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Abstract
Testicular germ cell cancer (TGCC) is rare form of 
malignant disease that occurs mostly in young man 
between age 15 and 40. The worldwide incidence of 
TGCC is 1.5 per 100000 man with the highest rates in 
North Europe. After discovery of cisplatin cure rates 
of TGCC are very favorable between 90%-95% and 
unlike most solid tumors, cure rate for metastatic TGCC 
is around 80%. Metastatic TGCC is usually treated 
with 3-4 cycles of bleomycin, etoposide, cisplatinum 
chemotherapy with or without retroperitoneal surgery 
and cure rates with this approach are between 41% in 
poor risk group and 92% in good risk group of patients. 
Cure rates are lower in relapsed and refractory patients 
and many of them will die from the disease if not cured 
with first line chemotherapy. High dose chemotherapy 
(HDCT) approach was used for the first time during the 
1980s. Progress in hematology allowed the possibility to 
keep autologous haematopoietic stem cells alive ex-vivo   
at very low temperatures and use them to repopulate 
the bone marrow after sub-lethal dose of intesive 
myeloablative chemotherapy. Despite the fact that 
there is no positive randomized study to prove HDCT 
concept, cure rates in relapsed TGCC are higher after 
high dose therapy then in historical controls in studies 
with conventional treatment. Here we review clinical 
studies in HDCT for TGCC, possibilities of mobilising 
sufficient number of stem cells and future directions in 
the treatment of this disease.

Key words: High dose chemotherapy; Germ-cell cancer; 
Stem cell transplantation; Plerixafor
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Core tip: High dose chemotherapy with autologous 
haematopoietic stem cell transplantation is effective 
option in treating relapsed metastatic germ-cell cancer. 
We reviewed this topic in regard of clinical studies, 
optimal mobilising and conditioning regimens, with 
special review on plerixafor in this indication. We also 
analysed riska adapted approach in those patients and 
future directions in field.

Popovic L, Matovina-Brko G, Popovic M, Petrovic D, Cvetanovic 
A, Vukojevic J, Jovanovic D. High dose chemotherapy with stem 
cell support in the treatment of testicular cancer. World J Stem 
Cells 2015; 7(11): 1222-1232  Available from: URL: http://www.
wjgnet.com/1948-0210/full/v7/i11/1222.htm  DOI: http://dx.doi.
org/10.4252/wjsc.v7.i11.1222

INTRODUCTION
Testicular germ cell cancer (TGCC) is a rare form of 
malignant disease that occurs mostly in young man 
between age 15 and 40. The worldwide incidence 
of TGCC is 1.5 per 100000 man with the highest 
rates in Northern Europe[1]. One half of all TGCC are 
seminomas and other half are non-seminomas. The 
majority of TGCC arise from the gonads while around 
5% arise from extragonadal sites in the body’s mid-
line: retroperitoneum, mediastinum or brain[2]. After 
discovery of cisplatin TGCC cure rates have become 
very favorable ranging between 90%-95% and unlike 
most solid tumors, cure rate for metastatic TGCC is 
around 80%[1,2]. Metastatic TGCC is usually treated with 
3-4 cycles of bleomycin, etoposide, cisplatinum (BEP) 
chemotherapy with or without retroperitoneal surgery 
and cure rates with this approach are between 41% 
in poor risk group and 92% in favourable risk group of 
patients[3] (Table 1). Cure rates are lower in relapsed 
and refractory patients and many of them will die from 
the disease if not cured with first line chemotherapy[3]. 
High dose chemotherapy (HDCT) approach was first 
used during the 1980s. Progress in hematology allowed 
the possibility to keep autologous haematopoietic stem 
cells alive ex-vivo in very low temperatures and using 
them to repopulate the bone marrow after sub-lethal 
dose of intensive myeloablative chemotherapy[4]. 

RATIONALE FOR HIGH DOSE 
CHEMOTHERAPY
Resistance to chemotherapy is a major problem in 
the treatment of patients with malignant diseases. 
Large number of studies are directed towards finding 
and overcoming resistance mechanisms. One of the 
simplest and most logical way is to increase the dose 
of cytotoxic drugs[5]. The evidence that higher doses 

of cytotoxic drug kill more malignant cells has been 
well known for decades. Back in 1964, Skipper et 
al[6] demonstrated that the curve showing the dose 
dependency of the treatments with cytotoxic drugs 
is very steep, indicating that even a small increase of 
the cytotoxic drug dose will kill more malignant cells. 
Also, this curve for cytotoxic drugs, unlike the curves 
from other drugs, has no plateau, which means that a 
constant increase of the dose of cytotoxic drugs leads 
to a steady increase in numbers of destroyed malignant 
cells[6]. During the 1980s, Frei et al[7] showed a dose-
dependent killing of malignant cells in AKR and L1210 
cell lines. Frei et al[8] demonstrated the same on MCF7 
breast cancer cells treated with alkylating agents 
BCNU, melphalan and nitrogen mustard. However, it 
was not possible to administer the 5 to 10-fold higher 
dose of chemotherapy in vivo due to the high toxicity 
and virtually lethal toxicity on bone marrow. Therefore, 
the researchers started to scrutinize bone marrow 
transplantation as a method for overcoming this high 
toxicity after chemotherapy[9]. Afterwards, numerous 
studies of high dose chemotherapy and autologous stem 
cell transplantation in a large number of solid tumor 
cases were completed, however, this form of treatment 
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Good prognosis 
group

Intermediate 
prognosis group

Poor prognosis 
group

  Seminoma 90% of cases
5 yr PFS 82%
5 yr OS 86%

All of the following 
criteria:

Any primary site
No non-pulmonary 
visceral metastases

Normal AFP
Any hCG
Any LDH

10% of cases
5 yr PFS 67%
5 yr OS 72%
Any of the 
following 
criteria:

Any primary site
Non-pulmonary 

visceral 
metastases

Normal AFP
Any hCG
Any LDH

-

  Non-seminoma 56% of cases
5 yr PFS 89%
5 yr OS 92%

All of the following 
criteria:
Testis/

retroperitoneal 
primary

Non non-pulmonary 
visceral metastases
AFP < 1000 ng/mL
hCG < 5000 IU/L 

(1000 ng/mL)
LDH < 1.5 × ULN

28% of cases
5 yr PFS 75%
5 yr OS 80%

Testis/
retroperitoneal 

primary
Non non-

pulmonary 
visceral 

metastases
AFP 1000-10000 

ng/mL
hCG 5000-50000 

IU/L 
(1000 ng/mL)
LDH 1.5-10 × 

ULN

28% of cases
5 yr PFS 75%
5 yr OS 80%
Any of the 
following 
criteria:

Mediastinal 
primary

Non-pulmonary 
visceral 

metastases
AFP > 10000 

ng/mL
hCG > 50000 

IU/L 
(1000 ng/mL)
LDH > 10 × 

ULN

Table 1  Prognostic criteria for metastatic germ cell tumors[3]

AFP: Alpha-fetoprotein; hCG: Human chorionic gonadotrophin; LDH: 
Lactate dehydrogenase; PFS: Progression free survival; OS: Overall survival.



has remained standard practice only for TGCC[10-13].

CLINICAL TRIALS WITH HDCT TGCC
As already mentioned, the majority of patients with 
metastatic TGCC are cured with standard chemo
therapy: 3-4 cycles of BEP protocols[3]. However, in 
patients with a poor prognosis, cure rate is below 
50%. In these patients, and in patients with relapsed 
testicular cancer, unsatisfactory performance standard 
chemotherapy has directed researchers to search for 
new forms of treatment. The rationale of using high 
dose chemotherapy in chemo-sensitive cancer lead 
on investigators to start clinical trials with high dose 
chemotherapy and stem cell support[3,14].

HDCT AS THE INITIAL TREATMENT IN 
PATIENTS WITH POOR PROGNOSIS
The initial studies of high dose chemotherapy for 
patients with poor prognosis in the first line setting 
were completed in the nineties. Motzer et al[15,16] from 
Memorial Sloan-Kettering Cancer Center in phase II 
studies demonstrated slightly better response to HDCT 
compared to a historical control with the standard dose 
chemotherapy (SDCT). In a study from 1993, 15 of 27 
patients (56%) achieved a complete remission, 46% 
were free of disease, and 57% alive after a median of 
31.2-mo follow-up[15]. In another study by the same 
authors 30 patients were treated, 16 with etoposide, 
ifosfamide, cisplatin (VIP) chemotherapy, while 14 
patients after VIP therapy, received HDCT, combination 
carboplatin, etoposide, cyclophosphamide (CEC). 
Patients selected for HDCT included those in whom 
tumour markers did not normalise after two cycles of 
chemotherapy. After a median follow-up of 30 mo, 15 
(50%) patients remained progression-free. Patients 
treated with marker-dependent, early-intervention 
HDCT experienced longer survival[16]. Bokemeyer et 
al[17] published in 1999 a match-paired multivariate 
analysis which compared the outcomes of patients with 
poor prognosis metastatic TGCC treated sequentially 
with standard VIP protocol and HDCT in a multicentric 
study including patients from German group studies 
and patients treated in two studies from Indiana 
University, with BEP or VIP conventional chemotherapy. 
High dose chemotherapy group included 147 patients, 
while 309 patients were in the SDCT group. Patients 
treated with HDCT had a longer progression free 
survival (PFS) 75% vs 59% (P = 0.0056) and a longer 
overall survival (OS) 82% vs 71% (P = 0.0184)[17]. 
After that, Schmoll et al[18] from German Testicular 
Cancer Study Group (GTCSG) published a phase I/IIa 
study where they treated poor prognosis TGCC patients 
with a VIP-escalated protocol. After one cycle of 
standard VIP protocol, they applied dose escalated VIP 
with autologous stem cell transplantation, three to four 
cycles. Five-year PFS in this group of patients was 68%, 

which is longer than the historical control with SDCT. 
After the advent of paclitaxel, and proven effectiveness 
of this drug in cisplatin-resistant TGCC, GTCSG anno
unced the study of addition of a paclitaxel to dose-
escalated VIP protocol[19]. Addition of paclitaxel to high 
dose-VIP (HD-VIP) protocol resulted in higher response 
rate of 79%, and five-year PFS and OS of 64.1% and 
75.2% respectively. 

The only completed randomized phase III study 
is the one of Motzer et al[20]. This study included 219 
untreated patients with metastatic TGCC intermediate 
and poor prognosis. One group of patients was treated 
with standard therapy, four cycles of BEP, while the 
experimental group received two cycles of BEP and 
afterwards two cycles high dose CEC (HD-CEC) pro
tocol. Proportion of one year complete remission was 
not different in the two groups of patients (52% PEB + 
HD-CEC vs 48% BEP, P = 0.53). Benefit of a high dose 
chemotherapy, in this clinical trial, was observed only 
in those patients with unsatisfactory tumor markers 
decline. The study concludes that there is no benefit 
of adding a HDCT in this group of patients. Two other 
studies have started the third phase, but due to poor 
recruiting of patients they are not fully completed[21-23]. 
The analysis of the included patients from high dose 
chemotherapy did not show the expected benefit in 
first-line treatment of metastatic TGCC with a poor 
prognosis. A review of studies of the first line is given in 
Table 2.

HDCT IN SECOND-LINE THERAPY
Therapeutic options of SDCT in patients with relapsed/
refractory testicular cancer can achieve long-term 
remission of 25% of the cases with vinblastine, eto
poside, ifosfamide (VeIP) protocol[24], to about 65% of 
patients treated with paclitaxel, ifosfamide, cisplatin 
(TIP)[25]. Considering the chemosensitivity of TGCC and 
relative modest results of conventional chemotherapy 
protocols, a large number of researchers have designed 
a variety of studies which applied HDCT with the support 
of haematopoietic autologous stem cell transplantation 
(Table 3). 

Rodenhuis et al[26] have demonstrated a 54% 
PFS after a median follow-up of 37 mo in a phase 
II study on 35 patients. In this study they used two 
cycles of a HDCT after the induction with conventional 
chemotherapy. Similar design study was published in 
2000[27]. Two cycles of intensification were used and the 
results were almost the same as in the previous study. 
The same year, Motzer et al[28] demonstrated overall 
survival of 54% after a median of nearly three years 
of follow-up. They used the induction regimen with 
paclitaxel and ifosfamide, and three cycles of high dose 
protocol carboplatin/etoposide (TI-CE). A slightly worse 
result was achieved in the study by Rick et al[29] which 
included only one cycle of high dose protocol after the 
induction with three cycles of TIP. Three-year survival 
in this study was 30%. The explanation for the slightly 
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The study which probably had the greatest impact 
on the practice of treating relapsed TGCC and utilization 
of HDCT was that by Einhorn et al[31].

One hundred and eighty-four patients were retro
spectively analysed, and 135 of 184 patients received 
two cycles of HD-CE protocol in the first relapse, while 
the other 49 were treated in second and subsequent 
relapses with the same protocol. After a median follow-
up of four years, progression free survival in patients 
treated in the first relapse was 70%. Lorch et al[32] 
compared one cycle of high dose therapy with three 
cycles of to HD-CE. After long-term follow-up PFS was 
49% vs 39% in favor of the sequential approach while 
overall survival did not differ between these two groups. 

worse result in this study could be the application of 
only one cycle of high dose protocol.

The only prospective, randomized phase III study 
by Pico et al[30] compared four cycles of conventional 
chemotherapy VeIP or VIP with three cycles of of SDCT 
with the addition of one cycle of high dose carboplatin/
etoposide (HD-CE) protocol. This study included a total 
of 263 patients. It did not demonstrate the superiority 
of the addition of one cycle of HDCT. Based on that 
study and study by Rick et al[29], it was concluded 
that one cycle of HDCT was not sufficient to achieve 
better results in treatment compared to conventional 
chemotherapy, so further studies had two or even three 
cycles of HDCT.
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  Ref. Type of study Number of 
patients

Protocol OS (%) PFS (%) Median 
follow-up (mo)

  Motzer et al[15] Phase II, prospective 28 VAB-6 × 2 + HD-CE × 2 57 46   31
  Motzer et al[16] Phase II, prospective 30 VIP × 2 + HD-CEC × 2 48 (5 yr) 48 (5 yr)   60
  Bokemeyer et al[17] Comparative, 

retrospective
147 (HDCT) vs 309 

(SDCT)
VIP × 2 + HD-VIP × 2 vs BEP/

VIP × 4
82 vs 72 (2 yr) 

P = 0.0184
75 vs 59 (2 yr) 

P = 0.0056
  21

  Schmoll et al[18] Phase I/II, prospective 221 VIP + HD-VIP × 3-4 73 (5 yr) 68 (5 yr)   48
  Hartmann et al[19] Phase I/II, prospective 52 VIP + T-HD-VIP 75 (5 yr) 64 (5 yr)   41
  Motzer et al[20] Phase III, prospective 108 (HDCT) vs 111 

(SDCT)
BEP × 2 + HD-CEC × 2 vs BEP × 

4
71 vs 72 (2 yr) 60 vs 57 (2 yr)   33

  Daugaard et al[23] Phase III, prospective 65 (HDCT) vs 66 
(SDCT)

VIP + HD-VIP × 3 vs BEP × 4 86.1 vs 83 (2 yr) 66.1 vs 48 (1 yr) NR

  Necchi et al[22] Phase II, prospective 43 (HDCT) vs 42 
(SDCT)

BEP × 2 + HD-CpE + HD-Carbo 
vs BEP × 4

54.8 vs 55.8 (5 yr) 59.3 vs 62.8 (5 yr) 114

 Table 2  Studies of first line high dose chemotherapy for poor prognosis patients

BEP: Bleomycin, etoposide, cisplatin; HD: High dose; HD-CE: High dose carboplatin, etoposide; HD-CEC: High dose carboplatin, etoposide, 
cyclophosphamide; HDCT: High dose chemotherapy; HD-VIP: High dose, etoposide, ifosfamide, cisplatin; NR: Not reported; OS: Overall survival; PFS: 
Progression free survival; SDCT: Standard-dose chemotherapy; VAB: Actinomycin D, vinblastine, cyclophosphamide, bleomycin, cisplatin.

  Ref. Type of study Number of patients Protocol OS (%) PFS (%) Median 
follow-up 

(mo)

  Rodenhuis et al[26] Phase II, prospective   35 Conventional chemotherapy 
+ HD-CTC × 2

NR 54 37

  Bhatia et al[27] Phase II, prospective   65 VeIP × 1-2 + HD-CE × 2 NR 57 39
  Motzer et al[28] Phase II, prospective   37 TI × 2 + HD-CE × 3 54 49 31
  Rick et al[29] Phase II, prospective   62 TIP × 3 + HD-CET × 1 30 (3 yr) 25 (2 yr) 36
  Pico et al[30] Phase III, prospective, 

randomized
135 (HDCT) vs 128 (SDCT) VIP/VeIP × 3 + HD-CE × 1 vs 

VIP/VeIP × 4
53 vs 53 (3 yr) 42 vs 35 (3 yr) 45

  Einhorn et al[31] Retrospective 135 HD-CE × 2 NR 70 48
  Lorch et al[32] Phase II, prospective, 

randomized
111 (sequentional HDCT) 

vs 105 (single HDCT)
VIPx 1 + HD-CE × 3 vs VIP × 

3 + HD-CE × 1
47 vs 45 (5 yr) 49 vs 39 (5 yr) 

P = 0.057
90

  Feldman et al[33] Phase I/II, prospective 107 TI × 2 + HD-CE × 3 52 (5 yr) 48 (5 yr) 61
  Lorch et al[34] Comparative, retrospective 821 (HDCT) vs 773 (SDCT) 53.2 vs 40.8 (5 yr) 

P < 0.001
49.6 vs 27.8 (2 yr) 

P < 0.001
NR

  Selle et al[36] Phase II, prospective   45 Epi-Tax × 2 + HD Thio-Tax + 
HD-ICE × 2

66% (2 yr) 50% (2 yr) 26

  Berger et al[37] Comparative, retrospective 95 (HDCT) vs 48 (SDCT) HDCT vs SDCT P = 0.931 Median 8 vs 42 
mo P < 0.001

NR

  Nieto et al[64] Phase II, prospective   42 BEC-GDMC + BEV + HD-ICE 65% (2 yr) 63% (2 yr) NR

Table 3  High dose chemotherapy as second line treatment

BEV: Bevacizumab; Epi-Tax: Epirubicine, paclitaxel; GDMC: Gemcitabine, docetaxel, melphalan, carboplatin; HD: High dose; HD-CE: High dose 
carboplatin, etoposide; HD-CET: High dose carboplatin, etoposide, thiotepa; HDCT: High dose chemotherapy; HD-CTC: High dose carboplatin, thiotepa, 
cyclophosphamide; HD-ICE: High dose ifosfamide, carboplatin, etoposide; NR: Not reported; OS: Overall survival: PFS: Progression free survival; SDCT: 
Standard-dose chemotherapy; Thio-Tax: Thiotepa, paclitaxel; TI: Paclitexel, ifosfamide; TIP: Paclitexel, ifosfamide, cisplatin; VeIP: Vinorelbine, ifosfamid, 
cisplatin; VIP: Etoposide, ifosfamide, cisplatin.
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Vaena et al[38] retrospectively analyzed the results of 
HDCT in platinum-refractory patients. Two-year PFS was 
32%, while two-year OS was 40%. Lotz et al[39] applied 
a different concept in refractory patients. In TAXIF study 
they prospectively treated 45 patients with absolutely 
refractory metastatic TGCC. After mobilization therapy 
with paclitaxel/epirubicin, they gave two cycles of high 
dose ifosfamide, carboplatin, etoposide (ICE) protocol. 
Three-year PFS and OS were 23.5%[39]. Kondagunta et 
al[40] prospectively treated 47 refractory patients with 
high dose chemotherapy. After a median of 40 mo of 
observation the PFS was 51%. The Study by Einhorn 
et al[31] treated 49 patients with HDCT in third and 
subsequent lines of chemotherapy. Time to disease 
progression and OS in these patients was 45% and 
55% respectively. In patients with third and subsequent 
lines of therapy, Lorch et al[41] reached five-year OS of 
17% at five-year PFS 27%. In a pilot study, we have 
treated 8 heavily pretreated patients with HDCT. We 
used a modified TAXIF protocol[39]. All patients had 
previously received four lines of different therapies. The 
median OS was 11 mo, with no long-term survival[42,43].

