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plications of this disease impact a significant portion 
of the global population leading to disability and death 
with currently limited therapeutic options. In addition to 
its utility for the treatment of anemia, EPO can improve 
cardiac function, reduce fatigue, and improve cognition 
in patients with DM as well as regulate cellular energy 
metabolism, obesity, tissue repair and regeneration, 
apoptosis, and autophagy in experimental models of 
DM. Yet, EPO can have adverse effects that involve the 
vasculature system and unchecked cellular proliferation. 
Critical to the cytoprotective capacity and the potential 
for a positive clinical outcome with EPO are the control 
of signal transduction pathways that include protein 
kinase B, the mechanistic target of rapamycin, Wnt 
signaling, mammalian forkhead transcription factors of 
the O class, silent mating type information regulation 
2 homolog 1 (Saccharomyces cerevisiae ), and AMP 
activated protein kinase. Therapeutic strategies that 
can specifically target and control EPO and its signaling 
pathways hold great promise for the development of 
new and effective clinical treatments for DM and the 
complications of this disorder.

Key words: Protein kinase B; AMP activated protein 
kinase; Apoptosis; Autophagy; Forkhead; Metabolism; 
Factors of the O class; Diabetes mellitus; Erythropoietin; 
Stem cells; Silent mating type information regulation 2 
homolog 1; Oxidative stress; Wnt1 inducible signaling 
pathway protein 1; Wnt
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Core tip: Erythropoietin and the downstream signaling 
pathways of this cytokine that include protein kinase B, 
mechanistic target of rapamycin, Wnt signaling, Factors 
of the O class proteins, silent mating type information 
regulation 2 homolog 1 (Saccharomyces cerevisiae), and 
AMP activated protein kinase offer new avenues for the 
development of novel treatments for diabetes mellitus 
and the complications of this disease.
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Abstract
Erythropoietin (EPO) is a 30.4 kDa growth factor and 
cytokine that governs cell proliferation, immune mo
dulation, metabolic homeostasis, vascular function, 
and cytoprotection. EPO is under investigation for the 
treatment of variety of diseases, but appears especially 
suited for the treatment of disorders of metabolism 
that include diabetes mellitus (DM). DM and the com
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ERYTHROPOIETIN: DISCOVERY AND 
BIOLOGY
The concept of circulating agents that travel throughout 
the body may have initially originated from Ernest 
Starling[1]. In 1905 at the Royal College of Surgeons, 
Sterling introduced the term “hormones”, a term with 
Greek origins meaning to “excite” or “arouse”, to depict 
the action of chemicals that are dispersed in the body 
and can target specific organs. Earlier work prior to the 
presentation by Sterling also described processes that 
could come under the description as being defined as 
“hormonal”. Claude Bernard described the chemical 
release of glucose that was processed from glycogen in 
the liver[2]. Arnold Adolphe Berthold, another pioneer, 
also described messenger signals that could communi­
cate among the different bodily organs[3]. 

Interestingly, almost as a counterpart to the discu­
ssions provided by Starling, Carnot et al[4] in 1906 
presented the agent “hemopoietine”. This agent 
was detected in the blood of rabbits after prompted 
by bleeding that led to the production of immature 
erythrocytes in untreated rabbits. Subsequent work by 
other investigators also showed that bled animals could 
result in prominent reticulocytosis in the plasma[5-7]. 
Later, the agent responsible for reticulocytosis was 
termed erythropoietin (EPO). EPO was linked to de­
pressed oxygen levels and was shown to increase 
hemoglobin levels in parabiotic rat experiments when 
one of the two rats experienced hypoxia[8]. Subsequently, 
purification of the EPO protein in humans was achieved 
and cloning of the EPO gene fostered recombinant EPO 
(rhEPO) production for clinical treatments[9,10].

EPO is located on chromosome 7 and is a single 
copy in a 5.4 kb region of the genomic DNA[11]. The EPO 
gene encodes for a polypeptide chain that has initially 
193 amino acids. A 27 amino acid hydrophobic sec­
retory leader at the amino-terminal to result in a 166 
amino acid peptide in the EPO protein is then cleaved[12]. 
Additional post-translational processing occurs with the 
removal of a carboxy-terminal arginine166 in the mature 
human and rhEPO to lead to a protein of 30.4 kDa with 
165 amino acids[13-16]. 

EPO has four glycosylated chains that include 
three N-linked and one O-linked acidic oligosaccharide 
side chains[17]. The N-linked glycosylation sites are at 
aspartate24, aspartate38, and aspartate83 and the O-linked 
glycosylation site is at serine126. Both the production 
and secretion of the mature EPO protein is dependent 
upon N- and O-linked chain integrity[18]. Replacement 
of asparagine38 and asparagine83 by glutamate or the 
replacement of serine126 by glycine can impair EPO 

production and secretion[19]. 
Several factors determine the biological activity 

of EPO[20]. The two disulfide bonds formed between 
cysteine7 and cysteine160 as well as cysteine29 and 
cysteine33 control the function of EPO[21]. EPO biological 
activity is lost with reduction of these disulfide bonds 
and with alkylation of the sulfhydryl groups. Almost 
85% of EPO biological activity is restored with re-
oxidization of EPO after reduction by guanidine[22]. In 
addition, EPO biological activity is maintained by the by 
the glycosylated chains[23] and EPO stability is fostered 
by the carbohydrate chains[24]. Free radical degradation 
of EPO is limited by both the glycosylated chains[23] and 
the oligosaccharides[25]. 

Currently, erythropoiesis-stimulating agents including 
EPO are approved for the treatment of anemia that 
results from chronic kidney failure, chemotherapy, hu­
man immunodeficiency virus, and to limit the number 
of blood transfusions for surgery[21,26]. The principal 
source for the production and secretion of EPO are the 
kidney peritubular interstitial cells[27]. Other organs that 
include the brain, uterus, and liver are also responsible 
for EPO production and secretion[17,27-30]. Expression 
of EPO is controlled by changes in oxygen tension 
and not by the concentration of red blood cells[28,31,32]. 
Hypoxia-inducible factor 1 (HIF-1) can control EPO 
expression and the EPO receptor (EPOR) to increase 
the production of EPO[11,28,33,34]. EPO and EPOR gene 
transcription occurs following HIF-1 activation. This gene 
transcription is governed by the transcription enhancer 
region in the 3’-flanking region of the EPO gene that 
binds to HIF-1[11,14]. HIF-1 also can foster pathways 
that provide cellular protection against injury[35-37]. Of 
note, EPO also can be generated from stimuli that may 
not directly involve hypoxia. During maturation of the 
brain that may be exposed to various toxic elements, 
EPO blood levels may be elevated and associated with 
greater disability[38]. Elevated EPO serum concentra­
tions have been reported following xenon anesthesia in 
cardiac surgery[39]. Agents that decrease inflammation 
in cerebral microglia have been recently shown to lead 
to the release of EPO[40] and infection with malaria can 
result in significant serum levels of EPO[41]. Under some 
conditions during chronic hyperglycemia in adults, EPO 
levels may be depressed[42]. Conversely, EPO in the 
amniotic fluid of diabetic patients can be elevated and 
be suggestive of perinatal complications[43]. Further­
more, trophic factors such as insulin can stimulate EPO 
production in specific cells such as astrocytes[44].

EPO, OXIDATIVE STRESS, AND CELL 
SURVIVAL
As a cytoprotective agent, EPO promotes cellular sur­
vival, at least in part, through the control of oxidative 
stress mediated cell injury[45,46]. Reactive oxygen species 
(ROS) are released during oxidative stress[47]. This in 
turn can cause mitochondrial injury, DNA damage, and 
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protein misfolding[48-52]. 
Following the generation of ROS, cell death pat­

hways of programmed cell death can ultimately 
determine cell survival[53-62]. Two particular pathways of 
programmed cell death involve autophagy[50,63-65] and 
apoptosis[15,55,57,66,67]. EPO prevents autophagic cell injury 
in glomerular mesangial cells during lipopolysaccharide 
exposure[68]. Administration of EPO also limits excessive 
autophagy that precedes apoptosis during experimental 
neonatal necrotizing enterocolitis[69]. During hyperoxia 
exposure and oxygen toxicity to the developing rodent 
brain, EPO has been shown to modify the activity of 
autophagy and limit neonatal brain damage[70]. 

