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Abstract
Type 2 diabetes (T2D) mellitus is a common complex disease that currently
affects more than 400 million people worldwide and has become a global health
problem. High-throughput sequencing technologies such as whole-genome and
whole-exome sequencing approaches have provided numerous new insights into
the molecular bases of T2D. Recent advances in the application of sequencing
technologies to T2D research include, but are not limited to: (1) Fine mapping of
causal rare and common genetic variants; (2) Identification of confident gene-
level associations; (3) Identification of novel candidate genes by specific scoring
approaches; (4) Interrogation of disease-relevant genes and pathways by
transcriptional profiling and epigenome mapping techniques; and (5)
Investigation of microbial community alterations in patients with T2D. In this
work we review these advances in application of next-generation sequencing
methods for elucidation of T2D pathogenesis, as well as progress and challenges
in implementation of this new knowledge about T2D genetics in diagnosis,
prevention, and treatment of the disease.
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Core tip: Next-generation sequencing (NGS) technologies have a broad range of
applications in studying the genetic causes of type 2 diabetes (T2D), such as: (1)
Identification of rare and common genetic variants, associated with disease; (2)
Functional studies for describing role of genes in disease pathogenesis; and (3)
Evaluation of environmental contribution to the disease by using microbiome profiling
methods. This review of NGS application to the genetic research of T2D presents the
advances and challenges related with sequencing analysis-based studies and
implementation of this knowledge in clinical practice.

Citation: Nasykhova YA, Barbitoff YA, Serebryakova EA, Katserov DS, Glotov AS. Recent
advances and perspectives in next generation sequencing application to the genetic research
of type 2 diabetes. World J Diabetes 2019; 10(7): 376-395
URL: https://www.wjgnet.com/1948-9358/full/v10/i7/376.htm
DOI: https://dx.doi.org/10.4239/wjd.v10.i7.376

INTRODUCTION
Type 2 diabetes (T2D) mellitus is a common complex disease that currently affects
more than 400 million people throughout the world, and it is projected 552 million
cases of T2D by the year 2030[1]. The disease is characterized by insulin resistance and
beta-cell dysfunction and can seriously impair overall quality of life[2]. T2D may lead
to increased risk of cardiovascular disease, stroke, kidney failure and can result in
lower life expectancy by 5-10 years[3-5]. T2D etiology is known to have a significant
genetic component that is confirmed by family- and twin-based studies. The risk of
the  disease  developing is  approximately  70% when both  parents  have  T2D and
approximately 40% when one parent has disease[6]. Twin studies have shown that the
heritability of T2D ranges from 26% to 73%, and the concordance rate for T2D in
monozygotic twins can reach 76%[7]. Early identification of individuals at high T2D
risk enables delay or prevention of  T2D onset  through effective lifestyle and/or
pharma-cological interventions and has been shown to reduce costs of healthcare that
causes continuing strong interest in revealing risk markers of T2D[8,9].

The development of high-throughput and affordable genotyping technologies,
statistical tools and computational software has allowed remarkable progress over the
past  decade  in  the  search  for  genetic  associations.  Since  the  first  genome-wide
association study (GWAS) for T2D identified novel susceptibility loci in 2007, more
than 100 T2D susceptibility loci have been discovered[10]. Next-generation sequencing
(NGS) technologies have a broad range of applications in studying the genetic causes
of T2D, such as: (1) Identification of rare and common genetic variants, associated
with disease; (2) Functional studies for describing role of genes in disease patho-
genesis; and (3) Evaluation of environmental contribution to the disease by using
microbiome profiling methods. However, it remains uncertain if and to what extent
our increasing knowledge of genetic and epigenetic T2D risk factors gained by NGS
methods will translate into clinical practice.

The aim of this article is to summarize recent progress and discoveries for T2D
genetics focusing on the sequencing analysis-based studies and review the challenges
in studying the genetic basis of T2D in order to improve diagnosis, prevention, and
treatment.

T2D SUSCEPTIBILITY LOCI IDENTIFIED BEFORE THE ERA
OF GWAS
The earliest genetic studies of T2D susceptibility focused on family-based linkage
analysis  and  analysis  of  candidate  genes  in  small-size  groups  of  patients.  This
approach was successful in identifying familial genetic variants with large effects such
as  those  involved  in  monogenic  forms  of  the  disease.  In  the  past  two  decades,
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numerous candidate gene studies have been performed to identify genetic variants for
T2D. However only 4 genetic markers identified in these studies have been confirmed
later  by  GWAS.  The  first  genetic  variant  for  T2D  was  the  P12A  polymorphism
(rs1801282) in peroxisomal proliferator activated-receptor gamma gene (PPARG)[11].
Then, in 2003, in a large-scale association study the previously identified association
between the E23K (rs5219) polymorphism in a gene encoding inwardly rectifying
potassium channel subfamily J, member 11 (KCNJ11) and T2D was replicated[12]. E23K
can alter function by inducing spontaneous over-activity of pancreatic β-cells, thus
increasing the threshold ATP concentration for insulin release[13]. In previous studies a
polymorphism in this genes (KCNJ11 E23K) has been reported to be associated with
T2D in several populations, although the data was inconsistent[14-18]. Transcription
factor 7-like 2 (T-cell specific, HMG-box) (TCF7L2) was shown to be associated with
T2D[19]. TCF7L2 gene product is a member of the high mobility group box family of
transcription factors, activated by the WNT signaling pathway and may play a master
role in regulating insulin biosynthesis, secretion, and processing. Subsequently, two
single nucleotide polymorphisms (SNPs) within intron 3 of TCF7L2, rs7903146 and
rs12255372, were confirmed to be strongly associated with T2D risk[20-22].  Wolfram
syndrome 1 gene (wolframin) (WFS1) was reported to be associated with T2D on the
basis of in-depth studies of candidate genes[23]. The WFS1 gene encodes wolframin,
endoplasmic reticulum (ER) membrane protein with a role in ER calcium homeostasis.
Mutations in WFS1 are known to be associated with Wolfram syndrome[24].

GENOME-WIDE ASSOCIATION STUDIES ON T2D
Advances in technology of SNP genotyping, implementation of recent genetic know-
ledge gained from the Human Genome Project, and development of robust statistical
methods  have  allowed GWAS to  become the  basic  method for  identification  of
common genetic variants associated with complex diseases such as T2D. Since the
application of GWAS technology the discovery of genetic variants associated with
T2D has developed dramatically.

In 2007, the first GWAS performed for T2D has identified three novel susceptibility
loci  related  to  pancreatic  β-cells:  (1)  Solute  carrier  family  30  (zinc  transporter),
member 8 (SLC30A8), which is expressed exclusively in insulin-producing β-cells; (2)
Insulin-degrading  enzyme  (IDE)–kinesin-interacting  factor  11  (KIF11)–hemato-
poietically expressed homeobox (HHEX);  and (3) Exostosin glycosyltransferase 2
(EXT2)–ALX homeobox 4 (ALX4)[25]. Subsequent GWAS revealed four additional loci
associated with T2D, namely CDK5 regulatory subunit associated protein 1-like 1
(CDKAL1), cyclin-dependent kinase inhibitor 2A (CDKN2A/B), insulin-like growth
factor 2 mRNA binding protein 2 (IGF2BP2),  and fat mass and obesity associated
(FTO)[26-30]. In addition, HNF1 homeobox B (HNF1B/ TCF2), a gene related to maturity-
onset diabetes of the young type 5 (MODY5), was shown to be associated with T2D[31].
One important finding from the initial GWAS results was that effect sizes for common
variants involved in T2D were likely to be modest. The statistical power to detect
associations between genetic variants and a trait depends on the sample size, the
distribution of effect sizes of (unknown) causal genetic variants, the frequency of
those variants, and the linkage disequilibrium (LD) between observed genotyped
DNA variants and the unknown causal variants[32].  This led to an innovative data
merging strategy now known as GWAS meta-analysis and resulted in multiple waves
of GWAS studies for T2D.

In 2008, six new T2D loci including JAZF1, CDC123/calcium/CAMK1D, TSPAN8/
LGR5,  THADA,  ADAMTS9,  and  NOTCH2  were  reported  by  a  meta-analysis
combining three previous GWAS [Diabetes Genetic Initiative (DGI), Finland–United
States Investigation of NIDDM Genetics (FUSION), and Wellcome Trust Case Control
Consortium (WTCCC)][33]. In 2009, two loci, namely insulin receptor substrate 1 (IRS1)
and melatonin receptor 1B (MTNR1B) were identified to be associated with T2D by
GWAS[34-36].  The IRS1  gene is  related to insulin resistance and hyperinsulinemia,
whereas MTNR1B is involved in impaired early insulin response to glucose[35].

In 2010 the second wave of the GWAS identified 17 new loci associated with T2D
which was  made possible  because  of  improved efficiency of  GWAS genotyping
technology,  enabling  interrogation  of  larger  numbers  of  SNPs  that  better  cover
common genetic variation across populations in increased sample sizes, as well as
because of methodological innovations, such as imputation (described below), which
allows prediction of genotypes at SNPs not typed on GWAS arrays[37].

In the past year a leap forward has occurred from smaller, cumulative advances to
the description of up to around 250 genome-wide significant loci of T2D[10]. In this
work, a large meta-analysis of GWAS in sample of T2D including 62892 cases and
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596424 controls was performed by combining 3 GWAS data sets of European ancestry:
DIAbetes Genetics Replication and Meta-analysis (DIAGRAM), Genetic Epidemiology
Research on Aging,  and the full  cohort  release of  the UK Biobank 39 previously
unknown  loci  have  been  identified[38].  This  study  highlighted  the  benefits  of
integrating multiple omics data to identify functional genes and putative regulatory
mechanisms caused by genetic variation. Future applications of integrative omics data
analyses are expected to improve our understanding of the biological mechanisms
underlying common diseases such as T2D[38].

MAPPING OF CAUSAL VARIANTS AND DISEASE GENES
BY NGS METHODS
While conventional genome-wide association studies allow to identify associated loci,
GWAS alone cannot be used to map causal variants (many of which are expectedly
rare in population), as the method strictly focuses on pre-selected common variants
identified by the HapMap project in the beginning of the century[39].  On the other
hand, NGS presents a reasonable alternative to the chip-based methods. For genotyp-
ing purposes, NGS reads are aligned to a reference genome, and a set of statistical
procedures is performed to identify variant sites[40]. Thus, NGS directly identifies most
of  the  genetic  variants  present  in  an  individual’s  genome  irrespective  of  their
frequency, which enables testing of all variants’ association. In this section, we will
focus on how NGS datasets might be used for identification of novel causal variants
for T2D, and which loci have been identified by these methods.

Fine mapping of GWAS signal using NGS-based reference panels
Large genome and exome sequencing and aggregation consortia, such as the 1000
Genomes project or UK10K provide valuable insights into linkage disequilibrium, i.e.,
co-occurrence rates, between different variants, enabling probabilistic reconstruction
of individual genome sequences from fixed number of genotyped loci (such as in
traditional GWAS). This in turn enables testing for the role of rare variants without
sequencing per se[37,41,42]. Large reference panels for such genotype imputation have
been constructed from sequencing data[43]. Genotype imputation has been widely used
in the studies of the genetic architecture of T2D[44]. An interesting example is a 2014
study of Icelandic population[45]. In this work, whole-genome sequencing study of a
cohort of 2630 Icelanders was performed; and the identified SNPs and indels were
imputed into 98721 controls and T2D patients genotyped with Illumina SNP chips. As
a result of this study a rare variant in HNF1A gene, encoding for a transcription factor
required for the expression of several liver-specific genes was identified. Moreover, a
new signal with association P < 1 × 10−8 at rs76895963, located within the first intron of
cyclin D2 (CCND2)  was observed[45].  Two of  the most  recent and comprehensive
research efforts aimed at fine mapping of association signal using imputation and
islet-specific epigenome maps identified multiple previously unreported loci for T2D,
including PNPLA3, LPL, TPCN2, DENND2C, and KIF2B[46,47]. Apart from using NGS
datasets for rare variant imputation, different approaches based on combined SNP
and exome chip methods have been developed, enhancing the power of imputation-
based analyses[48].

