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Abstract
Schizophrenia (SCZ) is a devastating and complicated mental disorder accom-
panied by variable positive and negative symptoms and cognitive deficits. 
Although many genetic risk factors have been identified, SCZ is also considered 
as a neurodevelopmental disorder. Elucidation of the pathogenesis and the 
development of treatment is challenging because complex interactions occur 
between these genetic risk factors and environment in essential neurodevelop-
mental processes. Adult neural stem cells share a lot of similarities with 
embryonic neural stem cells and provide a promising model for studying 
neuronal development in adulthood. These adult neural stem cells also play an 
important role in cognitive functions including temporal and spatial memory 
encoding and context discrimination, which have been shown to be closely linked 
with many psychiatric disorders, such as SCZ. Here in this review, we focus on 
the SCZ risk genes and the key components in related signaling pathways in adult 
hippocampal neural stem cells and summarize their roles in adult neurogenesis 
and animal behaviors. We hope that this would be helpful for the understanding 
of the contribution of dysregulated adult neural stem cells in the pathogenesis of 
SCZ and for the identification of potential therapeutic targets, which could 
facilitate the development of novel medication and treatment.

Key Words: Neural stem cells; Adult hippocampal neurogenesis; Schizophrenia; Risk 
genes; Signaling pathways; Behavior

©The Author(s) 2022. Published by Baishideng Publishing Group Inc. All rights reserved.

https://www.f6publishing.com
https://dx.doi.org/10.4252/wjsc.v14.i3.219
mailto:leizhang1120@outlook.com


Hu L et al. Adult neural stem cells and schizophrenia

WJSC https://www.wjgnet.com 220 March 26, 2022 Volume 14 Issue 3

Core Tip: This review focuses on the role of schizophrenia risk genes and related signaling pathways in 
adult hippocampal neurogenesis, which has been shown to play an essential role in many psychiatric 
disorders. We summarize the outcome of adult neural stem cells and animal behavior when these risk 
genes or the key components in related signaling pathways are dysregulated. We hope this will shed light 
on the elusive pathogenesis of schizophrenia.

Citation: Hu L, Zhang L. Adult neural stem cells and schizophrenia. World J Stem Cells 2022; 14(3): 219-230
URL: https://www.wjgnet.com/1948-0210/full/v14/i3/219.htm
DOI: https://dx.doi.org/10.4252/wjsc.v14.i3.219

INTRODUCTION
Schizophrenia (SCZ) is a devastating brain disorder with a prevalence of 1% worldwide. Patients 
typically show a subset of positive symptoms including delusions, auditory and visual hallucinations, 
disorganized speech and thought disorder, negative symptoms including a lack of motivation, interest 
and emotional blunting, lack of thought and content of speech, and/or cognitive deficits[1-3]. Although 
SCZ has been extensively investigated in the past few decades, the underlying cellular defects and 
molecular mechanism of SCZ have not been clearly established. Considerable evidence supports the 
notion that SCZ is the behavioral outcome of neurodevelopmental disturbance long before the onset of 
clinical symptoms[4]. However, it is known that neurodevelopment is not confined to the embryonic 
stages, and is a prolonged process continuing in adults. On the basis that the first psychotic symptoms 
in most patients occur in late adolescence[3], abnormal adult hippocampal neurogenesis might facilitate 
the emergence of hippocampal-dependent cognitive and affective deviation.

Adult neurogenesis is a complex and complicated process, which occurs in the subgranular zone 
(SGZ) of the dentate gyrus (DG) in mammalian brain[5]. Quiescent neural stem cells in the SGZ become 
activated, proliferate, differentiate, mature into glutamatergic neurons and receive innervations from 
the entorhinal cortex while projecting axons to the cornu ammonis 3 (CA3) region[6]. The direct 
evidence that defective adult neurogenesis might be involved in the etiology of SCZ originates from 
studies on post-mortem samples, in which the number of cells expressing Ki67, the cell proliferation 
marker, was reduced by 50%-60% in the SGZ[7]. In addition, patients diagnosed with SCZ present with 
an immature DG with impaired maturation of adult-born neurons[8].

Recently, several risk genes associated with SCZ have been identified through genome-wide 
association studies (GWAS), some of which are components of important signaling pathways. Given the 
evidence that numerous genes are implicated in the etiology of SCZ, the disease is currently accepted as 
a polygenic disorder caused by the complex interplay between genetic and environmental factors[9-11]. 
In this review, we mainly focus on the roles of some risk genes and key signaling pathways implicated 
in SCZ, during the process of adult neurogenesis.

SCZ RISK GENES
Disrupted in SCZ 1
Disrupted in SCZ 1 (DISC1), one of the widely-studied risk genes for SCZ, was originally identified in a 
large Scottish family. A balanced chromosomal translocation t(1;11)(q42.1;q14.3) leads to disruption of 
the C-terminal region in DISC1 gene, which is co-segregated with mental disorders such as SCZ and 
depression[12-15]. Suppression of Disc1 expression perturbs neural progenitor proliferation during 
adult neurogenesis through the glycogen synthase kinase 3β (Gsk-3β)/β-catenin pathway. Furthermore, 
Gsk-3 inhibitors attenuate progenitor proliferation and behavioral defects caused by Disc1 suppression
[16]. Various studies have shown that alteration of Disc1 expression impedes the maturation of new-
born neurons including aberrant morphological development, mis-positioning of new DG granule cells, 
enhanced dendritic outgrowth and defects in axonal targeting[17-20]. In addition, Disc1 works as a 
scaffold protein and interacts with many signaling effectors to regulate adult neurogenesis. For 
example, Disc1 directly interacts with Girdin, which regulates the differentiation, maturation, migration, 
and cytoskeleton organization of adult neural progenitors and inhibits Akt activity[21,22]. Interestingly, 
the cellular defects and hippocampal-dependent behavioral deficits caused by Disc1 deficiency can be 
largely rescued by the administration of rapamycin, an inhibitor of mammalian target of rapamycin 
(mTOR), which is the Akt downstream effector[23]. In addition, an interplay between intrinsic Disc1 
and extrinsic γ-amino butyric acid (GABA) signaling also contributes to dendritic growth and synapse 
formation in immature neurons via the Akt-mTOR pathway[24-26]. Collectively, DISC1 regulates 
multiple steps of adult neurogenesis through interaction with key effectors of various signaling 
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pathways directly and indirectly.

Neuregulin-1
Neuregulin-1 (NRG1) was identified as a risk factor for SCZ more than a decade ago through a genome-
wide scan of SCZ families in Iceland, which was later supported by many associated studies[27-29]. 
NRG1 binds to ErbB2-4, a family of epidermal growth factor-like tyrosine kinases, and defective 
NRG1/ErbB4 signaling is found in the prefrontal cortex and hippocampus of SCZ patients[30-32]. 
Moreover, multiple studies have proven that NRG1 is associated with affective behavior and the 
pathology of SCZ[33-36]. It has been reported that the administration of Nrg1 displays robust antide-
pressant-like behaviors accompanied by increased ventral DG cell proliferation and neurogenesis in the 
caudal DG without alteration of neuronal fate[37]. The finding that it interacts with molecules in the 
glutamatergic synapse implies a role of Nrg1 in adult plasticity[38,39]. These observations suggest that 
NRG1/ErbB4 signaling might participate in the process of adult neurogenesis.

Synaptosomal-associated protein, 25 kDa
Synaptosomal-associated protein, 25 kDa (SNAP-25) is a soluble N-ethylmaleimide-sensitive factor 
attachment protein receptor protein, which plays a crucial role in modulating synaptic exocytosis[40-
42]. Genetic studies and genome-wide meta-analyses have revealed its close association with multiple 
mental diseases including SCZ[43-46]. Snap-25 mutant mice display histologically and electrophysiolo-
gically immature DG neurons, leading to a severe working memory deficit[47]. Interestingly, selective 
inactivation of Snap-25 in adult neural stem cells results in enhancement in proximal dendritic 
branching of new-born neurons in the DG and robust efferent mossy fiber output to the CA3 region[48]. 
So far, the immature DG phenotype and similar schizophrenic-like behaviors have been found in 
Schnurri-2 knockout[49], Snap-25 mutant[47], and calmodulin-dependent protein kinase II (CaMKII) 
knockout mice[49]. Importantly, this immature DG phenomenon has also been observed in the post-
mortem brains from schizophrenic patients[8,50], suggesting a close link between disrupted maturation 
of adult-born cells and schizophrenic-like behaviors.

Calcium voltage-gated channel subunit alpha1 C
Calcium voltage-gated channel subunit alpha1 C (CACNA1C) encodes the Cav1.2 subunit of voltage-
gated calcium channels, whose genetic variations have been reported to increase the risk of psychiatric 
disorders including SCZ[51,52]. GWAS have identified several single-nucleotide polymorphisms (SNPs) 
of the CACNA1C gene, which show a close link with SCZ[53-55]. Furthermore, large exome sequencing 
studies have defined disruptive mutations within calcium ion channels in schizophrenic patients[56]. 
With regard to the functions of CACNA1C, it has received a lot of attention and been studied extensively 
in animal models. The results obtained from mice have shown that reduced gene dosage of Cacna1c 
leads to behavioral impairments including reduced locomotion and fear learning as well as impaired 
spatial memory[57-59]. Cacna1c has also been found to mediate brain-derived neurotrophic factor 
production and thus might also play a role in regulating adult neurogenesis. Indeed, studies on mice 
with ablation of Cacna1c showed that adult neurogenesis was impaired as revealed by decreased prolif-
eration of progenitors and survival of new-born neurons, which coincides with its cognitive deficits[60,
61].

Reelin
Reelin, an extracellular matrix glycoprotein which is mainly synthesized by Cajal-Retzius cells in the 
cortical marginal zone of the telencephalon at embryonic stages and in a subpopulation of GABAergic 
interneurons in adulthood, has been shown to play an essential role in embryonic and adult brains[62-
66]. Reelin exerts its biological functions by binding to integrin receptors and then triggers 
phosphorylation of disabled-1 (Dab1). Phosphorylated Dab1 then recruits downstream molecules such 
as Crk/CrkL, phosphatidylinositol 3-kinase and Nckβ to their functional compartment[67,68]. It has 
been reported that Reelin mRNA and protein levels are reduced by almost 50% in cortical and 
hippocampal regions in post-mortem brains and serum of schizophrenic patients[69-71]. In the adult 
brain, Reelin is synthesized and secreted by GABAergic interneurons, and the reduction of glutamic 
acid decarboxylase 67 (Gad67), an enzyme which catalyzes the transition of glutamate to GABA, has 
also been observed in the same brains[72]. Thus, the authors postulate that decreases in neuropil and 
dendritic spines observed in the prefrontal cortex of post-mortem brains may be an outcome of 
disturbed GABAergic function and an associated decrease in Reelin secretion[73]. In addition, Li et al 
identified six SNPs located in Intron 29 of the REELIN gene, which have a significant association with 
the risk of SCZ in the Chinese population[74]. Similarly, other groups have reported a gender-specific 
(women) association between SNPs in REELIN and SCZ[75-77]. Studies on animal models have also 
found that heterozygous Reeler mice (Reelin mutant) display many neuroanatomic and neurochemical 
changes similar to those described in patients with SCZ. These changes include altered synaptic 
plasticity, decreased dendritic spine density, reduced Gad67 mRNA and protein levels in the frontal 
cortex and behavioral disturbances in associative memory and prepulse inhibition, whereas supple-
mentation with REELIN can partially restore these abnormalities[78-83]. Inactivation of Reelin signaling 
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also leads to impaired adult neurogenesis as shown by decreased proliferation, aberrant migration and 
dendritic development of new-born neurons[84-86]. Taken together, these findings suggest that reduced 
REELIN expression in SCZ might have an impact on adult neurogenesis.

Other molecules
Apart from the susceptibility genes mentioned above, other molecules are also implicated in adult 
neurogenesis and SCZ, such as miR-19. A recent study revealed that miR-19 is enriched in adult 
hippocampal neural progenitor cells and regulates the migration of newborn neurons, highlighting its 
critical role in adult hippocampal neurogenesis[87]. Furthermore, miR-19 is found to be abnormally 
expressed in neural progenitor cells derived from induced pluripotent stem cells of schizophrenic 
patients[87], who show aberrant cell migration in brain. Thus, these data suggest that miR-19 may be a 
molecule associated with adult hippocampal neurogenesis and SCZ.

SCZ AND RELATED SIGNALING PATHWAYS CONTROLLING ADULT NEUROGENESIS
Wnt signaling
Wnt signaling, one of the most conserved molecular pathways, plays a vital role in the neurodevelop-
mental process and regulates the function and structure of the adult nervous system[88-90]. Wnts 
comprise a large cohort of secreted glycoproteins which interact with extracellular receptors, Frizzled or 
Low-density lipoprotein receptors 5/6[91]. Consequently, the activation of scaffold protein Dishevelled 
(Dvl) leads to inactivation of Gsk-3β. Normally, Gsk-3β promotes the degradation of β-catenin via 
phosphorylation. The inactivation of Gsk-3β finally causes the accumulation and translocation of β-
catenin to the nucleus where it binds to the transcription factor Tcf/Lef family and activates target 
genes.

Wnt signaling is involved in brain development during the embryonic stages including cortical 
patterning, cell adhesion, migration, cell fate determination and proliferation[38,92,93]. In the adult 
brain, growing evidence indicates that components of Wnt signaling regulate multiple stages of adult 
neurogenesis including proliferation, fate commitment and synaptic plasticity[90,94,95]. For example, 
loss of Wnt7a expression dramatically reduced the neural stem cell population, increased the rate of cell 
cycle exit in neural progenitors and dramatically impaired dendritic development in the hippocampal 
DG of adult mice by modulating the β-catenin-cyclin D1 and β-catenin-neurogenin 2 pathway, 
respectively[96]. Knockdown of Wnt5a impaired neuronal differentiation and dendritic development of 
adult-born neurons by activating Wnt/c-Jun N-terminal kinase (JNK) and Wnt/CaMKII signaling[97].

