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Abstract
Diabetes mellitus (DM) is one of the most common metabolic disorders charac-
terized by elevated blood glucose levels. Prolonged uncontrolled hyperglycemia 
often leads to multi-organ damage including diabetic neuropathy, nephropathy, 
retinopathy, cardiovascular disorders, and diabetic foot ulcers. Excess production 
of free radicals causing oxidative stress in tissues is often considered to be the 
primary cause of onset and progression of DM and associated complications. 
Natural polyphenols can be used to induce or inhibit the expression of antioxidant 
enzymes such as glutathione peroxidase, heme oxygenase-1, superoxide 
dismutase, and catalase that are essential in maintaining redox balance, and 
ameliorate oxidative stress. Caffeic acid (CA) is a polyphenolderived from 
hydroxycinnamic acid and possesses numerous physiological properties includ-
ing antioxidant, anti-inflammatory, anti-atherosclerotic, immune-stimulatory, 
cardioprotective, antiproliferative, and hepatoprotective activities. CA acts as a 
regulatory compound affecting numerous biochemical pathways and multiple 
targets. These include various transcription factors such as nuclear factor-B, tumor 
necrosis factor-α, interleukin-6, cyclooxygenase-2, and nuclear factor erythroid 2-
related factor 2. Therefore, this review summarizes the pharmacological 
properties, molecular mechanisms, and pharmacokinetic profile of CA in 
mitigating the adverse effects of DM and associated complications. The bioavail-
ability, drug delivery, and clinical trials of CA have also been discussed.
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Core Tip: Diabetes mellitus has emerged as one of the most common metabolic disorders worldwide which 
can lead to other complications such as retinopathy, nephropathy, neuropathy, and foot ulcers. Free 
radical-induced oxidative stress is one of the primary causes of diabetes. Caffeic acid (CA) is a natural 
polyphenol obtained from various fruits and vegetables. CA and its derivatives act as an antioxidant and 
regulate the signaling pathways involved in lipid and carbohydrate metabolism. CA also exerts anti-
diabetic effects by modulation of inflammatory cytokines and transcription factors.
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URL: https://www.wjgnet.com/1948-9358/full/v14/i2/62.htm
DOI: https://dx.doi.org/10.4239/wjd.v14.i2.62

INTRODUCTION
Diabetes mellitus (DM) is a metabolic disorder marked by elevated blood sugar levels that stems from 
the complete loss or dysfunction of insulin producing pancreatic β-cells and subsequently results in 
other complications in several organs of the body.DM is one of the most frequently occurring metabolic 
diseases worldwide and is the leading cause of death due to comorbidities[1,2]. The main subtypes of 
DM are type 1 diabetes (T1DM) and type 2 diabetes (T2DM). T1DM, also referred to as insulin 
dependent DM, is an autoimmune condition that is mediated by the dysfunction of pancreatic β-cells 
with complete loss of insulin production[3]. T2DM is the insulin resistance type that occurs when 
pancreatic β-cells are incapable of producing enough insulin. T2DM affects 90%–95% of diabetic 
individuals globally[4]. Several reports suggest that around 400 million people worldwide would be 
affected by DM by the year 2025[5]. Both types of DM are frequently linked to long-term consequences 
such as higher risk of cardiovascular diseases (CVD), retinopathy, neuropathy, nephropathy, foot ulcers, 
and other vascular anomalies. These complications consequently lead to blindness in diabetic patients, 
end-stage renal disease, atherosclerosis, and even mortality[6]. Compared to non-diabetic individuals, 
T2DM patients are at much higher risk of foot injuries and cardiovascular morbidity like atherosclerosis
[7]. Studies have demonstrated that metabolic variables, oxidation/glucoxidation, and changes in 
vascular reactivity are some of the major factors that contribute to diabetic atherosclerosis[8]. Although 
the pathophysiological mechanism linking DM to its complications is yet to be extensively explored, 
oxidative stress appears to be a key factor[9-11]. Several reports have suggested that increased 
oxidative/nitrosative stress and cellular redox disturbances facilitate the etiology and development of 
both T1DM and T2DM. Uncontrolled hyperglycemia causes oxidative stress and further damages the 
cells primarily by targeting various metabolic pathways such as enhancement of polyol pathway, 
increased synthesis of advanced glycation end products (AGEs), activation of protein kinase C, and 
upregulated hexosamine pathway[9,10]. Therefore, hyperglycemia results in elevated levels of reactive 
oxygen species and reactive nitrogen species (RNS) in the majority of organs. Moreover, a decrease in 
cellular antioxidant defences is linked to an increase in oxidative stress in diabetic individuals[9,12,13]. 
The primary factor contributing to endothelial cell failure in diabetic complications may be due to 
increased lipid peroxidation caused by oxidative stress. Endothelial dysfunction in DM has been 
attributed to excessive generation and/or insufficient clearance of free radicals by the antioxidant 
defencesystem[14] (Figure 1). Since oxidative stress is involved in the development of T1DM, T2DM, 
and diabetes-associated complications, use of antioxidants as a counter measure could be beneficial. 
When cells are exposed to chemicals/oxidants, natural polyphenols can be used to induce or inhibit the 
expression of enzymes such as superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase 
(GPx), and heme oxygenase-1 (HO-1) that are essential in maintaining cellular homeostasis[15]. Natural 
polyphenols are secondary metabolites having lower risk of adverse effects when employed in conven-
tional and alternative medicine[16].

Caffeic acid (CA) is a polyphenolic derivative of hydroxycinnamic acid, formed as a product of 
secondary metabolism in fruits and vegetables[17-19]. CA can be present in simple monomeric form as 
amides, glycosides, sugar, and organic acid esters, or in complex oligomeric forms as derivatives of 
flavonoids. CA can also be found attached to some cell wall proteins and polymers[19-20]. CA inhibits 
the growth of bacteria, fungi, and insects, protects plants from ultraviolet-Bradiations, and contributes 
to plants’ defensive mechanism against predators, pests, and illnesses[21]. Numerous biological effects 
of CA and its derivatives have been demonstrated through experimental studies, including antibac-
terial, antiviral, antioxidant, anti-inflammatory, anti-atherosclerotic, immune-stimulatory, cardiopro-
tective, antiproliferative, and hepatoprotective activities[21-25]. Propolis, derived from honeybee, is rich 
in CA phenethyl ester (CAPE), a common naturally occurring derivative of CA having widespread 
applications in research and industry[26]. CAPE acts as a regulatory compound affecting numerous 
biochemical pathways and multiple intracellular targets including several transcription factors, namely, 
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Figure 1 Multiple factors responsible for the onset and progression of diabetes mellitus and associated complications including diabetic 
nephropathy, neuropathy, retinopathy, and cardiovascular disorders. Hyperglycemia leads to the formation of advanced glycation end products and 
activation of protein kinase C. This further results in oxidative stress-mediated dyslipidemia, hypertension, activation of polyol pathway, and inflammatory stress. AGE: 
Advanced glycation end products; TNF-α: Tumor necrosis factor-α; IL: Interleukin; VEGF: Vascular endothelial growth factor; IGF: Insulin-like growth factors; NF-κB: 
nuclear factor-κB.

nuclear factor-kappa B (NF-κB), tumor necrosis factor-α (TNF-α), interleukin-6 (IL-6), cyclooxygenase-2 
(COX-2), nuclear factor erythroid 2-related factor 2, inducible nitric oxide synthase (iNOS), activated T-
cell nuclear factor, and hypoxia-inducible factor-1[26-30]. Most of these pathways are usually involved 
in the regulation of inflammatory and oxidative stress markers. Numerous studies have reported the 
efficacy of CAPE in the treatment of stress-induced pathologies. Recent studies have shown the 
protective ability of CAPE against nephrotoxicity induced by a number of xenobiotics (methotrexate, 
doxorubicin, cisplatin, toluene, carbon tetrachloride, etc.) or by diverse toxic conditions[31]. Several 
reports suggest the application of CAPE in experimental and clinical studies for the treatment of several 
diseases such as cancer, thyroid, liver diseases, hepatic insulin resistance, non-alcoholic fatty liver 
disease, or hepatocellular carcinoma[32,33]. In vivo studies have reported that oral ingestion of CAPE 
stalled the progression of atherosclerosis in mice deficient in apolipoprotein E[32]. In addition, 
involvement of CAPE in molecular signaling pathways suggests that CAPE has therapeutic efficacy in 
diverse inflammatory diseases and cancer[31-32]. Similarly, CA treatment has also exhibited protective 
efficacy in various organs such as the brain, kidneys, lungs, ovaries, and heart from diabetes-induced 
damage[34-36]. Therefore, this review reports the structural and pharmacological properties of CA and 
its derivatives with special emphasis on the key mechanisms of action and pharmacokinetic properties 
of CA, especially in DM and associated complications.

SOURCES AND CHEMISTRY OF CA
CA occurs naturally in several vegetables and fruits including kiwis, blueberries, plums, cherries, 
apples, cereals, carrots, and cabbage. CA can also be found in propolis, which is a resinous substance 
made by honeybees[37]. Different plant species have variable amounts of CA[38]. It is a very prevalent 
phenolic acid that accounts for 75 to 100 percent of the total hydroxycinnamic acid in fruits[39]. 
Structurally, CA is a phenylalanine-derived hydroxycinnamic acid with a 3,4-dihydroxyaromatic ring 
connected to carboxyl group through a trans-ethylene bond[37]. CA is synthesized naturally in plants 
via the endogenous shikimate pathway[23,37]. The biosynthesis of CA begins with precursor shikimic 
acid and involves three enzymatic reactions: (1) Phosphorylation by shikimate kinase; (2) The 
conjugation of phosphoenolpyruvate by 5-enolpyruvylshikimate-3-phosphate (EPSP) synthase; and (3) 
Formation of intermediary metabolite chorismic acid by the enzyme chorismatesynthase[23,37]. 
Cinnamic acid is produced from the deamination of L-phenylalanine by enzyme phenylalanine 
ammonia lyase; it is converted into p-coumaric acid by the action of cinnamate-4-hydroxylase, which is 
subsequently converted into CA by enzyme 4-coumarate 3-hydroxylase[23] (Figure 2). CA is generally 
extracted from plant materials and by microbial synthesis using organisms like Escherichia coli. Two 
enzymes can be produced by genetic modifications in Escherichia coli strains: Tyrosine ammonia 
lyaseand 3-hydroxylase hydroxyphenylacetate which act on L-tyrosine to produce L-dopa and coumaric 
acid, respectively, leading to the synthesis of CA[36].
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Figure 2 Biosynthesis of caffeic acid via the shikimic acid pathway.ATP: Adenosine triphosphate; EPSP: 5-enolpyruvylshikimate-3-phosphate; PLP: 
Pyridoxal phosphate; NAD: Nicotine adenine dinucleotide; PAL: Phenylalanine ammonia lyase; C4H: Cinnamate-4-hydroxylase; C3H: Coumarate 3-hydroxylase.

PHARMACOKINETICS OF CA
CA has a molecular weight of 180.16 g/mol and is typically found as a white, amorphous powder. The 
partition coefficient (logP) for CA ranges from 1 to 1.3[40,41]. In addition, propolis contains large 
amounts of naturally occurring derivative of CA, the CAPE that appears as a white crystalline solid and 
has a molecular weight of 284.31 g/mol. The intriguing aspect of CAPE is its ability to traverse the 
blood-brain barrier, which can be attributed to logP values of CAPE ranging between 3.2-13.8[41-43]. 
CA is essentially found in food in esterified form with chlorogenic acid, thus limiting its absorption in 
the body[44]. Human tissues such as the intestinal mucosa, stomach, and liver, and biological fluids 
such as plasma, duodenal fluid, and gastric juice lack the esterase enzymes that hydrolyze chlorogenic 
acid to release CA. Thus, it is hydrolyzed by intestinal microflora before its absorption[42,44]. As a 
result, the pharmacokinetic process starts when CA is consumed and enters the stomach in its esterified 
state, where a small amount of CA is absorbed[41-44]. Thereafter, the intestinal mucosa absorbs up to 
95% of CA in its free form after the bacterial esterases in the colon break the ester part of CA[42-44]. 
Monocarboxylic acid transporters are involved in the active transport of CA across membranes into 
intestinal cells[36,42,44]. The peak plasma concentration of CA occurs after 1 h of meal digestion, and it 
takes repeated dosage every 2 h to sustain high levels of CA in plasma[36,42]. Under anaerobic 
conditions, gut bacteria having tyrosine decarboxylase can cause decarboxylation of CA, producing a 
compound known as 3-(3-hydroxyphenyl)-propionic acid that has stronger antioxidant activity than CA
[45]. Sulfotransferases, uridine diphosphate-glucuronosyltransferases, and catechol-o-methyltrans-
ferases catalyze three main enzymatic conjugation processes of sulphation, glucuronidation, and 
methylation of CA, respectively, that occur immediately after absorption. This increases the hydrophilic 
properties of CA, thus reducing its toxicity and speeding up elimination. The liver and kidney are the 
major sites of CA metabolism. The primary elimination route of CA (5.9% to 27%) is via urine[43-45].

ANTI-DIABETIC EFFECTS OF CA
DM is characterized by hyperglycemia, altered lipid and carbohydrate metabolism, and oxidative stress
[1,2,46]. The successful control of high blood sugar levels with natural polyphenols may be significant in 
minimizing diabetic complications, particularly micro- and macro-vascular disorders. Plant products 
used in traditional medicine constitute a potential alternative for effective control of diabetes, owing to 
their affordability, high efficacy, and minimal negative effects[47-49]. CA is a natural compound that is 
known to promote insulin secretion, inhibit α-amylase and β-glucosidase, prevent sodium-dependent 
glucose transporter-1 from absorbing glucose in the gut, and lower hepatic glucose output. Besides its 
anti-diabetic efficacy, CA also modifies the microbiome, facilitates insulin-dependent glucose uptake, 
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activates adenosine monophosphate-activated protein kinase, and has immunomodulatory, antimi-
crobial, hypocholesteremic, and antioxidant properties[36,49]. Experimentally, in streptozotocin (STZ)-
induced diabetic rats, and Balb/c and C57BL/KsJ-db/db mice, CA exhibited potential antihyper-
glycemic effects along with antioxidant and anti-inflammatory properties[50,51]. CA may exert its 
protective effects by activating and safeguarding intracellular antioxidant enzymes, and by transferring 
hydrogen atoms and single electrons, as well as by chelating metal ions[52]. In addition, CA helps to 
upregulate the transcription factor nuclear factor erythroid2-related factor 2 (NrF2) which controls the 
expression of over 200 genes involved in the cellular antioxidant and immune regulatory mechanism by 
binding with antioxidant response elements, which is also linked with the detoxification of xenobiotics. 
CA also regulates β-cell and adipocyte GLUT4 functions, increases activity of glucokinase in 
hepatocytes, inhibits glucose-6 phosphatase and phosphoenolpyruvate carboxykinase, and reduces 
glycosylated haemoglobin, thus resulting in controlled DM. CA aids in enhancing the utilization of 
glucose and glycogen synthases. This leads to reduced cholesterol biosynthesis and prevention of 
lipogenesis. CA suppresses iron-induced elevation of cholesterol and improves the levels of plasma 
insulin, C-peptide, and leptin[53]. In a study with STZ-induced diabetic rats, a significant decrease in 
malondialdehyde (MDA) level and SOD and CAT activities was observed in the liver, retina, and heart, 
post CA treatment. Insulin-like growth factors (IGFs) are known to be associated with the progression of 
DM where reduced serum IGF-I levels have been linked with poor glycemic control in DM, while 
elevated plasma IGF-II levels have been linked to the progression of DM[54,55]. In STZ-induced diabetic 
rats, the effects of CA administration led to amelioration of changes in gene expression as well as 
changes in the levels of IGF-I and IGF-II in the blood, liver, heart, and kidney[35,56].

ROLE OF CA IN DIABETES-ASSOCIATED COMPLICATIONS
Diabetic foot and wound healing
Chronic wounds below the ankle or foot lesions in diabetic patients that penetrate the dermis layer are 
known as diabetic foot ulcers (DFU)[57]. People with diabetes have a lifetime risk of developing foot 
ulcers in 25% cases, which may lead to 50%–70% of total non-traumatic amputations[58-61]. In recent 
years, amputation rates have increased significantly, which in turn has raised the rate of morbidity and 
death[62-65]. The wound healing cascade in diabetic patients is often hindered and delayed due to high 
blood sugar levels[66]. Hyperglycemia leads to a series of events such as formation of AGEs, non-
enzymatic glycosylation, activation of the polyol pathway and the diacylglycerolprotein kinase C 
pathway, and hyperactivity of the hexosamine pathway[67,68]. These alterations are linked to a 
prolonged inflammatory phase causing stiffening of endothelial walls, which makes it challenging for 
blood to pass via tiny arteries near the surface of the incision[69]. As a result, there is also a lack of 
oxygen release and nutrition at the wound site, causing further elevation of blood sugar levels in the 
wound area. Therefore, the wound healing cascade is prolonged, leukocyte migration is reduced, and 
macrophage introduction is delayed[70]. Additionally, hyperglycemia also activates an inflammatory 
reaction by triggering NF-κB light-chain-enhancer of activated B cells[71,72]. Moreover, oxidative stress, 
dyslipidemia, and insulin resistance play a significant role in the development of DFU[73,74]. Thus, 
management of all these factors is crucial for the treatment of DFU.

Studies have shown that low glycemic index of CA and its derivatives is mainly responsible for their 
antidiabetic, antioxidant, and anti-inflammatory properties which aids in managing foot ulcers[75-78]. 
An early study on STZ-induced diabetic mice revealed that topical administration of propolis is well 
tolerated and aids in healing of human DFU[79]. CAPE increases wound contraction and re-epithelial-
ization by reducing oxidative stress and accelerates cutaneous wound healing, which is mediated by its 
antioxidant action[80,81]. In another study on diabetic mice, topical application of propolis was found to 
stimulate the release of vascular endothelial growth factor (VEGF) in smooth muscle cells and facilitate 
the relaxation of arteries via the nitric oxide (NO)/cyclic guanosine monophosphate (cGMP) pathway 
which accelerated the healing of cutaneous diabetic wounds in mice[82,83] (Figure 3 and Table 1).

Diabetic nephropathy
Diabetic nephropathy is a consequence of prolonged uncontrolled DM causing damage to the renal 
blood vessel clusters. The pathogenesis of diabetic nephropathy and other complications of diabetes 
have been linked to non-enzymatic glycation, with the formation of AGEs, also recognized as Maillard 
reaction products. These AGEs include glycated haemoglobin, glycated albumin, pentosidine, and 
carboxymethyllysine (CML)[84-86]. In addition, disruption in Th1-Th2 cytokine balance and over-
production of pro-inflammatory cytokines result in increased inflammatory stress in diabetic patients, 
which further accelerates diabetic nephropathy[87,88]. Early investigations have suggested that CA 
lowers blood glucose by modulating the polyol pathway. Aldose reductase (AR) is the first and rate-
limiting enzyme in the polyol pathway that reduces glucose to sorbitol, which could be further 
metabolised to fructose by the enzyme sorbitol dehydrogenase (SDH)[89,90]. The generation of AGEs 
was increased by the flux through SDH and an elevated fructose level, which enhanced diabetes-
induced microvascular abnormalities[91] (Figure 4). In diabetic mice, CA significantly decreased the 
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Table 1 Protective effects of caffeic acid and derivatives in diabetes and associated complications

Type of study/condition Dose Mode of action Ref.

STZ-induced diabetic mice Topical administration of propolis 
at 20 μL

Healing of human DFU [79]

CAPE at 5 μmol/kg and 10 
μmol/kg

Increased wound contraction and re-epithelial-
ization by reducing oxidative stress

[80,81]

Diabetic mice with DFU Topical application of propolis Stimulated VEGF and activated NO/cGMP 
pathway

[82,83]

Diabetic mice with renal damage CA at 5% Decreased AGEs, IL-1b, and IL-6, and reduced 
activity of renal AR and SDH.