In regards to apoptotic cell death, EPO prevents 
apoptotic injury during oxidative stress in endothelial 
progenitor cells[71] and attenuates neuroinflammation 
that can result in apoptosis[72]. EPO can assist with 
erythroid differentiation and prevent cellular apoptosis[73] 
as well as promote ventricular-subventricular zone 
neurogenesis and oligodendrogenesis[74]. Derivatives 
of EPO, such as glutaraldehyde-EPO, can protect renal 
cells from apoptosis during ischemia/re-perfusion injury 
and oxidative stress[75]. Administration of EPO also can 
block apoptotic cell death during neuronal kainate-
induced oxidative stress[76], wound injury[77], vascular 
oxygen-glucose deprivation[78-80], loss of protective zinc 
finger transcription factors[81], anoxia[82-84], astroglial 
glutamate toxicity[85], beta-amyloid (Aβ) toxicity[86-90], 
renal adriamycin-induced nephropathy[91], ischemic 
brain injury[92], and multi-organ dysfunction induced by 

thermal injury[93]. In addition, EPO is protective against 
retinal disease[94], sepsis[95,96], advanced glycation 
endproducts (AGEs) exposure in Schwann cells[97], 
elevated glucose[78,98-102], free radicals[103-108], and toxins 
that lead to microglial injury[30,40,90,94,109].

SIGNAL TRANSDUCTION PATHWAYS 
FOR EPO
EPO cytoprotection is tied to a number of cell path­
ways[3]. In particular, phosphoinositide 3-kinase (PI 3-K) 
and protein kinase B (Akt) can lead to increased cellular 
survival with EPO (Figure 1). PI 3-K phosphorylates 
membrane lipids and controls Akt transition from the 
cytosol to the plasma membrane. Phosphorylation of Akt 
occurs at serine473 and threonine308 by phosphoinositide 
dependent kinase (PDK) PDK1 and PDK2[110-112]. EPO 
leads to Akt phosphorylation on serine473 to activate this 
kinase. EPO uses the Akt pathway to protect against 
autophagy and apoptosis injury in gastrointestinal 
disease[69], maintain vascular integrity and reduce 
inflammation[113], limit Aβ toxicity in microglia and neur­
ons[90,114-116], reduce injury from sepsis[95,117], increase 
survival in cardiomyocytes during cardiac hypoxic/re-
oxygenation injury[118], and block oxidative stress 
injury[78,82,104,105,119-122]. Akt in conjunction with EPO also 
improves the function of cells. For example, EPO activates 
Akt to increase the adhesive properties of endothelial 
cells and improve the vasculogenic potential of peripheral 
blood mononuclear cells[123].

The mechanistic target of rapamycin (mTOR) is 
closely linked to PI 3-K and Akt[124] (Figure 1). mTOR is a 
289-kDa serine/threonine protein kinase that is encoded 
by a single gene FRAP1[124,125]. mTOR is important for 
the function of mTOR Complex 1 (mTORC1) and mTOR 
Complex 2 (mTORC2)[126-129]. Neurons are protected 
against sepsis during exposure to EPO and activation 
of mTOR[95]. EPO prevents microglial cell injury through 
mTOR activation during oxidative stress[109] and Aβ 
toxicity[90]. During oxygen-glucose exposure in neurons, 
EPO affects multiple pathways of mTOR signaling[130] 
to include Akt and proline rich Akt substrate 40 kDa 
(PRAS40) to increase neuronal survival[79]. EPO and 
mTOR are required for the differentiation of neural pre­
cursor cells[131] and to control bone homeostasis with 
osteoblastogenesis and osteoclastogenesis[132]. EPO 
through mTOR can mediate resistance to hypoxia 
and oxidative stress in retinal progenitor cells[133] and 
also protect against increased activity of autophagy 
in epithelial cells[69]. Activation of mTOR prevents the 
induction of autophagy by phosphorylating autophagic 
related genes (Atg) and proteins that include Atg13 and 
ULKs to inhibit the UNC like kinase complex ULK-Atg13-
FIP200[128]. Under some conditions, the concentration 
of EPO and activity of mTOR may be important for 
the degree of cellular protection that can be achieved. 
Elevated concentrations of EPO have been reported to 
lead to decreased phosphorylation and activity of mTOR 
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Figure 1  Erythropoietin signal transduction pathways that can lead to 
clinical benefit during diabetes mellitus. EPO governs a number of signal 
transduction pathways that involve protein kinase B (Akt), the mechanistic 
target of rapamycin (mTOR), Wnt and WISP1 signaling, mammalian forkhead 
transcription factors of the O class (FoxO), silent mating type information 
regulation 2 homolog 1 (Saccharomyces cerevisiae) (SIRT1), and AMP 
activated protein kinase (AMPK). EPO: Erythropoietin; Akt: Protein kinase 
B; mTOR: Mechanistic target of rapamycin; FoxO: Factors of the O class; 
SIRT1: Silent mating type information regulation 2 homolog 1 (Saccharomyces 
cerevisiae); AMPK: AMP activated protein kinase.
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oxygen-glucose deprivation by preventing FoxO3a 
nuclear subcellular trafficking that would lead to “pro-
apoptotic” protein transcription and translation[20,80]. EPO 
can oversee stem cell proliferation through FoxO protein 
regulation. Through the control of FoxO3a activity, EPO 
promotes the development of erythroid progenitor 
cells[57,73,171,172]. 

FoxO protein activity is controlled by post-translation 
protein modifications that involve phosphorylation, 
ubiquitylation, and acetylation[162,173]. In regards to 
acetylation, FoxO proteins are deacetylated by histone 
deacetylases that includes the silent mating type 
information regulation 2 homolog 1 (Saccharomyces 
cerevisiae) (SIRT1)[54] (Figure 1). SIRT1 deacetylation of 
FoxO proteins can influence autophagic pathways such 
that glucose deprivation leads to increases in autophagic 
flux that maintain left ventricular function during periods 
of starvation[174]. SIRT1 may be required to promote 
cortical bone formation with osteoblast progenitors by 
deacetylation of FoxOs and preventing FoxO protein 
binding to β-catenin to inhibit Wnt signaling[175]. How­
ever, the degree of SIRT1 expression in relation to FoxO 
protein activity may be a significant determinant for 
cellular survival[160,161]. For example, during exercise a 
controlled up-regulation of FoxO3a and SIRT1 expression 
in cardiac tissue may be important to improve cell 
survival[176]. During oxidative stress, cell injury may be 
reduced with catalase expression regulated by FoxO1a 
expression and SIRT1 levels less than 7.5-fold. However, 
decreased cardiac function and apoptotic cell death in 
cardiomyocytes can ensue with elevated SIRT1 levels 
of 12.5-fold[177]. FoxO proteins, such as FoxO1, also 
can control SIRT1 transcription and increase SIRT1 
expression[178]. Under some circumstances, SIRT1 and 
FoxO proteins may function synergistically to promote 
cell survival. Loss of the forkhead transcription factors 
FoxO1 and FoxO3 in combination with decreased SIRT1 
activity during oxidative stress leads to a reduction in 
autophagy with chondrocyte cell death, demonstrating 
that SIRT1 with FoxO proteins may be required for 
cellular protection[179]. SIRT1 also has been shown to 
increase lifespan in higher organisms and offer pro­
tection against oxidative stress[180]. EPO relies upon 
SIRT1 activity to prevent cell injury during oxidative 
stress and elevated glucose[181]. EPO can raise cellular 
activity of SIRT1 and promote the subcellular trafficking 
of SIRT1 to the nucleus to protect endothelial cells during 
oxidative stress[80]. EPO is able to maintain adipose 
cell energy homeostasis and protect against metabolic 
disorders through SIRT1[101]. Pathways that involve Wnt 
signaling with the CCN family member Wnt1 inducible 
signaling pathway protein 1 (WISP1)[139] also require up-
regulation of SIRT1 activity to block apoptotic pathways 
controlled by FoxO proteins[182] (Figure 1). WISP1 can 
increase neuronal survival by limiting FoxO3a activity 
and FoxO3a deacetylation, blocking caspase 1 and 3 
activation, and promoting SIRT1 activity and trafficking 
to the cell nucleus[146].

with increased apoptotic cell death[134]. Increased mTOR 
activity also is tied to tumor cell growth[135-138].

