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Abstract
The first issue of World Journal of Stem Cells  (WJSC), 
whose preparatory work was initiated on September 
27, 2008, will be published on December 31, 2009. 
The WJSC Editorial Board has now been established 
and consists of 281 distinguished experts from 28 
countries. Our purpose of launching WJSC is to publish 
peer-reviewed, high-quality articles via  an open-access 
online publishing model, thereby acting as a platform 
for communication between peers and the wider 
public, and maximizing the benefits to editorial board 
members, authors and readers.

© 2009 Baishideng. All rights reserved.

Key words: Maximization of personal benefits; Editorial 
board members; Authors; Readers; Employees; World 
Journal of Stem Cells

Ma LS. What is the purpose of launching World Journal of 
Stem Cells? World J Stem Cells 2009; 1(1): 1-2  Available from: 
URL: http://www.wjgnet.com/1948-0210/full/v1/i1/1.htm  DOI: 
http://dx.doi.org/10.4252/wjsc.v1.i1.1

INTRODUCTION
I am very pleased to announce that the first issue of  World 
Journal of  Stem Cells (World J Stem Cells, WJSC, online ISSN 
1948-0210, DOI: 10.4252) will be published on December 
31, 2009. Originally, the journal was titled Stem Cells 
Review Letters when preparatory work was initiated on 
September 27, 2008. The WJSC Editorial Board has now 
been established and consists of  281 distinguished experts 
from 28 countries. 

The role of  academic journals is to exhibit the scientific 
levels of  a country, a university, a center, a department, 
and even a scientist, and build an important bridge for 
communication between scientists and the public. As we 
all know, the significance of  the publication of  scientific 
articles lies not only in disseminating and communicating 
innovative scientific achievements and academic views, 
as well as promoting the application of  scientific 
achievements, but also in formally recognizing the “priority” 
and “copyright” of  innovative achievements published, 
as well as evaluating research performance and academic 
levels. To realize these desired attributes of  a journal and 
create a well-recognized journal, the following four types 
of  personal benefits should be maximized.

MAXIMIZATION OF PERSONAL BENEFITS
The maximization of  personal benefits refers to the 
pursuit of  the maximum personal benefits in a well-
considered optimal manner without violation of  the 
laws, ethical rules and the benefits of  others.

Maximization of the benefits of editorial board members
The primary task of  editorial board members is to give a 
peer review of  an unpublished scientific article via online 
office system to evaluate its innovativeness, scientific 
and practical values and determine whether it should be 
published or not. During peer review, editorial board 
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members can also obtain cutting-edge information in 
that field at first hand. As leaders in their field, they 
have priority to be invited to write articles and publish 
commentary articles. We will put peer reviewers’ names 
and affiliations along with the article they reviewed in 
the journal to acknowledge their contribution.

Maximization of the benefits of authors
Since WJSC is an open-access journal, readers around 
the world can immediately download and read, free 
of  charge, high-quality, peer-reviewed articles from 
WJSC official website, thereby realizing the goals and 
significance of  the communication between authors and 
peers as well as public reading.

Maximization of the benefits of readers
Readers can read or use, free of  charge, high-quality peer-
reviewed articles without any limits, and cite the arguments, 
viewpoints, concepts, theories, methods, results, conclusion 
or facts and data of  pertinent literature so as to validate the 
innovativeness, scientific and practical values of  their own 
research achievements, thus ensuring that their articles have 
novel arguments or viewpoints, solid evidence and correct 
conclusion[1].

Maximization of the benefits of employees
It is an iron law that a first-class journal is unable to exist 
without first-class editors, and only first-class editors 
can create a first-class academic journal[2,3]. We insist on 
strengthening our team cultivation and construction so 
that every employee, in an open, fair and transparent 
environment, could contribute their wisdom to edit 
and publish high-quality articles, thereby realizing the 
maximization of  the personal benefits of  editorial board 
members, authors and readers, and yielding the greatest 
social and economic benefits.

CONTENTS OF PEER REVIEW
In order to guarantee the quality of  articles published 
in the journal, WJSC usually invites three experts to 
comment on the submitted papers. The contents of  
peer review include: (1) whether the contents of  the 
manuscript are of  great importance and novelty; (2) 
whether the experiment is complete and described clearly; 
(3) whether the discussion and conclusion are justified; 
(4) whether the citations of  references are necessary and 
reasonable; and (5) whether the presentation and use of  
tables and figures are correct and complete. 

SCOPE
The major task of  WJSC is to report rapidly original 

articles and comprehensive reviews on basic laboratory 
investigations of  stem cells and their application in clinical 
care and treatment of  patients. WJSC is designed to cover 
all aspects of  stem cells, including: embryonic, neural, 
hematopoietic, mesenchymal, tissue-specific, and cancer 
stem cells; the stem cell niche; stem cell genomics and 
proteomics; and stem cell techniques and their application 
in clinical trials. Papers published in WJSC will cover the 
biology, culture, differentiation and application of  stem 
cells from all stages of  their development, from germ cell 
to embryo and adult.

COLUMNS
The columns in WJSC will include: (1) Editorial: to 
introduce and comment on major advances in rapidly 
developing areas and their importance; (2) Frontier: 
to review recent developments, comment on current 
research status in important fields, and propose directions 
for future research; (3) Topic Highlight: this column 
consists of  three formats, including: (a) 10 invited review 
articles on a hot topic; (b) a commentary on common 
issues associated with this hot topic; and (c) a commentary 
on the 10 individual articles; (4) Observation: to update 
the development of  old and new questions, highlight 
unsolved problems, and provide strategies for their 
resolution; (5) Guidelines for Basic Research: to provide 
guidelines for basic research; (6) Guidelines for Clinical 
Practice: to provide guidelines for clinical diagnosis and 
treatment; (7) Review: to review systemically the most 
representative progress and unsolved problems, comment 
on current research status, and make suggestions for 
future work; (8) Original Articles: to report original and 
innovative findings; (9) Brief  Articles: to report briefly 
on novel and innovative findings; (10) Case Report: to 
report a rare or typical case; (11) Letters to the Editor: 
to discuss and reply to contributions published in WJSC, 
or to introduce and comment on a controversial issue 
of  general interest; (12) Book Reviews: to introduce and 
comment on quality monographs; and (13) Guidelines: 
to introduce consensuses and guidelines reached by 
international and national academic authorities on basic 
research and clinical practice.

REFERENCES
1 Zhu DM. What is the purpose of literature citation? Science 

Times, 2009-07-17. Available from: URL: http://www.
sciencenet.cn/htmlnews/2009/7/221552.shtm
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Abstract
Stem cell therapy is not a new field, as indicated by 
the success of hematopoietic stem cell reconstitution 
for various hematological malignancies and immune-
mediated disorders. In the case of tissue repair, 
the major issue is whether stem cells should be 
implanted, regardless of the type and degree of injury. 
Mesenchymal stem cells have thus far shown evidence 
of safety, based on numerous clinical trials, particularly 
for immune-mediated disorders. The premise behind 
these trials is to regulate the stimulatory immune 
responses negatively. To apply stem cells for other 
disorders, such as acute injuries caused by insults 
from surgical trauma and myocardial infarction, would 
require other scientific considerations. This does 
not imply that such injuries are not accompanied 
by immune responses. Indeed, acute injuries could 
accompany infiltration of immune cells to the sites 
of injuries. The implantation of stem cells within a 
milieu of inflammation will establish an immediate 
crosstalk among the stem cells, microenvironmental 
molecules, and resident and infiltrating immune cells. 
The responses at the microenvironment of tissue injury 
could affect distant and nearby organs. This editorial 
argues that the microenvironment of any tissue injury 
is a key consideration for effective stem cell therapy.

© 2009 Baishideng. All rights reserved.
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INTRODUCTION
The delivery of  stem cells, regardless of  their source, is 
expected to be within, or surrounding regions of  tissue 
injuries. This editorial discusses the mechanisms by which 
stem cells could interact with different molecules at and 
within areas of  tissue injury. For the purpose of  this 
review, the area of  injury and molecules found within the 
zones of  injuries are referred as microenvironments. The 
sources of  molecules with regions of  tissue damage are 
varied. For example, cytokines can be produced by cells 
within and around the damaged tissue; neurotransmitters 
can be released from damaged and/or intact nerve fibers 
as well as from infiltrating immune cells. While the sources 
of  molecules are varied, the types of  molecules belong 
to different families. These include, but are not limited 
to, peptides, cytokines, and extracellular matrix proteins. 
Interactions between cells and soluble molecules are 
two-way processes. While the stem cells respond by 
producing other factors, these factors stimulate the stem 
cells, through autocrine and paracrine mechanisms, to 
induce further changes in the stem cells. The mechanisms 
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of  these interactions could be positive and/or negative 
to the injuries. The questions that are pertinent for stem 
cells therapy include the method by which stem cells 
should be implanted at the region of  injury. Intuitively, 
one should consider if  the implanted stem cells should 
be delivered to allow for modulation of  the damaged 
microenvironment or vice versa. The answer to this key 
question will depend on the goal of  the therapy. Another 
question is whether the aim of  stem cell therapy is to attain 
protection that prevents further damage to the tissue or to 
replace damaged cells. This would require the stem cells to 
generate differentiated or specialized cells. In any event, the 
stem cells or specialized cells will establish crosstalk with 
cells and molecules within the microenvironment. 

Future therapies will need to consider the degree of  
changes within the microenvironment because tissue 
injuries differ. Furthermore, the milieu would differ at zones 
away from the area of  injury (Figure 1). If  future research 
studies show that altered tissue microenvironments could 
attain effective therapy by stem cells, such information 
will be crucial to stem cell therapies. Adjuvant treatments 
will be required for drugs to achieve the desired changes. 
Drugs are available to target a variety of  molecules and, 
when administered with stem cells, will enhance stem cell 
treatments. This editorial discusses general issues facing 
adult human mesenchymal stem cells (MSCs). These 
discussions could be extrapolated for any type of  stem cell 
and for methods to repair damaged tissues.

The immune properties of  adult human MSCs have 
been well studied. A review of  the list of  clinical trials 
with these stem cells (clinicaltrials.gov) shows their global 
application for various diseases. Based on the current 
large numbers of  trials with MSCs, it appears that these 
stem cells are safe for use in humans. However, a clear 
statement on their safety awaits longitudinal follow-up.

ALLOGENEIC VARIATIONS IN KEY 
CONSIDERATIONS FOR CHOICE OF 
STEM CELL TYPE
A major consideration in stem cell therapy is the 
availability of  “off  the shelf ” sources of  stem cells. 
In theory, all stem cells could be readily available for 
transplantation. The issue is whether particular “off  the 
shelf ” stem cells would be rejected by immunological 
reactions. While such rejections are expected for 
allogeneic stem cells, thus far, allogeneic MSCs seem 
to behave contrary to this dogma. It is important to 
discern the differences between the immune suppressive 
property of  a stem cell and its ability to elicit an immune 
response. In the case of  immune suppression, stem cells 
negatively regulate a reaction of  immune stimulation. If  a 
stem cell initiates an immune response from a host, that 
stem cell is perceived as foreign to the host. The latter 
response will be initiated by differences in the major 
histocompatibility class Ⅱ and/or class Ⅰ (MHC Ⅱ  
or MHC Ⅰ) molecules on the stem cells. On the other 
hand, although less studied, a stem cell can also act as 

an immune cell and initiate inflammatory responses by 
autologous immune cells.

Autologous stem cells, or stem cells from fraternal 
twins, are ideal cases for avoiding rejection of  the trans-
planted stem cells. However, probability of  obtaining stem 
cells from fraternal twins would be low. Furthermore, in 
cases where the fraternal twin exists, if  there is an injury 
that requires immune transplantation of  stem cells, it 
would be problematic to wait for expansion of  the stem 
cells. Immediate needs for stem cells include repair or 
protection of  brain injuries and cardiac infarct. It could 
be argued that some forms of  brain injuries could wait 
for the inflammation to subside, thereby providing health-
care workers a few days for the use of  autologous stem 
cells. There are two problems with this scenario; firstly, 
the stem cells might require weeks for expansion and 
characterization in a good manufacturing facility. Secondly, 
a particular organ is not mutually exclusive of  the other; 
thus, injury to one organ could cause damage to another 
where the stem cells might be located (Figure 1). Thus, 
during injury, stem cells from a distant organ could be 
defective, thereby leaving autologous stem cells as the 
preferred source for therapy.

If  organ-specific autologous stem cells are transiently 
damaged during injury, the time before these stem cells 
are ready for therapy would be significantly delayed. 
Additional studies are needed on the integrity of  au-
tologous stem cells at sites distant from injuries. Several 
reports show a brain-bone marrow connection, based 
on functional studies and anatomical evidence by nerve 
tracing analyses[1-3]. Furthermore, studies with surgical 
trauma patients reported dysfunctional bone marrow-
derived hematopoietic stem cells (HSCs)[4]. The next 
section discusses the immune properties of  MSCs and 

Microenvironment

Injury

Figure 1  A representative focal point of tissue injury. This central point 
expands to zones of injury with each region showing varied degrees of tissue 
damage. The responses from the zones of injuries, through nerve fibers, 
soluble factors, or immune cells, could establish cross communications with 
other distant organs.
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argues for investigational studies on the bidirectional 
communication between these stem cells and inflamma-
tory mediators within tissue microenvironments. It is 
imperative to dissect the responses of  MSCs at areas of  
tissue injuries, especially because these stem cells are in 
various trials for immune-mediated disorders[5]. 

MSCs
MSCs are ubiquitously expressed, with the adult bone 
marrow as the major source[6-9]. MSCs differentiate 
into specialized cells, for example stroma, osteoblasts, 
adipocytes and chrondrocytes, via distinct lineages[10]. 
Stroma and osteoblasts are key supporting cells for 
hematopoietic stem cells functions, and form functional 
links between the two major bone marrow resident stem 
cells: hematopoietic and MSCs[6,11,12]. MSCs and HSCs 
are located at distinct regions of  human bone marrow[13]. 
Hematopoietic stem cells prefer areas of  low oxygen, 
close to the endosteum, whereas MSCs surround the 
blood vessels where oxygen levels are relatively high [6,14,15]. 

Blood vessels and nerve fibers generally follow each 
other into bone marrow. Therefore nerve endings would 
be in close contact with MSCs surrounding the abluminal 
blood vessels of  bone marrow[6]. In fact, the anatomical 
literature shows nerve fibers forming synapse-like 
structures with reticular type cells of  bone marrow[8]. 
MSCs have been referred to as reticular cells[6], indicating 
that MSCs are in contact with the nerve endings. In 
other reports, MSCs, are referred to as pericytes and 
form contacts with neurons[16]. The nerve contact with 
MSCs could be significant, based on the identification of  
neurotransmitter receptors on MSCs[17,18].

MSCs show potential for clinical application with 
evidence of  tissue regeneration[19-23]. These stem cells 
could overcome the major obstacle associated with 
those of  allogeneic sources. MSCs show unique immune 
properties, underscoring their clinical use for preventing 
graft vs host disease (GVHD)[24,25]. MSCs exhibit a veto 
property, indicating that they could thwart GVDH as 
third party cells[26,28]. Interestingly, the veto function of  
MSCs is specific for GVDH-type reactions because 
similar suppression has not been observed in responses 
to recall antigens[28]. 

MSCs express genes for different cytokines and their 
receptors and act as antigen presenting cells (APCs), 
underscoring the immune plasticity of  MSCs as immune 
suppressor and immune enhancer cells[29-31]. The APC 
property occurs within a narrow window, followed by its 
reversion to an immune suppressor cell[29]. This bimodal 
property of  MSCs is important to prevent exacerbated 
inflammation. It is suggested that this dual role of  MSCs 
is responsible for homeostasis in bone marrow and 
prevents exacerbated hematopoietic suppression during 
inflammation[32-34].

The mechanisms by which MSCs exert immune 
suppression are complex. These functions involve 
reactions ranging from the production of  cytokines 

with immune suppressor functions to the stimulation 
of  regulatory T-cells and suppression of  T cytotoxic 
activity[5,30,35]. The expression of  MHC-Ⅱ, as well as the 
involvement of  interferon-gamma (IFN-γ) in the immune 
function of  MSCs, needs special attention[29,30]. A subset of  
MSCs expresses MHC-Ⅱ, which is decreased as the stem 
cells become specialized cells. This has been demonstrated 
in studies where the MSCs, transdifferentiated to neurons, 
show a gradual decrease in MHC-Ⅱ expression[36]. The 
addition of  IFNγ to the MSC-derived neurons resulted 
in re-expression of  MHC-Ⅱ. This indicates that in future 
stem cell therapy, the repair of  organs with replaced cells 
could re-express MHC-Ⅱ. These patients will need to be 
followed for long-term tolerance. However, these findings 
underscore the need further investigation to determine 
methods of  inducing anergy to the “foreign” MHC 
molecules.

PERSPECTIVE
Issues of  allogeneic vs autologous stem cell delivery are 
key points when considering stem cell therapies. Another 
consideration for effective stem cell therapy is changes to 
stem cells by microenvironmental-induced responses by 
the implanted stem cells. Another major consideration is 
the possibility of  tumor formation by the stem cells, even 
though the incidence of  such an occurrence would be 
greater in embryonic stem cells. However, one cannot be 
certain that tumors would not be a problem for adult stem 
cells.

The maintenance of  stem cells involves several genes, 
in particular those that are linked to cancer biology. Dur-
ing tissue injury, such as in traumatic brain injury, spinal 
cord injury, or myocardial infarction, the immune system 
will migrate towards the regions of  insult. Once in the 
area, the immune cells will produce several soluble media-
tors, such as cytokines and chemokines. These two fami-
lies of  mediators can act locally through specific receptors 
on MSCs[37]. The resulting functions will depend on the 
concentrations of  cytokines and the responses by the 
MSCs. The responses of  the stem cells could be beneficial 
and assist in the repair process, or can be deleterious. The 
latter could occur if  the reaction attracts additional im-
mune cells to exacerbate inflammation, activates genes in 
the stem cells that can cause tumor formation, or activates 
genes in the stem cells to produce factors prematurely, 
which would be produced by specialized cells. On the 
other hand, exacerbated immune reactions could be pro-
tective. Thus, the biology of  stem cells and the microen-
vironment of  the area of  tissue injury will determine the 
methods by which the therapies are developed. 

The following are relevant questions when consid-
ering stem cell delivery within the context of  varying 
microenvironments: (1) Should one type of  stem cell 
serve as effective therapy for a particular type of  tissue 
injury over another type? It is possible that one type of  
stem cell would be effective for a particular repair and 
another for a distinct injury; (2) Should the particular 
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type of  stem cell depend on the extent of  tissue injury? 
That is, one type of  stem cell might be better for acute 
injury and another for chronic injury; (3) Would the 
microenvironment influence the developmental stage at 
which stem cells are delivered? It is possible that the fac-
tors present would determine if  effective repair could be 
caused by undifferentiated vs partly vs completely differ-
entiated stem cells; and (4) Would translational science 
be more effective by partnership between academia and 
pharmaceuticals? The latter would have drugs readily 
available to combine with stem cells for therapies.

In addition to variations among regions of  tissue 
injuries, the method by which the stem cells are deliv-
ered is also an issue. While bioengineering has been an 
intense area of  investigation, other methods are also 
available. These types of  questions would entail inter- 
and multi-disciplinary teams to deliver stem cells to the 
clinic. There are numerous clinical trials of  stem cells; 
thus, it is time for the scientific community to determine 
if  stem cells can be referred to as drugs. This will be 
finally determined by the pharmaceutical companies as 
medicine moves to include stem cell therapies, perhaps 
for all types of  disorders.
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Abstract
Emerging evidence points to the existence of pan
creatic cancer stem cells (CSC) as the culprit in the 
initiation, maintenance, metastasis, and treatment 
resistance of pancreatic cancer. The existence of 
such a cell population would have an important im
pact on the design of novel therapies against this 
devastating disease. However, no in vivo  validation 
or rebuttal of the pancreatic CSC hypothesis exists. 
Major backlashes in the discussion on CSC are firstly, 
the confusion between the terms CSC and cell of 
origin of pancreatic ductal adenocarcinoma (PDAC), 
secondly the ambiguity of the cell of origin itself and 
thirdly, the fact that the CSC hypothesis is based 
on cell sorting and xenografting experiments; the 
latter of which often precludes solid conclusions 
because of the lack of a natural microenvironment 
and differences in drug delivery. Nonetheless, recent 
studies in other cancers partially support the CSC 
hypothesis by demonstrating a link between epithelial
tomesenchymal transdifferentiation/transition (EMT) 
and CSC properties. Such a link is again open to 
dispute as EMT is a reversible process which is highly 
dependent on major oncogenic pathways in PDAC [e.g. 
KRas, transforming growth factorβ (TGFβ)] rather 
than on presumed cancer stem cell pathways. Hence, 
the available evidence does not robustly support the 
CSC concept in PDAC and a thorough validation of 

this hypothesis in well-defined genetically engineered 
mouse models of pancreatic cancer is required.

© 2009 Baishideng. All rights reserved.
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INTRODUCTION
Pancreatic ductal adenocarcinoma (PDAC) is one of  
the most lethal cancers of  the gastrointestinal tract with 
less than an overall 5-year survival rate of  5%. It is well 
known that human tumors including PDAC display sig-
nificant heterogeneity in their respective cell populations. 
Based on normal hierarchical tissue architecture, the 
cancer stem cell hypothesis (CSCs) has been developed 
which suggests that only a specific subset of  cancer cells 
in each tumor is responsible for initiation, maintenance 
and metastasis[1]. Specifically, the concept implies that 
a small number of  stem or tissue-specific progenitor 
cancer cells give rise to the terminally differentiated or 
more committed progeny constituting the bulk mass of  
cancer, while at the same time these cells also maintain 
a process of  self-renewal[2]. Therefore, following the 
first characterization of  CSCs in acute myeloid leukemia 
(AML), the identification of  pancreatic cancer stem cells 
was also reported[3,4]. However, a validation of  the hy-
pothesis, especially in the context of  pancreatic cancer, 
does not exist. Confusion also derives from imprecise 
use of  the terms “cancer stem cells” and “cell of  origin” 
in PDAC which implies that cancer cells derive from 
normal tissue stem cells. This is of  particular importance  
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in the development of  PDAC because the cell or the cel-
lular compartment of  origin (i.e. ductal, acinar, centro-
acinar, endocrine, stem cells) is a subject of  controversy. 
Genetically engineered mouse models of  pancreatic duc-
tal adenocarcinoma have made use either of  mainly em-
bryonically active, pancreas-specific promoters such as 
pdx1 or p48 (with specificity towards the exocrine pan-
creatic cellular compartment) or of  inducible constructs 
driven by, for example, elastase expression to allow for 
Cre-recombination. Because neither a ductal- nor a 
centroacinar-specific promoter has been available so far, 
the cell of  origin of  PDAC remains obscure. However, 
initial data from genetically engineered mouse models 
have suggested that centroacinar cells which are consid-
ered to be pancreatic progenitor cells may be the cell of  
origin of  PDAC. In a seminal paper, it has been shown 
that de-regulation of  key pathways (e.g. PI3-K) in cen-
troacinar cells might have contributed to the initiation 
of  mouse PDAC[5,6]. Recently, some reports have argued 
that adult acinar cells can actually be transformed into 
pancreatic intraepithelial neoplasia and also into invasive 
adenocarcinoma , in the presence or in the absence of  
(chronic) inflammation[7-9]. These papers demonstrate 
that at least a subset of  adult, differentiated cells is read-
ily transformable into (pre-) malignant cells, suggesting 
that, if  existing, a “pancreatic cancer stem cell” is rather 
derived from a differentiated compartment than from 
undifferentiated pancreas stem cells. 

PANCREATIC CANCER STEM CELLS
So far, the CSC theory in pancreatic cancer largely 
relies on studies from FACS cell sorting according to 
the expression of  specific “stem-cell” markers (CD133 
or CD44/CD24/ESA) followed by xenografting of  
these cells into immune-compromised mice. Using such 
a system, a recent study reported that the combined 
blockade of  so-called pancreatic CSC self-renewal 
pathways and standard chemotherapy eliminated the 
presumed pancreatic CSCs and resulted in prolonged 
survival of  the transplanted mice[10]. Methodologically, 
this may not be an appropriate system for testing the 
CSC theory mainly because xenotransplantation itself  
has a number of  disadvantages. For example, it does 
not provide the kind of  real microenvironment which 
is usually required for the growth of  pancreatic cancer 
cells[11-14]. Furthermore, drug delivery in xenograft PDAC 
models has been shown to be completely different than 
in genetically engineered mouse models[15], underscoring 
the difficulties in interpreting these results. Thus, the 
scarcity of  so-called “tumor initiating cells” (i.e. CD133+ 
or CD44+CD24+ESA+) in human PDAC might in 
fact reflect the scarcity of  human tumor cells that can 
readily adapt to growth in a foreign (mouse) milieu. The 
non-transplantable human PDAC cells may simply lack 
critical features for obtaining stromal support in the 
foreign microenvironment, such as responsiveness to 
mouse cytokines or chemokines that attract the cells to 
a nurturing niche rather than “stem-cell” properties[16,17]. 

Indeed, results from mouse leukemia and lymphoma 
challenge the general applicability of  the cancer stem 
cell hypothesis to solid tumors because a substantial 
proportion of  cancer cells can seed tumors in syngeneic 
animals and no functionally distinct subpopulation is 
evident[18,19]. It has recently also been shown that randomly 
selected single cells derived from mouse lung or breast 
cancer cell lines were able to produce tumors after 
allografting into histocompatible mice[20]. Furthermore, 
CD133 which is employed as a marker for (pancreatic) 
CSC is also expressed by endothelial cell precursors 
which were shown to be capable of  enhancing growth 
of  transplanted human cancer cells[21] Thus, using CD133 
as a marker to isolate pancreatic cancer stem cells always 
carries the risk of  enriching such a cell population. 