[92]

STZ-induced diabetic mice, 
nephropathy

CA at 10-50 mg/kg Modulation of autophagy pathway [93]

CA at 40 mg/kg Improved renal parameters, and downregulated 
the expression of miR-636

[94]

CAPE and CAPE-pNO2 at 20 
μmol/kg/d

Inhibited inflammation through the Akt/NF-κB 
pathway and prevented renal fibrosis through the 
TGF-β/Smad pathway

[95]

Diabetes induced in HUVECs CAPE treatment at 3-10 μM Reduced VEGF-induced angiogenesis [96]

STZ-induced diabetic rats, 
retinopathy

CAF6 and CAF12 at 250 mM Modulation of ERK1/2 and protein kinase-B/Akt 
signaling pathways

[98]

STZ-induced diabetic rats, 
neuropathy

CAPE at 10 μM/kg/d Inhibition of iNOS enzyme [102]

Alloxan-induced diabetic mice, CVD CA at 50 mg/kg Reduced atherogenic indices such as TG, LDL-c, 
VLDL-c, and TC

[53]

CA at 2% Improved glycemic control and lipid metabolism, 
increased plasma antithrombin-III and protein C 
activities, and decreased MDA, IL-β, IL-6, and 
TNF-α levels

[34]

STZ-induced T1D rat model, CVD CAPA at 3 and 15 mg/kg Reduced myocardial infarction and amelioration of 
cardiac dysfunction

[103]

STZ: Streptozotocin; DFU: Diabetic foot ulcer; CAPE: Caffeic acid phenethyl ester; VEGF: Vascular endothelial growth factor; NO: Nitric oxide; cGMP: 
Cyclic guanosine monophosphate; CA: Caffeic acid; AGEs: Advanced glycation end products; IL: Interleukin; AR: Aldol reductase; SDH: Sorbitol 
dehydrogenase;CAPE-pNO2: Caffeic acid para-nitro phenethyl ester; NF-κB: Nuclear factor-κB; TGF-β: Transforming growth factor-β; HUVECs: Human 
umbilical vein endothelial cells; ERK: Extracellular signal regulated kinase; iNOS: Inducible nitric oxide synthase; TG: Triacylglycerol; LDL-c: Low density 
lipoprotein cholesterol; VLDL-c: Very low-density lipoprotein cholesterol; TC: Total cholesterol; T1D: Type1 diabetes; MDA: Malondialdehyde; TNF-α: 
Tumor necrosis factor-α; CVD: Cardiovascular disorder;CAPA: Caffeic acid phenethyl amide.

production of AGEs, inflammatory cytokines like IL-1b and IL-6, levels of plasma HbA1c, urinary 
glycated albumin, renal CML, pentosidine, sorbitol, and fructose, and considerably reduced the activity 
of renal AR and SDH along with suppression of renal AR mRNA expression[92]. In an in vivo study 
with STZ-induced diabetic rats, CA in a dose range of 10-50 mg/kg attenuated diabetic nephropathy via 
modulation of autophagy pathway by inhibiting autophagy-regulating miRNAs[93]. In another study 
on STZ-induced diabetic rats, oral treatment of CA at 40 mg/kg mitigated renal damage and 
significantly reduced fasting blood glucose, cholesterol, and triglyceride in diabetic rats. CA treatment 
also improved histological parameters in the diabetic kidney and downregulated the expression of miR-
636[94]. In another study in STZ-induced diabetic mice, intraperitoneal treatment with CA derivatives 
CAPE and CA para-nitro phenethyl ester (CAPE-pNO2) at 20 μmol/kg/d resulted in improved renal 
biochemical parameters such as decreased serum creatinine, MDA, 24-h albumin excretion, blood urea 
nitrogen, myeloperoxidase levels, and SOD activity in diabetic mice. CAPE and CAPE-pNO2 also 
inhibited inflammation via the Akt/NF-κB pathway and prevented nephropathy through the 
transforming growth factor-β/Smad pathway[95] (Table 1).

Diabetic retinopathy
Long-term DM results in diabetic retinopathy characterized by aberrant retinal blood vessel prolif-
eration and microvascular retinal alterations, resulting in partial vision loss or even complete blindness. 
One of the major factors causing diabetic retinopathy is VEGF-driven angiogenesis. In a study using 
human umbilical vein endothelial cells (HUVECs), CAPE treatment in the dose range of 3-10 μM 
decreased VEGF-induced angiogenesis, indicating possible positive effects in the treatment of diabetic 
retinopathy[96] (Figure 4). In another study, HUVECs treated with CAPE at 5-20 μg/mL exhibited a 
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Figure 3 Mechanism of diabetic wound healing mediated by caffeic acid. Hyperglycemia leads to formation of advanced glycation end products 
(AGEs), hypoxia, and inflammation at the site of injury. Caffeic acid stimulates the inflammatory cascade which inhibits the formation of AGEs and elevates the levels 
of vascular endothelial growth factorand insulin-like growth factors. This results in vascular angiogenesis and re-epithelialization at the site of injury. VEGF: Vascular 
endothelial growth factor; IGFs: Insulin-like growth factors; TNF-α: Tumor necrosis factor-α; IL: Interleukin.

Figure 4 echanism of protective action of caffeic acid in diabetic nephropathy and retinopathy. Hyperglycemia induces formation of advanced 
glycation end products and reactive oxygen species in renal and retinal tissues, which in turn causes mitochondrial dysfunction by inhibiting antioxidant enzymes such 
as manganese superoxide dismutase, glutathione peroxidase, catalase, and activates the production of inflammatory cytokines like tumor necrosis factor-α, 
interleukin-6, nuclear factor-κB, polyol, and hexosamine signaling pathways. Caffeic acid increases the levels of antioxidant enzymes and suppresses inflammatory 
response, thus protecting the tissues from diabetic nephropathy and retinopathy. AGEs: Advanced glycation end products; ROS: Reactive oxygen species; Mn-SOD: 
Manganese superoxide dismutase; CAT: Catalase; SOD:Superoxide dismutase; GSH: Glutathione; NF-κB: Nuclear factor-κB; IL-6: Interleukin-6; TNF-α: Tumor 
necrosis factor-α.

reduction of VEGF-induced neovascularization and proliferation, tube formation, and migration. The 
protective efficacy of CAPE can be attributed to the inhibition of VEGF-induced VEGF receptor-2 
activation and associated downstream pathways[97]. An in vivo study in a STZ-induced diabetic rat 
model demonstrated the protective efficacy of CA hexyl (CAF6) and dodecyl (CAF12) amide derivatives 
in diabetic retinopathy. Treatment with CAF6 and CAF12 at a dose of 250 mmol/L led to increased 
retinal SOD levels, and improved thickness of the whole retinal layer, outer nuclear layer, and ganglion 
cell count.The CA derivatives ameliorated diabetic retinopathy via modulation of the extracellular signal 
regulated kinase (ERK)1/2 and protein kinase-B/Akt signaling pathways[98] (Table 1).
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Diabetic neuropathy and cardiovascular complications
The brain is another organ which is adversely affected by prolonged uncontrolled hyperglycemia, and 
cerebral dysfunction in diabetic patients is known to be a multifactorial process[99]. Free radical-
mediated oxidative stress induced by hyperglycemia plays an important role in the pathogenesis of 
diabetic neuropathy[100]. It stimulates the production of the inflammatory cytokine TNF-α and 
promotes the expression of NF-κB[101]. The NO radical in the central nervous system acts as an 
important regulator leading to the generation of RNS via the enzyme iNOS and results in elevated 
oxidative stress in brain. In an in vivo study, STZ-induced diabetic rats post intraperitoneal treatment 
with CAPE at a dose of 10 μM/kg/day showed reduced NO radical and lipid peroxidation, and 
increased activities of antioxidant enzymes such as SOD, CAT, and GPx in the rat brain. In addition, 
CAPE was shown to inhibit the activity of iNOS enzyme, thus preventing excess production of RNS
[102].

Hyperglycemia combined with dyslipidemia, oxidative stress, and inflammation cause CVD such as 
hypertension, cardiac myopathy, and atherosclerosis. DM-mediated CVD is characterized by elevated 
levels of triacylglycerol (TG), low density lipoprotein (LDL), very low-density lipoprotein (VLDL), and 
total cholesterol (TC). Atherogenic dyslipidemia in diabetic patients leads to increased risk of cardiac 
failure. Studies on alloxan-induced diabetic mice have revealed that CA at a dose of 50 mg/kg acts as a 
potent agent in controlling hyperglycemia and reducing atherogenic indices such as TG, LDL-c, VLDL-
c, and TC. Thus, successful restoration of lipid and glucose metabolism parameters in mice by intraperi-
toneal CA administration led to improved cardiac function[53]. In another study, diabetic mice when 
orally fed2% CA, exhibited improved glycemic control and lipid metabolism. CA treatment led to a 
significant increase in plasma antithrombin-III and protein C activities, and decrease in MDA, IL-β, IL-6, 
and TNF-α levels[34]. Studies on a STZ-induced T1DM rat model demonstrated that intraperitoneal pre-
treatment with CA phenethyl amide at doses 3 and 15 mg/kg led to reduced myocardial infarction and 
amelioration of cardiac dysfunction[103] (Table 1).

BIOAVAILABILITY AND DRUG DELIVERY OF CA
Plant-derived natural products including CA have several applications in the treatment of a wide range 
of diseases. However, there are many limitations that come in the way of using phytochemicals as 
alternative medicine. To ascertain the optimum utilization of plant-derived compounds in clinical 
investigations, it is important to design novel carriers for the delivery of natural products[104,105]. The 
use of CA as a pharmaceutical is constrained by a number of physicochemical and pharmacokinetic 
factors including poor water solubility and lack of specific tissue targeting[106]. Studies have also 
shown that CA has low oral bioavailability (14.7%) and low intestinal absorption (12.4%) in a rat model
[107]. Therefore, numerous nanoparticles (NPs) have been created for the delivery of CA and related 
compounds in disease therapy with positive outcomes, including polymeric NPs, metal NPs, carbon 
nanomaterials, and lipid nanostructures[108,109]. The use of NPs for targeted delivery of CA is well 
reported. The combinations of gold and iron NPs (Au-Fe3O4) with CA, quercetin, and 5-fluorocytidine 
have been formulated for use in breast cancer treatment. Studies related with formulation and 
development of CA-NPs are mostly targeted for cancer therapy. The release of quercetin and CA from 
these nanostructures inhibits lactate secretion and prevents glycolytic reprogramming[106,107]. 
Additionally, NPs have also been designed for CAPE delivery for the treatment of cancer. In a recent 
study, methoxy poly (ethylene glycol)-b-poly(-caprolactone) was used to create polymeric 
nanostructures, which were subsequently loaded with CAPE[45,110,111]. There is still much work to be 
done in terms of NP formulation and design. Hence, further studies are required to examine the 
potential functions of NPs of CA for better delivery, in treatment of other diseases including DM.

CLINICAL TRIALS AND FUTURE PROSPECTS
Phytometabolites are pharmacologically active compounds and their clinical applications are constantly 
increasing[45,112,113]. Several reports have shown that approximately one fourth of all clinical 
compounds used as drugs are derived from natural products[114,115]. The pharmacological action of 
CA and its derivatives, particularly CAPE, as hepatoprotective, reno-protective, antioxidant, anti-
diabetic, anti-inflammatory, and anticancer agents have been well documented. The activity of 
antioxidant enzymes such as SOD, CAT, and HO-1 is positively modulated by CA. CAPE treatment 
leads to protection against oxidative stress-mediated diabetic complications by regulating the 
transcription factors NF-κB, Nrf2, and COX-2 and associated molecular pathways. Moreover, CAPE 
shows notable efficacy in both in vitro and in vivo diabetic models with no substantial negative effects. 
CA exerts anti-diabetic efficacy in vitro and in vivo via reduced VEGF angiogenesis and decreased MDA, 
TNF-α, IL-β, IL-6, and other inflammatory and oxidative stress markers.
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Table 2 List of clinical trials conducted on propolis against diabetes mellitus

Number Treatment Condition Outcome ClinicalTrials.gov Identifier, 
phase, and status of trial

ClinicalTrials.gov

Identifier: NCT03416127

Phase: 2

1 Propolis 300 mg twice a day 
for 12 wk

Type 2 DM Propolis administration modified the glycemic control in 
patients with type 2 DM

Status: Completed

ClinicalTrials.gov

Identifier: NCT02794506

Phase: 4

2 Propolis 400 mg for 6 mo, 
after performing scaling and 
root planing

Type 2 DM, 
periodontitis

Improvement in HbA1c, FPG, serum CML, and changes in 
periodontal parameters

Status: Completed

ClinicalTrials.gov

Identifier: NCT03649243

Phase: Not applicable 

3 Propolis spray at the site of 
injury

Diabetic foot 
ulcer

Propolis possesses anti-inflammatory and antioxidant 
effects and its topical application is well tolerated, 
improving the healing of human diabetic foot ulcer

Status: Completed

DM: Diabetes mellitus, HbA1c: Hemoglobin A1c, FPG: Fasting plasma glucose, CML: Carboxymethyllysine.

In order to examine the clinical trials’ data with respect to CA and related compounds in diabetic 
patients, we searched the largest clinical trial database at ‘https://clinicaltrials.gov’. No search results 
were obtained with the keywords ‘CA/CAPE and diabetes’. Since propolis found in beehive is a major 
source of CAPE, therefore we searched with keywords ‘propolis and diabetes’ on the database. Three 
studies were found in which propolis was administered orally or applied topically to diabetic patients. 
The results are summarized in Table 2.

CA has potential application in the treatment of several diseases including diabetes and associated 
complications. However, more in vivo research needs to be done for a better understanding of the mode 
of action of CA in DM and associated problems, particularly the role of cytoprotective enzymes like HO-
1. Additionally, pharmacokinetic studies are required to entirely understand the metabolic pathway of 
CA post oral administration. Thus, further clinical investigations in humans are needed to determine the 
pharmacological potential of CA in major illnesses like diabetes.

CONCLUSION
DM has emerged as one of the most common metabolic disorders worldwide which can lead to other 
complications such as retinopathy, nephropathy, neuropathy, and foot ulcers. Free radical-induced 
oxidative stress is one of the primary factors causing DM. CA is a natural polyphenol obtained from 
various fruits and vegetables. CA and its derivatives act as an antioxidant to regulate the signaling 
pathways involved in lipid and carbohydrate metabolism. CA also exerts anti-diabetic effects by 
modulation of inflammatory cytokines and transcription factors. Furthermore, novel delivery strategies 
are being used for transport of CA to enhance its bioavailability, which has enabled the widespread use 
of CA in various disease therapies.
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Abstract
Insulin is a hormone secreted by pancreatic β cells. The concentration of glucose in 
circulation is proportional to the secretion of insulin by these cells. In target cells, 
insulin binds to its receptors and activates phosphatidylinositol-3-kinase/protein 
kinase B, inducing different mechanisms depending on the cell type. In the liver it 
activates the synthesis of glycogen, in adipose tissue and muscle it allows the 
capture of glucose, and in the hypothalamus, it regulates thermogenesis and 
appetite. Defects in insulin function [insulin resistance (IR)] are related to the 
development of neurodegenerative diseases in obese people. Furthermore, in 
obesity and diabetes, its role as an anorexigenic hormone in the hypothalamus is 
diminished during IR. Therefore, hyperphagia prevails, which aggravates hyper-
glycemia and IR further, becoming a vicious circle in which the patient cannot 
regulate their need to eat. Uncontrolled calorie intake induces an increase in 
reactive oxygen species, overcoming cellular antioxidant defenses (oxidative 
stress). Reactive oxygen species activate stress-sensitive kinases, such as c-Jun N-
terminal kinase and p38 mitogen-activated protein kinase, that induce phos-
phorylation in serine residues in the insulin receptor, which blocks the insulin 
signaling pathway, continuing the mechanism of IR. The brain and pancreas are 
organs mainly affected by oxidative stress. The use of drugs that regulate food 
intake and improve glucose metabolism is the conventional therapy to improve 
the quality of life of these patients. Currently, the use of antioxidants that regulate 
oxidative stress has given good results because they reduce oxidative stress and 
inflammatory processes, and they also have fewer side effects than synthetic 
drugs.
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Core Tip: Insulin is the connection between the β cells of the pancreas and the hypothalamus. Insulin 
reaches the arcuate nucleus of the hypothalamus and represses the expression of orexigenic neuropeptides 
to suppress appetite. However, its function decreases when there is damage to the β cells of the pancreas. 
Its anorexigenic effect decreases and thus increases appetite. The excess of nutrients, specifically 
carbohydrates, aggravates the damage to β cells and induces obesity and/or diabetes and oxidative damage. 
The use of antioxidants constitutes a therapeutic approach that has been approached experimentally to 
regulate the negative effects of alterations in insulin secretion and function.

Citation: De la Cruz-Concepción B, Flores-Cortez YA, Barragán-Bonilla MI, Mendoza-Bello JM, Espinoza-Rojo 
M. Insulin: A connection between pancreatic β cells and the hypothalamus. World J Diabetes 2023; 14(2): 76-91
URL: https://www.wjgnet.com/1948-9358/full/v14/i2/76.htm
DOI: https://dx.doi.org/10.4239/wjd.v14.i2.76

INTRODUCTION
Insulin is a peptide hormone that plays an important role in glucose homeostasis, cell growth and 
metabolism[1]. This hormone is synthesized in the β cells of the pancreatic islets; its transcription and 
translation is regulated in part by nutrients, specifically in response to glucose concentrations[2,3]. The 
active structure of this hormone is formed by two chains named “chain A” with 21 amino acid residues 
and “chain B” with 30 amino acid residues linked by three disulfide bonds between both chains[2,4]. 
The insulin is stored in vesicles to be released into the bloodstream when β cells take up glucose from 
the extracellular medium[1]; through the bloodstream it will reach all peripheral organs and the brain
[5].

Insulin will bind to its receptor in the cell membrane and allow activation of the phosphatidylinositol-
3-kinase/protein kinase B (PI3K/AKT) insulin signaling pathway[6]. The effects of the activation of this 
pathway will depend on the cell lineage. It has an anti-atherogenic effect in the vascular system. In the 
liver, it promotes energy utilization. In the muscle, insulin promotes glucose metabolism and par-
ticipates in protein synthesis. In adipose tissue, insulin induces lipogenesis[7,8], and finally in the brain 
it will activate thermogenesis and regulate appetite, glucose homeostasis and metabolism[8-10]. When 
there are alterations in the secretion or function of insulin, chronic-degenerative pathologies are 
produced such as hyperphagia, hyperglycemia, insulin resistance (IR) and diabetes mellitus (DM)[11]. A 
common feature of these pathologies is the formation of reactive oxygen species (ROS), which alter 
signaling pathways activated by insulin[12-14]. Currently, the use of nutraceuticals has been reported 
with highly positive effects on the control of ROS and alterations in the secretion and function of insulin 
at the pancreatic[15] and cerebral levels[16].

INSULIN AND THE PANCREAS
The human pancreas is a retroperitoneal organ in the upper abdomen weighing between 100-150 g and 
measuring between 15-25 cm in length. It is connected to other abdominal organs such as the spleen, 
stomach, duodenum and colon[17]. This organ is surrounded by a fibrous capsule that divides its 
parenchyma into distinct lobes and lobules[18] separated by connective tissue that divides the pancreas 
into two structurally distinct components: The exocrine pancreas, which consists mainly of acinar cells 
and duct cells; and the endocrine pancreas, which is the site of islet cells[17,19].

The endocrine portion is composed of groups of cells known as islets of Langerhans, which are 
attributed with the secretion of several pancreatic peptide hormones for glucose homeostasis, including 
insulin. There are five major cell types that constitute the islet: α cells; β cells; δ cells; PP cells; and ε cells. 
They are responsible for producing glucagon, insulin, somatostatin, pancreatic polypeptide and ghrelin, 
respectively[1,17,20]. The most numerous are the β cells that synthesize and secrete insulin. Insulin is a 
peptide hormone that was discovered in 1922 by surgeon Frederick Grant Banting and physician 
Charles Herbert Best and purified by biochemist James Bertam Collip[21,22]. This hormone plays an 
important role in glucose homeostasis, cell growth and metabolism[1]. In humans, it is encoded by the 
INS gene on chromosome 11, in rats (Rattus norvegicus) by the ins1/2 gene on chromosome 1 and in mice 
(Mus musculus) by the Ins1 (chromosome 19) and Ins2 (chromosome 7) genes[23].

The human INS gene (1425 bp) is composed of three exons and two introns, as is the rodent Ins2 gene. 
However, the rodent Ins2 gene is composed of only two exons, with the entire coding sequence 
contained in the second exon[24,25]. In the insulin gene promoter, there are response elements such as 

https://www.wjgnet.com/1948-9358/full/v14/i2/76.htm
https://dx.doi.org/10.4239/wjd.v14.i2.76


De la Cruz-Concepción B et al. Insulin: Pancreas and hypothalamus

WJD https://www.wjgnet.com 78 February 15, 2023 Volume 14 Issue 2

the A element, GG box, C1 [rat insulin promoter element (RIPE)3b1/C2 (RIPE3b2) element (RIPE 3b1/
2), cyclic 3´5´-adenosinemonophosphate (cAMP) response element, E element, insulin-linked 
polymorphic region], enhancer core and Z region where the negative regulatory element is located. 
These regulatory elements within the promoter region of the insulin gene either enhance or inhibit 
transcription of the gene and are located between positions -340 and -91 bp relative to the transcription 
start site.

