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Abstract
The recapitulation of primary tumour heterogenity and 
the existence of a minor sub-population of cancer cells, 
capable of initiating tumour growth in xenografts on serial 
passages, led to the hypothesis that cancer stem cells 
(CSCs) exist. CSCs are present in many tumours, among 
which is breast cancer. Breast CSCs (BCSCs) are likely to 
sustain the growth of the primary tumour mass, as well 

as to be responsible for disease relapse and metastatic 
spreading. Consequently, BCSCs represent the most 
significant target for new drugs in breast cancer therapy. 
Both the hypoxic condition in BCSCs biology and pro-
inflammatory cytokine network has gained increasing 
importance in the recent past. Breast stromal cells are 
crucial components of the tumours milieu and are a major 
source of inflammatory mediators. Recently, the anti-
inflammatory role of some nuclear receptors ligands has 
emerged in several diseases, including breast cancer. 
Therefore, the use of nuclear receptors ligands may be a 
valid strategy to inhibit BCSCs viability and consequently 
breast cancer growth and disease relapse.

Key words: Cancer stem cells; Hypoxia; Inflammation; 
Nuclear receptors; Retinoids; Peroxisome proliferator-
activator receptors

© The Author(s) 2016. Published by Baishideng Publishing 
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Core tip: This review examines the roles of breast cancer 
stem cells (BCSC) in the eliminate breast cancer disease. 
BCSCs represent the most significant target for new drugs 
in breast cancer therapy. The use of nuclear receptors 
ligands may be a valid strategy to inhibit BCSCs viability 
and consequently breast cancer growth and disease 
relapse.
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INTRODUCTION
The new hypothesis: Cancer stem cells 
Several studies in the past years have shown that 
particular stem cells can have a significant role in cancer 
formation. These cells were identified in the hematopoietic 
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system, central nervous system and mammary glands. 
These cells are a rare cell population of “tumour initiators”, 
with particular biological characteristics[1-4]. These stem 
cells have the ability to self-renew and to develop into all 
the cells that form the tumour mass and are called cancer 
stem cells (CSCs)[5]. In the CSCs hypothesis, cancer 
derives from normal stem cells that are transformed 
into tumour cells[6]. Adult stem cells are characterized as 
long-living with a low proliferative rate and are exposed 
for prolonged periods to agents that can induce damage 
and can accumulate mutations that result in neoplastic 
transformation[7]. Therefore, this condition implies the 
adoption of a new model to explain the carcinogenesis. 
Contrary to the “stochastic” model of tumorigenesis, 
for which the neoplastic transformation would result 
from random mutations incurred by a healthy cell that, 
consequently, undergoes clonal expansion. The CSCs 
hypothesis argues that the tumour begins from a stem 
cell, probably due to a dysregulation of the pathways 
involved in self-renewal[6]. However, these mechanisms are 
not exclusive and we can consider that other mechanisms 
can participate in the genesis and tumour progression, 
contributing to the heterogeneity of the tumour. 

Breast cancer stem cells
The existence of CSCs in tumours of the mammary 
gland has been widely demonstrated by several studies, 
based mainly on transplants. The hypothesis of the origin 
of the breast cancer stem cells (BCSCs) was confirmed 
by the finding that only a minority of human breast 
cancer cells have the ability to induce new tumours when 
transplanted into immunocompromised mice (NOD/
SCID)[8,9]. The presence of BCSCs indicates the onset of 
a breast tumour and they are distinguishable from other 
cancer cells by expression of specific membrane markers 
such as CD44 and an Epithelial Specific Antigen and by 
the absence or low expression of CD24 protein (CD44 
and CD24 are adhesion molecules). Therefore, BCSCs 
are isolated from the tumour mass as CD44+/CD24- by 
FACS analysis. Approximately 200 cells characterized 
by this phenotype induced tumour growth in NOD/SCID 
mice while 20000 cells with a different phenotype did 
not have this capability. CD44+/CD24- breast cancer 
cells can generate cells of the same phenotype and cells 
phenotypically different, so that the tumour from which 
they develop in mice repeats the entire heterogeneity 
of its initial cancer[4]. The mammary gland epithelial 
components are thought to arise from stem cells 
that undergo both self-renewal and differentiation. 
Self-renewal has been shown to be regulated by the 
Hedgehog, Notch, and Wnt pathways. Deregulation 
of the self-renewal in stem cells/progenitors might be 
a key event in mammary carcinogenesis[10]. Different 
combinations of cell surface markers such as CD44, 
CD49f, CD24, and CD29 as well as the activity of certain 
enzymes such as aldehyde dehydrogenase isoform 1 
(ALDH1) have been used to identify BCSCs[11]. 

The new BCSCs hypothesis has important therapeutic 

implications. BCSCs have many similar characteristics to 
normal stem cells, such as apoptosis resistance, the capacity 
to repair DNA damage and multidrug-resistance (MDR). 
MDR is important to explain the capacity of breast cancer 
to overcome chemotherapy. BCSCs are characterized 
by expression of genes encoding ATP-binding cassette 
(ABC) proteins, which are transmembrane transporters 
involved in the extrusion of drugs from cancer cells, as 
ABCC1, ABCG2 and ABCB1. The principal MDR proteins 
that are expressed in BCSCs are the P-glycoprotein, the 
multidrug-resistance protein 1 (MDR1) and the cluster 
differentiation 243 (CD243). Chemotherapy drugs 
with anti-proliferative effects are less effective on CSCs 
population, because these cells divide less frequently than 
cancer cells[6,7]. For these reasons chemotherapy destroy 
many neoplastic cells but does not affect the minority 
component of tumour such as BCSCs. Accordingly, 
BCSCs induce tumour relapse and metastases[8,9]. So a 
change in chemotherapy strategy is necessary to kill also 
BCSCs.

The stem cell niche and CSC
Stem cells are localized in a niche that is a local tissue 
microenvironment. The niche has a limited area where the 
cells can maintain their peculiarity. Significant progress has 
been made by the studies on the interactions between the 
stem cells and the microenvironment in Caenorhabditis 
elegans and mammals[12,13]. Comparing the stem cell 
niches in these systems, various common features and 
functions have emerged. The niche is formed by a group 
of cells (fibroblasts of the stroma) which have a support 
function for stem cells, serving as the anchor point for 
the stem cells and physical adhesion molecules mediate 
the interactions between the support cells and stem 
cells (as well as those between the stem cells and the 
extracellular matrix). The niche generates factors that 
control number, proliferation and differentiation of stem 
cells. Normally, it maintains the stem cells in a quiescent 
state, providing them with the signals that inhibit the 
growth and proliferation. Only after implementing a 
stimulus transient activator, stem cells are able to divide in 
order to participate in tissue regeneration. This suggests 
that control stem cell dependent signaling mechanisms, 
resulting from dynamic niche and maintaining the balance 
between the proliferative and anti-proliferative signals, 
are the key to the homeostatic regulation of the stem 
cells[12,13]. When there is a change in the niche and growth 
and proliferation signals prevail, the stem cell population 
is exposed to an uncontrolled expansion which can lead to 
spread CSCs[13].

Inflammation and breast cancer stroma
The idea that inflammation could play a role in carcino
genesis was born in 1863, when Rudolf Virchow noted 
the presence of leukocytes in neoplastic tissues. After this 
observation, more and more data have demonstrated 
that malignancy may begin at sites of infection or chronic 
inflammation and approximately 25% of all cancers are 
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associated with such conditions. In fact, although the 
inflammation represents a defensive response adaptive to 
infection or injury and is, under normal conditions, a self-
limiting process which culminates in the repair of damaged 
tissues, an inadequate resolution induces chronic diseases 
or cancer[14]. Chronic inflammation is involved in all stages 
of carcinogenesis (initiation, promotion and progression). 
Inflammation induces an excessive production of reactive 
oxygen species that could cause genomic instability and 
mutation and consequently a tumour[14]. Stromal cells as 
fibroblasts, that are around the tumour, and inflammatory 
cells, as macrophage, that are infiltrated in the tumour, 
help to create an environment favoring the increase of 
inflammation[15]. Fibroblasts are among the most abundant 
cell types in solid tumours and are especially important 
in breast, pancreas, colon and prostate cancer[16]. In 
physiological conditions, fibroblasts have a low proliferative 
rate and have a constant production of extracellular matrix 
(ECM). ECM has anchoring function for the epithelial cells 
maintaining the integrity of structural epithelium. In the 
carcinoma in situ, the stroma is not compromised because 
it remains separated from the tumour cells through the 
basement membrane integrity. With the acquisition of 
infiltrating characteristics, some tumour cells manage to 
cross the basal lamina whose breaking mimics a traumatic 
insult to the tissue, causing changes in non-epithelial 
cell types. Fibroblasts are activated and become tumour 
associated fibroblasts (TAF) thus contributing to the growth 
and expansion of tumour in several ways: they produce 
proteins such as matrix metalloproteinases (MMPs) that have 
proteolytic activity on the components of the extracellular 
matrix[17]; release high levels of stromal-derived factor-1 
(SDF-1) which attracts endothelial progenitor cells in the 
tumour mass (thus promoting angiogenesis); directly 
promote the growth of cancer cells through interaction with 
their receptor CXCR4[18]; release some growth factors such 
as epidermal growth factor (EGF) and transforming growth 
factor β (TGFβ) and release a wide range of inflammatory 
cytokines[16,19]. Macrophages resident in the stroma and 
monocytes that act together with tumour chemotactic 
factors, undergo changes that lead them to favor tumour 
growth. Thus, tumour associated macrophages (TAM) 
support tumour angiogenesis through the secretion of pro-
angiogenic factors as the vascular endothelial growth factor 
(VEGF), the interleukin-1β (IL1β) and the angiogenin (Ang). 
TAM facilitate the migration of cancer cells through the 
release of tumor necrosis factor-α (TNFα), MMPs (such as 
the MMP9) and other proteases such as tissue plasminogen 
activator[20,21]. Moreover, TAM produce factors, such as EGF, 
that directly promote the growth of cancer cells[22] and have 
a role in facilitating the invasion of neoplastic cells[23]. Finally, 
TAF can activate macrophages that produce cytokines to 
maintain an inflamed microenvironment[24,25]. Inflammatory 
cytokines, including SDF-1, interleukin-1 (IL-1), IL-6 and 
IL-8, may affect tumour growth by regulating of CSCs 
population[26]. In particular, it has been demonstrated that 
IL-6 can induce the acquisition of malignant characteristics in 
multicellular spheroids called mammosphere (MS), formed 
from stem cells and progenitors of the mammary gland; 

such aggregates were obtained in vitro in conditions of non-
adherence from MCF-7 breast cancer cell line (MCF-MS) 
or obtained from breast surgical specimens (normal and 
tumour, N-MS and T-MS respectively)[27]. High levels of IL-6 
mRNA were detected in T-MS, however IL-6 can stimulate 
the growth and self-renewal in both T-MS and N-MS. In 
particular, IL-6 induce overexpression of Notch-3 and of its 
ligand Jagged1, both implicated in the maintenance of stem 
cells in an undifferentiated state. It has been demonstrated 
that the pathway IL-6/Notch-3 increases the expression 
of the protein carbonic anhydrase IX (CAIX), from which 
depends the survival of MCF7-MS in hypoxic environment, 
as well as an increase of their invasive potential. IL-6 acting 
through different signal transduction pathways involving 
protein kinases such as mitogen activated protein kinase 
(MAPK) or the phosphatidylinositol-triphosphate kinase 
(PI3K) and having the ability to directly activate STAT 
transcription factors (such as STAT3) via the kinase JAK2 
which is associated its receptor, leads to a number of 
responses that favor the proliferation, inhibits apoptosis and 
increases the invasive capacity of tumour cells[28,29]. IL-6 
induces the activation of the transcription factor NF-kβ that 
can code for several cytokines[27]. Other studies show that 
the TNFα, the major inducer of NF-kβ, involves an increase 
in the formation of MCF-7-MS cells through up-regulation 
of the Slug gene, a regulator of stem mammary tumour 
phenotype[30]. TNFα induces, after 10 d of treatment, the 
acquisition of typical characteristics of BCSCs (CD44+/
CD24-) in not transformed mammary epithelial cell line 
MCF-10A; this effect is accompanied by the reduction of 
the E-cadherin expression and an increase of mesenchymal 
markers expression such as vimentin and smooth-muscle 
actin-α (αSMA)[31,32]. These considerations lead to the 
hypothesis that the survival of the BCSCs is dependent on 
the activation of NF-kβ, in turn resulting from the stimulation 
exerted, for example, by pro-inflammatory cytokines, as 
confirmed by the effect of inhibition of the proliferation of 
MCF7-MS due to the use of selective inhibitors of the NF-kβ, 
as parthenolide[33]. 

Hypoxia and BCSCs
Hypoxia plays a key role in carcinogenesis. Solid tumours 
are characterized by poorly vascularized regions and can 
progress under hypoxic conditions. Hypoxia is a condition 
that generally is found within the stem cell niche, which 
requires low concentrations of oxygen in order to minimize 
the damage that the eventual oxidation of the DNA could 
generate[34]. Hypoxia is also involved in the maintenance 
of an undifferentiated cell, thus playing a crucial factor 
in the stem cells condition and for this reason; could 
potentially contribute to the generation and or to support 
the CSCs. In hypoxic condition, there is an induction of the 
octamer-binding transcription factor 4 (Oct4) and Notch1 
expression in CSCs, two proteins that are involved in the 
self-renewal and differentiation pathways[35,36]. Hypoxia 
induces Shc gene expression in BCSCs, a gene that 
coding for p66Shc protein, involved in cellular response 
to oxidative stress, which induce the up-regulation of 
Notch-3 and its ligand Jagged-1. Interestingly, there is a 
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correlation of Snail expression with histological grade and 
lymph node status in breast carcinomas[37]. Snail coding 
for CAIX protein is a molecule that is overexpressed 
in hypoxic condition and in BCSCs[38]. Cancer cells in 
the hypoxic tumour niche overexpressed the hypoxic 
inducible factor (HIF). HIF is a heterodimeric transcription 
factor consisting of an α-subunit (HIF-1α or HIF-2α), and 
a β-subunit (HIF-1β), expressed constitutively. HIF-1 
affects a variety of malignant features, such as hypoxic 
cancer cell survival, via the regulation of a large number 
of genes, including CAIX[27]. The oxygen-dependent HIF 
activity is mediated by a series of enzymes containing iron 
(Fe2+), belonging to the superfamily of 2-oxoglutarate-
dependent dioxygenase that are oxygen sensitive. 
Members of this family are the prolyl hydroxylase domain-
containing protein (PHD), as PHD1, PHD2, PHD3 and 
the factor inhibiting HIF. In normoxic conditions, the HIF-
1α subunit is characterized by a very short half-life. In 
hypoxic condition, HIF-1α translocates into the nucleus 
and leads to gene activation by binding to a specific 
sequence (59-RCGTG-39) called Hypoxic Responsive 
Element (HRE), through the recruitment of coactivators 
CBP/300[39]. HIF-1α causes a metabolic change that allows 
cancer cells to adapt to poorly oxygenated environments: 
It results in the use of glycolysis at the expense of 
oxidative phosphorylation, even in aerobic conditions, 
with a decrease in mitochondrial respiration and an 
increased lactate. This phenomenon is called “Warburg 
effect” and is frequently found in cancer[40]. HIF induces 
a metabolic “shift” via transcriptional activation of genes 
involved in glucose turnover, including those coding for 
glucose transporters, glycolytic enzymes and enzymes 
involved in the production of lactate and in the metabolism 
of pyruvate[41,42]. HIF induces the VEGF expression and 
reduce anti-angiogenic factors, such as thrombospondin[43]. 
A recent study has shown that, in several cancer cell lines 
(breast, lung, cervical and ovarian), HIF-1α increases cell 
invasion[44]. Since HIF-1α induces the transmembrane 
protein CAIX expression, through various mechanisms 
CAIX can increase the invasive potential of cancer cells[45]. 
Moreover HIF controls the expression of LOX (lysyl 
oxidase) and the cytokine receptor CXCR4 expression 
that are essential for metastasis induction[46]. Finally, HIF 
reduces E-cadherin expression and induces the epithelial-
mesenchymal transition[47-49].

NUCLEAR RECEPTORS
Nuclear hormone receptors (NRs) include receptors for 
steroid hormones such as estrogen receptors (ERs) and 
progesterone receptors (PRs), receptors for the thyroid 
hormone (TRs), receptors for vitamin D (VDRs), retinoic 
acid receptors (RARs), retinoid X receptors (RXRs) and 
a number of receptors that respond to intermediary 
metabolites, among which there are the peroxisome 
proliferator-activator receptors (PPARs) activated by 
fatty acids and prostaglandins[50-52]. The members of 
this superfamily act as transcription factors activated 
by ligands and have a conserved structure[53]. NRs are 

characterized by the presence of two conserved domains: 
(1) A central DNA-binding domain (DBD) which interacts 
with the core motif, that have specific DNA sequences 
called “response elements”(monomeric NR recognize a 
single core motif, while dimeric NR complexes interact 
with repeated occurrences of this core motif); and (2) 
A C-terminal ligand-binding domain, which determines 
specific NRs properties and is highly variable between the 
different receptors. NRs are characterized by a flexible 
linker region between the two previous domains. NRs 
have a carboxy-terminal E-domain that is responsible for 
the ligand binding, dimerization, and contain an inducible 
transactivation function dependent on ligand (AF-2). 
Finally, the N-terminal terminal A/B-domain of the NR 
molecule contains a constitutive activation function 
independent on ligand (AF-1). NR can be activated by 
specific ligands that can modulate gene transcription 
and induce differentiation and anti-proliferative effects in 
cancer cells in several tumours[54].

Retinoic acid receptors and retinoid x receptors
Nuclear receptors retinoic acid receptors (RARs) and 
retinoid x receptors (RXRs) mediate the effects of reti
noids. Retinoids are a class of compounds that includes 
natural metabolites of vitamin A (retinol) and its synthetic 
analogues. The natural retinoids are produced in vivo by 
oxidation of retinol, a two-step process that leads to the 
formation of all-trans-retinaldehyde due to the action of 
alcohol dehydrogenase, followed by oxidized retinaldehyde 
due to the action of the enzyme dehydrogenase. In the 
reaction all-trans-retinoic acid (ATRA) is produced, which 
is then metabolized by CYP26 to produce hydroxylated 
metabolites[51]. There are three receptor subtypes, 
encoded by different genes, called RARα, β, γ and RXRα, 
β, γ. RARs subtypes can bind with high affinity not only 
ATRA as well as 9-cis retinoic acid (9cRA), the product of 
isomerization of ATRA, that is able to interact with RXRs, a 
feature that sets it apart from trans retinoic acid isoforms 
that do not have this possibility[55]. Following the activation 
induced by the ligand, the RARs form heterodimers 
with RXRs (RAR-RXR) that lead to gene transcription by 
binding to specific DNA sequences in the promoter of 
target genes, those corresponding to the Retinoic Acid 
Response Element (RARE), while homodimers formed 
by RXRs (RXR-RXR) bind to sequences denominated 
RXRE (Retinoic X Response Element)[52]. The RXRs are 
the only nuclear receptors that are capable to form both 
homodimers (RXR-RXR) and heterodimers (NR-RXR), 
constituting factors required for efficient DNA binding of 
many other members of the NR superfamily, including 
RARs and PPARs precisely[52]. These considerations 
underscore the importance of RXRs ligands because they 
can mediate effects affecting many biological processes. 
The NRs partner of RXRs receptors can be “permissive”, as 
PPARs. The heterodimer that is formed can be activated 
independently from agonists of one or other receptors or, 
synergistically, by both. RXRs may be “non-permissive”, 
when the heterodimer cannot be activated by RXRs 
agonists alone, necessitating the presence of a ligand for 
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the receptor partners (in the case of the dimer RAR-RXR 
is necessary a RARs ligand as ATRA)[51]. Various studies 
targetting the identification of a natural endogenous ligand 
for RXRs did not produce the desired results because 
the molecules proposed for this role (9cRA, phytanic 
acid, docosahexaenoic acid) have not demonstrated 
a selectivity only for binding to RXRs; for this reason 
synthetic compounds that bind only to RXRs (called 
rexinoids) could be essential to better understand the role 
of these receptors[52]. 