Association of single rare variants with T2D in NGS-based studies
As previously stated,  many new genetic  associations relevant  to  T2D have been
revealed by GWASs, but these findings represent common and mid-frequency genetic
variants with small effect sizes and explain only a small proportion of heritability of
the  disease.  Sequencing  approach  enables  more  complete  assessments  of  low-
frequency and rare genetic variants that can be promising in investigation of complex
traits.

Many published studies have focused on identification of T2D susceptibility loci
from NGS data. In Danish study, the exomes of 1974 Danes were sequenced to a
depth of 8 × and subsequently a two-stage follow-up in 15989 Danes and in a further
63896 Europeans were performed.  A low-frequency coding variant  in  CD300LG
associated with fasting HDL-cholesterol and two common coding variants in COBLL1
and MACF1 have been shown to be associated with T2D[49].  CD300LG encodes a
protein  proposed  to  serve  multiple  functions,  including  endocytosis  of  various
immunoglobulins and mediation of L-selectin-dependent lymphocyte rolling[50,51].
Non-coding SNPs in COBLL1 and MACF1 have previously been associated with
other metabolic phenotypes[52-54].

To investigate the hypothesis of  “missing heritability”,  the Genetics of Type 2
Diabetes and Type 2 Diabetes Genetic Exploration by Next-generation sequencing in

WJD https://www.wjgnet.com July 15, 2019 Volume 10 Issue 7

Nasykhova YA et al. NGS application to the genetic research of T2D

379



multi-Ethnic  Samples Consortium (GoT2D/T2D-GENES Consortium) undertook
whole genome sequencing in 2657 Europeans with and without diabetes, and exome
sequencing in a total of 12940 subjects from five ancestral groups. Results of this study
showed that the variants associated with T2D were overwhelmingly common and
most located within regions previously identified by GWAS. A few coding variant
associations outside established common variant GWAS regions have been identified
(rs41278853 in MTMR3 gene; rs11549795, rs28265, rs36571 in ASCC2 gene). A coding
variant reached genome-wide significance that was common in East Asian ancestry
population (PAX4 Arg192His, rs2233580)[55]. PAX4 gene encodes a transcription factor
involved in islet differentiation and function. Some PAX4 variants have been associ-
ated with early-onset monogenic diabetes[56,57].

Specific statistical approaches for rare variant associations on NGS data
Despite decreasing costs of NGS-based analyses, there still remain certain notable
limitations of such studies. The most evident limitation of all the rare variant-based
tests  on both whole-genome and imputed SNP array datasets  is  the difficulty of
obtaining enough observations to make confident statistical inference. For example, if
a causal variant occurs at a rate of 10-4  in a population, one would require many
hundreds of thousands of individuals to test its association with the disease. To allow
testing for the association of rare variants, especially in smaller samples, a group of
techniques were developed, called Rare Variant Association tests. Most of rare-variant
tests are designed to identify candidate disease genes through aggregation of all rare
variants inside the coding sequence of each gene. Numerous strategies for gene-level
testing of rare-variant association have been developed[58]. The two main groups of
such  methods  test  either  the  imbalance  of  rare  allele  counts  between  cases  and
controls (burden tests) or the proportion of phenotypic variance explained by rare
variant  genotypes  (variance-component  tests).  However,  for  T2D  almost  few
significant gene-level associations have been found even in the largest NGS-based
population cohorts[55,59]. Only the largest study performed by whole-exome sequencing
to date, which included 20791 T2D cases and 24440 controls of multiple ancestries
(Hispanic/Latino, European, African-American, East-Asian, South-Asian), identified
several gene-level associations: in 3 genes at exome-wide significance, including a
T2D protective series of > 30 SLC30A8 alleles, and within 12 gene sets, including those
corresponding to T2D drug targets and candidate genes from knockout mice. The
strongest T2D rare variant gene-level signals was shown to explain at most 25% of the
heritability of the strongest common single variant signals[60].

Several alternative techniques have been developed to overcome the limitations of
rare variant testing. In samples of limited size based on exome sequencing or targeted
resequencing, contribution of rare variants might be assessed using tests for case-
specificity conditioned on true population minor allele frequency[61]. Such strategy
may help to  identify variants  that  serve as  the candidate  causal  markers  for  the
pathology. In a recent study by our group, we identified potential association for the
VAV3, ADAMTS13, HBQ1, and DBH genes with T2D and obesity. While these genes
have not been previously implicated in the disease, they are reasonable targets for
further clinical investigation.

Another approach to counteract statistical power limitation of rare-variant based
tests in small NGS-based datasets is the usage of pedigrees. The biggest advantage of
familial studies is that cohorts of related individuals would have higher frequency of
alleles that are rare in the general population. One recent example of pedigree-based
analysis is a study of 20 Mexican-American families comprising 1034 highly related
individuals[62]. While this study still did not identify any significant associations for
individual rare variants,  it  has shown gene-level association for the CYP3A4  and
OR2T11  genes with glycemic traits,  such as fasting glucose levels and 2h insulin
levels.

Overall, there are several ways in which NGS might be used to assist identification
of causal genes and variants for T2D pathology. These associations are of ultimate
relevance for genomic risk prediction of T2D and clinical decision making[63]. Some of
the  inherent  limitation  of  the  technology,  however,  still  do  not  allow thorough
analysis of chromosome- and genome-level genetic variation and/or complex genome
regions that are poorly accessible to short read sequencing[64-66]. The spread of third-
generation sequencing technologies,  such as the Oxford Nanopore Technologies
single-molecule sequencing, as well as modifications to the existing laboratory and/or
bioinformatic practices would shed light on the roles of higher-level genetic variants
in T2D pathology.

NGS IN FUNCTIONAL GENOMIC STUDIES OF T2D
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Apart from methods aimed at genotyping, NGS can also be used to dissect functional
genome elements rather than sequence variants. NGS techniques for these purposes
include  transcriptional  profiling  approaches  (RNA-Seq),  epigenome  mapping
techniques (positional methods), and other[67,68]. These methods are commonly used to
both identify  candidate  disease genes and understand pathological  mechanisms
behind the observed phenotype. Below, we will provide several recent examples of
application of these methods to the research of T2D (Figure 1).

Transcriptional profiling of whole tissues and single cells by RNA-Seq
Transcriptional  profiling  methods,  such as  RNA-Seq,  are  used to  study activity
patterns of genes. In the recent decade, transcriptomic technologies were frequently
used to decipher the molecular pathology behind human disease[69]. T2D, being one of
the most common pathologies, has also been extensively studied by transcriptional
profiling techniques in the recent decade[70]. Traditional way to analyze RNA-Seq data
is to align the reads to a reference genome and count the numbers of reads or fragm-
ents mapped to each gene or transcript. These counts are then used to search for genes
which  significantly  change  their  expression  in  case  vs  controls  (differentially
expressed  genes,  DEGs)  using  conventional  statistical  tests  or  linear  regression
models,  and  identify  biological  processes  which  are  dysregulated  in  one  of  the
conditions. The latter task is solved by a family of gene set enrichment tests that
analyze overrepresentation of genes from a certain pathway among the identified
DEGs. Multiple downstream analyses can be performed to identify disease genes and
pathways from both bulk and single-cell RNA-Seq data[71]. Below, we will focus on
several notable examples of how both bulk and single-cell technologies can be used to
identify genes involved in pathological mechanisms of T2D.

One example of a conventional bulk RNA-Seq approach used to identify disease-
relevant pathways can be found in a recent work that studied transcriptional profiles
of diabetic keratinocytes[72]. This study showed extensive dysregulation of immunity-
related genes in these cells compared to controls, with as many as 420 differentially
expressed genes identified in total. Moreover, this study has suggested a causal role of
miR-340-3p-DTX3L  interaction in the pathological processes occurring in diabetic
skin.

Multiple  studies have also focused on the roles  of  microRNA (miRNA) in the
pathology of T2D[73]. microRNAs are a separate class of RNA molecules which play an
important role in gene regulation via post-transcriptional gene silencing. One of the
most recent studies aiming at systematic analysis of microRNA involvement in T2D
by aggregation of published data identified as many 158 microRNAs reported to be
differentially expressed in T2D. One example of an important microRNA identified in
this study is the miR-375 RNA which affects expression of several disease-relevant
genes in islets and other tissues.

Many studies suggest that the alterations in miRNA levels are associated with T2D
development and its complications. miRNA may play a key role in regulation of the
processes of carbohydrate and lipid metabolisms, adipocytokine and insulin signaling
pathways involved in T2D development. It was shown that the dysregulated in the
islets miR-7-5p, -129-3p, -136-5p,-187-3p, -224-5p, -369-5p, -375 -495-3p, -589-5p, -655-
3p affect the expression of important genes involved in insulin signaling pathway.
The altered level of miRNA miR-17-5p, -155-5p, -125b-5p, -30e-5p, -27a-5p, -221-3p, -
199a-5p,  -130b-3p,  -181a-5p,  -29a,  -29b  can cause  the  dysregulation  of  lipid  and
glucose metabolisms. For miR-130b-3p, -140-5p, -147a, -199a-5p, -27b, -221-3p and -
30e-5p) their involvement in the regulation of adipogenesis was identified[74]. Stability
of miRNAs, their presence in various body fluids and significant changes of specific
circulating miRNAs’ concentrations associated with diseases allow studying them as
potential reliable biomarkers for complex diseases such as T2D and related complica-
tions. However, there are some obstacles for straightforward clinical application of
circulating miRNAs. The biggest difficulty is due to the composition of circulating
miRNA that are sum of many different tissues and cell types in the body. At the same
time, it is well known that the expression of miRNAs varies considerably between
different tissues.

Another important branch of NGS-based transcriptional profiling techniques is the
single-cell  RNA  sequencing  (scRNA-Seq)  which  allows  researchers  to  study
transcriptional responses of individual cells and cell-types. scRNA-Seq techniques are
also being extensively used to identify key disease genes for T2D in pancreas cells. For
example, scRNA-Seq of pancreatic islets suggested a role of FXYD2 and GPD2 genes
in pathological processes behind T2D in certain islet cell types, with as many as 245
dysregulated genes in total[75,76].

Identification of epigenetic disease markers
Another widely used group of NGS methods is aimed at understanding the language
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Figure 1

Figure 1  Schematic representation of main type 2 diabetes loci identified recently by high-throughput (mostly, next-generation sequencing-based)
technologies. Each box represents certain type of genetic and epigenetic markers of type 2 diabetes.

of epigenetic marks, i.e., non-DNA based units of genetic information. NGS technolo-
gies for epigenome studies include but are not limited to: (1) Methods for detection of
specific DNA-protein interaction (e.g., Chromatin Immuno Precipitation followed by
Sequencing); (2) Methods for identification of DNA methylation sites (such as reduced
representation bisulfite sequencing); and (3) Open chromatin mapping technologies
(e.g., DNAse-Seq or ATAC-Seq)[67]. All of these methods provide valuable insights into
dysregulation  of  cellular  processes,  which  is  of  ultimate  importance  for  T2D
pathology[77].  Epigenetic marks, as the dynamic features of the cell, are frequently
considered as convenient biomarkers for disease risk prediction and prognosis in the
clinic. A large-scale survey on the adverse outcome of adiposity showed that methyla-
tion pattern at certain loci predicts development of T2D in overweight people[78]. A
recent  analysis  of  published data identified 8  differentially  methylated genes as
potential blood biomarkers of T2D (TCF7L2, KCNQ1, ABCG1, TXNIP, PHOSPHO1,
SREBF1, SLC30A8, and FTO)[79]. Epigenome profiles might also be used to enhance
identification of causal variants at complex GWAS loci[80].

