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Abstract
Spermatogonial stem cells (SSCs) are the germ stem 
cells of the seminiferous epithelium in the testis. 
Through the process of spermatogenesis, they produce 
sperm while concomitantly keeping their cellular pool 
constant through self-renewal. SSC biology offers 
important applications for animal reproduction and 
overcoming human disease through regenerative 
therapies. To this end, several techniques involving 
SSCs have been developed and will be covered in 
this article. SSCs convey genetic information to the 
next generation, a property that can be exploited for 

gene targeting. Additionally, SSCs can be induced to 
become embryonic stem cell-like pluripotent cells in 
vitro . Updates on SSC transplantation techniques with 
related applications, such as fertility restoration and 
preservation of endangered species, are also covered on 
this article. SSC suspensions can be transplanted to the 
testis of an animal and this has given the basis for SSC 
functional assays. This procedure has proven technically 
demanding in large animals and men. In parallel, testis 
tissue xenografting, another transplantation technique, 
was developed and resulted in sperm production in 
testis explants grafted into ectopical locations in foreign 
species. Since SSC culture holds a pivotal role in SSC 
biotechnologies, current advances are overviewed. 
Finally, spermatogenesis in vitro , already demonstrated 
in mice, offers great promises to cope with reproductive 
issues in the farm animal industry and human clinical 
applications. 

Key words: Cell culture; Spermatogonial stem cells; 
Spermatogenesis; Pluripotency; Transplantation; Fertility

© The Author(s) 2015. Published by Baishideng Publishing 
Group Inc. All rights reserved.

Core tip: This article reviews the current body of 
knowledge on biotechnological applications of sperma-
togonial stem cells (SSCs). SSCs are the founding 
adult germ stem cells of the sperm producing process 
spermatogenesis. SSCs belong to the male germline 
and can be expanded in vitro  in several species. 
Through mechanisms not fully understood they can 
derive pluripotent stem cells in vitro . Thus, they can 
be genetically modified with some advantages over 
embryonic stem cell-based technologies. SSCs can 
be transplanted to homotopical or ectopical locations, 
offering great potentials in fertility related issues and 
regenerative clinical applications in domestic or wild 
animals and men.
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INTRODUCTION
Spermatogonial stem cells (SSCs), the germ stem cells 
of the seminiferous epithelium in the testis are the 
founder cells of a sperm producing stem cell system 
called spermatogenesis. SSCs were initially regarded 
as unipotential cells. Nowadays, however, current 
knowledge about SSCs has expanded to new limits and 
the general concept of SSCs as cells just supporting 
the production of the terminally differentiated sperm 
has rather radically changed. As a result of continuous 
and elaborate SSC biology research, the manipulation 
of this special cell type offers novel biotechnological 
solutions to contemporary human problems. SSCs 
are the only adult stem cells capable of transmitting 
the genome of a given species from one generation to 
the next, while at the same time having the capacity 
to convert into pluripotent stem cells[1-3]. They can 
also give rise to cells from the basic three embryonic 
layers in vitro, which opened new opportunities for 
regenerative medicine[1]. Since SSCs are adult cells, 
they do not bring about ethical concerns as occurs with 
the use of embryonic stem (ES) cells. However, the 
use of SSCs is not without risk, since they show some 
issues regarding epigenetic inheritance, as such a topic 
will be covered later on this article.

The faculty of SSCs to deliver genes over genera-
tions makes them a valuable vehicle for transgenesis 
techniques. This is particularly important for gene 
targeting in domestic animals, in which, contrary to 
laboratory rodent species, the techniques involving 
SSCs are still not feasible. In this process, SSC culture 
plays a central role in the exploitation of the unique 
properties of SSCs for biotechnological applications. 
Historically, the characterization of the SSC niche 
in vivo gave the basis for SSC culture conditions, 
especially SSC population expansion via self-renewal 
in several species, included men. A stem cell niche 
consists of a microenvironment with supporting cells 
and a corresponding signal exchange that regulates 
self-renewal and differentiation of the stem cells. 
Accordingly, SSCs are located in the seminiferous 
epithelium, near the basement membrane and the 
niche environment normally contains factors produced 
by neighboring somatic cells (sertoli cells, leydig cells, 
and peritubular myoid cells), the basement membrane 
and in particular the vascular network, near where SSCs 
are preferentially located[4]. This microenvironment 
in the testis provides signals to control stem cell self-
renewal, differentiation, or survival, guaranteeing a 
normal cell kinetics in spermatogenesis[5,6]. 

SSC behavior in vitro could be further investigated 
thanks to the development of germ cell transplantation 

assays, which allow functional verification of the 
presence of SSCs (see the topic Germ cell transplan-
tation). The addition of certain growth factors to 
the culture media, in particular glial cell line-derived 
neurotrophic factor (GDNF), and the availability of a 
functional SSC assay, allows SSC populations to be 
expanded during long term culture, an advance first 
made in rodent models. 

SSC biotechnologies are being aimed to solve 
fertility related issues (i.e., fertility restoration in 
oncological patients, infertility treatments and repro-
duction of endangered species). They also provide 
important developments in germplasm preservation 
and the emerging technology of spermatogenesis in 
vitro. Finally, several of these applications require 
species-specific knowledge of SSC culture conditions 
as well as transplantation techniques, two aspects that 
will be covered in this article (for a summary of the 
biotechnological approaches that involve the use of 
SSCs, see Figure 1).

SSC ISOLATION AND CULTURE
SSC isolation procedures have been described for 
several domestic species and humans[7-14]. SSCs are 
isolated by enzymatic digestion, usually involving two 
steps of various combinations of proteolytic enzymes 
(commonly, collagenases I or IV, trypsin, hyaluronidase 
and DNAse I). From this enzymatic digestion, a 
germ cell suspension is obtained that now has to go 
through at least one type of purification methods, but 
more often a combination of them (Zheng et al[15], 
2014 summarize the current enriching methods for 
SSC isolation). There are two groups of purification 
methods, one group based on the SSC phenotype, 
like fluorescence activated cell sorting (FACS) and 
magnetic activated cell sorting (MACS), and the other 
utilizes physical methods, like differential plating, 
extracellular matrix selection and density gradient 
sedimentation[15]. Simple models for SSC isolation 
include the use of young animals[16], cryptorchid 
animals[17], vitamin A deficient animals[18], but SSC 
isolation becomes more complex when their source 
is the adult testis with full spermatogenesis. In this 
scenario, all differentiating germ cell types are present 
and SSCs represent a smaller proportion (see the 
topic SSC markers). Most recent articles in which SSC 
isolation is carried on, include one phenotype-based 
method and one or more physical methods. Most 
researchers do not use a functional assay (germ cell 
transplantation) to unambiguously identify the isolated 
germ cells as SSCs. They instead characterize the 
germ cell colonies arising during culture by means of 
immunohistochemistry or RT-PCR, aiming to identify 
gene products or RNA expression respectively (see the 
topic SSC markers). MACS is the most widely used 
technique nowadays. It is simple and inexpensive, 
but relies on specific SSC markers usually present 
in subsets of the SSCs, therefore sub-sampling the 
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general SSC population. Interestingly, one group, 
in a recent work, produced an enriched human SSC 
suspension by using MACS and the marker ITGA6 
(alpha 6 integrin) together with a proper authentication 
of SSCs through the germ cell transplantation assay[11]. 
A recent novel approach for SSC isolation involved 
the combination of traditional isolation methods with 
testicular tissue grafting (see the topic Germ cell 
transplantation). In this work, adult mouse testis tissue 
was grafted into the dorsal skin of immunodeficient 
mice and after 2-4 wk the researchers observed the 
depletion of advanced differentiating germ cells of 
the seminiferous epithelium. Afterwards, the tissues 
left only with undifferentiated type A spermatogonia 
(a population including the SSCs) were recovered. 
The SSCs were isolated from the tissues, which 
were not only able to proliferate in vitro but also to 
recapitulate spermatogenesis in receptor testes devoid 
of endogenous spermatogenesis and furthermore to 
produce offspring through the original donor derived 
sperm[19]. This method, although perhaps not as 
practical as MACS, results in a larger true SSC popu-
lation since the whole array of markers confirm the 
phenotypic profiles of SSCs. 

Culture conditions for SSC propagation in vitro 
were first developed in mice[16,20]. This was the 
base for the development of domestic animals SSC 
culture systems[7-10,21-25]. Most of these systems have 
in common the use of GDNF and serum. Common 
growth factors, besides GDNF, include LIF, FGF2 
and EGF[26], however important responses of SSCs 
regarding maintenance, survival and growth in vitro 
are dependent on age, species and even the strain of 
the donor animals[27]. Very recently, a feeder/serum-
free culture was established for mice SSCs[28] and this 
method was improved for maintenance of SSCs[29]. 

This represents a big advance because serum, when 
present, introduces unknown variable factors into the 
culture systems[27] besides promoting the growing 
of contaminating somatic cells[2]. Current efforts are 
being made to set up functional human SSC culture 
systems[11,30,31].

SSC DIFFERENTIATION IN VITRO
Normally, SSCs self-renew during the steady state cell 
kinetics of spermatogenesis. They do so to maintain 
the undifferentiated pool while at the same time 
producing daughter cells that enter the differentiation 
path, ultimately generating sperm[32]. Thus, the 
production of sperm in vitro requires culture conditions 
favoring the pathways of sperm production and 
not self-renewal. Going through the meiosis step of 
germ cell differentiation in vitro was one of the most 
difficult steps for many research groups. This fact 
hindered the progress in this particular research 
area for many years. An spermatogenesis in vitro 
system going beyond that developmental stage and 
traversing spermiogenesis was achieved and mouse 
sperm could be generated when testicular tissue 
was set on the liquid/gas interphase[33]. This system 
included a very simple culture medium and testicular 
tissues came from young animals[34]. One of the main 
features of this culture system is the preservation of 
the cytoarchitecture of the testis, that is, maintaining 
the structure of SSC niches. The reconstitution of 
spermatogenesis in vitro from SSC suspensions has 
proven more challenging. Some groups have obtained 
sperm in vitro by using testicular cell suspensions from 
prepubertal animals but three dimensional support 
matrices are necessary[35,36]. Although these successful 
systems have been developed for sperm production 
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Figure 1  Overview of biotechnologies involving spermatogonial stem cells. Fertility preservation includes fertility restoration in oncological patients after therapeutic 
agents are administered that produce germ cell damage, strategies for infertile male patients and reproduction of endangered species. Gene dissemination represents 
the possibility to use several low-genetics animals to disseminate elite genes in animal production operations. Culture involves maintenance, survival, expansion 
and possibly genetic manipulations of spermatogonial stem cells (SSCs). Germ stem cells (GSCs), that is, SSCs that self-renew in vitro, therefore proliferating and 
expanding. Multipotent germ stem cells (mGSCs), which spontaneously appear in culture from within the SSC population, showing pluripotency properties[2].
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In monkeys, SSCs express the phenotype (CD90+ 
DC49f+ CD117-), SSEA-4+ PLZF+[47]. Apparently, SSEA-4 
seems to be conserved in humans[48]. SSCs from 
humans also express GPR125[49], besides GFRα1[50]. 
Another human SSC marker that adds to the known 
panel is ITGA6[51]. Recently, a new SSC gene product 
has been reported: PAX7, that might represent a 
definite common SSC marker for several species 
including mice, cats, dogs, pigs, bulls, monkeys and 
humans[52].

SSC PLURIPOTENCY 
Pluripotent stem cells so far considered for regenerative 
medicine strategies include inner cell mass derived ES 
cells[53,54], somatic derived induced pluripotent stem 
cells (iPS cells)[55], fetal derived embryonic germ (EG) 
cells[56] and SSC derived multipotent germ stem (mGS) 
cells[57,58]. All of these cells form teratomas when injected 
to seminiferous tubules or subcutaneous tissue of 
immunocompromised mice and contribute to chimera 
formation when injected to a blastocyst. When SSCs 
are placed in culture they proliferate in the presence 
of GDNF. This growth factor is produced by Sertoli 
cells in the testis, stimulating SSCs to self-renew[41]. 
SSCs proliferating in culture are designated germ stem 
cells (GS) cells[16]. They are unipotent, genetically and 
epigenetically stable, do not produce teratomas and 
do not contribute to chimera[59]. Extraordinarily, while 
in culture, they can spontaneously derive multipotent 
germ stem cells (designated mGS cells) at a low 
frequency (1 out of 30 testes)[58]. They represent 
SSCs with pluripotency, sharing not only ES cell traits 
such as self-renewal properties, tumorogenicity and 
chimera production but also genomic and epigenetic 
abnormalities[2]. Pluripotent germ cells from the testis 
can circumvent some of the typical objections or 
technical limitations of other pluripotent cells (i.e., 
ES cells and iPS cells) for their use in therapeutic 
purposes. These limitations include issues in cell 
proliferation, cell differentiation, genetic stability, 
allogenicity and ethical/religious issues (reviewed 
in[60]). Remarkably and unlike other pluripotent cells, 
the conversion of GS cells into mGS cells occurs on 
a dedifferentiation process not dependent on genetic 
manipulations, which opens important theoretical 
possibilities for these technologies to be translated 
into clinical applications in regenerative medicine. 
Nevertheless, despite all the promising traits of mGS 
cells, caution is required on the grounds of their 
genetic and epigenetic behavior. Although GS cells 
maintain a normal karyotype, genomic imprinting, and 
SSC activity during long-term culture[59], mGS cells 
are unstable and tend to accumulate genomic and 
epigenomic abnormalities[2,61]. Also, GS-like cells derived 
from mouse fetal germ cells had SSC activity but some 
of the produced offspring had abnormal genomic 
imprinting patterns, which were also transmitted to 
future generations[56]. SSC-derived pluripotent cells 

in vitro with rodent species, it is not yet foreseeable 
that these techniques can be translated to a clinical 
setting in the near future. Human SSC differentiation 
in culture systems is still under investigation at the 
present time. 

The exciting possibility of producing sperm in vitro 
has large implications for farm animal industries, 
human fertility restoration, preservation of endangered 
species and many other associated technologies 
related to mammalian reproduction. For instance, in 
the cattle industry, keeping animals in large facilities 
would be a thing of the past when renewable SSC 
pools from elite bulls produce high numbers of sperm 
in Petri dishes at small biotechnological facilities. 
In many cases of human infertility it would just be 
enough to have one healthy SSC derived (and possibly 
engineered) sperm to produce offspring through 
assisted reproduction technologies (ARTs). Autologous 
SSC culture systems could be set for individuals before 
oncological treatments and sperm generated in vitro 
could be cryopreserved for later use to fertilize an egg 
and produce offspring from these patients. This way, 
the danger of reintroducing malignant cells back into 
the patient could be avoided. SSC banking could then 
become possible, as another mean for germplasm 
preservation in many species. Moreover, the cumber-
some step of transplanting genetically modified SSCs 
to a receptor male in order to recapitulate sperma-
togenesis and thus obtain transgenic sperm could then 
be omitted. In addition, these techniques could also 
provide means for preserving endangered species, for 
instance, animal populations with very few individuals 
that at the moment of dying could have their SSCs 
collected for sperm to be produced in the laboratory.

SSC MARKERS
The characterization of SSCs is an important tool to 
study their presence on culture systems and during 
other techniques. SSCs, representing only the 0.03% 
of germ cells in the testis[37], and the more numerous 
type A spermatogonia committed to differentiate, are 
morphologically undistinguishable. Furthermore, there 
is no general consensus on the phenotypic profile of 
SSC as this may vary among different species[38] and 
there seems to be no unique SSC marker. In general, 
some phenotypic characteristics of SSCs have been 
advanced thanks to the molecular dissection of the SSC 
niche in the testis. Within the testis, Sertoli cells are the 
main cell type involved in the SSC niche[39]. The key 
factor GDNF, secreted by Sertoli cells, promotes SSC 
proliferation[40,41]. Any receptors expressed in SSCs 
that bind self-renewal promoting ligand molecules 
from the niche define their stem cell phenotype and 
constitute potential SSC markers[42]. That is the case 
of the widely accepted marker GFRα1, the receptor 
for GDNF in SSCs[43]. In domestic animals, besides 
GFRα1, another important marker for both gonocytes 
(perinatal germline stem cells) and SSCs is THY1[44-46]. 
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are able to generate very diverse tissues while in cell 
culture[1,3]. For instance, differentiated tissues appear 
in culture from a specific subpopulation of mouse mGS 
cells that show a pluripotent cell phenotype (POU5F1+) 
while at the same time expressing SSC proteins 
(c-Kit+)[62].

All in all, SSCs show excellent perspectives for 
applications in regenerative medicine. According to 
the “organ niche” theory, developmental failure in 
organogenesis caused by defective genes, can be 
compensated by xenogeneic pluripotent stem cell 
transplantation into genetically affected blastocysts[63]. 
The pluripotential cells would then integrate into 
the embryo, resulting in chimera formation with 
colonization of stem cells of xenogeneic origin in the 
organ forming niches during development. This has 
been demonstrated through animal models such as 
mouse and pigs to successfully generate functional 
kidneys[64] and pancreas[63,65]. SSC-derived pluripotent 
stem cells, with all their inherent advantages, could be 
used for these purposes. 

Although the current advances in the generation of 
testicular pluripotent cells in rodents are unquestionable, 
similar results in the humans have been controversial. 
Although one work demonstrated teratoma formation 
and pluripotency markers expression[66] on these cells, 
tumors showed a relatively small volume[67]. Several 
other groups have produced allegedly human mGS cells 
as well, but these cells, although expressing several 
pluripotency markers, do not produce teratomas when 
transplanted into the skin of immunocompromised 
mice[68-70]. In fact, one group recently found that 
human testicular embryonic-like cells (allegedly mGS 
pluripotent cells) do not possess a transcriptome 
similar to that of human ES cells but rather have the 
phenotype of mesenchymal stem cells (MSCs), there-
fore, concluding that these cells are not pluripotent 
and most likely not of germ cell origin but instead 
mesenchymal[71]. Current knowledge of human SSC 
culture conditions probably is insufficient and do not 
emulate the mouse SSC culture environment that has 
allowed the generation of mGS cells in this species. For 
further progress to be made, the exact mechanisms 
of SSC reprogramming need to be addressed. For 
instance, we know that primordial germ cells from 
the fetal period convert to ES-like pluripotent cells[72] 
via the AKT signaling pathway[73]. A very recent 
study found that spontaneous SSC reprogramming 
would be caused by unstable DNA methylation with 
involvement of the Dmrt1-Sox2 signaling pathway[74]. 
However, more research is required to successfully 
obtain human mGS cells. This will require very specific 
culture conditions and the molecular dissection of 
SSC pluripotency, all of which should continue to be 
investigated.

GENE TECHNOLOGIES AND SSC
ES cell-based transgenesis technologies are well 

developed and routinely used in the context of mouse 
species. However, SSCs can be used for a more 
straightforward route to transgenesis. ES cells, after 
genetically intervened, are injected into blastocysts 
with the hope of successful integration and contribution 
to the germline, which not always can be guaranteed. 
By contrast, SSCs are already constituents of the 
germline. Some other important differences with ES 
cells make SSCs best suited for mutagenesis (Table 
1), especially in species for which ES technologies 
are not feasible or physiological limitations exist like 
in farm animals. Additionally, unlike mice, some farm 
animals, primates and humans are uniparous species 
as a consequence of not producing large numbers 
of oocytes under normal physiological conditions. In 
addition, these species go through lengthy periods of 
time to attain puberty and sexual maturity. SSC genetic 
and epigenetic stability keep these cells committed to 
the germline phenotype so that they do not tend to 
differentiate into other lineages[59]. This trait makes 
their potential role for gene therapies clinically safer 
than other pluripotent stem cells. The use of SSCs for 
transgenesis in farm animals in comparison to ES cell-
based technologies in mice is depicted in Figure 2.

Another alternative for knockout (KO) animal pro-
duction is nuclear transfer of genetically modified 
somatic cells, but these cells have limited proliferation 
capacities, the technique shows inefficient offspring 
production and postnatal degenerative problems. For 
these reasons, cloning does not efficiently compete 
with ES cells or SSC technologies for gene targeting.

Due to their potentials, SSCs have been used to 
generate KO animals in several species. Transgenic 
mice generation by using SSCs was first accomplished 
with the use of retroviral vectors, however with low 
efficiency[75]. Later on, with the advent of GS cells (SSCs 
that proliferate in vitro) this cell type could be expanded 
in vitro and genetically modified through vectors 
(viruses or plasmids) with drug resistant genes to 
allow for the detection of SSCs carrying the transgene. 
These SSCs were transplanted to recipient mice and 
took over the spermatogenetic functions in the new 
environment to ultimately produce transgenic sperm. 
Transgenic heterozygous males with transgene carrying 
sperm were mated with females and progeny was 
produced, near 50% of which carried the transgene[76]. 
This illustrates the importance of an optimal culture 
system in order to expand SSC populations and thus 
increase the efficiency of the transgene incorporation. 
Soon after, sophisticated techniques added to the gene 
function modification toolbox such as the CRE/LoxP 
system for conditional gene targeting, was successfully 
adapted to the use with SSCs[77]. Interestingly, SSC 
mediated rat transgenesis was achieved in 2007[78] 
while parallel efforts with ES cells on this species were 
only successful until 2010[79]. Just recently, ES cells 
from domestic animals could be obtained for gene 
targeting goals[80]. Advances with farm animal SSCs 
continued in parallel. For instance, goat transgenic 
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sperm for human growth hormone was derived 
from male goats that had been transplanted with 
SSCs previously manipulated in vitro[81]. In a report 
from the same group, pig embryos, transgenic for a 
reporter gene (enhanced green fluorescent protein), 
could be obtained after oocytes were fertilized with 
transgenic sperm from culture transduced and later 
transplanted SSCs[82]. Very recently, bovine gonocytes 
were transduced through a lentivirus vector and the 
reporter transgene product proved the success of the 

procedure[83]. In dogs, a species with a strong potential 
to provide new models for human genetic diseases, 
SSCs have been characterized, cultured, genetically 
modified and allogeneically transplanted with eventual 
collection of transgenic sperm[84].

GERM CELL TRANSPLANTATION
SSC transplantation is an important tool for several 
other biotechnological applications such as gene 
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  Trait Embryonic stem cells SSCs

  Mutagenesis technical status Available for mice. Many genes mutated Experimental level in mouse[75], rats[78], goats[81], pigs[82] 
  Source Embryo Adult testis
  Age of derivation Embryonic period Postnatal period
  Ethical/legal concerns Yes No
  Efficiency 5 × to 10 × higher than with ES cells
  Cell differentiation state Undifferentiated - pluripotential Differentiated up to germ-line
  Tumorogenesis Produce teratomas Do not produce teratomas
  Chimera formation (+) (-)
  Germline gene transmission Do not transmit genes from one generation to the next Transmit genes from one generation to the next
  In vitro phenotype Colonies with tightly attached cells GS cells loosely attached (easily dissociated with trypsin)[2] 

  Speed of growth Faster Slower
  Requires other non-transfected SSCs 
  during culture

No Yes2

  Karyotype Variable - unstable1 Normal - stable
  Epigenetics Variable - unstable DNA methylation pattern Normal - stable DNA methylation pattern
  Offspring Abnormal Normal

Table 1  Summary comparison of characteristics of embryonic stem cells and spermatogonial stem cells in the context of transgenesis 
tecniques 

Otherwise specified, information presented is based on[2]: 1Often lose their germ cell potential due to trisomy[16]; 2Spermatogonial stem cells (SSCs) that 
proliferate in culture (GS cells) require specific non-transfected SSC densities during the process of drug selection[118]. ES: Embryonic stem.
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Figure 2  Alternative ways to exploit stem cells to produce transgenic animals. A: Standard method (well developed in the mouse): Embryonic stem cells (ES cells) 
are obtained from a donor mouse blastocyst. These cells are cultured and genetically modified (usually, DNA sequences are inserted on a gene of interest to disrupt its 
expression or gene knockout). ES cells are injected into another mouse blastocyst so that they can integrate into the embryo (chimera formation) with the hope that some 
of them will contribute to the male germline. In this case, donor germline cells will undergo homologous recombination (meiosis) in the testis after animals are born and 
develop towards puberty. The male animals will be heterozygous for the mutated gene and when crossed with their (also heterozygous) sisters, offspring will be obtained 
homozygous for the transgene; B: Transgenesis technique involving spermatogonial stem cells (SSCs), particularly useful for farm animals, for which ES cell technologies 
are not feasible. SSCs from postnatal animals can be expanded in culture, subject to gene targeting and transplanted to a recipient foreign testis. This way, steps used 
with ES cell technologies become redundant (Figure 2B, inside the box). With the advent of spermatogenesis in vitro, even the SSC transplantation procedure will not be 
necessary. Cryopreservation techniques for SSCs are already available.

A

B



therapy or fertility restoration. The first SSC successful 
transplantation was reported in 1994 in the pioneering 
work of the Brinster’s group[85]. Inspired on original 
hemopoietic fundamental transplantation work[86], 
this research group isolated germ cells from a donor 
mice that were later unequivocally identified as SSCs 
on a recipient mouse testis after injection into the 
seminiferous tubule system, based on their property 
to regenerate spermatogenesis in the foreign testicular 
niche (for a comprehensive review on this technique 
see[87]). This allogeneic type of transplantation is 
presently the basis for the functional assay to detect 
true SSCs in experimental models. The technique could 
be developed due to the presence of a single, easy to 
cannulate efferent duct in mouse species and to the fact 
that the mice strain used was immunocompromised. 
Unfortunately, this SSC transplantation procedure is 
technically demanding in species with several efferent 
ducts because, in these species they tend to be short, 
thin and highly convoluted (Figure 3). This anatomical 
condition corresponds to most farm animals[88], 
primates[89] and humans[90].

Xenogeneic transplantation of SSC cell suspensions 
into the mouse testis has been attempted by several 
groups[91]. For the first time, SSCs from a foreign 
species (rat) not only were able to colonize mouse 
seminiferous tubules but also to differentiate and 
produce normal rat sperm[92]. However, attempts 
with other SSC donor species showed that the farther 
apart in phylogenetical distance is the donor species 
from the mouse (recipient species), the lower level of 
progress of differentiation in spermatogenesis from the 
transplanted SSCs will be achieved within the foreign 
seminiferous epithelium environment (for details on 
SSC transplantation into the mouse testis, involving 
different donor species, see[91]). Accordingly, domestic 
animals and human beings as SSC donors are among 

those species in which this technique is not yet success-
ful. Thus, on these and many other species, functional 
assays to unequivocally detect the presence of their 
SSCs are very necessary.

Allogeneic SSC transplantation (SSCs transplanted 
from a donor animal to a recipient testis of another 
animal, both from the same species) has proven 
difficult in species other than rodents, particularly in 
large animals. Besides anatomical difficulties, each 
species seems to require specific technical protocols. 
Allogeneic transplantation has been attempted in seve-
ral farm animals, including pigs, goats and bulls[93-95]. 
For instance, transgenic sperm from a donor goat 
could be unequivocally identified in a recipient buck 
semen, meaning that transplanted SSCs could colonize 
and regenerate the spermatogenetic process in the 
unrelated testis[96]. When the limitations of these 
techniques are overcome they will facilitate several 
of the biotechnological applications described on this 
article. One aspect that still needs to be addressed is the 
method for depletion of endogenous spermatogenesis 
in recipient animals. This is typically performed by using 
either chemical compounds like the alkylating agent 
busulfan or alternatively testis irradiation. However, 
protocols need to be species optimized, which requires 
further research[97,98]. SSC transplantation could also be 
used for gene delivering purposes in order to increase 
the frequency of certain genes in animal populations. 
This would be particularly useful in extensive systems 
of livestock production, in which animals reproduce 
through natural service. Surrogate males could be 
transplanted with SSCs that over-express certain 
genes linked to increased production traits or from elite 
bulls in order to disseminate the desired genes in a 
population. Endangered species could also be benefited 
with such technologies. For instance, SSCs from the 
wild species to be preserved could be transferred to a 
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Efferent duct(s)

A

B

Figure 3  Species differences on anatomical points for spermatogonial stem cell injection for transplantation. The transplantation procedure for spermatogonial 
stem cells (SSCs) is simple in the mouse. In this species, (A) there is a single efferent duct emerging from the rete testis, which is easy to cannulate to inject SSCs (arrow). 
In most farm animals and men (B) several efferent ducts emerge from the testis, a reason why transplantation of SSCs is often done by injection of SSCs into the rete 
testis (arrow) with ultrasound guidance.
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phylogenetically related domestic animal embryo and 
this way become incorporated into the germline to 
eventually produce exotic sperm[99,100], this way saving 
the endangered germplasm.

As an alternative to SSC transplantation into testi-
cular environments, a new technique was developed 
in which whole testicular tissue explants (containing 
SSCs attached to their niche) from the desired species 
are placed in ectopical places such as the back skin 
(subcutaneous tissue) of immunocompromised mice. This 
approach was first successfully tried with mouse testis 
tissue (donor) grafted into mouse skin (recipient)[101,102]. 
This technique was designated testis tissue xenog-
rafting. When xenotransplanting testicular tissues from 
prepubertal animals (with only undifferentiated germ 
cells, including SSCs), complete spermatogenesis 
developed within the transplanted testicular tissues 
under the sponsoring of the host (mouse) vascular 
environment and intrinsic steroidogenesis of the donor 
tissue. This technique has been so far successful with a 
wide range of donor species including hamsters, rabbits, 
dogs, cats, sheep, goats, horses, bovines, alpacas and 
monkeys[103]. Work has also shown that testicular tissue 
pieces can be cryopreserved and later used with this 
technique in various species[104,105]. 

Tissue xenografting has represented a step 
forward in SSC biology that circumvents many of the 
current limitations the transplantation of germ cell 
suspensions into the seminiferous tubules of foreign 
recipient animals. This technique has been privileged 
by researchers during the recent years because of the 
positive outcomes in a range of very dissimilar species. 
Recently, a related technique was developed in which 
no whole tissue pieces are transplanted into the mouse 
skin but instead an assorted cell suspension composed 
of germ cells and testicular somatic cells, including 
Sertoli cells. Interestingly, all these cells reassemble 
under the mouse skin and testicular tissue becomes 
organized in a process that has been called de novo 
testicular morphogenesis[106,107]. This novel technique 
has been tested with testicular cell suspensions from 
rats[108], mice[109], pigs[110], sheep[111] and recently from 
a wild pig, the peccary[112]. Testis xenografts have 
produced so far fertile sperm in pigs and the related 
peccaries[112-114] demonstrating that SSCs present in the 
testicular tissues show a correct functioning that leads 
to the production of viable normal sperm within the 
body of a foreign species.

FERTILITY RESTORATION
Infertility is one of the critical side-effects of oncolo-
gycal treatments in humans and particularly in children, 
an effect which is caused either by chemothera-
peutic agents or irradiation. A proposed solution for 
this problem is the restoration of fertility via SSC 
transplantation. Since many of the patients in this 
situation are prepubertal (i.e., do not yet produce 

sperm), a current approach consists on banking testi-
cular tissue or cell suspensions prior to the oncological 
treatment and submitting the patient to an autologous 
transplantation of the preserved material if fertility 
problems arise later in life[115] (for recent advances in 
the methods for preservation of fertility on young male 
human oncological patients see the comprehensive 
review from Goossens et al[116], 2013). A word of 
caution is valid regarding safety issues when malignant 
diseases are managed with transplantation procedures. 
Invariably, cells suspensions including SSCs to be 
transplanted should be devoid of cancer cells. In 
experiments with rats, only as few as 20 leukemia 
cancer cells were enough to produce the disease when 
transplanted into healthy rat testis[117]. It is unknown to 
what extent this is reproducible in humans, but as an 
obvious measure, cell suspensions should be screened 
and positively selected for SSCs and/or negatively 
selected for cancer cells, through approaches such as 
FACS or special culture conditions[116]. An alternative 
approach would be to use testis xenografting or 
allografting with the hope to restore the spermatogenic 
process ectopically to a degree just enough to produce 
a few sperm to be later used with ARTs. Nevertheless, 
although already developed for several animal species 
(see the topic on Germ cell transplantation above) 
testicular xenografting requires further investigations to 
be implemented in humans. In general, more research 
in monkeys and humans is still needed, particularly on 
safety issues. 

FINAL REMARKS
The tremendous progress in SSC research during 
the last decade is undeniable. Appropriate conditions 
for SSC long-term culture are already widely known 
for the most important experimental model: the 
mouse, but research efforts are still being made to 
develop culture systems suitable for humans and 
other species, altogether with the study of the very 
specific SSC nutrient requirements. Advances such 
as SSC in vitro mutagenesis are already possible in 
the mouse. The imminent unraveling of the molecular 
mechanisms of SSC pluripotency will bring about many 
other interesting biotechnological possibilities. The 
long-awaited accomplishment of SSC transplantation 
techniques for farm animals and humans is under 
current development, despite the widespread use of 
testis xenografting in many species with high rates of 
success. Finally, spermatogenesis in vitro is already 
possible for laboratory species, so important applications 
in regenerative medicine and animal reproduction are 
expected. 
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Abstract
In orthopedics, tissue engineering approach using 
stem cells is a valid line of treatment for patients with 
bone defects. In this context, mesenchymal stromal 
cells of various origins have been extensively studied 
and continue to be a matter of debate. Although mesen-
chymal stromal cells from bone marrow are already 
clinically applied, recent evidence suggests that one may 
use mesenchymal stromal cells from extra-embryonic 
tissues, such as amniotic fluid, as an innovative and 

advantageous resource for bone regeneration. The 
use of cells from amniotic fluid does not raise ethical 
problems and provides a sufficient number of cells 
without invasive procedures. Furthermore, they do 
not develop into teratomas when transplanted, a 
consequence observed with pluripotent stem cells. 
In addition, their multipotent differentiation ability, 
low immunogenicity, and anti-inflammatory properties 
make them ideal candidates for bone regenerative 
medicine. We here present an overview of the features 
of amniotic fluid mesenchymal stromal cells and their 
potential in the osteogenic differentiation process. 
We have examined the papers actually available on 
this regard, with particular interest in the strategies 
applied to improve in vitro  osteogenesis. Importantly, a 
detailed understanding of the behavior of amniotic fluid 
mesenchymal stromal cells and their osteogenic ability 
is desirable considering a feasible application in bone 
regenerative medicine. 

Key words: Mesenchymal stromal cells; Amniotic fluid; 
Amniotic fluid mesenchymal stromal cells; Amniotic fluid 
stem cells; Osteogenesis; Bone regeneration
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Core tip: Several papers regarding the osteogenic 
differentiation potential of cells isolated from amniotic 
fluid have been published so far with particular atten-
tion to various feasible approaches to improving differen-
tiation both in vitro  and in vivo . Hence, an overview is 
necessary on the data reported up to now in order to 
understand the potential of amniotic fluid-derived cells in 
bone regenerative medicine. This review takes a general 
look at the current state-of-the-art of the osteogenic 
ability of amniotic fluid-derived cells and the different 
strategies available to improve bone regeneration. 
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INTRODUCTION
In the last few decades degenerative lesions of the 
musculoskeletal system have become increasingly 
common, leading to social and economic problems, 
and intensifying the demand on medical services[1]. 
Common examples are temporary and permanent 
disability due to osteoarthritis or fractures caused by 
loss of bone mass such as osteoporosis or osteopenia, 
particularly in the elderly. In the younger population 
widespread active lifestyles including sport activities 
have increased the possibility of bone and cartilage 
damage. Moreover, bone defects mostly emerge from 
trauma, tumor resection and congenital malformation. 
So far, the most effective clinical method for the recons
truction of large bone defects is the use of autogenous 
bone grafts, commonly harvested from the posterior 
iliac crest and transplanted into a local bone defect[2]. 
The weakness of this method is the surgical stress 
the patient undergoes in extracting bone with possible 
subsequent inflammation and donor site morbidity. 
Furthermore, the quantity of extractable bone is limited. 

Recently, advances in the field of stem cells have 
come to represent a valid alternative to this method[3]. 
Nowadays there is growing interest in therapies based 
on mesenchymal stromal cells (MSCs) as a poten
tial effective treatment for bone defects. MSCs are 
multipotent cells with the potential to engender a 
range of specialized cell types, such as osteoblasts, 
chondrocytes and adipocytes[4]. The mesenchymal 
progenitor cells in the bone marrow are able to diffe
rentiate into osteoblasts following the influence of 
multiple osteogenic signals[5,6]. In particular, after 
fracture MSCs of bone marrow are transferred to the 
site of bone injury through peripheral blood, thus 
enhancing the healing potential of local MSCs[7]. In 
this condition, bone morphogenic proteins (BMPs) play 
an important role. Indeed, osteoblastic differentiation 
begins when the BMPs bind their receptors activating 
the transcription factors runtrelated transcription factor 
2 (Runx2) and Osterix, and subsequent downstream 
osteoblast specific genes, through activation of a 
Wnt/LRP5 cascade, which is crucial in bone mass 
modeling[5,8,9]. 

Regarding the principal signaling pathways involved 
in MSC differentiation, various evidences have sugges
ted that during cultivation in vitro, an inverse relation
ship exists between the commitment of MSCs toward 
osteogenic and adipogenic lineages[10]. Several cell 
signaling cascades are involved in this cell fate decision 
between osteo and adipogenesis[11]. The master 
regulator of osteogenesis is Runx2, the gene target of 
many signaling pathways, including but not limited to 
transforming growth factorbeta 1 (TGFβ1), BMP[12], 

Wingless type (Wnt)[13], Hedgehog (HH)[14], and (NEL)
like protein type 1 (NELL1)[15]. 

Thus, considering the crucial role of MSCs in bone 
healing, the strategy of using the osteogenic potential 
of such cells transplanted into the bone defect seems 
promising[7,16].

Mesenchymal stromal cells derived from bone 
marrow (BMMSCs) have been used in clinical trials 
for the treatment of bone defects[17]. However, bone 
marrow aspiration is a difficult, invasive and painful 
procedure for the donor. The amount of BMMSCs 
is usually between 0.001% and 0.01% of the total 
population and, in addition, the BMMSC number and 
differentiation potential may be affected by increasing 
donor age. This implies an extensive in vitro expansion 
of such cells before transplantation, thus increasing the 
risk of possible differentiation induction and epigenetic 
modifications[18]. On the other hand, the use of allo
geneic BMMSCs for bone repair is unsuitable due to 
immune rejection[19]. 

As an alternative, mesenchymal stromal cells 
can be found in various adult organs and tissues[20], 
including blood[21], adipose tissue[22] and dermis[23]. 
Although sharing similar properties, these MSCs from 
various sources have different gene expression profile 
and differentiation ability[24]. 

Mesenchymal stemlike cells have also been 
recognized in fetal blood, liver and bone marrow[25]. 
In this regard, Guillot and colleagues have shown that 
first trimester fetal blood, liver, and bone marrow MSCs 
possess greater osteogenic differentiation potential than 
adult BMMSCs[26]. They found through quantitative 
realtime RTPCR that 16 osteogenic specific genes 
(OC, ON, BSP, OP, Col1, PCE, Met2A OPG, PHOS1, 
SORT, ALP, BMP2, CBFA1, OSX, NOG, IGFII) were more 
expressed in fetal MSCs under basal conditions and 
were upregulated during osteogenic differentiation both 
in vitro and in vivo[26]. These cells are more primitive 
than adult MSCs[25], therefore potentially promising 
for therapeutic use in regenerative medicine, even if 
isolating them is subject to considerable public unease. 

An alternative approach could result from the use 
of MSCs derived from extraembryonic tissues, which 
possess the advantage of being isolated from tissues 
normally discarded after birth, hence exempt from 
ethical concern, such as amniotic fluid, umbilical cord 
and placenta[2729]. 

This review will focus on the biological proper
ties of MSCs isolated from amniotic fluid (AFMSCs) 
with particular attention to their in vitro osteogenic 
differentiation potential with a view to possible final 
application in bone regenerative medicine (Figure 1). Of 
note, these cells possess a greater proliferative capacity, 
lower immunological reactivity and lower risk of graft
versushost disease than those derived from adult 
bone marrow[30]. Importantly, compared with other 
MSC sources, such as umbilical cord bloodderived 
MSCs, AFMSCs are more easily isolated and show 
better proliferation ability[31]. 
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In particular, AFMSCs are autologous to the foetus 
representing an attractive source for the treatment 
of perinatal disorders such as congenital malforma
tions[32,33]. Hence, affected children could benefit from 
their own cells which could be banked, expanded 
in culture or properly engineered and implanted in 
the neonatal period. In addition, AFMSCs are semi
allogeneic to each parent, therefore potentially useful 
for the other members of the family[34].

Moreover, the beneficial effect of AF-MSCs observed 
in preclinical studies, such as lung injury[35], ischemic 
heart[36], acute bladder injury[37], neovascularization[38], 
encourages their future application in regenerative 
medicine tissue engineering.

AMNIOTIC FLUID-DERIVED CELLS
Human amniotic fluid, contained within the amniotic 
cavity, begins to appear at the second week of 
gestation. It surrounds the growing fetus, protects 
from outside injury and acts as the vehicle with the 
mother[30]. It contains a variety of cells arising from 
all three germ layers (ectoderm, mesoderm and 
endoderm) routinely obtained for prenatal diagnosis of 
fetal abnormalities during second trimester pregnancy, 
through a minimally invasive technique. Amniotic 
fluid cellular composition substantially depends on 
the gestational age[27]. Most of the cells present in the 
amniotic fluid are terminally differentiated and have 
low proliferative capacity[32]. Three major cellular types 
can be classified based on morphological, biochemical 
and growth characteristics: epithelioid, amniotic fluid 
and fibroblastic cells[39]. 

Interestingly, a population that expresses the 
surface antigen ckit (CD117), stem cell factor receptor, 
can be isolated from amniotic fluid. These cells, 
named amniotic fluid stem cells (AFSCs), represent 
about 1% of the total cells[40]. It should be noted 
that, mesenchymal stromal cells (AFMSCs) with a 
multilineage differentiation potential are present in the 
amniotic fluid[41,42]. 

AFMSCs are highly proliferative with a normal 
karyotype after longterm in vitro culture and do not 
form teratomas when transplanted in vivo[43]. They 
do not display any hematopoietic molecular markers 
(CD14, CD31 and CD45), while they express the 
intracellular stemness markers TERT, SOX2 and Nanog 
and the surface adhesion molecules CD29, CD58, 
CD166 and CD90[44]. 

The absence of HLADR and presence of HLAABC 
suggest that these cells may be applicable in immune
mediated disorders as well as in the treatment of graft
versushost disease[43]. It is also important that AFMSCs 
display a broad differentiation potential toward multiple 
lineages (i.e., adipogenic, chondrogenic, myogenic 
and osteogenic)[34]. They possess an intermediate 
differentiation potential between embryonic (pluripotent) 
and adult cells with advantages over both. Compared 
to adult cells, AFMSCs possess greater differentiation 
potential and more primitive properties with fewer 
accumulated mutations[45]. Respect to embryonic stem 
cells (ESCs), AFMSCs possess the advantage to do 
not form teratomas when transplanted in vivo. Indeed, 
although ESCs are pluripotent cells which maintain high 
plasticity and extensive selfrenewal capacity, possible 
host immune rejection after allotransplantation and the 
formation of tumors when injected undifferentiated or 
partially differentiated in vivo, raise safety concerns[4648]. 
Furthermore, their clinical use is limited by ethical issues 
due to the need to isolate them from the inner cell 
mass of a blastocyst[49]. 

In the last few years methods able to generate 
patientspecific pluripotent stem cells (iPSCs) from 
adult cells have been developed to overcome the 
limitations associated with ESCs[50,51]. Such iPSCs, 
obtained through the ectopic expression of defined 
transcription factors (Oct4, Sox2, Klf4, cMyc), are 
molecularly and functionally similar to ESCs. They show 
similar morphology and growth properties, express 
pluripotency markers, are able to generate germline
competent chimeras and form tumors when injected 
into immunecompromised mice[51]. Although iPSCs 
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Figure 1  In vitro and in vivo application of amniotic fluid-derived cells. Amniotic fluid-derived cells isolated from amniotic fluid samples obtained following ultrasound-
guided amniocentesis (1) for genetic test (2), could be in vitro expanded (3). These cells may be genetically manipulated and transplanted back into the same fetus (4). 
AF-derived cells can be used unselected (AF-MSCs) or selected for CD117 (AFSCs) (5). Both cellular populations can be in vitro differentiated in 2D (6) or 3D (7) culture 
conditions. They represent an ideal in vitro model for testing osteoinductive molecules (8) and for in vivo autologous or allogeneic transplantation (9). Alternatively, they 
could also be banked (10) and adopted post-thawing.



