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Abstract
Gastric emptying (GE) exhibits a wide inter-individual variation and is a major 
determinant of postprandial glycaemia in health and diabetes; the rise in blood 
glucose following oral carbohydrate is greater when GE is relatively more rapid 
and more sustained when glucose tolerance is impaired. Conversely, GE is 
influenced by the acute glycaemic environment acute hyperglycaemia slows, 
while acute hypoglycaemia accelerates it. Delayed GE (gastroparesis) occurs 
frequently in diabetes and critical illness. In diabetes, this poses challenges for 
management, particularly in hospitalised individuals and/or those using insulin. 
In critical illness it compromises the delivery of nutrition and increases the risk of 
regurgitation and aspiration with consequent lung dysfunction and ventilator 
dependence. Substantial advances in knowledge relating to GE, which is now 
recognised as a major determinant of the magnitude of the rise in blood glucose 
after a meal in both health and diabetes and, the impact of acute glycaemic 
environment on the rate of GE have been made and the use of gut-based therapies 
such as glucagon-like peptide-1 receptor agonists, which may profoundly impact 
GE, in the management of type 2 diabetes, has become commonplace. This 
necessitates an increased understanding of the complex inter-relationships of GE 
with glycaemia, its implications in hospitalised patients and the relevance of 
dysglycaemia and its management, particularly in critical illness. Current 
approaches to management of gastroparesis to achieve more personalised 
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diabetes care, relevant to clinical practice, is detailed. Further studies focusing on the interactions 
of medications affecting GE and the glycaemic environment in hospitalised patients, are required.

Key Words: Glycaemia; Gastric emptying; Clinical practice; Glucagon-like peptide-1

©The Author(s) 2023. Published by Baishideng Publishing Group Inc. All rights reserved.

Core Tip: Gastric emptying (GE) is a major determinant of postprandial glycaemia in health, diabetes and 
critical illness. Acute hyperglycaemia slows GE while insulin-induced hypoglycaemia accelerates it. 
Gastroparesis occurs frequently in diabetes and critical illness with a weak correlation between 
gastrointestinal symptoms and GE. Accordingly, diagnosis of gastroparesis should ideally be made after 
measuring GE with an optimal technique. Glucagon-like peptide-1 receptor agonists, commonly used in 
the treatment of type 2 diabetes and increasingly in obesity, may profoundly impact GE. We explore the 
rationale for current glycaemic targets and the implications of dysglycaemia and its management in hospit-
alised and critically ill populations.

Citation: Arunachala Murthy T, Chapman M, Jones KL, Horowitz M, Marathe CS. Inter-relationships between 
gastric emptying and glycaemia: Implications for clinical practice. World J Diabetes 2023; 14(5): 447-459
URL: https://www.wjgnet.com/1948-9358/full/v14/i5/447.htm
DOI: https://dx.doi.org/10.4239/wjd.v14.i5.447

INTRODUCTION
In recent years there has been increasing interest regarding the relevance of gastrointestinal (GI) 
function, particularly gastric emptying (GE), to post-prandial glycaemia. GE is now recognised as a 
major determinant of the magnitude of the rise in blood glucose after a meal in both health and diabetes
[1,2]. Moreover, in the past decade, use of gut-based therapies such as glucagon-like peptide-1 (GLP-1) 
receptor agonists (RAs), which may profoundly impact GE, in the management of type 2 diabetes, has 
become commonplace. On the other hand, it is also clear that the acute glycaemic environment impacts 
the rate of GE. This review focuses on two inter-related areas: Current knowledge of GE, including the 
pathophysiology of gastroparesis, and the inter-relationships between GE and glycaemia, including the 
clinical implications of these insights in hospitalised patients with diabetes, and for critical illness.

GI SYMPTOMS IN DIABETES
Although GI symptoms occur frequently in the general community[3], they are much more prevalent in 
people with diabetes and the consequences are generally underappreciated, despite impacting quality of 
life negatively[4]. These symptoms can be classified based on their apparent predominant site of origin 
in the GI tract, such as from the oesophagus (reflux, dysphagia), stomach (nausea/vomiting, bloating, 
abdominal distension, early satiety, abdominal pain and discomfort) or the intestines (diarrhoea, 
constipation, faecal incontinence)[5]. Epidemiological studies are indicative of a wide, but consistently 
high, prevalence (between 40% to 80%) of upper GI symptoms in people with diabetes, particularly 
females, the obese, those with Helicobacter Pylori infection and the elderly[5]. It is uncertain whether the 
prevalence differs between type 1 and type 2 diabetes. The natural history of GI symptoms remains 
poorly characterized, but a substantial turnover (i.e., appearance and disappearance of symptoms over 
time) has been observed. The latter may be to the order of 25% over a 24-mo period, such that the 
overall prevalence appears to be relatively constant[6]. A number of validated questionnaires for the 
assessment of GI symptoms, including the Patient Assessment of Upper Gastrointestinal Symptom 
Severity Index[7] and the Diabetes Bowel Symptom Questionnaire, are available but unfortunately, 
many clinical trials, particularly those related to glucose-lowering therapies[8] continue to report GI 
symptoms/adverse effects relying solely on participant self-reporting, which is known to be unreliable
[9]. An important concept that is still poorly appreciated is that the association of upper GI symptoms 
with GI motility, including the rate of GE is generally weak in people with diabetes[9-11]. Therefore, a 
diagnosis of GI dysmotility (including gastroparesis) should not rely on symptoms alone and 
necessitates objective measurement.

https://www.wjgnet.com/1948-9358/full/v14/i5/447.htm
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GE
GE exhibits a wide inter-individual variability (approximately 1-4 kcal/min) in health, which is even 
greater in type 2 diabetes. A substantial proportion of people with longstanding, complicated type 2 
diabetes (40%) have gastroparesis whereas, in uncomplicated type 2 diabetes[12] and adolescents with 
type 1 diabetes[13], GE is often abnormally accelerated. It should be appreciated that in patients with 
gastroparesis, the magnitude of the delay in GE is often modest[14]. The prevalence of delayed GE in 
ambulant people with diabetes remains uncertain, particularly as the diagnosis has been based 
primarily on the presence of significant upper GI symptoms, but diabetes appears to be the most 
common cause of gastroparesis[15]. The techniques currently available for measurement of GE are 
summarized in Figure 1.

Physiology of normal GE
The principal function of the stomach is transient storage, breakdown and transportation of ingested 
food. Patterns of gastroduodenal motility are distinct between the fasting and fed states. In the fasted 
state, a characteristic pattern is observed, referred to as the migratory motor complex (MMC) which has 
a ‘house-keeping’ role to propagate residual or undigested food through the GI tract[16]. The MMC, 
which lasts approximately 85-110 min comprises four, distinct phases: The first phase is quiescent 
(approximately 45-60 min) in which there are no contractions, the second involves initiation of 
intermittent and irregular contractions, the latter become stronger and more regular with bursts in the 
third phase, with each burst lasting for 5-15 min and occurring periodically every approximately 90-120 
min. The fourth is a transitory period of irregular contractions between the third phase and the 
quiescent first phase. Thus, the MMC prepares the stomach for the arrival of food, by clearing its 
content[17]. The MMC continues until nutrients (liquid or solid) are ingested, when it is replaced by 
continuous post-prandial contractile activity. An important function of the stomach is to ‘accommodate’ 
the ingested food from the oesophagus with minimal increase in intra-gastric pressure, facilitated by a 
reduction in gastric tone and increase in compliance after meal ingestion[18]. As food moves from the 
proximal to the distal stomach, larger solid food particles are ground, predominantly in the antrum, into 
a fine chyme (partly digested semi-solid contents of the stomach) consisting of particles 1-2 mm in size 
which are delivered into the small intestine[19].

The rate of GE is regulated primarily by inhibitory feedback arising from the interaction with 
receptors in the small intestine, rather than intragastric factors[20], The magnitude of this feedback is 
dependent on both the region and length of small intestine exposed. GE involves a coordinated 
interplay of the extrinsic nervous system (mediated by the vagus), intrinsic or enteric nervous system 
(comprising Auerbach’s or myenteric, which controls the rate of peristalsis and Meissner’s plexus 
located below the level of the musculature, which controls secretion into the lumen of digestive tract), 
neurotransmitters [both excitatory e.g., acetylcholine and substance-P and inhibitory e.g., nitric oxide 
(NO) and VIP], the interstitial cells of Cajal (ICCs), mesenchymal cells including platelet-derived growth 
factors-alpha + cells, fibroblasts, haem-oxygenase 1, macrophages etc.[14,21], immune and smooth 
muscle cells. Gastric accommodation is mediated, at least in part, by the inhibitory neurotransmitter 
NO, while antral contractility is modulated by the excitatory neurotransmitter acetylcholine[22,23]. The 
ICCs are densely located in the corpus and antrum of the stomach, within the Auerbach plexus and 
regarded as ‘pacemakers’ for GI motility[24] by generating slow-waves responsible for contractions[25] 
and acting as mechanosensors by affecting the resting membrane potential through nitrergic and 
cholinergic transmission[26]. The ICCs act as a bridge between the extrinsic nervous system and the 
enteric nervous system to facilitate smooth muscle contraction.

Pathophysiology of disordered GE
Abnormally delayed GE, or gastroparesis, is generally a chronic disorder which can be defined as 
delayed emptying of nutrients from the stomach in the absence of mechanical obstruction[25]. The most 
common causes of gastroparesis are diabetes, post-surgical and idiopathic. The pathophysiology of 
disordered GE is, not surprisingly, multifactorial. Significant advances have been made in the last 
decade and a half, in part, due to concerted efforts of the National Institutes of Health funded, Gastro-
paresis Clinical Research Consortium (GpCRC). Autonomic neuropathy is mainly responsible for 
gastroparesis and vagal dysfunction is believed to contribute[27]. At the cellular level, a hallmark 
feature of gastroparesis is a reduction in the ICC[14]. GpCRC data indicates that in 50% of those with 
diabetic gastroparesis there is a reduction in ICC[28] and even when there is not a reduction, there are 
abnormalities in the ICC[28], so that the majority of these cells show signs of apoptosis, with increased 
mast cells and altered nerve endings which are either large or empty[29]. Expression of neuronal NO 
synthase[30] is reduced in diabetic gastroparesis[29]. The Kit receptor, tyrosine kinase, is expressed in 
ICC and loss of the receptor is characteristic in delayed GE[14]. In some studies this has been observed 
to be associated with a reduction in macrophages and their expression of Haeme-oxygenase 1, 
potentially affecting the capacity for repair and anti-inflammatory response in these cells[14] as well as 
increasing their susceptibility to oxidative damage. The heterogenous nature of the dysfunctions in 
gastroparesis has major implications for effective management.
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Figure 1 Measurement of gastric emptying.

Relationship between GE and glycaemia
The rate of GE is both a determinant of, as well as determined by, acute changes in glycaemia. 
Accordingly, studies exploring the impact on glycaemia have tended to control the rate of GE (e.g., by 
use of naso-duodenal infusions) and those exploring the impact on rate of emptying have controlled the 
glycaemic level (usually withglucose-insulin clamps). These studies are thus experimental in nature and 
the conclusions should be regarded as ‘proof-of-principle’. There is less information about the impact of 
spontaneous fluctuations in blood glucose.

The impact of GE on glycaemia: There are number of determinants of post-prandial glycaemia, 
including pre-prandial glycaemia, endogenous glucose production (hepatic and renal), intestinal 
glucose absorption and its disposal by the liver, hormone secretion (incretins, insulin) and insulin 
sensitivity[31]. GE, is now recognised to account for almost 35% of the variance in the initial post-
prandial glycaemic response in both health[1] and type 2 diabetes[32]. In individuals with normal 
glucose tolerance, GE of a 75 g oral glucose drink is directly related to the ‘initial’ i.e. 30 min, plasma 
glucose, not 60 min and inversely related to the blood glucose at 120 min[1]. In contrast, in individuals 
with impaired glucose tolerance and type 2 diabetes, the rate of GE is related directly to glycaemia at 30 
and 60 min and, particularly in type 2 diabetes, there is also a direct relationship at 120 min (the blood 
glucose level used in the diagnosis of diabetes) with a relatively faster GE associated with an increased 
glycaemic response, indicative of a ‘rightward’ shift[33,34].

There is evidence that in insulin-treated patients delayed GE/gastroparesis predisposes to post-
prandial hypoglycaemia by inducing a mismatch in the coordination of nutrient delivery with the 
systemic availability of insulin we have proposed the term “gastric hypoglycaemia” to describe this 
phenomenon[35]. A Japanese study reported that in type 1 patients with gastroparesis, on continuous 
subcutaneous (SC) insulin infusion therapy, there was a reduction in the post-prandial insulin 
requirement in the first 120 min, and a greater requirement between 180-240 min[36]. A community 
study from Israel reported that GE was delayed in the majority of patients (approximately 80%) with 
unexplained hypoglycaemia[37]. The effect of accelerating/normalising GE on glycaemic control in 
these groups is not known and warrants evaluation.

The impact of glycaemia on GE: As mentioned, studies evaluating the impact of acute changes in 
glycaemia on emptying have largely relied on experimental models, particularly the so-called glucose-



Arunachala Murthy T et al. Gastric emptying and glycaemia

WJD https://www.wjgnet.com 451 May 15, 2023 Volume 14 Issue 5

insulin ‘clamp’ technique. These have shown that acute hyperglycaemia slows GE of nutrient containing 
meals in health and type 1 diabetes, an effect which is dependent on the level of glycaemia[38-41]. Even 
so-called “physiological” hyperglycaemia (i.e. approximately 8 mmol/L), compared to 4 mmol/L slows 
GE in health[42] and type 1 diabetes[41]. Hebbard et al[43] studied regional stomach motility in health 
and showed that acute hyperglycaemia (15 mmol/L) affected proximal gastric motor function[43] while 
Samsom et al[40] studied antroduodenal motility using manometry in patients with type 1 diabetes and 
evidence of autonomic neuropathy and demonstrated a reduction in post-prandial antral contractility 
during hyperglycaemia (16-19 mmol/L)[40]. Acute hyperglycaemia also appears to delay GE in type 2 
diabetes[44] and critically ill[45,46]. In contrast, spontaneous fluctuations in glycaemia has none, or a 
lesser effect on GE [47].

The impact of chronic glycaemia, as assessed by glycated haemoglobin (HbA1c) on GE is poorly 
defined, including the effect of improved glycaemic control. Analysis of the data from the Diabetes 
Control and Complications Trial (DCCT) and Epidemiology of Diabetes Interventions and Complic-
ations (EDIC) study[48] indicates that delayed GE is associated with abnormal measures of longer-term 
hyperglycaemia, such as HbA1c[49]. The impact of intensive glucose lowering on GE is uncertain. 
Laway et al[50] studied asymptomatic women with newly diagnosed type 2 diabetes and reported a 
substantial acceleration of GE with improved glycaemic control, but the design of the study was 
uncontrolled[50]. Other studies failed to find any effect of improved glycaemic control[51]. Bharucha et 
al[49], followed up participants from the DCCT[49] and its subsequent follow-up (DCCT-EDIC)[48] and 
found that those with a longer duration of diabetes and worse glycaemic control at baseline, tended to 
have delayed GE. However, because GE was not quantified at baseline, the impact of intensive glucose-
lowering on GE could not be evaluated. The outcomes of other retrospective studies evaluating the 
relationship of chronic glycaemia (based on HbA1c) and GE are inconsistent[52-54]. Accordingly, 
further studies are required.

While there is less information about the effects of acute insulin-induced hypoglycaemia on GE, the 
outcomes are more consistent. Hypoglycaemia is the most common and feared symptom of insulin, and 
sulfonylurea, treated diabetes and represents a major limiting factor in achieving optimal glucose 
control[55]. In response to an acute reduction in blood glucose, a predictable sequence of protective 
(counter-regulatory) mechanisms are elicited in health[56]. Most widely recognised are the hormonal 
counter-regulatory responses (early response modulated by glucagon and catecholamines and later 
responses by cortisol and GH)[57,58]. It is not well appreciated that acute hypoglycaemia also 
accelerates GE markedly. As early as 1924, i.e. within 3 years of the commercial availability of insulin, 
Bulatao and Carson[59] reported increased contractions of the fasting canine stomach after insulin 
administration and attributed this effect to hypoglycaemia. In the 1990s and 2000s, acceleration of GE 
was confirmed employing the ‘gold standard’ technique of scintigraphy to measure GE, in both health 
and type 1 diabetes. We recently showed that the magnitude of acceleration of GE is also dependent on 
the level of the hypoglycaemia in health GE was accelerated during both mild; Approximately 3.6 
mmol/L (approximately 20% difference) and marked; Approximately 2.6 mmol/L (40% difference) 
hypoglycaemia when compared to euglycaemia; approximately 6 mmol/L, but was faster during 
marked compared with mild hypoglycaemia[42]. This acceleration of GE, which is still evident in type 1 
patients with gastroparesis or cardiovascular autonomic neuropathy[56]. This acceleration of GE, which 
is still evident in type 1 patients with gastroparesis and/or cardiovascular autonomic neuropathy[60], is 
likely to be an important counter-regulatory mechanism which supports more rapid intestinal glucose 
absorption[57]. Studies evaluating the effects of hypoglycaemia on GE in the critically ill are, not 
surprisingly, lacking because of the established harmful effects of hypoglycaemia in this population[61,
62].

Relevance of the insights of the GE-glycaemia relationships to clinical situations
The management of dysglycaemia and its consequences in hospitalised patients is of more relevance 
due to increasing prevalence of diabetes in this group. The implications of the use of the newer anti-
diabetic medications in this group is also of substantial interest.

HOSPITAL (NON-CRITICAL CARE SETTING)
Dysglycaemia is a major issue in hospitalised patients and associated with poor outcomes, including 
increased length of stay, morbidity and mortality[63].The prevalence of diabetes is markedly higher in 
hospitalised patients when compared to the community ranging from 22%-46%[60,64]. While 
hyperglycaemia is a well-recognised poor prognostic indicator, hypoglycaemia has been reported to 
occur in about 6% of hospitalised patients[64]. There is only limited information about the relationship 
of GE to dysglycaemia in this group.

Gastroparesis in hospitalised diabetic patients
GE is seldom measured using an optimal technique in the hospital setting unless gastroparesis is 
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suspected. Iatrogenic aetiologies (due to medications or post-surgery) are also common. Nevertheless, 
the prevalence of delayed GE measured with scintigraphy has been estimated to be between 17% to 30%
[65] in hospitalised patients with diabetes. Kojecky et al[65] found that female gender, nausea and early 
satiety were associated with a higher probability of delayed GE[65]. The impact of medications affecting 
GI motility (e.g., anticholinergics, sympathomimetic vasopressors, GLP-1RAs, opioids, prokinetics etc.) 
on drug and nutrient absorption during hospitalization is not known. While it is intuitively likely that 
undiagnosed gastroparesis will increase morbidity in hospitalised patients, there is lack of information 
about this.

GLP-1 based therapies in the management of type-2 diabetes
The gut-derived incretin hormones (GIP and GLP-1) account for about 50% of the post-prandial insulin 
response in health[66,67] and are responsible for the ‘incretin effect’ [the amplified insulin secretory 
response to oral compared with intravenous (IV) glucose]. GIP is the dominant incretin in health[68] but 
its insulinotropic capacity is markedly attenuated in type 2 diabetes[69], unlike GLP-1, which largely 
retains the insulin stimulating and glucagon supressing properties. The rate of GE impacts the secretion 
of incretin hormones. Studies employing intraduodenal glucose infusion, an experimental model for 
estimating the impact of GE on incretin secretion by bypassing the gastric pylorus, suggest that there 
may be a ‘threshold’ rate of emptying at which significant GLP-1 release is observed following a 
carbohydrate containing meal[70]. Increasing the rate of intraduodenal glucose infusion from 1 to 4 
kcal/min results in a proportionate increase in GIP release; in contrast there is minimal, if any GLP-1 
release with an infusion rate < 2 kcal/min, with sustained responses at 3 and 4 kcal/min[71].

Native GLP-1, located primarily in the distal small intestine and triggered following macronutrient 
exposure, is degraded within minutes in vivo, by the ubiquitous enzyme, dipeptidyl peptidase IV (DPP-
IV). Two strategies: (1) DPP-IV inhibition which prevents degradation of the enzyme; and (2) GLP-1RAs 
have been developed to exploit GLP-1 pharmaceutically. Both classes of medication are widely available 
but the use of GLP-1RA’s, in particular, is expanding rapidly (approximately $11.3 billion global sales in 
2019, projected to grow to approximately $18.2 billion by 2027). Recent, large-scale, cardiovascular and 
renal outcome studies have shown positive benefits of these agents particularly in individuals with 
diabetes and concomitant ischaemic heart disease or cardiac failure[72].

GLP-1RAs are, in nearly all cases, administered by SC injection either daily or weekly. GLP-1RAs, 
especially the ‘short acting’ agents, such as exenatide BD and lixisenatide, primarily act by delaying GE 
and thereby reducing post-prandial glycaemia[73], while the effect of ‘long-acting’ GLP-1RA’s (e.g., 
dulaglutide, semaglutide) has been poorly characterised due to the use of suboptimal methodology 
(paracetamol absorption)[74,75]. It had been assumed that they had no effect with sustained use due to 
tachyphylaxis, but it is now clear that both the exenatide once weekly preparation and liraglutide do 
slow GE[76,77] and there are anecdotal reports of retained gastric content at endoscopy with these 
drugs[78]. The effects of these drugs on small intestinal transit, which may affect carbohydrate 
absorption are poorly studied. Long-acting GLP-1RAs are used increasingly to induce weight loss in 
obese individuals.

A fundamental issue with these agents is their current essentially empirical use. Given its central 
importance, the effect of these drugs on GE should be characterised; it is likely that they all slow GE; 
patients taking long-acting GLP-1RAs for type 2 diabetes or obesity (higher dose) should be, 
accordingly, regarded at increased risk for delayed GE (i.e., gastroparesis), until this is shown not to be 
the case, whereas the effect of short-acting GLP-1RA’s should be transient, reflecting their plasma half-
life. The impact of GLP-1RA on GE in different glycaemic environments (such as acute hyperglycaemia 
or hypoglycaemia) is not known. While GLP-1RA by themselves seldom cause hypoglycaemia (i.e., their 
actions are glucose-dependent)[79], in combination with insulin or sulphonylureas, there is an increased 
risk of hypoglycaemia. There is need for further studies evaluating the effect of long-acting GLP-1RAs 
in the presence of other medications that affect GE (prokinetics, oral opioid pain medications etc.). In 
contrast, DPP-IV inhibitors have minimal or no impact on GE[80], presumably because of the more 
modest elevation in GLP-1. However, the rate of GE influences the post-prandial glycaemic response to 
DPP-IV inhibitors[81].

HOSPITAL (CRITICAL CARE SETTING)
Dysglycaemia is also common in critically ill patients, can present as hyperglycaemia, hypoglycaemia or 
glycaemic variability and is associated with increased mortality[82,83], infection[84,85] and other 
complications[86,87]. Hyperglycaemia during critical illness can be attributed to pre-existing diabetes 
(both type 1 and type 2; 13%-20% of patients)[61,83], incidental/unrecognised diabetes (defined as 
HbA1c > 6.5% identified for the first time during acute illness; 5%-15%)[88-90] or stress hyperglycaemia 
(defined as a peak blood glucose concentration that, in health, would lead to a diagnosis of diabetes; 
17%-50%)[91-94]. The underlying mechanisms of acute hyperglycaemia in the critically ill include 
increased insulin resistance[95] and relative insulin insufficiency[96]. Long-term consequences of stress 
hyperglycaemia include a higher rate of subsequent diabetes and its associated complications[97,98]. 
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Exogenous insulin used to achieve glycaemic control can cause hypoglycaemia and increased glycaemic 
variability, both of which have an impact on mortality[61,99,100].

Gastroparesis in critically ill patients
In the critically ill, nutrition is most commonly delivered via the nasogastric route and success is, 
accordingly, dependant on intact gut function. Delayed GE is common, (50%-80%), as indicated by large 
gastric residual volumes (GRVs), and associated with early cessation of enteral nutrition, increased 
infection, increased length of stay and increased mortality[101-103]. Surprisingly, pre-existing type 2 
diabetes does not appear to be a risk factor for delayed GE[104], suggesting that the delayed GE in 
critical illness is mechanistically unrelated. We have reported that the rate and extent of glucose 
absorption following intragastric administration is markedly reduced in about 1/3rd of intensive care 
unit patients[46] and is dependent on the rate of GE[105]. Thus, GE is a major determinant of 
postprandial glycaemia in this group[1,13] and may predispose to increased glycaemic variability[106]. 
Furthermore, delayed GE in patients treated with insulin may represent a risk factor for hypoglycaemia
[37]. Likewise, acute hyperglycaemia has been associated with delayed GE in the critically ill[46]. Due to 
the interdependent relationships and extent of glycaemic variability noted in many studies there are 
likely to be multiple factors affecting this relationship in both directions. Thus, interventions aimed at 
overcoming delayed GE, for example the use of prokinetics, post-pyloric tubes and parenteral nutrition, 
may have as yet unidentified effects on glycaemia. Prokinetic therapy can improve critical illness gastro-
paresis and has been associated with better clinical outcomes[107], but its impact on glycaemic 
variability is uncertain[108-110].

Role of feed composition
The macronutrient composition of feed formulae is likely to have both direct and indirect effects on 
glycaemia, the latter by affecting the rate of GE. Energy dense and high lipid feed formulae are 
associated with slower GE (i.e., emptying proceeds at a specific caloric rate (kcal/min) and is, 
accordingly prolonged) with no significant improvement in glycaemic control[111]. The large, multi-
centre TARGET trial, reported that the administration of a high density formula (additional calories 
from additional lipid and carbohydrate) resulted in both hyperglycaemia requiring higher insulin doses
[112] and larger GRVs. The additional carbohydrate is likely to account for the higher blood glucose and 
the increased lipid could contribute to the slower GE. As these parameters are interrelated, it is 
impossible to determine from this study whether, and by how much, hyperglycaemia per se is causing 
the slowing of GE or vice versa. Rugeles et al[113] reported less hyperglycaemia with high-protein 
hypocaloric feeds. In another pilot RCT (FEED trial) comparing the effect of two protein doses (1.2 g/
kg/day vs 0.75 g/kg/day) on muscle mass, no difference in feed intolerance (GRV > 300 mL) was 
evident[114]. In another pilot study investigating the feasibility of delivering higher protein doses (1.52 
± 0.52 vs 0.99 ± 0.27 g/kg/d), there was no difference in glycaemia and mean daily GRVs were less
[115]. High protein feed formulae may, accordingly, potentially result in less GI intolerance and 
dysglycaemia, but this requires confirmation in larger studies.

GLP-1 based therapies in the management of glycaemia in critical illness
Insulin remains the most frequently used medication to treat hyperglycaemia in critically ill patients. 
Most other oral anti-antidiabetic medications are withheld in intensive care patients due to their 
unpredictable absorption and concerns about their impact on glycaemic variability and variable 
nutrition intake. Long-acting insulin is sometimes used in patients tolerating enteral nutrition for 
sustained glycaemic control during the recovery phase of illness due to the convenience of adminis-
tration. However, in the acute phase of critical illness, short-acting, continuously infused, IV insulin is 
generally used. This carries the risks of increased glycaemic variability and hypoglycaemia, 
necessitating intensive monitoring. Thus, other medications that can normalise elevated blood glucose 
levels and reduce glycaemic variability and the risk of hyperglycaemia are being explored.

Gut-based antidiabetic therapies (e.g., incretin hormones) may offer a safe yet effective alternative to 
insulin. Our group has published ‘proof of concept’ studies over the past decade in which we have 
demonstrated that exogenous GLP-1 infusion attenuates, but does not normalize, hyperglycaemia 
induced by enteral nutrition in critically ill patients with both type 1 diabetes[116] and stress 
hyperglycemia. The slowing of GE by GLP-1 appears to be a plausible contributory mechanism[105]. IV 
GLP-1 may also reduce glycaemic variability, although in this small study it did not appear to impact IV 
insulin requirements or the frequency of hypoglycaemia)[117]. This study was also limited by the 
dosing of the medication (FDA mandate limiting GLP-1 dose to 1.5 pmol/kg/min) and the magnitude 
of glucose lowering (desired glucose range of 4.44–6.11 mmol/L was achieved in only a minority of 
patients)[117]. The use of GLP-1RAs is of interest, mainly due to the low risk of hypoglycaemia, given 
the glucose-dependency of the insulinotropic effect and glucagon suppression in comparison to 
currently used IV insulin therapy. The impact of GLP1-RAs on glycaemic management, GE, nutrition 
delivery and medium and longer term clinical outcomes in critically ill patients is not known. A 
potential limitation related to their current SC, rather than IV, use and the lack of safety data in the 
critically ill. It should be appreciated that GLP-1RAs have cardiac and renal protective effects with 
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longer-term use which may be of relevance[118].

CONCLUSION
GE has an important and inter-dependent relationship with the acute glycaemic environment in health, 
diabetes, and critical illness, which is relevant to clinical practice. Abnormally delayed GE, or gastro-
paresis, is common in type 1 and type 2 diabetes, and in critical illness. Recent insights have led to a 
better understanding of the pathophysiology of diabetic gastroparesis, especially at the cellular level. 
Glucose-lowering medications such as GLP-1RAs that act primarily by slowing GE, are used widely 
today in the management of type 2 diabetes but their actions on GE under various glycaemic conditions 
are not known and their place in the management of dysglycaemia in critical illness remains uncertain. 
Advantages of reduced hypoglycaemia and glycaemic variability will need to be balanced against the 
potentially adverse impact of slowing of GE on nutrition delivery and the risk of aspiration. Further 
studies building on these insights and focusing on the interactions of medications affecting GE and 
glycaemic environment in hospitalised patients are required.
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Abstract
The incidence of diabetic kidney disease (DKD) is sharply increasing worldwide. 
Microalbuminuria is the primary clinical marker used to identify DKD, and its 
initiating step in diabetes is glomerular endothelial cell dysfunction, particularly 
glycocalyx impairment. The glycocalyx found on the surface of glomerular 
endothelial cells, is a dynamic hydrated layer structure composed of pro-
teoglycans, glycoproteins, and some adsorbed soluble components. It reinforces 
the negative charge barrier, transduces the shear stress, and mediates the 
interaction of blood corpuscles and podocytes with endothelial cells. In the high-
glucose environment of diabetes, excessive reactive oxygen species and 
proinflammatory cytokines can damage the endothelial glycocalyx (EG) both 
directly and indirectly, which induces the production of microalbuminuria. 
Further research is required to elucidate the role of the podocyte glycocalyx, 
which may, together with endothelial cells, form a line of defense against albumin 
filtration. Interestingly, recent research has confirmed that the negative charge 
barrier function of the glycocalyx found in the glomerular basement membrane 
and its repulsion effect on albumin is limited. Therefore, to improve the early 
diagnosis and treatment of DKD, the potential mechanisms of EG degradation 
must be analyzed and more responsive and controllable targets must be explored. 
The content of this review will provide insights for future research.

Key Words: Glycocalyx; Diabetic kidney disease; Endothelial cells; Reactive oxygen 
species; Microalbuminuria; Enzyme
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Core Tip: In the diabetic microenvironment, various harmful factors, such as oxidative stress and inflam-
mation, contribute to endothelial glycocalyx (EG) disruption through direct damage to the glycocalyx or 
indirect degradation due to the upregulation of related sheddases. Shedding one or more components after 
damage to the EG is an early sign of numerous pathological states, including diabetes. The loss of 
filtration barrier integrity can lead to microalbuminuria, which is predictive of diabetic kidney disease 
(DKD). Identifying and targeting the key molecules involved in glycocalyx damage thus represent current 
hot topics in DKD research.

Citation: Yu H, Song YY, Li XH. Early diabetic kidney disease: Focus on the glycocalyx. World J Diabetes 2023; 
14(5): 460-480
URL: https://www.wjgnet.com/1948-9358/full/v14/i5/460.htm
DOI: https://dx.doi.org/10.4239/wjd.v14.i5.460

INTRODUCTION
Over the past 30 years, the number of people with diabetes mellitus has quadrupled globally, and 
approximately 1 in 11 adults currently have diabetes (mainly type 2)[1]. Moreover, most patients with 
diabetes also have complications, which seriously affect their quality of life and life expectancy. Diabetic 
complications are categorized as macrovascular (e.g., cardiovascular disorders) and microvascular (e.g., 
renal, retinal, and neurologic disease). In recent decades, cohort studies from high-income countries 
have shown that the relative risk of microvascular complications is at least 10 times higher in patients 
with diabetes than in patients without diabetes, while the relative risk of macrovascular complications is 
2-4 times higher[2]. In developing countries, patients with diabetes have a higher risk of renal complic-
ations but a lower risk of coronary heart disease[3], which further reveals the increasing incidence of 
diabetic microvascular disease complications, especially diabetic kidney disease (DKD). However, the 
pathogenesis of DKD is incredibly complicated and remains poorly understood, and current treatments 
have limited efficacy. In the last ten years, DKD has replaced glomerulonephritis as the primary reason 
for chronic kidney disease in China[4] and it has also become the leading global cause of end-stage renal 
disease[5]. Understanding the pathogenesis of early DKD is, thus, of profound significance because it 
could aid in delaying, preventing, or reversing the progression of this disease and improving the 
prognosis of patients.

The glomerular filtration barrier (GFB) comprises three distinct layers: Endothelial cells, glomerular 
basement membrane (GBM), and podocytes. The pathological changes that occur with DKD include 
glomerular capillary hypertrophy, GBM thickening, podocyte foot process disappearance, and 
mesangial expansion. Microalbuminuria occurs prior to these changes and is denoted by a slight 
increase in the urinary excretion of albumin (20-200 μg/min in humans) prior to overt DKD, and is the 
first predictor that a patient has a high risk of developing DKD, with both type 1 diabetes mellitus 
(T1DM) and type 2 diabetes mellitus (T2DM)[6]. It is noted that renal tubules have powerful reab-
sorption, and a 50% increase in the filtration rate increases urinary albumin in the sub-microalbumin 
range[7]. Thus, to facilitate albumin flux increases that are sufficient to produce microalbuminuria, 
normal renal tubule reuptake requires structural alterations to the GFB[8]. Furthermore, endothelial 
dysfunction has been found to precede the onset of microalbuminuria[9]. The trigger for endothelial 
dysfunction is based on the permselectivity of GFB to molecules of different sizes and charges. The 
albumin filtration increase can be estimated, and it depends on the size or charge selectivity of the defect
[10]. Studies have found that the occurrence of microalbuminuria is tied to charge selectivity in diabetic 
animal models and patients with T1DM and T2DM[10-12]. The lack of charge selectivity is observed 
earlier than the depletion of size selectivity, and the size selectivity defect only appears after the 
transition to the macroalbuminuria stage[12]. Consequently, the pre-emptive advantage of the charge 
selective defect suggests that the damage to the endothelial glycocalyx (EG) with a negative charge most 
likely represents the first step in the progression of microalbumin in patients with DKD. Thus, the 
structure and function of the EG, the mechanism of EG damage, and potential therapeutic strategies 
must be further explored to curb the rapid spread of DKD.

GLYCOCALYX STRUCTURAL AND FUNCTIONAL ALTERATIONS IN DKD
EG
Glomerular endothelial cells are highly differentiated with cytoplasmic decay zones dotted with many 
fenestrae, which are round transcellular pores at 60-80 nm in diameter[13]. The fenestrae were 
previously considered empty, which means that they are a weak barrier against albumin filtration[14]. 
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Although fenestrated capillaries are much more permeable to water and small solutes than non-
fenestrated capillaries, there is little albumin in the GBM and adjacent podocytes under physiological 
conditions[15,16]. Albumin is a polar protein with a total net charge ranging from -12 to -18 at 
physiological pH[17]. Studies using dextran with different charges found that polycationic DEAE 
dextran was cleared more at a certain molecular radius than neutral dextran, which was filtered more 
freely than negatively charged sulfate dextran[18]. These phenomena can only be explained by the 
negatively charged glycocalyx. In addition, the Starling hypothesis indicates the primary method of 
fluid exchange between plasma and tissue in most capillaries. On this basis, the revised Starling 
hypothesis states that at a steady state, colloidal osmotic pressure differences, which are resistant to 
hydrostatic pressure, exist across the EG rather than the entire vessel wall, effectively preventing 
albumin from leaving the vessel[19]. Observing the glycocalyx on the surface of the endothelial cells 
requires specific fixation and staining techniques. The immunofluorescence confocal technique is now 
widely used with lectin to fluorescently label glycocalyx components, which can be directly observed in 
the 200-400 nm thick glycocalyx covering the luminal surface of the glomerular endothelial cells in the 
fenestral and inter-fenestral domains. The EG is a complex layer on the glomerular endothelial cells 
composed of proteoglycans (PGs), glycoproteins, and glycolipids. It integrates components, such as 
plasma proteins, α-acid glycoproteins, antithrombin III, extracellular superoxide dismutase (SOD), 
lipase, growth factors, and chemokines, to form a looser layer known as the endothelial surface layer 
(ESL)[20]. The PGs of the EG consist of core proteins and glycosaminoglycan (GAG) side chains. To the 
best of our knowledge, the main core proteins are syndecans and glypicans. The GAGs include heparin 
sulfate (HS), hyaluronic acid (HA), chondroitin sulfate (CS), and keratan sulfate, which are all 
negatively charged due to their carboxyl and/or sulfate groups[21]. Short exposure to glucose levels > 
15 mmol/L resulted in a 50% loss of the glycocalyx in healthy individuals[22]. In C57BL/6 mice, acute 
hyperglycemia increased EG permeability[23]. EG shedding increases the concentration of several types 
of EG in the blood or plasma, such as HA, HS, and syndecans. Thus, the plasma levels of these 
molecules can be regarded as a responsive indicator for EG degradation. Glycocalyx hydrolysis is clo-
sely related to sheddases, such as heparinase (HPSE), matrix metalloproteinase (MMP), hyaluronidase 
(HYAL), and neuraminidase (NEU)[24]. In patients with T1DM, the loss of approximately half of the 
body’s glycocalyx was accompanied by elevated plasma HA and HYAL levels. More importantly, the 
glycocalyx volume was decreased in T1DM patients with microalbuminuria when compared with those 
without[25], and similar results were reported in patients with T2DM[26]. These findings suggest that 
the decrease in EG correlates strongly with microalbuminuria. Swärd and Rippe[27] proposed a more 
precise exposure time for hyperglycemia. Short-term (lasting minutes to hours) exposure to 
hyperglycemia produced microproteinuria via protein kinase Cα and downstream Rho-associated 
coiled-coil protein kinase pathways mediating F-actin cytoskeleton rearrangements, while long-term 
(lasting two weeks) exposure induced the permeability of glomerular endothelial cells to albumin 
associated with EG disruption. It should be noted that besides serving as a filter barrier, EG ensures 
vessel patency (through its antithrombotic and antiadhesive properties), transduces shear stress, 
regulates the vascular tone (by sensing fluid shear forces), and protects endothelial cells from oxidative 
stress (via combining free radical scavengers)[28].

Core proteins and MMPs: Syndecans and glypicans are the main core proteins in EG. Other core 
proteins, such as mimecans and perlecans, are soluble and secreted in both the EG and blood[29]. 
Syndecans are transmembrane proteins that mainly bind HS or CS chains[28,30]. There are six 
significant subtypes of syndecans[31], and syndecan-1 and 4 are particularly prominent in nephrons
[32]. The former is connected to three HS chains[33], while the latter can carry 3-5 HS chains[32] and is 
most abundant in the syndecans family in human glomerular endothelial cells[34]. Glypicans are 
anchored to glycosylphosphatidylinositol and have four main isomers[30,31], of which glypican-1 binds 
almost exclusively to the HS chain[35], but close to the cell membrane, glypican-1 binds to 3-4 HS chains
[33]. Heparan sulfate PGs (HSPGs), composed of syndecan and HS, are most abundant on the cell 
surface[36], followed by phosphatidyl inositol PGs, composed of glypicans linked to HS[37]. An 
essential function of the syndecan core proteins is to put the highly bioactive GAGs in the right place at 
the right time[38]. MMPs are a kind of zinc-reliant endopeptidase that are mainly synthesized by 
inflammatory cells, although MMPs can also be synthesized by endothelial cells and vascular smooth 
muscle cells when stimulated by macrophages[39]. MMP-2 and MMP-9 can be activated by MMP14 
(also known as membrane type 1)[32]. MMP-2, MMP-9, and MMP-14 can cleave syndecans at different 
sites to produce various sizes of proteolytic fragments[40]. Typically, MMP-9 degrades syndecan-1 and 
MMP-2 cracks syndecan-4, allowing syndecans and HS to be released into the blood[39]. Diabetic 
conditions promote the overexpression of endothelial MMP-9[34], MMP-2[26], and urinary MMP-14
[41], and the activity of these MMPs is elevated in the kidneys of diabetic humans[41,42] and mice[43].

HS and HPSE: HS is the most common GAG in the glycocalyx and accounts for approximately 50%-
90% of its amount[44]. It is comprised of 300 alternate N-acetyl-glucosamine a1 to 4 glucuronic acid b1 
to 4 residues[45]. HS biosynthesis exists in the Golgi apparatus, and its characteristics include chain 
initiation, polymerization, and modification[46]. HS can be extensively modified, including N-
deacetylation/N-sulfation of N-acetylglucosamine, isomerization of C5 glucuronic acid to iduronic acid, 
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and 2-O-, 3-O-, and 6-O-sulfation[45]. Different combinations of these modifications produce 
structurally diverse HS chains, which dictate the binding and modulation of specific proteins and 
regulate the activity of various biological molecules, such as cytokines and growth factors on the cell 
surface[45,47]. In vitro studies have found that high levels of glucose reduced HS synthesis and 
increased the monolayer albumin flux in glomerular endothelial cells, implying that the presence of HS 
in EG limits proteinuria[48]. The structure of the HS chain may be edited by HS modification enzymes, 
including HPSE, β (1-4)-endoglucuronidase, which clears HS at specific sites, and HS 6-O-endosulfatase, 
which explicitly removes 6-O-sulfonate[49]. HPSE is the most well characterized of these enzymes, and 
it is the sole mammalian endoglycosidase that cuts HS[50]. The nascent HPSE is inactive and requires 
activation by cathepsin L[46]. Active HPSE cleaves glycosidic bonds within the HS chain to yield HS 
fragments that are 5-7 kDa in size, and this cleavage requires the N-and 6-0-sulfated moieties to have 
specific sequences, such as the trisaccharide sequence GlcNS60S-α(1-4)-GlcA-β(1-4)-GlcNS6OS[51]. 
Intracellular HPSE has a variety of biological functions, including the regulation of cellular autophagy, 
communication, and survival. Conversely, extracellular HPSE is related to inflammation, vascular 
instability, and fibrosis and is a crucial contributor to renal damage in patients with DKD and glomer-
ulonephritis[47]. The first study to reveal a role for HPSE in the development of proteinuria was 
performed on rats with puromycin aminoglycoside nephropathy, and it showed that HPSE overex-
pression was an essential contributing factor to HS loss in proteinuria[52]. In Zucker fatty rats 
proteinuria was associated with a significant glycocalyx reduction, and this was at least in part related 
to elevated HPSE levels[53]. However, specific HPSE inhibitors PI-88[54] or polyclonal anti-HPSE 
antibodies 226[55] reduced proteinuria levels and alleviated renal damage. At the same time, the over-
expression of HPSE in transgenic over-expressing mice (HPSE-TG) resulted in early proteinuria and 
renal failure[56]. According to a previous study, the transcription factor early growth response 1 is 
responsible for activating the HPSE promoter under hyperglycemic conditions[50]. Compared with 
healthy volunteers, patients with DKD show increased urinary and renal HPSE activity[57]. 
Furthermore, HPSE was upregulated in response to a high-glucose environment and DKD mediators, 
such as advanced glycation end products (AGEs), in mouse DKD models[58] and renal-derived cell 
lines (endothelial cells, renal epithelial cells, and proximal tubular cells)[59-61]. In addition, Schmidt et al
[62] proposed that there was a relationship between urinary HS and renal function. It was believed that 
urinary HS could predict the progression of renal dysfunction. However, the increase in permeability 
caused by glycocalyx injury was not enough to reduce the glomerular filtration rate (GFR), and the 
obstruction of the secondary capillary lumen, caused by leukocyte or platelet interactions with the 
endothelial cells, was the cause of GFR reduction.

HA and HYAL: HA is a non-protein-bound, non-sulfate, negatively charged GAG, a linear polysac-
charide held together by the repeat units of D-glucuronic acid and N-acetyl-D-glucosamine by 
glycosidic bonds repeated thousands of times[39,63]. HA is synthesized from three isoforms of 
hyaluronic acid synthase (HAS). HAS-2 is the major synthetase of HA and is expressed in most cells and 
essential for life[63]. Van den Berg et al[63] found that the HAS-2 deletion in the endothelial cells of 
adult mice (selective inactivation of the HAS-2 gene in endothelial cells of adult mice carrying the floxed 
HAS-2 allele) substantially reduced the glycocalyx structure. Importantly, HA is a specific binding site 
for angiopoietin-1 (Ang-1) and a key regulator of endothelial cell quiescence and maintenance of 
endothelial barrier function. HA deficiency triggers Ang-1-Tie2 receptor signaling disorder, which is 
characterized by vascular instability, mesangial dissolution, telangiectasia, and proteinuria, and 
gradually progresses to glomerular capillary rarefication and glomerulosclerosis, which produces the 
human DKD phenotype. They observed endothelial HA in renal biopsies from patients with different 
severities of diabetes and found that endothelial HA in glomerular capillaries gradually disappeared 
with the formation of DKD lesions. In patients with acute hyperglycemia or T1DM, the EG volume 
decreased by 50%-80% and the serum HA concentrations increased by 30%-80%[20]. Degradation of the 
EG and increased serum HA concentrations were also observed in T2DM patients[26] and rodent 
models of T1DM[64]. This shedding of HA resulted in increased vascular permeability with albumin 
escape. Despite the prominent role of HA in EG, its method of binding to the cell membrane and 
integrating with EG is unknown. Although HA may bind to the cell surface receptor CD44, covalent 
bonding is not observed, and it may also attach to the extracellular part of HAS, interact with CS on 
syndecan-1, connect with EG through HA-binding proteins, or even independently assemble into a 
fibrous network[20]. Increased glycosylation of CD44 was reported to weaken its ability to bind HA in a 
high-glucose environment, thereby decreasing HA binding to EG[65]. The human body contains six 
kinds of HYAL to degrade HA. HYAL-1 and HYAL-2 are common in mammalian tissues and cooperate 
to complete HA degradation[66]. HYAL-2 is a glycosylphosphatidylinositol anchoring enzyme that 
attaches to the outside of the cell membrane[67] and is accountable for the extracellular degradation of 
high molecular weight HA into an intermediate fragment that is approximately 20 kDa[39]. The 
intermediate HA fragment is then endocytosed into the cell via endocytic vesicles and degraded into a 
small fragment by HYAL-1[68]. Interestingly, there are large differences between high and low 
molecular weight HA. The former can enhance endothelial barrier function, but the latter can damage 
endothelial cells in various ways. For instance, low molecular weight HA induces endothelial cell 
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inflammation through Toll-like receptors 2 and 4, stimulates the expression of vascular cell adhesion 
molecule-1 (VCAM-1), and intercellular adhesion molecule-1 (ICAM-1), leading to macrophage infilt-
ration, cell inflammation, and injury, and it activates phagocytes to generate reactive oxygen species 
(ROS) in a size-dependent manner[39]. A study by Dane et al[69] found that 4 wk after injecting HYAL 
into C57BL/6 mice, the glomerular albumin permeability increased by 90% and the EG returned to 
integrity 4 wk after performing the injection. However, no significant proteinuria was observed during 
the experience, and this was possibly due to the protective effects of the normal apolipoprotein-E (apo-
E) levels in these animals. Similar to the findings in apo-E absence mice, HYAL infusion results in EG 
disorder and proteinuria[70]. Several studies have also shown that the increase in HA concentration and 
HYAL activity, resulted in a thinning of the glycocalyx due to HA degradation, and this increased the 
transcapillary escape rate of albumin in mice with diabetes[71,72] and humans with T1DM[25] and 
T2DM[26]. Furthermore, Dogné et al[73] demonstrated that increasing the EG depth and maintaining the 
HA content during early DKD in HYAL-1-deficient mice contributed to preserving endothelial function 
and the functional barrier. Similarly, supplementation of HA analogs could compensate for glycocalyx 
loss. Thus, HA shedding could be utilized as a valuable observation for the pathogenesis of diabetic 
renal complications, and the presence of HA may prevent the emergence of early DKD.

Sialic acid and NEU: Sialic acid (SA), otherwise known as N-acetylneuraminic acid, is a constituent of 
cell membrane glycoproteins and glycolipids[74]. SA occurs at the glycocalyx surface and participates in 
signal recognition and the binding of sugars to proteins[39]. NEUs, tagged as sialidases, are a family of 
enzymes that regulate cell surface SA expression by removing SA from the glycocalyx[75]. Puerta-
Guardo et al[76] found that nonstructural protein 1 induced NEUs expression, causing SA shedding and 
EG degradation. It could also activate cathepsin L in endothelial cells and affect HPSE activity[77]. What 
counts is that NEU could remove most of the glycocalyx and influenced the water, small solutes (as 
measured by transendothelial electrical resistance), and albumin fluxes, whereas HPSE (using HPSE III 
or recombinant HPSE-1), which removed HS GAGs alone, only had a remarkable impact on albumin 
filtration without changing water and small solute passages[78]. The results indicate that NEU is the 
most efficient enzyme with which to remove glycocalyx residues. Other studies have found that SA may 
directly regulate ESL permeability by steric hindrance and/or inducing secondary changes in ESL, such 
as the disruption of the albumin binding to EG[79]. Whether they really participate in the filtration 
barrier is currently unknown and this will require further research.

Cell adhesion molecules: Cell adhesion molecules include selectin, integrin, and the immunoglobulin 
superfamily[80]. Two major kinds of selectins are observed: P-selectin and E-selectin. P-selectin is 
produced and stored in the Weibel-Palade bodies found in endothelial cells and secreted in response to 
thrombin and histamine stimulation[81]. E-selectin is de novo synthesized in response to the stimulation 
of cytokines, such as interleukin-1 (IL-1), tumor necrosis factor-α (TNF-α), and lipopolysaccharide[82]. 
Integrins are heterodimeric membrane proteins made up of noncovalently bound α and β subunits. The 
luminal membrane of endothelial cells expresses integrin ανβ3, which influences the interaction between 
platelets and endothelial cells[83]. The immunoglobulin superfamily glycoproteins include ICAM-1 and 
ICAM-2, VCAM-1, and platelet endothelial adhesion molecule-1, which promotes the adhesion of 
leukocytes and platelets to endothelial cells[84]. The Ib-IX-V complex, another well-defined glycoprotein 
consisting of four different proteins (Ibα, Ibβ, IX, and V), binds to the von Willebrand factor and P-
selectin to accelerate hemostasis[85]. GAG chains cover adhesion molecules in the physiological state, 
which sterically prevents leukocytes or platelets from binding to the cell adhesion molecule receptors. 
However, EG degradation activates and exposes adhesion molecules, and this contributes to increased 
leukocyte adhesion and thrombosis[86].

Shear stress changes and proteinuria: The source of proteinuria in DKD may arise from damage to the 
glycocalyx caused by alterations in shear stress. Shear stress is the mechanical force exerted by blood 
flow on the vessel wall. It significantly influences the structure and function of endothelial cells. The 
specific location and composition of the EG determine its unique function as a mechanosensor. The 
GAGs that extend into the extracellular region, which may deform, transmit the shear stress of the 
perceived blood flow to the core protein components, triggering core protein displacement. The 
cytoplasmic domain of the core proteins is linked to signaling elements, such as G-protein receptors, 
including those associated with endothelial nitric oxide synthase (eNOS) formation and cytoskeletal 
elements, such as actin[87], and this regulates transcription in the nucleus[20]. Florian et al[87] identified 
HS-GAG as a mechanosensor for the NO response, which is involved in mechanosensing and mediates 
NO production under shear stress. The depletion of syndecan-1 or 4 altered the mechanosensing and 
cell alignment[88,89]. In addition, reports suggested that degradation of EG by NEU and HYAL reduced 
flow-induced NO production[90], indirectly confirming the indispensable role of HA and SA in 
mechanical transduction. Furthermore, the glycocalyx participates in the scattering of concentrations of 
the agonists, and flow changes affect agonists’ distribution, thus transferring flow conditions to the cells. 
This results in variations in magnitude and the temporal and spatial distributions of the shear stress will 
modulate vascular tone and induce alterations in endothelial permeability and hydraulic conductivity, 
cytoskeletal structure, surface adhesion molecule expression, and gene expression[87].
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The glycocalyx is undoubtedly present in podocytes and GBM, but there are differences in its 
composition and structure. The GBM glycocalyx was once considered the charge-selective barrier of the 
glomerular filtration layer. In recent years, an increasing number of studies have broken this traditional 
concept and suggested that the glycocalyx does not function as a major negative charge barrier in the 
GBM. The loss of its anion site does not lead to proteinuria. By comparison, the podocyte glycocalyx 
may, together with EG, constitute a “defensive line” that restricts albumin filtration.

Glycocalyx in the GBM
The primary components of the GBM include type IV collagens with α3, 4, and 5 chains, laminin β2, 
negatively charged GAGs, and core proteins, such as agrin, perlecan, nidogen, and collagen XVIII[24,
91]. Laminin and collagen networks are the main determinants of the penetrative and selective barrier 
functions of the GBM[24]; however, their roles are beyond the scope of this article. Agrin is mostly 
produced by podocytes, has a molecular mass of 212 kDa, and carries at least two HS chains, and it 
constitutes the staple PGs of the GBM in all adult species studied[92]. Perlecan, with a molecular weight 
of 467 kDa, is mainly produced by glomerular endothelial cells and is attached to three HS side chains 
by the N-terminal domain I attachment sites. It occurs in the GBM during development but after this 
stage it is predominantly found in the mesangial matrix and Bowman’s capsule, as is collagen XVIII[93,
94]. The HS in the GBM consists of alternating glucosamine and D-glucuronic acid/L-aduronic acid 
residues, which are negatively charged due to the presence of multiple carboxyl and N-, 2-O-, 6-O-, and 
3-O- sulfate groups[95]. Additionally, the carbohydrate side chain SA is involved in the formation of the 
negative charge for GBM[96]. Previous studies believed that GAGs in the GBM, including HS, could 
repel negative charges, including albumin, and prevent their filtration. For example, ferritin and bovine 
serum albumin filtration occurred by inculcating bacterial GAGs degrading enzymes to remove GAGs 
at the original site of the GBM[97,98]. Injection of the anti-HS antibody JM403 causes hematuria and 
albuminuria in rats[99]. In many renal diseases, such as DKD, lupus nephritis, minimal change disease, 
and membranous nephropathy, the content of HS in the GBM was reduced and inversely correlated 
with urinary protein excretion levels[51,100].

However, the primary negative charge-dependent barrier function of the HS in the GBM does not 
stand up to scrutiny. One key component of HS assembly is the Ext1 gene product-the HS co-
polymerase subunit. Using podocyte-specific Ext1 knockout (PEXTKO) mice to stop the polymerization 
of HS secreted by podocytes, Chen et al[101] found that the glomerulus foot process disappeared and 
mild and non-significant proteinuria occurred. To verify the presence or absence of anion sites in the 
GBM, they used GBM-specific HS-GAGs monoclonal antibody and polyethyleneimine staining to show 
a significant and sustained reduction in glomerular capillary wall HS-GAGs. Nevertheless, it is 
important to note that the staining of the HS-GAGs in the glomeruli was not wholly eliminated as 
mesangial and endothelial cells could still assemble HS-GAGs. Hence, HSPG secreted by podocytes is 
not necessary to limit proteinuria, and other mechanisms may exist. In this study, it cannot be ignored 
that the HSPG secreted by podocytes appears to have the ability to control podocyte behavior. 
However, Harvey et al[102] reported that GBM-specific agrin knockout mice did not develop podocyte 
foot process effacement. This suggests that neither HS-GAGs on agrin nor the agrin core proteins are 
critical in mediating foot process morphology. In immortalized podocytes, the loss of EXT1 results in the 
absence of not only ECM-related HS-GAGs but also cell membrane-associated HS-GAGs. From a cell-
matrix interaction perspective, the podocyte phenotype of PEXTKO may be due to the podocyte surface 
HSPG’s inability to interact with HS-GAG-binding proteins such as laminin in the GBM[101]. Research 
investigating perlecan-HS and perlecan/agrin-HS dual mutated mice showed that anionic sites were 
significantly decreased within the GBM. However, the glomerular structures and renal functions were 
not altered overall and measurable proteinuria was not observed[103]. This indicates that the major role 
of HS in the GBM as a charge-selective barrier of capillaries can be ruled out. However, further research 
into the function of the HPSE and HS of the GBM in proteinuria production under pathological 
conditions, such as the Streptozotocin (STZ)-induced albuminuria in HPSE-TG mice or PEXTKO mice, is 
still required[51].

Podocyte glycocalyx
Several studies have been performed on the glycocalyx of podocytes. According to the different 
structures, podocytes can be separated into four areas: Apical membrane area of foot processes, 
cytoskeleton area, hiatus membrane between foot processes, and GBM junction area (bottom of foot 
processes of podocytes). The apical membrane region of the foot process is rich in SA and sulfate PGs, 
which provide the surface layer of the foot process with an anion charge barrier. The podocyte skeleton 
region, comprised of microtubules and filaments, maintains the typical morphology of podocytes and 
foot processes. The 25-60 nm hiatus between adjacent foot processes is connected by the slit diaphragm 
(SD), a specialized tight junction of proteins, including nephrin and podocin. This has been considered 
the central area for size selectivity in the filter barrier. However, Lawrence et al[104] recently stated that 
size-selective penetration into the lamina densa of the GBM and the podocyte glycocalyx, coupled with 
saturable tubular trapping, determines the macromolecules that enter the urine without direct size 
selection through the SD. Unlike the glycocalyx on the apical membrane region of the podocyte, the 
GBM junction area is covered by a unique glycocalyx[105]. It is presumed that the glycocalyx between 
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the podocytes and GBM could be responsible for a portion of the charge selectivity of the GFB[24]. 
Dystroglycan, a highly glycosylated protein, is mainly localized in the basolateral and apical 
membranes of the cell. It can act as a receptor for laminin and agrin in the GBM and maintain SD 
structures by charge repulsion[91]. Significantly, the major salivary protein of the podocyte glycocalyx is 
podocalyxin, and this is mainly expressed in the apical membrane area and is highly glycosylated by 
20% hexose, 4.5% SA, and N-acetylglucosamine[106]. In the human minimal change disease model 
simulated by puromycin aminoglycosides, the podocalyxin SA content in podocytes decreased, and foot 
processes fused, suggesting that the foot process fusion in puromycin aminoglycoside nephropathy was 
related to the reduction in SA[107]. Likewise, perfusion of the isolated rat kidney with polycations (e.g., 
protamine sulfate) to neutralize the polyanionic surface led to podocyte foot process retraction, SD 
displacement, and tight junction and gap junction formation between foot processes[108]. These 
phenomena considered that protamine sulfate neutralizes the negative charges of sulfate and SA 
residues on the PG membranes, which in turn altered podocyte morphology and intercellular 
connections through the attachment of ezrin protein and Na+/H+-exchanger regulatory factor 2 to the 
actin cytoskeleton, increasing albumin filtration through the podocyte[109]. In addition, it was also 
reported earlier that decreased podocyte-associated sulfate carbohydrates in DKD contribute to 
abnormally elevated urinary albumin excretion rates[110]. Thus, the loss of the podocyte glycocalyx 
charge and the secondary changes in podocyte morphology may have caused abnormal albuminuria.

However, the role of the podocyte glycocalyx in DKD is still in dispute. Garsen et al[111] used 
podocyte-specific endothelin receptor type A (ETRA or Ednra)/ETRB or Ednrb deficient (podETRKO) 
mice to induce diabetes. They found that diabetic wild-type (WT) mice displayed increased cortical 
HPSE mRNA, glomerular HPSE protein expression, and glomerular HPSE activity, whereas glomerular 
HS expression was decreased. The glycocalyx thickness of endothelial cells and podocytes was reduced 
by approximately 50%-60%, with significant proteinuria. In contrast, in diabetic podETRKO mice, HPSE 
and HS expression was normal, only the podocyte glycocalyx decreased by approximately 25%, and the 
proteinuria decreased significantly. The reduced podocyte glycocalyx thickness in the podETRKO mice 
appeared to be insufficient to produce albuminuria. Nevertheless, they did not rule out the possibility 
that proteinuria in diabetic WT mice required a combined reduction in the endothelial and podocyte 
glycocalyx. Furthermore, the critical role of growth factors in podocyte-endothelial crosstalk involves 
maintaining glycocalyx integrity, and this will be discussed in the following section.

MECHANISMS OF GLYCOCALYX DAMAGE
The specific mechanisms of glycocalyx damage in the early stages of DKD that were associated with 
oxidative stress, proinflammatory cytokines, growth factors, transcription factors, and other factors 
were reviewed. It is of note that all these mechanisms will require further refinement beyond existing 
reports in future studies.

Oxidative stress
ROS overproduction is vital for the pathogenesis of DKD. Specifically, the generation of ROS with DKD 
results from mitochondrial production, NAD(P)H oxidase, and xanthine oxidase (XO), among others
[112]. The damage to the glycocalyx caused by ROS can be summarized as follows: (1) ROS can degrade 
HA, HS, and CS, which will directly destroy the glycocalyx. ROS cleave HS chains primarily from the 
glomerular EG, disrupting the EG via a direct mode of action without affecting the GAGs biosynthesis 
pathway[61]; (2) ROS can upregulate the expression of related sheddases to degrade the glycocalyx. For 
example, ROS activates MMPs and dissolves syndecan domains to induce glycocalyx proteolysis, which 
causes the glycocalyx to fall off[113]; and (3) ROS are capable of inactivating endogenous inhibitors of 
neutrophil elastase, and the neutrophil elastase then binds the HS chains of the syndecans, leading to 
their degradation[114].

In DKD research, ET and ET-related receptors have always been a research focus. Recently, the 
specific involvement of mitochondrial ROS in endothelial injury in early diabetic mice was well 
documented. Mitochondrial DNA damage in the glomerular endothelial cells of DKD-susceptible mice 
and DKD patients was associated with increased glomerular Ednra expression[115]. Higher plasma ET-
1 levels were also observed in diabetic patients and DKD animal models[116,117]. Ebefors et al[118] 
reported that podocyte-derived ET-1 increased the expression of HPSE and HYAL in glomerular 
endothelial cells through Ednra, thereby mediating ESL loss. In mice, endothelial damage (including 
glycocalyx damage), proteinuria, podocyte loss, and glomerulosclerosis induced by diabetes were 
mitigated by mitochondrial ROS scavenging or a specific Ednra blockade. Therefore, Qi et al[115] 
proposed that the upregulation of endothelial Ednra and the activation of circulating ET-1 characterize 
DKD susceptibility in mice and humans. Combined with previous control studies by Garsen et al[111] 
that involved diabetic podETRKO mice and WT mice, ETRA/ETRB deficiency was found to protect the 
endothelial and podocyte glycocalyx from HPSE degradation and reduce the production of proteinuria. 
It can thus be concluded that the overactivation of the ET-1 signaling path in the endotheliocyte and/or 
podocytes is a detrimental factor associated with glycocalyx damage and proteinuria in DKD. AGEs are 
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also involved in mitochondrial ROS production under high-glucose conditions. AGEs can act on the 
receptor of AGEs (RAGE) on podocytes and activate the nuclear factor kappa-B (NF-κB) pathway, 
leading to increased HPSE synthesis[119].

NAD(P)H oxidase appears to be an essential mediator of ROS generation in glomerular endothelial 
cells. Human glomerular endothelial cells treated in a high-glucose environment showed increased ROS 
production, and this could be blocked entirely by NADPH oxidase inhibitors[120]. NAD(P)H oxidase 2 
(NOX2) and NOX4 have substantial roles in glycocalyx injury related to DKD. In the early stage of 
diabetes in Akita mice, NAD(P)H oxidase was activated in endothelial cells, and the ROS level was 
increased. Excessive ROS activated the transcription of HPSE via the nuclear translocation of the E-26 
transcription factor[121]. To further validate that NAD(P)H oxidase activation initiated and worsened 
DKD progression, Nagasu et al[122] bred endothelium-targeted Akita mice overexpressing NOX2 
(NOX2-TG-Akit mice), which exhibited reduced ESL and had further increases in their capillary 
permeability. When NOX2-TG-Akit mice were treated with gp91TAT, a NOX2-specific inhibitor, at 6-8 
wk of age, glomerular tomato lectin staining was restored and similar to that in the WT mice. Besides 
the NOX2 subunits, NOX4 expression was also increased in diabetic kidneys[123] and was intercon-
nected with inflammation. The ROS produced by NOX4 increased the damage to the macromolecules 
and led to the generation of advanced oxidation protein products, advanced lipid oxidation end 
products, and AGEs[124]. In the glomerulus, AGEs acted through RAGE to stimulate the release of 
proinflammatory cytokines and the expression of DKD-related molecules, such as vascular endothelial 
growth factor (VEGF), connective tissue growth factor, transforming growth factor-β, insulin-like 
growth factor-I, platelet-derived growth factor, TNF, IL-1β, and IL-6[125,126]. Overall, endothelial injury 
is clearly related to increased endothelial ROS production by NAD(P)H oxidase, represents a critical 
step in the pathogenesis of DKD, and may be a potential therapeutic target for its onset.

XO is mainly expressed in the liver and intestine[127]. In STZ-induced diabetic rats, XO expression 
was increased in the liver and was taken up by glomerular endothelial cells via blood circulation, where 
it could then bind with sulfated GAGs on the endothelial surface[128-130]. There was no difference in 
xanthine oxidoreductase activity in liver tissues between the WT and Akita mice, but the Akita mice 
showed higher xanthine oxidoreductase activity in renal tissues. Renal XO produced excessive ROS in 
endothelial cells, which led to a disturbance of endothelial homeostasis, a reduction of the glycocalyx, 
and proteinuria. Topi, a non-purine selective XO inhibitor, could reduce albuminuria by mitigating 
endothelial damage induced by glomerular oxidative stress from XO activation[131]. It was thus 
inferred that ROS causing glycocalyx damage in DKD originates, at least in part, from the XO system.

Proinflammatory cytokines
Inflammation is viewed as a vital mechanism in the development and progression of diabetes mellitus, 
and it persists for a long period before the onset of DKD[132]. TNF-α is a proinflammatory cytokine that 
can directly destroy the glycocalyx[133] but also increase the permeability of endothelial cells by 
activating MMP-9, mediating the destruction of the EG caused by syndecan-4 and HS shedding[34]. The 
clinical use of a TNF inhibitor (enalapril) attenuated glycocalyx loss in an experimental endotoxin model
[134]. High levels of glucose could cause the abnormal regulation of TNF-α mediators, producing 
microalbuminuria[135]. In patients with type 2 DKD, the increase in serum IL-1β preceded the increase 
in serum HS, suggesting that abnormal inflammasomes predate and may contribute to the impairment 
of EG[132]. Reine et al[136] showed that IL-1β, via MMP-9, induced syndecan-4 shedding in con-
ditionally immortalized human glomerular endothelial cells in a dose-dependent manner. The NACHT, 
LRR, and PYD domains-containing protein 3 (NLRP3) inflammasome is one of the most compre-
hensively studied inflammasomes involved in the emergence and development of various inflam-
mation-related diseases, and diabetes is no exception[137]. The NLRP3 inflammasome activates IL-1β 
and IL-18, which can both subsequently activate the intracellular signaling molecule MyD88 by binding 
to the cell surface receptor, and this activates the NF-κB signaling pathway. The activated NF-κB 
signaling pathway can increase the secretion of proinflammatory mediators, such as cytokines and 
chemokines, and ultimately destroy the EG[138]. The damage to the vascular EG exposes ICAM-1 and 
VCAM-1. Circulating leukocytes are, thus, more likely to adhere to the endothelial cells, further 
contributing to inflammation and endothelial dysfunction. Furthermore, fragments produced by 
glycocalyx degradation induce the polarization of T helper 1 cells, which subsequently induces the 
upregulation of CD44 and Toll-like receptors 2 and 4. This results in the adhesion and rolling of 
macrophages and monocytes, activation of the NF-κB pathway, and upregulation of the expression of 
HPSE, MMPs, HYAL, HAS, and NEU[39]. Diabetic inflammatory conditions and glycocalyx shedding 
cause a vicious cycle, and thus, the integrity of the glycocalyx must be protected under inflammatory 
conditions.

Monocyte chemoattractant protein-1 (MCP-1) is involved in the recruitment of monocytes, the 
migration of monocytes and macrophages, and the regulation of macrophage differentiation. Once 
chemokines are induced, chemical ligand gradients or chemokine gradients are formed for the directed 
migration of cells expressing appropriate chemokine receptors. Moreover, these gradients are formed 
along extracellular structures, such as the HS GAGs of the glycocalyx[139]. In patients with DKD, MCP-
1 was increased in renal tissues and urine[140]. Even in the early period of DKD, macrophages can be 
identified in the glomeruli[141]. Infiltrating macrophages could secrete cathepsin L, activate HPSE, and 
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disrupt EG. The C-C chemokine receptor type 2 (CCR2) is an MCP-1 cognate receptor. The blockade of 
CCR2 with the small molecule CCX140-B was found to reduce proteinuria in patients with DKD[142]. 
An animal study by Boels et al[143] showed that the treatment of diabetic apo-E knockout mice with an 
MCP-1 inhibitor, the Spiegelmer emapticap pegol (NOX-E36), for 4 wk, resulted in the polarization of 
tissue macrophages to an anti-inflammatory phenotype, restoration of glomerular EG, and the reduction 
of albuminuria, despite the persistent loss of podocyte function. Meanwhile, in a double-blinded, 
randomized, multicenter pilot study, NOX-E36 was also observed to be safe and well tolerated and to 
have beneficial effects on the urinary albumin/creatinine ratio and hemoglobin A1c in patients with 
T2DM and albuminuria in five European countries[144]. The cellular mechanisms involved in EG 
degradation remain obscure. It has been reported that proinflammatory factors such as TNF-α activate 
mast cells to generate HYAL, HPSE, and MMP-9/2[39]. Mast cells can also activate adipose tissue cells 
to release HPSE, which can then degrade HS chains[145].