Several transcription factors bind in these regions including pancreatic-duodenal homeobox-1 protein 
1, pair box protein 4 and 6, transcription factor A, hepatocyte nuclear factor-1 alpha and neurogenic 
differentiation factor 1[2,26,27]. The signal transducer and activator of transcription (STAT) protein also 
has a very important role in the activation of insulin gene transcription. It has been reported that 
elevated Ca2+ levels activate calpain-1, a protease that cleaves a cytosolic fragment of islet cell 
autoantigen 512, which promotes transient fusion of the cell membrane with the membrane of insulin-
containing granules to release insulin into the extracellular milieu. The free fragment of islet cell 
autoantigen 512 targets the nucleus and binds to STAT5, which in turn promotes increased transcription 
of the insulin gene, thus maintaining optimal levels of stored insulin[3].

In addition, there are polypyrimidine tract-binding proteins that positively regulate mRNA 
translation. Cytosolic polypyrimidine tract-binding protein 1 can bind to pyrimidines, i.e. cytosine-
uracil-rich sequences in the 3’ untranslated regions of insulin mRNA, thereby stabilizing the insulin 
mRNA strand and increasing its translation[28].

Insulin translation in pancreatic β cells is regulated in part by nutrients, specifically in response to 
glucose concentrations[2]. Levels between approximately 2 mmol/L and 4 mmol/L glucose are required 
to promote insulin biosynthesis and levels greater than 5 mmol/L to promote insulin release[29]. 
Increased glucose concentrations contribute to the activation of protein phosphatase 1, which dephos-
phorylates eukaryotic translation initiation factor 2a promoting insulin translation. However, pancreatic 
endoplasmic reticulum (ER) kinase decreases insulin synthesis through phosphorylation of eukaryotic 
translation initiation factor 2a[2].

In β cells, insulin is translated as a 110 amino acid pre-proinsulin in the cytosol. Pre-proinsulin 
contains a 24 amino acid nuclear transport signal peptide (Ala-Ala-Ala-Ala-Pro-Asp-Pro-Gly-Trp-Leu-
Ala-Leu-Leu-Leu-Ala-Leu-Leu-Leu-Pro-Leu-Leu-Leu-Arg-Met-Trp-Leu-Ala-Met)[30], which guides pre-
proinsulin to the rough ER (RER) membrane for translocation to the RER cisternae via two mechanisms: 
(1) A signal recognition particle (SRP)-dependent cotranslational translocation mechanism where SRP 
recognizes and binds to the signal peptide of pre-proinsulin arising from ribosomes, forming a complex 
that interacts with the SRP receptor on the RER membrane, thereby directing nascent pre-proinsulin to 
the Sec61 translocon[31]; and (2) An SRP-independent post-translational translocation mechanism 
where in addition to the Sec61 translocon several RER and cytosolic molecular chaperones are involved, 
including heat shock protein 70, transmembrane recognition complex-4, calmodulin and protein 
complex Sec 62/63[31].

During translocation, the pre-proinsulin signal peptide must be correctly oriented within the Sec61 
translocon so that the N-terminal end of the signal peptide faces the cytosolic side of the RER. This 
orientation allows the signal peptide cleavage site to be exposed to signal peptidase on the luminal side 
of the RER membrane[31], generating pro-insulin, a chain of 86 amino acids that folds and stabilizes in 
its three-dimensional configuration by linking peptide chains A and B through the formation of three 
disulfide bonds via chaperones such as thiol reductase. The first bond is between amino acids CysA6 
and CysA11, the second is between amino acids CysA7 and CysB7, and the third bridge is between 
amino acids CysB19 and CysA20[23,32].

After acquiring three-dimensional folding, pro-insulin is transferred from the RER to the Golgi via 
vesicles where pro-insulin is converted to insulin as these immature vesicles acidify and mature[31] 
(Figure 1). In the secretory granules there are two endoproteases involved in the conversion of 
proinsulin to insulin called prohormone convertase 2 (PC2) and PC1/3. The former hydrolyzes between 
the basic amino acids Arg33-Gly1 at the C-peptide and A-chain junction, and the latter hydrolyzes 
between the dipeptide Thr30-Arg31 at the B-chain and C-peptide junction[33]. Subsequently, car-
boxypeptidase E hydrolyzes between the Gln31-Lys32 amino acids as well as between Arg32 and Glu1 
basic C-termini of the resulting peptide chains, producing a mature insulin protein of 51 amino acids[23] 
(Figure 2).

Insulin in its monomeric form tends to form dimers as insulin concentration increases. In the presence 
of zinc and pH optima (10 mmol/L Zn2+, pH 6.0), the hydrophobic amino acids in the dimeric structures 
interact and assemble into higher order conformations called hexamers, useful for insulin storage[2]. 
Once the hexamers are secreted into the circulation by exocytosis, they diffuse into the blood in favor of 
their concentration gradient. A combination of electrostatic repulsion and decrease in insulin concen-
tration favors the dissociation of insulin into its monomeric form, releasing active insulin and an 
equimolar proportion of C-peptide[2,33].

This active structure is formed by two chains named “chain A” with 21 amino acid residues and 
“chain B” with 30 amino acid residues linked by three disulfide bonds between both chains (CysA7-
CysB7, CysA20-CysB19 and CysA7-CysA11) (Figure 2). The secondary structure of the A chain contains 
two antiparallel α-helices connected near the two ends of the A chain. The secondary structure of the B 
chain contains α-helices and β-strands. This chain can generate two distinct conformations. In a taut 
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Figure 1 Insulin synthesis. Following food intake, glucose is internalized into pancreatic β cells and its degradation through glycolysis and the tricarboxylic acid 
cycle is initiated. Intracellular ATP levels increase, which generates the closure of K+ channels, causing a change in membrane permeability opening Ca2+ channels. 
Elevated Ca2+ intracellular levels activate calpain-1, a protease that cleaves a cytosolic fragment of islet cell autoantigen 512. The free fragment islet cell autoantigen 
512 targets the nucleus and binds to signal transducer and activator of transcription 5, which in turn promotes increased transcription of the insulin gene to mRNA. In 
the cytosol, insulin is translated as pre-proinsulin that includes a nuclear transport signal peptide that guides pre-proinsulin to the rough endoplasmic reticulum (ER) 
membrane for translocation to the ER cisternae via two mechanisms: a signal recognition particle-dependent cotranslational translocation; and a signal recognition 
particle-independent post-translational translocation mechanism. Pro-insulin is generated and folds and stabilizes in its three-dimensional configuration. After 
acquiring three-dimensional folding, pro-insulin is transferred from the ER to the Golgi via vesicles where pro-insulin is converted to insulin. Also, elevated Ca2+ 
intracellular levels induce the remodeling of the cytoskeleton and the translocation of insulin granules to the plasma membrane to be subsequently secreted to the 
blood stream.

state, there is a central α-helix from SerB9 to CysB19 as well as a β-twist from GlyB20-GlyB23 generating 
a “V” fold. This twist also allows the formation of a β-sheet with Phe24 and Tyr26 in contact with Leu11 
and Leu15 of the α-helix of the B-chain. In a resting state, there is a continuous alpha helix from PheB1-
CysB19. Disulfide bonds between residues CysA7-CysB7 and CysA20-CysB19 contribute to the stability 
of the native insulin structure[2,4]. The overall tertiary structure of the protein is highly organized and 
stabilized by specific interactions involving residues CysA6-CysA11 and LeuA11, PheB1 and LeuB15, 
IleA2, PheB24, ValA3, IleA13, ValB18 and ValB12 generating a hydrophobic core[2].

Following food intake, glucose is transported into pancreatic β cells via the glucose transporter 
(GLUT) 2 in humans and mice[30,33]. Once pancreatic β cells have internalized glucose and its 
degradation through glycolysis and the Krebs cycle is initiated, intracellular ATP levels increase, which 
generates the closure of K+ channels, causing a change in membrane permeability opening Ca2+ 
channels. This induces the remodeling of the cytoskeleton and the translocation of insulin granules to 
the plasma membrane to subsequently release the hormone, which through the bloodstream will reach 
all peripheral organs and the brain[5,30,33] (Figure 1).

Levels between approximately 2 mmol/L and 4 mmol/L glucose are required to promote insulin 
biosynthesis and levels greater than 5 mmol/L to promote insulin release[29]. Once insulin synthesis is 
stimulated in the β cells of the pancreas, it is exported through the portal vein to the liver. During this 
process, more than 50% of the insulin is eliminated by hepatocytes from the liver. The remaining insulin 
exits through the hepatic vein until it reaches the heart to be distributed through the arterial circulation 
to the rest of the body to fulfill its various functions. Finally, the remaining circulating insulin is 
degraded in the kidney[23].
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Figure 2 Insulin structure. Pre-proinsulin is secreted as a polypeptide chain of 110 amino acids (aa), composed of a signal peptide (24 aa), chain A (21 aa), 
peptide C (33 aa) and a chain B (32 aa). The signal peptide is cleaved by signal peptidase generating pro-insulin, a chain of 86 aa that folds and stabilizes in its three-
dimensional configuration by three disulfide bonds between both chains: CysA7-CysB7; CysA20-CysB19; and CysA7-CysA11. Finally, two endoproteases, 
prohormone convertase 2 and prohormone convertase 1/3, hydrolyze between the basic aa Arg33-Gly1 at the C-peptide and A-chain junction and between the 
dipeptide Thr30-Arg31 at the B-chain and C-peptide junction, respectively. Subsequently, carboxypeptidase E hydrolyzes between the Gln31-Lys32 aa as well as 
between Arg32 and Glu1 basic C-termini of the resulting peptide chains, producing a mature insulin protein of 51 aa.

In the peripheral organs that depend on insulin to bring glucose into the cells, the hormone will bind 
to its receptor and allow activation of the PI3K/AKT insulin signaling pathway. This will generate 
translocation of GLUT4 to the cell membrane thus allowing glucose to enter the cell. Therefore, insulin, 
through anabolic pathways, regulates blood glucose concentrations[6]. Whereas, the counter-regulatory 
hormone, glucagon, regulates glucose concentrations through catabolic pathways[1].

Within the positive regulators of insulin, in addition to glucose, are amino acids, glucagon, glucagon-
like peptide 1 (GLP-1), growth hormone, secretin, gastrin, glucose-dependent insulinotropic peptide 
and cholecystokinin. Among the major negative regulators of insulin are adrenocorticosteroids, 
somatostatin, adrenaline, norepinephrine, neuropeptide Y and calcitonin gene-related peptide[33].
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INSULIN SECRETORY DYSFUNCTION
Insulin-secreting β cell dysfunction, defined as the loss of the ability of pancreatic β cells to produce and 
release insulin in concentrations sufficient to maintain euglycemia, occurs when high and prolonged 
insulin secretion in response to environmental insults leads to exhaustion of pancreatic β cells[34]. β cells 
can suffer from insulin secretory dysfunction due to multiple factors. The most common causes are 
overnutrition (excess nutrients such as glucose and fatty acids), increased body weight, a sedentary 
lifestyle and aging, which will lead to pathological conditions such as obesity and type 2 DM (T2DM)
[34-36]. Other causes of β cell dysfunction, accounting for less than 5% of cases, include diseases that 
destroy the pancreas, such as acute pancreatitis, chronic pancreatitis and cystic fibrosis[37-39], that 
specifically inhibit insulin secretion (genetic β cell defects) or that alter counterregulatory hormones 
(Cushing’s syndrome, obesity)[34]. The clinical presentations in these cases depend on the exact nature 
of the process.

The most common causes of β cell dysfunction share the formation of ROS and cellular oxidative 
stress as the initiation mechanism[40-42]. Pancreatic β cells are especially vulnerable to stress and 
oxidative damage[38] due to the low expression of classical antioxidant enzymes such as catalases, 
glutathione peroxidases and superoxide dismutases compared to other cell types[43,44]. The main 
antioxidant system of β cells consists of peroxiredoxins, thioredoxins and thioredoxin reductase. This 
system has been shown to be sufficient to protect β cells against short-term oxidative stress and 
hypothetically provides a signaling role required for glucose-stimulated insulin secretion in both rodent 
and human cells[45]. However, long-term glycolipotoxic conditions compromise β cell metabolism and 
ATP production through glycolytic dysfunction and reduced activation of glyceraldehyde 3-phosphate 
dehydrogenase, which reduces the generation of pyruvate and promotes β-oxidation.

As a result of metabolic dysfunction, the generation of superoxide and hydrogen peroxide by the 
mitochondrial electron transport chain is increased[46], increasing cellular ROS concentrations. Excess 
ROS are capable of oxidizing DNA (mainly mitochondrial DNA), proteins and lipids and function as 
effector and signaling molecules in cell membranes that mediate signal transduction and inflammation 
pathways[46,47]. In addition, inflammation, which is also present in the aforementioned pathologies, 
aggravates the damage and functions as a feedback for stress and oxidative damage because poly-
morphonuclear neutrophils at the site of inflammation release large amounts of ROS as an immune 
defense response, causing tissue damage and endothelial dysfunction[48]. Oxidative stress can induce 
and maintain a proinflammatory environment through the activation of proinflammatory pathways 
regulated by the transcription nuclear factor kB and c-Jun N-terminal kinase (JNK) and the production 
of inflammatory cytokines such as interleukin-1beta[34,38,40,49]. This improves polymorphonuclear 
neutrophil recruitment, which further stimulates the proinflammatory condition in the tissue, thus 
generating a feedback process oxidative stress-inflammation-oxidative stress[46].

Persistent inflammation of the pancreas causes ER stress, progressive atrophy and/or replacement 
with fibrotic tissue, pain, exocrine pancreatic insufficiency, trypsin activation leading to pancreatic 
autodigestion, loss of functional β cell mass and consequently the reduced ability of β cells to secrete 
insulin (Figure 3). This pathology is known as pancreatic endocrine dysfunction or DM[50,51].

DM is a complex and heterogeneous disorder defined by the presence of hyperglycemia[11] and can 
lead to life-threatening complications such as severe hypoglycemia or chronic micro- and macroan-
giopathic complications[52]. There are several types of diabetes, although type 1 DM (T1DM) and T2DM 
are the most common. The American Diabetes Association defines T1DM as the autoimmune 
destruction of β cells, usually leading to absolute insulin deficiency and T2DM as the progressive loss of 
insulin action in target tissues as well as a decrease in their secretion from β cells[53]. All cellular events 
are summarized in Figure 3.

INSULIN AND APPETITE REGULATION
The hypothalamus is the specific area of the brain where eating behavior is regulated, which is directly 
related to glucose homeostasis[54]. The hypothalamus is located around the third ventricle, below the 
thalamus and above the median eminence, one of the circumventricular organs in which the blood brain 
barrier is slightly modified with semi-permeable capillaries that allow selective exchange between 
molecules of the blood and cerebrospinal flow with the neurons of the hypothalamus[55,56]. This region 
is divided into several nuclei, among which the arcuate nucleus (ARC), paraventricular nucleus, ventro-
medial nucleus, dorsomedial nucleus and lateral area nucleus stand out[57,58]. The ARC is located very 
close to the median eminence. It is made up of first-order neurons that first receive signals from 
peripheral organs such as the stomach, adipose tissue and the pancreas[56,59].

Insulin is the signal derived from the pancreas in response to the presence of nutrients (glucose) in 
the bloodstream[54]. After being secreted from pancreatic β cells, insulin via the bloodstream reaches the 
hypothalamus crossing the median eminence or crossing the vascular endothelium via transport 
proteins or via the insulin receptor itself, which is assumed to also act as its transporter (mechanism not 
fully defined)[60,61].
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Figure 3 Insulin secretory dysfunction. Timeline of abnormalities in insulin secretion due to the most common causes, reflecting progressive deterioration in 
functional β cell mass. ER: Endoplasmic reticulum.

Insulin reaches the ARC and binds to its receptor in the first-order neurons. Once insulin binds to its 
receptor in the hypothalamus, it leads to rapid autophosphorylation of the insulin receptor, followed by 
tyrosine phosphorylation of insulin receptor substrates, which induces the activation of the PI3K/AKT 
and the mitogen-activated protein kinases (MAPK) cascades[61]. The PI3K/AKT pathway promotes the 
activation of the mammalian target of rapamycin complex 1/p70-S6 kinase[61,62], which is capable of 
phosphorylating AMP-activated protein kinase (AMPK) at serine 485/491 sites[63], reducing the ability 
of Ca2+/calmodulin-dependent kinase II to phosphorylate AMPK in the threonine 172 residue and 
resulting in the low expression of genes related to appetite induction (orexigenic), such as neuropeptide 
Y (NPY) and agouti-related protein (AgRP) in the ARC, the paraventricular nucleus and the lateral area 
nucleus, which decreases appetite[56,63,64].

Moreover, AKT induces the phosphorylation of the transcription factor forkhead box protein O1. 
When forkhead box protein O1 is phosphorylated it leaves the nucleus and therefore decreases the 
expression of genes that are activated by this factor, such as NPY and AgRP[56,64]. Therefore, insulin 
and the activation of it signaling pathway promotes an anorexigenic effect by inducing a decrease in the 
expression of the neuropeptides that induce appetite (NPY/AgRP).

Similar to insulin, another anorexigenic signaling pathway is activated by leptin[56,64]. Leptin is 
secreted from adipocytes in proportion to levels of body fat stores. Through the bloodstream it reaches 
first-order neurons, binds to its receptors and activates the Janus tyrosine kinase pathway and STAT3 
pathway. STAT3 is a transcription factor that stimulates the expression of the precursor neuropeptide of 
α-melanocyte-stimulating hormone, named proopiomelanocortin (POMC) and the transcript regulated 
by cocaine and amphetamines (CART). These neuropeptides exert an anorexigenic effect[56,64]. Leptin 
and insulin signaling converge in the activation of PI3K/AKT, thus the anorexigenic effect is enhanced 
since the expression of NPY/AgRP is decreased by insulin and leptin, while POMC/CART expression is 
increased by leptin[56,64,65].

POMC/CART are the main anorexigenic neuropeptides expressed in neurons of the first-order 
(named neurons POMC/CART). These neurons release multiple cleavage products of POMC, including 
α-melanocyte-stimulating hormone, that bind in the second-order neurons located in the paraventricular 
nucleus, dorsomedial nucleus, ventromedial nucleus and lateral area nucleus to activate downstream 
melanocortin receptors (MC3R/MC4R) to promote satiety and control eating behavior, glucose 
homeostasis and body weight[54,58,64,66].

In periods of fasting, when glucose decreases, the release of insulin in the pancreas also decreases, 
and consequently the expression of POMC and CART decreases along with the satiety effect[56]. 
Meanwhile, the concentrations of ghrelin, a hormone secreted in the stomach during periods of 
starvation, increase[67]. This hormone reaches ARC through the bloodstream to activate the growth 
hormone receptor 1a, a G protein-coupled receptor, for the release of the α subunit from the βγ subunits 
of G protein. The α subunit activates phospholipase C. Phospholipase C induces the production of 
diacyl glycerol and phosphoinositol triphosphate. Phosphoinositol triphosphate is a second messenger 
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that binds to its receptor in the ER and causes the release of Ca2+ into the cytosol[68]. Increasing Ca2+ 
activates the Ca2+/calmodulin-dependent kinase II, which phosphorylates AMPK in the threonine 172 
residue. AMPK activates transcription factors such as the cAMP-response element binding protein and 
forkhead box protein O1, which act on the promoter region of the NPY and AgRP genes, promoting 
their expression and inducing appetite[14,56].

NPY exerts its orexigenic effect on second-order neurons through stimulation of the Gi-coupled NPY 
family of receptors[66,69], mediating the inhibition of adenylate cyclase, decreased levels of cAMP[57,
70] and the activation of MAPK[61,70]. AgRP is a biased agonist of the melanocortin receptors (MC3R/
MC4R) and prevents the binding of α-melanocyte-stimulating hormone to these receptors, blocking the 
induction of satiety and driving sustained increase in food intake[66]. This constitutes an orexigenic 
signal.

Therefore, under normal physiological conditions, the release of the specific signal (inducing or 
inhibiting appetite) in the peripheral organs will depend on the metabolic state of the organism and will 
induce a response in the form of orexigenic or anorexigenic neurotransmitters in the hypothalamus[9,56,
64,66]. The strict regulation of these afferent and nutrient-related hormonal signals is necessary to avoid 
alterations in the regulation of appetite since an uncontrolled increase in POMC/CART would cause 
anorexia, but the uncontrolled increase in the expression of NPY/AgRP will generate hyperphagia, 
which due to excessive consumption of hypercaloric diets has been related to weight gain and obesity 
(characteristics that are linked to IR and T2DM)[9].

In studies in experimental models of hyperphagia and DM induced with streptozotocin, NPY/AgRP 
neurons are more active and the expression level of NPY and AgRP is increased, while POMC/CART 
neurons are less active and the expression level of POMC and CART is decreased. This change is 
explained in part to the inefficiency and/or deficiency of insulin[71,72] and leptin[73] and increased 
levels of circulating ghrelin[74,75].

