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Abstract

Recent studies have revealed that bile acids (BAs)
are not only facilitators of dietary lipid absorption but
also important signaling molecules exerting multiple
physiological functions. Some major signaling pathways
involving the nuclear BAs receptor farnesoid X receptor
and the G protein-coupled BAs receptor TGR5/M-BAR
have been identified to be the targets of BAs. BAs
regulate their own homeostasis via signaling pathways.
BAs also affect diverse metabolic pathways includ-
ing glucose metabolism, lipid metabolism and energy
expenditure. This paper suggests the mechanism of
controlling metabolism via BA signaling and demon-
strates that BA signaling is an attractive therapeutic
target of the metabolic syndrome.

Key words: Bile acids; TGR5/M-BAR; Farnesoid X
receptor; Glucose metabolism; Energy metabolism; Lipid
metabolism; Bariatric surgery; Microbiota; Incretin; Bile
acid binding resin
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Core tip: Bile acids (BAs) are important molecules that
participate in various metabolic pathways. BA signaling
mechanisms are attractive therapeutic targets of the
metabolic syndrome. In this review, we show the mecha-
nisms of controlling glucose, lipid and energy metabolism
via BA signaling. Furthermore, the authors also describe
how those basic scientific studies have been applied to
the clinical setting. Particularly, bile acid binding resin
(BABR) originally used to treat hypercholesterolemia
also stimulates incretin secretion and improves glucose
metabolism. In addition to BABR, the clinical application
of farnesoid X receptor and TGR5/M-BAR agonists are
ongoing for the treatment of metabolic syndrome. The
effects of bariatric surgery on glycemic control are also
associated with BA metabolism.

Taoka H, Yokoyama Y, Morimoto K, Kitamura N, Tanigaki
T, Takashina Y, Tsubota K, Watanabe M. Role of bile acids in
the regulation of the metabolic pathways. World J Diabetes
2016; 7(13): 260-270 Available from: URL: http://www.
wjgnet.com/1948-9358/full/v7/113/260.htm DOI: http://dx.doi.
org/10.4239/wjd.v7.i113.260

INTRODUCTION

Bile acids (BAs) are the main constituents of bile and
amphipathic molecules, containing both hydrophilic and
hydrophobic regions. BAs are synthesized from cholesterol
in the liver, stored in the gall bladder, and flow into the
small intestine after meal ingestion. Intestinal BAs faci-
litate digestion and absorption of lipids and fat-soluble
vitaminst™.

Recent reports suggest that BAs are responsible
not only for the absorption of lipids but also for signal
transduction. Some major signaling mechanisms have
been identified, including the MAPK pathways, nuclear
hormone receptor farnesoid X receptor (FXR)-mediated
pathway and G protein-coupled receptor TGR5/M-BAR
(also named GPR131)-mediated pathway®”. BAs have
been demonstrated to be natural ligands of FXR. The
main role of the FXR signaling pathway is regulating both
enterohepatic circulation and BA biosynthesis to maintain
the homeostasis of BA™., In addition, FXR signaling has
been known to regulate lipogenesis gene expression and
improve hepatic steatosis'”). Moreover, recent studies
have shown that BAs and FXR signaling are associated
with the beneficial glycemic effects of bariatric surgery
and regulation of autophagy™*”. BAs also activate TGR5/
M-BAR. The TGR5/M-BAR signaling pathway stimulates
energy expenditure in both brown adipose tissue (BAT)
as well as skeletal muscle!, Furthermore, TGR5/M-BAR
plays a role in hepatic microcirculation as well as cytokine
release from macrophages!*?. Taken together, BAs not
only participate in the digestion and absorption of lipids
but also in various metabolic pathways. BA signaling
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participates in various diseases such as cancer, immune
disorders, and metabolic syndrome™ ™, In this review,
we summarize the current knowledge of the metabolic
regulation mechanisms of BAs and propose BA signal-
ing pathways as a therapeutic target of the metabolic
syndrome.

BILE ACIDS METABOLISM

The majority of synthesized BAs are secreted into the
bile and kept in the gallbladder. When food enters the
gastrointestinal tract, bile flows into the small intestine,
and are efficiently absorbed by active transport and
passive diffusion in the terminal ileum. BAs are then
transported again to the liver through the portal vein and
re-uptaken at the sinusoidal membranes of hepatocytes.
These BAs are then secreted into the bile again; each
BA molecule can complete 4-12 cycles of circulation per
day"®.

BA synthesis has two differential pathways: The
“classic (or neutral) pathway” and the “alternative (or
acidic) pathway”. In the classic pathway, the enzyme
cholesterol-7a-hydroxylase (CYP7A1l) hydroxylates
the C7a position during the first step. In the alternate
pathway, the enzyme sterol-27a-hydroxylase (CYP27A1)
first hydroxylates the C27 position. The classic pathway
seems more important than the alternative pathway
because the classic pathway is responsible for main-
taining cholesterol homeostasis by controlling BA syn-
thesis”). The rate-limiting enzyme CYP7A1 converts
cholesterol to 7a-hydroxycholesterol, and other enzymes
including sterol-12a-hydroxylase (CYP8B1), 25-hydroxy-
cholesterol-7a-hydroxylase (CYP7B1) and CYP27A1
convert 7o-hydroxycholesterol to primary BAs, including
cholic acid (CA) and chenodeoxycholic acid (CDCA)!"®.
CYP8B1 controls the production of CA, and CA regulates
the CA/CDCA ratio in humans or the CA/MCA ratio in
mice by mediating feedback regulation!'®’. Regulation
of this ratio is important because previous studies
demonstrated that the ratio of CA/CDCA is associated
with liver diseases in humans™. For example, this ratio
is decreased in patients with liver cirrhosis and hepatic
cancer but is increased in cholestasis. Most of the BAs
are conjugated to glycine or taurine, and the ratio of BAs
conjugated to taurine and glycine differ depending on the
animal species. In humans, the ratio of BAs conjugated
to taurine and glycine are approximately 1:2, and most
BAs are conjugated with taurine in mice. BAs inhibit
the expression of CYP7A1 and CYP8BL1 in liver through
several pathways, which are mainly FXR-dependent.
BAs activate FXR, leading to the upregulation of a small
heterodimer partner (SHP; NROB2), which suppresses
the activity of hepatocyte nuclear factor-4o (HNF-4q;
NR2A1), liver X receptor (LXR; Nr1h3) and liver receptor
homolog-1 (LRH-1; NR5A2), which are both required
for transcriptional induction of BA synthesis enzymes
via binding to BA-response elements in promoters!***],
Additionally, the intestinal activation of FXR by BAs
causes an increased expression of fibroblast growth
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Figure 1 Bile acid metabolism in the liver. BAs induce the FXR-SHP-mediated pathway and repress BA synthesis enzyme gene expression such as CYP7A1 and
CYPB8B1. Synthesized BAs increase the expression of FGF-15/19 in the small intestine. FGF-15/19 signaling induces JNK pathway activation resulting in the repression of
CYP7A1 transcription. AP1: Activator protein 1; BAs: Bile acids; BARE: Bile acid response element; BSEP: Bile salt export pump; CYP7A1: Cholesterol-7a-hydroxylase;
DR: Direct repeat element; FGF-15/19: Fibroblast growth factor-15/19; FGFR4: Fibroblast growth factor receptor 4; FXR: Farnesoid X receptor; HNF-4: Hepatocyte nuclear
factor; IBABP: Intestinal bile acid-binding protein; IR-1: Inverted repeat element-1; JNK: Jun-N-terminal kinase; LDLR: Low-density lipoprotein receptor; LRH-1: Liver
receptor homolog-1; LXR: Liver X receptor; NTCP: Sodium-taurocholate cotransporting polypeptide; PXR: Pregnane X receptor; RXR: Retinoid X receptor; SHP: Small