The conventional protocol applied to induce osteo
genic differentiation of AFMSCs consists of basal 
medium, such as Dulbecco’s modified Eagle’s medium, 
supplemented with 10% Fetal Bovine Serum, βgly
cerolphosphate, ascorbic acid and dexamethasone 
(standard osteogenic medium). For the purpose of 
assessing in vitro differentiation, protein and gene 
expression of specific osteogenic markers [e.g., 
alkaline phosphates (ALP), Collagen type I, bone sialo
protein, osteocalcin, RUNX2] are usually evaluated in 
addition to specific colorimetric assays, such as ALP, 
Alizarin Red S and Von Kossa staining. 

However, various approaches have been applied 
to improve and accelerate differentiation of amniotic 
fluid-derived cells into osteogenic cells. Attempts have 
been made to produce osteoblastic cells from amniotic 
fluid samples in a very short time, using a single step 
culture procedure, which allows a 20d reduction in 
culture time[60]. 

One notes that several studies have demonstrated 
how such osteoinductive molecules are able to improve 
the osteogenic differentiation process[44,6368].

In detail, then, AFMSCs transfected with a defective 
adenoviral vector expressing human lim mineralization 
protein 3, an intracellular positive regulator of osteoblast 
differentiation, showed downregulation of stemness 
kruppellike factor4 and then increased osteogenic 
differentiation[63]. 

Again, Simvastatin, a 3hydroxy3methylglutaryl
coenzyme A reductase inhibitor able to act on chole
sterol endogenous synthesis, has been shown to be 
efficient in stimulating new bone formation. When 
added to osteogenic differentiation medium, Simvastatin 
was able to induce massive osteogenic differentiation of 
AFMSCs, as observed by Alizarin Red S staining, and 
increased expression of typical osteogenic genes, such 
as osteopontin (OPN) and osteocalcin[64].

Herbal medicines have also been used to improve 
the osteogenic differentiation of AFMSCs. Naringin, 
the main active compound of Chinese herbal medicine 
(Rhizoma drynariae), proved able to enhance osteo
genic differentiation, increasing ALP activity and the 
expression of the osteogenic specific markers OPN, 
Collagen I, bone morphogenetic protein 4 (BMP4), 
RUNX2, βcatenin and cyclin D1[66]. 

Another traditional Chinese herbal medicine 
commonly used in treating orthopedic disorders, Curculi
goside, was found to have a positive effect on the 
osteogenic differentiation of human AFSCs[65].

Moreover, during osteogenic differentiation of both 
amniotic fluid and dental pulp stem cells, the in vitro 
addition of Ferutinin, a phytoestrogen able to prevent 
osteoporosis caused by ovariectomyinduced estrogen 
deficiency, was efficacious in enhancing the production 
of a calcified matrix[67]. 

It has been noted that, in coculture with osteo
blasts obtained from the differentiation of dental pulp 
stem cells AFMSCs prove able to generate osteoblasts. 
The same effect was observed when AFMSCs were 

allow one to overcome both the ethical and the tissue 
compatibility problems of ESCs, current studies are 
still investigating the safety profile of these cells 
for therapeutic application[52]. The main limitation 
related to iPSC generation is the use of retroviruses or 
lentiviruses, which could cause mutagenesis leading to 
a risk for teratogenesis.

Therefore, given the easier accessibility and the 
faster availability of a great number of AFMSCs in 
culture in comparison to iPSCs, AFMSCs may hold 
great promise in regenerative medicine. 

However, since iPSCs seem one of the most 
promising future sources of stem cells for tissue regen
eration, research is going ahead to find the best 
cell source to reprogram and develop alternative 
methods for generating pluripotent cells using non 
integrating systems. In this context, recent evidences 
has suggested that cells derived from amniotic fluid 
are more easily and rapidly reprogrammed than adult 
cells[5355]. More recently, iPSCs have been developed 
from amniotic fluid cells without ectopic factors by 
culture in an appropriate medium[56], thus reinforcing 
their potential application in cellular replacement 
therapies.

These important features, together with the high 
proliferation rate, ease of retrieval and more stable 
profile, provide a convincing proofofprinciple for 
potential autologous application of AFMSCs for bone 
regeneration in perinatal applications[57]. Furthermore, 
a bank of such cells is achievable and may in the 
future provide a plentiful source for autologous therapy 
in adulthood as well as for transplantation into HLA
matched recipients. 

IN VITRO OSTEOGENIC 
DIFFERENTIATION
The osteogenic differentiation capacity of AFderived 
cells obtained from various sources (human, sheep, 
mouse and rat) has been broadly documented[39,40,58,59]. 
Some studies have reported the great potential of 
ckit selected amniotic fluid cells prior to osteogenic 
differentiation[40], while others have demonstrated that 
unselected cells are also able to properly differentiate 
into osteospecific cells[13,41,44,60]. In this review we 
mainly discuss the in vitro osteogenic differentiation of 
AFMSCs with occasional mention of papers in which 
authors use ckit selected cells, named AFSCs (Table 
1). It should be pointed out that, compared to BM
MSCs, AFMSCs have higher selfrenewal capacity and 
are more potent for lineage-specific differentiation[40]. 
Therefore, considering also their more easily isolation 
and the great number of available cells, AFMSCs may 
represent excellent candidates for cell replacement 
therapies[61]. Of note, even if there are other MSC 
sources easily available, like adiposederived MSCs, 
the osteogenic capacity of such cells compared to BM
MSCs is now still debated[62]. 
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cultured in the conditioned medium of osteoblasts
differentiated dental pulp stem cells[69].

Moreover, some findings show that microRNAs 
(miRNAs) are involved in determining the fate of stem 
cells[70]. For example, a recent paper has shown the 
role of miR21 in accelerating osteogenesis of AF
MSCs[71]. In that work two cellular populations were 
isolated from amniotic fluid: spindle-shaped (SS) and 
roundshaped (RS). Interestingly, induction of miR21 
was found to accelerate osteogenesis more in the SS 
population than in RS cells[71].

Finally, human AFMSCs analyzed by an atomic 
force microscope during osteogenic differentiation 
showed a decrease in cell elasticity, which is typical of 
mature osteoblasts; thus the mechanical properties of 
AFMSCs again add to the interest in applying them in 
bone regenerative medicine[72]. 

Up to now, little is known about the cues regulating 
the AFMSCs’ ability to differentiate to osteoblasts. 
In depth study of the mechanism involved in the 
osteogenesis of AFMSCs may hence help to develop 
standard protocols for clinical application in bone 
regenerative medicine. In this context, there is some 
evidence to suggest a role by the canonical Wnt signal 
pathway in bone formation as activation of this pathway 
stimulates osteoprogenitor proliferation and osteogenesis 
of human MSCs[73,74]. Wnt signaling is also involved in 
AFMSC commitment toward osteogenesis[13]. 

Recently, we identified for the first time, the 
presence of Calcium Sensing Receptor (CaSR) in 
ovine and human AFMSCs[44,68]. CaSR, originally 
cloned from parathyroid glands, acts by controlling 
the secretion of parathyroid hormone in response to 
changes in extracellular calcium levels[75]. However, 
it is well known that CaSR plays an important role 
in controlling osteoblasts as well as in osteoclast 

recruitment, differentiation and survival via multiple 
intracellular signals[76]. Interestingly, we observed 
that CaSR expression in both ovine and human AF
MSCs increased at the membrane when cells were 
treated with calcimimetic R568, a molecule able to 
modulate bone cell metabolism via CaSR[77]. This effect 
was abolished by CaSR allosteric inhibitor Calhex231 
and by selective inhibitor NPS2143. Importantly, 
downregulation of CaSR by a genesilencing approach 
confirmed the crucial role of CaSR in supporting 
osteogenic differentiation[44]. 

These findings support the role of calcimimetics in 
the osteogenic differentiation of AFMSCs, and suggest 
a strategy to develop therapy against bone injury.

Although the aforementioned studies have shown 
that AFMSCs can be made to differentiate into 
osteoblasts in vitro[40,41] and some pathways have 
been investigated, more studies and clinical trials are 
needed before AFMSCs can be applied clinically for in 
vivo bone regeneration. 

TISSUE ENGINEERING APPROACHES 
FOR IN VIVO BONE REGENERATION
For a long period time autogenous bone grafting was 
considered the gold standard for in vivo bone rege
neration[78]. Because of its limited availability and 
potential donor site morbidity, several bone substitutes 
have been successfully tried as an alternative, 
combining principles of biology and engineering. In 
vivo bone regeneration based on tissue engineering 
using scaffolds offers a plausible way of creating a 
favorable microenvironment for cells[79]. 

The choice of an appropriate scaffold along with 
selection of the best suited cell source is currently 
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  Cell source Methods to induce osteogenic differentiation Ref.

  hAF-MSCs Culture in standard osteogenic medium on sandblasted and acid etching titanium (SLA titanium) [60]
  hAF-MSCs Transfection with a defective adenoviral vector expressing human LMP3 [63]
  hAFSCs Standard osteogenic medium plus curculigoside [65]
  hAFSCs Standard osteogenic medium plus naringin [66]
  hAFSCs 100 µmol/L 2P-ascorbic acid, 100 nmol/L dexamethasone, supplemented with different concentrations of Ferutinin [67]
  hAF-MSCs Induction of miR-21 [71]
  hAFSCs Medium containing 50 nmol/L rhBMP-7, 50 mg/mL ascorbic acid, and 10 mmol/L b-glycerophosphate on nanofibrous or solid walled 

scaffolds
[86]

  hAFSCs 10 nmol/L dexamethasone, 6 mmol/L β-glycerol phosphate, 50 mg/mL ascorbic acid 2-phosphate, 50 ng/mL L-thyroxine on 
electrospun nanofiber meshes

[88]

  hAFSCs Standard osteogenic medium on:
(1) Fibroin scaffold;

(2) Collagen scaffold;
and (3) Poly-D,L-lactic acid scaffold;

[89]

  hAFSCs Standard osteogenic medium on microfibrous starch and poly(ε-caprolactone) scaffold [90]
  hAFSCs Medical-grade poly-ε-caprolactone scaffold [91]
  hAFSCs Standard osteogenic medium on collagen matrix derived from porcine bladder submucosa matrix and poly (lactide-co-glycolide) [92]
  hAFSCs Standard osteogenic medium on construct composed of collagen type I [93]
  hAFSCs α-MEM plus 17% FBS, 1 μmol/L dexamethasone, 6 mmol/L of β-glycerol phosphate, 50 μg/mL ascorbic acid 2-phosphate, and 

50 ng/mL thyroxine on biomaterial named Skelite
[38]

Table 1  Studies describing in vitro  modification of standard culture condition to induce osteogenic differentiation of AF-derived cells

MSCs: Mesenchymal stromal cells; AF-MSCs: MSCs isolated from amniotic fluid; AFSCs: Amniotic fluid stem cells; LMP3: Lim mineralization protein 3.

Pipino C et al . Amniotic fluid-derived cells osteogenesis



being widely studied. 
As discussed above, the advantages of using 

amniotic fluidderived cells are well established. 
Their high proliferation and osteogenic differentiation 
ability, together with the possibility of autologous or 
nonimmunogenic transplantation and the absence 
of teratoma formation, makes possible a three
dimensional application of amniotic fluid cells in bone 
regeneration.

In general, a scaffold is a threedimensional cons
truct able to support adhesion, proliferation, and 
function of appropriate cells[78]. Stimuli mimicking 
the in vivo bone environment are needed for tissue
engineered constructs. It is well known that the bone 
regeneration ability of MSCs is mainly due to their 
paracrine effects[80]. They secrete bioactive substances 
that are able to enhance migration, proliferation, and 
differentiation of the neighboring resident cells[81,82]. 
Thus, what is required is the right combination of cells 
and the most appropriate support and factors.

Various synthetic and nonsynthetic scaffolds have 
been employed to support osteogenic differentiation 
of AFMSCs. One commonly used nonsynthetic 
scaffold is collagens, which are present in the bone 
tissue, where they stimulate MSCs to differentiate 
into osteoblasts, initiating new bone formation[78]. 
This natural scaffolds are frequently used for their 
high availability, biological plasticity, biocompatibility, 
biodegradability and nontoxicity[83,84].

It has been found that osteoblasts obtained from 
AFMSCs were able to adhere and grow well on SLA 
(Sandblasted and Acid Etching) titanium surfaces, 
materials commonly utilized in dental implantology, as 
revealed by electron microscopy observation[60].

Berardinelli et al[85] have demonstrated that a bio
mimetic commercial scaffold (magnesiumenriched 
hydroxyapatite (MgHA)/collagenbased scaffold) 
engineered with ovine AFMSCs improves bone regen
eration in a sheep model of sinus augmentation. Of 
note, the surface of this commercial scaffold was able 
to entrap a very high concentration of cells (1 × 107 

cells/cm2) under dynamic cultural conditions. The 
osteoinductive properties of this scaffold, together with 

the potential of ovine AFMSCs clearly accelerated the 
formation of new bone.

Human AFSCs seeded on nanofibrous (NF) or 
solid walled (SW) scaffolds were induced in rhBMP7
containing medium for 7 d and implanted into male 
outbred thymic nude mice (nu/nu). Six weeks after 
implantation, bone formation was found on scaffolds as 
noted by von Kossa staining with greater mineralization 
on NF than SW scaffolds[86]. 

Synthetic NF scaffolds were developed with a 
morphology similar to that of natural collagen fibers, 
the aim being to mimic the morphological function of 
collagen fibers[87].

Human AFSCs were differentiated on electrospun 
nanofiber meshes and compared to BMMSCs. In 
these experimental conditions, the cells displayed a 
delay in alkaline phosphatase activity, but elevated 
mineral deposition after 4 wk in culture, compared to 
BMMSCs[88]. The nanofiber mesh scaffold possesses 
high porosity, large surfaceareatovolume ratios and 
size scale similar to extracellular matrix components. 
It allows the attachment of the cells and act as 
an efficient vehicle to deliver them to a defective 
site. A study by Maraldi et al[89] demonstrated that 
mineralization of hAFSCs tended to be enhanced on 
fibroin scaffolds, better than collagen and polyD,L
lactic acid scaffolds. The cells were predifferentiated 
on scaffolds for one week and then bone formation in 
vivo was determined after subcutaneous implantation 
into immunesuppressed rats[89].

Again, human AFSCs were able to proliferate and 
differentiate into the osteogenic phenotype, producing 
mineralized extracellular matrix similar to BMMSCs 
in 2D culture conditions[90]. Moreover, when seeded 
on microfibrous starch and a poly(εcaprolactone) 
scaffold, AFSCs successfully differentiated into osteo
genic cells. The high porosity of the scaffold influenced 
the sequential development of osteoblastic cells and 
improved the osteogenic differentiation process. 
Some differences from BMMSCs were observed in 
the expression of RunX2, collagen I and ALP activity, 
denoting that cells from different origins may express 
different osteogenic markers at different times[90]. 
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  Cell source Scaffold Animal model Ref.

  oAF-MSCs Magnesium-enriched hydroxyapatite/collagen-based scaffold Sheep model of sinus augumentation [85]
  hAFSCs Nanofibrous or solid walled scaffolds Midsagittal incision made on the dorsa and two subcutaneous pockets 

created using blunt dissection on male outbred thymic nude mouse 
model (nu/nu)

[86]

  hAFSCs Fibroin scaffolds compared to collagen and poly-D,L-lactic 
acid scaffolds

Dorsal mid-sagittal incision made on the dorsa and two subcutaneous 
pockets were created using blunt dissection male outbred rats 

[89]

  hAFSCs Microfibrous starch and poly(ε-caprolactone) scaffold Subcutaneous implantation into the dorsal side of athymic female nude 
rats

[91]

  hAFSCs Construct composed of collagen type I Critical-sized rat calvarial defect after oral administration of 
phytoestrogen ferutinin

[93]

  hAFSCs Biomaterial Skelite Subcutaneous implantation in the back of CD-1 nu/nu mice [38]

Table 2  Studies describing in vivo  osteogenic differentiation of AF-derived cells

MSCs: Mesenchymal stromal cells; AF-MSCs: MSCs isolated from amniotic fluid; AFSCs: Amniotic fluid stem cells.
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In addition, AFSCs were also able to produce min
eralized matrix within porous medicalgrade polye
caprolactone (mPCL) scaffold. The latter has good 
mechanical stability, large surface area and high 
porosity, allowing the attachment of AFSCs and extra
cellular matrix deposition. The construct, composed 
of an mPCL scaffold and AFSCs predifferentiated for 
28 d, was succeeded in producing seven times more 
mineralized matrix when implanted subcutaneously on 
the dorsal side of athymic female nude rats[91]. 

The same cells also proved able to adhere to 
a composite scaffold formed of a collagen matrix 
derived from porcine bladder submucosa matrix 
and poly(lactidecoglycolide). In this condition, the 
osteogenic differentiation of AFSCs was improved, as 
revealed by increased mineralization and upregulation 
of osteogenic genes[92]. Indeed, the combination of 
natural scaffold with synthetic polymers was able to 
provide a microenvironment to facilitate the osteogenic 
differentiation.

More recently, a construct composed of collagen type 
I and AFSCs was used to evaluate bone regeneration in 
criticalsized rat calvarial defect after oral administration 
of phytoestrogen ferutinin[93]. Interestingly, 4 wk after 
implantation, the construct had reconstructed almost 
70% of the criticalsize defect[93]. Collagen type I, the 
major component of the extracellular matrix, facilitated 
cell adhesion and boneforming cells in the defect site.

Another interesting study, by Mirabella et al[38] 
demonstrated that AFSCs loaded onto a biomaterial 
named Skelite and subcutaneously implanted in the 
back of CD1 nu/nu mice gave rise to mineralized 
bone. Skelite disk is composed of silicon stabilized 
tricalcium phosphate biomaterial with a porosity of 
approximately 60% and an open structure similar to 
bone. However, they found that AFSCs did not have a 
direct role in new bone formation, but contributed to 
host progenitor recruitment and vessel formation in 
the engineered bone.

The unique features of AFderived cells combined 
with the interesting results obtained in animal models 
of skeletal damage (Table 2) make them promising 
for the regeneration of bone tissue. Thanks to their 
immunosuppressive properties, allogeneic trans
plantation of AFMSCs may be applied in various 
orthopedic conditions, and cell banks may be set 
up for regenerative medicine (Figure 1). However, 
more accurate understanding of the behavior and 
homing of AFMSCs in vivo is necessary before they 
can be clinically applied. Moreover, additional studies 
are required to improve implanted cell survival and 
to ascertain the best biomaterial and the optimal 
combination of cytokines and growth factors. 

CONCLUSION
One purpose of bone regeneration is to find the most 
appropriate source of stem cells for clinical application 
together with the best biocompatible support. 

Bone marrow harvesting requires invasive pro
cedures while the MSC number and differentiation 
potential decline with increasing age of the donor[94]. 

MSCs from extraembryonic tissues are easily 
accessible. Moreover, their osteogenic potential and 
their safety in humans have been already tested. What 
is more, considering the high number of MSCs that can 
be isolated from amniotic fluid, a possibility of banking 
these cells adds greater promise of their clinical 
application. Furthermore, the osteogenic commitment 
of AFMSCs could be enhanced by using appropriate 
osteoconductive scaffolds and osteoinductive growth 
factors[90]. 

Although these cells are very promising, therefore, 
in order to apply them for bone regeneration further 
investigations are needed to select the safest and most 
efficient cellbased approach. Certainly the results 
obtained so far are most promising: preclinical and 
clinical studies should be continued, thus opening new 
insights in the foreseeable future.
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Abstract
Rotator cuff tears are frequent shoulder problems that 
are usually dealt with surgical repair. Despite improved 
surgical techniques, the tendon-to-bone healing rate 
is unsatisfactory due to difficulties in restoring the 
delicate transitional tissue between bone and tendon. 
It is essential to understand the molecular mechanisms 
that determine this failure. The study of the molecular 
environment during embryogenesis and during normal 
healing after injury is key in devising strategies to get 
a successful repair. Mesenchymal stem cells (MSC) can 
differentiate into different mesodermal tissues and have 
a strong paracrine, anti-inflammatory, immunoregulatory 
and angiogenic potential. Stem cell therapy is thus a 
potentially effective therapy to enhance rotator cuff 
healing. Promising results have been reported with the 
use of autologous MSC of different origins in animal 
studies: they have shown to have better healing proper-
ties, increasing the amount of fibrocartilage formation 
and improving the orientation of fibrocartilage fibers with 
less immunologic response and reduced lymphocyte 
infiltration. All these changes lead to an increase in 
biomechanical strength. However, animal research is still 
inconclusive and more experimental studies are needed 
before human application. Future directions include 
expanded stem cell therapy in combination with growth 
factors or different scaffolds as well as new stem cell 
types and gene therapy. 

Key words: Rotator cuff; Enthesis; Biologic; Stem cells

© The Author(s) 2015. Published by Baishideng Publishing 
Group Inc. All rights reserved.

Core tip: Current surgical techniques in rotator cuff 
repair do not achieve good tendon-to-bone healing. 
The use of stem cells to improve healing is a promising 
alternative. Different in vivo  animal studies have shown 
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good results in achieving restoration of the native 
enthesis. However, human studies are scarce so the use 
of stem cell therapy in rotator cuff repair should still be 
considered and experimental technique. Further basic 
and clinical research is needed. 
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INTRODUCTION
The rotator cuff is a structure formed by the tendinous 
insertions of a group of muscles that dynamically 
stabilize the glenohumeral joint. Rotator cuff disease is 
the most common condition of the shoulder for which 
patients seek treatment and can be found in 30% to 
50% of the population aged older than 50 years[1,2]. 
However, it also affects athletes and active individuals 
regardless of age and activity level.

Rotator cuff tears often require surgical treatment 
in order to increase function and decrease pain[3,4]. The 
objective of the treatment is the repair of the damaged 
tendons. Whether or not healing of the tear is a 
prognostic factor on function and pain after rotator cuff 
repair has been controversial. However, most of the 
authors have found that tear recurrence determines 
lower functional scores and a decrease in patient 
satisfaction[5-7]. In an attempt to improve the strength 
of the surgical repair, new materials and surgical 
techniques that aim to reproduce the anatomical 
footprint of the rotator cuff have been proposed[8,9]. 
Despite these significant technical advances, several 
studies have shown a persistently high failure rate of 
tendon to bone rotator cuff repair that ranges from 
30% to 94%[6,10,11].

The main problem with failure in rotator cuff 
repair is probably biologic, as it is well known that 
the delicate and highly specialized fibro-cartilaginous 
transition zone between the rotator cuff and the 
bone does not regenerate after repair[12,13]. Standard 
tendon to bone repair techniques attain only a fibro-
vascular scar tissue that has relatively poor mechanical 
properties[14]. Thus, the focus in research has changed 
from mechanical improvement of the repair techniques 
to finding ways to improve the biological environment 
around that repair[15-22]. This would include growth 
factors (GF), bone morphogenetic proteins (BMPs) as 
well as stem cells. The hypothesis is that biological 
therapies might facilitate the regeneration of the 
normal tendon-to-bone insertion microarchitecture 
and limit the amount of scar tissue. In this direction, 
isolated GF or platelet rich plasma has been recently 
used with variable results but stems cell are a more 

promising alternative[23-25].
Stem cells have demonstrated great potential 

in enhancing the biologic healing process based on 
their influence in angiogenesis and the inflammatory 
pattern[26]. However, several questions still remain before 
they can be used clinically for augmenting tendon to 
bone healing. The purpose of this paper is to outline the 
current knowledge on the role stem cell therapy might 
have in dealing with rotator cuff tears and the future 
implications of the ongoing research’s results. 

ENTHESIS: TENDON TO BONE HEALING 
IN THE ROTATOR CUFF
Tissue regeneration in the tendon-to-bone interphase 
is a complex process. The stiffness difference between 
tendon and bone is responsible for significant me-
chanical stress in the regeneration zone[27]. The 
enthesis represents a transitional tissue that allows 
for efficient energy transmission due to the gradual 
changes that occur in its microstructure, its histological 
characteristics and its biomechanical behaviour.

The enthesis has been divided into four zones: 
tendon, non-mineralized fibrocartilage, mineralized 
fibrocartilage and bone[28] (Figure 1 and Table 1). In 
the tendon area (zone 1) there is a predominance of 
type I collagen fibres together with a small amount of 
decorin which is a small cellular or pericellular matrix 
proteoglycan; In the non-mineralized fibrocartilage 
area (zone 2), type II and III collagen fibres are 
predominant and small amounts of type I, IX and X 
collagen fibres have also been detected. Aggregans 
and decorine are also present. Zone 3 is constituted by 
the mineralized fibrocartilage, with a highly specialized 
mineralized content and type I collagen fibres. Lastly, 
zone 4 is characterized for a bone-alike composition, 
as it corresponds to the bony insertional area. As 
previously mentioned, it has been demonstrated that 
this specialized tissue does not regenerate after injury 
and repair. The fibro vascular tissue that substitutes 
the native enthesis is characterized by a predominance 
of type III collagen due to the excessive formation of 
scar tissue and the absence of fibrocartilage.

The reparative process can be divided into 3 
phases (inflammatory, reparative and remodelling) 
and numerous cells and cytokines have been 
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  Zone Histological 
characteristics

Collagen type Extracellular matrix 
composition

  Zone 1 Tendon I Decorin
  Zone 2 Non-mineralized 

fibrocartilage
II and III

( small amounts of I, 
IX and X)

Aggrecan and decorin

  Zone 3 Mineralized 
fibrocartilage

II
(small amounts of X)

Aggrecan and mineral 
component

  Zone 4 Bone I Mineral component

Table 1  Main biochemical and histological characteristics of 
the four areas of the enthesis[28]



implicated[13,29,30]. Diaz-Heredia et al[30] have studied 
the gradual variation of vascular endothelial growth 
factor (VEGF), interleukin-1 (IL-1) and transforming 
growth factor-β1 (TGF-β1) in an animal model of 
rotator cuff tears in rats. Some authors have pointed 
out that the inability to regenerate the native enthesis 
could be caused by the incomplete expression of 
the genes implicated in its formation[28]. During 
embryogenic development, healing occurs without 
expression of TGF-β1 but with expression of TGF-β3, 
which determines an absence of scar tissue. On the 
contrary, during postnatal life, TGF-β1 is active during 
the three phases of the healing process[13,30,31]. Another 
important group of factors widely studied are BMP-12, 
13 and 14 as well as fibroblast growth factor-β (FGF-β 
and insulin like growth factor-1 (IGF-1). Matrix metallo-
proteinases are multi-domain proteinases regulated 
by tissue inhibitors of metalloproteinases (TIMPs) and 
play a determinant role in the remodelling phase.

The enthesis structure is developed successfully 
during embryogenic period so knowledge of the 
biological mechanism of its development could help 
in pinpointing which factors are relevant in trying to 
regenerate the native transitional tissue[28]. Galatz et 
al[32] found that the mature fibrocartilage does not 
appear until 21 d after birth. Supraspinatus fibroblasts 
expressed type I collagen during all the process. 
Type II collagen was expressed firstly in the non-
mineralized fibrocartilage and at 7 d in the mineralized 
fibrocartilage, where it persisted until 56 d. Type X 
collagen was initially seen in mineralized collagen at 
14 d and it persisted until 56 d. There was a change 
in the presence from TGF-β3 to TGF-β1 at 15 d. The 
gradual expression of different factors present in the 
development of the physeal plate as (sex determining 
region Y)-box 9, Scleraxis, Patched 1, Parathyroid 
hormone-related protein (PTHrP) and Indian Heddegog 
(Ihh) has also been studied[32-34]. It has been proposed 
that the stratification in the structure and composition 
along the different zones of the enthesis could be a 

consequence of the gradual expression of these and 
other factors. For example, the amount of mineral 
deposit in the mature enthesis could be determined by 
the presence of osteogenic factors such as runt-related 
transcription factor 2 (Runx2) and bone morphogenetic 
protein-2 (BMP2). On the other hand, the formation of 
fibrocartilage could be related to a greater expression 
of PTHrP, Ihh and Sox9. Lastly, tendon development 
would be conditioned by the expression of BMP-12, 
tenomoduline and scleraxis[32]. Scleraxis is a protein 
member of the basic helix-loop-helix superfamily of 
transcription factors.

BIOLOGIC APPROACH
In the past decades, as mentioned before, numerous 
biology-based strategies have been developed in 
order to improve the rate and quality of healing in 
rotator cuff models. The main areas of research, apart 
from stem cells, are matrix metalloproteinase (MMP) 
inhibitors and GF.

MMP inhibitors
MMP expression is increased in degenerative rotator 
cuff tissue and it is known to cause progressive 
weakness in extracellular matrix. They are involved in 
tumoral growth, aneurysmatic disease and post-surgical 
tissue remodelling in the rotator cuff[35-37]. Tissular 
metalloproteinase inhibitors are thus, potential biological 
tools. In particular, inhibition of MMP-13, a MMP that 
is increased in degenerative rotator cuff tears, allows 
for higher amount of fibrocartilage formation, better 
collagen fiber organization and higher load to ultimate 
failure in the enthesis[36,38].

GF
GF factors are key in the development of the different 
enthesis zones. The regeneration of the most specia-
lized zone, the mineralized fibrocartilage, can be 
stimulated by osteoinductive factors[39]. The GF are 
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Figure 1  The normal enthesis (longitudinal image 
and diagram of the bone-tendon junction of the 
supraspinatus tendon of a rat; hematoxilin-eosine, 
× 10): the supraspinatus tendon (T) approaches 
the humeral bone (B) immediately adyacent to the 
normal carlilage (C). The normal tendon (zone 1) 
gradually transforms into a fibrocartilaginous tissue 
with large mononucleated cells (zone 2). As the 
fibers progress into the bone the extracellular matrix is 
progresivelyy calcified (zone 3) until it turns into normal 
bone (zone 4). Further explanation of the biochemical 
environment of these zones is shown in Table 1.
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the integration of anterior cruciate ligament tendinous 
grafts in a bone tunnel. In this animal model, the 
hamstring grafts are introduced into bony tunnels in 
both femoral and tibiae bones and pull out strength is 
tested. Lim et al[58] have used MSCs in this model in 
rabbits and found a significant increase in maximum 
load to failure. 

It was not until 2009 that MSC therapy was applied 
to a rotator cuff model, since then the available 
literature has grown consistently. MSCs of different 
origins have been used for rotator cuff repair. Different 
tissue sources have been identified: bone marrow, 
adipose tissue, muscle, synovia, periosteum, tendon, 
dermis and umbilical cord or peripheral blood, have 
all been evaluated as sources of multipotent and 
pluripotent cell[26]. Although generally speaking MSCs 
of different origins have similar biological potential, 
there is increasing knowledge that certain MSC 
populations are better than others for specific tissue 
regeneration[59-61]. Table 2 shows the main animal 
investigations performed on rotator cuff repair. 

Bone marrow MSCs
The principal source for stem cell-enhanced healing 
of the rotator cuff has been autologous bone marrow 
(BM-MSCs). Gulotta et al[20] performed an experimental 
unilateral detachment of supraspinatus tendon and a 
transosseous repair in rats. BM-MSCs were harvested 
by performing lavage of intramedullary canals of 
long bones with Hank’s Balanced Salt Solution 
(Gibco, Gaithersburg, MD). They showed that MSCs 
were present at the repair site and that they were 
metabolically active. Although they did not find 
significant differences in between the treated and 
untreated groups, at 4 wk, there was a higher amount 
of fibrocartilage formation and better orientation of 
fibrocartilage fibers. 

In order to reproduce rotator cuff surgery, Kida 
et al[62] designed a study in which they performed 
additional drilling to the greater tuberosity to release 
bone marrow and allow bone marrow cells to migrate 
into the suture zone. They tested chimeric rats that 
expressed green fluorescent protein in the bone 
marrow cells and looked for the expression of this 
protein after a period of 2, 4 and 8 wk. It seems that 
drilling and the subsequent migration of stem cells 
might improve maximum load to failure at 4 and 8 wk. 

More recently, Gulotta et al[63-65] have used gene-
tically modified MSCs in order to express scleraxis and 
produce MIT1 and BMP-13 with promising results. 
MSCs genetically modified to over-express MT1-
MMP might be useful for augmenting suture as it has 
demonstrated improved biomechanical strength at 4 wk 
based on a higher presence of fibrocartilage[63]. Results 
of studies with application of MSCs genetically modified 
to overexpress BMP-13[64] were not that successful. 
On the contrary, MSCs genetically modified with 
Scx demonstrated to promote better biomechanical 

usually delivered with a vehicle, such as augmented 
sutures, fibrin gels or collagen sponges[16,40,41]. Rodeo et 
al[16] developed an animal model of supraspinatus repair 
in sheep in which they used BMP-2 to 7, TGFβ1, TGFβ2, 
TGF-β3 and FGF. They detected better histologic and 
biomechanical properties[16]. Other investigators have 
obtained similar results with BMP-12[42], BMP-13[17], 
BMP-14[43], FGF[40,44], IGF-1[45] and PDGF-b[15]. Some of 
these factors seem to play different roles depending 
in which zone of the enthesis they act or the timing of 
their effects.

The most widespread treatment, however, is platelet 
rich plasma (PRP) obtained from autologous blood[46]. 
It has been proposed that PRP facilitates coagulation 
and homeostasis, stimulates wound closure, restores 
intraarticular hyaluronic acid, equilibrates angiogenesis, 
promotes glucosamine synthesis and serves as a 
cellular support for migration and differentiation[23]. 
Despite the variable results obtained, it has been used 
for muscular, ligamentous, tendinous or cartilaginous 
injuries[47-50]. With regards to its application in rotator 
cuff tears, the results have also been controversial. 
Neither Sánchez Márquez et al[24] or Ruiz-Moneo et al[51] 
found any relevant clinical improvement with the use 
of PRP to augment suture in massive tears. However, 
other investigators support the use of PRP in selected 
cases[52]. For example, Randelli et al[25] in a prospective 
randomized clinical trial, found less postoperative pain 
and accelerated healing rate in patients with non-
massive rotator cuff tears but there were no differences 
in functional scores and re-rupture rate. Due to the 
chronic nature of these injuries, it has been suggested 
that PRP application should be serial in order to 
enhance its benefits[53]. Another explanation for this fact 
is that the expression of growth factors is ephemeral. 
In this context, stem cell and gene therapies could be a 
more definitive and long-lasting treatment.

STEM CELL THERAPY: ANIMAL STUDIES
The use of stem cell therapy in the regeneration of 
musculoskeletal tissue is a very dynamic field. MSCs of 
different origins, with their innate ability to differentiate 
into several mesenchymal tissues including bone, fat, 
muscle and tendon have been used extensively in tissue 
repair. Applications in which its usefulness has been 
confirmed are: treatment of bone defects, cartilage 
regeneration, meniscal regeneration and healing, 
management of tendinopathies and management of 
muscle lesions[54-56]. Investigators usually prefer adult 
MSCs over embryonic of fetal stem cells as the former 
are usually locally available and easier to obtain for 
the treatment of these non-life-threatening problems. 
Furthermore, the low immunogenicity of MSCs allows 
for the use of allogenic strains[57].

Some authors have also performed extensive 
research in animal bone-to-tendon healing models. 
Until recently the most widespread model reproduced 
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characteristics at 2 wk[65].

Adipose tissue MSC
Adipose Tissue derived stem cells (AMSC) have also 
shown multipotentiality in vitro[66]. Due to its meso-
dermal origin, they can differentiate into adipose lineage 
cells[67], osteogenic cells[68], chondrogenic cells[59] and 
myogenic cells[69]. In vivo, they have also demonstrated 
their capacity to differentiate into adipose tissue using 
different scaffolds as polyglicolic acid, collagen sponges 
or fibrin gel[54,70,71].

Recently, Oh et al[71] have published the first study 
in a rotator cuff model using AMSCs. Four groups were 
compared for a suture of the subscapularis tendon in 
rabbit using saline, saline and AMSCs, only AMSCs and 
only suture. They found better healing properties and 
a capacity of regeneration after fatty infiltration of the 
muscle. 

MSCs of other origins (non-hematopoyetic)
Muscle-derived stem cells (M-MSCs) have been isolated 
using a modification of a method known as the preplate 
technique[72]. Pelinkovic et al[73] have shown that the 
injection of M-MSCs into the supraspinatus tendon of 
athymic rats resulted in the engraftment of transplanted 
cells in a pattern with a morphology comparable to 
resident tendon fibers. The authors suggest that more 
studies are necessary before assuming that M-MSCs 
can improve rotator cuff healing. 

Lastly, Shen et al[74] performed a study using 
tenocyte-derived stem cells (T-MSCs) proliferated in 
vitro and obtained from human fetal Achilles tendon 
samples. Implantation of this type of cells in the 
rabbit rotator cuff defect did not elicit an immunologic 

response but increased fibroblastic cell ingrowth and 
reduced infiltration of lymphocytes. 

Choice of scaffold for MSCs deployment
Cell adhesion to the scaffold depends on the interaction 
that is established in between the scaffold microstructure 
and the cell surface receptors denominated integrins. 
Transmembrane contacts are key factor for MSC sur-
vival, proliferation and differentiation[75]. Numerous 
studies have investigated the behaviour of stem cells 
in different scaffolds and have demonstrated that the 
scaffold can determine the differentiation capacity 
into one or other lineages[75]. Two different types 
of interactions have been described: physical and 
biochemical. Vehicles that maintain the rounded shape 
of the cells and avoid contact in between them, promote 
the chondrogenic differentiation and avoid expression 
of type I collagen. Porous gelatine vehicles or those that 
use fibrin favour a fibro cartilaginous phenotype due to 
the expression of collagen types I and II[76].

STEM CELL THERAPY: HUMAN STUDIES
Although there is a lack of consensus on whether 
the application of stem cells to enhance the rotator 
cuff healing is effective or not, some authors have 
started developing different strategies for the clinical 
application of the experimental findings. 

Beitzel et al[77] studied the quantity and chara-
cteristics of BM-MSCs obtained from proximal humerus 
and distal femur bone marrow aspiration and found 
them comparable, supporting the previous experimental 
research by Kida et al[62]. Rotator cuff derived MSCs 
have been isolated and compared to BM-derived stem 
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  Ref. Animal Type of cells Tendon repair model Method of 
delivery

Results

  Gulotta et al[20] Rat Allogenic BM-MSC Supraspinatus tendon
Acute repair

Fibrin glue carrier No differences in structure, composition or strength 
at the repair site

  Gulotta et al[63] Rat Allogenic BM-MSCs 
transduced with MT1- 

MMP

Supraspinatus tendon
Acute repair

Fibrin glue carrier Improved fibrocartilage
Improved biomechanical strength

  Gulotta et al[64] Rat Allogenic BM-MSCs 
transduced with human 

BMP-13

Supraspinatus tendon
Acute repair

Fibrin glue carrier No differences in structure, composition or strength 
at the repair site

  Gulotta et al[65] Rat Allogenic BM-MSCs 
transduced with sleraxis 

Supraspinatus tendon
Acute repair

Fibrin glue carrier Improved fibrocartilage
Improved mechanical resistance and stiffness

  Shen et al[74] Rabbit Allogenic T-MSCs Supraspinatus tendon
Acute repair

Seeded scaffold 
(silk-collagen)

T-MSCs differentiated into tenocytes
Improved collagen content

Improved biological environment
Less inflammation

  Kida et al[62] Rat Autologous BM-MSC Supraspinatus tendon 
Acute repair

Transosseous 
drilling 

BM-MSCs infiltrated the repaired tendon
Improved mechanical resistance

  Oh et al[71] Rabbit Allogenic A-MSCs Subscapularis tendon
Chronic repair

Injection Improved muscle function
Improved tendon healing
Decreased fatty infiltration

Table 2  Rotator cuff repair animal models using mesenchimal stem cells 

Different types of cells have been used: Bone marrow derived MSCs (BM-MSCs), Tendon derived MSCs (T-MSCs) or Adipose derived MSCs (A-MSCs). MT1-
MMP: Metalloproteinase inhibitor-1; BMP-13: Bone morphogenetic protein-13; MSCs: Mesenchymal stem cells.
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cells. It seems that the myogenic potential of MSCs 
derived from rotator cuff cells is higher than for BM-
MSCs[78]. Randelli et al[79] could isolate tenocyte-derived 
stem cells from supraspinatus tendon and long head 
of biceps tendon. Utsunomiya et al[80] also studied the 
subacromial bursa as a potential source for MSCs and 
found that the synovial cells found in the bursa were a 
good cell source. 

Ellera Gomes et al[81] published their work in 14 
patients with a complete tear of the rotator cuff that 
was repaired in a trans osseous fashion through a 
mini-incision augmenting the suture with mononuclear 
stem cells from iliac crest bone marrow aspirate. At 12 
mo, 12 of the 14 tears had healed according to clinical 
and magnetic resonance imaging results[81]. This is the 
only published investigation on clinical application of 
stem cells in rotator cuff tears. 

Lastly, Beitzel et al[75] have also focused their 
attention in how different scaffolds behave in humans in 
order to extrapolate results obtained from experimental 
research. MSCs adhesion, proliferation, and scaffold 
morphology were evaluated by histologic analysis 
and electron microscopy. According to their findings, 
significant differences existed: non cross-linked 
porcine collagen scaffolds showed superior results for 
cell adhesion and proliferation, as well as on histologic 
evaluation.

FUTURE ALTERNATIVES
Advanced stem cell therapy and gene therapy repre-
sent the most feasible option in order to improve 
rotator cuff healing[21]. A better knowledge of the 
molecular phases of embryogenesis of the enthesis as 
well as the injury and healing patterns have allowed to 
identify the growth factors and proteins to target[13,28]. 

A combination of stem cells, modified before 
implantation, using exposure to different growth factors 
or modifications to the culture conditions to generate 
a desired phenotype is one of the most investigated 
pathways[26]. Moreover, the newly recognized anti-
inflammatory and antiapoptotic impact of MSCs on 
tissue healing may provide a great potential for func-
tional restoration[76,82]. 

On the other hand, specific growth factor supple-
mentation, in the form of transgenic therapy may 
allow longer-term tendon repair and potential return 
to function. Fetal-derived embryonic stem cell-like cells 
have recently been evaluated for tendon and ligament 
repair. More recently, induced pluripotent stem cells, 
developed by genetically reprogramming adult-sourced 
cells, may be particularly beneficial in the challenging 
environment of rotator cuff injury. Generation of iPS 
cells can use viral or, more recently, nonviral vector 
delivery of reprogramming genes. However, these 
transgenic therapies lack safety clearance when it 
comes to oncologic and teratogenic risks[26].

Lastly, stem cells associated to bio or nanotech-
nology can control the proliferation and differentiation 

into complex, viable 3D tissues. So we might be able 
to use biodegradable polymer scaffolds to promote 
cell growth and differentiation and formation of 3D 
structures. This could be useful in order to avoid 
scarring during the healing process.

CONCLUSION
Current literature regarding the clinical use of stem 
cells in rotator cuff tears is limited. Although in vivo 
animal studies have shown promising results to enhance 
tendon-to-bone healing, the use of stem cell therapy in 
rotator cuff should still be considered an experimental 
technique. Further basic and clinical research is needed.
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Abstract
In the adult mouse brain, the subventricular zone 
lining the lateral ventricles and the subgranular zone 
in the dentate gyrus of the hippocampus are two 
zones that contain neural stem cells (NSCs) with 
the capacity to give rise to neurons and glia during 
the entire life of the animal. Spatial and temporal 
regulation of gene expression in the NSCs population 

is established and maintained by the coordinated 
interaction between transcription factors and epigenetic 
regulators which control stem cell fate. Epigenetic mech-
anisms are heritable alterations in genome function 
that do not involve changes in DNA sequence itself but 
that modulate gene expression, acting as mediators 
between the environment and the genome. At the 
molecular level, those epigenetic mechanisms comprise 
chemical modifications of DNA such as methylation, 
hydroxymethylation and histone modifications needed 
for the maintenance of NSC identity. Genomic imprinting 
is another normal epigenetic process leading to parental-
specific expression of a gene, known to be implicated 
in the control of gene dosage in the neurogenic niches. 
The generation of induced pluripotent stem cells from 
NSCs by expression of defined transcription factors, 
provide key insights into fundamental principles of 
stem cell biology. Epigenetic modifications can also 
occur during reprogramming of NSCs to pluripotency 
and a better understanding of this process will help 
to elucidate the mechanisms required for stem cell 
maintenance. This review takes advantage of recent 
studies from the epigenetic field to report knowledge 
regarding the mechanisms of stemness maintenance of 
neural stem cells in the neurogenic niches.