Closely associated to the protective pathways of Akt 
and mTOR are the wingless pathways of Wnt proteins[139] 
(Figure 1). Crosstalk occurs among Wnt signaling 
pathways, Akt, and mTOR[140] to foster cellular survival 
during Aβ toxicity[141,142], reduce cerebral ischemia[143,144], 
promote progenitor cell activation during intestinal 
inflammation[145], prevent neuronal cell loss[146], limit 
6-hydroxydopamine toxicity[147], enhance microglial and 
macrophage survival and function[148,149], and increase 
tissue fibrosis[150]. EPO employs the Wnt pathway 
to lead to cellular protection. During renal ischemia 
and reperfusion, EPO limits tubular cell apoptosis by 
increasing the expression of Wnt7b and β-catenin 
as well as by down-regulating specific micro-RNAs 
(miRNA)[151,152]. Through Wnt1, EPO protects against 
elevated glucose exposure in cerebral endothelial cells 
and maintains the expression of Wnt1[100]. In addition, 
EPO uses Wnt signaling to prevent immune cell loss 
during oxidative stress[109], prevent Aβ toxicity in 
microglia[90], limit the activity of forkhead transcription 
factors that result in apoptosis[99,153], and maintain the 
survival of mesenchymal stem cells[154]. Of note, both 
EPO and the pathways of Wnt signaling are proliferative 
in nature and have the potential to lead to tumorigenesis. 
For example, prolonged exposure of growth factors 
such as EPO that rely upon Wnt signaling can result in 
inflammation, blood-brain barrier injury[155], and tumor 
growth[156-158].

Cellular protection with EPO that relies upon Wnt 
signaling also can be associated with the modulation 
of mammalian forkhead transcription factors[159]. 
Mammalian FOXO proteins are assigned to the O class 
of the forkhead box class transcription factors[160,161] 
(Figure 1). These transcription factors consist of FOXO1, 
FOXO3, FOXO4, and FOXO6 and exist throughout the 
body[162]. FoxO proteins can impact cellular survival[163] 
and are homologous to DAuer Formation-16 (DAF-16), a 
transcription factor in Caenorhabditis elegans, that leads 
to lifespan extension and affects insulin signaling[164,165]. 
Under many circumstances, the activation of FoxO 
proteins results in apoptotic cell death[153]. FoxO3a exp­
ression increases in the hippocampus during cerebral 
ischemia[166] and FoxO3a may lead to cell cycle induction 
that can promote neuronal apoptotic cell death[167]. Loss 
of FoxO3a expression and prevention of nuclear shuttling 
of FoxO3a in microglial cells and neurons results in 
increased survival during oxidative stress[146,148]. Inhibi­
tory phosphorylation of FoxO3a and the nuclear export 
of FoxO3a during periods of elevated glucose also pro­
tects vascular cells[80,99,168,169] and neuronal cells[170].

In endothelial cells, EPO uses Wnt1 to block FoxO3a 
activity and maintain cerebral endothelial survival 
during elevated glucose[99]. Without Wnt signaling, EPO 
also has been shown to phosphorylate FoxO3a and 
lead to its inactivation to block apoptosis in neuronal 
cells[73]. EPO can prevent endothelial cell injury during 
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NOVEL AVENUES FOR EPO AND 
METABOLIC DISEASE
Growth factors such as EPO offer potentially new tre­
atment approaches for numerous disorders, but given 
the signal transduction pathways that are regulated 
by EPO, this agent provides exciting prospects for the 
treatment of diabetes mellitus (DM)[16,45]. DM affects at 
least 350 million individuals worldwide[182] and is increasing 
in incidence[183]. Of potentially greater concern are the 
numbers of undiagnosed individuals that just in the 
United States alone may exceed 8 million individuals who 
are believed to suffer from metabolic disorders[32,184,185]. 
DM can affect the entire body and involve the immune 
system[63,77,181,186-190], liver[55,191-196], musculoskeletal 
function[197-201], kidney[202-206], and cardiovascular 
system[163,188,207-213] to result in endothelial cell dysfun­
ction[15,16,99,100,168,214,215] and atherosclerosis[45,67,199,216]. These 

disorders can easily affect other regions of the body such 
as the nervous system to lead to cognitive loss[14,217-219], 
visual deterioration[32,119,220,221], peripheral nerve disease[55], 
and ischemic disease of the brain[23,49,67,222-224].

EPO as well as its downstream pathways have 
been shown to have a high potential to treat multiple 
complications of DM[32] (Figure 2). In earlier work that 
examined diabetics and non-diabetics with severe 
congestive heart failure, EPO increased left ventricular 
ejection fraction, reduced fatigue, and lessened duration 
of hospital stay[225]. In patients with Type 1 DM and 
cognitive impairment related to hypoglycemia, adminis­
tration of EPO leads to improvement in complex reaction 
time task assessing associated with attention and 
working memory[226]. EPO also could provide a small 
improvement to treat fatigue in patients with Type 2 DM 
and chronic kidney disease[227].

In experimental models of DM, EPO can reduce 
blood glucose levels in animal models of DM and obe­
sity[228], protect against the detrimental effects of 
obesity in animal models[16], treat diabetic peripheral 
neuropathy[229], and block apoptosis in Schwann cells 
mediated by AGEs[97]. EPO has been shown to limit high 
glucose-induced oxidative stress in renal tubular cells[230], 
control cellular mitochondrial function[76,80,103,109,118], 
and maintain energy metabolism[15]. Through anti-infla
mmatory mechanisms and the blockade of apoptosis, 
EPO can protect pancreatic islet cells in models of type 1 
DM and Type 2 DM[98]. Intravitreal administration of EPO 
in rodent models of DM can normalize gene expression 
that can lead to apoptotic and inflammatory cell 
death[231]. EPO is cardioprotective in DM models with the 
inhibition of glycogen synthase kinase -3β (GSK-3β)[232] 
that can limit Wnt signaling pathways[233]. Through 
increased angiogenesis and decreased apoptotic cell 
death, EPO can improve wound healing and wound 
closure in diabetic mice[77,234]. In vascular disease, EPO 
has been reported to protect the neuroglialvascular unit 
in a model of retinal neurodegeneration and secondary 
vasoregression[119]. EPO can directly protect against 
endothelial cell apoptosis during elevated glucose thr­
ough activation of Wnt1[100] and the inhibition of GSK-3β 
and FoxO3a[99]. Improvement in vascular perfusion by 
EPO[123] also may afford indirect protection to assist with 
cognitive repair[235] and decrease peripheral nerve injury 
during DM[102].

