoglycan matrix (red positive tissue) level 
was significantly lower in the IDD group than in the control group. However, UA 
treatment protected the proteoglycan matrix from decreasing, and the proteoglycan 
matrix level in the UA group was higher than that of the IDD group. Similarly, 
toluidine blue staining revealed more NP chondrocytes in the UA group than in the 
IDD group.

Measurement of collagen type II and aggrecan
The expression of collagen type II and aggrecan in the disc tissue was assessed by 
immunofluorescence. As shown in Figure 8C-E, only a small portion of NP tissues 
showed positive expression of collagen type II and aggrecan in the IDD group, which 
were significantly lower than those of the control group (P < 0.01). However, the 
expression of collagen type II and aggrecan was higher than that of the IDD group 
after treatment with UA for 4 wk, which indicates that UA treatment can delay the 
downward trend of collagen type II and aggrecan (P < 0.05).
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Figure 6 Senescence-related and SIRT1/PGC-1α pathway-related mRNA and proteins assay. A: The expression of senescence-related proteins 
(P16 and P21) in different groups; B-C: Quantitative analysis of P16 and P21 protein expression results; D-E: Quantitative analysis of P16 and P21 mRNA expression 
results; F-G: Quantitative analysis SIRT1/PGC-1α pathway-related mRNA. All data are expressed as the mean ± SD. aP < 0.05, bP < 0.01 compared with control 
group; cP < 0.05, dP < 0.01 compared with H2O2 group; eP < 0.05, fP < 0.01 compared with H2O2 + UA group. SIRT1/PGC-1α: Silent information regulator of 
transcription 1/PPAR gamma coactivator-1α; UA: Urolithin A.

DISCUSSION
Our data demonstrated that UA could alleviate oxidative stress-induced NPMSCs 
senescence by activating the SIRT1/PGC-1α signaling pathway. NPMSCs harvested 
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Figure 7 X-ray and magnetic resonance imaging evaluation in intervertebral disc degeneration animal models. A: The X-ray in different groups 
at 0 wk and 4 wk after puncturing; B: Quantitative analysis of the disc height index in different groups; C: The magnetic resonance imaging results of different groups 
at 0 wk and 4 wk after puncture; D: Quantitative analysis of Pfirrmann grades in different groups. All data are expressed as the mean ± SD. aP < 0.05, bP < 0.01 
compared with control group; cP < 0.05, dP < 0.01 compared with H2O2 group; eP < 0.05, fP < 0.01 compared with UA group. DHI: Disc height index; MRI: Magnetic 
resonance imaging; IDD: Intervertebral disc degeneration; UA: Urolithin A.

from the rat tails presented long spindle shapes and grew in flower formation. The 
ISCT for MCS has proposed the minimal criteria to define MSCs: (1) Plastic adherence 
characteristics; (2) Expression of CD105, CD73 and CD90 and lack expression of CD45, 
CD34, CD14 or CD11b, CD79a or CD19 and HLA-DR surface molecules; and (3) 
Multilineage differentiation potential to osteoblasts, adipocytes and chondroblasts in 
vitro[21]. Acquired NPMSCs were also found to be positive for CD105, CD73 and 
CD90 and negative for CD45 and CD34 through immunofluorescence and to 
successfully differentiate into osteogenic, chondrogenic and adipogenic differentiation. 
According to the above results, the cells isolated from the NP tissues met the criteria 
stated by the ISCT.

H2O2 is commonly used to induce oxidative damage in mechanistic studies of IDD
[20,22]. The inflammation, apoptosis and senescence of NP cells and the apoptosis and 
senescence of NPMSCs are important pathological models for exploring IDD, which 
can all be induced by H2O2 treatment[23-26]. In our previous study, we confirmed that 
H2O2 treatment could decrease the viability of NPMSCs in a dose- and concentration-
dependent manner, and a concentration of 80 μM for 6 h could be used as a suitable 
concentration in vitro[20]. Cell senescence often exhibits the characteristics of 
irreversible cell cycle arrest, loss of proliferation capacity and reduced cell anabolic 
ability. We evaluated the senescence of NPMSCs induced by H2O2 through SA-β-Gal 
staining, cell cycle, cell proliferation ability and cytotoxicity. The results demonstrated 
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Figure 8 Hematoxylin-eosin, Safranin-O and Toluidine blue staining. A: Hematoxylin-eosin staining at 4 wk after puncture in different groups; B: 
Quantitative analysis of histological score in different groups (scale bar = 1 mm); C: The expression of aggrecan and collagen type II in different groups (scale bar = 
200 μm); D-E: Quantitative analysis of aggrecan and collagen type II in different groups. All data are expressed as the mean ± SD. aP < 0.05, bP < 0.01 compared 
with control group; cP < 0.05, dP < 0.01 compared with H2O2 group; eP < 0.05, fP < 0.01 compared with UA group. HE: Hematoxylin-eosin; NP: Nucleus pulposus; AF: 
Annulus fibrosus; IDD: Intervertebral disc degeneration; UA: Urolithin A.

