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Abstract
Heart failure (HF) is a major complication of diabetes mellitus (DM). Patients
with DM have considerably higher risk for HF than non-diabetic subjects and HF
is also more severe in the former. Given the rising prevalence of DM, the
management of HF in diabetic patients has become the focus of increased
attention. In this context, the findings of several randomized, placebo-controlled
trials that evaluated the effects of sodium-glucose co-transporter-2 inhibitors on
the risk of hospitalization for HF in patients with type 2 DM represent a
paradigm shift in the management of HF. These agents consistently reduced the
risk of hospitalization for HF both in patients with and in those without HF.
These benefits appear to be partly independent from glucose-lowering and have
also been reported in patients without DM. However, there are more limited data
regarding the benefit of sodium-glucose co-transporter-2 inhibitors in patients
with HF and preserved left ventricular ejection fraction, which is the commonest
type of HF in diabetic patients.

Key words: Heart failure; Type 2 diabetes mellitus; Sodium-glucose co-transporter-2
inhibitors; Canagliflozin; Dapagliflozin; Empagliflozin

©The Author(s) 2020. Published by Baishideng Publishing Group Inc. All rights reserved.

Core tip: Sodium-glucose co-transporter-2 inhibitors substantially reduce the risk of
hospitalization for heart failure in patients with type 2 diabetes mellitus (T2DM).
Accordingly, these agents should be considered in all patients with T2DM and HF with
reduced left ventricular ejection fraction regardless of HbA1c levels. However, more
studies are needed to clarify the role of sodium-glucose co-transporter-2 inhibitors in
patients with T2DM and HF with preserved left ventricular ejection fraction, which is the
commonest type of HF in this population.
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EDITORIAL
During the last decades, the prevalence of diabetes mellitus (DM) worldwide has
almost doubled, from 4.7% in 1984 to 9.3% in 2019[1]. Moreover, it is estimated that
patients with DM will reach 300 million by 2025 and 366 million in 2030, with the
majority of them living in low-income countries[2,3]. It has also been projected that the
prevalence of DM globally will  rise to 10.4% by 2040 and that 12% of healthcare
expenditure  will  be  dedicated  to  diabetic  patients[4].  These  trends  are  of  great
importance given the strong relationship between DM and cardiovascular disease
(CVD). It is well-established that DM is a major cardiovascular risk factor[5]. Indeed,
75%-80% of  patients  with DM die  due to  CVD[6].  Accordingly,  DM is  one of  the
leading causes of death worldwide[7].

Among the manifestations of CVD in patients with DM, heart failure (HF) has
become the focus of intense research in the last years. Heart failure is an important
public health issue, affecting more than 23 million people all  over the world and
leading to excess morbidity and mortality[8,9]. Heart failure-related healthcare costs are
also substantial and are mostly due to the repeated hospitalization of these patients[8,9].
Based on the left ventricular ejection fraction (LVEF), HF is categorized into HF with
reduced EF (HFrEF), HF with midrange EF (HFmrEF) and HF with preserved EF
(HFpEF)[10,11].  Patients  with  HFpEF  have  a  higher  prevalence  of  comorbidities
including obesity, chronic obstructive pulmonary disease and DM than those with
HFrEF[12,13]. Several studies showed that the incidence of HF is 2-5 times higher in
diabetic patients than in those without DM[14,15]. Patients with type 1 DM also have a
higher risk of developing HF[16]. In addition, diabetic patients with HF have longer
HF-related hospital stays, more frequent HF-related readmissions and higher risk for
cardiovascular  mortality  than  patients  with  HF  but  without  DM[17-20].  All-cause
mortality and healthcare costs are also higher in the former[21-23].

In  addition  to  atherosclerosis-related  ischemic  heart  disease,  small  vessel
dysfunction,  renal  dysfunction  and  a  direct  effect  of  insulin  resistance  on
cardiomyocytes appear to play a role in the pathogenesis of  HF in patients with
DM[24,25].  The  most  profound feature  of  diabetic  cardiomyopathy is  LV diastolic
impairment  manifesting  as  HFpE  whereas  HFrEF  is  less  prevalent  in  these
patients[26,27]. Early signs of diastolic dysfunction in patients with DM include elevated
LV filling pressures portrayed by reduced peak myocardial systolic velocity and
reduced E/A ratio (transmittal early to late diastolic peak ratio), along with increased
LV mass and wall thickness[28-31].

Given the rising prevalence of DM and its strong association with HF, the findings
of  several  recent,  randomized,  placebo-controlled  trials  of  sodium  glucose  co-
transporter 2 (SGLT2) inhibitors might represent a paradigm shift in the management
of these patients. In the Empagliflozin Cardiovascular Outcome Event Trial in Type 2
Diabetes  Mellitus  Patients  trial  [n  =  7020  patients  with  type  2  DM (T2DM) and
established CVD], treatment with empagliflozin reduced the risk of hospitalization for
HF by 35% and reduced the incidence of the primary composite outcome (death from
cardiovascular causes,  nonfatal  myocardial  infarction or nonfatal  stroke) by 14%
during  a  median  follow-up  of  3.1  years[32].  In  the  Canagliflozin  Cardiovascular
Assessment Study (n = 10142 patients with T2DM who were either ≥ 30 years old with
established CVD or ≥ 50 year-old with ≥ 2 of the following cardiovascular risk factors:
T2DM duration ≥ 10 years, systolic blood pressure > 140 mmHg despite treatment
with ≥ 1 antihypertensive agent, current smoking, micro- or macroalbuminuria, or
high-density lipoprotein cholesterol level < 39 mg/dL), treatment with canagliflozin
reduced the risk of hospitalization for HF by 33% and reduced the incidence of the
primary composite outcome (death from cardiovascular causes, nonfatal myocardial
infarction or nonfatal stroke) by 14% during a mean follow-up of 3.6 years[33]. In the
Canagliflozin and Renal Events in Diabetes with Established Nephropathy Clinical
Evaluation trial [n = 4401 patients with T2DM and chronic kidney disease (estimated
glomerular filtration rate 30-90 mL/min/1.73 m2 and urinary albumin-to-creatinine
ratio > 300 mg/g)], treatment with canagliflozin reduced the risk for hospitalization
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for HF by 39% during a mean follow-up of 2.6 years[34]. In the Dapagliflozin Effect on
Cardiovascular Events trial (DECLARE TIMI-58) trial (n = 17160 patients with T2DM
and either established CVD or multiple cardiovascular risk factors), dapagliflozin
reduced the risk for hospitalization for HF by 27% compared with placebo during a
median follow-up of 4.2 years[35]. In an observational study in 309056 patients with
DM followed-up in real-world practice, treatment with SGLT2 inhibitors also resulted
in  a  39%  reduction  in  the  risk  of  hospitalization  for  HF  compared  with  other
antidiabetic  agents[36].  Notably,  SGLT2 inhibitors  appeared to  reduce the  risk  of
hospitalization for HF to a similar degree in patients with and without a history of
HF[37,38]. It is therefore possible that SGLT2 inhibitors might prevent the development
of HF in diabetic patients. However, it is also possible that many patients in these
trials had undiagnosed HF and that SGLT2 inhibitors are also effective in patients
with less severe, asymptomatic HF. It is also noteworthy that, in the DECLARE TIMI-
58 trial, dapagliflozin reduced the risk of hospitalization for HF to a similar degree in
patients with HFrEF and in those with HFpEF[38]. However, this analysis was based on
a small number of patients and should be considered exploratory and hypothesis-
generating[38].

Despite the consistently beneficial effects of SGLT2 inhibitors on the incidence of
hospitalization for  HF,  it  should be emphasized that  only a  small  proportion of
patients  in  these  trials  had  HF  at  baseline  (10%-15%) [32-35].  However,  in  the
Dapagliflozin and Prevention of Adverse Outcomes in Heart Failure (DAPA-HF) trial,
dapagliflozin  reduced  the  risk  of  hospitalization  for  HF  by  30%  and  reduced
cardiovascular mortality by 18% compared with placebo in 4744 patients with New
York Heart Association class II,  III,  or IV heart failure and an EF ≤ 40% during a
median follow-up of 18.2 mo[39]. Therefore, the findings of this large study further
support the benefits of SGLT2 inhibitors in the management of HF, particularly with
reduced EF. Nevertheless, given the limited data on the effects of these agents in
patients with HFpEF, more studies are needed in this important subgroup. It should
also be mentioned that patients with DM (42% of the study population) experienced a
similar reduction in the risk of hospitalization for HF as patients without DM[39]. This
finding suggests that other actions of SGLT2 inhibitors besides glucose-lowering
might play a role in the beneficial effects of these agents in patients with HF. Indeed,
it  has  been reported that  SGLT2 inhibitors  promote  reverse  cardiac  remodeling,
improve myocardial energetics and filling conditions, reduce LV wall stress and mass
and reduce blood pressure and arterial stiffness[40-43].

CONCLUSION
SGLT2 inhibitors substantially reduce the risk of hospitalization for HF in patients
with DM. Accordingly, current guidelines recommend these agents in patients with
T2DM and HFrEF regardless of HbA1c levels[44]. However, more studies are needed to
clarify the role of SGLT2 inhibitors in patients with T2DM and HFpEF, which is the
most common type of HF in this population.
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Abstract
The progressive aging of populations has resulted in an increased prevalence of
chronic pathologies, especially of metabolic, neurodegenerative and movement
disorders. In particular, type 2 diabetes (T2D), Alzheimer’s disease (AD) and
Parkinson’s disease (PD) are among the most prevalent age-related, multifactorial
pathologies that deserve particular attention, given their dramatic impact on
patient quality of life, their economic and social burden as well the
etiopathogenetic mechanisms, which may overlap in some cases. Indeed, the
existence of common triggering factors reflects the contribution of mutual
genetic, epigenetic and environmental features in the etiopathogenetic
mechanisms underlying T2D and AD/PD. On this subject, this review will
summarize the shared (epi)genomic features that characterize these complex
pathologies. In particular, genetic variants and gene expression profiles
associated with T2D and AD/PD will be discussed as possible contributors to
determine the susceptibility and progression to these disorders. Moreover,
potential shared epigenetic modifications and factors among T2D, AD and PD
will also be illustrated. Overall, this review shows that findings from genomic
studies still deserves further research to evaluate and identify genetic factors that
directly contribute to the shared etiopathogenesis. Moreover, a common
epigenetic background still needs to be investigated and characterized. The
evidences discussed in this review underline the importance of integrating large-
scale (epi)genomic data with additional molecular information and clinical and
social background in order to finely dissect the complex etiopathogenic networks
that build up the “disease interactome” characterizing T2D, AD and PD.
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Core tip: Populations’ progressive aging raises important challenges to be faced,
including the increased prevalence of metabolic, neurodegenerative and movement
disorders, especially of type 2 diabetes, Alzheimer’s disease and Parkinson’s disease.
These disorders are characterized by a multifactorial etiology, involving genetic and non-
genetic factors, which may overlap. This review will discuss the shared (epi)genomic
features, the role of mutually-associated genetic variants, common gene expression
profiles and epigenetic background leading to development and progression of such
disorders. Overall, this review highlights the importance of characterizing the “disease
interactome” in order to establish adequate personalized and preventative healthcare
approaches for the ageing populations.

Citation: Caputo V, Termine A, Strafella C, Giardina E, Cascella R. Shared (epi)genomic
background connecting neurodegenerative diseases and type 2 diabetes. World J Diabetes
2020; 11(5): 155-164
URL: https://www.wjgnet.com/1948-9358/full/v11/i5/155.htm
DOI: https://dx.doi.org/10.4239/wjd.v11.i5.155

INTRODUCTION
The recent progress in medicine and the improvement of health conditions have
contributed to the rise of life expectancy, on the one hand. On the other hand, the
better healthcare conditions and the availability of several therapeutic approaches
have run in parallel  to the progressive aging of populations,  which raised novel
challenges to be faced by the healthcare systems and the scientific communities. In
fact, the progressive aging population has resulted in the increased prevalence of
chronic  pathologies,  especially  of  metabolic,  neurodegenerative  and movement
disorders[1].  In  particular,  type  2  diabetes  (T2D),  Alzheimer’s  disease  (AD)  and
Parkinson’s  disease  (PD)  are  among  the  most  prevalent  chronic,  age-related
pathologies that deserve particular attention given their dramatic impact on patient
quality  of  life,  their  economic  and  social  burden  as  well  the  etiopathogenetic
mechanisms, which may overlap in some cases.

In fact, T2D accounts for 90% of cases of diabetes mellitus, which affects 285 million
people worldwide[2]. It is mainly caused by a combination of insulin resistance and
relative  insulin  deficiency[3],  which results  in  glucose  dyshomeostasis  and other
concomitant  conditions,  including  hypertension  and  dyslipidemia [4].  AD  is
characterized by progressive loss of memory and cognitive domains responsible for
functional independence[5,6]. This pathology accounts for the 60%-80% of overall forms
of dementia and represents the sixth cause of death in the world. It affects about 30-46
million people[5,7-9], with an increasing prevalence depending on age (ranging from
0.3%-0.5% at age 60 to 11%-15% at age 80)[10-12].  PD affects 0.3% of the worldwide
population, with prevalence increasing by age; in fact, it is estimated to be 1% in
people over 60 years of age and 3%-5% in individuals over 85[13,14]. The clinical features
of PD include typical motor symptomatology (bradykinesia, resting tremor, postural
instability,  and gait  difficulties)  and non-motor symptoms (dysautonomia,  sleep
disturbances, mood, and cognitive disorders)[15,16].

T2D, AD and PD are all characterized by a multifactorial etiology, involving the
interplay among genetic,  epigenetic and environmental factors[17,18].  Interestingly,
there are lines of evidence at the epidemiological, cognitive and neuropathological
levels that seem to link T2D to AD and PD[19]. In particular, brain insulin resistance
could  represent  the  bridge  linking  metabolic  disorders  to  neurodegenerative
/movement pathological conditions[20].  Insulin is transported via the blood brain
barrier to the central nervous system, where it regulates local blood and cerebrospinal
fluid glucose levels. Nevertheless, it is thought that the principal activity in the brain
may be related to the regulation of synaptic plasticity and cognitive functions[7,21].
Moreover, a little proportion of insulin may be produced in the brain, as well. Indeed,
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insulin levels detected in humans and rodents have been found to be lower than those
in the systemic circulation. However, differences in the levels of insulin among AD
brains and age-matched controls have not been established[7]. Insulin Receptors (IRs)
are  well  distributed  in  the  brain,  especially  in  the  cortex,  hippocampus  and
hypothalamus,  corroborating  the  importance  of  brain  insulin  signaling[7,21].  The
“diabetic brain” may suffer of the hyperglycemia and insulin resistance arising from
the decrease in insulin receptor expression or activity[7,21]. This alteration may lead to
the activation of  pathogenic  processes,  namely enhanced production of  reactive
oxygen species (ROS) and pro-inflammatory cytokines, that trigger inflammatory
responses  also  in  the  brain,  advanced  glycation  products  and  dysfunctions  of
autophagic functions. Moreover, insulin resistance is able to increase the production
and secretion of beta amyloid (Aβ) and alter the molecular pathways involved in the
phosphorylation of Tau protein: both Aβ and hyperphosphorilated-Tau are known to
misfold,  aggregate  and accumulate  leading to  the loss  of  synapses  and death of
neurons, which are typical of neurodegeneration processes[7,22-28]. Indeed, the increased
neuroinflammation represents a pathological feature shared by all of the three age-
related pathologies[29]. Thus, the existence of common triggering factors reflects the
contribution  of  mutual  genetic  and  epigenetic  features  in  the  etiopathogenetic
mechanisms underlying AD, PD and T2D. On this subject, this review will summarize
the shared (epi)genomic features that characterize these complex pathologies.

SHARED GENETIC MAKE-UP AND FUNCTIONAL
PATHWAYS AMONG T2D, AD AND PD
Several studies have attempted to dissect the contributing genetic background(s) to
determine  the  susceptibility  to  T2D,  AD  and  PD.  Concerning  T2D,  most  of  the
identified  genetic  risk  factors  are  mainly  involved  in  the  maintenance  of  β-cell
homeostasis  and  in  the  modulation  of  insulin  metabolism[2,30,31].  As  previously
mentioned, insulin resistance has been reported to likely influence brain functions
and neuronal activity. Concerning the genetic susceptibility factors of AD and PD,
several  genome-wide association studies (commonly referred to as GWAS) have
identified many genetic polymorphisms associated with the onset and progression of
sporadic forms of AD and PD. Most of them have been found to be located within
genes  involved  in  dopamine  metabolic  process,  apoptosis,  autophagy-related
pathways, Aβ cascade, Tau pathology, neuroinflammation, regulation of neuronal
transmission,  and  survival[17,32-35].  The  availability  of  GWAS  and  bioinformatic
approaches has allowed for the identification of 927 single nucleotide polymorphisms
(SNPs)  associated  with  both  T2D and AD in  populations  of  European ancestry.
Intriguingly,  395 of  these SNPs have been reported to share the same risk allele
between T2D and AD[36]. These SNPs are involved in immunity/inflammation-related
pathways, cell-cell communication and neuronal plasticity, whose dysregulation may
lead to increase in the neuroinflammation typically occurring in T2D and AD[7,37,38].
Polymorphisms  within  the  IDE/HHEX  region  have  also  been  investigated  as
combined susceptibility factors for T2D and AD (Table 1)[39-41]. Notably, IDE codes for
the enzyme responsible for insulin clearance, although it is also able to degrade Aβ
peptide in neurons and glia cells[7,39].

A recent study performed on populations of European ancestry has described the
association  of  14  common  SNPs  with  both  T2D  and  AD;  these  are  located  in
TP53INP1, NDUFAF6, TOMM40, BTBD16, PLEKHA1, PVRL2 and APOC1 genes[42,43]

(Table 1). Interestingly, these genes encode proteins involved in the regulation of
autophagy, apoptosis, response to oxidative stress, mitochondrial function and lipid
metabolism, and their overall dysregulation can contribute to the etiopathogenetic
pathways underlying T2D and AD[7,22]. Of note, Hao et al[34], 2015 and Wang et al[39],
2017 found that both disorders shared the same risk variant in SNPs (rs10510109 and
rs2421016) located in BTBD16  and PLEKHA1  genes (Table 1). This is of particular
interest, as different SNPs within PLEKHA1 have been associated with age-related
macular degeneration (an ocular neurodegenerative complex disease)[44-46] and they
map  on  the  10q26.13  locus,  which  also  contains  another  age-related  macular
degeneration-associated gene (ARMS2/HTRA1)[47,48].  Given these data, the genetic
architecture of the 10q26.13 region may be investigated for its potential contribution
to neurodegeneration and could be addressed as a shared susceptibility locus for T2D
and AD. Moreover, the presence of shared genetic polymorphisms associated with
both  diseases  may  also  be  exploited  to  predict  the  risk  of  developing  AD  in
individuals already suffering from T2D.

Less information is available concerning the genetic overlap between T2D and PD.
The  possible  link  between  T2D-associated  genetic  loci  and  AD/PD  has  been
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Table 1  Subset of genetic variants and genes found to be associated with type 2 diabetes, Alzheimer’s disease and Parkinson’s disease,
as well as those associated with type 1 diabetes and Parkinson’s disease[36,39,41-43,49,50]; Biological functions have been obtained from
literature data[7,22,39,49,51-56] and GeneCards (https://www.genecards.org)

Gene symbol Gene name Genomic location SNP Biological function Potential associated
diseases

IDE Insulin degrading
enzyme

10q23.33 rs6583817 Insulin clearance T2D/AD

IDE/HHEX Insulin degrading
enzyme/hematopoietica
lly expressed homeobox

rs1544210 Insulin
clearance/transcriptiona
l repression

TP53INP1 Tumor protein P53
inducible nuclear
protein 1

8q22.1 rs896854 Cell stress response,
autophagy activation,
cell cycle regulation

TP53INP1/NDUFAF6 Tumor protein P53
inducible nuclear
protein
1/NADH:Ubiquinone
oxidoreductase complex
assembly factor 6

rs6982393 Cell stress response,
autophagy activation,
cell cycle regulation
Mitochondrial function

rs4734295

NDUFAF6 NADH:Ubiquinone
oxidoreductase complex
assembly factor 6

rs7812465 Mitochondrial function

TOMM40 Translocase of outer
mitochondrial
membrane 40

19q13.32 rs2075650

BTBD16/PLEKHA1 BTB domain containing
16/pleckstrin homology
domain containing A1

10q26.13 rs10510109 Apoptosis
regulation/plasma
membrane function

PLEKHA1 Pleckstrin homology
domain containing A1

rs2421016 Plasma membrane
function

PVRL2 Poliovirus receptor-like
2

19q13.32 rs6859 Cell junctions,
inflammation

APOC1 Apolipoprotein C1 rs111789331 Lipid metabolism

rs12721046

rs12721051

rs4420638

rs56131196

rs66626994

DNM3 Dynamin 3 1q24.3 rs4504922 Vesicle transport,
phagocytosisrs7539972

ADCY5 Adenylate cyclase 5 3q21.1 rs2877709 Chemokine signaling,
insulin secretion

CDC123 Cell division cycle 123 10p14-p13 rs11257655 Cell cycle regulation T2D/PD

CDKN2B Cyclin dependent kinase
inhibitor 2B

9p21.3 rs2383208

rs10965250

rs10811661

KANSL1 KAT8 regulatory NSL
complex subunit 1

17q21.31 rs17661428 Transcriptional
activation

T1D/PD

CXCR4 C-X-C motif chemokine
receptor 4

2q22.1 rs2011946 Inflammation, neuronal
development

MAP3K14 Mitogen-activated
protein kinase kinase
kinase 14

17q21.31 rs2867316

CRHR1 Corticotropin releasing
hormone receptor 1

rs393152 Hormonal signaling,
stress and immune
response

AD: Alzheimer’s disease; PD: Parkinson’s disease; T1D: Type 1 diabetes; T2D: Type 2 diabetes; SNP: Single nucleotide polymorphism.

investigated in a study involving 500 PD and 400 AD patients of Asian ancestry. The
authors  reported  four  SNPs  located  in  CDC123  and  CDKN2B  genes  mutually
associated with T2D and PD. However,  this  association was not  confirmed after
correction for multiple testing[49] (Table 1). CDC123 and CDKN2B exert a role in cell
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cycle  regulation,  and  their  dysfunction  leads  to  alterations  in  cell  homeostasis,
suggesting  that  the  genetic  association  with  T2D  and  PD  should  be  further
investigated in larger cohorts and different populations. Furthermore, four different
genes, namely KANSL1,  CXCR4,  MAP3K14  and CRHR1,  were found to be shared
between PD and type 1 diabetes in a  study aiming to evaluate the common risk
factors between PD and autoimmune disorders[50] (Table 1). Intriguingly, CXCR4 and
MAP3K14  are involved in the regulation of neuronal inflammatory responses.  In
particular,  CXCR4  is  involved in  microglia  recruitment,  neuronal  guidance  and
neurodevelopmental  processes[51],  whereas  MAP3K14  mediates  NFκB  signaling
(involved in immunological cytotoxicity) in brain neurons[52]. Moreover, the CXCR4
protein has been found to be overexpressed in a rodent model of diabetic neuropathic
pain[53]. KANSL1 has been found to be associated with AD, thus suggesting that the
encoded protein may take part in neuronal development. Indeed, KANSL1, as part of
the NLS1 complex which regulates histone acetylation, is mainly involved in the
epigenetic regulation of chromatin[54]. Interestingly, mutations within KANSL1 are
able to cause intellectual disability and developmental delay[54,55]. CRHR1 is known to
be  involved in  the  activation of  hypothalamic-pituitary-adrenal  axis,  leading to
secretion of cortisol that, in turn, causes insulin resistance. Notably, the chronic stress
activated by the adrenal secretion of cortisol represents a risk factor for AD onset and
progression[56]. Given these lines of evidence, the association between this set of genes
and their potential involvement in etiopathogenetic pathways leading to T2D, AD and
PD should be further elucidated.