Not all studies demonstrate a beneficial effect 
with EPO during DM, suggesting that focus upon the 
downstream signaling pathways of EPO with mTOR, Wnt 
signaling, FoxO proteins, and SIRT1 may yield greater 
utility for some clinical populations with complications 
of DM. In patients with DM and renal disease, EPO 
administration results in a two-fold increase in stroke that 
is not attributed to any baseline characteristic or to blood 
pressure, hemoglobin, platelet count, or treatment dose 
of EPO[236]. In mice that overexpress EPO, blood viscosity 
has been reported to be increased with a reduction in 
cerebral blood flow[237]. As a result, EPO may increase the 
risk for stroke through increased blood viscosity. Although 
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Figure 2  Targeting erythropoietin involves a balance that fosters clinical 
improvement over clinical disability. EPO can play a significant role in 
reducing disability and fostering clinical benefit during diabetes mellitus. 
Through its signal transduction pathways, EPO may improve organ and 
tissue function, reduce fatigue, improve vascular perfusion, maintain glucose 
homeostasis, assist with wound and tissue repair, and promote cellular 
proliferation, differentiation, and survival. However, the detrimental effects of 
EPO that can include tumor cell growth, hypertension, increased blood viscosity, 
and unchecked angiogenesis must be considered and eliminated for successful 
therapeutic treatments against diabetes mellitus. EPO: Erythropoietin.
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systemic administration of EPO may block retinopathy 
in animal models[94], elevated EPO concentrations in 
patients with DM also may lead to proliferative dia­
betic retinopathy[238] that could be associated with 
excessive vascular growth. EPO can increase vascular 
responsiveness[239] and may lead to hypertension[26,57,240]. 
Sustained erythrocytosis with agents such as EPO may 
result in the activation of inflammatory pathways and 
blood-brain barrier dysfunction[155]. As a proliferative 
agent, EPO also can lead to new tumor growth as well as 
foster the progression of existing tumors[156-158,241]. 

The potential adverse effects of EPO may be avoided 
by targeting more specific pathways controlled by 
EPO such as mTOR and AMP activated protein kinase 
(AMPK)[40,208] (Figure 2). AMPK oversees the activity of 
the hamartin (tuberous sclerosis 1)/tuberin (tuberous 
sclerosis 2) (TSC1/TSC2) complex that is an inhibitor 
of mTORC1[135]. Metformin, an agent that controls 
hyperglycemia in DM, can reduce cardiomyopathy in 
experimental models of DM through AMPK activation[242]. 
EPO as well may dependent upon AMPK to promote 
antioxidant gene expression[243]. Furthermore, other EPO 
signaling pathways play a role in controlling AMPK. AMPK 
can increase nicotinamide phosphoribosyltransferase 
levels during glucose limitation resulting in elevated 
nicotinamide adenine dinucleotide[244] and lower levels 
of the SIRT1 inhibitor nicotinamide[245]. SIRT1 and AMPK 
activation promotes autophagy that offers endothelial 
cell protection during exposure to oxidized low density 
lipoproteins that can lead to atherosclerosis[246]. WISP1, 
a component of Wnt signaling, also controls the post-
translational phosphorylation of AMPK that is involved 
in glucose homeostasis[124,247-249]. WISP1 regulates 
AMPK activation by decreasing phosphorylation of 
TSC2 at serine1387, a target of AMPK, and increasing 
phosphorylation of TSC2 at threonine1462, a target of 
Akt[142]. The ability of WISP1 to modulate AMPK activity 
is vital for the regulation of cellular metabolism during 
DM[249]. AMPK activity is able to reduce insulin resistance 
and lessen oxidative stress through activation of 
autophagy[200]. AMPK can prevent myocardial ischemia 
in experimental models of DM[250], assist with proper 
metabolic function of cells[251], and limit adipocyte differ­
entiation, lipid accumulation, and obesity[252]. Yet, similar 
to SIRT1, the degree of AMPK activity is a significant 
consideration in DM. AMPK activation can lead to apo­
ptosis in pancreatic islet cells in some experimental 
models of Type 2 DM[253].

CONCLUSIONS AND FUTURE 
PERSPECTIVES 
In the global population, DM is a significant cause of 
disability and death. Treatment options to limit the 
onset and progression of this disease are insufficient 
and warrant the development of novel treatments. 
EPO, as a cytoprotective agent that controls a broad 
array of signal transduction pathways offers exceptional 

promise for the treatment of DM and pathways of 
oxidative stress. EPO has been shown in diabetic 
patients to improve cardiac function, reduce fatigue, 
and improve cognition. In experimental models of DM, 
EPO can reduce blood glucose levels, limit peripheral 
neuropathy, maintain mitochondrial function and energy 
metabolism, and block programmed cell death in many 
cell types such as Schwann cells, endothelial cells, 
neurons, pancreatic islet cells, and cardiomyocytes. 

However, several challenges exist to move EPO 
forward as an effective treatment for DM. EPO has been 
reported to increase the risk of stroke in patients with 
DM and renal disease and has been demonstrated to 
increase blood viscosity in animal studies. EPO may 
be contraindicated in hypertensive patients and may 
contribute to elevated mean arterial blood pressure. 
Elevated concentrations of EPO have been linked to 
proliferative diabetic retinopathy that may be associated 
with excessive microvascular angiogenesis. Finally, EPO, 
as a growth factor and proliferative agent, may lead 
to new tumor growth and also promote the growth of 
existing tumors, especially in the treatment of patients 
with cancer and anemia.

Further investigations that assess the protective 
capacity of EPO and limit any potential detrimental 
clinical outcomes are warranted. New work has 
been directed to improving the molecular stability, 
solubility, and immunogenicity of EPO for improved 
therapeutic strategies to treat the complications of DM. 
Glycoengineering, a method that introduces N-linked 
glycosylation consensus sequences into proteins to 
increase serum half-life and biological activity, has 
been examined for EPO[254]. Darbepoetin alpha is one 
such example of a hyperglycosylated EPO derivative. 
Darbepoetin alpha has an increased serum half-life when 
compared to recombinant EPO[255] and is considered 
more potent than recombinant EPO[256]. EPO mimetic 
proteins are other avenues being pursued that can be 
used to activate the EPOR, potentially increase treatment 
half-life and maintain potency when compared to EPO, 
and lessen immunogenicity[257,258]. For example, CNTO 
530 has been shown to increase reticulocytes, red blood 
cells and total hemoglobin in β- thalassemic mice[259].

A promising investigative course also could target the 
downstream signaling pathways of EPO that include Akt, 
mTOR, Wnt signaling, FoxO proteins, SIRT1, and AMPK. 
EPO employs Akt and mTOR for stem cell maintenance 
and differentiation, resistance against oxidative stress, 
and the regulation of autophagy. In experimental 
models of DM, EPO relies upon Wnt signaling, β-catenin, 
and the inhibition of GSK-3β to block apoptotic cell 
death. EPO also governs FoxO proteins and SIRT1 to 
protect against DM apoptotic vascular injury, maintain 
adipose cell energy homeostasis, and modulate autop­
hagic flux to improve cardiac function during metabolic 
disturbances. Pathways that involve EPO and AMPK also 
offer interesting targets to maximize clinical efficacy 
and minimize unwanted side effects. AMPK reduces 
insulin resistance and lessens oxidative stress through 
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activation of autophagy, prevents myocardial ischemia 
in models of DM, and limits adipocyte lipid accumulation 
and obesity. WISP1 controls AMPK activity for the 
regulation of cellular metabolism during DM. In addition, 
SIRT1 and AMPK in conjunction with SIRT1 can increase 
autophagy activity to provide endothelial cell protection 
during exposure to oxidized low-density lipoproteins. 
However, it should be noted that consideration of 
these pathways may still require use of EPO or an EPO 
analogue since therapeutic success may be dependent 
on modulation of more than one of these down-stream 
pathways of EPO. In addition, one needs to emphasize 
that each of these pathways also can lead to undesirable 
biological outcomes under some circumstances such as 
tumorigenesis, pancreatic islet cell death, and cardiac 
dysfunction. Carefully targeting future investigations 
for EPO and its relevant signal transduction pathways 
for specific clinical disturbances of DM should offer the 
greatest promise for novel therapeutic strategies.
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Abstract
A cost-effective nutritional approach to improve post
prandial glycaemia is attractive considering the rising 
burden of diabetes throughout the world. Whey 
protein, a by-product of the cheese-making process, 
can be used to manipulate gut function in order to 
slow gastric emptying and stimulate incretin hormone 
secretion, thereby attenuating postprandial glycaemic 
excursions. The function of the gastrointestinal tract 
plays a pivotal role in glucose homeostasis, particularly 
during the postprandial period, and this review will 
discuss the mechanisms by which whey protein slows 
gastric emptying and stimulates release of gut peptides, 
including the incretins. Whey protein is also a rich source 
of amino acids, and these can directly stimulate beta 
cells to secrete insulin, which contributes to the reduction 
in postprandial glycaemia. Appetite is suppressed with 
consumption of whey, due to its effects on the gut-brain 
axis and the hypothalamus. These properties of whey 
protein suggest its potential in the management of type 
2 diabetes. However, the optimal dose and timing of 
whey protein ingestion are yet to be defined, and studies 
are required to examine the long-term benefits of whey 
consumption for overall glycaemic control. 

