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Abstract
Intervertebral disc (ID) degeneration (IDD) is one of the main causes of chronic 
low back pain, and degenerative lesions are usually caused by an imbalance 
between catabolic and anabolic processes in the ID. The environment in which the 
ID is located is harsh, with almost no vascular distribution within the disc, and 
the nutrient supply relies mainly on the diffusion of oxygen and nutrients from 
the blood vessels located under the endplate. The stability of its internal 
environment also plays an important role in preventing IDD. The main feature of 
disc degeneration is a decrease in the number of cells. Mesenchymal stem cells 
have been used in the treatment of disc lesions due to their ability to differentiate 
into nucleus pulposus cells in a nonspecific anti-inflammatory manner. The main 
purpose is to promote their regeneration. The current aim of stem cell therapy is 
to replace the aged and metamorphosed cells in the ID and to increase the content 
of the extracellular matrix. The treatment of disc degeneration with stem cells has 
achieved good efficacy, and the current challenge is how to improve this efficacy. 
Here, we reviewed current treatments for disc degeneration and summarize 
studies on stem cell vesicles, enhancement of therapeutic effects when stem cells 
are mixed with related substances, and improvements in the efficacy of stem cell 
therapy by adjuvants under adverse conditions. We reviewed the new approaches 
and ideas for stem cell treatment of disc degeneration in order to contribute to the 
development of new therapeutic approaches to meet current challenges.

https://www.f6publishing.com
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Core Tip: Mesenchymal stem cells have a strong self-renewal capacity and multidirectional differentiation potential, and their 
secreted vesicles promote regeneration of myeloid cells, increase extracellular matrix production, and alleviate inflammatory 
status. We reviewed the current relevant targets of stem cell exosomes for the treatment of intervertebral discs and the 
adjuvant tools used in conjunction with stem cell therapy. This will help to improve the therapeutic efficacy of stem cells and 
their exosomes, which will also contribute to development of more efficient treatment strategies and approaches for the 
restoration of disc degeneration.

Citation: Zhang QX, Cui M. How to enhance the ability of mesenchymal stem cells to alleviate intervertebral disc degeneration. World 
J Stem Cells 2023; 15(11): 989-998
URL: https://www.wjgnet.com/1948-0210/full/v15/i11/989.htm
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INTRODUCTION
Intervertebral discs (IDs) have a complex structure with a unique internal environment. They contain nucleus pulposus 
cells, fibrous rings, and extracellular matrix (ECM)[1], Mesenchymal stem cells (MSCs), a class of pluripotent stem cells 
with the capacity for self-renewal and the ability to differentiate into a variety of tissues in vitro, were first mentioned in 
1970 in guinea pig bone marrow[2]. Isolation and culture of MSCs from human bone marrow was first described in 1992. 
Since then, MSCs have been isolated and cultured from different human tissues, such as fat, amniotic membrane, gingiva, 
thymus, and placenta. MSCs from different sources differ in phenotype and function[3], for example, in solving the 
problem of ID withdrawal, umbilical cord-derived MSCs have a greater capacity for cell proliferation and osteogenesis 
than bone marrow-derived MSCs[4]. Stem cell therapy is designed to restore this balance of secreting exosomes and 
vesicles, mixing other substances to promote their differentiation into nucleus pulposus cells, regulating the content of the 
ECM, and when treated accordingly resisting interference by the harsh environment of the IDs[5,6]. These synergistic 
approaches provide new possibilities for stem cell therapy of (IDD)[7,8].

MIRNA IN EXOSOMES
For signal transduction pathways, many miRNAs play a crucial role in the growth and development of IDs. MSCs deliver 
miRNA-31 to the nucleus pulposus and upregulate the Wnt/β-catenin pathway to inhibit apoptosis of nucleus pulposus 
cells and regulate production of the ECM[9]. Similarly, under the stimulation of external effects, miRNA-21 can be 
transfected into mesenchymal cell exosomes, enhancing the ability of MSCs to differentiate into osteoblasts and promote 
vascular regeneration[10]. In other related studies, exosomes derived from bone marrow MSCs inhibited apoptosis and 
inflammation by upregulating autophagy through the protein kinase β/mammalian target of rapamycin signaling 
pathway[11]. MSCs-derived exosomes can also inhibit apoptosis of nucleus pulposus cells through miRNA-532-5p 
transport, demonstrating that this transport is also effective in IDD therapy[12].

Exosome-delivered exogenous miRNA-26a-5p can also be delivered to IDs, as METTL14 is highly expressed in patients 
with IDD, and the level of NOD-like receptor family pyrin domain containing 3 regulated by it leads to an increase in 
proinflammatory factors and apoptosis of nucleus pulposus cells. Exogenous miRNA-26a-5p inhibits METTL4 expression 
and thus treats disc degeneration[13]. It has also been found that miRNA-15a in exosomes can participate in the protein 
balance regulated by the phosphatidylinositol 3-kinase/protein kinase β and Wnt3a/β-catenin axes of IDD and 
downregulate matrix metalloproteinase-3. Therefore, type II collagen and aggrecan levels can be increased, along with 
differentiation of MSCs to nucleus pulposus cells[14,15]. BTB-and-CNC homologue 1 is a transcription inhibitor of heme 
oxygenase 1, which activates autophagy in nucleus pulposus cells. miRNA-155 in exosomes inhibits BTB-and-CNC 
homologue 1 expression by binding to the 3’ untranslated region of this transcription inhibitor, thereby treating IDD[16] 
(Table 1).

SPECIAL GENETICS AND MSCsS
Microtubules are an important part of the cytoskeleton that can regulate the assembly of proteins and the transport of 
substances within the cell. The stability of microtubules may extend their own life and ensure their normal basic 
functions. A decrease in transforming growth factor (TGF)-β1 is one of the possible factors involved in ID metamorphosis. 

https://www.wjgnet.com/1948-0210/full/v15/i11/989.htm
https://dx.doi.org/10.4252/wjsc.v15.i11.989
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Table 1 Effects of mRNA in vesicles on differentiation of mesenchymal stromal cells into myeloid cells, for extracellular matrix 
production, and for inflammatory status

Differentiation to 
myeloid cells

Extracellular matrix 
production Inflammatory state RNA Target Ref.

Promotion lncRNA CAHM M1 macrophages Li et al[26]

Promotion Repression miR-199a GREM1 Wen et al[35]

Promotion miR-140-5p KLF5/N-
cadherin/MDM2/Slug

Wang et al[34]

Promotion miR-105-5p Sirt6 Sun et al[33]

Promotion Repression miR-129-5p p38 MAPK Cui et al[31]

Promotion Promotion miR-17-5p TLR4 Zhou et al[29]

Promotion miR-194-5p TRAF6 Sun et al[12]

Promotion miR-21 p38 MAPK Wang et al[10]

Promotion Repression miR-26a-5p METTL14 Xuan et al[13]

Promotion miR-532-5p AKT-mTOR Sun et al[12]

Promotion Repression miR-31 Wnt/β-Catenin Wang et al[9]

Promotion miR-155 BACH1 Shi et al[16]

Promotion miR-15a PI3K/Akt Zhang et al[14]

Promotion miR-217 EZH2 Hao et al[27]

Promotion Promotion cirRNA0050205 GPX4 Yu et al[25]

Promotion Promotion cirRNA0072464 NRF2 Yu et al[24]

AKT: Protein kinase B; BACH1: BTB-and-CNC homologue 1; EZH2: Enhancer of zeste homolog 2; GPX4: Glutathione peroxidase 4; GREM1: Gremlin1; 
KLF5: Kruppel-like factor 5; lncRNA CAHM: Long non-coding RNA colorectal adenocarcinoma hypermethylated; MAPK: Mitogen-activated protein 
kinase; MDM2: Murine double minute 2; mTOR: Mechanistic target of rapamycin; NRF2: Nuclear factor erythroid 2-related factor 2; PI3K: 
Phosphoinositide 3-kinase; TRAF6: Tumor necrosis factor receptor associated factor 6.

Stabilization of microtubules can promote the expression of collagen type 2 and SRY-box transcription factor 9 (SOX9) in 
nucleus pulposus cells[17], which alleviates and reduces IDD. SOX9 and TGF-β1 can be used to transfect bone marrow 
MSCs, and MSCs can successfully differentiate into chondrocytes, promote formation of ECM, restore ID integrity, 
improve the inflammatory state, and reduce pain and further IDD. Similarly, MSCs and induced cartilage progenitor cells 
also increase the level of SOX9 and TGF-β1 during differentiation into nucleus pulposus cells, with the purpose of 
regulating inflammatory states and increasing differentiation[15,18,19].

METABOLITES AND MSCsS
MSCs-derived exosomes contain martrilin-3, which regulates the content of TGF-β1 in the IDs and differentiation of 
nucleus pulposus cells, promotes production of ECM, and inhibits release of inflammatory mediators[20]. Urolithin A 
was able to hinder hydrogen peroxide in inducing the aging of nucleus pulposus cells and destroying mitochondrial 
function. The silent information regulator 1/peroxisome proliferator-activated receptor gamma coactivator 1-alpha 
signaling pathway was activated by urolithin A in vitro, which protected the normal physiological function of 
mitochondria, linked nucleus pulposus cell aging, and increased the survival time of ECM while preventing further IDD
[21,22]. The compression produced by the degenerated ID can promote reactive oxygen species production by nucleus 
pulposus cells and cause oxidative stress, which leads to further apoptosis of nucleus pulposus cells. MSCs-derived 
exosomes can inhibit apoptosis of myeloid cells caused by excessive oxidative stress and ameliorate compression-induced 
mitochondrial damage, which relieves the pain caused by IDD[23].

GEL-LOADED MSCsS
Heat-responsive hydrogel can act as a carrier of the extracellular vesicles of MSCs. These vectors deliver vesicles in a 
continuous box, which contains vasorin (a type I transmembrane glycoprotein regulated by hypoxia-inducible factor 1) to 
the disc environment. Vasorin can regulate the expression of relevant matrix metalloenzymes in the nucleus pulposus 
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cells through Notch1 signaling, enhance the ability of nucleus pulposus cells to proliferate, migrate, and anabolize, and 
inhibit the apoptotic cells to release inflammatory mediators, preventing further exacerbation of IDD. However, whether 
vasorin can promote the proliferation and differentiation of MSCs has not been confirmed[21]. Therefore, the strategy of 
helping stem cells to treat IDD through gels is worth further study.

The combination of heat-sensitive decellularized ECM hydrogels with adipocyte-derived MSCs exosomes does not 
damage the therapeutic activity of MSCs. The heat-sensitive dECM@exo hydrogel system produces gelation in situ to 
help MSCs differentiate into nucleus pulposus cells and maintains the content of ECM. This hydrogel also creates a 
suitable environment for the proliferation and differentiation of nucleus pulposus cells[22]. Previous studies have 
demonstrated transport of MSCs with hyaluronic acid and platelet-rich hydrogels. This method enhances MSCs activity, 
promotes IDs to increase keratin 19 gene expression, induces differentiation of MSCs into nucleus pulposus cells, and 
maintains the original ID height and normal physiological activity of the ID environment[23]. This situation leads to 
increased expression of keratin genes, and it has been demonstrated that porcine nucleus pulposus-rich cell matrix 
induces differentiation into nucleus pulposus cells by stimulating porcine chordate cells[24].

CIRCULAR RNA AND EXOSOMES
Circular RNA, such as circ_0050205 and circ_0072464, is transmitted through exosomes into nucleus pulposus cells to 
promote cell proliferation and ECM synthesis[24,25]. Endogenous long non-coding RNA colorectal adenocarcinoma 
hypermethylated delivery by MSCs exosomes inhibits M1-type macrophage polarization, which reduces nucleus 
pulposus apoptosis, the release of inflammatory factors, and a reduction in ECM to prevent further IDD[26]. In the MSCs 
exosomes, miRNA-217 is transferred to the ID and binds to the forkhead box O3 promoter by targeting enhancer of zeste 
homolog 2. This maintains ID homeostasis and stimulates autophagy, thereby promoting collagen II and aggrecan 
content and inhibiting degradation of nucleus pulposus cells[15,27,28].

In other vesicles, overexpression of miRNA-194-5p inhibits the occurrence of disc degeneration by targeting tumor 
necrosis factor receptor associated factor 6. Lentiviral vectors have been shown to transport the growth and differen-
tiation factor 5 (GDF5) gene and integrate it into the chromosomal genome of nucleus pulposus MSCs, which then 
express GDF5 along with the MSCs genes. GDF5 can also increase the level of proteoglycan and type II collagen[12]. If 
vesicles are subjected to hypoxia, miRNA-17-5p regulates the proliferation and differentiation of human nucleus 
pulposus cells and the proliferation and synthesis of ECM through the toll-like receptor 4 pathway, alleviating 
progression of IDD. This is more effective than the direct injection of MSCs into the ID[29].

During disc degeneration, the release of inflammatory factors also leads to a decrease in the uptake of extracellular 
vesicles. Vesicles prevent excess death of nucleus pulposus cells by delivering peroxidase 2 and reversing the decline in 
therapeutic effectiveness of MSCs due to tumor necrosis factor-α damage[30]. miRNA-129-5p in vesicles increases MSCs 
proliferation and differentiation into nucleus pulposus cells by blocking the lrg1-mediated p38 mitogen-activated protein 
kinase pathway and polarizing macrophages to the M1 phenotype, ultimately alleviating disc degeneration[31].

The combination of electromagnetic radiation and tissue engineering can stimulate the bone morphogenetic protein/
Smad and mitogen-activated protein kinase-related p38 signaling pathway of ID stem cells to regulate differentiation of 
MSCs and increase their osteogenic capacity for the treatment of IDD[32]. Vesicles can also transmit exogenous miRNA-
105-5p to revitalized nucleus pulposus cells, and transmit miRNA-140-3p to regulate the kruppel-like factor 5/N-
cadherin/Murine double minute 2/Slug axis; all of which can slow down progression of IDD and restore normal ID 
physiological function[33,34]. miRNA-199a also exists in MSCs exosomes, which targets gremlin1 downregulation of the 
TGF-β pathway to prevent apoptosis of nucleus pulposus cells and inhibit progression of IDD[35].

MSCs MIXTURE
MSCs therapy alone has been shown to be effective in IDD, but its efficacy still falls short of expectations[36]. A recent 
study has shown that MSCs can be mixed with cell-free bioresorbable ultra-purified alginate gel for the treatment of IDD
[37]. Such mixed preparations inhibit cell necrosis in the IDs and the release of inflammatory factors and consolidate the 
therapeutic effect of MSCs. Similarly, the combination of MSCs with in situ bioresorbable gel (dMD-001) produced the 
above therapeutic effects in IDD and was used after discectomy to prevent IDD[38]. Similarly, when MSCs are combined 
with coenzyme Q10 for the treatment of most ID lesions, it reduces oxidative stress in the ID, inhibits degradation of 
nucleus pulposus cells, and steadily improves the efficacy of IDD treatment[39].

Gelatin microparticles can also be mixed with MSCs, which can regulate the release of TGF-β1 and bone morpho-
genetic protein-2 to promote regeneration of osteochondral tissue[38]. When bone marrow MSCs are injected into the 
human body, leakage and decreased viability of MSCs occur, and gelatin colloidal hydrogels using nanostructures can 
effectively prevent these conditions. Under the load of gelatin colloid, MSCs promote regeneration of IDs and increase the 
number of nucleus pulposus cells between the IDs, ECM content, and the ID height[39]. Selective cell retention 
technology can concentrate MSCs and then the gelatin vector described above is used, which has been shown to enhance 
the effect of carrier materials on MSCs in the treatment of IDD[40].