Retinoids and breast cancer
Retinoids are widely used to treat dermatological 
diseases. Retinoids have recently received considerable 
attention for the prevention and treatment of cancer 
due to their role in cell differentiation and their anti-
proliferative, pro-apoptotic and anti-oxidant effects[56]. 
Epidemiological studies show that a low intake of vitamin 
A leads to a higher risk of developing cancer. Altered 
expression of RARs and RXRs is associated with malignant 
transformation both in animal tissues and in cultured 
cells[57]. Furthermore, in animal models retinoids reduce 
cancer of skin, lung, breast, bladder, ovary and prostate. 
In humans, retinoids can reverse epithelial precancerous 
lesions, induce differentiation of myeloid cells, and have 
an important role in the lung, liver and breast cancer 
prevention[58]. Moreover, retinoids regulate stem cell 
differentiation[59]. Retinoic acid is used today in various 
diseases: ATRA is the principal retinoid investigated in 
clinical trials for the treatment of lymphoma, leukemia, 
melanoma, lung cancer, cervix, kidney, neuroblastoma, 
and glioblastoma. Its clinical use has more effect in 
the treatment of the acute promyelocytic leukemia 
(APL). Since 1995, the FDA approved ATRA to APL 
treatment[60]. 9cRA differs from ATRA for its ability to 
activate both RAR and RXR. In addition, 9cRA activates 
different nuclear receptors such as PPARs, FXRs, PXRs 
and VDRs through RXR heterodimerization. In preclinical 
studies, 9cRA is effective in the prevention of prostate 
cancer and breast cancer and was also approved by the 
FDA for the topical treatment of cutaneous lesions of 
Kaposi's sarcoma[61]. The natural retinoid 13-cis retinoic 
acid (13cRA), binds both receptors RARs and RXRs, has 
anti-inflammatory activity and is in clinical development 
for different types of cancer, including cancer of the 
thyroid[62]. Preclinical and clinical studies have shown 
the anti-tumoural effects of retinoids in breast cancer. It 
has been observed that 9cRA inhibits proliferation and 
induces differentiation and apoptosis in the breast cancer 
cell line MCF-7 cells. Recently, it has been demonstrated 
that retinoid have a role also in the regulation of BCSCs 
self-renewal and differentiation; ATRA reduces BCSCs 
proliferation demonstrated by ALDH assay[11]. However, 
clinical studies have shown that natural retinoids can 
have side effects such as the hypervitaminosis A. It has 
been demonstrated that retinoids selective for RARs 
have chemopreventive activity with side effects, while 
selective RXRs retinoids (called rexinoids) suppress 

mammary tumorigenesis without side effects[63]. Since 
hypertriglyceridemia can be induced by rexinoids, recent 
research has investigated new rexinoids that have anti-
tumoural effects without side effects. Among these there 
is (2E,4E,6Z,8Z)-8-(3’,4’-Dihydro-1’(2H)-naphthalen-1’-
ylidene)-3,7-dimethyl-2,3,6 octatrienoinic acid (UAB30) 
that is currently undergoing clinical evaluation as a novel 
breast cancer prevention agent[64]. Furthermore, some 
patients may experience relapses cancer because cancer 
cells become resistant to retinoids therapies. For these 
reasons, the synergic use of multiple molecules as NRs 
ligands with other molecules at lower doses might be 
a good strategy to block breast cancer growth, while 
inducing less side effects in patients. Immunotherapy 
with the use of retinoids and T cell has proved effective in 
the treatment of neuroblastoma and 13cRA+interferon-
α2a significantly increases the survival of patients with 
metastatic renal cell carcinoma[65]. Lee and co-workers 
have shown that administration of ATRA increased the 
effectiveness of EGCG at a low concentration. Indeed, 
ATRA increased the synthesis of a EGCG molecular targets, 
the 67 kDa laminin receptor (LR67), which plays a key role 
in cell adhesion and in the breast metastatic process[66]. 
ATRA is a regulator of epithelial mesenchymal transition 
(EMT) that is a determinant of the breast cancer cell 
invasion and metastatic behaviour. It has shown that in 
HER2-positive SKBR3 and UACC812 cells, there is an 
amplification of the ERBB2 and RARA genes and ATRA 
activated a RARα-dependent epithelial differentiation 
program. Moreover, ATRA blocked Notch-1 up-regulation 
by EGF and/or heregulin-β1 and switches TGFβ from an 
EMT-inducing and pro-migratory determinant to an anti-
migratory mediator[67]. ATRA can reduce the MS-forming 
ability of a subset of breast cancer cells, which correlates 
with induction of apoptosis, reducing SOX2 expression 
and inducing of its antagonist CDX2. The SOX2/CDX2 
ratio has prognostic relevance in BCSCs[68]. K-Ras mutant 
BCSCs was resistant to ATRA, which was reversed by 
MAPK inhibitors. Thus, ATRA can be used in combination 
to reduce BCSC proliferation[68]. Interestingly, also the 
combination ATRA and doxorubicin can differentiate and 
kill the BCSCs. Differentiation of CSCs into non-CSCs 
can reduce their self-renewal capacity and increase their 
sensitivity to chemotherapy in a synergistic manner[69].

The new rexinoid IIF can kill BCSCs
In our laboratory, we have investigated the antitumoural 
effects of ATRA when binded to RARs while with the 
RXRs ligand, we used the synthetic rexinoid 6-OH-11-O-
hydroxyphenanthrene (IIF), a new derivative of retinoic 
acid, capable of binding selectively to RXR and mainly 
activating the form RXR-γ[70]. Several in vitro studies 
show that IIF can be used as an anticancer agent: This 
rexinoid showed a greater anti-proliferative effect than 
ATRA and 9cRA in leukemic cell line HL-60, which induces 
apoptosis[71]. IIF induces differentiation in different tumour 
cell lines, such as colon carcinoma and neuroblastoma[72]. 
In the glioblastoma mouse model IIF reduces tumour 
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growth and invasion through the inhibition of MMPs, such 
as MMP-2 and MMP-9, in combination with increased 
expression of their inhibitors (TIMP-1 and TIMP-2)[73]. 
IIF has anti-inflammatory effects in colon cancer by supp
ressing the expression of cyclooxygenase-2 (COX-2), the 
inducible form of COX, responsible for the prostaglandin 
production that is overexpressed in many tumours[73]. 
Recently, we have demonstrated that ATRA and IIF reduce 
the inflammation-dependent survival in MS generated 
from human tumour specimens (T-MS) and from the 
breast cancer cell line MCF-7 (MCF7-MS), but not in MS 
derived from normal mammary glands (N-MS). The effect 
depends on the inhibition of the inflammatory pathway 
NF-kB/IL-6 which is wired in T-MS. ATRA and IIF, blocking 
NF-kB axis, reduced expression of genes involved in the 
maintenance of a tumour stem cell phenotype (such 
as Slug, Notch-3, Jagged-1) and was accompanied by 
an increased expression of markers of differentiation 
such as ERα and keratin-18[74]. A promising strategy is 
the combination of IIF with natural substances, such as 
Epigallocatechin-3-gallate (EGCG), that have a cytotoxic 
effect against breast cancer cells. In a recent study, we 
demonstrated that the combination of IIF and EGCG had 
a higher activity than the individual administration. IIF and 
EGCG can have a common signaling pathway that induces 
apoptosis by reducing epidermal growth factor receptor 
activation and its downstream kinase AKT-1[75]. 

PPAR receptors and their agonists
RXRs receptors can form heterodimers with PPARs rec
eptors. The latter mediate the effects of many synthetic 
compounds called peroxisome proliferators (PPs-peroxisome 
proliferators). The PPs influence both the number and the 
size of the peroxisomes, responsible for various functions 
within the cell (β-oxidation of fatty acids and cholesterol 
metabolism). Even PPARs there exist three isoforms 
(α, β, γ), encoded by different genes and characterized 
by different tissue localization. They operate as sensors 
for fatty acids and their derivatives, checking therefore, 
important pathways concerning lipids and energy meta
bolism[76]. PPARα is expressed at high levels in organs with 
significant catabolism of fatty acids. PPARβ has the broadest 
expression pattern, and the levels of expression depend 
on the extent of cell proliferation and differentiation. 
Finally, PPARγ is expressed as two isoforms, of which 
PPARγ2 is found in the adipose tissues, whereas PPARγ1 
has a broader expression pattern and is expressed at 
high levels in cancer tissue[76]. RXRs dimerization and 
the presence of coactivators are necessary for PPARs 
activation as transcription factor[77,78]. There is a wide 
range of endogenous and exogenous ligands that can 
interact with PPARs, leading to have different responses. 
Among PPARs endogenous ligands there are arachidonic 
acid, eicosapentaenoic acid and prostaglandin J2, while, 
among exogenous ligands there are the synthetic compounds 
called thiazolidinediones (TZDs): Pioglitazone (PGZ), 
rosiglitazone and troglitazone[54]. The TZDs are used in 
the treatment of type 2 diabetes because they decrease 
insulin resistance; they increase glucose uptake in 

peripheral tissues and reduce hepatic production. Some 
studies show, however, that TZDs could be successfully 
used also against tumours. In breast cancer, for example, 
tumour cells often express high levels of PPARs and it was 
demonstrated that TZDs are able to induce differentiation 
and inhibit tumour proliferation both in vivo (nude mice) 
and in vitro (mammary tumour cell line MCF-7); these 
effects are increased when combined with retinoids[79,80]. 
It was also noted that treatment with TZD leads to a 
reduction in the number of breast cancer cells in S phase 
and an increase of cells in phase G0-G1. Furthermore, TZD 
and retinoids induced apoptosis in 30%-40% of breast 
cancer cells through the inhibition of Bcl-2 expression[80]. 
Among the anticancer mechanisms mediated by PPARs 
ligands, in addition to the induction of pro-apoptotic 
proteins and stabilization of cell cycle, the inhibition of the 
expression or activity of various cytokines and transcription 
factors involved in inflammatory pathways (as TNFα, IL-1, 
IL-4, NF-β) could help to slow the growth of transformed 
cells[54]. Interfering with inflammatory pathway is an 
ability shown by some ligands of PPARα; fenofibrate 
and GW7647 (synthetic agonists). For example, they 
can significantly reduce the levels of pro-inflammatory 
cytokines such as IL-1, the expression of TNFα, COX-2 
and an inducible form of the enzyme nitric oxide synthase 
in murine microglia BV-2 exposed to radiation. This 
effect is due to the inhibition of translocation of the NF-
kB-p65 subunit or the inhibition of phosphorylation c-jun, 
a subunit of the transcription factor AP-1, both involved 
in inflammatory mechanisms[81]. MnSOD expression is 
significantly amplified in the aggressive breast carcinoma basal 
subtype. Interestingly, PPARγ activation repressed MnSOD 
expression and increased chemosensitivity, and inhibited 
tumour growth in MDA-MB-231 and BT549 breast cancer 
cell lines[82]. PPARs are also reported to be involved in the 
modulation of the EMT process in CSCs initiation and in 
the regulation of CSCs functions[83]. Some data show that 
activation of PPARα could induce cancer and result in the 
induction of inflammatory responses. If the stimulation 
of the PPARs, for example with the TZD, involves the 
inhibition of neoplastic growth and the induction of 
differentiation, activation of PPARα significantly increases 
the proliferation of tumour cells, as demonstrated for 
the breast cancer cell lines MDA-MB-231 and MCF-7[84]. 
This stark contrast between these isoforms of PPAR is 
highlighted by studies that show the effects mediated by 
an agonist of PPARα, WY-14643. Chronic administration of 
PP in rats and mice leads to development of hepatocellular 
carcinoma; as a result of repeated exposure to WY-14643. 
Mice in which the expression of PPARα is increased, do 
not develop this type of tumour, as opposed to what 
happens in wild-type mice for PPARα, demonstrating that 
the receptor mediates the effects of carcinogenic arising 
by the stimulation exerted by an agonist[85]. More recently 
it has been seen that WY-14643 promotes the formation 
of a MS-tumour (derived from cells of the mammary 
tumour cell line MCF-7) by stimulating the activation of 
the NF-kB/IL-6 and, consequently, the expression of genes 
Slug, Notch-3, Jagged-1, whereas the silencing of PPARα 
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with a specific siRNA reduces tumour-MS formation. 
Furthermore, PPARα expression is positively correlated 
with the phenotype of BCSCs obtained from specimens 
of breast cancer patients[86]. Finally, we have recently 
demonstrated that IIF potentiates the ability of PGZ 
to hamper the MS-forming capability of human breast 
tumours and MCF7 cancer cells, reducing the expression 
of CSCs regulatory genes (Notch3, Jagged1, SLUG, IL-6, 
Apolipoprotein E, HIF-1α and CAIX). Notably, these effects 
are not observed in normal-MS obtained from human 
breast tissue[87]. Recently, Wang et al[88] demonstrated 
that PPARγ-binding protein upregulates several genes in 
the de novo fatty acid synthesis network, which is highly 
active in ERBB2-positive breast cancer cells. ERBB2 is a 
prognostic marker occurring in 30% of breast cancers and 
is associated with aggressive disease and poor outcomes. 
Inhibition of the PPARγ pathway using PPARγ antagonists 
(GW9662 and T0070907) reduces the ALDH-positive 
population and tumour-MS formation in ERBB2-positive 
breast cancer cells[88].

Vitamin D and BSCSs
Vitamin D-3 exerts most of its cellular effects via its 
nuclear receptor, the vitamin D-3 receptor (VDR), that 
heterodimerizes with the RXRs. The VDR-RXR complex 
binds vitamin D responsive elements (VDRE) in gene 
promoters and regulates transcription of target genes[89]. 
It has been reported in literature that vitamin D is a 
potential preventive/therapeutic agent against CSCs. 
Several proteins, such as Notch, Hedgehog, Wnt and 
TGF-β, are modulated by vitamin D in CSCs as well as 
in normal stem cell[90]. Interestingly, MS derived from 
BRCA1-silenced MCF7 or MDA-MB-231 breast cancer 
cells were no longer sensitive to the growth inhibitory 
effects of vitamin D, 1α, 25-dihydroxyvitamin D 3 (1,25D). 
Since, the active form of vitamin D is a potent inhibitor 
of BCSCs growth through the down-regulation of BRCA1 
expression, which is the most frequently mutated tumour 
suppressor gene in breast cancer[91]. Treatment with 
1α25(OH)2D3 or BXL0124 (two vitamin D compounds) 

repressed markers associated with the breast stem cell-
like phenotype, such as CD44, CD49f, c-Notch1 and NF-
κB. Furthermore, 1α25(OH)2D3 and BXL0124 reduced 
the expression of pluripotency markers, OCT4 and KLF-4 
in BCSCs[92]. However, some authors have shown that 
MS were relatively insensitive to treatment with 125D 
compared to more differentiated breast cancer cells; 
instead combined treatment of 125D and DET- NONOate 
induce a significant decrease in the overall size of MS 
and reduced breast tumour volume in nude mice[93]. 
Combination therapy using 125D with drugs specifically 
targeting key survival pathways in BCSCs could be a best 
strategy to overcome aggressive breast cancer.

Estrogen receptor and BCSCs
It has been reported in literature that many breast 
cancers express estrogen receptor-α (ERα) and are 
dependent on estrogens[94]. Tamoxifen is the most widely 
used in endocrine therapy for ERα positive (ER+) breast 
cancers during the last 30 years. Unfortunately, up to 
40% of metastases from ER+ primary breast cancer do 
not respond to endocrine therapy. Recent study have 
demonstrated that tamoxifen was effective in reducing 
proliferation of ERα positive (ER+) adherent cancer cells, 
but not their CSCs population[95]. Interestingly, estrogen 
is essential for the development of the normal breast, but 
adult mammary stem cells are known to be ERα negative 
(ER-)[96]. BCSCs sorted derived from ER+ breast cancer 
tissue and established breast cancer cell lines, have low or 
absent ER expression[74,96]. However, estrogen stimulated 
BCSCs activity demonstrated by increased MS-formation 
through the induction of EGF and Notch receptor signaling 
pathways[96]. Breast cancer cells develop resistance to 
endocrine therapies by shifting between ER-regulated 
and growth factor receptor-regulated survival signaling 
pathways[97]. However, the roles of BCSCs in antiestrogen 
resistance and the underlying molecular mechanisms 
have not been well established. Recent, a novel variant 
of ERα, called ERα36 (molecular weight of 36 kDa) it has 
been investigated. ERα36 mediates rapid antiestrogen 
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Figure 1  The nuclear receptors phenotype in breast cancer stem cells. In breast cancer, TAF and TAM promote inflammation and invasion through the secretion of 
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signaling and is highly expressed in ER+ breast progenitor 
cells. Antiestrogens increased the percentages of the 
BCSCs from ER+ breast cancer cell through stimulation 
of luminal epithelial lineage specific and these BCSCs are 
more resistant to antiestrogens than the bulk cells. Finally, 
ERα36 mediated antiestrogen signaling such as the PI3K/
AKT that plays an important role in antiestrogen resistance 
of ER+/BCSCs[98].

CONCLUSION
BCSCs represent the most significant target for new anti-
breast cancer drugs. In fact, BCSCs are likely to sustain 
the growth of the primary tumour mass, as well as to be 
responsible for disease relapse and metastatic spreading 
in breast cancer[6-10]. The activity of NF-kB in BCSCs and 
in the tumour stroma (mainly formed by fibroblasts and 
inflammatory cells) has been recognized to be of pivotal 
importance in normal and CSCs survival[99]. It has been 
proposed that “NF-kB activity addiction” would make CSCs 
more susceptible to NF-kB inhibitors than their normal 
counterparts[26,55]. For these reasons the use of molecules, 
as NRs ligands, capable of inhibiting NF-kB dependent 
inflammation may be the best strategy to hamper BCSCs 
growth[74,86]. Recently, we demonstrated that BCSCs have 
a particular NRs phenotype[86,87] (Figure 1). Therefore, the 
synergic use of multiple molecules (as ligands of NRs) at 
lower doses might be a good strategy to kill BCSCs, while 
inducing fewer side effects in patients. Moreover, the use 
of NRs ligands in combination with each other (as ligands 
of PPARs with ligands of RXRs) or with other substances 
(e.g., EGCG) may be a valid strategy to inhibit BCSCs 
viability.
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Abstract
Mesenchymal stromal cells (MSCs) are currently being 
investigated for use in a wide variety of clinical applications. 
For most of these applications, systemic delivery of the 
cells is preferred. However, this requires the homing and 
migration of MSCs to a target tissue. Although MSC homing 

has been described, this process does not appear to be 
highly efficacious because only a few cells reach the target 
tissue and remain there after systemic administration. 
This has been ascribed to low expression levels of homing 
molecules, the loss of expression of such molecules during 
expansion, and the heterogeneity of MSCs in cultures and 
MSC culture protocols. To overcome these limitations, 
different methods to improve the homing capacity of 
MSCs have been examined. Here, we review the current 
understanding of MSC homing, with a particular focus 
on homing to bone marrow. In addition, we summarize 
the strategies that have been developed to improve this 
process. A better understanding of MSC biology, MSC 
migration and homing mechanisms will allow us to prepare 
MSCs with optimal homing capacities. The efficacy of 
therapeutic applications is dependent on efficient delivery of 
the cells and can, therefore, only benefit from better insights 
into the homing mechanisms.

Key words: Mesenchymal stromal cells; Homing; Bone 
marrow; Homing receptors; Extravasation
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Core tip: Mesenchymal stromal cells (MSCs) are currently 
under investigation for use in a variety of clinical 
applications. In most studies, MSCs are administered 
systemically. This requires efficient homing and migration 
of the MSCs to a target tissue. However, the homing 
mechanisms of MSCs are not completely understood. 
Moreover, the in vivo homing and migration of MSCs does 
not appear to be highly efficient. Therefore, different 
methods have been investigated to improve homing. Here, 
we will review the current knowledge of bone marrow 
homing of MSCs, as well as the different strategies that 
might improve the homing capacity of these stem cells.
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INTRODUCTION
Mesenchymal stromal cells (MSCs) are non-haema
topoietic cells that were first derived from the bone 
marrow and described approximately 40 years ago by 
Friedenstein et al[1]. In 2006, the International Society 
for Cell Therapy defined the minimal criteria to define 
human MSCs. They must adhere to plastic in culture and 
differentiate into osteocytes, chondrocytes and adipocytes. 
Additionally they must express CD105, CD90 and CD73 
and lack expression of CD45, CD34, CD14 or CD11b, 
CD79alpha or CD19, and HLA-DR surface molecules[2].

There is great interest in using these cells in a wide 
variety of clinical domains, such as Neurology, Orthopaedics, 
Cardiology and Haematology[3-6]. This interest arises from the 
following MSC characteristics: They have immunomodulatory 
capacities, they are multipotent and are thus possible 
effectors for tissue regeneration, and they tend to migrate 
to sites of tissue injury/inflammation[7-11]. Additionally 
MSCs might escape immune recognition, although con
flicting observations about this particular phenotype 
have been published. MSCs do not express MHC class Ⅱ 
antigens, but the expression of these molecules can be 
upregulated after exposure to inflammatory cytokines 
or during MSC differentiation[12]. The data from animal 
studies suggest that MSCs can elicit allogeneic immune 
responses and be rejected[13-16]. On the other hand, there 
is also a report of MSCs that overcame this allogeneic 
immune response due to their immunomodulatory 
capacities[17]. von Bahr et al[18] addressed this issue and 
published follow-up data of patients treated with MSCs, 
showing that there was no correlation between the MSC 
source (donor-derived or third party) and the patients’ 
response to the MSC treatment. The clinical applications of 
these cells have been extensively studied in Orthopaedics, 
where MSCs are used to repair large bone defects, and in 
Haematology for the treatment of graft-vs-host disease 
and support for the engraftment of hematopoietic stem 
cells[4,6,19]. In recent years, MSCs have been studied as 
vehicles to deliver anti-cancer treatments because there 
is evidence that MSCs home to tumour sites. They can be 
induced to express anti-cancer proteins [e.g., interleukin 
(IL) 2], to produce pro-drug activating enzymes, which 
ensures that the active drug will only be localized in the 
tumour, or to deliver oncolytic viruses[20-23]. For these 
applications, the homing and persistence of MSCs in the 
target tissue are desirable[24].

When MSCs are used in clinical applications, different 
modes of administration are possible: Systemic admini
stration [intravenous (IV) or intra-arterial (IA) injection] or 
local administration [intracoronary (IC) injection or direct 
injection into the tissue of interest]. Of these different 
options, IV injection is the most widely used because it is 
minimally invasive, the infusions can be readily repeated 

and the cells will remain close to the oxygen- and nutrient-
rich vasculature after extravasation into the target 
tissue[25]. However, after IV injection, the cells appear to 
be trapped in the lungs, and thus efficient homing to the 
target tissues might be compromised. IA administration 
requires an invasive procedure that has a higher risk 
of complications than IV. Although IA injections might 
improve tissue-specific homing compared to IV, there is 
a concern that microthrombi might occur as a result of 
trapping large MSCs in the microvasculature. One example 
is the concern regarding IC injections of MSCs to treat 
myocardial infarction[26]. Similar concerns have been raised 
in studies that used MSCs to treat stroke[27,28]. A true local 
injection of MSCs might require a surgical intervention, 
such as that used in the repair of bone defects. In this 
setting, the MSCs are immediately delivered to the target 
tissue; however, the cells’ survival might be compromised 
due to a lack of oxygen or nutrients[25]. Currently, haema
topoietic stem cell transplantation is performed via an 
IV infusion. Intra-bone marrow transplantation is a more 
complex procedure, but evidence from an animal model 
suggests that this might improve the outcome of the 
treatment[29]. Finally, some animal models of systemic admi
nistration, such as intracardiac injection, cannot readily be 
performed in patients.

