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Abstract
Obesity and type-2 diabetes mellitus (T2DM) are metabolic disorders. Obesity 
increases the risk of T2DM, and as obesity is becoming increasingly common, 
more individuals suffer from T2DM, which poses a considerable burden on health 
systems. Traditionally, pharmaceutical therapy together with lifestyle changes is 
used to treat obesity and T2DM to decrease the incidence of comorbidities and all-
cause mortality and to increase life expectancy. Bariatric surgery is increasingly 
replacing other forms of treatment of morbid obesity, especially in patients with 
refractory obesity, owing to its many benefits including good long-term outcomes 
and almost no weight regain. The bariatric surgery options have markedly 
changed recently, and laparoscopic sleeve gastrectomy (LSG) is gradually gaining 
popularity. LSG has become an effective and safe treatment for type-2 diabetes 
and morbid obesity, with a high cost-benefit ratio. Here, we review the me-
chanism associated with LSG treatment of T2DM, and we discuss clinical studies 
and animal experiments with regard to gastrointestinal hormones, gut microbiota, 
bile acids, and adipokines to clarify current treatment modalities for patients with 
obesity and T2DM.

Key Words: Obesity; Type-2 diabetes mellitus; Laparoscopic sleeve gastrectomy; 
Gastrointestinal hormones; Adipokines; Gut microbiota; Bile acids
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Core Tip: Obesity and type-2 diabetes mellitus (T2DM) incidence are currently increasing, and these 
afflictions have become important global health issues. Bariatric surgery is safe and effective for treating 
obesity and T2DM. The precise processes associated with this treatment, however, are somewhat unclear. 
Here, we review associated findings with respect to gastrointestinal hormones, intestinal microbiota, bile 
acids, and adipokines involved in laparoscopic sleeve gastrectomy (the most popular bariatric surgery) of 
T2DM patients.

Citation: Liu FS, Wang S, Guo XS, Ye ZX, Zhang HY, Li Z. State of art on the mechanisms of laparoscopic sleeve 
gastrectomy in treating type 2 diabetes mellitus. World J Diabetes 2023; 14(6): 632-655
URL: https://www.wjgnet.com/1948-9358/full/v14/i6/632.htm
DOI: https://dx.doi.org/10.4239/wjd.v14.i6.632

INTRODUCTION
Obesity, a complicated chronic metabolic illness induced by excessive lipid accumulation, has replaced 
smoking as the leading cause of early mortality linked to lifestyle[1,2]. More than one-third of all nations 
have experienced a two-fold increase in the frequency of obesity during the 1980s, and most countries 
still report an increasing trend[3]. In 2015, more than 700 million adults and children were globally 
reported to be obese[4]. Numerous disorders, including type-2 diabetes mellitus (T2DM), afflictions of 
the cardiovascular system, hyperlipidemia, chronic renal disease, sleep apnea syndrome, non-alcoholic 
fatty liver disease (NAFLD), osteoarthritis, and metabolic syndrome, are closely associated with obesity
[5].

T2DM is a prevalent metabolic condition that can damage various physiological systems and is 
defined by glucose metabolism problems elicited by poor insulin production and decreased insulin 
sensitivity[6]. The pronounced global increase in obesity, which is a major driver of T2DM, has 
markedly increased T2DM prevalence[7]. In 2017, more than 460 million individuals worldwide, i.e., 
6.28% of the global population, suffered from T2DM[8]. Obesity and T2DM have developed into 
important public health problems that constitute a heavy burden for the affected patients.

In addition to regular lifestyle behavior adjustments and medication, laparoscopic sleeve gastrectomy 
(LSG) has been acknowledged by worldwide diabetic organizations as a potent treatment of obesity and 
T2DM[9]. Even though the advantages of LSG for treating obesity and T2DM are commonly known, the 
processes by which LSG influences T2DM via several mechanisms, in addition to weight reduction, are 
still not comprehensively understood. Treatments can be optimized when the mechanisms underlying 
these metabolic processes and their effects on T2DM are elucidated. In this review, we focus on changes 
in terms of gastrointestinal hormones (GHs), adipokines, gut microbiota (GM), and bile acids (BAs) after 
LSG treatment of T2DM.

DEVELOPMENT OF BARIATRIC/METABOLIC SURGERY AND OVERVIEW OF PROC-
EDURES
Since the first bariatric surgery (BS) was performed in 1952, advances have been achieved throughout 
the past 70 years[10]. BS was intended to help patients lose weight and thereafter maintain normal 
weight; however, its importance in treating obesity-related comorbidities, particularly T2DM, has 
increasingly become prominent in clinical practice[11]. To improve surgery results and reduce 
complication rates, bariatric surgeons continually upgrade and enhance their techniques, and current 
bariatric operations include vertical-banded gastroplasty, duodenal switch, jejunoileal bypass, biliopan-
creatic diversion, adjustable gastric banding, Roux-en-Y gastric bypass (RYGB), and sleeve gastrectomy 
(SG)[12]. Additionally, BS is mostly carried out through laparoscopy due to the advances of 
lumpectomy surgery.

The most frequently performed BS techniques are RYGB and SG[13]. The first variant of SG was 
described by Marceau et al[14] in 1993; it is a more physiologic variation of gastroplasty, which is 
normally a restrictive treatment using a longer, less curved vertical gastric tube to reduce stomach 
capacity. Despite their anatomical distinctions, both treatments have been proven safe and effective for 
treating obesity and T2DM[15]. BS can markedly decrease all-cause mortality and enhance life 
expectancy in obese adult patients, compared to standard obesity therapy, as evidenced by long-term 
follow-up of a large sample population. In addition, individuals who are overweight and suffer from 
T2DM benefit more from this treatment than those who suffer from obesity only[16]. A long-term 
follow-up study of 146 patients approaching 10 years showed complete remission of T2DM after LSG in 
72.2%, significant improvement in 25.1%, and no change in only 2.7%[17]. The treatment effect of LSG 

https://www.wjgnet.com/1948-9358/full/v14/i6/632.htm
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on T2DM in morbidly obese patients was the same compared to laparoscopic RYGB (LRYGB), as 
demonstrated by a meta-analysis containing 9 studies, in which the remission rates of T2DM were 82.3% 
and 80.7% for LRYGB and LSG, respectively[18]. In addition, a meta-analysis containing 33 studies with 
4109 patients showed that patients receiving LSG experienced more significant improvement or 
remission of diabetes than those receiving laparoscopic adjustable gastric banding (LAGB)[19]. A meta-
analysis designed for 1108 adult subjects showed that the probability of T2DM mitigation after LSG was 
61.4%, significantly higher than in the medication group (2.5%). Based on the above findings, the 
remission rate of T2DM after LSG was not significantly different from LRYGB but significantly higher 
than drug treatment and LAGB[20].

Surgeons performing BS and patients tend to choose LSG over other BS because of its lower risk of 
complications, compared to other surgical procedures; further, it is less invasive, preserves the body's 
original natural channels, and has better clinical outcomes. Currently, LSG is globally the most common 
BS[21]. Between 2010 and 2018, the proportion of LSG among BS techniques increased from 2% to 61%, 
whereas that of RYGB decreased from 55% to 17%[22]. According to the International Federation for 
Surgery of Obesity Global Registry, 833678 weight-reduction procedures were recorded globally in 
2019; however, only 1% of individuals qualified for surgical reasons received surgical treatment[23,24]. 
Thus, there is considerable room for expansion of bariatric metabolic surgery. Considering the advances 
in BS options, we focus on the mechanisms of LSG relieving T2DM. The remission rate of T2DM after 
SG is approximately 65%[25], and this process involves, for example, GHs, GM, BAs, adipokines, the 
nervous system, and other potential mechanisms that are addressed here.

GASTROINTESTINAL HORMONES
Ghrelin
Ghrelin, also referred to as the "hunger hormone", is a peptide of 28 amino acids predominantly 
generated by gastric fundus X/A cells. During fasting, ghrelin expression increases, and it is reduced 
after eating[26]. Ghrelin regulates the energy balance, increases the sensation of hunger, stimulates 
growth hormone release from the hypothalamus and anterior pituitary, and stimulates food intake to 
facilitate the buildup of adipose tissue[27,28]. Additionally, ghrelin increases muscle insulin resistance 
(IR) and controls peripheral glucose homeostasis by lowering glucose-stimulated insulin release[29,30]. 
In extremely obese individuals, ghrelin prevents the appropriate inhibitory response to food intake and 
does not return to normal after losing weight without surgery[31,32]. Kalinowski et al[33] found that 
glucose metabolism improved in obese patients with BS, with reduced ghrelin levels after LSG and 
increased levels after RYGB. The same outcomes were obtained in other long-term follow-up trials, with 
patients reporting a significant decrease in ghrelin levels after LSG[34]. Stoica et al[35] confirmed this 
finding in a study on Wistar rats showing that LSG markedly decreased the levels of circulating 
acylated ghrelin. The primary location of ghrelin production is removed through LSG, which may be 
the primary cause of reduced ghrelin levels post-surgery. This ghrelin decrease after LSG likely explains 
the subsequent glycemic improvement as ghrelin is associated with higher circulating insulin and 
glucagon levels[36]. However, in a study on ghrelin-deficient and wild-type mice, the responses to LSG 
resembled those after glycemic control, which implies that ghrelin may not be required to improve the 
glucose metabolism[37]. The studies cited above concluded that LSG substantially affects ghrelin 
production but that this effect was not the single causative factor of postoperative T2DM remission.

Peptide tyrosine tyrosine
As a member of the pancreatic polypeptide-fold family, peptide tyrosine tyrosine (PYY) is a digestive 
hormone released after eating by the L-cells among intestinal endocrine cells of the distal ileum and 
colonic mucosa, and in rodents, it is considered a satiety signal[38]. PYY may also affect insulin 
sensitivity and glucose absorption by acting on Y2 receptors, and it may modulate insulin secretion by 
acting on islets[39]. Reduced PYY levels occur in obese people during fasting and after eating, possibly 
because PYY synthesis, release, or clearance is impeded[39]. Exogenous PYY has recently attracted 
attention as an anti-obesity agent that can reduce food intake, delay stomach emptying, and lower the 
glycemic index[40,41]. Potential LSG-induced alterations of PYY levels are currently controversial. One 
prominent question is whether PYY levels change after LSG surgery. Most studies concluded that PYY 
is elevated due to LSG[42-44], whereas one study suggested that PYY secretion, although numerically 
increased, is not statistically different from baseline[45]; however, considering the small number of 
patients included in this study (only six cases), this may not be a general pattern. The other question is 
whether increased PYY is restored to its baseline levels within a certain period after LSG.

Arakawa et al[41] observed an increase in PYY 26 wk after surgery but not after 52 wk. Similar results 
were obtained in a different study, showing higher PYY levels immediately after surgery, which then 
decreased to baseline levels within one year[44]; PYY secretion did, however, continue to increase 
postoperatively and remained above baseline levels at 18 mo, according to Alamuddin et al[42]. In an 
animal study, non-obese diabetic Goto-Kakizaki (GK) rats that were subjected to LSG showed 
substantial improvements in glycemic control, a significant decrease in glycated hemoglobin, and an 
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increase in diet-induced PYY[46]. Moreover, in diet- and streptozocin (STZ)-induced diabetic obese 
mice, LSG can increase PYY levels. Animals subjected to surgery also show higher glucose tolerance and 
fasting insulin improvement, and their insulin secretion increases and peaks faster following glucose 
infusion[47]. Boza et al[47] additionally performed ileal transposition with LSG, and compound surgery 
resulted in a considerable reduction in food intake, increased PYY levels, and improved glucose 
tolerance in obese diabetic mice. Current research suggests that PYY levels are increased in mice and 
humans subjected to LSG, which is directly related to lower food consumption. Further fundamental 
research is required to determine whether a direct connection exists between higher PYY and better 
insulin release and glucose tolerance.

Oxyntomodulin
Oxyntomodulin (OXM), like PYY, is produced by intestinal L cells. It participates in the control of 
satiety, influences the production of hydrochloric acid by gastric secretion glands, and exerts a 
biological activity similar to that of glucagon[48,49]. OXM has not yet been linked to a particular 
receptor, but intriguingly, it affects glucagon-like peptide (GLP)-1 receptors in the hypothalamic arcuate 
nucleus[50]. Furthermore, it exhibits entero-insulinotropic effects and β cell-protecting qualities[51]. 
According to previous studies, OXM may boost energy expenditure and control blood glucose levels in 
obese people while suppressing appetite and reducing food intake[52,53]. In obese individuals with 
T2DM, OXM combined with GLP-1 and PYY has been demonstrated to improve glycemia and body 
weight[54]. Few studies examined how BS affects OXM, particularly when the surgical strategy is 
restricted to LSG; thus, little is known about changes in OXM following LSG. Nielsen et al[55] reported 
that post-LSG patients exhibited increased OXM production, which was correlated with body weight 
and postoperative dietary preferences. After RYGB, weight reduction may be predicted by early 
postprandial OXM, according to a different study[56]. Laferrère et al[57] conducted oral glucose 
tolerance trials and found that peak OXM levels were considerably higher in the surgery group 
compared to the control diet group and corresponded with an increase in PYY. Further, OXM levels 
following RYGB surgery did not change while fasting. In mice, exogenous OXM increases glucose-
induced insulin secretion, energy expenditure, and weight loss[58]. This effect of OXM may be due to its 
impact on the GLP-1 receptor (GLP-1R) as it does not stimulate insulin secretion in GLP-1R-/- mice[59]. 
The effect of exogenous OXM on T2DM has been partly established, however, further research is needed 
to understand how it is affected by LSG and other types of BS. Intriguingly, two studies have revealed 
that OXM might be a predictor of weight reduction after BS. We hypothesize that this impact may be 
associated with changes in dietary practice and satiety.

Cholecystokinin
Cholecystokinin (CCK) was first described in 1982[60], and as suggested by its designation, it is a 
peptide hormone which can cause gallbladder contraction linked to the gastrointestinal system. 
According to recent studies, CKK receptors are expressed in the pancreas, central nervous system, 
gallbladder smooth muscle, and stomach mucosa[61]. CCK interacts with CCK-1 receptors in distinct 
areas of the hindbrain to signal satiety and decrease food intake[62]. CCK has also been linked to 
neurophysiological processes, including anxiety, sadness, pain, learning, and memory[63,64]. It controls 
stomach acid production, reduces BA release, and impacts gastrointestinal motility in the gut[65,66]. In 
aged mice, CCK expression in β cells increases the area of the pancreas and shields the cells from STZ-
induced diabetes and apoptosis, demonstrating a protective impact on β cells[62]. Frequent ravenous 
hunger of obese patients may be explained by the fact that insensitivity of vagal afferent neurons to 
CCK is decreased which reduces the drug's impact on satiety[60]. CCK and associated peptide 
hormones can successfully be used as adjuvant therapy for treating T2DM and obesity[67]. In high-fat 
diet (HFD) mice, CCK analogs can lower caloric intake, reduce body weight, and increase insulin 
sensitivity[68]. Numerous studies have shown that LSG significantly affects the levels of circulating 
CCK, thus improving glucose homeostasis and improving homeostasis model assessment of IR 
(HOMA-IR)[69,43]. Additionally, elevated CCK appears to inhibit sympathetic action and subsequently 
inhibits the intrarenal renin-angiotensin system, producing a hypotensive effect[70]. LSG has a stronger 
CCK-increasing effect than RYGB; however, it seems to be associated with lower remission rates in 
T2DM patients[71]. According to current research, CCK has a favorable function in preserving glucose 
homeostasis in T2DM, and one potential explanation may be its protective effects on pancreatic β cells. 
In cases with obesity, the weight-reduction effect of CCK may be mediated by a response of the central 
nervous system that re-establishes normal satiety signaling and reduces food ingestion. However, as 
there is no clear correlation between the increase in CCK and frequency of remission of T2DM after BS, 
it is not entirely conclusive to explain T2DM by changes in it alone.

GLP-1
GLP-1 is considered the most "successful" peptide hormone currently available. It is predominantly 
produced by intestinal L cells, and is a fundamental compound of several T2DM and obesity 
medications and of novel medications currently under research[72]. Under physiological circumstances, 
ingested food (including carbohydrates, glucose, proteins, and BAs) stimulates L cells scattered 
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throughout the epithelium to release GLP-1 into the blood at a rate corresponding to food absorption
[73]. This hormone is important in coordinating postprandial glucose homeostasis. GLP-1 stimulates the 
release of postprandial insulin, and activation of GLP-1R in pancreatic β cells stimulates the release of 
insulin, which depends on plasma glucose levels[74]. When β cells perceive elevated plasma glucose 
levels and GLP-1 signals from the intestine, it enhances insulin release after glucose intake, which is also 
known as the intestinal proinsulin effect[75]. Meanwhile, GLP-1 prevents pancreatic α cells from 
releasing glucagon[76], and it regulates gastric emptying, thus influencing appetite and contributing to 
a sensation of satiety. GLP-1 contributes to the ileal brake, allowing nutrients to enter the duodenum at 
the same rate as absorbed in the small intestine[77]. By targeting GLP-1R in the brainstem or 
hypothalamus, GLP-1 decreases hunger and increases satiety, which is complementary to the effects of 
PYY; however, both originate from L cells[78,79]. In T2DM, GLP-1 secretion is reduced, and the effect of 
entero-insulin is diminished[80]. However, this may be a consequence of T2DM rather than an etiology 
because non-T2DM patients with elevated blood glucose show a marked decrease in GLP-1 Levels[81]. 
The study of Shehata et al[82] showed that in obese adolescents with T2DM, LSG significantly increased 
GLP-1 Levels in the early postoperative period (until six months after surgery). However, it did not 
produce the same effect during the late postoperative period (12 mo after surgery). Furthermore, the 
size of the antrum was not linked to higher GLP-1, better glucose control, or less IR, but to higher T2DM 
remission rates. Min et al[83] came to similar conclusions, as GLP-1 Levels were increased in the early 
stage after surgery, but this effect was not persistent. Significant reductions in glycosylated hemoglobin 
(HbA1c) and IR predict improvement of T2DM. Vigneshwaran et al[84] also found that LSG led to 
increased GLP-1 Levels six months after surgery in T2DM patients who were not morbidly obese, but 
they did not record GLP-1 Levels thereafter. Further, obese people without T2DM also showed low 
insulin sensitivity and high insulin levels in the blood, compared to healthy controls. After LSG 
intervention. patients showed higher insulin sensitivity and markedly higher GLP-1 Levels[85].

In contrast, Rigamonti et al[86] compared GLP-1 Levels before and after surgery and examined how 
food ingestion rates affected GLP-1 secretion. They found no significant difference in GLP-1 Levels, but 
they proposed that LSG would make patients less resistant to insulin. However, who underwent RYGB 
showed higher GLP-1 Levels, better β cell function, and a higher chance of remission from T2DM[87]. In 
an animal study, Garibay et al[88] showed that SG helps better control glucose levels by improving β cell 
GLP-1R signaling and increasing glucose-stimulated insulin secretion. Li et al[89] suggested that 
improved glucose metabolism in GK rats with SG was caused by increased GLP-1 secretion, which was 
achieved by increasing the amount of GLP-1 in the plasma through increasing GLP-1 production in the 
jejunal and ileal mucosa.

Nevertheless, other studies suggest a different perspective. Wilson-Pérez et al[90] used GLP-1R-
deficient mice which after SG did not differ significantly from wild-type controls in terms of weight and 
body fat reduction, improved glucose tolerance, food intake, and food preference. The authors 
concluded that GLP-1R activity was not required for SG to improve glucose metabolism and reduce 
body weight. Evidence from recent studies supports the notion that GLP-1 is crucial for maintaining 
glucose homeostasis, and the prospect of developing effective treatments is encouraging. As a hormone 
with an intestinal proinsulin effect, production of GLP-1 may be decreased during T2DM. The effect of 
LSG on GLP-1 currently prefers the ability of LSG to increase GLP-1 Levels in the early postoperative 
period. It may alter glucose homeostasis and help cure T2DM by boosting intestinal L-cell GLP-1 
production and promoting GLP-1 signaling in pancreatic β cells. However, it remains controversial why 
SG produces the same surgical effect in mice, even without GLP-1R. Therefore, further studies are 
required to determine how GLP-1 influences glucose metabolism in T2DM after LSG.

GLP-2
GLP-2 consists of 33 amino acids and is encoded at the carboxyl terminus of the GLP-1 sequence in the 
glucagon gene. Like GLP-1, it is predominantly produced by enteroendocrine L cells in the ileum and 
large intestine[91]. It is produced in response to food stimulation in the gut, and GLP-2 is primarily 
responsible for inhibiting gastrointestinal motility and intestinal nutrition (enhancement of intestinal 
growth, digestion, absorption, barrier function, and blood flow)[92]. Due to its distinct intestinal 
nutrition effects, the use of GLP-2 analogs for the treatment of intestinal failure can markedly reduce the 
frequency of required parenteral nourishment[93]. GLP-2 contributes to preserving the energy balance, 
and in particular, it promotes nutritional absorption in the gastrointestinal system; this is achieved not 
only by enterotropic action but also by decelerating gastrointestinal motility, which extend the duration 
of nutrient digestion and absorption. Intriguingly, GLP-2 is a peptide hormone that has been associated 
with anorexia[94]. Its receptor, GLP-2R, is expressed in the brainstem, hippocampus, and hypo-
thalamus, which are thought to be essential for maintaining homeostasis of energy[95]. Peripheral GLP-
2 injection decreases food intake in mice on the short term[96].

Furthermore, mice with a specific GLP-2R deficiency in proopiomelanocortin neurons show increased 
plasma insulin and hepatic glucose production as well as glucose intolerance[97]. Moreover, endo-
genous GLP-2 demonstrated a protective effect against IR in HFD mice[98]. Romero et al[99] observed 
an increase in GLP-2 Levels and an improvement in glucose tolerance in the first postoperative phase 
after LSG. Cummings et al[100] attained similar outcomes in an animal experiment, where SG enhanced 
glucolipid metabolism and postponed the development of diabetes in University of California Davis 
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(UCD)-T2DM rats, in addition to increasing GLP-2 Levels. GLP-2 regulates the circulating BAs, 
although Patel et al[101] showed that it is not required for body weight and glucose homeostasis in GLP-
2 receptor-deficient SG mice. However, Patel et al[101] also found that GLP-2 regulates circulating BAs, 
but it is not required for body weight and glucose homeostasis in GLP-2R-deficient SG mice. In 
conclusion, in-depth research on GLP-2 is lacking, and data to determine how LSG affects GLP-2, partic-
ularly in humans, are currently insufficient. The available data merely provide evidence for the 
hypothesis that the observed increase in GLP-2 Levels after LSG is likely to play several functions in 
homeostatic processes in vivo, whereas the precise mechanisms remain unknown.

Glucose-dependent insulinotropic polypeptide
Following food ingestion, endocrine K cells in the crypt-villi axis produce glucose-dependent insulino-
tropic polypeptide (GIP), a protein comprising 42 amino acids. This hormone was originally designated 
gastric inhibitory polypeptide because of its capacity to reduce stomach secretion and motility[102]. 
However, GIP was then identified as an incretin hormone capable of enhancing glucose-dependent 
insulin secretion from pancreatic β cells and thus received its current designation[103]. GIP exerts two 
functions. As a sister hormone of GLP-1, GIP exerts the same proinsulin action, and the loss of effects of 
entero-functional insulin is the primary cause of poor postprandial glycemic control in T2DM[104]. GIP 
agonists have been developed for the treatment of T2DM and obesity[105]; however, it is crucial to note 
that GIP agonists do not effectively reduce blood sugar levels in T2DM; nevertheless, when coupled 
with GLP-1 and GIP agonists, their benefits are significantly larger than those of GLP-1 alone[106]. GIP, 
by contrast, may influence the distribution of fat in adipose and non-adipose tissues, causing ectopic fat 
deposition and stimulating the accumulation of visceral and hepatic fat[107]. The major source of 
circulating non-esterified fatty acids is visceral fat, and a persistent increase in these acids is linked to 
the development of IR and T2DM[108]. Additionally, inflammation of pro-inflammatory adipokines and 
adipose tissue may be exacerbated by GIP[109]. Excessive GIP production contribute to the deve-
lopment of fatty liver and NAFLD[110]. GIP receptor antagonists may restore obesity, IR, and related 
metabolic problems in mice caused by prolonged HFD intake, thus they are also a viable treatment 
option[111]. According to one study, GIP level of patients increased linearly following LSG and 
continued to increase for four years, resulting in better glycemic management[83]. A study by Romero et 
al[99] on extremely obese individuals revealed an elevated GIP response following LSG, whereas after 
RYGB, no comparable reaction was observed. Other results suggest that RYGB reduces postprandial 
GIP secretion, owing to restricted food transit through the duodenum and jejunum[112]. In STZ-
induced diabetic mice, Wang et al[113] found no change in GIP between SG- and sham-operated groups, 
and SG had no mitigating impact on STZ-induced diabetes. GIP seems to exert contrary functions in 
obese T2DM patients. However, this hormone belongs to the enterotrophic insulin family, and its 
agonists may be utilized to treat T2DM and obesity, resulting in hypoglycemia and weight reduction 
benefits. By contrast, it has been shown to enhance adipose inflammation, induce fat deposition, and to 
be linked to the onset of fatty liver and NAFLD. With regard to how BS may affect GIP, LSG seems to 
raise GIP levels, whereas RYGB causes a decrease in GIP production, depending on the surgical method. 
Given that GIP exerts contrasting functions, currently available studies cannot conclusively determine 
whether changes in GIP secretion after LSG are advantageous or harmful.

Gastrin
Gastrin is produced in the G cells of the gastric sinus and duodenum, and it is released in response to 
stimulation by the vagus nerve and gastrin-releasing peptide[114]. This hormone family comprises 
numerous peptides, with varying levels of biological activity and lengths[115]. The primary roles of 
gastrin include inducing gastric acid production in the stomach via a Ca-dependent release mechanism, 
acting on intestinal chromophobic cells in the fundus to trigger histamine release, stimulating the 
development and motility of the gastric mucosa, and suppressing hunger[116]. Recent studies focused 
on the relationship between gastrin and the onset and progression of gastrointestinal cancers, partic-
ularly neuroendocrine tumors[117]. IR and abdominal obesity are correlated with low gastrin levels
[118]. Gastrin and GLP-1 dual agonists exert immunomodulatory effects that enhance insulin levels and 
β-cell mass in non-obese diabetic mice, eventually improving glycemic control. Furthermore, in 
individuals with T2DM, the addition of proton pump inhibitors (PPI) to glucose-lowering medications 
markedly raised gastrin levels, enhanced β cell activity, and reduced HbA1c levels[119-121]. A trend 
towards increased gastrin secretion after SG was observed in female patients who had undergone BS 
compared to patients receiving a protein-rich meal mix. However, no statistically significant difference 
was observed, while gastrin was significantly lower after RYGB. Notably, a negative correlation 
occurred between gastrin secretion and glucose levels after SG[118]. Grong et al[122] found that SG had 
superior effects in inducing hypergastrinemia, lowering HbA1c, and improving glycemic control in a 
GK rat model. In a subsequent study, the authors assessed the -cell mass in GK rats using three-
dimensional optical projection tomography, showing that -cell mass was maximally preserved after SG, 
which may be related to high gastrin levels and long-term improvement in glycemic parameters 
following surgery[123]. Grong et al[124] also suggested the presence of circulating high gastrin in GK 
rats after SG. However, this was similar to the result after PPI intervention, with no difference in 
glycemic control between the two groups, and SG did not improve β cell mass. Few human studies on 
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gastrin changes after SG are available, and current evidence suggests the presence of high gastrin levels 
after SG, which may have a positive effect on glycemic control in T2DM; however, the precise 
mechanisms involved are unclear. In general, the results are inconsistent as to whether high gastrin 
improves β cell quality.

Fibroblast growth factor 19 and fibroblast growth factor 21
At least 22 protein family members of fibroblast growth factors (FGFs) are associated with angiogenesis, 
wound healing, metabolic control, and cell growth, development, and migration differentiation[125]. 
The majority of these work as paracrine or autocrine factors. FGF19, FGF21, and FGF23 are hormone-
like members of the FGF family and have certain structural characteristics that facilitate endocrine 
effects[126]. FGF19 is produced in the brain, gallbladder, and distal small intestine. It inhibits hunger 
and regulates BA and nutrition metabolism, glucose and lipid metabolism, energy expenditure, and 
obesity[127]. FGF21 controls lipid and carbohydrate metabolism, elicits white adipose tissue (WAT) 
thermogenesis and browning, indirectly increases insulin synthesis in the pancreas, improves insulin 
sensitivity, and decreases food intake[128]. FGF23 is a hormone produced by osteoblasts and osteoclasts 
in the skeleton and is primarily involved in mineral metabolism to control phosphate levels[129]. 
According to several studies, there is a significant increase in FGF19 following SG, and this increase is 
linked to better glycemic control and reduced systemic inflammation[130-132]. Yang et al[133] observed 
an increase in FGF19 in VSG but no changes in RYGB. A meta-analysis revealed an increase in FGF19 
and a negative correlation between FGF19 and BMI after SG[134]. Huang et al[135] noted that higher 
FGF19 Levels and reduced BA levels after SG may play a role in T2DM remission and NAFLD 
improvement; they also hypothesized that low preoperative FGF 19 Levels may predict improvement of 
NAFLD.

With respect to FGF21, Khan et al[136] found a link between elevated FGF21 and weight loss after SG, 
indicating that FGF21 may play a part in the postoperative energy balance. By contrast, Nielsen et al
[137] did not detect changes in FGF21 after SG, and FGF21 Levels were not related with food choice. 
FGF19 Levels were decreased and FGF21 Levels were increased in obese patients, and FGF21 Levels 
further increased when obese patients showed T2DM. SG increased FGF19 Levels while decreasing the 
unnaturally increased FGF21 Levels. The authors concluded that FGF19 Levels were mostly related to 
physical obesity, particularly visceral obesity, whereas those of FGF21 were primarily linked to glucose 
homeostasis[138]. Yen et al[139] confirmed this and further observed a substantial decrease in FGF21 
Levels after SG and a strong positive association between FGF21 and C-peptide, insulin, and the 
homeostasis model evaluation of the postoperative IR index.

In conclusion, the available studies are in line with our findings that FGF19 is typically elevated in the 
postoperative period and that it may control the release of BAs to produce its effects. The elevation of 
FGF19 after SG is not specifically correlated with T2DM but is linked to a decrease in the body weight 
index. Contrarily, FGF21, which is frequently increased in obese patients with T2DM, has an 
independent function in obesity and is linked to metabolic syndrome, hyperinsulinemia, onset of 
diabetes, aberrant glucose metabolism, and IR[140]. Due to its potential to ameliorate the FGF21 increase 
induced by obesity or T2DM, SG may play a significant part in preserving glucose homeostasis. FGF21 
should be further studied, and it may be a more important metabolic marker of illness in T2DM than 
FGF19.

Overall, the control of different components of the gut-brain axis, the gut-adipose tissue axis, the gut-
liver axis, the gut-pancreatic axis, and the gut-muscle axis all play a role in the overall complexity of the 
gastrointestinal hormonal alterations after LSG. The surgical method used in RYGB (partial removal of 
the small intestine and stomach) may explain endocrine differences between LSG and RYGB; this also 
suggests that the two treatments affect T2DM differently because of such discrepancies. Although the 
benefits and drawbacks of the two approaches are not entirely clear, one may infer from the few 
available data that the potential of LSG ability to relieve T2DM is connected to GHs, which may result 
from systemic rather than specific hormonal alterations.

ADIPOKINES
Adipose tissue is divided into WAT and brown adipose tissue (BAT), classically considered a long-term 
storage organ that releases free fatty acids to meet the body's energy requirements during fasting or 
thermoregulation and has a mechanical protective impact on internal organs[141,142]. According to 
current studies, adipose tissue is one of the major endocrine organs in the body and plays a significant 
role in systemic homeostasis[143]. Adipocytes are metabolically active, and they are effective secretory 
cells that can release large quantities of adipokines. Adipokines may influence several biological 
processes, including appetite regulation, inflammatory and immune functions, glucose and lipid 
metabolism, cardiovascular homeostasis and reproduction, and other essential physiological processes
[144]. This review focuses on T2DM and obesity; hence, other physiological functions will not be 
described in any great detail. Leptin, adiponectin, resistin, and vaspin are adipokines associated with 
glucose metabolism. Insulin sensitivity is linked to leptin, adiponectin, chemerin, and omentin, whereas 
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IR is associated with apeline and nesfatin-1. By contrast, leptin and vaspin are also important in 
controlling appetite[145,146]. As a result, T2DM and adipokine changes are tightly associated in obese 
people. Below, we provide more details on how LSG affects specific adipokine metabolism processes 
and its potential impact on T2DM and also summarize the approximate mechanism in Figure 1.

Leptin
Leptin has a tertiary structure of a globular protein, comprising 167 amino acids. It is predominantly 
synthesized in white adipose tissue, and primarily acts on trans-modal receptors to exert its effects[147]. 
Food consumption, systemic adiposity, and hormones affect the amount of leptin that is secreted, with 
insulin playing a significant regulatory role[148]. Prolonged hyperinsulinemia leads to an increase in 
circulating leptin concentration[149]. Considering the IR status of obese patients, high leptin levels are 
likewise a characteristic of obesity. Leptin thus controls hunger, satiety, food intake, and energy use
[150].

Meanwhile, it may play an insulin-sensitizing role and is an important regulator of β cell mass and 
survival. Recombinant leptin has been established for obesity treatment based on its various important 
physiological roles. However, little progress has been made, which may be due to long-term leptin-
resistance during obesity[151]. When such resistance is reduced, recombinant leptin treatment produces 
effective weight reduction and glycemic control[152]. Thus, studying the alterations in leptin that occur 
after LSG and how they affect T2DM and obesity is crucial. Numerous studies have produced similar 
findings, and the impact of LSG on leptin is generally beneficial, with a discernible decrease in leptin 
levels after surgery that remained throughout long-term follow-up[33,34,153]. Mazahreh et al[154] 
concluded that LSG increased the expression level of leptin receptors, which alleviated leptin resistance. 
Leptin levels and IR were correlated in patients, and pre-LSG leptin levels were predictive of IR, 
according to Hany et al[155]. Additionally, Arble et al[156] also reported that SG improves ventilatory 
drive in patients with sleep apnea through a leptin-dependent mechanism. Stoica et al[35] showed that 
SG decreased leptin expression in mice. Similarly, Du et al[157] discovered that SG lowered leptin 
expression in HFD-fed mice, which caused translocation of glucose transporter protein 2; resulting in 
inhibition of intestinal glucose absorption. In leptin receptor-knockout mice, long-term weight reduction 
following SG was shown to require the action of leptin; however, the improvement in blood glucose 
does not seem to depend on leptin. The authors concluded that a significant improvement in blood 
glucose caused by SG through enhanced insulin sensitivity, independent of reduced feeding and weight 
loss[158]. LSG has a well-documented impact on lowering circulating leptin levels and enhancing leptin 
resistance, and these beneficial effects have been linked to several healthful physiological processes. 
However, it remains controversial whether changes in leptin levels have beneficial effects on glucose 
metabolism in T2DM, which may be involved partly by reducing glucose uptake and improving IR, 
among other effects. The role of leptin in this process is not all or nothing, but good or better.

Adiponectin
WAT secretes adiponectin, one of the most prevalent adipokines in the bloodstream of humans[159]. As 
a secreted protein, it functions by interacting with the cell membrane receptors adiponectin receptor 
(AdipoR) 1 and AdipoR2. AdipoR1 is primarily expressed in liver and skeletal muscle tissue, and 
AdipoR2 is predominantly expressed in the liver[160]. Adiponectin increases skeletal muscle glucose 
absorption and fatty acid oxidation, thus inhibiting gluconeogenesis in the liver[161,162]. Additionally, 
adiponectin has anti-diabetic properties and activates the AMP-activated protein kinase (AMPK) 
pathway, which interacts with the AdipoR1 receptor to elicit insulin sensitization[163]. Furthermore, 
lipocalin exerts anti-inflammatory effects, it is linked to the onset of atherosclerosis, and it effectively 
inhibits the activation of the nuclear transcription factor-kappa B (NF-kB) pathway and production of 
the NF-kB nuclear protein p65[164]. Obese patients with T2DM exhibit reduced adiponectin levels 
which are associated with increased expression of pro-inflammatory cytokines; this may also be 
associated with low-grade chronic inflammation[165]. According to previous studies, increasing the 
amount of lipocalin in the blood would be a viable therapeutic approach to treat disorders caused by 
obesity. Thiazolidinediones, which act as peroxisome proliferator-activated receptor γ (PPAR-γ) 
agonists, may raise adiponectin levels and successfully regulate blood sugar. However, their applic-
ability is more constrained owing to lower safety (with adverse side effect including hepatotoxicity, 
heart failure, edema, and reduced bone density)[166]. Lopez-Nava et al[167] reported increased 
adiponectin levels after LSG, no equivalent changes were seen after endoscopic SG, and patients 
exhibited increased weight loss following LSG. Rafey et al[168] obtained similar results with increased 
circulating adiponectin after LSG, and the authors suggested that the leptin-to-adiponectin ratio was 
correlated with improved insulin sensitivity and weight loss, and that this ratio decreased significantly 
after surgery. Šebunova et al[169] took an identical perspective: Adiponectin levels increased after BS, 
however, the authors did not distinguish between various surgical techniques. In GK rats, SG increased 
serum adiponectin and adipose tissue PPAR-γ expression, decreased IR, and enhanced adipose tissue 
health and angiogenesis[170]. Adiponectin may have a role in improving glucolipid metabolism and 
delaying the development of T2DM in UCD-T2DM mice when SG is performed[100]. In addition, a 
combination of SG and partial small bowel resection resulted in elevated adiponectin levels, which may 
contribute to improved glucose homeostasis[171]. Adiponectin exerts a significant role in glucose 
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Figure 1 Mechanism of laparoscopic sleeve gastrectomy to improve type 2 diabetes mellitus through gastrointestinal hormones. Red 
arrows represent facilitation, while blue arrows represent inhibition.

metabolism, whether in patients with T2DM, obesity, or both. Elevating the circulating adiponectin 
levels through medication seems to be an effective option; however, this treatment modality should be 
considered with caution regarding the aspect of safety. The effect of LSG on adiponectin is currently 
presumed consistent, with a postoperative increase, which may be one of the mechanisms by which LSG 
can help treat T2DM and obesity. Risks and safety of LSG are manageable for specialist weight loss 
metabolic surgeons, which is one of its advantages over established pharmacological approaches.

Apelin
Apelin is a late-discovered adipokine peptide with multiple active isoforms. Its receptor, apelin-
angiotensin receptor-like (APJ), is an extensively distributed G protein-coupled receptor[172]. Various 
tissues and cells in the human body contain apelin/APJ, which perform various physiological tasks, 
including controlling food intake, cell proliferation, and angiogenesis[173]. Apelin is recognized as a 
helpful adipokine and, like adiponectin, is thought to be an insulin sensitizer[174]. Exogenous apelin 
supplementation is still beneficial for IR and for the glucose metabolism, even when endogenous apelin 
levels are high in obese patients and those with T2DM[175]. Exogenous apelin has been shown to 
improve insulinotropic activity, adipocyte glucose absorption, and insulin release in obese mice, and it 
is similarly beneficial in human patients[176,177]. Soriguer et al[175] reported a significant decrease in 
apelin levels in morbidly obese patients with impaired fasting glucose or T2DM due to BS. Apelin levels 
were significantly positively correlated with changes in serum glucose and negatively correlated with 
insulin sensitivity. Arica et al[178] observed that laparoscopic gastric banding reduced elevated apelin 
levels in obese morbidly obese patients. However, we were unable to identify studies on the effects of 
LSG on apelin. As a novel therapeutic target and important biomarker for metabolic illnesses, including 
diabetes and obesity, the apelin/APJ signaling pathway has recently attracted attention. However, few 
studies on apelin and BS are available, and they suggest that apelin levels decrease postoperatively, 
which seems to be disadvantageous.