A novel amphiphilic copolymer, polyethylene glycol-PAPO, fused with lipophilic kartogenin into a complex, is an 
esterase-reactive micelle that can carry MSCs and maintain their activity. When this combination is injected into IDs, it 
protects them from oxidative stress, activates autophagy of MSCs, regulates gene expression in the ECM, promotes ECM 
production, and increases ID height and hydration between the IDs[41]. Previous studies have found that collagen 
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hydrogel can promote differentiation of MSCs[42]. A more recent study found that biocompatible earthworm gel fused 
with MSCs induced their differentiation into nucleus pulposus cells in a targeted manner and improved their differen-
tiation ability and efficiency[43]. For the expression of special genes such as SOX9, ACAN and COL2 in nucleus pulposus 
cells, the study found that MSCs increased the expression of appeal genes after superoxide dismutase 2 and catalase 
processing, thereby reducing the deterioration of inflammatory states and promoting repair of ID tissue[44]. MSCs can 
also fuse with connective tissue growth factor and TGF-β3, transport polydopamine nanoparticles to the corresponding 
positions between the nuclei of the IDs, and finally induce MSCs to differentiate into nucleus pulposus cells and fibrous 
ring cells, reconstructing the mechanical environment of the IDs[45] (Figure 1).

STIMULATION INDUCTION WITH MSCsS
Sustained mechanical stimulation is an innovative method of induced differentiation in MSCs, which can be continuously 
stimulated in a special microgel attached to them[46]. Repeated continuous stretching regulates transient receptor 
potential vanilloid 4 and Piezo1 channel proteins, regulates the value-added differentiation of MSCs into chondrocytes, 
regenerates the intercellular matrix, increases the water content in the IDs, and restores the normal structure of 
degenerated IDs[47]. In addition, formation of ECM has been found to correlate with tissue specificity. Therefore, the 
isolated nucleus pulposus cells and fiber rings are processed into corresponding hydrogels, which are specific in 
composition and space structure. Viscous fibrinogen-thrombin-genipin gels act specifically through the RhoA/LATS/
YAP1 signaling pathway to direct differentiation of MSCs into nucleus pulposus cells or fibrous rings. This helps patients 
with IDD to reduce the number of nucleus pulposus cells and fibrous ring damage, which may provide a new direction 
for the treatment of IDD[46,48]. In the treatment of IDD and recovery of ID height by using bleomycin to induce MSCs 
fibrosis and by stimulating the TGFβ-SMAD2/3 signaling pathway, the gene expression of related collagen and ECM is 
maintained, thereby maintaining the height of the ID and increasing its ability to resist wear[49].

HARSH ENVIRONMENT OF THE ID
The treatment of IDD with MSCs has been widely applied, and the role of MSCs in delaying ID lesions has been proven
[50]. However, the stability and efficacy of MSCs entering the ID are affected by the microenvironment of the ID. The IDs 
are located in an environment of nutritional deficiency, high tension, low pH, hypoxia, and high mechanical load[51]. In 
this environment with progression of IDD, most of the nucleus pulposus cells begin to die, resulting in a series of 
malignant chain reactions that lead to aggravation of oxidative stress, secretion of inflammatory substances, and 
aggravation of pain[5] (Figure 2).

Many studies have reported that the microenvironment in which cells are located has an important impact on their 
biological activity[52]. The low pH of IDs significantly inhibits acid-sensitive ion channels (ASICs), which are key 
receptors for extracellular protons in central and peripheral neurons related to IDD[53]. Due to the decreased activity of 
ASICs, MSCs differentiate into nucleus pulposus cells. When the number of nucleus pulposus cells decreases and 
production of ECM decreases, this increases the short-function peptide fragments that can recognize ASIC blockers, as 
ASICs can activate cell aging pathways, such as p53-p21/p27 and p16-Rb1 signaling factors, to induce apoptosis of 
nucleus pulposus cells[54]. ASIC blockers can significantly help stem cells overcome the acidic environment during IDD 
treatment, improve the ability of MSCs to proliferate and differentiate into nucleus pulposus cells, and help restore the 
normal state of IDs. 1,25(OH)2D3-treated nucleus pulposus MSCs have better tolerance to the hypertonic and acidic 
microenvironment in which the IDs are located[55]. This reduces apoptosis of nucleus pulposus mesenchymal cells, 
restores the height between the IDs, and delays occurrence of IDD.

The large changes in pressure between the degenerative IDs leads to a decrease in the survival and differentiation of 
MSCs[56]. Medullary pulposus cell-derived hydrogels help MSCs differentiate into nucleus pulposus cells[57]. A recent 
study found that the current methanipine cross-linked decellularization nucleus pulposus hydrogel-like cell delivery 
system can transport MSCs to the IDs[58]. The changes in ID pressure ensure that MSCs differentiate into nucleus 
pulposus cells, repair the reduced ECM, and maintain ID height to delay IDD.

MSCs pretreated with lithium chloride can increase the adaptability of MSCs[59], as lithium chloride helps MSCs 
antagonize oxidative stress and protect nucleus pulposus cells by activating more extracellular signal-regulated kinase 1/
2[60]. Extracellular signal-regulated kinase 1/2 plays a vital role in fighting inflammation, which is one of the main ways 
it works in the harsh environment of the IDs. This conduction pathway ultimately also helps to improve the ability of 
MSCs to reduce nucleus pulposus cell death, increase ECM production, and improve inflammatory status and IDD.

Significant progress has been made in the treatment of IDD by MSCs, but due to the harsh environment of the IDs[5], 
the therapeutic effect of MSCs is reduced due to the lack of oxygen in the environment[61]. However, it has been found 
that the differentiation of MSCs to chondrocytes under hypoxic conditions can be helped by the addition of leptin[62], 
which provides energy for cell differentiation through its dependent glycolysis.

FUTURE DIRECTIONS FOR STEM-CELL-BASED THERAPY
Stem cell-based therapy offers promise for disc degeneration. Related studies have applied exogenous stem cells such as 
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Figure 1 Mesenchymal stromal cell exosomes can treat disc degeneration through the appropriate target. The extracellular vesicles secreted by 
mesenchymal stromal cells can be enriched with a variety of RNAs, DNAs, and proteins that can be targeted to treat disc degeneration. They have been shown to 
have a corresponding effect in promoting stem cell differentiation into myeloid cells, increasing extracellular matrix production, and reducing the release of 
inflammatory factors (pain reduction). MATN3: Martrilin-3; SOX9: SRY-box transcription factor 9; TGF: Transforming growth factor.

MSCs to treat disc degeneration with promising results[63]. As the field of stem cells continues to be studied[64], the 
histology of the IDs becomes clearer, and studies targeting the way in which stem cells restore disc structure are 
becoming more advanced. How to improve the efficiency of stem cell therapy for disc degeneration and how to resist the 
harsh disc environment for stem cell therapy are the focus of research[65]. This also includes how to help stem cells 
restore the normal physiological structure of the IDs under hypoxia and lack of blood supply[5]. This is a new direction 
that needs to be developed in the field of stem cells.

Sometimes it is not the stem cell therapy that is ineffective, as the way MSCs are administered similarly affects their 
behavior once inside the body. Overall, factors such as injection point site, syringe, carrier material, and buffer can affect 
the therapeutic efficacy of stem cells. Different injection sites may lead to variations in reflux of the cellular injection fluid
[66], and the syringe (needle size/shape) may lead to variations in the shear rate and shear stress of the cellular injection 
fluid, which can affect the viability of the injected cells. There are various challenges in the clinical application of stem 
cells, both for local administration and circulatory system administration[65]. Therefore, does the appropriate route of 
administration always  guarantee the clinical outcome of MSCs? Obviously not. While performing stem cell therapy, we 
not only need to choose the appropriate delivery method but also need to consider the individualization of the patient at 
the same time. We need to consider all these factors together in order to make the most appropriate stem cell treatment 
plan, thus improving the efficiency of MSCs treatment[67].

Different sources of MSCs have their own advantages and disadvantages in terms of therapeutic efficacy, and one of 
the major dilemmas that needs to be explored further is the production of stable MSCs at the production site[68]. Current 
research allows us to understand the current potential of MSCs for cell transplantation, tissue engineering, and cell-based 
therapies to improve the lives of those affected by disc injuries[65]. This requires us to deepen our understanding of 
MSCs, refine therapeutic approaches, and address the challenges of translating research findings into clinical practice. We 
can do this by further optimizing the sources of MSCs[69], delivery methods and timing of interventions, as well as 
standardized protocols for isolation, expansion, and characterization. Conducting well-designed clinical trials will help 
evaluate the safety, efficacy, and long-term outcomes of MSCs-based therapies[70]. As the clinical application of MSCs 
continues to be studied globally, stem cell therapeutic drugs are gradually being introduced, and more research teams 
and medical institutions are involved, this will gradually deepen the clinical application of stem cell therapy and bring 
hope to the majority of lumbar disc patients.
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Figure 2 The harsh environment in which the intervertebral discs are located. There is almost no vascular distribution in the intervertebral discs, and 
the nutrient supply relies mainly on the diffusion of oxygen and nutrients in the subendothelial vessels. The closer to the center of the nucleus pulposus, the lower the 
partial pressure of oxygen and the concentration of proteoglycans, which results in an extreme microenvironment, such as nutrient deficiency, high osmotic pressure, 
and acidic PH.

CONCLUSION
IDs have a complex structure with a unique internal environment. They contain nucleus pulposus cells, fibrous rings, and 
ECM, which are in a dynamic balance of self-renewal. Stem cells therapy is designed to restore this balance of secreting 
exosomes and vesicles, mixing other substances to promote their differentiation into nucleus pulposus cells, regulating 
the content of the ECM, and when treated accordingly resisting interference by the harsh environment of the IDs. These 
synergistic approaches provide new possibilities for stem cell therapy of IDD. They contain nucleus pulposus cells, 
annulus fibrosus, and ECM, and as the nucleus pulposus cells age and the ECM is lost, among other things, the disc 
becomes less stable. Stem cell therapy aims to restore the structure of the disc by secreting exosomes and vesicles, it mixes 
other substances to promote their differentiation into nucleus pulposus cells, regulates the content of the ECM and resists 
interference from the hostile environment of the IDs when treated accordingly. These synergistic approaches offer new 
possibilities for stem cell therapy for IDD. In the future, as people continue to explore the field of stem cells in disc 
therapy, stem cells will bring more hope to disc degeneration.
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Abstract
BACKGROUND 
Mesenchymal stem cells (MSCs) have great potential for the treatment of various 
immune diseases due to their unique immunomodulatory properties. However, 
MSCs exposed to the harsh inflammatory environment of damaged tissue after 
intravenous transplantation cannot exert their biological effects, and therefore, 
their therapeutic efficacy is reduced. In this challenging context, an in vitro 
preconditioning method is necessary for the development of MSC-based therapies 
with increased immunomodulatory capacity and transplantation efficacy.

AIM 
To determine whether hypoxia and inflammatory factor preconditioning increases 
the immunosuppressive properties of MSCs without affecting their biological 
characteristics.

METHODS 
Umbilical cord MSCs (UC-MSCs) were pretreated with hypoxia (2% O2) exposure 
and inflammatory factors (interleukin-1β, tumor necrosis factor-α, interferon-γ) for 
24 h. Flow cytometry, polymerase chain reaction, enzyme-linked immunosorbent 
assay and other experimental methods were used to evaluate the biological 
characteristics of pretreated UC-MSCs and to determine whether pretreatment 
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affected the immunosuppressive ability of UC-MSCs in coculture with immune cells.

RESULTS 
Pretreatment with hypoxia and inflammatory factors caused UC-MSCs to be elongated but did not affect their 
viability, proliferation or size. In addition, pretreatment significantly decreased the expression of coagulation-
related tissue factors but did not affect the expression of other surface markers. Similarly, mitochondrial function 
and integrity were retained. Although pretreatment promoted UC-MSC apoptosis and senescence, it increased the 
expression of genes and proteins related to immune regulation. Pretreatment increased peripheral blood 
mononuclear cell and natural killer (NK) cell proliferation rates and inhibited NK cell-induced toxicity to varying 
degrees.

CONCLUSION 
In summary, hypoxia and inflammatory factor preconditioning led to higher immunosuppressive effects of MSCs 
without damaging their biological characteristics.

Key Words: Mesenchymal stem cells; Umbilical cord; Preconditioning; Hypoxia, Inflammatory factors; Immune regulation

©The Author(s) 2023. Published by Baishideng Publishing Group Inc. All rights reserved.

Core Tip: Mesenchymal stem cells (MSCs) are potential candidates for treating many immune diseases due to their unique 
immunomodulatory abilities, but low survival rates and weakened function after venous transplantation reduces their 
treatment potential. Therefore, our study reveals a combination pretreatment method based on in vitro hypoxia exposure and 
inflammatory factor treatment that simulates the harsh in vivo environment to protect MSCs from injury after intravenous 
transfusion and promote high immunosuppressive effects of MSCs.

Citation: Li H, Ji XQ, Zhang SM, Bi RH. Hypoxia and inflammatory factor preconditioning enhances the immunosuppressive 
properties of human umbilical cord mesenchymal stem cells. World J Stem Cells 2023; 15(11): 999-1016
URL: https://www.wjgnet.com/1948-0210/full/v15/i11/999.htm
DOI: https://dx.doi.org/10.4252/wjsc.v15.i11.999

INTRODUCTION
In recent years, mesenchymal stem cells (MSCs) have been shown to have a variety of biological properties, such as self-
renewal[1], multilineage differentiation[2,3], immunomodulation functions[4,5], tissue repair effects[6], anti-aging and 
regeneration activity[7]. Furthermore, due to the abundance and ready availability of MSCs[8], they do not lead to 
rejection after allografting[9]; thus, MSCs have great economic value, importance in the cell therapy field and broad 
application prospects. Although many questions remain unanswered, the immunomodulatory effects of MSCs make 
them candidates for cell-based tissue repair and disease treatment[10-12]. For example, MSCs have great potential in 
treating graft-versus-host disease[13], cardiovascular disease[14,15], liver disease[16,17], systemic lupus erythematosus
[18], autoimmune encephalomyelitis[19] and spinal cord injury[20]. Studies have shown that the immunomodulatory 
ability of MSCs is primarily regulated by cytokines and other soluble factors, including prostaglandin E2 (PGE2), tumor 
necrosis factor (TNF)-α-stimulated gene protein-6 (TSG-6), inducible indoleamine 2,3-dioxygenase (IDO), interleukin-10 
(IL-10) and transforming growth factor-β1 (TGF-β1)[21]. They contribute to MSC-mediated immunosuppression by 
inhibiting natural killer (NK) cell proliferation, cytotoxicity and cytokine secretion[22], inhibiting T-cell proliferation, 
promoting regulatory T cell production[5,23,24], and inhibiting B-cell proliferation and immunoglobulin release[25,26].