The systemic infusion of cells for therapeutic appli
cations implies and requires efficient migration and homing 
to the target site. Although there is ample evidence of MSC 
homing, this process appears to be inefficient because 
only a small percentage of the systemically administered 
MSCs actually reach the target tissue[30]. The mechanisms 
by which the MSCs migrate and home are not yet clearly 
understood.

Currently, in Haematology, MSCs are mainly being 
tested for their ability to control graft-vs-host disease and 
to support haematopoiesis after haematopoietic stem cell 
transplantation. Chemo- and radio-therapy can damage 
the haematopoietic niche. MSCs are part of this niche 
and secrete a number of haematopoietic growth factors. 
To facilitate the engraftment of haematopoietic stem 
cells and stimulate blood formation, the MSCs should 
successfully home to and persist in the bone marrow[31]. In 
this review, we discuss current knowledge about MSC 
homing, specifically focusing on bone marrow homing 
(based on both in vitro and in vivo data), and we review 
the efforts that different groups have undertaken to 
improve the homing efficiency of these cells.

MSC HOMING AND MIGRATION TO 
BONE MARROW AND OTHER TISSUES
The exact mechanisms used by MSCs to migrate and 
home to tissues have not been fully elucidated. It is 
generally assumed that these stem cells follow the same 
steps that were described for leukocyte homing. In the 
first step, the cells come into contact with the endothelium 
by tethering and rolling, resulting in a deceleration of 
the cells in the blood flow. In the second step, the cells 
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are activated by G-protein-coupled receptors, followed 
by integrin-mediated, activation-dependent arrest in the 
third step. Finally, in the fourth step, the cells transmigrate 
through the endothelium and the underlying basement 
membrane[32].

The first studies addressing MSC homing examined 
the origin of the bone marrow MSCs after allogeneic 
bone marrow transplantation. Those groups all concluded 
that the haematopoietic cells were provided by the donor, 
but the stromal cells were provided by the recipient[33-35]. 
However, in these studies, the patients received marrow 
transplants containing only a limited number of MSCs - 
approximately 1/250000 nucleated cells at 35 years of 
age - in contrast to the purified MSC product that is used 
in the majority of clinical trials[36].

Since then, several studies in animal models and 
patients have shown that MSCs are capable of migrating 
and homing to a variety of tissues. Early studies of intra-
uterine MSC transplantations in animal models showed 
that donor-derived non-haematopoietic cells were present 
in the bone marrow, thymus, spleen and liver[37,38]. Devine 
et al[30] and Chapel et al[7] performed MSC transplantations 
in non-human primates and observed MSCs in a variety 
of tissues, with highest numbers in the gastro-intestinal 
tract. The percentage of MSCs in the different tissues was 
estimated between 0.1% and 2.7%[7,30]. Erices et al[39] 
described the homing and survival of human cord blood-
derived MSCs in the bone marrow of immunodeficient 
(nude) mice after systemic infusion[39]. Several studies in 
patients have also shown MSC homing[40-43].

A few groups have analysed the dynamics of MSC 
migration after systemic infusion using different tech
niques. Immediately after infusion, the MSCs are trapped 
in the lungs, and, subsequently, the cells are cleared 
from the lungs and distributed to other tissues[44,45]. The 
cells could be injected intravenously or intra-arterially 
for systemic infusion. The former is the least invasive 
method and the easiest to perform; however, as the 
MSCs were trapped in the lungs, different administration 
routes were examined. IA injection, which is already more 
risky because of the arterial puncture, also appears to 
entail a risk of development of microvascular occlusions 
called passive entrapment[27,46]. In addition, there have 
been reports that MSCs have a procoagulant activity[26,47]. 
A few years ago, a group from the Karolinska Institute 
reported that MSCs, particularly those that had been 
subjected to extended passaging and co-culture with 
activated lymphocytes, exhibited increased prothrombotic 
capacities; this effect was dose-dependent[47]. Gleeson 
et al[26] reported that MSCs express functionally active 
tissue factor. When MSCs were injected in the coronary 
arteries of a porcine myocardial infarction model, it 
resulted in a decreased coronary flow reserve. This effect 
could be reversed by the co-administration of heparin, an 
antithrombin agent[26].

Kyriakou et al[48] have studied the factors influencing 
short-term bone marrow homing of MSCs. The stem cells 
were observed in the bone marrow, spleen, liver and 
lungs 24 h after IV injection. It was observed that homing 

increased in younger animals and after irradiation but 
decreased with increasing passage numbers of the cells[48]. 
Several other groups have also shown that MSC homing 
improves after irradiation[7,8,30,49-52].

MOLECULES INVOLVED IN MSC (BONE 
MARROW) HOMING
The expression of molecules involved in MSC migration, 
homing and functionality has been widely studied.

Different molecules are involved/necessary for the 
different steps in the homing process. The selectins on 
the endothelium are primarily involved in the first step. 
For bone marrow homing in particular, the expression 
of haematopoietic cell E-/L-selectin ligand (HCELL), a 
specialized glycoform of CD44 on the migrating cell, is 
very important[53]. Although MSCs express CD44, they 
do not express HCELL[54].

The G-protein coupled receptors that are involved 
in the activation step are typically chemokine receptors. 
It has been extensively demonstrated that the CXCR4-
stromal derived factor-1 (SDF-1) axis is critical for bone 
marrow homing[55]. Both molecules are very physiologically 
important, as knock-outs are lethal due to bone marrow 
failure and abnormal heart and brain development[56,57]. The 
expression of the chemokine receptor CXCR4 on MSCs is 
controversial. Some groups did not observe expression of 
the receptor, while other studies demonstrated that CXCR4 
was expressed, albeit at low levels on the membrane, 
which affected migration in response to SDF-1[58-70].

Integrins are important players in the stable activation-
dependent arrest in the third step of homing. It has been 
shown that the inhibition of integrin β1 can abrogate MSC 
homing[71]. Integrins form dimers that bind to adhesion 
molecules on the endothelial cells. Integrin α4 and β1 
combine to form very late antigen 4 (VLA-4), which 
interacts with vascular cell adhesion molecule 1 (VCAM-1). 
It has been shown that the VCAM-1-VLA4 interaction is 
functionally involved in MSC homing[72,73].

In the final step of diapedesis or transmigration 
through the endothelial cell layer and the underlying 
basement membrane, lytic enzymes, such as the matrix 
metalloproteinases (MMP), are required to cleave the 
components of the basement membrane. In particular, 
the gelatinases MMP-2 and MMP-9 have important 
roles in this step because they preferentially degrade 
collagen and gelatin, two of the major components of the 
basement membrane[74,75]. We have shown that MSC 
migration is regulated by MMP-2 and tissue inhibitor of 
metalloproteinases 3 (TIMP-3)[76]. Membrane type 1 
MMP (MT1-MMP) has also been reported to play a role in 
MSC migration[63]. MMPs are secreted as pro-enzymes. 
ProMMP-2 is activated by interactions with MT1-MMP and 
TIMP-2 and is inhibited by TIMP-1. This explains why the 
MMP-2, MT1-MMP or TIMP-2 knock-down decreased the 
invasive capacity of MSCs, and why TIMP-1 knock-down 
resulted in increased invasion in the study of Ries et al[77].

Table 1 gives an overview all of the migration and 
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homing molecules that are reported to be expressed 
on human MSCs. Figure 1 shows a schematic overview 
of the molecules involved in human MSC bone marrow 
homing.

In addition to the expression of classic homing mole
cules, different groups have also described the expression 
of growth factor receptors on MSCs. Several studies have 
shown that growth factors can also induce MSC migration. 
For example, platelet-derived growth factor (PDGF) AB 
and BB can induce MSC migration in vitro[68,80,91]. Another 
growth factor involved in MSC migration is hepatocyte 
growth factor (HGF), which binds to c-met[63,68,80]. Both 
PDGF-BB and HGF have been loaded on gels or scaffolds 
as a means to improve the in vitro migration of MSCs[92,93].

HOW CAN WE IMPROVE THE HOMING 
EFFICIENCY OF MSCs?
Several groups have demonstrated MSC homing and 
migration, but only a small proportion of systemically 
administered MSCs actually reaches and remains in the 
target tissue[30]. Several factors are assumed to be involved. 
First, the expression of homing molecules on MSCs is 
limited. For example, the membrane expression of CXCR4, 
a critical receptor for homing to bone marrow, is very low, 
and some groups even claim there is no CXCR4 expression 
at all[58-70]. Another concern is that the MSCs appear to 
lose the expression of homing molecules during in vitro 
expansion[70,94]. Additionally, there is also heterogeneous 
expression of homing molecules in MSC cultures and in 
MSCs derived from different tissues (adipose tissue vs 
bone marrow), which show a different expression profile of 
homing molecules[95].

Because improving the homing efficiency to and 
retention of MSCs in a target tissue after systemic adminis
tration would improve their therapeutic effects, many 
groups are investigating methods to achieve this goal. 
Different strategies have been developed: the mode 
of administration could be modified, the MSC culture 
conditions can be adapted to optimize the expression of 
homing molecules, the cell surface receptors could be 
engineered to improve homing or the target tissue could be 
modified to better attract the MSCs. Again, we will mainly 
focus on the strategies that might improve the bone marrow 
homing of MSCs. The homing molecules involved in homing 
to bone marrow can also be of importance in homing to 
other organs or sites of injury, such as the CXCR4-SDF-1 
interaction for homing to the injured myocardium[96]. 
However, we believe that methods that can upregulate or 
induce the expression of the homing molecules that are 
involved in bone marrow homing of MSCs are valuable. 
They show a potential means for improving bone marrow 
homing, even though the data supporting/proving this 
are not yet available. Figure 2 provides an overview of the 
methods that could be used to improve the bone marrow 
homing of MSCs.

Modification of the mode of administration
In vivo studies have repeatedly shown that MSCs are 
trapped in the lung after intravenous injection. When mice 
were treated with a vasodilator prior to MSC infusion, there 
was a clear decrease in the number of trapped MSCs in 
the lungs and a significant increase in MSC homing to the 
marrow of the long bones[44]. Yukawa et al[97] transplanted 
MSCs in combination with heparin treatment and found 
that this strategy also significantly decreased MSC trapping 
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Table 1  Overview of the homing molecules expressed on human mesenchymal stromal cells

Group Molecule Source Transcript Protein Functional assay

Chemokine 
receptors

CCR1[70,77-82] BM[70,77-79,81] Yes[70,77,79,80] Yes[70,77-82] In vitro migration[70,77,78,80], in vivo 
tail vein injection in mice for tissue 
distribution[77]

WJ[79]

AT[80]

PB[82]

CCR2[68,78,81,82] BM[68,78,81,82] Yes[68,82] Yes[68,78,81,82] In vitro migration[68,78,82] 
CCR3[68,78,81-83] BM[68,78,81,83] Yes[68] Yes[68,78,81,82,83] In vitro migration[68,78] 

PB[82]

CCR4[68,77,78,82] BM[68,77,78,82] Yes[68,77,82] Yes[68,77,78] In vitro migration[68,77,78,82], in vivo 
tail vein injection in mice for tissue 
distribution[77]

No[82]

CCR5[68,78,81-83] BM[68,78,81,83] Yes[68] Yes[68,78,81,82] In vitro migration[68,78] 
PB[82]

CCR6[78,81,83] BM[78,81,83] Yes[82] Yes[78,82] In vitro migration[78]

CCR7[70,78,80-83] BM[70,78,81,83] Yes[70,80,83] Yes[70,78,80-83] In vitro migration[70,78,83]

AT[80]

PB[82]

CCR8[78,82,83] BM[78,83] Yes[82] Yes[78,82,83] In vitro migration[78]

PB[82]

CCR9[70,78,81-83] BM[70,78,81,83] Yes[70,83] Yes[70,78,81-83] In vitro migration[70,78]

PB[82]

CCR10[77,78,81,83] BM[77,78,81,83] Yes[77,83] Yes[77,78,81] In vitro migration[77,78], in vivo tail 
vein injection in mice for tissue 
distribution[77]

CXCR1[78,81,82,84] CB[84] Yes[83,84] Yes[78,81,82,84] In vitro migration[78,83,84], in vivo 
injection in brain[84]BM[78,81,82]

PB[82]

CXCR2[62,78,81-83] BM[62,78,81,83] Yes[62,83] Yes[62,78,81-83] In vitro migration[62,78,83], in vivo lung 
metastasis model[62]PB[82]

CXCR3[78,81-83] BM[78,81,83] Yes[83] Yes[78,81-83] In vitro migration[78]

PB[82]

CXCR4[60,62,65,66,68,70,76,78,80-83,85,90] BM[60,62,68,70,76,78,81,83,85] Yes[60,62,66,68,70,76,80,83,85] Yes[62,65,66,68,70,76,78,80-83,85,

90]
In vitro migration[60,62,65,66,68,70,76,78,80,83,85,90], 
in vivo lung metastasis model[62], tail 
vein injection in sublethally irradiated 
mice[66]

CB[65,85,90]

Foetal BM[66]

AT[80]

PB[82]

CXCR5[68,70,77-83] BM[68,70,77,78,81,83] Yes[68,70,77,79,80,83] Yes[68,70,77-83] In vitro migration[68,70,77,78,80], in vivo 
tail vein injection in mice for tissue 
distribution[77]

WJ[79]

AT[80]

PB[82]

CXCR6[70,78,80-83] BM[70,78,81,83] Yes[70,80,83] Yes[70,78,80-83] In vitro migration[70,78,80]

AT[80]

PB[82]

CXCR7[60,82] BM[60] Yes[60] Yes[82] In vitro migration[60]

PB[82]

CX3CR[82] BM[82] Yes[82] Yes[82]

PB[82]

XCR[82,82] BM[82] Yes[82] Yes[82]

PB[82]

Adhesion 
molecules

VCAM-1[74,85,86] BM[74,85,86] Yes[85] Yes[85,86] In vitro migration[74]

CB[86]

AT[86]

ICAM-2[85] BM[85] Yes[85] Yes[85]

CD62[11,17,54,86-89] BM[11,54,86-89] Yes[11,17,54,86-89] In vivo homing in a mouse model[54]

CB[17,86,87,89]

AT[86-89]

Skin[87]

LFA-3[85] BM[85] Yes[85] Yes[85]

Integrin α1[11,85,87] BM[11,85,87] Yes[85] Yes[11,85,87]

CB[87]

AT[87]

Skin[87]

Integrin α2[85] BM[85] Yes[85] Yes[85]

Integrin α3[11,85] BM[11,85] Yes[85] Yes[11,85]

Integrin α5[11,85] BM[11,85] Yes[85] Yes[11,85]

Integrin α6[85] BM[85] Yes[85] Yes[85]
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in the lungs.

Pretreatment or priming of MSCs in culture or modifying 
the MSC culture conditions
Because MSCs appear to downregulate homing molecule 
expression during expansion, many groups are investigating 
different ways to induce or upregulate the expression of 
important homing molecules.

Much effort has been focused on increasing CXCR4 
expression on the membrane. One way to achieve this 
is by adding cytokines or cytokine cocktails to the culture 
medium during expansion. Shi et al[66] showed that 
exposure to a combination of flt3 ligand, stem cell factor 
(SCF), IL 3, IL 6 and hepatocyte growth factor (HGF) 
increased both the intracellular and membrane expression 
of CXCR4 on cultured MSCs. More of the pretreated cells 
migrated towards an SDF-1 gradient, and there was no 
effect of the pretreatment on the function of the MSCs in 
supporting haematopoiesis. In vivo homing experiments 
where MSCs were intravenously injected into sublethally 

irradiated mice revealed a significant increase in bone 
marrow homing after the cytokine treatment[66]. Other 
molecules that have been shown to increase CXCR4 
expression are insulin-like growth factor 1 (IGF-1), tumour 
necrosis factor α (TNFα), IL 1β, interferon γ (IFNγ)[68,98-100]. 
CXCR4 expression could also be upregulated by treating 
cultured MSCs with glycogen synthase kinase 3β (GSK-
3β) inhibitors, resulting in an improved in vitro migration 
capacity, without affecting cell viability[101]. Exposure 
to complement 1q (C1q) has been shown to increase 
MSC migration towards SDF-1, although there was no 
significant increase in CXCR4 expression. Therefore, it was 
postulated that C1q exposure increases the MSCs’ ability 
to sense SDF-1 gradients[65].

Treatments with GSK-3β inhibitors and C1q also 
increase MMP expression in MSCs, which are important 
for the degradation of the basement membrane during 
extravasation[60,101]. A combination of the haematopoietic 
growth factors erythropoietin (EPO) and granulocyte 
colony stimulating factor (G-CSF) has also been reported 

Integrin αv[85] BM[85] Yes[85] Yes[85]

Integrin β1[11,86-88] BM[11,86-88] Yes[11,86-88]

CB[86,87]

AT[86-88]

Skin[87]

Integrin β3[85] BM[85] Yes[85] Yes[85]

Integrin β4[85] BM[85] Yes[85] Yes[85]

ALCAM[17,87] BM[87] Yes[17]

AT[87]

CB[17,87]

Proteases MMP-1[90] BM[90] Yes[90] Yes[90] In vitro migration[90]

MMP-2[65,68,74,76,77,85,90] BM[68,76,77,85,90] Yes[68,76,77,85,90] Yes[65,68,76,77,85,90] In vitro migration[65,68,74,76,77,85,90] 

CB[85]

MMP-13[68,90] BM[68,90] Yes[68,90] Yes[68,90] In vitro migration[68,90] 
MT1-MMP[68,77,85] BM[68,77,85] Yes[68,77, 85] Yes[68,77,85] In vitro migration[68,77,85]

CB[85]

TIMP-1[68,77,90] BM[68,77,90] Yes[68,77,90] Yes[68,77,90] In vitro migration[68,77,90] 

TIMP-2[68,90] BM[68,77,90] Yes[68,77,90] Yes[68,77,90] In vitro migration[68,77,90] 

TIMP-3[76] BM[76] Yes[76] Yes[76] In vitro migration[76]

Growth 
factor 
receptors

c-met (HGF-R)[68,80,85] BM[68,85] Yes[68,80, 85] Yes[68,85] In vitro migration[85,68] 
CB[85] No[80]

AT[80]

PDGFRα[68,80,87] BM[68,87] Yes[68,80] Yes[68,80,87] In vitro migration[68,80] 

AT[80,87]

CB[87]

Skin[87]

PDGFRβ[68,80,87] BM[68,87] Yes[68,80] Yes[68,80,87] In vitro migration[68,80] 
AT[80,87]

CB[87]

Skin[87]

FGF-R1[80] AT[80] Yes[80] Yes[80] In vitro migration[80]

FGF-R2[68] BM[68] Yes[68] Yes[68] In vitro migration[68] 
EGF-R[68,78] BM[68,78] Yes[68,80] Yes[68,80] In vitro migration[68,80] 

AT[80]

IGF-R1[68] BM[68] Yes[68] Yes[68] In vitro migration[68] 

TIE-2[68] BM[68] Yes[68] Yes[68] In vitro migration[68] 

TGFRB2[80] AT[80] Yes[80] Yes[80] In vitro migration[80]

TNFRSF1A[80] AT[80] Yes[80] Yes[80] In vitro migration[80]

BM: Bone marrow; CB: Cord blood; AT: Adipose tissue; WJ: Wharton’s Jelly; VCAM: Vascular cell adhesion molecule; ICAM: Intercellular adhesion 
molecule; CD: Cluster of differentiation; LFA: Lymphocyte function associated antigen; ALCAM: Activated leukocyte cell adhesion molecule; MMP: 
Matrix metalloproteinase; TIMP: Tissue inhibitor of metalloproteinase; HGF: Hepatocyte growth factor; PDGFR: Platelet-derived growth factor receptor; 
FGF-R: Fibroblast growth factor receptor; EGF-R: Epidermal growth factor receptor; IGF-R: Insulin-like growth factor receptor; TIE: Tyrosine kinase with 
immunoglobulin-like and EGF-like domains; TGFR: Transforming growth factor receptor; TNFRSF: Tumour necrosis factor receptor superfamily.
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to increase MMP-2 expression in MSCs and improve their 
motility[102].

There is also evidence that the epigenetic modulation 
induced by a short-term exposure to valproic acid results 
in increased expression of CXCR4 and MMP-2 in cultured 
MSCs and an increase in their migration towards SDF-1. 
There was no impact of this priming on the differentiation 
capacity of the cells[103].

Another approach that is under investigation is 
culturing MSCs under hypoxic conditions. Several groups 
have shown that these conditions result in increased 
CXCR4 expression and an improvement in MSC migration 
both in vitro and in vivo. This effect of hypoxia not only 
appears after short-term exposure but also in response 
to continuous culture in hypoxic conditions[104-108]. The 
increase in CXCR4 expression is reported to be regulated 
by an increase in hypoxia inducible factor (HIF) 1α[108]. 
Hypoxia also leads to differential expression of MMPs. For 
example, a decrease in MMP-2 secretion and an increase 
in MT1-MMP secretion and activity has been described 
in MSCs cultured under hypoxic conditions[104]. However, 
one could be concerned that culturing MSCs under 
hypoxia might change their behaviour. Valorani et al[109] 
reported that adipose tissue-derived MSCs cultured under 
hypoxic conditions exhibited an increased adipogenic or 
osteogenic differentiation capacity[109]. Crowder et al[110] 
reported that concurrent exposure to extreme hypoxia 
(0.5%) and a carcinogenic metal (nickel) induces 
carcinogenic changes in late passage MSCs. They did not 
observe these changes in early passage control cells[110].