Nesfatin-1
The novel adipokine nesfatin-1 is not only released by adipose tissue, but its synthesis and secretion 
have also been observed in central nervous tissues including the hypothalamus[179]. So far, the 
nesfatin-1 receptor remains unknown; however, specific binding sites have been found in the central 
nervous system, gastrointestinal tract, and pancreas[180]. Nesfatin-1 is considered an efficient anorex-
igenic peptide with regulatory effects on energy metabolism through reducing food intake[181]. 
Nesfatin-1 expression is lower in obese people, and its levels are negatively correlated with body mass 
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index, weight, and adiposity[182]. Similar observations were made in T2DM patients, whose nesfatin-1 
Levels were lower than those of healthy subjects or T1DM patients[183]. Nesfatin-1 stimulates insulin 
secretion, increases proinsulinogen mRNA expression, and has antihyperglycemic effects during 
glucose metabolism[184]. A previous study showed that supplementation with exogenous nesfatin-1 
elicited resistance to hyperglycemia in mice, suggesting that nesfatin-1 may be a potential therapeutic 
target for T2DM[185]. According to several studies, LSG raises postoperative nesfatin-1 Levels in 
patients. Nesfatin-1 has been linked to a reduction in postoperative appetite, according to Dogan et al
[186], whereas Yang et al[187] observed a link between nesfatin-1 and NAFLD. Lee et al[188] 
demonstrated that nesfatin-1 decreased after SG or RYGB, and they proposed a link between nesfatin-1 
and glycemic control.

In contrast, Majorczyk et al[189] came to the exact opposite conclusion, suggesting that LSG decreases 
nesfatin-1 Levels and that there is no significant correlation between nesfatin-1 and improvement in 
body weight or glucose metabolism. There is a controversy with regard to LSG's impact on nesfatin-1, 
with starkly contrasting opinions. The correlation between nesfatin-1 and weight, appetite, and hepatic 
steatosis after LSG has been demonstrated, however, only one study has shown a correlation between 
nesfatin-1 and glycemic control after LSG. Thus, nesfatin-1 may play a minor role in the LSG-mediated 
remission of T2DM.

Resistin
Resistin is a specific adipokine specifically expressed and secreted by adipose tissue[190]. Its effects 
involve endocrine, autocrine, and paracrine mechanisms, however, its receptor is unknown[191]. 
Resistin is considered a connection between obesity and T2DM as it reportedly opposes the action of 
insulin and interferes with glucose homeostasis in vivo, which results in the progress of T2DM[192]. 
Resistin is also a pro-inflammatory regulator of macrophages, peripheral blood mononuclear cells, and 
vascular cells, with pro-inflammatory actions and higher expression during pathological states of 
inflammation, according to recent studies[193,194]. Resistin levels were positively correlated with IR in 
T2DM patients with hyperresistinemia and in obese people, according to a meta-analysis of 20 studies. 
However, no such association was found in patients with normal resistin levels[195]. A study showed 
that leptin and resistin levels decreased following LSG, and liver histopathology results improved[196]. 
Similar observations were made in a different study, which concluded that weight reduction after LSG 
was associated with altered levels of anti-inflammatory adipokines and better glucose metabolism[197]. 
Šebunova et al[169] observed that resistin was markedly higher after LSG than after RYGB, however, the 
decrease from the preoperative period was not significant. Farey et al[198] found that postoperative 
resistin levels exhibited a reducing trend which was not statistically significant, and that resistin levels 
of obese patients were lower than those of non-obese controls.

Additionally, a meta-analysis revealed that weight reduction surgery had no pronounced impact on 
resistin levels[199]. Presently available studies seem not to support the hypothesis that LSG regulates 
resistin levels to facilitate T2DM remission. However, the various limitations of such studies should be 
considered, particularly with regard to small sample sizes and the fact that resistin is not consistently 
highly expressed in obese people. Further research is required to determine whether preoperative 
resistin levels are generally within a normal range to more accurately assess its impact on T2DM.

Chemerin
Chemerin was found to be highly expressed in human WAT in 2007. Chemerin is a novel adipokine that 
binds to the orphan G protein-coupled receptors chemokine-like receptor 1, chemokine receptor-like 2, 
and G protein-coupled receptor 1 to exert its potential autocrine and paracrine effects[200,201]. It may 
have a role in energy balance and metabolism in vivo and is linked to adult obesity, T2DM, and 
metabolic syndrome, according to recent research[202]. Most respective studies found that people with 
poor glucose homeostasis had higher serum chemerin levels and that this increase was inversely linked 
with glycemic control parameters[203]. A meta-analysis suggested a marked decline in chemerin levels 
after BS, however, various surgical methods were not distinguished[199]. Terra et al[153] reported a 
significant decrease in chemerin 12 mo after LSG, compared with the baseline levels, in a pattern similar 
to that after RYGB. Similar findings were reported by Jouan et al[204], who discovered a decrease in 
chemerin after surgery and suggested that chemerin may be utilized as a predictor of a postoperative 
inflammation; however, the changes in chemerin after LSG were not uniform. The findings of Cӑtoi et al
[205] did not reveal any significant differences in chemerin six months after LSG. Chemerin is a 
relatively novel adipokine; thus, little information is available, and most conclusions originate from 
meta-analyses. Fundamental research is thus required to understand the mechanisms of action of 
chemerin acts, particularly with regard to T2DM. The limited available data do not support a link 
between chemerin and improved glucose metabolism after LSG.

Omentin-1
Omentin-1 is the primary circulating form of omentin, also referred to as intelectin-1, which is mainly 
expressed in visceral adipose tissue and exerts endocrine effects resembling those of hormones[206]. 
Omentin-1 increases insulin sensitivity, which is key in maintaining the body's metabolism. In addition, 
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it also has anti-inflammatory properties through the intracellular Akt/AMPK/NF-B and mitogen-
activated protein kinase signaling pathways[207]. Glucose/insulin and FGF21 affect how omentin-1 is 
regulated, with glucose/insulin decreasing its expression and secretion and FGF21 increasing it[208,
209]. Omentin-1 expression profiles of obese and T2DM patients showed that its expression and 
secretion were suppressed in patients suffering from obesity[210], T1DM[211], T2DM[212], and 
metabolic syndrome. In addition, the chromosomal area of omentin-1 is linked to T2DM in certain 
groups. Thus, this gene may be associated with T2DM susceptibility[213]. Increased circulating 
omentin-1 Levels and decreased fecal omentin mRNA after LSG may contribute to surgery-induced 
metabolic improvement and weight reduction[214]. Sdralis et al[215] proposed that LSG combined with 
omentotomy reduced the expression of omentin-1, but LSG alone increased it, and a low-calorie diet 
had no significant effect on omentin-1. The pattern of omentin-1 expression after LSG is intriguing, 
however, as omentin-1 is influenced by glucose/insulin and FGF21, it is unclear whether the reduction 
in blood glucose under T2DM remission would prevent the inhibition of omentin-1, causing it to 
increase, or whether the higher omentin-1 Levels affected T2DM remission. Omentin-1-based 
medication may be an emerging option for treating obesity and T2DM, considering the link between 
omentin-1 and IR. However, the mechanisms of action of omentin-1 during surgical operations are 
unclear.

Visfatin
Visceral fat secretes the adipokine visfatin, which has effects similar to those of insulin[216]. Visfatin 
interacts with insulin receptors during gluconeogenesis to increase glucose absorption in liver and 
muscle tissue, thus lowering blood sugar levels[217]. Further, it supports the effects of insulin by 
causing the phosphorylation of insulin receptors 1 and 2[218]. Additionally, the autocrine activity of 
visfatin in the liver enhances insulin sensitivity[219], and it also works on the hypothalamus in the 
center to influence insulin release and reduce IR[220]. According to studies, visfatin contributes to IR 
and T2DM in a dose-dependent manner, and obese patients with T2DM showed higher intraserum 
levels of visfatin than obese patients without T2DM[221]. However, only few studies could be identified 
that examined how LSG affected visfatin, one of which found no evidence of a substantial change in 
visfatin after LSG[222]. Similar conclusions were drawn in a meta-analysis, which showed that BS had 
no marked impact on visfatin expression or secretion[195]. Animal experiments produced similar results
[223]. Visfatin has a beneficial effect on T2DM or decreased glucose tolerance because of its insulin-like 
activity. However, uncertainty remains regarding how LSG affects visfatin levels and how visfatin 
contributes to T2DM remission following LSG.

Retinol binding protein 4
Retinol binding protein 4 (RBP4) is an adipokine secreted by WAT. The primary function is to transport 
retinol, the active metabolite of vitamin A, from the liver to target tissues. High levels of RBP4 are 
associated with developing metabolic diseases such as obesity, IR, metabolic syndrome, and T2DM
[224]. In obesity, abnormal levels of RBP4 produce both local and systemic effects (retinol homeostasis 
and transport in vivo)[225]. It exacerbates the inflammatory state in obesity in vivo by activating Toll-like 
receptor (TLR) 2 and TLR4/myeloid differentiation protein 2 receptor complexes in macrophages[226]. 
In T2DM, RBP4 is associated with IR and the progression of several T2DM co-morbidities, such as 
diabetic nephropathy and diabetic retinopathy[227]. Whether RBP4 is elevated in obesity is contro-
versial, as Yang et al[228] found higher serum RBP4 Levels in obese individuals than in lean individuals. 
However, similar alterations were not found in the study by Korek et al[229] What is certain is that there 
is a correlation between elevated blood RBP4 Levels and the incidence of IR, serum lipid levels, and 
anthropometric parameters[224]. Wang et al[230] reported a significant decrease in RBP4 after LSG and 
concluded that RBP4 Levels positively correlated with BMI, glucose, fasting C-peptide, and HOMA-IR. 
In another study, the authors found that RBP4 decreased after LSG in children and adolescents[231]. 
However, some studies have also shown that LSG did not significantly affect RBP4 Levels[232,233]. In 
addition, Jüllig et al[234] found that RBP4 decreased more in patients after RYGB than after LSG. Fewer 
studies have been conducted on the effect of LSG on RBP4, and only sporadic studies have been 
reported; therefore, it is impossible to determine the changes involved. However, it is worth affirming 
that RBP4, as a specific adipokine, plays an important role in T2DM, and targeting RBP4 may become a 
potential therapeutic strategy.

GM, BAS, AND THEIR INTERACTIONS
GM
The human gut contains a unique variety of microbes, commonly known as the GM, which comprises 
approximately 3 million non-redundant microbial genes[235]. The GM may impact host metabolic 
functions, such as energy generation, steroid hormone synthesis, and bile salt metabolism, and they are 
intricately related to the development of metabolic diseases[236]. By increasing energy absorption from 
food, alterations in the GM, in particular, plays a significant role in the onset and progression of obesity 
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and T2DM[237]. In obese people, the GM exhibits particular traits, including altered microbial gene 
abundance and ecological dysregulation which is linked to inflammation, increased body weight and fat 
mass, and T2DM[238]. Therefore, modifying the GM may be an option for treating T2DM and obesity. 
Studies have demonstrated that oral administration of improved GM to rats with metabolic syndrome 
increased insulin sensitivity[239]. Whether SG causes specific changes in the GM that contribute to 
improving metabolic disorders remains unclear. Tabasi et al[240] observed changes in the diversity and 
composition of the GM three months after LSG, and long-term follow-up studies showed that most 
changes remained for one year after surgery, indicating that SG elicits rapid and sustainable changes
[241]. The alterations in GM due to RYGB and SG were varied, with RYGB increasing the relative 
abundances of the phyla Firmicutes and Actinobacteria but reducing those of Bacteroidetes, whereas SG 
increased Bacteroidetes abundances. Of note, Roseburia species abundance was increased in all patients 
who achieved T2DM remission, which was common to SG and RYGB[241]. Changes in GM after LSG 
occur universally, which has been validated in several studies[242,243]. This contributes to the various 
concerns regarding the degree to which the GM may impact the outcome of LSG and whether specific 
changes in the particular flora play a dominant role in improving T2DM or obesity. Surgery based on 
changed GM or fecal transplantation therapy may open new avenues for treating T2DM and obesity.

BAs
BAs are planar amphiphilic molecules with a carboxyl tail that are generated in the liver[244]. Diet 
regulates the synthesis, secretion, and circulation of BAs. In addition to the typical role of lipid 
absorption, BAs operate as signaling chemicals through two key receptors, i.e., Farnesoid X receptor 
(FXR) and Tekeda-G-protein receptor 5 (TGR5)[245]. The hepatic-intestinal cycle occurs when BAs are 
released into the duodenum after eating, and most of them are reabsorbed and transported back to the 
liver after they reach the ileum[246]. Current studies showed that BAs play a significant function in 
controlling lipid, glucose, and energy metabolism and that obesity and T2DM are associated with 
dysregulated BAs homeostasis in vivo[247]. Most respective studies confirmed that BAs alterations are 
similar in obese, T2DM, and IR patients, who show higher fasting BA levels than healthy controls[248]. 
However, this variation is not uniform, and many studies concluded that BA levels are not significantly 
altered[249]. The effect of LSG on BA levels is also somewhat controversial. Yang et al[133] revealed that 
BA levels exhibited a transitory decrease following LSG and thereafter a progressive increase. In 
contrast, following RYGB, BA levels show a consistently increasing trend. While Eiken et al[250] 
discovered higher BA concentrations after RYGB, increased inflow of BAs into the small intestine and 
more rapid release, this did not occur after LSG. Cӑtoi et al[251] examined the relationship between IR 
and BAs after LSG and found no significant changes in BA levels and HOMA-IR in the very early period 
(1 wk) after surgery. However, one month postoperatively, total BA levels increased, HOMA-IR 
decreased, and there was a negative correlation between them. In a different study, there was a link 
between higher BAs levels and better-glycated hemoglobin. Fasting and postprandial levels of total, 
secondary, and unconjugated BAs were higher after LSG[130]. Wang et al[252] discovered that after SG, 
total BA levels increased, and the fraction of 12-hydroxylated BAs was reduced in a diabetic rat model. 
This alteration may be fundamental to improved insulin sensitivity after SG. There are some differences 
between RYGB and LSG with regard to changes in total BAs after BS. One possible explanation for these 
differences is that RYBG entails changes in the structure of the gastrointestinal tract that affect the 
hepatic-intestinal circulation of BAs, whereas LSG does not. LSG and total blood BA levels and BA 
composition are unarguably linked; however, further research is required to help understand how 
certain BA species affect postoperative variations in LSG.

Interactions of BAs and GM
BAs and the GM interact in both directions (Figure 2). In the distal small intestine and colon, where 
most of the GM occurs, hydroxylation and dihydroxylation occur, through which the GM regulates the 
composition of BAs and controls the generation of secondary BAs[253]. By modifying the composition 
structure of BAs, the GM may further regulate FXR and TGR5 functions[254]. Biological agents that 
affect the GM can alter the BA profile[255], and BAs can affect the GM due to their antimicrobial effects 
and impact on intestinal mucosal integrity[256]. In conclusion, elucidating the relationship between BAs 
and the GM may provide a better understanding of the variability in weight reduction and enhanced 
glucose metabolism between RYGB and LSG. The stronger influence of RYGB on the GM owing to 
changed physiological channels induces alterations in BAs, whereas this effect is apparently minor after 
LSG.

CONCLUSION
LSG is an effective therapy option for the worrying pandemic of obesity and T2DM. LSG entails several 
therapeutic mechanisms that enhance glucose homeostasis and IR without relying on weight reduction. 
The gut-brain, gut-adipose tissue, gut-hepatic, gut-pancreatic, and gut-muscle axes are some of these 
putative entities. These insights may provide novel avenues for T2DM treatment targets focused on the 
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Figure 2  Interaction between gut microbiota and bile acids.

gut. Overall, the understanding of how LSG works to treat T2DM has considerably advanced, however, 
further research is required. Additionally, while obese and T2DM patients may benefit from LSG, some 
hazards must be carefully considered, such as higher levels of certain GHs that may cause postprandial 
hyperinsulinemic hypoglycemia and decreased appetite, leading to malnutrition in non-overweight 
individuals.
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Abstract
Diabetes mellitus is a complicated disease characterized by a complex interplay of 
genetic, epigenetic, and environmental variables. It is one of the world's fastest-
growing diseases, with 783 million adults expected to be affected by 2045. 
Devastating macrovascular consequences (cerebrovascular disease, cardiovascular 
disease, and peripheral vascular disease) and microvascular complications (like 
retinopathy, nephropathy, and neuropathy) increase mortality, blindness, kidney 
failure, and overall quality of life in individuals with diabetes. Clinical risk factors 
and glycemic management alone cannot predict the development of vascular 
problems; multiple genetic investigations have revealed a clear hereditary 
component to both diabetes and its related complications. In the twenty-first 
century, technological advancements (genome-wide association studies, next-
generation sequencing, and exome-sequencing) have led to the identification of 
genetic variants associated with diabetes, however, these variants can only 
explain a small proportion of the total heritability of the condition. In this review, 
we address some of the likely explanations for this "missing heritability", for 
diabetes such as the significance of uncommon variants, gene-environment 
interactions, and epigenetics. Current discoveries clinical value, management of 
diabetes, and future research directions are also discussed.

Key Words: Type 1 diabetes; Type 2 diabetes; Gestational diabetes mellitus; Maturity-
onset diabetes of young; Genome-wide association studies; Common variants; Rare 
variants
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Core Tip: Diabetes pathogenesis encompasses genetic, epigenetic, and environmental variables and their 
interactions. To date, the examined common variations can explain just a small portion of the heritability 
of diabetes. Furthermore, the technique of integrating the associated variants as a type of genetic risk score 
does not accurately predict diabetes risk. As a result, the trend for genetic risk factors for diabetes is 
shifting from common to rare variants. Aside from genetic variables, systemic data from other transomics 
such as epigenomics, transcriptomics, proteomics, metabolomics, and metagenomics will contribute to a 
better understanding of genetic determinants in the progression of metabolic illnesses like diabetes. 
Technological, computational, and collaborative developments continue to uncover novel genetic diabetes 
risk factors. There are high prospects for tailored diabetes treatment in the future, based on increased 
knowledge of the molecular genetic profile of the patients.
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INTRODUCTION
Diabetes mellitus (DM) is a set of diverse metabolic illnesses characterized by disturbances in the 
metabolism of glucose, resulting in hyperglycemia and glucose intolerance. Diabetes can occur either by 
the failure of the body to produce insulin, resistance to the action of insulin, or both[1,2]. DM is one of 
the most common endocrinological disorders worldwide. Its prevalence is rising because of phy-
siological risk factors such as socioeconomic level, stress, obesity, hyperlipidemia, and hypertension. In 
addition to these, changes in behavioral patterns such as unhealthy lifestyles and eating habits can 
contribute significantly to the pathogenesis of diabetes[3]. DM has a devastating effect on different 
organs of the body such as the heart, kidneys, nerves, and eyes, and can lead to the development of 
various long-term microvascular or macrovascular complications[4,5]. The rapid global increase in 
instances of diabetes, which affects people's life expectancy and quality of life, places a significant public 
health burden on society[6].

CLASSIFICATION OF DIABETES MELLITUS
DM can be broadly classified into four types (Figure 1) i.e., type 1 DM (T1DM), type 2 DM (T2DM), 
gestational DM (GDM), and maturity-onset diabetes of young (MODY)[7]. Of these, T2DM is the most 
prevalent form of diabetes accounting for 90% of all cases worldwide.

Type 1 diabetes mellitus
T1DM is also known as insulin-dependent DM (IDDM) or juvenile-onset diabetes. T1DM is caused by 
the autoimmune destruction of pancreatic beta cells by a T-cell-mediated inflammatory response, 
resulting in reduced insulin production. T1DM accounts for around 5%-10% of the individuals 
diagnosed with diabetes and approximately 80%-90% of cases with diabetes among children and 
adolescents[8]. The interaction between T-lymphocytes and autoantigens causes beta-cell death. In 
newborns and children, the rate of beta cell loss is relatively variable with rapid progression. Adults are 
more likely to develop the slowly progressive form, commonly known as latent autoimmune diabetes in 
adults (LADA). At this stage, the body secretes little or no insulin, and patients frequently become 
dependent on insulin for survival[2,9].

Type 2 diabetes mellitus
T2DM is the most common type of diabetes, accounting for almost 90% of all cases globally. T2DM is 
characterized by insulin insensitivity caused by insulin resistance, poor insulin production, and 
pancreatic beta-cell destruction. The increased demand for insulin in the target tissues caused by insulin 
resistance could not be met due to beta cell abnormalities, resulting in hyperglycemia[10]. T2DM is a 
complex condition characterized by a combination of genetic as well as environmental variables, such as 
stress, obesity, and lack of physical activity[11].

Gestational diabetes mellitus
Gestational diabetes is most common in pregnant women and accounts for about 7% of all pregnancy 
cases. Females having a history of GDM are 10 times more likely to develop postpartum T2DM, 
cardiovascular disease, and metabolic perturbation in the future[12]. Furthermore, children of pregnant 
women with gestational diabetes are at risk of anomalies related to glucose metabolism and have a 40 to 

https://www.wjgnet.com/1948-9358/full/v14/i6/656.htm
https://dx.doi.org/10.4239/wjd.v14.i6.656


Goyal S et al. Genetics of diabetes

WJD https://www.wjgnet.com 658 June 15, 2023 Volume 14 Issue 6

Figure 1 Types of diabetes and their symptoms. Hyperglycemia and potential metabolic pathways in the pathogenesis of diabetic complications 
(microvascular and macrovascular) are also indicated. AGE: Advanced glycation end-products; RAGE: Receptor for advanced glycation end-products; T1DM: Type 1 
diabetes mellitus; T2DM: Type 2 diabetes mellitus; GDM: Gestational diabetes mellitus; MODY: Maturity-onset diabetes of young.

60 percent chance of getting diabetes in adulthood[13]. Women with a family history of diabetes and 
obese women are more likely to develop gestational diabetes[14].

Maturity onset diabetes of young
MODY, a monogenic variant of type 2 diabetes, has an autosomal dominant inheritance pattern and is 
characterized mostly by insulin secretion abnormalities, however, with normal insulin action[15]. 
MODY generally occurs before the age of 25 years or during childhood[2]. Roughly 2%-5% of type 2 
diabetes patients have been estimated to have MODY. Different types of MODY are classified based on 
underlying genetic defect: MODY1 (HNF4A); MODY2 (GCK); MODY3 (HNF1A); MODY4 (PDX1); 
MODY5 (HNF1B); MODY6 (NEUROD1); MODY12 (ABCC8), and MODY13 (KCNJ11).

ATYPICAL DIABETES MELLITUS
There are two atypical types of DM: LADA and ketosis-prone DM (KPDM), both of which are prone to 
misdiagnosis, leading to ineffective management.

Latent autoimmune diabetes of adults
LADA is a kind of autoimmune diabetes that resembles T1DM, but the onset is during adulthood, and it 
progresses slowly toward absolute insulin insufficiency than classical childhood-onset T1DM, which 
requires prompt exogenous insulin therapy[16]. Approximately 2%-12% of all DM patients may have 
LADA[17]. Most LADA patients do not require insulin at the time of diagnosis; nevertheless, they do 
have diabetes-specific autoantibodies. As a result, they have characteristics of both T1DM and T2DM 
and are at risk of being misdiagnosed as having T2DM[18]. According to studies from China, Korea, 
India, and the United Arab Emirates, the prevalence of LADA is 5.7%, 4.4% to 5.3%, 2.6% to 3.2%, and 
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2.6%, respectively[19]. Usage of clinical risk tools (age of onset of diabetes < 50 years, acute symptoms of 
hyperglycemia at the time of onset, body mass index < 25 kg/m2, family history or personal history of 
autoimmune disease), and evaluation of C-peptide level can help identify individuals at higher risk of 
LADA in adults[19].

Ketosis-prone diabetes mellitus
Diabetic ketoacidosis is a potentially fatal but treatable complication of DM that is characterized by 
hyperglycemia, metabolic acidosis, and ketonemia as a result of absolute or relative insulin insufficiency
[20]. Although the actual prevalence of KPDM is unknown, men have a higher prevalence than women
[21]. Patients with KPDM typically show acute and very recent history (mostly < 4 wk) of 
hyperglycemic symptoms such as polyuria, polydipsia, and weight-loss[22,23].

GLOBAL PREVALENCE OF DIABETES MELLITUS
Diabetes is one of the fastest-growing global health emergencies of the 21st century (Figure 2). Diabetes 
affected around 537 million people in 2021, and this number is projected to reach 643 million by 2030 
and 783 million by 2045, which is a nearly 46% increase in its prevalence[24]. Middle-income countries 
are expected to see the greatest percentage increase in the prevalence of diabetes, followed by high- and 
low-income countries. In 2021, there were approximately 8.4 million individuals worldwide with T1DM, 
of which 1.5 million were younger than 20 years of age. In 2040 the prevalence of T1DM has been 
predicted to increase to 13.5-17.4 million (60%-107% higher than in 2021)[25]. The frequency of the most 
common type of DM i.e., T2DM varies substantially by region, with low and middle-income countries 
accounting for almost 80% of all T2DM cases[26]. This variance in diabetes incidence across the globe 
may be attributable to environmental as well as lifestyle factors apart from underlying genetic 
components. Globally, the prevalence of GDM varies greatly (from 1% to 28%) depending on demo-
graphic variables (e.g., maternal age, socioeconomic status, race or ethnicity, or body composition), 
screening methods, and diagnostic criteria. The estimated prevalence of MODY is 1 in 10000 for adults 
and 1 in 23000 for children.

PATHOGENESIS OF DIABETES MELLITUS
The pathogenesis of type 2 DM is influenced by eight key abnormalities described collectively as "the 
ominous octet"[27] (Figure 3). Reduced insulin secretion, decreased incretin action, increased lipolysis, 
increased glucose reabsorption, decreased glucose uptake, neurotransmitter dysfunction, increased 
hepatic glucose synthesis, and increased glucagon secretion are examples of these[27,28]. Therapy 
options for T2DM should target these documented pathophysiological abnormalities while also using a 
patient-centered approach that incorporates aspects other than glycemic control, such as lowering 
overall cardiovascular risk[29,30]. Recent research has indicated that during the progression of T2DM, 
pancreatic β-cells undergo dynamic compensation and decompensation processes, with metabolic 
stressors such as endoplasmic reticulum stress, oxidative stress, and apoptosis acting as major 
regulators of the β-cell dynamics[31].

T1DM is characterized by the autoimmune death of pancreatic beta cells produced by a T-cell-
mediated inflammatory response, which results in decreased insulin production (Figure 3). On the other 
hand, in GDM, glucose intolerance develops usually in the second trimester which results in adverse 
impacts on both mother and offspring (Figure 3). MODY is caused by mutations in the GCK, HNF, and 
NEUROD1 genes, which are involved in glucose metabolism, insulin control, glucose transport, and 
fetal pancreas development.

Several pathways play a significant role in causing the microvascular and macrovascular complic-
ations associated with T2DM. Hexosamine biosynthetic pathway is implicated in the development of 
insulin resistance and diabetic vascular problems. It has been reported that hyperglycemia increases the 
production of transforming growth factor-beta, a prosclerotic cytokine implicated in the development of 
diabetic nephropathy[32]. The polyol pathway is a two-step metabolic mechanism that converts glucose 
to sorbitol and then to fructose[33,34]. It has long been assumed that the polyol pathway is almost silent 
under normal physiological conditions but becomes active and detrimental under hyperglycemic 
conditions. The protein kinase C pathway in diabetes promotes vascular contractility in an endo-
thelium-independent way through K+ channel inactivation and Ca2+ sensitization of myofilaments in 
vascular smooth muscle cells[35]. The binding of advanced glycation end products to its receptor 
activates a range of signaling pathways, which further enhances oxidative stress, hence leading to nerve 
cell damage and apoptosis[36].
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Figure 2 Predicted percentage increase in the global prevalence of diabetes mellitus from 2021 to 2045[24].
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Figure 3 Pathogenesis of gestational diabetes mellitus, type 2 diabetes mellitus-ominous octet, and type 1 diabetes mellitus. 
Pharmacological glycemic management targets have also been shown here. DPP-4: Dipeptidyl peptide-4 inhibitor; GLP-1RA: Glucagon-like peptide-1 receptor 
agonist; SGLT2: Sodium-Glucose co-transporter 2 inhibitor; IL-2: Interleukin-2; IFN-γ: Interferon gamma.

IDENTIFICATION OF DIABETES SUSCEPTIBILITY GENES
Family and twin studies have reported 20%-80% of heritability in diabetes. First-degree relatives of 
people with T2DM are three times more likely to get the disease than people without a positive family 
history[37]. Even though diabetes from both the maternal and paternal side increases the risk of 
acquiring diabetes, the Framingham Offspring research reported that offspring with maternal diabetes 
had a slightly higher risk of impaired glucose tolerance than those with paternal diabetes[24]. Multiple 
twin concordance studies in T2DM found that monozygotic twins had a greater concordance rate than 
dizygotic twins, indicating that the condition has a significant genetic component[37]. On the other hand 
for T1DM, monozygotic twins have a concordance rate of 40%-50% in population-based twin studies
[38]. The following methods have been used to identify the diabetes risk gene.

Genetic linkage studies
Linkage analysis is based on the principle that genetic sequences located on the same chromosome tend 
to be inherited together and are not separated during meiotic homologous recombination. It is typically 
used in family studies to determine the position of an associated variant(s)[39,40]. Linkage studies have 
successfully uncovered genetic variations that cause monogenic diseases such as MODY[41]. In 1996, 
using linkage analysis, major histocompatibility complex loci (HLA) on chromosome 6 were identified 
as the genetic susceptibility loci for T1DM[42]. In 2004, the calpain-10 gene (CAPN10) on chromosome 2 
was identified as the cause of T2DM using genome-wide screening and positional cloning[43,44]. 
TCF7L2, the now well-known T2DM gene, was mapped to chromosome 10 in a Mexican-American 
group in the year 1999 and has been replicated several times in T2DM genome-wide association studies 
(GWAS)[45,46]. TCF7L2 plays an important role in the Wnt/β-catenin signaling pathway and helps in 
regulating the expression of genes in lipid metabolism in adipocytes and glucose-induced insulin 
exocytosis.

Candidate gene association studies
It is a hypothesis-driven method in which candidate genes are chosen based on prior knowledge such as 
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a gene's biological function, position, or probable significance about a given phenotype[47]. This method 
is usually more suitable in studies where individuals are unrelated[48]. Candidate gene studies revealed 
an association between T2DM and insulin receptor substrate 1 (IRS1), peroxisome proliferator-activated 
receptor gamma (PPARG), and insulin receptor substrate 2 (IRS2), Wolfram syndrome 1 (wolframin) (
WFS1), potassium inwardly-rectifying channel, subfamily J, member 11 (KCNJ11), HNF1 homeobox A (
HNF1A), and HNF1 homeobox B (HNF1B)[49]. By association studies for T1DM, four non-HLA genes 
with established risk loci [HLA, INS (insulin), CTLA4 (cytotoxic T-lymphocyte antigen 4), PTPN22][50] 
could be identified. Of all the genes identified for gestational DM; TCF7L2, MTNR1B, CDKAL1, IRS1, 
and KCNQ1 candidate genes are the most common, whereas other identified genes are ethnic-specific. 
On the other hand, MODY is inherited in an autosomal dominant pattern and manifests itself as a result 
of mutations in transcription factor genes such as HNF4 (hepatocyte nuclear factor), HNF1, IPF1 (insulin 
promoter factor), and neuro-D1[51,52].

Genome-wide association studies
GWAS are large-scale hypothesis-free investigations that entail the fast scanning of genetic variants 
(SNPs on genotyping arrays) across the complete human genome to uncover unique genetic associations 
with a certain trait[53]. The initial T2DM-related GWAS studies identified hematopoietic expressed 
homeobox (HHEX), solute carrier family 30 member 8 (SLC30A8), cyclin-dependent kinase inhibitor 31 
2A/2B (CDKN2A/2B), insulin-like growth factor 2 mRNA binding protein 2 (IGF2BP2), CDK5 regulatory 
subunit associated protein 1 Like 1 (CDKAL1), and FTO alpha-ketoglutarate (FTO)[54-58]. Approx-
imately 250 significant susceptibility loci for T2DM have been identified to date (https://
www.ebi.ac.uk/gwas/efotraits/MONDO_0005148). On the other hand, for T1DM by GWAS more than 
60 loci have so far been discovered (https://www.ebi.ac.uk/gwas/efotraits/MONDO_0005147), 
revealing the pathways underlying the disease, and overlaps with autoimmune diseases[59]. GWAS in 
T1DM has not only verified the previously reported T1DM loci but also uncovered several novel 
variations, such as those near the KIAA0350 (CLEC16A approved symbol)[60] gene and with UBASH3A 
(ubiquitin-associated and SH3 containing A)[61]. To our knowledge, to date, only three GWAS have 
been conducted for GDM[62-64]. Kwak et al[62] identified two significant GDM variants, rs7754840 and 
rs10830962 in the intronic region of CDKAL1, and upstream of MTNR1B, respectively. On the other 
hand, Wu et al[63] identified 23 SNPs in four genes: CTIF, CDH18, PTGIS, and SYNPR to be associated 
with GDM. Recently, Pervjakova et al[64] through multi-ancestry meta-analysis reported five loci 
(mapping to/near MTNR1B, TCF7L2, CDKAL1, CDKN2A-CDKN2B, and HKDC1) through genome-wide 
association studies for GDM. Using a meta-analysis approach, the genetic architecture of T1DM and 
T2DM has been determined in many populations with different ethnic backgrounds[65-74].

There are many challenges to the GWAS approach. The current GWAS genotyping arrays are based 
on HapMap and the 1000 genome project dataset, and these are designed to target common SNPs (MAF 
> 5%). As a result, the prior GWAS did not directly investigate rare variants for an association with the 
trait[75]. Also, the observed variants that are linked to the trait may not be the causal variations, but 
rather be in linkage disequilibrium with the causal variants. Furthermore, since the variant is often 
located outside the coding regions and may affect genes and regulatory elements at a distance, it is 
usually difficult to understand how the variant affects the trait.

Genome-wide rare variants association studies
The 'common disease, rare variant' hypothesis, in contrast to the standard 'common disease, common 
variant' paradigm, says that many rare genetic variations with relatively high penetrance play a 
significant influence in the elevated risk of common diseases[76]. Huyghe et al[77] for the first time in 
2013 investigated the significance of low-frequency variants (minor allele frequency < 5%) associated 
with the risk of T2DM or T2DM-related traits using the Illumina exome array technique. Two low-
frequency variants in SGSM2 and MADD were reported to be associated with fasting proinsulin concen-
trations and three novel variants in TBC1D30, KANK1, and PAM genes were reported with proinsulin or 
insulinogenic index. Later in 2014, Steinthorsdottir et al[68] using an exome sequencing technique in the 
Icelandic population, reported three more T2DM-associated low-frequency variants in CCND2, PAM, 
and PDX1. In the following years, rare variants in MTNR1B, HNF1, and G6PC2 genes were also reported 
to be associated with T2DM or T2D-related traits[78]. Nejentsev et al[79] reported four rare variants 
(rs35667974, rs35337543, rs35732034, and rs35744605) in IFIH1, a gene previously discovered in T1DM 
GWAS. Additionally, a cluster of rare detrimental variations in PTPN22 was identified for T1DM, 
comprising two novel frameshift mutations (rs538819444 and rs371865329) and two missense variants 
(rs74163663 and rs56048322)[80].

EPIGENETIC ALTERATIONS IN T2DM
The term "epigenetics" refers to heritable alterations in gene function that occur without a change in the 
nucleotide sequence. Epigenetic changes can be inherited from one cell generation to the next and in 
some cases, can be inherited through the generations. Epigenetic changes can also develop during life, 
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either randomly or in response to environmental stimuli, impacting the effects of genetic variants and so 
acting as a gene-environment interaction mechanism. Both DNA methylation and histone modifications 
can amend the response of our genome to the environment during life. The involvement of intrauterine 
DNA methylation and imprinting in the programming of diabetogenic effects later in life has received 
significant interest in the etiology of the T2DM[81]. An intriguing study by Dabelea et al[82] found that 
intrauterine diabetes exposure increased the incidence of diabetes and obesity in offspring compared to 
siblings born before their mothers' diabetes onset. However, the precise mechanism underlying this 
maternal impact is unknown. Some studies have suggested a role of epigenetic regulation of genes 
involved in energy metabolism, appetite control, and -cell function, such as PPARA[83], LEP[84], and 
pancreatic and duodenal homeobox 1 (PDX1)[85].

MICRORNAS
MicroRNAs (miRNAs) have emerged as promising novel biomarkers for T2DM and related problems 
due to their metabolic stability and abundance in various body fluids including blood and cerebrospinal 
fluid. miRNAs are a class of endogenous, small (18-25 nucleotide) RNA that regulates many cellular 
activities by suppressing gene expression[86]. According to recent research, differential concentrations 
of circulating miRNAs (Table 1)[87-128] may offer the intriguing potential for diabetes (T1DM, T2DM, 
MODY, and GDM) diagnosis, prognosis, and treatment monitoring.

POLYGENIC RISK SCORES FOR T2DM
Since, T2DM is the most common form of diabetes, hence most of the polygenic risk scores (PRSs) 
studies have been performed on T2DM. GWAS investigations have enabled the development of PRSs or 
genetic risk score (GRS) that assess an individual's lifetime genetic risk for various diseases. Several 
studies on coronary artery disease have been reported[129-132], however, there is a scarcity of reports 
on the prediction models for diabetes (T1DM, T2DM, and GDM). The area under the receiver operating 
characteristics curve is a measure of the prediction accuracy of the constructed PRS[133]. One of the first 
research estimated a T2DM GRS using a combination of 18 loci and reported that genetic information 
only marginally improved risk prediction when paired with standard clinical risk factors such as age, 
gender, or diabetes family history[134-136] (Table 2). There has been a rise of interest in GRS in recent 
years, utilizing many more loci reported from large-scale, multi-ancestry cohorts. T2DM GRS studies 
from large datasets[137-139] reported that GRS constructed from multi-ethnic computed weights 
indicated a marginal increase in predictive power as compared to single-ancestry computed weights, 
the reason might be heterogeneity across different ancestries (Table 2)[140-149].

PRSs have also been demonstrated to predict pre-diabetes and T2DM in women with a history of 
GDM (Table 3)[150-153]. Some studies have found that using a PRS in conjunction with traditional 
T2DM risk factors improves discrimination of the risk of pre-diabetes in women with prior GDM, 
potentially giving more accurate tools for the prediction of future T2DM.

GRS, on the other hand, may have a role in recognizing high-risk patients before clinical risk markers 
become apparent. It needs to be shown whether GRS data can drive preventive therapy to meaningfully 
reduce rates of future incident T2DM.