Growth factors
The crosstalk between glomerular endothelial cells and podocytes is a major event in the progression of 
DKD, in which growth factors play a pivotal role[146]. There are five VEGF variants in humans, VEGF-
A, -B, -C, -D, and the placenta growth factor[147]. VEGF-A165, a VEGF-A splice variant, is the most 
abundant isoform in the human body. It mainly forms and maintains endothelial fenestration through 
VEGF receptor 2 (VEGFR-2)[148]. VEGF-A165 was upregulated during the early stages of DKD in both 
humans[149] and in experimental models[150]. Moreover, VEGFR-2 was also upregulated in early DKD 
and associated with enhanced glomerular endothelial VEGF-A165-VEGFR-2 signaling[151]. VEGF-A165 
boosted the production of MMP-9, A disintegrin, and metalloproteinase domain 17, and increased the 
removal of sulfate GAGs from the glycocalyx[152,153]. In contrast, VEGF-A165b protected the EG, as 
demonstrated in an early mouse model of T1DM. The application of human recombinant VEGF-A165b 
restored glomerular EG thickness, possibly via delayed downstream signaling by VEGF-A165b-induced 
VEGFR-2, thus indicating VEGFR-2/VEGFR-1 heterodimer formation[154]. Aside from VEGF-A165b, 
VEGF-C can also antagonize VEGF-A/VEGFR-2 signaling and reduce macromolecular protein passage
[78]. The VEGF-C treatment blocked the VEGF-A-induced increase in glomerular permeability in vitro 
and rescued the elevated albumin permeability in the glomeruli of type 2 diabetic mice with proteinuria. 
Glomerular albumin permeability was increased in mice when administered either acutely (30 min) or 
chronically (2 wk) with shedding enzymes, but VEGF-C blocked this effect while maintaining the EG 
depth and/or coverage[155]. Most importantly, VEGF-C could also induce HA and CS synthesis and 
significantly increased the expression of N-deacetylase/N-sulfotransferase-2, which is responsible for 
adding a sulfate group to GAGs to increase the negative charge of the glycocalyx[153]. Angiopoietins 
are another type of endothelial cell growth factor that interact with VEGF to regulate endothelial cell 
permeability[31]. The two paramount members of the Angiopoietins family are Ang-1 and Ang-2[156]. 
For normal endothelial function, the receptor Tie2 must interact with VEGFR-2[157]. In normal 
physiological conditions, the phosphorylation of the receptor is mainly induced by Ang-1. However, in 
diabetic pathological conditions, the balance between these two isoforms is disrupted, and Ang-2 
prevails, which results in increased HPSE-dependent glycocalyx degradation[158]. Furthermore, Ang-2 
increases VEGF-A expression, which in turn reinjures the glycocalyx by upregulating MMP-9[152]. It is 
safe to conclude that VEGF-A165b, VEGF-C, and Ang-1 can inhibit increases in the glomerular VEGF-A165 
signal, rebalance the related sheddase, restore the EG layer, and reduce proteinuria in patients with 
diabetes.

Others
Krüppel-like factor 2 (KLF2), an essential member of the KLFs, is highly expressed in vascular 
endothelial cells and participates in the regulation of vascular tone, anti-inflammation, anti-thrombosis, 
angiogenesis, and other essential processes that are required to maintain vascular homeostasis[159-161]. 
According to research, KLF2 expression was reduced in STZ-induced diabetic rats. Compared with 
diabetic WT mice, diabetic KLF2 knockout mice showed increased glomerular expression of VEGF-A, 
VEGFR-2, and Ang-2 and decreased expression of VEGFR-1, Tie2, and Ang-1, as well as decreased 
expression of the zonula occludens-1 (ZO-1), glycocalyx, and eNOS. These data suggest that KLF2 
down-regulation may contribute to glomerular endothelial cell damage in early DKD. The potential 
gene regulated by KLF2, NOS-3, reportedly encodes eNOS. In diabetic kidneys, eNOS expression may 
be inhibited by high levels of glucose, and KLF2 is required as a compensatory mechanism to maintain 
its expression. However, the specific mechanism by which KLF2 reduces endothelial damage in a 
diabetic environment will require further investigation. KLF2 may attenuate DKD by activating anti-
oxidative stress and anti-inflammatory pathways[161]. Long non-coding RNA H19 was obviously 
increased in diabetic glomeruli and high glucose-stimulated rat glomerular endothelial cells. Deficiency 
or silencing of the H19 gene could significantly relieve endothelial structural damage in diabetic rats by 
upregulating the expression of ZO-1, occludin, syndecan-1, and endothelial cell activation markers 
sVCAM-1 and sICAM-1 via the Akt/eNOS signaling pathway[162]. The antiaging gene Klotho encodes a 
single-channel transmembrane protein expressed in the kidney[163]. Klotho protein expression was 
diminished in the kidneys of patients with early DKD, Akita mice, and diabetic models like STZ-
induced or db/db mice[164-167]. Moreover, Klotho gene deficiency aggravated glomerular injury in 
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diabetic models[166]. To date, the molecular mechanisms underlying Klotho loss and its contributions to 
diabetic glomerular injury have not yet been confirmed. Oxidative stress or the extracellular signal-
regulated kinase, NF-κB, induces low-density lipoprotein oxidation and may suppress Klotho 
expression in Akita mice[167]. Kadoya et al[167] used lectin staining to measure glomerular ESL and 
discovered that Akita mice had distinctly smaller areas of positive staining than WT mice while KLTG 
Akita mice (obtained by crossing Klotho transgenic mice with Akita mice) had decidedly restored areas 
of positive staining and reduced albuminuria. As Klotho induces the expression of manganese SOD 
(MnSOD), which is a major superoxide scavenger and is resistant to oxidative stress, it was 
hypothesized that Klotho protects against glycocalyx damage by inducing MnSOD. Therefore, the 
recombinant Klotho protein may be a new target for future DKD treatments.

THERAPIES TARGETING GLYCOCALYX DAMAGE
At present, two targeted treatment strategies are available for glycocalyx damage: Replace the lost 
glycocalyx components directly and weaken or enhance the specific targets of the glycocalyx damage 
process to prevent further damage.

Glycocalyx replacement therapy
Attempts to supplement charge loss via GAGs have focused on sulodexide, a compound of small 
molecular mass GAGs (80% HS and 20% CS), which has been used to treat microvascular complications 
in patients with diabetes[168]. Initially, a few small studies were conducted which demonstrated its 
effectiveness in DKD patients with microalbuminuria[26,169]. Subsequently, however, two more 
extensive randomized, double-blinded, placebo-controlled studies were conducted, and they confirmed 
that treatment with sulodexide did not decrease proteinuria[168,170]. It is important to emphasize that 
many researchers believed that the role of sulodexide was underestimated in these later studies[171]. 
Furthermore, research is also required to determine whether sulodexide is absorbed through the 
gastrointestinal tract[31]. Using a transplantation-induced ischemia/reperfusion model, Jacob et al[172] 
discovered that albumin supplementation reduced glycocalyx shedding and leukocyte adhesion to the 
endothelial cells.

Glycocalyx degradation-blocking therapy
In addition to the HPSE antibodies or specific HPSE inhibitors that could prevent the degradation of 
GAGs, heparin (analogs) was also found to have a protective effect on DKD because it effectively 
inhibited HPSE activity. If heparin components with the maximum HPSE inhibitory effect and 
minimum anticoagulant activity are selected, then these heparin derivatives could function as inhibitors 
to protect the glycocalyx. Other potential targets may be the transcription, transport, and processing 
levels of HPSE[51]. A previous study showed that the steroid hormone vitamin D can reduce the 
expression of HPSE in damaged cells, both in vivo and in vitro, and its mechanism may be to directly 
bind to the HPSE promoter through its receptor, affecting the activity of the HPSE promoter[173]. In 
addition, RAAS blockers like angiotensin-converting enzyme inhibitors could inhibit HPSE activity
[174]. Piperazine ferulate has been widely used in the treatment of various kidney diseases. It was 
recently reported that piperazine ferulate downregulates the expression of HPSE-1 and increases the 
expression of syndecan-1 by regulating the expression of AMP-activated protein kinase (AMPK), 
thereby reducing the degradation of the glomerular glycocalyx and alleviating the damage to the 
glomerular endothelial cell filtration barrier that was induced by high levels of glucose[175]. Manipu-
lating the glycocalyx by inhibiting MMPs provides an attractive therapeutic target for DKD. MMP 
inhibitor therapy has become a reality in clinical settings, as, for example, tetracycline, an antibiotic 
agent, can inhibit MMPs at subantibiotic doses[176]. The development of more specific MMP inhibitors 
is expected to reduce some of the adverse reactions associated with the broad-spectrum MMP inhibitors 
currently involved in clinical trials[32].

Enhanced oxidative stress damages the glycocalyx in DKD, both directly and indirectly. The selection 
of targeted antioxidants is thus also essential. AdipoRon is an oral, synthetic adiponectin receptor 
agonist that activates the AMPK/peroxisome proliferation-activated receptor-α pathway, reducing high 
glucose-induced oxidative stress and apoptosis in endothelial cells and thus improves endothelial 
dysfunction[177]. The RAAS blocker telmisartan reduced proteinuria[178] and NAD(P)H-dependent 
oxidase activity[179] in T2DM patients. Pyrazolopyridine compounds, GKT136901 and GKT137831, 
were dual inhibitors of the NOX1 and NOX4 subtypes that reduced ROS formation in db/db mice[180]. 
Recent studies have found that Cyclocarya paliurus triterpenoids mitigate oxidative stress in endothelial 
cells through the ROCK pathway, reduce VCAM-1 and ICAM-1 levels, block glycocalyx damage, and 
ultimately improve renal endothelial function[181]. Most importantly, the Ednra receptor antagonist 
could reduce glomerular vasodilation, promote the binding of ET-1 to Ednrb, enhance NO synthesis, 
decrease the production of ROS, reduce glycocalyx damage, and change the glomerular permeability of 
albumin[182,183]. The first use of Bosentan was found to have little effect on reducing proteinuria in 
recent studies, while the use of Avosentan was also discontinued early due to the high incidence of 
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heart failure[184]. Although Endra has been reported to cause sodium retention (Ednra blocking 
reduces the constriction of efferent arterioles and hyperfiltration), most studies indicate that fluid 
retention results from Ednrb blocking because Ednrb activation in the renal collecting ducts promotes 
sodium and water excretion through sodium channels[185]. Based on pharmacological actions, it is 
believed that the selectivity of Bosentan (Ednra: Ednrb block = 20:1) and Avosentan (Ednra: Ednrb block 
= 50-300:1) for Ednra is reduced at high doses, resulting in sodium and fluid retention due to the Ednrb 
blockade[184]. If so, low-dose and highly selective ET receptor antagonists may be the way forward to 
improve the effective clinical use of this class of drugs. Atrasentan (Ednra: Ednrb block = 1200:1) is a 
selective receptor blocker[185]. Boels et al[183] found that Atrasentan therapy restored EG, reduced 
glomerular HPSE expression, increased the renal NO concentration, and significantly altered the 
glomerular macrophage M1 and M2 balance, eventually reducing the urinary protein creatinine ratio in 
diabetic apo-E deficient mice. This result was also verified in vitro in the co-culture of endothelial cells 
and pericytes exposed to laminar flow. Nevertheless, even with highly selective antagonists, increasing 
the dose may lead to fluid retention and heart failure. It underscores the necessity of drug combinations 
so that the benefits from Atrasentan treatments for nephropathy can be achieved while also reducing 
the incidence of adverse cardiovascular events. Ultimately, 0.75 mg/d Atrasentan as an adjunct to 
RAAS inhibition was identified as the optimal dose for renal protection, as this could minimize 
proteinuria but also had the lowest indicator for salt retention in patients with T2DM and DKD[186]. 
Another approach to avoiding heart failure is to use a combination of Ednra inhibitors with sodium-
glucose cotransporter 2 (SGLT2) inhibitors. The ZENITH trial tested this hypothesis by randomizing 
chronic kidney disease patients with and without T2DM to receive Zibotentan in combination with the 
SGLT2 inhibitor dagliazine. The trial results are expected to be available in 2023[187]. The Ednra 
inhibitors are thus a welcome pharmacological addition that could help to further reduce the risk of 
renal outcomes in patients already treated with RAAS and SGLT2 inhibitors[188]. Moreover, the 
hypoglycemic agents SGLT2 inhibitors had beneficial effects on the endothelium, primarily through 
their anti-inflammatory and antioxidant effects[189]. The glucagon-like peptide-1 receptor agonist can 
lower the harmful effects of oxidative stress and inflammation in endothelial cell mitochondria by 
activating glucagon-like peptide-1 receptor[190].

Inflammation and oxidative stress are always inextricably intertwined. Inhibiting the NLRP3 inflam-
masome and IL-1β could reduce mitochondrial ROS production[191], and some NLRP3 inhibitory 
molecules, for example, MCC950, CY-09, OLT1177, and FT011, have been developed for in vitro and 
animal experiments[192-195]. Pentoxifylline (PTF), a methylxanthine-derived phosphodiesterase 
inhibitor, had powerful antioxidant properties when used alone[196] or in combination with 
angiotensin-converting enzyme inhibitor in small studies of DKD[197]. A meta-analysis reported that 
pentoxifyllines had a significant antiproteinuric effect in all patients with DKD, which might be 
attributed to a decrease in pro-inflammatory cytokines[198]. The transforming growth factor-β inhibitor 
pirfenidone[199] has also been found to improve oxidative stress in chronic hyperglycemic renal lesions 
in rats. However, the studies on this medicine are in their preliminary stages and further evaluations are 
required[200].

CONCLUSION
Approximately half of all patients with DKD may eventually develop end-stage renal disease and face 
dialysis treatment, creating serious health and economic burdens for countries, societies, and 
individuals. It is thus imperative that methods are developed to delay, prevent, or reverse DKD 
progression at an early stage. Microalbuminuria is the best predictor of high DKD risk. Endothelial 
dysfunction with glycocalyx damage has been identified as the first step in developing microalbu-
minuria in early DKD. The EG, or ESL, is a complex dynamic hydrated structure that is integral to the 
formation of the glomerular negative charge barrier. Under normal physiological conditions, the 
degradation and remodeling of the EG can maintain a balance that effectively prevents albumin 
filtration. However, in the diabetic microenvironment, excessive oxidative stress, inflammation, and 
other harmful factors combined with the presence of related degrading enzymes promote the increased 
shedding of glycocalyx components and homeostasis imbalance, leading to endothelial dysfunction and 
eventual proteinuria. In addition, the interaction between podocytes and endothelial cells and the joint 
shedding of the EG and podocyte glycocalyx are also one of the important causes of proteinuria. 
Therefore, targeting the key molecules in the glycocalyx damage mechanism to prevent the continuous 
loss of the glycocalyx or replace the lost glycocalyx components is thus a promising therapeutic strategy. 
Furthermore, this strategy also highlights the importance precision medicine will have in the future 
(Figure 1).
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Figure 1 The glycocalyx in the physiological state and the diabetic microenvironment. Under normal physiological conditions, endothelial glycocalyx shedding and recovery are in a state of equilibrium, which can form an albumin 
exclusion barrier on the endothelial surface. However, in the diabetic microenvironment, inflammation, oxidative stress, and other harmful factors can not only directly destroy the glycocalyx but also hydrolyze the glycocalyx by activating the related 
sheddases, such as heparinase (HPSE), hyaluronidase, matrix metalloproteinases (MMPs), and neuraminidase, resulting in the shedding of a large number of glycocalyx components, leukocyte and platelet adhesion, macrophage infiltration, and 
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microalbuminuria. In addition, the interaction between podocytes and endothelial cells plays a vital role in glycocalyx degradation. For example, the production of vascular endothelial growth factor A165 (VEGF-A165) by podocytes acts on VEGF receptor 2 
(VEGER2) in endothelial cells to induce the production of MMPs. Angiopoietin-2 (Ang-2) acts on Tie2 to increase the expression of HPSE, and Ang-2 also upregulates VEGF-A165 to degrade the glycocalyx further. In addition, there is an interaction 
between Tie2 and VEGER2. Endothelin-1 acts on endothelial cells Ednra to produce reactive oxygen species; it also acts on Ednra/Ednrb in podocytes to induce the production of HPSE to degrade the glycocalyx. HA: Hyaluronic acid; CS: Chondroitin 
sulfate; HS: Heparin sulfate; SA: Sialic acids; HPSE: Heparinase; MMPs: Matrix metalloproteinases; HYAL: Hyaluronidase; NEU: Neuraminidase; ROS: Reactive oxygen species; VEGF-A165: Vascular endothelial growth factor A165; VEGFR-2: Vascular 
endothelial growth factor receptor 2; ET-1: Endothelin-1; Ednra: Endothelin receptor type A; Ednrb: Endothelin receptor type B; Ang-2: Angiopoietin-2; SOD: Superoxide dismutase; AT III: Antithrombin III; ICAM: Intercellular adhesion molecule; VCAM: 
Vascular cell adhesion molecule; EG: Endothelial glycocalyx; GBM: Glomerular basement membrane; ESL: Endothelial surface layer; SD: Slit diaphragm.
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Abstract
Somatic disturbances that occur in parallel with psychiatric diseases are a major 
challenge in clinical practice. Various factors contribute to the development of 
mental and somatic disorders. Type 2 diabetes mellitus (T2DM) is a significant 
health burden worldwide, and the prevalence of diabetes in adults is increasing. 
The comorbidity of diabetes and mental disorders is very common. By sharing a 
bidirectional link, both T2DM and mental disorders influence each other in 
various manners, but the exact mechanisms underlying this link are not yet 
elucidated. The potential mechanisms of both mental disorders and T2DM are 
related to immune and inflammatory system dysfunction, oxidative stress, 
endothelial dysfunction, and metabolic disturbances. Moreover, diabetes is also a 
risk factor for cognitive dysfunction that can range from subtle diabetes-
associated cognitive decline to pre-dementia and dementia. A complex re-
lationship between the gut and the brain also represents a new therapeutic 
approach since gut-brain signalling pathways regulate food intake and hepatic 
glucose production. The aim of this minireview is to summarize and present the 
latest data on mutual pathogenic pathways in these disorders, emphasizing their 
complexity and interweaving. We also focused on the cognitive performances and 
changes in neurodegenerative disorders. The importance of implementing 
integrated approaches in treating both of these states is highlighted, along with 
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the need for individual therapeutic strategies.
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Core Tip: Mental disorders and type 2 diabetes mellitus (T2DM) are common, chronic, and frequently 
comorbid diseases that contribute significantly to global disability and mortality. Substantial evidence on 
the association between mental disorders and T2DM has been gathered over the past decade. In this 
review, we presented the latest cellular and molecular mechanisms of the shared pathways of T2DM and 
mental disorders, including neuroendocrine alterations and inflammation, immune response, oxidative 
stress, gut dysbiosis and gut-brain axis dysregulation, along with the hypothalamic-pituitary-adrenal axis 
dysregulation. The bidirectional link between mental disorders and T2DM underlines the importance of 
treating these disorders together rather than separately.
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INTRODUCTION
In the era of creating a concept of precision psychiatry[1], it is of utmost importance to acknowledge 
somatic disturbances that co-occur in mental disorders. Anamnesis vitae does not begin at the very 
moment of birth, yet it needs to include intrauterine development. Many factors can and do contribute 
to the future development of mental and somatic disorders. The interrelation of diabetes mellitus (DM) 
and mental disorders has fascinated both endocrinologists and psychiatrists for years. By sharing a 
bidirectional association, both DM and mental disorders influence each other in various manners, but 
the exact mechanisms underlying this link are not yet clear, and there are many questions that need to 
be addressed. The unique immunometabolic disturbances deserve special discussion because they could 
be associated with specific mental disorders later in life[2]. In this context, it is important to consider 
developmental programming or alterations of the intrauterine environment that induce compensatory 
responses and may persist in later life. Maternal diabetes during pregnancy could lead to neurodevelop-
mental outcomes, autism spectrum disorder, attention-deficit/hyperactivity disorder, and intellectual 
disabilities in the offspring, with increased risk for autism spectrum disorder and attention-deficit/
hyperactivity disorder in pre-existing forms of diabetes, type 1 DM (T1DM) and type 2 DM (T2DM), but 
not with significance in gestational DM (GDM). For intellectual disorders, a two-fold increased risk was 
observed after exposure to T2DM compared to T1DM and GDM[3].

Synergistic effects of various factors could explain the multifactorial etiopathogenesis of mental 
disorders. T2DM could be seen in conjunction with different mental disorders. It could precede the 
onset of depression or could follow depressive symptomatology[4]. Anxiety overlaps diabetes 
microneuropathy[5], while eating disorders are accompanied by metabolic disturbances[6]. As we 
already discussed, intrauterine programming, lifestyle habits, or antipsychotic treatment could all 
contribute to diabetes onset in patients with schizophrenia[7]. Considering the worldwide burden of 
dementia, targeting a healthy lifestyle could prevent cognitive decline and preserve cognitive functions
[8,9]. Recently, Dyer et al[10] have explored the precise timing and cascade of inflammatory mechanisms 
that convert physiological cognitive decline into dementia. A complex relationship between the gut and 
the brain also opens new therapeutic avenues, as gut-brain signalling pathways regulate food intake 
and hepatic glucose production. All these data have occupied our attention to explore the importance of 
T2DM in neuroinflammation and neurodegeneration. In this review, we aimed to enlighten the new 
concepts of T2DM etiopathogenesis that could contribute to mental disturbances and mental disorders 
symptomatology.

DM - THE BASICS
DM is defined as a complex and heterogeneous disease with a common state of hyperglycemia 
(Table 1). The American Diabetes Association considers T1DM as autoimmune β-cell destruction with 
absolute insulin deficiency and progressive loss of β-cells. This process is mediated by activated helper T 
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Table 1 Pathophysiology of various types of diabetes mellitus

Type of diabetes mellitus Pathophysiology

Type 1 diabetes mellitus Autoimmune β-cell destruction

Insulin resistance (liver, muscle, adipose tissue)

Disorder of insulin secretion and β-cells breakdown

Immune dysregulation and metainflammation

Disorder of incretin production (glucagon-like peptide-1)

Hyperglucagonemia

Gut dysbiosis

Increased glucose apsorption in stomach

Kidney adaptation with increased glucose reabsorption and gluconeogenesis

Type 2 diabetes mellitus

Decreased dopamine and increased sympathetic tone in brain

Type 3 diabetes mellitus concept Impaired insulin and insulin-like growth factor-1 signaling

Gestational diabetes mellitus Pregnancy induced glucose intolerance

lymphocytes which trigger effector cells of the immune system to destroy healthy β-cells. Simultan-
eously, a disruption of regulatory cells with a predominance of pro-inflammatory phenotypes occurs[11,
12]. A hallmark of T2DM is significant insulin resistance and chronically increased β-cells engagement. 
The pathogenesis of this type of diabetes is multifactorial and has been investigated through the effects 
of various β-cell molecules[13-17].

GDM is defined as hyperglycemia occurring during pregnancy and registered during the second or 
third trimester. Although in 80% of cases, the main cause is marked insulin resistance caused by 
hormonal imbalance, the other 20% of cases are autoimmune in origin or other types caused by various 
factors that, even if they occur independently, can lead to the onset of the disease. These factors include 
genetic mutation, diseases of the exocrine pancreas, and drug- or chemical-induced diabetes[11].

ETIOPATHOGENESIS OF DM TYPE 2 - MODERN CONCEPTS
According to the World Health Organization, DM is a chronic, metabolic disease characterized by 
elevated levels of blood glucose, which leads to the development of chronic complications over time
[18]. T2DM is one of the most common metabolic disorders worldwide, and it is estimated that the 
number of patients will increase significantly in the coming decades. Current analyses indicate the 
dominant representation of patients with T2DM (90%-95%) considering all patients with diabetes[11]. 
Patients with T2DM are mostly obese or have a higher body fat percentage, distributed predominantly 
in the central body region. At the same time, they have a 15% increased risk of all-cause mortality 
compared with people without diabetes[19]. The pathogenesis of T2DM is multifactorial and represents 
a combination of several simultaneous factors such as insulin resistance and β-cells deterioration, 
intestinal dysbiosis, and the presence of meta-inflammation (Table 1). The organs involved in T2DM 
development include the pancreas (β-cells and α-cells), liver, skeletal muscle, brain, kidney, small 
intestine, and adipose tissue[20,21].

Obesity is strongly associated with energy imbalance, characterized by increased food intake and 
decreased catabolism, and is associated with a state of chronic, low-grade inflammation, particularly in 
white adipose tissue[22]. Namely, as a result of long-term stimulation, adipocyte hypertrophy leads to 
the development of insulin resistance and reduced insulin-responsive glucose uptake in peripheral 
tissues[23]. Over time, the hypertrophy of adipocytes leads to their apoptosis. Apoptosis of adipocytes 
facilitates the accumulation of macrophages into adipose tissue, their differentiation toward the M1 
phenotype, and subsequent production of proinflammatory cytokines[24].

Insulin resistance occurring in the liver unblocks glucose production in hepatocytes. This 
phenomenon is accompanied by additional glucogenesis in the fed state and even postprandially, which 
further leads to additional hyperglycemia[25]. All of the above-mentioned changes and the predom-
inance of the pro-inflammatory response in the fat tissue and liver result in the reduced effect of insulin 
on peripheral tissues, compensatory hyperinsulinemia, and cause the burden of β-cells. Because of the 
long-term increase in insulin secretion, the accumulation of amylin takes a significant place in the decay 
of β-cells. This process is especially pronounced during the early phase of T2DM[26]. The enhanced 
function of β-cells, their deterioration, and the loss of compensatory hyperinsulinemia result in severe 
hyperglycaemia[27].
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Another important aspect is the role of adipose tissue. Adipose tissue represents an important 
endocrine organ that regulates metabolism and behaviour through the production of adipokines. 
Among them, leptin, which is mainly produced in adipocytes, has a powerful influence on eating 
behaviour. Leptin-gene expression is extremely sensitive to acute energy balance, regardless of the long-
term energy balance[28]. Short-term fasting decreases leptin messenger ribonucleic acid (mRNA) levels 
and plasma concentrations, whereas refeeding quickly restores its mRNA levels[29]. These changes 
suggest that leptin protects fat reserves against weight loss[30]. Leptin’s access to key neurons in the 
central nervous system is of critical importance for its action. In obese people, the effect of leptin is 
weaker or absent[31], suggesting the disruption of its regulatory functions. Regarding the immuno-
logical functions of leptin, it has been shown that CD4+ helper T cells cannot differentiate in the 
direction of T regulatory cells in states of elevated leptin[32]. In T2DM the main determinants of leptin 
levels are insulin secretion and the degree of insulin resistance[33].

Glucagon-like peptide-1 (GLP-1) is a hormone that regulates islet function, satiety, and gut motility 
with reduced secretion in patients with T2DM. McLean et al[34] have recently discussed new insights 
and refined their previous understanding of the GLP-1 function. In addition to the significant effects of 
GLP-1 on increased insulin production and reduced glucagon production, activation of GLP-1 receptors 
exerts hypophagic effects in the ventral hippocampus[35]. Numerous studies over the past decade have 
provided a deeper understanding of GLP-1 action in the brain. The direct link between gut secretion 
and the brain’s GLP-1 system has not been found. GLP-1 receptor agonists exert their appetite-
suppressing effects on cells in the circumventricular organs which transmit the signal to deeper brain 
structures[34].

During the last decade, it has been shown that the disturbance of intestinal flora, known as dysbiosis, 
occupies a significant place in the pathogenesis of T2DM. Dysbiosis represents an imbalance of 
commensal and pathogenic bacteria in the intestines and the production of microbial antigens and 
metabolites[36]. The occurrence of dysbiosis is accompanied by a disturbance of peripheral immune 
tolerance in the intestines with a predominance of dysregulated T-cell subpopulations[37]. The state of 
dysbiosis is accompanied by a disruption of the permeability of the intestinal epithelial barrier with the 
occurrence of hyperpermeability, also known as a leaky gut syndrome (LGS). LGS is defined as a 
condition in which intestinal endothelial cells allow microorganisms, their toxins, and antigens to “leak” 
into the bloodstream above the physiological values, consequently causing systemic reactions[38]. 
Dysbiosis is also accompanied by intestine inflammation[39]. The intestinal tract may develop an 
inflammatory response characterized by increased expression of pro-inflammatory cytokines such as 
tumor necrosis factor-alpha (TNF-α), interleukin 1-beta (IL-1β), and IL-6 that leads to the development 
of insulin resistance[40]. In addition to dietary factors, pro-inflammatory cytokines also promote the 
formation of LGS. Interferon-gamma increases intestinal permeability by redistributing tight junction 
proteins and restructuring the cell cytoskeleton. TNF-α increases intestinal permeability by inducing 
apoptosis of endothelial cells[41]. On the other hand, IL-6 enhances intestinal permeability by altering 
the expression of molecules that play a major role in forming tight junction pores[42]. Alterations in 
transepithelial transport pathways may induce further translocations of harmful factors because of this 
vicious circle[43].

It is obvious that T2DM is associated with immune system dysfunction[44]. While T2DM can facilitate 
immune system activity in some tissues, it also negatively affects the immune response, which is 
confirmed by the higher incidence of unsuccessful vaccinations and complications of infections[45-47]. It 
appears that hyperglycaemia and pathologies in obesity, insulin resistance, and inammation have a 
strong impact on the immunity of the host[48-50]. Various mechanisms have been proposed to be 
responsible for this phenomenon. Hyperglycaemia directly disturbs endoplasmic reticulum function, 
thus facilitating the accumulation of misfolded proteins in the lumen and promoting endoplasmic 
reticulum stress, which in turn modulates the function of immunocompetent cells[50]. Second, reactive 
oxidative species, which are abundant in the sera of patients with diabetes, alter innate immune cells 
activity through the diminished expression of activating receptors[51]. Taking everything into account, 
both innate and adaptive immune responses are altered in patients with T2DM and are not capable to 
provide adequate and effective protection against invading pathogens[45]. The logical outcome is a 
constant and permanent chronic inflammatory reaction in the immune response to pathogens and the 
resulting constant production of pro-inflammatory cytokines in amounts insufficient to initiate a strong 
immune response and elimination of pathogens, but still sufficient to induce many consequences in 
diabetic subjects.

T2DM AND COGNITION
Cognitive impairment and dementia are frequently accompanying and complicating T1 and T2DM[52]. 
1.25-1.9-fold higher risk is established for cognitive dysfunction in diabetes[53]. There is increasing 
evidence that diabetes predisposes to cognitive decline leading to dementia[54,55], with a stronger link 
confirmed between dementia in T2DM than in T1DM. The risk for dementia progress increases with the 
aging of patients with diabetes, with a 50% higher risk in patients aged 75 years and over than in 



Borovcanin MM et al. Diabetes mellitus type 2/mental disorders

WJD https://www.wjgnet.com 485 May 15, 2023 Volume 14 Issue 5

patients aged 65-75 years[56]. Diabetes-associated decrements in their mildest stage can occur in all age 
groups, from young adults and even adolescents with T2DM[57] to the oldest patients[58]. A meta-
analysis revealed that the domains of the speed of processing information, attention, concentration, 
executive functioning, and working memory were mainly influenced in diabetes compared to non-
diabetic people[59].

The risk of diabetes-related cognitive decline was significantly increased in more severe clinical 
presentation and longer duration of T2DM[60,61]. Although the severity of diabetes is a risk factor for 
developing dementia[62], individuals without diabetes who have higher average glucose levels were 
also found to be at significant risk for dementia[63]. Diabetes does not act alone, but rather within a 
broader cluster of cardiometabolic disorders. Cognitive decline was associated with elevated blood 
sugar levels, a longer duration of diabetes, comorbid hypertension, and a history of a cerebrovascular 
event or myocardial infarction[64]. The impact of diabetes on the prodromal phase of dementia was 
demonstrated in the cohort of older adults and showed that poorly controlled diabetes increased the 
risk and progression of cognitive impairment, which was exacerbated by comorbid heart disease and 
mediated by systemic inflammation[65]. Hyperglycemia was observed as the main contributor to 
cognitive decline in metabolic syndrome[66,67]. Numerous epidemiological studies have identified 
diabetes and obesity measured in later life as risk factors for cognitive impairment[68]. Other 
comorbidities associated with aging and diabetes also add to the burden of cognitive impairment. 
Depression has been associated with a greater decline in cognitive function in patients with T2DM[69].

The exact pathogenic mechanisms underlying cognitive impairment in T2DM are not fully 
understood and are undoubtedly complicated, with numerous interacting factors (Figure 1). The 
cognitive impairments in diabetic encephalopathy have been associated with structural changes[70] and 
brain atrophy[71]. Cortical, subcortical, and hippocampal atrophy, particularly in the dentate gyrus, has 
been detected in T2DM patients by brain magnetic resonance imaging[71-73]. Various endocrinological, 
metabolic, and vascular abnormalities are DM-related and may precipitate the worsening of cognitive 
abilities.

Insulin could have a significant role in cognitive processing through the cerebrocortical activity of 
insulin receptors. They are allocated extensively in the hippocampus, entorhinal cortex, and frontal 
lobes, localities of the brain whose functions are involved in memory, attention, and executive 
functioning[74]. Variabilities in signalling pathways of insulin, phosphorylation of insulin receptor 
substrate 1, and altered signalling of insulin-like growth factor-1 were considered as main contributors 
to cognitive dysfunction pathogenesis[75,76].

Overexpression of proinflammatory cytokines TNF-α, IL-1, IL-2, and IL-6 in the brain under diabetic 
conditions indicates that the innate immune system and microglial cells in particular are activated[77,
78], and play an important role in neuronal damage in diabetic animals and patients[79,80]. 
Hyperglycemia, a defective insulin signalling system, and oxidative stress have been linked to neuronal 
toxicity and apoptosis, neuroinflammation, and the consequential development of neurodegeneration in 
diabetes[81,82].

T2DM AND NEURODEGENERATIVE AND NEUROVASCULAR DISEASES
There is growing evidence of a strong association between T2DM and neurodegenerative disorders such 
as Alzheimer’s disease (AD) and neurovascular disorders[83,84]. Metabolic alterations, including central 
insulin resistance and abnormal glucose metabolism, are obvious in the mild cognitive impairment 
prodromal phase and in individuals that are still asymptomatic, but at increased genetic risk for AD
[85]. Limited autopsy analyses suggest that hyperglycemia may promote AD pathology by inducing 
more prominent Aβ plaques and tau-positive cells accumulation, and activation of microglia in the 
comorbidity of AD and T2DM than in those patients with AD and without T2DM[86].

Recently, de la Monte and Wands[87] proposed a new term, type-3 diabetes or ‘Brain-specic type-2 
diabetes’, for the neuroendocrine disorder that represents the progression of T2DM to AD[87,88] 
(Table 1). This state is characterized by decreased insulin production and insulin resistance[89]. The 
authors found that impairments of insulin-like growth factor signalling lead to these decits in energy 
metabolism with increased oxidative stress, neuroinflammation, vascular damage, tau phosphorylation, 
Aβ accumulation, and neuronal degeneration[87,90]. In T2DM, islet amyloid polypeptide, also known as 
amylin, is secreted by pancreatic β-cells that modulate insulin and glucagon secretion and contribute to 
glucose regulation[91]. Islet amyloid polypeptide mainly affects cognitive function and causes blood-
brain barrier (BBB) interruption, interacting and aggregating with Aβ peptides and hyperphos-
phorylates of tau protein within the brains of AD patients. Consequently, this leads to disruption in the 
neuronal network and neurodegeneration which could also be a link between T2DM and AD[92]. 
Inflammatory processes play a crucial pathogenic role in T2DM and AD[93]. A crosstalk between 
peripheral and central inflammation has been described[94]. Patel and Santani[95] showed that nuclear 
factor kappa B (NF-κβ) is involved in the inammation of the brain during the progression of diabetes. 
NF-κβ also upregulates the expression of cytokines that are responsible for the insulin resistance onset, 
such are TNF-α, IL-1β, and IL-6[96,97]. These inammatory mediators can cross the disrupted BBB and 
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Figure 1 The bidirectional link between mental disorders and diabetes mellitus type 2. In the co-occurrence of type 2 diabetes mellitus and mental 
disorders possible biological, psychological, and social factors should be considered. Various factors in intrauterine development and later life could exert their 
impact. Consequences are inflammatory and immune disturbances, oxidative stress, the hypothalamic-pituitary-adrenal axis dysregulation, gut-brain and brain-fat 
axis dysregulation, a complete presentation of metabolic syndrome, consequent endothelial dysfunction, etc. Individual behavioural and lifestyle patterns and applied 
treatment are of great importance in the onset of both entities. HPA: Hypothalamic-pituitary-adrenal.

enter the brain, further promoting neuroinflammation and leading to abnormalities of synapses, insulin 
resistance and damage of neural tissue, and eventually neurodegeneration[98-100]. Previous studies 
have reported that these proinflammatory cytokines are elevated in AD and found in amyloid plaques 
and their related glial cells[101].

T2DM is an established risk factor for neurovascular diseases such as ischemic stroke and cortical and 
subcortical microinfarcts[102]. Many studies report that cerebral infarcts are significantly associated 
with increased development of post-stroke cognitive impairment or vascular dementia[103,104]. The 
alterations in the glucose levels cause dysfunction and damage to the vessel’s endothelium leading to 
atherosclerosis[105]. T2DM vascular complications affect the circulatory system in the brain by 
remodelling and stiffening the vascular walls, causing the reduction of vessel calibre with hypo-
perfusion[106]. Possible pathways of endothelial damage include oxidative stress and inammation
[107]. Chronic hyperglycemia and the production of reactive oxygen species apparently damage the 
vessel endothelium and lead to atherosclerosis[108]. In addition, damaged endothelial cells can release 
danger-associated molecular patterns (DAMP), activate toll-like receptor 4, and further potentiate 
inammation[109]. The specic DAMP signals, the advanced glycation end products (AGEs), are 
proteins or lipids that become glycated as a result of exposure to elevated glucose concentration[110]. 
These molecules stimulate the receptor for AGEs (RAGE), CD36, and toll-like receptor 4 receptors which 
in turn stimulate inflammation, vascular injury, and oxidative stress[111]. RAGE is strongly expressed 
in microglia, astrocytes, and brain endothelial cells in T2DM[112,113]. Inflammatory signals can trigger 
local thrombotic vascular events leading to brain infarction[114] (all potential mechanisms summarized 
in Figure 1). The differential and relative contributions of T2DM, cerebrovascular and neurodegen-
erative disease to cognitive impairment and dementia are still unknown. Understanding the mecha-
nisms and determinants of cognitive decline is of inestimable importance in future treatment strategies.

T2DM AND MENTAL DISORDERS
The study integrating data from transcriptomic meta-analysis of peripheral blood mononuclear cells 
and systems biology provided new insights into the shared pathogenetic mechanisms of schizophrenia 
and T2DM. This study showed that 28 genes concordantly dysregulated were included in the “positive 
regulation of catabolic process” pathway and low-grade inflammation, “membrane trafficking” partic-
ularly focused on clathrin-mediated endocytosis and “signalling by interleukins”, transforming growth 
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factor beta and NF-κβ[115]. Schizophrenia as a neurodevelopmental condition is associated with a 
higher risk of T2DM also by common exposure to early life stress and alteration of fetal mental 
programming and immune-inflammatory dysregulation[116]. The association between drug-naïve first-
episode schizophrenia and pre-diabetes conditions indicates an inherent risk for glucose regulation 
before antipsychotic treatment[117,118]. Parental history of diabetes was associated with the onset of 
diabetes in patients with schizophrenia that are treated with clozapine[119]. Treatment with second-
generation antipsychotics has a 1.3-fold elevated risk of diabetes compared to first-generation 
antipsychotics[120].

Depression has also been shown to be nearly three and two times more common in patients with 
T1DM and T2DM, respectively[121]. When behavioural factors such as dietary habits, physical activity, 
socioeconomic status, and sleep are altered, they could lead to depression and T2DM. The relationship 
between a poor intrauterine environment and the risk of depression in adulthood is not clear, and there 
is no genetic association between T2DM and depression[122]. Habib et al[123] described shared 
etiological factors for the comorbidity between diabetes and depression, considering hypothalamic-
pituitary-adrenal axis dysregulation and cortisol release, hyperactivity of the autonomic nervous system 
and catecholamines release, inflammatory processes, activation of the polyol pathway, inducing 
oxidative stress and increasing the formation of AGEs, and also damage via microvascular dysfunction. 
The bidirectional relationship between depression and diabetes is reflected in the psychological and 
psychosocial impact of depression, microvascular brain lesions, higher levels of glutamate, poor 
glycemic control, and medication compliance that could lead to diabetes, and conversely, the stress 
associated with diabetes management could lead to depression[124] (Figure 1). These mutual 
interactions are of particular clinical interest in vascular depression, a type of late-life depression that 
correlates with white matter hypersensitivity, which is also observed in patients with diabetes and 
associated depression[125].

Increased gut permeability links depression to T2DM when metabolic endotoxemia with lipopolysac-
charides induces β-cell damage, and neuroinflammation[126,127]. Immune-inflammatory pathways, 
sterile inflammation, the release of DAMP, oxidative and nitrosative stress, and glia activation are also 
shared mechanisms. Non-alcoholic fatty liver disease is more common in people with mental disorders, 
including schizophrenia, major depressive disorder, and bipolar disorder, and is driven by the same 
lifestyle factors that put them at risk for T2DM[128].

The co-occurrence of diabetes and depression has more severe negative consequences. Individuals 
with depression and T2DM have a higher risk of cognitive decline and dementia compared with 
individuals treated for T2DM alone, which is important in clinical practice[129]. If clear causality is 
established, mental changes could certainly be prevented and cured. In a large cohort of Taiwanese 
diabetic patients, 0.8% of deaths were found to be due to suicide (0.14% of all patients)[130], and 
AbdElmageed and Mohammed Hussein[124] discussed different aspects of how suicide risk increased 
with elevated blood glucose levels and could be facilitated by patient access to potentially lethal agents 
such as oral hypoglycemics and insulin.

Martins et al[131] have concluded, based on an extensive literature review, that antidepressants may 
exert some positive effects on glycemic control in patients with DM. However, it is important to 
consider a specific subclass of anti-depressants or even different antidepressants of the same class, 
treatment duration, and the use of combination therapy. That being so, metabolic consequences need to 
be evaluated individually. Tricyclic antidepressants can worsen glycemic control, monoamine inhibitors 
may induce weight gain, and selective serotonin reuptake inhibitors are associated with the im-
provement in glycemic control. The antidepressant bupropion seems to improve glycemic control[132].

Enhanced release of dopamine by insulin is involved in the modulation of motivation and reward 
leading to depression symptoms[133]. Endocannabinoid system dysfunction could contribute to the 
development of depression in T2DM and could also be a therapeutical target[126]. On the other hand, 
antidiabetic drugs have a positive effect on the treatment of the major depressive disorder, by crossing 
the BBB and by mediating insulin signalling, inflammatory pathways, and cognitive performance. A 
group of distinguished authors has recently discussed that metformin may have beneficial effects not 
only in medical conditions but also in core illness domains in a wide range of psychiatric and neurode-
generative disorders[134]. Metformin, as an antihyperglycemic, appears to promote antidepressant, 
anxiolytic, and cognitive functions by increasing GLP-1, but also exerts anti-inflammatory effects by 
lowering C-reactive protein, inhibiting Th17 cell differentiation, and reducing TNF-β, IL-1β, IL-6, and IL-
17. It also reduces oxidative and nitrosative stress, leading to an improvement in serotonergic 
neurotransmission in the hippocampus. The attractive new potential of metformin is to protect the 
intestinal barrier and modulate BBB function. It is worth noting that leptin crosses the BBB and binds to 
receptors that are spread in different brain areas and seem to have antidepressant and anxiolytic 
properties[135].

CONCLUSION
The relationship between T2DM and psychiatric disorders demonstrates how our mental and physical 
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health are inevitably intertwined. The mechanisms underlying this bidirectional relationship remain 
unresolved, with various intriguing hypotheses. Common biological mechanisms that may underlie 
both diabetes and psychiatric disorders represent the basic goals of future research. Shared genetic 
pathways could be a potential explanation, but data from existing studies are still insufficient to draw 
definitive conclusions. Of particular interest are the possible overlaps in genetic mechanisms between 
schizophrenia and T2DM. Intrauterine development represents the initial and unavoidable starting 
point for the predisposition to numerous pathological conditions after birth. Inflammation is another 
likely suspect underlying both diabetes and psychiatric disorders. A better understanding of the gut-
brain axis and its complex relationship with the gut microbiome is essential for developing new 
therapeutic strategies to combat both diabetes and psychiatric disorders.

Given the burden of diabetes and concomitant cognitive changes and psychiatric diseases, it is a 
crucial need to understand the complex multifactorial pathophysiology of DM and to identify molecular 
targets and pathways that might lead to future therapies. The potential of integrated approaches needs 
to be thoroughly explored in future trials. In the clinical arena, the early evaluation and accurate quanti-
fication of cognitive functions and mental state need to be implemented in the clinical assessment of 
diabetic patients at the very beginning as well as on follow-up on a regular basis, as it significantly 
impacts the complete recovery and quality of life these patients. Vice versa approach should also be 
applied. Translational application of anti-glycemic drugs in the treatment of depression and dementia 
could be a useful path in the future. All this could jointly direct future interventions to improve the 
outcome of somatic treatment and better quality of life in persons with mental disorders.
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Abstract
Obesity and overweight are widespread issues in adults, children, and 
adolescents globally, and have caused a noticeable rise in obesity-related complic-
ations such as type 2 diabetes mellitus (T2DM). Chronic low-grade inflammation 
is an important promotor of the pathogenesis of obesity-related T2DM. This 
proinflammatory activation occurs in multiple organs and tissues. Immune cell-
mediated systemic attack is considered to contribute strongly to impaired insulin 
secretion, insulin resistance, and other metabolic disorders. This review focused 
on highlighting recent advances and underlying mechanisms of immune cell 
infiltration and inflammatory responses in the gut, islet, and insulin-targeting 
organs (adipose tissue, liver, skeletal muscle) in obesity-related T2DM. There is 
current evidence that both the innate and adaptive immune systems contribute to 
the development of obesity and T2DM.
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Core Tip: Obesity is closely associated with the occurrence and development of insulin resistance and type 
2 diabetes mellitus (T2DM). Previous studies have demonstrated the important role of immune cell infilt-
ration and inflammatory response in obesity-related T2DM. This review presents immune responses in the 
gut with respect to metabolic challenges. We also highlight the effects of immune attacks and proinflam-
matory shifts on insulin-secreting and targeting organs.
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INTRODUCTION
Globally, obesity and associated complications are widespread. Over the past 40 years, the impact of 
this non-contagious disease has spread from high-income countries to low- and middle-income 
countries, with its prevalence nearly tripling globally. Statistics from the World Health Organization in 
2016 showed that 13% of the global adult population is obese, and more than 1.9 billion adults are 
overweight. The prevalence and degree of overweight and obese children and adolescents have also 
noticeably risen, generating concern for future years. Up to 2025, it is estimated that about 20% of the 
global population will be obese[1,2]. Widespread obesity among adults and adolescents will lead to a 
striking increase in obesity-driven health complications such as type 2 diabetes mellitus (T2DM), as 
most T2DM patients tend to be overweight or obese[3,4].

The close correlation of obesity with T2DM has generated broad research interests of researchers. 
Although the pathophysiological mechanisms linking obesity to T2DM remain unclear, many studies 
have suggested that immune attack induced by overnutrition in multiple organs strongly contributes to 
insulin resistance (IR), lipotoxicity, and glucotoxicity. In this review, we examine recent advances and 
underlying mechanisms of local and systemic immune attack and chronic low-grade inflammation in 
T2DM induced by obesity.

IMMUNE ATTACK IN THE GUT OF OBESITY-RELATED T2DM
Most patients with T2DM are obese or overweight. These two states represent the disrupted condition 
of energy homeostasis in the body, due to chronic excessive calorie intake over expenditure. The gut is 
the first important “station” through which high-calorie food enters the body. There is recent 
widespread evidence that disturbance to the gut (particularly the dysbiosis of gut microbiota, imbalance 
of immune cells, and impaired gut barrier function) hinders the immune response and contributes to the 
development of obesity related IR and T2DM (Figure 1).

The composition of gut microbiota is complex, with high variability across individuals. This 
composition can be altered by changes to diet, and is closely associated with the development of 
disease. Reduced gene richness of gut microbiota is a common phenomenon caused by modern dietary 
structure, and might be associated with dyslipidemia, severe IR, and low-grade local or systemic inflam-
mation[5,6]. Existing studies have shown that after introducing microbiota from obese donors to germ-
free mice, lipid accumulation and IR arose. This result demonstrated the close association between the 
gut microbiota and metabolic disorders in obesity-related T2DM[7,8]. Changes to metabolites caused by 
an altered gut microbiome help mediate the link between the host and gut microbiome. Short-chain 
fatty acids (SCFAs) are the products of undigested dietary fibers degraded by gut bacteria, and include 
acetate, propionate, and butyrate. These SCFAs have anti-inflammatory properties, in particular, 
butyrate[9,10]. Metagenome-wide studies have shown that the dysbiosis of gut bacteria occurs in 
patients with T2DM, in which the abundance of butyrate-producing bacteria declines, while that of 
opportunistic pathogens increases[11,12]. For instance, the administration of commercial Bifidobacterium 
strains reduces body weight gain and downregulates inflammation, by reshaping intestinal gene 
signatures in mice[13]. Many studies have shown that the anti-inflammatory effects of butyrate are 
mainly achieved by inhibiting mitogen-activated protein kinase pathways and nuclear factor kappa B 
(NF-κB) in intestinal epithelial cells, which reduce the secretion of proinflammatory mediators and 
molecules involved in the homing of inflammatory cells[14]. The metabolite-sensitive G protein-coupled 
receptor (GPR) and its ligands strongly affect anti-inflammatory responses, with SCFA functioning 
being partially mediated by their receptors GPR41 and GPR43[15-17]. In addition to SCFAs, bacteria 
from the phylum Bacteroidetes produce glycan from fiber modulating immune function to protect 
against inflammation, such as polysaccharide A and peptidoglycan[18]. Thus, the anti-inflammatory 
responses involving SCFAs and other microbial-related metabolites in the intestine are likely weakened 
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Figure 1 Immune attack and inflammation in the gut during obesity-related type 2 diabetes. In the context of obesity and type 2 diabetes mellitus, 
overnutrition leads to the reduced gut microbiota, and even the increase of opportunistic pathogens. At the same time, the occurrence of decreased metabolites levels 
with anti-inflammatory effects, is accompanied by the activation of inflammation signaling. During obesity, imbalance of pro- and anti-inflammatory immune cells 
occurs in the gut. The intestinal epithelial cell-produced monocyte chemoattractant protein-1 (MCP1) recruits the circulating monocytes to the gut and they shift to the 
pro-inflammatory phenotype. High fat diet also induces a pro-inflammatory shift in T cells, accompanied with decreased regulatory T cells. Immunoglobulin A (IgA)-
secreting immune cells and IgA secretion are both decreased. High-calorie diet and several recruited immune cells also impair intestinal barrier and increase 
intestinal epithelial and gut vascular permeability, leading to the leakage of microbiota-derived molecules (such as lipopolysaccharide [LPS]) into blood. High levels of 
LPS and other bacterial products cause endotoxemia and inflammation in multiple organs that further aggravate the metabolic diseases. GPR: G protein-coupled 
receptor; SCFAs: Short-chain fatty acids.

in the gut, and are likely closely associated with the development of obesity and T2DM.
The infiltration and proinflammatory shift of immune cells contribute to the inflammation of the 

intestine under metabolic challenge. In mice and obese humans, high-fat diet (HFD) induces chemokine 
(C-C motif) ligand 2/monocyte chemoattractant protein-1 (CCL2/MCP-1) production to rise in 
epithelial cells, which recruit monocytes to the gut, shifting to the proinflammatory phenotype[19,20]. 
Macrophage-specific deletion of C-C chemokine receptor type 2 (CCR2) ameliorates insulin sensitivity 
and glucose tolerance, confirming the association between the infiltration of proinflammatory 
macrophages and obesity-induced metabolic disorders[19]. Moreover, HFD also induces a proinflam-
matory shift in T cells, with elevated interferon gamma (IFN-γ)-producing CD4+, CD8+ T cells, and 
interleukin 17 (IL-17)-producing γδ T cells, along with decreased regulatory T cells (Tregs)[21]. Tregs are 
one lineage of CD4+ T cells. These cells are involved in maintaining immune homeostasis and 
restricting excessive immune responses. T helper 17 (Th17) cells might secrete IL-17A, IL-17F, IL-21, and 
IL-22. Several strains of Clostridia help with the expansion and differentiation of Tregs, by providing 
bacterial antigens and an environment rich in transforming growth factor beta, contributing to the 
immunological homeostasis of the gut[22,23]. Lactobacillus reuteri, Bacteroides fragilis, B. hetaiotaomicron, 
Clostridium, and Faecalibacterium prausnitzii promote the differentiation of Tregs. Segmented filamentous 
bacteria are required for Th17 cells to develop in the gut. Furthermore, SCFAs improve the Treg/Th17 
balance, and induce IL-22 production in CD4+ T cells and innate lymphoid cells (ILCs), maintaining 
intestinal homeostasis[17,24,25].

Many studies have shown that serum lipopolysaccharide (LPS) levels rise in T2DM patients, with a 
triggering factor to IR and diabetes being identified that is closely associated with intestinal integrity 
and permeability[26,27]. One recent study of 128 obese human subjects showed that the abundance of 
Escherichia coli, an important producer of LPS, was higher in obese patients with T2DM compared with 
the lean patients[28]. LPS is recognized by Toll-like receptors (TLRs) of the innate immune system, 
leading to the aggregation of macrophages and activation of the NF-κB inflammatory signaling 
pathway. This process triggers systemic immune and inflammatory responses that aggravate IR[14,29]. 
In general, a healthy intestinal barrier protects the organism from the passage of microbes. However, the 
intestinal barrier of people with T2DM is disturbed, leading to the uncontrolled passage of LPS and 
microbiota-derived molecules, and subsequent endotoxemia and chronic inflammation[30]. In 
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particular, obese mice have fewer immunoglobulin A (IgA)-secreting immune cells and lower IgA 
secretion and glucose metabolism disorders arise in obese IgA-deficient mice. Administering metformin 
and bariatric surgery augment cellular and stool IgA levels[31]. Obese patients with T2DM exhibit a 
lower expression of intestinal tight junction genes and interference with the WNT/β-catenin signaling 
pathway, both of which are linked increased intestinal epithelial and gut vascular permeability[31-33]. 
Several immune cells (such as mucosal-associated invariant T cells [MAIT]) also impair gut integrity by 
inducing the dysbiosis of microbiota[34]. IL-1β can increase barrier permeability in intestinal epithelial 
cells, whereas IL-22 is considered a protector of maintaining intestinal barrier integrity[35-37]. Reduced 
integrity and higher intestinal permeability of the intestine promote the translocation of microbiota-
derived molecules from the intestinal lumen to the bloodstream. This process triggers the activation of 
lamina propria macrophages in the intestine, causing LPS levels to rise in the blood.

IMMUNE ATTACK IN THE ADIPOSE TISSUES OF OBESITY-RELATED T2DM
Eating more calorie-dense foods combined with less exercise promotes the development of obesity. In 
both mice and humans, excess energy is stored in white adipose tissues (ATs) (WAT), which serves as 
the immune and endocrine organ containing mature adipocytes, adipocyte precursor cells (also called 
adipose stromal cells), and immune cells. Obesity causes a persistent low-grade inflamed condition in 
these expanding adipose depots, and the simultaneous infiltration of immune cells in the stromal 
vascular fraction and systematic metabolic disorders. The inflammatory storm driven by dysfunctional 
WAT disrupts its normal function and that of other insulin-sensitive organs. Consequently, this process 
contributes to the pathophysiological mechanisms of IR and T2DM (Figure 2). However, in obese 
subjects with T2DM, this immune attack appears to be stronger. Obese patients with T2DM have a 
higher degree of inflammation at both the systemic and AT level compared to patients with normal 
glucose tolerance. This phenomenon is characterized by aggravated macrophage infiltration in WAT, 
with elevated IL-6 levels and CD4+ T cell numbers in serum[38].

Macrophages are representative immune cells of the innate immune system, and were first studied in 
relation to the process of immune infiltration in WAT. The infiltration and activation of macrophages is 
beginning to be recognized as a pivotal instigator of meta-inflammation. Normally, M2 anti-inflam-
matory macrophages are the main type in WAT[39,40]. However, as obesity develops, instead of the 
M2-phenotype, M1 proinflammatory macrophages in AT gradually increase (up to 40% of cells in AT), 
leading to a proinflammatory state in WAT[40-42]. The greater increase in M1-like polarized mac-
rophages results in their being responsible for almost all secretions of tumor necrosis factor alpha (TNF-
α) and IL-6 in WAT. In turn, this process impairs the insulin signaling pathway, leading to IR, both 
locally and systemically[43]. Initially, the proliferation of resident macrophages dominates the accumu-
lation of macrophages in WAT. Then at the later stage of obesity, recruited monocytes con-tribute to the 
accumulation of macrophages, following the secretion of CCL2/MCP-1 and leukotriene B4 by 
adipocytes to the microenvironment[44-46]. Free fatty acids (FFAs) derived from the diet and trigly-
ceride lipolysis in hypertrophied adipocytes also promote M1-like polarization through a TLR4-
dependent mechanism in WAT. In turn, this process increases FFA levels by aggravating lipolysis, 
establishing a positive feedback loop between FFAs and TLR4 activation in WAT[47,48]. Moreover, 
microRNAs (miRNAs) are considered to be important links between adipocytes and macrophages. 
Adipocyte-derived miRNAs (such as miR-30, miR-34a, miR-21, and miR-10a-5p) regulate the immune 
balance between M1- and M2-macrophage polarization[49-52]. Besides, proinflammatory macrophages 
also facilitate neutrophil recruitment to metabolic tissues during obesity, by releasing nucleotides 
through pannexin-1[53].

Aside from macrophages, adaptive immune cells are involved in the pathogenesis of obesity-related 
T2DM. In HFD-induced obese mice, CD8+ T cells are recruited into AT, promoting M1-like polarization
[40,54,55]. However, different categories of CD4+ T cells have various functions in AT[56]. Proinflam-
matory CD4+ T cells (Th1, Th17, and Th22) are important promoters of the development of obesity-
associated metabolic disorders. These cells produce proinflammatory cytokines (IFN-γ, TNF-α, IL-17, 
and IL-22), and are involved in the recruitment and activation of M1 macrophages[57-60]. MAIT are 
innate-like T cells that express a semi-invariant T cell receptor, which promote inflammation in AT by 
inducing M1 macrophage polarization. This process leads to IR and impaired glucose and lipid 
metabolism[34]. Conversely, Tregs provide an essential accessory function that prevents systemic 
metabolic disorders, through suppressing the expression of MCP-1 in adipocytes to limit M1 
macrophage infiltration via IL-10 and other insulin-sensitizing factors. However, the development of 
Tregs in WAT seems to depend on insulin signaling. Insulin signaling drives the transition of CD73loST2 
(IL-33 receptor) hiadipose Treg subsets, which might also suppress inflammation in WAT via the hypoxia 
inducible factor 1 alpha–mediator complex subunit 23–peroxisome proliferator-activated receptor 
gamma axis[61]. Furthermore, AT B cells also negatively control local inflammation by secreting IL-10 
(secreted by Bregs) and other soluble factors. B cells also contribute to systemic inflammation by 
activating CD8+ and Th1 cells, and releasing pathogenic antibodies[62-65]. B cells from obese mice 
consistently produce a proinflammatory cytokine profile compared to those from lean controls[66]. B 
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Figure 2 Immune attack and inflammation in the white adipose tissue during obesity-related type 2 diabetes. At the later stage of obesity, 
recruited monocytes mainly contribute to the accumulation of macrophages in adipose tissue, following the secretion of monocyte chemoattractant protein-1 (MCP1) 
and leukotriene B4 (LTB4) by adipocytes to the microenvironment. Free fatty acids from the diet and in triglyceride (TG) lipolysis in adipocytes promote M1-like 
polarization. Several adipocyte-derived microRNAs also regulate the immune balance between M1- and M2-macrophage polarization. CD8+ T cells, pro-inflammatory 
CD4+ T cells (T helper type 1 [Th1], Th17, and Th22) and mucosal-associated invariant T cells are also recruited into adipose tissue, promoting M1-like polarization. 
Regulatory B cells (Bregs) and regulatory T cells (Tregs) can negatively control the local inflammation by secreting interleukin-10 (IL-10), but B cells contribute to 
systemic inflammation by activating CD8+ and Th1 cells, and releasing pathogenic antibodies. Some mesenchymal stromal cells in visceral adipose tissue can 
improves insulin resistance and inflammation in adipose tissues through expanding and sustaining the resident Treg population via IL-33 secretion.

cells transferred from obese mice induce the development of IR in B cell-deficient lean mice. By contrast, 
B cell depletion in mice restores aberrant immune cell composition and improves metabolic capacity in 
WAT[67]. T-bet B cells are B cells lacking cluster of differentiation 21 (CD21) and CD23. These cells 
accumulate in humans that have an elevated body mass index, and in mice with higher body weight. 
Mice without T-bet B cells have lower weight gain and M1 macrophage infiltration in WAT[68,69]. 
Thus, regulation of the adaptive immune system is related to the inflammation of AT in obesity. 
Adaptive immune cells are involved in AT IR in obesity-related T2DM; however, some of these effects 
may be achieved through promoting the polarization of M1-like macrophages.

Recent studies have shown that other types of cells in AT also participate in regulating immune 
balance. Mesenchymal cells contribute towards shaping immune responses and maintaining immune 
homeostasis in WAT. Mesenchymal cells express IL-7, IL-33, and CCL19, which recruit both innate and 
adaptive lymphocytes. IL-33 is produced by particular mesenchymal stromal cells in visceral AT (VAT), 
IL-33 improves IR and inflammation in AT, possibly through expanding and sustaining the resident 
Treg population[70-73]. Administering IL-33 helps combat obesity, by markedly increasing the fraction 
of group 2 ILCs and eosinophil, and improving WAT browning[74].

However, the distribution of AT appears to be closely related to the occurrence and progression of 
metabolic diseases. It has been universally accepted that central body fat deposition and injured 
function of AT are closer associated with obesity-related metabolic diseases than fat mass in the whole 
body. Generally, AT is divided into abdominal subcutaneous AT, femoral subcutaneous AT (FSAT, 
main type of lower-body AT), VAT, according to their different location. SAT is the largest AT depot. 
The expansion of FSAT and adipocyte hyperplasia from precursor cells are considered to be a healthier 
alterative of AT in meeting elevated storage energy demands. However, any damage to these 
approaches leads to the accumulation of fat in upper body AT and organs, which causes “lipotoxicity” 
in other insulin-sensitive organs, as well as systemic IR and a higher risk of T2DM. Several studies have 
found that SAT may have a more beneficial metabolic phenotypes, notably its accumulation in lower-
body[75,76]. Upper body AT (especially VAT) is usually characterized by more rapid storage of energy 
and a higher lipolysis rate than lower-body, which contributes to systemic FFA levels[77]. Interestingly, 
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a recent study revealed that expanded adipocytes, lower SAT oxygenation, inflammation infiltration in 
SAT, and elevated FFA release, these changes in SAT that were considered harmful, seemed to be 
unrelated to the occurrence of obesity-induced IR[76,78]. Collectively, expansion and inflammation in 
VAT, rather than SAT, are the culprit involved in obesity-related metabolic diseases. Therefore, the 
effects of abdominal WAT accumulation are of more concern.

INFLAMMATION AND IMMUNE STATUS IN METABOLICALLY HEALTHY OBESITY
Metabolically healthy obesity (MHO) is a subgroup of obesity, which does not have an universally 
accepted definition. In most studies, MHO presented without the following features: dyslipidemia, IR, 
impaired glucose metabolism, and overt T2DM. Compared with metabolically unhealthy obesity 
(MUO), MHO usually has more expandability of SAT, less ectopic fat accumulation, normal concen-
tration of inflammatory markers, and preserved better β-cell function, and insulin sensitivity[79-81]. 
Systematically, decreased concentrations of C-reactive protein, TNF-α, IL-6, and plasminogen activator 
inhibitor-1 were found in the MHO subjects than MUO individuals[82]. Changes to the distribution and 
function of AT might also strongly contribute to the conversion of these two states. Excess caloric 
storage demand leads to the overload of SAT and ectopic fat accumulation and this ectopic fat 
deposition will eventually cause the transition from MHO to MUO[79]. Besides, many studies have 
revealed that less immune cells infiltration (such as proinflammatory macrophages and T lymphocytes) 
and cytokines production in MHO than in MUO, usually along with the increased VAT mass[83-86]. 
Improved antioxidant capacity and diminished oxidative stress could be also observed in MHO subjects 
than in MUO people[87,88].

IMMUNE ATTACK IN THE LIVER OF OBESITY-RELATED T2DM
The liver is the metabolic center of nutrients and drugs in the body. It receives material supplied from 
the gut via the portal vein, proinflammatory immune cells and cytokines from circulation, which 
strongly impact its physiological function (Figure 3).

Liver macrophages contribute to obesity-related hepatic IR by producing both inflammatory and non-
inflammatory factors. Hepatic macrophages include resident macrophages (Kupffer cells [KCs], high 
expression of F4/80 and C-type lectin domain family 4 member F) and recruited hepatic macrophages 
(RHMs), high expression of CD11b and CCR2. RHMs are derived from circulating Lyc6+ monocytes, 
which are recruited by steatosis hepatocytes and KCs secreting CCL2/MCP-1[89-92]. Although the ratio 
of KC to RHM is different in the liver of healthy mice and humans, as obesity develops, hepatic RHMs 
noticeably increase. These RHMs serve as a main promoter of inflammation injury in the liver, by 
producing chemokines and cytokines (in both humans and mice), which are related to obesity induced 
IR[93-95]. Multiple mechanisms are involved in the proinflammatory activation of hepatic macrophages. 
In obese individuals, FFAs overflow from obese AT contributes to the activation of resident hepatic 
macrophages[96]. Leptin and adiponectin from expanded AT have contrasting actions on KCs. The 
former stimulates proinflammatory and profibrogenic cytokines in KCs, whereas the latter modifies 
KCs towards anti-inflammatory phenotypes[97,98]. AT-derived proinflammatory cytokines (such as IL-
1β) contribute to the chronic activation of hepatic NF-κB, promoting the development of nonalcoholic 
steatohepatitis (NASH)[99]. KCs highly express scavenger, complement, and pattern recognition 
receptors, including TLRs. Intestinal permeability rises during obesity, leading to the translocation of 
bacteria or their products to the portal circulation. These substances are recognized by TLRs in 
macrophages, which activate NF-κB, IFN regulatory factors and other downstream transcriptional 
factors to induce inflammatory responses[100]. Microbe-related products, including extracellular 
vesicles (mEVs) containing gut microbial DNA, that leak from gut reach the liver, and exacerbate 
obesity-associated hepatic inflammation and IR. Vsig4+ macrophages and CRIg+ macrophages 
efficiently clear mEVs through a complementary component C3-dependent mechanism; however, HFD 
impairs these benefits[101,102]. CD68 serves as a marker for macrophages residing in the liver; however, 
this indicator is not sufficient for distinguishing them from monocyte-derived cells. The utilization of 
single-cell sequencing allows their origin, function, and associated inflammatory phenotype to be 
clearly distinguished. Two distinct populations of intrahepatic CD68 macrophages exist in human 
livers. CD68MARCO+++− cells are characterized by the enriched expression of LYZ, CSTA, and CD74, 
which represent their proinflammatory function. The CD68MARCO macrophage subset is similar to 
resident KCs, inducing immune tolerance[103]. Counter to expectation, KCs in diet-induced steatohep-
atitis probably participate in reparation pathways, not proinflammatory function[104]. However, KCs 
and RHMs both shift towards a proinflammatory phenotype[105]. Overall, the types and functions of 
liver macrophages are still under investigation.

Nonalcoholic fatty liver disease (NAFLD), obesity, and T2DM are closely related in terms of 
pathogenesis. The prevalence of NAFLD is higher in subjects with obesity compared to lean subjects
[106,107]. T2DM is also closely associated with NAFLD and its severe form NASH. Most T2DM patients 
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Figure 3 Immune attack and inflammation in the liver in obesity-related type 2 diabetes. Under metabolic stress, recruited hepatic macrophages, 
which are derived from circulating monocytes, are recruited by steatosis hepatocytes and Kupffer cells secreting monocyte chemoattractant protein-1 (MCP1). 
Expanded adipose tissue-derived free fatty acids, leptin, interleukin-1 beta (IL-1β) and bacteria with their products from gut, contribute to the M1 polarization of 
hepatic macrophages. Nonalcoholic steatohepatitis (NASH) is a severe form of nonalcoholic fatty liver disease, which is associated with more severe hepatic insulin 
resistance and inflammation. The infiltration of neutrophils, B2 cells, interferon gamma (IFN-γ)-producing CD4+ T cells and IFN-α-producing CD8+ T cells occur in 
NASH liver, promoting insulin resistance under diet-induced metabolic stress. FFAs: Free fatty acids; KCs: Kupffer cells; LPS: Lipopolysaccharide; mEVs: 
Extracellular vesicles.

suffer from NAFLD[108-110]. NAFLD, particularly NASH, usually leads to more severe hepatic IR that 
negatively affects T2DM development[111]. In NASH mice, KC is gradually replaced by RHM. 
Although RHM could respond to local environmental clues and develops a KC-like transcriptomic 
profile, this profile is not identical to original healthy KCs[90]. In healthy subjects, KCs inhibit monocyte 
and macrophage recruitment by secreting IL-10 and promoting immune tolerance through inducing 
Tregs and programmed death-ligand 1 expression. However, when NASH happens, injured hepato-
cytes activate KCs and recruit monocytes to the liver, and produce proinflammatory cytokines. Besides, 
these proinflammatory macrophages trigger the activation of hepatic stellate cells, leading to 
progression of the extracellular matrix and fibrosis in liver[112,113]. TLRs mediate the greater activation 
of the proinflammatory pathway as NASH progresses. Excess FFAs drive the endocytosis of a 
monomeric TLR4 complex, enhancing the generation of reactive oxygen species and causing steatohep-
atitis and IR[114]. TLR2 and TLR4 signaling activates inflammasomes (e.g., pyrin domain-containing 
protein 3, NLRP3) in KCs, aggravating hepatic steatosis and NASH inflammation[115-117]. TLR9 is 
primarily confined to the endosomes of macrophages, which are activated by higher levels of 
mitochondrial DNA and oxidized DNA in liver, triggering NASH[118,119]. Conversely, inhibition of 
TLR2, TLR4, and TLR9 signaling pathways has anti-inflammatory effects, representing a potential 
treatment target for NASH[118,120].

