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Abstract
Human mesenchymal stem cells (hMSCs) have tremen­
dous promise for use in a variety of clinical applications. 
The ability of these cells to self-renew and differentiate 
into multiple tissues makes them an attractive cell source 
for a new generation of cell-based regenerative therapies. 
Encouraging results from clinical trials have also gene­
rated growing enthusiasm regarding MSC therapy and 
related treatment, but gaps remain in understanding 
MSC tissue repair mechanisms and in clinical strategies 
for efficient cell delivery and consistent therapeutic 
outcomes. For these reasons, discoveries from basic 
research and their implementation in clinical trials are 
essential to advance MSC therapy from the laboratory 
bench to the patient’s bedside.

© 2010 Baishideng. All rights reserved.

Key words: Mesenchymal stem cells; Cell therapy; Cell 
expansion and processing
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MESENCHYMAL STEM CELLS
Friedenstein and coworkers were the first to investigate 
the characteristics of  the colony forming fibroblastic 
cells, which were isolated from the bone marrow by 
their selective adherence to tissue culture plastics[1]. 
Several other groups extended the pioneering work of  
Friedenstein et al[1] showing that these plastic adherent 
human cells derived from bone marrow were able to 
differentiate into a number of  mesenchymal cell types 
including osteoblasts, chondrocytes and adipocytes[2-4]. 
These cells were called “mesenchymal stem cells (MSCs)” 
in reference to their high self-renewing properties and 
ability to form cartilage and bone, and were suggested to 
be responsible for the normal turnover and maintenance 
of  adult mesenchymal tissues[5]. Although the initial 
application of  MSC was to form feeder layers for hemato
poietic stem cells, hence the alternate name “marrow 
stromal cells”, MSC’s therapeutic potential to cure a 
plethora of  debilitating diseases was soon discovered and 
has generated significant excitement in the field of  regene
rative medicine[6]. Over the last two decades, the field of  
MSC has progressed rapidly from the preclinical to the 
early clinical trial arena for a wide range of  diseases. 

MSCs in Cell therapy
MSCs hold tremendous promise for a variety of  clinical 
applications. Ongoing clinical trials using human mesen
chymal stem cell (hMSC) include ischemic stroke, multiple 
sclerosis, acute leukemia, graft-versus-host disease, critical 
limb ischemia, articular cartilage and bone defects among 
others (for the clinical trials presently tested, please 
see: www.clinicaltrial.gov). At the time of  writing this 
article, there were about 90 clinical trials involving hMSC 
at various stages world-wide. The progress in clinical 
trials with MSCs in various diseases has been reviewed 
extensively[7-12].

Although the concept of  cell-based therapy is not 
new and bone marrow transplants have been the standard 
of  care for years, MSC-based cell therapies represent a 

Online Submissions: http://www.wjgnet.com/1948-0210office
wjsc@wjgnet.com
doi:10.4252/wjsc.v2.i2.13
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new generation of  regenerative therapies that extend into 
other organ systems and meet pressing clinical needs 
for a broad range of  diseases. MSCs are among the 
most widely used stem cell types in cell therapy owing 
to several favorable biological characteristics, including 
their convenient isolation from adult donors, ease of  exp
ansion in culture while maintaining genetic stability[13], 
lack of  significant immunogenicity and feasibility for 
allogenic transplantation[14,15], and the homing capacity 
that facilitates intra-arterial/intravenous administration 
under minimally invasive conditions[16]. MSCs or MSC-
like cells are now being isolated from blood[17], adipose 
tissue[18], trabecular bone[19], umbilical cord blood[20], and 
placenta[21] among other tissues. MSCs also have the 
remarkable property that they home to sites of  tissue injury 
and institute repair, either by differentiating into tissue-
specific cell phenotypes[22-25] or by creating a milieu that 
increases the capacity of  the endogenous cells to repair 
tissue and modulates the immune response[26-28]. While 
the early studies have focused on cell differentiation, the 
recent results that demonstrate MSC’s ability to repair 
tissues without significant engraftment or differentiation 
have led to new concepts for hMSC therapeutic effects. 
Critical features of  this new paradigm are MSC’s ability 
to not only secrete a rich mixture of  soluble factors but 
also the ability to specifically respond to the immediate 
needs of  the injured tissues. One specific example of  the 
responsiveness of  MSCs to microenvironment was the 
report that hMSCs injected into the hippocampus of  mice 
following transient global ischemia decrease neuronal death 
by modulating inflammatory and immune responses. The 
transcriptomes of  the hMSC changed with upregulation 
of  170 human genes that were largely involved in anti-
inflammatory or anti-immune genes[29]. As another ex
ample, MSCs were activated by interferon-γ together with 
proinflammatory cytokines to express nitric oxide (NO) 
and several chemokines, suggesting that MSC-mediated 
immuno-suppression occurs through the concerted action 
of  chemokines and NO[30]. MSC’s responsiveness to the 
microenvironment of  injured tissues suggests that the 
MSCs can be injected locally to enhance tissue repair, which 
could be one of  the most useful cell therapy strategies.

While the original focus of  hMSC’s therapeutic po
tential was their ability to engraft and their plasticity, 
recent findings suggest that MSC’s primary function is 
to inhibit immune responses and to establish a favorable 
microenvironment for tissue repair through immune 
modulation, down-regulation of  inflammatory responses 
and paracrine effects[31]. Thus, the defining properties for 
hMSC should include not only their multi-lineage potential 
but also their robustness to respond to biological cues and 
to modulate the microenvironment. It is also likely that 
the therapeutic benefits of  hMSC are a combined result 
of  multiple contributing factors, generating both short-
term tissue responses and long-term tissue repair and 
regeneration. For this reason, basic science studies are 
important to elucidate the controlling factors and to gain 
mechanistic insights underpinning MSC therapies.

CLINICAL APPLICATIONS OF MSCs
The beneficial outcomes from an increasing number of  
clinical trials using hMSCs without any major side effects 
has been a major driving force behind interest in MSCs’ 
clinical application. As scientists learn more about MSC 
biology and tissue repair mechanisms, the encouraging 
clinical results, most notably in cardiac repair and bone 
disorders, have generated a growing enthusiasm.

Cardiac repair 
A compelling clinical need exists in cardiovascular thera
pies to protect, restore and regenerate cardiomyocytes that 
are lost due to myocardial infarctions and heart failure. 
Bone marrow-derived cells, including both hematopoietic 
and MSCs, have shown remarkable clinical efficacy in 
terms of  functional improvements including ejection 
fraction, ventricular volumes, infarct size and myocardial 
perfusion[32-34]. The functional improvement that occurred 
within 72 h was far earlier than would be expected for 
cell regeneration, leading to intense debate about repair 
mechanisms after cell transplantation[35]. The prevailing 
concept of  stem cell efficacy has now shifted toward the 
cytokine-paracrine effects, which have been shown to 
modulate angiogenesis, inflammation, cytoprotection, 
metabolism and apoptosis. Despite the exciting possibilities 
that stem cell therapy have major beneficial effects on 
myocyte regeneration, inconsistent outcomes and, in some 
cases, poor engraftment and modest improvement have 
been reported in human trials[36-38]. These results highlight 
the need to understand the MSC tissue repair mechanisms 
and exact biology of  stem cells in order to address the 
limitations such as the optimal cell type, mode of  cell 
processing and delivery. The focus of  improving and 
standardizing cell processing and delivery methods should 
be on enhancing cell engraftment while maintaining their 
therapeutic potency.

Bone disorders
MSCs have considerable potential for treatment of  muscu
loskeletal disorders owing to their expansion capacity, 
immunosuppressive properties and ability to differentiate 
into bone and cartilage. Autologous bone marrow-derived 
MSCs have been used in fracture nonunion, osteogenesis 
imperfecta, and bone metabolic diseases, and demonstrated 
bone formation and limb function recovery in patients[39-42]. 
In addition, MSCs are also combined with scaffolds that 
are inductive or instructive to direct MSCs down specific 
lineage pathways and augment the therapeutic effect. 
Considerable in vitro and animal studies suggest MSCs have 
the potential for rapid bone regeneration and are the cell 
of  choice in bone repair. However, in contrast with most 
studies in cardiovascular therapies, the numbers of  patients 
studied in stem cell therapy for bone diseases and repair 
are relatively low and more long-term and sufficiently 
controlled clinical trials are needed to assess the therapeutic 
outcome. As MSCs are the progenitors responsible for the 
normal turnover of  adult mesenchymal tissues and have 
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high responsiveness to tissue injury, “intelligent” materials 
that are able to recruit endogenous MSCs in vivo and direct 
them down specific pathways will be a useful therapeutic 
avenue.

Promise and Obstacles of MSC 
Therapy
The last few years have witnessed a growing enthusiasm 
for the clinical application of  MSC-based therapy. Despite 
the significant potential, challenges in MSC’s clinical 
applications include low survival of  transplanted cells, 
limited targeting capabilities, and low grafting efficiency 
and potency, which often requires use of  a high number of  
cells to achieve therapeutic benefits. To date, clinical studies 
using stem cells have not been conclusive and are, in many 
cases, less impressive than what has been observed in 
preclinical models. A major obstacle limiting MSC clinical 
application is the lack of  defining markers due to the 
inherent heterogeneity of  MSC populations and variation 
associated with cell processing and expansion. The lack of  
standardization and variation in cell characterization and 
processing may help explain the discrepancies observed 
in some of  the clinical studies[43]. Standardization is also 
critical for meaningful interpretation and comparison of  
experimental outcomes and understanding the mechanisms 
underlying the potential benefits of  stem cells.

A hallmark of  stem cells is their ability to expand 
in culture without phenotypic alternations. In the bone 
marrow obtained from human donors, hMSC’s are rare 
and in the range of  approximately 1 in 105 nucleated cells. 
Because of  the low occurrence of  MSC in bone marrow, 
only culture-expanded MSCs are likely to meet the de
mand in clinical application. However, DNA replication 
is not a perfect process and in vitro cell processing and 
expansion could induce potential changes to the cell and 
increase risks in their therapeutic applications. In addition 
to the safety concerns, the impact of  culture expansion 
and cell processing on hMSC therapeutic potency is 
largely unknown and requires further investigation. Recent 
studies have shown that sequential passaging of  MSC 
using standard culture methods has been associated with a 
decrease in expression of  adhesion molecules, the loss of  
chemokine receptors, enlargement of  cell size and lack of  
chemotactic response to chemokines, thus compromising 
their therapeutic potency[44-46].

Several recent studies have illustrated the increasingly 
recognized importance of  cell processing of  MSC for 
specific clinical indications. Le Blanc’s group has recently 
shown that cryopreservation reduces the yield of  ex vivo 
expanded MSC obtained from freshly harvested bone 
marrow mononuclear cells (MNC). In addition, MSC 
from fresh MNC were more potent in suppressing the 
lymphocyte responses in a mixed lymphocyte culture 
compared with MSC prepared from cryopreserved 
MNC[47]. In still another study, MSC pre-conditioned 
under hypoxic condition (0.5% O2 for 24 h) increased 

expression of  pro-survival and pro-angiogenic factors 
and enhanced the capacity of  MSC to repair infarcted 
myocardium, owing to reduced cell death and apoptosis 
of  transplanted cells, increased angiogenesis, and paracrine 
effects[48]. While these studies confirmed the seemingly 
obvious notion that MSC properties and functional capa
city vary depending on the processing protocols, they also 
represent the beginning of  an important research arena 
that addresses a bottleneck in MSC therapy.