Overall, RNA-Seq and positional NGS techniques provide a very useful framework
to investigate cellular processes that are affected during disease pathogenesis. These
data may in turn be used for both prediction of diabetes risk and for designing clinical
treatment  of  the  disease;  furthermore,  simultaneous  consideration  of  genotype,
expression profile and epigenetic factors might assist efficient personalized treatment
of T2D. Further integration of multiple omics datasets would allow researchers and
clinicians to have a comprehensive look into the molecular pathology behind T2D.

NGS STUDIES OF HUMAN GUT MICROBIOME AND T2D
ASSOCIATIONS
Rapid progress of NGS technologies and bioinformatic data processing methods led
to the advent of metagenome studies, i.e., investigation of the microbial composition
of natural inhabitants. A decade of advances in the field of intestinal microbiome
analysis demonstrated that alterations of gut bacteria composition is implicated in a
few medical conditions, including diabetes and obesity[81-83].  Such progress can be
attributed to a number of factors, for example, stable decrease of price per single run
for NGS platforms, continuous development of  bioinformatic tool/pipelines[84-87],
creation of specialized gut microbiome 16s rRNA databases and use of metaproteo-
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mics,  metabolomics  and  metatranscriptomics  in  conjuncture  with  genetic
profiling[88-92]. Still, there is no consensus concerning optimal conditions for conducting
microbiome  research.  Choice  between  16S  RNA  profiling/shotgun  sequencing
methods , differences in effective coverage between V1-V9 hypervariable regions ,
more precise quantitative analysis for microbiota constituents[93],  and generalized
protocols for sample acquisition are still in discussion, with main emphasise often
being put on low reproducibility of  results,  partly due to the unstable nature of
samples’  bacterial  composition[81,86,87,92,94].  Overall,  intestinal  microbiome genetic
profiling may find use in clinical practice with development of presently elusive
“golden standard” for this research field,  leading to better understanding of gut
microbiota’s role in human homeostasis and associations with diseases[95].

General overview of microorganisms involved at least partially with T2D
As of 2014, microbial community of human gut was estimated to contain at least 957
bacterial genera with phyla Actinobacteria, Bacteroides, Firmicutes, Proteobacteria
and Verrucomicrobia demonstrating most diversity and abundance[96]. While both
types of diabetes mellitus are known to cause significant changes in gastrointestinal
microbial  composition,  underlying  mechanisms  for  dysbiosis  and  roles  of  all
microbiome constituents, including bacteria, archaea, eukaryota and fungi, are still
not fully understood. Roseburia intestinalis, Faecalibacterium prausnitzii, and families
Ruminococcaceae/Lachnospiraceae, all known as butyrate producers, were detected to be
lower during T2D[97,98].  Abundance of Akkermansia muciniphila,  a mucin-degrading
primarily mucosal bacteria, had been connected to lower insulin resistance, while
their low concentrations were associated with obesity, diabetes, IBD, ulcerative colitis
and appendicitis, suggesting future use of this bacteria as a biomarker[99]. However,
such  broad  spectrum  of  diseases  makes  effective  clinical  usage  questionable.
Prevotellacopri  and Bacteroides vulgatus  were mentioned as possible promoters for
insulin resistance due to active branched chain amino acids (BCAA) production[100].
Data on general Firmicutes/Bacteroidetes ratio changes during prediabetes and T2D are
contradicting, which may be explained by differences in sequencing methods and
bioinformatics approaches[100,101]. Recent 16S/18S/ITS microbiome profiling study of
T2D with 49 adult participants in India showed interesting correlation for archaea,
where concentration of Methanobrevibacter increased in direction from healthy subjects
to fully developed T2D, while Methanosphaera  concentration gradually decreased.
Fungal  component  demonstrated  overall  abundance  growth  with  inclusion  of
pathogenic Aspergillus and Candida phyla[98]. Most of aforementioned microorganisms
were proposed as possible indicators for prediabetes, T1D (type 1 diabetes) and T2D,
but their use in clinical practice is not recommended at the moment due to low amou-
nt of data and contradictory nature of results between studies, which may be solved
in the future[86].

Linkage of microbiome to diabetes through obesity and metabolic syndrome.
Both T2D and obesity demonstrate a growing trend across the globe, with subjects
suffering from the latter being often viewed as possible T2D risk group[102,103]. Recent
findings  in  the  field  of  microbiome  variation  during  diabetes  and  obesity  had
reaffirmed earlier theories concerning microbiota’s participation in adipose tissue
function and insulin resistance. Network-based gene expression association studies of
host’s genome underline digestive metabolism, immunization, and signal transdu-
ction as the most prominent mechanisms in development of obesity/T2D[104], while the
data on gastrointestional microbiome role is yet to be unified in coherent system. Gut
microbiota had been shown to regulate body mass in a set of fecal transplantation
experiments  conducted  on  lean,  obese  and  germ-free  mice.  Transplantation  of
gastrointestional microbiota from lean to obese mice led to lower insulin resistance,
while transfer of microbiota from obese to lean mice led to body mass increase by 60%
and higher insulin resistance[83,104,105].  Low grade inflammation,  acquired through
activation of  TLR4/MyD88/NF-κB pathway by lipopolysaccharides  from gram-
negative bacterial walls, had been connected to insulin resistance through insulin
receptor substrate serine phosphorylation by participants of inflammatory cascade[106].
Inhibition of NF-κB led to increase of Akkermansia/Lactobacillus, reduced body mass
and lower insulin tolerance[100,107]. Short chain fatty acids (SCFA), obtained by bacteria
through fermentation of non-digestible fibers, serve as signaling molecules in a broad
list of processes, including proliferation of pancreatic β cells and insulin biosynthesis.
This partially explains prebiotic treatment effectiveness and changes in abundance of
Roseburia intestinalis and Faecalibacterium prausnitzii, but further research is required,
as results from different studies often contradict each other[100,108,109]. High serum levels
of BCAAare attributed to both obesity and T2D with steady increase of Prevotella copri
and Bacteroides  vulgatus  during the onset  of  the diseases[110].  Both probiotics  and
prebiotics tend to increase insulin sensitivity and lower body mass, although studies
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have small sample sizes and require longitudinal research[111,112].

Metformin effects on microbiome composition
Recent  findings  demonstrate  that  effectiveness  of  metformin,  most  prescribed
antidiabetic drug whose pharmacodynamics mainly involve activation of hepatic
AMP-activated protein kinase in liver, may be partially attributed to mediation of
diabetic dysbiosis. Increase of Akkermansia muciniphila abundance after metformin
treatment was detected in both human and animal studies, while in vitro conditions
in gut simulator demonstrated metformin as a growth factor for both Akkermansia
muciniphila  and Bifidobacterium adolescentis[113,114].  Metformin therapy was found to
promote  growth of  SCFA-producing bacteria  in  rats  (Allobaculum,  Bacteroides,
Blautia, Butyricoccus, Lactobacillus, Akkermansia and Phascolarctobacterium) and
humans (Akkermansia,  Lactobacillus,  Bifidobacterium, Prevotella,  Megasphaera,
Shewanella, Blautia or Butyrivibrio)[113].

NEW APPROACHES FOR CLINICIAN INTERPRETATIONS OF
NGS DATA
The identification of multiple loci by GWAS and sequencing technologies has given a
considerable  impetus  to  the  disclosure  of  pathogenesis  of  T2D  and  provides  a
tempting  opportunity  to  translate  genetic  information  to  clinical  practice.  This
knowledge may have potential role in disease risk prediction including identification
of subjects at risk of developing disease at an early-stage, and in clinical management
of  individuals  to  modify treatment  regimens so that  affected individuals  would
benefit  most  by their  therapy and avoid the occurrence of  complications[63].  The
emerging availability of genomic and electronic health data in large populations is a
powerful tool for research that has drawn interest in bringing precision medicine to
diabetes[115].

Can a genetic test motivate lifestyle changes?
According to the latest polls people are interested in genetic testing for T2D risk since
this allows them to evaluate the individual feature of pathology state[116]. However,
several studies have shown that some factors contribute to the failure of individuals to
conduct a genetic test.  The main factors that influence refusal include distrust of
medical researchers, religious prejudices and lower levels of education[117,118]. Some
have argued that the clinical significance of genetic markers of T2D have only a minor
role in predicting the risk with careful clinical risk assessment, the predictive value
increases[116,119].

Until  recently,  it  has been assumed that  genetic  predisposition awareness can
motivate healthy behavior[120]. According to some authors, it is considered that the
patient does not appear motivated to a healthy lifestyle after identifying his genetic
predisposition[121-123].  At  the  same  time,  research  on  the  molecular  basis  of  the
development of T2D is absolutely necessary when making a diagnosis, since young
individuals with T1D can also be obese[124,125]. Misdiagnosis of diabetes can lead to
misuse of medical treatment[126].

Studies of genetic biomarkers: Prediction, and diagnosis of T2D
Many studies have analyzed the utility of genetic variants in T2D risk prediction for
undiagnosed individuals with T2D using cross-sectional studies and incident T2D
using longitudinal studies. Early studies provided much optimism and showed that
common variants at the TCF7L2 locus predict the progression to diabetes in subjects
with impaired glucose tolerance[63,127]. Unfortunately, diabetes mellitus is diagnosed on
the basis of its biochemical effects (increased glucose), and the absence of detection of
the main defect, which indicates the absence of the disease[128]. However, at present,
aggregated available data do not provide robust evidence to support the utility of
genetic testing for T2D predictions and indicate a modest contribution of genetic
variants[129-131]. Several large population-based follow-up studies have been published
aiming to investigate the predictive power of common genetic variants on the risk of
incident T2D. The results of these studies were similar to those from cross-sectional
case-control studies. It was shown that risk variants did not essentially increase the
AUC to predict T2D when combined with clinical risk factors[132]. However, it seems
possible to improve T2D risk prediction and overcome factors limiting predictive
power, such as: (1) Modest effect sizes of common variants, (2) Insufficient knowledge
of rare and coding variants missed by GWAS; (3) Heterogeneous nature of the dise-
ase; and (4) Genetic diversity between ethnic groups (detailed below).

The limitations related with modest effect sizes of common alleles and necessity of
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further investigation aimed to identify rare and coding variants involved in T2D
pathogenesis have been reviewed above. T2D seemingly encompasses a group of
several subtypes of diseases, which makes it rather difficult to distinguish it from
other types, as it may be the result of defects in various metabolic pathways. The
accuracy of prediction models may be affected by the fact that latent autoimmune
diabetes in adults has been identified and the number of monogenic forms of diabetes
is increasing, which can also indicate the level of misclassification[133].

In different populations, heterogeneity in association of genetic variants with the
disease was demonstrated, apparently related to the design of the study, in particular
the results of a large meta-analysis that combines cases of T2D with different origins
or signs and evaluates them with a generalized intermediate hyperglycemia phenoty-
pe, despite the fact that the phenotype may differ due to a multitude of unrelated
causes within the physiology of the body or the environment[134]. In recent years, a
large number of projects have been carried out to study the causes of diabetes, large-
scale studies have been created and huge biobanks of samples of these patients have
been collected.  In  addition,  some variants  were  found that  are  important  in  the
prevention and treatment of T2D, found in individual population isolates, demons-
trating the value of studying genetically isolated populations[128]. Because of genetic
drift, deleterious variants with large phenotypic effects could rise randomly to higher
allele frequencies. Which makes investigation of such variants’ association easier in
isolated populations compared to the admixed ones, in which these variants might
not be present or might be very rare[10].