It has been shown that when MSCs are injected into the body and migrate to damaged tissues or organs, the activation 
of innate immune cells leads to increased chemokine and cytokine release (such as TNF-α, IL-1α and IL-1β)[27] and is 
accompanied by the development of a harsh environment caused by hypoxic stress[28], leading to decreased MSC 
activity. Therefore, in vitro preconditioning culture developed through hypoxia exposure and inflammatory factor 
supplementation can effectively mimic the in vivo microenvironment. Preconditioning MSCs in vitro activates various 
signaling pathways, influencing the biological activities of MSCs in vitro and in vivo, thereby preparing them to survive 
the harsh environment to which they are subjected during in vivo administration and protecting them from damage[29,
30]. In addition, preconditioning can induce MSCs to secrete immunosuppressive molecules to target innate and adaptive 
immune cells, thereby mediating immune regulation by releasing water-soluble factors[31,32]. Therefore, pretreatment is 
an adaptive strategy to enhance the efficacy of MSC therapy, which can not only prolong MSC survival and function after 
transplantation but also endows them with higher immunomodulatory activity levels. Studies have shown that precondi-
tioning with inflammatory factors such as TNF-α and interferon (IFN)-γ can increase MSC immunoregulatory ability[33,
34]. Hypoxia preconditioning is often used to enhance the therapeutic effect of MSCs by inducing the expression of 
survival genes, chemokines, growth factors, and angiogenic factors (such as vascular endothelial growth factor), enabling 
the MSCs to adapt to the harsh environment of damaged tissue[35,36].
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Although different preconditioning methods can enhance cell properties and increase their function, many are 
accompanied by safety concerns. In contrast to the aforementioned positive outcomes of pretreatment, improper 
pretreatment can negatively impact cell morphology and function, damage mitochondrial function[37], and affect MSC 
surface marker expression. For example, previous studies have shown that tissue factor (TF/CD142) binds to coagulation 
factor VII/VIIB to initiate the exogenous coagulation system. The relative cell surface expression of TF is strongly 
correlated with procoagulant activity[38]. MSCs expressing surface TF show high coagulant activity and promote blood 
and plasma coagulation[39]. Therefore, high TF expression on MSCs increases the risk of thrombosis after intravenous 
injection[40-43].

We found that most studies have been focused on bone marrow- or adipose-derived MSCs (AD-MSCs), but human 
umbilical cord-derived MSCs (hUC-MSCs) are more suitable for clinical research and large-scale use because they are not 
associated with ethical problems, are abundant and highly proliferative. Therefore, we chose hUC-MSCs to study. To our 
knowledge, studies using a combination of hypoxia (2% O2) exposure and inflammatory factor (IL-1β, TNF-α, IFN-γ) 
treatment to precondition hUC-MSCs are rare, and our study supports the current theory. Our aim was to simulate the 
injury-induced environment in vitro using a combination of hypoxia and inflammatory factor preconditioning to 
determine whether preconditioning increases the immunosuppressive properties of MSCs without affecting their 
biological characteristics.

MATERIALS AND METHODS
UC-MSC extraction and culture
Umbilical cord and cord blood were obtained with the approval of the Medical Ethics Committee of Shanxi Medical 
University and the consent of the donors, and experiments were performed in accordance with the Declaration of 
Helsinki.

Umbilical cord tissue was provided by one hospital, and the donors gave informed consent. After obtaining the 
umbilical cords, two veins and one artery were removed, and Wharton’s jelly was cut into pieces and placed into a 10 cm2 
petri dish (Nice) with 5 mL of DMEM/F12 culture medium (Thermo Fisher Scientific, Waltham, MA, United States) 
containing 2.5% serum substitute (Shanxi Yinshi Cell Technology, Xian, China). Approximately 14 d later, the UC-MSCs 
were passaged, and P4 generation cells were used for experiments. UC-MSCs were cultured in a carbon dioxide incubator 
(Thermo Fisher Scientific) at standard oxygen tension with 5% carbon dioxide, 95% air, and 37 °C (i.e. normoxia). When 
UC-MSCs were 70%-80% confluent, a mixture of IFN-γ (R&D), TNF-α (R&D Systems, Minneapolis, MN, United States) 
and IL-1β (PeproTech, Cranbury, NJ, United States) was added to the medium. The cells were then immediately placed 
into a three-gas incubator (Panasonic, Osaka, Japan) with 2% O2, 5% CO2, and 93% N2 at 37 °C (i.e. hypoxia). After 24 h, 
primed UC-MSCs (PUC-MSCs) were obtained. Therefore, our experiments were divided into two groups: Control (UC-
MSCs) with no treatment and an experimental group (PUC-MSCs) in which cells were exposed to hypoxia and inflam-
matory factor supplementation.

Extraction and culture of peripheral blood mononuclear cells
Umbilical cord blood was obtained and centrifuged at 700 × g for 10 min and the plasma was extracted and placed into a 
water bath at 56 °C for 30 min for heat inactivation. The plasma was removed from the water bath, centrifuged at 850 × g 
for 10 min, and placed in a refrigerator at 4 °C for later use. The blood cells were resuspended in phosphate buffered 
saline (PBS) and mixed. The cell suspension was slowly added into a centrifuge tube containing Ficoll human peripheral 
blood lymphocyte isolation medium (Tianjin Haoyang Biological Products Technology Co., Ltd., Tianjin, China). After 
centrifugation at 400 × g for 30 min, white cells were extracted and washed twice with PBS. The cells [(1-2) × 106 cells/mL] 
were inoculated in peripheral blood mononuclear cell (PBMC) medium containing 10% of the heat-inactivated 
autologous plasma (Shanxi Yin Cell Technology Co., Ltd., Hebei, China) in the presence or absence of UC-MSCs or PUC-
MSCs. The PBMCs were treated with 100 U/mL IL-2 (PeproTech). For coculture experiments, PBMCs were inoculated 
with UC-MSCs or PUC-MSCs at a PBMC/MSC ratio of 3:1 so that the cells were in direct contact, which is the 
appropriate proportion of cells to obtain MSC-mediated inhibition of PBMC proliferation.

NK cell extraction and culture
Umbilical cord blood was obtained and centrifuged at 700 × g for 10 min, and the plasma was placed into a water bath at 
56 °C for 30 min for heat inactivation. The plasma was removed, centrifuged at 850 × g for 10 min, and placed into a 
refrigerator at 4 °C for later use. The blood cells were resuspended in PBS, mixed, and incubated at room temperature for 
20 min with RosetteSepT NK Enrichment Cocktail. The cell suspension was slowly added into a centrifuge tube 
containing Ficoll human peripheral blood lymphocyte isolation medium (Tianjin Haoyang Biological Products 
Technology Co., Ltd.). After centrifugation at 400 × g for 30 min, white cells were extracted and washed twice with PBS. 
The cells [(1-2) × 106 cells/mL] were inoculated into NK medium containing 10% heat-inactivated autologous plasma 
(Shanxi Yin Cell Technology Co., Ltd.). NK cells were cultured with or without UC-MSCs or PUC-MSCs and treated with 
100 U/mL IL-2 (PeproTech).

Cell survival rate and cell size detection
Double fluorescence acridine orange/propidium iodide (AO/PI) cell viability counting was performed. The AO/PI 
reagent consists of the DNA-binding dye AO, which fluoresces green, and the DNA-binding dye PI, which fluoresces red. 
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AO can pass through a complete cell membrane and enter the nuclei of all cells (living and dead cells), emitting green 
fluorescence. PI can only pass through an incomplete cell membrane and enter the nuclei of dead cells, resulting in red 
fluorescence. After mixing 10 μL of cell suspension with 10 μL of AOPI reagent, the viability and size of the cells in 
suspension were measured by a Countstar Rigel S2 (Shanghai Rui Yu Biotech, Shanghai, China).

Monoclonal antibodies and cytofluorometric analysis
Flow cytometry analysis of UC-MSCs and PUC-MSCs was performed. The cells were resuspended in staining buffer after 
centrifugation, and the corresponding antibodies were added to the buffer. Cells were incubated for 30 min, neutralized 
and washed 1-2 times. The UC-MSC or PUC-MSC antigen markers (BD Biosciences, San Jose, CA, United States) were 
CD105-APC, CD90-FITC, CD73-PE, CD142-PC5.5, CD29-PE, CD34-PE, CD14-PE, CD45-APC, human leukocyte antigen 
(HLA)-ABC-APC, CD47-APC, CD166-PE, CD44-PE, and CD31-APC.

Reactive oxygen species measurement
Mitochondrial reactive oxygen species (ROS) production was measured by flow cytometry (Beckman Coulter Life 
Sciences, Brea, CA, United States) using a ROS detection kit (Biyuntian, Shanghai, China). 2,7-dichlorodihydrofluorescein 
diacetate (DCFH-DA) was diluted in serum-free medium at 1:1000 to a final concentration of 10 μmol/L. After collection, 
1 million to 20 million/mL cells were suspended in diluted DCFH-DA and incubated in an infrared carbon dioxide 
incubator (Thermo Fisher Scientific) at 37 °C for 20 min. The cells were turned over and mixed every 3-5 min to ensure 
that the probe was in full contact with the cells. The cells were washed with serum-free cell culture solution three times to 
fully remove excess DCFH-DA. Finally, the results were detected by flow cytometry.

Measurement of mitochondrial membrane potential
Mitochondrial membrane potential (MMP) was detected using MMP detection reagent JC-1 (Beyotime, Jiangsu, China). 
The culture medium was removed and the cells were washed twice with PBS. JC-1 staining solution (1 mL) was added, 
mixed thoroughly, and incubated with cells in an infrared carbon dioxide incubator (Thermo Fisher Scientific) at 37 °C for 
20 min. During the incubation period, JC-1 staining buffer (1×) was prepared by adding approximately 4 mL distilled 
water to approximately 1 mL JC-1 staining buffer (5×), and the buffer was placed in an ice bath. After incubation at 37 °C, 
the supernatant was removed, and the cells were washed twice with JC-1 staining buffer (1×). Finally, 2 mL of the cell 
culture solution was added. Images were obtained with an inverted fluorescence microscope (CKX53; Olympus, Tokyo, 
Japan).

Real time-polymerase chain reaction
TRIzol (Invitrogen, Waltham, MA, United States) was used to lyse the cells, total RNA was extracted, and an ultratrace 
nucleic acid protein detector (Shanghai Jiapeng Materials, Shanghai, China) was used to determine RNA concentration. 
mRNA expression levels were quantitatively analyzed on a real-time polymerase chain reaction (RT-PCR) instrument 
(Bio-Rad, Hercules, CA, United States) using a One Step TB Green PrimeScript PLUS RT PCR Kit (Takara Bio Inc., Shiga, 
Japan) to measure the levels of the following transcripts: Catalase, Istanniocalcin-1 (STC1), hemeoxygenase-1 (HOMX1), 
B-cell lymphoma 2-associated protein (Bax), B-cell lymphoma 2 (Bcl2), silencing information regulator 2-related enzyme 1 
(SIRT1), P53, P16, P21, PGE2, kynurenine (KYN), IDO, IL-1 receptor antagonist (IL-1ra), cyclooxygenaese-2 (COX2), IL-10, 
TGF-β1, HLA-G5, TSG-6, ligands for programmed cell death 1 (PD-L1). All primer sequences for qRT-PCR are listed in 
Table 1.

Enzyme-linked immunosorbent assays
UC-MSCs and PUC-MSCs supernatants were collected and centrifuged at 210 × g for 5 min, and the suspended cells were 
removed and stored at -80 °C. The protein levels of PGE2, TSG-6, IDO, IL-10 and TGF-β1 secreted by UC-MSCs and PUC-
MSCs were measured by enzyme-linked immunosorbent assay (ELISA) kits (Wuhan Eliret Biotechnology Co, Ltd., 
Wuhan, China). Finally, the optical density (OD) value of each well was measured on the basis of enzyme label (Thermo 
Fisher Scientific) absorption at 450 nm.

Annexin V-FITC apoptosis detection
UC-MSC and PUC-MSC suspensions were obtained and washed twice with PBS. Annexin V-FITC apoptosis reagent 
(Biyuntian) was added and incubated with the cells at room temperature for 10-20 min in the dark, and flow cytometry 
was performed. Annexin V-FITC emits green fluorescence, and PI emits red fluorescence.

β-galactosidase (SA-β-gal) activity detection
The cell culture medium was removed, the cells were washed once with PBS, and 1 mL/well β-galactosidase (SA-β-gal) 
staining fixation solution (Solarbio, Beijing, China) was added and incubated at room temperature for 15 min. Fixative 
was removed, and the cells were washed 3 times with PBS for 3 min each. The PBS was removed, and 1 mL of staining 
solution was added to each well. The plate was incubated at 37°C overnight and sealed with plastic wrap to prevent 
evaporation. The positive expression of blue particles was observed under an inverted microscope (CKX53; Olympus), 
and the number of positive cells per 100 cells was quantified. Each experiment was repeated three times.

Proliferation experiment
NK cells were cultured in the presence or absence of UC-MSCs or PUC-MSCs for 3 d at a 3:1 ratio. The cells were 
prelabelled with carboxyfluorescein diacetate succinimidyl ester (CFSE) dye (BioLegend, San Diego, CA, United States) 
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Table 1 Primer used to amplify the human transcripts during real-time quantitative polymerase chain reaction

Gene Sequence, 5’ to 3’ Application

Upper: TTCTGTTGAAGATGCGGCGAGACCatalae (human)

Lower: GGGGTACTTTCCTGTGGCAATGG

qRT-PCR

Upper: CCATGAGGCGGAGCAGAATGACSTC-1 (human)

Lower: GCCGACCTGTAGAGCACTGTTG

qRT-PCR

Upper: TGCCAGTGCCACCAAGTTCAAGHMOX1 (human)

Lower: TGTTGAGCAGGAACGCAGTCTTG

qRT-PCR

Upper: ACCAAGAAGCTGAGCGAGTGTCBax (human)

Lower: TGTCCACGGCGGCAATCATC

qRT-PCR

Upper: TGAGTTCGGTGGGGTCATGTBcl2 (human)

Lower: TTCCACAAAGGCATCCCAGC

qRT-PCR

Upper: CCTGGACAATTCCAGCCATCTSIRT1 (human)

Lower: TGCAAAGGAACCATGACACTGA

qRT-PCR

Upper: GCCCATCCTCACCATCATCACACP53 (human)

Lower: GCACAAACACGCACCTCAAAGC

qRT-PCR

Upper: CCGTGGACCTGGCTGAGGAGP16 (human)

Lower: CGGGGATGTCTGAGGGACCTTC

qRT-PCR

Upper: CTTGTACCCTTGTGCCTCGCP21 (human)

Lower: AGAAGATCAGCCGGCGTTTG

qRT-PCR

Upper: AGTGTGACGTGGACATCCGCAβ-actin (human)

Lower: ATCCACATCTGCTGGAAGGTGGAC

qRT-PCR

Upper: ATTCTCCTGGCTATCATGACPGE2 (human)

Lower: GAACAGGAGGCCTAAGGATG

qRT-PCR

Upper: CTCTGCCAAATCCACAGGAAAIDO (human)

Lower: ATGACCTTTGCCCCACACAT

qRT-PCR

Upper: CAAGCGAAGGGTTGTTATGTTGGCKYN (human)

Lower: GGAACACCAGCAGGCAAAATCAAC

qRT-PCR

Upper: AATCTGGCTGCGGGAACACAACCOX2 (human)

Lower: TGTCTGGAACAACTGCTCATCACC

qRT-PCR

Upper: GTGCCTGTCCTGTGTCAAGTCTGIL-1ra (human)

Lower: GCCACTGTCTGAGCGGATGAAG

qRT-PCR

Upper: GCCAAGCCTTGTCTGAGATGATCCIL-10 (human)

Lower: GCCTTGATGTCTGGGTCTTGGTTC

qRT-PCR

Upper: AGCAACAATTCCTGGCGATACCTCTGF-β1 (human)

Lower: TCAACCACTGCCGCACAACTC

qRT-PCR

Upper: AGAGGAGACACGGAACACCAAGGHLA-G5 (human)

Lower: CAGGTCGCAGCCAATCATCCAC

qRT-PCR

Upper: AGAGAAGCACGGTCTGGCAAATACTSG-6 (human)

Lower: GCCATCCATCCAGCAGCACAG

qRT-PCR

Upper: TGACCTACTGGCATTTGCTGAACGPD-L1 (human)

Lower: CACTGCTTGTCCAGATGACTTCGG

qRT-PCR
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Bax: B-cell lymphoma 2-associated protein; Bcl2: B-cell lymphoma 2; COX2: Cyclooxygenaese-2; HLA-G5: Human leukocyte antigen-G5; HOMX1: 
Hemeoxygenase-1; IDO: Idoleamine-2,3-dioxygenase; IL-1ra: Interleukin-1 receptor antagonist; IL-10: Interleukin-10; KYN: Kynurenine; PD-L1: Ligands for 
programmed cell death 1; PGE2: Prostaglandin E2; qRT-PCR: Quantitative real-time polymerase chain reaction; SIRT1: Silencing information regulator 2-
related enzyme 1; STC1: Stanniocalcin-1; TGF-β1: Transforming growth factor-beta 1; TSG-6: Tumor necrosis factor-α-induced protein-6.

and the fluorescence intensity of CFSE was measured by flow cytometry.