The histopathology hallmarks of human NASH include the infiltration of neutrophils with MPO-
positive immunoreactivity[99]. Neutrophil extracellular traps (NETs) are extracellular web-like 
structures of decondensed chromatin with cytosolic and granule proteins. These structures are 
important in hepatic chronic inflammatory conditions. NET blockade significantly decreases the infilt-
ration of RHMs and neutrophils[121].

Moreover, recent studies have focused on elucidating the role of adaptive immunity cells in liver 
inflammation under metabolic challenge. The accumulation of B cells (especially B2 cells) and T cells in 
liver arises in more than half of NASH patients[122-124]. B cell-activating factor levels in the circulation 
are elevated in NASH patients compared to those with simple steatosis. This phenomenon is associated 
with more advanced IR, more severe steatohepatitis and fibrosis[123,125,126]. The contribution of B cells 
to the progression of NASH could be attributed to the production of proinflammatory mediators and 
their antigen-presenting capabilities[122]. Interfering with B2 cells reduces the Th1 cell activation of 
liver CD4+ T cells and IFN-γ production[123]. In both humans and mice, IFN-γ-producing CD4+ T cells 
and IFN-α-producing CD8+ T cells increase in the liver, promoting IR under diet-induced metabolic 
stress[127,128]. Thus, the infiltration of adaptive immunity cells in liver strongly affect inflammatory 
mechanisms during the development of NASH.
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IMMUNE ATTACK IN THE ISLET OF OBESITY-RELATED T2DM
In the pathophysiologic process of islets of obesity and T2DM, innate immune cells are important, 
especially macrophages. Increased infiltration of resident macrophages and transformation towards a 
proinflammatory phenotype contributes to obesity and T2DM islets, the extent of which is generally 
correlated with β-cell dysfunction[129-131] (Figure 4). Islet macrophages express F4/80, CD11c, major 
histocompatibility complex class II, CD64, CD11b, CX3C motif chemokine receptor 1, CD68, and 
lysozyme[132]. At the early stage of obesity, resident macrophages enhance the compensatory prolif-
eration of β cells, mediated by platelet-derived growth factor (PDGF)-PDGF receptor signaling[129]. As 
the disease progresses, CD68-positive macrophages are elevated in T2DM islets[130,133,134]. The prolif-
eration of resident macrophages causes them to accumulate in islets with elevated inflammatory 
cytokines and chemokines (such as IL-1β, TNF-α), impairing the hyperplasia and dysfunction of β cells
[131]. Overall, changes to the number and function of islet macrophages affect the pathogenesis of 
obesity and T2DM.

However, the factors that trigger the infiltration and proinflammation polarization of macrophages in 
islets remain unclear. Β cells are potentially one of the early responders in the altered islet microenvir-
onment. In obesity, β cells recruit Ly6C+ monocytes to the islets by producing chemokines, despite these 
recruited monocytes remaining at the boundary of the exocrine and endocrine pancreas[129]. Amyloid 
deposition in islets is a typical pathological feature of T2DM, and is also a strong stimulus for 
macrophage-mediated NLRP3 inflammasome activation and IL-1β production[135-137]. In amyloid-
positive T2DM islets, the number of macrophages greatly increases, with CD68 and inducible nitric 
oxide synthase-positive[134]. Macrophages that are resident to islets act as heightened sensors of 
interstitial ATP levels. Consequently, glucose-activated insulin and ATP co-secretion of β cells might 
trigger cytokine production from macrophages[138]. Macrophages resident to islets are in contact with 
blood vessels, probably protecting against inflammatory moieties from blood by extending their 
filopodias; however, high concentrations of glucose in T2DM limit this method of capture[139,140]. In 
addition, GRP92 activation in islet macrophages promotes conversion to the anti-inflammatory 
phenotype, and improves β-cell function[141]. The accumulation of intestinal mEVs causes CD11c+ 
macrophages to increase, with elevated IL-1β in islets impairing insulin secretion. Vsig4+ macrophages 
in islets block intestine-derived mEV via a C3-mediated mechanism. By contrast, obesity causes a 
marked decrease in Vsig4+ macrophages[142].

IL-1β is a key proinflammatory cytokine that clearly increases in T2DM islets. Although macrophages 
are considered to be the major producers of IL-1β in obesity islets, for which the potential mechanism 
has been identified, β cells also produce IL-1β[129,137]. Glucose-induced IL-1β auto-stimulation in β 
cells might contribute to glucotoxicity in T2DM islets[143,144]. However, IL-1β on β cells seem to have 
varied effects. For instance, low concentrations of IL-1β help to increase β-cell proliferation and improve 
insulin secretion following glucose stimulation. By contrast, high concentrations of IL-1β promote 
inflammation in islets, and might be closely related to the development of pre-diabetes and T2DM[145-
147]. The IL-1R antagonist (IL-1Ra) also declines in T2DM β cells, pushing the IL-1/IL-1Ra balance 
towards a proinflammatory state[148-151]. The vaccine and responsive miRNA targeting IL1β are 
promising approaches for treating T2DM, by restoring β-cell mass, inhibiting β-cell apoptosis, and 
increasing insulin secretion[152-154]. Thus, antagonizing IL-1β is a potential target for T2DM treatment.

IMMUNE ATTACK IN THE SKELETAL MUSCLE OF OBESITY-RELATED T2DM
As skeletal muscle is the principle organ for glucose disposal, IR in this tissue becomes a crucial 
determinant of obesity and T2DM-related metabolic disorders[155,156]. Immune attack and inflam-
matory responses in skeletal muscle also regulate IR formation (Figure 5). CD11c-expressing proinflam-
matory macrophages, monocytes, and neutrophils are higher in the skeletal muscle of HFD-induced 
mice compared to the control[157,158]. More macrophages markers are found in the skeletal muscle of 
healthy subjects after HFD administration, with the development of IR[159,160]. In obese T2DM 
patients, the number of CD68+ macrophages is elevated in skeletal muscle[158,161]. Total T cells and αβ 
T cells, containing CD8+ T cells and IFN-γ–producing CD4+ cells are higher in the skeletal muscle of 
obese mice compared to control mice[162]. FFAs induce or synergize with macrophages to aggravate the 
inflammatory response in muscle cells, resulting in IR[163-165]. These immune cells infiltrate skeletal 
muscle, and accumulate in muscle AT between myocytes and the surrounding muscle, leading to higher 
levels of local proinflammatory cytokines, such as TNF-α, IL-1β, and IFN-γ[158,160,166].

Similar to adipocytes, skeletal muscle cells produce MCP-1, IL-6, IL-8, TNF-α, and other molecules, 
and part of these molecules lead to the infiltration of macrophages, inducing IR[157,167]. Muscle 
biopsies show that the gene expression of inflammatory cytokines (such as TNF-α) is upregulated in IR 
subjects[168]. Compared with non-diabetic subjects, more IL-6, IL-8, IL-15, TNF-α, growth related 
oncogene α, MCP-1, and follistatin are released by skeletal muscle cells from T2DM patients[169]. 
Aerobic exercise reduces the infiltration of macrophage in skeletal muscles, and improves insulin 
sensitivity and elevates the production of anti-inflammatory cytokine IL-10[170]. IL-10 attenuates 
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Figure 4 Immune attack and inflammation in the islet in obesity-related type 2 diabetes. In obesity and type 2 diabetes mellitus (T2DM), the 
proliferation of islet resident macrophages causes accumulation of macrophages in islets with elevated inflammatory cytokines and chemokines (such as interleukin-1 
beta [IL-1β], tumor necrosis factor-alpha [TNF-a]). Β cells respond to saturated fatty acids recruit Ly6C+ monocytes to the islets; however, these recruited monocytes 
remain at the boundary of the exocrine and endocrine pancreas. High concentrations of glucose or free fatty acids and amyloids deposition, promote islet 
macrophages to produce more IL-1β. Glucose-activated insulin and ATP secretion of β cells also trigger the production of cytokines from macrophages. Elevated IL-1
β levels can promote inflammation in islets, and are closely related to the development of prediabetes and T2DM. FFAs: Free fatty acids.

Figure 5 Immune attack and inflammation in the skeletal muscle in obesity-related type 2 diabetes. As obesity develops, adipose depots between 
skeletal muscles or surrounding muscles continuously further expand. Immune cells including M1-like macrophages, CD8+ T cells and interferon-gamma (IFN-
γ)–producing CD4+ cells, infiltrate into adipose depots in skeletal muscles. Skeletal muscle cells can also produce monocyte chemoattractant protein-1 (MCP1), 
interleukin-6 (IL-6), IL-8, tumor necrosis factor-alpha (TNF-α), and other molecules, and lead to the infiltration of macrophages, finally inducing insulin resistance.

macrophage infiltration and cytokine response in skeletal muscle, mitigating diet-induced IR[160]. 
Interestingly, while IL-6 usually promotes inflammation, acute IL-6 treatment in skeletal muscle 
strengthens insulin-stimulated glucose disposal in humans, possibly mediated by AMP-activated 
protein kinase signaling[171,172]. Therefore, the exact role of myokines in the metabolism of skeletal 
muscle needs to be further clarified.
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TLRs are also present in skeletal muscle. The expression and signaling of TLR4 is elevated in the 
muscle of IR patients[173]. LPS-induced IR in skeletal muscle entirely depends on TLR4[174]. The 
inhibition or deletion of TLR4 prevents acute hyperlipidemia-induced skeletal muscle IR[175,176]. 
Palmitate induces myeloid differentiation primary response 88 and TLR2 receptor to combine in mouse 
myotube cells, providing the foundation for inflammation and IR[177]. Therefore, TLRs are also 
involved in activating proinflammatory factors on skeletal muscle cells.

Overall, many studies support the association of obesity and related-T2DM with increased inflam-
mation of skeletal muscle in rodents and humans. The greater infiltration of macrophages and T cells, 
and their polarization towards proinflammatory phenotypes, means they act as primary promoters in 
increasing the inflammation of skeletal muscle. Skeletal muscle cell-secreting myokines also exhibit 
proinflammatory effects during the development of obesity and T2DM.

CONCLUSION
Chronic low-grade inflammation involving the immune system is a typical feature of obesity-associated 
T2DM. It generates an inflammatory storm affecting multiple organs and tissues throughout the body. 
Adaptive activation of the immune system usually stems from an energy imbalance in the body induced 
by excess calorie intake. However, as the imbalance continues to grow, parenchymal cells and immune 
cells (in particular, macrophages/monocytes), and their cross-talk, promote the inflammatory response 
and the development of T2DM by exacerbating IR. Targeting immune cells and relative inflammatory 
responses is an effective treatment of obesity and associated T2DM.

FOOTNOTES
Author contributions: Wang HW, Tang J, and Dai Z took part in the conception and wrote the review; Sun L, Li Z, 
and Deng M made intellectual contributions to the writing and revision of this review; Wang HW and Dai Z 
contributed to the design of figures and revised thoroughly the final version; Dai Z was responsible for supervision, 
manuscript writing and editing, and funding acquisition.

Supported by the National Science Foundation of China, No. 81500593; and the Science and Technology Innovation 
Platform Project of Zhongnan Hospital of Wuhan University, No. PTXM2021016.

Conflict-of-interest statement: The authors have no conflicts of interest to declare.

Open-Access: This article is an open-access article that was selected by an in-house editor and fully peer-reviewed by 
external reviewers. It is distributed in accordance with the Creative Commons Attribution NonCommercial (CC BY-
NC 4.0) license, which permits others to distribute, remix, adapt, build upon this work non-commercially, and license 
their derivative works on different terms, provided the original work is properly cited and the use is non-
commercial. See: https://creativecommons.org/Licenses/by-nc/4.0/

Country/Territory of origin: China

ORCID number: Hua-Wei Wang 0000-0001-7534-2863; Jun Tang 0000-0002-6908-1027; Li Sun 0000-0001-5921-6664; Zhen 
Li 0000-0002-0464-1791; Ming Deng 0000-0003-4916-4877; Zhe Dai 0000-0003-0321-0225.

S-Editor: Zhang H 
L-Editor: Filipodia 
P-Editor: Yu HG

REFERENCES
1 Loos RJF, Yeo GSH. The genetics of obesity: from discovery to biology. Nat Rev Genet 2022; 23: 120-133 [PMID: 

34556834 DOI: 10.1038/s41576-021-00414-z]
2 Jebeile H, Kelly AS, O'Malley G, Baur LA. Obesity in children and adolescents: epidemiology, causes, assessment, and 

management. Lancet Diabetes Endocrinol 2022; 10: 351-365 [PMID: 35248172 DOI: 10.1016/S2213-8587(22)00047-X]
3 Daousi C, Casson IF, Gill GV, MacFarlane IA, Wilding JP, Pinkney JH. Prevalence of obesity in type 2 diabetes in 

secondary care: association with cardiovascular risk factors. Postgrad Med J 2006; 82: 280-284 [PMID: 16597817 DOI: 
10.1136/pmj.2005.039032]

4 Hu FB, Manson JE, Stampfer MJ, Colditz G, Liu S, Solomon CG, Willett WC. Diet, lifestyle, and the risk of type 2 
diabetes mellitus in women. N Engl J Med 2001; 345: 790-797 [PMID: 11556298 DOI: 10.1056/NEJMoa010492]
Cotillard A, Kennedy SP, Kong LC, Prifti E, Pons N, Le Chatelier E, Almeida M, Quinquis B, Levenez F, Galleron N, 
Gougis S, Rizkalla S, Batto JM, Renault P; ANR MicroObes consortium, Doré J, Zucker JD, Clément K, Ehrlich SD. 

5

https://creativecommons.org/Licenses/by-nc/4.0/
http://orcid.org/0000-0001-7534-2863
http://orcid.org/0000-0001-7534-2863
http://orcid.org/0000-0002-6908-1027
http://orcid.org/0000-0002-6908-1027
http://orcid.org/0000-0001-5921-6664
http://orcid.org/0000-0001-5921-6664
http://orcid.org/0000-0002-0464-1791
http://orcid.org/0000-0002-0464-1791
http://orcid.org/0000-0003-4916-4877
http://orcid.org/0000-0003-4916-4877
http://orcid.org/0000-0003-0321-0225
http://orcid.org/0000-0003-0321-0225
http://www.ncbi.nlm.nih.gov/pubmed/34556834
https://dx.doi.org/10.1038/s41576-021-00414-z
http://www.ncbi.nlm.nih.gov/pubmed/35248172
https://dx.doi.org/10.1016/S2213-8587(22)00047-X
http://www.ncbi.nlm.nih.gov/pubmed/16597817
https://dx.doi.org/10.1136/pmj.2005.039032
http://www.ncbi.nlm.nih.gov/pubmed/11556298
https://dx.doi.org/10.1056/NEJMoa010492


Wang HW et al. Immune attack in diabetes

WJD https://www.wjgnet.com 504 May 15, 2023 Volume 14 Issue 5

Dietary intervention impact on gut microbial gene richness. Nature 2013; 500: 585-588 [PMID: 23985875 DOI: 
10.1038/nature12480]

6 Le Chatelier E, Nielsen T, Qin J, Prifti E, Hildebrand F, Falony G, Almeida M, Arumugam M, Batto JM, Kennedy S, 
Leonard P, Li J, Burgdorf K, Grarup N, Jørgensen T, Brandslund I, Nielsen HB, Juncker AS, Bertalan M, Levenez F, Pons 
N, Rasmussen S, Sunagawa S, Tap J, Tims S, Zoetendal EG, Brunak S, Clément K, Doré J, Kleerebezem M, Kristiansen 
K, Renault P, Sicheritz-Ponten T, de Vos WM, Zucker JD, Raes J, Hansen T; MetaHIT consortium, Bork P, Wang J, 
Ehrlich SD, Pedersen O. Richness of human gut microbiome correlates with metabolic markers. Nature 2013; 500: 541-
546 [PMID: 23985870 DOI: 10.1038/nature12506]

7 Ridaura VK, Faith JJ, Rey FE, Cheng J, Duncan AE, Kau AL, Griffin NW, Lombard V, Henrissat B, Bain JR, 
Muehlbauer MJ, Ilkayeva O, Semenkovich CF, Funai K, Hayashi DK, Lyle BJ, Martini MC, Ursell LK, Clemente JC, Van 
Treuren W, Walters WA, Knight R, Newgard CB, Heath AC, Gordon JI. Gut microbiota from twins discordant for obesity 
modulate metabolism in mice. Science 2013; 341: 1241214 [PMID: 24009397 DOI: 10.1126/science.1241214]

8 Fei N, Zhao L. An opportunistic pathogen isolated from the gut of an obese human causes obesity in germfree mice. ISME 
J 2013; 7: 880-884 [PMID: 23235292 DOI: 10.1038/ismej.2012.153]

9 Xu YH, Gao CL, Guo HL, Zhang WQ, Huang W, Tang SS, Gan WJ, Xu Y, Zhou H, Zhu Q. Sodium butyrate 
supplementation ameliorates diabetic inflammation in db/db mice. J Endocrinol 2018; 238: 231-244 [PMID: 29941502 
DOI: 10.1530/JOE-18-0137]

10 Chang PV, Hao L, Offermanns S, Medzhitov R. The microbial metabolite butyrate regulates intestinal macrophage 
function via histone deacetylase inhibition. Proc Natl Acad Sci U S A 2014; 111: 2247-2252 [PMID: 24390544 DOI: 
10.1073/pnas.1322269111]

11 Qin J, Li Y, Cai Z, Li S, Zhu J, Zhang F, Liang S, Zhang W, Guan Y, Shen D, Peng Y, Zhang D, Jie Z, Wu W, Qin Y, 
Xue W, Li J, Han L, Lu D, Wu P, Dai Y, Sun X, Li Z, Tang A, Zhong S, Li X, Chen W, Xu R, Wang M, Feng Q, Gong M, 
Yu J, Zhang Y, Zhang M, Hansen T, Sanchez G, Raes J, Falony G, Okuda S, Almeida M, LeChatelier E, Renault P, Pons 
N, Batto JM, Zhang Z, Chen H, Yang R, Zheng W, Yang H, Wang J, Ehrlich SD, Nielsen R, Pedersen O, Kristiansen K. A 
metagenome-wide association study of gut microbiota in type 2 diabetes. Nature 2012; 490: 55-60 [PMID: 23023125 DOI: 
10.1038/nature11450]

12 Karlsson FH, Tremaroli V, Nookaew I, Bergström G, Behre CJ, Fagerberg B, Nielsen J, Bäckhed F. Gut metagenome in 
European women with normal, impaired and diabetic glucose control. Nature 2013; 498: 99-103 [PMID: 23719380 DOI: 
10.1038/nature12198]

13 Kim G, Yoon Y, Park JH, Park JW, Noh MG, Kim H, Park C, Kwon H, Kim Y, Sohn J, Park S, Im SK, Chung HY, Nam 
MH, Kwon JY, Kim IY, Kim YJ, Baek JH, Kim HS, Weinstock GM, Cho B, Lee C, Fang S, Park H, Seong JK. 
Bifidobacterial carbohydrate/nucleoside metabolism enhances oxidative phosphorylation in white adipose tissue to protect 
against diet-induced obesity. Microbiome 2022; 10: 188 [PMID: 36333752 DOI: 10.1186/s40168-022-01374-0]

14 Blaak EE, Canfora EE, Theis S, Frost G, Groen AK, Mithieux G, Nauta A, Scott K, Stahl B, van Harsselaar J, van Tol R, 
Vaughan EE, Verbeke K. Short chain fatty acids in human gut and metabolic health. Benef Microbes 2020; 11: 411-455 
[PMID: 32865024 DOI: 10.3920/BM2020.0057]

15 Kim MH, Kang SG, Park JH, Yanagisawa M, Kim CH. Short-chain fatty acids activate GPR41 and GPR43 on intestinal 
epithelial cells to promote inflammatory responses in mice. Gastroenterology 2013; 145: 396-406.e1 [PMID: 23665276 
DOI: 10.1053/j.gastro.2013.04.056]

16 Lu Y, Fan C, Li P, Lu Y, Chang X, Qi K. Short Chain Fatty Acids Prevent High-fat-diet-induced Obesity in Mice by 
Regulating G Protein-coupled Receptors and Gut Microbiota. Sci Rep 2016; 6: 37589 [PMID: 27892486 DOI: 
10.1038/srep37589]

17 Yang W, Yu T, Huang X, Bilotta AJ, Xu L, Lu Y, Sun J, Pan F, Zhou J, Zhang W, Yao S, Maynard CL, Singh N, Dann 
SM, Liu Z, Cong Y. Intestinal microbiota-derived short-chain fatty acids regulation of immune cell IL-22 production and 
gut immunity. Nat Commun 2020; 11: 4457 [PMID: 32901017 DOI: 10.1038/s41467-020-18262-6]

18 Potrykus M, Czaja-Stolc S, Stankiewicz M, Kaska Ł, Małgorzewicz S. Intestinal Microbiota as a Contributor to Chronic 
Inflammation and Its Potential Modifications. Nutrients 2021; 13 [PMID: 34836095 DOI: 10.3390/nu13113839]

19 Kawano Y, Nakae J, Watanabe N, Kikuchi T, Tateya S, Tamori Y, Kaneko M, Abe T, Onodera M, Itoh H. Colonic Pro-
inflammatory Macrophages Cause Insulin Resistance in an Intestinal Ccl2/Ccr2-Dependent Manner. Cell Metab 2016; 24: 
295-310 [PMID: 27508875 DOI: 10.1016/j.cmet.2016.07.009]

20 Rohm TV, Fuchs R, Müller RL, Keller L, Baumann Z, Bosch AJT, Schneider R, Labes D, Langer I, Pilz JB, Niess JH, 
Delko T, Hruz P, Cavelti-Weder C. Obesity in Humans Is Characterized by Gut Inflammation as Shown by Pro-
Inflammatory Intestinal Macrophage Accumulation. Front Immunol 2021; 12: 668654 [PMID: 34054838 DOI: 
10.3389/fimmu.2021.668654]

21 Luck H, Tsai S, Chung J, Clemente-Casares X, Ghazarian M, Revelo XS, Lei H, Luk CT, Shi SY, Surendra A, Copeland 
JK, Ahn J, Prescott D, Rasmussen BA, Chng MH, Engleman EG, Girardin SE, Lam TK, Croitoru K, Dunn S, Philpott DJ, 
Guttman DS, Woo M, Winer S, Winer DA. Regulation of obesity-related insulin resistance with gut anti-inflammatory 
agents. Cell Metab 2015; 21: 527-542 [PMID: 25863246 DOI: 10.1016/j.cmet.2015.03.001]

22 Atarashi K, Tanoue T, Oshima K, Suda W, Nagano Y, Nishikawa H, Fukuda S, Saito T, Narushima S, Hase K, Kim S, 
Fritz JV, Wilmes P, Ueha S, Matsushima K, Ohno H, Olle B, Sakaguchi S, Taniguchi T, Morita H, Hattori M, Honda K. 
Treg induction by a rationally selected mixture of Clostridia strains from the human microbiota. Nature 2013; 500: 232-
236 [PMID: 23842501 DOI: 10.1038/nature12331]

23 Furusawa Y, Obata Y, Fukuda S, Endo TA, Nakato G, Takahashi D, Nakanishi Y, Uetake C, Kato K, Kato T, Takahashi 
M, Fukuda NN, Murakami S, Miyauchi E, Hino S, Atarashi K, Onawa S, Fujimura Y, Lockett T, Clarke JM, Topping DL, 
Tomita M, Hori S, Ohara O, Morita T, Koseki H, Kikuchi J, Honda K, Hase K, Ohno H. Commensal microbe-derived 
butyrate induces the differentiation of colonic regulatory T cells. Nature 2013; 504: 446-450 [PMID: 24226770 DOI: 
10.1038/nature12721]
Wang L, Beier UH, Akimova T, Dahiya S, Han R, Samanta A, Levine MH, Hancock WW. Histone/protein deacetylase 
inhibitor therapy for enhancement of Foxp3+ T-regulatory cell function posttransplantation. Am J Transplant 2018; 18: 

24

http://www.ncbi.nlm.nih.gov/pubmed/23985875
https://dx.doi.org/10.1038/nature12480
http://www.ncbi.nlm.nih.gov/pubmed/23985870
https://dx.doi.org/10.1038/nature12506
http://www.ncbi.nlm.nih.gov/pubmed/24009397
https://dx.doi.org/10.1126/science.1241214
http://www.ncbi.nlm.nih.gov/pubmed/23235292
https://dx.doi.org/10.1038/ismej.2012.153
http://www.ncbi.nlm.nih.gov/pubmed/29941502
https://dx.doi.org/10.1530/JOE-18-0137
http://www.ncbi.nlm.nih.gov/pubmed/24390544
https://dx.doi.org/10.1073/pnas.1322269111
http://www.ncbi.nlm.nih.gov/pubmed/23023125
https://dx.doi.org/10.1038/nature11450
http://www.ncbi.nlm.nih.gov/pubmed/23719380
https://dx.doi.org/10.1038/nature12198
http://www.ncbi.nlm.nih.gov/pubmed/36333752
https://dx.doi.org/10.1186/s40168-022-01374-0
http://www.ncbi.nlm.nih.gov/pubmed/32865024
https://dx.doi.org/10.3920/BM2020.0057
http://www.ncbi.nlm.nih.gov/pubmed/23665276
https://dx.doi.org/10.1053/j.gastro.2013.04.056
http://www.ncbi.nlm.nih.gov/pubmed/27892486
https://dx.doi.org/10.1038/srep37589
http://www.ncbi.nlm.nih.gov/pubmed/32901017
https://dx.doi.org/10.1038/s41467-020-18262-6
http://www.ncbi.nlm.nih.gov/pubmed/34836095
https://dx.doi.org/10.3390/nu13113839
http://www.ncbi.nlm.nih.gov/pubmed/27508875
https://dx.doi.org/10.1016/j.cmet.2016.07.009
http://www.ncbi.nlm.nih.gov/pubmed/34054838
https://dx.doi.org/10.3389/fimmu.2021.668654
http://www.ncbi.nlm.nih.gov/pubmed/25863246
https://dx.doi.org/10.1016/j.cmet.2015.03.001
http://www.ncbi.nlm.nih.gov/pubmed/23842501
https://dx.doi.org/10.1038/nature12331
http://www.ncbi.nlm.nih.gov/pubmed/24226770
https://dx.doi.org/10.1038/nature12721


Wang HW et al. Immune attack in diabetes

WJD https://www.wjgnet.com 505 May 15, 2023 Volume 14 Issue 5

1596-1603 [PMID: 29603600 DOI: 10.1111/ajt.14749]
25 Liu YJ, Tang B, Wang FC, Tang L, Lei YY, Luo Y, Huang SJ, Yang M, Wu LY, Wang W, Liu S, Yang SM, Zhao XY. 

Parthenolide ameliorates colon inflammation through regulating Treg/Th17 balance in a gut microbiota-dependent manner. 
Theranostics 2020; 10: 5225-5241 [PMID: 32373209 DOI: 10.7150/thno.43716]

26 Fuke N, Nagata N, Suganuma H, Ota T. Regulation of Gut Microbiota and Metabolic Endotoxemia with Dietary Factors. 
Nutrients 2019; 11 [PMID: 31547555 DOI: 10.3390/nu11102277]

27 Gomes JMG, Costa JA, Alfenas RCG. Metabolic endotoxemia and diabetes mellitus: A systematic review. Metabolism 
2017; 68: 133-144 [PMID: 28183445 DOI: 10.1016/j.metabol.2016.12.009]

28 Yang K, Niu J, Zuo T, Sun Y, Xu Z, Tang W, Liu Q, Zhang J, Ng EKW, Wong SKH, Yeoh YK, Chan PKS, Chan FKL, 
Miao Y, Ng SC. Alterations in the Gut Virome in Obesity and Type 2 Diabetes Mellitus. Gastroenterology 2021; 161: 
1257-1269.e13 [PMID: 34175280 DOI: 10.1053/j.gastro.2021.06.056]

29 Mohammad S, Thiemermann C. Role of Metabolic Endotoxemia in Systemic Inflammation and Potential Interventions. 
Front Immunol 2020; 11: 594150 [PMID: 33505393 DOI: 10.3389/fimmu.2020.594150]

30 Horton F, Wright J, Smith L, Hinton PJ, Robertson MD. Increased intestinal permeability to oral chromium (51 Cr) -
EDTA in human Type 2 diabetes. Diabet Med 2014; 31: 559-563 [PMID: 24236770 DOI: 10.1111/dme.12360]

31 Luck H, Khan S, Kim JH, Copeland JK, Revelo XS, Tsai S, Chakraborty M, Cheng K, Tao Chan Y, Nøhr MK, Clemente-
Casares X, Perry MC, Ghazarian M, Lei H, Lin YH, Coburn B, Okrainec A, Jackson T, Poutanen S, Gaisano H, Allard JP, 
Guttman DS, Conner ME, Winer S, Winer DA. Gut-associated IgA(+) immune cells regulate obesity-related insulin 
resistance. Nat Commun 2019; 10: 3650 [PMID: 31409776 DOI: 10.1038/s41467-019-11370-y]

32 Rohr MW, Narasimhulu CA, Rudeski-Rohr TA, Parthasarathy S. Negative Effects of a High-Fat Diet on Intestinal 
Permeability: A Review. Adv Nutr 2020; 11: 77-91 [PMID: 31268137 DOI: 10.1093/advances/nmz061]

33 Mouries J, Brescia P, Silvestri A, Spadoni I, Sorribas M, Wiest R, Mileti E, Galbiati M, Invernizzi P, Adorini L, Penna G, 
Rescigno M. Microbiota-driven gut vascular barrier disruption is a prerequisite for non-alcoholic steatohepatitis 
development. J Hepatol 2019; 71: 1216-1228 [PMID: 31419514 DOI: 10.1016/j.jhep.2019.08.005]

34 Toubal A, Kiaf B, Beaudoin L, Cagninacci L, Rhimi M, Fruchet B, da Silva J, Corbett AJ, Simoni Y, Lantz O, Rossjohn J, 
McCluskey J, Lesnik P, Maguin E, Lehuen A. Mucosal-associated invariant T cells promote inflammation and intestinal 
dysbiosis leading to metabolic dysfunction during obesity. Nat Commun 2020; 11: 3755 [PMID: 32709874 DOI: 
10.1038/s41467-020-17307-0]

35 Wang X, Ota N, Manzanillo P, Kates L, Zavala-Solorio J, Eidenschenk C, Zhang J, Lesch J, Lee WP, Ross J, Diehl L, van 
Bruggen N, Kolumam G, Ouyang W. Interleukin-22 alleviates metabolic disorders and restores mucosal immunity in 
diabetes. Nature 2014; 514: 237-241 [PMID: 25119041 DOI: 10.1038/nature13564]

36 Rawat M, Nighot M, Al-Sadi R, Gupta Y, Viszwapriya D, Yochum G, Koltun W, Ma TY. IL1B Increases Intestinal Tight 
Junction Permeability by Up-regulation of MIR200C-3p, Which Degrades Occludin mRNA. Gastroenterology 2020; 159: 
1375-1389 [PMID: 32569770 DOI: 10.1053/j.gastro.2020.06.038]

37 Al-Sadi RM, Ma TY. IL-1beta causes an increase in intestinal epithelial tight junction permeability. J Immunol 2007; 178: 
4641-4649 [PMID: 17372023 DOI: 10.4049/jimmunol.178.7.4641]

38 van Beek L, Lips MA, Visser A, Pijl H, Ioan-Facsinay A, Toes R, Berends FJ, Willems van Dijk K, Koning F, van 
Harmelen V. Increased systemic and adipose tissue inflammation differentiates obese women with T2DM from obese 
women with normal glucose tolerance. Metabolism 2014; 63: 492-501 [PMID: 24467914 DOI: 
10.1016/j.metabol.2013.12.002]

39 Li C, Menoret A, Farragher C, Ouyang Z, Bonin C, Holvoet P, Vella AT, Zhou B. Single cell transcriptomics based-
MacSpectrum reveals novel macrophage activation signatures in diseases. JCI Insight 2019; 5 [PMID: 30990466 DOI: 
10.1172/jci.insight.126453]

40 Vijay J, Gauthier MF, Biswell RL, Louiselle DA, Johnston JJ, Cheung WA, Belden B, Pramatarova A, Biertho L, Gibson 
M, Simon MM, Djambazian H, Staffa A, Bourque G, Laitinen A, Nystedt J, Vohl MC, Fraser JD, Pastinen T, Tchernof A, 
Grundberg E. Single-cell analysis of human adipose tissue identifies depot and disease specific cell types. Nat Metab 2020; 
2: 97-109 [PMID: 32066997 DOI: 10.1038/s42255-019-0152-6]

41 Lumeng CN, Deyoung SM, Bodzin JL, Saltiel AR. Increased inflammatory properties of adipose tissue macrophages 
recruited during diet-induced obesity. Diabetes 2007; 56: 16-23 [PMID: 17192460 DOI: 10.2337/db06-1076]

42 Moussa K, Gurung P, Adams-Huet B, Devaraj S, Jialal I. Increased eosinophils in adipose tissue of metabolic syndrome. J 
Diabetes Complications 2019; 33: 535-538 [PMID: 31204245 DOI: 10.1016/j.jdiacomp.2019.05.010]

43 Feng Z, Zhu L, Wu J. RAGE signalling in obesity and diabetes: focus on the adipose tissue macrophage. Adipocyte 2020; 
9: 563-566 [PMID: 32892690 DOI: 10.1080/21623945.2020.1817278]

44 Zheng C, Yang Q, Cao J, Xie N, Liu K, Shou P, Qian F, Wang Y, Shi Y. Local proliferation initiates macrophage 
accumulation in adipose tissue during obesity. Cell Death Dis 2016; 7: e2167 [PMID: 27031964 DOI: 
10.1038/cddis.2016.54]

45 Li P, Oh DY, Bandyopadhyay G, Lagakos WS, Talukdar S, Osborn O, Johnson A, Chung H, Maris M, Ofrecio JM, 
Taguchi S, Lu M, Olefsky JM. LTB4 promotes insulin resistance in obese mice by acting on macrophages, hepatocytes 
and myocytes. Nat Med 2015; 21: 239-247 [PMID: 25706874 DOI: 10.1038/nm.3800]

46 Amano SU, Cohen JL, Vangala P, Tencerova M, Nicoloro SM, Yawe JC, Shen Y, Czech MP, Aouadi M. Local 
proliferation of macrophages contributes to obesity-associated adipose tissue inflammation. Cell Metab 2014; 19: 162-171 
[PMID: 24374218 DOI: 10.1016/j.cmet.2013.11.017]

47 Li B, Leung JCK, Chan LYY, Yiu WH, Tang SCW. A global perspective on the crosstalk between saturated fatty acids 
and Toll-like receptor 4 in the etiology of inflammation and insulin resistance. Prog Lipid Res 2020; 77: 101020 [PMID: 
31870728 DOI: 10.1016/j.plipres.2019.101020]

48 Shan B, Shao M, Zhang Q, Hepler C, Paschoal VA, Barnes SD, Vishvanath L, An YA, Jia L, Malladi VS, Strand DW, 
Gupta OT, Elmquist JK, Oh D, Gupta RK. Perivascular mesenchymal cells control adipose-tissue macrophage accrual in 
obesity. Nat Metab 2020; 2: 1332-1349 [PMID: 33139957 DOI: 10.1038/s42255-020-00301-7]
Cho YK, Son Y, Kim SN, Song HD, Kim M, Park JH, Jung YS, Ahn SY, Saha A, Granneman JG, Lee YH. MicroRNA-49

http://www.ncbi.nlm.nih.gov/pubmed/29603600
https://dx.doi.org/10.1111/ajt.14749
http://www.ncbi.nlm.nih.gov/pubmed/32373209
https://dx.doi.org/10.7150/thno.43716
http://www.ncbi.nlm.nih.gov/pubmed/31547555
https://dx.doi.org/10.3390/nu11102277
http://www.ncbi.nlm.nih.gov/pubmed/28183445
https://dx.doi.org/10.1016/j.metabol.2016.12.009
http://www.ncbi.nlm.nih.gov/pubmed/34175280
https://dx.doi.org/10.1053/j.gastro.2021.06.056
http://www.ncbi.nlm.nih.gov/pubmed/33505393
https://dx.doi.org/10.3389/fimmu.2020.594150
http://www.ncbi.nlm.nih.gov/pubmed/24236770
https://dx.doi.org/10.1111/dme.12360
http://www.ncbi.nlm.nih.gov/pubmed/31409776
https://dx.doi.org/10.1038/s41467-019-11370-y
http://www.ncbi.nlm.nih.gov/pubmed/31268137
https://dx.doi.org/10.1093/advances/nmz061
http://www.ncbi.nlm.nih.gov/pubmed/31419514
https://dx.doi.org/10.1016/j.jhep.2019.08.005
http://www.ncbi.nlm.nih.gov/pubmed/32709874
https://dx.doi.org/10.1038/s41467-020-17307-0
http://www.ncbi.nlm.nih.gov/pubmed/25119041
https://dx.doi.org/10.1038/nature13564
http://www.ncbi.nlm.nih.gov/pubmed/32569770
https://dx.doi.org/10.1053/j.gastro.2020.06.038
http://www.ncbi.nlm.nih.gov/pubmed/17372023
https://dx.doi.org/10.4049/jimmunol.178.7.4641
http://www.ncbi.nlm.nih.gov/pubmed/24467914
https://dx.doi.org/10.1016/j.metabol.2013.12.002
http://www.ncbi.nlm.nih.gov/pubmed/30990466
https://dx.doi.org/10.1172/jci.insight.126453
http://www.ncbi.nlm.nih.gov/pubmed/32066997
https://dx.doi.org/10.1038/s42255-019-0152-6
http://www.ncbi.nlm.nih.gov/pubmed/17192460
https://dx.doi.org/10.2337/db06-1076
http://www.ncbi.nlm.nih.gov/pubmed/31204245
https://dx.doi.org/10.1016/j.jdiacomp.2019.05.010
http://www.ncbi.nlm.nih.gov/pubmed/32892690
https://dx.doi.org/10.1080/21623945.2020.1817278
http://www.ncbi.nlm.nih.gov/pubmed/27031964
https://dx.doi.org/10.1038/cddis.2016.54
http://www.ncbi.nlm.nih.gov/pubmed/25706874
https://dx.doi.org/10.1038/nm.3800
http://www.ncbi.nlm.nih.gov/pubmed/24374218
https://dx.doi.org/10.1016/j.cmet.2013.11.017
http://www.ncbi.nlm.nih.gov/pubmed/31870728
https://dx.doi.org/10.1016/j.plipres.2019.101020
http://www.ncbi.nlm.nih.gov/pubmed/33139957
https://dx.doi.org/10.1038/s42255-020-00301-7


Wang HW et al. Immune attack in diabetes

WJD https://www.wjgnet.com 506 May 15, 2023 Volume 14 Issue 5

10a-5p regulates macrophage polarization and promotes therapeutic adipose tissue remodeling. Mol Metab 2019; 29: 86-98 
[PMID: 31668395 DOI: 10.1016/j.molmet.2019.08.015]

50 Miranda K, Yang X, Bam M, Murphy EA, Nagarkatti PS, Nagarkatti M. MicroRNA-30 modulates metabolic 
inflammation by regulating Notch signaling in adipose tissue macrophages. Int J Obes (Lond) 2018; 42: 1140-1150 
[PMID: 29899524 DOI: 10.1038/s41366-018-0114-1]

51 Zhu D, Johnson TK, Wang Y, Thomas M, Huynh K, Yang Q, Bond VC, Chen YE, Liu D. Macrophage M2 polarization 
induced by exosomes from adipose-derived stem cells contributes to the exosomal proangiogenic effect on mouse ischemic 
hindlimb. Stem Cell Res Ther 2020; 11: 162 [PMID: 32321589 DOI: 10.1186/s13287-020-01669-9]

52 Pan Y, Hui X, Hoo RLC, Ye D, Chan CYC, Feng T, Wang Y, Lam KSL, Xu A. Adipocyte-secreted exosomal microRNA-
34a inhibits M2 macrophage polarization to promote obesity-induced adipose inflammation. J Clin Invest 2019; 129: 834-
849 [PMID: 30667374 DOI: 10.1172/JCI123069]

53 Tam TH, Chan KL, Boroumand P, Liu Z, Brozinick JT, Bui HH, Roth K, Wakefield CB, Penuela S, Bilan PJ, Klip A. 
Nucleotides released from palmitate-activated murine macrophages attract neutrophils. J Biol Chem 2020; 295: 4902-4911 
[PMID: 32132172 DOI: 10.1074/jbc.RA119.010868]

54 Jiang E, Perrard XD, Yang D, Khan IM, Perrard JL, Smith CW, Ballantyne CM, Wu H. Essential role of CD11a in CD8+ 
T-cell accumulation and activation in adipose tissue. Arterioscler Thromb Vasc Biol 2014; 34: 34-43 [PMID: 24158516 
DOI: 10.1161/ATVBAHA.113.302077]

55 Nishimura S, Manabe I, Nagasaki M, Eto K, Yamashita H, Ohsugi M, Otsu M, Hara K, Ueki K, Sugiura S, Yoshimura K, 
Kadowaki T, Nagai R. CD8+ effector T cells contribute to macrophage recruitment and adipose tissue inflammation in 
obesity. Nat Med 2009; 15: 914-920 [PMID: 19633658 DOI: 10.1038/nm.1964]

56 Zhao Y, Lin L, Li J, Xiao Z, Chen B, Wan L, Li M, Wu X, Hin Cho C, Shen J. CD4(+) T cells in obesity and obesity-
associated diseases. Cell Immunol 2018; 332: 1-6 [PMID: 30146083 DOI: 10.1016/j.cellimm.2018.08.013]

57 Zeng C, Shi X, Zhang B, Liu H, Zhang L, Ding W, Zhao Y. The imbalance of Th17/Th1/Tregs in patients with type 2 
diabetes: relationship with metabolic factors and complications. J Mol Med (Berl) 2012; 90: 175-186 [PMID: 21964948 
DOI: 10.1007/s00109-011-0816-5]

58 Duffaut C, Zakaroff-Girard A, Bourlier V, Decaunes P, Maumus M, Chiotasso P, Sengenès C, Lafontan M, Galitzky J, 
Bouloumié A. Interplay between human adipocytes and T lymphocytes in obesity: CCL20 as an adipochemokine and T 
lymphocytes as lipogenic modulators. Arterioscler Thromb Vasc Biol 2009; 29: 1608-1614 [PMID: 19644053 DOI: 
10.1161/ATVBAHA.109.192583]

59 Touch S, Clément K, André S. T Cell Populations and Functions Are Altered in Human Obesity and Type 2 Diabetes. 
Curr Diab Rep 2017; 17: 81 [PMID: 28779366 DOI: 10.1007/s11892-017-0900-5]

60 Guo H, Xu BC, Yang XG, Peng D, Wang Y, Liu XB, Cui CR, Jiang YF. A High Frequency of Peripheral Blood IL-22(+) 
CD4(+) T Cells in Patients With New Onset Type 2 Diabetes Mellitus. J Clin Lab Anal 2016; 30: 95-102 [PMID: 
25425169 DOI: 10.1002/jcla.21821]

61 Li Y, Lu Y, Lin SH, Li N, Han Y, Huang Q, Zhao Y, Xie F, Guo Y, Deng B, Tsun A, Du J, Li D, Sun J, Shi G, Zheng F, 
Su X, Duan S, Zheng SG, Wang G, Tong X, Li B. Insulin signaling establishes a developmental trajectory of adipose 
regulatory T cells. Nat Immunol 2021; 22: 1175-1185 [PMID: 34429546 DOI: 10.1038/s41590-021-01010-3]

62 Ivanov S, Merlin J, Lee MKS, Murphy AJ, Guinamard RR. Biology and function of adipose tissue macrophages, dendritic 
cells and B cells. Atherosclerosis 2018; 271: 102-110 [PMID: 29482037 DOI: 10.1016/j.atherosclerosis.2018.01.018]

63 Nishimura S, Manabe I, Takaki S, Nagasaki M, Otsu M, Yamashita H, Sugita J, Yoshimura K, Eto K, Komuro I, 
Kadowaki T, Nagai R. Adipose Natural Regulatory B Cells Negatively Control Adipose Tissue Inflammation. Cell Metab 
2013; 18: 759-766 [PMID: 24209772 DOI: 10.1016/j.cmet.2013.09.017]

64 García-Hernández MH, Rodríguez-Varela E, García-Jacobo RE, Hernández-De la Torre M, Uresti-Rivera EE, González-
Amaro R, Portales-Pérez DP. Frequency of regulatory B cells in adipose tissue and peripheral blood from individuals with 
overweight, obesity and normal-weight. Obes Res Clin Pract 2018; 12: 513-519 [PMID: 30115554 DOI: 
10.1016/j.orcp.2018.07.001]

65 Winer DA, Winer S, Shen L, Wadia PP, Yantha J, Paltser G, Tsui H, Wu P, Davidson MG, Alonso MN, Leong HX, 
Glassford A, Caimol M, Kenkel JA, Tedder TF, McLaughlin T, Miklos DB, Dosch HM, Engleman EG. B cells promote 
insulin resistance through modulation of T cells and production of pathogenic IgG antibodies. Nat Med 2011; 17: 610-617 
[PMID: 21499269 DOI: 10.1038/nm.2353]

66 DeFuria J, Belkina AC, Jagannathan-Bogdan M, Snyder-Cappione J, Carr JD, Nersesova YR, Markham D, Strissel KJ, 
Watkins AA, Zhu M, Allen J, Bouchard J, Toraldo G, Jasuja R, Obin MS, McDonnell ME, Apovian C, Denis GV, 
Nikolajczyk BS. B cells promote inflammation in obesity and type 2 diabetes through regulation of T-cell function and an 
inflammatory cytokine profile. Proc Natl Acad Sci U S A 2013; 110: 5133-5138 [PMID: 23479618 DOI: 
10.1073/pnas.1215840110]

67 Camell CD, Günther P, Lee A, Goldberg EL, Spadaro O, Youm YH, Bartke A, Hubbard GB, Ikeno Y, Ruddle NH, 
Schultze J, Dixit VD. Aging Induces an Nlrp3 Inflammasome-Dependent Expansion of Adipose B Cells That Impairs 
Metabolic Homeostasis. Cell Metab 2019; 30: 1024-1039.e6 [PMID: 31735593 DOI: 10.1016/j.cmet.2019.10.006]

68 Hägglöf T, Vanz C, Kumagai A, Dudley E, Ortega V, Siller M, Parthasarathy R, Keegan J, Koenigs A, Shute T, 
Leadbetter EA. T-bet(+) B cells accumulate in adipose tissue and exacerbate metabolic disorder during obesity. Cell Metab 
2022; 34: 1121-1136.e6 [PMID: 35868310 DOI: 10.1016/j.cmet.2022.07.002]

69 Frasca D, Diaz A, Romero M, Blomberg BB. Phenotypic and Functional Characterization of Double Negative B Cells in 
the Blood of Individuals With Obesity. Front Immunol 2021; 12: 616650 [PMID: 33708209 DOI: 
10.3389/fimmu.2021.616650]

70 Spallanzani RG, Zemmour D, Xiao T, Jayewickreme T, Li C, Bryce PJ, Benoist C, Mathis D. Distinct immunocyte-
promoting and adipocyte-generating stromal components coordinate adipose tissue immune and metabolic tenors. Sci 
Immunol 2019; 4 [PMID: 31053654 DOI: 10.1126/sciimmunol.aaw3658]

71 Li C, Spallanzani RG, Mathis D. Visceral adipose tissue Tregs and the cells that nurture them. Immunol Rev 2020; 295: 
114-125 [PMID: 32162339 DOI: 10.1111/imr.12850]

http://www.ncbi.nlm.nih.gov/pubmed/31668395
https://dx.doi.org/10.1016/j.molmet.2019.08.015
http://www.ncbi.nlm.nih.gov/pubmed/29899524
https://dx.doi.org/10.1038/s41366-018-0114-1
http://www.ncbi.nlm.nih.gov/pubmed/32321589
https://dx.doi.org/10.1186/s13287-020-01669-9
http://www.ncbi.nlm.nih.gov/pubmed/30667374
https://dx.doi.org/10.1172/JCI123069
http://www.ncbi.nlm.nih.gov/pubmed/32132172
https://dx.doi.org/10.1074/jbc.RA119.010868
http://www.ncbi.nlm.nih.gov/pubmed/24158516
https://dx.doi.org/10.1161/ATVBAHA.113.302077
http://www.ncbi.nlm.nih.gov/pubmed/19633658
https://dx.doi.org/10.1038/nm.1964
http://www.ncbi.nlm.nih.gov/pubmed/30146083
https://dx.doi.org/10.1016/j.cellimm.2018.08.013
http://www.ncbi.nlm.nih.gov/pubmed/21964948
https://dx.doi.org/10.1007/s00109-011-0816-5
http://www.ncbi.nlm.nih.gov/pubmed/19644053
https://dx.doi.org/10.1161/ATVBAHA.109.192583
http://www.ncbi.nlm.nih.gov/pubmed/28779366
https://dx.doi.org/10.1007/s11892-017-0900-5
http://www.ncbi.nlm.nih.gov/pubmed/25425169
https://dx.doi.org/10.1002/jcla.21821
http://www.ncbi.nlm.nih.gov/pubmed/34429546
https://dx.doi.org/10.1038/s41590-021-01010-3
http://www.ncbi.nlm.nih.gov/pubmed/29482037
https://dx.doi.org/10.1016/j.atherosclerosis.2018.01.018
http://www.ncbi.nlm.nih.gov/pubmed/24209772
https://dx.doi.org/10.1016/j.cmet.2013.09.017
http://www.ncbi.nlm.nih.gov/pubmed/30115554
https://dx.doi.org/10.1016/j.orcp.2018.07.001
http://www.ncbi.nlm.nih.gov/pubmed/21499269
https://dx.doi.org/10.1038/nm.2353
http://www.ncbi.nlm.nih.gov/pubmed/23479618
https://dx.doi.org/10.1073/pnas.1215840110
http://www.ncbi.nlm.nih.gov/pubmed/31735593
https://dx.doi.org/10.1016/j.cmet.2019.10.006
http://www.ncbi.nlm.nih.gov/pubmed/35868310
https://dx.doi.org/10.1016/j.cmet.2022.07.002
http://www.ncbi.nlm.nih.gov/pubmed/33708209
https://dx.doi.org/10.3389/fimmu.2021.616650
http://www.ncbi.nlm.nih.gov/pubmed/31053654
https://dx.doi.org/10.1126/sciimmunol.aaw3658
http://www.ncbi.nlm.nih.gov/pubmed/32162339
https://dx.doi.org/10.1111/imr.12850


Wang HW et al. Immune attack in diabetes

WJD https://www.wjgnet.com 507 May 15, 2023 Volume 14 Issue 5

72 Han JM, Wu D, Denroche HC, Yao Y, Verchere CB, Levings MK. IL-33 Reverses an Obesity-Induced Deficit in Visceral 
Adipose Tissue ST2+ T Regulatory Cells and Ameliorates Adipose Tissue Inflammation and Insulin Resistance. J 
Immunol 2015; 194: 4777-4783 [PMID: 25870243 DOI: 10.4049/jimmunol.1500020]

73 Jimenez MT, Michieletto MF, Henao-Mejia J. A new perspective on mesenchymal-immune interactions in adipose tissue. 
Trends Immunol 2021; 42: 375-388 [PMID: 33849777 DOI: 10.1016/j.it.2021.03.001]

74 Ding X, Luo Y, Zhang X, Zheng H, Yang X, Liu M. IL-33-driven ILC2/eosinophil axis in fat is induced by sympathetic 
tone and suppressed by obesity. J Endocrinol 2016; 231: 35-48 [PMID: 27562191 DOI: 10.1530/JOE-16-0229]

75 Pinnick KE, Nicholson G, Manolopoulos KN, McQuaid SE, Valet P, Frayn KN, Denton N, Min JL, Zondervan KT, 
Fleckner J; MolPAGE Consortium, McCarthy MI, Holmes CC, Karpe F. Distinct developmental profile of lower-body 
adipose tissue defines resistance against obesity-associated metabolic complications. Diabetes 2014; 63: 3785-3797 
[PMID: 24947352 DOI: 10.2337/db14-0385]

76 Koh HE, van Vliet S, Pietka TA, Meyer GA, Razani B, Laforest R, Gropler RJ, Mittendorfer B. Subcutaneous Adipose 
Tissue Metabolic Function and Insulin Sensitivity in People With Obesity. Diabetes 2021; 70: 2225-2236 [PMID: 
34266892 DOI: 10.2337/db21-0160]

77 Karpe F, Pinnick KE. Biology of upper-body and lower-body adipose tissue--link to whole-body phenotypes. Nat Rev 
Endocrinol 2015; 11: 90-100 [PMID: 25365922 DOI: 10.1038/nrendo.2014.185]

78 Klöting N, Fasshauer M, Dietrich A, Kovacs P, Schön MR, Kern M, Stumvoll M, Blüher M. Insulin-sensitive obesity. Am 
J Physiol Endocrinol Metab 2010; 299: E506-E515 [PMID: 20570822 DOI: 10.1152/ajpendo.00586.2009]

79 Blüher M. Metabolically Healthy Obesity. Endocr Rev 2020; 41 [PMID: 32128581 DOI: 10.1210/endrev/bnaa004]
80 Iacobini C, Pugliese G, Blasetti Fantauzzi C, Federici M, Menini S. Metabolically healthy versus metabolically unhealthy 

obesity. Metabolism 2019; 92: 51-60 [PMID: 30458177 DOI: 10.1016/j.metabol.2018.11.009]
81 Stefan N, Häring HU, Hu FB, Schulze MB. Metabolically healthy obesity: epidemiology, mechanisms, and clinical 

implications. Lancet Diabetes Endocrinol 2013; 1: 152-162 [PMID: 24622321 DOI: 10.1016/S2213-8587(13)70062-7]
82 Phillips CM, Perry IJ. Does inflammation determine metabolic health status in obese and nonobese adults? J Clin 

Endocrinol Metab 2013; 98: E1610-E1619 [PMID: 23979951 DOI: 10.1210/jc.2013-2038]
83 Esser N, L'homme L, De Roover A, Kohnen L, Scheen AJ, Moutschen M, Piette J, Legrand-Poels S, Paquot N. Obesity 

phenotype is related to NLRP3 inflammasome activity and immunological profile of visceral adipose tissue. Diabetologia 
2013; 56: 2487-2497 [PMID: 24013717 DOI: 10.1007/s00125-013-3023-9]

84 Bigornia SJ, Farb MG, Mott MM, Hess DT, Carmine B, Fiscale A, Joseph L, Apovian CM, Gokce N. Relation of depot-
specific adipose inflammation to insulin resistance in human obesity. Nutr Diabetes 2012; 2: e30 [PMID: 23449529 DOI: 
10.1038/nutd.2012.3]

85 Pandolfi JB, Ferraro AA, Sananez I, Gancedo MC, Baz P, Billordo LA, Fainboim L, Arruvito L. ATP-Induced 
Inflammation Drives Tissue-Resident Th17 Cells in Metabolically Unhealthy Obesity. J Immunol 2016; 196: 3287-3296 
[PMID: 26951799 DOI: 10.4049/jimmunol.1502506]

86 McLaughlin T, Liu LF, Lamendola C, Shen L, Morton J, Rivas H, Winer D, Tolentino L, Choi O, Zhang H, Hui Yen 
Chng M, Engleman E. T-cell profile in adipose tissue is associated with insulin resistance and systemic inflammation in 
humans. Arterioscler Thromb Vasc Biol 2014; 34: 2637-2643 [PMID: 25341798 DOI: 10.1161/ATVBAHA.114.304636]

87 Lwow F, Dunajska K, Milewicz A, Jedrzejuk D, Kik K, Szmigiero L. Effect of moderate-intensity exercise on oxidative 
stress indices in metabolically healthy obese and metabolically unhealthy obese phenotypes in postmenopausal women: a 
pilot study. Menopause 2011; 18: 646-653 [PMID: 21289524 DOI: 10.1097/gme.0b013e3182038ec1]

88 Cӑtoi AF, Pârvu AE, Andreicuț AD, Mironiuc A, Crӑciun A, Cӑtoi C, Pop ID. Metabolically Healthy versus Unhealthy 
Morbidly Obese: Chronic Inflammation, Nitro-Oxidative Stress, and Insulin Resistance. Nutrients 2018; 10 [PMID: 
30200422 DOI: 10.3390/nu10091199]

89 Baeck C, Wehr A, Karlmark KR, Heymann F, Vucur M, Gassler N, Huss S, Klussmann S, Eulberg D, Luedde T, 
Trautwein C, Tacke F. Pharmacological inhibition of the chemokine CCL2 (MCP-1) diminishes liver macrophage 
infiltration and steatohepatitis in chronic hepatic injury. Gut 2012; 61: 416-426 [PMID: 21813474 DOI: 
10.1136/gutjnl-2011-300304]

90 Seidman JS, Troutman TD, Sakai M, Gola A, Spann NJ, Bennett H, Bruni CM, Ouyang Z, Li RZ, Sun X, Vu BT, Pasillas 
MP, Ego KM, Gosselin D, Link VM, Chong LW, Evans RM, Thompson BM, McDonald JG, Hosseini M, Witztum JL, 
Germain RN, Glass CK. Niche-Specific Reprogramming of Epigenetic Landscapes Drives Myeloid Cell Diversity in 
Nonalcoholic Steatohepatitis. Immunity 2020; 52: 1057-1074.e7 [PMID: 32362324 DOI: 10.1016/j.immuni.2020.04.001]

91 Scott CL, Guilliams M. The role of Kupffer cells in hepatic iron and lipid metabolism. J Hepatol 2018; 69: 1197-1199 
[PMID: 30001821 DOI: 10.1016/j.jhep.2018.02.013]

92 Lee KJ, Kim MY, Han YH. Roles of heterogenous hepatic macrophages in the progression of liver diseases. BMB Rep 
2022; 55: 166-174 [PMID: 35321784 DOI: 10.5483/BMBRep.2022.55.4.022]

93 Barreby E, Chen P, Aouadi M. Macrophage functional diversity in NAFLD - more than inflammation. Nat Rev 
Endocrinol 2022; 18: 461-472 [PMID: 35534573 DOI: 10.1038/s41574-022-00675-6]

94 Morinaga H, Mayoral R, Heinrichsdorff J, Osborn O, Franck N, Hah N, Walenta E, Bandyopadhyay G, Pessentheiner 
AR, Chi TJ, Chung H, Bogner-Strauss JG, Evans RM, Olefsky JM, Oh DY. Characterization of distinct subpopulations of 
hepatic macrophages in HFD/obese mice. Diabetes 2015; 64: 1120-1130 [PMID: 25315009 DOI: 10.2337/db14-1238]

95 Gadd VL, Skoien R, Powell EE, Fagan KJ, Winterford C, Horsfall L, Irvine K, Clouston AD. The portal inflammatory 
infiltrate and ductular reaction in human nonalcoholic fatty liver disease. Hepatology 2014; 59: 1393-1405 [PMID: 
24254368 DOI: 10.1002/hep.26937]

96 Rosso C, Kazankov K, Younes R, Esmaili S, Marietti M, Sacco M, Carli F, Gaggini M, Salomone F, Møller HJ, Abate 
ML, Vilstrup H, Gastaldelli A, George J, Grønbæk H, Bugianesi E. Crosstalk between adipose tissue insulin resistance and 
liver macrophages in non-alcoholic fatty liver disease. J Hepatol 2019; 71: 1012-1021 [PMID: 31301321 DOI: 
10.1016/j.jhep.2019.06.031]
Li Z, Lin H, Yang S, Diehl AM. Murine leptin deficiency alters Kupffer cell production of cytokines that regulate the 97

http://www.ncbi.nlm.nih.gov/pubmed/25870243
https://dx.doi.org/10.4049/jimmunol.1500020
http://www.ncbi.nlm.nih.gov/pubmed/33849777
https://dx.doi.org/10.1016/j.it.2021.03.001
http://www.ncbi.nlm.nih.gov/pubmed/27562191
https://dx.doi.org/10.1530/JOE-16-0229
http://www.ncbi.nlm.nih.gov/pubmed/24947352
https://dx.doi.org/10.2337/db14-0385
http://www.ncbi.nlm.nih.gov/pubmed/34266892
https://dx.doi.org/10.2337/db21-0160
http://www.ncbi.nlm.nih.gov/pubmed/25365922
https://dx.doi.org/10.1038/nrendo.2014.185
http://www.ncbi.nlm.nih.gov/pubmed/20570822
https://dx.doi.org/10.1152/ajpendo.00586.2009
http://www.ncbi.nlm.nih.gov/pubmed/32128581
https://dx.doi.org/10.1210/endrev/bnaa004
http://www.ncbi.nlm.nih.gov/pubmed/30458177
https://dx.doi.org/10.1016/j.metabol.2018.11.009
http://www.ncbi.nlm.nih.gov/pubmed/24622321
https://dx.doi.org/10.1016/S2213-8587(13)70062-7
http://www.ncbi.nlm.nih.gov/pubmed/23979951
https://dx.doi.org/10.1210/jc.2013-2038
http://www.ncbi.nlm.nih.gov/pubmed/24013717
https://dx.doi.org/10.1007/s00125-013-3023-9
http://www.ncbi.nlm.nih.gov/pubmed/23449529
https://dx.doi.org/10.1038/nutd.2012.3
http://www.ncbi.nlm.nih.gov/pubmed/26951799
https://dx.doi.org/10.4049/jimmunol.1502506
http://www.ncbi.nlm.nih.gov/pubmed/25341798
https://dx.doi.org/10.1161/ATVBAHA.114.304636
http://www.ncbi.nlm.nih.gov/pubmed/21289524
https://dx.doi.org/10.1097/gme.0b013e3182038ec1
http://www.ncbi.nlm.nih.gov/pubmed/30200422
https://dx.doi.org/10.3390/nu10091199
http://www.ncbi.nlm.nih.gov/pubmed/21813474
https://dx.doi.org/10.1136/gutjnl-2011-300304
http://www.ncbi.nlm.nih.gov/pubmed/32362324
https://dx.doi.org/10.1016/j.immuni.2020.04.001
http://www.ncbi.nlm.nih.gov/pubmed/30001821
https://dx.doi.org/10.1016/j.jhep.2018.02.013
http://www.ncbi.nlm.nih.gov/pubmed/35321784
https://dx.doi.org/10.5483/BMBRep.2022.55.4.022
http://www.ncbi.nlm.nih.gov/pubmed/35534573
https://dx.doi.org/10.1038/s41574-022-00675-6
http://www.ncbi.nlm.nih.gov/pubmed/25315009
https://dx.doi.org/10.2337/db14-1238
http://www.ncbi.nlm.nih.gov/pubmed/24254368
https://dx.doi.org/10.1002/hep.26937
http://www.ncbi.nlm.nih.gov/pubmed/31301321
https://dx.doi.org/10.1016/j.jhep.2019.06.031


Wang HW et al. Immune attack in diabetes

WJD https://www.wjgnet.com 508 May 15, 2023 Volume 14 Issue 5

innate immune system. Gastroenterology 2002; 123: 1304-1310 [PMID: 12360490 DOI: 10.1053/gast.2002.35997]
98 Fukushima J, Kamada Y, Matsumoto H, Yoshida Y, Ezaki H, Takemura T, Saji Y, Igura T, Tsutsui S, Kihara S, 

Funahashi T, Shimomura I, Tamura S, Kiso S, Hayashi N. Adiponectin prevents progression of steatohepatitis in mice by 
regulating oxidative stress and Kupffer cell phenotype polarization. Hepatol Res 2009; 39: 724-738 [PMID: 19473437 
DOI: 10.1111/j.1872-034X.2009.00509.x]

99 Liang W, Lindeman JH, Menke AL, Koonen DP, Morrison M, Havekes LM, van den Hoek AM, Kleemann R. 
Metabolically induced liver inflammation leads to NASH and differs from LPS- or IL-1β-induced chronic inflammation. 
Lab Invest 2014; 94: 491-502 [PMID: 24566933 DOI: 10.1038/labinvest.2014.11]

100 Marra F, Svegliati-Baroni G. Lipotoxicity and the gut-liver axis in NASH pathogenesis. J Hepatol 2018; 68: 280-295 
[PMID: 29154964 DOI: 10.1016/j.jhep.2017.11.014]

101 Luo Z, Ji Y, Gao H, Gomes Dos Reis FC, Bandyopadhyay G, Jin Z, Ly C, Chang YJ, Zhang D, Kumar D, Ying W. 
CRIg(+) Macrophages Prevent Gut Microbial DNA-Containing Extracellular Vesicle-Induced Tissue Inflammation and 
Insulin Resistance. Gastroenterology 2021; 160: 863-874 [PMID: 33152356 DOI: 10.1053/j.gastro.2020.10.042]

102 Luo Z, Ji Y, Zhang D, Gao H, Jin Z, Yang M, Ying W. Microbial DNA enrichment promotes liver steatosis and fibrosis in 
the course of non-alcoholic steatohepatitis. Acta Physiol (Oxf) 2022; 235: e13827 [PMID: 35500155 DOI: 
10.1111/apha.13827]

103 MacParland SA, Liu JC, Ma XZ, Innes BT, Bartczak AM, Gage BK, Manuel J, Khuu N, Echeverri J, Linares I, Gupta R, 
Cheng ML, Liu LY, Camat D, Chung SW, Seliga RK, Shao Z, Lee E, Ogawa S, Ogawa M, Wilson MD, Fish JE, Selzner 
M, Ghanekar A, Grant D, Greig P, Sapisochin G, Selzner N, Winegarden N, Adeyi O, Keller G, Bader GD, McGilvray ID. 
Single cell RNA sequencing of human liver reveals distinct intrahepatic macrophage populations. Nat Commun 2018; 9: 
4383 [PMID: 30348985 DOI: 10.1038/s41467-018-06318-7]

104 McGettigan B, McMahan R, Orlicky D, Burchill M, Danhorn T, Francis P, Cheng LL, Golden-Mason L, Jakubzick CV, 
Rosen HR. Dietary Lipids Differentially Shape Nonalcoholic Steatohepatitis Progression and the Transcriptome of Kupffer 
Cells and Infiltrating Macrophages. Hepatology 2019; 70: 67-83 [PMID: 30516830 DOI: 10.1002/hep.30401]

105 Xiong X, Kuang H, Ansari S, Liu T, Gong J, Wang S, Zhao XY, Ji Y, Li C, Guo L, Zhou L, Chen Z, Leon-Mimila P, 
Chung MT, Kurabayashi K, Opp J, Campos-Pérez F, Villamil-Ramírez H, Canizales-Quinteros S, Lyons R, Lumeng CN, 
Zhou B, Qi L, Huertas-Vazquez A, Lusis AJ, Xu XZS, Li S, Yu Y, Li JZ, Lin JD. Landscape of Intercellular Crosstalk in 
Healthy and NASH Liver Revealed by Single-Cell Secretome Gene Analysis. Mol Cell 2019; 75: 644-660.e5 [PMID: 
31398325 DOI: 10.1016/j.molcel.2019.07.028]

106 Guagnano MT, D'Ardes D, Ilaria R, Santilli F, Schiavone C, Bucci M, Cipollone F. Non-Alcoholic Fatty Liver Disease 
and Metabolic Syndrome in Women: Effects of Lifestyle Modifications. J Clin Med 2022; 11 [PMID: 35628889 DOI: 
10.3390/jcm11102759]

107 Younossi ZM, Koenig AB, Abdelatif D, Fazel Y, Henry L, Wymer M. Global epidemiology of nonalcoholic fatty liver 
disease-Meta-analytic assessment of prevalence, incidence, and outcomes. Hepatology 2016; 64: 73-84 [PMID: 26707365 
DOI: 10.1002/hep.28431]

108 Portillo-Sanchez P, Bril F, Maximos M, Lomonaco R, Biernacki D, Orsak B, Subbarayan S, Webb A, Hecht J, Cusi K. 
High Prevalence of Nonalcoholic Fatty Liver Disease in Patients With Type 2 Diabetes Mellitus and Normal Plasma 
Aminotransferase Levels. J Clin Endocrinol Metab 2015; 100: 2231-2238 [PMID: 25885947 DOI: 10.1210/jc.2015-1966]

109 Williamson RM, Price JF, Glancy S, Perry E, Nee LD, Hayes PC, Frier BM, Van Look LA, Johnston GI, Reynolds RM, 
Strachan MW; Edinburgh Type 2 Diabetes Study Investigators. Prevalence of and risk factors for hepatic steatosis and 
nonalcoholic Fatty liver disease in people with type 2 diabetes: the Edinburgh Type 2 Diabetes Study. Diabetes Care 2011; 
34: 1139-1144 [PMID: 21478462 DOI: 10.2337/dc10-2229]

110 Strey CBM, de Carli LA, Fantinelli M, Gobbato SS, Bassols GF, Losekann A, Coral GP. Impact of Diabetes Mellitus and 
Insulin on Nonalcoholic Fatty Liver Disease in the Morbidly Obese. Ann Hepatol 2018; 17: 585-591 [PMID: 29893699 
DOI: 10.5604/01.3001.0012.0922]

111 Lomonaco R, Bril F, Portillo-Sanchez P, Ortiz-Lopez C, Orsak B, Biernacki D, Lo M, Suman A, Weber MH, Cusi K. 
Metabolic Impact of Nonalcoholic Steatohepatitis in Obese Patients With Type 2 Diabetes. Diabetes Care 2016; 39: 632-
638 [PMID: 26861926 DOI: 10.2337/dc15-1876]