Disturbances in components of the Wnt signaling pathway have been reported in post-mortem brains 
of patients diagnosed with SCZ. These abnormalities include: (1) Reduced GSK-3β levels in the 
prefrontal cortex, hippocampus and cerebrospinal fluid of patients[98-100]. It is noteworthy that 
medications which may treat symptoms of SCZ in clinical use, also modulate the levels and activity of 
AKT, GSK-3 and WNT-related intracellular signaling[101,102]; (2) A reduction in Dickkopf WNT 
signaling pathway inhibitor 3 (DKK3) mRNA, a suppressive factor of WNT signaling, in the cerebral 
cortex and an increase in the Adenomatous polyposis coli (APC) expression, acting as an antagonist of 
the WNT signaling pathway, is found in schizophrenic brain[103]; and (3) The expression of WNT-
related genes in canonical WNT signaling was attenuated in whole blood in a sample of SCZ patients 
using an enzyme immunoassay. Furthermore, plasma levels of soluble DKK1 and SCLEROSTIN were 
downregulated in patients[104]. Wnt signaling in SCZ was further confirmed in animal studies. One of 
the first animal models included Dvl knockout mice, which exhibited reduced social interaction and 
deficits in prepulse inhibition of acoustic and tactile startle[105]. In addition, Disc1 exerts its function 
through Wnt signaling directly or indirectly[17]. Subsequent studies have shown that Apc and β-catenin 
knockout mice also display behavioral deviations related to SCZ[106,107]. In addition, the component of 
Wnt signaling, T-cell factor 4 (Tcf4), has received increased attention as the SNPs in its non-coding 
regions are associated with an increased risk of SCZ in GWAS[108-111]. Tcf4 also plays an important 
role in adult neurogenesis. Tcf4 heterozygous mice showed a decreased hippocampal neural stem cell 
pool, and impaired maturation and survival of adult-born neurons[112]. Thus, it is likely that dysregu-
lation of the WNT signaling pathway contributes to adult neurogenesis deficits observed in SCZ 
patients.

Notch signaling 
The Notch signaling pathway plays a crucial role in a wide array of neurodevelopmental processes and 
adult neurogenesis. Notch receptors are single-pass transmembrane heterodimers and four isoforms 
(Notch1-4) have been identified. In mammals, there are several types of Notch ligands including three 
Delta/Delta-like molecules (Dll/Dlk-1, -3, and -4) and two Serrate/Jagged molecules (Jag-1 and Jag-2). 
The heterodimeric Notch receptor undergoes proteolytic cleavage after binding to one of its ligands. 
This process liberates the Notch intracellular domain (NICD) which later translocates to the nucleus and 
interacts with the DNA-binding protein RBPj. The NICD-RBPj conjugation in turn works as a transcrip-
tional activator and stimulates the expression of basic helix-loop-helix transcription factors, such as the 
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Table 1 Studies of schizophrenia risk genes and related signaling pathways in adult neurogenesis

Genes or 
signaling 
pathways

Effects on adult neurogenesis Behavior deviations Ref.

Post-
mortem or 
genetic 
studies

DISC1 Suppression of Disc1 expression results in accelerated neuronal 
integration, mispositioning of new DG granule cells, accelerated 
dendritic development, premature cell cycle exit and differen-
tiation

Hyper-locomotion, depressive-like behavior, 
cognitive deficits (object place recognition test, 
Morris water maze test)

[16,18,
20,23]

[130-132]

NRG1 NRG1 treatment induces increased ventral DG cell proliferation 
and neurogenesis.NRG1 regulates both excitatory and 
inhibitory synaptic transmission in the adult brain and 
abnormal neurotransmission and/or synaptic plasticity have 
been observed in the schizophrenic brain

Nrg1 hypomorphs showed hyperactivity in a 
number of tests, including the novel open-field 
test and the alternating-Y maze, impaired social 
behavior and increased aggression

[36,37,
133]

[30-32]

SNAP-25 Snap-25 mutant mice display histologically and electrophysiolo-
gically immature DG neurons. Inactivation of Snap-25 in adult 
neural stem cells results in enhancement of proximal dendritic 
branching of new-born neurons in the DG and robust efferent 
mossy fiber output to the CA3 region

Working memory deficits, impaired contextual 
fear-discrimination learning

[47,48] [43,44]

CACNA1C Cacna1c deletion results in decreased progenitor proliferation 
and reduced survival of new-born neurons

Cacna1c heterozygous mice display reduced 
locomotion, fear learning, and impaired spatial 
memory

[57-61] [53-56]

Reelin Adult Reeler mutants show decreased proliferation, aberrant 
migration and dendritic development of new-born neurons

Heterozygous Reeler mice show a significant 
reduction in contextual fear conditioned learning 
and an age-dependent decrease in prepulse 
inhibition of startle

[82-84,
86]

[69-71,74-
77]

Wnt signaling Overexpression of stabilized β-catenin leads to enlarged brain 
and expanded neural precursor population. Wnt7a knockout 
mice show fewer neural stem cells. Wnt5a knockdown 
decreases the number of immature neurons. Tcf4 heterozygotes 
show reduced size of neural stem cell pool and impaired 
maturation and survival of adult-born neurons

Dvl knockout mice display reduced social 
interaction and deficits in prepulse inhibition of 
acoustic and tactile startle. Forebrain-specific β-
catenin knockout mice show a depression-like 
phenotype. Apc heterozygote shows hypoactivity 
and a severe performance deficit in working 
memory

[90,96,
106,
107,
134,
135]

[98-100,112]

Notch 
signaling

Inactivation of Notch1 blocks self-renewal of neural stem cells, 
reduces mitotic progenitors and neurogenesis. Adult deletion of 
RBPj leads to depletion and exhaustion of neural stem cells

Notch1 heterozygote displays deficits in spatial 
learning and memory

[100,
121,
122,
128,
129]

[116-118]

APC: Adenomatous polyposis coli; CA3: Cornu ammonis 3; CACNA1C: Calcium voltage-gated channel subunit alpha1 c; DG: Dentate gyrus; DISC1: 
Disrupted in schizophrenia 1; Dvl: Dishevelled; NRG1: Neuregulin-1; SNAP-25: Synaptosomal-associated protein, 25kDa; Tcf4: T-cell factor 4.

Hairy-Enhancer of Split[113-115]. A number of NOTCH4 variants and haplotypes have been found to be 
associated with SCZ[116,117]. This finding was subsequently confirmed by large GWAS[118]. Recent 
studies showed that the plasma levels of secreted NOTCH ligands (DLL1 and DLK-1) were elevated, 
whereas the levels of PRESENILIN-1, CREB-binding protein and RBPj were decreased in microarray 
analyses of whole blood from a large sample of SCZ patients[119]. In the study by Xue et al[120], 
Risperidone, one of medications used to treat SCZ, ameliorated cognitive deficits and cell proliferation 
by modulating the activity of Notch signaling in a murine model of SCZ. Mice deficient in Notch 
signaling have been shown to display spatial learning and memory impairment[121,122].

Notch signaling has long been identified as a factor which plays a primary role in adult neurogenesis. 
Notch receptors are expressed in neural stem cells and progenitors in the SGZ (Type-1 cells)[123,124]. In 
neural stem cells, the components of Notch signaling mainly work together to maintain an undifferen-
tiated, proliferative state and therefore preserve the neural stem cell pool[125-127]. Indeed, inactivation 
of Notch1 leads to reduced mitotic progenitors and neurogenesis[128], whereas activation of Notch1 
signaling increases neural stem cells and results in the generation of glial cells at the expense of neurons
[124]. Adult deletion of RBPj results in depletion and exhaustion of neural stem cells[129]. Therefore, 
NOTCH signaling might be involved in the etiology of SCZ and especially cognitive deficits.

CONCLUSION
Accumulating evidence shows that impaired adult neurogenesis in the hippocampus is implicated in 
the pathogenesis of SCZ (Table 1). Decreased proliferation of adult neural stem cells in the DG and 
reduced hippocampal volume often coincide with impaired cognitive and affective functions, which are 
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commonly identified in animal models and schizophrenic patients. The question of how dysregulation 
of neurogenesis in the adult brain participates in the progression of SCZ arouses more and more 
interests. As SCZ is a neurodevelopmental disorder, many risk genes have an impact on both early brain 
development and adult neurogenesis. Thus, adult neurogenesis provides an attractive model to study 
the neurodevelopmental process, as it generalizes each step of neuronal development, including prolif-
eration, specification, migration, dendritic branching and synapse formation. Although numerous 
susceptibility genes/molecules have been uncovered by genetic analysis and high-throughput 
sequencing, their functions still remain elusive. The studies on the roles of these susceptibility 
genes/signaling pathways in adult neurogenesis might shed some light on the understanding the 
etiology of SCZ and identifying potential therapeutic targets, which could facilitate the development of 
novel medication and treatment.
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Abstract
BACKGROUND 
The generation of induced pluripotent stem cells (iPSC) has been a game-changer 
in translational and regenerative medicine; however, their large-scale applicability 
is still hampered by the scarcity of accessible, safe, and reproducible protocols. 
The porcine model is a large biomedical model that enables translational applic-
ations, including gene editing, long term in vivo and offspring analysis; therefore, 
suitable for both medicine and animal production.

AIM 
To reprogramme in vitro into pluripotency, and herein urine-derived cells (UDCs) 
were isolated from porcine urine.
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METHODS 
The UDCs were reprogrammed in vitro using human or murine octamer-binding transcription 
factor 4 (OCT4), SRY-box2 (SOX2), Kruppel-like factor 4 (KLF4), and C-MYC, and cultured with 
basic fibroblast growth factor (bFGF) supplementation. To characterize the putative porcine iPSCs 
three clonal lineages were submitted to immunocytochemistry for alkaline phosphatase (AP), 
OCT4, SOX2, NANOG, TRA1 81 and SSEA 1 detection. Endogenous transcripts related to the plu-
ripotency (OCT4, SOX2 and NANOG) were analyzed via reverse transcription quantitative real-
time polymerase chain reaction in different time points during the culture, and all three lineages 
formed embryoid bodies (EBs) when cultured in suspension without bFGF supplementation.

RESULTS 
The UDCs were isolated from swine urine samples and when at passage 2 submitted to in vitro 
reprogramming. Colonies of putative iPSCs were obtained only from UDCs transduced with the 
murine factors (mOSKM), but not from human factors (hOSKM). Three clonal lineages were 
isolated and further cultured for at least 28 passages, all the lineages were positive for AP 
detection, the OCT4, SOX2, NANOG markers, albeit the immunocytochemical analysis also 
revealed heterogeneous phenotypic profiles among lineages and passages for NANOG and 
SSEA1, similar results were observed in the abundance of the endogenous transcripts related to 
pluripotent state. All the clonal lineages when cultured in suspension without bFGF were able to 
form EBs expressing ectoderm and mesoderm layers transcripts.

CONCLUSION 
For the first time UDCs were isolated in the swine model and reprogrammed into a pluripotent-
like state, enabling new numerous applications in both human or veterinary regenerative 
medicine.

Key Words: Induced pluripotent stem cells; Noninvasive; Pluripotency; Reprogramming; Urine; Porcine

©The Author(s) 2022. Published by Baishideng Publishing Group Inc. All rights reserved.

Core Tip: The porcine induced pluripotent stem cells (piPSCs) derived from urine derived cells (UDCs) 
may facilitate their routine and large-scale use by avoiding injury or stress during collection for autologous 
purposes. However, the precise reprogramming process and characterization is not fully elucidated in 
other species than murine or human. The generation of piPSCs from UDCs can contribute as a biomedical 
model for regenerative and translational medicine, as well as for animal production and to elucidate the 
reprogramming process in porcine, a large animal model.

Citation: Recchia K, Machado LS, Botigelli RC, Pieri NCG, Barbosa G, de Castro RVG, Marques MG, Pessôa 
LVF, Fantinato Neto P, Meirelles FV, Souza AF, Martins SMMK, Bressan FF. In vitro induced pluripotency from 
urine-derived cells in porcine. World J Stem Cells 2022; 14(3): 231-244
URL: https://www.wjgnet.com/1948-0210/full/v14/i3/231.htm
DOI: https://dx.doi.org/10.4252/wjsc.v14.i3.231

INTRODUCTION
The generation of pluripotent cells in vitro has been reported in numerous studies; however, pluripotent 
cell generation protocols and their characterization are not as robust in animal models as they are in 
humans and mice. The generation of induced pluripotent stem cells (iPSCs), unlike embryonic stem 
cells, creates the possibility of autologous therapies and circumvents ethical barriers. iPSCs applications 
range from basic to applied research, for example, from regenerative medicine to the enhancement of 
animal production to generate functional gametes or even iPSCs-derived embryos[1-3]. For wild and 
domestic animal models, the establishment of pluripotent cells and their maintenance in vitro may 
enable diverse translational, clinical and reproductive applications. A robust approach, along with a 
well-known understanding of the pluripotency pathways for each species, is still to be reported, as 
previously discussed and reviewed[4-6].

The reprogramming of porcine cells into a pluripotent state can significantly contribute not only to 
applications in veterinary medicine and animal production, but also, the porcine as a large biomedical 
model is greatly acknowledged for their physiological and immunological similarities to humans, being 
suitable to preclinical and translational studies, in special when compared to the murine model[3,5,7-

https://www.wjgnet.com/1948-0210/full/v14/i3/231.htm
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11]. Cells used for the in vitro reprogramming into iPSCs are mostly from invasive collection procedures, 
such as from embryos and interrupted gestations (embryonic and foetal cells), or biopsies (adult 
fibroblasts and mesenchymal cells)[1,12,13]. The derivation of cultured cells from embryos or foetuses 
impedes their development, and consequently is considered an unethical practice in humans. The 
isolation of adult fibroblasts and other tissue-derived cells through biopsies is usual, especially when 
autologous therapies or in vitro modelling of specific genomes is needed. Biopsies, however, usually 
demand minimally invasive procedures performed by health professionals. Post procedure care may 
lead to complications such as scars, inflammation, and infection. In particular, the ability of iPSCs to 
model in vitro syndromes or diseases from patients with affected cognitive, neurological, and muscular-
skeletal functions may be impaired by such procedures, often requiring special attention and ethics 
approval. Therefore, using cells from a noninvasive source for the generation of iPSCs would facilitate 
their use in regenerative and translational human or veterinary medicine, aiming for its large scale use 
without resulting in injuries or stress[14,15].

Urine-derived cells (UDCs) have been recently reported in humans, and the in vitro modelling of 
diseases using these cells or iPSCs derived from them is increasingly being explored[16,17]. Studies on 
the in vitro differentiation of human UDCs into cardiomyocytes[16] and hepatocyte-like cells[18], the 
generation of patient-specific iPSC lineages for multiple sclerosis[19], X-linked retinoschisis[20], heart 
failure[21], phenylketonuria[22], glaucoma[23], and retinitis pigmentosa[24], and recently, the 
derivation of iPSCs from UDCs in nonhuman primates[25] reinforce the importance of this recent in 
vitro modelling tool.