LIFESTYLE MODIFICATIONS, ENVIRONMENTAL FACTORS, AND MANAGEMENT OF 
DIABETES MELLITUS
In the long term, the pharmacological strategy for treating diabetes may be only partially effective. 
Major changes in patients' lifestyles (change in physical activity, dietary alteration, stress management, 
and improved sleeping patterns), along with treatments through pharmacological techniques, are 
required to ensure optimal disease management. Self-monitoring of blood glucose is an excellent tool 
for monitoring glycemic status. Current American Diabetes Association (ADA) guidelines urge its use in 
all patients with T1DM, T2DM, or any other form of diabetes (e.g., gestational diabetes) that requires 
numerous subcutaneous insulin injections[154]. Continuous glucose monitoring systems i.e., Dexcom 
G6, Frestyle Libre 1 and 2, GlucoMen day, Eversense, Eversense XL, S7 EasySense, Guardian, and 
Connect have been reported to be of great use to diabetics. Insulin pens are the most often utilized 
method of insulin administration in T2DM patients[155]. Users can track boluses, calculate remaining 
insulin, check insulin temperature, and receive dosage reminders using Bluetooth-enabled insulin pen 
caps and attachments that connect to smartphone apps[156]. The integration of insulin pumps with 
other diabetes technologies developed over the last decade has paved the way for techniques of 
optimally regulating blood glucose while minimizing user stress. For the management of LADA C-
peptide levels should be monitored every 6 mo. For KPDM patients lifestyle modifications as stated 
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Table 1 List of various circulating microRNAs reported in diabetes mellitus individuals

Mechanism/pathway (diabetes type) Expression of miRNAs Ref.

Endothelial dysfunction (T2DM) ↑miR-28-3p

↓miR-24

↓miR-21

↓miR-20b

↓miR-15a

↓miR-126

↓miR-191

↓miR-197

↓miR-223

↓miR-320

↓miR-486

↓miR-150

↓miR-29b

↓miR-107

↓miR-132

↓miR-144

[87]

Glucose metabolism (T2DM) ↑miR-9

↑miR-29a

↑miR-30d

↑miR-34a

↑miR-124a

↑miR-146a

↑miR-375

[88]

Inflammation (T2DM) ↓miR-146a [89]

Glucose metabolism (T2DM) ↑miR-27a

↑miR-320a

[90]

Glucose metabolism (T2DM) ↓miR-126 [91-93]

Inflammation (T2DM) ↓miR-103b [94]

Inflammation (T2DM) ↓miR-126-3p

↓miR-21-5p

[95]

Inflammation (T2DM) ↓miR-126 [96]

Endothelial dysfunction (T2DM) ↓miR-126

↓miR-26a

[97]

Glucose metabolism (T2DM) ↓miR-21 [98]

Inflammation (T2DM) ↓miR-126-3p [99]

Endothelial dysfunction (T2DM) ↓miR-24 [100]

Platelet reactivity (T2DM) ↓miR-223

↓miR-26b

↓miR-126

[101]

↓miR-140

Glucose metabolism (T2DM) ↑miR-375 [102]
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↑miR-9

Glucose metabolism (T2DM) ↑miR-30a-5p

↑miR-150

↓miR-103

↓miR-28-3p

↓miR-29a

↓miR-9

↓miR-15a

↓miR-126

↓miR-145

↓miR-375

↓miR-223

↓miR-133

↓miR-107

[103]

Endothelial dysfunction (miR-126); hypoxia (miR-210) (T2DM) ↓miR-126

↑miR-210

[104]

Angiogenesis (T2DM) ↑miR-193b-3p

↑let-7i-5p

↑miR-199a-3-5p

↑miR-26b-5p

↑miR-30b-5p

↑miR-374a-5p

↑miR-20a-3p

↑miR-26a-5p

↑miR-30c-5p

↓miR-409-3p

↓miR-95-3p

[105]

Apoptosis (T1DM) ↑miR-21 [106,107]

↓miR-23a-3p

↓miR-23b-3p

↓miR-149-5p

[108]

Inflammation (T1DM) ↑miR-101a

↑miR-30b

[109]

-cell dysfunction (T1DM) ↑miR-106b-5p

↑miR-222-3p

↑miR-181a

[110,111]

T-cell dysfunction (T1DM) ↑miR-26a [112]

↑miR-98

↑miR-23b

↑miR-590-5p

[113]

-cell lymphopoiesis (T1DM) ↑miR-34a [114]

DNA damage checkpoint (T1DM) ↑miR-200 [115]

Apoptosis (T1DM) ↓miR-144 [116]
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Autoimmune imbalance (T1DM) ↓miR-146a [117]

MODY ↑miR-103

MODY ↑miR-224

[118]

Glucose metabolism (GDM) ↑miR-222 [119]

↑miR-98 [120]

↑miR-518d [121]

↑miR-340 [122]

↑miR-130b, miR148a [123]

-cell dysfunction (GDM) ↑miR-33a-5p [124]

↑miR-330-3p [125]

↓miR-494 [126]

↓miR-96 [127]

↓miR-221 [128]

miRNAs: MicroRNAs; T1DM: Type 1 diabetes mellitus; T2DM: Type 2 diabetes mellitus; GDM: Gestational diabetes mellitus; MODY: Maturity-onset 
diabetes of young.

above have been proposed to successfully treat the disease.
In addition to the above-mentioned methods, the following steps can be taken to control blood sugar 

levels.

Physical activity
Physical exercise is positively associated with controlled hyperglycemia levels among T2DM patients. 
Moderate physical activity (walking, gardening, regular household chores) on a regular basis has been 
shown to be an effective method to reducing the long-term symptoms of diabetes[157]. In women with 
type 2 diabetes, yoga practice is more beneficial than the same course of aerobic exercise in enhancing 
sleep quality, hence, yoga activity can thus be recommended to these patients[158]. The identification of 
cytokines such as irisin, osteocalcin, and adiponectin has led to the assumption that they may be 
important hormonal mediators of exercise therapy for diabetes and metabolic illnesses, although the 
precise mechanism remains unknown[159-161].

Dietary changes
Strict adherence to a restricted diet combined with adequate physical exercise is strongly linked to a 
lower incidence of diabetes[162]. The incorporation of a Paleolithic diet (a diet rich in lean meat, fish, 
fruits, and vegetables) into the daily routine of diabetic patients resulted in a significant improvement in 
glucose management[163]. Foods that are naturally abundant in dietary fiber also contain a variety of 
chemicals that may help decrease glycemia. For example, bioactive proteins, polyphenolic compounds, 
and other phytochemicals[164]. Additionally, according to current research, meal timing and frequency, 
missing meals, and fasting are all linked to metabolic syndrome. Eating frequently and in the morning 
may help to prevent metabolic syndrome. Understanding the impact of dietary choices on health is just 
as important as understanding the impact of nutrients on health.

Stress
The bulk of T2DM and T1DM-related parameters, including the release of glucose (and lipids) in 
circulation, the development of inflammatory cytokines, and raised blood pressure, are heavily 
influenced by psychological stress[165]. The underlying mechanisms entail a complex neuroendocrine 
structure that includes both the central nervous system and the peripheral nervous system. In one 
study, when type 2 diabetes patients were subjected to acute stress during the postprandial period, 
significant increases in blood glucose levels were seen[166]. Treatment options, including stress 
management therapies, appear to be a promising approach for effectively preventing or reducing type 2 
diabetes incidence.

Sleep patterns
Another modifiable lifestyle choice that has been shown to influence metabolic health and energy status 
is sleep. Sleeping pattern optimization is critical in the diabetes management[167]. According to a 
population-based study, short sleep (less than 5 h) or insomnia is related to an elevated risk of T2DM
[168]. Poor sleep was linked to increased glycated hemoglobin (HbA1c) levels (> 7%) and insulin 
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Table 2 Studies on polygenic risk score for type 1 diabetes mellitus and type 2 diabetes mellitus

Diabetes type SNPs AUC for PRS Ethnicity Ref.

T1DM 41 0.87 Caucasian [140]

T1DM 30 0.88 Caucasian

T1DM + T2DM 99 0.89 Caucasian

[141]

T1DM 32 0.86 Caucasian

T1DM 32 0.90 Caucasian Hispanic

T1DM 32 0.75 African-American

T1DM 32 0.92 Asian-American

[142]

T1DM 67 0.93 Caucasian [143]

T2DM 3 0.58 Caucasian [144]

T2DM 18 0.80 Caucasian [136]

T2DM 16 0.75 Caucasian [134]

T2DM 18 0.91 Caucasian [135]

T2DM 22 0.74 Caucasian [145]

T2DM 62 0.91 Caucasian United States population [146]

T2DM 1000 0.79 Caucasian [147]

T2DM 4 0.67 African [148]

T2DM 7 million 0.73 Caucasian [149]

SNP: Single nucleotide polymorphisms; AUC: Area under the curve; PRS: Polygenic risk score; T1DM: Type 1 diabetes mellitus; T2DM: Type 2 diabetes 
mellitus.

Table 3 Polygenic risk scores studies for gestational diabetes mellitus

Diabetes type SNPs OR 95%CI Ref.

GDM 34 SNPs previously associated with T2DM 1.11 (1.08-1.14) [150]

GDM 11 SNPs previously associated with T2DM 1.18 (1.10-1.27) [151]

GDM 150 previously associated with T2DM 1.06 (1.01-1.10) [152]

GDM 84 SNPs 6.15 (5.03-7.51) top 5% [153]

SNP: Single nucleotide polymorphisms; OR: Odds ratio; T2DM: Type 2 diabetes mellitus; GDM: Gestational diabetes mellitus.

resistance in T2DM patients in previous research[167]. Similar results has been observed for T1DM also, 
where persons with T1DM who reported sleeping more than 6 h had 0.24% lower A1C values than 
those who slept less than 6 h[169].

One-step or two-step diagnosis for GDM
The one step or two step techniques are used to diagnose gestational DM. The one step method consists 
of a 2-h oral glucose tolerance test with a 75-g glucose overload that examines plasma glucose concen-
tration at fasting, 1 h, and 2 h following glucose delivery. A positive result is characterized as a number 
more than 92, 180, or 153 mg/dL[170-172]. The two-step method comprises a nonfasting oral 50-g 
glucose load followed by a glucose blood measurement 1 h later. A positive result is defined as a blood 
glucose level greater than 130, 135, or 140 mg/dL; the most used number is 135 mg/dL. A diagnostic 
test is performed after a positive screening test[173].

PHARMACOGENOMICS IN DIABETES MELLITUS
Pharmacogenomics is the process of developing a genetically personalized therapy strategy to obtain 
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the best optimal individual response. Several polymorphisms in the genes i.e., ABCC8, KCNJ11, TCF7L2, 
CYP2C9, IRS1, CDKAL1, CDKN2A, CDKN2B, KCNQ1, NOS1AP, and CAPN10 have been explored in 
recent years in relation to the therapeutic response of various anti-diabetic medicines[174]. The 
American Association of Clinical Endocrinologists/American College of Endocrinology and the ADA in 
addition to metformin had proposed four oral options (sulfonylurea, thiazolidinedione, dipeptidyl 
peptidase-4 inhibitor, sodium-glucose cotransporter 2 inhibitor) and injectable agents (glucagon-like 
peptide-1 receptor agonist or basal insulin) for lowering blood glucose levels (Figure 3). Although these 
drugs have important therapeutic effects on diabetes, their long-term impact has not been 
accomplished, and their responses in individuals also display variances[175,176]. Moreover, some 
agents produce adverse side effects, such as hypoglycemia, weight gain, gastrointestinal discomfort, 
urogenital infections, discomfort at the injection site, and in some cases heart failure[177].

Potential therapeutic drugs with new targets for diabetes
It is important to identify and develop novel targets to improve the therapeutic efficacy of present anti-
diabetic medications, reduce the risk of side effects, and even reverse the development of diabetes. 
Many potential antidiabetic drugs i.e., Dorzagliatin (glucokinase activators), BI 135585 [b-
hydroxysteroid dehydrogenase-1 inhibitors (11-b-HSD1 inhibitors)], DS-8500a (G-protein-coupled 
receptor 119 agonists), and PF-06291874/LGD-6972 (glucagon receptor antagonists) with new targets 
are currently undergoing clinical trials. These drugs may become new diabetes treatment options and 
provide more therapeutic alternatives for diabetes patients.

There is growing evidence that vitamin D insufficiency may play a critical role in the T2DM etiology
[178]. Thus, in a randomized controlled study, the oral daily doses of vitamin D supplementation with 
metformin significantly reduced HbA1c levels after 3 and 6 mo of supplementation, compared to the 
metformin alone[179].

PHYTOCONSTITUENTS: AN ALTERNATIVE OPTION
In diabetic patients, monotherapies combined with herbal extracts or phytoconstituents demonstrated 
significant improvements in blood glucose levels. Plant-derived chemical compounds have also proven 
to be potential alternatives. Table 4[180-194] shows the known effects of various phytoconstituents on 
diabetes. Diabetes can be managed using either nonpharmacological (reasonable diet and exercise) or 
pharmacological (drugs or insulin) techniques. However, T2DM medication is expensive for patients 
and has substantial adverse effects. Plants appear to offer an appealing alternative to traditional 
diabetes treatment. They comprise complex compounds including many natural bioactive principles 
with less adverse effects.

CONCLUSION
Diabetes pathogenesis encompasses genetic, epigenetic, and environmental variables and their 
interactions. To date, the examined common variations can explain just a small portion of the 
heritability of diabetes. Furthermore, the technique of integrating the associated variants as a type of 
GRS does not accurately predict diabetes risk. As a result, the trend for genetic risk factors for diabetes 
is shifting from common to rare variants. Aside from genetic variables, systemic data from other trans-
omics such as epigenomics, transcriptomics, proteomics, metabolomics, and metagenomics will 
contribute to a better understanding of genetic determinants in the progression of metabolic illnesses 
like diabetes. Technological, computational, and collaborative developments continue to uncover novel 
genetic diabetes risk factors. There are high prospects for tailored diabetes treatment in the future, based 
on increased knowledge of the molecular genetic profile of the patients.

Table 4 List of phytochemicals used in the prevention and treatment of diabetes and its complications

Phytochemical Source Outcomes Ref.

Curcumin Curcuma longa ↑Insulin sensitivity, ↓blood glucose 
levels, and hypoglycemia

[180]

Rutin Buckwheat (Fagopyrum esculentum) ↓Hepatic glucose production, ↑glucose 
tolerance

[181]

Resveratrol Grapes, plums, peanuts, nuts, red wine Improved insulin signaling, ↑glucose-
mediated insulin secretion

[182]
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Quercetin Apples, black tea, berries, capers, red wine, onions ↑Glucose uptake, ↓hepatic glucose 
production

[182,
183]

Genistein Legumes Improved lipid glucose metabolism and 
↓fasting glucose

[184]

Hesperidin Orange, lemon ↑Glucose uptake, ↓HbA1c, ↓oxidative 
stress

[185]

Naringin Skin of grapefruit and orange ↓Hepatic glucose production, ↓oxidative 
stress, ↑glucose uptake

[185]

Naringenin Citrus fruits, tomatoes, cherries, grapefruit, cocoa ↑Glucose uptake, ↓glucose intolerance 
and reduced blood glucose levels

[186]

Vitamin A, D, and E Eggs, yellow, red, and green (leafy) vegetables, such as spinach, carrots, 
sweet potatoes and red peppers. yellow fruit, such as mango, papaya and 
apricots

↓Glucose intolerance, ↓hyperglycemia [182]

Fisetin Strawberry, apple, persimmon, grape, onion, and cucumber ↓Hepatic glucose and ↑glucose 
metabolism

[187]

Flavonoids Coffee, guava tea, whortleberry, olive oil, propolis, chocolate, and cocoa ↓Glucose absorption, inhibition of 
advanced glycation end products

[188]

Isoflavones Soybean Improves glucose metabolism [189]

Catechins Tea leaves and red wine Promote insulin sensitivity [190]

Hydroxycinnamic acids Fruits and vegetables, especially the outer part of ripe fruits Promote glucokinase activity [191]

Caffeoylquinic Potatoes, eggplants, peaches, prunes, and coffee beans Promote insulin response [192]

Anthocyanins and 
anthocyanidins

Berries, eggplants, avocado, oranges, olives, red onion, fig, sweet potato, 
mango, and purple corn

Promote blood glucose regulation [193]

Stillbenoids Grapevine, berries, and peanuts Promote pancreatic -cell and hepatopro-
tective activity

[194]

HbA1c: Glycated hemoglobin.
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Abstract
Diabetes is a chronic disease that is considered one of the most stubborn global 
health problems that continues to defy the efforts of scientists and physicians. The 
prevalence of diabetes in the global population continues to grow to alarming 
levels year after year, causing an increase in the incidence of diabetes complic-
ations and health care costs all over the world. One major complication of diabetes 
is the high susceptibility to infections especially in the lower limbs due to the 
immunocompromised state of diabetic patients, which is considered a definitive 
factor in all cases. Diabetic foot infections continue to be one of the most common 
infections in diabetic patients that are associated with a high risk of serious 
complications such as bone infection, limb amputations, and life-threatening 
systemic infections. In this review, we discussed the circumstances associated 
with the high risk of infection in diabetic patients as well as some of the most 
commonly isolated pathogens from diabetic foot infections and the related 
virulence behavior. In addition, we shed light on the different treatment strategies 
that aim at eradicating the infection.

Key Words: Diabetic foot infection; Chronic ulcer; Bacterial biofilm; Multidrug resistance; 
Methicillin resistant Staphylococcus aureus; Vancomycin resistance
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Core Tip: Diabetic foot infection is a common complication of diabetes that can lead to 
serious consequences, such as amputations and even death. The microbiome of the 
wound plays a crucial role in the development and progression of diabetic foot ulcer. 
The current review shed light on the most prevalent bacterial infections and their related 
virulence factors that are associated with diabetic foot complications. Additionally, 
various approaches for treatment were explored.
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INTRODUCTION
Diabetes is a chronic metabolic disorder that is characterized by the failure of the body to regulate blood 
glucose levels. The worldwide prevalence of diabetes has increased to epidemic levels in the last decade; 
the latest report from the International Diabetes Federation Diabetes Atlas stated a global diabetes 
prevalence of 10.5% in 2021 with the expected incidence to reach 12.2% in 2045. By comparing to the 
2019 report, which stated a 9.3% global incidence of diabetes with a 2045 rate projection of 10.9%, the 
data suggest an exaggerated increase in diabetes prevalence worldwide[1,2]. Diabetes is associated with 
many complications that are commonly encountered in health care facilities, especially cardiovascular 
disease, retinopathy, neuropathy, nephropathy, and lower limb infections in addition to the high risk of 
amputations and systemic infections that are linked to high mortality rate[3,4]. Diabetic foot ulcer is a 
serious condition characterized by chronic lower limb wound that is often complicated by disseminating 
polymicrobial infections that can affect the underlying bone tissues. Diabetic foot infection (DFIs) 
require careful attention from health care providers regarding the proper diagnosis of the wound level 
and prompt management including debridement procedures, antimicrobial treatments, and follow-up 
of the wound healing process[5-7].

During the examination of the diabetic foot wound, the accurate evaluation of the wound plays a 
pivotal role in the proper management selection. Usually, the wound examination should include 
specimen collection from the deepest parts of the wound in order to identify the associated etiologic 
pathogens, accompanied by inspection of the underlying vascular and bone tissues. The Meggitt-
Wagner guide is a commonly used system for classification of the DFI based on three parameters: the 
depth of the ulcer; the infection level; and the degree of necrosis. The guide classifies the DFI into five 
main categories, which are outlined in Figure 1. A progressive DFI needs immediate management in 
order to minimize the risk of bone infection and osteomyelitis, which are common complications in 
50%-60% of severe infections and associated with a high risk of limb amputations[8,9]. In this review, 
we discussed the most common pathogens related to DFIs along with the associated virulence factors 
and possible treatment options for eradication of the infection and subsequent minimization of 
comorbidities and mortality rates.

FACTORS THAT INCREASE THE RISK OF INFECTION IN DIABETIC PATIENTS
Impaired immunity
Impaired immune functions represent a defining element in diabetes that impacts both innate and 
adaptive immunity. The innate immunity is the first line defense against pathogens and foreign 
particles. The response is mediated through phagocytes, natural killer cells, and inflammation[10]. 
Diabetes is associated with elevated levels of tumor necrosis factor α, macrophages, and inflammatory 
cytokine release that predisposes patients to chronic inflammation and increased pathogenicity of 
infections[11]. Additionally, diabetes is associated with an impaired number and functioning of natural 
killer cells with high connectivity to autoimmune diseases and increased risk of cardiovascular disease, 
malignancy, and susceptibility to infection[12]. On the other hand, the decreased number and function 
of dendritic cells results in impaired antigen presenting function and subsequently deterioration of the 
function of adaptive immunity[12]. Likewise, diabetes is associated with marked suppression in release 
of interleukin 6, decreased antibody production, decreased effector T cell development, and impaired 
leukocyte recruitment, all of which are considered important mediators of the adaptive immune 
response against pathogens[10,13].

Hyperglycemia
Elevated blood glucose level is the main symptom of diabetes; failing to control blood glucose levels in 
diabetic patients will cause serious complications as a result of alterations in multiple metabolic 
pathways[14]. The high blood glucose level results in activation of the polyol pathway, increased 
glycation of end products, and eventually boosted release of reactive oxygen species and nitric oxide 
that contribute to oxidative stress and inflammation[15]. Hyperglycemia also contributes to immuno-
suppression through inhibition of cytokine release in response to pathogenic infection in addition to 
attenuation of macrophages, neutrophil dysfunction, and complement activation[10,13]. In addition, 
hyperglycemia is associated with stiffer blood vessels, which cause slower circulation and capillary 
dysfunction, predisposing to reduced tissue oxygenation[16]. Moreover, hyperglycemia contributes to 
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Figure 1 Risk factors for the development of diabetic foot infections. Angiopathy and neuropathy are the main predisposing factors of diabetic foot 
infections (DFIs), together with muscular atrophy and extrinsic triggers, such as trauma, in the presence of abnormal immunity and ischemia as aggravating factors. 
These factors collectively result in the loss of skin integrity favoring the development of DFIs. The Meggitt-Wagner classification is commonly used to grade the DFIs 
(from 1 to 5) on three characteristics: the depth of ulcer; the degree of infection; and the necrosis.

increased virulence of some pathogens as observed in some coronavirus disease 2019 patients with type 
2 diabetes mellitus where an uncontrolled blood glucose level was directly linked to increased severe 
acute respiratory syndrome coronavirus 2 replication and increased severity of complications[17]. This 
is in accordance with multiple studies that confirmed the association of hyperglycemia with increased 
bacterial load and virulence expression in Staphylococcus aureus (S. aureus) and Pseudomonas aeruginosa (
P. aeruginosa) infections accompanied by increased severity of the infection in diabetic patients[18,19].

Vasculopathy and ischemia
As mentioned earlier, persistent hyperglycemia results in overproduction of reactive oxygen species and 
superoxides especially peroxynitrite leading to increased nitrosylation and eventually causing 
endothelial dysfunction, vasoconstriction, and platelet aggregation. In addition, the diabetic proinflam-
matory environment results in vascular inflammation and proliferation of vascular smooth muscles 
predisposing to atherosclerosis and atherothrombosis[20]. Some of the common vasculopathy present-
ations in diabetic patients involve peripheral artery diseases giving way to peripheral cramps, 
numbness, discoloration of limbs, weak pulse in the affected limb, and critical limb ischemia[21]. 
Peripheral ischemia results in delayed wound healing and tissue necrosis as a result of a decreased 
supply of oxygen, nutrients, and immune cells; in addition, the reduced tissue perfusion would limit the 
delivery of antibodies and antibiotics. A combination of all the preceding factors would result in an 
environment that favors microbial proliferation at the injured tissues, which supports the development 
of chronic diabetic foot ulcers[22].

Neuropathy
Diabetic neuropathy is a neurodegenerative disorder that affects the peripheral sensory nervous system 
in 50% of cases. The condition is characterized by pain, numbness, and loss of sensory function that 
begins in the lower extremities[23]. Again, hyperglycemia along with the associated inflammation and 
oxidative stress play the lead role in the mechanisms predisposing to diabetic neuropathy, where 
Schwan cells and the myelin sheath are the first affected resulting in delayed signal transmission and 
eventually neuron dysfunction especially in distal terminals of motor nerve axons[23,24]. Diabetic 
neuropathy contributes to increased risk of infection in diabetic patients through inhibition of local 
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vasodilation of the microcirculation at the affected tissues, which is a normal response to injury or 
inflammation; the reduced vasodilation results in reduced local blood flow and further promotes local 
ischemia[25]. On top of that, the loss of sensory nervous function will impair pain sensation, thus 
diminishing the ability of the patient to sense or detect wounds and injuries in peripheral tissues 
especially toes and foot soles, which in turn leads to delayed response and management of the condition 
and increasing the risk of amputation[26]. Peripheral neuropathy is a common manifestation in 90% of 
hospital admissions of diabetic foot ulcers; in addition, 14%–24% of people with a diabetic foot ulcer will 
ultimately undergo an amputation procedure with subsequent high mortality rate[24].

BACTERIAL VIRULENCE FACTORS AND THEIR CONTRIBUTION TO PATHOGENICITY IN 
DFIS
Adhesins
Adhesins are fine protein extensions expressed on the bacterial cell surface usually represented by a 
small protein subunit at the tip of the fimbriae. Their primary function is to facilitate the attachment or 
adherence of bacteria to host cells, which is the first step in initiation of an infection[27,28]. Adhesins 
also play a pivotal role in establishment of biofilms. This fact was proven by many studies that reported 
that biofilm formation can be completely blocked by downregulation of pili expression or by using 
adhesins antibodies that can drastically inhibit bacterial attachment to the target tissues, hence 
inhibiting subsequent initiation of infection and biofilm formation[29,30]. Some adhesins are called 
hemaglutinins due to their ability to induce the agglutination and hemolysis of red blood cells. 
Hemaglutinins contribute to localized destruction of red blood cell (RBCs) and release of iron, which is 
an essential nutrient requirement for most pathogenic bacteria[31]. Additionally, bacterial adhesins play 
an important role in intracellular bone invasion as observed in the ability of S. aureus to invade 
osteoblasts and fibroblasts, which contribute to serious complications of diabetic foot ulcer as well as 
increased risk of amputation[32].

Biofilm formation
Biofilm formation represents an important virulence factor that plays a leading role in the persistence 
and recurrence of diabetic foot ulcers. Biofilms are closed microbial communities embedded in a mucoid 
extracellular polymer matrix consisting of a wide range of molecules including polysaccharides, 
proteins, glycoproteins, glycolipids, cell debris, wastes, and surfactants[33,34]. These molecules provide 
high viscosity to the biofilm matrix acting as a physical protective barrier that prevents penetration of 
host immune defenses as well as antimicrobial treatments[35]. In addition, diabetic patients suffer from 
reduced peripheral blood supply, which makes the it even harder for the immune system and antibiotic 
treatments to eradicate biofilms in DFIs[36].

Within the biofilm, bacteria can coordinate their behavior using a communication system called 
quorum sensing (QS). This system is activated once the bacterial population reaches a certain threshold 
level beyond which the members of the biofilm initiate a coordinated group response that favors the 
public interests of the biofilm community; this coordinated activity aims at conserving energy and 
nutrients by reducing the metabolic activity of biofilm inhabitants[37-39]. Additionally, bacterial gene 
expression is directed towards increased expression of virulence factors especially extracellular toxins, 
which initiate extensive tissue destruction at the biofilm site; this ensures generous release of nutrients 
from the damaged tissues as well as facilitating the spread of infection to adjacent tissues, which further 
cements the biofilm and increases its persistence[40,41].

Another important feature of biofilms is the shift in bacterial phenotypes within the biofilm 
community towards the formation of persister cells that are inherently resistant to eradication by 
antimicrobial agents. Persister cells are dormant slow-growing cells with altered metabolic pathways 
that result in loss of the target site of most antibiotic treatments hence contributing to persistence and 
recurrence of biofilm ulcers[42]. At the same time, the high bacterial population within the biofilm 
results in an increased rate of horizontal gene transfer (HGT) between biofilm inhabitants, creating a 
rich pool of characteristics that eventually lead to natural selection of virulence genes and antimicrobial 
resistance genes[43]. Indeed, it was reported by many studies that biofilm formation is highly linked to 
an increased rate of antimicrobial resistance in DFIs, which contributes to a high incidence of chronic 
recurrent ulcers and higher risk of amputations[36,44].

Tissue damaging exoenzymes
Enzymes like proteases, collagenase, hyaluronidase, lipases, fibrinolysin, gelatinase, and elastase are all 
upregulated in diabetic foot biofilms under control of QS[45-48]. Such enzymes play an important role 
in inducing tissue damage, which helps in the release of nutrients that are required by the pathogens for 
growth[49-51]. Additionally, the vascular tissue damage would diminish tissue perfusion and 
contribute to the reduced ability of the immune system and antibiotic treatments to reach the site of the 
infection[52]. At the same time, the destroyed physical integrity of the tissues facilitate invasion of 
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adjacent tissues and spread of the infection. Moreover, proteases result in delayed healing of the 
affected tissues, which further contributes to the chronic nature of diabetic foot ulcers[16,49]. Immuno-
globulin proteases represent a different category of proteases that target humoral components of 
immune defense (mainly immunoglobulin A, immunoglobulin M, and immunoglobulin G) rather than 
inducing generalized tissue damage[53,54]. Immunoglobulin proteases represent an important virulence 
factor in many pathogens that allows them to evade the host immune response[55,56]. Local therapy 
with protease inhibitors is an essential element in control of diabetic foot ulcer in order to improve 
wound healing and minimize the complications accompanying chronic wounds[49,57].

Hemolysins and leukocidins
Hemolysins and leukocidins belong to a group of pore-forming toxins that destroy blood cells by 
inducing perforation in the cell membrane and subsequent cell lysis[58-60]. Hemolysins are important 
virulence factors in pathogenic infections since they induce RBC lysis and release of iron, which is an 
essential nutrient requirement for pathogens. Iron is an important element for life since it is required for 
making important enzymes in all living cells[36,59,61,62]. However, iron is never found in a free form in 
biological tissues or in the extracellular fluids; the ability of most pathogens to survive in an iron-free 
environment highly depends on its iron acquisition talents including hemolysin and siderophore 
production[63].

S. aureus is one of the most common causative agents of DFIs. S. aureus is equipped with an arsenal of 
toxins including four hemolysins targeting a wide range of host cells: α-hemolysin (mainly targeting 
lymphocytes and monocytes); β-hemolysin (targeting human monocytes and sheep erythrocytes with no 
effect on human erythrocytes); γ-hemolysin (highly toxic to neutrophils ); and δ-hemolysin (toxic to 
erythrocytes). The combined actions of these toxins result in RBC hemolysis as well as inhibition of 
leukocyte function and subsequent evasion of host immune defenses[64,65].

Antimicrobial resistance
Antimicrobial resistance is an escalating worldwide problem with increased prevalence among diabetic 
patients. As discussed previously, diabetic patients are at high risk of contracting microbial infections 
especially due to their immunocompromised status, which leads to higher rates of persistent difficult to 
treat infections, and such circumstances usually predispose to higher probability of development of 
antimicrobial resistance[66-68]. This relationship can be explained based on many factors: (1) The 
development of bacterial biofilms in chronic infections, like in cases of diabetic foot ulcers, is associated 
with activation of QS communication systems, which in turn induces upregulation of virulence gene 
expression including antimicrobial resistance genes[69-71]; (2) Bacterial biofilms are also associated with 
an increased rate of HGT between members of the biofilm community, which means increased rate of 
transfer of antibiotic resistance genes between different species within polymicrobial biofilm 
communities[72]; and (3) Chronic infections are usually associated with prolonged antimicrobial 
treatment courses, especially with broad spectrum antibiotics that exert stress pressure on pathogenic 
bacteria leading to natural selection of resistant strains[73,74].

Similarly, antibiotic self-administration and empirical prescription of broad-spectrum antibiotics by 
general practitioners are considered predisposing factors for higher rates of development of antibiotic 
resistance in diabetic patients[75-77]. One interesting observation was discussed in a previous study that 
reported a three-fold higher incidence of antibiotic resistance in diabetic foot patients in 2020 as 
compared with individuals admitted with the same diagnosis in 2019. The authors linked this 
observation to the circumstances that surrounded the coronavirus disease 2019 pandemic with 
increased administration of antibiotics for control of the infection complications, bearing in mind the 
fact that diabetic patients were among the high-risk categories at that point[78,79].

Additionally, some diabetic foot ulcers can result from impaired healing of wound tissues rather than 
the presence of wound infection. Therefore, it is highly recommended to avoid empirical antibiotic 
treatments before confirming the presence of an infection in diabetic foot ulcers. In addition, antibiotic 
therapy should not be given for uninfected foot wounds as prophylaxis against infection or as a method 
to improve wound healing[50,80]. Instead, it is advised to collect wound samples or swabs for microbio-
logical examination in order to confirm the presence or absence of infection. This also allows for identi-
fication of the causative pathogen in cases of confirmed infection as well as performing antimicrobial 
susceptibility testing in order to identify the optimum antimicrobial treatment for every individual case
[81,82].

On a similar basis, the administration of broad-spectrum antibiotics for recurrent episodes of diabetic 
foot ulcers is not required, as recommended by a recent study that concluded that a patient history of 
previous DFIs does not necessarily reflect a higher risk of antibiotic resistance in subsequent episodes
[83]. Boschetti et al[84] documented the resistance patterns of the most prevalent bacterial species 
isolated from DFIs to different classes of antibiotics when administered as a monotherapy or as a 
combination treatment. The results presented in Figure 2 provide an alarming outlook at the dangerous 
growing levels of antimicrobial resistance in many antimicrobial groups[84].
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Figure 2 Resistance of bacteria isolated from diabetic foot infections to different classes of antibiotics as monotherapy or in 
combinations. A: Staphylococcus aureus (S. aureus); B: Escherichia coli (E. coli); C: Pseudomonas aeruginosa (P. aeruginosa); D: Klebsiella pneumonia (K. 
pneumonia). The data presented as percentages of resistance, adopted from Boschetti et al[84]. Resistance to oxacillin expects resistance to cephalosporines, 
carbapenems, and β-lactams. MLS: Macrolides, lincosamides, and streptogramines; ESBL: Extended spectrum beta-lactamases.

THE MOST PREVALENT BACTERIAL DFIS
The dwindled immunity of the diabetic patients paves the way for easy contraction of opportunistic 
pathogens from the patient’s environment, leading to high risk of the progression of minor foot injuries 
into life-threatening infections[85,86]. The Meggit-Wagner system is the most commonly used classi-
fication guide of DFIs that assesses the ulcer depth, the presence of osteomyelitis, and/or gangrene 
using an ascending level from 0 to 5[87,88]. The more aggressive pathogenic bacterial infections are 
usually denoted by a higher level number[85,89,90]. There are multiple variables contributing to the 
establishment and progression of the infection, mainly: (1) Host response; (2) Ulcer location; (3) Tissue 
perfusion; and (4) Ulcer depth[87,91,92]. Upon trying to identify the etiologic agents behind DFIs, it is 
hard to name one exclusive pathogenic agent since DFIs are always caused by polymicrobial infections
[90,93,94].

It is noteworthy that the polybacterial nature of DFIs makes the identification of different bacterial 
species a difficult task and mandates the application of both phenotypic and genotypic detection 
methods[91,95]. Several studies documented that the most prevalent bacterial species isolated from DFIs 
are S. aureus, Escherichia coli (E. coli), P. aeruginosa, Proteus spp., Klebsiella spp., and Enterococcus spp. with 
variable prevalence rates that are presented in Figure 3[32,96]. The following section shed light on the 
most prevalent Gram-negative and Gram-positive bacterial DFIs especially those isolated from deep 
wounds with higher Wagner grades.

Staphylococcus spp.
Staphylococcus spp. are Gram-positive cocci that are ubiquitous in the environment. They are divided 
into pathogenic S. aureus and opportunistic coagulase negative Staphylococcus spp.[97-99]. However, the 
coagulase negative Staphylococcus spp. (S. epidermidis, S. saprophyticus, and others) are prevalent in the 
normal skin flora and could cause aggressive opportunistic infections in diabetic foot wounds[97,100]. S. 
aureus is considered by far the most commonly isolated species from macerated DFI especially in 
wounds of higher Wagner grade. It accounts for 20%-25% of all isolated bacteria[86,88-90,92]. The 
predominance of S. aureus in diabetic foot wounds can be attributed to: (1) Their ubiquitous presence in 
the environment; (2) The high ability of S. aureus to survive and resist bactericidal agents especially in 
healthcare settings giving rise to nosocomial infections; (3) A robust arsenal of virulence factors that 
facilitates anchoring of S. aureus infection; (4) The significantly high biofilm forming ability of S. aureus; 
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Figure 3 Frequency of isolated bacterial species from diabetic foot infections. The presented data were collected from 57 studies that represented 
6736 clinical samples, yielding 8418 microbial isolates[96]. S. aureus: Staphylococcus aureus; E. coli: Escherichia coli; MRSA: Methicillin-resistant Staphylococcus 
aureus.

and (5) The especially high rate of HGT between S. aureus and other members of a polymicrobial 
population leading to an increased ability of S. aureus to gain antibiotic resistant genes[85,86,88,90,91,94,
95,101-103]. S. aureus has a collection of different virulence factors including the production of diverse 
extracellular enzymes such as coagulase, gelatinase, hemolysins, and proteases in addition to a cocktail 
of toxins, such as pore-forming toxins, α-toxin, exfoliative toxin, enterotoxin, toxic shock syndrome 
toxin, and the virulent pigment staphylolysin[32,95,97,98].

The recent increase in the rates of antibiotic resistance patterns requires careful attention during the 
choice of a proper antimicrobial treatment. Methicillin-resistant S. aureus (MRSA) is a problematic 
pathogen that continues to grow as a public health concern[95,101,102]. Unfortunately, several studies 
have reported an increased rate of MRSA in polymicrobial DFIs as demonstrated in Figure 4[85,88,94,95,
102-135]. Although the complete identification of the full bacterial spectrum in a DFI is sometimes 
difficult, the detection of MRSA can be easily confirmed using the Kirby-Bauer antibiotic disk method in 
addition to genotypic detection methods[91,95]. Generally, vancomycin has been and still is the pillar 
therapy for MRSA. However, there is a growing mass of evidence that the minimum inhibitory concen-
trations of vancomycin to MRSA are increasing globally[106].

E. coli
E. coli is one of the most common causative pathogens of DFIs with a high incidence of biofilm 
formation[96] E. coli is also considered one of the most common causes of Gram-negative bacteremia in 
hospitalized patients[34,136]. E. coli is an opportunistic pathogen that is a common member of the 
human skin and colon flora[137]. The initiation of a pathogenic lifestyle in E. coli infection benefits from 
multiple virulence factors that allow for colonization and tissue destruction at different body organs 
especially in immunocompromised individuals. E. coli adhesins, mainly type 1 fimbriae and P fimbriae, 
are important virulence factors that are essential for adhesion and initiation of the infection[138,139]. 
Additionally, adhesins play an important role in diabetic foot pathogenesis due to their role in cytokine 
induction, tissue inflammation, and biofilm initiation[138]. E. coli also secretes hemolysin and 
siderophores that induce RBC damage and subsequent iron acquisition from the damaged tissues[140]. 
Importantly, many studies have confirmed a positive correlation between the hemolytic activity, biofilm 
formation, and high levels of antimicrobial resistance in E. coli infections[141,142].

P. aeruginosa
P. aeruginosa is a Gram-negative bacillus that is characterized with an armory of virulence factors 
including multiple bacterial surface structures such as pili and flagella in addition to a diverse array of 
extracellular toxins[143-145]. The observed prevalence of P. aeruginosa in DFIs is fluctuating from high to 
moderate levels, yet it is still among the most prevalent bacterial infections in DFIs[83,86,90,93,96,107,
125,131,146-149]. P. aeruginosa employs five secretion systems (T1SS, T2SS, T3SS, T5SS, and T6SS) that 
are used to regulate bacterial survival and utilized in establishment of infection[143,145]. Additionally, 
P. aeruginosa has at least three types of QS communication systems that orchestrate the expression of 
several virulence factors such as biofilm formation, motility, resistance to host immunity, and 
production of extracellular toxins such as protease, lipase, hemolysin, elastase, and pyocyanin pigments
[150].