In addition to the identification of shared genetic variants, the investigation of
common gene expression profiles may facilitate the discovery and exploration of
molecular  pathways  that  are  deregulated  in  T2D,  AD  and  PD.  On  this  subject,
Rahman et al[57], 2018 reported intriguing insights, exploiting human gene expression
datasets.  Among  the  significant  Gene  Ontologies  (known  as  GOs)  and  Kyoto
Encyclopedia Genes and Genomes (known as KEGG) pathways shared by T2D and
AD, pathways involved in glycosphingolipid biosynthesis, immune/inflammatory
response, regulation of neurotransmitter transports, synaptic vesicle formation, lipid
metabolism and apoptosis have been identified. T2D and PD share genes involved in
immune-related  networks,  cell  adhesion,  mitochondrial  activity,  connective
tissue/extracellular  matrix  organization,  and  synaptic  maturation.  Indeed,
neuroinflammation may represent a common hallmark among T2D, AD and PD,
given that most of the shared genes are implicated in the regulation of inflammatory
networks.  Interestingly,  Santiago  et  al [58],  2013  found  that  APP  mRNA  was
overexpressed  in  the  whole  blood  of  both  T2D and  PD patients.  Therefore,  the
knowledge of shared genetic factors and gene expression profiles may help to further
dissect the molecular network characterizing and linking T2D, AD and PD (Figure 1).

INSIGHTS INTO COMMON EPIGENETIC BACKGROUND(S)
OF T2D, AD AND PD
The human genome is able to dynamically interact with the environment through
epigenetic modifications, which altogether create the complex machinery designated
to regulate lifetime and aging processes. In fact, epigenetics modulate gene expression
without altering the DNA sequence. This is possible by means of different kinds of
epigenetic  modifications,  including DNA methylation and histone modifications
(which might  affect  gene transcription),  and noncoding (nc)RNAs (which might
change gene expression at the post-transcriptional level)[59]. Given the crucial role of
epigenetics in the modulation of gene expression, its alteration can contribute to
pathogenesis and progression of several age-related diseases, including metabolic,
neurodegenerative and movement disorders[17,60]. The existence of a shared epigenetic
background among T2D and neurodegenerative diseases deserves to be investigated.
As a matter of fact, the gene expression signatures shared among T2D and AD/PD[57,58]

may also be related to the presence of  common epigenetic  alterations[61].  On this
subject, there are intriguing hypotheses that could be evaluated. For instance, the
analysis of long-range chromatin contacts among regulatory regions and their target
genes will provide insights into how epigenetic background(s) may modify chromatin
conformation[62] and thus gene expression profiles in the context of T2D, AD and PD.
Moreover, an interaction between micro (mi)RNA-661 and BACE1 mRNA was found
to  cause  a  reduced  expression  of  the  resultant  protein  in  pancreatic  islets  and
contribute, thereby, to the development of T2D[63]. Of note, BACE1 is involved not
only in the regulation of insulin biogenesis but also in the formation of Aβ so that it
could be also investigated in the etiopathogenesis of AD[64].

Furthermore, sirtuins are a family of histone deacetylases, playing critical roles in
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Figure 1

Figure 1  Known interaction networks among the potentially shared genes. Network showing the known
molecular interactions (String; https://string-db.org/). The reported genes have been selected from the genetic studies
discussed in the manuscript. The existence of few known molecular interactions among them highlights the need of
further investigations in order to better understand the shared etiopathogenesis.

the physiology of metabolism, central nervous system, and immune system. In fact,
these  epigenetic  modifiers  are  involved  in  a  variety  of  molecular  pathways
underlying different  complex diseases  (cancer,  diabetes,  and neurodegenerative
disorders)[65].  Given their role, sirtuins may be addressed as potential therapeutic
targets able to counteract the progression of T2D, AD and PD through their epigenetic
activity[66].

The  study  of  DNA  methylation  affecting  mitochondrial  genes  could  unveil
interesting insights into the pathogenesis of T2D, AD and PD. In fact, alteration of
DNA methylation status has been supposed to be responsible for the reduction of
complex I and IV subunits in AD and PD human brain samples[67]. Moreover, it has
been demonstrated that the alteration of miR-181a/b levels impacts mitochondrial
biogenesis  and turnover in the brain,  through the modulation of  autophagy and
mitophagy-related pathways[68]. These miRNAs could be, therefore, investigated for
their  potential  role  in  the  common  pathogenetic  processes  leading  to  T2D  and
AD/PD.  Furthermore,  the  study of  other  miRNAs and ncRNAs related to  these
disorders could be helpful for designing innovative class of drugs (epidrugs).

CONCLUSION
A  growing  body  of  evidence  suggests  the  existence  of  multilevel  networks  of
pathogenetic pathways which mutually contribute to the onset and progression of
metabolic, neurodegenerative and movement disorders. However, few shared genetic
contributors have been well characterized and a common epigenetic landscape needs
to  be  explored.  Of  note,  in  T2D,  an  impairment  of  glucose  metabolism in  brain
generates oxidative stress, leading to the alteration of autophagy-related pathways,
mitochondrial dysfunction, increased neuronal apoptosis and, eventually, depletion
of synapsis[7]. Overall, these alterations contribute to the formation of amyloid plaques
and neurofibrillary tangles in AD and to the deterioration of dopaminergic neurons in
different brain regions in PD[1]. As mentioned, despite a plethora of data highlighting
a possible overlapping of disease mechanisms involved in T2D, AD and PD, the
critical  molecular  and  genetic  features  remain  to  be  clarified.  The  genetic
polymorphisms (Table 1) shared with T2D, AD and PD are located within genes
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involved not only in brain insulin signaling but also in neuroinflammation-related
pathways[34-52]. This evidence is also corroborated by the expression data obtained by
the  investigation  of  human  patients  and  animal  models  presenting  these
pathologies[57].

Understanding  the  contribution  of  genetics,  epigenetics  and  environment  in
determining the susceptibility, onset and progression of T2D, AD and PD will be
crucial  to  achieve  a  deeper  knowledge  of  metabolic,  neurodegenerative  and
movement  disorders.  On  this  subject,  the  enhancement  of  social  and  cognitive
activities in the high-income countries seems to strengthen the resilience against
neurodegeneration, leading to a stable or reduced incidence of dementia in these
regions[69,70]. On the other hand, T2D prevalence is also rising in the more developed
areas[71]. Given this data and considering that T2D is regarded overall as a risk factor
for dementia[72], the contribution of T2D to the development of neurodegeneration
needs to  be monitored.  Moreover,  these lines  of  evidence encourage the further
exploration of gene-environment interactions in order to understand the similarities
and the differences in the etiopathogenesis underlying AD, PD and T2D. Indeed,
more  comprehensive  and  higher  resolution  (epi)genomic  studies  should  be
implemented  in  order  to  collect  information  on  genome  architecture,  DNA
methylation,  histone  modifications,  ncRNAs  and  three-dimensional  genome
organization.  These  large-scale  data  should  be  exploited  to  integrate  genomic,
epigenomic, transcriptomic, metabolomic and proteomic information with the clinical
phenotype  and  draw  the  network  of  interactions  which  build  up  a  “disease-
interactome”.

Indeed,  the  fine  knowledge  of  the  disease  interactome  could  highlight  the
molecular  relationships  existing  among  T2D,  AD,  PD which,  thereby,  could  be
exploited to treat these conditions through a network medicine approach, able to
integrate all these interactions to understand the molecular and cellular perturbations
underlying diseases, providing insights and targets for the accurate diagnosis and
treatment[73]. By this way, the patient could benefit from a healthcare approach based
on a multilevel characterization of his condition, derived not only by clinical and
molecular testing but also by his environmental and social backgrounds.
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Abstract
ResearchGate is a world wide web for scientists and researchers to share papers,
ask and answer questions, and find collaborators. As one of the more than 15
million members, the author uploads research output and reads and responds to
some of the questions raised, which are related to type 2 diabetes. In that way, he
noticed a serious gap of knowledge of this disease among medical professionals
over recent decades. The main aim of the current study is to remedy this situation
through providing a comprehensive review on recent developments in
biochemistry and molecular biology, which can be helpful for the scientific
understanding of the molecular nature of type 2 diabetes. To fill up the
shortcomings in the curricula of medical education, and to familiarize the
medical community with a new concept of the onset of type 2 diabetes, items are
discussed like: Insulin resistance, glucose effectiveness, insulin sensitivity, cell
membranes, membrane flexibility, unsaturation index (UI; number of carbon-
carbon double bonds per 100 acyl chains of membrane phospholipids), slow-
down principle, effects of temperature acclimation on phospholipid membrane
composition, free fatty acids, energy transport, onset of type 2 diabetes,
metformin, and exercise. Based on the reviewed data, a new model is presented
with proposed steps in the development of type 2 diabetes, a disease arising as a
result of a hypothetical hereditary anomaly, which causes hyperthermia in and
around the mitochondria. Hyperthermia is counterbalanced by the slow-down
principle, which lowers the amount of carbon-carbon double bonds of membrane
phospholipid acyl chains. The accompanying reduction in the UI lowers
membrane flexibility, promotes a redistribution of the lateral pressure in cell
membranes, and thereby reduces the glucose transporter protein pore diameter
of the transmembrane glucose transport channel of all Class I GLUT proteins.
These events will set up a reduction in transmembrane glucose transport. So, a
new blood glucose regulation system, effective in type 2 diabetes and its
prediabetic phase, is based on variations in the acyl composition of
phospholipids and operates independent of changes in insulin and glucose
concentration. UI assessment is currently arising as a promising analytical
technology for a membrane flexibility analysis. An increase in mitochondrial heat
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production plays a pivotal role in the existence of this regulation system.

Key words: ATP; Free fatty acid; Glucose transporter; Membrane flexibility; Metformin;
Slow-down principle; Type 2 diabetes; Unsaturation index

©The Author(s) 2020. Published by Baishideng Publishing Group Inc. All rights reserved.

Core tip: To maximize type 2 diabetes care the assessment of unsaturation index, as
observed in erythrocytes, is strongly indicated with intervals of three months. The value
of unsaturation index is a reliable parameter for controlling the acyl composition of
phospholipids as modulators of membrane flexibility. Given the main role of free fatty
acids in this process the assessment of free fatty acids instead of triglycerides assessment
may be of benefit for monthly monitoring purposes. Counseling of exercise should be an
essential element of the type 2 diabetes management plan.
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INTRODUCTION
Nine years after Banting et al[1] extracted insulin from a dog’s pancreas, Falta et al[2]

introduced the term “insulin resistance” in the medical literature. Based on clinical
and biochemical  observations,  they differentiated hyperglycemia in two distinct
types:  A  form  where  a  relative  modest  dose  of  insulin  the  metabolic  disorder
completely compensated, referred to as “Insular Diabetes”, and a form where a vast
amount of insulin is well tolerated without causing a hypoglyceamia, referred to as
“Insulinresistenter Diabetes”. They defined the concept that insulin resistance may be
one of the main causes of type 2 diabetes[2]. Five years later Himsworth[3] confirmed
the principle of insulin resistance.

Since then, insulin resistance as a term describing the relative ineffectiveness of
insulin was commonly used. However, MacBryde[4] wrote already in 1933: “There is
as yet no general agreement as to its definition”, but this remark did not come into
general acceptance not even after almost 90 years. MacBryde is still a voice crying in
the wilderness. A short, incomplete summary proves that MacBryde’s remark is right
up to the present day (Table 1)[5-12]. One of the aims of this study is to demonstrate that
the recurrent phrase “insulin resistance” is an imaginary reality, i.e. a reality in which
everyone believes, and as long as this collective belief exists this imaginary reality
exerts power in the world.

GLUCOSE EFFECTIVENESS AND INSULIN SENSITIVITY
From the late 1990s,  the advent of the minimal model for estimating the glucose
metabolism in man has opened a new chapter to evaluate MacBryde’s remark. The
minimal model approach analyses the relationship between the pattern of insulin
response and the rate of glucose decline to infer the sensitivity of tissues to insulin.
Additionally,  the  model  measures  a  relevant,  less  well  recognized,  factor  called
glucose effectiveness. This term describes the ability of glucose, per se, independent of
changes in insulin concentration, to stimulate its own up-take by a mass action effect
and to suppress its own release. Despite the one-compartment optimized minimal
model overestimates the net glucose effectiveness, the results of this model as well as
the two-compartment minimal model, which use computer modeling of glucose and
insulin kinetics after intravenous glucose challenge, indicated that individuals with
type 2 diabetes and individuals in the prediabetic  phase had significantly lower
values of  both glucose effectiveness and insulin sensitivity compared to healthy
controls (Table 2)[13-16]. So what this means is that insulin sensitivity (SI) is positively
related  to  glucose  effectiveness  (SG).  Moreover,  a  prospective  study  on  the
development of type 2 diabetes in normoglycaemic offspring of couples, who both
had type 2 diabetes, showed significant defects in both SG and SI, i.e., more than 10
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Table 1  Short summary of different definitions of the term: Insulin resistance

Ref.

Insulin resistance is the impaired sensitivity of tissue to the action of insulin
[5]

Insulin resistance signifies the inability of insulin at physiological concentrations to exert its normal metabolic actions.
[6]

Insulin resistance is a diminished ability to keep the serum glucose low with insulin levels in the normal range.
[7]

Insulin resistance is an integral concept characterizing all cases of a reduced biological effect of insulin with its normal concentration and activity.
[8]

Insulin resistance is defined as a state of reduced responsiveness to normal circulating concentrations of insulin.
[9]

Insulin resistance refers to state in which physiological concentrations of insulin are poorly effective.
[10]

Insulin resistance is characterized by a reduced sensitivity of body cells to the actions of insulin.
[11]

Insulin resistance is defined as the inability of cells to efficiently respond to stimulation by insulin.
[12]

years before the development of the disease, participants who developed the disease
had  lower  values,  compared  to  controls,  of  S I  [(3.2  ±  2.4  vs  8.1  ±  6.7)  ×
10-3·L·min-1·pmol -1 insulin; P < 0.0001] and SG [(1.6 ± 0.9 vs 2.3 ± 1.2) × 10-2·min-1; P <
0.0001][15].

To circumvent the limitations of the one-compartment minimal model, we used SG

and  SI  values  of  stable  isotope-labelled  glucose  data  obtained  from  the  two-
compartment minimal model for estimation the relative contribution of SG  to the
glucose restoration rate during a basal state. In the basal state, healthy individuals
have  insulin  oscillations  with  a  regular  14-min  periodicity  of  amplitude  of  1.8
mU/L[17]. Hence, the relative contribution of SG to the glucose restoration rate during
the basal state is given by SG/(SG + SI × 10.8)[18]. The calculated data demonstrate that
almost the total fractional glucose turnover of type 2 diabetes during the basal state
results from the ability of glucose to stimulates its own uptake, i.e., 89.2% (Table 3).
The essence of this outcome is the rather limited impact of insulin on the reduction in
glucose effectiveness, which already appears in the prediabetic phase. Of note, the
reduction in SI is essentially greater than the reduction in SG in type 2 diabetes and its
prediabetic phase, independent of the assay methods (Table 2).

The results mentioned in Table 2 touch a fundamental problem: If  the insulin-
sensitivity regulation system of an individual in his prediabetic or diabetic phase is
unable to respond efficiently to an increase in the glucose level, what affects in this
person the non-insulin-sensitive regulation system, i.e., the reduction in the ability of
glucose, per se, to stimulate its own up-take by a mass action effect and to suppress its
own release? The question is: Is there a single, all-encompassing biochemical system
between both the reduction in glucose effectiveness and insulin sensitivity? Up until
now, the answer to this fundamental question cannot be found in any textbook, but is
given in this review.

CELL MEMBRANES
Shulman et  al[19]  resolved in part  the questions raised in the previous section by
studying muscle glycogen synthesis in subjects with type 2 diabetes and matched
controls by means of in vivo carbon-13 nuclear magnetic resonance spectroscopy[19-21].
They demonstrated that the muscle glycogen synthesis rate in subjects with type 2
diabetes was about 50% of the rate observed in healthy controls. The same group also
investigated,  under hyperglycaemic-hyperinsulinaemic conditions,  the pathway:
Transmembrane glucose transport into the muscle cell, conversion of intracellular
glucose  into  glucose-6-phosphate,  and  via  two  more  intermediates  to  glycogen
synthase,  which adds glucose to the glycogen polymer.  They concluded that the
results are consistent with the hypothesis that transmembrane glucose transport is the
rate-controlling step in insulin-stimulated muscle glycogen synthesis in patients with
type 2 diabetes and the delivery of insulin is not responsible for the insulin resistance.
Based on these results, two options arise for explaining the significantly reduced
glycogen synthesis rate in subjects with type 2 diabetes relative to healthy controls:
First,  type  2  diabetes  is  characterized  by  a  reduction  in  the  amount  of  glucose
transporter  4  (GLUT4)  per  cell  surface  area,  or  second,  a  change  in  the  three-
dimensional (3D) structure of GLUT4, which affects the amount of transmembrane
glucose-transport. Northern blot and slot blot study results of biopsies of skeletal
muscles obtained from individuals with type 2 diabetes and age-matched and body-
weight-matched healthy controls indicated that there was no significant alteration in
the level of GLUT4 mRNA and GLUT4 protein in individuals with type 2 diabetes
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Table 2  Values of glucose effectiveness and insulin sensitivity1 for minimal models

Units Control subjects Type 2 diabetes P value Δ (%) Compartment Tracer Ref.

SG

min-1 0.016 ± 0.001 0.010 ± 0.001 < 0.01 37.5 One No
[13]

0.020 ± 0.002 0.013 ± 0.001 < 0.05 35.0 One No
[14]

0.023 ± 0.012 0.016 ± 0.009 < 0.001 30.4 One No
[15]2

h-1 1.20 ± 0.16 0.81 ± 0.11 < 0.001 32.5 One No
[16]

0.41 ± 0.04 0.33 ± 0.02 < 0.001 19.5 Two 13C
[16]

0.52 ± 0.05 0.37 ± 0.02 < 0.001 28.8 Two 2H
[16]

SI

10-4·min-1· (mU/L)-1 11.8 ± 2.6 6.7 ± 0.8 < 0.01 43.2 One No
[14]

13.45 ± 11.12 5.31 ± 3.98 < 0.01 60.5 One No
[15]2

pmol·L-1·(h-1) 0.0062 ± 0.0006 0.0019 ± 0.0006 < 0.01 69.4 One No
[16]

0.0082 ± 0.0012 0.0036 ± 0.0006 < 0.001 56.1 two 13C
[16]

0.0098 ± 0.0013 0.0042 ± 0.0008 < 0.001 57.1 Two 2H
[16]

1We used the conversion factor: 1 mU/L = 6.00 pmol/L;
2More than 10 years before the development of type 2 diabetes. SG: Glucose effectiveness; SI: Insulin sensitivity.

compared to healthy controls. GLUT1 mRNA and protein concentrations were also
not significantly different in individuals with type 2 diabetes compared to control
subjects[22,23]. This excludes the first option. To demonstrate the second option plays a
pivotal role in the onset of type 2 diabetes, we must enter the area of cell membranes.

Phospholipid bilayers form rapidly and spontaneously when phospholipids are
added to water. Mammalian phospholipids contain a 1,2-diacylglycerol backbone that
has a phosphate group esterified at carbon atom 3, and generally a saturated fatty acid
(FA)  esterified  at  carbon  atom  1,  and  a  saturated,  monounsaturated  or
polyunsaturated FA esterified at carbon atom 2. The two acyl chains yield a roughly
cylindrical molecule that can easily pack in parallel arrays to form extended sheets of
membranes  composed  of  a  mosaic  of  proteins  and  phospholipids  in  a  fluid
phospholipid matrix[24]. The driving force of this aggregation is the weak, noncovalent
bond (van der Waals force) between pairs of carbon atoms, lying next to each other in
the carbon 1 and the carbon 2 acyl chains. The most structural result obtained from X-
ray scattering analyses  of  oriented bilayers  in  artificial  phospholipid membrane
systems is the area (A) per lipid molecule. This area denotes the cross-section of the
cylindrical space occupied by a phospholipid. Various studies of fully hydrated, fluid
phase, model phosphatidylcholine bilayers have demonstrated that introducing one
or more carbon-carbon cis double bonds into saturated acyl chains will increase the
cross-section area A (Table 4)[25-28].  The advantage of this type of artificial bilayer
model is its flexibility, the ability to bend or to be bent easily without breaking.

Based on the published data, we are able using the Lennard-Jones equation: U =
(11.5 × 10-6)/r12 – (5.96 × 10-3) /r6 to estimate roughly the interaction energy between a
pair of carbon atoms, which lie next to each other in the phospholipid acyl chains,
esterified at the 1- and 2-positions of glycerol (Table 4)[29]. For instance, a comparison
of  the  cross-section  area  (A)  of  an  artificial  bilayer  consisting  of  dimy-
ristoylphosphatidylcholine [(C14:0;C14:0)PC; area (A) = 60.6 (Å)2] with the cross-
section  area  (A)  of  an  artificial  bilayer  consisting  of  palmitoyl-docosahexaenoic
phosphatidylcholine [(C16:0; C22:6)PC; area (A) = 74.8 (Å)2] reveals that the cross-
section area (A) of the latter increases by 23.4%, which results in an increase in the
interchain carbon-carbon distance of  11.2%, and thereby reduces with 37.6% the
interaction energy per pair of acyl chain carbon atoms. In other words, a reduction in
carbon-carbon double bonds in phospholipid acyl chains results in a reduction in
membrane  flexibility [30].  More  generally,  the  flexibility  of  polyunsaturated
phospholipids  along  the  membrane  normal  (z  direction)  might  soften  various
mechanical stresses in the membrane[31]. In other words, the number of double bonds
(= unsaturation) in the acyl chains of phospholipids influences the physical properties
of cellular membranes.