Key words: Neurogenesis; Neural stem cell; Epigenetics; 
Gene expression regulation; Chromatin modifications; 
DNA methylation

© The Author(s) 2015. Published by Baishideng Publishing 
Group Inc. All rights reserved.

Core tip: Neural stem cells (NSCs) are capable of exten-
sive self-renewal while preserving the ability to generate 
cell progeny that can differentiate into different cell 
types from the nervous system. Intrinsic mediators as 
well as extrinsic cues provided by the neurogenic niche 
(microenvironment where NSCs reside in vivo ) are 
important for stem cell self-renewal and differentiation. 
Epigenetic changes, including alterations in DNA 
methylation, histone modifications and imprinting alter 
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the way a gene interacts with the cell transcribing 
machinery, turning genes “on” or “off”. These heritable 
changes must be reversible and context-dependent 
being responsible of stem cell plasticity.

Montalbán-Loro R, Domingo-Muelas A, Bizy A, Ferrón SR. 
Epigenetic regulation of stemness maintenance in the neurogenic 
niches. World J Stem Cells 2015; 7(4): 700-710  Available from: 
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NEURAL STEM CELLS AND THE 
NEUROGENIC NICHES 
Adult stem cells have the ability to divide, self-renew 
and generate functional differentiated cells that 
replace lost cells throughout an organism’s lifetime. 
The existence of adult stem cells was first described 
in tissues with high proliferation rates, such as the 
hematopoietic system and the intestine. Since then, 
stem cells have been found in almost all adult tissues 
including the nervous system[1]. In the adult mouse 
brain two main regions continue to generate new 
neurons throughout adulthood: the subventricular 
zone (SVZ) in the walls of the lateral ventricles[2] (Figure 
1A-C) and the subgranular zone (SGZ) in the dentate 
gyrus (DG) of the hippocampus[3] (Figure 1D-F). Adult 
neurogenesis is supported by multipotent neural stem 
cells (NSCs) deriving from embryonic radial-glia and 
thus expressing astroglial characteristics[4,5]. Astrocytic-
like stem cells are relatively quiescent and can be 
identified by the expression of the glial fibrillary acidic 
protein (GFAP), the stemness-related transcription 
factor Sox2 [Sex determining region Y (SRY)-box 
2], and the neural progenitor marker Nestin[2,6,7]. 
Moreover, their slow division rate can be detected by 
the label retention of thymidine analogs incorporated 
during DNA replication[6,8,9]. NSCs can also be isolated 
from their natural niche and cultured in vitro in the 
presence of the epidermal growth factor (EGF) and 
basic fibroblast growth factor (bFGF) mitogens. In 
culture, NSCs form free-floating aggregates called 
“neurospheres” (Figure 1C). Self-renewal and multi-
potency characteristics of NSCs are assessed in vitro 
by clonal analysis in which single cells give rise to 
neurospheres[10,11] (Figure 1C). 

SVZ and the olfactory bulb system
The SVZ is located lining the walls of the lateral 
ventricles and constitutes a complex microenvironment 
or niche in which proliferation and self-renewal of NSCs 
are strongly regulated by multiple extracellular factors 
such as EGF, bFGF, bone morphogenetic protein and 
pigment epithelium derived factor[12-14]. This significant 
extrinsic signaling is possible because of the special 
cytoarchitecture of the niche that allows NSCs to be 

in direct contact with the cerebrospinal fluid (CSF) 
produced by the choroid plexus in the ventricles, with 
the vasculature and with other cells from the niche 
like astrocytes or microglia[15,16]. Subventricular NSCs 
(also known as type B1 cells) present a radial glia-like 
morphology, with an apical primary cilium contacting 
the ventricular lumen and a basal process reaching 
the basal lamina and the vascular structures[17,18] 
(Figure 1A). The walls of the lateral ventricles show a 
typical organization where the small apical process of 
one or more type B1 cells are surrounded by a rosette 
of epithelial ependymal cells that form structures 
known as pinwheels at the surface[19]. There is another 
astrocyte-like type B cell that is more frequently located 
close to the underlying striatal parenchyma known as 
type B2 cells[20]. When activated, these slowly dividing 
NSCs give rise to fast cycling cells called transit-
amplifying progenitors (TAP or type C cells). TAP cells 
contribute to reducing the number of cell division 
rounds that NSCs have to undergo to preserve their 
genome integrity. Mash1-positive type C cells generate 
neuroblasts (type A cells) that migrate along the rostral 
migratory stream (RMS) into the olfactory bulb (OB) 
where they differentiate and integrate into interneurons 
(Figure 1B). These chains of polysialylated neural cell 
adhesion molecule (PSA-NCAM) and DCX (doublecortin) 
positive neuroblasts reach the core of the OB, where 
they detach from the RMS and migrate radially into the 
granular and periglomerular layers[21-23]. These immature 
neurons then integrate and differentiate into inhibitory 
interneurons, playing an important role in rodent olfa-
ction. In addition of being a neurogenic region, the 
SVZ can serve as a niche of oligodendrocytes although 
generated in much lower numbers than neuroblasts. 
Thereby, Olig2-positive transit amplifying cells give rise 
to oligodendroblasts that migrate to the corpus callosum 
and striatum while tightly associated with blood 
vessels[24], where they differentiate into myelinating and 
nonmyelinating oligodendrocytes[25].

SGZ of the hippocampus
Along with the SVZ, the subgranular zone in the 
dentate gyrus of the hippocampus constitutes the 
other main neurogenic niche in the adult mouse 
brain[26-28]. The SGZ is also a complex microenvironment 
in which the vasculature plays an important role. 
Dividing stem cells in the SGZ are in close proximity 
to an extensive network of interconnected blood 
vessels and parenchymal astrocytes that can regulate 
their proliferation and differentiation via paracrine 
signaling[29]. The SGZ is located between the granular 
layer and the hilus of the DG and the SGZ NSCs 
constitute a subpopulation of GFAP-positive cells that 
are analogous to subventricular type B1 cells[30]. In 
this region, two types of neural progenitors can be 
identified according to different expression of molecular 
markers and their morphologies[23] (Figure 1D and E). 
Type I progenitors exhibit a radial process spanning 
the granule cell layer and arborizing profusely in 
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the molecular layer[27]. These cells express nestin, 
GFAP, and Sox2[31]. Type II hippocampal progenitors 
have short processes and contrary to type I cells, 
express TRB2 but not GFAP (Figure 1F). There is 
evidence suggesting that type II cells may derive 
from type I cells but a lineage relationship study is 
still lacking[31]. In the adult SGZ, precursors give rise 
by asymmetrical divisions to intermediate neuronal 
lineage-restricted progenitor cells and in a minor 
number, to glial lineage-restricted progenitor cells (both 
of them are GFAP-negative cells). Compared to the 
SVZ, few oligodendrocytes are generated in the SGZ. 
Type II cells generate in turn type III cells, which are 
neuronal precursors that express markers of immature 
migrating neurons, such DCX and PSA-NCAM (Figure 
1F). These differentiated cells integrate neuronal 
circuits into the hippocampal CA3 region forming 
dendrites and spreading their axons[22]. In addition to 
the production of granular neurons, a low percentage 
of activated NSCs divide asymmetrically to give rise 
to astrocytes. The latter migrate into the hilus and the 
molecular layer where they lose their stem cell identity 
and cause the depletion of the pool of NSCs[32,33] 
thus explaining the possible decrease in hippocampal 
neurogenesis associated with ageing.

EPIGENETIC REGULATION OF GENE 
EXPRESSION IN THE NEUROGENIC 
NICHES
Epigenetic is defined as the study of heritable altera

tions in genome function that do not involve changes 
in DNA sequence itself[34,35]. These epigenetic marks 
modulate gene expression either by directly altering 
the chromatin structure or by creating bindings sites 
for chromatin and transcription regulatory subunits. Two 
general classes of epigenetic regulation can be defined: 
covalent modifications to DNA and post-translational 
covalent modifications to the histones (H) around which 
the DNA is bound, influencing whether DNA is accessible 
or not for gene transcription[36,37] (Figure 2A). Moreover, 
the three-dimensional structure and arrangement of 
chromatin within the nucleus are both regulated by and 
contribute to the establishment and maintenance of 
epigenetic states[34]. These different classes of epigenetic 
modifications are intimately related, resulting in multiple 
layers of control allowing cells to maintain their identity 
over time[34,38]. Dysregulation of these mechanisms 
leads to new cellular phenotypes by causing altered 
gene expression without a change in genotype. In 
the neurogenic niches, epigenetic regulators and the 
associated transcription factors play an important role in 
the control and maintenance of NSC stemness. 

DNA methylation 
DNA methylation involves the addition of a methyl 
group to the fifth carbon in the cytosine pyrimidine 
ring (Figure 2B). In most mammalian genes, CpG 
dinucleotides are methylated and concentrated in 
clusters called “CpG islands” which often have regulatory 
functions and tend to be found in the promoter and 
first exon regions of genes[39] where it promotes a 
closed chromatin structure and aids the prevention 
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Figure 1  The neurogenic niches in the adult murine mammalian brain. A: Sagittal view showing the adult mouse subventricular zone (SVZ) and the migrating 
neuroblasts (red) reaching the olfactory bulb (OB) through the rostral migratory stream (rms). Enlarged view of SVZ: type B1 stem cells (blue) express the astrocyte marker 
glial fibrillary acidic protein (GFAP) and contact the ventricle with a thin process extended between the ependymal cells (e; gray); type B2 stem cells (blue) contacting the 
brain parenchyma; transit amplyfing progenitors (TAP) or type C cells (green) express the achaete-scute homolog 1 (ASCL1) transcription factor and give rise to type 
A cells (red) that migrate through the rostral migratory stream (rms). Dividing stem cells and their TAP progeny are tightly opposed to blood vessels (bv); B: Schematic 
drawing showing the lineage progression in the SVZ; C: SVZ neural stem cell (NSC) cultures in self-renewal (neurosphere formation) and differentiation. The astrocyte 
marker GFAP in blue, the neuronal marker bIII-tubulin in green and the oligodendrocyte marker O4 in red; The Choroid plexus-cerebrospinal fluid  system (cp-CSF) is 
shown. D: Coronal view showing the adult mouse subgranular zone (SGZ) and the newborn neurons (red) being integrated in the granular cell layer (gr). Enlarged view 
of the dentate gyrus (DG): Type I stem cells (blue) are GFAP+ and show a radial single prolongation through the granular layer; Type II precursors give rise to neuronal 
lineage-restricted progenitors type III cells (red) that differentiate into neurons in the granular layer; E: Schematic drawing showing the lineage progression in the SGZ; F: 
Confocal images showing immunostaining in the DG for the astrocyte marker GFAP in green, for the progenitor precursor marker T-box brain protein 2 (TBR2) in red and 
for the neuronal precursor  marker Doublecortin (DCX) in red. DAPI is used to stain DNA. Scale bar in C: Top left panel 100 µm, rest 10 µm; In f: 10 µm. 

SVZ

Type B
(GFAP+)

Type C
(ASCL1+)

Oligo
(O4+)

SGZ CA1

Mol
DG

CA3

SGZ

Type I
(GFAP+)

Type II
(TBR2+)

Type III
(DCX+)

VL

SVZ

OB

O

cp-CSF

B1

B2e

bv

Ⅱ

Ⅲ

Ⅰ

A B

C

D E

F

Montalbán-Loro R et al . Neural stem cells and epigenetics

Type A
(bIII-tubulin+)



DNMT3b, important for normal embryogenesis and 
development and responsible for the establishment of 
methylation patterns. The other type is maintenance 
methylation mediated by DNMT1 that effectively 
maintains CpG methylation upon DNA replication and 
provides the heritable “memory” of the methylation 
state of the parent cell[45,46]. DNMT1 is highly expressed 
in the embryonic, perinatal and adult CNS in both 
dividing neural progenitors and mature neurons where 
it maintains DNA methylation[47-49]. A lack of DNMT1 
alters neuronal excitability and increases apoptosis 
in post-mitotic cortical neurons[50]. In support of 
this, mice deficient for Dnmt1 specifically in neural 
progenitors at embryonic stages exhibit deficits in 
neuronal function and die postnatally, suggesting a 
requirement for methylation in brain development[51]. 
DNMT3a and DNMT3b are highly expressed in postnatal 

of expression[34,40]. DNA methylation marks repress 
gene expression either by attracting DNA methyl-
binding domain proteins (MBDs) such as methyl-CpG 
binding protein 2 (MeCP2) which recruit repressors 
and chromatin remodeling molecules to generate an 
inactive chromatin environment or by directly inhibiting 
transcription factor binding[41-43]. MBD proteins have 
been suggested to play a role in neurogenesis. For 
example, mice deficient in MBD1 show decreased 
neurogenesis and hippocampus-related behaviour 
defects. Indeed, Mbd1-deficient NSCs generate a 
reduced number of neurons when compared to wild-
type cells, suggesting a role for MBD1 in neuronal fate 
commitment[44]. 

There are two types of methylation reactions both 
mediated by DNA methyltransferases (DNMTs). One 
is de novo methylation catalyzed by DNMT3a and 
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Figure 2  Epigenetic regulation of gene expression. A: Schematic of DNA methylation and histone modifications in neural stem cells (NSCs). DNA is compressed 
through interactions with histones and methyl groups (M) are added to cytosine-guanine (CpGs) dinucleotides in regulatory regions. Histone methylation reactions are 
catalyzed by histone methyltransferases (HMTs) and the reverse process is mediated by histone demethylases (HDMs). Histone acetylation is mediated by histone 
acetyltransferases (HATs) that leads to chromatin decondensation (accessible chromatin) and transcription activation. Histone deacetylases (HDACs) catalyze the reverse 
process inducing inactivation of transcription (inaccessible chromatin); B: Schematic of DNA methylation at the cytosine-guanine dinucleotides in gene regulatory regions. 
Methylation reactions are mediated by DNA methyltransferases (DNMTs) that transfer methyl groups (M) to the fifth position of the pyrimidine ring. This is a reversible 
process mediated by the ten-eleven translocation (TET) family of enzymes TET1, TET2 and TET3 dioxygenases that catalyze the conversion of the modified genomic 
base 5-methylcytosine (5mC) into 5-hydroxymethylcytosine (5hmC) playing a key role in active DNA demethylation; C: Schematic of the histone tail showing multiple sites 
for epigenetic modifications as acetylation (Ac) or methylation (Me).
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NSCs and are required for neurogenesis and neuronal 
maturation[48,49,52,53]. Loss of DNMT3a results in gene 
silencing[53] and depletion of DNMT3b leads to deficient 
neuronal differentiation in vitro[54].

DNA is hypomethylated in neural progenitor cells 
and methylation is progressively increased during 
lineage commitment[55]. The suppression of astro-
gliogenesis during neuronal specification is also 
associated with changes in DNA methylation[56,57]. This 
silencing is attenuated later in development resulting 
in the generation of astrocytes which correlates with 
the suppression of neurogenesis. Demethylation and 
expression of the genes coding for the astrocytic markers 
Gfap and the calcium binding protein S100b  during 
astrocytic maturation, correlates with methylation and 
downregulation of neurogenic genes such as Neurogenin 
1[58-60]. Activation of the Gfap promoter requires binding 
of the signal transducer and activator of transcription 3 
(STAT3) to a consensus sequence. Early progenitors are 
refractory to astrocyte differentiation due to methylation 
of the STAT3 binding site. At later development stages, 
loss of STAT3-binding element methylation is associated 
with Gfap promoter activation[60,61]. A similar alteration 
in methylation pattern occurs at another STAT3 binding 
site in the S100b promoter[58].

Hydroxymethylation 
DNA methylation marks are reversible through both 
passive replication-dependent demethylation and active 
demethylation which probably involve the recently 
characterized 5-hydroxymethyl (5hmC) intermediate[62] 
(Figure 2B). In mammals, three members of the ten-
eleven translocation (TET) family of enzymes have been 
identified: TET1, TET2 and TET3[63,64]. TET hydroxylases 
may catalyze active DNA demethylation by oxidation 
of 5mC to 5hmC[65-67] (Figure 2B). 5hmC is relatively 
abundant in mouse embryonic stem cells (ESCs), the 
early embryo and in adult brain[68,69]. In the brain, 
5hmC is enriched at active genes, associated with the 
strong depletion of 5mC from these regions[70]. It has 
been proposed that TET enzymes in the blastocyst and 
ESCs are involved in pluripotency by maintaining the 
hypomethylated state of key regulatory regions[69,71]. 
Recent studies have also shown that TET1 is involved 
in the epigenetic regulation of neural progenitor 
cell proliferation in the adult hippocampus[72-74]. 
Mice lacking Tet1 exhibit impaired hippocampal 
neurogenesis accompanied by poor learning and 
memory[72-74]. However, the full role and importance 
of hydroxymethylation in the brain remains to be 
elucidated.

Histone modifications as regulators of adult 
neurogenesis
In eukaryotic cells, a histone octamer including two 
H2AH2B dimers and a H3H4 tetramer acts as a 
scaffold around which DNA is wrapped to form a 
nucleosome[75,76]. The interaction between histones 
and DNA is mediated by an N-terminal tail of histone 

proteins available for post-translational modifications 
that control the chromatin structure[75] (Figure 2C). 
These covalent modifications in the histone tails alter 
the interaction between adjacent nucleosomes and/or 
between histones and the DNA, changing the three-
dimensional chromatin structure. Modifications in 
the body of histones have also been shown to alter 
chromatin structure influencing gene expression[77]. 
Histone modifications are divided into repressive and 
active marks according to how they correlate with 
levels of transcriptional activity. For example, histone 
acetylation of lysine residues of histones, catalyzed by 
histone acetyltransferases enhances the recruitment 
and activation of the transcriptional machinery and 
is generally associated with areas of active gene 
transcription[78]. However, histone deacetylases (HDACs) 
remove acetyl groups promoting the condensation 
of chromatin[79] (Figure 2A). HDAC1 is expressed by 
GFAPpositive cells within the SVZ whereas HDAC2 is 
found in migrating neuroblasts and in TAP cells within 
the SVZ[80]. Deletion of HDAC2 in the SVZ results in a 
defective neurogenesis to the OB[81] and neurospheres 
treated with class I and II HDAC inhibitors promotes 
neuronal differentiation[82] suggesting a role for this 
enzyme in neuronal fate determination. Furthermore, 
oligodendrocyte fate commitment is accompanied by 
a decrease in histone deacetylation at transcriptional 
repressors of oligodendrocytic differentiation such as 
Sox11[83] and at neuronal genes such as Sox2[84].

Histone methylation is associated with both active 
and silent chromatin and is catalyzed by histone 
methyltransferases (HMTs). Trimethylation of lysine 
(K)27 and lysine 9 of histone H3 (H3K27me3 and 
H3K9me3) tends to associate with regions of inactive 
gene transcription, whereas H3K4, H3K36 and H3K79 
methylations are associated with active transcription[85]. 
Histone demethylases (HDMs) also have a key role in 
regulating neural development[86]. During neural stem 
cell commitment, H3K27 methylation decreases in 
key developmental genes following downregulation 
of the HMT Enhancer of Zest homolog 2 (EZH2) and 
upregulation of the HDM Jumonji domain containing-3 
(JMJD3). Indeed, deletion of Ezh2 in SGZ progenitor 
cells results in cell proliferation restriction leading to 
a reduced number of neurons that ultimately leads 
to impairment in spatial learning and memory[87]. 
Additionally, JMJD3 is upregulated in neuroblasts, and 
Jmjd3 deletion targeted to SVZ NSCs in both developing 
and adult mice impairs neuronal differentiation. JMJD3 
regulates neurogenic gene expression via interaction 
at not only promoter regions but also neurogenic 
enhancer elements such as Dlx2[88]. Moreover, H3K9me3 
is enriched in the adult murine SVZ and it has been 
recently shown that its repression in undifferentiated 
cells is engaged in the maintenance of cell type integrity 
in this neurogenic niche[89]. MLL1, another HMT that 
methylates H3K4, has been associated with the 
trithorax group of transcription factors. In mice where 
Mll1 is knocked out in NSCs, neurogenesis is impaired. 
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Mll1 is associated with the promoter of the homeobox 
transcription factor Dlx2 and although loss of Mll1 does 
not affect the methylation of H3K4, it does increase 
H3K27me3 on the promoter indicating that Mll1 is 
recruiting a H3K27 demethylase[90]. In summary, 
the above studies indicate that different chromatin 
modifiers have a critical role in adult neurogenesis[91].

Genomic imprinting and control of gene dosage 
Imprinted genes are expressed predominantly from 
one chromosome in a parental-origin dependent 
manner. While most genes are expressed from both 
alleles, imprinted genes are functionally monoallelic 
and are expressed from either the maternally or the 
paternally inherited chromosome[92]. In mammals, this 
affects around 100 genes that are found in clusters. 
Imprinting control regions (ICRs) regulate the parental 
allele-specific pattern of gene expression and have 
differentially methylated regions (DMRs) on the two 
parental chromosomes. ICRs can be divided into those 
which are methylated on the paternally inherited copy 
and those with maternally inherited methylation[93]. 
DMRs are also characterized by the asymmetrical 
accumulation of different histone modifications on the 
two parental chromosomes and the recent identification 
of a “tri-mark”, comprising the trimethylation of 
H3K4 and H3K9 and the trimethylation of H4K20 at 
all known ICRs[94]. The majority of imprinted genes 
are expressed in the brain and several exhibit brain-
specific imprinting. Their monoallelic expression makes 
these loci very vulnerable as mutation of the expressed 
allele can compromise expression and lead to severe 
developmental defects. For example, human congenital 
imprinting syndromes including Angelman syndrome 
and Prader-Willi syndrome are all characterized by 
neurological and behavioral impairments and learning 
difficulties[95]. Evidence is suggesting that selective 
regulation of imprinting is a normal mechanism of 
modulating gene dosage and is associated with the 
control of stem cell potential in the neurogenic niche. 
For instance, relaxation of imprinting of the gene for 
the atypical NOTCH ligand deltalike homologue 1 
(Dlk1) usually expressed from the paternally inherited 
chromosome has been shown in the neural stem cells 
and niche astrocytes within the SVZ[96]. Notably, this 
selective absence of Dlk1 imprinting is associated with 
acquisition of DNA methylation at the germline-derived 
imprinting control region[96]. Igf2 is also an imprinted 
gene expressed only from the paternally-inherited 
allele although it is specifically biallelically expressed in 
postnatal human and mouse choroid plexus epithelium 
and leptomeninges[97,98]. Thus, CSF produced from the 
choroid plexus and blood vessels is a biallelic source of 
neurogenesis-promoting IGF2[99]. 

Epigenetic changes during NSCs reprogramming to 
induced pluripotent stem cells
Epigenetic reprogramming consists in the transition 
from one cell type to another, permitted by the loss 

of the molecular characteristics of the cell of origin 
and the acquisition of an entirely new molecular 
identity without changing the genomic sequence[100]. 
Reprogramming involves changes in the transcriptome 
and chromatin state of the reprogrammed cell type to 
that of a pluripotent cell[101-103]. This implicates different 
levels of changes in DNA factor binding, transcription 
and chromatin state[103]. Since the discovery by 
Takahashi and Yamanaka in 2006 that the introduction 
of four transcription factors, Oct3/4, Klf4, c-Myc, Sox2 
(known as OKMS) could reprogram mouse embryonic 
and adult fibroblasts into induced pluripotent stem 
cells (iPSCs)[104], the field of reprogramming has 
considerably evolved and several studies have 
reported the use of sets of these transcription factors 
in various combinations to reprogram mouse and 
human somatic cells[105-108]. More recently, murine B 
lymphocytes, liver, stomach and pancreatic b-cells 
were showed to reprogram into iPSCs using the combi-
nation of factors OKMS[109-111]. In 2008, Eminli et al[112] 
reported the generation of iPSCs from murine NSCs by 
retroviral infection of the same combination of factors. 
Since neurosphere cultures express Sox2 and c-myc, 
a considerable advance consisted in showing that they 
could be reprogrammed only with Oct4 and Klf4 at 
similar efficiency to the reprogramming rate of murine 
fibroblasts with the original four factors[112-114]. Finally, the 
forced expression of Oct4 alone was shown sufficient 
to reprogram murine NSCs, albeit with a ten-fold lower 
efficiency than with two factors[113]. Because NSCs are 
originally closer to the pluripotency state than somatic 
cells and require fewer factors to be reprogrammed, 
they constitute a more simple and attractive system 
to study epigenetic mechanisms occurring during the 
acquisition of pluripotency. Importantly, iPSCs derived 
from human and murine NSCs exhibited markers 
of ESCs, showed demethylation of pluripotency 
genes, formed teratomas, and contributed to viable 
chimeras[112-114]. 

Reprogramming factors and epigenetic mechanisms 
Reprogramming of somatic cells is a stochastic event[115]. 
However, in NSCs, Oct4 only seems sufficient to 
repress genes responsible for NSCs molecular identity 
and activate the pluripotency genes, suggesting that 
epigenetic of NSCs renders them easier to reprogram 
and that the combination of factors necessary for 
reprogramming is dependent on cellular context[112]. 
iPSCs have lower levels of methylation than somatic 
cells, suggesting that demethylation is an important 
chromatin feature to achieve pluripotency[116]. During 
reprogramming, it is stipulated that reprogramming 
factors interfere with methylation of the newly 
synthesized DNA by binding to specific promoters 
or enhancer regions leading to demethylation and 
activation of the pluripotency genes. In addition, active 
DNA demethylation mechanisms could be required 
for the reactivation of pluripotency genes[117]. Recent 
studies in NSCs have shown the importance of methy-
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lation level in the context of reprogramming. Undif-
ferentiated neurospheres highly express DNMT1 and 
contain methylated chromatin suggesting the role of 
methylation for the maintenance of the quiescent or 
undifferentiated state of NSCs[118]. It is then probable 
that NSC chromatin is dynamically remodelled and 
that DNA methylation modification is essential for 
reprogramming to a pluripotent state. For instance, 
histone methyltransferase G9a is responsible for the 
downregulation of Oct4 during NSC differentiation 
and its inhibition results in iPSC formation after over-
expression of exogenous Klf4 and c-myc only[119]. In 
addition, interference with DNMT1 promotes iPSC 
formation, also supporting that DNA methylation is a 
feature limiting reprogramming to pluripotency[101]. All 
reprogramming techniques involve demethylation of 
the genome thus appearing as a crucial process for 
successfully achieving pluripotency[120,121]. 

Loss of epigenetic memory
During reprogramming, NSCs downregulate speci-
fic genes like Nestin and progressively express the 
markers of pluripotency Oct4, Nanog, Fgf4, Zfp42[113,114]. 
In addition, efficiency and timing of reprogramming 
highly depends on the differentiation state of the 
initial cell type. Importantly, comparative studies 
with ESCs reported that efficiently reprogrammed 
iPSCs show transcriptional pattern and epigenetic 
marks highly similar to ESCs. For instance, Oct4 and 
Nanog promoters are demethylated and histones H3 
lysine 4 (K4) and lysine 27 mostly exhibit patterns 
of trimethylation[101,106,122]. However, reprogramming 
of NSCs into iPSCs is often incomplete and leaves 
epigenetic marks including DNA methylation, chromatin 
modification and transcriptional regulation in the 
resulting iPSC genome[123,124] known as epigenetic 
“memory”. Partially reprogrammed cell lines are 
characterized by an absence of complete downregulation 
of the exogenous reprogramming factors and partial 
demethylation and reactivation of pluripotency 
genes[101,104]. During reprogramming, somatic markers 
get progressively downregulated demonstrating the 
importance of silencing its differentiation program as 
a step towards pluripotency. Treatment of partially 
reprogrammed iPSCs with inhibitors of ERK1/2 and 
GSK3b signaling[125], induced genome demethylation of 
30% explained by decreased levels of DNMT3a/b and 
their targeting factor DNMT3L[126-128]. The two inhibitors 
repress DNMT3A/B expression inducing demethylation 
of certain genomic regions in ESCs. Thus, DNA deme-
thylation of the reprogrammed cell type as a way to 
remove epigenetic marks is important for complete 
reprogramming into iPSCs. Reprogrammed iPSCs often 
present the limitation of not being fully reprogrammed 
thus keeping epigenetic traces of the tissue of origin. 
Future generation of iPSCs without epigenetic memory 
is an important challenge in the field to ensure that 
differentiation decisions are not affected by events from 
the past[116].

FUTURE PERSPECTIVES
Determining the mechanisms by which neural stem 
cells maintain self-renewal capacity and at the same 
time generate differentiated progeny is a central 
challenge in stem cell biology. Several recent studies 
have demonstrated that epigenetic gene regulation 
plays a crucial role in the control of stem cell behaviour. 
Epigenetic mechanisms include changes in chromatin 
structure that provides a way for coordinately acti-
vating or repressing genes during proliferation and 
differentiation. Extracellular signaling from the micro-
environment or niche in which NSCs reside in vivo 
interacts with these diverse epigenetic mechanisms, 
thus regulating transcription factors and intracellular 
pathways. These changes in gene expression are 
often heritable and reversible, features that support 
stem cell plasticity such as the ability to dedifferentiate 
or become reprogrammed under certain conditions. 
Finally, aberrant epigenetic mechanisms are known to 
be involved in the development of many neurological 
diseases. Characterizing epigenetic changes associated 
with a particular neural pathology may be used as 
biomarkers of disease and the manipulation of those 
epigenetic mechanisms holds great promise as a 
potential therapeutic strategy.
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Abstract
The reconstitution of a fully organized and functional 
hair follicle from dissociated cells propagated under 
defined tissue culture conditions is a challenge still 

pending in tissue engineering. The loss of hair follicles 
caused by injuries or pathologies such as alopecia not 
only affects the patients’ psychological well-being, but 
also endangers certain inherent functions of the skin. It 
is then of great interest to find different strategies aiming 
to regenerate or neogenerate the hair follicle under 
conditions proper of an adult individual. Based upon 
current knowledge on the epithelial and dermal cells and 
their interactions during the embryonic hair generation 
and adult hair cycling, many researchers have tried to 
obtain mature hair follicles using different strategies and 
approaches depending on the causes of hair loss. This 
review summarizes current advances in the different 
experimental strategies to regenerate or neogenerate hair 
follicles, with emphasis on those involving neogenesis 
of hair follicles in adult individuals using isolated cells 
and tissue engineering. Most of these experiments were 
performed using rodent cells, particularly from embryonic 
or newborn origin. However, no successful strategy to 
generate human hair follicles from adult cells has yet 
been reported. This review identifies several issues that 
should be considered to achieve this objective. Perhaps 
the most important challenge is to provide three-
dimensional culture conditions mimicking the structure of 
living tissue. Improving culture conditions that allow the 
expansion of specific cells while protecting their inductive 
properties, as well as methods for selecting populations 
of epithelial stem cells, should give us the necessary tools 
to overcome the difficulties that constrain human hair 
follicle neogenesis. An analysis of patent trends shows 
that the number of patent applications aimed at hair 
follicle regeneration and neogenesis has been increasing 
during the last decade. This field is attractive not only to 
academic researchers but also to the companies that own 
almost half of the patents in this field.

Key words: Adult stem cells; Skin grafts; Epidermis; 
Multipotential differentiation; Tissue regeneration; 
Dermal papilla; Epithelial-mesenchymal interactions
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Core tip: Loss of hair follicles caused by injuries or 
pathologies affects the patients’ psychological well-being 
and endangers inherent functions of the skin. Different 
experimental strategies and approaches to obtain 
mature hair follicles have been designed based upon 
current knowledge of the epithelial and dermal cells 
involved in embryonic hair generation and adult hair 
cycling, and in the epithelial-mesenchymal interactions 
among them. This review summarizes the current 
advances in hair follicle neogenesis and regeneration, 
with emphasis on those involving neogenesis of hair 
follicles in adults from isolated cells and tissue engineering 
as well as an analysis on patent trends in this field.

Balañá ME, Charreau HE, Leirós GJ. Epidermal stem cells and 
skin tissue engineering in hair follicle regeneration. World J Stem 
Cells 2015; 7(4): 711-727  Available from: URL: http://www.
wjgnet.com/1948-0210/full/v7/i4/711.htm  DOI: http://dx.doi.
org/10.4252/wjsc.v7.i4.711

INTRODUCTION 
Regenerative medicine aims to create living, functional 
tissues that repair or replace lost or damaged organ 
function resulting from disease, injury, congenital 
defects or aging. 

The main challenge of tissue engineering is the 
reconstitution of fully organized and functional organ 
systems from dissociated cells that have been propag
ated under defined tissue culture conditions. 

Skin is the largest organ in the human body, acting 
as a barrier with protective, immunologic and sensorial 
functions. Deep skin injuries produce a complete 
destruction of skin regenerative elements. These 
wounds heal by contraction, with epithelization from 
the edges only and extensive scarring, resulting in 
reduced joint movements and cosmetic defects[1]. 
Moreover, if these lesions are too extensive, the 
healing process is unsuccessful and they become life
threatening for the patient. Tissue engineering has 
emerged as a new interdisciplinary field combining 
scaffolds, cells and biomolecular signals towards the 
treatment of skin lesions. This useful strategy may 
contribute not only to the treatment of deep skin injuries 
but also to the understanding of skin regeneration.

The main goal of tissueengineered skin grafts 
is to restore lost barrier function. Many dermal
epidermal composites or skin equivalents have been 
described for use in the clinic[2] but the inability of 
these skin constructs to regenerate skin appendages 
as hair follicles has limited their use. Although the 
ability to reconstitute adult skin with functional skin 
appendages has long been a major clinical objective, 
the regeneration of epidermal appendages, such as 
hair follicles, and sebaceous and sweat glands, is a 
challenge that is still pending. 

Recent studies clearly demonstrate that there are 

multipotent stem cells with the capability to regenerate 
hair follicles and sebaceous glands in adult mammalian 
skin and this multipotency can be maintained in cell 
culture[3,4]. The hairdifferentiation potentiality of 
epidermal stem cells can be activated by inductive 
dermal cells. As will be extensively reviewed in this 
article, cografting of those cellular components 
from mice allows complete hair reconstitution[5]. 
The successful regeneration of hair follicles in immu
nodeficient mice suggests that creating human hair 
follicles in tissueengineered skin grafts is feasible. 
However, regeneration of human hair in a similar 
manner has not been reported.

Skin appendages cannot be restored in healed 
wounds by current tissueengineered skin grafts[6] 
mainly because of their limited selfregeneration 
capability in adults[7], the lack of appendage structures 
in the human skin grafts and probably an improper 
molecular microenvironment. Many strategies still need 
to be explored, particularly enriching isolated cells 
with trichogenic capability, maintaining this capability 
during processing, and providing the cells with proper 
environmental signals.

The lack of skin appendages by skin wounds and 
by pathologies such as different kinds of alopecia not 
only affects the patients’ psychological wellbeing[8], 
but also endangers the inherent functions of the skin. 

Skin appendages cannot regenerate on their own 
after damage[7]. For the fully functional regeneration 
of ectodermal organs, it has been proposed that a 
bioengineered organ could be developed by reproducing 
the embryonic processes of organogenesis. 

This review summarizes current advances in the 
different experimental strategies to regenerate or 
neogenerate hair follicles, in vitro and in vivo, with 
emphasis on approaches that include the neogenesis 
of hair follicles in adults from isolated cells and by 
tissue engineering as well as an analysis on patent 
trends in this field.

ANATOMY AND BIOLOGY OF HAIR 
FOLLICLES
The skin consists of three layers: epidermis, dermis, 
and hypodermis. The epidermis is in fact a multi
layered epithelium extending from the basement 
membrane that separates it from the dermis to the 
air. The dermis is located below the epidermis and 
is a connective tissue comprised of extracellular 
matrix, fibroblasts, vascular endothelial cells, and skin 
appendages.

Skin appendages, including hair follicles, sebaceous 
glands and sweat glands, are linked to the epidermis 
but project deep into the dermal layer. A human has 
around five million hair follicles with two types of hair, 
terminal hair (long, thick pigmented) and vellus hair 
(thin, unpigmented)[9]. 

Hair follicles are composed of an outer root sheath 

Balañá ME et al . Hair follicle neogenesis and regeneration

712 May 26, 2015|Volume 7|Issue 4|WJSC|www.wjgnet.com



(ORS) that is contiguous with the epidermis, an inner 
root sheath (IRS) and the hair shaft (HS). The matrix 
surrounding the dermal papilla (DP), in the hair root, 
contains actively dividing and relatively undifferentiated 
cells that are essential for follicle formation. 

In embryogenesis, the skin begins as a single layer 
of epidermal stem cells. Then, mesenchymal cells 
populate the skin to form the underlying collagenous 
dermis[10]. Human hair follicles start to develop through 
complex morphogenetic processes resulting from 
highly coordinated series of bidirectional epithelial
mesenchymal interactions[11]. Hair follicle development 
is initiated by the appearance of a thickening in the 
embryonic ectoderm called placode resulting from 
the condensation of the underlying mesoderm that 
will form the DP[12]. The DP becomes a permanent 
part of the follicle base[13] enveloped by the hair bulb. 
It is considered the commander of the hair follicle 
determining the hair thickness, length, and life cycle[8]. 
Signals from the condensed mesoderm induce the 
proliferation of the placode which forms mature hair 
follicles by a systematic series of differentiation and 
proliferation processes of epithelial cells. The hair 
follicle becomes fully mature when its bulb nears the 
bottom of the dermis. At this point, the proliferative 
cells (matrix) at the follicle base continue to divide, 
producing progeny cells that terminally differentiate 
to form the growing hair that emerges from the skin 
surface. The inner layers begin to differentiate into 
concentric cylinders to form the central HS and the 
surrounding channel, the IRS.

These tissues undergo continual rejuvenation 
and, in response to injury, they must be prepared for 
wound repair. The capability of the skin for maintaining 
tissue homeostasis, regenerating hair, and repairing 
the epidermis after injury resides in its stem cells. 

HAIR FOLLICLE STEM CELLS AND THE 
HAIR CYCLE 
Stem cells are undifferentiated cells that are ultimately 
responsible for the constant renewal of the skin due 
to their distinguishing properties of selfrenewal for 
the entire life span of an organism and their ability to 
differentiate into a variety of specialized cells.

A pool of progenitor cells is located on the base
ment membrane of the skin. These cells contribute to 
epidermal homeostasis undergoing continuous self
renewal and differentiation to keratinocytes that migrate 
towards the surface of the skin where they undergo 
terminal differentiation and maturation providing the 
skin’s barrier properties. 

Another reservoir of slowcycling multipotent stem 
cells that gives rise to a range of differentiated cell 
types in skin is located in a specialized region of the 
ORS in the hair follicle, known as the bulge[3,4,1416]. 
Early work showed that these slow cycling multipotent 
stem cells not only contribute to the growth of hair 

follicles themselves and of the sebaceous glands[3] 
but also can be activated and migrate out of hair 
follicles in order to repair the damaged epithelium[17]; 
however, they contribute little to the turnover of the 
intact epidermis. In the absence of these hair follicle 
stem cells (HFSC), hair follicle and sebaceous gland 
morphogenesis is blocked, and epidermal wound 
repair is compromised[18]. The epithelialmesenchymal 
interactions with the underlying DP play a pivotal role 
in embryonic hair genesis[12], in the regulation of post
natal hair follicle cyclical activity, and  in the repair of 
wounded skin[1922].

Unlike most organs, hair follicles do not reach 
homeostasis once they mature. Each mature hair 
follicle is a regenerating system, which physiologically 
undergoes cycles of growth (anagen), regression 
(catagen), and rest (telogen) numerous times in adult 
life[23].  In catagen, hair follicle stem cells are maintained 
in the bulge. Then, the resting follicle reenters anagen 
(regeneration) when proper molecular signals are 
provided. During late telogen to early anagen transition, 
signals from the DP stimulate the hair germ and 
quiescent bulge stem cells to become activated[24]. 
Many paracrine factors are involved in this crosstalk at 
different hair cycle stages and some signaling pathways 
have been implicated[3,19,25]. In anagen, stem cells in 
the bulge give rise to hair germs, then the transient 
amplifying cells in the matrix of the new follicle proli
ferate rapidly to form a new hair filament[26].

Even if it is generally believed that hair follicles do 
not form after birth in humans[27], the formation of 
vellus hair follicles from the reconstituted epidermis 
of an abraded area of facial skin was described in 
1956[28]. However, the great challenge of skin tissue 
engineering and skin wound regeneration remains to 
be its inability to reliably reconstitute skin appendages, 
most notably hair follicles and sweat glands. The 
information about the mechanisms that generate and 
maintain skin appendages provided by recent studies 
with skinderived progenitor cells, may be the basis 
of new therapies that could help to overcome these 
limitations.

CAUSES OF HAIR LOSS AND 
REGENERATION OF THE HAIR FOLLICLE
Hair loss responds to different causes ranging from 
mild traumas, such as hair fiber plucking, to severe 
traumas such as partial or fullthickness skin lesions. 
Pathological processes, such as cicatricial or non 
cicatricial alopecia, can also be responsible for hair 
loss. After plucking, if HFSC and DP remain, a new 
hair filament would be spontaneously regenerated. 
Some label retaining studies have shown that hair 
follicle stem cells in the bulge remain intact after hair 
plucking[29,30] whereas others reported bulge stem cells 
suffering apoptosis after plucking which are replaced 
by label retaining cells coming from hair germ[31]. 
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inhibition of the canonical Wnt signaling system in 
androgen sensitive DPCs. We provided evidence that 
androgen activation of GSK3β would be responsible 
for the inhibition of Wnt/βcatenin signaling[40]. The 
current pharmacological treatment for AGA includes 
androgen metabolism modulators, such as the 5alpha 
reductase inhibitor finasteride and the antiandrogen 
agent flutamide. Nevertheless, the results of these 
treatments are not only variable and patientdependent, 
but can also cause undesirable side effects. Therefore, 
therapies acting on specific molecular targets are 
necessary to treat this pathology downstream from the 
actual antiandrogenetic pharmaceutical modulators. 
The crosstalk between the androgen receptor (AR) 
and Wnt/βcatenin signaling pathways could be one 
alternative therapeutic target, among many others 
recently reviewed[41]. 

In these experimental approaches, modulation of 
the intrafollicular microenvironment and the extra
follicular macroenvironment could contribute to promote 
growth of the existing hair follicles but not to increase 
their number by the formation of new ones. 

Regeneration of hair follicles by recombination of hair-
follicle parts
Taking into account the inductive ability of DP and 
the current knowledge on epithelialmesenchymal 
interactions, different recombination of dermal and 
epidermal tissue have been employed for hair follicle 
regeneration. In the early 1960s, researchers showed 
that whole follicle end bulbs and isolated whole whisker 
papillae (containing dermal and epidermal components) 
remain viable and may produce whisker hair follicles 
in a new site[42]. The most surprising finding was that 
isolated DPs (without epidermal components) were 
capable of inducing the generation of new hair follicles 
recruiting epithelial cells from the implantation sites. 
The same results were obtained when epidermis 
from different origins were transplanted together 
with whisker DP[43]. Regeneration of hair follicles was 
also observed in both mice[4345] and humans[46] when 
dermal sheath tissue was used, which was sufficient to 
regenerate also the DP structure. After implantation, 
the whisker DP was capable of inducing  hair follicle 
regeneration retaining  the information to determine 
hair fiber type and follicle size[47].

Neogenesis of hair follicles in adult individuals from 
isolated cells
Grafting of dermalinductive tissue is limited by the 
fact that it is not possible to generate more hair follicles 
than the obtained from the donor tissues. To overcome 
this limitation different approaches and experimental 
models using freshly or cultured isolated cells from 
both dermal and dermal/epidermal origin were tested. 
Most of them involved neonatal and embryonic murine 
cells. One of the first models used was the chamber 
assay (Figure 1) in which dermal and epithelial cells 
are seeded inside a chamber consisting of a cylinder 

It was also observed that the slowcycling bulge 
cells (CD34 positive cells in mouse) are involved in 
normal hair homeostasis and wound healing, whereas 
regeneration after hair plucking involved actively 
cycling cells from the lower ORS[26]. However, the 
cell dynamics in this process is less clear than in the 
physiological renewal and further studies are required 
to understand this process.

However, when the cellular niches are completely 
lost, it is necessary to generate a completely new hair 
follicle in a process called hair follicle neogenesis.  