EPITHELIAL-TO-MESENCHYMAL 
TRANSDIFFERENTIATION IN 
PANCREATIC CANCER
Recent evidence suggests that epithelial-to-mesenchymal 
transdifferentiation/transition (EMT) in PDAC marks 
an aggressive and, due to the expression of  markers 
of  CSC, a more “cancer stem cell-like” phenotype[22-24]. 
Accordingly, it has also been shown that highly metastatic 
pancreatic CSCs loose expression of  the epithelial cell 
marker cytokeratin[3] illustrating a potential link between 
EMT and the cancer stem cell hypothesis. However, 
such a link may rather be a side-effect than a true effect 
since EMT is a reversible process that can be induced 
by various stimuli [e.g. transforming growth factor 
(TGF-β)] in the tumor microenvironment[25]. It is likely 
that in the stepwise malignant transformation process, 
pancreatic cancer cells have gained an ability to adjust their 
differentiation status to given environmental influences. 
This hypothesis seems to be supported by a recent report 
showing that pancreatic cancers can be divided into K-ras-
dependent and -independent tumors. A comparison of  
these two classes of  cancer cells revealed a gene expression 
signature in K-ras-dependent cells that was associated with 
a well-differentiated epithelial phenotype[26]. However, no 
changes in CSC marker expression has been reported after 
induction of  EMT in such K-ras-dependent pancreatic 
cancer cells. Thus, the CSC “population” may also be 
considered as a transient state of  the parental cancer cells 
which again would argue against the central concept of  the 
cancer stem cell hypothesis.

CONCLUSION
Though the determination of  the validity of  the pancreatic 
CSC hypothesis would have an important impact on the 
design of  novel therapies, the available evidence does not 
robustly support the CSC concept in PDAC. Therefore, 
we suggest analyzing the concept in well-defined 
genetically engineered mouse models of  pancreatic cancer 
with the sole aim of  eradicating the hypothesized minor 
population of  CSC. Such experiments would determine 
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whether ablation of  this presumed population of  tumor-
initiating cells has an effect on the development and 
potentially also the progression of  the tumor. 
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Abstract
Embryonic stem (ES) cells have the ability to differ
entiate into all germ layers, holding great promise 
not only for a model of early embryonic development 
but also for a robust cell source for cellreplacement 
therapies and for drug screening. Embryoid body 
(EB) formation from ES cells is a common method for 
producing different cell lineages for further applications. 
However, conventional techniques such as hanging 

drop or static suspension culture are either inherently 
incapable of large scale production or exhibit limited 
control over cell aggregation during EB formation 
and subsequent EB aggregation. For standardized 
mass EB production, a well defined scale-up platform 
is necessary. Recently, novel scenario methods of 
EB formation in hydrodynamic conditions created by 
bioreactor culture systems using stirred suspension 
systems (spinner flasks), rotating cell culture system 
and rotary orbital culture have allowed largescale EB 
formation. Their use allows for continuous monitoring 
and control of the physical and chemical environment 
which is difficult to achieve by traditional methods. This 
review summarizes the current state of production of 
EBs derived from pluripotent cells in various culture 
systems. Furthermore, an overview of high quality EB 
formation strategies coupled with systems for in vitro  
differentiation into various cell types to be applied in 
cell replacement therapy is provided in this review. 
Recently, new insights in induced pluripotent stem (iPS) 
cell technology showed that differentiation and lineage 
commitment are not irreversible processes and this has 
opened new avenues in stem cell research. These cells 
are equivalent to ES cells in terms of both selfrenewal 
and differentiation capacity. Hence, culture systems for 
expansion and differentiation of iPS cells can also apply 
methodologies developed with ES cells, although direct 
evidence of their use for iPS cells is still limited.

© 2009 Baishideng. All rights reserved.
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INTRODUCTION
Embryonic stem (ES) cells are capable of  unlimited self-
renewal in vitro and differentiate into cells constituting 
all three somatic germ layers. ES cells were first isolated 
from the inner cell mass of  mouse blastocyst stage 
embryos[1,2], subsequently, followed by the derivation 
of  non-human primate and human ES cell lines[3,4]. 
Currently, an alternative method has derived pluripotent 
cells by retroviral transduction of  a combination of  four 
transcription factors, Oct4, Sox2, C-myc and Klf4 into 
somatic cells; known as “induced pluripotent stem (iPS) 
cells”[5,6]. These cells are equivalent with ES cells in terms 
of  both self-renewal and differentiation capacity[7,8]. The 
unique ability of  pluripotent cells to generate a vast range 
of  different cells makes both ES and iPS cells suitable 
for various cell transplantation, tissue engineering and 
drug testing applications. Efficient and controlled means 
of  directing ES or iPS cell differentiation is crucial for 
the development of  cell replacement therapies[9,10].

To realise the therapeutic potential of  ES cells, it is 
essential to regulate their differentiation in a reproducible 
manner. Differentiation of  ES cells is performed in two 
main ways; either by direct differentiation from pluripotent 
cells or through the formation of  cell aggregates in non-
adherent spheroids, called embryoid bodies (EBs)[11,12]. 
The molecular and cellular morphogenic signals and 
events within EBs recapitulate numerous aspects of  the 
embryo development and result in differentiation to cells 
of  three embryonic germ layers (endoderm, mesoderm, 
and ectoderm lineages), similar to gastrulation of  an 
epiblast-stage embryo in vivo[13]. The precise number and 
spatial coordination of  the various cell-cell interactions 
involved in EB formation are considered to influence 
the course of  ES cell differentiation and, as a result, the 
control of  cell number, size of  EBs and quality of  EB 
formation are important step directed differentiation 
strategies[14,15]. 

Methods of  inducing EB formation are based on 
preventing ES cells from attaching to the surfaces of  
culture vessels, thus allowing the suspended ES cells to 
aggregate and form EBs. Standard methods of  achieving 
EBs are via hanging drop and in static suspension culture 
to allow small scale formation of  aggregates. These 
culture systems maintain a balance between ES cell 
aggregation essential for EB formation and prevention 
of  EB agglomeration[16]. Even though hanging drop 
method is commonly used to prepare uniform-sized 
EBs (see details below), this method has disadvantages 
in the mass preparation of  EBs due to its labor-intensive 
procedure, which hinders the use of  differentiated ES 
cells for therapeutic application[17]. Mass EB production 
is easier from static suspension culture in which ES cells 

are suspended in a static Petri-dish. One drawback of  
this method, however, is that the EBs often fuse together 
to form large aggregates. This has negative effects on 
cell proliferation and differentiation, as well as causing 
extensive cell death. Hence, these methods are restricted 
as far as industrial applications are concerned because of  
their complication and difficult manageability[18].

Recently, novel bioreactors for large-scale production 
of  ES-derived cells have been developed. A bioreactor 
is often defined as a device in which biological processes 
(cell expansion, differentiation or tissue formation on 
biomaterial scaffolds) occur in a tightly controlled 
environment in vitro, including the exchange of  oxygen, 
nutrients and metabolites[19]. There are several types of  
bioreactors. For example, stirred suspension cultures 
(spinner flasks) have been successfully employed in some 
studies of  mass scale production of  ES-derived cells[20,21]. 
Conventional stirrer vessels may have the disadvantage 
of  generating shear forces and, although manageable, 
these forces still can damage the cells[22]. Another 
bioreactor that allows agglomeration-free EB formation 
is the rotating cell culture system (RCCS) developed by 
the US National Aeronautics and Space Administration 
(NASA). This system is characterized by EB immobility 
in space, due to an extremely low fluid shear stress and 
oxygenation by diffusion[23]. EBs produced by bioreactors 
were more uniform in size and had less necrotic centers 
in comparison to static suspension culture. Furthermore, 
bioreactors can be also used for culturing iPS cells, which 
is expected to become a main further application of  
mass EB production in the near future. This review is 
focused on EB production in different systems, provides 
data on a number of  existing bioreactors in comparison 
to conventional methods (hanging drop and static 
suspension culture) and describes differentiation of  end-
product EBs towards specific lineages. 

METHODS FOR CULTURING EMBRYOID 
BODIES
At the present time, no universally accepted standard 
exists for measurement of  EB formation although 
characteristics such as EB size, shape, homogeneity 
and the quality of  EB formation, ratio of  apoptotic 
and viable cell are typically used as benchmarks for 
evaluation[24]. There are several methods to generate 
EB formation, as schematically shown in Figure 1. A 
summary of  all of  the important methods (described 
below) is presented in Table 1. Traditionally the most 
common EB culture methods, such as hanging drop 
method and static suspension culture, were used for 
inducing differentiation.

Hanging drop method
The hanging drop method (Figure 1A) provides uniform 
sizes of  EBs by dispensing equal numbers of  ES cells in 
physically separated droplets of  media suspended from 
the lid of  a Petri-dish. This method offers a similar envi-
ronment for forming individual EBs within each drop via 
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Table 1  Overview of current in vitro  cell culture systems for production of EBs and other cell types

Cell culture methods Benefit Detriment Propose Yield Note Ref.

a b c d e f g h i j k l

1 Hanging drop 
method

x x x x Differentiation into 
three germ layers

ND Using mES cells [26]

2 Static suspension 
culture

x x Differentiation into 
three germ layers and 

neural lineage

ND Using mES cells [30,31]

3 Entrapment of ES 
cells (methylcellulose)

x x x x Differentiation into 
hematopoietic lineage

ND Using mES cells [26]

4 Multiwell/ 
microfabrication
4.1 Round bottomed, 
low attachment, 96 
well plate

x x x Differentiation into 
cardiac and neural 

lineage

94% of wells have a single EB 
with diameter of 415 microns

Using polyvinyl carbonate 
PCR plate without coating 

reagents

[37]

4.2 Low adherence, 96 
well plate coated with 
MPC or CS

x x x Differentiation into 
cardiac lineage

EB formed MPC and CS 
was increased cardiac 

differentiation 

Using mES cells [38]

4.3 Round bottomed, 
low attachment, 96 
well plate

x x x Differentiation into 
hematopoietic lineage

Single EBs were achieved from 
PC surface but not from PS 

surface

Comparison of EB 
formation derived various 

type of 96 well plate; PS 
and PS coated with MPC

[39]

4.4 Round bottomed, 
low attachment, 96 
well plate polyvinyl 
carbonate PCR plate

x x x Differentiation into 
cardiac lineage

Single EB achieved from PS 
coated with MPC was near 

100%

Comparison of EB 
formation derived various 

type of 96 well plate; PS 
and PS coated with MPC

[40]

4.5 Round bottomed, 
low attachment, 96 
well plate

x x x Differentiation into 
hematopoietic lineage

Differentiation was achieved 
with blood cells formed in 90% 

of EBs 

Force aggregation by using 
centrifugation; 
Using hES cells

[41]

4.6 V bottomed, 96 well 
plate

x x x Differentiation into 
cardiac lineage

> 90% EB formation was 
achieved from this method

Force aggregation by using 
centrifugation; 
Using hES cells

[43]

5 Bioreactor
5.1 A 2-L controlled 
spinner flask

x x x x x x x Differentiation into 
cardiac lineage

4.6 × 109 of cardiomyocytes 
were produced in a single run

Using MHC-neo ES cells [53]

5.2 Stirred x x x x x x x x Expansion and 
differentiation into 
three germ layers

ES cells went through 13 
passages over the same 28 d 

exhibiting higher pluripotency

Comparison of stirred and 
static suspension culture

[48]

5.3 Stirred x x x x x x x Differentiation into 
vascular lineage

ND ND [28]

5.4 Stirred x x x x x x x x Expansion and 
differentiation into 

neural lineage

10 fold increase towards neural 
differentiation

Using hEC cells [54]

5.5 Stirred x x x x x x x x Expansion and 
differentiation into 
osteogenic lineage

10 fold of calcium per total 
grams of protein increase over 

the control culture

Comparison of stirred and 
static suspension culture;

Transplantation

[75]

5.6 Stirred x x x x x x x Differentiation into 
hepatic lineage

No significant difference in the 
specific albumin productivity 
of EB derived from different 

groups

Comparison of stirred 
suspension culture and 

hanging drop

[81]

5.7 Stirred + 
encapsulation (HA and 
dextran)

x x x x x x x x Expansion and 
differentiation into 
three germ layers

Dextran can induce EB 
formation from ES cells

Using mES cells [31]

5.8 Stirred + 
encapsulation 
(agarose) + perfusion

x x x x x x x Differentiation into 
cardiac lineage

The cardiomyocytes 
production in encapsulated 

culture was higher than 
without encapsulation

Using MHC-neo ES cells;
Comparison of O2 tension

[72]

5.9 Two type of stirred,  
STLV and static 
suspension culture

x x x x x x Differentiation into 
cardiac lineage

EB formed GBI resulted in high 
EB yield with homogenous in 

size

Comparison of 
hydrodynamic condition 

(shear force)

[65]

5.10 RCCS (STLV and 
HARV)

x x x x x x Differentiation into 
three germ layers

3 fold enhancement in 
generation of EBs compared to 

static culture

Comparison of different 
type of bioreactors and 

suspension culture; 

[23]

Using hES cells
5.11 STLV x x x x x x Differentiation into 

cardiac lineage
> 90% of the NTEBs generated 

beating area
Comparison of STLV and 

static suspension

[62]

5.12 HARV+ 
encapsulation 
(alginate)

x x x x x x Differentiation into 
osteogenic lineage

ND Using mES cells [70]
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gravity-induced aggregation of  the cells. For this reason, 
this technique has been used to generate plentiful cell 
types such as neuronal cells[25], hematopoietic cells[26], car-
diomyocytes[27], vascular cells[28] and chondrocytes[29]. The 
hanging drop method is tremendously useful for appraisal 
of  molecular mechanisms occurring in early embryogen-
esis in any cell type. However, this technique is mainly 
used for research purposes and is not suitable for large 
scale of  EB production because of  its laborious nature; a 
typical 100-mm Petri dish can contain no more than 100 
drops and each drop usually creates only one EB[21]. Fur-
ther limitations of  this method include major difficulties 
in exchanging or manipulating the small volume of  me-
dium (less than 50 µL which can evaporate easily) without 
disturbing the EBs. Usually the hanging drop method is 
composed of  two steps; the aggregation of  ES cells in 
drops and maturation of  aggregates to EBs in suspension 
culture using low adherence bacterial Petri-dishes. Several 
elements of  the method may be troublesome such as loss-
es of  EBs during picking up the formed EBs by pipette 
and attachment of  premature EBs on Petri-dishes[17]. 

Static suspension culture
Static suspension culture (Figure 1B) is used to produce 
a large number of  EBs by simply inoculating a suspen-
sion of  ES cells onto a bacteriological grade Petri-dish, 
ultra-low adherence plate or a Petri-dish coated with cell 
adhesion inhibitor such as poly 2-hydroxyethyl methacry-
late (poly 2-HEMA), allowing the cells to spontaneously 
aggregate into spheroids[30]. Although simple, this meth-
od allows little control over the size and shape of  EBs. 
The result is frequent agglomeration of  EBs into large, 
irregular masses because of  the probability that ES cells 
encounter each other accidentally[26]. An additional limi-
tation of  this technique is that EBs may prematurely at-
tach to the plate because of  the surface chemistry of  the 
culture vessel, leading to a greater heterogeneity and loss 
of  EBs from the suspension culture. On another hand, 
this method is popular for some applications such as dif-
ferentiation of  ES cells into the neuronal lineage[31,32]. 

Encapsulation/entrapment
Encapsulation/entrapment of  a single cell suspension or 
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5.13 HARV+ 
encapsulation 
(alginate) + biograss

x x x x x x Differentiation 
into osteogenic 

lineage

ND Using 70s bioglass [71]

5.14 Rotary 
suspension culture 
using an orbital 
rotary shaker

x x x x x x Differentiation 
into three germ 

layers

20-fold enhancement in the number 
of cells incorporated into primitive 

EBs in rotary vs static conditions was 
detected in the first 12 h

Comparison of rotation, static 
suspension and hanging drop

[64]

5.15 Orbital shaker 
+ microsphere 
fibrification

x x x x x x x Differentiation 
into three germ 

layers

Degradable  PLGA microspheres 
releasing RA were incorporated 
within EBs and induced cystic 
formation earlier than in non 

microspheres

Degradable  PLGA 
microspheres releasing RA 

were incorporated within EBs 
and induced cystic formation

[68]

5.16 Perfused and 
dialyzed STLV

x x x x x x Differentiation 
into neural 

lineage

Perfused STLV can decrease 
in expression of markers of 

undifferentiated stage and increase 
in expression of markers of 

differentiation, specifically focusing 
on the neural lineage

Comparison of perfused and 
dialyzed STLV, perfused 

STLV, non-perfused STLV 
and suspension culture

[73]

a: Homogeneity of EB; b: Scalable production of EB; c: Controlled monitoring; d: Integrated single step of culture (expansion and differentiation); e: Easy 
to manage; f: Flexible culture cells; g: Heterogeneity of EB; h: Small scale production of EB; i: Labor-intensive procedure; j: Difficult to manage; k: Requires 
a lot of medium; l: Shear force; ND: No available data; EB: Embryoid body; MPC: Methacryloyloxyethyl phosphorylcholine; ES: Embryonic stem; hES: 
Human embryonic stem cells; mES: Mouse embryonic stem cells; PCR: Polymerase chain reaction; MPC plate: 96-well polystyrene plate coated with 
2-methacryloyloxyethyl phosphorylcholine; PS plate: Polystyrene plate; CS plate: A polystyrene plate coated with a type of glycosaminoglycan; HD: 
Hanging drop; hEC: Human embryonic carcinoma stem cells; MHC-neo: Myosin heavy chain-neomycin resistance; O2: Oxygen; RCCS: Rotating cell culture 
system; HARV: A high aspect rotating vessel; STLV: A slow turning lateral vessel; NTEB: EB derived from nuclear transfer ES; PLGA: Poly(lactic-co-
glycolic acid)/poly (L-lactic acid).
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(A) Hanging drop culture (C) Encapsulation of ES 
cell culture

(E) Low adherence, 96 
well plate round bottom (G) Stirred/spinner flask 

suspension culture

(H) STLV culture (I) HARV culture (J) Orbital shaker

Bioreactor methods

(B) Static suspension 
culture

Basic methods

(D) Entrapment of ES 
cell culture

Alternative methods

(F) Low adherence, 96 
well plate V bottom

Figure 1  Schematic representation for vessels used in methods to form EBs from ES cells.



small clusters of  ES cells in hydrogels (Figure 1C and D,  
respectively), such as methylcellulose[26], fibrin[33], hyal-
uronic acid, dextran[34], alginate[35], or agarose[36] represents 
a transition between hanging drop and static suspension 
approaches by generating individually separated EBs in 
a semi-solid suspension media. Entrapment of  ES cells 
in methylcellulose, a temperature sensitive hydrogel, 
improves the overall synchrony and reproducibility of  
EB differentiation as it produces EBs of  clonal origin. 
However, the efficiency of  EB formation from indi-
vidual ES cells can be rather low. In addition, soluble 
factor treatments and retrieval of  differentiated cells may 
be complicated by the presence of  the hydrogel mate-
rial[26]. Interestingly, this method showed the possibil-
ity of  designing a single cell culture system that would 
mimic the early developmental milieu and allow ES cells 
to switch between differentiation states within the same 
culture setting. When human ES (hES) cells are encap-
sulated in a 3D hyaluronic acid hydrogel, the hES cells 
can be maintained in an undifferentiated state. On the 
other hand, when hES cells are encapsulated in a dextran 
hydrogel, the hES cells are induced to differentiate and 
form EBs. Different types of  hydrogels, therefore, act 
as a unique microenviroment for maintaining ES cells in 
either undifferentiated or differentiating state[31]. 

Multiwell and microfabrication
As an alternative approach for EB formation and 
culture, multiwell (Figure 1E and F) and microfabrication 
technologies have also been developed recently. Round-
bottomed 96-well plates coated with or without reagents[37]; 
2-methacryloyloxyethyl phosphorylcholine (MPC)[38-40], 
glycosaminoglycan (CS)[24] and poly 2-hydroxyethyl 
methacrylate (poly 2-HEMA), have been utilized to 
prevent cell adhesion to the plastic surfaces. This technique 
is among the tools for forming EBs with high uniformity 
similar to the hanging drop method as a defined number 
of  ES cells is seeded in the separated wells. In contrast 
to the hanging drop method, this technique has no 
requirement to exchange or manipulate the medium 
(approximately 200 µL) and it is easier to observe directly 
the EB formation with a microscope during cultivation. 
Because of  these advantages, this technique may be used 
instead of  hanging drop method for laboratory research. 
The forced aggregation system, involving centrifugation 
of  ES cells within round-bottomed (U-shaped)[41,42] 

and triangle-bottomed (V-shaped) 96-well plates[43], can 
induce aggregation more rapidly than hanging drops. 
This procedure improves the reproducibility of  EB 
production. On the other hand, it still requires individual 
processing and manipulation of  the resulting EBs due 
to the requirement of  one more additional plating step. 
Microwells fabricated by lithographic methods yield EBs 
in an equivalent or at a much higher density than other 
methods and allow preparation of  size-controlled EBs in 
a scalable manner for reproducible of  EB formation[44]. 
Likewise, batches of  EBs can be formed in microfluidic 
chambers and separated from the flowing culture medium 
by a semi-permeable membrane, allowing for temporal 

control of  the molecular makeup of  the medium. The 
cell patterning method is also useful for high-throughput 
screening assays, such as the exploration of  biochemical 
agents to direct aggregate-induced differentiation into a 
specific lineage without plating EBs[45].

Bioreactors
Stem cell-based technologies and tissue engineering 
possibly permit a wide span of  clinical and biotechnology 
applications in future. Nevertheless, realization of  the 
potential of  stem cells will require their large-scale 
generation in a robust system without any limitation[46]. 
This highlights the requirement for the in vitro expansion of  
stem cells used for therapy prior to their commitment into 
tissue-specific applications. The potential of  bioreactors 
to address this is demonstrated by their capacity to 
support a robust and well defined scale-up platform for 
expansion of  ES cells[47], EB formation[48,49] as well as 
differentiation[50]. The scaling up of  the design, given mass 
transfer limitations, will depend on the type of  bioreactor 
chosen[51]. The theory of  selecting bioreactors for stem 
cell expansion and differentiation beyond bench scale is 
largely reliant on whether the cells are adherent, suspension 
grown as single cells or aggregates for EB formation[52]. 
Therefore, bioreactor culture systems must be designed 
according to the application. In addition, bioreactors have 
a significant advantage over static suspension culture which 
are as follows: (1) scale up of  expansion and differentiation 
of  ES cells; (2) no labor-intensive requirements; (3) no 
space requirement for available area of  ES cell growth; 
and (4) the ability to monitor and control critical culture 
parameters (i.e. pH, dissolved oxygen, glucose consumption, 
and lactic acid production)[53]. At the present time, EB 
formation in hydrodynamic conditions has been achieved 
by using bioreactors. They comprise (1) spinner flasks; (2) 
RCCS; (3) rotary orbital culture; and (4) complex methods 
combining these techniques. All of  these techniques 
generally improve ES cell aggregation and form EB faster 
and more homogeneously in size compared to typical static 
suspension cultures. 

Spinner flasks: Spinner flasks (Figure 1G) have been 
pioneered, as promising in vitro  systems for stem cell 
expansion, EB cultivation and differentiation of  ES/iPS 
cells into specific cell types[54]. Spinner flasks provide 
attractive benefits due to their simple design, scalable 
configuration, the flexible culture of  cells as aggregates 
on microcarriers[55] or scaffolds[56], and ease of  continu-
ous monitoring for tight regulation of  the culture en-
vironment (e.g. O2 tension, pH, shear forces, medium 
exchange rate)[57]. The simpler process in spinner flasks 
equipped with paddle-impellers results in the forma-
tion of  large ES cells agglomerates within a few days[58]. 
The scaling-up is generally straightforward because of  
improved mass transport achieved by stirring. However, 
the flow environment created by the impeller renders 
them inappropriate, due to the shear stress[59]. Numerous 
culture parameters for this system have been optimized, 
including the agitation rate, cell initial concentration, me-
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dium compositions, and different culturing approaches 
have been developed. In addition, a low rate of  paddle-
impeller stirring results in cell clumping in aggregation 
supporting EB cultures (leading to lower mass transport 
to the cells), while high rates of  paddle-impeller stirring 
can be harmful for the cells. Consequently, an optimal 
fluid velocity promoting the suitable shear stress for the 
cell type being cultured is critical[60]. 

RCCS: Cells in conventional stirrer vessels are exposed to 
hydrodynamic shear stress resulting in damage to the cells. 
Another approach for controlling EB agglomeration em-
ploys RCCS which is comprised of  a slow turning lateral 
vessel (STLV) (Figure 1H) and a high aspect rotating vessel 
(HARV) (Figure 1I), as a milder bioreactor. The advan-
tages of  these bioreactors are as follows: (1) horizontal ro-
tation is characterized by extremely low fluid shear stress; 
(2) fluid-filled culture vessels are equipped with membrane 
diffusion gas exchange to optimize oxygen levels; and (3) 
membrane area to volume of  medium ratio is high, thus 
enabling efficient gas exchange[61]. The type of  rotating 
vessel had significant impacted on the process of  hEB for-
mation and agglomeration; hEBs formed small aggregates 
with no necrotic centers in STLV. Conversely, hEBs of  
extensive cell aggregation with large necrotic centers are 
formed in HARV[23]. STLV rotating bioreactors were used 
for cultivating mouse ES (mES) and hES cells to produce 
EBs and to compare both the quality and quantity of  EBs 
with those from static suspension culture. ES cells grown 
in a STLV bioreactor were of  higher quality and yielded a 
nearly 4-fold increase in the number of  EB particles. EBs 
derived from a STLV bioreactor showed enhanced cardiac 
differentiation in comparison to static suspension cul-
ture[62]. 