During diabetic hyperphagia, high glucose intake will induce a proportional release of insulin from 
pancreatic β cells (hyperinsulinemia). The high concentration of insulin will induce the constant 
activation of the receptor at the cerebral and peripheral levels, which generates molecular and cellular 
regulation mechanisms such as: (1) Internalization of the receptor by clathrin-mediated endocytosis[76]; 
(2) Dephosphorylation in tyrosine residues of the insulin receptor by protein tyrosine phosphatase 1B, 
which is a nontransmembrane tyrosine phosphatase that acts as a potent negative modulator of insulin 
signaling by reversing insulin-induced phosphorylation in tyrosine residues and impairs insulin signal 
transduction; and (3) Phosphorylation on serine residues by serine-threonine kinases, such as JNK and 
the p38 MAPK[12,13]. This will generate a lack of response to the presence of the hormone (i.e. IR). At 
the level of the hypothalamus, this will decrease the activity of one of the pathways that induce satiety.

On the other hand, hyperphagia is often associated with the accumulation of visceral fat[77] and 
consequently elevated plasma leptin concentrations. This situation will induce the failure to respond to 
the hormone at central and peripheral levels, named leptin resistance[78,79]. In this way, there will be a 
decrease in the two central signals that induce satiety, favoring the persistence of hyperphagia and the 
onset of resistance to both hormones. This becomes a vicious circle: hyperphagia-hyperglycemia-
hyperinsulinemia/hyperleptinemia-insulin/leptin resistance-hyperphagia.

In addition, excessive consumption of carbohydrates (glucose and/or fructose), coupled with a lack 
of physical activity, will generate an increase in glucose uptake in all cells but mainly in cells that have 
glucose transporters that act independently of the presence or absence of insulin[9,13,14] transporters, 
such as GLUT1 and GLUT3, mainly present in the brain[80]. With excessive intake of carbohydrates, 
glycolysis will increase, and therefore the release of ROS (species produced normally in glycolysis) will 
increase progressively until they overcome antioxidant barriers and oxidative stress develops[13,14,81].

It has been reported that during oxidative stress there is the activation of stress-sensitive kinases 
(JNK, p38 MAPK) that induce phosphorylation of serine residues in the insulin receptor and in the 
insulin receptor substrates, which blocks the pathway of insulin signaling aggravating the condition of 
IR[12,13]. In addition, studies carried out in rat models fed with fructose and subjected to an environ-
mental stress protocol revealed that stress decreased body mass, adiposity and blood leptin level, 
decreased expression of the leptin receptor and POMC in the hypothalamus and led to a marked 
increase of AgRP, associated with AMPK phosphorylation and reduced Akt activity[14]. In parallel 
studies undertaken in normal rats, chronic blockade of hypothalamic insulin receptors caused 
hyperphagia and IR[82]. Furthermore, it has been reported that stimulation of hypothalamic insulin 
signaling would be sufficient to inhibit the glucose production in the liver through the intra-
cerebroventricular administration of agonists and antagonists of insulin signaling[83], combined with 
evidence that mice with neuron-specific insulin receptor deletion are overweight, insulin-resistant and 
glucose-intolerant. These data demonstrate that neuronal insulin signaling is required for intact control 
of both body fat mass and glucose homeostasis[9]. Consequently, chronic stress can dysregulate the 
hypothalamus-adipose tissue[14,84] and hypothalamus-pancreas[64] axis over time, which affects 
glucose metabolism, promotes IR and influences multiple appetite-related hormones in the hypo-
thalamus[64,84].

On the other hand, the effect of insulin has not only been studied in the hypothalamus at the level of 
glucose homeostasis. It has also been shown that the administration of insulin into the hippocampus of 
rats promotes Akt-dependent translocation of GLUT4[85]. Furthermore, hippocampal-specific 
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Figure 4 Insulin promotes decreased appetite in the arcuate nucleus. Insulin is secreted by the  cells of the pancreas and through the circulation 
reaches the arcuate nucleus of the hypothalamus. It binds to its receptor on first-order neurons, triggering the phosphatidylinositol-3-kinase/protein kinase B signaling 
pathways and forkhead box protein O1 repression, resulting in decreased expression of neuropeptide Y (NPY) and agouti-related protein resulting in an anorexigenic 
effect. Like insulin, leptin activates anorexigenic signaling pathways by binding to its receptor, which activates the Janus tyrosine kinase/signal transducer and 
activator of transcription pathway, promoting the expression of the anorexigenic peptide precursor neuropeptide of α-melanocyte-stimulating hormone and transcript 
regulated by cocaine and amphetamines and with it the release of the α-melanocyte-stimulating hormone that activates the melanocortin receptors (MC3R/MC4R) in 
the neurons of the second order. Together, insulin and leptin signals amplify the anorexigenic effect. During fasting periods, ghrelin activates the growth hormone 
receptor 1a and promotes the activation of the adenosine monophosphate-activated protein kinase pathway that promotes the expression of NPY/agouti-related 
protein, stimulates orexigenic receptor Gi-coupled NPY in second-order neurons and prevents α-melanocyte-stimulating hormone from binding to melanocortin 
receptors (MC3R/MC4R), driving the orexigenic signal. 3V: Third ventricle; DAG: Diacylglycerol; IP3: Inositol triphosphate; IP3R: Inositol triphosphate receptor; ME: 
Median eminence; PLC: Phospholipase C; ROS: Reactive oxygen species.

suppression of insulin signaling reduces long-term potentiation in the hippocampus and significantly 
impairs memory and learning ability[86]. In hypothalamic neurons they have an important effect on 
body thermoregulation by signaling with brown adipose tissue[87]. Therefore, the effect of insulin at the 
brain level has been fully established. All cellular and molecular events are summarized in Figure 4.

THERAPEUTIC CONSIDERATIONS
Medical therapy is the first step to achieve adequate control of complications related to alterations in 
insulin secretion. Considering that DM is the main pathology related to this alteration, therapeutic 
treatments are focused on reducing hyperglycemia as well as stimulating the production and secretion 
of insulin in the  cells of the pancreas and its signaling in the different tissues.



De la Cruz-Concepción B et al. Insulin: Pancreas and hypothalamus

WJD https://www.wjgnet.com 85 February 15, 2023 Volume 14 Issue 2

For T1DM, characterized by the destruction of the  cells of the pancreas by autoantibodies as well as a 
decrease in the production and secretion of insulin, the first-line treatment is the administration of non-
endogenous insulin[88]. Regarding T2DM, there are various therapeutic approaches, starting with 
improving eating habits[89] and increasing physical activity, which results in improving insulin 
sensitivity and helps control blood glucose[90]. When the above does not help control hyperglycemia, 
the therapeutic approach is based on the use of conventional drugs such as sulfonylureas (inducing 
insulin release from  cells of the pancreas), biguanides (inducing glucose uptake by cells that are not 
insulin-dependent and reducing hepatic glucose production) and alpha-glucosidase inhibitors (blocking 
the absorption of glucose in the intestine)[91].

Currently, the use of incretin-based therapy has been implemented. Incretins are enteroendocrine 
hormones released after nutrient intake that stimulate glucose-dependent insulin secretion from β cells. 
To date, two incretins have been identified, glucose-dependent insulinotropic polypeptide (GIP) and 
GLP-1. In mice, deficiencies in GIP and GLP-1 secretion are associated with decreased insulin response 
and impaired glucose tolerance. In this context, the overexpression of GIP or GLP-1 improves β cell 
function and glucose tolerance, and enhances insulin sensitivity. However, GIP also has an obesogenic 
effect, at least in animal models. Therefore, investigations have focused on GLP-1, specifically on its 
receptor. Agonists for GLP-1 receptor activation have recently been used. These include liraglutide, 
albiglutide, dulaglutide and semaglutide, and the results have been favorable for the management of 
DM[92].

On the other hand, the importance of finding new therapies that help improve disease control and the 
use of nutraceuticals has been increasing in recent years[93]. A positive effect has been reported in 
compounds such as melatonin[94], aloe vera extract[95] and hibiscus sabdariffa leaf extract[96]. They 
have regenerated pancreatic β cells and enhanced insulin secretion in streptozotocin-induced diabetic 
animal models. In patients with metabolic syndrome, a nutraceutical diet composed of barberine, 
policosanol, red yeast rice or tocotrienols significantly reduced the Homeostatic Model Assessment for 
IR index, leading to the conclusion that they have beneficial effects on IR[97,98].

Resveratrol, a polyphenol, found in many types of red fruits, has beneficial effects both in vivo and in 
vitro, showing great antioxidant capacity while improving insulin sensitivity[99,100]. Resveratrol is 
capable of activating the AKT pathway to stimulate insulin action[15]. The activation of sirtuin-1/
AMPK has also been reported[101], which has a positive impact on mitochondrial biogenesis, inhibition 
of lipogenesis and fatty acid oxidation[102] and improves insulin sensitivity in DM[103,104].

Another antioxidant compound that has been less studied than resveratrol but with positive effects in 
models of obesity[105] and diabetes[106] has been curcumin, a non-flavonoid polyphenol[107]. In 
diabetic animal models, curcumin improves insulin sensitivity and increases glucose uptake. This 
mechanism is mediated by the liver kinase B1-AMPK pathway. Adding curcumin induced an increase 
in fatty acid oxidation, an event that improves insulin sensitivity[108]. At the brain level, curcumin 
increases glucose metabolism and improves the insulin signaling pathway, improving learning and 
memory[16] both under non-pathological conditions and in Alzheimer’s disease[109]. Currently there 
are several studies on the use and beneficial effects of a wide variety of nutraceuticals, which are 
described in Table 1.

CONCLUSION
Insulin is a peptide hormone that plays an important role in various organs: in pancreas it participates 
in glucose homeostasis; in muscle it promotes glucose metabolism for energy generation and storage; in 
the vascular system it exerts an anti-atherogenic effect and participates in bone formation; in liver it 
decreases gluconeogenesis and favors glucose storage through glycogenesis; in adipose tissue it induces 
lipogenesis; and in brain it activates thermogenesis, regulates appetite, participates in glucose 
homeostasis and metabolism, reduces long-term potentiation and impairs memory and learning ability. 
Alterations in secretion or function of insulin considerably alter the cellular events regulated by the 
activation of its signaling pathway. Obesity and DM are pathologies associated with alterations in the 
function and secretion of insulin. In these pathologies, oxidative stress plays an important role since the 
uncontrolled increase in ROS derived from the increase in glycolysis due to the constant entry of 
glucose into the cells overcomes the antioxidant defenses. ROS induces alterations in insulin signaling 
and triggers a cascade of cellular alterations in various organs. Specifically in the hypothalamus, it can 
be the inducer of hyperphagia, which aggravates the diabetic condition and obesity. The use of antiox-
idants can be a complementary strategy to conventional treatment of DM.
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Table 1 Mechanism of action of nutraceuticals

Nutraceutical Mechanism of action Study model Ref.

Resveratrol Reduces blood glucose and serum insulin levels, 
improves insulin and glucose tolerance, increases 
Sirt1, p-AMPK, p-IRS1 and p-AKT levels in liver

Mice, KKAy [110]

Enhances peripheral insulin signaling in diabetic mice 
in association with PTBP1 inhibition

Mice deficient in IRS2 (Irs2 -/-) 
and injected with STZ

[111]

Reduces stress on the endoplasmic reticulum, thus 
improving insulin sensitivity and glucose levels

Mice C57BL/6J on a HFD [112]

Regulates protein expression of insulin receptor and 
GLUT4

Rat, Goto-Kakizaki [113]

Counteracts insulin resistance caused by hyperinsu-
linemia by activating AMPK and regulating GLUT4 
translocation in muscle cells

L6 cell line [114]

Reduces insulin levels and the HOMA-IR index Patients with T2DM [115]

Curcumin As a pretreatment, it protects pancreatic islets from 
cytokine-induced death

Mice, C57BL/6J [116]

Protects pancreatic islets from glycolipotoxicity by 
inhibiting oxidative stress and NADPH oxidase 
activity

Rats, Sprague-Dawley [117]

Improves insulin sensitivity and energy metabolism 
through the FNDC5/p38 MAPK/ERK pathways

Mice, C57BL/6J [118]

HOMA-IR index decreases Patients with T2DM [119]

Garlic Decreases serum insulin level, HOMA-IR index and 
appetite

Patients with metabolic syndrome [120]

Rhizoma polygonati odorati extract Regulates serum insulin, adiponectin and leptin levels 
in mice on an HFD

Mice, C57BL/6 [121]

Diospyros kaki (persimmon) extract Increases the number of pancreatic islets, decreases 
the expression of TNFα and IL-6, which interferes with 
insulin action

Zebra fish [122]

Morus alba leaves Decreases in the fasting insulin level and the HOMA-
IR index, resulting in decrease of insulin resistance

Mice, C57BL/6 with HFD and STZ [123]

Hydrolyzed pea protein Enhances insulin-stimulated phosphorylation of AKT 
and FOXO1, increases IRS1 expression

Cells AML-12 [124]

Avocado oil Improves insulin and glucose sensitivity Mice, C57BL/6J [125]

Eugenol Improves glucose uptake in muscle, by insulin-
independent pathway CaMKKβ/AMPK/GLUT4.

Mice, C57BL/6N with HFD and 
STZ

[126]

Okra leaf extract (Abelmoschus 
esculentus)

Regulates blood glucose level, food intake and 
changes in body weight 

Wistar rats with STZ [127]

AKT: Protein kinase B; AML-12: Alpha mouse liver 12 cells; AMPK: Adenosine monophosphate-activated protein kinase; CaMKKβ: Ca2+/calmodulin-
dependent kinase β; FNDC5: fibronectin type III domain containing 5; ERK: Extracellular signal-regulated kinase; FOXO1: Forkhead box protein O1; 
GLUT4: Glucose transporter 4; HFD: High-fat diet; HOMA-IR: Homeostatic Model Assessment of Insulin Resistance; IL-6: Interleukin-6; IRS1: Insulin 
receptor substrate 1; MAPK: Mitogen-activated protein kinases; NADPH: Nicotinamide adenine dinucleotide phosphate reduced; PTBP1: Polypyrimidine 
tract-binding protein 1; Sirt1: Sirtuin 1; STZ: Streptozotocin; T2DM: Type 2 diabetes mellitus; TNFα: Tumoral necrosis factor alpha.
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Abstract
Several epidemiological studies have clearly identified diabetes mellitus (DM) as a 
major risk factor for cognitive dysfunction, and it is going to be a major public 
health issue in the coming years because of the alarming rise in diabetes 
prevalence across the world. Brain and neural tissues predominantly depend on 
glucose as energy substrate and hence, any alterations in carbohydrate meta-
bolism can directly impact on cerebral functional output including cognition, 
executive capacity, and memory. DM affects neuronal function and mental 
capacity in several ways, some of which include hypoperfusion of the brain 
tissues from cerebrovascular disease, diabetes-related alterations of glucose 
transporters causing abnormalities in neuronal glucose uptake and metabolism, 
local hyper- and hypometabolism of brain areas from insulin resistance, and 
recurrent hypoglycemic episodes inherent to pharmacotherapy of diabetes 
resulting in neuronal damage. Cognitive decline can further worsen diabetes care 
as DM is a disease largely self-managed by patients. Therefore, it is crucial to 
understand the pathobiology of cognitive dysfunction in relation to DM and its 
management for optimal long-term care plan for patients. A thorough appraisal of 
normal metabolic characteristics of the brain, how alterations in neural 
metabolism affects cognition, the diagnostic algorithm for patients with diabetes 
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and dementia, and the management and prognosis of patients when they have this dangerous 
combination of illnesses is imperative in this context. This evidence-based narrative with the back-
up of latest clinical trial reviews elaborates the current understanding on diabetes and cognitive 
function to empower physicians to manage their patients in day-to-day clinical practice.

Key Words: Diabetes mellitus; Dementia; Cognitive function; Antidiabetic medications; Hyperglycemia; 
Hypoglycemia

©The Author(s) 2023. Published by Baishideng Publishing Group Inc. All rights reserved.

Core Tip: Diabetes mellitus (DM) is a huge risk factor for cognitive dysfunction especially when the 
glycemic control is inadequate with marked hyperglycemia and recurrent hypoglycemia. Apart from 
cognitive decline inherent to the disease, presence of other forms of dementia can adversely affect diabetes 
control and consequently, negatively impact the care of dementia and DM. Appropriate control of DM 
with a multidisciplinary team approach involving diabetologists, dementia specialists, dieticians and 
physiotherapists should improve the clinical outcomes of either disease. Judicious and evidence-based 
adjustments in the antidiabetic medications appropriately tailored for individualised diabetes care with due 
consideration of patient’s age, severity of dementia and other comorbidities should help to improve care of 
patients with diabetes and dementia.

Citation: Sebastian MJ, Khan SK, Pappachan JM, Jeeyavudeen MS. Diabetes and cognitive function: An evidence-
based current perspective. World J Diabetes 2023; 14(2): 92-109
URL: https://www.wjgnet.com/1948-9358/full/v14/i2/92.htm
DOI: https://dx.doi.org/10.4239/wjd.v14.i2.92

INTRODUCTION
Diabetes mellitus (DM) has become a major cause of chronic disease morbidity in the past few decades, 
and according to the International Diabetes Federation data in the year 2021, approximately 537 million 
adults across the globe live with the disease[1]. DM can affect any organ system in the body, especially 
neural tissues and cerebrovascular structures causing various structural and functional disorders of the 
nervous system. Abnormalities in glucose metabolism including fasting and post-prandial hyp-
erglycemia, prediabetic state and frank diabetes can result in neural dysfunction and various acute and 
chronic nervous system disorders including cognitive decline[2]. Cognitive dysfunction of chronic (and 
usually irreversible) nature that affects the usual intellectual performance of an individual is considered 
as dementia.

The World Health Organization (WHO) defines dementia as “a syndrome in which there is deteri-
oration in cognitive function beyond what might be expected from the usual consequences of biological 
ageing”. According to the latest estimates of WHO, more than 55 million people live with dementia, and 
about 10 million new cases added to this pool every year[3]. Although dementia often affects the elderly 
individuals, it is not an unavoidable consequence of biological ageing process. Dementia not only affects 
the physical, economic, and psychosocial functioning of the individual with the disease but also hugely 
impacts the carers, families, and the society, and therefore strains the healthcare systems at large.

Based on strong scientific evidence, DM is now identified as one of the major causes, and a potentially 
modifiable risk factor for the development dementia[2,4,5]. A recent meta-analysis of 122 studies 
observed that DM poses 1.25- to 1.91-fold higher risk for cognitive impairment and dementia[4]. The 
study also observed an elevated risk of dementia among subjects with prediabetes, fasting and 
postprandial hyperglycemia, elevated hemoglobin A1c (HbA1c) and those with abnormal fasting 
plasma insulin levels. Therefore, it is important to understand the pathobiology of diabetes and 
cognitive dysfunction to develop appropriate clinical algorithms for management of both the entities in 
day-to-day clinical practice which is the theme of discussion in this evidence-based review.

REVIEW METHODOLOGY
To compile most up-to-date and the best evidence on the topic of discussion, we performed a PubMed 
literature search to procure currently available best evidence. For this we used the MeSH terms/key 
words: “brain metabolism”, “cognition/cognitive function”, “cognitive dysfunction”, “dementia”, 
“memory loss/memory impairment”, “diabetes mellitus” “type 2 diabetes mellitus/T2DM/T2D”, “type 
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1 diabetes mellitus/T1DM/T1D”, “pathobiology”, “pathophysiology”, “neuroimaging”, “lifestyle 
intervention”, “exercise”, “diet”, “antidiabetic medications”, “insulin” “pharmacotherapy”, “bariatric/
metabolic surgery”, “prognosis”, “clinical trials” and “diabetes technology”.

The first two authors performed the initial literature search with guidance from the last two authors 
for initial drafting of the paper with an up-to-date search performed on 10th December 2022 for revising 
the paper after receiving the reviewer comments from the Journal. We used the Boolean search strategy 
using terms ‘AND’ or ‘OR’ where necessary to limit the search output to screen relevant abstracts from 
the web. We limited our literature review to articles published in English language. We used data and 
points from the most recent systematic reviews, randomised controlled trials (RCTs), clinical practice 
guidelines, and high-quality review articles to compile the best evidence available to us on DM and 
cognitive function to write the revision of this narrative review article.

ENERGY METABOLISM IN THE BRAIN
Although brain can use various metabolic substrates for energy production and utilisation, it predom-
inantly uses glucose as the substrate for intermediary metabolism under normal physiological 
conditions[6,7]. The neuronal functions such as motor commands, sensory perceptions, memory storage, 
and intellectual output are highly dependent on the basal and on-demand metabolic activity of brain 
tissue. A graphical representation of normal neuronal glucose utilisation is shown in Figure 1.