Cell growth and proliferation
UC-MSCs and PUC-MSCs were collected for DNA extraction and DNA concentration was determined by an ultramicro 
nucleic acid protein detector (Shanghai Jiapeng Materials) to evaluate the cell proliferation rate. PBMCs were cultured in 
the presence or absence of UC-MSCs or PUC-MSCs at a ratio of 3:1. The number of cells (Countstar Rigel S2; Shanghai Rui 
Yu Biotech) was counted by a cell imaging analyzer for 5 consecutive days and the growth curve was plotted.

Cytotoxicity of K562 target cells
NK cells were cultured alone or in direct contact with MSCs (NK: UC-MSCs or PUC-MSCs = 3:1 ratio) for 72 h. NK cells 
were then collected and cocultured with CFSE-stained (Biolegend) K562 target cells for 4 h at the effective target ratio of 
1:5. All cells were collected and washed twice with PBS. K562 cell apoptosis was analyzed by PI staining (Biyuntian), and 
the fluorescence intensity was measured by flow cytometry.

Statistical analysis
SPSS 19.0.0 and GraphPad Prism 7 (GraphPad Prism, La Jolla, CA, United States) statistical software were used for data 
processing. All experimental data are expressed as the mean ± SD. A t test was performed to compare two datasets, and P 
< 0.05 was considered statistically significant.

RESULTS
Effects of hypoxia and inflammatory factor pretreatment on UC-MSC morphology, size, proliferation and viability
We evaluated the effects of hypoxia and inflammatory factor pretreatment on UC-MSC morphology, vitality and size. 
The morphological differences between UC-MSCs and PUC-MSCs were compared under a microscope when cell 
confluency reached 80% to 90%. Untreated UC-MSCs appeared as either short rods or long spindles in an adherent state 
and were arranged in a spiral pattern. After 24 h of exposure to hypoxia and inflammatory factors, cell morphology 
changed from short and rod-like to thin and elongated (Figure 1A), but the proliferation rate did not change (Figure 1B). 
We further evaluated the effects of pretreatment on UC-MSC viability and size using AOPI staining and a cell imaging 
analyzer. UC-MSC viability (Figure 1C) in suspension was 93.59% ± 3.87% (n = 5) and the mean diameter (Figure 1D) was 
18.216 ± 0.78 μm (n = 5), while PUC-MSC viability (Figure 1C) was 92.89% ± 4.13% (n = 5) and the mean diameter 
(Figure 1D) was 18.628 ± 0.76 μm (n = 5). These results showed that pretreated MSCs became elongated, the measured 
viability slightly decreased (P = 0.84), and the cells were slightly enlarged (P = 0.47), but these differences were not statist-
ically significant.

MSC surface marker expression
We further evaluated whether preconditioning altered the cellular phenotype by analyzing MSC surface marker 
expression by flow cytometry. UC-MSCs (Figure 2A) and PUC-MSCs (Figure 2B) from three donors were positive for 
CD105, CD90, CD73, CD29, CD166, CD47 and HLA-ABC surface expression and negative for CD31, CD45, CD14 and 
CD34. The results showed that surface marker expression was consistent between PUC-MSCs and UC-MSCs. 
Interestingly, CD142 expression (59.3%) (Figure 2B) was significantly lower in PUC-MSCs compared to UC-MSCs (99.6%) 
(Figure 2A).

Effect of pretreatment on UC-MSC mitochondrial function
ROS play key roles in the proapoptotic signaling cascade, and excess ROS attacks the mitochondrial membrane and loss 
of MMP, leading to MSC apoptosis[44]. Therefore, we used flow cytometry to examine the effect of MSC pretreatment on 
ROS production. Intracellular ROS levels showed a three-fold increase in DCFH-DA fluorescence intensity in PUC-MSCs 
compared to untreated UC-MSCs (Figure 3A), but all the effects were within the range of values obtained in positive 
controls. STC1, catalase and HOMX1 expression levels increased (Figure 3B), indicating that the antioxidant capacity of 
the cells was increased and that mitochondrial ROS removal was increased, enhancing antioxidant defense effects and 
preventing ROS-induced DNA damage. Maintaining a stable MMP (Ψm) is essential to ensure efficient ROS clearance 
and prevent apoptosis or other stress-related events caused by excessive ROS[45]. Therefore, we further determined 
whether hypoxia and inflammatory factor preconditioning induced MMP dysfunction in UC-MSCs. We used the 
sensitive fluorescent probe JC-1 to evaluate the effect of pretreatment. We determined whether the membrane potential 
changed in UC-MSCs by measuring a change in JC-1 red fluorescence to green fluorescence. Microscopically, untreated 
UC-MSCs showed a normal MMP, as shown by red fluorescence staining with JC-1 (Figure 3C). Neither the red and 
green fluorescence nor the MMP was significantly different between PUC-MSCs and UC-MSCs. We further measured the 
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Figure 1 Morphology, viability, proliferation, and size of mesenchymal stem cells. A: Representative micrographs showing umbilical cord 
mesenchymal stem cells (UC-MSCs) and primed umbilical cord mesenchymal stem cells (PUC-MSCs). Microscopy observation of cell morphology revealed that UC-
MSCs were elongated after hypoxia and inflammatory factor pretreatment (Bar = 200 μm); B: The DNA concentration was measured by an ultramicro nucleic acid 
protein detector. The DNA concentration of PUC-MSCs was not significantly different from that of UC-MSCs, and pretreatment had no effect on their proliferation; C: 
Cell viability was determined by an acridine orange (AO) propidium iodide (PI) staining cell image analyzer, and no significant difference between UC-MSCs and 
PUC-MSCs was observed; D: Cell size was determined with a cell imaging analyzer, and the sizes of the UC-MSCs and PUC-MSCs were comparable. dP > 0.05.

JC-1 red/green fluorescence ratio by flow cytometry and confirmed our microscopy results (Figure 3D). These results 
showed that mitochondrial function in UC-MSCs was not damaged by hypoxia and inflammatory factor pretreatment.

Hypoxia and inflammatory factor preconditioning induces UC-MSC apoptosis and senescence
Bax expression decreased and Bcl2 and SIRT1 expression increased after pretreatment, suggesting that the anti-apoptotic 
capacity increased after pretreatment (Figure 4A). The expression of the senescence-related genes P53, P16 and P21 was 
upregulated by pretreatment (Figure 4B). We analyzed apoptosis by Annexin V-PI staining and flow cytometry. We 
compared the proportion of cells that were positive for both Annexin V-FITC and PI (necrotic cells), and the apoptotic 
index of PUC-MSCs (15.08% ± 4.11%) significantly increased (Figure 4C) compared to UC-MSCs (6.22% ± 3.03%). Next, 
we investigated the effect of preconditioning on cell senescence. SA-β-gal has been the most widely accepted senescence 
marker since Dimri first published its use in 1995[46], so we performed SA-β-gal staining to evaluate cell senescence 
ratios. SA-β-gal levels increased in PUC-MSCs (14.83% ± 1.57%) compared to UC-MSCs (4.83% ± 1.34%) (Figure 4D). 
These results suggest that hypoxia and inflammatory factor preconditioning not only induces UC-MSC apoptosis and 
senescence but also increases anti-apoptotic factor levels.
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Figure 2 Phenotypes of mesenchymal stem cells were detected by flow cytometry. A: Cell surface markers of umbilical cord mesenchymal stem cells 
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(UC-MSCs); B: Cell surface markers of primed umbilical cord mesenchymal stem cells (PUC-MSCs). The signals from the unstained control cells are shown in blue in 
the histogram, and the signals from stained cells are shown in red in the histogram. HLA: Human leukocyte antigen.

Figure 3 Mitochondrial function. A: Reactive oxygen species (ROS) levels in umbilical cord mesenchymal stem cells (UC-MSCs) and primed UC-MSCs (PUC-
MSCs) were analyzed by flow cytometry. The fluorescence intensity of 2,7-dichlorodihydrofluorescein (DCFH-DA) in PUC-MSCs increased by 3-fold compared to UC-
MSCs; B: The expression of the antioxidant-related genes catalase, stanniocalcin-1 (STC1), and hemeoxygenase-1 (HOMX1) was increased; C: Representative 
image showing the mitochondrial membrane potential (MMP) of mesenchymal stem cells stained with JC-1. The red fluorescence of potential-dependent JC-1 
aggregation in each group and the green fluorescence of the JC-1 monomer in the cytoplasm after depolarization of the mitochondrial membrane were observed. 
Fluorescence microscopy showed no significant difference in red and green fluorescence between UC-MSCs and PU-MSCs; Bar = 200 μm; D: Flow cytometry was 
used to detect the red and green fluorescence of the JC-1 probe in UC-MSCs and PUC-MSCs. There was no difference in the ratios of red and green fluorescence. a

P < 0.05; bP < 0.01; cP < 0.001; dP > 0.05.

Hypoxia and inflammatory factor preconditioning enhances UC-MSC immunosuppressive properties
MSCs are pluripotent stem cells that have been shown to hold promise in tissue regeneration due to their ability to self-
renew and differentiate and their broad immunomodulatory properties[1-5]. We evaluated whether UC-MSC immu-
nomodulatory activities increased after pretreatment. qRT-PCR analysis revealed that the expression of PGE2, IDO, KYN, 
COX2, IL-10, TGF-β1, TSG-6, HLA-G5, and PD-L1 increased in PUC-MSCs compared to untreated UC-MSCs. IL-1ra 
expression was slightly elevated, but the difference was not statistically significant (Figure 5A). Because paracrine activity 
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Figure 4 Effects of pretreatment on apoptosis and senescence in mesenchymal stem cells. A: Apoptosis-related gene analysis showed that the 
expression of B-cell lymphoma 2 (BCL-2)-associated protein (Bax) was decreased and the expression of Bcl2 and silencing information regulator 2-related enzyme 1 
(SIRT1) was increased after hypoxia and inflammatory factor pretreatment; B: Expression of P53, P16 and P21 was upregulated after hypoxia and inflammatory 
factor pretreatment; C: Umbilical cord mesenchymal stem cells (UC-MSCs) and primed UC-MSCs (PUC-MSCs) were stained with Annexin V-FITC apoptosis assay 
kit reagents and apoptotic cells were detected by flow cytometry. The results showed that the apoptosis index of PUC-MSCs increased; D: Representative images of 
β-galactosidase (SA-β-gal) staining and quantitative analysis of positive SA-β-gal staining. Compared with that of the UC-MSCs, the number of SA-β-gal-positive 
PUC-MSCs was significantly increased; Bar = 100 μm. aP < 0.05; bP < 0.01; cP < 0.001.

is a key mechanism underlying MSC effects, we compared the bioactive factor secretion levels in PUC-MSCs and 
untreated UC-MSCs. We assessed MSC paracrine function by measuring the protein levels of immunosuppression-
related soluble factors released into the culture supernatant, including IDO, PGE2, TGF-β1, TSG-6, and IL-10 by ELISAs. 
IDO, PGE2, TGF-β1 and TSG-6 levels significantly increased in the PUC-MSC supernatant, while IL-10 levels slightly 
increased but did not reach statistical significance (Figure 5B). In summary, these data strongly suggest that UC-MSC 
preconditioning with hypoxia and inflammatory factors upregulates the expression of soluble immunomodulatory 
factors and enhances their immunomodulatory activity.

Hypoxia and inflammatory factor preconditioning increases UC-MSC immunosuppressive properties
Considering the high expression of immunomodulatory molecules in PUC-MSCs, we evaluated their immunosup-
pressive capacity. We compared UC-MSC and PUC-MSC immunosuppressive capacity using PBMC and NK cell prolif-
eration assays by analyzing growth dynamics of PBMCs cultured alone, with UC-MSCs or with PUC-MSCs (Figure 6A). 
Both UC-MSCs and PUC-MSCs significantly inhibited PBMC proliferation compared to PBMCs cultured alone. However, 
PUC-MSCs had a stronger inhibitory effect on PBMC proliferation, further indicating that pretreatment enhanced UC-
MSC immunosuppressive abilities. We further investigated MSC-mediated inhibition of NK cell proliferation in the 
presence of the two MSC populations. We cultured CFSE-stained NK cells in the presence of IL-2 alone or with UC-MSCs 
or PUC-MSCs and analyzed CFSE fluorescence intensity by flow cytometry after 3 d. The proliferation rate of NK cells 
was reduced in cocultures with UC-MSCs or PUC-MSCs compared to NK cells cultured alone, but the PUC-MSC group 
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Figure 5 Relative expression of immunomodulatory genes and proteins in umbilical cord mesenchymal stem cells after pretreatment. A: 
Gene expression levels of umbilical cord mesenchymal stem cells (UC-MSCs) and primed UC-MSCs (PUC-MSCs) were analyzed by quantitative real-time 
polymerase chain reaction. Expression levels of prostaglandin E2 (PGE2), kynurenine, idoleamine-2,3-dioxygenase (IDO), cyclooxygenaese-2 (COX2), interleukin-10 
(IL-10), transforming growth factor-beta 1 (TGF-β1), human leukocyte antigen-G5 (HLA-G5), tumor necrosis factor-α-induced protein-6 (TSG-6) and ligands for 
programmed cell death 1 (PD-L1) were all increased after hypoxia and inflammatory factor preconditioning. IL-1 receptor antagonist (IL-1ra) was not significantly 
different between the two groups; B: Levels of immunoregulatory proteins in UC-MSCs and PUC-MSCs were detected by enzyme-linked immunosorbent assay. After 
hypoxia and inflammatory factor pretreatment, the protein levels of IDO, PGE2, TGF-β1 and TSG-6 were increased, while the expression of IL-10 was not 
significantly different, as determined via three independent experiments. aP < 0.05; bP < 0.01; cP < 0.001; dP > 0.05.

exerted stronger inhibitory effects on NK cells compared to UC-MSCs (Figure 6B).
Finally, we evaluated the effect of UC-MSC pretreatment with hypoxia exposure and inflammatory factor treatment on 

NK cell cytotoxic activity. NK cells were cultured alone or with UC-MSCs/PUC-MSCs at a 3:1 ratio for 72 h, then 
collected and incubated with CFSE-stained K562 target cells at an effective target ratio (E:T = 1:5) for 4 h. The cells were 
collected, and K562 cell apoptosis was analyzed by PI staining. The results showed that NK cells cocultured with UC-
MSCs or PUC-MSCs had lower cytolytic activity, and the inhibition of NK cell-mediated cytotoxic activity was higher 
with PUC-MSCs than UC-MSCs (Figure 6C).