HDCT FOR EXTRAGONADAL GCC
Extragonadal GCC tumors occur most often in retroperi
toneum and mediastinum and have worse prognosis 
compared to TGCC[2]. Several studies with high dose 
chemotherapy administration has addressed this sub
group of patients (Table 5). Bokemeyer et al[44] have 
treated patients with primary mediastinal germ cell 
tumors (PMNSGCT) initially with high dose chemo
therapy. They included 28 patients and achieved 
56% and 64% PFS and OS, respectively. Banna et 
al[45] also used HDCT in the first line of treatment 
PMNSGCT and reached a three-year OS 41%. Rosti 
et al[46] retrospectively analyzed 22 patients who had 
primary extragonadal non-seminomatous germ cell 
tumor (EGNSGCT) and received HDCT. Five-year 
survival in this group of patients was 75%. Hartmann 
et al[47] and De Giorgi et al[48] in two studies published 
in 1999 showed retrospective results of a treatment of 

Feldman et al[33] demonstrated in a prospective study 
of 107 patients a five-year PFS of 48% using the TI-CE 
protocol with three cycles of high dose chemotherapy.

A multicenter retrospective analysis of 1984 patients 
by Lorch et al[34] compared the standard and high 
dose chemotherapy in patients with metastatic TGCC 
after progression on first-line chemotherapy. Patients 
were divided into five prognostic groups according to 
previously established criteria: Very low risk, low risk, 
intermediate risk, high and very high risk[35]. Total of 
1594 patients had all the data necessary for analysis, 
773 of which received conventional chemotherapy, 
while 821 patients received HDCT. Two-year PFS and 
five-year OS was longer in the group with HDCT: 49.6% 
vs 27.8% (HR = 0.44; P < 0.001), 53.2% vs 40.8% 
(HR = 0.65; P <0.001). This difference was seen in all 
prognostic groups except in low-risk group[34].

Selle et al[36] in the study TAXIF II demonstrated 
efficiency of a complex protocol which included several 
high dose cycles of paclitaxel, thiotepa, ifosfamide, 
carboplatin and etoposide, after induction with a 
combination of paclitaxel/epirubicin. The median PFS 
was 22 mo and OS was 32 mo. Two-year PFS was 50%, 
with Kaplan-Meier curve that showed a plateau at that 
value, and two-year OS of 66%[36]. German Testicular 
Cancer Study Group retrospectively analyzed 143 
patients and compared the HDCT (n = 95) with CDCT (n 
= 48). They showed a significantly longer median PFS 8 
mo vs 42 mo (P < 0.001) with HDCT, but this difference 
was not seen when they analyzed overall survival[37].

HDCT FOR REFRACTORY AND HEAVILY 
PRETREATED PATIENTS
Patients who progressed during standard cisplatin based 
chemotherapy have the worst prognosis. This group 
of patients also includes those who have not been 
cured after two lines cisplatin protocol. For this group of 
patients there have been several studies that, despite 
the very poor prognostic characteristics, showed some 
benefit from HDCT (Table 4).
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  Ref. Type of study Number of 
patients

Setting Protocol OS (%) PFS (%) Median 
follow-up (mo)

  Vaena et al[38] Retrospective 80 Second and subsequent lines, 
refractory

HD-CE × 2 40 (2 yr) 32 (2 yr) 24

  Lotz et al[39] Prospective 45 Second and subsequent lines, 
refractory/absolute refractory

Epi-Tax × 2 + HD Thio-
Tax × 1 + HD-ICE × 2

23.5 (3 yr) 23.5 (3 yr) 36

  Kondagunta et al[40] Prospective 47 Second and third line, refractory/
absolute refractory

TI × 2 + HD-CE × 3 NR 51 40

  Einhorn et al[31] Retrospective 49 Third or subsequent HD-CE × 2 55 45 48
  Lorch et al[41] Retrospective 49 Third or subsequent, refractory Various 17 (5 yr) 26 (5 yr) 48
  Popovic et al[42] Prospective   8 Forth or fifht line, refractory Epi-Tax × 2-3 + 

HD-CE × 1-2
Median 
11 mo

NR NR

Table 4  High dose chemotherapy for third or subsequent lines, refractory/absolute refractory

Epi-Tax: Epirubicine, paclitaxel; HD: High dose; HD-CE: High dose carboplatin, etoposide; HDCT: High dose chemotherapy; HD-ICE: High dose 
ifosfamide, carboplatin, etoposide; NR: Not reported; OS: Overall survival; PFS: Progression free survival; SDCT: Standard-dose chemotherapy; Thio-Tax: 
Thiotepa, paclitaxel; TI: Paclitexel, ifosfamide.
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and poor prognosis had 51% FFS after HDCT, 27%, 
and 5% (P < 0.001) respectively. The International 
Prognostic Factors Study Group (Table 6) analyzed data 
of 1984 patients with TGCC, who have progressed after 
at least three cycles of cisplatin based chemotherapy. 
Patients’ data were collected from 38 centers worldwide 
and 1594 patients had sufficient data for analysis. 
Patients were treated with SDCT or HDCT based on 
carboplatin. Factors that influenced the outcome were: 
Site of primary tumor, previous response to therapy, 
progression free survival on previously applied therapy, 
alpha-fetoprotein and HCG above 1000 and the presence 
of metastases in the liver, bone and/or bone[35].

Based on these factors, patients were divided into 
five categories: Very low risk with a two-year PFS of 
72%, low risk with PFS 51%, medium risk with 40%, 
high risk with 26% and very high risk with 6%. This 
is followed by the already mentioned retrospective 
analysis by Lorch et al[34] which showed benefits in all 
prognostic categories, except in the low risk group. 
Given that the benefit was demonstrated even in the 
category of very low risk, there is a question in which 
prognostic groups, in patients with relapsed GCC, HDCT 
should be applied and which groups should receive 
conventional chemotherapy. Opinions differ greatly, 
and certain groups of authors believe that high dose 
chemotherapy should be applied in all patients with 
relapsed GCC, while some groups believe that patients 
with a low risk should be treated with the conventional 
chemotherapy in the second line, and HDCT should be 
applied in patients with medium and higher risk as well 
as in those with a low risk who relapse after second-line 
of conventional chemotherapy[50]. Our position is closer 
to the second opinion.

STEM CELLS MOBILISATION AND 
OPTIMAL PROTOCOL OF CONDITIONING
Collection of sufficient numbers of hematopoietic stem 
cells is a key step in the further implementation of 

EGNSGCT after progression on first-line therapy. Results 
were rather modest with 12%-14% long term survival.

RISK ADAPTED APPROACH FOR USING 
HDCT
The first prognostic score related to the outcome of 
a HDCT was developed Beyer et al[49]. They have 
analyzed a series of 310 patients treated with HDCT in 
four centers in Europe and the United States and by 
multivariate analysis of prognostic factors determined 
the data which had influenced the outcome. Progressive 
disease before HDCT, primary mediastinal localization, 
refractory or absolute refractory disease to cisplatin 
therapy and the value of human chorionic gonadotropin 
(HCG) over 1000 were independent factors for failure-
free survival (FFS) after HDCT. These parameters 
separated patients into groups with good, intermediate 
and poor prognosis. Patients with good, intermediate 
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  Ref. Type of study Number of 
patients

Setting Protocol OS (%) PFS (%) Median 
follow-up (mo)

  Bokemeyer et al[44] Phase I/II, 
prospective

  28 PMNSGCT, first line VIPx 1 + HD-VIP × 
3

64 (5 yr) 56 (5 yr) 43

  Banna et al[45] Prospective   21 PMNSGCT, first line BEP or VIP × 4 + 
HD-CEC × 1

41 (3 yr) 43 (5 yr) 52

  Rosti et al[46] Retrospective   22 EGCT, poor prognosi, 
first line

Various 75 (5 yr) 67 (5 yr) 50

  Hartmann et al[47] Retrospective 142 EGNSGCT, salvage Various 12 (3 yr) 
(PMNSGCT only)

11 (3 yr) 
(PMNSGCT only)

45

  De Giorgi et al[48] Retrospective   59 EGNSGCT, salvage Various 14 (PMNSGCT only) 14 (PMNSGCT 
only)

58

Table 5  High dose chemotherapy for extragodadal germ cell cancer

EGCT: Extragonadal germ cell tumor; EGNSGCT: Extragonadal non-seminomatous germ cell tumor; HD: High dose; HD-CEC: High dose carboplatin, 
etoposide, cyclophosphamide; HDCT: High dose chemotherapy; HD-ICE: High dose ifosfamide, carboplatin, etoposide; NR: Not reported; OS: Overall 
survival; PFS: Progression-free survival; PMNSGCT: Primary mediastinal non-seminomatous germ cell tumor.

  Parameter Score points

0 1 2 3
  Primary site Gonadal Extragonadal - Mediastinal 

non-
seminoma

  Prior response CR/PRm- PRm+/SD PD -
  PFI, mo > 3 ≥ 3 - -
  AFP salvage Normal ≤ 1000 > 1000
  HCG salvage ≤ 1000 > 1000 - -
  LBB No Yes - -
  Score sum (0-10)
  Regroup into categories: (0) = 0; (1 or 2) = 1; (3 or 4) = 2; (5 or more) = 3
  Add histology points: Seminoma = -1; Non-seminoma or mixed = 1
  Final prognostic score: -1 = Very low risk; 0 = Low risk; 1 = Intermediate 
  risk; 2 = High risk; 3 = Very high risk

Table 6  International Germ Cell Cancer Collaborative Group-2 
prognostic criteria for relapsed germ cell cancer patients

AFP: Alpha-fetoprotein; CR: Complete remission; HCG: Human chorionic 
gonadotrophin; LBB: Liver, brain, bone; PD: Progressive disease; PFI: 
Progression free interval; PRm-: Partial remission, markers negative; 
PRm+: Partial remission, markers positive; SD: Stable disease.
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smaller cohorts and three case studies[52-60] showed the 
efficiency of plerixafor in heavily pretreated patients with 
TGCC. Worel et al[55] showed the efficiency of plerixafor 
in 33 patients with non-hematologic diseases, of which 
11 were metastatic GCC. A total of 28 (85%) patients 
gathered a sufficient number of stem cells. Kobold et 
al[57] showed a series of 6 patients who had previously 
received chemotherapy for 3.5 lines metastatic GCC and 
were not able to mobilize a sufficient number of stem 
cells for transplantation. After the use of plerixafor, five 
of these six patients mobilized an adequate number of 
cells for a minimum one transplant. Kosmas et al[52], in a 
pilot study, showed stem cells mobilization in pretreated 
patients with GCC, in which 7 out of 10 patients could 
yield an adequate number of hematopoietic stem cells 
for transplantation. The remaining three, poor-mobili
sers, have amassed an adequate number of stem 
cells after applying plerixafor. In all these publications, 
engraftment of stem cells obtained after the mobilization 
with plerixafor was adequate.

Despite attempts with different drugs that would 

a HDCT, and the possibility of treating patient with 
multiple cycles of HDCT. Combination of chemotherapy 
with granulocyte growth factor (G-CSF) is a standard for 
the mobilization of hematopoietic stem cells. However, in 
heavily pretreated patients, this method of mobilization 
is not enough to collect a sufficient number of stem 
cells. In our cohort of heavily pretreated patients median 
collected hematopoietic stem cells was 3.6 × 106 cells/
kg of BW. Consequently, it was not possible for us to 
apply tandem transplantation in some patients[43]. Some 
other authors as well conclude that the mobilization with 
chemotherapy + G-CSF was inadequate for obtaining 
a sufficient number of stem cells, especially in cases of 
highly pretreated patients[4,51-53]. 

Plerixafor is the CXCR4 receptor antagonists which 
separate hematopoietic stem cells from bone marrow 
stroma and can lead to better mobilization of these cells 
into peripheral blood[54]. After the positive outcome in 
poor-mobilisers with lymphoma and multiple myeloma 
increased enthusiasm for using plerixafor to mobilize 
hematopoietic stem cells in patients with TGCC. The four 
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PD after initial systemic therapy

Eligibility

Histologically-confirmed GCT
PD following 1st-line chemo
Prior treatment included ≥ 3 but
≤ 6 cycles of cisplatin-based chemo
Adequate organ function for HDCT
Any primary site

Randomization
1: 1

(n  = 334)
IGCCCG-2 risk group
Country of enrollment

Stratification

n  = 16 n  = 16

TIP (ARM A)

Cycles 1-4 (g21d)

Paclitaxel 250 mg/m2 Ⅳ over 24 h (d1)
Ifosfamide 1500 mg/m2 Ⅳ + mesna support (d2-5)
Cisplatin 25 mg/m2 Ⅳ (d2-5)
Peg-G-CSF 6 mg SQ (d6) or G-CSF 5 mcg/kg (d7-13)

TI-CE (ARM B)

Cycles 1-2 (g14d)

Paclitaxel 250 mg/m2 Ⅳ over 24 h (d1)
Ifosfamide 2000 mg/m2 Ⅳ + mesna support (d2-4)
G-CSF 10 mcg/kg per day (d4-14)
Stem cell collection (d11-14)

Carboplatin AUC = 8 Ⅳ (d1-3)
Etoposide 400 mg/m2 Ⅳ(d1-3)
Stem cell infusion
G-CSF 10 mcg/m2 per day (d3-ANCR)
or Peg-G-CSF 6 mg SQ once (d5)

Cycles 3-5 (g21d)

Primary endpoint:                               Progression free survival at 2 yr

Secondary endpoints:                         Overall survival at 3 yr
                                                        Favorable response rate (CR + PR-neg markers)
                                                        Toxicity
                                                        Prospective evaluation of the IGCCCG-2 prognostic mode
                                                        Biologic correlates

Figure 1  Training intervention and genetics of exercise response study design[62]. PD: Progressive disease; GCT: Germ cell tumors; HDCT: High dose 
chemotherapy; G-CSF: Granulocyte colony-stimulating factor.
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and high risk according International Germ Cell Cancer 
Collaborative Group-2 score[35]. TIGER study might give 
a definitive answer whether HDCT should be a standard 
treatment for these patients, and a better understanding 
of tumor biology, detection of markers of resistance 
to cisplatin, as well as if adding target therapy such as 
bevacizumab should improve the treatment of GCT, 
especially in the group of patients with a poor prognosis.
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Abstract
With the advent of safer and more efficient gene 
transfer methods, gene therapy has become a viable 
solution for many inherited and acquired disorders. 
Hematopoietic stem cells (HSCs) are a prime cell 
compartment for gene therapy aimed at correcting 
blood-based disorders, as well as those amenable to 
metabolic outcomes that can effect cross-correction. 
While some resounding clinical successes have recently 
been demonstrated, ample room remains to increase 
the therapeutic output from HSC-directed gene 
therapy. In vivo  amplification of therapeutic cells is one 
avenue to achieve enhanced gene product delivery. 
To date, attempts have been made to provide HSCs 
with resistance to cytotoxic drugs, to include drug-
inducible growth modules specific to HSCs, and to 
increase the engraftment potential of transduced HSCs. 
This review aims to summarize amplification strategies 
that have been developed and tested and to discuss 
their advantages along with barriers faced towards 
their clinical adaptation. In addition, next-generation 
strategies to circumvent current limitations of specific 
amplification schemas are discussed.

Key words: Gene therapy; Hematopoietic stem cells; 
In vivo  selection; Chemical Inducer of Dimerization; 
Chemo-selection; Lentivirus
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Core tip: Though hematopoietic stem cell (HSC)-
directed gene therapy is becoming a viable therapy for 
many disorders, optimization of clinical output needs 
improvement. One approach to circumvent lower 
efficiencies of gene transfer and/or engraftment is to 
apply in vivo  amplification strategies. Here we review 
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various modules that have been developed and tested 
to mediate amplification of HSCs after gene transfer.

Nagree MS, López-Vásquez L, Medin JA. Towards in vivo 
amplification: Overcoming hurdles in the use of hematopoietic 
stem cells in transplantation and gene therapy. World J Stem 
Cells 2015; 7(11): 1233-1250  Available from: URL: http://www.
wjgnet.com/1948-0210/full/v7/i11/1233.htm  DOI: http://dx.doi.
org/10.4252/wjsc.v7.i11.1233

INTRODUCTION
Hematopoietic stem cells (HSCs) are long-term, multi
potent, self-renewing cells that reside in specialized 
bone marrow (BM) niches and are capable of genera
ting and repopulating the entire spectrum of blood 
and lymphoid cells[1,2]. Due to these unique properties, 
HSCs are targets for therapy for a number of hema
tological malignancies and many inherited blood dis
orders including β-thalassemia, sickle cell anemia, 
chronic granulomatous disease, and severe combined 
immunodeficiencies (SCID-X1 and ADA-SCID) among 
others[3-8]. Additionally, HSC transplants have been used 
in attempt to correct other monogenic deficiencies, such 
as the mucopolysaccharidoses and Gaucher disease[9-11].

There are still numerous drawbacks of allogeneic 
transplantation despite its clinical utility. Often, HSCs 
are collected from the patient’s sibling, parents, or a 
matched donor. HLA-identical donors can be difficult to 
find and there are risks involved with the use of HLA-
haploidentical or non-identical donors including rejection 
or poor engraftment of HSCs along with the occurrence 
of graft-versus-host disease (GVHD). Conditioning is 
also necessary for engraftment of HSCs, which can 
increase the risk of infections[12-14]. As a consequence, 
HSC allo-transplantation is still considered a fairly risky 
intervention and is applied with caution in the clinic.

Gene therapy targeting patient-derived HSCs is a 
viable solution for some monogenic diseases[15] (Figure 
1A). Autologous transplantation has been well studied 
and detailed clinical protocols are available for this 
procedure[3]. Additionally, autologous transplantation 
does not have a risk of GVHD associated with it and 
immune reconstitution after ablation occurs in a shorter 
period of time[16,17]. Gene transfer into HSCs has been 
traditionally achieved by stable transduction of target 
cells using replication-incompetent retroviruses[15]. 
There the expression of transgenes can be driven by 
constitutive or tissue-specific promoters, giving a range 
of control over the intended therapeutic intervention. 
Next-generation strategies are also being developed 
to correct original nucleotide mutations with the use of 
gene-editing technologies, such as TALENs and CRISPR-
Cas9, though these remain to be optimized for clinical 
application[18-20].

Over 2000 clinical gene therapy trials have been 
conducted to date[4,15,21,22]. Most earlier trials employed 

onco-retroviral vectors, which have shown to be clinically 
disadvantageous because of their tendency to integrate 
close to genes that are important for cell growth and 
proliferation, enhancing their expression and increasing 
the likelihood of developing leukemias[4,15,23-25]. So far 
it appears that this genotoxicity and tendency towards 
insertional mutagenesis has been diminished with the 
introduction of HIV-1-derived, replication-incompetent, 
and self-inactivating lentiviral vectors (LVs), which do 
not show preferential integration near genes involved in 
cell growth and/or proliferation[4,26-30].

There are other caveats to using HSCs as target 
cells for gene therapy that are a result of their unique 
biology. HSCs can be more difficult to transduce than 
some other cell types, partially owing to the difficulty of 
culturing them ex vivo. Longer-term culturing ensures 
that the cells will differentiate. Transduction also requires 
transient activation of the cell cycle, especially with 
onco-retroviral-based vectors since their downstream 
integration requires a breakdown of the nuclear mem
brane. As a consequence of ex vivo manipulation and 
cell-cycle activation, transduced HSCs often have lower 
engraftment potential and reduced longevity once 
engrafted. These additional limitations have also been 
partially addressed with the use of LVs, which need 
shorter transduction times and do not require target 
cells to be fully cycling[31-35].