Furthermore, P. aeruginosa has a remarkable ability to acquire antibiotic resistance against most of the 
commonly used antibiotics, making its eradication a difficult task[143,146,149]. P. aeruginosa can easily 
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Figure 4 Prevalence of methicillin resistant Staphylococcus aureus isolated from diabetic foot infections around the world. The presented 
data are percentage of methicillin resistant Staphylococcus aureus (S. aureus) from the isolated S. aureus from diabetic foot infections.

establish an infection on intact healthy skin[147,148] and even more so on already vulnerable tissues in 
immunocompromised patients such as in diabetic foot wounds[146,148,149]. The guidelines provided 
by the American Infectious Diseases Society for DFIs state that empiric therapy directed against P. 
aeruginosa is usually not recommended[147,149]. However, once the infection is identified, it is 
recommended to perform antibiotic susceptibility tests of the bacterial isolates[151-153]. There are 
several classes of antibiotics that are proposed as a monotherapy or as a combination therapy for 
eradication of P. aeruginosa in DFIs, including fluroquinolones, aminoglycosides, and colistin[83,84,143,
147,151,152].

Proteus mirabilis
Proteus mirabilis (P. mirabilis) is a Gram-negative bacterium that is famous for its swarming motility and 
its remarkable survival in challenging environmental conditions[154,155]. The ability of P. mirabilis to 
initiate a pathogenic infection depends on multiple virulence factors such as multiple types of fimbriae 
and adhesins that allow attachment to different surfaces, giving rise to the remarkable stickiness and 
biofilm-forming ability of the bacterium onto many surfaces and at different conditions[156]. 
Additionally, P. mirabilis secretes a lethal cocktail of extracellular toxins including proteases, hemolysin, 
and urease, which all contribute to the extensive tissue damage and inflammation at the infection site
[157]. Another significant feature of P. mirabilis is the formation of robust biofilms that are highly 
adhesive and persistent. Moreover, the biofilm formation in P. mirabilis is highly associated with 
increased rates of antimicrobial resistance and increased expression of toxins[155]. The combination of 
the aforementioned factors makes P. mirabilis a problematic pathogen in DFIs especially chronic ulcers.

Klebsiella pneumonia
Klebsiella pneumonia (K. pneumonia) is a Gram-negative bacterium that is commonly isolated from chronic 
wound infections especially in immunocompromised individuals[158,159]. K. pneumonia is known for its 
high adhesiveness as a result of its thick polysaccharide capsule that is enriched with type 1 and type 3 
pili. The polysaccharide capsule in K. pneumoniae consists of two fibrous layers: An inner thick densely 
packed fibrous layer and an outer layer in which the fibers are loosely packed and become finer 
outwards, forming a fluffy network on the capsule surface[160,161]. This structure plays a leading role 
in the remarkable adhesiveness of the bacterium onto mucus membranes and inanimate surfaces 
followed by fast accumulation of bacteria as a result of entangled fibrous polysaccharide capsules of 
adjacent bacterial cells and subsequently rapid biofilm formation[161,162]. The thickness of the fibrous 
capsule of K. pneumonia is known to be one of the thickest protective bacterial coats, which imparts extra 
protection against host immune responses such as phagocytosis and serum complement deposition. In 
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addition, its thick compact nature reduces the penetration of antibiotics and bacteriophages[163,164]. 
The overall result of the aforementioned factors is the formation of a highly adhesive biofilm that is 
resistant to immune defenses and antibiotic treatments and makes K. pneumonia challenging to eradicate 
in healthcare facilities, contributing to the high incidence of nosocomial infection associated with this 
pathogen especially in immunocompromised individuals and diabetic patients[165,166]. It is 
noteworthy that both K. pneumonia and P. mirabilis are linked to an increased risk of ascending urinary 
tract infections in diabetic foot patients as a result of self-infection[167,168].

Enterococcus spp.
Enterococci are facultative anaerobic Gram-positive cocci; there are two species considered the most 
common commensal organisms in the intestines of humans: Enterococcus faecalis and Enterococcus faecium
[169,170]. Enterococci are opportunistic pathogens, commonly responsible for surgical wound infections, 
urinary tract infections, endocarditis, and intra-abdominal and pelvic infections among many others
[171,172]. Enterococci are well adapted for withstanding harsh environmental conditions. This enables 
them to survive routine disinfection methods resulting in high persistence of these bacteria on 
inanimate surfaces in healthcare settings making them common causative agents of nosocomial 
infections[172]. It is widely documented that Enterococci are among the most prevalent bacterial 
infections in DFIs[96,117,121,122,124,125,173,174]. Interestingly, Enterococci are not considered true 
pathogens; their abundance in the gut flora provides them the opportunity to interact with other 
bacteria increasing the possibility of acquiring virulence genes and antimicrobial resistance genes[171,
172]. Lately, there has been an alarming increase in antimicrobial resistance patterns of Enterococci, 
especially associated with hospital-acquired infections affecting immunocompromised patients 
including DFIs[174]. Unfortunately, many studies reported an increase in the mortality rates related to 
the emergence of vancomycin-resistant Enterococci that are usually linked to hospital-acquired infections
[170,171,173]. The current antibiotic choice regimen for control of stubborn multidrug resistant entero-
coccal DFIs includes antibiotic combinations of β-lactams, aminoglycosides, and fluoroquinolones[171,
174].

MANAGEMENT OF DFIS
Conventional antibiotic therapy guidelines for DFIs
As explained previously, antibiotic treatment should only commence after the confirmation of the 
presence of an infected wound. However, broad-spectrum antibiotics are typically used during routine 
care of progressive diabetic foot wounds as an empiric treatment until microbiology culture results are 
available. Then the treatment should be switched to targeted antimicrobial therapy[175]. Ideally, narrow 
spectrum antibiotic treatment is preferred in order to avoid antibacterial resistance. Additionally, the 
treatment should be used for the shortest duration possible in cases of mild and medium diabetic 
wound infections: For 2-4 wk for progressive wounds and up to 6 wk in cases of osteomyelitis. If the 
treatment is not effective then the case should be re-evaluated regarding the antibiotic choice[176,177].

The Infectious Diseases Society of America provides a detailed description of antibiotic choices 
regarding DFIs. However, the report highlights the absence of a single recommended antimicrobial 
regimen. Instead an appropriate regimen should be designed based on the results of antibiotic suscept-
ibility testing, severity of the infection, possible side effects, price, interactions with other drugs, and 
other patient related factors. The report recommends including suitable coverage of Gram-positive cocci 
(mainly S. aureus and Streptococcus spp.) in empiric treatment protocols. For mild DFIs, the choices 
include: clindamycin, levofloxacin, and β-lactamase inhibitor combinations. For moderate to severe 
infections the antibiotic options are extended to include ertapenem, tigecycline, piperacillin-tazobactam 
combination, and imipenem-cilastatinb combination with the latter showing especially broad spectrum 
activity. An anti-MRSA agent should be included in the regimen choice in cases of severe infections or 
previously confirmed MRSA infection. The suggested anti-MRSA choices include: Vancomycin, 
linezolid, and daptomycin. However, these options are considered narrow spectrum activity, and they 
should be combined with other agents such as a fluoroquinolone, carpabenem, aztreonam, or pipera-
cillin-tazobactam to increase the activity spectrum especially in severe progressive infections[50,176].

Novel antibiotic options against multidrug resistant DFIs
The fierce increase in antibiotic resistance rates continues to be a growing worldwide crisis, which 
results in gradual erosion of the list of treatment options available for eradication of multidrug resistant 
infections, especially DFIs. For example, vancomycin, which is one of the last resort antibiotics that 
should be conserved for treatment of MRSA, has shown an alarming increase in resistance rates in the 
last decade[178,179]. Linezolid is considered an effective vancomycin alternative acting against both 
vancomycin-resistant S. aureus and MRSA. Linezolid showed good tissue and bone penetration and 
sufficient in vivo anti-MRSA activity in DFIs, even in cases of blood flow impairment[180,181]. However, 
linezolid suffers from serious side effects and high toxicity in cases of prolonged treatments. In addition 
it is not acknowledged by the United States Food and Drug Administration (FDA) for treatment of 
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osteomyelitis[50,182]. Daptomycin, on the other hand, is approved for intravenous treatment for MRSA 
in DFIs[106,183]. Additionally, it has a lower side effect profile and promising activity against both 
MRSA and vancomycin-resistant S. aureus that is accompanied by low rates of bacterial resistance 
development[184,185].

Streptogramins combination of quinopristin and dalfopristin represent another promising alternative 
treatment of MRSA, which inhibits both the early and the late protein synthesis stages showing 
significant activity against nosocomial MRSA isolates[186,187]. Tigecycline is a tetracycline derivative 
that has potent in vitro activity against MRSA[186]. However, a Phase III randomized, double-blinded 
clinical trial showed that tigecycline is significantly less effective and associated with more adverse 
effects than ertapenem in achieving clinical resolution of DFIs even in presence of osteomyelitis[188]. 
Ceftobiprole is a fifth generation cephalosporin that is approved for intravenous administration. 
Ceftobiprole was compared to vancomycin in a multicenter, multinational, double blind, randomized 
trial concerning DFIs caused by Gram positive bacteria. The rates for complete eradication of MRSA in 
infected patients using ceftobiprole and vancomycin as antimicrobial treatment were 92% and 90%, 
respectively. In DFI patients, the clinical recovery rate with ceftobiprole monotherapy was 86%, which is 
as effective as the combination of vancomycin plus ceftazidime[189].

Ceftaroline is another novel cephalosporine that showed significant activity against MRSA. In two 
randomized, observer blinded studies to evaluate the efficacy of ceftaroline vs standard therapy with 
vancomycin in combination with aztreonam in adults, the clinical cure rates were comparable (about 
86% in both treatments). Importantly, the adverse effects were similar in different treatment groups 
with a safety similar to that of the cephalosporins[190]. That being said, it is important to bear in mind 
that any novel antimicrobial treatment, no matter how effective it is against multidrug resistant 
pathogens, will eventually join the list of ineffective treatments as a result of the continuous evolution of 
bacterial resistance patterns, which is faster than our ability to develop and approve new alternative 
treatments.

Topical treatments
Topical antimicrobial treatments of medium to severe DFI wounds are generally considered ineffective
[191,192]. Antiseptics are generally applied during surgical debridement procedures and wound 
dressing changes. This is important to diminish further wound contamination that usually thrives on 
polymicrobial infections[193]. However, it should be noted that most antiseptics that affect the wound 
tissues subsequently leave a negative impact on the wound healing process. Furthermore, improper and 
excessive application of antiseptics can encourage antimicrobial resistance within the wound microen-
vironment, especially those containing polymicrobial biofilms, thus giving rise to delayed resolution of 
the infection and increased risk of complications[194]. Based on these considerations, international 
guidelines do not suggest antiseptics as in the management of DFI wounds[193]. However, several 
studies documented the in vitro effectiveness of iodine-based preparations and dressings containing 
polyhexamethylene biguanide or silver in controlling DFI wounds[195].

It is reported that biofilm formation within DFIs is likely to increase the incidence of antimicrobial 
resistance 100 to 1000 times[196], which mandates employment of efficient drug delivery systems to 
ensure better penetration of the biofilm matrix and higher recovery rates. Some drug delivery 
suggestions include calcium sulfate beads and antimicrobials immobilized on collagen sponges[196]. 
Some studies reported a new generation of anti-biofilm hydro-fiber dressings containing carboxy-
methylcellulose silver, which showed efficient disruption and removal the bacterial biofilms[197].

Another promising dressing was suggested by Yang et al[198]. It is a surfactant-based gel dressing 
that showed promising recovery rates when applied in vivo on wounds infected with P. aeruginosa. The 
results showed significant reduction in bacterial growth and disruption in the formed biofilms[198]. 
Another surfactant-based dressing containing Pluronic F127 in combination with melatonin and 
chitosan was used to diminish the bacterial growth and biofilm formation in S. aureus wound infection
[199]. On a similar basis, other studies reported promising in vitro antibacterial, anti-biofilm, and healing 
results upon using wound dressings coated with Chitlac-silver nanoparticles combined with alginate 
and hyaluronic acid[200].

Other studies went as far as using dressings loaded with mesenchymal stem cells that also showed 
improved wound healing rates especially in chronic ulcers[201]. The combination of wound dressings 
with natural products have also been reported in some studies that showed the use of honey[202,203], 
cranberry extracts[204], tannic acid[205], tea-tree oil[206], and cinnamon oils[207] were linked to 
improved resolution and healing of DFIs.

Interventional approaches
Surgical debridement is classically used to remove necrotized and infected tissues from DFI wounds. 
This surgical intervention is routinely used in combination with antibiotics, to control the spread of 
infection allowing early closure of the wound[208]. The proper removal of infected tissues and bacterial 
biofilms optimizes the healing and regeneration of the wound tissues, which in turn improves blood 
flow and improves the effectiveness of the treatment[206]. In association with surgical debridement, 
negative pressure therapy is commonly employed to promote wound healing in DFIs[209]. Negative 
pressure is generated using a vacuum source connected to the wound, resulting in suction of cellular 
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debris, diffuse toxins, and infected extracellular fluids that eventually reflects a positive impact on the 
resolution of the infection as well as wound healing progress[210].

Photodynamic therapy is a novel technology that is mainly used in oncology. The therapy depends 
on the use of a photosensitive agent that is activated by illumination to produce lethal oxygen species at 
the infection site. In a clinical trial, this method was employed for patients suffering from DFIs. The 
results showed that all the non-treated cases suffered from deterioration of the wound and eventually 
underwent amputation procedures in comparison to the treated group that showed only 1 case of 
amputation out of 18 patients who received the photodynamic therapy[211].

Hyperbaric oxygen therapy is another oxygenation-based approach in which pure oxygen is inhaled 
in a special compression chamber and increases oxygen supply all over the body, including the wound 
tissues. However, this therapy did not show beneficial results regarding short-term healing of DFI 
wounds[212].

Novel approaches for treatment of DFIs
The risk of amputation remains significantly high in progressive severe DFIs; such procedures are 
considered extreme treatment options that usually result in a drastic negative impact on the patient’s 
psychology and productivity in real life. There are numerous new approaches that address this problem 
by minimizing the need for amputations in severe DFIs. Some of these approaches are discussed in the 
following points.

Stem cell therapy: One method describes the use of stem cell technology to regenerate the vascular 
tissues in an ischemic limb, hence increasing blood supply and healing rates in severe DFIs and 
minimizing the risk of amputations. Additionally, stem cells can be directed towards the release of 
cytokines, which enhance immunity, cell recruitment, and regeneration of neurons. Similarly, 
progenitor stem cells can be employed since they have the potential to differentiate into various cell 
types such as endothelial cells, keratinocytes, pericytes, and myofibroblasts all of which play an effective 
role in DFI wound healing[213,214]. Stem cell-based therapy has been approved by the FDA as an 
effective interventional treatment strategy to treat DFI macerated wounds[213]. Secretome stem cells are 
derived from undifferentiated human mesenchymal endothelial stem cells; they have been successfully 
deployed for the treatment of the DFIs. It was shown that secretomes enhanced in vivo wound healing 
and increased the proliferation of endothelial cells via promotion of the production of a cocktail of 
vascular endothelial and fibroblast growth factors in addition to angiopoietins[215].

Growth factors: Other approaches are based on the fact that chronic wounds are associated with 
decreased levels of epidermal growth factor. Hence the application of hormonal growth factors will 
promote the proliferation and differentiation of fibroblasts, gliocytes, and neo-epidermal cells leading to 
improved healing rates[213,214]. Other growth factors that modulate signal transduction and replication 
of epidermal cells were also reported to improve wound healing in DFIs[213,216]. Similar results were 
obtained upon using granulocyte colony-stimulating factors and human platelet-derived growth factors, 
which are frequently used for the treatment of DFI wounds and neuropathic ulcers[213].

Skin substitute matrices: One example involves the use of keratinocytes and fibroblasts that are 
immobilized onto an extracellular matrix that functions as scaffold supports for the wound healing 
process[217]. Another example is shown by the use of neonatal foreskin equivalent to allogeneic 
cultured skin apligraf/graftskin. It was shown that this supportive tissue significantly improved the 
healing of chronic wound ulcers[218]. Dermagraft is an isolated neonatal human dermal fibroblast. Its 
application significantly improved the healing rates up to 30% in DFI wounds[219]. Furthermore, the 
allogeneic membranes obtained from human placenta have been employed successfully in the treatment 
of DFI wounds; such membranes provide growth factors, cytokines, and structural collagen support, 
which improved the repair of deteriorated tissues[220]. Furthermore, allografts from human skin such 
as GraftJacket were also reported as successful scaffolds for support of vascular and cellular growth in 
severe wounds[213].

Phage therapy: Phage therapy is an old method that is starting to gain renewed worldwide attention. 
The method is based on the use of bacteriophages, which are viruses that infect bacteria. Bacteriophages 
are considered the natural predator of bacteria that are abundant in nature[221,222]. Phage therapy 
usually uses a cocktail of bacteriophages to increase the host spectrum range[223]. In one in vitro study, 
a phage cocktail was designed to target S. aureus, P. aeruginosa, and Acinetobacter baumannii isolated from 
DFIs. The results showed significant antimicrobial and anti-biofilm activity of the tested bacteriophages
[224]. These results were supported by case reports that encourage phage therapy for DFIs[225,226]. 
Examples of in vitro tested bacteriophages against the most prevalent bacterial species in DFIs are listed 
in Table 1.

The use of bacteriophages for treatment of pathogenic bacterial infections offers many advantages: (1) 
High specificity of action because bacteriophages are highly specific in selection of their host, which is 
usually limited to one species or even one specific strain within a species; (2) Can be used against 
multidrug resistant bacteria because bacteriophages use a pathway that is different from all antimi-
crobial treatments. Therefore, most resistance mechanisms will not affect the phage pathway; (3) Phages 
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Table 1 Examples of anti-biofilm and anti-virulence agents against the most prevalent diabetic foot infections bacterial pathogens

Agent Target microbe Ref.

Bacteriophages

vB_SauM_ME18 vB_SauM_ME126 S. aureus [246]

Bacteriophage K S. aureus [247]

pSp-J and pSp-S Staphylococcus spp. [248]

Staphylococcus bacteriophage K S. epidermidis [249]

Bacteriophage cocktail P. aeruginosa [250]

Pseudomonas Phage P. aeruginosa [251]

vB_EcoS-Golestan E. coli [252]

Lytic bacteriophage cocktail P. mirabilis, E. coli [253]

Bacteriophage cocktail P. mirabilis [254]

vB_PmiS-TH P. mirabilis [255]

PhiS1 P. aeruginosa [256]

PhiE2005-A P. aeruginosa [257]

Lytic bacteriophage K. pneumonia [258]

Anti-biofilm and Anti-virulence agents

Sitagliptin (anti-diabetic) P. aeruginosa [46,235,259]

S. aureus [46]

Linagliptin P. aeruginosa [238]

Metformin (anti-diabetic) P. aeruginosa [45,236]

Diclofenac (analgesic) P. mirabilis [239]

Metronidazole (antibacterial) P. mirabilis [260]

Fluoxetine (antipsychotics)

Thioridazine (antipsychotics)

P. mirabilis [261,262]

Penfluridol (antipsychotics) E. faecalis [263]

Terazosin (adrenoreceptor blockers) P. aeruginosa [231,264]

Prazosin (adrenoreceptor blockers) P. aeruginosa, P. mirabilis [48,265,266]

Metoprolol (adrenoreceptor blockers) P. aeruginosa, S. enterica [233,267]

Atenolol (adrenoreceptor blockers) P. aeruginosa, P. mirabilis

Allopurinol (anti-gout) P. aeruginosa [47]

Azithromycin (antibiotic) P. aeruginosa [268]

Ciprofloxacin (antibiotic) S. enterica [269]

S. aureus [270]Resveratrol (anticancer)

E. coli [271]

Ribavirin (antiviral) C. albicans [272]

Theophylline (bronchodilator) C. albicans [273]

Stolon (fenugreek) P. aeruginosa [232]

Garlic extract P. aeruginosa [274]

Allicin (garlic) P. mirabilis [275]

Carvacrol (oregano) P. aeruginosa [276]

S. aureus [277]Emodin (Polygonum cuspidatum)

C. albicans [278]
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Acinetobacter baumanniiCurcumin (curcuma)

C. albicans, P. mirabilis

[279]

Tannic acid E. coli [280]

Sodium citrate P. aeruginosa [281]

Isolimonic acid (citrus fruits) E. coli [282]

Zingerone (ginger) P. aeruginosa [283]

S. aureus: Staphylococcus aureus; S. epidermidis; Staphylococcus epidermidis; P. aeruginosa; Pseudomonas aeruginosa; E. coli: Escherichia coli; P. mirabilis: Proteus 
mirabilis; K. pneumonia: Klebsiella pneumonia; E. faecalis: Enterococcus faecalis; S. enterica: Salmonella enterica; C. albicans: Candida albicans.

will only attack the target bacterial host leaving no effect on eukaryotic cells, which means localized 
activity at the infected tissues with minimal side effects; (4) Self-amplification of phages means that 
minimal doses will replicate exponentially at the infection site in relation to the wound infection burden; 
(5) High ability to penetrate deep tissues and bacterial biofilms, which further results in complete 
eradication of the infection; and (6) Minimal effect on the normal host flora[227]. On the other hand, 
there are limitations, mainly the lack of approval from the FDA and the need to formulate a phage 
cocktail that is based on accurate identification of polymicrobial infection members[227]. Moreover, it 
was observed that biofilm formation was induced by exposure to some phages[228,229].

Anti-biofilm and anti-virulence agents: Bacterial biofilms and bacterial virulence play major roles in 
the establishment and spread of DFIs. Anti-biofilm and anti-virulence agents are promising adjuvants to 
be used in combination with conventional antibiotic treatment of DFI wounds[206]. Bacteria employ 
several interplaying systems to control the expression of their virulence factors, most importantly the 
QS system. QS is used in both Gram-positive and Gram-negative bacteria to communicate between each 
other in an inducer-receptor manner[37,40,46]. Several approaches have been suggested to diminish the 
bacterial biofilm formation and virulence factor production based on targeting the QS systems[47,69,
71]. QS inhibitors are known to reflect a significant reduction in bacterial virulence as well as reduced 
resistance development[230-234].

There are several chemical structures that have been screened for their anti-QS, anti-biofilm, and anti-
virulence activities, with maximum attention given to the screening of already used and approved 
medications with the aim of using them for other applications than their originally intended use 
(Table 1). Some of the screened drug groups included several anti-diabetic agents. Fortunately, some 
anti-diabetics showed promising anti-QS, anti-virulence, and anti-biofilm activities. One promising 
example is the group of gliptins, which are dipeptidase inhibitors that are widely used as hypoglycemic 
agents. A detailed virtual study was performed to assess the anti-QS activity of some gliptins, mainly 
sitagliptin and linagliptin[46,235-238]. The results showed a significant ability to diminish biofilm 
formation is S. aureus and P. aeruginosa in addition to significant reduction in the expression of virulence 
factors such as protease, hemolysins, and other toxins[45,46,238]. There is a growing list of drug groups 
that are screened for their antibacterial and anti-QS activities, including analgesics and anti-inflam-
matory agents that are commonly used for symptomatic treatment of DFIs. Diclofenac is a commonly 
used anti-inflammatory agent that showed promising in vitro results regarding biofilm inhibition and 
downregulation of virulence factors in P. mirabilis isolates collected from deep DFIs[239]. There are 
many other drug groups and natural products that were screened for their anti-QS, anti-biofilm, and 
anti-virulence activities. Some of these agents are presented in Table 1.

There are other approaches that aim at inhibition of bacterial biofilm formation, for example chelation 
of essential metals, ethylene diamine tetra-acetic, and citrate[240]. Another approach is the use of 
enzymes for dispersion of bacterial biofilm, e.g., α-amylase[241], proteinase K, trypsin[206], deoxyribo-
nuclease I, hydrolases, and DNase[241-243]. In addition, some synthetic chemical agents such as 2-
aminoimidazole showed powerful anti-biofilm activity against S. aureus[244].

In another study published by Barki et al[245], wireless electroceutical dressings were used 
successfully for the eradication of P. aeruginosa and Acinetobacter baumannii biofilms in vivo. It was 
shown that the dressing disrupted the formed biofilms and accelerated wound healing. Furthermore, 
this treatment was found to downregulate the QS-encoding genes and restore the skin barrier function 
by silencing the proteins required for skin barrier function (E-cadherin)[245].

CONCLUSION
Diabetes and its complications represent a growing public concern worldwide. DFIs are considered one 
of the most commonly encountered problems at healthcare facilities. The management of DFIs are 
usually problematic due to many factors, including the reduced immunity in diabetic patients, the 
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delayed wound healing, and the high incidence of a multidrug resistant polymicrobial infection. The 
delay or failure of treatment of DFIs will increase the risk of serious life-threatening complications such 
as amputations and systemic infections. There has been a global increase in the levels of bacterial 
resistance to antibiotics that reached a catastrophic level, especially with more and more antibiotics 
being added to the list of ineffective treatments. This has caused increased rates of mortalities caused by 
multidrug resistant infections. The proper selection of the antibiotic treatment course for DFI is crucial 
to avoid microbial resistance. Additionally, it is important to combine antimicrobial treatment with 
supportive therapy such as anti-biofilm agents, drug delivery systems, and rejuvenating dressings to 
ensure maximum outcomes of the treatment. In addition, the use of QS inhibitors will decrease the 
severity of the infection by downregulation of bacterial virulence factors, biofilm formation, and 
reduction of the incidence of antimicrobial resistance.
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Abstract
The number of people diagnosed with diabetes continues to increase, especially 
among younger populations. Apart from genetic predisposition and lifestyle, 
there is increasing scientific and public concern that environmental agents may 
also contribute to diabetes. Food contamination by chemical substances that 
originate from packaging materials, or are the result of chemical reactions during 
food processing, is generally recognized as a worldwide problem with potential 
health hazards. Phthalates, bisphenol A (BPA) and acrylamide (AA) have been the 
focus of attention in recent years, due to the numerous adverse health effects 
associated with their exposure. This paper summarizes the available data about 
the association between phthalates, BPA and AA exposure and diabetes. 
Although their mechanism of action has not been fully clarified, in vitro, in vivo 
and epidemiological studies have made significant progress toward identifying 
the potential roles of phthalates, BPA and AA in diabetes development and 
progression. These chemicals interfere with multiple signaling pathways involved 
in glucose and lipid homeostasis and can aggravate the symptoms of diabetes. 
Especially concerning are the effects of exposure during early stages and the 
gestational period. Well-designed prospective studies are needed in order to 
better establish prevention strategies against the harmful effects of these food 
contaminants.
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Core Tip: One of the most important steps in the prevention and control of diabetes and related disorders is 
the identification of potential risk factors. Phthalates, bisphenol A (BPA) and acrylamide (AA) are 
chemicals that are ubiquitously present in the environment and have the ability to act as contributing 
factors with adverse health effects. Human exposure to phthalates, BPA and AA mainly occurs through 
ingestion. This paper summarizes the available data about the association between phthalates, BPA and 
AA exposure and diabetes in order to examine the potential role of these contaminants in the development 
and progression of this complex disorder.
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INTRODUCTION
One of our basic human rights is “the right of everyone to have access to safe and nutritious food”[1]. 
According to the World Health Organization, more than 100 billion dollars is spent each year on 
medical expenses related to the consummation of unsafe food around the world[2]. Food contamination 
by chemical substances is generally recognized as an emerging worldwide challenge, with potential 
health hazards[3,4]. Moreover, diet has been identified as a main source of chemical intake[5]. 
Chemicals may enter the food chain via several pathways during cultivation, production, handling and 
processing, packaging, transportation and storage[4]. Numerous studies have confirmed the presence of 
a wide range of chemicals in drinking water, fruits, vegetables, cereals, meat and poultry, seafood, 
canned food, dairy products, baked goods, fast foods etc.[6-10]. For instance, humans are exposed daily 
to multiple chemicals, including environmental and processing contaminants, that may pose a threat to 
health even at very low concentrations[11]. The continuous ingestion of chemicals that migrate from 
food packaging, especially plastic packaging materials, or that are the result of chemical reactions 
during food processing, can lead to adverse health effects such as the development of diabetes.

Among the chemicals that originate from plastic packaging materials, endocrine disrupting chemicals 
(EDCs) have attracted public attention due to their possible harmful health effects[12]. The Endocrine 
Society classified EDCs as “a serious public health risk” and since then, data demonstrating their 
negative effects on human health has been constantly increasing. To date, more than 1400 chemicals 
have been identified as potential EDCs[13]. EDCs are xenobiotics that interfere with normal endocrine 
function, which consequently lead to adverse health outcomes[14-17]. Phthalic acid esters (PAEs) and 
bisphenol A (BPA) are well-known EDCs that are found practically “everywhere” in human societies, 
and have been the focus of scientific and public attention in recent years.

Among the chemical substances that are inadvertently generated during food preparation, 
acrylamide (AA) has raised public health concerns since it was first detected in 2002. Over the past 
twenty years, AA has been recognized as a “potential human carcinogen”, an emerging food 
contaminant and potential EDC[18,19]. Based on the above, exposure to PAEs, BPA and AA has been 
associated with a range of adverse health outcomes. Considering that ingestion is the main route of 
exposure, the objective of this paper is to review the current data concerning the links between PAEs, 
BPA and AA exposure and diabetes, in order to better understand the potential roles of these 
compounds in the development and progression of this complex disorder (Figure 1).

DIABETES
A century after the discovery of insulin, diabetes has been transformed from a fatal disorder into a 
chronic condition[20]. Today, the number of people diagnosed with diabetes continues to increase 
exponentially and it has been predicted that by 2045 more than 780 million people will have diabetes; 
with type 2 diabetes (T2D) representing approximately 90% of the total number of cases. It is believed 
that as many as half of the total number of cases remains undiagnosed, especially in low-income and 
middle-income countries[21] and that diabetes and its complications have resulted in more than 6.5 
million lost lives over the last year alone[21]. In the United States, it is estimated that the non-health 
costs of diabetes per person per year surpass the costs of heart diseases[22]. Therefore, recognition of 
potential risk factors is one of the most important steps in the establishment of efficient strategies for the 
prevention and control of diabetes and related diseases that will consequently reduce the burden on the 
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Figure 1 Selected food contaminants are represented with their chemical structures as potential risk factors for diabetes development.

healthcare system and society.
Diabetes is a chronic disease, associated with a range of metabolic abnormalities. The clinical 

manifestations of diabetes includes increased serum glucose levels, which are a consequence of insulin 
deficiency and/or insulin resistance[23]. Type 1 diabetes (T1D) refers to a chronic autoimmune disease 
characterized by the loss of pancreatic β-cells, which leads to a total lack of insulin secretion and results 
in elevated blood glucose levels[24,25]. Although the development of T1D is associated with a genetic 
predisposition, environmental agents (single compounds or mixtures of compounds) can activate 
autoimmune mechanisms involved in the development of this multi-factorial disorder, through 
mechanisms that are not completely understood[26]. Insulin resistance is identified as a “key player” in 
the development and progression of T2D[27]. T2D is known as “adult-onset diabetes”, and develops as 
a result of increased insulin resistance to a level where overproduction of insulin can no longer cope 
with insulin insensitivity, leading to β-cell dysfunction[28]. In addition, several other non-
communicable disorders are associated with insulin resistance, such as obesity, metabolic syndrome, 
non-alcoholic fatty liver disease, polycystic ovary syndrome, cardiovascular disease and cancers[20]. 
However, there is a growing amount of data that also supports a role for food contaminants, such as 
PAEs, BPA and AA in the onset of diabetes and the development of related conditions.

PAES
Overview
PAEs are one of the most commonly used plasticizers and additives in a wide-range of products, such as 
food packaging, detergents, cosmetics, toys, medical tubing, blood-storage containers, and home 
furnishings. Due to the ability of phthalates to improve the mechanical properties of polymers (e.g., 
polyethylene, polyethylene terephthalate, polyvinyl acetate and polyvinyl chloride), it is predicted that 
approximately 500 million tons of PAEs will be produced worldwide by 2050[12,29-31]. Some of the 
most frequently used PAEs are dimethyl phthalate, diethyl phthalate (DEP), di-n-butyl phthalate (DBP), 
diisobutyl phthalate (DiBP), di-n-hexyl phthalate, bis (2-ethylhexyl) phthalate (DEHP), diisononyl 
phthalate, di-n-octyl phthalate and benzylbutyl phthalate[30,32]. Because of their large production 
volume and widespread applications, these PAEs are omnipresent contaminants[33]. Since PAEs are 
weakly bound to plastic polymers, they are easily released into the surrounding environment (i.e., in 
food, water, air, soil) during production, storage, use and disposal of plastic-based products[34]. 
Because of this, PAEs can be frequently detected in different biological and environmental matrices such 
as urine, blood, air, soil, sediment, food, surface water and even drinking water[35-40]. The bioaccumu-
lation and biodegradation potential of PAEs is dependent on their physico-chemical properties, which 
consequently determine their behavior and fate in the environment and their toxicity[41]. Phthalates are 
associated with negative effects on human health, including obesity, dyslipidaemia, T2D, impaired 
thyroid function, breast and uterine cancer, endometriosis and low birthweight[42-48]. Upon entering 
the food chain, the main route of humane exposure to phthalates is by ingestion. In the European Union, 
it is forbidden to use phthalate-containing materials for infant food and goods which contain high 
amounts of fats, such as dairy products. Moreover, since January 2022, plastic packaging for fruits and 
vegetables has been banned in France[49]. DEHP has been estimated as “safe” under 4.8 mg/kg body 
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weight per day (no-observed-adverse-effect level) while the tolerable daily intake (TDI) is 0.05 mg/kg 
body weight per day[50]. However, data concerning PAE contamination levels in different components 
of the human diet, especially with respect to vulnerable populations, remains scarce and limited. Hence, 
PAE-related health risks cannot be neglected even at the “safe dose” exposure levels defined by 
regulators. Considering that PAEs show additive effects, particular attention must also be given to the 
potential synergistic effects of mixtures of EDCs[51].

PAEs and diabetes
Research status: As EDCs, PAEs have the ability to modulate the activity of multiple nuclear receptors, 
such as estrogen receptors (ERα and ERβ), androgen receptor (AR), peroxisome proliferator-activated 
receptors (PPARα and PPARγ), thyroid hormone receptors (TRα and TRβ) and the pregnane X receptor
[15,52,53]. In order to understand the connection between PAEs and diabetes, “the dose makes the 
poison” approach cannot be applied[54]. Although phthalate exposure or mixed exposure with BPA had 
no influence on T1D development in non-obese mice, a mixture of PAEs and BPA decreased the release 
of tumor necrosis factor α (TNFα), interleukins (IL-4, IL-6, IL-10) and interferon γ in splenocytes and 
pancreatic lymphocytes and caused impairment of the immune system[55]. A significant association 
between PAE exposure and diabetes was probably not observed, due to the use of PAEs in high doses. 
PAEs as EDCs show non-monotonic effects[56]. Estrogenic compounds in high doses trigger insulin 
secretion in β-cells, and thus postponed the development of diabetes in non-obese mice[57]. In contrast, 
administration of DEHP at low levels caused the onset of diabetes symptoms (decrease in serum insulin 
levels and liver glycogen and an increase in blood glucose levels) followed by thyroid and adreno-
cortical dysfunction in rats[58]. After oral intake, PAEs undergo two metabolic steps. Short-branched 
phthalates are hydrolysed into monoester metabolites (mPAEs) and extracted via urine; while after 
several biotransformation steps in the first phase, long-branched phthalates are conjugated in phase II 
and eliminated through urine and feces[59]. Therefore, mPAEs should be also considered in order to 
understand the association between exposure to PAEs and diabetes. Based on in vitro and in vivo 
studies, mPAEs are more potent at a molecular level compared to their parent diester compounds[60-
62]. PAEs and mPAEs have affinity for PPARs receptors, which are involved in complex mechanisms of 
regulation of glucose homeostasis, insulin sensitivity, differentiation of adipocyte and adipogenesis[63]. 
However, when the effects of BPA and three phthalate metabolites [monoisobutyl phthalate (MiBP), 
mono-n-butyl phthalate (MnBP), and mono-(2-ethylhexyl) phthalate (MEHP)] were investigated in 
pancreatic β-cells at concentrations of 5-500 μM, BPA treatment resulted in a more significant decrease 
in cellular viability after 72 h of exposure. Although increased insulin secretion was observed for BPA, 
MEHP, and MnBP after 2 h of simultaneous exposure to chemicals and glucose, no effects on glucose 
promoted insulin secretion were obtained after exposure for 24-72 h[64]. In contrast, when rats were 
treated orally with DEHP throughout gestation and lactation, abnormalities in β-cell ultrastructure, 
together with a decrease in β-cell mass and insulin content in the pancreas were found. Also, in DEHP 
treated offspring, alterations in pancreas specific gene expression were observed and impairment in β-
cell development and function were reported[65]. Particularly, a decrease in the levels of pancreatic and 
duodenal homeobox-1 (Pdx-1) were observed in DEHP exposed rats of both sexes, as well as an increase 
in genes involved in endoplasmic reticulum stress, when compared to controls[65]. Considering the fact 
that Pdx-1 is involved in regulation of insulin gene expression, glucokinase, glucose transporter 2 
(GLUT2), islet amyloid polypeptide and somatostatin, Pdx-1 plays crucial roles in the development of β-
cells features and functions[66]. Therefore, this decrease in Pdx-1 activity is probably one of the 
principal mechanisms of DEHP-induced dysregulation of pancreatic β-cells[67]. DEHP exposed 
offspring had increased blood glucose levels and decreased pancreatic insulin levels and displayed 
changes in glucose tolerance and glucose stimulated insulin secretion. Despite this observed β-cell 
dysfunction and wide range of glucometabolic changes, DEHP exposure during the gestational period 
also induced epigenetic changes and led to inhibition of β-cell development[68]. Particularly, in both 
sexes a significant decrease in the levels of glucokinase mRNA was observed, which correlated with 
applied DEHP dose. Moreover, endoplasmic reticulum stress markers were increased, along with the 
concentrations of plasma membrane bound GLUT2 protein[68]. In addition, DiBP reduced fetal plasma 
insulin levels in offspring and decreased PPARα mRNA levels in the liver[69]. Additionally, gender and 
weight differences related to DEHP and diabetes development were seen in adulthood. Namely, DEHP 
exposed female offspring had lower birth weights, disturbed glucose tolerance, impaired insulin 
secretion and high blood glucose levels. DEHP exposed male offspring had increased serum insulin 
levels and lower birth weights at a significant level[65]. When compared to DBP, DEHP induced 
pancreatic dysfunction and inhibition of insulin secretion was more pronounced in the offspring of rats 
after in utero and lactational exposure to phthalates[70]. Relative to the effects of DEHP exposure in 
normal mice and male T2D mice in puberty, female T2D mice in puberty were more sensitive to DEHP. 
Namely, in DEHP exposed female T2D mice during puberty, higher levels of several parameters were 
detected such as insulin, C-peptide, fasting blood glucose levels, homeostatic model assessment of 
insulin resistance (HOMA-IR), low density lipoprotein, C-reactive protein and aspartate aminotrans-
ferase (AST). Also, DEHP triggered oxidative stress in terms of higher malondialdehyde (MDA) content 
and lower superoxide dismutase (SOD) and glutathione (GSH) peroxidase activity in the livers of both 
normal and T2D mice[71]. DEHP promoted increased body weight in normal adolescent mice. Increases 
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in fasting blood glucose levels and glycated hemoglobin A1c (HbA1c) were more pronounced in 
adolescent T2D mice in comparison with normal adolescent mice. Additionally, DEHP induced insulin 
secretion and insulin resistance in normal adolescent mice, inhibited glycogen synthesis in adolescent 
T2D mice, and caused a decrease in the serum-lecithin cholesterol acyltransferase and hepatic lipase 
levels. A reduction in insulin levels was found in DEHP-treated adolescent T2D mice[72]. In both DEHP 
treated groups, a decrease in the expression of insulin receptors (IR-β and IRS-1) and GLUT4 was 
detected. Hence, DEHP acts as a metabolic toxicant in T2D development through impairment of glucose 
and lipid metabolism, and disruption of β-cell function and development[72]. Additionally, metabolic 
toxicity and insulin resistance caused by DEHP were more pronounced in rat liver cells with insulin 
resistance compared to normal cells[73]. In both cell lines, DEHP promoted cell damage through 
increased lipid peroxidation, alanine transaminase and AST levels, caspase-3 levels as a marker of cell 
apoptosis, and downregulated levels of IR-β. DEHP triggered macrophage infiltration in rat adipose 
tissue and stimulated the production of TNFα and IL-1β, promoting inflammation, while impairing 
normal lipid metabolism[74].