PROSPECTIVE
Stem cells produce all multi-cellular tissues in the body 
in tightly controlled microenvironments. As a result, they 
are particularly sensitive to their immediate environmental 
cues. A case in point is the importance of  a seemingly 
pedestrian factor of  oxygenation for stem cell fate. Low 
oxygen tension, traditionally termed “hypoxia”, is known to 
profoundly influence cellular events, cytokine physiology, 
and regenerative potential, and may in fact represent an 
“in situ” normoxia[49,50]. Although oxygen tension has 
been recognized as a developmentally important stim
ulus in vivo, it has not been adequately accounted for in  
in vitro cultures[51]. As the concept of  MSC therapy shifted 
from the early proliferation-differentiation-engraftment 
assumption to the paracrine hypothesis, MSC therapeutic 
properties are now defined not only by their proliferative 
and multi-lineage potentials but also their ability to 
respond to and influence their immediate surrounding 
environments. To this end, basic and preclinical research 
will continue to play an important role in uncovering the 
dynamic interplay between stem cells and their micro
environments. Implementing these discoveries in clinical 
trials will be critical to advance MSC therapy from bench 
to a clinical reality.
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Abstract
In this paper, experimental findings concerning the ki­
netics of hematopoietic reconstitution are compared 
to corresponding clinical data. Although not clearly ap­
parent, the transplantation practice seems to confirm 
the basic proposals of experimental hematology con­
cerning hematopoietic reconstitution resulting from 
successive waves of repopulation stemming from different 
subpopulations of progenitor and stem cells. One of 
the “first rate” parameters in clinical transplantations in 
hematology; i.e. the CD34+ positive cell dose, has been 
discussed with respect to the functional heterogeneity 
and variability of cell populations endowed by expression 
of CD34. This parameter is useful only if the relative 
proportion of stem and progenitor cells in the CD34+ 
cell population is more or less maintained in a series 
of patients or donors. This proportion could vary with 
respect to the source, pathology, treatment, processing 
procedure, the graft ex vivo treatment and so on. There­
fore, a universal dose of CD34+ cells cannot be defined. 
In addition, to avoid further confusion, the CD34+ cells 
should not be named “stem cells” or “progenitor cells” 
since these denominations only concern functionally 
characterized cell entities.
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EXPERIMENTAL HEMATOLOGY: 
SOURCES AND LESSONS
From the first experimental proof  of  the existence of  
hematopoietic stem cells provided by the classical experi­
ment of  Till and Mc Culloch[1] and from its consequences[2] 
(1961), a new discipline - experimental hematology - has 
developed. The first approach of  experimental hematology 
is to characterize the functional heterogeneity of  stem and 
progenitors cells by in vivo and in vitro functional assays; the 
second approach consists of  searching for an immuno-
phenotype characterizing each of  the different sub-
populations of  stem and progenitors cells[3-6]. Although 
important advances have been made in terms of  enrichment 
of  stem cells by means of  immuno-phenotypical properties, 
the initial functional characterization is still the only way 
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to prove the existence of  the stem cell entities[7]. This 
functional definition could not be avoided; this can be 
illustrated by two major breakthroughs in stem cell biology: 
(1) induction of  pluripotent stem cells from somatic 
cells[8-10]; and (2) initiating hematopoiesis from human 
embryonic stem cells[11].

Taken together, almost four decades of  research on 
stem cells that exhibit a hematopoietic differentiation 
potential allowed an understanding of  the functional 
heterogeneity of  stem and progenitor cells, proposed a 
long time ago as the “generation-age hypothesis”[12]. This 
heterogeneity is the main factor leading to a very complex 
situation that does not allow simplification without losing 
some essential notions.

The first reports revealing this heterogeneity dealt 
with the phenomenon of  hematopoietic reconstitution 
after engraftment. Two phenomena; i.e. the kinetics of  
red blood cell repopulation (erythrocyte repopulating 
ability-ERA) and the kinetics of  granulocyte repopulation 
(granulocyte repopulating ability-GRA) were reported[13-15]. 
It was evident that these phenomena resulted from the 
activity of  two distinct cell populations that are more 
immature than morphologically recognizable precursors of  
these two lineages, but less immature than the multi-lineage 
progenitors called “colony forming unit-spleen (CFU-S)” 
detected by the assay of  Till and McCulloch[16-21]. The 
development of  in vitro assays for clonogenic progenitors 
showed that these two repopulating activities result from 
two distinct populations of  committed progenitors: 
those of  granulocyte monocyte lineage (CFU-GM) and 
those of  erythroid lineage (CFU-E, BFU-E)[21]. But these 
“repopulating activities;” i.e. “committed progenitors,” 
are different from CFU-S[22], whose population is capable, 
if  transplanted after lethal irradiation, to protect animals 
from acute radiation-induced lethality (“radio-protective 
ability”)[23]. The CFU-S population has also been shown to 
be heterogenous; relatively less primitive CFU-S produced 
colonies 8 to 9 d after injection of  hematopoietic cells 
and the other relatively more primitive CFU-S produced 
colonies 12 to 14 d after the injection. In fact these sub-
populations of  CFU-S are overlapping[24]. Furthermore, 
the “late” colonies growing 12 to 14 d from more primitive 
multipotential progenitors contain more primitive cells, 
which are responsible for short-term engrafted clone 
maintenance, known under the generic terms “pre-CFU-S” 
or “marrow repopulating ability-MRA”[25-27]. Actually, this 
is the first population that could be considered as a real 
stem cell population according to current standards. Even 
more primitive stem cells have subsequently been found, 
allowing long-term maintenance of  hematopoiesis after 
engraftment[28].

The previous paragraphs summarize 25 years of  work, 
which enabled realization that hematopoietic stem cells and 
progenitors are organized as a continuum of  descendant 
cell populations having a decreasing proliferative capa­
city and decreasing self  renewal ability, starting from 
the most primitive stem cells to the last progenitors 
preceding precursors. In animal experimental models, the 

reconstitution of  hematopoiesis after engraftment and 
consequent repopulation of  peripheral blood results from 
successive waves of  repopulation. This phenomenon stems 
from the heterogeneity of  stem and progenitor cells since 
less primitive cells take less time to develop morphologically 
recognizable hematopoietic cells and vice versa for more 
primitive progenitors and stem cells. Some results suggest, 
however, that long term reconstitution could stem from 
short term reconstituting stem cells that are activated and 
exhausted in a successive manner[29-30]. This question does 
not interfere with the phenomenon of  initial reconstitution 
after transplantation, for which the mechanism is well 
established and accepted. In summary, the works of  
experimental hematology imply that for a rapid and long 
term hematopoietic repopulation, a sufficient number 
of  both stem cells and committed progenitors (of  all 
categories) should be injected. With the development of  
in vitro cultures for the detection of  human committed 
progenitors, as well as in vivo xenogenic transplantation 
models for the detection of  human stem cells, the main 
points initially established in animal models have been 
confirmed for hematopoietic stem and progenitors cells 
issued from three main “human” sources: bone marrow, 
peripheral blood after mobilization and placental (cord) 
blood[5,31].

The concept of  ex vivo expansion is derived directly 
from this knowledge. It is based on a very attractive idea 
to increase the number of  cells and progenitors (aimed 
to accelerate hematopoietic reconstitution) in order to 
insure a secure and favorable long-term outcome of  
transplantation. As a matter of  fact, for clinicians, the first 
objective of  an ex vivo expansion is shortening the period 
of  post transplantation agranulocytosis. The duration 
of  this period varies between 1 and 4 wk depending on 
the source of  transplanting cells [peripheral blood after 
mobilization, bone marrow, and placental (cord) blood].

On the basis of  experimental hematology data from 
animal models[13-22], duration of  this period depends 
mostly on the number of  relatively mature progenitors 
present in populations of  transplanted cells. On the other 
hand, experimental data demonstrate that, for long-term 
reconstitution, the presence of  more primitive stem cells 
is required[25-28]. Accordingly, the ideal ex vivo expansion 
should allow amplification of  both committed progenitors 
and stem cells.

IMPLEMENTATION IN CLINICAL 
HEMATOLOGY
From this experimental work, clinical hematology adopted 
the principle of  hematopoietic stem cell transplantation. 
This practice started with bone marrow cells but other 
sources were preferred subsequently: hematopoietic proge­
nitors and stem cells mobilized to peripheral blood as well 
as those from placental (cord) blood. The first bone marrow 
transplantations were allogenic, aimed to reconstitute the 
hematopoietic system of  humans irradiated in a nuclear 
accident[32]. Since then, hematopoietic cell transplantation 
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as a clinical discipline yielded a tremendous amount of  
knowledge, not only related to stem cell biology, but also for 
immunology (e.g. discovery of  the HLA system). In spite 
of  this fact, the development of  clinical transplantation 
sometimes neglects some fundamental points of  experi­
mental hematology. We discuss one of  these points in this 
review.

Total CD34+ cell dose issue
Since the beginning of  clinical transplantation practice, the 
total number of  viable cells has been considered as a main 
parameter in transplantation. Though polymorphonuclear 
cells, monocytes, and lymphocytes do not provide hema­
topoietic reconstitution after transplantation, the total 
cell number is still considered as a first rate qualifying and 
prognostic factor in transplantation, especially for placental 
(cord) blood cells. Indeed, in most papers describing trans­
plantation of  cells issued from hematopoietic sources in 
the steady state, there is a correlation between engraftment, 
kinetics and the total cell number in the graft[33]. This 
correlation results from the fact that the concentration of  
stem and progenitor cells in hematopoietic tissues in the 
steady state, or after some standard therapeutic protocols, 
is more or less constant. Thus, the increase in total cell 
numbers also means an increase in stem and progenitor 
cell numbers. In addition, this parameter is easily and 
rapidly determined. Taken together, its usefulness has 
been confirmed. Of  course, it would be wrong to consider 
that, due to this correlation between total cell number and 
transplantation outcome, the engraftment is achieved by 
total cells instead of  stem cells.

The possibility of  detecting CD34+ cells enabled 
researchers and technologists to approach a non-differen­
tiated cell population containing most hematopoietic 
progenitors and stem cells[34], but this was not specific. 
Vascular endothelial cells, perivascular dendritic cells, 
hair follicle “stem” cells, spindle shaped cells of  eccrine 
glands cells, for example, also express CD34[35]. This 
molecule, (also known as, e.g. “podocalyxin-like protein”, 
“thrombo mucin”, “gp135”, etc.) belongs to a family 
of  proteins (“CD34-family”) that have overlapping 
expression patterns[36]. CD34-family proteins (CD34, 
podocalyxin, and endoglycan) have a serine-, threonine-, 
and proline rich extracellular domain that is extensively 
O-glycosylated and sialylated (90-170 kDa). The function 
of  CD34 family members has not yet been definitively 
elucidated. However, several roles have been ascribed to 
these proteins; for example, the proliferation-promoting 
effect, differentiation-blocking effect on progenitor 
cells, enhancement of  trafficking and migration of  
hematopoietic cells, and a role in cell morphogenesis[36]. 
Despite this expression pattern, nonspecific to hemato­
poietic tissue, and an elusive physiological role, the 
CD34 protein has become, in the minds of  many in 
the biomedical community, the main marker endowing 
hematopoietic stem and progenitor cells. Furthermore, 
most clinicians and biologists who are not directly involved 
in stem cell research have a tendency to add the term “stem 