In spite of the progress made in HSC gene therapy 
with the implementation of recombinant LVs, there is 
ample room for additional improvements to increase 
therapeutic efficacy. Many active fields of research are 
geared towards optimizing gene therapy for HSCs. 
Efforts are under way to hone GMP-grade LV production 
to subsequently allow modulation of multiplicities of 
infection at a clinical level, whilst reducing the cost of 
gene therapy[36,37]. Improvements are also being made 
to protocols for ex vivo handling and culture of HSCs 
with studies demonstrating enhanced transduction 
with shorter culture times and less activation, which 
have resulted from better understanding of the biology 
of HSCs and their BM microenvironments[4,38,39]. In 
addition, in-depth studies of HSC biology have identified 
molecular targets for drugs that allow more efficient 
and safer mobilization of patient stem cells[40-42]. The 
gene therapy field has also sought out methods to 
provide extrinsic selective pressure for transduced cells, 
though clear clinical utility of any system has yet to be 
demonstrated, especially in the context of reconstitutive 
HSC-directed gene therapy.

Reconstitution of deficient gene products in some 
inherited blood diseases leads to innate positive selec
tive pressure in vivo for mature cells derived from 
transduced progenitor cells, especially when the gene 
product is necessary for the development or function 
of those cells. For example, reconstitution of the 
common gamma chain (gc/CD132) in SCID-X1 allows 
immune cells to develop normally, thus progeny cells 
are derived from successfully transduced HSCs almost 
exclusively[17,43-45]. Selectivity for donor-derived late-stage 
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erythrocytes has also been observed in β-thalassemia 
patients that have received allo-transplantations; and 
a similar trend has been observed with gene therapy in 
mouse models of the disorder[7,46,47]. HSC gene therapy 
may therefore become routine clinical practice some 
day for patients suffering from such hematological 
disorders that do not have matched donors, considering 
the innate advantage of such reconstituted cells.

There is also great potential of HSC-directed gene 
therapy for the treatment of non-hematological, mono
genic enzyme deficiencies, such as those that lead to 
lysosomal storage disorders (LSDs) and other metabolic 
indications. In most cases, functional enzymes expressed 
after gene transfer into LSD patient cells have the 
potential to be secreted and subsequently taken up by 
other cells that do not have the transgene, a process 
termed metabolic cooperativity or “cross-correction”. 
This occurrence has been demonstrated for a number of 
LSDs including Gaucher, Farber, and Fabry diseases[48-51]. 
The current standard of care for many LSDs, enzyme 
replacement therapy (ERT), is actually a corollary of 
this phenomenon. HSC-directed gene therapy presents 
numerous putative advantages over conventional 
ERT, including sustained and continuous secretion of 
therapeutic enzyme by ubiquitously circulating cells, 
improvements in patient lifestyle by reducing the 
need for biweekly enzyme infusions, and overall cost 
savings. It is necessary to tailor HSC gene therapy for 
individual patients, however, which is incongruous with 
many current industrial business models, highlighting 
the necessity of shifting industrial focus from general to 

personalized therapeutics.
Our laboratory is currently pursuing first-in-man 

HSC-based gene therapy for Fabry disease and is 
concomitantly demonstrating the utility of gene therapy 
for amelioration of Farber disease. However, in these 
cases, as with many such target disorders, expression 
of the functional gene product imparts no innate 
growth advantages to transduced cells. Vector-encoded 
transgenes alone or in tandem that allow extrinsic 
selective pressure to be applied in vivo, leading to an 
increased percentage of vector-transduced cells over 
background could therefore be highly beneficial in 
the context of HSC gene therapy for LSDs and many 
other monogenic deficiencies. Additionally, application 
of positive selective pressure could result in cell popu
lations that have higher transgene expression, resulting 
in an increased therapeutic benefit.

In this review, we aim to summarize the various 
strategies that have been employed to date in attempts 
to increase vector-transduced HSC numbers, thereby 
increasing the efficacy of HSC-targeted gene therapy. 
In addition, we will discuss putative next-generation 
strategies aimed at addressing current shortcomings 
of applying selective positive pressure on transduced 
HSCs.

EX VIVO PRE-SELECTION STRATEGIES
Resistance to cytotoxic drugs
Selection of genetically modified cells is a compilation 
of laboratory techniques commonly applied to acquire 
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Figure 1  General outline of ex vivo hematopoietic stem cell gene therapy and pre-selection methods. A: CD34+ cells are enriched by CliniMACS after 
apheresis of peripheral blood of patients following mobilization. These cells are then briefly activated ex vivo and can be modified, commonly by viral transduction, to 
express a desired therapeutic protein. Cells are then assessed for quality control metrics and engrafted into patients following ablation; B: Pre-selection of transduced 
cells. Cells can be engineered to express an inert surface marker that can be used to immuno-enrich for the transduced population prior to engraftment. This strategy 
can increase the chances of hematopoietic reconstitution from the transduced population. Alternatively, cells can be given resistance to cytotoxic drugs. Pre-treatment 
of the cells ex vivo with drugs can kill off the non-transduced population. Ex vivo treatment allows the use of drugs that would normally not be efficacious in the bone 
marrow environment at a tolerable dose.
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MACS enrichment of ∆LNGFR-marked HSCs in vitro[60] 
and similarly marked lymphocytes in clinical trials[69-71]. 
In an allograft experiment with a mouse model of 
Fabry disease, BM mononuclear cells were transduced 
with a therapeutic vector capable of co-expressing 
α-galactosidase A and huCD25[67]. Pre-selection of 
transduced cells by MACS led to a long-term increase 
of huCD25-marked peripheral blood mononuclear cells 
when compared to controls. Therapeutic benefit of pre-
selection was demonstrated by a higher α-galactosidase 
A activity in plasma and most organs. Additionally, 
the utility of pre-selection in long-term HSC marking 
has been demonstrated in some cases by secondary 
transplant experiments[64,67].

Since pre-selection strategies reduce the size of the 
transduced cell population[60], however, their application 
to HSC gene therapy can be critically limited if there 
are difficulties in collecting large numbers of patient 
HSCs. Ex vivo expansion of HSCs is currently not a 
viable solution in order to compensate for reduced cell 
numbers since over-activation can have detrimental 
effects on their “stemness” and engraftment potential[31]. 
In addition, pre-selection increases time of ex vivo 
manipulation, which increases costs and risks of conta
mination. It is therefore difficult to obtain a post-sele
ction yield high enough to exert a therapeutic effect. 
Nevertheless, these studies demonstrate the benefit 
of enriching transduced cells ex vivo and that clinical 
translation may be augmented by higher yields of HSCs 
during their acquisition.

IN VIVO CHEMO-SELECTION 
STRATEGIES
Various proteins have been shown to grant variable 
degrees of chemoprotection in the context of cancer 
therapy, such as ATP-binding cassette, sub-family B, 
member 1 (ABCB1), dihydrofolate reductase (DHFR), 
and O6-alkylguanine DNA alkyltransferase (MGMT). 
Overexpression of these proteins in HSCs has been 
pursued with the aim of protecting the hematopoietic 
compartment from the severe toxicity of many cytotoxic 
drugs used in cancer chemotherapy[72].

Pan-resistance to chemotherapeutic agents using 
ABCB1
ABCB1 [also known as multidrug resistance protein 1 
(MDR1); or P-glycoprotein 1 (P-gp1)] is a cell membrane 
transporter with broad specificity that pumps foreign 
compounds out of the cell and is also involved in lipid 
translocation[73,74]. ABCB1 mediates chemoresistance in 
cancer cells in which its expression is upregulated[75]. 
Overexpression of ABCB1 in murine BM was shown to 
confer protection to many chemotherapeutic agents 
such as vinblastin, doxorubicin, daunomycin, taxol, 
vincristine, etoposide, actinomycin D, colchicine, and 
paclitaxel[76,77]. Early studies with mouse allografts 
showed in vivo selection of hematopoietic cells derived 

polyclonal cell lines after gene transfer. To achieve this, 
target cells are engineered to express proteins that 
confer resistance to drugs or proteins that allow selection 
by immune-affinity methods such as fluorescence- 
and magnetic-activated cell sorting (FACS and MACS, 
respectively)[52,53] (Figure 1B). Ideally, proteins expressed 
for enrichment should have low or no endogenous 
expression in target cells, and should have no effect 
on the biology of the transduced cells or their progeny. 
Traditionally, xenogenic enzymes have been used to 
confer cells with resistance to pan-toxic drugs in this 
context. For example, neomycin and hygromycin pho
sphotransferases (NeoR and HygR) derived from bacteria 
are commonly used to provide protection against 
neomycin and hygromycin B, respectively[54,55]. As 
such, first attempts at conferring resistance to cells for 
engraftment were made with these enzymes. However, 
the use of xenogenic enzymes in clinical protocols has 
been limited by their tendency to be highly immunogenic 
once such modified cells are engrafted[56-58]. To address 
this, mutants of various endogenous enzymes have 
been used to confer resistance to other cytotoxic drugs. 
These enzymes are discussed in the section below in the 
context of in vivo selection. However, most drugs require 
prolonged ex vivo culture to effectively enrich for the 
gene-modified population. Prolonged ex vivo handling 
of HSCs reduces their usefulness post-selection due to a 
loss of “stemness” and engraftment potential[31]. Thus, 
drug-mediated ex vivo pre-selection may not be ideal in 
current iterations for clinical purposes.

Cell-surface marking for immuno-enrichment
Transduced HSCs can also be enriched ex vivo with 
the use of cell-surface markers. Selectable cell-surface 
markers that have been studied for HSC marking and 
pre-selection include truncated forms of the human low-
affinity nerve growth factor receptor (∆LNGFR)[59-62], the 
heat stable antigen (HSA/CD24)[48,50,63,64], the human 
lymphocyte antigen T1 (CD5)[65,66], and the human 
interleukin-2 receptor alpha chain (IL-2Rα/huCD25)[67]. 
In mouse allograft experiments, long-term engraftment 
of transduced and FACS-enriched BM cells along with 
hematopoietic cell marking has been demonstrated 
using CD24[64] and CD5[66] as selectable markers. 
However, it must be noted that those experiments did 
not include a control in which no pre-selection was 
applied prior to engraftment. This makes it difficult to 
unequivocally assess the contribution of pre-selection to 
the engraftment and repopulating ability of transduced 
cells.

Despite positive results in pre-clinical settings with 
the use of FACS for enrichment, it has more detrimental 
effects on cell survival, viability, and function than 
MACS, even though FACS can lead to higher purity[68]. 
It is also difficult to physically and/or temporally achieve 
enrichment of large numbers of clinically-applicable 
cells by FACS. As such, MACS and analogous schemas 
are preferred for enrichment prior to engraftment in 
patients. Over 90% purity has been achieved with 
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toxicities are well documented when such compounds 
are indicated for treatment of cancer patients[99-102]. 
These toxicities and the lack of positive evidence 
suggest that DHFR-mediated in vivo selection may not 
be useful for HSC gene therapy targeting monogenic 
diseases. Instead, it may be better suited to prevent 
graft rejection after HSC transplants, because antifolates 
would spare highly-proliferating T lymphocytes 
arising from transduced donor HSCs while eliminating 
alloreactive recipient T cells as shown recently in 
vitro[103] and in a canine model[104].

Selectivity using O6BG-resistant MGMT
MGMT repairs DNA damage by removing adducts from 
the O6 position of guanine, and thus confers resistance 
to the cytotoxic effects of alkylating agents such as 
dacarbazine, temozolomide (TMZ), procarbazine, and 
nitrosoureas such as 1,3-bis-(2-chloroethyl)-1-nitrosourea 
(BCNU)[105,106]. MGMT is expressed at very low levels in 
the BM[107,108]. MGMT overexpression was attempted in 
murine[105,109,110] and human[105] HSCs to confer BCNU 
resistance. A modest increase in resistance to BCNU 
was achieved in murine progenitors, both in vitro and 
in vivo[105,109,110]. Human HSCs, however, had poor 
resistance in vitro[111]. In order to sensitize the HSC 
compartment to alkylating drugs to achieve better in 
vivo selection, BCNU or TMZ have been co-administered 
with O6-benzylguanine (O6BG), a pseudosubstrate that 
irreversibly inactivates endogenous MGMT[112]. O6BG-
resistant mutants MGMTP140K and MGMTG156A have also 
been studied[113]. The former is more commonly used in 
selection strategies, despite having a modest reduction 
in its DNA-repair activity compared to the wild-type 
enzyme[113]. Indeed, MGMTP140K has been shown to 
mediate selection of transduced HSCs in murine and 
canine allograft and autograft models[114-117], and in 
murine xenograft models with human HSCs[30,118,119]. 
However, high dose administration of BCNU and/or TMZ 
has been shown to cause toxicity[120-122]. For example, 
selection experiments have shown up to 75% mortality 
in mice treated with TMZ[120] or BCNU[121], and 88% 
mortality in rhesus macaques treated with TMZ[122].

Optimization of drug dosing by co-administering 
high doses of O6BG with low doses of BCNU or TMZ 
has partially ameliorated the cytotoxic effects of the 
alkylating drugs and allowed better engraftment of 
HSCs transduced at low MOIs[121,123,124]. The improve
ments in survival are thought to be a result of lower
ing the threshold of MGMT expression required for 
resistance, which allows partial fulfillment of condi
tions expected in clinical trials. This dose-adjusted 
protocol has conferred successful chemoprotection of 
the hematopoietic compartment in a canine[125] and a 
nonhuman primate model[126], with no significant toxicity 
reported in the former. Despite survival of the macaques 
in the latter study, administration of chemoselective 
agents led to substantial peripheral blood cell depletion 
and enrichment of different blood lineages was 
highly variable[126]. In the same study, use of a multi-

from ABCB1-overexpressing HSCs, but it is unclear 
whether selection occurred at the stem cell level[78,79]. 
Later studies demonstrated successful selection of 
human HSC-derived cells in the BM of murine xenograft 
models[80,81]. In contrast to these outcomes, early 
autograft experiments in large animals and clinical 
trials demonstrated rather disappointing results. In a 
canine model, high toxicity was documented despite 
long-term ABCB1+-peripheral blood cell enrichment 
in the only surviving animal[82]. In a study involving 
non-human primates, there was low initial ABCB1 cell 
marking, drug-induced neutropenia, and no significant 
increase of neutrophil counts after drug treatment[83]. 
In clinical trials, selection after drug treatment has been 
low and predominantly transient, albeit with little or no 
toxicity[84-87]. The inefficacy of ABCB1-mediated selection 
may have been due to insufficient expression of the 
transgene in hematopoietic cells[88]. Onco-retrovirally-
mediated expression of ABCB1 was found to be 
unstable due to cryptic splice sites within the cDNA[89]. 
This issue was resolved by introducing a silent mutation 
that inactivates that splice site, which subsequently 
increased expression of onco-retrovirally-delivered 
ABCB1[90,91]. Nevertheless, the robustness of this system 
must be reliably demonstrated in large animal models 
before it can be considered a feasible strategy to 
enrich HSCs after transplant for clinical gene therapy in 
patients.

Antifolate resistance using mutant DHFR
DHFR catalyzes the reduction of dihydrofolate to tetrahy
drofolate, a precursor required for the de novo synthesis 
of purines and some amino acids. Antifolate drugs 
such as methotrexate (MTX) and trimetrexate (TMTX) 
inhibit DHFR activity, thus blocking cell proliferation and 
promoting apoptosis in dividing cells. HSCs and myeloid 
progenitor cells, however, can employ nucleotide salvage 
mechanisms to escape antifolate toxicity[92]. In order to 
overcome this, the nucleoside transport inhibitor nitro
benzylthioinosine 5’-monophosphate (NBTI/NBMPR-P) 
has been used in combination with MTX or TMTX[92]. 
Transplanted HSCs have been engineered to over
express mutant forms of DHFR, such as DHFRL22Y, that 
are resistant to antifolate agents[93]. In vivo enrichment 
of transduced HSCs in murine allogeneic transplants 
has been demonstrated[94,95]. However, translation of 
this method into large animal models has been rather 
discouraging. In a study in rhesus macaques that used 
a recombinant onco-retrovirus to deliver DHFRL22Y, 
enrichment of cells derived from the transduced graft 
was only transient, indicating poor selection at the HSC 
level[96]. To address this problem, enrichment of CD34+ 
progenitor cells in a xenograft transplant of human 
embryonic stem cells (hESCs) into mice has been 
demonstrated, though this enrichment was only modest 
and no clinically established methods to transplant 
hESCs exist[97]. High toxicity and lethality has been 
documented in antifolate-mediated selection studies in 
dogs and rhesus macaques[96,98]. Additionally, antifolate 
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encoding a short-hairpin RNA (shRNA) that targets 
HPRT can confer resistance to 6TG in vitro[134]. The same 
knockdown strategy has shown effective enrichment in 
murine allograft models[135] and human HSC xenograft 
models[136]. This approach has some advantages over 
other drug selection methods described above. 6TG can 
be used for both pre-conditioning and chemoselection, 
and the shRNA sequence is very short, which makes 
it easier to include in a dual-gene vector. Also, ample 
information about 6TG dosage and toxicity is available 
because it has been used in the clinic for decades[137]. A 
recent study suggests, however, that this method may 
be limited to enrichment of committed progenitor cells, 
which would decrease long-term efficacy with single-
dosing regimens[136]. Also, hereditary HPRT deficiency is 
the cause of Lesch-Nyhan syndrome, which has been 
associated with megaloblastic anemia[138]. Therefore, it is 
necessary to carefully assess long-term consequences of 
HPRT deficiency in the hematopoietic lineage, especially 
in large animal models. Nevertheless, selective induction 
of an enzyme deficiency, as demonstrated by virally-
induced HPRT knockdowns, may be a powerful method 
of introducing selective pressure following gene therapy.

ENGINEERED INDUCIBLE GROWTH AND 
SELECTION MODULES
Cytotoxic chemical inducers of dimerization
Discoveries relating to functional consequences of 
forcing proteins such as receptor tyrosine kinases into 
proximity with each other have allowed the use of 
protein engineering to confer specific biological charac
teristics to a subset of modified cells with exposure 
to various stimuli. For example, chemical inducers of 
dimerization (CIDs) are synthetic compounds that 
can be used to induce dimerization of proteins that 
are expressed as fusions to CID-binding domains 
(CBDs). With the use of CBDs, cell-fates can be made 
dependent upon the addition of CIDs (Figure 2A). One 
of the first examples of such a system utilized FK1012, 
a synthetic dimer of the immunosuppressant FK506 
(Tacrolimus)[139]. Proteins that can modulate cell biology, 
including proliferation[140] and apoptosis[141], have been 
engineered from growth factor receptors and the FK506 
binding domain from FK506-binding protein (FKBP12). 
However, FK1012 retains the ability to bind endogenous 
FKBP12[139]. This is undesirable from a clinical point of 
view because endogenous FKBP12 could sequester the 
drug, preventing its intended effect. In addition, FK1012 
administration could affect the normal physiological role 
of FKBP12[142-145]. As a result, the use of these systems 
has been limited, though thorough clinical evaluation of 
the drug has yet to be completed. However, amplification 
protocols can be envisioned wherein the underlying 
toxicities of FK1012, which are expected to be similar to 
FK506, are exploited. Future systems can be developed 
using other cytotoxic agents with their respective binding 
targets as CBDs fused to survival or growth signaling 

cistronic vector to co-express C46, which is an anti-HIV 
transgene, MGMTP140K, and enhanced green fluorescent 
protein (eGFP) resulted in lower selective potential[126]. 
From a translational point of view, the risk-to-benefit 
ratio is currently not in favor of implementation of such 
chemoselective strategies though further adjustments 
to drug regimens can be done.