Noninvasive cell isolation in domestic animals has also been recently reported from milk[26], an 
exclusive female possibility, and from urine in the rabbit and canine models[27,28]; however, no 
pluripotent cells have been derived from these models aiming at its use in regenerative medicine so far. 
In this context, porcine are nonprimate large animals widely known to present physiological and 
immunological similarities with humans, as well as they are considered an important species for animal 
production, with standardized management with pathogen-free conditions[29,30], and consequently, 
their use as a biomedical model is advantageous compared to nonhuman primates. The fully 
reprogramming, consistent and robust characterization of porcine iPSCs (piPSCs) are not frequently 
reported; however, in vitro differentiation of these cells into other cell types, and importantly, the 
generation of chimeras has been presented and discussed, endorsing their use for in vitro disease 
modeling or even for cell therapy[14,18,19,31,32].

Herein, we describe urine collection, cellular isolation, and in vitro reprogramming of a noninvasive 
cell source used for iPSC generation in a large domestic animal, the porcine model. Three clonal lineages 
were evaluated throughout the passages. Porcine iPSCs derived from UDCs are important not only for 
agricultural traits, for example, for enabling the in vitro generation of gametes and embryos and 
contributing to future genetic improvement, but also as an excellent platform for the in vitro and in vivo 
modelling of several diseases.

MATERIALS AND METHODS
All procedures were performed following the National Council for Control of Animal Experimentation 
(CONCEA) rules and were approved by the Ethics Committee on Animal Experimentation of the 
Faculty of Animal Science and Food Engineering and Faculty of Veterinary Medicine and Animal 
Sciences, University of São Paulo (protocols 6372070119 and 7051150717).

Urine collection, UDC isolation, and culture
Swine urine samples (approximately 250 mL) were collected from three females at reproductive age (2 
year) after spontaneous urination. The samples were identified as UDC1, UDC2, and UDC3, and 
processed following the protocol previously described for human samples[33]. Briefly, the urine was 
aliquoted into conical tubes and centrifuged at 400 × g and 25 °C for 10 min; the supernatant was 
removed, leaving approximately 1 mL in each tube, washed with 45 mL of D-polybutylene succinate 
(PBS) (Life Technologies) containing 1% penicillin/streptomycin (Life Technologies), and centrifuged at 
200 × g and 25 °C for 10 min. The supernatant was discarded, and the pellet was resuspended in 12 mL 
of previously prepared medium containing 22.5 mL DMEM high glucose (Life Technologies), 2.5 mL 
FBS (HyClone), 0.25 mL penicillin/streptomycin (Life Technologies), 0.25 mL 100 × GlutaMAX 
supplement (Life Technologies), 0.25 mL 100 × nonessential amino acid solution (Life Technologies), 25 
mL REBM medium (Renal Epithelial Basal Medium, Lonza) and REGM supplements: 5 μL/mL FBS, 
hEGF, insulin, hydrocortisone, GA-1000, transferrin, triiodothyronine, epinephrine (all 0.5 μL/mL, 
Lonza), and basic fibroblast growth factor (bFGF) (2.5 ng/mL, PeproTech).

Cells were plated onto 0.1% gelatine (Sigma-Aldrich)-coated 24-well plates. The medium was 
replaced at D3 (3rd day after plating) and then partially refreshed every day. The UDC1 cell lineage was 
further used in the cellular reprogramming protocol, and clonal iPSC lineages were used for statistical 
analyses.
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In vitro induced reprogramming of porcine UDCs
In vitro reprogramming was performed by transducing UDCs with polycistronic lentiviral vectors 
harboring either murine or human transcription factors OCT4, SOX2, KLF-4 and C-MYC (mOSKM or 
hOSKM, STEMCCA, Millipore), as previously reported[34,35]. Briefly, for the production of lentiviral 
particles, the lipofection protocol (Lipofectamine 3000, Life Technologies) was performed using OSKM 
and auxiliary vectors TAT, REV, Hgpm2, VSVG, in 293 FT cells (Life Technologies) as previously 
described. UDCs, at a concentration of 2 × 104 per well, were transduced with viral particles and 
incubated overnight at 38.5 °C, 5% CO2, and maximum humidity for 12-16 h, when media were 
refreshed.

After 5-6 d, the transduced cells were replaced onto a 6-well plate coated with a monolayer of 
mitomycin C (M4287 Sigma-Aldrich)-inactivated MEFs and cultured in iPSC medium composed of 
DMEM/F12 knockout medium supplemented with 20% KSR, 1% glutamine, 3.85 μM β-mercapto-
ethanol, 1% nonessential amino acids, 1% penicillin/streptomycin (all from Life Technologies), and 10 
ng/mL bFGF (PeproTech) and incubated at 38.5 °C, 5% CO2 and maximum humidity. After approx-
imately 1 wk, colonies were manually picked at the first passage, and further on, clonal lineages 
(putative iPSCs, or iPSC-like cells) were dissociated for passaging (TrypLe Express, Life Technologies). 
Three clonal lineages (C1, C2, and C3) were further analysed throughout passaging. Cryopreservation 
(10% DMSO), and therefore a freeze-and-thaw cycle, was performed at approximately passage 18 and 
again at approximately passage 30.

Reprogramming efficiency and alkaline phosphatase detection
The reprogramming efficiency was assessed by analysing the ratio of morphologically typical and 
alkaline phosphatase (AP)-positive iPSCs colonies per the number of transduced cells initially plated (2 
× 104 cells per well of a 6-well plate). The AP detection protocol was performed using the Alkaline 
Phosphatase Detection Kit (86R, Sigma-Aldrich) according to the manufacturer’s instructions.

Immunocytochemistry
Immunocytochemistry was used to detect OCT4, SOX2, NANOG, SSEA1, and TRA1 81 in two different 
passage windows for the three lineages: p16, p15, and p9 for C1, C2, and C3, respectively, and again 
after p20 (p23, p22, and p22, respectively). The cultured putative piPSCs were fixed in paraformal-
dehyde for 10 min and washed in PBS. The pluripotency-related markers test was performed as 
previously described[36]. Briefly, the antibodies were used to detect OCT4 (1:100, cat# SC8628, Santa 
Cruz), SOX2 (1:500, cat# ab97959; Abcam), NANOG (1:100, cat# ab77095, Abcam), SSEA1 (1:50, cat# 
MAB4301, Millipore) and TRA1 81 (1:50, cat# MAB4381, Millipore), and the respective secondary 
antibodies were used (donkey anti-goat 594, cat# A11058, donkey anti-rabbit 488, A21206, 1:500, donkey 
anti-goat 488, cat# A11055, Invitrogen, 1:500 goat anti-mouse 594, cat# A21044, Invitrogen). When 
necessary, the cells underwent permeabilization and blocking following previously described methods
[37]. At the end of each protocol, the cell nuclei were labelled with Hoechst 33342 (1:1000) and analysed 
using the EVOS™ photodocumentation system.

Analysis of endogenous OCT4, SOX2, and NANOG transcripts
RNA extraction and reverse transcription: The specific expression of endogenous factors OCT4, SOX2, 
NANOG, and exogenous reprogramming factors (mOSKM) was evaluated in UDCs and reprogrammed 
cells. Additionally, porcine embryos were collected on day 5 after insemination and cultured in vitro for 
24 h to obtain blastocysts[38]. A pool of 20 porcine blastocysts was used as a positive technical control 
for pluripotency-related gene expression.

UDCs and iPSCs were recovered from culture plates and centrifuged in microtubes. The pellets were 
resuspended in linear acrylamide (0.05 mg/mL, Ambion) and UltraPure™ DNase/RNase-Free Distilled 
Water (Invitrogen), and RNA was extracted using TRIzol Reagent (Invitrogen) following the 
manufacturer’s instructions. The RNA samples were analyzed regarding quantity and quality using a 
spectrophotometer (Nanodrop 2000). Reverse transcription of the extracted RNA was performed using 
the commercial High-Capacity cDNA Reverse Transcription Kit (QIAGEN) according to the 
manufacturer’s instructions.

Gene expression quantification: The three reprogrammed clonal lineages (C1, C2, and C3) were 
analysed for the expression of the endogenous factors OCT4, SOX2, and NANOG as well as exogenous 
reprogramming factors (mOSKM) at different time points of in vitro culture: Early passages (EP: 15 to 
18), intermediate passages (IP: 20 to 24), and late passages (LP: 29 to 32). To quantitatively evaluate 
expression, primers were designed using Primer-BLAST software (NCBI) with GenBank sequences 
(Supplementary Table 1). Polymerase chain reaction (PCR) products were sequenced for specificity 
analysis. The reference genes were glyceraldehyde-3-phosphate dehydrogenase (GAPDH) and beta-
actin 3 (β-ACTIN-3) and normalization was performed based on their geometric means. The primers for 
endogenous pluripotency gene expression were designed to detect porcine and not murine transcripts, 
whereas exogenous expression was detected using the mOSKM primers.

https://f6publishing.blob.core.windows.net/5fd2098d-b03d-407d-8a59-eb7ee2bd1d45/WJSC-14-231-supplementary-material.pdf
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Relative expression of candidate genes was quantified by SYBR Green PCR Master Mix (Life Techno-
logies) using the QuantStudio 5 PCR System (Thermo Fisher). Cycling conditions for amplification were 
95 °C for 15 min; 40 cycles of 95 °C for 15 s, 60 °C for 5 s, and 72 °C for 30 s; and 72 °C for 2 min; the 
melting curve was analysed up to 90 cycles starting at 50 °C with a 0.5 °C increase. The three clonal 
lineages were considered biological triplicates when compared to UDCs, whereas different passages 
from the same lineage were considered biological triplicates when these were compared, and all 
reactions were performed in technical duplicates. The relative gene abundance was performed by 2ΔCT

[39].

Embryoid body assay
The piPSCs from the three lineages at passages 15-16 and also at passages 24-25 were replated into a 6-
well plate previously treated with 0.6% agarose and cultured in bFGF-free iPSC medium for 48 to 60 h. 
The embryoid bodies (EBs) were collected and centrifuged at 900 × g for 5 min, and RNA extraction was 
performed as described before. Reverse transcription was performed using the commercial High-
Capacity cDNA Reverse Transcription Kit (Qiagen) according to the manufacturer’s instructions to 
evaluate the expression of endodermal (AFP), mesodermal (VIMENTIN and BMP4), and ectodermal (β-
TUBULIN III) genes by reverse transcription quantitative real-time PCR (RT-qPCR), as described before 
(Supplementary Table 1).

Statistical analysis
Data obtained from the experimental procedures were analyzed using the statistical program Statistical 
Analysis System (SAS University Edition), with previous verification of the normality of the residues by 
the Shapiro-Wilk test (PROC UNIVARIATE). The variables that did not meet the statistical assumptions 
were submitted to a logarithmic transformation [Log (X + 1)]. The original or transformed data, when 
necessary, were submitted to analysis of variance. When significant with the variance analysis, the data 
related to the different cell lineages were submitted to the Bonferroni test. A significance level of 5% was 
considered for all statistical analyses.

RESULTS
UDC isolation and culture
Cells isolated from urine first appeared resembling epithelial-like colonies at 3 to 5 d post isolation and 
then acquired fibroblastic morphology after passaging (Figure 1).

In vitro induced reprogramming of porcine UDCs
Cellular reprogramming was performed using murine (mOSKM) or human (hOSKM) polycistronic 
lentiviral vectors. The transduced cells were evaluated for morphological alterations, and twelve days 
after transduction, typical colonies were observed and tested for AP presence.

Reprogramming efficiency was assessed by analysing the ratio of typical AP-positive iPSC colonies 
per number of cells initially plated for transduction (Figure 2 and Supplementary Table 2). Repro-
gramming with the hOSKM vector presented an initial efficiency of 2.46%; however, the cells did not 
maintain typical colonies after passage 5 under our culture conditions (cells underwent spontaneous 
differentiation). Hence, experimentation with hOSKM-derived iPSCs was discontinued. mOSKM 
presented 3.37% initial reprogramming efficiency, and colonies isolated and further characterized herein 
maintained a typical morphology and AP expression pattern (Figure 2).

Eight colonies were chosen, manually picked, and replated onto new MEFs to obtain clonal lineages. 
Three clonal lineages designated as C1, C2, and C3 were remained in the culture at least 28 passages and 
were positive for AP, however, C2 colonies spontaneously differentiated after 28 passages, and the 
colonies C1 and C3 were further remained in culture for at least 30 passages.

Immunocytochemistry
The clonal lineages were tested in two distinct passaging windows: Between p9 and p16 (p16, p15, and 
p9, respectively, for C1, C2 and C3) and after p20 (p23, p22, and p22, respectively), enabling analysis 
among colonies and between culture periods. Cell lineages at p9-16 were positive for OCT4, SOX2, and 
NANOG and generally negative for SSEA1 and TRA1 81. The C3 (p9) clonal lineage presented some 
cells positive for SSEA1 and TRA1 81 (Figure 3 and Supplementary Table 3).

In passages > p20, detection of OCT4 and SOX2 was observed, and some cells were also positive for 
SSEA1. C1 and C2 were negative for NANOG and TRA1 81; however, C3 cells presented mild positivity 
for both NANOG and TRA1 81 (Figure 3). The results are summarized in Supplementary Table 3.

RT-qPCR analysis
As expected, mOSKM was not amplified in UDCs or blastocysts; and endogenous genes were expressed 
in blastocysts (Figure 4). Then, reprogrammed lineages were compared to each other and the analysis of 

https://f6publishing.blob.core.windows.net/5fd2098d-b03d-407d-8a59-eb7ee2bd1d45/WJSC-14-231-supplementary-material.pdf
https://f6publishing.blob.core.windows.net/5fd2098d-b03d-407d-8a59-eb7ee2bd1d45/WJSC-14-231-supplementary-material.pdf
https://f6publishing.blob.core.windows.net/5fd2098d-b03d-407d-8a59-eb7ee2bd1d45/WJSC-14-231-supplementary-material.pdf
https://f6publishing.blob.core.windows.net/5fd2098d-b03d-407d-8a59-eb7ee2bd1d45/WJSC-14-231-supplementary-material.pdf
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Figure 1 Porcine urine-derived cells at passage 4. After single-cell dissociation, the cells present a fibroblastic morphology but compact cell culture. Scale 
bar = 400 μM.

