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Abstract
Diabetes mellitus (DM) and obesity are interrelated in a complex manner, and 
their coexistence predisposes patients to a plethora of medical problems. 
Metabolic surgery has evolved as a promising therapeutic option for both 
conditions. It is recommended that patients, particularly those of Asian origin, 
maintain a lower body mass index threshold in the presence of uncontrolled DM. 
However, several comorbidities often accompany these chronic diseases and need 
to be addressed for successful surgical outcome. Laparoscopic Roux-en-Y gastric 
bypass (RYGB) and laparoscopic sleeve gastrectomy (LSG) are the most 
commonly used bariatric procedures worldwide. The bariatric benefits of RYGB 
and LSG are similar, but emerging evidence indicates that RYGB is more effective 
than LSG in improving glycemic control and induces higher rates of long-term 
DM remission. Several scoring systems have been formulated that are utilized to 
predict the chances of remission. A glycemic target of glycated hemoglobin < 7% 
is a reasonable goal before surgery. Cardiovascular, pulmonary, gastrointestinal, 
hepatic, renal, endocrine, nutritional, and psychological optimization of surgical 
candidates improves perioperative and long-term outcomes. Various guidelines 
for preoperative care of individuals with obesity have been formulated, but very 
few specifically focus on the concerns arising from the presence of concomitant 
DM. It is hoped that this statement will lead to the standardization of presurgical 
management of individuals with DM undergoing metabolic surgery.

Key Words: Diabetes; Obesity; Metabolic surgery; Bariatric surgery; Remission of diabetes

©The Author(s) 2021. Published by Baishideng Publishing Group Inc. All rights reserved.

Core Tip: The ambit of metabolic surgery for diabetes has increased. Individuals with 
inadequate glycemic control can be considered for surgery if less severely obese, and 
even more so if they are of Asian origin. However, both diabetes and obesity are 
associated with multiple comorbidities that require optimization before surgery. There 
are several clinical guidelines for the preoperative management of individuals with 
obesity; however, specific suggestions addressing these concerns in persons with 
diabetes have not been recommended. It is important to achieve optimal glycemic 
control and diagnose and manage cardiovascular, pulmonary, gastrointestinal, and 
renal complications before surgery. Nutritional assessment, psychological evaluation, 
and ruling out specific endocrine disorders are other essential adjuncts. These 
guidelines will help to standardize the management of preoperative comorbidities and 
improve postoperative outcomes in individuals with diabetes who opt for metabolic 
surgery.

Citation: Bhattacharya S, Kalra S, Kapoor N, Singla R, Dutta D, Aggarwal S, Khandelwal D, 
Surana V, Dhingra A, Kantroo V, Chittawar S, Deka N, Bindal V, Dutta P. Expert opinion on 
the preoperative medical optimization of adults with diabetes undergoing metabolic surgery. 
World J Diabetes 2021; 12(10): 1587-1621
URL: https://www.wjgnet.com/1948-9358/full/v12/i10/1587.htm
DOI: https://dx.doi.org/10.4239/wjd.v12.i10.1587

INTRODUCTION
The twin epidemics of diabetes mellitus (DM) and obesity have enormous medical as 
well as financial implications. Both are chronic and usually life-long conditions with 
very few definitive therapeutic choices that alter their natural course[1]. Metabolic 
surgery, which was commonly designated earlier as bariatric surgery, has emerged 
over the last three decades as a potentially disease-modifying option for both these 
disorders. The terms “bariatric surgery” and “metabolic surgery” have often been 
used interchangeably. Most societies now endorse the term “metabolic surgery” as 
weight-dependent and weight-independent benefits of these procedures are gradually 

http://creativecommons.org/Licenses/by-nc/4.0/
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being recognized[2,3].
DM and uncontrolled hyperglycemia have emerged as important determinants of 

the need for metabolic surgery in individuals with obesity. DM is associated with 
multiple comorbidities that demand individualized attention around the bariatric 
procedure. Although there are several guidelines that address the preoperative 
concerns before metabolic surgery, none of them specifically focus on the issues 
arising in DM. This statement provides recommendations on preoperative medical 
management for individuals with DM who plan to undergo metabolic surgery.

DEVELOPMENT OF GUIDELINES AND GRADING OF SCIENTIFIC 
EVIDENCE
The expert panel met at the Society for Promotion of Education in Endocrinology and 
Diabetes Conference (SPEEDCON) 2020, the third annual conference of SPEED, held 
on 1-2, February 2020, at Gurugram, Haryana, India. The authors searched the medical 
literature in the PubMed related to bariatric or metabolic surgery for patients with 
obesity and DM. Search terms included “bariatric surgery” or “metabolic surgery”, 
and “diabetes mellitus” in combination with the terms related to the sections that were 
planned to be addressed in the statement. The latter search words included 
“indications”; “type of surgery” and all of the common types of metabolic surgery 
commonly performed e.g., “laparoscopic Roux-en-Y gastric bypass,” “laparoscopic 
sleeve gastrectomy,” etc.; “remission” and “predictors of remission,” “glycemic 
status,” “glycemic control,” “glycemic management” with and without the term 
“perioperative”; “cardiovascular disease”; “hypertension,” “blood pressure,” “dyslip-
idemia” and “lipid profile”; “pulmonary,” “respiratory,” “tobacco,” “smoking,” 
“pulmonary function test,” “obstructive sleep apnea,” “obesity hypoventilation 
syndrome” and “venous thromboembolism”; “gastrointestinal,” “upper 
gastrointestinal endoscopy,” “gastroesophageal reflux disease,” and “Helicobacter 
pylori”; “hepatic,” “liver,” “non-alcoholic fatty liver disease,” and “nonalcoholic steato-
hepatitis”; “renal,” “kidney,” “creatinine,” “albumin-creatinine ratio,” “electrolytes,” 
“sodium,” “potassium,” and “uric acid”; “nutrition,” “iron,” “vitamin B12,” “folic 
acid,” “anemia,” “vitamin D,” “vitamin A,” “vitamin K,” “vitamin E,” “copper,” 
“zinc,” and “selenium”; “hypothyroidism,” “thyroid function test,” “Cushing’s 
syndrome,” “polycystic ovary syndrome,” “pregnancy,” “hypogonadism,” 
“monogenic obesity” and “syndromic obesity”; “psychological” and “behavioral”; and 
“preoperative weight loss,” “low calorie diet” and “very low calorie diet.”

The authors followed the system developed by the American Diabetes Association 
(ADA) to grade the quality of scientific evidence supporting the recommendations 
(Table 1)[4]. The recommendations were allotted grades of A, B, or C based on the 
nature of the available evidence. Expert opinion E was ascribed to recommendations 
that lack evidence from clinical trials, where clinical trials may not be feasible, or the 
available literature is inconclusive. However, it is imperative to understand that 
although scientific evidence and recommendations can be crucial guiding principles, 
the management of every patient should ultimately be individualized for each 
particular case[5,6].

PROBLEM STATEMENT: PREVALENCE OF OBESITY AND DIABETES 
Obesity is a common problem that has grown into a global health and economic crisis. 
The World Health Organization (WHO) defines overweight and obesity as 'abnormal 
or excessive fat accumulation that presents a health risk’[7]. According to the WHO 
2016 global estimates, 39% of adults were overweight, and 13% were obese[8]. The 
Center for Disease Control and Prevention 2017 data suggested that 42.4% of adults in 
the United States of America were obese, while 9.2% were severely obese[9].

The increase in the prevalence of obesity has been accompanied by a parallel 
upsurge in cases of DM[10]. The International Diabetes Federation declared the 
current global prevalence rate of DM to be 9.3% (463 million), and predicts that it will 
go up to 10.2% (578 million) by 2030[11]. Both DM and obesity share a common 
pathogenesis, and the term "diabesity" has often been used when the two conditions 
coexist[12]. Obesity is recognized as a risk factor for the development of type 2 DM 
(T2DM)[13,14]. The coexistence of DM and obesity adversely affects the outcome of 
each condition and exerts an unfavorable cardiovascular impact[15].
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Table 1 Evidence grading system for recommendations

Level of 
evidence Description

A Clear evidence from well-conducted, generalizable randomized controlled trials that are adequately powered, including: Evidence from a 
well-conducted multicenter trial; Evidence from a meta-analysis that incorporated quality ratings in the analysis. Compelling 
nonexperimental evidence, i.e. "all or none" rule developed by the Centre for Evidence-Based Medicine at the University of Oxford. 
Supportive evidence from well-conducted randomized controlled trials that are adequately powered, including: Evidence from a well-
conducted trial at one or more institutions; Evidence from a meta-analysis that incorporated quality ratings in the analysis

B Supportive evidence from well-conducted cohort studies: Evidence from a well-conducted prospective cohort study or registry; Evidence 
from a well-conducted meta-analysis of cohort studies. Supportive evidence from a well-conducted case-control study

C Supportive evidence from poorly controlled or uncontrolled studies: Evidence from randomized clinical trials with one or more major or 
three or more minor methodological flaws that could invalidate the results. Evidence from observational studies with high potential for bias 
(such as case series with comparison with historical controls); Evidence from case series or case reports. Conflicting evidence with the 
weight of evidence supporting the recommendation

E Expert consensus or clinical experience

CLASSIFICATION OF OBESITY AND DIABETES
The WHO has classified obesity based on body mass index (BMI). Obesity is conven-
tionally defined as BMI ≥ 30 kg/m2, while BMI between 25.0 and 29.9 kg/m2 is defined 
as overweight[7]. Asians have higher body fat percentage at lower values of BMI[16,
17]; thus, more stringent criteria have been used to define obesity in the Asian 
population[18,19]. Table 2 depicts the classification system used to define obesity 
internationally and for Asia.

The ADA and WHO criteria are the established methods for diagnosing DM[20,21]. 
The WHO does not support the use of glycated hemoglobin (HbA1c) for diagnosing 
DM[21]. The ADA classifies DM into four categories: Type 1 DM (T1DM), T2DM, 
gestational DM, and other specific types of DM[20]. T2DM is closely inter-related to 
obesity and comprises the predominant subtype of DM encountered in patients 
undergoing metabolic surgery.

INDICATIONS FOR METABOLIC SURGERY IN DIABETES
Recommendation 1
Metabolic surgery is recommended as a therapeutic option in T2DM if the BMI is ≥ 40 
kg/m2 (≥ 37.5 kg/m2 for Asians) irrespective of glycemic status (A). Surgery is also 
recommended as a treatment modality in T2DM with BMI between 35 to 39.9 kg/m2 
(32.5 to 37.4 kg/m2 for Asians) if adequate glycemic control cannot be achieved despite 
standard management (B).

Recommendation 2
Metabolic surgery should be considered as a therapeutic option in T2DM with BMI 
between 30 to 34.9 kg/m2 (27.5 to 32.4 kg/m2 for Asians) if glycemic control is 
suboptimal despite standard management (B). However, the committee recognizes 
that there is limited evidence to support the long-term efficacy of metabolic surgery in 
Asians with T2DM and BMI < 30 kg/m2, and scrutiny of risk vs benefit should be 
undertaken before performing the procedure in patients with lower BMI (E).

Recommendation 3
The associated conditions that might favor a surgical approach in T2DM with obesity 
are poorly controlled hypertension, non-alcoholic fatty liver disease (NAFLD), 
obstructive sleep apnea (OSA), obesity hypoventilation syndrome (OHS), osteo-
arthritis of the knee or hip, urinary stress incontinence, polycystic ovary syndrome 
(PCOS), gastro-esophageal reflux disease (GERD), idiopathic intracranial 
hypertension, severe venous stasis disease, obesity-related limited mobility and poor 
quality of life (E).

Discussion
The 2nd Diabetes Surgery Summit (DSS-II) defined the eligibility for metabolic surgery 
in T2DM with obesity, depending on the adequacy of glycemic control in conjunction 
with BMI[22]. Our committee broadly endorses the criteria for metabolic surgery as 
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Table 2 Obesity classification system for adults: International and Asian

Category WHO International classification BMI (kg/m2) Asian classification BMI (kg/m2)

Underweight < 18.5 < 18.5

Normal weight 18.5-24.9 18.5-22.9

Overweight 25.0-29.9 23-24.9

Obesity class I 30.0-34.9 25-29.9 

Obesity class II 35.0-39.9 30-34.9 

Obesity class III ≥ 40 ≥ 35

BMI: Body mass index.

specified in the DSS-II recommendations. The indication for metabolic surgery along 
with level of existing evidence is summarized in Table 3.

BMI (≥ 35 kg/m2)
Long-term efficacy of metabolic surgery in improving the outcome of T2DM with BMI 
≥ 35 kg/m2 has been clearly demonstrated. Meta-analyses has shown that 
macrovascular and microvascular outcomes, and mortality are significantly better after 
metabolic surgery than medical therapy[23,24]. The meta-analysis by Yan et al[25] 
specifically looked into outcomes of studies with more than 5 years of follow-up. 
Surgery resulted in a lower incidence of macrovascular complications (relative risk 
[RR] = 0.43), all-cause mortality (hazard ratio [HR] = 0.65), lower weight, and better 
glycemic control compared to medical management. Long-term observational data 
from Swedish Obese Subjects registry also demonstrate the benefit of surgery in terms 
of DM remission (median follow-up 10 years) as well as macrovascular and 
microvascular complications (median follow-up 17.6 years for surgery and 18.1 years 
for controls) over medical therapy[26].

BMI (30-34.9 kg/m2)
Evidence also support the beneficial role of metabolic surgery in individuals with DM 
and BMI < 35 kg/m2[27,28]. In the meta-analysis by Müller-Stich et al[29] surgery 
resulted in a higher T2DM remission rate (odds ratio [OR] = 14.1), better rates of 
glycemic control (OR = 8.0) and lower HbA1c in individuals with DM and BMI < 35 
kg/m2 compared to standard medical management. Long-duration randomized 
controlled trials (RCTs) can help further substantiate this recommendation.

BMI (< 30 kg/m2)
In a meta-analysis of 12 studies done by Ji et al[30], 697 Asian subjects with DM and 
BMI < 30 kg/m2 were analyzed at 6, 12, and 24 mo after metabolic surgery. After 1 
year of surgery, BMI and waist circumference decreased by 2.88 kg/m2 and 12.92 cm, 
respectively. Improvement in glycemic and lipid parameters was also observed at all 
three timepoints. Another meta-analysis of 26 studies assessed the remission of DM in 
subjects with a BMI < 30 kg/m2. The follow-up duration ranged from 6 to 42.1 mo, 
with half of the studies having data for 12 mo only. The mixed-effect meta-analysis 
model estimated an overall DM remission of 43% along with an HbA1c reduction of 
2.08%[31]. However, long-term outcome data to support the application of metabolic 
surgery in Asians with DM and BMI < 30 kg/m2 is necessary before its routine clinical 
application.

Comorbidities
Metabolic surgery in subjects with obesity and DM demonstrated a favorable effect on 
hypertension[29,32]. The recent meta-analysis by Yan et al[25] however failed to show 
benefit in blood pressure after a minimum follow-up of 5 years. Various other obesity-
related comorbidities improved after bariatric procedures, but specific evidence in 
subgroups with DM is lacking. The clinical practice guidelines by the American 
Association of Clinical Endocrinologists (AACE)/American College of Endocrinology, 
The Obesity Society (TOS), the American Society for Metabolic & Bariatric Surgery 
(ASMBS), the Obesity Medicine Association (OMA), and the American Society of 
Anesthesiologists (ASA) in 2019 suggested that bariatric procedures can be considered 
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Table 3 Indications for metabolic surgery in obesity along with presence of diabetes

Condition Glycemic 
status

Recommendation for 
metabolic surgery

Evidence 
category

Diabetes and BMI ≥ 40 kg/m2 (≥ 37.5 kg/m2 for Asians) Any Strong recommendation A

Diabetes and BMI 35-39.9 kg/m2 (32.5-37.4 kg/m2 for Asians) Uncontrolled 
despite optimal 
treatment

Moderate 
recommendation

B

Diabetes and BMI 30-34.9 kg/m2 (27.5-32.4 kg/m2 for Asians) Uncontrolled 
despite optimal 
treatment

Weak recommendation C, E

Diabetes and obesity (BMI – not defined) with comorbidities: Poorly controlled hypertension; 
Non-alcoholic fatty liver disease; Obstructive sleep apnea; Obesity hypoventilation 
syndrome; Osteoarthritis of the knee or hip; Urinary stress incontinence; Polycystic ovary 
syndrome; Gastro-esophageal reflux disease; Idiopathic intracranial hypertension; Severe 
venous stasis disease; Obesity-related limited mobility; Obesity-related poor quality of life

Any Weak recommendation E

BMI: Body mass index.

in obese subjects with BMI > 35 kg/m2 in the presence of comorbidities such as 
NAFLD, OSA, osteoarthritis of the knee or hip, and urinary stress incontinence. The 
guideline also recognized beneficial but weak evidence supporting the role of surgery 
for the amelioration of OHS, idiopathic intracranial hypertension, GERD, severe 
venous stasis disease, obesity-related limited mobility, and impaired quality of life
[33]. Weak evidence also exists regarding improvement in fertility, menstrual irregu-
larity, and hirsutism in women with PCOS after bariatric procedures[34]. Our expert 
committee advocates that metabolic surgery should be considered as a therapeutic 
option in obesity and DM, especially if associated with comorbidities that improve 
after bariatric procedures. However, the committee acknowledges that evidence in 
favor of such a recommendation is very weak and should be substantiated by further 
research.

CHOICE OF THE TYPE OF METABOLIC SURGERY IN DIABETES 
Recommendation 4
Laparoscopic Roux-en-Y gastric bypass (RYGB) and laparoscopic sleeve gastrectomy 
(LSG) are the two most preferred bariatric procedures worldwide. RYGB and LSG 
result in equivalent long-term weight loss, with RYGB producing better glycemic 
control than LSG on prolonged follow-up and can be the preferred bariatric procedure 
in presence of DM (B). Other factors that might guide the choice of type of surgery are 
the risk of nutritional deficiencies resulting from malabsorption after RYGB and the 
possibility of GERD development after LSG. Institutional expertise can also guide the 
decision regarding the choice of the type of surgery (E).

Recommendation 5
Laparoscopic adjustable gastric banding (LAGB) is an effective procedure in inducing 
weight loss. The risk of complications related to the gastric band and possible need for 
revision surgery in the future should be taken into consideration before undertaking 
LAGB (B).

Recommendation 6 
Biliopancreatic diversion (BPD) or BPD with duodenal switch (BPD-DS) is the most 
effective procedure in causing weight loss and remission of DM but has the maximum 
risk of immediate postoperative and long-term complications and should only be 
reserved for those having extremely high BMI (> 60 kg/m2) (B).

Discussion
The four standard bariatric procedures include RYGB, LSG, LAGB, BPD, or BPD-DS. 
There are many other variations of these procedures. Several endoscopic techniques 
have also emerged as means to induce weight loss in recent years. A systemic review 
reported the weighted means of the percentage of excess weight loss (%EWL) at 10 
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years or more after BPD ± DS, RYGB, LSG, and LAGB to be 74.1%, 55.4%, 57%, and 
45.9%, respectively[35].

Long-term outcome in obesity studies 
A recently published meta-analysis of 18 studies (9 RCTs and 9 non-randomized 
interventions) comprising 2917 participants demonstrated that both RYGB and LSG 
had similar efficacy in causing weight reduction and remission of DM. The 
postoperative complication and reoperation rates were less with LSG than RYGB. 
However, improvement in dyslipidemia, hypertension, and GERD was better with 
RYGB compared to LSG[36]. Another meta-analysis of 28 studies (7 RCTs, 6 
prospective observational studies, and 15 retrospective observational studies) 
including 9038 subjects with obesity, revealed higher remission rates of T2DM with 
RYGB after 3 years in comparison to the LSG group. Five-year follow-up data showed 
that RYGB was superior to LSG in terms of weight loss, T2DM remission, and 
improvement in hypertension and dyslipidemia (low-density lipoprotein [LDL])[37].

Long-term outcome in subjects with diabetes 
In the meta-analysis by Madadi et al[38], T2DM remission rates in the LSG group were 
significantly (OR = 0.71, P = 0.003) less than that of the RYGB group, though the 
difference lost significance after 1 year. However, more DM remission was achieved 
with LSG compared to LAGB (OR = 2.17, P = 0.001) after 1 year[38]. Other meta-
analyses have also demonstrated the superiority of RYGB over LSG in improving 
weight loss, and short and mid-term glycemic and lipid parameters in patients with 
and without T2DM[39,40]. Another meta-analysis revealed that DM resolution was 
highest after BPD (89%), followed by RYGB (77%), LAGB (62%), and LSG (60%)[41]. In 
STAMPEDE, one of the landmark trial in metabolic surgery, RYGB fared better than 
LSG at 5 years in achieving better glycemic control. Besides, the RYGB group required 
less medicine for glycemic control as compared to the LSG group[42]. Meta-analyses 
also revealed that immediate complication rates were higher after RYGB, and the risk 
of repeat surgery was higher after LAGB[35,43]. The postoperative and long-term 
complications were highest after BPD/BPD-DS, and the DSS-II statement suggested 
that these procedures should be reserved for extreme cases of obesity (BMI > 60 
kg/m2)[22,44]. A comparison of the outcomes of RYGB and LSG in patients with DM 
and obesity is summarized in Table 4.

PREDICTORS FOR REMISSION OF DIABETES
Recommendation 7
Remission of DM can be defined as HbA1c < 6.5% and fasting plasma glucose (FPG) < 
126 mg/dL (7 mmol/L) along with complete discontinuation of glucose-lowering 
therapy that persists for at least 6 mo (E).

Recommendation 8 
We suggest that partial remission of DM can be defined as HbA1c < 5.7% and FPG < 
100 mg/dL (5.6 mmol/L) persisting for at least 6 mo, when metformin is continued 
(E).

Recommendation 9 
Preoperative fasting C-peptide level, younger age, shorter duration of DM, 
preoperative glycemic status, and pre-surgery requirement for insulin act as indices of 
pancreatic beta-cell reserve, and correlate with the chance of remission. BMI, visceral 
fat area (VFA), and waist circumference act as indicators of potential for reducing 
insulin resistance, and can also predict remission (A). Prediction models like DiaRem 
score, ABCD, and Individualized Metabolic Surgery (IMS) scores are validated 
methods to assess remission probability (B).

Discussion 
Definition of remission: The most commonly applied criteria for defining DM 
remission was proposed by Buse et al[45]. Partial remission was defined as, HbA1c < 
6.5%, and FPG between 100–125 mg/dL (5.6–6.9 mmol/L) lasting for 1 year or more 
after the procedure, in the absence of pharmacologic therapy. Complete remission was 
defined as HbA1c in normoglycemic range (< 5.7%) and FPG < 100 mg/dL (5.6 
mmol/L) for at least 1 year. Prolonged remission or "cure" was considered as a 
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Table 4 Comparison between laparoscopic Roux-en-Y gastric bypass and laparoscopic sleeve gastrectomy, the two most commonly 
performed bariatric procedures, in patients with diabetes and obesity

RYGB LSG Comments
Type of procedure Combined malabsorptive and 

restrictive
Restrictive

Effect on weight loss +++ +++ Most studies demonstrate comparable weight loss, with slight 
superiority of RYGB shown in some reports

Remission of diabetes +++ ++ RYGB superior to LSG 

Short term glycemic improvement +++ ++ RYGB superior to LSG

Long term glycemic improvement +++ ++ RYGB superior to LSG

Improvement in hypertension ++ + RYGB superior to LSG

Improvement in dyslipidemia ++ + RYGB superior to LSG

Improvement in gastroesophageal 
reflux disease

++ + RYGB superior to LSG

Postoperative complications + +/- Postoperative complication and reoperation rates less with LSG 
than RYGB

Long-term nutritional deficiencies ++ + LSG safer that RYGB

LSG: Laparoscopic sleeve gastrectomy; RYGB: Laparoscopic Roux-en-Y gastric bypass.

complete remission lasting for 5 years or more. The stringent criteria proposed in the 
statement have the drawback of using different thresholds for diagnosis of DM and 
complete remission. Besides, many individuals who receive metformin for prophy-
lactic purpose will not satisfy this criterion despite having HbA1c in the 
normoglycemic range. A definition of DM remission has also been proposed by the 
Association of British Clinical Diabetologists (ABCD) and the Primary Care Diabetes 
Society[46]. DM remission has also been defined by Kalra et al[47] and our panel 
approves the definition suggested by them. Our committee also proposes that partial 
remission can be defined as patients receiving metformin, and having HbA1c < 5.7% 
and FPG < 100 mg/dL (5.6 mmol/L) for a minimum duration of 6 mo. The HbA1c 
lowering effect of metformin varies between 1.12 to 0.6%. We consider that a cut-off 
HbA1c < 5.7% along with metformin is a reasonable approximation to the Hba1c value 
of 6.5% without the drug[48]. Though there is absence of outcome data in candidates 
receiving prophylactic metformin post-surgery, defining such a group will enable 
researchers to assess the usefulness of the strategy.

Predictors for remission
The rates of DM resolution after different types of metabolic surgery have already 
been discussed in the preceding section. DM remission results from the interplay of 
pancreatic beta-cell reserve and the potential for the decrement in insulin resistance
[49]. The indicators of beta-cell reserve that correlate with remission include short DM 
duration, absence of insulin use, better glycemic control, higher serum C-peptide 
levels, lower age and lesser number of DM medicines[50-55]. The surrogate indices of 
insulin resistance with predictive value are high baseline BMI, wider waist circum-
ference, hepatic steatosis, VFA, and inflammatory markers such as high serum C-
reactive protein (CRP) and osteopontin[50,52,53,56-60].

In the meta-analysis by Wang et al[61], younger age, short DM duration, better 
glycemic control (lower HbA1c level), and absence of insulin use, correlated with 
remission. Asian patients were more likely to undergo remission in the presence of 
high baseline BMI and elevated C-peptide levels. A nationwide register-based cohort 
study from Sweden revealed that the chance of achieving complete remission 
correlated negatively with the duration of DM, insulin treatment, age, and HbA1c at 
baseline. Remission rates were higher among males and those having higher BMI at 
baseline[54]. Other reported predictors of remission in different studies are higher 
liver enzymes, higher white blood cell count, serum creatinine, serum LDL cholesterol 
and absence of long acting insulin[59,62-64].

Visceral adipose tissue is closely linked to insulin resistance and has been explored 
as a marker of remission[65-67]. BMI and waist circumference however might underes-
timate the amount of visceral adiposity in Asian population[68,69]. VFA as assessed by 
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magnetic resonance imaging was associated with a higher chance of remission in 
candidates with BMI < 35 kg/m2[57]. Visceral adiposity index (VAI) calculated from 
waist circumference, BMI, serum triglycerides and high-density lipoprotein is a 
validated marker of visceral fat content[70]. In a study from China, VAI was able to 
reliably predict remission in persons with BMI < 35 kg/m2[71]. The estimates of 
visceral adiposity might be potentially better pointers of insulin resistance than 
anthropometric parameters in Asians with lower BMI and hence may more reliably 
predict probability of remission. Further validation of this hypothesis is however 
needed in larger and long-term studies.

Scoring systems for remission: Several scoring systems have been proposed as 
predictors of DM remission following metabolic surgery. The ABCD scoring system 
devised by Lee et al[72], incorporated age at surgery (A), baseline BMI (B), C-peptide 
level (C), and duration of DM (D). The DiaRem score was suggested by Still et al[73], 
and includes age, insulin use, HbA1C level, and type of anti-diabetic medication. The 
IMS score categorizes patients into three stages of severity based on the preoperative 
number of DM medications, insulin use, duration of DM, and glycemic control (HbA1c 
< 7%). The system also provides recommendations on the type of procedure (RYGB or 
LSG) for each severity stage based on each procedure's efficacy and risk-benefit ratio
[74]. Though one analysis suggested that the ABCD score had better predictive efficacy 
as compared to the IMS score and DiaRem score, the committee does not acknowledge 
one scoring system's superiority above the other in the absence of evidence from large 
multicenter studies[75,76]. ACF scoring system is another recently reported model that 
utilizes the three variables: age, C-peptide area under curve, and FPG to predict 
remission[77].

PREOPERATIVE ASSESSMENT AND OPTIMIZATION OF GLYCEMIC 
STATUS
Recommendation 10 
The initial preoperative assessment should include a comprehensive medical, 
psychosocial and drug history, along with physical examination. Appropriate 
laboratory tests should be done to assess glycemic control. These tests should include 
FPG, postprandial glucose, and HbA1c in all cases and self-monitoring of blood 
glucose and/or continuous glucose monitoring system in selected cases. Estimation of 
serum C-peptide should be done to assess the scope for the remission of DM (E).

Recommendation 11 
A glycemic target of HbA1c < 7% before surgery is a reasonable goal. Medical 
nutrition therapy, physical exercise, and pharmacotherapy should be optimally 
integrated to attain that goal (E). Pharmacological agents known to induce weight loss, 
such as sodium-glucose co-transporter-2 inhibitors and glucagon-like peptide-1 
receptor agonists, should be considered as part of the treatment armamentarium 
whenever feasible. Drugs known to cause weight gain, such as sulfonylureas and 
thiazolidinediones, should be avoided as long-term therapeutic strategy if possible. 
The perioperative risks of deranged glycemic control vs benefits of early metabolic 
surgery have to be assessed on a case-to-case basis if glycemic control cannot be 
attained preoperatively despite optimal medical treatment. If a strategy of restricting 
calories with meal replacement therapy is employed in the preoperative weeks, the 
anti-diabetic medications would need to be reduced to prevent hypoglycemia (E).

Recommendation 12
After admission, most non-insulin based therapies should be stopped, and the patient 
should be transitioned to insulin as per institutional practice. Severe degrees of 
hyperglycemia will require intravenous insulin infusion. Target glucose of 100 to 180 
mg/dL (5.5-10 mmol/L) is acceptable in the perioperative period (E).

Discussion
Glycemic target: Table 5 summarizes the recommended evaluation in individuals with 
DM before metabolic surgery. Inadequate glycemic control in the preoperative period 
is associated with increased 1-year mortality, wound complications, infective complic-
ations, and extended hospital stay[78-81]. Pre-surgery deranged glycemic status and 
medication usage, including insulin and the number of drugs required to achieve 
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Table 5 Preoperative evaluation before metabolic surgery in individuals with diabetes and obesity

System Essential evaluation Conditional evaluation Comments
History and 
physical 
examination

Detailed evaluation along 
with drug history 

- -

Glycemic FPG, PPG, HbA1c, Fasting 
serum C-peptide

SMBG; CGMS HbA1c < 7% is a reasonable target, higher 
targets may be acceptable in long-standing 
diabetes; SMBG and/or CGMS in patients on 
insulin

Cardiovascular BP: Fasting lipid Profile; ECG: 
Cardiovascular risk 
assessment with a validated 
risk prediction model1

Transthoracic echocardiography (in cases with 
unexplained dyspnea and known cases of heart 
failure, especially with recent changes in clinical 
status); If risk ≥ 1%,2 functional status assessment. 
Poor (< 4 METs) or unknown functional capacity - 
exercise or pharmacological stress 
echocardiography or radionuclide MPI

Target BP < 140/90; Abnormal results in a 
stress test should be managed according to 
current clinical practice guidelines. Patients 
with underlying cardiac abnormalities should 
undergo a formal cardiology consultation 
before surgery

Pulmonary Smoking history. Screening 
for OSA by a clinical scoring 
tool3. .Risk assessment for 
VTE during perioperative 
period by a validated 
method4

Pulmonary function test in presence of intrinsic 
pulmonary disease; Overnight polysomnography if 
indicated from results of scoring tool. ABG for 
PaCO2 estimation and venous bicarbonate in cases 
of OSA to rule out OHS

Structured tobacco cessation program if 
applicable

Gastrointestinal - UGIE to be considered routinely before LSG. 
Conditional for other procedures; H pylori 
detection and eradication

Hepatic LFT Abdominal USG if LFT deranged or symptomatic 
biliary disorder. Use of Noninvasive scoring 
systems5 can be considered. Liver elastography; 
Three-dimensional magnetic resonance 
elastography; Intraoperative liver biopsy

The strategy to diagnose NAFLD in bariatric 
patients is not defined. Variations of liver 
elastography such as transient elastography, 2-
D shear wave elastography, and ARFI can be 
better modalities in severely obese patients. 
Intraoperative liver biopsy is the gold 
standard, but its specific indications are not 
clear

Renal, 
electrolytes, uric 
acid

Serum creatinine; eGFR6; 
Urinary albumin-creatinine 
ratio

Electrolytes in presence of CKD or drugs known to 
cause electrolyte imbalance. Uric acid if there is 
past history of gout

Serum potassium should be measured if on 
ACE inhibitors, ARBs, or diuretics

Nutritional Nutritional assessment by a 
dietitian. Complete blood 
count, serum ferritin, serum 
iron, TIBC, and TS. Serum 
vitamin B12, folate. Serum 
calcium, 25(OH)D

Serum C-reactive protein if anemia of chronic 
inflammation is suspected.  Serum methylmalonic 
acid and homocysteine in cases of low normal 
vitamin B12 and folate levels with high index of 
suspicion. Serum copper, zinc, and selenium; fat 
soluble vitamins such as vitamin A, E and K can be 
considered before malabsorptive procedures

Serum or urinary N-telopeptide, bone-specific 
alkaline phosphatase, and bone mineral 
density can be considered if osteoporosis is 
suspected especially in postmenopausal 
women

Endocrine - Thyroid profile if there is a past history of thyroid 
dysfunction, goiter or symptoms suggestive of 
thyroid disorder. ONDST, 24-h urinary free 
cortisol, or 11-pm salivary cortisol if there is 
suspicion of endogenous Cushing’s syndrome

Evaluation of syndromic or monogenic obesity 
on case-by-case basis

Reproductive - Total and bioavailable testosterone and USG of the 
pelvis if PCOS is suspected. LH, FSH, and 
testosterone (total) if hypogonadism is suspected in 
males

Women should avoid pregnancy if planned for 
surgery. Pregnancy should be avoided for 12-
18 mo after surgery

Psychological Behavioral and psychosocial 
evaluation

- -

1e.g., Revised Cardiac Risk Index, Obesity surgery mortality risk score, Longitudinal Assessment of Bariatric Surgery consortium risk stratification system, 
metabolic acuity score, etc. 
2Estimated perioperative mortality risk or major adverse cardiovascular risk of ≥ 1%.
3STOP-BANG questionnaire or Berlin questionnaire.
4e.g., venous thromboembolism risk assessment tool by Fink et al[130].
5Non-alcoholic steatohepatitis clinical scoring system, AST to platelet ratio index, FIB-4 index, non-alcoholic fatty liver disease fibrosis score, BARD score 
and Forns index.
6By Chronic Kidney Disease Epidemiology Collaboration formula.
25(OH)D: 25-hydroxyvitamin D; ABG: Arterial blood gas; ACE: Angiotensin converting enzyme; ARB: Angiotensin II receptor blocker; ARFI: Acoustic 
radiation force impulse shear wave imaging; CGMS: Continuous glucose monitoring system; eGFR: Estimated glomerular filtration rate; FPG: Fasting 
plasma glucose; FSH: Follicle-stimulating hormone; H. pylori: Helicobacter pylori; HbA1c: Glycated hemoglobin; LFT: Liver function test; LH: Luteinizing 
hormone; MET: Metabolic equivalent; MPI: Myocardial perfusion imaging; ONDST: Overnight dexamethasone suppression test; OSA: Obstructive sleep 
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apnea; PCOS: Polycystic ovary syndrome; PPG: Post-prandial glucose; SMBG: Self-monitoring of blood glucose; TIBC: Total iron-binding capacity; TS: 
Transferrin saturation; UGIE: Upper gastrointestinal endoscopy; USG: Ultrasonography; VTE: Venous thromboembolism.

euglycemia, negatively correlate with the chance of long-term remission of DM 
following metabolic surgery[61,73,74,76]. Only a few studies, however, have 
specifically assessed the role of preoperative glycemic control to short-term 
postoperative outcomes. The clinical practice guidelines by the AACE/TOS/ 
ASMBS/OMA/ASA suggest an HbA1C target of 6.5% to 7.0% or less before surgery, 
and peri-procedure blood glucose levels of 80 to 180 mg/dL (4.4–10 mmol/L). In the 
presence of advanced microvascular or macrovascular complications, or comorbidities, 
or long duration of DM, they recommended an HbA1C target between 7% and 8%
[33]. An interprofessional bariatric glycemic optimization clinic-based study analyzing 
70 patients, was able to lower HbA1C from a mean level of 9.0% ± 1.2% to ≤ 7.5% in 
75% of patients before surgery in 5 mo[82]. In a retrospective review of 468 patients 
who had undergone RYGB, higher pre-surgery HbA1c (> 6.5%) was associated with an 
increased chance of postoperative hyperglycemia. These patients also had a greater 
risk of wound infection and acute renal failure[83].

A RCT of 34 patients with a mean A1C of 10% at baseline, did not show any 
differences in the length of stay or surgical complications in the two arms of optimized 
(HbA1c-8.4%) vs non-optimized (HbA1c–9.7%) glycemic therapy. This was the only 
RCT that attempted to identify the impact of two different glycemic strategies, but had 
shortcomings such as a narrow margin between achieved HbA1c (> 8% in both arms) 
and small sample size. Another drawback was both the arms were offered the same 
dietary and glycemic interventions for the preceding 2 wk immediately before surgery
[84]. A target glucose of 100 to 180 mg/dL (5.5-10 mmol/L) should be the periop-
erative period goal[85]. The approach to achieve this target should be guided by 
institutional policy. Intravenous insulin as per protocol should be administered in 
cases of severe hyperglycemia[86].

Pre-operative calorie restriction for two to four weeks has been conventionally 
practiced in many bariatric centers. Though the methods have been very variable, 
these practices might warrant adjustment of anti-diabetic medications[87,88].

PREOPERATIVE ASSESSMENT AND OPTIMIZATION OF CARDIO-
VASCULAR STATUS
Recommendation 13 
The target blood pressure (measured by appropriately sized cuff) before surgery is < 
140/90 mmHg. Angiotensin-converting enzyme (ACE) inhibitors or angiotensin 
receptor blockers (ARBs), thiazide diuretics, or dihydropyridine calcium channel 
blockers (CCBs) are the preferred agents, and multiple drug classes are usually 
necessary to accomplish blood pressure goals (a combination of ACE inhibitors and 
ARBs to be avoided) (A). Patients already on beta-blocker should be continued on the 
same. Initiating a beta-blocker in the preoperative phase is controversial and should be 
individualized after estimating risk vs benefit (B).

Recommendation 14 
A fasting lipid profile should be done in all patients. Lipid-lowering therapy as per 
current recommendations should be initiated (A).

Recommendation 15
A resting 12-lead electrocardiogram (ECG) should be obtained before metabolic 
surgery. The ECG, other than serving as a baseline for comparison in any subsequent 
cardiac adverse events, can provide clues regarding left ventricular hypertrophy, 
possible ischemia (Q waves, ST-segment depression), and bundle branch blocks, 
arrhythmia, and QTc prolongation (B).

Recommendation 16 
Assessment of left ventricular function by resting transthoracic echocardiography 
should be undertaken in patients with unexplained dyspnea, and known cases of heart 
failure, especially with recent changes in clinical status. Right ventricular hypertrophy 
in echocardiography can be indicative of pulmonary hypertension. Valvular 
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abnormalities and other structural lesions can also be detected by echocardiography 
(B).

Recommendation 17
A cardiovascular risk assessment is recommended before surgery. Several risk 
prediction models to assess perioperative cardiac risk have been suggested and 
validated in obese individuals. Individuals at an elevated risk (1% or more) of a major 
adverse cardiac event (MACE) during the perioperative period and having a poor (< 4 
metabolic equivalents [METs]) or unknown functional capacity should undergo 
further risk stratification with exercise or pharmacological stress echocardiography, or 
radionuclide myocardial perfusion imaging to assess for myocardial ischemia. 
Individuals with a normal stress test can proceed to surgery, whereas those with an 
abnormal result should be managed according to the current clinical practice 
guidelines. Those with underlying cardiac abnormalities should undergo a formal 
cardiology consultation before surgery (E).

Discussion 
Blood pressure and lipids: The target blood pressure recommended by ADA in 
individuals with DM is less than 140/90 mmHg. Lower targets such as 130/80 can be 
pursued for individuals at high risk of cardiovascular disease if that goal can be 
attained by reasonable therapeutic means[89]. Meta-analyses have demonstrated 
equivalent efficacy of ACE inhibitors or ARBs (to be avoided together), thiazide 
diuretics, or dihydropyridine CCBs in reducing cardiovascular outcomes, and any of 
these can be used as a first-line agent[90,91]. Most individuals, however, will require 
multiple agents for normalization of blood pressure[89]. As per the American College 
of Cardiology (ACC)/American Heart Association (AHA) recommendations 
published in 2014, beta-blockers should be continued in those who have been 
receiving them for long duration. The risks and benefits of initiating beta-blockers 
before surgery should be individualized according to the clinical situation[92]. Lipid-
lowering therapy should be initiated as per the current practice guidelines[93].

12-lead ECG and echocardiography: A 12-lead ECG should be obtained before 
metabolic surgery. It acts as a reference against which the postoperative changes can 
be compared. Also, arrhythmias, pathological Q-waves, LV hypertrophy, ST 
depression, QTc interval prolongation, and bundle-branch blocks can provide useful 
clues, but the prognostic utility of an ECG to predict the perioperative cardiovascular 
outcome is limited[92,94]. The ACC/AHA guidelines recommend assessment of LV 
function by echocardiography in patients with dyspnea of unknown origin and for 
patients with heart failure with worsening dyspnea or recent change in clinical status
[92].

Cardiac risk prediction models: Several risk prediction models have been proposed to 
estimate the perioperative risk of MACE in individuals undergoing non-cardiac 
surgery[95-98]. The most commonly used scoring system is the Revised Cardiac Risk 
Index, which incorporates the following variables as predictors of perioperative 
cardiac risk: high-risk surgery, history of ischemic heart disease, history of CHF, 
creatinine > 2 mg/dL, cerebrovascular disease, and DM requiring insulin. The 30 d 
risk of death, myocardial ischemia, or cardiac arrest is 0.4% if none of the factors are 
present. The presence of one predictor pertains to a risk of 0.9% for these events, two 
predictors carry a 6.6% risk, and three or more factors correlate with an 11% risk[99]. 
Bariatric surgery itself is considered as an intermediate to high-risk non-cardiac 
surgery, and the presence of any other additional factor will warrant further 
assessment[100].

Scoring systems such as obesity surgery mortality risk score (OS-MRS) for bariatric 
surgery have also been validated. The OS-MRS assigns one point each to the following 
five risk factors: age ≥ 45 years, male sex, BMI ≥ 50 kg/m2, hypertension, and known 
risk factors for pulmonary embolism (previous thrombosis, pulmonary embolism, 
inferior vena cava filter in situ, a history of right heart failure or pulmonary 
hypertension and obesity-hypoventilation syndrome)[101]. The mortality rate in class 
A (score 0 to 1) was 0.26%, in class B (score 2 or 3) was 1.33%, and in class C (score 4 or 
5) was 4.34%[102]. Other methods that have been used to stratify surgical risk in obese 
patients include the Longitudinal Assessment of Bariatric Surgery consortium risk 
stratification system, the metabolic acuity score, and a nomogram for assessing 
surgical complications in bariatric surgery[103-105]. Our committee recommends 
individualized evaluation of candidates as per recommended practices before 
undergoing surgery, if they have an estimated (by general or obesity specific scoring 
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system) perioperative mortality or MACE risk ≥ 1%. Further studies are required to 
validate the optimal prediction model to stratify perioperative risk in individuals 
undergoing metabolic surgery for obesity and DM.

Approach for cardiovascular evaluation and management: Our committee endorses 
the approach suggested in the 2014 ACC/AHA guideline of perioperative 
cardiovascular evaluation and management of patients undergoing non-cardiac 
surgery. In all cases at elevated risk (estimated perioperative mortality risk or MACE 
risk ≥ 1%), assessment of the functional status of the patient should be undertaken. In 
case the patient can perform ≥ 4 METs of activity (can walk up a flight of steps or a hill 
or walk on level ground at 3 to 4 mph), additional tests are usually not recommended. 
For those whose functional capacity is lower or unknown, additional stress testing 
may be indicated if it will influence perioperative care[92]. Assessment of functional 
capacity might not be possible in many patients with obesity for unrelated reasons 
such as osteoarthritis. Pharmacological stress testing may be warranted in such cases. 
Both obesity and DM are substantial risk factors for cardiovascular disease. In many 
situations, the strategy to assess cardiac risk has to be individualized in consultation 
with the cardiologist, specifically when proper assessment of the patient’s functional 
status cannot be performed. Those with pre-existing cardiological disease must 
undergo a formal cardiology consultation before metabolic surgery[33].

PREOPERATIVE EVALUATION AND OPTIMIZATION OF PULMONARY 
FUNCTION
Recommendation 18 
A structured tobacco cessation program should be employed for patients who smoke 
cigarettes before undergoing surgery (E).

Recommendation 19 
Pulmonary function test (PFT) or spirometry is not routinely indicated. Definitive 
evidence that PFT can predict postoperative pulmonary complications is lacking, and 
the testing should be restricted for those with an intrinsic pulmonary disease where 
the findings would alter the management (E).

Recommendation 20 
Untreated OSA increases the risk of perioperative complications. Considering the high 
prevalence of undiagnosed OSA in severely obese individuals, screening for OSA by a 
clinical scoring tool such as the STOP-BANG questionnaire (or Berlin questionnaire) 
should be performed. The gold standard test to confirm the diagnosis of OSA in 
suspected cases is overnight polysomnography (PSG). The use of continuous positive 
airway pressure (CPAP) in the preoperative period for treatment of moderate to severe 
OSA is recommended to reduce the risk of perioperative pulmonary complications (B).

Recommendation 21
OHS often coexist with OSA in severely obese individuals, and the presence of OHS 
should be ruled out in all patients diagnosed to have OSA. Arterial blood gas analysis 
for PaCO2 estimation along with measurement of venous HCO3

- (cut off 27 mmol/L) 
can be used to establish the diagnosis of OHS. Institution of positive airway pressure 
therapy and lifestyle modification is recommended for patients diagnosed to have 
OHS (B).

Recommendation 22 
A risk assessment for possibility of development of venous thromboembolism (VTE) in 
the perioperative period should be undertaken. The possible risk factors for VTE 
include prior VTE, higher BMI, age, gender, immobility, use of hormone therapy, 
OHS, pulmonary hypertension, venous stasis disease, operative time, and procedure 
type and approach (B). There are insufficient data to recommend a uniform strategy to 
prevent VTE complications. The standard recommendations are mechanical 
compression devices with early ambulation in addition to chemoprophylaxis (B). 
There is inadequate evidence to recommend prophylactic placement of inferior vena 
cava (IVC) filters to prevent pulmonary embolism and it should be applied under very 
selected circumstances (E).
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Discussion
Smoking and tobacco cessation: Smoking increases the risk of postoperative 
morbidity following metabolic surgery. Smoking is associated with an increased risk 
of organ space infection, prolonged intubation, reintubation, pneumonia, sepsis, 
shock, and longer length of hospital stay[106]. In a recent systemic review, smoking 
during a year before undergoing surgery, was an independent risk factor for higher 30 
d mortality and major postoperative complications, particularly wound and 
pulmonary complications[107]. Perioperative tobacco cessation reduces the chance of 
surgery-related morbidities[108]. A structured program is more effective than general 
advice[109].

PFT: The utility of PFT to predict postoperative complications is uncertain. In a 
prospective study of 485 patients who underwent laparoscopic metabolic surgery, 
abnormal spirometry in the preoperative period was associated with a three-fold risk 
of postoperative complications[110]. In a retrospective analysis of 602 patients, 
abnormal spirometry before surgery was shown to correlate with the risk of 
postoperative pulmonary complications only in those with OSA[111]. In another 
retrospective cohort of 146 severely obese BPD candidates, the logistic regression 
model suggested that the preoperative PFT could not predict respiratory complic-
ations after surgery[112].

OSA: OSA is a common comorbidity of severe obesity, with the reported prevalence of 
close to 80% in patients planned for metabolic surgery[113-116]. Untreated OSA 
increases the risk of postoperative complications[117,118]. We endorse the consensus 
guidelines by de Raaff et al[119]. regarding screening and management of OSA before 
metabolic surgery. A clinical scoring tool to screen for OSA should be used in all 
patients planned for surgery. The STOP-Bang Questionnaire’s sensitivity to detect 
mild and severe OSA was highest, while the STOP Questionnaire had the highest 
sensitivity to predict moderate OSA[120]. Berlin questionnaire can also be used to 
screen, but Epworth Sleepiness Scale is not recommended[119]. Overnight PSG is the 
gold standard to confirm the diagnosis of OSA. Simpler portable devices that can 
analyze a limited range of variables, known as type 3 portable sleep monitoring (as per 
definition of the American Academy of Sleep Medicine) can be used if there is a high 
pretest probability for moderate to severe OSA[119,121]. CPAP usage in the periop-
erative phase decreases the chance of pulmonary complications and is recommended 
for treatment of moderate to severe OSA[119,122].

OHS: OHS is defined as the triad of obesity (BMI > 30 kg/m2), daytime hypovent-
ilation, and sleep-disordered breathing in the absence of an alternative neuromuscular, 
mechanical, or metabolic explanation for hypoventilation. The prevalence of OHS is 
20%-30% among individuals with obesity and OSA[123]. In a recently published 
study, the prevalence of OHS in a bariatric cohort of 1718 patients was 68%[124]. OHS 
should be ruled out in patients diagnosed with OSA by measuring serum HCO3

- or 
arterial blood gas analysis. Elevated serum HCO3

- (> 27 mmol/L) and/or increased 
PaCO2 (> 45 mmHg) are indicative of OHS[125]. Institution of positive airway pressure 
therapy along with lifestyle modification is recommended for patients diagnosed to 
have OHS[119,126].

VTE: Individuals with obesity are at an increased risk of VTE, though the overall rate 
following metabolic surgery has been reported to be < 1%[127-129]. A preoperative 
risk assessment model to stratify candidate by VTE risk was devised by Fink et al[130] 
using the following variables: procedure type, patient history of VTE, male sex, BMI, 
age, and operative time > 3 h. By this scheme, 97% were classified into low-risk groups 
with a predicted VTE risk of < 1%. The medium-risk group had an estimated VTE risk 
of 1%-4%, and the high-risk group had > 4% - 30 d VTE event rate[130]. Other tools to 
assess DVT risk have also been proposed[131]. Further risk factors for VTE include 
immobility, known hypercoagulable condition, OHS, pulmonary hypertension, 
venous stasis disease, hormonal therapy, and transfusion[129,130,132,133]. We endorse 
the ASMBS recommendations for VTE prophylaxis in those undergoing metabolic 
surgery. All candidates are at moderate to high risk of VTE and require mechanical 
prophylaxis and early ambulation. Additional chemoprophylaxis with low molecular 
weight heparin  should be considered unless contraindications arise from bleeding 
tendency or other causes[134]. Placement of IVC filter is not routinely indicated[134,
135].
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GASTROINTESTINAL EVALUATION
Recommendation 23
Preoperative upper gastrointestinal (GI) endoscopy can be considered before 
performing metabolic surgery, though conclusive evidence supporting its routine 
usage is lacking (C). Because of worsening of previous GERD and risk of development 
of new-onset GERD on long-term follow-up after LSG, it is recommended that upper 
GI endoscopy should be performed in candidates for LSG (B).

Recommendation 24
There is inadequate evidence to support or refute in favor of routinely performing 
tests to detect and treat Helicobacter pylori during preoperative evaluation.

Discussion 
Upper gastrointestinal endoscopy: There is a lack of consensus regarding the utility of 
routine upper GI endoscopy before surgery[33,136]. Two meta-analyses explored the 
benefits of preoperative endoscopy[137,138]. In the meta-analysis by Parikh et al[137] (
n = 6112), endoscopic findings were normal in the majority (92.4%), and only 7.6% had 
abnormalities that delayed or altered surgery[137]. In the meta-analysis by Bennett et 
al[138] (n = 12261), endoscopic findings necessitated a change in surgical management 
in 7.8% and medical management in 2.5% (after excluding H. pylori). The authors 
concluded that preoperative upper GI endoscopy in average-risk, asymptomatic 
individuals should be considered optional as the proportion of endoscopies with 
findings that resulted in alteration in management was low[138]. In two recent studies, 
treatment strategy was changed only in a small percentage of patients based on 
endoscopic findings[139,140].

GERD: GERD is increasingly recognized as a long-term complication of LSG and has 
been considered a relative contraindication[141]. A meta-analysis evaluating the 
outcome of 10718 patients after LSG found that 19% had increased symptoms and 23% 
developed new-onset GERD after surgery. The long-term prevalence of esophagitis 
was 28%, and that of Barrett's esophagus (BE) was 8%[142]. A significant percentage of 
patients detected to have GERD on endoscopy are asymptomatic and thus were 
diagnosed only on routine screening[143]. The prevalence of GERD in bariatric 
candidates was not different between those with or without DM[144]. Our panel 
recommends upper GI endoscopy in patients planned for LSG to rule out symptomatic 
and asymptomatic GERD. Dedicated studies to assess the evolution of GERD after 
LSG are required.

Gastric lesions: A recent meta-analysis scrutinized gastric lesions that requires 
subsequent endoscopic monitoring after surgery. Atrophic gastritis was detected in 
2.64%, and intestinal metaplasia in 2.7%[145]. Lesions such as atrophic gastritis, 
intestinal metaplasia, or gastrointestinal stromal tumor mandate endoscopic 
monitoring post-surgery. LSG should be considered in preference to RYGB in the 
presence of these conditions. However, the prevalence of these lesions is negligible, 
and it is not clear whether routine preoperative endoscopy will have a significant role.

H. pylori: There is a lack of consensus regarding the utility of detecting and 
eradicating H. pylori before metabolic surgery[136]. A meta-analysis of seven studies 
with 255435 patients revealed that rates of bleeding, leak, length of hospital stay, and 
weight loss were similar between H. pylori positive and negative groups. Marginal 
ulceration following RYGB was the only outcome that correlated with its presence
[146]. Another meta-analysis demonstrated that eradication of H. pylori decreased the 
risk of marginal ulceration, but the rates still remained high (1.5%-18.8% following 
eradication vs 0.5%-31.2% in the non-eradicated group). The authors acknowledged 
the methodological limitation in many of the studies included in the meta-analysis
[147]. Efficacy of H. pylori treatment in preventing complications (especially after 
RYGB) needs further assessment in well-designed trials.

HEPATIC EVALUATION
Recommendation 25
All candidates for surgery should be investigated for NAFLD. There is no consensus 
about the methodology for diagnosis of NAFLD. Liver function test (LFT) should be 
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performed routinely before surgery. Abdominal ultrasonography (USG) is 
recommended if LFT is deranged or symptomatic biliary disorder is suspected. 
Evidence to support routine imaging of the liver during preoperative evaluation is 
lacking (E).

Recommendation 26
Several noninvasive scoring systems have been proposed to assess the risk of fibrosis 
in the bariatric population. However, more evidence is required before a particular 
strategy can be recommended for clinical application. Liver elastography can be 
considered in those with suspected NAFLD, but diagnostic accuracy is limited in 
severe obesity. The gold standard for diagnosing NAFLD is intraoperative liver 
biopsy, but the clinical strategy to identify patients who will benefit from the biopsy 
has to be formulated through well-structured studies (E).

Discussion
NAFLD is present in up to 81% of patients undergoing metabolic surgery. The global 
prevalence of NAFLD and nonalcoholic steatohepatitis (NASH) in T2DM were 
reported to be 55.5% (95%CI: 47.3-63.7) and 37.3% (95%CI: 24.7-50.0) respectively in a 
meta-analysis[150]. The therapeutic options for NAFLD are limited and metabolic 
surgery is the only modality that has consistently demonstrated benefit[149,151-153]. 
However the modalities and clinical strategy to diagnose and follow these patients are 
not clearly defined[154-157]. Even though the sensitivity of USG to detect NAFLD is 
high, but its low specificity in obese individuals remains a drawback[148,158]. The 
noninvasive fibrosis scores that have been commonly studied in the bariatric 
population include NASH clinical scoring system NCS[159], aspartate aminotrans-
ferase to platelet ratio index[160], fibrosis-4 index[161], NAFLD fibrosis score[162], 
BARD score[163], and Forns index[164]. The scoring systems were able to predict 
fibrosis in some but not in all studies[155,165,166]. Their usefulness in detecting 
fibrosis before surgery requires validation in more extensive studies. Transient 
elastography, two-dimensional shear wave elastography, and acoustic radiation force 
impulse shear wave imaging reliably predicted advanced fibrosis in bariatric 
candidates in small studies[167-169]. Three-dimensional magnetic resonance 
elastography is a promising modality to detect NASH and has demonstrated a 
sensitivity of 67% and specificity of 80%[170]. Intraoperative liver biopsy remains the 
gold standard for the diagnosis of NASH in bariatric candidates. However, it is 
associated with a small increase in the rate of complications[149]. The morphology of 
the liver can be visualized during surgery and can provide a clue regarding necessity 
for biopsy[158].

Obesity and DM are associated with high prevalence of NAFLD, often with 
significant fibrosis[151,158]. Metabolic surgery does improve outcomes related to 
NAFLD in a significant proportion of patients[152-154]. Post-surgery hepatology 
follow-up to assess the risk of progression to cirrhosis is recommended in these 
groups. None of the imaging modalities and noninvasive scoring systems have 
convincing evidence to support their routine clinical application. Intraoperative liver 
biopsy provides a reliable way to diagnose and assess the severity of NAFLD, but it is 
currently unclear what criteria should be applied to identify patients who will benefit 
from biopsy.

ASSESSMENT OF RENAL FUNCTION, ELECTROLYTES, AND URIC ACID
Recommendation 27 
Individuals with DM planned for metabolic surgery should undergo estimation of 
spot urinary albumin-creatinine ratio (ACR). Serum creatinine measurement along 
with the assessment of estimated glomerular filtration rate (eGFR) is also 
recommended (E).

Recommendation 28 
In patients on diuretics, ACE inhibitors, or ARBs, serum potassium levels should be 
obtained. Studies to support the measurement of electrolytes on a routine basis before 
surgery are lacking. Clinical factors, especially the presence of chronic kidney disease 
(CKD) and drug history, usually indicate whether assessment of other electrolytes is 
necessary (E).
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Recommendation 29 
Serum uric acid should be measured in individuals with a history of gout, and 
prophylactic treatment of acute gouty arthritis should be considered in these patients 
(E).

Discussion
Calculation of eGFR in severe obesity: Both DM and obesity are leading causes of the 
development and progression of CKD[171-173]. The ADA recommends estimating 
urinary ACR and serum creatinine (along with eGFR) in individuals with DM 
annually. Serum potassium should be measured in individuals receiving ACE 
inhibitors, ARBs, or diuretics[174]. Calculation of eGFR is usually done using the 
Chronic Kidney Disease Epidemiology Collaboration (CKD-EPI) formula[175]. The 
CKD-EPI formula using creatinine tends to overestimate eGFR in bariatric patients 
both before and after surgery, while the cystatin C CKD-EPI equation tends to 
underestimate it[176]. The errors in using the standard equations in severely obese 
subjects arise from changes in the body surface area (error of indexing), alteration in 
serum creatinine and cystatin C levels, and obesity-induced glomerular hyperfiltration
[177]. The combined equation CKD-EPIcreat-cyst using serum creatinine and cystatin 
C values reliably predicted eGFR in severe obesity both before and after surgery but 
further validation in larger cohorts is needed[176,178,179].

Reno-protective effects of metabolic surgery: Metabolic surgery is a promising reno-
protective strategy in obesity, even without DM[180,181]. In a study of 737 subjects, 
remission of DM 5 years after surgery was associated with a lower risk of moderate or 
severe albuminuria but did not result in stabilization of eGFR[182]. A meta-analysis of 
23 cohort studies with 3015 subjects reported a significant fall in serum creatinine level 
and proteinuria after surgery. The subgroup of patients with hyperfiltration and CKD 
also showed improvement in eGFR after 6 mo[183].

Precautions in CKD: The weight-lowering response following surgery and chances of 
DM remission may be diminished in CKD stages 4 and 5[182,184,185]. Decreased 
eGFR before metabolic surgery also correlated with a higher chance of surgical site 
complications, infections, cardiovascular events, and clotting disorders in the 
postoperative period. However, the overall number of adverse events across all stages 
were low[186,187].

Renal stone disease: Another renal adverse event with the potential for causing acute 
and chronic kidney damage is hyperoxaluria occurring after malabsorptive procedures
[188-190]. A meta-analysis of 11 observational studies demonstrated that RYGB 
increases the risk of hyperoxaluria and renal stone formation[190]. Age, history of 
urinary tract infection, and renal stone disease correlate with a higher chance of new 
stone formation after surgery[191,192]. History of nephrolithiasis mandates close 
urological follow-up post-surgery.

Hyperuricemia: Obesity and hyperuricemia are closely interrelated and often coexist
[193,194]. A meta-analysis of 20 studies with 5233 participants reported that the mean 
serum uric acid before surgery was 6.5 mg/dL. Metabolic surgery was followed by a 
transient elevation in serum uric acid in the first month, followed by a fall from the 
third month. The long-term incidence of gout was decreased[195]. There is a higher 
possibility of acute gout in the postoperative phase, and high-risk patients should be 
considered for prophylactic uric acid lowering medications before surgery[196,197].

NUTRITIONAL ASSESSMENT AND OPTIMIZATION
Recommendation 30 
A preoperative nutritional assessment by a dietitian with expertise in bariatric 
counselling should be considered. Current macronutrient and micronutrient intake 
pattern should be evaluated. Medical nutrition therapy to optimize glycemic control 
before surgery should be reinforced. The candidate should be educated about dietary 
and lifestyle changes required after the surgery (E).

Recommendation 31 
The low-grade chronic inflammation associated with obesity, destabilizes the iron 
homeostasis and predisposes to iron deficiency, and decreases iron bioavailability. A 
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complete blood count, serum ferritin, serum iron, total iron-binding capacity, and 
transferrin saturation (TS) is recommended during preoperative work-up. In presence 
of chronic inflammation denoted by serum CRP > 8 mg/L, serum ferritin loses 
specificity as an indicator of iron deficiency, and other markers like serum iron and TS 
should be used to define iron deficiency. Iron deficiency should be treated by oral iron 
supplementation. Parenteral iron should be considered if oral treatment is not 
tolerated or if early correction is needed (B).

Recommendation 32 
Estimation of vitamin B12 and folate levels are recommended during pre-operative 
work up. In low-normal cases with high index of suspicion, measurement of serum 
methylmalonic acid and homocysteine levels can be considered. Vitamin B12 
deficiency should be corrected by parenteral administration in symptomatic cases, 
whereas oral therapy is sufficient in asymptomatic individuals. Folic acid deficiency 
should be treated by oral supplements (B).

Recommendation 33 
Vitamin D deficiency (VDD) is prevalent in individuals with obesity. Estimation of 
serum calcium and 25-hydroxyvitamin D (25(OH)D) is recommended before surgery. 
Serum parathyroid hormone (PTH) assessment can be considered in patients with 
VDD. Vitamin D should be replaced orally if VDD is present (B).

Recommendation 34 
Estimation of copper, zinc, and selenium; and fat-soluble vitamins such as vitamin A, 
E and K can be considered before malabsorptive procedures.

Discussion
Nutritional counselling: A meta-analysis of three RCTs revealed that there was 
inadequate data to support or refute preoperative nutritional counselling[198]. A 
review on the same topic suggested that preoperative medical weight management 
strategies failed to achieve consistent benefits probably because of lack of dedicated 
trials[199]. Even then, nutritional counselling is safe, requires minimal resources, helps 
to create a rapport with the bariatric team and prepares the patient for necessary 
lifestyle modifications required around and after the surgery. It is an important 
adjunct to comprehensive bariatric care and is recommended by most guidelines[33,
136,200].

Anemia and iron deficiency: Micronutrient deficiency is common among candidates 
of metabolic surgery and worsens further during follow-up[201,202]. The prevalence 
of anemia and iron deficiency ranges from 6.1%-22% and 5.7%-24% respectively, in 
metabolic surgery candidates[203-207]. Low-grade inflammation associated with 
obesity can interfere with the intestinal absorption and iron utilization in the bone 
marrow[208,209]. Iron deficiency is characterized by serum ferritin < 30 ng/mL. CRP 
concentration above 8 mg/L is suggestive of overt inflammation, while levels between 
3 to 8 mg/L conventionally signify subclinical inflammation[210]. In the presence of 
CRP > 8 mg/L, serum ferritin up to a concentration of 100 ng/mL indicates iron 
deficiency[211]. Serum CRP > 8 mg/L, serum ferritin > 100 ng/mL, and TS < 20% 
denotes anemia of chronic disease[212].

CRP > 5 mg/L, often associated with mild inflammation present in obesity, can alter 
iron metabolism[212,213]. Laboratory assessment of iron deficiency should be done at 
least 1 mo before surgery so that adequate time for replenishment of stores is available
[214]. Iron supplementation is usually done through oral formulations, but parenteral 
preparations may be necessary if oral iron is not tolerated or if quick response is 
required[213,214]. Parenteral iron therapy has the advantages of rapid replenishment 
of iron stores before surgery and overcomes the uncertainty of absorption, compliance, 
and tolerability associated with oral therapy[214]. Systemic studies that investigate the 
benefits of parenteral iron therapy before metabolic surgery are required.

Vitamin B12 and folic acid deficiency: Vitamin B12 deficiency has been reported in 
up to 23% of candidates of metabolic surgery[206,215-218]. Additionally, metformin is 
known to cause deficiency of vitamin B12 in T2DM[219,220]. Folic acid deficiency is 
common among patients planned for metabolic surgery and is reported in up to 28% 
of cases[217,221,222]. Estimation of serum vitamin B12 and folate levels are 
recommended before surgery[33,223]. Low vitamin B12 should be treated by 
parenteral administration in megaloblastic anemia, neuropathy, or in presence of other 
deficiency symptoms[33,200,223-225]. A systemic review by Smelt et al[226] suggested 
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that daily oral administration of 350 μg of vitamin B12 corrects low levels in most 
cases. The guideline by AACE/TOS/ASMBS/OMA/ASA suggests oral vitamin B12 at 
a dose between 350 to 1000 μg every day. Alternatively it can be administered by nasal 
route[33]. Oral folic acid supplementation should be initiated to correct deficiency[33,
223]. Measurement of serum methylmalonic acid and homocysteine to assess for 
functional deficiency can be considered in cases with low-normal levels but high-index 
of suspicion, though such a strategy has not been validated[33,224,227,228].