112 Thibaut R, Gage MC, Pineda-Torra I, Chabrier G, Venteclef N, Alzaid F. Liver macrophages and inflammation in 
physiology and physiopathology of non-alcoholic fatty liver disease. FEBS J 2022; 289: 3024-3057 [PMID: 33860630 
DOI: 10.1111/febs.15877]

113 Kisseleva T, Brenner D. Molecular and cellular mechanisms of liver fibrosis and its regression. Nat Rev Gastroenterol 
Hepatol 2021; 18: 151-166 [PMID: 33128017 DOI: 10.1038/s41575-020-00372-7]

114 Kim SY, Jeong JM, Kim SJ, Seo W, Kim MH, Choi WM, Yoo W, Lee JH, Shim YR, Yi HS, Lee YS, Eun HS, Lee BS, 
Chun K, Kang SJ, Kim SC, Gao B, Kunos G, Kim HM, Jeong WI. Pro-inflammatory hepatic macrophages generate ROS 
through NADPH oxidase 2 via endocytosis of monomeric TLR4-MD2 complex. Nat Commun 2017; 8: 2247 [PMID: 
29269727 DOI: 10.1038/s41467-017-02325-2]

115 Miura K, Yang L, van Rooijen N, Brenner DA, Ohnishi H, Seki E. Toll-like receptor 2 and palmitic acid cooperatively 
contribute to the development of nonalcoholic steatohepatitis through inflammasome activation in mice. Hepatology 2013; 
57: 577-589 [PMID: 22987396 DOI: 10.1002/hep.26081]

116 Hu J, Wang H, Li X, Liu Y, Mi Y, Kong H, Xi D, Yan W, Luo X, Ning Q, Wang X. Fibrinogen-like protein 2 aggravates 
nonalcoholic steatohepatitis via interaction with TLR4, eliciting inflammation in macrophages and inducing hepatic lipid 
metabolism disorder. Theranostics 2020; 10: 9702-9720 [PMID: 32863955 DOI: 10.7150/thno.44297]

117 Mridha AR, Wree A, Robertson AAB, Yeh MM, Johnson CD, Van Rooyen DM, Haczeyni F, Teoh NC, Savard C, 
Ioannou GN, Masters SL, Schroder K, Cooper MA, Feldstein AE, Farrell GC. NLRP3 inflammasome blockade reduces 
liver inflammation and fibrosis in experimental NASH in mice. J Hepatol 2017; 66: 1037-1046 [PMID: 28167322 DOI: 
10.1016/j.jhep.2017.01.022]
Garcia-Martinez I, Santoro N, Chen Y, Hoque R, Ouyang X, Caprio S, Shlomchik MJ, Coffman RL, Candia A, Mehal 
WZ. Hepatocyte mitochondrial DNA drives nonalcoholic steatohepatitis by activation of TLR9. J Clin Invest 2016; 126: 

118

http://www.ncbi.nlm.nih.gov/pubmed/12360490
https://dx.doi.org/10.1053/gast.2002.35997
http://www.ncbi.nlm.nih.gov/pubmed/19473437
https://dx.doi.org/10.1111/j.1872-034X.2009.00509.x
http://www.ncbi.nlm.nih.gov/pubmed/24566933
https://dx.doi.org/10.1038/labinvest.2014.11
http://www.ncbi.nlm.nih.gov/pubmed/29154964
https://dx.doi.org/10.1016/j.jhep.2017.11.014
http://www.ncbi.nlm.nih.gov/pubmed/33152356
https://dx.doi.org/10.1053/j.gastro.2020.10.042
http://www.ncbi.nlm.nih.gov/pubmed/35500155
https://dx.doi.org/10.1111/apha.13827
http://www.ncbi.nlm.nih.gov/pubmed/30348985
https://dx.doi.org/10.1038/s41467-018-06318-7
http://www.ncbi.nlm.nih.gov/pubmed/30516830
https://dx.doi.org/10.1002/hep.30401
http://www.ncbi.nlm.nih.gov/pubmed/31398325
https://dx.doi.org/10.1016/j.molcel.2019.07.028
http://www.ncbi.nlm.nih.gov/pubmed/35628889
https://dx.doi.org/10.3390/jcm11102759
http://www.ncbi.nlm.nih.gov/pubmed/26707365
https://dx.doi.org/10.1002/hep.28431
http://www.ncbi.nlm.nih.gov/pubmed/25885947
https://dx.doi.org/10.1210/jc.2015-1966
http://www.ncbi.nlm.nih.gov/pubmed/21478462
https://dx.doi.org/10.2337/dc10-2229
http://www.ncbi.nlm.nih.gov/pubmed/29893699
https://dx.doi.org/10.5604/01.3001.0012.0922
http://www.ncbi.nlm.nih.gov/pubmed/26861926
https://dx.doi.org/10.2337/dc15-1876
http://www.ncbi.nlm.nih.gov/pubmed/33860630
https://dx.doi.org/10.1111/febs.15877
http://www.ncbi.nlm.nih.gov/pubmed/33128017
https://dx.doi.org/10.1038/s41575-020-00372-7
http://www.ncbi.nlm.nih.gov/pubmed/29269727
https://dx.doi.org/10.1038/s41467-017-02325-2
http://www.ncbi.nlm.nih.gov/pubmed/22987396
https://dx.doi.org/10.1002/hep.26081
http://www.ncbi.nlm.nih.gov/pubmed/32863955
https://dx.doi.org/10.7150/thno.44297
http://www.ncbi.nlm.nih.gov/pubmed/28167322
https://dx.doi.org/10.1016/j.jhep.2017.01.022


Wang HW et al. Immune attack in diabetes

WJD https://www.wjgnet.com 509 May 15, 2023 Volume 14 Issue 5

859-864 [PMID: 26808498 DOI: 10.1172/JCI83885]
119 Mridha AR, Haczeyni F, Yeh MM, Haigh WG, Ioannou GN, Barn V, Ajamieh H, Adams L, Hamdorf JM, Teoh NC, 

Farrell GC. TLR9 is up-regulated in human and murine NASH: pivotal role in inflammatory recruitment and cell survival. 
Clin Sci (Lond) 2017; 131: 2145-2159 [PMID: 28687713 DOI: 10.1042/CS20160838]

120 Wang F, Stappenbeck F, Tang LY, Zhang YE, Hui ST, Lusis AJ, Parhami F. Oxy210, a Semi-Synthetic Oxysterol, Exerts 
Anti-Inflammatory Effects in Macrophages via Inhibition of Toll-like Receptor (TLR) 4 and TLR2 Signaling and 
Modulation of Macrophage Polarization. Int J Mol Sci 2022; 23 [PMID: 35628290 DOI: 10.3390/ijms23105478]

121 van der Windt DJ, Sud V, Zhang H, Varley PR, Goswami J, Yazdani HO, Tohme S, Loughran P, O'Doherty RM, 
Minervini MI, Huang H, Simmons RL, Tsung A. Neutrophil extracellular traps promote inflammation and development of 
hepatocellular carcinoma in nonalcoholic steatohepatitis. Hepatology 2018; 68: 1347-1360 [PMID: 29631332 DOI: 
10.1002/hep.29914]

122 Barrow F, Khan S, Fredrickson G, Wang H, Dietsche K, Parthiban P, Robert S, Kaiser T, Winer S, Herman A, Adeyi O, 
Mouzaki M, Khoruts A, Hogquist KA, Staley C, Winer DA, Revelo XS. Microbiota-Driven Activation of Intrahepatic B 
Cells Aggravates NASH Through Innate and Adaptive Signaling. Hepatology 2021; 74: 704-722 [PMID: 33609303 DOI: 
10.1002/hep.31755]

123 Bruzzì S, Sutti S, Giudici G, Burlone ME, Ramavath NN, Toscani A, Bozzola C, Schneider P, Morello E, Parola M, Pirisi 
M, Albano E. B2-Lymphocyte responses to oxidative stress-derived antigens contribute to the evolution of nonalcoholic 
fatty liver disease (NAFLD). Free Radic Biol Med 2018; 124: 249-259 [PMID: 29920340 DOI: 
10.1016/j.freeradbiomed.2018.06.015]

124 Sutti S, Albano E. Adaptive immunity: an emerging player in the progression of NAFLD. Nat Rev Gastroenterol Hepatol 
2020; 17: 81-92 [PMID: 31605031 DOI: 10.1038/s41575-019-0210-2]

125 Himoto T, Fujita K, Nomura T, Tani J, Morishita A, Yoneyama H, Haba R, Masaki T. Verification of B-lymphocyte 
activating factor's involvement in the exacerbation of insulin resistance as well as an autoimmune response in patients with 
nonalcoholic steatohepatitis and patients with HCV-related chronic liver disease. Diabetol Metab Syndr 2017; 9: 45 
[PMID: 28630652 DOI: 10.1186/s13098-017-0243-z]

126 Miyake T, Abe M, Tokumoto Y, Hirooka M, Furukawa S, Kumagi T, Hamada M, Kawasaki K, Tada F, Ueda T, Hiasa Y, 
Matsuura B, Onji M. B cell-activating factor is associated with the histological severity of nonalcoholic fatty liver disease. 
Hepatol Int 2013; 7: 539-547 [PMID: 26201785 DOI: 10.1007/s12072-012-9345-8]

127 Inzaugarat ME, Ferreyra Solari NE, Billordo LA, Abecasis R, Gadano AC, Cherñavsky AC. Altered phenotype and 
functionality of circulating immune cells characterize adult patients with nonalcoholic steatohepatitis. J Clin Immunol 
2011; 31: 1120-1130 [PMID: 21845516 DOI: 10.1007/s10875-011-9571-1]

128 Ghazarian M, Revelo XS, Nøhr MK, Luck H, Zeng K, Lei H, Tsai S, Schroer SA, Park YJ, Chng MHY, Shen L, 
D'Angelo JA, Horton P, Chapman WC, Brockmeier D, Woo M, Engleman EG, Adeyi O, Hirano N, Jin T, Gehring AJ, 
Winer S, Winer DA. Type I Interferon Responses Drive Intrahepatic T cells to Promote Metabolic Syndrome. Sci Immunol 
2017; 2 [PMID: 28567448 DOI: 10.1126/sciimmunol.aai7616]

129 Ying W, Lee YS, Dong Y, Seidman JS, Yang M, Isaac R, Seo JB, Yang BH, Wollam J, Riopel M, McNelis J, Glass CK, 
Olefsky JM, Fu W. Expansion of Islet-Resident Macrophages Leads to Inflammation Affecting β Cell Proliferation and 
Function in Obesity. Cell Metab 2019; 29: 457-474.e5 [PMID: 30595478 DOI: 10.1016/j.cmet.2018.12.003]

130 Ehses JA, Perren A, Eppler E, Ribaux P, Pospisilik JA, Maor-Cahn R, Gueripel X, Ellingsgaard H, Schneider MK, Biollaz 
G, Fontana A, Reinecke M, Homo-Delarche F, Donath MY. Increased number of islet-associated macrophages in type 2 
diabetes. Diabetes 2007; 56: 2356-2370 [PMID: 17579207 DOI: 10.2337/db06-1650]

131 Cucak H, Grunnet LG, Rosendahl A. Accumulation of M1-like macrophages in type 2 diabetic islets is followed by a 
systemic shift in macrophage polarization. J Leukoc Biol 2014; 95: 149-160 [PMID: 24009176 DOI: 10.1189/jlb.0213075]

132 Calderon B, Carrero JA, Ferris ST, Sojka DK, Moore L, Epelman S, Murphy KM, Yokoyama WM, Randolph GJ, Unanue 
ER. The pancreas anatomy conditions the origin and properties of resident macrophages. J Exp Med 2015; 212: 1497-1512 
[PMID: 26347472 DOI: 10.1084/jem.20150496]

133 Yu S, Cheng Y, Zhang L, Yin Y, Xue J, Li B, Gong Z, Gao J, Mu Y. Treatment with adipose tissue-derived mesenchymal 
stem cells exerts anti-diabetic effects, improves long-term complications, and attenuates inflammation in type 2 diabetic 
rats. Stem Cell Res Ther 2019; 10: 333 [PMID: 31747961 DOI: 10.1186/s13287-019-1474-8]

134 Kamata K, Mizukami H, Inaba W, Tsuboi K, Tateishi Y, Yoshida T, Yagihashi S. Islet amyloid with macrophage 
migration correlates with augmented β-cell deficits in type 2 diabetic patients. Amyloid 2014; 21: 191-201 [PMID: 
25007035 DOI: 10.3109/13506129.2014.937857]

135 Westwell-Roper CY, Ehses JA, Verchere CB. Resident macrophages mediate islet amyloid polypeptide-induced islet IL-1
β production and β-cell dysfunction. Diabetes 2014; 63: 1698-1711 [PMID: 24222351 DOI: 10.2337/db13-0863]

136 Masters SL, Dunne A, Subramanian SL, Hull RL, Tannahill GM, Sharp FA, Becker C, Franchi L, Yoshihara E, Chen Z, 
Mullooly N, Mielke LA, Harris J, Coll RC, Mills KH, Mok KH, Newsholme P, Nuñez G, Yodoi J, Kahn SE, Lavelle EC, 
O'Neill LA. Activation of the NLRP3 inflammasome by islet amyloid polypeptide provides a mechanism for enhanced IL-
1β in type 2 diabetes. Nat Immunol 2010; 11: 897-904 [PMID: 20835230 DOI: 10.1038/ni.1935]

137 Westwell-Roper C, Denroche HC, Ehses JA, Verchere CB. Differential Activation of Innate Immune Pathways by 
Distinct Islet Amyloid Polypeptide (IAPP) Aggregates. J Biol Chem 2016; 291: 8908-8917 [PMID: 26786104 DOI: 
10.1074/jbc.M115.712455]

138 Weitz JR, Makhmutova M, Almaça J, Stertmann J, Aamodt K, Brissova M, Speier S, Rodriguez-Diaz R, Caicedo A. 
Mouse pancreatic islet macrophages use locally released ATP to monitor beta cell activity. Diabetologia 2018; 61: 182-
192 [PMID: 28884198 DOI: 10.1007/s00125-017-4416-y]

139 Zinselmeyer BH, Vomund AN, Saunders BT, Johnson MW, Carrero JA, Unanue ER. The resident macrophages in 
murine pancreatic islets are constantly probing their local environment, capturing beta cell granules and blood particles. 
Diabetologia 2018; 61: 1374-1383 [PMID: 29589072 DOI: 10.1007/s00125-018-4592-4]
Ferris ST, Zakharov PN, Wan X, Calderon B, Artyomov MN, Unanue ER, Carrero JA. The islet-resident macrophage is 
in an inflammatory state and senses microbial products in blood. J Exp Med 2017; 214: 2369-2385 [PMID: 28630088 

140

http://www.ncbi.nlm.nih.gov/pubmed/26808498
https://dx.doi.org/10.1172/JCI83885
http://www.ncbi.nlm.nih.gov/pubmed/28687713
https://dx.doi.org/10.1042/CS20160838
http://www.ncbi.nlm.nih.gov/pubmed/35628290
https://dx.doi.org/10.3390/ijms23105478
http://www.ncbi.nlm.nih.gov/pubmed/29631332
https://dx.doi.org/10.1002/hep.29914
http://www.ncbi.nlm.nih.gov/pubmed/33609303
https://dx.doi.org/10.1002/hep.31755
http://www.ncbi.nlm.nih.gov/pubmed/29920340
https://dx.doi.org/10.1016/j.freeradbiomed.2018.06.015
http://www.ncbi.nlm.nih.gov/pubmed/31605031
https://dx.doi.org/10.1038/s41575-019-0210-2
http://www.ncbi.nlm.nih.gov/pubmed/28630652
https://dx.doi.org/10.1186/s13098-017-0243-z
http://www.ncbi.nlm.nih.gov/pubmed/26201785
https://dx.doi.org/10.1007/s12072-012-9345-8
http://www.ncbi.nlm.nih.gov/pubmed/21845516
https://dx.doi.org/10.1007/s10875-011-9571-1
http://www.ncbi.nlm.nih.gov/pubmed/28567448
https://dx.doi.org/10.1126/sciimmunol.aai7616
http://www.ncbi.nlm.nih.gov/pubmed/30595478
https://dx.doi.org/10.1016/j.cmet.2018.12.003
http://www.ncbi.nlm.nih.gov/pubmed/17579207
https://dx.doi.org/10.2337/db06-1650
http://www.ncbi.nlm.nih.gov/pubmed/24009176
https://dx.doi.org/10.1189/jlb.0213075
http://www.ncbi.nlm.nih.gov/pubmed/26347472
https://dx.doi.org/10.1084/jem.20150496
http://www.ncbi.nlm.nih.gov/pubmed/31747961
https://dx.doi.org/10.1186/s13287-019-1474-8
http://www.ncbi.nlm.nih.gov/pubmed/25007035
https://dx.doi.org/10.3109/13506129.2014.937857
http://www.ncbi.nlm.nih.gov/pubmed/24222351
https://dx.doi.org/10.2337/db13-0863
http://www.ncbi.nlm.nih.gov/pubmed/20835230
https://dx.doi.org/10.1038/ni.1935
http://www.ncbi.nlm.nih.gov/pubmed/26786104
https://dx.doi.org/10.1074/jbc.M115.712455
http://www.ncbi.nlm.nih.gov/pubmed/28884198
https://dx.doi.org/10.1007/s00125-017-4416-y
http://www.ncbi.nlm.nih.gov/pubmed/29589072
https://dx.doi.org/10.1007/s00125-018-4592-4
http://www.ncbi.nlm.nih.gov/pubmed/28630088


Wang HW et al. Immune attack in diabetes

WJD https://www.wjgnet.com 510 May 15, 2023 Volume 14 Issue 5

DOI: 10.1084/jem.20170074]
141 de Souza CO, Paschoal VA, Sun X, Vishvanath L, Zhang Q, Shao M, Onodera T, Chen S, Joffin N, Bueno LM, Gupta 

RK, Oh DY. GPR92 activation in islet macrophages controls β cell function in a diet-induced obesity model. J Clin Invest 
2022; 132 [PMID: 36066975 DOI: 10.1172/JCI160097]

142 Gao H, Luo Z, Ji Y, Tang K, Jin Z, Ly C, Sears DD, Mahata S, Ying W. Accumulation of microbial DNAs promotes to 
islet inflammation and β cell abnormalities in obesity in mice. Nat Commun 2022; 13: 565 [PMID: 35091566 DOI: 
10.1038/s41467-022-28239-2]

143 Böni-Schnetzler M, Thorne J, Parnaud G, Marselli L, Ehses JA, Kerr-Conte J, Pattou F, Halban PA, Weir GC, Donath 
MY. Increased interleukin (IL)-1beta messenger ribonucleic acid expression in beta -cells of individuals with type 2 
diabetes and regulation of IL-1beta in human islets by glucose and autostimulation. J Clin Endocrinol Metab 2008; 93: 
4065-4074 [PMID: 18664535 DOI: 10.1210/jc.2008-0396]

144 Maedler K, Sergeev P, Ris F, Oberholzer J, Joller-Jemelka HI, Spinas GA, Kaiser N, Halban PA, Donath MY. Glucose-
induced beta cell production of IL-1beta contributes to glucotoxicity in human pancreatic islets. J Clin Invest 2002; 110: 
851-860 [PMID: 12235117 DOI: 10.1172/jci15318]

145 Maedler K, Schumann DM, Sauter N, Ellingsgaard H, Bosco D, Baertschiger R, Iwakura Y, Oberholzer J, Wollheim CB, 
Gauthier BR, Donath MY. Low concentration of interleukin-1beta induces FLICE-inhibitory protein-mediated beta-cell 
proliferation in human pancreatic islets. Diabetes 2006; 55: 2713-2722 [PMID: 17003335 DOI: 10.2337/db05-1430]

146 Golden TN, Simmons RA. Immune dysfunction in developmental programming of type 2 diabetes mellitus. Nat Rev 
Endocrinol 2021; 17: 235-245 [PMID: 33526907 DOI: 10.1038/s41574-020-00464-z]

147 Zhao G, Dharmadhikari G, Maedler K, Meyer-Hermann M. Possible role of interleukin-1β in type 2 diabetes onset and 
implications for anti-inflammatory therapy strategies. PLoS Comput Biol 2014; 10: e1003798 [PMID: 25167060 DOI: 
10.1371/journal.pcbi.1003798]

148 Ehses JA, Lacraz G, Giroix MH, Schmidlin F, Coulaud J, Kassis N, Irminger JC, Kergoat M, Portha B, Homo-Delarche F, 
Donath MY. IL-1 antagonism reduces hyperglycemia and tissue inflammation in the type 2 diabetic GK rat. Proc Natl 
Acad Sci U S A 2009; 106: 13998-14003 [PMID: 19666548 DOI: 10.1073/pnas.0810087106]

149 Maedler K, Sergeev P, Ehses JA, Mathe Z, Bosco D, Berney T, Dayer JM, Reinecke M, Halban PA, Donath MY. Leptin 
modulates beta cell expression of IL-1 receptor antagonist and release of IL-1beta in human islets. Proc Natl Acad Sci U S 
A 2004; 101: 8138-8143 [PMID: 15141093 DOI: 10.1073/pnas.0305683101]

150 Glas R, Sauter NS, Schulthess FT, Shu L, Oberholzer J, Maedler K. Purinergic P2X7 receptors regulate secretion of 
interleukin-1 receptor antagonist and beta cell function and survival. Diabetologia 2009; 52: 1579-1588 [PMID: 19396427 
DOI: 10.1007/s00125-009-1349-0]

151 Böni-Schnetzler M, Häuselmann SP, Dalmas E, Meier DT, Thienel C, Traub S, Schulze F, Steiger L, Dror E, Martin P, 
Herrera PL, Gabay C, Donath MY. β Cell-Specific Deletion of the IL-1 Receptor Antagonist Impairs β Cell Proliferation 
and Insulin Secretion. Cell Rep 2018; 22: 1774-1786 [PMID: 29444430 DOI: 10.1016/j.celrep.2018.01.063]

152 Zha J, Chi XW, Yu XL, Liu XM, Liu DQ, Zhu J, Ji H, Liu RT. Interleukin-1β-Targeted Vaccine Improves Glucose 
Control and β-Cell Function in a Diabetic KK-Ay Mouse Model. PLoS One 2016; 11: e0154298 [PMID: 27152706 DOI: 
10.1371/journal.pone.0154298]

153 Zhang Y, Yu XL, Zha J, Mao LZ, Chai JQ, Liu RT. Therapeutic vaccine against IL-1β improved glucose control in a 
mouse model of type 2 diabetes. Life Sci 2018; 192: 68-74 [PMID: 29155303 DOI: 10.1016/j.lfs.2017.11.021]

154 Sun Y, Zhou S, Shi Y, Zhou Y, Zhang Y, Liu K, Zhu Y, Han X. Inhibition of miR-153, an IL-1β-responsive miRNA, 
prevents beta cell failure and inflammation-associated diabetes. Metabolism 2020; 111: 154335 [PMID: 32795559 DOI: 
10.1016/j.metabol.2020.154335]

155 DeFronzo RA, Tripathy D. Skeletal muscle insulin resistance is the primary defect in type 2 diabetes. Diabetes Care 
2009; 32 Suppl 2: S157-S163 [PMID: 19875544 DOI: 10.2337/dc09-S302]

156 Sylow L, Tokarz VL, Richter EA, Klip A. The many actions of insulin in skeletal muscle, the paramount tissue 
determining glycemia. Cell Metab 2021; 33: 758-780 [PMID: 33826918 DOI: 10.1016/j.cmet.2021.03.020]

157 Wei Y, Chen K, Whaley-Connell AT, Stump CS, Ibdah JA, Sowers JR. Skeletal muscle insulin resistance: role of 
inflammatory cytokines and reactive oxygen species. Am J Physiol Regul Integr Comp Physiol 2008; 294: R673-R680 
[PMID: 18094066 DOI: 10.1152/ajpregu.00561.2007]

158 Fink LN, Costford SR, Lee YS, Jensen TE, Bilan PJ, Oberbach A, Blüher M, Olefsky JM, Sams A, Klip A. Pro-
inflammatory macrophages increase in skeletal muscle of high fat-fed mice and correlate with metabolic risk markers in 
humans. Obesity (Silver Spring) 2014; 22: 747-757 [PMID: 24030890 DOI: 10.1002/oby.20615]

159 Boon MR, Bakker LE, Haks MC, Quinten E, Schaart G, Van Beek L, Wang Y, Van Schinkel L, Van Harmelen V, 
Meinders AE, Ottenhoff TH, Van Dijk KW, Guigas B, Jazet IM, Rensen PC. Short-term high-fat diet increases 
macrophage markers in skeletal muscle accompanied by impaired insulin signalling in healthy male subjects. Clin Sci 
(Lond) 2015; 128: 143-151 [PMID: 25148551 DOI: 10.1042/CS20140179]

160 Hong EG, Ko HJ, Cho YR, Kim HJ, Ma Z, Yu TY, Friedline RH, Kurt-Jones E, Finberg R, Fischer MA, Granger EL, 
Norbury CC, Hauschka SD, Philbrick WM, Lee CG, Elias JA, Kim JK. Interleukin-10 prevents diet-induced insulin 
resistance by attenuating macrophage and cytokine response in skeletal muscle. Diabetes 2009; 58: 2525-2535 [PMID: 
19690064 DOI: 10.2337/db08-1261]

161 Khan IM, Perrard XY, Brunner G, Lui H, Sparks LM, Smith SR, Wang X, Shi ZZ, Lewis DE, Wu H, Ballantyne CM. 
Intermuscular and perimuscular fat expansion in obesity correlates with skeletal muscle T cell and macrophage infiltration 
and insulin resistance. Int J Obes (Lond) 2015; 39: 1607-1618 [PMID: 26041698 DOI: 10.1038/ijo.2015.104]

162 Khan IM, Dai Perrard XY, Perrard JL, Mansoori A, Wayne Smith C, Wu H, Ballantyne CM. Attenuated adipose tissue 
and skeletal muscle inflammation in obese mice with combined CD4+ and CD8+ T cell deficiency. Atherosclerosis 2014; 
233: 419-428 [PMID: 24530773 DOI: 10.1016/j.atherosclerosis.2014.01.011]
Varma V, Yao-Borengasser A, Rasouli N, Nolen GT, Phanavanh B, Starks T, Gurley C, Simpson P, McGehee RE Jr, 
Kern PA, Peterson CA. Muscle inflammatory response and insulin resistance: synergistic interaction between macrophages 
and fatty acids leads to impaired insulin action. Am J Physiol Endocrinol Metab 2009; 296: E1300-E1310 [PMID: 

163

https://dx.doi.org/10.1084/jem.20170074
http://www.ncbi.nlm.nih.gov/pubmed/36066975
https://dx.doi.org/10.1172/JCI160097
http://www.ncbi.nlm.nih.gov/pubmed/35091566
https://dx.doi.org/10.1038/s41467-022-28239-2
http://www.ncbi.nlm.nih.gov/pubmed/18664535
https://dx.doi.org/10.1210/jc.2008-0396
http://www.ncbi.nlm.nih.gov/pubmed/12235117
https://dx.doi.org/10.1172/jci15318
http://www.ncbi.nlm.nih.gov/pubmed/17003335
https://dx.doi.org/10.2337/db05-1430
http://www.ncbi.nlm.nih.gov/pubmed/33526907
https://dx.doi.org/10.1038/s41574-020-00464-z
http://www.ncbi.nlm.nih.gov/pubmed/25167060
https://dx.doi.org/10.1371/journal.pcbi.1003798
http://www.ncbi.nlm.nih.gov/pubmed/19666548
https://dx.doi.org/10.1073/pnas.0810087106
http://www.ncbi.nlm.nih.gov/pubmed/15141093
https://dx.doi.org/10.1073/pnas.0305683101
http://www.ncbi.nlm.nih.gov/pubmed/19396427
https://dx.doi.org/10.1007/s00125-009-1349-0
http://www.ncbi.nlm.nih.gov/pubmed/29444430
https://dx.doi.org/10.1016/j.celrep.2018.01.063
http://www.ncbi.nlm.nih.gov/pubmed/27152706
https://dx.doi.org/10.1371/journal.pone.0154298
http://www.ncbi.nlm.nih.gov/pubmed/29155303
https://dx.doi.org/10.1016/j.lfs.2017.11.021
http://www.ncbi.nlm.nih.gov/pubmed/32795559
https://dx.doi.org/10.1016/j.metabol.2020.154335
http://www.ncbi.nlm.nih.gov/pubmed/19875544
https://dx.doi.org/10.2337/dc09-S302
http://www.ncbi.nlm.nih.gov/pubmed/33826918
https://dx.doi.org/10.1016/j.cmet.2021.03.020
http://www.ncbi.nlm.nih.gov/pubmed/18094066
https://dx.doi.org/10.1152/ajpregu.00561.2007
http://www.ncbi.nlm.nih.gov/pubmed/24030890
https://dx.doi.org/10.1002/oby.20615
http://www.ncbi.nlm.nih.gov/pubmed/25148551
https://dx.doi.org/10.1042/CS20140179
http://www.ncbi.nlm.nih.gov/pubmed/19690064
https://dx.doi.org/10.2337/db08-1261
http://www.ncbi.nlm.nih.gov/pubmed/26041698
https://dx.doi.org/10.1038/ijo.2015.104
http://www.ncbi.nlm.nih.gov/pubmed/24530773
https://dx.doi.org/10.1016/j.atherosclerosis.2014.01.011


Wang HW et al. Immune attack in diabetes

WJD https://www.wjgnet.com 511 May 15, 2023 Volume 14 Issue 5

19336660 DOI: 10.1152/ajpendo.90885.2008]
164 Samokhvalov V, Bilan PJ, Schertzer JD, Antonescu CN, Klip A. Palmitate- and lipopolysaccharide-activated 

macrophages evoke contrasting insulin responses in muscle cells. Am J Physiol Endocrinol Metab 2009; 296: E37-E46 
[PMID: 18840759 DOI: 10.1152/ajpendo.90667.2008]

165 Pillon NJ, Arane K, Bilan PJ, Chiu TT, Klip A. Muscle cells challenged with saturated fatty acids mount an autonomous 
inflammatory response that activates macrophages. Cell Commun Signal 2012; 10: 30 [PMID: 23078640 DOI: 
10.1186/1478-811X-10-30]

166 Patsouris D, Cao JJ, Vial G, Bravard A, Lefai E, Durand A, Durand C, Chauvin MA, Laugerette F, Debard C, Michalski 
MC, Laville M, Vidal H, Rieusset J. Insulin resistance is associated with MCP1-mediated macrophage accumulation in 
skeletal muscle in mice and humans. PLoS One 2014; 9: e110653 [PMID: 25337938 DOI: 10.1371/journal.pone.0110653]

167 Sell H, Dietze-Schroeder D, Kaiser U, Eckel J. Monocyte chemotactic protein-1 is a potential player in the negative cross-
talk between adipose tissue and skeletal muscle. Endocrinology 2006; 147: 2458-2467 [PMID: 16439461 DOI: 
10.1210/en.2005-0969]

168 Saghizadeh M, Ong JM, Garvey WT, Henry RR, Kern PA. The expression of TNF alpha by human muscle. Relationship 
to insulin resistance. J Clin Invest 1996; 97: 1111-1116 [PMID: 8613535 DOI: 10.1172/jci118504]

169 Ciaraldi TP, Ryan AJ, Mudaliar SR, Henry RR. Altered Myokine Secretion Is an Intrinsic Property of Skeletal Muscle in 
Type 2 Diabetes. PLoS One 2016; 11: e0158209 [PMID: 27453994 DOI: 10.1371/journal.pone.0158209]

170 Li N, Shi H, Guo Q, Gan Y, Zhang Y, Jia J, Zhang L, Zhou Y. Aerobic Exercise Prevents Chronic Inflammation and 
Insulin Resistance in Skeletal Muscle of High-Fat Diet Mice. Nutrients 2022; 14 [PMID: 36145106 DOI: 
10.3390/nu14183730]

171 Al-Khalili L, Bouzakri K, Glund S, Lönnqvist F, Koistinen HA, Krook A. Signaling specificity of interleukin-6 action on 
glucose and lipid metabolism in skeletal muscle. Mol Endocrinol 2006; 20: 3364-3375 [PMID: 16945991 DOI: 
10.1210/me.2005-0490]

172 Carey AL, Steinberg GR, Macaulay SL, Thomas WG, Holmes AG, Ramm G, Prelovsek O, Hohnen-Behrens C, Watt MJ, 
James DE, Kemp BE, Pedersen BK, Febbraio MA. Interleukin-6 increases insulin-stimulated glucose disposal in humans 
and glucose uptake and fatty acid oxidation in vitro via AMP-activated protein kinase. Diabetes 2006; 55: 2688-2697 
[PMID: 17003332 DOI: 10.2337/db05-1404]

173 Reyna SM, Ghosh S, Tantiwong P, Meka CS, Eagan P, Jenkinson CP, Cersosimo E, Defronzo RA, Coletta DK, 
Sriwijitkamol A, Musi N. Elevated toll-like receptor 4 expression and signaling in muscle from insulin-resistant subjects. 
Diabetes 2008; 57: 2595-2602 [PMID: 18633101 DOI: 10.2337/db08-0038]

174 Hussey SE, Liang H, Costford SR, Klip A, DeFronzo RA, Sanchez-Avila A, Ely B, Musi N. TAK-242, a small-molecule 
inhibitor of Toll-like receptor 4 signalling, unveils similarities and differences in lipopolysaccharide- and lipid-induced 
inflammation and insulin resistance in muscle cells. Biosci Rep 2012; 33: 37-47 [PMID: 23050932 DOI: 
10.1042/BSR20120098]

175 Radin MS, Sinha S, Bhatt BA, Dedousis N, O'Doherty RM. Inhibition or deletion of the lipopolysaccharide receptor Toll-
like receptor-4 confers partial protection against lipid-induced insulin resistance in rodent skeletal muscle. Diabetologia 
2008; 51: 336-346 [PMID: 18060381 DOI: 10.1007/s00125-007-0861-3]

176 Lang CH, Silvis C, Deshpande N, Nystrom G, Frost RA. Endotoxin stimulates in vivo expression of inflammatory 
cytokines tumor necrosis factor alpha, interleukin-1beta, -6, and high-mobility-group protein-1 in skeletal muscle. Shock 
2003; 19: 538-546 [PMID: 12785009 DOI: 10.1097/01.shk.0000055237.25446.80]

177 Senn JJ. Toll-like receptor-2 is essential for the development of palmitate-induced insulin resistance in myotubes. J Biol 
Chem 2006; 281: 26865-26875 [PMID: 16798732 DOI: 10.1074/jbc.M513304200]

http://www.ncbi.nlm.nih.gov/pubmed/19336660
https://dx.doi.org/10.1152/ajpendo.90885.2008
http://www.ncbi.nlm.nih.gov/pubmed/18840759
https://dx.doi.org/10.1152/ajpendo.90667.2008
http://www.ncbi.nlm.nih.gov/pubmed/23078640
https://dx.doi.org/10.1186/1478-811X-10-30
http://www.ncbi.nlm.nih.gov/pubmed/25337938
https://dx.doi.org/10.1371/journal.pone.0110653
http://www.ncbi.nlm.nih.gov/pubmed/16439461
https://dx.doi.org/10.1210/en.2005-0969
http://www.ncbi.nlm.nih.gov/pubmed/8613535
https://dx.doi.org/10.1172/jci118504
http://www.ncbi.nlm.nih.gov/pubmed/27453994
https://dx.doi.org/10.1371/journal.pone.0158209
http://www.ncbi.nlm.nih.gov/pubmed/36145106
https://dx.doi.org/10.3390/nu14183730
http://www.ncbi.nlm.nih.gov/pubmed/16945991
https://dx.doi.org/10.1210/me.2005-0490
http://www.ncbi.nlm.nih.gov/pubmed/17003332
https://dx.doi.org/10.2337/db05-1404
http://www.ncbi.nlm.nih.gov/pubmed/18633101
https://dx.doi.org/10.2337/db08-0038
http://www.ncbi.nlm.nih.gov/pubmed/23050932
https://dx.doi.org/10.1042/BSR20120098
http://www.ncbi.nlm.nih.gov/pubmed/18060381
https://dx.doi.org/10.1007/s00125-007-0861-3
http://www.ncbi.nlm.nih.gov/pubmed/12785009
https://dx.doi.org/10.1097/01.shk.0000055237.25446.80
http://www.ncbi.nlm.nih.gov/pubmed/16798732
https://dx.doi.org/10.1074/jbc.M513304200


WJD https://www.wjgnet.com 512 May 15, 2023 Volume 14 Issue 5

World Journal of 

DiabetesW J D
Submit a Manuscript: https://www.f6publishing.com World J Diabetes 2023 May 15; 14(5): 512-527

DOI: 10.4239/wjd.v14.i5.512 ISSN 1948-9358 (online)

REVIEW

Diabetes mellitus and atrial fibrillation-from pathophysiology to 
treatment

Marianna Leopoulou, Panagiotis Theofilis, Athanasios Kordalis, Nikolaos Papageorgiou, Marios Sagris, 
Evangelos Oikonomou, Dimitris Tousoulis

Specialty type: Endocrinology and 
metabolism

Provenance and peer review: 
Invited article; Externally peer 
reviewed.

Peer-review model: Single blind

Peer-review report’s scientific 
quality classification
Grade A (Excellent): 0 
Grade B (Very good): B, B 
Grade C (Good): C, C 
Grade D (Fair): 0 
Grade E (Poor): 0

P-Reviewer: Hsieh YS, Taiwan; 
Huang Y, China; Yang J, China; 
Horowitz M, Australia

Received: January 20, 2023 
Peer-review started: January 20, 
2023 
First decision: February 8, 2023 
Revised: February 21, 2023 
Accepted: April 7, 2023 
Article in press: April 7, 2023 
Published online: May 15, 2023

Marianna Leopoulou, Panagiotis Theofilis, Athanasios Kordalis, Nikolaos Papageorgiou, Marios 
Sagris, Dimitris Tousoulis, 1st Cardiology Clinic, ‘Hippokration’ General Hospital, National and 
Kapodistrian University of Athens, School of Medicine, Athens 11527, Greece

Evangelos Oikonomou, 3rd Cardiology Clinic, ‘Sotiria’ Chest Diseases Hospital, National and 
Kapodistrian University of Athens, School of Medicine, Athens 11527, Greece

Corresponding author: Dimitris Tousoulis, MD, PhD, Professor, 1st Cardiology Clinic, 
‘Hippokration’ General Hospital, National and Kapodistrian University of Athens, School of 
Medicine, Vas. Sofias 114, Athens 11527, Greece. drtousoulis@hotmail.com

Abstract
Type 2 diabetes mellitus (T2DM) is a leading risk factor for cardiovascular 
complications around the globe and one of the most common medical conditions. 
Atrial fibrillation (AF) is the most common supraventricular arrhythmia, with a 
rapidly increasing prevalence. T2DM has been closely associated with the risk of 
AF development, identified as an independent risk factor. Regarding cardio-
vascular complications, both AF and T2DM have been linked with high mortality. 
The underlying pathophysiology has not been fully determined yet; however, it is 
multifactorial, including structural, electrical, and autonomic pathways. Novel 
therapies include pharmaceutical agents in sodium-glucose cotransporter-2 
inhibitors, as well as antiarrhythmic strategies, such as cardioversion and 
ablation. Of interest, glucose-lowering therapies may affect the prevalence of AF. 
This review presents the current evidence regarding the connection between the 
two entities, the pathophysiological pathways that link them, and the therapeutic 
options that exist.
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Core Tip: Diabetes mellitus (DM) and atrial fibrillation (AF) are interconnected pathological conditions 
that are associated with excess morbidity and mortality. DM is implicated in AF’s pathophysiology, with 
mechanisms involving structural remodeling, electrical alterations, autonomic dysfunction, and 
dysglycemia. The management of this deleterious combination is multifaceted and includes the use of 
conventional methods such as direct oral anticoagulation, electrical cardioversion, and antiarrhythmic 
drugs. Sodium-glucose cotransporter-2 inhibitors, catheter ablation, and left atrial appendage occlusion 
represent appealing modern approaches, whose efficacy in this subgroup of patients needs to be 
thoroughly examined.
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INTRODUCTION
Type 2 diabetes mellitus (T2DM) is a leading risk factor for cardiovascular complications around the 
globe and one of the most common medical conditions[1]. Atrial fibrillation (AF) is the most common 
supraventricular arrhythmia, with a rapidly increasing prevalence[2]. T2DM has been closely associated 
with the risk of AF development, being identified as an independent risk factor for AF. Furthermore, 
T2DM has been linked with an increased symptom burden for patients that suffer from AF, leading to 
impaired life quality and increased hospitalization[3].

The risk of AF development in patients with T2DM has been established by large studies and meta-
analyses showing a clear link between AF and T2DM. Based on the association between the two medical 
conditions and the high risk of cardiovascular morbidity and mortality that their combination presents, 
literature has concluded that underlying pathophysiology is related to structural, electrical-electromech-
anical, and autonomic remodeling as well as metabolic parameters[4,5]. Furthermore, their association 
has highlighted the need for surfacing therapeutic models that can alter the risk of the AF and T2DM 
combination or lower the risk of AF development in the diabetic population.

In this review, we present the pathophysiologic mechanisms that may combine the two entities, and 
the therapeutic options that are available for diabetic patients with AF.

AN ASSOCIATION BETWEEN AF AND T2DM
The Women's Health Study established T2DM as a significant predictor of risk for AF[6]. Similarly, a 
2010 study suggested a 40% higher risk of developing AF, for diabetic patients, with the overall risk 
increasing by 3% for every year of T2DM[7]. In 2011, the risk of developing AF in patients with T2DM 
was identified at 34% over the non-diabetic population[8], while in a 2017 meta-analysis, higher serum 
glycated hemoglobin levels (HbA1c) were associated with incident AF in prospective cohort studies[9]. 
In a prospective study, T1DM was associated with a modest increase in the risk of AF in men and a 50% 
increased risk of AF in women; the risk was proportional to worse glycemic control and renal complic-
ations[10]. Similarly, in the prospective cross-sectional observational NOMED-AF study, researchers 
concluded that AF affects one in four patients with T2DM, highlighting the excessive need for AF 
screening amongst the diabetic population[11]. Interestingly, a recent Swedish cohort revealed an 
overall 35% higher risk of AF compared to age- and sex-matched controls from the general population 
for patients with T2DM; renal complications or poor glycemic control increased the risk of AF[12]. In a 
Danish study, T2DM was associated with a relative 19% increased risk of incident AF, especially in the 
18-39-year-old group[13], while a case-control study concluded that T1DM modestly increases the risk 
of AF in men but elevates the risk for women by 50%, especially in the cases of poor glycemic control 
and renal complications[10]. Interestingly, prediabetes, a condition that is also associated with heart 
failure[14], cardiovascular and all-cause mortality[15], may drive the development of AF[16]. While 
there is significant evidence pointing concerning the high rates of AF among individuals with T2DM, 
there is no data on the prevalence of T2DM among AF populations. Thus, the bidirectional relationship 
between those two entities could only be speculated at present.

The presence of both T2DM and AF can present more complications than each individual entity. In 
2022, a meta-analysis of 21 studies concluded that AF patients with T2DM run a higher cardiovascular 
and all-cause mortality risk[17]. Similarly, in the much earlier ADVANCE study, T2DM patients with 
AF had an increased risk of major cardiovascular and cerebrovascular events, as well as of 
cardiovascular and all-cause mortality death, when compared to diabetic patients without AF[18]. 
Similar results were presented by the ORBIT-AF study, as high symptom burden, low life quality, 
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cardiovascular and overall mortality were higher for AF patients with T2DM compared to AF patients 
without T2DM[3]. The 2021 Swiss-AF study also claimed that AF patients with T2DM are less self-aware 
of AF symptoms and maybe should be systematically screened for silent AF[19]. Moreover, although 
individuals with T2DM may exhibit a higher thrombotic risk, the rates of electrical cardioversion and 
catheter ablation use are significantly lower compared to non-T2DM individuals, as shown in the EORP-
AF general pilot registry report[1].

PATHOPHYSIOLOGY
Structural remodeling
All pathophysiologic mechanisms are depicted in Table 1 and Figure 1. The most prominent structural 
modification that AF causes is atrial dilatation and fibrosis. Interestingly, atrial dilatation and fibrosis 
can result in AF development. In this context, as myocardial fibrosis is independently associated with 
T2DM, diabetic patients have a prominent substrate for developing AF[4,20]. More specifically, the 
cellular and molecular underlying mechanisms linking T2DM to myocardial fibrosis include inflam-
mation and oxidative stress deriving from prolonged hyperglycemia[20]. Both increased production of 
reactive oxygen species (ROS) and decreased expression of enzymes that downregulate ROS have been 
revealed in diabetic patients, suggesting a high oxidative stress burden[21,22]. A high oxidative stress 
burden can both result in and aggravate pre-existing inflammation and inflammatory markers such as 
C-reactive protein and tumor necrosis factor-α, associated with left atrial dilatation and increased AF 
incidence[23-25]. Furthermore, high levels of ROS result in the activation of fibrotic pathways (i.e., 
nuclear factor-kappaB pathway) that can result in atrial fibrosis[21].

Furthermore, T2DM upregulates the expression of profibrotic growth factors, such as transforming 
growth factor (TGF)-β, which activates profibrotic pathways[20,26]. In addition, the increased 
production of advanced glycation end-products (AGE)s and AGE receptors that derive from T2DM also 
contributes to atrial fibrosis by upregulating connective tissue growth factors[27]. Fibrosis can slow 
down atrial conduction and create the substrate for re-entry[28]. Notably, diabetic hearts exhibit 
enhanced levels of collagen synthesis and high fibroblast activity[29]. We should also mention that the 
levels of myocardial fibrosis biomarkers, including ST2 and galectin-3, could indicate structural 
remodeling[25].

In addition, the renin-angiotensin-aldosterone system has also been implicated in promoting fibrosis 
through the TGF-β signaling pathway[4,20]. Angiotensin II is known to induce cardiac fibrosis[30]. 
Besides the atria, myocardial fibrosis can also occur in the ventricular myocardium of diabetic patients, 
resulting in stiffening and diastolic dysfunction of the left ventricle, which is associated with left atrium 
enlargement[31].

Adiposity may also contribute to atrial interstitial fibrosis and concomitant conduction abnormalities
[30]. Obesity is associated with T2DM and lipomatous metaplasia of the heart[31]. In an animal model of 
a high-caloric diet, authors reported left atrial enlargement, bi-atrial conduction abnormalities, and an 
increased propensity for inducible and spontaneous AF among the findings[32,33].

Electrical remodeling
Another pathway that may lead to the development of AF in diabetic patients is electrical and 
electromechanical remodeling. Patients with abnormal glucose metabolism may present conduction 
abnormalities, such as longer activation times[34]. Experimental data from animal studies suggest that 
T2DM is linked to abnormal electrical current densities, atrial conduction, and refractory periods, all 
increasing susceptibility to AF[26,35]. In addition to the electrical and conduction remodeling, T2DM 
can affect the atrial excitation-contraction coupling, resulting in electromechanical delay (EMD) and 
arrhythmogenesis, as EMD is an independent predictor of both new and recurrent AF[36,37]. 
Interestingly, diabetic patients tend to have a higher recurrence of AF after ablation, possibly due to a 
proarrhythmic substrate caused by electrical remodeling[34]. Furthermore, prolonged conduction times 
were found in patients with abnormal fasting glucose[38], while EMDs in the atrium are higher in 
patients with T2DM[37].

Atrial action potential morphology altercations due to ionic currents can alter conduction velocity or 
susceptibility to triggered activity. In addition, gap junction function may also be affected in the atria of 
diabetic patients, possibly due to changes in the expression or localization of connexins[30].

Autonomic remodeling
Autonomic dysfunction can also contribute to the development of AF in diabetic patients. Cardiac 
autonomic neuropathy caused by T2DM contributes to the downsizing of parasympathetic and upregu-
lation of the sympathetic stimuli, resulting in an autonomic imbalance that can excite an arrhythmia, 
such as AF[39]. A cross-sectional controlled study of 1992 T2DM patients suggested a strong 
relationship between autonomic dysfunction and silent AF in T2DM originating from autonomic 
dysfunction[40].



Leopoulou M et al. Diabetes mellitus and atrial fibrillation

WJD https://www.wjgnet.com 515 May 15, 2023 Volume 14 Issue 5

Table 1 Pathophysiologic mechanisms connecting type 2 diabetes mellitus and Atrial Fibrillation

Involved mechanism Result

Inflammation

Oxidative stress

Expression of profibrotic growth factors

Enhanced collagen synthesis and high fibroblast activity

Activation of the (RAAS) system

Structural remodelling

Obesity and adiposity

Atrial fibrosis and dilatation

Longer activation times

Abnormal current densities and refractory periods

Electromechanical delay

Electrical remodelling

Affected gap junction function

Conduction abnormalities

Downsizing of parasympathetic nervous systemAutonomic dysfunction

Upregulation of sympathetic stimuli

Autonomic imbalance

Sympathetic activation due to hypoglycaemia

Remodelling due to chronic hyperglycemia

Oxidative stress and fibrosis due to glycemic fluctuations

Glycemic parameters

Fibrosis due to adipokines

AF susceptibility

AF: Atrial fibrillation.

Figure 1 Pathophysiologic mechanisms of diabetes mellitus-induced atrial fibrillation. DM: Diabetes mellitus; AF: Atrial fibrillation; RAAS: Renin-
angiotensin-aldosterone system; SNS: Sympathetic nervous system; PNS: Parasympathetic nervous system.

Glycemic parameters
Patients with T2DM may suffer from hypoglycemia, which can propagate sympathetic activation and 
overdrive, resulting in an increased risk of AF[41]. The fact that intensive glycemic control does not 
lower the risk of AF may be attributed to the sympathetic overdrive caused by severe hypoglycemia
[42]. On the other hand, chronic hyperglycemia also creates a substrate for atrial remodeling and 
initiation of AF[4,26]. Hyperglycemia is also associated with enhanced angiotensin II signaling ROS 
production[43]. Furthermore, high glucose levels can enhance fibrosis through the production of AGEs, 
which can regulate cardiac fibroblasts by activating their surface receptors[27]. Studies have found, 
though, that it is actually glycemic fluctuations, rather than chronic hyperglycemia, that may increase 
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the risk of AF, as they can cause oxidative stress and atrial fibrosis[42,44]. Moreover, a 2017 study 
revealed that long-term glycemic variability is associated with new-onset AF[45]. It has been suggested 
that AF and T2DM may share thrombotic pathways. Patients with T2DM suffer from insulin resistance 
as part of their metabolic profile. In itself, insulin resistance is associated with hypercoagulability, 
platelet hypersensitivity, endothelial dysfunction, and impaired fibrinolysis, all of which result in high 
thromboembolic risk[46]. Last, adipokines, signaling modules produced in the epicardial fat layer, have 
been implicated in the pathophysiology of AF in diabetic patients[30]. Leptin has been found to be 
associated with atrial fibrosis and AF susceptibility[47]. Other adipokines, such as secreted frizzled-
related protein 5, may represent important biomarkers in the risk prediction and management of 
diabetic complications such as heart failure[48], since they are implicated in mitochondrial energetics, 
oxidative stress, and apoptosis pathways[49]. However, their role in AF has not been thoroughly 
assessed. Insulin resistance and adiposity are also considered the main contributors to nonalcoholic fatty 
liver disease development, a condition that is linked to AF development[50].

TREATMENT
Antidiabetic drugs
Regarding the treatment of diabetic patients, medication should aim to lower blood glucose levels and 
prevent glycemic fluctuations. Various oral medications are currently being used to treat T2DM, several 
of which have been associated with a lower risk of AF, as shown in Table 2[4]. Metformin is the most 
commonly prescribed oral medication. By inhibiting hepatic gluconeogenesis, opposing the action of 
glucagon, and increasing insulin sensitivity, it exerts its glucose-lowering action. Moreover, its use has 
been associated with a lower risk for new-onset AF[51]. Several mechanisms have been implicated, 
including the prevention of the structural and electrical remodeling of left atrium via attenuating 
intracellular ROS, activation of 5′ adenosine monophosphate-activated protein kinase, improvement of 
calcium homeostasis, attenuation of inflammation, increase in connexin-43 gap junction expression, and 
restoration of small conductance calcium-activated potassium channels current[52]. Thiazolidinediones 
(TZD) increase insulin sensitivity by acting on adipose, muscle, and, to a lesser extent, liver to increase 
glucose utilization and decrease glucose production. Antioxidant effects may be additionally evident, 
through proliferator-activated receptor-γ agonism and stimulation of catalase[53]. They are also 
associated with a lower risk of new-onset AF, possibly due to their anti-fibrotic effect[54]; a meta-
analysis identified that the risk was reduced by 27% for patients treated with TZDs compared to the 
control group, especially pioglitazone[55]. On the other hand, sulfonylureas, a widely prescribed 
second-line hypoglycemic drug category that directly stimulates insulin release from pancreatic beta 
cells, is not associated with a lower risk for AF[56]. Of interest, sulfonylureas are associated with severe 
hypoglycemic effects, a substrate for AF development[57]. Insulin therapy has been associated with an 
increased risk for AF occurrence, possibly due to its hypoglycemic effect[58]. A large study, however, 
reported no increase in AF incidence with the use of insulin glargine vs standard care[59].

Moving to novel antidiabetic agents, dipeptidyl peptidase-4 (DPP-4) inhibitors are glucose-lowering 
agents that inhibit DPP-4 activity in peripheral plasma, which prevents the inactivation of the incretin 
hormone glucagon-like peptide-1 (GLP1) in the peripheral circulation. Those agents were found to 
produce a lower risk of AF when compared to other antidiabetic medications, as shown in a previous 
study[60]. However, large trials have not revealed a correlation between DPP-4 inhibitors and the 
incidence of AF[61,62]. Another new class of antidiabetic drugs, GLP1 receptor agonists, are a potent 
glucose-lowering option by stimulating glucose-dependent insulin release from the pancreatic islets. 
They exhibit many cardioprotective effects, including antioxidant responses through the upregulation of 
antioxidant substances (catalase, glutathione peroxidase)[63]. However, they have not been associated 
with the incidence of AF in large trials; thus, no association between them and AF has been established
[64-66].

Sodium-glucose cotransporter-2 (SGLT2) inhibitors lower plasma glucose levels by blocking the 
reabsorption of filtered glucose at the level of the kidneys. These agents have established cardiopro-
tective effects[67,68], which are dependent on numerous molecular mechanisms, including restoration 
of beneficial autophagy, antioxidant[63], anti-inflammatory[69,70], and anti-fibrotic responses. SGLT2 
inhibitors appear to affect the AF burden. A post-hoc analysis of the DECLARE-TIMI 58 trial reported 
decreased AF and atrial flutter episodes in individuals with T2DM on dapagliflozin regardless of AF 
history[71]. Even though the findings from the canagliflozin trial program were neutral[72], recent 
meta-analyses of randomized controlled trials point to a significant reduction of atrial arrhythmias 
compared to placebo[73-75]. It also has to be noted that treatment with an SGLT2 inhibitor that was 
accompanied by a greater than 30% initial decline in the estimated glomerular filtration rate led to a 
higher risk of AF incidence[76]. In a recently reported Scandinavian cohort study of 79343 new users of 
SGLT2 inhibitors and 57613 new users of GLP1 receptor agonists, the former was associated with a 
modestly reduced risk of new-onset AF[77]. Similar findings have also been reported in large registry 
data analyses[78-80]. Moreover, in elderly individuals with T2DM, the initiation of an SGLT2 inhibitor 
was accompanied by a lower incidence of AF across the follow-up[81].
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Table 2 The effect of antidiabetic medication in atrial fibrillation

Ref. Medication Study design Effect

Chang et al[51] Metformin Non-RCT Lower risk of new-onset AF (HR: 0.81, 95%CI: 0.76-0.86, P < 
0.0001) 

Zhang et al[55] TZD MA Approximately 30% lower risk of developing AF compared to 
controls, only in observational studies

Chang et al[60] DPP4i Non-RCT DPP4i users were associated with a lower risk of new-onset AF 
compared with non-DPP4i

Monami et al[66] GLP1-RA MA No effect on AF incidence (OR: 0.87, 95%CI: 0.71-1.05, P = 0.15)

Zelniker et al[71] SGLT2i RCT Reduced AF risk (HR: 0.81, 95%CI: 0.68-0.95, P = 0.009)

Fernandes et al[73] SGLT2i MA Reduced incidence of atrial arrhythmias (OR: 0.81, 95%CI: 0.69-
0.95, P = 0.008)

Engström et al[77] SGLT2i Non-RCT SGLT2i modestly reduced AF risk compared to GLP1-RA 
(adjusted HR: 0.89, 95%CI: 0.81-0.96)

Lee et al[80] SGLT2i Non-RCT Lower risk of incident AF compared to DPP4i (HR: 0.68, 95%CI: 
0.56, 0.83, P = 0.0001)

AF: Atrial fibrillation; RCT: Randomized controlled trial; HR: Hazard ratio; CI: Confidence interval; TZD: Thiazolidinedione; MA: Meta-analysis; DPP4i: 
Dipeptyl peptidase 4 inhibitors; GLP1-RA: Glucagon-like peptide-1 receptor agonist; OR: Odds ratio; SGLT2i: Sodium-glucose cotransporter-2 inhibitors.

Experimental studies have been conducted to assess the antiarrhythmic mechanisms of SGLT2 
inhibitors. Shao et al[82] initially demonstrated the reversal of atrial structural and electrical remodeling 
induced by T2DM in rats following treatment with empagliflozin. This effect was possibly mediated by 
the peroxisome proliferator-activated receptor-c coactivator 1α/nuclear respiratory factor-1/
mitochondrial transcription factor A signaling pathway[82]. Moreover, the administration of 
canagliflozin in an experimental model of rapid atrial pacing resulted in a diminished atrial refractory 
period reduction, suppressed AF inducibility, attenuated atrial interstitial fibrosis, and oxidative stress
[83]. A decreased inducibility and duration of pacing-induced AF were also reported in a rat model of 
mitral regurgitation following treatment with dapagliflozin[84]. Overall, the published preclinical and 
clinical data regarding the effect of SGLT2 inhibitors on AF appears promising, while appropriately 
designed randomized controlled trials are warranted to provide further insight into their antiarrhyth-
mogenic potential.

Stroke prevention
Anticoagulants: While AF is independently associated with a high risk of stroke, it seems that DM has 
an additive effect on the established risk. More specifically, T2DM is associated with a 70% relative 
increase in the risk of stroke for patients with AF[85]. Of importance, T2DM, as a comorbidity, is 
included in CHAD2DS2-VASc risk score, which is the pillar of risk assessment and anticoagulation 
management[86]. A cohort of 37358 diabetic patients with AF demonstrated that elevated HbA1c levels 
were associated with an increased risk of stroke[87]. A nationwide cohort study concluded that while in 
AF patients with T2DM, long-lasting T2DM was associated with a higher risk of thromboembolism, it 
was not associated with a higher risk of anticoagulant-related bleeding[88]. In addition, the duration of 
T2DM for over three years was independently associated with a high risk of ischemic stroke for AF 
patients in the ATRIA study[89]. Insulin-dependent patients exhibit a worse prognosis regarding the 
incidence of stroke or systemic embolism when compared to diabetic patients who do not require 
insulin therapy[90]. In an observational cohort, prediabetes was also associated with increased risk for 
stroke for patients with incident non-valvular AF, even after accounting for other CHA2DS2-VASc risk 
factors[91]. It was also shown that T2DM in AF patients seems to increase the risk of both all-cause and 
cardiovascular mortality, as well as stroke. Furthermore, HbA1c values of < 6.2% for patients with both 
conditions predict significantly decreased all-cause and cardiovascular mortality[92].

Based on the CHAD2DS2-VASc risk score, anticoagulant treatment should be considered in every 
diabetic patient by default. When contemplating the anticoagulant of choice in this patient population, it 
has been shown that T2DM affects the time of therapeutic range for AF patients that receive warfarin, a 
fact that raises safety issues[93]. On the other hand, direct oral anticoagulants (DOACs) use resulted in a 
20% reduction in stroke incidents and a 43% reduction in intracranial bleeding compared to warfarin
[85]. Furthermore, a study showed that DOACs are as safe and efficient for people with T2DM as for 
non-diabetic people[94]. A study proposed that dabigatran had the lowest risk for T2DM among AF 
patients compared to warfarin[95]. For patients with T2DM and CHA2DS2-VASc scores ≥ 2, DOACs may 
be recommended over warfarin[4]. For a CHA2DS2-VASc score of 1 in AF patients with T2DM, the 
optimal type of coagulation has not yet been determined[4]. A 2021 systematic review examining the 
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safety (hypoglycemia or bleeding) and efficacy (stroke or systemic embolism) of OACs in diabetic 
patients concluded that DOACs have a better clinical profile than warfarin[96].

Atrial appendage closure: Because of their improved safety and effectiveness profile, DOACs 
(apixaban, rivaroxaban, dabigatran, edoxaban) have replaced warfarin as the cornerstone of stroke 
prevention in AF patients. However, alternative treatments must be considered for the subset of 
individuals at extremely high risk of bleeding. It has long been demonstrated that the great majority (> 
90%) of thrombi in nonvalvular AF originate in the left atrial appendage (LAA)[97]. This is a structure of 
variable form and size with neurohormonal and reservoir functions. Left atrial remodeling with changes 
in shape, blood flow (stasis), and the presence of trabeculations is thought to be involved in LAA 
thrombogenesis in AF[98]. T2DM has been associated with adverse LAA remodeling, with important 
prognostic implications regarding embolic events. Such alterations include the enlargement of the LAA 
orifice and the reduction of orifice flow velocity, as shown by Yosefy et al[99] in a retrospective study of 
242 individuals with AF[99]. Interestingly, this appears to be unrelated to the coexistence of AF, as 
indicated by the experimental study of the same research group[100]. The reduced LAA flow velocity is 
proportional to the degree of T2DM control, measured by HbA1c[101].

LAA closure (LAAC) is a therapeutic option that is gaining ground in the field of stroke prophylaxis 
for AF[102]. Surgical LAAC is a technique with confirmed effectiveness, as demonstrated in the recently 
completed LAAOS-III randomized trial and a recent meta-analysis, for patients with AF who are having 
cardiac surgery for another cause[103,104]. However, no subgroup analysis according to T2DM status 
was made, and no safe conclusions can be drawn based on those studies. Percutaneous LAAC has also 
gained attention recently due to the safety and efficacy of the Watchman and Amplatzer devices, with 
noninferior outcomes compared to direct OACs in a randomized trial[105]. When examining the devices 
separately, the landmark trial comparing the Watchman device to warfarin in nonvalvular AF with 
CHADS2 score ≥ 1 revealed a decreased rate of the primary endpoint (stroke, systemic embolism, and 
cardiovascular/unexplained mortality) after a 3.8-year follow-up with the device implantation[106]. 
However, no subgroup analysis based on the presence of T2DM was performed. An upgraded version, 
the Watchman FLX, is also available and is associated with superior sealing, together with similar safety
[107-109], but limited data on the impact of T2DM. Concerning the Amplatzer devices (Cardiac Plug 
and Amulet), no dedicated large randomized trials are currently available.

The outcomes of LAAC in patients with T2DM have been inconsistent across the reported cohort 
studies. Litwinowicz et al[110] demonstrated similar rates of thromboembolism, mortality, and bleeding 
events after LAAC between T2DM and non-T2DM individuals[110]. However, in a study of 807 patients 
undergoing LAAC, T2DM emerged as an independent predictor of the incident early mortality[111]. 
T2DM was also an independent determinant of hospital readmission 30 and 90 d after LAAC[112]. 
These T2DM-related readmissions could be more likely associated with gastrointestinal bleeding[113]. 
Additionally, according to a recent report from the National Cardiovascular Data Registry of 36681 
patients receiving the Watchman device, T2DM was an independent variable associated with incident 
ischemic stroke[114]. To our knowledge, no studies with the Amplatzer devices have assessed the role 
of T2DM in its safety and efficacy.

Antiarrhythmic strategies
Electrical and pharmacologic cardioversion: T2DM is associated, as comorbidity, with less efficacy of 
cardioversion. So far, various studies have shown that T2DM results in a lower cardioversion immediate 
success rate and lower success of sinus rhythm maintenance at 74.5 d follow-up, while it has also been 
identified as an independent risk factor for cardioversion failure within 30 d[115-117]. Interestingly, 
T2DM, higher HbA1c, digoxin treatment, and structural and functional cardiac abnormalities were 
identified as independent risk factors for cardioversion failure and AF recurrence in a 2018 retrospective 
outcome analysis[117]. In another study, however, this finding was not confirmed[118]. It should also be 
noted that although spontaneous cardioversion may be seen in a significant proportion of patients with 
AF, the rates are significantly lower in individuals with coexisting T2DM[119].

Similarly, antiarrhythmic drugs seem less effective for T2DM patients in experimental studies[120], 
although the evidence is scarce in the clinical setting. Kriz et al[121] did not detect a significant 
association between T2DM and the failure of pharmacologic cardioversion in a single-center study of 
236 patients with recent-onset AF[121]. Moving to specific drug classes, in a study of 50 consecutive 
patients with recent-onset AF, the presence of T2DM did not affect the efficacy of cardioversion with 
propafenone[122]. Regarding dronedarone use in T2DM, it has been favorably associated with a lower 
rate of cardiovascular hospitalizations and mortality, as well as greater freedom from AF, compared to 
placebo[123]. At the same time, no data are available for the specific subgroup of AF patients with 
T2DM who receive amiodarone. However, a previous study has suggested a delayed antiarrhythmic 
effect of amiodarone in individuals with T2DM, partly attributed to diabetic autonomic neuropathy
[124]. Often, due to concomitant QTc prolongation, silent coronary artery disease, or renal failure, 
patients with T2DM may be at higher risk of developing adverse effects from antiarrhythmic drug 
therapy[62,125]. Despite that, a study by D’Angelo et al[126] observed that patients with T2DM were 
less likely to discontinue the prescribed antiarrhythmic regimen[126].



Leopoulou M et al. Diabetes mellitus and atrial fibrillation

WJD https://www.wjgnet.com 519 May 15, 2023 Volume 14 Issue 5

Ablation: Regardless of symptoms, early rhythm management is critical in lowering the burden of AF 
consequences[127,128]. Percutaneous catheter AF ablation is an appealing technique for rhythm 
regulation. The most often used ablation treatment in electrophysiology is radiofrequency catheter 
ablation. It mainly consists of pulmonary vein isolation, which is thought to be a key trigger of 
paroxysmal AF[129]. Catheter ablation is a well-established treatment for drug-refractory, symptomatic 
AF with a variety of clinical benefits and better AF control for diabetic patients when compared to 
antiarrhythmic drugs[130]. Despite that fact, individuals with T2DM may be less likely to receive 
catheter ablation, as pointed out by the recent study of Quiroz et al[131]. However, the rate of T2DM 
patients receiving this treatment has increased over the years[132].

There have been reports of a lower efficacy of catheter ablation in individuals with T2DM than in 
those without T2DM. This could be due to the fact that the induced scar may impair atrial relaxation, 
promoting a stiff left atrial phenotype in individuals with T2DM[133]. Wang et al[134] highlighted that 
T2DM was associated with lower arrhythmia-free intervals in patients with T2DM after a median 29.5-
mo follow-up[134]. A recent study of 369 patients with AF reported that T2DM was a predictor of AF 
recurrence in patients with paroxysmal AF[135]. This has not been the case in persistent AF, where the 
already established fibrotic changes may account for the increased risk of recurrence[136]. The 
performance of a second-generation, cryoballoon-based procedure may be accompanied by similar 
success rates in T2DM and non-T2DM patients, as pointed out by the study of Amr et al[137]. Moreover, 
T2DM is among the variables of the DR-FLASH score that has been utilized to identify individuals with 
a greater burden of arrhythmogenic substrates that may benefit from extensive ablation beyond the 
pulmonary veins[138,139]. T2DM is also an independent predictor of pulmonary vein stenosis after 
catheter ablation, as shown by the ADVICE trial[140]. It should also be mentioned that individuals with 
T2DM may be less likely to receive catheter ablation, as pointed out by the recent study of Quiroz et al
[131]. However, the rate of T2DM patients receiving this treatment has increased over the years[132].

Other studies have concluded that there is no difference in post-ablation recurrence between diabetic 
and non-diabetic patients[141,142]. The degree of glycemic control might be an important confounding 
variable. More specifically, a 2015 metanalysis concluded that AF ablation has similar safety and efficacy 
for diabetic patients as for the general population, especially for younger patients with efficient 
glycemic control; however, it was shown that higher basal glycated hemoglobin levels were associated 
with a higher incidence of AF recurrence after catheter ablation[143]. Although the literature has not yet 
concluded, insufficiently managed T2DM may be a risk factor for AF recurrence following catheter 
ablation[144]. T2DM has also been correlated with a higher risk of cardioversion failure for early AF 
recurrence (≤ 7 d) after ablation[115].

Antidiabetic drugs may alter the efficacy of AF ablation in individuals with T2DM. Metformin was 
recently shown to be independently associated with a lower risk of AF recurrence in T2DM patients 
after catheter ablation[145]. A randomized trial contemplating the effect of SGLT2 inhibitors on AF 
following ablation concluded that tofogliflozin exhibited a better profile and less AF recurrence when 
compared to anagliptin[146]. Previously, dapagliflozin was an independent predictor of longer 
arrhythmia-free intervals in patients with T2DM undergoing radiofrequency catheter ablation after a 
mean follow-up of 15.5 mo[147].