DISCUSSION
Intravenous injection of MSCs has been increasingly used in clinical research and has shown great potential in the 
treatment of various diseases. Because of their immunomodulatory functions, MSCs have become a promising alternative 
treatment for inflammatory diseases. MSCs come from a wide range of sources. Currently, the most studied MSCs are 
derived from bone marrow and adipose tissue, followed by those from umbilical cord tissue[47]. Compared with those 
from other sources, umbilical cord-derived MSCs are abundant, easy to collect, genetically stable, and do not readily 
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Figure 6 Detection of the immunomodulatory function of umbilical cord mesenchymal stem cells after preconditioning. A: Peripheral blood 
mononuclear cells (PBMCs) alone or directly exposed to umbilical cord mesenchymal stem cells (UC-MSCs/primed UC-MSCs) for 5 d in a 3:1 ratio. The number of 
PBMCs in three groups was measured daily and the growth curve was plotted; B: Carboxyfluorescein diacetate succinimidyl ester (CFSE)-stained natural killer (NK) 
cells were cultured alone or cocultured with UC-MSCs/PUC-MSCs at a 3:1 ratio for 72 h. NK cells were harvested, and the fluorescence intensity of CFSE was 
measured by flow cytometry to measure the proliferation rate of NK cells; C: NK cells were collected and incubated with CFSE-stained K562 target cells for 4 h at an 
effector ratio (E:T = 1:5). Effector cell (NK cell)-mediated cytotoxicity of K562 cells was analyzed by flow cytometry. aP < 0.05; bP < 0.01; cP < 0.001; dP > 0.05.

mutate. Therefore, umbilical cord MSCs have broad application prospects in the cell therapy field[48-50]. Therefore, we 
focused on UC-MSCs in this study.

In addition to the effects of their origin, MSCs exhibit decreased biological performance when subjected to vein 
transplantation and exposure to the harsh inflammatory environment of damaged tissue[29]. Studies have shown that 
preconditioning cells by exposing them to the external environment can enhance their therapeutic effects by preparing 
them for the harsh conditions they encounter when injected into the body. Antebi et al[51] showed that hypoxic precondi-
tioning of bone marrow MSCs enhanced the therapeutic function of these cells. Gorgun et al[34] analyzed the effects of 
hypoxia and inflammatory factor (TNF-α, IL-1α) pretreatment on AD-MSC angiogenic potential. In addition, Rodriguez et 
al[52] pretreated AD-MSCs with a mixture of inflammatory factors under anoxic culture conditions, which significantly 
enhanced their functional characteristics and immunosuppressive and immunoregulatory functions.

In this study, we developed a combination strategy of hypoxia plus a mixture of TNF-α, IL-1β, and IFN-γ precondi-
tioning to enhance hUC-MSC immunomodulatory capacity. To our knowledge, this is a previously unanalyzed 
combination pretreatment. We found that this preconditioning approach successfully mimicked the harsh inflammatory 
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environment and effectively enhanced the immunosuppressive function of MSCs. To simulate hypoxia, we cultured UC-
MSCs in a special three-gas incubator containing 2% O2, 5% CO2 and 93% N2 at 37°C for 24 h. We had previously 
evaluated these gas conditions and found them to be most suitable for preserving the functional characteristics of MSCs. 
To simulate the harsh inflammatory environment, we independently developed and utilized a mixture of IL-1β, IFN-γ 
and TNF-α. After pretreatment, we found that the cells became elongated, but their proliferation, viability and size did 
not significantly change. Notably, Klinker et al[53] recently demonstrated that the morphological characteristics of MSCs 
were significantly correlated with their immunosuppressive ability and can be used to predict their overall immunosup-
pressive effects[53]. The results of the study by Klinker et al[53] showed that pretreated UC-MSCs became elongated and 
had stronger immunosuppressive ability, consistent with the results of our study.

Although different forms of preconditioning have been shown to successfully enhance cell properties and increase cell 
function, there are still noteworthy safety concerns. Because pretreatment may have negative effects on cell function, we 
used flow cytometry to characterize MSC phenotypes. The expression of specific MSC surface markers can be used as 
indicators of cell differentiation potential, lineage commitment, aging, and therapeutic function[54]. The International 
Society for Cell and Gene Therapy defines minimum standards for MSC characterization, and most experiments are 
conducted on this basis[55]. However, we examined additional MSC surface markers. We found that UC-MSCs and PUC-
MSCs from three donors retained high expression levels of CD105, CD90, CD73, CD29, CD166, CD47 and HLA-ABC and 
were negative for CD31, CD45, CD14, and CD34 expression. These findings indicated that UC-MSCs retained MSC 
properties after pretreatment. Interestingly, we found that CD142 expression significantly decreased after pretreatment. 
Oeller et al[39] found that UC-MSCs showed higher procoagulant activity than adipose-derived MSCs, and UC-MSCs 
showed extensive TF (CD142) expression and long-lasting clotting; a higher cell number significantly increased clot 
formation, which was partially dependent on coagulation factors[43]. Our study showed that CD142 expression in UC-
MSCs without treatment exceeded 99% and CD142 expression significantly decreased after pretreatment (59.3%). Our 
experiment showed significant decreases in TF expression, which has been shown to be closely related to procoagulant 
activity[38]. However, Rodriguez et al[52] demonstrated that bone marrow-derived MSCs (BM-MSCs) and AD-MSCs that 
were pretreated with a combination of hypoxia and inflammatory factors showed increased CD142 expression, which 
was inconsistent with previous studies[53]. We determined that these discrepancies may be due to different origins of 
MSCs, MSC heterogeneity and/or differences between culture systems. However, we found pretreatment significantly 
reduced CD142 expression. In addition, studies have suggested the use of anticoagulants or genetic methods to inhibit TF 
activity for the clinical application of MSCs to maximize clinical benefits for patients, which also underscores the 
importance of insights into the mechanisms underlying safety issues related to nonhematopoietic cell transplantation[43].

The efficacy of MSCs depends on the full function of their mitochondria, which can be damaged after cell exposure to 
harmful environments[56]. Therefore, we examined the effects of hypoxia and inflammatory factor pretreatment on 
mitochondrial function. ROS levels were increased after pretreatment but were within the range of those in the positive 
controls. In addition, the increased expression of antioxidants such as STC1, catalase and HOMX1 can eliminate ROS to 
maintain cell redox homeostasis[57]. Previous studies have shown that both HMOX1 and catalase play key roles in 
protecting cells from ROS-induced damage[58,59]. Therefore, although ROS levels increased after pretreatment, the 
antioxidant capacity of the cells also correspondingly increased and the ROS removal rate increased. In addition, the 
MMP (Δψm) plays a key role in important mitochondrial functions, and its dissipation is an indicator of mitochondrial 
dysfunction[60]. Maintaining a stable MMP (Ψm) is essential for ensuring efficient ROS clearance and preventing 
apoptosis or other stress-related events caused by excessive ROS. Therefore, we examined the MMP and found that 
pretreatment had no effect on MMP. In summary, although ROS levels increased after pretreatment, the antioxidant 
capacity also increased, and the MMP did not change, indicating that there was no damage to mitochondrial function 
after pretreatment.

We next examined the effect of pretreatment on MSC apoptosis and senescence and found that the apoptosis index of 
UC-MSCs increased to a certain extent after pretreatment. Galleu et al[61] showed that all patients can receive apoptotic 
MSCs for in vivo injection and that these cells can induce receptor-mediated immune regulation. MSC apoptosis of is 
critical to their therapeutic functions[62]. BCL-2, BAX and SIRT1 genes play important roles in the apoptosis pathway. In 
this study, we found increased expression of the SIRT1 gene, which protected cells from apoptosis by activating 
autophagy[63]. The ratio of BAX/BCL-2 is closely related to the apoptosis potential of cells[64]. In this study, an inverse 
proportional relationship between BAX and BCL-2 indicated that MSCs exerted stronger anti-apoptosis effects after 
pretreatment. This may indicate that the cells were protecting themselves from the harmful inflammatory environment. 
In addition, MSCs showed increased SA-β-gal activity and p53, P16 and p21 expression after hypoxia and inflammatory 
factor pretreatment, suggesting that MSCs underwent senescence after pretreatment. Salminen et al[65] found that aging 
MSCs exert stronger immunosuppressive effects. The experimental results showed that even when some of the pretreated 
UC-MSCs underwent senescence and apoptosis, these effects did not reduce their immunoregulatory abilities, and even 
apoptotic and senescent MSCs showed increased immunosuppressive abilities.

The pleiotropic effect of MSCs is mostly mediated by soluble paracrine factors, and active paracrine factors produced 
by these cells regulate cellular immunity when they come into contact with the host[66]. Therefore, we investigated the 
response of paracrine factors involved in the immune regulation of MSCs to preconditioning. Many bioactive molecules 
produced by MSCs, such as IDO, PGE2, IL-10, TSG-6, and TGF-β1, effectively regulate innate and adaptive immunity and 
play a key role in the immunosuppressive effect of MSCs[67]. The detection of immunomodulation-related genes showed 
that the expression levels of PGE2, KYN, IDO, COX2, IL-10, TGF-β1, TSG-6, HLA-G5 and PD-L1 were significantly 
increased in addition to that of IL-1ra. In addition, PGE2, TSG-6, TGF-β1 and IDO protein levels in the supernatant were 
significantly increased. IL-10 levels were slightly increased, but the difference between the pretreatment and control 
groups was not significant. These results showed that preconditioning can promote the production of immunomodu-
latory paracrine factors in UC-MSCs and increase their immunomodulatory effect.
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Finally, we studied the immunosuppressive effects of MSCs on PBMCs and NK cells. We found that UC-MSCs and 
PUC-MSCs inhibited PBMCs and NK cell proliferation, but PUC-MSCs exerted a stronger inhibitory effect. Some work 
has been done to characterize the interaction between BM-MSCs and NK cells[22,68,69]. However, the interaction of UC-
MSCs with NK cells has been largely unexplored. Our results add to our understanding of the immunosuppressive 
effects of UC-MSCs[70,71]. In addition, we found that PUC-MSCs exerted a stronger inhibitory effect on NK cell-
mediated cytotoxic activity. Reportedly, IDO and PGE2 or TGF-β1 produced by MSCs are critical for inhibiting NK cell 
cytotoxicity[22,72]. PUC-MSCs may exert stronger inhibitory effects on NK cell-mediated toxicity due to increased IDO, 
TGF-β1 and PGE2 expression.

We acknowledge that this study has limitations. Whether the combination of hypoxia (2% O2) and inflammatory 
factors (IL-1β, TNF-α, IFN-γ) is superior to other preconditioning methods is unclear. However, our study shows a 
preconditioning strategy that adds to the existing experimental options to use in further research. In addition, whether 
these cells exhibit superior immunomodulatory functions under harsh in vivo inflammatory conditions remains to be 
demonstrated and is the focus of our future work. Moreover, although TF expression is reduced by preconditioning, the 
mechanism is unclear. Thromboembolism may still have significant clinical consequences for patients who receive MSCs 
after preconditioning. Therefore, for whole-body cell administration, it is still necessary to use anticoagulants during the 
clinical application of MSCs to inhibit TF activity and increase the clinical benefits to patients.

CONCLUSION
In conclusion, we successfully developed an in vitro preconditioning method that mimics the impaired environment 
through a combination of hypoxia (2% O2) and inflammatory factors (IL-1β, TNF-α, IFN-γ) to enhance UC-MSC 
immunosuppressive ability without compromising their biological characteristics. Most notably, this approach greatly 
reduced the expression of the clotting-related TF in MSCs, which was a surprising result.

ARTICLE HIGHLIGHTS
Research background
Mesenchymal stem cells (MSCs) have great potential in the treatment of a variety of immune-related diseases due to their 
unique immunomodulatory and anti-inflammatory abilities. However, after intravenous transplantation, MSCs cannot 
effectively exert their biological effects when they encounter a harsh environment in vivo, which reduces the efficacy of 
cell therapy. To increase transplantation efficacy, appropriate pretreatment methods are particularly important.

Research motivation
Although a variety of pretreatment methods are used to increase MSC transplantation efficacy, suitable and effective in 
vitro pretreatment methods are still worth studying.

Research objectives
To evaluate whether umbilical cord MSCs (UC-MSCs) pretreated with hypoxia exposure and inflammatory factors show 
enhanced immunosuppressive effects without affecting cell biological characteristics.

Research methods
In this study, we used a combination of hypoxia (2% O2) and inflammatory factors (interleukin-1β, tumor necrosis factor-α
, interferon-γ) to pretreat UC-MSCs for 24 h to simulate the in vivo injury environment. We then comprehensively 
evaluated the biological properties of pretreated UC-MSCs and investigated their immunosuppressive properties.

Research results
Our results showed that compared to UC-MSCs, pretreated UC-MSCs were morphologically elongated, but their 
viability, proliferation and size were not affected, the expression of coagulation-related tissue factors was significantly 
reduced, and mitochondria maintained their function and integrity. Although some cells underwent apoptosis or 
senescence, polymerase chain reactions and enzyme-linked immunosorbent assays revealed a significant increase in the 
levels of immunomodulation-related factors. Coculture with peripheral blood mononuclear cell and natural killer cells 
exerted a stronger immunosuppressive effect.

Research conclusions
The combined pretreatment of hypoxia exposure and inflammatory factors enhanced the immunosuppressive ability of 
MSCs but did not affect the biological characteristics of these cells.

Research perspectives
Our study provides new strategies for the preconditioning of UC-MSCs.
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Abstract
BACKGROUND 
Ferroptosis can induce low retention and engraftment after mesenchymal stem 
cell (MSC) delivery, which is considered a major challenge to the effectiveness of 
MSC-based pulmonary arterial hypertension (PAH) therapy. Interestingly, the 
cystathionine γ-lyase (CSE)/hydrogen sulfide (H2S) pathway may contribute to 
mediating ferroptosis. However, the influence of the CSE/H2S pathway on 
ferroptosis in human umbilical cord MSCs (HUCMSCs) remains unclear.

AIM 
To clarify whether the effect of HUCMSCs on vascular remodelling in PAH mice 
is affected by CSE/H2S pathway-mediated ferroptosis, and to investigate the 
functions of the CSE/H2S pathway in ferroptosis in HUCMSCs and the under-
lying mechanisms.

METHODS 
Erastin and ferrostatin-1 (Fer-1) were used to induce and inhibit ferroptosis, 
respectively. HUCMSCs were transfected with a vector to overexpress or inhibit 
expression of CSE. A PAH mouse model was established using 4-wk-old male 
BALB/c nude mice under hypoxic conditions, and pulmonary pressure and 
vascular remodelling were measured. The survival of HUCMSCs after delivery 
was observed by in vivo bioluminescence imaging. Cell viability, iron accumu-
lation, reactive oxygen species production, cystine uptake, and lipid peroxidation 
in HUCMSCs were tested. Ferroptosis-related proteins and S-sulfhydrated Kelch-
like ECH-associating protein 1 (Keap1) were detected by western blot analysis.

RESULTS 

https://www.f6publishing.com
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In vivo, CSE overexpression improved cell survival after erastin-treated HUCMSC delivery in mice with hypoxia-
induced PAH. In vitro, CSE overexpression improved H2S production and ferroptosis-related indexes, such as cell 
viability, iron level, reactive oxygen species production, cystine uptake, lipid peroxidation, mitochondrial 
membrane density, and ferroptosis-related protein expression, in erastin-treated HUCMSCs. In contrast, in vivo, 
CSE inhibition decreased cell survival after Fer-1-treated HUCMSC delivery and aggravated vascular remodelling 
in PAH mice. In vitro, CSE inhibition decreased H2S levels and restored ferroptosis in Fer-1-treated HUCMSCs. 
Interestingly, upregulation of the CSE/H2S pathway induced Keap1 S-sulfhydration, which contributed to the 
inhibition of ferroptosis.

CONCLUSION 
Regulation of the CSE/H2S pathway in HUCMSCs contributes to the inhibition of ferroptosis and improves the 
suppressive effect on vascular remodelling in mice with hypoxia-induced PAH. Moreover, the protective effect of 
the CSE/H2S pathway against ferroptosis in HUCMSCs is mediated via S-sulfhydrated Keap1/nuclear factor 
erythroid 2-related factor 2 signalling. The present study may provide a novel therapeutic avenue for improving 
the protective capacity of transplanted MSCs in PAH.