In the context of gene therapy for murine models 
of β-thalassemia[123], hemophilia A[124], and hemophilia 
B[127], amelioration of the disease phenotype has been 
enhanced with the use of bicistronic LVs encoding the 
therapeutic gene and an MGMTP140K-based selection 
module. Additionally, increased expression of the 
therapeutic gene after drug selection in secondary[123,124] 
and tertiary[127] recipients of serial BMT demonstrated 
enrichment at the HSC level. MGMT-mediated enrich
ment of eGFP+ BM and peripheral blood cells has also 
been demonstrated in a murine model[128]. Despite these 
promising results, there are still no reports of successful 
MGMT-mediated selection following gene therapy in large 
animals that we are aware of, wherein HSC selection 
may be less efficient because of their lower replication 
rates[129]. However, autologous MGMTP140K-transduced 
HSC transplants have been attempted in MGMThi, TMZ-
resistant glioblastoma patients[130]. Drug selection 
resulted in no significant extra-medullary toxicity and 
all three participants surpassed the median survival 
(12 mo) for glioblastoma patients with unmethylated 
MGMT-promoter status. Despite these promising results 
in the context of chemoprotection of the hematopoietic 
compartment during glioblastoma treatment[130], it must 
be noted that gene-modified circulating blood cells were 
depleted from the patients with termination of treatment. 
As such, repeat administration of chemotherapy may be 
required for the use of this system for amplification of 
transduced HSCs for gene therapy.

Hypoxanthine-guanine phosphoribosyltransferase 
inactivation for 6-thioguanine resistance
While the strategies described above rely on the 
overexpression of a protein that confers chemopro
tection to transduced cells, down-regulating endogenous 
enzymes necessary to activate cytotoxic drugs can 
achieve analogous outcomes. Hypoxanthine-guanine 
phosphoribosyltransferase (HPRT) is an enzyme 
involved in the purine nucleotide salvage pathway. 
HPRT can catalyze the addition of ribose 5-phosphate 
to the purine analog 6-thioguanine (6TG) to generate 
thioguanosine monophosphate (thio-GMP)[131]. Thio-
GMP is then converted into thiodeoxyguanosine tripho
sphate (thio-dGTP), which can be incorporated into 
DNA inducing futile mismatch repair and consequent 
apoptosis. It has been shown that BM cells of HPRT-
deficient mice are resistant to 6TG treatment[132]. 
Transplantation of HPRT-deficient BM into wild-type HPRT 
mice under 6TG selection resulted in good engraftment 
and long-term hematopoietic reconstitution in primary 
and secondary recipients[133]. Furthermore, transduction 
of murine hematopoietic progenitor cells with a LV 
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hole” engineering of FK1012 and FKBP12 has yielded 
derivative CIDs such as AP20187 (B/B homodimerizer; 
Takara) and AP1903 (Rimiducid; Bellicum)[147]. Such 
CIDs are chemically modified to prevent them from 
binding the original CBD. The derivative CBDs, such 
as FKBP12F36V (F36V) for AP20187 and AP1903, have 
mutations that confer ability to bind the engineered 
CIDs[147] (Figure 2A). These modifications allow such 
CID-CBD systems to be acceptable for use in gene 
therapy, as outlined above.

Amplification of HSCs using neutral CIDs
Multiple studies have been performed in cell, mouse, 
and canine models that utilize AP20187 and protein 
receptors fused to F36V[148-154]. Our lab has previously 
shown the utility of a kinase insert domain receptor 
(KDR/CD309)-F36V fusion to control cell-fate in an 
AP20187 dependent manner, and we characterized the 
molecular mechanisms that are induced as a conse
quence of KDR dimerization in TF1 cells[150]. The utility 
of this system has yet to be demonstrated in an animal 
model of HSC engraftment. The characterization of 
HSC cells and their signaling components have yielded 
other targets for F36V fusion and CID-mediated control 
of cell fate, such as c-Kit (SCF receptor)[155], and c-Mpl 
(thrombopoietin receptor)[149,152,156] (Figure 2A). It must 
be noted that these signaling components are not fully 

factors[146]. Careful dosing can allow for simultaneous 
depletion of non-transduced cells and expansion of 
the transduced population (Figure 2A). Such studies 
have yet to be performed in clinically-relevant settings. 
Conversely, the application of such current systems 
remains risky as the continuous use of cytotoxic agents 
in general can have detrimental effects on patient quality 
of life. A potential solution is to aim for selective pressure 
to be applied to more mature cells, where dose reduction 
can be envisioned whilst clinical benefit is still achieved.

Neutral CIDs
Reverse-engineering of proteins and drugs that bind to 
them have led to numerous other CIDs and their respec
tive CBDs. Progress in understanding the modularity of 
protein signaling has yielded numerous opportunities 
to generate CBD-signaling domain fusions. From a 
gene therapy perspective, ideal CIDs are those that 
would have little to no effect on any cells other than the 
transduced population. Ideal CBDs should also have 
no effect on the biology of transduced cells without the 
presence of a CID. As well, engineered polypeptides 
with CBDs should be derived from endogenous proteins 
where possible to minimize the potential immunogenicity 
of the fusions. In addition, unexpected effects of CID-
induced dimerization of CBD fusion proteins should not 
occur in cells derived from transduced HSCs. “Bump and 
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Figure 2  Summary of next-generation amplification modules. A: Fusion proteins comprised of chemical inducer of dimerizations (CBDs) such as FKBP12 
(WT CBD) or F36V (Mut CBD) and receptors involved in hematopoietic stem cells (HSC) growth, proliferation, and survival. Activation of signaling by CIDs allows 
expansion of the transduced population. The use of cytotoxic CIDs (CIDTOX) can allow simultaneous depletion of the non-transduced population. FK1012 is a putative 
cytotoxic CID-binding domain. Examples of inert or neutral CIDs (CIDNEU) include AP20187 and AP1903; B: Controlled overexpression of HSC homing and adhesion 
molecules can increase the potential for therapeutic cells to survive and can promote long-term engraftment. Examples of such molecules include but are not limited to 
CXCR4, VLA4, and Tie2. Their corresponding ligands (SDF-1, VCAM-1, and Ang-1, respectively) are usually expressed on osteoblasts, osteoclasts, MSCs, and other 
cells that make up the bone marrow stroma; C: Downstream effectors of key signaling pathways involved in maintaining HSC phenotypes that are down-regulated 
during ex vivo handling of CD34+ cells can be reconstituted to prevent stem cell exhaustion and to increase long-term engraftment of transduced cells. HoxB4 is an 
example of a transcription factor that is activated in response to Wnt signaling and is key to maintenance of the stem phenotype of HSCs.
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Engineering alternative amplification modules
While FDA approval and consequential routine admini
stration of existing CIDs in patients may be achievable 
in the future, there is value in stepping away from sole 
confinement to FKBP12-derived systems. Multiple other 
technologies exist that utilize either compounds known 
to be benign along with reverse engineered signaling 
domains or compounds and their respective binding 
domains derived from other species. For example, a 
recently demonstrated degron-system that uses an 
auxin-inducible domain derived from plants[162] could 
be engineered to enhance Wnt signaling in HSCs by 
targeting axin degradation in an auxin analog-dependent 
manner[163]. Mouse studies have shown no effect of this 
analog on normal physiology[164]. In addition, reverse 
engineering of G-protein-coupled receptors (GPCRs) 
have led to the development of a variety of Designer 
Receptors Activated by Designer Drugs (DREADDs)[165]. 
One DREADD has been designed to mediate chemotaxis 
of monocytes and neutrophils in a drug-dependent 
manner and highly promising results have been 
demonstrated in vivo[166]. This DREADD is activated 
in response to Clozapine-N-oxide (CNO), a benign 
metabolite of the clinically-approved anti-psychotic 
agent, Clozapine[167]. With our growing understanding 
of protein modularity, it is not difficult to envision 
the development of a similar DREADD that potently 
activates HSC-specific survival and proliferative signals. 
Development of systems that utilize compounds with 
known pharmacokinetics and biodistribution that can be 
fast-tracked for FDA approval can provide a significant 
boost to in vivo enrichment strategies for HSC-directed 
gene therapy.

MODULES TO ENHANCE ENGRAFTMENT 
OF THE TRANSDUCED HSC SUB-
POPULATION
HSCs are housed in specialized compartments in the 
BM. They use cell surface receptors and ligands to 
anchor themselves in their niche and to modulate signals 
for long-term survival and self-renewal[4,168]. Roles of 
multiple signaling pathways have been elucidated; as 
well, cell surface proteins that can demarcate HSCs as 
single cells that can stably engraft and that are capable 
of reconstituting the entire hematopoietic system have 
been uncovered[169]. It is therefore not difficult to envision 
novel clinical roles for these cell surface proteins. For 
example, plerixafor (Mozobil, Sanofi) is a drug that was 
developed to disrupt the interaction of C-X-C chemokine 
receptor type 4 (CXCR4, fusin) and C-X-C motif 
chemokine 12 (CXCL12, or SDF-1)[170]. Greater numbers 
of CD34+ cells can be acquired with administration of 
plerixafor over the traditional mobilization strategy 
that uses granulocyte-colony stimulating factor[171,172]. 
Recently, experiments have shown the potential of 
another drug, Bortezomib (Velcade, PS-341), in HSC 
mobilization via disruption of very late antigen 4 and 

unique to the HSC compartment and subsequent risk 
of unwanted proliferation can exist. That said, restricted 
expression of CBD-receptor fusions using HSC-specific 
promoters in gene transfer vehicles could reduce effects 
on non-target cells.

A long-term study in canines using an engineered 
thrombopoietin receptor, Mpl-F36V, has demonstrated 
the utility of intermittent use of AP20187 and AP1903 
administration over the course of a number of years 
with no effect on the normal physiology of the dogs 
and no effect on the HSC compartment without drug 
administration[152]. However, this study only involved 
long-term monitoring of two dogs and did not test the 
utility of such a system in a reconstitutive gene therapy 
context. Studies in healthy human volunteers (see 
below) may need to be conducted to unravel the effects 
of long-term administration of AP20187 in order to 
inform the FDA prior to administration in patients.

Unlike AP20187, AP1903 has gained more momen
tum with respect to its translation into the clinic. 
It induces dimerization through the same CBD as 
AP20187, extending the utility of studies that use F36V 
fusions[150-156]. Most importantly, a phase I clinical trial 
in which a single infusion of AP1903 was administered 
to 28 healthy volunteers at a range of doses has 
already been conducted[157]. No relevant adverse effects 
were observed at any of the doses. Furthermore, 
donor T cells that are genetically modified with a CID-
inducible caspase-9 (iCasp9) suicide system have 
been administered to leukemia patients to enhance 
immune reconstitution in recipients of allogeneic HSC 
transplants[158,159]. A single dose of AP1903 was sufficient 
to ameliorate the GVHD. T cell counts were reduced in 
as little as 30 min after drug administration followed 
by resolution of GVHD symptoms in 24 h. Further 
administration of AP1903 is being tested in patients 
receiving cell products that have been gene modified 
with iCasp9 (www.bellicum.com). The dosing for these 
patients has been informed by the pharmacokinetics 
observed in healthy volunteers[157]. Long-term follow-up 
of patients from one study has been published with up 
to 4-year occurrence-free survival of patients receiving 
iCasp9-modified T cells and AP1903[160]. However, it 
must be noted that repeated administration of the drug 
and associated safety profiles have not been published 
to the best of our knowledge. This is mainly because 
single-administration of the drug resolved symptoms 
in the studies conducted thus far and eliminated the 
need for further intervention[158,159]. Additionally, no 
information about biodistribution and pharmacogenomics 
of AP1903 in humans is available - that we are aware 
of. As such, the drug is still considered experimental 
and there is no prior knowledge about its efficacy in 
the bone marrow niche other than that which has 
been observed in animal models[152,161]. Further studies 
conducted in healthy volunteers to assess a full set of 
biological parameters can boost the clinical development 
of enrichment modules relevant to HSC-directed gene 
therapy.
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in “stem-like” progenitor cells. One conceptual disadvan
tage of such a targeted system is the lack of persistence 
of selection, since mature hematopoietic cells will 
be replaced over time. Enrichment protocols can be 
developed, however, that utilize either drug dosing that 
has little or no toxicity in normal cells, or compounds 
that specifically act on cells that arise from transduced 
HSCs. As such, continuous administration of the res
pective agent can provide for prolonged enrichment 
with minimal or no side effects.

IMPDH2 mutants for MMF resistance in T/B cell progeny
Inosine monophosphate dehydrogenase 2 (IMPDH2) 
is the rate-limiting enzyme involved in the de novo 
biosynthesis of guanosine monophosphate (GMP)[187]. 
While most cells in the body have a salvage pathway, 
T cell activation and proliferation as well as B cell 
maturation are highly dependent upon this biosynthetic 
pathway[188,189]. Mycophenolic acid (MPA) is a potent, 
non-competitive, reversible inhibitor of IMPDH2[190-192]. 
Its prodrug, Mycophenolate Mofetil (MMF, Roche), is 
routinely used in the clinic as an immunosuppressant to 
control GVHD amongst other indications[193]. Mutants of 
IMPDH2 that have diminished binding affinity for MPA 
have been described[194,195]. The most potent amongst 
these is the combination of T333I and S351Y (IMPDH2IY). 
The utility of this double mutant has been demonstrated 
in the context of donor T cell selection, both in vitro and 
in mouse models using primary human T cells[196,197]. 
It should be noted that the total lymphocyte count in 
these experiments was dramatically lowered with MMF 
treatment, reducing the benefit of such a system with 
respect to T cell gene therapy[197]. The dosage of drug 
used in that study, however, was considerably higher 
than that used to treat patients for GVHD. The effect of 
low-dose MMF treatment on engrafted cells expressing 
IMPDH2IY has yet to be shown. In addition, it has been 
demonstrated that there is no biological effect of con
stitutive expression of this mutant enzyme on HSC 
differentiation[194]. Therefore, use of such an enrichment 
strategy could exclude HSCs and all hematopoietic 
progeny other than T and B cells from being affected. 
That said, previous work has only described the use of 
IMPDH2IY for application in T cell-related disorders, such 
as HIV treatment and prevention of GVHD[194,197]. To our 
knowledge, in vivo use of this enrichment module in 
HSC gene therapy has not yet been demonstrated.

CID-dependent enrichment of gene modified progeny
Numerous examples exist of receptor-CBD fusions that 
can provide a proliferative advantage to subsets of 
mature cells. Most recently, an erythropoietin receptor 
(EpoR)-F36V fusion has been developed for use in 
facilitating AP20187-dependent erythropoiesis[198]. The 
fusion is engineered with the minimal components of 
EpoR required for dimerization-induced signaling along 
with a myristoylation signal. The fusion is expressed 
under the control of an erythrocyte-specific promoter. 
The goal of that study was to design a system to 

vascular cell adhesion molecules (VCAM-1) in mice[173].
Enhancement of engraftment can also be envisioned 

using information resulting from such aforementioned 
studies. Specifically, interactions that can be disrupted 
for HSC mobilization can also be used to increase 
engraftment potential. To this effect, studies have shown 
stage-specific roles for CXCR4 in BM homing and survival 
of engrafted HSCs[174,175] (Figure 2B). In addition, the 
benefit of virally-mediated CXCR4 transgene expression 
for HSC engraftment into a humanized mouse model 
has been shown with ex vivo-cultured human CD34+ 
cells[176,177]. Concerns of long-term side effects of CXCR4 
expression, such as diminished repopulating potential 
of the transduced cells and off-target expression in non-
HSCs, still remain. For example, high CXCR4 expression 
is associated with worse prognosis in acute myeloid 
leukemia, amongst other cancers[178,179]. Developments 
in transient cDNA introduction, conditional control of 
transcription, and/or robust, tissue-specific control 
of expression may minimize these concerns, though 
they remain to be tested. Should such technologies be 
developed in a clinically-relevant manner, multiple other 
cell surface targets for enhancing HSC homing, survival, 
and “stemness” could be utilized, such as Tie2, VLA4, 
and c-Kit[168,180-182] (Figure 2B). Other methods relying on 
expression of downstream components of survival and 
self-renewal signaling such as homeobox protein Hox-B4 
(HoxB4) can also be envisioned to be employed in a 
controlled manner[183] (Figure 2C). Though introduction 
of transgenes may provide the ultimate solution to these 
challenges, other groups are focusing on development 
of small molecules and co-injection protocols as 
alternative methods; such as co-injection of BM-derived 
mesenchymal stem cells[184-186].

LINEAGE-SPECIFIC ENRICHMENT
As discussed previously, it can be conceptually difficult 
to target therapeutic HSCs for in vivo amplification 
due to the unique microenvironment in the BM niche 
in which they reside and because of their inherently 
quiescent nature. Whilst it is generally agreed that the 
most clinical benefit can be obtained by targeting long-
term precursor cells, it is not conclusively proven to be 
so. Examples of gene therapy that result in enrichment 
of cells derived from transduced HSCs, such as in 
SCID-X1 and β-thalassemia, provide proof-of-concept 
for the clinical utility of targeting a subset of the mature 
hematopoietic compartment for selection[7,17,43-47]. Appli
cation of enrichment strategies in such a manner can 
overcome many of the hurdles of attempting to enrich 
the original HSC engraftment, such as bioavailability 
of the compounds used for enrichment and toxicities 
towards the core center of hematopoiesis. In addition, 
targeting mature cells, and more importantly, excluding 
the HSC compartment, reduces the chances of long-
term complications in patients that have already gone 
through a risky intervention and reduces the likelihood 
of sporadic malignant disease arising from alterations 
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The ability to conditionally activate prodrugs has 
been a useful tool in molecular biology to induce killing 
of subsets of cells, though many of the enzymes used 
are derived from other species. For example, thymidine 
kinase (tk), derived from the herpes simplex virus 
(HSV-tk), can be used to render cells sensitive to the 
drug ganciclovir, a commonly employed laboratory tech
nique[205]. HSV-tk has been used to ameliorate GVHD 
in patients receiving allogeneic transplants and in anti-
tumor suicide gene therapy[71,206-209]. However, use of 
this system is limited by concerns of immunogenicity 
of non-human proteins that can cause elimination of 
otherwise useful cells[56,57]. Additionally, ganciclovir and 
acyclovir are commonly prescribed for viral infections 
following engraftment, and use of HSV-tk can lead 
to unintended elimination of transduced cells[210]. Our 
lab has developed a fusion protein comprised of the 
extracellular and transmembrane components of LNGFR 
(CD271) along with an engineered variant of human 
thymidylate kinase[211]. This module combines the 
advantages of being able to overexpress a cell surface 
marker for tracking transduced HSCs and their progeny, 
since CD271 expression is absent in circulating blood 
cells, and the ability to activate azidothymidine to a 
toxic form.

Stem cell exhaustion and clonal selection
One of the principal advantages of in vivo selection is 
the potential for an increase in therapeutic benefit from 
an initially lower number of transduced repopulating 
cells. Yet, proliferative stress on few selected HSCs can 
occur, resulting in a gross negative, long-term impact 
on HSC proliferation and lineage differentiation. This 
is termed “stem cell exhaustion” and can eventually 
lead to BM failure in recipients. Such concerns have 
been studied in mice[212] and dogs[213] that underwent 
serial MGMTP140K-expressing HSC transplantation under 
prolonged O6BG/BCNU treatment. Importantly, these 
studies revealed no apparent impairment in HSC repo
pulation, proliferation, or differentiation, suggesting 
that stem cell exhaustion may not be an issue, at least 
in the context of that mode of chemoselection. Further 
studies in long-lived, clinically-relevant models need 
to be conducted, however, especially in the context of 
HSC gene therapy, to demonstrate lack of long-term 
exhaustion within primary autologous recipients. Ex 
vivo selection may also be achievable without stem 
cell exhaustion with the co-expression of factors that 
maintain HSC “stemness”, such as HoxB4[183].