heterodimer partner.

factor (FGF)-15 in rodents and FGF-19 in humans.
BAs absorbed in the terminal ileum activate intestinal
FXR and induce enterocytic production of FGF-15/19.
This FGF-15/19 is passed from the portal vein to the
hepatocytes and couples with a receptor, FGF receptor 4
(FGFR4). These signaling pathways via FGF-15/19 and
FGFR4 induce receptor dimerization, autophosphorylation,
and c-Jun N-terminal kinase pathway activation resulting
in the repression of CYP7A1 transcription (Figure 1),
A second BA receptor, TGR5/M-BAR, also contributes to
regulation of BA homeostasis. TGR5/M-BAR knockout
mice present with a decrease in the BA pool size and
the impaired suppression of CYP7A1 expression upon
BA administration'®®%), Vitamin D also regulates BAs
synthesis. Vitamin D receptor activation induces the
expression of FGF-15/19, and BA synthesis is decreased
by reducing CYP7A1 expression®®®!, BAs regulate BA
homeostasis via FXR, TGR5/M-BAR and other signaling
pathways primarily by maintaining gene expression of
the rate-limiting enzymes CYP7A1 and CYP8B1.

BILE ACIDS IN GLUCOSE METABOLISM

Previous studies have clarified that BAs affect glucose
metabolism. Glucose induces the expression of FXR
and CYP7A1, and insulin reduces their expression in
vitro®®, Further studies have shown that BAs seem to
regulate gluconeogenesis, but the mechanisms remain
poorly understood. Some studies have indicated that
the expression of phosphoenolpyruvate carboxykinase
(PEPCK), which is the rate-limiting enzyme of gluconeo-
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genesis, is suppressed by BAs in human liver cancer
cells (HepG2 cells) and the mouse liver™ >, Additionally,
enzymes such as glucose 6-phosphatase and fructose
1,6-bisphosphatase 1 which also participate in gluco-
neogenesis are repressed by BAs'®!, These effects
are decreased in FXR and SHP knockout mice, which
supports the idea that BAs suppress gluconeogenesis
in a FXR-SHP-dependent manner™!; however, others
have reported that FXR-dependent signaling induces
PEPCK expression and increases gluconeogenesis in
primary hepatocytes and rat hepatoma cell lines™,
In terms of glycogen synthesis, BAs increase hepatic
glycogen synthesis and storage, resulting in decreased
blood glucose levels in an FXR-dependent manner
(Figure 2B)™°\. A previous study demonstrated that
long-term FXR activation (3 mo) with a synthetic FXR
agonist, GW4064, worsened glucose intolerance and
insulin resistance in high-fat fed C57BL/6J mice®®**, The
mechanism behind the effects of GW4064 is lowering
the BA pool size following FXR activation. Some reports
have suggested that short-term (10 d) FXR activation
by the synthetic FXR agonist GW4064 reduced glycolytic
gene expression and improved insulin resistance in ob/
ob or db/db mice®*"). In contrast, the difference of the
GW4064 administration period may lead to the opposite
result. Long-term administration of BAs, the endogenous
natural ligands of FXR, did not decrease the BA pool
size and subsequently improved glucose intolerance and
insulin resistance™.

BA administration improved metabolism including
glucose tolerance and insulin resistance. The beneficial
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Figure 2 Farnesoid X receptor-dependent metabolic regulation in the
liver. Hepatic FXR signaling regulates lipid and glucose metabolism. A: FXR
signaling reduces lipogenesis (SREBP1c) and induces fatty acid B oxidation
(PPARa) and plasma TG clearance (LPL and VLDL-R), resulting in decreased
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SRB1 activity; B: FXR signaling up-regulates glycogenesis, down-regulates
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associated with gluconeogenesis, but the controlling mechanism is still unclear.
Angptl3: Angiopoietin-like protein 3; ApoC IT/CIII: Apolipoprotein-C II/CII; FXR:
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L >

effects of BAs, such as a decrease in gluconeogenesis
and increase in glycogen synthesis, seem to occur not
only through FXR signaling but also through a number
of other signaling molecules, such as TGR5/M-BAR.
BAs stimulate incretins, such as glucagon-like peptide-1
(GLP-1; Figure 3). GLP-1 is secreted by dietary stimulation
from enteric L cells and promotes insulin secretion by
binding to the GLP-1 receptor in the pancreatic B cell.
Further, GLP-1 maintains pancreatic function, and GLP-1
receptor agonists have been developed for the treatment
of diabetes™, TGR5/M-BAR signaling causes GLP-1
secretion in mouse enteroendocrine STC-1 cellsP?.
Moreover, 6-ethyl-23(S)-methylcholic acid (6EMCA or
INT-777"%), a semisynthetic TGR5/M-BAR agonist,
stimulates the secretion of GLP-1 in both mouse and
human enteroendocrine cells. In the present study, knock-
down of TGR5/M-BAR by shRNA decreased 6EMCA-
induced secretion of GLP-1 in STC-1 cells""!. The natural
TGR5/M-BAR agonist oleanolic acid also improves the
metabolism of glucose*”, This evidence indicates the
importance of TGR5/M-BAR in GLP-1 secretion. An in
vivo study with TGR5/M-BAR transgenic and TGR5/M-BAR
knockout mice strongly supports the relationship between
TGR5/M-BAR and GLP-1 secretion™. Considering the
current mechanism, TGR5/M-BAR activation increases
cAMP levels and the ATP/ADP ratio, which then leads to
depolarization of the plasma membrane as well as Ca®*
mobilization, resulting in increased GLP-1 release!.
Additionally, a human genetic study revealed an asso-
ciation between a single nucleotide polymorphism,
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Figure 3 TGR5/M-BAR-dependent metabolic regulation. TGR5/M-BAR
activation leads to increased intracellular cAMP levels, the activation of PKA and
induction of CREB phosphorylation. This series of signaling activity induces the
expression of genes bearing CRE and exists in various tissues. TGR5/M-BAR
signaling induces energy expenditure in the muscle and BAT, increases GLP-1
secretion in the intestinal L cell, and reduces inflammatory cytokine release in
immune cells. CREB-p: cAMP response element-binding protein phosphorylation;
Dio2: Deiodinase iodothyronine type II'; T3: Tri-iodothyronine; BAT: Brown
adipose tissue; GLP-1: Glucagon-like peptide-1.

rs3731859, of the TGR5/M-BAR gene and various
metabolic indexes including BMI, waist circumference,
intramyocellular lipid, and fasting serum GLP-1 levels™,
Hence, these findings suggested that GLP-1 secretion
was stimulated by TGR5/M-BAR signaling in vivo. BAs
and TGR5/M-BAR could become therapeutic targets of
diabetes.