The degree of membrane flexibility is expressed in unsaturation index (UI) (number
of carbon-carbon double bonds per 100 acyl chains) of membrane phospholipids, as
observed in erythrocytes. For information about the analytical details of the lipid
extraction from erythrocytes, the fatty acid analysis by gas chromatography and the
calculation of UI see section Supplementary material. The UI is a variable unit; a value
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Table 3  Two-compartment minimal model analysis of the relative contribution of glucose
effectiveness to the glucose restoration rate of type 2 diabetes during basal state

Units 13C 2H

SG h-1 0.33 ± 0.02 0.37 ± 0.02

SI h-1·(pmol/L)-1 0.0036 ± 0.0006 0.0042 ± 0.0008

SI × 1.8 × 6 h-1 0.0389 ± 0.0056 0.0454 ± 0.0086

SG/(SG + SI × 10.8) % 89.4 89.1

SG: Glucose effectiveness; SI: Insulin sensitivity.

on the right of the reference interval (the range of values that is deemed normal for a
physiologic  measurement  in  healthy  persons)  means  an  acyl  composition  of
phospholipids with an increased number of carbon-carbon double bonds, whereas a
value on the left of the reference interval means an acyl composition of phospholipids
with  a  decreased  number  of  carbon-carbon  double  bonds.  Borkman  et  al [5]

demonstrated in  the  phospholipid  fraction of  a  vastus  lateralis  muscle  biopsy of
healthy man that insulin sensitivity was positively correlated with the percentage of
arachidonic  acid  in  muscle  (r  =  0.76,  P  <  0.01),  the  total  percentage  of  C20-C22
polyunsaturated fatty acids (r = 0.76, P < 0.01), and the unsaturation index (r = 0.62, P
< 0.05).

The consequence of the aforementioned data is that a reduction in UI is associated
with  a  reduction  in  insulin  sensitivity,  which  suggests  that  changes  in  the  acyl
composition of  tissue phospholipid membranes  modulates  the  action of  insulin.
Borkman et al[5] suggested that if the action of insulin depends on the acyl composition
of muscle membranes, it may be due to interactions within membranes specifically
involved in the action of insulin, although a more general effect of membranes cannot
be excluded. However, not only a reduction in insulin-mediated glucose disposal is a
marker of  type 2  diabetes,  but  also a  reduction in non-insulin-mediated glucose
disposal (Table 2).

It is interesting to note that the experimental results of Min et al[32,33] demonstrated
that  a  key  feature  of  the  prediabetic  phase,  which  appears  in  individuals  with
impaired glucose tolerance and women with gestational  diabetes  mellitus,  is  an
essential reduction, compared to healthy controls, in the percentage of phospholipid
poly-unsaturated acyl chains, including UI (Table 5, Supplementary Tables 1 and
2)[32,33]. Because phospholipid bilayers with an acyl composition of more carbon-carbon
double bonds are more flexible than those with less carbon-carbon double bonds
(Table 4), a reduction in membrane flexibility is a key factor regarding the increase in
the plasma glucose concentration in type 2 diabetes and its prediabetic phase[34,35].

Variations  in  the  acyl  composition  of  phospholipid  membranes  can  strongly
influence the function of proteins embedded therein[36]. The biochemical and physical
background of this mechanism is a reduction in UI, which is equivalent to a reduction
in carbon-carbon double bonds of membrane phospholipids and results in a reduction
of  area  A of  the  lipid molecules  (Table  4).  A reduction in  area  A translates  into
increased attractive forces between the mutual phospholipid acyl chains, which forms
a redistribution of the lateral  pressure in cell  membranes.  As a consequence,  the
redistribution induces a cross-sectional  contraction of  all  Class I  GLUT proteins,
which in  turn,  causes  a  reduction in  the  amount  of  transmembrane transported
glucose (Figure 1). This important hypothesis is in line with observations presented in
biophysical and structural studies,  which indicate that interactions of membrane
proteins with lipid molecules are critical to their folding and stability[37-39]. This is what
evolution is all about: Communicate with the environment and react to changes in the
most efficient way[40].

The  high  glucose  environment  in  women  with  gestational  diabetes  mellitus
disappears after birth, in conjunction with the raised levels of free fatty acids (FFAs).
So, the reduction in membrane flexibility is reversible and the restoration of UI will
repair the amount of transmembrane glucose-transport. This is a nice example of how
science  works  in  unexpected  ways.  This  generally  unknown  system  of  glucose
regulation through changes in the acyl composition of phospholipids works fully
independent of the insulin level and represents a beautiful unification of insulin
sensitivity with glucose effectiveness. I will argue later on that this glucose-regulation
system is effective in type 2 diabetes.

Several studies published UI values and supported its utility as a crucial parameter
for membrane flexibility, even if still not properly considered by the scientific medical
community[41]. It is interesting to note that the elegant study of Borkman et al[5] sums
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Table 4  Experimental data of fully hydrated fluid phase phosphatidylcholine lipid bilayers

DLPC DMPC DPPC DOPC PDPC

Reference 25 25 26,27 26 28

Fatty acid structure [C12:0]2 [C14:0]2 [C16:0]2 [C18:1]2 C16:0;C22:6

Temperature (˚C) 30 30 50 30 30

Area A per lipid molecule (Å)2 63.2 60.6 64.0 72.5 74.8

Carbon interchain distance (Å) 4.49 4.39 4.51 4.80 4.88

Interaction energy U (kJ/mol) -0.607 -0.379

UI 0 0 0 100 300

DLPC:  Dilauroylphosphatidylcholine;  DMPC:  Dimyristoylphosphatidylcholine;  DPPC:  Dipalmitoyl-
phosphatidylcholine;  DOPC:  Dioleoylphosphatidylcholine;  PDPC:  Palmitoyl-docosahexaenoic-
phosphatidylcholine; UI: Unsaturation index.

up the idea that the acyl composition of skeletal-muscle phospholipids may influence
the action of insulin; unfortunately, this idea turns out not to be true. The author’s
idea is that in type 2 diabetes a redistribution of the lateral pressure in cell membranes
results in a reduction in the cross-sectional area of all class I GLUTs, and thereby
reduces the transmembrane glucose-transport.

MEMBRANE FLEXIBILITY
Membrane flexibility plays an important role in the scientific understanding of the
molecular nature of life. Its role is evident in type 2 diabetes for at least three reasons.

It  first  affects  the  insertion  of  GLUTs  into  a  plasma  membrane.  GLUT1  is  a
monomeric  protein  with  12  transmembrane helical  segments[42].  The transporter
protein traverses the plasma membrane 12 times in a zigzag fashion before initiating
the folding, which is essential for creating its final 3D structure. A central channel
across the protein communicates the extracellular and intracellular environments.
Several amino acid residues of GLUT1, crucial for transport of β-D-glucose, bound a
channel segment of approximately 15 Å long and 7 Å wide. In the proposed structure
of GLUT3 the 12 transmembrane helices form a right-hand barrel with a central pore,
which is shaped like a funnel with dimensions of approximately 5-6 Å by 8 Å at its
narrowest  point[43].  To  get  an  idea  of  the  dimensions:  The  dimensions  of  an
orthorhombic bisphenoidal α-glucose crystal are: a = 10.36 Å, b = 14.84 Å, and c = 4.97
Å[44]. One GLUT1 molecule with a mean cross-section area of about 1100 Å2 covers an
area  of  about  17  phospholipid  molecules  of  a  phosphatidylcholine  bilayer  with
saturated acyl chains[27].  So the folding mechanism of a GLUT1 molecule requires
flexibility of  the cell  membrane for achieving a correct  3D structure.  In contrast,
GLUT4 is inserted into membranes of intracellular vesicles, which demands flexibility
of  the  vesicular  membrane.  After  the  insulin-stimulated  translocation  of  the
intracellular  GLUT4-containing  vesicles  to  the  plasma  membrane,  the  GLUT4
containing vesicles take part in a fusion process with the plasma membrane. In the
final stage of this process, fusion proteins induce bending of the plasma membrane
bilayer  to  drive fusion pore formation.  This  includes that  in  type 2  diabetes  the
transmembrane glucose transport through non-insulin sensitive glucose transporters
is being hampered solely by a reduction in the plasma cell  membrane flexibility,
whereas the transmembrane glucose transport through the insulin sensitive glucose
transporter  GLUT4  is  being  hampered  by  a  reduction  in  the  flexibility  of  two
membranes,  i.e.  the vesicular membrane and the plasma membrane[45,46].  For this
reason, the reduction in SI  is essentially greater than the reduction in SG  at type 2
diabetes (Table 2).

Next, membrane flexibility is associated with atherosclerosis, a condition where
arteries  become  narrowed  and  showed  an  increase  in  vascular  stiffness[47].  The
erythrocyte membrane is compositionally very similar to the vascular endothelium, a
thin layer of cells that keeps arteries smooth and allows blood to flow easily[48]. In
support of this, the UI of red cell membrane phospholipids of healthy controls was
found to be 155.4[49], and the reported UI of cultured endothelial cells from human
umbilical cord veins was found to be 148.2 ± 6.3[50]. So we may suggest that the UI is a
highly sensitive sensor for cellular membrane functionality, i.e.  if  the erythrocyte
membrane  is  affected  in  type  2  diabetes,  then  the  endothelium  may  also  be
affected[51,52]. An amazing example of endothelial dysfunction is presented in a Watch
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Table 5  Erythrocyte acyl composition of phospholipids and unsaturation index of control individuals, individuals with impaired glucose
tolerance, and individuals with gestational diabetes mellitus1

Biochemical
characteristics

IGT GDM

Control
persons (n =
42)

Persons with
IGT (n = 28) Δ (%)

Control
persons (n =
61)

Persons with
GDM (n = 53) Δ (%)

PC

Total SFAs (%) 46.4 49.2 + 6.0 42.5 48.3 +24.6

Total MUFAs (%) 17.8 19.1 +7.3 13.1 15.8 +20.6

Total PUFAs (%) 26.8 22.3 -12.5 37.2 31.1 -16.4

UI 92 79.5 -13.6 148.1 114.8 -22.5

PE

Total SFAs (%) 38.4 40.5 +5.5 24.6 27.2 +10.6

Total MUFAs (%) 27.5 30.1 +9.5 18.6 20.1 +8.1

Total PUFAs (%) 34.6 29.4 -15.0 37.8 33.7 -10.8

UI 167.4 147.1 -12.1 177.6 159.4 -10.2

1Ex-post calculations performed by the author are based on the original data listed by Min et al[32,33]. The calculations of the biochemical characteristics are
shown  in  Supplementary  Tables  1  and  2.  UI:  Unsaturation  index;  IGT:  Impaired  glucose  tolerance;  GDM:  Gestational  diabetes  mellitus;  PC:
Phosphatidylcholine; PE: Phosphatidylethanolamine; SFA: Saturated fatty acid; MUFA: Mono-unsaturated fatty acid; PUFA: Poly-unsaturated fatty acid.

WebMD Video, entitled “How atherosclerosis plaque forms”[53]. This video underlines
that although the exact causes of atherosclerosis are not yet clear, many scientists
think that plaque formation begins with damage of the endothelium. The author’s
idea is that individuals with a low UI (increased membrane stiffness) are more prone
to develop atherosclerotic cardiovascular disease, compared to healthy controls.

Finally,  membrane stiffness induces tissue hypoxia[54].  The minimum lumen of
capillary vessels is about 4-9 μm, and the size of erythrocytes is approximately 8 μm.
In the case of type 2 diabetes,  the reduction in flexibility of both the erythrocyte
membrane and the endothelium has a profound impact on the microcirculation[55]. The
resulting  decrease  in  blood  flow  leads  to  a  reduction  in  oxygen  supply  of  the
surrounding tissues. Because the electrons of the respiratory chain are finally donated
to molecular oxygen to form H2O, a status of hypoxia results in an accumulation of
electrons in the respiratory complexes, which finally results in the production of the
negatively  charged  superoxide  radical  O2

•  ─  (the  dot  means  a  single  unpaired
electron), and thereby reduces, among other things, ATP synthesis[56]. Life can only
exist by the grace of ATP synthesis. The aforementioned reduced ATP synthesis could
be the principle reason that type 2 diabetes is linked to lower life expectancy[57]. The
paragraph entitled  “Energy  transport”  later  on  goes  into  more  detail  about  the
influence of type 2 diabetes on the production of ATP.

EFFECTS OF TEMPERATURE ACCLIMATION ON
PHOSPHOLIPID MEMBRANE COMPOSITION
The adaptation of an integrated bilayer system to an environmental factor such as
temperature is referred to as homeoviscous adaptation. Studies with regard to this
theme  consistently  reported  that  cold  acclimation  generates  an  increase  in
polyunsaturation of cell membranes of aquatic organisms[58,59]. To keep a flexible and
effective membrane at low temperatures, aquatic organisms actualize an increased
concentration of unsaturated acyl chains in phospholipids relative to those at warmer
temperatures (Table 6, Supplementary Table 3)[60].  It  is important to note that the
homeoviscous adaptation is a reversible process and exists as early as the beginning
of the Ordovicium, about 500 to 400 million years ago.

Hanssen et al[61] reported that 10 d of cold acclimation (14-15 ˚C) markedly increased
peripheral insulin sensitivity by about 43% in eight type 2 diabetes subjects. Cold
acclimation resulted in an enrichment of GLUT4 at sarcolemma, which facilitated the
uptake  of  glucose.  The  GLUT4  translocation  could  not  be  explained  by  AMPK
activation or improved insulin signaling. Presumably, the authors were unaware that
cold acclimation generates an increase in polyunsaturation of cell membranes, which
increases membrane flexibility and reduces the cross-sectional contraction of the area
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Figure 1

Figure 1  Slice through a bilayer membrane containing an intrinsic protein viewed in two different
conformational states, r and t. At right, the cross-sectional area profile A(z) of each of the two states is plotted as a
function of depth z within the membrane of thickness h. This figure is a reprint from Cantor’s work[36]. Reproduced
with permission from Lateral pressures in cell membranes: a mechanism for modulation of protein function. Copyright
1997 American Chemical Society.

A of all Class I GLUT proteins.
A telling example  of  homeoviscous adaptation is  a  form of  evolutionary heat

acclimation, which lies hidden in the relationship between the mammal body mass
(M,  g)  and the  basal  metabolic  rate  (BMR;  mL of  O2  per  hour)  expressed  in  the
allometric equation of the form: BMR = 4.12 × M0.69[62].  This relationship, with an
allometric coefficient of 0.69, means that the BMR grows at a slower rate than the
body mass, referred to as the slow-down principle[63]. To understand the consequences
of the slow-down principle, imagine a multi-celled development of a single-celled,
cube-shaped eukaryote, which grows through cell division with a same speed in all
three  directions  of  a  Cartesian coordinate  system.  This  type of  growth creates  a
generation sequence of cube-shaped eukaryotic cells with a one cell extension in each
three  dimensions,  per  new generation (Table  7).  Moreover,  each unit  cell  burns
continuously  food  in  oxygen  and the  molecular  remains  of  the  food  are  finally
converted into ATP and heat. To maintain an adequate cell temperature, each of the
one-unit cells exchanges one metabolic heat unit per time unit with the environment.
The first eukaryotic cell thus exchanges with the environment one heat unit per time
unit through 6 identical surface planes. The next generation with 8 (23) unit cells and a
total of 24 (6 × 22) unit surface planes exchanges 8 (23) heat units per time unit. The
subsequent generation with 27 (33) unit cells and a total of 54 (6 × 32) unit surface
planes exchanges 27 (33) heat units per time unit, and so on (Table 7).

The important outcome of this model with the growing cube-shaped eukaryotic
cells is that the number of heat units to be exchanged per time unit increases by its
cube, and the number of unit surface planes increases by its square (Table 7)[63]. This
means that the relative rate of heat production must fall as the number of cells gets
larger. How did the evolutionary trajectory of live resolve this problem? Well, over
evolutionary time, the slower rate of heat production was achieved by a reduction in
UI of membrane phospholipids. Hulbert et al[64] reported that the UI of phospholipids
from mammalian species significantly decreased as species body size increased whilst
the percentage of total unsaturated acyl chains was relatively constant in mammalian
species of very different body mass. So the membrane bilayers of small mammals
were generally high in docosahexaenoyl (C22:6 n-3) chains and low in oleyl (C18:1 n-
9) chains, and the opposite was observed in large mammals[64]. A telling example of
body core temperature regulation during the evolution period from mouse to Homo
sapiens is the reduction in skeletal muscle percentage of docosahexaenoyl (C22:6 n-3)
chains from approximately 30% to 2% in parallel with a body mass increase from
approximately 10 g to 85.000 g[64]. Apart from the brain, the phospholipids of heart,
skeletal muscle, kidney, and liver tissues showed a significant negative relationship
between the body mass of the species and the docosahexaenoate (C22:6 n-3) content of
tissue  phospholipids.  The  brain  phospholipids  from mammals  have  a  high  and
relatively constant docosahexaenoate content, irrespectively of the body size of the
species[65].  Also the mass-specific  metabolic rate of  birds depends on the relative
balance between mono-unsaturated and poly-unsaturated acyl chains. These data
suggest that the biochemical translation of the slow-down principle is a replacement
of  polyunsaturated  acyl  chains  by  monounsaturated  acyl  chains  in  membrane
phospholipids, which means that the number of unsaturated acyl chains remains the
same,  whereas  their  number  of  carbon-carbon  double  bonds  decreases,  with  a
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Table 6  Acyl composition (% of total acyl chains) of membrane phospholipids and unsaturation
index in fathead minnow (Pimephales promelas) muscle1

Biochemical characteristics 15 ˚C 25 ˚C 30 ˚C

Total SFAs (%) 17.8 19.9 38.4

Total MUFAs (%) 16.1 16.1 26.6

Total PUFAs (%) 65.7 61.5 34.9

UI 349.9 325.9 189.9

1Ex-post calculations of the biochemical characteristics are performed by the author and based on the original
data listed by Fadhlaoui et al[60]. The calculations of the biochemical characteristics are shown in Supplement-
ary Table 3. UI: Unsaturation index; SFA: Saturated fatty acid; MUFA: Mono-unsaturated fatty acid; PUFA:
Poly-cis-unsaturated fatty acid.

consequent reduction of the area A of lipid molecules with all the consequences that
entails (see previous section). Instead of insulin action, heat production may cause a
reduction in the amount of transmembrane glucose-transport.

Today,  a  human  parallel  of  this  evolutionary  principle  still  occurs  during  a
pregnancy, i.e. an increase in maternal mass may generate a reduction in UI of the acyl
composition  of  maternal  phospholipids,  which  in  turn,  lowers  the  maternal
membrane flexibility,  and thereby reduces the maternal transmembrane glucose-
transport. In this way, the maternal plasma glucose concentration and insulin level
increase during pregnancy without any impaired sensitivity of tissue to the action of
insulin[66].

FREE FATTY ACIDS
Type 2 diabetes and its prediabetic phase are characterized, among other things, by an
increase in the plasma FFA concentration[67,68].  The cause of this phenomenon is a
reduction in the transmembrane glucose-transport of all Class 1 GLUTs, which leads
to a reduction in the glucose-mediated ATP production. An absolute requirement for
ATP production necessitates  cells  to  make a switch from glucose-mediated ATP
production to FFA-mediated ATP production – remember that a single cell consumes
around 10 million molecules of ATP every second, which means that in the human
body the total turnover of ATP is around 60-100 kg/d[56]. So a reduction in glucose-
mediated ATP production promotes an increase in the level of essentially saturated
FFAs for extra FFA-mediated ATP production, which will set up a vicious cycle of
raising the levels of  essentially saturated plasma FFAs and lowering the level of
transmembrane glucose transport. After all, the released FFA-pool of human white
cells  showed  approximately  110-  and  9-fold  decreased  percentages  of
docosahexaenoic acid (C22:6) and arachidonic acid (C20:4), respectively, compared
with the human serum pool. So, the UI of released FFAs from human white fat cells is
substantially lower compared with the UI of serum FFAs in healthy controls (85.5 and
191.9, respectively; Supplementary Table 4)[69-71]. Thus, an increased release of FFAs
from adipose tissue into the circulation elevates the plasma concentration of saturated
fatty acids. This sequence of events forced a shift from unsaturated to saturated acyl
chains  in  phospholipids  of  both  the  erythrocyte  membrane  and  the  vascular
endothelium[68]. I am telling this matter, because I believe the existence of this vicious
cycle decreases progressively the UI of plasma FFAs, which may be a root cause of the
progressive character of type 2 diabetes.

ENERGY TRANSPORT
To understand the relationship between heat production and the onset of type 2
diabetes  and  gestational  diabetes,  it  is  time  to  address  briefly  the  concept  of
eukaryotic cellular energy transport. Hydrogen is the energy carrier par excellence for
the energy saved in our food. After absorption of food, hydrogen is being stripped
from the molecular remains of the nutrients, and passed via the citric cycle into the
mitochondrial electron-transport chain. Mitochondria are surrounded by a simple
outer membrane and a more complex inner membrane. The space between these two
membranes is referred to as the intermembrane space and the space surrounded by
the  inner  membrane  as  the  matrix.  The  four  separate  protein  complexes  of  the
electron-transport chain are located in the inner membrane. The first two complexes
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Table 7  Thought experiment of multi-celled development of a single-celled, cube-shaped eukaryotic cell, which grows through cell
division in a Cartesian coordinate system with the same speed in all three directions, and exchanges with its environment per unit-cell
one heat unit per time unit[63]

Growth of cubic species Number of unit cubes
Total cube

Required number of heat units to exchange Number of unit-cube surface planes

Original cube 1 1 6

First generation 8 (23) 8 (23) 24 (6 × 22)

Second generation 27 (33) 27 (33) 54 (6 × 32)

Third generation 64 (43) 64 (43) 96 (6 × 42)

Fourth generation 125 (53) 125 (53) 150 (6 × 52)

separates the electrons from the hydrogen energy-carriers, after which the electrons
are finally donated to molecular oxygen, the ultimate electron acceptor in complex IV
of  the  electron-transport  chain,  to  form  H2O.  In  concert  with  these  processes,
respiration pushes the remaining protons (H+-ions) across the mitochondrial inner
membrane into the intermembrane space, against a concentration gradient. These
protons could re-enter the matrix through the inner mitochondrial membrane in two
different ways, first via the channel of the ATP synthase protein complex for driving
ATP synthesis, and second via the uncoupling protein1 (UCP1) without using energy
for any purpose. In the last way, the proton potential energy is released as heat[72]. It is
therefore concluded that UCP1 may play a crucial role in thermogenesis.