Based on the knowledge on the epithelial and dermal 
cells, and their interactions, during the embryonic hair 
generation and adult hair cycling, different experimental 
approaches have been designed to regenerate hair 
follicles or generate new ones by the neogenesis 
process. 

These hair regeneration and neogenesis attempts 
are recapitulated in this article, and can be classified into 
4 categories: (1) reversion of pathological intra and/or 
extrafollicular environment, for instance androgenetic 
alopecia (AGA); (2) regeneration of complete hair 
follicles from the recombination of hair follicle parts; (3) 
neogenesis of hair follicles from isolated cells; and (4) 
neogenesis of hair follicles by tissue engineering.  

Reversion of pathological intra- and/or extra-follicular 
environment
Hair follicle cycle and growth can be affected and 
deregulated by paracrine factors from the follicle itself 
and/or from the surrounding dermal tissue, or by 
endocrine factors[32,33] leading to hair loss. Many factors 
have been described as molecular mediators of hair 
follicle growth [11]. Some of them, such as PDGF[33] and 
Wnt proteins[34], are positive regulators while others, 
such as BMPs[35], suppress hair growth. Many paracrine 
factors involved in the epithelialmesenchymal crosstalk 
at different stages of the hair cycle, and some implicated 
signaling pathways, have also been studied[3,19,25]. 

In addition, endocrine factors, such as sexual 
hormones, have both physiological and pathological 
effects on hair growth as in human male beard, and 
androgenetic alopecia respectively. Androgenetic 
alopecia[36] is a common, progressive disorder in which  
large, terminal scalp hairs are gradually replaced by 
smaller hairs following a defined pattern. The DP is 
the site through which androgens act on follicle cells 
by altering the regulatory paracrine factors involved in 
the differentiation and proliferation of HF stem cells. 
DPs from balding scalp have higher levels of androgen 
receptor and 5alpha reductase. Dihydrotestosterone  
can induce DP to secrete factors including, TGF
beta1 and DKK1 which down regulate keratinocytes 
growth[37,38].

A functional crosstalk between the androgen 
receptor and Wnt signaling pathways in DPCs has been 
described in target tissues[39]. Moreover, our group has 
demonstrated that androgens regulate secreted factors 
involved in normal HF stem cell differentiation via the 
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inserted through a fullthickness skin lesion in mouse 
dorsal skin, covered by a dome. In former studies 
using this device in nude mice[48], it was showed  that 
hair buds obtained from neonatal mice combined with 
fresh neonatal dermal cells or with immortalized clones 
from vibrissae rat DPCs produced mature and cycling 
hair follicles. Using the same chamber assay, hair bud 
preparations without any additional inductive dermal 
component were unable to form hair follicles resulting 
in a scarring reparative tissue, a thin epidermis and 
a dermis without appendages[49]. On the other hand, 
the combination of hair buds with fresh dermal cell 
preparations or early passages of cloned vibrissae 
cell lines resulted in skin with normal epidermal and 
dermal layers.

Although these studies confirmed the trichogenic 
potential of dissociated dermal cells, particularly DPCs, 
the conditions of the chamber assay correspond to 
a wound healing environment and do not represent 
the physiological status. Other approaches allow 
studying the trichogenic potential of isolated cells 
in a more physiological environment, as is the case 
of the patch assay (Figure 1). This assay consists 
in injecting dissociated murine neonatal epidermal 
and dermal cells hypodermically into adult mouse 
skin. This system, originally described by Zheng 

et al[50], showed the formation of cell clusters that 
resulted in “infundibular cysts” which generated hair 
germs, followed by pegs that grew to differentiate 
into cycling mature pilosebaceous units. Surprisingly, 
whereas patch hair follicles were in anagen phase, 
the host skin hair follicles were in telogen and vice 
versa, suggesting that follicle cycling depends on the 
trichogenic cells and not on the host skin hair cycling. 
Even when the shaft grows inside an intradermal cyst 
that tends to extinction by inflammatory processes, 
none of the other already described systems at that 
moment showed to be so efficient to evaluate the 
trichogenic potential of isolated cells. A variation of this 
method is called tracheal grafting method. It consists 
in inoculating rat tracheas with fresh or cultured 
keratinocytes from newborn mice together with 
newborn fibroblasts or cultured DPCs and implanting 
them subcutaneously in athymic mice for four weeks. 
In this assay hair follicles and sebaceous glands were 
generated using cultured keratinocytes from newborn 
mice and fresh newborn fibroblasts[51]. Although 
adult mice keratinocytes successfully produced  a two 
layered epithelium, they failed to generate hair follicles 
or sebaceous glands[51]. 

Other strategy to evaluate the hair inductive capa
bility of dermal cells is the “flap assay” (Figure 1). This 
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Figure 1  Hair follicle neogenesis using isolated epithelial and dermal cells. Inductive-dermal and Epithelial Cells can be obtained from adult tissue or embryonic 
sources. Isolated cells by enzymatic digestion of living tissues, or monolayer cell cultures (A) can be used in the trichogenic assays (D): Chamber assay; Patch assay; and 
flap assay. Moreover, isolated cells can be cultured in 3D-conditions, allowing them to create their own extracellular matrix as in the case of homotypic and heterotypic 
spheroids and hair germs (B). Also, cells can be seeded on a precast scaffold used for cellular support or used to produce a bioengineered composite skin (C). Any 
of these constructs can be evaluated by the trichogenic assays (D): Flap assay; and Bioengineered composite skin grafting. All these trichogenic assays are mainly 
performed in the back-skin of athymic mice in order to avoid immune rejections and to take advantage of its bare-skin (E). DPCs: Dermal papilla cells; DSCs: Dermal 
sheath cells; HFSC: Hair follicle stem cells. 
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approach originally described by Qiao et al[52] consists 
in: (1) generating a skin flap in the dorsal skin of nude 
mice; (2) locating an embryonic epidermis supported 
by a silicone sheet in direct contact with the muscle 
with the basal side of the embryonic epidermis facing 
upwards; (3) seeding embryonic murine dermal cells 
or cultured DPCs onto the basal face of the graft
epidermis; and (4) pulling over the graft and suturing 
the flap edges. In this configuration the graftdermal 
cells were layered between the graftepidermis and the 
host connective tissue. When fresh embryonic dermal 
cells were used, abundant hair was developed four 
weeks after grafting. The induced hairs were oriented 
vertically down towards the silicone sheet. After surgical 
flap inversion, the formed hairs were exposed in the 
host skin surface and survived for more than 12 mo.

Neogenesis of hair follicles by tissue engineering
Although the assays described above provided much 
information respect to the hair neogenesis process 
and the cells involved in it, the high number of cells 
required, the need of in vivo animal models and the 
poor results obtained with human cellular sources 
make these procedures not applicable for clinical uses 
in the near future. The development of new strategies 
has become necessary and begun to emerge. They 
are mainly focused on tissue engineeringbased follicle 
neogenesis, including threedimensional (3D) cell 
culture conditions generated by the cells themselves or 
by the use of biocompatible scaffolds. 

Lee et al[53] developed a simplified procedure to 
reconstitute hairproducing skin. They obtained both 
epidermal and dermal cells from newborn mice, and 
mixed them in different ratios. A high density cellular 
suspension was prepared in drops of minimal volume 
on tissue culture inserts or wells. They allowed the 
cells to settle until gel consistency was obtained. 
Alternatively, they seeded the cells on the collagen
side of the IntegraTM matrix (porous matrix of cross
linked bovine tendon collagen and glycosaminoglycan 
and a silicone layer). Both constructs were grafted 
in full thickness skin wounds generated on the back 
of athymic mice. After grafting, the epidermal cells 
formed a basal layer and some epidermal microcysts 
could be observed. Dermal cells started to form dermal 
condensations adjacent to the epidermal layer or cysts.  
Eight days after grafting hair germ started to appear 
and progressed to hair peg, observing complete 
hair follicles four days later that kept the ability to 
continuously cycle for at least one year. This method 
would allow preparing constructs with specific sizes 
and shapes useful to treat alopecia by tissue implants.  

Two separate reports[54,55] showed hair follicle 
neogenesis using hair germs obtained by the previously 
described “organ germ method”[56]. One of them[54] 
generated bioengineered hair germs mixing epithelial 
and mesenchymal cells derived from mouse embryos 
within a collagen gel drop. In these culture conditions, 
the two cellular types generated a structure with 

two cellular layers separated by a translucent region 
they called hair germ. When these hair germs were 
transplanted ectopically into subrenal capsules, the 
presence of mature hair follicles was observed. These 
bioengineered hair follicles had a normal histological 
structure with the concentric epithelial layers of ORS 
and IRS, DP, hair matrix, and sebaceous glands. These 
follicular units transplanted intracutaneously in nude 
mice (Figure 1), were connected to the arrector pili 
muscle and nerve fibers and were able to produce hair 
shafts and cycling.

In addition, a fully functional orthotopic hair re
generation was demonstrated via intracutaneous 
transplantation of bioengineered hair follicle germs 
generated by epithelial and mesenchymal cells derived 
from mouse embryos[55] (Figure 1). These bioengineered 
hairs responded to hair cycles and had the correct 
structure of natural hair follicles and shafts, and the 
proper connections with surrounding host tissues. Qiao 
et al[57], using embryonic dermal cells and hairpeg
derived keratinocytes, generated cellular aggregates by 
hanging drop methods. These aggregates cultured in 
methylcellulose coated wells elongated, and after seven 
days, acquired hair follicle features. These structures 
termed “proto hairs”, showed a morphological structure 
more developed respect the previously described “hair 
germs”[54,55]. They presented hairlike characteristics 
as an inner mass of cells similar to the DP structure 
surrounded by matrixlike keratinocytes and a partially 
keratinized substance that could represent intent to 
produce a hair shaft. After implantation into shallow 
incisions in nude mice (Figure 1), blackpigmented hair 
fibers were observed emerging from epidermis. These 
hairs persisted throughout the experimental period (6 
mo) and were shown to regrow after plucking.

Although embryonic tissues are used as cellular 
sources, these studies showed the potentiality of 
dissociated cells to form hair follicle germs or proto
hairs able to generate mature hair follicles both by 
ectopic and orthotopic implantation. Collectively, 
these studies provide a proof of concept for the use of 
Follicular Cell Implantation to restore hair in patients 
suffering from hair loss.

As it was already mentioned, dermal cellular com
ponents from the skin, such as DPCs or dermal sheath 
cells (DSCs), have the potential to induce hair formation 
in in vivo assays and also induce in vitro differentiation 
of hair follicle stem cells to hair lineage[25,40]. Even if it is 
possible to isolate and culture DPCs, the inductive ability 
tends to fade with time in 2D cultures[6,58]. Considering 
that the hair follicle neogenesis requires a large number 
of DPCs, it is necessary to look for new strategies to 
maintain their inductive potential in culture in order 
to use them in skin bioengineering and hair follicle 
neogenesis.

The niche generated by the extracellular matrix 
(ECM) of DP probably plays a key role in keeping 
DPC inductive activity. Accordingly, the loss of ECM 
throughout culture time could be responsible for the 
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fading of DPC inductive properties. 
DPCs are naturally aggregated at the hairbulb 

base. In proper culture conditions, these cells tend to 
aggregate[13,59] and their inductive activity is preserved 
after they are grafted in this state. It has been demon
strated that it is possible to generate dermal papilla 
spheroidal microtissues using different methods 
including rotation, two-step rotation and flotation, and 
hanging drop[6062]. Osada et al[63] artificially prepared 
DPC spheres by aggregation of mouse vibrissae 
follicle DPCs in a roundbottom 96well lowbinding 
plate. These spheres expressed higher amounts of 
versican, an indicator of inductive capability, than 
DPCs in monolayer cultures. In a “patch assay” (Figure 
1), together with embryonicepidermal cells, they 
induced hair follicle neogenesis, keeping their inductive 
capability for at least twentysix passages.

However, these methods are labor intensive and 
the microtissues obtained have a very variable size 
and cell number content, which reduces reproducibility.
DPCs can selfassemble into dense spheroids when 
seeded on controlled biomaterial surfaces such as 
poly (ethylenecovinyl alcohol) (EVAL)[64] or polyvinyl 
alcohol (PVA) membranes[65]. The DPC microtissues 
generated on EVAL surface[64] expressed DPCmarkers 
such as neural cell adhesion molecule (NCAM)[66] 
and α-smooth muscle actin[67]. Alkaline phosphatase 
activity, which correlates with hair follicle inductive 
ability of DPC[68], was higher in spheroid microtissues 
than in monolayer cultured cells. Finally, the spheroids 
mixed with newborn mouse epidermal cells and 
injected into the hypodermis of nude mice in a “patch 
assay” (Figure 1) were able to generate new hair 
follicles. 

The use of PVA as substratum material enhanced 
DPC aggregation[65], preventing cellular attachment 
and spreading. Using this material and reducing 
culture surface it is possible to control the number, 
size and compaction of spheroidal microtissues. DPCs 
quickly aggregated into a single spheroid whose 
diameter decreased progressively due to tissue 
compaction. The expression of DPCinductive capability 
markers, versican[69] and alkaline phosphatase[68], 
were present in spheroids of various sizes. All these 
experiments were made both with adult DPCs from 
rat vibrissae, and human scalp hairs, giving similar 
results. The hypodermal injection in nude mice of 
eighty spheroids altogether with keratinocytes from 
newborn mice induced HF neogenesis. These results 
are very promising given that transplantation of 
dispersed cultured human DPCs had shown very low 
efficiency in inducing new hair follicles[70]. Using the 
same approach, heterotypic folliculoid microtissues 
or hair folliclelike organ germs were produced using 
dissociated adult epithelial and mesenchymal cells by 
selfassembly on EVAL coated wells[71]. Keratinocytes 
and DPCs seeded together grew into floating or 
loosely attached multicellular spheroids. Histological 
analysis showed that the spheroids are composed by 

a core of DPCs surrounded by keratinocytes. These 
keratinocytes expressed keratin 6, a cytokeratin 
preferentially expressed by ORS in vivo[72], and DPCs 
expressed versican, a marker associated to HF
inductive ability. Using “patch assays” (Figure 1) 
disperse DPCs and keratinocytes did not form new hair 
follicles, whereas heterotypic folliculoid microtissues 
did. These last experiments would contribute to the 
development of new strategies for scalable production 
of organoid microtissues of epithelial organs for hair 
follicle neogenesis by bioengineering approaches.

Altogether, these results strongly indicate that the 
hairinductive capability of DPCs can be restored by 
threedimensional spheroid cultures. 

Hair follicle neogenesis using human cells
During embryogenesis, dermal mesenchymal cells 
drive HF development and a condensate of these 
cells remains during adult life forming hair follicle 
DP. These cells retain the capability to induce hair 
follicle regeneration and neogenesis[21,73] as reviewed 
by Ohyama et al[5] and Yang et al[6]. However, most 
of these experiments were performed using murine 
and embryonic cells, whereas DPC from human 
origin showed many difficulties to maintain inductive 
capability in culture[74]. 

As discussed above, rat cultured DPCs selfaggregate 
within the dermis forming a papillalike structure that 
synthesizes its own extracellular matrix[13]. However, 
such behavior was not observed with cultured human 
DPCs, highlighting specie-specific differences. Human 
keratinocytes from ORS and DPCs cultured in MatrigelTM 
(3D network of extracellular matrix proteins and 
collagen) have shown to form tubulelike structures in 
this skinequivalent in vitro[75] and organize themselves 
into epidermoid cystlike spheroids[72,76], but did not 
form complete hair follicles. Similarly, Sriwiriyanont 
et al[77], observed neofollicle formation in nude mice 
grafted with engineered skin substitutes containing 
murine DPC and human keratinocytes in a collagen
glycosaminoglycan matrix, but not in those containing 
human DPC and human keratinocytes.

Ehama et al[78] reported the formation of hair 
folliclelike structures using human primary cultures of 
foreskin or adultderived epidermal cells cografted 
with murine DPCs by a chamber assay (Figure 1). 
The innermost regions were similar to the hair cortex 
and medulla of mature human follicles. Hair shaftlike 
fibers occasionally emerged at the skin surface, and 
structures, reminiscent of the DP, at the follicle bottom 
were also observed. However, these structures showed 
no bulge region, nor all the follicular epithelial layers, 
and the DPlike tissue failed to express the anagen 
DP marker versican. These hair folliclelike structures 
correspond to the initial follicle formation suggesting 
that the differentiation process was altered.

Using the “flap assay”[52] (Figure 1), Qiao et al[79] 
showed that DPCs from human scalp combined with 
epidermis from mouse embryo produced mature 
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hair follicles that persisted and grew. The authors 
reported that the inductive potential of DPCs could be 
maintained using keratinocyteconditioned medium. 
These DPCs were able to form DP and dermal sheath 
in vivo. 

Spheroids microtissues were also obtaining by 
culturing human DPCs in a 96well lowbinding plate, 
and implanted intradermically into nude mice using 
the “patch assay” (Figure 1)[80]. This combination of 
human DPC spheres with murine neonatal epidermal 
cells generated new hair follicles. In contrast, hair 
follicles were never observed when monolayer DPC 
cultures were used.

Cultured human DPCs do not induce hair neo
genesis unless changes in the culture conditions are 
made. In this sense, the formation of DPCmicrosphere 
tissues has shown to improve hairinductive properties 
of rodent cells as well as the expression of cellmarkers 
associated with these properties[6365]. Therefore, 
all these observations encouraged investigators to 
look for new strategies intended to achieve the first 
step toward human hair follicle neogenesis that is, 
providing culture conditions that confer hairinductive 
ability to human DPCs. Higgins et al[74] evaluated the 
human DPCtranscriptome observing that monolayer 
DPC cultures showed the most important changes 
immediately after early outgrowths from DP explants. 
These changes involved 3729 transcripts, including 
several involved in hair follicle development. This large 
number of differentially expressed transcripts shows 
the physiological changes that 2D culture conditions do 
on the molecular signature of DPCs. The generation of 
DPC spheroids by the hanging drop method partially 
restores the intact DP signature. These humanDPC 
spheres induced hair follicle neogenesis when placed 
in between foreskin epidermis and dermis and grafted 
onto nude mice (Figure 1). These hair follicles showed 
a DP and dermal sheath highly positive for alkaline 
phosphatase, hair specific keratin markers disposed in 
concentric layers and blood vessel formation around 
follicles. Nevertheless, neither sebaceous glands nor 
hair fibers emerging from the skin surface were seen. 
These results suggested that human DPC spheroids 
would be able to initiate hair follicle morphogenesis 
but the production of a complete hair follicle requires 
additional signals. 

Recently, Miao et al[81] produced DPCspheroids from 
cultured DPCs on a MatrigelTM scaffold. As reported by 
Higgins et al[74], the DPC spheres were shown to restore 
DPsignature gene expression of NCAM, versican and 
α-smooth muscle actin (α-SMA), lost during monolayer 
culture. The authors also claimed that these DPC
spheres, combined with hair germinal matrix cells, onto 
Matrigelcoated plates produced colorless fiberlike 
structures in vitro. 

Other alternative to culture dermal mesenchymal 
cells in 3D conditions is the organotypic method con
sisting in culturing cells inside a scaffold. Using this 
method, Wu et al[82] prepared a collagen gel with 

human DPCs or dermal sheath cells (DSCs). This gel 
was seeded with keratinocytes from interfollicular 
skin, superior ORS or inferior ORS obtaining in vitro 
a bilayered skin. Nonetheless, only the constructs 
containing superior ORS keratinocytes showed hair 
folliclelike structures. That is, an outer root sheath, 
nearly ten layers of concentric epithelial cells, a middle 
layer IRSlike and some keratinoid substances in the 
center, similar to a hair fiber. When these constructs 
were transplanted into nude mice (Figure 1), only 
the organotypic cultured tissue containing superior 
ORS keratinocytes and DPCs exhibited hair follicle 
structures.

In a recent study[83], composite skin substitutes 
were generated by seeding human neonatal foreskin 
keratinocytes onto a dermal equivalent structure 
cultured in airliquid interface condition. This dermal 
equivalent was composed of DPCs from human scalp 
contained in a collagenI gel. Eight weeks after grafted 
onto nude mice (Figure 1), these constructs presented 
hair follicles showing bulb, dermal sheath, hair matrix 
and cortex. Histological analysis showed concentric 
layers of IRS and ORS, sebaceous glands and hair 
shaft. Inmunohistochemistry assays revealed that 
both epithelial and dermal cells from neofollicles 
were from human origin, and that DPCs and DSCs 
expressed human nestin and versican.

The analysis of all these reports leads to the 
conclusion that hair follicle neogenesis using human 
epithelial and dermal cells is a very difficult task that 
requires special culture conditions, somehow recreating 
the normal or embryonic skin environment, and the 
use of embryonic or neonatal cells.

Very recently, we prepared in our laboratory a 
dermalepidermal skin substitute by seeding an 
acellular dermal matrix with cultured hair follicle 
epithelial stem cells and DPCs, both obtained from 
adult human scalp[84]. These constructs were grafted 
into a fullthickness wound generated on nude mice 
skin (Figure 1). In only fourteen days, histological 
structures reminiscent of many different stages of 
embryonic hair follicle development were observed in 
the grafted area. These structures showed concentric 
cellular layers of human origin, and expressed k6hf, 
a keratin present in epithelial cells of the companion 
layer. Although the presence of fully mature hair 
follicles was not observed, these results represent, 
up to our knowledge, the first report showing that 
both epithelial and dermal cultured cells from adult 
human scalp in a dermal scaffold were able to produce 
in vivo structures that recapitulate embryonic hair 
development.

ANALYSIS OF PATENTS TRENDS IN 
HAIR FOLLICLE REGENERATION AND 
NEOGENESIS
So far, we have made a concise review of the scientific 
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literature describing the attempts to regenerate 
the hair follicle. We have also mentioned a number 
of reviews on academic articles dealing with hair 
regeneration or wound induced follicle neogenesis 
that have been published in recent years[85]. However, 
reviews on tissue engineering and hair regeneration 
patents are less common. Many of these strategies 
have been combined in different methods intended for 
use in active applications. In this section, we review and 
analyze published patents on hair regeneration[86150], as 
a measure of the interest in the industry for this area 
of research, identifying the currently available technical 
developments, favorite research strategies and main 
points of interest. Parameters analyzed include not 
only chronological patent publishing trends, but also 
the most cited patents, top patent owners (assignees), 
most cited documents, and the classification of patents 
among technology areas according to the International 
Patent Classification (IPC). Moreover, hair regeneration 
applications that have been patented throughout the 
years are screened (Figure 2). 

LITERATURE STUDY
Patent search was performed using the Thomson 
Innovation Database, a collaboaration platform for 
searching and analyzing global patents, integrated 
with analytics and workflow tools which allow access 
to more than 40 databases from different countries. 
For each particular group of hair regeneration, specific 
keywords (descriptors) were selected. Descriptors 
were chosen based on the synergy of two approaches: 
the search of specific keywords and concepts used in 
academic publications, and the selection of additional 
descriptors from specific patent vocabulary. Therefore, 
the keywords are: Stem cell; progenitor cell; precursor 
cell; repair; growth; wound; regeneration; neogenesis; 
skin; tissue engineering; dermis; epidermis; dermal;  
hair follicle; sebaceous gland and sebaceous unit. The 
presence of the chosen descriptors was checked in the 
title, abstract and claims of existing patents, considering 
documents published between years 1990 and 
2014. More than forty technology patent and patent 
application databases were used for patent search, 
including the Spanish OEPM, the American USPTO, the 
worldwide WIPO, the European EPO, the patent offices 
of France, Germany, Great Britain and the FarEastern 
patent offices of Japan, China and South Korea. Besides 
the keywords, the search process was completed with 
the use of the IPC codes under which the patents of 
interest could be framed. The combination of the search 
approaches previously mentioned offered a universe 
of about 475 patent families, which were manually 
reviewed and filtered, setting aside those directed to 
gene therapies, mesenchymal, embryonic stem cell, 
osteoblast, neuron and hematopoietic cell and others. 
The result of this process was the identification of 65 
patent families[86150]. The selection of the document to 
be considered in patent trends was the first published. 

It is important to note that patent applications can be 
published in different countries under different national 
numbers. This is called the family of the patent. In 
the search performed for the present study, care was 
taken to include just one patent per family.

Tables showing patents that are most frequently 
cited take into account all the patents in the family, 
since it may occur that the earliest document is not 
necessarily the most cited one.

Competitive dynamics
The competitive dynamics indicator shows the distri
bution of patents among the different organizations, 
providing a general picture of the tissue repair rege
neration industry and their relative positioning. On 
the basis of this information we can identify the most 
prolific applicants for hair regeneration technology 
patents in the world, by establishing the number of 
applications filed by each company.

Table 1 lists the applicants that have filed more 
than one application, which will be our “Reference 
Group”. Most of the members of this group are manu
facturing companies, indicating that this technology 
belongs to the industrial sector. The highest percentile 
is shared by a small number of applicants with five 
patents each, while a second group includes a wide 
range of companies with no clear technological 
leadership. 

The group of companies of the first percentile 
shown in Table 1, are the leading hair regeneration 
manufacturers Shiseido Co ltd and Aderans Research 
Institute, which own more than five published patents 
each, and which own almost 20% of all filed applications 
in this field.

The second percentile of institutions having one or 
two applications each could offer a favorable scenario 
for technology transfer.

It should be highlighted that there are over 20 
institutions or about 40% patent applications from non
profit institutions including universities and foundations. 
The most prolific institutions are: Jilin University, 
University of Pennsylvania, University of Southern 
California and National Taiwan University, which gives 
an idea that this field is very prolific in academic 
institutions.

Technology trends
The patent technology trends indicator introduces 
the serial number of patent applications showing 
how technology has evolved over time as well as its 
appropriation by companies and non-profit institutions 
in the field of hair regeneration. This technological 
area has experienced constant growth. In the 90’s an 
average of 2.5 patent applications were filed per year, 
and in the first decade of the 21th century the average 
increased to 6 patent applications per year (Figure 2). 

The years 2011 and 2012 stand out as the ones 
with the most patent applications, 10 and 16 res
pectively.
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Aderans Corp Company filed most patent applica
tions from 2005 to 2008. Shiseido and Follica, as well 
as the University of Pennsylvania have filed patent 
applications in recent years. 

From this general perspective, it can be inferred 
that the technological field is, at present time, in a 
developmental stage, with an annual growth rate of 
10%, based on the number of patent documents filed 
since 2010. 

From another perspective, Figure 3 shows the 
cumulative patent families published in the last 20 
years. As it can be seen, since 2005 there has been 
a remarkable increase of attraction in the area: while 
50% of the patents required 15 years to be generated, 
the remaining 50% has been filed over the past five 
years. 

The analysis of patent applicationtrends shows 
that, at the present time, the development of hair 
regeneration technology is evolving positively, making 
this technological field attractive to companies that 
start producing and selling products as a result of the 
development of hair regeneration technology.

Technological leadership indicator
The technology leadership indicator identifies specific 
companies with the most consolidated and developed 
technologies in this specific field. The Patents which 
have received the highest number of citations are 
considered to have the highest degree of technological 
progress or impact. The analysis of patent citations 
allows the identification of patents which have been 
most useful for later researchers and for the deve
lopment of newer technologies and may illustrate 
the diffusion of technical knowledge and its different 
practical applications throughout the years. 

Just as those patents that have received most 

citations are not always the most relevant ones, and 
those most relevant are not always the most cited 
ones; a number of empirical studies demonstrate a 
strong correlation between those variables. In Table 2 
the 10 most cited institutions as references are listed.

Up to the present, New York University and Pen
nsylvania State University have received the highest 
number of citations with 29 citations which reflects the 
importance of the works of Lavker et al[86] previously 
described. Following these institutions, companies 
likse Biointegrence Co and Phoenixbio Co Inc, and 
Anticancer Inc have 17 citations. The Hospital for Sick 
Children, Aderans Research Institute Inc, Sci Torico 
Innovations Inc and Trichoscience Innovations Inc are 
among the most innovative companies.

Skin substitutes were among the earliest products 
to be developed using principles of tissue engineering, 
and their success is evident in the clinical use of 
several commercially available products. However, skin 
substitutes capable of performing all the functions of 
normal skin are not currently available, which limits 
their use in patients. Hair follicle neogenesis is not 
observed using current skin substitutes. Thus, the 
efforts in hair and skin bioengineering continue to be in 
a leading place in regenerative medicine. Furthermore, 
hair restoration is one of the fastest growing areas of 
cosmetic therapies for both men and women. 

Hair follicles are important not only for appearance, 
skin hydration, barrier formation, and protection 
against pathogens but also in wound healing. As hair 
follicles store epidermal stem cells, skin with hair 
follicles heals faster. In addition, bulge stem cells are 
less susceptible to loss through minor trauma and 
damage through ultraviolet light. Thus, treatments 
that involve neogenesis of normal hair follicles would 
find much wider application for restoring normal skin 
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  Assignee No of patent applications Percentage

  Shiseido Co Ltd   5     7.69%
  Aderans Research Institute Inc   5     7.69%
  Hospital for Sick Children   2     3.08%
  Biointegrence Inc, phoenixbio Co Ltd   2     3.08%
  Follica Inc   2     3.08%
  Organ technologies Inc   2     3.08%
  Universitiy of Jilin   2     3.08%
  University of Southern California   2     3.08%
  National University of Taiwan   2     3.08%
  Aderans Research Institute Inc, Bioamide Inc   1     1.54%
  Agency for science, technology and research   1     1.54%
  Alvi Armani Genomics Inc   1     1.54%
  Anticancer Inc, Li L, Yang M   1     1.54%
  Beijing Yonghe Hair Transplant Technology   1     1.54%
  Biomaster KK   1     1.54%
  Chen B, Gao Q, Zeng Q   1     1.54%
  Chinese Academy of Science Institute of Zoology   1     1.54%
  Total No of patent applications 65 100.00%
  No of Entities 50

Table 1  Owners of hair regeneration patents and patent applications matching all the descriptors 
found in academic literature

Own investigation using patent data base Thomson Innovation.
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function and appearance. 
Methods and compositions capable of generating 

morphologicallycorrect, fullydeveloped human hair 
follicles, useful for treating conditions such as full or 
partialthickness skin loss, wounds, burns, scars, and 
hair loss have been developed in order to fulfill this 
necessity. In this analysis, only patents aiming to hair 
follicle regeneration or neogenesis have been selected. 
As reviewed, it has been determined that both epi
thelial cells and mesenchymal cells are essential for 
hair follicle regeneration. The regeneration of chimeric 
hair follicles comprised of mouse DPC and human 
epithelial cells has been shown to be possible, however 
it is still not possible to regenerate completely human 
hair follicles. One of the reasons for this is the difficulty 
to obtain an adequate number of human DPCs having 
the ability to induce hair follicle formation to be used 

for transplantation. Consequently, most of the patents 
filed in this field provide cellular compositions capable 
of hair neogenesis and regeneration or methods for 
isolating progenitor skin cells as well as the culture 
conditions that will allow them to keep their inductive 
properties to promote hair neogenesis or regeneration. 

The first most cited patent listed in Table 2 
(WO1995001423), published in 1995, described a 
method of culturing and modulating subpopulations 
of follicular keratinocytes from upper portions of hair 
follicle to be used for identifying agents which stimulate 
hair growth or prevent hair loss and useful for follicular 
reconstruction and transplantation as well as wound 
coverage in burns and skin ulcer[86] .

In 2005 a patent application (WO2005053763A1) 
developed a method for transplanting the dermal 
papilla or dermal papilla cells and outer skin epidermis 
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Figure 2  Evolution of the number of patent applications related to hair regeneration (time frame 1990-2014). Own investigation using patent data base Thomson 
Innovation.

Figure 3  Evolution of accumulated patent families. Tendency line. Own generation based on patent databases.
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tissue or epidermal cells to hairless scalp to regenerate 
hair[94]. 

Different tissue engineeredhair follicle grafts 
were also patented; a scaffold constructed to mimic 
the architecture of the native hair follicle and for 
percutaneous implantation facilitating the follicle 
neogenesis process[90] (US20050214344), a hair graft 
comprising plucked hairs having adhered epidermal 
stem cells and follicular dermal cells for implantation 
into wounded skin[105] (US20070122387A1) and a 
hair graft comprising a scaffold, and tissue engineered 
epidermal and dermal layer with hair follicle progenitor 
cells (WO2007062386A2)[98].

Several methods for isolating skinderived precursor 
stem cells from hair follicles or dermal papillae as well 
as the culture conditions or the delivery into the skin 
of these cells in order to induce hair growth are also 
among the most cited patents (WO2002060396A, 
WO2005071063A1 and US20070092496A1)[88,91,99].

Finally, among the most cited patents are those 
describing methods for isolating hair follicle mesen
chymal stem cells useful for treating alopecia and 
gene therapy (WO2003104443A2)[89] or useful for hair 
loss, burns or skin replacement as well as for treating 
neurological or degenerative disorders (WO2003
024406A2)[87].

The rest of the patents analyzed whose content 
is not mentioned, can be found in the References 
section[86150] at the end of this review. 

CONCLUSION
Although a successful strategy to generate human hair 
follicles from adult cells has not yet been reported, the 
results presented in this review suggest the issues that 
need to be addressed before success can be achieved.  
Perhaps the most important of those issues is to 
provide cells with a threedimensional structure that 
simulates the natural scaffold. Herein the cells should 
develop and interact among themselves or with other 
cell types in the epithelialmesenchymal interactions. 
Improving culture conditions that allow the expansion 
of these cells without losing their natural properties, as 
well as selecting the appropriate epithelial stem cells, 
should give us the tools needed to face the challenge 
of regenerating human hair follicles.

These efforts in hair and skin bioengineering are 
also visible in the growing number of patent applications 
filed during the last decade, indicating that this 
technological field is not only attractive to academic 
research but also to the companies that own almost 
half of these patents.
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Abstract
Tissue engineering is a multidisciplinary field that 
applies the principles of engineering and life-sciences 

for regeneration of damaged tissues. Stem cells have 
attracted much interest in tissue engineering as a cell 
source due to their ability to proliferate in an undi-
fferentiated state for prolonged time and capability of 
differentiating to different cell types after induction. 
Scaffolds play an important role in tissue engineering 
as a substrate that can mimic the native extracellular 
matrix and the properties of scaffolds have been shown 
to affect the cell behavior such as the cell attachment, 
proliferation and differentiation. Here, we focus on the 
recent reports that investigated the various aspects 
of scaffolds including the materials used for scaffold 
fabrication, surface modification of scaffolds, topography 
and mechanical properties of scaffolds towards stem 
cells differentiation effect. We will present a more 
detailed overview on the effect of mechanical properties 
of scaffolds on stem cells fate. 

Key words: Stem cells; Tissue engineering; Differen-
tiation; Mechanical properties; Surface modification; 
Topography

© The Author(s) 2015. Published by Baishideng Publishing 
Group Inc. All rights reserved.

Core tip: Application of stem cells in tissue engineering 
and regenerative medicine has attracted many resear-
chers and it is considered as a hot topic of research. The 
research was mostly aimed towards the fabrication of 
a suitable scaffold with appropriate physical, chemical, 
biological and mechanical properties to guide the 
differentiation of stem cells to specific lineages of 
interest. This paper reviews the previous researches 
on effect of chemical structure, surface modification, 
topography and mechanical properties of scaffolds 
on stem cells behavior. Fabrication of scaffolds with 
desirable properties can open new strategies for cell 
therapy using tissue engineering technique.

Ghasemi-Mobarakeh L, Prabhakaran MP, Tian L, Shamirzaei-

728 May 26, 2015|Volume 7|Issue 4|WJSC|www.wjgnet.com

REVIEW

Submit a Manuscript: http://www.wjgnet.com/esps/
Help Desk: http://www.wjgnet.com/esps/helpdesk.aspx
DOI: 10.4252/wjsc.v7.i4.728

World J Stem Cells  2015 May 26; 7(4): 728-744
ISSN 1948-0210 (online)

© 2015 Baishideng Publishing Group Inc. All rights reserved.

Structural properties of scaffolds: Crucial parameters 
towards stem cells differentiation

Laleh Ghasemi-Mobarakeh, Molamma P Prabhakaran, Lingling Tian, Elham Shamirzaei-Jeshvaghani, 
Leila Dehghani, Seeram Ramakrishna



Jeshvaghani E, Dehghani L, Ramakrishna S. Structural 
properties of scaffolds: Crucial parameters towards stem cells 
differentiation. World J Stem Cells 2015; 7(4): 728-744  Available 
from: URL: http://www.wjgnet.com/1948-0210/full/v7/i4/728.
htm  DOI: http://dx.doi.org/10.4252/wjsc.v7.i4.728

INTRODUCTION
Autologous cells obtained from adult patients might 
deliver a less difficult route to regenerative-cell 
therapies. In the past, many tissues were assumed 
incapable of self-regeneration upon its damage, 
mainly because they do not possess any endogenous 
stem cells. However, recent discoveries show that 
more adult tissues harbor cells with capacity for 
regenerative repair[1]. Tissue engineering comprises of 
suitable cells, scaffolds and appropriate biochemical/
physical factors, such that it function as a strategy 
towards the engineering of tissues and cellular 
delivery. Encapsulating stem cells within biocompa-
tible scaffolds provide a matrix which result in cell 
adhesion, migration and differentiation suitable for 
transplantation and tissue regeneration[2-4].

Stem cells have uncovered a new perspective as 
therapeutic tools in regenerative medicine. These cells 
with the ability to proliferate indefinitely (in vitro) and 
the capacity to differentiate into any somatic cell type 
are a potential cell source. Stem cells are originated in 
the early embryo, the fetus, placenta, umbilical cord, 
and it occurs in many different tissues of the body. Also 
they have been engineered from somatic cells, termed 
as induced pluripotent stem cells (iPSCs). iPSCs give 
rise to different cell types including the neural cell types 
(neurons, oligodendrocytes, and glia), cardiomyocytes, 
osteoblasts, hepatocytes, and haemopoietic proge-
nitors cells[5-8]. The two main stem cell types are the 
embryonic stem cells (ESCs) and the adult stem cells. 
ESCs are derived from fetal tissue or from the inner 
cell mass of the blastocytes with ability for unlimited 
growth in culture that could be associated to a high 
risk of teratoma formation. Several researches have 
been done on ESCs pluripotency to obtain specific 
cell lineages for tissue engineering and regenerative 
medicine, as well as for therapeutic treatments[8-13]. 
Adult stem cells are specialized cells including the 
mesenchymal stem cells (MSCs), hematopoietic 
stem cells (HSCs), and neural stem cells (NSCs)[9]. 
MSCs are self-replicating cells that are capable of 
differentiating in multidirectional pathways, resulting 
in cell lineages such as the osteoblasts, chondrocytes, 
myocytes, marrow stromal cells, tendon-ligament 
fibroblasts, adipocytes, neural cells, oligodendrocytes 
and haemopoietic cells[9,14,15]. These cells have been 
used for the engineering of different tissues such as 
the cardiac[16] , tendon[17] , cartilage[18-20] , vascular[11,21] 
Meniscus[22], bone[23], Ligament[24], myocardia[25], fat[26], 
and neural tissues[5,16,17,27].

While a routine source of human MSCs is the bone 
marrow, they have been also derived from multiple 
adult tissues comprising of adipose tissue (ADSCs), 
umbilical cord blood, placenta, thymus, and dental 
pulp[28]. In comparison to MSCs derived from the bone 
marrow[29], ADSCs have several advantages such 
that they are easy to obtain after minor donor site 
morbidity, possess high proliferating capacity and can 
be preserved for longer period of time in cell banks[30]. 
Under appropriate culture conditions, ADSCs can 
differentiate to classical mesenchymal lineages, which 
include adipogenesis, chondrogenesis, osteogenesis, 
and myogenesis[31,32]. Moreover, the ability of ADSCs 
differentiation to numerous lineages when seeded 
into polymeric scaffolds has been well documented in 
several literatures[33,34].

The sources of HSCs are bone marrow, peripheral 
blood, umbilical cord blood, fetal hematopoietic sys-
tem[35], ESCs and embryonic germ cells[11]. These 
cells are also a suitable cell source for blood vessel 
engineering[12]. Avoidance of anaesthesia without 
the need for hospitalization or blood transfusion, 
and low risk of serious adverse events are the major 
advantages of the peripheral stem cells, which make 
them the favourable source of stem cells worldwide.
On the other hand, NSCs are defined as self-renewing 
multipotent progenitors existing in the developing 
and adult CNS. Generally, they are considered by 
their capacity to symmetrically self-renew and their 
ability to discriminate into neurons, oligodendrocytes, 
and astrocytes through asymmetrical fate-committed 
division[27]. Neural stem or progenitor cells can be 
obtained in different approaches such as direct isolation 
of these cells from embryonic or adult brain tissue[36,37]. 
NSCs have been used for tissue engineering of different 
tissues such as multiple cell types of the adult nervous 
system[5,38]. It was shown in several studies that stem 
cells behavior such as their adherence, proliferation 
and differentiation on scaffolds, depends on the 
material itself. Additionally, the surface chemistry, 
surface geometry/micro architecture of scaffolds, 
and the mechanical properties of scaffolds[39-42] play a 
significant role in determining the cellular responses 
after culture of stem cells on them[43].

Therefore, recent studies have focused on the 
selection of an appropriate biomaterial, whit focusing 
on the surface modification of the scaffolds, creating 
appropriate microstructures and controlling the mech-
anical properties of scaffolds to recapitulate the in vivo 
microenvironment suitable for regenerating tissues 
or for the differentiation stem cells to specific cell 
lineages[44].

This review will discuss on the influence of different 
aspects of scaffolds including scaffold composition, 
surface modification, micro-nano architecture of 
scaffolds and mechanical properties of scaffolds per-
taining to stem cells differentiation. An emphasis is 
also given to the effect of mechanical properties of 
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scaffolds towards stem cells differentiation.

EFFECT OF SCAFFOLD COMPOSITION 
ON STEM CELLS DIFFERENTIATION
The interaction of stem cells with their surrounding 
microenvironment is fundamental to multiple pro-
cesses such as cell migration, proliferation, lineage 
specificity, and tissue morphogenesis[45]. Biomaterials 
play an important role in directing tissue growth and 
chemical properties of the scaffolds have been shown 
to influence the behavior of stem cells whereas the 
scaffold composition has an significant role in stem 
cells differentiation towards preferred lineages[42,43,45]. 
The ability to selectively guide stem cells differentiation 
by merely changing the properties of an underlying 
biomaterial scaffold is a smart approach in tissue 
engineering, which can help compliment or potentially 
eliminate the use of exogenous differentiation inducers 
like the viral gene vectors and small molecule drugs[46].

Natural polymers such as the collagen, fibrinogen, 
hyaluronic acid, glycosaminoglycans, cellulose, chi-
tosan, silk fibroin, etc., consist of components found 
in the native extracellular matrix, such that they can 
assist cells to attach to cell surface receptors and 
provide a physical environment to control cell function 
compared to synthetic materials[40,47]. However these 
materials suffer from fast degradation rates, difficulty 
in sterilization and purification, high variability, high 
contamination potential, and induce immune response 
upon implantation, while synthetic materials offer 
the potential for improved control, repeatability and 
safety[40,47]. Scaffolds fabricated by synthetic materials 
can be chemically modified by natural materials to 
carefully regulate the differentiation of stem cells[47]. 
Immune response is an important concern in synthetic 
biomaterials used for scaffold fabrication and it can 
be reduced by selection of materials which are inert 
inherently or by modification of scaffolds to avoid 
detection by the immune system. Hydrophobic 
materials usually tend to increase monocyte adhesion 
compared to hydrophilic materials leading to a local 
immune reaction at the scaffold site[48].

Awad et al[34] compared the chondrogenic diffe-
rentiation of human adipose-derived adult stem cells 
seeded in alginate, agarose and gelatin scaffolds 
and their findings revealed that the growth and 
differentiation potential of adult stem cells seeded on 
the scaffolds varied and the cells on gelatin scaffolds 
showed better proliferation and differentiation. 
Collagen has attracted much interest as a biomaterial 
for fabrication of scaffolds in tissue engineering as 
a key structural protein found in the extracellular 
matrix of many connective tissues[49,50]. In spite of the 
several advantages of collagen as a biodegradable, 
biocompatible, safe and multifunctional material, 
its potential to evoke immune response has raised 
concerns as an animal-derived biomaterial[51].