Circulating miRNAs in plasma or serum have several features that make them ideal
candidate biomarkers of complex diseases such as T2D[135]. Hundreds of miRNAs are
actively or passively released to the blood circulation to regulate specific gene func-
tion[136]. Current studies demonstrate that changes in expression miRNAs involve in
dysfunction of insulin and progression of T2D. Many studies confirmed that some
miRNAs have been identified and found to be associated with T2D[137]. miR-21, miR-
126  and  miR146a  have  been  shown to  have  potential  to  be  biomarkers  of  early
diagnosis of T2D disease[138-140]. Thus, the above mentioned miRNAs and a number of
other miRNAs may be candidates for testing the effectiveness of therapy but further
studies are needed to identify them[137].

Genetic tests of T2D: Implications for therapy
T2D commonly develops with insulin resistance, a disorder in which cells located
primarily within the muscles, liver, and fat tissue do not use insulin properly, and
progresses  to  pancreatic  beta-cell  failure.  T2D trigger  are  insulin  resistance  and
inadequate insulin secretion[141].

Selection of drug therapy based on the genetic features of the individual can be a
huge breakthrough because there are individual drug idiosyncrasy and many patients
eventually fail to achieve recommended levels of glycemic control due to their genetic
characteristics[142,143]. Currently, only half of patients initiating therapy with metformin
or sulfonylurea, reached a level of hemoglobin A1c in 7%[144]. It should be emphasized
that sulfonylureas and metformin are the most studied classes of drugs used to treat
T2D[115].

Sulphonylureas (SUs) are widely used drugs in the clinical practice however, diffe-
rent side effects, such as weight gain and increased risk of hypoglycemia, have been
frequently[145]. Studies have shown that these drugs can act effectively in response to a
defect  induced by variants  in  KCNJ11  (rs5219,  rs5215)  and ABCC8  (rs757110)  in
patients with T2D[146,147].  Also important in the selection of SUs play role CYP2C9
(rs1799853, rs1057910), TCF7L2 (rs12255372, rs7903146), IRS1 (rs2943641, rs1801278)
and CAPN10 (rs3842570, rs3792267, rs5030952)[148-151]. It should also be noted rs7754840
in the gene CDKAL1, which is significantly associated with the response to treatment
with sulfonylurea and in combination with other clinical and pathological data will
help move to individual therapy of patients with T2D[152].

Metformin is the most commonly used drug in the treatment of T2D, which is not
metabolized in the liver, therefore, the effect of reducing the level of metformin is not
affected by genetic variants in the genes encoding metabolizing enzymes[153]. SLC22A1
(rs12208357,  rs34130495,  rs35167514,  rs34059508) is  the most studied gene that is
involved in the response to metformin[154].  However,  other genes involved in the
metabolism of metformin have been identified, for example, SLC22A2  (rs316019),
PPARG  (rs1801282)[145,155].  It  should also be noted that the T2D–associated variant
rs7903146 in TCF7L2 influences the acute response to both glipizide and metformin in
persons free of overt diabetes[156].

CONCLUSION
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The growing power and reducing cost sparked an enormous range of applications of
NGS technology that gave us the excellent instrument for solving various problems in
molecular biology. Rational usage of this instrument, taking into account all of its
benefits and limitations, is the next step on the way to elucidation of pathogenesis of
complex  diseases  such  as  T2D.  Results  obtained  in  sequencing-based  studies
combined with  earlier  findings  from GWAS and candidate  genes  studies  allow
ordering and improving our knowledge about T2D and give us an opportunity to
translate genetic information to clinical practice. The increasing knowledge provides a
fascinating opportunity to use this information to predict the occurrence of disease
and to identify subgroups of  patients  for  whom therapies will  have the greatest
efficacy or the least adverse effect. However, this new knowledge should be treated
with caution. Unfortunately, the accuracy of risk prediction models based on genetic
information of T2D is not remarkable to date. Hence, further research and techno-
logical improvement is needed in studying the individual and aggregate contribution
of genetic markers for the development of diabetes for widespread use in clinical
practice.
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Abstract
BACKGROUND
Women with gestational diabetes mellitus have an increased risk of developing
gestational hypertension, which can increase fetal and neonatal morbidity and
mortality. In the past decade, single nucleotide polymorphisms in several genes
have been identified as risk factors for development of gestational hypertension.
The epidermal growth factor receptor activates tyrosine kinase mediated blood
vessels contractility; and inflammatory cascades. Abnormalities in these
mechanism are known to contribute towards hypertension. It is thus plausible
that polymorphisms in the epidermal growth factor receptor gene would be
associated with the development of hypertension in women with gestational
diabetes.

AIM
To determine whether the epidermal growth factor receptor rs17337023 SNP is
associated with the occurrence of hypertension in gestational diabetic women.

METHODS
This pilot case-control study was conducted at two tertiary care hospitals in
Karachi, from January 2017-August 2018. Two hundred and two women at 28
week of gestation with gestational diabetes were recruited and classified into
normotensive (n = 80) and hypertensive (n = 122) groups. Their blood samples
were genotyped for epidermal growth factor receptor polymorphism rs17337023
using tetra-ARMS polymerase chain reaction. Descriptive analysis was applied
on baseline data. Polymorphism data was analyzed for genotype and allele
frequency determination using chi-squared statistics. In all cases, a P value of <
0.05 was considered significant.
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RESULTS
Subjects were age-matched and thus no difference was observed in relation to age
of the study subjects (P >0.05). Body fat percentage was significantly higher in
hypertensive females as compared to normotensive subjects (35.138 ± 4.29 Case vs
25.01 ± 8.28 Control; P < 0.05). Similarly, systolic and diastolic blood pressures
among groups were significantly higher in hypertensive group than the
normotensive group (P < 0.05). Overall epidermal growth factor receptor
rs17337023 polymorphism genotype frequency was similar in both groups, with
the heterozygous AT genotype (56 in Case vs 48 in Control; P = 0. 079) showing
predominance in both groups. Furthermore, the odds ratio for A allele was 1.282
(P = 0.219) and for T allele was 0.780 (P = 0.221) in this study.

CONCLUSION
This pilot study indicates that polymorphisms in rs17337023 may not be involved
in the pathophysiology of gestational hypertension in gestational diabetes via
inflammatory cascade mechanism. Further large-scale studies should explore
polymorphism in epidermal growth factor receptor and other genes in this
regard.

Key words: Gestational diabetes mellitus; Gestational hypertension; Epidermal growth
factor receptor; rs17337023; Single nucleotide polymorphism; Polymorphism; Case-
control
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Core tip: Gestational Hypertension (GHTN) can increase risk of fetal and neonatal
morbidity and mortality. Many environmental, nutritional and genetic factors are related
to the development of GHTN. Among them, Epidermal Growth Factor Receptor (EGFR)
has been found to contribute to arterial hypertension. It is thus plausible that Single
nucleotide polymorphisms (SNPs) in EGFR gene would be associated with the
development of GHTN in women with GDM. This pilot study indicated that EGFR
rs17337023 polymorphism may not be involved in the pathophysiology of GHTN in
GDM positive females in a local population. Further large-scale studies should explore
SNPs in EGFR and other genes in this regard.
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INTRODUCTION
Gestational diabetes mellitus (GDM), defined as any degree of glucose intolerance
with onset or first recognition during pregnancy[1,2],  is a significant risk factor for
maternal development of a hypertensive pregnancy disorder (HPD)[3-5]. Up to 10% of
all pregnancies are complicated by HPDs[6,7],  especially in cases with pre-existing
GDM[8]. One type of HPD, Gestational Hypertension (GHTN) occurs in 1.8%-4.4% of
pregnancies[9]. GHTN is defined as blood pressure (BP) that reaches ≥ 140/90 mmHg
for the first-time during pregnancy (after 20 wk gestation), without proteinuria. BP
normalizes by 12 week postpartum[10]. Complications of GHTN include increased risk
for fetal death and severe neonatal morbidity and mortality[11]. Hypothesized mecha-
nisms of HPD development include dysfunction of the placenta, endothelium or lipid
metabolism,  as  well  as  inflammatory states[12].  However,  it  is  being increasingly
established that genetic factors also contribute towards HPDs[13].

Single nucleotide polymorphisms (SNPs) have been a particular focus in genetic
mechanisms leading to HPD[14].  SNPs such as NOS SNP rs2070744[15],  APM1 SNP
rs1501299[16],  CYP19A1  SNP  rs700158[17],  KDR  SNP  rs2071559[18]  and  HSD11B1
rs846910[19],  have been found to be associated with HPDs. The epidermal growth
factor receptor (EGFR) is a single chain transmembrane protein of the ErbB family of
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receptor tyrosine kinases, which is activated following binding with peptide growth
factors of the EGF-family of proteins[20]. The functions of EGFR include inducing cell
growth and differentiation[21]. EGFR is abundantly expressed in the vascular wall and
myocardium, and is thought to be linked to arterial hypertension, possibly by produc-
ing vasoconstriction and renal Na+ retention[22]. Apart from its normal EGF Ligands,
EGFR also  undergoes  transactivation by vasoactive  substances  such as  catecho-
lamines[23] and aldosterone[24]. The EGFR SNP rs17337023 (T > A), located on Exon 16
with a global variant allele frequency of 0.456[25],  is associated with chronic infla-
mmation,  which may lead to  vascular  damage and hypertension[26,27].  Given the
mechanistic link of EGFR to BP regulation, we decided to conduct a pilot study to
explore  any  association  of  SNP  rs17337023  with  the  development  of  GHTN  in
pregnant females with GDM.

MATERIALS AND METHODS
In a case-control study, n = 202 pregnant women at 28 wk of gestation with GDM
were  recruited.  The  study  was  conducted  at  Aga  Khan  University  and  Jinnah
Postgraduate Medical Center during the period of January 2017 till August 2018. The
sample size was calculated using the Open-Epi website[28], with a confidence level of
95%, power of 80%, least extreme odds ratio (OR) of 2 and a pregnancy hypertension
prevalence  of  8%  taken  according  to  previously  published  data  sources[29].  The
minimum sample size calculated for this research was n = 106. The institutional ethics
committee approved the research protocol (Ref # 4523-BBS-ERC-16) (REF: No.F.2-
81/GENL-2017-IRB/15107/JPMC). GDM was diagnosed by means of a 75-g 2-h oral
glucose tolerance test, as per the criteria set by the IADPSG[30]. All study subjects gave
a written informed consent followed by weight and body mass index (BMI) assess-
ment based on South Asian criteria for BMI values [normal weight (BMI 18-22.9
kg/m2), and obese (BMI ≥ 26kg/m2)][31]. BP assessment was done following the latest
European Society of Cardiology and the European Society of Hypertension task force
guidelines[32,33],  (Normal BP < 139/85 mmHg and Hypertension > 139/85 mmHg).
Subjects diagnosed with GHTN were subsequently being treated by antihypertensive
medication. Any individual with a history of pre-existing diabetes, or any inflamm-
atory condition, taking oral contraception or hormonal support, was not included in
this study. Based on these measurements, grouping of study subjects was done as
follow: (A) Normotensive (n = 80); (B) Hypertensive (n = 122) (on diet or medication).

Ten  milliliters  of  venous  blood  were  collected  from  each  subject.  DNA  was
extracted from whole blood by Qiagen DNA extraction kit (Cat. #51185, Valencia, CA,
United States). The quantification of extracted DNA was performed by measuring the
ultraviolet absorbance of the samples using a Nanodrop-ND1000 (Thermo Fisher
Scientific, Waltham, MA). The absorbance ratio (A280/A260) was determined for 2 μL
samples using ND-1000 V3.8.1 software (Thermo Fisher Scientific, Waltham, MA). A
ratio of approximately 1.8 was considered acceptable for confirming the purity of
extracted DNA. Furthermore, around 10% of samples were confirmed on gel electro-
phoresis by running 1 μL of sample in a 1% agarose gel against a 1 kb ladder. Tetra
arms polymerase  chain reaction (PCR) was performed using the  Ruby Taq PCR
Master mix 2X (Cat. #71191, Affymetrix, United States) as per the manufacturer’s
instructions. PCR products were electrophoresed in a 2% agarose gel. Genotyping
quality control was performed in 10% of the samples by duplicate checking (rate of
concordance in duplicates was > 99 %). The following primer set was used for gene
amplification: Statistical analyses were conducted using the IBM Statistical Package
for  the  Social,  Sciences  (IBM  SPSS  version  21;  IBM  Corp  Inc,  Armonk,  NY).
Descriptive analysis was applied, and data was expressed either as mean ± standard
deviation or absolute number and percentage. SNP data was analysed for genotype
and allele frequency determination by applying chi-squared statistics. In all situations
a P value of < 0.05 was considered significant. The statistical analyses for this study
were performed and reviewed by Syed Adnan Ali (PhD. Statistics) of the University
of Karachi.