In vivo drug selection can also exacerbate clonal 
dominance, a phenomenon readily observed with the 
use of recombinant onco-retroviruses. Amplification 
strategies could augment the proliferative advantage 
of cells with proviral integration sites in or near proto-
oncogenes, risking the development of hematopoietic 
malignancies. For example, analysis of tertiary MGMT-
transduced BM recipients showed only 17 unique 
retroviral integration sites (RIS) following chemo
selection[212]. Most RIS in that study were in or near 

replace the necessity of recombinant Epo administration 
in anemic patients. The authors have successfully 
demonstrated CID-dependent erythropoiesis in vivo in 
a mouse model[198]. Though this group has not shown 
the utility of their system in the context of HSC gene 
therapy, it can be postulated that it would be applicable 
for enhancement of treatment for disorders that affect 
erythropoiesis. It must be noted that such systems are 
hindered to date in their clinical translation due to their 
use of clinically-unavailable CIDs. Future studies utilizing 
clinically-available compounds and a variety of lineage 
specific growth signals are anticipated.

DISCUSSION
Safety of LV-mediated gene therapy
With the initial implementation of recombinant onco-
retroviruses in gene therapy strategies, an emergent 
obstacle to be considered when genetically modifying 
long-term, stem-like cells is the potential for the deve
lopment of malignancy[4,15,23-25]. As discussed above, 
LVs greatly diminish the likelihood of integration near 
known oncogenes or tumor suppressors[4,26-30]. However, 
multiple other mechanisms that can lead to gross 
cellular aberrations or changes in function of cells derived 
from transduced HSCs are still of concern. Though 
improbable, integrative modification of gene loci can 
lead to alternative splicing of putative oncogenes, or to 
the insertional inactivation of tumor suppressors[199,200]. 
Additionally, a comprehensive understanding of onco
genesis has yet to be achieved in all its different forms, 
especially within the complex network of cells in the 
hematopoietic system. As such, continuation of long-
term studies investigating the effects of transplanting 
patients with transduced HSCs is a necessity, especially 
with new knowledge being acquired regarding the 
functional importance of intergenic “junk” DNA.

One strategy to circumvent putative side effects 
of HSC gene therapy is to include suicide modules 
(or “cell-fate control” systems) in the transfer vector. 
Suicide modules refer to elements of therapeutic vectors 
that are capable of inducing specific cell-death of 
transgenically modified cells. This is especially important 
when considering the inclusion of amplification modules, 
which have not been thoroughly tested in patients. 
These systems can be designed to induce cell death by 
providing a surface target for antibodies, by inclusion 
of an inducible component that activates the apoptotic 
pathway, or by being able to activate a normally non-
toxic prodrug. For example, there are multiple CID-
based systems that bring together components of the 
apoptotic-signaling pathway[158,159,201-203]. One of these, 
iCasp9, is currently being tested in patients receiving 
haploidentical donor T cell infusions amongst other 
indications, as discussed previously, though the CIDs 
being used have yet to acquire FDA approval[158,159]. 
Additionally, such systems have been tested for their 
ability to eliminate autologous HSC engraftments in 
rhesus macaques[204].
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repeated administrations or continuous low dosing 
for long-term benefit. Dose adjustments can also be 
safely made to compensate for variability in patient 
pharmacogenomics. The development of modules 
that allow resistance to drugs used for the treatment 
of benign hematopoietic hyperplasias can encompass 
many of the aforementioned advantages.
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Abstract
The establishment of multipotent pancreas progenitors 
(MPP) should have a significant impact not only on the 
ontology of the pancreas, but also for the translational 
research of glucose-responding endocrine b-cells. 
Deficiency of the latter may lead to the pandemic type 
1 or type 2 diabetes mellitus, a metabolic disorder. 
An ideal treatment of which would potentially be the 
replacement of destroyed or failed b-cells, by restoring 
function of endogenous pancreatic endocrine cells or 
by transplantation of donor islets or in vitro  generated 
insulin-secreting cells. Thus, considerable research efforts 
have been devoted to identify MPP candidates in the pre- 
and post-natal pancreas for the endogenous neogenesis 
or regeneration of endocrine insulin-secreting cells. In 
order to advance this inconclusive but critical field, we 
here review the emerging concepts, recent literature 
and newest developments of potential MPP and propose 
measures that would assist its forward progression.

Key words: Multipotent pancreas progenitors; Regenera
tion; Self-renewal; Clonogenesis; Differentiation 
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Core tip: Diabetes mellitus is a pandemic health problem 
that currently affects approximately 400 million people 
worldwide and its incidence is increasing by 2%-3% per 
year. At present, insulin deficiency in diabetes is treated by 
exogenous insulin given as either multiple daily injections 
or continuous subcutaneous infusion (pump), which is 
associated with acute, potentially life-threatening metabolic 
disturbances as well as chronic, vascular complications with 
significant morbidity and mortality. The ultimate solution 
would therefore be regenerative therapies by which lost 
β-cells in disease processes could be restored/replaced by 
surrogate insulin-secreting cells including those derived 
from multipotent pancreas progenitors.
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INTRODUCTION
In contrast to what we would expect, modern humans 
encounter unprecedented health challenges, including 
the pandemic diabetes mellitus (DM), which is a major 
metabolic disorder worldwide with a progressively 
climbing incidence. This disease currently affects 387 
million individuals, with one dying in every 7 s due 
to severe complications (http://www.idf.org/diabe­
tesatlas). Among them, approximately 10% suffer 
from type 1 DM (T1DM), due to the absolute lack of 
glucose-responding β-cells destroyed by the patient’s 
own immune system. Provided autodestruction of β-cells 
is under control, a permanent replacement approach 
may therefore be an ideal solution for T1DM, through 
regeneration in situ of endogenous β-cells, or by the 
replacement with donated glucose-responding islets, 
or of in vitro produced insulin-secreting β-cells from 
stem cell sources such as pluripotent stem cells (PSCs). 
The other 90% diabetic subjects are currently affected 
by type 2 DM (T2DM), resulting from the inability to 
react to insulin regulation by key metabolic tissues, the 
inability to regulate the generation of glucose from the 
liver and the dysfunction of endocrine β-cells[1]. The 
latter is typically believed to be cause by the increase 
of β-cell death[2]. Recently, accumulating evidence has 
suggested that β-cell dysfunction in T2DM is also caused 
by the dedifferentiation of glucose-regulating β-cells[3,4]. 
Thus, the ability to restore function of failed endocrine 
cells would provide a novel redifferentiative treatment 
for T2DM. In order to develop regenerative medicine 
therapies to T1DM and T2DM, the interest to both stem 
cells and progenitors in the pancreas has recently been 
progressively increased.

In general, the concept of multipotent progenitors 
is exchangeable with that of stem cells. The latter are 
usually used to define undifferentiated primitive cells 
that have the capacity for self-renewal themselves as 
well as of differentiation into terminal functional cells. 
For example embryonic stem cells (ESC) and induced 
pluripotent stem cells (iPSC, both together known as 
PSC) are able to produce all types of 210 cells that build 
up the body. Debatably, progenitors with multipotency 
are stem cells. Progenitors could be multipotent, oligo­
potent or unipotent based on their developmental 
potentials. Multipotent progenitors/stem cells are of 
fundamental importance to normal physiology and to 
regeneration during disease/injury repair. Multipotent 
pancreas progenitors (MPP) would be a rare subset 
present in developing and adult pancreas, and have a 
capacity for regeneration when required, even though 

their location and origin have not yet been completely 
established and are still controversial. In this article, we 
will summarize knowledge on the candidate MPP along 
the natural route of endocrine pancreas development 
and in three functional components of the pancreas. We 
will also propose future research perspectives on the 
potential MPP.

CLASSICAL EMBRYOLOGY
The pancreas is an important digestive and endocrine 
organ originating from the endoderm of posterior 
foregut. The latter along the other two germ layers is 
derived from the inner cell mass and would develop 
into the pancreas primordia when a localized area of 
thickened columnar epithelia along the dorsal and 
ventral posterior foregut appears. The columnar 
endodermal layer evaginates into the neighboring 
mesenchymal tissues of mesoderm origin and gives 
rise to the dorsal and ventral buds of the pancreas, 
respectively. Whilst continuously proliferating and 
branching, two buds gradually fuse together due to the 
gut rotation movement. Subsequently, the primordial 
pancreas continue to expand, transform and, finally, 
differentiate into the mature organ. The mature pan­
creas is composed of the acinar compartment that 
secretes digestive enzymes and fluid, that are drained 
into the intestinal lumen by the pancreatic ducts and, 
the endocrine pancreas that secrete hormones (glucagon, 
insulin, somatostatin, ghrelin or pancreatic polypeptide) 
responsible for maintaining normal glucose metabolism.

The key developmental events in the human pan­
creas are different from what we know about from 
developing pancreas in mice[5]. For instance, human 
dorsal bud is detectable at 26 d post conception (dpc), 
which is an equivalent age of embryonic day (E)9.5 in 
mouse embryos. The cellular developmental sequences 
in humans also differ from that in mice. Although they 
are not visible until 52 dpc, approximately 2 wk later 
than the equivalent stage at which they can be detected 
in mice, insulin-positive β-cells in humans appear pre­
cedent, unlike that in mice, to glucagon-positive a-cells 
at 8-10 wk of gestation[6]. All islet cells are detectable 
at the end of the first trimester in humans[6], but at 
later stages (E17.5) in mice[7]. Finally, the dynamics of 
gene expression during embryonic development and 
in pathophysiological conditions also differ between the 
two species[8]. Readers are referred to more reviews of 
human pancreas development elsewhere[9-12].

POTENTIAL MPP ALONG THE 
DEVELOPMENT OF ENDOCRINE 
PANCREAS
Remarkably, PSC can be guided to differentiate into 
definitive endoderm (DE)-like progenitors ex vivo by 
applying knowledge of in vivo developmental mech­
anisms (Figure 1). For example, this has been achieved 
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in culture by supplementing with a pharmacological level 
of activin A, a growth factor (GF) of the superfamily 
of the transforming GF b. Furthermore, human PSC-
derived self-renewable DE-like cells have been reported 
to expand under the stimuli of four GFs[13]. These DE-
like endodermal progenitors have proliferated over 24 
passages with an astonishing increase in cell numbers. 
To establish their reliability and utility in developmental 
biology, drug screening and regenerative medicine, 
PSC-derived DE-like cells should be biologically and 
transcriptomically compared to embryo-derived DE cells. 
Although further research is required, these endodermal 
progenitors may indeed function as pre-MPP in addition 
to possessing an incredible capacity for expansion. 

Sox9-expressing MPP
Cystic epithelial colonies expressing E-cadherin first were 
generated by our group (Figure 2). After dissociation, 
fetal pancreatic cells produced cystic colonies containing 
β-cells in the presence of the basement membrane 
glycoprotein laminin 1, 1, 1 and a bone morphogenetic 
protein[14,15]. Interestingly, spherical but not cystic colo­
nies are generated in the presence of epidermal GF[16], 
suggesting these GFs play different roles during develop­
ment. We have not investigated whether all or only 
some fractions of cystoid epithelial cells stochastically 
commits to different lineages, though it seems possible 
that these cystic colonies originated from multipotent 
progenitors that are Sox9+ (see below).

Sox genes encode versatile regulators of stem/
progenitor cell fate[17], belonging to members of tran­
scription factor family that contain the Sry (sex deter­

mining region Y) box-related high-mobility group. 
Sox9 for example critically regulates the development 
of multiple embryonic organs including the pancreas. 
This pivotal transcription factor is first detectable at 
E10.5 in the dorsal and ventral pancreases[18] and 
at E13.5, Sox9-expressing progenitors (Figure 3) 
develop into the exocrine and endocrine lineages in 
the pancreas[19]. However, by E16.5 the expression of 
Sox9 is progressively restricted to pancreatic ductal 
cells[19]. Genetic tracing studies reveal that Sox9 is also 
expressed in organs of other posterior foregut origin 
such as the liver, the bile duct and the duodenum. For 
example, it is present in bile ductal cells adjacent to the 
portal vein from E16.5. Sox9 also is broadly detectable in 
the intestinal epithelia at E13.5 but confined to the crypt 
region from E18.5[19]. Thus All Sox9-expressing cells in 
the posterior foregut region could be MPP. Supportive to 
these analyses, Sox9-expressing (Sox9+) multipotent 
progenitors purified from E11.5 Sox9-eGFP embryos 
generate expandable cystoid colonies that contain 
hormone-expressing cells in a laminin 1, 1, 1-enriched 
Matrigel-coated culture condition[20].

Sox9+CD133+ ductal cells generates duct-like “ring/
dense” colonies (1/5) in the culture of the Matrigel-
containing methylcellulose-based semisolid medium. 
With the addition of the roof plate-specific spondin 1, a 
Wnt agonist, these ring/dense colony-forming cells can 
be serially dissociated and replated in the presence of 
Matrigel with an expansion of more than 100000-fold[21]. 
In a laminin-containing hydrogel, the Sox9+CD133+ 

(cluster differentiation 133) cells are able to give rise 
to acinar/endocrine colonies[21]. Further investigations 
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Figure 1  Multiple fate selections allow the development of the pancreas islet lineages. Committed from one of three germ layers (the ectoderm, mesoderm and 
endoderm) during gastrulation, the definitive endodermal cells (DE) are marked by the expression of Sox17 (the Sry-related HMG box transcription factor 17) and 
foxhead homeobox 2a (Foxa2). Along the anterior-posterior axis the DE is divided into foregut (giving rise to the lung, thyroid and esophagus), posterior foregut (PF), 
marked by the expression of the transcription factor hepatocyte nuclear factor 4a (Hnf4a) and hindgut (committing the intestine and colon). In vitro, retinoid acid would 
direct the DE cells to PF cells. Largely to the liver and duodenum, a fraction of the PF cells give rise to pancreatic progenitors (PP, marked by the expression of the 
transcription factor Pdx1). Mostly to the exocrine and ductal tissues, the PP commits to progenitors of the endocrine islet lineages [IP, marked by the expression of 
Neurog3, as well as neural differentiation 1 (NeuroD ), insulinoma associated 1 (IA1), Islet 1 (Isl1), paired box factor 6 (Pax6) and Rfx6]. The IP then differentiates into 
at least five types of islet cells [a, β, δ (somatostatin), pancreatic polypeptide (PP) and ε (ghrelin)].
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foregut in E9.0-9.5 mouse embryos expresses the 
homeobox gene named Pdx1 (pancreas and duodenum 
transcription factor 1). The latter encodes a parahox 
homeobox-containing factor, critical for the establishment 
of primitive pancreas[24] as well as the maintenance of 
functional β-cells[25,26]. 

Studies have demonstrated that Pdx1-expressing 
(Pdx1+) progenitors are MPP because they give rise 
to acinar, ductal and islet tissues of the pancreas[27]. 
Genetic lineage tracing studies revealed that these MPP 
reside in the termini of the tree-like branching ducts in 
the developing pancreas that also express the acinar 
transcription factor known as Ptf1a and the exocrine cell 
marker known as Cpa1[28]. The Pdx1+ cells are capable 
of taking up the thymidine analogue bromodeoxyuridine 
(BrdU) and incorporating the latter into their genome 
during mitosis[29], revealing that these cells are prolifera­
tive. 

Using developmental biological knowledge, PSC have 
been manipulated to generate Pdx1+ cells that have 
been expanded for 16-fold co-cultured with pancreas-
derived mesenchymal cells[30]. To verify the proliferation 

are needed to ascertain whether Sox9+CD133+ cells 
are identical to, or distinct from, the colony-forming 
Lgr5 [leucine-rich repeat-containing G-protein coupled 
receptor 5, also known as GPR49 or GPR67 (G-protein 
coupled receptor 49 or 67)]-expressing cells described 
below. However, Sox9-positive ductal and centroacinar 
cells are unable to produce β-cells in a few experiments 
for regeneration or trans differentiation, such as with 
cerulean-induced acute pancreatitis, an in vitro culture 
experiment, pancreatic duct ligation (PDL), partial 
pancreatectomy and a streptozotocin-induced diabetic 
model[19,22]. Originated from the posterior foregut 
endoderm, a human bile duct progenitor population 
known as “biliary tree-derived cells”[23] may have a 
MPP potential and give rise to islet lineages. However, 
the purified population, molecular profile and detailed 
developmental potential of these “tree-derived cells” 
require further investigations. 

Pdx1-expressing MPP
A cluster of unique cells in the thickened DE epithelium 
along the dorsal and ventral surfaces of the posterior 
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Figure 2  Cystic colony formation from dissociated fetal 
mouse pancreas cells. A: Phase contrast image showing 
that BMP-6 promotes colony formation. Open arrows indicate 
colonies ≤ 30 μm; B: Immunocytochemical analyses: a: 
Proinsulin staining. Fixed colonies were stained with proinsulin 
antibody (brown); b: Activin A antagonizes colony formation; c, 
d: Insulin staining. Histological sections of harvested colonies 
were stained with anti-insulin antibody (brown). Adapted and 
modified from ref.[14].
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thickened posterior foregut DE epithelium there is a 
small cluster of cells that express a high level of the 
Neurog3, an endocrine determinant[27,37,38]. The cells that 
express Neurog3 highly are the progenitors of endocrine 
pancreas as they develop into all islet lineage cells in 
vivo. Several studies verify the critical role of Neurog3 
in the ontogenesis of endocrine pancreas: Islet cells are 
not observed in Neurog3 targeted mouse pancreas[37]; 
genetic tracing demonstrates that Neurog3+ progenitors 
differentiate into all five types of islet cells[27]; isolated 
adult Neurog3+ cells reappeared after PDL can, after 
inoculation into an embryonic pancreas ex vivo, give 
rise to five types of endocrine cells[38]. Nevertheless, a 
few Neurog3+ cells are observed to coexpress insulin 
in the dual fluorescence-tagged developing mouse 
pancreas[39]. Another laboratory reported that PDL allows 
the activation of Neurog3 expression but the Neurog3-
expressing cells are not able to complete the entire β-cell 
regeneration program[22]. Furthermore a recent study 
found that β-cell mass and insulin content are totally 
unchanged after PDL-induced injury[40], unsupportive 
to the conclusion of an active β-cell regeneration. The 
reason for these inconsistencies is unknown and future 
investigation is warranted to confirm or refute the conclu
sion. 

Whereas the expression of mouse Neurog3 mRNA in 
the developing pancreas plateaus approximately E15.5[41] 
(approximately week 9 of gestation in humans), that 
of human NEUROG3 is low prior to 9 wk, but increases 
sharply onward and remains very high until 17 wk[33]. 
Furthermore some cells coexpress both NEUROG3 
and insulin in the embryonic pancreas from 10 to 21 
wk[32]. Although earlier studies showed that Neurog3+ 
cells could proliferate[42,43], clonal assays by “mosaic 
analysis with double marker” (MADM) have confirmed 
that Neurog3+ cells are quiescent and commit to only 
one cell type of the endocrine pancreas[44]. A recent 
study consistently demonstrated that the activation of 
Neurog3 itself inhibits cell division by the activation of 
cyclin-dependent kinase inhibitor 1a[45]. The inconsis­
tencies between the previous and recent reports 
require future research to reconcile. Again, it is formally 

of Pdx1+ cells, independent confirmation of this report 
will be required. We also need to ascertain whether 
these PSC-derived Pdx1+ cells share all or partial 
characteristics of embryonic pancreatic progenitors, 
because Pdx1 is also expressed in extra-pancreatic 
tissues including other endoderm-derived non-pancreas 
organs[31]. 