BILE ACIDS IN LIPID METABOLISM

BAs are important in regulating triglyceride (TG) meta-
bolism as well as cholesterol metabolism. The relationship
between BAs and TG was first reported in the treatment
of gallstones with CDCA. CDCA treatment decreased
the serum TG level in patients with gallstones™. In
fact, BAs or a synthetic FXR agonist affected TG meta-
bolism via several mechanisms including the FXR-
mediated pathway. The target of FXR, SHP, suppressed
up-regulation of sterol regulatory element-binding
protein-1c (SREBP-1c), the master regulator of fatty
acid and TG synthesis, to reduce the expression of the
lipogenic genes such as acetyl CoA synthetase, acetyl
CoA carboxylase, stearoyl CoA desaturase 1, and fatty
acid synthase”*®), In addition, the TG-lowering effects
were attenuated in SHP knockout mice, indicating that
lipogenesis mediated by SREBP-1c is suppressed in
an FXR-SHP-dependent manner?”’. Additionally, FXR
activation by BAs increases expression of apolipoprotein
(Apo) CII.. Apo CII activates lipoprotein lipase, which
in turn stimulates TG hydrolysis in very low density
lipoprotein (VLDL) and chylomicrons, and also facilitates
the clearance of TG from the serum™”). The expression
of ApoCIIl and angiopoietin-like protein 3, which inhibits
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the activity of lipoprotein lipase, were repressed by FXR
stimulation with BAs“®*%, In addition, FXR induces the
expression of the VLDL receptor, which acts to clear
plasma TG (Figure 2A)PY,

BAs also represses the expression of microsomal
triglyceride transfer protein (MTP) and ApoB in an FXR-
independent manner to suppress the formation of
VLDL and chylomicrons®. Not only VLDL but also high
density lipoprotein (HDL) clearance are suggested to be
subject to modulation by BAs. Expression of scavenger
receptor B1 (SRB1), a molecule in charge of hepatic
uptake of HDL, is decreased, and HDL-C (HDL-cholesterol)
is elevated in FXR knockout mice®®. In addition, the
administration of an FXR ligand increases hepatic SRB1
expression and decreases HDL-C levels (Figure 2A)**,

BAs control other major regulators of lipid metabo-
lism such as proliferator-activated receptor o (PPAR«)
and pyruvate dehydrogenase kinase-4 (PDK4). The
nuclear receptor PPARa, which is activated by free fatty
acids (FFA), decreases serum TG levels and exerts an
important role for controlling enzymes participating in
fatty acid p oxidation (Figure 2A)*”. A study suggested
that BAs directly regulate PPARa through FXR in humans,
but not in mice®®®. PDK4 is also up regulated by BAs
in an FXR-dependent manner, resulting in inactivation
of pyruvate dehydrogenase, decreased glycolysis and
increased oxidation of fatty acid p®’). BAs are also
associated with atherosclerosis®®*”. Treatment with
TGR5/M-BAR agonist INT-777 represses the activation of
inflammatory cytokines such as NF-xB and inhibits foam
cell formation and subsequent atherosclerotic plaques.
In addition, INT-777 does not inhibit atherosclerosis
in TGR5/M-BAR knockout mice, supporting the anti-
atherosclerotic effect of TGR5/M-BAR (Figure 3)P%,

BILE ACIDS IN ENERGY METABOLISM

BAs have been reported to stimulate adaptive thermo-
genesis and energy expenditure via TGR5/M-BAR
(Figure 3)™!. TGR5/M-BAR activation leads to increased
intracellular cAMP levels, activation of PKA and induc-
tion of CREB phosphorylation. This series of signaling
activity induces the expression of genes bearing a CAMP
responsive element and exists in various tissues®4,

In the BAT, TGR5/M-BAR stimulation increases the
intracellular cAMP level and induces cAMP-dependent
iodothyronine deiodinase type 2 (Dio2) expression,
which converts inactive thyroxine (T4) to active
3,5,3'-triiodothyronine (T3) to evoke increased energy
expenditure!*!, Dio2 increases the nuclear T3 level with-
out various unwanted side effects caused by increased
blood T3 levels. Only 20% of nuclear T3 is produced
and secreted from the human thyroid gland, and the
remaining nuclear T3 is supplemented from other
tissues. Dio2 supplies approximately 50% of the T3
in the nucleus including the BAT®®?!, The BAT is one of
the most important targets of BAs to increase energy
expenditure. Although BAT had been regarded as a
tissue only in newborn infants, recent studies with FDG-
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PET revealed the existence of BAT in the shoulders
and neck in adult humans, especially with brief cold
exposure®®, Furthermore, several groups have shown
the importance of BAT in adult humans. In healthy
patients, the amount of BAT is large and its activity is
high but are reduced in obese patients’®*®, In addition,
TGR5/M-BAR and Dio2 are co-expressed in skeletal
muscle in humans, which suggests the presence of a
thermogenic mechanism in humans™". Moreover, a
recent study found another type of adipocyte termed
“beige” cells which are derived from white adipose
tissue. These adipocytes also respond to cyclic AMP
stimulation with high uncoupling protein (UCP) 1 ex-
pression and respiration rates similar to BAT cells®7,
These accumulating findings suggest a therapeutic
approach to improve obesity and metabolic syndrome
by increasing energy expenditure through TGR5/M-BAR
stimulation.