cells” each time they say or write “CD34+”. This tendency 
has been a permanent source of  misunderstanding and 
confusion and it heavily affects experimental and clinical 
hematology. It should therefore be repeatedly stressed 
that the fact that the majority of  hematopoietic stem and 
progenitors cells express CD34+ does not mean that all 
CD34+ cells are stem cells or progenitors. The CD34+ cell 
population is very heterogeneous[34]. For example, in the 
CD34+ population of  placental (cord) blood, 30% to 50% 
are progenitors (CFU-GM, BFU-E, CFU mix, and CFU-
Mk) and only a small percentage are primitive stem cells. 
Approximately one half  of  the CD34+ cell population 
does not exhibit either progenitor or stem cell functional 
properties. Some stem cells do not express CD34+ in a 
steady state[37] and expression of  this molecule could be 
reversible and not related to functional capacities of  stem 
cells[38]. Here again, the CD34+ cell count in different 
cell populations derived from hematopoietic tissues in 
a steady state or mobilized in peripheral blood has been 
confirmed as a useful parameter of  the graft concerning 
the kinetics of  engraftment[39-44], although only a small 
fraction of  these cells have stem cell characteristics. The 
dose of  CD34+ cells correlates well with the dynamics 
of  hematopoietic reconstitution compared to total cell 
number. This results from the fact that the proportion of  
progenitors in stem cells inducing “transitory” engraftment 
in the CD34+ population is higher than in other sub-
populations. It is also relatively stable for the tissue in 
question. In addition, it is easy to get the count of  CD34+ 
cells by immuno-staining and flow-cytometry. Thus, the 
number of  CD34+ cells became a main parameter of  
graft quality control. Since rapidity of  hematopoietic 
reconstitution correlates with the number of  CD34+ cells 
per kilo of  patient weight, this approximation induced a 
“mental shortcut” in clinical hematology; the term “CD34+ 
cells” is frequently equated with the term “stem cells”. On 
the contrary, experimental hematology considers the term 
“stem cell” as a functional entity (or state)[7]. Even a very 
complex and sophisticated procedure aimed to isolate “stem 
cells”, based on several immuno-phenotypic markers and 
combined with metabolic properties, only enabled a high 
degree of  enrichment and not a completely pure stem cell 
population[45]. For example, Lin- CD34+ CD38- fraction 
from placental (cord) blood only contains 1%-2% of  stem 
cells detectable by a functional ex vivo assay[46]. In addition, 
if  steady state is disrupted, as it is in ex vivo expansion 
cultures, for instance, the relationship phenotype/function 
is less evident or even non-existent[47-51]. 

Clinical vs experimental
In general, it is more difficult to follow the specific eff­
ect of  one variable in clinical rather than experimental 
situations. The individual variations of  cellular parameters 
in humans are larger than in rodents. The treatment of  
humans should be effected within the requirements of  
clinical trials. In addition, the preparation of  the graft 
is restrained to only accepted and validated procedures. 
After all, the interference of  different human pathologies, 
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as well as previous treatments and therapeutic approaches, 
could have a big impact on the effects of  transplantation. 
These are only some of  the reasons why it is sometimes 
difficult to reproduce the same effect on humans that was 
demonstrated in animal experimentation. The apparent 
absence of  correlations in some clinical trials, however, 
between two variables that correlated in animal trials, does 
not mean that the principle is automatically erroneous.

This should be considered in the issue of  hemato­
poietic reconstitution after transplantation. Many papers 
have been published demonstrating a positive correlation 
between the total number of  cells and the number of  
CD34+ cells and hematopoietic reconstitution. Deter­
mination of  hematopoietic progenitors on the basis of  
their colony-forming capacity in culture is less practical and 
more time consuming than determining CD34 expression; 
therefore, the number of  hematopoietic progenitors has 
not been systematically taken into consideration in analysis 
of  hematopoietic reconstitution[33,39-44]. However, in some 
reports, these parameters were properly analyzed. These 
analyses almost always showed that the best correlation is 
between committed progenitors and rapidity of  hemato­
poietic reconstitution[52-54] in comparison with total cells 
and CD34+ cells. Other studies have shown the absence 
of  correlation between the total cell number, CD34+ 
number and clinical and hematologic outcomes[55]. This 
confirms a relative progenitor and stem cell source-
dependent value of  these parameters [unfortunately, 
the progenitor (CFC) number analysis was not shown]. 
Furthermore, short term repopulating cells, previously 
demonstrated in animal models, also exists in human 
grafts. In bone marrow grafts, for example, these short 
term repopulating cells have clearly demonstrated a 
hematopoietic reconstitution inferior to 100 d[56]. These 
stem cells, found in sub-populations CD34+ and CD34- 
and CD34+ HLA-DR-, are not correlated with a long term 
hematopoietic reconstitution (between 100 d and a year 
post transplantation). This late reconstitution, however, is 
correlated with CD34+ cell number, due to the presence 
of  very primitive stem cells inside this heterogeneous 
population, as mentioned above[56].

These discoveries confirm that human stem cell biology 
is not an exception with respect to other vertebrates. This 
information is in favour of  the “expansion concept,” 
which postulates that ex vivo amplification of  committed 
progenitors should accelerate hematopoietic reconstitution 
after transplantation. We could not analyze here all 
clinical trials that were recently reviewed dealing with the 
transplantation of  bone marrow, peripheral blood, and cord 
blood hematopoietic cells after ex vivo expansion[57]. The 
initial inefficiency of  this approach, however, was due to 
inefficient ex vivo protocols and/or to the study design rather 
than an erroneous concept. Some, however, demonstrated 
a positive effect on hematopoietic reconstitution after 
transplantation, decreasing the incidence of  neutropenic 
fever, reduction of  red blood cell transfusions, and the 
diminution of  the duration of  hospitalization[58,59]. A trial 
carried out with a combination of  cytokines, showing a 

high pro-differentiation power, enabled a relatively modest 
expansion of  total cells and progenitors. Although this 
trial did not provide an acceleration of  hematopoietic 
reconstitution, it is important because transplanted cells 
failed to maintain short and long term reconstitution after 
aplasia[60]. With current knowledge, it could be propo­
sed that the stem cells with short term and long term 
repopulating capacities have been exhausted in expansion 
cultures due to the culture conditions, especially to IL-3 and 
IL-1 association and the exposure of  the culture to ambient 
oxygenation. Thus, this trial underlines the importance of  
the presence of  primitive stem cells in a graft. Furthermore, 
it firmly demonstrates that the number of  CD34+ cells 
only is not a universally appropriate parameter of  the graft 
quality, since the primitive stem cells could be absent. Also, 
if  a graft, as in this case an expansion product, is composed 
exclusively of  committed progenitors without stem cells, it 
could only ensure a transient engraftment.

The first really successful expansion protocol[61,62] 
confirmed that hematopoietic reconstitution depends 
on the functional sub-populations of  progenitor and 
stem cells that should be present in a graft. In addition, it 
presents a very interesting example of  the phenomenon 
called “dissociation phenotype-function”. During the 
pre-clinical development of  this expansion procedure, as 
well as in expansion for clinical trials, we found that the 
expansion of  progenitors with a mean value of  27 fold 
was accompanied with an expansion of  CD34+ cells 
of  only 3.5 fold[62,63]. In terms of  absolute number, we 
get almost twice the number of  committed progenitors 
than CD34 cells. This means that, in the course of  ex vivo 
expansion, the culture generated the progenitors that do 
not express CD34 antigen (see the studies related to the 
transient expression of  CD34)[38]. Thus, the predictable 
value of  the CD34+ cell count could be questioned for 
expansion products. Indeed, the results derived from 
clinical trials point to the absence of  correlation between 
the number of  CD34+ cells in a graft and the duration of  
post-transplantation agranulocytosis[62]. On the contrary, 
the number of  committed progenitors was well correlated 
with the acceleration of  post transplantation hematopoietic 
reconstitution[62].

Concluding remarks
On the basis of  experimental data, the capacity of  a 
CD34+ cell population to reconstitute hematopoiesis 
quickly after engraftment, as well as in the short- and long-
term perspective, depends on the presence (in sufficient 
number) and proportion of  functionally very different 
CD34+ sub-populations. This proportion should vary 
with respect to the source (e.g. bone marrow peripheral 
blood[64], cord blood[5,31]), pathology, treatment, processing 
procedure, the graft ex vivo treatment[62] and so on.

For all these reasons, the same number of  CD34+ 
cells could give completely different results related to the 
rapidity of  hematopoietic reconstitution and the short and 
long term maintenance of  hematopoiesis. Considering 
this, it would not be expected that the number of  CD34+ 

百世登
BaishidengTM© WJSC|www.wjgnet.com 21         April 26, 2010|Volume 2|Issue 2|

Ivanovic Z. The CD34 issue



cells would become the universal “first rate” parameter for 
clinical transplantation, and that a universal CD34+ cell 
dose could be defined.

Also, to avoid further confusion in research and clinical 
practice, the heterogenous population of  cells endowed by 
CD34+ antigen expression should not be named as “stem 
cells” or “progenitor cells”. These denominations only 
concern functionally characterized cell entities.
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Abstract
Human pluripotent stem cells (PSCs), encompassing 
embryonic stem cells and induced pluripotent stem cells, 
proliferate extensively and differentiate into virtually any 
desired cell type. PSCs endow regenerative medicine 
with an unlimited source of replacement cells suitable 
for human therapy. Several hurdles must be carefully 
addressed in PSC research before these theoretical possi

bilities are translated into clinical applications. These 
obstacles are: (1) cell proliferation; (2) cell differentiation; 
(3) genetic integrity; (4) allogenicity; and (5) ethical 
issues. We discuss these issues and underline the fact 
that the answers to these questions lie in a better 
understanding of the biology of PSCs. To contribute to 
this aim, we have developed a free online expression 
atlas, Amazonia!, that displays for each human gene a 
virtual northern blot for PSC samples and adult tissues 
(http://www.amazonia.transcriptome.eu).
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INTRODUCTION
Pluripotency is the ability of  a cell to differentiate into any 
cell type of  the developing or adult animal or human. Stem 
cells that are pluripotent, while not being malignant, were 
first discovered in mice in 1981[1], sparking radical new 
research avenues such as in vitro studying of  early embryo 
development, cell differentiation and genetically modified 
animals. For this latter application of  pluripotent stem 
cells (PSCs), Martin Evans earned the Nobel Prize for 
Medicine in 2007[2]. Seventeen years later, James Thomson 
and colleagues succeeded in deriving human PSCs from 
human embryos issued from in vitro fertilization, generating 
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human embryonic stem cells (hESCs)[3]. This feat pro­
vided a completely new source of  cells for biomedical 
applications[4,5]. Recently, the field of  pluripotency was 
again shaken by the breakthrough discovery of  Kazutoshi 
Takahashi and Shinya Yamanaka, evidencing that a di­
fferentiated somatic cell was amenable to complete dedif­
ferentiation into PSCs by the over-expression of  only four 
transcription factors (TFs)[6,7]. This technique of  genera­
ting induced pluripotent stem cells (iPSCs) has provided 
an unrivaled means to understand the production and 
maintenance of  pluripotency, resolved the ethical issues of  
the destruction of  human embryos connected to hESCs, 
and outlined a method to use PSCs in medicine in an 
autologous setting that is more practical than therapeutic 
cloning. We will review here the specific determinants 
of  pluripotency, the requirement for PSC culture, the 
expected use of  PSCs in cellular therapy, and the pitfalls 
that must be anticipated and avoided to bring PSCs safely 
to therapeutics. 