Key words: Whey protein; Postprandial glycaemia; 
Type 2 diabetes; Dietary intervention; Preload; Gastric 
emptying; Incretins; Gut hormones; Appetite; Amino 
acids
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Core tip: Whey protein, a by-product of cheese-manu
facture, shows promise in the dietary management of 
diabetes. Whey can slow gastric emptying, stimulate 
insulin and gut hormones including the incretins, and 
thereby reduce postprandial blood glucose, especially 
when consumed some minutes before a meal. Whey 
may also suppress appetite and reduce food intake. 
This review will summarise these properties of whey 
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and examine what further evidence is needed before 
whey can be recommended in the management of type 
2 diabetes.

Mignone LE, Wu T, Horowitz M, Rayner CK. Whey protein: 
The “whey” forward for treatment of type 2 diabetes? World J 
Diabetes 2015; 6(14): 1274-1284  Available from: URL: http://
www.wjgnet.com/1948-9358/full/v6/i14/1274.htm  DOI: http://
dx.doi.org/10.4239/wjd.v6.i14.1274

INTRODUCTION
It is well established that the risk of microvascular, 
and to a lesser extent macrovascular complications of 
both type 1 and type 2 diabetes, is closely related to 
“average” glycaemic control as assessed by glycated 
haemoglobin (HbA1c). In people with type 2 diabetes 
who have relatively good glycaemic control, postprandial 
hyperglycaemia predominates over preprandial blood 
glucose in contributing to HbA1c[1,2]. Accordingly, foc­
using on postprandial glycaemia in patients with mild or 
moderate elevation of HbA1c is now appreciated as an 
important management strategy; indeed, achieving a 
“target” HbA1c of ≤ 7.0% is difficult without minimising 
postprandial glycaemic excursions[3,4]. The potential 
use of dietary manipulations to reduce postprandial 
glycaemia is intuitively appealing, particularly given the 
escalation in health care costs with the rising incidence 
of type 2 diabetes.

Whey, a by-product of cheese making, is gaining 
recognition as an important functional food[5]. Whey 
protein has been demonstrated to diminish postprandial 
glycaemia through various interrelated mechanisms 
including enhancement of insulin and incretin hormone 
secretion, slowing of gastric emptying, and reductions 
in appetite and energy consumption (Figure 1). These 
properties suggest the potential for whey in the man­
agement of type 2 diabetes. However, whey protein 
cannot be endorsed as a potential treatment until further 
studies show that it improves long-term glycaemic 
control without significant adverse outcomes.

This review will explore the different forms of whey 
protein and compare the effects of whey with other 
sources of protein in reducing postprandial glycaemia. 
It will address the mechanisms by which whey lowers 
glycaemia, the factors that need to be considered for 
optimal use of whey, and the effects of long term consu­
mption of whey protein on glycaemic control, together 
with its potential adverse effects. 

COMPARISON OF WHEY AND CASEIN 
PROTEINS
Milk proteins are an important amino acid source for 
young mammals; they facilitate uptake of nutrients 
and trace elements[6] and provide a source of bioactive 

peptides with a range of physiological functions[6-8]. Cow’s 
milk contains about 3.5 g of protein per 100 mL, of which 
whey accounts for about 20% and casein 80%[9-11]. 

Whey consists of a heterogeneous group of pro­
teins[12], including beta-lactoglobulin (35%), alpha-
lactalbumin (12%), proteose peptone (12%), immun­
oglobulins (8%), and bovine serum albumin (5%)[11,13,14]. 
When chymosin is used in the cheese-making process, 
glycomacropeptide - which is high in branched chain 
amino acids - accounts for about 12% of total protein 
in whey[15]. Up to 1% of the total protein content of 
whey comprises “low abundance” proteins, including 
lactoferrin, and lactoperoxidase[14]. All these proteins have 
been reported to have nutritional and/or physiological 
functions[5]. 

Whey is seen as a more attractive protein for use 
as a dietary supplement compared to casein, due to 
differences in the amino acid composition and absorption 
kinetics between the two proteins[16]. Whey protein has 
a higher proportion of branched chain amino acids than 
casein[17], and is more soluble in the acidic environment 
of the stomach, leading to more rapid digestion[18] - 
hence it is termed a “fast” protein[19], while casein is 
a “slow” protein[16,20]. Using 13C-leucine-labelled whey 
and casein protein, Boirie et al[18] demonstrated in 
healthy subjects that whey protein results in more rapid 
appearance, and higher peak plasma concentrations of 
amino acid, when compared with casein, while Stanstrup 
et al[21] reported that levels of amino acids after a fat 
rich meal containing whey were substantially higher 
when compared to the same meal containing casein. As 
a result of greater solubility, more rapid digestion, and 
resultant higher plasma concentrations of amino acids, 
whey appears to be the more favourable protein to 
provide nutritional and functional benefits. 

FORMS OF WHEY PROTEIN - ISOLATE, 
CONCENTRATE AND HYDROLYSATE
Whey protein is available in three forms: concentrate, 
isolate, and hydrolysate. Whey protein concentrate 
contains 35%-80% protein, with fat, lactose and minerals 
making up the remainder; whey protein isolate contains 
85%-90% protein and very little fat or lactose[5,15,22]; and 
whey protein hydrolysate consists of proteins that have 
undergone hydrolysis by proteolytic enzymes[14]. Whey 
hydrolysates and isolates are more costly than whey 
concentrates, which is an important consideration if whey 
protein is to be used for a prolonged period of time in the 
management of type 2 diabetes. It is therefore important 
to consider the evidence that one form of whey protein is 
more “functional” than another.

Protein hydrolysates are usually more rapidly absor­
bed than the intact protein[23], but since intact whey is 
already a rapidly digested protein, any difference is likely 
to be minimal[24,25]. Some studies have suggested that 
whey hydrolysates may stimulate insulin and glucose-
dependent insulinotropic polypeptide (GIP) secretion to 
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a greater degree than the intact protein[26,27]. Mortensen 
et al[28] investigated the effects of adding 45 g of four 
different whey protein formulations (whey hydrolysate, 
whey isolate, alpha-lactalbumin enhanced whey, and 
caseinoglycomacropeptide enhanced whey) to a high 
fat/carbohydrate meal in subjects with type 2 diabetes, 
and reported that the first phase insulin response (as 
assessed by the incremental area under the curve (iAUC) 
up to 30 min) was enhanced after whey hydrolysate 
compared with the other three supplements, and that 
whey isolate and whey hydrolysate yielded a greater 
overall insulin response (iAUC at 480 min) than the 
other two supplements, without any difference between 
them. Whey proteins which have been hydrolysed are, 
however, usually less palatable[29], which detracts from 
their potential therapeutic use. There is no compelling 
evidence that one form of whey protein is significantly 
more potent than another, particularly in relation to 
reduction of postprandial glycaemia, so consideration of 
palatability and cost must also be taken into account.