HEAT PRODUCTION AND THE ONSET OF TYPE 2 DIABETES
Experimental data of intracellular temperature mapping, based on a novel fluorescent
polymeric thermometer and fluorescence lifetime imaging microscopy, demonstrated
clearly  the  existence  of  mitochondrial-mediated  heat  production[73].  This  heat
production  was  observed  as  a  proximal  local  temperature  increase.  It  could  be
concluded that the local temperature near the mitochondria was higher than the
temperature  of  the  rest  of  the  space  in  the  cytosol  (aside  from the  centrosome).
Furthermore,  this  local  heat  release from mitochondria is  accelerated when ATP
synthesis is stalled by an uncoupling reagent[74]. Despite incomplete understanding of
the uncoupling functions for maintaining energy homeostasis, all these data suggest
that, in healthy subjects, a balance exists between the amount of protons, which re-
enter the matrix through ATP synthase on the one hand, and the amount of protons,
which re-enter the matrix through UCP1 on the other.

The reviewed data strongly support an alternative model with proposed steps in
the development of type 2 diabetes, a disease arising as a result of a hypothetical
hereditary anomaly (Figure 2)[63].  The author’s hypothesis proposes that the final
result of this anomaly, which already appears in the prediabetic phase, is a status of
an increased flux, compared to healthy controls, of intermembrane-space protons,
which re-enter the matrix via UCP1, and thereby causes hyperthermia in and around
the mitochondria[63]. To keep the mitochondrial temperature within the narrow range
compatible with live, the slow-down principle enters into force, which results in an
appreciable reduction in UI. This process leads to a marked reduction in membrane
flexibility,  and  thereby  reduces  the  transmembrane  glucose-transport,  which
generates  a  reduction  in  glucose-mediated  heat  production.  However,  the
concomitant disadvantage of this sequence of events is also a reduction in glucose-
mediated ATP production. To compensate for the extra loss of glucose-mediated ATP,
lipolysis increases to raise the levels of circulating, essentially saturated FFAs, which
are needed to generate extra ATP energy for sustaining life. The progressive reduction
in UI will set up a vicious cycle of raising the levels of essentially saturated plasma
FFAs and lowering the level of transmembrane glucose transport. These phenomena
represent a blueprint of the presence of type 2 diabetes and its progressive character
in human individuals.

Remember that Kelley et al[75] reported the presence of impaired functional capacity
and morphological alterations of mitochondria, which were obtained from the vastus
lateralis  muscle  of  volunteers  with  type  2  diabetes.  A  status  of  long-term  heat
acclimation may be the cause of the reported reduced activity of NADH oxidation by
the  respiratory  chain,  the  smaller  mean size  of  mitochondria  with  a  less  clearly
defined internal membrane structure, and smaller cristae.
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Figure 2

Figure 2  Although the results of genome-wide screen for type 2 diabetes susceptibility genes are still under debate, a refined working hypothesis
proposes that the primary effect of the involved genes generates an increased flux of mitochondrial intermembrane-space protons through UCP1 into the
matrix, which causes an increase of extra heat. This process initiates the slow-down principle. UCP: Uncoupling protein; FFA: Free fatty acid; GLUT: Glucose
transporter.

We can  now explain  why the  classical  research  results  of  laboratory  animals
mimicking the human type 2 diabetes has not given any indication regarding the
onset of human type 2 diabetes[76,77]. All in all, the characteristics of the animal model
should mirror the pathophysiology and natural history of type 2. By contrast,  no
experimental results are given so far based on animal models with type 2 diabetes,
caused by a status of long-term heat acclimation.

METFORMIN
The proposed steps  in  the  development  of  type  2  diabetes  model  improves  our
knowledge of the metformin-medication effects[63]. The most widely accepted model of
the metformin antihyperglycemic action is its suppression of gluconeogenesis with
the  amino  acid  alanine  as  glucogenic  substrate,  which  principally  occurs  as  a
consequence of mitochondrial inhibition[78]. In this context it is interesting to note that
the  type  2  diabetes  specific  reduction  in  the  transmembrane  glucose-transport
promotes a significantly increased hepatic efficiency, compared to healthy controls, in
converting alanine to glucose[79,80]. The suppression of hepatic gluconeogenesis creates
a disturbed participation of glucose in the supply of ATP energy to the body and
includes, among other things, stimulation of lipolysis.  This process increases the
amount of circulating, essentially saturated FFAs, referred to as metformin-mediated
FFA increase.  Besides the increase of essentially saturated FFAs due to the FFA-
mediated ATP production (see section: Free fatty acids), the metformin-mediated
FFA-increase could also have a deleterious effect on the membrane flexibility, which
accelerates the onset of vascular and neurological complications over the long term[81].
The results of two studies are in line with this idea. First, the Diabetes Prevention
Program (DPP) study results indicated that metformin therapy was not as beneficial
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as  life  style  modification  for  delaying  the  development  of  type  2  diabetes  in
individuals at high risk of type 2 diabetes, i.e. the DPP study results demonstrated
that lifestyle intervention was twice as good as metformin therapy for delaying the
development of type 2 diabetes, and at least as effective in older participants as it was
in younger participants[82]. Second, the saturated acyl chain percentages in erythrocyte
membrane phospholipids of control individuals, people with type 2 diabetes without
retinopathy, and people with type 2 diabetes with retinopathy increased within a life-
time from 42.0% via 44.2% to 46.9%, respectively, (Table 8, Supplementary Tables 5
and  6)[83].  However,  the  percentage  of  the  saturated  acyl  content  of  membrane
phospholipids was almost constant in mammalian species, independent of their body
mass, during the last 600 million years of evolution, which means that a constant
percentage  of  membrane  saturated  acyl  chains  is  important  for  biological  and
biochemical  processes [62].  Basically,  metformin  reduces  the  plasma  glucose
concentration, but tends towards an increase in the FFA concentration. This side-effect
of metformin is not limited to metformin, but also applies to another class of drugs,
which are used for lowering the plasma glucose concentration via  inhibiting the
glucose reabsorption by inhibiting the sodium-glucose co-transporter[84].

It is worth to note that the patients included in the “diabetic retinopathy” study
were treated according to the recommendations of the French High Authority of
Health, who published its last recommendations with metformin as the optimal first-
line  drug,  for  the  optimal  management  of  diabetes,  on  January  2013  (personal
communication, Niyazi Acar)[85].

EXERCISE
Although the role  of  irisin in the conversion of  white  adipose tissue into brown
adipose tissue is still under debate[86], acute exercise training showed direct effects on
“browning” of white fat[87]. Hamilton et al[88] demonstrated in excised murine adipose
tissue samples lower levels of  unsaturated triglycerides in brown adipose tissue
compared  with  white  adipose  tissue,  an  observation  consistent  with  previous
results[89].  If  the  gene  expression  in  the  corresponding  mouse  model  does  not
significantly differ from the human conditions[90], burning of human brown adipose
tissue, due to physical activities, induces in phospholipids a shift from saturation into
unsaturation, which promotes membrane flexibility. Also, muscular exercise increases
the blood flow[91], which promotes oxygenation of cells, stimulates the electron flow
down of the respiratory chain, and improves the proton (H+) flux through the ATP
synthase driving ATP synthesis, which in turn, reduces the need for FFA-mediated
ATP production, and thereby increases membrane flexibility. This may be the main
cause, why the US DPP study results indicated that the incidence of type 2 diabetes
was  58% lower  in  the  lifestyle-intervention  group than  in  the  placebo  group[82].
Cellular flexibility is a critical factor for modulating blood flow in microcapillaries (see
section:  Membrane  flexibility).  So,  an  increase  in  both  erythrocyte-membrane
flexibility and microvascular endothelium flexibility is  of unprecedented clinical
relevance: It generates a beneficial reduction in microvascular and macrovascular
complications,

Structured lifestyle intervention trials (including physical activity, dietary energy
restriction  and weight  loss)  demonstrated  reductions  of  28%-59% in  the  risk  of
developing type 2 diabetes in individuals with impaired glucose tolerance[82,92,93].
However, it is important to note that all the exercise sessions in these randomized
controlled trials were supervised, a situation that is not often met in daily practice.

CONCLUSION
This review highlights a deeper scientific understanding of the molecular nature
about important factors underlying the pathophysiology of type 2 diabetes and its
prediabetic phase. Work described in this review is designed to communicate some
newly discovered fundamental biomolecular processes governing this disease to a
broad audience including everyone who is  involved in the complex field of  this
disease, which is one of the today’s greatest unsolved medical mysteries.

The discovery of the existence of yet another blood glucose regulation mechanism
is a milestone in the literature about type 2 diabetes. This overlooked transmembrane
glucose transport mechanism, still not mentioned in the medical literature, is based on
a redistribution of  the  lateral  pressure  in  cell  membranes,  due to  a  reduction in
membrane flexibility, which influences the 3D structure of all Class I GLUT proteins.
Variations  in  the number of  carbon-carbon double  bounds of  phospholipid acyl
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Table 8  Erythrocyte acyl chain composition in phospholipids and unsaturation index of control individuals, people with type 2 diabetes
without retinopathy, and people with type 2 diabetes with retinopathy1

Biochemical characteristics Control individuals (n = 18) Individuals with type 2 diabetes
without retinopathy (n = 14)

Individuals with type 2 diabetes
with retinopathy(n = 46)

Total SFAs (%) 42.0 44.2 46.9

Total MUFAs (%) 18.8 21.7 21.3

Total PUFAs (%) 38.0 31.9 29.5

UI 155.4 134.3 123.3

1Ex-post calculations performed by the author (see appendix) are based on the original data listed by Koehrer et al[83]. The calculations of the biochemical
characteristics are shown in Supplementary Tables 5 and 6. SFA: Saturated fatty acid; MUFA: Mono-unsaturated fatty acid; PUFA: Poly-unsaturated fatty
acid; UI: Unsaturation index.

chains  of  fluid  lipid  bilayers  modulates  the  GLUT protein  pore  diameter  of  the
transmembrane glucose  transport  channel.  In  short,  impaired glucose  tolerance,
gestational diabetes mellitus and type 2 diabetes are characterized by an elevated
concentration of essentially saturated FFAs, which creates less flexible membranes,
narrows the glucose channels of all Class I GLUT proteins, and thereby lowers the
amount of transmembrane glucose transport. Martin et al[15] reported that 10 years
before the development of type 2 diabetes glucose effectiveness and insulin sensitivity
in normoglycaemic offspring of couples, who both had type 2 diabetes, were 30% and
60%, respectively, lower compared to controls. This fact indicates that a redistribution
of the lateral pressure in cell membranes, due to a reduction in membrane flexibility,
influences the 3D structure of all Class I GLUT proteins early in live, which is an
unprecedented discovery.

A second milestone is the observation that a reduction in UI, compared to a healthy
status, is a characteristic of both the prediabetic phase and diabetic phase of type 2
diabetes. In a previous study I offered the clue that a raised leakage of H+-ions via
UCP1 induces in and around mitochondria hyperthermia, which will lead to both a
reduction in mitochondrial activity and content[94].  The proposed hyperthermia is
countered by the slow-down principle already in the prediabetic phase and initiates a
status of long-term heat acclimation, which generates a reduction in both insulin
sensitivity  and  glucose  effectiveness,  and  an  increase  in  the  percentage  of  the
saturated  acyl  content  of  phospholipids.  Both  milestones  degrades  “insulin
resistance” into an imaginary reality and requires  a  U-turn in thinking on some
important issues of type 2 diabetes.

The genetic cause of hyperthermia remains incurable until today; however, there is
a way forward. Metformin is useful to obtain a rapid reduction in (too) high glucose
concentrations. Doctors who prescribe metformin should give clear information to
patients about the metformin-mediated FFA increase and therefore point out the
necessity of exercise and diet, which will minimize this metformin side effect. They
should  control  the  effect  of  exercise  prescription  on  patients’  wellbeing  by  the
assessment of plasma FFA concentration for monitoring purposes and the assessment
of  UI  for  controlling  the  level  of  the  total  percentage  saturated  acyl  chains  of
membrane  phospholipids,  as  observed in  erythrocytes.  To  prevent  or  delay  the
progressive character of type 2 diabetes, exercise is the medication to be preferred,
because  it  improves  blood  circulation,  micro-oxygenation  of  cells,  and  thereby
reduces  membrane  stiffness.  However,  given  the  high  degree  of  difficulty  of
structured lifestyle intervention, exercise sessions need counseling, just like with
dietary energy restriction[95].

Remember that the complete oxidation of palmitic acid or stearic acid to CO2 and
H2O per hydrogen atom more molecules of ATP produces, compared to a complete
oxidation of glucose[96], which logically demands less FFA molecules, compared to
glucose molecules, for a similar amount of ATP production. However, against the
background  of  the  observation  that  the  saturated  acyl  chain  percentages  in
erythrocyte membrane phospholipids of  control  individuals,  people with type 2
diabetes  without retinopathy,  and people with type 2  diabetes  with retinopathy
increased within a life-time, the conclusion is that circulating saturated FFAs play a
main role in the pathophysiology of type 2 diabetes.

A detailed working hypothesis proposes that a key feature in the etiology of type 2
diabetes, which appears in the prediabetic phase, is an essentially raise, compared to
healthy controls,  in the flux of intermembrane-space protons,  which re-enter the
matrix via UCP1, and thereby causes hyperthermia in and around the mitochondria.
The reviewed data highlight the need for studies to find the cause of the essential
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raise in this proton flux through UCP1, because it will improve the possibilities for
diagnosis of type 2 diabetes, treatment, and care.
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Abstract
BACKGROUND
Perinatal exposure to a poor nutritional environment predisposes the progeny to
the development of metabolic disease at the adult age, both in experimental
models and humans. Numerous adaptive responses to maternal protein
restriction have been reported in metabolic tissues. However, the expression of
glucose/fatty acid metabolism-related genes in adipose tissue and liver needs to
be described.

AIM
To evaluate the metabolic impact of perinatal malnutrition, we determined
malnutrition-associated gene expression alterations in liver and adipose tissue.

METHODS
In the present study, we evaluated the alterations in gene expression of
glycolytic/Krebs cycle genes (Pyruvate dehydrogenase kinase 4 and citrate
synthase), adipogenic and lipolytic genes and leptin in the adipose tissue of
offspring rats at 30 d and 90 d of age exposed to maternal isocaloric low protein
(LP) diet throughout gestation and lactation. We also evaluated, in the livers of
the same animals, the same set of genes as well as the gene expression of the
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transcription factors peroxisome proliferator-activated receptor gamma
coactivator 1, forkhead box protein O1 and hepatocyte nuclear factor 4 and of
gluconeogenic genes.

RESULTS
In the adipose tissue, we observed a transitory (i.e., at 30 d) downregulation of
pyruvate dehydrogenase kinase 4, citrate synthase and carnitine palmitoyl
transferase 1b gene expression. Such transcriptional changes did not persist in
adult LP rats (90 d), but we observed a tendency towards a decreased gene
expression of leptin (P = 0.052). The liver featured some gene expression
alterations comparable to the adipose tissue, such as pyruvate dehydrogenase
kinase 4 downregulation at 30 d and displayed other tissue-specific changes,
including citrate synthase and fatty acid synthase upregulation, but pyruvate
kinase downregulation at 30 d in the LP group and carnitine palmitoyl
transferase 1b downregulation at 90 d. These gene alterations, together with
previously described changes in gene expression in skeletal muscle, may account
for the metabolic adaptations in response to maternal LP diet and highlight the
occurrence of persistent transcriptional defects in key metabolic genes that may
contribute to the development of metabolic alterations during the adult life as a
consequence of perinatal malnutrition.

CONCLUSION
We conclude that perinatal malnutrition relays long-lasting transcriptional
alterations in metabolically active organs, i.e., liver and adipose tissue.

Key words: Metabolic adaptation; Phenotype plasticity; Liver; Adipose tissue;
Metabolism; Maternal protein undernutrition; Rats

©The Author(s) 2020. Published by Baishideng Publishing Group Inc. All rights reserved.

Core tip: Perinatal exposure to a poor nutritional environment predisposes to metabolic
disease. Here, the expression of metabolism-related genes in adipose tissue and liver was
investigated. We evaluated the alterations in gene expression of glycolytic/Krebs cycle
genes, adipogenic and lipolytic genes in adipose tissue of offspring rats at 30 d/90 d of
age, exposed to maternal low protein diet throughout gestation/lactation. We also
evaluated expression of liver transcription factors and gluconeogenic genes. Persistent
gene alterations were observed that may account for the metabolic adaptations in
response to maternal low protein diet, highlighting the occurrence of persistent
transcriptional defects as a consequence of perinatal malnutrition.

Citation: de Oliveira Lira A, de Brito Alves JL, Pinheiro Fernandes M, Vasconcelos D,
Santana DF, da Costa-Silva JH, Morio B, Góis Leandro C, Pirola L. Maternal low protein diet
induces persistent expression changes in metabolic genes in male rats. World J Diabetes
2020; 11(5): 182-192
URL: https://www.wjgnet.com/1948-9358/full/v11/i5/182.htm
DOI: https://dx.doi.org/10.4239/wjd.v11.i5.182

INTRODUCTION
Perinatal  malnutrition occurring during pregnancy and lactation not  only has  a
negative impact on fetal  development and neonatal growth but also relays long-
lasting adverse effects resulting in increased susceptibility to cardiovascular and
metabolic diseases in adulthood, as posited by the developmental origin of health and
disease hypothesis[1,2]. Evidence from epidemiological cohorts, with the Dutch Famine
Birth Cohort Study being the most relevant[3],  and experimental animal models[4-6]

support the idea that a poor nutritional environment during fetal and early postnatal
life predisposes to cardiovascular and metabolic disease in adulthood. The occurrence
of persistent epigenetic  alterations has been proposed as one of  the mechanisms
linking in utero  nutritional deprivation to increased risk of disease in adulthood.
Individuals who were prenatally exposed to the Dutch famine during the 1944-1945
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were shown six decades later to have lower DNA methylation of the imprinted IGF2
gene in comparison to their siblings not exposed to the famine period[7]. Observational
studies have suggested a link between poor fetal growth and the development of
impaired glucose tolerance at the adult age in both sexes[8], and final evidence that
maternal  nutrition during gestation affects  glucose metabolism in adult  life  was
provided by the observation that an oral glucose load in adults exposed prenatally to
the Dutch famine led to higher glycemic concentrations as compared to individuals
being born around the same years but not exposed in utero to the 1944-1945 famine[9].

Work in animal models suggested that the link between early-life malnutrition and
the increased risk of developing metabolic disease in adulthood may be mediated by
persistent biochemical alterations in the main insulin-responsive tissues, including
glycolytic and oxidative skeletal muscle fibers[10].  Exposure of mice to a maternal
protein-restricted  diet  during  gestation  and  lactation  was  shown  to  impact  the
morphological features and body distribution of white adipose tissue and to reduce
the protein expression levels of most of the key insulin signaling proteins, including
IRS1, the PI3K subunits p110 and p85, Akt1 (v-akt murine thymoma viral oncogene
homolog 1) and its phosphorylated form on serine 473 in male offspring[11], resulting
in an altered distribution and morphology of white adipose tissue[12]. In a similar way,
perinatal low protein (LP) diet consumption contributed to fatty liver phenotype at
the adult age, which the magnitude was related to the period of exposure to the LP
diet[13].

The occurrence of alterations of glycemic control  in humans,  associated to the
observation  that  perinatal  malnutrition  induces  defects  in  the  insulin  signaling
pathways in rodent models, prompted us to evaluate whether the main metabolic
pathways are affected by a LP diet  administered to dams during pregnancy and
lactation.  In  a  previous  study,  we reported that  gene  and protein  expression of
enzymes participating in glucose and fatty acid metabolism in skeletal muscle were
altered at short-term (30 d) and long-term (90 d) timepoints in male rat offspring
exposed to a maternal LP diet during gestation and lactation[10].  Interestingly, we
observed,  both  in  soleus  and  extensor  digitorum  longus  skeletal  muscle,  a  LP-
induced, long-lasting downregulation of pyruvate dehydrogenase kinase 4 (PDK4), an
enzyme leading to allosteric deactivation of the pyruvate dehydrogenase complex via
phosphorylation and hence a redirection of the metabolic flux from catabolic Krebs
cycle to anabolic pathways[14].

To  obtain  a  wider  description  of  the  effects  of  perinatal  LP  diet  on  insulin-
responsive tissues, the main goal of the present study was to evaluate the short-term
and long-term effects of a LP diet during gestation and lactation on the expression of
key genes involved in the metabolism of  glucose and fatty  acid in  the liver  and
adipose tissue of male rat offspring. We demonstrate the occurrence of long lasting
alterations  of  gene expression in  both tissues,  up to  90  d of  age,  that  reflect  the
persistence of altered metabolism in the offspring consequent to in utero and early-life
exposure to deleterious nutritional conditions.

MATERIALS AND METHODS
The experimental protocol was approved by the Ethical Committee of the Biological
Sciences Centre (protocol 23076 062778/2014-38), Federal University of Pernambuco,
Brazil.  All  efforts  were made to minimize animal  discomfort  and the number of
animals  used;  in  addition,  we  followed the  Guidelines  for  the  Care  and  Use  of
Laboratory Animals.

Animals
Male albino Wistar rats (Rattus novergicus) were obtained from the Academic Center
of Vitoria de Santo Antão animal facility, Federal University of Pernambuco, Brazil.
Animals were housed at 22 ± 1 °C with a controlled light–dark cycle (dark 18:00–06:00
h). Standard laboratory chow (52% carbohydrate, 21% protein and 4% lipids-Labina,
Purina Agriband, São Paulo, Brazil) and water were administered ad libitum. Groups
were divided according to their mother’s diet: Control pups from dams fed a 17%
protein diet (n = 5, normal protein group, NP), and LP pups from dams fed an 8%
casein  diet  (n  =  5,  low  protein,  LP)  during  gestation  and  lactation.  Diets  were
prepared at the Laboratory of Experimental Nutrition-Center of Vitoria de Santo
Antão, Federal University of Pernambuco, according to the American Institute of
Nutrition–AIN-93 dietary guidelines[15].