VDD: Systematic reviews and meta-analyses have suggested that VDD is common in 
obese individuals and candidates of metabolic surgery[229-232]. Most guidelines 
recommend routine measurement of serum calcium and 25(OH)D before surgery[33,
201,223,224]. Estimation of serum PTH, serum or urinary N-telopeptide, bone-specific 
alkaline phosphatase, and bone mineral density can be considered if osteoporosis is 
suspected (especially in postmenopausal women)[224,233]. VDD should be corrected 
before surgery but there is no consensus on the exact dosage with guidelines 
recommending between 3000 IU daily to 50000 IU one to three times weekly[234].

Other trace elements: Malabsorptive procedures can cause deficiency of trace 
elements like zinc, copper and selenium and fat soluble vitamins (vitamins A, D, and 
E)[201,235-237]. Some of the guidelines suggest their preoperative measurement[33,
223,224].

ENDOCRINE AND REPRODUCTIVE FUNCTION ASSESSMENT
Recommendation 35
Case-by-case decision depending on the clinical profile should be undertaken to rule 
out the presence of endocrine disorders (E). Thyroid function test (TFT) should be 
ordered in those with past history of thyroid disorders. Medications for thyroid should 
be adjusted to ensure that the patient is euthyroid before surgery. In the absence of 
history, TFT is indicated if there is clinical suspicion of hypothyroidism or presence of 
goiter (E). If endogenous Cushing’s syndrome is suspected, one or more of the 
following tests should be done: 1-mg overnight dexamethasone suppression test 
(ONDST), 24-h urinary free cortisol, or 11-pm salivary cortisol (E).

Recommendation 36 
Women in reproductive age group scheduled to undergo metabolic surgery should 
avoid pregnancy. The possibility of improvement in fertility after surgery should be 
discussed. It is recommended to avoid pregnancy for 12-18 mo following surgery (B). 
Oral contraceptives or hormone replacement therapy should be discontinued 1 mo 
before surgery to decrease the risk of thromboembolism (E). If there is clinical 
suspicion of PCOS, total and bioavailable testosterone and USG of the pelvis assist in 
establishing the diagnosis. Hypogonadotropic hypogonadism (HH) is commonly 
reported in males with DM and obesity. Luteinizing hormone, follicle-stimulating 
hormone, and testosterone total should be measured in males if HH is suspected (E).

Recommendation 37
A decision to evaluate for monogenic or syndromic causes of obesity should be 
individualized (E).

Discussion
Thyroid disorders: The guideline by AACE/TOS/ASMBS/OMA/ASA recommends 
that patients known to have hypothyroidism should undergo TFT before surgery, and 
thyroxine dose should be adjusted to achieve euthyroidism[33]. A meta-analysis of 24 
studies demonstrated that metabolic surgery decreased the thyroid stimulating 
hormone, free triiodothyronine (FT3), and total triiodothyronine levels. Additionally, 
thyroxine requirement was reduced in overt and subclinical hypothyroidism[238]. 
Preoperative FT3 above reference range and thyroid autoimmune status in euthyroid 
persons was shown to correlate with weight loss after metabolic surgery in small 
studies[239,240]. Larger studies are required to corroborate these findings. There is 
also a paucity of evidence to support routine preoperative evaluation of thyroid status 
in patients before surgery, but many insurance providers advocate it. Thyroid profile 
should be obtained if there are suggestive clinical features or if a goiter is present.
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Cushing’s syndrome: Cushing’s syndrome has rarely been reported in patients 
undergoing metabolic surgery and should be ruled out by ONDST, 24-h urinary free 
cortisol, or 11-pm salivary cortisol if there is clinical suspicion[241-245]. If the 
screening tests are positive further evaluation is required.

Pregnancy and fertility: Most current guidelines recommend avoiding pregnancy if 
metabolic surgery is scheduled for a period of 12 to 18 mo after surgery[33,223,246]. A 
meta-analysis of 33 studies analyzing 14880 pregnancies after metabolic surgery 
indicated that pregnancies after restrictive surgeries tend to have a better perinatal 
outcome than after malabsorptive procedures[247]. In another meta-analysis, 
malabsorptive procedures as compared to restrictive procedures, were shown to 
increase the risk for small-for-gestational-age infants (P = 0.0466) but decreased the 
chance of large-for-gestational-age infants (P < 0.0001)[248]. Fertility rates in obese 
women with infertility were investigated in the meta-analysis by Milone et al[249]. 
Spontaneous pregnancy occurred in 58% of the 589 infertile women after surgery. 
Women in the reproductive age group should be counseled about the possibility of 
improvement in fertility after surgery, and contraceptive choices should be considered. 
The bioavailability of oral contraceptives can be decreased after malabsorptive 
procedures, and alternative contraception methods should figure in the conversation
[250]. Estrogen preparations increase the risk of thromboembolism and should be 
discontinued 1 mo before surgery[33,246].

PCOS: Three meta-analyses have analyzed PCOS in relation to metabolic surgery[251-
253]. PCOS was reported to be present in 36%-45.6% of women before surgery. 
Resolution of PCOS occurred in the majority of the cases after surgery[251,252].

Male hypogonadism: One of the meta-analysis reported the prevalence of male 
obesity-associated secondary hypogonadism to be 64%, with resolution occurring in 
87% of patients following surgery[252]. A review demonstrated that metabolic surgery 
was more effective than a low-calorie diet (LCD) in improving free and total 
testosterone in obesity-associated HH[254]. Additionally, T2DM is also associated with 
low testosterone levels[255]. In the presence of suggestive clinical features, we 
recommend to rule out PCOS in females and HH in males during preoperative 
evaluation.

Monogenic or syndromic obesity: A genetic cause (monogenic or polygenic) is 
responsible for 5%-10% of early-onset severe obesity[256,257]. Non-syndromic 
monogenic obesity usually results from the affection of the leptin-melanocortin 
pathway[258,259]. Syndromic obesity refers to childhood-onset severe obesity 
associated with dysmorphism and neurodevelopmental and systemic malformations
[260]. The common variants are Prader Willi, Bardet–Biedl, Cohen, and Alström 
syndromes[261]. There is limited evidence to support the role of metabolic surgery in 
genetic and syndromic obesity at present[256]. A cohort of 133 obese patients with 
monogenic obesity present among 8.4% of the candidates, were followed up 6 years 
after LSG. Subjects with monogenic obesity had less short and long-term weight loss 
than those who did not carry any mutation[262]. Similarly, metabolic surgery was 
ineffective in causing long-term weight loss in five patients with Prader Willi 
syndrome over a 10-year period[263]. The evidence to routinely screen for genetic 
causes in patients undergoing metabolic surgery is inadequate.

PSYCHOLOGICAL ASSESSMENT
Recommendation 38
Patients planned for metabolic surgery should be considered for a behavioral and 
psychosocial evaluation by a psychiatrist or psychologist with expertise in bariatric 
patients. Factors that can adversely affect the long-term outcome after metabolic 
surgery should be addressed (B).

Discussion 
The health-related quality of life in severe obesity is worse in comparison to non-obese 
counterparts[264]. The psychiatric comorbidities in these patients are also high[265]. A 
formal psychological evaluation is suggested in the current guidelines[33,136,266]. A 
meta-analysis assessing preoperative mental health in 65363 patients before surgery, 
reported depression to be present in 19% and binge eating disorder in 17%. These 
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conditions, however, did not consistently affect weight loss after surgery. On the other 
hand, moderate-quality evidence demonstrated that the severity and prevalence of 
depression decreased after surgery[267]. A meta-analysis reported the overall rate of 
suicide after surgery was 0.3%, which was less than the general population rate of 
1.4%[268]. Previous studies have documented a higher risk of suicide, especially in 
patients with underlying psychiatric disorders[269,270]. The possibility of higher risk 
of self-harm and suicide attempt after surgery was also suggested in another meta-
analysis[271]. The International Federation for the Surgery of Obesity and Metabolic 
Disorders (IFSO) position statement considers severe and untreated psychiatric 
conditions like bipolar disorders, schizophrenia, active alcohol, and substance abuse, 
and bulimia nervosa contraindications for surgery[272]. Preoperative and 
postoperative psychosocial interventions, especially cognitive behavioral therapy, 
positively impacted eating behaviors such as binge eating and emotional eating and 
psychological functioning, including quality of life, depression, and anxiety[273]. The 
panel suggests psychological assessment to identify underlying comorbidities like 
depression and eating disorders and rule out alcohol and substance abuse and other 
frank psychiatric conditions that may interfere with surgical outcome. The patient’s 
perception about contributors to obesity should be discussed, and the ability to cope 
with lifestyle changes after surgery as well as self-harm tendency should be assessed. 
Psychosocial interventions such as cognitive behavioral therapy might be beneficial, 
but structured RCTs analyzing the effect of such a strategy are few.

STRATEGIES FOR PREOPERATIVE WEIGHT LOSS
Recommendation 39 
The benefits of preoperative weight loss have not been consistently proven though it 
has been mandated as a prerequisite by many insurance companies. Lifestyle 
interventions resulting in weight loss should be encouraged, however evidence 
demonstrating its benefit is inconsistent (E).

Recommendation 40 
More aggressive strategies like very low-calorie diet (VLCD) (450-800 kcal per day) 
and LCD (800-1200 kcal per day) for 2 wk or more, not only induce weight loss but 
additionally decrease liver volume and technically assist in performing laparoscopy. 
There is lack of evidence to routinely recommend weight loss with VLCD and LCD 
before surgery although it can be considered as per institutional practice (C).

Discussion 
Preoperative lifestyle changes lead to a mean weight loss of 7.42 kg in a meta-analysis 
but there was no effect on mortality or morbidity. The hospital stay was however 
reduced in the weight-loss group[274]. A meta-analysis suggested that intra-gastric 
balloon placement and very low-calorie diet (450-800 kcal per day) were the two most 
effective ways of achieving preoperative weight loss, while another meta-analysis in 
patients with BMI ≥ 50 kg/m2 found only LSG and VLCD to be beneficial as bridging 
interventions[275,276]. Both LCD and VLCD induce weight loss and result in liver 
volume reduction[277,278]. The meta-analysis by Naseer et al[279] included four RCTs 
using VLCD and four other employing LCD. The authors inferred that the likelihood 
of achieving 5% weight loss was highest with a three week 700-1050 kcal diet, 
comprising of moderate carbohydrate, high protein and low or moderate fat. Though 
both LCD and VLCD cause preoperative weight loss the utility of such a strategy in 
improving perioperative outcome has not been validated[200]. The recommendation 
for preoperative weight loss to reduce liver size in order to improve the technical 
aspects of surgery was downgraded due to inconsistent evidence in the 
AACE/TOS/ASMBS/OMA/ASA guidelines published in 2019[33].

CONCLUSION
Obesity and DM are complex medical conditions and metabolic surgery is one of the 
few therapeutic options that alter their tendency for recidivism and progression. 
Individuals with diabetes are eligible for surgery at lower BMI cut-offs and emerging 
evidence suggests that the BMI threshold might be further decreased for Asians. 
Appropriate medical management of these disorders is however a critical prerequisite 
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for surgery. Our statement provides suggestions for systematically addressing the 
various conditions associated with DM and obesity that requires optimization before 
surgery. Dissemination and implementation of these guidelines would help to 
standardize the management of these comorbidities and improve the perioperative 
and long-term outcomes. Though these guidelines are comprehensive and up to date, 
more effort would be needed constantly, to update the rapidly evolving medical 
literature pertaining to this subject.
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Abstract
The main estrogens: estradiol, estrone, and their acyl-esters have been studied 
essentially related to their classical estrogenic and pharmacologic functions. 
However, their main effect in the body is probably the sustained control of core 
energy metabolism. Estrogen nuclear and membrane receptors show an 
extraordinary flexibility in the modulation of metabolic responses, and largely 
explain gender and age differences in energy metabolism: part of these 
mechanisms is already sufficiently known to justify both. With regard to energy, 
the estrogen molecular species act essentially through four key functions: (1) 
Facilitation of insulin secretion and control of glucose availability; (2) Modulation 
of energy partition, favoring the use of lipid as the main energy substrate when 
more available than carbohydrates; (3) Functional protection through antioxidant 
mechanisms; and (4) Central effects (largely through neural modulation) on whole 
body energy management. Analyzing the different actions of estrone, estradiol 
and their acyl esters, a tentative classification based on structure/effects has been 
postulated. Either separately or as a group, estrogens provide a comprehensive 
explanation that not all their quite diverse actions are related solely to specific 
molecules. As a group, they constitute a powerful synergic action complex. In 
consequence, estrogens may be considered wardens of energy homeostasis.

Key Words: Estrogens; Insulin; Estrogen receptors; Energy metabolism; Glucose; Anti-
oxidants; Metabolic syndrome

©The Author(s) 2021. Published by Baishideng Publishing Group Inc. All rights reserved.

Core Tip: Estrogens play a paramount and continued regulatory role, based on the 
synergy between the different forms of estrogen to maintain energy (and lipid/glucose) 
homeostasis. These functions include preventing: oxidative damage, lipid-induced 
inflammation, excess fat accrual and the complications of excess amino nitrogen. This 
short incomplete list is fairly close to a recipe for preventing the development of 
metabolic syndrome; abundant epidemiological and (partial) experimental data help 
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support this assertion. We have to look more widely at estrogens (the different 
structural-functional types described in the text) to understand their extensive and 
powerful control of energy homeostasis.
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INTRODUCTION
The complex and growing implication of steroid hormones in homeostasis
Steroid hormones are derived from sterols, which play a critical role in the structure of 
the (mainly) eukaryotic membrane[1]. Most steroid hormones regulate animal 
functions, especially in vertebrates. Only recently, plant steroid hormone analogs such 
as the brassinosterols[2] have been found to play a significant role in the metabolic 
regulation in the most evolved plants[3,4]. Other steroids, including estrogens have 
also been found to act as regulators in some plants, but the information is still 
relatively scarce[5,6]. In addition, a number of higher plants are able to synthesize 
animal steroid hormones, such as testosterone and estrogens[7], as well as structural 
analogs which interfere with physiological functions and vital cycles of some animals
[8,9], including direct allopathic interference[10]. The steroid hormone ecdysone is 
critical for molting of insects and other animals[11], and plants synthesize the analogs 
ecdysteroids to limit insect development[12].

Nevertheless, the most studied types of steroid hormones (estrogen, androgen, 
corticosteroid, progesterone) are typical and characteristic of vertebrates. However, the 
variability in functions, regulation and even mechanism of action is considerable, since 
the degree of implication of these hormones in the fundamental aspects of life: 
reproduction, feeding-growth-metabolism, neural and metabolic regulation, fall 
squarely in their fine tuning of life cycles, survival and evolution. Their effects, largely 
gene expression modulation, are being continuously uncovered, in a way that deviates 
from the classical distribution of functions for human steroid hormones, often 
presented as mere sex-definition signals or regulators of mineral and glucose 
homeostasis. The implication of all of these hormones in the defense mechanisms 
(including a massive implication in the immune system control[13,14] and 
optimization of metabolic function[15,16]) has been growing in importance in parallel 
to their development along the evolution path[17] that brought humans to their 
amazing homeostatic resilience.

This linear review is focused on estrogens, one of the most important vertebrate 
steroid hormone types, due to their critical function on the control of core metabolic 
partition in addition to their fundamental immune system control and reproductive 
functions.

The estrogens are not only “sex hormones”
Most of the investigations of estrogen effects on metabolic regulation, irrespective of 
sex, are fairly recent and notably skewed (Box 1). So far we have only limited 
information on the major role played by different forms of physiological estrogens in 
the control of energy metabolism at the whole body level[16,18].

The initially intense development of research on estrogens came to a climax by the 
mid XXth century[19,20], and was essentially focused on their pharmacology, as part of 
the development of combined estrogen-progestogen preparations for safe birth control 
in humans[21]. The studies on steroid hormones were not limited to estrogens (and 
progestogens), but were extended to androgens[22] and, especially, to glucocorticoids
[23] through the development of a large number of synthetic drugs, widely used and 
which their development continues[24]. In a way, this expansion in the pharmacology 
of steroid hormones also provided considerable information on their mechanisms of 
action[25] and metabolism[26], including an extensive analysis of some possible 
complications of their clinical use[27-29]. Nowadays, the natural human corticost-
eroids (cortisol and cortisone, but also corticosterone[30]) are seldom prescribed, 
despite showing often quite different effects and pharmacological profile than the 
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myriad of synthetic corticosteroids in use[31]. The latter may bind to most of the 
natural receptors[32], but basically do not share the transporter proteins[33] or the 
inter-organ self-regulatory mechanisms of natural hormones (e.g. the hypothalamus-
pituitary axis).

The common identification of “estrogen” with 17β-estradiol (E2) and “androgen” 
with testosterone (T) is an inadequate oversimplification that helps to dismiss the 
regulatory and fine-tuning interrelationships of the different molecular species of 
estrogens, both with themselves or with androgens and other steroid hormones.

The estrogens are ancient regulatory agents, remarkably preserved along evolution. 
The number and structure of relevant molecules remains small and unaltered in spite 
of the variety and complexity of the mechanisms modulating their actions, somehow 
reflecting the cumulative experience (and expansion of metabolic interventions) 
acquired during evolution. The versatility of the nuclear receptors’ modulation and 
signaling pathways allow the superposition of a dense web of signals, including fail-
safe, duplicate, alternative and redundant mechanisms, which often make it difficult to 
find answers to the direct questions relevant to the clinicians.

The structures of estrogens
The principal distinguishing feature of animal estrogens is the phenolic nature of ring 
A, usually with a –OH in C3. No other type of steroid hormone contains a phenolic 
ring. The steroid nucleus of estrogens has 18 C, and lack a side chain. The main human 
functional estrogens are 3-hydroxy-17-keto-estrin (E1 estrone), 17β estradiol or 3, 17β-
dihydroxy-estrin (E2 estradiol) and 3, 16α, 17β-trihydroxy-estrin (E3 estriol); during 
fetal development[34], another estrogen should be included: 3, 15α, 16α, 17β-
tetrahydroxy-estrin (E4 estetrol). Compared with all other mammalian steroid 
hormones, they are highly lipophilic (E1 > E2 > E3). This peculiarity facilitates their 
transport by lipoproteins[35] and binding to membranes[36] (including their crossing). 
The interactions with lipophilic entourages have been credited as a main factor for 
their effects on membranes[37] and mitochondrial function[38]. It is often assumed 
that estrogens are carried in the blood bound to proteins, largely sex hormone-binding 
globulin (SHBG), but the higher affinity and metabolic response to energy changes[39] 
of T (competing with E2 for SHBG) favors a closer dependence of the globulin levels 
and/or structure/affinity[40,41]. The much lower levels of E2 than T in plasma (both 
in women and men)[33] suggest that this dual (if real) transport of hormones may be a 
consequence of modulation of the molecular affinity of SHBG, in part through 
modification of its molecular weight[39,40,42]. The key factor is that under 
physiological conditions SHBG (or a varied group of SHBG isoforms) binds essentially 
T[39] and estrogen (almost 90% of plasma E2, but practically no E1[33]). In addition, 
the in vitro estrogenicity of E1 is considerably lower than that of E2[43]. This fact, 
together with the abundance of E1 in men (despite being an estrogen), and its high 
lipophilia resulted in a limited pharmacological interest for this molecule and a 
consequent lack of literature on it, and its function as a free hormone remains obscure. 
E1 is the most abundant estrogen in the body (when its esterified forms are included)
[44], since it is produced (and stored[44]) in large amounts in white adipose tissue 
(WAT)[45]. Probably because of its lipophilia, a large portion of E1 in plasma is found 
esterified as sulfate, much more soluble than the free hormone[46,47], which facilitates 
its transport and eventual excretion. However, E1 can be made even more lipophilic 
by esterification with a fatty acid on C3[48] yielding acyl-estrone (AE1). In this form it 
has been found in lipoproteins[49] and adipose tissue[44]. AE1 are synthesized by 
adipocytes and modulated by leptin and insulin[50].

E2 is also esterified with fatty acids (acyl-E2 or AE2), becoming more lipophilic than 
E2, and thus also found in blood lipoproteins[51,52]. However, AE2 is largely 
esterified in C17 and not in C3 as are the AE1 esters[53]. This peculiarity of AE2 has 
been attributed to its higher capability to protect the lipids which surround the 
hormone from oxidation thanks to the unaffected phenolic –OH[51]. In any case, the 
highly lipophilic estrogens (through esterification with long-chain fatty acids) are a 
common occurrence for which no definitive function has yet been fully agreed upon, 
and which shows that the usual molecular species of natural estrogens, their transport 
in the bloodstream including their binding and physiological functions are far from 
being fully known. The high concentration of these varied estrogen-acyl-ester 
molecules in tissues, such as WAT[54] suggests a possible role of reserve or storage of 
preformed estrogenic molecules[53], which has been explained in part by the easiness 
of their synthesis by acyl-transferases, widely present in lipoproteins and tissues[55].



Alemany M. Estrogens and glucose metabolism

WJD https://www.wjgnet.com 1625 October 15, 2021 Volume 12 Issue 10

Main gender differences in human estrogen function
The scant number of in-depth non-clinical or pharmacological studies may be in part a 
consequence of the bias against estrogens (and of their bad name, Box 1). The reasons 
usually presented to sustain negative opinions, (which in the end limit metabolic 
analyses, and the eventual therapeutic use) are based largely on two factors: their 
known role as promoters of some forms of cancer, mainly breast[56] and endometrial
[57], and a number of risks derived from their use[58,59] other than their assumed role 
as “female-linked” hormones. The essentiality of estrogens has been proven (in both 
sexes) for many functions, such as those related with sex differentiation and 
reproduction, as well as bone health[60]; but the key factor is the increasing flow of 
data that establishes a direct implication of estrogens in the control of the basic core of 
energy metabolism[16,61]. This control is affected by age, sex and diet; thus, the 
simpler division of steroid hormones function using a strict sex-oriented focus is no 
longer applicable. We simply need to know more about the estrogens and their 
functions, in exactly the same way as any other hormone, keeping in mind the species-
specificity in some of their functions when establishing comparisons with animal 
models (Box 2).

Women have higher circulating levels of E2 than men, from puberty to menopause, 
with notable variation between physiological situations[62]. Men, even at their 
maximal reproductive capacity age, also show fairly high blood levels of E2[63]. There 
are not enough data on AE2 levels and distribution to establish valid comparisons, but 
it is probable that the parallelism will be maintained. On the other side, seldom clear 
gender differences are found in E1, the most abundant estrogen (free or esterified) in 
human blood. E1-sulfate (SE1) is subjected to a regulative “solubility/excretion” cycle
[46] comparable to that of dehydroepiandrosterone[64]. The ample abundance of AE1 
in tissues (rat) shows a more marked dependence on the mass of WAT than on sex[65].

T and E2 differently influence brain development from its earliest stages, both in the 
setting of its functional structure and –later– its psychological orientation and focus[66,
67]. The resilience of women against insulin resistance is higher than that of men[68,
69], at least until menopause[69]. Estrogen protects bone from demineralization in 
women and men[70,71], a function in part shared by T (at a lower potency, however
[72]). The accrual and maintenance of body protein falls largely on androgens, mainly 
T[73,74], acting in a synergic way with growth hormone[75] and insulin[76] and 
countering the proteolytic capability of glucocorticoids[77]. The contribution of free 
estrogens to the maintenance of body protein mass seems to be more limited[78].

Estradiol signaling: classical nuclear receptors. Estrogen receptors α and estrogen 
receptors  β
Thanks to their lipophilic nature, E2 (and E1) can easily cross membranes and bind 
specific estrogen receptors (ER) within the cell[79]. After dimerization[80] they are 
brought to the nucleus, where the complex E2-ER binds to deoxyribonucleic acid 
(DNA)[81] or to specialized proteins[82,83], eventually eliciting the expression or 
repression of specific genes. The nuclear-type estrogen receptors are highly complex
[79,84]. Estrogen signaling, up to its final manifestation is not a fast process such as 
that of nervous of rapid-signaling chemical regulating agents (Box 3).

Binding to ER is, essentially, specific for the physiological estrogens[75,85], but a 
wide number of plant secondary metabolism compounds, synthetic non-steroidal 
estrogenic drugs and even some toxic industrial waste also bind the ER[86]. In 
humans, there are two main types of nuclear estrogenic receptors: estrogen receptors α 
(ERα) and estrogen receptors β (ERβ)[87]. In fact, ERα and ERβ are two families of 
related receptors, which maintain the same overall structure but not their complete 
sequence, the ERs being adapted, adjusted or changed for best effectiveness, in 
different tissues or because of changing needs[84,88].

The structures of ERα and ERβ are shown in Figure 1. The main dominions are 
marked with letters (A to F), and correspond roughly (A/B) to a zinc finger and a 
binding site, activation function site 1 of the ERs (AF1); C is the place for binding 
estrogen-response elements (ERE) and then DNA[89]; D is a shorter sequence related 
to the binding of chaperone proteins and to the process of dimerization; and E/F is the 
ligand binding domain for estrogens and other factors, AF2[84]. The main ligands are 
the natural estrogens of mammals (E2, E1, E3 and E4), but some drugs, phytoestrogens
[10], metals and diverse chemicals (xenoestrogens) can also bind the receptors[90]. 
Binding to the AF1 and AF2 may result in synergistic effects[91]. The length and distri-
bution of ER parts may change within each receptor family depending on alternate 
sequences and splicing[84]. The affinity of ERα: is maximal for E2, followed by E1, and 
that of ERβ is also E2, followed by E3.
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Figure 1 Functional structure of estrogen receptors α and estrogen receptors β. Dominion names (A to F), and common denominations for the main 
functions are included: N-terminus dominion; DNA binding dominion, activation function site 1 of the estrogen receptors and activation function site 2 of the estrogen 
receptors. The graph is not drawn to scale and represents the complete (highest molecular weight) form for each of the two families of nuclear ERs. NTD: N-terminus 
dominion; DBD: DNA binding dominion; AF1: Activation function site 1 of the estrogen receptors; AF2: Activation function site 2 of the estrogen receptors.

The combination of affinities and the panoply of modulators and cell type-specific 
distribution of ERs results in an extended variety of possible effects, making widely 
variable the action of estrogens, in order to send specific signals to organs or groups of 
cells within a wide array of possibilities[92-95]. The ERs are, perhaps one of the best 
examples of receptor adjustment to the needs of tissues under varying conditions, 
attained through a considerable number of mechanisms. Both ERα and ERβ are 
dimeric and coded by different genes[96,97], with an additional abundance of 
polymorphisms[98,99]. Their distribution in the cells of different tissues and organs is 
independent for each receptor[100], as are their final gene expression effects[101,102]. 
They can show synergic[103] or antagonistic[104] effects, even for the same molecular 
species, and depend, largely, on the post-binding relationships of the E2-ER complex. 
This situation is further complicated by the interaction of the ER (or E2-ER) with a 
number of different mechanisms of modulation, such as selective estrogen receptor 
modulators (SERM)[105-107]; selective ER down-regulators (or degraders)[108]; and 
the specific ERE, which directly affect the function of ERs[109,110]. Other closely 
related (“orphan” up to recently) receptors participate in the regulation of critical 
pathways, but in many cases their relationship with the ERs remains unclear.

Membrane estrogen receptors
In addition to the canonic nuclear ERs, estrogens also bind cell surface ERs[111-113]. 
As usual with ERs, the terms used to define these receptors shift between the 
importance given to their location, partial signaling pathway, speed of action and 
other considerations: membrane ER[114], non-nuclear/non-transcriptional signaling 
ER[115,116] non-genomic signaling ER; membrane-linked ERα[117,118] or both ERα 
and ERβ[112]; caveolae- or lipid-related ER[119,120]; G-protein-coupled ER (GPER)
[121,122]. This list adds to the existence of alternative or non-genomic “direct” or 
“rapid” effects of ER stimulation in some cells, eliciting immediate responses (a 
shift–or development–from the main advantage of the delayed steroid hormone 
signaling)[123,124].

All these effects suggest that, the ER structure is essentially that described above, 
with two main types (families) of complete/incomplete ERs: ERα and ERβ, which are 
found in the cytosol (and nuclei) of cells, including members of the ERα family linked 
to G-proteins (GPRA1/GPR30)[122,125] attached or close to the plasma membrane.

The proven relationship of ERα to membrane or fat droplet-related structures may 
be a consequence of the adaptability of ERα[120]; the existence of free and fatty acid-
esterified estrogen in lipid-related cell structures[126], or both. In any case, the 
association of ERα to caveolin-1[119] and then complexed with G-proteins, helps 
explain the presence-binding of the ER[127], and then E2 in the membrane entourage
[128]. In this case, the signal may be transferred to membrane-related structures, as is 
the case with increasing calcium release[115]. The G protein-ER complex, upon the 
binding of E2 may also induce nuclear effects via activation of tyrosine kinases[129] 
and the MAP/ERK or PI3α/Akt pathways[130]. The stimulated G protein-activated 
receptor may also signal through GPR30[131]. The activated system containing the ER 
also enhances adenylate cyclase activity[132] via phosphorylation of the cAMP 
response element[133]. However, these direct membrane-related mechanisms may 
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coexist with also faster direct translational actions of conventional ERs somewhat 
linked to membranes[134] or with other mechanisms hinted at but not fully disclosed 
yet[135,136]. This includes the presence of ER receptors within cell structures, such as 
mitochondria (e.g. ERβ)[137].

It has been established that non-genomic effects of ER bound to E2 may belong to 
two confluent mechanism types: direct effects elicited from the membrane and effects 
developed through cytosol signaling cascades and actions. Both processes are 
probably coincident for different cell settings. Hypothalamic inhibition of guanylate 
cyclase[138] and LH secretion[139], as well as increased cell migration[140] and other 
brain effects[141] add to the widening array of non-genomic effects of ERs. Most of 
these effects have lately been attributed to the ERα irrespective of the place of binding 
with E2, but the implication of ERβ has also been described[142,143].

Notwithstanding, all these receptor-related mechanisms described cannot fully 
explain all the biochemical effects induced by estrogen signaling[144-148], leaving 
ample space for the assumption of direct, i.e. non ER-related, involvement (largely of 
E2 and its C17-fatty esters, AE2)[149,150]. However, these effects have been described 
only in lipoproteins, other lipid masses or lipid/protein interfaces[54,151]. The direct 
effects of estrogens on mitochondria have been related to specific mitochondria 
receptors[152,153], apparently containing ERα, ERβ[154] and other possible binding 
structures[155]. Their role on mitochondrial function, however, has been found to be 
significant[154,156], especially in the regulation of energy providing pathways[157,
158]. The possibility of estrogen direct incrustation in the lipid layer of membranes has 
been proposed as a way to modify their functionality[159] and enhance the E2/AE2 
anti-oxidative properties in a way similar to its postulated function in lipoproteins[160,
161].

Estrone and AE1
E1 is a rather peculiar and resilient hormone (Box 4); we do not yet have a direct 
explanation for its massive synthesis and storage, since the lipophilic nature of E1 (but 
not that of SE1) limits its action in plasma, cell and interstitial space. Non-esterified E1 
levels are related to those of E2, with E2/E1 ratios fairly stable for men (c. 1) and more 
variable for women (c. 1.5-2) up to menopause[162]. However, measurement of 
circulating estrogen is difficult, often showing poor correlations between instrumental 
and immunoassay results[163]. The relationship of E1 with E2 levels, in addition to sex 
(and age) is affected by diabetes/obesity[164]. Furthermore, analyses of SE1 seldom 
include other E1 esters nor free E1, which compartmentation (important in 
lipoproteins) skews E1 serum levels towards lower values. The obese show high 
plasma SE1 concentrations[165]. In any case, the whole-body AE1 content in rats is 
several orders of magnitude higher than free (and sulfate-esterified) E2[44], however, 
the AE1 content in obese rats is relatively lower than in normal-weight animals, 
despite AE1 being essentially stored in WAT[44].

The oral pharmacological administration of oleoyl-E1 to normal weight and obese 
rats[166,167], induces a marked decrease in fat depots[168], not dependent on the 
degree of obesity and diet[167,169]. The loss of fat runs parallel to the normalization of 
glycemia, blood lipids and other metabolic syndrome (MS) markers[170], without 
apparent effects of estrogenization, and irrespective of energy intake manipulation
[171]. AE1 has been proposed as a ponderostat signal[170], since the excess fat is shed 
without accompanying metabolic disorders[170,172]. Its negative effects on humans 
are negligible (clinical studies, phase I, unpublished data), and the positive (i.e. loss of 
excess fat, lowered insulin resistance, absence of estrogenization) were outstanding in 
a single case published[172]. However, its development as a drug was abandoned 
because an ill-designed phase II failed to be conclusive. We have no hints as to the 
mechanism of AE1 signaling, other than it is synthesized in cultured adipocytes[50], 
and WAT stores these esters in large amounts[44,65]. AE1 treatment reduces the size of 
WAT lipid depots[173,174]. Natural AE1 is transported in the lipid fraction 
(lipoproteins) of blood[49,175]. Methodology is a critical factor for the analysis and 
tracing of acyl-estrogens, with disparate results; i.e., it has been reported that human 
plasma does not contain AE1 at all[176].

The main effects of AE1 are a consequence of the structural change on the whole 
ester, not through the release of E1[177]. When injected, marked estrogenic effects are 
observed, with increased E1 and E2 levels[178]. However, oral administration of AE1 
does not elicit the same signs of estrogenization[171]. A highly critical analysis of 
oleoyl-E1 actions on rat body weight found no significant negative effects[179]. Body 
protein and N balance are preserved in AE1-treated (lean and obese) rats[166,167,174,
180]. There is very little information available on AE1 mechanism of action. The 
structure of the orally administered ester seems to be modified, with low levels in 
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blood plasma[49,181,182], but an unidentified derivative is present in large concen-
trations, maintaining the estrogen nucleus in a more hydrophilic form[181]. In liver, 
AE1 label can be found linked to DNA shortly after administration[181]; the effects of 
AE1 imply the stimulation of ERα[183,184]. Excess AE1 is essentially excreted as SE1
[185].

There are sufficient elements to sustain the implication of AE1 in the regulation of 
body weight[170], but the lack of further complete studies on its mechanism of action 
has prevented both its clarification and its eventual therapeutic application. No other 
explanation has been put forward to justify the limited estrogenic potency of E1, 
despite its massive synthesis in the ovary and the brain[186], and, especially (in 
quantitative terms) in WAT[187], with a direct relationship of its total body content 
and circulating levels with WAT, lowered by obesity in rodents and humans[47]. The 
effect of the administration of free E1 to rats induce some estrogenic effects and 
slightly increases body weight, effects quite different to those of its acyl derivative
[177].

Estrogens and the regulation of energy metabolism
Glucose is the main energy substrate, and the main simple nutrient of human diet. 
Glucose is also the primary inter-organ energy substrate carried by the blood to 
sustain the energy needs of body cells. Carbohydrates capable of yielding glucose (or 
other interconvertible hexoses) are a necessary part of our diet[188,189], and for many 
thousands of years they have constituted the main staple of our energy intake. This 
role has been already addressed in depth in a previous paper[189] in which we 
discussed the final fate of dietary carbohydrate, protein and lipids to yield two-and 
three-carbon metabolites (2C, 3C) and anaplerotic four-and five-carbon (4C, 5C) 
molecules from proteins (when excess N could be disposed of). The common shared 
groups of metabolites from dietary nutrients include 2C fragments (and a smaller 
amount of 3C from glycerol) from fats and, essentially 3C fragments from the six-
carbon (6C) hexoses. The 3C could be largely used to maintain glycemia thanks to 
hepatic[190], renal[191] and intestinal[192] gluconeogenesis, or simply used (pyruvate) 
as a source of 2C (to yield acetyl-CoA), which is largely oxidized to CO2 in the 
mitochondria through the Krebs cycle. Most of the energy drawn from glucose is 
obtained from the pyruvate-lactate produced in the glycolytic pathway followed by 
the complete oxidation of pyruvate, as acetyl-CoA, in the Krebs cycle. The 3C 
fragments (essentially lactate, pyruvate, glycerol, alanine and serine) can substitute 
glucose as an energy substrate in many tissues, avoiding the strict control of glucose 
levels, and providing faster access to their energy when and if enough oxidative 
capability and oxygen are available[193,194]. Glucose isoforms often delay somehow 
the oxidation of glucose[195], and thus, the direct cell use of glucose-derived 3C 
fragments may speed up its catabolism. This C6→C3 massive conversion is one of the 
most important albeit less publicized functions of WAT[196]. The presence of excess 
lipids (and energy) in the diet often results in an excess of 2C fragments (mainly the 
result of catabolic oxidation of their polymers: fatty acids) that their oxidation becomes 
problematic, thus the excess of energy available facilitates their storage (often long 
term) as fats[189].

The inadequacy of diet composition, and especially the excess of energy from fats 
and carbohydrate results in the progressive metabolic disorders of MS[197] with the 
development of sustained hyperglycemia[198], often deriving into type 2 diabetes
[199], obesity[200], altered blood lipids, with hyperlipidemia[201], deriving in 
endothelial inflammation[202,203] and increased cardiovascular risk[204], hepatic 
steatosis[205], depression[206], and increasingly functional alteration of the nervous 
system[207], bone[208] and practically all organ/cell systems, extended even to the 
microbiota[197]; and, essentially, the immune system[209,210]. The causes and effects 
of MS have been intensively and extensively studied, and a direct relationship has 
been found with diet composition and excess energy[211,212], but no effective 
solutions have been put forward. Medical treatment is commonly limited to increased 
energy expenditure and changes in type of food, and (decreased) energy intake[213-
215], in most of the cases, without sufficient metabolic analyses[216]. This is comple-
mented by the pharmacological treatment of the disorders included in the MS. The 
relative acceleration of the MS effects with age is more clearly observed in adult (and 
aging) men than in women[217,218]. This difference has been attributed to the obvious 
diet-driven inflammation of MS[219,220], compounded in men by the progressive 
decrease in the synthesis (and effects) of T, in part a consequence of aging but also by 
the hypoandrogenism that characterizes MS[221]. Women, from adolescence to the 
beginning of menopause maintain their high levels of E2 and functional 
hypothalamus-hypophysis-gonadal axis[62]. Menopause, aging and other causes 
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break this equilibrium and the levels and protective effect of estrogens wane; The E1 vs 
E2 ratio of concentrations is maintained at E2 > E1 in premenopausal adult women, 
changing to E1 > E2 in post-menopausal women and in men (in which there is little 
change with age). In both cases, E2 levels were lower in men and post-menopausal 
women than in adult premenopausal women[62].

In aging men, especially those with MS, treatment with T reduces to some extent 
cardiovascular risk[222,223] and helps maintain glycemia[224,225], but possible 
dangers, insufficient knowledge and scant physiological analysis have limited the 
extension of this therapeutic avenue[226]. Similarly, for women, substitutive estrogen-
ization is partly effective[227-229] at menopause, but its extension has been seriously 
limited by the fear of possible negative consequences, as discussed in Box 1. In 
addition, synthetic estrogens are the most used substitute drugs despite our very 
limited knowledge[230] of the intricacies of their action in such complex mechanisms 
as those described above for E2. The case of tamoxifen (agonist/antagonist) is a clear 
example[231]. This generalized (albeit undeclared) ban on sex hormones extends to the 
use of T in women, despite the fact that both E2 and T are needed for bone[70,232] 
health, and T for body protein maintenance[75]. Obviously there are problems to 
solve, but it seems that this line of study has not been sufficiently developed for 
reasons not based on contrasted arguments. In the case of AE1, a line of research 
developed by only one research group, obtained better results than those of any 
previous anti-obesity drug[170,179], but the development was discontinued largely for 
fear of “possible” future negative findings[179].

Estrogens, insulin and dietary nutrients handling
Most of the studies on the effects of estrogen on glucose metabolism have been done 
using E2 (and other ER ligands). There is a very limited amount of specific information 
on E1 direct effects; however, SE1 was found to induce hypoglycemia in genetically 
obese mice via glucose-6-phosphatase[233]. The effects of estrogens on glucose and 
energy handling are mediated through four coordinated actions: (1) Protection and 
facilitation of insulin secretion and function in the control of glucose availability to 
tissues; (2) Modulation of energy partition, favoring the use of lipid as the main energy 
substrate when their availability is higher than that of carbohydrates; (3) Functional 
protection through antioxidant mechanisms; and (4) Central effects on whole body 
energy metabolism and homeostasis maintenance.

Estrogens, insulin and glucose
E2 protects the functionality of the pancreatic β cells[234,235], preventing apoptosis
[236], adapting their function to insulin resistance[237], and maintaining their insulin 
content[238]. ER stimulation inhibits lipogenesis in the β cells[158], which limits the 
negative effects of excess lipid in the cell. The loss of the ER (nuclear and/or 
membrane) impairs pancreatic insulin secretion[239], which is stimulated by 
estrogenic signaling[240]. The lack of E2 availability also increases hepatic insulin 
clearance[241].

Estrogens also prevent the development of diet-induced insulin resistance[242]. The 
gender-dependent effects of estrogen on high-fat diet-induced insulin resistance are 
largely dependent on the anti-inflammatory effects of the hormone[243]. E2 increases 
tissue insulin sensitivity[244], and lowers insulin resistance in peripheral tissues[245], 
with marked differences in the effects depending on gender[243]. In female mouse 
adipocytes, E2 lowers inflammation (and thus insulin resistance[246]), and enhances 
the effects of insulin on tissues[247]. The sole activation of ERα AF-1 is enough to 
prevent obesity, liver steatosis and insulin resistance in mice[248]. However, obesity 
and insulin resistance seems to require E2 in addition to ERα and AF-2, AF1 not being 
essential[249].

Estrogens induce a considerable number of actions in the brain, which is also able to 
synthesize them[250], playing an important role in its function[251,252] and behavior
[253]. E2 also interacts with serotonin to affect insulin resistance[254]. Estrogenic 
deprivation induces mitochondrial dysfunctions in the brain which may induce the 
loss of cognitive functions[255]. More complex is the long saga of the relationship of 
estrogen in the peculiar placing of brain insulin resistance in Alzheimer’s disease[256,
257]. The neuroprotective actions of estrogens[258], added to the inhibition by E2 of β-
amyloid production[259] and the implication of E2 in the regulation of insulin 
degradation in the brain[260], suggest an overall beneficial effect of estrogen limiting 
the development of this disease. However, Alzheimer’s disease affects more women 
than men[261], and a number of caveats have been raised against the danger of natural 
estrogens being implicated in its development[262]. Right now the case is not solved, 
with studies showing a protective effect of ERβ[263] and others hinting at the 
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implication of ERα in its pathology[264].
Estrogens, largely E2, facilitate the uptake of glucose from the intestine[265], and its 

extraction from the bloodstream by activation of transporters GLUT4[266] and, at least 
in the brain[267] GLUT1. E2 lowers liver glucose output with no changes in glycogen 
during mild exercise[268], a difference due in part to a modulable maintenance/ 
inhibition of gluconeogenesis[269]. E2 also regulates glycolysis in endothelial cells by 
non-genomic pathways[270], partly by increasing insulin signaling[271]. Glucose 
catabolism is affected by estrogens, which stimulate glycolysis via phosphofruc-
tokinase[272], and the pentose phosphate pathway via Akt[273]. In any case, the direct 
incidence of ER signaling on glucose handling is relatively limited and conducted via 
modulation of insulin[271]. Probably, the main effect of estrogen may be the utilization 
of lipids as alternative energy substrates. This is important for humans, because of the 
common occurrence of excess lipids (and energy) in Westernized diets, which leads to 
problems in dietary substrate partition[189] and the common development of MS.

Lipid handling and estrogens
Estradiol: Estrogens lower circulating triacylglycerols (TAG) favoring their transport 
with a higher expression of ApoA5[274], and protecting lipoproteins against oxidation
[275]. However, the main effect of E2 on lipids is favoring the shift from lipid 
deposition (storage) to its oxidation as energy substrate. Perhaps this is the most 
critical effect of estrogens on energy partition.

Treatment with E2 decreases obesity[276], protects against hepatic steatosis[277], 
lowers the activity of cholesterol acyl-transferase[278] and limits fat deposition[279]. 
All these are –again– indirect actions aimed to decrease the storage of excess TAG, 
since E2 does not directly regulate lipolysis[280]. Nevertheless, estrogens decrease 
lipogenesis[281] in WAT; and adipogenesis is also inhibited through ERα activation
[282].

Dietary composition directly affects the substrate partition and the regulation of 
substrate utilization to maintain both energy and nutrients homeostasis[283]; in rats, 
hyperlipidic diets induce increases in E2 levels, and are correlated with an increased 
use of fatty acids as energy substrate[284]. The decrease in lipogenesis/adipogenesis 
(and the relatively enhanced lipolysis) frees the use of excess glucose and glycolytic 3C 
towards 2C and its oxidation in mitochondria; thus, decreasing the synthesis and 
storage of fatty acids (and TAG).

The effects of E2 on lipid handling are coordinated with the actions of E2 on insulin
[235,285], glycemia[286] and the use of glucose as the direct energy substrate[271] 
instead of using it to fuel the synthesis of fatty acids. E2 lowers insulin resistance and 
fat storage through the ERα and the FA2 binding site[249]. Estrogens also lower the 
insulin resistance induced by excess dietary lipids[245].

A key point of these E2-derived metabolic shifts lies on the mitochondria[287,288]. 
Estrogen controls mitochondrial biogenesis and function[289]. E2 deprivation induce 
mitochondrial dysfunction and insulin resistance, which may induce alterations in the 
cognitive ability of subjects[255]. E2 potentiates the oxidative capacity of mitochondria, 
through increases in cAMP and cytochrome C oxidase activity[290]. E2 also inhibits 
the synthesis of adenosine triphosphate (ATP) in the mitochondria[291], which may be 
related to the increase in oxygen consumption and energy expenditure elicited by E2
[292], and its postulated role enhancing heat production and thermogenesis[293,294], 
which imply a higher overall substrate oxidative activity.

The pyruvate dehydrogenase complex (PDH) is a critical control node, which 
catalyzes the irreversible conversion of 3C pyruvate to 2C acetyl-CoA in the 
mitochondrion. The main mechanism of PDH control is phosphorylation, mainly by 
(inhibiting) PDH kinase 4 (PDHK4)[295]. Insulin inhibits the expression of PDHK4
[296], which has an increased activity during starvation and diabetes[297]. The levels 
of PPARγ coactivator-1 α (PGC-1), an important cell energy regulator[298,299], which 
is also increased during diabetes and starvation, modulates the function of ERs[300]. 
PGC-1 increases hepatic gluconeogenesis through the expression of phospho-
enolpyruvate-carboxykinase[301], and co-activates, with estrogen-related receptor 
(ERR), the expression of glucokinase[302]. PGC-1 increases the expression of PDHK4
[303], essentially through the activation of ERR (mainly the ERRα and ERRγ isoforms)
[304]. ERRs are homologous to the nuclear ERs, but they are orphan receptors, i.e. do 
not have specific ligands such as E2[305]. Recently, it has been suggested that PGC-1 
could be considered, perhaps, their unique non-steroid ligand[306]. ERRs increase 
glycolysis and glucose uptake[307].

The activation of PDHK4 by ERRs and PGC-1 is inhibited by insulin[303]. However, 
E2 activates ERRs[308]. In sum: insulin activates PDH, which is inhibited by ERRs 
modulated by cell lipid energy conditions (PCG-1) in a way that facilitates a decrease 
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in insulin resistance[309] and a steady flow of 3C to 2C into the mitochondria to fuel 
the Krebs cycle, since lipogenesis is inhibited[281,310] and cannot absorb the newly 
formed acetyl-CoA.

Further stimulation of mitochondrial oxidative capacity[153,311], and the 
availability of 4C and 5C derived from amino acids, further speeds up the oxidation of 
2C by the mitochondria of liver, WAT and specific brain sites[312]. The accessibility of 
amino acid hydrocarbon skeletons depends on their increased oxidation (when in 
excess and limited capacity of the Krebs cycle[189]) via the alternative oxidation of 
amino groups to nitrogen gas[222,313]. The presence of these anaplerotic fragments 
and the higher oxidative capacity markedly increase the use of acetyl-CoA (from fatty 
acids or glucose) as the main energy substrate. The added relative inefficiency in the 
production of ATP[291] further helps the estrogen-controlled metabolism of adult 
women to dispose (albeit partially) of unwanted excess dietary energy. This effect may 
account in part for the resistance of women to develop the MS in its double facet of 
obesity and diabetes[314].

Estrone and acyl-estrone
E1 has not generated as much literature as E2, but this is probably a consequence of its 
limited direct effects on classical estrogenicity and energy metabolism. However, it has 
been found that SE1 also contributes to glucose homeostasis, inhibiting glucose-6 
phosphatase under conditions of hyperglycemia[233]. SE1 also lowers the levels of 
lipoproteins in postmenopausal women[315]. And, obviously shows estrogenic effects 
when given in pharmacological doses, albeit less marked than those of E2.

The anti-obesity effects of oleoyl-estrone, an AE1 ester, were studied extensively for 
a short time[170], but ceased before the appearance of many key studies on estrogen 
function and mechanism of action cited above. Thus, these older studies have to be re-
analyzed from the present-day perspective. The acyl moiety of AE1 comparatively 
affects only partially its slimming effects[48], thus, oleic acid (the most abundant in the 
rat body stores) was used as standard. The E1 moiety, surprisingly, is not essential 
either, since both AE2 (at pharmacological levels) and oleoyl-diethyl-stilbestrol show 
marked body fat slimming effects[48]; however, these compounds have not been 
studied further because of the marked estrogenic response (toxic at the pharmaco-
logical levels analyzed) they elicited in comparison with AE1 or even E1 alone.

AE1 is not estrogenic[171]. However, the injection of liposomes loaded with AE1 
induces estrogenic effects in rats due to the large amount of E1 produced by its 
hydrolysis[178]. The oral administration of AE1 basically excludes most of the E1[316] 
formed in the intestinal hydrolysis of AE1. In any case, SE1 is, finally, the main 
catabolite of AE1[185] (and of E1), since the fatty moiety poses no problems to its 
complete oxidation. This way, the interference of estrogenic effects has been circum-
vented simply by oral (instead of i.v.) administration of AE1, allowing a more direct 
analysis of its effects on body lipids[167,169,173]. The administration of AE1 preserves 
body protein[167,169,317], but markedly decreases body fat through the maintenance 
of a negative energy balance[167,169,177,180,317]. The process is achieved by lower 
food intake and unchanged thermogenesis[180] (an effect partly shared by E2 but not 
by E1), as well as a shift in the management of dietary fat, from accrual to oxidation for 
energy[88,318], such as described for E2. The effects of additional reduction of food 
availability are comparable (and additive) to those due to decreased appetite elicited 
by AE1[317]. Circulating levels of AE1 are proportional to body fat[65,182]. However, 
obese rats have lower AE1 levels than their lean counterparts[44]. In sum, the main 
effect of AE1 (given at pharmacological levels) is to shed excess body fat, without 
additional metabolic interference[174]. AE1 circulating levels presumably act as an 
indicator of whole body fat reserves under normal (not MS) conditions[319]. The AE1-
induced loss of body TAG implies the concordance (described for E2) of peripheral 
(especially WAT) lipolysis[320], decreased lipogenesis[321] and higher energy 
expenditure and lipid oxidation[318].

The effects of AE1 on glucose metabolism are comparable to those described for E2: 
regularize hyperglycemia[174], decrease insulin resistance[174] and an overall 
antidiabetic action[322]. However, these effects may be just the consequence of the 
normalization of energy homeostasis induced by pharmacological doses of AE1[170], 
with full activation of the estrogen shift explained above: increased mitochondrial 
oxidation of 2C (and excess 3C) instead of storage of excess 2C mainly in the form of 
TAG-fatty acids.

The similarities of AE1 with E2 are both quantitative and qualitative. The well-
known summarization of E2 function as less estrogenic than neuroprotective[323] is 
not applicable to the comparison with AE1 because these esters do not show either of 
these functions. Nevertheless, injected AE1 label has been found in cell nuclei[181], 
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and AE1 binds the ERα[183,184], but E2 cannot displace AE1 from its binding[171]. In 
addition, the pharmacological effects of E2 and AE1 are not superimposable[177]. This 
is compounded by the lack of full inhibition of AE1 actions on rodents by tamoxifen
[324] and fulvestrant[184] (in fact, tamoxifen mimicked some of the effects of AE1[324]
). These data help finally differentiate the effects of AE1 from both E1 and E2, and 
suggest that AE1 is, probably a SERM.

Functional protection through antioxidant mechanisms
E2 and E3 (but not E1) are considered effective antioxidants[325], since they help 
protect structural lipids from free radicals[326]. The polarized structure of estrogens 
makes them ideally suited to interact in interfaces between hydrophilic and lipophilic 
media[327], such as membranes, including mitochondria[160]. In this aspect, perhaps 
the AE2 esters may be the most effective, because in addition to E2, their most 
common acyl moiety, linoleic acid[328], is itself a main component of membranes
[329], albeit being easily oxidized by free radicals[330]. The AE2 have been described 
as powerful antioxidants, more effective than free E2[331]. This role includes 
mitochondria, closely related to estrogen action for increased numbers, oxidative 
capacity, metabolic function and survival[161]. In this sense, both E2 and AE2 (and, 
probably to a lesser extent E1), control[332] and protect mitochondria in brain, liver 
and other tissues[156,161,333]. The antioxidant effects of estrogens seem unrelated to 
the classical estrogenic activity[334].

The AE2 antioxidant function is not limited to membranes, since their presence in 
lipoproteins helps protect them from scavenger radicals[275], maintaining their 
transport and signaling function. Since acylation on C17 of E2 results in a more 
effective antioxidant molecular type[55], and no other estrogens seem to specifically 
carry out this task, its uniqueness, and the importance of the function suggests that the 
AE2 may constitute, by themselves, a different specialized type of estrogens carrying 
out a critical and specific function for which they are best suited.

Whilst AE1 do not show significant estrogenicity[171], AE2 are markedly estrogenic
[126,150,244], and maintain this estrogenicity longer than the 3-acyl-E2 esters[150], 
which suggests that they may–precisely-retain this property when packed in 
lipoproteins, such as low density lipoprotein (LDL)[126] or bound to plasma proteins
[335]. When taken together, these properties suggest that the AE2 may, at least, fulfill 
the role of transport/storage of E2 in addition to an antioxidant function.

Central-mediated effects of estrogens on energy homeostasis
The main arguments for the postulated subdivision of estrogens in four separate 
classes, based on their structure and function is based on widely different availability 
of sources, but the marked differences observed suggest -at least- the existence of four 
groups, described in Table 1, which summarize most of the information provided in 
the present study.

E1:
Structural: Estrin nucleus, with only one phenolic-OH.
Functional: Mild estrogenic effect; a main precursor in the synthesis of E2; main 

catabolite in the excretion of estrogens as SE1; SE1 being probably the main signaling 
form of E1; increases growth during development; quantitatively the most abundant 
molecule with an estrogen nucleus in the body; possible “reserve” for rapid conversion 
to E2 or AE1.

Targets: (Generalized); WAT; reproductive-system organs.
AE1:
Structural: Estrin nucleus, with only the phenolic-OH esterified by a fatty acid.
Functional: No estrogenic effects; product of esterification (or interchange) of E1, 

probable active SERM for ERα, activates lipid catabolism, via lipolysis and oxidation of 
fatty acids; postulated as ponderostat signal, markedly lowers body fat: maintains 
glycemia.

Targets: WAT; brain; liver.
E2:
Structural: Estrin nucleus, with the phenolic–OH, and another-OH in C17.
Functional: Main estrogen; marked classical estrogenic effects, protects insulin and 

facilitates its secretion, maintains glycemia; indirectly activates lipolysis and inhibits 
lipogenesis; protects and favors the increase and oxidative function of mitochondria, 
lowers body fat, has antioxidant capability.

Targets: Brain, liver, mitochondria, reproductive-system organs, bone.
AE2:
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Table 1 Comparison of the effects/functions between the main functional types of estrogens1

Effect/ function/ action/ characteristic E1 AE1 E2 AE2

Bind the ERs at the hormone binding site ↑↑2 X ↑↑2 ~

Bind the AF1 or AF2 sites of the ERs X2 ↑ X2 ~

Bind to mitochondria (and some membranes) ~ ~ ↑2 ↑2

Elicit a direct classic estrogenic response ↑2 X ↑↑2 ↑↑2

Induces hypoglycemic effects ~i ↑↑2 ↑2 ~

Is carried by lipoproteins ↑2 ↑↑2 X ↑2

Show anti-oxidative effects ~ ~ ↑2 ↑↑2

Activate the 3C→2C conversion (pyruvate 
dehydrogenase)

~ ↑2 ↑↑2 ~

Increase mitochondrial oxidative activity ~ ~ ↑ ~

Increase whole body thermogenesis ~ ↑2 ↑2 ~

Show lipolytic effects X ↑ ↔ ~

Show lipogenic effects ↑ ↓2 ↓2 ~

Decrease WAT fat mass/ limits fat deposition ↓ ↑↑2 ↑2 ~

Allow the activation of the alternative N disposal 
pathway

~ ~ ↑ ~

Decrease body protein mass ↔ X2 X2 ~

1Specific early development and pregnancy-related estrogen molecular species and functions not included.
2Shows a coincidence of effect/function for different estrogen types in the same row.
↑: Exerts the effect described; ↓: Exerts an effect opposite to that described; ↔: Variable/not univocal responses; X: Does not exert the effect described; ~: 
Absent or insufficient information available; E1: Estrone; AE1: Acyl-estrone; E2: 17β-estradiol; AE2: Acyl-E2; ERs: Estrogen receptors; AF1: Activation 
function site 1 of the estrogen receptors; AF2: Activation function site 2 of the estrogen receptors; WAT: White adipose tissue.

Structural: Estrin nucleus, with only the phenolic–OH, esterified in C17 by a fatty 
acid, often polyunsaturated.

Functional: The most effective estrogen form of antioxidant; postulated as an 
element of transport or reserve of E2, protects lipoproteins, membranes and cell 
components, marked estrogenic action.

Targets: Mitochondria; plasma lipoproteins.
This partial (and incomplete) classification of the main estrogens is based on both 

structural and functional aspects. The estimated quantitative mass of these four types 
of estrogen (under standard conditions) in the whole body is: AE1 > E1 > E2 > AE2.

Estrogen is a fundamental modulator of female functions (including estrogenicity 
stricto sensu), which agrees with the high levels of E2 in adult pre-menopausal women. 
No sufficient data are available to show other gender differences in the postulated 
groups of estrogens, except for AE1, which pharmacological effects in obese rats are 
more intense in males than in females.

Estrogens, essentially E2, are responsible for the development of the sex-dependent 
structures (both physiological and psychological) related with mating and 
reproduction. Evidently this is achieved with the collaboration of other hormones, e.g. 
androgens, progestogens and peptidic hormones. It is unclear whether the other three 
groups of estrogens depicted in Table 1 play a specific significant role in the 
reproductive processes (with the exception, perhaps, of AE2).

The other key places for action of estrogens are characterized by containing ERs and 
are found throughout the whole body[336]; but WAT[337], liver[338], muscle[339], 
and, essentially the brain[340,341] are the main targets for their actions, and are, at 
least, the best studied. ERβ globally regulates lipid homeostasis[145], its activation in 
obesity increases whole body metabolism and mitochondrial biogenesis as a counter-
measure to excess WAT lipid storage[312]. Oophorectomy alters WAT lipid 
metabolism[342], the plasma levels of E2 are affected by diet[284] and determine body 
fat deposition[343], probably through central (brain) control mechanisms.

In the hypothalamus, where E2 interaction with serotonin has been described[254]. 
E2 regulates sympathetic nervous control[344]. E2 and AE1 have marked anorectic 
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effects[180,345]. The postulated ponderostat effect of AE1[181,319] depends on its 
action on brain, where blood-injected label has been found[181]. The effects of 
estrogens on glucose and body fat have been attributed to central actions on the brain
[15,346]. This is a logical assumption, including also T[347], because the brain controls 
the body energy metabolism[16] and homeostasis[348], i.e. regulates the coordinated 
biological maintenance systems of the body[349,350].

General considerations and conclusions
The growing number of known actions of estrogens in metabolic control cannot be 
fully explained by only the analysis of the “common” estrogens, essentially E1, E2 and 
E3 (with their sulfates). Thus, acyl-estrogen derivatives have also been included: 
Despite being known for a long time, and used in pharmacology, they are seldom 
included in general analyses of estrogens. These compounds are quite diverse. 
However, in practice, the studies available are limited only to acyl esters of E1 (on C3) 
or E2 (largely on C17); their properties are quite different, starting with estrogenicity, 
and continuing on to antioxidant or lipid wasting effects (Table 1).

In any case, the differences in effects induced by E1 and E2 (those of E3 seem to be 
closer to E2), are considerable, both in their classical estrogenic power and in their 
implication in regulative mechanisms: E2 being more powerful than E1 in almost any 
aspect related to metabolic regulation, becoming the most representative estrogen. 
Nevertheless, a large proportion of E2 is synthesized from E1 by widely distributed 17 
OH-steroid dehydrogenases[351]. The similarities between E1 and AE1 actions are 
small, the latter resembling more E2 in its metabolic effects, than E2 vs AE2, despite the 
strong relationships in the main functions of AE2: antioxidant and estrogenic.

Due to the crossed coincidences of effects between E1-E2 and their acyl esters, a 
loose classification based on functions and structure has been developed and 
presented here. Either separately or as a conjoint “estrogens” block they may provide a 
comprehensive explanation of most of the actions of estrogens, which could not be 
attributed in any way solely to either one or to all the usual non-esterified estrogens as 
a group. It is also remarkable that these four groups constitute, together, an extensive 
fully synergic unit of action: antioxidant effects protect mitochondria, membranes and 
lipids, which are actively used for energy, limiting insulin resistance. However, the 
protection extends to insulin (and the pancreatic β cells); insulin secretion is 
maintained to sustain a steady glycemic response. Glucose is converted to 2C only 
when it is in excess, whilst dietary lipids (at the root of inflammation and development 
of MS) are not accrued but oxidized. Protein is preserved by strong, effective and well 
established mechanisms; but excess energy (and glucose) does not prevent the 
utilization of amino acids for energy, and, especially for efficient operation of the 
Krebs cycle thanks to the supply of 4C and 5C fragments. The problem of excess N 
disposal[189], strictly overprotected via the urea cycle is compensated using the direct 
pathway to produce N2[189]. Lipoproteins remain functional thanks to the steroidal 
antioxidants, TAG transport is practically unaltered, but lipogenesis is maintained 
low, and lipolysis high to dispose of excess 2C energy. Thermogenesis is maintained 
and appetite (and food intake) are adjusted to the real needs of energy intake (plus the 
use of unnecessary fat reserves). A happy metabolic Arcadia under the rule of 
essentially one (multiple) hormonal factor: estrogens.

Figure 2 shows the main interactions of simple estrogens (essentially E2) and AE1 
on the core of intermediate energy metabolism, the meeting point of carbohydrate, 
lipid and protein catabolism. The antioxidant effects of AE2 (and E2) have been 
omitted, since their main point of action lies, just from the critical step 3C→2C and the 
Krebs cycle, within the mitochondrion. The coordinated implication of estrogen types 
in the control of this segment of substrate handling is pervasive, both by direct 
implication and through its modulation of insulin action, and helps clarify that the 
implication of estrogens (as a whole) on glucose handling (and insulin control) is very 
high. The control node of energy metabolism lies in the mitochondria/cytoplasm 
interface, and-perhaps-critically on PDH. Around this point, directly linked to 
oxidative function of mitochondria and their generation of ATP, the implication of 
estrogens is high, as are the adjustment of the supply lines of 2C and 3C, the control of 
glycemia and the shift of amino acid catabolism under conditions of abundant energy 
(and glucose) availability[189].

In addition to the need to consider the estrogens as a group of several molecular 
species sharing a common biochemical structure and origin, implied web-like in a 
large number of coordinated metabolic functions, the main conclusion of this review 
is, precisely, the paramount metabolic importance of the estrogens. This is based on 
the synergy between the different forms of estrogen to maintain energy (including, 
obviously, glucose homeostasis), whilst preventing oxidative damage, lipid-induced 
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Figure 2 Combined regulatory effects on the utilization of dietary nutrients as energy substrates of insulin, 17β-estradiol and acyl-
estrone.  Black arrows: Metabolic relationships; solid green lines: activation/enhancement; solid red lines: deactivation/inhibition. Dashed green lines show 
activation effects on regulatory processes. Thicker dot lines with final diamond symbols represent the enhancement (green) or decrement (red) of TAG  reserves. For 
the sake of simplicity, other regulatory agents are not shown, and neither are their interactions. AE1: Acyl-estrone; E2: 17β-estradiol and other E2-group estrogens

inflammation, excess fat accrual (and thus, obesity), and easing nitrogen excess 
normalization. This short (and incomplete) list is quite similar to a prescription for 
preventing the development of MS. Abundant epidemiological and limited experi-
mental data support this assertion. It seems that we have to look more openly at 
estrogen forms to better understand their nature and properties, and to use them to 
fulfill their natural purpose as wardens of energy homeostasis (Box 5).

BOXES
Box 1 extended negative opinions on “sex hormones” hamper their investigative 
study and clinical development
In the case of “sex hormones” (i.e., estrogens and androgens), the intensive pharmaco-
logical development has not displaced from use the most representative natural 
hormones: E2 and T from the front line of pharmacotherapy. However, the abuse of 
synthetic drugs (anabolic steroids, for instance) for purposes not strictly medical[352,
353] have clouded the relatively recent recovery of T as a critical hormone for energy-
partition[354,355].