Meinel et al[52] investigated the osteogenic differen-
tiation of human MSCs on different protein substrates 
including unmodified collagen with fast degradation 
rate, cross-linked collagen with slow degradation rate 
and silk; in both static and dynamic culture conditions. 
Under dynamic condition, MSCs on cross-linked collagen 
and silk scaffolds deposited more calcium and had a 
higher alkaline phosphatase activity than MSCs on 
unmodified collagen scaffolds indicating the importance 
of scaffold properties in causing osteogenesis of the 
cultured MSCs[52].

Jäger et al[39] cultivated MSCs on the D,D,L,L-
polylactide (PLLA), collagen I/III, and polygalactin-910/
polydioxanone (PGPD) scaffolds and their results 
showed significant differences in the proliferation, 
differentiation, and Ca2+ accumulation of MSCs on 
different scaffolds. Cell adhesion on PGPD was lower 
compared to the cell adhesion on PLLA and collagen 
I/III scaffolds, which was related to the significant 
biodegradation rate of PGPD scaffolds compared to 
other scaffolds. They found significantly higher cell 
numbers on collagen I/III membrane compared to 
that for PLLA scaffolds after 4 h cell culture while 
the differences were less significant after 28 d of 
cell seeding. Lower cell number on PLLA scaffolds 
compared to collagen I/III after 4 h could be attributed 
to the hydrophobic nature of PLLA while an increasing 
deposition of serum proteins from culture media on the 
PLLA scaffold may reduce the effect of its hydrophobic 
nature and decreased the quantitative differences 
in cell attachment between collagen I/III and PLLA 
scaffolds after 28 d cell seeding[39].

PEG is a relatively inert ,biocompatible and 
hydrophilic polymer[53]. Hwang et al[41] encapsulated 
MSCs in PEG based hydrogels containing type I 
collagen, type II collagen and hyaluronic acids (HA) 
which are the main components of musculoskeletal 
tissue matrix. Chondrogenic differentiation of MSCs was 
slightly enhanced in collagen-matrix-based hydrogels, 
whereas osteogenic differentiation was induced in 
HA-containing hydrogels suggesting the potential 
of ECM components to modulate the fate of MSCs 
differentiation[41].

Ravichandran et al[54] fabricated a composite 
scaffold containing PLLA and Poly-benzyl-L-glutamate 
(PBLG), a polymer of glutamic acid in which the 
carboxyl groups have been benzoylated, by electro-
spinning. Nanohydroxyapatite (n-HA) was also 
deposited on the surface of the nanofibers by calcium-
phosphate dipping method. Their results proved that 
the incorporation of PBLG along with n-HA deposition 
on the surface of scaffolds promoted greater osteo-
genic differentiation of ADSCs in the absence of an 
induction medium highlighting the chemical compo-
sition of the scaffold as a determinant factor towards 
ADSCs differentiation[54].

Shah et al[46] reported selective differentiation of 
NSCs into oligodendrocytes by seeding NSCs in PCL 
nanofibrous scaffolds coated by graphene oxide (GO). 
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EFFECT OF SURFACE MODIFICATION 
OF SCAFFOLDS ON STEM CELLS 
DIFFERENTIATION
Cell-biomaterial interactions has a significant role on 
the growth and differentiation of stem cells within 
scaffolds[34]. It is well known that the surface properties 
of scaffolds have an important role in stem cells- 
biomaterials interactions, ultimately controlling the 
stem cell adhesion, proliferation, and differentiation 
after its attachment on the surface[59,60]. Stem cells 
differentiation can be regulated by presenting suitable 
biological or chemical signals within the structure of 
the scaffolds[47]. Therefore the chemical and biological 
modification of the scaffolds can affect stem cells 
behavior which is also defined by the substrate 
properties and their degradation rate, eventually 
manipulating the signal transduction pathways in 
stem cells[47]. It can be concluded that the surface 
chemistry of materials can affect protein adsorption 
and the binding of different integrins and influence 
the cell behavior[59]. Surface modification of scaffolds 
is therefore an important issue in tissue engineering 
in order to control the cellular behavior[59]. More 
recently different methods have been established for 
the modification of scaffolds thorough incorporation 
of biomolecules within the scaffold structure by 
method like simple physical adsorption or by covalent 
conjugation[47,61].

Ayala et al[45] demonstrated the influence of 
interfacial matrix hydrophobicity on stem cells behavior. 
They fabricated tunable synthetic scaffolds with 
control over the hydrophobicity of the scaffolds, by 
copolymerizing acrylamide with acryloyl amino acids 
and their results showed that the small changes in 
matrix hydrophobicity can dramatically alter the cell-
matrix interaction and can influence various cellular 
behaviors[45].

Chua et al[62] investigated the effect of surface-
functionalized polyethersulfone (PES) scaffolds including 
the hydroxylated, carboxylated and aminated PES 
nanofibers and films and their results showed that 
the surface-bound amino groups highly influenced 
the proliferation and differentiation of hematopoietic 
stem/progenitor cells. The effect of coating of 
polycaprolactone-co-lactide scaffolds with collagen I 
(coll I) and coll I/chondroitin sulfate (CS) on osteogenic 
differentiation potential of ovine bone marrow MSCs 
has been investigated. The results showed surface 
modification of scaffolds using coll I/CS induce os-
teogenic differentiation of cells, without using any 
differentiation supplements such as dexamethasone, 
revealing the osteoinductive characteristics of the 
modified scaffolds[63].

Rim et al[64] fabricated electrospun PLLA nanofibrous 
scaffolds and coated scaffolds with polydopamine 
through immersion in an aqueous solution of dopamine 
with mild shaking for 1 h. Their results showed more 

Higher concentration of GO was found to promote 
NSCs differentiation into mature oligodendrocytes 
without introducing differentiation inducers in the 
culture media. Their results showed that the presence 
of GO in the structure of nanofibrous scaffolds was a 
crucial factor that determined the stem cell-scaffold 
interactions in directing NSCs towards oligodendrocyte 
differentiation[46].

One of the major challenges in cartilage and disc-
tissue engineering using MSCs is the rapid expression 
of type X collagen as a marker of chondrocyte hyper-
trophy associated with endochondral ossification. Nelea 
et al[55] used polypropylene and nylon-6 polymers for 
the fabrication of scaffolds and modified the surface 
of scaffolds by glow discharge plasma treatment in 
ammonia gas to investigate the potential of each 
polymer in its abilityto inhibit the expression of type 
X collagen. They cultured MSCs on modified and un-
modified polypropylene and nylon-6 and evaluated the 
chondrogenic differentiation pathway using aggrecan 
and types I, II, and X collagens. Their results showed 
that MSCs did not adhere to unmodified PP while they 
observed cell adhesion on modified PP, nylon 6 and 
unmodified nylon 6 and concluded that the nature of 
the surface should be vitalfor the interaction of MSCs. 
Both modified and un-modified nylon-6 suppressed 
the expression of type X collagen, while the modified 
polypropylene scaffold almost completely inhibited its 
expression indicating the impact of polymer type and 
surface characteristics on the fate of stem cells[55].

Hosseinkhani et al[56] encapsulated DNA nano-
particles into collagen sponge reinforced with poly 
(glycolic acid) fiber for bone tissue engineering. More 
osteogenic differentiation of MSCs and formation of 
homogeneous bone upon implantation of scaffolds 
containing DNA nanoparticles was observed by these 
researchers[56].

In yet in another study, semi-interpenetrating 
polymer networks made of collagen type I fibers 
combined with fibronectin or laminin were fabricated 
to investigate the effect of matrix composition 
towards ESCs differentiation. Results showed that 
scaffold composition has an important role in ESCs 
development and differentiation whereas the presence 
of fibronectin in collagen scaffolds strongly induces 
endothelial cell differentiation and vascularization. On 
the contrary, laminin stimulated ESCs to differentiate 
into beating cardiomyocytes[57]. Costa-Pinto et al[58] 
prepared chitosan-poly (butylene succinate) scaffolds in 
different weight ratios of chitosan (50%, 25%, and 0%) 
and compared the potential of osteogenic differentiation 
of human bone marrow stromal cells on these scaffolds. 
Their results revealed higher cell viability, adhesion, 
proliferation, and osteogenic differentiation on scaffolds 
with more ratios of chitosan[58]. Overall, it was clear that 
the scaffold material and its properties played a critical 
role in directing the stem cells towards differentiation, 
with proteins and peptides had a positive influence 
towards this effect.
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adhesion and proliferation of MSCs cultured on surface 
modified nanofibrous scaffolds with dopamine relative 
to cells seeded on unmodified scaffolds (Figure 1). 
More osteogenic differentiation as well as angiogenesis 
was also observed for MSCs seeded on modified 
scaffolds compared to unmodified scaffolds[64].

In yet another study, electrospun PCL nanofibers 
were coated using polydopamine by simple immersion 
of substrates in an alkaline dopamine solution. RE-1 
silencing transcription factor (REST) was then absorbed 
onto PCL nanofibers coated with polydopamine to 
induce scaffold-mediated gene knockdown for enhanced 
neuronal differentiation of neural stem/progenitor cells. 
The results showed significant enhanced neuronal 
commitment and decreased glial cells differentiation 
due to presence of the silencing of REST[44]. Controlled 
release of insulin-like growth factor I (IGF-I) from silk 
fibroin scaffolds for chondrogenic differentiation of 
human MSCs has been studied by Uebersax et al[65] 
and the results showed that IGF-I loaded silk fibroin 
scaffolds have the potential to provide chondrogenic 
stimuli to human MSCs, thus beneficial for cartilage 
repair.

In yet another study, copolyester of 3-hydroxy-
butyrate-cohydroxyhexanoate (PHBHHx) scaffolds 
were fabricated and coated with PHA granule-

associated proteins (PhaP) and PHA granule-associated 
proteins PhaP fused with RGD peptide (PhaP-RGD) for 
investigating the effect of surface modification towards 
chondrogenic differentiation of human bone marrow 
mesenchymal stem cells (hBMSCs). Their results 
showed that the surface modification of scaffolds 
with PhaP-RGD promote chondrogenic differentiation 
of hBMSCs compared to PhaP coated or uncoated 
scaffolds even without the presence ofchondrogenic 
induction medium (Figure 2). Hyaline cartilage rege-
neration, and inhibited fibrocartilage formation in 
hBMSCs derived chondrocytes was also observed 
on PhaP-RGD coated PHBHHx scaffolds indicating 
suitability of this substrate for cartilage tissue engi-
neering compared to the uncoated ones[61].

In yet another study, poly (ethylene glycol) (PEG) 
hydrogels were functionalized with heparin and 
osteogenic differentiation of human MSCs was evalu-
ated. The results through increased ALP production 
and gene expression of osteopontin and collagen 
type I showed that functionalization of hydrogel with 
heparin induce osteogenic differentiation which is likely 
due to improvement of cell-scaffold interactions due 
to the presence of heparin[66]. Surface modification 
of poly-(lactic-co-glycolic acid) (PLGA) (75:25) scaf-
folds with RGD peptides also enhanced the human 
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Figure 1  Quantitative analysis of initial cell adhesion from human mesenchymal stem cells cultured on the fibers. Relative adherent cell numbers and spreading 
area of human mesenchymal stem cells (hMSCs) cultured on PLLA and PD-PLLA fibers were analyzed after 12 h of culture. aP < 0.05, PD-PLLA vs PLLA group. Adherent 
morphology of hMSCs on PLLA and PD-PLLA fibers was observed by confocal microscopy. Scale bars represent 100 µm. Reproduced with permission from Rim et al[64]. 
PLLA: Poly(l-lactide); PD-PLLA: Poly(l-lactide) (PLLA) fibers coated with polydopamine.
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osteoprogenitor differentiation and osteogenesis[67]. 
While RGD peptide immobilized macroporous alginate 
scaffolds showed enhanced chondrogenesis properties 
of human MSCs compared to the un-modified ones[68].

In vitro osteogenic differentiation of human MSCs 
was also observed on RGD peptide functionalized PLLA 
nanofibersby Paletta et al[69]. Their results showed 
more osteogenic differentiation of human MSCs on 
modified scaffolds revealing the osteoinductive effect 
of the scaffolds functionalized with RGD[69].

Kuo et al[70] fabricated PLGA /chitosan scaffolds and 
functionalized it with type I collagen, whereby these 
researchers were able to improve the cell adhesion 
and viability on PLGA/chitosan/collagen scaffolds. 
Moreover, MSCs differentiated towards osteoblasts in 
the modified scaffolds without induction procedures, 
while neural differentiation was observed on the 
scaffolds by the induction MSCs with neuron growth 
factor (NGF)[70].

In another study Yang et al[71] fabricated porous 
poly l-lactide-co-ε-caprolactone (PLCL) and did surface 
modification via crosslinking of chitosan on the 
surface of scaffold. Their finding showed elongated 
morphology of MSCs on modified scaffolds while 
cells on unmodified scaffolds showed more spherical 
morphology with lower spreading. Moreover, the 
surface modified scaffolds provide surfaces for early 
differentiation of MSCs with more in vitro cartilage 
tissue formation revealing more condrogenic differ-

entiation of MSCs on modified scaffolds compared to 
the unmodified PLCL scaffold[71].

In yet another study, Budiraharjo et al[72] obtained 
carboxymethyl chitosan scaffolds (CMCS), coated 
with hydroxyapatite and compared the behavior of 
osteoblasts and human MSCs on both modified and 
un-modified scaffolds. Coating the scaffold with HA 
substantially enhanced the osteogenic differentiation of 
the human MSCs.

Surface modification using plasma has been frequen-
tly used to improve surface properties of scaffolds 
fabricated with synthetic polymeric materials through 
formation of functional groups on the surface[73]. Lin 
et al[74] investigated the effect of modification of PLLA 
scaffolds by gas plasma towards the differentiation of 
ADSCs and their results showed that the cells seeded 
on modified scaffolds displayed significantly increased 
differentiation into endothelial cells[74].

Wang et al[60] fabricated porous nanocrystalline 
HA/chitosan scaffolds using a lyophilization technique, 
further treated them with cold atmospheric plasma as 
a simple, quick, and inexpensive method to modify the 
surface of scaffolds. Their results showed enhanced 
stem cell growth and osteogenic differentiation on 
modified scaffolds, which might be due to higher 
amounts of protein adsorption on the scaffold surfaces 
due to improves surface roughness and wettability 
after its modification[60].

An ideal bone implant should recruit osteoblasts or 

733 May 26, 2015|Volume 7|Issue 4|WJSC|www.wjgnet.com

Uncoated PhaP PhaP-RGD

72
 h

   
   

   
   

   
   

   
   

   
   

   
   

   
   

   
   

   
   

   
   

   
   

  4
 h

Figure 2  Confocal microscopic imaging of human bone marrow mesenchymal stem cells grown in uncoated, PhaP and PhaP-RGD coated 3-hydroxybutyrate-
cohydroxyhexanoate scaffolds after 4 or 72 h of incubation, respectively. Phalloidin-fluorescein isothiocyanate was used to F-actin of cells grown in the scaffolds (Green). 
Reproduced with permission from You et al[61]. PhaP-RGD: PhaP binding protein fused with arginyl-glycyl-aspartic acid.
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progenitor cells from the adjacent native tissue and 
induce cell proliferation and osteogenic differentiation 
for new bone formation. Hu et al[75] modified Ti6Al4V 
(TC4) implants using biofunctional multilayer coating 
of gelatin, chitosan, gelatin and human recombinant 
BMP2. In vitro results showed that such modifications 
of the implant surface stimulated the adhesion and 
osteogenic differentiation of MSCs and in vivo results 
showed improved induction of new bone formation at 
the interface of bone and implant and the integration 
of the implant within the surrounding living tissues[75] .

EFFECT OF SCAFFOLD TOPOGRAPHY 
ON STEM CELLS DIFFERENTIATION 
The topography of the extracellular matrix is known 
to influence cell attachment, morphology, proliferation 
and differentiation[76]. Topography can also enhance 
differentiation of progenitor cells into their programmed 
pathways[77].

Topographic surfaces with micro and nano scale struc-
tures have been shown to stimulate the cell alignment, 
polarization, elongation, migration, proliferation, gene 
expression, etc., while the mammalian cells have been 
shown to react to nanoscale structures on a synthetic 
surface[77,78]. Nano scale topographies are obtained by 
different fabrication methods such as electrospinning, 
polymer phase separation, photolithography, chemical 
vapor deposition, electron beam lithography, etc.[2]. The 
similarity of electrospun nanofibers to the morphology 
of native extracellular matrix has attracted interest in 
the application of these scaffolds as a substrate for stem 
cell attachment and differentiation[2].

Smith et al[79] compared the in vitro osteogenic 
differentiation of ESCs on nanofibrous scaffolds and 
traditional scaffolds with two and three dimensional 
structure without the nanofibrous features. The results 
showed that the nanofibrous features enhanced the 
osteogenic differentiation and mineralization of ESCs 
compared to traditional substrates. Moreover, the 
osteogenic differentiation was observed on nanofibrous 
scaffolds without osteogenic supplements, while cells 
on other scaffolds required osteogenic supplements 
and growth factors for osteogenic differentiation[79].

Ragetly et al[80] evaluated the chondrogenic 
differentiation of MSCs on chitosan microfibrous scaf-
folds and chitosan sponges. More chondrogenesis 
differentiation was observed on chitosan microfibers 
compared to that on sponges indicating the effect of 
scaffold microstructure towards the cell behavior[80].

Christopherson et al[81] evaluated the effect of 
topographical features of nanofibrous scaffolds in 
view point of fiber diameter on rat adult neural stem/
progenitor cell (rNSC) differentiation and proliferation. 
They fabricated different nanofibrous scaffolds with 
average fiber diameters of 283 ± 45 nm, 749 ± 153 nm 
and 1452 ± 312 nm and their findings showed that the 
fiber diameter of PES nanofibrous scaffolds significantly 

influenced the differentiation of rNSCs, whereas by 
decreasing of fiber diameter, more cell spreading 
and proliferation was observed. Additionally, the 
differentiation of stem cells towards oligodendrocytes 
was observed on nanofibrous scaffolds with fiber 
diameter of 283 ± 45 nm while morphology similar to 
neuronal progenitors was observed on nanofibers with 
fiber diameter of 749 ± 153 nm. Although, the number 
of cells on nanofibers with fiber diameter of 1452 ± 
312 nm was found to be low which may be due to the 
difficulty of adhesion and migration of rNSCs on fibers 
with large diameter. However, the cells present within 
these nanofibrous scaffolds showed the morphology of 
neurons or neuronal progenitors[81].

In yet another study, aligned PLLA nanofibrous 
scaffolds with a mean diameter ranging from 307 to 
917 nm and random PLLA nanofibrous scaffolds with 
a mean diameter ranging from 327 to 1150 nm were 
fabricated and the behavior of NSCs were evaluated on 
these scaffolds. The results showed that the depending 
on the fiber diameter and pattern, NSCs behaved 
differently revealing that the fiber alignment and 
diameter had significant effects on cellular behavior[82].

Yin et al[76] examined the effect of alignment of 
PLLA nanofibrous scaffolds on differentiation of stem 
cells from human tendon andthe differentiation of 
the cells seeded on aligned nanofibrous scaffolds was 
found to be higher with either normal or osteogenic 
media than on the randomly-oriented nanofibers[76].

Subramony et al[83] also evaluated the effect of PLGA 
nanofiber alignment and mechanical stimulation towards 
MSCs differentiation. Their results showed fibroblastic 
differentiation of MSCs in the absence of chemical 
induction factors on aligned nanofibers together with 
mechanical stimulation under tensile loading. No 
fibroblastic differentiation was observed on the non-
aligned scaffolds even after the application of mechanical 
stimulation, indicating the effect of topography of 
scaffold towards stem cells differentiation[83].

Bakeine et al[84] investigated the effect of nanoscale 
surface topography on adhesion, proliferation and 
neural differentiation of mouse ESCs by fabrication of 
thin films of gold with different root mean square (RMS) 
surface roughness of 10, 21, 30 nm and 50 nm. Their 
results showed that surface topography influencedthe 
neural differentiation whereas highest differentiation 
was observed on gold films with RMS surface roughness 
of 21 nm after five days of cell seeding without addition 
of the traditional soluble neurotrophic factors[84].

The effect of topography with different sizes (groove 
width: 350 nm/2 µm/5 µm, depth = 300 nm) on the 
differentiation of human induced pluripotent stem cells 
(hiPSCs) towards neuronal lineage was studied by 
Pan et al[78]. Their results showed the obvious effect 
of topography on directing differentiation of hiPSCs 
towards neuronal lineage with noticeable up-regulation 
of neuronal marker expression on surfaces with nanos-
tructured topography[78].

Yim et al[77] studied the proliferation and diffe-
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rentiation of human MSCs on nano-gratings of 1 µm, 
10 µm, 350 nm width and their results showed the 
alignment of cytoskeleton and nuclei of human MSCs 
along the nano-gratings. Significant up-regulation of 
neuronal markers was also observed on patterned 
surface compared to un-patterned and micro-patterned 
controls[77].

Chaubey et al[85] evaluated the effect of the 
surface topography on the differentiation of multipotent 
mouse bone marrow stromal precursors (D1 cells) to 
adipocytes. They compared the differentiation potential 
of D1 cells on patterned PLLA films, plain PLLA films 
and tissue culture-plate and their results showed the 
impact of patterned surfaces on cell differentiation[85]. 
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Figure 3  TRITC-Phalloidin labeled F-actin (red), AlexaFluor 488 labeled vinculin (green), diamidino-2-phenylindole nuclear staining (blue) and overlaid 
fluorescent image of immuno-stained cellular components (merged) for the unpatterned (A) and patterned human mesenchymal stem cells (B and C). Samples 
were cultured in Dulbecco's Modified Eagle's Medium supplemented with 10% fetal bovine serum and 1% antibiotic/antimycotic solution for 4 d before they were fixed and 
stained. All images were taken with a 20 × objective lens. (Scale bar = 100 µm) (For interpretation of the references to colour in this figure legend, the reader is referred to 
the web version of this article.). Reproduced with permission from Tay et al[86].
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Tay et al[86] printed fibronectin on PLGA thin films and 
investigated the differentiation of human MSCs on 
patterned and un-patterned scaffolds, where they 
revealed the differentiation of human mesenchymal 
stem cells (hMSCs) into myocyte like cells on the 
micropatterned films (Figure 3).

Shi et al[87] fabricated two nano-grating substrates 
with a period of 250 and 500 nm and with a depth 
of 120 nm on quartz, and investigated the effect of 
substrate nanotopography on differentiation of ADSCs 
into endothelial cells which play an important role 
in vascularization. Decreased cell proliferation along 
with enhanced endothelial gene expression of the 
ADSCs and in vitro angiogenesis was observed on 
nanograting ssuggested the role of nanotopography 
on ADSCs differentiation to endothelial cells[87]. Oh et 
al[88] fabricated PCL cylindrical scaffolds with different 
pore size (90-400 µm range) along the longitudinal 
direction; and investigated the effect of pore size on 
the chondrogenic differentiation of ADSCs. Their results 
showed that the pore size of 370-400 µm provided a 
more suitable environment for chondrogenic differen-
tiation than other pore size groups[88].

Teo et al[89] applied nanotopography technique along 
with NGF controlled release from polydimethylsiloxane 
substrate for neuronal tissue engineering and their 
results showed enhanced expression of neuronal 
genes on nanopatterned substrate combined with NGF 
delivery[89]. 

The influence on nanotopography, whether in the 
form of fibers, porous microstructures or pits and 
grates, was studied extensively by various researchers. 
However, comparison of the results between such 
studies was difficult due to the differences in various 
factors involved in each study, where some researchers 
used mechanical stimulation, while others used a 
specific biomolecule for the differentiation to take 
place. A systematic evaluation is therefore necessary, 
to clearly define the fiber length or the pore size that 

might specifically cause the differentiation of stem cells 
to nerve, osteolineages or endothelial cells.

EFFECT OF CULTURE ENVIRONMENT ON 
STEM CELLS DIFFERENTIATION
Bioreactors have been used in tissue engineering to 
overcome the drawbacks of static culturing conditions 
and to obtain uniform distribution of cells within the 
scaffolds and provide sufficient levels of oxygen, 
nutrients, cytokines, and growth factors, and to 
expose the cultured cells to mechanical stimuli[90]. 
Dynamic condition of cell culture has also been shown 
to influence stem cells differentiation.

Gomes et al[90] evaluated the effect of static and 
dynamic culturing conditions on the proliferation 
and osteogenic differentiation of rat bone marrow 
stromal cells seeded on two starch-based scaffolds. 
Calcium content analysis, VonKossa-stained sections, 
tetracycline fluorescence and histological analysis 
revealed the enhancement of osteogenic differentiation 
under dynamic condition created by flow perfusion 
bioreactor[90]. Mauney et al[91] also showed increased 
levels of alkaline phosphatase activity, bone-specific 
protein transcript levels, and mineralized matrix pro-
duction by human bone marrow stromal cells under 
dynamic culture condition indicating increase inosteo-
genic differentiation of human BMSCs using mechanical 
stimulation applied by bioreactor. However, the 
influence of mechanical stimulation towards stem 
cells differentiation is not studied highly and more 
investigations are required. 

EFFECT MATRIX MECHANICAL 
PROPERTIES TOWARDS STEM CELL 
DIFFERENTIATION
Matrix stiffness varies with respect to different organs 
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present in the human body, and Figure 4 shows the 
difference in matrix stiffness of a few organs, as 
depicted by Vincent et al[92]. It explains how the matrix 
stiffness varies throughout the body: the brain is the 
softest tissue with an elasticity ranging between 0.2 
to 1 kPa, while the precalcified bone is the hardest 
tissue with an elasticity value of more than 30 kPa[87], 
explaining the differences in the tissue matrix stiffness. 
Cells of different lineages survive in distinct natural 
environment, and they possess different stiffness. This 
is also the main reason why we believe that the stiffness 
have a higher influence towards the differentiation of 
stem cells. For tissue engineering, the most considered 
factors are the structure and the components used 
for scaffold fabrication, which determine the physical, 
chemical and biological properties of the scaffolds, 
and these properties will furthermore affect the differ-
entiationof stem cells.

Bone
Various strategies has been acknowledged and selec-
tively chosen to alter the biomaterial surfaces or to 
create micro-environment to establish both mechanical 
and biochemical cues for the differentiation of stem 
cells, especially for application in regenerative medicine. 
Chemical factors have been individually studied, 
suggesting the ability of BMP-2 to promote pro-osteo-
genesis or IGF to promote tenogenic phenotype[93,94]. 
However, aligning the mechanical properties of the 
scaffolds with the specific tissue of interest was an 
interesting strategy applied to hydrogels, nanofibers 
and ceramics, in order to advance the field of stem cell 
differentiation on bioengineered substrates. Among 
these, injectable biodegradable hydrogels eliminate 
the need for surgical interventions or they allow for 
minimally invasive procedures causing minimal harm to 
the patients. However, physically crosslinked hydrogels 
lack strength and stability, while the chemically cross-
linked hydrogels are more appreciated due to their 
high mechanical strength and stiffness. Hydrogels 
are useful substrates that assist to determine the 
interplay between physical cues/stiffness and their 
relationship with the fate of stem cell differentiation. 
A thiolene chemistry was utilized by Gandavarapu et 
al[95] to functionalize poly(ethylene glycol) hydrogels 
with a pendant peptide moiety, c(RRETAWA) and gels 
with Young’s Modulus (YM) of 2 kPa (soft) and 25 kPa 
(Stiff) were prepared. The stiffer substrate was found 
to give 3.5 fold higher hMSCs attachment. The ALP 
activity of hMSCs cultured on stiff gels containing 0.1 
mmol/L and 1 mmol/L c(RRETAWA) increased by 2.5 
and 3.5 fold, respectively after 14 d of cell culture. 
At the same time, the expression of osteopontin and 
collagen-1a for cells cultured on stiffer gels were 
higher, suggesting the application of high substrate 
stiffness gels for osteogenic differentiation of MSCs. 
In order to adjust the matrix stiffness, crosslinking of 
the thiol functionalized hyaluronic acid (HA-SH) and 
thiol functionalized recombinant human gelatin (Gtn-

SH), were performed by using varied amounts of poly 
(ethylene glycol) tetra-acrylate (PEGTA)[96]. Further 
hMSCs were seeded on the hydrogels to assess their 
potential towards osteo-lineage differentiation. MSCs 
grown on gels with 1.5 kPa stiffness, was found to 
express the early bone protein, namely osteopontin, 
while the cells on stiffer (4 kPa) gel expressed late 
osteogenic gene or the bone sialoprotein (BSP). This 
highlights the potential of higher osteogenic differen-
tiation on stiffer hydrogels, mainly because the 
focal adhesion structures might have increased and 
F-actin might have got organized on such substrates, 
supporting the differentiation of MSCs to osteo lineages. 

In order to study the role of substrate stiffness 
towards cell differentiation, Sun et al[97] prepared 
crosslinked gelatin scaffolds, where by the influence of 
scaffold strength was demonstrated in vitro and in vivo 
during this study. Crosslinking of gelatin scaffolds was 
performed by these researchers, using 1-Ethyl-3-[3- 
dimethylaminopropyl] carbodiimide hydrochloride 
(EDC) to prepare three dimension gelatin scaffolds 
with high stiffness properties. The elastic modulus of 
the EDC crosslinked scaffolds (2.5 kP) was significantly 
higher than those of the non-crosslinked scaffolds (0.6 
kP). High mechanical strength of cross-linked scaffolds 
was suggested to promote stem cell mediated bone 
regeneration via endochondral ossification process, 
than the non-crosslinked scaffolds. In vivo studies 
using Inbred C57BJL/6 mice, showed significantly 
high trabecular bone formation for the crosslinked 
gelatin implanted animals, by micro-computed to-
mography and histology analysis[92]. Wang et al[98] 
prepared gelatin-hydroxyphenylpropionic acid-tyramine 
(Gtn-HPA-Tyr) conjugates to simulate osteogenic 
differentiation of hMSCs, by conjugation of Tyr to Gtn-
HPA conjugate by means of carbodiimide/active ester 
mediated coupling reaction. Oxidative coupling of 
phenol moieties were further carried out by hydrogen 
peroxide (H2O2) and horseradish peroxidase (HRP), 
whereby the concentration of H2O2 was varied produ-
cing Gtn-HPA-Tyr hydrogels of varying storage modulus 
(G0). Hydrogels with G0 > 20000 was found suitable 
for the osteo-specific differentiation of MSCs, with 
osteocalcinupregulation and high calcium accumulation 
was observed on these gels compared to hydrogels 
with G0 of 13500. Stiffer hydrogels were suggested 
beneficial for the repair of bone defects. In yet 
another attempt, the ability of cells to differentiate 
to osteogenic cells were studied on transglutaminase 
cross-linked gelatin (TG-Gel) of varying rigidity 
and these researchers found that thesofter matrix 
promote cell proliferation, while stiffer matrix promote 
osteogenesis[99]. Osteogenic differentiation was 
found to occur in 6% and 9% TG-Gels with rigidity 
of 13.51-2.13 kPa and 32.32-1.9 kPa, respectively 
than using 3% TG-Gels. However, little or no effect 
of BMP-2 was found in the case of stiffer (6% and 
9%) TG-Gelstowards MSC differentiation. The 9% 
TG-Gels with and without BMP-2 demonstrated high 
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calcium deposition with expression of osteogenic 
markers during in vitro studies. On the other hand, 
the ALP activity and early markers of osteogenic 
differentiation were observed in 6% TG-Gel and these 
cells differentiated to osteoblast-like cells at a later 
time point. Stiffer substrates are also demonstrated 
to direct the osteogenic differentiation of ADSCs, 
even in the absence of any growth factors[100]. PDGF 
and BMP-2 were covalently immobilized to collagen-
Glycosoaminoglycan (CG) membrane in defined 
patterns, by combined photolithography-carbodiimide 
crosslinking strategy and the elastic modulus (stiffness) 
of the matrix was orthogonally manipulated. These 
researchers explained that by increasing the ratios of 
EDC:NHS:COOH, the stiffness of the CG got increased. 
Photoimmobilized BMP-2 was demonstrated to have 
a little effect on lineage-specific gene expression of 
ADSCs during this study, while the matrix stiffness had 
a higher impact. In yet another study, using BMP-2 
modified poly(acrylamide-co-acrylic acid) hydrogels, 
BMP-2 was found to have little or no effect towards 
stem cell differentiation if grafted on softer gels[101]. 
Hence the mechanical properties of the substrate 
dictated the potential for stem cell differentiation than 
the biochemical reagents, explaining the diversity of 
stem cell behaviors. Efforts to leverage approaches to 
explore a wider range of combinatorial environments 
and biochemical pathways, in a systematic manner is 
necessary, such that the results obtained by different 
kinds of material systems can be compared. In yet 
another study, CG scaffolds were prepared by cross-
linking treatment via dehydrothermal and 1-ethyl-3-
3-dimethyl aminopropylcarbodiimide methods, with 
varying stiffness of 0.5 to 1.5 kPa[102]. MSCs diffe-
rentiation studies on these scaffolds, showed higher 
level of RUNX2 expression on the stiffer scaffolds (1.5 
kPa) indicating MSCs differentiation to osteogenic 
lineage. Chondroitin sulphate and hyaluronic acid was 
found to have a positive influence towards the MSCs 
differentiation towards osteogenic and chondrogenic 
lineages, respectively.

Actin filaments of cells are structures for force 
transmission in response to the substrate with which 
it comes in contact[103,104]. Increased cell spreading in 
response to geometric features of the substrate, could 
result in enhanced actomyosin contractility associated 
with osteogenic differentiation[103]. The expression of 
osteogenic markers was demonstrated as stiffness 
dependent, with maximum osteogenesis observed for 
fibronectin coated micropatterned polyacrylamide gels 
with stiffness of 30 kPa.

Studies on the rate of proliferation of mouse ESCs 
suggest higher proliferation on stiffer substrates of 
polyacrylamide hydrogels compared to the proliferation 
on soft substrates, favoring mESC colonization with 
high levels of Oct3/4 and the Nanog biomarker 
production[105]. In maintaining the stemness of mESCs 
on soft hydrogels with varying topography, no signi-
ficant advantages were observed, suggesting the 

insensitiveness of topography effect towards mESC 
stemness. However, surface topography might have 
a role on substrates with hexagonal or pillar shapes 
topology or even on stiffer surfaces. It is also believed 
that either stiffness or topography might play an 
independent decision factor towards colony formation 
on 3D substrates. Geometric control of osteogenesis 
was also studied on polyacrylamide gels prepared by 
microcontact printing of adhesion proteins where cell 
spreading and cell geometry are suggested to have 
some influence towards MSCs differentiation[106]. Stiffer 
matrices can assist to increase cell spreading, thus 
promote osteogenesis through enhanced actomyosin 
contractility and this was observed up to a stiffness 
of 30 kPa. However, the density of seeded cells were 
described to over-ride the effect of gel stiffness to 
cause osteogenic differentiation, according to Xue et 
al[107]. However, this effect was not pronounced on soft 
gel, where chondrogenic differentiation was induced. 
Overall, their study highlights the importance of cell-
matrix and cell-cell interactions in causing MSCs 
differentiation. Substrate stiffness was also found to 
play a predominant role in regulating the growth of 
rat BM-MSCs, while substrate topography manipulate 
the cell morphology and spreading, with spherically 
shaped cells were observed on pillar substrates but not 
on grooved substrate[108].

In general, studies using mechano-variant polyacry-
lamide substrates showed that the osteogenic differen-
tiation reduced on substrates with low stiffness and 
ligand density. However, compared to fibronectin, 
BMSCs were demonstrated to have a higher binding 
affinity towards an equivalent bulk of collagen (Figure 
5). Such comparisons were further delineated by 
Sharma et al[109], and they found the occurrence of 
osteogenic differentiation on fibronectin substrates, 
while tenoblast gene expression was only found on 
collagen substrates. Two entirely different microsystems 
namely, sponges and hydrogels were compared by 
Zhang et al[110] where they studied the behavior of 
MSCs and they found fast cell proliferation in sponges 
than in hydrogels. Sponges might have encouraged 
cell-cell and cell-matrix interaction and upon inducing 
them with media containing TGF-β3, the chondrogenic 
differentiation of MSCs were better compared to those 
in hydrogels. 

Nerve
From Figure 4 and the abovementioned researches, 
it can be indicated that for neural differentiation, 
scaffolds with relatively small stiffness is required. The 
fate of MSCs towards neural or glial lineages could 
be manipulated by adjusting the substrate stiffness. 
Three dimensional collagen-HA scaffolds (fabricated by 
lyophilization) with higher elasticity (E approximately 
1 kPa) induced MSCs into neuronal differentiation, 
while those with less elasticity (E approximately 
10 kPa) induced MSCs into glial differentiation. The 
elasticity was adjusted by using different concentration 
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of the crosslinking agent, namely 1-ethyl-3 
(3-dimethylaminopropyl) carbodiimide (EDC)[111]. Tuning 
the modulus of hydrogels affects neurite outgrowth 
and ESCs differentiation; with higher modulus gels 
offered better substrate for neural differentiation and 
neurite outgrowth, while less modulus enhanced 
astrocyte formation and cell migration. Thus, ESCs 
differentiation into neural and glial lineages is influenced 
by the type, composition, architecture and stiffness 
of the matrix and the type and concentration of 
signaling molecules comprehensively[112]. Neuronal 
differentiation was favored on softer surfaces such 
as the photopolymerizablemethacrylamide chitosan 
hydrogel with Young’s modulus less than 1000 Pa as 
confirmed by both immunohistochemistry and qRT-
PCR. Oligodendrocyte differentiation was favored on 
stiffer scaffolds with Young’s modulus more than 7000 
Pa. However, myelin oligodendrocyte glycoprotein 
gene expression suggested that oligodendrocyte 
maturation and myelination was best on scaffolds 
with modulus less than 1000 Pa where more mature 
neurons were present. Astrocyte differentiation was 
only observed on scaffolds with modulus less than 
1000 Pa and 3500 Pa and represented less than 2% 
of the total cell population[113]. Elastic moduli, even in 
the range of neural tissue, would have a great impact 
on adult neural stem cell differentiation. The adult 
NSCs expressed a high level of the neuronal marker, 

β-tubulin III, on variable moduli interpenetrating 
polymer networks of 500 Pa, which is similar to the 
physiological stiffness of brain tissue. Furthermore, 
under mixed differentiation conditions with serum, 
softer gels (approximately 100-500 Pa) greatly 
favored neurons, whereas harder gels (approximately 
1000-10000 Pa) promoted glial cultures[114].

To achieve the scaffold with favorable stiffness for 
nerve tissue regeneration, the fabrication method 
and the materials should be carefully considered. 
Hydrogels possess low modulus, and they are suitable 
as substrates for neuronal differentiation of stem cells. 
Alternatively, polymers with low modulus might be 
appropriate for this purpose. Within the category of the 
neuronal tissue structures, glial differentiation of stem 
cells might be gained on stiffer scaffolds, and neural 
differentiation can be achieved on softer scaffolds. By 
fine tuning the stiffness of the matrix, there is a great 
possibility to control the differentiation of stem cells 
into appropriate nerve cells. 

Cardio-vascular
Lineage commitment of MSCs towards specific vascular 
cells (MSCs to ECs or MSCs to SMCs) on electrospun 
scaffolds could be manipulated by controlling the 
substrate modulus, from 2 to 15 kPa. Around 95% of 
MSCs seeded on soft scaffolds (3 kPa) showed Flk-1 
endothelial markers within 24 h, while only 20% of 
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MSCs seeded on the rigid scaffolds (> 8 kPa) showed 
Flk-1 marker. In contrast, about 80% of MSCs seeded 
on rigid scaffolds (> 8 kPa) showed smooth muscle 
α-actin marker within 24 h, while fewer than 10% 
of MSCs seeded on soft scaffold (< 5 kPa) showed 
α-actin markers[115]. Besides, the synergistic effect of 
scaffold elasticity and growth factors has been studied 
for the differentiation of MSCs. In one such study, 
MSCs were seeded on soft nanofibrousmatrices with 
or without VEGF, and in Petri dishes with or without 
VEGF, where these researchers found that MSCs in soft 
matrices with VEGF showed significant increase in the 
expression of endothelia markers (vWF, eNOS, Flt-1, 
and Flk-1), with faster up-regulation of the endothelial 
markers. The results indicate that it is critical to control 
both mechanical factors and biochemical factors to 
regulate vascular endothelial regeneration of MSCs[116]. 
MSCs gained very low rate of cardiogenic differentia-
tion after transplantation to infarcted heart, partly 
because stiffer scar tissue lack the capacity to support 
cardiogenic differentiation. Thermosensitive and 
injectable hydrogels with different moduli (16, 45 and 
65 kPa) were achieved by controlling the concentration 
of the hydrogel solution. After 14 d, more than 76% 
MSCs differentiated into cardiac cells in gels with 45 
and 65 kPa, while MSCs in the 65 kPa gel had the 
highest differentiation efficiency[117]. But the effect 
of stiffness towards the differentiation of stem cells 
might be time-dependent. Human embryonic stem 
cells are sensitive to substrate stiffness during early 
mesodermal specification, but not late fate choices 
during cardiac differentiation, when they are seeded 
on polyacrylamide hydrogels. An intermediate stiffness 
was most beneficial for cardiomyogenic differentiation 
than soft or stiff substrates[118].

CONCLUSION 
Selection of appropriate biomaterials for scaffold 
fabrication and their modification by incorporation of 
biological constitutes, or by patterning, thus altering 
the topography and mechanical properties of the 
scaffolds, might have a significant effect on stem cells 
behavior. Major literature review shows that MSCs are 
in favor of soft substrate to differentiate to neuronal 
cells, with moderately stiffer materials promote myo-
genic differentiation and more stiffer substrates support 
osteogenic differentiation, suggesting the effect of 
substrate mechanical properties in influencing the 
differentiation of stem cells toward specific lineages. 
The stiffness of mature tendon range between 
500-1000 MPa and bone falls in the range of 20 GPa 
and this might be a reason for such specific behaviors 
of stem cells on substrates with proportionate mech-
anical properties. Prioritizing the stiffness of the 
substrate alone might not serve as a smart approach, 
but the presence of specific ligands along with the 
matrix mechanical compliance, might assist for more 
specific stem cell differentiations. There exists great 

difficulty in comparing the results obtained by different 
research groups, mainly because the parameters 
such as the ligand type, their concentrations, surface 
topology or matrix type and their mechanics, and even 
the cell numbers differ between studies. Hence more 
uniform and systematically organized studies, are 
required for a thorough understanding of the stem cell 
differentiation effect. The extent of differentiation or 
the % of differentiated cells is another parameter that 
deserves great attention, such that the cell-substrate 
can be used for its maximum potential. 

The cells on a 2-D platform might be less sensitive 
to mechanical properties than when they are in 3-D 
environment. The 3-D structures might provide an 
additional dimension to mechanical properties, such 
that the cell related factors such as the integrin 
ligation, cell contraction, and associated intracellular 
signaling might be influenced.
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Abstract
The degree to, and the mechanisms through, which 
stem cells are able to build, maintain, and heal the body 
have only recently begun to be understood. Much of the 
stem cell’s power resides in the release of a multitude 
of molecules, called stem cell released molecules (SRM). 
A fundamentally new type of therapeutic, namely 
“systems therapeutic”, can be realized by reverse 
engineering the mechanisms of the SRM processes. 
Recent data demonstrates that the composition of the 
SRM is different for each type of stem cell, as well as 
for different states of each cell type. Although systems 

biology has been successfully used to analyze multiple 
pathways, the approach is often used to develop a small 
molecule interacting at only one pathway in the system. 
A new model is emerging in biology where systems 
biology is used to develop a new technology acting 
at multiple pathways called “systems therapeutics”. A 
natural set of healing pathways in the human that uses 
SRM is instructive and of practical use in developing 
systems therapeutics. Endogenous SRM processes in 
the human body use a combination of SRM from two 
or more stem cell types, designated as S2RM, doing so 
under various state dependent conditions for each cell 
type. Here we describe our approach in using state-
dependent SRM from two or more stem cell types, 
S2RM technology, to develop a new class of therapeutics 
called “systems therapeutics.” Given the ubiquitous and 
powerful nature of innate S2RM-based healing in the 
human body, this “systems therapeutic” approach using 
S2RM technology will be important for the development 
of anti-cancer therapeutics, antimicrobials, wound 
care products and procedures, and a number of other 
therapeutics for many indications.

Key words: Stem cell; Paracrine; Growth factors; 
Pluripotency; Wound healing; Cancer

© The Author(s) 2015. Published by Baishideng Publishing 
Group Inc. All rights reserved.