A simpler modification of culture conditions is to 
maintain lower confluence. Our group found that MSCs that 
were cultured to complete confluence had a lower migration 

capacity than MSCs maintained at a low confluence. The 
cells cultured at higher confluence secrete more TIMP-3, an 
inhibitor of MMPs, which decreases migration compared to 
the MSCs cultured at low confluence[76].

Finally, MSCs are a heterogeneous cell population, and 
a particular subset of MSCs might have better homing 
abilities. MSCs were separated based on their expression 
of Stro1 and cultured further; these cells exhibited 
different migration capacities in NOD/SCID transplantation 
experiments. The amount of Stro1- MSCs was higher than 
the amount of Stro1+ MSCs in the target tissues of the 
mice, such as the bone marrow and spleen, after systemic 
administration via the retro-orbital plexus[111].

Genetic modifications
As already mentioned, MSCs express low levels of 
CXCR4, if any at all[58,59]. Because the CXCR4-SDF1 
axis is important for bone marrow homing[20,112], many 
groups have designed transfection or transduction ex
periments in which CXCR4 expression plasmids are 
either nonvirally or virally introduced into the cells. Viral 
transduction is the most efficient method for obtaining 
high and stable expression levels in the target cells. 
CXCR4 overexpression resulted in improved MSC homing 
to the bone marrow after intracardiac injection into a 
NOD/SCID transplant model[112]. In a similar model, the 
overexpression of integrin α4, a subunit of VLA4 that 
interacts with VCAM-1, also resulted in increased bone 
marrow homing[113]. However, there are some draw-backs 
to this technique. Most importantly, there is the concern 
that the use of viral vectors to introduce the plasmid DNA 
poses a risk of insertional oncogenesis. Techniques for site-
directed integration have been developed to circumvent 
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this problem[114]. Moreover, there is also a risk of adverse 
immune reactions and the production costs are high[115].

Different modes of non-viral transfection of plasmid 
DNA have been developed. One group overexpressed 
CXCR4 in MSCs using mRNA nucleofection. They obtained 
90% expression of the surface receptor, but cell viability 
was only 62% and no increase in MSC homing could be 
observed[96]. Another group investigated the feasibility of 
inserting a short interfering RNA in MSCs using ultrasound 
and microbubbles to promote survival. A significant knock-
down of the target (PTEN) could be obtained, but the cells 
were damaged after the manipulation[116]. 

Different modes of chemical, non-viral transfection 
have been studied, including the use of lipid agents. 
Although these techniques are easier to scale up and 
less expensive than viral transduction, they come with a 
price. The transfection efficiencies are significantly lower 
because approximately 35% of the MSCs express the 
transfected protein compared to over 90% of the cells 
after viral transduction[20].

Cell surface engineering
A method to improve homing efficiency of MSCs that 
has garnered interest in recent years is cell surface 
engineering, i.e., a transient modification of the cell 
surface. Because transmigration through the activated 
endothelium takes 1-2 h, these transient alterations can 
be instrumental in improving MSC homing[117]. It has 
been shown that these modifications do not impact cell 
viability, proliferation, adhesion or differentiation[118-121]. 
For cell surface engineering, most groups focus on 
improving the first step of the homing process, tethering 
and rolling, by modulating the expression of adhesion 
molecules[54,118,120,121]. Since the first publications, many 
groups have developed different techniques for the cell 
surface modifications of MSCs.

A seminal paper in this field was published in 2008, 
when Sackstein et al[54] reported that they had converted 
the native CD44, which is readily expressed on MSCs, 
into the haematopoietic cell E-selectin/L-selectin ligand 
(HCELL) glycoform ex vivo[54]. E-selectin plays a key 
role in haematopoietic stem cell (HSC) homing to the 
bone marrow; however, MSCs do not express P-selectin 
glycoprotein ligand-1 (PSGL-1) or HCELL, the two 
E-selectin ligands that are required for HSC bone marrow 
homing, thus impairing their homing capacity to the bone 
marrow[54,122]. MSCs natively express CD44. In this study, 
Sackstein et al[54] were able to alter sialofucosylation ex 
vivo and transform CD44 into the HCELL glycoform. This 
treatment had no effect on the viability or phenotype 
of the cells. In vivo homing experiments that injected 
MSCs into the tail veins of NOD/SCID mice showed that 
the HCELL+ MSCs homed to the bone marrow, even in 
the absence of CXCR4, in contrast to the unmanipulated 
MSCs[54].

Sialyl Lewis X (SLEX) is the active site of PSGL-1. 
Therefore, introducing this molecule into the MSC cell 
membrane should also lead to improved MSC homing. 

Sarkar et al[118] used biotinylated microvesicles to modify 
the MSCs. When the vesicles were brought into contact 
with the MSCs, they integrated into the cell membrane, 
thus generating biotinylated MSCs. Using a streptavidin 
linker, biotinylated SLEX could be immobilized on the cell 
surface. The accessibility of the lipids integrated in the 
cell membrane was assessed and the researchers found 
they could still be detected after 4 h, but the intensity 
had already decreased to 50% compared with that at 
0 h. After 8 h, all signals were lost, confirming that the 
modification is indeed transient. In vitro tests showed 
that the SLEX-expressing MSCs exhibited improved 
adhesion under shear stress compared to the sham-
treated MSCs[118].

Cheng et al[120] described a rapid (30 min) procedure 
to conjugate peptide K, an E-selectin binding peptide, to 
the MSC membrane. The MSC viability and proliferation 
rates were normal after engineering and their differ
entiation capacity was also maintained. In an in vitro 
model of inflamed endothelium, they subsequently 
demonstrated that the engineered MSCs adhered better 
than the control MSCs under shear stress[120].

Lo et al[121] described yet another engineering method 
to improve MSC binding to selectins and facilitate tethering 
and rolling. The first 19 amino acids of PSGL-1 (Fc19) 
were combined with an IgG tail and with an SLEX glycan 
to engineer a pan-selectin-binding ligand. Tests in flow 
chambers showed that these MSCs were indeed capable 
of adhesion under shear stresses[121].

However, adhesion molecules are not the sole targets 
of the cell surface engineers. There is also interest in 
conjugating antibodies to the cell surface. Protein painting 
is a technique that binds antibodies to the cell surface. 
First, the palmitated proteins acting as docking stations for 
the antibodies are integrated into the cell membrane, and, 
subsequently, antibodies can be bound to the cell without 
losing affinity and with no impact on the viability and 
differentiation potential of the engineered cells[123]. One 
example using this technique is the binding of intercellular 
adhesion molecule (ICAM)-1 antibodies to MSCs, which 
increased the binding of these cells to endothelial cells[124]. 
This same protein painting technique has been applied 
to express VCAM-1 antibodies on MSCs, resulting in 
improved homing. In this study, the target tissues were 
the mesenteric lymph nodes and the colon. However, this 
technique might also be applied to improve homing to 
other organs, such as the bone marrow, because VCAM-1 
is implicated in the bone marrow homing of MSCs[125].

Recently, a method was also described in which 
recombinant CXCR4 is bound to the cell surface of MSCs 
using lipid-PEG. In a one-step mixture procedure, recom
binant CXCR4 could be transiently expressed on MSCs, 
leading to migration towards SDF-1 in a concentration-
dependent manner[119].

Modification of the target tissue
Finally, MSC migration and homing can be influenced by 
modifying the target tissue. In early homing studies, it was 
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already shown that altering the target tissue by irradiation 
increases MSC homing[7,8]. After chemo- and radio-therapy, 
there are increased levels of SDF-1 in the bone marrow, 
thus increasing its attraction for HSCs and MSCs[126]. 
There are also reports of manipulating MSC migration with 
ultrasound or magnetic or electric fields[127-129]. However, 
these techniques do not appear to be very practical and 
they need adequate expression of homing molecules. For 
example, application of electrical fields could induce heat 
and electrochemical products near the electrodes. On the 
other hand, ultrasound-guided delivery might be more 
challenging in deep organs. Finally, homing directed by a 
magnetic field might require the implantation of a magnet 
in or near the tissue of interest[127-129].

Caveats in modifying homing molecules
In animal models and clinical studies, only limited eng
raftment or no engraftment at all is often observed, 
raising the question of whether tissue-specific homing 
is required for the therapeutic effect of MSCs[30,42]. A 
study on the use of systemically administered MSCs for 
the treatment of stroke in an animal model also showed 
very limited migration of MSCs to the tissue of interest, 
the brain. However, the researchers found that MSC 
homing to the spleen was important and correlated with 
a reduced infarct size and peri-infarct inflammation. They 
propose that MSCs exert a beneficial effect by abrogating 
secondary, inflammation-related cell death[130]. These 
data show that tissue-specific MSC homing is important, 
even though the target tissue is not the brain, as one 
would expect in a stroke model. Fernández-García et 
al[131] performed cotransplantation studies with MSCs and 
HSCs and found that cotransplantation improves short- 
and long-term haematopoietic reconstitution. This was 
the result of MSC and HSC interactions, and they propose 
that MSCs act as carriers that facilitate HSC homing to 
the bone marrow[131].

Manipulating stem cells, such as MSCs, to improve 
their homing capacities might not only change their 
migratory capacities but also have other consequences. 
For example, Liu et al[132] claim that the CXCR4-SDF-1 axis 
plays an important role in MSC survival because MSCs 
pretreated with SDF-1 exhibited significantly improved 
survival and proliferation. These effects could be partially 
inhibited by AMD3100, an inhibitor of CXCR4[132]. The 
pretreatment of MSCs with cytokines also revealed some 
conflicting observations. In a recently published paper, 
Kavanagh et al[133] report that licensing murine MSCs 
with inflammatory cytokines does not improve homing 
to the injured gut in an ischaemia/reperfusion model in 
their hands. More importantly, they found that while the 
untreated MSCs improved tissue perfusion, this effect 
was abrogated with the pretreated MSCs[133]. However, 
another group reported positive effects of pretreatment 
on the biological functions of the MSCs. Szabó et al[134] 
found that licensing murine MSCs with pro-inflammatory 
cytokines resulted in a significant reduction in the 
variability in immunosuppressive capacities of these MSCs. 
This reduction in variability was due to an increased 

immunosuppression of clones that were poor inhibitors of 
T-cell proliferation prior to licensing[134].

The pretreatment of MSCs with different factors or 
conditions, e.g., hypoxia and inflammatory cytokines, 
could also modify their response to these treatments. 
Naaldijk et al[135] found that the oxygen concentration 
(normoxia vs hypoxia) alters the response of rat and 
human AT MSCs. They also found that the migration 
of MSCs isolated from older donors (rat and human) 
was not significantly impaired compared with the MSCs 
from young donors[135]. In contrast to this last finding, 
Choudery described that MSCs from aged mice exhibit 
diminished effectiveness and increased expression of 
apoptotic and senescent genes[136].

In this review, we have described different techniques 
for improving MSC homing and the expression of homing 
molecules on MSCs. Importantly, however, the expression 
of homing molecules and the resulting migration, homing 
and biological functions of MSCs might easily be altered 
unintentionally. Currently, many different protocols are 
used to expand MSCs for in vitro, animal and clinical 
studies. These variables can have a major impact on the 
expression of the homing molecules and the biological 
functions of MSCs; we will briefly discuss this below.

MSCs were first isolated from bone marrow. Since 
then, MSCs have been isolated from a wide variety of 
tissues, including adipose tissue (AT), umbilical cord 
blood (CB), Wharton’s jelly (WJ), etc.[59,79,80,82]. Several 
groups have reported differences in the expression of 
homing molecules in human MSCs isolated from different 
sources; these are listed in Table 1. Additionally, the MSCs 
derived from different sources also exhibit differences in 
their biological functions. For example, AT MSCs might 
have better immunosuppressive capacities than bone 
marrow MSCs[95]. On the other hand, bone marrow 
MSCs appear to be the only MSCs that are capable of 
forming a haematopoietic niche that can support human 
haematopoietic tissue in an in vivo model[87].

When using MSCs for organ-specific treatments, one 
might choose to induce differentiation in vitro before 
transplantation. However, in vitro differentiation might not 
always result in a clinical benefit during MSC therapy. In 
a study using human CB MSCs in a mouse model for liver 
disease, the researchers found that hepatic differentiated 
MSCs performed worse than the undifferentiated MSCs. 
The differentiated MSCs showed decreased expression of 
the homing molecules and decreased in vivo migration 
after IV infusion. Additionally, their immunosuppressive 
capacity was decreased and the expression of HLA DR 
was increased, thus increasing their immunogenicity[137]. 
Ullah et al[138] also found that chondrogenic differentiated 
human MSCs exhibited a significantly reduced in vitro 
migration capacity than undifferentiated MSCs. However, 
CCR9 expression and in vitro migration to its ligand, 
CCL25, were retained in the differentiated MSCs[138]. 

Many parameters in MSC cultures vary between 
different research groups, including seeding density, number 
of passages, basal medium, and growth supplements [foetal 
bovine serum (FBS) vs platelet lysate (PL)]. All of these 
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factors might have an important impact on MSC function 
and migration. For example, Cholewa et al[139] found that PL 
increased MSC proliferation and increased the number of 
population doublings before senescence compared to FBS. 
However, they also showed that seeding MSCs at lower 
densities selected a highly migratory MSC population[139]. 
There are also reports of MSCs losing their migratory 
capacity and/or expression of homing molecules after ex 
vivo expansion[48,94]. After culture, MSCs are harvested 
with trypsin to detach them for passaging. Chamberlain et 
al[140] reported that the cell surface expression of chemokine 
receptors was decreased when the cells were detached with 
trypsin.

Future research directions
As described above, there is currently substantial variability 
in the isolation and expansion protocols for MSCs. 
Research on MSC homing and migration would clearly 
benefit from standardized MSC expansion protocols. What 
appears to be a rather minor aspect of the expansion 
protocol might have a significant impact on MSC function 
and/or migration. Thus, standardizing MSC expansion 
protocols would minimize unintentional modifications 
of the homing molecules. Of course, different culture 
conditions should be compared to create an optimal 
expansion protocol. Once this protocol is defined, it will 
also be easier to evaluate therapeutic efficacy of MSCs in 
clinical settings. It may be that different clinical applications 
require different expansion protocols to obtain the desired 
therapeutic effect.

We summarized the strategies for improving MSC 
homing. Many of these methods have not yet been 
validated in vivo. Before they can be translated to the 
clinic, the techniques with the most promising results 
should be first validated using in vivo homing models. In 
these experiments, the migration of engineered MSCs 
should be compared with the migration of untreated 
cells, and the therapeutic efficacy of the treated MSCs 
can also be assessed in animal disease models.

Although MSCs are widely studied and used in many 
clinical trials in a variety of clinical domains, little is known 
about the exact mechanisms by which MSCs exert certain 
therapeutic effects and their homing to certain tissues. 
Further studies would benefit from a better understanding 
of MSC biology. Understanding whether and where MSC 
migration or homing is necessary can help to define the 
optimal expansion protocols.

Finally, when transitioning to clinical trials, all conditions 
should be strictly defined, and, ideally, randomized 
controlled trials would be designed.

CONCLUSION
MSCs are interesting effector cells that can be used in a 
variety of therapeutic applications. Systemic administration 
is often the preferred route of delivery. However, this 
approach requires that adequate numbers of MSCs migrate 
and home to the target tissue(s). MSCs do not express 
many homing receptors, which impairs their migration 

capacity and hampers their therapeutic efficacy. Studies 
are ongoing and are needed to further elucidate the MSC 
homing mechanisms. A better understanding of MSC 
homing, as well as the factors influencing this process, will 
allow researchers to optimize the migration capacities of 
these stem cells and their therapeutic effects in a target 
tissue.
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Abstract
The recent development of stem cell research and the 
possibility of generating cells that can be stably and 
permanently modified in their genome open a broad 
horizon in the world of in vitro  modeling. The malaria 
field is gaining new opportunities from this important 

breakthrough and novel tools were adapted and opened 
new frontiers for malaria research. In addition to the new 
in vitro systems, in recent years there were also significant 
advances in the development of new animal models that 
allows studying the entire cell cycle of human malaria. In 
this paper, we review the different protocols available to 
study human Plasmodium species either by using stem 
cell or alternative animal models.

Key words: Malaria; Stem cells; In vitro  models; Animal 
models; Humanized mice
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Core tip: To better understand Plasmodium biology, 
researchers can whether proceed to in vitro  studies 
or use in vivo  models. Thanks to recent progresses, 
stem cells have been extensively employed to study 
Plasmodium liver and blood cycle in vitro . In parallel, the 
development of animal models opened new opportunities 
to study parasite biology in vivo . In this review, I go 
through and discuss the different available protocols 
using stem cells for modeling malaria in vitro  as well 
as available animal models. This review has for goal to 
decipher which system would be the more suitable to 
study the parasite biology.
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INTRODUCTION
Despite many years of eradication efforts, Malaria 
remains a major threat to humans living in endemic 
area, particularly in sub-Saharan Africa (WHO report 
2014). In the last two decades, the knowledge on many 
aspects of Plasmodium biology advanced significantly 
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including mechanisms of motility and cell invasion[1], 
modification of the host cell such as cytoadherence[2], 
immune evasion[3] establishment of liver infections[4] and 
hypnozoites dormancy[5]. These achievements would not 
be possible unless Trager et al[6] were able to establish 
Plasmodium culturing in vitro. The ability to successfully 
freeze Plasmodium isolates[7,8] and routinely culture 
laboratory-adapted strains (i.e., DD2, 3D7, W2) was 
one of the most important steps that allowed more 
researchers to study malaria outside endemic areas. 

In recent years, breakthroughs in stem cell research 
provided additional opportunities to study new aspects 
of the parasite biology, primarily of stages in the cell 
cycle in which culturing had been thus far challenging 
or impossible. In addition, the development of novel 
animal models completes the study of the entire cell 
cycle of human Plasmodium spp. and represents an 
appealing alternative to study host-parasite interactions 
with no need of human infection.

In this current paper we review and discuss the 
recent advances of novel procedures used to study 
human Plasmodium infection in vitro and in vivo.

STEM CELL DERIVED CELLS
Stem cell derived-erythrocytes
The lack of blood supply in blood banks that rely on 
constant blood donations, lead many researchers to 
look for alternative solutions to produce erythrocytes for 
transfusion[9]. The first report of the production of human 
erythrocytes from hematopoietic stem cells using a liquid 
system was described by Fibach et al[10]. These authors 
isolated mononuclear cells (MNC) from peripheral blood of 
a patient with -thalassemia, in which a defect in the chain 
of hemoglobin, cause an erythropoiesis increase. Using a 
two-step protocol, they could observe erythroid cells when 
cultured in the presence of erythropoietin (EPO). However, 
ethical concerns of using blood from a b-thalassemia 
patient presenting a defect in hemoglobin still remain 
(Figure 1).

Following this study, many protocols have been 
developed in order to generate erythrocytes from HSC 
(reviewed by Migliaccio et al[11]). In 2005, Giarratana et 
al[12] published what could be considered as the reference 
protocol to generate erythrocytes from HSC. Briefly, after 
isolation of HSC from diverse origins (peripheral blood, 
umbilical cord blood, bone marrow and leukaferesis 
product) through a magnetic assorted cell sorting (MACS) 
selection based on the CD34+ expression, cells were co-
cultured with mouse stromal cells (MS5). The cells were 
cultured in the presence of a cocktail of specific growth 
factors to allow a correct differentiation toward erythroid 
commitment: interleukin 3 (IL-3), hydrocortisone (HDS), 
stem cells factor (SCF) and EPO. After 20 d in culture, 
pure population of erythrocytes could be isolated from 
the supernatant. Nonetheless, production of erythrocytes 
from HSC faced some difficulties that limited the 
amount of cells which are produced as well as the 
ability to produce mature red blood cells (RBCs) (as the 

hemoglobin isoforms remain at fetal state).
The stem cell-derived erythrocytes have recently 

been intensively used in the malaria field to try to 
solve the challenging in vitro culture of Plasmodium 
vivax (P. vivax)[13]. Unlike P. falciparum that can invade 
erythrocytes of all ages, P. vivax shows a preference for 
invading immature erythrocytes (named reticulocytes)[14]. 
This preference for reticulocyte invasion makes use of 
peripheral blood as a source of cells to culture parasites in 
vitro nearly impossible as reticulocyte are only 0.5%-1% 
of erythrocytes in the blood stream and their lifespan prior 
to maturation is only 24 h. Thus a reticulocyte-enriched 
source of blood is needed in order to grow P. vivax in vitro. 
Early studies used several methodologies to concentrate 
reticulocytes from blood by ultracentrifugation[15], 
centrifugation on Percoll layer[8,16] or lysis buffer[17]. 
However, more recent studies demonstrated the 
preference of P. vivax for CD71high cells (reticulocytes)[18-20] 
revealing the possibility of using stem cell-derived 
reticulocytes. The first report attempting to establish 
an in vitro culture of P. vivax using HSPC-derived 
reticulocytes showed that parasites could be maintained 
in culture for more than 50 d using stem cell-derived 
reticulocytes[21]. This important study confirmed that 
stem cells could be used as a source of reticulocytes for P. 
vivax in vitro culture. However conditions still needed to 
be optimized as reticulocyte production were only 0.5% 
(after 14 d) and the parasitemia reached very low levels 
(below 0.0013%). In a more recent study, Noulin et al[22] 
were able to generate, after 14 d of culture, up to 18% of 
reticulocytes which were permissive to P. vivax invasion. 
They were also able to successfully cryopreserve 
reticulocytes in order to create a stock of cells to provide 
to P. vivax at each schizogony cycle. Nevertheless, the 
amount of reticulocytes generated remained extremely 
low and the parasite could still not multiply in vitro. 