BILE ACIDS IN AUTOPHAGY

Autophagy is an evolutionarily conserved catabolic sys-
tem that maintains energy homeostasis by recycling
nutrients in the fasted state. Recent studies have re-
vealed that FXR stimulation suppresses autophagy in
the liver. FXR and peroxisome PPARa competitively bind
to the promoter regions of autophagic genes, and these
receptors show conflicting effects on transcription™.,
In the liver, PPARa activation under fasted conditions
promotes autophagic lipolysis, while FXR activation under
fed conditions suppresses autophagy. That is, PPARa
and FXR competitively regulate autophagy based on
the nutritional condition (Figure 4A). Another study also
revealed that FXR and cAMP response element-binding
protein (CREB), which is a transcriptional activator
under starvation, competitively regulate autophagy in
the liver™®. In the fasted condition, CREB binding to its
coactivator CREB regulated the transcription coactivator
2 (CRTC2) to induce CRTC2 activity and subsequent
autophagic-related gene expression. Additionally, FXR
stimulation caused by feeding disrupts the functional
CREB-CRTC2 complex and downregulates autophagy
(Figure 4B). In any case, there is no doubt that FXR acts
as a suppresser of autophagy.

ROLES OF BILE ACIDS IN THE
GASTROINTESTINAL TRACT

Intestinal FXR has been recently identified as a possi-
ble target for improving metabolic syndrome. Intestinal
FXR activation induces the expression of FGF-15/19,
and several studies have demonstrated that FGF-15/19
affects glucose and energy homeostasis. FGF-19
transgenic mice showed increased hepatic p oxidation,
reduced adipose tissue weight, and improved glucose
tolerance and insulin sensitivity””*!. In mice, hepatic
acetyl-CoA carboxylase 2 (ACC2) mRNA was decreased,
and the mass of the BAT was increased. ACC2 exists at
the mitochondrial membrane and converts acetyl-CoA
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Figure 4 Autophagy regulation by the farnesoid X receptor. FXR is asso-
ciated with regulation of autophagy. Two different mechanisms are reported. A:
FXR and PPARa. competitively bind to the promoter regions of autophagic genes,
and FXR activation suppresses autophagy; B: FXR stimulation disrupts the
functional CREB-CRTC2 complex and suppresses autophagy. FXR: Farnesoid
X receptor; PPARa: Peroxisome proliferator-activated receptor o;; CREB: cAMP
response element-binding protein; CRTC2: CREB regulated transcription
coactivator 2.

to malonyl-CoA. ACC2 activation results in an elevation
of malonyl-CoA levels, which inhibit carnitine palmitoyl
transferase-1 (CPT-1) activation'’. CPT-1 transfers FFA
from the cytoplasm to the mitochondria and induces fatty
acid p oxidation. Thus, the overexpression of FGF-19
suppresses ACC2 mRNA levels, decreases malonyl-CoA
levels, activates CPT-1, and thereby increases p-oxidation
in the liver. In addition, hyperglycemia is improved upon
administration of FGF-19 protein in obese mice!”®. Fur-
thermore, activation of intestinal FXR by administration
of fexaramine, an FXR agonist, improved obesity and
insulin resistance by inducing FGF-15, changing the
serum BA composition and stimulating systemic TGR5/
M-BARUY. These results suggest the possibility that
metabolic disease is improved through the intestinal FXR-
FGF-15/19 signaling pathway (Figure 5B).

The primary BAs excreted into the intestine become
deconjugated BAs and are converted into various secon-
dary BAs by microbial enzymes”®. In germ-free (GF)
mice, a decrease in the gut microbiota that facilitate BA
deconjugation leads to increased tauro-beta-muricholic
acid (T-B-MCA). In comparison to conventionally raised
mice, FXR-dependent BA synthesis is reduced in GF
mice. Therefore, T-3-MCA is an FXR antagonist, and
the microbiota affect bile acid homeostasis via the inhi-
bition of intestinal FXR signaling by change in the BA
composition”®. In contrast to previous reports, recent
studies have noted that alteration of the BA composition
by microbiota and inhibition of intestinal FXR activity
improved lipid and glucose metabolism. Increased T-p-
MCA reduced intestinal FXR activation and decreased
serum ceramide levels through repression of ceramide
synthesis. Decreased ceramide downregulated expression
of hepatic SREBP-1c and resulted in an improvement of
obesity and nonalcoholic fatty liver disease (NAFLD)"”7”.,
Additionally, intestinal FXR deactivation may also improve
glucose metabolism as well as lipid metabolism. FXR
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activation in L cells decreased glycolysis, proglucagon
expression and cAMP levels. Thus, GLP-1 production
and secretion were inhibited (Figure 5A)®°. Conflict-
ing opinions suggest that microbiota regulation of BA
homeostasis and intestinal FXR activation are involved
in controlling hepatic lipid accumulation and glucose
metabolism. Further studies are needed to clarify the
roles of intestinal FXR signaling for improving metabolic
diseases.

Bariatric surgery provides another clue to identify-
ing the link between BAs and glucose homeostasis.
Bariatric surgery, particularly gastric bypass surgery, is
an established modality for obesity and type 2 diabetes
mellitus, albeit that the mechanism of its effectiveness
remains unclear. Interestingly, an improvement in gly-
cemic control is seen soon after the surgery, when the
body weight remains unchanged. Therefore, some of
the anti-metabolic syndrome effects of this surgical
intervention appear to be independent of body weight
reduction. One recent study suggested that BAs might
participate in this immediate effect of bariatric surgery.
Following gastric bypass, the bile flow is changed, which
leads to an increase in plasma BA level and incretin
secretion™, Hormonal factors and the gut microbiota
might also be involved in the effects of this surgery.
The gut microbiota is responsible for the enteral BA
metabolism, and the normal spectrum of gut micro-
biota is impacted by gastrointestinal surgery. As one
example, the predominant presence of Firmicutes
was reportedly diminished, and other species, such as
methanogens and Prevotellacaea, were also inhibited
after bariatric surgery™. In addition to these studies,
recent research has revealed that FXR is associated with
the effect of bariatric surgery™. Interestingly, in FXR
knockout mice, metabolic improvements such as weight
loss and improved glucose tolerance were reduced after
bariatric surgery. Furthermore, the surgery changed the
gut microbial communities differently between wild type
and FXR knockout mice. This study suggested that BAs
may affect glucose homeostasis via FXR signaling and
alterations of the gut microbiota after bariatric surgery.
Further investigations are expected.