CONCLUSION
DM and AF are widely affiliated entities. DM has been closely associated with the risk of AF 
development, identified as an independent risk factor for AF. Regarding cardiovascular risk and 
mortality, the presence of both conditions has been linked with high mortality. Even though the 
pathophysiology is still not fully determined, structural, electrical, and autonomic pathways have been 
identified as underlying mechanisms. Regarding therapy, novel antidiabetic agents and revolutionary 
antiarrhythmic and antithrombotic strategies are being examined concerning the optimal therapeutic 
plan for diabetic patients with AF.
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Abstract
Critically ill patients are prone to high glycemic variations irrespective of their 
diabetes status. This mandates frequent blood glucose (BG) monitoring and 
regulation of insulin therapy. Even though the most commonly employed 
capillary BG monitoring is convenient and rapid, it is inaccurate and prone to 
high bias, overestimating BG levels in critically ill patients. The targets for BG 
levels have also varied in the past few years ranging from tight glucose control to 
a more liberal approach. Each of these has its own fallacies, while tight control 
increases risk of hypoglycemia, liberal BG targets make the patients prone to 
hyperglycemia. Moreover, the recent evidence suggests that BG indices, such as 
glycemic variability and time in target range, may also affect patient outcomes. In 
this review, we highlight the nuances associated with BG monitoring, including 
the various indices required to be monitored, BG targets and recent advances in 
BG monitoring in critically ill patients.

Key Words: Blood glucose; Continuous glucose monitoring; Critical care; Glycaemic 
indices; Hypoglycaemia; Intensive care unit
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Core Tip: Blood glucose (BG) monitoring is a vital component of critical care management. Even non-
diabetic critically ill patients are prone to glycemic fluctuations necessitating frequent blood sampling and 
BG monitoring.  Multiple medications, presence of underlying comorbidities and organ dysfunctions, and 
rapidly changing patient condition make BG control challenging in critically ill patients. Even the 
commonly used capillary blood sampling for BG monitoring may not be reliable in these patients. In 
addition to the established parameters of hypoglycemia and hyperglycemia, newer glycemic indices like 
glycemic variability and time in target range have also been recognized to affect outcomes of critically ill 
patients, further complicating BG monitoring. Devices for continuous glucose monitoring are also being 
increasingly tested in these patients, and their use in conjunction with artificial intelligence-based devices 
may provide a solution to comprehensive glucose control in the future.

Citation: Juneja D, Deepak D, Nasa P. What, why and how to monitor blood glucose in critically ill patients. World 
J Diabetes 2023; 14(5): 528-538
URL: https://www.wjgnet.com/1948-9358/full/v14/i5/528.htm
DOI: https://dx.doi.org/10.4239/wjd.v14.i5.528

INTRODUCTION
Blood glucose (BG) monitoring is a vital component of critical care management. Diabetes is an 
important risk factor for developing severe disease necessitating intensive care unit (ICU) admission. 
Additionally, any acute illness may increase the risk of derangement of BG levels. These fluctuations 
may happen irrespective of the diabetes status of the patient and may affect their ICU course and 
outcomes. Several factors have been identified that increase the risk of developing hyperglycemia and 
hypoglycemia in ICU patients (Table 1)[1-5]. The use of multiple medications, underlying comorbidities 
and organ dysfunctions, and rapidly changing patient conditions make BG control challenging in 
critically ill patients. Even the commonly used capillary blood sampling for BG monitoring may be 
unreliable in these patients[6].

Furthermore, glycemic indices and targets for optimizing outcomes in critically ill patients need to be 
clarified. Targeting tight glucose control, which was earlier recommended, has not shown any mortality 
benefit but may increase the risk of hypoglycemia by five times[7]. It also requires frequent blood 
sampling and regulation of insulin dose, which may increase the workload of healthcare workers and 
add to the cost of care. Hence, recent guidelines recommend more liberal BG targets to avoid the risk of 
hypoglycemia[8,9]. In addition to the commonly employed indices such as hyperglycemia and 
hypoglycemia, glycemic variability (GV) and time in target range (TITR) are recently recognized 
components of dysglycemia which may affect patient outcomes[10-12]. However, the exact targets for 
these indices still need to be well established.

ARTERIAL VS CAPILLARY MONITORING
BG management requires frequent blood sampling and insulin dose adjustment. BG monitoring in 
critically ill patients by plasma-based central laboratory methods using venous or arterial samples is 
considered standard. However, due to the long turnaround time and convenience associated with a 
point of care testing (POCT), currently, glucometers and arterial blood gas (ABG) analyses are being 
frequently used. Bedside capillary blood glucose monitoring arguably remains the most commonly 
employed method, even in critically ill patients. However, its accuracy may be affected in patients with 
subcutaneous oedema, shock, and hypoxemia, which commonly affect ICU patients[4]. This may lead to 
highly variable results and higher bias (overestimation) for fingerstick sampling than arterial or venous 
BG monitoring, which can significantly affect clinical decision-making[13]. Hence, arterial blood is 
preferred but requires repeated arterial punctures or an invasive arterial line (Table 2). The correlation 
between arterial and capillary glucose levels is also significantly affected in patients with shock 
requiring vasopressors, with a proportion of disagreement ranging from 1.4% to 27.1%[14,15].

Over the years, there has been remarkable progress in the technologies used for bedside glucometers. 
Based on the glucose oxidase method, the initial generation of glucometers was affected by low and 
high haematocrit, blood pH, and even some medications[16]. The more recent glucose dehydrogenase-
based glucometers are largely unaffected by high PaO2 and other interferences but had a serious flaw of 
being highly inaccurate in patients on peritoneal dialysis whose dialysate contains Icodextrin, because 
of its hydrolysis to maltose, causing pseudo-hyperglycemia[17]. The accuracy and precision of the 
newer generation of glucometers have improved significantly. They have largely overcome the fallacies 
of their predecessors to acceptable clinical levels, especially if arterial or venous blood is used for 

https://www.wjgnet.com/1948-9358/full/v14/i5/528.htm
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Table 1 Risk factors for developing hyperglycemia and hypoglycemia in intensive care unit patients

Risk factors for hyperglycemia Risk factors for hypoglycemia

Release of stress hormones: Corticosteroids and 
catecholamines

Targeting tight glucose control with insulin infusions

Release of proinflammatory mediators Use of bicarbonate-containing fluids

Administration of exogenous drugs: Corticosteroids, 
vasopressors, ascorbic acid

Interruption of nutritional support

Parenteral solutions containing dextrose Infection, sepsis

Stress-induced hyperglycaemia Drugs e.g. Octreotide, anti-glycaemic agents, betablockers, antibiotics (levofloxacin, quinine, 
trimethoprim-sulfamethoxazole)

Use of vasopressors

Liver failure

Use of commercial dietary feeds or supplements

Dialysis support

Table 2 Comparison between arterial and capillary monitoring of glucose

Arterial Capillary 

Accuracy affected by poor perfusion states, pH, anaemia, renal failure, and 
high oxygen tension levels (old generation glucose oxidase based 
glucometers)

Accuracy As accurate as laboratory testing 

Overestimation in all glucose range, especially in hypoglycaemic range

Sample 
volume

0.25-1 mL (can be more depends on method) Minimal

Other 
variables

Simultaneous measurement of electrolytes, haemoglobin, and 
blood gases (partial pressure of oxygen and carbon dioxide, 
pH)

Single variable measured is sugar

Arterial sampling requiredPain

Convenient in patients with indwelling arterial line

Repeated pin prick may cause patient discomfort

Need of 
expertise 

Needs arterial line or arterial sampling which needs expertise Simple finger stick, no expertise needed

analysis. Recent data suggest that these devices may achieve more than 97% correlation with the 
reference standard when testing venous and arterial samples. These systems have demonstrated 
acceptable clinical performance with high specificity, sensitivity, and low risk of potential insulin-
dosing errors[18].

It can be inferred that arterial blood should be preferred over capillary blood for glucose monitoring, 
irrespective of the method used, provided standards of calibration are being followed. Although 
capillary glucose serves well in hospitalized patients, caution should be exercised in patients with shock
[14], insulin infusion[15], on vasopressors[14,19], coma[20], and other critically ill adult patients[6]. A 
large meta-analysis with 21 studies showed that BG readings taken from arterial samples were 
significantly more accurate than those taken from the capillary samples. Again, as compared to 
glucometer readings, readings taken from ABG analyzers were more accurate, especially in the 
hypoglycemic range[6]. Despite venous samples tested in the laboratory remain the gold standard, 
POCT using arterial samples analyzed using ABG analyzers may provide an accurate estimation of the 
BG levels with the advantage of rapid turnaround time and may provide more clinically relevant and 
actionable information.

CONTINUOUS GLUCOSE MONITORING
Continuous glucose monitoring (CGM) devices have evolved from retrospective analyzers validated in 
outpatient services and can now be utilized in hospitalized patients to optimize glucose control. These 
devices have been associated with better control of short-time fluctuations in BG levels, reduced 
glycated hemoglobin (HbA1c) values, reduced risk of severe hypoglycemia, improved glycemic control, 
increased treatment satisfaction, and may also reduce healthcare costs[21,22]. Numerous CGM devices 
are commercially available, which are approved for in-hospital use. These devices are classified as non-
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invasive (transdermal), minimally invasive (subcutaneous) and invasive (intra-vascular).
The real-time analyzers have a subcutaneous cannula with a biosensor to analyze glucose from 

interstitial fluid, which is then relayed wirelessly by the attached transmitter to the monitors[23]. Even 
though the initial trials with CGM devices showed a reduction in hypoglycemic events as compared to 
the intensive insulin protocols measuring glucose samples frequently, these devices failed to reduce the 
GV[24,25].

The newer systems have shown a fair correlation in direct comparison with each other and capillary 
measurements in non-critically ill diabetic patients[26]. However, the data from critically ill patients, 
was lacking so far. Early results from testing in critically ill patients with coronavirus disease 2019 
(COVID-19) have been encouraging, and these devices have been shown to have good accuracy, 
increase TITR, and reduce GV[27,28]. The latest generation of continuous subcutaneous flash glucose 
monitoring system (FreeStyle Libre) has been shown to have high test-retest reliability and acceptable 
accuracy even in critically ill patients[29,30].

Although evidence is still evolving, some drawbacks exist (Table 3). There is usually a time lag 
between blood and interstitial fluid to equilibrate, which hinders accurate real-time sampling[31]. Other 
issues which are worth considering are variable biosensor life, need for frequent calibration, and limited 
working range (BG levels between 40  and  400 mg/dL). Their efficacy has still not been evaluated in 
patients with severe oedema due to hypoalbuminemia and hepatic failure, in whom the correlation 
between blood and interstitial fluid might be altered and inaccurate[23]. Additionally, the presence of 
hypoxemia and shock may also affect their accuracy.

These shortcomings can be overcome by using intravenous CGM systems, which are more accurate, 
making frequent monitoring possible in critical patients without putting extra-time load on nursing 
staff. In addition, these devices can also be integrated with closed-loop systems providing an automated 
insulin delivery to improve BG management[32]. However, their application is also associated with a 
high incidence of sensor failure, loss of venous integrity, and logistic issues[33]. In addition, finding a 
suitable vein may also be an issue in critically ill patients[34].

The evidence supporting the clinical effectiveness and efficiency of these systems in ICU patients is 
still limited. Their impact on clinically relevant outcomes like ICU mortality, length of stay (LOS) in 
hospital and ICU remains unknown[35]. Moreover, validation of these systems in various ICU 
populations may lead to their widespread use, considering the advantages of avoiding hypoglycemia, 
hyperglycemia, and GV and reducing nursing loads with less need for finger pricks. Even though these 
devices may not be beneficial to all critically ill patients, they may benefit some specific ICU patients 
such as those on intravenous insulin or corticosteroids, and patients with end-stage organ dysfunction 
(renal or liver), post-operative neurosurgery or those with traumatic brain injury and post-organ 
transplant[36-38]. CGM is effective and safe in critically ill COVID-19 patients and may significantly 
reduce the need for bedside BG testing; thus, it is recommended to use CGM in these patients to reduce 
nursing exposure[39].

GLYCAEMIC INDICES
Traditionally glycemic control has been defined as highest and lowest target BG levels with an aim to 
prevent episodes of hypoglycemia and hyperglycemia. In recent years, studies have evaluated other 
aspects to dysglycemia and their association with clinical outcomes in critically ill patients. Variability of 
these indices is a predictor of worse patient outcomes, independent of frequency and severity of 
hypoglycemia and hyperglycemia[40,41]. Even though the current glycemic management guidelines do 
not recommend any specific target for many of these indices, based on the current data some 
suggestions may be made to optimize glycemic control in critically ill patients (Table 4)[8,41-45].

BG targets
Safe BG levels have been challenging to define in critically ill patients. Till recent years glucose control 
in ICUs has swayed between tight glycemic control (avoiding hyperglycemia) to liberal glucose control 
(avoiding hypoglycemia) in different case mix populations[46,47].

The American Diabetes Association recommends that a BG level below 180 mg/dL is acceptable for 
ICU patients[8]. In patients with sepsis, the recent version of surviving sepsis guidelines recommend 
targeting BG levels between 140 and 180 mg/dL and initiating intravenous insulin therapy if BG levels 
are above 180 mg/dL for two consecutive readings[9]. They further recommend measuring BG levels 
every 1-2 h, especially in the first 24 h after admission.

GV
The GV can be defined as the measurement of fluctuations of BG over a given interval of variable time. 
Markers of GV like standard deviation, coefficient of variation, mean amplitude of glycemic excursion, 
and one time-weighted index, the glycemic lability index (GLI), are significantly associated with higher 
risk of infections and mortality in medical-surgical ICU patients, even though the mean BG failed to 
show any association. Additionally, the patients in the upper quartile of GLI had the strongest 
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Table 3 Advantages and disadvantages of continuous glucose monitoring

Advantages Disadvantages

Real-time interstitial glucose Lag time of 15 min from blood glucose, in transdermal and subcutaneous devices (Caution 
if levels are fluctuating rapidly)

Deviation from arterial blood glucose is less than 20% Direct vascular sampling continuous monitoring devices are still evolving 

Provides long-term day-to-week blood glucose levels Frequent calibration (2-3 times per day)

Reduced hypoglycaemic events Biosensors have limited life (around 7 d)

Less labour intensive Limited glycaemic range 40-400 mg/dL 

Evolving clinical evidence (especially in critically ill patients)Can reduce contact of care-givers reducing cross infections 
and risk to care-givers 

Invasive device, risk of infection when using intravenous devices

Table 4 Suggested targets for various glycemic indices in critically ill patients

Glycemic indices Suggested targets

Blood glucose 140-180 mg/dL

Time in range More than 70% 

Less than 25.89 mg/dL in type 2 diabeticsGlycaemic gap 

Less than 40 mg/dL in community acquired pneumonia

Glycaemic lability Below median (40 mmol/L2/h/week)

Stress hyperglycaemia ratio Less than 1.14 in sepsis patients

Mean amplitude of glycaemic excursions Less than 65 mg/dl in sepsis patients

Coefficient of variation Less than 36% 

association with infections [odds ratio (OR): 5.044, P = 0.004][41]. Even after correcting for 
hypoglycemia, GV has been reported to be an independent predictor of worse patient outcomes. In fact, 
GV has been shown to be a precursor of hypoglycemia, as the risk of hypoglycemia is 3.2 times higher in 
patients with increased GV[48].

TITR
TITR is the percentage of time where the BG stays in the pre-defined glycemic range, calculated per 
patient per day and expressed as a percentage of time spent. Glucontrol was one of the earliest 
randomized control trials (RCT) to show that TITR above 50% was independently associated with 
improved survival rates in critically ill patients irrespective of whether tight (80–110 mg/dL) or liberal 
(140–180 mg/dL) glycemic control was applied[49].

In another study, when three thresholds of TITR of 30%, 50%, and 70% were compared in 784 medical 
surgical patients, it was reported that there was significantly reduced organ failure with TITR of 50%. 
Additionally, a TITR above 70% further resulted in significantly improved survival rates[42]. Similarly, 
improved outcomes in terms of reduced sternal wound infection and LOS on invasive mechanical 
ventilation (IMV) and in ICU has been reported in cardiac surgery patients who could achieve TITR 
above 80%[22]. The exact cut-offs remain to be defined as different studies have suggested TITR from 
50%-80% to improve patient outcomes[22,42].

Glycemic gap
Glycemic gap is calculated by subtracting HbA1C-derived average glucose = [(28.7 × HbA1c) - 46.7] 
from plasma glucose at admission. In a cohort of 200 patients with type 2 diabetes mellitus admitted to 
ICUs, the glycemic gap was found to be a predictor of multi-organ dysfunction syndrome (MODS), 
acute respiratory distress syndrome, shock, upper gastrointestinal bleeding, and acute renal failure 
(ARF). A glycemic gap of 25.89 mg/dL was predictive for the combined occurrence of mortality, MODS, 
and ARF[43]. Similarly, in a retrospective analysis of patients with community-acquired pneumonia, an 
elevated glycemic gap of 40 mg/dL had an OR of 3.84 for the incidence of a composite of adverse 
outcomes, which included length of IMV, and LOS in the ICU and hospital[50].

Glycemic lability
A glycemic lability (GL) is a measure of GV which records the change in glucose level over weeks 
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calculated from all recorded glucose values. In a multicentric study, where GL and time-weighted 
average BG were calculated and analyzed, compared to patients with GLI below median 40 (mmol/L2/
h/week), patients with GLI above this median had a significantly longer ICU stay and a higher ICU and 
hospital mortality. There was no significant association between GLI and mortality when comparing 
patients with and without diabetes and baseline HbA1c values. It was found that high GV, as 
determined by the GLI, was associated with increased hospital mortality independent of average BG, 
age, diabetes status, HbA1c, hypoglycemia, and illness severity[44].

Stress hyperglycemia ratio
Stress hyperglycemia ratio (SHR) is defined as the ratio of plasma glucose to average glucose derived by 
HbA1C [(1.59 × HbA1c) – 2.59], where HbA1c is used to estimate average glucose concentration over the 
prior three months. It accounts for acute stress-induced hyperglycemia and long-standing glycemic 
control. GLI and SHR are indices which account for premorbid glycemic control. Preliminary reports 
suggest that SHR may be a better marker of patient outcomes than hyperglycemia[51]. In specific 
patient populations, SHR has been shown to be a predictor of hemorrhagic conversion in acute ischemic 
stroke and poor outcomes in acute coronary syndrome[52,53]. In diabetic patients with sepsis, a high 
SHR (≥ 1.14) has been shown to be predictive of mortality[45]. While the exact cut-off value for SHR 
remains unclear, different SHR definitions have been used in the literature[54].

SHR1 = fasting glucose (mmol/L)/glycated haemoglobin (HbA1c) (%)
SHR2 = fasting glucose (mmol/L)/[(1.59 × HbA1c) - 2.59]
SHR3 = admission BG (mmol/L)/[(1.59 × HbA1c) - 2.59]
SHR1 and SHR2 have been shown to be independently associated with worse clinical outcomes in 

patients with ischemic stroke after intravenous thrombolysis. Furthermore, SHR1 has been shown to 
have a better predictive performance for outcomes as compared to other SHR definitions[54].

Diabetic status and glycemic targets
The effect of acute and chronic hyperglycemia on modifying glycemic targets to optimize glycemic 
control in critically ill patients is yet to be studied in detail. The results from a study by Krinsley and 
Preiser[55] suggested that TITR greater than 80% for a BG target between 70 and 140 mg/dL was 
strongly associated with increased survival in critically ill patients without diabetes mellitus. However, 
such a relationship was not found in diabetic patients[55]. Lanspa et al[56] also reported that a TITR 
greater than 80% was associated with reduced mortality in non-diabetic patients and in those with well-
controlled premorbid diabetes (judged by admission HbA1c). However, no such association could be 
shown in patients with poorly controlled diabetes[56].

In another study, a lower hospital mortality rate was observed in patients with higher (> 7%) 
preadmission levels of HbA1c and higher time-weighted average glucose concentration in critically ill 
patients. This suggests that patients with chronic hyperglycemia may benefit from more liberal glucose 
control and may tolerate a higher BG level[57]. However, such claims need to be better evaluated in 
large-scale trials before they are applied in routine clinical practice.

ROLE OF ARTIFICIAL INTELLIGENCE
Artificial intelligence (AI)-based applications and devices have been in clinical use to manage non-
critically ill diabetic patients for a long time. These devices have been used in patient-centered care to 
make an early diagnosis, predict complications, and even engage patients to ensure treatment 
adherence. There has been a heightened interest in AI applications for critically ill patients in the last 
few years. Even though there is insufficient evidence for its routine use, AI is increasingly utilized and 
can potentially change the future of critical care glucose management (Table 5)[58].

In ICU, frequent blood sampling and insulin dose adjustments are required to maintain glycemic 
control, increasing nursing workload and chances of error. AI has the potential to improve glycemic 
control while reducing nursing workload and errors. The LOGIC-1 and LOGIC-2 RCTs showed that 
software-guided algorithms could achieve better glycemic control than nurse-guided protocols without 
increasing the risk of hypoglycemia[59,60].

AI-based insulin bolus calculators and advisory systems like MD-Logic controllers are commercially 
available and have been shown to provide better glycemic control and reduce nocturnal hypoglycemic 
events[61]. Software-based algorithms have been used to regulate insulin infusion based on the patient’s 
glucose levels. Model predictive controls use algorithms based on patient parameters like their age and 
diabetes status, along with the dose of dextrose administered and the insulin sensitivity, which can 
predict the patient’s response to hyperglycemia and insulin therapy and adjust the insulin dose 
accordingly. These algorithms can improve the accuracy of predicting hyperglycemia, reduce the need 
for repeated blood sampling, and provide highly individualized insulin therapy[62,63].

CGM devices (Dexcom G6™) have been integrated with automated insulin suspension using AI 
algorithms (Basal-IQ™ technology). AI-based algorithms can predict when the BG levels may fall below 
the predefined levels and can alter the insulin infusion accordingly[64]. These CGM regulated insulin 
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Table 5 Possible critical care applications of artificial intelligence in diabetes management

Potential applications Clinical examples

Blood glucose monitoring and prediction of 
adverse glycaemic events

Early detection of hypoglycaemia and hyperglycaemias e.g., MD-Logic controller

Blood glucose control strategies Software-based algorithms for insulin dosing e.g., proportional-integral-derivative models, Glucose 
Regulation for Intensive Care Patients, and Model predictive controls

CGM regulated insulin infusion system predicting hypoglycaemia and regulating insulin dosesInsulin bolus calculators and advisory 
systems

Artificial intelligence based artificial pancreas

Prediction of sepsis and risk of nosocomial infections

Risk of renal and cardiac complications like acute kidney injury and myocardial infarction

Need for ICU admission

Risk and patient stratification

ICU mortality

CGM: Continuous glucose monitoring, ICU: Intensive care unit.

infusion systems have been shown to reduce the episodes of hypoglycemia effectively[65].
AI-based artificial pancreas (AP) has been shown to provide comprehensive glycemic control by 

effectively controlling BG levels, reducing wide glucose excursions, reducing episodes of hypoglycemia 
and hyperglycemia, and increasing the percentage of TITR. Even in critically ill patients, AP achieved 
stable glucose control and reduced GV while reducing the episodes of hypoglycemia or hyperglycemia 
and the need for frequent sampling, thereby reducing the nursing workload[66-68]. Whether the use of 
AP can improve clinical outcomes and has a favorable cost-benefit ratio, still needs to be evaluated.

In addition to predicting long-term or chronic complications, AI may also be instrumental in 
predicting acute life-threatening complications like acute myocardial infarction in patients with diabetes
[69]. AI using a convolutional neural network has been shown to be highly accurate in predicting 
mortality in critically ill diabetes patients with an area under the curve of 0.97[70,71]. However, these 
models need to be compared to more widely used and validated models for mortality prediction in ICU 
patients.

AI applications may improve patient care and outcomes and improve glycemic control while 
reducing nursing workload. As AI-based devices may enable us to monitor and institute therapy 
remotely, they may be particularly useful in managing highly infectious diseases like COVID-19. 
However, AI is still in the early stages of development and AI-based applications still need to be 
thoroughly evaluated and validated in critically ill patients. In addition, the need for more regulations, 
recommendations, and guidelines for using AI limit its applicability. Safety, liability, and reliability 
issues pertaining to AI application need to be better assessed before it is integrated into the existing 
healthcare infrastructure and becomes acceptable at a larger scale.

CONCLUSION
ICU patients are a unique population with dynamic clinical conditions and therapeutic needs. High 
physiological stress, raised inflammatory cytokines, varying nutritional intake, and fluctuating organ 
functions make glycemic control challenging in these patients. Guidelines may aid us in providing a 
generalized approach to glycemic control, but there may be a need for a more personalized approach to 
reducing the harmful effects of dysglycemia. The newer glycemic indices like GV and TITR may allow 
us to achieve patient-centered care with better glycemic control. However, their exact targets and impact 
on patient outcomes need to be better evaluated before they are routinely recommended. The use of AI-
based applications may provide a more comprehensive solution in the future, but presently close 
monitoring and early detection and management of complications constitute the mainstay of glucose 
management.
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Abstract
Type 1 diabetes mellitus (T1DM) is a chronic endocrine disease that results from 
autoimmune destruction of pancreatic insulin-producing β cells, which can lead to 
microvascular (e.g., retinopathy, neuropathy, and nephropathy) and macro-
vascular complications (e.g., coronary arterial disease, peripheral artery disease, 
stroke, and heart failure) as a consequence of chronic hyperglycemia. Despite the 
widely available and compelling evidence that regular exercise is an efficient 
strategy to prevent cardiovascular disease and to improve functional capacity and 
psychological well-being in people with T1DM, over 60% of individuals with 
T1DM do not exercise regularly. It is, therefore, crucial to devise approaches to 
motivate patients with T1DM to exercise, to adhere to a training program, and to 
inform them of its specific characteristics (e.g., exercise mode, intensity, volume, 
and frequency). Moreover, given the metabolic alterations that occur during acute 
bouts of exercise in T1DM patients, exercise prescription in this population should 
be carefully analyzed to maximize its benefits and to reduce its potential risks.

Key Words: Type 1 diabetes mellitus; Exercise; Resistance training; High-intensity interval 
training; Aerobic training; Quality of life
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Core Tip: Our manuscript analyzed the benefits of physical exercise for patients with type 1 diabetes 
mellitus. Benefits of different types of physical exercise (e.g., aerobic training, resistance training, and 
high-intensity interval training) and the possibilities of application for each were analyzed. We discussed 
the level of physical and physiological fitness as well as the implications of exercise on quality of life, 
quality of sleep, enjoyment of exercise, and motivation towards physical exercise. Finally, a practical 
proposal of a physical exercise program for patients with type 1 diabetes mellitus was created.
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INTRODUCTION
Type 1 diabetes mellitus (T1DM) is a chronic autoimmune disease that results from the immunological 
destruction of pancreatic insulin-producing β cells, which can lead to microvascular (e.g., retinopathy, 
neuropathy, and nephropathy) and macrovascular complications (e.g., coronary arterial disease, 
peripheral artery disease, stroke, and heart failure) as a consequence of chronic hyperglycemia[1]. 
According to the International Diabetes Federation and World Health Organization, 25-45 million adults 
(> 20-years-old) suffer from T1DM worldwide[2]. In addition, it is estimated that the number of people 
with T1DM in the world will increase 25% by 2030[3].

Despite the widely available and compelling evidence that regular exercise is an efficient strategy to 
prevent cardiovascular disease and to improve functional capacity and psychological well-being in 
people with T1DM, over 60% of individuals with T1DM do not exercise regularly[4,5]. Lack of time, fear 
of a hypoglycemic event, and loss of glycemic control due to inadequate knowledge of exercise variable 
management are the main barriers to increasing physical activity in patients with T1DM[6]. It is, 
therefore, crucial to devise approaches to motivate patients with T1DM to exercise, to adhere to a 
training program, and to inform them of the specific characteristics of the training program (e.g., 
exercise mode, intensity, volume, frequency). Moreover, given the metabolic alterations that occur 
during acute bouts of exercise in T1DM patients, exercise prescription in this population should be 
carefully analyzed to maximize benefits and to reduce potential risks.

AEROBIC EXERCISE AND T1DM
Aerobic exercise guidelines and benefits
Aerobic exercise is defined as continuous physical exercise of moderate intensity (50%-70% of maximum 
heart rate) and of high volume (> 20-30 min), which involves large muscles and requires the presence of 
oxygen to obtain energy[7]. Examples of this exercise mode are cycling, swimming, walking, or running 
performed at a moderate intensity[7]. This type of exercise has traditionally been recommended for 
specific populations, such as T1DM. In fact, the American Diabetes Society recommends at least 150 min 
per week of aerobic exercise for better glycemic regulation and improvement of the disease[8].

Aerobic exercise has positive effects on T1DM patient health, improving insulin sensitivity, body 
composition, endothelial, pulmonary, and cardiac function, as well as cardiorespiratory fitness[7] 
(Figure 1). It is obvious that aerobic exercise training may robustly protect people with T1DM from 
several complications associated with cardiovascular disease, the main cause of mortality and morbidity 
in this population[9].

Aerobic exercise in T1DM population: General considerations
T1DM patients must consider various factors before performing continuous moderate-intensity exercise 
safely. Before starting the training program, certain factors must be considered. The patient’s physical 
condition level/capacity, previous exercise experience, the duration and intensity of the current 
exercise, blood glucose at that given moment, the dose of pre-exercise administered insulin, and finally 
the general diet in the preceding period[4,10]. Exogenously administered insulin allows glucose to enter 
into muscle cells, consequently generating the energy to maintain movement since the entire 
metabolism during and after any given exercise will be altered.

During aerobic exercise, blood glucose enters the muscles to meet the needs for increased energy 
generation in the presence of oxygen initiating aerobic glycolysis. Physical exercise can increase muscle 
glucose demand and consumption up to 50-fold through an increase in insulin sensitivity and an 

https://www.wjgnet.com/1948-9358/full/v14/i5/539.htm
https://dx.doi.org/10.4239/wjd.v14.i5.539


Martin-Rivera F et al. Exercise and type 1 diabetes mellitus

WJD https://www.wjgnet.com 541 May 15, 2023 Volume 14 Issue 5

Figure 1 Main benefits of aerobic training, high-intensity interval training, and resistance exercise in type 1 diabetes mellitus patients. 
HIIT: High-intensity interval training.

increase in insulin-independent muscle glucose transport[11]. Thus, insulin secretion in people without 
a T1DM pathology is reduced. This happens precisely to compensate for the increase in insulin 
sensitivity and glucose transport caused by physical exercise itself, so the reduction in blood insulin 
does not restrict the supply of glucose to the muscles[4].

Nevertheless, to maintain metabolic homeostasis and to avoid hypoglycemia, different mechanisms 
are activated that regulate blood glucose concentration. Four metabolic pathways are triggered to 
ensure energy production: (1) Glucose mobilization (from glycogen stores) from the liver; (2) fatty acid 
mobilization from adipose tissue; (3) gluconeogenesis (production of new glucose molecules) from non-
carbohydrate (CHO) precursors (amino acids, lactate, and glycerol); and (4) blocking glucose entry into 
cells and promoting fatty acids (an alternative is oxidation for energy generation) to be used in energy 
generation[12]. These mechanisms are orchestrated by glucagon, cortisol, growth hormone (GH), 
epinephrine, and norepinephrine. When the blood glucose concentration decreases, these hormones 
respond by activating mechanisms to restore the imminent hypoglycemia. Glucagon increases liver 
glucose production and stimulates gluconeogenesis, while cortisol-GH balance stimulates gluconeo-
genesis and fatty acid mobilization. Epinephrine and norepinephrine (catecholamines) are responsible 
for the catabolism of glycogen (glycogenolysis) and lipids (lipolysis) and for reducing muscle glucose 
consumption. On the other hand, norepinephrine reduces insulin secretion so that it does not interfere 
with the increase in blood glucose caused by the aforementioned hormones[13].

Important differences in the metabolic behavior of T1DM patients during aerobic exercise must be 
considered. Furthermore, physical exercise response depends on exercise intensity and volume, CHO 
intake, as well as type and amount of exogenous insulin[4]. Unlike in the healthy population, during 
aerobic exercise in T1DM patients exogenous insulin cannot decrease similarly to the pattern of non-
T1DM individuals due to non-insulin-dependent muscle glucose transport and insulin sensitivity 
increase[11]. Moreover, given the pharmacokinetics and peak action of exogenous insulin and 
considering that exercise intervention is usually performed between 0-4 h after insulin injection, insulin 
levels are unpredictable. In addition, especially when injected near currently active musculature, insulin 
can be rapidly absorbed by subcutaneous tissue, rapidly transferring it into the bloodstream when 
exercise activity is initiated with unforeseeable results[12].

The abnormally high blood insulin levels during physical exercise in T1DM result in an exaggerated 
entry of glucose into the musculature and the inhibition of endogenous glucose production and fatty 
acid mobilization mediated by cortisol, GH, glucagon, and catecholamines. Under normal conditions, 
these hormones act by increasing the blood glucose concentration in the face of low insulin levels, but in 
T1DM these hormonal mechanisms are impaired[4,12]. Consequently, an excessive drop in blood 
glucose concentration or even hypoglycemia (< 70 mg/dL) may occur during physical exercise, which 
depending on its severity can cause dizziness, fainting, and coma. Such hypoglycemic events can still 
occur hours after the end of physical exercise if appropriate measures are not taken.

After physical exercise, muscle glucose consumption is reduced, but insulin sensitivity remains high. 
This fact, together with the need to replenish muscle glycogen stores that have been consumed during 
physical exercise, can lead to post-exercise hypoglycemia and even occur while asleep at night as insulin 
sensitivity tends to be biphasic (occurring immediately after physical exercise and 7-11 h later). People 
with T1DM may potentially experience 42-91 hypoglycemic episodes annually. Moreover, approx-
imately 12% of T1DM patients have at least one severe hypoglycemia episode per year[14]. The fear of 
these episodes makes people with T1DM unwilling to participate in this type of exercise[15].
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In summary, the appropriate course of action for people with T1DM in order to be able to safely 
engage in aerobic physical exercise is based on ensuring an adequate CHO intake prior to physical 
exercise that elevates blood glucose levels to above 126 mg/dL but not over 270 mg/dL, in tandem with 
a reduction of insulin dosage before training to counteract the increase in insulin sensitivity and the 
intensification of non-insulin dependent glucose transport mechanisms occurring during physical 
exercise[4]. To this end, it is important to take at least two blood glucose measurements, one half an 
hour before and a second 10 min later. If the physical exercise is long-lasting, an extra supply of glucose 
and fructose will be essential during the exercise. After the end of physical exercise, insulin reduction 
and CHO intake is again essential to prevent post-exercise hypoglycemia[16].

When the adjustment in insulin dose and CHO intake becomes imbalanced, diabetic ketoacidosis may 
occur. In the presence of reduced insulin levels and a high concentration of counter-regulatory 
hormones such as epinephrine or glucagon, glucose is unable to enter the muscles, among other tissues, 
and as a result non-esterified fatty acids and glycerol are produced from the catabolism of triglycerides. 
Glycerol is used as a substrate in gluconeogenesis, but fatty acids catalyzed by carnitine are oxidized to 
ketone bodies in the liver as an alternative means of obtaining energy. Hyperketonemia may lead to 
serious health sequalae[17] such as dizziness, vomiting, and nausea, and when severe cerebral edema or 
myocardial injury may result. It is therefore imperative to adjust insulin dosages suitably to ensure safe 
exercise activity and avoid complications due to either excess or deficiency of the hormone[18].

High-intensity interval training and T1DM
High-intensity interval training (HIIT) is a type of physical exercise with a recent increase in popularity 
among fitness enthusiasts (ranked in the top 3 of world fitness trends)[19] and sport science academics 
alike, with almost 700 publications in PubMed. Despite this recent surge in acclaim, HIIT modalities 
have been employed in sports performance training since the 1920s[20]. The physiological impact of 
HIIT has recently been informed in both clinical and sport contexts[21]. HIIT presents a unique 
opportunity to obtain cardiorespiratory and metabolic benefits comparable to those obtained by classic 
moderate-intensity continuous training[22] through lower training volumes, addressing the main 
barrier (lack of time) cited by most people for not doing physical exercise. HIIT consists of performing 
short-to-moderate (between 8 s and 4 min) bouts of any given physical exercise (mainly endurance 
exercises) at high intensity (i.e., above the anaerobic threshold) interspersed by brief resting intervals 
performing low intensity activities such as walking or passive rest periods (ranging from 4 s to 60 s)[23].

Several different HIIT protocols have been proposed throughout the scientific literature based on 
exercise type, exercise intensity, volume (time duration) and number of exercise intervals, intensity and 
duration of rest periods, number of sets, length of each set, rest between sets, and exercise intensity 
during active rest periods[24]. Despite the high variability observed, the considerable majority of HIIT 
protocols use high-intensity exercise intervals performed between 10 s and 4 min with 30-60-s rest 
periods between sets. These training programs pursue the accumulation of short bouts of high-intensity 
exercise (> 90% of VO2max) otherwise not sustainable for long time periods, interspersing short resting 
periods that allow the high-exertion intervals to be completed at the desired intensity. A complete 
standard HIIT session usually takes/requires between 20-40 min, including rest periods, of which at 
least 4 min must be at high intensity (considering the sum of all intervals)[20,25,26].

The anaerobic energy production of HIIT, as high intensity intervals are usually performed above 
90% of VO2max, where the initial substrates used are free ATP in the muscle fiber and phosphocreatine 
determine the acute responses in relation to the metabolism and endocrine system. An aerobic 
component is also necessary as recovery intervals depend on it[20]. Hence, HIIT has been proposed as a 
potentially effective tool to improve blood pressure, weight control, glucose regulation, cardiores-
piratory fitness, and psychological well-being in chronic pathologies such as hypertension[27], obesity
[28], metabolic syndrome[29], T2DM[30], heart failure[31], chronic obstructive pulmonary disease[32], 
and mental illness[33]. However, despite the benefits HIIT has demonstrated in other chronic diseases. 
The effect that this type of training has on people with T1DM has not yet been extensively studied[4].

High-intensity stimuli lead to an increase in catecholamine secretion, inhibiting insulin-mediated 
glucose consumption and accelerating gluconeogenesis. As a result, obtaining energy from glucose 
without the intervention of oxygen (anaerobic glycolysis), muscle fibers and blood lactate concen-
trations increase. This process also inhibits insulin-mediated glucose consumption and promotes 
glucose production by the liver. Taken together, these mechanisms contribute to a much safer glycemic 
regulation during and after physical exercise in people with T1DM compared with moderate-intensity 
aerobic exercise, preventing the occurrence of hypoglycemia[1]. In addition, oxygen consumption 
remains elevated and helps the subject to revert to a regular basal metabolic state after training through 
lactate clearance, increased cardiopulmonary function, increased body temperature, enhanced 
catecholamine effect, and glycogen re-synthesis, using lipids as an energy substrate[34].

Despite being an exercise mode that has been little studied in the T1DM population, HIIT seems to 
have positive cardiovascular and metabolic effects in people with this condition. Reported benefits 
include increases in VO2max, improvements in vascular function, psychological well-being, body 
composition, cardiac function, and antioxidant and anti-inflammatory markers, along with a reduction 
in the amount of insulin administered[35-40] (Figure 1). All the above, along with the prevention of 
hypoglycemia and the short time required can overcome the major barriers that people with T1DM 
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present against physical exercise[6,15], positioning HIIT interventions as a useful therapy for this 
population, it may be a better alternative compared to aerobic or resistance exercise training, which pose 
a higher risk of hypoglycemia and require more time, although they are not mutually exclusive.

RESISTANCE TRAINING AND T1DM
Resistance exercise guidelines and benefits
Resistance exercise refers to the exercise mode in which muscles produce tension to accelerate, 
decelerate, or maintain immobility for any given resistance. This resistance could be weights, bands, or 
even the subject’s own bodyweight working against gravity[41]. Depending on training variable 
manipulation (exercise volume, intensity, mode of contraction, movement velocity, and rest intervals 
between sets), a specific resistance training program might result in muscle hypertrophy, strength, 
mechanical power, and endurance enhancements[42]. Resistance training is currently being 
recommended for patients with T1DM by the American Diabetes Association and the American College 
of Sports Medicine. The recommendation is performing on 2-3 non-consecutive training days 
prioritizing large muscle groups, with at least 8-10 exercises in 1-3 sets of 10-15 repetitions at an 
intensity ranging from 50% to 75% of one-repetition maximum[12,43].

There is a known relationship between skeletal muscle mass and higher-level functional capacity[44]. 
People with T1DM are susceptible to muscle mass loss and sarcopenia faster than people without this 
disease, even without having developed disease-specific complications[45]. Resistance training might 
therefore address those fundamental deficits in this population[46]. Apart from muscle mass increase, 
one of the main benefits of resistance training in T1DM patients is the improvement of bone density, 
essential in this population because hyperglycemia in T1DM patients causes bone mineral mass loss 
earlier than people of the same age, physical condition, and body composition[47,48]. It is also well-
known that resistance training improves body composition (i.e., reduced fat mass and increased muscle 
mass)[49] thus preventing the development of overweightness, lately noted as a prevalent issue in this 
population[50] (Figure 1). In addition to the significant improvements observed in a functional capacity 
after accomplishing a resistance training program, another fundamental benefit of resistance training is 
its impact on cardiovascular health through the improvement in the lipid profile and vascular function
[49]. This is relevant for T1DM patients since cardiovascular disease is the leading cause of mortality in 
this population[51,52]. Moreover, an adequate resistance training program enhances functional capacity 
by improving daily activity functionality, preventing falls, injuries and cardiovascular diseases, and 
increasing independence[12,49].

Despite the lack of studies analyzing the acute response to resistance training in people with T1DM
[49], it should be noted that the hormonal response and the overwhelmingly anaerobic metabolism 
cause a much slower reduction in glucose levels during resistance training than that occurring during 
aerobic exercise in people with T1DM. Similarly, resistance training is associated with a much more 
stable post-exercise glucose concentration in comparison to aerobic exercise (hypoglycemia during and 
after exercise), which would be reduced with this exercise mode[53]. The increases in catecholamine 
concentration during resistance training and consequently the increase in endogenous glucose 
production allows T1DM patients to more easily adjust exogenous insulin dosage and CHO intake than 
with aerobic exercise.

However, certain types of resistance training with high volume and low intensity might induce a 
decreased hormonal response, but resistance training with sufficiently high intensity and low volume is 
associated with an enhanced hormonal response, leading to higher hepatic glucose production. 
Moreover, an initial reduction in exogenous insulin or CHO intake before the resistance training 
program to prevent the drop in blood glucose is not necessary as opposed to what typically occurs with 
aerobic exercise. Despite this, it may still be necessary to control the hyperglycemic tendency after 
resistance exercise by increasing the insulin dose and postponing the intake of CHO[4]. However, the 
acute effect of resistance training in people with T1DM has not been elucidated yet, and more research is 
warranted to understand the specific underpinning mechanisms of the insulin/CHO ratio in association 
with different types of resistance training completed[14,49] (Figure 1).

PRACTICAL APPLICATIONS
Conditional and psychological assessment
A comprehensive pre-exercise screening should be performed before designing an individualized 
training program for each T1DM patient. This should be preferably performed by sports science profes-
sionals with proper expertise in T1DM. Prior evaluation should include an anamnesis assessment and 
physical examination as well as a cardiopulmonary function test. Patients should also be screened for 
risk factors or presence of cardiovascular, respiratory, or metabolic disorders apart from T1DM. When 
the medical approval for the implementation of an individualized training program has been obtained, 
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Table 1 Evaluation protocols in type 1 diabetes mellitus exercise programming

Parameter Measures Comments

Aerobic fitness

Incremental test Workload and steady-state HR to predict VO2peak; RPE Treadmill or cyclo-ergometer; Gas collection system and HR 
monitor necessary. Begin with unloaded warm-up

6-min walking test Total distance walked, HR, RPE, BP HR and BP monitor necessary

Muscular strength/power

Indirect repetitions 
maximum testing

Maximal weight lifted for < 10 repetitions Use machines. Remind patients to exhale on concentric action 
and avoid holding their breath

Force-Velocity profile Execution velocity at a given load Encoder necessary

Timed up and go test Time to stand from a chair, walk a 3-m round trip, and 
sit back down on the same chair

Results correlate with gait speed, balance, functional level, the 
ability to go out

30-s sit to stand test Number of times patient comes to a full stand with 
arms crossing a standard size chair in 30 s

A functional measure of lower limb strength, power, and muscle 
endurance

Flexibility/mobility

Goniometry Range of motion Focus on flexibility of hamstrings, hip flexors, ankle plantar 
flexors, shoulder adductors, and internal rotators

WBLT Ankle dorsiflexion No footwear; no equipment

Psychological well-being

SF-36 Quality of life Eight-domain profile of functional health and well-being scores

PSQI Sleep quality Seven-domain profile of sleep quality and related disorders

BP: Blood pressure; HR: Heart rate; PSQI: Pittsburgh Sleep Quality Index; RPE: Rating of perceived exertion; SF-36: Short Form Health Survey-36; WBLT: 
Weight-bearing lunge test.

the patient’s cardiorespiratory, neuromuscular and functional performance should be tested (Table 1). 
Similarly, it is important to use tools to assess important psychological aspects such as quality of life and 
sleep quality, since these are issues that can affect people with T1DM (Table 1).

Practical recommendations for exercise prescription in T1DM patients
An individualized exercise program should be designed to address the patient’s goals (e.g., improve 
strength, endurance, balance, coordination, etc.) considering the patient’s baseline impairments and 
capabilities. The exercise program should include all the necessary training variables, such as frequency, 
volume, intensity, exercise mode, and precautions to be considered, prior to and after the program. It is 
important to bear in mind that in practice blood glucose levels may show a variable response for the 
same CHO-insulin adjustments. A multitude of factors, such as the food previously eaten, hours of 
sleep, and stress, exert varying influences. Consequently, it is necessary that, blood glucose should be 
analyzed in each training session, and necessary actions should be taken.

At times, it will be necessary to adapt the training to the expected behavior of blood glucose. For 
example, if a patient with T1DM has forgotten to lower the pre-training insulin dose and aerobic 
exercise was planned, it will be necessary to modify the training to high-intensity interval work to 
compensate for the drop in blood glucose that would have occurred with aerobic exercise. On the other 
hand, if insulin adjustment has not occurred or the patient is at high blood glucose values without 
circulating insulin, intense resistance training or HIIT should be substituted by aerobic tasks. General 
recommendations for practical application are shown in Table 2.

A patient’s previous experience and training status must be considered when designing any training 
program. In the first training weeks, the program should focus on basic general conditioning to improve 
technique in basic resistance exercises, such as squats, lunges, deadlift, and other press and pull 
movements. The first adaptations to resistance training are acquired with simple exercises (e.g., weight-
stack machines or exercises performed with simple materials such as elastic bands). Simultaneously, 
HIIT performed with low-impact exercises, such as cycling or rowing, is an excellent option since this 
does not require significant insulin-CHO adjustments and is safe for the lower limb joints. It is essential 
that the person increases daily activities (e.g., taking the stairs, walking as much as possible, reducing 
sitting time). Moreover, before each training session, a warm-up consisting of unloaded pedaling or 
cranking, general joint mobility, and dynamic stretching should be performed. Controlling daily load by 
quantifying the total training session rating of perceived exertion as well as glycemia levels before each 
session is recommended.
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Table 2 Practical recommendations for exercise prescription in type 1diabetes mellitus patients

Aerobic exercise1 HIIT Resistance exercise

Exercise intensity: Start with an intensity of 
40%-70% of VO2max and gradually increase 
to 60%-80% of maximum heart rate. RPE of 
11-13 is recommended

Exercise intensity: > 90 VO2max, 90%-95% of 
maximum heart rate, and an RPE of 15-18

Exercise intensity: 50%-75% 1RM, RPE of 7-8. Participants 
should perform the exercises as fast as possible during the 
concentric phase (maximal movement intention). A 20% 
loss in concentric velocity among the repetitions of each set 
may be established as a limit in the volume at the given 
intensity

Exercise volume: 10-40 min duration is 
suggested. At first, it can be divided into 
three bouts of 10-12 min per session

Exercise volume: 12-20 sets. Bouts of 30 s 
interspersed by 60 s rest (ratio 1:2)

Exercise volume: 1-3 sets of 10-15 reps; 8-10 exercises of 
large muscles are essential

Exercise mode: Low impact cyclo-
ergometer, arm ergometer, arm-leg 
ergometer, aquatic exercise, treadmill 
walking, rowing, and running

Exercise mode: Aerobic exercises such as 
cycling, running, rowing, etc. First, HIIT must 
be performed in low impact conditions, such 
as cyclo-ergometer or aquatic environment, 
aiming for at least a total of 4-min at high 
intensity

Exercise mode: Prioritize lower limb exercises and multi-
joint exercises. Exercise velocity must be initially 
moderated (1-2 s concentric, 1-2 s eccentric)

Training frequency: 1-3 sessions per week; 
as per patient tolerance

Training frequency: 1-3 sessions per week Training frequency: 2-3 sessions per week

Progression: During the first 1-4 mo, 
progression should be achieved by 
increasing the duration or frequency of 
exercise sessions. After this time, test 
whether higher intensity in continuous 
exercise is tolerated

Progression: Increase total training volume 
gradually, then increase the density by 
reducing active rest intervals or increasing the 
length of the HIIT bouts, as per patient 
tolerance

Progression: Begin with weight-stack machines, elastic 
bands, and weightbearing exercises. Increase load and 
progress to more technically demanding exercises. An 
exercise intensity of resistance can be securely added by 2% 
to 5% when 15 repetitions can be properly performed in 
successive training sessions

1When the insulin-carbohydrate ratio is cautiously established. 1RM: One-repetition maximum; HIIT: High-intensity interval training; RPE: Rating of 
perceived exertion.

The ideal scenario would involve the use of continuous glucose monitoring, a relatively new 
technology that provides real-time knowledge of intra-session and inter-session glucose regulation[54]. 
Since glucose does not have a mathematical behavior, this technology is of great importance to prevent 
adverse events during exercise training and in the subsequent hours. In the same way, insulin pumps 
help to automatically regulate the exogenous administration of this hormone and maintain stable 
glucose levels, depending on exercise and diet. However, accessibility to continuous glucose monitoring 
is limited in real scenarios. Hence, it is important to analyze hormonal and metabolic responses to each 
type of exercise in patients with T1DM to control pre- and post-exercise insulin administration as well 
as CHO intake.

CONCLUSION
Aerobic and resistance exercise are safe and effective training methods in T1DM patients. Current 
evidence has shown that a supervised and individualized exercise program with aerobic exercise 
performed 1-3 times/week, including low-volume high-intensity exercise training along with 1-3 
sessions per week of resistance training, is sufficient to improve physical fitness, functional capacity, 
quality of life, and mental health in this population. These guidelines should be adapted according to 
the patient’s needs, abilities, and preferences.
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Abstract
Fatty liver disease is defined as liver condition characterized by hepatic steatosis, 
closely related to pathological conditions in type 2 diabetes and obesity. The high 
prevalence of fatty liver disease in obese patients with type 2 diabetes reached 
70%, reflecting the importance of these conditions with fatty liver. Although the 
exact pathological mechanism of fatty liver disease, specifically non-alcoholic fatty 
liver disease (NAFLD) remains not completely revealed, insulin resistance is 
suggested as the major mechanism that bridged the development of NAFLD. 
Indeed, loss of the incretin effect leads to insulin resistance. Since incretin is 
closely related to insulin resistance and the resistance of insulin associated with 
the development of fatty liver disease, this pathway suggested a potential me-
chanism that explains the association between type 2 diabetes and NAFLD. 
Furthermore, recent studies indicated that NAFLD is associated with impaired 
glucagon-like peptide-1, resulting in decreased incretin effect. Nevertheless, 
improving the incretin effect becomes a reasonable approach to manage fatty liver 
disease. This review elucidates the involvement of incretin in fatty liver disease 
and recent studies of incretin as the management for fatty liver disease.
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Core Tip: Type 2 diabetes mellitus (T2DM) is correlated with various metabolic disorders, including fatty 
liver. The influence of T2DM on incretin hormones contributed to fatty liver development. Impairment in 
lipid and glucose metabolism, fat oxidation, oxidative stress, and other effects lead to liver fat deposition. 
Therefore, drugs targeting the incretin hormones may provide beneficial effects on patients.

Citation: Wibawa IDN, Mariadi IK, Somayana G, Krisnawardani Kumbara CIY, Sindhughosa DA. Diabetes and 
fatty liver: Involvement of incretin and its benefit for fatty liver management. World J Diabetes 2023; 14(5): 549-
559
URL: https://www.wjgnet.com/1948-9358/full/v14/i5/549.htm
DOI: https://dx.doi.org/10.4239/wjd.v14.i5.549

INTRODUCTION
Fatty liver disease is a spectrum of inflammatory diseases, ranging from hepatic steatosis to cirrhosis. In 
a continuous process, it may develop into fibrosis and cirrhosis. The diagnosis of non-alcoholic fatty 
liver disease (NAFLD) remains challenging since the current definition is a diagnosis of exclusion. 
Consensus stated that the diagnosis of NAFLD could be made if liver fat accumulates > 5% without any 
other cause. This makes the diagnosis very challenging due to the influence of other variables. The 
current definition also suggests that a liver biopsy is required to determine the degree of fat accumu-
lation. The health burden of NAFLD present significant concern, since the prevalence of NAFLD is 
increased and affects 25% of people globally. The economic impact of NAFLD also become major 
concern since the financial burden reaching $100 billion per year[1].

The pathophysiology of NAFLD is multifactorial, involving metabolic factors. Among all factors 
contributing to the development of NAFLD, impairment in hormones become important variables to be 
considered. Impairment of hormones affected lipid and glucose metabolism, interference with other 
hormones’ signaling, and oxidative stress[2]. Among hormones associated with the development of 
NAFLD, incretin hormones become an interest.

Incretin hormones influence glucose homeostasis and are involved with the pathophysiology of type 
2 diabetes mellitus (T2DM). Incretin hormone is a gut peptide which secreted after nutritional intake. 
Incretin hormones consist of GIP (glucose-dependent insulinotropic polypeptide) dan GLP-1 (glucagon-
like peptide-1). Both affect lipid metabolism, insulin release, oxidative stress, and other factors 
associated with glucose metabolism. This important aspect of incretin hormones makes it involved in 
other metabolic diseases, including NAFLD. Hence, it also served as the target to improve the outcome 
of metabolic diseases. In this review, we elaborate on the mechanism of incretin hormones and the 
reported recent studies which evaluate the clinical aspect of incretin hormones in NAFLD[3,4].

THE WORK OF INCRETIN HORMONES
The work of incretin hormones, known as the incretin effect, works more effectively when the glucose is 
administered orally compared to administered intravenously (two to three times more effective). Other 
substances are also involved in the mechanism of incretin hormone; inhibitors of dipeptidyl peptidase-4 
(DPP-4 inhibitors) involved in the therapeutic efficacy of incretin effects. The DPP-4 inhibitors increase 
the concentration of GLP-1[3,4].

Oral glucose intake leads to an increment of insulin secretion stimulation compared to intravenous 
glucose infusion. This effect occurred even though the iso glycemic condition was reached[5]. This 
phenomenon occurred because of incretin hormone release (GIP and GLP-1) after oral glucose intake 
from the gut entero-endocrine. This condition did not occur after intravenous glucose infusion[5,6]. The 
secreted incretin hormones acted as endocrine signals to the pancreatic islet of Langerhans. These lead 
to the increment of insulin secretion and glucagon secretion modulation when glucose concentration is 
above 66 mg/dL.

Pancreatic β-cells have GIP and GLP-1 receptors in their membrane. In the event of the binding of its 
receptor with its ligands, the activated receptors will bind with adenylate cyclase. This resulted in 
increased cyclic adenosine monophosphate (AMP) production, leading to protein kinase A activation[7,
8]. However, this signaling pathway did not release pre-formed insulin secretory granules from 
pancreatic β-cells. In order to release the granules, the closure of the potassium channel, depolarization, 
and calcium ion influx initiated by the hyperglycemic condition is needed. Therefore, the effects of an 
increase in insulin release due to incretins always require hyperglycemia in certain limits (66 mg/dL)[9].

Another effect of incretin hormone is glucagon release. GIP molecule stimulates glucagon release, 
particularly in decreased glucose concentration, while GLP-1 suppresses glucagon secretion in 
hyperglycemia, resulting in hepatic glucose production[10,11]. The mechanism of incretin hormones in 
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the liver is indirectly mediated since no GLP-1 receptors exist. The mechanism responsible for this 
phenomenon is the autonomous nervous system.

The incretin hormones possess additional biological effects on other organs. GLP-1 hinders appetite 
and food intake. GLP-1 also increases satiety. The GLP-1 receptors were observed in the hypothalamus
[12]. GLP-1, derived from blood flow circulation, enter the brain through the circumventricular organ, 
characterized by a leaky blood-brain barrier. Therefore, GLP-1, with chronic stimulation of its receptor, 
is considered a signal to suppress appetite, which acts as a basic mechanism for a decrease in body 
weight[4,13].

Another additional effect of incretin hormone is the triglycerides storage in adipose tissue. GIP 
induces lipoprotein lipase, an enzyme that releases fatty acid from triglycerides chylomicrons in adipose 
tissue; hence it eliminates triglycerides chylomicrons. However, this is still based on animal studies; it is 
still uncertain whether the same occurred in humans[14,15].

Gastric emptying is also affected by GLP-1 but not by GIP[16,17]. The consequence of this effect is the 
nutritional delivery to the intestinal lumen is hampered. The decreased absorption of nutrition resulted 
in the stagnant increase of blood glucose and triglycerides after a meal[18].

Other effects of incretin include bone metabolism and cardiovascular function. Regarding bone 
metabolism, animal study of GIP found that the signaling pathway through GIP receptors inhibits bone 
resorption, both from the amount and the function of osteoclast, and supports bone formation 
(osteoblast function)[19]. The effect of incretins on the cardiovascular system is related to their role in 
cardiac blood supply, vasodilatation, inflammation response in adipose tissue and blood vessels, 
substrate intake, cytokine release and atherosclerosis formation, and plaque stabilization[20,21].

It should be noted that the dogma of proglucagon produced in α-cells of the pancreas and GLP 
produced by intestinal L cells has been challenged. It has been suggested that after total pancre-
atectomy, glucagon produced by intestinal cells and GLP-1 exist in pancreatic α-cells[22,23]. The animal 
study suggested that GLP-1 produced by pancreatic α-cells have more potent effect on glucose 
homeostasis than intestinal cells-produced GLP-1[24]. This showed that the physiological mechanism of 
the incretin hormones is not as simple as it is known currently. The mechanism of glucagon formation 
by pancreatic α-cells primarily mediated by prohormone convertase (PC) 2[25], while PC 1/3 acts as the 
main prohormone for the formation of GLP-1 and GIP[26,27]. It has been suggested that irregular 
expression of PC 1/3 in the pancreas and PC2 in the intestinal becomes a reason for the existence of 
GLP-1 in the pancreas[23,28,29] and glucagon in intestinal (Figure 1)[22,30].

The intracellular mechanism of incretin hormone started with the binding of GIP and GLP-1 with 
their respective receptors, GIP receptors and GLP-1 receptors. It resulted in the activation of adenylate 
cyclase and the increase of intracellular cyclic adenosine monophosphate (cAMP), leading to protein 
kinase A (PKA) activation and protein activated by cAMP2 (EPAC2). The activation of PKA induces the 
closure of the adenosine triphosphate-sensitive potassium channel and facilitates membrane depolar-
ization and the prolongation of potential action. Depolarization opens the voltage-gated Ca2+ channel, 
which leads to an increase in intracellular Ca2+. The increased Ca2+ concentration triggers the fusion of 
insulin-containing granules with the plasma membrane and insulin secretion from pancreatic β cells. 
The increase of Ca2+ levels also drives the transcription of the proinsulin gene, therefore increasing the 
insulin content of β cells. Furthermore, the activation of EPAC2 increases the density of insulin-
containing granules near the plasma membrane to potentiate the secretion of insulin from β cells 
(Figure 2)[31].

DEVELOPMENT OF FATTY LIVER DISEASE
The pathophysiology of fatty liver disease related to metabolic factors, including NAFLD, is intricate 
due to its multifactorial nature and related to various comorbidities. The accumulation of liver fat is 
caused by the imbalance in fatty acid influx (lipolysis of fat tissue), fat disposition (fatty acid 
disposition), lipogenesis hepatic de novo and very low density lipoprotein secretion by the liver[32]. The 
progressivity of fatty liver disease involves the interaction of cellular stress response (lipotoxicity and 
increase of oxidative stress)[33] and liver fat accumulation along with cytotoxicity[33]. The association 
of gut and hormones released from the pancreas, insulin resistance in muscle, adipose tissue and liver, 
and gut microbiome are also involved in the pathophysiology of NAFLD. Obesity contributes to fatty 
liver disease by causing adipocyte hypertrophy and hypoxia, resulting in macrophage influx and pro-
inflammatory conditions[34]. The pro-inflammatory condition causing the development of insulin 
resistance leads to hepatic steatosis. The insulin resistance increases lipolysis and causes the increase of 
free fatty acids. Hepatic lipotoxicity is caused by the increment of long-chain fatty acids, diacylglycerol, 
and ceramide, which stored in the liver, causing the release of reactive oxygen species. These 
contributed to inflammation and liver fibrosis, along with the apoptosis of hepatocytes. Moreover, the 
increase in hepatic steatosis leads to the resistance of the liver toward insulin, worsening the condition
[35].

Type 2 diabetes and metabolic syndromes are closely related to NAFLD[36]. Individuals with T2DM 
possess a five times greater risk of NAFLD and a greater likelihood to progress toward non-alcoholic 
steatohepatitis (NASH) when compared to people without T2DM[37]. However, liver steatosis is partly 
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Figure 1 Production of incretin and its benefits. Glucagon-like peptide-1 and glucose-dependent insulinotropic polypeptide produced in the pancreas and 
intestine mediated by prohormone convertase. The incretin hormones affect appetite and satiety, glucagon and insulin release, cardiovascular function, gastric 
emptying, triglycerides, and bone metabolism. GIP: Glucose-dependent insulinotropic polypeptide; GLP-1: Glucagon-like peptide-1; PC1/3: Prohormone convertase 
1/3; PC2: Prohormone convertase 2.

an adaptive and protective response; lipotoxic free fatty acids is stored as a more stable component. 
However, this protective nature becomes weakened with continuous liver problems along with other 
contributed factors, e.g., T2DM and genetic predisposition. This, in turn, causes hepatocyte injury and 
fibrosis[38]. Insulin resistance in the liver is caused by proinflammatory cytokine (tumor necrosis factor 
α, interleukin-6), proinflammatory pathway, e.g. c-Jun and nuclear factor-kappaB, endoplasmic 
reticulum stress, and lipid metabolism product.

DIABETES, INCRETIN HORMONE AND FATTY LIVER DISEASE
Incretin hormones are secreted in T2DM patients as well as healthy individuals and obese patients. An 
early study showed a slight increase of GIP in patients with T2DM and decreased response to GLP-1[39,
40], while subjects with impaired glucose tolerance have an intermediate response to GLP-1. Therefore, 
it has been hypnotized that there is a progressive loss in GLP-1 secretion along with the severity of 
T2DM. Study has been conducted to compare the secretion of GIP and GLP-1 between healthy and 
T2DM subjects after oral glucose loads administration and mixed food. There is a slight difference in 
which lower secretion in T2DM patients. However, another study also found no difference in GIP and 
GLP-1 between those two populations. A meta-analysis study showed no difference in the secretion of 
GIP and GLP-1 after nutrition loads between T2DM and healthy subjects[41-43].

Even though the excretion of incretin is approximately normal in T2DM patients, the difference in the 
characteristic between T2DM and healthy subjects exist in the insulinotropic activity of GIP and GLP-1. 
GIP is considered a drug candidate for the development of a glucose-lowering agent. In this regard, 
there is no doubt that physiological and pharmacological concentrations of GLP-1 also exhibit insulino-
tropic features in T2DM patients[10]. Inappropriate response to GIP may explain the lower effects of 
incretin hormones in T2DM patients compared to healthy subjects[10,44]. Previously conducted studies 
have found that the reduced incretin effects occurred after the diagnosis of T2DM was confirmed. Hence 
it has been suggested that the decrease in incretin effects is secondary to this condition[45]. It is still not 
fully elucidated which features of T2DM, e.g., inflammatory infiltration of β-cells, hyperglycemia, islet 
lipid overload, or other mechanisms may trigger this phenomenon[5,45]. The reduced expression of GIP 
receptors or substances involved in the GIP signaling pathway is also suggested to explain the 
impairment in insulin secretion[46]. Although animal study with diabetic hyperglycemia has found that 
GIP receptors are decreased, the same is not found in the human pancreas. In conclusion, type 2 
diabetes condition reduces the incretin effect and worsens glycemic control. This situation leads to 
glucotoxicity. Glucotoxicity resulted in a reduction of beta cell mass in the pancreas and reduced 
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Figure 2 Intracellular mechanism of incretin hormones. The binding of glucose-dependent insulinotropic polypeptide and glucagon-like peptide-1 with their 
respective receptors increase cyclic adenosine monophosphate and activation of protein kinase A. This result in the increase of Ca2+ levels, mediating the fusion of 
insulin-containing granules with the plasma membrane and insulin secretion from pancreatic β cells. ATP: Adenosine triphosphate; cAMP: Cyclic adenosine 
monophosphate; Ca2+: Calcium; [Ca2+]i: Calcium influx; EPAC2: Exchange protein activated by cAMP2; GIPR: Glucose-dependent insulinotropic polypeptide 
receptor; GLP-1R: Glucagon-like peptide-1 receptor; KATP-channel: ATP-sensitive potassium channel; K+: Kalium; PKA: Protein kinase A; VDCC: Voltage-gated 
calcium channels.

expression of GIP receptors. These will further reduce the incretin effect, creating a vicious cycle. 
Numerous studies with insulin treatment to control hyperglycemia to reach a near-normal value of 
glucose concentrations have been done. Insulin treatment may improve the insulinotropic of GIP and 
GLP-1 in T2DM patients, therefore leads to improvement of the incretin effects[47,48].

The reduced incretin effects may result in further damage of hepatocytes. Reduced incretin effects 
may reduce satiety and caloric intake, resulting in increased body weight. The increase in body weight 
leads to adipose tissue insulin resistance, increased lipolysis and leptin, and decreased adiponectin. The 
final result leads to increased hepatic insulin resistance, de novo lipogenesis, and hepatic fat deposition. 
Reduced incretin effects also lead to reduced insulin release, resulting in increased adipose tissue insulin 
resistance and increased hepatic insulin resistance and hepatic fat deposition. Another mechanism of 
decreased incretin is increased dietary fats and chylomicrons, resulting in increased hepatic fat 
deposition (Figure 3)[2].

An approach to modulate the expression and activity of incretin hormones may benefit fatty liver 
disease. The effect of incretin could improve the satiety, therefore reduced caloric intake. The insulin 
resistance could be improved, leading to downregulation of lipid in liver, lipotoxicity and oxidative 
stress, providing beneficial effect in NAFLD patients.

CLINICAL ASPECT OF INCRETIN IN FATTY LIVER DISEASE
The primary treatment of fatty liver, particularly NAFLD, is decreasing body weight. The decrease of 
body weight by 10% with regulating diet and physical activity decreases the triglycerides concentration 
by 60% in overweight people[49]. Another modality is bariatric surgery for patients with severe obesity. 
This modality may significantly improve lobular inflammation and NASH in 50%-85% of cases[50]. 
Management with pharmacologic agents remains explored to discover the agent that can give 
significant efficacy. In short, the pharmacological agents may be classified into agents to improve 
metabolic impairment, including body weight, inflammation with oxidative stress and dysregulation in 
the gut-liver axis[51]. In regards to those specific points, the pharmacological agent is ideally able to 
work in all those mechanisms.

A study showed that GLP-1 had the effect of inducing satiety through the central mechanism in 
hypothalamus and brain stem. The use of GLP-1 also decreases caloric uptake. These results were 
obtained from observation of person with obesity and T2DM. A decrease in body weight is also a 
consistent discovery obtained from clinical trials with GLP-1 receptor agonists (GLP-1RAs). Chronic use 
of GLP-1 is also expected to improve insulin sensitivity since it is related to its effect on decreasing body 
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Figure 3 The effect of type 2 diabetes mellitus on incretin hormone and the development of non-alcoholic fatty liver disease. Increased body 
weight as the result of reduced incretin effects leads to adipose tissue insulin resistance, increased lipolysis and leptin, and decreased adiponectin, resulting in 
hepatic fat deposition. DM: Diabetes Mellitus; DNL: De novo lipogenesis; FFA: Free fatty acids; TG: Triglycerides.

weight. Other effects of GLP-1RA administration in NAFLD patients are also related to increased total 
adiponectin serum concentration and improvement of dysfunctional adipose tissue[52]. Liraglutide also 
decreases fasting leptin serum levels. Adiponectin is able to repair liver impairment related to fatty liver 
injury by regulating liver fatty acid oxidation and activity of acetyl-CoA carboxylase as well as fatty acid 
synthase, which acts as the main enzyme to synthesize fatty acid[53]. The randomized controlled trials 
of several studies already conducted on the effects of GLP-1RAs toward fatty liver conditions are 
summarized in Table 1.

Dual incretin receptor agonists are new pharmacological agents that act on GLP-1 and GIP receptors
[54]. The new dual incretin receptor agonists have a synergistic effect. The synergistic effects of these 
pharmacologic agents lead to reduced total liver fat content, risk of cardiovascular disease, body weight 
and blood glucose levels [determined by glycated hemoglobin, or hemoglobin A1c (HbA1c)][55].

The clinical aspect of dual incretin receptor agonists has been showed in several studies. Tirzepatide, 
the dual receptor agonist which administered subcutaneously, was approved by the United States US 
Food and Drug Administration for glycemic control in T2DM patients, In May 2022[56]. Tirzepatide, 
compared to semaglutide and insulin, showed a greater reduction of HbA1c[56]. A study by Hartman et 
al[57] in 2020 showed that tirzepatide reduce several biomarkers of steatohepatitis, including N-terminal 
type III collagen propeptide, keratin-18, aspartate aminotransferase, and alanine aminotransferase. The 
study also showed the increase of adiponectin levels. A phase 2b, 26-wk trial of tirzepatide in T2DM 
patients showed superior effect of tirzepatide compared to dulaglutide in terms of glucose control and 
reduction in body weight[58]. Tirzepatide of 5 mg, 10 mg, and 15 mg decrease HbA1c levels by 1.6%, 
2.0%, and 2.4%, respectively. When compared to 1.5 mg of dulaglutide administration, the decrease of 
HbA1c only 1.1%. A total of 48% of patients achieved normoglycemia (HbA1c 5.7%) compared with 2% 
of subjects treated with dulaglutide[58].