RESULTS
The detailed results are shown in Table 1, 2 and Figure 1. All study subjects were age-
matched and therefore, no difference was observed in relation to age of the study
subjects (P  > 0.05).  Body fat  percentage was significantly higher in hypertensive
females as compared to normotensive subjects  (P  < 0.05).  Similarly,  systolic  and
diastolic BP among were significantly higher in hypertensive group than the normo-
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tensive group (P < 0.05). 90% of the hypertensive females practiced sedentary lifestyle
versus 17.7% normotensive females (P < 0.05).

Overall EGFR rs17337023 polymorphism genotype frequency was similar in both
the normotensive and hypertensive groups,  with the heterozygous AT genotype
showing predominance in both groups. Furthermore, the OR for A allele was 1.282 (P
= 0.219) and for T allele was 0.780 (P = 0.221) in this study.

DISCUSSION
The developmental causes of GHTN in women with pre-existing GDM is poorly
understood and it is possible that genetic factors such as SNPs may play a role. Many
studies have demonstrated associations of certain SNPs with development of HPDs.
Our objective was to investigate whether the EGFR SNP rs17337023 displayed any
significant association with the occurrence of GHTN in pregnant women with GDM.
However, the findings of our study showed that the frequency of the rs17337023
genotype was not significantly different in the two groups. Furthermore, the OR for
the A and T alleles were also non-significant.  These results suggest that the SNP
rs17337023 does not play any major role in the pathophysiology of GHTN in GDM.

There are possible explanations for the lack of any significant association. The
study proposing mechanisms linking EGFR to arterial hypertension does so primarily
on the basis of results obtained from experimenting using animal models, and voices
uncertainties about its applicability to humans[22]. Moreover, apart from Rheumatoid
Arthritis, the SNP rs17337023 has been shown to have no significant association with
pathologies such as Gastric Carcinoma[34]  and Nasopharyngeal Carcinoma[35].  This
suggests that the function of EGFR is not altered significantly enough due to the SNP
rs17337023 mutation to cause any major pathological state. It is possible, however,
that other EGFR SNPs may indeed be associated with GHTN in women with GDM.

Additionally, since the sample for our pilot study consisted of 202 women from
Pakistan, it is possible that the results may show greater significance if the study were
replicated in another population with a larger sample size. The lack of association
between the EGFR SNP rs17337023 served to suggest that the EGFR gene may not be
involved in the pathophysiology of GHTN in the case of pre-existing GDM. Our study
was limited by the inability to recruit a larger sample size due to cultural beliefs and
barriers towards participation in genetic studies. Moreover, the group of women with
GHTN were not managed uniformly in terms of diet and antihypertensive medi-
cations.  Nevertheless,  the  rs17337023  polymorphism  was  in  Hardy-Weinberg
Equilibrium for cases and controls, suggesting the randomness of the sample as a
strength of our study.

This pilot study indicates that polymorphisms in rs17337023 may not be involved
in  the  pathophysiology  of  gestational  hypertension  in  gestational  diabetes  via
inflammatory  cascade  mechanism.  Further  large-scale  studies  should  explore
polymorphism in epidermal growth factor receptor and other genes in this regard.
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Table 1  Polymerase chain reaction primers details

Gene Primers Base pairs PCR cycle Amplicon size

Epidermal growth factor
receptor (EGFR) rs17337023

Forward outer:
ATTAACCACCAATCCAAC
ATCCAGAC

26 67 °C; 30 s; 30 cycles T allele 180; C allele 271;
Control 406

Reverse outer:
CTTTCCCTCCACTGAGGA
CAAAGTT

25

Forward inner (A allele):
TCTCTTTCACTTCCTACAG
ATGCTCA

26

Reverse inner (T allele):
AGCCTTCAAGACCTGGCG
CA

20

PCR: Polymerase chain reaction.

Table 2  Descriptive statistics and genotype frequency of study subjects

Hypertensive pregnant case (n = 122) Normotensive pregnant control (n = 80) P-value

Age (Yr) 30.55 ± 8.05 29.13 ± 10.19 0.054

Weight (kg) 77.56 ± 16.88 69.24 ± 11.07 0.025

Body Fat % 35.138 ± 4.29 25.01 ± 8.28 0.000

Waist circumference (cm) 104.50 ± 12.09 86.92 ± 12.03 0.000

Systolic blood pressure (mmHg) 131.76 ± 13.04 122.02 ± 8.27 0.000

Diastolic blood pressure (mmHg) 85.88 ± 8.45 73.31 ± 11.27 0.000

Walk

None 90.1% 17.7% 0.000

30 min/3 days week 7.9% 74.2%

30 min/5 days week 2.0% 8.1%

Genotype frequency

EGFR rs17337023 polymorphism

AA 30 19 0.079

AT 56 48

TT 36 13

Allele Odds Ratio

Allele A 1.282 [0.860-1.912] 0.219

Allele T 0.780 [0.523-1.163] 0.221

Data presented as Mean ± SD and percentages. In all cases a P value of < 0.05 was considered significant. Hardy-Weinberg Equilibrium (HWE) for case P =
0.378 and control P = 0.064, Where EGFR is epidermal growth factor receptor.

Figure 1

Figure 1  Gel Electrophoresis of epidermal growth factor receptor samples 1 to 8 cases and 1 to 9 Controls. B is blank, and M is the 100bp ladder. Tetra arms
control band is visible at 406bp; C allele at 271bp and T allele at 180bp.
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ARTICLE HIGHLIGHTS
Research background
Pregnancy induced hypertension and diabetes are an increasing threat to the wellbeing of both
mother and the baby. The basic pathophysiological link to disease predisposition is attributed to
the functionality of epidermis and angiogenesis. Several genetic studies have provided evidence
that epidermal growth factor dysfunction can lead to hypertension and its complications in preg-
nancy.

Research motivation
Materno-fetal mortality is on the rise in lower middle income countries; predominantly due to
lack of primary prevention of non-communicable diseases. This led us to investigate one of the
route cause i.e. genetic modification as a risk for development of disease.

Research objectives
Explore any association of SNP rs17337023 with the development of gestational hypertension in
pregnant females with gestational diabetes.

Research methods
A case-control study was conducted recruiting 202 pregnant women at 28 wk of gestation. Their
blood pressure, blood glucose levels were measures and genotyping of EGFR SNP rs17337023
was performed via tetra arms PCR.

Research results
No difference was seen in the EGFR rs17337023 polymorphism genotype frequency among both
normotensive and hypertensive groups in this study.

Research conclusions
This  pilot  study  indicates  that  polymorphisms  in  rs17337023  may  not  be  involved  in  the
pathophysiology of gestational hypertension in gestational diabetes. Further large-scale studies
should explore polymorphism in epidermal growth factor receptor and other genes in this
regard.

Research perspectives
This study has shown some negative results linking a specific area of the gene EGFR; however, it
should be noted that other factors may also be in play such as obesity and family history that can
be a contributing factor along with genetic predisposition for hypertension. This opens up new
avenues for researchers to perform prospective studies to identify the causal  link between
genetic and environmental factors.
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Abstract
BACKGROUND
There are limited studies on diabetes empowerment among type 2 diabetes
patients, particularly in the primary care setting.

AIM
To assess the diabetes empowerment scores and its correlated factors among type
2 diabetes patients in a primary care clinic in Malaysia.

METHODS
This is a cross sectional study involving 322 patients with type 2 diabetes mellitus
(DM) followed up in a primary care clinic. Systematic sampling method was used
for patient recruitment. The Diabetes Empowerment Scale (DES) questionnaire
was used to measure patient empowerment. It consists of three domains: (1)
Managing the psychosocial aspect of diabetes (9 items); (2) Assessing
dissatisfaction and readiness to change (9 items); and (3) Setting and achieving
diabetes goal (10 items). A score was considered high if it ranged from 100 to 140.
Data analysis was performed using SPSS version 25 and multiple linear
regressions was used to identify the predictors of total diabetes empowerment
scores.

RESULTS
The median age of the study population was 55 years old. 56% were male and the
mean duration of diabetes was 4 years. The total median score of the DES was
110 [interquartile range (IQR) = 10]. The median scores of the three subscales
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were 40 with (IQR = 4) for “Managing the psychosocial aspect of diabetes”; 36
with (IQR = 3) for “Assessing dissatisfaction and readiness to change”; and 34
with (IQR = 5) for “Setting and achieving diabetes goal”. According to multiple
linear regressions, factors that had significant correlation with higher
empowerment scores among type 2 diabetes patients included an above
secondary education level (P < 0.001), diabetes education exposure (P = 0.003),
lack of ischemic heart disease (P = 0.017), and lower glycated hemoglobin
(HbA1c) levels (P < 0.001).

CONCLUSION
Diabetes empowerment scores were high among type 2 diabetes patients in this
study population. Predictors for high empowerment scores included above
secondary education level, diabetes education exposure, lack of ischemic heart
disease status and lower HbA1c.

Key words: Diabetes; Empowerment; Scores; Diabetes Empowerment Scale; Type 2
diabetes; Primary care; Malaysia

©The Author(s) 2019. Published by Baishideng Publishing Group Inc. All rights reserved.

Core tip: This study aims to assess the diabetes empowerment scores and its correlated
factors among type 2 diabetes patients in a primary care clinic in Malaysia. Median age
of the study population was 55 years old, 56% were male and mean duration of diabetes
was 4 years. The total median score of the Diabetes Empowerment Scale was 110
(interquartile range = 10). Diabetes empowerment scores were high among type 2
diabetes patients in this study population. The predictors for high empowerment score
were those who had above secondary education level, diabetes education exposure, no
ischemic heart disease status and lower glycated hemoglobin.

Citation: Zhu TH, Mooi CS, Shamsuddin NH, Mooi CS. Diabetes empowerment scores
among type 2 diabetes mellitus patients and its correlated factors: A cross-sectional study in a
primary care setting in Malaysia. World J Diabetes 2019; 10(7): 403-413
URL: https://www.wjgnet.com/1948-9358/full/v10/i7/403.htm
DOI: https://dx.doi.org/10.4239/wjd.v10.i7.403

INTRODUCTION
Diabetes has become a global epidemic of the 21st century. Over 70% of known cases
of diabetes occur in developing countries. Four hundred and fifteen million adults
were estimated to have diabetes globally in 2015, or 1 in 11 adults. This is estimated to
rise to 642 million by 2040[1]. The Southeast Asian region has seen a recent dramatic
increase in diabetes. An estimated 96 million people have diabetes in the region, 90%
of whom have type 2, which is preventable[2]. In Malaysia, the incidence rate has also
significantly increased from 8.3% in 1996 to 17.5% (3.5million) in 2015[3]. The Federal
Territory of Putrajaya was noted to have the highest increment in the prevalence of
diabetes  in  adults,  from 2011  to  2015,  that  is  8.8% to  19.2%[4].  Primary care  was
identified as the backbone in managing diabetes.  A majority sought treatment at
government health clinics (59.3%) and private clinics (15.1%)[3]. Therefore, the popula-
tion attending government health clinics would provide a better picture of overall
diabetes management.