Rotary orbital culture: Bioreactors may offer a more 
uniform differentiation environment capable of  sustaining 
increased EB and differentiated cell yield. However, these 
methods may not be suitable solutions for assessing 
multiple experimental samples in parallel because of  the 
requirement for larger-volume bioreactors. Orbital rotary 
shakers (Figure 1J) have been used to produce EBs as the 
constant circular motion provided by this simple system 
is good for improving the efficiency of  EB formation[63]. 
The advantages of  this technique include accommodation 
of  cell culture dishes on the rotary platform, easily 
allowing production of  numerous parallel samples and 
allowing comparison of  different experimental parameters. 
EBs formed by using orbital rotary shakers appeared 
to differentiate more efficiently than those produced in 
static suspension culture on the basis of  morphological 
appearance and gene expression profile patterns. A 20-fold 
enhancement in the number of  cells incorporated into 
primitive EBs in rotary versus static conditions was detected 
after the first 12 h, and a fourfold increase in total cell yield 
was achieved by rotary culture after 7 d[64].

Complex methods combining these techniques: 
Recently, complex methods combining the above 

mentioned techniques have been adopted for solving the 
problems of  these methods and keeping cells floating 
continuously in the culture medium. For example, the 
agglomeration of  cells was avoided by keeping EBs in 
Petri-dishes for several days before transferring them into 
a different kind of  environment; (1) spinner flasks; (2) a 
rotation culture system of  Petri-dishes which were rotated 
on a horizontal rotation device; (3) rotary suspension 
culture in dishes on an orbital rotary shaker; (4) direct 
seeding ES cells into a spinner flask equipped with a 
glass ball bulb-shaped impeller or (5) two litres Stirred 
Tank bioreactor (STR) equipped with a newly developed 
pitched-blade turbine impeller[65]. 

In other cases, the encapsulation of  ES cells was 
combined with transferring them into a bioreactor. For 
example, encapsulation of  ES cells in defined conditions 
(i.e. number of  cells per EB and capsule size); alginate[35], 
agarose[66], poly (lactic-co-glycolic acid)/poly (L-lactic acid) 
microsphere[67,68], hyaluronic acid[31] and Matrigel[69] was 
used to control agglomeration of  cells. Then, after the 
initial period of  EB formation, all encapsulated ES cells 
were transferred to a spinner flask. The encapsulation 
system allowed a 61-fold expansion in the number of  
cells, similar to the static control non-stirred culture but 
significantly higher than the stirred non-encapsulated 
system. Moreover, combination of  the encapsulation 
of  ES cells within alginate hydrogel, with or without 
70s bioglass, followed by culturing cells in an HARV 
bioreactor directly enhanced both osteogenic differ-
entiation in a functional test and generation of  functional 
3D mineralized constructs for further application of  
bone tissue engineering transplantation[70,71]. Finally, 
mES cells expanded as aggregates on microcarriers in 
stirred vessels retained expression of  stem cell markers 
and could form EBs. Perfusion combined with frequent 
feeding has been shown to increase the expansion of  
ES cells and their differentiation into specific lineages, 
without compromising their stem cell performance[72]. 
Additionally, the effect of  a rotary bioreactor promoted 
neural differentiation of  hES cells in perfused and dialyzed 
STLV. The mean time delay for growing to so-called 
‘‘neural rosette’’ formations was significantly shortened 
under STLV conditions compared to conventional 
static suspension culture. Likewise a perfused STLV 
bioreactor can decrease the expression of  markers of  
undifferentiated stage and increase the expression of  
markers of  differentiation, especially towards neural lineage 
commitments[73]. 

Recently, researchers have sought to develop culture 
systems with integrated bioprocesses, controlling stem 
cell expansion and differentiation tightly in a fully con-
trolled bioreactor environment. For example, ten fold 
increase in expansion of  ES cells as well as consequent 
neural differentiation was reported while drastically re-
ducing, by 30%, the time required for the differentiation 
process[54]. Moreover, microcarrier spinner flasks have 
been used for the culture of  mES and hES cell expan-
sion and directed differentiation. Mouse ES cells were 
allowed to proliferate on microporous collagen-coated 
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dextran beads (Cytodex 3), glass microcarriers, and mac-
roporous gelatin-based beads (Cultispher S) in spinner 
flasks[74]. Under different inoculated cell densities and 
microcarrier concentrations, mES cells on microcarriers 
showed increased yield of  approximate 70-fold (8 d) to 
about 190-fold (15 d). These cultured cells also success-
fully expressed Oct4, Nanog, and SSEA-1, and when 
dissociated from the beads, they formed EBs yielding 
cells with differentiation markers such as Flk-1, CD34 
and α-MHC (mesoderm), HNF-3b19 (endoderm), and 
b3-tubulin57 (ectoderm)[60].

Computer-controlled bioreactors
As mentioned before, the main advantage of  computer-
controlled bioreactors is process development by allow-
ing online monitoring and control of  specific culture 
parameters (temperature, pH, PO2, lactic acid production 
and glucose consumption), and ensuring a fully con-
trolled environment for stem cell cultivation[18]. Oxygen-
controlled bioreactors have been used for culturing mES 
and hES cell-derived cardiomyocytes. These experiments 
also assessed the effect of  oxygen tension on cardiac 
differentiation which is a main concern[72]. Moreover, 
this system was recently applied to culturing cells not 
only for stem cell expansion but also for differentiation. 
Expansion of  a variety of  stem cell types in bioreactors 
under defined and controlled conditions remains to be 
addressed. Future challenges also include the combina-
tion of  expansion and directed differentiation steps in 
an integrated bioprocess that will ultimately result in 
scale-up of  well differentiated cells to clinically relevant 
numbers. 

It is worth mentioning that although differentiating 
cells in bioreactors have numerous benefits, these cells 
have been assessed for functionality by transplantation, 
and did not always perform well. Ten and twenty days 
post-implantation ES cells derived chondrogenic and 
osteogenic bioreactor aggregates showed no obvious 
influence on the healing process. In these experiments, 
all of  the bioreactor derived cells showed higher Oct4 
expression in the aggregates, even after 30 d of  induced 
differentiation in a medium without LIF[75]. This empha-
sizes the importance of  proper condition set-up and 
timing during cultivation of  cells in bioreactors. 

EMBRYONIC STEM CELL DIFFERENTIATION 
TO CARDIOMYOCYTES USING 
BIOREACTOR
Regenerative medicine based on cell transplantation 
therapies has attracted increasing attention as a potential 
alternative to organ transplantation[76]. Pluripotent 
stem cells (ES/iPS cells), because of  their pluripotency 
and unlimited self-renewal capacity are promising 
cell sources to provide sufficient number of  cells for 
therapeutic applications. However, the expansion and 
differentiation of  these cells is still limited as a result of  
their complexity and difficult manageability in scale-up 

production for industrial purposes[77,78]. To solve these 
problems, bioreactor culture systems offer attractive 
advantages of  ready scalability and relative simplicity[79,80]. 

Recently, a single-step bioprocess for ES cell-derived 
cardiomyocyte production have been developed by 
combining methods to prevent ES cell aggregation (hydrogel 
encapsulation) and to purify for cardiomyocytes from the 
heterogeneous cell populations by using genetic selection 
(myosin heavy chain-neomycin resistance; MHC-neo), with 
medium perfusion in a controlled bioreactor environment. 
It has been shown that the cardiomyocyte yield per input 
ES cells achieved in encapsulated culture was much higher 
than without encapsulation (3.17 ± 0.90 vs 0.16 ± 0.07). 
Furthermore, higher cardiomyocyte yield was achieved 
under hypoxic conditions (4% oxygen tension) versus 
normoxia conditions (20% oxygen tension), when cultured 
in the stirred culture system[72]. In addition, a 2-L bioreactor 
process enabling the controlled generation of  EBs, 
derived from MHC-neo ES cell line, has been adopted for 
enhancing yield of  ES-derived cardiomyocyte production. 
The fill-and-draw feeding protocol was replaced in a 2-L 
bioreactor, which allowed constant medium supply and 
avoided daily fluctuations of  medium components. An 
optimized protocol resulted in more than five times greater 
cardiomyocyte yield, whereas medium consumption was 
40% less than that in the control system[53].

For the controlled large-scale generation for clinical 
and industrial applications in humans, the efficacy of  the 
dynamic process [Erlenmeyer, STLV bioreactor, Glass 
Ball Impeller (GBI) spinner flask and Paddle-Impeller (PI) 
spinner flask] was compared to static suspension culture in 
Petri-dishes by analyzing the quality of  EB formation and 
subsequent differentiation into cardiomyocytes. The EB 
prearrangement in the static system and EB cultivation in 
the GBI spinner flask resulted in high EB yield, a round 
homogenous shape, the fastest growth rate and high 
contracting EB percentages over all other systems[65].

As noted above, cardiomyocytes derived from ES 
cells are anticipated to be valuable for cardiovascular 
drug testing and disease therapies. However, the overall 
efficiency and quantity of  cardiomyocytes obtained by 
differentiation of  ES cells is still low. Recently, to enable 
large-scale culture of  ES-derived cells, we have tested a 
scalable bioprocess that allows direct EB formation in a 
well controlled STLV bioreactor system. Our laboratory 
has developed protocols of  cardiomyocyte differentiation 
from mES cells by using STLV. We have optimized the 
initial ES cell seeding density into the bioreactor, the 
rotation speed and the day of  transferring and plating of  
EBs on gelatin coated Petri-dishes. We have compared 
the quantity and quality of  EB production, as well as the 
efficiency of  cardiac differentiation of  samples derived 
form STLV, static suspension culture and hanging drop 
method. We found that the optimized rotary suspension 
culture method can produce a highly uniform population 
of  efficiently differentiating EBs in large quantities in a 
manner that can be easily implemented by basic research 
laboratories (Figure 2). Although EBs derived from STLV 
start rhythmically contracting later than static suspension 
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culture and hanging drop method, they beat with nearly 
100% efficacy (Figure 3). Furthermore, our results are 
similar to other reports of  EBs formed in STLV which 
were more uniform in size, and contained mostly viable 
cells whilst lacking necrotic centers. Additionally, STLV-
produced EBs differentiated into cardiomyocytes more 
efficiently than those from static suspension culture[62]. 
Hence, this method provides a technological platform for 
the controlled large-scale generation of  ES-derived cells 
for clinical and industrial applications. 

CONCLUSION
Bioprocessing and commercialization of  ES or iPS 
cells and tissue engineering products in cell replacement 
therapy have the potential to facilitate and transform 
breakthroughs from the research bench to the patient 
bedside. This is expected to be a long process, however, 
as there are many key practical issues to be addressed 
before moving ahead from the laboratory-scale 
fundamental research level. Laboratory-scale suspension 
cultures in hanging drops or Petri-dishes are useful tools 
for process development and initial optimization, and 
encapsulation/entrapment of  ES cells, multiwell and 
microfabrication methods can improve high-throughput 
EB production. However, these approaches are not 
suitable for further therapeutic application because of  
their labor intensive, time consuming nature, culture-
to-culture variability and lack of  monitoring. Bioreactor 
culture systems address many of  these problems and offer 

several advantages over the conventional use of  basic 
culture methods for expanding and differentiating ES 
cells into specific lineages, without compromising their 
stem cell performance. Future challenges in bioreactor 
development will include the design of  advanced and 
sophisticated monitoring platforms that allow monitoring 
at the cellular level of  parameters including temperature, 
pH and oxygen levels. With respect to ES or iPS cells, we 
envision a scenario, where a complete bioprocess would 
exist in the bioreactor for the expansion and subsequent 
differentiation of  the ES or iPS cells to generate the 
specialized cell type of  interest. For example, the current 
achievements with cardiomyocytes derived from ES cells 
would be developed into cardiovascular grafts tissue 
engineering, with an emphasis on its possible clinical use 
in cardiovascular surgery. The engineering of  a human 
cardiac tissue patch would be used to illustrate the 
biological requirements and engineering approaches for 
human applications. For future therapeutic application, the 
specialized cells differentiated from ES or iPS cells could 
then be used for cell therapies or combined with scaffolds 
to produce tissue construct and transplants for patients. 
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Abstract
In mice, gene targeting by homologous recombination 
continues to play an essential role in the understanding 
of functional genomics. This strategy allows precise 
location of the site of transgene integration and is most 
commonly used to ablate gene expression (“knock-
out”), or to introduce mutant or modified alleles at the 
locus of interest (“knock-in”). The efficacy of producing 
live, transgenic mice challenges our understanding 
of this complex process, and of the factors which 
influence germline competence of embryonic stem 
cell lines. Increasingly, evidence indicates that culture 

conditions and in vitro  manipulation can affect the 
germline-competence of Embryonic Stem cell (ES cell) 
lines by accumulation of chromosome abnormalities 
and/or epigenetic alterations of the ES cell genome. 
The effectiveness of ES cell derivation is greatly strain-
dependent and it may also influence the germline 
transmission capability. Recent technical improvements 
in the production of germline chimeras have been 
focused on means of generating ES cells lines with 
a higher germline potential. There are a number 
of options for generating chimeras from ES cells 
(ES chimera mice); however, each method has its 
advantages and disadvantages. Recent developments 
in induced pluripotent stem (iPS) cell technology have 
opened new avenues for generation of animals from 
genetically modified somatic cells by means of chimera 
technologies. The aim of this review is to give a brief 
account of how the factors mentioned above are 
influencing the germline transmission capacity and the 
developmental potential of mouse pluripotent stem 
cell lines. The most recent methods for generating 
specifically ES and iPS chimera mice, including the 
advantages and disadvantages of each method are also 
discussed. 

© 2009 Baishideng. All rights reserved.
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INTRODUCTION
Genetically altered mice offer researchers a powerful 
means to dissect and understand complex biological 
processes, as well as to manipulate gene expression, with 
the ultimate goal of  developing therapeutic strategies for 
a variety of  diseases including cancer, inflammatory and 
infectious diseases, and neurogenetic and cardiovascular 
disorders[1-5].

These mice are typically generated by means of  the 
introduction of  a specific population of  cells called 
“embryonic stem cells”, into a host preimplantational 
embryo. Embryonic Stem cells (ES cells) can self-replicate 
and are pluripotent. Originally, ES cells were isolated 
from blastocyst stage embryos[6], but recently a new 
method for generation of  induced pluripotent stem (iPS) 
cells from somatic cells has been developed[7]. iPS cells 
are derived from autologous somatic cells after genetic 
reprogramming and were first described by Takahashi  
et al[7] and were independently confirmed later by others. 
Recently, iPS technology has opened new avenues for the 
generation of  animals from genetically-modified somatic 
cells by means of  chimera technologies. Results from 
many independent groups suggest that mouse and human 
iPS cells, once established, generally exhibit a normal 
karyotype, are transcriptionally and epigenetically similar 
to ES cells and maintain the potential to differentiate into 
derivatives of  all germ layers. Injection of  iPS cells into 
diploid (2n) blastocysts, similar to ES cells, frequently gives 
rise to high-contribution chimeras (mice that show major 
tissue contribution of  the injected iPS cells in the host 
mouse), as has been shown by many different research 
groups[7,8]. A subset of  these chimeras has successfully 
demonstrated germline contribution. However, only two 
reports so far have used the most stringent assay, that is, 
tetraploid embryo complementation[9,10].

Typically, genetic reprogramming of  mouse and 
human somatic cells (iPS technology) can be achieved 
after ectopic expression of  a defined combination of  
4 transcription factors, namely c-Myc, Klf4, Oct4, and 
Sox2. It is known that c-Myc and Klf4 reprogramming 
factors are oncogenes and their expression or reactivation 
in iPS-derived mice causes tumors. The safety of  iPS cell 
derivation can be improved by excluding c-Myc and Klf4 
from the reprogramming cocktail or by selecting target 
cell types that already endogenously express these genes[11]. 
Recent studies provide a more efficient alternative that 
involves viral vector-free integration of  reprogramming 
genes, followed by their removal. Recent adenoviral 
and plasmid-based strategies used in conjunction with 
latest generation transposon technology (e.g. PiggyBac 
and Sleeping Beauty transposons) may now potentially 
overcome some of  these limitations[12-15].

 The definition of  “pluripotency” is that the cell 
can give rise to all three embryonic germ layers, i.e. 
mesoderm, endoderm, and ectoderm[16]. These three 
germ layers are the embryonic source of  all cells of  
the body. The pluripotent nature of  cells (either ES or 
iPS) is routinely tested by three methods. One test is to 

inject the cells into adult mice that are either genetically 
identical or are immune-deficient, so that the tissue will 
not be rejected. In the host animal, either when injected 
or when transplanted, these ES cells can become any 
cell in the body and form tumors called teratomas. A 
second test for pluripotency is to allow mouse ES cells 
to differentiate spontaneously in vitro, or to direct their 
differentiation along specific pathways. Within a few days 
after changing the culture conditions, ES cells aggregate 
and may form so-called embryoid bodies (EBs), further 
differentiating towards multiple cell lineages. Teratomas 
and EBs demonstrate that the ES cells are capable of  
developing into many cell types, derived from the three 
embryonic germ layers. Histological analysis has also 
demonstrated that iPS cells can give rise to teratomas 
comprising all three embryonic germ layers[17].

The third, in vivo method, is based on the capacity 
of  cells to participate in the formation of  germ cells 
when they are introduced into a preimplantational host 
embryo, resulting in the so-called “chimera mice”. 

 Chimera mice - or in brief  “chimeras” - were first 
created in the 1960’s by Kristoph Tarkowski and Beatrice 
Mintz, by means of  aggregating two eight-cell embryos, 
and were then produced by Richard Gardner and 
Ralph Brinster who injected cells into blastocysts. This 
revolutionary new technique opened up a new method for 
introducing any kind of  cell (even genetically- modified) 
into the host embryo, thus creating a new chapter in 
mouse embryology, as well as in biotechnology. 

The efficiency of  producing live, transgenic and 
germline mice requires precise understanding of  the 
mechanisms that could be vitally important for the 
maintenance of  pluripotency, and therefore germline 
transmission of  the ES cell lines. Despite successes 
in gene targeting in ES cells[18-20] during recent years, 
many factors that dramatically influence the efficiency 
of  germline chimera mice generation have not been yet 
fully investigated.

One factor is the prolonged culture of  cells. Once 
established and adapted to in vitro culture conditions, ES 
cells can be maintained for long periods of  time. Stem 
cell derivation and maintenance imply extensive in vitro 
culture. This has raised the question of  whether culture 
conditions could influence the developmental potential 
of  stem cells and whether loss of  germline capacity is 
due to the accumulated production of  chromosome 
abnormalities and/or epigenetic alterations. In mouse 
and large animal models, extensive work has been 
performed on the epigenetic effects of  in vitro culture. 
Indeed, recent work on ES cells has shown that stem-
cell-derived tissues and embryos often fail to maintain 
stable epigenetic states, or the normal diploid karyotype. 
Several studies have reported that accumulation of  
epigenetic alterations, mostly in the imprinted genes, 
is the major cause of  decreased or lost germline ability 
of  ES cells. On the other hand, aneuploidy, rather than 
“loss of  pluripotency”, in ES cells, is the one major 
cause of  failure in obtaining contributions to all tissues 
of  the adult chimera, including the germline. Euploidy is 
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predictive for germline transmission and the karyotype 
analysis is crucial in any gene-targeting experiment. 

Another factor is that, unfortunately, the founder 
mice are derived mostly from inbred strains, such as 
the C57BL/6 strain, which often shows poor viability 
or abnormalities due to developmental defects[2]. Still, 
the germline competency of  the majority of  ES cells 
(e.g DBA/1Ola, C3H/HeN, BALB/c, and FVB/N) is 
usually not comparable to the highly germline-competent 
129 strains (129/Sv, 129/SvEv, and 129/Ola) derived 
ones[21,22]. Few ES cell lines are currently available from 
inbred strains (e.g. C57BL/6, BALB/c) and those have 
generally been produced with low success rates. 

Another critical factor contributing to the success of  
germline-competent ES chimeras is the technique chosen 
to produce the chimeras. Attempts to improve the methods 
for generating ES mice chimeras were mainly carried out 
in order to establish ES cell lines with a higher potential 
for producing germline transmission. This strategy lead to 
the discovery that ES cell lines derived from hybrid mouse 
strains support the development of  viable ES mice to a 
greater extent when compared with inbred ES cells[2] and 
significantly improved the technique. Although the effect of  
donor ES cells on the production of  ES mice has been well 
studied, the technique still has a limitation in that ES mice 
can be generated only from specified ES cell lines. There 
are a number of  options for generating chimeras from ES 
cells but each method has its advantages and disadvantages. 
In this review we will examine some of  the conventional, 
and also the most recent methods for generating ES 
chimera mice, the advantages and the disadvantages of  each 
method, and the factors that should be taken into account 
when deciding on one method in preference to another.

FACTORS INFLUENCING GERMLINE 
TRANSMISSION CAPACITY OF 
PLURIPOTENT CELLS
The efficiency of  mouse ES cell germline transmission 
is strongly influenced by genetic background, and is 
maximized with ES cells that have spent a minimum 
amount of  time in culture, that have a normal comple-
ment of  chromosomes, and are not affected by epigenetic 
alterations. Here we give a brief  account about how 
the factors mentioned above influence the germline 
transmission capacity and the developmental potential of  
mouse pluripotent stem cell lines.

Genetic background
It is still far from clear why certain strains are more 
amenable to ES cell derivation than others. In recent years, 
embryonic stem cells have been derived from various 
mouse strains. However, 129 ES cells (ES cell lines derived 
from different 129 backgrounds) are still widely used, 
partially due to poor germline transmission of  ES cells 
derived from other strains. It is generally accepted that it 
is easier and more efficient to perform targeting for an ES 
cell line on a hybrid genetic background. A large number 

of  inbred strains of  mice exist, but only a small number are 
commonly used for establishing gene-targeted mice. 

Genetic heterozygosity is presumed to be a crucial 
characteristic for postnatal survival of  fully ES derived 
mice[23]. On the other hand, elimination of  genetic 
background variability associated mostly with the use of  
129 (129/Sv, 129/SvEv, and 129/Ola) embryonic stem (ES) 
cell lines, requires derivation of  germline-competent ES 
cell lines from inbred mouse strains with specific genetic 
backgrounds, enabling generation of  isogenic gene-
targeted and control mice[24,25]. Mutagenesis by homologous 
recombination in ES cells[26] is an important means to the 
understanding of  the molecular mechanisms of  higher 
brain functions. This study requires gene targeting in 
embryonic stem (ES) cells derived from the strain suitable 
for brain function analysis and with a homogenous genetic 
background, such as the C57BL/6 strain. Auerbach et al[21] 
compared 129 and C57BL/6 ES cells and found that cells 
on C57BL/6 background are more sensitive to culture 
conditions and that it is more difficult to maintain them in 
culture than the 129 derived ones. Similar conclusions have 
also been reached by others[25].

Germline-competent ES cells have also been derived 
from other inbred strains, including C57BL/6, however, 
competency of  germline transmission of  these ES cell 
lines is not comparable to that of  the 129 ES cells[20-24]. 
The developmental potential of  C57BL/6 ES cells seems 
to be lost during cell culture in vitro[2], and seems to depend 
on several factors, such as the serum or even the feeder 
cells used for ES cell culturing. The quality of  serum 
(even having the same catalogue number, but coming 
from different lots), pH of  medium and the quality/origin 
of  feeder layers used in different experiments can cause 
decreased developmental potential. Therefore care should 
be taken to introduce a broad variety of  culture conditions 
in order to take ES cells germline. Mouse iPS cells are 
indistinguishable from embryonic stem (ES) cells in many 
respects and the production of  germline-competent 
chimeras, and although this has not yet been studied, it is 
probable that it would also be influenced by the genetic 
background.

Some recent studies have described increased efficiency 
of  derivation of  germline- competent inbred ES cell lines, 
mostly by modifying current culture conditions[27,28] and 
have reported that using a culture medium conditioned 
by a rabbit fibroblast cell line and transduced with 
genomic rabbit leukemia inhibitory factor allows efficient 
derivation of  ES cell lines from 10 inbred mouse strains 
(129/SvEv, 129/SvJ, C57BL/6N, C57BL/6JOla, CBA/
CaOla, DBA/2N, DBA/1Ola, C3H/HeN, BALB/c, 
and FVB/N). Germline transmission was achieved by 
blastocyst injection of  established ES cell lines after 10 or 
more passages from strains 129/SvJ, C57BL/6N, C57BL/
6JOla, DBA/2N, DBA/1Ola, BALB/c and FVF/N. The 
efficiency of  establishing ES cell lines and also generating 
germline chimeras from the C57BL/6 derived LK1 cell 
line was comparable with a widely used 129/SvJ derived 
GSI-1 ES cell line[28]. Sato et al[29] used leukemia inhibitory 
factor (LIF) and 6-bromoindirubin-30-oxime (BIO), a 
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glycogen synthase kinase-3 (GSK3) inhibitor, and showed 
that BIO treatment significantly increased the expression 
levels of  364 genes including pluripotency markers such as 
Nanog and Klf  family members. Chimeras derived from 
cell lines from LIF, BIO or GSK3 inhibitor- enriched 
medium were germline-competent. The current hope is 
that ES cell lines from “non-permissive” mouse strains 
will become more widely derivable, possibly by means of  
modifying ES cell culture conditions.

Chromosomal abnormalities 
A key property of  ES cells is that they maintain their 
euploid karyotype. This is crucial because a balanced diploid 
chromosome complement is necessary for proper meiosis.

The chromosome make-up of  mouse embryonic stem 
cells is predictive of  somatic and germ cell chimerism. 
Over the years, several studies have reported that chro-
mosome make-up correlates with the capacity of  ES 
cell clones to contribute to the formation of  all tissues, 
including the germline, of  the adult chimaeras. The data 
support the notion that karyological instability, and not 
loss of  pluripotency, is the major reason for the lack of  
contribution to chimaeras of  individual ES cell clones, 
and that karyotype analysis is a predictor of  the germline 
transmission capacity of  ES cell lines[30-34]. Some studies 
suggest that the long-term culture of  iPS cells, similar to 
the situation for ES cells, has to be monitored carefully 
for culture-induced chromosomal abnormalities[35].