INTRINSIC MOLECULAR DETERMINANTS 
OF PLURIPOTENCY
Gradually, the molecular mechanisms that underlie 
pluripotency are becoming unveiled. The determinants 
of  pluripotency can be divided into two broad categories: 
intrinsic determinants; i.e. cell-autonomous factors, for 
example, TFs, and extrinsic determinants that are non-
cell autonomous, for example, growth factors[8]. Strikingly, 
intrinsic determinants are largely shared between mouse 
and human PSCs, whereas extrinsic determinants are often 
radically different between these two species. This last 
point accounts for, at least in part, the extended period that 
elapsed between the identification of  ESCs in mice and 
in humans. The core transcriptional circuitry, the major 
determinants of  intrinsic pluripotency, is composed of  
the TFs OCT4, NANOG and SOX2[9]. These three TFs 
repeatedly co-occupy the promoters of  their target genes, 
including themselves, thus inducing a positive regulatory 
loop of  pluripotency. Paradoxically, the core pluripotency 
TFs not only occupy the promoters of  genes involved 
in pluripotency, putting them in close association with 
RNA polymerase Ⅱ, but also promoters of  genes that are 
inactive in PSCs and linked to cell differentiation, such as 
PAX6, HAND1 or ISL1, by placing them in proximity to 
proteins of  the polycomb group[10].

The fact that for differentiation genes the cognate 
promoters are simultaneously co-occupied by the core 
pluripotency TFs and the polycomb repressive complex 
2 subunit SUZ12, leading to a repressive chromatin 
modification by trimethylation at histone H3 K27 (H3­
K27me3), indicates a link between pluripotency and the 
epigenome. Several lines of  evidence suggest that PSCs 
are characterized by a very specific chromatin state[11]. 
Global gene expression analyses by whole-genome tiling 
arrays have shown widespread transcription in coding and 
non coding regions in ESCs, as opposed to differentiated 
cells in which the transcriptional landscape subsides as 

differentiation proceeds[12]. This distinct expression profile 
in PSCs is associated with a high expression of  chromatin 
remodeling genes, such as TOP2A, DNMT3B, JARID2, 
SMARCA5, CBX1 or CBX5[13]. While a majority of  
promoters are occupied by nucleosomes with H3K4me3 
modifications, typically associated with an open chromatin 
structure and active transcription, not all H3K4me3-
modified promoters are transcriptionally active[14]. One 
explanation for this contradiction is the concomitant 
repressive modification by H3K27me3, hence forming 
‘‘bivalent’’ modifications[15,16]. The bivalent H3K4me3/
H3K27me3 modification can easily switch to a monovalent 
modification, chiefly H3K4me3, and therefore the bivalent 
mark was proposed to be an indicator of  genes specially 
poised to initiate transcription during differentiation. 
Bivalent modifications were first found in ESCs, but 
were subsequently also found in fully differentiated cells, 
suggesting a mechanism that is general and not restricted 
to ESCs. Another explanation can be found in the 
recent findings that the most cell-type-specific histone 
modification pattern is observed at enhancers and not at 
promoters[17]. The mechanisms that are necessary to keep 
this chromatin state may involve the chromatin remodeling 
factor Chd1, since its ablation disrupts PSC differentiation 
capacities[18]. Hence, the global picture that emerges is 
that ESCs have an open chromatin largely devoid of  
heterochromatin, priming their genes for transcription at 
later stages of  development, thereby accelerating the full 
transcription activation required by cell differentiation.

Niall Dillon’s group has reported that genes that are 
transcriptionally silent in ESCs are nonetheless subject 
to preinitiation complex assembly but are simultaneously 
targeted by the proteasome[19,20]. Their data suggested that 
the 26S proteasome promotes a dynamic turnover of  
TFs and Pol Ⅱ, binding at tissue-specific gene domains 
in ESCs, which would restrict permissive transcriptional 
activity but keep the genes in a primed state for later 
activation. In line with the potential role of  the proteasome 
machinery in the distinct transcription regulation of  PSCs, 
we recently reported the overexpression of  several genes 
involved in the canonical ubiquitin-proteasome pathway[13]. 
Significantly overexpressed in hESCs were genes coding 
for enzymes from the three (E1/E2/E3) ubiquitination 
classes; i.e. the E1 ubiquitin-activating enzyme UBE1C, the 
E2 ubiquitin-conjugating enzymes UBE2G1, UBE2V1 
and UBE2V2, and the E3 ubiquitin protein ligases 
UBE3B and breast cancer 1, early onset (BRCA1), as 
well as four catalytic β proteasome subunits (PSMA2, 
PSMA3, PSMA4 and PSMA5), three regulatory subunits, 
the ATPase PSMC6, and the non- ATPase PSMD10 and 
PSMD11 from the proteasome machinery. This peculiar 
expression of  the proteasome in PSCs was correlated with 
an acute sensitivity of  hESCs to proteasome inhibitors.

In addition, other genes are also overexpressed in PSCs, 
including numerous zinc finger TFs that could play a role 
in the intrinsic determination of  the pluripotency state. 
We have re-analyzed a large panel of  hESC transcriptome 
studies and have established a common list of  genes invo­
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lved in pluripotency[21]. Importantly, we have made the 
transcriptome of  PSCs available through Amazonia!, a web-
based atlas of  human gene expression that compiles a 
selection of  publicly available transcriptome datasets and 
is freely accessible through a user friendly interface to the 
research community. Using this interface, one can easily 
grasp the very specific expression pattern of  the core 

pluripotency TFs in PSCs, as well as in the central nervous 
system, upper digestive, airway tract, etc. (Figure 1).

Another level of  cell fate regulation that takes place in 
PSCs is micro RNA (miRNA). Certain miRNAs have a 
high expression in hESCs and are lost upon differentiation 
into embryoid bodies, such as the miR-302 and miR-371 
clusters[22,23]. Conversely, miR-145 expression increases 
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Figure 1  Visualization of gene expression in PSCs and comparison with somatic cells. A: The Amazonia! web Atlas interface (http://www.amazonia.transcriptome.eu); B: 
Expression bar plots, generated with Amazonia!, for RPL13, a ubiquitously expressed gene, OCT4/POU5F1 and CLAUDIN 6 as highly PSC-specific genes, FGF2, a major 
human PSC growth factor expressed as an autocrine loop and by human fibroblast cells, and GREMLIN 1, an inhibitor of BMPs secreted by human fibroblast feeder cells. 
ES: Human embryonic stem cells; iPS cells: Induced pluripotent stem cells; hFF: Human foreskin fibroblasts; OV: Ovary & oocytes samples; TE: Testis; NS : Nervous system; 
SK: Skin; LU: Normal lung; DT: Digestive tract; KP: Kidney & prostate; HM: Heart & muscle; JO: Joint; HE: Normal hematological samples; UT: Uterus; PSCs: Pluripotent 
stem cells. Y-axis is the microarray signal value, obtained by MAS5 normalization with a TGT at 100 using Expression Console (Affymetrix, Santa-Clara, CA).
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BMP4 signaling[36,43] (Figure 2). Noggin, a BMP inhibitor, 
has also been described as promoting pluripotency in 
combination with a high concentration of  FGF2[32].

The role of  cell-to-cell contact (stem cell-stem cell 
or stem cell-feeder) is clearly demonstrated by the well-
known difficulty to clone PSCs, due to a high apoptosis 
rate after enzymatic dissociation. This dependency can be 
reversed, at least partially, by the selective inhibition of  the 
rho-associated kinase using the pharmacologic compound 
Y-27632[44,45]. Similarly, PSCs are tightly dependent on 
their attachment to a feeder layer or a synthetic matrix. 
This dependency could be due to anoikis, a subtype of  
apoptosis provoked by detachment of  adherent cells from 
their matrix[46].

PSC cultured on plastic undergo rapid differentiation 
and apoptosis, exemplifying the need for these cells to be 
on an extracellular matrix. Historically, a feeder of  irradiated 
or mitomycin-C treated murine embryonic fibroblasts 
(MEFs) was used to derive and maintain in culture the first 
ESC lines[1,3,47]. This technique is still widely used because 
of  its low cost and high efficiency in PSC maintenance. 
MEFs can be replaced by human fibroblasts such as 
foreskin fibroblasts[48]. These feeder cells produce soluble 
factors, such as the BMP inhibitor GREMLIN 1[49], or the 
pluripotency promoting growth factor FGF2 (Figure 1B),  
but also numerous extracellular matrix components. In line 
with this observation, in vitro culture protocols have been 
developed that replace feeder cells by various purified or 
unpurified matrices such as laminin[50], collagen Ⅳ/fibro­
nectin/laminin/vitronectin[38], vitronectin[51] or Matrigel, 
which is a solubilized basement membrane preparation 
extracted from the Engelbreth-Holm-Swarm mouse 
sarcoma, rich in extracellular matrix proteins[50]. It should 
be noted that, in many of  these matrix conditions, hESC 
maintenance requires the use of  either MEF- or foreskin 
fibroblast-conditioned medium or defined medium such as 
TeSR1 (see below), suggesting that some soluble proteins 
secreted by the feeder cells are necessary to compensate for 
the still incomplete synthetic matrices that have been tested.

Another important factor in hESC maintenance is the 
O2 level. Several papers have reported the role of  low O2 
(3%-5%) tension in preventing hESC differentiation[38,52,53]. 
These O2 conditions are similar to those required for early 
human embryo development. However, it should be con­
ceded that most in vitro culture protocols maintain their 
hESCs under high O2 (20%) tension due to obvious 
technical and cost constraints.

DRIVING PSCs TOWARD CELLS 
OF MEDICAL VALUE: TUNING 
DIFFERENTIATION
As hESCs can differentiate into virtually any cell type, 
they could theoretically cure any illness resulting from 
the loss of  functional cells. But one crucial issue is to 
determine which hESC-derived cell population will be 

during PSC differentiation and directly represses OCT4, 
SOX2, and KLF4, thus blocking pluripotency by a negative 
feedback loop[24]. In addition, the pluripotency gene LIN28 
was observed to hinder the biogenesis of  some miRNAs, 
such as the processing of  pri-let-7 miRNAs[25]. These 
findings explain the complete absence of  mature miR-let-7 
in ESCs. 