In developing human pancreas, numerous PDX1+ 
progenitors are present between 8 and 21 wk of 
gestation[32,33]. These PDX1+ progenitors are frequently 
expressed SOX9 and highly proliferative[34], supporting 
the notion that pancreatic progenitors are committed 
from SOX9+ multipotent progenitors. The progressive 
increase of PDX1+ cells that co-express insulin or 
somatostatin is observed in this period of gestation[32]. 
Further research is required to investigate whether the 
PDX1+ progenitor pool is established by its self-renewal 
or by direct differentiation of the posterior foregut 
progenitors or both.

Strategies for proliferation, self-renewal and differ­
entiation of pancreatic progenitors will be of importance 
in developmental biology and regenerative medicine. 
Interestingly, reserpine and tetrabenazine that inhibit the 
vesicular monoamine transporter-2 are shown to direct 
PSC-derived Pdx1+ cells to produce cells that express 
neurogenin 3 (Neurog3, also known as Ngn3)[35], a DNA-
binding protein, belonging to the transcription factor 
family of the basic helix-loop-helix category. However, 
as a positive control, Pdx1+ progenitors purified from 
embryonic pancreas would have been tested with these 
two molecules to examine their capacity and efficiency to 
give rise to islet progenitors. Furthermore, caution needs 
to be exercised for the use of genetic lineage tracing 
in PSC differentiation in vitro because temporospatial 
cues are essential for the success of in vivo lineage 
tracing studies (see review by[36]). To enrich PSC-derived 
genuine pancreatic progenitors for further expansion 
and differentiation, identification of their specific markers 
would be highly valuable.

Neurog3-expressing pancreatic endocrine progenitors
Approximately in E9.5 mouse embryos, within the 
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Figure 3  Cystic colonies generated from Sox9-tagged cells. A: Embryonic Sox9+ progenitors in the pancreas capable of generating cystic colonies; a: Sox9 is 
expressed in most ductal progenitors in E11.5 mouse pancreas; b: Cystic colonies are formed from purified Sox9-eGFP+ progenitors in E11.5 mouse pancreas; B: 
Purified Sox9+ cells in adult mouse pancreas capable of generating cystic colonies under a phase contrast (a) or a fluorescence microscope (b). Adapted and modified 
from[20,21].
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Can islet β-cells behave like unipotent “progenitors”? 
Functional duplication of insulin-secreting β-cells is 
first described by Dor et al[56] by using RIP (rat insulin 
promoter)-driving genetic lineage tracing. They 
revealed that mouse β-cells in the endocrine pancreas 
could be reproduced by RIP-expressing cells under the 
physiological condition or after partial pancreatectomy. 
This report however did not preclude the presence of and 
the role of MPP by assuming that all RIP-expressing cells 
are functional β-cells. Similarly, in a transgenic model 
using the RIP to govern diphtheria toxin expression 
resulted in 70%-80% β-cell apoptosis, disrupted 
architecture of endocrine pancreas and eventually in the 
development of diabetes. Withdrawing the expression 
of diphtheria resulted in a significant recovery of β-cell 
mass, islet architecture and of normoglycemia[57]. 
Further analysis revealed that a subset of 20%-30% 
surviving “β”-cells played a major role in the β-cell 
regeneration and recovery of euglycemia[57]. These 
studies suggest that islet β-cells are indeed facultative 
unipotent progenitor cells.

In the sophisticated double transgenic MADM (desi­
gnated RIP-CreER; Rosa26GR/Rosa26RG) mouse pan­
creas, each RIP-expressing clone is made up of only 
5 cells after one month of chase, slightly increasing 
to 8 cells by two months[58]. The clusters that express 
RIP have been viewed as supportive evidence of 
regeneration of functional cells, but this should be 
treated with caution as discussed hereafter. A further 
study with a reductionist approach on the gene Hnf4a 
(hepatocyte nuclear factor 4a) suggested that the β-cell 
regeneration may be associated with the signaling 
cascade of the Ras/Erk pathway[59] and even be modu­
lated by cell cycle regulators such as cyclin D2[60]. 
Collectively, it is critical to establish and identify the well-
known RIP-expressing cells either in self-duplication or 
in dedifferentiation both in situ and ex vivo, as the latter 
may be a key MPP candidate for a T1DM replacement 
solution.

Furthermore, lineage tracing labeled with a thymidine 
analogue showed that β-cells are produced within 
an islet by rare self-renewable cells that have a long 
duplication-refractory time. Under stress conditions such 
as during pregnancy or after partial pancreatectomy, 
the number of self-renewable cells is dramatically 
elevated[61]. However the molecular nature of these 
rare cells and the replication-refractory length have not 
been established. Future studies should characterize 
their molecular identity and reveal whether these self-
renewable replicating cells are fully functional. Due 
to the ethical barrier and technical difficulties, similar 
studies are not possible to be undertaken to label human 
endocrine pancreas in vivo, but a similar research 
should be repeated with larger mammals.

The above described investigations of β-cell self-
renewal as a regenerative mechanism have drawn consi­
derable interest in last several years, due to its promise 
as a way to increase β-cell mass for the treatment of 
diabetes. However, these studies have not excluded 

possible that PSC-derived Neurog3-expressing cells are 
not completely bona fide islet progenitors as Neurog3 is 
expressed in endoderm-derived non-pancreas organs.

Insulin+ multipotent progenitors
Embryonic insulin-expressing cells may be endocrine 
progenitors in the pancreas as they can give rise to 
other islet cell types in addition to β-cells at least during 
development[46]. By employing fluorescence-tagged 
tracing strategies, multipotent progenitors that are 
insulin+ (arguably to be MPP) in the pancreatic tissues 
are believed to be originated from the Pdx1+ progenitors, 
instead from the ectoderm-derived neural crest. These 
MPP-like cells express several islet progenitor markers 
and are able to differentiate into all endocrine cells in 
vivo. The MPP express a low concentration of insulin and 
low copies or complete lack of glucose transporter-2, 
clearly different from functional mature β-cells[47]. Never­
theless, studies have demonstrated that the expression 
of insulin gene is activated in Pdx1+ MPP, via Neurog3+ 
precursors to adult β-cells[48,49], thus future investigation 
is needed to establish what stages at which insulin+ MPP 
are present: The embryonic, fetal and/or adult endocrine 
pancreas. 

Human insulin+ multipotent progenitors have also 
been described with a similar developmental potential to 
the mouse ones. These cells, isolated from either mice 
or humans, could, after transplantation into diabetic 
mice, develop into functional cells to ameliorate hypergly­
cemia. Surprisingly, however, these insulin+ multipotent 
progenitors also gave rise to neural lineage cells in 
vivo[47].

Ghrelin (ε)-expressing progenitors?
Ghrelin-expressing ε-cells are the fifth cell type in the 
endocrine pancreas and are first discovered in the 
stomach. Ghrelin is a polypeptide hormone composed 
of 28-amino acid residuals and known to negatively 
regulate insulin secretion from mouse, rat and human 
islets[50]. Now it is well established that pancreaticε-cells 
are detectable in mid-gestation in mice and humans and 
their number plateaus during the perinatal period[51]. 
However, there are a substantial number of ε-cells 
in only human but not mouse and rat adult islets[51], 
raising the possibility thatε-cells could participate in the 
regulation of glucose homeostasis.

Deletion of the Arx gene, encoding an a-cell trans­
cription factor, drastically reduces the number of 
ε-cells[52]. In contrast, knockout of Nkx2.2, Pax4 or 
Pax6 significantly increases the number of these cells 
at the expense of reducing other pancreatic endocrine 
cell types[53,54]. Intriguingly, genetic studies of lineage 
tracing demonstrated that ε-cells give rise to a, PP and, 
to a lesser extent, β-cells in adult mouse pancreas[55], 
suggesting that these cells have a unusual plasticity 
for trans differentiation towards, and may even be 
progenitors of, other islet cells. However, whether ε-cells 
would act as MPP of functional islets remains to be 
established.
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passaged over 12 times and expressed an array of 
markers of bone marrow MSC such as CD13, CD29, 
CD44, CD49f (also known as a6 integrin subunit), 
CD54, CD90 (also known as Thy1) and CD105. The 
pancreatic MSC are shown to be able to give rise to 
cross-germ layer cells such as endoderm-originated 
non-pancreas lineages[69]. Utilizing culture protocols 
suitable for producing the neurospheres of ectoderm 
origin, ductal cells from mouse pancreas are shown to 
give rise to neurosphere-like clusters that subsequently 
give rise to a few types of endocrine cells, such as insu­
lin-secreting b cells[66]. Nevertheless, the exact nature 
of the special cells has not been established. A major 
limitation of the forementioned reports is the use of 
unenriched/unpurified cell preparations in addition to 
not demonstrating single-cell self-renewability.

Furthermore, numerous CK19+ ductal cells and islet 
cells are detected after PDL[38]. The lineage relationship 
between the ductal cells and islet cells has further been 
addressed using the genetic lineage tracing of the 
Cre-loxP system. Using the system, the Cre governs 
the promoter activity of carbonic anhydrase II gene, 
encoding a marker of adult ductal epithelia and controls 
the removal of the stop sequence (Rosa-loxP-stop-
loxP-lacZ) in the reporter Rosa26 (R26R) mice. This 
resulted in Cre-driving b-galactosidase expression in 
ductal epithelia. After 28 d in normal or PDL pancreas, 
the activity of b-galactosidase is detectable in numerous 
ductal epithelia, localized acinar tissue and in up to 
40% islet cells[70,71]. These data have been viewed 
as further evidence that the ductal cells expressing 
carbonic anhydrase II are able to regenerate mouse 
endocrine cells. It remains unclear, nevertheless, how 
many cells that express carbonic anhydrase II have this 
regenerative capacity, how many potential MPP are 
present or whether a trans differentiation process also 
takes place.

Nevertheless, once an exon of the ductal epithelial 
marker gene Tcf2 (T cell factor 2, also known as Hnf1b, 
hepatocyte nuclear factor 1b) is exchanged with the 
transgene containing Cre, the lineage tracing has 
demonstrated that the Tcf2+ cells in the postnatal duct 
cannot develop into endocrine cells in both normal and 
PDL pancreas[72]. However, a complicating factor in this 
report is that one allele of Tcf2 was non-functional, 
leading to reducing by half the transcription of Tcf2. As 
heterozygous Tcf2 mutant does not support pancreas 
development in mice and humans[73,74], inactivation of 
one allele of Tcf2 in the lineage tracing studies may 
have led to haploinsufficiency and affected the differ­
entiation of potential MPP into functional islet cells.

Fbw7 (F-box and WD-40 domain protein 7), an 
ubiquitin ligase, is expressed in embryonic and adult 
ductal epithelial cells. Deletion of this gene stabilizes 
the heavily ubiquitinated Neurog3, and reprograms 
the ductal cells to a, b and somatostatin-producing 
d-cells[75]. This study suggests that pancreatic ductal 
cells are a latent MPP and Fbw7 is a critical cell-fate 

whether the insulin transcript (as controlled, for instance, 
by the RIP transgene) is only expressed in functional 
β-cells. There is increasing evidence suggesting that 
is not the case. First, the expression of insulin gene 
is detectable in the Pdx1+ progenitors, dramatically 
increasing in Neurog3+ precursors and peaking in 
mature islet β-cells[48,49]. Second, the demonstration of 
insulin+ multipotent progenitors[47] precludes insulin as 
an exclusive marker of functional β-cells. Third, insulin 
protein has been detectable in some mouse and human 
islet precursors as described above. 

Taken together, the expression of insulin gene is 
clearly not exclusive for functional β-cells. It is formally 
possible β-cell populations in adults are maintained 
not only by the self-replication of functional glucose-
regulating cells but also by the self-duplication and 
development of MPP. In order to demonstrate that MPP 
are indeed present in the adult endocrine pancreas, 
their clonogenesis must be established with isolated 
single cell MPP candidates ex vivo, with data generated 
from the intermediary stages of the clonogenesis, and 
with demonstrable ability to give rise to at least non-b 
endocrine cells in vivo. 

MPP PRESENT IN THREE TYPES OF 
PANCREAS TISSUES
Accumulating evidence generated in ex vivo studies has 
suggested that MPP are present in three major tissues 
of the pancreas: The pancreatic ductal[62-64], acinar and 
islet compartments[65,66]. For instance, the application of 
flow cytometry has identified a potential MPP population 
in the mouse pancreas both in development and in 
adults[67]. These candidates are characterized by the 
exhibition of the receptor c-met for hepatocyte GF, 
without the presence of hematopoietic lineage markers 
including CD45, c-Kit (stem cell factor receptor), Flk-1 
and TER119. The purified population is able to give rise 
to several types of pancreatic cells ex vivo and generate 
pancreatic endocrine and exocrine cells in situ after 
transplantation[67]. Nevertheless, the spatial localization 
and the molecular natures of these c-met positive cells 
are completely unknown and the clonogenesis has not 
been established at the single cell level.

MPP likely present in the ductal epithelium
Many studies suggest that MPP are present in the 
ductal epithelium. Bonner-Weir et al[68] first reported 
that human ductal epithelial cells in adult pancreas are 
able to differentiate into islet-like clusters containing 
insulin-secreting b-cells. Ramiya et al[63] showed that 
insulin-secreting islet-like clusters generated in vitro 
from mouse MPP are capable of ameliorating dia­
betes after being grafted under the kidney capsule. In 
cultures of human “pancreatic ductal cell aggregates” 
after isolation of the islets for transplantation, cells with 
fibroblast-like morphology appear known as pancreatic 
“mesenchymal stem cells (MSC)”. These cells were 
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molecule). These nestin+ MPP candidates may thus have 
been involved in the generation of new pancreatic islet 
cells[65], potentially modulated by the incretin hormone 
GLP1, a processed product from the polypeptide pro­
glucagon[84]. It, however, remains unclear whether 
these nestin+ cells are either islet or duct-originated 
multipotent progenitors that transform into neurosphere-
like structures as well as differentiated into b-like cells of 
the endocrine pancreas[66], or the outgrown fibroblast-
like cells that expand readily and differentiate in vitro 
into aggregates of non-typical hormone-expressing 
endocrine cells[85]. Human endocrine cells transduced 
with a RIP-controlling transgene dedifferentiated into 
fibroblast-like cells that proliferate up to 16 population 
doublings without detectable insulin expression[86]. 
Nevertheless, in vivo Nestin+ cells are mostly present in 
non-endodermal-derived compartments[87,88]. Governed 
by their promoters, Pdx1- and RIP-expressing cells have 
not committed significantly ex vivo to the observed cells 
with fibroblast-like morphology[89]. These discrepancies 
require clarifications in the future studies.

CONCLUSION
The presence of MPP remains to be conclusively esta­
blished. Future development of the field needs to: 
establish essential criteria for MPP; screen and select 
cell surface antigens that can be used to generate anti­
bodies for purification of candidate MPP and establish 
a simple, effective and robust in vitro assays and in 
vivo experimental protocols for the examination of the 
multipotency and lineage commitments of isolated MPP 
candidates.

The following minimal criteria have to be satisfied: 
(1) enriched or purified cell population by FACS or 
other technologies should form colonies at the single 
cell level; (2) single cells after purification should be 
studied ex vivo with their self-renewability; (3) colony 
cells would be able to differentiate in vitro into multiple 
functional cellular lineages; and (4) the clonogenic cells 
post transplanted into a recipient should be able to give 
rise in vivo to different terminally differentiated lineages. 
Thus, embryonic mouse Sox9+ multipotent progenitors 
and probably adult Sox9+ ductal cells satisfy some 
but not all criteria of MPP. Research into MPP would 
therefore be highly valuable for two reasons. First, MPP 
differentiation and trans differentiation of non-β-cell 
types in the pancreas may provide an important source 
for surrogate β-cells. Second, as there is a significant 
difference in regeneration capability of islets from mice, 
rats to humans, we should not extrapolate directly from 
rodent regenerative data to humans. 

Future MPP research should apply integrated appro­
aches, different from many previous in situ or ex vivo 
studies that did not target defined cell populations. 
Application of flow cytometry and cell surface markers 
would allow the separation of interested subsets for 
demonstrating in vitro the capacity of self-duplication, 
clonogenesis and differentiation. The latest technologies 

regulator. Nevertheless, this report did not describe 
whether all or a small fraction of the ductal cells express 
Fbw7 and what the frequency of the reprogramming 
event is; both are critical to assess whether this might 
become a viable strategy to regenerate islet cells by 
suppressing the Fbw7 signaling. A fundamental assay 
on reprogrammed cells to ameliorate diabetes has also 
not been reported.

Interestingly, PDL robustly activates the Wnt signaling 
pathway and allows the regenerating ducts to express 
Lgr5[76], a Wnt target which marks actively dividing 
stem cells such as those present in the intestine[77]. 
Purified ductal Lgr5-expressing cells are also responsive 
to spondin 1 and form clonal 3D pancreatic organoids 
within the gel-forming Matrigel that generate ductal as 
well as endocrine lineages upon transplantation[76]. 

MPP likely present in acinar tissue of the pancreas
In the clinic with experimental transplantation of 
donated islets from the cadaver’s pancreas, the acinar 
cells are normally un-used. The discovery of a scientific 
and practical value for the acinar cells has hence drawn 
considerable attention. Cotransplantation with pancreatic 
cells from fetal mice under the kidney capsule in the 
immunocompromised mice, the acinar cells are reported 
to give rise to islet cells with undetectable b-cell division 
or cell fusion[78]. The results imply that MPP or progenitor 
cells might be present in the acinar tissue of human 
adult pancreas. Moreover, the Cre-loxP lineage tracing 
analysis showed that acinar cells expressing amylase and 
elastase gave rise to insulin-producing cells in a rotating 
culture system[79]. Nevertheless, a self-renewable assay 
at the single-cell level and its intermediate steps need 
to be demonstrated. Additionally, these studies have not 
excluded the possibility that some pancreatic acinar cells 
might have trans differentiated into surrogate insulin-
expressing cells[80,81]. This likelihood was supported 
by a previous study that showed that mouse acinar 
cells could be directly re-programmed in vivo to b-like 
cells by forced expression of three DNA-binding genes, 
namely, Pdx1, Neurog3 as well as MafA[82]. In addition, 
as the acinar cells from cadavers[78] were not isolated 
by FACS, residual ductal or even islet cells present in 
the system may have compromised their conclusion. 
Supporting this view, a lineage tracing study in vivo did 
not provide evidence that the mouse acinar cells would 
give rise to insulin-secreting b-cells after 70%-80% 
pancreatectomy[83]. Thus these inconsistencies remain 
to be addressed more carefully.

MPP likely present in the endocrine pancreas
A large body of evidence suggests that the islets of 
Langerhans harbor the MPP. The potential MPP are 

nestin+ and hormone- present in both rat and human 
islets. These nestin+ cells are reported to expand in 
culture for approximately 8 mo and differentiate into 
cells that exhibit markers of liver (a-fetoprotein) and 
pancreas lineages (including amylase, CK19, PDX1, 
glucagon, insulin and neural-specific cell adhesion 
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such as single-cell RNA-seq, single-cell genomics 
and single-cell epigenomics[90-92] should be applied to 
examine their developmental dynamics, differentiation 
pathways, gene interactions and genetic heterogeneity, 
and along with genetic studies to characterize their 
growth pattern, biological potential and lineage commit­
ment in vivo. Lastly cross-sector, cross-institutional and 
global collaborations as well as the involvement of the 
biotechnological and drug companies will eventually 
deepen our understanding of MPP that assists the 
establishment of a platform towards a regenerative 
therapy for both T1DM and T2DM. 
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Abstract
AIM: To investigate the effect of secreted frizzled-
related proteins (sFRPs) on CXC chemokine expression 
in human mesenchymal stem cells (hMSCs).