Other studies have also reported that the number of  
aneuploid mitoses in ES cells expands with increasing 
culture time[30,36] and that the ES cell clones with less 
than 50% euploid metaphases generated only a few and 
weak chimeras and non- germline[37]. It was shown that 
in particular, trisomy 8 is associated with a selective 
growth advantage in vitro and represents a common 
cause for the failure of  ES cells to contribute to the 
germline[38,39]. Multicolor karyotyping technologies, 
including both multi-color fluorescence in situ hybridiz-
ation (M-FISH) and spectral karyotyping (SKY), are 
recently developed molecular cytogenetic techniques for 
rapid visualization of  genomic aberrations at sub-cellular 
level. Guo and colleagues[40], using the M-FISH method, 
recognized various chromosomal abnormalities in two 
independent ES cell lines: trisomy 8 in some mitoses, 
trisomy 14q and the deletion 6q in 100% of  the cells 
studied[40]. The deletion 6q affected only a part of  the 
respective chromosome and therefore the total number 
of  40 chromosomes was still retained. Some of  these 
chromosomal abnormalities might be overlooked by 
standard G-banding analysis alone[41]. Presently, it is not 
known whether such translocations are detrimental to 
the achievement of  high levels of  chimerism or germline 
transfer. On the other hand, some studies have reported 
that the presence of  chromosomal aberrations may 
reduce, but not necessarily eliminate, the ability of  ES 
cells to contribute to normal development[42].

In summary, these data demonstrate a strong correlation 
between losing the germline-competence of  ES cell lines 
and accumulation of  chromosome abnormalities. However, 

research should aim to link specific components of  the 
aberrant phenotypes with specific epigenetic alterations in 
gene expression.

Epigenetic alterations
Long term culture and in vitro manipulation of  the ES 
cells can induce epigenetic alterations, which in turn can 
have long- lasting effects on the transcription patterns of  
the ES cell genome. Indeed, recent work on ES cells has 
shown that stem cell-derived tissues and embryos often 
fail to maintain stable epigenetic states, especially in 
imprinted genes[43-47]. So, any epigenetic changes caused 
by the number of  passages would most probably affect 
the developmental pluripotency of  ES cells and thus the 
viability of  ES mice. Two further mouse studies have 
also investigated the epigenome of  iPS cells on a larger 
scale. Maherali et al[17] used ChIP-Chip to investigate the 
presence of  H3K4me3 and H3K27me3 in the promoter 
regions of  16 500 genes in one iPS cell line. Their results 
suggested that iPS cells were highly similar in their 
epigenetic state to ES cells with 94.4% of  957 “signature” 
genes (defined as genes that have a different epigenetic 
state between MEFs and ES cells) being reset to an ES-
cell state in the respective iPS cell line[48].

In ES cells, the effects of  methylation on expression 
of  specific genes, particularly imprinted ones[43] and some 
retrotransposons[49], have been demonstrated in vivo.

Dean et al[43] investigated whether the prolonged 
culture of  ES cells affects their pluripotency and whether 
it is associated with epigenetic alterations in imprinted 
genes. Two maternally expressed genes (Igf2r, H19) 
and two paternally expressed genes (Igf2, U2af1-rs1) 
were analyzed in ES cells, and in completely ES cell-
derived fetuses. Altered allelic methylation patterns were 
detected in all four genes, and these were consistently 
associated with allelic changes in gene expression. It was 
also demonstrated that all methylation changes that had 
arisen in the ES cells persisted on in vivo differentiation to 
fetal stages. Alterations included loss of  methylation with 
biallelic expression of  U2af1-rs1, maternal methylation and 
predominantly maternal expression of  Igf2, and biallelic 
methylation and expression of  Igf2r. In most of  the ES 
derived fetuses, the levels of  H19 expression were strongly 
reduced, and the biallelic repression was associated with 
biallelic methylation of  the H19 upstream region. ES 
fetuses derived from two of  the four ES lines appeared 
developmentally compromised, with polyhydramnios, 
poor mandible development and interstitial bleeding and, 
in chimeric fetuses, the degree of  chimerism correlated 
with increased fetal mass. This study created a model for 
how early embryonic epigenetic alterations in imprinted 
genes persist to later developmental stages, and are 
associated with aberrant phenotypes. Generation of  
pluripotent cells with correct epigenetic profile after 
reprogramming of  somatic cells by the iPS technology 
is crucial for their developmental competence. It is yet 
to be demonstrated whether insufficient reprogramming 
in iPS cells would increase the probability of  epigenetic 
alterations and subsequent developmental abnormalities in 
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chimera embryos and fetuses.
Different studies have also reported that retrotrans-

poson elements (REs) are transcribed during early mouse 
embryogenesis[50] and also in ES cell lines[51] and that 
transcriptional interference by active retrotransposons 
perturbs expression of  neighboring genes in somatic cells, 
in a mosaic pattern corresponding to activity of  each 
retrotransposon. Furthermore, the expression of  REs 
also regulates host genes in preimplantation embryos[50]. 
Since ES cells are mostly isolated from the inner cell 
mass (ICM) of  blastocysts, the expression of  REs could 
be essential for in vitro and in vivo preservation of  the 
genomic integrity and pluripotency of  ES cells. Moreover, 
inadvertent alterations in the expression of  two Res, i.e. 
intracisternal-A particle (IAP) and murine endogenous-
retrovirus-L (MuERV-L), affected the pluripotency by 
losing the ability of  germline transmission and started 
inducing the kinky tail phenotype in the chimera mice of  
high passage ES cell lines[50]. Therefore, the mechanism 
of  epigenetic instability needs to be further explained and 
better understood, and consequently monitored when 
considering ES cells for transgenesis (chimera formation). 

Es: mice chimera technologies
Tarkowski and Mintz made the first mouse embryonic 
chimeras by aggregating two eight-cell stage embryos. 
Since then, experimental manipulations have been 
modified in many different ways, for example, removing 
and/or reorienting cells, and adding them back at different 
stages. There are three commonly used methods for 
chimera production: (1) Diploid embryo (diploid embryo 
aggregation chimeras); (2) ES cells (diploid embryo 
aggregation and injection chimeras) (3) Diploid embryo 
(tetraploid embryo aggregation chimeras) and (4) ES cells 
(tetraploid embryo aggregation and injection chimeras). 
This section will focus on some of  the conventional and 
also more recent methods for generating ES cell derived 
chimeras (ES chimera mice), the advantages and the 
disadvantages of  each, and the factors that should be 
taken into account when one is chosen in preference to 
another.

ES cells - diploid blastocyst injection chimeras: This 
technique was initially developed by Gardner[52,53] and used 
the introduction of  the whole ICM into the blastocysts 
cavity (blastocoel). 

Later on, conventional blastocyst injection and assisted 
piezo blastocyst injection[54] was extensively used to 
generate progeny from ES cells. These techniques involve 
the microinjection of  7-15 ES cells into the blastocoel. 
Contribution of  donor ES cells to the germline of  
chimera mice allows the generation of  mouse strains 
carrying the haplotype of  ES cells. The chimeras are a 
mixture of  cells derived from both donor ES cells and 
the recipient embryos. The determination of  all tissues 
in the chimeras, including cells derived from the donor 
ES cells, is extremely difficult. Moreover, because of  the 
developmental potential of  diploid embryos prior to ES 
cells, they may restrain the pluripotency of  ES cells in 

the chimeras[55]. In case of  gene- targeted ES cell lines, 
the F0 chimera mice are only partially derived from the 
modified ES cells (Figure 1). If  part of  the germline is 
derived from the modified ES cells, these chimeras can 
be bred to obtain F1 generation mice that are uniformly 
heterozygous for the mutation of  interest. Subsequent 
interbreeding of  these heterozygous mice can result in F2 
generation mice that are homozygous for the intended 
mutation. Because few mutant phenotypes can be detected 
in chimeric or heterozygous mutant mice, phenotyping 
requires derivation of  homozygous mutant F2 mice. In 
addition, chimeras that are estimated to be 90% ES cell-
derived based on coat color, can be inefficient germline 
transmitters, because coat color chimerism does not fully 
reflect ES cell contribution to internal organs (including 
germ cells).

In conclusion, the production of  a mutant strain by 
using blastocyst injection method is a time-consuming 
task, often taking longer than 6-12 mo before the 
analysis of  adult mutants can occur. It would be 
hoped that ES cell contribution is sufficient to enable 
germline transmission to result, with the transmission 
rates sufficient to enable heterozygote offspring to be 
obtained from 1st litters. Unfortunately, both the time 
and the number of  mice generated to achieve that 
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Figure 1  General strategy for producing gene targeted mice by different 
Embryonic Stem (ES), chimera methods. 1: Gene targeting of ES cells, 
followed by selection of the ES cell clones containing the desired mutations; 
2A: The ES cells are injected into diploid blastocysts. F0 chimera mice are 
only partially derived from the modified ES cells and are bred to obtain F1 
generation mice that are uniformly heterozygous for the mutation of interest; 
2B: The ES cells are injected into tetraploid blastocysts. The F0 generation is 
fully derived from the gene targeted ES cells.
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milestone are low. It remains a challenge to achieve good 
and reliable results, particularly with C57BL6 ES cells, 
where greater variation in outcomes is likely. 

ES cells - tetraploid blastocyst injection chimeras: 
In the chimeras produced by injection of  ES cells into 
tetraploid (4n) embryo[56-59], the tetraploid host embryo 
contributes to trophoblast lineage of  the placenta and 
the extraembryonic endoderm[5] whereas the ES cells give 
rise to the mesoderm layer of  the yolk sac, the amnions, 
the embryo proper and the allantois/umbilical cord. 
Using this strategy, live new-born mice can be generated 
that are completely derived from ES cells[2,3]. Embryo 
electrofusion and tetraploid blastocyst microinjection is a 
modification of  the traditional ES cell-based method to 
generate targeted mutant mice (Figure 1). The tetraploidy 
is mostly induced by passing an electrical current across 
2-cell embryos, resulting in a single 4n cell produced by 
the fusion of  the two 2n blastomeres[60,61].

The tetraploid method is limited by a number of  
factors, and its success appears to be highly variable, 
depending on host embryo blastocyst strain, ES cell strain, 
ES cell line passage number, and the quality of  in vitro 
cell preparation. Most ES cells used to date for tetraploid 
blastocyst injection are of  129 mouse background strain 
or F1 hybrid ES cells (C57BL/6 × 129)[62]. The use 
of  either pure 129 or C57BL/6 ES cells for tetraploid 
blastocyst microinjection is feasible[24,25] but to date F1 ES 
cells have proven to be more robust[57]. 

Viability of  embryos from tetraploid injections is 
reportedly lower than with diploid embryos, with consider-
able strain variation[58] In addition, in one study, outbred 
Swiss Webster blastocysts exhibit greater developmental 
potential with the tetraploid technique than do blastocysts 
from 4n B6CBAF2 hybrid mice[57]. Post-implantation Swiss 
4n embryos were observed more frequently and were more 
likely to develop advanced embryonic structures than 4n 
B6CBAF2 embryos in 4n:2n chimeras. The data show 
that the 4n component can persist at gastrulation and into 
midgestation in 4n:2n chimeras and that at later stages 
these 4n cells may colonize tissue sporadically throughout 
the embryo. The mechanism behind this difference in 
developmental potential is most likely explained by the 
presence of  classes of  alleles that promote or inhibit a cell’s 
ability to regulate a duplicated genome.

A more recent retrospective study proved that outbred 
and hybrid tetraploid host embryos are more efficient for 
tetraploid complementation assay than inbred strains[23]. 
The reason could be that embryos used in the tetraploid 
procedure must not only survive in vitro for 3 to 4 d, but 
also withstand the additional electrofusion manipulation. 
Diminished ability of  embryos to tolerate the additional 
manipulations would be expected with inbreeding 
depression. It was also shown that the use of  3 × 4n host 
embryos for aggregation with ES cells is more effective 
for generating ES mice than using 1 × 4n host embryo[63].

Another recent study reported the generation of  
several iPS cell lines that are capable of  generating viable, 
live-born progeny by tetraploid complementation[9,10]. 

Therefore, even if  the tetraploid method is limited by a 
number of  factors, it has proven to be one of  the most 
commonly used for mice generations fully derived from 
normal ES, gene targeted ES or even iPS cells. 

ES cells - diploid eight-cell stage embryo injection 
chimeras: Interest in the ES cell injection into pre-
blastocyst stage embryos was reawakened with a publication 
in 2007 from the US Company Regeneron[64]. Their 
“VelociMouse” methodology uses laser-assisted injection 
of  ES cells into eight cell-stage host embryos, and 
generates fully ES cell -derived mice by an easier, more 
practical means from a variety of  ES cell backgrounds. 
Further work in response to this publication has shown 
successful generation of  fully ES cell- derived mice 
through the use of  piezo injection[65] or through the use 
of  standard beveled needles[66]. 

It was reported that F0 generation mice are able to 
efficiently transmit the mutation through the germline; 
they are fully derived from the modified ES cells and 
permit immediate phenotyping. The host contamination 
does not exceed 0.1% and demonstrates that the pheno-
types of  these and the eight-cell method is effective for 
either inbred ES cells, like C57BL/6 and 129, or hybrid 
ES cells[65].

The new methods were reported to be easier and more 
efficient than the tetraploid complementation method. 
On the other hand, these methods require expensive 
equipment and extensive experience, and demand more 
time than the conventional system, which may influence 
the quality of  the micromanipulated embryos. In addition, 
the success of  generation mice fully derived from ES 
cells could be, similar to the tetraploid complementation 
assay, highly variable. Factors like prolonged culturing, 
their genetic background, chromosomal abnormalities 
and/or the epigenetic profile of  the ES cells could lead to 
a compromised developmental potential for high rate ES 
cells-derived fetuses.

CONCLUSION
In mice, ES cell lines can vary considerably in their 
germline transmission capacity and their developmental 
potential. The efficient production of  live, transgenic 
and germline mice requires precise understanding 
of  the essential mechanisms for the maintenance of  
pluripotency, and therefore germline transmission, of  the 
ES cell lines. Retention of  germline competence may be 
due, at least in part, to ES cell line genetic background, 
a reliable epigenetic profile, euploid karyotype and, last 
but not least, the most appropriate chimera method. Use 
of  iPS cell lines for chimera production presents new 
challenges for investigators. A significant amount of  
further investigation must be undertaken to explore and 
understand the precise relationships between all the above 
factors in order to build appropriate mouse models and 
to develop therapeutic strategies for a variety of  diseases. 
Continuous research on ES cells remains crucial in order 
to validate iPS cells and to determine which cells would be 
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most useful for specific purposes.
This review is focused on the germline chimera- 

forming potential of  mouse ES and iPS cells. On the 
other hand, these findings might provide valuable 
insights for human cell therapy perspectives, but further 
clarification is needed on how ES and iPS cells differ 
in terms of  biology, action mechanisms, and curative 
potential. The world will be watching these experiments 
to see if  the field can live up to its promises. Also, for a 
better public understanding of  science, the ethicists and 
non-specialists will need clear information regarding the 
basics of  stem cell biology, and the predictive power of  
animal models.
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Abstract
Stem cell-derived tissues and organs have the potential 
to change modern clinical science. However, rejection of 
allogeneic grafts by the host’s immune system is an issue 
which needs to be addressed before embryonic stem 
cell-derived cells or tissues can be used as medicines. 
Mismatches in human leukocyte class Ⅰ antigens and 
minor histocompatibility antigens are the central factors 
that are responsible for various graft-versus-host 
diseases. Traditional strategies usually involve suppressing 
the whole immune systems with drugs. There are many 
side effects associated with these methods. Here, we 
discuss an emerging strategy for manipulating the central 
immune tolerance by naturally “introducing” donor 
antigens to a host so a recipient can acquire tolerance 
specifically to the donor cells or tissues. This strategy has 
two distinct stages. The first stage restores the thymic 
function of adult patients with sex steroid inhibitory drugs 
(LHRH-A), keratinocyte growth factor (KGF), interleukin 7 
(IL-7) and FMS-like tyrosine kinase 3 (FLT3). The second 
stage introduces hematopoietic stem cells and their 
downstream progenitors to the restored thymus by direct 
injection. Hematopoietic stem cells are used to introduce 

donor antigens because they have priority access to the 
thymus. We also review several clinical cases to explain 
this new strategy.

© 2009 Baishideng. All rights reserved.
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INTRODUCTION
Ever since stem cells were discovered during the analysis 
of  teratocarcinoma in 1964, stem cell-based therapy 
has conjured a hope for those who are suffering from 
previously incurable diseases, particularly degenerative 
diseases[1,2]. Since embryonic stem cells (ESC) are 
pluripotent, stem cell-derived cells and tissues are believed 
to be the best treatment for variety of  degenerative 
diseases by replacing damaged tissues. However, there 
are still ethical and technical barriers which need to be 
overcome before these hopes become reality. For example, 
ESC-driven tumor formation is one technical barrier[3]. 
Immune rejection caused by foreign antigens expressed 
on the stem cell graft would be another major hurdle that 
needs an immediate solution for stem cell therapy[4-6]. 

Immune rejection concerns are raised when using 
stem cells that do not exactly match a recipient’s immune 
system - such as existing human embryonic stem cell 
(hESC) lines that are not derived from the recipient[7]. 
For example, Wu’s group showed that transplanted ESCs 
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died within about 7 to 10 d in mice with functioning 
immune systems while they survived and proliferated in 
immunocompromised mice[5]. They showed that second-
ary injections of  ESCs into the immune-normal mice led 
to more rapid cell death, suggesting the immune system 
became more efficient at recognizing and rejecting the 
second dose of  ESCs. It is believe that ESCs express 
certain surface proteins that trigger the recipient’s im-
mune system to attack donor ESCs as they differentiate 
into more-specialized tissues. Thus the first ESC injec-
tion primed the immune system to recognize the foreign 
molecules, and the immune system responded even 
more quickly to the second ESC injection. Combination 
of  two antirejection compounds - tacrolimus and siroli-
mus - allowed the cells to survive for up to 28 d in mice 
with normal immune systems[4,5]. This is consistent with 
strategies to prevent T cell activation or effector function 
by immunosuppression in organ transplantation using 
pharmacological immunomodulatory agents[8-10].

Several new strategies have been developed to avoid 
immune rejection of  stem cell-derived grafts. These in-
clude the use of  novel immunosuppressants[11] and of  
autologous stem cells drawn from somatic cell nuclear 
transfer (SCNT) and inducible pluripotent stem cell 
(iPSC) technology[12,13]. However, little is known about 
the immune response toward these stem cells because of  
the lack of  human clinical trials with these cells. Here, 
we discuss a new strategy to overcome the hurdle of  im-
mune rejection in stem cell therapy of  human diseases.

MECHANISMS OF IMMUNE REJECTION
Immune rejection occurs when a transplanted stem cell 
is not accepted by the body of  a transplant recipient. 
This is expected to happen, because the immune system 
is able to distinguish a foreign material within the body 
and try to destroy it, just as it tries to destroy infecting 
organisms such as bacteria and viruses[14,15]. Allogeneic 
graft rejection and organ maintenance are the two 
primary factors, which render donor organs competitive. 
To be eligible to receive a donor organ, an individual 
has to pass several compatibility tests[16]. However, 
rejections may occur even if  a patient passes the needed 
compatibility tests. 

Rejections are classified into three major types 
based on their severities: hyperacute rejection, acute 
rejection and chronic rejection. Hyperacute rejection 
happens within short duration after the transplantation 
process. Preexisting antibodies, which are reactive to 
the donor tissue, can cause a series of  severe systemic 
inflammatory responses following by blood clotting. 
Therefore, the transplanted organ must be removed if  
hyperacute rejection occurs[17-19]. On the other hand, 
acute rejection and chronic rejection are less dangerous 
compared to hyperacute rejection. Acute rejection 
usually occurs within one week after the transplantation 
because of  human leukocyte antigen system (HLA) 
antigen mismatch. Chronic rejection refers to mismatched 
minor histocompatibility complex, resulting in long-

term rejection of  the graft[20]. Since perfect matches 
between donor and recipient HLA antigens are rare, 
donor organ recipients often suffer from acute rejection. 
According to the Organ Procurement Transplant 
Network (OPTN) national registry in the United States, 
about 60%-75% of  kidney recipients and 50%-60% of  
liver recipients will experience acute rejection[21-27]. The 
only available treatment for acute rejection now is either 
retransplantation or the use of  chemotherapeutic immune 
suppressant like corticosteroids and calcineurin inhibitors. 
However, immune suppressants will affect the immune 
system as a whole and lead to immunocompromise 
complications.

Immune rejection is mediated through both T cell-
mediated (direct) and humoral immune (antibodies, 
indirect) mechanisms. Direct rejections involve the 
contact between donor antigen presenting cells (APC) 
and recipient T cells. Antigens on the surface of  donor 
APC can be recognized as foreign particles by recipient 
T cells through ligation of  co-stimulatory molecules. 
Indirect rejections involve antigens released into the 
environment, which can be picked up by the recipient 
APCs and present to the recipient T cells[12,13]. The 
number of  mismatched alleles determines the speed 
and magnitude of  the rejection response. Different 
mechanisms act against different grafts.

ESCs and their derivatives express human leukocyte 
class Ⅰ antigens (MHC Ⅰ) and minor histocompatibility 
antigens, both have the potential to trigger host immune 
rejection[28]. Additionally, ESC may also differentiate 
into blood cells that express different ABO blood 
group antigens, which are also immunogenic. Blood 
group O is a universal donor, which can be selected to 
avoid rejections caused by ABO blood group antigen 
differences. In addition, ESCs also express embryo-
specific antigens. These embryo-specific antigens, 
produced only in the embryo stage are treated as foreign 
particles in a fully developed human body[12,13].

Expressed xenogeneic proteins derived from culture 
medium may also be a source of  immune rejection[29]. 
An immune response to these antigens may lead to a late 
graft loss or hastened rejection of  subsequent stem cell 
grafts[30]. This immune rejection can be overcome either 
by physical immunoprotection of  stem cells provided 
by polymer encapsulation[31-33] or by purification of  stem 
cells before transplantation[34]. Alternative methods to 
eliminate this potential problem include growing cells in 
a serum-free medium[35-38].

TWISTING THE IMMUNE RESPONSES
The simplest way to avoid rejection is to use autologous 
adult stem cells (autologous bone marrow derived 
mesenchymal stem cells) instead of  ESCs which are 
derived from embryos. Autologous adult stem cells 
express antigens identical with the hosts’ cells and 
therefore are not subject to the rejections. However, it 
is difficult to isolate a sufficient amount of  adult stem 
cells[39]. Ex vivo expansion and differentiation of  adult 

百世登
BaishidengTM© WJSC|www.wjgnet.com         December 31, 2009|Volume 1|Issue 1|31



stem cells are another major challenge and roadblock 
for adult stem cell therapy[39]. Purifying adult stem cells 
from diseased cells (such as autologous bone marrow 
transplantation) is also technically difficult. Various 
methods such as SCNT and iPSC technology have been 
developed to yield sufficient amounts of  patient-specific 
stem cells for cell therapy. However, these methods 
have not yet been achieved for the status of  clinical 
application. 

Manipulating the central self-tolerance pathway 
is a more immediately available approach for stem 
cell therapy[28]. There are two types of  self-tolerance: 
central self-tolerance and peripheral self-tolerance[12,13]. 
Central self-tolerance refers to negative selection of  T 
regulatory cells and T cells within the thymus. Under 
normal circumstances, T cells differentiated within the 
thymus do not leave the thymus immediately. Instead, 
they undergo a process called negative selection, which 
deletes the host-reactive T cells before releasing them 
into the circulation. On the other hand, peripheral self-
tolerance refers to inappropriate co-stimulation between 
APCs and T cells which lead to failure to launch proper 
responses (inflammatory). 

Technically, host-donor chimerism can be created 
to introduce self-tolerance to the donor cells with two 
steps. First, we can restore thymic function for T-cell 
selection in host. Second, we need to introduce donor 
cells into host thymus to delete T-cells that recognize 
donor antigens[40]. The thymus shrinks during puberty 
because of  increasing production of  sex hormones, 
and its functions are affected[41-44]. Therefore, thymic 
functions must be restored in order to manipulate 
self- tolerance in adults. The following strategy can be 
applied: first, sex steroid inhibitory drug (LHRH-A) 
can be used in combination with thymic growth factors 
including KGF, IL-7 and FLT3 to restore adult thymic 
functions[45]. Second, antigens derived from donor 
cells must be introduced into the restored thymus[46]. 
Hematopoietic stem cells (HSCs) can be used to deliver 
donor cell antigens since they have preferential access 
to the thymus[46]. However, injecting a large quantity 
of  HSC may trigger serious graft-versus-host diseases, 
which result in side effects including hemolysis, lost of  
lymphocytes and possibly damaged tissues because of  
reactive donor T-cells. Therefore, direct injection is not 
ideal and an alternative method must be developed to 
avoid serious graft-versus-host diseases while supplying 
the HSC steadily to the restored thymus[47,48].

After introducing antigen, a phenomenon called 
mixed chimerism may occur within the thymus and 
the donor reactive T cells could be deleted by negative 
selection[49-52]. Also, T-regulatory cells formed from the 
thymus may migrate into the circulation and arrest those 
donor reactive T-cells in the circulation. This immune 
tolerance has been reported in experiments with mouse 
skin grafts[53-60].