The widely extended negative opinion against “sex hormones” continues to 
seriously hinder the use of T in the treatment of aging- and MS-related hypogonadism 
in mature and old men[225,356]. The “opinion war” against estrogen is, currently, 
even harder to overcome, because of its direct implication on women’s sex; and 
because the social, political, and even religious arguments coalesced to raise questions 
(real or inflated[357]) against their use for any purpose outside a few restricted and 
socially-conditioned gynecologic disease applications[358-360]. The fact that the 
natural hormone E2 continues to be the main (and effective and cheap) estrogen 
standard drug only adds to the widely extended negative bias against estrogens[205,
361].

Box 2 critical methodological questions - the differences between species 
Most of the problems caused by pharmacological overdosing of androgenic anabolic 
drugs or estrogens are probably secondary to blocking the hypothalamus-hypophysis-
gonadal axis, a possibility observed many years ago[362], but seldom taken into 
consideration in clinical practice (and even less when the use is not medically 
justified). Because of this problem, continuous administration of excess anabolic 
androgens, can result in the loss of reproductive function[363] in addition to the 
derangement of their regulative metabolic (or/and psychological) functions.
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Most of the metabolic studies on estrogens have been carried out in rodents for 
obvious reasons, but there are clear differences in the estrogen (and androgen) 
functions in rodents from those in humans. This includes a number of aspects, starting 
with the most obvious: size, metabolic rate and lifespan. The duration of the 
reproductive cycle, “estrus” or “heat” of rats and mice is shorter than the human 
ovarian cycle (which incorporates parts of the estrus cycle[364]), but their extension, 
phasing and physiological structure are different. The estrus is observed in most 
mammalian species (not in humans and apes), and is marked by changes in body 
temperature and energy expenditure[365]. Size affects energy expenditure (allometry)
[366] and lifespan[367]. The fact that women are usually uniparous and rats normally 
have a two-digit number of pups (requiring a much higher energy and nutrient supply 
effort at the expense of the dam) is also a quantitative difference that makes uncertain 
the direct comparison of hormone changes and their timing, and of substrate 
dynamics, between different species and reproductive cycle models. Another key 
difference, explained above, is the E2 (and T) transport in plasma. Humans carry E2 
and T bound to SHBG in high proportions of total circulating hormone, but SHBG is 
absent in mature rodents.

Box 3 steroid hormones as medium-term signals focused to control gene 
expression
Steroid hormones have longer circulating-lives than most other hormones (or other 
signaling molecules), which are rapidly produced (or released), then act and are 
inactivated, all in a short time-span. The maintenance along time of rapid-response 
signals is kept thanks to repeated secretion-activation/inactivation-destruction 
processes, which allow for rapid regulation changes, again in a short period of time. 
Steroid hormones, however, are produced and secreted to last for much longer 
periods; their prime mechanism of action is, essentially, gene translation, a process 
which requires more intensity of signal and longer stimulation periods. The advantage 
of steroids is their unbeatable stability over time in comparison to short term-effect 
peptidic hormones, catecholamines, etc. The target tissue specific needs are adjusted 
through the expression of different receptors and signaling pathways for the same 
steroid hormone, with additional modulation of expression, or by the numbers or 
proportions of molecular species, allowing for further modification of their effects 
under changing conditions.

Box 4 estrogen structural resilience and the environment 
Estrogenic signaling is very ancient, affecting quite a number of phyla as observed by 
the use of estrogen analogs in the context of co-evolution of plant allopathic defense 
against herbivores[10,368]. The estrin nucleus is highly resistant to environmental 
oxidation or bacterial catabolism[369]. The non-biological disposal of human waste 
induces the accumulation of estrogens in continental waters[370] and its sediments
[371]; they are also found in sea sediments[372]. Persistence of estrogen in the natural 
medium has another negative aspect, the environmental effects of waste estrogen
[373], affecting both invertebrates and vertebrates[8]. Human and domestic animal 
overpopulation extends the increase of estrogenic waste problem to become a serious 
health, ecologic and economic[8,374] problem that should be understood and 
adequately addressed.

Box 5 perspectives: the need for further advance in our knowledge of estrogens
A critical point for the continued use of estrogens in medicine is that of the extended 
use of molecules designed for specific clinical applications[375]. All these patented 
molecules do mimic some aspects of physiological estrogen actions, but not all of them
[375]. The synthesis of estradiol analogs has been oriented to increase only some 
effects, sought for specific clinical applications[9,376]. However, most of these 
compounds were designed before our knowledge of estrogen function, mechanisms of 
action and metabolic effects were fully known[377]. In fact, right now, our knowledge 
of the full list of estrogen effects is incomplete. For instance, the role of estrogens in the 
control of brain organization[378,379], adjustment of the immune response[380,381], or 
even the estrogen function in core energy metabolism regulation[15].

The proof of our limited knowledge is the lack of a clear picture of all the 
physiological actions carried out by estrogens. Thus, how can we expect to extend this 
needed knowledge to drugs devised with specific (not global) objectives? How to test 
their effects on functions that so far have not even been uncovered or analyzed in the 
classical estrogens? In fact a similar caveat should be applied to all other steroid 
hormones, especially corticosteroids and androgens.
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We are aware that the binding modulation of the effects of estrogenic drugs is 
unclear, especially as to which real estrogen (as a whole) actions are carried out by 
each of these compounds[382,383]. In any case, during the last 70-90 years, the use of 
synthetic estrogens has been slowly substituted by natural estrogens[383,384], with the 
practical abandonment of the wonder drug diethylstilbestrol. The case of anabolic 
androgens (and testosterone itself) is paradigmatic: the continued use of these drugs 
results at least in infertility[385] and cardiovascular damage[386]. The continued use of 
estrogens, in particular powerful analogs, may result in unexpected, possibly negative 
or unexplained effects[384,387,388], simply not detected because the protean nature of 
estrogenic action has not permeated yet to clinical (and, especially, pharmacological) 
practice.

We are uncovering the proverbial tip of the iceberg of a group of steroid hormones; 
we need a deep analysis of estrogen functions, both from the molecular and regulatory 
aspects, but never forgetting that steroids act on the whole body not only on specific 
organs and single isolated pathways. The actual role of hormone carriers in plasma (i.e. 
SHBG), the cyclic hypothalamic-hypophysis-gonadal axis function, and the possible 
disorders induced by estrogenic drug substitutes, must be studied and adapted to 
human physiology in order to be able to resolve endocrine disorders as a whole. First: 
do no harm; the effects of estrogens and analog drugs under clinical conditions must 
be known and fully evaluated because not all estrogens and related drugs act the same 
way[383,384].

Last, but not least, the real and realistic implication of estrogens (as well as 
androgens and corticosteroids) in the regulation of the metabolic hub of energy 
partition should be clarified. This is an essential step to limit the ravages of aging and 
to understand (and correct) disorders such as the widely extended MS.

CONCLUSION
The main conclusion of this review is, precisely, the paramount metabolic importance 
of the estrogens. This is based on the synergy between the different forms of estrogen 
to maintain energy (including, obviously, glucose homeostasis), whilst preventing 
oxidative damage, lipid-induced inflammation, excess fat accrual (and thus, obesity), 
and easing nitrogen excess normalization.
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Abstract
During infections, nucleic acids of pathogens are also engaged in recognition via 
several exogenous and cytosolic pattern recognition receptors, such as the toll-like 
receptors, retinoic acid inducible gene-I-like receptors, and nucleotide-binding 
and oligomerization domain-like receptors. The binding of the pathogen-derived 
nucleic acids to their corresponding sensors initiates certain downstream 
signaling cascades culminating in the release of type-I interferons (IFNs), 
especially IFN-α and other cytokines to induce proinflammatory responses 
towards invading pathogens leading to their clearance from the host. Although 
these sensors are hardwired to recognize pathogen associated molecular patterns, 
like viral and bacterial nucleic acids, under unusual physiological conditions, such 
as excessive cellular stress and increased apoptosis, endogenous self-nucleic acids 
like DNA, RNA, and mitochondrial DNA are also released. The presence of these 
self-nucleic acids in extranuclear compartments or extracellular spaces or their 
association with certain proteins sometimes leads to the failure of discriminating 
mechanisms of nucleic acid sensors leading to proinflammatory responses as seen 
in autoimmune disorders, like systemic lupus erythematosus, psoriasis and to 
some extent in type 1 diabetes (T1D). This review discusses the involvement of 
various nucleic acid sensors in autoimmunity and discusses how aberrant 
recognition of self-nucleic acids by their sensors activates the innate immune 
responses during the pathogenesis of T1D.

Key Words: Nucleic acid sensing; Type 1 diabetes; Pattern recognition receptors; Nucleic 
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Core Tip: Under abnormal physiological conditions, such as excessive cellular stress or 
apoptosis, endogenous self-nucleic acids like DNA, RNA or mitochondrial DNA 
accumulate in extranuclear compartments or extracellular spaces or form complexes 
with host proteins. Such situations sometimes lead to the failure of discriminating 
mechanisms of nucleic acid sensors leading to proinflammatory responses as seen in 
autoimmune diseases like systemic lupus erythematosus, psoriasis and to some extent 
in type 1 diabetes (T1D). The understanding of the role of nucleic acid-sensing and 
their downstream signaling pathways is gradually evolving and provides another 
avenue in exploring therapeutic options for treating autoimmune diseases like T1D.
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INTRODUCTION
Type 1 diabetes (T1D) is a complex autoimmune disorder that involves infiltration of 
innate and adaptive immune cells culminating in the killing of insulin producing beta (
β)-cells, mainly through T-cell dependent mechanisms. Pathogenesis of T1D involves 
an initial infiltration of mononuclear cells consisting of neutrophils, dendritic cells 
(DCs) and macrophages[1] in the pancreatic islets[2] followed by lymphocytic infilt-
ration[3]. Beta-cell death is mainly mediated by autoreactive CD8+ T cells that release 
cytolytic granules, perforins facilitating the entry of granzymes in target β-cells[4,5]. 
The innate immune cells carry a variety of specialized receptors known as pattern-
recognition receptors (PRRs) whose main function is to detect well-conserved 
structural motifs that are indispensable to pathogen survival and are known as 
pathogen-associated molecular patterns (PAMPs)[6]. In addition to recognizing 
PAMPs, these receptors under certain circumstances can also recognize damage 
associated molecular patterns (DAMPs) released by dying autologous cells, including 
β-cells, and can activate signaling cascade in a fashion similar to PAMPs recognition
[7]. This recognition initiates a canonical immune signaling cascade driven by type 1 
interferons (IFNs), mainly IFN-α to induce IFN-stimulated genes (ISGs) which activate 
inflammatory mediators, release cytokines responsible for instituting an inflammatory 
state in the pancreatic islets, and overexpression of HLA class-1 molecules on β-cells 
that enhances uptake of autoantigens by antigen-presenting cells (APCs)[8-10]. Nucleic 
acids, like other PAMPs, are vital for the survival and propagation of pathogens,  and 
hence, the PRRs of the human innate immune system were evolved to recognize and 
mount an appropriate response against the pathogens bearing them. In various 
autoimmune conditions, like systemic lupus erythematosus (SLE), psoriasis, etc. and to 
some extent in T1D, the nucleic acids released by self-cells under certain physiological 
conditions, such as inflammation, stress, apoptosis, necrosis, pyroptosis, necroptosis, 
and NETosis act as ligands of PRRs, leading to either initiation of these autoimmune 
conditions or worsening of their pathogenesis[1,11,12]. In this review, we have 
summarized the recent advances in understanding the role of self-nucleic acids, their 
sensors, and downstream signaling pathways involved in the pathogenesis of T1D and 
discussed the novel therapeutic approaches targeting autoimmune diseases, including 
T1D.

NUCLEIC ACID SENSING 
As a part of the innate immune system, PRRs are the primary sentinels against the 
microbes, and initiation of immune responses through PRR recognition is crucial for 
the host defenses. PAMPs, such as viral or bacterial nucleic acids, in addition to other 
bacterial or fungal cellular components, are commonly recognized by the host PRRs. 
Recognition of PAMPs by PRRs initiates a downstream signaling cascade resulting in 
the innate immune responses by promoting the expression of pro-inflammatory 
cytokines, IFNs, etc.[13]. These cytokines signal the adjacent cells to promote the 
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expression of various ISG to impair replication of pathogens. Besides microbial 
infection, PRRs activation by nucleic acids can also be initiated by the host cells. Stress 
or cell-death induced release of self-nucleic acids, such as genomic DNA, mRNA, 
tRNA and mitochondrial DNA (mtDNA) can also be recognized by PRRs to trigger 
inflammatory cytokines and type-I IFN, leading to chronic inflammation. Inappro-
priate or prolonged detection of these nucleic acids has been shown to be associated 
with many autoimmune diseases[11]. Presently, PRRs are classified into 4 main 
categories as follows: Toll-like receptors (TLRs), retinoic acid inducible gene-I (RIG-I)-
like receptors (RLRs), absent-in-melanoma (AIM)-Like Receptors (ALRs), nucleotide-
binding and oligomerization domain (NOD)-like receptors (NLRs), and C-type lectins 
(CTLs). CTLs and most TLRs are located in the plasma membrane, while the NLRs, 
RLRs, ALRs and a few TLRs are located intracellularly[13].

TLRs
TLRs are a conserved class of PRRs belonging to the family of type-I transmembrane 
receptor proteins consisting of an extracellular Leucine-Rich Repeat (LRR) domain and 
an intracellular C-terminal toll/IL-1 receptor (TIR) domain[14]. This domain is 
required for the interaction and recruitment of various adaptor molecules to activate 
downstream signaling pathways involving the transcription factors Activator Protein-
1 (AP-1), Nuclear Factor Kappa-Light-Chain-Enhancer of Activated B Cells (NF-κB), 
and Interferon Regulatory Factor (IRF)[15]. To date, 13 different types of TLRs (TLR 1-
13) have been identified. TLRs 1-9 are expressed by both humans and mice; whereas 
only humans, express TLR10, while mice are known to express TLR11-13[16]. TLRs are 
broadly expressed in both immune and non-immune cells in two distinct cellular 
compartments, extracellular and intracellular (mainly in endosomes)[17]. In T1D, upon 
recognition of pathogenic and/or foreign material, TLRs influence many immunologic 
mechanisms, including activation and maturation of APCs, antibody production, 
down regulating regulatory T cell (Treg) responses, and facilitating a pro-inflam-
matory environment through the secretion of a plethora of cytokines and chemokines
[18].

TLR-TLR ligation and interaction transduces signals through MyD88 (Myeloid 
differentiation primary response 88)-dependent or independent pathways. Upon 
activation, MyD88 recruits Interleukin 1 Receptor Associated Kinase (IRAK-1), IRAK-
4, and Tumor Necrosis Factor receptor (TNFR)-Associated Factor 6 (TRAF-6), which 
then activate c-Jun N-terminal Kinase (JNK), Ikβ Kinase (IKK), AP-1, and NF-κB. The 
MyD88-independent pathway is mediated by TIR-domain-containing adapter-
inducing IFN-β (TRIF) and TRIF Related Adaptor Molecule (TRAM), leading to the 
activation of NF-κB, AP-1, or IRFs[19], while the TLR3 signaling is mediated through 
TRIF, TLR7, TLR8, and TLR9 signals through MyD88. It has also been demonstrated 
that TLR signaling can efficiently promote the uptake of autoantigens by APCs[8-10]. 
Under normal physiological conditions apoptotic cell derived antigens are not 
presented efficiently by MHC class II molecules. However, TLR ligand co-adminis-
tration not only enhances antigen presentation but also promotes antigen specific 
responses by CD4+ T cells[8]. Thus, it means that TLRs not only acts as danger signal 
sensors but also regulators of self-and non-self-antigen discrimination[20,21]. In 
support of this fact, it has been demonstrated that stimulation of TLRs enhances 
antigen processing by up-regulating scavenger receptors via the MyD88-dependent 
pathway[22].

The role of TLRs especially those involved in the recognition of nucleic acids is also 
being recognized in autoimmune diabetes. TLRs can recognize various forms of 
endogenous DNA or RNA produced during virus infection induced cell death[23]. 
However, TLR3, TLR7, TLR8, and TLR9 specifically recognize viral-associated nucleic 
acids with comparatively higher affinity and have been implicated in the pathogenesis 
of T1D. TLR3-/- NOD mice have shown high mortality from Coxsackie B4 virus (CVB4) 
infections and the few that survived develop T1D[24]. Certain polymorphisms in the 
TLR3 gene (rs3775291 and rs13126816) have also been shown to be related with a 
higher risk of T1D and a more aggressive pathology[25]. A double stranded RNA 
(dsRNA) mimetic polyinosinic: polycytidylic (poly I: C) has been reported to be 
recognized by TLR3, leading to induction and increase in the severity of T1D in mice, 
depending on dose and administration[25].

Stimulation of TLR7 (in addition to CD40 activation of DCs) can induce 
diabetogenic cytotoxic CD8+ T cells in the pancreatic lymph nodes of NOD mice to 
promote the onset of autoimmunity[26]. Repeated topical administration of a TLR7 
agonist, imiquimod, is sufficient to promote T1D development while inhibition using 
IRS661 can significantly lower disease onset[26]. Similarly, TLR7 signaling in 
plasmacytoid DCs (pDCs) triggers B and T cell activation via IFN-I secretion in 
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rotavirus infections, on the other hand, inhibition of TLR7 can block this process and 
prevent the acceleration of T1D following infection[27]. Zhang et al[28] have shown 
that TLR9 blockade can impede the activation of diabetogenic CD8+ T cells and, delay 
autoimmune diabetes in NOD mice. Liu et al[29] generated TLR9 knockout NOD mice 
and observed improvements in insulin secretion, glucose tolerance, and β-cell 
function. These improvements were partially mediated by the upregulation of CD140a 
on β-cells. Similar results have been observed by the use of TLR9 antagonists or by 
genetic targeting on ontogenesis and function of β-cells to protect NOD mice from 
T1D.

Hence, these and other reports further necessitate more research to understand and 
improve defects associated with self-nucleic acid recognition by TLRs associated with 
T1D pathology.

RLRs
RLRs are a group of intracellular receptors that recognize viral dsRNA and are 
comprised of 3 proteins: (1) RIG-1; (2) Melanoma differentiation-associated gene 5 
(MDA5); and (3) Laboratory of genetics and physiology 2 (LGP2), which is composed 
of a DExD/H box RNA helicase domain and a C-terminal domain[30]. Both RIG-1 and 
MDA5 contain additional N-terminal caspase activation and recruitment domains 
(CARDs) that transmit downstream signaling. RIG-I and MDA5 have similar functions 
and they initiate antiviral signals to induce IFN gene activation, while LGP2 acts as a 
regulator of MDA5 and RIG-1[31]. Upon recognition of RNA, an ATP-dependent 
conformational change occurs in RLR[32] resulting in the activation of CARD and 
further activation of an adaptor molecule, mitochondrial antiviral signaling (MAVS) 
protein[33]. Activation of MAVS, in turn, triggers signaling cascades involving 
TRAF3/6, caspase 8/10, RIP-1, fas-associated death domain, and TNF receptor-
associated death domain ultimately activating TANK binding kinase 1 (TBK1)/IKK-ε 
and IKKα/IKKβ to induce transcription of type-I IFNs and proinflammatory cytokines 
by activating IRF-3 and NF-κB.

When challenged with pathogenic stress, various single nucleotide polymorphism 
(SNP) in the interferon induced with helicase C domain 1 (IFIH1) gene have been found to 
cause greater or reduced susceptibility in the pathogenesis of T1D via altering MDA5 
activation and expression[34]. The IFIH1 mutation A946T (rs1990760) has been 
involved in the pathogenesis and development of various autoimmune diseases like 
T1D, SLE, and multiple sclerosis (MS)[35,36]. Two independent studies conducted on 
subjects with diabetes showed that subjects with heterozygous A946T SNP have a 
more prominent immune response and ISG expression to Coxsackie virus challenge in 
comparison to healthy controls, suggesting greater IFNs and ISGs expression during 
infection[37,38]. In another study, Cinek et al[39] demonstrated a positive correlation 
between IFIH1 polymorphism (rs1990760), which is known to be strongly associated 
with T1D, and enteroviral RNA frequency in the blood of T1D subjects. The authors 
further suggested that rs1990760 can modify enteroviral frequency in the blood of 
healthy children harboring IFIH1 polymorphism, predisposing them towards T1D
[39]. Gain-of-function mutations in IFIH1 have been also found to be associated with 
overexpression of type 1 and type 3 IFN[40]. A study by Gorman et al[41] observed 
mice that were homozygous for IFIH1 SNP (946T) or exhibiting IFIH1 risk alleles (843R 
and 946T) simultaneously, had enhanced expression of IFIH1-related genes, increased 
rate of autoimmunity development, and ability to recognize self-RNA. Such mutations 
may alter the expression of inflammatory molecules and the dynamics of target 
binding, and activation may also be altered, resulting in more potent/enhanced IFN 
response leading to the risk of T1D. For example, MDA5 mutation E627 causes loss of 
a portion of C-terminal region, resulting in loss of dsRNA ligand and binding[42]. 
Overall, these reports provide us with enough knowledge about the role of RLRs in 
the pathogenesis of T1D.

ALRs
A few PRRs also include some members of the family of proteins containing pyrin and 
hematopoietic interferon-inducible nuclear (HIN) domain[43]. The Pyrin and HIN 
domain (PHYIN) family of proteins comprises of ALR, which contains an N-terminal 
Pyrin domain and one or two C-terminal hematopoietic IFN-inducible nuclear 
proteins with 200 amino acids (HIN-200) domains, containing an oligonucleo-
tide/oligosaccharide-Binding fold (OB fold), which is a common DNA-binding motif
[44]. Of all ALRs, absent in melanoma 2 (AIM2) protein is the only one conserved in 
both humans and mice. AIM2 possesses the ability to sense DNA in the cytoplasm and 
as well as in the nucleus[44].
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AIM2 is a cytosolic dsDNA receptor that oligomerizes on recognizing cytosolic 
foreign dsDNA and promotes the polymerization of the adaptor protein, Apoptosis-
associated Speck-like (ASC) protein and eventually forming a caspase-1 activating 
inflammasome[44]. AIM2 binds to small DNA fragments up to 20bp; however, in 
order to initiate immune responses against longer DNA fragments, oligomerization of 
AIM2 is required. ALRs can sense self-DNA through leakage from nuclear envelope 
and exosomes engulfed by phagocytes; however, the ability of ALRs to elicit type 1 
IFN responses is questionable, as mice deficient in ALRs can mount effective type 1 
IFN responses to DNA viruses and lentiviruses[45].

NLRs
NLRs are comprised of various cytosolic PRRs, which are characterized by the 
presence of a conserved NOD[46]. NLRs consist of an N-terminal effector binding 
region, which is further comprised of: (1) Protein-protein interaction domain such as 
the: (a) CARD; (b) Pyrin domain (PYD); and (c) Baculovirus inhibitor repeat domain; 
(2) NOD domain, which is needed for self-oligomerization and nucleotide binding; 
and (3) Array of C-terminal LRR motifs to recognize the pathogenic pattern and 
regulate NLR activity.

Upon recognition of nucleic acids by the C-terminal LRR motifs, the downstream 
signaling gets initiated, involving conformational changes that result in oligomer-
ization of NLR via the NOD domain. NLR exposes the effector domains to initiate 
CARD and PYD recruitment and activation by enhancing their oligomerization[47]. 
NLRs interact with receptor interacting serine/threonine protein kinase 2 to trigger 
mitogen-activated protein kinase (MAPK) and NF-κB[48]. The NLRs have a proven 
role in antiviral immunity; however, their role in sensing self-nucleic acids is gradually 
emerging[49]. NLRs also recognize oxidized forms of mitochondrial DNA, which 
could have important implications in inflammation and cancers[50].

Role of ALRs and NLRs in the formation of inflammasomes 
Inflammasomes are a diverse class of cytosolic multiprotein complexes consisting of an 
adaptor protein containing CARD, a sensor protein and caspase-1 which is highly 
proinflammatory. Their assembly can be triggered by a variety of stimuli, ultimately 
leading to caspase-1 activation and synthesis of proinflammatory cytokines. Inflam-
masomes play a crucial role in the mobilization and activation of various immune cells 
in maintaining tissue homeostasis by initiating acute immune responses. Inflam-
masomes can also initiate chronic immune response leading to uncontrolled inflam-
mation which eventually causes cell death via pyroptosis[51]. Among them, NLRP3 
and NLRP1 inflammasomes are the most common subtypes[52]. ALRs and NLRs 
initiate the immune response by forming inflammasomes, thereby alleviating IL-1β 
and IL-18 maturation and release[53,54]. Activated caspase-1 then cleaves pro-IL-1β or 
pro-IL-18 ,enabling the release of the mature active cytokines IL-1β and IL-18[53,55].

NLRP3 inflammasomes have been reported to play crucial roles in the pathogenesis 
of various autoimmune disorders, including T1D[56,57]. In 2019, Sun et al[58], showed 
the association of SNPs with T1D pathogenesis and diabetes onset in the NLRP1 gene 
of T1D patients of Chinese Han origin. Increased susceptibility to T1D and celiac 
disease have been reported to be associated with SNPs within the NLRP3 gene. A 
study by Hu et al[59] showed an important role of NLRP3 in the pathogenesis of T1D 
in NOD mice. Elimination of NLRP3 altered T cell maturation via regulation of CCR5 
and CXCR3 expression, as well as pathogenic T cell mobilization to the pancreatic 
islets, which is a crucial process leading to β-cell death and disease progression. Also, 
knockout of NLRP3 downregulated C-C motif chemokine ligand 5 (CCL-5) and C-X-C 
motif chemokine ligand 10 (CXCL10) expression in the pancreatic islets via IRF-1 
signaling[59]. Furthermore, in STZ induced diabetic mice model, NLRP3 activation via 
mtDNA initiated IL-1β production in caspase-1 dependent manner, suggesting a direct 
role of NLRP3-caspase1 signaling in T1D[60]. Pereira et al[61] recently highlighted the 
role of mtDNA in the involvement of vascular endothelial dysfunction in human 
subjects with T1D and asserted on the connection between NLRP3 inflammasomes 
and T1D complications. In this study, mtDNA isolated from diabetic mice promoted 
NLRP3 inflammasome activation via mechanisms involving mitochondrial ROS and 
Ca2+ influx, which was abrogated in NLRP3 knockout mice.

Cyclic GMP-AMP synthase-stimulator of IFN 
The cyclic GMP-AMP synthase-stimulator of IFN genes (cGAS-STING) is a DNA 
sensing receptor present in the cytoplasm that recognizes host/pathogenic DNA[62]. 
When DNA binds on the active site of cGAS, its C-terminal containing the catalytic 
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unit undergoes a variety of conformational changes, resulting in cyclic guanosine 
monophosphate–adenosine monophosphate (cGAMP) formation from ATP and GTP
[63,64]. cGAMP formation results in STING activation by inducing conformational 
changes upon binding to its active site and also facilitates STING transportation from 
the endoplasmic reticulum to the Golgi apparatus[65,66]. Upon activation, STING 
further forms a complex with TBK1, which further phosphorylates IRF3 in endoly-
sosomes[67,68]. Phosphorylated IRF3 translocates into the nucleus undergoing 
dimerization, and thus inducing the expression of ISG[69,70]. However, STING is also 
involved in the stimulation of IFN-β by interacting with the Translocon-Associated 
Protein (TRAP)[65,71].

The role of cGAS-STING in various autoimmune disorders is being widely 
explored, while its role in T1D has not been reported earlier. Lemos et al[72] reported 
that the activation of STING resulted in suppression of T1D onset and progression 
when NOD mice were administered with DNA nanoparticles, which promoted 
indoleamine 2,3 dioxygenase (IDO) activity, thus modulating T cell immunity in 
pancreatic lymph nodes and pancreas.

Overall, many studies have yielded important information on how the nucleic acid 
sensors lead to the activation of downstream signaling pathways (Figure 1). These 
sensors and their signaling mediators have been implicated in different autoimmune 
diseases including T1D (Table 1)[73-84].

TYPE 1 IFN SIGNALING: AN IMPORTANT CONVERGING POINT
Most of the nucleic acid recognition pathways culminate in the release of type 1 IFN, 
especially IFN-α, via mediators like IRFs, which makes them one of the most crucial 
part of the nucleic acid sensing pathway. IFN-α has multiple roles, including upregu-
lation of human leukocyte antigen (HLA) class I and HLA class II to enhance antigenic 
presentation, increase in immunoproteasome activity, induce ER stress and cellular 
inflammation through TYK2 activation, induction of transcription factors, and signal 
transducer and activator of transcription 2 and IRF9. It also acts synergistically with 
IL-1β and induces β-cell apoptosis[85]. Heightened IFN-α secretion in peripheral blood 
mononuclear cells of T1D subjects by stimulation with influenza viruses has been 
attributed to the recognition of viral nucleic acids by endosomal TLRs of pDCs. 
Additionally, in vitro studies have demonstrated that pDCs secreted IFN-α enhances 
Th1 responses[86]. Another study observed higher levels of secreted IFN-α by pDCs 
obtained from the relatives of T1D subjects following their stimulation with CpG 2216
[87]. The transition of prediabetic stage to full-blown diabetes is also found to be 
controlled by IFN-α signaling. The study demonstrated that the infiltration of autore-
active T cells and β-cell killing can be prevented by blocking IFN-α signaling by 
sphingosine-1 receptor agonist prior to the clinical onset of disease[88]. Rodrigues et al
[89] in a recent study revealed IFN-1 hyper-responsiveness in T1D after innate 
immune stimulation of whole blood cells with CpG DNA. They observed higher 
induced IFN-1-associated gene expression in monocytes from NOD mice. Similarly, in 
human participants, ex vivo whole blood stimulation showed higher induced IFN-1 
responses in participants with T1D compared with healthy controls. In our recent 
study, we, too, observed increased secretion of IFN-α by the peripheral pDCs from 
T1D subjects compared to non-diabetic controls. Enhanced IFN-α secretion was also 
observed after stimulation with DNA-LL37 complexes indicating the inflammatory 
nature of pDCs derived from T1D subjects. Collectively, these data support the notion 
that IFN-α mediated effects play an important role in the early pathogenic events 
during initiation of autoimmune diabetes, and the presence of early type 1 IFN 
signature in susceptible individuals and animal models suggests the role of viral 
nucleic acids, and to some extent, the self-nucleic acids in T1D pathogenesis.

SELF-NUCLEIC ACIDS: ROLE IN PATHOGENESIS OF TYPE 1 DIABETES
During the initial phase of T1D, innate immune cells, like DCs, neutrophils and 
macrophages, infiltrate the islets much before the infiltration of T and B cells[2,90-92]. 
This buildup of innate immune cells is persistent during the later β-cell destructive 
insulitis as well[93]. Therefore, the entry of DCs and macrophages/monocytes can be 
considered an initial sign of the autoimmune process during the pathogenesis of T1D
[1,20,94].
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Table 1 Nucleic acid sensors involved in various autoimmune diseases including type 1 diabetes

No. Nucleic acid sensor Downstream signaling molecule Autoimmune disease Ref.

1 TLR9 Myd88/ IRF3/7 SLE [73,74]

2 TLR7 Myd88 T1D [27]

3 TLR3 TRIF T1D [25,75]

Singleton-Merton Syndrome, [76,77]4 RLR IRF3

AGS and T1D [34,78]

5 cGAS-STING cGMP SLE and AGS [79,80]

6 NLR T1D and SLE [58,81]

7 AIM

Inflammasome activation

SLE [81]

Inflammasome Primary Sjogren’s Syndrome [82]8 IFI16

Activation Rheumatoid Arthritis [83]

9 CTL Bcl10/CARD9 Multiple Sclerosis [84]

AIM: Absent-in-melanoma; cGAS-STING: Cyclic GMP-AMP synthase-stimulator of interferon genes; CTL: C-type lectin; NLR: Nucleotide-binding and 
oligomerization domain-like receptor; RLR: Retinoic acid inducible gene-I-like receptors; TLR: Toll-like receptor; TRIF: TIR-domain-containing adapter-
inducing IFN-β.

Although there is ambiguity regarding the exact role of innate immune cells and 
other initial triggers involved in the loss of β-cell tolerance, certain factors, like viral 
infection and ER stress are known to provoke an immune response in β-cells leading to 
the activation of pro-inflammatory pathways. Additionally, β-cells themselves might 
also participate in their demise by invoking apoptosis rather than being an innocent 
victim of autoimmune attack as previously thought [95]. One of the outcomes of β-cell 
destruction is the release of self-nucleic acids along with other cellular debris. Among 
the nucleic acids, the role of self-DNA in the development of T1D is highlighted by 
few studies, Diana et al[1] demonstrated that neutrophils, B-1a cells, and plasmacytoid 
dendritic cells are recruited to islets during physiological periods of β-cell death. 
Activated B-1a cells secrete dsDNA specific IgGs, which activate neutrophils to release 
DNA-binding cathelicidin-related antimicrobial peptide (CRAMP), which binds self-
DNA, and along with DNA-specific IgG, activating pDCs through the TLR9–MyD88 
pathway, leading to IFN-α production in pancreatic islets and initiation autoimmune 
diabetes in NOD mice. Mollah et al[96] observed increased incidence of diabetes 
associated with increased accumulation of ssDNA in the immune cells of granzyme A 
(protease degrading intracellular DNA) deficient NOD mouse due to induction of IFN 
response in pancreatic islets. The study identified DNA as a novel endogenous trigger 
of autoimmune diabetes and an in vivo role for granzyme A in maintaining immune 
tolerance. Earlier, Zentsova et al[97] had also observed that monocytes contribute to 
DNA sensing in patients with T1D via the TBK1 and STING pathways by recognizing 
CpG-DNA leading to the release of IFN-α and proinflammatory cytokines. These 
studies highlight the importance of investigating the interaction of DNA sensors of 
innate immune cells during the early pathogenesis of T1D. However, limitations in 
obtaining pancreatic tissues pose a big challenge in assessing such interactions.

Besides DNA, the role of self-RNA in the progression of T1D is also being 
speculated. A study by Kocic et al[98] demonstrated that accumulation of circulating 
self-RNA can lead to the progression of autoimmune or inflammatory conditions in 
subjects with juvenile T1D. Recently, studies from several groups suggested that 
adenosine deaminase acting on RNA (Adar1)  deficiency leads to the accumulation of 
retroelements, such as Alu:Alu hybrids, in the cytoplasm, which are then recognized 
by MDA5, resulting in excessive proinflammatory response[99,100]. Furthermore, 
mouse models deficient in Adar1 established that dysregulated RNA editing caused 
MDA5-driven autoimmunity[101,102]. The role of mtDNA acting as a ligand for 
nucleic acid sensors is also being observed by various research groups. When mtDNA 
is released into extracellular space and cytoplasm, it activates a variety of innate 
immune responses. West et al[103] showed that the mitochondrial transcription factor 
A (TFAM) deficiency leads to mis-packaged mtDNA, resulting into its cytoplasmic 
release where it bound and activated cGAS initiating a type-I IFN response. mtDNA 
has also been involved in the activation of inflammasome[104]. Carlos et al[105] shown 
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Figure 1 Nucleic acid sensors and their signaling pathways involved in autoimmune diseases including type 1 diabetes. A: Toll-like receptor 
(TLR) signaling: Priming of nucleic acid sensing is mediated by the activation of several TLRs, which are located in endosomes. For e.g., TLR3 recognizes double 
stranded RNA initiating downstream TIR-domain-containing adapter-inducing interferon (IFN)-β dependent signaling cascade via activation of IRF3 and IRF7, 
resulting in the induction of IFN-stimulated genes (ISGs). On the other hand, TLR7, TLR8 and TLR9 recognize ssRNA and dsDNA to trigger downstream signaling via 
Myd88, resulting in higher expression of either type1 IFNs or NF-κB via IRF7 and IκB phosphorylation, respectively. NF-κB activation further stimulates the production 
of pro interleukin (IL)-1β and pro IL-18, which get cleaved by caspase 1 into mature IL-1β and IL-18, respectively; B: Inflammasome complexes: Following recognition 
of nucleic acids, recruitment of various adaptor proteins occurs to form mature inflammasome complexes, which further cleave pro-caspase 1 and gasdermin D 
(GSDMD) into active caspase 1 and GSDMDn (GSDMD n-terminal), respectively. GSDMD gets inserted into the plasma membrane and helps in the release of 
inflammatory cytokines; C: Cytosolic Receptors: cGAS is another DNA sensor localized close to the plasma membrane. It recognizes and forms complexes with 
dsDNA. cGAS-dsDNA binding induces the catalytic synthesis of cGAMP from ATP and GTP, which further culminates in the stimulation of STING. Other DNA binding 
proteins (or sensors) like IFI16 and DDX41 also recognize DNA and activate STING, which further facilitates NLRP inflammasome activation. STING also activates 
the battery of IFN genes via IRF phosphorylation. Different forms of RNA originating from wide sources, like viral RNA, degraded self-RNA, etc. are recognized by 
RLRs, including RIG-1 and MDA5, following which they are imported to mitochondrial antiviral signaling (MAVS). MAVS further activates ISGs via IRF3-IRF7 
activation. IFNs also work in an autocrine fashion and stimulate more production of different nucleic acid sensors and other ISGs. AIM2: Absent in melanoma; ASC: 
Apoptosis-associated speck-like protein containing a CARD (Caspase activation and recruitment domain) Domain; BAX: Bcl-2-associated X protein; cGAS: Cyclic 
GMP-AMP synthase; DDX41: DEAD-Box helicase 41; DHX: DEXH-box helicase; GBP: Guanylate-binding proteins; GSDMD: Gasdermin D; GSDMDn: Gasdermin D 
(N-Terminal); HIN: Hematopoietic IFN-inducible nuclear protein; IFI16: Interferon gamma inducible 16; IFIT1: Interferon induced protein with tetratricopeptide repeats 
1; IFN: Interferon; IFNR: IFN receptor; IGRB10: Immunity-related GTPase family member B10; IKK: Iκb (Inhibitor of Nuclear Factor Kappa B) Kinase; IL: Interleukin; 
IL-1R1: IL-1 receptor 1; IRAK: Interleukin-1 receptor associated kinase; IRF: Interferon-regulatory factors; ISG: Interferon stimulated genes; JAK: Janus kinase; 
MAVS: Mitochondrial antiviral-signaling protein; MDA5: Melanoma differentiation-associated protein 5; Myd88: Myeloid differentiation primary response 88; NLRP: 
NLR (NOD-like receptor) family pyrin domain; NOD: Nucleotide binding and oligomerization domain; PKR: Protein kinase R; PYD: PYRIN Domain; RIG1: Retinoic 
acid-inducible gene I; STAT: Signal transducer and activator of transcription; STING: Stimulator of interferon genes; TBK1: TANK (TRAF family member-associated 
NF-kappa-B activator)-binding kinase 1, TLR: Toll-like receptor; TRAF: TNF (Tumor necrosis factor) receptor associated factors; TRIF: TIR [toll/interleukin-1 (IL-1) 
receptor] domain containing adapter inducing interferon-β.

that mtDNA activates NLRP3 to trigger IL-1β secretion via caspase-1-dependent 
pathway to precipitate the onset of streptozotocin (STZ) induced T1D in C57BL/6 
mice. In 2020, Pereira et al[61] observed that mtDNA promoted NLRP3 inflammasome 
activation that contributed to inflammation and endothelial dysfunction in patients 
with T1D.
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NUCLEIC ACID SENSING: WHAT LEADS TO THE DYSREGULATION?
The role of nucleic acids and their signaling has been explored by several studies in 
many autoimmune diseases, yet there is very little data on the aberrations in nucleic 
acid sensing mechanisms in autoimmune vs non-autoimmune conditions. Parallels are 
drawn from those autoimmune diseases, like psoriasis and SLE, where nucleic acids 
are targeted by the immune cells. During the pathogenesis of SLE, the pDCs get 
activated due to facilitated recognition of autoantibodies against nucleic acids by TLR7 
and TLR9 leading to increased secretion of type 1 IFNs[106,107]. A similar role of self-
DNA complexes and specific antibodies was also suggested by Diana et al[1] during 
the initial stages of T1D in the activation of TLR9 in pancreatic pDCs, which release 
IFN-α in NOD mice, as explained earlier.

An important study by Revelo et al[108], explored the possible role of different types 
of nucleic acids contributing to glucose intolerance during diet induced obesity (DIO). 
The study concluded that oxidized mtDNA derived from abnormal formation of 
extracellular traps (ETs) can promote inflammation of metabolic tissues via TLR7 and 
TLR9 in pDCs. The same study has also explored the possible role of exogenous 
sources of nucleic acids like CpG-ODN, which worsened glucose tolerance in lean 
mice, possibly by the recognition of CpG DNA by TLR9. A similar study has also 
shown that increased levels of circulating cell free DNA are involved in the activation 
of macrophages via TLR9 during DIO[109]. A recent study by Zentsova et al[97] 
demonstrated altered DNA sensing in subjects with T1D in response to microbial 
DNA. Prominent proinflammatory responses were observed in pDCs and monocytes 
of T1D patients compared to healthy controls. Furthermore, monocytes isolated from 
T1D subjects were shown to bind and internalize DNA and responded by releasing 
higher levels of proinflammatory cytokines as compared to control subjects. 
Surprisingly, this cytokine production was independent of the TLR9 signaling 
pathway but dependent on other intracellular receptors like, TBK1 and STING for 
recognition of CpG-DNA and NETs, which were used to mimic self-DNA in the study. 
During our study on the role of self-DNA in T1D, we have also observed that the 
pDCs and monocytes of T1D subjects behave differently from those of healthy 
subjects. We observed that the pDCs and monocytes of T1D subjects were more 
prompt on acquiring an inflammatory phenotype upon stimulation with molecules 
like DNA-LL37 complexes by initiating inflammation through IFN-α and augmenting 
autoimmunity by activating CD4+ T cells[110]. Therefore, it appears that either altered 
forms of nucleic acids or alterations in their sensors underlie the dysregulations in 
nucleic acid sensing in autoimmunity.

Formation of nucleic acid-protein complexes 
In normal circumstances, the self-nucleic acids are considered non-immunogenic in 
nature and in the extracellular environment, they undergo rapid degradation by 
various extracellular nucleases[111]. However, their binding to peptides like, LL37 and 
HMGB1 (released by neutrophils and monocytes, respectively)[112,113] can lead to the 
formation of complexes that are resistant to nuclease degradation. These complexes 
are transported to endosomal compartments of pDCs and monocytes, which are 
recognized by TLR9[114]. In the case of NOD mice, CRAMP (mouse equivalent of 
LL37) is known to form complexes with self-DNA and DNA-specific IgG to induce 
IFN-α production via the TLR9 and MyD88 pathways. In T1D, we have also observed 
that LL37 forms stable complexes with self-DNA to protect it from DNase degradation 
and, at the same time, it increases the efficiency by which pDCs and monocytes engulf 
DNA complexes in their cytosol[110]. Moreover, delayed clearance of apoptotic cells 
and other cellular debris by the macrophages also causes their accumulation, which in 
turn results in increased uptake of nucleic acids by innate immune cells, like pDCs and 
DCs that express abundant nucleic acid sensors. Apart from self-DNA, self-RNA is 
also capable of forming stable immune complexes with LL37, which was first observed 
by some researchers where they observed stable formation of complexes that readily 
enter endosomes of both pDCs and mDCs to induce TLR7 activation that finally 
triggers IFN-α secretion. Taking cue from these aforementioned studies it can be 
concluded that self-nucleic acids, like RNA, DNA and mtDNA, that are released from 
the dying β cells can form complexes with certain peptides and activate innate 
immune cells like pDCs, DCs and macrophages, and tilting the local immune 
homeostasis towards proinflammation.

However, the main unanswered question that remains is how does the uptake of 
self-nucleic acids or their complexes with proteins confer a proinflammatory 
phenotype to innate immune cells like the uptake of nucleic acids of viral and bacterial 
origin. Comparative studies done in past have shed some light and indicated that self-
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nucleic acids can induce similar if not heightened immune responses during the 
progression of autoimmune diseases, including T1D, although this hypothesis is still in 
its nascent stages and require some solid comparative studies, especially in T1D 
pathogenesis. The role of molecular mimicry by self-nucleic acids cannot be denied as 
they share similar motifs to pathogenic genomes like that of viruses and bacteria, a 
very good example of which is the presence of CpG islands in mtDNA. The role of 
nucleic acid induced innate immune inflammation also becomes particularly 
important, especially when viral infections alone cannot explain the initial infiltration 
and activation of innate immune cells, like pDCs, DCs, and monocytes, during the 
initial stages of T1D.

TARGETING NUCLEIC ACID SENSING PATHWAYS: THERAPEUTIC 
STRATEGIES 
With the increasing understanding of their roles and the signaling cascades in 
initiating inflammatory responses, novel therapies involving PRRs, have been 
attempted to target autoimmune diseases (Table 2).

Historically, targeting of downstream TLR signaling pathways using antimalarial 
drugs like chloroquine, quinacrine, and hydroxyl-chloroquine (HCQ) have been used 
in the treatment of autoimmune diseases since the 1940s, suggesting the effectiveness 
and importance of blocking endosomal TLR signaling rather than blocking TLR ligand 
themselves[115]. Compared to HCQ, CpG-52364, a quinacrine derivative and small-
molecule antagonist of TLR7/8/9 is therapeutically more effective and has fewer side 
effects in animal studies. A phase I clinical trial for treatment of SLE (NCT00547014) 
showed inhibition of disease development without causing general immunosup-
pression[116]. Next, the idea of reducing exogenous DNA and RNA associated 
DAMPs has also been tried as an alternative and broader approach to suppress non-
TLR dependent pathways of IFN production for the treatment of autoimmune 
diseases. Pulmozyme, a recombinant human DNase, has been in use since 1994 for the 
treatment of cystic fibrosis[117]. Additionally, Macanovic et al[118] showed that 
murine DNase can improve renal histology in NZB/NZW F1 Lupus-prone mice. A 
bovine DNase preparation also had initial success in improving clinical outcomes in a 
patient trial of SLE, but further studies were precluded due to the development of 
antibodies to the bovine DNase[119].

Oligodeoxynucleotides (ODNs) were first designed for direct binding and for 
antagonizing endosomal TLRs as an alternate strategy to treat SLE, which despite 
showing initial success the therapy, failed to garner support due to several reports of 
adverse effects like thrombocytopenia and neutropenia. Although greater promise was 
shown by ODNs, like immunomodulatory oligonucleotides (IMO)-8400 in psoriasis 
that target TLR7, TLR8, and TLR9 to reduce the expression of IL-17 signaling 
associated genes[120,121]. A phase 2a clinical trial, sponsored by Idera Pharma-
ceuticals, involving use of IMO-8400 for the treatment of plaque psoriasis exhibited 
reduced psoriasis severity with good tolerance in the recruited subjects (NCT01899729)
[122]. A preclinical study on INH-ODN-24888, a guanine modified oligonucleotide 
was initiated for the treatment of lupus patients based on its activity as a TLR7 and 
TLR9 antagonist, and it was observed to be more efficient than the unmodified 
oligonucleotide (INH-ODN-2088)[123,124].

Other peptide compounds designed to inhibit TLR signaling pathways in 
autoimmune diseases include SM934 (b-aminoarteether maleate). It targets TLR7 and 
TLR9 signaling cascades, thereby promoting their downregulation along with 
regulation of MyD88 expression and NF-kB activation through an unknown 
mechanism. Finally, it inhibits TLR-induced activation of B cells leading to a decrease 
in proliferation and antibody secretion in MRL/Lpr mice (animal model of SLE)[125]. 
Another peptide ST-2825 that blocks the dimerization of MyD88[126] by interfering 
with the recruitment of IRAK1 and IRAK4 to TLR7- and TLR9-MyD88 complexes was 
found to be of therapeutic importance in  inhibiting TLR-mediated inflammatory 
responses. Recently, PF-06650833, a small molecule inhibitor of IRAK4 has been 
reported to be effective in ameliorating some symptoms in patients with moderate to 
severe rheumatoid disease[127]. Another molecule, reported as “Compound II” in the 
study by Hasan et al[128], was shown to inhibit TBK1 and consequently douse the 
hyper-inflammatory responses in Trex-/- mice. Another novel inhibitor, TJ-M2010-6, 
has also shown the ability to suppress homo-dimerization of MyD88 by interacting 
with amino acid residues of its TIR domain, thereby preventing and treating T1D in 
NOD mice. Upon deducing the mechanistic pathways, it was observed that TJ-M2010-
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Table 2 Studies and trials with antagonists/inhibitors of nucleic acid sensors and their signaling mediators in various autoimmune 
diseases

No. Inhibitor Disease Target Phase (Preclinical/Clinical-trial ID) Ref.

1 Hydroxychloroquine Rheumatoid arthritis and SLE TLR7, TLR9, cGAS-STING NCT0380218 (Ongoing Trial) [139]

2 SM934 SLE TLR7 and TLR9 NCT03951259 (Phase II) [125]

3 Amlexanox T2D TBK1 and IKKε NCT01975935 (Phase II) [140]

4 TJ-M2010-6 T1D Myd88 Preclinical [129]

5 ST-2825 SLE IRAK1 and IRAK4 Preclinical [126]

6 Aspirin AGS cGAS Preclinical [141]

7 ODN-1411 Rheumatoid Arthritis TLR8 Preclinical [142]

8 INH-ODNs SLE TLR3 and TLR9 Preclinical [143]

9 X6 Autoimmune myocarditis cGAS Preclinical [144]

10 PF-06650833 Rheumatoid Arthritis IRAK4 NCT02996500 (Phase II) [127]

11 Compound II SLE and AGS TBK1 Preclinical [128]

12 Sifalimumab (MEDI-545) SLE IFN-α NCT00979654 (Phase II) [145]

13 AGS-009 SLE and Rheumatoid Arthritis IFN-α NCT00960362 (Phase I) [132]

14 IMO-8400 Plaque Psoriasis TLR-7, 8, and 9 NCT01899729 (Phase IIa) [122]

15 CpG-52364 SLE TLR-7, 8, and 9 NCT00547014 (Phase I) [116]

SLE: Systemic lupus erythematosus; T2D: Type 2 diabetes; TID: Type 1 diabetes.

6 treatment prevents insulitis in vivo, whereas in vitro experiments showed inhibition 
of DCs maturation, leading to suppression of T cell activation and production of 
inflammatory cytokines[129]. To directly target the interaction of TLRs with their 
corresponding ligands, several antibodies have been designed, including Sifalimumab 
(NCT00979654, NCT01283139) and AGS-009 (NCT00960362). Both of the antibodies 
showed significant reduction of the IFN-α signature in the clinical trials aimed at SLE 
treatment[130-132]. However, despite the indispensable role of endosomal TLRs in the 
pathology of several type 1 IFN-driven autoimmune diseases, the therapeutic 
strategies against TLR7, TLR8, and TLR9 have yet to see appreciable success in various 
clinical trials.

Recent data on the involvement of molecular pathways leading to NETosis, and the 
components of NETs, like myeloperoxidase MPO, neutrophil elastase NE, and nucleic 
acids, have made them an attractive target for therapeutic strategies in autoimmune 
diseases, including T1D[133]. The best studied and the viable target is PAD4, which is 
a nuclear enzyme mediating NET formation by chromatin de-condensation[134], 
several inhibitors against NETs have been tried, of which GSK484 has shown 
persistent activity in animal models of inflammatory disease[135]. Additionally, an 
enzyme, staphylococcal nuclease, has shown some promise by degrading intestinal 
NETs and ameliorating both intestine and pancreatic islet inflammation to effectively 
regulate the blood glucose homeostasis in NOD mice[136]. Keeping in view the 
important roles played by nucleic acid sensing in shaping immune responses, 
specifically via modulation of innate immunity, researchers are actively exploring the 
nucleic acid-based nanoparticles that can be designed and functionalized with known 
therapeutic immunomodulatory domains and motifs, for the treatment of various 
nucleic acid centered autoimmune diseases[137,138]. Collectively, these studies 
emphasize the scope of further exploration of novel approaches to targeting key 
checkpoints in nucleic acid recognition and their downstream signaling pathways.

CONCLUSION
There are ample studies on T1D pathogenesis in both humans and animal models, and 
significant progress has been made in understanding the role of various cellular 
mechanisms involved in the initiation of the disease. Emerging data on the contri-
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bution of nucleic acids and their receptors on innate immune cells is challenging the 
current dogmatic and historical view of T1D as being a T cell driven disease.

The evolving view, that we have tried to support in this review, is that the initiation 
of autoimmune diabetes and its etiopathogenesis is much more complex and might 
involve aberrant recognition of self-nucleic acids at a very early stage. Recent findings 
from several groups have suggested the role of self-nucleic acids in elevating IFN 
induced responses by involving several PRRs in various autoimmune disorders 
including T1D. We would further like to propose that recognition of these self-nucleic 
acids by various innate immune cell subsets may have a similar outcome as in other 
autoimmune diseases, like SLE and psoriasis, where DAMPs like self-nucleic acids 
play a crucial role in the precipitation of the disease. However, despite this growing 
knowledge, further insights are required on the role of various nucleic acids and their 
sensors particularly in the context of the regulation of their downstream signaling 
mediators during the pathogenesis of T1D. Thus, it becomes necessary to search for 
novel inhibitors or receptor antagonists as a way of modulating dysregulated nucleic 
acid sensing, which might be useful in preventing or delaying the progression of T1D 
and similar autoimmune diseases.
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Abstract
Diabetes, whether due to pancreatic beta cells insufficiency or peripheral 
resistance to insulin, has been suggested as a risk factor of developing severe 
acute respiratory disease coronavirus-2 (SARS-CoV-2) infections. Indeed, diabetes 
has been associated with a higher risk of infections and higher risk of developing 
severe forms of coronavirus disease 2019 (COVID-19) related pneumonia. Diabetic 
patients often present associated comorbidities such as obesity, hypertension and 
cardiovascular diseases, and complications of diabetes, including chronic kidney 
disease, vasculopathy and relative immune dysfunction, all of which make them 
more susceptible to infectious complications. Moreover, they often present low-
grade inflammation with increased circulating interleukin levels, endothelial 
susceptibility to inflammation and dysfunction, and finally, hyperglycemia, which 
increases this risk. Additionally, corticosteroids, which count among the few 
medications which showed benefit on survival and mechanical ventilation 
requirement in COVID-19 pneumonia in large randomized controlled trials, are 
associated to new onsets of diabetes, and metabolic disorders in patients with 
previous history of diabetes. Finally, SARS-CoV-2 via the alternate effects of the 
renin-angiotensin system, mediated by the angiotensin-converting-enzyme 2, was 
also associated with insulin resistance in key tissues involved in glucose 
homeostasis, such as liver, skeletal muscles, and adipose tissue; and also, with 
impaired insulin secretion by pancreatic β-cells. In this work, we reviewed all 
elements which may help understand how diabetes affects patients with COVID-
19, how treatments affect outcomes in patients with COVID-19, how they may 
cause new onsets of diabetes, and finally review how SARS-CoV-2 may inherently 
be a risk factor of developing diabetes, through immune-mediated diabetogenic 
mechanisms.
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Core Tip: Diabetes features complex interactions with the severe acute respiratory 
disease coronavirus-2 (SARS-CoV-2). Diabetic patients are at higher risk of severe 
infections. They often present associated comorbidities such as obesity, hypertension 
and cardiovascular diseases, and complications of diabetes, including chronic kidney 
disease, vasculopathy and relative immune dysfunction. Additionally, corticosteroids, 
which count among the few medications which showed benefit on survival are 
associated to new onsets of diabetes, and metabolic disorders in patients with previous 
history of diabetes. Finally, SARS-CoV-2 via the alternate effects of the renin-
angiotensin system, mediated by the angiotensin-converting-enzyme 2, was also 
associated with insulin resistance.
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INTRODUCTION
Preexisting diabetes and coronavirus disease 2019
Preexisting diabetes is associated with poor outcomes of coronavirus disease 2019: 
There is a set of arguments to say that patients with diabetes are at high risk of severe 
form of coronavirus disease 2019 (COVID-19) pneumonia. Quickly, at the start of the 
epidemic, reports from China and Italy suggested that diabetes rate ratio was two or 
three-fold in patients with more severe than in those with less severe infections[1-5]. 
Patients with diabetes and COVID-19 pneumonia were more likely to require intensive 
care, present organ failure, hypercoagulability state with increased levels of inflam-
matory factors[1,3,6]. In terms of absolute risk, three people with diabetes in every 
1000 developed fatal or critical care unit-treated COVID-19[7]. In the French COVID 
CORONADO cohort, only 50% of the 2796 patients with diabetes were discharged and 
20% died within 28 d after hospitalization, reflecting the severity of the disease in the 
diabetic population[8]. In other countries, mortality rate of patients with diabetes and 
COVID-19 during the first wave was between 11% and 33%[9-11]. In a retrospective 
study of 7337 cases of COVID-19 in China, 952 patients with pre-existing type 2 
diabetes (T2D) required more medical interventions and presented multiple organ 
failure than non-diabetic individuals[6]. In this study, T2D was significantly associated 
with the incidence of acute respiratory distress syndrome (ARDS), septic shock, and 
acute kidney injury with respective adjusted hazard ratios (HR) of 1.44 (95%CI: 1.20-
1.73), 1.95 (95%CI: 1.18-3.20) and 3.01 (95%CI: 1.94-4.68). These findings explain the 
high mortality rate observed in this population. In Italy, for example, a third of people 
who died from COVID during the first wave were diabetic[12]. In March 28th, 2020, 
2112 deaths from confirmed COVID-19 cases were reported to CDC and diabetes was 
one of the more frequently reported conditions among all cases. Indeed, a third of the 
patients hospitalized in intensive care had diabetes[13]. On the other hand, the 
prevalence of diabetes in non-hospitalized patients among COVID-19 patients was 6%, 
less than the prevalence of diabetes among United States adults estimated to 10.1%
[14]. This may suggest that diabetes is more a risk factor of severity in case of COVID-
19 than a risk factor of COVID-19 itself. Data from New York hospitals also found a 
significantly increased risk of severe forms associated with diabetes, which however 
disappeared after adjusting for potential confounding factors[15-17]. All data converge 
to say that diabetes is associated with severe forms of COVID-19, but other factors may 
impact this association. Diabetic patients constitute a very heterogeneous population, 
in terms of type of diabetes, disease duration, quality of glycemic control, presence of 
diabetic complications, antidiabetic treatment used, presence of comorbidities such as 
obesity, hypertension, dyslipidemia, tobacco and cardiovascular diseases. Yet, only 
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few studies accounted for these potential confounders.

Are patients with diabetes at risk of severe form of COVID-19?
Impact of age in morbi-mortality of COVID-19 in patients with diabetes: As T2D is 
more prevalent in elderly patients, whether it is a risk factor of COVID-19 independent 
from age is currently unknown. Cohort studies in COVID-19 patients which focused 
on patients with T2D, yielded a mean age between 62 (55-68) in China, and 69.8 ± 13.0 
in the French nationwide multicenter CORONADO study[8,18]. The latter study 
aimed to determine predictors of discharge from hospital and death within 28-d after 
hospital admission in patients with diabetes and COVID-19. After multiple 
adjustments, older age and history of microvascular complications were associated 
were most associated with poor outcomes.

In a systematic review and meta-analysis which included observational studies and 
investigated risk phenotypes of diabetes and association with COVID-19 severity and 
deaths, older age (> 65 years) was associated with a 3.49 higher relative risk of COVID-
19-related death (95%CI: 1.82-6.69)[19]. Several studies have also shown the absence of 
excess mortality in young or middle aged patients with type 1 diabetes (T1D)[8,20].

Impact of diabetic complications in morbi-mortality of COVID-19: As the organs 
affected by COVID-19 are the same affected by diabetes, a relevant question which 
quickly rose was whether diabetes-induced organ injuries impacted COVID-19 
severity. In the French CORONADO study, microvascular complications were 
associated with a greater risk of death[8]. In a Scottish register study, microvascular 
complications such as retinopathy and nephropathy were also significantly associated 
with developing fatal or critical care unit-treated COVID-19[7]. In a population-based 
cohort study of people with diabetes, increased COVID-19-related mortality was 
associated with cardiovascular and renal complications of diabetes[21]. Diabetic 
patients with related chronic kidney disease were even more at risk, in a meta-
analysis, with a relative risk of COVID-19-related mortality of 2.53 (95%CI: 0.93-6.88)
[19].

Impact of type of diabetes and prognosis of COVID-19: Data about T1D are scarce 
and contradictory due to the heterogeneous study populations and the presence of 
many limitations. The French CORONADO study showed a low prevalence of T1D 
among patients with diabetes hospitalized for COVID-19, 2.1%, lower than that 
expected in the general population. Data also suggested a lower risk of severe 
prognosis in patients hospitalized with T1D and COVID-19 than in those with T2D, 
with half the risk of death by day 7. In a Belgian cohort study, risk of hospitalization 
was similar in 2336 patients with T1D, compared to 15239 normoglycemic individuals 
(0.21% vs 0.17%)[20]. In a large British population cohort study, including 61 million 
individuals, showed that patients with T1D (n = 263830; 0.4%) presented an increased 
risk of in-hospital death due to COVID-19 compared with those without known 
diabetes [OR: 3.50 (95%CI: 3.15–3.89)][22]. In this study, mortality was higher in T1D 
than in T2D patients. Even then, age represented a risk factor in T1D patients. In the 
Belgian cohort, those hospitalized for COVID-19 were older [66 years (58-80) vs 49 
years (35-61), P = 0.010]. Moreover, similarly as in the British study, in the French 
CORONADO study, no deaths in young patients with T1D (less than 50-55 years old) 
was reported. In addition, children and adolescents with T1D showed similar risk of 
infection and subsequent mortality than those without T1D in several cohorts, which 
emphasize this age-related risk of being infected and developing severe forms of 
COVID-19 pneumonia in patients with T1D[23,24].

Obesity, an added risk factor of COVID-19 severity: Obesity is highly prevalent in 
patients hospitalized for COVID-19 and has also been identified as an independent 
risk factor for the severity of the disease[25]. Obesity and diabetes, especially T2D, are 
two commonly associated diseases that are supported by epidemiological as well as 
genetic studies. One study assessed the relationship between obesity classes and 
COVID-19 prognosis in patients with T2D. Among 1965 patients with T2D, intubation 
for mechanical ventilation and death were significantly and independently increased 
in overweight patients [OR: 1.65 (95%CI: 1.05-2.59)], in patients with class I obesity 
[OR: 1.93 (95%CI: 1.19-3.14)] and class II/III obesity [OR: 1.98 (95%CI: 1.11-3.52)]. In a 
prospective, community-based, cohort study among 6910695 individuals, a linear 
increase in risk of severe COVID-19 leading to admission to hospital and death was 
observed. This risk increase was superior to that expected to diabetes only. The 
relative risk due to increasing body mass index was greater in people younger than 40 
years and African origins[26]. Hence, T2D combined with obesity may be a synergic 
risk factor of severe COVID-19 pneumonia. Yet it has to be noted that obesity does not 
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impact mortality as much in in elderly patients[27].

Influence of glycemic control on the prognosis of COVID-19: A key question is the 
role of hyperglycemia in patients with diabetes and COVID-19. This question must be 
analyzed differently depending on whether one considers the time before hospital-
ization, on admission or during the hospitalization phase. Results on glycemic control 
before hospitalization are contradictory. A major result of the CORONADO study is 
that glycemic control prior to hospitalization, assessed by the dosage of glycated 
hemoglobin (HbA1c), does not seem to have a significant impact on the severity of 
COVID-19 in people with diabetes who are hospitalized. On the contrary, in a 
population-based cohort study of people with diagnosed diabetes in England, people 
with T2D had a higher COVID-19-related mortality when HbA1c was superior to 59 
mmol/mol (76%) in comparison to an HbA1c in the range 48–53 mmol/mol (65%-
70%). In patients with T2D, this between-group difference was more pronounced in 
those under 70 than in those over 70 years-old. No significant difference was observed 
for HbA1c and risk of severe form of COVID-19 in patients with T1D[8,21].

On the other hand, association between hyperglycemia at the time of admission and 
mortality due to COVID-19 is clearer. Sardu et al[28] found that a glycaemia > 7.7 
mmol/L on admission was associated with outcome in 132 Italian hyperglycemic 
patients hospitalized for COVID-19 pneumonia. In a Chinese retrospective multicenter 
study including hospitalized patients with COVID-19, well-controlled glycaemia 
(defined as a glycemic variability between 3.9 to 10.0 mmol/L) was associated with 
markedly lower mortality compared to individuals with poorly controlled glycaemia 
(upper limit of glycemic variability exceeding 10.0 mmol/L) (adjusted HR: 0.14)[6]. In 
a retrospective study among patients with diabetes and COVID-19 with use of 
continuous glucose monitoring, both glucose levels of > 8.8 mmol/L and < 3.85 
mmol/L were associated with a significantly high risk of composite adverse outcomes 
of COVID-19 [i.e., need for admission to the intensive care unit (ICU), for mechanical 
ventilation, for vasopressor-requiring hypotension, multiple organ dysfunction] as 
well as with a prolonged hospitalization. Higher glycemic variability on admission 
was also significantly associated with a poorer outcome of COVID-19[29,30]. In 
contrast, mean sensor glucose level was not significantly associated with morbi-
mortality[30].

While hyperglycemia on admission was associated with severe outcomes, question 
of causality remains elusive. Although Sardu et al[28] showed that the greater the 
decrease in blood glucose the better the outcomes were, in their observational study, 
causal relationship between correction of hyperglycemia and better prognosis could 
not be ascertained. In other settings than COVID-19, glycaemia on admission may be 
used as a biomarker to identify patients at higher risk of severe pneumonia[31,32]. 
Hence, randomized controlled studies are still needed to definitely answer this 
causality question.

What is the link between diabetes and the risk of severe form of COVID-19?
There are many hypotheses about the mechanism of how diabetes affects COVID-19 
course.