METHODS: CXC chemokines such as CXCL5 and 
CXCL8 are induced in hMSCs during differentiation with 
osteogenic differentiation medium (OGM) and may be 
involved in angiogenic stimulation during bone repair. 
hMSCs were treated with conditioned medium (CM) from 
L-cells expressing non-canonical Wnt5a protein, or with 
control CM from wild type L-cells, or directly with sFRPs 
for up to 10 d in culture. mRNA expression levels of both 
CXCL5 and CXCL8 were quantitated by real-time reverse 
transcriptase-polymerase chain reaction and secreted 
protein levels of these proteins determined by ELISA. 
Dose- (0-500 ng/mL) and time-response curves were 
generated for treatment with sFRP1. Signal transduction 
pathways were explored by western blot analysis with 
pan- or phosphorylation-specific antibodies, through use 
of specific pathway inhibitors, and through use of siRNAs 
targeting specific frizzled receptors (Fzd)-2 and 5 or the 
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receptor tyrosine kinase-like orphan receptor-2 (RoR2) 
prior to treatment with sFRPs. 

RESULTS: CM from L-cells expressing Wnt5a, a non-
canonical Wnt, stimulated an increase in CXCL5 mRNA 
expression and protein secretion in comparison to control 
L-cell CM. sFRP1, which should inhibit both canonical 
and non-canonical Wnt signaling, surprisingly enhanced 
the expression of CXCL5 at 7 and 10 d. Dickkopf1, an 
inhibitor of canonical Wnt signaling prevented the sFRP-
stimulated induction of CXCL5 and actually inhibited 
basal levels of CXCL5 expression at 7 but not at 10 d post 
treatment. In addition, all four sFRPs isoforms induced 
CXCL8 expression in a dose- and time-dependent manner 
with maximum expression at 7 d with treatment at 150 
ng/mL. The largest increases in CXCL5 expression were 
seen from stimulation with sFRP1 or sFRP2. Analysis of 
mitogen-activated protein kinase signaling pathways 
in the presence of OGM showed sFRP1-induced pho
sphorylation of extracellular signal-regulated kinase 
(ERK) (p44/42) maximally at 5 min after sFRP1 addition, 
earlier than that found in OGM alone. Addition of a 
phospholipase C (PLC) inhibitor also prevented sFRP-
stimulated increases in CXCL8 mRNA. siRNA technology 
targeting the Fzd-2 and 5 and the non-canonical Fzd 
co-receptor RoR2 also significantly decreased sFRP1/2-
stimulated CXCL8 mRNA levels.

CONCLUSION: CXC chemokine expression in hMSCs 
is controlled in part by sFRPs signaling through non-
canonical Wnt involving Fzd2/5 and the ERK and PLC 
pathways.

Key words: CXC chemokines; Mesenchymal stem cell; 
Osteogenesis; Differentiation; Wnt signaling pathway; 
Frizzled-related protein; Frizzled receptors 
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Core tip: Chemokines have multiple functions during 
bone formation and fracture repair. The ELR+ chemo
kines classically have a role in blood vessel formation 
and were found to be stimulated by the non-canonical 
Wnt5a protein and also by soluble frizzled-related 
proteins (sFRPs) that are known inhibitors of both 
canonical and non-canonical Wnt signaling. This 
stimulation was mediated via  the p44/42 extracellular 
signal-regulated kinase and phospholipase C pathways 
signaling through the non-canonical frizzled receptors 
2 and 5. This is a newly identified role for the sFRPs in 
stimulation of ELR+ chemokines which may be involved 
in blood vessel formation during wound repair.

Bischoff DS, Zhu JH, Makhijani NS, Yamaguchi DT. Induction of 
CXC chemokines in human mesenchymal stem cells by stimulation 
with secreted frizzled-related proteins through non-canonical Wnt 
signaling. World J Stem Cells 2015; 7(11): 1262-1273  Available 
from: URL: http://www.wjgnet.com/1948-0210/full/v7/i11/1262.
htm  DOI: http://dx.doi.org/10.4252/wjsc.v7.i11.1262

INTRODUCTION
Bone fracture repair proceeds through a series of 
sequential steps including an inflammatory phase 
resulting in recruitment and differentiation of mesenchy­
mal stem cells (MSCs) into osteoblasts, restoration of 
blood supply, subsequent soft (cartilaginous, in the 
case of endochondral repair) and hard (bone, in both 
endochondral and intramembranous) callus formation, 
and ultimately remodeling of the new woven bone into 
lamellar bone. During the initial inflammatory stage, 
neutrophils, macrophages, and lymphocytes migrate 
to the wound, fight infectious organisms, scavenge 
tissue debris, and begin the process of granulation 
tissue formation[1]. Cytokines, chemokines, and growth 
factors released from these cells are necessary to 
initiate bone repair in the adult. The pro-inflammatory 
cytokine, tumor necrosis factor-α (TNF-α) is critical in 
both long bone fracture as well as intramembranous 
bone repair[2,3]. TNF-α can highly induce members of 
the CXC chemokine family via NF-κB signaling in osteo­
blasts[4]. CXC chemokines can be grouped as to whether 
or not they contain a Glu-Leu-Arg (ELR) motif. ELR+ CXC 
chemokines, such as CXCL8 (IL-8), are present during 
the inflammatory phase to serve as chemoattractants 
for neutrophils[5,6] and exhibit angiogenic activity[7-9]. 
Chemokines without the ELR sequence are anti-angio­
genic[9].

Human MSCs (hMSCs) express CXCL8 mRNA[10-12] 
and it has been reported that TNF-α can prime hMSCs 
to upregulate production of several CXC chemo­
kines (highest upregulation with CXCL5 and CXCL8) 
and induce hMSC migration[13]. In humans, CXCL8 
is a ligand for both CXC receptor 1 (CXCR1) and 
CXCR2 whereas CXCL5 interacts solely with CXCR2. 
Angiogenesis in response to CXCL8 has only been 
associated with CXCR2 signaling[14-16]. We previously 
demonstrated that CXCL8 expression can be stimulated 
with dexamethasone treatment during osteoblastic 
differentiation[17] and by low extracellular pH[18] in 
hMSCs. We also demonstrated that secreted CXC 
chemokines induced angiogenic tube formation of a 
human microvascular endothelial cell line (HMEC-1)[17] 
consistent with in vitro angiogenesis. 

The mouse CXC receptor (mCXCR) is functionally 
related to hCXCR2[19]. Mice lacking the mCXCR 
(mCXCR2-/-) have been described[20] and some healing[21] 
and bone[22-24] defects have been reported. A second 
murine CXCR (mCXCR1) has also been identified; 
although, it has no discernable defect phenotype when 
inactivated (Jackson Laboratory Stock #005820). 
We have shown by DEXA and micro computerized 
tomography analysis that the mCXCR2-/- mice (Jackson 
Laboratory Stock #002724) have an osteopenic 
phenotype with decreased trabecular bone volume, 
number, and thickness without any changes in bone 
formation and resorption indices[25]. However, bone 
quality was affected as femurs had reduced stiffness 
and a lower ultimate load breaking point[25]. There was 
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also a reduction in the blood vessel density in the newly 
repaired bone in a cranial defect model[25]. During bone 
regeneration, ingrowth of blood vessels is required for 
endochondral bone formation[1]. These results suggest 
a potential coupling of mMSC differentiation, bone 
formation, and angiogenesis in response to mCXCR 
signaling.

The Wnt family of secreted glycoproteins is involved 
in differentiation of an assortment of tissues[26]. Wnts 
signal through specific seven transmembrane spanning 
G-protein coupled frizzled (Fzd) receptors via both 
canonical β-catenin signaling, and non-canonical Wnt/
calcium and Wnt/planar cell polarity pathways[27,28]. The 
highly conserved and redundant nature of the Wnt/Fzd 
system (19 Wnts and 10 Fzd in humans) only adds to 
the complexity of this system and confusion as to its 
role in osteogenesis. 

The canonical pathway is characterized by Wnt 
binding to both Fzd and LRP5/LRP6 co-receptors resul­
ting in activation of Disheveled (Dsh) which inhibits 
glycogen synthase kinase 3β (GSK3β) phosphory­
lation. In the absence of Wnt binding, GSK3β pho­
sphorylation ultimately results in β-catenin degradation, 
preventing its nuclear translocation for activation of 
target genes. In murine models, evidence suggests 
that canonical Wnt/β-catenin signaling is necessary 
for lineage commitment of pluripotent MSCs to osteo­
chondroprogenitor cells, then to osteoprogenitor cells, 
and for differentiation to mature osteoblasts while 
suppressing both chondrogenesis and adipogenesis[29,30]. 
However, in hMSC models, β-catenin and canonical 
Wnt3a can negatively regulate the differentiation of 
MSCs into the skeletal precursor cells that precede the 
appearance of the osteochondroprogenitor cells[31-35]. 
Additionally, de Boer et al[36] reported a dose-response 
relationship in which lower levels of β-catenin stimu­
lated hMSC proliferation while blocking adipogenesis; 
whereas, higher levels induced expression of alkaline 
phosphatase. The authors thus concluded that canonical 
Wnt/β-catenin signaling could initiate osteogenic differen­
tiation in the human system[36].

Signal transduction through the non-canonical or 
β-catenin-independent Wnt pathways has also been 
shown to inhibit adipogenesis and chondrogenesis 
in MSC models and to stimulate osteogenesis[33,37-40] 
mediated through activation of phospholipase C (PLC), 
and then through activation of the calcium-calmodulin 
kinase, nuclear factor of activated T-cells (NFAT), 
and protein kinase C (PKC) pathways or through the 
mitogen-activated protein kinase (MAPK) and RhoA 
pathways. Non-canonical Wnt signaling through tradi­
tional canonical Wnt ligands, Wnt3a and Wnt7b, and 
the non-canonical Wnt ligand, Wnt4, can also lead to 
osteogenic differentiation in both murine and human 
MSCs models through the activation of PKC and/or 
MAPK pathways[33,41,42]. Levels of non-canonical Wnt5a 
are increased in the inflammatory environment during 
early fracture healing[43] and non-canonical signaling 
(Wnt4 and Wnt5a) can affect the transition from 

proliferative osteoprogenitors to mature osteogenic 
cells[44,45]. However, as with canonical signaling, there 
are conflicting reports as to whether non-canonical 
Wnt5a can induce osteogenesis[30,33].

Wnt antagonists which include secreted frizzled 
related proteins (sFRPs), that can inhibit both canonical 
and non-canonical Wnt signaling[46], or the canonical 
Wnt/β-catenin Dickkopf (Dkk) inhibitors may also 
contribute to osteoblast differentiation and minerali­
zation[30,38,47]. sFRP1 knock-out mice exhibit increased 
trabecular bone mass due to reduced osteoblast and 
osteocyte apoptosis[48] suggesting that Wnt signaling 
is involved in bone formation. Additionally, long bone 
fracture healing is enhanced in sFRP knockout mice 
through canonical Wnt signaling as a consequence of 
MSCs directed to differentiate into osteoblasts rather 
than towards cartilage[49]. However, high sFRP1 levels 
expressed early in fracture repair in this model would 
suggest that both canonical and non-canonical Wnt 
signaling are inhibited in early callus formation. Wnt5a/
5b expression was decreased in the sFRP1 knockouts; 
although, contrary to conventional thought, canonical 
Wnt7a and Wnt1 were elevated[49]. There have been 
other reports of sFRPs enhancing rather than inhibiting 
Wnt activity[50] through mechanisms which may involve: 
(1) sFRP-Wnt binding to each other and facilitating 
transport and binding of Wnts to Fzd receptors on 
distant cells; or (2) binding to both Wnt molecules and 
Fzd receptors simultaneously to activate downstream 
Fzd signaling[51]. Many repair processes are stimulated 
by sFRP2-Wnt interactions including the enhancement of 
vascular density during granulation tissue formation[52]; 
inhibition of cardiomyocyte apoptosis during cardiac 
repair[53]; establishment of MSC-endothelial and smooth 
muscle contacts to stabilize new blood vessel forma­
tion[54]; and stimulation of angiogenesis by sFRP1 (FzlA) 
independent of VEGF, bFGF2, or angiopoietin1[55]. 

A key observation made by several laboratories 
is that canonical Wnt/β-catenin signaling may be 
important in osteoblastogenesis through the cooperation 
of Wnt signaling with other known osteogenic factors 
such as BMP-2 and BMP-4[47,56]. Thus taken together, 
canonical Wnt/β-catenin signaling appears to be 
involved in determining a specific tissue fate of MSCs. 
However, further effects of Wnt signaling (both canonical 
and non-canonical) on osteogenic differentiation is 
dependent on several factors including: The species 
from which the MSCs are derived, the specific Wnt 
(and Fzd receptors) expressed, the stage of osteogenic 
differentiation, the amount of β-catenin available to 
translocate to the cell nucleus, and other biologically 
active molecules (e.g., growth factors) present in the 
MSC’s microenvironment[30,57]. These other factors 
could include the ELR+ CXC chemokines which are also 
elevated in the inflammatory phase of healing and which 
have been shown to be stimulated by non-canonical 
Wnt5a[58,59]. In this article, we report the observation 
that sFRP treatment of hMSCs leads to an increased 
expression of ELR+ CXCL5 and CXCL8 which may serve 
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HMSCGM) were added as needed. The PLC signal 
transduction inhibitor (U73122) and control (U73343) 
were used at 10 µmol/L (Calbiochem, San Diego, CA). 
Effects of siRNA inhibition of receptors were determined 
by transfection of hMSCs with siRNA (150 ng/mL) using 
the HiPerFect transfection reagent (Qiagen) followed by 
treatment of the cells with sFRPs for 48 h before gene 
expression analysis. siRNA were purchased from Qiagen 
and the nucleotide sequences indicated in Table 1. A 
scrambled oligonucleotide siRNA was used as a negative 
control. 

Quantitative reverse transcriptase-polymerase chain 
reaction
Relative mRNA levels of various genes were determined 
by real-time RT-PCR using the Opticon Continuous 
Fluorescence System (Bio-Rad Laboratories, Inc., 
Hercules, CA) and the SYBR Green RT-PCR kit (Qiagen). 
Primers used for RT-PCR are indicated in Table 2. 

PCR reactions were performed in triplicate. Reactions 
consisted of reverse transcription at 50 ℃ (30 min), 
inactivation at 95 ℃ (15 min); followed by 50 cycles of 
denaturing at 94 ℃ (15 s), annealing at 60 ℃ (30 s), 
and extension at 72 ℃ (30 s). Gene expression changes 
were calculated and normalized to 18S ribosomal 
levels and the reference time point using the 2-ΔΔC(T) 
method[60].

ELISA analysis
Secreted CXCL5 protein levels were determined with 
the human CXCL5/ENA-78 DuoSet (R and D Systems, 
Minneapolis, MN) after concentration of supernatants 
with microcon centrifugal filters (EMD Millipore Inc, 
Billerica, MA). Culture supernatant samples were 
compared to CXCL5 standard curves and were run in 
duplicate.

Western blot analysis
Cells were plated in 35 mm dishes and treated with 
OGM medium (7 d). sFRP1 (150 ng/mL) was added 
and cell lysates isolated at indicated time points in 
PhosphoSafe Extraction Reagent (EMD Chemicals, 
Gibbstown, NJ). Proteins were separated (SDS–PAGE), 
transferred to polyvinylidenedifluoride membrane, and 
probed with ERK-specific pan or phospho-antibodies (Cell 
Signaling Technology, Danvers, MA). Immunoreactive 
proteins were detected using the ECL kit (GE Healthcare 
Bio-sciences, Piscataway, NJ) and levels quantitated 
using AlphaView Software (ProteinSimple, San Jose, 

to attract MSCs to the wound or to couple angiogenesis 
to osteogenesis in the early phase of bone repair. 

MATERIALS AND METHODS
Cell culture
hMSCs, growth supplements, and basal medium were 
purchased from LonzaWalkersville, Inc. (Walkersville, 
MD). hMSCs from several donors were used: 19 years 
old male (Lonza Lot #6F4393; race unknown); 20 years 
old Caucasian male (Lot #0000351482); 27 years old 
Black male (Lot #0000318006). Cells were grown in 
complete medium (HMSCGM) at 37 ℃ under 95% 
air/5% CO2 atmosphere and subcultured once a week 
at 60%-70% confluence. 

For osteoblastic differentiation, hMSCs were treated 
every 3-4 d with osteogenic medium (OGM) consisting 
of complete growth medium with 50 mmol/L ascorbic 
acid-2-phosphate, 10 mmol/L b-glycerophosphate, and 
10-7 mol/L dexamethasone (Sigma-Aldrich, St. Louis, 
MO). 

Cells (passage 2-7) were plated at 5000-10000 
cell/cm2 in HMSCGM and allowed to adhere for 4 h 
prior to exposure to OGM (n ≥ 3 for all experiments). 
Differentiation toward the osteoblastic lineage was 
monitored by detection of mRNA levels of the reporter 
gene alkaline phosphatase or by Alizarin Red staining 
for calcium at 28 d as previously described[17]. Qiagen 
RNeasy Miniprep columns (Qiagen, Inc., Valencia, 
CA) were used to isolate RNA at the specified time-
points. In some experiments exogenous sFRPs (varying 
concentration from 0-500 ng/mL; PeproTech Inc., Rocky 
Hill, NJ), Dkk1 (50 ng/mL, PeproTech), and L-cell or 
Wnt5a-conditioned medium (CM) (1:1 mixture with 
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  Gene Qiagen product name Qiagen catalog No. Human target sequence

  siFZD2 Hs_FZD2_5 SI02757433 CACGGTCTACATGATCAAATA
  siFZD5 Hs_FZD5_5 SI02757650 TAAGGTTGGCGTTGTAATGAA
  siROR2 Hs_ROR2_6 SI00287525 CTGGTGCTTTACGCAGAATAA
  siScambled Ctrl_Control_1 SI03650325 AATTCTCCGAACGTGTCACGT

Table 1  siRNA oligonucleotide sequences

  Gene Human primer sequence

  hCXCL5 5’GCTGGTCCTGCCGCTGCTGTG3’ 
5’GTTTTCCTTGTTTCCACCGTC3’

  hCXCL8 5’GCCTTCCTGATTTCTGCAGC3’
5’TCCAGACAGAGCTCTCTTCC3’

  18S Ribosomal 
  RNA

5’CGGGTCATAAGCTTGCGTT3’
5’CCGCAGGTTCACCTACGG3’

  FZD2 5’CCTCAAGGTGCCATCCTATCTCAG3’
5’GTGTAGCAGCCCGACAGAAAAATG3’

  FZD5 5’CCTACCACAAGCAGGTGTCC3’
5’GGACAGGTTCTTCCTCGAAA3’

  ROR2 5’TCCTTCTGCCACTTCGTGTTTCC3’
5’TGCTTGCCGTTCCTCTGTAATCC3’

Table 2  Reverse transcription-polymerase chain reaction 
primer sequences
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induced in hMSCs exposed to osteogenic differentiation 
medium (OGM) containing ascorbate-2-phosphate, 
β-glycerophosphate, and dexamethasone. To see if 
another angiogenic CXC chemokine, CXCL5 (ENA-78), 
was also induced by osteogenic differentiation, RNA 
from hMSCs treated with OGM was analyzed for CXCL5 
expression levels. OGM treatment for 7 d stimulated 
CXCL5 mRNA levels approximately 8-fold (P < 0.01; 
Figure 1A). Dexamethasone alone (0.1 µmol/L) in the 
presence of proliferating medium (HMSCGM) increased 
CXCL5 mRNA by 5.5-fold (P < 0.01). 