In animal models, gradually introducing donor cells 
is a possible approach to create desirable chimeras 
for thymus restoration. Our previous study on tissue 

regeneration during mouse pregnancy showed that fetal 
stem cells repaired maternal skin injury and created 
fetal-maternal microchimerism[61]. This study suggests 
that slow release of  stem cells that are minimally 
immunogenic could be used as an alternative method 
to create chimeras for donor specific immune tolerance. 
In another study of  mouse hematopoietic stem cells, 
we used intraosseous infusion, a process of  injection 
directly into the marrow of  the bone, for introducing 
HSC into mouse[62]. Intraosseous infusion of  HSC 
allows cells to home to bone marrow more efficiently 
and avoids circulating large amount of  donor cells in 
recipient blood. This dramatically lessens the chance 
of  immune rejection and may lead to more effective 
creation of  chimerism[61,62]. 

CLINICAL SUCCESSES FOR 
MANIPULATING SELF-TOLERANCE
In humans, naturally occurring mixed chimerism self-
tolerance has been reported[63]. In one case, a nine-year-
old girl who acquired acute fulminant hepatitis from 
viral infection was given a liver transplant. However, the 
donor was a 12 year-old boy who died of  brain injury 
having different HLA antigens (A34, 68; B50, 76; DR4, 
13) from the girl’s (A2, 24; B37, 62; DR7, 9). In addition, 
their blood types were also different. The girl was type O, 
RhD-negative but the boy was type O RhD-positive.

The allograft was thought to have a high potential for 
triggering acute and chronic rejections, which eventually 
might lead to destruction of  the graft. Additionally 
both of  them were cytomegalovirus positive, which 
may have negative effects on the immunocompromised 
patient. However, the liver was still transplanted since 
benefit was determined to be greater than the risk. 
Standard immunotherapy including tacrolimus and 
methylprednisolone was given to the girl after the 
transplantation. Ganciclovir was also given to the girl to 
try to get rid of  the cytomegalovirus. Only 13 d after the 
transplantation, acute rejection was noted by acute biliary 
obstruction. The surgical formation of  a communication 
between the common bile duct and the duodenum was 
performed. The immunosuppressant drugs were given 
continuously. 

The girl suffered from moderate lymphopenia 
(lymphocyte count, 0.5 × 109 per liter) and anemia until 
about nine months after the transplantation. Her red 
blood cell and lymphocyte counts decreased while the 
white blood cell counts increased, which suggested that 
her B cells were making antibodies targeting the donor 
red blood cells resulting in hemolysis. Interestingly, 
her blood type changed from RhD-negative to RhD-
positive, which was the donor’s blood type nine months 
after the transplantation was given. The change showed 
she developed mix chimerism, which was possibly 
because of  hematopoietic stem cells migrating from the 
allogeneic graft to the thymus. Therefore the physicians 
decided to do a series of  follow-up studies including 
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analysis of  XY chromosomes on the hematopoietic cells. 
The result was astonishing, 94% of  her T cells, 98% of  
her B cells and 100% of  her natural killer cells had XY 
chromosomes. The appearance of  XY chromosomes 
on those cells was strong evidence suggesting HSC 
from the allogenetic graft had successfully migrated 
into her thymus and proliferated since the female 
only had XX chromosomes[64]. The surgeons then 
withdrew the immunosuppressive drug gradually to 
see if  full engraftment could be achieved. The girl 
remained healthy for the next five years without any 
sign of  rejection. Her liver was functioning normally, 
and her HLA antigen changed to the donor’s type. In 
this case, the infection with cytomegaloviruses (CMV) 
in combination with her young age, may have resulted 
in a more immunocompromised state allowing the full 
engraftment to be achieved before the graft-versus-host 
diseases became lethal[63]. In such cases, intraosseous 
infusion of  HSC may be a practical method to create the 
host-donor tolerance for following organ transplantation 
or stem cell therapy. 

Another successful case was from a recipient of  
combined kidney and hematopoietic-cell transplants 
from an HLA-matched donor[65]. There was no rejection 
or clinical manifestations of  graft-versus-host disease 
without immunosuppressive drugs for more than 24-mo 
post-transplantation. The blood analyses showed that the 
patient had persistent mixed chimerism and the function 
of  the kidney allograft was normal. 

CLINICAL IMPLICATION
The above case studies suggest that donor-host 
chimerism can be used to overcome tissue and organ 
rejection, and slowly introducing donor antigens into 
host is important to create such chimerism.

Twisting immune responses for allogeneic graft 
rejection will benefit millions of  people worldwide. 
According to the OPTN (The Organ Procurement and 
Transplantation Network), there were about 400 000 
allogeneic graft recipients in the United States of  
America alone during the last two decades. In addition, 
100 000 patients were queuing on transplant waiting lists 
for various types of  donor organs[26]. Unfortunately, 
donor organs are competitively allocated, and sometimes 
it takes years of  waiting for an individual to finally be 
able to receive the donor organ. Sadly, some patients just 
cannot wait for that long with a dysfunctional organ.

Management of  the central self-tolerance pathway 
provides a possible solution for not only stem cell 
therapy but all organ transplantation[66]. For example, 
the use of  allogeneic “universal donor” mesenchymal 
stromal cells (MSCs) may be a great clinical convenience 
for treatment of  autoimmune ailments such as multiple 
sclerosis[67]. The strategy of  manipulating the central self-
tolerance pathway may be able to change the appearance 
of  modern clinical science and eventually benefit almost 
every individual worldwide.

FUTURE DIRECTIONS
The current objective is to reproduce mixed chimerism 
artificially within an adult with the use of  HSCs and 
immunosuppressive drugs that can restore thymic 
functions. However, there are still some barriers, which 
need to be solved before a full engraftment can occur 
in an adult. Since the thymus atrophies during aging, a 
sex steroid inhibitory drug (LHRH-A) should be use in 
combination with thymic growth factors including KGF, 
IL-7 and FLT3 to restore adult thymic functions[43,68]. 
After restoration of  thymic functions, HSCs need to 
be introduced into the thymus. Direct injection of  
HSC and its downstream progenitors (differentiated T 
cells/T regulatory cells) to the thymus in combination 
with immunosuppressive drugs (like tacrolimus and 
methylprednisolone) may allow time to eliminate donor 
reactive lymphocytes. This also reduces the risk and the 
severity of  hemolysis caused by donor T-cells to the 
recipient red blood cells or vice versa. 

In summary, host-donor chimerism can be used to 
introduce a specific tolerance for donor tissues. Such a 
self-tolerance not only makes stem cell therapy one step 
closer to reality, but also makes organ transplantation 
available for many patients who cannot find matching 
donors.
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Abstract
The success achieved over the last decade with islet 
transplantation has intensified interest in treating 
diabetes, not only by cell transplantation, but also 
by stem cells. The formation of insulin-producing 
cells from pancreatic duct, acinar, and liver cells is an 
active area of investigation. Protocols for the in vitro  
differentiation of embryonic stem (ES) cells based 
on normal developmental processes, have generated 
insulin-producing cells, though at low efficiency and 
without full responsiveness to extracellular levels of 
glucose. Induced pluripotent stem cells, which have 
been generated from somatic cells by introducing 
Oct3/4, Sox2, Klf4, and c-Myc, and which are similar 
to ES cells in morphology, gene expression, epigenetic 
status and differentiation, can also differentiate into 
insulin-producing cells. Overexpression of embryonic 
transcription factors in stem cells could efficiently 
induce their differentiation into insulin-expressing cells. 
The purpose of this review is to demonstrate recent 
progress in the research for new sources of β-cells, 
and to discuss strategies for the treatment of diabetes.
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INTRODUCTION
The pancreas is a mixed exocrine and endocrine grand 
that controls many homeostatic functions. The exocrine 
pancreas consists of  acinar cells and the ductal epithelium, 
while the endocrine pancreas consists of  four cell types 
(α-, β-, δ-, and pancreatic-polypeptide cells). The pancreas 
controls body metabolism, including the digestion of  
foods by exocrine enzymes secreted from acinar cells and 
the regulation of  blood glucose levels by insulin secreted 
from β-cells. Clinical studies have shown that transplanta-
tion of  a pancreas or purified pancreatic islets can sup-
port glucose homeostasis in type 1 diabetic individuals, 
in whom the β-cells have been destroyed by an autoim-
mune reaction[1-5]. Islet transplantation carries the special 
advantages of  being less invasive and resulting in fewer 
complications compared with the traditional pancreas or 
pancreas-kidney transplantation. However, islet transplan-
tation efforts have limitations including the short sup-
ply of  donor pancreata, the paucity of  experienced islet 
isolation teams, side effects of  immunosuppressants and 
poor long-term results[6]. These limitations have led to the 
search for other stem/progenitor cell sources of  β-cells 
and intense interest in how the differentiation of  such 
progenitors can be directed, or “programmed”, efficiently. 
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The programming efforts are based on understanding 
how β-cells are normally generated in the embryo and 
how they arise during regeneration in adults, in response 
to tissue damage and disease. Here, we review recent stud-
ies on β-cell development and regeneration, and highlight 
unresolved issues in the field.

PANCREATIC β-CELL DEVELOPMENT
The pancreas is specified from the endoderm germ layer 
and develops from a dorsal and ventral protrusion of  the 
primitive gut epithelium[7-9]. These two pancreatic buds 
grow, branch, and fuse to form the definitive pancreas. 
Initially, broad suppression of  mesodermal Wnt and 
fibroblast growth factor (FGF) signaling in the foregut 
enables pancreas induction, whereas active mesodermal 
Wnt signaling in the posterior gut suppresses these tissue 
fates[10,11]. Retinoic acid signaling, apparently from par-
axial mesoderm cells, helps to further refine the anterior-
posterior position, in which the liver and pancreas can 
develop from the gut endoderm[12-15]. Subsequently, in 
the ventral foregut, FGF from the cardiac mesoderm 
and bone morphogenetic protein/transforming growth 
factor-β (BMP/TGF-β) from septum transversum mes-
enchyme cells coordinately induce the liver program and 
suppress the pancreas program[16-19]. In the dorsal fore-
gut, signals from the notochord, including activin and 
FGF, suppress sonic hedgehog (shh) signaling within the 
endoderm and allow the pancreatic program[20,21].

The newly specified pancreatic endoderm is initially 
marked by the expression of  the pancreatic and duodenal 
homeobox gene 1 (Pdx1; also known as Ipf1) and then by 
the pancreas specific transcription factor 1a (Ptf1a)[22,23]. 
Both proteins are crucial for pancreatic development. 
Pdx1 marks all pancreatic and midgut progenitors[22] and 
is crucial for development after the bud stage[24,25]. Pdx1 
levels also help to control the balance between the en-
docrine and exocrine (acinar and duct) progenitors that 
differentiate within the pancreas[26]. Notch signaling also 
helps to regulate the balance of  exocrine and endocrine 
cells, probably by allowing the expansion of  an undif-
ferentiated pancreatic-progenitor population[27-29]. Loss of  
Notch signaling allows the endocrine lineage to develop, 
which is marked by and requires the basic helix-loop-helix 
(bHLH) transcription factor, neurogenin 3 (Ngn3)[22,27,30]. 
Ngn3 directly influences the expression of  another islet 
specific bHLH gene, neurogenic differentiation (NeuroD; 
also known as BETA2)[31]. A loss of  function assay of  
NeuroD/BETA2 implicates a phenotype similar to, but 
less severe than, Ngn3, leading to a diminished number 
of  all endocrine cell types[32]. Then, definitive β cells are 
generated under the influence of  the v-maf  musculoapo-
neurotic fibrosarcoma oncogene homolog A (MafA) tran-
scription factor[33,34].

EMBRYONIC STEM (ES) CELLS
ES cells, which are pluripotent diploid cells and can be 
induced to differentiate into cells of  all three germ lay-
ers both in vivo and in vitro[35,36], are a potentially abundant 

source of  β-cells. It has been reported that ES cells from 
mouse[37-40], monkey[41], and human[38,42] were able to dif-
ferentiate into insulin-positive cells, a potential source of  
new β-cells. Numerous groups have been developing ES 
cell differentiation protocols that attempt to mimic nor-
mal embryonic development. The first step of  pancreatic 
development is the induction of  a definitive endoderm 
using high concentrations of  activin A treatment[43,44]. 
Further treatment in sequential stages with keratinocyte 
growth factor (KGF), retinoic acid, Noggin, and cyclo-
pamine (the hedgehog-signaling inhibitor) can then di-
rect definitive endoderm toward Pdx1-expressing poste-
rior foregut endoderm cells[45,46]. Treatment with DAPT 
and exendin-4 recruited the Pdx1-expressing posterior 
foregut endoderm cells to the pancreatic and endocrine 
lineages, which expressed Pdx1, Nkx6-1, Nkx2-2, Ngn3, 
and/or Pax4. After treatment with exendin-4, IGF-1, 
and HGF, endocrine cells expressing the pancreatic hor-
mones insulin, glucagon, somatostatin, pancreatic poly-
peptide and ghrelin are produced (Figure 1). 

Melton’s group recently reported small molecules that 
efficiently direct endodermal differentiation of  mouse 
and human embryonic stem cells[47]. In a screen of  4000 
compounds, they identified two cell-permeable small 
molecules that direct differentiation of  ES cells into the 
endodermal lineage. The efficiency of  differentiation 
into definitive endoderm using these compounds was 
higher than that achieved by Activin A or Nodal, which 
commonly used protein inducers of  endoderm. The 
definitive endoderm induced by these compounds was 
able to participate in normal development when injected 
into developing embryos, and was able to form pancreatic 
progenitors. These small molecules could induce 
reproducible and efficient differentiation of  ES cells into 
endoderm.

On the other hand, a significant number of  problems 
remain unsolved in terms of  clinical application 
of  ES cells, such as the risk of  tumorigenicity and 
immunosuppression after transplantation. The ethical issue 
is another major obstacle to the clinical use of  ES cells.

INDUCED PLURIPOTENT STEM (iPS) 
CELLS
iPS cells are also pluripotent diploid cells that can be 
induced to differentiate into cells of  all three germ layers 
both in vivo and in vitro. Moreover, iPS cells have fewer 
ethical issues compared with ES cells, because iPS cells 
can be established from somatic cells. Initial iPS cells 
have been generated from mouse and human somatic 
cells by introducing Oct3/4 and Sox2 with either Klf4 
and c-Myc or Nanog and Lin28, using retroviruses[48-51]. 
Recently, it has been reported that valproic acid (VPA), a 
histone deacetylase inhibitor, enables reprogramming of  
primary human fibroblasts with only two factors, Oct4 
and Sox2, without the need for the c-Myc or Klf4[52]. 
The results support the possibility of  reprogramming by 
chemical means, which would make therapeutic use of  
reprogrammed cells safer and more practical. Another 
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group showed that adult mouse neural stem cells 
(NSCs) expressed higher endogenous levels of  Sox2 and 
c-Myc than embryonic stem cells[53] and that exogenous 
expression of  the germline-specific transcription factor 
Oct4 was sufficient to generate pluripotent stem cells 
from adult mouse NSCs[54]. These data suggest that, in 
inducing pluripotency, the number of  reprogramming 
factors can be reduced when using somatic cells that 
endogenously express appropriate levels of  comple-
menting factors.

On the other hand, retroviral integration of  the 
transcription factors might activate or inactivate host 
genes, resulting in tumorigenecity, as was the case in 
some patients who underwent gene therapy. Yamanaka’s  
group reported the generation of  mouse iPS cells 
with transient expressions of  Oct3/4, Sox2, Klf4, and 
c-Myc from plasmids. Repeated transfection into mouse 
embryonic fibroblasts of  two expression plasmids, 
one containing complementary DNAs (cDNAs) for 
Oct3/4, Sox2, and Klf4 and the other containing the 
c-Myc cDNA, resulted in iPS cells without evidence 
of  plasmid integration[55]. At the same time, another 
group demonstrated the generation of  mouse iPS cells 
from fibroblasts and liver cells using non-integrating 
adenoviruses transiently expressing Oct4, Sox2, Klf4, and 
c-Myc[56]. Moreover, Ding’s group reported generation 
of  protein-induced pluripotent stem cells (piPSCs) from 
murine embryonic fibroblasts using recombinant cell-
penetrating reprogramming proteins without transfection 
of  any genes[57]. For efficient transduction of  four 
reprogramming factors, Oct4, Sox2, Klf4, and c-Myc, into 
cells, they used protein transduction technology[58-61]. A 
poly-arginine (11R) protein transduction domain (PTD) 
fused to the C terminus of  these reprogramming factors 
efficiently delivered the proteins into cells and induced 
iPS cells, which demonstrated long-term self-renewal 
and were pluripotent in vitro and in vivo. These reports 
provide strong evidence that insertional mutagenesis is 
not required for in vitro reprogramming. The production 
of  iPS cells without integration into the host genome 
addresses a critical safety concern for potential use of  iPS 
cells in regenerative medicine. 

Although some papers have shown the generation 
of  insulin-secreting islet-like clusters from human iPS 
cells[62,63], the efficiency of  the method seems low. The 
method, as detailed in this review in the ES cells section, 

might represent a critical step in the development of  
insulin-producing cells from iPS cells (Figure 1). Indeed, 
Melton’s group recently reported generation of  iPS cells 
from patients with type 1 diabetes and differentiation 
from the iPS cells into insulin-producing cells using this 
method[64].

PANCREATIC STEM/PROGENITOR CELLS
Although it is clear that the majority of  new β-cells derive 
from pre-existing insulin-expressing cells after surgical 
injury[65,66], several in vitro studies have shown that insulin-
producing cells can be generated from adult pancreatic 
ductal tissues[67-71]. A recent study has shown that duct li-
gation can activate Ngn3-positive β-cell precursors in the 
ductal epithelium[72]. The Edmonton group has shown 
that, in clinical islet transplantation, a significant positive 
correlation exists between the number of  ductal-epithelial 
cells transplanted and long-term metabolic success, as as-
sessed by an intravenous glucose tolerance test at approx-
imately two years post-transplantation. No significant 
correlation was observed between the total islet equiva-
lents and long-term metabolic success[73]. Cells in the pan-
creatic anlage migrate from the ducts while differentiating 
to form clusters that will eventually become islets during 
embryonic development [74]; therefore, the post-natal pan-
creatic duct might harbor islet precursor/stem cells. Inada  
et al[75] generated transgenic mice expressing human car-
bonic anhydrase Ⅱ (CAⅡ) promoter-Cre recombinase 
or inducible CreER to cross with ROSA26 loxP-Stop-
loxP LacZ reporter mice. CAⅡ-expressing cells within 
the pancreas act as progenitors that give rise to both new 
islets and acini normally after birth and after injury (ductal 
ligation). This identification of  a differentiated pancreatic 
cell type as an in vivo progenitor of  all differentiated pan-
creatic cell types has implications for a potential expand-
able source of  new islets for replenishment therapy for 
diabetes[75]. Such interesting results suggest the possibility 
of  multipotent progenitors in adult pancreatic ducts.

Mouse pancreatic stem cells have been isolated from 
duct-rich population, which are capable of  self-renewal 
and multipotency[76,77]. On the other hand, human cells 
from the duct-rich population were unable to divide after 
30 d under several culture conditions, although the cells 
were able to differentiate into insulin-producing cells[78]. 
There are some differences between the methodologies 
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used by the two groups, such as culture conditions, isola-
tion stresses, and/or species themselves. The ability of  
β-cells to expand is limited, especially in the adult, and 
the partial growth ability is insufficient to permit recov-
ery from cell loss in type 1 diabetes[79]. Therefore, it is 
important to isolate human pancreatic “stem” cells com-
prising a sufficient number of  β-cells for the treatment 
of  diabetes. 

The transdifferentiation of  acinar cells to islets has 
also been proposed[80-82]. Melton’s group showed in vivo re-
programming of  adult pancreatic exocrine cells to β-cells 
by viral delivery of  the developmental transcription fac-
tors Pdx1, Ngn3, and MafA[83]. Pancreatic exocrine cells 
greatly outnumber β-cells; therefore, the transdifferentia-
tion of  acinar cells to β-cells is also an interesting possi-
bility.

MESENCHYMAL STEM CELLS
Another interesting stem cell in this field is the mesen-
chymal stem cell (MSC). It has been reported that mar-
ginal mass islet transplantation with autologous MSCs 
promotes long-term islet allograft survival and sustained 
normoglycemia[84]. MSCs also prevent the rejection of  
fully allogenic islet grafts by the immunosuppressive 
activity of  matrix metalloproteinase-2 and -9[85], and 
protect NOD mice from diabetes by inducing regulatory 
T cells[86].

PERSPECTIVES
Several reports have suggested that epitopic transdif-
ferentiation is also possible. In vivo transduction of  mice 
with an adenovirus expressing Pdx-1[87,88], and both be-
tacellulin and NeuroD[89], or a modified form of  Pdx-1 
carrying the VP16 transcriptional activation domain[90], 
or MafA together with Pdx-1 and NeuroD[91], mark-
edly increased insulin biosynthesis and induced various 
pancreas-related factors in the liver. The existence of  
potential β-cell precursors in the adult liver is of  obvious 
medical interest. Moreover, overexpression of  embry-
onic transcription factors in stem cells could efficiently 
induce their differentiation into insulin-expressing cells. 
We reported that transduction of  Pdx-1 and NeuroD 
proteins induces insulin gene expression[67,92,93]. Other 
groups also showed that transduction of  NeuroD in vivo 
or TAT-Ngn3 fused TAT-PTD induced insulin-produc-
ing cells[94,95]. The production of  insulin-producing cells 
using protein transduction technology without gene 
transduction addresses a critical safety concern for po-
tential use of  the cells in regenerative medicine. Further 
investigations to induce differentiation of  stem/progeni-
tor cells into insulin-producing cells will help to establish 
cell-based therapies in diabetes.
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Abstract
One of the greatest impacts on in vitro  cell biology 
was the introduction of three-dimensional (3D) culture 
systems more than six decades ago and this era may 
be called the dawn of 3D-tissue culture. Although the 
advantages were obvious, this field of research was a 
“sleeping beauty” until the 1970s when multicellular 
spheroids were discovered as ideal tumor models. With 
this rebirth, organotypical culture systems became valu-
able tools and this trend continues to increase. While in 
the beginning, simple approaches, such as aggregation 
culture techniques, were favored due to their simplicity 

and convenience, now more sophisticated systems are 
used and are still being developed. One of the boosts in 
the development of new culture techniques arises from 
elaborate manufacturing and surface modification tech-
niques, especially micro and nano system technologies 
that have either improved dramatically or have evolved 
very recently. With the help of these tools, it will soon 
be possible to generate even more sophisticated and 
more organotypic-like culture systems. Since 3D per-
fused or superfused systems are much more complex 
to set up and maintain compared to use of petri dishes 
and culture flasks, the added value of 3D approaches 
still needs to be demonstrated. 

© 2009 Baishideng. All rights reserved.
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INTRODUCTION
Since Petri published his methodology of  growing 
bacteria in flat glass dishes in 1887[1], scientists have used 
this culture format for growing, not only prokaryotes, 
but all kinds of  eukaryotic cells and tissues. Even if  this 
culture technique is simple and convenient in daily cell 
culture routines, it is undisputable that growing cells on 
flat substrates is insufficient to reflect complex systems 
like tissues or whole organs. With this consideration, 
the introduction and systematic characterization of  new 
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culture techniques, generating spherical aggregates of  
isolated embryonic cells by Holtfreter in 1944[2] and 
Moscona in 1952[3-5], revealed new insights in tissue 
morphogenesis and opened a new chapter in cell 
culture technique. During the following years, studies 
on cell aggregates were extended to the research field 
of  tumor biology and were advanced in the 1970s by 
Sutherland et al[6], who used “multicellular spheroids” 
as a tumor model for radiation experiments. Three-
dimensional (3D)-culture models more closely resemble 
the in vivo situation concerning cell shape and the 
microenvironment. Compared to traditional monolayer 
techniques, it was shown that three-dimensionality is 
able to restore and maintain the differentiated status of  
adult cells, such as hepatocytes[7-9], cardiac myocytes[10,11], 
chondrocytes[12,13], and endocrine pancreatic islet cells[14] 
in vitro. Moreover, this culture configuration was applied 
to the study of  the growth and differentiation of  
progenitor cells such as osteoblasts[15,16], hematopoietic 
progenitor cells[17], and embryonic and mesenchymal 
stem cells[18-23]. More importantly, a considerable amount 
of  stem or progenitor cell cultivation techniques require, 
at least temporarily, aggregation into embryoid bodies 
for proper differentiation[24].

STATE OF THE ART OF 3D-CULTURE 
SYSTEMS
Systematic analysis of  various cell types in conventional 
monolayer- and 3D-culture revealed that parameters like 
spatial and temporal gradients of  soluble factors (growth 
factors, cytokines and hormones), homologous and 
heterologous cell-cell contacts, cell-matrix interactions, 
which are undoubtedly coupled with the molecular and 
physical properties of  the matrix, mechanical forces like 
fluid flow, as well as surface topography and chemistry of  
the cell culture substrate are of  particular importance for 
cellular behavior in vitro[25-30]. Based on this knowledge, 
numerous 3D-culture systems have been developed to 
restore and maintain or induce cellular differentiation  
in vitro: (1) explant cultures of  tissue slices or perfused 
whole organs, which retain tissue architecture; (2) 
cultivation of  reaggregated cells (e.g. spheroids, embryoid 
bodies) or simple micro-mass cultures in which isolated 
cells are pelleted; (3) three-dimensional cultivation of  
isolated cells embedded in gels or immobilized on porous 
matrices in stationary culture; and (4) systems using 
micro-bioreactors for high density 3D-cultures with 
active nutrient and gas supply. In the remainder of  this 
manuscript, only the latter two systems, using isolated 
cells together with synthetic scaffolds in 3D culture 
configurations, will be discussed in detail.