Figure 2 Urine-derived cells reprogrammed with hOSKM and mOSKM. A and B: Urine-derived cells (UDCs) reprogrammed with hOSKM, scale bar: 400 
μM; C, D, and E: UDCs reprogrammed with mOSKM: C1, scale bar: 400 μM; F: UDCs reprogrammed with mOSKM: C2, scale bar: 400 μM; G: UDCs reprogrammed 
with mOSKM: C2, scale bar: 200 μM; H: UDCs reprogrammed with mOSKM: C2, scale bar: 400 μM; I, J and K: UDCs reprogrammed with mOSKM: C3, scale bar: 
400 μM. Colonies are flat, with well-defined edges and tightly packed cells in the centre. UDC: Urine-derived cell; iPSCs: Induced pluripotent stem cells.

the expression of endogenous OCT4, SOX2, NANOG, and mOSKM in the different lineages (C1, C2, and 
C3) revealed that exogenous reprogramming factors were still detected in later passages of iPSCLCs. C3 
showed higher expression of the exogenous vector (P < 0.0001) and lower expression of SOX2 than 
lineage C1 (P = 0.0099). OCT4 and NANOG expression did not differ among lineages (Figure 5 and 
Supplementary Table 4).

The analysis of the effect of time in culture (passaging) of the endogenous gene expression in UDCs 
and the iPSCLCs different groups (EP: 15 to 18; IP: 20 to 24; and LP: 29 to 32) revealed that IP and LP 
presented higher expression of SOX2, augmenting during culture period; and OCT4 levels were 
detected in all periods, differing from UDCs. The expression of the exogenous vector did not differ 
among passages. NANOG expression, however, decreased in intermediate passages, possibly due to a 
freeze-thaw cycle between EP and IP in vitro. At LP, NANOG was again slightly increased. The LP 
group of the C2 Lineage was not shown once these cells underwent spontaneous differentiation at 
passage 28 (Supplementary Table 5 and Figure 6).

https://f6publishing.blob.core.windows.net/5fd2098d-b03d-407d-8a59-eb7ee2bd1d45/WJSC-14-231-supplementary-material.pdf
https://f6publishing.blob.core.windows.net/5fd2098d-b03d-407d-8a59-eb7ee2bd1d45/WJSC-14-231-supplementary-material.pdf
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Figure 3 Immunofluorescence for SOX2, octamer-binding transcription factor 4 (OCT4), NANOG, SSEA1, and TRA1 81 detection in C1, 
C2, and C3 at different passages. Cell lines at p9-16 were positive for OCT4, SOX2, and NANOG and negative for SSEA1 and TRA1 81. C3 presented some 
cells positive for SSEA1 and TRA1 81. At later passages, OCT4 and SOX2 were observed, and some cells also presented SSEA1. C1 and C2 were negative for 
NANOG and TRA1 81, while C3 presented a mildly positive detection for both. UDC: Urine-derived cell; iPSCs: Induced pluripotent stem cells.

Figure 4 Analysis of the expression of endogenous factors octamer-binding transcription factor 4 (OCT4), SOX2, NANOG, and 
exogenous OSKM between urine-derived cell and induced pluripotent stem cells. aP < 0.05 between urine-derived cells (UDCs) and induced 
pluripotent stem cells (iPSCs). **Represents gene expression analysis of a pool of D6 porcine blastocysts, which did not integrate statistical analyses. Both 
endogenous and exogenous reprogramming factors were detected on iPSCs but not on UDCs, and porcine blastocysts presented endogenous pluripotency-related 
gene expression only. UDC: Urine-derived cell; iPSCs: Induced pluripotent stem cells.

Figure 5 Analysis of the expression of endogenous factors octamer-binding transcription factor 4 (OCT4), SOX2, NANOG, and 
exogenous OSKM in the different lineages (C1, C2, and C3) of induced pluripotent stem cells. Exogenous reprogramming factors were still 
detected in later passages. Superscript letters represent differences (P < 0.05) between groups. aRepresents higher relative mRNA abundance, brepresents lower 
relative mRNA abundance when compared to a, and crepresents lower relative mRNA abundance when compared to b. UDC: Urine-derived cell.
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Figure 6 Analysis of endogenous gene expression in urine-derived cell s and the different groups (early passages, intermediate 
passages, and late passages) of induced pluripotent stem cells. Exogenous reprogramming factors were still detected in later passages. Superscript 
letters represent differences (P < 0.05) between groups. aRepresents higher relative mRNA abundance, brepresents lower relative mRNA abundance when compared 
to a, and crepresents lower relative mRNA abundance when compared to b. EP: Early passages; IP: Intermediate passages; LP: Late passages; UDC: Urine-derived 
cell.

Embryoid body assay 
All clonal lineages were replated as single cells onto a nonadherent plate without bFGF supple-
mentation, and these cells formed EBs with typical morphology at different passages (Figure 7). The 
expression of VIMENTIN, BMP4 and β-TUBULIN-III was detected in the EBs (Figure 8), and AFP was 
not detected in our conditions (data not shown).

DISCUSSION
Herein, cells derived from urine sample (UDCs) were in vitro reprogrammed in a large domestic animal 
model, the swine. Previous studies on porcine have mostly derived iPSCs from foetal or adult 
fibroblasts, and fewer with multipotent adult cells[1]. UDC-derived piPSCs are highly advantageous for 
veterinary and regenerative medicine due to the simple collection procedure, avoiding stress or injuries, 
and in addition, is an inexpensive procedure unlike surgeries aiming biopsies, also important for the 
feasibility of large-scale sample collection[14,15,17,27,40].

Raab et al[40] reported a higher reprogramming efficiency of human UDCs when compared with 
other somatic cell types. Indeed, several studies have reported cell heterogeneity from urine-derive cells 
in human, including renal tubular cells[41], urine-stem cells (renal progenitor cells)[42], and urine-
derived epithelial cells[16]. It is already known the cells’ origin can influence the reprogramming 
process, and a more complete characterization and sorting for each cell type prior to reprogramming 
may be essential to understand the contribution of each cell population to the generation of iPSCs[35,
43].

In recent years, it has been showed by several reports the establishment of pluripotency, or at least a 
state similar to embryonic pluripotency, in several species other than human and mice, and although the 
main molecular mechanisms involved in pluripotency acquisition in vitro are considered rather 
conserved between species, there are notable differences between species turning the generation of 
bonafide iPSCs challenging, however still extremely promising.

Indeed, the same human/mouse protocols for iPSCs generation are not extendable to other species[1,
3]. Herein we used a previous strategy already reported for large animals reprogramming[34-36,43-45], 
and widely used to reprogram porcine somatic cells[1]. In the conditions described, the results showed 
that UDCs transduced with human factors failed to be maintained in culture for more than 5 passages 
due to early differentiation of the cells cultured in vitro, and similar results was described by Pieri et al
[36] when reprogramming of porcine foetal fibroblasts. Conversely, cells transduced with murine 
factors were maintained in culture for at least 28 passages, showing typical morphology, positive AP 
detection and endogenous pluripotency-related gene expression through the different passages. Next 
steps to improve in vitro reprogramming must consider possible epigenetic modulation or even the 
identification of species-specific pluripotency pathways to improve the nonintegrative reprogramming.

Lineages at p9-16 were positive for SSEA1 and weakly positive for NANOG. These results correlate 
with a decrease in NANOG expression at IPs, and it might be an effect associated with the freeze-and-
thaw process, which was performed in the lineages between EP and IP in this study. Interestingly, the 
abundance of NANOG transcription increased between the IP and LP. Li et al[12] reported that the 
staining for NANOG, SOX2 and OCT4, increased at passage 20 when compared to p10, indicating a 
stabilization of the pluripotency phenotype of intermediate type piPSCs. In addition, an elegant 
discussion was provided by Yamanaka[46] on the heterogeneous profile of each iPSCs lineage, leading 
to different phenotypes. Furthermore, in our conditions, we infer that a longer time in culture without 
the freeze-and-thaw process may lead to better reprogramming, as observed by the late acquisition of 
the SSEA1+ phenotype, a reported marker for human naïve stem cells[47].
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Figure 7 All three clonal induced pluripotent stem cell lineages formed embryoid bodies with typical 3D morphology. A: Embryoid bodies 
(EBs) from induced pluripotent stem cells (iPSCs) at passages 15-16 (scale bar = 400 μM); B: EBs from iPSCs at passages 24-15 (scale bar = 400 μM-200 μM). EBs: 
Embryoid bodies; UDC: Urine-derived cell; iPSCs: Induced pluripotent stem cells.

Figure 8 Relative mRNA abundance of urine-derived cells and embryoid bodies derived from the three porcine induced pluripotent stem 
cells lines showing VIMENTIN, BMP4 and β-TUBULIN-III detection. Embryoid bodies were analysed when porcine induced pluripotent stem cells were at 
p15-16 and again at p24-25. UDC: Urine-derived cell.

All lineages formed EBs that expressed VIMENTIN, BMP4 and b-TUBULIN-III, known markers of 
mesodermal and ectodermal lineages, respectively. However, none of the EBs presented AFP 
transcripts, a marker of the endodermal lineage. Rodríguez et al[41] has shown that EBs differentiated 
from piPSCs cultured in different conditions have shown mesoderm, endoderm and ectoderm markers 
after 15 d of undirected differentiation, and moreover, some markers not or mildly found at D15, were 
shown after D30 of differentiation[41]. Hence, further markers and other periods during spontaneous 
differentiation should be tested for complete characterization and discussion.

Overall, the results presented describe novel ways to derive in vitro reprogrammed cells in an 
important biomedical model, the porcine model. The isolation of UDCs is also relevant for other 
reproductive technologies, for example, for the conservation of many mammal species through nuclear 
reprogramming, or even to produce in vitro viable gametes, which could decrease the interval between 
generations for the acquisition of a genetically superior herd. Although the scenario of complete and 
robust in vitro cellular reprogramming is still under discussion in the porcine model; the advances 
described herein, in our conditions, are valuable for both translational studies and animal production, 
hence these putative piPSCs can be used to enable future autologous therapies, to the creation of gene-
edited or not in vitro and in vivo biomedical models, to the study of the mechanism of cell differen-
tiation, and also to future generation of gamete- or embryos-derived from iPSCs, contributing to the 
conservation and propagation of genetic material.
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CONCLUSION
The results presented herein report, for the first time, the isolation and reprogramming of cells derived 
through the noninvasive collection of urine in a porcine model. Under our conditions, three putative 
iPSC lineages generated with murine OSKM presented typical morphology, AP and endogenous 
pluripotency-related gene expression, which was analyzed in three different passaging periods of the in 
vitro culture, and two lineages were maintained in vitro for more than 28 passages. Further studies on 
pluripotency induction in domestic animals are still needed to thoroughly understand and achieve full 
reprogramming, including more complete molecular profiles during in vitro and in vivo reprogramming 
processes, representing a novel tool for biomedical models of regenerative and translational medicine 
and animal production improvement.

ARTICLE HIGHLIGHTS
Research background
Induced pluripotent stem cells (iPSCs) derived from large animal models can greatly contribute to 
translational medicine and also to animal production, although robust and safe protocols are still 
uncommon. Cellular reprogramming of urine derived cells presents great advantages for iPSCs use in 
regenerative medicine due to the easy collection, injury and stress free, and is herein described for the 
first time in large animals.

Research motivation
The porcine iPSCs generation is promising for both translational medicine and animal production; and 
iPSCs derived from a noninvasive cell source would greatly contribute to its large-scale use, especially 
for in vivo autologous purposes using large animal models.

Research objectives
Isolate cells from porcine urine and generate iPSCs through their transduction with Yamanaka’s human 
or murine factors.

Research methods
We isolated urine-derived cells (UDCs), which were reprogrammed in vitro into pluripotent cells. The 
porcine induced pluripotent cells generated were investigated regarding morphology, markers and 
endogenous transcripts related to the pluripotency.

Research results
From the porcine urine samples we isolated the UDCs, and colonies were formed when murine factors 
were used in the reprogramming. Endogenous pluripotent markers were detected in all three isolated 
lineages, in different time points during in vitro culture, and were able to differentiate into embryoid 
bodies (EBs) with mesoderm and ectoderm transcripts.

Research conclusions
In an unprecedented way, UDCs were isolated from noninvasive collection and reprogrammed into a 
pluripotent state using murine factors, the cells formed colonies presenting the expected characteristics, 
such as colonies with limited borders, transcripts and markers related to the pluripotency, and ability to 
differentiate into EBs.

Research perspectives
As we reported here, iPSCs can be derived from an easy collection and noninvasive source in the 
porcine model, and with our methodology represents a novel tool for iPSCs production in large animals 
and biomedical models of regenerative or translational medicine.
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Abstract
BACKGROUND 
Bone marrow (BM) suppression is one of the most common side effects of 
radiotherapy and the primary cause of death following exposure to irradiation. 
Despite concerted efforts, there is no definitive treatment method available. 
Recent studies have reported using mesenchymal stromal cells (MSCs), but their 
therapeutic effects are contested.

AIM 
We administered and examined the effects of various amounts of adipose-derived 
MSCs (ADSCs) in mice with radiation-induced BM suppression.

METHODS 
Mice were divided into three groups: Normal control group, irradiated (RT) 
group, and stem cell-treated group following whole-body irradiation (WBI). 
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Mouse ADSCs (mADSCs) were transplanted into the peritoneal cavity either once or three times at 
5 × 105 cells/200 μL. The white blood cell count and the levels of, plasma cytokines, BM mRNA, 
and BM surface markers were compared between the three groups. Human BM-derived CD34+ 
hematopoietic progenitor cells were co-cultured with human ADSCs (hADSCs) or incubated in the 
presence of hADSCs conditioned media to investigate the effect on human cells in vitro.

RESULTS 
The survival rate of mice that received one transplant of mADSCs was higher than that of mice 
that received three transplants. Multiple transplantations of ADSCs delayed the repopulation of 
BM hematopoietic stem cells. Anti-inflammatory effects and M2 polarization by intraperitoneal 
ADSCs might suppress erythropoiesis and induce myelopoiesis in sub-lethally RT mice.

CONCLUSION 
The results suggested that an optimal amount of MSCs could improve survival rates post-WBI.

Key Words: Adipose tissue-derived stem cells; Bone marrow suppression; Mesenchymal stromal cells; 
Radiation; Cell therapy

©The Author(s) 2022. Published by Baishideng Publishing Group Inc. All rights reserved.

Core Tip: Bone marrow (BM) suppression is one of the most common side effects of radiotherapy and the 
primary cause of death following exposure to irradiation. Although adipose tissue-derived stromal cell 
transplantation has emerged as a new treatment for BM suppression, the therapeutic effects are not proven 
conclusively. Our study showed that multiple transplantations of the adipose-derived mesenchymal 
stromal cells (ADSCs) delayed repopulation of BM hematopoietic stem cells. The administration of an 
optimal amount of ADSCs can improve survival rates following whole-body irradiation.