ROLE OF THE INCRETIN HORMONES, 
GIP AND GLP-1, IN PROTEIN-INDUCED 
INSULIN SECRETION
The phenomenon by which insulin secretion is increased 

when glucose is given by the enteral route, when com­
pared to an isoglycaemic intravenous glucose infusion, 
is called the “incretin effect”, and is attributed to the 
secretion of “incretin” hormones from the gut. The two 
known incretin hormones, glucagon-like-peptide-1 
(GLP-1) and GIP, exert their insulinotropic actions 
through distinct G-protein-coupled receptors that are 
highly expressed on beta cells[30]. After oral glucose, 
about two thirds of the plasma insulin response can 
be attributed to the effects of GIP and GLP-1. The 
insulinotropic effects of both GIP and GLP-1 are glucose-
dependent, requiring a substantial elevation of blood 
glucose (> 8 mmol/L) to be manifest[31]. Incretin based 
therapies, such as GLP-1 receptor agonists, are attractive 
for this reason, as insulin release is only triggered in 
the presence of elevated glucose concentrations, with 
consequently minimal risk of hypoglycaemia. 

Incretin hormones may play an important role in 
protein-stimulated insulin release in health and type 
2 diabetes[32]. GIP and GLP-1, when infused intraven­
ously to mimic physiological increments after a meal, 
have been reported to potentiate the insulin secretory 
response to Ⅳ administration of an amino acid mixt­
ure[33]. In a study of oral administration of protein and 
amino acids in health, a whey drink resulted in a greater 
GIP response than a drink containing the essential amino 
acids found in whey, with an associated augmentation 
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Figure 1  Mechanisms by which whey protein can reduce postprandial glycaemia. GLP-1: Glucagon-like-peptide-1; GIP: Glucose-dependent insulinotropic 
polypeptide; CCK: Cholecystokinin; PYY: Peptide YY; DPP-Ⅳ: Dipeptidyl peptidase-Ⅳ.
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using a nutritional approach to enhance the secretion 
of endogenous GLP-1. Moreover, gastric emptying and 
appetite are inhibited by gut hormones other than the 
incretins, including cholecystokinin (CCK) and peptide YY 
(PYY)[51-53]. Stimulation of these hormones by nutritional 
supplements could also be beneficial in reducing 
postprandial glycaemia. 

ANTROPYLORODUODENAL MOTILITY 
Interactions between nutrients and the small intestine 
can induce feedback on gut function to suppress 
antral motility and stimulate pyloric contractions, with 
resultant slowing of gastric emptying[54]. In both healthy 
young and older humans, intraduodenal delivery of 
whey suppresses antral and duodenal waves and incr­
eases isolated pyloric pressure waves. Such changes in 
antropyloric motility in response to nutrient ingestion 
also appear to be independently related to subsequent 
energy intake in healthy young subjects[55]. Soenen et 
al[56] examined the effects of intraduodenal whey protein 
infusion on appetite and subsequent ad libitum energy 
intake in relation to antropyloroduodenal motility. 
They reported that energy intake at a buffet meal 
was inversely related to the number of isolated pyloric 
pressure waves, and positively related to the number 
of antral pressure waves, supporting a relationship 
between antropyloroduodenal motor activity and 
feeding behaviour. 

POTENTIAL IMPACT OF WHEY ON 
DIPEPTIDYL PEPTIDASE-IV
The incretin hormones are rapidly degraded to inactive 
metabolites by dipeptidyl peptidase-Ⅳ (DPP-Ⅳ). 
More than 50% of the GLP-1 newly secreted from 
intestinal L cells is degraded before reaching the 
systemic circulation[57], mainly by DPP-Ⅳ present in 
the endothelium of the capillary bed in close proximity 
to the L cells[36,57]. Whey hydrolysates, produced using 
digestive enzymes such as pepsin and trypsin, have 
been found to inhibit the activity of DPP-Ⅳ in vitro[58-61]. 
For rodents in vivo, ingestion of whey protein can reduce 
DPP-Ⅳ activity in the proximal small bowel, thereby 
increasing intact incretin hormone concentrations[62]. 
Further in vivo studies, particularly in humans, are 
required to confirm this phenomenon, and establish its 
durability with long term ingestion of whey[63]. 

EFFECTS OF WHEY ON ALPHA-
GLUCOSIDASE 
Alpha glucosidase is an enzyme that hydrolyzes starch 
and disaccharides to enable absorption of glucose at 
the small intestinal brush border. In vitro studies have 
shown that whey protein hydrolysate has a modest 
effect to inhibit alpha-glucosidase[59], which may be 

of the insulin response[34]. Additionally, the stimulation of 
insulin secretion from murine islets in vitro by whey was 
inhibited by GIP receptor antagonists[35]. The effects of 
the GLP-1 antagonist, exendin 9-39, on whey-induced 
insulin secretion have not been evaluated. However, it 
is clear that the insulintropic effects of whey, at least in 
part, involve the incretin axis. 

In humans, fats and carbohydrates are reported to be 
the most potent stimuli for GLP-1 and GIP secretion[36], 
although the effects of protein on incretin secretion 
are less well studied than the other macronutrients[37]. 
Nevertheless, whey protein is reported to stimulate 
GLP-1 and GIP release[17,34,35,38-40]. Bowen et al[41] showed 
that plasma active GLP-1 concentrations were higher 
after intake of a whey protein beverage compared to a 
glucose or fructose drink, but the mechanisms media­
ting protein-induced incretin secretion remain largely 
unknown[37]. 

Although the capacity for GIP to stimulate insulin 
is markedly diminished in type 2 diabetes, at least in 
part due to the effects of chronic hyperglycaemia[42], 
GLP-1 retains much of its activity. As whey protein 
can augment incretin hormone secretion and enhance 
protein-stimulated insulin release, it seems reasonable 
to view whey as a potential therapeutic agent in the 
treatment of type 2 diabetes. 

ROLE OF GASTRIC EMPTYING IN 
MEDIATING THE EFFECTS OF WHEY ON 
POSTPRANDIAL GLYCAEMIA
It is now well established that gastric emptying plays 
a major role in determining postprandial blood glucose 
concentrations, particularly the “early” glycaemic 
response, and that slowing gastric emptying can di­
minish postprandial glycaemic excursions in health 
and diabetes[43-46]. In healthy humans, the addition 
of protein to oral glucose lowers postprandial blood 
glucose concentrations acutely, probably predominantly 
by slowing gastric emptying[47]. Similarly, a “preload” 
of whey has been shown to slow gastric emptying of 
a subsequent meal in both health[17], and in type 2 
diabetes[48]. 

The effects of whey on gastric emptying, post­
prandial glycaemia, and the secretion of incretin 
hormones, are interdependent. The incretins not 
only have major insulinotropic effects, but GLP-1 also 
slows gastric emptying, suppresses energy intake and 
has glucagonstatic effects to improve postprandial 
glycaemia[42]. Reports that GLP-1 secretion is impaired in 
longstanding type 2 diabetes[49,50] did not take potential 
differences in gastric emptying rates into account; 
furthermore, it has now been shown that in patients 
with type 2 diabetes managed by diet or metformin 
only, the GLP-1 response to an intraduodenal glucose 
challenge is apparently normal[46]. That GLP-1 secretion 
is intact in type 2 diabetes adds to the rationale for 
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clinically relevant given that alpha-glucosidase inhibitors, 
such as acarbose, are used widely in the management 
of type 2 diabetes to improve postprandial glycaemia. 
Human studies are required to further evaluate this 
mechanism and the magnitude of the glucose lowering 
effect attributable to it. 