EXTRINSIC MOLECULAR DETERMINANTS 
OF PLURIPOTENCY
While intrinsic pluripotency determinants ensure that 
pluripotency is maintained, extracellular signals alter this 
undifferentiated state and drive the PSCs to differentiation. 
Hence, pluripotency is under tight control by extrinsic 
determinants; i.e. growth factors and other soluble factors, 
cell-to-cell contact, and the extracellular matrix and O2 
level. As mentioned above, growth factor requirements 
vary widely between mice and humans. For maintenance of  
pluripotency, mice ESCs rely on leukemia inhibitory factor 
(LIF), via a signaling cascade involving the phosphorylation 
of  STAT3[26], and on bone morphogenic proteins (BMPs), 
via the expression of  Id proteins[27]. By contrast, hESCs 
are indifferent to the action of  LIF[28-30], and are highly 
sensitive to the action of  BMPs, which induce hESC 
differentiation[31]. Human pluripotency is favored by the 
action of  FGF2[32]; in contrast, an autocrine FGF loop in 
mouse ESCs drives their differentiation unless the action 
of  this loop is counterbalanced by LIF[33]. The debate 
remains open as to whether the differences between growth 
factor requirements in mice and humans are secondary to 
speciation or rather to a different origin of  developmental 
stage as suggested by the identification of  epiblast stem 
cells in mice whose growth is dependent upon activins 
and FGF2[34]. Other growth factors are important for 
human pluripotency, such as TGFβ and activins[35,36], 
neurotrophins[37], GABA[38], sphingosine-1-phosphate[39], 
WNTs[40], IGFs[41], and EGF family members such as 
Heregulin[41] or pleiotrophin[42]. The role of  the TGFβ/
Activin pathway is essential as it induces the expression 
of  NANOG via SMAD2/3, which in turn counteracts 
the induction of  neurectoderm by FGF2 or endoderm by 
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Figure 2  Model explaining the role of the major human PSC growth 
factors identified to date, FGF2 and TGFβ/Activin, based on Vallier et al[36] 
and Xu et al[43].
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most helpful. It is now clear that undifferentiated PSCs 
should not be used for cell repair, as PSCs are highly 
proliferating cells that can, upon injection, form non 
malignant tumors of  undifferentiated and differentiated 
cells that should be called teratomas, as they are formed 
by the association of  “somatic tissue and their immature 
(fetal) precursors derived from more than one of  the 
three embryonic germ layers”[54]. The occurrence of  
teratomas is not systematic. But the risk of  teratoma 
development is obviously not acceptable in any clinical 
application. For instance, the transplanting of  low doses 
of  undifferentiated murine ESCs (1000-2000 cells) into 
the striatum of  a rat model of  Parkinson disease resulted 
in a well oriented dopamine neuron differentiation and 
was associated with a clinical improvement in 14 of  19 
animals that had been successfully grafted, but resulted 
in the growth of  an undifferentiated cell population and 
the death of  5 of  the 19 animals[55]. In line with these 
observations, Roy et al[56] treated a similar rodent model 
with hESCs differentiated into a cell population highly 
enriched in dopamine neurons obtained by successive 
culture steps, including the co-culture with fetal human 
astrocytes, and obtained significant improvement of  the 
treated animals as compared to the sham-treated. While 
an important human dopamine neuron population was 
observed at the periphery of  the injection site, in close 
contact with the rat glia, the center of  the injection site 
was filled with immature nestin-positive and proliferating 
human neural precursors. These observations suggested 
that the cell preparation contained the appropriate 
dopamine neuron population, but still contained poorly 
differentiated and proliferating cells, whose developmental 
and tumor potential is not well known. This experiment 
gave reason for a word of  caution against the injection 
of  unpurified ESCs, even after in vitro differentiation. A 
similar observation was recently reported by Aubry et al[57]  
These authors injected into the quinolinate lesioned 
right striatum of  immunocompetent rats a population 
of  hESCs differentiated into DARPP32-expressing 
striatal neurons. After 2 mo, the animals manifested 
lethargy, weight loss and hemiparesis, caused by a massive 
outgrowth of  the human neural progenitor injected into 
the striatum. The answer to this paramount problem 
raised by PSCs could be cell sorting after differentiation. 
Darabi et al[58] set up a protocol to regenerate muscle in 
dystrophic mdx mice using murine ESCs. The investigators 
determined that expression of  PDGFβ-R, a marker of  
paraxial mesoderm, and absence of  Flk-1, a marker of  
lateral plate mesoderm, identified a cell population of  
myogenic progenitors that could be purified by flow 
cytometry cell sorting. Without cell purification, the 
animals developed teratomas, formed by cells originating 
from the donor, containg keratinocytes and cartilage 
formation, at the injection site; but after cell purification, 
this major side effect was eliminated, strongly supporting 
the idea that undesired cells, including undifferentiated 
cells, must be eliminated by cell sorting before in vivo 
transplantation.

While there seems to be a consensus to exclude 
undifferentiated cells, the level of  differentiation to be 
achieved for clinical use of  PSCs is still an open question. 
Naturally, the answer to this question will be tissue-
dependent, or maybe even disease-specific. To generate 
cardiomyocytes, some authors have proposed a very 
brief  time of  in vitro differentiation, as short as 48 h, redu­
cing the differentiation step to a simple cardiac-commi­
tment step using BMP2[59]. By contrast, most neuron 
differentiation protocols are multi-step, several weeks long 
protocols[56,57]. Hematopoietic differentiation also requires 
long and complex culture steps, usually including the 
overexpression of  the HOXB4 TF[60,61]. Numerous pre-
clinical trial studies have convincingly showed that PSCs 
can be differentiated into cells with the capacity for tissue 
repair, but there is still a long way to go before all the 
differentiation issues are solved[59,62-64]. A recent benchmark 
comparison of  different sources of  human hepatocytes 
transplanted into Alb-uPAtg(+/-)Rag2(-/-)Gama c(-/-) mice  
suggested that primary adult hepatocytes were the best 
source of  cells for attaining a significant liver repopulation, 
while fetal hepatocytes ranked second best and hepato­
cytes derived from ESCs worked poorly[65]. Though a huge 
amount of  work is still needed to improve our hepatic 
differentiating protocols for PSCs, this study clearly high­
lights the fact that current protocols mainly generate 
hepatocytes with a fetal phenotype; i.e. low expression of  
homeostasis and detoxification genes, persistence of  β-feto 
protein, that are not best suited for liver regeneration[66,67]. 
Overall, the in vitro transformation of  PSCs into cell drugs 
is still in its infancy stage and further work and testing in 
pre-clinical studies is needed to improve these protocols.

GOOD MANUFACTURING PRACTICE IN 
CLINICAL-GRADE CELL GENERATION 
AND DIFFERENTIATION
The use of  differentiated PSCs suitable for human therapy 
will require the same rigorous manufacturing as for any cell 
therapy product. As pointed out above, many differentiation 
protocols are based on extensive manipulation, involving  
many successive reagents, co-culture steps and several 
weeks of  incubation at 37 ℃. Any constituent that will 
come in contact with the PSCs will have to meet the safety 
requirements of  regulatory bodies. Several academic teams 
have already published defined or xeno-free media that 
could be used to develop clinical grade PSCs. The use for 
non-human materials bears a risk of  transmitting patho­
gens. The elimination of  animal serum is also an important 
step because hESCs cultured with animal products or 
animal cells express Neu5Gc, a nonhuman sialic acid that 
could be immunogenic if  these cells were to be used for 
cellular therapy[68]. Henrik Semb’s group has described 
a protocol using 20% of  human serum instead of  fetal 
calf  serum or knock-out serum replacement (KO-SR), 
and have derived a new hESC line in these conditions[69]. 
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Ludwig et al[38] have proposed a fully defined medium 
for PSC culture, based on the analysis of  the expression 
of  cell-surface receptors of  hESCs and the finding that 
some of  the ligands of  these receptors have a positive 
effect on pluripotency (FGF2, ClLi, GABA, pipecolic 
acid, and TGFβ). This medium was termed TeSR1 and, in 
combination with human laminin, collagen Ⅳ, fibronectin 
and vitronectin, was able to sustain the derivation of  two 
new hESC lines, demonstrating that the maintenance 
of  pluripotency was not restricted to culture-adapted 
subclones of  hESCs[38]. A modification of  this medium, 
consisting of  the replacement of  human albumin with its 
bovine counter part, the replacement of  human FGF2 
with zebrafish FGF2, and the use of  Matrigel instead of  
the purified human matrices, has been commercialized and 
is now widely used as mTeSR1 world wide[70]. Other xeno 
free media have been documented, but all compare poorly 
with fibroblast feeder/KO-SR standard culture conditions 
when tested on hESCs that were mechanically derived and 
passaged[71].

Another issue is the feeder cell layer that imparts comp­
lexity in cell handling and a risk of  pathogen transmission, 
either for human or murine feeder cells. Therefore, both 
on scientific and medical grounds, substitution of  the co-
culture system by a synthetic matrix would be preferable. 
As early as 2001, the team of  Melissa Carpenter proposed 
Matrigel (see above) or laminin as a replacement for MEFs, 
but only if  using MEF-conditioned medium[50]. Numerous 
other proposals have been made since, such as the use 
of  MEF sodium deoxycholate extract, which does not 
solve the xenogeneic source of  the matrix but resolves the 
practical conundrum of  the co-culture system[72], human 
fibroblast extracts[73], a mix of  human purified extracellular 
components[38], and recombinant vitronectin on its own[51].

A recent twist in the domain of  xeno-free PSC culture 
was the ability of  such culture conditions to generate iPSCs. 
Several recent publications have illustrated this technical 
possibility, such as the use of  TeSR1 and Matrigel[74] or 
a human plasma-derived cell culture additive called F44, 
obtained through cold-ethanol industrial plasma frac­
tionation[75].

MAJOR HURDLES TO OVERCOME
The use of  PSCs for clinical applications raises several 
issues that must be carefully addressed. These difficulties 
are: (1) cell proliferation; (2) cell differentiation; (3) genetic 
integrity; (4) allogenicity; and (5) ethical issues.

As noted above, PSCs are characterized by an abbre­
viated G1 phase of  the cell cycle, resulting in sustained cell 
proliferation. Therefore, the injection of  undifferentiated 
PSCs carries the risk of  inducing teratomas, which consist 
of  the non-malignant proliferation of  PSCs associated with 
multilineage and uncontrolled cell differentiation, both of  
which are unwanted and deleterious[54]. An open question 
is the extent of  differentiation necessary to prevent any risk 
of  teratomas at the site of  injection and the relevant cell 
markers that can be used to sort the cells. Obviously, the 

response to this answer will be cell type-specific, but one 
can anticipate that the loss of  one or several (signature) 
pluripotency markers may turn out to be mandatory.

Another issue is the type of  differentiation that PSCs 
must attain to be of  therapeutic value. As already under­
lined, insufficient differentiation exposes unwanted in situ 
cell proliferation and uncontrolled in situ cell differentiation. 
However, excessive differentiation carries the risk that the 
injected cell preparation will fail to integrate the organ that 
must be repaired. For example, it is plain that terminally 
differentiated neurons displaying a full-grown axon will 
not be able to connect themselves with the surrounding or 
distant cells of  the nervous system, hence diminishing the 
regenerative purpose of  the cell injection. Furthermore, 
inappropriate differentiation such as a fetal phenotype to 
treat adult patients will prevent effective functional improve­
ments from being achieved. However, the capability of  
cells to acquire a functional phenotype after transplantation 
should not be disregarded. Kroon et al[63] by using hESCs 
differentiated in vitro into pancreatic-like cells (similar to fetal 
6-9 wk pancreatic tissue), showed that these cells develop 
in vivo into endocrine cells similar to pancreatic islets and 
protect mice against hyperglycemia.

Another concern with PSCs, a concern also associated 
with some other stem cell types, is that culture conditions 
may select for abnormal cell clones that harbor chromo­
somal or other genetic abnormalities[76]. These abnormalities 
are not random, and several teams have described the 
recurrent gain of  extra copies of  the long arm of  chromo­
some 17, and the short arm of  chromosome 12 or chro­
mosome 20[77-80]. These karyotypic changes are similar 
to that of  testicular germ cell tumors and may therefore 
raise safety concerns[79]. In addition to these chromosomal 
abnormalities, other changes have been described, including 
microarray comparative genomic hybridization (CGH) and 
promoter methylation[81]. The high proliferation rate of  
PSCs, metabolic stress in large cell colonies, and enzymatic 
passaging may contribute to these genetic and epigenetic 
changes acquired over the long term in in vitro culture. 
IPSCs bring further worry on the subject because some of  
the barriers to cell reprogramming are the same that prevent 
malignant transformation, namely the p53/mdm2/p21 and 
the Ink4/p16/Arf  pathways[82-86]. Indeed, alleviating these 
barriers by genetic means results in a marked increase in 
cell reprogramming, but at the expense of  DNA integrity. 
The team of  Maria Blasco has reported that, during 
reprogramming, the presence of  pre-existing, but tolerated, 
DNA damage resulted in the activation of  a DNA damage 
response and p53-dependent apoptosis. This response was 
abrogated by p53 downregulation, producing iPSCs carrying 
persistent DNA damage and chromosomal aberrations[82]. 
Consequently, it will be mandatory to screen human iPSCs 
for genetic alteration just after reprogramming, as well as 
after prolonged in vitro cell culture as noted above.