Hyperglycaemia and diabetes are associated with higher risk of infectious diseases: 
Infectious diseases, including pneumonia are leading causes of death in people with 
diabetes[33-35]. Specifically, diabetes was previously proven a major risk factor of 
mortality related to other viruses than severe acute respiratory disease coronavirus-2 
(SARS-CoV-2), such as influenza A (H1N1) influenzae or the Middle East respiratory 
syndrome-related coronavirus (MERS-CoV)[36,37]. Mechanisms of susceptibility 
towards severe viral infections include neutrophil dysfunction and disturbance in the 
adaptative immune response in hyperglycemic environment[38-40]. As a matter of 
fact, hyperglycemia in itself, was associated with immune system impairment, 
complement fixation or altered cytokines and chemokines production enhancing 
SARS-CoV-2 replication[38,41-43]. However, severe forms of COVID-19 pneumonia in 
patients with hyperglycemia do not appear to result from an impaired humoral 
response against SARS-CoV-2[44]. These elements may explain the observations of 
improved prognosis associated with better blood glucose control in hospitalized 
patients with COVID-19, mentioned before.

Altered immune response and hyperinflammation in patients with diabetes and 
COVID-19: Histopathologic analysis revealed in fatal COVID-19 patients the presence 
of massive inflammatory cell infiltration in many organs such as lung, myocardial, 
liver, brain and nerves, kidney and pancreas[45]. Indeed, cytokines are secreted in 
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great abundance and increased levels of inflammatory cytokines were associated with 
increased mortality in patients hospitalized for severe COVID-19 pneumonia. Among 
them, interleukin-6 (IL-6), also associated with cytokine release syndrome, is usually 
associated with diabetes, and denotes low-grade inflammation with circulating IL-6 
Levels higher than in population without diabetes. Interestingly, study cohorts in 
patients admitted for severe COVID-19 pneumonia, showed higher levels of inflam-
mation biomarkers including circulating IL-6, in patients with diabetes than other 
patients[46]. In T2D patients suffering from coronavirus infection, monocytopenia, 
morphological anomaly of increased monocyte size and CD8+T cells specific 
lymphopenia were observed[47]. The deregulation of innate and adaptive immune 
responses could lead to the hyperinflammation observed in severe COVID-19, 
especially in T2D patients. Visceral adipose tissue that is increased in patients with 
diabetes could represent a reservoir of cytokines and therefore could also explain the 
disproportionate inflammatory response observed in patients with diabetes and 
COVID-19.

Obesity and related disorders associated with the risk of severe forms of COVID-19: 
COVID-19 pneumonia may deteriorate in obese patients with diabetes due to poor 
respiratory mechanics. Indeed, when combining obesity and diabetes, patients present 
weaker respiratory muscle strength, reduced lung volume, increased resistance to the 
airways, impaired gas exchange, dysregulation of ventilatory control and bronchial 
dysautonomia[48-50]. Thus, COVID-19 severity could be more severe in case of pre-
existing lung damage associated with obesity. Furthermore, in case of T2D and 
obesity, nonalcoholic fatty liver disease (NAFLD) is highly prevalent, and some data 
suggest that liver steatosis and higher stages of NAFLD (i.e., non-alcoholic steatohep-
atitis and liver fibrosis) would be a risk marker for SARS-CoV-2 infection severity[51]. 
Insulin resistance, a common pathophysiologic trait between obesity and T2D, could 
explain the increased risk of COVID-19 mortality in diabetes and obesity. Indeed, 
triglycerides and glucose index was closely associated with the severity and morbidity 
in COVID-19 patients[52]. In addition, complex interactions can occur between 
adipose tissue and the immune system[53]. Among them, hyperleptinemia and leptin 
resistance commonly observed in obesity, are implicated in the increased secretion of 
pro-inflammatory cytokines that sustain and enhance the inflammatory responses. 
Interestingly, hyperleptinemia and leptin resistance may aggravate clinical outcomes 
in infectious diseases, including H1N1 influenzae but also COVID-19[54,55]. Adipose 
tissue can finally constitute a viral reservoir of SARS-CoV-2, exacerbating the severity 
of COVID-19 through amplification of immune and cytokine activation[56]. Indeed, 
SARS-CoV-2 has a high affinity to bind the angiotensin-converting enzyme 2 (ACE2) 
receptors, highly expressed in adipose tissue. Obese patients have more adipose tissue 
than lean individuals, resulting in more ACE2 receptors. However, association 
between obesity and viral load has not been confirmed[57]. In sum, it is difficult to 
date to distinguish the role of overweight or obesity on the severity of SARS-CoV-2 
infections in patients with T2D mellitus (T2DM) and the diabetic state itself.

Thromboembolic risk is increased in people with diabetes and COVID-19: COVID-
19 is associated with an increased risk of thromboembolic events. Although, as of yet, 
there is no evidence of increased risk of such events in patients with diabetes in the 
setting of COVID-19 infections, several publications reported an increased 
thromboembolic risk in patients with diabetes. In a large population-based study 
which included 56158 patients with T2D and 168474 control patients, T2D patients 
exhibited an increased risk of venous thromboembolism (HR: 1.44, 95%CI: 1.27-1.63). 
Furthermore, the risks of pulmonary embolism were greater in the patients with T2D 
than in the controls (HR: 1.52, 95%CI: 1.22-1.90)[58]. Interestingly, hyperglycemia 
potentiates coagulation, whereas hyperinsulinemia inhibits fibrinolysis, suggesting 
that T2D patients may be especially vulnerable to prothrombotic events during inflam-
matory states such as COVID-19[38,59].

Endothelial cell dysfunction is observed in patients with diabetes and COVID-19: 
Histopathologic studies in patients with COVID-19 revealed evidence of viral presence 
in endothelial cells, and endothelitis was found in vascular beds of multiple organs 
such as heart, kidney, lungs, small intestine, and liver[60]. Vascular endothelial 
dysfunction seem to contribute to the pathophysiology of SARS-CoV-2 infection, by 
causing inflammatory cell infiltration, endothelial cell apoptosis and microvascular 
prothrombotic effects[61]. Interestingly endothelial dysfunction also features in 
patients with diabetes[62]. Hence, infection of dysfunctional endothelial cell by SARS-
CoV-2 may be additive to that of diabetes.
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TREATMENTS, DIABETES AND COVID-19
Impact of antidiabetic treatments on COVID-19 prognosis
The question of the benefit/risk balance of anti-diabetic treatments in patients 
suffering from COVID-19 quickly arose during the first half of 2020. The benefits and 
risks of each antidiabetic treatment as well as the recommendation for their use during 
COVID-19 are summarized in Table 1.

Insulin: Insulin is often the recommended first-line anti-diabetic treatment in severe 
sepsis, especially if there is associated organ failure. Insulin infusion may be effective 
to achieve glycemic targets and improve outcomes in patients with COVID-19[28]. 
Although study design precluded causality analyses, patients with hyperglycemia 
treated with insulin infusion showed lower risk of severe disease than patients 
without insulin infusion. Meanwhile, other studies showed opposite results, with 
significant association between insulin treatment and a poorer prognosis of COVID-19
[8,63,64]. Remarkably, the association between insulin use and mortality was 
independent of patients’ age. Nevertheless, the worse outcome in patients under 
insulin may be related to a more severe and complicated overall state rather than a 
treatment effect. This treatment is also more frequently associated with glycemic 
variability, which has been associated with severe forms of COVID-19. Insulin 
treatment remains, until now, the standard treatment in diabetic patients with severe 
forms of COVID-19.

Dipeptidyl peptidase-4 inhibitors: Dipeptidyl peptidase-4 (DPP4) inhibitors modify 
the biological activity of substrates involved in the immune response to the infection 
and therefore could have potential benefit or harm in COVID-19 course. However, 
evidence from clinical trials on the association between the use of DPP4 inhibitors and 
the risk of community-acquired pneumonia in T2D patients did not show any 
increased risk[65]. Although ACE2 represents the main receptor, DPP4 might also bind 
to SARS-CoV-2[66]. Hence, DPP4 inhibition may play a role in antagonizing the 
DPP4/CD26, which interacts with the S1 domain of the viral spike glycoprotein, 
protein by which SARS-CoV-2 attaches to the ACE-2 receptor expressed on the cells 
surface[67]. Some studies showed better outcome in COVID-19 patients taking DDP-4 
inhibitors, with less severe pneumonia and lower mortality risk[64]. However, in a 
large register study, covering almost the entire population of patients with type 2 
diabetes and COVID in England, DPP-4 inhibitors had a higher risk of COVID-19 
related mortality[63]. However, here again the existence of confounding bias doesn’t 
allow to conclude to a causal effect. Finally, a propensity score analysis from the 
CORONADO study concluded that use of DPP-4 inhibitors during the COVID-19 
pandemic was safe and that they should not be discontinued[68].

Sodium/glucose cotransporter 2 inhibitors: Given the risk of ketoacidosis, especially 
in severe sepsis, some have recommended not to prescribe sodium/glucose cotrans-
porter 2 inhibitors (SGLT-2is) in patients with COVID-19, since SGLT-2is are 
associated with an increased risk of ketoacidosis[69]. However, SGLT-2is could impact 
many processes dysregulated during COVID-19. For example, SGLT-2is reduced, in 
T2D patients, infiltration of inflammatory cells into arterial plaques and decreased the 
mRNA expression levels of some cytokines and chemokines, such as TNF, IL-6 and 
monocyte chemoattractant protein 1[70,71]. This pharmacological class also features 
significant cardiovascular and reno-protective benefits in cardiometabolic disease, and 
may provide similar organ protection in COVID-19. Khunti et al[63] showed, in a 
register study, that SGLT-2is are associated with a significant 18% mortality reduction 
due to COVID-19. DARE-19, a randomized, double-blind, placebo-controlled trial in 
1250 patients is aiming to evaluate the safety and efficacy of dapagliflozin in addition 
to standard of care therapy in hospitalized patients with COVID-19 and high risk of 
severe form including T2D[72]. The full DARE-19 trial results will be presented shortly 
and could answer to the question of the usefulness of iSGLT-2 in COVID-19.

GLP-1 analogues: GLP-1 analogues (GLP-1a) could represent a good therapeutic 
alternative to treat T2D patients. First, targeting GLP-1 axis could improve many 
pathways dysregulated during COVID-19. Exendin-4 can reduce inflammation, 
macrophages activation and monocyte adhesion to endothelial cells and improve 
endothelial function[73,74]. Second, GLP-1a could ameliorate lung injury in animal 
models[75]. Furthermore, GLP-1a have cardiovascular and reno-protective properties 
that could be beneficial during SARS-CoV-2 infection. In the other hand, GLP-1a have 
been associated with increased ACE2 expression in lungs and heart tissue suggesting 
of possible helpful and harmful effects in COVID-19[76]. Khunti et al[63] have shown, 
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Table 1 Use of antidiabetic medications in patients with type 2 diabetes and coronavirus disease 2019

Insulin Sulfonylurea Metformin DPP-4 inhibitors SGLT-2is GLP-1a
Benefits Guarantee of 

achieving glycemic 
control; 
Cardiovascular 
neutrality; Possible 
use in multivisceral 
failure

Cardiovascular 
neutrality 
(demonstrated 
only with 
Glimepiride)

Probable 
cardiovascular benefit; 
No risk of 
hypoglycemia 
improvement of 
inflammation and 
endothelial 
dysfunction

Cardiovascular 
neutrality; Possible 
use in severe renal 
impairment and 
hypoxia; Possible 
inhibitory role on the 
entry of the virus into 
the cell; No risk of 
hypoglycemia

Proved 
cardiovascular and 
renal protective 
benefits; No risk of 
hypoglycemia 
Improvement of 
inflammation 

Proved cardiovascular 
and renal protective 
benefits; Possibility of 
use up to the stage of 
severe renal failure; 
No risk of 
hypoglycemia; 
Improvement of 
inflammation and 
endothelial 
dysfunction

Risks Increased glycaemic 
variability 
hypoglycaemic risks

Hypoglycaemic 
risk, 
contraindication in 
case of severe liver 
and renal failure 

Multiple 
contraindications 
(hypoxia, severe renal 
failure, severe heart 
failure, severe liver 
failure); Risk of lactic 
acidosis especially in 
severe renal failure

Possible 
dysregulation of T 
cell function and T 
cell mediated 
inflammatory and 
immune responses

Reduced efficacy 
in moderate to 
severe renal 
impairment; Risk 
of ketoacidosis, 
especially in severe 
sepsis Risk of 
dehydration

Risk of digestive side 
effects; Risk of 
worsening 
undernutrition 

Association 
with severe 
form of 
COVID-19 in 
observational 
studies

Conflicting results Lower risk of 
severe form of 
COVID-19 or 
neutral association

Lower risk of severe 
form of COVID-19 or 
neutral association

Conflicting results Lower risk of 
severe form of 
COVID-19 or 
neutral association

Neutral association

Medication use 
and severity of 
COVID-19 
infection

Possibility of use at 
all stages of the 
disease and 
particularly in 
severe forms, 
especially 
recommended if 
blood sugar level is 
over 10-11 mM 

Possible use up to 
moderate forms in 
the absence of 
severe renal and 
liver failure

Recommended use up 
to moderate forms in 
the absence of 
contraindications

Possible use up to 
moderate forms

Possible use up to 
moderate forms in 
the absence of 
moderate to severe 
renal failure

Possible use up to 
moderate forms

COVID-19: Coronavirus disease 2019; DPP-4: Dipepetidyl peptidase-4; SGLT-2is: Sodium-glucose cotransporter-2 inhibitors; GLP-1a: Glucagon like 
peptide-1 analogues.

in a register study, that GLP-1a had a neutral effect for COVID-19-related death, as 
observed in the CORONADO study[8]. Although there is insufficient data to support 
the use of GLP-1a instead of insulin in patients with T2D and COVID-19, there is no 
evidence to discontinue them.

Sulfonylureas: Sulfonylureas are not associated with higher risk of COVID-19 
mortality or are even sometimes associated with a lower risk[63]. However, no 
conclusion can be drawn since several biases exist in these studies. Indeed, use of 
sulfonylureas is limited in older and frailty people, in view of an increased risk of 
hypoglycemia.

Metformin: Many studies indicate that chronic metformin usage may have beneficial 
effects on COVID-19 with pre-existing T2D[19,63,77,78]. The findings of these studies 
could be related at least in part to confounding biases. Indeed, metformin is used early 
in the disease course of T2D, whereas other treatments such as insulin are initiated 
later or in case of contraindication to metformin such as renal failure. But surprisingly, 
benefits of metformin on COVID-19 outcomes occurred in spite of an apparently 
greater severity on admission compared with non-users[77]. Metformin could have 
beneficial effects on COVID-19 prognosis because of their protective properties on 
many cell types (e.g., endothelial cells, neurons and glial and cells, cardiomyocytes, 
hepatocytes, macrophages)[79]. Activation of adenosine monophosphate-activated 
protein kinase pathways by metformin could also affect the expression of ACE2, the 
receptor for SARS-CoV-2[80]. Interestingly, one study have shown that metformin 
benefits would be greater in female patients with diabetes and COVID-19[81]. Besides 
COVID-19 setting, metformin use is also associated with a reduction in mortality from 
sepsis in diabetic patients hospitalized in intensive care units[82]. Although there is no 
direct evidence for a protective role of metformin in SARS-CoV-2 infection, some 
elements plead in favor of maintaining this treatment in the absence of contrain-
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dication and in particular acute renal failure or hypoxia.

Treatments against COVID-19: Corticosteroids
COVID-19 pneumonia may various presentations, from the most benign cough to the 
most severe ARDS requiring venovenous extracorporeal membranous oxygenation. 
The pathophysiological features of severe cases of COVID-19 are damages of the 
alveolii, inflammatory infiltrates, and microvascular circulation disorder leading to 
thrombosis. As previously stated, inflammatory organ injury may also, and multiples 
therapeutics have been suggested to decrease inflammatory organ injury but the effect 
of glucocorticoids has been debated.

Since the publication of results of the RECOVERY trial[83], all guidelines concur 
towards the use of corticosteroids in COVID-19 pneumonia: In patients hospitalized 
with COVID-19, use of dexamethasone resulted in lower 28-d mortality among those 
who were receiving either invasive mechanical ventilation or oxygen alone at random-
ization. Study protocol specified 6 mg of intravenous dexamethasone per day for 10 d. 
However, many patients are now treated at home, and French high council for public 
health recommended as alternative the use of methylprednisolone, 32 mg per day, or 
prednisone, 40 mg per day, or at very least the hydrocortisone at the dose of 160 mg 
for days (with decrease in 3 or 4 d), based on glucocorticoid equivalence, although 
results were less conclusive by oral route.

In a large meta-analysis, patients randomized to receive systemic dexamethasone, 
hydrocortisone, or methylprednisolone were compared to those who received usual 
care or placebo[84]. Primary outcome was all-cause mortality at 28 d. This analysis 
included 1703 patients, with 5 trials which reported mortality at 28 d, 1 trial at 21 d, 
and 1 trial at 30 d. There were 222 deaths among 678 patients randomized to corticost-
eroids and 425 deaths among 1025 patients randomized to usual care or placebo [odds-
ratio = 0.66 (95%CI: 0.53-0.82), P < 0.001], in agreement with RECOVERY. Hereafter, 
medical community acknowledged the usefulness of corticosteroids in treating 
COVID-19 patients. Yet, corticosteroids are associated with well-known side effects, 
one of which being steroid-induced diabetes, for which other risk factors may increase 
this risk of adverse reaction. Meanwhile, means to prevent steroid-induced diabetes 
also exist.

Steroid-induced diabetes mellitus
This entity is defined as an abnormal increase in blood glucose due to the treatment, in 
patients with or without previous history of diabetes. Thresholds are for 8-h fasting 
glucose: Above 7.0 mmol/L; after 2-h post-75 g oral glucose tolerance test: Above 11.1 
mmol/L (2 g/L); HbA1c above 6.5%; or in symptomatic patients, a random plasma 
glucose above 11.1 mmol/L (2 g/L)[85]. Prevalence is estimated to between 18.6% and 
25% of patients who use of corticosteroids daily[86]. In a meta-analysis which 
aggregated 13 studies and included 34907 non-diabetic patients treated with glucocor-
ticoids, the incidence of hyperglycemia was 32.3% and that of diabetes was 18.6%[87].

Mechanisms are plural and mostly feature beta cell dysfunction and insulin 
resistance. Beta cell dysfunction participates to insulin insufficiency due to decreased 
systemic release, and decreased sensitivity to glucose. Insulin resistance occurs in the 
liver, skeletal muscle, and fat cells, leading to decreased intracellular signals mediated 
by insulin. From a molecular point of view, glucocorticoids use schematically leads to 
a decrease in phosphorylation of the protein kinase B (PKB), which in turn leads to a 
decrease in activity of the glucose transporters GLUT4, which are less translocated to 
the cell surface, hence, lead to insulin resistance and decrease in glucose uptake, 
particularly at the muscle and adipose tissue level[88]. Besides, glucocorticoids induce 
an upregulation of the enzyme phosphoenolpyruvate carboxykinase (PEPCK) activity 
in the liver, while simultaneously downregulating PEPCK activity in adipose tissue. 
Circulating free fatty acids increase, which leads to insulin resistance and gluconeo-
genesis.

While the effects of glucocorticoids widely differ based on patients who use them, 
even in healthy individuals, they may have a significant impact on metabolism, in 
animal models[89], and even in healthy people[90]. In a study which focused on 
metabolomic profiling in 20 healthy men, 214 plasmatic metabolites were analyzed 
before and after the administration of dexamethasone 4 mg. Overall, 150 of 214 
metabolites were significantly altered even after a single dose of dexamethasone. All 
main energy pathways, including glycolysis, Krebs cycle, urea cycle and lipids, fatty 
acids and amino acids were altered with an expected inter-individual variability.
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Given that glucocorticoids may have that much of an impact even in healthy 
individuals, patients more at risk of developing diabetes such as elderly patients, 
overweight or already insulin resistant patients may be even more impacted by the 
smallest dosages of glucocorticoids. In addition to usual risk factors of developing 
diabetes, other comorbidities are at risk of developing subsequent steroid-induced 
diabetes. Specifically, rheumatic disorders and patients afflicted with chronic kidney 
disease, treated by glucocorticoids may be at higher risk. In a retrospective study 
which included 128 non-diabetic patients with either rheumatic or renal disease who 
started glucocorticoids, 84 (65%) developed diabetes, much higher that the incidence 
observed in the overall population[91]. Independent variables associated with 
incidence of diabetes included age 65 years, HbA1c level 6% and glomerular filtration 
rate below 40 mL/min/1.73m². Interestingly, dosage did not influence risk of 
developing diabetes.

While dexamethasone treatment indicated during COVID-19 treatment is relatively 
short (10 d), adverse effects may occur. In-vitro, beta cell function was studied under 
three regimens of dexamethasone (0.1, 0.5, and 1.0 mg/kg) for 5 d. In the first group 
(0.1 mg/kg) beta cell function increased to satisfy insulin demand. In the second group 
(0.5 mg/kg), beta cell proliferation increased, associated with hyperinsulinemia but 
not hyperglycemia. Finally, the last group (1.0 mg/kg) presented hyperglycemia and 
hyperinsulinemia, and a major increase in beta-cell proliferation and size[92]. In-vivo, 
in 6 healthy men, a single-dose of 75 mg prednisolone did not change fasting plasma 
glucose or insulin, but decreased oral glucose insulin sensitivity[93]. On day 2 beta 
cells recovered, as evidenced by an increase in fasting insulin secretion. The same 
study also looked at the impact of a 2-wk exposure of prednisolone in 33 healthy men, 
the treatment increased the fasting plasma glucose, decreased the index of insulin 
resistance, and decreased the index of insulin sensitivity. These elements showed that 
prednisolone impairs beta cell function in healthy subjects, both in acute and 2-wk 
exposure, meaning that steroids induce insulin resistance but also beta cell 
dysfunction, even for these short periods of administration.

Interestingly, in RECOVERY trial, only few severe adverse events related to 
dexamethasone administration were reported, yet, among 4 severe adverse events 
reported, 2 (50%) included severe hyperglycemia[83]. Only time will allow to assess 
the incidence of diabetes in patients treated with dexamethasone, as compared to 
control treatment. Moreover, the influence of COVID-19 itself on the risk of 
developing diabetes needs to be accounted for.

COVID-19 AS A RISK FACTOR OF DIABETES
SARS-CoV-2 and diabetes
Infections, including COVID-19, may induce hyperglycemia in people without a 
previous diagnosis of diabetes. In fact, patients may present with stress hyperglycemia 
and thus, surpass the threshold only in the context of SARS-CoV-2 infection. Thus, 
hyperglycemia per se is not specific to COVID-19, especially since acute diabetes was 
commonly observed during SARS-CoV-1 epidemic among patients without prior 
history of diabetes and before the use of glucocorticoids[37]. However, the question 
has been raised as to whether SARS-CoV-2 can cause diabetes since new diabetes onset 
have been reported in numerous case reports simultaneously with acute SARS-CoV-2 
infection. Although a meta-analysis of 8 studies including more than 3700 patients 
hospitalized for COVID-19 revealed a pooled incidence of 14.4% for new onset 
diabetes[94], mechanisms by which SARS-CoV-2 may induce diabetes remain unclear. 
Traditionally, 2 components are known to feature in diabetes pathogenesis: (1) Insulin 
resistance in the key tissues involved in glucose homeostasis, i.e., liver, skeletal 
muscles, and adipose tissue; and (2) Impaired insulin secretion by pancreatic β-cells.

SARS-CoV-2 and ACE2
Structural evidence reported that ACE2 was the receptor of SARS-CoV-2. Viral 
infection of host cells occurs through viral spike protein and ACE2 receptor. SARS-
CoV-2 entrance into host cells then induces ACE2 internalization and shedding, 
leading to a down-regulation of ACE2.

Of note, ACE2 belongs to the renin-angiotensin system (RAS). Briefly, 
angiotensinogen, produced by the liver, is cleaved by renin to form angiotensin-I 
which is then catalyzed by ACE to produce angiotensin-II (Ang II). ACE2 is a 
homologue of ACE that can hydrolyze Ang II to Ang-(1-7), whose reported effects 
include vasodilatation, anti-fibrosis, and anti-inflammation (these elements are 
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summarized in Figure 1). As Ang II is associated with insulin resistance[95], a major 
component of T2DM, disturbance of ACE2 activity by SARS-CoV-2 in glucose 
homeostasis key-tissues may induce acute hyperglycemia. In addition, ACE2 
expression was also reported in the endocrine pancreas suggesting that SARS-CoV-2 
may cause beta cell damage inducing diabetes through insulin secretion deficiency
[96], but also in exocrine pancreatic cells[97]. Therefore, dysregulation of ACE2 activity 
caused by COVID-19 infection could lead to diabetes through several mechanisms.

SARS-CoV-2/ACE2 and insulin resistance-induced diabetes
One of the most obvious mechanism by which SARS-CoV-2 induces insulin resistance 
is through systemic inflammation. Indeed, any inflammatory state can cause an insulin 
resistance leading to an increase hepatic glucose production through increased 
counter-regulatory hormones, cytokine and lipid release, and direct hepatocyte injury, 
irrespective of specific potential effects of SARS-CoV-2 on ACE2 activity and its 
repercussions on glucose homeostasis.

Then, since ACE2 is expressed in liver, skeletal muscles and adipose tissue, a 
disturbance in ACE2/Ang-(1-7) activity could lead to a glucose homeostasis disorder. 
Further support to this hypothesis comes from the fact that SARS-CoV-2 viral particles 
were not only identified in the cytoplasm of hepatocytes inducing a massive hepatic 
apoptosis[98], but were also involved in myositis occurrence[99]. Moreover, the loss of 
ACE2 gene in mice leads to hepatic fibrosis and impaired glucose homeostasis through 
an elevated hepatic reactive oxygen species level, an increased oxidative stress and 
inflammation in liver leading to an impairment of insulin signaling[100]. In adipose 
tissue, ACE2 deficiency worsens inflammation in response to a diet-induced obesity in 
mice[101]. Conversely, overexpression of ACE2 or Ang-(1-7) administration improves 
these metabolic disorders i.e., glycemic control and insulin sensitivity[102-104]. Indeed, 
mechanistically, Ang-(1-7) rescues insulin signaling pathway by stimulating PKB 
phosphorylation, a main mediator of insulin signaling pathway, what will then 
activate the downstream glycogen synthase kinase-3β in liver and skeletal muscles 
resulting in a decrease of glycaemia through glycogen storage[105], in several murine 
models of diet-induced insulin resistance such as high-fat diet fed mice or in fructose-
fed rats[106,107]. In adipose tissue, activation of ACE2/Ang-(1-7) prevents inflam-
mation and oxidative stress induced by a high-fat diet and increases glucose uptake 
and adiponectin level[108-110], while its disturbance results in a lower insulin-
dependent glucose uptake and adiponectin secretion[111].

Besides the effects of the inhibition of the above mentioned alternate effects of the 
RAS, in the context of metabolic diseases such as obesity, T2DM or nonalcoholic fatty 
liver disease, plasmatic Ang II is positively correlated with body weight and is 
associated with insulin resistance, suggesting that ACE/Ang II activity is upregulated 
in those metabolic disorders[95]. Besides, on a tissue scale, Ang II was associated with 
increased insulin resistance through oxidative stress leading to a hepatic fibrosis and 
cirrhosis, provoking an impairment of insulin signaling[112]. In skeletal muscles, Ang 
II also induces a decreased glucose uptake and impairs insulin sensitivity[113], while 
in adipose tissue, it inhibits adiponectin secretion and insulin signaling still through an 
increased oxidative stress[114]. These elements emphasize the pro-diabetogenic effects 
of the classical RAS effects.

SARS-CoV-2/ACE2 and insulin secretion deficiency-induced diabetes
In a few COVID-19 human pancreas postmortem examinations, SARS-CoV-2 nucleo-
capsid protein were detected in pancreatic exocrine cells as well as in endocrine β-cells
[115]. Furthermore, the RAS, including ACE2 was also found involved in the 
pancreatic insulin-producing tissue[116]. However, ACE2 expression by β cells 
responsible for insulin secretion remains controversial. Indeed, analyses from 
transcriptional datasets of human islet cells find a very weak expression of ACE2 in 
beta cells. These analyses are supported by immunohistochemistry of human 
pancreatic tissues that do not identify ACE2 expression on β cells but rather on ducts 
and microvascular structures[97], whereas double immunofluorescence labelling in rat 
pancreas indicates that insulin-containing beta cells abundantly express ACE2[117]. 
The latter observations suggest that ACE2 would play a role in insulin-containing beta 
cells and are supported by experiments in ACE2-deficient mice indicating that ACE2 
loss aggravates beta cell dedifferentiation and impairs their proliferation, leading to a 
significant reduction of beta cell mass[118]. Similarly, in a genetic murine model of 
obesity and diabetes, ACE2 overexpression in pancreas, improved glycemic control 
through Ang-(1-7), inducing both β-cell proliferation and apoptosis reduction[102]. As 
expected, similarly as a loss of ACE2, Ang II supplementation in beta cells significantly 
increased endoplasmic reticulum (ER) stress and inflammation leading to reduced 
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Figure 1 Renin angiotensin system: Classical and counter regulatory pathways. ACE: Angiotensin converting enzyme; ACE 2: Angiotensin 
converting enzyme type 2; ACEIs: Angiotensin-converting enzyme inhibitors; ARBs: Angiotensin-2 receptor 1 blockers; AT1R: Angiotensin II receptor type 1; AT2R: 
Angiotensin II receptor type 2; RAS: Renin-angiotensin system. Figure redrawn with permission from the authors (D. Laghlam et al).

insulin secretion whereas Ang II receptor blockade in beta cells reduced significantly 
ER stress and rescues insulin secretion[119].

Moreover, ACE2 was also found on ductal structures and microvasculature of the 
pancreas, new diabetes onset may be secondary to pancreatitis as SARS-CoV-2 has 
been isolated in a pancreatic pseudocyst from a patient with acute pancreatitis. 
However, acute pancreatitis seems to be a very infrequent complication of SARS-CoV-
2 infection. Two cohort studies which included 11000 and 63822 patients with COVID-
19 respectively, acute pancreatitis prevalence was estimated at 0.27% and 0.07%[120]. 
Therefore, acute pancreatitis occurrence in patients with COVID-19 is exceedingly rare 
and its putative mechanism related to direct viral damage of pancreatic cells still need 
investigations.

Therefore, these findings suggest that ACE2 may play a role in the beta cell insulin 
secretory response to hyperglycemia and imply that SARS-CoV-2 could penetrate then 
destroy the insulin-containing beta cells, causing subsequently acute diabetes through 
insulin secretion deficiency.

SARS-CoV-2 and autoimmune type 1 diabetes
Viral infections, in particular by enteroviruses and coronaviruses, have been widely 
associated with T1DM pathogenesis[121]. T1DM is characterized by an autoimmune 
pancreatic β-cells progressive destruction leading to insulin deficiency. Therefore, 
SARS-CoV-2 could also act as an infectious trigger decompensating and precipitating 
diabetic ketoacidosis in patients with no history of diabetes as reported in few case 
reports[122-124], and arising evidence highlight the ability of SARS-CoV-2 to trigger 
autoimmune disorders[125]. Nonetheless, data remain conflictual on this point. 
Evidence from an italian cross-sectional study revealed 23% fewer new-onset cases, 
with more children with new-onset disease presenting in diabetic ketoacidosis during 
early months of pandemia compared to the same period in 2019 while a multicenter 
study from the United Kingdom described an 80% increase in new-onset T1DM in 
children[126]. From a German Diabetes-Prospective Follow-up registry, the rate of 
new-onset T1DM from March to May 2020 did not differ significantly from rates 
observed over the previous decade[127]. However, when this study was done, 
COVID-19 infection incidence rate was relatively low in Germany, and weak effect 
cannot be excluded. Thus, from these studies, no compelling evidence emerge for a 
causal role of SARS-CoV-2 in a change of T1DM incidence. Furthermore, it was 
difficult to differentiate a viral secondary diabetes from a real T1DM as no assay for 
type 1 diabetes antibodies (GAD, IA2, ZNT8, ICA antibodies) has been performed in 
those series. More complexly, a few cases of insulin-dependent diabetes with negative 
antibodies start to emerge suggesting a T1bDM[128]. However, such form of diabetes 
is particularly widespread among Sub-Saharan African, African-Americans and 
Hispanic descendants and case reports concern Caucasian and Asian ethnicities 
suggesting a viral secondary diabetes more than a T1DM or T1bDM. Follow-up 
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studies on the evolution of anti-diabetic therapy are needed to understand the 
pathophysiology of SARS-CoV-2-induced diabetes.

In the end, the potential diabetogenic role of SARS-CoV-2 may be more complex 
than the simple beta cell hosts destruction by the virus through ACE2 expression. 
New-onset diabetes can result from several pathogenic processes involving pancreatic 
cell destruction (including exocrine and endocrine cells) through viral or autoim-
munity destruction and/or insulin resistance in liver, skeletal muscles, and adipose 
tissue through disturbance of ACE2/Ang-(1-7) activity.

CONCLUSION
Diabetic patients are heavily impacted by the effects of COVID-19, as they are more at 
risk of developing severe forms and are more at risk of mortality. While antidiabetic 
treatments are still under investigation, data do not warrant discontinuation of these 
treatment in diabetic patients. While corticosteroids count among the few validated 
medications in severe COVID-19 pneumonia, they expose patients to a hypothetical 
risk of new onset of diabetes or diabetes deterioration, even though treatment duration 
is short. Finally, risk of developing diabetes after COVID-19, due to interactions with 
the angiotensin-converting-enzyme 2 needs to be accounted for when assessing risk of 
subsequent diabetes in treated patients.
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Abstract
The prevalence of diabetes has increased rapidly throughout the world in recent 
years. Currently, approximately 463 million people are living with diabetes, and 
the number has tripled over the last two decades. Here, we describe the global 
epidemiology of diabetes in 2019 and forecast the trends to 2030 and 2045 in 
China, India, USA, and the globally. The gut microbiota plays a major role in 
metabolic diseases, especially diabetes. In this review, we describe the interaction 
between diabetes and gut microbiota in three aspects: probiotics, antidiabetic 
medication, and diet. Recent findings indicate that probiotics, antidiabetic 
medications, or dietary interventions treat diabetes by shifting the gut 
microbiome, particularly by raising beneficial bacteria and reducing harmful 
bacteria. We conclude that targeting the gut microbiota is becoming a novel 
therapeutic strategy for diabetes.
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INTRODUCTION
The global prevalence of diabetes has grown rapidly in recent decades. Diabetes is 
becoming a serious global health threat, and is one of the top 10 leading causes of 
death among adults[1]. The etiology and progression of diabetes are commonly driven 
by genetic and environmental factors. The International Diabetes Federation (IDF) 
estimates that in 2019 there were 463 million cases of diabetes mellitus worldwide and 
approximately 4.2 million adults died from diabetes and its complications[2]. It is 
estimated that approximately 700 million adults will be diagnosed with diabetes by 
2045. Diabetes mellitus is a group of metabolic diseases that cause high blood glucose, 
and primarily includes type 2 diabetes (T2D), type 1 diabetes, prediabetes, and 
gestational diabetes. T2D is the most common type of diabetes and represents approx-
imately 90% of all diabetes patients worldwide[3].

The gut microbiota is a collective term for the intestinal microbial community, 
which plays a crucial role in maintaining health and disease pathogenesis. Recently, 
the gut microbiome has become an emerging research area for diabetes management, 
as gut dysbiosis directly or indirectly participates in diabetes by affecting host 
intestinal barrier functions and metabolic homeostasis[4]. Animal and human studies 
have identified related differences in the composition of the gut microbiota in patients 
with diabetes[5]. In this review, we describe global trends in diabetes in 2019, predict 
the trends to 2030 and 2045, and summarize the latest findings regarding the gut 
microbiota in diabetes.

EPIDEMIOLOGY OF DIABETES
Diabetes is one of the fastest growing global health challenges in the last 40 years, with 
the number of adults living with diabetes rising from 108 million in 1980 to 463.0 
million (368.7–600.6 million) in 2019. This number is projected to reach 578.4 million 
(456.5–747.6 million) in 2030 and 700.2 million (540.7–904.6 million) in 2045. The global 
prevalence of adult diabetes increased from 4.7% in 1980 to 8.3% (6.2%–11.8%) in 2019, 
and is projected to reach 9.2% (6.8%–12.9%) in 2030 and 9.6% (7.1%–13.4%) in 2045[1]. 
Although the common long-term complications in diabetic patients develop gradually, 
they could be disabling or even life-threatening over time[6]. Diabetes is a major cause 
of many diseases, such as eye damage, kidney failure, heart and blood vessel disease, 
neuropathy, Alzheimer’s disease, and lower limb amputation. Global diabetes-related 
health spending continues to grow rapidly as well. It was 760 billion US dollars in 
2019, approximately 10% of total global health spending, and is expected to reach 825 
billion US dollars in 2030 and 845 billion in 2045[7].

China and India were the two countries with the highest number of adult diabetic 
patients in 2019 and are projected to remain so in 2030 and 2045, due to the 
demographic and socioeconomic status factors. The IDF Diabetes Atlas (9th edition 
2019) estimated the number of people with diabetes in China, India, USA, and the 
world in 2019, and projected that by 2030 and 2045 (Figure 1), the number of adults 
living with diabetes in China will increase from 116.4 million (108.6–145.7 million) in 
2019 to 140.5 million (130.3–172.3 million) in 2030, and 147.2 million (134.7–176.2 
million) in 2045. In India, the number of diabetes cases is projected to grow from 77.0 
million (62.4–96.4 million) in 2019 to 101.0 million (81.6–125.6 million) in 2030, and 
134.2 million (108.5–165.7 million) in 2045. The number of adult diabetes cases in the 
USA will increase from 31.0 million (26.7–35.8 million) in 2019, to a projected 34.4 
million (29.7–39.8 million) in 2030 and 36.0 million (31.0–41.6 million) in 2045. Over the 
last 40 years, the number of people with diabetes has quadrupled throughout the 
world. The prevalence of diabetes will increase more rapidly in low-income than in 
high-income countries in the near future[1]. Unmet medical needs related to diabetes 
are a growing global public health problem.

INTERACTION BETWEEN DIABETES AND GUT MICROBIOTA
Observational findings from recent epidemiological, physiological and metabolomic 
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Figure 1 Millions of diabetes cases in 2019 and projections to 2030 and 2045, with projected percentage changes. Data are from the 
International Diabetes Federation Diabetes Atlas (9th edition 2019).

studies, complemented by cellular and animal experiments and clinical trials, it 
appears that microbial communities may contribute to the pathogenesis of a variety of 
common metabolic disorders, including obesity and diabetes, and their complications
[3,8]. Although accumulative evidence suggests that the gut microbiota is a factor 
influencing diabetes, the underlying mechanisms remain unclear. Due to the crosstalk 
between the gut microbiota and host homeostasis, the gut microbiome is thought to 
play a crucial role in obesity and associated metabolic dysfunction[9,10]. The gut 
microbiome has been shown to affect host metabolism, food consumption, body 
weight, and glucose and lipid homeostasis. Gut dysbiosis or altered microbiota 
composition has been detected in obesity and diabetes in human and murine models
[11]. Treatment with probiotics, antidiabetic medications, or dietary interventions can 
orchestrate the gut microbiome, leading to increased probiotic bacteria and decreased 
harmful bacteria, and these changes subsequently contribute to bodyweight loss, 
suppression of inflammation, and maintenance of glucose homeostasis in the host[12]. 
Targeting the gut microbiota is developing into a possible therapeutic strategy for 
diabetes.

Probiotics
Probiotics are living microorganisms that provide health benefits to their host, partic-
ularly the digestive system. Probiotics, such as Akkermansia, Bacteroides, Bifidobacterium 
and Lactobacillus, are currently suggested as novel and potential biotherapeutics in the 
prevention and management of diabetes[13,14]. Oxidative stress is a key player in the 
development of diabetes and diabetes-related complications[15]. Supplementation 
with probiotics and also synbiotics could be beneficial for patients diagnosed with 
diabetes also because these products lower oxidative stress levels[16,17]. Cumulative 
studies have proven the efficacy of probiotics in the treatment of diabetes by 
decreasing fasting glucose and insulin levels in animal models and clinical trials[18].

Akkermansia muciniphila is a species of mucin-degrading bacteria recently found in 
the human gut, and its abundance has been reported to be inversely correlated with 
obesity, T2D and inflammation[19-22]. Administration of A. muciniphila protected 
against high fat diet (HFD)-induced obesity and insulin resistance by suppressing 
inflammation and improving gut barrier function. In addition, a purified protein in the 
outer membrane of A. muciniphila called Amuc-1100 could improve metabolic 
syndrome in obese and diabetic mice through the Toll-like receptor 2 signaling 
pathway[23]. In human clinical trials, supplementation with A. muciniphila compared 
to the placebo improved insulin sensitivity, reduced insulinemia and plasma total 
cholesterol, and decreased body weight in overweight/obese insulin-resistant 
volunteers[24]. In our recent studies, we found that melatonin, a probiotic agent, 
partially improved insulin resistance by increasing the abundance of A. muciniphila in 
HFD-fed mice[25]. A. muciniphila is considered a promising probiotic to improve 
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diabetes and obesity-associated metabolic disorders.
Bacteroides is a common genus associated with the risk of T2D in patients. However, 

the role of Bacteroides in diabetes is controversial. Some studies have shown that the 
abundance of Bacteroides is inversely associated with diabetes risk[26-30], while others 
have reported a positive association in different species[31-33]. This inconsistency may 
be explained by the underlying feedback mechanism of the gut microbiome at 
different stages of the disease or in different animal models. The ratio of Bacteroidetes 
to Firmicutes, previously identified as a marker for metabolic diseases, does not seem 
to be consistently associated with diabetes risk[14]. In animal studies, treatment with 
Bacteroides acidifaciens and Bacteroides uniformis prevents obesity and improves insulin 
susceptibility in diabetic mice[34,35]. These studies suggest that Bacteroides may have a 
beneficial effect on diabetes.

Bifidobacterium, also known as Lactobacillus bifidus, is frequently reported in T2D 
protection studies. Bifidobacterium strains are crucial probiotics in the dairy industry, 
due to their unique function of fermenting carbohydrates via the fructose-6-phosphate 
phosphoketolase pathway[36]. Numerous studies have shown that Bifidobacterium has 
beneficial effects on glucose tolerance in individuals with T2D and diabetic murine 
models[37-39]. Oral administration of Bifidobacterium decreases blood glucose concen-
tration and glycosylated hemoglobin levels, and improves lipid profiles, insulin 
resistance, and antioxidant indexes, through insulin receptor substrate/phosphoin-
ositide 3-kinase/protein kinase B and kelch-like ECH-associated protein 1/nuclear 
factor erythroid 2-related factor 2 signaling pathway in murine diabetic models[40]. 
Bifidobacterium may be a promising probiotic to treat diabetes.

Lactobacillus is the most commonly used probiotic in industry to control food 
fermentation, such as yogurt, cheese, wine, and other fermented foods. Studies of the 
composition of gut microbiota showed some species in this genus were increased in 
T2D patients, such as Lactobacillus acidophilus, Lactobacillus gasseri and Lactobacillus 
salivarius, whereas Lactobacillus amylovorus was decreased in patients with diabetes[41-
43]. Oral supplementation of Lactobacillus, such as Lactobacillus casei, Lactobacillus 
curvatus, L. gasseri, Lactobacillus paracasei, Lactobacillus plantarum, Lactobacillus reuteri, 
Lactobacillus rhamnosus and Lactobacillus sakei, exhibited beneficial effects in diabetic 
mice and individuals with diabetes[44-54]. The antidiabetic mechanism of Lactobacillus 
by inhibiting endotoxin secretion and activating G-protein-coupled receptor 43 
pathway has been reported[55]. The combination of Lactobacillus and Bifidobacterium is 
widely used in clinical practice to synergistically maintain a healthy digestive tract. 
Growing evidence supports that probiotics are a safe and effective treatment strategy 
under certain clinical conditions of diabetes.

Diet
Diet is an essential regulator of the gut microbiome[56]. Interactions between diet and 
gut microbiota have been reported to affect obesity, insulin resistance, and the chronic 
inflammatory response of the host[57]. Here, we mainly summarize the roles of diet in 
the gut microbiome and diabetes.

Diet composition is vital in diabetes development. Diabetes was considered a 
disease of the rich, because of its high prevalence among the rich who access food 
more easily, including flour, sugar, fat and meat[58]. It has been shown that diets with 
high levels of sugar, fat and cholesterol increase the risk of diabetes. These diets cause 
gut dysbiosis and damage the intestinal mucosal barrier that facilitates the 
development of diabetes[59,60]. High-fiber diet is a well-known healthy diet with 
various benefits, such as improving bowel movements, lowering cholesterol, achieving 
a healthy weight, and controlling blood sugar levels. Dietary fibers consist of cellulose, 
resistant starch and dextrin, inulin, lignin, pectin, -glucan, and oligosaccharides. They 
are abundant in whole-grain bread and cereals, legumes, rice, vegetables and fruits, 
and cannot be completely digested or absorbed by the human digestive system[61,62]. 
Dietary fibers play an essential role in maintaining the gut microbiota and gut health, 
as they can be catalyzed and fermented by certain gut microbes and produce beneficial 
metabolites, such as short-chain fatty acids (SCFAs)[63]. In the gut, approximately 95% 
of SCFAs are acetate (C2), propionate (C3), and butyrate (C4)[64]. Studies have shown 
that acetate is mainly produced by bacteria, such as A. muciniphila, Bifidobacterium spp., 
Bacteroides spp., Lactobacillus spp., Prevotella spp., Ruminococcus spp. and Streptococcus 
spp. through the acetyl-coenzyme A pathway[65,66]. Propionate is mainly produced 
by Bacteroides spp., Coprococcus catus, Dialister spp., Megasphaera elsdenii, Phascolarcto-
bacterium succinatutens, Roseburia inulinivorans, Ruminococcus obeum, Salmonella spp. and 
Veillonella spp. through three known pathways, i.e., succinate pathway, acrylate 
pathway, and propanediol pathway[66,67]. Butyrate is produced primarily in Anaero-
stipes caccae, Clostridium leptum, Coprococcus catus, Coprococcus eutactus, Eubacterium 
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hallii, Eubacterium rectale, Faecalibacterium prausnitzii, and Roseburia spp., by enzymatic 
catalysis, such as butyryl-CoA dehydrogenase, butyryl-CoA transferase, and phospho-
transbutyrylase or butyrate kinase[66,68]. SCFAs are critical modulators in patho-
physiological events of diabetes. They act directly as histone deacetylase inhibitors and 
increase protective glucagon-like peptide-1 secretion[69], which decreases blood 
glucose levels, improves insulin resistance, and suppresses inflammation. Our 
previous studies have shown that dietary lipid adsorbent montmorillonite regulates 
intestinal absorption and gut microbiota, such as increasing SCFAs-producing Blautia 
bacteria, thereby preventing obesity and insulin resistance in HFD-fed murine models
[70,71]. However, dietary effects on the shift of gut microbiota appear to be temporary
[72]. Habitual diets, which have a longer lasting influence on the gut microbiome, may 
be a viable strategy.

Antidiabetic medications 
Metformin is an oral antidiabetic medication. It has been used in the treatment of T2D 
for > 60 years due to its distinct effects on decreasing glucose production and 
increasing insulin sensitivity, as well as its safety profile. Metformin originates from 
Galega officinalis, a natural source of galegine[73]. Traditionally, activation of the AMP-
activated protein kinase signaling pathway in the liver is thought to be the mechanism 
of its antidiabetic effects[74]. Recent findings indicate that metformin also orchestrates 
gut microbiome in mice and humans[43]. Sun et al[33] reported that metformin 
improves hyperglycemia through the gut microbiota-bile acid-intestinal farnesoid X 
receptor (FXR) axis in T2D patients. FXR is an important target in regulating glucose 
and lipid homeostasis. Metformin reduces the level of Bacteroides fragilis in the gut, 
leading to an increase in the FXR antagonist, glycoursodeoxycholic acid. Treatment 
with metformin also increased the abundance of probiotics A. muciniphila and SCFA-
producing microbiota, such as Butyrivibrio, B. bifidum, and Megasphaera in murine and 
human studies[31]. Here, we summarize the role of the gut microbiome in the 
antidiabetic effects of metformin (Figure 2).

Acarbose, an α-glucosidase inhibitor, is an oral prescription medication used to 
control blood glucose in T2D treatment. Acarbose has been reported to alter the 
composition of gut microbiota in patients with T2D, in particular increasing the 
abundance of Bifidobacterium longum and decreasing the level of lipopolysaccharides
[75]. Vildagliptin, a dipeptidyl peptidase 4 inhibitor, is an oral antihyperglycemic 
agent that enhances insulin secretion and suppresses glucagon release. Vildagliptin 
supplementation decreases the level of Oscillibacter and increases the proportion of 
Lactobacillus in HFD-induced mouse models[76]. Sitagliptin, another DPP-4 inhibitor, 
appears to exhibit antidiabetic functions during pregnancy in rats by reducing Lactoba-
cillus spp. and increasing Bifidobacterium spp.[9,77]. Dapagliflozin, a sodium-glucose 
cotransporter-2 inhibitor, is a medication used to treat T2D. Treatment with 
dapagliflozin decreases the ratio of Firmicutes to Bacteroidetes and the abundance of 
Oscillospira, and increases the abundance of A. muciniphila in diabetic murine models
[78,79]. Thiazolidinediones (TZDs) are a class of oral hypoglycemic agents for the 
treatment of T2D[80,81]. TZDs function through the activation of the peroxisome 
proliferator-activated receptor (PPAR) signaling pathway[82,83]. Pioglitazone, a 
member of TZDs, is widely used to treat T2D. It has been reported that treatment with 
pioglitazone reduces the α-diversity of the gut microbiota in murine T2D models, 
which may be one of the mechanisms mediating its antidiabetic function[79]. In our 
previous studies, Danshensu Bingpian Zhi, a synthetic derivative of danshensu and 
borneol, is a PPARγ agonist that prevents HFD-induced atherosclerosis, obesity, and 
insulin resistance in mice in part by reversing intestinal microbiota dysbiosis, such as 
increasing the ratio of Bacteroidetes to Firmicutes, increasing the level of Akkermansia, 
and reducing the level of the harmful bacterium Helicobacter marmotae[84]. These 
results suggest that gut microbiome is a potential target of many anti-diabetic 
medications clinically.

Traditional Chinese medicines (TCMs) have a long history of treating diabetes, but 
their mechanisms are not fully understood. Several studies have suggested that TCMs 
have multiple therapeutic effects on diabetes, including antioxidation, suppression of 
inflammation, protection of intestinal mucosal barrier, and inhibition of lipotoxicity, 
mainly by remodeling the gut microbiota[85]. Berberine, a well-known bioactive 
alkaloid extracted from TCM Coptis chinensis, has been used for the treatment of 
diarrhea and diabetes. Berberine is useful in diabetes management because its 
administration is associated with a decrease of obesity indices, such as body mass 
index and waist circumference[86]. Berberine maintains gut health in rats and humans 
with diabetes by increasing the abundance of Bifidobacterium and Lactobacillus, and 
decreasing the abundance of Escherichia coli[87,88]. Gegen Qinlian Decoction can 
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Figure 2 The schematic mechanisms of metformin act through the gut microbiome and the related beneficial effects on diabetes. AMPK: 
AMP-activated protein kinase; FXR: farnesoid X receptor; GUDCA: glycoursodeoxycholic acid; SCFAs: short-chain fatty acids.

relieve T2D in clinical trials, which is associated with an increase in the level of 
beneficial bacteria, such as Faecalibacterium spp.[89]. In addition, Banxia Xiexin 
Decoction, Huanglian Jiedu Decoction, and Qijian mixture also have beneficial effects 
by regulating gut microbiota[85,90,91]. These results suggest that gut microbiota is 
likely a new direction in elucidating the antidiabetic mechanism of TCMs.

CONCLUSION
Diabetes has become an urgent public health threat, and the growing trend of diabetes 
cases is expected to continue for the next two decades and beyond. Gut microbiome 
plays a critical role in health maintenance, and the dysregulation of gut microbiome 
can contribute to the development and progression of the disease. Here, we 
summarized the interaction between diabetes and the gut microbiota. Gut dysbiosis is 
increasingly recognized as a mechanism that induces metabolic diseases. Accumu-
lating studies have shown that the gut microbiome is a key factor in the 
pathophysiology of diabetes, but research in this area is still in the early stages. Most 
of the studies have only shown that changes in the composition of the gut microbiota 
are associated with the progression of metabolic diseases. The exact causal relationship 
between a specific intestinal bacterium and phenotypic exposure is still not well 
understood. Further experiments using fecal or bacterial transplantation in germ-free 
mice and clinical studies are required to obtain a deeper understanding of the roles of 
individual bacteria in metabolic diseases. The use of metabolomics and transcrip-
tomics to study the gut microbiome is a more effective strategy to understand the role 
of microbiota in the progression of host disease.

Traditionally, most pharmacological agents used for treatment of diabetes directly 
regulate the signaling pathways involved in glucose and insulin homeostasis. 
However, the gut microbiota is becoming an emerging therapeutic target for diabetes. 
In view of the good performance of herbal agents, particularly TCMs, in regulating gut 
microbiota, more consideration should be given to the use of medicinal herbs for the 
treatment of diabetes.
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Abstract
Metabolic syndrome is a pre-diabetic state characterized by several biochemical 
and physiological alterations, including insulin resistance, visceral fat accumu-
lation, and dyslipidemias, which increase the risk for developing cardiovascular 
disease. Metabolic syndrome is associated with augmented sympathetic tone, 
which could account for the etiology of pre-diabetic cardiomyopathy. This review 
summarizes the current knowledge of the pathophysiological consequences of 
enhanced and sustained β-adrenergic response in pre-diabetes, focusing on 
cardiac dysfunction reported in diet-induced experimental models of pre-diabetic 
cardiomyopathy. The research reviewed indicates that both protein kinase A and 
Ca2+/calmodulin-dependent protein kinase II play important roles in functional 
responses mediated by β1-adrenoceptors; therefore, alterations in the expression or 
function of these kinases can be deleterious. This review also outlines recent 
information on the role of protein kinase A and Ca2+/calmodulin-dependent 
protein kinase II in abnormal Ca2+ handling by cardiomyocytes from diet-induced 
models of pre-diabetic cardiomyopathy.

Key Words: Ca2+/calmodulin-dependent protein kinase II; Protein kinase A; Metabolic 
syndrome; Pre-diabetes; Pre-diabetic cardiomyopathy; β-Adrenoceptors
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Core Tip: Metabolic syndrome affects heart function leading to pre-diabetic cardiomy-
opathy. In an attempt to overcome contractility dysfunction, the activity of the 
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sympathetic nervous system increases, but chronic stimulation of β-adrenoceptors leads 
to alterations in both protein kinase A and Ca2+/calmodulin-dependent protein kinase II 
activity, the main effectors of the β-adrenergic response. This work recapitulates 
current evidence about the participation of protein kinase A and Ca2+/calmodulin-
dependent protein kinase II in experimental pre-diabetic cardiomyopathy, emphasizing 
the prevailing role of CaMKII in the development of cardiomyocyte Ca2+ mishandling 
and myocardial dysfunction associated with pre-diabetes.
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INTRODUCTION
Pre-diabetes, a high-risk state for the development of type 2 diabetes mellitus (DM2), 
is a condition where glycemia is higher than normal but not yet high enough for DM2 
diagnosis[1,2]. According to the American Diabetes Association this condition is 
identified by laboratory tests, including fasting blood glucose (FBG) values 100-125 
mg/dL, glycated hemoglobin in the range of 5.7%-6.4% or 2 h blood glucose values 
140-199 mg/dL (75-g oral glucose tolerance test)[2-4].

Metabolic syndrome (MetS) is considered a pre-diabetic state and currently 
represents a serious public health problem because of its increasing worldwide 
prevalence. MetS comprises a cluster of biochemical and physiological alterations that 
become risk factors for cardiovascular disease (CVD)[3]. Key components of MetS are 
central obesity, elevated triglyceride levels, low high-density lipoprotein cholesterol 
levels, high blood pressure, and dysglycemia. Insulin resistance (IR) is the critical 
factor underlying MetS, although the pathogenesis remains unclear. Furthermore, an 
important feature of MetS patients is the prevalence of a hyperadrenergic state that 
could account for the development of cardiac disease[5,6].

For DM2 patients, the term diabetic cardiomyopathy refers to the presence of Ca2+ 
mishandling, cardiomyocyte hypertrophy, apoptosis, and fibrosis, together with 
abnormal myocardial performance in the absence of hypertension, coronary artery 
disease, or valvular heart disease[7,8]. Although the clinical entity of pre-diabetic 
cardiomyopathy still lacks a universally accepted definition, studies have linked pre-
diabetes to CVD. Each MetS component represents a risk factor for CVD; in 
combination, these components increase the rate and severity of CVD as it relates to 
several conditions including microvascular dysfunction, coronary atherosclerosis and 
calcification, and cardiac dysfunction, which lead to myocardial infarction and heart 
failure (HF)[3]. In animal models of pre-diabetes, obesity, IR, and other components of 
MetS can lead to cardiac dysfunction associated with structural and functional 
abnormalities (Table 1), implying cardiomyopathy mechanisms different from those of 
DM2. Furthermore, observational studies and large sample meta-analyses show that 
pre-diabetes, defined as impaired glucose tolerance, impaired FBG, or raised glycated 
hemoglobin, was associated with increased risk of CVD[9,10] and HF[11]. Moreover, 
meta-analysis of longitudinal studies indicates that MetS is linked to increased risk of 
myocardial infarction, stroke, and CVD, with the risk estimate being higher than that 
corresponding to its individual components[12,13]. A disturbing finding is that young 
pre-diabetic patients with evident impaired FBG levels show increased prevalence of 
left ventricular hypertrophy, reflecting that heart damage is already present at an early 
phase of glucose metabolism alteration[14]. Patients with obesity, dyslipidemia, or IR 
(MetS components) are likely to develop similar metabolism-related cardiomyopathy 
even in the absence of diabetes[15] However, the mechanisms involved in the 
pathogenesis of what must be considered pre-diabetic cardiomyopathy remain poorly 
understood. For the purpose of this review, we will refer to IR-induced cardiomy-
opathy, obesity-related cardiomyopathy, or MetS-induced cardiomyopathy as ‘pre-
diabetic cardiomyopathy.’

Several reviews address the contribution of altered cardiac metabolism to 
dysfunction[7,15-18]; in this work we focus primarily on the possible link between pre-
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Table 1 Characteristics of experimental models of pre-diabetic cardiomyopathy

MetS parameters
Animal model

BW BP BG IR TG HDL-C
Cardiovascular dysfunction Ref.

Dogs

HFD dogs (80% of 
calories from fat, 5 wk)

↑ ↑ ↔ + ND ND ↑ Heart rate; ↓ Myocardial oxygen delivery and 
metabolism; ↓ Cardiac index after exercising. ↑ 
Aortic pressure

Setty et al[51] and 
Dincer et al[73]

Rats

Sucrose-fed Wistar 
rats (68%, 7-10 wk)

↔ ND ↔ + ND ND ↓ FS; + Systolic dysfunction Dutta et al[68]

Sucrose-fed Sprague-
Dawley rats (68%, 7-10 
wk)

↔ ND ↔ + ND ND ↔ Heart hypertrophy; ↓ FS; + Systolic dysfunction Hintz et al[67], and 
Hintz and Ren[72]

Sucrose-fed Wistar 
rats (30%, 17-24 wk)

↔ ↑ ND + ↑ ↓ ↔/↑ Heart rate; ↓ Ventricular pressure; ↑ 
Arrhythmia incidence after reperfusion

López-Acosta et al[56], 
and Carvajal and Baños
[60]

Sucrose-fed Sprague-
Dawley rats (32%, 10 
wk)

↑ ND ↑ + ↑ ND ↔ Heart hypertrophy; ↓ FS and EF; ↑ Septum 
dimension

Vasanji et al[52]

Sucrose-fed Wistar 
rats (30%, 24 wk)

↑ ↑ ↔ ND ↑ ↔ ↔ Heart hypertrophy; + Systolic dysfunction; ↓ 
Cardiac cell contraction

Barrera-Lechuga et al
[53] and Fernández-
Miranda et al[70]

Sucrose-fed Wistar 
rats (30%, 35 wk)

↑ ↔ ND ND ND ND ↔ Heart rate; ↔ Heart hypertrophy; ↓ FS Paulino et al[65]

Sucrose-fed Wistar 
rats (30%, 16-18 wk)

↔ ↔ ↔ + ↑ ND + Systolic dysfunction Balderas-Villalobos et al
[69]

Sucrose-fed Wistar 
rats (20%, 8 wk)

↑ ND ↔ + ↔ ↓ ↓ Heart rate; ↑ SAN rate variability; ↑ SAN fat 
deposits

Albarado-Ibañez et al
[54]

Sucrose-fed Wistar 
rats (32%, 16 wk)

↑ ↑ ↑ + ↑ ND ↑ Heart rate; ↑ Heart hypertrophy; ↓ Heart 
contractility; ↑ Cardiomyocyte lipid deposits; ↑ 
Aortic pressure

Okatan et al[27,28]

Fructose-fed Wistar 
rats (10%, 3 wk)

↔ ↔ ↔ + ↑ ↓ ↓ Heart rate; ↑ Heart hypertrophy; ↓ FS; ↓ Heart 
contractility; + Systolic dysfunction; + Diastolic 
dysfunction; + LV hypertrophy; ↑ Arrhythmia 
incidence

Sommese et al[55]

HFD Long-Evans rats 
treated with STZ (40% 
lard, 21 wk)

↑ ↔ ↑ + ↔ ↔ ↔ Heart rate; ↔ Heart hypertrophy; ↔ FS; ↑ Lipid 
in the myocardium; + Diastolic dysfunction

Koncsos et al[62]

Sucrose-fed Wistar 
rats (30%, 4 mo)

↑ ND ↔ + ↑ ↓ ↑ Heart rate; ↔ Heart hypertrophy; + Diastolic 
dysfunction; ↑ Arrhythmia incidence

Romero-García et al[48] 
and Landa-Galvan et al
[57]

Mice

Fructose-fed C57bl/6 
mice (10%, 3 wk)

↔ ↔ ↔ + ND ND ↓ FS; + LV hypertrophy; + Systolic dysfunction Federico et al[71]

HFD C57bl/6 mice 
(60% of calories from 
fat, 8 wk)

↑ ND ↑ ND ↔ ND ↑ Heart rate; ↔ FS; ↑ Arrhythmia incidence Sánchez et al[63]

HFD FVB-mice (45% 
of calories from fat, 5 
mo)

↑ ↔ ND + ND ND ↔ Heart rate; ↑ Heart hypertrophy; ↓ FS; + Systolic 
dysfunction

Dong et al[66]

↔: No change; +: Presence; ↓: Decreased; ↑: Increased; BG: Blood glucose; BP: Blood pressure; BW: Body weight; EF: Ejection fraction; FS: Fractional 
shortening; HDL-C: High-density lipoprotein cholesterol; HFD: High-fat diet; IR: Insulin resistance; LV: Left ventricle; MetS: Metabolic syndrome; SAN: 
Sinus Atrial Node; STZ: Streptozotocin; TG: Triglycerides; ND: Not determined.

diabetic cardiomyopathy and alterations in the β-adrenergic system and two main 
downstream signaling effectors: cAMP-dependent protein kinase A (PKA) and Ca2+

/calmodulin-dependent protein kinase II (CaMKII).
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In cardiac cells, the expression and activity of key Ca2+ handling proteins involved 
in excitation-contraction coupling (ECC) are altered in IR and diabetic cardiomyopathy
[8]. Under physiological conditions, cardiac ECC begins with Ca2+ influx through L-
type voltage-dependent Ca2+ channels. A small influx of Ca2+ activates the intracellular 
Ca2+ channel/ryanodine receptor (RyR) through a mechanism known as Ca2+-induced 
Ca2+ release, eliciting a transient Ca2+ increase in the cytoplasm of the cardiac cell that 
in turn activates the contractile machinery. Relaxation involves the clearance of 
intracellular Ca2+ by: (1) Re-uptake into the sarcoplasmic reticulum Ca2+ stores through 
the activity of the sarcoplasmic reticulum Ca2+ ATPase; and (2) Ca2+ extrusion by the 
Na+/Ca2+ exchanger in the sarcolemma[19].

The β-adrenergic response is the main regulatory pathway of ECC, involving the 
activation of PKA and CaMKII. These kinases phosphorylate several Ca2+ handling 
proteins, including L-type voltage-dependent Ca2+ channels, RyRs, and phospho-
lamban (PLN), thereby modifying their activity[20] (Figure 1). In this review, we 
summarize the recent evidence of alterations in the expression and/or activity of PKA 
and CaMKII in diet-induced animal models of pre-diabetic cardiomyopathy. This 
work also emphasizes the prevailing role of CaMKII in the development of myocardial 
dysfunction associated with pre-diabetes (Figure 1).

β-ADRENERGIC RECEPTOR SIGNALING IN THE HEART: PKA AND 
CAMKII ACTIVATION
The heart is innervated by parasympathetic and sympathetic fibers that regulate 
contractility rate and force. Sympathetic innervation of the atria and ventricles is 
provided by the stellate ganglion, whereas the vagus nerve provides parasympathetic 
fibers to the sinoatrial node, atrioventricular node, and atria[21].

Sympathetic fibers synthesize and release noradrenaline (NA), while chromaffin 
cells located in the medulla of adrenal glands synthesize and release adrenaline (A) 
into the bloodstream. Both catecholamines exert their functional effects through the 
activation of selective receptors, called adrenoceptors (ARs)[22]. ARs are divided into 
three families: α1, α2, and β. The α1-AR family is composed of α1A, α1B, and α1D receptors, 
the α2-AR family by α2A, α2B, and α2C subtypes, and the β-AR family comprises the β1, β2, 
and β3 receptors. All three α1-AR subtypes couple predominantly to Gαq/11 proteins; 
their activation leads to phospholipase C stimulation, activation of protein kinase C, 
and inositol 1,4,5-trisphosphate-mediated Ca2+ release from intracellular stores[23]. α2-
ARs couple to Gαi/o proteins, reducing cAMP formation, and inhibiting N- and P-type 
voltage-activated Ca2+ channels[24]. β-ARs mainly couple to Gαs proteins, eliciting 
adenylyl cyclase (AC) activation and cAMP formation[22] (see below), although 
stimulation of β2- and β3-ARs also activates Gαi/o proteins[25,26].