Before HSPC-derived reticulocytes can be used for 
successful P. vivax in vitro culture, the problems of 
low reticulocyte yield and the lack of intra-erythrocyte 
development of the parasite must be addressed. Very 
recently, Roobsoong et al[23] proposed optimized P. 
vivax culture conditions in order to better maintain 
the parasite in vitro. As a source of reticulocytes, they 
differentiated CD34+ cells into reticulocytes using the 
previously described protocol and interestingly purified 
the reticulocyte population passing the cells through 
leukocyte reduction filters to get rid of nucleated cells. 
Alternatively, they also concentrated reticulocytes from 
peripheral blood (PB) and umbilical cord blood (UCB) 
on a 19% Nycodenz layer. They also tested different 
culture media (McCoy’s 5A, RPMI or Waymouth) supple
mented with different serum concentrations. The authors 
claimed they could maintain the parasite in vitro for 26 
mo, though the parasite density dramatically dropped 
from the first day to an almost undetectable level 
after the second day. We could conclude from these 
observations that P. vivax did not grow in vitro and thus 
more improvements are needed to reach a viable in vitro 
system.
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The parasite’s ability to invade and replicate within 
reticulocytes generated from HSPC is a precondition for 
the establishment of in vitro culture that relies on stem 
cells as a source. 

Tamez et al[24] were interested in identifying the 
earliest erythroid stage, which is permissive to P. falci­
parum invasion. They differentiated HSPC according to 
a previously published protocol[25]. Briefly, after CD34+ 
isolation, HSPCs were cultured for 8 d in the presence of 
IL-3, EPO and SCF with medium refreshment at day 3 
and 6 without IL-3 and decreased SCF concentrations. A 
selection was done after 7 d by FACS sorting based on 
CD71+ expression and the cells were cultured with only 
EPO supplementation for an additional 10 d. They found 
that the polychromatic erythroblasts were poorly invaded 
while ortho-erythroblasts could be invaded and allowed 
for parasite intra-cellular maturation, indicating the 
permissiveness of erythroid progenitors to P. falciparum.

Fernandez-Becerra et al[26] generated reticulocytes 
starting from HSPC isolated from adult PB, umbilical cord 
blood UCB and bone marrow (BM). Notably, they used 
3T3 cells instead of the more-commonly used MS5 cells 
as a layer for differentiating erythroid progenitors. They 
could reach a significant yield of reticulocytes (up to 
83.5%) and observed the presence of adult hemoglobin 
in reticulocytes derived from PB and BM. However, no 
information was given about the level of parasitemia 
post-invasion. A year later, Noulin et al[20] investigated 
different sources of HSPC. Remarkably, after CD34+ 
isolation and before differentiation, they applied an 
expansion step to increase their HSPC population. They 
could dramatically increase the HSPC population up to 10 
fold for UCB source, 3 fold for BM source and 1 fold for 
PB source. They also observed better enucleation in PB 
source (32%) vs BM (20.5%) and UCB (18%). All three 
sources tested had similar permissiveness and better 
invasion rates compared to reticulocyte-enriched blood 
leading to the hypothesis that P. vivax prefers immature 
reticulocytes. 

Recently, Egan et al[27] used a reverse genetics 
approach to investigate the role of RBC receptors that are 
involved in P. falciparum invasion. Using lentiviral shRNA 
delivery, they performed gene knockdown (kd) of different 
genes encoding for potential receptors in erythroid cells 
(starting from PB/HSPC isolated from Granulocyte-
colony stimulating factor-stimulated patient or BM). 
They differentiated those that were genetically modified 
erythroid progenitors on stromal cell layer to obtain 
enucleated cells used further for P. vivax invasion assays. 
The authors observed a dramatic invasion decrease in 
CD55kd as well as in CD44kd RBCs. This work was the first 
to highlight the possibility of using genetically modified 
erythrocytes to study Plasmodium biology. Nevertheless, 
since it is impossible to maintain HSPC as stem cells it is 
essential to repeat the kd procedure every time, which 
causes some variability between kd experiments.

Significant blood hemolysis was reported during 
malaria infection[28] and thus, HSPC are also of particular 
interest to study erythropoiesis impairment that leads 
to anemia during malaria episodes[29]. Several studies 
tried to investigate the mechanism by which Plasmodium 
infection causes erythropoiesis impairment. In this 
scope Hemozoin (Hz) attracted particular interest. Hz is 
produced by the parasite when it metabolizes heme in its 
food vacuole[30]. Casals-Pascual et al[31] and Skorokhod 
et al[32] investigated the influence of Hz on erythroid 
development. They isolated CD34+ cells by MACS followed 
by a well-established differentiation protocol[12] and 
noticed a marked decrease in erythroid production in 
presence of Hz. 

The influence of Hz on erythropoiesis was investigated 
by Malleret et al[19] using a different protocol. Starting 
from UCB, they differentiated CD34+ cells based on a 
3-step process[20]: 7 d in presence of Fms-like tyrosine 
kinase 3 (FLT-3) and thrombopoietin (TPO), 7 d with 
an addition of insulin growth factor-1 (IGF-1), SCF and 
EPO, and finally 2 to 7 d without SCF. They found that 
the main reasons for hemolysis are soluble mediators 

Stem cell-derived cells Plasmodium

P. falciparum

HSPC-derived erythrocytes
Study reticulocyte permissiveness[18-20,26]

iPSCs/ESCs-derived 
hepatocyte-like cells

Antimalarial drugs test[55]P. falciparum

P. vivax

Studies

Study erythrocytes receptors[27]

Study erythroid permissiveness[24]

Study erythropoiesis impairment[30-32]

Study influence on erythroid transcriptomic[33]

Establishment in vitro  culture[21,22]

Study erythropoiesis impairment[34]

Figure 1  Chart of the different stem cells used for Plasmodium in vitro modeling and their applications. Scheme of the different sources of stem cells used for 
liver and blood cycles of Plasmodium falciparum in vitro studies. The main aims of each study are indicated on the right.
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from Hz-stimulated PBMC rather than erythropoiesis 
impairment due to Hz itself.

It appears that P. falciparum infection significantly 
influences transcription in erythroid progenitors as shown 
by Tamez et al[33]. Following the erythroid development 
protocol they previously developed[24], they observed an 
up-regulation of 35 genes in polychromatophilic erythroblasts 
and 609 regulated genes in ortho-erythroblasts. These 
results may indicate a negative effect (direct or indirect) of 
P. falciparum on erythropoiesis.

P. vivax infection has a similar effect on erythroid 
development[34]. Using a modified protocol previously 
developed by Giarratana et al[12] (without stromal feeder 
cells) the authors co-culture erythroid cells with P. 
vivax-infected reticulocytes (intact or lysed), uninfected 
erythrocytes, in presence of tumor necrosis factor alpha 
(TNF-α) or interferon gamma (IFN-g). They observed a 
decrease of the erythroid multiplication and development 
in the presence of infected reticulocytes lending support 
to the idea that that P. vivax might have a negative effect 
on erythropoiesis.

The recent important development of stem cell 
research contributed to the production of stem cell-
derived erythrocytes, and enabled testing the use of 
human embryonic stem cells (hESCs) or human induced 
pluripotent stem cells (hiPSC). Indeed, recent findings 
have demonstrated that those pluripotent cells can be 
maintained and expanded in vitro prior to differentiation 
into specific lineage[35,36]. To date, several protocols have 
been developed to generate mature erythrocytes from 
hESC or hiPSCs with partial success. Lu et al[37] developed 
a protocol to produce enucleated red blood cells from ESC. 
The differentiation was initiated by dispensing hESC as 
erythroid bodies (EBs) in presence of bone morphogenetic 
protein 4 (BMP4), vascular endothelial growth factor 165 
(VEGF165), beta fibroblast growth factor (b-FGF), TPO, 
FLT-3 and SCF to induce mesodermal commitment. The 
second step, which is the erythropoiesis leading to the 
last stages of the blood production, was performed in co-
culture with OP9 cells or human mesenchymal stem cells 
(huMSC) in presence of IL-3, HDS, EPO and SCF. Using 
this technique, they could get up to 40% of enucleated 
cells. In 2010 Lapillonne et al[38] reported that by starting 
from hESC and hiPSCs they could get up to 66% of 
enucleated erythrocytes. To achieve this amount, they 
used a two-step protocol where the cells were initially 
cultivated as EBs in the presence of 5% human plasma 
with BMP-4, VEGF165, TPO, FLT3, SCF, IL-3, EPO and IL-6 
for 20 d. After dissociation into single cells with collagenase 
B, cells were cultured in feeder-free condition with 10% 
human serum together with growth factor cocktail as 
previously described[12] for 25 d.

Although discussed in many papers, to the best of our 
knowledge, there is no record for the application of ESCs/
iPSCs in malaria research thus far. The development of 
such techniques and the possibility to permanently edit the 
genome of erythroid cells will make a great contribution 
for a deeper study of intra-erythrocyte parasite biology.

Stem cell derived-hepatocytes
Studying the liver stage of Plasmodium parasites is of great 
importance for understanding the establishment of infection, 
and for immunogenic and therapeutic purposes[39,40]. In 
addition, P. vivax can produce dormant forms known 
as hypnozoites in the liver[41]. These hypnozoites are 
responsible for its ability to maintain long term infections 
and relapsing episodes that contribute to the difficulties of 
eradicating P. vivax[42].

An immortalized HepG2 cell line[43] has been extensively 
used as starting material to investigate the exo-erythrocytic 
(E.E) cycle of P. berghei[44], P. vivax[45], P. falciparum[46] 
and P. gallinaceum[47]. However, even though they were 
able to infect liver cells with P. falciparum sporozoites, it is 
still difficult to get these parasites to successfully complete 
the cycle and infect RBCs. This difficulty was overcome 
by Sattabongkot et al[48] that generated a hepatocyte cell 
line (HC04) that enabled the full development of both 
P. vivax and P. falciparum. Briefly, hepatocytes isolated 
from a hepatoma patient were cultivated with insulin, 
epidermal growth factor, thyrotropin releasing factor, HDS, 
glucagon, nicotinamide, linoleic acid, L-glutamine, pyruvic 
acid and MEM essential amino acids at 37 ℃ and 5% CO2. 
Interestingly, the levels of enzyme activities and protein 
secretions were higher than the ones observed in HepG2 
cell line. These cells were infected with P. falciparum and 
P. vivax sporozoites and when RBCs were added to the 
culture, blood stage parasites were observed after 7 and 10 
d for P. falciparum and P. vivax, respectively.

One of the drawbacks of using immortalized cell lines 
is that the metabolism of those cells might differ from the 
in vivo ones. To solve this problem Mazier et al[49] used 
primary rodent hepatocytes to try and mimic the in vivo 
conditions. They found that P. vivax parasites were able 
to develop and after 10 d, rings could be observed in 
reticulocytes added in co-culture. Recently, using human 
and primate primary hepatocytes, Dembélé et al[50] 
successfully cultured in vitro E.E stages of P. falciparum 
as well as P. cynomolgi, for which they able to get the 
hypnozoite forms.

Using primary cells for parasite cultures requires 
that fresh cells be constantly available. To bypass this 
obstacle, March et al[51] were able to culture previously 
frozen primary hepatocytes that remained permissive to 
Plasmodium sporozoites, in a microsystem surrounded 
by fibroblast stromal cells.

Primary simian hepatocytes were used to evaluate the 
effect of a drug (KAI407) on P. cynomolgi liver stage[52]. 
Primary hepatocytes isolated from rhesus macaques were 
infected with P. cynomolgi sporozoites in the presence or 
absence of the KAI407 compound. The development of E.E 
stage was well established in vitro, but the incubation with 
KAI470 was shown to inhibit formation of liver schizonts 
as well as hypnozoites. Similarly, P. berghei liver stages 
could develop within murine primary hepatocytes in vitro 
but their ability to infect RBCs remain unexplored in this 
study[53]. 

Immortalized murine hepatocytes (Hepa1-6) were 
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used to test malaria vaccine candidates on P. berghei 
E.E stage[54]. It appears that the TRAP-based vaccine 
in the presence of CD8+ enriched splenocytes inhibits 
the parasite development in the liver. This method was 
proposed as an in vitro system to screen possible vaccine 
candidates but its suitability to human Plasmodium 
vaccines needs further investigation.

Surprisingly, stem cell-derived hepatocytes have not 
been used widely used for malaria research. Nonetheless, 
Ng et al[55] generated hepatocyte-like cells (HLCs) from 
ESC or iPSCs originating from human foreskin fibroblasts, 
which were permissive to different Plasmodium species 
including P. falciparum, P. vivax, P. berghei and P. yoelii. 
The hepatocyte differentiation protocol was adapted from 
the one previously described[56], in which the ESCs/ iPSCs 
were cultivated for the first 5 d in presence of activin A (100 
ng/L) to induce endodermal commitment. The following 
10 d led to hepatoblast formation through hypoxia culture 
condition and was divided into two steps; the first 5 d in 
presence of BMP-4 and FGF-2 and the last 5 d in presence 
of hepatocyte growth factor (HGF). During the last 5 d, 
the cells were maintained with oncostatin to generate 
mature hepatocyte-like cells. Their HLCs allowed them 
to test different antimalarial drugs such as Atovaquon or 
Primaquine on liver stages. However, iPSC-derived HLCs 
have low levels of enzymes that metabolize drugs as they 
remain immature hepatocytes and thus are not optimal 
for antimalarial drug screen.

Many protocols to generate HLCs from ESCs/iPSCs 
(reviewed in Schwartz et al[57]) or adult stem cells 
(reviewed in Zhang et al[58]) are available. However, 
one should note that different protocols seem to create 
a variety of HLCs with different characteristics. A 
general scheme can be drawn with a 4-steps protocol: 
Mesodermal differentiation (in presence of activin A), 
hepatic specification, hepatoblast expansion and hepatic 
maturation. For each of these 4 steps, growth factor 
concentrations as well as the time of exposure remain 
variable between different studies. 

Optimizing the generation of stem cell-derived 
hepatocytes, which are more similar to the adult hepa
tocyte, would have great impact on understanding the 
biology of Plasmodium E.E stages and lead to improved 
testing of potential antimalarial drugs and vaccine 
candidates.

ANIMAL MODELS
Murine models
Besides the use of in vitro modeling to study Plasmodium 
biology, there are several in vivo models that aim to mimic 
human infections. Several animal models are available 
for diverse Plasmodium species. Among those, the most 
common one remains the mouse model, which is less 
costly, more available and much more convenient to 
maintain than primates or other large models. P. berghei 
and P. yoelii (both rodent Plasmodia) are commonly 
used for in vivo studies as these species share important 
similarities with primate and human parasites[59]. P. yoelii 

shares common features with P. vivax [i.e., P. yoelii 
virulence genes (yir genes) homolog of P. vivax vir genes] 
that make this parasite ideal for in vivo studies[60]. P. 
berghei seems to be a better model for P. falciparum in 
vivo studies, especially concerning blood stage vaccine 
studies[61] (Figure 2).

Nevertheless, even in murine Plasmodium species 
that share some features with human Plasmodium, the 
ability to interpret and draw conclusion from phenotypic 
observations from murine to human species remains 
questionable. 

Recent developments has partially resolved this 
problem, through the use of humanized mice (reviewed 
in Kaushansky et al[62]) .This system represented 
an important breakthrough in the field of laboratory 
modeling[63] and the application of this model through 
infections of humanized mice with P. falciparum begins to 
make an impact the malaria field. Infection of humanized 
mice with P. falciparum infected RBCs was done by 
directly injecting human red blood cells (huRBCs) into 
the mouse blood stream via the intra-peritoneal route[64] 
or intravenous route[65]. The main problem using intra-
peritoneal injections is the difference in migration of 
the injected huRBCs into the blood stream between 
experiments and the lack of reproducibility from one 
mouse to another. Intravenous delivery as proposed 
by Arnold et al[65] allows a more stable and long-lasting 
presence of huRBCs within mouse host. Notably, they also 
injected parasitized huRBCs and could reach significant 
parasitemia (up to 10%) by adding new huRBCs 
intravenously every 2-3 d. 

An alternative method that is now more commonly 
used is the engraftment of HSPCs into immune-deficient 
mice[66]. This method allows for continuous production 
of human RBC in the mouse blood stream. The main 
obstacles of this methodology are the short lifespan of 
those cells within mouse bone marrow and the variability 
in the engraftment success[67]. Technically speaking, 
many protocols have been investigated with different 
combination of mice and HSC sources. Generally, CD34+ 
cells mainly isolated from umbilical cord blood were 
isolated via MACS selection and injected intrahepatic 
or intravenously within immune-depressed mice. Inter
estingly, TPO was shown to increase engraftment of 
CD34+ cells in mouse host[68]. 

Recently, Amalados et al[69] were able to generate 
huRBC permissive to different P. falciparum strains by 
transfecting the HSC with a plasmid that expresses IL-3 
and EPO. Using this procedure they were able to produce 
only low amounts of huRBC (1.5%-2.8%) and parasite 
density was decreasing constantly and thus will require 
further optimization. Unfortunately, to the best of our 
knowledge there is no report on using similar systems 
of humanized mice to study the P. vivax asexual cycle in 
vivo. 

To date, the major contribution of using humanized 
mice was to study liver stage parasites which remain 
the main target for vaccine development[70]. 

To engraft human hepatocytes (huHep) within immune-
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depressed mice, it is essential to initially generate damage 
in order to activate the liver cell repopulation to allow 
integration of delivered human cells. Several options 
are available to manipulate mouse hepatocytes: (1) use 
urokinase plasminogen activator (uPA) toxin[71]; (2) use 
fumarylacetoacetate hydrolase knockout mice, dependent 
of the protection of the 2-(2-nitro-4-trifluomethylbenzoyl)-
1,3-cyclohexanedione (NTBC) drug[72]; (3) use herpes 
simplex virus type 1 thymidine kinase transgene depen
dent of ganciclovir (GGV) activation[73]; (4) use caspase 8 
oligomerization activated with AP20187 drug[74]; and (5) 
use diphtheria toxin receptor transgenic mice[75]. According 
to the different reports the success rate of colonization of 
the mouse liver by human hepatocytes range between 
nearly 50%[76] to 60%[75]. A higher ratio of 90% remains 
so far untenable as murine hepatocytes are needed for 
metabolic functions.

P. falciparum was shown to be able to invade and 
develop within hepatocytes of several humanized mice 
models. The first successful attempt was reported by 
Morozan et al[77]. Using uPA mice, they were able to engraft 
human hepatocytes (up to 26%) and after 3 mo, injected 
them with P. falciparum sporozoites. This methodology 
allowed them to complete the EE development of 
the parasite to the final schizogony stage. One of the 
applications of humanized mice is the investigation of 
potential hepatocyte receptor for Plasmodium sporozoites 

invasion. Foquet et al[78] investigated the possibility that 
CD81 receptor and scavenger receptor type B class Ⅰ (SR-
BI) are the entry gates for P. falciparum into the liver. They 
showed that in presence of anti-CD81, the hepatocyte 
invasion was prevented while anti-SR-B1 did not alter the 
infection process. The humanized mice used for this study 
were uPA mice but no indication on the level of human 
hepatocytes engrafted was indicated. Drug tests can be 
performed as well in humanized mice as demonstrated by 
Douglass et al[79]. They monitored the clearance of GFP-luc 
transgenic P. falciparum from the liver after treatment with 
different antimalarial drugs and could observe a complete 
clearance of the parasite using Atovaquone (inhibitor 
of mitochondrial electron transport chain), Serdemetan 
(p-53 activator) and Obatoclax (BCL-2 family inhibitor). 
This work shed light on the use of humanized mice to test 
potential antimalarial drug effect in the human hepatocyte 
niche.

Recently, humanized mice have been described as 
a perfect environment to genetically cross Plasmodium 
strains in order to study genetic determinants[80]. 
Sporozoites of two different Plasmodium strains were 
injected intravenously into FRG NOD HuHep mice and 
the EE stage monitored by bioluminescence. The injected 
sporozoites could maturate and invade huRBC injected 
within the same mice. Unfortunately, the mice were 
rapidly euthanized and thus no information on the parasite 

Host
Human 
plasmodium

Humanized system 
generation

Parasite infection

Intravenous injection of pRBC[65]

Sporozoites injection

Intraperitoneal injection of pRBC[90]

Intravenous injection of pRBC[91,93]

Sporozoites injection[89,102]

Intravenous injection of pRBC[104,105]

Intravenous injection of pRBC[109]

Sporozoites injection[106-108]

huRBC injection

P. falciparum

P. falciparum

P. vivax

P. knowlesi

P. falciparum

P. vivax

huHep engraftment[77-79]

huHep + huRBC[80,82]

huHep + HSC[81]

Figure 2  Chart of the different combinations animal model/human Plasmodia for in vivo studies. Scheme of the different animal models coupled with human 
Plasmodium studies. The different cell types injected within humanized mice are indicated in the column “Humanized system generation” and the Plasmodium 
injection mode under the column “Parasite infection”.
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development in the huRBC could be documented.
Combining human liver and blood stages to get a 

whole vertebrate cycle within humanized mice remains 
the ultimate goal of those models. Wijayalath et al[81] 
reported this full cycle in a humanized mouse. To create 
the mouse model, they injected CD34+ cells that can 
be the origin of many cell types (i.e., cardiomyocytes, 
endothelial cells or hepatocytes) in order to be able to 
recreate a whole human system suitable for the parasite. 
They could observe an engraftment of 0.023% of huHep, 
11% of human Kupffer cells and only 0.2%-1% of 
huRBC due to poor erythroid differentiation. Sporozoites 
were injected intravenously, developed within the liver 
(as shown by immunohistochemistry) and then reached 
the blood circulation with a very low parasite density of 
2-5 parasite/L (parasite density 0.0001%). The asexual 
stages were then cultivated in vitro to obtain gametocytes 
that could develop into oocytes and sporozoites within 
mosquitoes. The possibility of getting the whole P. 
falciparum cycle in humanized mice would be a great 
achievement. Nevertheless, in this study, the low levels 
of engraftments of human cells, the low parasite density 
as well as the obligation to generate gametocytes in vitro 
indicate that this system needs further optimization for 
studying the complete cycle of Plasmodium parasites. 
More recently, Soulard et al[82] achieved the complete P. 
falciparum cycle in humanized mice, from liver stages to 
sexual forms in the blood. They got up to 80% of huHep 
and above 80% of huRBC that can be maintained for 5 
wk in mice with daily injections. P. falciparum sporozoites 
could migrate into huHEP in the mice liver and schizonts 
were observed 7 d post-infection. The parasite asexual 
stages could be detected in the blood from 8 d post-
infection and sexual stages after 21 d. The parasitemia 
reached up to 1.52%. In addition, they could infect 
hepatocytes with P. ovale sporozoites and observe the 
formation of several hypnozoites, but there was no 
indication for P. ovale asexual stages in the blood. 