CONCLUSION
In conclusion, incretin hormones affect various signaling and mechanisms of lipid and glucose 
metabolism, insulin release, regulation of glucagon, oxidative stress, the central mechanism of satiety, 
and various other effects, involved in the development of NAFLD. The importance of the incretin effect 
on the development and progressivity of NAFLD makes it an ideal target for its management. Clinical 
research has provide evidence toward beneficial effect on liver content and other metabolic parameters. 
Further recommendations for drugs targeting the regulation of the incretin effect need to be considered 
in future studies. Also, future studies on the adverse events of incretin modulation for fatty liver disease 
should be directed, therefore its safety could be emphasized.
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Table 1 Randomized-controlled trials of glucagon-like peptide-1 receptor agonists related to fatty liver diseases

Ref. Subjects Intervention (dose) Comparator Effects

Jendle et al
[59], 2009

T2DM Liraglutide (1.8-1.2-0.6 
mg/day) with additional 
metformin administration

Glimepiride 4 mg or 
placebo with 
metformin

10% attenuation ratio of liver-spleen

Fan et al[60], 
2013

Overweight T2DM Exenatide (2 x 10µg) Metformin Decrease in liver enzyme

Shao et al[61], 
2014

Overweight/obese T2DM Exenatide (2 x 10 µg) Insulin glargine Decrease of liver enzymes and degree of fatty liver on 
ultrasound

Tang et al[62], 
2015

Overweight/obese T2DM Liraglutide 0.6 to 1.8 mg/day Insulin glargine No difference in the decrease of liver fat

Armstrong et 
al[63], 2016

Overweight/obese (17 out 
of 52 subjects with T2DM)

Liraglutide (1.8 mg/day) Placebo Improvement in NASH histology by 39%

Smits et al
[64], 2016

Overweight/obese T2DM Liraglutide (1.8 mg/day) Sitagliptin, placebo No difference in liver fat content

Dutour et al
[65], 2016

T2DM Exenatide 5-10 mcg twice a 
day

Placebo Significant decrease in body weight and liver fat 
content in the exenatide group

Khoo et al
[66], 2017

Obesity patients without 
T2DM

Liraglutide (3 mg/day) Lifestyle 
intervention 

No difference in reducing liver fat

Feng et al[67], 
2017

T2DM Liraglutide (1.8 mg/day) Metformin or 
glicazide

Improvement in hepatic/renal index ratio

Frøssing et al
[68], 2018

Women with PCOS and 
NAFLD

Liraglutide 1.8 mg/day Placebo Decrease of body weight by 5.2 kg (5.6% from 
baseline), liver fat content by 44%, decrease the 
prevalence of NAFLD by about two-thirds and 
decrease of fasting blood glucose

Yan et al[69], 
2019

T2DM and NAFLD Liraglutide 1.8 mg/day Insulin glargine and 
sitagliptin

Decreased liver fat content, reduction of HbA1c 
levels in all groups, decrease in body weight

Khoo et al
[70], 2019

Obese and NAFLD Liraglutide 3.0 mg/day Lifestyle changing The two groups had decrease of liver fat content

Liu et al[71], 
2020

T2DM and NAFLD Exenatide 1.8 mg/day Insulin glargine Decrease of liver fat content, greater reduction of 
visceral adipose tissue

Bizino et al
[72], 2020

T2DM and NAFLD Liraglutide 1.8 mg/day Placebo Reduced body weight, but the liver content was not 
different

Kuchay et al
[73], 2020

T2DM and NAFLD Dulaglutide 1.5 mg/week Placebo Control-corrected absolute change in liver fat content 
of -3.5% and relative change of -26.4%

Newsome et 
al[74], 2020

NASH and liver fibrosis Semaglutide 0.1 mg/day, 0.2 
mg/day, and 0.4 mg/day

Placebo A higher percentage of NASH resolution without 
worsening of fibrosis, dose-dependent decrease of 
serum ALT and AST, and higher mean percentage 
weight loss

ALT: Alanine transaminase; AST: Aspartate transaminase; HbA1c: Hemoglobin A1c; NAFLD: Non-alcoholic fatty liver disease; NASH: Non-alcoholic 
steatohepatitis; PCOS: Polycystic ovary syndrome; T2DM: Type 2 diabetes mellitus.
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Abstract
An efficient coronavirus disease 2019 (COVID-19) vaccine is urgently required to 
fight the pandemic due to its high transmission rate and quick dissemination. 
There have been numerous reports on the side effects of the COVID-19 immu-
nization, with a focus on its negative effects. Clinical endocrinology is extremely 
interested in the endocrine issue that arises after receiving the COVID-19 vaccine. 
As was already mentioned, after receiving the COVID-19 vaccine, many clinical 
problems could occur. Additionally, there are some compelling reports on 
diabetes. After receiving the COVID-19 vaccine, a patient experienced 
hyperosmolar hyperglycemia state, a case of newly-onset type 2 diabetes. There 
has also been information on a potential connection between the COVID-19 
vaccine and diabetic ketoacidosis. Common symptoms include thirst, polydipsia, 
polyuria, palpitations, a lack of appetite, and weariness. In extremely rare clinical 
circumstances, a COVID-19 vaccine recipient may develop diabetes complications 
such as hyperglycemia and ketoacidosis. In these circumstances, routine clinical 
care has a successful track record. It is advised to give vaccine recipients who are 
vulnerable to problems, such as those with type 1 diabetes as an underlying 
illness, extra attention.

Key Words: Diabetes; COVID-19; Vaccine; Ketoacidosis; Effect
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Core Tip: There has also been information on a potential connection between the 
coronavirus disease 2019 (COVID-19) vaccine and diabetic ketoacidosis. Common 
symptoms include thirst, polydipsia, polyuria, palpitations, a lack of appetite, and 
weariness. In extremely rare clinical circumstances, a COVID-19 vaccine recipient may 
develop diabetes complications such as hyperglycemia and ketoacidosis.
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INTRODUCTION
Because of the pandemic's high transmission rate, an effective coronavirus disease 2019 (COVID-19) 
vaccine is urgently needed[1]. The available literature indicates that both vaccines help prevent severe 
acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection. However, given that the vaccination 
is new, any potential side effects are of greater concern[2-3]. When a handful of novel vaccines created 
in response to the COVID-19 pandemic got emergency approval and were widely distributed in late 
2020[2], pharmacovigilance was unwittingly thrust into the spotlight. An effective global post marketing 
safety surveillance system was emphasized due to the employment of cutting-edge technologies and the 
anticipated rapid and widespread deployment of the vaccinations. The vaccinations went through 
extensive clinical evaluation and regulatory authority review. Many reports on the adverse effects of the 
COVID-19 vaccination have focused on how diverse they are. Clinical endocrinology is quite concerned 
about the endocrine issue that manifests after receiving the COVID-19 vaccination. The main concern 
expressed by the authors of this paper is that diabetes can become a medical problem after receiving the 
COVID-19 vaccine. After getting the COVID-19 vaccination, numerous clinical issues could arise, as was 
already mentioned. There are also some interesting reports regarding diabetes. The key words are 
provided here with a brief explanation.

Diabetes and COVID-19 have a well-established association. There is a bidirectional causal 
relationship between COVID-19 and type 2 diabetes. Diabetes may exacerbate COVID-19 severity, and 
COVID-19 vulnerability may increase diabetes risk[4]. Diabetes patients should receive the COVID-19 
vaccine, just like everyone else, to protect themselves from the disease. It is critical to discuss the risks of 
vaccination for those who currently have diabetes mellitus. Piccini et al[5] evaluate the likelihood of 
glycemic control modification, insulin dose adjustment, and adverse effects following COVID-19 
vaccination in young people with type 1 diabetes who use varying degrees of technology[5]. Piccini et al
[5] came to the conclusion that receiving the OVID-19 immunization did not significantly increase the 
risk of glycemic control disturbance in type 1 diabetes adolescents and young adults[5]. This 
information may be helpful clinically[6] when counseling families about the SARS-CoV-2 vaccine for 
young people with type 1 diabetes. In a study by D'Addio et al[6] that investigated the immunogenicity 
and security of SARS-CoV-2 mRNA vaccines, a cohort of individuals with type 1 diabetes took part[5]. 
The vaccination demonstrated both dependability and security, according to D'Addio et al[6].

Several reports claim that COVID-19 vaccine recipients have problems with their diabetes. The 
exacerbation of hyperglycemia in people with type 2 diabetes after receiving the COVID-19 vaccination 
is the first problem that needs to be addressed[7]. Mishra et al[7] claim that an early inflammatory 
reaction to the vaccine and a subsequent immunological response are likely to be the causes of a minor 
and transient rise in blood sugar levels[7]. Mishra et al[7] published a case series that substantiated the 
etiology of transient immuno-inflammation because all episodes of hyperglycemia were self-limited and 
did not require significant treatment modifications[7]. A rapid jump in blood sugar levels appears to be 
caused by a vaccine. The possibility of a mild to moderate rise in blood sugar levels following 
vaccination has been theorized[7]. One patient experienced new-onset type 2 diabetes after receiving the 
COVID-19 vaccine, which is known as hyperosmolar hyperglycemia state[8].

COVID-19 VACCINATION AND DIABETIC KETOACIDOSIS
Clinical diabetology has an intriguing discussion regarding the COVID-19 vaccine and diabetic 
ketoacidosis. As was already indicated, the immunization may cause hyperviscosity and have 
unintended side effects. Additionally, reports of a connection between the COVID-19 immunization and 
diabetic ketoacidosis have been made. Three days after the first dose of COVID-19 RNA-based vaccines, 
the patient typically experiences thirst, polydipsia, polyuria, palpitations, a lack of appetite, and 
exhaustion without a prior history of diabetes[9]. Hyperglycemia, anion gap metabolic acidosis, and 
ketonuria are the three main signs of classic diabetic ketoacidosis[9]. It is possible to detect insulin 
autoantibody positivity and latent thyroid autoimmunity[10]. Ganakumar et al[11] advised that people 
with diabetes, particularly those with type 1 diabetes mellitus and inadequate glycemic control, be 
constantly monitored for hyperglycemia and ketonemia for at least two weeks after receiving the 
COVID-19 vaccine[11]. Autoimmunity and genetic predisposition may have contributed to the onset of 
the disease, even if the precise pathophysiologic mechanisms underlying type 1 diabetes are still 
unknown[12].
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Table 1 Table summarizing the key information of coronavirus disease-19 vaccine related diabetic ketoacidosis in recipients with 
background type 1 and type 2 diabetes mellitus

Characteristics Cases with background type 1 diabetes mellitus Cases with background type 2 diabetes mellitus

Sex Usually male Usually male

Age group Adolescent Elderly

Background diabetes control Poor control No significant relationship

During of diabetic illness Long No significant relationship

According to Tang et al[12], vaccination could result in type 1 diabetes, irreversible islet beta cell loss, 
and autoimmunity in persons with susceptible genetic backgrounds[12]. The problem might be more 
serious and more likely to occur in situations where type 1 diabetes is already present. Yakou et al[13] 
advised that the immunization be cautiously administered to type 1 diabetes patients receiving strict 
insulin therapy and a sodium-glucose transporter[13] due to the increased risk of ketoacidosis. In the 
affected case, despite hyperglycemia and diabetic ketoacidosis (DKA) after SARS-CoV-2 immunization, 
low glycohemoglobin levels are a crucial indicator of COVID-19 vaccine-related DKA[14]. As a 
preventive measure, it is essential to counsel patients to continue getting insulin injections[13]. Due to 
the significant risk of ketoacidosis, the vaccination should be cautiously given to type 1 diabetes patients 
receiving rigorous insulin therapy and a sodium-glucose transporter[15]. When a patient becomes ill, it's 
crucial to remind them to continue taking their insulin injections and to drink enough fluids[13]. A 
similar preventative concern should be used in the case of the patient with poorly controlled type 2 
diabetes, in addition to the patient with underlying type 1 diabetes. According to Kshetree et al[15], 
Type I or dysglycemia in Type 2 diabetes mellitus is becoming more frequently documented following 
COVID-19 vaccinations or infection[16]. The mechanisms could be autoimmunity following mRNA 
vaccinations, cytokine-mediated beta-cell injury, or as a component of an autoimmune syndrome 
brought on by vaccine adjuvants[15]. Further investigation into the negative effects of people prone to 
life-threatening illnesses is required, as suggested by Lin et al[14]. Also, there might be a need for 
postvaccination surveillance on both hyperglycemia and DKA problems[16].

Concerning the reported cases of a link between COVID-19 vaccination and diabetes ketoacidosis, an 
important clinical question is whether ketosis in type 1 diabetes is related to the use of sodium-glucose 
transport protein 2 (SGLT2) inhibitors. The clinical history of the vaccine recipients in the published 
articles on the clinical association usually revealed no use of SGLT2 inhibitors, which could be a clue to 
support the possible clinical association between COVID-19 vaccination and ketoacidosis. Last but not 
least, it should be noted that the mRNA COVID-19 vaccine is primarily associated with most findings 
on the relationship between COVID-19 immunization and diabetic ketoacidosis. There are, however, a 
few reports of clinical associations with other vaccination types (viral vector and inactivated COVID-19 
vaccines) that have been documented[11]. The fact that the mRNA vaccination is currently the primary 
recommended COVID-19 vaccine may be the cause of the higher number of reported cases in the 
mRNA vaccine group. As previously stated, the COVID-19 vaccination may cause diabetic ketoacidosis 
in patients with type 1 or type 2 diabetes mellitus (Table 1).

There are significant differences in COVD-19 vaccine-induced diabetes ketoacidosis between 
recipients with type 1 and type 2 diabetes. COVID-19 vaccine induced diabetes ketoacidosis usually 
occurs in adolescent male cases with inadequate glycemic control in cases with background type 1 
diabetes mellitus[11]. This is the same pattern seen in diabetic ketoacidosis caused by COVID-19 in type 
1 diabetes patients[17]. There are fewer reported cases of COVID-19 vaccine-induced diabetes 
ketoacidosis in people with type 2 diabetes mellitus, and the patient is usually an elderly man with a 
long history of diabetic illness[15]. The background hemoglobin A1C level, on the other hand, has not 
been identified as a risk factor for the development of COVID-19 vaccine-induced diabetic ketoacidosis
[18].

CONCLUSION
In general, the COVID-19 immunization should be given to the diabetic patient because it has been 
proven to be effective. Generally, it has been confirmed that it is secure. In exceedingly uncommon 
clinical situations, a COVID-19 vaccination recipient may experience diabetes-related problems such as 
hyperglycemia and ketoacidosis. Routine clinical care has a history of success in some situations. Users 
of vaccines who are more likely to develop problems, such as those who already have type 1 diabetes as 
an underlying illness, are advised to receive additional attention. Because there is a possible link 
between the COVID vaccine and ketoacidosis, the risk diabetic case must be closely monitored. There is 
still a need for more clinical research on this subject because there isn't any in vivo or in vitro experi-
mental data at this time.
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Abstract
Aging is characterized by the gradual deterioration of function at the molecular, 
cellular, tissue, and organism levels in humans. The typical diseases caused by 
changes in body composition, as well as functional decline in the human body’s 
organs due to aging include sarcopenia and metabolic disorders. The accumu-
lation of dysfunctional aging β cells with age can cause decreased glucose 
tolerance and diabetes. Muscle decline has a multifactorial origin, involving 
lifestyle habits, disease triggers, and age-dependent biological changes. The 
reduced function of β cells in elderly people lowers insulin sensitivity, which 
affects protein synthesis and interferes with muscle synthesis. The functional 
decrease and aggravation of disease in elderly people with less regular exercise or 
physical activity causes imbalances in food intake and a continuous, vicious cycle. 
In contrast, resistance exercise increases the function of β cells and protein 
synthesis in elderly people. In this review, we discuss regular physical activities 
or exercises to prevent and improve health, which is sarcopenia as decreased 
muscle mass and metabolic disorders as diabetes in the elderly.
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Core Tip: Exercise or physical activity should be regularly performed even before aging begins, and 
muscle mass should be increased through resistance exercise. The protein intake necessary for protein 
synthesis during resistance exercise should also be maintained in elderly people and those with diabetes 
or/and sarcopenia.
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INTRODUCTION
Aging is characterized by the gradual deterioration of function at the molecular, cellular, tissue, and 
organism levels, and human age is a major risk factor for diseases, including cardiovascular disease, 
diabetes, osteoporosis, and cancer[1]. Also, gradual decreases in muscle mass, especially in the lower 
extremities, and increases in fat volume, especially visceral and intermuscular fat, are general body 
composition changes associated with aging[2]. The typical diseases caused by changes in body 
composition (decreased muscle mass and increased fat mass), as well as functional decline in the human 
body’s organs due to aging, include sarcopenia and metabolic disorders. Moreover, according to a 
recent estimate by the International Diabetes Federation, 8.8% (425 million people) of the world’s 20-79-
year-old population suffered from diabetes in 2017, and the number is expected to rise to 9.9% (629 
million people) in 2045[3].

Elderly has complex diseases, not single diseases. Most review studies focus only on a single disease. 
In addition, it has been suggested that sarcopenia in the elderly plays a pivotal role in the pathogenesis 
of the frailty and functional disorders in diabetes. Through this review, we discuss regular physical 
activities or resistance exercises to prevent and improve health, which are sarcopenia as decrease muscle 
mass and metabolic disorders as diabetes in the elderly.

CAUSES OF DIABETES DUE TO AGING
Several factors are involved in the high prevalence of type 2 diabetes (T2D) in elderly people: (1) In 
relation to aging, T2D is associated with the decreased function of β cells that secrete insulin and 
decreased insulin sensitivity[4]; and (2) changes in the body composition related to aging lead to 
changes in insulin sensitivity due to a decrease in the amount of lean body mass and an increase in the 
amount of body fat[5].

The pancreas is an essential organ with both endocrine and exocrine tissues and plays an essential 
function in maintaining nutrient metabolism homeostasis in the body[6]. The accumulation of dysfunc-
tional aging β cells with age can cause decreased glucose tolerance and diabetes[7]. Telomeres shortened 
by aging were reported to impair β cell function and participate in β cell destruction in the late stage of 
T2D[8]. The deletion of aging β cells in mouse models of type 1 diabetes showed increased insulin 
secretion and preserved insulin secretion ability, providing a link between cell aging and severe insulin 
deficiency[9].

In addition, considering that pancreatic weight, total insulin content, island size, and average insulin 
levels do not change, impaired signal transmission due to glucose stimulation during the aging process 
could be a decisive cause[10]. Some evidence suggested that the activation of inflammatory pathways 
contributed to insulin resistance in elderly people[11]. For example, aging is associated with inflam-
matory conditions in metabolic tissues and the upregulation of inflammatory cytokines, such as tumor 
necrosis factor-alpha, interleukin-6 (IL-6), and IL-1 family members, which can directly interfere with 
insulin signaling pathways and cause metabolic dysfunction[12-14]. Aging toll-like receptor-4 deficient 
mice with reduced inflammatory responses showed decreased expressions of inflammatory markers 
and p16Ink4a (also known as CDKN2A) in adipose tissue and improved glucose tolerance compared to 
aging mice with intact inflammatory responses[15].

CAUSES OF SARCOPENIA DUE TO AGING
Muscles are the most necessary body components and play a pivotal role in maintaining a healthy life. 
Muscles are directly or indirectly related to muscle strength, energy, balance, and immunity. However, 
aging is a powerful vehicle for promoting sarcopenia[16,17]. It is known that basal metabolic rate 
decreases during the normal aging process. After the age of 30, it decreases at a rate of 3%-8% per 
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decade due to involuntary muscle loss. After the age of 50, approximately 1%-2% of muscle mass is lost 
per year. This rate increases to 3% per year after the age of 60, along with a decrease in strength of 1.5% 
annually[18,19].

Muscle loss has multiple factors, including lifestyle habits, disease triggers, and age-dependent 
biological changes. It is dealt with in the geriatric literature. However, it is starting to be studies into 
other areas dealing with the complexity of frail older persons. Testosterone levels gradually decrease 
with aging, and muscle protein synthesis and muscle mass can be reduced[20]. Growth hormone and 
insulin-like growth factor levels are also gradually and progressively decreased during normal aging. 
Such decreases are associated with decrease in muscle mass, not muscle strength[21,22].

The term sarcopenia was coined by Rosenberg[23] to describe the an age-related reduction in muscle 
mass that occurred with advancing age. However, muscle quality and structure are very important for 
each individual. V, and valid measurements are needed to establish the power of muscle mass[24]. 
Thus, sarcopenia that appears in elderly people and can be defined as the pathological loss of skeletal 
muscle[25]. It is characterized by structural changes in muscles along with that accompany dysfunction 
of muscles or decreased muscle strength. Sarcopenia should be considered a geriatric syndrome since 
multiple contributing factors (the aging process, diet, bed rest, sedentary lifestyle, chronic diseases, and 
drug treatment[26-28]) can cause the loss of muscle mass and that leads to an impaired state of health
[29,30].

Sarcopenia has a multiple factorial origin[31]. Lifestyle habits, including physical inactivity, rest, and 
malnutrition, are known to can play an important role in most cases. In elderly people, changes in the 
endocrine system are, which is typical during the of aging process. They, can cause an imbalance 
between the anabolic process and the catabolic process[32], and a decreases of in anabolic hormones 
(testosterone, estrogens, growth hormone, insulin-like growth factor-1)[33], changes alterations of in the 
renin-angiotensin system[34], and vitamin D deficiency[35]. Low-grade systemic inflammation 
associated with, typical of aging and chronic disease, also plays an important role in increasing inflam-
matory cytokines.

RELATIONSHIP BETWEEN GLUCOSE METABOLIC AND EXERCISE
Glucose absorption by skeletal muscle contraction is caused by the presence of glucose transporter type 
4 on the surface membrane and by accelerated diffusion according to the internal diffusion gradient for 
glucose[36]. Thus, the main step in controlling glucose absorption in skeletal muscles is the transport of 
glucose through cell membranes, and insulin and contractions induced in vivo by acute exercise or 
electrical stimulation can mediate glucose absorption in muscles[37].

Both aerobic exercise training and resistance exercise training are well known for their ability to 
restore systemic glucose homeostasis in people with metabolic T2D disease[38]. The relationship 
between glucose metabolism control and aerobic or resistance or combined exercise for both male and 
female pre-diabetes or diabetes patients are as follows. Twelve weeks of aerobic physical activity (60 
min/d, 3 d/wk at 55%-65% HRR of rhythmic physical activity) and 12 wk of resistance physical activity 
(60 min/d, 3 d/wk at 55%-65% of 1 RM of machine weight) significantly decreased glycated 
hemoglobin (HbA1c) levels in pre-diabetes elderly people[39]; 12 wk of aquatic exercise (50 min/d, 3 d/
wk at a rating on the perceived exertion scale of 10-16) improved glycemic control and decreased HbA1c 
in type 2 diabetes mellitus (T2DM) elderly people[40]; 6 mo of combined exercise (30 min of moderate 
aerobic exercise and 10 min of resistance exercise at 50%-70% of 1RM) significantly decreased HbA1c 
levels in T2DM elderly people[41]; 14 wk of resistance exercise (45 min/d, 3 d/wk at 60%-80% of 1RM 
for 1-8 wk and 70%-80% of 1RM for 10-14 wk) reduced plasma HbA1c levels and increased muscle 
glycogen stores in elderly people[42]; 2 years of aerobic exercise (60 min/d, 3 d/wk at 60%-70% of the 
HRmax) and resistance exercise (50 min/d, 3 d/wk of 13 types of resistance training protocols) HbA1C 
levels and β cell function were exercise responses in elderly patients with pre-diabetes[43]; 6 mo of 
resistance exercise (55 min/d, 3 d/wk at 75%-85% of 1 RM) was effective in improving glycemic control 
as shown by greater decreases in HbA1c levels[44]; 6 wk of high-intensity exercise training (3 d/wk 
supervised program at over 85% HRmax) increased insulin sensitivity in patients with T2DM[45]; 12 wk 
of 3 types of physical training (resistance, aerobic, and combined; 60 min/d, 3 d/wk) increased insulin 
receptor substrate (IRS)-1 expression by 65% in the resistance group and 90% in the combined group of 
patients with T2DM[46]; 8 wk of resistance and aerobic exercise (50 min/d, 2-3 d/wk at 65%-70% of 
1RM and 65%-70% HRmax) significantly decreased HbA1c levels in both exercise groups[47], and 16 wk 
of low-intensity resistance training (2 d/wk at using body weight) significantly decreased HbA1c levels
[48]. Nine studies contained elderly with T2DM are summarized the latest resistance exercises from 
traditional resistance exercises in Table 1.

EXERCISE FOR THE TREATMENT OF SARCOPENIA AND DIABETES
Sarcopenia is the age-related loss of skeletal muscle mass and strength that develops slowly over 
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Table 1 Resistance exercise and diabetes

Ref. Study population and intervention Study outcome

Kim et al[39], 2022 36 elderly people with pre-diabetics; 12 wk of resistance physical activity 
(60 min/d, 3 d/wk at 55%-65% of 1RM of machine weight)

Decreased glycated HbA1c levels

Nuttamonwarakul et al
[40], 2012

20 elderly people with T2D; 12 wk of aquatic exercise (50 min/d, 3 d/wk 
at a perceived exertion (RPE) rating of 10-16)

Improved glycemic control and decreased HbA1c

Tan et al[41], 2012 25 elderly people with T2D; 6 mo of combined exercise (30 min of 
moderate aerobic exercise and 10 min of resistance exercise at 50%-70% of 
1RM)

Decreased HbA1c levels

Castaneda et al[42], 2002 62 elderly patients with T2D; 14 wk of resistance exercise (45 min/d, 3 
d/wk at 60%-80% of 1RM for 1-8 wk and 70%-80% of 1RM for 10-14 wk)

Reduced plasma glycosylated hemoglobin levels 
and increased muscle glycogen stores

He et al[43], 2022 82 elderly people with pre-diabetes; 2 years of resistance exercise (50 
min/d, 3 d/wk of 13 types of resistance training protocols)

HbA1C levels and β cell function were resistance 
exercise response

Dunstan et al[44], 2002 36 elderly people with T2D; 6 mo of resistance exercise (55 min/d, 3 d/wk 
at 75%-85% of 1RM)

Improving glycemic control and decreases HbA1c 
levels

Jorge et al[46], 2011 48 middle-aged adults with T2D; 4 groups: Aerobic (n = 12), resistance (n = 
12), combined (n = 12), and control (n = 12); 12 wk of training (60 min/d, 3 
d/wk)

IRS-1 expression increased by 65% in the resistance 
group and by 90% in the combined group in T2DM

Ng et al[47], 2010 25 elderly people with T2D; 8 wk of resistance (50 min/d, 2-3 d/wk at 
65%-70% of 1RM)

Decreased HbA1c levels

Takenami et al[48], 2019 10 elderly patients with T2D; 16 wk of low-intensity resistance training (2 
d/wk at using body weight)

Decreased glycated hemoglobin

HbA1c: Hemoglobin; IRS: Insulin receptor substrate; T2DM: Type 2 diabetes mellitus.

decades and becomes an important factor in disability in the elderly population[49]. Insulin resistance in 
muscle protein metabolism with aging appears to be responsible for insensitivity to mixed supplements, 
and the presence of insulin resistance in muscle protein metabolism with aging independent of glucose 
tolerance has been demonstrated in healthy elderly subjects without diabetes[50]. Thus, the higher 
prevalence of sarcoidosis in T2DM individuals may be explained by other mechanisms, and the anabolic 
action of insulin in skeletal muscle is well known and may be progressively lost in T2DM due to 
decreased insulin sensitivity associated with the disease[51]. The decrease in muscle strength in elderly 
diabetes patients may be due, in part, to the intrinsic impairment of muscle strength generation, and a 
decrease in insulin signaling leads to a decrease in protein synthesis and an increase in proteolysis, 
which may ultimately lead to a decrease in muscle mass[52].

Resistance exercise is traditionally performed to increase muscle mass. Resistance exercise has a 
beneficial effect on sarcopenia in the general elderly population and is effective in coping with muscle 
mass reductions and performance deterioration in elderly patients with T2D[53,54]. Importantly, 
resistance exercise has also been found to have a beneficial effect on blood sugar profiles and insulin 
sensitivity[55]. In particular, in the case of elderly people, exercise is essential for preventing and 
managing sarcopenia because it counteracts the decline in both aging and muscle weakness caused by 
diabetes[56].

Compared to females who reported performing no strength training, females who performed 
strength training showed a 30% reduction in T2D (hazard ratio = 0.70, 95% confidence interval: 0.61-
0.80)[57]. Short-term acute (2 d) moderate-intensity resistance exercise (50% of 1 RM) effectively reduced 
blood glucose levels and blood glucose fluctuations in elderly patients with T2M and sarcopenia[58]. 
Table 2 summarizes the benefit of resistance exercise in elderly people with sarcopenia.

Aging can accelerate the loss of muscle mass and function, and the loss of muscle mass and function 
may impair glucose metabolism and aggravate diabetes[59]. For this reason, elderly people especially, 
need to increase muscle mass, and the only way to increase muscle mass is to perform resistance 
exercises. The inclusion of gradual resistance exercise in lifestyle modification programs should be 
considered for elderly patients with sarcopenia and T2D or both[58,60]. There is also a general 
consensus that a moderate increase in daily protein intake to 0.8 g/kg/d or more in elderly people may 
enhance the metabolism of muscle proteins and reduce the progressive loss of muscle mass with aging
[61].

CONCLUSION
Among the various diseases caused by aging, diabetes and sarcopenia appear in elderly people. 
Reduced β cell function in elderly people lowers insulin sensitivity, which affects protein synthesis and 
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Table 2 Resistance exercise and sarcopenia

Ref. Study population and intervention Study outcome

Zhao et al[58], 
2022

24 elderly patients with T2D and sarcopenia; short-term acute resistance 
exercise (40 min/d, 3 d at 50% of 1RM)

Decreased blood glucose levels, blood glucose fluctu-
ations and the risk of hypoglycemia

Seo et al[62], 
2021

12 elderly females with sarcopenia; 16 wk of resistance training (60 min/d, 3 
d/wk at 4-8 on the OMNI scale)

Improved functional fitness and muscle quality

Dong et al[63], 
2019

21 elderly patients on maintenance hemodialysis with sarcopenia; 12 wk of 
resistance exercise (3 d/wk at their own body weight and elastic balls)

Improved physical activity status (maximum grip 
strength, daily pace, and physical activity level), and 
Inflammatory factors (IL-6, IL-10, and TNF-α)

Liao et al[64], 
2018

56 elderly females with sarcopenia obesity; 12 wk of elastic band resistance 
training (3 training sessions every week for 12 wk, each training session was 
performed for 55 min)

Significant beneficial effect on muscle mass, muscle 
quality, and physical function

Hamaguchi et al
[65], 2017

7 elderly females with sarcopenia; 6 wk of progressive power training (2 
sessions per week for 6 wk; when the subject was capable of completing all 8 
sets, the weight was increased by 380-760 g in the next session)

BMD and knee extensor strength were significantly 
greater in the training group than in the control group

Vasconcelos et al
[66], 2016

14 elderly females with sarcopenia; 10 wk of resistance exercise (60 min/d, 2 
d/wk; 1-2 wk at 50% of 1RM, 3-4 wk at 75% of 1RM, 5-6 wk at 40% of new 
1RM, and 7-10 wk at 60% of new 1RM)

Knee extensor power was significantly higher in the 
training group than in the control group

Stoever et al
[67], 2018

28 elderly people with sarcopenia obesity; 16 wk of progressive resistance 
training (2 d/wk, increasing to 80%-85% of maximum strength with 3 sets of 
8 to 12 repetitions)

Increase performance in hand-grip strength, gait speed, 
SPPB score, and modified PPT score

T2D: Type 2 diabetes; IL: Interleukin; TNF: Tumor necrosis factor; SPPB: Short Physical Performance Battery; PPT: Physical performance test.

Figure 1 The summary of the factors that cause diabetes and sarcopenia due to the aging and benefits of resistance exercise in the 
elderly is as follows.

interferes with muscle synthesis. The functional decrease and aggravation of disease in elderly people 
with less regular exercise or physical activity causes imbalances in food intake and a continuous, vicious 
cycle. In contrast, resistance exercise increases β cell function and protein synthesis in elderly people. A 
summary of our conclusions is shown in Figure 1. Regular physical activity and/or resistance exercise 
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in the elderly is effective in preventing and promoting sarcopenia and diabetes. On the contrary, aging 
increases the risk of exposure to sarcopenia and diabetes. Therefore, exercise or physical activity should 
be regularly performed even before aging begins, and muscle mass should be increased through 
resistance exercise. The protein intake necessary for protein synthesis during resistance exercise should 
also be maintained in elderly people and those with diabetes or/and sarcopenia.
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Abstract
“Intermediate hyperglycemia in early pregnancy (IHEP)” refers to mild 
hyperglycemia detected before 24 gestational weeks (GW), satisfying the criteria 
for the diagnosis of gestational diabetes mellitus. Many professional bodies 
recommend routine screening for “overt diabetes” in early pregnancy, which 
identifies a significant number of women with mild hyperglycemia of undeter-
mined significance. A literature search revealed that one-third of GDM women in 
South Asian countries are diagnosed before the conventional screening period of 
24 GW to 28 GW; hence, they belong in the IHEP category. Most hospitals in this 
region diagnose IHEP by oral glucose tolerance test (OGTT) using the same 
criteria used for GDM diagnosis after 24 GW. There is some evidence to suggest 
that South Asian women with IHEP are more prone to adverse pregnancy events 
than women with a diagnosis of GDM after 24 GW, but this observation needs to 
be proven by randomized control trials. Fasting plasma glucose is a reliable 
screening test for GDM that can obviate the need for OGTT for GDM diagnosis 
among 50% of South Asian pregnant women. HbA1c in the first trimester predicts 
GDM in later pregnancy, but it is not a reliable test for IHEP diagnosis. There is 
evidence to suggest that HbA1c in the first trimester is an independent risk factor 
for several adverse pregnancy events. Further research to identify the patho-
genetic mechanisms behind the fetal and maternal effects of IHEP is strongly 
recommended.

Key Words: Intermediate hyperglycemia; Early pregnancy; Gestational diabetes; South 
Asian women; Adverse events; Asian Indian
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Core Tip: Intermediate hyperglycemia in early pregnancy (IHEP) is a common metabolic disorder among 
South Asian pregnant women, and it accounts for one-third of women with “gestational diabetes mellitus”. 
The benefits of early therapeutic intervention for these women have not been established. The guidelines 
on the screening and management of IHEP by international and regional professional bodies are 
conflicting, producing major confusion in obstetric practice in South Asian countries. There is an urgent 
need for randomized controlled trials to settle the ongoing controversies in this field.

Citation: Punnose J, Sukhija K, Rijhwani RM. Intermediate hyperglycemia in early pregnancy: A South Asian 
perspective. World J Diabetes 2023; 14(5): 573-584
URL: https://www.wjgnet.com/1948-9358/full/v14/i5/573.htm
DOI: https://dx.doi.org/10.4239/wjd.v14.i5.573

INTRODUCTION
Gestational diabetes mellitus (GDM) is the most common metabolic abnormality in pregnancy, and its 
prevalence varies widely depending on the population studied and the diagnostic strategy employed. 
GDM predisposes pregnant women to several obstetric and perinatal complications and places the 
mother and infant at high risk of long-term metabolic morbidity[1-3]. For many years, GDM was 
defined as “any degree of glucose intolerance that was first recognized during pregnancy”[4]. However, 
this definition fails to distinguish between women with “new onset of glucose intolerance in 
pregnancy” and those with preexisting undiagnosed diabetes. To circumvent this diagnostic confusion, 
the World Health Organization (WHO 2013) introduced the broad term hyperglycemia in pregnancy 
(HIP) for various dysglycemias in pregnancy[5]. Furthermore, women with HIP are subcategorized into 
two distinct entities: (1) Diabetes in pregnancy (DIP), those women satisfying the WHO (2006) 
diagnostic criteria of diabetes in a nonpregnant state (undiagnosed preexisting diabetes); and (2) GDM, 
women having plasma glucose values in a 75 g oral glucose tolerance test (OGTT) above the threshold 
values proposed by the International Association of DIP Study group (IADPSG) criteria[6] and below 
the threshold for diagnosis of overt diabetes at any stage of pregnancy. Screening for DIP at the first 
prenatal visit is accepted by several preeminent organizations, such as the International Federation of 
Gynecology and Obstetrics (FIGO)[7], the International Diabetes Federation (IDF)[8] and the American 
Diabetes Association (ADA)[4]. In contrast, the screening and diagnosis of GDM continue to be contro-
versial. Although OGTT is generally accepted as the diagnostic test by several professional organiz-
ations, there is no agreement on the glucose load for the test, plasma glucose cut off values and the 
number of abnormal plasma glucose values required for GDM diagnosis. Furthermore, there is no 
international consensus on GDM screening strategies: Risk-based selective or universal screening, one-
step or two-step screening and optimal timing of screening (Table 1).

Conventionally, GDM screening is performed between 24-28 wk of gestation (GW). The selection of 
this period is justified by: (1) The development of significant physiological insulin resistance by 24 GW; 
and (2) the availability of sufficient time in pregnancy for therapeutic intervention after GDM diagnosis. 
The GDM criteria proposed by O’Sullivan and Mahan[9] and subsequently modified by Carpenter and 
Coustan[10] were used to identify pregnant women who are prone to type 2 diabetes later in life. These 
criteria and the subsequent WHO 1999 criteria[11] were not validated by any obstetric or perinatal 
outcome studies. The landmark Hyperglycemia and Adverse Pregnancy Outcome (HAPO) study 
revealed a continuous relationship between maternal glycemia between 24 wk and 32 wk and several 
pregnancy adverse events, which formed the basis of the glucose threshold values proposed in the 
IADPSG criteria[6,12]. The threshold values of the IADPSG criteria are widely accepted by several 
professional organizations for GDM diagnosis between 24 GW and 28 GW[5,7,8]. However, the 
American College of Obstetricians and Gynecologists (ACOG)[13] and National Institute for Health and 
Care Excellence (NICE)[14] follow different criteria for GDM diagnosis. Many countries in South Asia 
continue to follow modified WHO 1999 criteria to suit the behavior of their obstetric population: DIPSI 
criteria[15] (Table 1).

GDM diagnosis prior to 24 GW (early GDM) by any criteria is not validated by pregnancy outcome 
data. Despite this limitation, many professional bodies, such as the WHO, FIGO, ACOG, and 
Australasian DIP Society (ADIPS), continue to recommend screening for early GDM among high-risk 
population groups[5,7,13,16] (Table 2). However, many organizations question the validity of mild 
hyperglycemia detected in early pregnancy. In 2016, the IADPSG withdrew its earlier 2010 recom-
mendation to diagnose GDM in early pregnancy based on an abnormal fasting plasma glucose (FPG) 
value of ≥ 5.1 mmol/L[17]. The 2021 United States Preventive Services Task Force statement concluded 
that ‘the current evidence is insufficient to assess the balance of benefits and harms of screening for 
GDM before 24 GW[18]. The NICE guidelines (2021) restrict GDM screening in early pregnancy to 
women who had GDM in a previous pregnancy[14]. The ADA 2022 limits “GDM” terminology to 
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Table 1 Commonly used oral glucose tolerance test criteria for gestational diabetes diagnosis among South Asian women

Plasma glucose threshold values
Criteria Glucose 

load FPG 
mmol/l

1 h PG 
mmol/L

2 h PG 
mmol/L

3 h PG 
mmol/L

Number of abnormal 
values required for 
diagnosis

Remarks

IADPSG, WHO 2013, 
ADA proposed “One 
step” procedure

75 g ≥ 5.1 ≥ 10.0 ≥ 8.5 - 1 Universal screening

DIPSI 75 g - - ≥ 7.8 - 1 Universal screening. OGTT 
in non-fasting state

ACOG and ADA 
proposed “Two step” 
procedures

Carpenter and 
coustan criteria

100 g ≥ 5.3 ≥ 10.0 ≥ 8.6 ≥ 7.8 2

NDDG criteria 100 g ≥ 5.8 ≥ 10.5 ≥ 9.0 ≥ 8.0 2

Universal screening, prior 
50 g GCT positivity 
required (1-h PG ≥ 7.2 or 2-
h PG ≥ 7.8 mmol/L)

ACOG (2018) acknow-
ledges higher risk for 
those with one abnormal 
value

ACOG (2018) permits 
institutions and 
individuals to use one step 
IADPSG procedure as well

NICE 75 g ≥ 5.6 - ≥ 7.8 - ≥ 1 Selective testing for high 
risk population1

1High risk population = women having Body Mass Index > 30 kg/m2, previous macrosomia (≥ 4500 g, previous GDM, family history of diabetes, ethnic 
origin with high prevalence of diabetes (South Asian, Black Caribbean, and Middle Eastern).
IADPSG: International Association of the Diabetes and Pregnancy Study Groups; WHO: World Health Organization; ADA: American Diabetes 
Association; DIPSI: Diabetes in Pregnancy Study group of India; ACOG: American College of Obstetricians and Gynaecologists; NICE: National Institute 
for Health and Care Excellence; OGTT: Oral glucose tolerance test; OCT: Oral glucose challenge test; NDDG: National Diabetes Data Group; FPG: Fasting 
plasma glucose; PG: Post load plasma glucose.

denote impaired glucose tolerance detected in the second and third trimesters only[4]. However, it 
recommends screening before 15 GW to identify: (1) Undiagnosed pregestational diabetes; and (2) 
women at risk for adverse events, i.e., those with FPG ≥ 6.1 mmol/mol or HbA1c ≥ 41 mmol/mol 
(Table 2).

The common practice of early GDM screening (before 24 GW) and DIP screening at the first prenatal 
visit among high-risk pregnant women identifies many women with milder glucose intolerance of 
undetermined significance: Glycemia below the threshold for overt diabetes but satisfying the 
diagnostic criteria for GDM. This dysglycemia in early pregnancy (before 24 GW) is referred to as 
Intermediate Hyperglycemia in Early Pregnancy (IHEP) and forms a significant proportion of “GDM 
women” in South Asian countries (India, Pakistan, Bangladesh, Sri Lanka, Nepal). This article is an 
update on the current knowledge on IHEP among pregnant women residing in South Asian countries.

SOUTH ASIANS AS A DIABETES RISK POPULATION
South Asians represent approximately 2 billion people globally. A high prevalence of type 2 diabetes 
has been reported among South Asians residing in the Indian subcontinent as well as in its diaspora
[19]. The clinical profile of type 2 diabetes among South Asians differs from that among Caucasians in 
various aspects: Onset at a younger age, lower body mass index (BMI), higher abdominal (visceral) 
obesity, greater insulin resistance and early decline in pancreatic β cell function[20]. There is an ongoing 
global epidemic of type 2 diabetes with its epicenter in South Asia, and India is being projected as the 
”diabetic capital” of the world. The number of people with diabetes in India has increased exponentially 
in the past two to three decades: 19 million in 1995, 32 million in 2000, and 66.8 million in 2014, and this 
number is expected to increase to 79.4 million in 2025[20,21].

The ICMR-INDIa DIABetes (INDIAB) study revealed that the number of people with prediabetes 
(77.2 million) in India was higher than that of people with diabetes (62.4 million)[22]. The IDF estimated 
76 million women aged 20 years to 39 years to have diabetes or prediabetes in the Asia-Pacific region
[23]. The high prevalence of prediabetes among women of child-bearing age is mirrored by the high 
GDM prevalence in pregnancy in this region. India has 5.7 million women with hyperglycemia during 
pregnancy and ranks first in the world in this respect[8,24]. A similar higher propensity for GDM has 
been reported among Asian immigrants in developed countries. Asian immigrants in the United 
Kingdom and Norway (South, East, and West Asian immigrants) have double the odds for GDM than 
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Table 2 Recommendations of various organizations for “intermediate hyperglycemia” screening before 24 gestational weeks

Organization Timing Target population Test Threshold PG values in 
mmol/L Position of the association in 2022

International 
Association of the 
Diabetes and 
Pregnancy Study 
Group (IADPSG): 
2010

First antenatal 
visit

Universal or only 
high-risk women

Fasting plasma 
glucose

5.1-6.9; if < 5.1, OGTT after 24 
GW

2016: Withdrew the recommendation 
for FPG testing before 24 GW

World Health 
Organization: 2013

Any time before 
24 GW

Not defined 75 g OGTT FPG 5.1-6.9; 1-h PG ≥ 10; 2-h 
PG 8.5-11.0

No change from 2013 recommendation

American Diabetes 
Association (ADA): 
2010

During first 
antenatal visit, 
suggest risk 
stratification

Those women with 
marked obesity, 
personal history of 
GDM, glycosuria, or 
a strong family 
history of diabetes, 
testing as soon as 
possible

One step test: 
75 g 2-h OGTT, 
or two step test: 
50 g OCT + 100 
g 3-h OGTT

One step: FPG ≥ 5.2, 1-h ≥ 10, 
2-h ≥ 8.6 (one abnormal 
value); two step: FPG ≥ 5.2, 1-
h ≥ 10.0, 2-h ≥ 8.6, 3-h 7.8 
(require two abnormal values)

2015: Test for undiagnosed diabetes at 
the first prenatal visit for those with 
risk factors, using standard diagnostic 
criteria; 2021: Test for undiagnosed 
pre-diabetes and diabetes at the first 
prenatal visit in those with risk factors 
using standard diagnostic criteria; 
2022: Before 15 GW, test women with 
risk factors or consider testing all 
women for undiagnosed DM

2011-2014: 
Accepted IADPSG 
criteria for GDM 
diagnosis at 24-28 
GW

No guideline for 
screening before 
24 GW

Not specified Nil Screen women at risk for adverse 
events by FPG (6.1 mmol/L), HbA1c 
(4.1 mmol/mol)

American College 
of Obstetricians 
and Gynaecologists 
(ACOG): 2018

First antenatal 
visit, selective for 
women at risk 
for undiagnosed 
diabetes and 
GDM

Selective for women 
at risk for 
undiagnosed type 2 
diabetes or GDM

Two step: 50 g 
OCT + 100 g 3-
h OGTT1 or one 
step: 75 g 
OGTT in select 
situations

FPG > 5.3, > 5.8; 1-h PG ≥ 10, ≥ 
10.6; 2-h PG ≥ 8.6, ≥ 9.2; 3-PG 
≥ 7.8, ≥ 8.0 (NDDG or C&C 
criteria); one step same as 
IADPSG recommendations for 
DM, no specific 
recommendation for 
intermediate hyperglycemia

No Changes in criteria after 2018

Diabetes In 
Pregnancy Study 
group of India 
(DIPSI)

Yes Universal Non fasting 75 
g OGTT

2 h PG ≥ 7.8 No further modifications

National Institute 
for Health and 
Care Excellence 
(NICE): 2015 and 
2021

Yes Selective for women 
with history of 
previous GDM at 
first antenatal visit; 
other risk factors, no 
testing before 24 GW

Blood self-
monitoring of 
glucose or 75 g 
OGTT

FPG ≥ 5.6; 2 h PG ≥ 7.8 No further modification

1American College of Obstetricians and Gynecologists approves both Carpenter and Coustan criteria and National Diabetes Data Group and PG threshold 
values of both criteria are shown.
3-PG: 3 h post glucose load plasma glucose values; GW: Gestational week; OGTT: Oral glucose tolerance test; PG: Plasma glucose; FPG: Fasting plasma 
glucose; DM: Type 2 diabetes; GDM: Gestational diabetes; OCT: Oral glucose challenge.

non-Hispanic whites residing in these countries[25]. In a recent analysis by Gami et al[26] among the 
United States population, GDM rates increased significantly from 47.6 to 63.5 per 1000 live births from 
2011 to 2019, and this rise was mainly observed among Asian Indian and Puerto Rican women. 
Additionally, women of Asian ancestry in the United States were observed to have GDM at a younger 
age, even with BMI within or below the normal range[27,28]. In a large study involving 10353 
pregnancies at Bradford Infirmary in the United Kingdom, Farrar et al[29] estimated that the glucose 
threshold levels in a 75 g OGTT (performed between 26-28 GW) produced a 75% or higher relative risk 
of large for gestational age (LGA) babies among South Asian women than among British Caucasian 
women. The plasma glucose threshold values for LGA babies among South Asian and British Caucasian 
women were FPG values of 5.2 mmol/L and 5.4 mmol/L, respectively, and 2-h post glucose load 
plasma glucose (2-h PG) values of 7.2 mmol/L and 7.5 mmol/L, respectively.

IHEP AMONG SOUTH ASIAN PREGNANT WOMEN
The screening strategies to identify IHEP/HIP are: (1) Universal or selective screening by OGTT; (2) 
FPG at the first prenatal visit; and (3) hemoglobin A1c (HbA1c) in early pregnancy. We performed a 
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literature search for studies carried out between January 2004 and November 2022 on “IHEP among 
women residing in South Asian countries” in PubMed (medline), Cochrane Library and Google Search 
using the terms “gestational diabetes mellitus”, “diabetes in pregnancy”, “hyperglycemia in 
pregnancy”, “early diagnosis”, “first trimester”, “early pregnancy”, “South Asia”, “India”, “HbA1c”, 
“oral glucose tolerance test”, “fasting glucose”, and “intermediate hyperglycemia”. We identified 19 
original articles that provided data on the frequency of IHEP in the South Asian region. These studies 
were not primarily designed to assess IHEP (early GDM) and had inadequate data for a proper 
systematic review or meta-analysis on this topic.

OGTT for detection of IHEP
The literature search yielded 14 GDM studies from South Asia with some data on the frequency of 
IHEP: Eleven from India, two from Sri Lanka and one from Bangladesh. The study design, GDM 
diagnostic criteria, overall GDM prevalence and frequency of IHEP in these studies are shown in Table 3
[30-43]. The marked heterogeneity in the study design, the diversity of the GDM diagnostic criteria and 
the lack of clinical details of women with IHEP are limitations to making a comparative assessment 
between these studies. Five GDM diagnostic criteria were used in these studies: WHO 1999 criteria for 
six studies (4 studies[31,36,41,43] using both fasting PG and 2-h PG values, 2 studies[32,33] using only 2-
h PG value; modified WHO 1999 criteria), DIPSI criteria for four studies (same as modified WHO 1999 
criteria, but OGTT performed in nonfasting state)[34,37,38,40], IADPSG criteria for three studies[30,39,
42] and Carpenter & Coustan criteria for one study[35]. As WHO-1999, modified WHO 1999 and DIPSI 
criteria are primarily based on 2-h PG values, the women who had GDM diagnosis by these criteria 
were analyzed together. The pooled data analysis of 32055 pregnant women who were screened by 
these criteria revealed that 4024 women had GDM, with a prevalence of 12.55%. Of 4006 women who 
were screened by IADPSG criteria, 1072 women had GDM, with a prevalence of 26.75%. One small 
study among 298 women identified 40 GDM by Carpenter & Coustan criteria, with a prevalence of 
13.42%.

The number of women with GDM in different periods of gestation and their percentage in relation to 
total GDM women are shown in Table 3. The pooled data analysis revealed that 925 (18.5%) of 4961 
GDM women in eleven studies had a GDM diagnosis in the first trimester. The combined data of seven 
studies showed that 1230 (32.6%) of 4961 GDM women were diagnosed before the conventional 
screening period of 24-28 GW. Hence, one-third of GDM women in South Asian countries belong to the 
IHEP category, and half of them are diagnosed in the first trimester. A selective assessment of women 
with IHEP diagnosis by IADPSG criteria (data from 3 studies)[30,39,42] revealed nearly the same 
proportions of women with IHEP in the first trimester (18.09%) and < 24 GW (35.31%) groups. The 
exclusion of women with DIP from the analysis[39,41,43] produced minor changes in the frequency of 
IHEP: First trimester, 19.55% (149 of 762 GDM women); before 24 GW, 31.03% (359 of 1157 GDM 
women).

The above data suggest that OGTT is widely used for the detection of IHEP among South Asian 
women. The Ministry of Health and Family Welfare, Government of India Technical Guideline on the 
Diagnosis of Gestational Diabetes (2018), recommends that all pregnant women should undergo 75 g 
OGTT “during the first antenatal contact as early as possible”; if the test is negative initially, a second 
OGTT should be done during 24-28 GW[44-46]. The FIGO endorsed this approach for hyperglycemia 
screening in early pregnancy in South Asian countries[7]. Similarly, the ACOG[13], ADIPS[16], and 
Canadian Diabetes Association[47] advocate OGTT-based screening for IHEP among the South Asian 
diaspora in the respective countries.

There is no consensus on the OGTT criteria to be used for IHEP diagnosis in the South Asian region 
(Table 2). Considering the convenience of nonfasting state and single PG sampling, the DIPSI criteria are 
frequently used in India for “GDM diagnosis” in all trimesters[32]. However, there are some concerns 
about the validity of DIPSI criteria in the post-IADPSG era. The DIPSI 2-h PG threshold value (7.8 
mmol/L) was derived from WHO 1999 criteria, a popular criteria for GDM diagnosis during the 1999-
2010 period[11]. The FPG threshold value of 7 mmol/L recommended for GDM diagnosis in the WHO 
1999 criteria is presently the cut off value for DIP diagnosis, and women with DIP are not considered to 
have GDM by any professional organization. Furthermore, with the introduction of IADPSG criteria 
based on the pregnancy outcome data in the HAPO study, the WHO withdrew its 1999 criteria and 
recommended IAPDPG criteria as the new WHO2013 criteria[5]. The DIPSI criteria were initially 
validated with WHO 1999 criteria, and many hospitals in India continue to use these criteria for GDM 
diagnosis[33] (Table 2). However, as the WHO has withdrawn its 1999 criteria and accepted the IADPSG 
criteria, the DIPSI criteria need to be revalidated with the WHO 2013 criteria or be validated by 
pregnancy outcome data. The validation of nonfasting DIPSI criteria with IADPSG criteria was 
attempted in two well-designed studies from India; in both studies, the sensitivity for DIPSI criteria was 
too low for its use as a diagnostic or screening test for GDM[48,49].

FPG estimation for detection of IHEP
In the HAPO study on which the IADPSG criteria are based, there was heterogeneity in the frequency of 
abnormal FPG, 1-h PG and 2-h PG values among women diagnosed with GDM in different centers. An 
abnormal FPG value occurred only in 26% of women in the Hong Kong center, while the percentage in 
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Table 3 Early Gestational diabetes among South Asian women: Oral glucose tolerance test based studies

Ref. Region study 
location

No. of 
women Diagnostic criteria and study design

GDM women-n (prevalence %), 
GW, no of GDM women (% of 
total GDM women)

Sharma et al[36], 2013 Jammu, India hospital 500 WHO 1999; preceded by 75 g non fasting OCT 
if 2-h PG ≥ 7.8 mmol/L, 75 g OGTT; at first 
prenatal visit

GDM: n = 55 (10%); 16-20 wk, 10 
(18.1%); 21-24 wk, 20 (36.3%); 25-28 
wk, 10 (18.1%); 29-32 wk, 15 (27.2%)

Seshiah et al[31], 2008 Chennai, Indian 
community

12056 WHO 1999; test at first prenatal visit; repeat at 
24 GW and 32 GW

GDM: n = 1679 (13.9%); < 16 wk, 208 
(12.4%); 17-23 wk, 280 (23.0%); ≥ 24 
wk, 891.0%-64.6%

Dahiya et al[34], 2014 Rohtak, India hospital 500 DIPSI; test < 16 GW, if negative repeat at 24-28 
GW

GDM: n = 35 (7%); < 16 wk, 4 (11.4%); 
second trimester-34 (88.6%)

Veeraswamy et al
[37], 2016

Pan India study; 
peripheral clinic

9282 DIPSI; OGTT at first prenatal visit GDM: n = 740 (8%); 1st trimester, 233 
(31.5%); 2nd trimester, 320 (43.2%); 3rd 
trimester, 187(25.3%)

Neelakandan et al
[30], 2014

Tirucharapalli, India 
hospital

1106 IADPSG; if preceding by 50 g OCT 1-h PG ≥ 
7.2 mmol/L; first prenatal visit

GDM: n = 258 (23.3%); ≤ 12 wk, 36 
(13.9%); 13-18 wk, 43 (16.7%); 19-28 
wk, 114 (44.1%); ≥ 28 wk, 65 (25.2%)

Bhatt et al[38], 2015 Pune, India community 989 DIPSI with Capillary Glucose; OGTT any 
trimesters

GDM: n = 88 (8.9%); < 24 wk, 42 
(47.9%); ≥ 24 wk, 46 (52.1%)

Anjalakshi et al[33], 
2009

Chennai, India hospital 800 WHO 1999-M; OGTT between 16-32 GW GDM: n = 87 (10.89%); 16-20 wk, 7 
(8%); 21-24 wk, 17 (19.5%); 25-28 wk, 
49 (56.3%); 29-32 wk, 14 (16.1%)

Seshiah et al[32], 2007 Chennai, India 
community

4151 WHO 1999-M; any trimester GDM: n = 741 (17.9%); < 16 wk, 121 
(16.3%); 17-23 wk, 166 (22.4%); ≥ 24 
wk, 454 (61.27%)

Grewal et al[32], 2007 Delhi, India hospital 298 Carpenter and Coustan criteria; OGTT before 
12 GW; women with DIP, IFG, and IGT 
excluded

GDM: n = 40 (13.42%); < 12 wk, 24 
(60%); 24-28 wk, 16 (40%)

Bahl et al[40], 2022 Delhli, India 
community

2244 DIPSI; OGTT at first prenatal visit, repeat 24-
28 wk, 34-36 wk

GDM: n = 430 (19.16%); 1st trimester, 
112 (26.1%); 2nd and 3rd trimester, 318 
(74%)

Punnose et al[39], 
2023

Delhi, India hospital 
based

2638 IADPSG; first trimester HbA1c, if < 48 
mmol/L, OGTT at any trimester; if OGTT 
negative before 24 GW repeat after 24 GW, 
DIP excluded

GDM: n = 722 (27.37%); < 14 wk, 125 
(17.3%); 14-23 wk, 130 (18%); ≥ 24 wk, 
467 (64.68%)

Sudasinghe et al[43], 
2016

SriLanka community 1533 WHO-1999; initial screening in first trimester 
by 2-h post prandial PG ≥ 6.7-11.1 mmol/L 
OGTT at 16 GW, if negative repeat after 24 
GW, DIP excluded

GDM: n = 169 (11.02%); < 16 wk, 19 
(12.67%)

Jayawardane et al
[41], 2018

Sri Lanka hospital Not given WHO 1999 (2011-14) and DIPSI (2014-15), 
OGTT in any trimesters, DIP excluded

GDM: n = 435 (total number not 
available); 12-23 wk, 104 (23.9%); ≥ 24 
wk, 331 (76.09%)

Mazumder et al[42], 
2022

Bangladesh community 265 IADPSG; OGTT in any trimester GDM: n = 92 (34.71%); 1st trimester, 
33 (35.87%); 2nd trimester, 36 (39.13%); 
3rd trimester, 23 (25%)

Values in bold indicate percentage of women diagnosed before 24 gestational weeks. GW: Gestational weeks; WHO: World Health Association; OCT: Oral 
glucose challenge; OGTT: Oral glucose tolerance test; DIPSI: Diabetes In Pregnancy Study group of India; IADPSG: International Association of the 
Diabetes and Pregnancy Study Group; DIP: Diabetes in pregnancy; IGT: Impaired glucose tolerance; IFG: Impaired glucose tolerance; 1-h PG: Post Glucose 
load 1 h plasma glucose.

the Bellflower (California) center was > 70%. This observation led to the conclusion that FPG performed 
poorly in diagnosing GDM in Asians compared to Caucasian women[50]. A study in South India by 
Balaji et al[51] also suggested that only 24% of women who had GDM diagnosis by WHO 1999 criteria 
had FPG values ≥ 5.1 mmol/L (the IADPSG FPG threshold for GDM diagnosis), and the authors 
concluded that FPG was inadequate to diagnose GDM in the South Asian population. However, the 
reliability of FPG to diagnose GDM by IADPSG criteria (at least based on the available FPG and 2-h PG 
values) was not assessed in this paper. Subsequently, several studies among South Asian pregnant 
women reported FPG as a more reliable, easier test than the glucose challenge test to screen for GDM by 
Carpenter and Coustan criteria[52-54]. In a large North Indian study (involving 6520 pregnant women), 
an FPG value of ≤ 4.3 mmol/L reliably ruled out GDM in all trimesters (95.6% sensitivity), and FPG 
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alone (≥ 5.1 mmol/L) could identify 67.9% of GDM by IADPSG criteria[55]. This study suggested that 
FPG can reliably “rule in and rule out GDM” and can avoid OGTT for GDM diagnosis in approximately 
50% of South Asian pregnant women. The excellent area under the curve of 0.909 (95%CI: 0.898 to 0.920) 
for FPG in this study was contrary to the traditional belief that FPG performs poorly as a screening test 
for GDM in Asians.

Several studies from South Asia have tested the reliability of FPG in early pregnancy to predict GDM 
in later pregnancy. In a cohort of 246 pregnant women from North India, an FPG value of 4.7 mmol/L 
in early pregnancy reliably predicted GDM diagnosis by IADPSG criteria after 24 GW (with 94% 
sensitivity and 74% specificity)[56]. Another study from South India (n = 270) concluded that FPG ≥ 5 
mmol/L in the first trimester reliably predicted GDM by DIPSI criteria, with an area under the ROC 
curve of 0.694, sensitivity of 86.6%, and specificity of 52.1%[57].

The above data suggest that FPG estimation in early pregnancy can be a reliable predictor and 
possibly a screening test for GDM among South Asian pregnant women. In 2013, most international 
professional organizations accepted the IADPSG recommendation to diagnose GDM in early pregnancy 
based on FPG values between 5.1 and 6.9 mmol/L[5,7,8]. Subsequently, IADPSG withdrew this 
recommendation[17], and some organizations supported this change[4]. Presently, FPG values between 
5.1 and 6.9 mmol/L in early pregnancy are interpreted differently by many professional bodies. The 
WHO approves GDM diagnosis for such women and permits treatment accordingly. The IADPSG does 
not approve FPG use for GDM diagnosis before 20 GW. The ADA (2022) criteria approve treatment for 
these women, provided the FPG is ≥ 6.1 mmol/L and it is documented before 15 GW. The DIPSI and 
Government of India (2018) guidelines do not recommend FPG estimation at any stage of pregnancy. 
Obstetricians in South Asian countries follow all these guidelines, resulting in chaos in the diagnosis 
and management of IHEP among South Asian women.

HbA1c for detection of IHEP
Following the recommendation of the World Health Organization that HbA1c testing be used for the 
diagnosis of diabetes mellitus in the general population, interest in its use in pregnancy has been 
renewed[58]. An HbA1c level ≥ 48 mmol at booking is now accepted as a criterion to diagnose DIP or 
preexisting overt diabetes[5,7]. In 2011, the California state Diabetes and Pregnancy program (CSDPP) 
“Sweet Success” adopted a new algorithm for the diagnosis and treatment of hyperglycemia in 
pregnancy[59]. Accordingly, all women with HbA1c values of 39-46 mmol/mol in early pregnancy are 
advised to undergo GDM treatment without further confirmatory OGTT. This recommendation equates 
GDM to the prediabetic state of the nonobstetric population. This CSDPP proposal, although practiced 
in several United States centers, has not been approved by any professional body.

Considering the high prevalence of prediabetes in the background population, HbA1c can be a 
potential biomarker to identify high GDM risk women in early pregnancy among South Asian Women. 
There are limited studies among South Asian women to assess HbA1c as a diagnostic test for IHEP. In a 
South Indian study to assess HbA1c for screening GDM among 507 women by Balaji et al[60], a 
subgroup analysis revealed that all women with HbA1c ≥ 42 mmol/mol in the first trimester (n = 10) 
developed GDM (by WHO 1999 criteria) in later pregnancy. In another study in which HbA1c and 
OGTT were simultaneously tested at a mean age of 19 GW, women who had GDM had higher HbA1c 
(33 mmol/mol) than those without GDM (HbA1c, 30 mmol/mol)[61]. In a retrospective cohort study 
from our center among 2275 Asian Indian pregnant women, an HbA1c value of > 37 mmol/mol in the 
first trimester was found to be an independent predictor of GDM (adjusted OR 2.60, 95%CI: 1.49-4.55) 
by IADPSG criteria[62]. However, HbA1c in the first trimester lacked sufficient sensitivity and 
specificity for consideration as a diagnostic test for GDM in early pregnancy. Interestingly, we observed 
in this cohort that, even after exclusion of women with DIP and women who developed GDM in later 
pregnancy, HbA1c in the first trimester was independently associated with preterm birth and primary 
cesarean delivery[63]. Hence, apart from being a strong risk factor for GDM, HbA1c in the first trimester 
can independently predict adverse pregnancy events in South Asian pregnant women.

As HbA1c is increasingly being used to identify DIP at the first prenatal visit, it is cost effective to use 
the same test for the prediction of GDM and other adverse events. Furthermore, HbA1c estimation 
requires only a single nonfasting sample, and the test has greater preanalytic stability and reprodu-
cibility and no interference from acute stressful conditions. These factors are of special advantage for 
pregnant women in South Asian countries, as most of them report to hospitals in a nonfasting state and 
are not willing to undergo repeated blood sampling[15].

INTERVENTIONS AMONG SOUTH ASIAN WOMEN WITH IHEP
Limited data on IHEP management in South Asian countries are derived from the analysis of 
retrospective data. With early initiation of treatment among a small cohort of 54 women with early 
GDM (by WHO 1999 criteria) in South India, the birth weight of babies of GDM women was comparable 
to babies of non-GDM women[64]. In a retrospective study in our center among 2638 pregnant women 
with HbA1c < 48 mmol/mol in the first trimester, 255 women satisfied the IADPSG criteria for GDM 
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before 24 GW (IHEP)[39]. Despite early initiation of treatment, women with early GDM (IHEP) had 
significantly higher adjusted odds ratios for premature birth, macrosomia, LGA babies, and neonatal 
intensive care unit admission and lower odds for normal vaginal delivery than non-GDM women. The 
highest risk for adverse events was observed among GDM women who had the diagnosis in the first 
trimester. A similar observation was made in a large multiethnic Australian study that revealed the 
highest adverse events among women who had GDM diagnosis in the first trimester, despite the best 
practices of management[65]. The failure to reduce adverse pregnancy events by early intervention in 
these studies[39,65] may be interpreted as a lack of benefit of early GDM screening. Alternatively, it can 
be attributed to the fetal and maternal effects of mild hyperglycemia in early pregnancy, which were not 
reversed with restoration of euglycemia in later pregnancy. This speculation is strengthened by the 
observation of an independent association of HbA1c in the first trimester with adverse events, even 
without the development of GDM in later pregnancy by several researchers[63,66,67].

IHEP AMONG SOUTH ASIAN PREGNANT WOMEN: CHALLENGES & 
RECOMMENDATIONS
The main challenges in the identification and management of IHEP are the lack of pregnancy outcome-
based diagnostic criteria and the frequent changes in the recommendations of many associations and 
organizations of international repute. Unfortunately, the changes proposed by many professional 
organizations are not backed by strong research data. The withdrawal of FPG-based GDM diagnosis 
before 24 GW by IADPSG was based on reports that early GDM diagnosis by an abnormal FPG value 
was poorly predictive of later GDM at 24-28 GW[17]. This approach has the limitation of considering 
pregnancy as a ‘metabolically static state’, having fixed glucose threshold values for all adverse events 
throughout pregnancy. In contrast, the HAPO study revealed a differential effect of the gestational age 
of onset of hyperglycemia on adverse events: PG values between 24-32 GW were associated with 
abnormalities in birth weight, while the HbA1c of that period (glycemia of preceding three months) led 
to preterm birth, primary cesarean delivery and preeclampsia[68]. Furthermore, several studies have 
suggested that hyperglycemia in early pregnancy per se can lead to significant adverse pregnancy 
events, even without the development of GDM in later pregnancy[63,66,67]. Hence, there is a strong 
need to identify glucose threshold values in early pregnancy, which can reliably predict adverse 
pregnancy events, and not GDM development alone, in later pregnancy. The differential effect of 
glycemia at different stages of pregnancy on adverse pregnancy events needs to be explored further. 
The mechanisms behind the deleterious effects of “mild hyperglycemia in early pregnancy” on fetal 
development and on adverse pregnancy events have not yet been clearly identified. Further research to 
identify any modifiable factors in early pregnancy will help to design preventive strategies for 
“hyperglycemia” in the peri-conception period and to develop alternate nonglucose centric measures.

There are significant ethnic and racial differences in PG and HbA1c threshold values for adverse 
pregnancy events, which was evident in two well-designed studies in Europe: Lower PG threshold 
values for LGA for South Asians than British Caucasians in the Bradford birth cohort by Farrar et al[29] 
and lower HbA1c (first trimester) threshold values for adverse events among South Central Asians 
compared to Caucasians in Spain by Mañé et al[69]. The ADA proposal of an HbA1c value of 41 mmol/
mol in the first trimester to identify women prone to adverse events is derived from a New Zealand 
study involving predominantly Caucasian women[67]. The ADA-proposed HbA1c and FPG threshold 
values (≥ 6.1 mmol/L) for adverse pregnancy events were tested in a cohort of 2638 pregnant South 
Asian women in our center[4,39]. The percentage of women with adverse events identified by the ADA-
proposed FPG and HbA1c threshold levels was significantly lower than the percentage of women 
having these events in the group of women with a diagnosis of IHEP by IADPSG criteria. Hence, an 
IHEP diagnosis identifies more South Asian pregnant women who are prone to adverse pregnancy 
events than those detected by the ADA-proposed FPG and HbA1c threshold values.

The trimester-related variations in the effect of hyperglycemia on fetal and adverse events and ethnic 
differences in the threshold for these adverse effects are major areas for future research. Despite having 
the highest number of women with HIP in the world, no center from South Asia (Indian subcontinent) 
was included in the HAPO study. There is a strong need for a HAPO-like study in early pregnancy 
among pregnant women of this region to identify the PG threshold values for various adverse events. 
Furthermore, the benefit of early intervention should be assessed in a randomized control trial. 
However, in obstetric practice, where early GDM screening and early initiation of GDM treatment have 
been common practices for several decades, withdrawing GDM treatment from women who have a 
diagnosis of “early GDM or IHEP” is a major challenge to researchers.