Citation: Kim MJ, Moon W, Heo J, Lim S, Lee SH, Jeong JY, Lee SJ. Optimization of adipose tissue-derived 
mesenchymal stromal cells transplantation for bone marrow repopulation following irradiation. World J Stem Cells 
2022; 14(3): 245-263
URL: https://www.wjgnet.com/1948-0210/full/v14/i3/245.htm
DOI: https://dx.doi.org/10.4252/wjsc.v14.i3.245

INTRODUCTION
Acute exposure to high doses of ionizing radiation (IR) can lead to acute radiation syndrome (ARS), 
which affects the hematopoietic, gastrointestinal, and neurovascular systems[1,2]. Hematopoietic 
symptoms, particularly those induced by ARS, develop into severe neutropenia and thrombocytopenia, 
which eventually lead to bleeding, infection, and death[3]. The same clinical results are obtained when 
myeloablative therapy is performed in patients with conditions such as leukemia, lymphoma, and 
myeloma[4]. Although significant advances have been made in the development of safe, non-toxic, and 
effective radiation over the past six decades, no ARS drug has yet been approved by the United States 
Food and Drug Administration[5].

Bone marrow (BM) suppression is one of the most common side effects of radiotherapy and the 
primary cause of death post-exposure to a moderate or high dose of whole-body irradiation (WBI)[6]. 
The main therapeutic treatment is the administration of cytokines, such as granulocyte-colony 
stimulating factor (G-CSF), granulocyte-macrophage CSF (GM-CSF), and transplantation of 
hematopoietic stem cells (HSCs). Among these, G-CSF is a well-established and effective drug for the 
treatment of IR-induced acute BM suppression[7]. However, recent data have demonstrated that G-CSF 
could exhaust BM capacity during radiotherapy[8-10]. Currently, the modulation of the BM microenvir-
onment post-irradiation has emerged as a novel target for hematopoiesis reconstruction in patients with 
ARS[11,12].

Novel cytokine-based treatments have been proposed for accidentally irradiated (RT) victims, partic-
ularly to prevent the apoptosis of hematopoietic stem and progenitor cells (HSPCs)[13-16]. The concept 
of “emergency anti-apoptotic cytokine therapy” is based on the administration of a four-cytokine 
cocktail: Stem cell factor (SCF), FLT3-ligand, thrombopoietin (TPO), and interleukin (IL)-3, to mitigate 
the apoptosis of HSPCs and promote balanced differentiation[14]. MSCs can secrete a number of 
cytokines required for hematopoietic re-proliferation post-irradiation, including IL-6, IL-11, leukemia 
inhibitor factor, SCF, FLT3 ligand, and stromal cell-derived factor (SDF), and can potentially be used as 
therapeutic agents[17].
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https://dx.doi.org/10.4252/wjsc.v14.i3.245


Kim MJ et al. Optimization of MSCs for BM repopulation

WJSC https://www.wjgnet.com 247 March 26, 2022 Volume 14 Issue 3

BM-derived mesenchymal stem cells (BM-MSCs) are the major components of the hematopoietic 
microenvironment and play key roles in hematopoiesis. In pre-clinical studies, BM-MSCs have been 
shown to protect against radiation-induced liver injury[18], promote healing in RT murine skin wounds
[19], improve survival in RT mice[20], mitigate gastrointestinal syndrome in mice[21], and restore the 
intestinal mucosal barrier in RT mice[22]. Superoxide dismutase gene-transfected MSCs improved 
survival in RT mice[23]; however, several other reports using similar models showed that MSCs alone 
did not affect survival[19,20,24]. Thus, the effectiveness of MSCs in promoting the proliferation of the 
RT BM remains controversial and requires investigation of the exact mechanisms to achieve consistent 
results in the MSC-based treatment of radiation-induced damage.

Adipose-derived mesenchymal stromal cells (ADSCs) were first identified in 2001 by Zuk et al[25], as 
cells with multilineage differentiation characteristics. ADSCs are characterized as a type of adult stem 
cells, i.e., pluripotent cells with limited differentiation capacity. The International Fat Applied 
Technology Society defines any fat-derived pluripotent cell population capable of adherent, prolif-
erative, and differentiating capacity as an ADSC[26]. These ADSCs are able to differentiate into 
adipogenic, osteogenic, chondrogenic, myogenic, cardiac, and neuronal cells in vitro[27-29]. The 
plasticity and pluripotency of these ADSCs, as well as their clinically abundant and non-invasive 
harvestability, have enabled researchers to regenerate dead or damaged cells or organs.

ADSCs have been used in several studies to alleviate the side effects of radiation, particularly 
cicatricial changes in the salivary glands, liver, and skin[30-33]. A few studies have demonstrated that 
ADSCs can support hematopoiesis both in vitro and in vivo[34-36]. ADSCs injected into the BM cavity of 
RT mice promoted BM reconstitution by supporting the homing, proliferation, and differentiation of BM 
progenitors, especially those for megakaryocytes[35], granulocytes, and monocytes[34,36]. Unfortu-
nately, none of these studies examined the effect of ADSC transplantation on erythropoiesis, which is 
one of the most important aspects of hematopoiesis.

In the present study, we demonstrated that during BM repopulation post-WBI, mouse ADSC 
(mADSC) transplantation into the abdominal cavity delayed differentiation into red blood cells (RBCs) 
and accelerated the granulocyte/macrophage (GM) lineage differentiation and M2 macrophage 
polarization. Compared to low-dose, high-dose mADSC transplantation reduced survival rates. 
Therefore, the number of ADSCs for transplantation needs to be optimized to improve post-irradiation 
survival.

MATERIALS AND METHODS
Animal model
Male C57BL/6 mice (7-8-wk-old, weighing 21-23 g) were purchased from Central Laboratory Animals 
(Seoul, South Korea). The mice were kept under controlled conditions at a constant temperature (23.6 
°C) and a 12 h light/dark cycle. The mice were provided with regular chow and water ad libitum. All 
animal experiments were approved by the Institutional Animal Care and Use Committee of Kosin 
University College of Medicine, and the animals were maintained and treated according to the 
regulations of the Association for Research in Vision and Ophthalmology.

The mice were randomly divided into three groups (n = 10/group): Normal control (NC), RT, and 
stem cell-treated (ST). The mice were RT with a single dose of 900 cGy using therapeutic 6 MV photon 
beams from a linear accelerator (Clinac iX, Varian Medical Systems, Palo Alto, CA, United States). The 
irradiation dose was calculated using a treatment planning system (Eclipse v13.0, Varian Medical 
Systems). During irradiation, the mice were anesthetized for immobilization to ensure homogeneous 
delivery of the photon beams. After WBI, mice in the ST group were intraperitoneally injected with 
mADSCs [5 × 105 cells/200 μL phosphate buffer solution (PBS)] once (#1) on day 1 or three times (#3) on 
days 1, 5, and 12. The mice in the RT group were intraperitoneally injected with 200 μL PBS; those in the 
NC group were not RT. The animals were placed in sterile cages immediately after the experiments. All 
experiments were repeated three times. To assess survival, animals were monitored for four weeks post-
irradiation and subsequently euthanized using CO2.

Preparation of ADSCs
ADSCs were isolated as previously described, with some modifications[37]. Briefly, mouse adipose 
tissues were obtained from epididymal and dorsal subcutaneous fat layers; human adipose tissues were 
obtained from fat discarded during elective breast surgeries. All procedures using human adipose tissue 
were conducted with informed consent under the Kosin University Gospel Hospital IRB approval 
protocol (protocol number 09-36).

Raw adipose tissue was processed to obtain the stromal vascular fraction (SVF). To isolate SVF, 
adipose tissues were washed extensively with equal volumes of PBS (Lonza, Basel, Switzerland). The 
extracellular matrix was digested at 37 °C for 30 min with 0.075% type I collagenase (Worthington 
Biochemical Corporation, Lakewood, NJ, United States). Enzyme activity was neutralized with 
Dulbecco’s modified Eagle’s medium/nutrient mixture F-12 (DMEM/F-12; GibcoBRL, Grand Island, 
NY, United States) containing 10% fetal bovine serum (FBS; GE Healthcare, Little Chalfont, United 
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Kingdom) and centrifuged at 1200 × g for 10 min to obtain a high-density SVF pellet. The cell pellet was 
resuspended in DMEM/F-12 supplemented with 10% FBS; filtered through a 100 mm mesh to remove 
cellular debris; seeded in culture plates; and incubated overnight at 37 °C with 5% CO2 in DMEM/F-12 
medium containing 10% FBS, 1% penicillin/streptomycin solution (Gibco, MD, United States), 10 
ng/mL epidermal growth factor (Sigma-Aldrich, St. Louis, MO, United States), and 2 ng/mL basic 
fibroblast growth factor (bFGF) (Sigma-Aldrich). Following incubation, the plates were washed 
extensively with PBS to remove residual non-adherent RBCs. To prevent spontaneous differentiation, 
ADSCs were maintained at sub-confluent levels. Cells were subcultured with 0.05% trypsin and 1 
mmol/L ethylenediaminetetraacetic acid (EDTA); and passaged at a ratio of 1:4.

Multilineage differentiation assay of ADSCs
In vitro differentiation of ADSCs was performed as previously described[37]. Briefly, P3 ADSCs were 
trypsinized and seeded in 6-well plates at a density of 5 × 104 cells/well. The cells were divided into 
four groups, i.e., control, adipogenic, chondrogenic, and osteogenic, and were incubated for three weeks 
in control, adipogenic (A10070-01, Gibco), chondrogenic (A10071-01, Gibco), and osteogenic (A10072-01, 
Gibco) differentiation media, respectively. The hanging drop method was used for chondrogenic differ-
entiation[38]. In the adipogenic, chondrogenic, and osteogenic groups, the culture medium was replaced 
every 2 d and the cells were stained with Oil Red O (Sigma-Aldrich), Alcian Blue (Sigma-Aldrich), and 
Alizarin Red S (Sigma-Aldrich), respectively, to confirm differentiation.

Peripheral blood cell evaluation
Peripheral blood was drawn from the tail vein, streaked as thin smears across a sterile slide, and air-
dried. Peripheral blood was stained with Wright stain (Muto, Tokyo, Japan) for 2 min, rinsed with PBS, 
and dried before examination. The number of WBCs was counted in three random fields at 200 × 
magnification. Wright staining was performed once on the day before and twice per week post-WBI, 
until euthanasia.

For complete blood cell counting, blood was drawn from cardiac puncture using a 26-gauge needle 
syringe and collected in an EDTA-coated bottle (BD Biosciences, Franklin Lakes, NJ, United States). 
Total differential blood cell counts (WBCs, RBCs, and platelets) were obtained using a veterinary 
hematology analyzer (Hemavet 950; CDC Technologies, Oxford, CT, United States) at three weeks post-
irradiation.

Histology
Femurs were fixed in 10% formalin and decalcified in 5% nitric acid (Ducksan, Gwangju, Korea) for 2 h. 
The femurs were then embedded in paraffin wax and sectioned. The blocks were cut into 5-μm sections 
using a rotary microtome (Leica RM2235, Leica Biosystems, Germany). The slides were either stained 
with hematoxylin and eosin or processed for immunohistochemistry (IHC).

For IHC staining, paraffin-embedded sections were deparaffinized in xylene (Duksan, Ansan, Korea) 
and rehydrated using ethanol (Duksan) gradients and PBS. Paraffin slides were immersed in 1 × citrate 
buffer (pH 6.0; Sigma-Aldrich), heated for 2 min in a microwave oven, and rinsed three times with PBS. 
Next, the sections were blocked for 1 h with blocking buffer containing 0.5% goat serum (Sigma-
Aldrich) and 0.5% Tween-20 in PBS, and incubated overnight with primary antibodies (mouse anti-
PCNA [BD Biosciences, San Jose, CA, United States], rabbit anti-Iba-1 (Wako, Tokyo, Japan), and rabbit 
anti-CD34 (GeneTex, Irvine, CA, United States). After incubation, the sections were washed three times 
with PBS and incubated for 1 h at room temperature with secondary antibodies [goat anti-mouse Alexa 
Fluor™ 568 and 488 (Invitrogen, Carlsbad, CA, United States), goat anti-rabbit Alexa Fluor™ 568 and 
488 (Invitrogen)]. Next, the sections were stained with 4’,6-diamidino-2-phenylindole (DAPI, Sigma-
Aldrich), washed three times with PBS, mounted using 2-3 drops of a water-soluble mounting medium 
(Biomeda Crystal mount, Foster City, CA, United States), and then stored at 4 °C for immediate use or at 
-70 °C. Images were acquired using a fluorescence microscope (Nikon, Tokyo, Japan). Slides processed 
without the primary antibody were used as negative controls.

For cryosections, samples were fixed in 4% paraformaldehyde in 0.1 M phosphate buffer for 20 min, 
followed by three washes with 0.1 M phosphate buffer. The tissues were sequentially cryoprotected 
with 5%, 10%, and 15% sucrose for 1 h and 20% sucrose overnight. Next, the tissues were embedded 
using polyvinyl alcohol and a 2:1 ratio of polyethylene glycol-based optimal cutting temperature 
reagent (OCT; Tissue-Tek, Tokyo, Japan) and 20% sucrose. Serial sections of 10 μm were made using a 
cryostat and mounted on slides. Frozen sections were prepared by dissolving the OCT compound in a 
slide warmer (Chang Shin Science, Seoul, Korea). Immunostaining was performed after incubating the 
slides with cold 100% acetone for 10 min.