The matter of  allogenicity is raised by the fact that the 
probability of  a given hESC to be HLA compatible with a 
patient is exceedingly low. There are several ways to resolve 
HLA disparity between cell lines and patients. One way is 
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to immunomodulate patients receiving HLA-incompatible 
cells. For certain organs, this has proven feasible, therefore 
it may be possible for hESCs that have been differentiated 
in certain cell types, but not for all. For example, complete 
HLA disparity precludes the injection of  immune system 
cells into a patient, whatever the immunosuppressive drugs 
given. Alternatively, a limited collection of  chosen hESC 
lines could cover, with an acceptable HLA compatibility, 
a majority of  the population. About 150 hESC lines 
obtained consecutively would provide a beneficial match 
(defined as one HLA-A or one HLA-B mismatch only, 
HLA-DR being matched) or better for 37% of  the general 
population in the United Kingdom or in Japan[87,88]. Further­
more, the selection of  PSC lines homozygous for the 
HLA locus would lower the number of  cell lines necessary 
for the bank. This could be obtained by parthenogenesis, 
which produces hESC lines that are homozygous for the 
HLA locus, except in the unlikely case where the meiotic 
recombination would take place in the middle of  the locus. 
It has been estimated that, in the Japanese population, 55 
randomly selected parthenogenetic hESCs could cover 
80% of  the patients with a match for HLA-A, HLA-B and 
HLA-DR[88]. By screening 24 000 individuals, it would be 
possible to select 50 HLA homozygotes for the HLA-A, 
HLA-B and HLA-DR loci, from which 50 iPSC lines 
could be derived, which would match more than 90% 
of  the patients[89]. Alternatively, the iPSC technology 
is a way to generate autologous PSCs for each patient, 
paving the way to personalized regenerative medicine[90]. 
However, even when the hurdles to the generation and 
differentiation of  human iPSCs in GMP conditions are 
solved, the problem will remain concerning the time scale 
necessary to generate, amplify and qualify autologous 
iPSCs, in contrast with the urgency for some diseases to be 
treated, such as heart infarct, and the considerable cost of  
such personalized medicine.

Finally, the use of  human PSCs in research and in regen­
erative medicine has spurred countless debates on the ethics 
of  research on human embryos[5]. It has been proposed 
that iPSCs could solve the ethics around PSCs as they are 
generated without the need to destroy a human embryo. 
However, in addition to the fact that this technology is 
still in its complete infancy stage, necessitating that the 
reprogramming technology becomes GMP compliant and 
virus integration free, some ethical issues have arisen, such 
as the theoretical possibility of  generating a human being 
that would be of  100% iPSC origin by tetraploid embryo 
complementation, as suggested by rodent experiments[91,92], 
or the differentiation of  iPSCs into gametes that could then 
be fertilized, generating a human embryo[93,94].

CONCLUSION
In early 2009, a cellular therapy protocol based on hESCs 
had been agreed on by the US Food and Drug Adminis­
tration (FDA)[95]. This protocol, conducted by Geron, based 
in Menlo Park, California, was a phase Ⅰ safety study for 
spinal-cord injury. What was to be the first PSC-derived 

treatment was delayed in September 2009 after animal data 
revealed microscopic cysts growing around the injury site. 
Hence, this promising stem cell category still awaits its first 
use in human therapeutics. The reasons for the discrepancy 
between the huge expectation for disease treatment and 
the effective use of  these cells in a clinical setting are the 
technical hurdles listed above. Much research is still needed 
to effectively resolve these problems. The recent advent of  
the iPSC technology has considerably boosted the PSC field 
and will therefore contribute to accelerate the advent of  
applications for PSC in curing human diseases. However, it 
must not be forgotten that though iPSCs strongly resemble 
hESCs, there are differences[96]. Therefore, research on 
hESCs and human embryos is mandatory to define the 
similarities and dissimilarities between these two cell types 
before envisioning the use of  human iPSCs in regenerative 
medicine.
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Abstract
Human umbilical cord blood-derived mesenchymal stem 
cells (hUCB-MSCs) are regarded as an alternative source 
of bone marrow-derived mesenchymal stem cells be-
cause collection of cord blood is less invasive than that 
of bone marrow. hUCB-MSCs have recently been studied 
for evaluation of their potential as a source of cell ther-
apy. In this review, the general characteristics of hUCB-
MSCs and their therapeutic effects on various diseases 
in vitro  and in vivo  will be discussed. 
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INTRODUCTION
Mesenchymal stem cells (MSCs) are refined as undifferen-
tiated cells that are capable of  self  renewal and differentia-
tion into several cell types such as chondrocyte, adipocyte, 
osteocyte, myocyte and neuron-like cells[1,2]. MSC can be 
isolated from bone marrow, umbilical cord blood, adipose 
tissue, placenta etc. Although bone marrow (BM) has been 
regarded as a major source of  MSC, umbilical cord blood 
has recently been regarded as an alternative source for 
isolation of  MSC[3,4]. Human umbilical cord blood-derived 
mesenchymal stem cells (hUCB-MSCs) have a capacity 
similar to that of  BM-MSCs for multi-lineage differentia-
tion[5]. In addition, hUCB-MSCs also possess activities for 
immune modulation, tumor tropism and nursing effect[6,7]. 
When compared with other MSCs from various sources, 
hUCB-MSCs could be considered a fascinating source for 
use in stem cell therapy. In this review, we introduce the 
general characteristics of  hUCB-MSCs and its application 
in various disease models.

GENERAL CHARACTERISTICS OF hUCB-
MSCS
Immunogenic phenotypes of hUCB-MSCs
Immune rejection in recipient patients is the primary issue 
associated with use of  MSCs as an allogeneic cell source 
for cell based therapy involving transplantation. In fact, 
previous studies of  the properties of  immune-privilege 
have been carried out primarily in BM-MSCs where the 
surface immunogenic markers were hypo-immunogenic 
which may prevent proliferation of  allogeneic lympho-
cytes[8-10]. In the same fashion as BM-MSCs, major histo-
compatibility complex-Ⅱ class molecules and costimula-
tory molecules, such as CD40, CD40 ligand, CD80 and 
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CD86 which are involved in T cell activation response for 
transplant rejection, are not expressed in hUCB-MSCs 
even when mitogenic or allogeneic stimulated signals are 
delivered. In addition, differentiation of  hUCB-MSCs 
into chondrocyte or neuron-like cells did not elicit expres-
sion of  these immunogenic surface molecules and could 
not provoke allocative lymphocyte proliferation in mixed 
lymphocyte reactions (MLR) in vitro[11-13]. Compared with 
BM-MSCs, hUCB-MSCs showed lower immunogenicity 
than BM-MSCs because of  primitive characters originat-
ing from UCB. Indeed, undifferentiated or differentiated 
hUCB-MSCs can be successfully transplanted for cell 
based therapy due to permission of  a greater degree of  
HLA mismatch without graft versus host disease but not 
in BM-MSCs. Therefore, immunogenic phenotypes of  
hUCB-MSCs can retain low immunogenicity under certain 
biological conditions which provide advantages for devel-
opment of  off-the-shelf  products for clinical application 
of  cell transplantation. Thus, hUCB-MSCs show promise 
as a source for stem cell therapy. 

Immune regulation properties of hUCB-MSC
MSCs are known to have immune suppressive action 
on lymphocyte proliferation in MLR by alloantigen and 
mitogens such as phytohemagglutinin and to reduce the 
level of  proinflammatory cytokines such as interferon-γ 
(IFN-γ) and tumor necrosis factor-α (TNF-α). Recent 
evidence has demonstrated that hUCB-MSCs can sup-
press not only the function of  mature dendritic cells 
but also increase the portion of  regulatory T cells re-
lated to immune regulation[12,13]. This regulation of  im-
mune response by MSCs is mediated by soluble factors 
and cell to cell contact mechanisms. At present, several 
soluble factors involved in immune suppression have 
been reported including transforming growth factor-β 
(TGF-β)[14]. However, induction of  these cytokines was 
not observed under conditions of  immune suppression 
by hUCB-MSCs and study of  contact dependent inhibi-
tion by hUCB-MSCs is in progress. In fact, based on 
our unpublished data, hUCB-MSCs elevated the level of  
prostaglandin E2 and induced indoleamine 2, 3-dioxy-
genase (IDO). In addition, the surface molecule HLA-G 
which is involved in immune tolerance in pregnancy was 
detected in hUCB-MSCs by fluorescence activated cell 
sorter analysis. It has been suggested that the molecular 
mechanism(s) or strategy for immune regulation by MSCs 
is dependent on species and tissue origin[15,16]. 

Consequently, to understand and utilize the immune 
regulation properties of  hUCB-MSCs for application in 
the treatment of  a number of  human immunological dis-
eases, the molecular mechanism underlying the immune 
modulatory functions of  hUCB-MSCs should be further 
investigated. 

APPLICATION OF hUCB-MSCS IN 
DISEASE MODELS
hUCB-MSCs for cartilage regeneration
Since MSCs are capable of  differentiation into mesodermal 

origin, several groups have tried cell therapy for osteo-
arthritis (OA), the most common type of  arthritis. Two 
representative common diseases of  cartilage degeneration 
include OA and rheumatoid arthritis (RA). OA is a prog
ressive degenerative disease of  the cartilage that is induced 
by complex factors that include increasing age, mechanical 
stress and inflammation leading to primary focal cartilage 
degradation and its functional loss. RA is a chronic autoim
mune disease characterized by inflammation of  the lining 
of  the synovium or joints that causes long term joint 
damage, particularly in cartilage[17]. MSCs are known for 
differentiation into mesodermal derived tissue such as 
cartilage, bone, adipose and muscle. In fact, hUCB-MSCs 
have much higher chondrogenic differentiation potential 
among mesodermal differentiation potentials which might 
lead to regeneration of  damaged cartilage. In addition 
to this chondrogenic differentiation potential of  MSCs, 
recent advances in our understanding of  the regeneration 
mechanism for cartilage defects have demonstrated that 
MSCs also show potent immunosuppression and anti-
inflammatory effects[11-14]. These properties might be due 
in part to specific secreted factors, including some types 
of  cytokines and growth factors. For instance, it has been 
reported that thrombospondin-1, 2 (TSP-1, 2) functions 
as an anti-inflammatory factor in RA by suppressing 
production of  proinflammatory mediators such as IFN-γ 
and TNF-α, inducing depletion of  synovium residing T 
cells and reducing infiltration of  monocytes/macrophages 
in articular tissues[18,19]. In this fashion, chondrogenic 
differentiation and paracrine actions might be involved in 
replacement of  damaged cartilage tissues and stimulation 
of  the regeneration process.