During suckling, offspring was maintained as litters of eight pups of both sexes to
ensure standardized nutrition until weaning. At weaning (21 d postpartum), three to
four  male  offspring  of  each  litter  were  housed  in  collective  cages  and  received
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standard diet and water ad libitum. The experimental groups consisted of one or two
male rats from each mother. Female offspring were not included in the present study.
All experimental analyses were performed in adipose tissue and liver collected from
male rats  sacrificed either  at  30  d old or  90  d old by decapitation.  All  rats  were
euthanized between 14:00-17:00 after a 4-5 h fasting period. The liver and visceral
adipose tissue were carefully dissected, snap-frozen in liquid nitrogen and stored at
–80 °C until RNA extraction.

RNA extraction, reverse transcription and quantitative PCR
Total RNA was extracted from liver and visceral adipose tissue with Tripure reagent
[Sigma-Aldrich  (Roche),  St.  Quentin  Fallavier,  France]  according  to  the
manufacturer’s instructions. Briefly, 10 µL of Tripure per milligram of tissue was
added, and the resulting suspension was homogenized using a Precellys Lysing kit
(Bertin,  Montigny-le-Bretonneux,  France)  according  to  the  manufacturer’s
instructions.  After  grinding,  1/4  volume  of  chloroform  was  added.  They  were
vortexed 3 × 15 s, incubated at room temperature for 5 min and centrifuged for 15 min
at 15000 g at 4 °C.

RNA was precipitated by addition of 1/2 volume of isopropanol (Carlo Erba, Val-
de-Reuil, France) and centrifugation (15 min at 15000 g at 4 °C). Supernatants were
used for protein extraction and RNA-containing pellets were washed sequentially
with 70% and 95% ethanol (Carlo Erba), dried and dissolved in 100 µL RNase-free
water. RNA concentration and purity (260/280 nm absorbance ratio) was determined
on a Nanodrop 2000 (Thermo-Fisher).

Reverse transcription was performed using an RT-Takara kit  (Primescript TM,
Takara) using 1 µg of RNA as template and following the manufacturer’s instructions.
Briefly, samples were heated for 10 min at 65 °C. Samples were mixed with 4 μL
PrimeScript Buffer 5 ×, 1 μL oligodT (50 µM), 4 μL random hexamers and 1 μL of
PrimeScript RT Enzyme Mix followed by a 15 min incubation at 37 °C and 15 s at 85
°C.  RNA was removed by incubation with 1 μL of  RNase H for 20 min at  37 °C.
Reverse transcription reactions were brought to 200 µL final volume by adding RNase
free water and stored at -20 °C. Real-time quantitative PCR (qPCR) amplification was
performed  using  a  Rotor-Gene  Real-Time  PCR  System  (Labgene  Scientific
Instruments, Archamps, France). Sequences of primers used in this study are available
upon request.

Reactions were incubated at 95 °C for 10 min, followed by 40 cycles of denaturation
(95 °C, 10 s), annealing (58-62 °C depending on the primer sets, 30 s) and elongation
(72  °C,  30  s).  mRNA expression  levels  of  PDK4,  citrate  synthase  (CS),  carnitine
palmitoylacyltransferase  1b,  acetyl-CoA carboxylase,  fatty  acid  synthase,  leptin,
insulin  receptor,  phosphofructokinase,  beta  hydroxyacyl-coenzyme-A
dehydrogenase, peroxisome proliferator-activated receptor-alpha coactivator 1 alpha,
peroxisome  proliferator-activated  receptor-alpha,  forkhead  box  protein  O1,
hepatocyte  nuclear  factor  4,  glucose  6-phosphatase,  phosphoenolpyruvate
carboxykinase and pyruvate kinase L/R were measured on total RNA extracted from
adipose tissue and liver. qPCR results from each gene (including the housekeeping
gene) were expressed as arbitrary units derived from a standard calibration curve
derived from a reference sample. Reference samples were generated by mixing 10 μL
aliquots from ten cDNA samples, five from the NP group and five from the LP group.
qPCR for  each sample  was  carried out  in  duplicate.  Gene expression data  were
normalized using ribosomal protein L19 as a housekeeping gene. As a further control,
qPCR amplicons were analyzed by agarose gel to validate the amplicon size.

Statistical analysis
Statistical analysis was conducted with GraphPad Prism 5 program for Windows
(GraphPad Software®. Inc., La Jolla, CA, United States). Exploratory data analysis was
used to identify possible inaccurate information and the presence of outliers and to
test the assumption of normality in all data distributions. Kolmogorov-Smirnov and
Shapiro-Wilk normality tests were applied in total sample. Statistical significance was
evaluated  using  analysis  of  variance  ANOVA  two-way  test  with  maternal  diet
(low/normal protein) and age (30 d and 90 d) as factors. Bonferroni’s post hoc test
was used. The values are presented as mean and standard error means, and P values
< 0.05 were considered statistically significant. P values < 0.05 are denoted as “a” in
figures; P values < 0.01 are denoted as “b” in figures.

RESULTS

Perinatal LP diet in rats programs a lower body weight in the offspring
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We applied a model of perinatal protein restriction to rat dams throughout pregnancy
and lactation  followed by  a  switch  to  a  NP diet  after  weaning  as  schematically
represented in Figure 1.

In spite of the administration of a NP diet after weaning, the LP group displayed a
lower bodyweight both at 30 d [NP: 106.3 ± 17.1 g, LP: 87.3 ± 6.0 g; P < 0.05, unpaired
t-test, n = 12 (NP) and 6 (LP)] and 90 d of age (NP: 326.7 ± 22.6 g, LP: 306.2 g; P < 0.05,
unpaired t-test, n = 8 for both groups).

Perinatal LP diet reprograms gene expression patterns in the adipose tissue
The gene expression of two key enzymes linking the glycolytic pathway to the Krebs
cycle, PDK4 and CS, was evaluated in adipose tissue at different ages (Figure 2).

In NP rats, CS and PDK4 genes displayed a time-dependent downregulation, with
mRNA expression at 90 d being lower than at 30 d (P = 0.057 for PDK4 and < 0.01 for
CS;  Figure  2).  In  comparison,  the  maternal  LP  diet,  by  inducing  a  significant
downregulation of both genes at 30 d, abolished the time-dependent downregulation
of both genes. These results indicate that the glycolytic flux may be altered in LP
offspring.

On the contrary, genes related to fatty acid metabolism, while showing a time-
dependent downregulation with lower expression at 90 d, were not affected by the
administration of a LP diet during pregnancy and lactation (Figure 3).

These results indicate that the glycolytic flux may be altered in the adipose tissue of
LP offspring while  fatty  acid  metabolism is  not  affected.  As  body weight  of  LP
offspring remained lower at 30 d and 90 d as compared to NP offspring, we also
evaluated  the  gene  expression  levels  of  leptin  and observed  a  quasi-significant
decrease of the hormone’s gene expression (P = 0.052; Figure 4).

Perinatal LP diet reprograms gene expression patterns of multiple pathways in the
liver
The expression of genes of the glycolytic pathway and Krebs cycle was evaluated in
the liver at 30 d and 90 d (Figure 5). As observed in adipose tissue, PDK4 expression
was reduced in the LP group at 30 d. Conversely, CS was significantly upregulated at
30 d in the LP group but then returned to levels comparable to the NP group at 90 d.
The phosphofructokinase gene and insulin receptor gene did not show any difference
between the two groups.

In  the  liver,  genes  related  to  fatty  acid  metabolism  were  also  significantly
modulated by the perinatal exposure to a LP diet (Figure 6). Fatty acid synthase, that
displayed  a  strong  age-dependent  downregulation  in  both  groups,  is  strongly
upregulated in the LP group at 30 d, but then returned to levels comparable to the NP
group at  90 d.  On the contrary,  carnitine palmitoylacyltransferase 1b (fatty acid
transporter) showed a significant age-dependent increase in the NP group and was
strongly downregulated at 90 d in the LP group.

Transcriptional patterns in the liver are orchestrated by a group of key transcription
factors that include peroxisome proliferator-activated receptor-alpha coactivator 1
alpha, forkhead box protein O1 and hepatocyte nuclear factor 4. None of these genes
were significantly affected in the LP group, and the time-dependent decrease of the
gene expression of peroxisome proliferator-activated receptor-alpha coactivator 1
alpha was maintained in both LP and NP groups (Figure 7).

The  liver  is  the  quantitatively  major  organ  responsible  for  gluconeogenesis,
providing glucose supply during starvation. We evaluated the impact of the LP diet
on gluconeogenic genes by measuring mRNA levels of glucose 6-phosphatase and
PEPKC without detecting any LP-induced defect. However, pyruvate kinase L/R was
significantly downregulated in the LP group at 30 d, suggesting an accumulation of
phosphoenolpyruvate and potentially a higher gluconeogenic rate at 30 d due to
higher abundance of the precursor (Figure 8).

DISCUSSION
The  developmental  origin  of  health  and  disease  model  supports  the  idea  that
exposure in the critical periods of development, represented by the prenatal and early
postnatal life, to a poor nutritional status, toxic substances, drugs or other kind of
stress  can  predispose  to  the  development  of  disease  states,  including metabolic
syndrome and diabetes during adult life[2]. In particular, early-life undernutrition,
especially when associated to a nutritional transition leading to obesity, is associated
to a higher incidence of diabetes in adult life[16]. One of the mechanisms proposed to
explain such long lasting effects is the development of epigenetic alterations that
sustain alterations of gene expression patterns from the young age into adulthood[17,18]
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Figure 1

Figure 1  Schematic diagram of the experimental protocol in Wistar rats. Rats were exposed to maternal low
protein diet during gestation and lactation and then switched to a normal protein diet. NP: Normal protein; LP: Low
protein.

by  causing  persistent  alterations  of  DNA  methylation  patterns,  histone  post-
translational modifications and microRNA patterns[19,20].

In  a  previous  study,  using  a  rat  model  of  perinatal  protein  undernutrition
throughout  gestation and lactation,  there  were  changes  in  the  gene and protein
expression levels of key enzymes of glycolysis and fatty acid oxidation pathways in
the skeletal muscle of the progeny, observing both postnatal acute effects (at 30 d of
age) and chronic effects (at 90 d of age), the latter being representative of adaptive
processes[14]. Specifically, oxidative soleus muscle responded to a LP maternal diet by
downregulating hexokinase 2 and PDK4 up to 90 d of age. For glycolytic extensor
digitorum longus, the effects of a LP maternal diet were more pronounced at 30 d of
age with a similar downregulation of genes coding for enzymes of the glycolytic
pathway[10].

To obtain a more exhaustive description of the transcriptional disturbances induced
by a perinatal LP diet in insulin-responsive tissues, we have now investigated the
transcriptional changes resulting from a prenatal and postnatal exposure to LP in
visceral adipose tissue and liver.

A key finding of our study is the short-term downregulation of PDK4, observed
both in  liver  and adipose tissue and previously detected in  soleus and extensor
digitorum longus. PDK4 by phosphorylating the pyruvate dehydrogenase complex
inhibits its activity and the resulting production of acetyl CoA. In the LP condition,
PDK4  downregulation  would  therefore  favor  the  activity  of  the  pyruvate
dehydrogenase complex and increase the glycolytic flux into the Krebs cycle[21,22].

Our  observations  pointing  to  a  PDK4  modulation  in  the  LP  diet  condition
underscores the central role of this enzyme in regulating metabolic flexibility, which
was also observed in the heart[23,24]. Interestingly, the first enzyme of the Krebs cycle,
CS  appears  to  be  upregulated  in  the  liver,  while  in  the  adipose  tissue  is
downregulated, thus favoring the use of newly synthesized acetyl CoA as a lipogenic
substrate[21]. To keep with this hypothesis, we observed a parallel decrease, at 30 d of
age, of carnitine palmitoylacyltransferase 1b, the rate-controlling enzyme of long-
chain fatty acid beta-oxidation pathway. At the more advanced age of 90 d, such
transcriptional  changes  in  the  adipose  tissue  were  lost,  but  a  decrease  in  the
expression of  the  gene  coding for  leptin  was  observed,  which  neared statistical
significance  (P  =  0.052,  Figure  4).  We  hypothesize  that  decreased  leptin  gene
expression  observed  at  90  d  of  age  in  the  LP  group  may  be  a  compensatory
mechanism to  induce  higher  food uptake  in  the  LP animals  as  this  group has  a
significantly lower body weight both at 30 d and 90 d of age.

The  liver  also  shows  gene  expression  alterations  that  would  favor  anabolic
pathways. At 30 d, fatty acid synthase is upregulated in the LP group suggesting
increased  hepatic  lipogenesis.  At  the  same  time,  gluconeogenesis  may  also  be
increased in the LP group. While phosphoenolpyruvate carboxykinase and glucose 6-
phosphatase were not upregulated, we observed downregulation of the pyruvate
kinase L/R at 30 d, which may favor the accumulation of phosphoenolpyruvate and
thus funneling of this glycolytic intermediate into gluconeogenesis.

Taken together, the gene expression changes that we have observed in the liver and
adipose tissue in male rats submitted to perinatal  LP undernutrition suggest the
occurrence of improved lipogenesis (in adipose tissue) and gluconeogenesis (in liver)
that may provide a compensatory effect to counteract the early-life exposure to the
perinatal LP diet.
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Figure 2

Figure 2  Expression of pyruvate dehydrogenase kinase 4 and citrate synthase mRNA in adipose tissue of rats. Rats were exposed to maternal low protein
diet during gestation and lactation, and their RNA extracted from adipose tissue was analyzed by quantitative reverse transcription PCR. Data are shown as mean ±
standard error means analyzed by two-way ANOVA with the mother’s diet (normal protein; low protein) and age (30 d, 90 d) as variable factors. Bonferroni’s post-hoc
test was used. Differences between diet groups are indicated by an asterisks; differences between ages are indicated by bars. aP < 0.05, bP < 0.01. NP: Normal
protein; LP: Low protein; PDK4: Pyruvate dehydrogenase kinase 4; CS: Citrate synthase.

Figure 3

Figure 3  Expression of adipogenic and lipolytic genes in the adipose tissue of rats. Rats were exposed to maternal low protein diet during gestation and
lactation, and gene expression of carnitine palmitoylacyltransferase 1, acetyl-CoA carboxylase and fatty acid synthase in adipose tissue was analyzed by quantitative
reverse transcription PCR. Data are shown as mean ± standard error means and analyzed by two-way ANOVA with the mother’s diet (normal protein; low protein) and
age (30 d, 90 d) as variable factors. Bonferroni’s post hoc test was used. Differences between diet groups are indicated by an asterisks; differences between ages are
indicated by bars. aP < 0.05, bP < 0.01. NP: Normal protein; LP: Low protein; FAS: Fatty acid synthase; CPT1-b: Carnitine palmitoylacyltransferase 1b; ACC: Acetyl-
CoA carboxylase.
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Figure 4

Figure 4  Gene expression of leptin in adipose tissue of rats. Rats were exposed to maternal low protein diet during gestation and lactation, and gene expression
of leptin from adipose tissue was analyzed by quantitative reverse transcription PCR. Data are shown as mean ± standard error means and analyzed by two-way
ANOVA with the mother’s diet (normal protein; low protein) and age (30 d, 90 d) as variable factors. Bonferroni’s post hoc test was used. Differences between diet
groups are indicated by asterisks. NP: Normal protein; LP: Low protein.

Figure 5

Figure 5  Expression of insulin receptor, glycolytic genes and Krebs cycle genes in the liver of rats. Rats were exposed to maternal low protein diet during
gestation and lactation, and gene expression of insulin receptor, phosphofructokinase, pyruvate dehydrogenase kinase 4 and citrate synthase was analyzed by
quantitative reverse transcription PCR. Data are shown as mean ± standard error means and analyzed by two-way ANOVA with the mother’s diet (normal protein; low
protein) and age (30 d, 90 d) as variable factors. Bonferroni’s post hoc test was used. Differences between diet groups are indicated by asterisks; differences between
ages are indicated by bars. aP < 0.05, bP < 0.01. NP: Normal protein; LP: Low protein; CS: Citrate synthase; PDK4: Pyruvate dehydrogenase kinase 4; PFK:
Phosphofructokinase; IR: Insulin receptor.
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Figure 6

Figure 6  Expression of genes related to lipid metabolism in the liver of rats. Rats were exposed to maternal low protein diet during gestation and lactation, and
gene expression was analyzed by quantitative reverse transcription PCR. Data are shown as mean ± standard error means and analyzed by two-way ANOVA with the
mother’s diet (normal protein; low protein) and age (30 d, 90 d) as variable factors. Bonferroni’s post hoc test was used. Differences between diet groups are indicated
by asterisks; differences between ages are indicated by bars. aP < 0.05, bP < 0.01. NP: Normal protein; LP: Low protein; FAS: Fatty acid synthase; CPT1-b: Carnitine
palmitoylacyltransferase 1b; b-HAD: Beta hydroxyacyl-coenzyme-A dehydrogenase; PPAR-a: Peroxisome proliferator-activated receptor-alpha.

Figure 7

Figure 7  Expression of key transcription factors in the liver of rats. Rats were exposed to maternal low protein diet during gestation and lactation, and gene
expression of peroxisome proliferator-activated receptor-alpha coactivator 1 alpha, forkhead box protein O1 and hepatocyte nuclear factor 4 was analyzed by
quantitative reverse transcription PCR. Data are shown as mean ± standard error means and analyzed by two-way ANOVA with the mother’s diet (normal protein; low
protein) and age (30 d, 90 d) as variable factors. Bonferroni’s post hoc test was used. Differences between diet groups are indicated by asterisks; differences between
ages are indicated by bars. aP < 0.05, bP < 0.01. NP: Normal protein; LP: Low protein; PGC-1α: Peroxisome proliferator-activated receptor-alpha coactivator 1 alpha;
FOXO1a: Forkhead box protein O1; HNF4: Hepatocyte nuclear factor 4.
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Figure 8

Figure 8  Expression of gluconeogenic genes in the liver of rats. Rats were exposed to maternal low protein diet during gestation and lactation, and gene
expression of glucose 6-phosphatase, phosphoenolpyruvate carboxykinase and pyruvate kinase L/R was analyzed by quantitative reverse transcription PCR. Data are
shown as mean ± standard error means and analyzed by two-way ANOVA with the mother’s diet (normal protein; low protein) and age (30 d, 90 d) as variable factors.
Bonferroni’s post hoc test was used. Differences between diet groups are indicated by asterisks; differences between ages are indicated by bars. aP < 0.05, bP < 0.01.
NP: Normal protein; LP: Low protein; G6Pase: Glucose 6-phosphatase; PEPCK: Phosphoenolpyruvate carboxykinase; PKLR: Pyruvate kinase L/R.

ARTICLE HIGHLIGHTS
Research background
Perinatal  exposure  to  a  poor  nutritional  environment  predisposes  the  progeny  to  the
development of metabolic disease at the adult age, both in experimental models and humans.
Numerous adaptive responses to maternal protein restriction have been reported in metabolic
tissues. However, the expression of glucose/fatty acid metabolism-related genes in adipose
tissue and liver needs to be described.

Research motivation
To evaluate  the  metabolic  impact  of  perinatal  malnutrition,  we determined malnutrition-
associated gene expression alterations in liver and adipose tissue.

Research objectives
In the present study, we evaluated the alterations in gene expression of glycolytic/Krebs cycle
genes (pyruvate dehydrogenase kinase 4 and citrate synthase), adipogenic and lipolytic genes
and leptin in the adipose tissue of offspring rats at 30 d and 90 d of age exposed to maternal
isocaloric low protein (LP) diet throughout gestation and lactation. We also evaluated these
genes in the livers of the same animals as well as the gene expression of the transcription factors
peroxisome proliferator-activated receptor gamma coactivator 1, forkhead box protein O1 and
hepatocyte nuclear factor 4 and of gluconeogenic genes.

Research methods
Research methods included animal  husbandry,  RNA extraction,  reverse  transcription and
quantitative PCR and appropriate statistical analysis.

Research results
In  the  adipose  tissue,  we  observed a  transitory  (i.e.,  at  30  d)  downregulation  of  pyruvate
dehydrogenase  kinase  4,  citrate  synthase  and  carnitine  palmitoylacyltransferase  1b  gene
expression. Such transcriptional changes did not persist in adult LP rats (90 d), but we observed
a tendency towards a decreased gene expression of leptin (P = 0.052). The liver featured some
gene expression alterations comparable to the adipose tissue, such as pyruvate dehydrogenase
kinase 4 downregulation at 30 d, and displayed other tissue-specific changes, including citrate
synthase and fatty acid synthase upregulation, but pyruvate kinase downregulation at 30 d in
the LP group and carnitine palmitoylacyltransferase 1b downregulation at 90 d. These gene
alterations, together with previously described changes in gene expression in skeletal muscle,
may account for the metabolic adaptations in response to maternal LP diet and highlight the
occurrence of persistent transcriptional defects in key metabolic genes that may contribute to the
development  of  metabolic  alterations  during  the  adult  life  as  a  consequence  of  perinatal
malnutrition.

Research conclusions
We conclude  that  perinatal  malnutrition  relays  long-lasting  transcriptional  alterations  in
metabolically active organs, i.e., the liver and adipose tissue.
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Research perspectives
Our observations lay the basis for possible future research directed to human studies.
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Abstract
BACKGROUND
Obesity and diabetes are associated with high levels of oxidative stress. In
Romanian patients with obesity and (or) diabetes, this association has not been
sufficiently explored.

AIM
To evaluate oxidative stress in obese and (or) diabetic subjects and to investigate
the possible correlations between oxidative stress and
anthropometric/biochemical parameters.

METHODS
Oxidative stress was evaluated from a single drop of capillary blood. Reactive
oxygen species (ROS) were evaluated using the free oxygen radical test (FORT).
The free oxygen radical defence (FORD) assay was used to measure antioxidant
levels.