The regulation of cardiac function by the sympathetic nervous system via β-ARs is 
of particular interest because dysregulation of this system has been reported in HF and 
metabolic disorders such as DM2 and MetS[27-29].

Radioligand binding assays with human heart preparations indicate that cardiac 
tissues express mainly β1- and β2-ARs, which represent 90% of all ARs and are 
expressed at an 8:2 ratio in both atria and ventricles[30]. There is also evidence for the 
expression of β3-ARs in cardiomyocytes[26]; however, the β1 and α1B subtypes are the 
main ARs expressed in isolated mouse ventricular cardiomyocytes, with β2- and β3-
ARs expressed by only 5% of cardiomyocytes but with high expression by endothelial 
cells[31]. These data support the notion that β-adrenergic responses in cardiomyocytes 
are primarily mediated by β1-ARs.

Furthermore, β1-ARs are located on the surface of all cardiomyocytes, whereas β2-
ARs are expressed exclusively at T-tubules. However, in HF, β-AR expression is 
redistributed so that β2-ARs co-localize with β1-ARs[32], suggesting that β-ARs 
participate in the cardiac remodeling that underlies the pathogenesis of cardiac 
diseases.

β-ARs are activated by both NA and A, but the subtypes show different affinity for 
the endogenous agonists, with rank order of potency: β1-ARs, NA > A; β2-ARs, A > 
NA; and β3-ARs, NA ≈ A[22]. As mentioned above, agonist-bound β-ARs stimulate AC 
activity via Gαs proteins. There are nine isoforms of membrane-integral ACs[33]; 
cardiac tissues primarily express the AC5 and AC6 isoforms[34]. ACs catalyze the 
synthesis of cAMP from ATP; cAMP directly activates PKA and the exchange protein 
directly activated by cAMP (Epac). These proteins participate in the activation of 
CaMKII via PKA-mediated increases in the intracellular Ca2+ concentration ([Ca2+]i) and 
the Epac/phosphoinositide 3-kinase/Akt/n-nitric oxide synthase pathway, 



Gaitán-González P et al. PKA and CaMKII in pre-diabetic cardiomyopathy

WJD https://www.wjgnet.com 1708 October 15, 2021 Volume 12 Issue 10

Figure 1 β-Adrenergic stimulation in the normal heart and pre-diabetic cardiomyopathy. Left panel: β-adrenergic stimulation in the normal heart. In 
physiological excitation-contraction coupling, membrane depolarization activates L-type voltage-dependent Ca2+ channels, inducing a small Ca2+ influx (ICa) that 
triggers the activation of cardiac ryanodine receptors (RyR2, PDB accession code: 6WOV). This triggers the release of sufficient Ca2+ from the lumen of the 
sarcoplasmic reticulum to the cytoplasm to elicit contraction. During relaxation, Ca2+ is primarily removed from the cytoplasm by the sarcoplasmic reticulum Ca2+ 
ATPase (PDB accession code: 6HXB), which resequesters Ca2+ into the sarcoplasmic reticulum lumen. Ca2+ is also extruded by the Na+/Ca2+ exchanger (PDB 
accession code: 3US9), while a small amount of Ca2+ is taken up by the mitochondrial calcium uniporter (PDB accession code: 6WDN). Noradrenaline activates β1-
adrenoceptors (β1-ARs, PDB accession code: 6H70) located at the sarcolemma of cardiomyocytes; agonist-bound β1-ARs stimulate Gas proteins and therefore one or 
more isoforms of adenylyl cyclase (PDB accession code: 6R3Q), leading to cAMP formation and the activation of the cAMP-dependent protein kinase (PDB 
accession code: 3FHI). Protein kinase A phosphorylates several Ca2+ handling proteins, including RyR2 at Ser2808 and phospholamban (PDB accession code: 2LPF) 
at Ser16; the latter increases sarcoplasmic reticulum Ca2+ ATPase pump activity. Ca2+ binds to calmodulin, and the complex Ca/calmodulin binds to and activates Ca2+

/calmodulin-dependent protein kinase II (PDB accession code: 3SOA), which phosphorylates RyR at Ser2814 and phospholamban at Thr17. The exchange protein 
directly activated by cAMP (Epac) is also involved in Ca2+/calmodulin-dependent protein kinase II activation; however, its role in pre-diabetic cardiomyopathy has not 
yet been addressed; thus, it is not depicted in the figure. Right panel: β-adrenergic stimulation in pre-diabetic cardiomyopathy. In the presence of obesity, increased 
triglyceride levels, decreased high-density lipoprotein cholesterol, hypertension, and/or insulin resistance (all Metabolic Syndrome components), and abnormal β1-AR 
activation (associated with either chronic sympathetic tone or changes in β-AR expression) dysregulates excitation-contraction coupling in cardiac cells. Pre-diabetic 
cardiomyopathy is characterized by abnormal diastolic Ca2+ leak (diastolic dysfunction) due to augmented RyR2 phosphorylation at Ser2808 and Ser2814 in the absence 
of adrenergic stimulation, generating spontaneous Ca2+ waves that may induce pro-arrhythmogenic events through altered Na+/Ca2+ exchanger activity. In addition, 
phosphorylated phospholamban (at Ser16 and Thr17) detaches from sarcoplasmic reticulum Ca2+ ATPase 2a, augmenting its activity; finally, Ca2+ transient amplitude 
decreases and leads to impaired cell contraction. NA: Noradrenaline; AR: Adrenoceptors; NCX: Na+/Ca2+ exchanger; AC: Adenylyl cyclase; PKA: Protein kinase A; 
CaMKII: Ca2+/calmodulin-dependent protein kinase II; CaM: Calmodulin; RyR: Ryanodine receptor; LTCC: L-type voltage-dependent Ca2+ channels; PLN: 
Phospholamban; HDL-C: High-density lipoprotein cholesterol; TG: Triglycerides; SERCA: Sarcoplasmic reticulum Ca2+ ATPase.

respectively[35]. In turn, both PKA and CaMKII phosphorylate several proteins 
involved in cardiac ECC, such as L-type voltage-dependent Ca2+ channels, RyR2, and 
PLN, leading to increased heart rate and contractile force[19,36].

PKA is a serine/threonine kinase comprising two regulatory (R) and two catalytic 
(C) subunits. There are four isoforms of the catalytic subunit (Cα, Cβ, Cϒ, Cχ) and four 
isoforms of the regulatory subunit (RIα, RIIα, RIβ, RIIβ[37]). The PKA complex is 
formed by two catalytic subunits and two regulatory subunits; the complexes are 
named according to the number of the regulatory subunit (i.e. PKA-I and PKA-II). The 
regulatory subunits contain two cAMP binding sites and a pseudo-substrate domain 
that binds to the active site of the catalytic subunit in the absence of cAMP. The 
binding of two cAMP molecules to each regulatory subunit induces a conformational 
change that promotes the dissociation of the catalytic subunits from the regulatory 
subunits[38].

Cardiomyocytes express the four isoforms of the PKA regulatory subunits, with the 
α-isoforms being more abundant than the β-isoforms[39,40]. By using fluorescence 
resonance energy transfer-based cAMP reporters, Di Benedetto et al[41] showed that 
PKA-I and PKA-II are compartmentalized in cardiomyocytes through their binding to 
specific A-kinase anchoring proteins. PKA-I is expressed in a tightly striated manner 
that overlies the sarcomere Z and M lines, whereas PKA-II is strongly expressed in M 
lines and only slightly in Z lines. β-AR activation with the non-selective agonist 
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isoproterenol increases cAMP levels primarily in the PKA-II domain, leading to 
phosphorylation of the regulatory proteins troponin I and PLN as well as RyR2 at 
Serine 2808 (Ser2808), among other residues. The effect of the latter results in increased 
RyR2 open probability, although the exact impact on channel function is not clear[41-
43]. Together, these findings suggest that PKA-II, rather than PKA-I, underlies the 
functional responses mediated by β1-ARs.

CaMKII also phosphorylates proteins involved in cardiac ECC[36]. Four CaMKII 
isoforms (α, β, ϒ, δ) have been reported; CaMKII-δ is the dominant isoform in 
cardiomyocytes[44]. CaMKII is a multimer complex of 12 monomers assembled in two 
hexameric rings; each monomer consists of an N-terminal domain, an autoinhibitory 
regulatory region, and a C-terminal domain. Transient increases in [Ca2+]i are sensed 
by calmodulin, leading to the assembly of a Ca2+/calmodulin complex, which binds to 
the CaMKII autoinhibitory regulatory domain and induces conformational changes 
that result in kinase activation and under some pathological conditions in CaMKII 
autophosphorylation at Thr287[45]. In addition, several other post-translational modific-
ations promote autonomous CaMKII activity, such as oxidation at Met281/282, O-
GlcNAcylation at Ser280, and S-nitrosylation at Cys290[35].

Emerging evidence supports a relevant role for Epac as a mediator of cAMP 
signaling in the heart. There are two Epac isoforms in mammals, Epac1 and Epac2; 
both contain an N-terminal regulatory domain and a C-terminal catalytic region. Upon 
cAMP binding, Epac proteins activate the Ras superfamily small GTPases Rap1 and 
Rap2[46]. CaMKII can also be activated by Epac2; in rat myocytes, the activation of β1-
ARs, but not β2-ARs, lead to Epac2-dependent CaMKII-δ stimulation, which results in 
RyR2 phosphorylation at Ser2814. This effect is abolished in CamKII-δ-KO mice, 
supporting a key role for this CaMKII isoform in cardiac responses mediated by β1-
ARs[47].

The research reviewed above suggests that both PKA and CaMKII-δ play important 
roles in β1-AR-mediated responses and that alterations in the expression or function of 
these kinases can therefore be deleterious. Moreover, enhanced and sustained β-
adrenergic stimulation contributes to the development of such pathological conditions 
as HF[29]; these alterations may also extend to diabetic and pre-diabetic cardiomy-
opathy[28,35,48]. A recent study showed that incubation of isolated mouse 
cardiomyocytes in high extracellular glucose (30 mmol/L) to mimic acute 
hyperglycemia leads to O-GlcNAcylation at CaMKII Ser280 and enhanced kinase 
activity, resulting in RyR2 phosphorylation and pro-arrhythmogenic activity[45]. 
Despite the availability of several MetS experimental models, pre-diabetic cardiomy-
opathy has been less studied (see below); the role of PKA and CaMKII in this 
pathology remains to be elucidated.

ANIMAL MODELS OF PRE-DIABETIC CARDIOMYOPATHY
Very few articles have considered MetS-associated cardiac alterations as pre-diabetic 
cardiomyopathy[49], most likely due to the lack of an accepted definition. Based on the 
graded effect of impaired glucose metabolism on diastolic function, it has been 
proposed that a morphological intermediate state between normal and diabetic states 
underlies pre-diabetic heart dysfunction[50]. One feature that perhaps differentiates 
pre-diabetic from diabetic cardiomyopathy is the absence of overt structural changes 
in the heart in the former, although this interpretation is under discussion[14].

Due to the multifactorial nature of cardiometabolic disease associated with obesity, 
IR, high blood pressure, high glycemic levels, and hypertriglyceridemia, the selection 
of an appropriate experimental model bearing the features of diet-induced pre-diabetic 
cardiomyopathy in humans has proven difficult. Most studies addressing diet-induced 
cardiometabolic alterations have been performed with laboratory animals under either 
carbohydrate- or fat and carbohydrate-enriched diets to emulate the Western diet, 
characterized by the ingestion of refined sugar and high caloric food. However, not all 
models — indeed, only eight[27,51-57] of those considered in this work — fulfill the 
requirement of at least three of the aforementioned criteria to be considered experi-
mental models of MetS (Table 1).

Rats and mice are the most used animals for MetS models based on dietary manipu-
lation; there are comprehensive reviews on this topic[58,59]. In this review, we focus 
on animal models with diet-induced pre-diabetic cardiomyopathy. Because the 
incidence of MetS in human populations is increasing, the establishment of MetS 
animal models is key to understanding the molecular mechanisms that are altered 
during the onset of myocardial disease. Although these diet-based experimental 
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models represent a critical milestone for pre-diabetic cardiomyopathy research, their 
utility is hampered by discrepancies in biochemical and corporal parameters, along 
with dissimilar outcomes that might be associated with the type and length of the diet. 
For instance, for 16 diet-induced models of pre-diabetic cardiomyopathy considered in 
this review, 10 showed a significant increase in body weight (Table 1), while only four 
models developed high blood pressure[28,51,53,60]. Also, in good agreement with a 
seminal report by Reaven[61], a hallmark feature of pre-diabetic cardiomyopathy 
models is the presence of IR. FBG levels were evaluated in 13 models, but only 4 
reported altered values[28,52,62,63]. For dyslipidemia, high blood triglyceride levels 
were reported for seven models, and only four showed decreased blood high-density 
lipoprotein cholesterol levels[54,55,57,64] (Table 1).

Importantly, despite the discrepancies in metabolic alterations all these animal 
models developed pre-diabetic cardiomyopathy, characterized by several cardiac 
alterations. For instance, increased heart rate was reported in five models[27,48,51,56,
63]; however, other studies in which this parameter was evaluated did not report 
changes[60,62,65,66]. Systolic dysfunction has also been observed, including decreased 
heart contractility, ventricular pressure, and intracellular Ca2+ transient amplitude[27,
55,60,67-71], along with reduced fractional shortening[55,65-67,70-72] (Table 1). 
Diastolic dysfunction is also manifested by increased diastolic Ca2+ leak in the form of 
Ca2+ waves, without altering cytoplasmic Ca2+ levels[48,55,62]. To compensate for 
compromised cardiac output, the heart grows; however, few studies have documented 
either heart hypertrophy[27,55,66] or left ventricle hypertrophy[55,71]. Interestingly, 
several pre-diabetic cardiomyopathy models develop increased aortic pressure[27,28,
51,73] and high arrhythmia incidence under basal or stressful conditions[48,55,56,63] 
(Table 1). Of note, rats and mice are the most common animal models for inducing 
pre-diabetic cardiomyopathy, although pigs and dogs have also been employed 
because of their greater degree of similarity to human cardiac physiology, including 
ionic currents that contribute to the cardiac action potential[74], Ca2+ removal 
mechanisms, and ECC regulatory mechanisms[19]. It is thus essential to select the 
appropriate experimental model considering the objectives of the study to be 
performed.

β-AR/AC/cAMP/PKA AXIS IN PRE-DIABETIC CARDIOMYOPATHY
As mentioned above, β-AR activation modulates ECC; cardiac dysfunction can 
therefore develop following alterations in the signaling pathways triggered by β-AR 
activation. Several studies have focused on PKA and CaMKII function (Table 2), which 
are effectors of β-adrenergic responses and the main topic of this review. However, the 
mechanisms by which the β-adrenergic pathway is disturbed in MetS are not yet clear; 
thus, it is important to understand how the βAR/AC/cAMP/PKA axis is affected, and 
how these changes originate or exacerbate cardiac dysfunction. In this section, we will 
describe the alterations in this signaling pathway reported in MetS and compare them 
with previous results found in DM.

Pre-diabetic cardiomyopathy can involve over-activation of the β-AR response. 
Indeed, patients with MetS show increased sympathetic activation, as measured by 
microneurography[75]; further, a cross-sectional and longitudinal study reported that 
MetS is associated with increased resting heart rate[76]. Both studies suggest over-
activation of sympathetic activity by MetS, and we recently reported increased basal 
heart rate in the rat sucrose-induced MetS model[48]. Moreover, following the 
administration of an arrhythmogenic cocktail (caffeine 80 mg/kg and epinephrine 2 
mg/kg; intravenously), 80% of the animals developed ventricular fibrillation, which 
suggests altered β-AR-mediated responses.

The reported alterations could also be related to changes in β-AR expression. For 
example, two studies in streptozotocin-induced diabetic rats (an experimental model 
of type 1 DM) reported a reduction in β1-AR mRNA levels, but increased levels of both 
β2- and β3-AR mRNA. Conversely, the protein content of β1- and β2-ARs was reduced 
but that of β3-ARs was increased[27,77], suggesting β-AR expression remodeling in the 
diabetic heart. However, β1- and β2-AR protein levels were not affected in a rat model 
of obesity with IR and hypertriglyceridemia[78] or a diet-induced MetS mouse model
[79]. Of note, the study by Okatan et al[27] also evaluated β-AR expression in rats with 
MetS. The authors reported unaltered mRNA levels but diminished protein levels of β1

- and β2-ARs, accompanied by normal cardiac function (as evaluated by left ventricle 
developed pressure following stimulation with NA)[27]. These findings suggest that 
an increased β-AR-mediated response compensates for the reduction in β1- and β2-AR 
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Table 2 Alterations in protein kinase A in experimental models of pre-diabetes induced by diet

Experimental model Kinase modification Functional effects Ref.

HFD dogs (80% of calories from fat, 5 wk) ND ↑ RyR2- Ser2809 phosphorylation Dincer et al[73]

Sucrose-fed Sprague-Dawley rats (32%, 10 
wk)

↑ PKA activity (kemptide 
phosphorylation)

↓ PLN-Ser16 phosphorylation Vasanji et al[52]

Sucrose-fed Wistar rats (30%, 35 wk) ↔ expression and activity ↔ PLN-Ser16 phosphorylation; ↓ RyR2- Ser2808 
phosphorylation

Paulino et al[65]

Sucrose-fed Wistar rats (32%, 16 wk) ↑ PKA activity (Thr198 
phosphorylation)

↑ RyR2- Ser2808 phosphorylation; ↓ PLN-Ser16 
phosphorylation

Okatan et al[28]

Fructose-fed Wistar rats(10%, 3 wk) ND ↔ RyR2- Ser2808 phosphorylation Sommese et al[55]

HFD Long-Evans rats treated with STZ 
(40% lard, 21 wk)

ND ↔ PLN-Ser16 phosphorylation Koncsos et al[62]

HFD C57bl/6 mice (60% of calories from 
fat, 8 wk)

ND ↔ RyR2- Ser2808 phosphorylation; ↔ PLN-Ser16 
phosphorylation

Sánchez et al[63]

Sucrose-fed Wistar rats (30%, 24 wk) ND ↔ RyR2- Ser2808 phosphorylation; ↔ PLN-Ser16 
phosphorylation

Fernández-Miranda 
et al[70]

Sucrose-fed Wistar rats (30%, 4 mo) ND ↔ RyR2- Ser2808 phosphorylation; ↔ PLN-Ser16 
phosphorylation

Romero-García et al
[48]

HFD C57bl/6N mice (45% of total calories 
from fat, 8 wk)

ND ↔ PLN-Ser16 phosphorylation Llano-Diez et al[79]

↔: No change; ↓: Decreased; ↑: Increased; ND: Not determined; HFD: High-fat diet; PKA: Protein kinase A; PLN: Phospholamban; RyR2: Ryanodine 
receptor type 2; STZ: Streptozotocin.

expression in MetS. Nevertheless, further research is required to fully elucidate the 
link between MetS, β1-AR expression, signaling alterations, and cardiac dysfunction.

β-AR stimulation results in AC activation via Gαs proteins. However, we found no 
studies that evaluated Gαs expression or activity in MetS experimental models, 
although decreased Gαs protein expression was reported for diabetic Yucatan minipigs
[80]. Furthermore, AC activity was normal in ventricular preparations from obese 
rabbits[81], which would suggest that cAMP intracellular concentration is unchanged; 
however, AC activity has not been studied in MetS models.

PKA is activated by cAMP and contributes to enhanced heart rate and contractility 
by phosphorylating several proteins, including RyR2 and PLN. In streptozotocin-
induced diabetic mice, both PKA activity and cytosolic PKA catalytic subunit content 
were reduced[82]. Further, in rat isolated cardiomyocytes, incubation in medium 
supplemented with high glucose (25.5 mmol/L) reduced PKA activity[83]. Finally, 
PKA activity diminished along with a reduction in the positive inotropic response 
induced by isoproterenol in obese diabetic Zucker rats[84]. Together, these studies 
indicate that hyperglycemic conditions affect PKA function.

Three studies have evaluated PKA activity in pre-diabetic models: Okatan et al[28] 
and Vasanji et al[52] reported increased kinase activity, but Paulino et al[65] did not 
detect significant changes (Table 2). PKA activity has also been studied indirectly by 
determining the phosphorylation levels of PLN (Ser16) or RyR2 (Ser2808 in rats; Ser2809 in 
dogs), with contradictory results (Table 2). Two studies reported increased RyR2 
phosphorylation[28,73], one a decrease[65], and four lack of effect[48,55,63,70], while 
reduced PLN-Ser16 phosphorylation was found in two studies[28,52], and six reported 
no change[48,62,63,65,70,79].

Furthermore, upregulated PKA expression was reported for a genetic MetS model, a 
double knock-out of LDL-receptor (LDLR-/-) and leptin-deficient (ob/ob) murine 
model, likely indicating that the genetic background contributes to the phenotype of 
the pathology[85]. Thus, the observed variations in PKA function could be due to the 
different conditions to which the animals were exposed, for example, diet composition 
and length (Table 2).

In summary, several studies found alterations in heart function or cardiomyocyte 
contraction in diet-induced models of pre-diabetes, which could be associated with 
altered PKA activity (Table 2). Because only three studies directly evaluated kinase 
activity[28,52,65] and reported contradictory results, more work is needed to 
determine the precise role of PKA in pre-diabetic cardiomyopathy. Together, the 
information reviewed suggests modification of the β-AR/AC/cAMP/PKA signaling 



Gaitán-González P et al. PKA and CaMKII in pre-diabetic cardiomyopathy

WJD https://www.wjgnet.com 1712 October 15, 2021 Volume 12 Issue 10

pathway upstream of PKA or disruption of other effectors of the β-adrenergic 
response, such as CaMKII, which are not yet broadly studied in MetS. We found no 
data on PKA alterations in diabetic or pre-diabetic patients; clearly studies addressing 
this issue would provide valuable information on the pathophysiology of MetS- and 
diabetes-induced cardiomyopathy.

CAMKII AS A NOVEL TARGET IN PRE-DIABETIC CARDIOMYOPATHY
CaMKII has been proposed as a key contributor to the deleterious effects of chronic β-
AR activation in diabetic cardiomyopathy, primarily by exacerbating RyR2-mediated 
diastolic Ca2+ leak[86,87]. Studies in experimental models of IR and fructose fed-
induced pre-diabetic cardiomyopathy have unveiled the role of hyperglycemia and 
reactive oxygen species in inducing abnormal CaMKII phosphorylation at Thr287 and 
activation, altering cardiomyocyte intracellular Ca2+ handling and promoting cardiac 
arrhythmic events[55,71,88]. Hyperglycemia leads to CaMKII glycosylation, increasing 
RyR2-mediated Ca2+ leak and reducing sarcoplasmic reticulum Ca2+ load in cardiac 
cells[88]. However, in pre-diabetic cardiomyopathy hyperglycemia is not overt[48]; 
thus, abnormal CaMKII activation relies on additional mechanisms[48,55]. The length 
of CaMKII activation relies on the frequency of Ca2+ release events, and extended 
CaMKII activation is also related to autophosphorylation at Thr287, which prevents 
CaMKII auto-inhibition[87]. In animal models of pre-diabetes, cardiac CaMKII remains 
active even when the [Ca2+]i declines, constituting a mechanism for anomalous CaMKII 
activation (Table 3)[48,55,87]. CaMKII phosphorylates RyR2 at Ser2814; CaMKII 
abnormal activation can therefore induce higher activity of RyRs even at diastolic Ca2+ 
levels, leading to increased spontaneous Ca2+ wave frequency and propensity to 
spontaneous cardiomyocyte contraction and arrhythmias[48,55]. Of note, CaMKII 
activity was determined only in one study[52] (Table 3); therefore, further studies are 
needed.

In spontaneously hypertensive rats, which could be considered a genetic model of 
MetS, the knock-out of Camk2n1 (SHR-Camk21-/-), a peptide that regulates the 
association of Ca2+/calmodulin with CaMKII, reduced kinase activity in the heart, 
thereby improving cardiac function[89]. Interestingly, the effect of deleting CaMKII- in 
sucrose-induced cardiac dysfunction has not yet been evaluated.

In heart disease, CaMKII has been implicated in ECC disorders that lead to cardiac 
dysfunction[90]; in particular, CaMKII overactivation is associated with the 
appearance of arrhythmias linked to abnormal Ca2+ handling[91-93].

As mentioned above, phosphorylation at Ser2814 by abnormal CaMKII activation 
induces RyR2 hyperactivity. Thus, preventing RyR phosphorylation by a point 
mutation (Ser2814Ala) that inactivates the phosphorylation site of CaMKII 
circumvents the development of HF induced by transverse aortic constriction in mice
[94]. In contrast, a mutation that mimics RyR2 constitutive activation by CaMKII 
exacerbates arrhythmogenesis and sudden cardiac death in mice with HF[95]. 
Moreover, in mice with HF, knock-out of the CaMKII ϒ/ isoforms protects against 
cardiac dysfunction and fibrosis induced by pressure overload and β-adrenergic 
stimulation[96,97]. Of note, in two diet-induced pre-diabetic cardiomyopathy models, 
pharmacological inhibition of CaMKII prevents Ca2+ mishandling and RyR dysregu-
lation[48,55].

Notably, post-translational modifications (specifically, oxidation, O-glycosylation, 
and phosphorylation) of CaMKII are increased in heart samples of diabetic patients[88,
98,99], suggesting altered kinase activity. As for PKA, research on the possible role of 
CaMKII alterations in diabetic or pre-diabetic patients is required to increase our 
understanding of the pathophysiology of MetS- and diabetes-induced cardiomy-
opathy.

CONCLUSION
MetS is a serious public health problem with increased risk for CVD and DM2, leading 
to cardiac dysfunction in the form of pre-diabetic cardiomyopathy. This, in turn, 
stimulates the β-adrenergic response with inotropic and chronotropic positive effects 
that initially compensate the deficient heart contraction but that eventually become 
deleterious in chronic disease.
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Table 3 Alterations in Ca2+/calmodulin-dependent protein kinase II in experimental models of pre-diabetes induced by diet

Experimental model CaMKII alterations Functional effects Ref.

Sucrose-fed Sprague-Dawley rats (32% 10 wk) ↑ CaMKII activity (autocamtide 
phosphorylation)

↓ PLN-Thr17 phosphorylation Vasanji et al[52]

Fructose-fed Wistar rats (10%, 3 wk) ↑ CaMKII oxidation; ↔ CaMKII expression ↑ RyR2-Ser2814 
phosphorylation

Sommese et al[55]

Sucrose-fed Wistar rats (30%, 4 mo) ↑ CaMKII-Thr287 phosphorylation; ↔ CaMKII 
expression

↑ RyR2-Ser2814 
phosphorylation

Romero-García et al
[48]

HFD Long-Evans rats treated with STZ (40% 
lard, 21 wk)

↔ CaMKII-Thr287 phosphorylation; ↔ CaMKII 
expression

↔ PLN-Thr17 
phosphorylation

Koncsos et al[62]

↔: No change; ↓: Decreased; ↑: Increased; CaMKII: Ca2+/calmodulin-dependent protein kinase II; HFD: High-fat diet; PLN: Phospholamban; RyR2: 
Ryanodine receptor type 2; STZ: Streptozotocin.

There is evidence supporting the hypothesis that MetS alters β-adrenergic signaling, 
but it is still not clear how β-adrenergic signaling is affected in diet-induced MetS 
models. β1-ARs are the more abundant isoform in cardiomyocytes and are the primary 
mediators of the β-adrenergic response under physiological conditions. However, the 
link between MetS, β1-AR expression and signaling alterations and cardiac dysfunction 
remains to be fully established.

β-AR stimulation leads to PKA and CaMKII activation, and MetS could involve 
kinase overactivation. For PKA, the available data indicate overactivation, no change, 
or reduced activity; further research is clearly needed. For CaMKII, the evidence 
suggests a critical role in the development of pre-diabetic cardiomyopathy; under-
standing the mechanisms that dysregulate CaMKII activity in MetS would therefore 
contribute importantly to elucidating the molecular basis of cardiac dys-function.

Importantly, the majority of the information reported in this review was generated 
with small rodent models; further studies are required in animal models that more 
closely approximate human cardiac physiology.

Future perspectives
Several issues remain to be addressed in investigating the possible effect of MetS on β-
adrenergic signaling pathways in cardiomyocytes and actions on PKA and CaMKII 
activity. For instance, the role of Epac2, which is also activated by β1-AR stimulation, 
has not been elucidated in pre-diabetic cardiomyopathy. Furthermore, it is not well 
established whether MetS modifies β-AR expression by cardiomyocytes or what role 
receptor desensitization might play in the hyper-adrenergic state induced by the 
syndrome. An additional relevant question is whether MetS induces post-translational 
modifications in CaMKII that result in an altered activity. Additional knowledge 
would allow for laying the foundation for the rational design of targeted therapies to 
prevent or treat the development of pre-diabetic cardiomyopathy.
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Abstract
Illness-induced hyperglycemia impairs neutrophil function, increases pro-inflam-
matory cytokines, inhibits fibrinolysis, and promotes cellular damage. In turn, 
these mechanisms lead to pneumonia and surgical site infections, prolonged 
mechanical ventilation, prolonged hospitalization, and increased mortality. For 
optimal glucose control, blood glucose measurements need to be done accurately, 
frequently, and promptly. When choosing glycemic targets, one should keep the 
glycemic variability < 4 mmol/L and avoid targeting a lower limit of blood 
glucose < 4.4 mmol/L. The upper limit of blood glucose should be set according 
to casemix and the quality of glucose control. A lower glycemic target range (i.e., 
blood glucose 4.5-7.8 mmol/L) would be favored for patients without diabetes 
mellitus, with traumatic brain injury, or who are at risk of surgical site infection. 
To avoid harm from hypoglycemia, strict adherence to glycemic control protocols 
and timely glucose measurements are required. In contrast, a higher glycemic 
target range (i.e., blood glucose 7.8-10 mmol/L) would be favored as a default 
choice for medical-surgical patients and patients with diabetes mellitus. These 
targets may be modified if technical advances for blood glucose measurement and 
control can be achieved.

Key Words: Brain injuries; Traumatic; Critical care; Diabetes mellitus; Glycemic control; 
Insulin infusion systems; Sepsis
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Core Tip: A lower glycemic target range (i.e., blood glucose 4.5-7.8 mmol/L) would be 
favored for patients without diabetes mellitus, or with traumatic brain injury, or who 
are postoperative and at risk of surgical site infection. Requirements for targeting a 
lower range and avoiding hypoglycemia would be availability of intensive glucose 
monitoring and management, strict adherence to glycemic control protocols, and strict 
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adherence to timely glucose measurements. In contrast, a higher glycemic target range 
(i.e., blood glucose 7.8-10 mmol/L) would be favored as a default choice for medical-
surgical patients and patients with diabetes mellitus.
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INTRODUCTION
Illness-induced hyperglycemia can be a double-edged sword. On the one hand, it may 
be an adaptive response to provide extra metabolic substrate to organs like the brain 
and to blood cells[1]. On the other hand, hyperglycemia impairs neutrophil function 
and innate immunity, increases pro-inflammatory cytokines and oxidative stress[2,3], 
inhibits fibrinolysis[4], and promotes cellular damage[1]. In addition, hyperglycemia 
in brain-injured patients can lead to microcirculatory damage, blood-brain barrier 
disruption, and cellular swelling[5]. These pathological derangements potentially lead 
to complications such as pneumonia and surgical site infections, prolonged mechanical 
ventilation, increased intensive care unit (ICU) and hospital lengths of stay, and 
increased mortality.

Unlike hyperglycemia, hypoglycemia is always harmful. For example, hypogly-
cemia was independently associated with respiratory complications and prolonged 
ICU and hospital lengths of stay after cardiac surgery[6]. These adverse events may be 
mediated by hypoglycemia-related neuronal damage and cardiac arrhythmia[7]. Apart 
from the clear need to avoid blood glucose extremes, there is also a need to avoid 
excessive blood glucose fluctuations[8], which can be measured in various ways 
(Table 1). The simplest measure of blood glucose fluctuation is glycemic variability, 
which is the difference between the maximum and minimum blood glucose measured 
over a defined time interval. At the cellular level, glycemic variability has been 
associated with oxidative stress, endothelial dysfunction, and apoptosis[7]. Clinically, 
glycemic variability has been linked to increased ICU and hospital mortality[9,10].

Blood glucose measurements need to be done accurately, frequently, and promptly
[11]. Ideally, blood glucose measurements should be done continuously, though 
continuous glucose monitoring (CGM) for critically ill patients may not be accurate 
enough, with wide limits of agreement despite small mean bias[12]. CGM appears 
unreliable when using minimally-invasive subcutaneous devices that assay interstitial 
glucose measurements[13-15], and does not seem to improve glucose control[16]. 
Although invasive (intravascular) CGM devices may have an acceptable accuracy, 
some drawbacks include vascular and infectious complications (thrombosis, catheter 
occlusion, biofilm formation, or intravascular catheter-related infection)[17,18].

Accuracy and variation of glucose measurement methods influence the feasibility 
and adherence to glycemic targets[19]. In the real world, a variety of blood samples 
(arterial, venous, and capillary) are assayed intermittently, using both point-of-care 
and laboratory methods[20,21], and managed using various protocols. Nonetheless, 
despite such variation, clinical utility of current glucose measurement systems seems 
adequate, with little evidence of over or under-treatment[22]. Additionally, to achieve 
optimal clinical outcomes, blood glucose should be lowered if it were to rise too high, 
blood glucose should not be allowed to dip too low, and blood glucose variability 
should be constrained.

To determine clinically optimal glycemic targets for critically ill adult patients, the 
key questions would therefore be as follows: (1) What should the hyperglycemic 
threshold be; (2) What should the hypoglycemic threshold be; and (3) How far apart 
should these thresholds be? This review aims to integrate empirical evidence to 
answer these questions, and to suggest practical recommendations for choosing 
glycemic targets.

https://www.wjgnet.com/1948-9358/full/v12/i10/1719.htm
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Table 1 Types of glycemic targets in intensive care unit

Glycemic 
target Unit Definition

Glucose mmol/L Concentration of glucose in blood or plasma. To convert to mg/dL, multiply by 18, i.e., 1 mmol/L = 18 mg/dL

COV % Coefficient of variation, a measure of glucose variability. COV = standard deviation divided by mean glucose × 100%

GG mmol/L Glycemic gap. GG = blood glucose - [(1.59 × HbA1c) - 2.59], HbA1c being used to estimate average glucose concentration 
over the prior 3 mo

Glucose 
variability

mmol/L Maximum – minimum glucose in a given time period

SHR Nil Stress hyperglycemia ratio. SHR = plasma glucose divided by [(1.59 × HbA1c)–2.59], HbA1c being used to estimate average 
glucose concentration over the prior 3 mo

HbA1c: Glycosylated hemoglobin.

EMPIRICAL EVIDENCE FOR GLYCEMIC THRESHOLDS IN ICU
Several trials are inconclusive with respect to intensive (lower) vs conventional 
(higher) glycemic targets, which may be due to insufficient separation of achieved 
glucose levels between the intervention and control groups[23-25]. Another reason 
could be that the impact of glucose control was modified by the main diagnosis (i.e., 
casemix). In terms of the hyperglycemic threshold, the blood glucose level beyond 
which clinical complications occur seems to differ by casemix (Table 2). Patients 
without diabetes mellitus (DM)[26], patients with traumatic brain injury (TBI), and 
post-surgical patients at risk of wound infection experience adverse effects of 
hyperglycemia at a relatively low range, with the threshold set at 6.7-8.3 mmol/L[27-
30].

The NICE-SUGAR trial showed that undifferentiated medical-surgical ICU patients 
had decreased 90-d mortality and incident hypoglycemia when the upper limit of 
blood glucose was set at 10 mmol/L rather than 6.1 mmol/L[31]. Patients who 
suffered non-TBI-specific injury[32] or who had post-cardiac arrest[33] also 
experienced better neurological recovery if blood glucose could be kept below 10 
mmol/L.

Patients with prior DM were able to tolerate a higher mean blood glucose level (i.e., 
blood glucose level > 10 mmol/L) without excess complications during critical illness, 
although these patients benefited from lowering blood glucose below 7.8 mmol/L 
after coronary artery bypass surgery[34]. Chronic hyperglycemia may have 
compensatory mechanisms in place that provide protection from acute hyperglycemia-
related cellular damage[2]. The upper limit of safety in patients with DM appears to be 
a blood glucose level of 14 mmol/L[35].

In contrast to the risk of hyperglycemia differing by casemix, the risks of hy-
poglycemia appear to affect a broad range of patients similarly. Severe hypoglycemia 
(< 2.2 mmol/L), moderate hypoglycemia (< 3.3 mmol/L), and even mild 
hypoglycemia (<4 mmol/L) have been associated with ICU and hospital mortality[36-
39]. Targeting lower blood glucose levels resulted in higher rates of severe 
hypoglycemia[40,41], and no clinical trial has targeted a lower limit of blood glucose < 
4.4 mmol/L. The NICE-SUGAR trial demonstrated that the risk of hypoglycemia can 
be mitigated by avoiding targeting blood glucose below 6.1 mmol/L[31]. Nonetheless, 
if intensive glucose monitoring and management resources are available, and if 
glycemic control protocols and timely glucose measurements can be strictly adhered 
to, the Leuven studies demonstrated advantages of targeting blood glucose below 6.1 
mmol/L, with surgical patients deriving clearer survival benefit and morbidity 
reduction compared to medical patients[23,42].

EMPIRICAL EVIDENCE FOR MINIMIZING GLYCEMIC VARIABILITY IN ICU
In a multicenter observational study, Egi et al[43] first showed that ICU non-survivors 
had a wider spread of glucose values compared to ICU survivors. Specifically, the 
standard deviation of blood glucose values was 2.3 mmol/L in non-survivors 
compared to 1.3 mmol/L in survivors. The association between spread of blood 
glucose with hospital mortality persisted after controlling for confounders (hospital 
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Table 2 Glycemic targets in intensive care unit by casemix and thresholds

Casemix Blood 
sample Method Glycemic 

target Evidence

Burns Not stated Not stated Glucose > 7.8 
mmol/L

Increased pneumonia, ventilator-associated pneumonia, and urinary tract 
infection; Obs[72]

Cardiac Not stated Not stated Glucose 4.4-6.1 
mmol/L

Decreased 30-d mortality compared to glucose 5-7.8 mmol/L; Obs[73]

DM Not stated Portable glucometer, 
blood gas analyzer

Glucose < 14 
mmol/L

Decreased glycemic variability and incident hypoglycemia; before-and-after 
study[35]

DM Arterial, 
venous

Blood gas analyzer Glucose 10-14 
mmol/L

Decreased incident hypoglycemia; before-and-after study[74]. No increased 
risk of hospital-acquired infectious, cardiovascular, renal or neurological 
complications; before-and-after study[75]

DM Not stated Portable glucometer Glucose 5.6-7.8 
mmol/L

Decreased complications (infection, cardiac events, respiratory failure, kidney 
failure) after coronary artery bypass graft surgery compared to glucose 7.8-10 
mmol/L; RCT[34]

DM Not stated Portable glucometer Glucose 5-7.8 
mmol/L

Decreased 30-day mortality compared to glucose 4.4-6.1 mmol/L; Obs[76]

Medical Capillary Portable glucometer Glucose > 7 
mmol/L

Increased ICU mortality; Obs[77]

Medical-
surgical

Arterial Point-of-care or blood 
gas or laboratory 
analyzers

Glucose 8-10 
mmol/L

Decreased 90-d mortality and incident severe hypoglycemia compared to 
glucose 4.5-6.0 mmol/L; RCT[31]

Medical-
surgical

Not stated Portable glucometer Glucose 4.4-6.1 
mmol/L

Decreased 30-d mortality compared to glucose 5-7.8 mmol/L in patients 
without DM; Obs[76]

Medical-
surgical

Arterial Point-of-care or blood 
gas or laboratory 
analyzers

Glucose 4.4-6.1 
mmol/L

Increased incident severe hypoglycemia compared to more liberal control 
(95%CI of glucose -7.8-9.4) mmol/L; RCT[78] 

Medical-
surgical

Arterial, 
capillary

Glucometer Glucose 10-
11.1 mmol/L

Decreased incident severe hypoglycemia compared to glucose 4.4-6.1 mmol/L; 
RCT[46]

Medical-
surgical

Arterial, 
capillary, 
venous

Glucometer or blood 
gas analyzer

Glucose 7.8-10 
mmol/L

Decreased incident severe hypoglycemia compared to glucose 4.4-6.1 mmol/L; 
RCT[79]

Medical-
surgical

Arterial Portable glucometer Glucose 7-9 
mmol/L

Decreased ICU mortality compared to out-of-range glucose; Obs[80]

Medical-
surgical

Arterial, 
capillary

Glucometer or blood 
gas analyzer

Glucose < 10 
mmol/L

Decreased incident severe hypoglycemia compared to glucose 4.4-6.1 mmol/L; 
RCT[31,81]

Medical-
surgical

Arterial Glucometer Glucose < 8 
mmol/L

Decreased ICU mortality compared to higher glucose levels; Obs[82]

Medical-
surgical

Arterial Blood gas analyzer Glucose > 8.3 
mmol/L

Increased ICU mortality compared to glucose 6.1-8.3; Obs[83]

Medical-
surgical

Arterial, 
capillary

Glucometer Glucose < 8.2 
mmol/L

Decreased ICU mortality compared to higher glucose levels; Obs[84]

Medical-
surgical

Arterial, 
venous

Glucometer Glucose 4.4-7.8 
mmol/L

Decreased ICU and hospital mortality compared to glucose 7.8-10 mmol/L in 
patients without DM; Obs[26] 

Medical-
surgical

Not stated Glucometer Glucose 3.9-7.8 
mmol/L

Time in range associated with decreased ICU mortality in patients without DM; 
Obs[85]; Time in range associated with decreased ICU mortality in patients 
receiving insulin; Obs[86]

Medical-
surgical

Venous Laboratory Low SHR < 1 Decreased hospital mortality compared to SHR  > 1 regardless of baseline 
HbA1c; Obs[87]

Post-CA Capillary, 
venous

Not stated Glucose 3.9-7.8 
mmol/L

Higher survival, compared to higher glucose levels; Obs[88]

Post-CA Not stated Not stated Glucose 4-10 
mmol/L

Better neurological recovery, compared to higher glucose levels; Obs[33]

Surgical Arterial Blood gas analyzer Glucose 4.4-6.1 
mmol/L

Decreased hospital mortality, blood stream infections, acute renal failure, blood 
transfusion, critical-illness polyneuropathy, prolonged mechanical ventilation, 
compared to glucose 10-11.1 mmol/L; RCT[42]

Surgical Not stated Not stated Glucose 4.4-6.1 
mmol/L

Decreased post-operative renal failure and 30-d mortality compared to glucose 
> 8.3 mmol/L; Obs[89]
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Surgical Arterial, 
capillary, 
venous

Glucometer or blood 
gas analyzer

Glucose 4.4-7.8 
mmol/L

Decreased hospital mortality compared to glucose >7.8 mmol/L; Obs[27]

Surgical Not stated Glucometer Glucose 4-8 
mmol/L

Decreased surgical site infection after coronary artery bypass graft surgery 
compared to glucose 4-10 mmol/L; before-and-after study[28]

Surgical Arterial, 
venous

Continuous sensor, in a 
closed-loop system

Glucose 4.4-6.1 
mmol/L

Decreased surgical site infection post- hepato-biliary-pancreatic surgery, 
compared to glucose 7.7-10.0 mmol/L; RCT[90]

Surgical Arterial Blood gas analyzer Glucose 6.7-8.9 
mmol/L

Decreased mortality compared to glucose 8.9-10 mmol/L; quasi-experimental 
(alternate allocation of participants)[91]

Surgical Capillary Glucometer Glucose 6.1-8.3 
mmol/L

Decreased surgical site infection and atrial fibrillation after coronary artery 
bypass graft surgery; before-and-after study[29]

TBI Arterial Blood gas analyzer Glucose 3.5-6.5 
mmol/L

Reduced intracranial hypertension and decreased rate of pneumonia, 
bacteremia and urinary tract infections during 2nd week, compared to glucose 
5-8 mmol/L; Obs[5]

TBI Not stated Not stated Glucose 4.4-6.7 
mmol/L

Decreased risk of poor neurological outcomes but increased risk of 
hypoglycemia, and no mortality benefit, compared to higher glucose targets; 
systematic review of RCT[30]

TBI Arterial Point-of-care or blood 
gas or laboratory 
analyzers

Glucose 8-10 
mmol/L

Decreased incident severe hypoglycemia, but no mortality benefit, compared to 
glucose 4.5-6.0 mmol/L; RCT[92]

TBI Not stated Not stated Glucose < 11.1 
mmol/L

Decreased hospital mortality compared to glucose > 11.1 mmol/L; Obs[93]

Trauma Arterial, 
capillary, 
venous

Point-of-care or 
laboratory analyzers

Glucose < 7.8 
mmol/L

Decreased ICU mortality compared to glucose > 7.8 mmol/L; Obs[94] 

Trauma Capillary Not stated Glucose < 10 
mmol/L

Decreased hospital mortality compared to glucose > 10 mmol/L; Obs[32]

DM: Diabetes mellitus; HbA1c: Glycosylated hemoglobin; ICU: Intensive care unit; Obs: Observational study; RCT: Randomized controlled trial; SHR: 
Stress hyperglycemia ratio; TBI: Traumatic brain injury.

site, surgical patients, neurologic diseases, mechanical ventilation, acute physiological 
and chronic health evaluation II score, age, mean blood glucose level, maximum blood 
glucose level, and admission blood glucose level).

Subsequently, other observational studies have demonstrated that the difference 
between maximum and minimum blood glucose levels (i.e., glucose variability) should 
not exceed 4-6 mmol/L, regardless of casemix[10,44,45] (Table 3). In other words, 
glycemic target ranges should ideally be < 4 mmol/L in width. Such a narrow range 
seems to be achievable, given that both single-center and multi-center randomized 
trials using a variety of protocols have successfully constrained glucose levels within 
standard deviations of < 2 mmol/L[23,31,42,46].

CHOOSING LOWER VS HIGHER GLYCEMIC TARGET RANGES
To minimize patient harm, empirical evidence suggests that when choosing glycemic 
targets, one should keep the glycemic variability < 4 mmol/L and avoid targeting a 
lower limit of blood glucose < 4.4 mmol/L. The upper limit of blood glucose should 
then be set according to casemix and the quality of glucose control.

A lower glycemic target range (i.e., blood glucose 4.5-7.8 mmol/L) would be favored 
for patients without DM, with TBI, or who are postoperative and at risk of surgical site 
infection. Requirements for targeting a lower range and avoiding harm from 
hypoglycemia would be availability of intensive glucose monitoring and management, 
strict adherence to glycemic control protocols, and strict adherence to timely glucose 
measurements (Table 4).

In contrast, a higher glycemic target range (i.e., blood glucose 7.8-10 mmol/L) 
would be favored as a default choice for medical-surgical patients and patients with 
DM. Additionally, a higher range would be favored if conditions to avoid 
hypoglycemia cannot be strictly met, i.e., lack of intensive glucose monitoring and 
management, less than strict adherence to glycemic control protocols, and less than 
strict adherence to timely glucose measurements.
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Table 3 Glycemic targets in intensive care unit by casemix and variability

Casemix Blood sample Method Glycemic target Evidence

Medical-surgical Arterial, venous Glucometer Glucose variability (COV ≥ 
20%)

Increased ICU and hospital mortality in 
patients without DM; Obs[26] 

Medical-surgical Arterial, capillary Glucometer or blood gas 
analyzer

Glucose variability > 6 
mmol/L

Increased ICU and hospital mortality; Obs[44]

Medical-surgical Arterial Glucometer or blood gas 
analyzer

Glucose variability > 4 
mmol/L

Increased hospital mortality; Obs[10]

Post-CA Arterial Blood gas analyzer Glucose variability < 5 
mmol/L

Decreased hypoglycemia and mortality; Obs
[45]

Post-CA Not stated Not stated GG-min < 3.9 mmol/L Better neurological recovery; Obs[95]

COV: Coefficient of variation; GG: Glycemic gap; GG-min: Minimum glycemic gap = minimum blood glucose - [(1.59 × HbA1c) - 2.59], HbA1c being used 
to estimate average glucose concentration over the prior 3 mo; ICU: Intensive care unit; Obs: Observational study.

Table 4 Choosing lower vs higher glycemic target ranges

Glycemic target range Considerations favoring choice of glycemic target range

Lower glycemic target range (
i.e., glucose 4.5-7.8 mmol/L)

(1) Patients without DM; (2) Patients with TBI; (3) Post-surgical patients at risk of surgical site infections; (4) Availability of 
intensive glucose monitoring and management; (5) Strict adherence to glycemic control protocols; and (6) Strict adherence 
to timely glucose measurements

Higher glycemic target range 
(i.e., glucose 7.8-10 mmol/L)

(1) Default choice for most patients; (2) Patients with DM; (3) Lack of intensive glucose monitoring and management; (4) 
Less than strict adherence to glycemic control protocols; and (5) Less than strict adherence to timely glucose measurements

DM: Diabetes mellitus; TBI: Traumatic brain injury.

This review’s recommendations are in line with current guidelines (Table 5). For 
hospitalized patients in general, the American Diabetes Association recommends a 
glycemic target range of 7.8-10 mmol/L[47]. The same glycemic range is recom-
mended for post-resuscitation care of cardiac arrest patients by the European 
Resuscitation Council[48]. For sepsis patients, the Surviving Sepsis Campaign 
recommends an upper blood glucose limit of 10 mmol/L[49]. Both the American 
Diabetes Association and Surviving Sepsis Campaign guidelines mention that lower 
targets may be appropriate for selected patients if they can be achieved without 
significant hypoglycemia[47,49].

Other guidelines have made less definite recommendations. For surgical patients, 
the World Health Organization recommends glucose control, though no target range 
was defined[50]. For patients with TBI, the Brain Trauma Foundation does not 
mention glycemic control[51]. The findings and recommendations from this review 
can therefore help fill any gaps in these latter guidelines.

FUTURE DIRECTIONS
To increase the safety of lower glycemic targets, technical advances for blood glucose 
measurement and control would help. Autocorrecting point-of-care glucose 
measurement devices can adjust for interfering substances (e.g., ascorbic acid and non-
glucose sugars) and abnormal hematocrit in critically ill patients[52], enabling these 
devices to become as accurate as central laboratory plasma glucose measurements. 
Monte Carlo simulation suggests that glycemic control in critically ill patients is 
optimal with a blood glucose measurement interval no longer than 1 h, with 
incremental benefit using shorter measurement intervals of 15 min[53]. This means 
that devices that can continuously assay blood glucose would be needed. More 
accurate and frequent blood glucose measurements can feed into automated and 
closed-loop glycemic control systems[54-62]. For instance, even when targeting a lower 
range of 4.4-8.3 mmol/L, one such system limited severe hypoglycemic episodes to 
only 0.01% of all blood glucose measurements and 0.8% of patients[59].
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Table 5 Selected guideline recommendations

Casemix Guideline (Year) Recommended glycemic target range

Medical-
Surgical

American Diabetes Association: Diabetes Care in the Hospital (2021)
[47]

7.8-10 mmol/L. Lower targets may be appropriate for selected 
patients if they can be achieved without significant hypoglycemia

Post-CA European Resuscitation Council and European Society of Intensive 
Care Medicine guidelines (2021)[48]

7.8-10 mmol/L

Sepsis Surviving Sepsis Campaign: International Guidelines for 
Management of Sepsis and Septic Shock (2016)[49]

< 10 mmol/L and avoid hypoglycemia. Lower targets may be 
appropriate for selected patients if they can be achieved without 
significant hypoglycemia

Surgical WHO recommendations on intraoperative and postoperative 
measures for surgical site infection prevention: an evidence-based 
global perspective (2016)[50]

Unable to define target range, though glucose control protocols 
recommended

TBI Brain Trauma Foundation’s Guidelines for the Management of Severe 
Traumatic Brain Injury, Fourth Edition (2016)[51]

No recommendation

CA: Cardiac arrest; TBI: Traumatic brain injury; WHO: World Health Organization.

Optimization of glucose control protocols with respect to the following aspects may 
also be investigated: (1) Addition of bolus insulin "mid-protocol" during an insulin 
infusion to reduce peak insulin rates for insulin-resistant patients[63]; (2) transition of 
insulin administration route from intravenous to subcutaneous[64], and (3) use of DM-
specific enteral formula for both DM and non-DM patients[65-67].

Given the influence of casemix on the optimal glycemic target range, further work 
may be done to personalize recommendations for various conditions[68]. For patients 
with DM, it remains unclear if the upper limit of blood glucose can be safely pushed 
beyond 10 mmol/L[69], given the risk of ketoacidosis or ketonemia[70]. To address 
this uncertainty, the LUCID trial will investigate if liberal blood glucose (target 10.0-
14.0 mmol/L) will result in less incident hypoglycemia compared to usual care (target 
6.0-10.0 mmol/L), while maintaining good clinical outcomes[71].

CONCLUSION
When choosing glycemic targets, one should keep the glycemic variability < 4 mmol/L 
and avoid targeting a lower limit of blood glucose < 4.4 mmol/L. The upper limit of 
blood glucose should be set according to casemix and the quality of glucose control. A 
lower glycemic target range (i.e., blood glucose 4.5-7.8 mmol/L) would be favored for 
patients without diabetes mellitus, with traumatic brain injury, or who are at risk of 
surgical site infection. To avoid harm from hypoglycemia, strict adherence to glycemic 
control protocols and timely glucose measurements are required. In contrast, a higher 
glycemic target range (i.e., blood glucose 7.8-10 mmol/L) would be favored as a 
default choice for medical-surgical patients and patients with diabetes mellitus. These 
targets may be modified if technical advances for blood glucose measurement and 
control can be achieved.
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Abstract
Recently, specific immunometabolic profiles have been postulated in patients 
with schizophrenia, even before full-blown disease and independent of 
antipsychotic treatment. Proteomic profiling studies offer a promising potential 
for elucidating the cellular and molecular pathways that may be involved in the 
onset and progression of schizophrenia symptoms, and co-occurrent metabolic 
changes. In view of all this, we were intrigued to explore galectin-3 (Gal-3) as a 
glycan, and in our previous study, we measured its elevated levels in remission of 
schizophrenia. The finding may be a consequence of antipsychotic treatment and 
may have an impact on the onset of inflammation, the development of obesity, 
and the presumed cognitive changes in schizophrenia. In the animal study, it was 
shown that downregulation of Gal-3 was beneficial in insulin regulation of obesity 
and cognitive preservation. Strategies involving plasma exchange are discussed in 
this review, particularly in the context of Gal-3 elimination.
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Core Tip: Atypical antipsychotic use can be associated with undesired metabolic 
effects. In that context, glycosylation has become a new target in the investigation of 
schizophrenia pathophysiology. As a glycan, galectin-3 (Gal-3) might be involved in 
the inflammation-insulin resistance-obesity cascade in schizophrenia, leading to 
cognitive changes. Eliminating Gal-3 influence may be beneficial in preserving 
cognition and reestablishing metabolic balance.
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INTRODUCTION
Clinical practice raises many questions regarding somatic states that accompany or are 
a consequence of mental illnesses. As schizophrenia is an extremely complex and 
debilitating mental disorder, overall treatment must take into account the somatic 
comorbidity of the patients. Although schizophrenia requires special attention and 
care in terms of lifestyle and antipsychotic treatment, a particular immunometabolic 
profile has recently been postulated, even before the disease onset[1]. The use of 
atypical antipsychotics is often associated with undesired metabolic and endocrine 
side effects including obesity, dyslipidemia, hyperglycemia, and insulin resistance[2]. 
To summarize, patients with schizophrenia most probably could have other 
comorbidities, regardless of their specific immunometabolic profile and antipsychotic 
therapy, and the somatic states may also lead to metabolic changes.

The identification of defects in cell biology and molecular phenotype underlying 
schizophrenia represents a challenging new approach to the study of this complex 
neurodegenerative disorder. Proteomic profiling studies, in which many proteins are 
tested for their relevance to the disease, are still in their infancy but the potential for 
elucidating the cellular and molecular pathways that may be involved in the onset and 
progression of schizophrenia is promising[3].

Altered protein post translational modifications such as glycosylation have become 
a new target of investigation in the pathophysiology of schizophrenia[4]. Glycosy-
lation is an enzyme-mediated process in which a carbohydrate or carbohydrate 
structure, also referred to as a glycan, binds to a protein, lipid, or glycan substrate. 
Glycosylation is the most common and complex post translational modification and 
plays a critical role in protein-protein, protein-cell, and cell-cell interactions, including 
antibody binding, protein degradation, cellular endocytosis, and protease protection
[5]. This process regulates nearly all cellular activities and has a critical role in the 
development and functioning of the central nervous system (CNS). Glycans are 
involved in many processes, such as neurite outgrowth and fasciculation, synapse 
formation and stabilization, modulation of synaptic efficacy, neurotransmission, and 
synaptic plasticity[6]. Altered glycosylation can significantly affect the properties of 
the glycosylated substrate, resulting in changes in its structure, localization, expression 
levels, molecular interactions, and/or substrate function.

Aberrant glycosylation has been identified in the serum, cerebrospinal fluid, urine, 
and postmortem brain tissue of schizophrenia patients[7]. Early evidence of 
glycosylation abnormalities in schizophrenia reported reduced glycoprotein 
expression in urine samples from male schizophrenia patients, and was consistent 
with abnormal glycan composition[8]. Altered monosaccharide composition of 
attached glycans was also found in the blood serum of the patients[9]. An increased 
serum glycoprotein level was also confirmed in young schizophrenia patients 13-17 
years of age[10].

Abnormalities of N-linked glycosylation in schizophrenia have been observed in 
neurotransmitter receptor and transporter subunits, subunits from α-amino-3-
hydroxy-5-methyl-4-isoxazole propionic acid, kainate, and gamma-aminobutyric acid 
(GABA)A receptor families in various brain regions, including the dorsolateral 
prefrontal cortex, anterior cingulate cortex, and superior temporal gyrus[11-14]. 
Receptors containing abnormally N-glycosylated subunits have also been shown to 
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exhibit abnormal subcellular distribution in schizophrenia, suggesting cellular 
consequences of abnormal protein glycosylation[15]. Widespread glycosylation 
abnormalities due to abnormal glycosylation enzyme expression have also been 
reported in schizophrenia[16-18].

We have recently elaborated on the contrasting roles of the galectin-3 (Gal-3) 
through the schizophrenia continuance[19]. We also discussed the various somatic 
states co-occurring in schizophrenia that could be related to Gal-3. In this review, our 
interdisciplinary team seeks to further elucidate the mechanisms underlying the 
impact of glycans on early development, and how Gal-3 may further influence 
subsequent metabolic changes. However, our focus will be on the interplay of Gal-3 
with antipsychotics during the course of the disease in an attempt to elucidate specific 
non-CNS systemic changes. Overall, that may lead to conclusions that allow more 
selective therapy of schizophrenia in the future.

GAL-3 AND NEURO-IMMUNO-METABOLIC CROSSTALK
In recent years, an increasing body of evidence has highlighted the involvement of 
Gal-3 in neurodevelopment and neurodegenerative diseases[20]. Scientific advances 
during the last decade have led to the discovery that Gal-3 plays a significant role in 
normal murine brain development, neuroblast migration, oligodendrocyte differen-
tiation, and basal gliogenesis[21-24]. Chronic inflammation, mitochondrial damage 
and oxidative stress are factors common to neurodegenerative and metabolic diseases, 
in which sustained responses to inflammation contribute to neurodegeneration and 
progression of the disease[24,25]. Glial cell dysregulation is the main characteristic of 
chronic inflammation in neurodegenerative diseases, leading to changes in glycan 
expression in brain cells[26,27]. Previous studies have shown that inflammatory 
stimuli upregulate Gal-3 expression in activated microglia, and conversely, Gal-3 has 
been proposed as a modulator of the inflammatory response through microglial 
activation, cell adhesion, and cytokine release[28-32]. Recently, Gal-3 was shown to 
regulate microglial response to promote remyelination[23]. All this leads to the 
conclusion that Gal-3 is a key player in control of the switch between protective and 
disruptive microglial effects. In multiple sclerosis, Gal-3 expression is increased in 
periventricular inflammatory lesions[33]. Nishihara et al[34] investigated whether anti-
Gal-3 antibodies might be a novel diagnostic marker and a possible therapeutic target 
in patients with secondary, progressive multiple sclerosis. Gal-3 deficiency reduces 
inflammation and disease severity in experimental autoimmune encephalomyelitis, 
Alzheimer’s, and Parkinson’s disease[35-37]. We reported elevated levels of Gal-3 in 
the stable phase of schizophrenia, with the suggestion that this glycan has a proinflam-
matory effect in the later phase[19] (Figure 1A). All the data indicate that Gal-3 might 
be a potential biomarker and therapeutic agent in this cohort of neurodegenerative 
disorders. Gal-3 is not only found in the cells themselves but is also secreted into the 
extracellular space in kidneys and heart, suggesting its multiple functions[38]. In 
addition to cell proliferation and differentiation, it promotes oxidative stress and 
proinflammatory processes and plays an important role in angiotensin II and 
aldosterone-induced myocardial and kidney fibrosis[39,40]. Studies have shown that 
elevated levels of Gal-3 are predictors of coronary disease in diabetes mellitus type 2
[41]. Gal-3 levels are elevated in maintenance hemodialysis patients, and can be used 
as a biomarker of vascular calcification, left ventricular hypertrophy, and left 
ventricular diastolic dysfunction[42-44].

Gal-3 has recently been recognized as an important modulator of biological 
functions and an emerging participant in the pathogenesis of immune/inflammatory 
and metabolic disorders[45-47] (Figure 1B). Gal-3 serum levels are elevated in women 
with polycystic ovary syndrome, especially those with insulin resistance, and those 
with increased insulin and glucose levels in the glucose tolerance test and it is 
considered a potential biomarker in prediabetes and diabetes[48-50]. The role of Gal-3 
in metabolic disorders and the mechanism by which this lectin modulates excess fat 
mass, adipose tissue, systemic inflammation, and the associated impairment of glucose 
regulation, remains to be elucidated. Gal-3 is produced by many cell types, including 
adipocytes, and increased levels have been confirmed in obese patients[51,52]. Gal-3 is 
upregulated in growing adipose tissue and during inflammation[53,54]. Gal-3 is an 
important chemotactic factor for tissue macrophages in adipose tissue[55]. However, 
the role of Gal-3 in adipose tissue remains disputable because it exerts both deleterious 
and protective effects. In the general population, levels of circulating Gal-3 correlate 
positively with age, the prevalence of obesity, diabetes, hypercholesterolemia, and 
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Figure 1 Galectin-3 and neuro-immuno-metabolic crosstalk. A and B: Considering the aspects of neuroprogression in schizophrenia, antipsychotics (APs) 
could have a beneficial role in improving cognitive functioning (A), but also, with galectin (Gal-3), could participate in undesired effects of immunometabolic 
disturbances (B); C: A potential cascade of metabolic syndrome (Sy) onset could be through the processes of glycosylation, Gal-3 elevation in the circulation, and 
secretion of proinflammatory cytokines, which individually and together could lead to cognitive deterioration.

hypertension, markers of inflammation, and target organ damage, indicating a clear 
association of Gal-3 with metabolic disorders and associated risk factors and complic-
ations[50,52,56,57]. Seemingly contradictory results were reported by Ohkura et al[58], 
who demonstrated that Gal-3 affected the concentration of insulin more than that of 
glucose, and that the increase of Gal-3 activity in diabetic patients had a protective 
effect on insulin resistance.

Obesity may influence not only behavior, cognition, and mood, but also adipose 
tissue dysfunction and inflammation, trigger impairment of insulin signaling, 
compromise the storage of triglycerides, and contribute to insulin resistance with high 
levels of free fatty acids[59]. Moreover, all the processes associated with insulin 
resistance and chronic hyperglycemia induce oxidative stress and inflammatory 
responses that lead to neuronal death, cognitive impairment, and neurodegeneration.

Hippocampal insulin resistance is the key factor in cognitive deficits. In an animal 
model study, insulin signaling in the hippocampus was shown to be affected by a 
cascade in which obesity induced chronic inflammation and chronic inflammation had 
role in obesity-related insulin resistance[60]. Moreover, chronic inflammation is 
suppressed by Gal-3, so Gal-3 directly impacts insulin signaling and might be a 
targetable link between inflammation and insulin sensitivity. Qin et al[60] suggested 
that the development of cognitive deficits in obese people could be inhibited through 
Gal-3 decrement.

Obesity is reported in approximately 50% of patients, metabolic syndrome in up to 
40%, glucose intolerance in up to 25%, and diabetes in up to 15% of patients with 
schizophrenia[61]. The increased prevalence of these conditions is multifactorial. 
Antipsychotics can cause weight gain, glucose intolerance, and other metabolic 
complications[62] (Figure 1C). A recent meta-analysis of metabolic parameters in 
patients with first-episode psychosis, which can be described as early schizophrenia, 
showed increased insulin resistance and impaired glucose tolerance in the patients 
compared with healthy, matched controls, implying that schizophrenia might share 
intrinsic inflammatory disease pathways with type 2 diabetes[63]. We have previously 
discussed our findings of the possibly protective properties of Gal-3 in type-2 diabetes, 
but triggering metabolic changes and myocardial fibrosis[19].