Non-canonical Wnt signaling has also been asso­
ciated with osteogenic differentiation of hMSCs[32,61]. 
Since osteogenic differentiation using OGM or dexame­
thasone alone resulted in CXCL5 mRNA expression, 
we then explored if treatment of hMSC cells with non-
canonical Wnt5a protein was able to stimulate the 
expression of CXCL5. hMSC cells were treated for 7 
d with CM from L-cells overexpressing Wnt5a protein 
or control L-cell CM. CM containing Wnt5a induced 
the expression of CXCL5 mRNA 3-fold (P < 0.05) 
compared to the lack of stimulation of CXCL5 in both 
non-osteogenic medium (HMSCGM medium) or control 
L-cell medium (Figure 1B). CXCL5 protein secretion was 
also increased 1.5-fold (P < 0.05) above controls (Figure 
1C).

We next sought to inhibit all Wnt signaling, both 
canonical and non-canonical Wnt signaling, using  sFRPs. 
Surprisingly and unexpectedly, sFRP1 increased CXCL5 
mRNA levels 3-fold (P < 0.01) at 7 d and approximately 
8-fold (P < 0.01) at 10 d of culture in HMSCGM medium 
(Figure 2A). To see if canonical Wnt signaling inhibition 
was responsible for the unexpected stimulation of 
CXCL5, hMSCs were treated with Dkk1 which binds 
to the low density lipoprotein receptor related protein 
6 (LRP6) to inhibit canonical signaling. Unlike sFRP-1, 
Dkk1 addition did not induce an increase in CXCL5 
levels at 7 or 10 d and in fact significantly inhibited 
basal mRNA expression levels more than 50% (P < 
0.01) at 7 d (Figure 2A). To see if the effect of sFRP1 
on CXCL5 was unique amongst the other sFRP family 
members, sFRPs 2, 3, or 4 was each added separately 
to the medium (150 ng/mL) for 7 d and levels of CXCL5 
protein secreted into the medium determined. All four 
sFRPs added independently significantly stimulated 
CXCL5 protein secretion 3-4-fold (P < 0.01) over un-
stimulated vehicle control (Figure 2B).

We next tested if CXCL8 mRNA levels are also stimu­
lated by sFRP1 treatment. sFRP1 treatment increased 
CXCL8 mRNA levels in a dose-dependent manner (Figure 
2C). Maximum stimulation of CXCL8 mRNA expression 
(approximately 5-fold) was observed at a concentration 
of 150 ng/mL sFRP1 (P < 0.05). A time-course study 
of CXCL8 mRNA expression stimulated by sFRP1 (150 
ng/mL) showed maximal expression levels (P < 0.05) 
between 5 and 7 d of culture (Figure 2D).

In an effort to explore the mechanism of the sFRP1-
stimulated increase in both CXCL5 and CXCL8 expre­

CA).

Statistical analysis 
Data values are reported as mean ± SD. Statistical 
analysis (1-way ANOVA with the Bonferroni method for 
multiple comparisons between pairs or non-parametric 
Mann-Whitney t test) was performed using GraphPad 
Prism software. Differences from negative controls were 
considered to be statistically significant at the P < 0.05 
level. 

RESULTS
We had previously demonstrated that mRNA and 
protein for CXCL8 (IL-8) and CXCL1 (GROα)[17] were 

1266 December 26, 2015|Volume 7|Issue 11|WJSC|www.wjgnet.com

10

8

6

4

2

0

5

4

3

2

1

0

2.0

1.5

1.0

0.5

0.0

HMSC
GM

DEX
OGM

HMSC
GM

L-c
ell

W
nt

5a

HMSC
GM

L-c
ell

W
nt

5a

b

b

a

a

CX
CL

5 
m

R
N

A 
le

ve
ls

CX
CL

5 
m

R
N

A 
le

ve
ls

 C
XC

L5
 p

ro
te

in
 (

pg
/m

L)

Figure 1  CXCL5 chemokine induction in human mesenchymal stem cells 
treated with osteogenic medium or non-canonical Wnt5a. A: CXCL5 mRNA 
levels are induced at 7 d in complete osteogenic medium or medium containing 
0.1 µmol/L dexamethasone. Conditioned medium containing non-canonical 
Wnt5a induces (B) mRNA expression and (C) protein secretion. All values 
are mean ± SD. aP < 0.05; bP < 0.01 vs HMSCGM-treated group. HMSCGM: 
Human mesenchymal stem cell growth medium; DEX: Dexamethasone; 
OGM: Osteogenic medium; L-cell: Conditioned medium from L-cells; Wnt5a: 
Conditioned medium from L-cells expressing Wnt5a.

A

B

C

Bischoff DS et al . sFRP induction of CXC chemokines



ssion, we characterized the phosphorylated state of 
the extracellular signal-regulated kinase (ERK) p44/42, 
a member of the MAPK pathway, since it has been 
previously reported that CXC ligand expression can 
be increased via MAPK activation[62-66]. p44/42 was 
shown to be phosphorylated maximally at 5 min in the 
presence of OGM and sFRP1, whereas maximal p44/42 
phosphorylation occurred at 10 min in OGM alone (Figure 
3).

To see if other G-protein coupled signaling mech­
anisms could be involved in sFRP stimulation of CXCL8 
mRNA expression, the PLC inhibitor, U73122, was added 
(10 µmol/L) to the HMSCGM medium and CXCL8 mRNA 
levels determined after 3 d of sFRP treatment. Both 
sFRP1 and sFRP2 in the presence of the inactive isomer, 
U73343, enhanced CXCL8 mRNA by approximately 3 
to 5 fold (P < 0.05). However, U73122 prevented the 
increase in both sFRP1- and sFRP2-stimulated CXCL8 
mRNA levels returning them back to HMSCGM control 
levels (Figure 4).

Since Fzd receptors are G-protein coupled seven 
transmembrane receptors, it was further investigated 
if the sFRP stimulation of CXCL8 could be through 
interactions with specific frizzled receptors. Fzd2 
and Fzd5 have been associated with non-canonical 
Wnt signaling[67,68]; whereas, Fzd7 is associated with 
canonical signaling[69]. sFRP1, 2 and 3 all stimulated 
CXCL8 mRNA levels in the presence of a scrambled 
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of the Wnt proteins within tissues. sFRPs may compete 
with this binding, enabling the Wnt-sFRP “transport” 
complexes that are formed to diffuse along a more 
extended gradient allowing for longer range Wnt 
signaling within the tissue[76] thereby aiding in tissue 
generation or differentiation. In one mouse model 
system, MSCs engineered to overexpress protein kinase 
B (also known as Akt) produce high levels of sFRP2 
which can effectively limit cardiac muscle infarct size 
through the inhibition of cardiomyocyte apoptosis[53]. 

siControl siRNA (7 to 10-fold for sFRP1 and sFRP2; 3-fold 
for sFRP3). In the presence of siRNA to Fzd2 and 5, the 
sFRP-stimulation was almost entirely inhibited back to 
baseline levels (P < 0.05; Figure 5A and B). siRNA to 
Fzl7 did not have any effect on sFRP1 or sFRP2 induction 
of CXCL8 mRNA (data not shown). The receptor 
tyrosine kinase-like orphan receptor-2 (RoR2) has 
been shown to be either a stand-alone receptor or co-
receptor with Fzd in non-canonical Wnt signaling[70,71]. 
siRNA directed against RoR2 inhibited sFRP1-stimulated 
CXCL8 mRNA expression by approximately 65% but did 
not have an effect on sFRP2-stimulated CXCL8 mRNA 
expression (Figure 5C).

DISCUSSION
sFRPs have been traditionally thought to act as Wnt 
signaling antagonists by binding to Wnt molecules and 
preventing them from binding to Fzd receptors thus 
inhibiting signal initiation[72]. Interaction of Wnts with Fzd 
receptors has been hypothesized to occur via interaction 
with the extracellular cysteine-rich domains (CRDs) 
found in Fzd receptors. sFRPs also contain N-terminal 
CRDs, but without the transmembrane domain chara­
cteristic of Fzd receptors[73], and it has been demon­
strated that sFRP interaction with Wnts occurs through 
binding within this CRD[74,75]. Additionally, Bafico et 
al[75] found that at least one sFRP could also bind to 
a selected Fzd (e.g., Fzd6) and hypothesized that 
heteromeric complex of Fzd and sFRPs would render 
Fzd receptors nonfunctional.

However, there has been emerging evidence that 
sFRPs may not only function as Wnt antagonists or anti-
morphogens but also serve as molecules that promote 
differentiation of specific tissues. It has been suggested 
that sFRPs may aid in Wnt protein distribution and 
signaling within tissues. Wnt proteins interact with 
heparin sulfate proteoglycans thereby limiting diffusion 
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(EC) spreading, proliferation and migration, vascular 
channel formation, and blood vessel stabilization. sFRP1 
has been shown to enhance angiogenesis in a chick 
chorioallantoic membrane model of angiogenesis and 
to increase blood vessel density in a tumor implantation 
model[55]. EC spreading was hypothesized to be a result 
of an interaction of sFRP1 with Fzd4 and Fzd7 thereby 
blocking Fzd activity and has also been shown to be 
independent of canonical Wnt-β-catenin signaling; 
although, this process still involving GSK3β upstream 
of Rac 1 signaling[80]. sFRP1 has also been shown 
to stimulate EC migration and chemotaxis in vitro, 
increase EC branching in capillary structures when 
cultured on Matrigel, and inhibit EC apoptosis[55]. EC 
and vascular smooth muscle cell proliferation are also 
inhibited as evidenced by slower entry into S-phase 
as well as decreased expression of the cell cycle 
components cyclin D1 and cdk4[81]. This latter inhibition 
of vascular cell proliferation appeared to be dependent 
on inhibition of canonical Wnt-β-catenin signaling but 
not MAPK signaling through ERK1/2. Vessel maturation 
and stabilization of EC channels by pericytes or MSCs 
were also enhanced by sFRP1 stimulated cell-cell 
interactions between MSCs and ECs or smooth muscle 
cells in a GSK3β-dependent manner. Interestingly, 
sFRP1 increased α-smooth muscle actin expression in 
MSCs suggesting differentiation of MSCs to pericytes 
which are involved with blood vessel stabilization. 
Furthermore, the localization of β-catenin at cell-cell 
junctions rather than intranuclear locations could further 
support a non-canonical Wnt signaling mechanism. 
Others have also reported that sFRP2 can also stimulate 
EC migration and tube formation as well as inhibit 
hypoxia-induced EC apoptosis through a non-canonical 
Wnt-calcium pathway involving an increase in NFATc3 
nuclear translocation[82,83].

The mechanism of how sFRPs stimulate angiogenesis 
is currently unknown. sFRP1, which did not induce 
expression of the known angiogenic factors VEGF 
or FGF2, did increase expression of PDGF-BB which 
is involved in postnatal blood vessel maturation[84]. 
Expression of other angiogenic factors such as the 
ELR+ CXC chemokines could potentially be the result of 
sFRP1 actions. Indeed we are the first to report here 
that sFRPs are able to induce the ELR+ CXC chemokines 
CXCL5 and CXCL8 in hMSCs. Rauner et al[85] has shown 
that human bone marrow MSCs stimulated with pro-
inflammatory factors (lipopolysaccharide or TNF-α) 
resulted in Wnt5a and RoR2 increases in mRNA and 
protein. The expression of the ELR+ CXC chemokines, 
CXCL1, CXCL2, and CXCL5, was also increased with 
Wnt5a treatment of these hMSCs. Additionally the 
CC chemokines, CCL2, CCL5, CCL7, and CCL19 were 
also upregulated, although, to a lesser extent than the 
CXC chemokines CXCL1 and CXCL5. Albers et al[59] 
also reported that Fzd9 knockout mice demonstrated 
an osteopenic phenotype caused by decreased bone 
formation which was unrelated to canonical Wnt sig­
naling[59]. The presumed non-canonical Wnt regulation 

The increased sFRP2 led to increased levels of nuclear 
β-catenin thus enhancing canonical Wnt signaling and 
increased transcription of anti-apoptotic genes such as 
Birc1b and to a lesser extent Bcl2.

Others have reported links between non-canonical 
Wnt signaling and sFRP-mediated differentiation pro­
cesses. Chung et al[77] reported that sFRP3 could increase 
osteoblast differentiation in the mouse pre-osteoblastic 
cell line, MC3T3-E1, by increasing alkaline phosphatase, 
osteocalcin, and promoting mineralization of MC3T3-E1 
cultures. Endostatin, which promotes degradation of 
β-catenin independent of GSK3β, did not abrogate 
sFRP3-stimulated osteogenic differentiation suggesting 
that non-canonical Wnt signaling may be involved in 
the sFRP3 effect. Esteve et al[78] also reported that chick 
sFRP1 enhanced retinal differentiation by increasing the 
generation of retinal ganglion and photoreceptor cells 
independent of cell proliferation. This group noted that 
canonical Wnt-β-catenin signaling was not involved in 
this process; although, they did find that phosphorylation 
of GSK3β down-regulated its activity while promoting 
retinal cell differentiation. The authors were unclear if 
non-canonical Wnt signaling was involved in the sFRP1 
findings at that time. In a subsequent communication, 
this group reported that chick sFRP1 binds to Fzd2 to 
stimulate axonal outgrowth from retinal neurons[79]. 
Furthermore, the action of sFRP1 on the retinal ganglion 
cells was dependent on cAMP and cGMP in a pertussis 
toxin-sensitive manner suggesting that sFRP1 acted as 
an agonist for Fzd2 non-canonical Wnt signaling.

Several reports have shown that sFRPs were invol­
ved in stimulating angiogenesis through canonical Wnt 
signaling but independent of VEGF signaling[54,55,80]. In 
studies utilizing MRL/MpJ mice, which have enhanced 
regenerative capacity, it was found that MRL/MpJ 
bone marrow MSCs showed decreased expression of 
cyclin D1, Sox2, and Axin2, which are target genes 
of canonical Wnt signaling. Concomitantly, sFRP2 and 
sFRP4 expression was found to be significantly up-
regulated[52] in these cells. It was also reported that 
sFRP2 overexpression in mouse MSCs that were then 
injected into the cardiac peri-infarct area reduced 
infarct size and improved cardiac function similar to 
that seen when MRL/MpJ MSCs were injected. Of note, 
vascularization of granulation tissue was also enhanced 
by sFRP2 overexpression. This was also reported in 
another MRL/MpJMSC engraftment wound healing 
model[52] whereby sFRP2 overexpression in mouse 
MSCs increased levels of several angiogenic factors 
including FGF2 receptor, PDGF receptor beta, VEGF, 
and angiopoietins among others. While the authors 
concluded that the increased sFRP2 inhibited canonical 
Wnt signaling which may be related to the increased 
angiogenesis, non-canonical Wnt signaling was not 
examined. Furthermore, the expression of ELR+ CXC 
chemokines that are also angiogenic was not assessed.

There are a number of steps that occur in new 
blood vessel formation, several of which have been 
linked to sFRP1 signaling, including endothelial cell 
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Research frontiers
Although much attention has been placed on the role of the major angiogenesis 
proteins (vascular endothelial growth factor and fibroblast growth factors) and 
the Wnt system in bone repair, not much research has been conducted on the 
role of the ELR+ chemokines in this process. These chemokines also have 
important functions in inflammation and blood vessel formation and have been 
shown to be stimulated by non-canonical Wnt signaling and during osteogenic 
differentiation of MSCs. 

Innovations and breakthroughs
In this report, the authors demonstrate that treatment of human MSC (hMSC) 
with the soluble frizzled-related proteins (sFRPs), which should inhibit both 
canonical and non-canonical Wnt signaling, actually stimulates the expression 
of the angiogenic CXC ELR+ chemokines CXCL5 and CXCL8. CXC ELR+ 
chemokine stimulation was mediated through the non-canonical frizzled receptors 
2 (Fzd2) and Fzd5 Wnt receptors and the RoR2 co-receptor. This adds to the 
data suggesting non-canonical Wnt control of several bone formation processes 
through expression of the ELR+ chemokines and identifies a potential new role 
for the sFRPs in coupling ELR+ chemokine angiogenesis to bone repair. 

Applications
Many recent reports have focused on the use of native or genetically engineered 
MSCs as a treatment to speed up or enhance the quality and mineralization of 
bone in wound and bone defect models. The ability of the sFRPs to stimulate 
ELR+ CXC chemokines detailed in this study may suggest another avenue 
for manipulation of bone formation pathways and may eventually lead to a 
therapeutic treatment to hasten bone healing and return bone strength back to 
pre-injury levels. 

Terminology
MSCs: Multipotent stromal cells that can be differentiated into several cells 
types including cartilage (chondrocytes), bone (osteoblasts), fat (adipocytes) and 
muscle (myocytes); ELR+ CXC chemokines: Family of small cytokines secreted by 
cells and containing a Cys-X-Cys domain. CXC chemokines can be further divided 
into those with or without a Glu-Leu-Arg (ELR+) motif. ELR+ CXC chemokines 
are angiogenic. ELR- CXC chemokines are angiostatic. Wnt signaling: family of 
signaling molecules (Wnts) and Fzds that are important in many developmental 
pathways including cell fate, proliferation, and differentiation; sFRPs: Family of 
proteins that inhibit Wnt signaling by acting as soluble, decoy receptors preventing 
Wnt binding to Fzds.

Peer-review
The paper found that CXC chemokine expression in hMSC is controlled in part 
by sFRPs signalling through non-canonical Wnt involving Fzd2/5 and the ERK 
and PLC pathways. The results are interesting.
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of bone mass in Fzd9-deficient mice was also shown to 
have significantly decreased CXCL5 expression. In these 
studies, treatment of wild type osteoblasts with Wnt5a 
showed a 12-fold increase in CXCL5 mRNA. In a fracture 
repair model in Fzd9-deficient mice, protein expression 
of CXCL5 and CCL2 in the healing callus was diminished 
in comparison to wild-type, and overall new bone in 
the Fzd9 knockout mice was reduced[86]. Most recently, 
Zhao et al[87] reported that in human dental pulp cells, 
non-canonical Wnt5a significantly induced CXCL8, CCL2, 
and CCL5 mRNA and protein expression, as well as 
increasing CXCL1 mRNA expression. CXCL5 expression 
was not tested in response to Wnt5a stimulation in this 
model.

The signaling mechanism(s) responsible for sFRPs 
induction of ELR+ CXC chemokine expression are 
unknown. Our results suggest that ELR+ CXC chemokine 
stimulation by sFRPs in human bone marrow-derived 
MSCs is via non-canonical Wnt signaling. MAPK, 
specifically though ERK1/2, and PLC pathways appear 
to play a role in sFRP stimulation of the ELR+ CXC 
chemokines. PLC signaling can be upstream of MAPK/
ERK[88] and perhaps the non-canonical Wnt-calcium 
pathway is involved. Our findings that inhibition of sFRP-
induced ELR+ CXC chemokine expression by PLC as 
well as demonstration of ERK phosphorylation upon 
sFRP stimulation of MSCs are consistent with potential 
sFRP signaling thru serpentine G protein-coupled 
receptors such as the Fzd receptors. Furthermore, our 
data demonstrating prevention of sFRP1-stimulated 
CXCL8 mRNA induction with siRNA-directed inhibition 
of the non-canonical Fzd2 and Fzd5 are also consistent 
with a role of sFRP-Fzd receptor interaction in ELR+ 
CXC chemokine genesis. How RoR2 either acting as 
a co-receptor with non-canonical Fzd receptors or 
independently fits in to the regulation of ELR+ chemokine 
expression is currently unknown. Since these angiogenic 
chemokines are expressed during the inflammatory 
phase of wound healing, these chemokines could 
contribute to several aspects of bone repair including 
attraction of additional MSCs to the site for differentiation 
or attraction of endothelial cells for generation of 
vascularized granulation tissue and stimulation of 
angiogenesis as we had previously demonstrated[17]. 
Thus, in addition to regulation of Wnt signaling as 
inhibitory substances, our study adds to a growing body 
of knowledge on the stimulatory functions of sFRPs. 
Specifically, a novel function of sFRPs in stimulating 
angiogenic chemokines can be envisioned that may aid 
in wound and bone repair.
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