that an increased positive rate of SA-β-Gal staining and cytotoxicity, arrested the cell 
cycle and weakened the cell proliferation ability were found after H2O2 treatment. As 
special markers, the expression of p16 and p21 is particularly important to reflect cell 
senescence and the cell cycle[27,28]. After H2O2 treatment, the decreased expression of 
p16 and p21 further confirmed that oxidative stress can induce NPMSCs senescence.

As a metabolite of ellagitannin and ellagic acid, UA shows anti-inflammatory, 
antioxidant and antiaging effects[10,11,13]. To explore the effect of UA on the sen-
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Figure 9 Schematic of protective effects of Urolithin A. Urolithin A activates the SIRT1/PGC-1α signaling pathway to protect mitochondrial function, 
alleviate nucleus pulposus-derived mesenchymal stem cells senescence in vitro, and delay intervertebral disc degeneration in vivo. SIRT1/PGC-1α: Silent information 
regulator of transcription 1/PPAR gamma coactivator-1α; NPMSCs: Nucleus pulposus-derived mesenchymal stem cells; UA: Urolithin A.

escence of NPMSCs, the effect of different concentrations and different time points of 
UA treatment on cell activity was assessed through CCK-8, and the results showed 
that 20 μM can be used as an appropriate intervention concentration. Then, NPMSCs 
were pretreated with UA before H2O2 intervention, and the results showed that the cell 
proliferation capacity was restored, the percentage of SA-β-Gal staining positive cells 
and the cytotoxicity induced by H2O2 was less than that of the H2O2 group, which 
indicated that UA might protect NPMSCs against oxidative stress damage. Moreover, 
the number of cells arrested in the G2/M phase decreased by 11.72% after UA 
pretreatment, allowing more cells to enter a new cell cycle.

A previous study found that UA potently prolongs the lifespan of C. elegans by 
activating mitochondrial biogenesis and mitochondrial functions[13]. Normal 
mitochondrial function is essential for maintaining intracellular energy metabolism
[29]. During the process of senescence, cells show an increased number of 
mitochondria and decreased membrane potential of these mitochondria. Decreased 
mitochondrial function results in the release of mitochondrial enzymes and overdose 
production of ROS[30]. By detecting the MMP of NPMSCs, we found that the content 
of J-aggregates of MMP after H2O2 treatment was significantly reduced (red flu-
orescence downregulated), while the content of J-aggregates was partly recovered 
after UA treatment. Thus, UA might have an antiaging effect by regulating the 
function of mitochondria. Similarly, Cásedas et al[31] investigated the antioxidative 
and neuroprotective effects of UA on the murine Neuro-2a neuroblastoma cell line and 
found that UA could improve mitochondrial activity, decrease lipid peroxidation and 
enhance the activity of antioxidant-related enzymes in cells subjected to oxidative 
stress. Excessive accumulation of intracellular ROS is also an important factor in cell 
senescence[32]. Oxidative stress leads to excessive ROS production, which further 
leads to DNA damage, protein damage and mitochondrial dysfunction[33]. The 
intracellular ROS content of NPMSCs was also decreased after UA pretreatment. 
Therefore, regulating mitochondrial function and reducing ROS production may be 
the main mechanisms by which UA exerts antiaging effects on NPMSCs.

As a classic pathway regulating mitochondrial function, the SIRT1/PGC-1α 
pathway has been proven to be involved in the regulation of multiple pathological 
processes, such as antiaging and oxidative stress[34,35]. SIRT1, a member of the 
NAD+-dependent Sir2 histone deacetylase family, has been reported to regulate 
mitochondrial function and reduce oxidative stress[36]. PGC-1α is a key regulator of 
mitochondrial biogenesis and function that can be activated by SIRT1 through 
deacetylation[37]. SIRT1/PGC-1α pathway activation attenuates oxidative damage and 
protects against metabolic disease, whereas the decreased activation of the 
SIRT1/PGC-1α axis is often closely related to some diseases characterized by 
mitochondrial disorders[35,37,38]. To address whether UA regulates mitochondrial 
function by activating the SIRT1/PGC-1α pathway to delay the senescence of 
NPMSCs, NPMSCs were treated together with the PGC-1α pathway inhibitors SR-
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18292 and UA. The results showed that the protective effect of UA was reversed by SR-
18292. We also further evaluated the mRNA expression of SIRT1 and PGC-1α, and the 
results showed that the expression of SIRT1 and PGC-1α was significantly upregulated 
in the H2O2 + UA group compared with the H2O2 group. However, the mRNA 
expression levels of SIRT1 and PGC-1α were downregulated after SR-18292 treatment, 
which indicated that UA may have an antiaging effect by activating the SIRT1/PGC-1α 
pathway.