GAL-3 AND ANTIPSYCHOTIC TREATMENT IN SCHIZOPHRENIA
Relatively few studies have investigated the effects of antipsychotic treatment on the 
serum glycosylation profiles in schizophrenia patients. Reports examining glycan 
expression in schizophrenia patients showed that the glycan profile in serum and 
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cerebrospinal fluid of first onset, unmedicated schizophrenia patients differs from the 
profile of healthy controls[64]. The results showed that some types of sialylated N-
glycans derived from low-abundance serum proteins are significantly increased in 
patients with schizophrenia compared with controls. The study found a two-fold 
increase in serum glycan levels in male schizophrenia patients, with gender-specific 
differences also apparent[65]. Glycemic differences have also been reported in patients 
with acute paranoid schizophrenia before and after 6 wk of treatment with olanzapine, 
an atypical antipsychotic medication[65]. Olanzapine administration increased 
galactosylation and sialylation of serum N-glycans, suggesting increased activity of 
specific galactosyltransferases and increased availability of galactose residues for 
sialylation. The results indicate that the glycosylation profile of serum proteins can be 
used to monitor patients with schizophrenia after treatment. Given the confirmed 
effects of olanzapine on hepatic enzymes, it is possible that the reported changes in 
glycosylation induced by olanzapine treatment may occur because of the altered 
activity of hepatic glycosylation-processing enzymes[66].

As schizophrenia may have an evolving, progressive pathology, Narayan et al[67] 
focused on changes in gene expression and molecular pathways throughout illness 
progression. They assessed the alterations in patients treated with the typical 
antipsychotic medication, chlorpromazine, at early (≤ 4 years), intermediate (7-18 
years), and late (≥ 28 years) stages of schizophrenia. The results showed that 
biopolymer glycosylation, protein amino acid glycosylation, and glycoprotein biosyn-
thesis were increased in intermediate-stage patients. Analysis of differences in gene 
expression revealed that carbohydrate metabolism was dominant in short-term illness, 
whereas lipid metabolism prevailed in intermediate-term illness. Overall, short-term 
illness was particularly associated with disruptions in gene expression, metal ion 
binding, ribonucleic acid processing, and vesicle-mediated transport. Considerably 
different from short-term illness, long-term illness was associated with inflammation, 
glycosylation, apoptosis, and immune dysfunction.

A postmortem study compared the effects of atypical (olanzapine and risperidone) 
vs typical antipsychotics (chlorpromazine and haloperidol) on the livers, various 
genes, and molecular functions of patients[68]. The results demonstrated that typical 
antipsychotics affected genes associated with nuclear protein, stress responses, and 
phosphorylation, whereas atypical antipsychotics increased gene expression 
associated with Golgi/endoplasmic reticulum, and cytoplasmic transport, suggesting 
that atypical antipsychotics affect post translational modifications. The study showed 
that olanzapine treatment increased the expression of the B4GALT1 gene in the liver of 
schizophrenia patients. That gene encodes β1,4-galactosyltransferase I (Gal-T1). 
Increased expression and activity of the enzyme lead to increased galactosylation of 
GlcNAc residues in glycans, which is consistent with the results of a study performed 
by Telford et al[65]. Genes associated with lipid metabolism were consistently 
downregulated in the typical compared with the atypical antipsychotic group.

However, dysregulation of adipose tissue homeostasis appears to be a critical factor
[69]. An untargeted proteomic analysis of the effect of antipsychotics on adipose tissue 
was performed in a rat schizophrenia-like methylazoxymethanol acetate model[70]. 
Chronic, 8-wk-long application of three antipsychotics was characterized by 
differences in the likelihood of inducing metabolic alterations. Olanzapine, 
risperidone, and haloperidol, caused alterations in protein N-linked glycosylation in 
adipose tissue, providing further evidence that dysregulated glycosylation in schizo-
phrenia may also be caused to some extent by antipsychotic treatment. Drug-specific 
effects included upregulation of insulin resistance (olanzapine), upregulation of fatty 
acid metabolism (risperidone), and upregulation of nucleic acid metabolism 
(haloperidol). Individual metabolic characteristics might also predispose to a different 
likelihood of becoming obese after antipsychotic treatment. Gal-3 has been shown to 
be associated with the onset of schizophrenia, and its elevation could have consequent 
deleterious effects (Figure 1). In addition, it must be taken into account that our 
patients were treated with risperidone or paliperidone, which are antipsychotics that 
may upregulate fatty acid metabolism and have Gal-3-elevating properties[71].

CONCLUSION
In this context, it is necessary and urgent to develop more selective treatment 
strategies. The phase of the illness also needs to be considered, with a focus on early 
interventions. The possibility that schizophrenia is secondary to a circulating, large 
molecular-weight substance has been explored with variable success. However, a 
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double-blind evaluation of plasmapheresis in ten patients with schizophrenia yielded 
negative results, and the procedure did not lead to a reduction in psychosis[72]. As 
hypercholesterolemia has been treated with plasmapheresis, and recently the 
therapeutic usefulness of Gal-3 depletion apheresis has been demonstrated in inflam-
mation-mediated disease, targeting Gal-3 molecule may be a useful way to address 
immunometabolic problems and cognitive deterioration in schizophrenia in the future
[73,74].

The question is whether extrapolations of preclinical and research data are 
applicable in clinical practice. Gal-3 relevance could be very interesting in further 
exploration of the genesis of schizophrenia in parallel with the metabolic alterations of 
the patients. It might be useful for clinicians to become familiar with this molecule and 
its precise roles in each phase of the disease in order to improve cognition and reestab-
lishing metabolic balance in schizophrenia.
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Abstract
BACKGROUND 
Diabetes mellitus (DM) is a progressively increasing metabolic disorder and a 
significant public health burden that demands immediate global attention. 
However, there is a paucity of data about adherence to antidiabetic drugs among 
patients with type-2 (T2)DM in Uttarakhand, India. Outpatient research reported 
that more than 50% of patients do not adhere to the correct administration and 
appropriate medicine dosage. It has been reported that patients with chronic 
diseases who adhere to treatment may experience improvement in quality of life 
(QoL) and vice versa.

AIM 
To assess the adherence to antidiabetic medication and QoL among patients with 
T2DM.

METHODS 
This cross-sectional descriptive study was conducted at a tertiary care hospital in 
Uttarakhand, India. The Medication Adherence Rating Scale and World Health 
Organization QoL-BREF scale were used to assess medication adherence and 
QoL.

RESULTS 
Two hundred seventy-seven patients suffering from T2DM participated in the 
study. Their mean age was 50.80 (± 10.6) years, 155 (56%) had a poor adherence 
level and 122 (44%) had a good adherence level to antidiabetic medications. After 
adjusting for sociodemographic factors, multiple linear regression analysis found 
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patients who were adherent to antidiabetic medications had significantly higher 
mean overall perception of QoL and overall perception of health, with beta scores 
of 0.36 and 0.34, respectively (both P = 0.000) points compared with nonadherent 
patients.

CONCLUSION 
There was an association between medication adherence and QoL in patients with 
T2DM. Hence, there is a need to plan awareness and counseling programs 
followed by regular follow-up to motivate patient adherence to recommended 
treatment and lifestyle regimens.

Key Words: Medication adherence; Quality of life; Diabetes mellitus; Tertiary care 
hospital; India

©The Author(s) 2021. Published by Baishideng Publishing Group Inc. All rights reserved.

Core Tip: Many research articles have been published on the epidemiology, complic-
ations, therapies, comparisons of treatments, and healthcare strategies for diabetes 
mellitus (DM). The literature shows that patient adherence to antidiabetic medications 
and quality of life (QoL) are interrelated. Patients with diabetes who adhere to their 
treatment can experience an improvement in QoL and vice versa. This study focused 
on (1) adherence to antidiabetic medication and QoL among T2DM patients; (2) 
finding the relationship between adherence to antidiabetic medication and QoL; and (3) 
determining the association between adherence to antidiabetic medications and QoL 
and selected demographic variables.

Citation: Mishra R, Sharma SK, Verma R, Kangra P, Dahiya P, Kumari P, Sahu P, Bhakar P, 
Kumawat R, Kaur R, Kaur R, Kant R. Medication adherence and quality of life among type-2 
diabetes mellitus patients in India. World J Diabetes 2021; 12(10): 1740-1749
URL: https://www.wjgnet.com/1948-9358/full/v12/i10/1740.htm
DOI: https://dx.doi.org/10.4239/wjd.v12.i10.1740

INTRODUCTION
Diabetes mellitus (DM) is a progressively increasing metabolic disorder that has 
become a significant public health burden. The World Health Organization has 
identified DM as an important noncommunicable diseases that demands immediate 
global attention[1]. The International Diabetes Federation has reported that 463 million 
adults between 20-79 years of age are living with diabetes and that the total will rise to 
700 million by 2045[2]. This chronic disorder is rated among the top ten causes of 
death (4.2 million) globally and has attained pandemic proportions worldwide[2]. In 
addition to increased mortality, diabetes can lead to poor physical and mental health. 
Moreover, problems like increased blood glucose level and dietary and exercise 
limitations demand repeated insulin injections. However, musculoskeletal and 
vascular complication negatively affect the quality of life (QoL) of patients with DM
[3]. To prevent the development of fatal complications associated with DM, glycemic 
control is required. To achieve that goal, it is necessary to encourage patients to adhere 
to therapeutic regimens, change their life style, and follow the recommendations of 
their clinicians[4]. Studies have shown that patient adherence to chronic-disease 
treatment is low[5]. Research involving outpatients reported that more than 50% do 
not adhere to the correct medicine administration and dosage[6]. The diabetes 
literature shows that patient QoL and medication adherence are interrelated. It has 
been reported that patients with chronic diseases who adhere to their treatment may 
experience improvement in QoL and vice versa[7]. However, there is a paucity of data 
about adherence to antidiabetic drugs among patients with T2DM, especially in 
Uttarakhand. Therefore, this study was conducted to assess the adherence to 
antidiabetic medication and QoL by patients with T2DM.
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MATERIALS AND METHODS
Participants and settings
This cross-sectional descriptive study was conducted at a tertiary care hospital in 
Uttarakhand, India to assess adherence to antidiabetic medications and QoL by 
patients with T2DM. A sample size of 350 was calculated considering that an 
estimated 31.2% of the population would be nonadherent to antidiabetic medications, 
a margin of error of 5% with a 95% confidence interval (CI), a 10% study dropout rate, 
and entering potential confounders as covariates in the regression model[8,9]. Patients 
between 21 and 75 years of age who were diagnosed with T2DM and visited the 
outpatient department between February 10, 2020 and March 19, 2020 were eligible for 
inclusion. Those who were under treatment for T2DM for less than 6 mo or had 
cognitive and neurological impairment were excluded.

Ethical approval
Ethical permission was obtained from institution ethics committee, vide letter no. 
368/IEC/STS/2019. Participants were informed about the purpose of research and 
ensured about anonymity and confidentiality of the information. A written informed 
voluntary participation consent was obtained from each study participant.

Instruments
Participant data were collected with a structured interview questionnaire that 
included sociodemographic characteristics (section I), the Medication Adherence 
Rating Scale (MARS, section II), and the WHOQoL-BREF scale (section III). Question-
naires were administered in the Hindi Language, which is the national language of 
India. MARS is a 10-item questionnaire with validated validity, and developed 
originally in English[10]. To avoid acquiescence bias, the items in the scale have a 
dichotomous response (yes/no). The minimum score was 0 and the maximum score 
was 10. The summed total score was categorized as non- or poor adherence (0-5) or 
adherence or good adherence (6-10). The WHOQoL-BREF is a generic instrument 
developed to measure QoL of patients suffering from T2DM by the WHO criteria and 
is a short version of the 100 item WHOQoL-100[11]. The WHOQoL-BREF consists of 26 
items divided into four QoL domains, Physical health (seven items), psychological 
health (six items), social relationships (three items), and environmental health (eight 
items). The two remaining questions assessed an individual’s overall perception of 
QoL and overall perception of health. All the questions in the instrument are scaled in 
a positive direction from 1 to 5, with a high score indicating good QoL, except for 
items three, four, and 26. The domain score was calculated from the mean score of all 
items within each domain. To make the domain scores comparable to WHOQoL-100 
scores, the calculated mean scores were multiplied by 4[11]. Permission was obtained 
to use the MARS and WHOQoL-BREF tools, and a license agreement was signed by 
the appropriate authority. The validity and reliability of the tools were pre-established 
using Cronbach’s alpha, r = 0.70 for the WHOQoL-BREF and r = 0.75 for MARS[10,
12]. A standardized pilot-tested collection form was used to collect data from 
participants. The average time taken to complete one interview was around 20 min.

Statistical analysis
Data were coded and then entered onto Excel worksheets. The Statistical Package for 
the Social Sciences (SPSS 21.0) was used for statistical analysis. Descriptive and 
inferential statistics were used for data analysis. Sociodemographic characteristics 
were reported as frequencies (n) and percentages (%). Adherence to antidiabetic 
medication- and health-related QoL was reported as means and standard deviation 
(SD). Multiple linear regression analysis was performed to assess the effect of 
adherence to antidiabetic medication within each QoL domain after adjusting the 
estimates for some sociodemographic variables. A P value of < 0.05 was considered 
statistically significant.

RESULTS
A total of 277 patients with T2DM were recruited during the study period. The mean ± 
SD age was 50.80 ± 10.6 years. More than half of the patients were men (57%), residing 
in urban area (63.9%) with a distance of more than 10 km from hospital (66.1%), 
having joint family (65.3%), and suffering from T2DM for 1-5 years (54.2%). Nearly 
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one-third (32.9%) had an educational status up to the primary level. The majority had 
associated comorbidities, including thyroid (54.5%) and hypertension (41.5%). The 
clinical histories revealed that 47.3% were taking both insulin and oral hypoglycemic 
agents (OHAs) for treatment along with lifestyle modifications (Tables 1 and 2).

Of the 277 patients included in this study, 155 (56%) had poor adherence scores of 0-
5 and 122 (44%) had good adherence scores of 6-10) for antidiabetic medications. The 
mean overall perception of QoL and health scores were 68.16 ± 14.69 and 63.97 ± 16.51 
respectively. Tables 1 and 2 shows the mean scores of the four domains stratified by 
sociodemographic and clinical characteristics and the two individual questions 
assessing the overall perception of QoL and health. Higher mean QoL score were 
reported by those with postgraduate and above education, incomes > 30001 INR, 
residing < 5 km from the hospital, suffering with T2DM for more than 15 years, and on 
glimepiride.

Multiple regression analysis found that medication adherence was an independent 
predictor of QoL (P < 0.05) in the patients in this study after adjusting for various 
sociodemographic characteristics including age, marital status, educational 
qualification, type of family, and monthly income. Patients who were adherent to 
antidiabetic medications had significantly higher mean overall perception of QoL and 
health scores, (P = 0.000) compared with nonadherent patients. Their beta scores of 
0.36 and 0.34 points, respectively (Table 3).

DISCUSSION
DM is a chronic disease that requires patients to be on long-term drug therapy. Poor 
treatment adherence and lifestyle habits are significant barriers in the treatment of 
DM. The primary objective of diabetes management is to improve patient health-
related QoL which is now a growing area of interest and has emerged as a significant 
chronic-disease outcome. In developed nations, approximately 50% of diabetes 
patients do not adhere to the recommended therapies[13]. The literature has shown 
that medication adherence is associated with improved disease control[6]. This study 
was conducted to assess adherence to antidiabetic medications and QoL in patients 
with T2DM attending the outpatient department of a tertiary care hospital. Medication 
adherence is a key factor because it is directly related to the disease outcome. 
However, nonadherence may alter all QoL dimensions. This study found that 155 of 
the participants (56%) were nonadherent and 122 (44%) were adherent to antidiabetic 
medications. Worldwide studies using various research assessment instruments and 
systematic reviews have addressed issues of poor medication adherence by diabetes 
patients[14]. Our findings are similar to those of Ahmad et al[15], who reported that 
53% of their respondents were nonadherent to medications. However, much lower 
rates of nonadherence have been seen in studies conducted by Bagonza et al[16], Pascal 
et al[17], and Elsous et al[18] who reported rates between 16.7%% and 42%. The 
difference in adherence might be explained by variations in healthcare services, 
socioeconomic status, and the metrics used for assessment of adherence across the 
study settings. However, a study conducted in Oman reported overall good patient 
adherence to the medication regimen (80%), which is higher than our finding[19]. A 
study in 129 patients by Fadare et al[20] reported 40.6% good, 32.8% medium, and 
26.6% poor adherence to medication regimens.

This study found a statistically significant relation (P < 0.05) between age and 
monthly income and good adherence to antidiabetic medications. Similarly, Gelaw et 
al[21] reported that increased age was significantly associated (P < 0.05) with good 
adherence to treatment. It is expected that patients with high education levels would 
have better adherence to medication regimen, and that was confirmed by Ahmed et al
[22], who found that patients with graduate-level educations were highly adherent. 
Contrary to our findings, Fadare et al[20] did not find significant differences in 
adherence (P < 0.05) between levels of education and adherence. Our findings are 
similar to those of Gelaw et al[21] who reported that married patients had a higher rate 
of therapeutic adherence (48.6%) than single, widowed, or divorced patients, but Khan 
et al[23] did find a significant impact of marital status on patient adherence.

Gelaw et al[21] reported that 82.07% of patients with a duration of diabetes ≤ 5 years 
were more compliant to medication than those with diabetes for > 5 years, and the 
difference was statistically significant. Similar to our finding that 155 (56%) of patients 
were nonadherent to antidiabetic medications, Bezie et al[24] reported that patients 
who had been on diabetic treatment for < 5 years were poorly adherent to treatment. It 
is likely that patients who have been on treatment for a short duration are less aware 
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Table 1 Quality of life scores, sociodemographic characteristics, and medication adherence of the study participants

QoL domains, mean ± SD
Demographic variables n (%)

Physical domain Psychological domain Social domain Environmental domain
Overall perception on QoL Overall perception of Health

Age, yr

21-46 77 (27.8) 59.67 ± 15.88 53.12 ± 17.76 69.97 ± 12.07 55.14 ± 11.68 67.79 ± 15.61 64.45 ± 16.74

47-71 193 (69.7) 56.29 ± 15.03 52.64 ± 14.35 69.98 ± 14.66 57.99 ± 11.95 68.50 ± 14.23 63.73 ± 16.28

< 71 07 (2.50) 41.86 ± 10.73 44.71 ± 18.98 62.57 ± 21.75 56.28 ± 13.35 62.86 ± 17.99 54.29 ± 19.02

Gender

Male 158 (57) 57.30 ± 14.93 53.59 ± 14.48 70.33 ± 14.72 58.02 ± 11.32 69.24 ± 13.66 66.33 ± 15.82

Female 119 (43) 56.29 ± 16.05 51.23 ± 16.68 69.07 ± 13.47 56.01 ± 12.65 66.72 ± 15.89 60.84 ± 16.95

Marital status

Married 254 (91.7) 57.09 ± 15.63 52.82 ± 15.39 70.36 ± 12.75 57.13 ± 11.95 68.35 ± 14.86 64.33 ± 16.64

Single 23 (8.30) 54.48 ± 12.61 49.83 ± 16.48 63.52 ± 24.72 57.48 ± 11.95 66.09 ± 12.70 60.00 ± 14.77

Educational qualification

Illiterate 51 (18.4) 54.18 ± 17.35 49.18 ± 16.08 67.72 ± 11.86 53.65 ± 11.05 64.31 ± 15.13 59.22 ± 16.95

Primary school 91 (32.9) 55.91 ± 16.04 51.32 ± 15.83 67.91 ± 14.39 54.15 ± 12.10 67.03 ± 15.88 62.86 ± 18.27

Secondary school 71 (25.6) 58.17 ± 15.86 54.83 ± 14.78 72.19 ± 14.39 58.98 ± 10.34 69.30 ± 13.87 65.92 ± 14.89

Graduate school and above 64 (23.1) 58.94 ± 11.82 54.56 ± 14.90 71.45 ± 16.72 62.19 ± 12.08 71.56 ± 12.75 67.19 ± 14.42

Type of family

Nuclear 96 (34.7) 60.42 ± 16.10 56.05 ± 15.51 71.03 ± 13.18 58.26 ± 11.21 68.54 ± 15.01 65.00 ± 16.42

Joint 181 (65.3) 54.99 ± 14.72 50.73 ± 15.18 69.14 ± 14.69 56.57 ± 12.29 67.96 ± 14.56 63.43 ± 16.58

Monthly income, INR

< 20000 127 (45.8) 54.20 ± 15.40 51.24 ± 15.48 67.58 ± 14.86 54.59 ± 12.14 66.61 ± 15.54 60.94 ± 16.88

20000-30000 91 (32.9) 56.37 ± 15.68 52.77 ± 15.56 69.77 ± 14.57 57.77 ± 11.44 67.69 ± 13.91 63.74 ± 15.47

> 30001 59 (21.3) 63.39 ± 13.14 55.13 ± 15.28 74.59 ± 10.69 61.71 ± 10.87 72.20 ± 13.40 70.85 ± 15.46

Residence

Urban 177 (63.9) 59.80 ± 15.25 54.29 ± 15.79 71.48 ± 12.61 57.60 ± 12.09 69.04 ± 14.29 66.10 ± 15.63

Rural 100 (36.1) 51.68 ± 14.32 49.54 ± 14.49 66.80 ± 16.26 56.36 ± 11.66 66.60 ± 15.32 60.20 ± 17.41
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Adherence level

Nonadherent 155 (55.96) 52.32 ± 14.59 48.94 ± 14.56 69.73 ± 13.91 56.17 ± 12.32 64.90 ± 15.35 60.65 ± 16.50

Adherent 122 (44.04) 62.65 ± 14.48 57.19 ± 15.44 69.87 ± 14.59 58.40 ± 11.35 72.30 ± 12.71 68.20 ± 15.59

Data are n (%) or mean ± SD. INR: Indian rupee; QoL: Quality of life.

Table 2 Quality of life scores and clinical characteristics of the study participants

Clinical characteristics n (%)277 Physical domain Psychological domain Social domain Environmental domain Overall perception of QoL Overall perception of health

Duration of T2DM, yr

1-5 150 (54.2) 57.19 ± 14.61 52.77 ± 15.54 70.98 ± 12.06 57.03 ± 12.39 68.67 ± 14.91 64.13 ± 15.77

6-10 90 (32.5) 54.98 ± 14.91 51.07 ± 14.11 67.74 ± 17.02 57.12 ± 12.21 66.67 ± 14.06 63.78 ± 16.93

11-15 31 (11.2) 60.35 ± 19.86 56.06 ± 18.94 70.42 ± 14.96 57.16 ± 10.03 69.03 ± 15.35 63.23 ± 19.39

> 15 06 (2.2) 59.33 ± 15.86 52.17 ± 14.69 67.67 ± 12.13 60.67 ± 03.61 73.33 ± 16.33 66.67 ± 16.33

Drug used

Metformin 80 (28.9) 56.27 ± 14.55 51.00 ± 13.68 69.77 ± 14.09 56.46 ± 11.91 67.75 ± 13.31 64.25 ± 15.49

Glimepiride 66 (23.8) 61.20 ± 15.54 56.64 ± 15.21 71.44 ± 12.32 56.38 ± 12.10 71.82 ± 14.45 66.36 ± 16.14

Other OHA 131 (47.3) 55.05 ± 15.53 51.49 ± 16.37 68.98 ± 15.12 57.97 ± 11.90 66.56 ± 15.38 62.60 ± 17.26

Chronic comorbid illness

Hypertension 115 (41.5) 56.31 ± 15.46 51.94 ± 15.54 67.27 ± 15.44 56.81 ± 10.94 65.91 ± 14.74 61.74 ± 17.28

Thyroid 151 (54.5) 57.62 ± 15.48 53.54 ± 15.01 71.87 ± 13.11 57.39 ± 12.87 69.93 ± 14.21 65.70 ± 15.89

CAD 11 (4.00) 52.36 ± 13.91 46.00 ± 20.00 67.64 ± 10.76 57.54 ± 08.85 67.27 ± 18.49 63.64 ± 15.01

CAD: Coronary artery disease; DM: Diabetes mellitus; OHA: Oral hypoglycemic agent, QoL: Quality of life; T2DM: Type-2 diabetes mellitus. Data are n (%) or mean ± SD.

of the disease condition and are thereby nonadherent to the antidiabetic medications. 
However, patients with a longer disease duration are likely to have had more contacts 
with their healthcare providers, may have a better understanding of their regimen, are 
more likely to be self-motivated to take prescribed medications. However, the 
association of treatment adherence and the number of years with diabetes was not 
statistically significant.
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Table 3 Multiple linear regression analysis of predicting variables for quality of life domains

Demographic variable Physical domain Psychological domain Social domain Environmental domain Overall perception of QoL Overall perception of health

β P value β P value β P value β P value β P value β P value

Age, (ref ≤ 71 yr) -4.84 0.009 -1.12 0.56 -0.28 0.87 2.62 0.08 0.04 0.65 -0.15 0.14

Gender (ref = male) -0.42 0.83 -1.48 0.47 2.38 0.21 1.52 0.34 -0.003 0.98 -0.18 0.09

Marital status (ref = single) -1.13 0.47 -1.77 0.29 -5.98 0 -0.24 0.85 -0.04 0.64 -0.07 0.41

Educational qualification (ref = illiterate) -0.04 0.96 1.27 0.19 0.92 0.3 2.75 0 0.09 0.06 0.03 0.5

Type of family (ref = nuclear) -2.96 0.08 -4.32 0.02 -1.45 0.37 -2.03 0.14 -0.03 0.71 -0.02 0.84

Monthly income (ref ≤ 20,000) 3.57 0.005 0.35 0.79 2.86 0.02 2.13 0.04 0.05 0.39 0.16 0.02

Habitat (ref = rural) -3.37 0.06 -0.57 0.76 -1.88 0.27 1.57 0.21 -0.02 0.82 -0.11 0.26

Years with DM (ref ≥ 15) 0.75 0.5 0.27 0.82 -1.26 0.31 -0.12 0.89 0 0.99 0.004 0.96

Drug used (ref = other OHA) -1.84 0.07 -0.29 0.79 -0.74 0.46 0.52 0.54 -0.06 0.28 -0.09 0.12

Chronic comorbid illness (ref = hypertension) -0.73 0.63 -0.4 0.8 2.47 0.09 0.58 0.64 0.13 0.08 0.07 0.41

Adherent level (ref = nonadherent) 8.91 0 7.59 0 -0.55 0.74 1.72 0.22 0.36 0 0.34 0

β-Standardized regression coefficient; DM: Diabetes mellitus; OHA: Oral hypoglycemic agent; QoL: Quality of Life; Ref: Reference group.

Participants who do not have diabetes-related complications had a high level of 
adherence. In contrast, poor medication adherence may result in comorbidities. 
Participants with no diabetes-related complications requires fewer medications. Thus, 
their adherence to antidiabetic medication might increase, and the risk of developing 
comorbidities might decrease[25]. This study did not find a significant association 
between comorbidities and the level of adherence. Considering the multifactorial 
nature of poor medication adherence, it is understood that only a sustained, 
coordinated effort will ensure optimal medication adherence. This study has clearly 
shown that diabetes impaired the physical and psychological QoL domain. QoL 
measurements should thus become routine in the clinical management of diabetic 
patients. Another factor which was found to be positively associated with adherence 
was knowledge of DM and its medications. Keeping in mind the high prevalence of 
both diabetes and nonadherence to the treatment regimen, additional nurses should be 
trained to run special diabetic clinics at rates that patients can easily afford to pay. 
Creating awareness and educating the patients regarding the disease and its 
management will definitely help to improve the adherence level and QoL.
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CONCLUSION
This study found that more than 50% of the participants were nonadherent to 
antidiabetic medications and that QoL scores were associated with the level of patient 
adherence. There is a need to plan and implement awareness and counseling 
programs and regular follow-up to motivate patients to improve adherence to 
recommended treatment and lifestyle regimens.

Scope for future work
The study was limited by a small patient sample, but the findings can be expanded by 
machine-learning analysis and statistical methods designed to extract information 
from large data samples. Specifically, random forest algorithms and artificial neural 
networks can be used to determine which predictors are more important for the 
prediction of medication adherence or quality of life (QoL).
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ARTICLE HIGHLIGHTS
Research background
Diabetes mellitus (DM) is a progressive metabolic disorder that has become a 
significant public health burden that demands immediate global attention. However, 
there is a paucity of data on adherence to antidiabetic drugs by patients with type-two 
(T2)DM in Uttarakhand, India. Current research in outpatients has shown that more 
than 50% of patients do not adhere to the correct administration and appropriate 
dosage of antidiabetic medications. It has been reported that patients with chronic 
diseases who adhere to treatment may experience improvement in quality of life (QoL) 
and vice versa.

Research motivation
DM is a progressively increasing metabolic disorder that has become a significant 
public health burden and demands immediate global attention. The paucity of data on 
adherence to antidiabetic drugs by patients with T2DM in Uttarakhand, India 
prompted this study.

Research objectives
The study was conducted to assess the adherence to antidiabetic medications and QoL 
in patients with T2DM.

Research methods
This cross-sectional descriptive study was conducted at a tertiary care hospital in 
Uttarakhand, India. The Medication Adherence Rating Scale and World Health 
Organization QoL-BREF scale were used to assess medication adherence and QoL.

Research results
A group of 277 outpatients with T2DM participated in the study. Their mean age was 
50.80 ± 10.6 years, 155 (56%) had poor, and 122 (44%) had good antidiabetic 
medication adherence. After adjusting for sociodemographic variables, multiple linear 
regression analysis found that patients who were adherent to antidiabetic medications 
had significantly a higher overall mean perception of QoL and health, with beta scores 
of 0.36 and 0.34 points, respectively (both P = 0.000) compared with nonadherent 
patients.

Research conclusions
Adherence to medications by patients with T2DM was correlated with QoL. Hence, 
there is a need to plan and implement awareness and counseling programs followed 
by regular follow-up to motivate patient adherence to recommended treatment and 
lifestyle regimens.
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Research perspectives
Many research articles have been published about the epidemiology, complications, 
therapies, comparisons of treatments, and healthcare strategies for DM. The literature 
shows that patient adherence to antidiabetic medications and QoL are interrelated. 
Patients with diabetes who adhere to their treatment can experience an improvement 
in QoL and vice versa. This study focused on (1) adherence to antidiabetic medications 
and QoL in T2DM; (2) finding the relationship between adherence to antidiabetic 
medications and QoL; and (3) determining the association between adherence to 
antidiabetic medications and QoL and selected demographic variable.
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Abstract
BACKGROUND 
Antagonists of cannabinoid type 1 receptor (CB1) have been shown to promote 
body weight loss and improve insulin sensitivity. Cannabinoids decrease 
adiponectin, and CB1 blocker increase adiponectin. However, the mediators of 
CB1 actions are not well defined.

AIM 
To investigate whether the beneficial effects of CB1 inhibition are, at least in part, 
mediated by adiponectin.

METHODS 
We compared metabolic and inflammatory phenotypes of wild-type (WT) mice, 
CB1-null (CB1-/-) and CB1/adiponectin double-knockout (DKO) mice. We assessed 
the insulin sensitivity using insulin tolerance test and glucose tolerance test, and 
inflammation using flow cytometry analysis of macrophages.
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RESULTS 
CB1-/- mice exhibited significantly reduced body weight and fat mass when 
compared to WT mice. While no significance was found in total daily food intake 
and locomotor activity, CB1-/- mice showed increased energy expenditure, 
enhanced thermogenesis in brown adipose tissue (BAT), and improved insulin 
sensitivity compared to WT mice. DKO showed no difference in body weight, 
adiposity, nor insulin sensitivity; only showed a modestly elevated thermogenesis 
in BAT compared to CB1-/- mice. The metabolic phenotype of DKO is largely 
similar to CB1-/- mice, suggesting that adiponectin is not a key mediator of the 
metabolic effects of CB1. Interestingly, CB1-/- mice showed reduced pro-inflam-
matory macrophage polarization in both peritoneal macrophages and adipose 
tissue macrophages compared to WT mice; in contrast, DKO mice exhibited 
increased pro-inflammatory macrophage polarization in these macrophages 
compared to CB1-/- mice, suggesting that adiponectin is an important mediator of 
the inflammatory effect of CB1.

CONCLUSION 
Our findings reveal that CB1 functions through both adiponectin-dependent and 
adiponectin-independent mechanisms: CB1 regulates energy metabolism in an 
adiponectin-independent manner, and inflammation in an adiponectin-dependent 
manner. The differential effects of adiponectin on CB1-mediated metabolic and 
inflammatory functions should be taken into consideration in CB1 antagonist 
utilization.

Key Words: Cannabinoid type 1 receptor; Adiponectin; Thermogenesis; Macrophages; 
Inflammation; Insulin resistance

©The Author(s) 2021. Published by Baishideng Publishing Group Inc. All rights reserved.

Core Tip: Antagonists of cannabinoid type 1 receptor (CB1) have been shown to 
promote body weight loss and improve insulin sensitivity. Cannabinoids have been 
shown to regulate adiponectin. However, it is unclear whether adiponectin is a key 
mediator of the functions of CB1. We compared metabolic and inflammatory 
phenotypes of CB1-null vs CB1/adiponectin double-knockout mice. Our findings 
reveal that CB1 functions through both adiponectin-dependent and adiponectin-
independent mechanisms: CB1 regulates energy metabolism in an adiponectin-
independent manner, and inflammation in an adiponectin-dependent manner.

Citation: Wei Q, Lee JH, Wu CS, Zang QS, Guo S, Lu HC, Sun Y. Metabolic and inflammatory 
functions of cannabinoid receptor type 1 are differentially modulated by adiponectin. World J 
Diabetes 2021; 12(10): 1750-1764
URL: https://www.wjgnet.com/1948-9358/full/v12/i10/1750.htm
DOI: https://dx.doi.org/10.4239/wjd.v12.i10.1750

INTRODUCTION
The incidence of obesity has increased rapidly during recent decades, particularly in 
developed/industrialized countries. Obesity increases the incidences of hyperinsu-
linemia, insulin resistance, type 2 diabetes, dyslipidemia, atherosclerosis, hyperten-
sion, inflammation, and cancer[1,2]. Endocannabinoids are key regulators of food 
intake and energy metabolism, and the effects are mediated through the activation of 
the cannabinoid type 1 receptor 1 (CB1)[3,4]. Recent studies have demonstrated that 
blocking the activity of the endogenous cannabinoid system might be a strategy for the 
treatment of obesity and metabolic syndrome[5-7].

Previous study demonstrated that CB1 knockout mice consume less food and have 
reduced body weight[4,8]. Rimonabant, a specific antagonist of CB1, reduces food 
intake by blocking the orexigenic effect of cannabinoids[9]. There is also evidence that 
endogenous cannabinoids regulate energy expenditure[10]. It has been shown that 
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virally-induced hypothalamic CB1 knockout mice showed no change in food intake, 
but did show less body weight gain over time due to increased energy expenditure; 
and the mRNA expression of β3-adrenergic receptor and uncoupling protein-1 (UCP-
1) was elevated in the brown adipose tissue (BAT)[10]. There are also data showing 
that rimonabant alleviates dyslipidemia and obesity via a BAT thermogenesis-
mediated increase of energy expenditure[9]. It has been shown that peripheral CB1 
blockade is effective in activating thermogenesis in BAT to mitigate dyslipidemia and 
obesity[11], which suggests that the function of CB1 in BAT can be peripherally 
mediated and is not necessarily dependent on its central action. These results suggest 
that endocannabinoids may regulate energy metabolism by binding to CB1 expressing 
cells in peripheral white adipose tissue (WAT)[8] and/or BAT[9].

Adiponectin, an adipokine with insulin-sensitizing functions, has been reported to 
be relevant in many metabolic diseases such as obesity, and with associated complic-
ations such as diabetes, hyperinsulinemia, insulin resistance, dyslipidemia, 
hypertension, and inflammation[12]. Adiponectin treatment reduces body weight, 
improves hyperglycemia, ameliorates hyperinsulinemia and insulin resistance, and 
increases fatty acid oxidation and lipid clearance, in animal models of obesity and 
diabetes[13,14]. One of the most intriguing consequences of rimonabant treatment is 
increased adiponectin gene expression in adipose tissue of diet-induced obese (DIO) 
mice[9] and in cultured adipocytes[15]. However, the rimonabant-treated adiponectin- 
and leptin-deficient mice exhibit significantly ameliorated insulin resistance, which 
suggests that rimonabant reduces insulin resistance via both adiponectin-dependent 
and adiponectin-independent mechanisms[16]. These results suggest that rimonabant 
may regulate adiponectin expression in adipocytes, and the metabolic effects of 
rimonabant, at least in part, could be due to enhanced adiponectin secretion.

To determine whether adiponectin is indeed required for the peripheral functions of 
CB1, we used a genetic approach by breeding CB1-/- mice with adiponectin-deficient 
mice to generate a mouse model lacking both CB1 and adiponectin, aka double KO 
(DKO). We studied metabolic regulation such as thermogenesis and insulin sensitivity 
in these mice. The link between inflammation and obesity is now increasingly 
recognized and inflammation is considered a culprit of insulin resistance. Thus, we 
also characterized macrophage polarization in peritoneal macrophages and adipose 
tissue macrophages to elucidate whether CB1 acts through adiponectin to modulate 
CB-1 mediated inflammation.

MATERIALS AND METHODS
Animals
All procedures using animal experiments were approved by the Institution of Animal 
Care and Use Committee at Baylor College of Medicine. All mice used in this study 
were congenic male mice. All mice were on a pure C57/6J background. To generate 
mice lacking both CB1 and adiponectin, CB1-/- mice and adiponectin-/- mice were bred to 
each other to create compound heterozygotes that were CB1+/-/adiponectin+/-. In the 
second cross, compound heterozygotes were further bred to each other to yield 
homozygous CB1 - / -/adiponectin - / - (aka double-knockout DKO mice); CB1 - / -  

adiponectin+/+ mice (aka CB1-/-), and CB1+/+ adiponectin+/+ (aka WT mice). Age-
matched male WT, CB1-/- and DKO were used in the studies. There were three groups 
of mice used in the study: (WT) control group, CB1-/- group, DKO group. Animals 
were housed under controlled temperature and lighting (75 ± 1 ℉; 12 h light-dark 
cycle). The diet was from Harlan-Teklad (2920X) and the diet compositions are as 
follows: 16% of calories from fat, 60% from carbohydrates, and 24% from protein. All 
experiments were approved by the Animal Care Research Committee of the Baylor 
College of Medicine.

Metabolic characterizations 
Magnetic Resonance Imaging analysis of body composition was also carried out using 
an EchoMRI Whole Body Composition Analyzer (Echo MRI®, United States). 
Metabolic parameters were obtained using an Oxymax open-circuit indirect 
calorimetry Comprehensive Lab Animal Monitoring System (CLAMS) from Columbus 
Instruments (Columbus, OH, United States). Energy expenditure (EE) was calculated 
as the product of the value of oxygen (3.815 + 1.232 × RQ) and the volume of O2 
consumed. Respiratory quotient (RQ) ratio of VCO2/VO2 was then calculated[17]. 
Energy expenditure was normalized to both body weight and lean mass. Locomotor 
activity was measured using infrared beams to count the number of beam breaks 
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during the recording period. The CLAMS data was the average of 3 d of data that were 
collected after 3 d of acclimation.

Insulin tolerance test and glucose tolerance test
The Insulin tolerance test (ITT) and glucose tolerance test (GTT) were carried out on 
WT, CB1-/- and DKO mice. For ITT, after being fasted for 6 h, glucose of mouse tail 
blood was measured using One Touch Ultra glucose meter (lifeScan, New Brunswick, 
NJ, United States). It can detect glucose concentrations from 20 to 600 mg/dl using an 
electrochemical biosensor technology based on glucose oxidase chemistry. Mice then 
received an i.p. injection of human insulin (Eli Lilly Indianapolis, IN, United States) at 
a dose of 1.0 U kg-1 of body weight. Tail blood glucose concentration was measured at 
0, 30, 60, 90 and 120 min after i.p. insulin injection. The GTT was carried out after the 
mice were fasted for 18 h overnight. The mice received i.p. injection of glucose (Sigma-
Aldrich, St. Louis, MO, United States) at a dose of 2.0 g kg-1 body weight. The tail 
blood glucose was measured at 0, 15, 30, 60 and 120 min after glucose injection, and 
blood was collected for ELISA insulin analysis at 0, 15, 30 and 120 min after glucose 
injection.

Flow cytometry analysis 
Peritoneal macrophage and stromal vascular (SV) cells of epididymal adipose tissues 
were fractionated as described[18,19]. Briefly, to get peritoneal macrophage, 5 ml of 
cold phosphate buffer saline (PBS) was injected into mouse peritoneal cavities 
immediately after anesthesia. After shaking the mice for 2-3 min, peritoneal fluid was 
harvested and spun down for peritoneal macrophages at 500 g for 5 min at 4 °C. The 
stromal vascular cells were isolated from the equal mass of epididymal adipose tissues 
using the collagenase digestion method. For flow cytometry analysis, same quantity 
cells (1 × 106) were subsequently re-suspended and stained with appropriate 
antibodies (F4/80 and CD11c for M1 type macrophage, or F4/80 and CD206 for M2 
type macrophage) as described in our previous study[20]. Antibody information used 
in flow cytometry analysis is as follows: PE anti-mouse F4/80 antigen (eBioscience, 
San Diego, CA), FITC anti-mouse CD11c antigen (BD Bioscience, San Jose, CA), 
purified CD16/CD32 antigen (BD Bioscience, San Jose, CA), and APC anti-mouse 
CD206 antigen (BD Bioscience, San Jose, CA). All data were collected using FACScan 
and analyzed using CellQuest software (BD Biosciences, San Jose, CA).

Analysis of gene expression
BAT and WAT were snap-frozen in liquid nitrogen and stored at -80 ℃. Total RNA 
was extracted from frozen tissue samples using TRIzol Reagent (Invitrogen, Carlsbad, 
CA). RNA was subsequently treated with DNase (Ambion, Austin, TX). RNA quality 
was assessed on 1.5% agarose gel electrophoresis in the presence of formaldehyde, and 
RNA concentration was determined by NanoDrop. The cDNA was synthesized from 
1g RNA using the Superscript Ⅲ First-Strand Synthesis system for reverse 
transcription-polymerase chain reaction (RT-PCR) (Invitrogen). Quantitative real-time 
RT-PCR was performed on an ABI7900 using the SYBR Green PCR Master Mix or the 
Taqman gene expression Master Mix (Applied Biosystems, Carlsbad, CA, United 
States). After amplification, the PCR product was subjected to 2% agarose gel electro-
phoresis. 18S RNA and -actin were used as internal controls. The primer sequences of 
quantitative RT-PCR are listed in Table 1 below.

Data analysis
Data are expressed as means ± SEM. Two groups were compared by t-test. P < 0.05 
was considered statistically significant. All statistical analyses were carried out with 
SPSS 23.0 statistical software (IBM, Armonk, NY, United States).

RESULTS
CB1 ablation increases energy expenditure, reduces adiposity, and improves insulin 
sensitivity
The body weights of CB1-/- mice were significantly lower than WT littermates; the 
analysis of body composition showed a markedly decreased percentage of fat mass in 
CB1-/- mice compared to WT mice (Figure 1A). We then assessed food intake, 
locomotor activity, and energy expenditure using CLAMS. Our data showed there was 
a trend of reduction but no significant difference in total daily food intake by CB1-/-



Wei Q et al. Metabolic and inflammatory effects of CB1 and adiponectin

WJD https://www.wjgnet.com 1754 October 15, 2021 Volume 12 Issue 10

Table 1 The sequences of reverse transcription-polymerase chain reaction primers

Gene Forward primer (5’-3’) Reverse primer (5’-3’)

UCP-1 GTGAAGGTCAGAATGCAAGC AGGGCCCCCTTCATGAGGTC

PGC-1α CATTTGATGCACTGACAGATGGA CCGTCAGGCATGGAGGAA

IR CAAAAGCACAATCAGAGTGAGTATGAC ACCACGTTGTGCAGGTAATCC

IRS1 GCCTGGAGTATTATGAGAACGAGAA GGGGATCGAGCGTTTGG

PPARγ2 GCCTATGAGCACTTCACAAGAAATT TGCGAGTGGTCTTCCATCAC

GLUT4 GCCTTGGGAACACTCAACCA CACCTGGGCAACCAGAATG

F4/80 CTTTGGCTATGGGCTTCCAGTC GCAAGGAGGACAGAGTTTATCGTG

CD11C CTGGATAGCCTTTCTTCTGCTG GCACACTGTGTCCGAACTC

CD206 TGATTACGAGCAGTGGAAGC GTTCACCGTAAGCCCAATTT

TNFα GAGAAAGTCAACCTCCTCTCTG GAAGACTCCTCCCAGGTATATG

IL-1β TGTTCTTTGAAGTTGACGGACCC TCATCTCGGAGCCTGTAGTGC

IL-6 CCAGAGATACAAAGAAATGATGG ACTCCAGAAGACCAGAGGAAAT

mice compared to WT mice (Figure 1B). To further determine whether there is a 
difference in locomotor activity, we analyzed spontaneous locomotor activity of these 
mice. Neither total daily locomotor activity nor the locomotor activity during light or 
dark cycles was altered (Figure 1C). We next calculated energy expenditure and found 
that energy expenditure of CB1-/- mice was higher compared to their WT counterparts 
when normalized to body weight but no difference when normalized to lean mass 
(Figure 1D). Together, the results indicate that while CB1 ablation reduces body 
weight and fat deposition, it may be a due to a combination of changes in food intake 
and exergy expenditure.

Next, we assessed the glycemic phenotype. ITT showed that CB1-/- mice were more 
responsive to insulin challenge than WT mice (Figure 1E). During GTT, there was no 
difference in glucose clearance following a glucose load in WT and CB1-/- mice; but 
remarkably, the insulin levels of CB1-/- mice were significantly lower, indicative of 
increased insulin sensitivity (Figure 1F). These results indicate that CB1-/- mice have 
improved insulin sensitivity, which is in line with reduced body weight and body fat.

Collectively, these data suggest that CB1 is an important regulator of energy 
homeostasis and insulin sensitivity.

Adiponectin has little impact on CB1-mediated overall metabolic profile 
To determine whether the metabolic effects of CB1 are mediated by adiponectin, we 
compared the metabolic phenotypes of CB1-/- and DKO mice. The body weights of CB1
-/- mice were similar to their age-matched DKO (Figure 2A). There were also no 
differences in fat mass and lean mass between CB1-/- and DKO mice. Indirect 
calorimetry analysis showed similar total food intake (Figure 2B) and locomotor 
activity (Figure 2C) between DKO and CB1-/- mice. Interestingly, compared to CB1-/- 

mice, DKO mice had increased energy expenditure when corrected either by total 
body weight or by lean weight (Figure 2D).

Furthermore, there was no difference in insulin sensitivity assessment of ITT 
between CB1-/- and DKO mice (Figure 2E). We further assessed glucose response 
during GTT: No difference was detected in glucose response, but interestingly, the 
insulin of DKO was lower at 15 min but higher at 120 min as compared to that of CB1-/- 
mice (Figure 2F). These data suggest that DKO mice have mostly similar metabolic 
profile, insulin sensitivity and glycemic response as CB1-/- mice, despite there are some 
varied insulin responses to glucose. Taken together, the effects of CB1 on metabolism 
are dominant; adiponectin is not essential in mediating the metabolic effects of CB1.

CB1 ablation activates thermogenesis in BAT 
To determine the underlying mechanisms of the increased energy expenditure 
observed in CB1-/- mice, we subsequently analyzed BAT collected from the mice. CB1-/- 
mice showed a decreased ratio of BAT: Body weight as compared to WT mice 
(Figure 3A). Mitochondrial uncoupling protein 1 (UCP1) is the hallmark regulator of 
mitochondrial biogenesis and thermogenesis; when activated, UCP1 dissipates the 
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Figure 1 Cannabinoid type 1 receptor-null mice have reduced adiposity and improved insulin sensitivity. Wild-type (WT) and cannabinoid type 1 
receptor-null (CB1-/-) male mice at 4 mo of age. A: Body weight and body composition; B: Daily food intake; C: Locomotor activity; D: Energy expenditure adjusted by 
body weight or lean mass; E: Insulin tolerance tests; F: Glucose tolerance tests at 5 mo of age. n = 5-7. aP < 0.05, bP < 0.001, WT vs CB1-/-.

transmembrane proton gradient and generates heat[21]. UCP1 mRNA was increased 
in CB1-/-mice as compared to WT controls (Figure 3B). Peroxisome proliferator-
activated receptorγcoactivator-1 (PGC-1) is an upstream regulator of UCP1[22]. 
Indeed, PGC-1 expression was also increased in the CB1-/- mice when compared to that 
of WT mice (Figure 3B).

Our result in Figure 1 showed CB1-/- mice have higher insulin sensitivity compared 
to WT mice. Consistently, the gene expression of insulin receptor (IR) and insulin 
receptor substrate 1 (IRS-1) were increased in BAT of CB1-/- mice. Peroxisome prolif-
erator-activated receptorsγ2 (PPARγ2) is an important master adipogenic regulator
[11]. Here we found that PPARγ2 was higher in BAT of CB1-/- mice (Figure 3B). 
Glucose transporter type 4 (GLUT4) is a key mediator of glucose uptake in the adipose 
tissues[23]. As expected, GLUT4 expression in BAT of CB1-/- mice was increased 
(Figure 3B), supporting increased glucose uptake and consistent with increased heat 
production. Together, ablation of CB1 increased BAT thermogenic activity, likely by 
modulating mitochondrial function, insulin signaling, adipogenesis, and glycose 
uptake signaling pathways in BAT.

We have reported that adiponectin has an important role in body temperature 
maintenance and thermogenesis. Here, we compared the weight of BAT depots in CB1-

/- and DKO mice. There was also no difference in total weight or BAT percentage 
between CB1-/- and DKO mice (Figure 3C). The expression of thermogenic regulators 
UCP1 and PGC-1 was increased in BAT of DKO mice compared to that of CB1-/- mice, 
while the expression of IR and IRS-1, GLUT4, and PPARγ2 were unchanged 
(Figure 3D). These results suggest that while adiponectin may be an important 
mediator for the effect of CB1 on mitochondrial genes in BAT, it is not critical for the 
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Figure 2 Cannabinoid type 1 receptor-null mice have similar adiposity and insulin sensitivity compared to double-knockout mice. 
Cannabinoid type 1 receptor-null (CB1-/-) and double-knockout (DKO) male mice at 4 mo of age. A: Body weight and body composition; B: Daily food intake; C: 
Locomotor activity; D: Energy expenditure adjusted by body weight or lean mass; E: Insulin tolerance tests; F: Glucose tolerance tests at 5 mo of age. n = 5-7. aP < 
0.05, CB1-/- vs DKO.

regulation of CB1 in insulin signaling, adipogenesis, and glucose uptake in BAT.

CB1 ablation promotes macrophage anti-inflammatory polarization 
Macrophages have an important role in inflammation and insulin resistance[20]. To 
determine the underlying mechanisms of improved insulin sensitivity in CB1-/- mice, 
we conducted flow cytometry analysis on peritoneal macrophages and adipose tissue 
macrophages. M1-like macrophages are pro-inflammatory and M2-like macrophages 
are anti-inflammatory[20]. Peritoneal M1-like macrophages, as well as the M1/M2 
ratio as a readout of inflammation, were significantly decreased in CB1-/-mice 
compared to WT mice; this suggests that CB1 ablation reduces systemic inflammation 
(Figure 4A). Since insulin resistance is closely linked to adipose tissue mass and 
adipose macrophages (ATM), we next assessed epididymal white adipose tissue. As 
expected, both the weight and the ratio of epididymal fat/body weight was lower in 
CB1-/- mice (Figure 4B). To assess the effect of CB1 on ATM polarization, we isolated 
the stromal vascular fraction from epididymal adipose tissues. Our flow cytometry 
studies revealed that while M1 was slightly decreased, M2 was significantly increased 
in epididymal fat of CB1-/- mice (Figure 4C). The M1/M2 ratio of ATM was decreased 
in epididymal fat of CB1-/- mice (Figure 4C). Next, we studied the gene expression of 
macrophage markers of F4/80, CD11c, CD206, as well as proinflammatory cytokines 
of tumor necrosis factor-a (TNF-a), interelukin-1 (IL-1), and interelukin-6 (IL-6) in 
epididymal fat. The expression levels of F4/80, CD11c, CD206, TNF, IL-1 , and IL-6 
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Figure 3 Double-knockout mice have similar expression of thermogenic genes compare to cannabinoid type 1 receptor-null mice. Wild-
type (WT) and cannabinoid type 1 receptor-null (CB1-/-) male mice at 8 mo of age. A: Brown adipose tissue (BAT) weight and percentage of BAT depot; B: 
Quantitative real-time RT-PCR analysis of gene expression in BAT. Cannabinoid type 1 receptor-null (CB1-/-) and double-knockout (DKO) male mice at 8 mo of age. 
C: BAT weight and percentage of BAT depot; D: Quantitative real-time RT-PCR analysis of gene expression in BAT. n = 6-8. aP < 0.05, bP < 0.001, WT vs CB1-/- or 
CB1-/- vs DKO.

were significantly decreased in the epididymal fat of CB1-/- mice compared to WT mice 
(Figure 4D), which is in agreement with the reduced inflammation revealed by flow 
cytometry analysis of ATM.

Adiponectin ablation abolishes the anti-inflammatory effect of CB1 deficiency
Adipose tissue releases adiponectin, which plays an important role in the regulation of 
energy metabolism and inflammation[24]. Intriguingly, our flow cytometry analysis 
showed increased pro-inflammatory peritoneal M1 macrophages and increased ratio 
of M1/M2 in DKO mice; this suggests that the adiponectin deletion abolishes the anti-
inflammatory effect of CB1 knockout (Figure 5A). Subsequently, we analyzed 
epididymal white adipose tissues of CB1-/- and DKO mice. There was no difference in 
the percentage of fat depot: Body weight between CB1-/- and DKO mice (Figure 5B). 
Our flow cytometry studies further revealed that the M1/M2 ratio of ATM was 
increased in epididymal fat of DKO mice compared to CB1-/- mice (Figure 5C). To 
investigate the effect of adiponectin ablation of CB1 on ATM-mediated inflammation, 
gene expressions of proinflammatory cytokines were evaluated in epididymal fat. The 
expression levels of F4/80, CD11c, CD206, TNF-a, IL-1, IL-6 and MCP-1 were 
significantly increased in epididymal fat of DKO mice as compared to CB1-/- mice 
(Figure 5D), in line with increased inflammation observed by flow cytometry.

Collectively, the data indicate that the CB1 deficiency-induced anti-inflammatory 
effect on macrophage polarization is adiponectin-dependent, suggesting that 
adiponectin is a key mediator for the effect of CB1 on inflammation.

DISCUSSION 
The CB1 blockade has been shown to ameliorate metabolic abnormalities of obese 
animals and to promote weight loss and improved insulin sensitivity[25]. Adipokine 
adiponectin is an insulin-sensitizer, and it has many beneficial effects that phenocopy 
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Figure 4 Cannabinoid type 1 receptor-null mice have reduced peritoneal and adipose tissue inflammation. Wild-type (WT) and cannabinoid type 
1 receptor-null (CB1-/-) male mice at 8 mo of age. A: Flow cytometry analysis of M1 and M2 in peritoneal macrophages; B: Percentage of epididymal fat depot; C: 
Flow cytometry analysis of M1 and M2 in epididymal fat; D: Pro-inflammatory cytokines expression in epididymal fat. n = 6-8. aP < 0.05, bP<0.001, WT vs CB1-/- mice. 

CB1 antagonists[12]. It has been shown that cannabinoids decrease adiponectin[26]. 
Moreover, CB1 blocker rimonabant has been reported to increase the plasma 
adiponectin levels in obese and diabetic animal models[6,27,28]. Thus, adiponectin is 
thought to be a mediator of the effects of CB1 antagonists such as rimonabant. 
However, the functional relationship between adiponectin and the endocannabinoid 
system is not fully defined. To determine whether CB1 and adiponectin are 
functionally dependent on each other, we conducted a comparative study of the CB1-/- 
and DKO mice to investigate whether the adiponectin deletion abolishes the healthy 
phenotype of CB1-/- in metabolism and inflammation.

As expected in CB1-/- mice, we observed decreased body weight:fat mass, increased 
thermogenic activation in BAT, and improved whole-body insulin sensitivity. 
Interestingly, DKO mice showed changes similar to CB1-/- mice in the body weight:fat 
mass ratio, BAT thermogenic regulation, and insulin sensitivity. These results suggest 
that the beneficial metabolic effects of CB1 blockage are not mediated by adiponectin. 
Our findings are mostly consistent with previous reports in literature, but with some 
differences which could be due to models of choice and/or diet variations. Watanabe 
et al[16] reported that rimonabant improved hepatic insulin resistance in both ob/ob 
and adiponectin-/-ob/ob mice. Migrenne et al[29] reported that adiponectin is not 
required for body weight loss in diet-induced obese mice, but is required in 
rimonabant-induced improvement of insulin sensitivity. Our experiment was 
conducted with a genetic approach of loss-of-function with CB1 knockout, not with 
CB1 antagonist; under regular diet-feeding, not diet-induced obesity. It is possible that 
the impact of adiponectin on CB1 metabolic regulation differs under different 
metabolic states. Indeed, Tam et al[30] reported a reversal of the HFD-induced hepatic 
steatosis and fibrosis by chronic administration of CB1 blocker or adiponectin, but the 
reduction of adiposity and improved glycemic control are not affected by adiponectin, 
which is similar to our results.

The findings from our current study and others[4,8] support the idea of increased 
energy expenditure induced by CB1 suppression, either by CB1 blocker such as 
rimonabant or by CB1 gene ablation. It is well known that BAT plays an important role 
in adaptive thermogenesis, and that thermogenic activation of BAT can directly affect 
metabolic rate through the function of mitochondrial protein UCP1. UCP1 is a key 
regulator of thermogenesis; it recruits free fatty acid into the mitochondrial matrix to 
dissipate as heat, depleting circulating lipids and increasing energy expenditure[31]. 
Previous studies demonstrated that rimonabant treatment increased the expression of 
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Figure 5 Double-knockout mice have increased peritoneal and adipose tissue inflammation compared to cannabinoid type 1 receptor-null 
mice. Cannabinoid type 1 receptor-null (CB1-/-) and double-knockout (DKO) male mice at 7 mo of age. A: Flow cytometry analysis of M1 and M2 macrophages of 
peritoneal macrophages; B: Epididymal weight and percentage of epididymal depot; C: Flow cytometry analysis of M1 and M2 in stromal vascular fraction of 
epididymal fat; D: Pro-inflammatory cytokines expression of epididymal fat. n = 6-7. aP < 0.05, bP < 0.001, CB1-/- vs DKO mice. 

UCP1 mRNA in BAT[32]. In metabolic profiling, DKO mice showed even higher 
energy expenditure than CB1-/- mice. Similarly, UCP-1 expression in BAT was higher 
in DKO mice than in CB1-/- mice. These results suggest that adiponectin deletion not 
diminishes the CB1 deficiency-induced thermogenic activation in BAT. In the current 
study, we found that insulin signaling IR and IRS-1 gene expression in BAT was 
increased in CB1-/- mice, and the expression of these genes was no different between 
DKO and CB1-/- mice. Our thermogenic gene expression data in DKO showed that 
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adiponectin deletion further enhanced the thermogenic activation compared to CB1-/- 
mice, implying that the effect of CB1 on thermogenesis is largely independent of 
adiponectin. The effect of adiponectin on thermogenesis is an area of ongoing debate 
currently. Qiao et al[33] reported that adiponectin suppresses thermogenic action in 
BAT to reduce energy expenditure. We reported that the core body temperature of 
adiponectin-null mice was not affected under normal housing temperature but 
reduced under cold temperature, supporting that adiponectin is required for 
maintaining body temperature in cold[24]. Different from our previous report, our 
current study was conducted under room temperature, so it is not surprising that the 
effect of adiponectin on thermogenic activation of CB1-/- mice is minimal.

Since metabolism and insulin sensitivity are closely linked to inflammation, we 
further studied the role of CB1 deficiency in macrophages. Remarkably, both systemic 
(peritoneal macrophages) and tissue macrophages (ATM) showed an anti-inflam-
matory polarization shift, supporting reduced inflammation in CB1-/- mice. Especially, 
CB1-/- mice exhibited decreased pro-inflammatory M1 macrophages in peritoneal 
macrophages, less epididymal fat mass, and reduced M1/M2 ratio and pro-inflam-
matory cytokine expression in the epididymal fat as compared to WT mice. The results 
indicate that CB1-/- mice have reduced adiposity and adipose inflammation, which is 
consistent with improved systemic insulin sensitivity. Intriguingly, our study further 
revealed that DKO mice had an opposite profile of increased inflammation compared 
to CB1-/- mice, which suggested that adiponectin deletion reversed the anti-inflam-
matory effect of CB1 deletion. The DKO mice exhibited an increase in pro-inflam-
matory M1 macrophages and M1/M2 ratio for both peritoneal macrophages and ATM, 
as well as elevated pro-inflammatory cytokine expression in epididymal fat compared 
to CB1-/- mice. The anti-inflammatory effect on CB1-/- mice was reversed in the DKO 
mice clearly demonstrates that adiponectin is required for the anti-inflammatory 
benefit of CB1 antagonism, and the inflammation phenotype of CB1 is adiponectin-
dependent. These exciting results suggest that adiponectin counters the pro-inflam-
matory effect of cannabinoids, and the beneficial anti-inflammatory effect of CB1 
antagonists is dependent on adiponectin. Indeed, data from a mouse model of 
adipocyte-specific deletion of the CB1 gene lends support to our conclusion[34]. 
Plasma adiponectin levels were significantly increased in the adipocyte-specific CB1-
deleted mice, and adipocyte-specific deletion of CB1 was shown to be sufficient to 
protect against diet-induced obesity and promote anti-inflammatory polarization 
towards alternatively-activated M2 macrophages.

CONCLUSION
In conclusion, our study demonstrates that CB1 deletion activates thermogenesis and 
suppresses inflammation via adiponectin-independent and adiponectin-dependent 
pathways, respectively (Figure 6). Based on our findings, we conclude that there are 
differential pathways and mechanisms by which CB1 utilizes to regulate metabolism 
and inflammation; that the effects on metabolism are adiponectin-independent and the 
effects on inflammation are adiponectin-dependent. CB1 deletion increases plasma 
adiponectin[30,35], which promotes anti-inflammatory polarization of macrophages, 
thereby promoting the beneficial anti-inflammatory effect. Adiponectin is not required 
for CB1-mediated metabolism, but is required for CB1-mediated inflammation. A 
better understanding of the signaling crosstalk between CB1 and adiponectin would 
facilitate further therapeutic development of CB1 antagonists. Our study provides new 
insights to the comprehensive connection between CB1 and adiponectin for regulation 
of energy homeostasis, insulin sensitivity and inflammation.
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Figure 6 Schematic diagram of summary. Cannabinoid type 1 receptor (CB1) utilizes differential mechanisms in control of metabolism and inflammation. A: 
CB1 decreases thermogenesis in BAT through sympathetic nerve activity to reduce energy expenditure and adiposity. So the effect of CB1 on metabolism is 
adiponectin-independent; B: CB1 suppresses adiponectin in adipose tissue, which diminishes the anti-inflammatory effect of adiponectin, thus promoting macrophage 
pro-inflammatory polarization. So the effect of CB1 on inflammation is adiponectin-dependent. Thus, CB1 utilizes differential mechanisms in control of metabolism 
and inflammation: its effect on metabolism is adiponectin-independent while effects on inflammation are adiponectin-dependent. Thus, adiponectin is not required for 
CB1-mediated metabolism, but is required for CB1-mediated inflammation.

ARTICLE HIGHLIGHTS
Research background
Antagonists of cannabinoid type 1 receptor (CB1) have been shown to promote body 
weight loss and improve insulin sensitivity.

Research motivation
Cannabinoids is implicated in regulation of adiponectin. However, the mediators of 
CB1 actions are not fully defined, specifically in regard to adiponectin signaling in vivo.

Research objectives
To determine whether adiponectin is indeed required for the peripheral functions of 
CB1.

Research methods
We compared metabolic and inflammatory phenotypes of CB1-null (CB1-/-) vs. CB1
/Adiponectin double-knockout (DKO) mice. We investigated the insulin sensitivity 
using insulin tolerance test and glucose tolerance test, and inflammation using flow 
cytometry analysis of macrophages.

Research results
CB1-/- mice significantly reduced body weight and fat mass without change of total 
daily food intake and locomotor activity compared to wild-type (WT) mice. CB1-/- mice 
showed increased energy expenditure and improved insulin sensitivity compared to 
WT mice. DKO showed no difference in body weight, adiposity, or insulin sensitivity, 
only showed a modestly elevated thermogenesis in BAT compared to CB1-/- mice. CB1-

/- mice showed reduced pro-inflammatory macrophage polarization in both peritoneal 
macrophages and adipose tissue macrophages compared to WT mice; in contrast, 
DKO mice exhibited elevated pro-inflammatory macrophage polarization in these 
macrophages compared to that of CB1-/- mice.

Research conclusions
Our findings reveal that CB1 functions through both adiponectin-dependent and 
adiponectin-independent mechanisms: CB1 regulates energy metabolism in an 
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adiponectin-independent manner, and inflammation in an adiponectin-dependent 
manner.

Research perspectives
Adiponectin is not required for CB1-mediated metabolism but is required for CB1-
mediated inflammation. To fully understand the direct interactions and regulatory 
mechanisms between CB1 and adiponectin, further dissemination in co-culture system 
to might be beneficial.
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Abstract
BACKGROUND 
The genetic backgrounds of diabetic kidney disease (DKD) and end-stage kidney 
disease (ESKD) have not been fully elucidated.

AIM 
To examine the individual and cumulative effects of single-nucleotide 
polymorphisms (SNPs) previously associated with DKD on the risk for ESKD of 
diabetic etiology and to determine if any associations observed were specific for 
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DKD.

METHODS 
Fourteen SNPs were genotyped in hemodialyzed 136 patients with diabetic ESKD 
(DKD group) and 121 patients with non-diabetic ESKD (NDKD group). Patients 
were also re-classified on the basis of the primary cause of chronic kidney disease 
(CKD). The distribution of alleles was compared between diabetic and non-
diabetic groups as well as between different sub-phenotypes. The weighted 
multilocus genetic risk score (GRS) was calculated to estimate the cumulative risk 
conferred by all SNPs. The GRS distribution was then compared between the 
DKD and NDKD groups as well as in the groups according to the primary cause 
of CKD.