Bile acid binding resin (BABR) is an effective drug for
the treatment of hypercholesterolemia by lowering LDL-
cholesterol. BABR absorbs BAs in the intestine, thereby
preventing their uptake in the ileum, interrupting their
enterohepatic circulation, and facilitating their excretion
in the feces. The inhibition of the enterohepatic circula-
tion leads to a reduction of the BA pool size, repression
of FXR-SHP and FGF-15/19 signaling, and induction
of CYP7A1 expression and synthesis of BAs from the
cholesterol to maintain the BA pool size. A decrease in
intrahepatic cholesterol levels activates SREBP-2, which
induces the expression of the LDL receptor (LDLR) to
enhance cholesterol uptake, reducing serum cholesterol
levels. In addition to lowering the serum cholesterol
effect, there is interaction between BABR and glucose
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metabolism®". In a diet-induced obesity rat model,
BABR decreased serum glucose and improved glucose
tolerance™®, In a dlinical trial, cholestyramine, a first
generation BABR, improved glycemia by 13% in patients
with type 2 diabetes™. In addition, a second generation
BABR also improved glucose clearance and increased
serum GIP and GLP-1 levels in patients with type 2
diabetes mellitus™®. These studies clarified that BABR is
not absorbed in the body and there are few unwanted
side effects. Furthermore, BABR can decrease blood
glucose levels only in high glucose situations. As a result,
in January 2008, this drug was approved as a therapeutic
drug for diabetes by the Food and Drug Administration
(FDA) in the United States™#%,

Although how BABR improves diabetes remains
unknown, several possible mechanisms have been pro-
posed. BABR-mediated improvement of hepatic insulin
sensitivity depends on downregulating the hepatic
cholesterol-LXR-IRS2 pathway™®, In addition, BABR
induces GLP-1 secretion via the activation of TGR5/
M-BAR or GPR40, each being activated by BAs binding
with BABR or unabsorbed long-chain fatty acids™>***>),
Further, BABR affects the make-up of the BA pool
and peripheral BAs, which results in the induction of
peripheral energy expenditure and improved glucose
tolerance’™®. The BABR effects of improving diabetes
may be explained by the inhibition of intestinal FXR as
well as TGR5/M-BAR signaling™®. BABR colesevelam
inhibits intestinal FXR activation and improves glucose
metabolism by increasing proglucagon gene expression
and inducing GLP-1 secretion in ob/ob mice®®. These
findings suggest that inhibiting FXR in the L cell via BABR
could be a new target for diabetes.
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CLINICAL APPLICATION IN BA

SIGNALING

Currently, BABR has been approved by the FDA and
has been dlinically used as a diabetes treatment drug.
The association between bariatric surgery and BA ho-
meostasis was confirmed. In addition to BABR and
bariatric surgery, other clinical applications based on the
mechanism of metabolic control via BA signaling are
ongoing. For instance, INT-747 (also named 6-ethyl-
CDCA), which is a synthetic FXR agonist, exerts a hepato-
protective effect in patients of primary biliary cirrhosis
(PBC)®**® and a phase II clinical study has already
been completed and confirmed the effect of PBC. In
addition to medicine, INT-747 has also entered into a
study for NAFLD treatment. A phase II clinical trial for
NAFLD has been completed, and an improvement was
observed in type 2 diabetes mellitus patients with NAFLD.
Clinical trials with TGR5 agonists, such as INT-777, are
ongoing, and future studies are expected******,

Altogether, these clinical applications will elucidate
the BA signaling mechanisms that will lead to the im-
provement of metabolic disorders including obesity and
diabetes.

CONCLUSION

Today, BAs have become important molecules to control
metabolic homeostasis. In this review we discussed the
relationship between BA metabolism and signal trans-
mission, such as the FXR and TGR5/M-BAR pathways
and the possibility that BAs may improve metabolic
diseases. Current evidence shows that BAs regulate lipid,
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glucose, and energy metabolism via FXR or TGR/M-BAR-
mediated pathways. Furthermore, the clinical application
of FXR and TGR/M-BAR agonists are ongoing.

Recent studies have focused on intestinal FXR sig-

naling; however, conflicting data have been reported
regarding the metabolic regulation of intestinal FXR
activity. Further studies are necessary to determine
intestinal FXR signaling taking into consideration various
factors such as microbiota regulation, BA pool size, and
BA composition.
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Abstract

AIM: To assess the amount and pattern of reactive
oxygen species (ROS) production in diabetic patient-
derived neutrophils.

METHODS: Blood samples from type 2 diabetes
mellitus (DM) patients and volunteers (controls) were
subjected to neutrophil isolation and the assessment
of neutrophil oxidative burst using chemiluminescence
assay. Neutrophils were activated by using phorbol
myristate acetate (PMA) and neutrophils without acti-
vation were kept as a negative control. The chemilu-
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minescence readings were obtained by transferring cell
suspension into a 1.5 mL Eppendorf tube, with PMA
and luminol. Reaction mixtures were gently vortexed
and placed inside luminometer for a duration of 5 min.

RESULTS: Our results showed that in the resting
condition, the secretion of ROS in normal non-diabetic
individuals was relatively low compared to diabetic
patients. However, the time scale observation revealed
that the secreted ROS declined accordingly with time
in non-diabetic individuals, yet such a reduction was
not detected in diabetic patients where at all the time
points, the secretion of ROS was maintained at similar
magnitudes. This preliminary study demonstrated that
ROS production was significantly higher in patients with
DM compared to non-diabetic subjects in both resting
and activated conditions.

CONCLUSION: The respiratory burst activity of
neutrophils could be affected by DM and the elevation
of ROS production might be an aggravating factor in
diabetic-related complications.

Key words: Neutrophils; Diabetes mellitus; Reactive
oxygen species; Chemiluminescence
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Core tip: This is a preliminary study that investigates the
activation status of peripheral blood-derived neutrophils
in type 2 diabetes. This study clearly indicated that the
neutrophils from type 2 diabetic patients are highly
activated upon /n vitro stimulation and hence produce
greater amounts of reactive oxygen species (ROS)
compared to a normal individual. Release of a greater
volume of ROS could serve as an additional risk for end
organ injury in type 2 diabetes mellitus.

Ridzuan N, John CM, Sandrasaigaran P, Magbool M, Liew
LC, Lim J, Ramasamy R. Preliminary study on overproduction
of reactive oxygen species by neutrophils in diabetes mellitus.
World J Diabetes 2016; 7(13): 271-278 Available from: URL:
http://www.wjgnet.com/1948-9358/full/v7/i13/271.htm DOI:
http://dx.doi.org/10.4239/wjd.v7.i13.271

INTRODUCTION

Neutrophils are a crucial first line cellular host defence
against infections as they are potent mediators of inflam-
mation™. Elimination of pathogens by neutrophils follows
a sequence of events such as adherence, chemotaxis,
phagocytosis, microbial killing and apoptosis. The microbial
killing by the formation of reactive oxygen species (ROS)
and reactive nitrogen species (RNS) via activation of
respiratory burst cascades plays a vital role in removing
phagocytosed microbes™. ROS and RNS produced during
the respiratory burst provide an important neutrophil-
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mediated defence system, yet the overproduction ROS
can trigger vascular damage in chronic diseases such as
hypertension and diabetes mellitus (DM)™.