CONCLUSION
A significant number of pregnant women in South Asian countries have intermediate hyperglycemia in 
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early pregnancy. The current estimates suggest that one-third of GDM women among South Asian 
countries are diagnosed before the conventional screening period of 24-28 gestational weeks. The 
guidelines of regional professional bodies such as DIPSI and the local governmental guidelines strongly 
recommend screening for IHEP at the first prenatal visit. There is no consensus on the test or the criteria 
used for IHEP diagnosis in this region. Despite the controversies on the diagnostic threshold values, the 
OGTT is the preferred test for IHEP diagnosis in South Asia. Other tests, such as FPG and HbA1c, are 
routinely performed to detect DIP and hence can be considered potential tests for IHEP detection. The 
frequent changes in international guidelines on IHEP detection and management, without strong 
research data to justify these changes, have led to major confusion in obstetric practice in South Asian 
countries. The intervention studies among women with IHEP have yielded conflicting results, which is 
partly attributable to the heterogeneity in study design. However, there is some suggestion in these 
studies of a possible fetal effect of mild hyperglycemia in early pregnancy that may not be reversible 
with the normalization of blood glucose in later pregnancy. Further research to identify the exact 
pathogenetic mechanisms of maternal and fetal effects of IHEP is recommended.
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Abstract
Diabetes mellitus (DM) is still one of the most common diseases worldwide, and 
its prevalence is still increasing globally. According to the American and 
European recommendations, metformin is considered a first-line oral hypo-
glycemic drug for controlling type 2 DM (T2DM) patients. Metformin is the ninth 
most often prescribed drug in the world, and at least 120 million diabetic people 
are estimated to receive the drug. In the last 20 years, there has been increasing 
evidence of vitamin B12 deficiency among metformin-treated diabetic patients. 
Many studies have reported that vitamin B12 deficiency is related to the ma-
labsorption of vitamin B12 among metformin-treated T2DM patients. Vitamin B12 
deficiency may have a very bad complication for the T2DM patient. In this review, 
we will focus on the effect of metformin on the absorption of vitamin B12 and on 
its proposed mechanisms in hindering vitamin B12 absorption. In addition, the 
review will describe the clinical outcomes of vitamin B12 deficiency in metformin-
treated T2DM.

Key Words: Metformin; Vitamin B 12 deficiency; Diabetes mellitus; Vitamin B12; Type 2 
diabetes mellitus
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Core Tip: In the last 20 years, there was increasing evidence of the presence of vitamin 
B12 deficiency among metformin-treated diabetic patients. Vitamin B12 deficiency may 
have a very bad complication for the T2DM patient. This review will focus on the effect 
of metformin on the absorption of vitamin B12 and on its proposed mechanisms in 
hindering vitamin B12 absorption. In addition to that, the review will describe the 
clinical outcomes of vitamin B12 deficiency in metformin-treated T2DM.
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INTRODUCTION
Diabetes mellitus (DM) is a chronic metabolic disorder diagnosed by abnormally high blood glucose 
levels. It is considered one of the most common diseases that lead to mortality and morbidity 
worldwide. Despite the development of health systems and public health concepts, the prevalence of 
DM is increasing globally[1]. According to current estimates, the number of people with diabetes in 
France and Belgium will rise by 17% by 2035, with an increase of 22% in the United States and the 
United Kingdom, 31% in Canada, and 3% to 37% in other European Union nations[2,3]. As known, 
uncontrolled DM may be the main cause of mortality among people[4]. The leading cause of morbidity 
and mortality in people with diabetes is vascular complications, which affect both the macrovascular 
system [cardiovascular disease (CVD)] and the microvascular system [diabetic kidney disease (DKD)], 
as well as diabetic retinopathy and neuropathy[5].

Metformin is considered one of the most important hypoglycemic drugs used to control the 
hyperglycemic state in patients with DM. It is mainly used in patients with Type 2 DM (T2DM) and 
both European and American recommendations recommend it as a first-line pharmacological treatment 
for T2DM[6-8]. According to many clinical trials, the drug improves cardiovascular outcomes in T2DM 
patients. Metformin is currently the most frequently given oral anti-diabetic drug because of its 
demonstrated efficacy, comparatively low risk, and potential for usage with other anti-diabetic drugs. 
More than 150 million diabetic patients are thought to receive the drug regularly worldwide[9].

In the last 20 years, there was increasing evidence of vitamin B12 deficiency among metformin-
treated diabetic patients[10,11]. Many studies have reported that vitamin B12 deficiency is related to the 
malabsorption of vitamin B12 among metformin-treated T2DM patients[11-13]. Vitamin B12 deficiency 
may have terrible complications for T2DM patients, which should be considered during the therapeutic 
plan[12,14]. In this review, we will focus on the effect of metformin on the absorption of vitamin B12 
and on its proposed mechanisms in hindering vitamin B12 absorption. In addition, the review will 
describe the clinical outcomes of vitamin B12 deficiency in metformin-treated T2DM and the impact of 
metformin use on serum vitamin B12.

OVERVIEW OF DIABETES
DM is a chronic metabolic disorder characterized to be an elevation in blood glucose levels caused by an 
absolute or relative insulin insufficiency, insulin resistance due to dysfunctional cells, or both. Other 
clinically discernible subtypes of diabetes exist, including monogenic diabetes (such as maturity-onset 
diabetes of the young or neonatal diabetes), gestational diabetes, and possibly a late-onset autoimmune 
form (latent autoimmune diabetes in adults)[12,15].

Diabetes is traditionally divided into an early-onset autoimmune form (T1D) and a late-onset non-
autoimmune form (T2D). In fact, T2D is generally used to describe any type of diabetes that is not 
autoimmune or monogenic in origin, and it is becoming more widely acknowledged that it may reflect a 
collection of several pathophysiological states[4].

T1DM
Deficient insulin production is a hallmark of T1D, sometimes referred to as insulin-dependent, juvenile, 
or childhood-onset, which necessitates daily insulin therapy. T1D affected 9 million people in 2017, the 
majority of whom reside in high-income regions. Its etiology and prevention methods are unknown. 
Some of the symptoms are polyuria, polydipsia, polyphagia, weight loss, visual abnormalities, and 
exhaustion. These signs could appear out of nowhere[16].

T2DM
The body’s inefficient use of insulin causes T2D; it is also known as non-insulin-dependent or adult-
onset diabetes. T2D affects more than 95% of those who have the disease and is primarily caused by 
increased total body mass index and low physical activity[17].

Symptoms may be like those of T1D but are often less marked. As a result, the disease may be 
diagnosed several years after onset, after complications have already arisen. This type of diabetes was 
previously exclusively found in adults, but it is now increasingly common in kids as well.
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Complications of DM
Both types of DM have a lot of complications in different vital systems in the human body. Diabetes is 
linked with long-term damage to both large and small blood vessels throughout the body, referred to as 
the macrovascular and microvascular systems[18]. Even though damage from high blood sugar to the 
macrovascular system, such as the coronary and cerebral arteries, is the primary cause of death in 
people with T2D, damage from high blood sugar to the microvascular system in the kidney, eyes, and 
nerves is far more frequent and significantly affects mortality[1].

Macrovascular complications: CVD is the primary cause of mortality for most of the diabetic 
population. Macrovascular problems are mostly caused by atherosclerotic constriction of arteries and 
veins, which results in cardiovascular, cerebrovascular, or peripheral artery diseases (PADs). Diabetes is 
a significant, manageable, independent risk factor for the development of CVD[19]. Cerebrovascular 
diseases, such as stroke and ischemia, occur in 20%-40% of diabetics due to atherosclerotic narrowing of 
the intracranial vessels and carotid artery. About 80% of diabetics over the age of 65 die of heart disease, 
and about 16% die from stroke[15,18].

Another very important complication is PAD which is an atherosclerotic occlusive disease of the 
lower extremities. And it carries a considerable risk of amputation for the affected limbs. One of the 
independent risk factors for the onset of PAD is DM. Particularly, diabetic people frequently experience 
critical limb ischemia, an advanced type of PAD that causes rest pain and long-term disability[20].

Microvascular complications: Uncontrolled hyperglycemic status can lead to microvascular complic-
ations like microangiopathy, nephropathy, neuropathy, and retinopathy by affecting small vessels, 
including capillaries[21]. One of the most common complications among diabetic patients is diabetes-
related kidney dysfunction, also known as diabetic nephropathy or DKD. It is characterized by 
unusually high levels of albumin excretion with urine and a decreased glomerular filtration rate because 
of lesions that have developed in the glomerulus. In addition to that, people with long-term diabetes 
develop diabetic neuropathy because of chronic nerve damage[4,15,22].

Another common complication is diabetic retinopathy, where one-third of people with hypertension 
and high blood sugar are also diagnosed with diabetic retinopathy. Increased vascular permeability, the 
thickness of the retina, and neovascularization of the retina are its defining features, all of which cause 
vision loss. It is among the leading causes of long-term blindness and vision impairment in diabetics
[23].

How can DM cause cell damage and consequently microvascular and macrovascular complications?
As we have mentioned before, the main feature of DM is the uncontrolled hyperglycemic state closely 
related to cell damage. Hyperglycemia causes an increase in reactive oxygen species (ROS) production, 
which causes oxidative stress in the body[18]. In normal circumstances, glucose is metabolized by way 
of the glycolysis pathways, followed by the tricarboxylic acid (TCA) cycle in mitochondria. This results 
in the generation of electron donors such as NADH (reduced nicotinamide adenine dinucleotide) and 
FADH2 (reduced flavin adenine dinucleotide), which play an essential role in transferring electrons to 
the molecular oxygen by the electron transport chain (ETC), so reducing the oxygen to water[18,24].

On the other hand, in the case of uncontrolled hyperglycemia, the increased rate of glucose oxidation 
in the TCA cycle increases the transport of electron donors into the ETC. This hinders the ETC, causing 
superoxide to be produced instead of water as the voltage gradient increases and reaches a critical 
threshold limit[18]. As a result, the increase in ROS-like superoxide in diabetic microvasculature can 
stimulate endothelial cell damage and, consequently a lot of micro and macrovascular complications.

OVERVIEW OF METFORMIN AND ITS ROLE IN THE TREATMENT OF DM
Metformin is a biguanide derivative and one of the most common oral anti-diabetic drugs. It is used 
mainly to treat T2D, especially in obese people. Compared to insulin, glibenclamide, and chlorpro-
pamide, metformin has been found to reduce diabetes mortality and complications by 30%[7,11,25].

Metformin lowers serum glucose levels through several mechanisms without increasing insulin 
secretion. It is recognized as an insulin sensitizer because it enhances the cells’ response to insulin[25]. 
In addition, metformin suppresses the liver’s endogenous glucose synthesis primarily due to a decrease 
in the rate of gluconeogenesis and a minor impact on glycogenolysis. Furthermore, metformin 
stimulates insulin signaling and glucose transport in muscles while inhibiting critical enzymes involved 
in gluconeogenesis and glycogen production in the liver when the enzyme adenosine monophosphate 
kinase (AMPK) is activated[7,25,26].

Recent studies showed that metformin could reduce microvascular and macrovascular complications 
by its role in inhibiting the cell damage process in big and small vessels. This effect of metformin is 
mainly mediated by its action on AMP-activated kinase in tissues and its ability to reduce intracellular 
ROS[8,27]. In the same context, many studies showed that metformin could decrease the prevalence of 
nephropathy among diabetic patients by controlling oxidative stress and reversing the biochemical 
changes in renal tubules, consequently preventing tubular injury[28]. According to the previous 
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findings, metformin is currently the most frequently given oral anti-diabetic drug because of its 
demonstrated efficacy, comparatively low risk, and potential for usage with other anti-diabetic 
medications. 150 million diabetic individuals are estimated to receive the drug regularly worldwide[25].

Possible side effects of metformin
Metformin does not have many side effects, but it can result in lactic acidosis, a severe condition with 
the following symptoms: Dizziness, significant drowsiness, pain in the muscles, fatigue, chills, blue or 
pale skin, rapid or difficult breathing, slow or irregular heartbeat, stomach pain with diarrhea, nausea, 
or vomiting[29].

The possibility of lactic acidosis can increase in the presence of other conditions that cause a low level 
of oxygen in the blood or poor circulation (such as a recent stroke, congestive heart failure, or recent 
heart attack), heavy alcohol use, and dehydration[30]. While lactic acidosis is uncommon, gas-
trointestinal intolerance is one of the most frequently occurring side effects among metformin-treated 
T2DM patients[7].

Vitamin B12 malabsorption is another reported side effect of metformin usage in T2DM patients. 
There are varying degrees of evidence to support the link between metformin use and low vitamin B12 
levels[13,31,32]. However, a few issues with the topic need to be clarified. Through this review, we will 
try to focus mainly on the possible relationship between metformin use and vitamin B12 deficiency.

METFORMIN AND VITAMIN B12 DEFICIENCY
In the last two decades, there has been an increasing interest in the relationship between metformin and 
vitamin B12 deficiency. The first report of metformin-associated vitamin B12 malabsorption was made 
in 1971 by Tomkin et al[33]. After that, many experimental, observational studies, and systematic 
reviews described the relationship between metformin and vitamin B12 deficiency in T2DM patients[6,
13,31,32]. The effect of metformin on vitamin B12 absorption is also reported in metformin-treated 
polycystic ovary syndrome (PCOS) patients. A meta-analysis of six randomized controlled trials showed 
that metformin use caused dose-dependent drops in vitamin B12 levels in patients with T2DM or PCOS
[34]. The importance of an accurate description of the association between the use of metformin and 
vitamin B12 comes from the significance of the clinical manifestations of vitamin B12 deficiency and its 
impact on the quality of diabetic patients’ life. To better understand the relationship between metformin 
and vitamin B12 deficiency, we should have a good understanding of the nature of vitamin B12, the 
mechanism of its absorption, and how metformin can decrease its absorption.

Vitamin B12
Cobalamin, often known as vitamin B12, is a water-soluble vitamin that contains cobalt and functions as 
a co-factor for enzymes that are important for metabolism[35]. All cobalamin active in humans, such as 
cyanocobalamin, hydroxocobalamin, methyl cobalamin, and 5-deoxyadenosine cobalamin, are referred 
to as vitamin B12 (adenosyl-Cbl). However, different dosage forms of the first three types are offered as 
commercial products. The physiologically active forms of vitamin B12, adenosyl-Cbl, and methyl 
cobalamin, are produced intracellularly from all forms of the vitamin[5,36,37]. Vitamin B12 is an 
essential co-factor in intracellular enzyme activities involved in DNA synthesis and amino acid and fatty 
acid metabolism. In addition, it is necessary for erythropoiesis and the proper function of the central 
nervous system[35,37].

Absorption of vitamin B12
Vitamin B12 is absorbed by target cells through a difficult course that includes various proteins and 
receptors. Understanding the multistep process of vitamin B12 absorption is very important to 
understand the link between malabsorption of vitamin B12 in the presence of other medications like 
metformin.

Dietary vitamin B12 is generally founded in a protein-bound form. Protein-bound vitamin B12 is 
detached in the stomach because of gastric acid and pepsin. After that, the free vitamin is joined to R-
binder, a salivary and gastric glycoprotein that shields vitamin B12 from the highly acidic stomach 
environment. R-binder is broken down by pancreatic proteases in the duodenum, releasing vitamin B12. 
The intrinsic factor (IF), a glycosylated protein released by stomach parietal cells, binds the free vitamin 
to create the IF vitamin B12 complex[5,38].

The IF-vitamin B12 complex passes via receptor-mediated endocytosis in the terminal ileum while 
avoiding proteolysis and acting as a carrier for the vitamin. The IF-vitamin B12 complex binds to the 
ileal cubilin receptor, a glycosylated protein expressed on the apical side of ileal enterocytes. Specific 
cubilin domains are engaged by the IF-vitamin B12 complex. And calcium cations are necessary for this 
interaction, where calcium can increase the complex’s functional affinity to the receptor[39].

The ileal enterocyte then endocytoses the IF-vitamin B12-cubilin receptor complex. The IF-vitamin 
B12 complex separates from cubilin after endocytosis. When the complex enters the lysosome, IF is 
broken down and vitamin B12 crosses the membrane into the cytoplasm[39]. The vitamin then circulates 
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with transcobalamin-I (TC-I) or TC-II linked to it. 20%-30% of the total amount of circulating vitamin 
B12 is thought to be bound to the TC-II protein. Newly absorbed vitamins are bound by the protein and 
transported to the target tissues where they are absorbed via a receptor-mediated internalization process
[5,39].

How can metformin cause malabsorption of vitamin B12?
Metformin can reduce the absorption of vitamin B12 through a mechanism that has not been established 
clearly[40]. Until now, several theories describe how metformin prevents the absorption of vitamin B12. 
These include compromised enterohepatic B12 circulation, increased vitamin B12 hepatic storage, 
decreased IF production, and decreased intestinal motility with bacterial overgrowth[12,40]. The most 
accepted theory is that metformin antagonizes the calcium cation and prevents the calcium-dependent 
IF-vitamin B12 complex from binding to the ileal cubilin receptor and consequently will reduce the 
endocytosis process of vitamin B12[5,12].

It is proposed that metformin could give a positive charge to the membrane’s surface of cubilin 
receptor[41]. The positively charged receptor will push the divalent calcium cations by repulsion forces. 
This will lead to vitamin B12 malabsorption because the calcium-dependent binding of the IF-vitamin 
B12 complex to the ileal cubilin receptor is compromised[12]. Figure 1 shows how metformin can affect 
the absorption of vitamin B12.

CLINICAL OUTCOMES OF VITAMIN B12 DEFICIENCY IN METFORMIN-TREATED T2DM 
PATIENTS
As we mentioned before, many observational and experimental described the association between long-
term metformin use and low vitamin B12 levels. The deficiency of vitamin B12 may lead to many 
clinical symptoms that may impact the quality of diabetic patients’ life. In this review we tried to 
summarize the most important complications of vitamin B12 deficiency in metformin-treated T2DM 
patients through the following.

Neuropathy
Neuropathy is a primary complication of T2DM and a direct manifestation of vitamin B12 deficiency. 
Weakness, numbness, and pain are common symptoms of peripheral neuropathy, which develop when 
the peripheral nerves outside the brain and spinal cord are damaged. Many recent studies found that 
the long-term use of metformin could be a cause for increasing the prevalence of peripheral neuropathy 
among T2DM patients[13,31,42,43]. A recently published study showed a positive correlation between 
the period of metformin therapy and the severity of peripheral neuropathy[13].

The complications were not limited to peripheral neuropathy but also included autonomic cardiac 
neuropathy. In this context, Hansen et al[44] conducted a randomized, placebo-controlled trial that 
included 469 diabetic individuals who were using insulin and had an average duration of diabetes of 10 
years. In this study, three cardiovascular reflex tests were used to evaluate the patients for 
cardiovascular autonomic neuropathy; after that, they were randomly assigned to either metformin or a 
placebo. The researchers observed that the vitamin B12 levels were steady with placebo after 18 months 
but dropped with metformin treatment. In addition, a significant reduction in orthostatic blood pressure 
in the metformin group indicated a worsening of cardiovascular autonomic neuropathy[44]. A recently 
published study reported that cardiac autonomic neuropathy is linked to cardiac events, cardiac 
arrhythmias, and sudden death. The study reported that cardiac autonomic neuropathy had been 
observed to be associated with a 3.16-fold [95% confidence interval (CI): 2.42-4.13, P = 0.0001] increase in 
cardiovascular disorders and a 3.17-fold increase (95%CI: 2.11-4.78, P = 0.0001) in mortality[45].

Neuropsychiatric disorders
The decrease in the absorption of vitamin B12 due to metformin may affect the treated patients’ 
cognitive function since several studies connected the decline in cognitive functions and some 
depressive symptoms to low vitamin B12 levels[35]. A cohort study conducted by Porter et al[46] 
showed that metformin use was associated with decreased vitamin B12 and vitamin B6 levels along 
with an increased risk of cognitive dysfunction. Another two recent studies reported that metformin-
treated patients suffering from vitamin B12 deficiency have lower cognitive function and a higher 
chance of developing depression[47,48].

Anemia
As metformin can cause vitamin B12 deficiency, it may cause anemia. Vitamin B12 deficiency can cause 
a delay in the maturation of red blood cells (RBCs) and many changes in their shape, leading to megalo-
blastic anemia. Megaloblastic anemias are characterized by an imbalance between nuclear and 
cytoplasmic maturation and abnormal nuclear maturation in RBCs. Vitamin B12 deficiency and a lack of 
folates affect DNA synthesis, which slows nuclear replication and postpones all stages of development
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Figure 1 Schematic diagram of how metformin can affect the absorption of vitamin B12.

[49,50].
Although many studies support the positive correlation between metformin use and vitamin B12 

deficiency, there is still uncertainty about whether metformin causes anemia and whether this is 
triggered by B12 deficiency or not in metformin-treated T2DM patients[51,52]. In this context, Donnelly 
et al[53] made various statistical analyses using data exported from two randomized clinical trials and 
one observational study. The findings of this study showed that metformin use could cause a decrease 
in hemoglobin levels, and it is correlated to the early risk of anemia in individuals with T2DM. Unfortu-
nately, the other previously performed high-quality evidence clinical studies on low vitamin B12 levels 
related to metformin did not investigate the significance of metformin use on hematological values. 
However, many case report studies linked megaloblastic anemia to the long-term use of metformin in 
T2DM patients[14,40,54].

Treatment of metformin-induced vitamin B12 deficiency
As we stated before, several studies including interventional studies, observational studies, and meta-
analyses concluded that chronic use of metformin could be a cause of vitamin B12 deficiency, and many 
complications may accompany this. To avoid all these complications, vitamin B12 supplementation may 
be required[55]. In this context, a newly published systematic review including seven clinical trials 
showed that the application of vitamin B12 supplementation for metformin-treated T2DM patients will 
be valuable in preventing or treating vitamin B12 deficiency and neuropathy and should be considered 
during the T2DM management plan[32].

Similarly, a recently performed randomized, double-blind, placebo-controlled trial concluded that the 
treatment of metformin-treated patients with diabetic neuropathy with 1 mg of oral methylcobalamin 
for twelve months improved plasma B12 levels and improved all neurophysiological symptoms[56]. 
Since the typical amount of vitamin B12 stored in the liver is 2500 pg, it is believed that, in most cases, it 
will take at least five years of metformin use to deplete these reserves. However, other causes could 
increase the decrease of hepatic reserves, especially in the elderly due to the high prevalence of atrophic 
gastritis and proton pump inhibitor users. A recently published study reported that the monitoring of 
B12 levels might be important only for patients on long-term therapy of metformin (more than four 
years), especially when combined with proton pump inhibitors[57].

CONCLUSION
Metformin can cause vitamin B12 deficiency by reducing the absorption of the IF complex through the 
enteral cubilin receptor in the terminal ileum, which can either cause peripheral neuropathy, cardiac 
autonomic neuropathy, neuropsychiatric symptoms, or hematological disorders. The most severe side 
effect of metformin-induced vitamin B12 deficiency may be the development or acceleration of cardiac 
autonomic neuropathy, which is linked to an increase in cardiac arrhythmias, cardiac events, and 
mortality. Therefore, it is advised that people taking metformin undergo annual testing for vitamin B12 
deficiency. In case of vitamin B12 deficiency, early replacement with intramuscular vitamin B12 to 
restore hepatic storage of vitamin B12 is recommended.
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Abstract
BACKGROUND 
Intracranial and extracranial artery stenosis is associated with cerebral infarction. 
Vascular calcification and atherosclerosis are the main causes of stenosis and 
major risk factors for cardiovascular and cerebrovascular events in patients with 
type 2 diabetes mellitus (T2DM). Bone turnover biomarkers (BTMs) are associated 
with vascular calcification, atherosclerosis, glucose, and lipid metabolism.

AIM 
To investigate the association of circulating BTM levels with severe intracranial 
and extracranial artery stenosis in patients with T2DM.

METHODS 
For this cross-sectional study including 257 T2DM patients, levels of the BTMs 
serum osteocalcin (OC), C-terminal cross-linked telopeptide of type I collagen 
(CTX), and procollagen type I N-peptide were measured by electrical chemilu-
minescent immunoassay, and artery stenosis was assessed by color Doppler and 
transcranial Doppler. Patients were grouped according to the existence and 
location (intracranial vs. extracranial) of artery stenosis. Correlations between 
BTM levels, previous stroke, stenosis location, and glucose and lipid metabolism 
were analyzed.

RESULTS 
T2DM patients with severe artery stenosis had a higher frequency of previous 
stroke and levels of all three tested BTMs (all P < 0.05) than patients without. 
Some differences in OC and CTX levels were observed according to the location of 
artery stenosis. Significant associations were also observed between BTM levels 
and some glucose and lipid homeostasis parameters. On multivariate logistic 
regression analysis, all BTMs were significant predictors of artery stenosis in 
T2DM patients with and without adjustment for confounding factors (all P < 
0.001), and receiver operating characteristic curve analysis demonstrated the 
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ability of BTM levels to predict artery stenosis in T2DM patients.

CONCLUSION 
BTM levels were found to be independent risk factors for severe intracranial and extracranial 
artery stenosis and were differentially associated with glucose and lipid metabolism in patients 
with T2DM. Therefore, BTMs may be promising biomarkers and potential therapeutic targets for 
artery stenosis.

Key Words: Bone turnover biomarkers; Type 2 diabetes mellitus; Osteocalcin; C-terminal cross-linked 
telopeptide of type I collagen; Procollagen type I N-peptide; Intracranial and extracranial artery stenosis

©The Author(s) 2023. Published by Baishideng Publishing Group Inc. All rights reserved.

Core Tip: The occurrence of cerebral infarction is associated with severe intracranial and extracranial 
artery stenosis; thus, this study aims to identify risk factors for severe intracranial and extracranial artery 
stenosis in patients with type 2 diabetes mellitus (T2DM) to prevent the occurrence of cerebral infarction. 
Our study found that Bone turnover biomarkers (BTMs) are associated with the risk of arterial stenosis, 
probably due to the relationship between BTMs and glucose and lipid metabolism disorders. Detection of 
BTMs in patients with T2DM may help reduce the occurrence of cardiovascular disease.

Citation: Si SC, Yang W, Luo HY, Ma YX, Zhao H, Liu J. Association of bone turnover biomarkers with severe 
intracranial and extracranial artery stenosis in type 2 diabetes mellitus patients. World J Diabetes 2023; 14(5): 594-
605
URL: https://www.wjgnet.com/1948-9358/full/v14/i5/594.htm
DOI: https://dx.doi.org/10.4239/wjd.v14.i5.594

INTRODUCTION
Intracranial and extracranial artery stenosis is an established predictor of cerebral infarction[1]. 
Therefore, a clear understanding of risk factors for intracranial and extracranial artery stenosis is 
important for the prevention of cerebrovascular events. Atherosclerosis is a critical stage of arterial 
stenosis, and abnormal bone metabolism is associated with the development of atherosclerosis[2]. 
Vascular calcification is one of the pathologic mechanisms of atherogenesis, and it is a programmed 
form of osteogenesis that is induced by inflammatory cytokines in blood vessels. The pathological 
process involves the trans-differentiation of vascular smooth muscle cells into osteoblasts, which are 
then associated with the activation of vascular osteogenesis, enhanced bone turnover, and abnormal 
mineral metabolism.

Atherosclerotic calcification is an independent predictor of the mortality and morbidity of 
cardiovascular and cerebrovascular diseases[3]. The extent and severity of vascular calcification are a 
reflection of the atherosclerotic plaque burden, and as an outcome of atherosclerosis, vascular 
calcification causes vascular sclerosis and dysfunction and is accepted as the basic pathological process 
in many cardiovascular diseases[4]. Vascular calcification is an active and regulated process with 
similarities to bone formation and is mediated by many of the same processes that promote bone 
formation[5]. Calcification of atherosclerotic plaques is considered a complex physiological process 
mediated by both inhibitor and promoter interactions, including between osteoclast- and osteoblast-like 
arterial cells. Plaque calcification is an important factor in plaque instability, which is conducive to 
plaque rupture and thrombosis. Accordingly, it is a predictor of future cardiovascular events.

Research shows that patients with type 2 diabetes mellitus (T2DM) who experience a transient 
ischemic attack or an anterior circulation ischemic stroke are more likely to have a lipid-rich necrotic 
core and vascular plaques with calcification, and the biological processes of bone formation and 
calcified atherosclerotic plaque share many common features in patients with T2DM[6]. Additionally, 
vascular calcification is considered a major risk factor for T2DM and is always associated with 
cardiovascular complications.

Bone turnover biomarkers (BTMs) are indicators of bone metabolism and may be related to the 
progression of vascular calcification. Bone metabolism is associated with dyslipidemia and diabetes, 
which are both important risk factors for atherosclerosis. BTM levels are also related to glucose and lipid 
metabolism[7]. Thus, BTM levels may be useful biomarkers for assessing the risk of cardiovascular 
events in patients with T2DM.

https://www.wjgnet.com/1948-9358/full/v14/i5/594.htm
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Osteocalcin (OC) is a biochemical marker of bone formation that specifically mediates bone mineral-
ization and is expressed mainly by osteoblasts. Osteoblasts are also known to secrete endocrine factors 
that regulate insulin production and adipose tissue metabolism. OC can extend the metabolic endocrine 
function of bone with obvious extraosseous effects and is vital for not only bone metabolism but also 
lipid and glucose metabolism. OC can directly regulate energy metabolism, including glucose and 
lipids, and is involved in the process of vascular calcification affecting the progression of atherosclerosis
[8]. OC is also associated with atherosclerotic disease specifically in patients with T2DM[9]. Another 
BTM, the C-terminal cross-linked telopeptide of type I collagen (CTX), is a marker of bone resorption. 
Recent clinical research identified CTX as an independent predictor of increased common carotid artery 
wall intima - media thickness in the elderly population[10]. The BTM procollagen type I N-peptide 
(PINP) was shown to predict the risk of myocardial infarction in older male patients[11].

Clinical studies to date have mainly studied the associations between different BTMs and athero-
sclerosis, whereas few studies have explored the correlations between BTM levels and severe 
intracranial and extracranial artery stenosis in patients with T2DM. Thus, we aimed to determine 
whether BTMs are associated with intracranial and extracranial atherosclerosis and investigate the value 
of BTMs as potential indicators for risk assessment and intervention targets for severe intracranial and 
extracranial artery stenosis in patients with T2DM.

MATERIALS AND METHODS
Study sample and data collection
This cross-sectional study included 257 consecutive patients with T2DM who were hospitalized in our 
facility between January 2018 and December 2019 and underwent evaluation of intracranial and 
extracranial arteries. Data were recorded by trained physicians who used a standardized questionnaire 
to collect medical history information, including age, sex, and history of stroke, coronary artery disease 
(CAD), hypertension, dyslipidemia, smoking, and alcohol consumption. Diseases were recorded based 
on codes from the International Classification, Ninth Revision. Physical parameters, including height, 
weight, and body mass index (BMI), were measured. T2DM was diagnosed according to criteria 
recommended by the American Diabetes Association in 1997[12]. T2DM diagnosis was based on fasting 
plasma glucose ≥ 7.0 mmol/L or plasma glucose ≥ 11.1 mmol/L or hemoglobin (HbA1c) ≥ 6.5%. 
Patients were excluded if they were taking any medication that might influence bone metabolism, such 
as steroids, thiazides, vitamin D or calcium supplements, antiresorptive or hormone therapy, or were 
known to have any of the following conditions: acute diabetic complications, malignant tumor, 
infection, hepatic failure, chronic kidney disease, heart failure, thyroid disease, parathyroid disease, or 
gastrointestinal disease. The ethics committee of Xuanwu Hospital of Capital Medical University 
approved this study. All participants provided informed consent.

Biochemical measurements
After overnight fasting for 12 h, peripheral venous blood samples were collected early the next morning 
for all patients. Fasting plasma glucose (FPG), triglyceride (TG), total cholesterol (TC), high-density 
lipoprotein cholesterol (HDL-C), low-density lipoprotein cholesterol (LDL-C), serum creatinine (Scr), 
blood urea nitrogen (Bun), and uric acid (UA) levels were measured by an automatic analyzer. The 
glycated HbA1c level was measured by high-pressure liquid chromatography. Insulin (INS), C-peptide 
(CP), OC, CTX, and PINP levels were determined using an electrical chemiluminescent immunoassay.

Ultrasonography
Sonographers performed color Doppler ultrasound to obtain images of the common carotid arteries, 
external carotid arteries, internal carotid arteries, and subclavian arteries. Severe extracranial stenosis 
was defined as the narrowing of vessel diameter by ≥ 70% in any of these arteries. Sonographers also 
performed transcranial Doppler ultrasound to obtain images of the anterior cerebral arteries, middle 
cerebral arteries, posterior cerebral arteries, basilar arteries, and vertebral arteries. Severe intracranial 
artery stenosis was defined as the narrowing of vessel diameter by ≥ 70% in any of these arteries. 
According to the results of these examinations, patients were assigned to four groups: No severe 
intracranial and extracranial artery stenosis (NOCS) group, only severe intracranial artery stenosis 
(ICAS) group, only severe extracranial artery stenosis (ECAS) group, and combined severe intracranial 
and extracranial artery stenosis (COAS) group. For analysis, the AS group included all patients with 
severe intracranial and/or extracranial artery stenosis (ICAS + ECAS + COAS groups).

Statistical analysis
Normally distributed data are presented as the mean ± SD, and data with a skewed distribution are 
presented as the median (interquartile range). Categorical variables are shown as frequencies 
(percentages). We used the Mann–Whitney U test to compare mean values between the NOCS and AS 
groups. The Kruskal–Wallis test was used to compare mean values among the NOCS, ICAS, ECAS, and 
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COAS groups. When no subgroup had an expected count below five, we used the Pearson χ2 test. If any 
subgroup had an expected count below five, we used Fisher’s exact test. We performed Spearman 
correlation analysis to calculate correlation coefficients between BTM levels and glucose and lipid 
parameters. We used multivariate logistic regression models to estimate the association of artery 
stenosis with BTM levels. Receiver operating characteristic (ROC) curves and the corresponding area 
under the curve (AUC) values were used to examine the ability of BTM levels to predict the incidence of 
artery stenosis. All statistical analyses were performed with the SPSS Statistical Package (version 26.0). 
The results were considered statistically significant if the corresponding P value was less than 0.05.

RESULTS
Patient characteristics
Among the 257 T2DM patients included in this study, 136 were female and 121 were male. The mean 
age of all participants was 66 ± 11 years (range, 36–93 years). The average duration of T2DM among all 
patients was 12.0 ± 13.0 years. Overall, 87.2% (n = 224) had no stenosis (NOCS group), and 12.8% (n = 
33) had some form of stenosis (AS group). The clinical and laboratory parameters for all patients and the 
groups with and without artery stenosis are presented in Table 1. Compared with the NOCS group, the 
AS group had a higher percentage of patients with a history of stroke (9.8% vs 27.3%, P = 0.004) and 
higher levels of HbA1c, OC, CTX, and PINP (all P < 0.05).

The clinical and laboratory parameters of patients categorized further based on the location of artery 
stenosis are presented in Table 2. Among the 33 patients with T2DM with artery stenosis, 7.4% (n = 19) 
had only severe intracranial artery stenosis (ICAS group), 3.1% (n = 8) had only severe extracranial 
artery stenosis (ECAS group), and 2.3% (n = 6) had both severe intracranial and extracranial artery 
stenosis (COAS group). Compared with that in the NOCS group, the frequency of previous strokes was 
higher in all three groups (21.1% in ICAS group vs 25.0% in ECAS group vs 50.0% in COAS group vs 
9.8% in NOCS, P = 0.009). Compared with the NOCS group, the ICAS group had a lower frequency of 
hyperlipidemia, and the ECAS group had a higher frequency of hyperlipidemia (21.1% in the ICAS 
group vs 75.0% in the ECAS group vs 50% in the NOCS group, P = 0.029). The OC levels differed 
significantly among the four groups (P = 0.012). Further statistical analyses determined that the OC 
levels in the COAS and ICAS groups were higher than those in the NOCS group (P = 0.034 and 0.039, 
respectively). While the ECAS group showed a trend toward higher OC levels compared with the 
NOCS group, the difference was not significant (P = 0.077). Similarly, the CTX levels differed among the 
four groups (P = 0.027), and further statistical analysis showed that the CTX level in the COAS group 
was higher than that in the NOCS group (P = 0.017). The ICAS group also showed a trend toward 
higher CTX levels than the NOCS group, but this difference did not reach statistical significance (P = 
0.062). The PINP concentrations were comparable among the four groups, although a weak trend 
toward a reduced PINP was seen in the NOCS group (P = 0.059).

Associations between BTM levels and artery stenosis
We applied four multivariate logistic regression models to identify independent predictors of artery 
stenosis (Table 3). With the unadjusted Model 1, the OC level was found to be significantly associated 
with an increased risk of artery stenosis [odds ratio (OR) = 1.123; 95%CI: 1.049–1.203; P = 0.001]. A 
similar association was observed with the model further adjusted for age and sex (Model 2, OR = 1.117; 
95%CI: 1.041–1.199; P = 0.002). With further adjustment of the model for hypertension, hyperlipidemia, 
CAD, duration of T2DM, smoking status, and drinking status, the OC level remained a predictor of high 
risk for artery stenosis (Model 3, OR = 1.117; 95%CI: 1.039–1.201; P = 0.003). A significant association 
between the OC level and artery stenosis persisted after further adjustment of the model for BMI, Scr, 
Bun, UA, and HbA1c (Model 4, OR = 1.109; 95%CI: 1.029–1.196; P = 0.007). CTX and PINP levels were 
also significantly associated with artery stenosis in all models with adjustment for different potential 
confounding factors (all P < 0.05).

Correlation of BTM levels and parameters of glucose and lipid metabolism
The results of the Spearman correlation analysis of associations between BTM levels and parameters of 
glucose and lipid metabolism are presented in Table 4. This analysis showed that the OC level was 
associated with the levels of TC (r = 0.185; P = 0.003) and LDL-C (r = 0.213; P = 0.001). Additionally, the 
CTX level was associated with the levels of FPG (r = –0.134; P = 0.031), TC (r = 0.147; P = 0.018), and 
LDL-C (r = 0.197; P = 0.003). The PINP level was associated with the levels of FPG (r = –0.141; P = 0.024) 
and LDL-C (r = 0.129; P = 0.039).

Predictive ability of BTM levels for artery stenosis
The ROC curves for the abilities of BTM levels to predict the incidence of artery stenosis in patients with 
T2DM are shown in Figure 1. The AUC (95%CI) values were 0.673 (0.580, 0.766) for OC, 0.644 (0.538, 
0.751) for CTX, and 0.639 (0.536, 0.742) for PINP. All three BTMs were found to be significant predictors 
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Table 1 Basic and clinical characteristics of all participants and those in the no severe intracranial and extracranial artery stenosis and 
artery stenosis groups

Characteristics All patients (n = 257) NOCS group (n = 224) AS group (n = 33) P value

Age (yr) 66.0 (11.0) 66.0 (11.0) 68.0 (12.0) 0.236

Male, n (%) 121 (47.1) 103 (46.0) 18 (54.5) 0.358

Duration of T2DM (yr) 12.0 (13.0) 12.0 (14.0) 13.0 (11.0) 0.438

Risk factors, n (%)

Hypertension 189 (73.5) 165 (73.7) 24 (72.7) 0.910

Hyperlipidemia 124 (48.2) 112 (50.0) 12 (36.4) 0.143

CAD 74 (28.8) 63 (28.3) 11 (33.3) 0.548

Previous stroke 31 (12.1) 22 (9.8) 9 (27.3) 0.004

Current smoker 74 (28.8) 67 (29.9) 7 (21.2) 0.303

Current drinker 64 (24.9) 59 (26.3) 5 (15.2) 0.165

BMI (kg/m2) 25.76 (3.57) 25.78 (3.59) 25.76 (3.45) 0.597

Glucose (mmol/L) 7.48 (3.58) 7.49 (3.53) 6.72 (4.25) 0.563

HbA1c (%) 7.60 (2.50) 7.60 (2.60) 8.40 (2.90) 0.037

INS (µIU/mL) 12.21 (12.71) 12.00 (10.71) 16.82 (18.93) 0.159

CP (ng/mL) 2.33 (1.52) 2.33 (1.53) 2.40 (1.89) 0.754

TC (mmol/L) 4.26 (1.50) 4.27 (1.41) 4.23 (2.25) 0.721

TG (mmol/L) 1.48 (1.38) 1.50 (1.39) 1.41 (1.36) 0.433

LDL-C (mmol/L) 2.38 (1.27) 2.39 (1.20) 2.27 (1.79) 0.781

HDL-C (mmol/L) 1.12 (0.47) 1.13 (0.47) 1.04 (0.38) 0.320

Scr (µmol/L) 62.0 (24.0) 62.0 (22.8) 60.0 (43.0) 0.144

Bun (mmol/L) 5.98 (2.30) 5.92 (2.12) 6.82 (3.60) 0.137

UA (µmol/L) 341.0 (126.5) 342.0 (127.3) 339.0 (1520) 0.823

OC (ng/mL) 10.60 (5.87) 10.27 (5.87) 12.63 (7.07) 0.001

CTX (pg/mL) 0.31 (0.21) 0.29 (0.19) 0.39 (0.30) 0.007

PINP (pg/mL) 34.40 (20.96) 33.39 (20.37) 43.92 (25.50) 0.010

Data are presented as the mean ± SD unless otherwise indicated. NOCS: No severe intracranial and extracranial artery stenosis; AS: Artery stenosis; CAD: 
Coronary artery disease; BMI: Body mass index; HbA1c: Hemoglobin; INS: Insulin; CP: C-peptide; TC: Total cholesterol; TG: Triglyceride; HDL-C: High-
density lipoprotein cholesterol; LDL-C: Low-density lipoprotein cholesterol; Scr: Serum creatinine; Bun: Blood urea nitrogen; UA: Uric acid; OC: 
Osteocalcin; CTX: C-terminal cross-linked telopeptide of type I collagen; PINP: Procollagen type I N-peptide.

of artery stenosis risk among the patients with T2DM included in this study (P < 0.001).

DISCUSSION
In this study, we explored the associations among BTM levels, previous stroke, and the burden and 
location of intracranial and extracranial artery stenosis in patients with T2DM. We also investigated the 
correlations among BTM levels and parameters of glucose and lipid metabolism in patients with T2DM. 
From the cross-sectional data analyzed in this study, we observed a considerable incidence of artery 
stenosis among patients with T2DM. Moreover, T2DM patients with artery stenosis were more likely to 
have a history of stroke than those without artery stenosis, regardless of the location of artery stenosis, 
and the highest incidence of previous stroke was observed among patients with both severe intracranial 
and extracranial artery stenosis (COAS group). We also found that BTM levels showed significant 
correlations with the risk of severe intracranial and extracranial artery stenosis. In this study, circulating 
OC, CTX, and PINP concentrations were significantly higher in T2DM patients with artery stenosis (AS 
group) than in those without artery stenosis (NOCS group, Table 1). Some differences were observed 
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Table 2 Basic and clinical characteristics of patients in the no severe intracranial and extracranial artery stenosis, intracranial artery 
stenosis, severe extracranial artery stenosis and combined severe intracranial and extracranial artery stenosis groups

Characteristics NOCS group (n = 
224) ICAS group (n = 19) ECAS group (n = 8) COAS group (n = 6) P value

Age (yr) 66.0 (11.0) 65.0 (16.0) 67.5 (13.0) 71.0 (10.0) 0.373

Male, n (%) 103 (46.0) 10 (52.6) 5 (62.5) 3 (50) 0.780

Duration of T2DM (yr) 12.0 (14.0) 15.0 (11.0) 18.0 (20.8) 11.5 (7.0) 0.635

Risk factors, n (%)

Hypertension 165 (73.7) 13 (68.4) 5 (62.5) 6 (100) 0.527

Hyperlipidemia 112 (50.0) 4 (21.1) 7 (75.0) 2 (33.3) 0.029

CAD 63 (28.3) 7 (36.8) 2 (25.0) 2 (33.3) 0.826

Previous stroke 22 (9.8) 4 (21.1) 2 (25.0) 3 (50.0) 0.009

Current smoker 67 (29.9) 4 (21.1) 1 (12.5) 2 (33.3) 0.682

Current drinker 59 (26.3) 4 (21.1) 1 (12.5) 0 (0) 0.554

BMI (kg/m2) 25.78 (3.59) 26.06 (3.90) 25.32 (2.33) 23.96 (12.48) 0.821

FPG (mmol/L) 7.49 (3.53) 7.83 (4.13) 7.13 (6.89) 5.76 (2.48) 0.446

HbA1c (%) 7.60 (2.60) 7.90 (3.10) 9.15 (1.70) 7.90 (1.80) 0.067

INS (µIU/mL) 12.00 (10.71) 16.99 (19.11) 12.78 (19.72) 15.90 (25.32) 0.334

CP (ng/mL) 2.33 (1.53) 2.52 (1.45) 1.56 (2.95) 2.03 (2.31) 0.599

TC (mmol/L) 4.27 (1.41) 3.85 (1.98) 4.92 (2.35) 4.35 (2.25) 0.535

TG (mmol/L) 1.50 (1.39) 1.59 (1.31) 1.29 (1.31) 1.16 (1.85) 0.585

LDL-C (mmol/L) 2.39 (1.20) 2.27 (1.76) 2.62 (1.88) 2.01 (2.27) 0.943

HDL-C (mmol/L) 1.13 (0.47) 0.98 (0.29) 1.25 (1.21) 1.04 (0.43) 0.170

Scr (µmol/L) 62.0 (22.8) 59.0 (48.0) 78.5 (44.8) 60.0 (40.3) 0.499

Bun (mmol/L) 5.92 (2.12) 6.36 (2.74) 7.92 (6.76) 6.57 (5.00) 0.419

UA (µmol/L) 342.0 (127.3) 358.0 (174.0) 322.5 (153.3) 303.0 (136.3) 0.746

OC (ng/mL) 10.27 (5.87) 12.76 (8.14) 11.89 (4.02) 15.15 (11.43) 0.012

CTX (pg/mL) 0.29 (0.19) 0.41 (0.29) 0.35 (0.23) 0.65 (0.51) 0.027

PINP (pg/mL) 33.39 (20.37) 41.25 (24.71) 47.22 (39.85) 51.28 (37.96) 0.059

Data are presented as the mean ± SD unless otherwise indicated. NOCS: No severe intracranial and extracranial artery stenosis; ICAS: Severe intracranial 
artery stenosis; ECAS: Severe extracranial artery stenosis; COAS: Combined severe intracranial and extracranial artery stenosis; CAD: Coronary artery 
disease; BMI: Body mass index; HbA1c: Hemoglobin; INS: Insulin; FPG: Fasting plasma glucose; CP: C-peptide; TC: Total cholesterol; TG: Triglyceride; 
HDL-C: High-density lipoprotein cholesterol; LDL-C: Low-density lipoprotein cholesterol; Scr: Serum creatinine; Bun: Blood urea nitrogen; UA: Uric acid; 
OC: Osteocalcin; CTX: C-terminal cross-linked telopeptide of type I collagen; PINP: Procollagen type I N-peptide.

among the trends in BTMs according to the location of artery stenosis. OC levels were higher in all 
subgroups with artery stenosis, whereas CTX levels were only higher in the COAS and ICAS groups 
than in the NOCS group. Our analyses indicated that all three BTMs were independent risk factors for 
severe intracranial and extracranial artery stenosis in patients with T2DM, in support of our hypothesis, 
and these associations were independent of possible confounders. Based on their correlation with 
indicators of glucose and lipid metabolism, the elevated BTM levels identified a particularly 
unfavorable metabolic profile, mostly related to dyslipidemia. Higher BTM levels were associated with 
elevated LDL-C, and the OC level was positively correlated with the TC level. However, the CTX level 
was negatively correlated with FPG and positively correlated with TC. Furthermore, the PINP level was 
negatively correlated with FPG. These findings suggest that BTM levels can reflect altered glucose and 
lipid metabolism as well as atherosclerosis. The role of BTMs in bone metabolism along with their 
influence on glucose and lipid homeostasis and stroke risk confirms the tight interaction of the 
cardiovascular–bone metabolism axis. Overall, the present study suggests that BTMs may represent 
novel biomarkers of accelerated atherosclerosis in patients with T2DM, offering promising tools for 
cardiovascular risk stratification among patients with T2DM.
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Table 3 Association of bone turnover biomarker levels with artery stenosis

Variable Model OR (95%CI) P value

OC Model 1 1.123 (1.049-1.203) 0.001

Model 2 1.117 (1.041-1.199) 0.002

Model 3 1.117 (1.039-1.201) 0.003

Model 4 1.109 (1.029-1.196) 0.007

CTX Model 1 9.750 (1.759-54.059) 0.009

Model 2 8.674 (1.529-49.211) 0.015

Model 3 10.833 (1.725-68.037) 0.011

Model 4 8.526 (1.189-61.119) 0.033

PINP Model 1 1.024 (1.006-1.042) 0.010

Model 2 1.022 (1.003-1.041) 0.025

Model 3 1.022 (1.003-1.042) 0.021

Model 4 1.020 (1.001-1.040) 0.044

Model 1: Unadjusted, crude model; Model 2: Adjusted for age and gender; Model 3: Further adjusted for hypertension, hyperlipidemia, coronary artery 
disease, duration of type 2 diabetes mellitus, current smoker, current drinker; Model 4: Further adjusted for body mass index, serum creatinine, blood urea 
nitrogen, uric acid, and hemoglobin. OC: Osteocalcin; CTX: C-terminal cross-linked telopeptide of type I collagen; PINP: Procollagen type I N-peptide.

Table 4 Spearman correlation coefficients for the associations between bone turnover biomarker levels and indicators of glucose and 
lipid metabolism

OC CTX PINP
Variable

r P value r P value r P value

FPG -0.102 0.103 -0.134 0.031 -0.141 0.024

HbA1c -0.012 0.846 -0.022 0.724 -0.012 0.845

INS -0.050 0.425 -0.086 0.172 -0.031 0.628

CP 0.021 0.741 0.045 0.473 0.067 0.286

TC 0.185 0.003 0.147 0.018 0.112 0.074

TG 0.020 0.753 -0.058 0.351 -0.041 0.514

LDL-C 0.213 0.001 0.187 0.003 0.129 0.039

HDL-C 0.020 0.745 0.062 0.319 0.015 0.811

OC: Osteocalcin; CTX: C-terminal cross-linked telopeptide of type I collagen; PINP: Procollagen type I N-peptide; FPG: Fasting plasma glucose; HbA1c: 
Hemoglobin; INS: Insulin; CP: C-peptide; TC: Total cholesterol; TG: Triglyceride; HDL-C: High-density lipoprotein cholesterol; LDL-C: Low-density 
lipoprotein cholesterol.

T2DM is a common metabolic disease, and its incidence continues to increase worldwide. The 
incidence of atherosclerosis in patients with T2DM is high, and large vessel disease due to athero-
sclerosis seriously threatens the life and health of patients with T2DM. Thus, effective strategies for the 
prevention and treatment of large vessel disease in the context of T2DM are needed to improve public 
health globally. Even with reductions in traditional risk factors for cardiovascular disease (CVD), 
achieved via better blood lipid control and smoking cessation, the incidence of CVD remains high. 
Moreover, blood glucose control does not completely reduce the mortality attributed to atherosclerotic 
and vascular calcification-related CVD among patients with T2DM. Therefore, other pathological 
mechanisms of atherosclerosis need to be characterized to support the discovery of therapeutic targets 
that can be used to identify, diagnose, evaluate, and treat patients with T2DM at high risk of athero-
sclerosis as early as possible to improve the prognosis of patients with T2DM.

With research advances related to bone health and vascular lesions, the significance and key role of 
the bone–vascular axis in vascular lesions are increasingly recognized. The instability of atherosclerotic 
plaques is associated with a higher level of calcification, and severe vascular calcification can be 
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Figure 1 Receiver operating characteristic curve analysis of the diagnostic value of bone turnover biomarker levels for artery stenosis in 
type 2 diabetes mellitus patients. OC: Osteocalcin; CTX: C-terminal cross-linked telopeptide of type I collagen; PINP: Procollagen type I N-peptide.

regarded as a nonspecific marker of atherosclerosis. The calcified atherosclerosis burden is considered 
the main predictor of risk for CVD events and death[13]. T2DM is associated with greater intraplaque 
calcification volume and a greater proportion of calcification within a plaque. Vascular calcification was 
also shown to be a powerful risk factor for cardiovascular death in patients with T2DM and results in 
the development of severe atherosclerosis[14]. Likely, several important mediators of bone mineral 
homeostasis are also involved in the development of arterial calcification.

Several mineralization markers have been identified in atheromatic plaques[15]. Currently, the effects 
of BTM levels on atherosclerosis or plaque calcification remain unclear, with conflicting data reported in 
the literature. Previous studies have mainly examined the relationship between BTM levels and the 
prevalence of atherosclerotic diseases and found that BTM levels may be predictors of cardiovascular 
risk in T2DM patients[16]. In patients with T2DM, OC was identified as an independent risk factor for 
carotid atherosclerosis[17] and shown to play a role in CVD[18]. OC was also found to be deposited at 
sites of vascular calcification[19]. Another study found that progressive calcification of atherosclerotic 
plaques was accompanied by a significant increase in OC[20]. Type I collagen is a major collagen 
component of the intima, media, and adventitia of blood vessel walls and is significantly increased in 
atherosclerosis. PINP is a precursor of type I collagen, and CTX is the carboxyl-terminal degradation 
product of type I collagen. Thus, the expression levels of both BTMs are increased in atherosclerosis 
accordingly. Abnormal matrix collagen turnover in vessel walls eventually causes arterial stiffness, 
which is associated with CVD risk, and increased arterial stiffness is associated with both collagen 
degradation (CTX) and synthesis[21]. Increased osteoclast activity has been observed in T2DM[22], and 
CTX expression was found in areas of intimal hyperplasia and late-calcified plaques[23]. Gafane et al[24] 
found a positive association between large artery stiffness and the CTX level. Another study found that 
OC and CTX levels are related to an increased risk of cardiac and carotid calcified plaque development
[25]. However, research on the correlation between BTM levels and severe intracranial and extracranial 
stenosis in patients with T2DM is lacking. The present study found that BTM levels were significantly 
associated with the risk of artery stenosis in unadjusted and fully adjusted models accounting for 
potential confounders. These results suggest for the first time that BTMs are independent risk factors for 
severe intracranial and extracranial stenosis in patients with T2DM. Notably, these associations were 
independent of other known cardiovascular risk factors in T2DM. Additionally, our results indicate that 
BTMs may participate in and contribute to the pathogenesis and progression of atherosclerosis.

The mechanisms by which BTMs influence atherosclerosis remain unclear. One possibility is that OC 
plays an important role in glucose metabolism[26,27]. Consistently, in this study, OC was significantly 
associated with glucose regulation. We also observed that PINP and CTX levels were negatively 
correlated with FPG. A previous study found that PINP is negatively correlated with FPG and HbA1c
[28]. We also found that all tested BTMs were associated with indicators of dyslipidemia. Barchetta et al
[29] also reported an association between OC and TC. We also observed differences in glucose and lipid 
metabolism about artery stenosis in patients with T2DM. Patients with artery stenosis had higher levels 
of HbA1c than those without artery stenosis. However, indicators of dyslipidemia differed between 
patients with intracranial vs extracranial artery stenosis in our study. Jin et al[30] found that hyperlip-
idemia was an independent predictor of extracranial artery stenosis but not intracranial artery stenosis, 
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and in the present study, a higher frequency of hyperlipidemia was observed in the ECAS group.
Metabolic variables may represent the underlying mechanism for the association between BTMs and 

atherosclerosis, as increased BTM levels correlated with several metabolic risk factors and increased 
atherosclerosis. BTMs may influence glucose and lipid homeostasis, while cardiovascular risk factors 
can regulate the expression of mineralization markers and promote the calcification process.

The strengths of the present study include overall profiling of BTM levels in patients with T2DM, 
which has not been reported previously, and extensive correlation analyses between BTM levels and 
indicators of glucose metabolism, lipid metabolism, and vascular disease, which ultimately allowed us 
to identify independent associations between BTM levels and atherosclerosis in patients with T2DM. 
However, this study also has several limitations. Due to its cross-sectional design, we could not 
establish causal relationships among the correlating factors. Further prospective studies with relevant 
clinical endpoints are needed to clarify whether BTMs play a causal role in the development of athero-
sclerosis and to assess the effect of BTM-lowering therapies on the development of atherosclerosis. We 
plan to carry out large-scale longitudinal studies in the future. Finally, in vivo animal studies are 
required to elucidate the role of BTMs in the pathogenic mechanisms of atherosclerosis and plaque 
calcification.

Based on our findings that BTM levels are strongly correlated with artery stenosis risk and dis-
turbance of glucose and lipid metabolism, BTMs should be investigated as indicators for predicting the 
risk of CVD and as potential therapeutic targets for artery stenosis in patients with T2DM. Multimodal 
imaging technologies can identify intracranial and extracranial atherosclerosis, which indicates an 
increased risk of ischemic events or artery stenosis. The combination of such imaging analyses and 
measurement of serum BTM levels offers a promising strategy for evaluating the diagnosis, 
pathogenesis, and progression of intracranial and extracranial stenosis. Therefore, we should test BTMs 
in patients with T2DM, complete vascular examinations in patients with elevated BTMs, and conduct 
active monitoring, follow-up, and treatment in this part of the population.

CONCLUSION
Elevated BTM levels correlated with an increased risk of artery stenosis in patients with T2DM as well 
as with several indicators of metabolic syndrome. Accordingly, BTM levels may serve as circulating 
endocrine markers that reflect the regulation of glucose and lipid metabolism, thereby reflecting the risk 
of vascular disease in patients with T2DM. BTMs may also represent potential therapeutic targets for 
atherosclerosis, and additional research is warranted to explore the underlying mechanism linking 
BTMs and atherosclerosis. Patients with high BTM levels should be considered a high-risk group in 
efforts to prevent cardiovascular events.

ARTICLE HIGHLIGHTS
Research background
Intracranial and extracranial artery stenosis is associated with cerebral infarction. Vascular calcification 
and atherosclerosis are the main causes of stenosis and major risk factors for cardiovascular and 
cerebrovascular events in patients with type 2 diabetes mellitus (T2DM).

Research motivation
Our study found that bone turnover biomarkers (BTMs) are associated with the risk of arterial stenosis, 
probably due to the relationship between BTMs and glucose and lipid metabolism disorders. Detection 
of BTMs in patients with T2DM may help reduce the occurrence of cardiovascular disease.

Research objectives
This study aimed to investigate the association of circulating BTM levels with severe intracranial and 
extracranial artery stenosis in patients with T2DM.

Research methods
After overnight fasting for 12 h, peripheral venous blood samples were collected early the next morning 
for all patients. Fasting plasma glucose, triglyceride, total cholesterol, high-density lipoprotein 
cholesterol, low-density lipoprotein cholesterol, serum creatinine, blood urea nitrogen, and uric acid 
levels were measured by an automatic analyzer. The glycated hemoglobin (HbA1c) level was measured 
by high-pressure liquid chromatography. Insulin, C-peptide, osteocalcin (OC), C-terminal cross-linked 
telopeptide of type I collagen (CTX), and procollagen type I N-peptide (PINP) levels were determined 
using an electrical chemiluminescent immunoassay.
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Research results
Among the 257 T2DM patients included in this study, 136 were female and 121 were male. The mean 
age of all participants was 66 ± 11 years. The average duration of T2DM among all patients was 12.0 ± 
13.0 years. Overall, 87.2% had no stenosis, and 12.8% had some form of stenosis. Compared with the no 
severe intracranial and extracranial artery stenosis group, the artery stenosis group had a higher 
percentage of patients with a history of stroke and higher levels of HbA1c, OC, CTX, and PINP.

Research conclusions
Elevated BTM levels correlated with an increased risk of artery stenosis in patients with T2DM as well 
as with several indicators of metabolic syndrome. Accordingly, BTM levels may serve as circulating 
endocrine markers that reflect the regulation of glucose and lipid metabolism, thereby reflecting the risk 
of vascular disease in patients with T2DM.

Research perspectives
BTMs may also represent potential therapeutic targets for atherosclerosis, and additional research is 
warranted to explore the underlying mechanism linking BTMs and atherosclerosis.

FOOTNOTES
Author contributions: Si SC and Yang W contributed to the study conception and design; Liu J, Luo HY, Ma YX and 
Zhao H recruited patients and supervised the study process; Si SC analyzed the data and wrote the manuscript; and 
all authors read and approved the final article.

Supported by Beijing Municipal Hospital Management Center “Cultivation Plan”, No. PX2022032.

Institutional review board statement: This study was approved by the Ethics Committees of Xuanwu Hospital of 
Capital Medical University.

Informed consent statement: All participants provided informed consent.

Conflict-of-interest statement: There are no conflicts of interest.

Data sharing statement: The data from this article will be provided by the corresponding author upon reasonable 
request.

Open-Access: This article is an open-access article that was selected by an in-house editor and fully peer-reviewed by 
external reviewers. It is distributed in accordance with the Creative Commons Attribution NonCommercial (CC BY-
NC 4.0) license, which permits others to distribute, remix, adapt, build upon this work non-commercially, and license 
their derivative works on different terms, provided the original work is properly cited and the use is non-
commercial. See: https://creativecommons.org/Licenses/by-nc/4.0/

Country/Territory of origin: China

ORCID number: Wei Yang 0000-0001-6568-3090; Jia Liu 0000-0001-6683-3548.

S-Editor: Wang JL 
L-Editor: A 
P-Editor: Chen YX

REFERENCES
1 Jiang C, Zhang J, Zhu J, Wang X, Wen Z, Zhao X, Yuan C; CARE-II Investigators. Association between coexisting 

intracranial artery and extracranial carotid artery atherosclerotic diseases and ipsilateral cerebral infarction: a Chinese 
Atherosclerosis Risk Evaluation (CARE-II) study. Stroke Vasc Neurol 2021; 6: 595-602 [PMID: 33903178 DOI: 
10.1136/svn-2020-000538]

2 Thompson B, Towler DA. Arterial calcification and bone physiology: role of the bone-vascular axis. Nat Rev Endocrinol 
2012; 8: 529-543 [PMID: 22473330 DOI: 10.1038/nrendo.2012.36]

3 Bos D, Leening MJ, Kavousi M, Hofman A, Franco OH, van der Lugt A, Vernooij MW, Ikram MA. Comparison of 
Atherosclerotic Calcification in Major Vessel Beds on the Risk of All-Cause and Cause-Specific Mortality: The Rotterdam 
Study. Circ Cardiovasc Imaging 2015; 8 [PMID: 26659376 DOI: 10.1161/CIRCIMAGING.115.003843]

4 Demer LL, Tintut Y. Vascular calcification: pathobiology of a multifaceted disease. Circulation 2008; 117: 2938-2948 
[PMID: 18519861 DOI: 10.1161/CIRCULATIONAHA.107.743161]
Towler DA. Commonalities Between Vasculature and Bone: An Osseocentric View of Arteriosclerosis. Circulation 2017; 5

https://creativecommons.org/Licenses/by-nc/4.0/
http://orcid.org/0000-0001-6568-3090
http://orcid.org/0000-0001-6568-3090
http://orcid.org/0000-0001-6683-3548
http://orcid.org/0000-0001-6683-3548
http://www.ncbi.nlm.nih.gov/pubmed/33903178
https://dx.doi.org/10.1136/svn-2020-000538
http://www.ncbi.nlm.nih.gov/pubmed/22473330
https://dx.doi.org/10.1038/nrendo.2012.36
http://www.ncbi.nlm.nih.gov/pubmed/26659376
https://dx.doi.org/10.1161/CIRCIMAGING.115.003843
http://www.ncbi.nlm.nih.gov/pubmed/18519861
https://dx.doi.org/10.1161/CIRCULATIONAHA.107.743161


Si SC et al. Bone turnover organisms and intracranial and extracranial artery stenosis in T2DM

WJD https://www.wjgnet.com 604 May 15, 2023 Volume 14 Issue 5

135: 320-322 [PMID: 28115412 DOI: 10.1161/CIRCULATIONAHA.116.022562]
6 Wagenknecht LE, Divers J, Register TC, Russell GB, Bowden DW, Xu J, Langefeld CD, Lenchik L, Hruska KA, Carr JJ, 

Freedman BI. Bone Mineral Density and Progression of Subclinical Atherosclerosis in African-Americans With Type 2 
Diabetes. J Clin Endocrinol Metab 2016; 101: 4135-4141 [PMID: 27552541 DOI: 10.1210/jc.2016-1934]

7 Bellissimo MP, Roberts JL, Jones DP, Liu KH, Taibl KR, Uppal K, Weitzmann MN, Pacifici R, Drissi H, Ziegler TR, 
Alvarez JA. Metabolomic Associations with Serum Bone Turnover Markers. Nutrients 2020; 12 [PMID: 33081124 DOI: 
10.3390/nu12103161]

8 Yang SW, Hennessy RR, Khosla S, Lennon R, Loeffler D, Sun T, Liu Z, Park KH, Wang FL, Lerman LO, Lerman A. 
Circulating osteogenic endothelial progenitor cell counts: new biomarker for the severity of coronary artery disease. Int J 
Cardiol 2017; 227: 833-839 [PMID: 27836295 DOI: 10.1016/j.ijcard.2016.10.036]

9 Reyes-Garcia R, Rozas-Moreno P, Jimenez-Moleon JJ, Villoslada MJ, Garcia-Salcedo JA, Santana-Morales S, Muñoz-
Torres M. Relationship between serum levels of osteocalcin and atherosclerotic disease in type 2 diabetes. Diabetes Metab 
2012; 38: 76-81 [PMID: 21996253 DOI: 10.1016/j.diabet.2011.07.008]

10 Leli C, Pasqualini L, Vaudo G, Gaggioli S, Scarponi AM, Mannarino E. Carotid intima-media thickness and bone 
turnover: the role of C-terminal telopeptide of type I collagen. Intern Emerg Med 2010; 5: 127-134 [PMID: 20182821 
DOI: 10.1007/s11739-010-0356-y]

11 Yeap BB, Alfonso H, Chubb SA, Byrnes E, Beilby JP, Ebeling PR, Allan CA, Schultz C, Hankey GJ, Golledge J, Flicker 
L, Norman PE. Proportion of Undercarboxylated Osteocalcin and Serum P1NP Predict Incidence of Myocardial Infarction 
in Older Men. J Clin Endocrinol Metab 2015; 100: 3934-3942 [PMID: 26308289 DOI: 10.1210/jc.2015-1899]

12 Alberti KG, Zimmet PZ. Definition, diagnosis and classification of diabetes mellitus and its complications. Part 1: 
diagnosis and classification of diabetes mellitus provisional report of a WHO consultation. Diabet Med 1998; 15: 539-553 
[PMID: 9686693 DOI: 10.1002/(SICI)1096-9136(199807)15:7<539::AID-DIA668>3.0.CO;2-S]

13 Allison MA, Hsi S, Wassel CL, Morgan C, Ix JH, Wright CM, Criqui MH. Calcified atherosclerosis in different vascular 
beds and the risk of mortality. Arterioscler Thromb Vasc Biol 2012; 32: 140-146 [PMID: 22034514 DOI: 
10.1161/ATVBAHA.111.235234]

14 Lei MH, Wu YL, Chung SL, Chen CC, Chen WC, Hsu YC. Coronary Artery Calcium Score Predicts Long-Term 
Cardiovascular Outcomes in Asymptomatic Patients with Type 2 Diabetes. J Atheroscler Thromb 2021; 28: 1052-1062 
[PMID: 33162430 DOI: 10.5551/jat.59386]

15 Scimeca M, Anemona L, Granaglia A, Bonfiglio R, Urbano N, Toschi N, Santeusanio G, Schiaroli S, Mauriello S, 
Tancredi V, Schillaci O, Bonanno E, Mauriello A. Plaque calcification is driven by different mechanisms of mineralization 
associated with specific cardiovascular risk factors. Nutr Metab Cardiovasc Dis 2019; 29: 1330-1336 [PMID: 31653516 
DOI: 10.1016/j.numecd.2019.08.009]

16 Zwakenberg SR, van der Schouw YT, Schalkwijk CG, Spijkerman AMW, Beulens JWJ. Bone markers and 
cardiovascular risk in type 2 diabetes patients. Cardiovasc Diabetol 2018; 17: 45 [PMID: 29571288 DOI: 
10.1186/s12933-018-0691-2]

17 Sheng L, Cao W, Cha B, Chen Z, Wang F, Liu J. Serum osteocalcin level and its association with carotid atherosclerosis 
in patients with type 2 diabetes. Cardiovasc Diabetol 2013; 12: 22 [PMID: 23342952 DOI: 10.1186/1475-2840-12-22]

18 Levinger I, Brennan-Speranza TC, Zulli A, Parker L, Lin X, Lewis JR, Yeap BB. Multifaceted interaction of bone, 
muscle, lifestyle interventions and metabolic and cardiovascular disease: role of osteocalcin. Osteoporos Int 2017; 28: 
2265-2273 [PMID: 28289780 DOI: 10.1007/s00198-017-3994-3]

19 Tyson KL, Reynolds JL, McNair R, Zhang Q, Weissberg PL, Shanahan CM. Osteo/chondrocytic transcription factors and 
their target genes exhibit distinct patterns of expression in human arterial calcification. Arterioscler Thromb Vasc Biol 
2003; 23: 489-494 [PMID: 12615658 DOI: 10.1161/01.ATV.0000059406.92165.31]

20 Polonskaya YV, Kashtanova EV, Murashov IS, Volkov AM, Kurguzov AV, Chernyavsky AM, Ragino YI. Associations 
of Osteocalcin, Osteoprotegerin, and Calcitonin with Inflammation Biomarkers in Atherosclerotic Plaques of Coronary 
Arteries. Bull Exp Biol Med 2017; 162: 726-729 [PMID: 28429221 DOI: 10.1007/s10517-017-3698-x]

21 Cotie LM, Currie KD, McGill GM, Cameron AJ, McFadden AS, Phillips SM, MacDonald MJ. Associations between 
measures of vascular structure and function and systemic circulating blood markers in humans. Physiol Rep 2016; 4 
[PMID: 27670408 DOI: 10.14814/phy2.12982]

22 Gilbert MP, Pratley RE. The impact of diabetes and diabetes medications on bone health. Endocr Rev 2015; 36: 194-213 
[PMID: 25738213 DOI: 10.1210/er.2012-1042]

23 Barascuk N, Skjøt-Arkil H, Register TC, Larsen L, Byrjalsen I, Christiansen C, Karsdal MA. Human macrophage foam 
cells degrade atherosclerotic plaques through cathepsin K mediated processes. BMC Cardiovasc Disord 2010; 10: 19 
[PMID: 20409295 DOI: 10.1186/1471-2261-10-19]

24 Gafane LF, Schutte R, Kruger IM, Schutte AE. Large artery stiffness and carotid intima-media thickness in relation to 
markers of calcium and bone mineral metabolism in African women older than 46 years. J Hum Hypertens 2015; 29: 152-
158 [PMID: 25119885 DOI: 10.1038/jhh.2014.71]

25 Liu D, Chen L, Dong S, Peng Z, Yang H, Chen Y, Li L, Zhou H, Zhou R. Bone mass density and bone metabolism marker 
are associated with progression of carotid and cardiac calcified plaque in Chinese elderly population. Osteoporos Int 2019; 
30: 1807-1815 [PMID: 31190121 DOI: 10.1007/s00198-019-05031-5]

26 Cipriani C, Colangelo L, Santori R, Renella M, Mastrantonio M, Minisola S, Pepe J. The Interplay Between Bone and 
Glucose Metabolism. Front Endocrinol (Lausanne) 2020; 11: 122 [PMID: 32265831 DOI: 10.3389/fendo.2020.00122]

27 Ma H, Lin H, Hu Y, Li X, He W, Jin X, Gao J, Zhao N, Gao X. Serum levels of osteocalcin in relation to glucose 
metabolism and carotid atherosclerosis in Chinese middle-aged and elderly male adults: the Shanghai Changfeng Study. 
Eur J Intern Med 2014; 25: 259-264 [PMID: 24521696 DOI: 10.1016/j.ejim.2014.01.017]

28 Li W, Liu X, Liu L, Zhang L, Li M, Liu R, Li T, Chen E, Liu S. Relationships of Serum Bone Turnover Markers With 
Metabolic Syndrome Components and Carotid Atherosclerosis in Patients With Type 2 Diabetes Mellitus. Front 
Cardiovasc Med 2022; 9: 824561 [PMID: 35548441 DOI: 10.3389/fcvm.2022.824561]
Barchetta I, Ceccarelli V, Cimini FA, Bertoccini L, Fraioli A, Alessandri C, Lenzi A, Baroni MG, Cavallo MG. Impaired 29

http://www.ncbi.nlm.nih.gov/pubmed/28115412
https://dx.doi.org/10.1161/CIRCULATIONAHA.116.022562
http://www.ncbi.nlm.nih.gov/pubmed/27552541
https://dx.doi.org/10.1210/jc.2016-1934
http://www.ncbi.nlm.nih.gov/pubmed/33081124
https://dx.doi.org/10.3390/nu12103161
http://www.ncbi.nlm.nih.gov/pubmed/27836295
https://dx.doi.org/10.1016/j.ijcard.2016.10.036
http://www.ncbi.nlm.nih.gov/pubmed/21996253
https://dx.doi.org/10.1016/j.diabet.2011.07.008
http://www.ncbi.nlm.nih.gov/pubmed/20182821
https://dx.doi.org/10.1007/s11739-010-0356-y
http://www.ncbi.nlm.nih.gov/pubmed/26308289
https://dx.doi.org/10.1210/jc.2015-1899
http://www.ncbi.nlm.nih.gov/pubmed/9686693
https://dx.doi.org/10.1002/(SICI)1096-9136(199807)15:7<539::AID-DIA668>3.0.CO;2-S
http://www.ncbi.nlm.nih.gov/pubmed/22034514
https://dx.doi.org/10.1161/ATVBAHA.111.235234
http://www.ncbi.nlm.nih.gov/pubmed/33162430
https://dx.doi.org/10.5551/jat.59386
http://www.ncbi.nlm.nih.gov/pubmed/31653516
https://dx.doi.org/10.1016/j.numecd.2019.08.009
http://www.ncbi.nlm.nih.gov/pubmed/29571288
https://dx.doi.org/10.1186/s12933-018-0691-2
http://www.ncbi.nlm.nih.gov/pubmed/23342952
https://dx.doi.org/10.1186/1475-2840-12-22
http://www.ncbi.nlm.nih.gov/pubmed/28289780
https://dx.doi.org/10.1007/s00198-017-3994-3
http://www.ncbi.nlm.nih.gov/pubmed/12615658
https://dx.doi.org/10.1161/01.ATV.0000059406.92165.31
http://www.ncbi.nlm.nih.gov/pubmed/28429221
https://dx.doi.org/10.1007/s10517-017-3698-x
http://www.ncbi.nlm.nih.gov/pubmed/27670408
https://dx.doi.org/10.14814/phy2.12982
http://www.ncbi.nlm.nih.gov/pubmed/25738213
https://dx.doi.org/10.1210/er.2012-1042
http://www.ncbi.nlm.nih.gov/pubmed/20409295
https://dx.doi.org/10.1186/1471-2261-10-19
http://www.ncbi.nlm.nih.gov/pubmed/25119885
https://dx.doi.org/10.1038/jhh.2014.71
http://www.ncbi.nlm.nih.gov/pubmed/31190121
https://dx.doi.org/10.1007/s00198-019-05031-5
http://www.ncbi.nlm.nih.gov/pubmed/32265831
https://dx.doi.org/10.3389/fendo.2020.00122
http://www.ncbi.nlm.nih.gov/pubmed/24521696
https://dx.doi.org/10.1016/j.ejim.2014.01.017
http://www.ncbi.nlm.nih.gov/pubmed/35548441
https://dx.doi.org/10.3389/fcvm.2022.824561


Si SC et al. Bone turnover organisms and intracranial and extracranial artery stenosis in T2DM

WJD https://www.wjgnet.com 605 May 15, 2023 Volume 14 Issue 5

bone matrix glycoprotein pattern is associated with increased cardio-metabolic risk profile in patients with type 2 diabetes 
mellitus. J Endocrinol Invest 2019; 42: 513-520 [PMID: 30132286 DOI: 10.1007/s40618-018-0941-x]

30 Jin H, Peng Q, Nan D, Lv P, Liu R, Sun W, Teng Y, Liu Y, Fan C, Xing H, Xu K, Huang Y. Prevalence and risk factors 
of intracranial and extracranial artery stenosis in asymptomatic rural residents of 13 villages in China. BMC Neurol 2017; 
17: 136 [PMID: 28720076 DOI: 10.1186/s12883-017-0924-0]

http://www.ncbi.nlm.nih.gov/pubmed/30132286
https://dx.doi.org/10.1007/s40618-018-0941-x
http://www.ncbi.nlm.nih.gov/pubmed/28720076
https://dx.doi.org/10.1186/s12883-017-0924-0


WJD https://www.wjgnet.com 606 May 15, 2023 Volume 14 Issue 5

World Journal of 

DiabetesW J D
Submit a Manuscript: https://www.f6publishing.com World J Diabetes 2023 May 15; 14(5): 606-616

DOI: 10.4239/wjd.v14.i5.606 ISSN 1948-9358 (online)

ORIGINAL ARTICLE

Randomized Clinical Trial

Efficacy of multigrain supplementation in type 2 diabetes mellitus: A 
pilot study protocol for a randomized intervention trial

Nur Anis Mohd Ariffin, Mastura Mohd Sopian, Lai Kuan Lee

Specialty type: Integrative and 
complementary medicine

Provenance and peer review: 
Invited article; Externally peer 
reviewed.