Potential mechanisms associated with diabetes: Although the mechanism of action of PAEs in diabetes 
has not been fully clarified, in vitro and in vivo studies have made significant progress toward 
identifying an association between PAE exposure and the development of diabetes. Interactions of PAEs 
with PPARs receptors impaired molecular signaling pathways (i.e., downregulated Pdx-1, activated JNK 
and caspase-3 expression, inhibited extracellular signal-regulated kinase (ERK)1/2, activated JAK/
STAT pathway, and affected neuropeptide Y expression) that have a significant role in the regulation of 
glucose and lipid homeostasis[65,68,71,74,75]. Therefore, PAEs induce mitochondrial dysfunction, 
inflammation and increased oxidative stress, while decreasing the levels of IRs and GLUTs. PAEs also 
promote β-cell dysfunction, apoptosis, impaired insulin sensitivity and glucose cell uptake, and 
consequently cause glucometabolic and lipid abnormalities (Figure 2). In addition to their role in the 
onset of diabetes, PAEs act as obesogenic and diabetogenic chemicals that can aggravate the symptoms 
of diabetes. Especially concerning is the fact that prenatal PAEs exposure is a potential risk factor for 
developing diabetes, and pre-clinical studies imply that women are most susceptible to the adverse 
effects of PAEs.

Epidemiologic evidence: The relationship between PAE exposure and potential risk for development of 
diabetes has mostly been examined by cross-sectional studies that differ in the race, gender and ages of 
study participants, sampling size, type of matrix, analytical techniques and kind of phthalates and/or 
metabolites used as analytes[76-82]. Because PAEs undergo quick metabolism and are excreted via urine 
as conjugated monoesters, evaluation of mPAEs concentrations in urine is most appropriate for 
assessment of possible correlations between PAE exposure and diabetes in humans[83]. Different types 
of PAEs have similar structures and mechanisms of action, and thus their negative effects may be 
additive[51]. Hence, the sum of phthalate metabolites should be considered as well during assessment 
of their negative effects[43]. The first evidence for the diabetogenic potential of PAEs in the human 
population was reported almost 15 years ago in a study where positive correlations were found between 
mPAE concentrations, abdominal obesity and insulin resistance in males[84]. Although urinary mPAEs 
concentrations were not associated with T1D at a significant level, in children with new-onset T1D, 
higher concentrations of MiBP were detected[76]. A high frequency of DEP and DEHP detection in 
urine was observed in healthy adults, the obese, and people with newly diagnosed T2D[34]. Higher 
urinary mPAEs levels, especially monomethylphthalate (MMP), MEP and MiBP, were related to a 
higher prevalence of T2D in both sexes[78,82]. Particularly, MEP and MMP were associated with insulin 
resistance, while MiBP was correlated with low insulin secretion[82]. Moreover, the association between 
mPAE concentrations and T2D was more pronounced in young individuals in comparison to older 
individuals. Interestingly, a positive correlation between specific urinary mPAEs and HbA1c levels was 
observed in individuals with a lower body mass index, while MEHP concentrations were positively 
related to fasting glucose levels in men and in the elderly[77]. Additionally, MEHP levels were 
associated with glucose serum levels in T2D patients and urinary MEP concentrations were positively 
correlated with HOMA-IR while in healthy participants, positive correlations were found between 
urinary MEP levels and triglyceride glucose index and triglyceride glucose-body mass index[43]. Both 
parameters have been proposed as indicators of T2D development in healthy normoglycemic 
participants[85]. It was found that higher concentrations of specific mPAEs were associated with 
increased oxidative stress and inflammation in diabetic patients in terms of MDA and TNFα levels, and 
decreased adiponectin levels[86]. Based on a non-targeted metabolomic study, differences in the serum 
levels of biomarkers of galactose, amino acids and pyrimidine metabolism were observed between T2D 
and control groups and mPAEs levels were mostly significantly associated with metabolic biomarkers 
serum concentrations[87].

In order to examine prospective evidence concerning the association of phthalates with T2D, cohort 
studies were performed. It was found that, among middle-aged women, T2D may be associated with 
phthalate exposure[88]. In utero, MEP exposure was associated with poor insulin secretion among 
pubescent boys, while increased leptin was observed among girls. In utero, and during the peripubertal 
period, DEHP exposure was associated with higher serum insulin-like growth factor-1, insulin 
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Figure 2 Schematic mechanisms of phthalates, bisphenol A and acrylamide role in diabetes development. PAEs: Phthalic acid esters; BPA: 
Bisphenol A; AA: Acrylamide.

secretion, and insulin resistance[89]. Moreover, in order to better investigate the link between specific 
phthalates and their metabolites with diabetes, several meta analyses were recently performed. DEHP 
exposure is mostly related to insulin resistance[90] and a positive correlation was found between 
phthalate metabolites and increased HOMA-IR[91],while the presence of MMP, MnBP, MiBP, mono-(3-
carboxypropyl) phthalate in urine were positively associated with risk of diabetes[92]. Results obtained 
from epidemiological studies provide additional evidence about the negative effects of phthalates on 
glucose and lipid metabolism.

BPA
Overview
BPA is one of the most well-known EDCs because of the numerous adverse health effects associated 
with its widespread application in different everyday products. BPA is used in the production of 
polycarbonate plastics and epoxy resins, and can be found in plastic containers and cans for food and 
beverages, numerous kitchen appliances and utensils, personal care products, toys, paints, electronics, 
sports equipment, medical devices, dental materials and thermal paper[93,94]. Because of its known 
reproductive toxicity and endocrine disruption potential, the use of BPA in baby bottles and toys is 
forbidden in the United States, Canada and the European Union[95]. However, despite continuous 
debate over more efficient measures to protect especially vulnerable populations from BPA exposure, 
BPA production and consumption is still increasing. It is expected that BPA commercial sales will 
exceed 30 billion USD in 2028[96]. Similarly, to PAEs, food can be contaminated with BPA during 
production, handling, packaging, and transportation[97]. BPA migration from container linings may be 
increased under high temperature, acid or basic conditions and even due to microwave exposure[95]. 
Hence, diet is recognized as a main source of BPA exposure, particularly the ingestion of BPA via 
canned foods[98]. Although the European Food Safety Authority has set a reduced TDI for BPA (0.04 ng 
of BPA per kg body weight per day), the daily intake of BPA through the diet is several times higher 
(0.17-0.95 μg of BPA per kg body weight per day)[99]. An extensive number of studies has documented 
the association between BPA exposure and increased oxidative stress, fertility disorders, obesity in 
children, adolescents and adults, metabolic disturbances and impaired pancreatic β-cell function, as well 
as cardiovascular diseases and even increased carcinogenicity[100-106].

BPA and diabetes
Research status: BPA is classified as a “weak estrogen” and “obesogen” due to its endocrine disruptive 
potential, which is mainly a result of the known ability of BPA to bind to nuclear receptors[15,107]. 
Acute and long-term effects of low BPA concentrations on the development of diabetes have been 
documented. Enhanced insulin synthesis was observed through the interaction of ERα with ERK2 in 
pancreatic β-cells[108]. Similar to 17β-estradiol, picomolar doses of BPA trigger Ca2+ signaling pathways 
leading to insulin secretion in pancreatic β-cells. In addition, BPA exposure may cause inhibition of the 
expression of Pdx-1 in pancreatic mice islets, resulting in a decrease in glucose promoted insulin 
secretion and ATP production. Moreover, microRNA expression and BPA induced insulin secretion 
dysfunction in pancreatic islets has also been studied. Particularly, BPA suppressed the expression of 
miR-338, resulting in down-regulation of Pdx-1[109]. The “inverted U-shaped dose-effect curve” 
corresponds to the impact of BPA on insulin secretion in β-cells and mitochondrial function[110]. It is 
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worth noting that more pronounced effects were exhibited by BPA binding to ERβ receptors. BPA as an 
insulinotropic pollutant affected β-cell function through inhibition of K(ATP) channel activity, which 
was observed in ERβ+ mice and human β-cells and islets[111,112]. In comparison with phthalate 
metabolites (MnBP, MiBP, and MEHP), BPA more strongly affected viability and insulin secretion in 
pancreatic β-cells[64]. However, in the same study, cytokine-induced cell death, a marker of T1D, was 
not affected. In spite of this, BPA was found to aggravate T1D in mice by disturbing Ca2+ signaling; 
indicating that BPA may cause insulin resistance via exacerbation of endoplasmic reticulum stress in 
pancreatic β-cells[113]. The diabetogenic potential of BPA has also been documented in insulinoma cell 
lines, where increased insulin secretion was observed together with decreased cell viability at 
nanomolar BPA levels[114,115]. BPA induced insulin hypersecretion was associated with enhanced β-
cell lymphoma 2 family members, caspases and mitochondrial stress, which led to apoptosis[114]. 
Additionally, apoptosis may be promoted through BPA induced formation of amyloid fibrils. In rat 
insulinoma cells, BPA at micromolar concentrations induced DNA damage via increased levels of the 
proteins p53 and p-Chk2, as well as increased production of reactive oxygen species and decreased GSH 
levels[116]. In pancreatic α-cells, which are responsible for glucagon secretion, BPA reduced the 
fluctuation of low glucose levels induced by Ca2+[117]. To date, there is no published data concerning 
the impact of BPA on other Langerhans islets cells (δ, γ, ε). Regarding the data about BPA’s role in 
autoimmune related disorders, such as T1D, the effects of low and high doses of BPA on T-cell 
immunity mechanisms have also been examined. Results show that at low doses, BPA acts as a 
promotor of diabetes, both through modulation of CD4+ T-cells and production of interferon γ, IL-6 and 
TNFα[118]. BPA effects were not sex-dependent, based on the experiments performed in non-obese 
diabetic mice models[119]. However, exposure to BPA during the prenatal stage is particularly 
dangerous, considering that BPA increased the risk for T1D development and metabolic disturbances in 
juvenile mice models and adult mice offspring, respectively[119,120]. Additionally, changes in gut 
microbiota and inflammation were recorded in juvenile mice[119,121]. Prenatal BPA exposure during 
the lactation period led to an increase in body weight in mice[122]. Even at “safe“ levels (below the 
predicted ‘no adverse effect’ concentration) prenatal BPA exposure led to a significant increase in body 
and liver weight, abnormalities in adipocytes in terms of mass, number and volume, as well as elevated 
serum leptin and insulin levels, together with a decrease in adiponectin and glucose tolerance in adult 
male offspring[120]. Also, BPA exposure during lactation induced body weight gain in mice[122]. In 
pregnant BPA exposed mice, insulin resistance, together with elevated levels of insulin, triglycerides, 
and leptin in plasma, as well as glucose intolerance were observed[123]. Prenatal BPA exposure had 
detrimental effects on β-cells in mice, in terms of cell growth, mass and proliferation[124]. Therefore, 
exposure during early stages and the gestational period may cause long-term vulnerability to metabolic 
diseases and the development of glucose intolerance as a collateral effect or through epigenetic modific-
ations[125,126].

Potential mechanisms associated with diabetes: The mechanisms of action of BPA are complex. Besides 
impairment of β-cell function, pre-clinical studies suggest that BPA is involved in the production of 
insulin resistance promoters, such as IL-6 and TNFα and inhibition of adiponektine in adipose tissue. In 
addition, BPA is associated with increased lipid peroxidation and pro-inflammatory cytokines in 
hepatocytes, as well as alterations in signaling pathways that generate reactive oxygen species, affect T-
cell immunity, leading to decreased insulin sensitivity in skeletal muscles and glucose tolerance in the 
liver (Figure 2)[127-134].

Epidemiologic evidence: Evidence for the diabetogenic effects of BPA could not be completed without 
biomonitoring studies. Considering that free BPA has higher affinity for nuclear receptors than 
glucuronide and sulfate conjugates, the adverse effects of BPA are still evaluated mostly by measuring 
total BPA levels in urine, as a matrix of choice, and are expressed as creatinine-adjusted mean BPA 
concentrations[135]. Most of these studies are cross-sectional, performed on a limited number of 
volunteers using spot urine BPA testing. Therefore, the long term effects of BPA could not be estimated. 
It has been reported that the presence of BPA in urine samples is positively associated with obesity in 
children, adolescents and adults, as well as with the promotion of obesity, especially the visceral type, 
increased metabolic risk through hyperinsulinemia, glucose intolerance, insulin resistance, elevated 
HbA1c and serum leptin levels and dyslipidemia[16,17,103,105,136-142]. Different research groups have 
reported a positive relationship between BPA levels and T2D[143-147]. It is worth noting that in some 
studies the obtained outcomes were independent of age, sex, ethnicity, body mass index, and serum 
cholesterol levels[104,148]. Furthermore, in a meta-analysis that included data from more than 41000 
participants, detected BPA concentrations in urine and serum were positively associated with a risk for 
T2D[149]. In a recently performed cohort study with 1990 participants, the U-shaped curve reflected an 
association between serum BPA concentrations and risk for T2D[141]. Individuals with increased BPA 
concentrations and increased diabetes genetic risk score had increased fasting plasma glucose levels and 
risk for T2D as well[141]. In a longitudinal cohort study performed on more than 2300 adults of both 
sexes, repeated measurements were conducted in order to investigate the association of urinary BPA 
levels with glucose homeostasis parameters. The obtained results imply that BPA correlated with 
compromised glucose homoeostasis in women but not in men before the development of diabetes[150]. 
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Prenatal BPA exposure was connected with an increased risk for lower birth weight, smaller size for 
gestational age as well as increased leptin and decreased adiponectin levels[151-154]. Significantly 
higher median urinary BPA levels were observed in children and adolescents with T1D when compared 
with healthy controls[102].

A limited number of studies have demonstrated BPA detection in adipose tissue, due to the invasive 
nature of the procedure and the complexity of the matrix. BPA was detected with high frequency (62%) 
in adipose tissue in children[155]. Moreover, obtained BPA levels in adipose tissue were much higher in 
children compared with adult women[156]. The levels of BPA in adipose tissue of adults were related to 
low GSH reductase activity and increased oxidized GSH, confirming that BPA triggers oxidative stress 
in human adipose tissue[157]. Regarding adipose tissue dysfunction, BPA serum levels were 
significantly higher in people with T2D in comparison with healthy controls; while a positive correlation 
with serum leptin levels, and a negative correlation with adiponectin was found in the group with 
diabetes, strongly suggesting that BPA may worsen diabetes and increase diabetes pathology[147].

AA
Overview
AA is an α,β-unsaturated carbonyl compound with electrophilic reactivity that has widespread applic-
ations in different industrial and laboratory processes[158]. In particular, AA is applied for the synthesis 
of polyacrylamide polymers used in water purification, sewage treatment, oil and sugar refinement, the 
production of soaps and cosmetics, varnishes, plastics, pesticides, adhesives, fibers, pharmaceuticals 
and textiles, and as a gel medium for electrophoresis methods in research laboratories[159-161]. AA is 
also found in cigarette smoke[162]. AA is the focus of scientific and public attention since 2002, when it 
was reported that it can be produced during the processing of certain foods. AA is formed as a result of 
a Milliard reaction when foods that contain asparagines and sugars are prepared at high temperatures 
(higher than 120 °C) under low moisture conditions[163-165]. More precisely, AA is formed during the 
browning of certain foods during frying, baking, grilling and roasting[159]. Hence, the main sources of 
AA in the diet are fried potatoes, breakfast cereals, cookies, crackers, crisps, bread, toast[166,167] and 
roasted coffee[168]. It is estimated that chronic average exposure to AA ranges from 0.5-1.9 μg/kg body 
weight per day in children, to 0.4-0.9 μg/kg body weight per day in adolescents, adults, and the elderly
[169].

During detoxification processes, the majority of AA is conjugated to GSH, while less is metabolized to 
a genotoxic epoxide derivate glycidamide (GA) by the enzyme cytochrome P450 2E1 (CYP2E1)[170]. 
Genotoxic GA is more reactive than AA, and can produce DNA and Hb adducts[171]. The TDI for AA 
neurotoxicity is 40 μg/kg/d, while TDIs for cancer are 2.6 and 16 μg/kg/d for AA and GA, respectively
[172]. Due to the adverse effects of AA on human health, the European Chemicals Agency ECHA has 
included AA on a list of candidate substances of very high concern that requires authorization from the 
European chemical regulation REACH (Registration, Evaluation, Authorization and Restriction of 
Chemicals)[159,173]. Several regulatory agencies provided different mitigation strategies for the 
prevention and reduction of AA formation in food[174-179].

AA and diabetes
Research status: Data about the association between low AA levels from diet and adverse health 
outcomes are still scarce and limited. To date, there have been only few attempts to investigate the 
impact of AA exposure on diabetes development. AA exposure disturbed the majority of redox status 
parameters in vitro in a β-cell line, Rin-5F, a validated β-cell model system[180]. Namely, AA exposure 
led to increased lipid peroxidation and nitric oxide (NO) production and a decrease in GSH content
[180]. In addition, AA treatment affected the activity of antioxidant enzymes SOD and catalase (CAT), 
and the detoxifiying enzyme GSH S-transferase (GST) in pancreatic β-cells[180]. Formation of AA-GSH 
conjugates during detoxification could lead to GSH depletion and stimulation of GST activity in AA-
exposed β-cells[180-182]. During metabolic processing, most AA is coupled to GSH via GST[158,183]. 
Elevated lipid peroxidation in pancreatic β-cells could be a result of GSH reduction[182]. AA exposure 
increased both the expression of inducible NO synthase (iNOS) and NO production in pancreatic β-cells, 
indicating induction of nitrosative stress[180]. Elevated iNOS and NO levels can cause β-cell 
dysfunction[184]. Decreased activity, but increased expression of SOD could be a consequence of the 
inactivation of redundant enzyme that is produced under conditions of high oxidative stress in AA-
exposed pancreatic β-cells[185,186]. Upon AA exposure, resulting elevated NO levels reduced CAT 
activity in pancreatic β-cells[180,187]. In vitro metabolomics analysis revealed AA-induced glycolysis 
and gluconeogenesis alleviation characterized by diminished levels of glycolitic intermediates and a 
decreased rate of the tricarboxylic acid cycle[188]. Taken together, in vitro studies suggest that AA 
induces oxidative stress toxicity in β- cells and alters glucose metabolism.

In rats, AA exposure led to increased blood glucose levels and the development of histopathological 
changes in the islets[189]. In addition, a decreased β-cell and increased α-cell number was observed in 
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rats upon exposure to AA[190,191]. A similar pattern of islets remodeling characterized by α-cell 
expansion and β-cell reduction was detected in islets of both diabetic rats and humans[192-197]. These 
data are in line with the putative prodiabetic properties of AA. AA exposure altered expression of 
gluconeogenic enzymes in rats and mice, indicating the potential of AA to impair gluconeogenesis[189,
198]. Furthermore, AA affected the level of metabolites involved in the pentose phosphate pathway
[199]. The pentose phosphate pathway is a significant component of glucose metabolism related to the 
development of T2D[200]. Taken together, these data demonstrate AA-induced disruption of glucose 
homeostasis. In addition, AA was shown to affect insulin-regulated IRS/PI3K/Akt/Foxo1 signaling 
pathways in rats[189]. Furthermore, AA exposure induced the expression of iNOS in rat pancreatic 
islets[180]. Increased iNOS expression impairs normal β-cell function and insulin secretion, and has 
been detected in both T1D and T2D[184]. In both in vitro and in vivo model systems, AA treatments 
reduced the expression of CYP2E1 in pancreatic β-cells[180]. CYP2E1 catalyzes biotransformation of AA 
to the genotoxic epoxide GA[170]. Reduction of CYP2E1 expression could be a protective mechanism in 
β-cells, in order to prevent the formation of the more toxic GA[180]. In addition, it has been shown that 
AA aggravates the diabetic condition in rodents[198,201,202]. Namely, AA worsens the histopatho-
logical features of liver and kidney lesions, blood biochemical parameters and redox status in diabetic 
rodents[198,201,202]. Diabetics are particularly vulnerable individuals, and more susceptible to environ-
mental contaminants than the general population[186,198,203,204]. Collectively, in vivo studies in 
rodents indicate that AA exposure induces remodeling of pancreatic islets, impairs glucose metabolism 
and aggravates the overall diabetic state.

Potential mechanisms associated with diabetes: Based on the limited number of performed in vitro and 
in vivo studies, oxidative stress is the principle mechanism of AA-induced toxicity in pancreatic β-cells
[180]. AA related impairment of both pentose phosphate pathway and insulin-regulated signaling is 
responsible for glucose metabolism disruption and development and aggravation of diabetes (Figure 2)
[189,198,199].

Epidemiological evidence: Several epidemiological studies have revealed an association between AA 
intake and disorders of glucose metabolism[160,205,206]. In a Chinese adult population, a correlation 
between AA exposure and fasting plasma glucose levels was observed[160]. In line with these findings, 
data from the United States National Health and Nutrition Examination Survey (NHANES) 2003-2006 
showed a significant correlation between high fasting plasma glucose levels and the concentration of 
HbGA adducts in the general adult population in the United States[205]. This study also reported that 
AA alters metabolic syndrome biomarkers[205]. Another NHANES study, 2003-2004, reported an 
association between AA exposure, decreased blood insulin levels and insulin resistance[206]. 
Subsequent NHANES surveys, 2005-2006 and 2013-2016, further confirmed these data and showed that 
Hb-AA adducts (HbAA) are linearly and inversely associated with the risk of diabetes development, 
whereas HbGA/HbAA nonlinearly and positively correlates with the prevalence of diabetes, indicating 
that HbAA and HbGA/HbAA are significantly associated with diabetes[169]. An association between 
HBAA adducts and AA intake was also detected in an adult Japanese population[207]. In addition, 
there is a link between prenatal dietary exposure to AA and the prevalence of obesity[208]. A large 
prospective study revealed a positive correlation between consumption of french fries and the risk for 
development of T2D in women[209]. French fries contain a high AA content: a standard portion 
contains approximately 30 μg of AA[165], indicating a significant contribution of AA to the deve-
lopment of T2D. These findings have been further confirmed by two prospective cohort studies, which 
showed an association between a high intake of ultra-processed foods and the risk of T2D[210,211]. 
Further epidemiological studies in other populations are required in order to confirm and elucidate the 
roles of AA exposure in the development of diabetes.

CONCLUSION
This paper summarizes important data, providing greater understanding of the diabetogenic effects of 
some PAEs and their metabolites, as well as BPA and AA. Risk assessment of these contaminants in 
mixtures of EDCs and the exact level of exposure associated with diabetes development over time 
remained unanswered. The effects of decreased exposure to phthalates, BPA, and AA through 
avoidance of specific packaging materials, or chemical reactions during food processing on glucose 
metabolism should also be addressed. Therefore, further prospective, well-designed studies with 
multiple measurements and longer follow-up, together with experimental studies, are required to 
completely understand the underlying mechanisms and confirm the causal association between PAEs, 
BPA, AA and diabetes outcomes. Diabetes is associated with serious complications, such as 
cardiovascular disease and stroke, chronic kidney disease, liver disease, neuropathy, retinopathy etc. 
Therefore, more effective prevention and treatment strategies are necessary. New strategies that 
advocate reduced exposure to food contaminants, while promoting increased physical activity and 
healthier nutritional choices, may be crucial for the prevention or delay of diabetes progression.
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Abstract
Heart failure with preserved ejection fraction (HFpEF) is a heterogeneous 
syndrome with various comorbidities, multiple cardiac and extracardiac 
pathophysiologic abnormalities, and diverse phenotypic presentations. Since 
HFpEF is a heterogeneous disease with different phenotypes, individualized 
treatment is required. HFpEF with type 2 diabetes mellitus (T2DM) represents a 
specific phenotype of HFpEF, with about 45%-50% of HFpEF patients suffering 
from T2DM. Systemic inflammation associated with dysregulated glucose 
metabolism is a critical pathological mechanism of HFpEF with T2DM, which is 
intimately related to the expansion and dysfunction (inflammation and 
hypermetabolic activity) of epicardial adipose tissue (EAT). EAT is well esta-
blished as a very active endocrine organ that can regulate the pathophysiological 
processes of HFpEF with T2DM through the paracrine and endocrine 
mechanisms. Therefore, suppressing abnormal EAT expansion may be a 
promising therapeutic strategy for HFpEF with T2DM. Although there is no 
treatment specifically for EAT, lifestyle management, bariatric surgery, and some 
pharmaceutical interventions (anti-cytokine drugs, statins, proprotein convertase 
subtilisin/kexin type 9 inhibitors, metformin, glucagon-like peptide-1 receptor 
agonists, and especially sodium-glucose cotransporter-2 inhibitors) have been 
shown to attenuate the inflammatory response or expansion of EAT. Importantly, 
these treatments may be beneficial in improving the clinical symptoms or 
prognosis of patients with HFpEF. Accordingly, well-designed randomized 
controlled trials are needed to validate the efficacy of current therapies. In 
addition, more novel and effective therapies targeting EAT are needed in the 
future.

Key Words: Epicardial adipose tissue; Heart failure with preserved ejection fraction; Type 
2 diabetes mellitus; Inflammation; Anti-hyperglycemic drugs; Sodium-glucose 
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Core Tip: Heart failure with preserved ejection fraction (HFpEF) is a heterogeneous syndrome requiring 
individualized treatment depending on phenotypic differences. HFpEF with type 2 diabetes mellitus is 
strongly associated with the expansion, inflammation, and hypermetabolic activity of epicardial adipose 
tissue (EAT). Thus, targeting EAT may be a promising therapeutic strategy for HFpEF with type 2 
diabetes mellitus. Lifestyle management, bariatric surgery, and certain drugs may suppress the accumu-
lation of EAT and improve the clinical symptoms and prognosis of HFpEF. More studies are required to 
validate the efficacy of current treatments and to develop new effective therapies.

Citation: Shi YJ, Dong GJ, Guo M. Targeting epicardial adipose tissue: A potential therapeutic strategy for heart 
failure with preserved ejection fraction with type 2 diabetes mellitus. World J Diabetes 2023; 14(6): 724-740
URL: https://www.wjgnet.com/1948-9358/full/v14/i6/724.htm
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INTRODUCTION
Heart failure with preserved ejection fraction (HFpEF), a systemic and heterogeneous syndrome, is 
characterized by various comorbidities (mainly diabetes mellitus, hypertension, and metabolic 
syndrome), multiple cardiac and extracardiac pathophysiologic abnormalities, and diverse phenotypic 
presentations[1]. HFpEF is a growing public health challenge, which currently accounts for approx-
imately half of HF cases, and its prevalence continues to rise due to an aging population and the 
increasing burden of comorbidities[2]. Additionally, HFpEF is associated with poor prognosis, with a 5-
year mortality rate of up to 75%[3]. Standardized and effective interventions are lacking due to the 
complex pathophysiological underpinnings and clinical heterogeneity of HFpEF[4]. It may, however, be 
beneficial to halt disease progression and thus improve prognosis by providing individualized 
treatment based on phenotypic differences[4].

Type 2 diabetes mellitus (T2DM) is a substantial risk factor for the emergence and progression of 
HFpEF, and approximately 45%-50% of HFpEF cases suffer from T2DM, a specific phenotype of HFpEF
[5,6]. Systemic inflammation related to glucose metabolism disorders is accepted as a critical 
pathological mechanism of HFpEF with T2DM, which is responsible for the expansion and dysfunction 
(inflammation and hypermetabolic activity) of epicardial adipose tissue (EAT)[7]. EAT, a metabolically 
active visceral fat depot, can regulate the pathophysiological processes of HFpEF with T2DM through 
the paracrine and endocrine mechanisms[8]. Thus, inhibiting the accumulation of EAT may be a 
promising therapeutic strategy for HFpEF with T2DM. At present, lifestyle management, bariatric 
surgery, and some medications may contribute to reducing the inflammation response or accumulation 
of EAT, despite the fact that there is no available treatment for EAT. Notably, these interventions may 
attenuate pathological changes and improve the prognosis in patients with HFpEF.

Currently, a comprehensive review is lacking discussing the pathogenesis of EAT-mediated HFpEF 
with T2DM and therapies to inhibit EAT expansion. In this review, we evaluated the role of EAT in the 
development of HFpEF with T2DM and discussed current therapies to attenuate EAT expansion as well 
as future therapeutic perspectives.

ANATOMY, PATHOLOGY AND PATHOPHYSIOLOGY OF EAT
Anatomy of EAT
EAT represents the local visceral fat depot of the heart, located between the myocardium and the 
visceral pericardium[9] (Figure 1). Under healthy circumstances, EAT accounts for approximately 20% 
of the total heart weight and covers 80% of the cardiac surface[10,11]. In adults, EAT typically surrounds 
the coronary arteries and their major epicardial branches, mainly concentrated in the interventricular 
and atrioventricular grooves, with lesser amounts covering the atria, the free wall of the right ventricle, 
and the apex[9]. Interestingly, EAT is anatomically and functionally contiguous with the myocardium 
because of the shared microcirculation and the absence of muscle fascia, which may facilitate the local 
interaction of EAT with the myocardium and coronary arteries through vasocrine or paracrine cross-talk
[12]. Microscopically, EAT consists typically of adipocytes specialized in energy storage but also 
includes inflammatory cells (mainly macrophages and mast cells), immune cells, stromovascular cells, 

https://www.wjgnet.com/1948-9358/full/v14/i6/724.htm
https://dx.doi.org/10.4239/wjd.v14.i6.724


Shi YJ et al. Adipose tissue in HFpEF with diabetes

WJD https://www.wjgnet.com 726 June 15, 2023 Volume 14 Issue 6

Figure 1 Anatomical location of epicardial adipose tissue. Epicardial adipose tissue (EAT) is situated between the myocardium and the visceral 
pericardium. In normal adults, EAT usually accompanies the coronary arteries and their major epicardial branches, mainly concentrated in the interventricular and 
atrioventricular grooves, with lesser amounts covering the atria, the free wall of the right ventricle, and the apex.

and ganglia in normal adults. In pathological states, however, numerous inflammatory cell aggregates 
and abnormal expansion of the microvascular network are present in the EAT[13].

Physiology of EAT
EAT acts as a shock absorber, protecting coronary arteries from excessive distortion and compression 
during the contraction of the adjacent myocardium[14]. EAT has a greater capacity to release and 
uptake free fatty acids (FFA) compared to other visceral fat depots. The myocardium metabolizes FFAs 
from the coronary arterial blood, which is shared with the contiguous EAT. FFA oxidation is responsible 
for almost 50%-70% of the energy production in the heart[15]. Accordingly, EAT might serve as a 
physiological buffer to protect the myocardium from excessive fatty acid levels and as a direct energy 
source to provide FFA under increased metabolic demand. Moreover, EAT expresses uncoupling 
protein-1 (UCP1), a thermogenic protein located in the inner membrane of mitochondria. UCP1 
uncouples oxidative phosphorylation from ATP synthesis, ultimately dissipating energy as heat[16]. 
EAT might, therefore, provide direct heat to the myocardium and protect the heart under unfavorable 
hemodynamic conditions.

Pathophysiology of EAT
EAT has been widely established as a remarkably active endocrine organ that secretes various bioactive 
molecules, such as cytokines, adipokines, and chemokines, that can exert protective or detrimental 
effects depending on the local microenvironmental situation[17]. EAT can, therefore, locally modulate 
the adjacent myocardium and coronary arteries through the vasocrine or paracrine secretion of these 
bioactive molecules[12]. Physiologically, EAT mainly releases anti-inflammatory adipocytokines, such 
as adiponectin, adrenomedullin, omentin, and interleukin-10 (IL-10), which contribute to cardiopro-
tection and anti-atherosclerosis[14]. In contrast, adipocytes enlarge and produce high quantities of FFAs 
under pathological conditions, triggering EAT expansion, localized hypoxia, and the infiltration of 
macrophages, ultimately resulting in a chronic inflammatory response[8]. Subsequently, numerous 
proinflammatory adipokines are produced and accumulated, including IL-6, tumor necrosis factor-
alpha (TNF-α), monocyte chemotactic protein-1, leptin, resistin, and serglycin, which aggravate local 
inflammation, thereby affecting the heart and coronary arteries[12].
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CONTRIBUTIONS OF EAT TO HFPEF WITH T2DM
EAT in the pathophysiology of HFpEF with T2DM
Dysregulated glucose metabolism is a fundamental clinical characteristic of T2DM and is strongly 
connected with the aberrant accumulation of EAT[18-20]. As reported in Table 1, EAT thickness over the 
right ventricular free wall, EAT volume, or EAT area were significantly higher in patients with impaired 
fasting glucose, insulin resistance, or T2DM than in control subjects[21-39]. A meta-analysis of nine 
studies by Li et al[40] confirmed a positive correlation between the presence of T2DM and EAT 
expansion. Eventually, increased EAT deposition interacts directly with the heart through mechanical 
and metabolic mechanisms, leading to myocardial fibrosis, cardiomyocyte stiffness, and left ventricular 
(LV) diastolic dysfunction, which are the essential pathological features of HFpEF (Figure 2).

In terms of machinery, increased EAT occupies a large space in the cardiac fossa and applies a 
compressive contact force on the heart, resulting in pericardial restrain, increased ventricular filling 
pressures, and LV diastolic dysfunction. A meta-analysis of 11 studies showed that increasing EAT was 
independently associated with LV diastolic dysfunction even after adjusting for age, sex, and measures 
of adiposity[41]. In patients with T2DM, Christensen et al[27] and Song et al[42] substantiated the 
deleterious effect of increased EAT on LV global longitudinal strain and LV diastolic function assessed 
by peak velocity during early diastole (E)/peak velocity during atrial contraction (A) ratio, early 
diastolic mitral annular velocity (e’), and E/e’ ratio.

In terms of metabolism, EAT enlargement is linked to the buildup of FFAs and lipid metabolites[43], 
which induce myocardial lipotoxicity and in turn contribute to excessive oxidative stress, endoplasmic 
reticulum stress, and mitochondrial dysfunction, ultimately causing LV diastolic dysfunction[44]. 
Furthermore, excessive cardiomyocyte lipid deposits may lead to cardiac steatosis, which has been 
demonstrated to be an early marker of diabetic heart disease and is independently associated with LV 
diastolic function[45-47]. Simultaneously, hypertrophic adipocytes and activated macrophages exhibit 
increased production of proinflammatory adipocytokines and chemokines in EAT. These proinflam-
matory factors cause local inflammation, excessive oxidative stress, microvascular and endothelial 
dysfunction, and extracellular matrix deposition through vasocrine or paracrine mechanisms, resulting 
in cardiomyocyte stiffness, myocardial fibrosis, and subsequent LV diastolic dysfunction[8,9].

Relationship between increased EAT and clinical characteristics of HFpEF
As shown in Table 2, EAT expansion is closely related to severe pathologic changes, clinical manifest-
ations, and long-term prognosis in individuals with HFpEF[48-55]. According to research by van 
Woerden et al[48] and Pugliese et al[54], enlarged EAT is linked to increased plasma myocardial injury 
markers. Wang et al[49] found that the EAT volume was positively correlated with elevated inflam-
matory markers (C-reactive protein), LV hypertrophy (LV mass index), and LV diastolic dysfunction 
(E/e’ ratio and tricuspid regurgitation velocity). Venkateshvaran et al[50] confirmed that higher EAT 
was linked not only to LV hypertrophy and diastolic dysfunction but also to endothelial dysfunction. 
Koepp et al[51] showed that thickened EAT was associated with elevated cardiac filling pressures, 
pulmonary hypertension, and pericardial constraint. Additionally, some studies have confirmed that 
increased EAT may lead to decreased exercise tolerance or quality of life[50-54]. Importantly, EAT 
thickening was correlated with a 1.12-fold increased risk of the composite endpoint of death and HF 
hospitalization after 21 mo of follow-up, according to Pugliese et al[54]. After 24 mo of follow-up, van 
Woerden et al[55] confirmed that EAT expansion increased the risk of all-cause mortality, HF hospital-
ization, and the composite endpoint.

CURRENT INTERVENTIONS TARGETING EAT AND FUTURE THERAPEUTIC  
PERSPECTIVES IN HFPEF WITH T2DM
EAT plays an important role in the development and progression of HFpEF with T2DM and is strongly 
associated with an increased risk of adverse outcomes. Therefore, alleviating EAT expansion may be a 
promising therapeutic strategy. Although no treatment is available specifically for EAT, lifestyle 
management, bariatric surgery, and medications (Table 3) including anti-hyperlipidemia, anti-cytokines, 
and anti-hyperglycemia have been demonstrated to reduce the inflammation response or expansion of 
EAT and appear to be beneficial for HFpEF (Figure 3).