RESULTS
FORT levels were higher in obese subjects (3.04 ± 0.36 mmol/L H2O2) vs controls
(2.03 ± 0.14 mmol/L H2O2) (P < 0.0001). FORD levels were lower in obese subjects
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(1.27 ± 0.13 mmol/L Trolox) vs controls (1.87 ± 1.20 mmol/L Trolox) (P = 0.0072).
Obese diabetic subjects had higher FORT values (3.16 ± 0.39 mmol/L H2O2) vs
non-diabetic counterparts (2.99 ± 0.33 mmol/L H2O2) (P = 0.0233). In obese
subjects, FORT values correlated positively with body mass index (BMI) (r = 0.48,
P = 0.0000), waist circumference (WC) (r = 0.31, P = 0.0018), fasting plasma
glucose (FPG) (r = 0.31, P = 0.0017), total cholesterol (TC) (r = 0.27, P = 0.0068) and
uric acid (r = 0.36, P = 0.0001). FORD values correlated negatively with BMI (r = -
0.43, P = 0.00001), WC (r = -0.28, P = 0.0049), FPG (r = -0.25, P = 0.0130), TC (r = -
0.23, P = 0.0198) and uric acid (r = -0.35, P = 0.0002). In obese diabetic subjects,
FORT values correlated positively with BMI (r = 0.49, P = 0.0034) and TC (r =
0.54, P = 0.0217). FORD values were negatively associated with BMI (r = -0.54, P =
0.0217) and TC (r = -0.58, P = 0.0121).

CONCLUSION
Oxidative stress levels, as measured by the FORT and FORD assays, were higher
in obese subjects vs controls. ROS levels were elevated in diabetic obese patients
vs obese non-diabetic patients and controls.

Key words: Oxidative stress; Obesity; Diabetes; Reactive oxygen species; Antioxidants;
Dyslipidaemia

©The Author(s) 2020. Published by Baishideng Publishing Group Inc. All rights reserved.

Core tip: Oxidative stress is involved in obesity, diabetes, and subsequently, diabesity
(the co-occurrence of obesity and diabetes). In our study, oxidative stress levels were
increased in patients with obesity, diabetes and diabesity. We suggest that the free
oxygen radical test and the free oxygen radical defence assays are useful in evaluating
the levels of oxidative stress in obesity, diabetes and diabesity. In this study, free oxygen
radical test and free oxygen radical defence values also correlated with anthropometric
and laboratory parameters in patients with obesity, diabetes and diabesity.

Citation: Găman MA, Epîngeac ME, Diaconu CC, Găman AM. Evaluation of oxidative stress
levels in obesity and diabetes by the free oxygen radical test and free oxygen radical defence
assays and correlations with anthropometric and laboratory parameters. World J Diabetes
2020; 11(5): 193-201
URL: https://www.wjgnet.com/1948-9358/full/v11/i5/193.htm
DOI: https://dx.doi.org/10.4239/wjd.v11.i5.193

INTRODUCTION
Worldwide, obesity and type 2 diabetes mellitus (T2DM) have emerged in epidemic
proportions. This problematic issue has affected both high- and low-income countries
alike, and by 2030 the global prevalence of T2DM is expected to surpass 7.5% (from
6.2% in 2010)[1,2].  According to the country profile  released in 2016 by the World
Health Organization (WHO), the prevalence of obesity and diabetes in Romania was
estimated at  23.4% and 8.4%,  respectively[3].  Thus,  understanding the molecular
mechanisms that drive the development and the evolution of obesity and T2DM are of
the utmost importance in our country as well as worldwide.

Both obesity and T2DM are associated with increased levels of oxidative stress.
These disorders are characterized by the excessive production of reactive oxygen
species (ROS), as well as dysfunctional antioxidant systems[4,5]. Adipose tissue is a
veritable endocrine organ,  capable of  producing adipokines which stimulate the
generation of ROS and pro-inflammatory molecules, such as interleukin 1β (IL-1β)
and  6  (IL-6)  and  tumour  necrosis  factor-alpha  (TNF-α)[5].  In  T2DM,  chronic
hyperglycaemia is also a source of ROS, and the ROS-hyperglycaemia crosstalk is
involved in the development of  the micro-  and macro-vascular  complications of
T2DM[4]. Thus, a vicious cycle in which oxidative stress generates oxidative stress
commences.  In this  context,  the increased levels  of  oxidative stress in obese and
diabetic subjects might explain the development of diabesity, i.e., the occurrence of
T2DM in obese individuals[2].

Due to the limited knowledge regarding the crosstalk between obesity, T2DM and
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oxidative stress in Romanian patients, in the current study, we aimed to evaluate
oxidative  stress  levels  in  obese  non-diabetic  and obese  diabetic  subjects,  and to
identify possible correlations between biochemical and oxidative stress parameters in
these patients.

MATERIALS AND METHODS

Study subjects
A total of 102 obese subjects were recruited from several outpatient clinics in Craiova,
a city in southwest Romania, for inclusion in the study group. The patients were
classified as obese and stratified into obesity classes in accordance with the WHO
definition of obesity: Body mass index (BMI) > 30 kg/m2[6].  T2DM was diagnosed
based on the American Diabetes Association criteria[7].  Thirty healthy individuals
were selected for the control group.

Oxidative stress assessment
Oxidative stress was evaluated from a single drop of capillary blood using the CR3000
analyser (Callegari, the Catellani group, Parma, Italy). The CR3000 analyser uses two
colorimetric assays to evaluate oxidative stress: The free oxygen radical test (FORT)
and the free oxygen radical defence (FORD). The FORT reflects the levels of ROS in
the blood, and in normal individuals should have a value ≤ 2.3 mmol/L H2O2. The
FORD assay reflects the levels of antioxidants in the blood, and in normal individuals
has a value in the 1.07-1.53 mmol/L Trolox range. Both FORT and FORD are valuable
tests in assessing oxidative stress levels in patients with T2DM and obesity and have
been used in research for more than 10 years. The detailed principles of the assays are
described elsewhere[8]. Reagents were also purchased from Callegari, the Catellani
group, Parma, Italy.

Assessment of demographic, clinical and biochemical parameters
The following demographic and clinical parameters were evaluated: Age, sex, weight
and  height  to  calculate  the  BMI  and  waist  circumference  (WC).  The  following
laboratory variables were evaluated by standard methods: Fasting plasma glucose
(FPG),  total  cholesterol  (TC),  low-density  lipoprotein  cholesterol  (LDL-c),  high-
density lipoprotein cholesterol (HDL-c), triglycerides (TG) and uric acid (UA). The
estimated glomerular filtration rate (eGFR) was calculated using the MDRD formula.

Statistical analysis
Categorical variables are reported as frequencies and percentages and continuous
variables as the mean ± SD. Categorical variables were compared using Fisher’s exact
test.  Continuous variables were compared using independent samples t-test.  All
variables were tested to check the normal distribution of the data. The Pearson and
the  Spearman  correlation  coefficients  were  employed  for  parametric  and
nonparametric variables to investigate the possible associations between FORT or
FORD and other biochemical parameters. The level of significance was presented as P
values and the analysis was performed at the 5% level of significance using GraphPad
QuickCalcs (https://www.graphpad.com), MedCalc (https://www.medcalc.org) and
Microsoft Excel (Microsoft Office Professional Plus 2013).

RESULTS
The demographic, clinical and laboratory parameters of the study population are
reported in Table 1. In this study, we included 102 obese patients (mean age: 62.14 ±
10.19 years, 79.41% female) and 30 healthy controls (mean age: 44.60 ± 18.76 years,
70.00% female). Obese patients had higher BMI (35.75 ± 3.75 kg/m2 vs 24.56 ± 1.78
kg/m2, P < 0.0001), WC (106.58 ± 13.27 cm vs 96.38 ± 3.76 cm, P < 0.0001), FPG (117.56
± 42.13 mg/dL vs 92.63 ± 7.60 mg/dL, P = 0.0016), TC (228.66 ± 45.22 mg/dL vs 137.70
± 20.46 mg/dL, P < 0.0001), LDL-c (141.78 ± 42.43 mg/dL vs 106.93 ± 15.93 mg/dL, P
< 0.0001), TG (156.98 ± 92.25 mg/dL vs 95.77 ± 20.22 mg/dL, P = 0.0005), UA (4.44 ±
1.18 mg/dL vs 3.80 ± 0.92 mg/dL, P = 0.0073), and lower HDL-c (47.72 ± 12.68 mg/dL
vs 66.23 ± 10.85 mg/dL, P < 0.0001) and eGFR (68.49 ± 18.84 mL/min/1.73 m2vs 106.77
± 17.75 mL/min/1.73 m2, P < 0.0001) vs controls. FORT values were higher (3.04 ± 0.36
mmol/L H2O2 vs 2.03 ± 0.14 mmol/L H2O2, P < 0.0001) and FORD levels were lower
(1.27  ±  0.13  mmol/L Trolox  vs  1.87  ±  1.20  mmol/L Trolox,  P  =  0.0072)  in  obese
patients as compared to healthy controls.

The study population included 33 (32.35%) obese patients diagnosed with T2DM
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Table 1  Demographic, clinical and biochemical parameters of the study population vs controls

Obese subjects Controls P value

Male/Female (n) 21/81 9/21 0.3234

Age (yr) 62.14 (10.19) 44.60 (18.76) < 0.0001

BMI (kg/m2) 35.75 (3.75) 24.56 (1.78) < 0.0001

WC (cm) 106.58 (13.27) 96.38 (3.76) < 0.0001

FPG (mg/dL) 117.56 (42.13) 92.63 (7.60) 0.0016

TC (mg/dL) 228.66 (45.22) 137.70 (20.46) < 0.0001

HDL-c (mg/dL) 47.72 (12.68) 66.23 (10.85) < 0.0001

LDL-c (mg/dL) 141.78 (42.43) 106.93 (15.93) < 0.0001

TG (mg/dL) 156.98 (92.25) 95.77 (20.22) 0.0005

UA (mg/dL) 4.44 (1.18) 3.80 (0.92) 0.0073

eGFR (mL/min/1.73 m2) 68.49 (18.84) 106.77 (17.75) < 0.0001

FORT (mmol/L H2O2) 3.04 (0.36) 2.03(0.14) < 0.0001

FORD (mmol/L Trolox) 1.27 (0.13) 1.87 (1.20) 0.0072

Data are presented as mean ± SD or as n. BMI: Body mass index; WC: Waist circumference; FGP: Fasting
plasma glucose; TC: Total cholesterol; HDL-c: High-density lipoprotein cholesterol; LDL-c: Low-density
lipoprotein cholesterol; TG: Triglycerides; UA: Uric acid; eGFR: Estimated glomerular filtration rate; FORT:
Free oxygen radical test; FORD: Free oxygen radical defence.

and  69  (67.65%)  obese  patients  without  T2DM.  The  demographic,  clinical  and
laboratory parameters of the obese T2DM subjects vs the obese non-diabetic patients
are shown in Table 2.

Obese diabetic subjects were older (66.45 ± 9.78 years vs 60.07 ± 9.79 years, P  =
0.0027), had higher FPG (153.32 ± 56.94 mg/dL vs 100.45 ± 13.91 mg/dL, P < 0.0001)
and lower HDL-c (43.98 ± 10.48 mg/dL vs 49.51 ± 13.30 mg/dL, P = 0.0384) vs obese
subjects without diabetes. Also, obese subjects with T2DM recorded higher FORT
values (3.16 ± 0.39 mmol/L H2O2 vs 2.99 ± 0.33 mmol/L H2O2, P = 0.0233) vs obese
subjects without diabetes.

In obese subjects, we recorded positive correlations between FORT and BMI (r =
0.48, P = 0.0000), WC (r = 0.31, P = 0.0018), FPG (r = 0.31, P = 0.0017), TC (r = 0.27, P =
0.0068)  and UA (r  =  0.36,  P  =  0.0001).  Also,  in  obese  subjects,  FORD correlated
negatively with the BMI (r = -0.43, P = 0.00001) (Figure 1), WC (r = -0.28, P = 0.0049),
FPG (r = -0.25, P = 0.0130), TC (r = -0.23, P = 0.0198) and UA (r = -0.35, P = 0.0002).

In obese diabetic subjects, we detected strong positive associations between FORT
and BMI (r = 0.49, P = 0.0034) (Figure 2), and FORT and TC (r = 0.54, P = 0.0217). Also,
FORD was negatively associated with BMI (r = -0.54, P = 0.0217) and TC (r = -0.58, P =
0.0121).

DISCUSSION
Our study focussed on the evaluation of oxidative stress in obese (diabetic and non-
diabetic)  patients,  and showed that ROS levels (assessed by the FORT assay) are
increased and antioxidant  levels  (assessed by the FORD assay)  are  decreased in
patients diagnosed with obesity vs healthy controls. Moreover, obese patients who
also had T2DM had higher ROS levels vs  obese non-diabetic subjects and healthy
controls. In obese subjects with T2DM, FORD levels were not significantly decreased
as compared to non-diabetic obese patients; thus, we may assume that, in T2DM, the
body  might  produce  supplementary  amounts  of  antioxidants  to  scavenge  the
excessive amount of free oxygen radicals (Figure 3).

ROS levels are increased in obesity and diabesity
Our study reinforced that ROS levels are increased in subjects with obesity and that
the  elevation  in  ROS  is  more  pronounced  in  obese  patients  who  have  T2DM.
Moreover, in obese patients, we detected positive correlations between FORT, which
measures ROS levels in the body, and BMI, WC, FPG, TC and UA. Also, in patients
diagnosed with diabesity (the association between obesity and T2DM), we recorded
higher FORT values vs subjects with obesity and healthy controls. Similarly, Pavlatou
et al[8] also evaluated oxidative stress levels in T2DM subjects using the FORT and
FORD assays, and reported increased FORT values in diabetic patients vs  healthy
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Table 2  Demographic, clinical and biochemical parameters of obese type 2 diabetes mellitus
subjects vs obese non-diabetic patients

T2DM Obese non-diabetic subjects P value

Male/Female (n) 6/27 15/54 0.7965

Age (yr) 66.45 (9.78) 60.07 (9.79) 0.0027

BMI (kg/m2) 36.66 (4.01) 35.32 (3.57) 0.0920

WC (cm) 107.24 (13.91) 106.26 (13.04) 0.7286

FPG (mg/dL) 153.32 (56.94) 100.45 (13.91) < 0.0001

TC (mg/dL) 231.92 (46.75) 227.11 (44.74) 0.6180

HDL-c (mg/dL) 43.98 (10.48) 49.51 (13.30) 0.0384

LDL-c (mg/dL) 137.54 (38.10) 143.80 (44.47) 0.4885

TG (mg/dL) 149.41 (111.44) 160.60 (82.18) 0.5690

UA (mg/dL) 4.70 (1.33) 4.32 (1.10) 0.1319

FORT (mmol/L H2O2) 3.16 (0.39) 2.99 (0.33) 0.0233

FORD (mmol/L Trolox) 0.67 (0.15) 0.72 (0.14) 0.0649

Data are presented as mean ± SD or as n. T2DM: Type 2 diabetes mellitus; BMI: Body mass index; WC: Waist
circumference;  FGP:  Fasting  plasma  glucose;  TC:  Total  cholesterol;  HDL-c:  High-density  lipoprotein
cholesterol; LDL-c: Low-density lipoprotein cholesterol; TG: Triglycerides; UA: Uric acid; eGFR: Estimated
glomerular filtration rate; FORT: Free oxygen radical test; FORD: Free oxygen radical defence.

controls. Furthermore, their study demonstrated positive correlations between FORT
and  BMI,  WC,  LDL-c  and  TG.  However,  in  T2DM  patients,  we  found  positive
correlations  between FORT and BMI (r  =  0.49,  P  =  0.0034).  Positive  correlations
between FORT and WC (r = 0.31, P = 0.0018) were only seen in obese non-diabetic
subjects in our research. Thus, our data support the hypothesis that excessive body
weight is associated with increased levels of oxidative stress, as ROS values increased
and antioxidant levels decreased with increased BMI. Obesity is characterized by
redox alterations induced and linked with excessive dietary intake, chronic fat cell
inflammation, mitochondrial dysfunction, glycoxidation and oxidation of fatty acids.
Moreover,  oxidative  stress  seems  to  be  related  to  the  development  of  insulin
resistance in T2DM. Obese subjects have insulin resistance which, in turn, causes
compensatory hyperinsulinaemia and can explain the development of diabesity[9,10].

Antioxidant deficiency in obesity and diabesity
In our study, we detected decreased FORD values in obese patients. Also, FORD,
which reflects the levels of antioxidants in the body, was negatively correlated with
BMI (r  =  -0.54,  P  =  0.0217).  Surprisingly,  the difference in FORD levels  between
patients with obesity and those with diabesity was rather unremarkable. Thus, we
may  assume  that,  in  T2DM,  the  body  is  forced  to  produce  larger  amounts  of
endogenous antioxidants to counteract the increase in ROS. Similar to our findings,
Pavlatou et  al[8]  also reported decreased FORD levels  in patients  diagnosed with
T2DM. However, in their research, the mean BMI of the patients was 29.3 ± 5.7 kg/m2

as opposed to 28.7 ± 4.2 kg/m2 in controls (P = 0.62). Thus, T2DM patients included in
the aforementioned study were mostly overweight or were diagnosed with class I
obesity. Despite the excessive generation of oxidative stress in obesity and T2DM,
antioxidant supplementation remains controversial. Current evidence recommends
lifestyle changes as a first step in the management of these disorders, with physical
exercise and low-calorie, antioxidant-rich diets as key elements of the therapeutic
armamentarium[11].

The oxidative stress-dyslipidaemia crosstalk
In the present study, TC correlated positively with FORT and TC (r = 0.27, P = 0.0068)
and negatively with FORD (r = -0.23, P = 0.0198) in obese patients. Moreover, TC also
correlated positively with FORT (r = 0.54, P = 0.0217) and negatively with FORD (r = -
0.58,  P  = 0.0121)  in diabetic  obese patients.  However,  Pavlatou et  al[8]  reported a
positive correlation between LDL-c and FORT (r = 0.03, P = 0.05). The FORT-TC and
FORD-TC correlations reported in our study might be explained by the accumulation
of toxic lipids which lead to lipotoxicity in diabetic and (or) obese patients[10].  In
T2DM, dyslipidaemia is highly prevalent, with nearly 70% of patients having high TG
and  LDL-c  values  and  low  HDL-c[12].  Hypercholesterolaemia  and  obesity  are
recognized risk factors in the development of T2DM, but adherence to lipid-lowering
drugs in patients with T2DM remains low[13-15].  HDL-c is a major candidate in the
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Figure 1

Figure 1  Correlation between free oxygen radical defence values and body mass index in obese patients.
FORD: Free oxygen radical defence; BMI: Body mass index.

antioxidant defence against ROS-induced damage, and its myriad of positive effects in
health (anti-inflammatory, antioxidant, anti-atherogenic etc.) are related to its strong
cooperation  with  antioxidant  enzymes,  such  as  superoxide  dismutase  (SOD)  or
paraoxonase-1  (PON-1).  The  activity  of  PON-1  and  SOD  is  reduced  in  obese
dyslipidaemic  patients[5].  Moreover,  studies  have  shown  that  the  activity  of
antioxidant enzymes, such as SOD or catalase, is also decreased in T2DM. It seems
that the risk of developing T2DM is higher amongst catalase-deficient subjects[4]. On
the other hand, Picu et al[16] reported only slightly lower SOD and total antioxidant
status  values,  and  slightly  higher  UA  levels  in  T2DM  patients  as  compared  to
controls. However, they did report a higher total oxidant status in T2DM patients vs
healthy controls.  Increased levels  of  UA might be related to development of  the
metabolic syndrome. In the metabolic syndrome, UA has been shown to stimulate the
generation  of  ROS  by  fat  cells  and  stimulates  lipid  peroxidation[17].  The  role  of
oxidative stress in T2DM is complex, and experimental studies have concluded that
chronic  oxidative  stress  levels  in  pancreatic  beta  cells  lead,  via  chronic
hyperglycaemia-caused glucotoxicity,  to  a  loss  of  expression of  the  endogenous
insulin gene[18].  In addition, the contribution of high ROS levels,  low antioxidant
defences and lipid abnormalities in carcinogenesis should not be forgotten[19-21]. We
previously reported that diffuse large B-cell lymphoma is associated with increased
ROS levels and low HDL-c and antioxidant values[22]. Moreover, low HDL-c levels
have also  been linked to  other  types  of  non-Hodgkin’s  lymphoma,  breast,  lung,
gynaecological or prostate cancers, as well as other malignancies[23].

Strengths and limitations
Our research has some strengths. Firstly, the involvement of oxidative stress in T2DM
and  (or)  obesity  in  the  population  from  southwest  Romania  has  received  little
attention in studies. We believe this is the first report to evaluate oxidative stress in
obese  and  (or)  diabetic  patients  using  the  FORT and FORD assays  in  Romania.
Moreover, we evaluated ROS and antioxidant levels using a point-of-care method
which has been employed in research for over ten years, and we reported not only
that oxidative stress levels are increased in obese and (or) diabetic subjects, but also
the  correlations  between  FORT  or  FORD  and  anthropometric/biochemical
parameters.  The current study confirms our previous research findings,  i.e.,  that
obesity is associated with increased oxidative stress levels[24]. However, our research
initiative has several limitations. We included a relatively small number of patients
and we were unable to recruit  a control  group of diabetic non-obese subjects.  In
addition,  the  CR3000  was  not  designed  to  evaluate  urinary  oxidative  stress
parameters. We will work on addressing these limitations in the near future.

In conclusion, oxidative stress levels, as measured by the FORT and FORD assays,
were higher in obese subjects vs healthy controls. ROS levels were elevated in diabetic
obese patients vs obese non-diabetic patients and healthy controls. Obese patients had
higher BMI, WC, FPG, TC, LDL-c, TG, UA and lower HDL-c vs healthy controls. In
obese subjects, FORT levels correlated positively with BMI, FPG, TC and UA, and
FORD levels correlated negatively with BMI, WC, FPG, TC and UA. Obese diabetic
subjects were older, had higher FPG and lower HDL-c. In obese diabetic subjects,
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Figure 2

Figure 2  Correlation between free oxygen radical test values and body mass index in diabetic obese
patients. FORT: Free oxygen radical test; BMI: Body mass index.

FORT levels correlated positively with BMI and TC, and FORD levels correlated
negatively  with  BMI  and  TC.  Taken  together,  these  findings  indicate  that  the
management of obesity and (or) diabetes should also take into consideration strategies
to reduce ROS levels and increase the antioxidant capacity of the body, in addition to
the treatment of lipid abnormalities. However, further studies are needed to clarify
the crosstalk between oxidative stress, obesity and diabesity.
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Figure 3

Figure 3  The key findings in our study regarding the changes in oxidative stress levels and other clinical and (or) biochemical parameters in patients with
obesity and diabesity. BMI: Body mass index; WC: Waist circumference; UA: Uric acid; FGP: Fasting plasma glucose; TC: Total cholesterol; LDL-c: Low-density
lipoprotein cholesterol; TG: Triglycerides; ROS: Reactive oxygen species; HDL-c: High-density lipoprotein cholesterol.