Astrocytes, the supportive glial cells of the brain, normally take up glucose from circulating blood in 
the cranial arteries to provide energy substrate to brain for its neural functions and behavioral responses
[8]. This astrocyte function as such is under the neuronal control through specific neurotransmitters and 
their receptors. Experimental animal models revealed that activation of such receptors (for e.g., type-1 
cannabinoid receptors associated with mitochondrial membranes in mouse astroglial cells) hampers the 
brain glucose metabolism with the production of lactate, resulting in alterations in the neuronal 
functions such as impairment of behavioral responses in social interaction assays[8]. These receptors are 
potential future targets for genetic and pharmacological manipulation for modulating such responses.

The energy metabolism of brain is highly variable in different areas depending on the neural 
functions and output of these regions. Most of the neural energy consumption is at the synaptic level for 
signal production and transmission along with the restoration of membrane potentials after depolar-
isation[9,10]. A good proportion of brain energy utilization is also for the synthesis of neurotransmitters, 
axoplasmic transport and the recycling of synaptic vesicles[10-12]. Overall, brain requires about 20% of 
the total oxygen and 20%-25% of glucose consumption of the body at rest, though the weight of human 
brain is only about 2% of the body weight[13-15]. However, during situations of stress and higher 
mental functions involving complex behavioral tasks, the metabolic demand increases further.

To facilitate optimal function of brain areas depending on the degree of neuronal output, supply-
according-to-demand mechanisms have evolved through neurovascular and neurometabolic coupling 
for efficient substrate supply to the brain for fuelling intermediary metabolism[10]. Neurovascular 
coupling involves increase in blood flow and volume to improve glucose and oxygen supply to the 
areas of excess neuronal activity following stimulation, while neurometabolic coupling involves the 
changes in substrate utilization of astrocytes (predominantly by glycolysis) and neurons (predominantly 
by oxidative metabolism). These mechanisms are developed over centuries of genetic and metabolic 
adaptations in the evolution of the highly performing intellectual brain of modern man.

Metabolic adaptations of brain
As mentioned above, metabolic activity of the brain varies depending on its neural output for various 
biological tasks of daily life. Mitochondria are the powerhouses of brain’s energy production as in other 
body cells, and therefore alterations in mitochondrial function can affect the intellectual performance of 
human brain in health and disease[15,16]. Mitochondria also functions as mediators of cellular 
“allostasis”, a process of physiological adaptation of cells in response to various stressors[17]. By its 
bidirectional communication between stressors and stress mediators, mitochondria confer protective 
adaptive responses in the cells during period of acute stress[15]. “Neuronal plasticity”, the physiological 
changes in neural electrical adaptive responses in response to various stimuli, is largely mediated 
through these metabolic adaptations at the mitochondrial level. However, chronic stressors of any 
category including alterations in glucose metabolism as observed in chronic hyperglycemia, 
hypoglycemia, and DM, can cause mitochondrial damage, resulting in neural dysfunction. These 
metabolic and nonmetabolic chronic stressors result in an “allostatic overload” causing mitochondrial 
dysfunction and various neurological disorders consequently[15,18].

Although glucose is the predominant energy substrate for human brain in physiological states, brain 
can use alternate fuels such as ketone bodies, lactate, and medium chain triglycerides when the body’s 
glucose supply to brain is depleted as in periods of fasting and starvation[19,20]. This imply that the 
adaptive metabolic neural responses in relation to fasting and nutrient deprivation may have major 
biological impacts on brain function including cognition and intellectual performance. Recent evidence 
reveals that improvements in cognitive function, neuronal plasticity, and the resistance of brain to injury 
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Figure 1 Neuronal utilisation of glucose under normal resting condition. G-6-PO4: Glucose 6-phosphate; BBB: Blood brain barrier; TCA: Tricarboxylic 
acid; GLUT: Glucose transporter; MCT2: Monocarboxylate transporter.

and disease occur in response to fasting and calorie restriction[20-22]. On other hand, over-fuelling as in 
metabolic disorders can result in disease states including neurodegeneration and dementia. Various 
changes in the central neural circuitry in response to dietary alterations may also modify the gut-brain 
axis which in turn alter the feeding behavior impacting the metabolic adaptation of brain as evidenced 
by recent scientific data[23].

BRAIN METABOLISM AND COGNITION
Intellectual capacities of human brain such as memory, mathematical performance, cognition, language, 
and executive functions are highly dependent on the degree of cerebral metabolic activity[10]. 
Therefore, any gross alterations in the metabolic milieu of brain are associated with marked changes in 
the neurocognitive balance in health and disease. Recent evidence suggests that there is a significant 
reduction in the glucose metabolism and functional connectivity between the intrinsic connectivity 
networks of brain with ageing, which would explain the age-related cognitive decline and decline in 
executive functions[24].

Lactate, another energy substrate of the brain, was also recently found to alter neurocognitive 
functions[25]. This by-product of intermediary metabolism was shown to increase transcription of brain-
derived neurotrophic factor in neural cells and neuroglia. Lactate derived from “aerobic glycolysis” by 
astrocytes was found to enhance memory acquisition and learning-dependent synaptic plasticity in 
experimental mouse models[26] as shown in Figure 1. The energy demand of brain is often not 
adequately met by glucose supply from cranial circulation alone during exercise as glucose utilization 
by skeletal muscles increases substantially. In such situations, brain utilization of locally produced and 
muscle-derived lactate increases markedly to maintain metabolic demand for the enhanced neural 
synaptic activity[25].

Marked alterations in the metabolic activity of different areas of human brain is observed in various 
neurodegenerative disorders. For e.g., in diseases such as Parkinson’s disease (PD), Alzheimer’s disease 
(AD), and Lewis body dementia (LBD), the inferior parietal lobe was shown to have reduced glucose 
metabolism and perfusion defects[27-29]. These disorders are associated with significant reduction in 
cognitive function implying that the metabolic dysfunction has a contributory role in such cognitive 
decline.

DIABETES AND BRAIN DISORDERS
Glucose being the predominant metabolic substrate for the brain in normal physiological states, 
abnormalities in glucose homeostasis in diabetes is associated with marked changes in the structural 
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and functional alterations in the brain. Moreover, several brain areas such as hippocampus are very 
sensitive to local alternations in glucose metabolism inherent to diabetes which may result in neuronal 
synaptic reorganization[30], and augmented astrocyte proliferation[31]. These in turn can result in 
cognitive decline of diabetes especially because glucose and insulin are instrumental regulators of 
cognitive function[32].

There is a well-recognized association between higher glucose levels and the risk of dementia among 
individuals with or without diabetes as shown by Crane et al[33] in 2013. They observed an 18% higher 
risk of dementia at 5 years among subjects with a glucose level of 6.4 mmol/L compared to those with a 
glucose level of 5.5 mmol/L in nondiabetics while the risk of dementia was 40% higher among diabetics 
with glucose level 10.5 mmol/L compared to those with a level of 8.9 mmol/L. This study clearly 
demonstrates the linear relationship between higher ambient glucose levels in the central nervous 
system (CNS) and its potential long-term toxic effects on neurodegeneration resulting in dementia. 
Another study from the United States also showed a similar risk of cognitive decline (19% excess risk) 
among patients with diabetes at 20 years compared to nondiabetic individuals[34]. This large cohort 
study also revealed excess dementia risk among prediabetics, and the duration of abnormal glycaemia 
had an impact on the degree of cognitive decline in patients with diabetes.

Although the presumed genetic association between type 2 DM (T2DM) and AD (also known as type 
3 diabetes) was recently refuted by a well-designed linkage analysis study[35], the two diseases appear 
to have a strong epidemiological link probably from a causal role of worsening AD in patients with 
diabetes[36-38]. The metabolic dysregulation within the CNS may accelerate the progression of AD and 
would explain this association. Even though LBD is found to have no direct association with diabetes
[39,40], cognitive decline can be rapid in diabetics with LBD as these patients may not be on appropriate 
treatment[40]. Diabetes significantly increases the risk of vascular dementia (VaD) owing to the very 
strong association with cardiovascular disease (CVD), and stroke[41-44]. Regardless of the aetiology of 
dementia, care of diabetes and that of dementia can be challenging when these diseases co-exist 
especially in elderly individuals.

Pathophysiology central nervous system disease in diabetes
One of the putative mechanisms for cognitive dysfunction in T2DM is insulin resistance (IR) in the brain
[45,46]. Neuronal cells express insulin receptors for its normal functions such as synaptic density and 
plasticity of dendrites[46,47]. Through various complex mechanisms, insulin receptor signaling 
improves synaptic and dendritic functions in the CNS to improve cognitive performance[46]. Therefore, 
central IR in T2DM is often associated with impaired cognitive function. The balance between central 
insulin sensitivity and IR have also been implicated in the feeding behaviour, satiety and development 
of obesity in experimental models[46,48,49]. Overnutrition and obesity, which usually lead on to T2DM, 
were found to be associated with disruption of the blood brain barrier leading to a state of neuroinflam-
mation which in turn results in cognitive dysfunction[46,50,51]. Overnutrition also results in morpho-
logical alterations in the hypothalamic neural circuitry that may augment overeating behaviour as a 
vicious circle aggravating obesity-related pathobiological states[46]. Alterations in gut microbiome 
commonly observed as part of the adverse eating habits are also associated with CNS neural changes 
causing cognitive decline[46,52].

Recurrent hypoglycemia is a common consequence of advanced diabetes especially those on insulin 
and sulphonylurea. Brain being an organ predominantly using glucose as its metabolic fuel, can have 
gross impact of hypoglycemic episodes especially when recurrent. The hypoglycemia awareness, partly 
evoked by neuroglycopenia, gradually diminishes as an adaptive response of recurrent hypoglycemia 
which will aggravate future risk of more severe hypoglycemic episodes and the consequent complic-
ations[53]. Hypoglycemia-induced oxidative stress and neural inflammation can result in structural and 
functional alterations in vulnerable brain areas causing cognitive impairment[53-55]. Diabetes-induced 
vasculopathy affects the CNS circulation altering the cerebral blood flow remarkably. Both micro- and 
macrovascular damage involving the cranial vascular bed from accelerated atherosclerotic process 
inherent to diabetes are associated with neurocognitive decline and VaD[56-58]. Occurrence of microin-
farcts and full-blown strokes are characteristics of longstanding diabetes[56]. Diabetes is identified as 
one of the most important causes of VaD mandating early diagnosis and proper management to reduce 
this potential consequence of the disease. A graphical representation of cognitive dysfunction in 
diabetes is shown in Figure 2.

DIABETES AND COGNITIVE DYSFUNCTION - DIAGNOSTIC EVALUATION
Appropriate diagnostic work up of cognitive dysfunction is especially important in patients with 
diabetes when compared to other medical problems as management of this metabolic disorder is largely 
patient-centred with regular glucose self-monitoring, and self-administration of medications including 
insulin injections. No other human disease needs such intense self-engagement as in diabetic patients 
for self-monitoring the metabolic parameters, medication compliance, dietary adjustments, and physical 
activities. Therefore, alterations in the mental functions can have a huge impact on diabetes control 
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Figure 2 A graphical representation of the pathobiology of cognitive dysfunction in patients with diabetes. TIA: Transient ischemic attack.

which may further affect the cognitive balance in a vicious circle[59,60].

Biochemical evaluation
Periodic measurement of glycated HbA1c is the usual biochemical parameter that enable us to monitor 
long-term diabetes control in a patient with stable glucose levels without marked fluctuations in daily 
glycemia. HbA1c level reflects the average glycemic state over a period of 120 d, and therefore wouldn’t 
always reflect good diabetes control in those with marked variability of glycemia as in patients having 
recurrent hypoglycaemia alternating with hyperglycaemia. Moreover, HbA1c levels can vary markedly 
in several conditions such as hemoglobinopathies, chronic kidney disease (CKD), anaemias and use of 
various medications[61]. Understanding these caveats of monitoring, appropriate use of HbA1c help us 
to get a reasonable measure of optimal diabetes management in patients with cognitive dysfunction.

If HbA1c is unreliable as in the situations mentioned above, an alternative biochemical test such as 
fructosamine test may be useful[61,62]. If there is an option for daily monitoring of capillary blood 
glucose (CBG) on multiple occasions, it provides the best chance of control of glycemia in patients with 
memory impairment[60]. Moreover, such monitoring would also enable us to optimise glycemic control. 
Newer glucose monitoring devices also enable calculation of predicted HbA1 levels which can be 
compared with the measured HbA1c to have idea about the reliability of the test.

Exclusion of other causes cognitive dysfunction such as thyroid disease, vitamin deficiencies and liver 
disorders by appropriate biochemical and hormonal evaluation is mandatory as part of initial 
evaluation and follow up care as and when necessary. As these diseases can often co-exist in some 
patients with diabetes, prompt testing would help timely diagnosis and appropriate management.

Neuroimaging
Neuroimaging is an integral part of routine initial evaluation of cognitive dysfunction in any individual 
to exclude structural abnormalities of the brain. Again, when there is a rapid unexplained decline in 
cognition without a clear identifiable reason in patients with known dementia, neuroimaging is 
warranted to exclude such abnormalities. Even minor unnoticed trauma can be associated with 
intracranial bleeds in elderly individuals which can be associated with rapid decline in memory 
function indicating urgent neuroimaging. Amyloid angiopathy is another disorder associated with 
spontaneous intracerebral bleed which may present similarly with an indication for urgent imaging 
studies[63].

Computed tomography scan is the usual first line imaging modality in most centres as it is cost 
effective, easily available, and provides reasonable sensitivity for initial evaluation of most major 
structural lesions such as stroke, tumors and hematomas[63-65]. Magnetic resonance imaging and 
positron emission tomography may be necessary for further evaluation of patient’s with cognitive 
dysfunction for accurate diagnosis of the pathological entity and for follow up management[66,67]. In 
the evaluation and follow up of patient’s with diabetes and cognitive dysfunction, imaging studies are 
indicated to exclude the possibility of development of such structural abnormalities described above or 
the co-existence of other disease entities such as AD, LBD or VaD.
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MANAGEMENT OF DIABETES IN DEMENTIA
Owing to the risks associated with hypoglycemia in dementia patients, tight glycemic control is not 
usually recommended as in a patient without memory problems. Acceptable glucose and HbA1c targets 
are usually set by healthcare providers depending on the degree of cognitive impairment and other 
associated co-morbidities in the patient. Patient’s ability for CBG monitoring, and antidiabetic 
medication self-administration should be assessed promptly on periodic basis to optimise glycemic 
management. Individualised glycemic targets should be set with due consideration of patient’s situation 
and comorbid illnesses such as CKD, heart disease and hypoglycemia awareness. If self-care of diabetes 
is an issue, ensuring of regular assisted care by family members or by care providers becomes essential. 
In situations where these are not feasible, institutionalised care is recommended.

How diabetes management impacts dementia
Optimal diabetes care was found to be associated with better cognitive outcomes in patients with 
established dementia based on the data from multiple studies[68-70]. As discussed earlier, the glycemic 
load and IR in areas of brain associated with processing, storage and retention of memory has impact on 
cognition and therefore, optimising glycemic management may have significant influence on prognosis 
of patients with dementia. Prevention of marked hyperglycemia with appropriate adjustments of 
glycemic management should be tailored to suit the individual requirements of the patient on periodic 
basis to achieve this goal. While attempting to prevent marked hyperglycemia, all necessary precautions 
should be taken to prevent hypoglycemic episodes which can negatively impact on neurocognitive 
function[70,71]. Therefore, immediate and long term targets on clinical and biochemical parameters 
should be set periodically for glycemic and diabetes control in every patient with established cognitive 
dysfunction.

Dietary management
Dietary adjustment to optimise adequate nutritional supply while avoiding marked glycemic fluctu-
ations is the corner stone of management of any form of diabetes in patients with the disease. This 
principle is equally important in patients with diabetes and dementia as nutritional deficits may have a 
negative impact on neurocognitive outcomes whereas appropriate nutritional interventions may have 
beneficial effects[72]. Low carbohydrate, high fibre diets with proteins and fat in moderation may be 
entirely appropriate to dementia patients as in normal subjects though palatability and refusal of timely 
intake of food can pose problems especially in advanced stages of the illness. A diet plan with due 
consideration of the sociocultural factors should help to improve adherence to such dietary 
interventions in cognitively impaired individuals with DM as in normal diabetic patients[73].

Physical activities
Regular moderate intensity physical activity is an integral part of daily management of any individual 
with DM. Physical activity improves skeletal muscle metabolism which in turn reduces the IR and 
insulin sensitivity and therefore improves diabetes and cardiometabolic parameters. As most patients 
with dementia are older individuals, exercise interventions may also improve sarcopenia associated 
with old age[74,75]. Such interventions improve the cognitive function and also reduce risk of imbalance 
of ageing and consequent falls. As the metabolism improves with exercise interventions, the diabetes 
management regime needs to be periodically revisited to avoid the risk of hypoglycemia. Multiple 
studies clearly demonstrated the remarkable benefits of exercise interventions on long term diabetes 
control, cognitive functions, and even risk of hypoglycemia in patients with dementia[76-78]. Therefore, 
an appropriate physical activity program should be considered for all patients with dementia to 
optimise the management with due consideration of the exercise capacity, co-morbidities and patient 
cooperation.

Optimising drug therapy
All patients with type 1 DM (T1DM) at onset of the disease, and most patients with T2DM at some stage 
of the disease would require pharmacotherapy for management of hyperglycemia. Insulin treatment is 
an absolute requirement for patients with T1DM from the diagnosis whereas many patients with T2DM 
are largely managed by noninsulin pharmacotherapy. Compliance with medical management can be a 
major issue in dementia patients with marked memory impairment complicating diabetes care. 
Therefore, healthcare providers’ responsibility is greater in managing such patients while ensuring 
adequate glycemic care with the avoidance of over-/undertreatment associated with significant 
morbidity and even mortality risks.

Insulin and insulin secretagogues (e.g., sulphonylurea and meglitinides) can be associated with 
significant risk of hypoglycemia while combination treatment of these with other molecules such as 
metformin, dipeptidyl peptidase-4 inhibitors (DPP-4i) and glucagon like peptide-1 receptor agonists 
(GLP-1RA) may potentiate the risk of hypoglycemia. The use of latter two molecules may have a 
beneficial effect in slowing down the cognitive decline in patients with dementia as revealed by a recent 
meta-analysis[79]. A detailed appraisal of treatment with individual antidiabetic agent in managing 
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patients with dementia is beyond the scope of this review and therefore, readers are recommended to 
follow standard guidelines with consideration of individual patient characteristics based on the broad 
principle of avoiding hypoglycemia while optimising glycemic control.

Bariatric surgery
Bariatric procedures are associated with massive improvements in obesity and are the best available 
treatment modality for patients with obesity especially when associated with comorbidities such as 
T2DM. A significant proportion of patients achieve remission or reversal of T2DM. Metabolic surgery 
has been found to be associated with remarkable improvements cognitive function in patients with 
memory deficits in various observational studies[80-82]. However, with the currently available data, it is 
difficult to make firm recommendations in the absence of large scale long term follow up data based on 
RCTs.

Impact of dementia on diabetes care: Gradual decline in the memory deficits over time is the usual 
long-term consequence of all forms of irreversible dementia. Worsening memory is expected to have a 
huge impact on diabetes care especially when patients self-manage their diabetes. Medication 
compliance issues with inappropriate meal timings and improper administration of antidiabetic 
medications can adversely affect glycemic care with further decline in memory function. The resultant 
fluctuations in glycemia with uncontrolled hyperglycemia and recurrent hypoglycemic episodes will 
worsen diabetes-related complications and cause rapid decline in the neurocognitive functions[83].

Medication compliance
Memory impairment is usually associated with a decline in the executive functions of day-to-day living 
such as self-care, nutritional intake, and monitoring of medical problems such as diabetes early in the 
course of dementia. Forgetfulness associated with inadequate drug intake is common in patients with 
cognitive dysfunction and computer assisted cognitive training is shown to improve diabetes self-care 
in such patients[84]. When compliance issues become marked with poor diabetes self-management and 
recurrent acute hyperglycemic complications, home-based or institutionalised care support should be 
considered for supervised glycemic management.

Hypoglycemia management
Improper administration of antidiabetic agents such as insulin and insulin secretagogues without timely 
food intake can result in marked hypoglycemic episodes which can result in falls, rapid decline in 
cognitive functions and even death. Prompt review of diabetes drug regime with appropriate changes in 
the pharmacotherapy should be enforced urgently in such situations. Multidose insulin regime may 
need to be switched over to once daily long-acting insulin or twice daily mixed insulin regimes may be 
considered with due consideration of patient’s diet and physical activities[85].