However, several research teams have conducted stud-
ies to demonstrate the therapeutic potential of  BM-MSCs 
for OA or RA[20-24] but few studies have reported on 
hUCB-MSCs. Despite growing experience and knowledge 
of  these attempts, the molecular mechanisms underlying 
cartilage repair and regeneration by MSCs remain unin-
vestigated. Therefore, extensive studies of  hUCB-MSCs 
therapeutic mechanisms are required for an understanding 
of  their regenerative potential and for efficient and safe 
clinical application. Fortunately, supported by our clinical 
trial phase Ⅰ/Ⅱ results (NCT01041001), we believe that 
adult stem cell therapy using hUCB-MSCs for cartilage 
degenerative disease is a promising alternative to previous 
treatments if  optimal hUCB-MSCs therapy conditions are 
adjusted by a full understanding of  the important regen-
eration mechanism for diseases of  cartilage degeneration.

hUCB-MSCs for glioma
Interestingly, MSCs have been shown to migrate toward 
glioma[25]. This phenomenon could be applied to tumor 
therapy with MSCs loaded tumor therapeutic agent. 
TRAIL, IL-12, IFN-β and cytosine deaminase have been 
used as therapeutic agents in MSCs-mediated delivery. 
In particular, TRAIL-secreting hUCB-MSCs showed 
therapeutic effects in an intracranial glioma model[26]. In-
jection of  engineered MSCs inhibited tumor-growth and 
prolonged the lifespan of  glioma-bearing mice compared 
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with control. Although this glioma tropism has been dem-
onstrated, the exact molecular mechanism has not been 
elucidated. As glioma over expressed interleukin-8 (IL-8), 
our group tested IL-8 action in hUCB-MSCs migration 
toward glioma. Interestingly, a high level of  IL-8 was 
detected in the conditioned media of  co-cultured glioma 
cells with hUCB-MSCs. Recombinant IL-8 treatment of  
hUCB-MSCs enhanced migration to the lower chamber 
under the Transwell system. This effect was reduced by 
pre-treatment of  hUCB-MSCs with antibody against 
CXC chemokine receptor 1 (CXCR1) and CXCR2, IL-8 
receptor. Therefore, IL-8 will be an attracting factor for 
hUCB-MSCs migration toward glioma[27]. We expect 
that IL-8 receptor over expression in hUCB-MSCs will 
efficiently deliver cancer drugs to glioma. For application 
of  hUCB-MSCs in human glioma, more efficient and safe 
methods of  therapeutic gene expression in hUCB-MSCs 
should be established. 

hUCB-MSCs for ischemic brain damage
Because brain injury due to ischemia cannot be recovered 
and can result in severe functional defects in the brain, 
stroke is a primary disease target for stem cell therapy. In 
ischemia studies, most data show that cell therapy is per-
formed using hUCB. The first evidence of  a therapeutic 
effect of  hUCB came from Chopp’s laboratory, where rat 
was used for middle cerebral artery occlusion to induce 
focal ischemia. Intravenous administration of  hUCB re-
duces behavioral deficits after stroke in rats[28]. Recently, 
infarct volume was reduced 1 d after intra arterial delivery 
of  hUCB-MSCs in canine cerebral ischemia whereas 
infarct volume was increased in the control groups. Trans
planted hUCB-MSCs were differentiated into neurons 
and astrocytes in and around endothelial cells and secreted 
brain-derived neurotrophic factor and vascular endothelial 
growth factor at 4 wk after transplantation[29]. Jeong et al[30] 
reported that transplantation of  hUCB-MSCs into contra
lateral regions of  injured rat brain at 7 d after injury resulted 
in significant behavioral improvement. In addition, PKH26-
labled hUCB-MSCs differentiated into neural cells at the 
injured site at 4 wk after transplantation. These results 
suggested that transplantation of  hUCB-MSCs could be 
used in clinical trials for ischemia. Despite these interesting 
data, stem cell therapy using hUCB-MSCs have to make 
critical decisions with regard to the route of  transplantation, 
type of  injected cell (hUCB vs hUCB-MSCs) and timing of  
transplantation.

hUCB-MSCs for lung diseases
Progression of  acute respiratory distress syndrome is 
demonstrated by loss of  lung tissue as a result of  inflam-
mation and fibrosis. Human umbilical cord cells derived 
from Wharton’s jelly with a phenotype consistent with 
that of  MSCs (uMSCs) were treated using a bleomycin 
induced-lung injury mouse model[31]. After 2 wk, systemic 
administration of  uMSCs was located in the area of  
inflammation and fibrosis. Injected uMSCs reduced inflam
mation and inhibited expression of  TGF-β, IFN-γ and 
proinflammatory cytokines, including macrophage migra-

tory inhibitory factor and TNF-α. Furthermore, collagen 
level was decreased due to up-regulation of  matrix metal-
loproteinase-2 and reduced endogenous inhibitors, tissue 
inhibitors of  matrix metalloproteinases. These results 
suggested that uMSCs participate in anti-fibrosis in lung 
injury. Interestingly, hUCB-MSCs transplantation can atten
uate hyperoxia-induced lung injury in immunocompetent 
newborn rats[32]. A single dose of  PKH26 labeled hUCB-
MSCs was administered intratracheally (2 × 106 cells) at 
postnatal day 5. Two abilities of  hUCB-MSCs, immune 
modulation and differentiation potential, were evaluated 
after hUCB-MSCs administration. The hyperoxia-induced 
increase in the number of  dead cells, myeloperoxidase ac-
tivity, abnormal alveolarization and level of  IL-6 mRNA 
were significantly decreased with intratracheal hUCB-
MSCs administration. Furthermore, increased level of  
TNF-α, TGF-β mRNA, α-SMA protein and collagen 
were significantly reduced by hUCB-MSCs. As pKH26-
labeled differentiated lung epithelial cells were observed in 
damaged lung, collectively, hUCB-MSCs could be used for 
cell therapy via both anti-inflammation and regeneration in 
hypoxia induced lung injury.  

hUCB-MSCs for liver diseases
Cirrhosis is a consequence of  chronic hepatic injury char-
acterized by replacement of  liver tissue by fibrosis and scar 
tissue. Cirrhosis is most commonly caused by alcoholism, 
fatty liver and hepatitis B and C. No effective therapy is 
currently available for this disease[33]. Recent reports have 
shown that MSCs have the capacity for differentiation 
into hepatocytes. In carbon tetrachloride (CCl4)-induced 
cirrhosis in a rat model, hUCB-MSCs infusion showed 
inhibition of  TGF-β1, collagen type Ⅰ and α-SMA ex-
pression. In addition, CM-DiI-labeled hUCB-MSCs ex-
pressed hepatocyte-specific markers, human albumin and 
α-fetoprotein in injured liver[34]. Similar data was observed 
by Yan et al[35]. Interestingly, terminal deoxynucleotidyl 
transferase-mediated deoxyuridine triphosphate (dUTP)-
biotin nick end labeling and proliferating cell nuclear anti-
gen staining showed that transplanted hUCB-MSCs could 
prevent hepatocyte cell death and stimulate proliferation. 
According to these data, hUCB-MSCs could be useful in 
liver therapy. Liver contains endogenous abundant pro-
genitor cells for recovery of  liver damage. Therefore, it 
is currently difficult to determine which stem/progenitor 
cell populations are best for liver disease therapy.

CONCLUSION
In the effort to overcome incurable disease, stem cell 
therapy has been regarded as the next solution. In par-
ticular, adult stem cells such as hUCB-MSCs have shown 
therapeutic efficacy in various animal disease models. Com-
pared to embryonic stem cells, adult stem cells have several 
advantages for use in stem cell therapy. Adult stem cells 
are relatively free of  ethical issues, immune rejection and 
tumor formation. In particular, hUCB-MSCs are obtained 
from discarded umbilical cord blood after child birth. If  
informed consent is available from pregnant mothers, 

百世登
BaishidengTM© WJSC|www.wjgnet.com 36         April 26, 2010|Volume 2|Issue 2|

Kim JY et al . Therapeutic effects of hUCB-MSCs



hUCB-MSCs can be easily isolated from cord blood under 
aseptic conditions. Since public and private cord blood 
banking systems are well established in Korea, basic and 
clinical investigation into development of  cell therapies has 
been intense. Furthermore, immunological safety has been 
proven in several journals although application of  hUCB-
MSCs is based on allogeneic transplantation. In addition, 
there have been no reports of  tumor formation after trans
plantation of  hUCB-MSCs in animals or humans. From 
this review, we could conclude that regeneration of  target 
tissue by differentiation and nursing effect by secreted 
proteins are among the molecular mechanism of  hUCB-
MSCs action in various diseases (Figure 1). In the early days 
of  stem cell research, regenerative medicine was the main 
stream of  research. However, paracrine action of  stem 
cells under pathological conditions is now emerging. The 
study of  hUCB-MSCs is incomplete compared to that of  
BM-MSCs. However, once basic scientific understanding 
of  hUCB-MSCs have shown further advancement and 
conditions for isolation and expansion of  hUCB-MSCs are 
well established for the clinic, hUCB-MSCs will be a fasci-
nating source for use in stem cell therapy.
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Figure 1  Multifunctional therapeutic activities 
of human umbilical cord blood-derived 
mesenchymal stem cells (hUCB-MSCs). 
Transplanted hUCB-MSCs participate in cartilage, 
lung and liver regeneration through differentiation 
of damaged tissues as well as attenuation of 
inflammation and apoptosis. Interestingly, hUCB-
MSCs can migrate toward glioma. When migrated 
hUCB-MSCs express apoptotic gene such as  
TRAIL in glioma region, tumor size will be decrea
sed by secreted TRAIL from hUCB-MSCs.  
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Events Calendar 2010

February 15-16, 2010
Stem Cells 2010
Crowne Plaza Hotel, St James, London, 
United Kingdom

May 11-13, 2010
World Stem Cells and Regenerative 
Medicine Congress
London, United Kingdom
http://www.terrapinn.com/2010/
stemcells/index.stm 

May 12-15, 2010
Stem Cells, Tissue Homeostasis and 
Cancer
EMBL Heidelberg, Germany
http://www.embl.de/training/
courses_conferences/conference/ 
2010/STM10-01/

June 16-19, 2010
ISSCR 8th Annual Meeting
Moscone West, San Francisco, CA 
United States
http://www.isscr.org/meetings/
index.cfm

June 27-July 2, 2010
The 9th Gordon Conference on Cell 
Biology of the Neuron
Waterville Valley Resort, NH, 
United Kindom

July 11-14, 2010
3rd International Congress on Stem 
Cells and Tissue Formation
Dresden, Germany
http://www.stemcellcongress-
dresden.org/

August 22-27, 2010
The 2010 Gordon Conference on Cell 
Death 
Salve Regina University, Newport, 
RI, United Stated

October 4-6, 2010
World Stem Cell Summit 2010
Detroit Marriott Renaissance Center, 
Detroit, Michigan, United States
http://www.worldstemcellsummit.
com/
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World Journal of  Stem Cells (World J Stem Cells, WJSC, online ISSN 
1948-0210, DOI: 10.4252), is a bimonthly, open-access (OA), 
peer-reviewed journal supported by an editorial board of  284 
experts in stem cell from 28 countries.

The biggest advantage of  the OA model is that it provides free, 
full-text articles in PDF and other formats for experts and the public 
without registration, which eliminates the obstacle that traditional 
journals possess and usually delays the speed of  the propagation and 
communication of  scientific research results. The open access model 
has been proven to be a true approach that may achieve the ultimate 
goal of  the journals, i.e. the maximization of  the value to the readers, 
authors and society.

The role of  academic journals is to exhibit the scientific levels 
of  a country, a university, a center, a department, and even a scientist, 
and build an important bridge for communication between scientists 
and the public. As we all know, the significance of  the publication of  
scientific articles lies not only in disseminating and communicating 
innovative scientific achievements and academic views, as well as 
promoting the application of  scientific achievements, but also in 
formally recognizing the “priority” and “copyright” of  innovative 
achievements published, as well as evaluating research performance 
and academic levels. So, to realize these desired attributes of  WJSC 
and create a well-recognized journal, the following four types of  
personal benefits should be maximized. The maximization of  
personal benefits refers to the pursuit of  the maximum personal 
benefits in a well-considered optimal manner without violation of  
the laws, ethical rules and the benefits of  others. (1) Maximization 
of  the benefits of  editorial board members: The primary task of  
editorial board members is to give a peer review of  an unpublished 
scientific article via online office system to evaluate its innovativeness, 
scientific and practical values and determine whether it should be 
published or not. During peer review, editorial board members can 
also obtain cutting-edge information in that field at first hand. As 
leaders in their field, they have priority to be invited to write articles 
and publish commentary articles. We will put peer reviewers’ names 
and affiliations along with the article they reviewed in the journal to 
acknowledge their contribution; (2) Maximization of  the benefits 
of  authors: Since WJSC is an open-access journal, readers around 
the world can immediately download and read, free of  charge, high-
quality, peer-reviewed articles from WJSC official website, thereby 
realizing the goals and significance of  the communication between 
authors and peers as well as public reading; (3) Maximization of  
the benefits of  readers: Readers can read or use, free of  charge, 
high-quality peer-reviewed articles without any limits, and cite 
the arguments, viewpoints, concepts, theories, methods, results, 
conclusion or facts and data of  pertinent literature so as to validate 
the innovativeness, scientific and practical values of  their own 
research achievements, thus ensuring that their articles have novel 
arguments or viewpoints, solid evidence and correct conclusion; 
and (4) Maximization of  the benefits of  employees: It is an iron law 
that a first-class journal is unable to exist without first-class editors, 
and only first-class editors can create a first-class academic journal. 
We insist on strengthening our team cultivation and construction so 
that every employee, in an open, fair and transparent environment, 
could contribute their wisdom to edit and publish high-quality 

articles, thereby realizing the maximization of  the personal benefits 
of  editorial board members, authors and readers, and yielding the 
greatest social and economic benefits.