Core tip: A fundamentally new type of therapeutic, 
namely “systems therapeutic,” can be realized by 
reverse engineering the mechanisms of the stem 
cell released molecules (SRM) processes. Recent 
data demonstrates that the composition of the SRM 
is different for each type of stem cell, as well as for 
different states of each cell type. Although systems 
biology has been successfully used to analyze multiple 
pathways, the approach is often used to develop a small 
molecule interacting at only one pathway in the system. 
A new model is emerging in biology where systems 
biology is used to develop a new technology acting at 
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INTRODUCTION
The initial few days following fertilization of the 
human egg, all stem cells in the developing egg are 
able to create any tissue in the human body, i.e., 
the stem cells are totipotent. However, about four 
days following the fertilization of a human egg, the 
stem cells in the blastocyst begin to differentiate and 
become pluripotent instead of totipotent, thus being 
able to differentiate into a more limited set of adult 
cell types[1]. At this point in time, many different stem 
cell types are beginning to form that will have unique 
function related to the development, maintenance, 
and healing of various tissues throughout the body. 
The degree to which stem cells differentiate into 
specific adult phenotypes is only recently beginning 
to be understood. For example, cell types, such as 
the progenitor cell preadipocyte and adipose-derived 
mesenchymal stem cells, each of which was previously 
classified as one cell type, have now been shown 
to have phenotypic differences depending on the 
location of the preadipocyte niches or mesenchymal 
stem cell niches[2,3]. The signaling factors controlling 
the development and function of the stem cell types, 
and indeed the signaling factors that each stem cell 
type releases, are relatively unknown, but progress is 
being made. For example, we know that adult stem 
cells release hundreds of types of proteins within 
the molecular pool[4], called the stem cell released 
molecules (SRM), and that each cell type will release 
a unique pool of molecules[5,6]. These molecules in 
the SRM will prove to be important for developing 
many types of therapeutics, including, for example, 
immunoregulators for organ transplantation[7].

The more differentiated the stem cell, the more 
specialized the SRM will become. Further, that unique 
pool of molecules from one stem cell type can change 
in composition, including the types of molecular species, 
depending on intrinsic and extrinsic regulatory factors.  
For example, intrinsic factors related to simple passage 
number of a stem cell will change the composition of 
the SRM[8,9] and mesenchymal stem cells (MSCs) in 
different parts of the body will secrete unique pools 
of SRM[10]. Telomere dysfunction, whether the cause 
is intrinsic or extrinsic, will change the nature of the 
SRM[11]. Likewise, when MSCs derived from fat tissue 
are conditioned with TNF-α, a significant effect on the 
SRM is observed with an increased release of factors 

such as Cathepsin L, interleukin (IL)-6, IL-8, monocyte 
chemotactic protein-1, matrix metalloproteinase 
(MMPs), and pentraxin-related protein 3[12]. Further, 
signaling conditions during the immune modulating 
responses of human MSCs through Toll-like receptors 
(TLRs) on the MSCs leads to two basic phenotypic 
changes of the cells (MSC1 and MSC2) and a 
consequent dramatic difference in their SRM[13]. 

Phenotypic changes in the MSC are consequent to: (1) 
low-level exposure of TLR4 agonists that drives hMSCs 
toward a pro-inflammatory MSC1 phenotype important 
for early injury responses; and (2) the TLR3 agonist 
exposure of hMSCs driving the phenotype to an 
immunosuppressive MSC2 phenotype that is important 
to later anti-inflammatory responses that help repair 
the wound. Culture conditions can also have dramatic 
effects on SRM. A significant increase in SRM [Vascular 
endothelial growth factor (VEGF), basic fibroblast 
growth factor (bFGF), phosphatidylinositol-glycan 
biosynthesis class F protein, and TGF-β] was observed 
after subjecting hMSCs to 72 h hypoxia compared with 
normoxic conditions[14]. Serum deprivation is another 
model for ischemia, and was shown to increase the 
secretion of angiogenic factors released by hMSCs, 
although the results could have been attributed in 
full, or part, to differences in cell proliferation rates[15]. 
Glucose levels have been shown to differentially 
affect the phenotype of endothelial progenitor cells 
and mesenchymal progenitor cells[16]. Indeed, subtle 
variations in cell culture conditions can have significant 
consequences to the phenotype of stem cells[17].

The state of the extracellular matrix in the stem 
cell niche is also an important regulator of stem cell 
phenotype, where, for example, the absence of the 
SPARC protein in the extracellular matrix (ECM) 
can drive hematopoietic stem cells into a state of 
quiescence[18]. Antioxidants and FGF-2 were shown 
to cause rapid proliferation and a retention of stem 
cell properties in MSCs, and even enhanced their 
adipogenic and osteogenic potentials[19]. Interestingly, 
new studies suggest that adult stem cells, and 
even somatic cells, may exist in a state of dynamic 
transition between different levels of potency[20,21] that 
is dependent on many factors, including paracrine and 
autocrine factors in the SRM from surrounding stem 
cells in the same niche, and through the physical state 
of the surrounding stem cell niche[22]. The state of the 
oxidative stress in the stem cell may be a contributing 
factor in phenotype, including the state of pluripotency 
where the antioxidants curcumin and sesamin were 
shown to decrease oxidative stress and increase 
pluripotency[23]. Stem cell derived control factors for 
determining the fate of stem cells and the potency of 
cells, including the dedifferentiation of somatic cells, 
their proliferation, and subsequent differentiation, 
may include growth differentiation factor 11, a protein 
secreted by bone marrow mesenchymal stem cells[24] 
that has been shown to be involved in stem cell fate 
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and proliferation[25], and has recently been shown to 
induce a number of regenerative effects, including 
neurogenesis[26]. Recent studies also demonstrate 
that NANOG, a pluripotency transcription factor in 
embryonic stem cells, is also present in at least some 
adult tissues further raising the possibility that a 
dynamic state of pluripotency is a naturally occurring 
process in adults[27]. Again, these shifts in the state 
of pluripotency will have concomitant shifts in the 
composition of the SRM released from the stem cell.

Given the differentiation of stem cells into distinct 
phenotypes, each of which releases a distinct pool of 
molecules with each distinct pool of molecules inducing 
a specific set of functions, a knowledge base of the 
secreted factors (SRM) from each stem cell type and 
the resulting actions from each pool of molecules will 
be instructive in the development of therapeutics. The 
resulting therapeutics that can be developed using 
the combination of many types of molecules has 
been termed “systems therapeutics”[28]. The “systems 
therapeutic” approach, where multiple molecule 
types target multiple pathways, is in contradistinction 
to the more traditional approach of small molecule 
development for perturbation of one pathway.

Moreover, as the stem cell types are cultured ex 
vivo in the laboratory and driven to state-dependent 
specific phenotypes through genetic, epigenetic, and 
other state-dependent variables, the concentration 
and composition of the SRM as a result can be experi-
mentally manipulated for the purposes of therapeutic 
development. In addition, distinct pools of SRM 
from two or more stem cell types cultured in state-
dependent conditions can be combined into a collective 
pool of molecules called S2RM, mimicking the collective 
actions of multiple stem cell types in their native state 
in the human body.

TWO OR MORE TYPES OF STEM CELL 
INDUCE HEALING
There are two basic forms of cell replacement and 
regeneration: (1) a maintenance function where 
renewal of damaged cells during tissue homeostasis 
(homeostatic growth) are restored; and (2) a response 
to external injury, such as traumatic wounding, burn, 
ulceration, or surgery. A given healing response 
will require many processes acting through a well-
orchestrated concert of mechanisms and molecules 
in the given tissue, and the results of these processes 
depend on many factors, including the developmental 
age of the organism. Fundamental factors, such as 
caspases released from cells undergoing apoptosis, 
will activate both stem cells and progenitor cells in 
the wound healing process[29], where apoptosis may 
be a key factor in cell proliferation during tissue 
regeneration[30]. Wounds occurring in early to mid-
gestational fetal skin have been shown to heal through 
regeneration without the formation of a scar[31], 

whereas adult wounds heal by a fibroproliferative 
response that emphasizes repair over regeneration. 
The complexity of this process, where fetal wounds 
differ from adult wounds in inflammatory responses, 
ECM components, growth factor expression and 
responses, and profiles of gene expression is exem-
plified by the observation that adult skin in a fetal 
environment will still exhibit scar formation[32]. The 
state dependency of stem cells is so critical as shown 
in diabetes where the adipose stem cell niche in situ 
is altered, and the stem cells in the diabetic state are 
compromised in their ability to establish a vascular 
network both in vitro and in vivo[33] where glucose 
itself has profound direct effects on stem cells[34].

Following injury, wound healing begins rapidly 
and involves resident and migratory stem cell types, 
ECM, and soluble factors, including SRM. Stem 
cells and progenitor cells resident in the skin are 
certainly involved, but recruitment of stem cells from 
other sources, including bone marrow, is thought 
to be important[35]. The mechanisms underlying 
wound healing include: (1) a rapid release of pro-
inflammatory mediators; (2) cell to cell, and cell to 
extracellular matrix interactions that help mediate 
cell proliferation, migration, and differentiation; (3) a 
cascade of events including epithelialization, fibroplasia 
and angiogenesis[36]; (4) contraction of the wound; 
and (5) remodeling of the tissue. These events begin 
at the time of physical injury and proceed continuously 
throughout the process of tissue repair. Although the 
processes of repair begin immediately after an injury 
in all tissues, and all wounds proceed with a similar 
cascade of healing, some tissues, for example, liver, 
skeletal tissue, and the eye have different forms 
of regeneration and repair with variations on the 
underlying mechanisms[37]. Severe injury has been 
shown to increase the number of circulating stem 
cells[38,39] and that these stem cells will participate in 
the wound healing process[6].

At the onset of trauma bone marrow stem cells 
will sense histamine released from platelets at H1 
receptors and change their phenotype to one of 
releasing more IL-6 and more IL-8. The increased 
IL-8 will attract polymorphonuclear neutrophil cells, 
and the increased IL-6 will facilitate their survival 
through antiapoptotic functions[40]. When the trauma 
inducing the injury has stopped, and hemostasis is 
achieved with an immune response activated, the tissue 
repair phase will then begin[41]. On the third day after 
wounding the proliferative phase starts and continues 
for two or more weeks thereafter. Proliferation begins 
with fibroblast migration and deposition of newly 
synthesized ECM, elaborating the initial network 
of tissue built by fibrin and fibronectin. This phase 
of wound healing can be clinically observed as an 
abundant formation of granulation tissue. The complex 
nature of the proliferative phase is briefly described 
below[42].
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activity, or one of controlling inflammation[52].
Endogenous MSCs migrate to sites of injury in 

response to chemotactic signals where they can then 
modulate inflammation, repair damaged tissue, and 
facilitate tissue regeneration. Furthermore, bone 
marrow stem cells home to the injury where cells in 
the wounded area secrete a protease that interacts 
with collagen matrix to produce a homing agent[53]. 
Differentiation and paracrine signaling are two key 
mechanisms used by MSCs for tissue maintenance 
and repair. While differentiation of MSCs contributes 
by directly regenerating damaged tissue, the paracrine 
signaling by MSCs regulates the local cellular responses 
to injury, including the differentiation process itself. 
However, studies of exogenous MSCs show that the 
contribution of differentiation of these stem cells 
is limited due to poor engraftment and survival of 
MSCs at the site of injury, whereas the activation of 
endogenous stem cells by SRM may provide better 
results for the differentiation pathway[54], Paracrine 
signaling by MSCs appears to be the primary mech-
anism for the beneficial effects of MSCs in wound 
healing, including the reduction of inflammation, 
enhanced angiogenesis, and induction of cell migration 
and proliferation[55].

An analyses of the conditioned medium indicate 
that MSCs secrete many known SRM mediators of 
tissue repair including growth factors, cytokines, 
and chemokines, including VEGF, PDGF, bFGF, EGF, 
keratinocyte growth factor (KGF), and TGF-β. Stem 
cells are also known to release exosomes[56], and 
exosomes from mesenchymal stem cells have been 
shown to contain factors, including miRNA, that switch 
cancer stem cells into a dormant state[57]. Such a 
mechanism is important to dampen the cells in a 
wound from moving into a state of cancer[58]. Many 
cell types, including epithelial cells, endothelial cells, 
fibroblasts, and keratinocytes are responsive to MSC 
paracrine signaling, where a number of different 
cellular responses including cell survival, proliferation, 
migration, and gene expression are regulated. The 
SRM from MSCs acts as a chemoattractant for dermal 
fibroblasts, macrophages, endothelial cells, and 
epidermal keratinocytes, in vitro. The presence of 
either MSCs or the SRM from MSCs have been shown 
to promote wound closure through the activation 
of dermal fibroblasts. MSCs also secrete mitogens, 
leading to the proliferation of keratinocytes, dermal 
fibroblasts, and endothelial cells in vitro. Further, 
dermal fibroblasts secrete increased amounts of 
collagen type I and alter gene expression in response 
to either MSCs in co-culture or the SRM from MSCs. 
These data suggest that SRM from MSCs stimulate 
proliferation and migration of the key cell types in the 
wound. In addition, the SRM of MSCs imparts anti-
scarring properties to wound healing through the 
secretion of VEGF and hepatocyte growth factor (HGF), 
and through maintaining a normal balance between 

First, fibroblasts and myofibroblasts in the tissue 
surrounding the wound are stimulated to proliferate 
for 3 d[43]. The fibroblasts and myofibroblasts then 
migrate from the surrounding tissue into the wound, 
attracted by soluble factors TGF-β and platelet-derived 
growth factor (PDGF) that are released by platelets 
and inflammatory cells[44]. Appearing in the wound 
on the third day after injury, the accumulation of 
fibroblasts in the wound requires their phenotypic 
modulation. Within the wound, the fibroblasts greatly 
proliferate, producing and locally releasing the matrix 
proteins hyaluronan, fibronectin, proteoglycans, and 
type 1 and type 3 procollagen[45]. Abundant new ECM 
has accumulated at the end of the first week, further 
supporting cell migration that is essential for the repair 
process. Fibroblasts then change to a myofibroblast 
phenotype. The myofibroblast phenotype contains 
thick actin bundles that extend below the plasma 
membrane with pseudopodia attaching to fibronectin 
and collagen in the ECM. Wound contraction, critical to 
the reparative process by closing the wound margins, 
then takes place as the actin bundles begin to retract. 
Any overabundance of unneeded fibroblasts are then 
eliminated by apoptosis[44].

The three phases of wound healing involve MSCs 
to varying degrees, whereby, for example, they recruit 
macrophages to the wound site[46], induce the fibroblast 
response to injury[47], and remodel the wound site[48], 
including a preferential release of collagen type III 
at the site[35]. While the MSCs contribute directly to 
wound repair by releasing molecules such as collagen 
to the wound[35], the MSCs also act indirectly by 
releasing an instruction set to other cells thus initiating, 
for example, progenitor cell migration to the wound[49]. 
The MSCs are key to the wound’s ability to proceed 
beyond the inflammatory phase and not maintain a 
chronic wound state. A significant early component of 
the mechanism of action of MSCs is their attenuation 
of the inflammatory response. The addition of MSCs 
to an active immune response decreases secretion of 
the proinflammatory cytokines TNF-α and interferon-γ 
(IFN-γ) while simultaneously increasing the production 
of anti-inflammatory cytokines IL-10 and IL-4. These 
anti-inflammatory properties of MSCs impart a 
particular benefit to chronic wound treatment through 
SRM, given the SRM can restart healing in chronic 
wounds by advancing the wound past a chronic 
inflammatory state into the next stage of healing. 

Many studies have shown that MSCs possess 
antimicrobial activity, critical for clearance of infection 
in the wound. The antimicrobial activity of MSCs is 
mediated by two mechanisms: (1) direct secretion 
of antimicrobial factors such as LL-37[50]; and (2) 
indirect, by secreting immune-modulating SRM that 
will upregulate the bacterial killing and phagocytosis of 
immune cells[51]. Further, the phenotype of macrophages 
can be regulated by MSCs into various M1 and M2 
classes directed to either antimicrobial, phagocytic 
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TGF-β1 and TGF-β3. The pathways underlying MSC 
processes in wound healing are complex, and further 
details of these processes can be found in recent 
reviews. Stem cell niches in other regions of the body, 
including the hematopoietic stem cell niche, appear to 
be equally complicated as the skin stem cell niche with 
a rich interaction amongst many cell types, including a 
number of stem cell types and their respective SRM[59].

NATURALLY INDUCED PLURIPOTENT 
STEM CELL WITHIN THE STATE 
DEPENDENT STEM CELL NICHE
Natually occurring endogenous iPSs, or naturally 
induced pluripotent stem cells (NiPSs) occur within the 
state dependent stem cell niche. While induction to a 
totipotent state has not been realized, dedifferentiation 
seems to be an important adaptive mechanism in 
both the animal[60] and plant kingdoms[61] where cells 
can be induced to become pluripotent. In addition 
to the therapeutic development of embryonic stem 
cells and iPSs, the use of adult stem cells and the 
molecules that they release have been intensively 
investigated and have current therapeutic applications. 
Further, SRM from stem cells or other molecules from 
neighboring cells, such as ciliary neurotrophic factor 
(CNTF), have been shown to dedifferentiate myoblasts 
into multipotent progenitor cells. The dedifferentiated 
myoblasts were then able to differentiate into several 
new phenotypes[62].

The endogenous mechanisms of adult stem cells, 
and possibly somatic cells in the stem cell niche, seem 
to include the ability to reprogram themselves into 
more primordial states that are pluripotent. That is, 
the adult stem cell, and even somatic cells, may exist 
in a state of dynamic transition between different 
levels of potency that is dependent on many factors, 
including paracrine and autocrine factors in the SRM 
from surrounding cells in the stem cell niche, and by 
the physical, chemical, and electrical state of the stem 
cell niche[63-65]. Recently, treatment with reversine, a 
type of purine, transformed 3T3-L1 preadipocytes into 
MSC-like cells, as evidenced by the expression of MSCs 
marker genes. The transform allowed differentiation of 
lineage-committed 3T3-L1 preadipocytes to osteoblasts 
under the osteogenic condition in vitro[66]. Beyond 
transcription factors contained in the SRM, physical 
manipulation through the cytoskeleton is known to 
transmit signals to the chromatin[67] and reprogram 
cells[68], and may represent an additional biophysical, 
in addition to biochemical means, for driving cells to 
varying levels of potency. Reprogramming of differen-
tiated cells to stem-like cells has been described in 
several tissues and is well studied in the epithelial-
mesenchymal transition where a differentiated epithelial 
cell transforms to a mesenchymal cell with a stem cell-
like phenotype. Thus, by understanding adult stem cell 

function, we may develop the means to use these cells 
in many ways to maintain and heal the body, including 
a means of controlling naturally occurring iPSs (NiPSs).

The physical, chemical, and electrical state of the 
stem cell niche will have profound influences on stem 
cell function. Alterations of the stem cell niche in 
diseases such as diabetes will decrease the ability of 
endogenous stem cells, or autologous administered 
stem cells, to increase neovascularization and promote 
wound healing[33].

In Figure 1, we see levels of interactions that may 
control the natural iPSC state. Considering wound 
healing as described in the aforementioned section, 
many factors, such as histamine, an important regulator 
of cell fate, including neurons[69,70] are released at the 
site of injury. As an example of the actions of these 
factors, histamine will activate TRPM4 calcium channels 
in the mesenchymal stem cells and bias the dynamic 
transition of the stem cells toward differentiation into 
the needed mature cells types at the injury site[71], 
including osteoclastogenesis[72]. Similarly, exposure to 
sunlight will stimulate vitamin D3 levels and induce 
differentiation of stem cells, doing so through a down-
stream pathway that includes histamine[73]. 

Reprogramming of cells to push the dynamic tran-
sition towards more potency has been specifically 
shown in mammalian cells whereby muscle cells[74] 
and pancreas cells[75] will dedifferentiate into a more 
pluripotent state following injury, and where fibroblasts 
were incubated in the SRM of adipose-derived stem 
cells. The fibroblasts displayed gene expression that 
was indicative of pluripotency in which repressive 
histone modifications were reduced, and increased 
global demethylation was present. The Col1a1 and 
Col1a2 genes, typically found in differentiated cells 
only, demonstrated reduced expression, and also 
demonstrated increased methylation in the 5′-flanking 
regulatory regions[76]. Of the many factors released 
by mesenchymal stem cells, microRNA is one of the 
factors that have been shown to induce pluripotency in 
mouse and human somatic cells[77]. In general, stress 
is a key factor that can naturally induce pluripotency. 
For example, simple isolation of mammalian cells 
from contact with other cells and their normal niche, 
originally exhibiting a limited differentiation potential, 
may become multipotent[78]. Pluripotent cells can 
reside in the naïve state or the primed state where the 
naïve state is more potent than the primed state[79]. 
Dedifferentiation under hypoxic conditions can drive 
committed cells beyond the primed state fully back to 
the naive state of potency where the pluripotent cells 
are then capable of forming teratomas[80].

Cancer cells and pluripotent stem cells follow 
certain common rules. Both cell types, when placed 
in a dysregulated extracellular matrix, will exhibit 
an increased state of potency. Cancer cells, when 
returned to a regulated ECM, will revert to a normal 
phenotype[58,81]. Likewise, dedifferentiation of cells into 
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a pluripotent state can occur when the cell is isolated 
and loses connections with other cells and the ECM[78], 

and stem cells that have differentiated can revert to a 
more pluripotent state by changes in the concentration 
of the ECM associated protein, L-proline[82]. Thus, 
induction of pluripotent stem cells is a naturally 
occurring phenomenon that can be controlled in vivo 
for therapeutic effect by manipulating the state of the 
stem cell niche.

CONCEPTS OF A SYSTEMS 

THERAPEUTIC
An abnormality in one pathway, or even at one level 
of the organism, such as at the level of genes, does 
not explain a disease. Rather, disease reflects the 
perturbations of the complex system of biological 
pathways acted on by a complex set of environmental 
regulators. Most previous work to understand disease 
and drug response traits have focused on single 
dimensions, and even single pathways, of the system. 
Achieving a more comprehensive and predictive 
understanding of disease and drug response requires 
examining living systems in multiple dimensions and 

at multiple scales. Although biological engineering 
principles are necessary, with the requirement to 
remove superfluous complexity for the development 
of a particular therapeutic, the individual components 
of complex systems are highly coupled such that 
the individual components cannot be analyzed in 
isolation. This predicament in biology, such as the 
desire to place the sequencing of the genome as the 
singular predictor of disease, is similar to that dictum 
in physics where electrodynamics was broken down 
into the misbegotten particles and fields theorem by 
Bohr and his Copenhagen interpretation[83]. Biological 
complexity is an extreme example of complexity, 
arising from a biological system that includes active, 
plastic components, nested feedback loops, flexible 
design principles, component multi-functionality, 
and multiple layers of system dynamics developed 
through evolutionary processes that are, at least 
partially, driven through the downward causation of 
environmental regulators. The power of the dynamic 
biological system has been recognized in engineering 
where, for example, neuromorphic engineering[84] has 
become an important player in the development of 
new computer chip technologies such as TrueNorth[85].

Despite the use of systems analysis in the fields 
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of biology and therapeutic development, therapeutic 
development has often remained as one using systems 
biology techniques for finding the one pathway, or 
the one target, that is best perturbed to develop the 
therapeutic. “Finding the magic bullet” is a common 
phrase that describes this common problem. A shift in 
mindset to one of finding the minimum set of pathways, 
or the minimum set of targets, using the “minimum 
molecule set” to perturb these targets in order to best 
develop a therapeutic is now needed. Thus, biological 
function results from a system, and a particular disease 
state is the result of multiple perturbations in that 
system, not just one perturbation. Therefore, through 
an understanding of complex pathways in normal and 
disease states, and using computationally intensive 
biological design-build-test-analyze cycles, with 
therapeutic molecule production batches based on this 
process, we can hope to develop safe and efficacious 
therapeutics. This will occur through a multi-targeted, 
“systems therapeutic” approach. The approach then is 
to use a system of molecules, the minimum molecule 
set, that is not overly reductionist so as to be ineffective, 
but instead use the optimal number of molecule species 
that are sufficient to realize a safe and efficacious 
therapeutic. Recognizing that diseases are the result 
of complex interactions among many networks has 
significant implications for drug discovery, leading to 
the design of combinations of molecular species that 
impact entire network states, rather than designing 
reductionist drugs that target specific genes that are 
associated, often weakly, with disease. 

DEVELOPMENT OF SYSTEMS 
ANTIMICROBIALS
The attempt to develop animal-derived antimicrobials 
is not new. For example, in the 1990s great hope, and 
many dollars spent, was placed on the development of 
a small peptide from frog (Xenopus laevis) skin as an 
antibiotic[86]. The observation that frog skin heals itself, 
despite the frog living in a very septic environment, led 
to the formation of Magainin Pharmaceuticals. After 
years, and millions of dollars, spent on development 
and Phase II clinical trials, today Magainin’s assets 
are the auction block (Magainin changed names to 
Genera and then liquidated: http://www.fiercebiotech.
com/press-releases/genaera-corporation-announces-
approval-plan-liquidation-and-dissolution-board-
direc-0). Why? Because the frog’s skin does not heal 
itself through a reductionist approach with only one 
molecule (a peptide), and Magainin didn’t fully learn the 
frog’s lesson. The lesson not learned was that Magainin 
developed their antibiotic based on one peptide, a 
reductionist approach, instead of a mix of antimicrobial 
factors, a systems antimicrobial approach.

Lipids were first demonstrated by Koch[87] to 
have antibiotic activity, and exists in human skin, for 
example, as a wide range of molecule types comprising 

a significant part of the innate immune system[88]. 
Like Magainin, a similar reductionist approach was 
used in the development of squalamine, a lipid 
compound (aminosterol) derived from the dogfish 
shark (Squalus acanthias). Squalamine was initially 
discovered on the basis of its anti-bacterial activity, 
and has broad spectrum antimicrobial activity against 
fungi, protozoa, and many viruses[89]. Sadly, isolated 
squalamine was never approved for antimicrobial 
use and is now sold as a nutritional product by a 
number of companies in capsule form. Once again, the 
“Copenhagen reductionist” approach to therapeutic 
development has failed us. Here again, instead, an 
approach to developing antimicrobials using a collection 
of molecules, including peptides and lipids, is in 
development.

DEVELOPMENT OF CANCER SYSTEMS 
THERAPEUTIC
Cancer is strongly associated with a deregulated 
ECM[58,90]. While cancer and stem cells are regulated 
by many factors, both cancer cells and pluripotent stem 
cells follow certain common rules such as regulation by 
the ECM. Both cell types, when placed in a dysregulated 
extracellular matrix, will exhibit an increased state of 
potency. Cancer cells, when returned to a regulated 
ECM, will revert to a normal phenotype[58,81]. As 
beautifully explained by Mina Bissell at University 
of California Berkeley, during development, cells 
can spatially arrange themselves, differentiate, and 
change their SRM composition in response to a 
variety of signals in the microenvironment, including 
morphogens, biophysical manipulation, juxtacrine 
signals, and the ECM. All of these components 
in the microenvironment are sensitive to signals 
from other tissues and organs of the developing 
embryo as well as through downward causation from 
the macroenvironment. However, following organ 
formation, the microenvironment/ECM integrates 
and constrains the organ architecture and function, 
thus ensuring structural and functional homeostasis 
and therefore, a normal organ phenotype. However, 
when the organ architecture in adults is insulted by 
mutations and/or changes in the microenvironment 
such as ECM dysregulation and/or inflammation, that 
organ is transformed by the initiation of developmental 
and embryonic circuits. However, in the adult, the 
microenvironment is no longer embryonic in nature, 
and the ECM dysregulation and inflammation leads 
to a pluripotent state, i.e., the cancerous state. 
Bissell argues that tumors become new evolutionary 
organs searching for homeostasis[58]. Recent work 
fits the paradigm of Bissell, such as that of Liou et 
al[91] who describes the detailed steps that Kras-
mutated acinar cells follow as they change into duct-
like cells with a more potent state. They observed 
that Kras proteins in the acinar cells switched on 
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intercellular adhesion molecule-1. This in turn attracts 
macrophages. The macrophages then release a 
variety of proteins, including MMPs that degrade ECM. 
Following dysregulation of ECM, the acinar cells then 
transform into the stem cell-like phenotype. Thus, the 
direct link between Kras mutations, the inflammatory 
environment, and dysregulated ECM that drive the 
initiation of pancreatic cancer is demonstrated.

Similar to the cancer state, dedifferentiation of 
cells into a pluripotent state can occur when the cell 
is isolated and loses connections with other cells and 
the ECM[78], and stem cells that have differentiated 
can revert to a more pluripotent state by changes 
in the concentration of the ECM associated protein, 
L-proline[82]. Given that that the ECM can act through 
mechanical and biochemical mechanisms to regulate 
the cancer phenotype, one important means to revert 
the cancer phenotype to the normal somatic cell 
phenotype is to use S2RM technology to reestablish 
a normal ECM microenvironment for the cancer cell. 
That is, using one progenitor cell type to release the 
building blocks of the ECM, such as collagen, and using 
another stem cell type to release other building blocks 
and the instruction sets to build the architecture of 
the ECM, the normal state of the ECM can be rebuilt 
and lead to the reversion of the cancer cell phenotype 
to a more normal somatic cell phenotype as depicted 
in Figure 2. Thus building on the model developed 
by Mina Bissell, our model suggests that that the 
microenvironment/ECM, which is largely comprised 
of, and developed by S2RM, is key to the regulation 
of the initiation and degree of pluripotency of cells, 
controls the “stop” signals for driving potency and then 

initiates differentiation of the pluripotent stem cells. 
The S2RM thus controls homeostasis whereby the 
state of dynamic transition between different levels of 
potency[92] is set to a proper level in which to produce 
enough new cells to maintain and heal tissue, but 
not too much so as to allow uncontrolled, cancerous 
growth of the tissue. 

In summary, the S2RM technology provides a 
natural means for mimicking and stimulating the 
healing properties of the human body. Instead of using 
foreign molecules, natural molecules are used that 
will induce the initiation of natural processes with little 
or no side-effects. Further, instead of using a small 
molecule approach where one molecule interacts at 
one pathway underlying a multi-pathway disease is 
used, here the S2RM approach uses multiple molecules 
to perturb multiple pathways underlying the disease, 
thus yielding a more efficacious result than the one 
molecule-one pathway reductionist approach. 

The S2RM approach will introduce all of the needed 
molecules to the tissue to induce a full wound healing 
cascade of events, unlike an approach using the 
molecules from one stem cell type that will introduce 
only a portion of the needed molecules and thus provide 
a fraction of the efficacy that the S2RM provides. And, 
S2RM uses the particular molecules from the particular 
stem cells types relevant to the particular tissue to 
be healed. This is distinct from the “one size fits all” 
approach where one stem cell type is used to develop 
therapeutics for the whole body. Therefore, S2RM 
provides all of the building blocks, such as the different 
collagen types, to rebuild the tissue, and also provides 
the instruction set molecules, such as microRNA, that 
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Figure 2  Regulation of the cancer/pluripotent phenotype by stem cells and extracellular matrix. The cancer/pluripotent cell phenotype can be regulated by the 
extracellular matrix (ECM) and stem cells, where cancer cells can be removed from a dysregulated ECM and placed into a normal ECM and the cancer/pluripotent 
phenotype will revert to a normal, somatic cell phenotype. Likewise, if a dysregulated ECM is reconstructed into a normal state, the cancer/pluripotent phenotype will revert 
to the normal somatic cell phenotype. Further regulation of the cancer/pluripotent phenotype can be regulated by a number of factors, including microRNA contained within 
exosomes that were released from mesenchymal stem cells serving to change the state of the cancer cell into one of quiescence. MBSC: BM-stroma cell.
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will deliver the needed architectural commands that 
will lay the building blocks in their proper places for 
that particular tissue. During this rebuilding process, 
the immune response will also be modulated by S2RM, 
so that inflammation is quelled, allowing the rebuilding 
to proceed within a normalized framework that is 
not swollen. The S2RM rebuilding process institutes 
two fundamental stem cell healing processes: (1) 
Mimicking the actions of multiple stem cell types and 
the molecules that they release in the relevant tissue, 
and (2) reconditioning the endogenous stem cell 
niche itself and driving the niche to a more primordial, 
potent state, allowing endogenous stem cell processes 
to better induce a healing response. Thus, a systems 
therapeutic approach using multiple molecules from 
multiple stem cell types called S2RM is used to develop 
a safer, more natural, and more efficacious therapeutic 
that both mimics and facilitates the natural adult stem 
cell healing processes of our body.
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Abstract
The field of reproductive biology has undergone signi
ficant developments in the last decade. The notion that 
there is a fixed reserve pool of oocytes before birth was 
established by Zuckerman in 1951. However, in 2004, 
an article published in nature challenged this central 
dogma of mammalian reproductive biology. Tilly’s group 
reported the existence of ovarian germline stem cells 
(GSCs) in postnatal ovaries of mice and suggested that 
the bone marrow could be an extragonadal source of 
ovarian GSCs. These findings were strongly criticized; 
however, several independent groups have since 

successfully isolated and characterized ovarian GSCs 
in postnatal mice. The ovarian GSCs are located in the 
ovarian surface epithelium and express markers of 
undifferentiated GSCs. When transplanted into mouse 
ovaries, mouse ovarian GSCs could differentiate and 
produce embryos and offspring. Similarly, in a recent 
study, ovarian GSCs were found to be present in the 
ovaries of women of reproductive age. Conversely, 
there is increasing evidence that stem cells responsible 
for maintaining a healthy state in normal tissue may 
be a source of some cancers, including ovarian cancer. 
Cancer stem cells (CSCs) have been found in many 
tissues, including ovaries. Some researchers have 
suggested that ovarian cancer may be a result of the 
transformation and dysfunction of ovarian GSCs with 
selfrenewal properties. Drug resistant and metastasis
generating CSCs are responsible for many important 
problems affecting ovarian cancer patients. Therefore, 
the identification of CSCs will provide opportunities 
for the development of new therapeutic strategies for 
treatments for infertility and ovarian cancer. In this 
article, we summarize the current understanding of 
ovarian GSCs in adult mammals, and we also discuss 
whether there is a relationship between GSCs and CSCs.

Key words: Cancer; Cancer stem cell; Germline stem 
cell; Ovary; Reproductivity 

© The Author(s) 2015. Published by Baishideng Publishing 
Group Inc. All rights reserved.

Core tip: This review provides an overview on postnatal 
ovarian germinal stem cells (GSC) of mammals. The 
characteristics of these cells and the last developments 
in the field of oogenesis have been presented. We also 
discuss the relationship between ovarian GSCs and ovarian 
cancer stem cells. The identification and characterization 
of these two types of cells are essential for a better 
understanding of tumor initiation, progression and 
treatment. 
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INTRODUCTION
The field of the reproductive biology was revolutionized 
ten years ago when Johnson et al[1] published a 
study in Nature that challenged the long-held dogma 
established by Zuckerman[2] in 1951. Since that 
time, it has been generally believed that the ovaries 
of mammals do not possess renewable stem cells 
but instead contain a finite reserve of oocytes that 
diminishes through postnatal life. Although the exis-
tence of ovarian germline stem cells (GSCs) has 
been obviously demonstrated and fully accepted for 
adult females of non-mammalian species[3-5] and for 
adult males of a majority of species[6], the existence 
of ovarian GSCs in adult female mammals is still a 
subject of intense debate. In 2004, Johnson et al[1] 
demonstrated the existence of proliferative GSCs in 
the ovaries of adult mice, and recently, ovarian GSCs 
have been isolated and characterized in the ovaries of 
postnatal mice and reproductive-age women[7]. 

Amid the controversy created by group by Johnson 
et al[1], the presence of cancer stem cells (CSC) in 
ovarian cancer was established by Bapat et al[8], and 
accumulating data have provided substantial evidence 
for the involvement of CSCs in ovarian cancer[9-13]. 
Ovarian cancer (OC) is associated with enhanced 
tumor aggressiveness and metastasis, as well as drug 
resistance. The heterogeneous populations of cancer 
cells within an ovarian tumor tend to be more resistant 
to chemotherapeutic agents. In this context, the 
identification and characterization of CSCs in ovarian 
cancer is essential for a better understanding of the 
signaling pathways involved in tumor development and 
progression. In this review, we will focus on the latest 
developments in the field of oogenesis in the postnatal 
mammalian ovary. We will also discuss whether there 
is a link between ovarian GSCs and CSCs.

OVARIAN GSCS IN ADULT MAMMALS 
Existence of ovarian GSCs 
In 2004, Johnson et al[1] published a study that 
challenged the dogma established by Zuckerman[2] in 
1951. The authors demonstrated that ovarian GSCs 
are present in the adult mouse ovary, contrary to the 
principle established more than 60 years ago (Table 
1). In a first series of studies, Johnson et al[1] counted 
the numbers of healthy (non-atretic) and degenerating 
(atretic) follicles in ovaries of mice to study germ 
cell dynamics in female mammals. The numbers of 
non-atretic quiescent (primordial) and early growing 
(primary, preantal) follicles in ovary was higher than 
expected and their rate of clearance in the immature 
ovary (day 1-day 4) was less than expected. According 

to their experiments on the clearance of degenerative 
oocytes contained within immature follicles, from 
1% to 33% of the immature follicle pool was atretic 
at any given time. The authors considered that the 
degeneration of this cell would deplete the primordial 
follicle reserve by young adulthood and that ovarian 
GSCs represent the source of oocytes produced de 
novo[1]. 

By using unbiased assumption-free stereologi-
cal methods to count follicles in the mouse ovary, 
Kerr et al[14] demonstrated the presence of actively 
dividing surface epithelial cells in prepubertal mouse 
ovaries and supported the concept of follicle renewal 
in postnatal and adult ovaries in mice. This study, 
published in 2006, confirmed the data from the 
Johnson et al[1]’s group (Table 1). 

Johnson et al[1] reported the presence of large 
ovoid cells in the surface epithelium of juvenile and 
young adult mouse ovaries by histological analysis. 
These cells seemed similar to the germline cells of 
fetal mouse ovaries. Immunohistochemical staining for 
Mouse Vasa Homologue (MVH, also called Deadbox 4 
or Ddx4), a gene expressed exclusively in the germ 
cells in both vertebrate and invertebrate species[15], 
demonstrated that these large cells were of a germline 
lineage. Incorporation of 5-bromodeoxyuridine (BrdU) 
into the DNA of the MVH-positive cells demonstrated 
the proliferative capacity of these double-positive cells, 
which were localized to the ovarian surface epithelium. 
Moreover, postnatal ovarian expression of genes 
involved in the initiation of meiosis was determined by 
RT-PCR. Protein synaptonemal complex protein SCP3, 
the endonuclease Spo11, and the recombinase Dmc1 
(required for the initiation of meiosis in mammals) 
were all detected at the mRNA level[1]. These results 
confirmed the presence of proliferative germ cells in 
postnatal mouse ovaries. Supplemental evidence of 
continuous folliculogenesis during post natal life was 
provided by grafting experiments. Ovarian fragments 
from wild-type mice were grafted onto hemi-ovaries 
of transgenic mice with ubiquitous expression of 
green fluorescent protein (GFP). After 3-4 wk, follicles 
containing GFP-positive oocytes were detected in 
the wild-type ovarian fragments surrounded by 
unlabeled granulosa cells. These results suggested that 
transgenic germ cells had migrated into the grafted 
ovarian fragment and formed new follicles in adult 
mice. Collectively, these findings demonstrated that 
proliferative GSCs exist in the postnatal mammalian 
ovary. The GSCs support oocyte and follicle production 
in the postnatal mammalian ovary. This new concept 
challenged the dogma of a fixed reserve of oocytes. 

Following the publication of this landmark article, 
Johnson et al[1] were confronted by criticism and skep-
ticism[16-20]. The main criticisms were related to the 
subjectivity of the scoring, the tissue fixation protocol, 
the mathematical model used to calculate the follicular 
dynamics, the toxicity of busulfan to follicles, the 
capacity of BrdU-MVH-double-positive cells for oocyte 
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renewal, and the migration of GSCs to form new 
follicles in wild-type ovaries in the grafting studies. 

Several groups criticized the methods used by Johnson 
et al[1]’s group. Moreover, some of them proposed 
alternative explanations for Johnson’s findings. First, 
the numbers of preantral and antral immature follicles 
reported as atretic by the Johnson et al[1]’s group group 
were very high and in contrast to previous studies[16]. 
Scoring atretic follicles represents a subjective and not 
reliable method for estimating the rates of follicular 
atresia[16,17]. Moreover, the morphological appearance 
of the follicles can be modified by the use of a harsh 
fixative[16,17]. Consequently, healthy and atretic 
immature follicles may have been misclassified in 
Johnson et al’s study, leading to an overestimation 
of the number of atretic immature follicles[17]. The 
mathematical model of the dynamics of follicle 
progression was also questioned by several authors. 
Johnson et al[1] were criticized for applying the rate of 
follicle disappearance from the CBA/Ca mouse strain, 
reported as a fast-depleting strain, in comparison to 
the C57Bl/6 strain[16]. To verify Johnson et al[1]’s results, 
Bristol-Gould et al[18] proposed examining whether the 
initial population of follicles was sufficient to support 
fertility in adulthood by using a mathematical model 
of the dynamics of follicle progression. These authors 
counted the follicles in each stage from postnatal 
day 6 through to 12 mo in mice. The dynamics of 
the follicle population were simulated according to 
two distinct models: a fixed pool model and a stem 
cell model in the mouse ovary. The fixed pool model 
accurately reflected the experimental decrease in 
follicle numbers and allowed the authors to refute the 
concept of GSC replenishment in the adult ovary[18]. John-
son’s assumption that busulfan was only toxic to GSCs 
and does not kill primordial follicles was questioned 
by two groups[16,17]. The loss of primordial follicles 
after busulfan treatment was considered to be a 
consequence of busulfan toxicity to primordial follicles 
and not due to the depletion of GSCs[17]. The evidence 

that BrdU and MVH double-positive cells in the epithelial 
layer of juvenile and young adult mouse ovaries 
represented functional GSCs was also challenged[16-20]. 
The critics of Johnson et al[1]’s group findings suggested 
some alternative explanations for the detection of 
these cells in the ovarian surface epithelium. They 
asserted that these putative GSCs could be germ cells 
migrating out of the ovary, as had been reported for 
these cells in the past[16,21]. Alternatively, these double-
labeled cells could be oocytes from primordial follicles, 
released by the ovary[16,20]. The grafting experiments 
were also subject to reinterpretation by opponents 
of the findings from the Johnson et al[1]’s group[16,20]. 
The plasticity of the mouse ovary has recently been 
demonstrated in experiments with chimeric ovaries[22]. 
In addition, the mouse ovarian tissue has been shown 
to reaggregate after injury[23]. The chimerism observed 
in the wild-type transplanted ovaries could result from 
the subsequent ovarian repair after the tissue trauma 
due to the transplantation rather than the generation 
of follicles de novo[16,20]. 

In response to the critics, in a new study, Tilly 
and his group  counted the numbers of atretic and 
non-atretic follicles in wild-type (WT) female mice and 
caspase-6 knockout female mice[24]. They observed that 
the number of primordial follicles in caspase-6 deficient 
young adult females was nearly double the number of 
primordial follicles in WT females. As no decrease in the 
number of atretic follicles was detected, the authors 
interpreted the increase in the primordial follicle pool 
between birth and adulthood in caspase-6 mutant 
females as a consequence of neo-folliculogenesis. 

Following this study, Skaznik-Wikiel et al[1]’s reinfor-
ced the validity of their findings and the concept of 
postnatal oocyte and follicle production in mammals[24]. 