TIMING OF WHEY PROTEIN, 
“PRELOADS”, AND GASTRIC EMPTYING 
The concept of a “preload” refers to administration of 
a small load of macronutrient at a fixed interval before 
a meal, so that the presence of nutrients in the small 
intestine induces the release of GLP-1 and GIP, and 
other gut peptides such as CCK and PYY, to slow gastric 
emptying and stimulate insulin secretion in advance of 
the main nutrient load. In health, whey protein preloads 
have been shown to slow gastric emptying, as assessed 
by the plasma concentrations of oral paracetamol 
given with the meal, and enhance post-prandial GLP-1 
levels[64]. Similarly, whey given immediately before a 
meal, with or without additional amino acids, reduces 
the postprandial glycaemic response by over a third (iAUC 
0-60 min), associated with an increase in the early 
postprandial plasma insulin and GLP-1 responses[65]. 

The capacity for a whey preload to stimulate incretin 
hormone secretion and slow gastric emptying has also 
been established in subjects with type 2 diabetes[48]. 
Ma et al[48] reported in type 2 patients that a 55 g whey 
protein preload, given 30 min before a meal, slows 
gastric emptying when compared to either a nutrient-
free preload or ingestion of whey with the meal. In 
this study, gastric emptying was quantified using 
scintigraphy, which represents the “gold standard”. 
Whey protein markedly reduced postprandial glucose 
excursions (iAUC after whey preload about half that of 
control), and stimulated insulin and CCK, as well as GIP 
and GLP-1. Both the GLP-1 response and the reduction 
in postprandial glycaemia were greater when whey was 
given as a preload, when compared to ingestion with 
the meal. Accordingly, this study not only established 
that whey can slow gastric emptying substantially in 
type 2 diabetes, but that the timing of supplementation 
is pivotal to the stimulation of incretins and other gut 
hormones. These acute effects of whey preloads to 
improve postprandial glycaemia were recently confirmed 
in another study in type 2 patients[66]. While whey has 
been shown to slow gastric emptying acutely, it remains 
to be seen whether this effect is sustained with long 
term administration.

AMINO ACIDS AS A STIMULUS FOR 
INSULIN SECRETION 
It has been established for many years that ingested 
protein stimulates insulin secretion[47,67], an effect 
observed in both healthy subjects and in those with type 

2 diabetes. This effect is enhanced when protein is co-
ingested with carbohydrates when compared with the 
ingestion of carbohydrate or protein alone, suggesting 
a synergy between oral protein and glucose[68-72]. In a 
recent comparison of four protein sources, the greatest 
postprandial insulin response was associated with whey 
compared to casein, gluten or cod, and was attributed 
to the more rapid appearance of amino acids in plasma 
when derived from whey[21]. 

Whey protein is a rich source of essential amino 
acids and branched chain amino acids known to have 
potent insulinotropic properties[73]. The branched chain 
amino acids - leucine, valine, and isoleucine - are 
more insulinogenic than other amino acids[40,74]. In the 
1960s, Floyd et al[67,75,76] showed that amino acids, 
given either intravenously or orally, had the capacity 
to stimulate insulin secretion and reduce blood glucose 
concentrations. The insulinotropic effect of whey, at 
least in part, reflects a direct effect of amino acids to 
stimulate beta cells[35,77-80]; the underlying mechanisms 
are complex and involve mitochondrial metabolism[77].

Amino acids can stimulate insulin secretion in type 2 
diabetes as well as in health. van Loon et al[81] reported 
that patients with long standing type 2 diabetes who co-
ingested an amino acid/protein mixture (wheat protein 
hydrolysate) with a carbohydrate meal almost trebled 
their insulin response, when compared to ingestion of 
carbohydrate alone. This preserved stimulation of insulin 
by amino acids in type 2 diabetes contrasts with the 
diminished insulin response to carbohydrates, when 
compared with healthy controls. Similarly, addition of 
casein to carbohydrate has also been noted to potentiate 
insulin secretion in longstanding type 2 diabetes. That 
amino acids derived from ingested proteins remain a 
strong stimulus for insulin secretion, even in patients 
with long standing type 2 diabetes, supports their 
potential efficacy in the management of this condition[68].

ROLE OF GLUCAGON 
Glucagon, secreted from the alpha cells of the pancreas, 
primarily acts on the liver to initiate glycogenolysis and 
gluconeogenesis, which then increases endogenous 
glucose production. Glucagon secretion is exaggerated 
in response to a meal in patients with type 2 diabetes[82], 
and ingested protein results in an increase in plasma 
glucagon levels[83]. It might therefore be expected 
that protein ingestion would increase blood glucose 
concentrations, but this is not necessarily the case. 

Calbet et al[84] gave 6 healthy adults four tests meals 
containing glucose, cow’s milk solution, pea and whey 
peptide hydrolysates, and found that the glucagon 
response was linearly related to the increase in plasma 
amino acids. Despite this, plasma glucose levels after 
whey hydrolysates decreased by about 1.5 mmol/L 
from baseline to 180 min, most likely due to the effects 
of insulin, which is stimulated concurrently and is parti­
cularly effective at suppressing glycogenolysis. 
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IS WHEY PROTEIN EFFECTIVE IN 
REDUCING POSTPRANDIAL GLYCAEMIA 
IN TYPE 2 DIABETES? 
Although it is clear that whey has an insulinotropic effect, 
it is less clear as to whether the magnitude of insulin 
stimulation is sufficient to reduce postprandial glycaemia 
in patients with type 2 diabetes, who tend to be insulin-
resistant, and often exhibit hyperinsulinaemia[40,85-87]. 
Insulin sensitivity, assessed using a euglycaemic-
hyperinsulinaemic clamp, impacts on the capacity 
for acute administration of protein to reduce blood 
glucose concentrations in healthy subjects[88], and this 
may explain why some studies of patients with type 2 
diabetes reported no reduction in blood glucose despite 
stimulation of insulin after a protein meal[38,89]. 

Frid et al[39] evaluated the effect of adding whey 
protein to high glycaemic index meals taken at breakfast 
and lunch in patients with type 2 diabetes. Plasma 
insulin responses were higher after both breakfast (31%) 
and lunch (57%) with whey (27.6 g) when compared 
to lean ham or lactose. There was a reduction in blood 
glucose excursions after lunch but not breakfast, which 
might be related to either the differing meal content, or 
to higher insulin resistance seen in the fasting state[90] 
affecting responses after breakfast.

Conversely, other studies in type 2 diabetes have 
reported up to 3 or 4 fold increases in insulin responses 
to meals containing protein and carbohydrate, when 
compared to carbohydrate alone, with concomitant 
reductions in postprandial glycaemia[71,91]. Nuttall et al[70] 
evaluated nine male subjects with diet controlled type 
2 diabetes and showed that the blood glucose response 
(AUC) to protein and glucose ingestion was one third 
lower than after glucose alone, and the mean insulin 
AUC was also considerably greater. While these studies 
used beef or casein, whey is also effective for both 
stimulating insulin secretion and reducing postprandial 
glycaemia in individuals with type 2 diabetes and/or 
insulin resistance[48,92]. 

IS THE DOSE OF WHEY IMPORTANT? 
When assessing the magnitude of glycaemic responses 
after whey protein consumption, one should consider 
not only the timing of ingestion (e.g., whether giving as 
a preload), but also the dose, since the effects of whey 
on glycaemic responses, as well as appetite, appear to 
be dose-dependent[19,93]. Preloads of whey concentrate 
in doses of 5 g, 10 g, 20 g, and 40 g, and control, were 
given to 22 healthy individuals, followed 30 min later 
by a standardised pizza meal; the 20 g and 40 g whey 
preloads suppressed appetite more than control, or 5 g 
or 10 g whey protein, as assessed by visual analogue 
questionnaires[93]. In addition, whey protein reduced 
postprandial glucose in a dose-dependent manner. Poppit 
et al[94] gave 50 overweight women drinks containing 
5 g, 10 g or 20 g whey, or control, 120 min after a 

standardized breakfast, and found that there was a 
tendency for hunger and fullness to be dose-related, 
although this did not reach statistical significance. 