3D-MATRICES
One frequently used culture technique is to entrap cells 
in natural or synthetic hydrogels consisting of  extracel-
lular matrix (ECM) components (e.g. collagen, laminin, 
Matrigel, hyaluronic acid), natural polymers like alginate 

and chitosan or synthetic polymers comprising poly-
ethylene glycol, synthetic self-assembling peptides or 
artificial DNA molecules[31,32]. Due to their mechanical 
and biochemical properties, hydrogels mimic the nature 
of  soft tissues and provide a 3D network for cell-matrix 
interactions. Furthermore, the vast number of  biocom-
patible natural and synthetic materials, which can be 
utilized in combination, turns hydrogels into many use-
ful 3D-substrates. However, as hydrogels lack a distinct 
porous structure corresponding to blood and lymphatic 
vessels, mass transport in gels depends on slow diffusion 
through the gel and consequently leads to the forma-
tion of  gradients of  oxygen, nutrients, metabolites, and 
soluble factors (e.g. growth factors, hormones) within 
the gel-matrix. Therefore, gel-based systems without any 
forced medium flow are limited to rather small setups, at 
least in one dimension, as exemplified by several thin gel 
sandwich constructs or very low densities of  cells with 
low metabolism-like cartilage[33]. The lack of  mechanical 
stability of  gel based tissue models often hampers the 
use of  preformed tissues for implantations, especially if  
a certain load bearing is needed with the beginning of  
the in vivo application. Therefore, approaches to culture 
cells in a 3D configuration in combination with porous 
3D-matrices based on sponge-like structures, usually 
prepared from biodegradable polymers, became attrac-
tive. Sponge-like structures exhibit larger pores than 
pure hydrogels and thus facilitate cell seeding and coloni-
zation of  the substrates. Important parameters for their 
application in cell culture are the number of  pores, pore 
size, as well as interconnectivity and distribution of  the 
pores[31]. If  the fenestrations are smaller than the cell size 
or the interconnectivity of  the pores within the scaffold 
is poor, cell migration into the 3D-matrix is limited and 
thus cell distribution is restricted to near-surface layers 
of  the substrate. Instead, perfused open porous foams 
from polylactic-co-glycolic acid that are collagenized and 
inoculated with immortalized bovine capillary endothe-
lial cells and a hepatoma cell line (C3A), show a spatial 
separation upon in vitro culture; endothelial cells invade 
the foam completely whereas the hepatoma cells form a 
dense layer on the inflow side of  the spongeous matrix 
(Figure 1). 

Depending on the cell type and pore size, a monolay-
er formation within the scaffold can be observed. Thus, 
optimal size and interconnectivity of  the pores may vary 
and must be determined for each cell type used. Al-
though a variety of  materials can be used to produce po-
rous sponge-like scaffolds, the most common are natural 
polymers often used for hydrogels (e.g. alginate, chitosan, 
collagen), synthetic polymers like polylactic acid, polygly-
colic acid and their copolymers or composite material[31]. 
Experiments in our laboratory with the hepatoma cell 
line HepG2 in alginate sponges revealed that, despite a 
larger pore size compared to hydrogels, mass transport 
between sponge and culture medium was limited in sta-
tionary culture conditions (unpublished data). 

Another approach to culture cells in a 3D configu-
ration came along with new technologies for scaffold 
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fabrication that comprises the immobilization of  cells in 
fibrous 3D-matrices. Fibrous scaffolds can be produced 
in an electrospinning process that allows the creation of  
micro- and nano-fibers from a polymer solution and the 
subsequent deposition of  a non-woven fibrous mesh 
on a collector[34,35]. This technique allows the fabrication 
of  two dimensional or 3D-matrices depending on the 
thickness of  the deposited fiber network on the collec-
tor. Fiber diameter can range from 3 nm to greater than 
5 µm[34] and therefore electrospun nanofibers reflect, in 
part, the fibrous structure of  natural extracellular matrix 
components. Commonly used materials for nanofi-
ber scaffolds are synthetic polymers like polylactic-co-
glycolic acid, poly-L-lactic acid-co-ε-caprolactone, poly- 
ε-caprolactone, polyamide and natural polymers like 
collagen, elastin, fibrinogen, alginate or hyaluronic acid 
or even combinations thereof[34]. One example of  3D tis-
sue culture scaffolds is based on electrospun biodegrad-
able aliphatic polycarbonates comprising photochemical 
post-treatments[36]. These scaffolds exhibit important ad-
vantages when compared with foams since the intercon-
nectivity of  voids available for tissue ingrowth is perfect. 
This is realized by a photopatterning of  the non-woven 
fabric selectively lowering the molecular weight of  the 
used polymer and, in turn, speeding up biodegradation. 
Within a couple of  days, voids are formed in the scaffold, 
opening ways for increased perfusion and tissue/ves-
sel ingrowth. In addition, ultrathin fibers produced by 
electrospinning offer an unsurpassed surface to volume 
ratio among applied tissue scaffolds. This has important 
consequences on the availability and presentation of  
polymer bound signaling molecules and on degradation 
rates of  biodegradable scaffolds. Finally, electrospinning 
offers new 3D scaffolds with double length scale features 
with combinations of  microfibers and electrospun nano-
fibers[37].

In contrast to the above mentioned techniques, we 
use a culture system developed at the Karlsruhe Institute 
of  Technology that is based on a microstructured poly-
mer chip that serves as a scaffold for the 3D cultivation 
of  cells[38-41]. Currently, the chip is manufactured in two 

different designs varying mainly in geometry and the 
manufacturing process. The so-called cf-KITChip has 
outer measures of  20 mm × 20 mm and a central grid-
like microstructured area of  10 mm × 10 mm to 14 mm 
× 14 mm with cubic microcavities in which cells can 
organize into multicellular aggregates (Figure 2B). The 
cavities of  the chips are open to the top and are 300 µm 
in each direction (w × l × d). However, the size and the 
shape of  the microcavities can be adjusted to experimen-
tal needs. The bottom of  the chip consists of  a track 
etched polycarbonate (PC) membrane (10 µm thickness) 
with a high pore density (2 × 106 pores per cm²) and a 
pore size of  3 µm. Thus, mass exchange by diffusion 
through the membrane is facilitated and cell migration 
onto the back of  the chip is prevented at the same time. 
The manufacturing process comprises a microreplication 
technique, such as microinjection molding or vacuum 
hot embossing of  polymethylmethacrylate (PMMA) or 
polycarbonate (PC), to produce the container array of  
the scaffold and a solvent-vapor-welding technique to 
bond the perforated membrane to the back of  the chip. 
The so-called r-KITChip represents another variant of  
the polymer chip. It differs in its current design from the 
cf-KITChip by the round geometry of  the microcavities 

A

B

Figure 2  Primary human hepatocytes and Hep G2 hepatoma cells 5 d and 
24 h after cell seeding into r- (A) and cf-KITChips (B) respectively (upper 
panels: top view, lower panels: cross section). The r-KITChip (20 mm ×  
20 mm in total) is comprised of up to 625 round microcontainers (diameter up to 
300 µm, depth up to 300 µm) or 1156 cubic microcontainers (300 µm × 300 µm 
× 300 µm in w × l × h) for the cf-KITChip of which 5 × 5 can be seen in 2A and 4 
× 4 can be seen in 2B. Live cell staining with Syto 16. Scale bar: 250 µm.
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Figure 1  Cross section of a resin embedded co-culture of a hepatoma 
cell line (C3A) and immortalized BCE in polylactic-co-glycolic acid foam. 
Medium inflow from the lower left side into the polymer foam (arrowhead). 
Staining of cytokeratin 18 (green, C3A cells), vimentin (red, BCE cells), Draq5 
nuclear stain (blue, both cell types). Scale bar: 250 µm.

2008-08-20  14:26:59



and the fabrication process called SMART (Substrate 
Modification and Replication by Thermoforming), 
which allows the production of  chips from thin poly-
mer films[42,43]. SMART consists of  a combination of  
microtechnical thermoforming or microthermoforming 
and various material modification techniques, and thus 
allows a site-specific functionalization of  3D cavities. 
By the combination of  microthermoforming and ion 
track technology, for instance, highly porous thin-walled 
microcavity arrays can be produced. Compared to hy-
drogels and nanofibrous or sponge-like scaffolds, the 
uniform geometry of  the microstructured polymer chip 
allows the formation of  cell aggregates with defined 
size in the microcavities (Figure 2). This is of  particular 
importance in terms of  a homogenous mass transport 
and diffusion gradients within the cell aggregates and 
the whole scaffold. Moreover, the influence of  aggregate 
size on cell differentiation could be recently demon-
strated for human embryonic stem cells[44]. Therefore, 
chips with defined geometries for cellular aggregation 
may be helpful tools in stem cell research. Another im-
portant advantage of  the chip is the defined surface area, 
which permits the application of  known cell densities in 
the chip cavities and defined surface modifications like 
coating with extracellular matrix components, leading to 
distinct culture conditions and reproducible experiments. 
In this context, simple coating of  the chip surface with 
extracted extracellular matrix proteins, such as collagen, 
represents a rather simple surface modification, whereas 
more sophisticated modification techniques have been 
developed in our laboratory, for example, the integration 
of  defined nanotopographies on the inner surface of  the 
curved microcavity walls[45].

MICRO-BIOREACTORS FOR 3D-CULTURE 
As a result of  cellular metabolic activity, 3D high density 
cell culture can lead to limited nutrient and oxygen 
supply as well as accumulation of  toxic metabolites in 
the tissue construct. Furthermore, it has been shown that 
fluid flow or shear stress can influence cell behavior like 
osteogenic differentiation of  human mesenchymal stem 
cells[46-49]. Micro-bioreactors specifically designed for 3D 
cell culture provide an opportunity to overcome these 
mass transfer limitations in high density cell cultures 
and offers the possibility of  studying the influence 
of  mechanical forces like fluid flow or hydrodynamic 
pressure on cell responses. For this purpose numerous 
bioreactor designs have been developed, which can be 
divided in stirred flasks like spinner-flask or rotating-
wall vessel (RWV) bioreactors, fluidized or fixed bed 
bioreactors, hollow-fiber bioreactors and systems using 
perfused scaffolds. All these systems to some extent use 
a combination of  common 3D cell culture techniques 
like gel-based techniques, spheroids, encapsulated or 
immobilized cells on various types of  3D-matrices. 
However, many bioreactor systems must cope with 
difficulties like large death volumes, heterogeneous cell 
distribution in the scaffold or bioreactor, large diffusion 

distances and non-uniform perfusion of  the scaffolds 
due to different flow resistances inside the matrices[50]. 
For instance, in hollow-fiber bioreactors cells may be 
embedded in gels to improve cell distribution and are 
cultured inside or outside of  semi-permeable hollow 
fibers, while culture medium flows on the reverse side, 
respectively. In these systems mass transport takes 
place by diffusion and it has to be considered that fiber 
diameter and length play an important role since radial 
and longitudinal gradients may be formed. 

Systems using encapsulated cells like fluidized or fixed 
bed bioreactors show similar mass transfer limitations 
due to slow diffusion across the capsules[50]. Bioreactors 
based on perfused scaffolds show a better nutrient supply 
compared to the above mentioned systems since cells 
immobilized on 3D-matrices are in direct contact with 
the culture medium. However, not all of  the systems, 
termed “perfusion systems”, use a setup where scaffolds 
are directly perfused with culture medium. More 
precisely, one should differentiate between perfused 
culture chambers where culture medium flows around 
the scaffold[51,52], and perfusion through the scaffold 
and the tissue inside[46,53,54]. For better differentiation 
between the two different setups, we have coined the 
term superfusion for the flow around the scaffold. The 
KITChip-culture system is comprised of  a chip and a 
bioreactor that allows the use of  both superfusion and 
perfusion and even a combination of  the two. Moreover, 
sensors for oxygen and other determinations can easily 
be integrated. 

CONCLUSION
Since the early days of  3D-culture a vast number of  
investigations have been performed to identify the 
factors relevant for cell survival, proliferation and/or 
differentiation in vitro. Based on progress in the research 
fields of  biology, material science and engineering, a 
multitude of  different culture techniques, sophisticated 
cell culture scaffolds and micro-bioreactors have been 
developed that are nearly as diverse as the tissues of  the 
body. 

Based on the advances in surface modification 
and micro- and nano-structuring techniques, new 
applications and, therefore most likely, new concepts 
for 3D-tissue cultures will arise. Today, scientists 
already provide a tool box for the design of  appropriate 
3D-culture configurations depending on the cell type 
and experimental setup, thus moving closer to in vivo 
conditions. This is of  particular importance with 
regard to control stem cell maintenance, expansion and 
differentiation, as well as the generation of  artificial tissue 
for applications in medicine or high-throughput screening 
systems in the pharmaceutical and chemical industry. 

However, if  3D cell culture techniques better reflect 
the natural microenvironment of  tissues and current 
advanced technologies allow the design and fabrication 
of  numerous 3D-culture systems, why then is the Petri 
dish, or rather the monolayer culture, still the standard 
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technique in most cell culture labs? The reasons are 
simple and convincing: monolayer culture devices are 
easy to manufacture and thus they are inexpensive to 
produce, which in turn allows mass production. Many 
companies have a large portfolio of  related products 
and, last but not least, they are easy to handle. Especially 
the latter and the fact that many 3D-culture systems 
are of  academic nature and not commercially available 
are the major obstacles that prevent faster distribution 
of  organotypic culture systems and their becoming 
new standards. For instance, commercially available 
3D-culture systems comprise mainly sponges (e.g. 
collagen or calcium-phosphate sponges), hydrogels 
made of  natural polymers like alginate or extracellular 
matrix components or more rare synthetic peptide 
hydrogels and cell culture flasks coated with nanofibers 
representing a synthetic substrate for cells in monolayer 
culture. All these systems are designed for stationary 
culture in multiwell cell culture plates, while available 
fluidic 3D-culture systems using bioreactors are based on 
encapsulated cells or cells immobilized on microcarriers 
in rotating bed/wall vessel bioreactors displaying in part 
the already discussed limitations. Furthermore, many 
standardized techniques for cell analysis used so far in 
conventional monolayer culture, like cell lysis for mRNA 
or protein extraction, immunostaining or quantification 
of  secreted proteins into the culture medium, are often 
difficult to transfer to 3D-culture systems, especially in 
gel-based systems as gels often hinder the accessibility of  
the cells. However, as more and more academic systems 
become commercially available, the increasing number 
of  standard protocols adapted to 3D-cultures will help 
to improve their acceptance and diffusion.
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Abstract
The most popular view of hematopoietic cell lineage 
organization is that of complex reactive or adaptative 
systems. Leukemia contains a subpopulation of cells 
that display characteristics of stem cells. These cells 
maintain tumor growth. The properties of leukemia stem 
cells indicate that current conventional chemotherapy, 
directed against the bulk of the tumor, will not be 
effective. Leukemia stem cells are quiescent and do not 
respond to cell cycle-specific cytotoxic agents used to 
treat leukemia and thus contribute to treatment failure. 
New strategies are required that specifically target this 
malignant stem cell population.
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INTRODUCTION
Acute myeloid leukemia (AML) is a paradigm of  cancer 
stem cells with a hierarchy analogous to that seen in 
normal hematopoiesis. Leukemia stem cells have long-
term repopulating potential and the ability to propagate 
and maintain the AML phenotype. By their ability to 
hijack homeostatic mechanisms and take refuge within 
the sanctuary of  the bone marrow microenvironment, 
they consequently contribute to disease resistance. Thus, 
targeting this stem cell population and its microenvironment 
is a new goal for therapy of  adult AML.

THE LEUKEMIA STEM CELL HYPOTHESIS
Leukemia, as with all malignant diseases, undergoes 
a series of  genetic events that result in the activation 
or overexpression of  genes promoting proliferation, 
the silencing of  genes involved in the inhibition of  
proliferation, and the development of  the ability to elude 
apoptosis. However, this does not explain self-renewal, 
clonal expansion, and additional mutations. Over the 
past few years, it has been recognized that malignant 
diseases contain a particular subpopulation of  cells with 
biological features that are reminiscent of  stem cells[1]. 
The modern concept of  “cancer stem cell” was promoted 
by John Dick and colleagues, who showed that cells with 
the ability to transfer human AML to NOD/SCID mice 
are frequently found exclusively in the CD34+ CD38− 
compartment[2,3]. Stem cells modulate tissue formation, 
and maintenance and repair, based on a complex 
interaction of  cell-autonomous and cell-non autonomous 
regulatory mechanisms[4]. In the hematopoietic system, 
there are three different populations of  multipotent 
progenitors: (1) stem cells with a capacity for long-
term renewal; (2) stem cells with a capacity for short-
term renewal; and (3) and multipotent progenitors that 
cannot renew but differentiate into the varied lineage 
and undergo rapid division, allowing them to populate 
the bone marrow[5]. Classically, a slow cycling fraction 
of  cells is generating a fast cycling fraction. However, an 
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alternative hypothesis predicts that all tumor cells have 
the potential to self-renew and recapitulate the tumor, but 
with a low probability that any tumor cell enters the cell 
cycle and finds a permissive environment[5]. 

THE LEUKEMIA THERAPEUTIC 
CHALLENGE
AML is one of  the most common leukemias in adults. 
The outcome of  therapy for AML has improved over 
recent years, mainly in younger patients. However, 
the challenges in this area remain considerable. The 
incidence of  AML increases with age. AML is therefore 
primarily a disease of  the elderly. This patient population 
has a very poor prognosis, which is attributed to having 
a disease that is inherently more resistant to current 
standard cytotoxic agents in relationship with acquired 
genetic characteristics of  the leukemia, and/or relatively 
poor tolerance of  these agents because of  comorbidity 
and reduced tolerance of  adverse effects. In contrast 
to the molecular mechanisms of  leukemogenesis in 
children and younger adults, recent studies indicate that 
the majority of  cases of  AML in the elderly have quite 
distinct biological and molecular genetic features[6]. 
These features include trilineage dysplasia, complex 
unfavorable cytogenetic abnormalities (involving 
chromosomes 5 and/or 7, del(5q), del(7q), abnormalities 
of  11q, inv(3), and complex or multiple abnormalities), 
the potential for clonal remissions and reversion to an 
MDS marrow picture at remission. There is also a high 
incidence of  drug-resistant phenotypes (mediated by 
MDR-1/P-glycoprotein or other members of  the ABC 
transporter family). Treatment options for the older 
AML patient population (≥ 65 years) are limited. The 
traditional chemotherapeutic approach to a patient with 
AML has been based on treatment with a combination 
of  an anthracycline (or anthracenedione) with cytarabine. 
The unmet therapeutic need is therefore greatest among 
older patients with AML, in whom response rates are 
comparatively low (50% for those over 60 years old), 
relapse rates are exceedingly high (more than 85%), and 
long-term survival rates are less than 10%[7,8]. Current 
chemotherapeutic options provide essentially no chance 
for durable remission, and toxicity of  the treatment is 
significant. Nearly all patients relapse, and the median 
survival is approximately nine months. Consequently, 
many older patients with AML are not offered, or 
choose to decline, traditional intensive chemotherapy 
and receive supportive care only. More effective therapies 
to provide durable remissions in a significant proportion 
of  patients and less toxic therapies, which could be 
offered to more patients, are desperately needed for 
the treatment of  AML in the elderly. Biological insights 
into the mechanisms of  defective molecular pathways in 
malignant cells have recently resulted in the identification 
of  novel targets for drug development. New drugs are 
currently in early clinical development with the aim of  
circumventing chemotherapy resistance. 

The possible existence of  a rare stem cell-like popu-

lation of  cells within a much larger pool of  malignant 
cells has presented new questions as to the biology of  
leukemia relapse and resistance. Most stem cells are 
assumed to be quiescent at steady state, and to express a 
number of  membrane transporters with broad specificity 
linked to drug resistance. Assuming that leukemia stem 
cells recapitulate these two aspects of  stem cells, quies-
cence and inherent drug resistance are likely to make 
the leukemia stem cell population the most difficult to 
eradicate fraction.

MODELS OF LEUKEMOGENESIS
Two models of  leukemogenesis have long been proposed. 
The “stem cell model” or the “hierarchy model”, 
suggesting that leukemias originate from stem or progenitor 
cells through deregulation of  self-renewal pathways. 
Theoretically, the leukemia stem cell model is based on the 
idea that pluripotency and maturation are mutually exclusive. 
Leukemia stem cells maintain themselves and the clone by 
self-renewal, and they mature to generate progeny that lack 
stem cell properties. In contrast, in the “stochastic model”, 
any cell could be the target of  leukemogenesis. This model 
predicts that a tumor is biologically homogeneous and 
the behavior of  malignant cells is influenced by intrinsic 
or extrinsic factors. Transformation results from random 
mutation and subsequent clonal selection[9,10]. All leukemia 
cells are equally sensitive to such stochastic influences 
and can revert from one state to another. Recently, a third 
model was proposed. In this model, leukemia cells can 
dedifferentiate and regain leukemia stem cell capacity, 
thereby sustaining the disease[11]. In all cases, both bone 
marrow and stromal cells may have abilities to differentiate 
into different cell types, suggesting that pluripotency and 
maturation might be influenced by the micro environmental 
stimuli[12]. This is encapsulated in the concept of  the “niche” 
in the bone marrow that is required to maintain the status 
of  the bone marrow stem cells[13]. 

Although hematopoiesis has been considered hierar-
chical in nature, recent data suggest that the system is 
functionally quite plastic[14]. Rather than a hierarchical 
transition from stem to progenitor cell, it appears that a 
fluctuating continuum exists, in which the phenotype of  
primitive marrow cells shifts from one state to another 
and back again. A primitive progenitor cell can actually 
make very different lineage choices during one cell cycle 
transit[15]. It has also been suggested that hematopoietic 
stem cells are functioning concurrently, continuously 
cycling and contributing to blood cell production. This 
suggests that hematopoietic stem cells are not completely 
dormant, cell quiescence being relative[16]. Cell cycle 
passage could determine the fate of  cells derived from 
stem cell division and renew stem cell multipotency[17]. 
Cell cycle transit is associated with a continually changing 
stem cell phenotype[14]. The identity of  the stem cell could 
be masked at certain points in the cycle. In these models, 
stem cells would show asymmetric division. The other 
alternatives would lead to either hyperproliferation or 
stem cell exhaustion. In some models, less primitive cells 
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could give rise to more primitive cells[18]. Some daughter 
cells could have greater pluripotency than the parent cells. 
Here the stem cell population is viewed as a continuum, 
rather than being composed of  discrete states.

These last models are more compatible with the 
view of  the cell lineages representing complex reactive 
or adaptive systems[19], in which self-organization arises 
on the macro-scale from micro-scale interactions of  the 
individuals that constitute the system. Complex adaptive 
systems often have multiple ground states or points of  
equilibrium, and transitions between these states may lead 
to small or large instabilities, including system collapse. 
Mathematical modeling of  stem cell lineage systems, 
taking into account a limited number of  parameters, 
such as affinity for a growth environment (the stem cell 
niche) and cycling status of  the cell, produces clonal 
fluctuation patterns that are a precise match for those 
seen experimentally in human leukemias[20]. This model 
includes stochastic elements. In the setting of  cell lineages 
as complex reactive or adaptive systems, fluctuations are 
necessary for self-organizing systems to explore new 
states.

IMPLICATIONS FOR THERAPY
The concept of  leukemia stem cells has implications in 
leukemia therapy, most particularly for the development 
of  targeted therapies. Based on the understanding of  the 
molecular basis of  cancer, current therapeutic strategies 
focus on inhibiting the molecular drivers of  cancer. 
Research should therefore focus more on leukemia stem 
cells than on the bulk cells that makes up the majority 
of  the tumor. Characterization of  the biological features 
that initiate and maintain leukemia is an essential step in 
the development of  novel effective agents. The challenge 
is to identify proapoptotic stimuli that spare the normal 
hematopoietic stem cells while exerting the desired effect 
on leukemia stem cells[21]. Malignant stem cells have a 
number of  biological features that are different from 
their normal-tissue counterparts and these might be 
exploited for therapeutic benefits. The identification of  
genes that regulate self-renewal might provide rational 
targets for therapeutic intervention, particularly if  their 
requirement is more critical for self-renewal in leukemia 
stem cells than hematopoietic stem cells. New agents, 
such as kinase inhibitors, histone deacetylase inhibitors, 
cyclin D kinase inhibitors, nuclear factor κB (NF-κB) 
inhibitors, methylation inhibitors, heat shock protein 
inhibitors, farnesyltransferase inhibitors, and proteasome 
inhibitors, showing specific mechanisms that target 
leukemia cells, are now available. However, there is little 
or no evidence that inhibiting these different pathways is 
relevant to inhibiting proliferating leukemia stem cells.

Targeting drug efflux pumps
A therapeutic approach could be to target drug efflux 
pumps. ATP-dependent drug efflux has been linked to 
the increased expression of  ABC transporter proteins[22]. 
At least 22 ABC transporters have been identified in 

leukemia stem cells, and all were expressed at lower 
levels in CD34+ CD38+ cells in comparison with the 
CD34+ CD38– cells[23]. Several agents effective in 
overcoming the inherent drug efflux pumps have been 
studied, but found to have limited efficacy because 
of  the high expression of  the targeted receptors in 
normal hematopoietic stem cells, making them equally 
susceptible to the inhibitors[24,25]. Third-generation 
multidrug resistance modulators that are more powerful 
are currently under clinical investigations[26].

Targeting cell cycle
Another approach could be to target the self-renewal 
machinery of  leukemia stem cells, by inducing the 
quiescent leukemia stem cells into the cell cycle. Leukemia 
stem cells respond to depletion of  the leukemia cell mass 
that occurs when antiproliferative drugs are administered 
to leukemia patients. Thus, one way to eliminate dormant 
leukemia stem cells would be to find the window when 
they cycle and kill them at that point. Unfortunately, 
little is known of  the biology of  these cells. It has been 
proposed that recruitment of  leukemia stem cells from 
G0 to the S phase of  the cell cycle might contribute to 
their eradication by cell cycle-specific agents.