Bone marrow as a source of GSCs  
In 2005, Johnson et al[25] proposed a new concept 
that further challenged the dogma of a fixed reserve 
of oocytes in the ovaries of postnatal females. They 
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  Ref. Main findings

  Johnson et al[1] Ovarian GSCs are observed within the ovarian surface epithelium and provide the adult mouse ovary with oocytes
  Johnson et al[25] GSCs are detected in mouse bone marrow and provide the postnatal mouse ovary with oocytes
  Kerr et al[14] The follicle numbers remain constant in ovaries of juvenile and early adult mice. Follicle renewal in postnatal and adult 

mouse ovaries is suggested
  Zou et al[29] Mouse ovarian GCS are isolated by immunoselection and characterized. Ovarian GCSs transplanted into ovaries of 

infertile mice undergo oogenesis and produce offspring
  Pacchiarotti et al[30] The adult mouse ovarian GSCs are isolated by FACS. Long-term expanded mouse ovarian GSCs maintain their 

characteristics, telomerase activity and express germ cell and stem cell markers
  White et al[7] The ovarian GSCs are isolated by FACS. Xenotransplantation of human GCSs into NOD-SCID mice leads to the formation 

of follicles containing oocytes
  Zhang et al[32] No mitotically active female GSCs exist in postnatal mouse ovaries
  Lei et al[33] The adult female mouse ovary does not contain active ovarian GSCs. The number of follicles produced during fetal 

development is sufficient to provide ovaries with oocyte in adult life
  Park et al[39] Existence of mitotically active germ cells in the postnatal mouse ovary demonstrated by a genetic approach coupled with a 

GSCs selection strategy

Table 1  Articles in the field of ovarian germline stem cells and oogenesis

GSCs: Germline stem cells; FACS: Fluorescence-activated cell sorting.
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in wild-type female recipients. The authors reported 
some cases of fertility restoration in women treated 
with high-dose chemotherapy followed by BM or PB 
transplantation. They also suggested that the BM-
derived stem cells involved in blood cell regeneration 
might be different from those that are able to promote 
de novo oogenesis, noting that the protocols are 
designed for the recovery of hematopoiesis and not 
oogenesis.

After the Johnson et al[25] publication, Eggan et al[27] 
performed parabiosis experiments with adult female 
mice to test the physiological relevance of BM-derived 
germ cells to contribute to oogenesis. To evaluate the 
capacity of circulating BM-derived GSCs to colonize 
ovaries, they examined ovulated oocytes from wild-
type and ubiquitously-expressing GFP female mice 
that were surgically joined in parabiotic pairs at the 
age of 4-8 wk. The parabiotic pairs showed a high level 
peripheral blood chimerism after 6-8 mo (65% GFP-
positive blood leukocytes in both mice). 

After superovulation, no chimerism of the oocytes 
was observed in the parabiotic mice. Moreover, occa-
sional GFP-positive cells associated with wild-type 
oocytes in the cumulus masses were positive for CD45, 
a pan-hematopoietic marker, demonstrating that 
these cells were circulating blood cells. The authors 
concluded that although these circulating cells could 
associate with ovulated oocytes in the ovary, they were 
not involved in the production of oocytes; the authors 
suggested that these hematopoietic cells may play an 
immune role in ovaries.  

In subsequent studies, the investigators treated 
wild-type mice with cyclophosphamide and busulfan 
1 d before joining them to GFP-expressing partners 
for a duration of 2 wk or 2 mo. In the treated and 
untreated control parabionts, PB and BM exhibited 
extensive leukocyte chimerism whereas no chimerism 
was observed in the oocytes. As indicated above, it 
was also shown that all GFP-positive cells associated 
with the ovulated cells were CD45 positive in both 
the treated and treated wild-type parabiotic mice. In 
addition, 2 mo after the chemoablative treatment, 
the ovaries still contained oocytes, revealing that the 
chemotherapy did not induce a complete depletion of 
oocytes in the treated parabionts. 

The authors then suggested that a direct intra-
venous transplantation of bone marrow cells might 
introduce cells into the circulation that might be able to 
contribute to oogenesis. To investigate this possibility, 
wild-type mice were treated by chemotherapy (cyclo-
phosphamide and busulfan) or sterilized by low-
dose total body irradiation. The mice were injected or 
transplanted with GFP-transgenic BM cells and were 
superovulated after 2 mo. Chimerism was observed in 
hematopoietic stem cells in both chemotherapy-treated 
and irradiated recipient mice. However, no GFP-positive 
oocytes were detected. Furthermore, a small number 
of oocytes was ovulated in chemotherapy-treated 
mice. No oocytes were detected in irradiated mice.

suggested that the bone marrow (BM) could be a 
source of germ cells for the postnatal mouse ovary. The 
authors demonstrated that BM cells isolated from adult 
female mice expressed octamer-binding transcription 
factor-4 (Oct-4), MVH, deleted in azoospermia-like, a 
germ cell-specific RNA-binding protein (Dazl), Stella 
(a maternal factor) and Fragilis (Ifitm3, interferon-
induced transmembrane protein 3), which are specific 
germline markers in mice. Transplantation of BM 
from adult wild-type female mice was performed with 
adult female mice treated with cyclophosphamide and 
busulfan to destroy the existing germ cell pools, and 
also into ataxia telangiectasia-mutated (Atm)-deficient 
female mice, which are unable to produce mature cells. 
After transplantation, oocyte-containing follicles at all 
stages of maturational development were detected in 
the ovaries of the chemotherapy-sterilized wild-type 
and Atm-mutant recipient mice. Moreover, oocytes 
and follicles were detected in the ovaries more than 11 
mo after the initial BM transplantation. Johnson et al[25] 
and his group concluded that the putative BM-derived 
germline cells were able to support long-term oocyte 
production. 

Consequently, they hypothesized that the BM-
derived germ cells could be transported by the periph-
eral blood (PB) to replenish the ovaries. Transplantation 
of PB mononuclear cells from transgenic female mice 
with GFP expression driven by an Oct-4 promoter was 
performed with chemotherapy-sterilized wild-type and 
atm-mutant female mice. GFP-positive oocytes were 
observed in the ovaries of the chemoablated adult 
wild-type and atm-mutant female mice. Therefore, PB 
was capable of generating oocytes. GSCs derived from 
the BM could circulate in the PB to colonize the ovaries. 
Johnson et al[25] and his group concluded that the BM 
could be considered as a potential source of germ cells 
that could support oocyte production in adulthood. 

The criticism of this new concept developed by 
Johnson et al[25]’s group was again severe[26,27]. A group 
of 16 authors published a short correspondence in which 
they questioned the Johnson et al[25] group’s findings. 
Their main criticisms concerned the expression of germ 
cells markers on BM and PB cells, the lack of a reciprocal 
experiment showing that mononuclear PB cells from 
wild-type mice could produce oocytes in Atm-Oct4/
GFP mutant mouse ovaries, the capacity of generated 
oocytes to sustain fertilization and subsequent embryo 
development, and the recurrent question of ovarian 
failure in women treated by chemotherapy and subse-
quent BM or PB transplantation. 

Subsequently, the Johnson et al[28] group published 
documented responses to the critics to clarify the 
misinterpretations of their studies. Among the different 
points discussed by Telfer et al[26], they defended 
the germline specificity of the markers used in their 
studies. They also clearly explained that GFP could 
not have been absorbed by oocytes from the blood 
because blood cells from GFP-transgenic males did 
not induce the generation of GFP-expressing oocytes 
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In conclusion, these findings demonstrated that 
PB and BM cells did not directly contribute to the 
formation of ovulated oocytes or their recovery after 
chemotherapy. Additionally, the BM-derived cells 
combined with oocytes belonged to the hematopoietic 
lineage, and oocytes in the adult mammalian ovaries 
could not be regenerated by circulating germ cell 
progenitors.

Isolation and characterization of GSCs from mouse and 
human ovarian tissues
Despite the controversies, the existence of GSCs 
was finally reported in 2009 by Zou et al[29]. They 
developed a strategy to isolate GSCs from neonatal 
and young adult mouse ovaries by immunoselection 
with the antigen MVH (Figure 1). The isolated MVH-
positive cells were morphologically similar to type A 
spermatogonial cells (SSCs). They possessed large 
cell bodies with little cytoplasm and large nuclei. 
These MVH-positive cells were present in the ovarian 
surface epithelium. The isolated MVH-positive cells 
were cultured on mitotically inactivated mouse emb-
ryonic fibroblast (MEF) cell feeders. The MVH-positive 
cells incorporated BrdU in culture, and the BrdU-
MVH double-positive cells were thus considered to 
be ovarian GSCs. After several passages, the MVH-

positive cells formed compact clusters with blurred 
cell boundaries that did not resemble embryonic stem 
(ES) cell colonies. The nGSCs from neonatal mice 
could be maintained in culture for more than 15 mo 
(68 passages) and maintained a morphology similar 
to that of freshly isolated nGSCs. GSC from adult 
(aGSCs) mice had been passaged in culture for more 
than 6 mo (more than 25 times). The cultured nGSCs 
and aGSCs expressed Oct-4, MVH, Dazl, Blimp-1 (a 
transcriptional repressor), Fragilis, Stella, and Rex-1 
(zfp-42, zinc-finger protein 42), which are markers 
of undifferentiated GSCs (Figure 1). The cells did 
not express c-Kit (stem cell factor receptor), Figla (a 
meiosis-specific marker), Sox-2 (a key transcription 
factor that regulates stemness), Nanog (a pluripotency 
sustaining factor), synaptonemal complex protein 1,2,3 
(Scp1-3), or zona pellucida protein 3 (ZP3), which 
are established markers of differentiated oocytes. 
This expression profile revealed that the cultured cells 
possessed undifferentiated GSC phenotypes. Moreover, 
the cultured cells showed high telomerase activity. 
After the transplantation of GFP-expressing GSCs into 
the ovaries of chemotherapy-ablated wild-type mice, 
the ovaries contained many GFP-positive oocytes at 
all stages of development. Moreover, the transplanted 
mice produced offspring after mating with a wild-type 
male. Eighty-two percent of nGSCs and 80% of aGSCs 
produced F1 offspring. The offspring were fertile and 
could also generate F2 GFP-transgenic progeny (Figure 
1).

Furthermore, Pacchiarotti et al[30] used fluorescence-
activated cell sorting (FACS) to isolate GSCs from the 
ovaries of a transgenic mouse model. In this model, 
GFP was expressed under the control of the Oct-4 
promoter. The GFP-Oct-4-positive isolated cells were 
expanded on mouse MEFs for more than 1 year. 
GFP-Oct-4-positive cells formed round, flat colonies. 
These colonies maintained their telomerase activity 
and normal karyotype after 20 passages. The cells 
expressed germ cell and stem cell markers, such as 
germ cell nuclear antigen, c-kit, Oct-4, Nanog and 
GFR-α1 (the receptor for GDNF), and they possessed 
a normal karyotype. In the presence of growth factors, 
these GSC cells formed embryoid bodies (EB) and 
expressed specific markers for the three germ layers. 
In the absence of growth factors, EBs produced 
oocyte-like cells. The authors’ results thereby indicated 
the existence of GSCs in the postnatal mouse ovary. 

In a recent study published in Nature Medicine, 
White et al[7] reported the isolation and characterization 
of ovarian germ stem cells from mouse and human 
ovarian tissue. GSCs were isolated and purified by 
FACS using the Ddx4 protein. Isolated mouse and 
human OSCs express high levels of Prdm1 (PR domain 
containing 1 with ZNF domain, referred to as Blimp1), 
Dppa3 (developmental pluripotency-associated 3, 
referred to as Stella), and Ifitm3, which identify 
primitive germ cell lines in mammals. Moreover, mouse 
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Figure 1  Schematic diagram of isolation and differantiation of ovarian germ 
stem cells. DDX4: DEAD box polypeptide 4; FACS: Fluorescence activated cell 
sorting; MEF: Mouse embryonic fibroblast; SCP 1-3: Synaptonemal complex 
protein 1,2,3; ZP3: Zona pellucida protein 3. 
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and human OSCs express high levels of the catalytic 
subunit of telomerase (Tert), a feature of pluripotent 
stem cells and germ cells. The Ddx4-positive mouse 
and human ovarian GSCs were maintained on MEF-
free cultures. After 10-12 and 4-8 wk of culture 
respectively, the mouse and human ovarian GSCs 
formed actively dividing germ cell colonies. Gene 
expression analysis of cultured cells confirmed the 
maintenance of early germ line markers. Moreover, 
mouse and human ovarian GSC cells cultured in vitro 
spontaneously underwent oogenesis 24-48 and 72 h 
after each passage, respectively. Ploidy analysis of the 
cultured mouse and human GSCs detected 4n, 2n, and 
1n populations of cells. These 1n cells were purported 
to be haploid germ cells. 

Transplantation of GFP-expressing mouse ovarian 
GSCs into ovaries of non-chemotherapy-conditioned 
wild-type mice resulted in the formation of developing 
follicles containing GFP-positive oocytes. In vitro 
fertilization of the GFP-expressing oocytes led to 
the formation of embryos expressing GFP. In co-
cultures of human GFP-transduced ovarian GSCs with 
adult ovarian cortical tissue, GFP-positive oocytes 
were found to be enclosed by GFP-negative somatic 
granulosa cells; these were present in tightly compact 
structures that resembled follicles within 24 h after 
seeding. GFP-expressing human GSCs injected into 
fragments of human adult ovarian cortical tissues were 
also transplanted into NOD-SCID female mice. Human 
ovarian grafts contained primordial and primary folli-
cles with GFP-negative oocytes and also immature 
follicles containing GFP-positive oocytes. 

After the publication of this new study, Oatley and 
Hunt published a brief commentary to raise some 
questions regarding these latest findings[31]. They 
questioned whether the purported GSCs represented 
true stem cells. Oatley and Hunt also questioned 
the increase in haploid cells, indicating that oocytes 
completed both meiotic divisions in vitro and proposed 
that the oocytes underwent an abnormal maturation 
that does not occur in vivo. They also criticized the lack 
of studies on the normalcy of embryos derived from 
GFP-positive GSCs, arguing that the developmental 
potential and the genetic quality of the embryos 
needed to be tested.

Latest developments in the area of GSCs 
After the publication of the above-mentioned stu-
dies, two different groups presented contradictory 
results[32,33]. These investigators refuted the existence 
of GSCs in the adult ovary and provided evidence 
supporting the dogma of a fixed pool of oocytes after 
birth. 

In 2012, Zhang et al[32] claimed that no mitotically 
active female germline progenitors existed in postnatal 
mouse ovaries. In their study, they challenged the 
existence of ovarian GSCs using a genetic approach. 
They developed a multiple fluorescent Rosa26rbw/

+;Ddx4-Cre germline reporter mouse model to 
trace the development of Ddx4-expressing ovarian 
cells in vitro and in vivo. This model expresses GFP 
ubiquitously. The Ddx4-expressing germline cells 
and the non-expressing Ddx4 somatic cells can be 
recognized by a difference in color. The authors tested 
the ability of adult mouse ovaries to support the 
formation of new follicles when provided with female 
primordial germ cells. Transplantation of enhanced GFP 
(EGFP)-expressing fetal ovarian cells into adult wild-
type female mice led to the formation of fluorescent 
follicles at different stages of development in the 
cortex and the medulla of the recipient ovaries. Conse-
quently, the adult mouse ovaries supported de novo 
follicular formation if progenitor cells that were able to 
differentiate into oocytes were provided. In addition, 
the adult mouse ovary cells did not transform into 
oocytes or granulosa cells, and no chimeric follicles 
were observed. Moreover, when the EGFP-expressing 
fetal ovarian cells were transplanted into the ovaries 
of chemotherapy-sterilized WT adult female mice, only 
newly formed EGFP-positive follicles were detected 
in the ovaries, which suggests that postnatal mouse 
ovaries are able to sustain de novo follicle formation 
when provided with exogenous germline progenitors. 

The ovaries of Rosa26rbw/+;Ddx4 Cre postnatal 
mice were dissociated, and single cells were cultured 
to determine the proliferation capacity of Dxd4-
expressing cells (Red FP positive cells, RFP). 

None of the RFP-positive ovarian cells underwent 
any cell divisions, and they rapidly died off. In long-
term cultures on feeders, RFP-positive ovarian cells did 
not form any colonies. Some Dxd-4-negative ovarian 
cells formed colonies of cells that were passaged 
stably, but the cells did not express germ cell markers. 
These cells did not participate in follicle formation after 
injection into adult wild-type ovaries. The authors 
concluded that these clonal cells presented a stem cell-
like morphology, but they were not functional female 
germline progenitors. 

Recently, another group published a study suppor-
ting the dogma of a fixed pool of oocytes after birth[33]. 
By using a sensitive lineage-labeling system created 
in transgenic mice (Rosa26-YFP mice), Lei and Spradl-
ing affirmed that the primordial follicles generated 
during fetal life in mice are sufficient to support adult 
oogenesis. Moreover, female mouse ovaries do not 
contain active GSCs, and they do not produce new 
oocytes in vivo[33]. 

In 2013, Woods et al[34] and his group, published 
a review on ovarian GSCs that took into consideration 
two commentaries[31,35] released after the publication 
of the studies by White et al[7] and by Zhang et al[32]. 
Woods et al[34] responded to the comments, analyzed 
the findings of the Zhang et al[32] study, and, more 
importantly, defended their point of view on the 
existence of ovarian GSCs and oogenesis in postnatal 
life in mammals. 
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Woods et al[34] considered their strategy for the 
purification of mammalian GSCs from the postnatal 
ovary to be a validated and reliable method. The 
protocol using an antibody against the extracellular 
epitope of the Ddx4 protein exposed on the surface 
of the plasma membrane of GSCs was also confirmed 
to isolate these cells from oocytes, which possess 
only cytoplasmic Ddx4. To respond to Oatley et al[31] 
about their doubts about the validity of the stem 
cell properties of the ovarian GSCs, Woods et al[34] 
explained that the GSCs expressed the same markers 
as primitive germ cells before and after culture, as 
described in their publication[7]. In cultures lacking 
somatic granulosa cells, GSCs-derived oocytes can exit 
meiotic arrest and complete both meiotic divisions; 
thereafter, they exhibit a haploid status, similar to 
spontaneous oocyte activation in vivo when the 
regulation by somatic granulosa cells is disrupted by 
ovulation[36]. With the support of data obtained from 
several groups[29,30] Woods et al[34] claimed that GSCs 
have the capacity to differentiate into fully mature eggs 
that can be fertilized to generate normal and viable 
embryos and offspring in response to the criticisms 
expressed by Oatley and Hunt.

In the second part of their article, Woods et al[34]  
and his coauthors also questioned the results reported 
by Zhang et al’s group[32]. They affirmed that the 
transgenic mouse model used by Zhang et al[32] poss-
essed a permanent genetic alteration in cells that have 
activated the Ddx4 gene promotor region. They stated 
that the fluorescent recombinant reporter gene would 
be expressed even if the endogenous Ddx4 gene is 
not active anymore. Zhang et al[32] did not isolate 
GSCs from the ovaries of their recombinant mice using 
the methods reported by other groups because they 
refuted the existence of a Ddx4 protein exposed on 
the extracellular surface of the plasma membrane. In 
experiments involving the transplantation of dissociated 
fetal ovarian cells into wild-type adult mice, Zhang et 
al[32] did not separate the fractions of purified germ line 
progenitors (primordial germ cells) and fetal follicular 
somatic cell progenitors to observe neofolliculogenesis 
in the adult ovary. A fetal somatic cell population or a 
fetal germ population transplanted separately could 
stimulate the adult ovary to recruit its own germ 
cell or somatic cell progenitors to sustain new follicle 
formation. Morphologic and genetic profiles of the RFP-
positive postnatal ovarian observed in cultures were 
also questioned. The size of the Ddx4-expressing cells 
was significantly larger than that of the GSCs (5-8 mm 
in diameter). The method of selecting recombinant 
cells from mouse ovaries was discussed because Zhang 
et al[32] recovered the cells by the filtration of crude 
extracts of mice ovary with a size cutoff of 40 µm. 
Small immature oocytes present in postnatal mouse 
ovaries would not have been retained in the filter. The 
Ddx4-expressing cells observed in this study should 
have been considered as oocytes rather than putative 

GSCs, explaining their incapacity to proliferate in 
cultures. Identification of the Ddx4-expressing cells 
needed to be addressed by polymerase chain reaction 
(PCR)-based analysis of the gene expression patterns 
of GSCs and oocytes, which would have certainly given 
positive results for oocyte-specific genes. 

Finally, in the discussion of their article, Tilly et al[34] 
compared their findings on ovarian stem cells with 
the observations established for the germinal stem 
cells in females of non-mammalian species, such as 
Drosophila and in males of mammalian species, such 
as mice. Although the reproductive period in women 
has a limited duration of 3 decades, Tilly argued that 
the presence of germinal stem cells in the ovaries 
should be accepted as it is in Drosophila, in which the 
GSCs persist after the failure of reproductive life[37], 
or in male mice, in which the presence of germinal 
spermatogonial stem cells has been detected after 
spermatogenic failure[38]. The authors defended the 
idea that mammalian females should not be excluded 
from that standard. 

Following the puzzling questions about the Zhang 
et al[32] study, Park et al[39] and his group decided 
to carry on experiments using transgenic Ddx4-Cre 
mice crossed with mice carrying a Rosa26tdTm/tdTm 

fluorescent gene reporter to identify GSCs in adult 
mouse ovaries[39]. In experiments performed according 
to the protocol used in the study by Zhang et al[32], 
Park et al[39] confirmed that cells collected from crudely 
dispersed ovaries from recombined mice at postnatal 
day 8 and selected by filtration were immature 
oocytes based on PCR analysis of oocyte-specific 
markers. Moreover, the tdTM/Ddx4 double-positive 
cell population purified by FACS from dissociated 
Ddx4-Cre;Rosa26tdTm/+ ovaries expressed the primitive 
germ cell markers Prdm1, Dppa3, Ifitm3, Tert, and 
Dazl but did not express the oocyte-specific markers 
newborn ovary homeobox (Nobox ), ZP3, and growth 
differentiation factor 9 (Gdf9). In addition, Ddx4 
mRNA was detected in freshly purified tdTM/Ddx4 
double-positive cells, although it was present at a low 
level. Cultures of the double-positive cells resulted 
fluorescent germ cell colonies that were mitotically 
active. In this study, Park et al[39] demonstrated that a 
genetic approach associated with a FACS cell selection 
based on extracellular Ddx4 was a reliable and 
pertinent strategy for the isolation of GSCs from the 
adult mouse ovary. 

From the studies described above, we can infer 
that the presence of GSCs in the adult ovary remains 
a subject of intense debate and controversy, and the 
field of ovarian biology is undergoing profound changes. 
Progress in ovarian biology has also been made since the 
discovery of ovarian CSC in 2005[8]. The characterization 
of specific ovarian CSCs based on markers of stemness 
has also generated intense research and discussion. 
In the following section, we will focus on the charac-
teristics of ovarian CSCs and their relationship with 
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GSCs.

OVARIAN CANCER STEM CELLS: IS 
THERE ANY RELATIONSHIP BETWEEN 
GSCS AND CANCER STEM CELLS?
To date, the question concerning the cellular origin of 
cancer is still debated. Two major hypotheses have 
been proposed regarding the formation of cancer: (1) 
Clonal evolution, or a stochastic model; and (2) a CSC 
model[40]. In the first model, every cell within a tumor 
mass has the equivalent self-renewal capacity and 
multilineage potency to drive tumor development. In 
the CSC model, cancer originates from a small rare 
population of undifferentiated stem cells with self-
renewal capacity. Given this theory, it is not surprising 
that the CSC hypothesis has gained considerable 
attention in recent years. 

As it is known, CSCs share similar biological pro-
perties with normal somatic stem cells, including 
an extensive self-renewal capacity, expression of 
specific stem cell surface markers and genes and 
common signaling pathways. However, CSCs differ 
significantly from normal stem cells in their drug resis-
tance and metastatic activities. Therefore, recent 
developments in the field of stem cell biology have led 
to the reconsideration of the definition of cancer. Many 
researchers suggest that cancer is a stem cell disease 
and focus on the CSCs theory to understand which 
cancer cells are responsible for the development of 
tumors, chemoresistance and high rates of recurrence.

Epithelial ovarian cancer (EOC) is the most lethal 
of all gynecological malignancies worldwide and the 
seventh leading cause of cancer-related death[41]. It is 
generally often diagnosed at late stages of the disease. 
Greater than 90% of EOCs arise from the ovarian 
surface epithelium (OSC). The molecular and cellular 
mechanisms underlying EOC remain poorly understood 
because of the complexity and heterogeneity of the 
tumor development process[42]. 

Accumulating experimental data have demonstrated 
that EOC is a stem cell-driven disease[43,44]. Over the last 
few years, several studies have focused on the isolation, 
identification, and characterization of stem cells from 
ovarian cancer cell lines, primary tumor tissues and 
ascites from cancer patients. Although no universal 

single marker has been found to isolate ovarian CSCs, 
several putative markers have been identified by 
several groups (Table 2). However, the isolation and 
characterization of CSCs have been the subject of 
extensive studies and the experimental strategies are 
still a matter of debate. 

The first evidence for the existence of a CSC popu-
lation in EOC patients was reported by Bapat et al[8] The 
authors isolated a single tumorigenic clone from the 
ascites fluid of an ovarian cancer patient and defined 
the characteristics of this cell clone, which was identified 
as a stem/progenitor cell. They suggested that ovarian 
cancer may be the result of transformation and 
dysfunction of stem cells in the ovary. 

Subsequently, Szotek et al[9] identified stem cell-
like cells, or side population (SP) cells, in the murine 
transgenic epithelial ovarian cancer cell line MOVCAR-7, 
the human ovarian cancer cell lines OVCAR 3, SKOV-3 
and IGROV-1 and ascites from a small group of ovarian 
cancer patients using the dye efflux marker SP. Then, 
they went on to characterize the cell surface markers 
of these cells by flow cytometry. The authors found 
that c-kit/117 and CD44 were expressed in the mouse 
SP cells. However, human SP cells were not further 
functionally characterized in this study. 

In 2008, Zhang et al[10] isolated and identified a 
self-renewing subpopulation of cancer-initiating cells  
from human ovarian primary tumor tissues for the 
first time. They showed that these cells expressed 
various stem cell markers, including stem cell factor, 
Nanog, ATP Binding Cassette G-member protein 
(ABCG2), and Oct-4. These cells also demonstrated 
chemoresistance to cancer therapeutics and were able 
to initiate tumors in mice, as determined by evaluating 
the CD44+/CD117+ phenotype. Subsequent studies 
have demonstrated that CD133(+) cells have higher 
clonogenic and proliferative potential than CD133(-) 
cells in primary ovarian tumors[45,46]. This result is not 
consistent with a recently published study indicating 
the CD133 expression in tumorigenic ovarian cancer 
cells is heterogeneous[47]. Similarly, contradictory 
results have been obtained using CD24 for the chara-
cterization of ovarian CSCs[13,48].

Although the origin of CSCs has been debated for 
a long time, a common consensus on this issue has 
not been reached. While some authors support the 
hypothesis that CSCs originate from normal stem cells 
undergoing malignant transformation[49,50], in vitro 
cancer models have shown that CSCs do not arise from 
normal stem cells[51]. Although several putative ovarian 
CSC markers have been identified, these markers can 
also be found on normal stem cells[52]. To understand 
the relationship between CSCs and normal stem 
cells, the gene expression profiles in human ovarian 
stem cells and ovarian cancer was analyzed, and the 
results showed that the expression of some genes is 
significantly reduced in malignant ovarian tumors but 
relatively unchanged in benign tumors compared to 
normal ovary[53]. Surprisingly, in a more recent study, 
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  Marker Ref.

  Side population Szotek et al[9]

  CD44/CD117 Zhang et al[10]

  Natriureticpeptide receptor A Kong et al[11]

  CD133 Ferradina et al[45]

  CD24 Gao et al[13]

  DEAD box polypeptide 4 Hashimoto et al[12] 

Table 2  Markers of ovarian cancer stem cells
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a link between normal stem cells and CSCs in ovarian 
cancer was established[54]. The authors analyzed the 
expression patterns of the ovarian GSC marker DDX4 
and the ovarian CSC marker CD133 in ovarian cancers 
using tissue microarrays. They found that the levels of 
both DDX4 and CD133 were significantly increased in 
ovarian cancer, and the expression pattern of DDX4 was 
similar to that of CD133. Even more interesting, they 
showed that almost all CD133-positive cancer cells also 
expressed DDX4 whereas the CD133-negative cells did 
not. 

The genetic program regulating the self-renewal 
and differentiation of CSCs plays a key role in cancer 
initiation, invasion and migration. A great body of 
evidence suggests that epigenetic changes and chrom-
osomal alterations are responsible for tumor develo-
pment including colorectal[55], breast[56], prostate[57], 
and hepatocellular carcinoma[58]. Epigenetic changes 
include altered DNA methylation, chromatin remodeling 
and non-coding small RNA (miRNA) expression. 
Recent developments in the understanding of the role 
of epigenetic mechanisms have shed new light on 
carcinogenesis. Taken together, similar to other cancers, 
determination of the epigenetic mechanisms involved 
in ovarian cancer opens promising new therapeutic 
avenues for treatment. 

It has been emphasized that DNA methylation might 
play a seminal role in tumor formation, development 
and metastasis. DNA methylation of the cytosine 
residues of CG (also designated as CpG) dinucleotides 
is the most well-known epigenetic mechanism. Long-
term silencing of genes in ES cells is under the control 
of the polycomb complex of proteins (PcG), and recent 
findings have shown that stem cell PcG targets are up 
to 20-fold more likely to have cancer-specific promoter 
methylation than nontargets, supporting a stem cell 
origin of cancer, including ovarian cancer[59,60]. Moreover, 
Baba et al[52] demonstrated that CD133 expression, 
which is a somatic stem cell marker, in ovarian cancer 
is directly controlled by both histone modifications and 
promoter methylation. Additionally, specific methylated 
DNA markers can be detected in the serum, plasma 
and peritoneal fluid of ovarian cancer patients[61]. 

MicroRNAs (miRNAs) are small noncoding RNAs 
that control gene expression post-transcriptionally and 
play pivotal roles in stem cell biology. Interestingly, 
emerging evidence suggests that some miRNAs are 
differentially expressed in CSCs and somatic cells and 
even in cancer cells, which indicates that these miRNAs 
may be involved in the regulation of cancer-related 
processes[62-65] Recently, the involvement of miRNAs 
in the tumorigenesis, metastasis and drug resistance 
of EOC has been increasingly reported; therefore, it 
has been proposed that miRNAs could present a novel 
therapeutic strategy for the management of ovarian 
cancer. 

Guo et al[65] showed that miR-9 was downregulated 
in human ovarian cancer compared to normal ovary, 
and overexpression of miR-9 repressed cell growth. 

Li et al[66] examined the role of miR-27a in the develo-
pment of drug resistance in ovarian cancer cells, and 
they found that inhibition of miR-27a decreased the 
expression levels of the multi drug resistance 1 (MDR1) 
gene and increased paclitaxel-induced apoptosis. 
Another recent study reported aberrant miRNA 
expression in ovarian cancers compared to normal 
ovary. Iorio et al[67] reported the overexpression of miR-
200a, miR-141, miR-200c, and miR-200b, as well as the 
downregulation of miR-199a, miR-140, miR-145, and 
miR-125b1, in ovarian cancer cell lines. 

In light of these findings, it is clear that the CSCs 
play an important role in the development and 
maintenance of EOC, and epigenetic changes are 
responsible for the behavior of cancer progenitor cells 
and their progeny. 

CONCLUSION AND FUTURE 
PERSPECTIVE
The field of reproductive biology is still divided over 
the possibility of neo-oogenesis in the mammalian 
adult ovary between the supporters of this new 
theory[1,7,29,30] and the opponents who subscribe to 
the long-held dogma of a fixed number of follicles at 
birth[32,33,68]. In addition, a recurrent question concerns 
the physiological role of GSCs in the adult mammalian 
ovary. Nonetheless, the isolation and characterization 
of GSCs from human ovaries open new perspectives 
to design protocols for producing mature, competent 
oocytes in vitro for clinical application in assisted 
reproduction techniques (ART).

During the past years, attempts to generate 
competent oocytes from ES cells and induced pluri-
potent stem cells have failed to meet expectations, 
and fertilization of ESC-derived oocytes remains to 
be demonstrated[69,70]. Recently, stem cells derived 
from newborn mouse skin have been shown to 
produce oocytes when cultured in an appropriate 
environment, but these oocytes were not able to 
undergo complete maturation[71]. Therefore, as a pure 
stem cell population that can be easily isolated, female 
GSCs provide a model to explore postnatal oogenesis 
in mammals. In addition, these cells may plausibly 
contribute to the preservation of sterility in women.

Many unanswered questions in the development of 
oocytes from GSCs remain to be addressed. Cultures 
of GSCs facilitate the characterization of factors that 
contribute to the development and regulation of 
oocytes[72]. Importantly, the epigenetic program and 
modifications involved in de novo oocyte formation 
in the adult ovary need to be further established[73].
A better understanding of these mechanisms of 
regulation may provide a means to stimulate the 
generation of oocytes in adult human ovaries in vivo. 

The question of menopause also remains to be 
addressed. If ovaries can generate new oocytes during 
adulthood, it can therefore be suggested that the 
process of menopause may be the consequence of 
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GCS and ovarian somatic cell aging and not the result 
of depletion of the oocyte pool. Aging GSCs may arrest 
to differentiate into oocytes, and/or the environment 
of the GCS niche may fail to sustain oocyte generation. 
Therefore, the issue of menopause occurrence is 
not incompatible with the concept of postnatal neo-
oogenesis. 

Translational applications of germinal stem cell-
based strategies in the field of infertility treatment in 
women may be achievable in the near future. Before 
the use of treatments that negatively impact fertility in 
women, samples taken from the ovaries could facilitate 
the isolation of GSCs for cryopreservation and/or for 
ex vivo expansion and subsequent differentiation 
into oocytes. Cultured GSCs could be transferred 
back into the ovaries after treatment to support neo-
folliculogenesis, or GSC-derived cultured oocytes could 
be fertilized in a program of in vitro fertilization[74].

Although these potential clinical applications give 
hope for the future, we are a considerable way from 
using female GSCs in ART to treat infertility in women.  

OC is the most lethal of all gynecological malig-
nancies worldwide. To better understand cancers, 
researchers are now focusing on identifying the rela-
tionship between CSCs and normal stem cells. While 
both stem cell types have the ability to self-renew, 
common signaling pathways and similar gene expre-
ssion profiles, these important properties make it 
difficult to isolate and distinguish these cells from each 
other. Additionally, the field faces major challenges, 
including the absence of specific cell surface markers, 
inadequate isolation and differentiation protocols, 
the paucity of genome-wide studies, and also ethical 
restrictions. 

Taken together, it remains uncertain which ovarian 
cancer phenotype follows the stem cell model due 
to the complexity and heterogeneity of EOC. On the 
other hand, the initiation and progression of EOC 
is characterized by the activation of oncogenes and 
the switching of tumor suppressor gene expression 
by epigenetic mechanisms[75-77]. More importantly, 
there is evidence on the epigenetic regulation of 
pluripotency transcription factors, signaling mechanisms 
and self-renewal pathways that play a critical role 
in the transformation of GSCs into CSCs in EOC. 
This knowledge provides us with not only a better 
understanding of how cancer cells may arise from 
germinal stem cells, but it also contributes to the 
development of new technologies or strategies in the 
management of EOC.

Over the last several years, a great body of evidence 
supports the idea that ovarian CSCs are responsible 
for metastasis and drug resistance after chemotherapy 
in this life-threatening disease. The lack of markers 
for early detection is the main obstacle to effective 
treatment strategies. A better understanding of the 
molecular pathogenesis of EOC is needed to develop 
new drug therapies and/or diagnostic biomarkers.
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Abstract
Stem cell therapy is a promising approach to clinical 
healing in several diseases. A great variety of tissues 
(bone marrow, adipose tissue, and placenta) are 

potentially sources of stem cells. Placenta-derived 
stem cells (p-SCs) are in between embryonic and 
mesenchymal stem cells, sharing characteristics with 
both, such as non-carcinogenic status and property to 
differentiate in all embryonic germ layers. Moreover, 
their use is not ethically restricted as fetal membranes 
are considered medical waste after birth. In this context, 
the present review will be focused on the biological 
properties, culture and potential cell therapy uses 
of placental-derived stem cells. Immunophenotype 
characterization, mainly for surface marker expression, 
and basic principles of p-SC isolation and culture 
(mechanical separation or enzymatic digestion of 
the tissues, the most used culture media, cell plating 
conditions) will be presented. In addition, some 
preclinical studies that were performed in different 
medical areas will be cited, focusing on neurological, 
liver, pancreatic, heart, muscle, pulmonary, and bone 
diseases and also in tissue engineering field. Finally, 
some challenges for stem cell therapy applications will 
be highlighted. The understanding of the mechanisms 
involved in the p-SCs differentiation and the achievement 
of pure cell populations (after differentiation) are 
key points that must be clarified before bringing the 
preclinical studies, performed at the bench, to the 
medical practice.

Key words: Fetal membrane; Placenta; Embryonic stem 
cells; Mesenchymal stem cells; Cell therapy

© The Author(s) 2015. Published by Baishideng Publishing 
Group Inc. All rights reserved.

Core tip: Fetal membranes are a source of stem cells, 
namely placenta-derived stem cells (p-SCs), which 
are in between embryonic and mesenchymal stem 
cells sharing characteristics with both, such as the 
capacity to differentiate in all germ layers and the 
dearth of tumorogenicity. Many preclinical studies 
have been investigated the potential of p-SC use in 
different medical areas, such as neurology, cardiology, 

769 May 26, 2015|Volume 7|Issue 4|WJSC|www.wjgnet.com

MINIREVIEWS

Submit a Manuscript: http://www.wjgnet.com/esps/
Help Desk: http://www.wjgnet.com/esps/helpdesk.aspx
DOI: 10.4252/wjsc.v7.i4.769

World J Stem Cells  2015 May 26; 7(4): 769-775
ISSN 1948-0210 (online)

© 2015 Baishideng Publishing Group Inc. All rights reserved.

Placental-derived stem cells: Culture, differentiation and 
challenges

Maira S Oliveira, João B Barreto-Filho



orthopedics, gastroenterology, and tissue engineering, 
showing promising results, but also some drawbacks. 
The present review will focus on different aspects of 
biological properties and potential clinical uses of p-SCs. 

Oliveira MS, Barreto-Filho JB. Placental-derived stem cells: 
Culture, differentiation and challenges. World J Stem Cells 
2015; 7(4): 769-775  Available from: URL: http://www.
wjgnet.com/1948-0210/full/v7/i4/769.htm  DOI: http://dx.doi.
org/10.4252/wjsc.v7.i4.769

INTRODUCTION
Stem cell therapy is a promising approach to clinical 
healing in several diseases. Neurology[1], orthopedics[2] 
and cardiology[3] are just a few medical branches in 
which the benefits of stem cell therapy have been 
mentioned. The prolific capacity of stem cells (either 
embryonic or mesenchymal), taken together with the 
ability to generate different cell lineages and its self-
renewal property are the major features of these cells 
that allow their use and manipulation in biology and 
medicine[4,5]. A great variety of tissues (bone marrow, 
adipose tissue, and endometrium) are potentially 
sources of stem cells and among them the placenta 
is a transient organ from which it is possible to obtain 
mesenchymal stem cells[5].

The term placenta constitutes a very reliable rich 
source of fetal mesenchymal stem cells[6-9]. These cells 
are capable of differentiating into multiple different cell 
types and have immunological properties that suggest 
their use in an allogenic transplantation setting[10-12]. 

In this respect, it is important to remember that 
placenta has a fundamental role in maintaining fetoma-
ternal tolerance and, therefore, the immunomodulatory 
properties of these cells have been investigated with 
the aim of exploring their applicability in cell therapy-
based treatments[11-13]. Their recovery does not involve 
any invasive procedures for the donor and their use 
does not create any ethical issue. In addition, the 
fact that placenta is generally discarded after birth 
as medical waste and is available in large supplies, 
makes placental-derived stem cells (p-SCs) excellent 
candidates for cell therapy. The current review is 
focused on the biological properties, culture and 
potential cell therapy applications of p-SCs. 

P-SC
Biological properties
Animal development is initiated by fertilization of 
the egg with sperm, which is immediately followed 
by mitotic cell divisions, or cleavages, to generate 
blastomeres. For eutherians, such as the mouse 
and human, the first cell differentiation event is 
the establishment of two distinct cell lineages: the 
trophectoderm (TE) and the inner cell mass (ICM)[14]. 

TE engages in implantation by directly interacting with 
the mother’s uterus, and gives rise to tissues in the 
placenta. It is only after implantation that the three 
germ layers form from the ICM, which ultimately gen-
erates all the tissues in the animal body[14]. Pluripo-
tency is a characteristic of the ICM and is related 
to the expression of octamer binding transcription 
factor 4 (Oct4). Oct4 is essential to prevent ICM from 
diverting towards the TE lineage. Another important 
transcription factor, caudal type homeobox 2 (Cdx2), is 
specifically expressed in TE. It was demonstrated that 
Cdx2 is necessary to repress the expression of Oct4 
in TE[15]. Moreover, Cdx2 null embryos exhibit high 
incidence of apoptosis[16]. 

Embryonic stem cells (ESCs), which are ICM-
derived cell lines, despite of showing pluripotency 
and self-renewal capacity, have ethical concerns 
restraints[4], because of their tumorigenic potential. 
On the other hand, mesenchymal stem cells (MSCs) 
are not subject of these ethical restraints, but show 
multipotency, that means a lower capacity to multiply 
and originate different cell lineages[5]. Surrogate 
systems to study early placental development in the 
human species have been tried using human and 
mouse embryonic stem cells under bone morphogenetic 
protein (BMP) 2/4 stimulus to trophoblast differentiation 
and spontaneous formation of embryoid bodies[17,18]. 
MSCs are found in a lot of tissues, like the dentary 
tissue, adipocytes and bone marrow which culture 
provide inadequate cell numbers and have limitations 
like donor site morbidity and the need of aspiration to 
collect them, besides being a well-established culture. 
Attempts to overcome these problems were tried 
with alternative sources of MSCs and cells isolated 
from reproductive organs showed to be very useful. 
Thus, ovaries, uterus (endometrium) and specially 
the placenta[19-21], because of its discarded as medical 
waste after delivery, are potential sources of MSCs that 
can be used without ethical restrictions. 

The p-SCs, which are TE-derived cell lines, gather 
some features from adult and embryo cells: possible 
differentiation to originate each of germinative cells 
and absence of carcinogenicity[22-27]. In the First 
International Workshop on p-SCs terminologies stan-
dardization have been made[28], and according to 
the cell origin we should have aminiotic epithelial or 
mesenchymal stromal cells, chorionic mesenchymal 
stromal or trophoblastic cells. In the present review it 
will be considered p-SCs in general, referring to any 
kind of them.

Cellular characterization
Immunophenotype characterization is the most 
common procedure used to distinguish different cell 
clusters, by means of surface marker expression, and 
some essays employed are immunolabeling[29] and 
flow cytometry[30]. The p-SCs show profiles merged 
with those found in embryonic and mesenchymal stem 
cells[26]. None of these three cell lineages (embryonic, 
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mesenchymal, and p-SC as well) express the clusters 
of differentiation (CD) 11b, 34, and 45. Regarding CD 
expression, p-SCs are positive for 29, 73 and 166, 
and negative for 11b, 31, 34, 45. In addition, they are 
positive for human leucocyte antigen (HLA) A, B, C 
and negative for HLA-DR, DP, DQ[26,31,32].

The p-SCs fulfill the essential characteristics 
to categorize MSC[33] and are capable to originate 
ectodermal, endodermal, and mesodermal (adipocytes, 
osteocytes, and chondrocytes) lineages in vitro[25,31]. 
Moreover, p-SCs express surface cell markers only 
expressed by embryo-derived cells, such as Oct-4, SRY 
(sex determining region Y)-box 2 (Sox 2), Nanog, stage-
specific embryonic antigen (SSEA)-1, SSEA-4, germ cell 
tumor marker (GCTM)-2, Tra-1-60, and Tra-1-80[22-24]. 
High levels of Oct-4, Sox 2 and Nanog were detected 
in p-SCs using q-PCR method[25]. Musashi-1, vimentin, 
polysialylated-neural cell adhesion molecule, and Nestin 
were observed in cells from amniotic membrane, unlike 
other MSCs, when evaluated by immunofluorescence 
technique[34].

Cell culture
Many different protocols for isolation of fetal mem-
branes-derived stem cells are found in literature. For 
human beings and large animals, a separation of 
amniotic epithelial cells[23,35], amniotic mesenchymal 
cells[7] and chorionic mesenchymal cells[8] are possible, 
meanwhile for small animals, such as rodents, such 
characterization is not possible[31]. 