In recent years, the understanding of DM has changed
from the perception of a chronic metabolic disease to an
immune-mediated disease. Many expert reports advo-
cate that DM may be a paradox of immune reactivity,
which results in the development of the diabetic state
and may lead to severe complications. The alteration
of an innate immune response due to hyperglycemia
has been recognised as the major factor resulting in
the development of DM. Both type 1 and 2 DM are
afflicted by the host immune system. Autoimmune T
cells and autoantibody production against pancreatic
beta cells are responsible for the development of type
1 DM, whereas the chronic low-grade inflammation
and activation of the innate immune system are closely
related to the pathogenesis of type 2 DM™., The elevated
levels of inflammatory markers such as tumor necrosis
factor-a, interleukin-6 and C-reactive protein were seen
in subjects with diabetes™.

In diabetic patients, ROS is produced via glucose
autoxidation and non-enzymatic protein glycation in
various tissues such as neural cells, lens crystalline and
recently reported in pancreatic p-cells™®. Since the
activity of antioxidant enzymes in the pancreas is rela-
tively low compared to other tissues, the pancreas is one
of the organs sensitive to an oxygen radical attack'’.
Apart from that, the uncontrolled release of free radical
nitric oxide (NO) from endothelium also possesses a
toxic effect on microvasculature®®. The excessive and
ill-controlled NO and ROS can react to form peroxyni-
trite anion, a highly reactive and toxic compound which
rapidly decomposes to hydroxyl anion and nitrogen dio-
xide!®. This possibly leads to cytotoxic and cytostatic
effects on parenchymal cells and heads to irreversible
pathologies™"**. Overall, ROS formation is considered
a direct consequence of hyperglycemia. Hence the
glycation process and the subsequent oxidative stress
pave a way to the detrimental effects of DM!*,

The prime effector function of a neutrophil relies on
its ability to generate ROS within the phagolysosome
for the degradation of engulfed pathogens. However,
the excessive or inappropriate production of these reac-
tive compounds may lead to detrimental effects such
as hypertension, atherosclerosis and DM. The elevated
oxidative stress which results from superoxide release
by neutrophils in the diabetic condition is well docu-
mented™**”), The assessment of neutrophil-mediated
respiratory burst activity from Hispanic diabetic indivi-
duals demonstrated a significant rise in ROS outburst
compared to the normal group. Interestingly, upon treat-
ment with PKC inhibitors and azithromycin, the magnitude
of the respiratory burst response was substantially
reduced™. Similarly, the high levels of glucose and AGE
also induced neutrophil activation and subsequently
escalated the oxidative stress via the RAGE-ERK1/2
pathway™. It is clear that the harmful effect of ROS is
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Table 1 Demographics and characteristics of the patients with type 2 diabetes mellitus

Patient Age Duration (yr) HbA1c (%) Family history Types of medication

1 65 12 6.2 Father and mother Metformin, atorvastatin and multivitamins

2 72 17 6.6 Mother Glibenclamide, insulin (humapen), ecospirin and viatril S

B 82 28 6.1 - Metformin, insulin (mixtard), cardipirin, prostin and lovastatin
4 69 11 6.3 Father Diamicron MR, simvastatin

5 65 13 6.2 Mother Herbal medication, glibenclamide and metoprolol

6 64 14 7.2 Father Insulin, metformin, simvastatin and captopril

very much linked with the augmented production of the
advanced glycated end-products (AGE) and their cognate
receptors (RAGE). The ligation between AGE and RAGE
potentially increases the cytosolic ROS and facilitates
mitochondrial superoxide production in the hyperglycemic
condition™®, Although the actual mechanism that governs
the production and release of ROS in diabetic patients’
neutrophils is still elusive, it does not negate the possible
role of damaged mitochondria to generate an excess
amount of superoxide which is fuelled by a sustained
supply of NADH!"?.,

Despite growing data which show the role of oxidative
stress in the etiology and pathophysiology of DM, there
are no consistent results of ROS overproduction in dia-
betic patients™*“®®. Therefore, the current pilot study was
designed to assess the pattern of ROS production in type
2 DM. The outcome of this present study showed that
neutrophils from patients with DM constitutively secrete
a significantly higher volume of ROS in both resting and
activated conditions.

MATERIALS AND METHODS

Subjects

This is an experimental study where a total of 6 type
2 DM patients (duration of disease 11-28 years) aged
64-82 years were included in this study. The patients
and normal subjects were voluntarily recruited, briefed
on the purpose of the study and verbal consent was
obtained. Patients were selected based on the inclusion
criteria of type 2 DM for more than 10 years duration
and the age range of 60-82 years. The exclusion criteria
were patients undergoing dialysis, inflicted with anemia,
polycythemia and gout or had a history of severe immu-
nological, hepatic, cardiac, renal, hematological or other
organ impairment. The details of HbAlc and anti-diabetic
treatment of each patient were extracted from the latest
laboratory screening. The particulars of the patients are
shown in Table 1. Samples of the non-diabetic control
group were obtained from 3 volunteers aged between
30-50 years old.

Blood sampling

Ten millilitres of a peripheral venous blood sample from
diabetic patients and non-diabetic individuals were
collected by a certified phlebotomist. Whole blood was
collected in two 9 mL vacutainers with sodium heparin
as anticoagulant (Greiner bio-one, Australia). Peripheral
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blood samples were processed immediately after the
collection.

Neutrophil isolation

Neutrophil isolation and verification by morphology
were conducted as per our established laboratory
procedures®®?”, Briefly, 10 mL of peripheral blood was
collected and diluted in 1 x Hank’s balanced salt solution
(HBSS Gibco, United Kingdom) medium at 1:1 ratio. Ten
millilitres (10 mL) diluted blood was then layered over 5
mL Ficoll-Paque solution (GE Health care, life sciences,
Sweden) and centrifuged at 1800 rpm for 30 min at
room temperature. Once the unwanted mononuclear
cells and plasma were decanted, the red cell pellet
which contains the polymorphonuclear cells (PMN) was
suspended in 5 mL HBSS, layered on 3% Dextran (Fisher
Scientific, NJ, United States) and sedimented at room
temperature for 45-60 min. The sedimented supernatant
was further subjected to the RBC lysing procedure to
obtain uncontaminated PMN. Leishman staining was
performed to confirm the neutrophil morphology. Briefly,
a few drops of the neutrophil suspension were spread
on a glass slide and covered with Leishman solution
(Merck, Germany) for 1 min. Subsequently, the smear
was immersed in phosphate buffer solution for 15 min.
The slide was rinsed off with tap water, dried and ex-
amined under the light microscope at 20 x and 40 x
magnifications. The viability of cells was determined by
trypan blue exclusion during the manual cell counting
process.