A priming strategy might improve the efficacy of  cell 
cycle-dependent cytotoxic agents. Recent clinical trials 
have shown that sensitization of  leukemia cells and their 
progenitors by granulocytic growth factors can improve 
the outcome of  patients with newly diagnosed AML[27,28]. 
Inhibition of  CXCR4 (the receptor for bone marrow 
stroma derived SDF-1) has been shown to overcome 
resistance to numerous drugs in leukemia/stromal 
co-cultures in vitro[29]. CXCR4 inhibition also affects 
CXCR4-mediated signaling events that are induced 
by leukemia/stroma co-culture conditions. In a recent 
clinical trial using an anti-CXCR4 in patients with AML 
in complete remission, massive mobilization (up to 80%) 
of  leukemic cells was observed when hematopoietic 
growth factor application was followed by anti-
CXCR4[30]. It is expected that mobilization of  leukemic 
stem cells with CSF and anti-CXCR4, accompanied 
by chemotherapy, will result in increased anti-leukemic 
effects. Thus the mobilization of  leukemic stem cells is a 
concept that is presently being revisited.

Targeting molecular pathways including PTEN, p21, 
and PML might also be an attractive proposition[31]. 
The BMI1 oncogene-driven pathway is one of  the key 
regulatory mechanisms of  pluripotency. The polycomb 
group gene BMI1 influences the proliferative and self-
renewal potential of  normal and leukemia stem cells[32].

Conversely, prolonging the quiescent phase could 
also be beneficial. The existence of  patients with 
indolent forms of  AML and the wide variation in the 
duration of  relapse-free interval among patients can 
sustain this hypothesis.

Targeting cell surface antigens
Although both leukemia stem cells and normal stem 
cells express CD34 but not CD38, there are differences 
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between their surface phenotype that could be useful for 
targeting leukemia stem cells. Recent data suggest that the 
majority of  leukemia stem cells express CD33, the target 
of  gemtuzumab ozogamicin[33]. However, the expression 
is not specific to leukemia stem cells. Conversely, CD123 
(IL3α receptor) is expressed on most leukemia stem cells, 
but not on normal stem cells[33,34]. A specific fusion of  
IL3 and a diphtheria toxin has therefore been generated 
showing interesting results in NOD-SCID mice[35] and 
encouraging data in a phase Ⅰ/Ⅱ clinical trial in patients 
with relapsed or refractory AML[36]. An anti-IL3 receptor 
alpha chain (CD123)-neutralizing antibody (7G3) has 
been shown to target AML leukemia stem cells, impairing 
homing to bone marrow and activating innate immunity in 
NOD/SCID mice[37]. Studies also reported that leukemia 
stem cells could be targeted with monoclonal antibodies 
to CD44, CLL-1, or CXCR4[38-40]. 

Targeting NF-κB activity
Recent studies have described means of  differential 
activation of  apoptosis mechanisms in leukemia stem 
cells[41-43]. The transcription NF-κB has been found to 
be constitutively activated in leukemia stem cells but 
not in normal hematopoietic stem cells. Molecules 
able to inhibit NF-κB activity might selectively target 
the leukemia stem cell. The combination of  idarubicin 
with proteasome inhibitors has been shown to mediate 
selective apoptosis in leukemia stem cells while sparing 
normal cells[43]. Recently, parthenolide, a sesquiterpene 
lactone with potent NF-κB inhibitory activity, was 
found to kil l AML progenitors selectively while 
sparing normal progenitors[42]. Unfortunately, it is not 
water-soluble and is not, therefore, a candidate for 
pharmacologic development. However, the development 
of  soluble analogs is ongoing[44]. Another molecule, 
TDZD-8 (4-benzyl-2-methyl-1,2,4-thiadiazolidine-3,5-
dione),which also has NF-κB inhibitory activity, showed 
promising activity on AML progenitor cells expressing 
CD34+ CD38−[44].

Targeting other pathways involved in self-renewal
Other pathways are involved in self-renewal. Pathways 
such as the HOX gene, WNT/β-catenin, PTEN, 
Hedgehog, and BMI-1 are frequently mutated and could 
be selectively targeted in leukemia stem cells. Another 
transcriptional pathway that appears to alter self-renewal 
is that associated with the AP-1 transcriptional factor, 
JunB[45]. The Notch pathway might also be deregulated 
in leukemia stem cells. Inhibition of  γ-secretase (which 
is necessary for Jagged and Notch signaling) by N-[N-
(3,5-difluorophenacetyl)-L-alanyl]-S-phenylglycine t-butyl 
ester (DAPT) has been shown to inhibit leukemia stem 
cell growth[46]. The phosphatidylinositide-3 kinase (PI3K) 
pathway is the major signaling pathway downstream of  
oncogenic tyrosine kinases, and is activated in AML[47]. 
Inhibition by LY294002 of  the activation of  the PI3K 
also leads to a dose-dependent decrease in survival of  
leukemia stem cells[48]. The use of  mTOR inhibitors such 
as rapamycin and its derivative has demonstrated a loss 

of  clonogenic potential of  AML blasts, while sparing 
normal progenitors[49]. Phases Ⅰ and Ⅱ studies of  mTOR 
inhibitors, in combination with standard chemotherapy, 
are ongoing[50,51].

Targeting cell differentiation
A differentiation block is a main feature of  AML. Malign-
ancy can be suppressed in certain types of  leukemia stem 
cells by inducing differentiation with cytokines that regulate 
normal hematopoiesis, or with other compounds that use 
alternative differentiation pathways. The suppression of  
malignancy by inducing differentiation can bypass genetic 
abnormalities that give rise to malignancy and shows that 
leukemia stem cells can be genetically reprogrammed. 
CD44, a mediator of  the stem cell/niche interaction, also 
represents a potential target for differentiation of  leukemia 
stem cells. Targeting CD44 with an activating monoclonal 
antibody has led to eradication of  human leukemia stem 
cells in NOD/SCID mice[38]. This could lead to a new 
therapeutic approach targeting the leukemia stem cell/niche 
interaction.

Targeting leukemia stem cells via active specific 
immunization
Targeting leukemia stem cells via active specific 
immunization has also been proposed, based on the 
development of  immunoconjugates with toxic moieties. 
Immunotherapy, aiming at the generation of  anti-leukemia 
T-cell responses, could provide a new therapeutic 
approach in eliminating minimal residual disease cells in 
leukemia. Leukemia stem cells could be targeted with a 
CD8+ cytotoxic T lymphocyte clone specific for minor 
histocompatibility antigens; an approach that might 
be useful in relapsing AML patients after allogeneic 
transplant[52]. The presence of  cytotoxic T lymphocytes 
directed against leukemia blasts emphasizes their suitability 
as immunological targets. Increased immunogenicity 
can also be achieved by the differentiation of  leukemia 
blasts into leukemia dendritic cells, which have been 
demonstrated to induce antileukemic T-cell responses 
in vitro. However, it remains to be established whether 
AML-dendritic cells are able to elicit profound immune 
responses in vivo[53].

CONCLUSION
In conclusion, most cytotoxic therapeutic strategies cur-
rently used for leukemia therapy damage DNA or disrupt 
mitosis to induce cell death in highly proliferative cells 
that represent the bulk of  malignant cell populations. 
Stem cells tend to be more resistant to chemotherapy. 
This involves the presence of  multidrug resistance, 
antiapoptotic proteins, and DNA repair mechanisms. 
Furthermore, most current therapies do not target the 
signaling pathways that regulate self-renewal. Selectivity 
of  targeting leukemia stem cells over normal stem cells is 
needed to avoid systemic toxicity. An important endpoint 
will therefore involve assessing changes in the size of  the 
leukemia stem cell population. With the development 
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of  clinical trials involving more targeted therapies, time 
progression or patient survival will thus become the 
ultimate clinical endpoints. However, a survey of  markers 
for leukemia stem cells, via micro array or proteomic 
profiling, will also be important. The development of  
mathematical modeling could also be useful to understand 
responses to treatments that target malignant stem cell 
complexes in reactive or adaptative systems[54,55].
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Abstract
Stem cells are unspecialized cells that can self renew 
indefinitely and differentiate into several somatic cells 
given the correct environmental cues. In the stem cell 
niche, stem cell-extracellular matrix (ECM) interactions 
are crucial for different cellular functions, such as 
adhesion, proliferation, and differentiation. Recently, 
in addition to chemical surface modifications, the 
importance of nanometric scale surface topography and 
roughness of biomaterials has increasingly becoming 
recognized as a crucial factor for cell survival and 

host tissue acceptance in synthetic ECMs. This review 
describes the influence of nanotopography on stem cell 
phenotypes. 
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INTRODUCTION
Stem cells are a natural choice for cell therapy due to 
their pluripotent nature and self-renewal capacity. In 
humans, stem cells have been identified in the inner 
cell mass of  the early embryo, in some tissues of  the 
fetus, the umbilical cord and placenta, and in several 
adult organs. The microenvironment in which the stem 
cells exist is called the stem cell niche. There are several 
factors which regulate the stem cell niche in vivo, such as 
extracellular matrix (ECM) molecules, growth factors, 
cytokines, and cell secreted metabolites. Molecular 
signals are exchanged between the stem cells and other 
neighbouring cells within the stem cell niche. The niche 
saves stem cells from depletion, while still protecting the 
host from excessive stem-cell proliferation. In short, the 
stem niche encompasses all of  the elements immediately 
surrounding the stem cells when they are in their naive 
state, including the non-stem cells that might be in direct 
contact with them, as well as the ECM and proximal 
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soluble molecules[1]. Typically, a niche contains a few stem 
cells with high potential of  differentiation into different 
kinds of  mature cells. These stem cells are supported 
by, or incorporated into, the niche walls formed by the 
neighbouring cells. After asymmetrical division, a stem cell 
remains in the same position, while a daughter cell with 
a narrower potential for differentiation migrates, divides 
symmetrically or asymmetrically, and eventually leaves the 
niche[2].

Stem cells can be broadly classified, based on their 
origin, into two types - embryonic stem cells (ESCs) and 
adult stem cells (ASCs). Their potency may be classified 
into three types - totipotent, pluripotent and multipotent 
stem cells (Table 1)[3]. 

ASCs can be employed for various tissue regeneration 
applications for the following reasons: (1) They are 
naturally poised to generate a particular tissue, which might 
consist of  several cell types; (2) They are able to migrate 
to injured tissue or other discrete sites in the body; and (3) 
Some cells secrete growth factors that mobilize or protect 
other cells residing in the tissue. However they are rare, 
difficult to identify and purify, and, when grown in culture, 
are difficult to maintain in the undifferentiated state.

Hematopoietic stem cells (HSCs) are capable of  self-
renewing continuously. HSCs reside in two different 
niches-the endosteal niche and the perivascular niche. 
In the endosteal niche, HSCs are associated with a 
subset of  osteoblasts that line the inner surface of  the 
cavities of  trabecular bone. It supports quiescence and 
self-renewal of  the HSCs[4]. HSCs that are found in the 
vicinity of  sinusoidal endothelial cells are referred to as 
the vascular niche. The vascular niche forms a milieu 
that supports the proliferation, differentiation, and trans-
endothelial migration of  HSCs[5]. Ma et al[6] demonstrated 
that topographical and biological cues are responsible 
for early adhesion of  bone marrow derived HSCs. They 
showed that the adhesion of  the HSCs was faster onto 
the collagen blended poly-lactic-co-glycolic acid (PLGA) 
nanofibrous scaffold compared to the tissue culture 
polystyrene (TCP) (Figure 1)[6].

Human bone marrow-derived mesenchymal stem cells 
(hBM-MSCs) have attracted substantial attention in the 
field of  tissue engineering and regenerative medicine due 
to the following advantages: firstly, the techniques for col-
lecting and purifying MSCs from bone marrow are rela-
tively convenient[7]; secondly, they are naturally poised to 
generate a particular tissue, which might consist of  several 
cell types such as adipocytes, chondrocytes, osteoblasts, 
tenocytes, myoblasts, or neurocyte[8-11]; thirdly, MSCs can 
escape the immune system[12]; and fourthly some cells 
secrete growth factors that mobilize or protect other cells 
residing in the tissue[13]. There is little ethical controversy 
in the application of  MSCs. Besides the perivascular areas 
in the bone marrow, where the MSCs could be in close as-
sociation with HSCs, the MSCs can also be isolated from 
other tissues, such as the periosteum, synovial membrane, 
and synovial fluid[12]. Muguruma et al[13] demonstrated that 
upon insertion of  human MSCs into the bone marrow 
of  immunodeficient mice, the human MSCs differenti-

ated into stromal cells, bone-lining osteoblasts, and en-
dothelial cells, all functional constituents of  the marrow 
hematopoietic microenvironment. Thus, understanding 
how niche cells and the ECM control stem cell fate will 
provide new tools to stimulate the differentiation of  stem 
cells into desired cell types.

Factors influencing stem cell behaviors
The influence of  the substratum on cell migration was 
first reported by Harrison in 1911 when he grew cells 
on a spider web and found that the embryonic cells 
followed the fibers of  the web. This phenomenon was 
called stereotropism or physical guidance[14]. The role 
of  topography on cells such as endothelia, fibroblasts, 
epithelia and epitena, was first explained by Curtis et al[15,16].  
A very wide range of  cell types, such as fibroblasts, 
osteoblast, nerve cells, and mesenchymal stem cells 
respond profoundly to nanotopography[17,18]. Cells seeded 
onto artificially produced micro- and nano-grooves 
aligned their shape and elongated in the direction of  the 
groove. However, it was reported by Wilkinson et al[19] 
that cells do not respond to groove width other than 
depth of  size greater than 2 micrometer. Cells adhere well 
onto surfaces having structures on the nanoscale range 
of  58 nm, but do not adhere that well on structures with 
diameter of  more than 73 nm[20]. It was also reported that 
cells can recognize symmetries in the nanorange[21].

There are five key design parameters that influence 
cell behaviour in a biomaterial, depending on the surface 
molecules present in the biomaterial, including: ligand 
identity, presentation, and density; material architecture; and 
material mechanical properties. Together, these material 
properties coordinate the interplay between intrinsic and 
extrinsic determinants of  stem cell fate to produce a desired 
phenotype[22]. In addition, the properties of  the scaffold 
surface that must be taken into careful consideration 
include the rate of  degradation of  the scaffold, optimal 
fluid transport, and delivery of  bioactive molecules, cell-
recognizable surface chemistries, mechanical integrity, 
and the ability to induce signal transduction. The ultimate 
success of  a scaffold is dependent on these properties 
because they influence cell adherence, nutrient/waste 
transport, matrix organization and cell differentiation[23]. 

The nanostructured surfaces of  nanometallic and 
nanoceramic materials have several advantages compared 
to conventional surfaces. These include: (1) they possess 
greater surface roughness resulting from both decreased 
grain size and possibly decreased diameter of  surface 
pores; (2) enhanced surface moisture retention due 
to greater surface roughness; and (3) greater numbers 
of  grain boundaries. For example, nanoceramics are 
commercially available as new bone grafts or as implant 
coating materials (i.e. nano-HA paste-Ostim® from 
Obernburg, Germany; nano-beta-tricalcium phosphate-
Vitoss from Orthovita, USA)[24]. 

The types of  biomaterials used commonly in stem cell 
cultures ranges from polymers [polystyrene, polysulfone, 
polytetrafluoroethylene, cellulose acetate, PLGA, 
Collagen, and PCL (polycaprolactone)] to metals (titanium, 
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alumina, and stainless-steel) and glasses. Many polymers 
do not have the desired surface properties to be used 
as biomaterials in tissue engineering; therefore, surface 
modification is used to improve surface characteristics, 
such as hydrophilicity, cell attachment, expansion, 
proliferation, and differentiation[25]. Cell response is 
affected by the physicochemical parameters of  the 
biomaterial surface, such as surface energy, surface charges 
or chemical composition. Topography is one of  the most 
crucial physical cues for stem cells and recently it has 
been proven that nanotopography is the main influencing 
factor, rather than microtopography[26].

Nanofibrous scaffolds present a 3D nanostructured 
topology that resembles the fibrillar ECM proteins in vivo.  
Polyglycolic acid (PGA), polylactic acid (PLA) and 
the copolymer PLGA have been extensively used as 
nanofibrous scaffolds. These materials are hydrolytically 
degradable and their by-products are physiologically 
removed via metabolic pathways[27,28]. The mechanics 
of  the nanofibrous scaffold are determined primarily 
by its composition, water content, and structure, which 
affect intermolecular and intramolecular forces and stress 
distributions[29-31]. Common methods of  altering the 
mechanical properties of  biomaterials include modulating 
the molecular composition and connectivity, thermal 
processing, and creating reinforced and porous composites. 
The mechanical properties of  a material affect cell 
behaviors such as proliferation and migration[31-35].

Fabrication of scaffolds with various nanotopographies
There are several techniques for the fabrication of  nano- 
and microsurfaces suitable for the growth of  cells, as 
depicted in Table 2. These include laser deposition and 
etching, soft lithography, electrospinning, and colloidal 
lithography[36-39].

Electrospinning is the most widely used technique to 
create fibrous structures with favourable mechanical and 
biological properties. Electrospun nanofibers have been 
incorporated in stem cell cultures, to provide the desired 
microenvironment for their growth and differentiation, 
and to ultimately mimic the stem cell niche. Electrospun 
nanofibrous matrices provide integrated networks of  
nanoscale fibers with a specified pattern, high porosity, 
high spatial interconnectivity, and a high surface area to 
volume ratio[40].

There are a number of  electrospinning parameters 
that affect both the fibers and the scaffold. These 
include solvent type, material concentration and viscosity, 
distance of  the collecting target from the spinning 
nozzle, the gauge of  the needle, and the voltage. The 
above parameters should be optimized depending on the 
desired application, as cell proliferation and differenti-
ation are influenced by the fiber diameter[41,42]. HFP 
(1,1,1,3,3,3-hexafluoro-2-propanol) is a commonly used 
solvent for electrospinning. It is an organic solvent allow-
ing full extension of  the polymer, without leaving any resi-
due on the electrospun fibers. However, some proteins, 
such as collagen, tend to lose their 3D molecular structure 
when using HFP as the solvent. Hence cross-linking 

agents like glutaraldehyde or stabilizers are proposed to be 
applicable[43]. Recently, it has been found that adding PCL 
not only reduced the potential cytotoxicity that a chemical 
cross-linking reagent such as glutaraldehyde can cause, but 
also produced a new composite with improved mechanical 
and biological properties[44-47]. Heydarkhan-Hagvall et al[48]  
demonstrated that electrospinning of  natural proteins 
like collagen/gelatin with synthetic polymers like PCL/
PLGA can be used to produce tissue-engineered scaffolds 
that better recapitulate key features of  the native ECM, 
including its mechanical and biochemical properties.

The biocompatible scaffold materials can be synthetic 
or natural. Collagen, fibrinogen, hyaluronic acid, gly-
cosaminoglycans (GAGs), hydroxyapatite (HA), cellulose, 
chitosan, and silk fibroin are the most commonly used 
biomaterials. Although the natural biomaterials have the 
advantage of  being biocompatible and bioactive, they have 
certain disadvantages compared to synthetic biomaterials 
such as the difficulty in modifying degradation rates, 
difficulty in sterilization and purification. Grafting of  
polymers with collagen is said to increase the surface 
hydrophilicity and thereby facilitates cell attachment and 
proliferation on the modified surface[49-52]. In addition, 
plasma surface treatment of  scaffolds with N2, O2, and 
NH3 makes the polymer surface more hydrophilic, more 
polar, and more bio-adhesive[53,54].

Surface modification of implants with nanotopographies
Using bone/dental implants as an example, once an 
implant is placed into the body, the adjoining bone will 
interact with the surface of  the load bearing implant. 
This process is called osseointegration. The success of  
an implant depends on how early osseointegration is 
achieved[55]. Hence, the surface of  the implants ought to 
be modified, to create a nanostructured surface matching 
native bone ECM and enhancing osteoblast incorporation, 
to improve early osseointegration. Various techniques 
have been attempted to improve the surface roughness of  
the implant, such as plasma treatment, acid-etching, and 
heat treatment. For example, the TPS (titanium plasma 
sprayed) surfaces used by the Straumann Company, rec-
ommended a healing period of  12 wk[56] and this was 
reduced to six to eight weeks with the introduction of  the 
SLA (sand blasted, acid etched) surface[57]. Alternatively, 
nano-hydroxyapatite (n-HA) has been widely used as a 
bioceramic in orthopaedics and dentistry due its osteo-
conductive properties[58], which makes the combination of  
a load bearing biomaterial like titanium with the osteocon-
ductive properties of  n-HA very attractive. 

The current time required for osseointegration rang-
es from three to six months. This delay might be because 
the osteoprogenitor cells and/or stem cells need a long 
time to recognize the implant surface, attach onto it, fol-
lowed by proliferation and differentiation. The surface 
creation of  nanotopography such as a nanofiber offers 
the possibility to optimize cell capture as well as other 
cell functions, because both the substrate topography 
and the biological cues enhance the initial attachment of  
MSCs, which might be very helpful for osseointegration.
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EFFECTS OF NANOTOPOGRAPHY ON 
STEM CELLS
Nanotopography is of  critical importance in various 
biomedical applications. The nanoscale surface morpho-
logy, along with mechanical and biochemical cues, 
determines stem cell attachment, proliferation, and 
differentiation. Nanotextured scaffolds, besides providing 
structural support to the cultured stem cells, can also 
provide the topographical signals to influence cell 
differentiation, particularly through the nanostructural 
architecture provided by the fibers. Li et al[59] showed that 
a 3D electrospun nanofibrous scaffold was capable of  
supporting multilineage differentiation of  MSCs into 

adipogenic, chondrogenic, and osteogenic lineages, as 
shown in Figure 2. Stem cells use transmembrane actin-
integrin adhesion complexes as mechanosensors to probe 
the rigidity of  the extracellular environment, mediate 
adhesion, trigger signaling, and remodel the ECM[60]. 
Culturing hESCs in the presence of  actin disrupting 
agents proved that cytoskeleton remodelling through 
actin polymerization is critical for the morphological 
and proliferative behaviour of  hESCs cultured on 
nanotopographic surfaces[61]. 

Effect of nanotopography on embryonic stem cells
Gerechta et al[61] recently reported the influence of  surface 
topography on the morphology and proliferation of  

Table 1  Different types of stem cells, their properties, and functions

Stem cell type Properties Functions

MSCs Multipotent and pluripotent. Bone marrow is the major source 
of MSC

MSCs are capable of differentiating into bone, cartilage, fat, 
muscle, marrow stroma, and other tissue types

ESCs Derived from an early stage embryo and can differentiate 
into derivatives of all three primary germ layers. ESCs are 
multipotent and pluripotent

Can differentiate into brain and nervous system cells, insulin 
producing cells of the pancreas, bone cells, hematopoietic cells, 
endothelial cells, cardiomyocytes

ASCs Multipotent, oligopotent, or unipotent progenitor cells. 
Derived from a more mature tissue, such as the umbilical 
cord, bone marrow, or skin

To treat leukemia and related bone/blood cancers through bone 
marrow transplants

HSCs Found in the bone marrow. Multipotent All types of blood cells
iPS Derived from epithelial cells. Pluripotent The iPS cell lines could be differentiated into heart muscle 

and neuronal cells, in addition to basic cell types (ectoderm, 
mesoderm, and endoderm)

Mammary stem cells Isolated from human and mouse tissue Growth of mammary glands
Endothelial stem cells Multipotent cells found in the bone marrow Can differentiate into endothelial cells, the cells that make up 

the lining of blood vessels

Table 2  Various fabrication techniques to achieve nanotopography

Fabrication technique Advantages Drawbacks

Laser deposition Uniform distribution of pore size, simple and fast Reduced resolution and poor surface finish
Self assembly Can generate fibrous networks capable of supporting cells in three 

dimensions. Cell-seeding problems associated with using prefabricated 
nanofibrous scaffolds eliminated owing to spontaneous assembly

Lack mechanical strength, Limited amphiphilic 
materials, random and very short nanofibers

Lithography Relatively good resolution Time consuming and expensive.
Electrospinning The properties of electrospun nanofibers, such as fiber diameter, can be 

controlled readily via manipulation of spinning parameters. Capable of 
mimicking the stem cell niche

Electrospinning yields a flat mat that has limited 
three dimensionality and suffers from cell infiltration 
problems because of the small pore size of the mats

Phase separation A nanofibrous (fibers with diameters of 50-500 nm) three-dimensional 
scaffold can be constructed. Has controllable high porosity, surface-to- 
volume ratios, and well as defined mechanical properties

Nanofiber distribution and uniformity is subject to 
the controllability of the processing

BA
Figure 1  Capture of BM-HSCs by different sub-
strates after 30 min of incubation. A: No BM-
HSCs captured on tissue culture polystyrene (TCP); 
B: Rounded morphology of BM-HSCs captured on 
E-selectin-coated collagen-blended polylactide-co-
glycolide (PLGA) nanofiber[6].
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hESCs. They demonstrated that poly (di-methyl siloxane) 
substrates with nanoscale line-grating (in the range of  
600 nm ridges with 600 nm spacing and 600 ± 150 nm  
feature height) induced more hESC alignment and 
elongation, compared to the flat surface[61]. These were 
characterized by the cytoskeletal proteins actin, vimentin, 
and tubulin.

The maintenance and differentiation of  hESCs is 
mainly dependent on the use of  feeder cells, which are 
obtained from animal sources. Hence, there is always a 
risk of  immune recognition. The mechanism of  how 
feeder cells maintain the proliferation of  undifferentiated 
ESCs is unknown. Such in vitro culturing presents 
certain theoretical hazards to the use of  stem cells for 
regenerative medicine, such as the spread of  viruses and 
other infectious agents not normally found in humans. 
However, it is believed that the nanotopographical 
substrates can maintain the proliferation of  undifferent-
iated rhesus ESCs without the use of  feeder cells[38].