Non-pharmacological interventions
In diabetic and obese patients, lifestyle modifications (including a low-calorie diet and exercise training) 
and bariatric surgery can reduce EAT levels. Twenty severely obese patients were shown to have a 32% 
reduction in EAT thickness and alleviation in LV hypertrophy and diastolic dysfunction after 6 mo of 
calorie restriction with moderate exercise[56]. Serrano-Ferrer et al[57] confirmed that exercise training 
significantly reduced EAT thickness and serum TNF-α, increased lipocalin, and improved LV 
myocardial strain and strain rate. A study by Honkala et al[58] reported that 2 wk of continuous exercise 
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Table 1 Epicardial adipose tissue expansion in patients with glucose metabolism disorders

Ref. Participants, n Amount of EAT in the 
observation group

Amount of EAT in the 
control group P value

EAT thickness (mm) measured by echocardiography thickness on the right ventricular free wall 

Baloglu et al[21], 2019 T2DM patients: 128; healthy controls: 32 3.53 ± 0.79 4.64 ± 1.39 < 0.001

Akbas et al[22], 2014 T2DM patients: 156; healthy controls: 50 4.66 ± 1.50 3.91 ± 1.60 0.005

Chen et al[23], 2017 T2DM patients: 167; healthy controls: 82 4.00 (3.00-5.00) 2.00 (1.00-3.00) < 0.001

Philouze et al[24], 
2017 

T2DM patients: 44; healthy controls: 35 6.40 ± 1.70 3.30 ± 1.10 < 0.001

Cetin et al[25], 2013 T2DM patients: 139; age- and sex-matched 
controls: 40

6.00 ± 1.50 4.42 ± 1.00 < 0.001

Yafei et al[26], 2019 T2DM patients: 76; age- and sex-matched 
controls: 30

6.23 ± 1.27 4.60 ± 1.03 < 0.001

Christensen et al[27], 
2019 

T2DM patients: 770; age- and sex-matched 
controls: 234

4.60 ± 1.80 3.40 ± 1.20 < 0.0001

Wang et al[28], 2017 T2DM with duration ≤ 10 yr: 35; T2DM with 
duration > 10 yr: 33

4.47 ± 1.90 5.45 ± 1.40 < 0.05

Altin et al[29], 2016 Patients with IR: 113; age- and sex-matched 
controls: 112

7.34 ± 1.96 5.22 ± 1.75 < 0.001

Males: 8.00 ± 3.00 6.00 ± 2.00Iacobellis et al[30], 
2008 

Patients with IFG: 65; non-diabetic controls: 50

Females: 7.10 ± 4.00 5.80 ± 3.00

< 0.001

EAT volume (cm3) measured by computed tomography 

Wang et al[31], 2008 T2DM patients: 49; non-diabetic controls: 78 166.1 ± 60.6 123.4 ± 41.8 < 0.0001

Akyürek et al[32], 
2014 

T2DM patients: 93; non-diabetic controls: 85 40.1 ± 23.9 16.9 ± 7.7 < 0.001

Gullaksen et al[33], 
2019 

T2DM patients: 44; non-diabetic controls: 59 119.0 ± 49.0 86.0 ± 40.0 < 0.001

Groves et al[34], 2014 T2DM patients: 92; non-diabetic controls: 59 118.6 ± 43.0 70.0 ± 44.0 < 0.0001

Versteylen et al[35], 
2012 

Patients with IFG: 118; non-diabetic controls: 
209

92.0 ± 39.0 75.0 ± 34.0 < 0.001

EAT volume (cm3) or area (cm2) measured by cardiac magnetic resonance 

Huang et al[36], 2022 T2DM with duration ≤ 5 yr: 56; T2DM with 
duration > 5 yr: 57

48.4 ± 13.4 cm3 58.4 ± 17.3 cm3 < 0.001

Evin et al[37], 2016 T2DM patients: 20; healthy controls: 19 135.0 ± 31.0 cm3 90.0 ± 30.0 cm3 < 0.001

Al-Talabany et al[38], 
2018 

T2DM patients: 54; non-diabetic controls: 29 13.5 ± 3.5 cm2 11.8 ± 4.1 cm2 < 0.05

Rado et al[39], 2019 Prediabetes patients: 100; healthy controls: 200 9.2 cm2 7.7 cm2 < 0.001

EAT: Epicardial adipose tissue; IFG: Impaired fasting glucose; IR: Insulin resistance; T2DM: Type 2 diabetes mellitus.

training resulted in decreased EAT volume and myocardial triglyceride levels and improved aerobic 
exercise tolerance and insulin sensitivity in 16 patients with T2DM. A meta-analysis including five 
studies confirmed that exercise training reduced epicardial fat deposition[59].

Several studies have reported that bariatric surgery substantially reduces the accumulation of EAT in 
patients[60-64]. Gaborit et al[62] found a 27% reduction in EAT volume in obese patients at a 6-mo 
follow-up after bariatric surgery. In addition, individuals with HFpEF appear to benefit from lifestyle 
changes and bariatric surgery in terms of improved microvascular and endothelial dysfunction, left 
ventricular remodeling and diastolic dysfunction, exercise tolerance, and quality of life[65-68]. Thus, 
lifestyle modification and bariatric surgery may alleviate the abnormal expansion of EAT in HFpEF 
patients with obesity and T2DM and improve LV diastolic function and clinical symptoms. 
Nevertheless, further research is required to determine whether it can improve the prognosis of 
patients.
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Table 2 Relationship between increased epicardial adipose tissue and clinical characteristics of heart failure with preserved ejection 
fraction

Relationship between increased EAT and clinical characteristics of HFpEF
Ref. Participants, n Imaging 

method Pathological changes Clinical 
manifestations Prognosis

van Woerden et al
[48], 2018 

64 HF patients with 
LVEF > 40%

CMR Myocardial injury: increased 
creatine kinase-MB and TnT

Decreased quality of life 
(KCCQ score)

Wang et al[49], 2022 53 HF patients with 
LVEF > 50%

CMR Inflammation: increased CRP; LV 
hypertrophy: increased LVmass 
index; LV diastolic dysfunction: 
increased E/e' and tricuspid 
regurgitation velocity

Venkateshvaran et al
[50], 2022 

182 HF patients 
with LVEF > 50%

Echo Inflammation; endothelial 
dysfunction; LV hypertrophy: 
increased LV septal wall thickness; 
LV diastolic dysfunction: increased 
E peak deceleration time

Decreased quality of life 
(KCCQ score)

Koepp et al[51], 2020 169 HF patients 
with LVEF > 50%

Echo Increased cardiac filling pressures, 
pulmonary hypertension, and 
pericardial restraint

Decreased exercise 
capacity (VO2, AVO2 diff)

Haykowsky et al
[52], 2018 

100 HF patients 
with LVEF > 50%

CMR Decreased exercise 
capacity (VO2, 6-min 
walk test, leg power)

Gorter et al[53], 2020 75 HF patients with 
LVEF > 45%

Echo Decreased exercise 
capacity (VO2)

Pugliese et al[54], 
2021 

188 HF patients 
with LVEF > 50%

Echo Myocardial injury: increased TnT; 
inflammation: increased CRP

Decreased exercise 
capacity (peak VO2 and 
AVO2 diff)

Increased risk of the 
composite endpoint of HF 
hospitalization and 
cardiovascular deaths

van Woerden et al
[55], 2022 

105 HF patients 
with LVEF > 40%

CMR Increased risk of HF hospit-
alization, all-cause death, 
and the composite endpoint

AVO2 diff: Non-invasive arterial-venous oxygen content difference; CMR: Cardiac magnetic resonance; CRP: C-reactive protein; EAT: Epicardial adipose 
tissue; Echo: Echocardiography; E/e': Peak velocity during early diastole/early diastolic mitral annular velocity; HF: Heart failure; HFpEF: Heart failure 
with preserved ejection fraction; KCCQ: Kansas City cardiomyopathy questionnaire; LV: Left ventricular; LVEF: Left ventricular ejection fraction; MB: 
Myocardial band; TnT: Troponin T; VO2: Peak oxygen consumption.

Pharmacological interventions
Anti-cytokine drugs: Inflammation is an essential driver of abnormal EAT expansion. Theoretically, 
anti-cytokine drugs (anti-IL-1 and anti-IL-6, etc) can interfere with the pathophysiological process of 
EAT expansion and may eventually decrease EAT accumulation. Unfortunately, there are no relevant 
studies to confirm this. Furthermore, anti-cytokine drugs, particularly IL-1 blockade, have shown 
cardioprotective effects in many cardiovascular diseases[69]. Nevertheless, few clinical studies have 
examined their effects on HFpEF, and the results are inconsistent. The D-HART trial showed that a 14-d 
intervention with anakinra, an IL-1 blocker, significantly reduced the systemic inflammatory response 
and improved aerobic exercise capacity in individuals with HFpEF (n = 12)[70]. Contrarily, the D-HART 
2 trial found that anakinra intervention for 12 d failed to improve exercise capacity in patients with 
HFpEF (n = 21)[71]. Therefore, whether anti-cytokine drugs reduce EAT deposition has not been 
confirmed in clinical investigations, and their role in HFpEF with T2DM requires validation in 
standardized randomized controlled trials.

Anti-hyperlipidemic drugs: Statins are 3-hydroxy-3-methylglutaryl coenzyme-A reductase inhibitors 
that can significantly reduce endogenous cholesterol production by inhibiting the rate-limiting enzyme 
in cholesterol synthesis[72]. As the anti-inflammatory effects have been established, researchers have 
begun to explore the role of statins in EAT in the last decade. According to Parisi et al[73], statin therapy 
dramatically decreased EAT thickness and EAT-secreted inflammatory mediators in individuals with 
aortic stenosis. In patients who successfully underwent percutaneous coronary intervention, Park et al
[74] demonstrated that atorvastatin (20 mg/d) reduced EAT thickness more significantly than 
simvastatin/ezetimibe (10/10 mg/d). Soucek et al[75] confirmed that substantial reductions in EAT 
were associated with intensive atorvastatin therapy (80 mg/d) in atrial fibrillation patients undergoing 
pulmonary vein isolation. A study by Alexopoulos et al[76] showed that intensive treatment (ator-
vastatin, 80 mg/d) was more successful in inducing EAT reduction than moderate-intensity treatment 
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Table 3 Pharmacological interventions targeting epicardial adipose tissue

Ref. Imaging 
method Participants, n Intervention method and 

duration Change of EAT Other findings

Park et al[74], 
2010

Echo 145 coronary artery 
stenosis patients

Atorvastatin: n = 82, 20 mg/d; 
simvastatin: n = 63, 10 mg/d; for 
6-8 mo

Atorvastatin decreased EAT 
thickness (0.47 ± 0.65 mm) more 
than simvastatin (EAT 0.12 ± 
0.52 mm, P = 0.001)

Decreased TC, TG, and LDL-C

Soucek et al
[75], 2015

CT 38 atrial fibrillation 
patients 

Atorvastatin: 80 mg/d, for 3 mo EAT volume decreased from 
86.9 (64.1-124.8) mL to 92.3 
(62.0- 133.3) mL (P < 0.05)

Decreased CRP, TC, and LDL-C

Alexopoulos et 
al[76], 2013 

CT 420 hyperlipidemic 
post-menopausal 
women

Atorvastatin: n = 194, 80 mg/d; 
pravastatin: n = 226, 40 mg/d; for 
12 mo

Atorvastatin decreased EAT 
volume (3.38%) more than 
pravastatin (0.83%, P = 0.025)

Decreased TC, TG, and LDL-C

Rivas Galvez 
et al[78], 2020 

Echo 41 patients treated 
with PCSK9 
inhibitors

Evolocumab: n = 16; alirocumab: 
n = 8; twice in 6 mo

EAT thickness decreased by 
20.39% (P = 0.0001).

Decreased BMI, TC, and LDL-C

Iacobellis et al
[82], 2017

Echo 41 patients T2DM Metformin: 500 mg-1000 mg, 
twice daily, for 6 mo

EAT thickness changed from 7.4 
± 1.6 mm to 7.5 ± 1.5 mm and 
6.9 ± 1.3 mm at 3 and 6 mo, 
respectively

Decreased BMI

Ziyrek et al
[83], 2019

Echo 40 T2DM patients Metformin: 1000 mg, twice daily, 
for 3 mo

EAT thickness decreased from 
5.07 ± 1.33 mm to 4.76 ± 1.32 
mm (P < 0.001)

Iacobellis et al
[84], 2020 

Echo 51 T2DM patients Metformin: 500 mg-1000 mg, 
twice daily, for 6 mo

EAT thickness decreased from 
8.0 ± 2.5 mm to 7.4 ± 2.5 mm 
and 7.5 ± 2.4 mm at 3 and 6 mo, 
respectively (compared with 
baseline P < 0.016)

Moody et al
[90], 2014 

CMR 12 T2DM patients Pioglitazone: 15 mg/d, for 2 wk, 
then increase to 45 mg/d, for 22 
wk

EAT area decreased from 15.3 ± 
3.9 cm2 to 14.0 ± 3.9 cm2 (P = 
0.03)

Decreased paracardial adipose 
tissue; improved left ventricular 
diastolic function

Lima-Martínez 
et al[94], 2015 

Echo 26 T2DM patients Combination of sitagliptin (50 
mg) and metformin (1000 mg), 
twice daily, for 24 wk

EAT thickness reduction of 15% 
(P = 0.001)

van Eyk et al
[99], 2019

CMR 22 T2DM patients Liraglutide: 0.6 mg/d gradually 
increased to 1.8 mg/d in 2 wk, for 
26 wk

EAT area reduction of 0 ± 2 cm2 Decreased visceral fat volume

Bizino et al
[100], 2020

CMR 23 T2DM patients Liraglutide: 0.6 mg/d gradually 
increased to 1.8 mg/d in 2 wk, 26 
wk

EAT area reduction of 1.1 ± 6.0 
cm2

Decreased body weight and 
subcutaneous fat

Iacobellis et al
[82], 2017 

Echo 54 T2DM patients Combination of liraglutide 
(increased to 1.8 mg/once daily) 
and metformin (1000 mg, twice 
daily), for 12 wk

EAT thickness reduction of 29% 
and 36% at 3 and 6 mo, 
respectively

Decreased BMI and HbA1c

Zhao et al
[101], 2021

Echo 21 T2DM patients Liraglutide: 0.6 mg/d gradually 
increased to 1.2 mg/d in 3-5 d, for 
3 mo

EAT decreased from 5.00 (5.0-
7.0) mm to 3.95 ± 1.43 mm (P < 
0.001)

Decreased weight, HbA1c, TC, 
TG, and LDL-C

Dutour et al
[102], 2016 

CMR 22 T2DM patients Exenatide: 5 mg twice daily, for 4 
wk, then increase to 10 mg twice 
daily, for 22 wk

EAT volume reduction of 8.8 ± 
2.1%

Decreased weight, HbA1c, and 
hepatic triglyceride content

Morano et al
[103], 2015 

Echo 25 T2DM patients Combination of exenatide (5 mg 
twice daily, for 1 mo, and then 
increase to 10 mg twice daily, for 
2 mo) and liraglutide (1.2 mg/d), 
for 3 mo

EAT thickness decreased from 
9.4 ± 1.6 mm to 8.0 ± 1.9 mm (P 
= 0.003)

Decreased MRI; improved renal 
resistive index

Iacobellis et al
[104], 2020 

Echo 6 T2DM patients Semaglutide: n = 30, 1 mg weekly; 
dulaglutide: n = 30, 1.5 mg 
weekly; for 12 wk

EAT thickness reduction of 20% 
in both semaglutide and 
dulaglutide groups

Decreased BMI and HbA1c

Requena et al
[108], 2021 

CMR 84 non-diabetic 
patients with 
HFrEF

Empagliflozin: 10 mg/d, for 6 mo EAT volume reduction of 5.14 
mL, P < 0.05

Decreasing subcutaneous fat 
and matrix volume

EAT thickness decreased from 
7.6 ± 1.7 mm to 6.7 ± 1.3 mm (P 

Decreased BMI, waist circum-
ference, HbA1c, uric acid, 

Ardahanlı et al
[109], 2021 

Echo 37 T2DM patients Empagliflozin: 10 mg/d, for 6 mo
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< 0.001) systolic and diastolic blood 
pressure, and carotid intima-
media thickness

Iacobellis et al
[84], 2020 

Echo 51 T2DM patients Combination of dapagliflozin (5 
to 10 mg/d) and metformin (500 
to 1000 mg, twice daily), for 24 
mo

EAT thickness decreased by 
15% from baseline to 12 wk and 
20% after 24 wk (compared 
with baseline P < 0.01)

Decreased weight and HbA1c

Sato et al[110], 
2018 

CT 20 T2DM patients Dapagliflozin: 10 mg/d, for 6 mo EAT volume reduction of 16.4 ± 
8.3 mL (P < 0.05)

Decreased HbA1c, TNF-α, TG, 
insulin resistance, and left atrial 
dimension

Sato et al[111], 
2020

CT 18 T2DM patients 
with coronary 
artery disease

Dapagliflozin: 5 mg/d, for 6 mo EAT volume reduction of 15.2 ± 
12.8 mL (P < 0.05)

Decreased HbA1c, TNF-α, and 
insulin resistance

Braha et al
[112], 2021

CT 52 T2DM patients Dapagliflozin: 10 mg/d, for 6 mo EAT volume reduction of 17.1% 
(P < 0.001)

Decreased BMI, triglyceride 
glucose index, and HbA1c

Yagi et al[113], 
2017 

Echo 13 T2DM patients Canagliflozin: 100 mg/d, for 6 mo EAT thickness decreased from 
9.3 ± 2.5 to 8.1 ± 2.3 mm (P < 
0.01) and to 7.3 ± 2.0 mm (P < 
0.001) at 3 mo and 6 mo, 
respectively

Decreased BMI

Fukuda et al
[114], 2017 

CMR 9 T2DM patients Ipragliflozin: 50 mg/d, 12 wk EAT volume decreased from 
102 (79-126) mL to 89 (66-109) 
mL (P = 0.008)

Decreased weight, BMI, HbA1c, 
TG, leptin, fasting plasma 
glucose, and insulin resistance

Bouchi et al
[115], 2017

CMR 19 T2DM patients Luseogliflozin: 2.5-5.0 mg/d for 
12 wk

EAT volume decreased from 
117 (96-136) mL to 111 (88-134) 
mL (P = 0.048)

Decreased weight, BMI, systolic 
and diastolic blood pressure, 
HbA1c, fasting plasma glucose, 
insulin resistance, and CRP

Gaborit et al
[116], 2021

CMR 26 T2DM patients Empagliflozin: 10 mg/d, 12 wk EAT volume decreased from 
108.5 ± 31.8 mL to 106.9 ± 31.8 
mL (P = 0.09)

Decreased BMI, TG, HbA1c, 
fasting blood glucose, liver fat 
content, and visceral fat volume

BMI: Body mass index; CMR: Cardiovascular magnetic resonance; CRP: C-reactive protein; CT: Computed tomography; EAT: Epicardial adipose tissue; 
Echo: Echocardiography; HbA1c: Glycosylated hemoglobin; HFrEF: Heart failure with reduced ejection fraction; LDL-C: Low-density lipoprotein 
cholesterol; MRI: Magnetic resonance imaging; PCSK9: Proprotein convertase subtilisin/kexin type 9; T2DM: Type 2 diabetes mellitus; TC: Total 
cholesterol; TG: Triglycerides; TNF-α: Tumor necrosis factor-α.

(pravastatin, 40 mg/d) in hyperlipidemic post-menopausal women.
Furthermore, proprotein convertase subtilisin/kexin type 9 (PCSK9), part of the EAT secretome, is 

involved in EAT-induced inflammation[77]. Therefore, PCSK9 inhibitors, a new class of lipid-lowering 
drugs, may inhibit the abnormal expansion of EAT. A non-randomized cohort of 24 patients reported a 
20.39% reduction in EAT thickness after 6 mo of PCSK9 inhibitor treatment (evolocumab or alirocumab)
[78]. In recent years, statin therapy has been reported to considerably reduce mortality in patients with 
HFpEF, possibly associated with a reduction in the inflammatory response or accumulation of EAT[79,
80]. Thus, hypolipidemic medicines may attenuate aberrant EAT expansion and be advantageous in 
diabetic HFpEF, and well-designed randomized controlled trials are still needed to validate this.

Anti-hyperglycemic drugs: Metformin, an oral anti-hyperglycemic drug for patients with T2DM, 
lowers blood glucose levels by decreasing hepatic glucose production (gluconeogenesis) and improves 
insulin sensitivity by increasing peripheral glucose uptake and utilization[81]. In recent years, several 
studies have begun to explore its impacts on EAT, as its positive effects on reducing body weight and 
fat composition have been revealed. Iacobellis et al[82] showed that metformin treatment (500-1000 mg, 
twice daily) for 3-6 mo failed to reduce EAT thickness in patients with T2DM. In contrast, Ziyrek et al
[83] found a significant reduction of EAT thickness after 3 mo of metformin monotherapy (1000 mg, 
twice daily) in individuals with T2DM. After increasing the sample size, Iacobellis et al[84] also 
discovered that metformin slightly reduced EAT thickness. Additionally, metformin treatment 
decreased mortality in HFpEF patients and improved LV hypertrophy and diastolic dysfunction[85,86]. 
Unfortunately, studies on the effects of metformin on EAT accumulation are scarce and controversial, 
and future research is needed to generate robust evidence.

Thiazolidinediones (TZDs), which are peroxisome proliferator-activated receptor gamma (PPAR- γ) 
agonists, can enhance insulin sensitivity by activating peroxisome proliferator-activated receptor 
gamma[87]. As a result, it reduces the secretion of proinflammatory cytokines in the visceral fat depots 
and thereby can inhibit the abnormal enlargement of EAT[88]. Pioglitazone, a member of TZDs, was 
shown to significantly reduce EAT inflammatory markers (IL-6, TNF-α, resistin, and matrix metallopro-
teinase-9) and increase adiponectin in patients with coronary artery disease and metabolic syndrome
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Figure 2 Epicardial adipose tissue in the pathophysiology of heart failure with preserved ejection fraction with type 2 diabetes mellitus. 
Dysregulated glucose metabolism is intimately related to the expansion of epicardial adipose tissue (EAT). Increased EAT deposition interacts directly with the heart 
through mechanical and metabolic mechanisms. Mechanically, EAT expansion may directly contribute to pericardial restrain, resulting in left ventricular (LV) diastolic 
dysfunction. Metabolically, EAT enlargement is linked to the buildup of free fatty acids, which may induce myocardial lipotoxicity and cardiac steatosis. 
Simultaneously, hypertrophic adipocytes and activated macrophages secrete numerous proinflammatory adipocytokines and chemokines in EAT. Subsequent local 
inflammation, excessive oxidative stress, microvascular and endothelial dysfunction, and myocardial stiffness and fibrosis ultimately lead to LV remodeling and 
diastolic dysfunction.

[89]. According to Moody et al[90], pioglitazone treatment was linked to a 9% reduction in EAT area and 
improvement in LV diastolic function in patients with T2DM, and there was a significant negative 
correlation between EAT and LV diastolic function. However, TZDs may cause serious cardiovascular 
adverse effects, especially HF[91,92]. As a result, the clinical use of TZDs in the treatment of HFpEF is 
limited due to their potential to exacerbate HF.

Dipeptidyl peptidase 4 (DPP-4) inhibitors improve glucose-dependent insulin secretion by increasing 
bioactive incretins, which inhibit glucagon release and then promote insulin production to decrease 
blood glucose levels[93]. Only a single-group pre-post study by Lima-Martínez et al[94] showed that 26 
overweight patients with T2DM had a 15% reduction in EAT thickness after 6 mo of treatment with a 
combination of metformin and sitagliptin, a DPP-4 inhibitor. Unfortunately, there is a lack of research 
on regulating EAT using DPP-4 inhibitors alone. Therefore, relevant studies still need to support 
whether DPP-4 inhibitors can reduce EAT accumulation. In addition, it is controversial whether an 
increased risk of HF is associated with DPP-4 inhibitors[95].

Glucagon-like peptide-1 receptor agonists (GLP1-RAs) comprise a novel anti-diabetic drug class that 
maintains glucose homeostasis by stimulating glucose-dependent insulin secretion, suppressing 
glucagon release, and inhibiting gastric emptying[96]. Previous studies reported the presence of GLP-1R 
in EAT with mRNA and protein expression, and targeting GLP-1R in EAT can reduce local adi-
pogenesis, enhance fat utilization, and drive brown fat differentiation[97,98]. According to research by 
van Eyk et al[99] and Bizino et al[100], liraglutide reduced visceral or subcutaneous fat but failed to 
reduce EAT accumulation in T2DM. Five investigations, however, demonstrated that liraglutide[82,101-
103], exenatide[102,103], semaglutide[104], and dulaglutide[104] not only significantly decreased EAT 
deposition but also improved glycolipid metabolism disorders. A meta-analysis performed by Berg et al
[105] confirmed that GLP1-RAs suppressed the abnormal accumulation of EAT. Moreover, liraglutide 
treatment has been shown to improve LV stiffness and diastolic dysfunction and reduce mortality in 
HFpEF patients[106]. As a result, GLP1-RAs can inhibit abnormal EAT expansion and may be beneficial 
for HFpEF. However, further research on this subject is still necessary due to the small numbers of both 
studies and subjects.

Sodium-glucose cotransporter 2 inhibitors (SGLT2-Is), the newly developed anti-hyperglycemic 
agents, bind to the SGLT2 transporter in the proximal tubule of the kidney and then promote the 
urinary excretion of glucose by preventing the reabsorption of glucose[96]. In recent years, SGLT2-Is 
have been found to play an essential role in mediating anti-inflammatory effects, and therefore its role 
in regulating EAT has gained significant attention. In individuals undergoing cardiac surgery, Diaz Dí



Shi YJ et al. Adipose tissue in HFpEF with diabetes

WJD https://www.wjgnet.com 733 June 15, 2023 Volume 14 Issue 6

Figure 3 Current interventions targeting epicardial adipose tissue and possible mechanisms. Current interventions targeting epicardial adipose 
tissue (EAT) reported in the literature include non-pharmacological interventions (lifestyle management and bariatric surgery) and pharmacological interventions 
related to anti-cytokines, anti-hyperlipidemia, and anti-hyperglycemia. By increasing fat oxidation or sensitivity to insulin and inhibiting inflammation or hypermetabolic 
activity, these interventions may prevent abnormal expansion and inflammation of EAT. EAT: Epicardial adipose tissue; DPP-4: Dipeptidyl peptidase 4; GLP1-RAs: 
Glucagon-like peptide-1 receptor agonists; PCSK9: Proprotein convertase subtilisin/kexin type 9; SGLT2-Is: Sodium-glucose cotransporter 2 inhibitors; TZDs: 
Thiazolidinediones.

az-Rodríguez et al[107] demonstrated the expression of SGLT2 in EAT and that dapagliflozin promoted 
the differentiation of EAT cells and decreased the release of proinflammatory chemokines in in vitro 
assays. Multiple clinical studies have demonstrated that SGLT2-Is (empagliflozin[108,109], dapagliflozin
[84,110-112], canagliflozin[113], ipragliflozin[114], luseogliflozin[115]) can dramatically decrease EAT 
deposition, improve glucolipid metabolism, and reduce inflammatory responses. Conversely, only one 
study by Gaborit et al[116] indicated that empagliflozin failed to reduce EAT volume in patients with 
T2DM.

A meta-analysis conducted by Masson et al[117] confirmed that SGLT2-Is could significantly reduce 
EAT accumulation and improve glucolipid metabolism. Interestingly, Requena-Ibáñez et al[108] 
reported that empagliflozin could reduce EAT volume in patients with non-diabetic HFrEF. According 
to Yagi et al[113], canagliflozin reduced EAT thickness independent of lowering blood glucose. Thus, 
SGLT2-Is play an essential role in inhibiting EAT accumulation, possibly independent of glycemic 
control. Moreover, the current studies confirmed that SGLT2-Is exerts direct pleiotropic effects on the 
myocardium of HFpEF model animals through multiple mechanisms, such as reducing inflammation, 
suppressing oxidative stress, and improving cardiac structural and functional dysfunction (myocardial 
hypertrophy, stiffness fibrosis, and LV diastolic dysfunction)[118-121]. Clinically, SGLT2-Is (em-
pagliflozin and dapagliflozin) have been confirmed to improve exercise tolerance[122] and quality of life 
in HFpEF patients[123,124] and lower the risk of cardiovascular death or HF hospitalization[125-127]. 
Consequently, SGLT2-Is exhibit significant prevention of abnormal EAT expansion and positive 
therapeutic effects in HFpEF, which warrants further clinical validation.

SUMMARY AND FUTURE PERSPECTIVES
T2DM can be one of the essential drivers of the occurrence and development of HFpEF and is associated 
with a worse prognosis of HFpEF. Systemic inflammation associated with glucose metabolism disorders 
is a crucial pathological mechanism for HFpEF with T2DM, which is associated with the expansion and 
dysfunction of EAT. EAT is a facilitator of the pathophysiological process of HFpEF, which may 
promote inflammation, oxidative stress, myocardial steatosis, and myocardial fibrosis via vasocrine or 
paracrine mechanisms, ultimately contributing to LV remodeling and diastolic dysfunction. 
Accordingly, inhibition of the expansion of EAT may be an attractive therapeutic intervention for 
HFpEF with T2DM.



Shi YJ et al. Adipose tissue in HFpEF with diabetes

WJD https://www.wjgnet.com 734 June 15, 2023 Volume 14 Issue 6

Currently, lifestyle management, bariatric surgery, and certain medications related to anti-cytokines, 
anti-hyperlipidemia, and anti-hyperglycemia can help to alleviate the inflammation and or accumu-
lation of EAT and reduce clinical symptoms or improve long-term prognosis in patients with HFpEF. 
Nevertheless, the specific mechanisms by which these drugs inhibit EAT expansion remain to be further 
explored, and clinical studies on their use in HFpEF with T2DM are lacking. As a result, relevant 
foundational research and well-designed randomized controlled trials are needed to elucidate the 
pharmacological mechanisms and efficacy of current interventions. Another critical aspect is to develop 
new methods to suppress the inflammation or expansion of EAT. Concomitantly, it is essential to 
thoroughly investigate the mechanisms of abnormal accumulation of EAT so that more novel and 
effective therapies targeting EAT will become available.

CONCLUSION
In the development of HFpEF with T2DM, the expansion and dysfunction of EAT exert an essential role. 
Through vasocrine or paracrine pathways, abnormal EAT accumulation may lead to inflammation, 
oxidative stress, myocardial steatosis, and myocardial fibrosis, resulting in LV remodeling and diastolic 
dysfunction, which are essential features of HFpEF. Therefore, targeting EAT may be a prospective 
therapeutic intervention for HFpEF with T2DM. At present, lifestyle management, bariatric surgery, 
and pharmaceutical interventions may help alleviate the expansion of EAT and improve the clinical 
manifestations or prognoses of HFpEF patients. Nonetheless, well-designed randomized controlled 
studies are required to confirm the efficacy of existing treatments. Moreover, it is hoped that more novel 
and effective therapies targeting EAT will become available in the future.
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Abstract
Diabetic neuropathy (DN) is a devastating disorder with an increasing prevalence 
globally. This epidemic can pose a critical burden on individuals and com-
munities, subsequently affecting the productivity and economic output of a 
country. With more people living a sedentary lifestyle, the incidence of DN is 
escalating worldwide. Many researchers have relentlessly worked on ways to 
combat this devastating disease. Their efforts have given rise to a number of 
commercially available therapies that can alleviate the symptoms of DN. Unfortu-
nately, most of these therapies are only partially effective. Worse still, some are 
associated with unfavorable side effects. This narrative review aims to highlight 
current issues and challenges in the management of DN, especially from the 
perspective of molecular mechanisms that lead to its progression, with the hope of 
providing future direction in the management of DN. To improve the approaches 
to diabetic management, the suggested resolutions in the literature are also 
discussed in this review. This review will provide an in-depth understanding of 
the causative mechanisms of DN, apart from the insights to improve the quality 
and strategic approaches to DN management.

Key Words: Diabetic neuropathy; Pathophysiology; Diabetic management; Diabetic 
medication
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Core Tip: This review elaborates on the current aspects regarding diabetic neuropathy (DN), especially 
issues pertaining to the treatments and current challenges in the management of DN with some suggested 
recommendations on strategies to slow down DN progression. In order to increase the understanding of 
DN, current lines of therapy, the understanding of its pathophysiology, and future direction of its 
management are also included. Perhaps, this review may provide insights to understand the important 
information regarding DN and give ideas for improvement of treatments and management of DN.
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INTRODUCTION
Diabetes mellitus (DM), a global public health issue, affects up to half a million people worldwide. 
According to the World Health Organization (WHO), there was a marked increase in the number of 
individuals suffering from DM from 108 million in 1980 to as high as 422 million in 2014[1]. In the 
United States, the Center for Disease Control and Prevention reported that 37.3 million (11.3%) people 
of the whole United States population are suffering from DM[2]. Diabetic neuropathy (DN) is a common 
complication of DM that encompasses various patterns of neuropathy as categorised by the location of 
nerve damage. A recent cross-sectional study among 473 type 2 DM patients from the United Kingdom 
between 2015 and 2020 demonstrated that the prevalence of diabetic peripheral neuropathy (DPN) was 
26.6%, whereby more than half were male patients (52.3%). In terms of DPN severity, 17.3%, 8.2%, and 
1.1% of the patients suffered from mild, moderate, and severe DPN, respectively[3]. These statistics 
showed a huge increase in DN among the DM patient population. Such a worrying trend warrants 
urgent attention to slowing the DN progression among affected individuals.

Generally, DN can be asymptomatic and only manifests when any disability arises. This disorder 
affects sensory nerves and it may progress from mild numbness to dysaesthesia, pain, and allodynia 
eventually. Furthermore, it commonly begins in the feet and lower limbs before spreading proximally
[4]. Apart from that, DN may also interrupt motor functions, leading to weakness, atrophy, gait 
abnormality, and loss of coordination. As a result of the difficulties in performing daily routines, many 
patients experience a poor quality of life (QOL). DN is also classified as a “length-dependent” 
neuropathy as it starts at the distal nerve endings of the longest nerve in the lower limbs and extends 
proximally[5]. In addition, DN can vary in its clinical manifestations. It is categorised either as “painful 
DN” that manifests as positive symptoms and gain of function (e.g., pain, allodynia, and hyperalgesia) 
or “painless or insensate DN” that appears as negative symptoms and loss of functions (e.g., numbness 
and dysaesthesia). Painless DN is a result of the predominant loss of small and large nerve fibres[6] 
starting at the distal nerve of the limbs before it progresses to the proximal ends in a “glove and 
stocking” distribution[7]. Despite massive research aimed at identifying the key culprits of DN, its 
underlying mechanisms remain complicated and unclear[8,9]. Several reviews of DN highlighted the 
shift in the management towards molecular-oriented approaches. However, the molecular mechanism 
leading to the progression of DN and its complications remains poorly understood. Consequently, the 
prevalence of DN continues to escalate and there is a very minimal enhancement in the management of 
DN. In this review, we aim to highlight current issues and challenges in the management of DN, 
especially from the perspective of molecular mechanisms that lead to its progression, with the hope of 
providing the future direction in the management of DN.

PATHOPHYSIOLOGY OF DIABETIC NEUROPATHY
The underlying metabolic abnormalities in DM patients can synergistically drive the development of 
DN. These abnormalities start with the development of obesity and insulin resistance in type 2 DM 
(T2DM) or insulin deficiency in T1DM, all of which can result in glucose dysregulation and 
subsequently, hyperglycaemia and dyslipidaemia[4,10]. In a healthy individual, insulin induces the 
release of neurotrophic and neuroprotective factors that ensure neuronal survival, as well as C-peptide 
that restores the structure and function of defective axons. In T1DM patients, as the insulin level falls, 
the sodium-potassium ATPase (Na+/K+-ATPase) and nitric oxide will be disrupted, leading to neuronal 
dysfunction, oxidative stress, axonal swelling, and apoptosis[5]. Similarly, insulin resistance in T2DM 
patients may also reduce the anti-oxidant Akt, consequently producing mitochondrial dysfunction, 
oxidative stress overproduction, and neuronal apoptosis[11]. In addition, the concomitant dyslip-
idaemia in T2DM patients occurs when free fatty acids are excessively converted by β-oxidation. The 
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acetyl-CoA transformation during the conversion leads to a great increase in acylcarnitines that are toxic 
to neurons and Schwann cells[12].

Meanwhile, hyperglycaemia can also activate some pathways that produce excessive polyol, 
glycation, protein kinase C (PKC), poly (ADP-ribose) polymerase (PARP), and hexosamine, all of which 
can simultaneously cause overproduction of oxidative stress in the nerves and microvessels[4,5]. In the 
polyol pathway, the enzyme aldose reductase (AR) converts glucose to sorbitol. This conversion affects 
a number of downstream reactions that depletes N+/K+-ATPase activity, thus reducing nicotinamide 
adenine dinucleotide phosphate (NADP+) and enhancing the production of reactive oxygen species 
(ROS), eventually impairing nerve functions[5,6,13,14] and leading to DN. Besides, excessive glucose 
molecules will enter the hexosamine pathway to produce inflammatory by-products and induce PKC 
activation secondary to the accumulation of diacylglycerol. Following this activation, insulin resistance 
is augmented in a way that interrupts the biology of growth factors and causes vasoconstriction of the 
nerves[10] on top of Na+/K+-ATPase dysfunction. As a result, the accumulation of Na+ leads to axonal 
swelling and reduced nerve conductivity[5]. Furthermore, the elevated sorbitol and decreased NADH 
levels trigger ROS increment, glutathione reduction, and cellular osmolarity. Coupled with a decrease in 
ATP production, these effects can damage mitochondria and DNA as well as reduce the blood supply, 
eventually speeding up neuronal apoptosis[5]. Additionally, excessive glucose molecules also contribute 
to the formation of advanced glycation end products (AGEs). When they bind to the receptors (RAGEs), 
excessive ROS production leads to downstream inflammation that limits blood flow to the peripheral 
nerves[15]. Although the glycation pathway may take place in the cells of several organs, its effects in 
DN are more prominent on both myelinated and unmyelinated axons, endothelial cells, pericytes, and 
Schwann cells[16]. Furthermore, the interference of AGEs on neurofilaments and microtubules of the 
nerves impedes the axonal transport whilst AGEs formation on the myelin sheath results in localised 
demyelination[5,16]. Besides, the attack of AGEs on the microvessels increases vascular permeability, 
hinders vasodilation, stimulates cytokine production, and amplifies oxidative stress levels, all of which 
lead to a blood flow restriction to the nerves[16]. As more blood capillaries are damaged, the closely 
connected microvasculature undergoes ischaemia because of the abnormal modification of basement 
membrane density, pericyte and endothelial cell functions, and arteriovenous shunt formation[5]. All 
these changes diminish the neuroprotective role of angiogenic factors such as vascular endothelial 
growth factor. Therefore, the severity of microangiopathy is shown to be associated with impaired nerve 
conductivity.

The overall pathomechanisms eventually affect the nerves, especially in the peripheral nervous 
system. Peripheral axons are more fragile compared to motor neurons since they are placed outside the 
blood-brain barrier. The location also predisposes peripheral axons to injury secondary to DM[10]. 
Among the different types of peripheral nerves, small unmyelinated C-fibres termed “small fibres” are 
the most common sensory axons. However, large fibres comprised of small and thinly myelinated Aδ-
fibres as well as fully myelinated Aα- and Aβ-fibres are also prone to DN. Patients with DN may 
experience degeneration and loss of small fibres that result in new-onset pain and prickling or burning 
sensations (i.e., dysesthesias) in the feet, followed by the initial demyelination or remyelination of the 
large fibres[12]. Most of the time, the axons that are farthest from the cell body (i.e., located in the feet) 
are the most severely affected since the number of functional mitochondria produced in their neuronal 
cell bodies tracking down the axons would be depleted, causing energy deprivation. Amongst the nerve 
fibres, small fibres are the earliest to be affected due to their structures (i.e., lack of myelination and 
encapsulation of Schwann cells). Schwann cell encapsulates large fibres to protect axons from external 
damage and toxic substances. This is an important step in slowing down diabetic-induced progressive 
energy loss. Therefore, this explains why patients with painful DN often experience pain and 
dysesthesia as their first symptoms[10]. As diabetes progresses, the myelin sheaths of the nerve fibres 
undergo degeneration with the detachment of Schwann cells[9]. Subsequently, this leads to even fewer 
neurotrophic factors being released and eventually, neuronal apoptosis[9]. Consequently, the loss of 
large axonal fibres causes the patient to experience numbness and loss of proprioception distally in the 
feet that gradually progress proximally with time. The symptoms usually occur in a symmetrical, distal-
to-proximal pattern in all populations of nerves, beginning at the tip of the toes and progressing 
proximally, giving rise to the “stocking-and-glove” clinical presentation[5,10,17]. Such symptom 
presentation is regarded as insensate or painless DN whereby the loss of sympathetic regulation of the 
arteriovenous shunt of the vessels and sweat glands in the foot predisposes the patients to bacterial 
infections that can later culminate in cellulitis and ulcers[18]. Simplified pathomechanisms of the 
development of DN are summarised in Figure 1.