These mice open new frontiers for studying human 
Plasmodium in vivo. Nevertheless, the variations between 
mice and experiments should be taken into account 
when designing experiments and analyzing the results. It 
would be extremely beneficial to expand the use of these 
mice and apply it to get a mouse model for P. vivax (using 
reticulocyte-enriched huRBC). 

While the use of humanized mice obviously offers a 
wide range of new possibilities to study the biology of 
human Plasmodium spp. in vivo, the need to work with 
immune-depressed mice makes them unsuitable for 
vaccine development.

Primate models
Beside the use of mice as animal model, primates 
appear to be a very suitable model to study malaria as 
they are evolutionary close to humans[83] and they are 
natural hosts of human Plasmodium spp.[84,85]. Studies 
on host-parasite interactions benefit from of this in vivo 
system that allows collecting samples and data regularly. 

A complete overview of the use of primates for malaria 
modeling has already been reviewed by Beignon et al[86].

Nowadays, the uses of non-human primates (NHP) 
are preferred for in vivo research despite ethical reasons 
that restrict experimenting on primates. Therefore, NHP 
allows larger sample size and more reagents are available 
for these models[87]. 

To increase parasite density and maintain long-term 
Plasmodium infections within the host, primates need to 
be splenectomized[88]. Parasite infection is done either 
by injecting Plasmodium sporozoites[89] or by direct 
injection of parasitized RBC (pRBC)[90,91].

The use of these primate models for P. falciparum 
studies has been restricted mainly to Aotus monkeys[92] 
that could be infected with several P. falciparum strains. 
The first report of Aotus infection with P. falciparum 
was described by Geiman et al[90]. They injected intra
peritoneally pRBC from a P. falciparum infected woman 
into a splenectomized Aotus monkey. They were able 
to detect asexual forms of the parasite in the primate 
blood 54 d post-injection. These primate models were 
used to test potential blood stage antigens for vaccine 
development, i.e., MSP-1[93] or PfEBA-175[91]. Briefly, Aotus 
primates pre-treated with potential vaccine-candidates 
were challenged by the injection of pRBC and the parasite 
density was monitored in order to analyze the protection 
provided by the initial challenge of the potential vaccines.

Many P. vivax isolates have been adapted to several 
NHP models, among those: The Chesson strain, Salvador 
I strain and others, which allowed getting an important 
source of study material. In 1966, Young et al[94] were 
able to infect Aotus primate with pRBC isolated from a 
P. vivax infected patient. Interestingly, they also infected 
two human volunteers as well as one primate through 
infected mosquito bites and after 11 d they could only 
identify P. vivax infection in the human volunteers while 
parasitemia in the monkeys could be observed only after 
41 d followed by his death 5 d later. 

Primate models have been intensively used to study 
P. vivax liver stages[87]. The development of an in vivo 
system to study the ability of P. vivax to generate dormant 
forms (hypnozoites) in the liver, which cause relapses 
of the infective forms[41] would aid in understanding the 
dynamics of this process. Collins et al[89] tested different 
primate species infected with the P. vivax Salvador I strain 
and identified Saimiri boliviensis as the most suitable 
primate species to study P. vivax liver stages.

As an alternative to human Plasmodium studies in 
monkeys, researchers recently focused on close simian 
Plasmodium spp in NHP: P. knowlesi as a model for P. 
falciparum and P. vivax[95,96] and P. cynomolgi for P. 
vivax[97]. Indeed, these simian Plasmodium spp share 
important features with their human orthologues and 
can be used to better understand parasite biology 
or test potential vaccines[98]. The primate infection 
remains identical to the process used for P. falciparum 
and P. vivax. Krotoski et al[99] were the first to identify 
the P. cynomolgi hypnozoite stage after inoculation of 
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sporozoites into rhesus monkeys. Akinyi et al[100] were 
able to create a P. cynomolgi transgenic line expressing 
a red fluorescent protein, which was used to track the 
parasite in vivo.

P. knowlesi can also infect humans can be used as 
model for both P. falciparum and P. vivax infections 
and also to study its own infection traits in human[101]. 
Irradiated P. knowlesi sporozoites injected into rhesus 
monkeys achieved a relative protection against further 
P. knowlesi infections, demonstrating the use of P. 
knowlesi as a model for vaccine development[102]. 

P. knowlesi can also be applied as a model to 
study severe malaria usually caused by P. falciparum. 
Barnwell et al[103] could observe a link between the 
expression of schizont-infected cell agglutination and 
the severity of the infection in rhesus monkeys, linking 
between pathogenicity and antigenic variation caused 
by variant surface antigens in P. knowlesi and P. 
falciparum.

One of the major drawbacks of using primate as 
a model to investigate Plasmodium in vivo remains 
their availability and the significant cost of the colony 
maintenance that limits the development of this research 
line.

Human model
Perhaps the most relevant model to study malaria, in 
such cases that allows experimenting, is the human host 
itself. Naturally, potential candidate vaccine candidates 
have to be tested in humans during clinical trial. For 
example, to test the RTS/S vaccine, healthy volunteers 
that were prime-boosted immunized with candidate 
vaccines were infected with P. falciparum sporozoites 
to test the efficacy of these vaccine candidates[104,105]. 
We can also cite the control human malaria infection  
program that allows inoculating parasites in human 
volunteers in order to test potential vaccines or anti-
malarial drugs[106,107]. 

Interestingly, the lack of an in vitro model for P. 
vivax[13] pushed researchers to infect human volunteers 
with P. vivax sporozoites in order to develop a model for P. 
vivax drug screening and vaccine development. Herrera 
et al[108] let P. vivax- infected Anopheles mosquitoes 
feed on different groups of volunteers, each exposed 
to increasing number of mosquito bites. They observed 
that malaria symptoms appeared after 9 d and a total 
clearance of the parasites was observed 48 h post 
treatment at the latest. No record of P. vivax relapsing 
after the end of the study was reported and thus, the 
system is claimed to be safe to test antimalarial drugs in 
vivo.

More recently, McCarthy et al[109] infected human 
volunteers via intra-venous injection of pRBC isolated 
from a P. vivax positive woman. The first symptoms 
appeared 11 d post-inoculation and disappeared 24 
h post-antimalarial drug treatment. The advantage 
of using pRBC instead of sporozoites is to avoid the 
formation of hypnozoites and thus re-infection. Their 

goal was to establish a P. vivax in vivo system similar to 
the work described earlier by Herrera et al[108] and only 
the inoculation method (sporozoites vs pRBC) and the 
number of volunteers (18 vs 2) was different. Although 
biologically, humans are the most relevant models, 
there are important ethical issues that prevent wide 
use of human volunteers in in vivo experiments out of 
phase Ⅱ clinical trials.

CONCLUDING REMARKS
Establishing good experimental models for malaria 
research has great importance in understanding fund
amental aspects of the parasites’ biology, the course of 
infection and disease establishment and progression. It is 
an important tool for laboratories located in non-endemic 
areas that have more facilities to perform state of the art 
research to help fighting malaria. 

The development of stem cell research has opened 
many new options to study parasite interactions with 
human host. Combining these novel in vitro systems 
with animal models offered a wide range of new avenues 
to study aspect of the parasite biology, which were not 
possible before. 

Each technique has its advantages and weakness 
depending on the parasite species and the stage in the 
cell cycle being investigated.

Thus far, despite their great potential, the use of 
stem cells for malaria in vitro studies is limited. The 
establishment of good in vitro culture of P. vivax in 
reticulocytes originated from HSC has not been successful 
even though there is a great interest in such a model. 
On the other hand, the use of HSC to study erythroid 
impairment during malaria episodes was shown to be 
a great tool, which is expected to have a significant 
contribution to the field in coming years. Very surprisingly, 
although understanding the biology of Plasmodium 
liver stages is of major importance for drug and vaccine 
development, the use of hepatocyte-derived stem cells is 
poorly developed and there is a great need for a better cell 
line that differentiates into mature hepatocytes.

Animal model have been intensively developed to gain 
an understanding that will be able to be rapidly translated 
to the clinic. Monkeys appear to be the most suitable 
models, especially for P. vivax, but the cost of colony 
maintenance limits the use of this model. Nevertheless, 
P. vivax primate model are used successfully and 
are currently the best option for research since an in 
vitro culture of this parasite remains challenging. The 
development of in vitro stem cell techniques would offer 
an important tool to study P. vivax biology, especially for 
the intra-erythrocytic cycle. Recent protocol improvements 
give great hope that with additional optimization these 
systems will be available in coming years.

The use of humanized mice to study Plasmodium 
biology through an in vivo system offers new opportunities, 
however, the short-term life span of engraftment and the 
low levels of chimeric systems eventually obtained have to 

Noulin F. Stem cells and malaria modeling



96 March 26, 2016|Volume 8|Issue 3|WJSC|www.wjgnet.com

be taken into account in the process of data analyses. 
The use of simian Plasmodium species that could 

infect humans to overcome the difficulties in maintaining 
cultures seems like an attractive option, however, the 
use of the human Plasmodium spp. will yield the most 
relevant observations that could be directly translated 
to human malaria.

Additional tools such as mathematical and bio-infor
matics modeling could also become valuable as recently 
shown by MacDonald et al[110] that used computational 
methods to investigate potential antimalarial drugs.

The combination of stem cell research and animal 
modeling such as humanized mice could be the key to 
move a step forward in the study of Plasmodium biology. 
Optimization of those techniques and generation of 
new animal/human stem cell combinations could bring 
malaria modeling to the next level.
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Abstract
The use of skin flaps in reconstructive surgery is the 
first-line surgical treatment for the reconstruction of skin 
defects and is essentially considered the starting point 
of plastic surgery. Despite their excellent usability, their 
application includes general surgical risks or possible 
complications, the primary and most common is necrosis 
of the flap. To improve flap survival, researchers have 
used different methods, including the use of adipose-
derived stem cells, with significant positive results. In 
our research we will report the use of adipose-derived 
stem cells in pedicle skin flap survival based on current 
literature on various experimental models in animals.

Key words: Pedicle skin flap; Adipose stromal cells; Flap 
survival; Stem cell; Skin defect; Reconstructive surgery
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Core tip: The use of skin flaps in reconstructive surgery 
is the first-line surgical treatment for the reconstruction 
of skin defects and is essentially considered the starting 
point of plastic surgery. Our work, summarizing the current 
literature, presents the role of adipose-derived stromal cells 
in pedicle skin flap survival in experimental animal models.
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when insufficient blood supply impedes the viability of 
skin grafts. Examples of such applications include large 
wounds over a flexion crease or wounds with exposed 
bone, tendon, or other vital structures. Flaps are also 
preferred in plastic surgery over free grafts because 
they have a better aesthetic and functional result[1]. 
A first distinction of cutaneous flaps was established 
in the 1970s. Skin flaps were classified depending on 
the blood irrigation into the axial pattern flaps, which 
have an anatomically recognized arteriovenous system 
running along their long axis, and random pattern 
flaps, which lack any significant bias in their vascular 
patterns[2].

Since then, there has been a rapid development 
of reconstructive surgery, which has kept pace with 
the goal of understanding, improving, and developing 
methods to avoid partial or total flap necrosis, the main 
complication of the use of skin flaps. Although the cause 
of skin flap necrosis has not been fully resolved yet, the 
lack of adequate nutrient blood supply certainly plays 
a significant role in the pathophysiology of necrosis. 
To reverse this phenomenon and strengthen vascular 
reserves, various therapeutic approaches have been 
pursued. For example, the administration of exogenous 
agents such as vascular endothelial growth factor (VEGF) 
and basic fibroblast growth factor (bFGF) has been 
shown to enhance revascularization and improve survival 
of ischemic flaps[3-5]. However, the beneficial effect of 
such exogenous factors is reduced due to their short half-
life[6] and the limited number of existing endothelial cells. 
Hence, the abovementioned factors are not enough to 
control the complex cascade of wound healing.

In recent years the rapid development of cell biology 
and genetics has helped to highlight the ability of somatic 
stem cells, especially bone marrow-derived stem cells 
(BSCs) and adipose-derived stem cells (ADSCs), to 
promote neovascularization[7-12]. Various studies con
ducted to compare the forms of stem cells derived from 
bone marrow, umbilical cord, or adipose tissue showed 
no significant differences in terms of morphology, 
immunogenicity, and pluripotent differentiation[13]. The 
proangiogenic effect of ADSCs und BSCs has been well 
established, however the two groups seem to have 
different promoting angiogenesis mechanisms[14]. This 
fact, combined with the minimally invasive techniques in 
extraction, isolation, and culture from ADSCs[15-17], places 
them in the first line of research for various therapeutic 
purposes in medical science[18].

This review presents the therapeutic benefits of 
ADSCs in pedicle skin flap survival based on current 
literature on various experimental models in animals.

EFFECT OF ADSCS ON VIABILITY OF 
RANDOM PEDICLE SKIN FLAPS
The first time adipose stem cells were used as an 
antinecrotic treatment in random pedicle flaps was by 
Lu et al[19] in 2008. Intracutaneous injection of (DiI)-

labeled (i.e., chemical used for labeling cell membranes 
and hydrophobic structures) adipose-derived stem cells 
in ICR mice (i.e., mice originating from a Swiss mice 
strain from Institute for Cancer Research in Philadelphia) 
led to a statistically significant increase in survival of the 
flaps with considerable improvement in capillary density. 
Furthermore, the immunohistochemical test showed 
that on some occasions there was in vivo differentiation 
of ADSCs in endothelial cells. Uysal et al[20] examined 
the behavior and properties of adipose-derived stem 
cells in an ischemia-reperfusion model in ICR mice. 
They established that ADSCs could prevent ischemia-
reperfusion injury, mainly by regulating growth factors, 
especially VEGF, bFGF, and transforming growth factor-
beta (TGF-β). Gao et al[21] showed that topical use of 
ADSCs could improve viability of ischemic random 
pedicle skin flap in streptozotocin-induced diabetic mice 
via expression of hypoxia-induciblefactor-1α. Sheng 
et al[22] implicated the beneficial effect of BSCs vs 
stromal vascular factor (SVF), which contains a group 
of heterogeneous cells in the adipose tissue, including 
ADSCs. No statistically significant difference in promoting 
vascularization and survival of pedicle skin flaps in Wistar 
rats could be observed.

In 2013, Karathanasis et al[23] examined whether 
genetically modified autologous ADSCs increase graft 
survival. They conducted an experimental study in 
which autologous green fluorescent protein (GFP)-
producing ADSCs were injected intracutaneously into 
random-pattern skin flaps in Wistar rats. The results 
indicated that transplantation of modified GFP-ADSCs 
improves the survival of the flaps. GFP-ADSCs were 
detected in the endothelium of blood vessels co-
expressing the endothelial marker von Willebrand factor, 
suggesting that they promoted blood vessel regeneration 
in vivo[23]. The same year, Yue et al[24], using a hypoxic 
preconditioning experimental flap model, showed 
that preoperative transplantation of ADSCs, combined 
with hypoxic preconditioning, effectively improves the 
survival of ischemic skin flaps in Lewis rats by enhancing 
neovascularization associated with the production and 
activation of hypoxia-inducible factor 1 alpha (HIF-
1a), together with an increase in VEGF. Comparing 
the effectiveness of different administration routes of 
ADSCs in improving the viability of random-pattern skin 
flaps, Lee et al[25] indicated that the collagen sponge 
method delivers ADSCs most effectively within the flap, 
increasing flap vascularity. Nevertheless, the intravascular 
administration of ADSCs also positively affects the skin-
flap survival, as shown in experiments established by 
Suartz et al[26] in Wistar rats.

Recently, Park et al[27] investigated the effects of 
low-level light therapy (LLLT) on transplanted human 
adipose-derived mesenchymal stromal cells in the 
skin flaps of mice. The results indicated that LLLT is an 
effective biostimulator of ADSCs in vascular regeneration, 
which enhances the survival of ADSCs and stimulates 
the secretion of growth factors in skin flaps. Therefore, 
although the use of ADSCs led to improved viability 
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Table 1  The most relevant studies on the effect of adipose-derived stem cells on viability of pedicle skin flaps in experimental animal models

of skin flaps, their combination with LLLT significantly 
enhanced their action.

Derby et al[28] used the well-documented epithelial 
stem cell marker p63 to identify in vivo transdifferentiation 
of genetic modified GFP-ADSC in epithelial cells, and 
therefore show, their contribution to the improvement of 
overlying skin composition and appearance after fat graft 
transplantation.

EFFECT OF ADSCS ON VIABILITY OF 
AXIAL PEDICLE FLAPS
To the best of our knowledge, the first attempt to examine 
the effect of ADSCs in axial pedicle skin flap survival took 
place in 2012[29]. Reichenberger et al[29] indicated that 
the topical application of ADSCs embedded in a fibrin 
matrix increases ischemic tissue survival, blood flow, 
and expression of pro-angioactive genes in an animal 
epigastric skin flap model. In the same year it was also 
shown that the administration of ADSCs in an extended 
inferior epigastric artery skin flap-which was used as a 
flap ischemia reperfusion injury (IRI) model-may protect 
axial skin flaps from IRI by enhancing blood supply and 
tissue regeneration[30]. The heterologous transplantation 
of ADSCs in axial pedicle skin flaps was examined by 
Feng et al[31], in which an increase in the viability of 
human adipose-derived stem cells was observed after 
local intra-arterial injection in the superficial epigastric 
arteria of axial skin flaps in mice. A further study was 
conducted by Xu et al[32] in which stem cells were shown 
to contribute positively to the survival of axial flaps. Xu 

and his team established a rabbit ear venous-congested 
skin flap model, where they transplanted ADSCs. After 
histological and immunofluorescence evaluation, it was 
indicated that ADSCs not only increase the survival of 
venous-congested skin flaps but also promote capillary 
formation.

Tomita et al[33] investigated the phenomenon of 
flap reinnervation through the utilization of ADSCs. They 
indicated that the use of the aforementioned cells impr
oved the sensory capability of skin flaps in Lewis rats via 
the production of neurotrophic factors and nerve growth 
factors[33].

EFFECT OF ADSCS ON VIABILITY OF 
PREFABRICATED PEDICLE FLAPS
The concept of flap prefabrication is relatively new to the 
field of reconstructive surgery and was first introduced by 
Yao[34] in the 1980s. In the procedure of flap prefabrication, 
a vascular pedicle is introduced in a donor area that lacks 
any axial vascularization, improving the blood supply 
and enhancing the viability of the surrounding tissues. 
Although the above flaps can be used for wound coverage 
in almost any part of the body, their use in head and neck 
regions has prevailed, especially after extensive burns in 
which the available reconstructive options are scarce[35].

Despite the undeniable utility of prefabricated flaps 
in plastic surgery, the risk of total or partial necrosis 
after flap transplantation remains a problem for further 
investigation. Among the concepts employed to resolve 
this potential complication is the application of ADSCs. 