The numbers of CD34-, PCNA-, and Iba-1-positive cells were calculated as follows: For each group, 
three or more tissues stained with primary/secondary antibodies and DAPI were randomly selected, 
and their images captured at 400 × magnification. The number of positive cells in the merged images 
was counted using a preset area (190 μm × 170 μm). Immunostaining was considered positive if > 50% 
of the cells fluoresced, regardless of cell size. The percentage of positive cells was calculated as a 
proportion of the total DAPI-positive cells, multiplied by 100.
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Polymerase chain reaction
The mRNA expression levels in mouse BM or human BM CD34+ cells were evaluated using reverse 
transcription polymerase chain reaction (PCR). Total RNA was extracted with a TRIzol™ reagent 
(Invitrogen) or an RNAqueous™-4PCR kit (Ambion, Austin, TX, United States). Total RNA (1-3 μg) in a 
20 μL reaction volume was reverse-transcribed into cDNA using a TOPscript™ cDNA synthesis kit 
(Enzynomics, Daejeon, Korea). Reactions were performed in a 20 μL volume using SYBR® Premix Ex 
Taq™ II (Takara, Dalian, China) with 2 μL cDNA. The sequences of human PCR primers for IL-4, IL-10, 
IL-1β, tumor necrosis factor-α (TNF-α), CD68, CD80, CD206, and β-actin as well as mouse PCR primers 
for IL-1β, TNF-α, CD14, CD68, CD163, CD206, IL-10, M-CSF, GM-CSF, SDF-1, TPO, IL-7, and glyceral-
dehyde 3-phosphate dehydrogenase (GAPDH), are listed in Supplementary Table 1. Quantitative real-
time PCR was performed using an ABI PRISM 7300 sequence detection system (Applied Biosystems, 
Foster City, CA, United States) with thermal cycling consisting of denaturation for 10 s at 95 °C, 
followed by 40 cycles of 5 s at 95 °C, and 31 s at 60 °C. All values were normalized to GAPDH or β-actin 
and are presented as the average of three independent experiments.

For mouse BM samples, standard reverse transcription PCR was used for IL-1β, TNF-α, CD14, CD68, 
CD163, and CD206 primers. PCR was performed with TB Green™ Premix Ex Taq™ II (Takara) in a 20 
μL volume containing 2 μL of cDNA, 0.25 μM of primer, and 10 μL of 2 × PCR Master Mix, using the 
following conditions: 35 cycles of 15 s at 95 °C for denaturation and 30 s at 60 °C for primer annealing 
and extension. The PCR products were analyzed using agarose gel electrophoresis.

Flow cytometry
To characterize ADSCs, trypsinized cells were incubated with monoclonal antibodies conjugated to 
either fluorescein isothiocyanate (FITC) or phycoerythrin (PE) for 30 min at room temperature. The 
following antibodies were used for mouse cells: CD31 (Abcam, Cambridge, United Kingdom), CD34, 
CD105, CD73 (Bioss Antibodies, Woburn, MA, United States), CD45, and CD90 (BD Biosciences). The 
antibodies used for human cells were CD34, CD45, CD90, CD105 (Beckman Coulter, Brea, CA, United 
States), and CD73 (BD Pharmingen, San Diego, CA, United States). The cells were assessed using flow 
cytometry (BD Accuri C6 Plus Flow Cytometer) and the data were analyzed using the BD Accuri C6 
software (BD Biosciences).

The RT mice were euthanized with CO2. The BM was removed from the femurs and tibiae by flushing 
with 1 mL DMEM/F-12 media using a 27-gauge needle and resuspended in PBS containing 1% bovine 
serum albumin (Sigma-Aldrich). The BM cells were filtered using a 30 μm polyamide filter (Myltenyi 
Biotec, Auburn, CA, United States), and labeled with Sca-1-PE (BD Biosciences), c-Kit-FITC (CD117; 
MACS, Cambridge, United Kingdom), CD34-FITC (Bioss Antibodies), IL-3R-PE (Miltenyi Biotec, 
Bergisch Gladbach, Germany), IL-7R-PE (Miltenyi Biotec), CD45RA-PE (Miltenyi Biotec), CD80-PE 
(eBioscience, San Diego, CA, United States), and CD206-FITC (R&D Systems, Minneapolis, MN, United 
States) antibodies.

Human BM CD34+ stem cells were washed with PBS and labeled with CD34-PE, CD45-APC, CD15-
PE, CD71-FITC, and CD235a (Gly-A)-PE (Miltenyi Biotec) antibodies at 4 °C for 30 min after 7 d of 
culturing.

Cytokine microarray
To determine the plasma cytokine profiles of the mice in each treatment group, blood samples were 
collected in heparin tubes and centrifuged at 2000 × g for 20 min at 4 °C. The plasma was separated, 
kept on ice, and stored at -80 °C. Next, the plasma samples were incubated on a pre-coated Proteome 
Profiler array membrane (ARY006, Mouse Cytokine Antibody Array kit; R&D Systems) and processed 
according to the manufacturer’s instructions. Briefly, the array membranes were treated with blocking 
buffer for 1 h at room temperature on a rocking platform shaker. The blocking buffer was removed, and 
a mixture of plasma and antibody cocktail was added and incubated overnight at 2-8 °C. The incubated 
membranes were washed and incubated with streptavidin-horseradish peroxidase for 30 min at room 
temperature. After washing, the membranes were incubated with Chemi Reagent Mix and exposed to 
an X-ray film for 4-7 min. Densitometry analysis of dot blots was performed using the FluorChemHD2 
software (ProteinSimple, Santa Clara, CA, United States). The density of each sample was normalized to 
that of a reference spot. The cytokine levels in each sample were determined relative to the cytokine 
levels expressed in the plasma samples of the NC group. A hierarchical clustering algorithm was 
applied to measure the Euclidean distance for the similarity metric and average linkage clustering 
method using the Cluster 3.0 open-source software.

Co-culture of human CD34+ HSCs with human ADSCs
Frozen human BM CD34+ HSPCs were purchased from Lonza (Walkersville, MD, United States). 
According to flow cytometry analysis with anti-CD34-PE conjugates (Miltenyi Biotec), the purity of the 
CD34+ cells was consistently > 95%. To produce conditioned media (CM), human ADSCs (hADSCs) at 
P4 were cultured in DMEM/F-12 (Corning, Corning, NY, United States) containing 10% FBS (Hyclone, 
Logan, UT, United States) and arrested with 20 μg/mL mitomycin C (Sigma-Aldrich) for 2.5 h at 37 °C 
in 5% CO2 atmosphere. After cell growth inhibition, the cells were washed twice with PBS and 

https://f6publishing.blob.core.windows.net/825400e4-084a-46be-a93e-0b8c84460ab3/WJSC-14-245-supplementary-material.pdf
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incubated for 72 h in serum-free StemSpan™ medium (STEMCELL Technologies, Vancouver, Canada) 
supplemented with recombinant human SCF (50 ng/mL, Peprotech, Rocky Hill, NJ, United States), IL-3 
(10 ng/mL, Peprotech), and low-density lipoprotein (LDL, 25 μg/mL, STEMCELL Technologies). The 
CM was collected, centrifuged at 500 × g for 20 min to remove cellular debris, and then concentrated 10-
fold by means of centrifugation using a Centriprep® Centrifugal Filter Unit (Millipore, Bedford, MA, 
United States) with a 10 kDa cutoff membrane.

For co-culturing with CD34+ cells, the hADSCs (1 × 105 cells/well) were seeded in 12-well plates 
(Corning) and incubated until about 80% confluence. hADSC growth was arrested by treating the cells 
with 20 μg/mL mitomycin C for 2.5 h, followed by two washes with PBS and incubation for an 
additional 24 h prior to co-culturing with CD34+ cells. BM CD34+ cells (1 × 104/well) were cultured in 
StemSpan™ medium supplemented with SCF (50 ng/mL), IL-3 (10 ng/mL), LDL (25 μg/mL), and TPO 
(100 ng/mL, Peprotech) in three different conditions: (1) In a control medium (control group); (2) In 1 × 
CM (CM group); or (3) In direct contact by co-culturing on a layer of hADSC (contact group). The fresh 
medium and cytokines were replaced on days 3 and 5 of the culture. On day 7, the cells were counted to 
determine the total cell number, and the proportion of CD34+ cells was analyzed using flow cytometry 
and colony-forming cell (CFC) assays.

hADSC layers for co-culture were prepared as described above. BM CD34+ cells (1 × 104 cells/well) 
were cultured in StemSpan™ medium supplemented with SCF (50 ng/mL), IL-3 (10 ng/mL), LDL (25 
mg/mL), GM-CSF (10 ng/mL), and erythropoietin (EPO, 1 U/mL) in three different culture conditions: 
(1) In a control medium (control group); (2) In 1 × CM (CM group); or (3) In direct contact by co-
culturing on a layer of hADSC (contact group). The fresh medium and cytokines were added on days 3 
and 5 of the culture. On day 7, the cells were counted to determine the total cell number, and the 
expression of surface markers was analyzed using flow cytometry, as described above.

CFC assay
CFC assays were performed in triplicate for the control, CM, and contact groups. CD34+ cells (1 × 103 

cells/dish) were plated in methylcellulose medium (MethoCult™ H4100, STEMCELL Technologies) 
supplemented with SCF (50 ng/mL), IL-3 (10 ng/mL), GM-CSF (10 ng/mL, Peprotech), and EPO (1 
U/mL) in 35 mm culture dishes and incubated at 37 °C in 5% CO2 atmosphere for 14 d. Colonies were 
counted and analyzed using a scoring grid and an inverted microscope (Olympus, Tokyo, Japan). 
Colonies were classified based on their morphology as colony-forming unit erythroid (CFU-E), burst-
forming unit erythroid (BFU-E), CFU-GM, and granulocyte/erythroid/macrophage/megakaryocytes.

Statistics
Data are expressed as mean ± SD. Statistical significance was set at P < 0.05. Five sections were 
evaluated per sample, and cell counts were used for immunohistochemical analysis. Each analysis was 
repeated three times. The Kaplan-Meier method was used to estimate the distribution of survival rates 
over time. A repeated measures two-way repeated measures ANOVA with Sidak’s or Tukey’s multiple 
comparison test was used to compare groups over time. A Kruskal-Wallis test and Dunn’s multiple 
comparison test were used to compare the three mouse and human experimental groups, respectively. 
The GraphPad Prism 7 software for windows (San Diego, CA, United States) was used for statistical 
analysis.

RESULTS
Characterization of mouse and hADSCs
Mouse ADSCs (mADSCs) and hADSCs appeared as flat cubic cells in the initial culture and changed to 
spindle-shaped cells similar to fibroblasts with successive subcultures (Supplementary Figures1A and 
1F). ADSCs were differentiated into adipose, cartilage, and bone, as evidenced by staining with Oil Red 
O, toluidine blue, and von Kossa, respectively (Supplementary Figures 1B-D and 2G-I). Surface markers 
of cultured hADSCs, passaged 3-5 times, were > 95% positive for CD73 and CD105, but negative for 
CD45 and CD34 (Supplementary Figure 1E). The surface markers of mADSCs were positive for CD29, 
CD73, and CD90, and negative for CD34, CD45, and CD31 (Supplementary Figure 1J).

Survival rates
Kaplan-Meier plots showed that WBI induced a mortality rate of 49.2% in the RT group by day 30 
(Figure 1). The survival rates of the ST group transplanted with mADSCs once (ST#1) and three times 
(ST#3) were 92.3% and 55.6%, respectively. The survival rate of the ST#1 group was significantly higher 
than that of the ST#3 (P = 0.043) and RT groups (P = 0.021). The reduced survival rates of the ST#3 
group are similar to the results reported by Hu et al[20], which showed that the mortality rates of RT 
BALB/c mice increased post-transplantation with BM-MSCs. Due to the relatively high survival rates, 
the ST#1 group was used in subsequent analyses.

https://f6publishing.blob.core.windows.net/825400e4-084a-46be-a93e-0b8c84460ab3/WJSC-14-245-supplementary-material.pdf
http://
http://
https://f6publishing.blob.core.windows.net/825400e4-084a-46be-a93e-0b8c84460ab3/WJSC-14-245-supplementary-material.pdf
https://f6publishing.blob.core.windows.net/825400e4-084a-46be-a93e-0b8c84460ab3/WJSC-14-245-supplementary-material.pdf
https://f6publishing.blob.core.windows.net/825400e4-084a-46be-a93e-0b8c84460ab3/WJSC-14-245-supplementary-material.pdf
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Figure 1 Survival curves of normal control, stem cell-treated, and irradiated mice. Mice were irradiated with a single dose of 900 cGy. After 
irradiation, mouse adipose tissue-derived stem cells (mADSCs) were transplanted intraperitoneally once (#1) or three times (#3) on days 1, 5, and 12. The irradiated 
(RT) group was injected intraperitoneally with the same volume of saline. The survival rates are presented as Kaplan-Meier plots. The stem cell-treated (ST) group 
that received one transplant (ST#1) showed higher survival than the RT group. There was no difference in survival between the ST#3 and RT groups. aP < 0.05. NC: 
Normal control; ST: Stem cell-treated; RT: Irradiated.

Peripheral blood analysis
WBI significantly reduced the number of WBCs, as determined using Wright staining (Figure 2). 
Compared to the NC group on day 2 post-WBI, the number of WBCs was reduced to 25.7% and 23.8% 
in the ST#1 and RT groups, respectively. Moreover, the number of WBCs in the ST#1 group was 
significantly higher (P < 0.01) than in the RT group on days 14-21 post-WBI (Figure 2). However, by day 
28, the number of WBCs in the ST and RT groups was partially restored to 70.8% and 57.8%, 
respectively, compared to that in the NC group. These results indicated that 9 Gy WBI induced a 
significant reduction in peripheral leukocyte counts, whereas peritoneal transplantation of mADSCs 
partially restored the number of peripheral leukocytes.

Hematocrit (Hct) and hemoglobin (Hb) levels and RBC and platelet counts were significantly lower in 
the ST#1 group than in the other groups on day 21 post-WBI (Figure 3A, 3B and 3C). However, there 
were no differences in the mean corpuscular volume, mean corpuscular Hb, and mean corpuscular Hb 
concentration between the groups (Figure 3D, 3E and 3F). These results suggested that mADSCs 
injected into the abdominal cavity secreted factors that affected the repopulation of BM post-WBI, thus 
changing the peripheral blood parameters.

Delayed repopulation of CD34+ HSCs in the BM post-WBI
CD34-expressing BM cells were assessed in the ST and RT groups on day 21 post-WBI. Our results 
indicated that administration of stem cells delayed the emergence of CD34+ HSCs (Figure 3G-M). Next, 
we compared the percentage of proliferating cell nuclear antigen (PCNA)+ cells in the CD34+ HSCs of all 
three groups. At week 3 post-WBI, the percentage of PCNA+ cells in CD34+ HSCs was significantly 
higher (P ≤ 0.0001) in the ST#1 group than in the RT group (Figure 4A, 4B and 4C). These findings 
suggest that the secretome from mADSCs delays the repopulation of CD34+ BM progenitor cells and 
promotes the proliferation of CD34+ progenitor cells in the third week post-WBI. Furthermore, the 
number of ionized calcium-binding adaptor molecule-1 (Iba-1)+ cells was similar between the RT and 
ST#1 groups; however, the number of cells expressing both PCNA and Iba-1 was significantly higher in 
the ST group (P ≤ 0.01, Figure 4D, 4E and 4F). It has previously been reported that Iba-1 is expressed in 
the BM of rat monoblastic cells[39]. Upon mADSC administration, CD34+ HSCs were still observed a 
week later than in the RT group and the number of proliferating Iba-1+ monoblastic cells was 
significantly higher in the ST#1 group than in the RT group. To identify the cell lineages that were 
proliferating during repopulation post-WBI, we performed a fluorescence-activated cell sorting analysis.