In healthy volunteers, whey protein taken with 
a meal increases insulin and reduces postprandial 
glycaemia in a dose-dependent manner[87]. Gunnerud 
et al[87] found that a drink containing 25 g glucose 
and either 4.5 g, 9 g or 18 g whey protein, reduced 
postprandial glycaemia (iAUC) by 25%, 37% and 46% 
respectively, compared to a 25 g glucose alone; the 
reductions with 9 g and 18 g whey were statistically 
significant. There was also a dose-dependent increase 
in insulin (iAUC 0 – 120 min), which reached statistical 
significance with the highest dose of whey. 

While whey has convincing dose-dependent effects 
on glucose, insulin and appetite, the optimal dose for 
improving long-term glycaemic control in people with 
type 2 diabetes is yet to be determined. 

WHEY AND APPETITE REGULATION 
Reduction in energy expenditure and appetite may 
be achieved through manipulation of dietary macro­
nutrient composition[95]. Protein has been shown to 
be more satiating than other macronutrients such as 
carbohydrate and fat[16,96], and has also been reported 
to increase satiety[97-99]. Whey protein, in particular, 
has been shown to enhance satiety and reduce food 
intake at the next meal in acute studies[93,100], and this 
effect is thought to be mediated by gut hormones[17,101], 
specifically by stimulation of CCK, PYY and GLP-1, and 
by suppression of the orexigenic hormone, ghrelin[16]. 

Bowen et al[95] reported prolonged postprandial 
suppression of ghrelin, and elevation of GLP-1 and 
CCK, after consumption of whey, gluten and soy based 
preloads compared with glucose, and this was associated 
with reduction of energy intake at an ad libitum meal. 
CCK is typically associated with satiation; however, in 
this study there was a trend for an inverse relationship 
between CCK and subsequent energy intake, which 
suggests that CCK can also contribute to satiety. 
Similarly, in a study where hunger scores were reduced 
after whey ingestion compared to casein, the CCK and 
GLP-1 responses were higher following whey, which may 
have contributed to its greater satiating effect[17]. Other 
studies have reported that PYY concentrations are higher 
after whey compared with other proteins, but with 
comparable CCK and ghrelin responses[64]. 

DIRECT EFFECTS OF AMINO ACIDS ON 
HUNGER
Elevation in plasma concentrations of amino acids after 
ingestion of whey may affect appetite[102,103] by hitherto 
poorly defined mechanisms, including vagal feedback 
and direct suppression of hunger at the level of the 
hypothalamus[104]. The greater suppression of hunger 
by whey, when compared to soy or casein, is associated 
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with increased concentrations of the amino acids 
leucine, lysine, tryptophan, isoleucine, and threonine[105]. 
Furthermore, tryptophan is synthesised into serotonin, 
which itself is known to influence food intake[103,106].

EFFECT OF WHEY ON ENERGY 
EXPENDITURE 
Energy expenditure from thermogenesis, which increases 
oxygen consumption and body temperature, is thought 
to induce feelings of satiety[107]. Of the macronutrients, 
dietary protein stimulates thermogenesis and satiety 
more than carbohydrate or fat[103]. Acheson et al[108] 
reported that whey protein elicits a greater thermic 
response than protein composed of either casein or 
soy, where protein accounted for 50% of the energy 
content of the meal. This may be because whey protein, 
as a “fast” protein, is rapidly digested to result in 
greater postprandial protein synthesis[18]. In particular, 
leucine, which is present in high concentrations in 
whey[109], has been shown to stimulate muscle protein 
synthesis[110] and may also increase postprandial energy 
expenditure[109]. 

EFFECTS OF LONG TERM CONSUMPTION 
OF WHEY PROTEIN ON GLYCAEMIC 
CONTROL 
High protein diets induce weight loss and preserve lean 
mass[111]. However, there is a paucity of data relating 
to whether whey has the capacity to reduce glycated 
haemoglobin with ongoing treatment in patients with 
type 2 diabetes. 

A 5-wk study in 8 men with type 2 diabetes showed 
that a diet containing 30% vs 15% of total energy 
derived from protein, with a corresponding decrease in 
carbohydrate content, was associated with a greater 
(by about 0.5%) decrease in glycated haemoglobin[112]. 
In another study, 72 non-diabetic obese men were 
randomised to receive supplements of either whey 
protein isolate, casein, or glucose (each 54 g/d), 30 min 
before breakfast and the evening meal for 12 wk. 
Improvements in fasting insulin and homeostasis model 
assessment of insulin resistance score of almost 10% 
were observed with whey compared to control, but 
there was no difference in the fasting serum glucose[113]. 

In considering the use of whey protein in the 
management of diabetes, it is also important to reco­
gnise the potential adverse effects of longer term 
supplementation. There have been concerns that high 
protein diets could potentially reduce bone density 
and impair renal function. However, a recent two year 
weight loss study in postmenopausal women found no 
clinically significant effect of a high protein diet on bone 
density[114]; nor was there any reduction in renal function 
in a one year weight loss study in patients with type 
2 diabetes with microalbuminuria, assigned to a high 
protein diet (≥ 90 g protein/d)[111,115]. 

The effects of additional energy intake associated 
with protein supplements should also be considered if 
using this strategy over the long term. Subjects tend 
to compensate for the additional energy load by eating 
less at a subsequent ad libitum meal in acute and short 
term (5 d) studies[116,117]. This is supported by a 12-wk 
study in which overweight men received 54 g whey 
supplements per day, but showed no change in body 
composition[113]. Age may be an important determinant 
of this effect, however; Soenen et al[56] observed that 
older men (aged 68 to 81 years), had less capacity to 
compensate for the additional energy intake associated 
with whey administration when compared to young 
men. 

Whey’s ability to slow gastric emptying is one of the 
main mechanisms by which postprandial glycaemia is 
reduced acutely after a meal. However, it is unknown 
whether the capacity for whey to slow gastric emptying 
is sustained with prolonged exposure, or whether there 
is an adaption to this macronutrient of the gut feedback 
mechanisms that control gastric emptying, as has been 
demonstrated for carbohydrates and fats[118]. It would 
therefore be important to establish whether slowing 
of gastric emptying induced by whey is sustained with 
prolonged exposure; this appears to be the case over 
four weeks in a small pilot study[119]. 

CONCLUSION
The acute effects of whey protein on postprandial glyc­
aemic excursions appear promising, but the long term 
efficacy and optimal application in the management of 
type 2 diabetes remain to be determined. 

Patients most likely to benefit from postprandial 
glucose lowering by whey protein are those with mild 
to moderate elevation of HbA1c, who have relatively 
well controlled fasting glucose, since this is the group 
of patients in whom postprandial glycaemia makes 
the greatest relative contribution to HbA1c. However, 
combining a dietary strategy with pharmacological 
agents in less well controlled patients should also be 
evaluated, such as the combination of insulin to control 
fasting glucose, together with whey protein to reduce 
postprandial glycaemia; such a concept has proven to 
be effective with the combination of basal insulin and 
short-acting GLP-1 receptor agonists[120]. Moreover, the 
combination of whey protein with a DPP-Ⅳ inhibitor 
should also be examined, given the potential to aug­
ment the stimulation of GLP-1[121]. 

The timing of protein ingestion is important when 
aiming to stimulate incretin secretion and suppress app­
etite in advance of the main meal[48], and this, together 
with the optimal dose of whey protein, requires further 
refinement. 
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