The major task of  WJSC is to report rapidly original articles and 
comprehensive reviews on basic laboratory investigations of  stem 
cells and their application in clinical care and treatment of  patients. 
WJSC is designed to cover all aspects of  stem cells, including: 
Embryonic, neural, hematopoietic, mesenchymal, tissue-specific, 
and cancer stem cells; the stem cell niche; stem cell genomics and 
proteomics; and stem cell techniques and their application in clinical 
trials. Papers published in WJSC will cover the biology, culture, 
differentiation and application of  stem cells from all stages of  their 
development, from germ cell to embryo and adult.

The columns in the issues of  WJSC will include: (1) Editorial: 
To introduce and comment on major advances and developments 
in the field; (2) Frontier: To review representative achievements, 
comment on the state of  current research, and propose directions 
for future research; (3) Topic Highlight: This column consists of  
three formats, including (A) 10 invited review articles on a hot 
topic, (B) a commentary on common issues of  this hot topic, and 
(C) a commentary on the 10 individual articles; (4) Observation: 
To update the development of  old and new questions, highlight 
unsolved problems, and provide strategies on how to solve the 
questions; (5) Guidelines for Basic Research: To provide guidelines 
for basic research; (6) Guidelines for Clinical Practice: To provide 
guidelines for clinical diagnosis and treatment; (7) Review: To review 
systemically progress and unresolved problems in the field, comment 
on the state of  current research, and make suggestions for future 
work; (8) Original Articles: T To report innovative and original 
findings in stem cells; (9) Brief  Articles: To briefly report the novel 
and innovative findings in stem cells; (10) Case Report: To report a 
rare or typical case; (11) Letters to the Editor: To discuss and make 
reply to the contributions published in WJSC, or to introduce and 
comment on a controversial issue of  general interest; (12) Book 
Reviews: To introduce and comment on quality monographs of  
stem cells; and (13) Guidelines: To introduce consensuses and 
guidelines reached by international and national academic authorities 
worldwide on the research in stem cells.
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of  their institution or national animal welfare committee. For the 
sake of  transparency in regard to the performance and reporting of  
clinical trials, we endorse the policy of  the International Committee 
of  Medical Journal Editors to refuse to publish papers on clinical trial 
results if  the trial was not recorded in a publicly-accessible registry at 
its outset. The only register now available, to our knowledge, is http://
www.clinicaltrials.gov sponsored by the United States National Library 
of  Medicine and we encourage all potential contributors to register 
with it. However, in the case that other registers become available you 
will be duly notified. A letter of  recommendation from each author’s 
organization should be provided with the contributed article to ensure 
the privacy and secrecy of  research is protected.

Authors should retain one copy of  the text, tables, photo
graphs and illustrations because rejected manuscripts will not be 
returned to the author(s) and the editors will not be responsible 
for loss or damage to photographs and illustrations sustained 
during mailing.

Online submissions
Manuscripts should be submitted through the Online Submission 
System at: http://www.wjgnet.com/1948-0210office. Authors are 
highly recommended to consult the ONLINE INSTRUCTIONS 
TO AUTHORS (ht tp ://www.wjgnet .com/1948-0210/
g_info_20100313165700.htm) before attempting to submit online. 
For assistance, authors encountering problems with the Online 
Submission System may send an email describing the problem to 
wjsc@wjgnet.com, or by telephone: +86-10-85381891. If  you submit 
your manuscript online, do not make a postal contribution. Repeated 
online submission for the same manuscript is strictly prohibited.

MANUSCRIPT PREPARATION
All contributions should be written in English. All articles must be 
submitted using word-processing software. All submissions must 
be typed in 1.5 line spacing and 12 pt. Book Antiqua with ample 
margins. Style should conform to our house format. Required 
information for each of  the manuscript sections is as follows:

Title page
Title: Title should be less than 12 words.

Running title: A short running title of  less than 6 words should 
be provided.

Authorship: Authorship credit should be in accordance with the 
standard proposed by International Committee of  Medical Journal 
Editors, based on (1) substantial contributions to conception and 
design, acquisition of  data, or analysis and interpretation of  data; (2) 
drafting the article or revising it critically for important intellectual 
content; and (3) final approval of  the version to be published. 
Authors should meet conditions 1, 2, and 3.

Institution: Author names should be given first, then the complete  
name of  institution, city, province and postcode. For example, Xu-
Chen Zhang, Li-Xin Mei, Department of  Pathology, Chengde 
Medical College, Chengde 067000, Hebei Province, China. One 
author may be represented from two institutions, for example, 
George Sgourakis, Department of  General, Visceral, and Transp
lantation Surgery, Essen 45122, Germany; George Sgourakis, 2nd 
Surgical Department, Korgialenio-Benakio Red Cross Hospital, 
Athens 15451, Greece

Author contributions: The format of  this section should be: 
Author contributions: Wang CL and Liang L contributed equally 
to this work; Wang CL, Liang L, Fu JF, Zou CC, Hong F and Wu 
XM designed the research; Wang CL, Zou CC, Hong F and Wu 
XM performed the research; Xue JZ and Lu JR contributed new 
reagents/analytic tools; Wang CL, Liang L and Fu JF analyzed the 
data; and Wang CL, Liang L and Fu JF wrote the paper.

Supportive foundations: The complete name and number of  

supportive foundations should be provided, e.g., Supported by 
National Natural Science Foundation of  China, No. 30224801

Correspondence to: Only one corresponding address should 
be provided. Author names should be given first, then author 
title, affiliation, the complete name of  institution, city, postcode, 
province, country, and email. All the letters in the email should be 
in lower case. A space interval should be inserted between country 
name and email address. For example, Montgomery Bissell, MD, 
Professor of  Medicine, Chief, Liver Center, Gastroenterology 
Division, University of  California, Box 0538, San Francisco, CA 
94143, United States. montgomery.bissell@ucsf.edu

Telephone and fax: Telephone and fax should consist of  +, 
country number, district number and telephone or fax number, e.g., 
Telephone: +86-10-59080039  Fax: +86-10-85381893

Peer reviewers: All articles received are subject to peer review. 
Normally, three experts are invited for each article. Decision for 
acceptance is made only when at least two experts recommend 
an article for publication. Reviewers for accepted manuscripts are 
acknowledged in each manuscript, and reviewers of  articles which 
were not accepted will be acknowledged at the end of  each issue. 
To ensure the quality of  the articles published in WJSC, reviewers 
of  accepted manuscripts will be announced by publishing the 
name, title/position and institution of  the reviewer in the footnote 
accompanying the printed article. For example, reviewers: Professor 
Jing-Yuan Fang, Shanghai Institute of  Digestive Disease, Shanghai, 
Affiliated Renji Hospital, Medical Faculty, Shanghai Jiaotong 
University, Shanghai, China; Professor Xin-Wei Han, Department 
of  Radiology, The First Affiliated Hospital, Zhengzhou University, 
Zhengzhou, Henan Province, China; and Professor Anren Kuang, 
Department of  Nuclear Medicine, Huaxi Hospital, Sichuan 
University, Chengdu, Sichuan Province, China.

Abstract
There are unstructured abstracts (no more than 256 words) and 
structured abstracts (no more than 480). The specific requirements 
for structured abstracts are as follows: 

An informative, structured abstracts of  no more than 480 
words should accompany each manuscript. Abstracts for original 
contributions should be structured into the following sections. AIM 
(no more than 20 words): Only the purpose should be included. 
Please write the aim as the form of  “To investigate/study/…; 
MATERIALS AND METHODS (no more than 140 words); 
RESULTS (no more than 294 words): You should present P values 
where appropriate and must provide relevant data to illustrate 
how they were obtained, e.g. 6.92 ± 3.86 vs 3.61 ± 1.67, P < 0.001; 
CONCLUSION (no more than 26 words).

Key words
Please list 5-10 key words, selected mainly from Index Medicus, 
which reflect the content of  the study.

Text
For articles of  these sections, original articles, rapid communication 
and case reports, the main text should be structured into the 
following sections: INTRODUCTION, MATERIALS AND 
METHODS, RESULTS and DISCUSSION, and should include 
appropriate Figures and Tables. Data should be presented in the 
main text or in Figures and Tables, but not in both. The main 
text format of  these sections, editorial, topic highlight, case 
report, letters to the editors, can be found at: http://www.wjgnet.
com/1948-0210/g_info_20100313171239.htm.

Illustrations
Figures should be numbered as 1, 2, 3, etc., and mentioned clearly 
in the main text. Provide a brief  title for each figure on a separate 
page. Detailed legends should not be provided under the figures. 
This part should be added into the text where the figures are 
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applicable. Figures should be either Photoshop or Illustrator 
files (in tiff, eps, jpeg formats) at high-resolution. Examples can 
be found at: http://www.wjgnet.com/1007-9327/13/4520.
pdf ; ht tp ://www.wjgnet .com/1007-9327/13/4554.pdf ; 
http://www.wjgnet.com/1007-9327/13/4891.pdf; http://
www.wjgnet .com/1007-9327/13/4986.pdf; http://www.
wjgnet.com/1007-9327/13/4498.pdf. Keeping all elements 
compiled is necessary in line-art image. Scale bars should 
be used rather than magnification factors, with the length 
of  the bar def ined in the legend rather than on the bar 
itself. File names should identify the figure and panel. Avoid 
layering type directly over shaded or textured areas. Please use 
uniform legends for the same subjects. For example: Figure 1 
Pathological changes in atrophic gastritis after treatment. A: ...; B: 
...; C: ...; D: ...; E: ...; F: ...; G: …etc. It is our principle to publish high 
resolution-figures for the printed and E-versions.

Tables
Three-line tables should be numbered 1, 2, 3, etc., and mentioned 
clearly in the main text. Provide a brief  title for each table. Detailed 
legends should not be included under tables, but rather added into 
the text where applicable. The information should complement, 
but not duplicate the text. Use one horizontal line under the title, a 
second under column heads, and a third below the Table, above any 
footnotes. Vertical and italic lines should be omitted.

Notes in tables and illustrations
Data that are not statistically significant should not be noted. aP < 
0.05, bP < 0.01 should be noted (P > 0.05 should not be noted). If  
there are other series of  P values, cP < 0.05 and dP < 0.01 are used. 
A third series of  P values can be expressed as eP < 0.05 and fP < 0.01. 
Other notes in tables or under illustrations should be expressed as 
1F, 2F, 3F; or sometimes as other symbols with a superscript (Arabic 
numerals) in the upper left corner. In a multi-curve illustration, each 
curve should be labeled with ●, ○, ■, □, ▲, △, etc., in a certain 
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blood CEA mass concentration, p (CEA) = 8.6 24.5 mg/L; CO2 
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