Evidence shows that self-empowerment is important in managing chronic diseases,
especially diabetes[5,6]. Self-empowerment is an approach that can improve the ability
of  the  patients  with  diabetes  to  understand  the  disease  process  better,  involve
themsel-ves actively in self-care, and practise healthy lifestyles for better disease
control[6,7].  The  process  of  empowerment  improves  diabetes  control  by  helping
patients in making decisions in regards to diabetes care and self-realization of their
responsi-bilities in managing type 2 DM[8]. Tol et al[9] and Liu et al[10] showed that self-
efficacy and self-esteem have a strong relationship with empowerment. However,
there are few studies on diabetes empowerment among type 2 diabetes patients in
Malaysia. Therefore, this study was conducted to examine diabetes empowerment
and its  correlated factors among patients  with type 2 diabetes in a primary care

WJD https://www.wjgnet.com July 15, 2019 Volume 10 Issue 7

Zhu TH et al. Diabetes empowerment scores in Malaysia

404

http://creativecommons.org/licenses/by-nc/4.0/
http://creativecommons.org/licenses/by-nc/4.0/


setting in Malaysia.

MATERIALS AND METHODS

Setting
This is a cross-sectional study of patients registered with a primary health care clinic
located in Putrajaya, a Federal Territory and the administrative capital of Malaysia. It
has a total population of 91900[11]. The study was conducted over a 3-month period
from January 2019 to March 2019.

Inclusion criteria
The inclusion criterion for this research included patients aged 18 years and above
diagnosed with type 2 diabetes mellitus (DM) and following up for at least 6 months
in the primary care clinic. The exclusion criteria included intellectual disability or
dependence for activities of daily living, being bed ridden, requiring nursing care to
carry out daily activities or being clinically unstable during the study period. The
sample size was calculated using the Lemeshow formula based on the prevalence of
high DES scores of 36.9% for married and 3.8% for unmarried . The calculated sample
size was 322 after taking account of non-respondent rate of 30%, 80% power and
significance level of 0.05.

Data collection
Face-to-face interviews were conducted using an adapted structured questionnaire.
After obtaining ethical approval, we approached the participants and explained the
nature of  the study before  obtaining written consent  to  participate  in  the study.
Systematic  sampling was used to  recruit  respondents.  The estimated number of
diabetic patients attending follow up in the primary care clinic is about 15 patients per
day, and 900 patients over the three-month duration of data collection. The estimated
sample size for this study was 322; therefore, a sampling interval of 3 was used as the
constant during study recruitment. The starting number of 1 was selected randomly
from the health clinic registration counter using a dice.

Data collection instrument
The questionnaire was initially prepared in English by the author. Then, forward and
backward translations into Malay and English languages were performed by two
certified translators. The questionnaire was a self-administered type divided into two
sections. The first section includes the patients’ sociodemographic information. The
second section explores  the  clinical  profiles,  clinical  outcome and total  diabetes
empowerment scores.

Diabetes Empowerment Scale
The Diabetes  Empowerment Scale  (DES-28)  was developed by the University  of
Michigan Diabetes Research and Training Center. The questionnaires consist of 28
items with 3 subscales, with each item rated along a 5-point Likert scale (1 = strongly
disagree, 2 = disagree, 3 = neutral, 4 = agree, 5 = strongly agree). The range of score
was divided in three subgroups as low (28-65 scores), middle (66-103) and high (104-
140). Cronbach’s alpha coefficient is a measure of internal consistency and can be
interpreted as the mean of all  possible split-half  coefficients[12].  By convention, if
Cronbach’s alpha is greater than or equal to 0.7 to 0.8, there is acceptable agreement[13].

This DES-28 is a reliable tool with good internal consistency (Cronbach’s alpha =
0.96)[14]. The Cronbach’s alpha of each subscale was 0.93 for “managing the psycho-
social  aspects  of  diabetes”;  0.81  for  “assessing  dissatisfaction  and  readiness  to
change”; and 0.91 for ”setting and achieving diabetes goals”. Each coefficient for the
overall DES and three subscales was good[14].

For the DES Malay version, the questionnaire was originally in English by the
author from the University of Michigan Diabetes Research and Training Center, then
forward and backward translated into Malay and English languages by two certified
translators.  The questionnaire was a self-administered questionnaire,  which was
pretested through a pilot study prior to the actual data collection. The Cronbach’s
alpha coefficient for the Malay version total DES was 0.92.

The pilot study included 30 patients, 10% of the actual sample size of 322. Recru-
itment was performed via the systematic sampling method, with every one in two
patients registered at the health clinic counter for follow-up selected for the pilot
study. About five to eight respondents were collected a day for five days. Question 5
had a spelling error, “realitik” which was corrected to “realistis”. Two other questions
were rephrased for easier understanding, namely questions 1 and 2 “apa bahagian”
(What part) to “bahagian apa”. The findings from this pilot study were not included
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in the data analysis of the actual study.

Operational definitions
Ethnicity  was  defined as  Malay,  Chinese,  Indian or  others.  Education level  was
according to the respondents’ self-reported highest attained level of education: No
formal education, primary school, secondary school or tertiary (diploma/university).
Smoking status was defined as whether the patient is a smoker, non-smoker or ex-
smoker who had quit  smoking at  least  6  months from the quit  date[13].  BMI was
calculated as the weight in kg divided by the square of height in meter, and classified
according to the Asian population[14]. Diabetes duration was defined as the duration of
diabetes in years. Compliance to treatment was defined as the patients’ self-reported
compliance to treatment. The clinical outcomes [systolic and diastolic blood pressure,
low-density  lipoprotein  (LDL)  level,  high-density  lipoprotein  (HDL)  level,
triglycerides (TG) level, glycated hemoglobin (HbA1c) %] in this study were defined
in terms of the latest levels measured.

Data analysis
Statistical Package for Social Sciences (SPSS) version 25.0 was used to analyze the data
collected from the study. Descriptive analysis was used to describe the characteristics
of the respondents in terms of frequencies, percentages, median, and interquartile
range (IQR). In this study, we used Chi-square test for the categorical data, Spearson’s
test, Mann-Whitney U test and Kruskal Wallis test for the continuous data to identify
the associations between the total diabetes empowerment scores with sociodemo-
graphic factors, clinical profiles and clinical outcomes. Multiple linear regressions
were  used  to  identify  the  predictors  of  total  diabetes  empowerment  score.  All
variables with a P value < 0.25 in the univariate analysis, as well as clinically signifi-
cant  variables,  were  entered into  the  multiple  linear  regression.  The  dependent
variable was total diabetes empowerment score among type 2 diabetes patients. The
independent variables are sociodemographic factors (age, gender, ethnicity, level of
education, marital status, smoking status) and clinical profiles (DM durations, DM
education exposure,  compliances to treatment,  BMI,  hypertension status,  dyslip-
idemia status, ischemic heart disease status, asthma status systolic and diastolic blood
pressure, HbA1c, HDL level, LDL level and TG level).

Ethical approval
Ethical approval was obtained from the Medical Research and Ethics Committee
(MREC), Ministry of Health Malaysia (NMRR-17-3085-38099).

RESULTS
A total of 322 participants were recruited into this study, for a response rate of 93.7%.
There were no missing data in our study. Table 1 demonstrates the sociodemographic
and clinical characteristics of the study population. Median age was 55 years old with
IQR of 18. More than half of the participants were male (58.7%, n = 189). The majority
of the study population were Malay (92.2%), married (92.2%) and had an education
above the secondary school level (88.8%). Two-thirds of the participants were non-
smokers (66.5%). With regards to the clinical profiles (Table 2), the median diabetic
duration for the participants was 4 years (IQR = 7). The mean systolic and diastolic
blood pressures are 133.2 ± 15.5 mmHg and 83.7 ± 10.0 mmHg respectively. More than
half of respondents were obese (62.7%), had hypertension (64.3%) and dyslipidemia
(76.4%). The median for HbA1c was 7.4% with IQR 2.6. The mean for LDL was 3.0 ±
1.0 mmol/L. The median for HDL was 1.1 mmol/L with IQR 0.3, and the median for
TG was 1.4 mmol/L with IQR 0.9.

Most of the participants had received diabetes education (82%, n = 264). The total
diabetes empowerment median score was 110 (IQR = 10) and classified as high. The
median scores of the three subscales were 40 (IQR = 4) for “Managing the psycho-
social aspect of diabetes”; 36 (IQR = 3) for “Assessing dissatisfaction and readiness to
change”;  and 34  (IQR = 5)  for  “Setting and achieving diabetes  goal”.  Spearman
Correlation coefficient showed a statistically significant relationship between HbA1c
level (r = -0.132, P value 0.018) with the total empowerment score as shown in Table 3.
Mann Whitney U test showed that those with diabetes education exposure (P = 0.004),
received above secondary school level (P < 0.001), and those without ischemic heart
disease  (P  =  0.004)  were  statistically  significant  correlated  with  total  diabetes
empowerment score as shown in Tables 4 and 5.

There is no significant correlation between total diabetes empowerment score with
other variables like age,  diabetes duration,  systolic  and diastolic  blood pressure,
gender, ethnicity, marital status, smoking status, hypertension status, dyslipidemia
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Table 1  Sociodemographic profiles of the study participants in primary health care clinic in
Putrajaya (n = 322), n (%)

Variables Frequency Median (IQR)

Age (yr) 55 (18)

Gender

Male 189 (58.7)

Female 133 (41.3)

Ethnicity

Malay 297 (92.2)

Chinese 6 (1.9)

Indian 14 (4.3)

Others 5 (1.6)

Education level

No formal education 12 (3.7)

Primary school 24 (7.5)

Secondary school 132 (41.0)

Diploma/University 154 (47.8)

Marital status

Single 25 (7.8)

Married 297 (92.2)

Smoking status

Yes 46 (14.3)

Never 214 (66.5)

Ex-Smoker 62 (19.2)

IQR: Interquartile range.

status, asthma status, compliance to treatment, LDL level, HDL level and TG level.
According to multiple linear regressions, factors that had significant correlation with
higher  empowerment  scores  among  type  2  diabetes  patients  included  above
secondary education level (P < 0.001), diabetes education exposure (P = 0.003), lack of
ischemic heart disease (P = 0.017) and lower HbA1c (P < 0.001) as shown in Table 6.

DISCUSSION
In our study, the median score of the total diabetes empowerment was 110. We thus
conclude that the empowerment of this study population is high based on the range
for high empowerment score range in DES being 104 to 140. The total mean score
found by Tol et al[9] was 88.13 ± 30.3, which indicated a middle score according to DES
score range, lower than that of our study. This is probably due the difference of the
education level between the two study populations, as less than half of their study
population had a diploma or higher education, and the study was conducted in a
diabetes research centre. A majority of our study population had an education above
the secondary school level, the study was conducted in an urban primary care clinic
setting. This may be due to socio-culture restrictions as well. For example, in Iran,
quality diabetes care is not widely available, with a significant knowledge gap in
handling diabetes. Diabetes diagnosis, prevention and management are suboptimal[14].

The study findings showed that the subscale of “Setting and achieving diabetes
goal” has highest median score among the three subscales. This finding is similar with
two previous studies[15,16]. The literature has shown that structured goal setting is the
best way to aid diabetes patients to set behavior goals to practice healthy lifestyle and
improve HbA1c level[17,18].