Discontinuation of insulin secretagogues with hypoglycemic potential also need to be considered in 
presence of erratic meal pattern of patients with moderate to severe dementia[85,86]. Antidiabetic 
agents with less propensity for hypoglycemia and drugs which need less frequent administration such 
as DPP-4i and GLP-1RA are preferable in such situations. Although sodium-glucose cotransporter-2 
inhibitors are hypo-neutral agents, the use of these agents in patient with advanced dementia needs 
caution as these patients can get dehydrated due to diuretic effect of these agents. Supervised drug 
administration by carers and institutionalised care should be considered to improve medication 
adherence and glycemic care in patients with advanced dementia.

PROGNOSIS OF DEMENTIA IN DIABETES
Prognosis of patients with dementia largely depends on the type and the pathobiology of the individual 
disorders causing cognitive dysfunction. However, prompt diabetes care may alter the course of the 
disease to some extend because of the impact of altered glucose metabolism on brain structures as 
mentioned in the previous sections. There is some emerging evidence showing beneficial effects of 
treatment with antidiabetic medications of the GLP-1RA class for neuroprotection in patients with PD, 
AD, stroke, and amyotrophic lateral sclerosis[87]. Moreover, optimal diabetes management may help to 
prevent deterioration of cognitive function in various dementing illnesses in relation to hypo- and 
hyperglycemic complications of improper diabetes care.

Diabetes types and dementia
Dementia may occur in patients with any of form of diabetes regardless of the type. The degree of 
cognitive decline in such patients largely depends on the appropriateness of diabetes management as 
mentioned earlier. As care of both the disorders can impact the management and prognosis of the other, 
healthcare providers are expected to have good understanding of either disease pathobiology. A 
multidisciplinary team (MDT) approach involving dementia specialists, physiotherapists, diabetologists 
and dieticians may help to optimise management of patients with moderate to severe forms of either 
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disease. Moreover, individualised care plans for patients with consideration of their age, sociocultural 
factors, and comorbidities are important to obtain optimal outcomes.

T1DM and dementia
Patients with longstanding T1DM are at risk of some form of cognitive impairment, and diabetologists 
caring for such patients should be vigilant in identifying incident cognitive dysfunction in such patients. 
As a significant proportion of T1DM cases are on basal bolus insulin regimes (once/twice daily long-/ 
intermediate- acting insulin and mealtime short acting insulin), compliance issues with timing of meals 
and insulin administration may emerge as serious problems early in the course of dementia. Rapid 
decline of diabetes control with adverse consequence on cognitive functions are the results of such a 
situation[88].

Regular CBG monitoring is important in the management T1DM patients to aid variable dose 
mealtime insulin administration adjusted for their carbohydrate intake. Recently, intermittent scanning 
of a continuous glucose monitoring device (measuring interstitial tissue glucose) has revolutionised the 
self-monitoring of glycemic parameters and diabetes care in such patients[89]. Appropriate use of such 
technology in a supervised setting can potentially mitigate the cognitive decline in relation to poor 
glycemic care in patients with dementia. Appropriate changes in the insulin regime as mentioned earlier 
also may be necessary in patients with poor meal compliance and insulin administration issues.

T2DM and dementia
There is some evidence to support the notion that AD may have an association with T2DM based on 
multiple epidemiological correlation studies[90-92]. Although the pathobiological interlink is not very 
strong, we have to consider this association while planning management of patients with T2DM, 
especially because of the constraints imposed on glycemic care by the development of dementia. 
Appropriate early administration of medications of incretin mimetic class such as DPP-4i and GLP-1RA 
to optimise diabetes control and prevention of AD will help to some extent[87,93]. Although there has 
been a signal towards some vague association of metformin use to the development of AD in Asians in a 
recent meta-analysis[94], the study results have to be interpreted with caution as the data analysed was 
of low quality and of observational type. Insulin administration issues can be addressed as mentioned 
earlier.

Other types of diabetes and cognitive function
There is not much data on the incidence and prevalence of cognitive dysfunction in patients with other 
forms of diabetes such as diabetes in patients with chronic pancreatitis, monogenic diabetes, and 
syndromic type of diabetes. However, glycemic care can pose similar problems when cognitive decline 
becomes moderate to severe as in T1DM and T2DM. Nutritional imbalance from pancreatic diabetes 
and neurological problems in some patients with syndromic diabetes can pose problems in glycemic 
care. Supportive care with an appropriate MDT approach might help to improve care in such patients.

USE OF NEWER DIABETES TECHNOLOGIES FOR THE CARE OF PATIENTS WITH 
COGNITIVE DYSFUNCTION
Regular monitoring of CBG can be hectic and add additional burden to patients with dementia. 
Although use of flash glucose monitoring device can avert the finger pricking, patients with dementia 
can forget flashing their device resulting in loss of data if not scanned for more than eight hours. The 
real-time continuous glucose monitoring system (rtCGM) offers benefit in automatically sensing and 
transmitting the data to the application on the phone. Wireless Innovation for Seniors with Diabetes 
Mellitus trial compared rtCGM with standard finger prick capillary glucose monitoring in older adults 
(age > 60 years) with T1DM for prevention of hypoglycaemia and glycaemic control[95]. This trial also 
included patients with mild cognitive impairment although individuals with advanced dementia were 
excluded. The rtCGM arm spent less time below the range (blood glucose < 70 mg/dL) and there was 
also significant reduction in the HbA1c in the rtCGM arm when compared with the control (mean 
difference of -0.3%; 95% confidence interval: -0.4% to -0.1%; P < 0.001). With the lesson learned during 
coronavirus disease 2019 pandemic with rtCGM and third party data sharing, these features can help 
the family members, carers or care givers monitor the glucose level remotely and help the patient with 
the decision regarding insulin dose calculations[96,97].

Appropriate use of technology can help to manage T1DM and insulin treated T2DM individuals 
when they develop dementia. Although there is no robust evidence through RCTs, sensibly matching 
the technology to the individual needs and support system will ease the management[98]. Disposable 
insulin pens reduce the workload for the patient than the reusable pen that needs periodic change of the 
cartridge. The use of smart insulin pen automatically uploads the delivered dose in the linked server
[99]. The alarm features in these pens can be an additional advantage to remind the timely adminis-
tration of insulin. Remote review of the doses by the carer can help with titrating the dose, deliver the 
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missed dose and prevent overdosing with insulin. Individuals with mild dementia do manage the 
insulin pump with ease if they are used to it for a long duration before the dementia settles[100]. The 
insulin pump with predictive low glucose suspend features can help preventing hypoglycaemia 
provided that patient does not pull out the pump connections, hence not to be used in patient with 
moderate to advanced dementia as the risk of diabetic ketoacidosis will be high if there is disconnection. 
The behaviour of patient with the insulin pump can be studied using saline filled cartridges in the 
practice for a period of a week or two, and the information derived can help to decide about the 
individual’s ability to manage the insulin pump.

If the individual manages the insulin pump, then use of hybrid closed loop insulin delivery system 
can be tried as it can vary insulin basal delivery depending on the blood glucose level rather than the set 
basal targets and the trials have clearly shown beneficial effects in elderly patients with T1DM[100]. The 
remote blousing feature with smart phone in some of the hybrid closed insulin technology (e.g., 
CamAPS FX hybrid closed loop app) will help carers in delivering the correct insulin dose. This third-
party insulin delivery via the remote blousing feature should only be used in the countries where such 
regulation is allowed. Lastly, the use of insulin only bionic pancreas where only qualitative 
announcement of the meal is required can be an additional tool for management of individual with mild 
early dementia where complicated carbohydrate counting can be ignored[101]. More trials using 
technology in patients with early dementia are needed, as there is an increase in elderly patients with 
T1DM and it is predicted that prevalence of T1DM itself will be doubled by the year 2040[102].

OTHER COMORBIDITIES/MODIFIABLE RISK FACTORS POTENTIALLY IMPACTING  
COGNITIVE DYSFUNCTION IN DIABETES
Several other coexistent illnesses can exaggerate the risk of cognitive decline in patients with diabetes. 
Therefore, management of these comorbidities are also very crucial for optimal long-term outcomes.

Hypertension
One of the most common chronic diseases affecting middle-aged and the elderly population is 
hypertension. It is one of the most common comorbidities in the diabetic populations, especially in those 
with early onset T2DM with a prevalence of about 67.5%[103]. A recent study showed that the odds 
ratio for dementia in patients with hypertension is 5.82, and more than 90% dementia patients with 
diabetes had hypertension[104]. From this observation, it is imperative to obtain prompt blood pressure 
(BP) control in patients with dementia while considering the risks associated with intense BP reduction 
such as postural hypotension and falls. Antihypertensive medications modifying the renin-angiotensin-
aldosterone system have been recently found to improve executive function, processing speed, verbal 
memory and composite score compared to other antihypertensive medications in a recent clinical trial
[105].

Dyslipidemia
Several studies have shown association between dyslipidemia and dementia especially when present in 
patients with diabetes[106]. Diabetes (especially T2DM) as such is a strong risk factor for atherosclerotic 
CVD even in patients with normal lipid levels for nondiabetic individuals. This may be related to 
presence of more atherogenic low-density lipoprotein cholesterol particles in diabetics making them 
prone to develop CVD. Accelerated atherosclerosis of the cranial arteries may be an important factor 
reducing cerebral blood flow and cognitive decline in such patients. However, intense lipid lowering 
therapy was not associated with better cognitive outcomes in the ACCORD clinical trial[107].

Associated CVD
CVD is an important risk factor for dementia owing to its close association with cerebrovascular disease, 
stroke, and impaired brain perfusion. Even in those without established cerebrovascular disease or 
stroke, CVD was found to be associated with higher rates of cognitive decline in a systematic review
[108]. The authors observed that severe atherosclerosis posed 59% and atrial fibrillation posed 26% 
higher risk for development of dementia.

Proteinuria
Both micro- and macroalbuminuria are associated with high risk of generalised vasculopathy and 
atherosclerotic disease. Diabetes-related microvascular disease affects kidneys early in the course of the 
disease, especially in patients with poor diabetes control, and tremendously exaggerate the athero-
sclerotic CVD. A recent meta-analysis showed significant association between albuminuria and 
cognitive dysfunction[109]. This systematic review involving 16 studies among 127296 participants 
revealed a 20% excess risk of dementia among patients with albuminuria.
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Table 1 Risk factors for cognitive decline in diabetes mellitus

Risk factors for cognitive decline in diabetes mellitus

Age > 60 yr Atherosclerotic cardiovascular disease

Presence of ApoE ε4 allele Uncontrolled hypertension

Long duration of diabetes Proteinuria

Poor glycaemic control/high HbA1c Dyslipidaemia

Higher fasting glucose levels Physical inactivity

Recurrent hypoglycaemic episodes Unhealthy diet

Severe insulin resistance Depression

ApoE: Apolipoprotein; HbA1c: Hemoglobin A1c.

Table 2 Landmark randomized controlled trials looking at the benefits of clinical management of modifiable risk factors in diabetes and 
cognitive dysfunction

Intervention/ treatment Study characteristics & benefit(s) of treatment/intervention group Ref.

Treatment with antihypertensives 
acting on renin angiotensin axis

Better executive function, processing speed, verbal memory and composite score compared 
to those treated with other antihypertensives

Wharton et al
[105], 2022

Intensive BP and lipid control 
compared to standard treatment 
(ACCORD trial)

Intense BP control and lipid reduction had no effects on cognitive decline. Moreover, total 
brain volume was found to be less with intense BP control (systolic BP < 120 mm Hg) than 
standard treatment after 40 mo

Williamson et al
[107], 2014

Liraglutide therapy for T2DM Activation of different cerebral areas with improved memory, attention, and better scores in 
all cognitive function tests

Li et al[112], 2021

Intense vs standard BP control (SPRINT 
trial)

Intense BP control was not associated with improvements in memory or processing speed 
compared to standard BP reduction

Rapp et al[113], 
2020

10 yr of ILI vs standard care (Look 
AHEAD trial)

ILI resulted in better odds for emergence of: Decision-making inability (OR = 0.851) and 
problem solving inability (OR = 0.694) in those without these baseline complaints

Espeland et al
[114], 2018

Finnish diabetes prevention study Middle-aged overweight participants with impaired glucose tolerance showed better 
cognitive performance with low total fat & saturated fat intake, and frequent physical 
activities compared to standard lifestyle

Lehtisalo et al
[115], 2016

BP: Blood pressure; T2DM: Type 2 diabetes mellitus; ILI: Intense lifestyle intervention; OR: Odds ratio.

Apolipoprotein ε4 allele
Apolipoprotein (ApoE) is protein that carries the lipid molecules for their transport in human body in 
the form of apolipoproteins. Historically, career of ApoE ε4 allele has been found to possess strong 
association with the development of dementia[110]. A recent study involving 206960 participants from 
the United Kingdom biobank cohort showed that the presence of ApoE ε4 allele was associated an 
increased risk [hazard ratio (HR) = 1.63] of developing dementia[111]. However, when potentially 
modifiable risk factors such as hypertension, diabetes and coronary artery disease were clustered in to 
this risk, the HR increased to 2.20. Table 1 summarises the risk factors for dementia or cognitive decline 
among patients with diabetes.

CLINICAL TRIALS ON MODIFIABLE RISK FACTORS OF COGNITIVE DYSFUNCTION 
AMONG PATIENTS WITH DIABETES
Several RCTs examined the potential benefits of management of various modifiable risk factors for 
cognitive decline in patients with diabetes. However, only a small proportion of these studies showed 
even marginal benefits. Some of the trials even showed the probability of harm in the participants. 
Therefore, we need much more research input in this area to ensure we have more promising modalities 
of treatment for diabetic patients with cognitive dysfunction. A list of landmark clinical trials looking at 
the benefits of potentially modifiable risk factors for managing patients with diabetes and cognitive 
dysfunction is shown in Table 2.
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Figure 3 Practical approach to the management of patient with diabetes and dementia. 1Glycaemic target according to comorbidities to avoid marked 
glycaemic variability, hypo- and hyperglycaemia. 2Target glucose 7-12 mmol/L ideally (but can range between 5-16 mmol/L especially while on insulin). T1DM: Type 1 
diabetes mellitus; T2DM: Type 2 diabetes mellitus; GLP-1RA: Glucagon like insulinotropic peptide-receptor agonist; DPP-4: Dipeptidyl peptidase-4; CV: 
Cardiovascular; rtCGM: Real-time continuous glucose monitoring.

AREAS OF UNCERTAINTY/EMERGING CONCEPTS
Although optimal glycemic care is expected to ameliorate the cognitive decline associated with hyper- 
and hypoglycemic care of patients with diabetes and dementia, it is not clear if prompt diabetes control 
might alter the pathobiology of individual dementing illnesses. The proposed association between 
T2DM and AD is currently vague, and more studies may shed light on this grey area.

The benefits of observed improvement of cognitive function among patients with massive weight loss 
following bariatric surgery need additional evidence through largescale RCTs for use in day-to-day 
clinical practice. The beneficial effects of incretin manipulation by GLP-1RA and DPP-4i on different 
forms of neurodegenerative disorders such as AD need to be clarified in long term RCTs. The potential 
risk of metformin use and AD development revealed in some ethnic groups needs further studies as 
metformin is the first-line drug with other remarkable health benefits when used in patients with 
T2DM. Figure 3 shows a pragmatic approach to the management of diabetes and dementia in day-to-
day clinical practice.

CONCLUSION
Development of cognitive dysfunction is a big risk of inadequate diabetes management in patients with 
any form of diabetes. Onset of dementia can impact diabetes care with the risk of worsening of either 
disease from inadequate glycemic care. Currently available evidence suggest that optimal diabetes 
management can have better clinical outcomes among patients with neurocognitive dysfunction. A 
multidisciplinary approach to management of patients involving diabetologists, dieticians, dementia 
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specialists and physical therapists with appropriate antidiabetic treatment and nonpharmacological 
interventions may improve diabetes care in patients with diabetes and dementia. If appropriately used, 
technological advancements can further improve the care of diabetes patients with dementia. More 
research is needed in these areas as the incidence of both the diseases are increasing globally owing to 
increasing prevalence of obesity and aged individuals in the global population.
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Abstract
BACKGROUND 
In recent years, studies have found that the occurrence and development of 
diabetic cardiomyopathy (DCM) is closely related to an increase in polyadenosine 
diphosphate-ribose polymerase-1 (PARP-1) activity. PARP-1 activation could be 
involved in the pathophysiological process of DCM by promoting oxidative 
stress, the inflammatory response, apoptosis and myocardial fibrosis.

AIM 
To investigate the mechanism of liraglutide in improving myocardial injury in 
type 2 diabetic rats, further clarified the protective effect of liraglutide on the 
heart, and provided a new option for the treatment of DCM.

METHODS 
Forty healthy male SD rats aged 6 wk were randomly divided into two groups, a 
normal control group (n = 10) and a model group (n = 30), which were fed an 
ordinary diet and a high-sugar and high-fat diet, respectively. After successful 
modeling, the rats in the model group were fed a high-glucose and high-fat diet 
for 4 wk and randomly divided into a model group and an intervention group 
(further divided into a high-dose group and a low-dose group). The rats were fed 
a high-glucose and high-fat diet for 8 wk and then started drug intervention. 
Blood samples were collected from the abdominal aorta to detect fasting blood 
glucose and lipid profiles. Intact heart tissue was dissected, and its weight was 
used to calculate the heart weight index. Haematoxylin and eosin staining was 
used to observe the pathological changes in the myocardium and the expression 
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of PARP-1 in the heart by immunohistochemistry.

RESULTS 
The body weight and heart weight index of rats in the model group were significantly increased 
compared with those in the normal control group, and those in the intervention group were 
decreased compared with those in the model group, with a more obvious decrease observed in the 
high-dose group (P < 0.05). In the model group, myocardial fibers were disordered, and inflam-
matory cells and interstitial fibrosis were observed. The cardiomyopathy of rats in the intervention 
group was improved to different degrees, the myocardial fibers were arranged neatly, and the 
myocardial cells were clearly striated; the improvement was more obvious in the high-dose group. 
Compared with the normal control group, the expression of PARP-1 in myocardial tissue of the 
model group was increased, and the difference was statistically significant (P < 0.05). After 
liraglutide intervention, compared with the model group, the expression of PARP-1 in myocardial 
tissue was decreased, and the reduction was more obvious in the high-dose group (P < 0.05) but 
still higher than that in the normal control group.

CONCLUSION 
Liraglutide may improve myocardial injury in type 2 diabetic rats by inhibiting the expression of 
myocardial PARP-1 in a dose-dependent manner.

Key Words: Liraglutide; animal models; Type 2 diabetic rats; Polyadenosine diphosphate-ribose polymerase-
1; Haematoxylin and eosin staining; Immunohistochemistry

©The Author(s) 2023. Published by Baishideng Publishing Group Inc. All rights reserved.

Core Tip: Low-dose streptozotocin combined with a high-glucose and high-fat diet can successfully 
establish a rat model of type 2 diabetes mellitus. After 4 wk of continuous feeding, myocardial injury can 
occur, which is consistent with diabetic cardiomyopathy. Liraglutide reduced the body weight of type 2 
diabetic rats and significantly improved the fasting blood glucose and lipid profile in a dose-dependent 
manner. Liraglutide may improve myocardial injury in type 2 diabetic rats by inhibiting the expression of 
myocardial polyadenosine diphosphate-ribose polymerase-1 in a dose-dependent manner.

Citation: Xue DD, Zhang X, Li DW, Yang YL, Liu JJ. Protective effect of liraglutide on the myocardium of type 2 
diabetic rats by inhibiting polyadenosine diphosphate-ribose polymerase-1. World J Diabetes 2023; 14(2): 110-119
URL: https://www.wjgnet.com/1948-9358/full/v14/i2/110.htm
DOI: https://dx.doi.org/10.4239/wjd.v14.i2.110

INTRODUCTION
Diabetic cardiomyopathy (DCM) is a specific type of cardiomyopathy independent of hypertension, 
coronary heart disease, and congenital heart disease. The early manifestation of DCM is reduced left 
ventricular diastolic function, which can be combined with end-stage systolic dysfunction, increasing 
the risk of heart failure in patients with diabetes. Diabetes seriously affects the patient's life, and its 
incidence is increasing year by year. Its specific pathogenesis is complex and has not been fully 
elucidated[1-3]. Polyadenosine diphosphate ribose polymerase-1 (PARP-1) is a nuclear protein widely 
present in the nuclei of most eukaryotes. After activation, PARP-1 catalyzes nicotinamide adenine 
dinucleotide (NAD+) to form a poly-adenosine diphosphate ribose (PAR) chain and glycosylate and 
regulate the functions of histones, topoisomerases, DNA polymerases, p53, nuclear transcription factor 
(NF-κB) and other proteins, which are involved in DNA damage repair and other cellular functions. In 
recent years, studies have found that the occurrence and development of DCM is closely related to an 
increase in PARP-1 activity. PARP-1 activation could be involved in the pathophysiological process of 
DCM by promoting oxidative stress, the inflammatory response, apoptosis and myocardial fibrosis[4-6].