RESULTS 
One SNP (rs841853; SLC2A1) showed a nominal association with DKD (P = 0.048; 
P > 0.05 after Bonferroni correction). The GRS was higher in the DKD group (0.615 
± 0.260) than in the NDKD group (0.590 ± 0.253), but the difference was not 
significant (P = 0.46). The analysis of associations between GRS and individual 
factors did not show any significant correlation. However, the GRS was signifi-
cantly higher in patients with glomerular disease than in those with tubulointer-
stitial disease (P = 0.014) and in those with a combined group (tubulointerstitial, 
vascular, and cystic and congenital disease) (P = 0.018).

CONCLUSION 
Our results suggest that selected SNPs that were previously associated with DKD 
may not be specific for DKD and may confer risk for CKD of different etiology, 
particularly those affecting renal glomeruli.
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Core Tip: The genetic background of diabetic kidney disease (DKD) and end-stage 
kidney disease (ESKD) has not been fully elucidated. This study on a large population 
of dialyzed patients shows that single-nucleotide polymorphisms (SNPs) previously 
described in diabetes mellitus type 2 patients with DKD are not associated with the risk 
for ESKD of a diabetic background. Instead, the analyzed SNPs seem to correlate with 
glomerular kidney disease. These findings suggest that chronic kidney disease of 
different etiologies but the same dominant location of the pathological processes may 
share a common genetic background.
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INTRODUCTION
A diabetes mellitus (DM) epidemic is underway; in 2019, approximately 463 million 
people worldwide were estimated to have DM, and half of those cases were 
considered undiagnosed. By 2045, the prevalence is expected to increase to 700 million 
cases[1-3]. In Poland, around 3.5 million people (9.1% of the total population) suffer 
from DM[4]. Roughly 30% of patients with type 1 DM (DM1) and 40% with type 2 DM 
(DM2) develop a serious complication of the small renal vessels: diabetic kidney 
disease (DKD)[5,6]. The occurrence of DKD considerably worsens the long-term 
prognosis — the risk of premature death in end-stage kidney disease (ESKD) patients 
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requiring renal replacement therapy (RRT) is 18-fold greater than in the general 
population[7]. Understandably, DKD is the strongest single predictor of death in a 
diabetic patient[8]. It is estimated that the number of DKD-associated deaths in DM 
patients increased by 94% from 1990 to 2012[9]. The recognized risk factors for DKD 
are hyperglycemia, acute kidney injury, hypertension, and obesity; however, age, 
gender, race, and family history are also influential factors[10].

Both clinical and epidemiological studies on DKD show a familial association of the 
disease[11-13], suggesting that heredity plays an important role in its development. 
Investigators aiming to elucidate the genetic basis of DKD have used two different 
approaches: candidate gene studies (CGS) and genome-wide association studies 
(GWAS). During the last two decades, CGS have tested more than 150 loci for their 
potential relationship with the renal complications of DM[14-16] and have reported an 
association between several single-nucleotide polymorphisms (SNPs) and albuminu-
ria, glomerular filtration rate (GFR), DKD, and ESKD in both DM1 and DM2 patients. 
The majority of the proteins encoded by these genes are components of nephron 
(glomerulus, epithelium, and ion channels), but some are related to the extracellular 
matrix, immune response, phagocytosis, and cell migration[17]. During the last 
decade, GWAS have replaced CGS as the study method of choice. The results of 
GWAS have confirmed some of the CGS findings and have also revealed new associ-
ations[18,19]. These initial findings must be corroborated in replication studies in 
different populations.

With the increasing number of identified genetic risk factors for multifactorial 
diseases, tools that assess the cumulative impact of these factors on disease risk have 
been developed. One such tool is the genetic risk score (GRS), which our group has 
successfully applied in earlier studies[20,21]. GRS is particularly useful in situations 
wherein the individual effect carried by a single genetic variant is small. Previous 
studies have shown the capability of GRS to measure the genetic risk of various 
multifactorial diseases, including myocardial infarction, atrial fibrillation, stroke, 
rheumatoid arthritis, and psoriasis[22]. Thus, several studies have used this approach 
to evaluate the risk of renal complications in DM[23-25].

Previous analyses have searched for associations between genetic markers and the 
risk of diabetic renal complications but may have overlooked a critical issue: whether 
these genetic markers are specific for DKD or are, rather, associated with the risk for 
chronic kidney disease (CKD), regardless of its explicit underlying cause.

The aim of our study was to examine the individual and cumulative effects of SNPs 
previously described in DM2 patients with DKD on the risk for ESKD of diabetic 
etiology in a population of hemodialyzed (HD) patients and to determine if any associ-
ations observed were specific for DKD.

MATERIALS AND METHODS
This study was approved by the Military Institute of Medicine Ethics Committee, 
Warsaw, Poland. Informed consent was obtained from each patient. All procedures 
were performed in accordance with the Helsinki Declaration of 1975, revised in 1983.

Patients and controls
From an initial group of 1246 ESKD/HD patients, 136 consecutive patients with DM2 
and DKD as the primary cause of ESKD were included in this study; they formed the 
DKD group. The control group was composed of 121 age-matched ESKD/HD patients 
with non-DKD (NDKD); this was the NDKD group. The inclusion criteria were as 
follows: (1) ESKD treated by hemodialysis; and (2) Age ≥ 18 years. The exclusion 
criterion was the presence of malignancy. The patients were recruited from the 
Military Institute of Medicine in Warsaw, Poland, and the Mazovian Centers of 
Dialysis in the following cities in Poland: Radom, Ciechanów, Grodzisk Mazowiecki, 
Maków Mazowiecki, Sokołów Podlaski, Skierniewice, Warszawa Międzylesie, 
Wołomin, and Otwock. Patients were classified as DKD or NDKD on the basis of 
histopathological examinations and diagnoses made by two independent nephro-
logists in each of the Mazovian Dialysis Centers. Nineteen DKD patients and 11 
NDKD patients were excluded from the study because of poor DNA quality or 
incomplete genotyping data; the final DKD and NDKD groups consisted of 117 and 
110 patients, respectively. Nineteen patients in the NDKD group were classified by 
nephrologists as having kidney disease of complex pathogenesis (CP group). A 
structured questionnaire was used to collect data regarding age, gender, smoking 
habits, body mass index (BMI), history of kidney disease in the pre-ESKD/HD period, 
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presence and volume of diuresis, and coexistence of hypertension and current 
treatment. Then, the patients were re-classified on the basis of the 2012 Kidney Disease 
Improving Global Outcomes (KDIGO) guidelines and CKD classification system based 
on the primary cause of their kidney disease. These classifications included (1) 
glomerular disease (GD); (2) tubulointerstitial disease (TID); (3) vascular disease (VD); 
and (4) cystic and congenital disease (CCD). Patients with CP were considered 
separately[26].

SNP selection
SNPs previously associated with DKD in DM2 patients were selected for this study[27-
38]. The inclusion criteria for SNP selection were as follows: (1) Association with DKD 
in the presence of DM2 confirmed in a GWAS, meta-analysis, or large-scale case-
control study; (2) Odds ratio (OR) ≥ 1.2 (or ≤ 0.83); and (3) Minor allele frequency ≥ 0.1 
in a Caucasian population (based on data from the HapMap CEU). The exclusion 
criteria were as follows: (1) Association limited to non-Caucasian populations; or (2) 
Lack of studies on Caucasian populations. On the basis of these criteria, 14 SNPs were 
selected for genotyping. However, five of the genotyped SNPs were excluded from the 
analysis because of a low genotyping success rate (< 80%) or Hardy-Weinberg 
equilibrium (HWE) deviation: rs9521445 (MYO16/IRS2), rs1801133 (MTHFR), 
rs2241766 (ADIPOQ), rs5186 (AGTR1), and rs4880 (SOD2). The complete list of the 
analyzed SNPs is shown in Supplementary Table 1.

Genotyping
The salting out method was used to isolate DNA form whole blood samples[39]. For 
SNP genotyping, a custom array was designed (Taqman® OpenArray® Genotyping 
Plate, Custom Format 16 QuantStudio™ 12 K Flex, Life Technologies, Carlsbad, CA, 
United States), and genotyping was performed following the manufacturer’s protocols 
on a QuantStudio™ 12 K Flex Real-Time PCR System (Applied Biosystems, Foster 
City, CA, United States).

Statistical analysis
The statistical methods used in this study were reviewed by Kisiel B of the Clinical 
Research Support Center, Military Institute of Medicine, Warsaw, Poland. The 
differences in allele distribution between cases and controls as well as HWE were 
evaluated using the PLINK v1.07 statistical software package[40]. The deviation from 
HWE was considered significant at P < 0.05. The rest of statistical analyses was 
undertaken with the use of Statistica 12 package (StatSoft Inc). A Bonferroni correction 
(P value × number of tested SNPs) was used to adjust for multiple comparisons. To 
evaluate the cumulative risk of multiple loci a GRS (computed by summing the 
products of the number of risk alleles and the natural logarithm of the OR for each 
SNP) was calculated. For the calculation of GRS we used ORs from previous studies 
(Supplementary Table 1). The GRSs of the DKD and NDKD groups were compared 
using Student’s t-test, whereas the GRSs of GD, VD, TID, CCD, and CP groups were 
compared using ANOVA. Pearson's test was used to assess the correlations between 
different parameters.

RESULTS
The clinical and demographic data of the subjects are presented in Table 1. The DKD 
and NDKD groups differed significantly with respect to BMI (P = 0.01) and treatment 
with beta-blockers (P = 0.015).

SNP associations with DKD are detailed in Table 2. Only one SNP (rs841853) 
showed a nominal association with DKD (P = 0.048; P > 0.05 after Bonferroni 
correction).

To evaluate the cumulative risk of multiple loci, we calculated GRS; it was slightly 
higher in the DKD group (0.615 ± 0.260) than in the NDKD group (0.590 ± 0.253), but 
the difference was not significant (P = 0.46). The GRS difference remained not 
significant (P = 0.34) after the exclusion of 19 CP patients from the NDKD group: 0.615 
± 0.260 for the DKD group and 0.582 ± 0.244 for the NKD group. The analysis of associ-
ations between GRS and the individual factors of gender, diuresis, and rate of CKD 
progression in the DKD and NDKD groups showed a significant correlation of GRS 
with diuresis in the NDKD group (0.643 ± 0.22 for diuresis > 500 mL vs 0.535 ± 0.253 
for diuresis < 500 mL, P = 0.035, Table 3).

https://f6publishing.blob.core.windows.net/68552bc8-461d-4b71-939d-6bfd8dc30bd2/WJD-12-1765-supplementary-material.pdf
https://f6publishing.blob.core.windows.net/68552bc8-461d-4b71-939d-6bfd8dc30bd2/WJD-12-1765-supplementary-material.pdf
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Table 1 Study and control group characteristics

DKD (n = 117) NDKD (n = 110) P value

Age (yr) 68.94 (7.90) 69.87 (10.86) 0.46

Male sex (%) 57 (48.72) 66 (60.00) 0.088

Time-to-dialysis (yr) 5.25 (5.16) 6.23 (6.09) 0.20

Rapid progression of CKD (TTD ≤ 3 mo) (%) 6 (5.13) 6 (5.45) 0.91

Fast progression of CKD (TTD ≤ 1 yr) (%) 29 (24.79) 21 (19.09) 0.30

Slow progression of CKD (TTD > 5 yr) (%) 37 (31.62) 43 (39.09) 0.24

BMI (kg/m2) 30.21 (16.35) 26.01 (5.15) 0.01

Smoking ever (%) 52 (44.44) 58 (53.21)1 0.19

Preserved diuresis (%) 97 (82.91) 85 (77.27) 0.29

24 h diuresis > 500 mL (%) 49 (41.88) 46(41.82) 0.99

Hypertension (%) 114 (97.44) 102 (92.73) 0.099

ACE-I (%) 50 (43.48)2 39 (39.39)4 0.54

ARB (%) 17 (14.78)2 12 (11.76)5 0.51

Beta-blockers (%) 89 (76.72)3 91 (89.22)5 0.015

Statins (%) 76 (66.09)2 57 (58.16)6 0.23

1Data available for 109 patients.
2Data available for 115 patients.
3Data available for 116 patients.
4Data available for 99 patients.
5Data available for 102 patients.
6Data available for 98 patients.
Significant differences are highlighted in bold. ACE-I: Angiotensin-converting-enzyme inhibitors; ARB: Angiotensin II receptor blockers; BMI: Body mass 
index; CKD: Chronic kidney disease; DKD: Diabetic kidney disease; NDN: Non-diabetic kidney disease; TTD: Time-to-dialysis (time between the diagnosis 
of chronic kidney disease and start of hemodialysis).

Table 2 Single-nucleotide polymorphisms’ associations with diabetic kidney disease

DKD NDKD
SNP

E N E N
OR P value

rs1617640 123 111 119 101 0.94 (0.65-1.36) 0.78

rs841853 84 150 60 160 1.49 (1.00-2.23) 0.048

rs1800783 67 167 69 151 0.88 (0.59-1.31) 0.53

rs1531343 23 211 17 203 1.30 (0.68-2.51) 0.43

rs1800470 91 143 93 127 0.87 (0.60-1.26) 0.46

rs759853 94 140 74 146 1.32 (0.90-1.94) 0.15

rs1801282 40 194 35 185 1.06 (0.66-1.79) 0.73

rs13293564 104 130 91 129 1.13 (0.78-1.65) 0.51

rs2268388 29 205 32 188 0.83 (0.48-1.43) 0.50

DKD: Diabetic kidney disease; E: Effect allele; NDKD: Non-diabetic kidney disease; N: Non-effect allele; OR: Odds ratio; SNP: Single nucleotide 
polymorphism.

We analyzed the distribution of GRS in the GD, TID, VD, CCD, and CP groups 
using ANOVA; the differences between groups were not significant (Table 4). 
However, post hoc analysis showed a significantly higher GRS in the GD group (0.628 ± 
0.256) than in the TID group (0.461 ± 0.218) (P = 0.014) as well as a higher GRS in the 
GD group (0.628 ± 0.256) than in the combined TID+VD+CCD group (0.536 ± 0.235) (P 
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Table 3 Associations between genetic risk score and different parameters in diabetic kidney disease and non-diabetic kidney disease 
patients

DKD + NDKD, n = 227 DKD, n = 117 NDKD1, n = 91
Parameter

GRS, mean ± SD P value GRS, mean ± SD P value GRS, mean ± SD P value

Rapid progression (TTD ≤ 3 mo vs 
> 3 mo)

0.602 ± 0.233 vs 0.603 ± 
0.258

0.99 0.518 ± 0.273 vs 0.620 ± 
0.260

0.34 0.687 ± 0.167 vs 0.574 ± 
0.248

0.27

Fast progression (TTD ≤ 1 yr vs > 1 
yr)

0.592 ± 0.246 vs 0.606 ± 
0.260

0.75 0.600 ± 0.229 vs 0.620 ± 
0.270

0.71 0.522 ± 0.253 vs 0.593 ± 
0.242

0.30

Slow progression (TTD > 5 yr vs ≤ 
5 yr)

0.596 ± 0.256 vs 0.607 ± 
0.258

0.77 0.629 ± 0.286 vs 0.608 ± 
0.249

0.69 0.583 ± 0.230 vs 0.580 ± 
0.257

0.96

Diuresis (preserved diuresis vs no 
diuresis)

0.614 ± 0.260 vs 0.557 ± 
0.239

0.18 0.622 ± 0.265 vs 0.578 ± 
0.235

0.49 0.605 ± 0.244 vs 0.503 ± 
0.235

0.09

24h diuresis > 500 mL (> 500 mL 
vs ≤ 500 mL)

0.630 ± 0.244 vs 0.583 ± 
0.265

0.17 0.621 ± 0.258 vs 0.611 ± 
0.263

0.83 0.643 ± 0.220 vs 0.535 ± 
0.253

0.035

Male sex (males vs females) 0.639 ± 0.265 vs 0.591 ± 
0.255

0.31 0.617 ± 0.263 vs 0.586 ± 
0.249

0.37 0.589 ± 0.251 vs 0.568 ± 
0.235

0.70

1Cases with complex pathogenesis excluded from analysis.
DKD: Diabetic kidney disease; NDKD: Non-diabetic kidney disease; GRS: Genetic risk score; TTD: Time-to-dialysis (time between the diagnosis of chronic 
kidney disease and start of hemodialysis). Significant differences are highlighted in bold.

Table 4 The distribution of genetic risk score in particular end-stage kidney disease subgroups

Group GRS P value Post-hoc analysis
Classification: (1) GD, (2) TID, (3) VD, (4) CCD, (5) CP

GD vs TID P = 0.014

GD vs VD P = 0.12

GD (n = 146) 0.628 ± 0.256 GD vs CCD P = 0.61

TID (n = 16) 0.461 ± 0.218 GD vs CP P = 0.97

VD (n = 33) 0.551 ± 0.269 TID vs VD P = 0.24

CCD (n = 13) 0.590 ± 0.138 TID vs CCD P = 0.18

CP (n = 19) 0.629 ± 0.298 TID vs CP P = 0.051

VD vs CCD P = 0.64

VD vs CP P = 0.29

0.09

CCD vs CP P = 0.66

Classification: (1) GD, (2) TID+VD+CCD, (3) CP

GD (n = 146) 0.628 ± 0.256 GD vs TID+VD+CCD P = 0.018

TID+VD+CCD (n = 62) 0.536 ± 0.235 GD vs CP P = 0.97

CP (n = 19) 0.629 ± 0.298

0.055

TID+VD+CCD vs CP P = 0.16

Classification: (1) GD, (2) TID+VD+CCD+CP

GD 0.628 ± 0.256

TID+VD+CCD+CP 0.558 ± 0.253

0.051 N/A

Genetic risk score is presented as mean ± SD. GRS: Genetic risk score; GD: Glomerular disease; TID: Tubulointerstitial disease; VD: Vascular diseases; CCD: 
Cystic and congenital disease; CP: Complex pathogenesis; N/A: Not applicable.

= 0.018). The analysis of associations between GRS and the individual factors of 
gender, diuresis, and rate of CKD progression did not show any significant correlation 
in the GD group (Supplementary Table 2).

https://f6publishing.blob.core.windows.net/68552bc8-461d-4b71-939d-6bfd8dc30bd2/WJD-12-1765-supplementary-material.pdf
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DISCUSSION
To the best of our knowledge, this study may be the first to assess the genetic risk of 
DKD and other nephropathies leading to ESKD and RRT in a relatively large group of 
HD patients. Unexpectedly, none of the selected SNPs previously described in DM2 
patients and associated with DKD development significantly correlated with DKD in 
our group of ESKD patients requiring hemodialysis, except one (rs841853) that showed 
a nominal association with DKD (P = 0.048; P > 0.05 after Bonferroni correction). 
Moreover, the GRS composed of all genotyped SNPs, carrying the cumulative risk of 
all tested loci, did not differ significantly between the DKD and NDKD groups and did 
not associate with any of the analyzed clinical parameters, including the rate of renal 
failure progression. This observation may have three explanations: (1) The analyzed 
SNPs are not associated with DKD in a Polish population; (2) The analyzed SNPs are 
associated with earlier stages of DKD; or (3) The analyzed SNPs are not specific for 
DKD but are associated with different kidney diseases and their progression.

It should be emphasized that many earlier studies on the genetic background of 
DKD have used DM patients without DKD as controls. This approach has identified 
risk factors for DKD development but has been unable to assess their specificities. That 
is, the genetic factors that have been pinpointed to be associated with DKD are not 
necessarily specific for DKD. To address this issue, we re-classified our patients on the 
basis of the KDIGO guidelines and found that GRS was significantly higher in the GD 
group than in the TID group and the combined TID+VD+CCD group. This 
observation suggests that these SNPs that were previously described as associated 
with DKD are in fact associated with the risk of CKD and ESKD of different etiologies, 
particularly those primarily affecting renal glomeruli.

In recent years, research has focused on the genetic basis of DKD. Nearly 160 genes 
have been implicated in DKD development as found in CDS and GWAS, and there 
appears to be a multigenic etiology of disease as gauged by GRS[14-19]. In a study 
involving 1100 DM2 patients, Wang et al[23] demonstrated that a GRS composed of six 
SNPs in genes involved in lipid metabolism (PON1, PON2, CETP), hemostasis (ITGA2)
, and inflammation (LTA1, LTA3) was associated with a significantly higher risk of 
DKD; risks were lower when SNPs were individually assessed. Todd et al[24] 
examined a GRS composed of 32 validated BMI loci to determine the relationship 
between BMI and macroalbuminuria, ESKD, and DKD and found that a 1 kg/m2 
higher BMI increased the risk of macroalbuminuria by 28%, of ESKD by 43%, and of 
DKD by 33%. Barbieux et al[25] explored the association between 18 CKD-related SNPs 
and CKD G5 in 1,300 DM2 patients and 300 DM1 patients; however, neither a single 
SNP nor the 18-SNP GRS was linked to the deterioration of renal function, need for 
RRT, or death. Our study cannot be directly compared with the ones referenced above 
because it followed a completely different, exclusively DKD-related set of SNPs and a 
dissimilar study design in which non-diabetic patients were used as controls for 
diabetic ESKD patients.

The main finding of our study is that SNPs reported to be associated with DKD 
alone may, in fact, be correlated with CKD of different etiology. In this context, two 
papers are worth mentioning. A large-scale GWAS on 130000 subjects of European 
ancestry by Pattaro et al[41] showed that 53 known and novel SNP loci were highly 
correlated with GFR in individuals with or without diabetes; the effects on both 
patient groups were of similar magnitude. A study of even larger scale (including over 
280000 subjects from the Million Veteran Program, over 765000 subjects from the CKD 
Gen Consortium, and more than 90000 diabetic patients) published by Hellwege et al
[42] made similar observations: 32 SNP loci (17 known and 15 new) were significantly 
and with similar effect size associated with GFR in both diabetic and non-diabetic 
groups. Of course, reduced GFR is not synonymous with CKD (or DKD) and ESKD; 
however, the findings by Pattaro et al[41] and Hellwege et al[42] raise the possibility 
that CKDs of different etiologies may, to some extent, share a common genetic basis.

To address this issue, we reviewed recent publications regarding the possible 
relationship of our SNPs with CKD/ESKD of etiology other than DKD[43-50]. Most 
reports, whether on small or large populations, testing single or many variants, did not 
include the exact SNPs selected for our study, although they may have involved the 
same genes. For example, Hellwege et al[42] found an association between GFR and 
NOS3 (nitric oxide synthase type 3) (rs3918226), but it was a different variation, which 
showed only a moderate linkage disequilibrium with our NOS3 SNP (rs1800783) (R2 = 
0.17)[42]. Similarly, our SNPs were not any of those used in a GWAS by Wuttke et al
[43], the largest meta-analysis to date. Essential differences exist between our study 
and the other studies cited, and simple comparisons are not applicable. First, the 
aforementioned studies characterized associations between SNPs and GFR in the 
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general population or in specific subpopulations such as diabetic patients, whereas our 
study aimed to delineate relationships between the selected SNPs and ESKD. 
Undoubtedly, changes in GFR are not synonymous with ESKD. In fact, a GWAS by 
Lin et al[44] indicated that the majority of loci do not overlap between early stages of 
CKD and ESKD, suggesting that distinct genetic factors may dominate at different 
stages of CKD. Second, a GWAS detects only the strongest associations, as corrections 
for a number of analyses are routinely used, possibly neglecting more nuanced but still 
meaningful effects on outcome measures. Third, studies on the general population, 
which include patients with CKDs of different etiologies, may simply not pick up 
disease-specific associations due to a water-downed subject pool.

The association of the SNPs selected for our study with CKDs of different etiologies, 
and not only DKD, is supported by the fact that their corresponding loci carry 
information affecting the structure and function of nephrons or interstitial renal tissue, 
the disorders of which are not restricted to diabetic etiology. In fact, the most common 
causes of CKD, such as DKD, hypertensive nephropathy, atherosclerotic nephropathy, 
renal mass reduction, obstructive nephropathy, and glomerular diseases, share many 
common pathophysiological pathways[45]. The factor initiating kidney injury is 
clearly different, but the progression of renal damage may involve mutual 
mechanisms, such as the renin-angiotensin-aldosterone system; endothelial, podocyte, 
mesangial, and tubular cell activation; platelet activation; common cytokine activation 
pathways (transforming growth factor-β1); the spread of inflammation; and repair of 
damaged tissues (fibrosis). A shared pathophysiology is even more probable in 
diseases affecting the same region of the kidney — in this case, the renal glomeruli.

This study has several strengths. First, the study group included only patients with 
ESKD, which addresses the suggestion made by earlier research that different CKD 
stages may be driven by distinctive genetic factors. Second, non-diabetic ESKD 
patients comprised our control group; this allowed us to answer the question whether 
the SNPs previously associated with DKD are specific for that type of CKD; indeed, 
we demonstrated that the SNPs in question were not specific for ESKD of diabetic 
etiology.

We must also acknowledge the major limitation of this study: its size. The study 
group was relatively small for a genetic analysis. However, owing to our strict 
inclusion criteria, the initial population of approximately 1200 patients with ESKD 
requiring RRT from dialysis centers in Mazovia, Poland, which has a general 
population of about 5.5 million, was winnowed down to those patients with 
documented DKD as the primary cause of ESKD and an appropriate, non-DKD control 
group with ESKD of etiology other than diabetes. Due to relatively small study group 
our results need to be confirmed in studies on larger populations.

CONCLUSION
Our study may be the first to demonstrate that selected SNPs that were previously 
associated with DKD may not be specific for DKD and may confer genetic risk for 
CKDs of different etiologies, particularly those affecting renal glomeruli. Our results 
need to be confirmed in studies on larger populations.

ARTICLE HIGHLIGHTS
Research background
A diabetes mellitus (DM) epidemic is underway; 40% patients with type 2 DM (DM2) 
develop a serious complication, diabetic kidney disease (DKD), and the occurrence of 
DKD considerably worsens the long-term prognosis. However, the genetic 
backgrounds of DKD and end-stage kidney disease (ESKD) have not been fully 
elucidated.

Research motivation
Previous studies have searched for associations between genetic markers and the risk 
of diabetic renal complications but may have overlooked a critical issue: whether these 
genetic markers are specific for DKD or are, rather, associated with the risk for chronic 
kidney disease and ESKD itself, regardless of its explicit underlying cause.
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Research objectives
The aim of our study was to examine the individual and cumulative effects (as a 
genetic risk score, GRS) of SNPs previously described in DM2 patients with DKD on 
the risk of diabetic ESKD in a population of hemodialyzed patients and to determine if 
any associations observed were specific for DKD.

Research methods
Fourteen SNPs were genotyped in 136 patients with diabetic ESKD (DKD group) and 
121 patients with non-diabetic ESKD (NDKD group). Patients were also classified on 
the basis of the KDIGO guidelines and CKD classification system based on the 
primary cause of CKD, such as glomerular disease (GD), tubulointerstitial disease 
(TID), vascular disease (VD), and cystic and congenital disease (CCD). Patients with 
complex pathogenesis (CP) were considered separately. The distribution of alleles was 
compared between diabetic and non-diabetic groups as well as between different sub-
phenotypes. The weighted multilocus GRS was calculated to estimate the cumulative 
risk conferred by all SNPs. The distribution of GRS was then compared between the 
DKD and NDKD groups as well as in the groups according to KDIGO guidelines.

Research results
One SNP (rs841853; SLC2A1) showed a nominal association with DKD (P = 0.048; P > 
0.05 after Bonferroni correction). The GRS was higher in the DKD group (0.615 ± 0.260) 
than in the NDKD group (0.590 ± 0.253), but the difference was not significant (P = 
0.46). The analysis of associations between GRS and the individual factors of gender, 
diuresis, and rate of CKD progression in either study group did not show any 
significant correlation. However, the GRS was significantly higher in the GD group 
than in the TID group (P = 0.014) and the combined TID+VD+CCD group (P = 0.018).

Research conclusions
Our study may be the first to demonstrate that selected SNPs that were previously 
associated with DKD may not be specific for DKD and may confer genetic risk for 
CKDs of different etiologies, particularly those affecting renal glomeruli.

Research perspectives
Further studies are needed to confirm a similar correlation of other SNPs previously 
associated with DKD with the development and etiology of ESKD.
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Abstract
BACKGROUND 
Women with gestational diabetes mellitus (GDM) are at a seven-fold higher risk 
of developing type 2 diabetes (T2D) within 7-10 years after childbirth, compared 
with those with normoglycemic pregnancy. Although raised fasting blood glucose 
(FBG) levels has been said to be the main significant predictor of postpartum 
progression to T2D, it is difficult to predict who among the women with GDM 
would develop T2D. Therefore, we conducted a cross-sectional retrospective 
study to examine the glycemic indices that can predict postnatal T2D in Emirati 
Arab women with a history of GDM.

AIM 
To assess how oral glucose tolerance test (OGTT) can identify the distinct GDM 
pathophysiology and predict possible distinct postnatal T2D subtypes.
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METHODS 
The glycemic status of a cohort of 4603 pregnant Emirati Arab women, who 
delivered in 2007 at both Latifa Women and Children Hospital and at Dubai 
Hospital, United Arab Emirates, was assessed retrospectively, using the Interna-
tional Association of Diabetes and Pregnancy Study Groups (IADPSG) criteria. Of 
the total, 1231 women were followed up and assessed in 2016. The FBG and/or 
the 2-h blood glucose (2hrBG) levels after a 75-g glucose load were measured to 
assess the prevalence of GDM and T2D, according to the IADPSG and American 
Diabetes Association (ADA) criteria, respectively. The receiver operating charac-
teristic curve for the OGTT was plotted and sensitivity, specificity, and predictive 
values of FBG and 2hrBG for T2D were determined.

RESULTS 
Considering both FBG and 2hrBG levels, according to the IADPSG criteria, the 
prevalence of GDM in pregnant Emirati women in 2007 was 1057/4603 (23%), 
while the prevalence of pre-pregnancy T2D among them, based on ADA criteria, 
was 230/4603 (5%). In the subset of women (n = 1231) followed up in 2016, the 
prevalence of GDM in 2007 was 362/1231 (29.6%), while the prevalence of pre-
pregnancy T2D was 36/1231 (2.9%). Of the 362 pregnant women with GDM in 
2007, 96/362 (26.5%) developed T2D; 142/362 (39.2%) developed impaired fasting 
glucose; 29/362 (8.0%) developed impaired glucose tolerance, and the remaining 
95/362 (26.2%) had normal glycemia in 2016. The prevalence of T2D, based on 
ADA criteria, stemmed from the prevalence of 36/1231 (2.9%) in 2007 to 141/1231 
(11.5%), in 2016. The positive predictive value (PPV) for FBG suggests that if a 
woman tested positive for GDM in 2007, the probability of developing T2D in 
2016 was approximately 24%. The opposite was observed when 2hrBG was used 
for diagnosis. The PPV value for 2hrBG suggests that if a woman was positive for 
GDM in 2007 then the probability of developing T2D in 2016 was only 3%.

CONCLUSION 
FBG and 2hrBG could predict postpartum T2D, following antenatal GDM. 
However, each test reflects different pathophysiology and possible T2D subtype 
and could be matched with a relevant T2D prevention program.

Key Words: Type 2 diabetes; Type 2 diabetes subtypes; Oral glucose tolerance test; 
Diabetes; Gestational diabetes mellitus subtypes

©The Author(s) 2021. Published by Baishideng Publishing Group Inc. All rights reserved.

Core Tip: The oral glucose tolerance test (OGTT) remains the gold standard for 
assessing the risk of postnatal diabetes in women with gestational diabetes mellitus 
(GDM). Both the fasting blood glucose and 2-h blood glucose tests could predict 
postpartum abnormal glycemic status following antenatal GDM. However, each test 
reflects a different pathophysiology and possible subtype of type 2 diabetes (T2D). If 
fasting serum insulin measurements are added to an OGTT, additional data generated 
could distinguish T2D pathophysiology and possible subtypes. Information obtained 
could be used to match the T2D subtype with relevant prevention programs such as 
frequent follow-ups, lifestyle modifications, and new treatment protocols.
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INTRODUCTION
Hyperglycemia in pregnancy is observed in women who are already diagnosed with 
diabetes and in those whose first experience of hyperglycemia was during pregnancy. 
The latter is defined as gestational diabetes mellitus (GDM), a transitory condition in 
which women develop hyperglycemia during pregnancy that returns to normal after 
delivery. Women with GDM are at a seven-fold higher risk of developing type 2 
diabetes (T2D) within 7-10 years after childbirth, compared with those with 
normoglycemic pregnancy[1-3]. However, it is unclear which of the women with GDM 
develop T2D.

Over the past 40 years, many studies have investigated the risk factors involved in 
the development of T2D after an index pregnancy with GDM[4-8]. The main identified 
factors included family history of diabetes, high body mass index (BMI), elevated 
fasting blood glucose (FBG) and elevated 2-h blood glucose (2hrBG) levels. Increased 
FBG levels has stood out as a significant predictor of postpartum progression to T2D
[9-10]. Systematic reviews[11,12] summarized and quantified the contribution of risk 
factors to T2D development in women with a history of GDM.

GDM and T2D share similar genetic backgrounds and pathophysiological 
mechanisms regarding their development. Both conditions result from two major 
dysfunctions: a drop in peripheral sensitivity to insulin and failure of the β-cells of the 
pancreas to secrete insulin[13-14]. GDM is considered a variant of diabetes secondary 
to the release of placental hormones[15]. Therefore, it could be assumed that 
pregnancy reveals an existing predisposition for T2D.

T2D is increasingly being recognized as a highly heterogeneous disease, with 
varying clinical presentations, progressions, responses to treatment, and types of 
complications[16-21]. Both the FBG and 2hrBG tests have been used in the process of 
subtyping T2D and in explaining the heterogeneity of the disease. In a non-pregnant 
adult, the impaired uptake of glucose under fasting conditions, as detected by the FBG 
test, is reflective of hepatic insulin resistance with normal muscle insulin sensitivity 
accompanied by a decrease in early-phase insulin secretion. In contrast, the impaired 
tolerance for glucose, as detected by the 2hrBG test, indicates peripheral muscle 
insulin resistance, with defects in both early and late insulin secretions[22-28]. 
Therefore, FBG and 2hrBG tests seem to predict pathophysiology trajectories for T2D 
in non-pregnant adults and has, therefore, been used in the subtyping of the disease
[16-21].

The FBG and 2hrBG tests have also been used to explain the heterogeneity of GDM. 
Several studies[29-32] have suggested that GDM could be subtyped into three groups: 
(1) the GDM-sensitivity group with predominant peripheral resistance to the action of 
insulin, exhibiting high BMI and elevated levels of FBG and serum leptin; (2) the 
GDM-secretion group with defective insulin secretion and low BMI values, similar to 
those in the normal glucose tolerance (NGT) group; and (3) the GDM-mixed group, 
characterized by both insulin sensitivity and secretion defects. Women in both the 
GDM-sensitivity and GDM-mixed groups have elevated FBG levels, compared with 
those in the NGT group. The OGTT remains the gold standard (GS) for the diagnosis 
of adult T2D[33] and for screening GDM[5]. The two main parameters of the OGTT, 
the FBG and 2hrBG tests, indicative of different pathophysiologies of the disease, are 
being consistently used in the attempts to subtype both adult T2D and GDM.

The Dubai Health Authority (DHA) has adopted a protocol for antenatal care based 
on the universal screening for hyperglycemia, using an OGTT at 24-28 gestational 
weeks. Although raised FBG levels has been said to be the main significant predictor 
of postpartum progression to T2D, it is difficult to predict who among the women 
with GDM would develop T2D. Therefore, in this retrospective cohort study, we 
examined the glycemic indices that can predict postnatal T2D in Emirati Arab women 
with a history of GDM. Data were extracted from routine hospital investigations of 
antenatal and postnatal care of women who delivered in 2007 in Latifa Women and 
Children Hospital and in Dubai Hospital, and were successfully followed-up in 2016.

MATERIALS AND METHODS
Patients
The present study was conducted in 2 hospitals: The Latifa Women and Children 
Hospital and Dubai Hospital; the 2 main public hospitals of the DHA, United Arab 
Emirates. The Latifa Women and Children Hospital is a 400-bed tertiary and referral 
hospital for obstetrics and gynecology and children care. Dubai Hospital is a 625-bed 
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center for referral of all medical and surgical specialties including obstetric services. 
Both hospitals share the same electronic health information system (HIS) called 
Salama.

Routine clinical and laboratory data for 4603 Emirati women, who delivered at the 
Latifa Women and Children Hospital (n = 3121) and Dubai Hospital (n = 1482) 
between January 1 and December 31, 2007, were collected from the “Salama” HIS. Of 
those women, 1231 (27%) were successfully followed up in 2016, and their data were 
compared with that of 2007. All 1231 women were included in the analysis. Therefore, 
no sample size or power analysis was performed.

Methods
Blood glucose was enzymatically assayed in the laboratories at the Latifa Women and 
Children Hospital and Dubai Hospital, using hexokinase as reference on the Cobas 
6000 Analyzer (Roche Diagnostics, Basel, Switzerland). The measuring range of this 
method is 0.11-41.6 mmol/L (2-750 mg/dL). The coefficients of variation of the 
method are 0.7% and 1.2% for low and high blood glucose levels, respectively.

The routine protocol for antenatal care at the Latifa Women and Children Hospital 
and Dubai Hospital included universal screening for hyperglycemia using an OGTT at 
24-28 gestational weeks. The FBG level and/or the 2hrBG level after a 75-g glucose 
load were measured to assess the prevalence of GDM and T2D, according to the 
IADPSG[5] and the ADA[8], respectively. GDM is defined as an FBG level of 5.1-6.9 
mmol/L (92-125 mg/dL), and/or a 2hrBG level of 8.5-11.0 mmol/L (153-199 mg/dL) 
on a 2-h 75-g OGTT. DM is defined as an FBG level ≥ 7.0 mmol/L (126 mg/dL) and/or 
a 2hrBG of ≥ 11.1 mmol/L (200 mg/dL).

The ADA criteria for the diagnosis of diabetes in non-pregnant adults[8] has been 
adopted by the DHA and employed in our analysis of oral glucose tolerance testing. 
The FBG level and/or 2hrBG after a 75-g glucose load were measured to assess the 
prevalence of T2D. Diabetes was defined by a level of FBG ≥ 7.0 mmol/L (126 mg/dL) 
or a 2hrBG level ≥ 11.1 mmol/L (200 mg/dL). Impaired fasting blood glucose (IFG) 
was defined by a level of 5.6-6.9 mmol/L (100-125 mg/dL), while impaired glucose 
tolerance (IGT) was defined by a 2hrBG level of 7.8-11.0 mmol/L (140-199 mg/dL).

The glycemic status of the cohort of women (n = 1231) who were previously tested 
in 2007 was assessed again in 2016. Of those, 872 underwent FBG test only, 118 
postprandial 2hrBG test only, while the remaining 241 had a complete OGTT.

The routine glycemic status of both the 4603 Emirati women in 2007 and the 1231 
women who were followed up in 2016, were obtained from the Salama HIS. The 
women suspected of diabetes were confirmed and followed-up in either Hospital. The 
prevalence of T2D in the cohort of Emirati women tested in 2007 and the incidence of 
T2D during the 9-year period (2007-2016) were numerically calculated.

Data analysis
Data were analyzed using SPSS software version 23 (IBM, Chicago, IL, United States). 
All continuous data were described as mean ± SD, while the categorical data were 
described as number and percentage.

According to the IADPSG criteria, a woman will be considered to have GDM, at any 
time in her reproductive life, if her blood glucose is within the cut-off values for GDM 
and does not reach the cut-off values for diabetes. The prevalence of GDM in 2007 was 
calculated as percentage of women with OGTT blood glucose levels within the cut-off 
values, stipulated by the IADPSG criteria (m), divided by the total number of women 
in the specified cohort (N): (m/N) * 100. The incidence of diabetes in 2016 was 
calculated as the annual average of the difference over a 9-year period. Results were 
expressed as incidence rate and incidence density rate.

Specificity and sensitivity of FBG and 2hrBG in predicting T2D
The open-source R-4.02 statistical software was used to plot the receiver operating 
characteristic (ROC) curve for the OGTT. The women were categorized as having 
GDM or normal glycemia based on their FBG and 2hrBG levels in 2007. The diagnosis 
of T2D in 2016 was considered the GS, using HbA1c levels. The diagnosis of T2D was 
confirmed by correlation of FBG and 2hrBG values with HbA1c levels (Pearson 
correlation at 0.798; P ≤ 0.01). To find the best cut off values for the 2007 FBG level, the 
actual values were plotted against the GS results (T2D or normal). At each cut off 
value for the 2007 FBG level, the sensitivity and specificity were calculated by forming 
a 2 by 2 table with the GS results[34-36].

The best cut off values for FBG for predicting T2D from GDM were calculated using 
the Youden Index: [(sensitivity + specificity) - 1]. However, on testing the 2hrBG level 
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in 2016, only five women were classified as having T2D. Therefore, performing an 
analysis to find the best cut off value for 2hrBG was not feasible.

Ethical considerations
This study was part of a project exploring hyperglycemia in pregnancy, funded by Al 
Jalila Foundation, Dubai, United Arab Emirates, under Grant No. AJF2015, dated 
November 8, 2015. Ethical approval was granted by the Dubai Scientific Research 
Ethics Committee of the DHA, with Reference No. DSREC: 12/2015_05; dated 
November 29, 2015. Data were anonymously collected for each participant in the 
study.

RESULTS
Demographics of Emirati women successfully followed up in 2016
Table 1 summarizes the age, BMI, parity, and outcomes of pregnancy in 1231 Emirati 
women, who delivered at Latifa Women and Children Hospital and Dubai Hospital in 
2007 and were successfully followed up in 2016.

Prevalence of GDM and T2D in 2007
Combining the FBG and 2hrBG IADPSG criteria, the prevalence of GDM in pregnant 
Emirati women in 2007 was 1057/4603 (23%), while that of pre-pregnancy T2D, based 
on ADA criteria, was 230/4603 (5%). Among the subset of women (n = 1231) followed 
up in 2016 (Table 2), the prevalence of GDM in 2007 was 362/1231 (29.4%), while that 
of pre-pregnancy T2D was 36/1231 (2.9%). The proportion of women diagnosed with 
GDM based on a raised FBG level (267) was 1.8 times higher than that of those 
diagnosed based on a raised 2hrBG level (147).

Incidence of T2D in 2016
The glycemic status in 2016 of the same cohort of women (n = 1231), who were 
previously tested in 2007, is displayed in Table 3. Of those, 872 underwent FBG test 
only, 118 postprandial 2hrBG test only, while the remaining 241 underwent a complete 
OGTT. Based on the ADA criteria, the overall number of women who developed T2D 
increased from 36 (2.9%) in 2007 to 141 (11.5%) in 2016, a four-fold increase (Tables 2 
and 3). The incidence of T2D over a 9-year period was estimated as follows: (141 – 36 = 
105)/9 = 11.7 per 1000 Emirati women per year. All the women tested in the initial 
observation period in 2007 were also tested during the follow-up period in 2016. 
Therefore, the incidence density of T2D was the same as the incidence rate.

Conversion of GDM to T2D
To measure the conversion rate of GDM to T2D, the IADPSG glycemic indices of the 
cohort of Emirati women in 2007 (n = 1231) were cross tabulated against the ADA 
glycemic indices of the same cohort in 2016 (Table 4). Based on the isolated FBG, out of 
the 267 pregnant women with GDM in 2007, 69 (26 %) developed T2D, 89 (33%) 
developed IFG, 9 (3%) developed IGT, and the remaining 100 (38%) had normal 
glycemia in 2016.

Regarding isolated 2hrBG, out of the 147 pregnant women with GDM in 2007, 27 
(18%) developed T2D, 53 (36%) developed IFG, 20 (14%) developed IGT, and the 
remaining 47 (32%) had normal glycemia in 2016. Based on associated FBG and 2hrBG, 
out of the 362 pregnant women with GDM in 2007, 96 (27%) developed T2D, 142 (39%) 
developed IFG, 29 (8.0%) developed IGT, and the remaining 95 (26%) had normal 
glycemia in 2016.

The conversion rate of GDM to IFG (33%-39%), was much higher than that of GDM 
to IGT (3%-14%). The prevalence of T2D, based on ADA criteria increased from 
36/1231 (2.9%) in 2007 to 141/1231 (11.5%), in 2016. Women with raised FBG levels 
had a higher risk of developing T2D, compared with those with raised postprandial 
2hrBG levels.

The sensitivity and specificity of FBG and 2hrBG tests in predicting T2D following 
GDM in Emirati women are shown in Table 5. The sensitivity of FBG was 82.3% 
(95%CI: 72.1, 90.0) while specificity was 55.1% (95%CI: 0.50, 0.60). The PPV for FBG of 
24.3% suggests that, if a woman was positive for GDM in 2007, the probability of 
developing T2D in 2016 was about 24%. The negative predictive value (NPV) for FBG 
implied that, if a woman was negative for GDM in 2007, the probability of maintaining 
normal FBG levels was about 95%.
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Table 1 Demographic characteristics of Emirati women who delivered in 2007 in Latifa Women and Children Hospital and Dubai 
Hospital, and were successfully followed up in 20161

mean ± SD

Number (n) 1231

Age (yr) 38.7 ± 6.1

BMI (kg/m2) 31.1 ± 6.7

Parity (n) 5.74 ± 3.3

Live born (n) 4.53 ± 3.0

Still birth (n) 0.1 ± 0.3

Miscarriage (n) 1.1 ± 1.7

1Data were obtained in 2016.
BMI: Body mass index.

Table 2 Results of oral glucose tolerance test of 1231 Emirati pregnant women performed during their 24-28 wk of pregnancy in 2007, n 
(%)

Positive Diagnostic criteria1 Normal GDM T2D

Isolated FBG 995 (80.8) 215 (17.5) 21 (1.7)

Isolated 2hrBG 1121 (91.0) 95 (7.7) 15 (1.2)

Associated FBG and 2hrGB 1179 (95.8) 52 (4.2) 0 (0)

Total 833 (67.7) 362 (29.4) 36 (2.9)

1International Association of Diabetes and Pregnancy Study Groups (IADPSG)[5] criteria.
OGTT: Oral glucose tolerance test; GDM: Gestational diabetes mellitus; T2D: Type 2 diabetes; FBG: Fasting blood glucose; 2hrBG: 2-h blood glucose.

Table 3 Glycemic status of 1231 Emirati pregnant women, who were tested previously in 2007, and underwent post-natal glycemic tests 
in 2016

Diagnostic criteria1 Total number tested Normal Impaired FBG IGT Impaired FBG and IGT T2D

FBG 872 542 203 - - 127

Post-prandial 2hrBG 118 86 - 28 - 4

OGTT 241 146 23 52 10 10

Total 1231 774 226 80 10 141

1American Diabetes Association criteria for diagnosis of diabetes mellitus[8].
FBG: Fasting blood glucose; IGT: Impaired glucose tolerance; T2D: Type 2 diabetes; 2hrBG: 2-h blood glucose; OGTT: Oral glucose tolerance test.

The opposite is being observed in the predictability of T2D in 2016 using the 2hrBG 
in the diagnosis of GDM in 2007. The sensitivity of the 2hrBG test was 20.0% (95%CI: 
0.05, 0.716), while the specificity was 88.3% (95%CI: 0.845, 0.92). The PPV value 
suggests that if a woman was positive for GDM in 2007, the probability of developing 
T2D in 2016 was about 3%. The NPV implied that if a woman was negative for GDM 
in 2007, the probability of maintaining normal 2hrBG levels was about 98%.

The sensitivities and specificities of various cut-off values for FBG in 2007 were 
estimated against the test results in 2016 (GS: T2D and normal). Using the Youden 
Index, a cut off value of FBG ≥ 103 mg/dL in 2007, above which T2D was diagnosed in 
2016, was identified. This cut off value provided a sensitivity and specificity of 76.9% 
and 68.1% respectively. The area under the ROC Curve was 77.2% (P < 0.001). Thus, 
the FBG level ≥ 103 mg/dL at 2007 significantly predicted the T2D status in 2016. The 
2hrBG levels could not be tested due to the small number who converted to T2D.
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Table 4 Cross-tabulation of the glycemic status of Emirati women (n = 1231) who delivered in 2007, against their glycemic status in 
2016, n (%)

ADA diagnostic criteria (2016)

Fasting 2 hIADPSG diagnostic criteria for GDM 
(2007)

Total Normal IFG T2D Total Normal IGT T2D

Fasting

Normal 262 (100) 205 (78) 43 (16) 14 (5) 89 (100) 54 (61) 30 (34) 5 (5)

GDM 267 (100) 113 (42) 89 (33) 65 (25) 44 (100) 31 (70) 9 (21) 4 (9)

T2D 26 (100) 2 (8) 3 (11) 21 (81) 2 (100) 1 (50) 1 (50) 0 (0)

Total 555 (100) 320 (58) 135 (24) 100 (18) 135 (18) 86 (64) 40 (29) 9 (7)

2Hr

Normal 670 (100) 495 (74) 138 (21) 37 (5) 252 (100) 197 (78) 51 (20) 4 (2)

GDM 147 (100) 68 (46) 53 (36) 26 (18) 34 (100) 13 (38) 20 (59) 1 (3)

T2D 26 (100) 7 (27) 5 (19) 14 (54) 4 (100) 1 (25) 2 (50) 1 (25)

Total 843 (100) 843 (68) 196 (23) 77 (9) 290 (100) 211 (73) 73 (25) 6 (2)

GDM: Gestational diabetes mellitus; T2D: Type 2 diabetes; IFG: Impaired fasting glucose; IGT: Impaired glucose tolerance; FBG: Fasting blood glucose; 
2hrBG: 2-h blood glucose.

Table 5 Sensitivity and specificity of fasting blood glucose and 2-h blood glucose in predicting type 2 diabetes following gestational 
diabetes mellitus in Emirati women1

ADA diagnostic criteria for T2D (2016)

FBG 2hrBGIADPSG diagnostic criteria for GDM (2007)

T2D (n) Normal (n) T2D (n) Normal (n)

GDM 65 202 1 33

Normal 14 248 4 248

Point estimates and 95%CIs

True prevalence 0.149 (0.12, 0.183) 0.017 (0.006, 0.04)

Sensitivity 0.823 (0.721, 0.9) 0.200 (0.005 0.716)

Specificity 0.551 (0.504, 0.598) 0.883 (0.839, 0.918)

Positive predictive value 0.243 (0.193, 0.299) 0.029 (0.001, 0.153)

Negative predictive value 0.947 (0.912, 0.97) 0.984 (0.96, 0.996)

Positive likelihood ratio 1.833 (1.586, 2.118) 1.703 (0.287, 10.12)

Negative likelihood ratio 0.322 (0.198, 0.521) 0.906 (0.584, 1.408)

Odds ratio 5.7 (3.108, 10.455) 1.879 (0.204, 17.32)

1The R 4.02 statistical software was used to plot the receiver operating characteristic curve.
GDM: Gestational diabetes mellitus; T2D: Type 2 diabetes; FBG: Fasting blood glucose; 2hrBG: 2-h blood glucose.

DISCUSSION
Most studies that assessed the risk of developing T2D following a history of GDM 
were conducted in prospective clinical trials[1-7]. In contrast, our cross-sectional 
retrospective study analyzed the clinical and laboratory data of a cohort of Emirati 
Arab women, obtained from the routine clinical practice in a tertiary obstetrics set-up. 
The data were intended for clinical service; however, it proved to be useful for 
determining the risk of T2D in women with a history of GDM nine years earlier. The 
results suggested that both raised FBG and 2hrBG levels are sensitive glycemic 
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indicators of transition to prediabetes and T2D. Out of the 362 pregnant women with 
GDM in 2007, 27% developed T2D, 39% developed IFG, 8.0% developed IGT, and the 
remaining 26% had normal glycemia in 2016. The prevalence of T2D, based on the 
ADA criteria, increased from 2.9% in 2007 to 11.5%, in 2016. The conversion rate of 
GDM to T2D was higher in women with raised FBG levels (26%) than in women with 
raised 2hrBG levels (18%), indicating that the former group had a higher risk of 
developing T2D than the latter group. This was further supported by the OGTT ROC 
Curve indices. The PPV for FBG suggests that if a woman tested positive for GDM in 
2007, the probability of developing T2D in 2016 was approximately 24%. The opposite 
is being observed in the predictability of T2D in 2016, using the 2hrBG. The PPV value 
suggests that, if a woman was positive for GDM in 2007, the probability of developing 
T2D in 2016 was only 3%. A similar trend of higher conversion rate of GDM to IFG 
was observed among women with raised FBG levels, compared with the rate of 
conversion of GDM to IGT among those with increased IGT. Our results agree with 
those of numerous previous studies referenced in several systematic reviews and 
meta-analyses[1-4,6-7,11-12].

The impaired uptake of glucose under fasting conditions, as detected by the FBG 
test, is reflective of hepatic insulin resistance with normal muscle insulin sensitivity 
accompanied by a decrease in the early-phase insulin secretion. In contrast, the 
impaired tolerance for glucose, as detected by the 2hrBG test, indicates peripheral 
muscle insulin resistance with defects in both early and late insulin secretion[22-28]. It 
is suggested that women with these two distinct metabolic states represent two 
distinct subtypes of GDM[29-32], depending on the defects in insulin sensitivity 
and/or secretion. A GDM-sensitivity group with predominant peripheral resistance to 
the action of insulin exhibited high BMI and elevated levels of FBG and serum leptin. 
Patients with defective insulin secretion, the GDM-secretion group, had low BMI 
values, similar to those in the NGT group. The third group is the GDM-mixed group, 
characterized by both insulin sensitivity and secretion defects. Women in both the 
GDM-sensitivity group and GDM-mixed group had elevated FBG levels compared 
with those in the NGT group. Earlier studies on the risk of T2D following GDM did 
not consider these proposed subtypes of GDM[1-3]. It is possible, therefore, that the 
GDM subgroup in our cohort of Emirati women, with raised FBG levels and higher 
conversion rate to T2D, is congruent with the GDM-sensitivity group characterized by 
peripheral insulin resistance; whereas, the GDM subgroup with raised 2hrBG levels 
reflected insulin secretion defects[29-32].

Subtyping of both adult non-pregnant with T2D[16-21] and GDM[29-32] patients 
represent serious attempts at resolving the heterogeneity of T2D, bringing the idea of 
personalized care closer, as pathophysiology is used to distinguish subtypes from each 
other. Different clinical management schemes are then tailored for each subtype. The 
use of the OGTT as a diagnostic tool has been discouraged over the past 20 years for 
various reasons[33]. However, insulin secretion and resistance could easily be deduced 
from assessing HOMA-B and HOMA-IR, if fasting serum insulin is measured during 
routine OGTT. The latter could then be instrumental in predicting T2D patho-
physiology and possible subtypes.

A modified OGTT could become a powerful tool if extra parameters like fasting 
insulin and C-peptide, are measured simultaneously. It will help in identifying T2D 
subtypes and brings personalized patient care closer. Subtypes could then be matched 
with specific prevention programs like frequent follow-ups, lifestyle modifications, 
and new treatment protocols.

Limits of the study
This study, being retrospective in design, is limited. Fasting insulin and other 
hormones levels were not measured during routine hospital investigations. We could 
not obtain the indices for both secretion and resistance to the action of insulin, such as 
HOMA-B and HOMA-IR. A detailed prospective study will be essential for examining 
the trajectory of the conversion of GDM to T2D and the role that a modified OGTT 
could play in the dissection of the pathogenesis of the disease.

CONCLUSION
This cross-sectional retrospective cohort study, conducted among Emirati Arab 
women with GDM, revealed that raised antenatal FBG and 2hrBG levels could predict 
postpartum T2D; however, it suggested that each parameter may indicate a distinct 
T2D pathophysiology. Women with predominant peripheral resistance to the action of 
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insulin, who have raised FBG levels during pregnancy, were at a greater risk of 
developing T2D, compared with those with raised postprandial 2hrBG levels. It is 
suggested that, for the former group of women, postnatal management like frequent 
follow-ups, lifestyle modifications, and specific treatment protocols, should be applied 
to slow down the development of T2D and improve the quality of life for them and 
their newborns.

ARTICLE HIGHLIGHTS
Research background
Gestational diabetes mellitus (GDM) is a common metabolic disorder of pregnancy. It 
has short- and long-term maternal, fetal, and neonatal complications. Women with 
GDM are at a seven-fold higher risk of developing type 2 diabetes (T2D) within 7-10 
years after childbirth, compared with those with normoglycemic pregnancy.

Research motivation
There is emerging evidence that both GDM and T2D can be subtyped according to 
their pathophysiology. We attempted to examine the link between subtypes of GDM 
and the prediction of postnatal T2D.

Research objectives
To assess the utility of oral glucose tolerance test (OGTT) in the identification of 
distinct GDM pathophysiology and in the prediction of possible distinct postnatal T2D 
subtypes.

Research methods
The glycemic status of a cohort of 4603 pregnant Emirati Arab women, who delivered 
in 2007 in Dubai United Arab Emirates, was assessed retrospectively, using OGTT 
according to the International Association of Diabetes and Pregnancy Study Groups 
criteria. Of the total, 1231 women were followed up and assessed in 2016. The receiver 
operating characteristic curve for the OGTT was plotted and sensitivity, specificity, 
and predictive values of fasting blood glucose (FBG) and 2hrBG for T2D were 
estimated.

Research results
The prevalence of GDM in pregnant Emirati women in 2007 was 1057/4603 (23%), 
while the prevalence of pre-pregnancy T2D based on ADA criteria, was 230/4603 (5%). 
In the subset of women (n = 1231) followed up in 2016, the prevalence of GDM in 2007 
was 362/1231 (29.6%), while the prevalence of pre-pregnancy T2D, was 36/1231 
(2.9%). Of the 362 pregnant women with GDM in 2007, 96/362 (26.5%) developed T2D, 
142/362 (39.2%) developed impaired fasting glucose, 29/362 (8.0%) developed 
impaired glucose tolerance, and the remaining 95/362 (26.2%) had normal glycemia in 
2016. The prevalence of T2D, based on ADA criteria, stemmed from the prevalence of 
36/1231 (2.9%) in 2007 to 141/1231 (11.5%), in 2016. The positive predictive value 
(PPV) for FBG suggests that, if a woman is positive for GDM in 2007, then the 
probability of developing T2D in 2016 was about 24%. The opposite is being observed 
in the predictability of T2D in 2016 using the 2hrBG in diagnosis of GDM in 2007. The 
PPV value suggests that if a woman was positive for GDM in 2007 then the probability 
of developing T2D in 2016 was only 3%.

Research conclusions
The results of this study revealed that both raised antenatal FBG and 2hrBG levels 
could predict postpartum T2D; however, it suggested that each parameter may 
indicate a distinct T2D pathophysiology. Women with predominant peripheral 
resistance to the action of insulin, who have raised FBG levels during pregnancy, were 
at a greater risk of developing T2D, compared with those with raised postprandial 
2hrBG levels.

Research perspectives
Our findings suggested that, for women who at a greater risk of developing T2D, 
postnatal management like frequent follow-ups, lifestyle modifications, and specific 
treatment protocols, should be applied to slow down the development of T2D and 
improve the quality of life for them and their newborns.
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Abstract
BACKGROUND 
Previous studies have shown that diabetes mellitus is a common comorbidity of 
coronavirus disease 2019 (COVID-19), but the effects of diabetes or anti-diabetic 
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medication on the mortality of COVID-19 have not been well described.

AIM 
To investigate the outcome of different statuses (with or without comorbidity) and 
anti-diabetic medication use before admission of diabetic after COVID-19.

METHODS 
In this multicenter and retrospective study, we enrolled 1422 consecutive hospit-
alized patients from January 21, 2020, to March 25, 2020, at six hospitals in Hubei 
Province, China. The primary endpoint was in-hospital mortality. Epidemi-
ological material, demographic information, clinical data, laboratory parameters, 
radiographic characteristics, treatment and outcome were extracted from 
electronic medical records using a standardized data collection form. Most of the 
laboratory data except fasting plasma glucose (FPG) were obtained in first hospit-
alization, and FPG was collected in the next day morning. Major clinical 
symptoms, vital signs at admission and comorbidities were collected. The 
treatment data included not only COVID-19 but also diabetes mellitus. The 
duration from the onset of symptoms to admission, illness severity, intensive care 
unit (ICU) admission, and length of hospital stay were also recorded. All data 
were checked by a team of sophisticated physicians.

RESULTS 
Patients with diabetes were 10 years older than non-diabetic patients [(39 - 64) vs 
(56 - 70), P < 0.001] and had a higher prevalence of comorbidities such as 
hypertension (55.5% vs 21.4%, P < 0.001), coronary heart disease (CHD) (9.9% vs 
3.5%, P < 0.001), cerebrovascular disease (CVD) (3% vs 2.2%, P < 0.001), and 
chronic kidney disease (CKD) (4.7% vs 1.5%, P = 0.007). Mortality (13.6% vs 7.2%, 
P = 0.003) was more prevalent among the diabetes group. Further analysis 
revealed that patients with diabetes who took acarbose had a lower mortality rate 
(2.2% vs 26.1, P < 0.01). Multivariable Cox regression showed that male sex 
[hazard ratio (HR) 2.59 (1.68 - 3.99), P < 0.001], hypertension [HR 1.75 (1.18 - 2.60), 
P = 0.006), CKD [HR 4.55 (2.52-8.20), P < 0.001], CVD [HR 2.35 (1.27 - 4.33), P = 
0.006], and age were risk factors for the COVID-19 mortality. Higher HRs were 
noted in those aged ≥ 65 (HR 11.8 [4.6 - 30.2], P < 0.001) vs 50-64 years (HR 5.86 
[2.27 - 15.12], P < 0.001). The survival curve revealed that, compared with the 
diabetes only group, the mortality was increased in the diabetes with 
comorbidities group (P = 0.009) but was not significantly different from the non-
comorbidity group (P = 0.59).

CONCLUSION 
Patients with diabetes had worse outcomes when suffering from COVID-19; 
however, the outcome was not associated with diabetes itself but with 
comorbidities. Furthermore, acarbose could reduce the mortality in diabetic.

Key Words: Diabetes; Coronavirus disease 2019; Mortality; Risk factors; Acarbose
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Core Tip: Previous studies have shown that diabetes mellitus is a common comorbidity 
of coronavirus disease 2019 (COVID-19), but the effects of diabetes or antidiabetic 
medication on the mortality of COVID-19 have not been well described. This 
retrospective and multiple-center study investigate the outcome of different statuses 
(with or without comorbidity) and antidiabetic medication use before admission of 
diabetic after COVID-19.
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INTRODUCTION
Coronavirus disease 2019 (COVID-19) has become an ongoing pandemic and has 
caused considerable mortality worldwide[1]. Diabetes is a common comorbidity, 
especially in elderly patients, but the effects of diabetes or anti-diabetic medication on 
the severity and mortality of COVID-19 have not been well described. As of April 27, 
2021, nearly 150 million COVID-19 cases had been confirmed around the world, and 
more than 3 million patients died of COVID-19 (https://www.who.int/emergencies/
diseases/novel-coronavirus-2019). Well-controlled blood glucose (3.9-10.0 mmol/L) in 
preexisting diabetes was associated with a significant reduction in the composite 
adverse outcomes and death of patients with COVID-19[2]. Patients with diabetes 
often have several comorbidities, and previous research has revealed that 
hypertension, chronic obstructive pulmonary disease (COPD), chronic kidney disease 
(CKD), cardiovascular disease and cerebrovascular disease (CVD) are also associated 
with worse outcomes in patients suffering from COVID-19[3-6]. However, few studies 
have described the outcome of different comorbidity statuses of patients with diabetes 
after infection with COVID-19. In addition, few studies have focused on whether anti-
diabetic medication would influence the outcome of patients with preexisting diabetes 
who suffer from COVID-19. Considering this, we performed a multicenter study to 
investigate the outcome of different statuses (with or without comorbidity) and anti-
diabetic medication before admission of patients with diabetes with severe acute 
respiratory syndrome coronavirus 2 (SARS-CoV-2) infection.

MATERIALS AND METHODS
Study design and participants
This is a multicenter, observational, retrospective, real-world study that included adult 
inpatients from six designated tertiary centers (Supplementary Table 1) between 
January 21 and March 25, 2020. A total of 1422 patients with COVID-19 were screened 
for this study (Figure 1). All patients were diagnosed with COVID-19 in accordance 
with WHO interim guidance.

Data collection
Epidemiological material, demographic information, clinical data, laboratory 
parameters, radiographic characteristics, treatment and outcome were extracted from 
electronic medical records using a standardized data collection form. Most of the 
laboratory data except fasting plasma glucose (FPG) were obtained in first hospital-
ization, and FPG was collected in the next day morning. Major clinical symptoms, vital 
signs at admission and comorbidities were collected. The treatment data included not 
only COVID-19 but also diabetes mellitus. The duration from the onset of symptoms to 
admission, illness severity, intensive care unit (ICU) admission, and length of hospital 
stay were also recorded. All data were checked by a team of sophisticated physicians.

Diabetes was defined as a history record of diabetes and the use of anti-diabetic 
medication; otherwise, newly diagnosed diabetes was based on the level of fasting 
plasma glucose (FPG) (≥ 7.0 mmol/L), random plasma glucose (≥ 11.1 mmol/L), 
glycosylated hemoglobin (HbA1c) ≥ 6.5% and classic symptoms of hyperglycemia 
during hospital stay (as the oral glucose tolerance test may lead to hyperglycemia and 
then to worsening of a COVID-19 patient’s illness, it was not used for diagnosis of 
diabetes in our study[7]). Hypertension was defined by a history of hypertension, the 
use of anti-hypertensive drugs, or the National Heart Lung and Blood Institute criteria
[8]. Coronary heart disease was defined by a history of coronary heart disease. CVD 
was defined by a history of CVD. ARDS was defined according to the Berlin definition
[9]. Acute kidney injury (AKI) was diagnosed according to the KDIGO (Kidney 
Disease: Improving Global Outcomes) clinical practice guidelines[10]. Acute cardiac 
injury (ACI) was reported if serum levels of myocardial injury biomarkers were higher 
than the upper limit of normal[2]. The criteria for classification of COVID-19 severity 
were according to the Diagnosis and Treatment Protocol for COVID-19 (Trial Version 
8)[11]. We divided the patients into two groups: the non-severe group (mild and 
general types) and the severe group (severe and critical types).