ARTICLE HIGHLIGHTS
Research background
Oxidative stress is a key player in health and disease, and its particular involvement in the
development of obesity, type 2 diabetes mellitus, cardiovascular disorders, neurodegeneration
and cancer have attracted much attention from the scientific community in recent years.

Research motivation
The motivation for our research was to contribute to the study of oxidative stress involvement in
obesity, diabetes and their co-occurrence (diabesity), and to improve the current knowledge
regarding the development of these public health problems.

Research objectives
The main objectives of this study were to evaluate oxidative stress levels in obesity, diabetes and
diabesity using the free oxygen radical test (FORT) and the free oxygen radical defence (FORD)
tests.  In  addition,  we  investigated  whether  FORT  and  (or)  FORD  values  correlated  with
anthropometric and laboratory parameters.

Research methods
Oxidative stress was evaluated from a single drop of capillary blood using the CR3000 analyser
by two colorimetric assays: The free oxygen radical test (FORT) and the free oxygen radical
defence (FORD) assays. Demographic, clinical and biochemical parameters were assessed by
standard methods.

Research results
FORT levels were higher in obese subjects vs healthy controls and correlated positively with
body mass index, waist circumference, fasting plasma glucose, total cholesterol and uric acid.
FORD levels were lower in obese subjects vs healthy controls and correlated negatively with
body mass index, waist circumference, fasting plasma glucose, total cholesterol and uric acid.
Patients with diabesity had higher FORT values vs non-diabetic counterparts. In these subjects,
FORT levels correlated positively with body mass index and total cholesterol, and FORD levels
was negatively associated with body mass index and total cholesterol.

Research conclusions
Oxidative stress levels are increased in obese subjects. In patients with diabesity, reactive oxygen
species are elevated vs obese non-diabetic subjects and controls.

Research perspectives
Further  studies  are  needed  to  clarify  the  role  of  oxidative  stress  in  obesity,  diabetes  and
diabesity, and to transpose these results from bench to bedside. The value of antioxidants in the
management of these public health problems needs further clarification.

WJD https://www.wjgnet.com May 15, 2020 Volume 11 Issue 5

Găman MA et al. Oxidative stress in obesity and diabetes

200



REFERENCES
1 Haghighatdoost F, Amini M, Aminorroaya A, Abyar M, Feizi A. Different metabolic/obesity phenotypes

are differentially associated with development of prediabetes in adults: Results from a 14-year cohort
study. World J Diabetes 2019; 10: 350-361 [PMID: 31231458 DOI: 10.4239/wjd.v10.i6.350]

2 Riobó Serván P. Obesity and diabetes. Nutr Hosp 2013; 28 Suppl 5: 138-143 [PMID: 24010754 DOI:
10.3305/nh.2013.28.sup5.6929]

3 WHO Diabetes Country Profiles 2016. Geneva, Switzerland: World Health Organization, 2016.  Available
from: https://www.who.int/diabetes/country-profiles/diabetes_profiles_explanatory_notes.pdf

4 Newsholme P, Cruzat VF, Keane KN, Carlessi R, de Bittencourt PI. Molecular mechanisms of ROS
production and oxidative stress in diabetes. Biochem J 2016; 473: 4527-4550 [PMID: 27941030 DOI:
10.1042/BCJ20160503C]

5 Marseglia L, Manti S, D'Angelo G, Nicotera A, Parisi E, Di Rosa G, Gitto E, Arrigo T. Oxidative stress in
obesity: a critical component in human diseases. Int J Mol Sci 2014; 16: 378-400 [PMID: 25548896 DOI:
10.3390/ijms16010378]

6 Measuring Obesity—Classification and Description of Anthropometric Data.  Report on a WHO
Consultation of the Epidemiology of Obesity. Copenhagen: World Health Organization, 1987

7 American Diabetes Association. Executive summary: Standards of medical care in diabetes--2014.
Diabetes Care 2014; 37 Suppl 1: S5-13 [PMID: 24357214 DOI: 10.2337/dc14-S005]

8 Pavlatou MG, Papastamataki M, Apostolakou F, Papassotiriou I, Tentolouris N. FORT and FORD: two
simple and rapid assays in the evaluation of oxidative stress in patients with type 2 diabetes mellitus.
Metabolism 2009; 58: 1657-1662 [PMID: 19604518 DOI: 10.1016/j.metabol.2009.05.022]

9 Rani V, Deep G, Singh RK, Palle K, Yadav UC. Oxidative stress and metabolic disorders: Pathogenesis
and therapeutic strategies. Life Sci 2016; 148: 183-193 [PMID: 26851532 DOI: 10.1016/j.lfs.2016.02.002]

10 Niemann B, Rohrbach S, Miller MR, Newby DE, Fuster V, Kovacic JC. Oxidative Stress and
Cardiovascular Risk: Obesity, Diabetes, Smoking, and Pollution: Part 3 of a 3-Part Series. J Am Coll
Cardiol 2017; 70: 230-251 [PMID: 28683970 DOI: 10.1016/j.jacc.2017.05.043]

11 Abdali D, Samson SE, Grover AK. How effective are antioxidant supplements in obesity and diabetes?
Med Princ Pract 2015; 24: 201-215 [PMID: 25791371 DOI: 10.1159/000375305]

12 Jialal I, Singh G. Management of diabetic dyslipidemia: An update. World J Diabetes 2019; 10: 280-290
[PMID: 31139315 DOI: 10.4239/wjd.v10.i5.280]

13 Boles A, Kandimalla R, Reddy PH. Dynamics of diabetes and obesity: Epidemiological perspective.
Biochim Biophys Acta Mol Basis Dis 2017; 1863: 1026-1036 [PMID: 28130199 DOI:
10.1016/j.bbadis.2017.01.016]

14 Găman MA, Dobrică EC, Pascu EG, Cozma MA, Epîngeac ME, Găman AM, Pantea SA, Bratu OG,
Diaconu CC. Cardio metabolic risk factors for atrial fibrillation in type 2 diabetes mellitus: Focus on
hypertension, metabolic syndrome and obesity. J Mind Med Sci 2019; 6: 157-161 [DOI:
10.22543/7674.61.P157161]

15 Alwhaibi M, Altoaimi M, AlRuthia Y, Meraya AM, Balkhi B, Aldemerdash A, Alkofide H, Alhawassi
TM, Alqasoumi A, Kamal KM. Adherence to Statin Therapy and Attainment of LDL Cholesterol Goal
Among Patients with Type 2 Diabetes and Dyslipidemia. Patient Prefer Adherence 2019; 13: 2111-2118
[PMID: 31853174 DOI: 10.2147/PPA.S231873]

16 Picu A, Petcu L, Ştefan S, Mitu M, Lixandru D, Ionescu-Tîrgovişte C, Pîrcălăbioru GG, Ciulu-Costinescu
F, Bubulica MV, Chifiriuc MC. Markers of Oxidative Stress and Antioxidant Defense in Romanian
Patients with Type 2 Diabetes Mellitus and Obesity. Molecules 2017; 22 [PMID: 28468307 DOI:
10.3390/molecules22050714]

17 Hopps E, Noto D, Caimi G, Averna MR. A novel component of the metabolic syndrome: the oxidative
stress. Nutr Metab Cardiovasc Dis 2010; 20: 72-77 [PMID: 19747805 DOI:
10.1016/j.numecd.2009.06.002]

18 Harmon JS, Stein R, Robertson RP. Oxidative stress-mediated, post-translational loss of MafA protein as
a contributing mechanism to loss of insulin gene expression in glucotoxic beta cells. J Biol Chem 2005;
280: 11107-11113 [PMID: 15664999 DOI: 10.1074/jbc.M410345200]

19 Moisă C, Găman MA, Pascu EG, Assani AD, Drăgusin OC, Epîngeac ME, Găman AM. The role of
oxidative stress in essential thrombocythemia. Arch Balk Med Union 2018; 53: 70-75

20 Moisă C, Găman MA, Diaconu CC, Assani AD, Găman AM. The evaluation of oxidative stress in patients
with essential thrombocythemia treated with risk-adapted therapy. Arch Balk Med Union 2018; 53: 529-
534 [DOI: 10.31688/ABMU.2018.53.4.07]

21 Wen J, Dong Q, Liu G, Gao Y, Li XL, Jin JL, Li JJ, Guo YL. Improvement of oxidative stress status by
lipoprotein apheresis in Chinese patients with familial hypercholesterolemia. J Clin Lab Anal 2019;
e23161 [PMID: 31859412 DOI: 10.1002/jcla.23161]

22 Găman MA, Epîngeac ME, Găman AM. The evaluation of oxidative stress and high-density lipoprotein
cholesterol levels in diffuse large B-cell lymphoma. Rev Chim (Bucharest) 2019; 70: 977-980 [DOI:
10.37358/RC.19.3.7043]

23 Vílchez JA, Martínez-Ruiz A, Sancho-Rodríguez N, Martínez-Hernández P, Noguera-Velasco JA. The
real role of prediagnostic high-density lipoprotein cholesterol and the cancer risk: a concise review. Eur J
Clin Invest 2014; 44: 103-114 [PMID: 24111547 DOI: 10.1111/eci.12185]

24 Epîngeac ME, Găman MA, Diaconu CC, Gad M, Găman AM. The evaluation of oxidative stress levels in
obesity. Rev Chim (Bucharest) 2019; 70: 2241-2244 [DOI: 10.37358/RC.19.6.7314]

WJD https://www.wjgnet.com May 15, 2020 Volume 11 Issue 5

Găman MA et al. Oxidative stress in obesity and diabetes

201

http://www.ncbi.nlm.nih.gov/pubmed/31231458
https://dx.doi.org/10.4239/wjd.v10.i6.350
http://www.ncbi.nlm.nih.gov/pubmed/24010754
https://dx.doi.org/10.3305/nh.2013.28.sup5.6929
https://www.who.int/diabetes/country-profiles/diabetes_profiles_explanatory_notes.pdf
http://www.ncbi.nlm.nih.gov/pubmed/27941030
https://dx.doi.org/10.1042/BCJ20160503C
http://www.ncbi.nlm.nih.gov/pubmed/25548896
https://dx.doi.org/10.3390/ijms16010378
http://www.ncbi.nlm.nih.gov/pubmed/24357214
https://dx.doi.org/10.2337/dc14-S005
http://www.ncbi.nlm.nih.gov/pubmed/19604518
https://dx.doi.org/10.1016/j.metabol.2009.05.022
http://www.ncbi.nlm.nih.gov/pubmed/26851532
https://dx.doi.org/10.1016/j.lfs.2016.02.002
http://www.ncbi.nlm.nih.gov/pubmed/28683970
https://dx.doi.org/10.1016/j.jacc.2017.05.043
http://www.ncbi.nlm.nih.gov/pubmed/25791371
https://dx.doi.org/10.1159/000375305
http://www.ncbi.nlm.nih.gov/pubmed/31139315
https://dx.doi.org/10.4239/wjd.v10.i5.280
http://www.ncbi.nlm.nih.gov/pubmed/28130199
https://dx.doi.org/10.1016/j.bbadis.2017.01.016
https://dx.doi.org/10.22543/7674.61.P157161
http://www.ncbi.nlm.nih.gov/pubmed/31853174
https://dx.doi.org/10.2147/PPA.S231873
http://www.ncbi.nlm.nih.gov/pubmed/28468307
https://dx.doi.org/10.3390/molecules22050714
http://www.ncbi.nlm.nih.gov/pubmed/19747805
https://dx.doi.org/10.1016/j.numecd.2009.06.002
http://www.ncbi.nlm.nih.gov/pubmed/15664999
https://dx.doi.org/10.1074/jbc.M410345200
https://dx.doi.org/10.31688/ABMU.2018.53.4.07
http://www.ncbi.nlm.nih.gov/pubmed/31859412
https://dx.doi.org/10.1002/jcla.23161
https://dx.doi.org/10.37358/RC.19.3.7043
http://www.ncbi.nlm.nih.gov/pubmed/24111547
https://dx.doi.org/10.1111/eci.12185
https://dx.doi.org/10.37358/RC.19.6.7314


W J D World Journal of
Diabetes

Submit a Manuscript: https://www.f6publishing.com World J Diabetes  2020 May 15; 11(5): 202-212

DOI: 10.4239/wjd.v11.i5.202 ISSN 1948-9358 (online)

ORIGINAL ARTICLE

Prospective Study

Severity of the metabolic syndrome as a predictor of prediabetes
and type 2 diabetes in first degree relatives of type 2 diabetic
patients: A 15-year prospective cohort study

Rokhsareh Meamar, Masoud Amini, Ashraf Aminorroaya, Maryam Nasri, Majid Abyar, Awat Feizi

ORCID number: Rokhsareh Meamar
(0000-0002-4536-5113); Masoud
Amini (0000-0003-4134-0960);
Ashraf Aminorroaya
(0000-0002-7550-1198); Maryam
Nasri (0000-0002-5395-4997); Majid
Abyar (0000-0002-0039-2361); Awat
Feizi (0000-0002-1930-0340).

Author contributions: Amini M
generated the idea and designed
the Isfahan diabetes prevention
study, participated in most of the
experiments, revising the paper
critically for important intellectual
content; Meamar R generated the
idea and designed the current
secondary study, wrote all major
parts of the article and checked it
for intellectual content and revised
it; Feizi A supervised the current
secondary study and drafted the
paper and revised it critically for
important intellectual content and
performed all statistical analyses;
Aminorroaya A essentially
participated as co-investigator in
Isfahan diabetes prevention study,
revised paper critically for
important intellectual content;
Nasri M edited and resolved
grammatical errors in the article;
Abyar M assisted in data collection
and preparation and statistical
analysis.

Supported by Isfahan Endocrine
and Metabolism Research Center,
No. 95017.

Institutional review board
statement: The study was
reviewed and approved by the
institutional review boards of
Isfahan University of Medical

Rokhsareh Meamar, Isfahan Endocrine and Metabolism Research Center, Isfahan Clinical
Toxicology Research Center, Isfahan University of Medical Sciences, Isfahan 81746-73461,
Iran

Masoud Amini, Ashraf Aminorroaya, Majid Abyar, Awat Feizi, Isfahan Endocrine and Metabolism
Research Center, Isfahan University of Medical Sciences, Isfahan 81746-73461, Iran

Maryam Nasri, Grovemead Health Center, London NW4-3EB, United Kingdom

Awat Feizi, Department of Biostatistics and Epidemiology, School of Health, Isfahan
University of Medical Sciences, Isfahan 81746-73461, Iran

Corresponding author: Awat Feizi, PhD, Professor, Statistician, Isfahan Endocrine and
Metabolism Research Center, Isfahan University of Medical Sciences, P.O. Box 319, Hezar-
Jerib Ave, Isfahan 81746-73461, Iran. awat_feiz@hlth.mui.ac.ir

Abstract
BACKGROUND
Type 2 diabetes mellitus (T2DM) has high morbidity and mortality worldwide,
therefore there is of paramount importance to identify the risk factors in the
populations at risk early in the course of illness. A strong correlation between
severity of metabolic syndrome (MetS) and HbA1c, fasting insulin and insulin
resistance has been reported. Accordingly, the MetS severity score (or MestS Z-
score) can potentially be used to predict the risk of T2DM progression over time.

AIM
To evaluate the association the of MestS Z-score in first degree relatives (FDRs) of
T2DM with the risk of prediabetes and type 2 diabetes in future.

METHODS
A prospective open cohort study was conducted between 2003-2018. At baseline,
the sample comprised of 1766 FDRs of patients with T2DM who had a normal
glucose tolerance test. Relative risk (RR) and 95% confidence interval were
calculated based on logistic regression. The receiver-operator characteristic
analysis and area under the curve based on MetS Z-score were used to evaluate
the risk of prediabetes and diabetes among the FDR population.

RESULTS
Baseline MetS Z-scores were associated with the its latest values (P < 0.0001).
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Compared with individuals who were T2DM free at the end of follow up, those
who developed T2DM had higher MetS Z-score at baseline (P < 0.001). In
multivariable logistic regression analyses for every unit elevation in MetS Z-score
at the baseline, the RR for developing future T2DM and prediabetes was (RR =
1.94, RR = 3.84), (RR = 1.5, RR = 2.17) in total population and female group,
respectively (P < 0.05). The associations remained significant after adjusting the
potential confounding variables. A cut off value of 0.97 and 0.94 was defined in
the receiver-operator characteristic curve based on the MetS Z-score for
differentiating female patients with diabetes and prediabetes from the normal
population, respectively.

CONCLUSION
The MetS Z-score was associated with an increased risk of future T2DM.
Appropriate interventions at earlier stages for preventing and attenuating MetS
effects may be considered as an effective strategy for FDR as at-risk population.

Key words: Insulin resistance; Metabolic syndrome; Risk; Type 2 diabetes mellitus;
Prediabetes; First degree relative

©The Author(s) 2020. Published by Baishideng Publishing Group Inc. All rights reserved.

Core tip: This prospective cohort study showed that metabolic syndrome severity score at
baseline, in first degree relative of type 2 diabetes mellitus patients with normal glucose
tolerance, predicts the incidence of future diabetes and prediabetes. In this study, the cut
off values of metabolic syndrome Z-score for predicting prediabetes and diabetes were
0.94 and 0.97, respectively. This negligible difference between two groups in terms of
cut off values highlights the importance of intervention at prediabetes stage.

Citation: Meamar R, Amini M, Aminorroaya A, Nasri M, Abyar M, Feizi A. Severity of the
metabolic syndrome as a predictor of prediabetes and type 2 diabetes in first degree relatives
of type 2 diabetic patients: A 15-year prospective cohort study. World J Diabetes 2020; 11(5):
202-212
URL: https://www.wjgnet.com/1948-9358/full/v11/i5/202.htm
DOI: https://dx.doi.org/10.4239/wjd.v11.i5.202

INTRODUCTION
Type  2  diabetes  mellitus  (T2DM) has  high  morbidity  and mortality  worldwide,
therefore there is of paramount importance to identify risk factors in the populations
at risk early in the course of illness[1].

One of the important factors in increasing the risk of acquiring DM is metabolic
syndrome (MetS). MetS consists of having three of the five following abnormalities;
central obesity,  hypertension, high triacylglycerol,  low high-density lipoproteins
(HDL) cholesterol and elevated fasting glucose[2]. MetS is linked to insulin resistance[3]

and obesity[4] due to abnormality in cellular function[5]. MetS is a risk factor for future
cardiovascular disease (CVD)[6,7] and T2DM[7-9] both in children and adults[10,11]. Linear
measurements of MetS Z-score is valuable not only for the identification of high-risk
individuals  but  also  for  following  up  the  disease  development  over  time  and
evaluation of the response to treatment[12]. Recently the potential benefit of measuring
MetS Z-score in childhood and predicting cardiovascular disease and diabetes later in
life has been revealed[12-13].

The MetS not only is inherited but also influenced by lifestyle and genetic factors[14].
This provides an opportunity to modify lifestyle or intervene with treatments in the
population who have been recognized to be at  risk for  prediabetes and diabetes
mellitus such as the offspring of the patients with T2DM[15].

First degree relatives (FDRs) with T2DM are at higher risk of diabetes and pre-
diabetes progression[16-18].

A study by Siewert et al[19] indicated that the prevalence of MetS is high in young
FDR adults.  Iran is  a  developing country and its  population is  adopting a  more
sedentary  lifestyle  with  new diets  resulting  in  a  high  prevalence  of  T2DM and
prediabetes[20]. In this study, taking into account potential links between MetS Z-score
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as a marker for prediabetes or T2DM risk, we assessed the role of MetS Z-score for
predicting prediabetes and T2DM in FDR population in a long-term follow-up cohort
study to enable clinicians to identify and treat this high-risk population through
conducting of interventions for preventing MetS or diminishing its side effects.

MATERIALS AND METHODS

Study design and population
Data were drawn from the database of the Isfahan Diabetes Study on the first degree
relatives  (FDR),  the  details  of  the  study  have  been  presented  elsewhere[21].  In
summary,  the  study is  an ongoing open cohort  study started at  2003 on FDR of
patients with T2DM in Isfahan, a large city in central Iran, to measure several possible
risk factors of diabetes incidence. At baseline, our sample comprised of 3492 FDRs of
T2DM patients. All participants were visited at the Isfahan Endocrine and Metabolism
Research  Center,  affiliated  to  Isfahan  University  of  Medical  Sciences,  Iran.  The
Bioethics Committee of Isfahan University of Medical Sciences approved the study
and written informed consent was obtained from every participant based on the
Declaration of Helsinki.

At the time of examination, subjects underwent anthropometric measurements and
laboratory tests, including a standard 75-g 2-h oral glucose tolerance test (OGTT). For
the  current  study,  the  analysis  was  limited  to  those  normal  glucose  test  (NGT)
participants  without  missing  data  i.e.  1766  at  baseline.  NGT  participants  were
followed from 2003 annually until 2018 and then classified to NGT, impaired glucose
test and T2DM according to the American Diabetes Association criteria[22].

Variables assessment
Anthropometric and demographic variables:  All participants completed a demo-
graphic  questionnaire  including  age,  gender,  level  of  education,  smoking  and
personal  and  medical  history  at  baseline.  Anthropometric  and  basic  clinical
measurements, including body mass index (kg/m2), waist circumference (WC, cm)
and waist-to-hip ratio (WHR) were calculated according to standard methods[23] and
blood pressure (BP) including both systolic and diastolic were recorded.

MetS  Z-Score  calculation:  Traditional  MetS  was  defined  using  the  National
Cholesterol Education Program Adult Treatment Panel-III criteria[2]. Participants had
to meet three or more of the following five criteria: (1) Concentration of triacylglycerol
≥ 1.69 mmol/L (150 mg/dL); (2) HDL-cholesterol level < 1.04 mmol/L (40 mg/dL) for
men and < 1.3 mmol/L (50 mg/dL) for women; (3) WC ≥ 102 cm for men and 88 cm
for women; (4) Glucose concentration ≥ 5.55 mmol/L (100 mg/dL); and (5) systolic BP
≥  130  mmHg  or  diastolic  BP  ≥  85  mmHg.  The  MetS  Z-score  was  calculated  for
adolescents at first visit using formulas published elsewhere[24]. Data collection was
conducted at baseline and at follow-up according to the standards of Medical Care in
Diabetes[25].

Laboratory parameters: All participants received a 75-g OGTT following a 12- hour
overnight fasting period. Plasma glucose (PG) was measured at 0, 30, 60 and 120
min[26] (2-h PG) and fasting plasma glucose (FPG) (mg/dL) was measured by Pars
Azmon kit Lot number: 94011 (a photometric method).  HbA1c, cholesterol (LDL,
HDL) and triglyceride were also measured.