Ref. Year Contribution

Lu et al[19] 2008 Intracutaneous injection of (DiI)-labeled ADSCs improves capillary density
Uysal et al[20] 2009 ADSCs prevent ischemia-reperfusion injury by regulating growth factors, especially VEGF, bFGF, TGF-β
Gao et al[21] 2011 Human-ADSCs improve viability of ischemic random pedicle skin flap in mice via expression of hypoxia-inducible factor-1α
Sheng et al[22] 2011 BSCs vs SVF promotes vascularization
Karathanasis et al[23] 2013 Transplantation of modified GFP-ADSCs promotes blood vessel regeneration in vivo 
Yue et al[24] 2013 Transplantation of ADSCs, combined with hypoxic preconditioning, enhances neovascularization associated with the 

production and activation of HIF-1a, together with an increase in VEGF
Lee et al[25] 2014 ADSCs delivered via sponge method increase flap vascularity
Suartz et al[26] 2014 Administration of ADSCs affects positively in skin-flap survival
Derby et al[28] 2014 Genetic modified GFP-ADSC improves overlying skin composition and appearance after fat graft transplantation
Park et al[27] 2015 LLLT on transplanted human-ADSCs in the skin flaps of mice stimulates the secretion of growth factors in skin flaps
Reichenberger et 
al[29]

2012 Topical application of ADSCs embedded in a fibrin matrix, increases ischemic tissue survival, blood flow and expression of 
pro-angioactive genes in an animal epigastric skin flap model

Reichenberger et 
al[30]

2012 ADSCs in an extended inferior epigastric artery skin flap enhance blood supply and tissue regeneration

Feng et al[31] 2014 Heterologous transplantation of human ADSCs in axial pedicle skin flaps improves viability of axial skin flap in mice
Xu et al[32] 2015 Transplantation of ADSCs promotes capillary formation
Tomita et al[33] 2013 Utilization of ADSCs in Lewis rats improved the sensory capability of skin flaps via the production of neurotrophic factors 

and nerve growth factors
Uysal et al[36] 2010 ADSCs and BSCs increased the vascular density, and the VEGF
Li et al[37] 2010 ADSCs increase the vascular density and the survival percentage of the flaps producing high cytokine levels such as 

VEGF-A

ADSCs: Adipose-derived stem cells; HIF-1a: Hypoxia-inducible factor 1 alpha; SVF: Stromal vascular factor; VEGF-A: Vascular endothelial growth factor A; 
VEGF: Vascular endothelial growth factor; bFGF: Basic fibroblast growth factor; TGF-β: Transforming growth factor-beta; BSCs: Bone marrow-derived stem 
cells; GFP: Green fluorescent protein; LLLT: Low-level light therapy.
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There are two studies in the literature in which ADSCs 
have been used in prefabricated flaps as an anti-
necrosis therapy. Uysal et al[36] used the femoral artery, 
vein, and fascia of Wistar rats as a vascular crane for a 
prefabrication model in which they introduced ADSCs 
and BSC. Their experiments showed that both of the 
aforementioned cells increased the vascular density, 
and the VEGF indicated that mesenchymal stem cells 
could be useful in any prefabrication procedure in which 
neovascularization is necessary. Li et al[37] applied a 
prefabricated abdominal island flap model in rats, also 
using the right femoral artery, in which ADSCs were 
injected. The post-operative control demonstrated that 
ADSCs increased the vascular density and the survival 
percentage of the flaps producing high cytokine levels 
such as vascular endothelial growth factor A. Table 1 
summarizes the most relevant studies on the effect of 
ADSCs on viability of pedicle skin flaps in experimental 
animal models.

CONCLUSION
The current literature shows that in all cases where ADSCs 
were applied to investigate their effect on pedicle skin 
flap survival, they led to improved viability of the flaps. 
This was established through the increase of skin flap 
vascularity via the production of growth factors and/or 
ADSCs’ direct transformation into epithelial cells with 
neoangiogenesis. Although the number of experimental 
studies on the application of stem cells as an anti-necrosis 
therapy is limited, an increasing number of researchers 
have been focusing on this field. This tendency, combined 
with the already successful clinical application of adipose 
stem cells in other fields of medical science, might show 
that their future use in the field of reconstructive surgery - 
where skin flaps are widely used-is no longer utopian.
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Abstract
AIM: To explore the approaches exerted by mesenchymal 
stem cells (MSCs) to improve Parkinson’s disease (PD) 
pathophysiology.

METHODS: MSCs were harvested from bone marrow 
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of femoral bones of male rats, grown and propagated in 
culture. Twenty four ovariectomized animals were classified 
into 3 groups: Group (1) was control, Groups (2) and (3) 
were subcutaneously administered with rotenone for 14 d 
after one month of ovariectomy for induction of PD. Then, 
Group (2) was left untreated, while Group (3) was treated 
with single intravenous dose of bone marrow derived MSCs 
(BM-MSCs). SRY gene was assessed by PCR in brain tissue 
of the female rats. Serum transforming growth factor beta-1 
(TGF-β1), monocyte chemoattractant protein-1 (MCP-1) 
and brain derived neurotrophic factor (BDNF) levels were 
assayed by ELISA. Brain dopamine DA level was assayed 
fluorometrically, while brain tyrosine hydroxylase (TH) and 
nestin gene expression were detected by semi-quantitative 
real time PCR. Brain survivin expression was determined 
by immunohistochemical procedure. Histopathological 
investigation of brain tissues was also done. 

RESULTS: BM-MSCs were able to home at the injured 
brains and elicited significant decrease in serum TGF-β1 
(489.7 ± 13.0 vs  691.2 ± 8.0, P  < 0.05) and MCP-1 
(89.6 ± 2.0 vs  112.1 ± 1.9, P  < 0.05) levels associated 
with significant increase in serum BDNF (3663 ± 17.8 
vs  2905 ± 72.9, P  < 0.05) and brain DA (874 ± 15.0 vs  
599 ± 9.8, P  < 0.05) levels as well as brain TH (1.18 
± 0.004 vs  0.54 ± 0.009, P  < 0.05) and nestin (1.29 
± 0.005 vs  0.67 ± 0.006, P  < 0.05) genes expression 
levels. In addition to, producing insignificant increase 
in the number of positive cells for survivin (293.2 ± 
15.9 vs  271.5 ± 15.9, P  > 0.05) expression. Finally, the 
brain sections showed intact histological structure of 
the striatum as a result of treatment with BM-MSCs. 

CONCLUSION: The current study sheds light on the 
therapeutic potential of BM-MSCs against PD patho
physiology via multi-mechanistic actions.

Key words: Parkinson’s disease; Pathophysiology; Bone 
marrow derived mesenchymal stem cells; Rotenone; Anti-
inflammatory action; Ovariectomy; Anti-apoptotic effect; 
Neurogenic potential

© The Author(s) 2016. Published by Baishideng Publishing 
Group Inc. All rights reserved.

Core tip: The current study was planned to clarify the 
mode of action of mesenchymal stem cells (MSCs) in 
targeting multiple systems implicated in the pathophysiology 
of Parkinson’s disease (PD) in the rat model. For this 
purpose, the MSCs were isolated from bone marrow (BM) 
of rat femur bone and PD was induced in ovariectomized 
rats by rotenone administration for 14 d. Our results 
provided clear evidences for the therapeutic role of BM-
derived MSCs against PD pathophysiology through their 
immunomodulatory properties, anti-inflammatory and anti-
apoptotic effects as well as neurotrophic and neurogenic 
potentials.
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INTRODUCTION
Parkinson’s disease (PD) is one of the most common 
neurodegenerative diseases, associated with extrapyramidal 
motor dysfunction[1] due to the progressive and specific 
loss of dopaminergic neurons in the substantia nigra pars 
compacta and declining levels of dopamine (DA) in the 
striatum[2]. It affects approximately seven million people 
globally[3]. The commonness of PD raises with age, as 1% 
of people over 60 years of age, 3.4% of those over 70, 
and 4% of those over 80 were affected by the disease[1]. 
Epidemiological studies and pathological investigations 
exhibit a mean period of onset of 70 in sporadic PD, which 
represents about 95% of patients[4,5]; but familial forms of 
the disease linked to transformation in a limited number 
of genes account for 4% and these patients suffer from 
early-onset disease before the age of 50[6]. 

Growing body of evidences have demonstrated that 
environmental factors play a critical role in the etiology of 
PD[7]. For example, the environmental toxin 1-Methyl-4-
phenyl-1,2,3,6-tetrahydropyridine (MPTP) was identified 
as one the causative agents of Parkinsonism[8]. Also, 
herbicides or pesticides usage increase the risk of PD[9,10]. 
As, the pesticide rotenone and the herbicide paraquat 
reproduce the PD phenotype in animals[11]. Additionally, 
it has been suggested that exposure to organic solvents, 
carbon monoxide and carbon disulfide[12] play roles in the 
etiology of PD. Epidemiological studies have proposed a 
potential link between pesticide exposure and increased 
risk of PD. For example, agrarian laborers, particularly 
individuals who work with pesticides, are at increased 
risk for suffering from PD[13]. 

At present, there is no therapy clinically accessible 
to postpone neurodegeneration, thusly modulation of 
the disease course is an imperative unmet clinical need. 
Along these lines, understanding of the pathophysiology 
and etiology of the disease at cellular and molecular 
levels to find new targets against which neuroprotective/
disease-modifying therapy may be developed is the 
pivotal issue in the field of PD research[7].

Mesenchymal stem cells (MSCs) are a heterogeneous 
subset of stromal stem cells that have the capacity of 
self-renewal and differentiation into mesodermal lineage 
cells and other embryonic lineages, including adipocytes, 
osteocytes, chondrocytes, hepatocytes, neurons, muscle 
cells, epithelial cells, etc.[14]. Additionally, these cells 
have several advantages, such as easy availability as 
well as few ethical concerns and low immunogenicity. 
An expanding number of data has demonstrated that 
MSCs not only depend on their differentiation capacity 
to repair damaged tissue, but also rely on their ability to 
modify local environment, activate endogenous progenitor 
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cells, and secrete several factors[15]. The aforementioned 
properties make MSCs perfect candidate cell type for tissue 
engineering, regenerative medicine and autoimmune 
disease treatment[14].

The focus of our interest was to clarify the mode 
of action of bone marrow derived MSCs (BM-MSCs) 
in targeting multiple systems implicated in the patho
physiology of PD in the rat model.

MATERIALS AND METHODS
Preparation of BM-MSCs
BM was harvested by flushing the tibiae and femurs of 
6-wk-old male Sprague Dawley rats with Dulbecco’s 
modified Eagle’s medium (DMEM; GIBCO/BRL, Grand 
Island, New York, United States, Cat. #42430-082) supple
mented with 10% fetal bovine serum (FBS; GIBCO/
BRL, Cat. #16000-044). Nucleated cells were isolated 
with a density gradient [Ficoll/Paque (Pharmacia)] 
and resuspended in complete culture medium supple
mented with 1% penicillin–streptomycin (GIBCO/BRL, 
Cat. #10378-016). Cells were incubated at 37 ℃ in 
5% humidified CO2 for 12-14 d as primary culture or 
upon formation of large colonies. When large colonies 
developed (80%-90% confluence), cultures were washed 
twice with phosphate buffer saline (PBS; Gibco/BRL, 
Cat. #10010056) and the cells were trypsinized with 
0.025% trypsin and 0.01% ethylenediaminetetraacetic 
acid (EDTA) (Gibco/BRL, Cat. #R-001-100) for 5 min at 
37 ℃. After centrifugation, cells were resuspended with 
serum-supplemented medium and incubated in 50 mL 
falcon tube. The resulting cultures were referred to as first-
passage cultures. MSCs in cultures were characterized by 
their adhesiveness and fusiform shape[16].

Experimental set up
Twenty four adult female Sprague-Dawley rats weighing 
130-150 g were obtained from the Animal House 
Colony of the National Research Centre, Giza, Egypt and 
acclimated in a specific area where temperature (25 ℃ ± 
1 ℃) and humidity (55%). Rats were controlled constantly 
with a 12 h light/dark cycles at National Research Centre 
Animal Facility Breeding Colony. Rats were individually 
housed with ad libitum access to standard laboratory 
diet consisted of casein 10%, salt mixture 4%, vitamin 
mixture 1%, corn oil 10%, cellulose 5% and completed 
to 100 g with corn starch and tap water. Rats were cared 
for according to the guidelines for animal experiments 
which were approved by the Ethical Committee of Medical 
Research at National Research Centre, Giza, Egypt.

After the acclimatization period (2 wk), the female rats 
were ovariectomized surgically in Hormones Department, 
Medical Research Division at the National Research 
Centre. Then, after one month from ovariectomy the 
animals were classified into 3 different groups (8 rats/ 
group). The first group (Ovariectomized control group) 
was untreated ovariectomized control group. While, the 
second and third groups were subcutaneously injected 

with rotenone (Sigma, United States, Cat. #R8875) in a 
dose of 12 mg/kg b. wt.[17] daily for 14 d for induction of 
PD. Thereafter, the second group (PD untreated group) 
was left untreated for 4 mo while, the third group (PD + 
BM-MSCs group) was infused intravenously with a single 
dose (3 × 106 cells/rat) of BM-MSCs[18]. For MSCs infusion, 
the PD induced rats were deeply anaesthetized via diethyl 
ether and MSCs were suspended in 100 µL PBS before 
transplantation and then slowly injected into the tail vein 
in 5 min with a 27G needle. The needle was kept in the 
tail vein for another 5 min to avoid regurgitation and then 
withdrawn.

At the end of the experimental period (4 mo), all 
animals were fasted for 12 h and the blood samples 
were collected from retro-orbital venous plexus under 
diethyl ether anaesthesia. The blood samples were 
left to clot and the sera were separated by cooling 
centrifugation (4 ℃) at 1800 × g for 10 min and then 
stored immediately at -20 ℃ in clean plastic Eppendorf 
until analyzed. Moreover, the whole brain of each rat 
was rapidly and carefully dissected. Then, each brain 
was sagittally divided into two portions. The first portion 
was immediately frozen in liquid nitrogen and stored at 
-80 ℃ prior to extraction for molecular study and DA 
level determination. While, the second portion was fixed 
in formalin buffer (10%) for histological investigation 
and immunohistochemical study. 

Detection of male-derived MSCs in the brain of females
The genomic DNA was isolated from the brain tissues of 
female rats which were treated with BM-MSCs using phenol/
chloroform extraction and ethanol precipitation method 
according to Sambrook et al[19] with minor modifications. 
The presence or absence of the sex determination region 
on the Y chromosome male (SRY) gene in recipient female 
rats was assessed by PCR. Primer sequences for SRY gene 
(forward 5′-CATCGAAGGGTTAAA-GTGCCA-3′, reverse 
5′-ATAGTGTGTAGGTTGTTGTCC-3′, Invitrogen) were 
obtained from published sequences[20] and amplified to a 
product of 104 bp. The PCR conditions were as follows: 
Incubation at 94 ℃ for 4 min; 35 cycles of incubation at 
94 ℃ for 50 s, 60 ℃ for 30 s, and 72 ℃ for 1 min; with a 
final incubation at 72 ℃ for 10 min. PCR products were 
separated using 2% agarose gel electrophoresis and 
stained with ethidium bromide.

Biochemical analyses 
Serum transforming growth factor beta-1 (TGF-β1) level 
was assayed by enzyme linked immunosorbent assay 
(ELISA) using kit purchased from DRG Diagnostics Co., 
Germany (Cat. #EIA-1864), according to the method 
described by Kropf et al[21]. While, serum monocyte 
chemoattractant protein-1 (MCP-1) level was determined 
by ELISA method using kit purchased from Bender 
MedSystems GmbH, Europe (Cat. #BMS631INST), 
according to the method described by Baggiolini et al[22]. 
Moreover, serum brain derived neurotrophic factor (BDNF) 
level was evaluated by ELISA method using kit purchased 
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from Millipore Corporation, United States (Cat. #CYT306), 
according to the method described by Laske et al[23].  Finally, 
the quantitative determination of brain DA level was carried 
out according to the method described by Ciarlone[24] using 
a fluorometric method.

Detection of tyrosine hydroxylase and nestin genes 
expression level
Total RNA was isolated from brain tissues of female rats by 
the standard TRIzol® reagent extraction method (Invitrogen, 
Cat. #15596-026). Then, the complete Poly(A)+ RNA was 
reverse transcribed into cDNA in a total volume of 20 µL 
using RevertAid™ First Strand cDNA Synthesis Kit (MBI 
Fermentas, Germany, Cat. #K1631). An amount of total 
RNA (5 µg) was used with a reaction mixture, termed as 
master mix. The MM was consisted of 50 mmol/L MgCl2, 
5 × reverse transcription (RT) buffer (50 mmol/L KCl; 10 
mmol/L Tris-HCl; pH 8.3; 10 mmol/L of each dNTP, 50 
µmol/L oligo-deoxyribonucleotide primer, 20 U ribonuclease 
inhibitor (50 kDa recombinant enzyme to inhibit RNase 
activity) and 50 U M-MuLV reverse transcriptase. The RT 
reaction was carried out at 25 ℃ for 10 min, followed by 
1 h at 42 ℃, and the reaction was stopped by heating for 
5 min at 99 ℃. Afterwards the reaction tubes containing 
RT preparations were flash-cooled in an ice chamber 
until being used for DNA amplification through semi-
quantitative real time PCR (sqRT-PCR). An iQ5-BIO-RAD 
Cycler (Cepheid, United States) was used to determine 
the rat cDNA copy number. PCR reactions were set 
up in 25 µL reaction mixtures containing 12.5 µL 1 × 
SYBR® Premix Ex TaqTM (TaKaRa, Biotech. Co. Ltd., 
Germany, Cat. #RR820A), 0.5 µL 0.2 µmol/L forward 
primer, 0.5 µL 0.2 µmol/L reverse primer (Invitrogen), 
6.5 µL distilled water, and 5 µL of cDNA template. Primer 
sequences were F: 5’-ACTGTGGAATTCGGGCTATG-3’, 
R: 5’-GACCTCAGGCTCCTCTGACA-3’ for tyrosine 
hydroxylase (TH)[25]; F: 5’-TGGAGCGGGAGTTAG-
AGGCT-3’, R: 5’-ACCTCTAAGCGACACTCCCGA-3’ for 
nestin[26] and F: 5’-CTGTCTGGCGGCACCACCAT-3’, R: 
5’-GCAACTAAGTCATAGTCCGC-3’ for β-actin[27]. The 
reaction program was allocated to 3 steps. First step was 
at 95.0 ℃ for 3 min. Second step consisted of 40 cycles in 
which each cycle divided to 3 steps: (1) denaturation at 
95.0 ℃ for 15 s; (2) annealing at 58.0 ℃ for 30 s, 55.0 ℃ 
for 5 s and 60 ℃ for 30 s for TH, nestin and β-actin genes 
respectively; and (3) extension at 72.0 ℃ for 30 s. The 
third step consisted of 71 cycles started at 60.0 ℃ and then 
increased about 0.5 ℃ every 10 s up to 95.0 ℃ for melting 
curve analysis which was performed at the end of each 
sqRT-PCR to check the quality of the used primers. Each 
experiment included a distilled water control. 

Immunohistochemical examination of brain survivin 
expression
Samples were taken from brain of rats of the different 
groups and fixed in 10% formalin buffer for 24 h. Washing 
was done in tap water then ascending grade of ethyl 
alcohol (30%, 50%, 70%, 90% and absolute) was used 
for dehydration. Specimens were cleared in xylene and 

embedded in paraffin (melting point 58 ℃-60 ℃) for 24 
h. Sections were cut into 4 µ thick by sledge microtome 
then fixed on positive slides in a 65 ℃ oven for 1 h. Slides 
were placed in a coplin jar filled with 200 mL of triology 
working solution (Cell Marque, CA-United States, Cat. 
#920P-04) which combines the three pretreatment steps: 
Deparaffinization, rehydration and antigen unmasking. 
Then, the jar is securely positioned in the autoclave which 
was adjusted so that temperature reached 120 ℃ and 
maintained stable for 15 min after which pressure is 
released. Thereafter, the coplin jar is removed to allow 
slides to cool for 30 min. Sections were then washed 
and immersed in Tris-buffer saline to adjust the pH 
and these were repeated between each step of the 
immunohistochemical procedure. Quenching endogenous 
peroxidase activity was performed by immersing slides 
in 3% hydrogen peroxide for 10 min. Broad spectrum 
LAB-SA detection system (Invitrogen, Cat. #85-8943) 
was used to visualize any antigen-antibody reaction in 
the tissue. Background staining was blocked by putting 3 
drops of 10% goat non immune serum blocker on each 
slide and incubating them in a humidity chamber for 10 
min. Without washing, excess serum was drained and the 
working solution (1:100) of survivin mouse monoclonal 
(Thermo Scientific, United States, Cat. #RB-9245-P1) 
was prepared. Three drops of the working solution were 
applied and slides were incubated in the humidity chamber 
overnight at 4 ℃. Henceforward, biotinylated secondary 
antibody from ultravision detection system anti-polyvalent 
HRP/3,3’-diaminobenzidine (DAB) (Thermo Scientific, 
Cat. #TP-015-HD) was applied on each slide for 20 min 
followed by 20 min incubation with the streptavidin HRP 
enzyme conjugate (Thermo Scientific, Cat. #TP-015-HD). 
Then, DAB chromogen (Thermo Scientific, Cat. #TP-015-
HD) was prepared and 3 drops were applied on each slide 
for 2 min. DAB was rinsed, after which counterstaining with 
Mayer hematoxylin and cover slipping were performed 
as the final steps before slides were examined under the 
light microscope (Olympus Cx21 with attached digital 
camera)[28]. Image analysis was performed using the 
image J, 1.41a NIH, United States analyzer.

Histopathological investigation of brain tissue of rats
Samples were taken from brain of rats in different groups 
and fixed in 10% formalin buffer for 24 h. Washing 
was done in tap water then ascending grade of ethyl 
alcohol (30%, 50%, 70%, 90% and absolute) was 
used for dehydration. Specimens were cleared in xylene 
and embedded in paraffin (melting point 58 ℃-60 ℃) 
for 24 h. Paraffin wax tissue blocks were prepared for 
sectioning at 4 µ by sledge microtome. The obtained tissue 
sections were collected on glass slides, deparffinized and 
stained by hematoxylin and eosin (H and E) stain[29] for 
histopathological examination through the electric light 
microscope.

Statistical analysis
In the present study, all results were expressed as 
mean ± SE of the mean. Data were analyzed by one 
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way analysis of variance (ANOVA) using the Statistical 
Package for the Social Sciences (SPSS) program, version 
14 followed by least significant difference (LSD) to 
compare significance between groups. Difference was 
considered significant when P value was < 0.05.

Animal care and use statement
The animal protocol was designed to minimize pain 
or discomfort to the animals. The animals were 
acclimatized to laboratory conditions (25 ℃, 12 h/12 
h light/dark, 55% humidity, ad libitum access to food 
and water) for 2 wk prior to experimentation. The 
animals were deeply anaesthetized via diethyl ether for 
intravenous infusion of MSCs. Also, blood samples were 
collected from retro-orbital venous plexus under diethyl 
ether anaesthesia.