This study shows that a higher than secondary school education level is signifi-
cantly correlated with diabetes empowerment score. This result is similar with other
studies. Tol et al[18] showed that an education level of diploma or higher had higher
empowerment score. Similarly, D’Souza et al[19] showed that those with high school
and diploma education level  had higher diabetes empowerment scores[15,16].  This
indicates that patients with a higher education level possibly understand the disease
process better and have more awareness towards self-care of diabetes management[19].
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Table 2  Clinical profiles of the type 2 diabetes mellitus patients with total diabetes
empowerment scores, n (%)

Variables Frequency Median (IQR)

Diabetes duration (yr) 4.00 (7.0)

Compliance to diabetes treatment

Yes 310 (96.3)

No 12 (3.7)

Diabetes education exposure

Yes 264 (82.0)

No 58 (18.0)

BMI (kg/m2) 28.70 (7.12)

Underweight (< 18.5) 3 (1.0)

Normal (18.5-22.9) 29 (9.0)

Overweight (23-27.4) 88 (27.3)

Obese (> 27.5) 202 (62.7)

Hypertension status

Yes 207 (64.3)

No 115 (35.7)

Dyslipidaemia status

Yes 246 (76.4)

No 76 (23.6)

Ischemic heart disease status

Yes 42 (13.0)

No 280 (87.0)

Asthma status

Yes 30 (9.3)

No 292 (90.7)

BMI: Body mass index; IQR: Interquartile range.

This study found that diabetes education exposure had a significant relationship
with the total diabetes empowerment score. Those participants who had diabetes
education exposure had better empowerment compared to those who had no diabetes
education exposure. Diabetes education consists of structured programs, which cover
basic  information on diabetes,  insulin therapy,  blood glucose levels  and targets,
physical exercise, diet management and hypoglycemia[20]. It incorporates practical
skills especially using the home blood glucose monitoring and insulin therapy in
diabetes management. The education program also emphasizes the importance of
achieving targeted glycemic control to prevent complications and it includes foot
care[21]. Thus, those who received diabetes education exposure are better skilled in
managing their disease, as reported in the literature. Enhancement of patient empo-
werment is achieved when patients are educated with adequate information on their
health conditions[22].

Our study showed a significant correlation between those without ischemic heart
disease with total diabetes empowerment score. The majority of the patients without
ischemic heart disease had secondary education and above (89.6%), which correlates
to higher diabetes empowerment score.

Our study found that HbA1c was 7.4% with an IQR of 2.6. It would be better to
compare this to the mean HbA1c for type 2 DM population in Malaysia[23]. According
to National Diabetes Registry, the mean HbA1c for type 2 DM from 2009 to 2012 was
8.1. Our study showed that a lower HbA1c level was significantly correlated with
higher  diabetes  empowerment  scores.  This  finding is  consistent  with  those  of  a
previous study[16]. Patients with higher empowerment score were better in self-care
and practicing healthy lifestyle contributing to a better HbA1c level[8,24,25]. Age had no
significant correlation with diabetes empowerment score in our study. Our study
participants were aged between 26 to 84 years old with a median age of 55 (IQR = 18).
This finding was not similar compared to the study done previously by D’Souza et
al[19] in a study in Oman, which reported that higher empowerment levels were seen
among those 40-49 years old.
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Table 3  The correlation between clinical outcome with total diabetes empowerment scores and subscales and among type 2 diabetes
mellitus patients

Variables

Total diabetes empowerment
score

Managing the psychosocial
aspect of diabetes

Assessing dissatisfaction
and readiness to change

Setting and achieving
diabetes goal

Coefficient
correlation P value Coefficient

correlation P value Coefficient
correlation P value Coefficient

correlation P value

Systolic blood
pressure1

(mmHg)

0.046 0.411 0.073 0.192 0.014 0.798 0.013 0.821

Diastolic
blood
pressure1

(mmHg)

-0.009 0.867 -0.011 0.849 -0.055 0.323 0.024 0.674

HbA1c1 (%) -0.132 0.018 -0.122 0.028 -0.11 0.049 -1.168 0.003

HDL level1

(mmol/L)
0.022 0.693 0.019 0.734 0.013 0.816 0.104 0.063

LDL level1

(mmol/L)
-0.087 0.12 -0.064 0.252 -0.044 0.435 -0.062 0.269

TG level1

(mmol/L)
-0.034 0.538 0.043 0.438 -0.015 0.788 -0.067 0.231

1Indicates Spearman’s test was used. HbA1c: Glycated hemoglobin; LDL: Low-density lipoprotein; HDL: High-density lipoprotein; TG: Triglycerides.

There is no significant relationship between diabetes duration with total diabetes
empowerment score in our study. This contradicts a study done in Oman in which the
duration of diabetes was significantly correlated with total diabetes empowerment
score[16].  The median diabetes  duration in our study was 4  years  (with IQR = 7),
similar to a study in Iran[15]. However, in the study in Oman, 63% of participants had
been  diagnosed  with  diabetes  for  more  than  10  years[16].  Patients  have  better
empowerment when they had diabetes for a longer duration, which translates into a
longer duration of learning and adopting skills and knowledge through experience
and exposure to diabetes education to make better decisions for self-care, set targets
and achieve goals[10].

In  our  study,  there  was no significant  correlation between gender  and empo-
werment score. Tol et al[18] showed that females were more empowered than males,
probably due to the distribution of their sample, in which more than half of their
participants were female. The literature indicates that gender may influence lifestyle
modification, as men are more proactive with their health, but women are more likely
to change eating habits[26].

Strengths and limitations
To date,  this  is  the  first  study conducted among type  2  diabetes  patients  in  the
primary  care  setting  in  Malaysia.  Furthermore,  the  sample  size  of  this  study  is
relatively larger than others in the literature[15,16]. In addition, this study has not only
identified socio-demographic factors, but also correlates clinical profiles and outcomes
with total diabetes empowerment scores, which has not been reported by any local
studies, especially in the primary care setting. The limitations are mainly due to the
recruitment of participants at a single clinic, which may not be representative of the
country’s population. This is due to the short duration of the study and limitation of
human resources. Therefore, similar future studies should consider multiple centers.
This is a cross sectional study, and only an associational and not causational relation
can be inferred in this study.

Our study reported high empowerment scores among type 2 diabetes patients.
Potential predictors for total diabetes empowerment scores in our study included
higher than secondary education level, diabetes education exposure, lack of ischemic
heart disease and lower HbA1c levels.
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Table 4  The correlation between sociodemographic factors with total diabetes empowerment scores and subscales among type 2
diabetes mellitus patients

Varia-
bles

Total diabetes empowerment
score

Managing the psychosocial
aspect of diabetes

Assessing dissatisfaction and
readiness to change

Setting and achieving
diabetes goal

Coeffi-
cient
correla-
tion

Median
rank P value

Coeffi-
cient
correla-
tion

Median
rank P value

Coeffi-
cient
correla-
tion

Median
rank P value

Coeffi-
cient
correla-
tion

Median
rank P value

Age1 0.05 0.37 0.095 0.087 0.089 0.111 -0.06 0.919

Gender2 0.629 0.692 0.173 0.528

Male 159.4 163.18 155.6 158.79

Female 164.49 159.11 169.89 165.35

Ethnici-
ty2

0.56 0.2 0.757 0.332

Malay 162.38 163.38 161.04 162.94

Non-
Malay

151.06 139.14 167 144.42

Educati-
on level2

< 0.001 < 0.001 < 0.001 < 0.001

Below
Secon-
dary

109.36 106.86 110.49 105.69

Above
Secon-
dary

168.06 168.38 167.92 168.52

Marital
Status2

0.478 0.119 0.346 0.564

Single 148.82 134.28 144.74 151.34

Married 162.57 163.79 162.91 162.36

Smoking
status2

0.18 0.704 0.008 0.105

Non-
smoker

166.42 162.87 171.18 167.38

Smoker 151.75 158.79 142.32 149.85

1Indicates Spearman’s test was used.
2Indicates Mann Whitney test was used.
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Table 5  The correlation between clinical profiles with total diabetes empowerment scores and subscales among type 2 diabetes mellitus
patients

Varia-
bles

Total diabetes empowerment
score

Managing the psychosocial
aspect of diabetes

Assessing dissatisfaction and
readiness to change

Setting and achieving
diabetes goal

Coeffi-
cient
correla-
tion

Median
rank P value

Coeffi-
cient
correla-
tion

Median
rank P value

Coeffi-
cient
correla-
tion

Median
rank P value

Coeffi-
cient
correla-
tion

Median
rank P value

Diabetes
Duration
1 (yr)

-0.016 0.774 -0.1 0.857 0.011 0.847 -0.055 0.324

Diabetes
educa-
tion
exposu-
re2

0.004 0.01 0.001 0.05

Yes 168.43 167.59 169.72 168.18

No 129.97 133.8 126.38 131.1

Compli-
ance to
treatm-
ent2

0.326 0.538 0.284 0.241

Yes 162.5 162.11 162.59 162.68

No 135.63 145.67 133.38 131.04

BMI3

(kg/m2)
0.568 0.96 0.605 0.938

Underweight

Normal

Overwei
ght

Obese

Hyperte-
nsion
status2

0.11 0.478 0.707 0.052

Yes 155.53 158.82 160.06 154.11

No 172.6 166.32 165.1 174.81

Dyslipid-
emia
status2

0.789 0.371 0.679 0.341

Yes 162.27 164.02 162.69 158.8

No 159.01 153.35 157.66 170.24

Ischemic
heart
disease
status2

0.004 0.011 0.104 0.001

Yes 122.83 128.32 139.83 118.65

No 167.3 166.48 164.75 167.93

Asthma status2 0.69 0.265 0.829 0.4

Yes 167.95 179.08 158.02 174.92

No 160.84 159.69 161.86 160.12

1Indicates Spearman’s test was used.
2Indicates Mann Whitney test was used.
3Indicates Kruskal Wallis was used. BMI: Body mass index.
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Table 6  Predictor of total empowerment scores among type 2 diabetes mellitus patients using multiple linear regressions

Variables
Unstandardized coefficients

t Sig.
95%CI for B

Beta Lower bound Upper bound

Those without ischemic heart disease 5.621 2.409 0.017 1.03 10.212

Those with secondary education level and above 16.023 6.263 < 0.001 10.99 21.057

HbA1c level -1.403 -3.668 < 0.001 -2.155 -0.65

Those received DM education exposure 6.301 3.026 0.003 2.204 10.399

Smoker status -1.157 -0.685 0.494 -4.481 2.168

Hypertension status 1.866 1.098 0.273 -1.444 5.092

Dependent Variable: Total DES; Beta is coefficient of the gradient of the regression line and the strength of the relationship between a predictor and the
outcome variable; t is t-statistic tests; Sig is P value. DM: Diabetes mellitus; DES: Diabetes empowerment scores; HbA1c: Glycated hemoglobin.

ARTICLE HIGHLIGHTS
Research background
There is a limited study on the diabetes empowerment among type 2 diabetes patients par-
ticularly in primary care settings. This study aims to assess the diabetes empowerment scores
and its correlated factors among type 2 diabetes patients in a primary care clinic in Malaysia.

Research motivation
Diabetes is becoming a global epidemic of the 21st  century and over 70% of known cases of
diabetes occur in the developing countries. Evidence shows that self-empowerment is important
in managing chronic diseases, especially diabetes. Self-empowerment is an approach that can
improve the ability  of  the patients  with diabetes  to  understand the disease process  better,
involve actively in self-care and practice healthy lifestyles for better disease control. Therefore, it
is very crucial to identify the predictors for diabetes empowerment score among type 2 diabetes
patients.

Research objectives
Our objective was to access the diabetes empowerment score among type 2 diabetes patients,
also to identify correlated factors with diabetes empowerment scores among type 2 diabetes
mellitus (DM) patients in primary care clinic. In addition, we aimed to identify the predictors for
diabetes empowerment score among type 2 diabetes patients.

Research methods
This is a cross sectional study involving 322 adults with type 2 DM patients followed up in a
primary clinic. Systematic sampling method was used for patients’ recruitment. The Diabetes
Empowerment Scale (DES) questionnaire was used to measure patients’ empowerment. Data
analysis was done using SPSS version 25 and multiple linear regressions was used to identify the
predictors of total diabetes empowerment scores.