Key Words: Human umbilical cord mesenchymal stem cells; Cystathionine γ-lyase/hydrogen sulfide pathway; Ferroptosis; 
Pulmonary arterial hypertension; S-sulfhydration

©The Author(s) 2023. Published by Baishideng Publishing Group Inc. All rights reserved.

Core Tip: Regulation of the cystathionine γ-lyase (CSE)/hydrogen sulfide (H2S) pathway in human umbilical cord 
mesenchymal stem cells (HUCMSCs) contributes to the inhibition of ferroptosis and improves the suppressive effect of 
HUCMSCs on vascular remodelling in hypoxia-induced pulmonary arterial hypertension (PAH) mice. Moreover, the 
protective effect of the CSE/H2S pathway against ferroptosis in HUCMSCs was mediated via S-sulfhydrated Kelch-like 
ECH-associating protein 1/nuclear factor erythroid 2-related factor 2 signalling. The present study may provide a novel 
therapeutic avenue for improving the protective capacity of transplanted MSCs in PAH.

Citation: Hu B, Zhang XX, Zhang T, Yu WC. Dissecting molecular mechanisms underlying ferroptosis in human umbilical cord 
mesenchymal stem cells: Role of cystathionine γ-lyase/hydrogen sulfide pathway. World J Stem Cells 2023; 15(11): 1017-1034
URL: https://www.wjgnet.com/1948-0210/full/v15/i11/1017.htm
DOI: https://dx.doi.org/10.4252/wjsc.v15.i11.1017

INTRODUCTION
Mesenchymal stem cells (MSCs), derived from placenta, bone marrow, adipose, or other tissues, have emerged as a new 
regenerative therapy for pulmonary arterial hypertension (PAH) over the last decade[1]. MSC delivery significantly 
inhibits pulmonary artery remodelling, resulting in the reduced progression of PAH. However, low cell retention and 
engraftment after cell delivery are considered major challenges to the effectiveness of MSC-based therapy[2]. 
Interestingly, increasing evidence indicates that programmed cell death (PCD) is closely linked to the low engraftment 
and survival rates of transplanted MSCs[3].

Ferroptosis is a novel type of PCD with distinct properties. Ferroptosis essentially consists of polyunsaturated fatty 
acid-containing phospholipid synthesis and peroxidation, iron metabolism, and mitochondrial metabolism, which result 
in oxidative stress and lipid peroxidation, triggering cell death[4]. Studies have shown a relationship between ferroptosis 
and MSCs; ferroptosis can be induced by erastin in MSCs[5,6]. Inhibiting ferroptosis maintained the viability and differ-
entiation of MSCs[7,8]. Moreover, suppressing ferroptosis worsened MSC fate and enhanced the exposure and efficacy of 
transplanted MSCs in live disease[9]. However, few studies have directly evaluated the effect of ferroptosis on MSC 
delivery in PAH.

Decreased antioxidative stress can cause ferroptosis[10]. In addition, the mediation of antioxidative stress-related 
proteins, such as nuclear factor erythroid 2-related factor 2 (Nrf2), can inhibit ferroptosis[11]. Thus, understanding the 
signalling pathways that maintain redox balance will provide new approaches for inhibiting ferroptosis. The novel 
gaseous mediator hydrogen sulfide (H2S) has been shown to exert protective effects, including its antioxidant properties
[12]. Therefore, the impact of H2S on the contribution of antioxidative stress to decreased ferroptosis is worth exploring. 
In mammalian cells, cystathionine γ-lyase (CSE) is predominantly responsible for endogenous H2S production in the 
cardiovascular system[13]. However, the effect of CSE on the ferroptosis of MSCs remains unclear.

Hence, the present study aimed to clarify whether ferroptosis is involved in the therapeutic effect of human umbilical 
cord MSCs (HUCMSCs) in PAH mice. Furthermore, we investigated the role of the CSE/H2S pathway in ferroptosis in 
HUCMSCs.

https://www.wjgnet.com/1948-0210/full/v15/i11/1017.htm
https://dx.doi.org/10.4252/wjsc.v15.i11.1017


Hu B et al. Ferroptosis inhibition in HUCMSCs via CSE/H2S pathway

WJSC https://www.wjgnet.com 1019 November 26, 2023 Volume 15 Issue 11

MATERIALS AND METHODS
Cell culture
Primary HUCMSCs were purchased from ScienCell Research Laboratories, Inc. HUCMSCs were cultured in MSC 
medium (7501, ScienCell Research Laboratories, United States) containing 5% foetal bovine serum, 1% penicillin/
streptomycin, and 1% MSC growth supplement at 37 °C in a 5% CO2 atmosphere. HUCMSCs at passages three to five 
were used in this study.

Cell transfection
HUCMSCs were transduced with a lentiviral vector expressing firefly luciferase (HBLV-LUC-BSD, Hanbio, China) in 
serum-free medium containing 3 μg/mL blasticidin (SBR00022, Sigma-Aldrich, United States) at a multiplicity of 
infection of 100. Transduction was analysed by luciferase imaging 72 h after transfection. The expression of LUC was 
confirmed by measuring luciferase activity [in vivo imaging system (IVIS) Lumina imaging station, Caliper Life Sciences]. 
Surface markers and the differentiation of HUCMSCs-LUC into osteoblasts and adipocytes were evaluated as previously 
described[14]. The antibodies that were used are shown in Supplementary Table 1.

Short hairpin RNAs targeting CSE were designed, cloned, and inserted into a modified pLKO.1-TRC vector by 
GenePharma Co. Ltd. (Shanghai, CHN). To genetically engineer cells to overexpress CSE, the open reading frame of 
human CSE was cloned and inserted into the vector pLVX-IRES-Puro by GenePharma Co. Ltd. (Shanghai, CHN). 
HUCMSCs-LUC were transfected with the PLKO.1-sh-CSE vector (HUCMSC/sh-CSE), negative control vector 
(HUCMSCs/sh-NC), PLVX-CSE-Puro vector (HUCMSCs/CSE), or PLVX-empty-Puro vector (HUCMSCs/NC) using 
Lipofectamine 2000 (11668019, Invitrogen, United States). After 48 h, the transfection efficacy was determined using 
western blot and real-time polymerase chain reaction (RT-PCR) (Supplementary Figure 1).

Drug treatments
Erastin (S7242), ferrostatin-1 (Fer-1, S7243), and the Nrf2 inhibitor brusatol (S7956, 10 nM, 6 h) were purchased from 
Selleck Chemicals (Houston, United States) and initially dissolved in DMSO before being diluted in the culture medium 
to their final concentration.

Quantification of cell viability
Cell Counting Kit-8 (CCK8, 96992, Sigma-Aldrich, United States) was used to examine cell viability according to the 
manufacturer’s instructions. Briefly, cells were seeded at a density of 5000 cells/well in 96-well plates in three replicates 
and incubated overnight. At the end of the different treatments, CCK8 reagent was added to each well and incubated for 
2 h. The optical density (OD) values at 450 nm were measured using a plate reader (Bio-Rad).

Lactase dehydrogenase release assay
Lactate dehydrogenase (LDH) release was measured using an LDH cytotoxicity detection kit (CK12, Dojindo Laboratory, 
JPN) in accordance with the manufacturer’s instructions to evaluate cell membrane integrity. In brief, cells were seeded at 
a density of 5000 cells/well in 96-well plates. At the end of the different treatments, 100 μL of fresh reaction mixture was 
added to each well and incubated for 30 min, and the OD values at 490 nm were measured using a microplate reader.

Animal experiments
Animal procedures were performed in compliance with the Institutional Animal Care and Use Committee of Wuhan 
Servicebio Technology Co., Ltd., China (No. 2022231). Four-week-old male mice (BALB/c nude mice) were used to 
establish a hypoxia-induced PAH mouse model. The mice were obtained from Wuhan Servicebio Technology Co., Ltd. 
(Wuhan, China) and cared for in strict accordance with the Guidelines for the Care and Use of Laboratory Animals of the 
National Institutes of Health. All animals were housed in the same specific pathogen-free room under a constant 
temperature and humidity on a 12-h light and 12-h dark cycle, and the animals were fed sterile food and water ad libitum. 
Each animal was considered one experimental unit. Researchers who analysed the data were blinded to the group 
allocation until all the statistical results were finally obtained.

The mice (totally 42) were numbered and divided into the following seven groups based on a table of random 
numbers: Control group: The mice received phosphate buffered saline (PBS) (n = 6); hypoxia group: The mice were 
exposed to hypoxia under 10% O2 for 4 wk (n = 6); HUCMSCs group: After 2 wk of exposure to hypoxia, the mice were 
injected with 1.5 × 105 HUCMSCs-LUC per mouse via the tail vein and then housed under hypoxia for 2 wk (n = 6); 
HUCMSCs + erastin group: After 2 wk of exposure to hypoxia, the mice were infected with 1.5 × 105 HUCMSCs-LUC that 
were treated with erastin (4 μM, 6 h) per mouse via the tail vein and then housed under hypoxia for 2 wk (n = 6); 
HUCMSCs/CSE + erastin group: After 2 wk of exposure to hypoxia, the mice were injected with 1.5 × 105 HUCMSCs-
LUC/CSE that were treated with erastin (4 μM, 6 h) per mouse via the tail vein and then housed under hypoxia for 2 wk (
n = 6); HUCMSCs + Fer-1 group: After 2 wk of exposure to hypoxia, the mice were injected with 1.5 × 105 HUCMSCs-
LUC that were treated with Fer-1 (4 μM, 6 h) per mouse via the tail vein and then housed under hypoxia for 2 wk (n = 6); 
and HUCMSCs/sh-CSE + Fer-1 group: After 2 wk of exposure to hypoxia, the mice were injected with 1.5 × 105 
HUCMSCs-LUC/sh-CSE that were treated with Fer-1 (4 μM, 6 h) per mouse via the tail vein and then housed under 
hypoxia for 2 wk (n = 6).

One day and seven days after intravenous injection via the tail, mice were anaesthetized using isoflurane and placed in 
an IVIS Lumina imaging station. Images of regions of interest were collected 10 min after the intraperitoneal injection of 
D-luciferin (L6152, Sigma-Aldrich, United States), the luciferase substrate, at 3.75 mg per 25 g mouse weight.

https://f6publishing.blob.core.windows.net/4c15324a-fad9-4b9d-8a96-d59b0e543161/WJSC-15-1017-supplementary-material.pdf
https://f6publishing.blob.core.windows.net/4c15324a-fad9-4b9d-8a96-d59b0e543161/WJSC-15-1017-supplementary-material.pdf
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Measurement of pulmonary artery pressure and right ventricular hypertrophy
After 4 wk, the mice were anaesthetized using isoflurane for haemodynamic assessment. Briefly, a Miler catheter was 
used to obtain the right ventricular systolic pressure (RVSP) via insertion into the right external jugular vein. After 
exsanguination and collection of the blood, the cardiopulmonary tissues were removed. The right ventricle (RV) free wall 
and the left ventricle plus septum (LV + S) were weighed separately. The degree of right ventricular hypertrophy was 
determined by the ratio RV/(LV + S).

Assessment of pulmonary vascular morphometry
After the lung tissue was embedded in paraffin and cut into slices with a thickness of 5 μm, the slices were dewaxed, 
rehydrated, and stained with haematoxylin and eosin staining. Then, the ratio of the vascular medial cross-sectional area 
to the total arterial cross-sectional area was calculated as a measurement of distant small pulmonary artery (50-100 μm) 
remodelling.

For immunofluorescence staining of the lung tissue, after deparaffinization and washing with PBST, lung tissue slides 
were heated for 20 min at 95 °C in a Tris-EdTA solution for antigen retrieval and then blocked with 3% H2O2 for 15 min to 
block endogenous peroxidase activity and 5% goat serum for 1 h to eliminate nonspecific staining. These slides were 
incubated with VEcadherin rabbit polyclonal antibody (1:100, ab205336, Abcam) and alpha-smooth muscle actin rabbit 
monoclonal antibody (1:100, 19245S, CST) at 4 °C overnight and then incubated with the secondary antibody: Antirabbit 
immunoglobulin G (IgG) (1:500, 4413s, CST) or antirabbit IgG (1:500, 4412S, CST). Nuclei were counterstained with DAPI 
(D9542, Sigma-Aldrich, United States) at room temperature for another 2 min. Immunofluorescence was visualized under 
a microscope.

Analysis of cell apoptosis
After treatment, the cells were washed, trypsinized, resuspended, and stained with 5 μL of Annexin V/FITC (331200, 
Invitrogen, United States) and 5 μL of propidium iodide (PI, P1304MP, Invitrogen, United States) at room temperature for 
15 min. Then, cell apoptosis was evaluated by flow cytometry.

Iron assays
Two different methods were used to measure the levels of intracellular ferrous iron. For a colorimetric method using the 
Iron Assay Kit (ab83366, Abcam, United Kingdom), cells were collected, homogenized (in cold iron assay buffer), and 
centrifuged. After adding 5 μL of iron reducer to each sample, the supernatant was incubated for 30 min at 37 °C. Next, 
100 μL of iron probe was added to each sample and incubated for 60 min at 37 °C in the dark. The absorbance at 593 nm 
was measured using a microplate reader. For FeRhoNox-1 staining, cells were incubated away from light in a 37 °C, 5% 
CO2 incubator for 40 min after the addition of 5 μM FeRhoNox-1 (MX4558, MKbio, CHN). Then, the cells were washed 
with PBS three times and imaged by fluorescence microscopy.

Reactive oxygen species assay
Intracellular reactive oxygen species (ROS) levels were measured by applying DCFH-DA (S0033, Beyotime, CHN). 
Briefly, after treatment, the cells were washed with PBS three times and treated with 10 μM DCFH-DA for 30 min away 
from light. Then, the cells were washed with PBS and observed under a fluorescence microscope.

Lipid peroxide measurement
Cells were labelled with BODIPY™ 581/591 C11 (D3861, Thermo Fisher Scientific, United States) at a final concentration 
of 2 μM for 20 min at 37 °C. After trypsinization and resuspension in PBS, lipid peroxidation was analysed using a flow 
cytometer. A lipid peroxidation [malonaldehyde (MDA)] assay (ab118970, Abcam, United Kingdom) was used according 
to the manufacturer’s protocol to quantify the MDA concentration. The results were quantified colorimetrically (OD = 532 
nm). The reduced glutathione/oxidized glutathione disulfide (GSH/GSSG) ratio in cells was determined using the GSH/
GSSG Ratio Detection Assay Kit (ab205811, Abcam, United Kingdom) following the manufacturer’s instructions.

Cystine uptake
Cystine uptake was measured with BioTracker Cystine-FITC Live Cell Dye (SCT047, Sigma-Aldrich, United States). The 
pretreated cells were incubated with complete medium containing 5 μM cystine-FITC in the dark for 30 min. Then, the 
cells were washed with PBS and harvested by trypsinization. The cells were resuspended in PBS and assessed by flow 
cytometry.

Transmission electron microscopy
Cells were fixed, postfixed, dehydrated, cut, and stained as previously described[15]. The cells were viewed under a 
transmission electron microscope (JEM1200, Tokyo, Japan), and images were taken.