Participants with FPG ≥ 200 mg/dL were considered diabetic. If FPG was ≥ 126 and
< 200 mg/dL, a second FPG was measured on another day. If the second FPG was
also ≥ 126 mg/dL, participants were classified as diabetic. Those with FPG ≥ 126
mg/dL or  2-h  PG ≥  200  mg/dL were  also  defined as  diabetic.  Impaired fasting
glucose (IFG) and impaired glucose tolerance (IGT) are intermediate stages in the
natural history of type 2 diabetes and are called the pre-diabetes phase[22]. FPG < 126
mg/dL with a 2-h PG concentration ≥ 140 and < 200 mg/dL was interpreted as IGT. If
FPG was  in  the  range  of  100–126  mg/dL and 2-h  PG was  <  140  mg/dL,  it  was
considered as IFG. NGT was defined as FPG below 100 mg/dL and 2-h PG less than
140 mg/dL[27].

Statistical analysis
Quantitative variables are presented as mean ± SD or median [IQR], while qualitative
as frequency (percentage). Depending on the normal or non-normal distribution of
data, independent samples t-test or Mann-Whitney U tests were used for comparing
continuous data between NPG and diabetes or prediabetes. Categorical data were
compared with the χ2 test.

Pearson correlation coefficient was calculated for evaluating the correlation of MetS
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Z-score at first and last visit. The diagnostic accuracy of MetS Z-Score was evaluated
by using the receiver operating characteristic (ROC) curve analysis and calculated
area under the curve (AUC) and 95% confidence interval (CI) for AUC. We used
binary logistic regression analysis for evaluating the predictive value of MetS Z-Score
for diabetes and prediabetes incidence in the future in different models.  In these
analyses,  after  obtaining  relative  risk  (RR)  and  95%CI  in  the  crude  model,  the
adjustment was made for age and gender in the model 1. All statistical calculations
were carried out with the SPSS 15 for Windows (SPSS Inc., Chicago, IL, United States)
and P < 0.05 was used as a statistically significant level.

RESULTS
Over the fifteen years  follow-up from the 1766 NGT participants  at  baseline,  78
participants developed DM (7.4%), 255 participants progressed to IFG (24.1%) and 89
participants developed IGT (8.4%). Overall, 344 (32.6%) developed pre-diabetes and
630 (59.7%) participants remained NGT. Of this total, 714 were missed to follow up
due to moving geographically, withdrawing consent or changing contact details and
being unavailable.

Table 1 presents the anthropometric, laboratory and clinical characteristics at the
beginning of the study for those participants who developed to diabetes and those
who remained normal at follow up periods. All glycemic variables including PG in 0,
30, 60 and 120 min, HbA1c, FPG, and total cholesterol and triglyceride as well as
WHR were significantly different between diabetes and a normal group, particularly
in total population and female group.

Table  2  presents  the  anthropometric  measurements,  laboratory  and  clinical
characteristics at the beginning of the study for those participants who developed to
pre-diabetes and those who remained normal. It illustrates a significant difference in
glucose level at 0, 30, 60,120 min and triglyceride level, WHR and both systolic and
diastolic blood pressure measurement in total population and female group when
comparing pre-diabetes group with the normal group. There was a highly significant
correlation in terms of MetS Z-score at first and last visits in the FDR population (r =
0.67; P < 0.001) (Figure 1).

Figure 2 provides MetS Z-score at the first and final visits by diabetes disease status
for two groups: Those who did not have diabetes at any of the two visits and those
who developed T2DM between first and last visits.

Table 3 presents the results of crude and multivariable binary logistic regression
analysis  in  different  models  for  the  association  between  MetS  Z-score  levels  at
baseline and diabetes and pre-diabetes risk at the future or at follow up. In crude
logistic regression analysis, MetS Z-score level at baseline positively predicted the risk
of future diabetes (RR = 1.94, RR = 3.84) and pre-diabetes (RR = 1.5, RR = 2.17) in total
population and female group, respectively (all P < 0.05). However, significant results
were not detected in the male group. In multivariable logistic regression analyses, the
adjustment  was  made  for  age  and  gender  as  confounding  factors  (model).  As
illustrated in Table 3, the associations remained significant for diabetes (RR = 2.69, RR
= 4.01) and prediabetes (RR = 1.76, RR = 2.07) in total population and female group,
respectively (all P < 0.05). However, such significant results were not observed in the
male group.

ROC curve analysis was used to determine the cutoff value of MetS Z-score at
baseline for predicting diabetes and prediabetes in at follow up. The area under the
ROC curve of MetS Z-score for predicting the incidence of diabetes and prediabetes is
shown  in  Figure  3.  A  cutoff  value  0.97  for  MetS  Z-score  was  obtained  for
differentiating the female patients with diabetes from normal with corresponding
specificity of 56% and sensitivity of 72% and area under the ROC curve (AUC = 0.67,
95%CI: 0.59-0.74; P  < 0.05). A cutoff value 0.78 for MetS Z-score was obtained for
differentiating the total population with diabetes from normal with corresponding
specificity of 56% and sensitivity of 66% and area under the ROC curve (AUC = 0.63,
95%CI: 0.57-0.69; P < 0.05). A cutoff value of Met Z-score at 0.94 was obtained for
differentiating the female  patients  with prediabetes  from normal  people,  with a
corresponding specificity 58% and sensitivity 60% and area under the ROC curve of
(AUC = 0.6, 95%CI: 0.55-0.64; P < 0.05) Also, a cutoff value of MetS Z-score 0.52 was
obtained for differentiating total patients with prediabetes from normal people, with a
corresponding specificity 72% and sensitivity 42% and area under the ROC curve of
(AUC = 0.58, 95%CI: 0.54-0.61; P < 0.05) (Table 4).
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Table 1  Anthropometric, laboratory and clinical characteristics of first degree relatives of diabetes mellitus between normal and diabetic
subjects in total population and sex difference

Variables
Total Male Female

Diabetes (n
= 78)

Normal (n =
630) P value Diabetes (n

= 26)
Normal (n =
160) P value Diabetes (n

= 52)
Normal (n =
470) P value

Age (yr) 43.33 ± 6.15 42.01 ± 6.14 0.075 45.15 ± 7.33 42.83 ± 6.65 0.1 42.42 ± 5.31 41.71 ± 5.93 0.4

BMI (kg/m2) 29.33 ± 4.35 28.16 ± 4.20 0.02 27.6 ± 3.44 26.93 ± 3.64 0.38 30.16 ± 4.53 28.59 ± 4.31 0.01

Smoking,
yes [n (%)]

2 (9.5%) 17 (8.03%) 0.84 1 (14.3%) 12 (25%) 0.53 1 (1.1%) 5 (2.3%) 0.43

Education
(diploma
and more)

33 (42.3%) 317 (51.5%) 0.12 13 (50%) 108 (68.8%) 0.06 20 (38.5%) 208 (45.5%) 0.33

WHR 0.83 ± 0.06 0.81 ± 0.07 0.01 0.9 ± 0.03 0.89 ± 0.05 0.62 0.8 ± 0.04 0.79 ± 0.05 0.04

Blood
glucose 0
(mg/dL)

90.45 ± 6.92 87.05 ± 7.91 0.001 91.76 ± 5.58 87.79 ± 8.28 0.01 89.81 ± 7.45 86.8 ± 7.78 0.008

Blood
glucose 30
(mg/dL)

143.92 ± 24.56 125.93 ± 24.91 0.001 144.32 ± 25.32 133.08 ± 27.98 0.06 143.73 ± 24.43 123.22 ± 23.14 0.001

Blood
glucose 60
(mg/dL)

152.11 ± 34.83 121.58 ± 31.49 0.001 148.88 ± 38.67 129.25 ± 36.37 0.01 153.69 ± 33.06 118.74 ± 29.08 0.001

Blood
glucose 120
(mg/dL)

108.93 ± 19.95 97.81 ± 21.05 0.001 102.93 ± 23.43 88.76 ± 22.44 0.003 111.88 ± 17.5 101.01 ± 19.6 0.001

HbA1c 5.2 ± 0.72 4.92 ± 0.78 0.006 5.28 ± 0.9 4.93 ± 0.63 0.03 5.16 ± 0.61 4.92 ± 0.82 0.05

Triglyceride
(mg/dL)

181.42 ±
100.22

146.30 ± 81.10 0.001 203.48 ± 97.91 174.98 ± 96.79 0.17 170.6 ± 100.51 136.29 ± 72.42 0.002

Total
cholesterol
(mg/dL)

203.44 ± 44.55 189.96 ± 38.65 0.005 201.28 ± 40.22 192.09 ± 37.63 0.26 204.5 ± 46.87 189.37 ± 38.93 0.01

HDL
(mg/dL)

44.21 ± 10.6 45.33 ± 11.57 0.43 43.34 ± 11.3 40.96 ± 10.82 0.32 44.6 ± 10.36 46.85 ± 11.46 0.18

Systolic
pressure
(cmHg)

11.58 ± 1.63 11.26 ± 1.48 0.08 12.14 ± 1.61 11.52 ± 1.49 0.06 11.32 ± 1.59 11.17 ± 1.47 0.48

Diastolic
pressure
(cmHg)

7.45 ± 1.24 7.41 ± 1.12 0.76 7.62 ± 1.16 7.55 ± 1.16 0.87 7.38 ± 1.28 7.36 ± 1.1 0.94

Values are presented as mean ± SD or n (%). BMI: Body mass index; WHR: Waist-to-hip ratio; HbA1c: Hemoglobin A1c; HDL: High-density lipoproteins.

DISCUSSION
To our knowledge, this is the first population-based study conducted to evaluate the
association between MetS Z-score and the incidence of pre-diabetes/T2DM in the
FDR population who were normal at first visit.

This study discovered that the degree of severity of MetS score as a linear measure
is a predictive factor for the incidence of T2DM and prediabetes in the future. This
association was overall moderate in the total population (AUC = 0.63) and mildly
stronger in the females (AUC = 0.68) of the FDR population. Previously, MetS Z-score
was correlated similarly to the prediction of CVD[13] and diabetes[12] in the non-FDR
population. DeBoer et al[12] concluded that the severity of MetS in childhood could
predict  the  incidence  of  adult  T2DM  in  the  future.  In  other  studies,  a  strong
correlation between MetS Z-score and HbA1c, fasting insulin and insulin resistance
has been illustrated[28]. These findings suggest that MetS Z-score can potentially be
used to detect risk and follow T2DM progression over time[12].

It has been reported that childhood MetS Z-score can predict diabetes risk in the
future with an OR of 2.7 by the mean age of 38.5[12]. We found similar results: In the
total FDR population, the RR for each 1.0 unit increase in the adulthood MetS Z-score
in  predicting  diabetes  and  pre-diabetes  by  a  mean  age  of  43  was  2.69  and  1.76
respectively.

Besides, MetS Z-score is associated with childhood obesity and is a significant risk
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Figure 1

Figure 1  Correlation of metabolic syndrome severity scores within individuals over time. Metabolic syndrome
severity Z-scores on the x-axis in first visit (2003-2005) and on the y-axis during last visit (2018). Pearson’s r = 0.67
(P < 0.001).

factor for prediabetes and progression to T2DM[29]. Currently, there is an epidemic of
obesity in the world which begins early in life. Tools such as MetS Z-score can be
utilized to diagnose the population at higher risk for future disease and assisting
primary prevention by suggesting lifestyle modifications[5].

Measuring MetS has its limitations. Firstly, it is difficult to monitor changes in MetS
over time[30,31]. Secondly, despite evidence demonstrating that elevated WC or high
triacylglycerol levels have a more important role and stronger association with MetS
risk  over  time  due  to  abnormal  cellular  processes  involved,  in  this  method  of
measurement equal importance is given to all of the components of MetS[32,33]. Thirdly,
gender, race and ethnicity cause variation in the MetS value, for example, African
American men have a low prevalence of MetS despite having high rates of T2DM and
death from cardiovascular disease[34-36].

All  of  the  available  data  establishes  the  necessity  of  using  a  continuous
measurement of MetS for clinical applications. Gurka et al[37,38] have formulated sex-
and  race/ethnicity-specific  MetS  Z-score.  The  standardized  Z-scores  for  each
component coming together creates an overall estimate of the severity of MetS[24] with
a  linear  association  with  future  risk  of  T2DM  and  offers  a  tool  for  monitoring
treatment efficacy[12].

The role of genetic factors in MetS cannot be ignored[15]. The association of oxidative
stress with inflammatory processes and MetS Z-score has been studied[5,39].  In our
study, the high correlation between these scores over 15 years suggests a degree of
consistency of MetS in a given individual over time or a genetic susceptibility in the
FDR population.

Several studies on FDR individuals indicated that alteration in carbohydrate and
lipid metabolism including central obesity, dyslipidemia, glucose intolerance, and
high blood pressure  start  at  an early  age[40,41].  Siewert  et  al[19]  illustrated that  the
prevalence of  MetS is  high in young FDR adults,  and since MetS and T2DM are
closely  related  diseases  and  are  driven  by  the  same  metabolic  disturbances,
preventive measures at an early age seem appropriate.

The  prevalence  of  MetS  is  influenced  by  various  factors  such  as  gender,
environmental and cultural in addition to genetic factors[42].

Similar to the USA the prevalence of MetS is higher in women than men in Iran[43,44].
This sex difference can be explained by a statistically significant higher prevalence of
MetS components in women and agrees with the results of our study. In the FDR
population, women with higher WHR, TG, and cholesterol than normal women had a
higher chance to progress to diabetes or prediabetes while such a difference was not
observed in male FDRs. The differences in lipid profile could be explained by hepatic
lipase activity, patterns of diet and physical activity. Women show a sharp decline in
physical activity at adolescence as compared to men, and this could explain the higher
prevalence of obesity in women[43].

Recently,  during one  cohort  study in  Iran,  the  paternal  history  of  T2DM was
independently associated with increased risk for pre-diabetes/T2D in adolescence
[HR  =  1.63  (1.02–2.60)][45].  One  of  our  other  studies  reported  that  the  glycemic
response  to  OGTT  may  predict  the  risk  of  development  to  T2DM  in  the  FDR
population[46].
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Table 2  Anthropometric, laboratory and clinical characteristics of first degree relatives of type 2 diabetes mellitus between normal and
pre-diabetes subjects at total population and sex categories

Variables
Total Male Female

Pre-diabetes
(n = 344)

Normal (n =
630) P value Pre-diabetes

(n = 94)
Normal (n =
161) P value Pre-diabetes

(n = 250)
Normal (n =
470) P value

Age (yr) 43.04 ± 6.33 42.01 ± 6.14 0.01 43.2 ± 6.12 42.83 ± 6.65 0.66 42.98 ± 6.42 41.71 ± 5.93 0.008

BMI (kg/m2) 28.44 ± 4.06 28.16 ± 4.2 0.32 26.84 ± 3.56 26.93 ± 3.64 0.84 29.04 ± 4.09 28.59 ± 4.31 0.17

Smoking,
yes [n (%)]

8 (7.8%) 17 (8.3%) 0.88 7 (21.2%) 12 (25%) 0.69 1 (1.4%) 5 (3.2%) 0.45

Education
(diploma
and more)

154 (45.4%) 317 (51.5%) 0.07 61 (66.3%) 108 (68.8%) 0.68 93 (37.7%) 208 (45.5%) 0.05

WHR 0.82 ± 0.06 0.81 ± 0.07 0.04 0.9 ± 0.05 0.89 ± 0.05 0.83 0.8 ± 0.05 0.79 ± 0.05 0.01

Blood
glucose 0
(mg/dL)

89.69 ± 6.9 87.05 ± 7.91 0.001 90.57 ± 6.7 87.79 ± 8.28 0.06 89.37 ± 6.96 86.8 ± 7.78 0.001

Blood
glucose 30
(mg/dL)

136.63 ± 26 125.93 ± 24.91 0.001 141.44 ± 30.23 133.08 ± 27.98 0.02 134.74 ± 23.94 123.22 ± 23.14 0.001

Blood
glucose 60
(mg/dL)

135.68 ± 31.23 121.58 ± 31.49 0.001 134.98 ± 33.37 129.25 ± 36.37 0.21 135.94 ± 30.45 118.74 ± 29.08 0.001

Blood
glucose 120
(mg/dL)

104.2 ± 21.36 97.81 ± 21.05 0.001 94.72 ± 23.52 88.76 ± 22.44 0.04 107.7 ± 19.41 101.01 ± 19.6 0.001

HbA1c 5.06 ± 0.7 4.92 ± 0.78 0.009 5.09 ± 0.83 4.93 ± 0.63 0.1 5.05 ± 0.65 4.92 ± 0.82 0.04

Triglyceride
(mg/dL)

157.78 ± 81.03 146.3 ± 81.1 0.03 176.98 ± 90.75 174.98 ± 96.79 0.87 150.56 ± 76.02 136.29 ± 72.42 0.01

Total
cholesterol
(mg/dL)

193.34 ± 38.2 189.96 ± 38.65 0.19 188.09 ± 36.58 192.09 ± 37.63 0.41 195.3 ± 38.67 189.37 ± 38.93 0.05

HDL
(mg/dL)

44.37 ± 45.33 10.98 ± 11.57 0.21 41.26 ± 11.46 40.96 ± 10.82 0.83 45.51 ± 10.6 46.85 ± 11.46 0.13

Systolic
pressure
(cmHg)

11.67 ± 1.65 11.26 ± 1.48 0.001 11.75 ± 1.73 11.52 ± 1.49 0.26 11.64 ± 1.63 11.17 ± 1.47 0.001

Diastolic
pressure
(cmHg)

7.6 ± 1.14 7.41 ± 1.12 0.01 7.75 ± 1.19 7.55 ± 1.16 0.19 7.55 ± 1.12 7.36 ± 1.1 0.03

Values are presented as mean ± SD or n (%), P values resulted from independent t-test for quantitative and χ2 for categorical data. BMI: Body mass index;
WHR: Waist-to-hip ratio; HbA1c: Hemoglobin A1c; HDL: High-density lipoproteins.

In summary, our study has suggested that MetS Z-score at baseline, in FDR of
T2DM  patients  with  normal  glucose  tolerance,  predicts  the  incidence  of  future
diabetes  and  prediabetes.  In  this  study,  the  cutoff  values  of  MetS  Z-score  for
predicting prediabetes and diabetes were 0.94 and 0.97, respectively. This negligible
difference between two groups in terms of cutoff values highlights the importance of
intervention at the prediabetes stage. Elevated levels may also be used to motivate
patients  to increase their  physical  activity or  adopt a  healthy diet  to reverse the
prediabetic state[47].  Appropriate interventions at an earlier stage in MetS may be
considered as an effective strategy for preventing the development of diabetes and
prediabetes in such a high-risk population.
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Table 3  Relationship between metabolic syndrome severity Z-score and risk of diabetes and pre-diabetes in first degree relatives of type
2 diabetes mellitus

Diabetes, RR (95%CI) Pre-diabetes, RR (95%CI)

Total Male Female Total Male Female

Crude model 1.94 (1.33-2.82)a 1.41 (0.65-3.03) 3.83 (2.01-7.29)a 1.5 (1.2-1.87)a 1.28 (0.82-1.99) 2.17 (1.53-3.08)a

Model 11 2.69 (1.61-4.48)a 1.04 (0.69-3.4) 4.01 (2.07-7.76)a 1.76 (1.33-2.33)a 1.31 (0.83-2.05) 2.07 (1.45-2.97)a

1Age–Sex adjusted for total population and only age adjusted for male and female groups.
aP < 0.05. RR: Relative risk; CI: Confidence interval.

Table 4  Area under the curve, sensitivity and specificity of metabolic syndrome severity Z-score for predicting the risk of affecting by
diabetes and pre-diabetes in future for first degree relatives of type 2 diabetes mellitus when they are normal glucose tolerance at the
begging of study

Diabetes Pre-diabetes

Total Male Female Total Male Female

AUC (95%CI) 0.63 (0.57-0.69)a 0.55 (0.43-0.68) 0.67 (0.59-0.74)a 0.58 (0.54-0.61)a 0.55 (0.47-0.62) 0.6 (0.55-0.64)a

Sensitivity (%) 66 76 72 42 71 60

Specificity (%) 56 43 56 72 44 58

aP < 0.05. AUC: Area under the curve.

Figure 2

Figure 2  Mean metabolic syndrome severity scores within individuals by later diabetes status. Metabolic syndrome Z-score (mean, 95% confidence interval)
by disease status for diabetes. Scores shown are those obtained during first and last visits among individuals who remained disease-free (dotted line, n = 564), those
with incident disease between two visits (continuous line, n = 70). Comparison with disease-free group: P < 0.05 for first visit, P < 0.01 for last visit.
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Figure 3

Figure 3  Receiver operating characteristic curves of metabolic syndrome Z-score. A and B: Predicting future incidence of diabetes (A: Male; B: Female); C and
D: Predicting future incidence of prediabetes (C: Male; D: Female).

ARTICLE HIGHLIGHTS
Research background
There is potential links between MetS Z-score as a marker for prediabetes or type 2 diabetes
mellitus (T2DM) risk.

Research motivation
Iran is a developing country and its population is adopting a more sedentary lifestyle with new
diets resulting in a high prevalence of T2DM and prediabetes.

Research objectives
In this study, the association the of severity of MetS Z-score in FDRs of T2DM was assessed with
the risk of prediabetes and type 2 diabetes in future.

Research methods
In a prospective cohort study during a long-term follow-up period for the first time in Iran and
as one of scare studies around the world we evaluated the predictive role of MetS Z-score for
prediabetes and diabetes incidence risk in future among normal glucose tests. Our study results
help  clinicians  to  identify  and  treat  this  high-risk  population  through  conducting  of
interventions for preventing MetS or diminishing its side effects.

Research results
MetS  Z-score  at  the  baseline,  is  a  significant  predictor  for  developing  future  T2DM  and
prediabetes in total population and female group. Reliable cut off values with high accuracy
were obtained in the receiver operating characteristic curve analysis based on the MetS Z-score
for differentiating patients with diabetes and prediabetes from the normal population.

Research conclusions
MetS Z-score is a significant predictor for incidence of diabetes and prediabetes risk in future in
high risk population of FDR and cut off value for MetS score was not notably different for those
people who affected by diabetes and prediabetes. This negligible difference between two groups
in terms of cut off values highlights the importance of intervention at the prediabetes stage.
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Research perspectives
The FDR people with high risk of developing diabetes and prediabetes are identifiable based on
MetS  Z-score.  Accordingly,  appropriate  interventions  at  an  earlier  stage  in  MetS  may  be
considered as an effective strategy for preventing the development of diabetes and prediabetes
in such a high-risk population.
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