To date, it has been confirmed that glucagon-like peptide-1 (GLP-1) can reduce the apoptosis of islet 
microcirculation endothelial cells and protect islet tissue through the PARP-1/iNOs pathway[7], but 
whether GLP-1 can protect cardiomyocytes by inhibiting the expression of PARP-1 is still unclear. This 
experiment studied different doses of the liraglutide in rats with diabetic cardiomyopathy after 
treatment. Blood glucose, blood lipids and pathological changes in the heart were recorded in the 
observation group, and an immunohistochemical method was used to observe the expression of PARP-1 
in cardiac tissue to further clarify the etiology and related mechanism of liraglutide in myocardial injury 
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in type 2 diabetes.

MATERIALS AND METHODS
Subjects
Forty 6-week-old SPF male SD rats were purchased from the Animal Center of Shanxi Provincial 
People's Hospital [experimental animal license number: SYXK (Jin) 2019-0003], weighing 160-240 g, with 
3-4 rats/cage. The feeding room was well ventilated, the room temperature was maintained at 18-22 °C, 
and the light was set in an alternating 12 h day and night cycle. The rats ate and drank freely. Animal 
experiments were conducted in strict accordance with the relevant regulations of experimental animal 
ethics.

Firstly, establishment of animal models: (1) Forty healthy male SD rats weighing 160-240 g were 
randomly divided into a normal control group (n = 10) and an experimental group (n = 30). They were 
fed an ordinary diet and a high-sugar and high-fat diet for 4 wk, respectively; (2) At the end of the 
fourth week of feeding, the rats in the experimental group fasted without water for 12 h overnight, and 
the next day, after fasting and weighing, 1% streptozotocin (STZ) was injected intraperitoneally at a 
dose of 40 mg/kg once, and the rats were fed a high-sugar and high-fat diet to ensure adequate 
drinking water and dry padding. Normal control rats were intraperitoneally injected with the same 
dose of normal saline. Three days after injection, if blood glucose of a random draw was more than 16.7 
mmol/L and/or fasting blood glucose (FBG) was more than 11.1 mmol/L and polydipsia, polyuria, and 
hypereating were observed, the rats were considered type 2 diabetic rats. In the modeling process, 2 
died, and 2 failed; and (3) After 4 wk of feeding with high glucose and high fat, the rats in the experi-
mental group were randomly divided into a model group and an intervention group (further divided 
into a high-dose group and a low-dose group) for the follow-up experiment. Four rats died during 
feeding.

Secondly, intervention with drugs: The normal control group, the model group and the intervention 
group continued to receive the normal diet or the high-glucose and high-fat diet as before, and blood 
glucose level was monitored at random daily. The rats with a blood glucose level outside of the 
successful range of the model were excluded, and the drug intervention was started after blood glucose 
level had stabilized. Rats in the high-dose liraglutide group and low-dose liraglutide group were 
subcutaneously injected with 200 µg/kg and 100 µg/kg liraglutide, respectively, once a day for 8 wk. 
Rats in the normal control group and model group were subcutaneously injected with 100 µg/kg 
normal saline. During the intervention, the rats in the model group and the intervention group 
continued to be fed a high-glucose and high-fat diet, while the rats in the normal control group 
continued to be fed an ordinary diet.

Finally, specimen collection: (1) At the end of the 8th week of liraglutide intervention, tail venous 
blood was collected to measure the fasting blood glucose of rats in each group with a blood glucose 
meter, and the rats were weighed. Then, the rats were anesthetized by intraperitoneal injection of 10% 
chloral hydrate (0.3 mL/100 g according to body weight), and the blood and heart tissues were 
collected; (2) Blood lipid test: The blood samples were left for half an hour and centrifuged at low speed 
for 15 min (4 °C, 3000 rpm), and the upper layer of serum was collected and stored in a -20 °C 
refrigerator. Serum was collected for the determination of serum lipids and lipoprotein-associated 
phospholipase A2 by an automatic multifunctional biochemical analyzer; (3) HE staining was used to 
observe the morphology of the myocardium: Cardiac pathological sections were prepared, and the 
sections were placed in xylene for 20 min for dewaxing and then placed in 100%, 95%, 85%, 75%, and 0% 
ethanol for 3 min each for hydration. After hydration, the sections were stained with hematoxylin for 
approximately 10 min, washed with water, differentiated with alcohol hydrochloric acid for a few 
seconds, washed with water, immersed in eosin for approximately 1 min and then washed again. 
Finally, the slices were dehydrated and cleared for a second time, and then the slices were sealed with 
glycerin gelatin. The morphological changes in the myocardium were observed under a microscope; 
and (4) The expression of PARP-1 in myocardial tissue was detected by immunohistochemistry: The 
heart wax block was sliced and heated at 60 °C for 2 h. Dewaxing and hydration were performed. For 
antigen repair, the sections were placed in 3% hydrogen peroxide solution for 15 min to block 
endogenous peroxidase activity and rinsed with phosphate buffer saline (PBS) 3 times for 2 min each 
time. A drop of blocking solution was added, excess liquid was removed, and the samples sat at room 
temperature for 20 min without washing. A 1:100 diluted primary antibody (rabbit IgG) was added by 
pipette, and the samples were stored at 4 °C overnight. After equilibration to room temperature for 20 
min, the samples were washed 3 times with PBS (2 min each time), polymerized HRP-labeled anti-rabbit 
IgG was added, and the samples were incubated at 37 °C for 30 min and washed 3 times with PBS (5 
min each time). Color development was followed by dehydration, transparency, sealing, and 
observation. The sections were observed under a light microscope, and images were collected.

Statistical analysis
One-way analysis of variance was used for comparisons between different groups, and the LSD t test 
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was used for pairwise comparisons within groups. P < 0.05 was considered statistically significant. SPSS 
23.0 was used for the above statistical analysis. Origin 8.0 software was used for mapping.

RESULTS
General information
During the feeding period, the rats in the normal control group had good mental acuity and easy 
activity. In the model group, the overall reaction was sluggish; the rats exhibited less activity, listless 
spirit, dry hair, and increased food and water intake, and the bedding material was often wet and 
needed to be replaced daily. Compared with the model group, the state of rats in the intervention group 
was slightly improved, and the symptoms of polydipsia, hypereating and polyuria were slightly 
reduced; this improvement was more pronounced in the high-dose group. During the modeling and 
feeding process, the blood glucose level of 2 rats was lower than the modeling standard, so they were 
excluded from the group, and 6 rats died, all manifesting as hypertonia and shallow rapid breathing, 
and immediate blood glucose could not be measured. The cause of death may be acute complications of 
diabetes.

Body weight and heart weight index
After liraglutide intervention, the body weight of the rats in each group was recorded weekly, and the 
body weight of rats in the model group increased significantly compared with that in the normal control 
group. After liraglutide intervention, compared with the model group, the body weight of rats in the 
intervention group increased slowly or even decreased, and the body weight of rats in the high-dose 
group increased slower and more obviously (Figure 1A). After the rats were sacrificed at the end of the 
8th week, their hearts were weighed, and compared with that in the normal control group, the heart 
weight index of the model group was significantly increased. After liraglutide intervention, the index 
was decreased in the intervention compared with that in the model group, and the decrease was more 
obvious in the high-dose group (Figure 2). Specific values are shown in Table 1.

Comparison of blood glucose and lipid profiles of rats in each group
After liraglutide intervention, the FBG of rats in each group was recorded weekly. Compared with the 
that in normal control group, the FBG of rats in the model group was significantly increased, and the 
FBG of rats at different doses of liraglutide intervention was decreased; the decrease was more obvious 
in the high-dose group (Figure 1B). Compared with those in the normal control group, the levels of total 
cholesterol (TC), triglyceride (TG), low density lipoprotein cholesterol (LDL-C) and lipoprotein 
phospholipase A2 (LP-PLA2) in the model group were significantly increased, and the differences were 
statistically significant (P < 0.05). Compared with those in the model group, the levels of FPG, TC, TG, 
LDL-C and LP-PLA2 in the intervention group were significantly decreased (P < 0.05), and the decrease 
was more obvious in the high-dose group but still higher than that in the normal control group. There 
was no significant difference in high density lipoprotein cholesterol (HDL-C) levels between groups 
before and after liraglutide intervention (P > 0.05). See Table 2 for details.

Pathological changes in myocardial tissue in each group
After HE staining, the samples were observed under a light microscope. The myocardial structure found 
in the rats in the normal control group was normal; the myocardial cells were closely arranged, the 
nuclei were clearly visible, the size was consistent, and the myocardial fibers were arranged neatly. In 
the model group, the myocardial fibers were disordered or even broken, the number of normal 
cardiomyocytes was reduced, the cells were hypertrophic, and the edges of the nuclei were unclear. The 
myocardial structural injury of rats in the intervention group was improved to different degrees, the 
myocardial fibers were arranged neatly, and the morphology of myocardial cells was normal; the 
improvement was more obvious in the high-dose group. Pathological results are shown in Figure 3.

Comparison of immunohistochemistry of myocardial tissue in each group
PARP-1 was expressed in the nucleus of the myocardium, and the positive expression of PARP-1 was 
indicated by brown-yellow particles after immunohistochemical staining. Compared with that in the 
normal control group, the expression of PARP-1 in the myocardium of the model group was 
significantly increased (P < 0.05). Compared with that in the model group, the expression of PARP-1 in 
the intervention group was significantly decreased, and the expression of PARP-1 in the myocardium of 
the high-dose group was more significantly decreased than that of the low-dose group (P < 0.05). See 
Table 3 and Figure 4.
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Table 1 Comparison of body weight and heart weight index of rats in each group (mean ± SD)

Group Weight Heart weight index

N 381 ± 22.5 2.58 ± 0.28

M 476.2 ± 27.5a 4.46 ± 0.31a

LL 451.5 ± 10.4ab 3.98 ± 0.26ab

HL 430.1 ± 13.5abc 3.03 ± 0.33abc

aP < 0.05, compared with group N.
bP < 0.05, compared with group M.
cP < 0.05, compared with group LL.
N: Normal control; M: Model; HL: High-dose liraglutide; LL: Low-dose liraglutide.

Table 2 Comparison of blood glucose and blood lipids of rats in each group (mean ± SD)

Group FBG TG TC LDL HDL LP

N 5.7 ± 0.9 1.2 ± 0.28 1.73 ± 0.44 0.66 ± 0.25 1.5 ± 0.57 298 ± 41

M 25.9 ± 2.8a 2.84 ± 0.56a 4.27 ± 0.56a 5.49 ± 2.37a 1.05 ± 0.19 667 ± 79a

LL 20.9 ± 1.1ab 2.24 ± 0.52ab 3.32 ± 0.7ab 3.56 ± 0.73ab 1.1 ± 0.2 549 ± 45ab

HL 18.9 ± 1.3abc 1.67 ± 0.39abc 2.66 ± 0.76abc 2.06 ± 0.77abc 1.42 ± 0.64 448 ± 130abc

aP < 0.05, compared with group N.
bP < 0.05, compared with group M.
cP < 0.05, compared with group LL.
N: Normal control; M: Model; HL: High-dose liraglutide; LL: Low-dose liraglutide. FBG: Fasting blood glucose; TG: Triglyceride; TC: Total cholesterol; 
LDL: Low density lipoprotein; HDL: High density lipoprotein; LP: Lipoprotein.

Table 3 Expression of polyadenosine diphosphate-ribose polymerase-1 in myocardial tissue of rats in each group (mean ± SD)

Group Number PARP-1

N 8 10.92 ± 3.59

M 8 58.12 ± 5.31a

LL 8 42.83 ± 1.14ab

HL 8 23.61 ± 0.92abc

aP < 0.05, compared with group N.
bP < 0.05, compared with group M.
cP < 0.05, compared with group LL.
PARP-1: Polyadenosine diphosphate-ribose polymerase-1; N: Normal control; M: Model; HL: High-dose liraglutide; LL: Low-dose liraglutide.

DISCUSSION
Type 2 diabetes mellitus (T2DM) is a chronic and progressive metabolic disease that can lead to 
multisystem and multiorgan damage. Cardiovascular complications of diabetes mellitus are one of the 
main causes of death in patients with diabetes, and the trend is increasing every year. The fasting blood 
glucose, total cholesterol, low-density lipoprotein cholesterol, triglyceride, and heart weight index of 
rats in the experimental model group were significantly increased, and myocardial fiber arrangement 
disorder, interruption, cardiomyocyte hypertrophy, and loose shape indicated that T2DM causes 
myocardial injury[8,9]. Cardiac histopathological changes were consistent with T2DM and DCM, 
indicating successful modeling. At present, there are no specific and effective drugs for the treatment of 
diabetic cardiomyopathy, the progress of which can be slowed by improving lifestyle and controlling 
blood glucose.

DCM is a multifactorial disease that is closely related to cardiomyocyte apoptosis, oxidative stress, 
the inflammatory response and myocardial fibrosis. However, the exact molecular mechanism of DCM 
has not been thoroughly studied. Hyperglycemia can increase oxidative stress and nitrosation stress in 
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Figure 1 Weekly body weight and fasting blood glucose trend of rats in each group after liraglutide intervention. A: Weekly body weight; B: 
Fasting blood glucose trend. N: Normal control; M: Model; HL: High-dose liraglutide; LL: Low-dose liraglutide; FBG: Fasting blood glucose.

Figure 2 Comparison of heart weight index in each group. Compared with group N, aP < 0.05; compared with group M, bP < 0.05; compared with group L, 
cP < 0.05. HWI: Heart weight index; N: Normal control; M: Model; HL: High-dose liraglutide; LL: Low-dose liraglutide.

cells; induce DNA strand breaks; over activate PARP-1; mediate the activation of PKC, the hexosamine 
pathway, and the polyol pathway; activate the transcription factor NF-κB; promote the expression of 
genes related to the inflammatory response; and lead to apoptosis and inflammation of cardiomyocytes
[10]. This causes structural and functional changes in the heart. In vitro experiments have shown that 
PARP-1 activity in cardiomyocytes in a high-glucose environment is significantly increased, and in vivo 
experiments have shown that PARP-1 gene deletion in mice in a high-glucose environment reduced 
cardiomyocyte apoptosis and inflammation compared with that in wild-type mice[11]. HE staining 
analysis of the myocardial tissues of the two groups of mice also indicated that the myocardial fibrosis 
of PARP-1 gene null mice was significantly improved compared with that of wild-type mice[2]. Zakaria 
et al[12] showed that PARP-1 activity in type 2 diabetic rats was significantly increased compared with 
that in the control group. After 10 wk of PARP-1 inhibitor (4-AB) treatment, myocardial oxidative stress 
and inflammation were alleviated, and myocardial fibrosis and microvascular activity were further 
improved. Therefore, PARP-1 plays an important role in the development of diabetic cardiomyopathy. 
The results of this study also showed that the expression of PARP-1 in cardiomyocytes of the model 
group was significantly increased compared with that of the normal control group, suggesting that 
PARP-1 was involved in high glucose-induced myocardial injury.

Liraglutide, as a GLP-1 agonist, can increase insulin secretion by inhibiting glucagon secretion, 
promoting proliferation and reducing apoptosis of isletβ-cells, thus smoothly lowering glucose. In 
recent years, GLP-1 receptor agonists have attracted much attention because of their extensive pharma-
cological effects. GLP-1 receptors are widely distributed in tissues and organs throughout the body. 
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Figure 3 Haematoxylin and eosin staining of the hearts of rats in each group (400×). A: Normal control group; B: Model group; C: Low-dose 
liraglutide group; D: High-dose liraglutide group.

Figure 4 Comparison of immunohistochemistry of myocardial tissue in each group. A-D: Polyadenosine diphosphate-ribose polymerase-1 (PARP-1) 
expression in heart tissue of rats in normal control group (A), model group (B), low-dose liraglutide group (C), and high-dose liraglutide group (D); E: Comparison of 
PARP-1 positive expression in heart tissue of rats in each group. Compared with group N, aP < 0.05; compared with group M, bP < 0.05; compared with group L, cP < 
0.05. PARP-1: Polyadenosine diphosphate-ribose polymerase-1; N: Normal control; M: Model; HL: High-dose liraglutide; LL: Low-dose liraglutide.

Studies have found that GLP-1 receptors are distributed in coronary arteries, cardiomyocytes and 
vascular endothelial cells, regulating and maintaining the normal physiological structure and function 
of the myocardium[13]. Many studies have shown that GLP-1 can reduce oxidative stress injury and 
apoptosis of cardiomyocytes induced by high glucose and has a protective effect on cardiomyocytes. 
Some researchers have shown that liraglutide, a GLP-1 receptor agonist, can reduce the inflammatory 
response and oxidative stress of vascular endothelial cells by inhibiting the NF-κB signaling pathway in 
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vascular endothelial cells and reducing the activity of NADPH oxidase. In a rat model of heart failure, 
GLP-1 significantly improved cardiac ejection function and the survival rate of rats after myocardial 
infarction compared with those in the control group. In addition, the LEADER and SUSTAIN-6 studies 
have confirmed that liraglutide can clinically reduce cardiovascular morbidity and mortality in patients 
with T2DM and high cardiovascular risk and has a comprehensive cardiovascular protective effect. The 
possible mechanisms include reduction of atherosclerosis, systolic blood pressure, and pulmonary 
capillary pressure; improvement of endothelial function; and increase of myocardial rescue rate after 
myocardial infarction. In conclusion, liraglutide can protect cardiomyocytes and improve cardiac 
function, and PARP-1 is closely related to high glucose-induced myocardial injury. Therefore, we 
speculated that liraglutide could inhibit the expression of cardiac PARP-1 and thereby delay the 
progression of DCM. In this experiment, we found that after liraglutide intervention, the myocardial 
injury of rats in the intervention group was significantly reduced compared with that in the model 
group, and the expression of PARP-1 was significantly reduced, suggesting that the protective effect of 
liraglutide on cardiomyocytes was related to the reduction of PARP-1 activity. In animal experiments, 
the current intelligent animal experiment method based on deep learning can obtain the adaptation 
degree of animals in various environments and the posture and state of animals after intervention, 
according to fitness of each experiment area, and posture and state of experiment body, which is more 
conducive to the establishment of animal models and the prediction and evaluation of the effects of 
drug intervention. This technology belongs to the frontier field at present. It is very helpful for the 
follow-up research of this experiment. In the future, large-scale in-depth research on animal 
intervention experiments will be carried out.

In conclusion, through the detection of heart weight index, blood lipids, and PARP-1 expression and 
observation of cardiac pathological changes in this experiment, we found that liraglutide can delay the 
occurrence and development of DCM by reducing the expression of cardiac PARP-1, which provides 
evidence for its clinical application in DCM. However, there were still some shortcomings in this 
experiment. For example, the TUNEL method was not used to detect cardiomyocyte apoptosis, and 
there was insufficient evidence of pathological changes in cardiomyocyte morphology based only on 
cardiac HE staining. In addition, in recent years, a study found that excessive expression of insulin-like 
growth factor 1 (IGF-1) can reduce myocardial infarction and myocardial cell apoptosis but can also 
reduce the nonocclusive coronary artery stenosis of genetically modified mice and myocardial cell death 
after myocardial infarction. IGF-1r cascades the activation of the PI3K/Akt signaling pathway and 
promotes cell proliferation. However, due to the limited time frame of this study, whether liraglutide 
can activate the IGF-1/PI3K/Akt pathway by inhibiting PARP-1 to protect cardiomyocytes remains 
unclear, and further studies are needed.

CONCLUSION
Low-dose STZ combined with a high-glucose and high-fat diet can successfully establish a rat model of 
T2DM. After 4 wk of continuous feeding, myocardial injury can occur, which is consistent with DCM. 
Liraglutide reduced the body weight of type 2 diabetic rats and significantly improved the fasting blood 
glucose and lipid profile in a dose-dependent manner. Liraglutide may improve myocardial injury in 
type 2 diabetic rats by inhibiting the expression of myocardial PARP-1 in a dose-dependent manner.

ARTICLE HIGHLIGHTS
Research background
Glucagon-like peptide-1 (GLP-1) can reduce the apoptosis of islet microcirculation endothelial cells and 
protect islet tissue through the polyadenosine diphosphate-ribose polymerase-1 (PARP-1)/iNOs 
pathway.

Research motivation
Whether GLP-1 can protect cardiomyocytes by inhibiting the expression of PARP-1 is still unclear.

Research objectives
This study investigated the mechanism of liraglutide in improving myocardial injury in type 2 diabetic 
rats, further clarified the protective effect of liraglutide on the heart, and provided a new option for the 
treatment of diabetic cardiomyopathy (DCM).