Measurement of the H2S concentration
The dye 7-azido-4-methylcoumarin (AzMC) was used to measure the H2S concentration in vitro. Cells were plated at a 
density of 10000 cells per well in 96-well plates. After treatment, cells were loaded with the fluorogenic dye AzMC 
(802409, Sigma-Aldrich, United States) at 10 μM for 30 min. Then, the cells were washed three times with PBS and 
measured on a SpectraMax M5 plate reader.
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Nrf2 activity assay
Nuclear lysates were isolated following extraction using NE-PER Nuclear and Cytoplasmic Extraction Reagents (78835, 
Thermo Fisher Scientific, United States) according to the manufacturer’s instructions. Nrf2 transcriptional activity was 
then measured by ELISA using an Nrf2 Transcription Factor Assay Kit (ab207223, Abcam, United Kingdom) in 
accordance with the manufacturer’s guidelines.

S-sulfhydration assay
Kelch-like ECH-associating protein 1 (Keap1) S-sulfhydration was detected with standard procedures using the “tag-
switch” method[16]. The Keap1 protein was pulled down by immunoprecipitation. The proteins were dissolved in 
solution buffer, purified with streptavidin-agarose beads, and subjected to western blotting with anti-Keap1 (sc-365626, 
Santa Cruz Biotechnology, United States). Cells were treated with 1 mmol/L 1,4-dithio-DL-threitol (DTT, 43815, Sigma-
Aldrich, United States) for 3 h as a negative control group.

Quantitative real-time polymerase chain reaction
qPCR was performed as previously described[15,17]. Human GAPDH expression was used for normalization. Fold 
changes were calculated using the comparative Ct method (ΔΔCt). The sequences of the primers used are as follows: CSE: 
Forward: GGCCTGGTGTCTGTTAATTGT and reverse: GCCATTCCGTTTTTGAAATGCT; GAPDH: forward: 
GACATCAAGAAGGTGGTGAAGCAGG and reverse: GTGTCGCTGTTGAAGTCAGAGGAGA.

Western blot analysis
Whole-cell, cytosolic, and nuclear proteins were extracted using RIPA Lysis and Extraction Buffer (89900, Thermo Fisher 
Scientific, United States) or NE-PER Nuclear and Cytoplasmic Extraction Reagents (78835, Thermo Fisher Scientific, 
United States). The extractions were performed as previously described[17]. Primary antibodies against the following 
were used: Glutathione peroxidase 4 (GPX4, 1:1000, 59735S, CST), intracellular ferritin heavy chain 1 (FTH1, 1:1000, 
4393S, CST), nuclear receptor coactivator 4 (NOCA4, 1:1000, 66849S, CST), Fe3+-bound transferrin receptor 1 (TFRC1, 
1:1000, ab214039, Abcam), 4-hydroxynonenal (4-HNE, 1:1000, ab46545, Abcam), SLC7A11 (1:1000, ab175186, Abcam), 
Nrf2 (1:1000, ab62352, Abcam), Keap1 (sc-365626, Santa Cruz Biotechnology), CSE (1:1000, 19689S, CST), GAPDH (1:1000, 
5174S, CST), and Histone H3 (1:1000, ab1791, Abcam). The intensity of the resulting bands was analysed with ImageJ 
software.

Statistical analysis
All experimental data are presented as the mean ± SEM. Statistical significance was analysed with GraphPad Prism 
version 5.01 (San Diego, CA, United States) using one-way analysis of variance (ANOVA). Differences at P < 0.05 were 
considered statistically significant. All experiments were performed with at least three independent replicates.

RESULTS
In vitro assessment of HUCMSCs
HUCMSCs-LUC were analysed in vitro by bioluminescence imaging (BLI), cell morphology assessment, flow cytometry, 
and differentiation potential determination to confirm the properties typical of HUCMSCs. A linear relationship between 
the number of cells and the bioluminescent signal was observed (Figure 1A). Cells displayed a spindle-like shape and 
were arranged in radial concentric circles (Figure 1B). Adipogenic and osteogenic differentiation confirmed the multipo-
tentiality and differentiation capacity of the HUCMSCs-LUC (Figure 1B). Flow cytometry confirmed the presence of the 
following stem cell-specific molecules on the cell surface: CD90 in 94.25% of the cells, CD73 in 83.35%, CD105 in 90.18%, 
CD44 in 82.16%, CD34 in 0.21%, CD45 in 0.45%, and HLA-DR in 1.36% (Figure 1C).

Ferroptosis could be induced in HUCMSCs
To verify whether ferroptosis could be induced in HUCMSCs and to ascertain the optimal concentration and time, 
HUCMSCs were exposed to increasing doses (1 μM, 2 μM, 3 μM, 4 μM, and 5 μM) of erastin, a ferroptosis inducer, for 
three different durations (12 h, 24 h, and 48 h). As shown in Figures 2A-C, the CCK-8 assay illustrated that compared to 
that in untreated cells, cellular viability was notably reduced to 50% by erastin treatment at concentrations greater than 3 
μM for less than 24 h of exposure. In addition, because cell membrane structures can be destroyed by ferroptosis, which 
leads to the release of LDH from the cytoplasm into the culture medium[18], the levels of LDH in the supernatant were 
monitored after treatment with increasing erastin concentrations for 12 h, 24 h, and 48 h (Figures 2E-G). The results 
showed that LDH release increased in a time- and dose-dependent manner. Similarly, treatment with erastin at a concen-
tration greater than 3 μM for 24 h significantly increased LDH release to about 50% compared with that of the untreated 
HUCMSCs. Thus, HUCMSCs were treated with erastin at a concentration of 3 μM for 24 h in subsequent experiments.

Fer-1 was used to determine whether ferroptosis inhibition could protect HUCMSCs from erastin-induced cell death. 
Erastin-treated HUCMSCs were cotreated with Fer-1 at concentrations of 0, 2, 4, 6, and 8 μM for 24 h. As shown in 
Figures 2D and H, Fer-1 above 4 μM had a significant protective effect over treatment without Fer-1.
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Figure 1 Characteristics of human umbilical cord mesenchymal stem cells expressing firefly luciferase gene. A: Luciferase activity of human 
umbilical cord mesenchymal stem cells expressing firefly luciferase gene (HUCMSCs-LUC). Representative luciferase imaging is shown using in vivo imaging 
system; B: Morphologies of HUCMSCs-LUC. HUCMSCs-LUC differentiated into adipocytes (stained with oil red O for lipid droplets) and osteocytes (stained with 
alizaline red for mineral deposition); C: Surface marker expression of HUCMSCs-LUC in flow cytometry analysis. HUCMSCS: Human umbilical cord mesenchymal 
stem cells; HUCMSCs-LUC: Human umbilical cord mesenchymal stem cells expressing firefly luciferase gene; PE: Phycoerythrin; FITC: Fluorescein isothiocyanate.

Longitudinal in vivo BLI of HUCMSC grafts
After 1.5 × 105 HUCMSCs-LUC were grafted in each mouse, longitudinal in vivo BLI was performed on day 1 post-
implantation. For quantitative analysis of the observed BLI signals, cell graft-specific BLI signals from fixed regions on the 
mouse chest and the mean background BLI signals from fixed control regions on the mouse head were plotted vs time 
post-implantation (Figure 3A). The BLI signal was decreased in the HUCMSCs + erastin group and increased in the 
HUCMSCs + Fer-1 group compared to the HUCMSCs group (Figure 3B). In addition, the signal was further increased in 
the HUCMSCs/CSE + erastin group but decreased in the HUCMSCs/sh-CSE + Fer-1 group (Figure 3B).

Pulmonary artery remodelling in each group
In PAH, pulmonary artery remodelling results in progressively elevated pulmonary arterial pressure, which ultimately 
leads to right heart failure[19]. As shown in Figures 3C, F, G, and I, the administration of HUCMSCs or HUCMSCs + Fer-
1 decreased the RVSP and RV/(LV + S) ratio in mice with hypoxia-induced PAH (P < 0.01). Interestingly, compared to 
those in the HUCMSCs group, the RVSP and RV/(LV + S) decreased to a greater extent in the HUCMSCs + Fer-1 group 
(17.000 ± 2.215 vs 22.280 ± 3.115, 23.376 ± 0.537 vs 28.781 ± 2.311, both P < 0.01) and increased in the HUCMSCs + erastin 
group (34.363 ± 4.065 vs 22.280 ± 3.115, 39.158 ± 0.809 vs 28.781 ± 2.311, both P < 0.01). Moreover, compared to those in the 
HUCMSCs + erastin group, the RVSP and RV/(LV + S) were decreased in the HUCMSCs/CSE + erastin group (25.817 ± 
2.843 vs 34.363 ± 4.065, 33.082 ± 2.405 vs 39.158 ± 0.809, both P < 0.01). Furthermore, the RVSP and RV/(LV + S) were 
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Figure 2 Ferroptosis exists in human umbilical cord mesenchymal stem cells. A-C: Cell viability was assessed after exposure to different 
concentrations of erastin for different times (12 h, 24 h, and 48 h); D: Cell viability was assessed after exposure to 3 μM erastin and different concentrations of 
ferrostatin-1 (Fer-1). Cell viability was measured with Cell Counting Kit-8 kit; E-G: Lactic dehydrogenase (LDH) release was assessed after exposure to different 
concentrations of erastin for different times (12 h, 24 h, and 48 h); H: LDH release was assessed after exposure to 3 μM erastin and different concentrations of Fer-1. 
LDH release was measured with LDH cytotoxicity detection kit. The data were from at least three independent experiments. Data were quantified for cells subjected 
to erastin (0 μM), and values are represented as the mean ± SD. Fer-1: Ferrostatin-1; LDH: Lactic dehydrogenase. bP < 0.01.
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Figure 3 Change of pulmonary arterial remodeling. A: In vivo bioluminescence imaging (BLI). Representative time course image showing in vivo BLI of 
mice grafted with living human umbilical cord mesenchymal stem cells expressing firefly luciferase gene in the lungs. Images were acquired at 24 h and 7 d post-
implantation. Regions of interest are drawn on the mouse lung and on the mouse shoulder, considered as background signal; B: In vivo BLI. Quantitative analysis of 
in vivo BLI at days 1 and 7 post-implantation; C-H: Representing pulmonary arterial pressure (C, F, and G). Representative haematoxylin and eosin-stained lung 
sections and quantification of the ratio of the medial wall area to the total vessel cross sectional area of the distal pulmonary artery sections (D and H). 
Immunofluorescent staining (E). Green fluorescence represents VEcadherin, red fluorescence represents alpha-smooth muscle actin, and blue fluorescence indicates 
4’,6-diamidino-2-phenylindole nuclear staining; I: Right ventricle/left ventricle plus septum. Data are expressed as the mean ± SEM (n = 6/group). HUCMSCS: Human 
umbilical cord mesenchymal stem cells; Fer-1: Ferrostatin-1; CSE: Cystathionine γ-lyase; RV/(LV + S): Right ventricle/(left ventricle plus septum). bP < 0.01.
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Figure 4 Effect of cystathionine γ-lyase overexpression on ferroptosis in human umbilical cord mesenchymal stem cells. A and B: Cell 
apoptosis was analyzed by Annexin V-fluorescein isothiocyanate (FITC)/propidine iodide staining using flow cytometry analysis (n = 3), and quantified on the basis of 
apoptosis rate (n = 3); C and D: Iron level was detected by FeRhoNox-1 staining (C) and iron assay kit (D); E and F: Immunofluorescent staining of total reactive 
oxygen species; G and H: Level of lipid peroxidation detected by flow cytometry analysis after staining with C11-BODIPY; I: Intracellular cystine-FITC levels 
measured by flow cytometry. Results represent three independent experiments; J: Malonaldehyde level; K: Ratio of reduced glutathione/oxidized glutathione disulfide; 
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L: Mitochondrial morphological changes detected by transmission electron microscopy; M: Western blot analysis of expression of the glutathione-dependent 
antioxidant enzyme glutathione peroxidase, ferritin heavy chain 1, nuclear receptor coactivator 4, Fe3+-bound transferrin receptor 1, 4-hydroxynonenal, and SLC7A11 
protein. Glyceraldehyde-3-phosphate dehydrogenase was used for normalization for protein (n = 3). Fer-1: Ferrostatin-1; Annexin V-FITC/PI: Annexin V-fluorescein 
isothiocyanate/propidine iodide; ROS: Reactive oxygen species; sh-CSE: Short hairpin RNA targeting cystathionine γ-lyase; MDA: Malonaldehyde; GSH/GSSG: 
Reduced glutathione/oxidized glutathione disulfide; GPX4: Glutathione-dependent antioxidant enzyme glutathione peroxidase; FTH1: Ferritin heavy chain 1; NCOA4: 
Nuclear receptor coactivator 4; TFRC1: Fe3+-bound transferrin receptor 1; 4-HNE: 4-hydroxynonenal; GAPDH: Glyceraldehyde-3-phosphate dehydrogenase. aP < 
0.05, bP < 0.01.

increased in the HUCMSCs/sh-CSE + Fer-1 group compared with those in the HUCMSCs + Fer-1 group (29.232 ± 2.333 vs 
17.000 ± 2.215, 29.820 ± 1.526 vs 23.376 ± 0.537, both P < 0.01).

Endothelial to mesenchymal transition (EnMT) has been causally linked to pulmonary arterial remodelling in PAH[20,
21]. EnMT is a form of cellular plasticity described as a phenotypic conversion whereby endothelial cells lose endothelial 
characteristics (CD31 expression) and acquire mesenchymal characteristics (VE-cadherin expression)[22]. Here, as shown 
in Figures 3D, E and H, histological and immunofluorescence staining showed slight pulmonary artery stenosis and 
EnMT in the groups exposed to hypoxia, and these effects were largely attenuated by treatment with HUCMSCs and 
HUCMSCs + Fer-1 (P < 0.01). Interestingly, the inhibitory effect of HUCMSCs + Fer-1 on small pulmonary artery stenosis 
and EnMT was stronger than that of HUCMSCs. In addition, compared to those in the HUCMSCs + erastin group, small 
pulmonary artery stenosis and EnMT were alleviated in the HUCMSCs/CSE + erastin group (P < 0.01). Meanwhile, small 
pulmonary artery stenosis and EnMT were aggravated in the HUCMSCs/sh-CSE group compared with the HUCMSCs/
Fer-1 group (P < 0.05).

CSE inhibition exacerbates Fer-1-mediated suppression of ferroptosis in HUCMSCs
We observed ferroptosis-related changes in erastin-treated HUCMSCs. As shown in Figure 4, cell apoptosis; the levels of 
Fe2+, ROS, lipid peroxidation, and MDA; and the expression of 4-HNE, TFRC1, and NOCA4 were significantly increased, 
while the GSH/GSSG ratio; cystine uptake; and GPX4, FTH1, and SLC7A11 expression were decreased in the erastin 
group compared with the control group (all P < 0.05). Consistent with these results, transmission electron microscopy 
(TEM) also showed an increased mitochondrial membrane density and shorter mitochondrial cristae in the erastin group 
(Figure 4L). Moreover, the above changes in erastin-treated HUCMSCs were reversed by Fer-1 administration (all P < 
0.05). Interestingly, the inhibitory effect of Fer-1 on ferroptosis was aggravated by CSE inhibition (all P < 0.05).

CSE overexpression negatively regulates erastin-induced ferroptosis in HUCMSCs
As shown in Figure 5, there was a significant decrease in cell apoptosis; the levels of Fe2+, ROS, lipid peroxidation, and 
MDA; and the expression of 4-HNE, TFRC1, and NOCA4, whereas there was an increase in the GSH/GSSG ratio; cystine 
uptake; and the expression of GPX4, FTH1, and SLC7A11 in the erastin + CSE group compared to the erastin group (all P 
< 0.05). Consistent with these results, TEM also showed that the mitochondrial membrane was intact and that the 
mitochondria were narrower with an increased number of cristae in the erastin + CSE group (Figure 5L). In addition, the 
inhibitory effect of CSE overexpression on ferroptosis was abolished by brusatol, an Nrf2 inhibitor (all P < 0.05).