Assessment of neutrophil oxidative burst

Oxidative burst by human neutrophils was measured by
production of ROS through chemiluminescence assay.
Freshly isolated neutrophils (0.5 x 10° cells/well) were
seeded in complete Roswell Park Memorial Institute
medium without phenol red (Gibco, United Kingdom)
and were concurrently activated with 500 nmol/L phorbol
myristate acetate (PMA) (Sigma, Germany). Neutrophils
without activation were kept as a negative control. Cells
and the tested compound were maintained at 37 C in
a water bath prior to adding the stimulants. Readings
were obtained by transferring the cell suspension into
a 1.5 mL Eppendorf tube, with 100 uL PMA and 100 uL
luminol (500 pmol/L). Reaction mixtures containing a final
volume of 1000 pL were gently vortexed and placed inside
Glomax luminometer 20/20 (Promega) for a duration of
5 min.
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Figure 1 Morphological analysis of isolated neutrophils. Isolated neutrophils were smeared on a glass slide and labeled with Leishman stain. Under the 20 x
magnification, cells appeared homogeneous (A) and 40 x magnification exhibited the multi-lobulated nucleus (B).

Statistical analysis
Data are expressed as mean + SD*!, Differences were
considered significant at P < 0.001. Statistical analyses
were conducted using 2-way ANOVA using Microsoft
Office 2007 (Excel).

RESULTS

Isolation and confirmation of neutrophils

Employing density gradient centrifugation followed by
a dextran sedimentation procedure, peripheral blood
from non-diabetic individuals and diabetic patients were
fractioned into several layers. The layer enriched with
neutrophils was further subjected to the hypotonic red
blood lysis to obtain a pure population of neutrophils.
Isolated neutrophils were labeled with Leishman staining
to confirm the purity of neutrophils. The isolation process
yielded more than 85% of the pure neutrophil population.
Examination under the light microscope with low mag-
nification revealed that isolated cells were uniform and
free from RBC and mononuclear cell contamination
(Figure 1A). The morphology of neutrophils was further
confirmed by microscopical examination with higher mag-
nification where cells displaying a 3-5 lobulated nucleus
were confirmed as neutrophils (Figure 1B).

Neutrophils from diabetic patients constitutively

produced a higher amount of ROS in a resting condition
In a resting condition, both neutrophils that were isolat-
ed from non-diabetic individuals and diabetic patients
showed a basal amount of ROS production. It was
noticed that neutrophils from non-diabetic individuals
secreted ROS approximately 8000 chemiluminescence
counts (CC) at the initial 10 s and the secretion declined
with time when the lowest 2000 CC was noticed at 50 s.
However, neutrophils from diabetic patients exhibited
a statistically significant increase in ROS secretion
(13000-14000 CC) (P < 0.001) and the amount was main-
tained throughout the measurement points up to 50 s
(Figure 2). In order to determine whether a similar ROS
production pattern could be observed when stimulated,
a potent microbial agent, PMA was used to induce
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the neutrophil’'s ROS secretion. As expected, PMA pro-
foundly increased ROS secretion at all measured time
points regardless of the source of neutrophils. The
secretion of ROS from neutrophils in non-diabetic and
diabetic subjects was elevated at approximately 13000
CC and 21000 CC, respectively. The amount of ROS
secreted from activated neutrophils of non-diabetic
and diabetic subjects was maintained throughout the
measurement points. Besides that, neutrophils from
both non-diabetic and diabetic subjects displayed a
maximal amount of secretion at the initial 10 s of the
measurement period.

Neutrophils from diabetic patients secreted higher ROS
in both resting and activated conditions compared to
the non-diabetic subjects

The maximal production of ROS by neutrophils of non-
diabetic and diabetic subjects during any time point of the
measured period was recorded. In a resting condition,
the maximal amount of ROS produced by neutrophils
of non-diabetic and diabetic subjects were 5000 CC
and 13000 CC, respectively, whereas, PMA activated
neutrophils of non-diabetic and diabetic subjects secreted
14000 CC and 20000 CC, respectively. In both resting
and activated conditions, neutrophils from diabetic pati-
ents showed a statistically significant elevation of ROS
production. However, a radical escalation index of ROS
was noticed in the resting condition where ROS secreted
from neutrophils of diabetic patients was approximately
2.8 fold higher than non-diabetic controls (Figure 3).

DISCUSSION

Neutrophils play a major role in innate immunity by ex-
ecuting acute inflammation due to infectious agents.
Unlike other immune cells, neutrophils exist in peripheral
blood in a larger quantity and the loss of neutrophils due
to inflammation is rapidly substituted by its production
in bone marrow. Due to its important role in the early
inflammatory process, neutrophils are able to migrate
towards the site of inflammation through the tight epi-
thelial junction. The most critical effector functions of
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Figure 2 Temporal analysis of reactive oxygen species secreted by
neutrophils of non-diabetic and diabetic subjects. Isolated neutrophils were
measured for ROS secretion via chemiluminescence method at every 10 s over
a period of 50 s. Neutrophils isolated from diabetic patients showed a higher
and consistent secretion of ROS in resting condition (A). PMA stimulation
elevated the ROS secretion from neutrophils of both non-diabetic and diabetic
subjects. Neutrophils from diabetic patients produced a higher amount of ROS
compared to non-diabetic subjects. ROS production was determined at every
10 s beginning from the administration of PMA to the time point where the ROS
production reached a maximal level and started to decline (B). Data expressed
as mean + SD and the statistical significance was determined at °P value <<
0.001. ROS: Reactive oxygen species; PMA: Phorbol myristate acetate.