Moreover, DN patients are at a high risk of developing diabetic polyradiculopathy, a syndrome that 
appears together with severe disabling pain in one or more than one distribution of nerve roots and is 
possibly linked with motor weakness[19]. Besides that, patients with uncontrolled DM and peripheral 
neuropathy are prone to Charcot neuroarthropathy (CN), also known as Charcot foot, a dreadful 
condition that can easily originate from microtrauma and neurovascular modifications (i.e., arteri-
ovenous shunting causing the escalation of blood flow and bone resorption)[17,20]. In due time, CN can 
result in deformities such as collapsed joints and pedal disfigurement[4,17].
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Figure 1 Possible pathomechanisms leading to the development of diabetic neuropathy. For further information, see text. PKC: Protein kinase C; 
T2DM: Type 2 DM diabetes mellitus; ROS: Reactive oxygen species; AGE: Advanced glycation end product; FFA: Food and Drug Administration; NADP: 
Nicotinamide adenine dinucleotide phosphate.

In view of the wide range of disabling symptoms of DN, various management strategies have been 
recommended by healthcare professionals to alleviate the symptoms so that the QOL of the affected 
individuals can be improved.

CURRENT MANAGEMENT OF DIABETIC NEUROPATHY TO DELAY DISEASE  
PROGRESSION
To date, the management of DN emphasises delaying the progression of neuropathy, reducing the 
symptoms, and alleviating the complications arising from insensate or painless DN[18,19]. The success 
of DN management depends on the individual’s pathogenic processes[18]. Currently, various clinical 
guidelines on strategies to prevent and manage DN are available worldwide based on the available 
published literature. The guidelines encompass a wide range of strategies to prevent the development of 
DN symptoms, hamper the DN progression, and cure the DN symptoms. Thus, the management of DN 
can be categorised as preventive or symptomatic approaches[19]. Nevertheless, there are very limited 
treatment options available for DN that are aimed at underlying nerve impairment. To date, most of the 



Ismail CAN. Challenges in DN management

WJD https://www.wjgnet.com 745 June 15, 2023 Volume 14 Issue 6

management strategies emphasise the best way to slow down the progression of DN. Screening for any 
signs or symptoms of DN is crucial in clinical practice to detect the earliest signs of neuropathy so that 
prompt intervention can be started[6]. Table 1 outlines the current management to prevent DN 
progression as elaborated in the literature.

Recommended strategies to delay progression of diabetic neuropathy
First and foremost, DN prevention strategies should begin with blood glucose monitoring and lifestyle 
modifications[4,6]. Reduction of sweet food can hinder the progression of distal symmetrical 
polyneuropathy and cardiovascular autonomic neuropathy in patients with T1DM and T2DM[6,21]. 
However, based on the Diabetes Control and Clinical Trials, this strategy appears to be more effective in 
T1DM patients whereby their clinical neuropathy is reduced by 60% within 6.5 years following the 
intensive therapy[22]. In 1998, The United Kingdom Prospective Diabetes Study reported that T2DM 
patients with neuropathy showed improvement in vibration perception after improvement in blood 
glucose levels with intensive treatment[23]. However, there was no significant impact of tight glycaemic 
control on neuropathy among T2DM patients from 1998 to 2015[24]. Although it is suggested that tight 
glycaemic control could prevent or delay the progression of DN among DM patients, Rodríguez-Gutié
rrez et al[24] believed that this strategy alone is inadequate for T2DM patients since they are more likely 
to suffer from other risk factors such as cardiometabolic factors that are unaddressed[25]. The finding 
that glycaemic monitoring alone is incapable to slow down the progression of DN in T2DM patients 
appears to be a new consensus. These patients often suffer from metabolic syndrome that includes 
obesity, hyperglycaemia, and dyslipidaemia, all of which are critical risk factors for neuropathy[10] as 
shown in several clinical trials conducted in various countries[24,26-31]. In the United States, The 
American Diabetes Association (ADA) has implemented different glycaemic target guidelines for 
children, teenagers, adults, pregnant ladies, and senior citizens in an effort to promote customised care 
based on individualised glycaemic targets[4,32-35].

Apart from glycaemic monitoring, lifestyle modification is also recommended to reduce 
cardiometabolic risk factors among T2DM patients to lower the risk of DN and delay its progression. 
Lifestyle modifications can be in the form of regular exercise and a balanced diet[10]. In animal studies, 
sustained exercise has been found to: (1) Decrease hyperglycaemia and overproduction of oxidative and 
nitrosative stress; (2) enhance mitochondrial bioenergetics in the nerve cell body and distal axon; (3) 
improve microvascular vasoreactivity and reduce nerve ischaemia; (4) elevate axonal transport; (5) 
counteract the inflammatory effects of dyslipidaemia, lipotoxicity, and obesity; and (6) improve nerve 
regeneration following metabolic injury[10,36-38]. However, clinical studies involving human subjects 
reported various outcomes. In 2006, a clinical trial investigating the effect of long-term exercise training 
on DPN patients reported a significant improvement in peroneal and sural motor nerve functions in the 
patients[39]. Over the four years of the study period, the development of motor and sensory neuropathy 
slowed down, thus suggesting that exercise may change the natural course of DN. However, recent 
studies reported contradicting findings on the effect of exercise on DN. In a randomised controlled trial 
(RCT) by Stubbs et al[40], 12-wk physical exercise training regardless of type (i.e., sedentary controls, 
aerobic, isokinetic strength, or a combination of aerobic-isokinetic strength training) did not improve or 
exacerbate the sensory or motor nerve electrodiagnostic findings (i.e., sural, median, and ulnar sensory 
nerve responses) in older T2DM patients with length-dependent distal symmetric polyneuropathy. 
However, a short-term structured program of aerobic exercise was found to selectively improve the 
sensory nerve functions in a subset of patients. This finding was supported by a recent meta-analysis 
that included 13 RCTs from 2014 to 2022 with 592 patients that underwent peripheral nerve conduction 
tests. Exercise, when combined with endurance and sensorimotor training programme, was found to 
improve balance, glycaemic control, and peripheral nerve conduction, especially in DN patients[41]. 
Unfortunately, the implementation of such supervised exercise training among the general population 
in the healthcare system outside of the research setting can be challenging due to patient compliance 
and shortage of funding, infrastructure, and staff to supervise the patients[4].

In the literature, suggestions have been put forth to include diet observation as part of the prevention 
strategies in delaying the progression of DN. However, there is a lack of evidence on the effect of diet as 
the sole prevention strategy for DN since most of the studies incorporated diet as one of the 
multifactorial lifestyle strategies. For instance, the Diabetes Prevention Program demonstrated that the 
combination of exercise and diet counselling can reverse the symptoms of metabolic syndrome and 
lower the incidence of T2DM[42,43]. On a similar note, the ADA also recommends restriction of high-
calorie and processed food intake to reduce the risk factors for DN. In turn, the patients should consume 
food rich in polyunsaturated fats and antioxidants to prevent the development of DN[10]. It is known 
that lipid metabolites and chronic cellular hyperglycaemia may induce pro-inflammatory cellular injury 
responses and generate oxidative stress that further diminishes the roles of mitochondria in distal axons
[21]. Several dietary supplements are recommended to fight against oxidative damage, including the 
anti-oxidant α-lipoic acid (ALA). Besides, supplements containing nicotine riboside, a key generator of 
nicotinamide adenine dinucleotide (NAD+), are also recommended as they can activate certain 
molecular pathways that shield against dyslipidaemia and obesity[44], resulting in the prevention of 
oxidative damage in the neurons and delaying the onset of DN[45]. Therefore, dietary management can 
be effective in alleviating DN. However, it is best to be combined with exercise-based intervention to 



Ismail CAN. Challenges in DN management

WJD https://www.wjgnet.com 746 June 15, 2023 Volume 14 Issue 6

Table 1 Management strategies from the previous literature to prevent progression of diabetic neuropathy in patients

Strategies Description/indication Intervention/strategies Ref.

Glucose level 
monitoring

Prevents distal symmetric polyneuropathy and 
cardiovascular autonomic neuropathy 
developments in patients with T1DM, and delays 
the progression of distal symmetric 
polyneuropathy in T2DM patients

Treatments (insulin, anti-diabetic medications, electrical stimulation, and 
percutaneous nerve stimulation; non-treatments (lifestyle modifications 
such as glucose-dietary control, exercises, and physiotherapy); pancreas 
transplant; bariatric surgery

[6,4,
132]

Lifestyle 
modifications

Reduce risk of DN and cardiometabolic causes Glucose-dietary control; counselling; supervised training programs 
including physiotherapy/rehabilitation

[4]

Diabetic foot 
care

Delays or lowers the risk of amputations Five key elements for prevention of DFUs: (1) Recognition of the at-risk 
foot; (2) consistent check and examination of the at-risk foot; (3) education 
of patients, their family, and healthcare providers; (4) routine of wearing 
suitable footwear; and (5) management of pre-ulceration signs

[47]

Three suggested phases can be useful: Step 1: Treatment with first-line 
therapy of TCAs (e.g., amitriptyline), SNRIs (e.g., duloxetine), pregabalin, 
and gabapentin; step 2: Treatment with second-line therapy including 
tramadol (weak opioids and SNRIs); step 3: Treatment with last line 
therapy including strong opioids, cannabinoids, and anticonvulsants

Pharmacologic 
therapeutics

Manage diabetes and neuropathy and treat 
symptomatic pain

Alternatives (anti-oxidant supplementations): α-lipoic acid; acetyl-L-
carnitine vitamin B12

[89,
90,
133]

T1DM: Type 1 diabetes mellitus; T2DM: Type 2 diabetes mellitus; TCAs: Tricyclic antidepressants; SNRIs: Serotonin-norepinephrine reuptake inhibitors; 
DN: Diabetic neuropathy; DFUs: Diabetic foot ulcers.

ensure a long-term positive impact on glucose and lipid metabolism, as well as axonal regeneration in 
BM patients[21].

In addition, patients with DN are predisposed to a higher risk of lower extremity amputations. A 
recent systematic review that evaluated the 5-year mortality rate of patients with non-traumatic below-
the-knee amputation and above-the-knee amputation was 40%-82% and 40%-90%, respectively[46], 
emphasising the importance of annual foot examination and routine foot care in the prevention of lower 
limb amputations[17]. Education on proper diabetic foot care should be provided to DM patients, 
including the identification of the at-risk foot, daily examination and inspection, and the use of suitable 
footgear, as well as accurate and early treatment of pre-ulcerative lesions[47]. The education should also 
be extended to family members and healthcare providers. Despite the available guidelines on foot care, 
there is a lack of comprehensive evidence on the best ways to hamper diabetic foot complications. A 
systematic review of 19 studies demonstrated a reduction in amputation severity, duration of hospital 
stay, and death rates with proper diabetic foot care. However, the studies were of low quality[48]. In 
addition, another systematic review of 12 RCTs revealed inadequate high-quality evidence on whether 
the application of educational strategies alone may minimise the incidence of diabetic foot ulcerations 
(DFUs) and amputations. The authors agreed that educational interventions should be combined with 
other interventions in the prevention of DFUs[49].

Current treatments for diabetic neuropathy
Although some non-pharmacological approaches have been introduced to manage the signs and 
symptoms of DN, anti-diabetic drugs remain the mainstay of DN treatment. Furthermore, there is a 
paucity of management strategies for individuals with painless or insensate DN as the current therapy 
focuses on the painful type of DN. Several antidepressants [tricyclic anti-depressants (TCAs), i.e., 
duloxetine, venlafaxine, and amitriptyline], analgesics (morphine, oxycodone, and tramadol), and anti-
convulsants (gabapentin, pregabalin, topiramate, and valproic acid) are prescribed for patients with 
painful DN. Table 2 summarises the available treatments for DN. Since there is a huge variability in pain 
between the patients, various types of medications are given to lower painful DN.

Generally, DN will first afflict small nerve fibres such as unmyelinated C-fibres before large fibres 
(myelinated A fibres), thus explaining the complaints of burning and discomfort among patients with 
painful DN[18,19]. Pregabalin and gabapentin are the gold standard drugs for pain management[50,51] 
and are therefore the first- and second-line medications to treat painful DN[4,51]. The exact mechanism 
of how these anticonvulsants alleviate DN symptoms is unclear. It is postulated that they bind to the α
2δ subunit of calcium channels on presynaptic nerve terminals[52] to induce analgesia. However, these 
drugs are associated with adverse effects such as tachyphylaxis, somnolence, drowsiness, headache, 
dizziness, nausea, and diarrhoea[4,51,53]. Furthermore, pregabalin has been linked to misuse and a 
higher prevalence of deaths, thus there have been calls for its reclassification as a Class C controlled 
substance in the United Kingdom[54,55].

Apart from that, antagonists of serotonin and norepinephrine reuptake (SNRIs) are also used to 
reduce DN pain. Similar to pregabalin and gabapentin, duloxetine is recommended as the mainstay of 
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Table 2 Available therapeutic medications for management of diabetic neuropathy

Management 
strategy Therapeutic approach Description Contraindications/issues

Anti-convulsants: Gabapentin; pregabalin First line medication for 
painful DN[4,51]; gold 
standard for pain 
management[50,51]

Reports on misuse and increased death rate in patients
[54]

SSRI and SNRIs: Duloxetine; venlafaxine First- and second-line therapy 
for painful DN[56,57]

Low evidence on venlafaxine effectiveness for painful DN 
treatment[58]

TCAs: Amitriptyline; desapramine First and second-line therapy 
for painful DN

Associated with constipation, dry mouth, sleep 
disturbance, sexual dysfunction, somnolence, headaches, 
arrhythmias, constipation, sleep disturbances, and 
postural hypotension[4,63]

Opioids: Tramadol; trapentadol Opted as acute salvage 
treatment or as a part of drug 
combination for painful DN 
treatment

Strong opioids are frequently associated with therapeutic 
abuse and misuse[68]; use of tramadol is more preferred 
due to reduced risk of abuse or misuse[68]

Pharmacological

Sympathetic blocking agents (α-adrenergic 
antagonists): Clonidine; regitine; phenoxy-
benzamine

One of the opted therapies for 
complex regional pain 
syndrome treatment[72]

Limited evidence in RCT testing the drug’s efficacy in 
painful DN patients; efficiency of clonidine depends on 
relative functionality of nociceptors in painful DN 
patients, however no statistical significance is achieved 
although the trends of efficacy is shown[70]

Sympathetic nerves blockade: Lumbar 
sympathetic nerves blockade; combined 
strategies of lumbar sympathetic pulsed 
radiofrequency and continuous epidural 
infusion; combined treatment of 
continuous sympathetic block and 
neurolysis with alcohol

Recommended for severe 
painful DN patients who 
failed to any pharmacological 
treatments 

Patients demonstrated improved life expectancy, greater 
DN symptom improvement, satisfactory safety, rapid 
recovery, and rapid relief of pain[73-76]; associated with 
several limitations of additional diagnostic tools, small 
size population, short period of follow-up, and issue 
regarding combined treatment duration[75,76]

Capsaicin Recommended for patients 
with intolerable oral 
therapeutic consumption[4]

Low to moderate level of evidence for topical capsaicin 
efficacy[82,83]; associated with small nerve fibers injury 
and disturbed nociceptive signaling[84]

Non-pharmaco-
logical

Neuromodulation devices: FREMS; SCS, 
NMES; TENS

Studies on their efficacy in 
painful DN is still on-going

Not yet approved for clinical guidelines for painful DN 
treatment due to very low evidence of efficacy[4,85,86]

Nutraceuticals: ALA; ALC; vitamin B12 ALA improves numbness and 
paraesthesia with reduced 
side effects[89]; vitamin B12 is 
recommended to T2DM 
patients with metformin 
prescription[90]

There is a lack of standardization in quality and manufac-
turing of nutraceuticals[91,92]; low safety level due to less 
evidence of high-quality studies[87,93]

TCAs: Tricyclic antidepressants; FREMS: Frequency-modulated electromagnetic neural stimulation; SCS: Spinal cord stimulation; NMES: Neuromuscular 
electrical stimulation; TENS: Transcutaneous electrical nerve stimulation; ALA: α-lipoic acid; ALC: Acetyl-L-carnitine; T1DM: Type 1 diabetes mellitus; 
T2DM: Type 2 diabetes mellitus.

treatment for painful DN. It attenuates the descending pain mechanisms and moderately hinders 
dopamine reuptake. Apart from producing similar side effects as anticonvulsants, this drug also 
unfavourably affects sexual functions and sleep[6]. Another selective serotonin reuptake inhibitor, 
venlafaxine, is also recommended by the European Federation of Neurological Societies Task Force and 
the American Academy of Neurology as a therapy for painful DN[56,57]. However, based on a previous 
Cochrane systematic review of six RCTs and 460 participants comparing the placebo effect with a 
venlafaxine dosage of 150-225 mg, the level of evidence for its effectiveness is low[58].

Apart from that, tricyclic antidepressants such as amitriptyline are also recommended for painful DN
[4], especially acute pain[59]. Several RCTs have reported its effectiveness in alleviating painful DN[60]. 
In a RCT, Kaur et al[61] compared the efficiency of duloxetine and amitriptyline. They found a similar 
efficacy of these drugs in treating patients with painful DN. The mechanism of TCAs in targeting 
painful DN is not understood, but amitriptyline is found to attenuate the reuptake of serotonin and 
noradrenaline at the nerve terminals and ion channels (sodium and potassium ion channels), as well as 
N-methyl-D-aspartate receptors (NMDARs) in the central nervous system[62]. However, amitriptyline 
is associated with side effects such as constipation, dry mouth, sleep disturbance, sexual dysfunction, 
somnolence, headaches, arrhythmias, sleep disturbances, and postural hypotension[63]. Apart from 
amitriptyline, other TCAs such as desipramine and nortriptyline have also been investigated as 
potential treatments for painful DN. Several RCTs reported a reduction in painful DN symptoms 
following desipramine treatment[64-66], making it likely to be as effective as amitriptyline[64] with 
lesser side effects[65].
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On top of that, some clinical guidelines recommended opioids be included as one of the treatments 
with or without other drugs for DN patients with severe pain intensity[67]. However, opioid is 
frequently associated with therapeutic abuse and misuse. Tramadol, one of the opioids, is fairly 
acceptable in the treatment of moderate to severe pain as it has a lower risk of abuse or misuse. It 
reduces pain by binding to opioid receptors (i.e., ҡ-, δ-, and µ-receptors) centrally besides mitigating the 
serotonin and norepinephrine reuptake, thus augmenting the inhibitory effects of pain transmission in 
the spinal cord dorsal horn[68]. Apart from that, tapentadol is also suggested for the treatment of 
painful DN in the US. It shares a similar mechanism of action with tramadol, except for a higher affinity 
for µ-receptors. However, the level of evidence to show the efficacy of these opioids was low based on 
the above-mentioned Cochrane systematic review that included six RCTs and 438 participants[69].

Pertaining to the potential to target the C-fibres in peripheral sympathetic nerves, the use of 
sympathetic blocking medications (α-adrenergic antagonists) such as clonidine, regitine, or phenoxyben-
zamine is recommended in some studies to improve the pain secondary to the spontaneous firing of the 
affected nerve fibres[18,19]. An RCT conducted by Campbell et al[70] demonstrated that the level of foot 
pain subsided after the topical application of clonidine gel among patients with painful DN. However, 
the effectiveness of this medication relies on the relative functionality level of nociceptors (i.e., functional 
and possibly sensitised nociceptors in the affected skin). This trial failed to achieve significant results 
despite showing some evidence of the drug’s efficacy. Another earlier RCT on transdermal clonidine 
application in diabetic polyneuropathy patients also failed to achieve promising results as drug 
withdrawal effects and pain recurrence were reported among the trial participants[71]. Even though this 
sympathetic blocking agent can be used to treat other complex regional pain syndromes, there is still 
very scarce analysis with regard to painful RN in the Cochrane database. This was concurred by Mackey 
et al[72] who reported that not only this class of medication did not show any efficacy in treating 
neuropathic pain, its use was challenging due to the side effects profile.

In some cases of patients with persistent severe painful DN despite multiple pharmacological 
approaches, shifting the pain relief mechanism to the sympathetic nervous system can possibly assist 
the management of the severe pain. In a clinical trial, permanent lumbar epidural blockade was found to 
produce satisfactory outcomes when several other pharmacotherapeutics failed to treat patients with 
painful DN[73]. In another case reported by Cheng et al[74], a painful DN patient who was 
unresponsive to several medications showed significant pain relief following the blockade of nine 
lumbar sympathetic nerves over a 26-mo duration. His QOL was further improved over the two years. 
Further advancement of this approach, i.e., lumbar sympathetic pulsed radiofrequency combined with 
continuous epidural infusion, appeared to successfully manage painful symptoms of DN in the patients
[75]. Meanwhile, the combined treatment of continuous lumbar sympathetic block and neurolysis with 
alcohol also produced a greater improvement of DN symptoms and rapid recovery in the patients, not 
to mention its satisfactory safety profile[76]. However, there are certain limitations to this approach, 
such as the requirement for additional tools to assess and diagnose the severity and duration of DN. 
Furthermore, the small size population, short period of follow-up, and duration of the combined 
treatment strategies in the previous studies[75,76] restrict the generalisability of the results, thus further 
research is warranted.

Additionally, unmyelinated C-fibres release neurotransmitter substance P during the transmission of 
pain signals from the periphery to higher centres. This pathway could be blocked by the topical 
application of capsaicin[77], especially for patients with localised pain who are unable to tolerate oral 
medications[4]. Previous reports have demonstrated its effectiveness in improving nerve functions and 
lowering pain sensations in painful DN patients at a dosage of 0.075% four times a day[78,79]. 
Meanwhile, DN can also affect myelinated A-fibres that produce deep-seated, dull, and distressing pain 
that is usually unresponsive to sympathetic blocking agents and capsaicin[18,19]. This natural product 
blocks pain transmission by modifying the membrane potential of vanilloid receptor subtype 1 and 
certain ion channels, as well as the neurotrophic signalling at the nerve fibres[19,80]. Besides, it can also 
initiate acute production of vasoactive peptides from perivascular sensory terminals following topical 
application[81]. The use of topical capsaicin to treat painful DN is approved by the Food and Drug 
Administration and the level of evidence for its efficacy ranges from moderate to low[82,83]. On the 
downside, several reports have emerged regarding the potential side effects of topical capsaicin in 
damaging small nerve fibre and interrupting nociceptive signalling[84].

Besides the above-mentioned pharmacological strategies, there are other alternative approaches to 
alleviate the symptoms of painful DN. Neuromodulation strategies using specific devices such as 
frequency-modulated electromagnetic neural stimulation (FREMS), spinal cord stimulation (SCS), 
neuromuscular electrical stimulation (NMES), and transcutaneous electrical nerve stimulation (TENS) 
represent new hopes for DN patients[4]. However, these strategies are still under investigation and not 
included in any clinical guidelines to treat DN as the level of evidence is very low[4,85,86]. Similarly, 
alternative complementary approaches such as acupuncture and static magnetic field therapy have also 
been used to manage painful DN[19]. Nevertheless, data on these management strategies are also 
limited.

Furthermore, a series of clinical trials have demonstrated the efficacy of the antioxidant nutritional 
supplement, i.e., ALA, acetyl-L-carnitine, and vitamin B12 in alleviating the pain linked to DN[57,87,88]. 
An oral supplement of ALA at 600 mg per day may reduce DN pain within 2 wk, besides improving 
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numbness and paraesthesia symptoms with minimal adverse effects[89]. Similarly, ALA lowers pain 
intensity by decreasing oxidative stress that afflicts nerves and microvessels after metabolic modific-
ations[4]. Meanwhile, the regular supplementation of vitamin B12 is recommended especially for T2DM 
patients who are on metformin to offset the side effect of vitamin B12 deficiency[90]. Despite promising 
outcomes, worldwide availability, affordable cost, and being regarded as a “safer option”, there are 
concerns regarding these nutraceuticals in terms of lack of regulations including standardisation in 
manufacturing and quality control[91,92]. Furthermore, the safety profile of these nutraceuticals 
remains unclear due to the lack of high-quality clinical trials[87,93].

ISSUES AND CHALLENGES IN DIABETIC NEUROPATHY MANAGEMENT
Since the prevalence of DN is rapidly rising, multiple strategies in terms of treatments, new therapeutic 
approaches, patient access to healthcare facilities, and provision of knowledge regarding DN have been 
introduced to slow down the disease progression. Unfortunately, several ongoing issues must be 
resolved in the management of DN. This section elaborates on the issues and challenges in improving 
the management of DN from the aspect of treatment, patient adherence, access to facilities, and 
knowledge.

Issues in diabetic neuropathy treatments
In the literature, a number of observational and interventional studies revealed that half of the patients 
with DM develop the signs and symptoms of DN during their lifetime[6,87,94-96]. The prevalence of 
DN is high (approximately 20%-30% in newly diagnosed and early-stage T2DM)[30]. Additionally, it is 
challenging to treat DN patients with symptomatic (painful) variants since the pain can be debilitating 
and excruciating. They often complain about pain sensation over the lower extremities that is apparent 
at rest and intensifies during night time[19]. Unfortunately, the exact pathogenesis of this illness is 
unknown. Many clinical trials failed despite promising outcomes in pre-clinical studies. Therefore, 
novel disease-modifying medications are scarcely developed because of the doubts surrounding 
pharmacological targets.

On a further note, since the role of aldose reductase in the pathogenesis of DN was discovered by 
Dvornik et al[97], it has been extensively investigated due to its promising effects in reversing DN. 
Combating DN by antagonising this enzyme seems to be a promising step[14]. The application of aldose 
reductase inhibitors (ARIs) has been shown to hamper the overactivity of the polyol pathway. However, 
a previously published systematic review did not pinpoint a single RCT showing any superiority in 
ARIs compared to placebo in DN patients[98]. Although it has been three decades since the first 
discovery of ARIs, these drugs are still not established as the mainstay of DN treatment due to a high 
incidence of side effects[99]. Similar issues were also raised for other potential therapeutics involving 
the antagonism of PKC activation resulting from excessive diacylglycerol accumulation. A systematic 
review of RCTs on the application of the PKC inhibitor ruboxistaurin (RBX) has reported its therapeutic 
effects on DN. However, the evidence from those studies was insufficient to establish its efficiency in 
treating DN[100]. Moreover, RBX has been shown to be more effective in relieving symptoms among 
patients with less severe DN[100,101].

Last but not least, other potential new drugs targeting RAGEs activation have also been extensively 
explored in animal models[102,103], some of which have produced encouraging therapeutic effects in 
patients[104]. However, the high toxic contents of these drugs become a major problem in human trials
[10,15]. Due to these uncertainties and suboptimal therapeutic efficiency in improving nerve functions 
in T2DM-induced DN[15], the industry refuses to invest further in such drugs[5]. Thus, it limits the 
available medication option for patients. They have to rely on the combination of anti-diabetic 
medications with other management strategies to delay the progression of DN.

Challenges in patients’ adherence to diabetic neuropathy medications
Although diabetic management guidelines have been established worldwide, not all patients can adhere 
to the recommended strategies due to many factors. Patients’ non-adherence to T2DM treatment 
regimens continues to be a major issue in most countries[105,106]. It is closely related to poor 
knowledge regarding diabetes aetiology and disease progression, unstable socioeconomic status, poor 
family support, patient-staff engagement barriers, complex therapeutic regimens, and lack of medical 
insurance coverage[105-108]. Some patients even voluntarily stopped the treatment plan and shifted to 
traditional herbs following their concerns about the side effects of the medications.

Moreover, unsatisfactory healthcare also contributes to the non-adherence to self-care diabetic 
management[106]. Even with free medications provided by the government, patient adherence can be 
compromised if there is ineffective communication between the patients and healthcare providers[106]. 
It is undeniable that myths and cultural beliefs would influence the faith of a patient in doctors’ 
prescriptions and recommendations, especially if the patient lacks an understanding of disease 
progression[105,109]. Therefore, it is vital to provide appropriate health education and counselling to 
increase the patient’s adherence rate. As proven by Awodele and Osuolale[110], patients’ clinical 
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outcomes improved significantly (i.e., 86.8% adherence rate) following health education and 
counselling.

Besides that, a complex treatment regimen can also contribute to non-adherence. Patients with 
multiple comorbidities generally have more medications from different pharmacological classes, giving 
rise to polypharmacy. A cross-sectional study among diabetic patients with no comorbidities 
demonstrated a higher adherence to diabetic medications[111] as compared to patients with com-
orbidities who required multiple medications[112,113]. This is further complicated by the poor 
awareness of the importance of diabetic medications, especially in rural areas of low-income countries
[105,114,115]. However, this issue can be addressed by involving the community and healthcare 
providers to improve the awareness of the patients. Evidently, encouragement from family and friends 
has been linked with an improvement in patients’ knowledge and adherence to dietary recommend-
ations[106]. Moreover, elderly patients with multiple comorbidities displayed better medication 
adherence when provided with more information on the benefits[116,117].

Poverty leads to poor management in DN
Although comprehensive diabetic management has been established and practised globally, not all are 
fully attainable, especially in low-income or developing countries with high rates of poverty. Financial 
restraint often leads to the non-adherence of patients. In Nigeria, 51% of diabetic patients, most of who 
were women and unemployed, could not afford DM medications. Another 69% had to purchase their 
medications in smaller dosages due to high costs[110]. To minimise these obstacles, support from high-
income countries is crucial. National programmes in medical schools, health centres, and hospitals can 
be put in place under international collaborative partnerships[118]. Evidently, a 12-mo Kerala Diabetes 
Prevention Programme made up of a peer support education group led to significantly improved 
lifestyle changes and lower cardiovascular factors among the participants. However, there was an 
insignificant outcome for diabetic symptom improvement[119].

Restricted access to facilities and patient education due to the coronavirus disease 2019 pandemic
It is undeniable that the coronavirus disease 2019 (COVID-19) pandemic has cast a huge impact on the 
healthcare and management of many diseases, including DM. During the pandemic, a prolonged 
lockdown was implemented. In many low-income countries, there was a lack of proper guidelines for 
DM patients to attend follow-ups in hospitals. Furthermore, with the low coverage of sick pay or social 
security, people from low-income countries were less likely to practise preventive measures such as 
social distancing, the use of protective gear, and visiting emergency health services. Furthermore, since 
diabetic management requires a visit to healthcare centres for drug prescription, many patients faced 
restricted access to medications. Insulin was especially restricted during the COVID-19 outbreak. At 
some point, many outpatient clinics and endocrinologists at private hospitals were temporarily shut 
down while the focus of emergency services shifted to the treatment of COVID-19 patients. These 
difficulties affected the care of diabetic patients, especially those who required hospital admission[120]. 
In short, the interruption of routine diabetic care created stress among patients, not to mention 
worsening obesity due to physical inactivity, both of which worsened their hyperglycaemic conditions 
and diabetes-related complications[121].

As the crisis of COVID-19 unfolds over the past two years, new strategies were developed to enhance 
diabetes care, including the use of telehealth, remote patient monitoring, online glucose monitoring via 
wearable technologies supported by the internet and smartphones, and free educational videos and e-
books on self-management of diabetes via mobile applications[122-124]. However, these guidelines are 
established in developed countries, making them less suitable for patients in low-income countries with 
issues like poverty, poor education level, and suboptimal healthcare planning. Several suggestions were 
put forth to potentially improve the care of DM patients, such as replacing active follow-up with passive 
care, establishing community centres for patient visit and training purposes outside the hospitals (e.g., in 
mosques, churches, and community centres), and setting up more outpatient clinics and primary 
healthcare centres for the treatment of non-communicable diseases. At these centres, innovative steps 
were proposed and implemented, including self-monitoring of blood glucose levels without additional 
charges, guidelines for physicians on clinical management cases during disease outbreaks, needs 
assessment survey by trained investigators, and contacting patients via landlines for consultation with 
physicians and endocrinologists, as well as spreading educational and intervention information via text 
messages for patients with smartphones[120].

FUTURE DIRECTION IN MANAGEMENT OF DIABETIC NEUROPATHY
It is crucial to implement strategies to prevent and slow the progression of DN, especially since severe 
DN can be challenging to treat. There are many suggestions to achieve this. In T1DM patients, not only 
are the insulin-producing pancreatic β-cells destroyed, but the blood capillaries are also hugely affected. 
Blood capillaries are critical in insulin production; thus, it is vital to manage capillary destruction. A 
new drug from bone marrow stem cells has been developed to replenish the cells of blood capillaries 
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and increase the production of β-cells. This intervention is based on the concept of introducing the 
formed β-cells in the form of “immunoprotective capsules” to avoid destruction by auto-immune cells
[125]. This research is still ongoing. Issues related to the capability of multipotent stem cells in the 
formation of β-cells that can potentially proliferate into cancerous cells need to be fully addressed before 
the application of this drug[126]. Besides that, other proposed methods include dietary changes in DM 
patients, such as the consumption of amino acid arginine to facilitate the metabolism of glucose as has 
been proven in animal studies[125]. Arginine stimulates the production of glucagon-like peptide-1 from 
endocrine cells in the gut following nutrient ingestion that can promote insulin secretion, reduce food 
intake, increase β-cell production, and minimise β-cell apoptosis[127].

Lastly, there is growing research in the area of metabolomics technology that may aid in the diagnosis 
and biomarker discovery of DM. Since metabolites reflect the whole body’s functions, it is hypothesised 
that they can provide a comprehensive picture of what happens in the body. The combination of 
metabolomics detection technology with computational biology and orthogonal experiments allows the 
screening of diabetic metabolites and evaluation of the related metabolic pathways[128]. Evidently, 
through metabolomics research, it is discovered that T1DM children who developed auto-antibodies 
before the age of 2 had twice the depletion rate of methionine level compared to the children who 
developed autoantibodies in later childhood or children who were auto-antibody-negative. The same 
research also speculated that the methionine pathway could be involved in the generation of antibodies 
during early infancy[129]. Following that, a metabolomics study using transgenic and knock-out mouse 
models that resembled early stages of human T1DM also revealed metabolomics disturbances before the 
onset of T1DM. In their study, Overgaard et al[130] found a reduced level of lysophosphatidylcholine 
and methionine as compared to an elevated level of ceramides before the onset of T1DM. Meanwhile, in 
a study on insulin autoantibody seroconversion among diabetic children, Li et al[131] discovered that 
the rapid growth of children’s height is linked to an increased risk of islet autoimmunity and 
progression of T1DM. These published studies represent the growing metabolomics research that has 
made great progress in the identification of the main factors and metabolites that helps to identify the 
pathophysiological process, aetiology, early prevention, and assessment of the treatment effects of 
diabetes.

DISCUSSION
Primary resources of diabetic care from published studies serve as the general guidelines for better 
diabetic prevention strategies and patient care worldwide. Along with lifestyle and dietary modific-
ations, additional strategies need to be added to the guidelines for the betterment of diabetes care. For 
instance, glucose monitoring is one of the current strategies that has been proven effective in controlling 
blood and dietary glucose in the previous literature for T1DM patients. However, this strategy is more 
beneficial in reducing diabetic complications and progression for T1DM patients because the 
pathogenesis of DN differs between T1DM and T2DM. For example, hyperglycaemia is not the key 
factor to all the complications suffered by T2DM patients. In view of this, the general management of 
DN among T1DM and T2DM should be tailored accordingly. It is also important to note that over-
aggressive glucose control can lead to hypoglycaemia-induced neuropathy in T2DM patients. It is 
especially devastating for neurons in the brain that use more glucose than other cells to fulfill their 
functions.

There are certain misconceptions regarding the dietary monitoring of glucose intake among DM 
patients. Most diabetic patients eliminated sugars in their beverages but fail to reduce the consumption 
of carbohydrate-rich meals and sugar-rich fruits, especially in countries where carbohydrate-rich food 
and exotic fruits are the staple diets. The consumption of these foods may complicate the diabetic 
condition and accelerate the progression of DN. Therefore, it is critical to disseminate accurate 
knowledge about dietary glucose through social media to avoid any misconceptions among diabetic 
patients.

Besides that, poor treatment adherence is also a major challenge in the prevention and management 
of DN as discussed in the previous section. In countries with traditional lifestyles such as Asian 
countries, many patients opted for herbal medicine rather than modern medications, possibly due to 
concern about side effects and a lack of trust towards modern medicine. Although some of the 
traditional herbs demonstrate a potent anti-diabetic effect, the herb preparation by local manufacturers 
may contain additional harmful substances such as steroids that can lead to other complications. 
Furthermore, the crude extracts of certain herbs can be unsafe as some of the unknown metabolites can 
worsen the diabetic condition. Therefore, governmental agencies should conduct strict screening of the 
content of traditional anti-diabetic herbs before it is commercialised to reduce the risk of complications. 
More importantly, patient education and continuous research on these new anti-diabetic agents should 
be emphasised by the government as a step to improve diabetic management.
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CONCLUSION
The increasing prevalence of DN and its complications among DM patients is alarming and can be 
costly to individuals and countries alike. Recently, psychosocial impact and morbidity from DN have 
also received widespread concern. Current clinical guidelines focus on preventing the progression of 
DN and managing the DN symptoms in patients. However, most of these guidelines fail to address the 
underlying factors contributing to DN, thus compromising the effectiveness of current management. 
Therefore, it is crucial to identify the mechanisms and risk factors of DN so that issues hindering the 
success of the current management of DN can be resolved. This review outlines various challenges in 
the management of DN on top of the pathomechanisms of DN. With a better understanding of DN 
pathogenesis, DN management can be enhanced. It is hoped that the additional recommendations 
pertaining to the raised issues can be addressed for the betterment of the quality of care and patients’ 
health.
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Abstract
The global burden of diabetic foot ulcers (DFUs) is a significant public health 
concern, affecting millions of people worldwide. These wounds cause consid-
erable suffering and have a high economic cost. Therefore, there is a need for 
effective strategies to prevent and treat DFUs. One promising therapeutic 
approach is the use of adiponectin, a hormone primarily produced and secreted 
by adipose tissue. Adiponectin has demonstrated anti-inflammatory and anti-
atherogenic properties, and researchers have suggested its potential therapeutic 
applications in the treatment of DFUs. Studies have indicated that adiponectin can 
inhibit the production of pro-inflammatory cytokines, increase the production of 
vascular endothelial growth factor, a key mediator of angiogenesis, and inhibit the 
activation of the intrinsic apoptotic pathway. Additionally, adiponectin has been 
found to possess antioxidant properties and impact glucose metabolism, the 
immune system, extracellular matrix remodeling, and nerve function. The 
objective of this review is to summarize the current state of research on the 
potential role of adiponectin in the treatment of DFUs and to identify areas where 
further research is needed in order to fully understand the effects of adiponectin 
on DFUs and to establish its safety and efficacy as a treatment for DFUs in the 
clinical setting. This will provide a deeper understanding of the underlying 
mechanisms of DFUs that can aid in the development of new and more effective 
treatment strategies.

Key Words: Diabetic foot ulcer; Adiponectin; Anti-inflammatory; Adipose tissue; 
Antioxidants; Wound healing
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Core Tip: The global burden of diabetic foot ulcers (DFUs) is significant, both in terms of human suffering 
and healthcare costs. Therefore, effective strategies to prevent and treat DFUs are urgently needed. 
Adiponectin, a hormone produced by adipose tissue, shows promise as a therapeutic option for DFUs due 
to its anti-inflammatory, antioxidant, and pro-angiogenic effects. While adiponectin has potential 
therapeutic applications, further research is necessary to establish its safety and efficacy in clinical 
settings. This review aims to summarize current research on adiponectin’s potential role in treating DFUs 
and identify areas requiring further investigation.
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INTRODUCTION
Diabetic foot ulcers (DFUs), a serious complication of diabetes mellitus, pose a significant economic 
burden on patients and healthcare systems worldwide. The development of these ulcers is often due to 
poor foot care, inadequate glycaemic control, underlying neuropathy, and peripheral vascular disease. 
Left untreated, these ulcers can result in amputations. The global prevalence of DFUs ranges from 3% in 
Oceania to 13% in North America, with a global average of 6.4%[1].