To evaluate the protective effect of UA more comprehensively, we also admi-
nistered UA to IDD animal models. Delaying the loss of disc height and signal 
intensity of NP tissue also confirmed that UA can relieve IDD in vivo. Liu et al[15] 
found that UA treatment decreased matrix metalloproteinase production and the loss 
of collagen type II. We evaluated the expression of ECM at the histological level and 
found that UA can indeed delay the degradation of collagen type II and aggrecan, 
which further confirms that UA has a protective effect on degenerative IVD.

Admittedly, UA is reported to have pleiotropic properties, including the activation 
of signal pathways involving phosphatidylinositide 3-kinases, c-jun N-terminal kinase, 
nuclear factor-erythroid 2-related factor 2 and AMP-activated protein kinase[14,39,40]. 
However, in senescent NPMSCs induced by oxidative stress, we observed expression 
changes in pathway-related genes. Since we have not evaluated additional signaling 
pathways involved in the regulation of NPMSCs senescence, it is difficult to determine 
whether SIRT1/PGC-1α is the only pathway that regulates oxidative stress-induced 
NPMSCs senescence. Therefore, more signaling pathways that regulate the senescence 
of NPMSCs are worth exploring and discovering.

CONCLUSION
In summary, as shown in Figure 9, this study evaluated the protective effect of UA on 
oxidative stress-induced senescence in NPMSCs for the first time. H2O2 exposure could 
induce NPMSCs senescence and mitochondrial dysfunction. UA could activate the 
SIRT1/PGC-1α signaling pathway to protect mitochondrial function and alleviate cell 
senescence in vitro. UA could also delay ECM degradation and IDD in vivo. The results 
provide the possibility of promoting endogenous repair and retarding IDD.

ARTICLE HIGHLIGHTS
Research background
Intervertebral disc degeneration (IDD) is the main pathogenic factor of low back pain, 
but its pathological mechanism has not yet been elucidated. The isolation and identi-
fication of nucleus pulposus-derived mesenchymal stem cells (NPMSCs) provided a 
basis for the endogenous repair of IDD.

Research motivation
An unfavorable microenvironment of degenerative intervertebral disc such as inflam-
mation, oxidative stress, and increased catabolism leads to increased senescence 
NPMSCs, which seriously affects endogenous repair. Therefore, rescuing the activity 
of NPMSCs and delaying cell senescence is of great significance to alleviate IDD.

Research objectives
The present study investigated whether urolithin A (UA) could alleviate NPMSCs 
senescence induced by oxidative stress and the potential mechanism.

Research methods
The protective effects of UA against oxidative stress-induced senescence in NPMSCs 
were investigated by evaluating the senescence-associated β-Galactosidase (SA-β-Gal) 
activity, cell cycle, cell proliferation ability, mitochondrial function and reactive 
oxygen species (ROS). Additionally, the expression of senescence-related and the silent 
information regulator of transcription 1/PPAR gamma coactivator-1α (SIRT1/PGC-1α) 
pathway-related proteins and mRNA was also used to evaluate the protective effects 
of UA in vitro. In vivo, an animal model of IDD were constructed, and X-rays, magnetic 
resonance imaging, and histological analysis were used to assessed whether UA could 
alleviate IDD in vivo.



Shi et al. UA alleviates NPMSCs senescence

WJSC https://www.wjgnet.com 1944 December 26, 2021 Volume 13 Issue 12

Research results
in vitro, UA could reduce SA-β-Gal activity and senescence-related proteins and 
mRNA (P16 and P21) expression, alleviate cell cycle arrest and ROS production, 
stimulate cell proliferation ability and mitochondrial function by activating the 
SIRT1/PGC-1α pathway. In vivo, UA could alleviate an animal model of IDD by 
assessed the disc height index, Pfirrmann grade and the histological score.

Research conclusions
UA could activate the SIRT1/PGC-1α signaling pathway to protect mitochondrial 
function and alleviate cell senescence, and further delay extracellular matrix 
degradation and IDD, which provide the possibility of promoting endogenous repair 
and retarding IDD.

Research perspectives
We demonstrated the positive role of UA in attenuating oxidative stress-induced 
NPMSCs senescence and delaying IDD. UA may be successfully applied to IDD 
endogenous repair.
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