Effect of nanotopography on mesenchymal stem cells 
Mesenchymal stem cell adhesion and migration: 
The initial adhesion of  the cells to the surface determines 
its long term cell viability. Different aspects, such as 
surface moisture retention and free energy[62], surface 
roughness, material composition[63,64], and method of  
preparation[65] of  various materials have been studied 
and were determined to be the major factors influencing 
the attachment of  cells, including MSCs, in vitro. Oha  
et al[66] found that hMSCs cultured on TiO2 nanotubes of  
diameter less than 50 nm adhered more strongly compared 
to the cells cultured on TiO2 nanotubes of  100 nm 
diameter. This was because nanotubes of  diameter less 
than 50 nm had more surface area and hence a higher 
amount of  ECM proteins can be deposited. In addition, 
he also showed that hMSCs adhered more effectively 

onto the smallest nanotube diameter, which was 30 nm, 
within two hours[66]. Park et al[67] also demonstrated that 
the adhesion of  MSCs was reduced when the diameter 
of  the TiO2 nanotubes increased beyond 50 nm[67]. 
These directly indicate the influence of  nanotopography 
on the biological processes. Larger adhesions are usually 
associated with increased indirect mechanotransductive 
signalling (adhesion and cytoskeleton-related) such as 
integrin-related signalling, extracellular receptor kinase 
(ERK), and focal adhesion kinase (FAK).

Cells will migrate along topographical features when 
plated onto a chemically uniform surface, a phenomenon 
known as contact guidance, which is crucial in embryonic 
morphogenesis and wound healing[68]. Emerging 
evidence indicates that the surface topography, stiffness, 
and electrical properties play important roles in neuron 
adhesion and neurite outgrowth[69]. Fan et al[70] studied the 
adhesion of  neural cells of  prenatal rats on silicon wafers 
with different nanotopographies in the range of  20 nm 
to 70 nm. Cell adhesion and viability were significantly 
improved on the nanofeatured surface. Moreover, 15% 
of  the cells remained dopaminergic after five days of  
culture. Massia et al[71] analyzed the cell adhesion kinetics 
and demonstrated that the surface threshold spacings 
for focal contact and stress fiber formation occurs at 
140 nm, indicating that cell adhesion can be enhanced 
on a nanostructured surface. Kommireddy et al[72] proved 
that MSC attachment and migration increased after the 
deposition of  TiO2 nanoparticle layers. 

The surface modification of  implants for cell 
attachment and migration has been the focus of  much 
research, as the initial cell adhesion is critical for the 
functionality and the lifetime of  the implant. 

Mesenchymal stem cell proliferation and differen
tiation: Nanotopography not only enhances adhesion, but 

A B C D

E F G H

Figure 2  Histological analysis of cell-polymer constructs maintained in adipogenic, chondrogenic, or osteogenic medium. Sections of the constructs were 
stained with (A,E) oil red O, (B,F) alcian blue, or (C,G) alizarin red, or histochemically stained for alkaline phosphatase (D,H). In adipogenic cultures (E), oil red 
O-positive lipid droplets were seen, compared to the lack of staining in the control culture (A). In chondrogenic cultures (F), intense alcian blue was seen, showing 
cells surrounded by a sulfated proteoglycan-rich ECM (F), whereas control cultures (B) showed little staining. In osteogenic cultures (G,H), mineralization (G) and 
alkaline phosphatase activity (H) were both significantly higher than in control cultures (C,D). Bar: 20 μm (B,F), 40 μm (A,C,E,G), or 80 μm (D,H)[59].
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also improves proliferation efficiency of  MSCs. Nanoto-
pography induces certain biochemical and structural 
cues, which cause the differentiation of  the MSCs into 
certain desired phenotypes. Table 3 gives an outline of  the 
influence of  various substrates and their topographies on 
several cell lineages, which might give some hints on the 
differentiation of  stem cells into those cell types. 

The influence of  nanotopography on the osteogenic, 
chondrogenic, and neural differentiation of  MSCs will 
be discussed in detail in the following sections. MSCs 
develop into osteoblasts via a series of  developmental 
stages - osteoprogenitor cell, preosteoblast, and finally 
osteoblast cells. Osteoblast adhesion on nanostructured 
surfaces was first reported in 1999 by Webster et al[73]. He 
reported that osteoblast adhesion was improved when 
they were cultured on nanostructured surfaces, compared 
to the conventional micro surfaces. Specifically, alumina 
with grain sizes between 49 nm and 67 nm and titanium 
with grain sizes between 32 nm and 56 nm enhanced 
osteoblast proliferation and differentiation compared 
to their respective micro-grained materials. This can be 
measured by monitoring ECM protein synthesis, such 
as collagen and alkaline phosphatase (ALP). Enhanced 
bone formation was reported on the nanophase HA 
coated tantalum compared to the microscale HA coated 
tantalum, and the non-coated tantalum[73]. Webster  
et al[74,75] demonstrated that osteoblast adhesion increased 
by 146% on nanophase zinc oxide (23 nm) compared to 
microphase zinc oxide (4.9 nm). Nanophase metals have 
been extensively investigated for orthopedic applications 
due to their higher surface roughness, energy, and the 
presence of  more particle boundaries at the surface 
compared with conventional micron metals. Moreover, 
osteoblasts were even further increased on nanofiber 
structures compared to nanospherical structures of  
alumina; this was believed to occur because, compared 
to nanospherical geometries, nanofibers more closely 
approximate the shape of  HA crystals and collagen fibers 

in the natural bone[76]. Woo et al[77] observed enhanced 
osteoblast attachment on nanofibrous scaffolds when 
compared to solid pore walls. 

Yoshimoto et al[78] cultured rat MSCs on PCL nano-
fibrous scaffolds of  diameter 400 nm. ECM production 
(Collagen) and the multiple cell layer formation occurred 
within a short span of  one week. Hosseinkhani et al[79]  
investigated mesenchymal stem cell (MSC) behavior 
on self-assembled peptide-amphiphile (PA) nanofiber 
scaffolds. Significantly enhanced osteogenic differentiation 
of  MSCs occurred in the 3D PA scaffold compared to 
2D static tissue culture. It was characterized by enhanced 
collagen synthesis, alkaline phosphatase activity, and 
calcium mineral deposition. It was demonstrated that 
when hMSC loaded constructs made of  PCL nanofibers 
were cultured in an osteogenic differentiation media 
comprising of  β-glycerolphosphate, ascorbic acid, and 
dexamethasone, a dense, opaque bone-like tissue was 
observed, indicating the osteogenic differentiation of  
hMSCs. Polygonal-shaped osteoblast/osteocyte-like cells 
with upregulated expression of  alkaline phosphatase, 
bone sialoprotein, and osteocalcin were observed[59].

Dalby et al [80] demonstrated the use of  nanoporous 
topography to stimulate hMSCs to produce bone mineral 
in vitro, in the absence of  osteogenic supplements. Their 
results demonstrated that highly ordered nanoporous 
topographies produce low to negligible cellular adhesion 
and osteoblastic differentiation. Cells on random 
nanoporous topographies however exhibited a more 
osteoblastic morphology. This enhanced differentiation 
was due to the nanodisorder. This work demonstrated 
that topographical strategies provide further orthopedic 
approaches to be exploited and harnessed. However, 
the intracellular events controlling the differentiation 
of  hMSCs into osteoblasts have still not been clearly 
analyzed. Salasznyk et al[81] suggested that focal adhesion 
kinase signalling plays an important role in regulating 
ECM-induced differentiation of  hMSCs into osteoblasts.

Table 3  Various cell types and the nanotopographies on which they are cultured

Cell type Nanotopography Advantages Ref.

Chondrocytes (a) PCL nanofibrous scaffold (200-800 nm) in the presence of 
TGF-β1; 
(b) Collagen nanofibers of diameter 110 nm-1.8 μm

The differentiation of the stem cells into chondrocytes 
in the nanofibrous scaffold was comparable to an 
established cell pellet culture. Nanotopography supports 
chondrocyte growth and infiltration

[82,90]

Osteoblasts (a) Ceramics like HA, alumina and titania having nanostructures of 
grain sizes less than 100 nm and nanophase zinc oxide (23 nm); 
(b) PLGA, PLLA and PCL nanofibers (diameter 200-800 nm); 
(c) Nanotubes of diameter less than 100 nm

Enhanced proliferation and differentiation of MSC to 
osteoblasts

[67,77-79,105-113]

Smooth 
muscle cells 
(SMC)

(a) PLGA and PCL, PLLA-CL nanofibers (diameter 200-800 nm); 
(b) Nanogratings of 350 nm in width, spacing, and depth imprinted 
on PMMA or PDMS

SMC adhesion was enhanced on the nanostructured 
substrates compared to the conventional submicron 
substrates

[114-118]

Fibroblasts (a) PLGA (85:15 ratio) nanofibers of diameter 500-800 nm; 
(b) Nanocolumns

Increased endocytic activity.  Nanotopography can be 
used to improve hemocompatibility of blood-contacting 
biomaterials

[82]

Nerve cells (a) Silicon wafer in the range of 20-70 nm; 
(b) PLLA or PCL scaffolds via electrospinning and phase separation

The cell adhesion and viability significantly improved 
on the nanofeatured surface

[70,91]

PCL: Polycaprolactone; TGF-β: Transforming growth factor-β; HA: Hydroxyapatite; PLGA: Poly-lactide-co-glycolide; PLLA: Poly-L-lactide acid; MSC: 
Mesenchymal stem cell; PMMA: Poly-methylmethacrylate; PDMS: Polydimethylsiloxane.
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Li et al[82] investigated the chondrogenesis of  MSCs 
on a PCL nanofibrous scaffold in the presence of  
TGF-β1 in vitro. The differentiation of  the stem cells into 
chondrocytes in the nanofibrous scaffold was comparable 
to an established cell pellet culture. It was advantageous 
to use nanofibers rather than a cell pellet system, owing 
to their better mechanical properties, oxygen/nutrients 
exchange, and easy fabrication[83-87]. The findings reported 
suggested that the PLLA nanofibrous scaffold is a 
practical carrier for MSC transplantation, and represents 
a candidate scaffold for cell-based tissue engineering 
approaches to cartilage repair[88]. 

Cheng et al[89] reported that human cartilage cells 
attached and proliferated well on HA nanocrystals 
homogeneously dispersed in PLA, and collagen fibers 
of  diameter 110 nm to 1.8 μm were proved to support 
chondrocyte growth and infiltration[90]. Such data shows 
the promise of  nanomaterials for promoting cartilage 
regeneration. 

Koh et al[91] fabricated various nanofibrous PLLA or 
PCL scaffolds via electrospinning, which demonstrated 
excellent cytocompatibility properties for neural tissue 
engineering applications. When laminin was incorporated 
into the nanofibrous scaffold, the neurite outgrowth 
improved on the laminin-PLLA scaffold produced by 
facile blended electrospinning. Yang et al[92] showed that 
the direction of  Neural stem cell (NSC) elongation and its 
neurite outgrowth was parallel to the direction of  aligned 
PLLA fiberous scaffolds. They also demonstrated that the 
differentiation rate of  NSCs was higher for nanofibers 
than for micro fibers. 

Most recently, Prabhakaran et al[93] demonstrated the 
potential of  hMSCs for neuronal differentiation in vitro  
when cultured on poly (l-lactic acid)-co-poly-(3-
caprolactone)/Collagen (PLA-CL/Col) nanofibrous 
scaffolds (Figure 3). The differentiation of  MSCs into 
neuronal lineages was carried out using neuronal inducing 
factors, including β-mercaptoethanol, epidermal growth 
factor, nerve growth factor, and brain derived growth 
factor, in DMEM/F12 media. These supplements, in 
addition to the nanoscaffold, induced the differentiation 
of  the MSCs into neuronal cells.

Stem cells have the potential to differentiate and self-
renew into the desired cell types. Therefore, many efforts 
have focused on impregnating multi-potential stem cells 
into the nanofibrous scaffolds, which can be directly 
transplanted into injury sites and assist neural tissue 
recovery. In addition, the development in nerve repair 
grafts for peripheral nerve injuries to bridge nerve gap 
has advanced to the next level where the nanofibers were 
been used as guidance channel[94]. However, a challenging 
problem has been to determine how to effectively deliver 
and selectively differentiate stem cells into nerve cells 
at injury sites to regenerate desirable tissue. Although 
the underlying mechanisms triggering differentiation of  
stem cells are not entirely clear, previous research has 
indicated that novel biomimetic nanomaterials might 
contribute to selective stem cell differentiation[95].

Combined effect of nanotopography and other factors 
The fate of  multipotent stem cells can be desirably con-
trolled when they are cultured on nanopatterned sub-
strates. It was recently demonstrated that FGF-2 could 
allow long-term self-renewal of  hESCs and maintain 
their pluripotent status[96]. The addition of  growth fac-
tors, such as retinoic acid and activin A, have demon-
strated success in promoting in vitro differentiation of  
murine ESCs into cells of  pancreatic lineage like α, β, γ, 
and δ cells. A commonly used cell adhesive ECM pep-
tide is the RGD protein, which is an arginine-glycine-
aspartic acid sequence. Holtorf  et al[97], proved that when 
titanium fiber mesh scaffolds were coated with RGD 
peptides, MSCs attached more strongly to these RGD-
coated scaffolds. However. no significant change was 
observed in ECM secretion. Murine MSCs seeded onto 
fibronectin(FN)-functionalized scaffolds created by an 
LbL (Layer by Layer) microfabrication system, adhered 
more strongly to the scaffold and readily differentiated 
into osteoblasts[98]. The addition of  a phosphoester 
group to photo-polymerizable PEG-based hydrogels not 
only provides biodegradability but has also been shown 
to promote mineralization of  encapsulated MSCs. The 
use of  such phosphoester (Phosph-) groups is said to 
significantly increase the ALP and osteocalcin levels in 
differentiated cells[99]. Peter et al[100] demonstrated that 
MSC adhesion, proliferation, and differentiation into 
osteoblasts increased when TGF-β1 was encapsulated 
within polymer blends of  PEG-PLGA particles (sized 
at an average of  158 μm). Thus we find that the cell-

Figure 3  SEM images of (A) MSCs induced to neuronal cells grown using 
neuronal induction medium and (B) undifferentiated MSCs on electrospun 
PLA-CL/Collagen nanofibers grown using MSC growth medium[93].
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scaffold interactions increased in the presence of  factors 
like RGD, FN, Phospho-group, and TGF-β1.

Chemical guiding cues were exploited to stimulate 
neuron adhesion and neurite outgrowth, using amino-
functioned PLLA after phase separation with nanoto-
pography. It was found that improved viability and neurite 
outgrowth were obtained on the peptide-grafted PLLA 
films compared to the ordinary PLLA films. Here, the 
neonatal mouse cerebellum C17.2 stem cells were cultured 
onto the K-(CH2)5-PLLA/PLLA peptide-grafted films 
and the PLLA films were used as controls. The enhanced 
neurite outgrowth of  the C17.2 stem cells was shown 
to be due to the addition of  laminin-derived peptide 
sequences (Figure 4)[101]. It is thus possible to further 
mimic the stem cell niche by covalently linking certain 
ligands or growth factors to the nanostructured scaffold.

APPLICATIONS
The list of  medical achievements of  stem cells seems 
to be expanding at an incredible pace. ESCs have the 
advantage of  multipotency and can be readily cultured 
in the laboratory. The degree of  plasticity of  adult stem 
cells is still unknown and there are difficulties in purifying 
and culturing them. The only proven stem cell-based 
medical therapies that are currently available rely on adult-
derived stem cells from bone marrow and skin. The idea 
of  employing adult stem cells for many applications is 
for the following reasons: (1) They are naturally poised to 
generate a particular tissue, which might consist of  several 

cell types; (2) They are able to migrate to injured tissue 
or other discrete sites in the body; and (3) Some cells 
secrete growth factors that mobilize or protect other cells 
residing in the tissue[102]. Pluripotent stem cells could be 
used to create an unlimited supply of  cells, tissues, or even 
organs that could be used to restore function without the 
requirement for immunosuppressive drugs. Such cells, 
when used in transplantation therapies, would in effect be 
suitable for “universal” donation.

Neural application
Nerve stem cells can be used to treat the neurodegenera-
tive diseases such as Parkinson’s disease. Parkinson’s 
disease involves the loss of  cells which produce the neuro-
transmitter dopamine. Recent clinical studies using fetal 
cell transplants reported survival and release of  dopamine 
from the transplanted cells and a functional improvement 
of  clinical symptoms[103]. Thus it opens yet another 
frontier for stem cell therapy. 

Orthopaedic application
Bone marrow transplantation is a well known clinical 
application of  stem cells in orthopedics and blood diseases. 
Nanostructured biocomposites provide alternatives that 
have not yet been fully explored for orthopedic applications 
such as implants. They may be fabricated to possess similar 
micro- and nanoarchitecture as that of  healthy, physiological 
bone. The behavior of  cells depends on their interactions 
with their environment. Consequently, the interactions 
between cells and implantable materials will determine the 
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Figure 4  Laser scanning confocal microscopy (LSCM) micrographs of immunostained neurofilament 200 kDa in C17.2 after 24 h of culture on different 
films. A: Poly-L-lactide acid (PLLA); B: KE-PLLA/PLLA; C: KP-PLLA/PLLA; D: KO-PLLA/PLLA; E: The average length of the longest neurite per cell from 50 randomly 
selected cells on different films from PLLA and K-(CH2)n-PLLA/PLLA (10/90, w/w) over cultivation[101]. The neurite was stained by FITC and nuclei was stained by PI. 
Scale bar: 40 μm.
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success or failure of  a medical device. Thus, to achieve 
proper osseointegration, it is necessary that the implant 
has a nanostructured surface, ensuring early adhesion of  
stem cells. Biomaterials in the form of  implants (sutures, 
bone plates, joint replacements, ligaments, vascular grafts, 
heart valves, and dental implants) and medical devices (for 
example pacemakers and biosensors) are widely used to 
replace and restore the functions of  degenerated tissues 
or organs, to assist in healing, improve functionality, and 
thus improve quality of  life[36]. Their improved mechanical 
and biocompatibility properties promise future greater 
orthopedic implant efficacy. 

Cell based therapies
Perhaps the most important potential application of  
human stem cells is the generation of  cells and tissues 
that could be used for cell-based therapies. Today, donated 
organs and tissues are often used to replace repaired or 
destroyed tissue, but the need for transplantable tissues 
and organs far outweighs the available supply. Hence 
stem cells, directed to differentiate into specific cell types 
using nanotopography, offer the possibility of  a renewable 
source of  replacement cells and tissues to treat a number 
of  diseases. For example, it might become possible to 
generate healthy heart muscle cells in the laboratory and 
then transplant those cells into patients with chronic heart 
disease. Recent studies have demonstrated that stem cells 
that are injected into the circulation or directly into the 
injured heart tissue appear to improve cardiac function 
and/or induce the formation of  new capillaries[104]. 

CONCLUSION
By carefully controlling the nanotopography and surface 
chemistry, in principle, one could design a device that 
enhances a selective cell population to grow in specific 
regions of  the device. The literature presented in this 
review clearly indicates that cells respond to the topo-
graphy of  substrates in the nanometer range in terms of  
adhesion, proliferation, and migration. The substratum, 
besides providing mechanical support, acts as an intelli-
gent surface, providing the necessary topographical 
cues and signals to guide cell adhesion, proliferation and 
differentiation. Although many challenges lie ahead, the 
nanofibrous scaffold having excellent cytocompatibility 
and controllable mechanical properties, can mimic 
properties of  the natural ECM and thus, shows great 
potential for numerous tissue regeneration applications. 
Scaffolds with advanced technologies, by incorporating 
nanotopography, can be used to create complex guidance 
channels, which can be used to mimic the natural repair 
process of  the human body. Recent advances made in the 
field of  nanotopography mediated stem cell regeneration 
provide optimism for nerve tissue engineering and bone 
tissue engineering to create a permissive environment 
for nerve and bone regeneration. Of  particular interest 
in tissue engineering is the creation of  reproducible and 
nanotopographic scaffolds for stem cell migration and 
differentiation, resulting in bio-matrix composites for 

various tissue repair and replacement procedures. Though 
stem cell based-therapy seems to be very remarkable, 
there are many legal and social questions that must be 
addressed before stem cell-based therapies become 
clinically available. 
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benefits of  others. (1) Maximization of  the benefits of  editorial 
board members: The primary task of  editorial board members is 
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peer review, editorial board members can also obtain cutting-edge 
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have priority to be invited to write articles and publish commentary 
articles. We will put peer reviewers’ names and affiliations along 
with the article they reviewed in the journal to acknowledge their 
contribution; (2) Maximization of  the benefits of  authors: Since 
WJSC is an open-access journal, readers around the world can 
immediately download and read, free of  charge, high-quality, peer-
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peers as well as public reading; (3) Maximization of  the benefits 
of  readers: Readers can read or use, free of  charge, high-quality 
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the maximization of  the personal benefits of  editorial board 

members, authors and readers, and yielding the greatest social and 
economic benefits.
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cells and their application in clinical care and treatment of  patients. 
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for basic research; (6) Guidelines for Clinical Practice: To provide 
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problems in the major scientific disciplines, comment on the 
current research status, and make suggestions on the future work; 
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clinical trials, we endorse the policy of  the International Committee 
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Library of  Medicine and we encourage all potential contributors 
to register with it. However, in the case that other registers become 
available you will be duly notified. A letter of  recommendation from 
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graphs and illustrations because rejected manuscripts will not be 
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for loss or damage to photographs and illustrations sustained 
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Athens 15451, Greece

Author contributions: The format of  this section should be: 
Author contributions: Wang CL and Liang L contributed equally 
to this work; Wang CL, Liang L, Fu JF, Zou CC, Hong F and Wu 
XM designed the research; Wang CL, Zou CC, Hong F and Wu 
XM performed the research; Xue JZ and Lu JR contributed new 
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National Natural Science Foundation of  China, No. 30224801

Correspondence to: Only one corresponding address should 
be provided. Author names should be given first, then author 
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name and email address. For example, Montgomery Bissell, MD, 
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Division, University of  California, Box 0538, San Francisco, CA 
94143, United States. montgomery.bissell@ucsf.edu

Telephone and fax: Telephone and fax should consist of  +, 
country number, district number and telephone or fax number, e.g., 
Telephone: +86-10-59080039  Fax: +86-10-85381893

Peer reviewers: All articles received are subject to peer review. 
Normally, three experts are invited for each article. Decision for 
acceptance is made only when at least two experts recommend 
an article for publication. Reviewers for accepted manuscripts are 
acknowledged in each manuscript, and reviewers of  articles which 
were not accepted will be acknowledged at the end of  each issue. 
To ensure the quality of  the articles published in WJSC, reviewers 
of  accepted manuscripts will be announced by publishing the 
name, title/position and institution of  the reviewer in the footnote 
accompanying the printed article. For example, reviewers: Professor 
Jing-Yuan Fang, Shanghai Institute of  Digestive Disease, Shanghai, 
Affiliated Renji Hospital, Medical Faculty, Shanghai Jiaotong 
University, Shanghai, China; Professor Xin-Wei Han, Department 
of  Radiology, The First Affiliated Hospital, Zhengzhou University, 
Zhengzhou, Henan Province, China; and Professor Anren Kuang, 
Department of  Nuclear Medicine, Huaxi Hospital, Sichuan 
University, Chengdu, Sichuan Province, China.

Abstract
There are unstructured abstracts (no more than 256 words) and 
structured abstracts (no more than 480). The specific requirements 
for structured abstracts are as follows: 

An informative, structured abstracts of  no more than 480 
words should accompany each manuscript. Abstracts for original 
contributions should be structured into the following sections. AIM 
(no more than 20 words): Only the purpose should be included. 
Please write the aim as the form of  “To investigate/study/…; 
MATERIALS AND METHODS (no more than 140 words); 
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Key words
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Text
For articles of  these sections, original articles, rapid communication 
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applicable. Figures should be either Photoshop or Illustrator 
files (in tiff, eps, jpeg formats) at high-resolution. Examples can 
be found at: http://www.wjgnet.com/1007-9327/13/4520.
pdf ; ht tp ://www.wjgnet .com/1007-9327/13/4554.pdf ; 
http://www.wjgnet.com/1007-9327/13/4891.pdf; http://
www.wjgnet .com/1007-9327/13/4986.pdf; http://www.
wjgnet.com/1007-9327/13/4498.pdf. Keeping all elements 
compiled is necessary in line-art image. Scale bars should 
be used rather than magnification factors, with the length 
of  the bar def ined in the legend rather than on the bar 
itself. File names should identify the figure and panel. Avoid 
layering type directly over shaded or textured areas. Please use 
uniform legends for the same subjects. For example: Figure 1 
Pathological changes in atrophic gastritis after treatment. A: ...; B: 
...; C: ...; D: ...; E: ...; F: ...; G: …etc. It is our principle to publish high 
resolution-figures for the printed and E-versions.

Tables
Three-line tables should be numbered 1, 2, 3, etc., and mentioned 
clearly in the main text. Provide a brief  title for each table. Detailed 
legends should not be included under tables, but rather added into 
the text where applicable. The information should complement, 
but not duplicate the text. Use one horizontal line under the title, a 
second under column heads, and a third below the Table, above any 
footnotes. Vertical and italic lines should be omitted.

Notes in tables and illustrations
Data that are not statistically significant should not be noted. aP < 
0.05, bP < 0.01 should be noted (P > 0.05 should not be noted). If  
there are other series of  P values, cP < 0.05 and dP < 0.01 are used. 
A third series of  P values can be expressed as eP < 0.05 and fP < 0.01. 
Other notes in tables or under illustrations should be expressed as 
1F, 2F, 3F; or sometimes as other symbols with a superscript (Arabic 
numerals) in the upper left corner. In a multi-curve illustration, each 
curve should be labeled with ●, ○, ■, □, ▲, △, etc., in a certain 
sequence.
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abbreviated unless they are used repeatedly and the abbreviation 
is helpful to the reader. Permissible abbreviations are listed in 
Units, Symbols and Abbreviations: A Guide for Biological and 
Medical Editors and Authors (Ed. Baron DN, 1988) published by 
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