Characterization of repopulated BM cells post-mADSC transplantation
To compare the differentiation of HSCs during repopulation, Sca-1, c-Kit, and CD34 for HSCs; IL-3R for 
common myeloid progenitor cells; IL-7R for common lymphoid progenitor cells; CD45RA for common 
granulocyte-macrophage progenitor cells; and CD80 and CD206 for macrophage polarization were 
evaluated in BM cells harvested 3 wk post-WBI (Figure 5A-I). Sca-1 levels were significantly reduced in 
the RT and ST#1 groups compared to those in the NC group. Interestingly, CD34+ HSCs were more 
abundant in the ST#1 group than in the RT group. These findings were consistent with our IHC results 
where the analyzed samples were also harvested 3 wk post-WBI. There was no difference in the number 
of BM cells expressing IL-3R between the RT and ST#1 groups. At the same time, IL-7R levels were 
significantly lower and CD45RA levels were significantly higher in the ST#1 group than those in the RT 
group. These results suggested that intraperitoneal mADSCs induced an increase in the number of 
CD34+ HSCs and differentiation toward the common granulocyte-macrophage lineage during repopu-
lation post-WBI. The polarization of the granulocyte-macrophage lineage toward the M2 phenotype was 
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Figure 2 Evaluation of white blood cell count in peripheral blood using Wright staining. A: The number of white blood cells were compared between 
the normal control NC, stem cell-treated, and irradiated groups; B: Representative images of the cells harvested on days 5, 17, and 25 after 9 Gy whole-body 
irradiation. Magnification 200 ×; scale bar: 20 μm; aP < 0.01, bP < 0.001, and cP < 0.0001 vs controls, as indicated. NC: Normal control; ST: Stem cell-treated; RT: 
Irradiated; WBC: White blood cell.

Figure 3 Characterization of red blood cell parameters in peripheral blood and CD34+ hematopoietic stem cells in the bone marrow. A-C: 
Hematocrit level, hemoglobin level, and red blood cells count in the control, irradiated (RT), and stem cell-treated (ST)#1 groups at three weeks post-whole-body 
irradiation (WBI); D-F: Mean corpuscular hemoglobin, mean corpuscular hemoglobin concentration, and mean corpuscular volume for the control, RT, and ST#1 
groups at three weeks post-WBI; G-M: Immunohistochemistry for CD34+ hematopoietic cells (green) in bone marrow; nuclei were counterstained with 4’,6-diamidino-
2-phenylindole (blue). Magnification 400 ×; scale bar 50 μm; aP < 0.01 vs controls. RBC: Red blood cell; MCH: Mean corpuscular hemoglobin; MCHC: Mean 
corpuscular hemoglobin concentration; MCV: Mean corpuscular volume; NC: Normal control; ST: Stem cell-treated; RT: Irradiated.

also observed using flow cytometry. In particular, the CD80:CD206 ratio was reversed in the ST#1 
group compared to that in the RT group, indicating M2 polarization during repopulation post-WBI in 
mice transplanted with mADSCs (Figure 5H and 5I)[40].

The mRNA expression levels of CD163, CD206, and IL-10 were higher in the BM of the ST#1 group 
than in the other groups. At the same time, IL-1β and TNF-α mRNA levels were lower in the ST#1 group 
than in the other groups during the first and second week post-WBI (Figure 5J and Supplementary 
Figure 2). These results indicated that intraperitoneal ADSCs induced M2 polarization during repopu-
lation post-WBI. The mRNA levels of GM-CSF, SCF, SDF-1, and IL-7 in the ST#1 group increased 
mainly in the first and second weeks post-WBI compared to those in the NC and RT groups (Supple-
mentary Figure 2).

Assessment of plasma cytokine levels
To evaluate the effect of stem cell transplantation on plasma cytokine levels in RT mice, cytokine array 
analysis was performed using a mouse cytokine antibody kit and plasma collected from mice in the NC 
group, RT group at week 2, and ST group at week 2 (ST2w) and 3 (ST3w) post-WBI. The protein levels 
in the plasma of the RT, ST2w, and ST3w groups were normalized to those of the NC group. According 

https://f6publishing.blob.core.windows.net/825400e4-084a-46be-a93e-0b8c84460ab3/WJSC-14-245-supplementary-material.pdf
 https://f6publishing.blob.core.windows.net/825400e4-084a-46be-a93e-0b8c84460ab3/WJSC-14-245-supplementary-material.pdf
https://f6publishing.blob.core.windows.net/825400e4-084a-46be-a93e-0b8c84460ab3/WJSC-14-245-supplementary-material.pdf
https://f6publishing.blob.core.windows.net/825400e4-084a-46be-a93e-0b8c84460ab3/WJSC-14-245-supplementary-material.pdf
https://f6publishing.blob.core.windows.net/825400e4-084a-46be-a93e-0b8c84460ab3/WJSC-14-245-supplementary-material.pdf
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Figure 4 Immunohistochemical assessment of CD34, proliferating cell nuclear antigen, and ionized calcium-binding adaptor molecule-1 
expression in bone marrow. Three weeks following whole-body irradiation, mouse femurs were fixed, decalcified, and embedded in paraffin wax. The sections 
were deparaffinized, stained with antibodies, and imaged under 400 × magnification. A-C: The number of CD34+ cells in the stem cell-treated (ST)#1 group was 
higher than that in the irradiated (RT) group. The number of proliferating cell nuclear antigen (PCNA)+ cells in CD34+ hematopoietic stem cells was significantly higher 
in the ST#1 group than in the RT group; D-F: The number of ionized calcium-binding adaptor molecule-1 (Iba-1+) cells, a marker of monoblastic cells, was similar 
between the ST and RT groups; however, the number of cells expressing both PCNA and Iba-1 was significantly higher in the ST group. Magnification 400 ×; scale 
bar: 50 μm; aP < 0.001, bP < 0.001, and cP < 0.0001 vs controls. NC: Normal control; ST: Stem cell-treated; RT: Irradiated; CD: Cluster of differentiation; PCNA: 
Proliferating cell nuclear antigen; Iba-1: Ionized calcium-binding adaptor molecule-1; DAPI: 4′,6-diamidino-2-phenylindole.

to the clustering analysis of all 39 proteins detected in the RT, ST2, and ST3 groups, expression patterns 
in the RT group were more similar to that of the ST3w group than those in the ST2w group (Figure 6A). 
The expression patterns of significant proteins (those showing more than 1.5-fold difference in 
expression level) in the ST3w group varied from those in the RT and ST2w groups (Figure 6B). 
Interestingly, G-CSF, C-X-C Motif Chemokine Ligand 13, and IL-2 levels increased in the ST2w group at 
week 2 post-WBI, which, with the exception of IL-2, was not observed in the ST3w group.

In vitro co-culture of human CD34+ HSCs with hADSCs
BM CD34+ cells were cultured in StemSpan™ medium supplemented with SCF, IL-3, LDL, and TPO in 
the absence (control group) or presence of the hADSC CM group or directly on a hADSC layer (contact 
group). After 7 d of incubation, the total cell numbers in the control, CM, and contact groups were (32.6 
± 3.75) × 104, (62.3 ± 2.95) × 104, and (81.7 ± 1.65) × 104, respectively (Figure 7A), indicating that cell 
proliferation was the highest in the contact group. The proportions of CD34+ cells are illustrated in 
Figure 7B. The number of CD34+ cells was (7.9 ± 1.38) × 104 in the control group, (13.4 ± 0.89) × 104 in the 
CM group, and (24.9 ± 2.21) × 104 in the contact group (Figure 7C). Therefore, the number of CD34+ cells 
was highest in the contact group.

Next, we evaluated colony-forming ability by incubating CD34+ cells in three different culture 
conditions for 7 d. As shown in Figure 7D, the differentiation of CD34+ cells cultured in the presence of 
hADSC CM (CM group) or on an hADSC layer (contact group) into CFU-E and BFU-E was lower than 
that in the control group; however, differentiation into CFU-GM was higher in the CM and contact 
groups than in the control group. These results suggest that secretory factors from hADSCs suppress 
erythroid differentiation and promote GM differentiation.

We also investigated the effects of culture conditions (control, CM, and contact groups) on the differ-
entiation of fresh BM CD34+ cells in a suspension culture. After 7 d of differentiation, the total cell 
numbers in the control, CM, and contact groups were (26.4 ± 1.32) × 105, (32.5 ± 3.15) × 105, and (25.6 ± 
0.90) × 105, respectively. Each surface marker was evaluated as a percentage of positive cells and total 
cell number. Both the percentage and number of CD15+ and CD45+ cells (granulocyte markers) were 
significantly higher in the CM and contact groups than in the control group (Figure 7E-J). While the 
percentage of CD71+ and Gly A+ cells (erythroid markers) were lower in the CM and contact groups 
than in the control group, the number of CD71+ and Gly A+ cells were lower only in the contact group 
compared to the control group (Figure 7K-P). These results suggest that the secretory factors of hADSCs 
may be sufficient to promote GM differentiation, but not enough to suppress erythroid differentiation 
under liquid differentiation conditions.

Macrophage polarity of BM CD34+ cells differentiated in liquid culture
We examined the gene expression of several cytokines and surface markers in BM CD34+ cells differen-
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Figure 5 Characterization of repopulated bone marrow post-whole-body irradiation in the normal control, irradiated, and stem cell-treated 
groups. A-I: The expression levels of Sca-1, c-Kit, CD34, interleukin (IL)-3R, IL-7R, CD45RA, CD80, and CD206 in the bone marrow (BM) at 3 wk after post-whole-
body irradiation (WBI) was examined using flow cytometry; J: mRNA expression in the BM at weeks 1, 2, and 3 post-WBI was evaluated using reverse transcription 
PCR. aP < 0.05 vs controls, as indicated. NC: Normal control; ST: Stem cell-treated; RT: Irradiated; Sca-1: Stem cells antigen-1; c-KIT: Tyrosine-protein kinase KIT; 
CD: Cluster of differentiation; IL: Interleukin; TNF-α: Tumor necrotic factor-a; M-CSF: Macrophage colony-stimulating factor; GM-CSF: Granulocyte-macrophage 
colony-stimulating factor; SCF: Stem cell factor; SDF-1: Stromal cell-derived factor 1; TPO: Thrombopoietic growth factor; GAPDH: Glyceraldehyde 3-phosphate 
dehydrogenase.

tiated in liquid culture for 7 d. As shown in Figure 8, the gene expression levels of IL-4 and CD68 were 
not affected by the CM or contact conditions; however, the gene expression levels of IL-10, IL-1β, TNF-α, 
CD80, and CD206 were higher in the contact group than in the control group. Interestingly, CM alone 
was sufficient to increase the gene expression of IL-10 and CD206, markers that are highly expressed in 
M2 polarized macrophages, suggesting that secretory factors from hADSCs may promote macrophage 
polarization into the M2 phenotype.
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Figure 6 Clustering analysis of cytokine array from plasma samples. A: Thirty-nine proteins in the plasma were investigated in normal control (NC) and 
irradiated (RT) groups at week 2 and the stem cell-treated (ST) group at weeks 2 and 3 (ST2w and ST3w, respectively). Proteins in the plasma of RT and ST groups 
were normalized to the NC group before comparison; B: The proteins with 1.5-fold higher expression in the three groups than in the NC group were selected and 
compared. NC: Normal control; ST: Stem cell-treated; RT: Irradiated; IL: Interleukin; TNF-α: Tumor necrotic factor-α; GM-CSF: Granulocyte-macrophage colony-
stimulating factor; SDF-1: Stromal cell-derived factor 1; IFN: Interferon.

DISCUSSION
In the present study, we present evidence that transplantation of ADSCs into the abdominal cavity of 
RT mice delayed the repopulation of CD34+ HSCs and simultaneously promoted the proliferation of the 
granulocyte/monocyte lineage, particularly toward M2 polarization. Similar results were observed in 
the in vitro co-culture of hADSCs and human CD34+ HPSCs. However, RT mice with multiple 
transplantations of mADSCs showed a lower survival rate than those with a single transplantation. 
Therefore, the dosage of MSCs could be an important determinant of survival rates.