Outcomes
The primary outcome was all-cause mortality after admission. Secondary outcomes 
were ICU admission and incidence of SARS-CoV-2-related complications, including 
ARDS, AKI, ACI, secondary infection, shock and hypoproteinemia.

https://www.who.int/emergencies/diseases/novel-coronavirus-2019
https://www.who.int/emergencies/diseases/novel-coronavirus-2019
https://f6publishing.blob.core.windows.net/5abd3161-bd2e-4a40-93fe-204785da1f89/WJD-12-1789-supplementary-material.pdf
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Figure 1 Flow chart of patient recruitment. COVID-19: Coronavirus disease 2019.

Statistical analysis
Continuous variables were described as the mean ± SD or median (IQR). Categorical 
variables were calculated as frequencies and percentages with available data. The 
differences in continuous variables among groups were assessed using the 
independent sample t-test or one-way ANOVA for normally distributed continuous 
variables or the Mann-Whitney U test or Kruskal-Wallis H test for skewed continuous 
variables. Pearson’s χ2  test and Fisher’s exact test were performed for unordered 
categorical variables. The Mann-Whitney U test or the Kruskal-Wallis H test was used 
for ordered categorical variables. To explore the risk factors associated with mortality, 
multivariable Cox regression models were performed. The Kaplan-Meier plot was 
performed to compare the survival probability for the diabetes and non-diabetes 
groups and among the patients with no comorbidities, only diabetes and diabetes with 
comorbidities by log-rank test. Additionally, we did not process the missing data. The 
statistical analyses were conducted with SPSS (version 25.0). A two-sided P value less 
than 0.05 was considered statistically significant. The statistical methods of this study 
were reviewed by Yameng Fan from Wuhan University.

RESULTS
Clinical characteristics and laboratory results of 1331 patients with COVID-19 divid-
ed into different groups
The characteristics of this study population at baseline are given in Table 1. The 
median age was 54 years old (39-64) and 64 years old (56-70) in the non-diabetes and 
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Table 1 Baseline characteristics of 1331 coronavirus disease 2019 patients divided into different groups

Total (n = 
1331)

Non-diabetes 
(n = 1140)

Diabetes (n 
= 191)

P1 

value
Non-comorbidity 
(n = 779)

Diabetes 
only (n = 65)

Diabetes with 
comorbidities (n = 
126)

P2 

value

Demographic 

Male 673 (50.6) 565 (49.6) 108 (56.5) 0.074 369 (47.4) 40 (61.5) 68 (54.0) 0.046

Age, yr 56.0 (42.0-
65.0)

54.0 (39.0-64.0) 64.0 (56.0-
70.0)

< 0.001 48.0c (36.0-60.0) 57.0 (50.0-64.0) 67.0c (59.0-72.0) < 0.001

18-49 500(37.6) 477 (41.8) 23 (12.0) <0.001 415 (53.3)c 16 (24.6) 7 (5.6)c < 
0.001d

50-64 458 (34.4) 382 (33.5) 76 (39.8) 253 (32.5) 34 (52.3) 42 (33.3)

≥ 65 373 (28.0) 281 (24.6) 92 (48.2) 111 (14.2) 15 (23.1) 77 (61.1)

Wuhan exposure 1190 (89.4) 1008 (88.4) 182 (95.3) 0.004 686 (88.3) 61 (95.3) 120 (95.2) 0.018

Current smoking 107 (8.1) 93 (8.2) 14 (7.4) 0.736 55 (7.2) 3 (4.7) 11 (8.9) 0.149

Onset of symptom, d 8.0 (5.0-
14.0)

8.0 (5.0-14.0) 10.0 (6.0-13.0) 0.217 8.0 (4.8-14.0) 10.0 (6.5-16.5) 10.0 (5.8-12.0) 0.109

Symptoms

Fever 955 (71.8) 823 (72.2) 132 (69.1) 0.381 570 (73.2) 46 (70.8) 86 (68.3) 0.496

Dyspnea 270 (20.3) 227 (19.9) 43 (22.5) 0.408 135 (17.3) 9 (13.8) 34 (27.0) 0.021

Cough 777 (58.4) 660 (57.9) 117 (61.3) 0.383 433 (55.6) 46 (70.8) 71 (56.7) 0.060

Sputum production 138 (10.4) 126 (11.1) 12 (6.3) 0.045 84 (10.8) 4 (6.2) 8 (6.3) 0.175

Hemoptysis 3 (0.2) 3 (0.3) 0 (0.0) 1.000 1 (0.1) 0 (0.0) 0 (0.0) 0.885

Fatigue 362 (27.2) 306 (26.8) 56 (29.3) 0.476 212 (27.2) 16 (24.6) 40 (31.7) 0.489

Headache 47 (3.5) 44 (3.9) 3 (1.6) 0.169 29 (3.7) 3 (4.6) 0 (0.0) 0.010

Nausea or vomiting 44 (3.3) 39 (3.4) 5 (2.6) 0.566 25 (3.2) 2 (3.1) 3 (2.4) 0.939

Diarrhea 112 (8.4) 97 (8.5) 15 (7.9) 0.763 63 (8.1) 9 (13.8) 6 (4.8) 0.091

Temperature, ℃ 36.8 (36.5-
37.5)

36.8 (36.5-37.5) 36.7 (36.4-
37.4)

0.018 36.8 (36.5-37.5) 36.8 (36.5-37.6) 36.6 (36.4-37.3) 0.018

≥ 39 30 (2.4) 25 (2.3) 5 (2.7) 0.980 16 (2.2) 2 (3.1) 3 (2.4) 0.889

Pulse ≥ 100 beats per 
min

244 (18.5) 209 (18.5) 35 (18.3) 0.955 125 (16.1) 12 (18.5) 23 (18.30) 0.761

Blood oxygen 
saturation < 93%

124 (11.1) 92 (9.6) 32 (19.8) < 0.001 43 (6.5) 7 (12.5) 25 (23.6) < 0.001

Respiratory rate > 24 
breaths/min

71 (5.4) 56 (5.0) 15 (7.9) 0.105 27 (3.5) 2 (3.1) 13 (10.3) 0.002

Mean systolic blood 
pressure, mmHg 

125 (120-
135)

124 (119-135) 128 (120-140) 0.001 121 (118-131) 127 (120-133) 130 (120-140) < 0.001

Mean diastolic blood 
pressure, mmHg

80.0 (74.0-
85.0)

80.0 (74.0-85.0) 80.0 (74.0-
85.0)

0.777 80.0 (73.0-83.0) 80.0 (72.5-85.0) 80.0 (74.0-84.3) 0.550

Radiological findings

Ground glass opacity 294 (22.1) 265 (23.2) 29 (15.2) 0.013 195 (25.0) 9 (13.8) 20 (15.9) 0.014

Bilateral patchy 
shadowing 

813 (61.1) 687 (60.3) 126 (66.0) 0.134 62 (8.0) 5 (7.7) 4 (3.2) 0.107

Bilateral lesions 962 (82.1) 805 (80.1) 157 (94.0) < 0.001 524 (76.2)a 53 (91.4) 104 (95.4) < 0.001

Comorbidity 

Hypertension 350 (26.3) 244 (21.4) 106 (55.5) < 0.001 - - - -

CHD 59 (4.4) 40 (3.5) 19 (9.9) < 0.001 - - - -

Chronic liver disease 20 (1.5) 18 (1.6) 2 (1.0) 0.812 - - - -
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CVD 39 (2.9) 25 (2.2) 14 (7.3) < 0.001 - - - -

CKD 26 (2.0) 17 (1.5) 9 (4.7) 0.007 - - - -

COPD 10 (0.8) 10 (0.9) 0 (0.0) 0.397 - - - -

Data are expressed as n (%), mean ± SD or median (IQR). P values were calculated by t Test, Mann-Whitney U test, χ2 test, Fisher's exact test, One-Way 
ANOVA or Kruskal-Wallis H test as appropriate.
1Comparing groups of diabetes and non-diabetes patients.
2Comparing groups of non-comorbidity, only diabetes and diabetes with comorbidities.
dMann-Whitney U test comparing all subcategories. Compared with diabetes only group.
aP < 0.05.
bP < 0.05.
cP < 0.001.
CHD: Coronary heart disease; CKD: Chronic kidney disease; COPD: Chronic obstructive pulmonary diseas; CVD: Cerebrovascular diseasee.

diabetes groups, respectively. Comorbidities such as hypertension (55.5% vs 21.4%), 
coronary heart disease (9.9% vs 3.5%), CVD (7.3% vs 2.2%), and CKD (4.7% vs 1.5%) 
were significantly more prevalent in the diabetes group. Mean systolic blood pressure 
(SBP) was higher in the diabetes group. Moreover, decreased blood oxygen saturation 
(lower than 93%) occurred more frequently in the diabetes group vs the non-diabetes 
group (19.8% vs 19.6%) on admission. Chest CT scan revealed that the incidence of 
bilateral lesions was higher (94% vs 80.1%) in the diabetes group than in the non-
diabetes group.

There were numerous differences in laboratory results between the diabetes group 
and the non-diabetes group with COVID-19 (Table 2). FPG levels were significantly 
higher in the diabetes group than in the non-diabetes group, as expected, with higher 
levels of HbA1c. Patients with diabetes had a higher white blood cell count (WBC), 
neutrophil count (NEU), neutrophil to lymphocyte ratio (NLR), and C-reactive protein 
(CRP) and a lower lymphocyte count (LY) than the non-diabetic group. These results 
revealed that diabetes represented more severe inflammation. The percentage of high 
levels of prothrombin time (PT) and D-dimer among the diabetes group was higher 
than that among the non-diabetes group. The serum level of albumin (ALB) was lower 
in the diabetes group than in the non-diabetes group. Meanwhile, urea nitrogen 
(BUN), a marker of kidney function, was higher in the diabetes group. Non-diabetes 
participants had significantly lower serum levels of lactate dehydrogenase. Compared 
with the non-diabetes group, the diabetes group had higher levels of total cholesterol 
(TCH) and lower high-density lipoprotein cholesterol (HDL-C).

In addition, a between-group comparison with only the diabetes group was 
performed. The baseline characteristics and radiological findings are also summarized 
in Table 1. Patients with diabetes with comorbidities were the oldest among the three 
groups. There was a significant difference in blood oxygen saturation and respiratory 
rate among the three groups but no significant differences in the comparison of the 
non-comorbidity group and only diabetes group or the comparison of the diabetes 
only group and diabetes with comorbidities group. Chest CT scans indicated that the 
diabetes only group had more incidences of bilateral lesions than the non-comorbidity 
group.

Although there were numerous differences in laboratory findings among the non-
comorbidity group, diabetes only group and diabetes with comorbidities group 
(Table 2), only ten items had statistical significance between the non-comorbidity 
group and diabetes only group, including ALB, sodium, BUN, CRP, and HDL-C, as 
well as FPG and HbA1c, as expected. These results combined with oxygen saturation 
indicated that there was no difference in cardiac, liver, lung and coagulation function 
between the groups.

FPG and HbA1c in the diabetes only group and diabetes with comorbidities group 
were almost at the same level. Compared with the diabetes only group, the diabetes 
with comorbidities group had a lower LY and a higher NLR and CRP, which 
represented a more severe inflammatory response.

Treatment and outcome of 1331 patients with COVID-19 divided into different groups
As shown in Table 3, 1223 of the 1331 patients (91.9%) were discharged from the 
hospital; the rate of mortality of the diabetes group was higher than that of the non-
diabetes group (13.6% vs 7.2%). Kaplan-Meier survival analysis for all-cause mortality 
in patients with COVID-19 is shown in Figure 2. The overall survival rate was 
significantly lower in the diabetes group (log-rank P < 0.01, Figure 2A). Compared 
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Table 2 Laboratory results of 1331 coronavirus disease 2019 patients divided into different groups

Total (n = 
1331)

Non-diabetes 
(n = 1140)

Diabetes (n = 
191) P1 value Non-comorbidity 

(n = 779)
Diabetes only 
(n = 65)

Diabetes with 
comorbidities (n = 
126)

P2 value

WBC, × 109/L 5.42 (4.18-
7.10)

5.35 (4.10-6.95) 5.93 (4.49-7.53) 0.003 5.28 (4.00-6.77) 6.11 (4.27-7.68) 5.85 (4.57-7.32) 0.001

NEUT, × 109/L 3.58 (2.53-
5.12)

3.45 (2.46-5.07) 4.25 (3.13-5.37) < 0.001 3.29 (2.33-4.64) 4.16 (2.67-5.40) 4.37 (3.20-5.29) < 0.001

LY, × 109/L 1.15 (0.78-
1.59)

1.17 (0.80-1.61) 1.04 (0.72-1.43) 0.015 1.25 (0.86-1.65) 1.27 (0.84-1.73) 0.93 (0.68-1.33)b < 0.001

NLR 2.95 (1.97-
5.26)

2.79 (1.88-4.93) 3.84 (2.45-6.37) < 0.001 2.54 (1.79-4.36) 3.15 (2.08-5.06) 4.29 (2.62-7.30)a < 0.001

Hb, g/L 130 (118-
140)

130 (118-140) 120 (117-140) 0.195 131 ± 16.3 132 ± 14.4 125 ± 17.6b < 0.001

PLT, × 109/L 196 (150-
251)

196 (151-251) 196 (147-255) 0.714 196 (152-242) 197 (147-265) 196 (146-255) 0.974

PCT, ng/mL

< 0.5 981 (94.4) 838 (94.4) 143 (94.7) 0.869 585 (97.3) 53 (100) 90 (91.8) 0.006

≥ 0.5 58 (5.6) 50 (5.6) 8 (5.3) 16 (2.7) 0 (0.0) 8 (8.2)

CRP 10.9 (1.7-
46.7)

9.1 (1.4-39.0) 29.8 (5.3-75.7) < 0.001 6.11 (1.0-27.7)a 13.2 (3.0-61.5) 39.9 (6.6-77.7)a < 0.001

IL-6, pg/mL 2.77 (1.5-
14.09)

2.73 (1.5-13.5) 3.09 (1.5-20.4) 0.471 1.80 (1.50-6.27) 2.32 (1.50-5.06) 4.01 (2.72-28.56) 0.008

PT, s 13.0 (11.3-
14.9)

12.9 (11.3-14.6) 14.3 (11.9-15.5) < 0.001 12.80 (11.20-14.30) 13.70 (10.80-
15.05)

14.50 (12.35-16.03) < 0.001

< 16 830 (85.7) 712 (87.1) 118 (78.1) 0.004 493 (87.7) 41 (83.7) 75 (73.5) 0.001

≥ 16 138 (14.3) 105 (12.9) 33 (21.9) 69 (12.3) 8 (16.3) 27 (26.5)

D-dimer, mg/L 0.49 (0.26-
1.14)

0.46 (0.25-1.10) 0.69 (0.35-1.35) < 0.001 0.38 (0.23-0.80) 0.46 (0.26-0.91) 0.83 (0.46-1.94)b < 0.001

≤ 0.5 555 (52.5) 497 (55.0) 58 (37.9) < 0.001 386 (63.4) 27 (50.9) 31 (31.0)b < 0.0013

> 0.5 to ≤ 1.0 209 (19.8) 163 (18.0) 46 (30.1) 100 (16.4) 18 (34.0) 28 (28.0)

> 1.0 293 (27.7) 244 (27.0) 49 (32.0) 123 (20.2) 8 (15.1) 41 (41.0)

ALB, g/L 38.1 ± 5.8 38.5 ± 5.7 35.7 ± 5.5 < 0.001 39.3 ± 5.9c 36.5 ± 6.4 35.3 ± 5.0 < 0.001

ALT, U/L 23.1 (14.2-
39.0)

23.3 (14.0-40.0) 23.0 (16.0-34.0) 0.844 22.0 (13.8-39.0) 21.0 (16.3-33.5) 24.0 (15.9-34.0) 0.801

AST, U/L 28.8 (22.0-
40.4)

28.8 (22.0-40.0) 29.0 (20.0-41.0) 0.583 27.0 (21.0-38.0) 26.0 (18.2-36.5) 31.0 (22.0-43.0)a 0.034

ALP, U/L 58.0 (46.0-
73.0)

58.0 (46.0-73.0) 55.0 (43.5-74.0) 0.171 58.0 (45.0-72.0) 53.0 (38.0-68.5) 58.0 (45.0-77.0) 0.086

TBIL, mmol/L 10.9 (8.2-
14.7)

10.8 (8.2-14.5) 11.4 (8.3-15.7) 0.196 10.8 (8.2-14.7) 11.4 (9.5-14.8) 11.3 (8.0-15.8) 0.429

Potassium, 
mmol/L

3.90 (3.59-
4.20)

3.90 (3.60-4.20) 3.88 (3.52-4.21) 0.325 3.94 ± 0.51 3.94 ± 0.49 3.86 ± 0.62 0.279

Sodium, mmol/L 139 (137-
141)

140 (137-141) 138 (136-141) 0.001 140 (138-141)a 138 (136-141) 139 (136-142) 0.002

Chlorine ion, 
mmol/L

104 (102-
107)

105 (102-107) 103 (100-106) 0.002 104.2 ± 5.3 103.1 ± 4.5 103.7 ± 5.1 0.218

Calcium, 
mmol/L

2.11 (2.00-
2.21)

2.12 (2.01-2.21) 2.09 (1.95-2.17) 0.005 2.13 ± 0.22 2.11 ± 0.22 2.07 ± 0.18 0.011

Phosphorus, 
mmol/L

1.03 (0.89-
1.19)

1.03 (0.89-1.19) 1.01 (0.73-1.18) 0.359 1.04 (0.90-1.19) 1.03 (0.92-1.17) 1.00 (0.85-1.19) 0.300

BUN, mmol/L 3.96 (3.10-
5.25)

3.90 (3.10-5.13) 4.68 (3.60-6.20) < 0.001 3.70 (2.96-4.66)a 4.30 (3.51-5.07) 4.93 (3.60-7.01) < 0.001
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Creatinine, 
μmol/L

63.6 (53.3-
78.0)

63.0 (53.0-77.4) 66.3 (54.0-83.8) 0.088 62.00 (52.70-73.00) 60.00 (52.00-
76.60)

67.75 (55.25-90.23)a < 0.001

UA, μmol/L 258 (204-
336)

257 (205-336) 258 (193-332) 0.725 253 (203-327) 248 (194-306) 264 (191-352) 0.499

CK, U/L 65.0 (43.0-
110)

64.5 (44.0-109) 66.5 (40.3-118) 0.830 62.0 (44.0-98.0) 58.5 (36.8-108) 70.0 (43.8-122) 0.233

LDH, U/L 205 (162-
272)

201 (160-261) 229 (180-341) < 0.001 186 (155-239) 198 (164-282) 251 (195-362)a < 0.001

Hs-cTnI > ULN, 
pg/mL

130 (22.1) 117 (23.4) 13 (14.90) 0.080 71 (23.5) 3 (12.5) 6 (9.5) 0.027

TG, mmol/L 1.22 (0.92-
1.78)

1.20 (0.89-1.77) 1.39 (1.04-1.83) 0.002 1.18 (0.86-1.77) 1.50 (1.05-2.08) 1.36 (1.03-1.79)a 0.004

TCH, mmol/L 4.00 (3.40-
4.80)

4.01 (3.42-4.80) 4.00 (3.22-4.78) 0.180 4.25 ± 1.09 4.34 ± 1.07 3.88 ± 1.08a 0.004

LDL-C, mmol/L 2.50 (3.00-
3.12)

2.51 (2.02-3.10) 2.48 (1.87-3.15) 0.368 2.65 ± 0.89 2.76 ± 0.91 2.41 ± 0.87a 0.020

HDL-C, mmol/L 1.01 (0.82-
1.21)

1.03 (0.84-1.24) 0.91 (0.76-1.08) < 0.001 1.11 ± 0.42a 0.97 ± 0.26 0.92 ± 0.27 < 0.001

FPG, mmol/L 5.80 (5.00-
7.46)

5.57 (4.92-6.89) 9.10 (6.50-
11.63)

< 0.001 5.37 (4.83-6.50)c 9.40 (6.48-
11.59)

8.80 (6.50-12.03) < 0.001

3.9-6.9 693 (69.0) 650 (76.7) 43 (27.6) < 0.001 475 (80.2)c 17 (29.8)) 26 (26.3) < 0.0013

7.0-11.1 241 (24.0) 179 (21.1) 62 (39.7) 108 (18.2) 22 (38.6) 40 (40.4)

≥ 11.1 70 (7.0) 19 (2.2) 51 (32.7) 9 (1.5) 18 (31.6) 33 (33.3)

HbA1C 6.20 (5.55-
7.30)

5.90 (5.40-6.30) 7.87 (6.27-9.03) < 0.001 5.9 (5.44-6.20)b 7.60 (5.64-8.98) 7.89 (6.75-9.21) < 0.001

Data are expressed as n (%), mean ± SD or median (IQR). P values were calculated by t Test, Mann-Whitney U test, χ2 test, Fisher’s exact test, One-Way 
ANOVA or Kruskal-Wallis H test as appropriate.
1Comparing groups of diabetes and non-diabetes patients.
2Comparing groups of non-comorbidity, only diabetes and diabetes with comorbidities.
3Mann-Whitney U test comparing all subcategories.
Compared with diabetes only group,
aP < 0.05.
bP < 0.05.
cP < 0.001.
ALB: Albumin; ALP: Alkaline phosphatase; ALT: Alanine aminotransferase; AST: Aspartate aminotransferase; BUN: Urea nitrogen; CK: Creatine kinase; 
CRP: C reactive protein; FPG: Fasting plasma glucose; Hb: Hemoglobin; HbA1C: Glycosylated hemoglobin; HDL-C: High density lipoprotein cholesterol; 
Hs-cTnI: Hypersensitive troponin I; LDH: Lactate dehydrogenase; LDL-C: Low density lipoprotein cholesterol; LY: Lymphocyte; NEUT: Neutrophil; NLR: 
Neutrophil lymphocyte ratio; PCT: Procalcitonin; PLT: Platelet; PT: Prothrombin time; TBIL: Total bilirubin; TCH: Total cholesterol; TG: Triglyceride; UA: 
Uric acid; WBC: White blood cell.

with non-diabetes patients, more patients with diabetes reported severe cases (34.6% 
vs 21.7%). The diabetes group had a higher rate of ARDS (11% vs 5.7%) and hypopro-
teinemia (15% vs 6.5%).

The treatment and primary outcome of the non-comorbidity group and diabetes 
only group were not different (Table 3), and the results for all-cause mortality were 
similar in both groups (log-rank P = 0.59) (Figure 2B). Regarding the secondary 
endpoint, there was no difference between the groups except for hypoproteinemia 
(5.0% vs 16.9%). Likewise, there was a similar frequency of COVID-19 pharmacological 
therapy in the diabetes only patients vs diabetes with comorbidities patients; however, 
the latter was more likely to receive mechanical ventilation (10.8% vs 18.3%), had a 
higher incidence of mortality (4.6% vs 18.3%), greater likelihood of shock (0 vs 1.6%) 
and more severe cases (21.5% vs 41.3%).

Clinical characteristics and laboratory results of diabetic survivors and non-survi-
vors with COVID-19
Diabetic survivors (n = 165) and non-survivors (n = 26) shared basic characteristics 
except for decreased blood oxygen saturation (10.9% vs 26.9%) and rapid breathing 
(18.2% vs 26.9%), which were more frequent in non-survivors (Supplementary Table 2)
, indicating that the latter had severe lung dysfunction. There were numerous 

https://f6publishing.blob.core.windows.net/5abd3161-bd2e-4a40-93fe-204785da1f89/WJD-12-1789-supplementary-material.pdf
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Table 3 Treatments and outcomes of 1331 coronavirus disease 2019 patients divided into different groups

Tota (n = 
1331)

Non-diabetes 
(n = 1140)

Diabetes (n 
= 191)

P1 

value
Non- comorbidity 
(n = 779)

Diabetes 
only (n = 65)

Diabetes with 
comorbidities (n = 
126)

P2 
value

Treatments

Antiviral therapy 1227 
(92.2)

1057 (92.7) 170 (89.0) 0.077 725 (93.1) 62 (95.4) 108 (85.7) 0.010

Antibiotic therapy 1142 
(85.8)

982 (86.1) 160 (83.8) 0.385 665 (85.4) 57 (87.7) 103 (81.7) 0.472

Systemic glucocorticoid 533 (40.0) 458 (40.2) 75 (39.3) 0.813 292 (37.5) 23 (35.4) 52 (41.3) 0.657

Intravenous 
immunoglobulin

403 (30.3) 342 (30.0) 61 (31.9) 0.590 210 (27.0) 18 (27.7) 43 (34.1) 0.250

Renal replacement 
therapy

2 (0.2) 1 (0.1) 1 (0.5) 0.267 0 (0.0) 0 (0.0) 1 (0.8) 0.197

Oxygen support

Oxygenation 786 (59.1) 672 (58.9) 114 (59.7) 0.848 426 (54.7) 38 (58.5) 76 (60.3) 0.446

Mechanical ventilation 154 (11.6) 124 (10.9) 30 (15.7) 0.053 68 (8.7) 7 (10.8) 23 (18.3) 0.004

Illness severity

Severe 313 (23.5) 247 (21.7) 66 (34.6) < 0.001 123 (15.8) 14 (21.5) 52 (41.3)a < 0.001

Complications

ARDS 86 (6.5) 65 (5.7) 21 (11.0) 0.006 26 (3.3) 2 (3.1) 19 (15.1) < 0.001

ACI 148 (11.1) 132 (11.6) 16 (8.4) 0.193 77 (9.9) 3 (4.6) 12 (9.5) 0.379

AKI 18 (1.4) 14 (1.2) 4 (2.1) 0.535 6 (0.8) 1 (1.5) 3 (2.4) 0.122

Secondary infection 161 (12.1) 139 (12.2) 22 (11.5) 0.791 76 (9.8) 4 (6.2) 18 (14.3) 0.162

Shock 25 (1.9) 23 (2.0) 2 (1.0) 0.531 9 (1.2) 0 (0.0) 2 (1.6)a 0.706

Hypoproteinemia < 
30g/l

99 (7.7) 71 (6.5) 28 (15.0) < 0.001 38 (5.0)c 11 (16.9) 17 (13.9) < 0.001

Length of hospital stay, 
d

17.0 (10.0-
24.0)

17.0 (10.0-24.0) 16.0 (10.0-
25.0)

0.655 17.0 (11.0-24.0) 19.0 (11.5-27.0) 16.0 (8.0-22.5) 0.109

ICU admission 125 (9.4) 103 (9.0) 22 (11.5) 0.276 57 (7.3) 5 (7.7) 17 (13.5) 0.062

Duration from 
admission to ICU, d

4.00 (1.00-
7.50)

5.00 (1.00-8.00) 3.50 (1.75-
5.25)

0.383 4.50 (1.00-8.00) 5.00 (1.50-6.00) 3 (1.50-4.50) 0.733

Prognosis

Death, No 108 (8.1) 82 (7.2) 26 (13.6) 0.003 26 (3.3) 3 (4.6) 23 (18.3) < 0.001

Data are expressed as n (%), mean ± SD or median (IQR). P values were calculated by t Test, Mann-Whitney U test, χ2 test, Fisher’s exact test, One-Way 
ANOVA or Kruskal-Wallis H test as appropriate.
1Comparing groups of diabetic and non-diabetic patients.
2Comparing groups of non-comorbidity, only diabetes and diabetes with comorbidities.
Compared with diabetes only group:
aP < 0.05.
bP < 0.05.
cP < 0.001.
ACI: Acute cardiac injury; AKI: Acute kidney injury; ARDS: Acute respiratory distress syndrome.

differences in laboratory results between diabetic survivors and non-survivors with 
COVID-19 that reflected the functions of different organs and systems 
(Supplementary Table 2). Diabetic non-survivors had higher WBC, NEU, NLR, CRP, 
and IL-6 and lower LY, reflecting that mortality patients had severe inflammatory 
responses. Serum levels of PT, D-dimer, ALT, AST, BUN, creatinine, CK, and LDH 
were all significantly higher in non-survivors (Table 4), which reflected more severe 
coagulation, liver, kidney, and cardiac dysfunction. Diabetic non-survivors reported 
higher average FPG compared with survivors.

https://f6publishing.blob.core.windows.net/5abd3161-bd2e-4a40-93fe-204785da1f89/WJD-12-1789-supplementary-material.pdf
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Table 4 Laboratory results of diabetic survivors and non-survivors with coronavirus disease 2019

Total (n = 191) Survivors (n = 165) Non-survivors (n = 26) P value

WBC, × 109per L 5.94 (4.49-7.53) 5.91 (4.42-7.29) 7.26(5.19-13.07) 0.016

NEUT, × 109per L 4.25 (3.13-5.37) 4.09 (3.01-5.13) 6.22 (3.69-11.33) < 0.001

LY, × 109per L 1.04 (0.72-1.43) 1.08 (0.78-1.48) 0.65 (0.56-1.07) < 0.001

NLR 3.85 (2.45-6.37) 3.50 (2.33-5.53) 10.43 (5.78-16.84) < 0.001

Hb, g/L 127.3 ± 16.9 126.8 ± 16.7 131.6 ± 18.3 0.314

PLT, × 109per L 196 (147-255) 201 (152-201) 155 (110-230) 0.033

PCT, ng/mL

< 0.5 143 (94.7) 132 (98.5) 11 (64.7) < 0.001

≥ 0.5 8 (5.3) 2 (1.5) 6 (35.3)

CRP 29.8 (5.5-75.9) 25.4 (4.4-63.0) 115.3 (66.1-170.6) < 0.001

IL-6, pg/mL 3.31 (1.64-17.49) 3.09 (1.50-5.25) 83.47 (35.75-243.60) < 0.001

PT, s 14.30 (11.90-15.50) 14.00 (11.60-15.40) 16.20 (13.52-18.92) 0.002

< 16 116 (76.8) 110 (81.5) 6 (37.5) < 0.001

≥ 16 35 (23.2) 25 (18.5) 10 (62.5)

D-dimer, mg/L 0.69 (0.35-1.35) 0.62 (0.62-1.09) 5.40 (1.50-21.00) < 0.001

≤ 0.5 58 (37.9) 57 (41.9) 1 (5.9) < 0.001

> 0.5 to ≤ 1.0 46 (30.1) 43 (31.6) 3 (17.6)

> 1.0 49 (32.0) 36 (26.5) 13 (76.5)

ALB, g/L 35.7 ± 5.5 36.0 ± 30.5 33.5 ± 23.4 0.031

ALT, U/L 23.0 (16.0-34.0) 21.3 (15.3-32.3) 31.0 (20.9-46.6) 0.008

AST, U/L 29.0 (20.0-41.0) 27.0 (19.0-38.7) 43.0 (31.0-60.5) < 0.001

ALP, U/L 55.0 (43.5-74.0) 55.0 (41.5-73.0) 57.0 (49.5-89.5) 0.241

TBIL, mmol/L 11.3 (8.3-15.7) 11.4 (9.0-15.1) 11.2 (7.6-28.0) 0.642

Potassium, mmol/L 3.88 (3.52-4.21) 3.90 (3.54-4.21) 3.65 (3.37-4.30) 0.381

Sodium, mmol/L 138.4 ± 4.3 138.2 ± 3.9 139.3 ± 6.4 0.418

Chlorine ion, mmol/L 103.5 ± 4.9 103.2 ± 4.7 105.3 ± 6.0 0.052

Calcium, mmol/L 2.09 (1.95-2.17) 2.10 (1.95-2.20) 2.00 (1.89-2.11) 0.042

Phosphorus, mmol/L 1.01 (0.86-1.18) 1.02 (0.87-1.19) 0.93 (0.76-1.18) 0.268

BUN, mmol/L 4.70 (3.60-6.22) 4.5 (3.59-5.82) 6.51 (4.92-17.45) < 0.001

Creatinine, μmol/L 66.3 (54.0-83.8) 64.0 (44.6-81.0) 73.0 (64.0-129.6) 0.006

UA, μmol/L 258 (193-332) 258 (147-321) 293 (179-428) 0.286

CK, U/L 66.5 (40.3-117.8) 61.0 (36.5-111.0) 85.0 (71.0-364.0) 0.002

LDH, U/L 229 (180-341) 216 (172-219) 522 (420-611) < 0.001

Hs-cTnI > ULN, pg/mL 10/88 (11.4) 8/72 (11.1) 2/16 (12.5) 1.000

TG, mmol/L 1.39 (1.04-1.83) 1.41 (1.05-1.98) 1.31 (0.99-1.57) 0.398

TCH, mmol/L 4.04 ± 1.10 4.12 ± 1.06 3.39 ± 1.16 0.009

LDL-C, mmol/L 2.54 ± 0.90 2.59 ± 0.88 2.10 ± 0.93 0.036

HDL-C, mmol/L 0.94 ± 0.26 0.94 ± 0.26 0.89 ± 0.33 0.450

FPG, mmol/L 9.10 (6.50-11.72) 8.70 (6.50-11.36) 12.00 (9.40-16.81) 0.011

3.9-6.9 43 (27.7) 40 (28.6) 3 (20.0) 0.0691

7.0-11.1 61 (39.4) 58 (41.4) 3 (20.0)
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≥ 11.1 51 (32.9) 42 (30.0) 9 (60.0)

HbA1C 7.77 ± 1.97 7.61 ± 1.90 9.53 ± 2.02 0.021

Data are expressed as n (%), mean ± SD or median (IQR). P values were calculated by t Test, Mann-Whitney U test, χ2 test, Fisher’s exact test as appropriate.
1Mann-Whitney U test comparing all subcategories.
P: Comparing groups of diabetic survivors and non-survivors; ALB: Albumin; ALP: Alkaline phosphatase; ALT: Alanine aminotransferase; AST: Aspartate 
aminotransferase; BUN: Urea nitrogen; CK: Creatine kinase; CRP: C reactive protein; FPG: Fasting plasma glucose; Hb: Hemoglobin; HbA1C: Glycosylated 
hemoglobin; HDL-C: High density lipoprotein cholesterol; Hs-cTnI: Hypersensitive troponin I; LDH: Lactate dehydrogenase; LDL-C: Low density 
lipoprotein cholesterol; LY: Lymphocyte; NEUT: Neutrophil; NLR: Neutrophil lymphocyte ratio; PCT: Procalcitonin; PLT: Platelet; PT: Prothrombin time; 
TBIL: Total bilirubin; TCH: Total cholesterol; TG: Triglyceride; UA: Uric acid; WBC: White blood cell.

Figure 2 Kaplan-Meier survival curves of in-hospital mortality among patients with coronavirus disease 2019. A: Kaplan-Meier survival curves 
for in-hospital mortality between diabetes and non-diabetes patients from hospital admission. B: Kaplan-Meier survival curves for in-hospital mortality comparison of 
patients without comorbidities, diabetes only and diabetes with comorbidities from hospital admission. Patients without comorbidities and diabetes were compared 
only from hospital admission (log rank test, P = 0.590). Patients with only diabetes and diabetes with comorbidities from hospital admission were compared (log rank 
test, P = 0.009).

Treatment and outcome of diabetic survivors and non-survivors with COVID-19
Undoubtedly, higher proportions of complications, including ARDS (3.0 vs 61.5%), 
ACI (5.5% vs 26.9%), shock (0 vs 11.5%), secondary infection (6.1% vs 46.2%), AKI (0.6% 
vs 7.7%) and coagulopathy (15.8% vs 38.5%), were found in non-survivors (Table 5). 
Likewise, the non-survivor group had a greater incidence of severe cases (33.7% vs 
100%) and ICU admission (6.7% vs 42.3%) and was more likely to receive corticost-
eroids (33.3% vs 73.1%). There was a significantly lower frequency of hypoglycemic 
medication in diabetic non-survivors vs diabetic survivors, including metformin 
(30.9% vs 11.5%), sulfonylurea (21.8% vs 3.8%) and acarbose (45.5% vs 7.7%), which 
might be related to controlled blood glucose.

Clinical characteristics, laboratory results, treatment and outcome of patients with 
diabetes with COVID-19 using metformin and matched non-metformin users
Of 191 patients with diabetes with COVID-19, 54 cases were using metformin, and 
after sex and age matching, there were 50 patients using metformin and 50 sex- and 
age-matched non-metformin users. The frequency of fever (54% vs 78%) and fatigue 
(38% vs 18%) showed significant differences in clinical characteristics between patients 
with diabetes with COVID-19 using metformin and matched non-metformin users 
(Supplementary Table 3). Laboratory findings (Table 6) revealed that metformin users 
had lower levels of LDH and FPG; however, the distribution of glucose was similar. 
The results that referred to liver, kidney, cardiac, coagulation and inflammatory 
response function were not statistically significant. The primary outcome and 
secondary outcome of patients who used metformin were comparable to matched non-
metformin users (Table 7). The former group showed a higher need for antivirals (98% 
vs 84%) and antibiotics (90% vs 74%). Insulin (52.0% vs 20%), sulfonylurea (36.0% vs 

https://f6publishing.blob.core.windows.net/5abd3161-bd2e-4a40-93fe-204785da1f89/WJD-12-1789-supplementary-material.pdf
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Table 5 Treatments and outcomes of diabetic survivors and non-survivors with coronavirus disease 2019

Total (n = 191) Survivors (n = 165) Non-survivors (n = 26) P value
Treatments

Antiviral therapy 170 (89.0) 149 (90.3) 21 (80.8) 0.268

Antibiotic therapy 160 (83.8) 139 (84.2) 21 (80.8) 0.873

Systemic glucocorticoids 74 (38.7) 55 (33.3) 19 (73.1) < 0.001

Intravenous immunoglobulin 60 (31.4) 50 (30.3) 10 (38.5) 0.405

Renal replacement therapy 1 (0.5) 0 (0.0) 1 (3.8) 0.136

Insulin 88 (46.1) 75 (45.5) 13 (50.0) 0.666

Metformin 54 (28.3) 51 (30.9) 3 (11.5) 0.041

Sulfonylurea 37 (19.4) 36 (21.8) 1 (3.8) 0.031

DPP-4 inhibitor 11 (5.8) 10 (6.1) 1 (3.8) 1.000

Acarbose 77 (40.3) 75 (45.5) 2 (7.7) < 0.001

Thiazolidinedione 7 (3.7) 7 (4.2) 0 (0.0) 0.596

Oxygen support

Oxygenation 115 (60.2) 95 (57.6) 20 (76.9) 0.061

Mechanical ventilation 35 (18.3) 15 (9.1) 20 (76.9) < 0.001

Illness severity

Severe 63 (33.0) 37 (33.7) 26 (100) < 0.001

Complications

ARDS 21 (11.0) 5 (3.0) 16 (61.5) < 0.001

ACI 16 (8.4) 9 (5.5) 7 (26.9) 0.001

AKI 3 (1.6) 1 (0.6) 2 (7.7) 0.049

Secondary infection 22 (11.5) 10 (6.1) 12 (46.2) < 0.001

Shock 3 (1.6) 0 (0.0) 3 (11.5) 0.002

Hypoproteinemia < 30 g/L 28 (14.7) 22 (13.3) 6 (23.1) 0.314

Coagulopathy 36 (18.8) 26 (15.8) 10 (38.5) 0.013

Length of hospital stay, d 16.0 (10.0-25.0) 18.0 (11.5-26.0) 7.0 (3.0-11.0) < 0.001

ICU admission 22 (11.5) 11 (6.7) 11 (42.3) < 0.001

Duration from admission to ICU, d 4.00 ± 3.51 3.91 ± 3.11 4.09 ± 4.01 0.907

Data are expressed as n (%), mean ± SD or median (IQR). P values were calculated by t Test, Mann-Whitney U test, χ2 test, Fisher’s exact test as appropriate. 
Comparing groups of diabetic survivors and non-survivors. ACI: Acute cardiac injury; AKI: Acute kidney injury; ARDS: Acute respiratory distress 
syndrome.

2%), acarbose (56.0% vs 6%), and thiazolidinedione (12% vs 0) were also applied 
significantly more frequently to the individuals using metformin.

Clinical characteristics, laboratory results, treatment and outcome of patients with 
diabetes with COVID-19 using acarbose and matched non-acarbose users
Of 191 patients with diabetes with COVID-19, 77 cases were treated with acarbose, and 
after sex and age matching, there were 46 patients treated with acarbose and 46 sex- 
and age-matched non-acarbose users. Supplementary Table 3 shows that the length of 
symptom onset to hospital admission was longer in the acarbose group than in the 
matched non-acarbose group, which indicated that the symptoms in the former 
patients might be relatively mild. Notably, some inflammatory response-related 
laboratory results, such as WBC, NLR, and CRP, were significantly lower in the 
acarbose group (Table 6). Furthermore, these differences were not related to glucose 
control, as the serum level of glucose in both groups was comparable.

https://f6publishing.blob.core.windows.net/5abd3161-bd2e-4a40-93fe-204785da1f89/WJD-12-1789-supplementary-material.pdf
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Table 6 Laboratory results of diabetic coronavirus disease 2019 patients using metformin or acarbose and matched non-metformin or 
non-acarbose inhibitor user

Metformin (n = 50) Matched non-Metformin (n 
= 50) Acarbose (n = 46) Matched non-acarbose (n 

= 46)

WBC, × 109/L 6.33 ± 2.25 6.27 ± 2.62 4.83 (4.04-6.68) 5.91 (4.42-9.35)c

NEUT, × 109/L 4.20 (3.02-5.18) 4.17 (3.21-5.87) 3.50 (2.48-4.74) 4.60 (3.14-8.13)

LY, × 109/L 1.20 (0.69-1.74) 1.14 (0.82-1.50) 1.19 ± 0.55 1.04 ± 0.53

NLR 3.69 (2.11-6.05) 3.74 (2.47-5.55) 3.25 (2.05-4.41) 4.88 (2.50-12.32)d

Hb, g/L 126.0 ± 15.7 126.5 ± 14.9 126.0 ± 16.9 129.3 ± 17.3

PLT, × 109/L 229.5 ± 93.5 208.5 ± 103.8 233.0 ± 93.2 214.2 ± 99.7

PCT, ng/mL

< 0.5 43 (100.0) 34 (91.9) 37 (100.0) 34 (87.2)

≥ 0.5 0 (0.0) 3 (8.1) 0 (0.0) 5 (12.8)

CRP 50.7 (5.0-78.0) 46.5 (6.3-106.8) 26.2 (3.7-52.2) 63.8 (10.8-83.4)c

IL-6, pg/mL 2.07 (1.50-4.90) 3.20 (1.68-67.28) 2.58 (1.50-5.06) 19.88 (1.95-67.28)

PT, s 13.5 ± 2.7 14.2 ± 2.2 14.1 ± 2.6 14.2 ± 3.2

< 16 37 (86.0) 31 (79.5) 30 (78.9) 27 (73.0)

≥ 16 6 (14.0) 8 (20.5) 8 (21.1) 10 (27.0)

D-dimer, mg/L 0.45 (0.26-1.19) 0.83 (0.33-1.60) 0.59 (0.33-0.98) 0.96 (0.39-5.40)

≤ 0.5 22 (52.4) 13 (33.3) 18 (42.9) 12 (33.3)

> 0.5 to ≤ 1.0 6 (14.3) 11 (28.2) 15 (35.7) 7 (19.4)

> 1.0 14 (33.3) 15 (38.5) 9 (21.4) 17 (47.2)

ALB, g/L 35.7 ± 5.9 35.8 ± 5.5 35.7 ± 6.5 35.1 ± 4.8

ALT, U/L 20.0 (13.5-27.5) 22.0 (17.0-36.0) 20.0 (14.0-31.0) 23.00 (14.00-33.25)

AST, U/L 25.5 (18.5-33.7) 29.0 (20.0-42.0) 23.0 (17.5-36.4) 31.0 (21.5-39.6)

ALP, U/L 51.0 (37.0-71.0) 54.0 (44.0-68.0) 59.5  24.6 61.5  25.5

TBIL, mmol/L 12.2 ± 5.4 13.4 ± 16.2 11.5 ± 4.8 13.5 ± 5.4

Potassium, mmol/L 3.81 ± 0.46 3.77 ± 0.54 3.90 ± 0.50 3.82 ± 0.63

Sodium, mmol/L 137.9 ± 3.9 138.2 ± 4.1 138. 5 ± 3.8 138.1 ± 4.7

Chlorine ion, mmol/L 103.3 ± 4.5 103.4 ± 5.0 103.2 ± 4.6 103.7 ± 5.3

Calcium, mmol/L 2.14 ± 0.22 2.05 ± 0.18a 2.12 ± 0.22 2.08 ± 0.19

Phosphorus, mmol/L 1.02 (0.83-1.21) 0.99 (0.87-1.17) 1.07( 0.88-1.21) 1.00 (0.77-1.21)

BUN mmol/L 4.40 (3.67-4.84) 5.20 (3.50-5.75) 4.16 (3.60-5.18) 5.04 (3.80-6.64)

Creatinine, μmol/L 54.0 (49.0-73.7) 60.0 (52.5-90.3) 59.5 (48.8-74.5) 68.0 (55.0-89.3)

UA, μmol/L 266.5 ± 96.6 260.9 ± 98.7 229 (168-263) 258 (179-324)

CK, U/L 64.0 (49.0-84. 0) 82.0 (39.0-135.3) 53.5 (35.5-73.8) 71.0 (40.0-114.0)

LDH, U/L 237 ± 115 304 ± 162a 229 (185-263) 267 (181-446)

Hs-cTnI > ULN , pg/mL 0/24 (0.0) 3/15 (20.0) 1/21 (4.8) 2/26 (7.7)

TG, mmol/L 1.55 (1.15-1.82) 1.32 (1.08-3.40) 1.36 (1.05-1.83) 1.15 (0.94-1.61)

TCH, mmol/L 3.91 ± 0.87 3.80 ± 0.92 4.40 ± 1.14 4.04 ± 0.96

LDL-C, mmol/L 2.40 ± 0.73 2.43 ± 0.78 2.84 ± 0.87 2.57 ± 0.83

HDL-C, mmol/L 0.93 ± 0.22 0.88 ± 0.28 0.98 ± 0.27 0.93 ± 0.23

FPG, mmol/L 10.57 ± 4.92 8.32 ± 2.47b 9.92 ± 4.90 10.00 ± 4.26
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3.9-6.9 11 (44.0) 13 (38.2) 12 (30.8) 8 (22.2)

7.0-11.1 13 (52.0) 21 (61.8) 13 (33.3) 16 (44.4)

≥ 11.1 1 (4.0) 0 (0.0) 14 (35.9) 12 (33.3)

HbA1C 7.96 ± 1.85 6.71 ± 1.94 7.85 ± 1.78 8.25 ± 2.04

Data are expressed as n (%), mean ± SD or median (IQR). P values were calculated by t Test, Mann-Whitney U test, χ2 test, Fisher’s exact test as appropriate.
Comparison of metformin users and non-users:
aP < 0.05.
bP < 0.01.
Comparison of acarbose users and non-users:
cP < 0.05.
dP < 0.01.
ALB: Albumin; ALP: Alkaline phosphatase; ALT: Alanine aminotransferase; AST: Aspartate aminotransferase; BUN: Urea nitrogen; CK: Creatine kinase; 
CRP: C reactive protein; FPG: Fasting plasma glucose; Hb: Hemoglobin; HbA1C: Glycosylated hemoglobin; HDL-C: High density lipoprotein cholesterol; 
Hs-cTnI: Hypersensitive troponin I; LDH: Lactate dehydrogenase; LDL-C: Low density lipoprotein cholesterol; LY: Lymphocyte; NEUT: Neutrophil; NLR: 
Neutrophil lymphocyte ratio; PCT: Procalcitonin; PLT: Platelet; PT: Prothrombin time; TBIL: Total bilirubin; TCH: Total cholesterol; TG: Triglyceride; UA: 
Uric acid; WBC: White blood cell.

The mortality rate (2.2% vs 26.1%) was lower in the acarbose group (Table 7), as 
were the rates of ARDS (2.2% vs 17.4%) and shock (2.2% vs 21.7%). At the same time, 
patients who were treated with acarbose indicated a lower need for treatment with 
corticosteroids (26.1% vs 47.8%), immunoglobin (23.9% vs 47.8%), mechanical 
ventilation (6.5% vs 21.7%), and insulin (50.0% vs 84.8%).

Independent risk factors for mortality of patients with COVID-19
Among the 1131 included patients, multivariable Cox regression (Table 8) showed that 
male [hazard ratio (HR) 2.59, 95%CI 1.63-3.99], hypertension (HR 1.75, 95%CI 1.18-2.6), 
CKD (HR 4.55, 95%CI 2.52-8.20), and CVD (HR 2.35, 95%CI 1.27-4.33) were risk factors 
for COVID-19 mortality. Age was also a risk factor for COVID-19 mortality. However, 
diabetes alone was not an independent risk factor for mortality in patients with 
COVID-19.

DISCUSSION
A number of studies have demonstrated that patients with diabetes have a higher risk 
of mortality from COVID, as well as a greater risk of developing more severe cases[4,7,
12,13]. Guo et al[13] reported that diabetes was a risk factor for the progression and 
prognosis of COVID-19. However, Shi et al[14] pointed out that diabetes was not 
independently associated with COVID mortality, while commonalities, such as 
hypertension and cardiovascular disease, played more important roles in contributing 
to the in-hospital death of patients with COVID-19, which was relatively limited in 
size. In this study, which had relatively rich clinical data, we found that diabetes alone 
was not an independent risk factor for in-hospital mortality from COVID-19, but 
comorbidities such as hypertension and CKD were risk factors; this result was 
consistent with a previous study[14]. Partially consistent with previous studies, our 
study found that compared with non-diabetic patients, patients with diabetes with 
COVID-19 were older, had worse outcomes, including a higher rate of mortality, 
severe cases and ARDS, and presented severe inflammatory response, lung and 
coagulation dysfunction[7,13,15]. In this study, up to 88% of diabetic patients were 
greater than or equal to 50 years of age, more over, older age was an independent risk 
factor of mortality in COVID-19, which was consistent with previous studies[3,14]. 
Additionally, patients with diabetes had increased levels of urea nitrogen and 
decreased levels of albumin. These abnormalities indicated that COVID-19 may be 
associated with progressive organ injury in patients with diabetes. Preexisting 
hypertension, CHD, CVD, and CKD had higher frequencies in the diabetic group. 
Recent studies reported that patients with cardiovascular hypertension, CKD, and 
CVD were more likely to develop severe cases[4,6,16], so we compared patients with 
diabetes and COVID-19 without comorbidity and patients with COVID-19 without 
any comorbidity to identify whether diabetes without comorbidity was a risk factor for 
COVID-19. In our study, there was no difference in the outcome between the non-
comorbidity group and the diabetes only group. Shi et al[16] reported that even though 
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Table 7 Treatments and outcomes of diabetic coronavirus disease 2019 patients using metformin and matched non-metformin, 
acarbose and matched non-acarbose

Metformin (n = 50) Matched non-Metformin (n = 
50) Acarbose (n = 46) Matched non-acarbose (n = 

46)
Treatments

Antiviral therapy 49 (98.0) 42 (84.0)a 41 (89.1) 43 (93.5)

Antibiotic therapy 45 (90.0) 37 (74.0)a 40 (87.0) 40 (87.0)

systemic glucocorticoids 17 (34.0) 16 (32.0) 12 (26.1) 22 (47.8)e

Intravenous immunoglobulin 15 (30.0) 11 (22.0) 11 (23.9) 22 (47.8)e

Renal replacement therapy 0 (0.0) 1 (2.0) 0 (0.0) 0 (0.0)

Insulin 26 (52.0) 10 (20.0)b 23 (50.0) 39 (84.8)g

Metformin 50 0 21 (45.7) 15 (32.6)

Sulfonylurea 18 (36.0) 1 (2.0)c 17 (37.0) 8 (17.4)e

DPP-4 inhibitor 3 (6.0) 0 (0.0) 3 (6.5) 3 (6.5)

Acarbose 28 (56.0) 3 (6.0)c 46 (100.0) 0 (0.0)

thiazolidinedione 6 (12.0) 0 (0.0)a 4 (8.7) 0 (0.0)

Oxygen support

Oxygenation 32 (64.0) 21 (42.0) 30 (65.2) 30 (65.2)

Mechanical ventilation 6 (12.0) 11 (22.0) 3 (6.5) 10 (21.7)e

Illness severity

Severe 14 (28.0) 21 (42.0) 12 (26.1) 18 (39.1)

Complications

ARDS 4 (8.0) 8 (16.0) 1 (2.2) 8 (17.4)e

ACI 1 (2.0) 4 (8.0) 2 (4.3) 6 (13.0)

AKI 0 (0.0) 0 (0.0) 0 (0.0) 2 (4.3)

Secondary infection 8 (16.0) 5 (10.0) 0 (0.0) 2 (4.3)

Shock 1 (2.0) 0 (0.0) 1 (2.2) 10 (21.7)e

Hypoproteinemia < 30 g/L 9 (18.0) 5 (10.0) 10 (21.7) 6 (13.0)

Coagulopathy 6 (12.0) 9 (18.0) 8 (17.4) 10 (21.7)

Length of hospital stay, d 17.60 ± 8.74 16.80 ± 10.51 18.37 ± 8.15 16.52 ± 9.96

ICU admission 6 (12.0) 6 (12.0) 3 (6.5) 8 (17.4)

Duration from admission to ICU, 
d

3.83 ± 2.04 2.83 ± 2.14 6.00 (3.50-6.00) 2.50 (2.00-5.00)

Prognosis

Discharged 47 (94) 41 (82) 45 (97.8) 34 (73.9)f

Death 3 (6.0) 9 (18) 1 (2.2) 12 (26.1)

Data are expressed as n (%), mean ± SD or median (IQR). P values were calculated by t Test, Mann-Whitney U test, χ2 test, Fisher’s exact test as appropriate.
Comparison of metformin users and non-users:
aP < 0.05.
bP < 0.01.
cP < 0.001.
Comparison of acarbose users and non-users:
eP < 0.05.
fP < 0.01.
gP < 0.001.
ACI: Acute cardiac injury; AKI: Acute kidney injury; ARDS: Acute respiratory distress syndrome.

patients with COVID-19 with diabetes had worse outcomes, it was not independently 
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Table 8 Multivariate COX regression analysis on the risk factors associated with mortality of 1331 coronavirus disease 2019 patients

Factor Hazard ratio P value

Sex (male) 2.59 (1.68-3.99) < 0.001

Age, yr

18-49 1 (ref)

50-64 5.86 (2.27-15.12) < 0.001

≥ 65 11.8 (4.6- 30.2) < 0.001

Hypertension 1.75 (1.18-2.60) 0.006

CKD 4.55 (2.52-8.20) < 0.001

CVD 2.35 (1.27-4.33) 0.006

Diabetes 0.98 (0.62-1.54) 0.918

CKD: Chronic kidney disease; CVD: Cerebrovascular disease.

associated with in-hospital death, which was consistent with our results. In addition, 
most laboratory results were comparable between the non-comorbidity group and the 
diabetes only group, except for CRP, albumin, sodium, urea nitrogen, HDL-C and, of 
course, blood glucose. CRP is an inflammatory biomarker that is related to glucose 
homoeostasis, obesity and atherosclerosis[17] and was independently related to 
insulin sensitivity[18]. In addition, insulin resistance was a main characteristic of type 
2 diabetes; since CRP was related to the chronic inflammatory situation, and the levels 
of WBC, NEU, and LY, which reflected the acute infection with the disease pathogen, 
were not statistically significant, we inferred that diabetes itself did not increase the 
degree of inflammation after SARS-CoV-2 infection.

Patients with diabetes with comorbidities were more seriously ill when compared 
with the diabetes only group and non-comorbidity group. The mortality was higher in 
the diabetes with comorbidities group, but the difference between both diabetes 
groups had no relation to FPG because the median FPG in both diabetes groups was 
comparable. Patients with diabetes with comorbidity were 10 years older than patients 
who had no comorbidity except diabetes; furthermore, age ≥ 65 years was associated 
with a greater risk of death[4]. As described above, patients with hypertension and 
CVD were more likely to develop severe cases[4]. Furthermore, our analysis indicated 
that age, hypertension, CKD, and CVD were risk factors for COVID-19 mortality. Since 
the diabetes with comorbidities group had a higher prevalence of hypertension, CKD 
and CVD, there was no doubt that patients with diabetes with comorbidities had 
worse outcomes.

Comparing to the survivor of diabetic patients with COVID-19, the diabetic patients 
who died of COVID-19 had more severe inflammatory response, progressive organ 
injury, and also, undoubtedly, higher proportions of complications and severe cases. 
Randomised Evaluation of COVID-19 Therapy (RECOVERY) Collaborative Group[19] 
and WHO Rapid Evidence Appraisal for COVID-19 Therapies (REACT) Working 
Group[20] reported that systemic glucocorticoids was conducive to the reduction in 
mortality of COVID-19 severe cases. As the percentage of severe case in non-survivor 
group were 100%, while that rate in survivor group was just 33%, there was no doubt 
that non-survivor group had higher rate of using systemic glucocorticoids. Therefore, 
in such cases, higher rate of systemic glucocorticoids treatment in non-survivor group 
did not indicated higher rate of mortality in systemic glucocorticoids treatment.

One unanticipated result was that acarbose, not metformin, could improve 
prognosis through a decrease in the degree of inflammation, which was independent 
of the blood glucose level. In addition, acarbose accounted for 97% of the glycosidase 
inhibitors used. Feng et al[21] reported that acarbose could effectively block the 
metastasis of enterovirus 71 (EV71) from the intestine to the whole body. EV71 is one 
of the main causes of hand-foot-and-mouth disease (HFMD), and its infection relies on 
the interaction of the canyon region of its virion surface and the glycosylation of the 
SCARB2 protein, which is the cellular receptor of EV71 infection. Dang et al[22] found 
that acarbose not only inhibited cellular receptors of various glycosylated viruses but 
also competitively blocked the canyon region of the EV71 virion surface, blocking the 
metastasis of EV71 from the intestine. Angiotensin converting enzyme II (ACE2) is a 
SARS-CoV-2 cell entry receptor[23], and glycosylation sites play an important role in 
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the combination of SARS-CoV-2 and its receptor[24,25]. Chloroquine was reported to 
block SARS-CoV-2 infection by interfering with the glycosylation of cellular receptors
[26]. As previously stated, acarbose inhibited the glycosylation of EV71 receptors; 
additionally, patients with diabetes with COVID-19 who were treated with acarbose 
had better outcomes than patients who were not treated, suggesting that acarbose 
could improve the prognosis of COVID-19 infection by inhibiting the glycosylation of 
ACE2. In addition, compared to the non-acarbose group, the acarbose group had 
lower WBC, NLR, and CRP levels, indicating a decreased inflammatory response and 
further supporting the anti-SARS-CoV-2 function of acarbose. Furthermore, a previous 
study showed that acarbose could change the gut microbiota and then beneficially 
regulate the body’s immune function[27]. A recent study revealed that fetal 
microbiome changes occurred in patients with COVID-19, characterized by depletion 
of beneficial commensals and enrichment of opportunistic pathogens[28]. Therefore, 
we inferred that acarbose might increase the baseline abundance of microbiota that 
had inversely correlated with COVID-19.

As previous studies reported that metformin has multiple additional health benefits 
in patients with diabetes[29], we anticipated that metformin would improve prognosis 
after COVID-19 infection; however, the results were unexpected. Scanning the 
literature, we found that metformin improves ACE2 stability through AMPK[30], 
which means that metformin may increase ACE2 availability. In addition, the median 
level of FPG was higher in metformin users than in nonusers, as a previous study 
reported that improving glycemic control substantially reduced the risk of mortality 
from COVID-19.

The study has some limitations. First, due to the retrospective and multiple-center 
study design, some information, such as patients’ exposure history, the chronic disease 
severity and medication, diabetes medication, glycemic control and several laboratory 
items, was not available for all patients. There could be assay variability in different 
centers. Second, samples were only from Hubei Province, China; thus, more studies in 
other regions, even other countries, might obtain more comprehensive insight into 
COVID-19. However, this study is one of the largest retrospective and multicenter 
studies among patients with COVID-19. Additionally, this study is one of the first to 
investigate the influence of diabetes medications in patients with diabetes with 
COVID-19. The relatively abundant clinical data and numerous events also strengthen 
the results. The conclusion will help clinicians identify high-risk patients and choose 
suitable diabetes medication for patients with diabetes.

CONCLUSION
In conclusion, patients with diabetes had worse outcomes when suffering from 
COVID-19; however, the outcome was not related to diabetes itself but to 
comorbidities such as hypertension, CKD and CVD. Furthermore, the administration 
of acarbose could reduce the risk of death, ARDS, and shock in patients with diabetes.

ARTICLE HIGHLIGHTS
Research background
Coronavirus disease 2019 (COVID-19) has become an ongoing pandemic and has 
caused considerable mortality worldwide. Previous studies have demonstrated that 
patients with diabetes have a higher risk of mortality from COVID-19, as well as a 
greater risk of developing more severe cases.

Research motivation
Diabetes was a risk factor for the progression and prognosis of COVID-19, however, 
the effects of diabetes or anti-diabetic medication on the mortality of COVID-19 have 
not been well described.

Research objectives
We aim to investigate the outcome of different statuses (with or without comorbidity) 
and anti-diabetic medication use before admission of diabetic after COVID-19.
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Research methods
The clinical characteristics of 1422 consecutive hospitalized patients were collected. 
The statistical analyses were conducted with SPSS (version 25.0).

Research results
The overall survival rate was significantly lower in the diabetes group (log-rank P < 
0.01), but the results for all-cause mortality were similar in the non-comorbidity group 
and diabetes only group (log-rank P = 0.59). Male sex [hazard ratio (HR) 2.59, P < 
0.001], hypertension (HR 1.75, P = 0.006), chronic kidney disease (CKD) (HR 4.55, P < 
0.001), cerebrovascular disease (CVD) (HR 2.35, P = 0.006), and age were independent 
risk factors for the COVID-19 mortality in multivariable Cox regression. However, 
diabetes alone was not an independent risk factor for mortality in patients with 
COVID-19.

Research conclusions
Although diabetes is associated with a higher risk of mortality in patients with 
COVID-19, the outcome was not related to diabetes itself. Age, hypertension, CKD and 
CVD were the independent risk factor of mortality.

Research perspectives
The present study calls more attention to the impact of older age and comorbid 
chronic disease, such as hypertension, CKD and CVD on disease progression among 
diabetic patients with COVID-19.
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Abstract
New glucose-lowering agents reduce liver enzyme levels and blood pressure (BP). 
Whether this finding can be extended to non-alcoholic fatty liver disease (NAFLD) 
patients, in whom a bidirectional association of NAFLD measures and BP has 
been also demonstrated, remains by and large unknown.
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Core Tip: All new glucose-lowering agents reduce liver enzyme levels. Additionally, 
sodium glucose cotransporter 2 inhibitors can reduce both systolic and diastolic blood 
pressure (BP) by 3.5/1 mmHg, respectively, while glucagon-like peptide-1 agonist 
treatment was accompanied by systolic BP reduction of 1 mmHg. Whether this 
previous finding can be extended to non-alcoholic fatty liver disease (NAFLD) 
patients, in whom a bidirectional association of NAFLD measures and BP has been 
also demonstrated, remains by and large unknown.
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TO THE EDITOR
We read with interest the meta-analysis by Fu et al[1], which aimed to investigate the 
changes from baseline of selective liver enzymes, namely alanine aminotransferase 
and/or aspartate aminotransferase, in patients with non-alcoholic fatty liver disease 
(NAFLD). Patients were treated with either new glucose-lowering agents [i.e., 
dipeptidyl peptidase-4 (DPP-4) inhibitors, glucagon-like peptide-1 receptor (GLP-1) 
agonists, and sodium glucose cotransporter 2 (SGLT2) inhibitors] or placebo/other 
glucose-lowering drugs. Secondary outcomes along with the same comparison were 
changes from baseline of (1) different measures of body adiposity partly estimated by 
liver magnetic resonance, and (2) glycated hemoglobin levels. The authors clearly 
showed[1] that all new glucose-lowering agents reduced liver enzyme levels, whereas 
measures of body adiposity including body fat composition were at least numerically 
reduced in all cases. It would be interesting to know the changes of fatty liver index[2-
4], which is a more integrated measure of liver damage in NAFLD, and whether new 
glucose-lowering agents can effectively reduce blood pressure (BP) levels in this pool 
of studies. The effect of new glucose-lowering agents against placebo on BP levels has 
been investigated in a pool of outcome trials[5], suggesting that among these agents, 
only SGLT2 inhibitors can reduce both systolic and diastolic BP by 3.5/1 mmHg, 
respectively, while GLP-1 agonist treatment was accompanied by systolic BP reduction 
of 1 mmHg. Whether this previous finding[5] can be extended to NAFLD patients, in 
whom a bidirectional association of NAFLD measures and BP has been also 
demonstrated[6], remains by and large unknown.

Beyond the above clinical considerations, we would like to emphasize on some 
technical issues regarding the meta-analysis by Fu et al[1]. First, the authors estimated 
changes from baseline and not differences after the intervention. Differences from 
baseline can bias the results in two ways, (1) because of Wilder’s principle[7], 
indicating that reductions are higher from higher baseline levels, and (2) because in 
randomized studies with a limited number of participants, the levels of a given 
measure are not identical between treatment arms[8]. Second, another source of bias is 
the inclusion of placebo-controlled and active-controlled studies[9]. Although placebo 
is a fair comparator in this type of investigation, active-controls may have reduced the 
net outcome effect of new glucose-lowering agents. Third, wandering between 
statistical models (i.e., fixed-effect vs random-effects) is not advised in clinical meta-
analyses and a random-effects model, when gathering studies from the literature, 
should always - a priori - be selected irrespectively of the underlying heterogeneity
[10].

The study by Fu et al[1] is clinically important and suggests that new glucose-
lowering agents contribute to a reduction of NAFLD severity, which may partially 
explain the cardioprotective effect of these drugs on major outcomes[5,11].
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