RESULTS
BM-MSCs homing 
To confirm that the intravenously transplanted MSCs 
derived from male bone marrow migrate and home to 
the female injured brain, DNA was isolated from the 
brain tissues of female rats and the presence or absence 
of the responsible region for sex determination on Y 
chromosome (SRY gene) was assessed by PCR. The 
agarose gel demonstrated that SRY gene was present in 
the brain tissues obtained from the group of rats treated 
with BM-MSCs. While, SRY gene was absent in the brain 
tissues obtained from the ovariectomized control rats 
(Figure 1). 

Effect of treatment with BM-MSCs on inflammatory 
markers 
Since, TGF-β1 has a pivotal role in the control of the 
transition between pro-inflammatory and anti-inflammatory 
response[30] and MCP-1 has a vital role in the migration of 
inflammatory cells across the blood-brain barrier as well 

as forms chemotactic gradients within the CNS to control 
the local inflammatory response[31]. Serum TGF-β1 and 
MCP-1 levels were determined by ELISA to evaluate the 
anti-inflammatory and immunomodulatory effects of the 
injected BM-MSCs in PD model. 

Our data revealed that rotenone administration causes 
significant (P < 0.05) elevation in serum TGF-β1 (43.6%) 
and MCP-1 (27.2%) levels vs the ovariectomized control 
group (Table 1). While, treatment with BM-MSCs elicits 
a significant (P < 0.05) reduction in both serum TGF-β1 
and MCP-1 levels by 29.2% and 20.1% respectively 
relative to the group of rats left untreated. 

Effect of treatment with BM-MSCs on neurotrophic and 
neurogenic markers
Brain derived neurotrophic factor plays an important 
role in supporting the survival of existing neurons and 
encouraging the growth as well as differentiation of new 
neurons and synapses[32]. Thusly, serum BDNF level 
was estimated by ELISA to evaluate the neurotrophic 
capacity of the injected BM-MSCs in PD model. In view 
of the data of the current work, rotenone administration 
experiences significant (P < 0.05) decline in serum 
BDNF level by 21.5% (Table 2) as compared to the 
ovariectomized control group. In contrast, treatment 
with BM-MSCs elevates serum BDNF level significantly (P 
< 0.05) by 26.1% (Table 2) relative to the group of rats 
left untreated. 

Brain DA level was determined by a fluorometric 
method, while brain TH and nestin genes expression level 
was detected by sqRT-PCR to evaluate the neurogenic 
potential of the injected BM-MSCs in PD model. It is well 
known that DA is a neurotransmitter released by nerve 
cells to play crucial role in motor control, motivation, 
arousal, cognition and reward[33]. Furthermore, TH enzyme 
catalyzes the conversion of L-tyrosine to L-3,4-dihydroxy-
phenylalanine[34]. While, nestin is one of the markers of 
neural precursors[35]. The data of our work revealed that 
rotenone administration leads to significant (P < 0.05) 
depletion of brain DA level (32.1%) and significant (P <  
0.05) down-regulation in the expression level of brain TH 
and nestin genes by 54.6% and 48.5% respectively (Table 
2) as compared to the ovariectomized control group. 

500 bp

400 bp

300 bp

200 bp

100 bp

M                    1                      2

Figure 1  An agarose gel electrophoresis of DNA fragments showed SRY 
gene in recipient female rats for bone marrow derived mesenchymal stem 
cells in Parkinson’s disease model. Lane (M) represents DNA ladder; Lane 
(1) represents ovariectomized control sample; Lane (2) represents sample from 
PD group treated with BM-MSCs. PD: Parkinson’s disease; BM-MSCs: Bone 
marrow derived mesenchymal stem cells.

Table 1  Effect of treatment with bone marrow derived mesenchymal 
stem cells on serum transforming growth factor beta-1 and monocyte 
chemoattractant protein-1 levels in Parkinson’s disease model

TGF-β1 (pg/mL) MCP-1 (pg/mL)

Ovariectomized control 481.5 ± 7.5  88.1 ± 0.9
PD untreated  691.2 ± 8.0a 112.1 ± 1.9a

PD + BM-MSCs    489.7 ± 13.0c   89.6 ± 2.0c

Data are represented as mean ± SE of 8 rats/group. aSignificant change at 
P < 0.05 in comparison with the ovariectomized control group; cSignificant 
change at P < 0.05 in comparison with the untreated PD group. PD: 
Parkinson’s disease; BM-MSCs: Bone marrow derived mesenchymal 
stem cells; TGF-β1: Transforming growth factor beta-1; MCP-1: Monocyte 
chemoattractant protein-1.

Ahmed HH et al . MSCs and Parkinson’s disease pathophysiology



111 March 26, 2016|Volume 8|Issue 3|WJSC|www.wjgnet.com

However, treatment with BM-MSCs produces significant 
(P < 0.05) elevation in brain DA level by 45.9% and 
significant (P < 0.05) up-regulation in brain TH and nestin 
genes expression level by 122.2% and 92.5% respectively 
(Table 2) vs the group of rats left untreated.   

Effect of treatment with BM-MSCs on anti-apoptotic 
marker
The anti-apoptotic action of the single intravenous dose 
of BM-MSCs in PD model was evaluated through the 
detection of brain survivin expression using immuno
histochemical technique. As, survivin belongs to a family 
of endogenous cellular inhibitors of caspases that directly 
repress apoptotic cell death through interactions with 
pro-apoptotic caspases[36]. In view of the current data, 
rotenone administration causes insignificant (P > 0.05) 
decrease in the number of positive cells for survivin 
expression by 5.7% (Table 3 and Figure 2B) relative to 
the ovariectomized control group. While, treatment with 
BM-MSCs produces insignificant (P > 0.05) increase in the 
number of positive cells for survivin expression by 8.0% 
(Table 3 and Figure 2C) in comparison with the group of 
rats left untreated.

Effect of treatment with BM-MSCs on brain structure
The brain section photomicrograph of ovariectomized 
control rat shows congestion in the blood vessels in striatum 
area (Figure 3A). While, brain section photomicrographs of 
untreated rotenone administered rat show congestion in the 
blood vessels and capillaries (Figure 3B) in the striatum as 
well as hyalinization and plaques formation in the matrix of 
the striatum indicating the occurrence of neurodegeneration 
(Figure 3C). Finally, the brain section photomicrograph of 
rotenone administered rat treated with BM-MSCs shows 

intact histological structure of the striatum (Figure 3D).

DISCUSSION
MSCs have been considered as an effective tool for 
regenerative cell therapy. These cells could be isolated from 
both healthy and patient tissues and expanded in vitro 
on a therapeutic scale without posing significant ethical or 
procedural problems[37]. Furthermore, it has been proposed 
that stem cells may replace lost cells by differentiating into 
functional neural tissue; provide source of trophic support 
for the diseased nervous system or alter the immune 
system to prevent further neurodegeneration[38]. Therefore, 
the current study was planned to elucidate the mechanisms 
by which BM-MSCs could attenuate PD pathophysiology in 
the experimental model.

In consistent with Yoon et al[39] who found that 
intravenously transplanted BM-MSCs could migrate and 
home into the brain, the data presented in this work 
demonstrated that the intravenously transplanted MSCs 
were able to migrate to the site of injury (brain). The 
homing property afforded by MSCs was likely attributable 
to their broader expression of homing molecules[40]. 
Furthermore, it has been reported that, chemokines 
released from tissue or endothelial cells may contribute 
to the activation of adhesion ligands, transendothelial 
migration, chemotaxis, and/or subsequent retention in 
surrounding tissue[41]. 

In view of the data of the current work, rotenone 
administration for 14 d in ovariectomized rats elevated 
the level of serum TGF-β1 and MCP-1 significantly. This 
finding is greatly supported by those of Rota et al[42] and 
Reale et al[43] who stated that both TGF-β1 and MCP-1 
levels are increased in several chronic neurodegenerative 
pathologies such as PD. It has been reported that 
the inflammatory response due to Parkinsonism is 
characterized by activation of microglia in the brain. 
The proposed explanation in regards to the reason of 
degeneration in dopaminergic neurons is that PD is caused 
by activation of microglial cells as a result of increased 
levels of cytokines[44]. Activated microglia release a wide 
array of pro-inflammatory and cytotoxic factors as well 
as eicosanoids and nitric oxide[45], which work in concert 
to develop neurodegeneration[46]. Moreover, Gao et 
al[47] reported that the dopaminergic neurodegeneration 
enhanced by rotenone might be attributed primarily to 

Table 2  Effect of treatment with bone marrow derived mesenchymal stem cells on serum brain derived neurotrophic factor and brain 
dopamine levels as well as brain tyrosine hydroxylase and nestin genes expression level in Parkinson’s disease model

BDNF (pg/mL) DA (µg/g tissue) Relative expression of TH gene 
(TH/β-actin)

Relative expression of nestin gene 
(nestin/β-actin)

Ovariectomized control 3700 ± 26.4  882 ± 20.3 1.19 ± 0.004 1.30 ± 0.004
PD untreated  2905 ± 72.9a 599 ± 9.8a  0.54 ± 0.009a  0.67 ± 0.006a

PD + BM-MSCs  3663 ± 17.8c   874 ± 15.0c  1.18 ± 0.004c  1.29 ± 0.005c

Data are represented as mean ± SE of 8 rats/group. aSignificant change at P < 0.05 in comparison with the ovariectomized control group; cSignificant change 
at P < 0.05 in comparison with the untreated PD group. PD: Parkinson’s disease; BM-MSCs: Bone marrow derived mesenchymal stem cells; BDNF: Brain 
derived neurotrophic factor; DA: Dopamine; TH: Tyrosine hydroxylase.

Table 3  Effect of treatment with bone marrow derived 
mesenchymal stem cells on brain survivin expression in Parkinson’s 
disease model

Survivin (cell number)

Ovariectomized control    288 ± 16.5
PD untreated       271.5 ± 13.9
PD + BM-MSCs 293.2 ± 15.9

Data are represented as mean ± SE of 8 rats/group. PD: Parkinson’s 
disease; BM-MSCs: Bone marrow derived mesenchymal stem cells.
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the activation of microglia and consequently their release of superoxide free radicals that play an important role in 

A B

Figure 2  Immunohistochemical examination of survivin expression in Parkinson’s disease model groups. A: Ovariectomized control; B: PD untreated; C: PD 
+ BM-MSCs. PD: Parkinson’s disease; BM-MSCs: Bone marrow derived mesenchymal stem cells.

C

Figure 3  Photomicrograph of brain section of: A: Ovariectomized control group shows congestion in blood vessels of striatum (v) (H and E × 80); B: untreated 
Parkinson’s disease (PD) group shows congestion in blood vessels and capillaries of striatum (v) (H and E × 80); C: Untreated PD: Parkinson’s disease group 
shows hyalinization with plaques formation in the matrix of striatum (H and E × 160); and D: PD group treated with bone marrow derived mesenchymal 
stem cells shows intact histological structure of the striatum (H and E × 80). 
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the inflammation mediated oxidative damage to neurons. 
This effect might be ascribed to the known susceptibility 
of dopaminergic neurons to oxidative stress as a result 
of reduced antioxidant capacity, high content of iron and 
DA, and possible defect in mitochondrial function[48]. The 
release of cytokines from the brain into the peripheral 
blood supply through the blood brain barrier[49] could 
explain the observed increase in serum TGF-β1 and MCP-1 
levels.

The results of the current study manifested that 
treatment with BM-MSCs lessen the level of serum TGF-β1 
and MCP-1 significantly. This finding is in great accordance 
with our previous work on adipose tissue derived MSC[50] 

that proved its anti-inflammatory and immunomodulatory 
activities which are implicated in mitigating neuroinfla
mmation characterizing PD. Accordingly, the observed 
role of BM-MSCs in depleting serum TGF-β1 and MCP-1 
levels could be allied to the ability of BM-MSCs to modulate 
microglia/macrophage activation including inflammatory 
responses as documented by Németh et al[51] and Choi et 
al[52]. 

Growing body of evidence indicates that there is a link 
between pro-inflammatory cytokines and neurotrophic 
factors in the CNS[53]. It has been postulated that there 
is a balance between cytokine and neurotrophin in the 
brain and disruption of this balance cause injurious 
changes in the CNS[54]. Moreover, Borchelt[55] observed 
that astrocytes stimulated by mediators released from 
microglia down-regulate neurotrophic factors expression 
and release additional inflammatory mediators that in 
turn activate microglia. Parallel to these evidences, our 
results indicated that rotenone administration elicited 
significant decrease in serum BDNF level. This finding 
could be allied to the diminished level of brain BDNF due 
to inflammation. As, Klein et al[56] reported that BDNF 
level in the blood correlates with alteration in the level of 
BDNF in the brain.

In view of the current data, treatment with BM-MSCs 
experienced significant increase in serum BDNF level. 
This preferable effect could be related to the ability of 
MSCs to secrete BDNF as observed by Lattanzi et al[57] 
and Han et al[58]. Blandini et al[59] documented that MSCs 
have the ability to differentiate into glial cells that release 
diverse neurotrophic factors to provide protection against 
neurotoxin after their grafting into Parkinsonian rat brains. 
Additionally, there is an evidence that MSCs may modulate 
the expression of neurotrophic factors according to the 
environment in which they exist[60,61].

The data presented in this work revealed that 
rotenone administration led to significant down-regulation 
in brain TH gene expression level in concomitant with 
significant decline in brain DA level. This observation could 
be ascribed to the dopaminergic degeneration[62] due to 
elevated sensitivity of dopaminergic neurons to oxidative 
damage[47] as well as inhibition of complex Ⅰ activity and 
decrement of the mitochondrial membrane potential as a 
result of  rotenone administration[47,63]. 

Our previous findings indicated the neurotrophic and 
neuroprotective potentials of adipose tissue derived MSC 

against neurodegenerative insult of PD[50]. Similarly, the 
data of the present work demonstrated that treatment 
with BM-MSCs elicited significant increase in brain DA 
level as well as brain TH gene expression level. This 
finding comes in line with the study of Shetty et al[64] who 
demonstrated that BM-MSCs can be transdifferentiated 
efficiently into functional dopaminergic neurons capable 
of secreting DA and alleviating behavioral deficiencies. 
Moreover, the results of Bouchez et al[25] study showed 
that grafting of BM-MSCs caused an increase in the 
immunostaining of TH in striatum associated with elev
ation in the number of TH+ neurons in the substantia 
nigra pars compacta. Also, Blondheim et al[65] and Offen et 
al[66] stated that the transplantation of BM-MSCs into the 
animal model induced with 6-hydroxydopamine resulting 
in an increase in the level of TH in the striatal region 
thus improving motor behavior in a mouse model of PD. 
Since, TH is the rate-limiting enzyme in DA synthesis, the 
increase in the level of TH would increase the production of 
DA. Additionally, the observed increase in brain DA content 
and TH expression level as a result of treatment with BM-
MSCs could be explained by the ability of MSCs to secrete 
a wide array of cytokines and growth factors, including 
BDNF[57] which exert neurotrophic and neuroprotective 
effects on DA neurons[67]. Furthermore, Trzaska et al[68] 
reported that BDNF has a crucial role in the functional 
maturation of MSC-derived DA progenitors.

In line with previous studies reported by Höglinger 
et al[69] and Abdipranoto et al[70], the current study 
manifested that rotenone administration caused significant 
down-regulation in brain nestin gene expression level. 
This finding could be imputed to the depletion in DA 
level due to degeneration of dopaminergic neurons as 
documented by Crews et al[71]. In contrast, treatment with 
BM-MSCs induced significant up-regulation in nestin gene 
expression level. Bouchez et al[25] found that rat MSCs 
express neuronal proteins such as nestin at the RNA and 
protein levels. Moreover, the study of Ye et al[72] indicated 
the presence of nestin positive cells in brain tissue of PD 
rat after transplantation of undifferentiated BM-MSCs. 
The suggested mechanism by which BM-MSCs treat PD 
rat model could be related to that transplanted BM-MSCs 
might become nestin-positive stem cells that differentiate 
into astrocytes or other non-dopaminergic neurons and 
participate in the reconstruction of dopaminergic neurons 
circuits[72]. 

The data of this work revealed that rotenone admini
stration produced slight decrease in the number of positive 
cells for survivin expression. This finding harmonizes with 
that of Zhang et al[73] who reported that degenerating 
neurons lacked survivin expression. Jiang et al[74] results 
showed that survivin is critically required for the survival 
of developing CNS neurons. Moreover, Zhang et al[75] 
suggested that there is a connection between the expression 
of survivin and adult neurogenesis. Thus, the observed 
decrement in survivin expression might be attributed to the 
decreased neurogenesis due to DA depletion[71]. Another 
possible mechanism by which rotenone could decrease 
survivin expression might be related to its effect on p53 
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which was shown to be over expressed by rotenone[76]. 
Under normal conditions, p53 protein levels are low and 
regulated by IκB kinase (IKK) and prominently by mouse 
double minute 2 (Mdm2), an ubiquitin ligase responsible 
for p53 degradation. Cellular stress reduces the interaction 
between p53 and Mdm2 leading to accumulation of the 
former[77]. Wu et al[76] reported that the degeneration of 
dopaminergic neurons by rotenone was accompanied by 
an increase in p53 protein level which in turn induces p21 
expression. Then, the increased level of p21 suppresses 
the expression of cycline dependent kinases leading to 
accumulation of hypophosphorylated retinoblastoma that 
interact with E2F (a transcriptional activator) to repress 
survivin expression[78]. 

In the light of our results, treatment with BM-MSCs 
caused insignificant increase in the number of positive cells 
for survivin expression. This increment is in agreement 
with Okazaki et al[79] and it could be imputed to the ability 
of MSCs to enhance neurogenesis and inhibit apoptosis 
through their secreted BDNF as documented by Ye et 
al[72]. Moreover, Kim et al[80] reported that grafted MSCs 
attenuate dopaminergic neuronal loss through their anti-
apoptotic effects. Also, the increase in survivin expression 
by MSCs treatment might be related to their inhibitory 
action on P53 through the inactivation of ERK1/2[81]. 

In view of the histopathological investigations of 
brain tissues section of the current work, rotenone 
administration resulted in congestion in the blood vessels 
and capillaries of striatum. Also, there were hyalinization 
and plaques formation in the matrix of striatum indicating 
the occurrence of neurodegeneration. Sai et al[82] demon
strated that rotenone causes dopaminergic neurons 
degeneration in vivo and substantia nigra pars compacta 
and striatum are the main targets of rotenone in the 
rat brain. These findings could be allied to the inhibition 
of neuronal mitochondrial complex Ⅰ activity[47] and 
consequently oxidative damage[83] as a result of rotenone 
administration.

Brain tissue sections examination indicated that single 
infusion with BM-MSCs resulted in intact histological 
structure of the striatum. This finding coincides with 
Dezawa et al[84] who reported that nerve system recovery 
after BM-MSCs transplantation could be related to their 
secretion of neurotrophic factors that restore the function 
of nervous system, promotion of local angiogenesis 
and vascular reconstruction and neuronal regeneration 
through promotion of autologous neuronal regeneration 
and differentiation of transplanted cells into neural cells. 

In conclusion, the current study provided experimental 
evidences for the ability of BM-MSCs to mitigate PD 
pathophysiology through multi-mechanistic approaches 
(immunomodulatory, anti-inflammatory and anti-apoptotic 
effects as well as neurotrophic and neurogenic potentials). 
These promising results pave the way for the clinical trial 
application of MSCs in the treatment of neurodegenerative 
diseases particularly PD.

COMMENTS
Background
Parkinson’s disease (PD) is one of the neurodegenerative diseases, 

accompanied by extrapyramidal motor dysfunction due to the progressive 
and selective loss of dopaminergic neurons in the substantia nigra pars 
compacta and declining levels of dopamine in the striatum. So, it is very 
important to stop or halt neurodegeneration. However, to date, there is no 
therapy clinically available that delays the neurodegenerative process itself, 
therefore modification of the disease course is an important unmet clinical 
need. Transplantation of mesenchymal stem cells (MSCs) for treating 
neurodegenerative disorders has received growing attention recently because 
these cells are readily available, easily expanded in culture, and when 
transplanted survive for relatively long periods of time.

Research frontiers
MSCs are a heterogeneous subset of stromal stem cells that have the ability 
of self-renewal and multipotency. In the area of neurodegenerative disorders 
treatment, the current research hotspot is how to modify the disease course by 
specifically target the pathophysiologic cascade, hoping to delay the onset of 
the disease and slow its progression.

Innovations and breakthroughs
Modern research has focused on discovering effective disease-modifying 
therapies, which specifically target the pathophysiologic cascade, hoping to 
delay the onset of the disease and slow its progression. The study provided 
a non invasive approach for mitigating PD pathophysiology via bone marrow 
derived MSCs (BM-MSCs) transplantation which has immunomodulatory, anti-
inflammatory and anti-apoptotic effects as well as neurotrophic and neurogenic 
potentials.  

Applications 
The study results shed light on the therapeutic potential of BM-MSCs against 
PD pathophysiology via multi-mechanistic actions.

Terminology
PD is the second most common neurodegenerative disease, accompanied 
by extrapyramidal motor dysfunction which resulting from the progressive and 
selective loss of dopaminergic neurons in the substantia nigra pars compacta and 
declining levels of dopamine in the striatum. MSCs are a heterogeneous subset 
of stromal stem cells that have the ability of self-renewal and multipotency, which 
could differentiate into cells of the mesodermal lineages and other embryonic 
lineages, including adipocytes, osteocytes, chondrocytes, hepatocytes, neurons, 
muscle cells, epithelial cells, etc.

Peer-review
This article is well written, clearly demonstrating the therapeutic effect of BM-
MSCs for the treatment of PD. Authors also presented the molecular basis for 
the amelioration of PD pathology by showing decrements and increments in 
inflammatory mediators and neurotrophic factors in the serum, respectively. The 
overall data presented in this manuscript are sound.
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