Different survival rates have been reported for post-irradiation MSC treatment[20,23,35,41]. Shim et al
[41] suggested that treatment with human umbilical cord blood-derived MSCs (2 × 106) was more 
effective than that with G-CSF for hematopoietic reconstitution, following sublethal dose (7 Gy) 
radiation exposure. Abdel-Mageed et al[23] proposed that extracellular superoxide dismutase-
transduced mouse BM-MSCs could improve survival rate post-WBI. However, the control BM-MSC 
group did not display an enhanced survival rate compared to the WBI group[23]. Compared to RT and 
untreated animals, Kovalenko et al[24] found considerably increased survival rates in animals that 
received 2 × 108 human umbilical cord blood mononucleated cells with antibiotics. However, Hu et al
[20] showed that transplantation of more than 1.5 × 108 cells/kg BM-MSCs increased mortality rates 
compared to those at lower BM-MSC concentrations, though the exact mechanism underlying these 
contradictory results is unclear. Similarly, our results indicated that survival rates after three MSC 
transplantations were lower than that after a single transplantation. After WBI, mice with multiple 
transplantations of mADSCs showed delayed CD34+ hematopoietic repopulation and recovery of Hct 
and Hb levels in peripheral blood, which could be associated with increased mortality. We hypothesize 
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Figure 7 Effect of co-culture on CD34+ cell fate. CD34+ cells were incubated in the absence (control group) or presence of human adipose tissue-derived 
stem cells (hADSCs) conditioned medium (CM group) or directly on a hADSC layer (contact group). A: Total cell number; B: Percentage of CD34+ cells; C: The 
number of CD34+ cells were determined after 7 d of incubation; D: Colony-forming unit assays were performed using MethoCult™ by plating an equal number of 
CD34+ cells. The number of colonies was counted after 14 d of incubation; E-P: Differentiation assays of bone marrow CD34+ cells in liquid cultures, in the absence 
(control group) or presence of hADSC CM group or directly on a hADSC layer (contact group). The percentage of each surface marker was analyzed using flow 
cytometry (upper panel) and the marker-positive cell numbers were calculated (lower panel). aP < 0.05, bP < 0.01, cP < 0.001, and dP < 0.0001 vs controls. CFU: 
Colony-forming unit; CM: Conditioned media; CFU-E: Colony-forming unit erythroid; BFU-E: Burst-forming unit erythroid.
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Figure 8 Gene expression analysis of bone marrow CD34+ cells cultured in the absence (control) or presence of human adipose tissue-
derived stem cell conditioned medium or directly on a human adipose tissue-derived stem cell layer (contact). Relative expression levels of 
the indicated genes were determined using qRT-PCR. aP < 0.05, bP < 0.01, and cP < 0.001 vs controls. CM: Conditioned media; IL: Interleukin; TNF-α: Tumor 
necrotic factor-α.

that the anti-inflammatory effects of MSCs on BM could mediate this delay.
Previous studies have shown that MSCs exert their immunosuppressive effects through the release of 

IL-6, IL-10, transforming growth factor β (TGF-β), tumor necrosis factor-inducible gene-6 (TSG-6), and 
indoleamine 2,3-dioxygenase[42,43]. MSC spheroids displayed anti-inflammatory activity mediated by 
prostaglandin E2 (PGE2), thus altering the phenotype of lipopolysaccharide - or zymosan-stimulated 
macrophages[44]. MSCs can also alleviate inflammation in macrophages by secreting TSG-6 and 
stanniocalcin-1[45]. Furthermore, MSCs decrease TNF-α secretion by mature DC type 1 (DC1), increase 
IL-10 secretion by mature DC2 cells, reduce interferon-γ (IFN-γ) production by Th1 cells, increase the 
secretion of IL-4 by Th2 cells, expand the proportion of regulatory T cells, and decrease IFN-γ secretion 
by natural killer cells[46]. The anti-inflammatory effects of MSCs have also demonstrated a beneficial 
effect on organ damage caused by irradiation. Dong et al[47] confirmed that the systemic infusion of 
human ADSCs ameliorated lung fibrosis in rats that received semi-thoracic irradiation (15 Gy) by 
upregulating hepatocyte growth factor (HGF) and PGE2, and downregulating TNF-α and TGF-β1. Saha 
et al[21] found that, in male C57BL/6 mice that received 10 Gy WBI or 16–20 Gy of abdominal 
irradiation, a bone mesenchymal stem cell (BMSC) transplant increased the levels of R-spondin1, 
keratinocyte growth factor, platelet-derived growth factor, bFGF, and anti-inflammatory cytokines in 
the serum, with reduced levels of pro-inflammatory cytokines. The anti-inflammatory effects of MSCs 
were also examined in our experiments. IL-1β and TNF-α mRNA levels were lower in the ST#1 group 
than in the RT group. At the same time, the mRNA level of the anti-inflammatory cytokine IL-10 was 
higher in the ST#1 group than in the RT group.

Although the reduction of pro-inflammatory cytokines can relieve sequelae caused by radiation 
irradiation, these inflammatory factors are essential for the proliferation of HSCs during repopulation. 
Interferons act as major regulators of HSC[48,49]. TNF-α and its receptors play a critical role in 
facilitating HSC engraftment and function[50,51]. TNF-α signaling is also necessary for the maintenance 
of HSCs, suggesting that baseline inflammatory signaling is crucial for the maintenance of proper HSC 
division and, subsequently, function[52]. In our study, mRNA levels of TNF-α and IL-1β were 
suppressed shortly after WBI in the ST#1 group compared to those in the other groups. Therefore, the 
anti-inflammatory effects derived from the secretome of mADSCs might delay reconstitution. It is also 
plausible that multiple doses (or an overdose) of MSCs lead to a severe delay in BM repopulation and, 
eventually, poor survival rates.

In the present study, the number of WBCs in the peripheral blood was higher in the ST#1 group than 
in the RT group at three weeks post-WBI; the number of proliferating myeloblasts (Iba1+ and PCNA+) in 
the BM was higher in the ST#1 group than in the RT and NC groups; and the number of CD45RA+ cells 
(GM progenitors) was higher in the ST#1 group than in the RT group. mADSCs indirectly affected 
myeloid differentiation in the BM. In previous studies, intraosseous or retrobulbar transplants of ADSCs 
with BMSCs promoted the differentiation of the myeloid lineage in the BM[34,36,53,54]. In the present 
study, the mRNA levels of GM-CSF and SDF-1 in the BM and G-CSF in the plasma were higher in the 
ST#1 group than in the RT group. G-CSF and GM-CSF are well-known hematopoietic factors that 
induce HSC differentiation into the myeloid lineage[55]. SDF-1 also promotes myeloid differentiation
[56], and is expressed by stromal cells in several tissues and organs, including the skin, thymus, lymph 
nodes, lung, liver, and BM. Nakao et al[34] reported that SDF-1 secreted from ADSCs can induce the 
differentiation of CD34+ HSCs into myeloid cells. De Toni et al[36] showed that the co-culture of ADSCs 
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and CD34+ HSCs in vitro without any cytokine supplement promoted CD34+ HSC differentiation into 
granulocyte/monocyte lineages. In the present study, in vitro experiments demonstrated that hADSC 
CM or direct contact with the hADSC layer increased differentiation in CD34+ HSCs toward the 
granulocyte-macrophage lineage.

ADSCs have been reported to have an effect on M2 polarization[43,57,58]. M1 macrophages are 
known to stimulate umbilical cord-MSCs and increase the expression of IL-6: A cytokine that 
upregulates IL-4R, promotes phosphorylation of STAT6 in macrophages, and eventually polarizes 
macrophages toward the M2 phenotype[43]. In mice with mutations in the gene encoding for IL-6Ra, IL-
6 was found to be an important determinant of M2 macrophage activation[57]. These results suggest 
that the secretion of IL-6 by MSCs plays a key role in mediating macrophage polarization[43,57]. MSCs 
can also promote M2 macrophage polarization via IL-10[58]. In our study, M2 macrophage markers, 
such as CD206, CD164, and IL-10, were upregulated in the BM of the ST#1 group. IL-6, M-CSF, and IL-
10, which can be secreted by mADSCs, can also induce M2 polarization in the BM. Therefore, M2 
polarization could act as an anti-inflammatory suppressor in BM during the first week following 
radiation.

MSCs are multipotent cells that were originally isolated from BM and subsequently from other 
tissues, including fat[59], cardiac tissue[60], umbilical cord[61], and oral tissue[62]. BM-MSCs, which 
have been widely used for treating various diseases, traditionally required invasive harvesting 
procedures with low yields. On the other hand, ADSCs are abundant in the human body and have 
multiple differentiation potentials, making them a promising source for wound healing and tissue 
engineering, with low-risk cell harvesting and easy processing[63]. MSCs derived from the BM or 
adipose tissue share many similar biological characteristics, such as immunophenotype, multipotent 
differentiation, profiles of cytokine secretion, and immunomodulatory effects[64,65]. However, 
depending on tissue sources, donors, and isolation and culture protocols, the properties of MSCs may 
vary slightly[65-67]. Given the convenience of harvesting and multitude of sources, ADSCs appear to 
have numerous clinical advantages over cells derived from BM or other sources.

Umbilical cord derived MSCs (UC-MSCs) from fetal tissue have better proliferation capacity than 
ADSCs, which are MSCs from adult tissue[68]. However, compared to ADSC, UC-MSC is difficult to 
collect and secure, and the culture success rate is low[68,69]. It is not yet known whether MSCs derived 
from various tissues will have the same effect on BM repopulation. However, according to previous 
studies, UC-MSC, BM-MSC, and ADSC showed similar immunomodulatory effects[43,46,70]. In this 
regard, future research should evaluate variation in treatment efficacy according to the origin, age, and 
passage of MSCs. In treating BM repopulation with MSCs in humans, future clinical trials should 
specifically consider the dose to be administered. In the present study, mADSCs and hADSCs were used 
in the in vivo and in vitro experiments, respectively. In mice, P3-5 of mADSC were used, and P5-7 of 
hADSC were used; we recognize this to be a limitation in the interpretation of our results.

CONCLUSION
We present evidence that multiple intraperitoneal transplantations of mADSCs increased mortality 
post-WBI. The anti-inflammatory effects and M2 polarization promoted by the intraperitoneal adminis-
tration of mADSCs might suppress erythropoiesis and induce myelopoiesis in sub-lethally RT mice. To 
improve survival rates post-WBI, the amount of MSCs should be optimized for administration.

ARTICLE HIGHLIGHTS
Research background
Bone marrow (BM) suppression is one of the most common side effects of radiotherapy and the primary 
cause of death following exposure to irradiation. Despite concerted efforts, no definitive treatment 
method is available. Transplantation of adipose tissue-derived stromal cells has been proposed as a 
promising therapy for BM suppression.

Research motivation
Although adipose tissue-derived stromal cell transplantation has shown reasonable efficacy in studies of 
BM suppression, the therapeutic effects are controversial.

Research objectives
We administered and examined the effects of various amounts of adipose-derived mesenchymal 
stromal cells (ADSCs) in mice with radiation-induced BM suppression.
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Research methods
Mice were divided into three groups: Normal control group, irradiated (RT) group, and stem cell-
treated group after whole-body irradiation (WBI). Mouse ADSCs were intraperitoneally transplanted 
either once or three times at 5 × 105 cells/200 μL. The white blood cell count and levels of plasma 
cytokines, BM mRNA, and BM surface markers were compared between the three groups. Human BM-
derived CD34+ hematopoietic progenitor cells were co-cultured with human ADSCs (hADSCs) or 
incubated in the presence of hADSC conditioned media (CM) to investigate the effect on human cells in 
vitro.

Research results
The survival rate of mice that received one ADSC transplant was higher than that in the three-transplant 
group. Multiple transplants of ADSCs delayed the repopulation of BM hematopoietic stem cells. Anti-
inflammatory effects and M2 polarization by intraperitoneal ADSCs might suppress erythropoiesis and 
induce myelopoiesis in sub-lethally RT mice.

Research conclusions
To improve survival rates post-whole-body (WBI) irradiation, the amount of mesenchymal stromal cells 
should be optimized for transplantation.

Research perspectives
We demonstrated the effects of ADSC doses on BM suppression and suggest that the mechanisms 
involved can determine the success of future experiments and clinical applications.
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Abstract
Theoretically, mesenchymal stem cells (MSCs) are very promising as adjuvant 
therapy to alleviate coronavirus disease 2019 (COVID-19)-associated acute lung 
injury and cytokine storm. Several published studies, which used MSCs to 
alleviate COVID-19-associated acute lung injury and cytokine storm, reported 
promising results. However, the evidence came from a case report, case series, 
and clinical trials with a limited number of participants. Therefore, more studies 
are needed to get robust proof of MSC beneficial effects.
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Core Tip: Several published studies, which used mesenchymal stem cells (MSCs) to alleviate coronavirus 
disease 2019-associated acute lung injury and cytokine storm, reported promising results. However, the 
evidence came from a case report, case series, and clinical trials with a limited number of participants. 
Therefore, more robust proof is needed. The studies and ongoing clinical trials used MSCs from various 
sources, and theoretically angiotensin-converting enzyme 2 negative subsets are preferable. Therefore, in 
future reporting of clinical trial results, the complete identity of the MSCs needs to be defined.

Citation: Pawitan JA. Mesenchymal stem/stromal cells as adjuvant therapy in COVID-19-associated acute lung 
injury and cytokine storm: Importance of cell identification. World J Stem Cells 2022; 14(3): 264-266
URL: https://www.wjgnet.com/1948-0210/full/v14/i3/264.htm
DOI: https://dx.doi.org/10.4252/wjsc.v14.i3.264

TO THE EDITOR
I read with interest a minireview by Zhang et al[1], who elaborately discussed the prospects of 
mesenchymal stem/stromal cells (MSCs) in coronavirus disease 2019 (COVID-19)-associated acute lung 
injury/acute respiratory distress syndrome. In the beginning, the authors pointed out two recently 
reported MSC based therapies to deal with cytokine storm and pulmonary damage. The first report was 
by Leng et al[2], which enrolled 7 MSC treated subjects and 3 controls. The report showed favorable 
prognosis in terms of clinical recovery and serum cytokine profile. The second report of MSC based 
therapy for COVID-19 was a case report by Liang et al[3] that reported a favorable outcome.

Though the two reports showed favorable outcomes, I highly support the opinion of Zhang et al[1] 
that the systematic elaboration of the therapeutics and underlying mechanism is far from satisfactory. 
The first report, which enrolled only a few subjects, showed that the treatment and control group were 
unequal in terms of age of the patients and severity of disease. The second report is a case report of only 
1 patient[2,3], which provides the lowest level of evidence. There were several other reports that were 
not assessed by the authors. A case series of 12 patients by Terry[4] used two intravenous infusions of 
bone marrow-derived MSCs (Ryoncil® from Mesoblast). The results showed that 75% of patients who 
were previously refractory to other experimental therapies were free from ventilators within 10 d, and 
overall survival was 83%. Further, a recent randomized clinical trial from Indonesia, which enrolled 40 
patients, gave umbilical cord (UC)-derived MSCs, and the results showed that the survival rate in the 
treatment group was 2.5 times higher than in the control group. However, when only patients with 
comorbidities were assessed, the survival rate of the treatment group was 4.5 times compared to 
controls. Moreover, there was a significant decrease in interleukin-6 in the recovered patients, and this 
result was in line with the anti-inflammatory property of MSCs[5]. Interestingly, there are 70 clinical 
trials at various stages, which are ongoing, and these trials are using MSCs from various sources[1].

It is interesting to note that Zhang et al[1] pointed out the superiority of angiotensin-converting 
enzyme 2 (ACE2) negative subsets of UC-derived MSCs that were used by Leng et al[2]. Other studies 
that used MSCs for COVID-19 did not use ACE2 negative subsets of MSCs[3-5]. A study showed that 
ACE2 expression was significantly higher in adipose tissue and bone marrow-derived MSCs compared 
to UC or placenta-derived MSCs. In addition, culture conditions and passage also had an impact on 
ACE2 expression levels. At higher passages (3-5 passages) both UC and placenta-derived MSCs 
expressed higher levels of ACE2[6]. I highly support the opinion of Zhang et al[1] that highly bioactive 
subpopulations from the heterogeneous MSCs need to be identified[1]. Therefore, future studies that 
will use MSCs need to completely report the source, culture conditions, passage, identity, and 
properties of the MSCs that are used.
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