Fetal membranes are submitted to enzymatic 
disaggregation following different protocols, which differ 
among themselves particularly regarding enzymatic 
digestion and duration[7,8,23,31,35]. In every protocol, 
the cells are incubated with trypsin-EDTA or other 
enzymes, at 37 ℃, and then, are harvested through 
physical methods. Then cells are plated onto noncoated 
tissue culture dishes or flasks. Serum, like fetal bovine 
serum (FBS) ranging from 10% to 20%, must be 
added to the media. The most commonly used media 
are roswell park memorial institute (RPMI)-1640, 
Dulbecco’s modified eagle medium (DMEM), Minimum 
essential medium (EMEM), and DMEM/F12. Also, media 
should be enriched with nonessential amino acids, 
L-glutamine, β-mercaptoethanol, sodium pyruvate, 
and antibiotics. Cells are raised at controlled conditions 
of air atmosphere and temperature. For maintenance 
of the cell culture, p-SCs must have their medium 
(such as DMEM or RPMI) changed every other day. 
To passage the cells, it should be used trypsin, and 
the cells are generally plated into T75 tissue culture 
flasks. Such culturing conditions are very similar with 
MSCs. On the other hand, ESCs need to be plated into 
mouse embryonic fibroblasts - MEFs - feeder layer 
or MatrigelTM and the medium (such as DMEM-F12 
or mTeSRTM-1) must be changed every single day. To 
passage the cells, it should be used collagenase type IV 
or dispase, and the cells are generally plated into 6-well 

plates. 
Finally, p-SCs may be cryopreserved using different 

media containing various concentrations of dimethyl 
sulfoxide, FBS and DMEM. Viability and cell numbers 
must be evaluated after thawing.

CELL THERAPY USING P-SC
Basic considerations
Three characteristics are important for the clinical 
application of p-SCs: the lack of ethical restrictions, 
pluripotency and their low immunogenicity[12]. An 
explanation for this is the low expression of MHC class 
II molecules, allowing these cells to be effectively 
employed in transplants[26]. 

Regarding to cellular therapy we have to consider 
the existence of cell banking due to the large amount 
of cells needed. Thus, those cells must have essential 
properties like to keep stable in subcultures, availability, 
great prolificity, freezing resistance, and high 
viability after thawing. The p-SCs fulfill most of these 
requirements. It has been mentioned that p-SCs even 
at subculture 30 showed high cellular division rates 
keeping a steady karyotype[25]. Different from p-SCs 
and ESCs, all other MSCs do not neither replicate 
nor exhibit high levels of cellular survival around 
subcultures 8 to 10.

Considering the freezing process, p-SCs require 
ordinary media (like MSCs, unlike ESCs), show 
intermediate resistance to low temperature (in between 
ESCs and MSCs) and show great viability after frozen-
thawing (like ESCs, unlike MSCs).

Some of the p-SC uses in research are listed in 
Table 1, at the end of this section. 

Neurological diseases
Human p-SC demonstrated neuroprotective effects 
after stroke in rats. Treatment of stroke with p-SCs 
(via intravenous administration) significantly increased 
vascular endothelial growth factor (VEGF), hepatocyte 
growth factor (HGF) and brain derived neurotrophic 
factor (BDNF) levels in the ischemic brain compared to 
controls (dextran vehicle or phosphate buffer saline) 
after middle cerebral artery occlusion[36]. 

In Alzheimer’s disease, β-amyloid peptide is 
considered to be its root cause. Also, the neuroinflamma-
tory process mediated by β-amyloid plaque-induced 
microglial cells and astrocytes contributes to Alzhei-
mer’s disease pathogenesis. Thus, it was demonstrated 
that p-SCs transplanted into an Alzheimer’s disease 
mouse model modulated the properties of microglial 
cells toward a β-amyloid peptide plaque-reducing anti-
inflammatory response. Moreover, p-SCs injected 
mice, compared to phosphate-buffered saline controls, 
had higher levels of β-amyloid degrading enzymes, 
reduced levels of proinflammatory cytokines, increased 
levels of anti-inflammatory cytokines (TGF-β and IL-10), 
slower progression of Alzheimer’s pathology, and 
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smaller infarct scar size and a significant improvement 
of the end-systolic wall thickening and circumferential 
shortening of the infarct border zone evaluated by 
magnetic resonance imaging[44].

Muscle disease
First-trimester chorionic-villi-derived cells were 
evaluated for potential therapeutic use in Duchenne 
muscular dystrophy, which is a X-linked disorder 
characterized by the absence of dystrophin at the 
sarcolemma of muscle fibers. The p-SCs efficiently 
differentiated into myotubes after myogenic induction, 
at which point Nanog and Sox2 were down-regulated, 
whereas MyoD, myogenin, desmin and dystrophin 
were up-regulated. The p-SCs could be efficiently 
directed to differentiate in vitro into skeletal muscle 
cells that express dystrophin as the last stage marker 
of myogenic differentiation[45].

The myogenic differentiation of fetal stem cells (p-SC, 
amniotic fluid stem cells, cord blood and wharton’s jelly 
cells), were already reviewed and considerations about 
limitations and perspectives for therapeutically use 
were done[46].

Pulmonary disease
On a mouse model of bleomycin-induced lung fibrosis, 
cellular therapy using p-SCs promoted a decrease in 
neutrophil infiltration and a significant reduction in the 
severity of fibrosis, compared to control[47].

On a single centre, non-randomized, dose escalation 
phase 1b trial study, human patients with moderately to 
severe idiopathic pulmonary fibrosis received p-SCs via 
peripheral vein and they were evaluated follow up 6 mo. 
The variables analyzed were lung function (forced vital 
capacity and diffusing capacity for carbon monoxide), 
6-min walk distance, gas exchange (assessed by resting 
PaO2), and lung fibrosis score (assessed by high-
resolution computed tomography chest). Compared 
to baseline, at 6 mo all parameters were unchanged, 
with no evidence of worsening fibrosis and no side 
effects reported in the patients who had received p-SC 
injections[48].

Bone disease
Human fetal early chorionic stem cells (p-SCs) treatment 
was studied in a murine osteogenesis imperfecta model. 
It was demonstrated that intraperitoneal injection of 
p-SCs in osteogenesis imperfect neonates reduced 
fractures, increased bone ductility and bone volume, 
increased the numbers of hypertrophic chondrocytes, 
and upregulated endogenous genes involved in 
endochondral and intramembranous ossification[49].

Regenerative medicine using p-SC for bone disease 
(large lytic lesions) secondary to multiple myeloma 
was investigated. The authors founded p-SCs inhibitory 
effects on myeloma bone disease and tumor growth 
were dose-dependent and intrabone engraftment of 
p-SCs inhibited bone disease and tumor growth in 
mice severe combined immunodeficiency-rab model. 

improved memory function[37].

Liver disease
Cell therapy for liver diseases has also been investigated. 
Among other sources of MSCs, p-SCs showed the 
greatest potential for hepatogenic differentiation and 
proliferation in vitro. The p-SCs, mainly those from 
chorionic plate, expressed higher levels of hepatocyte 
growth factor after differentiation[38].

In another study, chorionic-plate derived mesen-
chymal stem cells isolated from placenta could 
trigger autophagy to enhance regeneration in carbon 
tetrachloride injured rat liver model. After p-SC trans-
plantation they observed reduction in apoptosis 
(caspase activity) and increasing levels for autophagy, 
survival and regeneration in liver cells[39].

Pancreatic disease
Human placenta-derived mesenchymal stem cells 
(p-SCs) have the potential to differentiate into insulin 
producing cells[40,41]. Also, p-SCs can form islet-like cell 
clusters which are capable of restoring normoglycemia 
when transplanted into streptozotocin-induced diabetic 
Balb/C mice[42].

Heart disease
In order to evaluate whether human amniotic mem-
brane could limit postischemic cardiac injury, a 
fragment was applied onto the left ventricle of rats 
that had undergone ischemia through left anterior 
descending coronary artery ligation. The authors 
observed that the amniotic membrane fragment 
onto ischemic rat hearts could significantly reduce 
postischemic cardiac dysfunction once the rats showed 
higher values of left ventricle ejection fraction, fractional 
shortening and wall thickening on echocardiographic 
examinations[43].

In another study of myocardial infarction, pre-
treated (with a hyaluronan mixed ester of butyric 
and retinoic acid - HBR) p-SCs were intramyocardial 
injected in a pig model. Treated animals showed 
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  Disease Animal model Cells Ref.

  Stroke Rats p-SC [36]
  Alzheimer Mouse p-SC [37]
  Injured liver model Rat p-SC [39]
  Myocardial infarction Rat amniotic membrane 

fragment
[43]

  Myocardial infarction Pig p-SC [44]
  Lung fibrosis model Mouse p-SC [47]
  Idiopathic pulmonary 
  fibrosis

Human (trial 
study)

p-SC [48]

  Osteogenesis imperfecta Murine p-SC [49]
  Bone lytic lesions Mice p-SC [50]
  Bone disease rabbit p-SC + scaffold [51]

Table 1  Preclinical studies using placental-derived stem cells 
for different disease models

p-SC: Placenta-derived stem cell.
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The p-SCs also promoted apoptosis in osteoclast 
precursors and inhibited their differentiation, indicating 
a promising therapeutic approach for myeloma osteo-
lysis using cytotherapy[50].

Tissue engenieering
The utility of p-SCs for bone tissue engineering 
has been investigated using different biomaterials 
and showing promising results. Transplantation of 
human p-SCs grown in a silk fibroin/hydroxyapatite 
scaffold into injured radius segmental bone in rabbits 
enhance tissue repair[51]. A combination of p-SCs and 
polylactide/poly(ε-caprolactone)-poly(ethylene glycol)-
poly(ε-caprolactone) fibrous scaffolds promoted good 
cellular response and excellent osteogenic potential in 
vitro[52].

An elastic scaffold, obtained combining a poly-
(ether)urethane-polydimethylsiloxane (PEtU-PDMS) 
semi-interpenetrating polymeric network (s-IPN) with 
fibrin, was used as a substrate for in vitro studies of 
human p-SC growth and differentiation. The s-IPN 
PEtU-PDMS/fibrin combined scaffold allowed a better 
proliferation and metabolic activity of p-SC cultured up to 
14 d, compared to the ones grown on plastic dishesand 
also sustained the beginning of p-SCs differentiation 
process towards a cardiomyogenic lineage[53].

As an alternative to corneal transplantation, resear-
chers evaluated a biomaterial derived from fetal 
membranes to promote corneal repair. The pericellular 
matrix of decidua-derived mesenchymal cells was 
demonstrated to provide a xeno-free substrate for 
efficient culture of human corneal endothelial cells. The 
matrix enhanced corneal cell attachment, promoted 
cell proliferation, and suppressed apoptosis, offering 
a viable in vitro expansion protocol for human corneal 
endothelial cells[54].

Cell-based therapy, using p-SC, combined with 
bioactive materials improved bone regeneration prior 
to dental implant. Amniotic epithelial cells, loaded on a 
calcium-phosphate synthetic bone substitute, displayed 
a reduced fibrotic reaction, a limited inflammatory 
response and an accelerated process of angiogenesis. 
In addition, the presence of p-SCs significantly stimu-
lated osteogenesis by enhancing bone deposition, as 
suggested by the presence of p-SCs entrapped within 
the newly deposited osteoid matrix and by their ability 
to switch-on the expression of osteocalcin when 
transplanted into host tissues[2].

CHALLENGES
A routine medical practice using stem cells is an 
exciting promise. And for this reason, any preclinical 
study regarding cell therapy must be considered 
cautiously. Besides the rapid evolution in differentiating 
stem cells into many different cell types, all protocols 
result in a mix cell preparations and how to get 
specialized cells in sufficient amount and purity is still 
a challenge. So, the really understanding of all the 

mechanisms from culturing stem cells to transplanting 
differentiated ones into a patient is of great importance 
in order to let the dream comes true. 

CONCLUSION
In summary, either the fetal or the maternal compo-
nents of the placenta may be considered potential 
sources of stem cells once they share features from 
both cells of embryonic and mesenchymal origin. 
Phenotypically, these cells show common characteristics 
of embryo-derived and adult stem cells and do not 
express hematopoietic cell markers CD11b, CD 34 and 
CD 45. Different media to culture and stimuli to onward 
differentiation in p-SCs are under investigation and 
they have been used on research trials of cell therapy 
with promising results. Furthermore, it is important 
to get enough purity cells and to understand the 
mechanism of differentiation and engraftment of p-SC 
to improve cell-based therapy.
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Abstract
AIM: To investigate whether fetal kidney stem cells 
(fKSC) ameliorate cisplatin induced acute renal failure 
(ARF) in rats and promote renal angiogenesis.

METHODS: The fKSC were isolated from rat fetuses 
of gestation day 16 and expanded in vitro  up to 3rd 
passage. They were characterized for the expression 
of mesenchymal and renal progenitor markers by flow 
cytometry and immunocytochemistry, respectively. 
The in vitro  differentiation of fKSC towards epithelial 
lineage was evaluated by the treatment with specific 
induction medium and their angiogenic potential by 
matrigel induced tube formation assay. To study the 
effect of fKSC in ARF, fKSC labeled with PKH26 were 
infused in rats with cisplatin induced ARF and, the blood 
and renal tissues of the rats were collected at different 
time points. Blood biochemical parameters were 
studied to evaluate renal function. Renal tissues were 
evaluated for renal architecture, renal cell proliferation 
and angiogenesis by immunohistochemistry, renal cell 
apoptosis by terminal deoxynucleotidyl transferase nick-
end labeling assay and early expression of angiogenic 
molecules viz . vascular endothelial growth factor (VEGF), 
hypoxia-inducible factor (HIF)-1α and endothelial nitric 
oxide synthase (eNOS) by western blot. 

RESULTS: The fKSC expressed mesenchymal markers 
viz . CD29, CD44, CD73, CD90 and CD105 as well as 
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renal progenitor markers viz . Wt1, Pax2 and Six2. They 
exhibited a potential to form CD31 and Von Willebrand 
factor expressing capillary-like structures and could be 
differentiated into cytokeratin (CK)18 and CK19 positive 
epithelial cells. Administration of fKSC in rats with ARF as 
compared to administration of saline alone, resulted in a 
significant improvement in renal function and histology on 
day 3 (2.33 ± 0.33 vs  3.50 ± 0.34, P  < 0.05) and on day 
7 (0.83 ± 0.16 vs  2.00 ± 0.25, P  < 0.05). The infused 
PKH26 labeled fKSC were observed to engraft in damaged 
renal tubules and showed increased proliferation and 
reduced apoptosis (P  < 0.05) of renal cells. The kidneys 
of fKSC as compared to saline treated rats had a higher 
capillary density on day 3 [13.30 ± 1.54 vs  7.10 ± 1.29, 
capillaries/high-power fields (HPF), P  < 0.05], and on 
day 7 (21.10 ± 1.46 vs  15.00 ± 1.30, capillaries/HPF, P < 
0.05). In addition, kidneys of fKSC treated rats had an up-
regulation of angiogenic proteins hypoxia-inducible factor-
1α, VEGF and eNOS on day 3 (P  < 0.05).

CONCLUSION: Our study shows that fKSC ameliorate 
cisplatin induced ARF in rats and promote renal angio-
genesis, which may be an important therapeutic 
mechanism of these stem cells in the disease. 

Key words: Fetal kidney stem cells; Mesenchymal and 
renal progenitor markers; Acute renal failure; Stem cell 
therapy; Angiogenesis

© The Author(s) 2015. Published by Baishideng Publishing 
Group Inc. All rights reserved.

Core tip: This study provides novel data on the thera-
peutic effect of culture expanded fetal kidney stem cells 
(fKSC) in acute renal failure (ARF). The fKSC represent 
primitive renal stem cells that express mesenchymal 
and renal progenitor markers. They exhibit in vitro 
angiogenesis and potential to differentiate into renal 
epithelial cells. On administration in ARF rats, they rapidly 
improve renal function and histology. The therapeutic 
effects of fKSC are accompanied with increased capillary 
density in kidney tissues suggesting that induction of 
renal angiogenesis may be an important therapeutic 
mechanism of these stem cells. 

Gupta AK, Jadhav SH, Tripathy NK, Nityanand S. Fetal 
kidney stem cells ameliorate cisplatin induced acute renal 
failure and promote renal angiogenesis. World J Stem Cells 
2015; 7(4): 776-788  Available from: URL: http://www.
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INTRODUCTION
Acute renal failure (ARF) is characterized by rapid 
loss of renal function due to damage of renal tubular 
epithelial cells by ischemia, nephrotoxins or other 
means. Some cases of ARF spontaneously recover 
from renal injury while in others the recovery process 

is either delayed or does not occur at all, leading to 
chronic kidney disease (CKD), which is associated 
with high morbidity and mortality[1,2]. Thus, it is very 
important to restore normal structure and function 
of the kidney after ARF using a suitable regenerative 
therapy in order to prevent its progression into 
CKD[3]. Recent data suggest that injury of endothelial 
cells of small peritubular arterioles and capillaries 
plays a crucial role in the pathogenesis of ARF by 
mediating hypoxia and impairment of renal perfusion 
that eventually results in injury of renal tubular 
epithelial cells and thereby loss of renal function[4-6]. 
Furthermore, reduction in renal capillary density 
following ARF may perpetuate the tubular epithelial 
injury leading to CKD[7,8]. These observations suggest 
that neovascularization of the kidney and regeneration 
of damaged renal tubular epithelial cells may be 
potentially effective in recovery from ARF.

During the past decade, stem cell based rege-
nerative therapy has emerged as a promising thera-
peutic strategy for ARF and stem cells derived from 
various sources are being extensively explored for 
the treatment of ARF[9,10]. However, a suitable stem 
cell type for therapeutic application in clinical ARF 
has not yet been identified. Fetal kidney stem cells 
(fKSC) represent a novel stem cell type for treatment 
of ARF because they are multipotent stem cells with 
an inherent ability to differentiate into cells of renal 
lineage. In addition, few studies have shown that 
embryonic or fetal kidney also contains a subpopulation 
of endothelial and epithelial progenitors[11-13] and hence 
fKSC may have an important role in neovascularization 
and the regeneration of the damaged kidney. However, 
there is a paucity of data on therapeutic effect of fKSC 
in ARF and no information is available about angiogenic 
role of these stem cells in mediating their therapeutic 
effect in the disease. 

Therefore, the aim of the present study was to 
investigate the therapeutic effect of fKSC in cisplatin 
induced ARF in rats and to evaluate whether neovascu-
larization in the damaged kidney has a role in the 
therapeutic efficacy of these stem cells in the disease. 

MATERIALS AND METHODS
Animals
Experiments were performed on Sprague Dawley 
(SD) rats (220-250 g) purchased from Central Drug 
Research Institute, Lucknow, India. All animal experi-
mental procedures in this study were performed as per 
guidelines of the Institutional Animal Ethics Committee 
and the Committee for the Purpose of Control and 
Supervision of Experiments on Animals (CPCSEA), 
India. The protocol was approved by the Animal Ethics 
Committee of Sanjay Gandhi Post Graduate Institute of 
Medical Sciences, Lucknow, India.

Isolation and culture of fKSC
The fKSC were isolated from SD rat fetuses at gestation 
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day 16. The kidneys were removed from fetuses 
of 10 pregnant female rats (8-12 fetuses/animal), 
minced, and digested with 1 mg/mL collagenase type-
IV (Worthington Biochemical, NJ, United States) in 
serum free α-MEM (Gibco, NY, United States) medium 
for 40 min at 37 ℃ with intermittent stirring in water 
bath. After two washes with α-MEM, the digested 
tissue was cultured at 37 ℃ in a 5% CO2 in 25 cm2 
tissue culture flasks (BD, New Jersey, United States) in 
complete culture medium consisting of α-MEM medium, 2 
mg/mL of Glutamax (Gibco, NY, United States), 16.5% 
fetal bovine serum (Gibco, NY, United States) and 
bacteriostatic level of penicillin-streptomycin (Gibco, 
NY, United States). After 48 h of seeding of fetal kidney 
cells, the culture media containing non-adherent cells 
were replaced. On day 3 adherent cells were harvested 
by trypsinization with TrypLE Express (Gibco, NY, United 
States) and further cultured in complete culture media. 
The cells of 3rd passage were used for this study.

Characterization of fKSC
The fKSC were characterized by studying their 
expression of mesenchymal and renal progenitor 
markers. The expression of mesenchymal markers 
on fKSC was studied by flow cytometry. The fKSC at 
passage 3 were incubated for 30 min with following 
antibodies: Fluorescein isothiocyanate (FITC) conju-
gated CD90 (Abcam, MA, United States), CD44 
(BD Biosciences, CA, United States), phycoerythrin  
conjugated CD45 (Abcam, MA, United States), 
MHC class II (Abcam, MA, United States) and with 
unconjugated CD29 (Abcam, MA, United States), 
CD73 (BD Biosciences, CA, United States), CD105 
(Santa cruz biotechnology, inc. CA, United States). The 
corresponding FITC-conjugated secondary antibodies 
(Abcam, MA, United States) were added in CD29, 
CD73 and CD105 tubes. Isotype-identical antibodies 
(IgG) served as controls. 

Expression of renal progenitor markers viz. Wilms 
tumor1 (Wt1), paired box2 (Pax2), SIX homebox2 
(Six2) was studied by immunocytochemistry. The 
cells were fixed with 4% para-formaldehyde for 1 h 
at room temperature and incubated overnight at 4 ℃ 
with following primary antibodies: Wt1, Pax2 (both 
from Abcam, MA, United States) and Six2 (Santa cruz 
biotechnology, Inc. CA, United States). After washing 
with PBS, cells were incubated with corresponding FITC-
conjugated secondary antibodies and counter stained 
with Hoechst dye (Sigma-Aldrich, MO, United States). 
The fKSC incubated with non-immune serum or IgG 
in place of primary antibodies were used as negative 
controls. The images were obtained using Nuance 
Multispectral Imaging System (CRi Inc., MA, United 
States).

In vitro differentiation towards epithelial lineage and 
angiogenic assay 
To induce epithelial differentiation, fKSC (2 × 104 
cells/well) were cultured on cover slips in 6 well plate 

in complete culture medium containing 0.1 µmol/L 
Retinoic acid, 10 ng/mL activin-A and 50 ng/mL Bmp7 
(all from R and D Systems, MN, United States). After 7 
d, cover slips with induced fKSC were fixed in 4% para-
formaldehyde for 1 h at room temperature. The fixed 
cells were incubated at 4 ℃ overnight with primary 
antibodies viz. cytokeratin (CK)18 and CK19 (Abcam, 
MA, United States). After washing with PBS, cells 
were incubated with corresponding FITC-conjugated 
secondary antibodies for 1 h at room temperature and 
counter stained with Hoechst dye (Sigma-Aldrich, MO, 
United States). The fKSC cultured without induction 
medium were used as negative controls. 

The tube-formation assay was performed to assess 
the angiogenic potential of fKSC. Briefly, fKSC (2 × 104 
cells/well) were seeded onto the growth factor reduced 
matrigel (BD Biosciences, CA, United States) coated 
cover slips in 6 well plate and incubated overnight in 
standard culture condition with complete medium. The 
cells were examined by phase contrast microscopy 
and immunocytochemistry. For immunocytochemistry, 
cells were fixed with 4% para-formaldehyde for 1 h at 
room temperature. The fixed cells were incubated at 
4 ℃ overnight with primary antibodies viz. CD31 (AbD 
serotech, Oxford, United Kingdom) and Von Willebrand 
factor (vWF) antibody (Abcam, MA, United States). 
After washing with PBS, cells were incubated with 
corresponding FITC-conjugated secondary antibodies 
for 1 h at room temperature and stained with Hoechst 
dye. The fKSC cultured without growth factor reduced 
matrigel were used as negative controls.

Development of ARF model and fKSC therapy
ARF was induced in male SD rats (n = 36) weighing 
200-225g by cisplatin injection as described by 
Ozyurt et al[14]. Briefly, the animals were given a 
single intra-peritoneal injection of cisplatin (0.5 mg 
in 1 mL of saline, sigma, United States) at a dose 
of 7 mg/kg of body weight. A significant increase in 
blood biochemical parameters and renal damage were 
observed in rats on day 5 of cisplatin injection. Hence 
at this time point, rats were randomized into two 
groups viz. fKSC treated group (n = 18) and saline 
treated group (n = 18) for evaluation of the efficacy of 
stem cell therapy. In addition, a group of healthy rats (n 
= 6) was also included in the study as healthy controls 
to compare renal function and histology of fKSC and 
saline treated groups. 

The fKSC were labeled with PKH26, a red fluorescent 
cell linker (Sigma-Aldrich, MO, United States) according 
to manufacturer’s protocol. Labeling efficiency of PKH26 
with fKSC and cell viability of labeled cells were > 95% 
and > 97% as revealed by fluorescent microscopy 
and trypan blue exclusion, respectively. On day 5 of 
cisplatin injection, a total of 2 × 106 PKH26 labeled 
fKSC in 150 µL of saline or 150 μL saline alone were 
injected intravenously through tail vein in each rat of 
fKSC treated or saline treated groups, respectively. 

Animals were euthanized by barbiturate overdose 
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animals were homogenized in RIPA buffer containing 
1 mmol/L phenylmethanesulphonyl fluoride and 1% 
protease inhibitor cocktail (Sigma-Aldrich, MO, United 
States). Kidney tissue homogenate was centrifuged at 
10000 g for 10 min and the supernatant was stored 
in -80 ℃. 40 mg proteins were loaded and separated 
by 10% sodium dodecyl sulfate-polyacrylamide gel 
electrophoresis. After electrophoresis, separated 
proteins were transferred to polyvinylidene difluoride  
membranes. The membranes were blocked with 5% 
BSA for 1 h at room temperature and then incubated 
at 4 ℃ overnight against primary antibodies viz. 
vascular endothelial growth factor (VEGF), hypoxia-
inducible factor (HIF)-1α and endothelial nitric oxide 
synthase (eNOS) (all from Abcam, MA, United States). 
β-Actin antibody (Abcam, MA, United States) was 
used as a loading control. Primary antibodies were 
detected by corresponding horseradish peroxidase 
(HRP)-conjugated secondary antibodies using super 
signal west pico chemiluminescent substrate (Thermo 
scientific, IL, United States). The bands were quantified 
by densitometry using the Quantity One software (Bio-
Rad, CA, United States).

Animal care and use
The animal protocol was designed to minimize pain 
or discomfort to the animals. The animals were 
acclimatized to laboratory conditions (23 ℃, 12 h/12 
h light/dark, 50% humidity, ad libitum access to food 
and water) for two weeks prior to experimentation. 
All animals were euthanized by barbiturate overdose 
(intravenous injection, 150 mg/kg pentobarbital 
sodium) for tissue collection.

Statistical analysis
Values were expressed as mean ± standard error 
(SE). The statistically significant differences between 
groups were analyzed by one way-analysis of variance 
(ANOVA) with Bonferroni multiple-comparison post 
hoc test. Statistical analysis was performed using 
GraphPad Prism Software Version 5 (GraphPad, San 
Diego, CA) and a P value of < 0.05 was considered 
statistically significant.

RESULTS
Expression of mesenchymal and renal progenitor 
markers by fKSC 
The fKSC exhibited spindle-shaped and polygonal 
morphology in culture (Figure 1A). Flow cytometry 
analysis showed that fKSC expressed CD29 (37.59%), 
CD44 (32.76%), CD73 (51.72%), CD90 (68.71%) and 
CD105 (37.88%), whereas the expression of CD45 
and MHC class II was < 5% (Figure 1B). Immunocy-
tochemistry revealed that fKSC also expressed renal 
progenitor markers viz. Wt1, Pax2 and Six2 (Figure 1C). 

In vitro epithelial differentiation and angiogenic potential 
of fKSC 
On treatment with specific induction medium, fKSC 

(intravenous injection, 150 mg/kg pentobarbital 
sodium) before fKSC therapy (day 0) and after three 
days (day 3) and seven days (day 7) of fKSC therapy. 
Blood samples were collected to determine blood urea 
nitrogen (BUN) and serum creatinine levels by using 
commercial Span diagnostic kits with an autoanalyser 
(BioSytems BTS-330). The kidney tissues were excised 
to perform the assays described below. 

Histopathological and Immunohistochemical analysis
Ten percent of formalin fixed kidney tissues were cut 
into 5 µm serial sections and stained with hematoxylin 
and eosin to evaluate sequential histopathological 
changes in saline and fKSC treated animals. Quanti-
tative assessment of renal tubular necrosis was 
performed using the grading scores of Jablonski et 
al[15]. For immunohistochemical analysis, 5 µm thick 
paraffin sections of kidneys were deparaffinized with 
xylene and rehydrated in a series of alcohol and water. 
After rehydration, tissue sections were incubated with 
primary antibodies viz. aquaporin (AQP)1, vWF (both 
from Abcam, MA, United States) and CD31 (AbD 
serotech, Oxford, United Kingdom) and proliferating 
cell nuclear antigen (PCNA; BD Biosciences, CA, United 
States). After overnight incubation, sections were 
washed with PBS and incubated with corresponding 
FITC-conjugated secondary antibodies and then counter 
stained with Hoechst dye. Images were taken by 
Nuance Multispectral Imaging System (CRi Inc., MA, 
United States). To determine the capillary density, 
CD31 stained capillaries were counted in 10 randomly 
chosen high-power fields (HPF; 20 µm) using a 
fluorescent microscope and expressed as capillaries 
per HPF. To determine the number of proliferating cells 
in the kidney, PCNA positive nuclei were counted in 10 
HPFs per section (20 µm) in the cortico-medullary area 
under a Nuance Multispectral Imaging System (CRi 
Inc., MA, United States) and the proliferative index was 
expressed as average number of PCNA+ cells /HPF. 

dUTP nick-end labeling
Apoptotic scores in kidney tissue sections were 
measured by the terminal transferase-mediated 
dUTP nick-end labeling (TUNEL) assay using an In 
Situ Cell Death Detection Kit (Roche, Mannheim, 
Germany) as per manufacturer’s instruction. Briefly, 
kidney sections were deparaffinized, rehydrated, and 
digested with proteinase K and labeled with TUNEL 
reaction mixture for 60 min at 37 ℃. TUNEL positive 
nuclei were counted in 10 HPF per section in the 
cortico-medullary area at 20 µm magnification under 
a Nuance Multispectral Imaging System (CRi Inc., MA, 
United States) and the apoptotic index was expressed 
as average number of TUNEL+ cells /HPF.

Western blot 
Expression of angiogenic signaling molecules in the 
kidneys of rats was evaluated by western blotting 
on day 3 after fKSC therapy. The kidney tissues of 
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exhibited differentiation ability into epithelial cells 
as demonstrated by expression of CK18 and CK19 
by immunocytochemistry (Figures 2A and B). When 
grown on matrigel, fKSC exhibited capillary-like tubular 
structures assessed by phase contrast microscopy 
(Figure 2C) and expressed endothelial markers viz., 
CD31 and vWF by immunocytochemistry (Figure 2D 
and E).

Improvement of renal function following fKSC therapy in 
ARF rats 
On the 5th day of cisplatin injection, the rats exhibited 
a significant increase in levels of both BUN and 
serum creatinine as compared to healthy controls (P 
< 0.05). The same day (day 0 of therapy), the rats 
were randomized to receive fKSC therapy or saline 
alone. On day 3 of therapy, fKSC treated group had 
significantly lower levels of these blood biochemical 
parameters as compared to saline treated group (P < 

0.05), but both groups had significantly higher levels 
as compared to healthy controls (P < 0.05). On day 
7 of therapy, the serum creatinine and BUN levels in 
the fKSC treated group were comparable to healthy 
controls but they were still significantly higher in the 
saline treated group in comparison to healthy controls 
(P < 0.05) (Figure 3A and B).

Improvement of renal histology following fKSC therapy 
in ARF rats 
The kidneys of ARF rats on the 5th day of cisplatin 
injection showed severe tubular necrosis, hyaline cast 
formation, loss of brush border in the proximal renal 
tubules and tubular dilatation (Figure 4B). On day 
3 of fKSC therapy, the kidneys showed a significant 
attenuation of tubular injury as compared to saline 
treated rats (Figure 4C and D) and Jablonski grading 
score revealed significantly lower necrosis in the 
kidneys of fKSC treated as compared to saline treated 
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Figure 1  Morphology (A) and characterization of fetal kidney stem cells (B and C). A: Representative photomicrograph (Scale bars indicate 100 µm) showing 
spindle-shaped and polygonal morphology of fetal kidney stem cells (fKSC); B: Phenotypic characterization of fKSC by flow cytometry showing expression of CD29, CD44, 
CD73, CD90, CD105, CD45, and MHC class II (green or red lines, detected with FITC - or phycoerythrin-conjugated antibodies, respectively) with isotype controls (black 
lines); C: Representative immunoflourescent photomicrographs (Scale bars indicate 20 µm) showing expression of renal progenitor markers viz. Wt1, Pax2 and Six2 on 
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rats (2.33 ± 0.33 vs 3.50 ± 0.34, P < 0.05, Figure 
4G). On day 7 of therapy, the kidneys of fKSC treated 
ARF rats showed disappearance of necrotic cells with 
almost normal architecture of tubules, whereas those 
of saline treated ARF rats still had necrotic tubular cells 
and hyaline casts (Figure 4E and F) and there was 
also a significant difference in Jablonski grading score 
between the fKSC treated and saline treated groups 

(0.83 ± 0.16 vs 2.00 ± 0.25, P < 0.05, Figure 4G). 

Engraftment of infused fKSC in renal tubules
To study their engraftment, PKH26 labeled fKSC were 
evaluated in rat kidneys on day 7 of therapy. The fKSC 
were observed to engraft preferentially in renal tubules 
and capillaries stained with tubular epithelial marker 
AQP1 and endothelial marker vWF, respectively (Figure 
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5). 

Administration of fKSC reduces apoptosis and promotes 
proliferation of renal tissues 
On day 3 of therapy, the TUNEL-positive cells in the 
kidneys of fKSC treated rats were significantly lower 
than those in the saline treated rats (P < 0.05). On 
day 7, their numbers further decreased significantly in 
fKSC treated rats as compared to those in the saline 
treated rats (P < 0.05; Figure 6A). On days 3 and 7 
of therapy, the number of PCNA-positive cells in the 
kidneys of fKSC treated rats were significantly higher 
as compared to those in the saline treated rats (P < 
0.05, Figure 6B).

Administration of fKSC promotes renal angiogenesis 
On day 3 of therapy, the morphometric analysis 
of CD31 labeled peritubular capillaries showed a 
significantly higher capillary density in the kidneys of 
fKSC treated than that in saline treated rats (13.30 
± 1.54 vs 7.10 ± 1.29, capillaries/HPF, P < 0.05). On 
day 7 of therapy, the capillary density in the kidneys 
of fKSC treated rats was further significantly increased 
than that in saline treated rats (21.10 ± 1.46 vs 15.00 
± 1.30, capillaries/HPF, P < 0.05; Figure 7). 

To determine the early angiogenic effect of fKSC, the 
protein expression of angiogenic signaling molecules 
were studied on day 3 of fKSC therapy. The expressions 
of HIF-1α, VEGF and eNOS in the kidneys of fKSC 
treated rats were significantly higher as compared to 
saline treated rats (P < 0.05; Figure 8).

DISCUSSION
The present study demonstrates that fKSC expressed 
mesenchymal as well as renal progenitor markers and 
exhibited the formation of CD31 and vWF expressing 
capillary-like structures and differentiation into 
CK18 and CK19 positive epithelial cells in vitro. The 
administration of fKSC in rats with cisplatin induced 
ARF resulted in rapid improvement in renal function 

and histology. The infused fKSC were observed to 
engraft in renal tubules and promote proliferation and 
reduce apoptosis of renal tubular cells. In addition, 
the kidneys of fKSC treated rats exhibited increased 
angiogenesis and up-regulation of angiogenic signaling 
molecules. To our knowledge this is the first study 
showing therapeutic efficacy of in vitro expanded fKSC 
in cisplatin induced ARF model and role of angiogenesis 
in renal regeneration by these stem cells.

We have recently observed that fKSC have maximal 
growth at a seeding density of 1000 cells/cm2, popu-
lation doubling time of approximately 34 h and normal 
karyotype up to 3rd passage. In addition, these cells 
successfully differentiated into cells of all the three germ 
layers (communicated elsewhere). In the present study, 
we have observed that fKSC express mesenchymal 
(CD29, CD44, CD73, CD90 and CD105) as well as 
renal progenitor markers (Wt1, Pax2 and Six2). The 
Pax2 and Wt1 genes cross-regulate expression of each 
other during kidney development[16]. However, we have 
observed a high expression of these markers in fKSC. A 
plausible explanation of this could be that a significant 
proportion of fKSC are a population of stem cells of 
metanephric mesenchyme which have been shown to 
express both Pax2 and Wt1 transcription factors[13,17,18]. 
Similar to our observation high expression of Pax2 and 
Wt1 has recently been shown in human fetal kidney 
progenitors as well as human embryonal cells derived 
nephron progenitors[19]. The fKSC could be induced 
to differentiate in vitro into CK18 and CK19 positive 
epithelial cells. In addition, they exhibited an angiogenic 
potential as shown by the formation of CD31 and vWF 
positive capillary-like tubular structures when plated 
on matrigel. Two previous studies have shown that 
stem cells derived from whole fetal kidneys express 
mesenchymal and renal progenitor markers, but they 
have not studied their in vitro angiogenic potential 
and differentiation into epithelial cells[20,21]. However, 
corroborating with our data, one study has shown that 
human embryonic kidney derived CD24+ CD133+ 

stem cells exhibit in vitro differentiation into epithelial 
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and endothelial lineages[22]. We did not evaluate the 
markers of other renal progenitors such as endothelial 
and epithelial ones on fKSC which may be a limitation 
of the present study.

To investigate their therapeutic effect in ARF, we 
infused intravenously PKH26 labeled fKSC in cisplatin 
induced rat model of ARF. On day 3 of therapy, we 
observed a significant improvement in the renal 
function and histology and on day 7 these parameters 
became comparable to healthy control rats indicating 
almost complete recovery. Similar to our data, culture 
expanded CD24+ CD133+ stem cells from human 
embryonic kidney have been shown to mediate a 
complete functional and structural recovery of glycerol 
induced ARF in SCID mice[22]. We observed that PKH26 
labeled fKSC engraft in the damaged areas of the kidney 
and express vWF and AQP1 showing the integration 
of infused fKSC into damaged renal vasculature and 
tubules, respectively. It is difficult to distinguish 
whether vWF and AQP1 are expressed by endothelial 

and epithelial cells differentiated from infused fKSC or 
these markers represent fusion of administered fKSC 
with damaged kidney cells in the areas of engraftment. 
Similar to our observation, administration of human 
embryonic kidney derived CD24+ CD133+ stem cells in 
SCID mice with glycerol induced ARF and embryonic 
stem cell derived mesenchymal like progenitors in 
rats with cisplatin induced ARF have been shown to 
engraft into damaged renal tubules and vasculature of 
kidney[22,23]. 

The kidneys of fKSC treated ARF rats were observed 
to have a higher capillary density correlating with their 
structural and functional improvement as compared 
to saline treated ARF rats. In addition, on day 3 of 
fKSC therapy, there was an increased expression 
of HIF-1α and its downstream signaling molecules 
VEGF and eNOS in the kidneys of fKSC treated rats 
in comparison to saline treated rats, showing a role 
of early angiogenesis in the renal regeneration. It has 
been reported that HIF-1α also activates expression of 
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Wt1, which in turn directly up-regulates VEGF and thus 
acts as an important regulator of angiogenesis[24-27]. 
The fKSC that were infused in ARF rats were already 
expressing Wt1, so we did not study its expression in 
the kidney tissues but as fKSC therapy up-regulated 
HIF-1α, it is likely that kidney tissues also have an up-
regulation of Wt1. However, since the angiogenic role 
of Wt1 has mostly been reported in tumors, it is not 

known whether Wt1 also has a similar role in normal 
tissues like kidney. Corroborating with our data, it 
has been shown that acetazolamide administration in 
mice with ischemic kidney results in up-regulation of 
angiogenic molecules HIF-1α and eNOS in kidney tissue 
along with reduction in the apoptosis of renal tubular 
cells, increase in renal blood flow and improvement 
in renal function and histology[28]. Similarly, the 
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VEGF has been shown to promote regeneration of 
cisplatin induced injury of renal tubular epithelial 
cells in vitro by inducing proliferation and reducing 
their apoptosis. In addition, administration of VEGF 
modified embryonic mesenchymal stem cells (MSC) 
in cisplatin induced ARF in rodents has been shown to 
reduce renal apoptosis and promote microcirculation 
and cell proliferation in the damaged kidney[29]. There 
is no previous study showing angiogenic role of fKSC 
in ARF but in agreement with our study, it has been 
shown that a clonal cell line of MSC derived from kidney 
of adult Tie-2 green fluorescent protein transgenic mice 
exhibit in vivo angiogenesis and tubular regeneration 
by increasing epithelial proliferation and inhibiting 
apoptosis when administered in mouse model of renal 
ischemia[30]. These studies suggest that the improved 
capillary density, proliferation and reduced apoptosis 
in renal tissue observed by us following fKSC therapy 
may be mediated by the up-regulation of VEGF, HIF-
1α and eNOS, and thus these molecules could play an 
important role in renal regeneration. 

In conclusion, the present study shows that fKSC 
express mesenchymal and renal progenitor markers, 
exhibit an in vitro angiogenic potential and ability to 
differentiate into cells of renal epithelial lineage. The 
administration of fKSC in cisplatin induced ARF results 
in rapid recovery of renal function and histology, and 
promotes renal angiogenesis. Further studies on fKSC 
mediated renal angiogenesis and regeneration may 
lead to the development of novel pharmacological 
therapies for ARF.
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COMMENTS
Background
Tissue specific fetal stem cells represent the most suitable stem cell type 
for tissue regeneration/repair due to their inherent ability of tissue specific 
differentiation. Thus, stem cells derived from the fetal kidney may be a novel cell 
type for renal regenerative therapy. The epithelial and microvascular damage are 
the main events in acute renal failure (ARF) and this led us to evaluate whether 
fetal kidney stem cells (fKSC) mediate their therapeutic effect by augmenting 
renal angiogenesis in cisplatin induced ARF in rats. 
Research frontiers
The authors had demonstrated in the present study that fKSC differentiate into 
cells of epithelial lineage and exhibit angiogenic potential in vitro. Following 
infusion in ARF rats, they engraft in renal tubules and rapidly improve renal 
function and histology along with increased angiogenesis in the kidney tissues. 
It is thus logical to investigate whether induction of renal angiogenesis by fKSC 
is an important mechanism of renal regeneration and whether it is mediated by 
trans-differentiation of infused fKSC or their paracrine effect on resident kidney 
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Figure 8  Early angiogenic effect of administered fetal kidney stem cells in 
cisplatin injured kidney. Representative immunoblots showing the expression 
of hypoxia-inducible factor (HIF)-1α, vascular endothelial growth factor (VEGF) 
and endothelial nitric oxide synthase (eNOS) in saline and fetal kidney stem cells 
(fKSC) treated groups on day 3 after fKSC therapy (A-D). Bar diagrams showing 
densitometric quantification of the expression of HIF-1α (B), VEGF (C) and eNOS 
(D). Comparative gene expression ratio was calculated by referring each gene to 
β-actin as an internal control. Densitometric analysis applied for comparison of 
relative protein expression and represented in densitometric arbitrary units (a. u.). 
Values expressed mean ± SE. aP < 0.05 for fKSC vs saline treated group.
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stem cells. 
Innovations and breakthroughs
To the best of our knowledge, this is the first study showing therapeutic efficacy 
of in vitro expanded fKSC in ARF model and their in vitro and in vivo angiogenic 
potential suggesting that induction of renal angiogenesis may be an important 
therapeutic mechanism of these stem cells.
Applications
The fKSC represent primitive renal progenitors expressing mesenchymal as 
well as renal progenitor markers and treatment of ARF rats with these stem 
cells results in rapid recovery in renal function and histology leading to their 
normalization. Further studies using human fKSC or human embryonic stem cell 
derived renal progenitors with similar characteristics may lead to the development 
of clinical therapy for ARF. 
Terminology
The fKSC represent primitive renal progenitors and express mesenchymal as 
well as renal progenitor markers. They can be culture expanded to generate 
a requisite number of cells for therapeutic dose. They improve renal function 
and histology and lead to their normalization by inducing renal angiogenesis. It 
needs to be studied whether the angiogenesis observed in the kidney tissues 
in the fKSC treated rats is due to trans-differentiation of infused stem cells or by 
stimulation of resident endothelial cells or both. 
Peer-review
It is a very interesting article about a possible protective role of fetal kidney stem 
cells in experimental model of acute renal failure.
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