Peer-review model: Single blind

Peer-review report’s scientific 
quality classification
Grade A (Excellent): 0 
Grade B (Very good): B 
Grade C (Good): C 
Grade D (Fair): D 
Grade E (Poor): 0

P-Reviewer: Horowitz M, 
Australia; Mohammadi S, Iran; 
Moreno-Gómez-Toledano R, Spain

Received: December 23, 2022 
Peer-review started: December 23, 
2022 
First decision: February 20, 2023 
Revised: March 2, 2023 
Accepted: April 10, 2023 
Article in press: April 10, 2023 
Published online: May 15, 2023

Nur Anis Mohd Ariffin, Lai Kuan Lee, Food Technology Division, School of Industrial 
Technology, Universiti Sains Malaysia, Gelugor 11800, Pulau Pinang, Malaysia

Mastura Mohd Sopian, Oncology and Radiological Sciences Cluster, Advanced Medical and 
Dental Institute, Universiti Sains Malaysia, Bertam 13200, Pulau Pinang, Malaysia

Corresponding author: Lai Kuan Lee, PhD, Senior Lecturer, Food Technology Division, School 
of Industrial Technology, Universiti Sains Malaysia, Gelugor 11800, Pulau Pinang, Malaysia. 
l.k.lee@usm.my

Abstract
BACKGROUND 
Uncontrolled type 2 diabetes mellitus (T2DM) may lead to microvascular complic-
ations (nephropathy, retinopathy, and neuropathy) and cardiovascular diseases. 
The beta-glucan content in grains has the potential to improve insulin sensitivity, 
lowering postprandial glucose response and reducing inflammation degrees. A 
proper combination of grains not only satisfies human body’s need, but also 
provides essential and reasonable nutritional contents. However, no trial has been 
conducted to evaluate the roles of multigrain in T2DM.

AIM 
To determine the efficacy of multigrain supplementation among T2DM patients.

METHODS 
From October 2020 to June 2021, a total of 50 adults living with T2DM, who were 
receiving standard diabetes care at Day Care Clinic, were randomized into either 
a supplementation group or a control group. The supplementation group received 
twice daily 30 g multigrain supplement (equivalent to 3.4 g beta-glucan) with 
standard medication for 12 wk, while the control group was prescribed with 
standard medication. Parameters such as glycemic control (HbA1c, FPG, and 
HOMO-IR), cardiometabolic profile (lipid profile, renal function test, and liver 
function test), oxidative stress status, nutritional status, and quality of life (QoL) 
were assessed at two time points: Baseline and the end of the treatment period 
(week 12).

RESULTS 
The primary outcomes were the mean difference of glycated haemoglobin (%), 
fasting plasma glucose, and serum insulin as intervention effects. Secondary 
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outcomes included the measurement of cardiometabolic profile, antioxidative and oxidative stress 
status, nutritional status indices, and QoL. Tertiary outcomes involved the determination of safety 
and tolerability, and supplementation compliance.

CONCLUSION 
The present clinical trial will reveal the effectiveness of multigrain supplementation among T2DM 
patients for the improvement of diabetes management.

Key Words: Beta-glucan; Clinical trial; Multigrain; Type 2 diabetes mellitus; Glycemic control

©The Author(s) 2023. Published by Baishideng Publishing Group Inc. All rights reserved.

Core Tip: This is the first human clinical trial aimed to evaluate the effectiveness of multigrain supple-
mentation among type 2 diabetes mellitus patients. The changes of glycemic control, cardiometabolic 
profile, oxidative stress status, nutritional status, and quality of life were measured. Our study also 
evaluated the safety, tolerability, and compliance of the supplementation.

Citation: Mohd Ariffin NA, Mohd Sopian M, Lee LK. Efficacy of multigrain supplementation in type 2 diabetes 
mellitus: A pilot study protocol for a randomized intervention trial. World J Diabetes 2023; 14(5): 606-616
URL: https://www.wjgnet.com/1948-9358/full/v14/i5/606.htm
DOI: https://dx.doi.org/10.4239/wjd.v14.i5.606

INTRODUCTION
Diabetes mellitus is one of the major global health problems and driving causes of morbidity and 
mortality around the world. Type 2 diabetes mellitus (T2DM) is a metabolic disease that causes sugar to 
build up in the bloodstream, characterized by insulin insensitivity as a result of insulin resistance in the 
muscle and adipose tissue, declining insulin production, and eventual pancreatic beta-cell failure[1]. 
When the beta-cells in the pancreas malfunction and/or insulin resistance develops in the liver, skeletal 
muscle, or adipose tissue, hyperglycemia arises, resulting in an excess level of glucose circulating in the 
blood[2]. T2DM has attained epidemic proportions worldwide with 415 million cases estimated globally 
in 2015, and the number is expected to increase dramatically in the next decades, reaching 642 million 
by 2040[3]. T2DM is the foremost common frame of diabetes mellitus, accounting for more than 90% of 
all cases of adult-onset diabetes mellitus in Malaysia[4]. According to the National Health and 
Morbidity Survey (2020)[5], one in every five adults in Malaysia has T2DM.

Uncontrolled diabetes mellitus may lead to microvascular complications (nephropathy, retinopathy, 
and neuropathy) and macrovascular complications, later leading to severe peripheral vascular disease, 
premature coronary artery disease, and increased risk of cerebrovascular diseases[6]. The main aim of 
diabetes management is targeted at reducing the acute and chronic diabetes complications, via the 
effective control of plasma glucose, blood pressure, lipid profile, and body weight concurrently[7]. The 
distinction between effective treatment and cure is obscured within the case of diabetes, but few 
individuals can reverse it through diet changes and be able to reach and maintain normal blood sugar 
levels without or with minimum medication. In particular, nutrition or dietary therapy is one of the 
trending complementary medicines, with the ultimate goal to control, prevent (occurrence), and reverse 
(by averting resulting complications after its onset) the disease[8].

Wholegrain is defined as consisting of the entire grain (bran, endosperm, and germ), and most fiber 
ingredient from the wholegrain is of insoluble origin, including the cellulose, hemicellulose, and lignin, 
with the exception of barley and oat (relevant sources of soluble fiber such as beta-glucan, pentoses, and 
arabinoxylan)[9]. Wholegrain is a good source of dietary fiber, resistant starch, antioxidants, and other 
important micronutrients, such as folic acid and other vitamins[10]. Fiber from the wholegrain has been 
shown to reduce the risk of T2DM by improving insulin sensitivity, lowering postprandial glucose 
response, and lowering inflammation[11]. In addition, laboratory and epidemiological investigations 
have reported that wholegrain, especially barley and oat, contain a high amount of beta-glucan, which 
has been proven to lower blood glucose levels, improve glucose tolerance, ameliorate hyperlipidemia, 
improve immunity, and decrease infections[12]. In parallel, the demand of the multigrain source in the 
commercial market is increasing tremendously due to an increased awareness of managing chronic 
diseases by ingesting health promoting functional foods[13]. Multigrain, a proper combination of few 
types of grains, could satisfy human body’s need with essential nutritional benefits[14].
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Several published clinical trials were looking into the effect of single grain supplementation on 
T2DM. Li et al[15] have conducted a clinical trial among overweight T2DM patients, and the results 
revealed that using oat as a therapeutic dietary regimen for 48 wk improved the body weight and 
glycemic control. The similar results have been inferred[16], where rice bran as a single treatment diet 
improved glycemic control and lipid profile in T2DM patients after 12 wk ingestion. In fact, multigrain 
consumption is more reflective towards human daily consumption. To date, study investigating the role 
of multigrain supplementation in T2DM patients is scarce.

Hence, the aim of this randomized clinical trial was to evaluate the effect of 12-wk of high beta-glucan 
multigrain supplementation on glycemic control in patients with T2DM. Secondary outcomes aim to 
evaluate the roles of the supplementation regimen for the amelioration of cardiometabolic health, 
antioxidative and oxidative stress, nutritional indices, and quality of life (QoL) among the T2DM 
patients. Tertiary outcomes involve the determination of safety and tolerability, and supplementation 
compliance.

MATERIALS AND METHODS
Study design and site 
This was an open-label, randomized controlled trial, with an allocation ratio for the supplement (S) vs 
control (C) group at 1:1. All patients were registered T2DM patients. Study recruitment and enrollment 
began on October 14, 2020, and the completion date for enrollment was June 2021. The study site was 
the Day Care Clinic in Universiti Sains Malaysia Bertam Medical Center. The medical center serves as 
the referred medical facility in the northern region of Peninsular Malaysia.

Study population 
The study population included 50 T2DM patients who were receiving standard diabetes care at Day 
Care Clinic. Patients aged at least 18 years of age, male or female, clinically diagnosed with T2DM for at 
least 6 mo duration without clinically manifest complications (retinopathy, nephropathy, neuropathy, 
vascular diseases, and food ulcer), and currently receiving pharmacological treatment with metformin 
or insulin, or a combination of metformin and glibenclamide were included in the trial (Table 1). 
Patients with gluten intolerance were excluded as the supplement contains gluten. Participants who 
have involved in another supplementary program were also excluded to avoid dilution effects.

Intervention groups
The study randomized all trial subjects into either group S or group C. Group S (n = 25) was supple-
mented with daily 60 g (2 sachets, 30 g each) of high beta-glucan (equivalent to 3.4 g) multigrain 
supplement for up to 12 wk. This multigrain supplement (Oat King®) was sponsored by TG Ocean 
Health Food Industries Sdn Bhd, Malaysia. It does not contain any food additives including food preser-
vatives, coloring, flavoring, and sweetener. The main ingredients are oat, barley, brown rice, paddy, rice 
flour, corn flour, red kidney bean, black bean with kernel, and soybean (Table 2). Group S was required 
to consume the supplement two times per day (day and night). Patients were attending to the study site 
to receive and replenish the supplement at baseline, week 4, and week 8. All patients continued their 
standard medication as prescribed before the trial participation.

Group C (n = 25) continued the standard medication as prescribed prior to the trial. They were 
reminded not to alter their habitual dietary intake and physical activity level throughout the clinical trial 
period.

Study visits and measurements
Five categories of study visits have been adopted in this trial: Recruitment, screening, and inform 
consent form signing, randomization and blinding, enrolment visit, follow-up visits, and post week-12 
visit. Figure 1 illustrates the trial flowchart.

Recruitment, screening and inform consent signing
All T2DM patients were invited face to face during their routine medical follow-up in the Day Care 
Clinic. Patient recruitment also occurred through electronic medical record review to identify potential 
participants. Patients were then invited for a screening session. The research team evaluated the 
eligibility criteria (both inclusion and exclusion criteria) and explained the research information in 
detail, followed by obtaining written inform consent. The research team did not coerce or unduly 
influence a patient to participate in the trial. Eligible patients underwent the randomization procedure.

Randomization and blinding
To generate a random allocation sequence, a computer-generated list of random numbers was used. 
Simple randomization at a 1:1 allocation ratio (1 group S: 1 group C) has been applied. The allocation 
sequence was concealed from the investigator enrolling and assessing participants on sequentially 
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Table 1 Inclusion and exclusion criteria for study population

Inclusion criteria Exclusion criteria

Chronological age 18 years and above Liver disease, kidney disease, or haematological 
disorders

T2DM ≥ 6 mo, stable regimen ≥ 6 mo without clinically manifest complications Active gastric or duodenal ulcer

Male or female Psychiatric disease or mental retardation

Pharmacological treatment with metformin or insulin, or a combination of metformin and gliben-
clamide

Cancer and other endocrine disorders

Free from antioxidant supplements Alcohol or drug abuse

Free from anti-inflammatory supplements Pregnancy or lactation

Hormone replacement therapy

Herbal remedies

Gluten intolerance

Currently under another supplementary program

T2DM: Type 2 diabetes mellitus.

Table 2 Active ingredients of Oat King®

Active ingredient Scientific name Percentage (%)

Oat Avena sativa 11.80

Brown rice Oryza sativa 9.55

Paddy Oryza sativa 9.38

Rice Oryza sativa 6.04

Corn Zea mays 6.04

Red kidney bean Phaseolus vulgaris 6.04

Black bean Phaseolus vulgaris 6.04

Soy bean Glycine max 5.17

Barley Hordeum vulgare 4.98

Wheat Triticum 4.98

Wheat germ Triticum vulgare 4.98

Wheat bran Triticum aestivum L 4.98

Coix seed Coix-lacryma-jobi 4.22

Millet Pennisetum glaucum 3.50

Red rice Oryza longistaminata 2.46

Black rice Zizania aqatica 2.46

Black sesame seed Sesamum indicum 2.46

Navy bean Phaseolus vulgaris 2.46

Mung bean Vigna radiata 2.46

numbered, opaque, sealed, and stapled envelopes. To prevent subversion of the allocation sequence, the 
name and date of birth of the participant were written on the envelope. To randomize the participants, 
variables such as demographic data (age, gender, and ethnicity), clinical data (years of disease, glycemic 
status, and the presence of diabetic-related complications), physical activity, and medication (current 
prescribed medications) were taken into the consideration. To determine whether the patient would be 
randomized into the multigrain group S or C, randomization was made by reference to a statistical 
series based on the random sampling number drawn up by the statistician. The details of the series were 
unknown to any of the investigator or the coordinator. In order to implement blinding, participants 
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Figure 1 Flow chart of the trial.

were notified individually of the assigned group S or C. However, only data collectors, the coordinator, 
and the medical officer in charge of the trial were aware of the allocated arm. Investigators, data analyst, 
and outcome adjudicator are kept blinded to the allocation.

Enrolment visit
The enrolment visit was consisted of a semi-quantitative questionnaire, physical examination, fasting 
blood sampling, and laboratory tests. The semi-quantitative questionnaire gathered information with 
regard to the socio-demographic background and medical history (including medical prescription). 
Lifestyle health behaviors included alcohol use, cigarettes smoking, and routine exercise practices. 
Physical examination involved the measurement of systolic and diastolic blood pressure, handgrip 
strength, and nutritional status assessments (anthropometry and body composition measurements).

A total of 20 mL of fasting venous blood was drawn from each participant for the subsequent clinical 
laboratory testing. Routine laboratory testing comprised of albumin, total protein and total bilirubin, 
urea, minerals, uric acid, and creatinine. Fasting plasma glucose, glycated haemoglobin, serum insulin, 
lipid profile, and liver and kidney function tests were performed. Upon centrifugation, serum and 
plasma samples were collected, and the antioxidative and oxidative stress statuses were assessed via the 
measurements of total antioxidant capacity, superoxide dismutase, glutathione, glutathione peroxidase 
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(GPx), malondialdehyde, protein carbonyl, and 8-deoxyguanosine concentrations.
Modified diabetes QoL-17 questionnaire[17] has been used to evaluate the changes of QoL, as 

assessed using 7 domains (physical functioning, role limitations due to physical health, role limitations 
due to emotional, energy fatigue, emotional well-being, social functioning, and general health).

The supplement group received the first month supply of multigrain supplement in the form of 
sachet. Detail use of the supplement was elaborated, and patients returned the used sachets packaging 
during the follow-up visits.

Follow-up visits
Patients were evaluated at 3 study visits (Figure 2) during the week-4, week-8, and post week-12 follow-
ups at Day Care Clinic. At each follow-up, the evaluation of the safety, tolerability, and compliance to 
the multigrain supplementation was conducted. Adverse effects concomitant to the supplementation 
regimen, particularly the signs and symptoms of gastrointestinal discomforts, were recorded. 
Compliance to the supplementation was indicated as the recorded number of consumed sachets. 
Replenishment of multigrain supplement was implemented during week-4 and week-8 follow-ups, 
respectively. Disease progression in group C was evaluated following standard medication regimen. 
Both the supplement and control groups were reminded not to alter their routine dietary intake and 
physical activity level.

Post week-12 visit
After week 12, study questionnaire, physical examination, blood profile, and QoL assessments were 
performed in both the supplement and control groups. In-depth interviews have been conducted by the 
research team members among the patients in group S. The attitudes, positive and negative perceptions 
towards the supplementation, and perceived general health were interviewed. All study data was 
recorded into the case report form.

Power and sample size calculation
The results from a previous study[18] among T2DM patients were used to determine the trial sample 
size. The following formula is used to calculate the trial sample size:

Where n = sample size, Z = 0.8416 (for each arm, a setting of 80% power and 95%CI was used), Z = 
1.96, and = mean difference or standard deviation. Thus, for this study, n = 18 subjects for each arm. 
With the consideration that the dropout rate was 20%, the needed sample size was 22 patients for each 
arm.

Statistical analysis
Data analysis in the form of intention to treat will be performed at the end of the study. All statistical 
analyses will be implemented using the Statistical Package for Social Science (SPSS Inc., Chicago, IL, 
United States) software. The following statistical methods will be applied:

Assumptions will be checked for normality tests, and transformation will be applied as corrective 
procedures.

For descriptive statistics, categorical and continuous data, results will be presented as percentages, 
means with standard deviations, median and range.

For inferential tests, P < 0.05 will be used to indicate statistical significance (type I error) (two-tailed).
Analysis of the primary, secondary, and tertiary outcomes will be measured using Pearson’s 

correlation, multivariate regression, repeated measures mixed models, logistic regression, and 
generalized linear models.

Ethics
The present study is conducted in accordance to the guidelines laid down in the Declaration of Helsinki, 
and all procedures involving human subjects have been approved by the Human Research Ethics 
Committee of Universiti Sains Malaysia (No: USM/JEPeM/20030183). Written consent is obtained from 
all patients, and the study has been registered in the clinical trial registry (ClinicalTrials.gov), with the 
registration ID: NCT04597229.

Study outcomes and measures
The patients’ outcome measure has been assessed at two time points: Enrolment (baseline), and at the 
end of the treatment period (post week-12).

The primary outcomes were the changes in fasting plasma glucose, HbA1c, and serum insulin from 
enrolment to post week-12, and the differences in these changes between the two study arms.

Secondary outcomes include the measurement of lipid profile, liver function test and kidney function 
test comparing between the study groups. The change of nutritional status, antioxidative status, and 
oxidative stress biomarkers were assessed too.
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Figure 2 Supplementation administration and follow-up assessment.

Tertiary outcomes were the change in QoL, and the difference in this change between the study 
groups. In term of safety evaluation, a list of gastrointestinal discomfort symptoms has been assessed 
among the participants in the supplementation group. The intensity of the gastrointestinal symptoms is 
defined as none, mild, moderate, severe, and very severe according to the symptoms (bloating, 
abdominal rumbling, flatulence, abdominal pain, nausea, vomiting, heart burn, loss of appetite, 
diarrhea, and constipation). Patients who showed symptoms have been referred to the physician in 
charge. Compliance to the supplementation regimen was assessed by counting the number of the 
consumed sachets during every follow-up visit (week-4, week-8, and week-12). Patients were asked to 
provide the reason for missed sachet consumption.

RESULTS
No result is provided as this is a pilot study protocol for a human clinical trial.

DISCUSSION
The current randomized control trial is aimed to evaluate the effects of multigrain supplementation as a 
complementary regimen vs a control (without supplementation) among patients with T2DM over a 
period of 12 wk. For the past decades, the underlying mechanisms for an association between grains 
and T2DM are not entirely clear, but grains may lower the risk of T2DM by improving insulin 
sensitivity[19]. Particularly, the potency of medium glycemic index multigrain flour to reduce glycemia 
in T2DM has been highlighted for the implementation of a better dietary plan for diabetes control[20]. 
Our study is designed to determine if multigrain supplementation, instead of single grain diet, is 
effective to ameliorate T2DM. Multigrain consumption is relatively a ‘pure’ dietary routine for human 
being.

Beta-glucan, pentose, and arabinoxylan are found in wholegrain fiber, especially in barley and oats, 
and other insoluble fibers, including cellulose, hemicellulose, and lignin[21]. These components play a 
vital role in a collective way, by improving the glycemic metabolism and reducing T2DM risk factor. 
Soluble fiber from oats and barley (with 3 g of beta-glucan intake per day) has been found to be effective 
in lowering total cholesterol and low-density lipoprotein (about 5% to 10% reduction, respectively)[15]. 
The latest finding also outlined the possible role of minimally processed whole grains over 2 wk in 
improving measures of glycemia in free-living adults with T2DM[22]. In addition, beta-glucan is evident 
to increase the intestinal viscosity, decrease the starch digestion, and reduce the food intake by 
increasing satiety, reducing hyperglycemia, lowering the lipid profile, and reducing weight[23].

Grains are generally high in magnesium. Magnesium is an essential co-factor for many enzymes, 
including the enzymes involved in glucose and insulin metabolism. Grain also contains a group of 
phenolic compounds, the avenanthramides. Avenanthramides are antioxidant and can enhance 
endothelial functions and anti-inflammatory properties[24]. Another potential antioxidant found in 
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grains is vitamin E. Vitamin E is an intracellular antioxidant, which prevents the oxidative damage of 
the polyunsaturated fatty acids in cell membranes. Vitamin E also facilitates to remain selenium in a 
reduced state[25]. Selenium plays an important role as a potent antioxidant. For example, GPx reacts 
with hydrogen peroxide to prevent harmful free radicals, DNA damage, and the formation of metabolic 
active carcinogens[26]. High selenium levels may help to reduce the formation of oxidized low-density 
lipoprotein (LDL) cholesterol and, as a result, reduce the risk of heart disease[27] and inflammation, 
strengthen the immune system in the body[28], and prevent the incidence of cancer[29]. Collectively, 
micronutrients in grains have their own beneficial roles to reduce the risk of T2DM complications.

In addition, bioactive compounds present in grains (such as phenolic compounds, phytosterols, 
betaine, and carotenoids) can help to improve insulin sensitivity and slow the progression of T2DM[30]. 
Bioactive compounds act by reducing the oxidative stress, inflammatory cytokine transcription, and 
subclinical inflammation[31] since increased oxidative stress seems to be a harmful component 
contributing to worsening insulin resistance and beta-cell dysfunction, which may lead to T2DM 
complications[32]. A previous study showed that a diet rich in polyphenols increased glucose tolerance 
and insulin sensitivity, and reduced the postprandial triglyceride response[33]. Moreover, phytosterols 
are known to be effective to reduce LDL cholesterol, as consumption of 2 g of plant sterol from 
wholegrain resulted in a 5.6% reduction in LDL cholesterol among T2DM patients after 4 wk ingestion
[34]. Indirectly, this may reduce the risk of diabetes complications, particularly macrovascular complic-
ations.

Grain plays a significant role in reducing the energy intake. It has lower energy density, and the 
larger starch granules significantly contribute to a greater chewing rate, hence increasing satiation[10,35,
36]. Fiber from the grain also increases gastric distension and delay the intestinal transit time, 
contributing to the stimulation of satiety signals[37] and increasing hormones levels involved in the 
energy homeostasis and plasma glucose control[38]. This process involves the stimulation of satiety 
signal in the brain, where body weight regulation hormones, ghrelin, peptide YY, cholecystokinin, 
gastric inhibitory polypeptide, and glucagon-like peptide 1 are regulated as part of the energy 
homeostasis and plasma glucose control[39]. This process might have a positive impact due to the 
change in gut microbiota profile[40,41] and cause a decrease in subclinical inflammation. Similarly, the 
slower process of carbohydrate digestion, as well as the glucose and free fatty acid absorption in the 
intestine[42], reduces insulin demand and stimulates fat oxidation, thus contributing to the reduction of 
fat storage[20]. Collectively, the synergistic mechanisms result in an increase in the hypothalamic satiety 
signal in the brain[20], which further leads to the body weight reduction and energy homeostasis, as 
well as glucose control[10,43-45].

Strengths of this study include a randomized controlled trial design, where the covariates could be 
equally distributed. The multigrain powder is formulated using commonly consumed grains, thus 
omitting the issues of food safety concern. Regular follow-up on a monthly basis allowed close 
monitoring of supplement adherence. The trial also included detail measurements of nutritional status, 
antioxidative status, oxidative stress biomarkers, and QoL, which allowed better result interpretation. 
These analyses will inform whether any potential effect extends to other metabolic or peripheral 
parameters. We acknowledge the small sample size of the study as the major limitation for this pilot 
clinical trial.

Important implications are expected from this research regardless of the findings. In a condition 
where beneficial effect is supported by evidence of a positive effect on long-term blood glucose levels, 
public health efforts should be undertaken to encourage the consumption of multigrain as functional 
foods. Contradictorily, if a beneficial effect is not supported, this could suggest that multigrain does not 
translate into strong long-term benefits for blood glucose control under daily conditions.

CONCLUSION
This is a pioneer, pilot clinical trial that aims to evaluate the efficacy of high beta-glucan multigrain 
supplementation among T2DM patients. Important trial outcomes, such as glycemic control, peripheral 
antioxidative capacity, cardiometabolic health, nutritional status, QoL, safety, and compliance have 
been studied extensively. The results of the trial are important to suggest a scientifically driven comple-
mentary dietary agent for better management of T2DM.

ARTICLE HIGHLIGHTS
Research background
Type II diabetes mellitus (T2DM) has emerged as a major public health challenge around the world. 
Diet is a major lifestyle factor that can greatly influence the incidence and progression of T2DM. The 
notion that foods not only provide basic nutrition but can also prevent diseases and ensure good health 
and longevity is now attaining greater prominence.
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Research motivation
Typically, grains, with its rich non-starch polysaccharides content, are receiving concern among the 
scientific communities. Multigrain is rich with thiamine, riboflavin, pantothenic acid, iron, zinc, and 
copper, and it can be prepared using different preparation processes, which usually comprises a high 
amount of dietary fiber content. Multigrain consumption is indeed a more representative dietary 
intervention as compared to single grain intake. There is a need to examine whether supplementation 
with multigrain, a more representative dietary regimen to human routine consumption pattern, would 
yield better outcomes among T2DM patients.

Research objectives
The objectives of the present study were to evaluate the effects of multigrain supplementation on 
glycemic control, cardiometabolic profile, oxidative stress, nutritional status, and quality of life (QoL) 
among T2DM patients. The safety, tolerability, and adherence of the supplementation were evaluated.

Research methods
Fifty T2DM patients have been randomly assigned to receive either 60 g multigrain supplementation 
(containing 3.4 g beta-glucan) coupled with prescribed standard medication regimen (n = 25), or 
standard medication regimen alone (n = 25) for 12 wk. Study outcomes involved the changes of 
glycemic control, cardiometabolic profile, oxidative stress, nutritional status, and QoL.

Research results
No result is provided as this is a pilot study protocol for a human clinical trial.

Research conclusions
This is a pioneer, pilot clinical trial that aims to evaluate the efficacy of high beta-glucan multigrain 
supplementation among T2DM patients. Important trial outcomes, such as glycemic control, peripheral 
antioxidative capacity, cardiometabolic health, nutritional status, QoL, safety, and compliance, have 
been studied extensively. The results of the trial are important to suggest a scientifically driven comple-
mentary dietary agent for better management of T2DM.

Research perspectives
The findings are expected to contribute and expand the fundamental mechanism of the role of 
multigrain as a complementary management agent in diabetic physiology.
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Abstract
BACKGROUND 
Breast milk is the best and principal nutritional source for neonates and infants. It 
may protect infants against many metabolic diseases, predominantly obesity and 
type 2 diabetes. Diabetes mellitus (DM) is a chronic metabolic and microvascular 
disease that affects all the body systems and all ages from intrauterine life to late 
adulthood. Breastfeeding protects against infant mortality and diseases, such as 
necrotizing enterocolitis, diarrhoea, respiratory infections, viral and bacterial 
infection, eczema, allergic rhinitis, asthma, food allergies, malocclusion, dental 
caries, Crohn's disease, and ulcerative colitis. It also protects against obesity and 
insulin resistance and increases intelligence and mental development. Gestational 
diabetes has short and long-term impacts on infants of diabetic mothers (IDM). 
Breast milk composition changes in mothers with gestational diabetes.
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AIM 
To investigate the beneficial or detrimental effects of breastfeeding on the cardiometabolic health 
of IDM and their mothers.

METHODS 
We performed a database search on different engines and a thorough literature review and 
included 121 research published in English between January 2000 and December 15, 2022, in this 
review.

RESULTS 
Most of the literature agreed on the beneficial effects of breast milk for both the mother and the 
infant in the short and long terms. Breastfeeding protects mothers with gestational diabetes against 
obesity and type 2 DM. Despite some evidence of the protective effects of breastfeeding on IDM in 
the short and long term, the evidence is not strong enough due to the presence of many 
confounding factors and a lack of sufficient studies.

CONCLUSION 
We need more comprehensive research to prove these effects. Despite many obstacles that may 
enface mothers with gestational diabetes to start and maintain breastfeeding, every effort should 
be made to encourage them to breastfeed.

Key Words: Breast milk; Breastfeeding; Gestational diabetes mellitus; Cardiometabolic effects; Infants of 
diabetic mothers; Obesity

©The Author(s) 2023. Published by Baishideng Publishing Group Inc. All rights reserved.

Core Tip: Breast milk is the ideal nutritional source for all neonates. It protects against many 
cardiometabolic disorders for babies and their mothers in the presence or absence of gestational diabetes. 
It protects against overweight, obesity, insulin resistance, prediabetes, diabetes, and metabolic syndrome 
in offspring regardless of gestational diabetes status. Therefore, it prevents significant risk factors predis-
posing to cardiovascular diseases during childhood and adulthood. Every effort should be made to 
encourage breastfeeding.

Citation: Elbeltagi R, Al-Beltagi M, Saeed NK, Bediwy AS. Cardiometabolic effects of breastfeeding on infants of 
diabetic mothers. World J Diabetes 2023; 14(5): 617-631
URL: https://www.wjgnet.com/1948-9358/full/v14/i5/617.htm
DOI: https://dx.doi.org/10.4239/wjd.v14.i5.617

INTRODUCTION
Breast milk is the best and principal nutritional source for neonates, providing them with the needed 
protein, fat, carbohydrate, vitamins, and minerals requirements. In addition, it provides them with 
different substances and bioactive agents that help protect them against infections and inflammation by 
contributing to a healthy microbiome, organ development, and an efficient immune system[1]. Breast 
milk is rich in growth factors that support the development and growth of the newborn's brain, gut, 
endocrine, and vascular systems[2]. Many studies suggested that breast milk protects infants against 
many metabolic diseases, predominantly obesity and type 2 diabetes[3]. Breast milk is continuously 
changing with dynamic and bioactive composition modification from colostrum to late stages of 
lactation. It often varies diurnally, within feeds, between different populations, and even between 
mothers from the same population to meet the metabolic needs of their babies[4]. The amount of 
breastmilk needed at one month of age is about 650 mL/d, increased to 770 mL/d at three months and 
800 mL/d at six months, then dropped to 520 mL/d by one year of age. In addition, the duration and 
frequency of breastfeeding also change with infant development and maturation, starting with 20 to 40 
min, up to six times/d, which is reduced to 10-20 min when the infant reaches three months of age. The 
frequency of breastfeeding decreases as the weaning starts[5].

Diabetes mellitus (DM) is a chronic metabolic and microvascular disease that affects all the body 
systems and all ages from intrauterine life to late adulthood. DM that occurs during pregnancy could 
have its onset before or arise as de novo for the first-time during pregnancy (gestational DM), which 
could disappear or persist after delivery[6]. Impaired glucose tolerance occurs in 3%-10% of pregnancies 
and correlates positively with the average diabetes incidence in the general population. The risk of 

https://www.wjgnet.com/1948-9358/full/v14/i5/617.htm
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gestational diabetes increases with advanced maternal age, obesity, non-white ancestry, and physical 
inactivity[7]. Gestational diabetes has short and long-term effects on infants of diabetic mothers (IDM). 
Neonates have a higher risk of post-natal hypoglycemia, macrosomia, respiratory problems, hy-
pertrophic cardiomyopathy, congenital disabilities, and various metabolic and hematologic disorders. 
At the same time, there is an increased risk of obesity during childhood and type 2 DM in adulthood[8]. 
Breastfeeding is well known to have many beneficial effects on both mothers and infants. However, the 
breast milk of mothers with diabetes has altered composition. Therefore, it is expected to have different 
effects than those from non-diabetic mothers[9]. This review investigates the beneficial or detrimental 
effects of breastfeeding on the cardiometabolic health of IDM and their mothers.

MATERIALS AND METHODS
Literature search
To establish an evidence-based vision of this aim, we performed a thorough literature review by 
searching the available electronic databases, including Cochrane Library, PubMed, PubMed Central, 
Cumulative Index to Nursing and Allied Health Literature, Embase, Web of Science, Library and 
Information Science Abstracts, Scopus, and the National Library of Medicine catalog up until December 
15, 2022, using the keywords: Diabetes Mellitus, Gestational Diabetes, Cardiometabolic, Breastfeeding, 
Breast milk. We identified 1363 articles, 98 of which were removed due to duplication. After the 
screening of the titles and abstract, we excluded 1016 articles. From the remaining 249 full-text articles, 
only 121 articles fulfilled the eligibility criteria.

We included full-text research articles (72 articles), metanalysis (13 articles), systematic reviews (5 
articles), reviews (29 articles), and Case reports (2 articles). We included articles that were written in 
English and concerned with the effects of breastfeeding on the cardiometabolic effects in IDM. Figure 1 
shows the study flow chart. Reference lists were checked, and citation searches were performed on the 
included studies. We also reviewed the articles that are available as abstracts only. We excluded articles 
with a commercial background.

RESULTS
Most of the literature agreed on the beneficial effects of breast milk for both the mother and the infant in 
the short and long terms. Breastfeeding protects mothers with gestational diabetes against obesity and 
type 2 DM. Despite some evidence of the protective effects of breastfeeding on IDM in the short and 
long term, the evidence is not strong enough due to the presence of many confounding factors and a 
lack of sufficient studies.

DISCUSSION
Beneficial effects of breastfeeding
Breast milk is the ideal nutrition source for the infant, especially in the first six months, as it provides the 
baby with everything they need in the proper proportions for the first six months of life. Its composition 
modifies according to the infants’ changing requirements, particularly in the first few weeks of life. 
Colostrum is the wonder of breastfeeding in the first post-natal days, with thick yellowish color, high 
protein, low sugar, and many beneficial compounds. It helps develop the baby's immature gut to be 
ready to receive the increasing amount of breastfeeding in the following days[1]. In addition, early 
breastfeeding in the delivery room may prevent the development of post-natal hypoglycemia in IDMs
[10]. However, breastfeeding has low vitamin D. Breastfed babies should be supplemented with vitamin 
D[11]. The low iron profile in breast milk could be beneficial in decreasing the risk of bacterial growth. 
Iron supplementation in breastfed babies should be considered to improve brain and cognitive 
development, especially those born prematurely or at low birth weight [12].

Breastfeeding performs crucial effects on the programming activity during early life. Many recent 
meta-analyses of several studies provide strong evidence that breastfeeding benefits neonates, infants, 
children, and lactating mothers considerably. The degrees of these beneficial effects vary according to 
different settings’ background environmental and hygienic conditions[13]. According to 28 metanalyses, 
breastfeeding protects against infant mortality, especially in low-income settings, by 4-10 times and by 
36% in high-income settings[14]. Breastfeeding also protects against many diseases, such as diarrhea by 
75% and respiratory infections by 57%, particularly in young children[15]. Breast milk has plenty of 
antibodies that protect the baby against many viruses and bacteria, which is particularly important 
during the early critical months of life. Colostrum provides the baby with many different antibodies, 
especially immunoglobulin A, a crucial element of the baby portal immunity, protecting the nose, 
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Figure 1 The flow chart of the included studies.

throat, and gastrointestinal tract[16].
Breastmilk may also give some protection against eczema, allergic rhinitis, asthma, and food allergies, 

but with weak evidence[17]. Even though breastfeeding protects against malocclusion and dental caries, 
more prolonged breastfeeding (beyond one year of age) and nocturnal breastfeeding increase dental 
caries by two to three folds[18]. It can decrease the incidence of necrotizing enterocolitis in preterm 
babies. A meta-analysis by Altobelli et al[19] showed that premature infants who received both their 
own and donated breastmilk had a statistically significant reduced risk of necrotizing enterocolitis, 
possibly due to the reduced microbial contamination, its pre, and probiotic effects, and its unique 
immunological components. Breastfed infants are less liable to develop Crohn’s disease and ulcerative 
colitis. A meta-analysis by Xu et al[20] showed that breastfeeding is associated with a reduced risk of 
Crohn’s disease and ulcerative colitis in all ethnicities, particularly among Asians. Breastfeeding has 
dose-dependent protection against Crohn’s disease and ulcerative colitis, with the most potent effect 
when breastfeeding continues for at least one year.

Breastfeeding causes a mild reduction of body mass index (BMI) without significant differences in 
growth outcome. However, a meta-analysis by Giugliani et al[21] showed a 13% reduction in the risk of 
later obesity. Grube et al[22] showed that breastfeeding for longer than four months significantly 
reduces the risk of developing overweight and obesity than in non-breastfed babies or those with a 
shorter breastfeeding period. The weight-reducing effects of breastfeeding could be related to the 
development of specific strains of gut microbiota that could impact fat storage[23]. At the same time, 
breast milk contains more leptin hormone than formula milk, if present. Leptin is a vital hormone that 
regulates the baby’s appetite and controls fat storage[24]. Meanwhile, breastfed infants have more self-
regulation of their feeding habits, especially those in on-demand feeding, which supports them in 
developing healthy feeding patterns[25].

Therefore, the risk of type 2 DM can be reduced by 24% to 32% and to a lesser degree with type 1 DM
[26]. Meanwhile, six months or longer of breastfeeding decreases the risk of childhood leukemia by 14%-
20%[27]. Breastfeeding also helps to alleviate the clinical course and the severity of urolithiasis 
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identified during infancy. Infants who had prolonged breastfeeding are more liable for reduced size 
and/or the number of urinary stones. Infants receiving breastfeeding for the first six months need less 
treatment and have less growth impairment[28].

There is also an association between breastfeeding and increased intelligence by at least 2-3 points 
after adjusting for the home environment and average parental intelligence quotient (IQ). This increase 
may be related to the nutritional components, non-nutritional bioactive factors, maternal-infant bonding 
with physical intimacy, interactions, touch, and eye-to-eye contact. Infants with breastfeeding are less 
liable to have behavioral problems or learning difficulties than bottle-feeding infants. This breast-
feeding-promoting effect on the baby’s optimal brain development during early life can have long-
lasting impacts on infant neurodevelopmental function[29,30]. This effect is more pronounced in 
preterm babies than in term infants. Belfort et al[31] showed that predominant breastfeeding in the first 
four weeks of life is related to a larger volume of deep nuclear gray matter volume at term equivalent 
age and improved IQ, working memory, academic achievement, and motor function at the age of seven 
in the very preterm infants. Increasing breastfeeding duration is positively correlated with enhancing 
cognitive development. Ribas-Fitó et al[32] observed a linear dose-response relationship between breast-
feeding and cognition at the age of four in children with a history of antenatal exposure to dichlorodi-
phenyltrichloroethane (DDT) despite the risk of breastfeeding pollution with DDT. Breastfeeding 
protects against indoor and outdoor air pollution exposure and adverse outcomes due to the effects of 
long-chain polyunsaturated fatty acids (LC-PUFA), carotenoids, antioxidant vitamins, flavonoids, 
cytokines, and immunoglobins. Though breastfeeding may be polluted with many pollutants, its 
protective effects outweigh its potential health hazards to the infant[33] (Table 1).

Beneficial effects on lactating mothers
Breastfeeding has significant impacts on lactating mothers. It may help overweight mothers to lose 
weight. Numerous studies described a positive correlation between postpartum weight loss and breast-
feeding, while others studied did not find a significant association. Several possible mechanisms, 
determinants, and metabolic pathways may play a role in this weight reduction[34]. Lactating mother 
burns about 20 calories/ounce of breastmilk she produces. Therefore, one day of breastfeeding may 
help burn up to 900 calories and more fat. Jarlenski et al[35] showed that exclusive breastfeeding for at 
least three months or more has a minimal but considerable effect on postpartum weight reduction 
among American women. Schalla et al[36] showed that returning to a pre-pregnancy body shape is an 
important feature that encourages mothers to continue breastfeeding. One of the other immediate 
benefits that lactating mothers have with breastfeeding is the rapid involution of the gravid uterus to 
return to its pre-gravid size due to oxytocin release in response to the sucking of the breastfed baby, 
which boosts uterine contractions and lessens bleeding. In addition, oxytocin helps to increase maternal-
infant bonding[37].

Breastfeeding is correlated with a significantly reduced risk of ovarian cancer in general and, in 
particular, for the most lethal high-grade serous subtype of ovarian cancer. This finding suggests that 
breastfeeding is a possibly modifiable factor that may decrease the risk of ovarian cancer regardless of 
the effect of pregnancy. The longer the breastfeeding duration, the more the risk is reduced[38]. A meta-
analysis by Unar-Munguía et al[39] showed that exclusive breastfeeding significantly reduces breast 
cancer risk compared to non-breastfeeding parous women. Breastfeeding mothers are less likely to 
suffer postpartum depression than mothers who do not breastfeed or discontinue it early. These effects 
are maintained for the first four postpartum months. Conversely, postpartum depression reduces the 
breastfeeding rate in a reciprocal mechanism[40].

The longer the duration of breastfeeding, the less the risk of developing type 2 diabetes in lactating 
women. Schwarz et al[41] showed that breastfeeding is associated with improved maternal glucose 
metabolism. They also showed an increased risk of developing type 2 diabetes in later life when the 
parous women lactate for less than a month after term pregnancy, regardless of the women’s BMI or 
physical activity. Breastfeeding also decreases the risk of hypertension, hypercholesteremia, and 
arthritis. In addition, breastfeeding protects mothers who breastfeed their children for five months or 
more in at least one pregnancy against coronary artery disease (CAD), with a 30% risk reduction later in 
life. Conversely, parous women who never breastfed or stopped breastfeeding early have a two-fold 
increased risk of CAD[42].

Mechanism of protective effects of breastfeeding
Many possible mechanisms are proposed to explain the protective effects of breastfeeding. These 
mechanisms include the beneficial effects of breastfeeding on the respiratory, nervous, and immune 
systems, which are related to breast milk's anti-inflammatory, antioxidant, neuroprotective, and 
immunomodulatory features[33]. The high cholesterol content of breast milk during infancy inversely 
suppresses endogenous cholesterol synthesis in adulthood by suppressing the regulation of hydroxy-
methyl-glutaril liver coenzyme A[43,44]. Therefore, breast milk protects against the development of 
hypercholesteremia, especially low-density lipoprotein cholesterol which is a significant risk factor for 
coronary heart diseases[45]. This cholesterol-regulating effect of breast milk can explain its protective 
effects against atherosclerosis, hypertension, and coronary heart diseases. The low sodium and the high 
LC-PUFA contents of breast milk compared to formula milk might give more protection against the 
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Table 1 Beneficial effects of breastfeeding

Beneficial effects of breastfeeding

Neonates

It helps the development of the immature gut

It bears immunological, nutritional, and neurodevelopmental benefits for preterm neonates

It decreases the incidence of necrotizing enterocolitis in preterm babies

It prevents the development of post-natal hypoglycemia in IDMs

It improves neonatal portal immunity, e.g., nose, throat, and gastrointestinal tract

Infants and children

It is the ideal exclusive food for the first six months and the main food till 12 mo of age

It decreases infant mortality and protects against sudden infant death syndrome

It is crucial for the infant's eyesight, speech, jaw, and mouth development

It increases intelligence by at least 2-3 points

It promotes healthy weight gain in infants

It reduces diarrhea and respiratory infections

It protects against common childhood allergic diseases; e.g., eczema, allergic rhinitis, asthma, and food allergies

It protects against Celiac disease

It protects against malocclusion and dental caries

It decreases the incidence of inflammatory bowel diseases, e.g., Crohn's disease and ulcerative colitis

It reduces body mass index and the risk of later obesity

It reduces the risk of type II DM by 24% to 32% and, to a lesser degree, type I DM

It decreases the risk of childhood leukemia by 14%-20%

It decreases the severity of urolithiasis during infancy

Lactating mothers

It helps rapid involution of the gravid uterus to return to its pre-gravid size

It decreases the risk of postpartum bleeding

It increases maternal-infant bonding

It significantly reduces postpartum depression in the first four postpartum months

It helps overweight mothers to lose weight

It significantly reduces the risk of ovarian cancer, especially the most lethal high-grade serous subtype of ovarian cancer

It significantly reduces breast, endometrial, and thyroid cancer risk

It reduces the risk of developing type 2 diabetes

It decreases the risk of hypertension, hypercholesteremia, and coronary artery disease

It decreases the risk of osteoporosis and arthritis

IDM: Infants of diabetic mothers

future development of hypertension during childhood and adulthood[46,47]. LC-PUFA is a crucial 
element of the tissue membrane system, such as the coronary endothelial system, therefore reducing the 
risk of coronary heart disease and stroke during adulthood[48]. Breastfeeding can also reduce fasting 
insulin and insulin resistance in infancy, childhood, and adulthood[49,50].

Breastfeeding has a behavioral modifying effect on the infant's appetite, satiety, and feeding pattern 
due to its unique micro- and macro-nutrients and hormonal contents. These unique features of 
breastmilk explain its protective role against obesity[51,52]. Breastmilk contains leptin, which is not 
present in formula milk, and less protein and fat than formula milk, so breastfeeding is likely to 
adequately stimulate the secretion of insulin growth factor-type 1. Subsequently, it can induce adequate 
insulin secretion, fewer adipocytes stimulation and size, and balancing fat reserve, which eventually 
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results in adequate weight gain and is less likely to cause overweight and obesity[51,53]. Breastmilk can 
also modulate the expression of obesity-predisposing genes, preventing the development of obesity and 
other non-communicable diseases[54]. Breastmilk has a significant regulating effect on the blood glucose 
level due to its high content of LC-PUFA. The LC-PUFA amount in the skeletal muscle membranes is 
inversely proportional to the fasting blood glucose level, insulin resistance, subsequent hyperinsu-
linemia, and type 2 diabetes[55,56]. The low protein content, the lower volume of breastmilk consumed 
by the infant, and the differences in the levels of hormones of insulin, neurotensin, intro-glucagon, 
motilin, and pancreatic polypeptide, and lower subcutaneous fat deposition are additive protective 
factors against developing type 2 diabetes[57].

Breastfeeding has well-known immune-modulating and protective effects against many immune and 
allergic disorders, especially in low-income countries[58]. Breastfeeding supports passive and active 
immunity in infants and young children[59]. Breastfeeding also protects against many infectious 
diseases in infancy and early childhood. These protective effects are dose-dependent, increasing with 
exclusive breastfeeding and more prolonged duration[60]. These protective and immune-enhancing 
effects of breastfeeding are due to its richness of many compounds that enhance both innate (such as 
various cellular components, lysozyme, oligosaccharides, lactoferrin, the cluster of differentiation 14, 
and probiotics components)[61-63] and active (such as immunoglobins A, M, and G) immunity[59]. In 
addition, breastmilk contains many immune-modulating ingredients, such as cytokines or nutritional 
components, such as LC-PUFA; vitamins A, B12, and D, and zinc[58]. Omega-3 LC-PUFA, abundant in 
breast milk, helps T-cell membrane stabilization, T-cell signaling, improvement, and reduction of many 
pro-inflammatory substances production. On the contrary, omega-6 LC-PUFAs stimulate their 
production[64]. Exclusive breastfeeding modulates the inflammatory status by promoting an anti-
inflammatory cytokine milieu and decreases gut inflammation that persists throughout infancy, 
adolescence, and adulthood[65-67]. The anti-inflammatory effect of breastfeeding is due to the presence 
of various immunoreactive and immunomodulator factors such as lactoperoxidase, lactoferrin, 
immunoglobins, osteopontin, superoxide dismutase, platelet-activating factor acetylhydrolase, alkaline 
phosphatase, antioxidant compounds, bioactive factors, and many growth factors that have anti-inflam-
matory effects[62].

The anti-inflammatory and immune-modulating effects of breastmilk boost lung development and 
function. In addition, the breastmilk cytokines, growth factors, and maternal immunoglobins may 
stimulate lung growth and development, inhibit airway inflammation, and decrease the risk of 
developing asthma. Breastfeeding is also associated with a reduced risk of being overweight and obese 
and, consequently, better lung function[68-70]. Breastmilk nutrients such as β-carotene, lutein/
zeaxanthin, polyphenol, and anthocyanin also affect lung efficiency[71]. Breastfeeding effects on DNA 
methylation provide an additional protective mechanism for the respiratory tract and improve lung 
development and maturation[72]. Moreover, sucking during breastfeeding stimulates the development 
of the diaphragm and the respiratory muscles, enhances the coordination between swallowing and 
respiration, and, thus, improves lung capacity[73].

The better structural and physiological neurodevelopment and cognitive and psychomotor 
performance associated with breastfeeding are related to many factors. Breast milk is rich in LC PUFAs, 
antioxidants (such as carotenoids and flavonoids), and other nutrients and bioactive factors that can 
induce immunomodulation and reduce oxidative stress and neuroinflammation[29,71,74]. Breast milk 
also contains many compounds essential for proper brain development, neurotransmitters synthesis, 
synaptogenesis, and intracellular communication. Breast milk is rich in LC PUFAs, glial cell line-derived 
neurotrophic factor, brain-derived neurotrophic factor (BDNF), gangliosides, sialic acid, lutein, choline, 
zeaxanthin, and flavonoids. These nutrients are essential in the human brain's gross and functional 
development[75-77]. Other social and environmental factors associated with breastfeeding, such as 
mother-infant bonding and educational and socioeconomic levels, may also play a role in better 
neurodevelopment[78].

Metabolic effects of breastfeeding
Effects on the mothers: Breastfeeding induces more favorable metabolic parameters in lactating 
women. It initiates a metabolic shift from pregnancy to postpartum with the alteration of resource 
allocation from the caloric storage stage to the milk production phase with lipid transport facilitation to 
the mammary gland to help in milk synthesis[79]. Stuebe[80] showed that early, high-intensity breast-
feeding might help to reset the endocrine balance to shift from the insulin-resistant state in pregnancy to 
insulin sensitive state; thus, lactation may protect against long-term cardiometabolic health 
consequences. Breastfeeding induces improved glucose utilization through reduced insulin production, 
enhanced insulin sensitivity, and decreased β-cell proliferation[81]. Therefore, lactating women are less 
liable to have atherogenic blood lipids and have better glucose and lipid metabolism, lower fasting and 
postprandial blood glucose, low insulin levels, and more insulin sensitivity than non-lactating women, 
especially in the first four postpartum months[82]. In addition, lactation reduces the risk of obesity, 
metabolic syndrome, cardiovascular diseases, and type 2 diabetes during mid to late life[83,84]. The 
liver, white adipose tissues and skeletal muscles are responsible for about 50% of the mammals' 
metabolic rate. Breastfeeding increases hepatic mitochondrial respiration, therefore increasing the 
metabolic rate. In a study of rats, Hyatt et al[81] showed that lactation induces PPARδ protein level 
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changes in the liver, white adipose tissue, and skeletal muscle, which may partially clarify the observed 
lower blood glucose levels. A large study from Japan showed that the longer the duration of breast-
feeding, the less risk for developing metabolic syndrome in women under 55 years of age[85]. The long-
term protective effects of breastfeeding were also confirmed by Wiklund et al[86], who showed that 
breastfeeding longer than six months gives protection against obesity, impaired glucose tolerance, 
insulin resistance, hypercholesteremia, and hypertension that could persist for 16 to 20 years later.

Effects on the infants: Breastfeeding has significant effects on infant metabolism through different 
mechanisms. Breast milk has numerous beneficial compounds that can cause epigenetic changes in 
genes that control metabolism or predispose to insulin resistance, diabetes, or obesity. For example, 
breastmilk downregulates phosphatase and tensin homolog and acetyl-CoA carboxylase beta genes, 
protecting against developing insulin resistance and DM[87-89]. Meanwhile, breastfeeding appears to 
counter the deleterious effect of the peroxisome proliferator-activated receptor-gamma2 Pro12Ala 
polymorphism on anthropometrical parameters in adolescents[90]. The liver X receptors gene 
expression is also modulated by breastfeeding. Activating these receptors stimulates a set of target 
genes needed for the de novo synthesis of triglycerides and cholesterol transport in many tissues[91]. In 
addition, infant serum lysophosphatidylcholine, which is positively associated with obesity risk, is 
affected by breast milk fatty acids composition and, interestingly, milk protein content and composition 
in early but not late lactation[92]. Therefore, breastfed infants are metabolically different from the infant 
formula regarding the lipid and energy metabolism levels (ketone bodies, carnitines, and Krebs cycle)
[93]. Breastfeeding positively affects metabolic variables, anthropometric indices, and diabetes-
prompting genes compared to bottle feeding[87]. Breastfeeding also increases BDNF, which enhances 
synaptogenesis and neuronal development in infants between 4-6 mo of age[94]. This neurotrophic 
factor impacts numerous metabolic pathways by modifying the hypothalamus or specific neurotrans-
mitters that facilitate food intake[95]. The effects of breastfeeding on the infant metabolism are dose-
dependent. Corona et al[96] showed that the duration of breastfeeding is inversely related to the Z-score 
of triceps skinfold-for-age till the age of three years. On the other hand, Martin et al[97] showed that 
even with a long duration, exclusive breastfeeding failed to reduce insulin resistance or cardiometabolic 
risk parameters at 11.5 years. Therefore, the breastfeeding effect on the body's metabolism still demands 
additional analysis and research. We need to study why there are differences in the results of these 
studies and confounding factors that may impact their results.

Changes in breast milk composition with DM
Breast milk is a biologically-active, continuously dynamic fluid that significantly differs from woman to 
woman and from one stage to another. It is affected by various maternal factors such as term-preterm 
labor, maternal diet, metabolic disorders, and diseases[2,98]. DM is a chronic systemic metabolic 
disorder that could affect pregnant ladies with pregestational or gestational (a de novo) onset[99]. 
Mother with gestational DM has a 15 to 24 h delay in lactogenesis II (initiation of lactation) markers 
such as citrate, lactose, and total nitrogen to reach levels similar to healthy women[100]. This delay in 
breast milk initiation in women with gestational diabetes could be related to low levels of circulating 
human placental lactogen in the latter stages of pregnancy, which is positively correlated with 
mammary gland growth during pregnancy[101].

In addition, Arthur et al[102] and Azulay Chertok et al[103] found a significant delay in the timing of 
the lactose increase in the colostrum in lactating women with type 1 or gestational DM, accompanied by 
a reduced milk volume in the first three postpartum days, as lactose is the main osmotic ingredient in 
the human milk. The observed delay in citrate concentration rise in colostrum may cause a delay in the 
de novo medium-chain fatty acids synthesis, as citrate is essential for acetyl CoA generation from 
glucose[104]. Avellar et al[105] showed that women with gestational DM had higher colostrum contents 
of cytokines and chemokines, with increased levels of interleukin 6 (IL-6), IL-15, interferon-γ, reduced 
IL-1ra levels, and a decreased granulocyte-macrophage colony-stimulating factor (GM-CSF), causing 
altered immune composition of the colostrum. Bitman et al[106] found that women with type 1 DM who 
started to pump milk at 72 h postpartum firstly gave breast milk with reduced total fat, medium-chain 
fatty acids, and total cholesterol but increased linoleic, oleic, and polyunsaturated long-chain fatty acid 
content than healthy women. These fatty acid profile changes are related to changes in specific 
endogenous metabolic pathways[107]. Women with type 1 DM also have impaired mammary gland 
lipid metabolism and high glucose and sodium contents in mature milk. However, no significant 
differences exist in the free amino acid profile in women with and without gestational DM[108]. The 
high amino acid levels in the colostrum and high levels of saturated and non-saturated fatty acid levels 
in mature milk in lactating women with and without gestational DM are crucial for neonatal 
development in the early period of life[109]. In addition, Suwaydi et al[110] showed that gestational DM 
has significant relationships with metabolic hormone concentrations, including ghrelin, insulin, and 
adiponectin. However, these relationships might be restricted to the early lactation stage.

Cardiometabolic protective effects of breastfeeding on diabetic mothers and their offspring
Breastfeeding is associated with reduced risk of type 2 DM in women with gestational DM for up to two 
postpartum years. In addition, breastfeeding may have long-lasting protective effects beyond two years 
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after delivery, especially with greater lactation intensity and prolonger duration[111]. A meta-analysis 
by Pathirana et al[112] showed that breastfeeding might protect against some cardiovascular risk factors, 
such as Type 2 DM, in mothers with a history of gestational DM. Breastfeeding for over three months is 
associated with the least postpartum diabetes risk in women with gestational DM[113]. Lactation 
enhances glucose tolerance in mothers with gestational DM, especially in the early postpartum period. 
Reduced estrogen levels in breastfeeding mothers might protect against impaired glucose metabolism 
and consequently decrease the risk of diabetes. In addition, breastfeeding decreases the risk of obesity 
and further reduces the risk of type 2 DM[114].

Children born to mothers with gestational DM are more prone to prediabetes, metabolic syndrome, 
and obesity later in life. Gestational DM is correlated with excessive fetal growth, macrosomia, and 
overnutrition in utero[115]. The growth pattern in children born to women with DM (including 
gestational DM) is slower than controls in the first two years of life, followed by rapid weight gain and 
consequently increased risk of being overweight, obese, and having other metabolic disorders[116]. 
There is a double risk of being overweight in breastfeeders from mothers with DM compared to banked 
breast milk feeders at the age of two years[117]. Therefore, every effort should be made to decrease 
these risks. However, despite the altered breast milk composition of mothers with gestational DM, e.g., 
reduced milk protein, there is some evidence of the beneficial effects of breastfeeding on the car-
diometabolic health of their offspring. The Nurse Health study showed a significantly reduced risk of 
being overweight at 9-14 years in the offspring of mothers with gestational DM who breastfed for the 
first six months of life[118]. In addition, Ong et al[119] showed that breastfeeding might give some 
protection against undesirable fat distribution and hypertriglyceridemia in children born to mothers 
with gestational DM and consequently help in reducing childhood cardiometabolic risks. In the Prima 
Indian study, the prevalence of DM among the offspring of mothers with gestational DM was 
significantly lower in those with exclusive breastfeeding than those without breastfeeding at age 10-39 
years after adjustment for age, sex, and birth weight[120]. Another study assessed the effects of breast-
feeding and gestational DM on Hispanic children between 8 and 13 years. They found that breast-
feeding protects against developing prediabetes and metabolic syndrome in the offspring with or 
without gestational DM[121]. However, a meta-analysis by Pathirana et al[112] failed to prove any 
protective effects of breastfeeding in IDM due to a lack of sufficient studies.

Recommendation
As breastfeeding provides adequate nutritious, easily digestible nutrients for infants, every effort should 
be made to encourage breastfeeding and to support the mothers to complete their mission successfully. 
Despite many obstacles that may enface mothers with gestational DM to start and maintain breast-
feeding, every effort should be made to encourage them to breastfeed. Exclusive breastfeeding should 
be encouraged for 4-6 mo and complemented or supplemented for two years when possible. 
Information about breastfeeding, including techniques, frequency, duration, and how to overcome 
potential obstacles, should be available and understandable. The parents should learn and practice 
responsive feeding and understand the baby's cues when hungry or satisfied. The mother should also 
know the potential benefits of breastfeeding for her and her baby, especially when she has DM. The 
government should encourage and implement paid maternity leaves for at least three months to help 
mothers stay with their babies at home and breastfeed them. In addition, we still need to study the 
protective effects of breastfeeding on IDM in the short and long term. In addition, many factors are 
responsible for the variation of the results of the different studies, including the different methodo-
logical procedures and the differences in the target populations. Therefore, we need more extensive and 
multicentre studies for a longer duration and different races to ensure the beneficial roles of breast-
feeding on various items of metabolic and cardiovascular health and disorders both in paediatrics and 
adulthood. In addition, we should request infant formula companies to do their best to mimic breast 
milk and reduce the gap between the advantages of breast milk and the disadvantages of infant 
formula. For example, these companies should revise and optimize the protein content, the amount and 
types of fat, and the impacts of adding probiotics, prebiotics, human milk oligosaccharides, and other 
well-established breast milk components.

CONCLUSION
Breastfeeding has many beneficial effects for both lactating mothers and their offspring. It protects 
against overweight, obesity, insulin resistance, prediabetes, DM, and metabolic syndrome in offspring 
regardless of gestational diabetes status. In addition, it prevents significant risk factors predisposing to 
cardiovascular diseases in childhood and adulthood. Therefore, every effort should be made to educate 
mothers about the benefits of breastfeeding for controlling DM, cardiovascular diseases, and 
hypertension in women and their offspring.
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ARTICLE HIGHLIGHTS
Research background
Breast milk is the best and principal nutritional source for neonates. Breast milk is the best and principal 
nutritional source for neonates. Breast milk is the best and principal nutritional source for neonates. 
Breast milk is the best and principal nutritional source for neonates. Gestational diabetes has short and 
long-term effects on infants of diabetic mothers (IDM). Gestational diabetes has short and long-term 
effects on IDM.

Research motivation
Breast milk of mothers with diabetes has different compositions. Therefore, it is expected to have 
different effects than those from non-diabetic mothers.

Research objectives
We aimed to investigate the positive or negative cardiometabolic effects of breastfeeding on the health 
of IDM and their mothers.

Research methods
We searched different search engines and conducted a thorough literature review of the cardiometabolic 
effects of breastfeeding on the health of IDM and their mothers. We included 121 articles published in 
English between January, 2000 and December 15, 2022 in this review.

Research results
Most of the literature agreed that breast milk has many beneficial effects for both the mother and their 
infant in the short and long terms. Breastfeeding protects mothers with gestational diabetes against 
obesity and type 2 diabetes mellitus (DM). There is some evidence that breastfeeding has protective 
effects on IDM in the short and long term. However, this evidence is not strong enough due to the 
presence of many confounding factors and a lack of sufficient studies.

Research conclusions
Breastfeeding has numerous favorable effects for both breastfeeding mothers and their infants, 
protecting the offspring against overweight, obesity, insulin resistance, prediabetes, DM, and metabolic 
syndrome regardless of gestational diabetes status. In addition, it prevents major risk factors that 
predispose to cardiovascular diseases in childhood and adulthood. Every effort should be made to teach 
mothers the benefits of breastfeeding in controlling DM, cardiovascular diseases, and hypertension in 
women and their offspring.

Research perspectives
We need to study the protective effects of breastfeeding on IDM in the short and long term. We have to 
perform more extensive and multicentre studies for a longer duration and different races to ensure the 
beneficial roles of breastfeeding on various items of metabolic and cardiovascular health and disorders 
both in paediatrics and adulthood. We should request that those infant formula companies perform 
their best to mimic breast milk and reduce the gap between the advantages of breast milk and the 
disadvantages of infant formula.
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