The CSE/H2S pathway induces Keap1 S-sulfhydration and nuclear translocation of Nrf2
We examined whether Nrf2 is involved in the protective effect of the CSE/H2S pathway against the ferroptosis of 
HUCMSCs. First, we found that CSE inhibition decreased H2S production (Figure 6A), while CSE overexpression 
increased H2S levels in HUCMSCs (Figure 6B). In addition, CSE inhibition further downregulated Fer-1-induced Nrf2 
activation (Figure 6C), while CSE overexpression further upregulated erastin-induced Nrf2 inactivation (Figure 6D).

Then, the expression of Nrf2 was examined. Western blot analysis revealed that erastin treatment significantly 
inhibited Nrf2 nuclear translocation, and this effect was markedly enhanced when erastin treatment was combined with 
Fer-1 treatment (Figure 6E). Moreover, CSE inhibition upregulated Nrf2 expression in the cytoplasm and downregulated 
Nrf2 expression in the nucleus (Figure 6E). In contrast, CSE overexpression increased nuclear Nrf2 expression and 
decreased cytoplasmic Nrf2 expression (Figure 6F).

Next, we found that CSE overexpression-induced ferroptosis inhibition was successfully abolished by treatment with 
10 nM brusatol, an Nrf2 inhibitor, for 6 h in HUCSMCs (Figure 6F). We also found no difference in the expression of 
Keap1 among the groups (Figures 6E and F).

Finally, with the “tag-switch” assay, the S-sulfhydration of Keap1 was tested. S-sulfhydration is a novel posttransla-
tional modification involving H2S. However, S-sulfhydration, a covalent modification, can be reversed by DDT. Increased 
S-sulfhydration of Keap1 was found in the HUCMSCs/CSE + erastin group than in the HUCMSCs + erastin group, and 
decreased S-sulfhydration of Keap1 was detected in the HUCMSCs/sh-CSE + Fer-1 group than in the HUCMSCs + Fer-1 
group (Figure 6G). Moreover, the S-sulfhydration of Keap1 was further decreased after treatment with DTT, which 
indicated that Keap1 is S-sulfhydrated (Figure 6G). As shown in Figure 6H, S- of Keap1 led to decreased nuclear Nrf2 
expression, which indicated that the activation of Nrf2 by the CSE/H2S pathway is dependent on Keap1 S-sulfhydration 
in HUCMSCs.
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Figure 5 Effect of cystathionine γ-lyase inhibition on ferroptosis in human umbilical cord mesenchymal stem cells. A and B: Cell apoptosis 
was analyzed by Annexin V-fluorescein isothiocyanate (FITC)/propidine iodide staining using FACS (n = 3), and quantified on the basis of apoptosis rate (n = 3); C 
and D: Iron level detected by FeRhoNox-1 staining (C) and iron assay kit (D); E and F: Immunofluorescent staining of total reactive oxygen species; G and H: Level of 
lipid peroxidation detected by flow cytometry after staining with C11-BODIPY; I: Intracellular cystine-FITC levels measured by flow cytometry. Results represent three 
independent experiments; J: Malonaldehyde level; K: Ratio of reduced glutathione/oxidized glutathione disulfide; L: Mitochondrial morphological changes detected by 
transmission electron microscopy; M: Western blot analysis of expression of glutathione-dependent antioxidant enzyme glutathione peroxidase, ferritin heavy chain 1, 
nuclear receptor coactivator 4, Fe3+-bound transferrin receptor 1, 4-hydroxynonenal, and SLC7A11 protein. Glyceraldehyde-3-phosphate dehydrogenase was used 
for normalization for protein (n = 3). Fer-1: Ferrostatin-1; Annexin V-FITC/PI: Annexin V-fluorescein isothiocyanate/propidine iodide; ROS: Reactive oxygen species; 
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MDA: Malonaldehyde; CSE: Cystathionine γ-lyase; GSH/GSSG: Reduced glutathione/oxidized glutathione disulfide; GPX4: Glutathione-dependent antioxidant 
enzyme glutathione peroxidase; FTH1: Ferritin heavy chain 1; NCOA4: Nuclear receptor coactivator 4; TFRC1: Fe3+-bound transferrin receptor 1; 4-HNE: 4-
hydroxynonenal; GAPDH: Glyceraldehyde-3-phosphate dehydrogenase. bP < 0.01.

DISCUSSION
Ferroptosis has been reported as a form of cell death; however, to date, understanding the potential effects of ferroptosis 
on MSC delivery requires further investigation. In the present study, we showed that ferroptosis occurred during 
HUCMSC delivery in mice with hypoxia-induced PAH. Moreover, mediation of the CSE/H2S pathway suppressed 
ferroptosis in HUCMSCs.

A desirable advantage of MSCs is their ability to home to damaged tissue sites. Evidence has demonstrated that 
transplanted MSCs can accumulate in lung tissue, inhibit vascular remodelling, and effectively attenuate pulmonary 
hypertension. In the present study, HUCMSCs were chosen because of their many characteristics, which include their 
ability to be extracted via a noninvasive procedure and high differentiation potential, the ease of their in vitro expansion, 
and their prominent repair properties. To detect transplanted HUCMSCs in vivo, HUCMSCs were labelled with firefly 
luciferase by transduction with a lentiviral vector. Furthermore, we determined that the surface markers and differen-
tiation potential of the HUCMSCs were not disrupted after transduction. In this study, we monitored the survival of 
HUCMSCs in lung tissue 1 d and 7 d after intravenous injection and found that the HUCMSCs homed to injured lung 
tissue. Moreover, our data indicated the protective roles of HUCMSCs against pulmonary artery remodelling in mice 
under hypoxia.

Although MSCs can reach impaired sites due to their homing capacity, cell survival in these places is rare. At present, 
many potential methods to reduce MSC fate in vivo have been identified, including drug pretreatment, genetic 
modification, and preconditioning. However, our study indicated that pretreatment with Fer-1, an inhibitor of ferro-
ptosis, increased HUCMSC survival in the lung, and combined treatment of HUCMSCs with Fer-1 further decreased 
vascular remodelling in mice with PAH. Conversely, worse cell survival and decreased therapeutic effects were detected 
in PAH mice after the delivery of HUCMSCs pretreated with erastin, which induces ferroptosis. Thus, the results showed 
that ferroptosis may have been linked to HUCMSCs survival in mice with hypoxia-induced PAH.

Researchers have indicated that ferroptosis can be activated by iron overload or the inactivation of GPX4[23-25]. 
During ferroptosis, following its import through TFRC1, Fe3+ is catalysed and converted to Fe2+ in the cytoplasm, which 
then participates in the Fenton reaction, causing ferroptosis. Moreover, Fe2+ also binds intracellular FTH1, which can be 
transported to lysosomes by NCOA4, leading to intracellular iron overload. However, GPX4 is the major endogenous 
factor that reduces lipid peroxidation[26]. Cystine is converted to cysteine by the cystine/glutamate antiporter system 
(Xc-), which generates GSH, a cofactor for GPX4[27,28]. In addition, the inhibition of SLC7A11, a key component of 
system Xc-, initiates ferroptosis[29], and MDA and 4-HNE, which are byproducts of lipid peroxidation, represent stable 
markers of oxidative stress that are also associated with ferroptosis[30]. In the present in vitro experiments, after Fer-1 
administration, we detected decreased cell death, the rebalancing of intracellular iron homeostasis, and reduced levels of 
lipid peroxidation products, indicating that ferroptosis was suppressed by Fer-1 in erastin-treated HUCMSCs. This is 
consistent with the ability of Fer-1 and erastin to induce and inhibit ferroptosis, respectively[31].

On the basis of our in vitro and in vivo experimental results, we suggest that the CSE/H2S pathway mediates ferroptosis 
in HUCMSCs. Synthesized by CSE in mammalian cells, H2S has been shown to directly scavenge ROS[32], facilitate GSH 
production[33], inhibit GPX4 inactivation[34], and enhance the activity of system Xc[35], mitigating ferroptosis. Indeed, in 
our study, CSE inhibition decreased endogenous H2S levels and exacerbated ferroptosis in HUCMSCs, while CSE overex-
pression increased intracellular H2S production and inhibited ferroptosis in HUCMSCs. Although emerging evidence has 
shown that Nrf2 is among the major cellular defences against ferroptosis as it promotes the translation of antioxidant 
genes, such as FTH1[36], GPX4[37], and Xc[38], the effects of the CSE/H2S pathway on Nrf2 activation in HUCMSCs have 
not been described. In our investigation, it was apparent that upregulation of the CSE/H2S pathway promoted the 
translocation of Nrf2 into the nucleus, which indicated that Nrf2 was activated. In addition, using an Nrf2 inhibitor, we 
demonstrated that the inhibitory effects of the CSE/H2S pathway against ferroptosis were mediated through the 
activation of Nrf2. Interestingly, we also found that the inactivation of Nrf2, in turn, led to the downregulation of CSE, 
which may have been caused by excessive oxidative stress-induced oxidation of CSE.

Keap1 is known to bind Nrf2 in the cytoplasm and inhibit it, preventing Nrf2 translocation to the nucleus. Under 
oxidative stress, the dissociation of Keap1 and Nrf2 results in the entrance of Nrf2 into the nucleus, where it initiates gene 
transcription[39]. In this study, we found that the CSE/H2S pathway had little effect on total Keap1 protein expression in 
HUCMSCs. Thus, to further explore the mechanism underlying the effects of the CSE/H2S pathway on Nrf2 activation, 
Keap1 S-sulfhydration was investigated in HUCMSCs. S-sulfhydration is a posttranslational modification induced by H2S 
that leads to the attachment of sulfhydryl groups to selective proteins, yielding a hydropersulfide moiety (-SSH)[40]. 
However, the covalent modification that occurs in sulfhydration is reversable by DTT[40]. Recent publications have 
revealed that H2S induces the S-sulfhydration of transcription factors, such as Keap1[41]. In this study, we found that 
Keap1 S-sulfhydration was inhibited upon ferroptosis. By comparing the difference in Keap1 S-sulfhydration between the 
HUCMSCs/CSE and HUCMSCs/sh-CSE groups, we demonstrated the significant role of Keap1 S-sulfhydration in the 
protective effects of the CSE/H2S pathway against ferroptosis in HUCMSCs.
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Figure 6 Effect of cystathionine γ-lyase/hydrogen sulfide pathway on nuclear factor erythroid 2-related factor 2 activation and ferroptosis 
in human umbilical cord mesenchymal stem cells. A and B: Exogenous hydrogen sulfide (H2S) production; C and D: Nuclear factor erythroid 2-related 
factor 2 (Nrf2) activity; E and F: Western blot analysis and quantification of cystathionine γ-lyase (CSE) protein, Kelch-like ECH-associating protein 1 (Keap1), and 
cytoplasmic and nuclear Nrf2 protein; G: Change of Keap1 S-sulfhydration. 1,4-Dithio-DL-threitol (DTT, 1 mmol/L, 3 h) served as a negative control; H: Effect of DTT 
on cytoplasmic and nuclear Nrf2 expression. Histone H3 was used for normalization for nuclear proteins, and glyceraldehyde-3-phosphate dehydrogenase was used 
for normalization for whole and cytoplasmic protein (n = 3). CSE: Cystathionine γ-lyase; H2S: Hydrogen sulfide; Nrf2: Nuclear factor erythroid 2-related factor 2; 
HUCMSCs: Human umbilical cord mesenchymal stem cells; Fer-1: Ferrostatin-1; sh-CSE: Short hairpin RNA targeting cystathionine γ-lyase; Keap1: Kelch-like ECH-
associating protein 1; DTT: 1,4-Dithio-DL-threitol; GAPDH: Glyceraldehyde-3-phosphate dehydrogenase. bP < 0.01.
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CONCLUSION
In conclusion, the present data provide evidence for the first time that inhibiting ferroptosis improves the survival of 
HUCMSC transplanted in mice with hypoxia-induced PAH. Moreover, ferroptosis can be suppressed by regulating the 
CSE/H2S pathway via S-sulfhydrated Keap1/Nrf2 signalling in HUCMSCs. Collectively, the ability of CSE to inhibit 
ferroptosis suggests that genetic approaches to manipulate CSE expression and H2S production may provide a novel 
therapeutic avenue for improving the protective capacity of transplanted MSCs in PAH.

ARTICLE HIGHLIGHTS
Research background
Ferroptosis can decrease retention and engraftment after mesenchymal stem cell (MSC) delivery, which is considered a 
major challenge to the effectiveness of MSC-based therapy for pulmonary arterial hypertension (PAH). Interestingly, the 
cystathionine γ-lyase (CSE)/hydrogen sulfide (H2S) pathway may contribute to mediating ferroptosis.

Research motivation
We aimed to investigate the influence of the CSE/H2S pathway on ferroptosis in human umbilical cord MSCs 
(HUCMSCs).

Research objectives
We aimed to clarify whether the effect of HUCMSCs on vascular remodelling in mice with PAH is by CSE/H2S pathway-
mediated ferroptosis. Furthermore, the effect of the CSE/H2S pathway on ferroptosis in HUCMSCs and the underlying 
mechanisms were investigated.

Research methods
Erastin and ferrostatin-1 (Fer-1) were used to induce and inhibit ferroptosis, respectively. HUCMSCs were transfected 
with a vector that overexpressed or inhibited CSE. A PAH mouse model was established using 4-wk-old male BALB/c 
nude mice under hypoxic conditions, and pulmonary pressure and vascular remodelling were measured. The survival of 
HUCMSCs after delivery was observed by in vivo bioluminescence imaging. Cell viability, iron accumulation, reactive 
oxygen species (ROS) production, cystine uptake, and lipid peroxidation in HUCMSCs were tested. Ferroptosis-related 
proteins and S-sulfhydrated Kelch-like ECH-associating protein 1 (Keap1) were detected by western blot analysis.

Research results
In vivo, CSE overexpression improved cell survival after erastin-treated HUCMSCs were delivered to mice with hypoxia-
induced PAH. In vitro, CSE overexpression improved H2S production and ferroptosis-related indexes in erastin-treated 
HUCMSCs, such as cell viability, the iron level, ROS production, cystine uptake, lipid peroxidation, mitochondrial 
membrane density, and ferroptosis-related protein expression. In contrast, in vivo, CSE inhibition decreased cell survival 
after Fer-1-treated HUCMSC delivery and aggravated vascular remodelling in the PAH mice. In vitro, CSE inhibition 
decreased H2S levels and restored ferroptosis in Fer-1-treated HUCMSCs. Interestingly, we found that upregulation of the 
CSE/H2S pathway induced the S-sulfhydration of Keap1, which contributed to the inhibition of ferroptosis.

Research conclusions
Regulation of the CSE/H2S pathway in HUCMSCs contributes to the inhibition of ferroptosis and improves the effect of 
vascular remodelling suppression in hypoxia-induced PAH mice. Moreover, the protective effect of the CSE/H2S 
pathway on ferroptosis in HUCMSCs is mediated via S-sulfhydrated Keap1/nuclear factor erythroid 2-related factor 2 
(Nrf2) signalling. The present study may provide a novel therapeutic avenue for improving the protective capacity of 
transplanted MSCs in PAH.

Research perspectives
Regulation of the CSE/H2S pathway in HUCMSCs contributes to the inhibition of ferroptosis and improves the ability of 
HUCMSCs to suppress vascular remodelling in mice with hypoxia-induced PAH. Moreover, the protective effect of the 
CSE/H2S pathway on ferroptosis in HUCMSCs is mediated via S-sulfhydrated Keap1/Nrf2 signalling. The present study 
may provide a novel therapeutic avenue for improving the protective capacity of transplanted MSCs in PAH.
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