Research results
Median age of the study population was 55 years old, 56% were male and mean duration of
diabetes was 4 years. The total median score of the DES was 110 [interquartile range (IQR) = 10].
The median scores of the three subscales were 40 with (IQR = 4) for “Managing the psychosocial
aspect of diabetes”, 36 with (IQR = 3) for “Assessing dissatisfaction and readiness to change”
and 34 with (IQR = 5) for “Setting and achieving diabetes goal”. According to multiple linear
regressions, factors that had significant correlation with higher empowerment scores among type
2 diabetes patients were those who had above secondary education level (P < 0.001), those who
had diabetes education exposure (P = 0.003), those who had no ischemic heart disease (P = 0.017)
and those who had lower glycated hemoglobin (HbA1c) level (P < 0.001).

Research conclusions
Diabetes  empowerment  scores  were  high  among  type  2  diabetes  patients  in  this  study
population. The predictors for high empowerment score were those who had above secondary
education level, diabetes education exposure, no ischemic heart disease status and lower HbA1c.

Research perspectives
Given the high empowerment score were those who had above secondary education level,
diabetes education exposure, no ischemic heart disease status and lower HbA1c, hence all the
diabetes patients should be educate and empower on self-care for long-term diabetes mana-
gement.
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Abstract
BACKGROUND
Maturity-onset diabetes of the young (MODY) is the most common form of
monogenic diabetes. The disease is transmitted in autosomal dominant mode and
diabetes is usually diagnosed before age 25 year. MODY 3 is caused by mutation
of hepatocyte nuclear factor (HNF) 1A genes and is the most common MODY
subtype. Diagnosis of MODY 3 is crucial since glycemic control can be
accomplished by very low dose of sulfonylurea. In this report we described a
Thai MODY 3 patient who had excellence plasma glucose control by treating with
glicazide 20 mg per day and insulin therapy can be discontinued.

CASE SUMMARY
A 31-year-old woman was diagnosed diabetes mellitus at 14 years old. The
disease was transmitted from her grandmother and mother compatible with
autosomal dominant inheritance. Sanger sequencing of proband’s DNA
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identified mutation of HNF1A at codon 203 which changed amino acid from
arginine to cysteine (R203C). This mutation was carried only by family members
who have diabetes. The patient has been treated effectively with a combination of
oral hypoglycemic agents and must include a very low dose of glicazide (20
mg/d). Insulin therapy was successfully discontinued.

CONCLUSION
We demonstrated a first case of pharmacogenetics in Thai MODY 3 patient. Our
findings underscore the essential role of molecular genetics in diagnosis and
guidance of appropriate treatment of diabetes mellitus in particular patient.

Key words: Oral sulfonylureas; Maturity-onset diabetes of the young; HNF1A; Case report
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Core tip: Maturity-onset diabetes of the young (MODY) is the most common form of
diabetes in patients diagnosed under the age of 25. In addition, MODY is characterized
by autosomal dominant inheritance. We report a R203C mutation in the HNF1A causing
MODY type 3. The genetic diagnosis is implicated to alter SU treatment. This study
revealed that excellent glycemic control in this patient could be achieved by very low
dose SU. Furthermore, this is the first report of exceptional response to treatment with
SU in Thai MODY3.

Citation: Plengvidhya N, Tangjittipokin W, Teerawattanapong N, Narkdontri T,
Yenchitsomanus PT. HNF1A mutation in a Thai patient with maturity-onset diabetes of the
young: A case report. World J Diabetes 2019; 10(7): 414-420
URL: https://www.wjgnet.com/1948-9358/full/v10/i7/414.htm
DOI: https://dx.doi.org/10.4239/wjd.v10.i7.414

INTRODUCTION
Maturity-onset diabetes of the young (MODY) is the most common type of monogenic
diabetes,  it  is  inherited  in  an  autosomal  dominant  manner,  and  it  is  normally
diagnosed before 25 years of age. To date, at least 15 subtypes of MODY caused by
mutations  of  15  different  genes  have  been  identified[1,2].  Thus,  the  clinical  hete-
rogeneity of MODY is explained by its genetic heterogeneity[3]. MODY3 is caused by
mutation of hepatocyte nuclear factor 1A (HNF1A), which encodes a transcription
factor that regulates functions of several proteins, including amylin, insulin, GLUT2,
and  L-pyruvate  kinase,  that  are  important  for  glucose  metabolism  and  insulin
secretion. HNF1A dysfunction are leading to Diabetes development and imbalance of
insulin in patients. More than 350 mutations of HNF1A  have been identified, and
MODY3 is the most common MODY subtype among Caucasians[4]. In contrast, Asians
most  commonly  have  MODY-X  or  MODY  subtype  without  identified  genetic
cause[5-10].  Identification of  MODY3 is  very important,  because pancreatic  β-cells
exhibited hyperexcitability in this subtype in response to treatment with sulfonylurea
(SU)[11]. The Siriraj Center of Research Excellence for Diabetes and Obesity (SiCORE-
DO) discovered 3 different HNF1A  mutations, including R203C, G554fsX556, and
P475L, in 3 unrelated MODY pedigree[12-14]. Here, we report a Thai MODY3 patient
carrying HNF1A R203C mutation that exhibited outstanding diabetes control with
low-dose glicazide, which is a short-acting second-generation SU. Rapid deterioration
of her glycemic control was observed after withdrawal of SU. The purpose of this
report is to present alteration of drug treatment in patient by genetic diagnosis.

CASE PRESENTATION

Chief complaints
A 31-year-old Thai woman came to Siriraj Diabetes Center, Siriraj Hospital, Bangkok,
Thailand for her diabetes management.

History of present illness
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The patient has been following up every 3 months at the Siriraj  Diabetes Center,
Siriraj Hospital, Bangkok, Thailand. Currently, she was 44 years old and treated with
glicazide 20 mg/d. She has excellence glycemic control without diabetic compli-
cations. Laboratory assessment included fasting plasma glucose (FPG) 78 mg/dL,
hemoglobin A1c (HbA1c) 6.7%, serum creatinine (0.56 mg/dL), total cholesterol (TC)
173 mg/dL, high-density lipoprotein (HDL) 99 mg/dL, low-density lipoprotein (LDL)
62.6 mg/dL, and triglycerides (TG) 57 mg/dL.

History of past illness
The patient was first seen at Siriraj Diabetes Center when she was 31 years old and
diabetes was diagnosed at age 14.

Personal and family history
Her mother and brother were diagnosed with diabetes at age 17 and 13, respectively.
There was no history of diabetic ketoacidosis, and glycemic control could be achieved
without insulin treatment for  more than 5 years after  diabetes diagnosis  in all  3
patients.

Physical examination upon admission
The patient’s body mass index (BMI), waist-to-hip ratio, and blood pressure was 19.43
kg/m2, 0.83, and 120/70 mmHg, respectively (Table 1).

Laboratory examinations
Laboratory assessments at her first visit to Siriraj Diabetes Center included FPG 126
mg/dL, HbA1c 9.5%, serum creatinine (0.6 mg/dL), TC 156 mg/dL, HDL 71 mg/dL,
LDL 90 mg/dL, and total TG 55 mg/dL.

Sequencing profile and timeline of patient’s glycemic control with and without SU
Sanger sequencing of her DNA revealed heterozygous mutation of HNF1A at codon
203 in exon 3 that caused substitution of cysteine for arginine (R203C) (Figure 1). This
mutation was also identified in all diabetic family members, but not in non-diabetic
family members whose DNA were available for sequencing (Figure 2). The patient’s
glycemic control profile (with and without SU) is shown in Figure 3. The results of our
analysis revealed that excellent glycemic control could only be achieved when our
patient was taking SU. Interestingly – when SU treatment was withdrawn, severe
hyperglycemia eventually developed, even when insulin was given. The optimal dose
of glicazide in this case was 20 mg per day. This patient continues to do well with no
observed diabetic complications.

FINAL DIAGNOSIS
SU hyperresponsiveness in MODY subtype 3 due to HNF1A mutation.

TREATMENT
The patient has been successfully treated with glicazide 20 mg/d, metformin 2000
mg/d and sitagliptin 100 mg/d.

OUTCOME AND FOLLOW-UP
The  patient’s  glycemic  control  has  been  excellence  and  without  hypoglycemic
episodes during the last 4 years of follow up. No diabetic complications have deve-
loped.

DISCUSSION
MODY3 is one of the best examples of precision medicine in diabetes.  Studies in
animal models showed that total deletion of HNF1A resulted in decreased SU uptake
by hepatocytes and decreased excretion[2,12,15,16]. Clinical studies in humans demon-
strated that MODY3 patients treated with SU exhibited excellent glycemic control,
and withdrawal of SU led to severe hyperglycemia – even with insulin treatment.
However, dosage adjustment is essential since inappropriate SU dose can lead to
hypoglycemia[11]. The current recommendation for treatment of MODY3 patients is to
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Table 1  Demographic, anthropometric, and clinical characteristics of the case profiled in this
report

Characteristics Values

Age (yr) 31

Age at onset (yr) 14

Duration (yr) 17

BMI (kg/m2) 19.43

Waist circumference (cm) 77

Waist-to-hip ratio 0.83

Systolic BP (mmHg) 120

FPG (mg/dL) 126

HbA1c (%) 9.5

Serum creatinine (mg/dL) 0.6

Total cholesterol (mg/dL) 156

Total triglycerides (mg/dL) 55

LDL (mg/dL) 90

HDL (mg/dL) 71.0

BMI: Body mass index; BP: Blood pressure; FPG: Fasting plasma glucose; HbA1c: Glycated hemoglobin; LDL:
Low-density lipoprotein cholesterol; HDL: High-density lipoprotein cholesterol.

use a very low dose of SU. Caution should be exercised if SU is to be withdrawn from
the  treatment  plan  since  a  deterioration  in  the  patient’s  glycemic  status  can  be
anticipated. Our MODY3 patient exhibited exceptional plasma glucose control using a
very low dose of glicazide, and severe hyperglycemia developed after glicazide was
discontinued, even though she was treated with metformin, sitagliptin, and insulin
glargine. Moreover, her glicazide dosage was titrated to 20 mg/d to avoid hypogly-
cemia, even though the usual dose is up to 80 mg/d for treatment of type 2 diabetes.
Upon reaching her maintenance dosage and after stabilization of her blood sugar,
insulin therapy could be discontinued and the durability of glycemic control has been
almost 4 years (Figure 3). To our knowledge, this is the first report of exceptional
response to treatment with SU in Thai MODY3. Our findings are in agreement with
those from previous reports in MODY3 patients from different ethnicities, including
Caucasian,  Saudi Arabian,  and Tunisian[17-19].  A study from the United Kingdom
reported lower HbA1c and lower BMI at genetic diagnosis, and shorter duration of
diabetes to be factors that significantly influence treatment success after treatment
with SU in MODY3 patients[20]. However, this finding has not yet been investigated or
confirmed in Asian population due to the relatively lower prevalence of MODY3 in
this ethnicity.

CONCLUSION
In this report, we presented and described a 31-year-old Thai MODY3 patient with a
heterozygous mutation of HNF1A  at R203C who demonstrated excellent diabetic
control  with a very low dose of  SU. To our knowledge,  this  is  the first  report  of
exceptional response to treatment with SU in Thai MODY3. Our findings emphasize
the critical role of correct genetic diagnosis, especially in patients with early-onset
diabetes.
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Figure 1

Figure 1  Sequencing profile of exon 3 of HNF1A in the mutation region (R203C). The green circle indicates the location of C in wild-type, and the red circle
indicates the location of T substitution in heterozygous.

Figure 2

Figure 2  Pedigree showing autosomal dominant inheritance of diabetes associated with a hepatocyte nuclear factor-1-alpha mutation. Symbols and
abbreviations: Circles: Females; squares: Males; Darkened circles or squares: Diabetes; NM: Heterozygous HNF1A R203C; NN: HNF1A wild-type genotype.
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Figure 3

Figure 3  Timeline of patient’s glycemic control with and without sulfonylurea.
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