Research methods
After successful modeling, the rats were fed a high-glucose and high-fat diet for 8 wk and then started 
drug intervention. Blood samples were collected from the abdominal aorta to detect fasting blood 
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glucose and lipid profiles. Intact heart tissue was dissected, and its weight was used to calculate the 
heart weight index. Hematoxylin and eosin staining was used to observe the pathological changes in the 
myocardium and the expression of PARP-1 in the heart by immunohistochemistry.

Research results
After liraglutide intervention, compared with the model group, the expression of PARP-1 in myocardial 
tissue was decreased, and the reduction was more obvious in the high-dose group (P < 0.05) but still 
higher than that in the normal control group.

Research conclusions
Liraglutide may improve myocardial injury in type 2 diabetic rats by inhibiting the expression of 
myocardial PARP-1 in a dose-dependent manner.

Research perspectives
Through the detection of heart weight index, blood lipids, and PARP-1 expression and observation of 
cardiac pathological changes in this experiment, we found that liraglutide can delay the occurrence and 
development of DCM by reducing the expression of cardiac PARP-1, which provides evidence for its 
clinical application in DCM.
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Abstract
BACKGROUND 
Exposure to proton pump inhibitors (PPIs) has been reported to have a potential 
role in the development of diabetes.

AIM 
To determine the association between PPIs and diabetes.

METHODS 
This meta-analysis is registered on PROSPERO (CRD42022352704). In August 
2022, eligible studies were identified through a comprehensive literature search. 
In this study, odds ratios were combined with 95% confidence intervals using a 
random-effects model. The source of heterogeneity was assessed using sensitivity 
analysis and subgroup analysis. The publication bias was evaluated using Egger’s 
test and Begg’s test.

RESULTS 
The meta-analysis included 9 studies with a total of 867185 participants. Results 
showed that the use of PPIs increased the risk of diabetes (odds ratio = 1.23, 95% 
confidence interval: 1.05-1.43, n = 9, I2 = 96.3%). Subgroup analysis showed that 
geographic location and study type had significant effects on the overall results. 
Both Egger’s and Begg’s tests showed no publication bias (P > 0.05). Sensitivity 
analysis also confirmed the stability of the results.

CONCLUSION 
The results of this study indicated that the use of PPIs was related to an increased 
risk of diabetes. However, more well-designed studies are needed to verify these 
results in the future.

Key Words: Proton pump inhibitors; Diabetes mellitus; Odds ratio; Meta-analysis; 
Diabetogenesis
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Core Tip: Exposure to proton pump inhibitors has been reported to have a potential role in the development 
of diabetes. There are no consistent results for the association between proton pump inhibitors use and 
diabetes risk. This meta-analysis aimed to provide a more reliable assessment.

Citation: Guo YR, Liu XM, Wang GX. Exposure to proton pump inhibitors and risk of diabetes: A systematic 
review and meta-analysis. World J Diabetes 2023; 14(2): 120-129
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INTRODUCTION
Diabetes is one of the fastest-growing chronic diseases in the 21st century and is characterized by 
inadequate insulin production or insulin resistance. Based on the 2021 International Diabetes 
Federation’s Diabetes Atlas, approximately 537 million adults aged 20-79 have diabetes, which is 
expected to reach 783 million by 2045[1]. Drug-induced diabetes is widely reported clinically and is a 
global problem[2].

Proton pump inhibitors (PPIs) that act on H+/K+-ATPase and inhibit gastric acid secretion are often 
used in the treatment of gastroesophageal reflux disease, peptic ulcer disease, and bleeding caused by 
nonsteroidal anti-inflammatory drugs[3]. As one of the most widely used drugs in the world, the 
overuse of PPIs is increasingly prominent and may cause a variety of adverse effects, including 
fractures, chronic kidney disease, cancer, etc[3-5]. Several recent studies have shown that there is a 
relationship between PPIs use and diabetes risk, with the potential mechanisms including changes in 
gut microbiota, PPI-induced hypomagnesemia, reduction of insulin-like growth factor-1, activation of 
pregnane X receptor, and effects of gastrin[6].

Some studies support a link between PPI use and diabetes risk, but there have been reports of 
conflicting conclusions. For example, two recent case-control studies and four cohort studies confirmed 
that PPIs were related to an increased risk of diabetes[6-10]. By contrast, PPIs were related to a reduced 
risk of diabetes in another cohort study[11]. However, there was no relationship between PPI use and 
diabetes risk in one randomized controlled trial and one cohort study[10,12]. Moreover, a recent meta-
analysis involving eight studies from six articles showed that the use of PPIs was not related to the risk 
of diabetes[13]. Given the high prevalence of diabetes, the widespread use of PPIs, and conflicting 
findings about the association between PPI use and diabetes risk, this meta-analysis aimed to provide 
more reliable evidence on the relationship between PPI use and diabetes risk.

MATERIALS AND METHODS
Protocol and registration
This meta-analysis was conducted according to the standard Preferred Reporting Items for Systematic 
Review and Meta-Analysis[14]. The study protocol has been registered on the PROSPERO International 
Prospective Register for Systematic Review (CRD42022352704), which provides more details.

Search strategy
A comprehensive search was performed in Web of Science, PubMed, Cochrane, and Embase to collect 
all eligible studies published before August 2022 (Supplementary Tables 1-4). The following retrieval 
strategy was used: Diabetes Mellitus, DM, T2DM, Diabetes, Type 1 Diabetes or Type 2 Diabetes, and 
Proton Pump Inhibitor, Proton Pump Inhibitors, PPI, PPIs, Esomeprazole, Rabeprazole, Pantoprazole, 
and Lansoprazole or Omeprazole.

Study selection
The following studies were considered to be eligible for inclusion: (1) Randomized controlled trial, 
cohort study, or case-control study; (2) PPI use as an exposure of interest (no limitation on the type of 
PPIs); (3) Studies showing the association between PPI use and diabetes risk; and (4) Studies with 
relative risks, odds ratios (ORs), or hazard ratios with corresponding 95% confidence intervals (CIs). The 
exclusion criteria included: (1) The subject of the study was not human; (2) Reviews, systematic reviews, 
meta-analyses, comments, reports, letters, guides, conference abstracts, books, etc; (3) Results of interest 
not provided; and (4) Data could not be extracted or calculated.

https://www.wjgnet.com/1948-9358/full/v14/i2/120.htm
https://dx.doi.org/10.4239/wjd.v14.i2.120
https://f6publishing.blob.core.windows.net/13a0acbf-e6f2-4c62-944b-63a7d284c0c8/WJD-14-120-supplementary-material.pdf
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Figure 1 Flow diagram of the literature search.

Data extraction and quality assessment
Two authors separately and independently extracted data using a predesigned Excel spreadsheet. Any 
disagreements were resolved through discussion with the remaining authors. From the included 
articles, the following data were obtained: Authors’ names, year of publication, country, study type, 
comparison, total population, age, sex, adjustment factors, and effect sizes [effect quantities (ESs), 
including hazard ratios or ORs] with corresponding 95%CIs.

The randomized controlled trial was assessed using the Jadad scale based on randomization and 
blinding and whether to describe the details of participants’ exits or withdrawals from the study. The 
study quality was graded as follows: Low quality = 1-3 and high quality = 4-7. The Newcastle-Ottawa 
Scale was used to assess the quality of observational studies, including three aspects: selection, compar-
ability, and outcome/exposure. The study quality was graded as follows: low quality = 0-3, medium 
quality = 4-6, and high quality = 7-9.

Statistical analysis
The data were analyzed using Stata version 15.0. (Stata Corporation, College Station, TX, United States). 
Due to the potential clinical heterogeneity of the studies included, multivariate-adjusted ORs were 
combined with 95%CIs using a random-effects model. The I2 statistics were used to evaluate the hetero-
geneity between studies, and significant heterogeneity was expressed as I2 > 50%, P < 0.1. The subgroup 
analysis was conducted to further address heterogeneity. The following three aspects were considered: 
(1) Sex; (2) Geographic location; and (3) Study type. The sensitivity analysis was carried out by 
eliminating one article at a time and recalculating aggregated effect values. Egger’s and Begg’s tests 
were used to assess the publication bias, and statistical significance was expressed as the two-sided P 
value < 0.05.

RESULTS
Literature search and study characteristics
A total of 1554 articles were included after a comprehensive search of the four databases. After 
removing duplication and filtering by title and abstract, 27 articles required full-text evaluation. As 
shown in Figure 1, this meta-analysis contained nine studies from seven articles published from 2016 to 
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Table 1 Characteristics of the studies included

Ref. Country Study design Quality Population Age in 
yr Sex Comparison Adjustment ESs 

(95%CI)

Ciardullo et al
[7], 2022

Italian Case-control High 101070 ≥ 40 M/F PPIs vs non-PPIs Adjusted1 1.56 (1.49, 
1.64)

Kuo et al[8], 
2022

China Case-control High 41880 55.85 ± 
13.48

M/F PPIs vs non-PPIs Adjusted2 1.34 (1.23, 
1.46)

Czarniak et al
[6], 2022

Netherlands Cohort High 9531 ≥ 45 M/F PPIs vs non-PPIs Adjusted3 1.49 (1.14, 
1.95)

He et al[9], 
2021

United 
Kingdom

Cohort Moderate 470265 56.34 ± 
8.11

M/F PPIs vs non-PPIs Adjusted4 1.56 (1.46, 
1.66)

Yuan et al
[10], 2021

United States Cohort High 80500 30-55 F PPIs vs non-PPIs Adjusted5 1.22 (1.12, 
1.33)

Yuan et al
[10], 2021

United States Cohort High 95550 25-42 F PPIs vs non-PPIs Adjusted5 1.27 (1.17, 
1.38)

Yuan et al
[10], 2021

United States Cohort High 28639 40-75 M PPIs vs non-PPIs Adjusted5 1.12 (0.91, 
1.38)

Moayyedi et 
al[12], 2019

Mixed Randomized 
controlled trial

High 17598 67.7 ± 
8.1

M/F PPIs vs placebo Unadjusted 0.96 (0.85, 
1.09)

Lin et al[11], 
2016

China Cohort High 22152 55.38 ± 
16.95

M/F PPIs vs non-PPIs Adjusted6 0.80 (0.73, 
0.88)

1Adjusted for sex, age, and clinical status.
2Adjusted for age, sex, residence income, indications of proton pump inhibitor (PPI) use, obesity, dyslipidemia, hypertension, and alcohol use disorders.
3Adjusted for age, sex, PPI past use, body mass index (BMI), hypertension, current smoking, alcohol consumption, physical activity, and education levels.
4Adjusted for sex, with additional adjustment for diabetes risk factors, including age at recruitment, ethnicity, deprivation, BMI, smoking status, family 
history of diabetes in a first-degree relative, cardiovascular disease, treated hypertension, corticosteroids use, diagnosis of schizophrenia or bipolar 
affective disorder, learning disabilities, diagnosis of gestational diabetes, diagnosis of polycystic ovary syndrome, atypical antipsychotics, statins and 
clinical indications for PPI use.
5Adjusted for race, family history of diabetes, BMI, number of pack-years of smoking, alcohol intake per day, physical activity, overall diet quality, total 
calorie intake, multivitamin use, history of hypertension, hypercholesterolemia, cancer, menopausal status and postmenopausal hormone use in women, 
number of parity in women, breastfeeding in women, any use of antibiotics, regular non-steroidal anti-inflammatory drug use, any use of steroids, 
gastroesophageal reflux disease, gastric or duodenal ulcer, upper gastrointestinal tract bleeding, and regular use of H2 receptor agonists.
6Adjusted for age, sex, hypertension, gout and/or hyperuricemia, coronary artery disease, stroke, pancreatitis, hyperlipidemia, obesity, H2 blocker use, 
and clozapine or olanzapine use.
CI: Confidence interval; ESs: Effect quantities; F: Female; M: Male; PPI: Proton pump inhibitor.

2022, including one randomized controlled trial, two case-control studies, and six cohort studies, which 
involved 867185 participants. Table 1 shows the baseline characteristics and quality assessments of the 
studies included.

Meta-analysis
Meta-analysis using a random-effects model indicated a statistically significant association between PPI 
use and diabetes risk compared to placebo or no PPI use (OR = 1.23, 95%CI: 1.05-1.43, n = 9, I2 = 96.3 %) 
(Figure 2A).

Subgroup analysis
The subgroup analysis was conducted based on sex, geographic location, and study type since the I2 

analysis revealed significant heterogeneity: (1) Sex. The use of PPIs was related to an increased risk of 
diabetes in both females (pooled ES = 1.37, 95%CI: 1.17-1.59, n = 4, I2 = 91.8%) and males (pooled ES = 
1.34, 95%CI: 1.17-1.55, n = 3, I2 = 78.2%) (Figure 2B); (2) Geographic location. A statistical association was 
found in Europe (pooled ES = 1.56, 95%CI: 1.50-1.62, n = 3, I2 = 0%) and North America (pooled ES = 
1.24, 95%CI: 1.17-1.31, n = 3, I2 = 0%) but not in Asia (pooled ES = 1.04, 95%CI: 0.62-1.72, n = 2, I2 = 98.4%) 
(Figure 2C); and (3) Study type. A statistical association was detected in case-control studies (pooled ES 
= 1.45, 95%CI: 1.25-1.68, n = 2, I2 = 89.1%) but not in cohort studies (pooled ES = 1.21, 95%CI: 0.98-1.50, n 
= 6, I2 = 96.3%) (Figure 2D).

Sensitivity analysis
The sensitivity analysis was performed by excluding one study at a time and recalculating pooled risk 
estimates. The results showed no significant change in risk estimates after combination (Figure 3A). This 
analysis verified the robustness of the results of this study.
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Figure 2 Forest plots. A: Forest plot of the association between proton pump inhibitor use and diabetes risk; B: Forest plot of the association between proton 
pump inhibitor use and diabetes risk according to sex; C: Forest plot of the association between proton pump inhibitor use and diabetes risk according to geographic 
location; D: Forest plot of the association between proton pump inhibitor use and diabetes risk according to study design. CI: Confidence interval; OR: Odds ratio.

Publication bias
Egger’s test (P = 0.149) and Begg’s test (P = 0.175) indicated no publication bias (Figure 3B and C).

DISCUSSION
The meta-analysis, including nine studies with a total of 867185 participants, showed that the use of 
PPIs increased the risk of diabetes, which is consistent with some previous studies. A case-control study 
of 41880 participants in China and a cohort study of 9531 participants in Europe, after adjusting for 
known risk factors, showed that the use of PPIs was related to an increased risk of type 2 diabetes, and 
efficacy was dose-dependent[6,8]. However, the former showed an increased risk of type 2 diabetes in 
patients treated with pantoprazole, lansoprazole, and omeprazole, while no increased risk was found in 
patients treated with esomeprazole or rabeprazole[8]. Another case-control study from Europe 
involving 101070 participants showed that the long-term use of PPIs was related to an increased risk of 
diabetes and increased risk over time with treatment[7]. Similarly, there was a positive relationship 
between PPI use and diabetes risk in two cohort studies in North America and one in Europe but not in 
another study in North America[9,10].

In contrast, a randomized controlled trial of 17598 participants from mixed regions found no 
statistical difference between pantoprazole and diabetes risk, without adjusting for confounding factors
[12]. Moreover, a cohort study from China, including 22152 participants, showed that the use of PPIs 
was related to a reduced risk of diabetes[11]. Recently, a systematic review and meta-analysis 
summarized the evidence on this topic, including eight studies of 850019 participants, showing that the 
use of PPIs was not related to an increased or decreased risk of diabetes. However, PPIs were only used 
as controls in two unadjusted included studies, with glucocorticoids and antipsychotics that have been 
reported to have a risk of diabetes in experimental groups[15-18]. The criteria for the included studies 
were standardized, and three recent high-quality studies were supplemented in the meta-analysis[6-8].

The mechanism between PPI use and diabetes risk is still unclear, and several hypotheses exist. First, 
the use of PPIs can alter the gut microbiome[19,20]. Changes in the gut microbiome environment play 
an important role in metabolism that are related to obesity, metabolic syndrome, insulin resistance, and 
the development of diabetic microvascular and macrovascular complications[21,22].
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Figure 3 Plots. A: Plot of sensitivity analysis by excluding one study each time and pooling estimate for the remaining studies; B: Plot of Begg’s test; C: Plot of 
Egger’s test. CI: Confidence interval; OR: Odds ratio.

Second, studies have shown that the use of PPIs can lead to hypomagnesemia[23,24]. Magnesium, an 
essential mineral in the human body and the second richest cationic ion in cells, activates enzymes and 
plays an important role as a cofactor in various biochemical reactions[25]. It has been also reported that 
lower serum magnesium concentrations are associated with higher insulin resistance and diabetes risk, 
with a nonlinear dose-response relationship[26,27].

Third, studies have shown a negative correlation between PPIs and insulin-like growth factor-1 (IGF-
1) levels[28]. IGF-1 is a polypeptide protein substance that is similar to insulin in molecular structure. It 
is able to enhance the absorption of glucose and amino acids, promote glycogen synthesis and lactate 
secretion, inhibit glycogenolysis, and increase insulin sensitivity. Studies have found that low IGF-1 
levels are associated with diabetes risk[29,30].

The fourth mechanism may be associated with the use of PPIs to activate progesterone X receptor 
(PXR)[6]. PXR is a ligand-dependent member of the nuclear receptor family that regulates target genes 
and senses the chemical environment, which is activated by many clinically used drugs and environ-
mental pollutants. When activated, it can regulate the expression of multiple drug metabolizing 
enzymes and transporters[31]. The true mechanism by which PXR impairs glucose metabolism is not 
fully understood, but its role in inducing hyperglycemia/diabetes by impairing glucose metabolism in 
the liver has been demonstrated[32].

The fifth mechanism is considered to be associated with gastrin. PPIs have been shown to increase 
endogenous gastrin levels in both animals and humans by inhibiting gastric acid secretion, which is 
associated with islet growth/regeneration[33]. Interestingly, there is also conflicting evidence regarding 
the role of PPIs in glycemic control for patients with diabetes[34,35]. Perhaps gastrin may be depleted 
over time, increasing the risk of diabetes[7].

It is well known that heterogeneity and study quality may influence the relationship resulting from 
the final analysis. Due to the high degree of heterogeneity in this study, a subgroup analysis was 
performed to understand the origin of heterogeneity. In the geographic location subgroup, a positive 
association between PPI use and diabetes risk was observed in Europe and North America but not in 
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Asia or other mixed regions. In addition, an association between PPI use and diabetes risk was also 
found in the case-control study but not in the cohort study. This suggests that more high-quality studies 
from diverse geographic locations may be required in the future. Adjusting for confounding factors has 
an important influence on the reliability of meta-analysis results, and only one randomized controlled 
trial of the included studies was not adjusted. Sensitivity analysis showed robust results in the present 
meta-analysis, and there was no published bias in this study. Taken together, the results of this meta-
analysis are robust.

In summary, PPI use is associated with diabetes risk. It is expected that the inclusion of more high-
quality studies with detailed data on the use of PPIs can be required in the future, such as different 
types of PPIs, frequency of use, duration of use, and indications. H2 receptor antagonists could also be 
included in the analysis to see if there is an association between antacids and diabetes.

CONCLUSION
Based on the available evidence, it can be concluded that the use of PPIs is related to an increased risk of 
diabetes. In addition, this connection between the use of PPIs and the risk of diabetes is also found in 
both females and males. However, accounting for the limitations and the presence of bias in the primary 
studies, future research should still focus on the use of different types of PPIs and the risk of diabetes, 
especially in people with different backgrounds.

ARTICLE HIGHLIGHTS
Research background
There is a still controversial connection between the widespread use of proton pump inhibitors (PPIs) 
and the risk of diabetes.

Research motivation
In a previous meta-analysis, the use of PPIs was shown to not be associated with the risk of diabetes. 
However, three recent high-quality studies found that the use of PPIs was associated with an increased 
risk of diabetes. Therefore, a meta-analysis was carried out to determine the association between PPIs 
and diabetes.

Research objectives
To provide more reliable evidence on the relationship between PPI use and diabetes risk.

Research methods
Meta-analysis was used to realize the objectives. Statistical analyses were performed by using Stata 
version 15.0.

Research results
Results showed that the use of PPIs increased the risk of diabetes (odds ratio = 1.23, 95% confidence 
interval: 1.05-1.43, n = 9, I2 = 96.3%). In the subgroup analysis, geographic location and study type had 
significant effects on the overall results. No publication bias (P > 0.05) was found in Egger’s or Begg’s 
tests. Also, sensitivity analysis confirmed the stability of the results.

Research conclusions
The results of this study indicated that the use of PPIs was associated with an increased risk of diabetes.

Research perspectives
It is expected that more research from diverse geographic locations with detailed data on the use of PPIs 
is required in the future.
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