neutrophils are phagocytosis and killing the invading
bacteria through the activation of the respiratory burst.
Respiratory or oxidative burst in neutrophils starts with
a consequent formation of ROS, such as superoxide
radicals (O2-) and hydrogen peroxide (H202), and RNS,
such as NO and peroxynitrate anion (ONOO-)"*?, Besides
inflammation induced by pathogens, neutrophils can
be activated to produce free oxygen radicals and other
superoxide derivatives with a variety of stimuli, such
as the chemotactic peptide N-formyl methyl leucyl
phenylalanine, the anaphylatoxin C5a, platelet-activating
factor, leukotriene B, PMA and calcium ionophores™®?,
Oxidative stress resulting from a raised ROS level has
become a common reflection of many chronic illnesses™.
The present preliminary study showed that neutrophils
from type 2 DM produced a significantly higher amount
of ROS compared to non-diabetic individuals in both
resting and activated conditions. The current result is
in line with Houstis et a*” (2006) who demonstrated
the involvement of increased ROS production in insulin
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Figure 3 Total reactive oxygen species produced by neutrophils of
non-diabetic and diabetic subjects. Neutrophils isolated from non-diabetic
individuals and diabetic patients subjected for ROS secretion at resting
condition and upon stimulation with PMA. The maximal production of ROS at
any time point over a period of 50 s was recorded and compared. Neutrophils
from diabetic patients showed a higher production of ROS at resting and
activated conditions. Data expressed as mean + SD and the statistical
significance was determined at °P value < 0.05. ROS: Reactive oxygen
species; PMA: Phorbol myristate acetate.
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resistance in type 2 DM using a cell culture model and
murine models. Conversely, Alba-Loureiro et al**! (2007)
reported the secretion of ROS in DM was indeed reduced
compared with normal controls. This observation was
based on the assessment of neutrophil activities, such
as chemotaxis, phagocytosis, ROS production and
microbial killing, where these activities consume a
substantial amount of ATP. Since diabetes affects energy
metabolism, it could also result in down-regulation or
a decrease in neutrophil activities. The pattern of ROS
production in patients with DM is not consistent and
may be due to many reasons. The inclusion of patients
undergoing a specific regime of drugs that lower the
overall oxidative stress might have confounded the experi-
mental outcomes. Besides that, utilization of different
techniques to isolate neutrophils and detect ROS might
possibly affect the final volume of ROS secreted. The
laboratory procedures such as hypotonic lysis of RBC for
isolating neutrophils from peripheral blood and the long
duration of sample processing may potentially affect
the viability of neutrophils, thus reflected as reduced
ROS secretion. In the current study, the isolation of
neutrophils was conducted within 2-3 h of peripheral
blood withdrawal and a chemiluminescence technique
was utilised for detecting ROS over a period of time.
This technique is highly sensitive as it utilizes luminol
which allows detection of intracellular and extracellular
ROS and RNS, such as 0:-, H202, hydroxyl radical (HO),
hypochlorous acid (HOCI), NO and ONOO-. Furthermore,
morphological observation of isolated neutrophils dis-
played a healthier appearance and high viability.

This present study also revealed that as the time
increased during ROS measurement over a total of 50 s,
the ROS production in neutrophils of resting non-diabetic
subjects constantly reduced, whereas the level of ROS
from neutrophils of diabetic patients was maintained
throughout the measurement period. The constant
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and elevated secretion of ROS at all the time points by
neutrophils of diabetic patients could be a consequence
of the raised oxidative burst in DM. However, this
could be a serious phenomenon where neutrophils of
diabetic patients may have lost the ability to switch
off or tame down the respiratory burst activity, hence
predisposing the patients to microvascular injuries. The
continuous suboptimal activation of the respiratory burst
in neutrophils of diabetic patients may also deplete
ROS or exhaust the mechanism that generates ROS,
rendering neutrophils inefficient and thus increasing
susceptibility to microbial infection. This could also be
a potential cause for slower wound healing and occur-
rence of gangrene in diabetic patients. When neutrophils
were stimulated with a robust infectious agent-derived
substance, PMA, neutrophils of both non-diabetic and
diabetic subjects secreted a tremendous amount of ROS.
Our results demonstrated that neutrophils responded
well to PMA stimulation, as reported by Ramasamy et
a*!in 2010. Although the current study did not decipher
the potential signaling pathway that might be involved
in PMA stimulation, human neutrophils showed that
the activation of the protein kinase C (PKC) signaling
cascade serves as an inducer of rapid ROS synthesis.
Notably, the 2.8 fold increase of secreted ROS between
non-diabetic and diabetic subjects in a resting condition
was much higher compared to the induced activated
condition. This supports our notion that neutrophils from
diabetic patients are in a state of auto ROS secretion,
which explains the possible contribution to microvascular
injuries in DM.

The overproduction of ROS by the neutrophil-me-
diated respiratory burst can be controlled either via
inhibition of ROS-generating enzymes, NADPH oxidase
or through the direct ROS-scavenging effect. In the
physiological condition, the activation of NADPH oxidase
in generating ROS in neutrophils is beneficial for host
defence. In this case, overproduction of free radicals
and proteolytic enzymes used as defences against
infections can be highly toxic to the surrounding cells
and tissues®. Nevertheless, it can be deleterious to the
host if the enzyme cascade is inappropriately activated
or loses its control. Hence, drugs such pyrazolones and
its derivatives such as aminopyrine and dipyrone can be
used in the management of DM. The study conducted
by Costa et al®* (2006) showed that these drugs not
only normalize the glucose level but scavenge the over-
produced neutrophil reactive species. Besides that,
plasma glucose level should also be strictly controlled
as hyperglycemia promotes the production of ROS
by affecting the first-phase of glucose-induced insulin
secretion through the suppression of GAPDH activity™.
However, the outcomes of this study should be further
evaluated with a larger sample size as the current
study was conducted with a very limited humber of
diabetic patients. Although the overall pattern of ROS
secretion in other chronic metabolic diseases is similar
to the current study, a stringent sample selection with a
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statistically required sample size will add value to future
studies. Moreover, this study was conducted with a
conventional yet highly specific and sensitive technique
which is laborious in nature due to two critical processes,
namely the neutrophil isolation and measurement of
ROS. Opting for a much-advanced technique such as
flow cytometer using unfractionated peripheral blood will
potentially cut down the tedious laboratory procedures
and allow investigation of a larger sample size. None-
theless, harnessing the semi-activated neutrophils in
DM could serve as an auxiliary therapy that maintains
the oxidative/anti-oxidative balance and integrity of the
immune system.

Our pilot study employed a sensitive and specific
method, a chemiluminescence technique to measure
the ROS production by neutrophils from non-diabetic indi-
viduals and diabetic patients. Neutrophils from diabetic
patients showed a constitutive and elevated level of
respiratory burst compared to non-diabetic individuals
in resting and activated conditions. The data from this
preliminary study revealed an inherent disability of
diabetic-derived neutrophils in regulating ROS secretion;
however, such a pathological condition should be verified
by a larger sample size and well-designed research
study.
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Background

Diabetes mellitus is a metabolic disorder that is often associated with vital
organ failure if untreated. The excessive production and release of reactive
oxygen species (ROS) are known as key factors that contribute to diabetic
complications. Particularly, neutrophils are much more susceptible to the
hyperglycemic condition and significantly contribute to the severity of diabetic
complications by spontaneously releasing an abundant amount of ROS.

Research frontiers

Controlling the excessive release of ROS by neutrophils could serve as a
promising tool in managing or preventing diabetic complications. Inhibiting a
relevant signaling pathway that governs the release or production of excessive
ROS can be exploited therapeutically.

Innovations and breakthroughs

The current preliminary study strengthens the existing laboratory and clinical
data where the vulnerability of diabetic patients’ derived neutrophils to release
an excessive amount of ROS at both resting and activated conditions was
noted.

Applications
Reduction of ROS release in neutrophils could serve as an axillary therapy in
managing diabetic complications.
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Terminology
ROS: Reactive oxygen species.

Peer-review
This research article is very well written, clearly presenting augmented ROS
production in type 2 diabetes mellitus patients’ neutrophils for the first time.
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