Healing time for these ulcers can take up to 12 mo, with a recurrence rate estimated to be 65% within 
5 years[2]. Studies have shown that the impact of DFUs on individuals is profound, with loss of 
ambulatory function, financial strain, and emotional suffering being common outcomes[3]. The 
economic impact on patients and their families due to medical bills, loss of income, and emotional 
distress can be significant. Participants in a recent study reported experiencing depression, isolation, 
and hurtful comments from others[3].

DFUs continue to pose a significant public health challenge, and they are a major cause of morbidity 
and mortality worldwide[4].

Adiponectin, a fat-derived hormone, has been shown to protect against insulin resistance, type 2 
diabetes (T2DM), and atherosclerosis. Reduced circulating levels of adiponectin are thought to play a 
role in the development of T2DM. In cases of obesity, the production of endogenous adiponectin is 
impaired. It is, therefore, suggested that pharmacological or dietary interventions be considered to 
restore the capacity of adipose tissue to secrete adiponectin[5].

DIABETIC FOOT SYNDROME
Diabetes mellitus (DM), is a main cause of death and poor quality of life worldwide, affecting 463 
million individuals in 2019 and is estimated to reach 700 million by 2045[2]. People with diabetes often 
have foot problems that impose an economic burden on the individual, and about half of all foot 
amputations are observed to be among diabetics. The lifetime chance of a diabetic having a foot ulcer is 
as high as 25%[3], and it is estimated that every 30 s a lower limb is lost due to diabetes somewhere in 
the globe[4]. DFUs can be prevented by ensuring that diabetics get regular foot exams and treating any 
neuropathy that may be present[5]. The International Diabetes Foundation has called for greater 
awareness of diabetes foot concerns due to the psychological, social, medical, and economic effects of 
what should be one of the most preventable long-term complications of diabetes[6,7]. In most Western 
nations, the yearly incidence of DFUs is roughly 2%, however, greater rates have been observed in select 
populations, including Medicare recipients (6%) and United States veterans (5%)[8]. The projected 
annual cost to the NHS in the United Kingdom is around 580 million, with 307 million spent on 
ulceration in primary care[9].

Diabetic foot syndrome is defined, according to the World Health Organization, as “ulceration of the 
foot (distally from the ankle and including the ankle) associated with neuropathy and different grades 
of ischemia and infection”[10]. It is a significant, long-term consequence of diabetes that can result in 
amputations, disability, and diminished quality of life.

Since peripheral neuropathy and vascular disease are present in more than 10% of individuals at the 
time of diagnosis of T2DM[11] and because the first year following the diagnosis of diabetes is a risky 
time for foot ulcers and amputations, the burden of diabetic foot disease is expected to rise in the future
[12]. Furthermore, emerging nations in Africa, Asia, and South America, where foot ulcers are more 
likely to have neuropathic origins[13] and are thus very avoidable, are anticipated to have the biggest 
growth in the prevalence of T2DM[6]. Deploying screening, education, and treatment programmes most 
effectively around the globe is still the dilemma facing the worldwide diabetes community[14].

https://www.wjgnet.com/1948-9358/full/v14/i6/758.htm
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The simplest definition of diabetic foot infection is “any infra-malleolar infection in a diabetic 
patient”. These include paronychia, cellulitis, myositis, abscesses, necrotizing fasciitis, septic arthritis, 
tendonitis, and osteomyelitis. DFUs are complex and rarely caused by a single condition. Several risk 
factors cause DFUs[15,16]. Understanding pathobiology helps diagnose and treat DFUs, which is one of 
the leading indicators for amputations.

Neuropathy is the primary contributing factor leading to ulceration, in diabetics. Diabetic peripheral 
neuropathy (DPN) is a disruption of normal nerve function that can change autonomic, motor, and 
sensory functioning throughout the body[17]. Due to the absence of protective sensation in patients with 
sensory neuropathy, the foot is more likely to sustain untreated minor injuries as a result of excessive 
pressure as well as mechanical or thermal damage. Individuals with diabetes who also have sensory 
neuropathy were found to be at the highest risk for developing ulcers, as revealed by a significant 
prospective multicentred investigation[18].

There are various types of neuropathies, and some of them may cause foot ulcers. Motor neuropathy 
may lead to foot deformities, decreased joint mobility, and abnormal foot loading. These modifications 
may cause a shift in the distribution of loads that are experienced when walking, with a subsequent 
reactive thickening of the skin known as callus at unusual load areas. Ischaemic necrosis of the tissues 
underneath the callus also contributes to the development of a neuropathic ulcer. Autonomic 
neuropathy often results in changes to the skin’s texture and turgor, such as dryness and fissuring, 
which makes the skin more susceptible to infection since it provides an entry site to the bacteria[19].

Another condition that contributes to the development of foot ulcers is peripheral vascular disease, 
which affects both small and major blood vessels. It is possible for both macrovascular and micro-
vascular diseases to contribute to the symptoms of peripheral vascular disease, which ultimately results 
in a delay in wound healing. In both diabetics and non-diabetics, there is an increase in the incidence 
and prevalence of peripheral arterial disease with age, while the condition is worse with diabetes. 
Individuals who have diabetes are at an increased risk for vascular disease because of the prevalence of 
risk factors such as hypertension, smoking, and hyperlipidaemia[20,21].

The ulcerated diabetic foot is the result of a complex interaction between several factors, including 
neuropathy, peripheral vascular disease, trauma, and infections. Neuropathy and ischaemia, also called 
neuro ischaemia, are the initial mechanisms, while the infection is typically a result of this condition. 
Studies have indicated that diabetics acquire peripheral vascular disease at a younger age more 
frequently than others in the same age group[22]. In 35% of cases, proximal arterial disease-related 
peripheral ischaemia was cited as an important cause of ulceration among diabetics in a two-center 
study of causal pathways[22]. In another study that compared diabetic patients with peripheral artery 
disease to non-diabetic patients with the same condition, it was found that diabetic patients had more 
distal disease and a worse prognosis in terms of amputation and mortality[23].

Hence the pathogenesis of DFUs, a complication of longstanding uncontrolled diabetes, involves 
multifactorial influences such as neuropathy, peripheral vascular disease, foot deformity, trauma, 
infection, and inadequate glycaemic control. The loss of sensation brought on by neuropathy can result 
in repeated damage to the foot, while the peripheral vascular disease can reduce blood flow and slow 
healing. Injuries and infections can exacerbate already-existing ulcers, while foot abnormalities can 
create pressure points and raise the risk of skin deterioration. Moreover, poor glycaemic management 
might hinder wound healing and raise the danger of infection. Thus, for the prevention and 
management of DFUs, a multidisciplinary strategy that takes these aspects into account is essential. 
Figure 1 summarizes the factors contributing to the development of DFUs in diabetic patients.

RISK FACTORS
Multiple variables contribute to the emergence of DFUs. Peripheral neuropathy and ischaemia that 
result from the peripheral vascular disease that reduces the protective components of the tissues are the 
primary underlying causes. In addition, the skin can be subjected to stress, such as pressure, shear, or 
trauma, which also contributes to the condition. Antonio et.al. in their study identified general and local 
factors predisposing to the development of DFUs[24]. The general factors include duration and severity 
of diabetes, and associated comorbidities such as hypertension, dyslipidaemia, chronic renal disease, 
peripheral vascular disease and age while the local factors included foot deformity, trauma, callus 
presence, previous amputation, impaired joint mobility and shoe defects[25].

DIAGNOSIS
Individuals who have diabetes are required to have their neurological, vascular, dermatological, and 
musculoskeletal conditions evaluated on a yearly basis, at the very least. The American Diabetes 
Association (ADA) developed a comprehensive foot examination and risk assessment tool that is fast 
and requires very little specialised medical equipment[26]. Patients who come in exhibiting tissue loss 
are placed in a higher risk category than those who do not. In situations like these, an evaluation of the 
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Figure 1  The common pathways in diabetes mellitus leading to infected foot ulcer.

overall level of limb threat should be performed.
Many measures exist to assess the severity of a diabetic ulcer by analysing the ulcer’s features, 

ischaemia, and infection. Wagner, University of Texas, and PEDIS are the most widely used and 
globally recognised scales[27,28]. These scales have demonstrated their utility in correlating the degree 
of severity of the ulcers with the risk of amputation[29]. The wound scales are a valuable tool for 
classifying the severity of DFUs, but they should not be used to determine the need for amputation. The 
microbiology of wounds should be examined in each region to further determine the appropriate 
empiric therapy in the management of DFU.

COMPLICATIONS
DFUs are the major cause of hospitalisation and amputation in diabetes patients[5,25]. Foot ulcer 
complications include excruciating pain, infection, gangrene, osteomyelitis, amputation, and death[30]. 
Coexisting diabetes-related problems, such as diminished peripheral sensations and absence of pain 
along with this sustained ambulation further incite additional damage[31].

Studies demonstrated a higher death rate in diabetic patients with DFUs, with a death rate almost 
double that of diabetic patients without foot ulcers[22,32]. DFUs have been also reported to be 
associated with a greater frequency of major cardiovascular risk factors, subclinical signs of past and 
new-onset cardiovascular and cerebrovascular events [33].

TREATMENT
Current treatment emphasises patient education, regular foot self-examinations, and annual diabetic 
foot evaluations. These annual examinations comprise patient history, peripheral vascular exam, and 
sensory nerve function evaluation to detect DPN early. Pressure analysis studies on lowering foot 
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pressure or changing gait offer promising technology for the early detection and prevention of DFU[34,
35]. Depending on DFU categorization, DFU patients need unloading, infection or ischaemia treatment, 
wound debridement, and wound dressings[36]. Tissue volume and type are often used to classify DFUs
[37]. Granulation tissue is red/pink and symbolises healing tissue, whereas slough tissue is more yellow 
and represents infected tissue and necrotic tissue is dark/black and shows tissue death. Many studies 
show that DFU diagnosis and treatment can greatly reduce or prevent serious consequences[37,38]. 
Despite national and international guidelines, DFU administration varies. Under this ambit, patients 
suffering from DFUs need reliable and quick therapy, which can only be facilitated with deeper 
understanding of the metabolic marker of DFU such as advanced glycated end-products (AGE’s), 
inflammatory markers, lipid profile, while newer markers such as adiponectin as a prospective 
diagnostic tool needs to be further explored. Emerging technologies such as bioprinting and electro-
spinning[39], stem and somatic cell monotherapy[40] and grafting techniques[41] offer promising 
alternatives by overcoming the limitation in conventional approaches.

ADIPONECTIN
Adipose tissue produces adipokines, which are peptides that communicate with other tissues such as 
the brain, liver, pancreas, immune system, vasculature, and muscle about their functional state. Thus, 
adipose tissue dysfunction is often related with alterations in the secretion of adipokines such as leptin, 
adiponectin, fibroblast growth factor 21 (FGF21), retinol-binding protein 4, dipeptidyl peptidase 4, bone 
morphogenetic protein (BMP)-4, BMP-7, vaspin, apelin, and progranulin. Although the complete 
repertoire of human adipokines has not yet been described, it has been established that adipose tissue is 
a reservoir for more than 600 secretory proteins[42].

Adipokines control many physiological processes, including appetite and fullness, fat distribution, 
insulin secretion and sensitivity, energy expenditure, endothelial function, inflammation, blood 
pressure, and blood clotting[43,44]. As the mRNA transcript for adipokines was most robustly 
expressed in adipocytes, adiponectin was first discovered in mice shortly after leptin’s discovery in 1995
[45]. Two different adiponectin receptors, ADIPOR1 and ADIPOR2, are responsible for relaying signals 
from the 30-kilodalton, 244-amino-acid protein, adiponectin, to its target cells[45].

Adiponectin undergoes post-translational modifications that lead to the secretion of oligomers of 90-
kDa trimers, which are subsequently detected in the bloodstream as 180-kDa hexamers (low molecular 
weight)[45,46]. Adiponectin structure consists of trimers, hexamers, and higher order complexes that 
can be formed in the collagen domain of adiponectin before secretion[47,48].

ADIPONECTIN RECEPTORS
Many different receptors, including adiponectin receptors 1 and 2, play roles in mediating adiponectin’s 
effects[49]. These receptors are functionally dissimilar from G-protein-coupled receptors, primarily due 
to the fact that their polarity is in the opposite direction. It is projected that they include seven 
transmembrane sections. large level of functional redundancy appears to exist between the adiponectin 
receptors, as suggested by both single- and double-knockout mice for the receptors[50]. Although the 
relative ratios of ADIPOR1 and ADIPOR2 expression in different tissues may differ, in general, both are 
expressed in a very high proportion of tissues. T-cadherin is the name given to a newly discovered 
molecule that may be found on the cell surface and possesses a considerable affinity for the protein 
adiponectin[51]. It is not technically a signalling receptor since it does not have an intracellular 
signalling domain, even though it is capable of binding adiponectin. T-cadherin is necessary, however, 
in order for adiponectin to reach its full potential in terms of its cardioprotective effects[52].

SECRETION AND RELEASE
Adiponectin is a secretory protein that is only produced by adipocytes. Constitutively synthesized, it 
accounts for 0.01%-0.05% of plasma protein, which places it in the range of 2-20 g/mL and makes it a 
component of plasma that is reasonably abundant. Adiponectin is a protein that is fairly stable in 
circulation, despite the fact that its plasma half-life is only 45-75 min[53]. Other cell types, such as beta 
cells in the pancreas and certain cell types in the heart and kidneys, also have a strong affinity for 
adiponectin and can bind to it. Adiponectin is primarily removed from the bloodstream in the liver, 
making it an important organ in this process[53]. In spite of the fact that adiponectin is secreted by 
adipose tissue, circulating levels mysteriously decrease when there is an increase in the amount of 
central adiposity[54]. Despite this, greater degrees of adiposity in the lower extremities and the truncal 
region are associated with greater concentrations of adiponectin.
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Adiponectin’s insulin-sensitizing, anti-inflammatory, and antiapoptotic effects have generated 
considerable interest[45,55]. In addition, numerous cohort studies in various groups have shown that 
adiponectin levels are inversely related to either the presence of glucose intolerance or the risk of 
developing T2DM[56].

EFFECTS OF ADIPONECTIN
On Beta-cell function
The beta cells of pancreatic islets express both ADIPOR1 and ADIPOR2, the two receptors for 
adiponectin[57,58]. Recombinant adiponectin given to adiponectin-deficient mice shows that it targets 
beta cells. Adiponectin may enhance glucose-mediated insulin production and promote insulin and 
related gene transcription[59], however, the effect of adiponectin on insulin release in individuals with 
normal insulin sensitivity is not well-established[57,60].

On cardiac and renal function
The strong and long-standing correlation between adiponectin levels and the development of 
cardiovascular disease has been well-documented. Pischon et al[61] found in a large cohort that men 
with high plasma adiponectin levels had a lower risk of myocardial infarction. In preclinical ischaemia/
reperfusion trials, the Walsh group showed that recombinant adiponectin strongly improves 
cardiomyocyte survival[62]. However, why end-stage cardiovascular disease has a significant positive 
correlation between mortality and high adiponectin levels, unlike early stages, is unknown[63].

A similar scenario exists in the kidney, where low adiponectin levels correlate with albuminuria in 
both animals and humans[64]. In animal models with adiponectin gene knockout, the lack of 
adiponectin has been linked to increased podocyte damage and albuminuria, and adiponectin therapy 
has demonstrated the ability to reverse certain renal dysfunction[65]. In patients with chronic kidney 
disease, adiponectin levels are positively correlated with proteinuria[31]. This upregulation is similar to 
that seen in cardiovascular disease, particularly end-stage cardiovascular disease. The mechanisms are 
unknown. This is especially challenging given that adiponectin is not cleared through the kidney except 
in cases of severe proteinuria. This is especially challenging given that adiponectin is not cleared 
through the kidney except in cases of severe proteinuria[66], making it difficult to determine which 
mechanisms are responsible.

On insulin sensitivity
Skeletal muscle is an important factor in insulin sensitivity because it is the primary source of glucose 
for the body as a whole. It should not come as a surprise, consequently, that a substantial amount of 
attention has been paid to the potential metabolic effects that adiponectin has on this tissue. High-
molecular-weight adiponectin correlated better with systemic insulin sensitivity than low-molecular 
weight in rodents and humans[45,46]. Skeletal muscle has a high concentration of ADIPOR1, through 
which adiponectin regulates energy metabolism[67]. Most investigations into the effects of adiponectin 
have focused on its binding to globular adiponectin, which exhibits greater binding strength and 
biological activity in skeletal muscle compared to most other tissues[68,69]. Adiponectin binding leads 
to increased glucose uptake and nonoxidative glycolysis, while simultaneously reducing intramyo-
cellular triacylglycerol content and enhancing fatty acid oxidation[68,69]. Additionally, adiponectin 
influences the number of mitochondria and the types of oxidative fibers present in skeletal muscle[70]. 
However, in diseased states, the effects of adiponectin on skeletal muscle are attenuated.

The liver is affected in a number of different ways by adiponectin. One of the most notable effects is 
hepatic glucose production inhibition, which lowers body glucose levels. Hepatocytes are insulin-
sensitive at physiological adiponectin levels. As a result, glucose production is significantly inhibited in 
response to any given dose of insulin[50]. Adiponectin inhibits both the expression[68,71] and activity of 
important regulators in the process of gluconeogenesis[71,72]. Studies using murine euglycemic clamps 
have shown that the rates of glucose disposal, glycolysis, and glycogen synthesis are not affected by the 
presence of intravenous adiponectin infusion[72]. This suggests that the primary mechanism by which 
adiponectin lowers blood sugar levels is through the suppression of hepatic glucose output, rather than 
through enhancing glucose disposal.

On adipose tissue
The adiponectin receptors (ADIPOR1 > R2) are also reported to be expressed by adipocytes. This data 
further implies that adiponectin may alter adipose tissue function locally, either with modifying 
autocrine or paracrine function.

As anti-inflammatory effector
Adiponectin’s impact on inflammation is not limited to adipose tissue, and its anti-inflammatory effects 
have been observed in other contexts. This is significant because systemic inflammation is thought to 
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play a role in the development of insulin resistance[73]. These researchers have shown that adiponectin 
can inhibit the development and proliferation of bone marrow-derived granulocyte and macrophage 
progenitors, but it does not have this effect on other haematopoietic cell lines. In addition, it is also 
reported that inflammatory processes in macrophages can be disrupted, by suppressing the phagocytic 
activity in human macrophages that have been treated with adiponectin [73], as is the production of 
pro-inflammatory cytokines[73]. In the setting of the development of atherosclerosis, adiponectin is 
shown to limit the transition of macrophages into lipid-laden foam cells[74].

On other tissues
Adiponectin works in the brain to increase the amount of energy that is expended, which might lead to 
weight reduction[46]. In clinical research, circulating adiponectin has been shown to have an 
independent and unfavourable relationship with components of metabolic syndrome. These 
components include insulin resistance, body weight, blood pressure, and serum lipids[43,55].

Adiponectin’s molecular functions imply that the molecule or agonists of its receptors might cure 
obesity and related comorbidities[45]. Studies showed that adiponectin improved insulin sensitivity, 
glucose metabolism, insulin secretion, and body weight in rodent models[75]. Recently, it was shown 
that a synthetic small molecule adiponectin receptor agonist, known as “AdipoRon”, greatly increased 
insulin sensitivity and decreased glucose intolerance in rats[76]. AdipoRon treatment prolonged the 
lives of high-fat-fed db/db mice, adding support to the idea that higher blood adiponectin levels are 
associated with a later average age of mortality in obese people[76]. Levels of adiponectin have been 
shown to have a negative correlation with obesity, visceral fat, T2DM, and other complications that are 
associated with obesity[45,55]. Not only adiponectin has a promising and readily detectable stable 
marker for a variety of illnesses, but it also has the potential to play a big role in the future of clinical 
importance as a therapeutic agent. This is because adiponectin has the ability to regulate fat storage[44].

The potential therapeutic role of adiponectin in DFUs
Many studies have shown that diabetic patients have lower adiponectin levels than healthy controls[77-
79]. Adiponectin deficiency has been correlated with increased susceptibility to diabetes and its 
associated complications, such as DFUs[80,81]. Some investigations have also indicated that low 
adiponectin levels may be a potential biomarker of poor wound healing and increased amputation risk 
in diabetic foot ulcer patients[78,81,82]. Figure 2 depicts the probable mechanisms via which reduced 
adiponectin levels may contribute to the development of DFUs. Nonetheless, more research is needed to 
completely understand the role of adiponectin in the pathophysiology and therapy of DFUs.

ADIPONECTIN AND KERATINOCYTES
Diabetic patients often experience impaired wound healing due to continuous hyperglycaemia, leading 
to alterations in various stages of the healing process such as haemostasis, inflammation, proliferation, 
and remodelling. Factors that contribute to this include hypercoagulability, impairment of skin function
[83], imbalanced inflammatory and growth factors[84], reduced neutrophil function[85], and insufficient 
wound re-epithelialization[86]. Adipose tissue has recently been recognized as a key endocrine organ 
with a role in wound healing. This role is due to the secretion of bioactive substances known as 
adipokines, which regulate paracrine signaling[87]. There is evidence from numerous research that 
adipose tissue contributes to the healing of wounds[88-90]. Despite the current understanding, the exact 
role of adipocytes in the wound healing process remains unknown. However, it has been demonstrated 
that applying adipose tissue extracts over skin wounds can improve wound repair[91]. The healing 
process is believed to take place via paracrine signaling, highlighting the significance of the adipokines 
released by adipose tissue in wound healing[92].

Adiponectin, that is secreted from adipocytes has been found to aid in wound healing through its 
effects on keratinocytes, the most abundant cellular component of the epidermis[93]. Adiponectin 
promotes keratinocyte proliferation and migration, which is crucial for proper re-epithelialization and 
wound closure. This is mediated via the AdipR1/AdipR2 and ERK signaling pathways[94]. Adiponectin 
also elevates the intracellular and reconstructed epidermal lipid content of keratinocytes, and regulates 
the expression of lipid biosynthesis enzymes and nuclear hormone receptors, which helps maintain skin 
barrier integrity, an action that is mediated through SIRT1 signaling molecule (SIRT1)[95].

Furthermore, adiponectin possesses reactive oxygen species (ROS)-scavenging abilities and can 
mitigate oxidative stress-induced DNA damage while regulating antimicrobial peptide production in 
senescent keratinocytes[96-98]. Studies have shown that adiponectin can reverse premature cellular 
aging in keratinocytes and restore normal antimicrobial peptide levels by activating AMP-activated 
protein kinase (AMPK), increasing SIRT1 deacetylation, recovering FoxO1 and FoxO3 transcription 
activity, and suppressing NF-κB p65, thereby preventing abnormal expression of human β-defensin 2 
induced by hydrogen peroxide[99]. Additionally, it restores filaggrin expression and normalizes 
keratinocyte activity, which is crucial for maintaining skin integrity as an immune barrier[100,101]. 
Therefore, one way in which adiponectin may promote DFU healing is through its impact on skin 
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Figure 2  The role of low adiponectin in contributing to delayed wound healing.

integrity, keratinocyte proliferation, and migration. However, further research is necessary to fully 
understand the potential mechanisms of adiponectin in DFU healing.

ADIPONECTIN AND EXTRACELLULAR MATRIX REMODELLING
The extracellular matrix (ECM) that is produced, assembled, and remodeled by fibroblasts is crucial for 
maintaining skin integrity, but when it is damaged, as in skin ulcers, it undergoes repair and 
remodeling. Matrix metalloproteinases (MMPs), a family of proteins that includes collagenases and 
gelatinases, are ECM enzymes that break down damaged fibrils during ECM remodeling[102]. Normal 
ECM remodeling includes a delicate balance of ECM breakdown, generation, and maturation. In poor 
wound healing, such as DFU, the process of ECM remodeling tends to yield more degraded, non-
soluble fibrils, resulting in a disorderly ECM network and callus formation[103,104].

Abnormal expression of MMPs and differential expression of ECM contribute to poor healing in 
DFUs[105-107]. Elevated MMP activity and imbalanced tissue inhibitors of metalloproteinases (TIMPs) 
have been reported in the skin of diabetic ulcer patients. A study reported that enhanced expression of 
MMP-1 is necessary for wound healing in DFU, while enhanced MMP-8 and MMP-9 contribute to 
delayed wound healing. Furthermore, a higher MMP-1/TIMP-1 ratio may indicate a proteolytic 
environment in the wound[106,107]. Adiponectin has been found to suppress fibroblast proliferation, 
migration, and ECM formation[108], as well as increase the expression of fibroblasts and type 1 collagen 
components of the ECM[109,110]. The endogenous expression of adiponectin and its malfunctioning 
may play a fundamental role in skin fibrosis and exert a substantial negative regulatory impact on 
fibrosis[111].

In summary, adiponectin has been shown to influence ECM composition by regulating the activity of 
ECM-associated molecules, such as collagen, elastin, and glycosaminoglycans, implicating that as a 
potential mechanism through which adiponectin may help promote DFU healing.

ADIPONECTIN’S ANTI-INFLAMMATORY PROPERTIES AND WOUND HEALING
Another contributing factor to poor wound healing in diabetic patients is the presence of excessive 
inflammatory reaction[112,113]. DFUs which are characterized by chronic inflammation and infection 
can lead to tissue necrosis and amputation[114-116]. In individuals with diabetes, the wound healing 
process is often hindered as the wounded tissues remain in the late inflammatory phase. In such cases, 
macrophages are unable to transition into the repair phenotype and release the necessary factors that 
promote tissue repair. As a result, the wound fails to progress from the inflammatory to the proliferative 
phase of healing, leading to persistent inflammation[117]. The persistent inflammation in DFUs is 
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contributed by the activation of pro-inflammatory cytokines such as TNF-α, IL-1β, and IL-6, as well as 
the activation of the nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) signaling 
pathway[112,113,118]. In addition, the downregulation of neuropeptides that are essential for wound 
healing and biofilm development also contributes to the persistent inflammatory state in DFUs. 
Biofilms, which disrupt wound healing by creating a prolonged inflammatory response, limit 
macrophage phagocytosis and keratinocyte growth migration, and transmit antimicrobial resistance 
genes[119-121].

Adiponectin has an anti-inflammatory effect and is a potential therapeutic option for preventing and 
treating DFUs. It has been demonstrated that adiponectin reduces the expression of pro-inflammatory 
markers and inhibits the activation of the NF-κB signaling pathway in human aortic endothelial cells 
and monocytes[122-124]. Activation of AdipoR1 and AdipoR2 receptors increases the activity of AMPK 
and inhibit the NF-κB signaling in various cells including macrophages, liver, and skeletal muscle. Both 
contribute to adiponectin’s anti-inflammatory properties[50,125]. The crucial role of AMPK signaling 
activity in wound healing is highlighted by the successful improvement of DFU healing achieved 
through the reactivation of AMPK signaling[126]. Adiponectin may also inhibit the activation of the 
inflammasome, a complex of proteins which plays a key role in the inflammatory response[127,128].

Adiponectin stimulates the nuclear receptor peroxisome proliferator-activated receptor-gamma 
(PPAR-γ), which affects glucose and lipid metabolism[129,130]. When PPAR- is activated, pro-inflam-
matory cytokines are suppressed, and anti-inflammatory genes are activated. Adiponectin also 
suppresses the creation of reactive oxygen species and the activation of NADPH oxidase[131], which 
contribute to inflammation and oxidative stress. Adiponectin may also limit the migration and prolif-
eration of vascular smooth muscle cells, as well as the development of new blood vessels[132-134], while 
promoting the regression of existing blood vessels, which can also contribute to its anti-inflammatory 
effects[135-137]. Hence, adiponectin’s anti-inflammatory properties may aid wound healing by 
minimising prolonged inflammation and accelerating the wound’s transition into the proliferative phase 
of recovery.

ADIPONECTIN AS AN ANTIBACTERIAL IN DFUS
A meta-analysis by Macdonald et al[138] found that DFUs are caused by several genera of bacteria, 
mainly gram-positive. Another study by Smith et al[139] revealed populations of gram-positive bacteria 
and both aerobes and anaerobes. These bacteria can form biofilms, making it more difficult for antimi-
crobials to access and thus slowing down the healing process[140].

Diabetics are also susceptible to periodontitis, which is associated with dysbiotic plaque biofilms and 
eventually leads to the destruction of the tooth-supporting structures. DFUs are similar in that they 
comprise bacteria that form biofilms and eventually lead to destruction of the underlying bone 
structures. A study by Wang et al[140] suggested that the level of adiponectin has an inverse association 
with periodontitis. Treatment with adiponectin in animal experiments better improved tissue 
destruction and suppressed inflammation, which improved bone regeneration[141]. There is little 
literature on the use of adiponectin as an antibacterial for DFUs. However, a study by Wang et al[140] 
suggests that adiponectin may inhibit inflammation stimulated by obesity or by periodontal pathogens 
and somehow influence antibacterial outcomes.

Given these findings, further research is needed to explore the antibacterial effects of adiponectin in 
DFUs and its use as a candidate for the treatment of this chronic condition.

ADIPONECTIN AND IMMUNE RESPONSE
One contributing factor to the delayed healing and susceptibility to bacterial infection in DFUs is the 
low immune response. Research has shown that adiponectin has the ability to modulate immune cell 
activity by inhibiting the activation and differentiation of T-helper 1 (Th1) cells, which leads to the 
emergence of inflammatory and autoimmune diseases, while promoting the activation and differen-
tiation of Th2 cells, which regulate immune responses[142]. Adiponectin achieves its anti-inflammatory 
effects by regulating multiple signaling pathways and modulating cellular processes involved in inflam-
mation, making it a promising therapeutic target for various inflammatory and metabolic disorders. 
Additionally, studies suggest that adiponectin can modulate bacterial infection by regulating the 
activity of molecules responsible for bacterial uptake and killing[143,144].

ADIPONECTIN AND FIBROBLAST GROWTH FACTORS IN DFU HEALING
Fibroblast growth factors (FGFs) are proteins that are expressed in various tissues and play a crucial role 
in wound repair[145]. There are two types of FGFs: Paracrine and endocrine. Endocrine FGF regulates 
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various metabolic processes and cell survival, while paracrine FGFs regulate neural development, 
angiogenesis, and wound healing. Studies have shown that specific types of FGFs for instance aFGF, 
bFGF, and the FGF 15/19 subfamily may have a positive effect on diabetic wound healing. aFGF aids in 
diabetic ulcer healing by stimulating capillaries, fibroblasts, and proliferative proteins in ulcer tissue
[146]. Regulating the release of bFGF has also been shown to enhance skin wound healing and 
epithelium development in diabetic mice, while also minimizing scar formation by promoting fibroblast 
and myofibroblast apoptosis[147]. Additionally, FGF-19 and FGF-21 have been found to be excessively 
expressed in the serum of diabetes patients[148,149]. FGFs are more potent angiogenesis factors than 
platelet-derived growth factor and vascular endothelial growth factor (VEGF). FGFs enhance the 
development of granulation tissue by increasing fibroblast proliferation and angiogenesis[150].

ADIPONECTIN AND ANGIOGENESIS
Studies have shown that impaired angiogenesis contributes to the poor healing of DFUs[151,152]. This is 
due to various factors such as the failure of macrophages to change into a repair phenotype[151], 
elevated levels of plasma pigment epithelium-derived factor (PEDF), and dysregulation of angiopoietin-
1 (Ang 1) and Ang 2. Macrophages are a key source of VEGF and other pro-angiogenic substances in 
wounds. On the other hand, PEDF has been found to delay wound healing and decrease angiogenesis in 
diabetic wounds[152].

Adiponectin has both pro-angiogenic and anti-angiogenic effects, depending on the signaling 
pathways involved. Adiponectin can promote the formation of new blood vessels through various 
mechanisms. For example, it increases the production of pro-angiogenic factors like VEGF and FGF-2, 
and stimulates the migration, proliferation, and differentiation of endothelial cells. This is thought to 
happen because adiponectin activates signaling pathways like Akt and AMPK[153,154]. However, 
adiponectin can also inhibit angiogenesis in some contexts. It decreases the production of pro-
angiogenic factors and inhibits the expression of angiogenic factors like FGF-2. Additionally, it can 
inhibit the migration and invasion of certain cancer cells through the modulation of signaling pathways 
like Akt and AMPK[155].

Hence, the effects of adiponectin on angiogenesis could help promote wound healing. However, 
those effects are context-dependent and complex. Further research is needed to understand the 
molecular mechanisms behind these effects and to determine its potential therapeutic applications in 
different contexts.

ADIPONECTIN AND APOPTOSIS
Impaired apoptosis is another factor that contributes to the poor healing of DFUs[156]. During the 
wound healing process, different cell groups go through various stages of clearance, culminating in 
apoptosis. DFU trauma causes mitochondrial damage, which increases the expression of pro-apoptotic 
proteins while decreasing the expression of anti-apoptotic proteins such as B-cell lymphoma-2 (Bcl-2). 
This results in apoptosis in cells such as fibroblasts and vascular smooth muscle cells. Low expression of 
FGF-2, a factor related to fibroblast mitosis and cell survival, has been observed in diabetic wound cells. 
Reduced expression of other factors related to fibroblast regeneration, such as adiponectin, also 
contributes to this process[157].

Furthermore, delayed apoptosis has been reported during the inflammatory phase of wound healing 
in diabetic mice, which may contribute to the persistent inflammatory state in DFUs[158]. Excessive cell 
death due to hyperglycaemia can lead to poor structural recombination and difficulty in generating 
granulation tissue, making the wound more susceptible to infection[156]. In addition, chronic 
hyperglycaemia associated with altered lipid and glucose metabolism promotes a condition of oxidative 
stress, which results in long-term chronic inflammation of wounds across all stages of wound healing.

Adiponectin has been shown to have anti-apoptotic effects, which may prevent cell death in the 
wound area and promote wound healing. Studies have shown that adiponectin can inhibit the 
activation of the intrinsic apoptotic pathway, leading to the prevention of cell death and promotion of 
wound healing. For example, a study showed that treatment with recombinant human adiponectin 
promoted wound healing in diabetic mice by inhibiting the activation of the intrinsic apoptotic 
pathway. However, further research is needed to understand the molecular mechanisms behind 
adiponectin’s effects on apoptosis and its potential therapeutic applications in different contexts[159].

ADIPONECTIN AND WOUND CONTRACTION
Adiponectin has been identified as a mediator of wound contraction, a process that involves the 
reduction of wound size through the convergence of wound edges. This action is considered to occur via 
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a variety of molecular mechanisms, including collagen synthesis stimulation, MMP inhibition, and 
myofibroblast migration and proliferation boosting.

Adiponectin has been found to increase the production of collagen; a critical component of the ECM 
necessary for wound healing. This is achieved through the activation of the Transforming Growth 
Factor-β (TGF-β) signalling pathway, which stimulates collagen synthesis via the phosphorylation of 
Smad2 and Smad3. Adiponectin also enhances the activity of procollagen type I and III mRNA, which 
are necessary for collagen synthesis[160].

Additionally, adiponectin suppresses MMPs, enzymes that degrade the ECM and hinder wound 
healing. By decreasing the expression of MMP-2 and MMP-9 and increasing the expression of TIMP-1, 
an inhibitor of MMPs, adiponectin promotes the maintenance of the ECM[161,162].

Furthermore, myofibroblasts play a crucial role in wound healing and contraction. However, 
excessive myofibroblast proliferation during the late stage of wound healing can lead to the formation 
of pathological scars that greatly reduce the quality of wound healing[163]. Studies have shown that 
adiponectin may prevent the formation of pathological scars by inhibiting myofibroblast synthesis, 
proliferation, and migration[164,165].

Therefore, adiponectin may increase wound contraction by increasing collagen synthesis, inhibiting 
MMPs, and modulating myofibroblast migration as well as proliferation. More research is needed to 
understand the molecular mechanisms of these effects and to assess the therapeutic potential of 
adiponectin in wound healing.

ADIPONECTIN AND OXIDATIVE STRESS
Excessive oxidative stress is a hallmark of diabetic wounds, where high levels of ROS are present. The 
balance between ROS creation and elimination is crucial for proper wound healing. In diabetes, high 
glucose levels lead to an increase in energy metabolism substrates, which, in turn, result in elevated 
levels of superoxide and oxidative stress. This increased oxidative stress enhances the production of 
advanced glycation end products (AGEs)[166,167]. Moreover, nitric oxide synthase decoupling in 
diabetes leads to decreased nitric oxide production[168], further complicating the healing process. These 
findings highlight the crucial role that oxidative stress plays in diabetic wound healing and the need to 
address this issue to improve therapeutic outcomes.

Adiponectin has demonstrated wound healing benefits through its antioxidant properties. 
Specifically, adiponectin has been shown to increase insulin release[75], enhance insulin sensitivity
[169], promote glucose uptake[68,170], and scavenge ROS[171]. These antioxidant properties of 
adiponectin provide new avenues for the development of effective therapeutic strategies for diabetic 
wound healing.

According to a review conducted by Woodward et al[172], adiponectin has additional anti-inflam-
matory, anti-apoptotic, and antioxidative effects that can reduce cardiovascular oxidative stress. 
Matsuda and Shimomura[173] also suggested that adiponectin may protect against oxidative-stress-
induced damage in the cardiovascular system, and that circulating adiponectin levels and increased 
oxidative stress may contribute to the pathogenesis of obesity-associated metabolic diseases. Nguyen
[174] proposed that adiponectin could be explored as a focus of new treatment strategies in various 
metabolic diseases due to its antioxidative, anti-inflammatory, and anti-fibrotic effects, which help 
regulate glucose levels, lipid metabolism, and insulin sensitivity. However, further research is needed to 
investigate the antibacterial effects of adiponectin in DFUs and its potential use as a treatment strategy.

ADIPONECTIN AND NERVE FUNCTION
The development and poor healing of DFUs are influenced by peripheral neuropathy, a complex and 
multi-factorial condition. Among the identified contributors to DPN are oxidative stress, hypoxia, 
AGEs, activation of T lymphocytes, and insufficiency of nerve growth factors. Reduced expression of 
neuropeptides is a hallmark of neuropathy in both autonomic and sensory nerve fibers that arise from 
diabetes mellitus. These neuropeptides, which act as neuromodulators, play a crucial part in the process 
of diabetic wound healing[175]. Adiponectin has been suggested to promote wound healing in diabetics 
through its neuroprotective role, although further research is required to fully understand the 
underlying mechanisms involved[176].

ADIPONECTIN AND INSULIN SENSITIVITY
Persistent hyperglycaemia in diabetic patients is a main factor contributing to delayed wound healing 
and progression of DFUs[177]. Several studies reported the beneficial effect of adiponectin on insulin 
sensitivity through its metabolic effects on various tissues, including skeletal muscle, liver, and adipose 
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tissue. Skeletal muscle, which is a key factor in insulin sensitivity and glucose metabolism, has a high 
concentration of adiponectin receptors and has been shown to have increased glucose uptake and 
decreased intramyocellular triacylglycerol content in response to adiponectin binding[178,179]. The 
liver, on the other hand, experiences decreased glucose production and increased insulin sensitivity 
when physiological levels of adiponectin are present[180]. Adiponectin has also been shown to have 
anti-inflammatory effects in various tissues, including adipose tissue and liver[181-184]. In addition, 
adiponectin has been linked to weight reduction and improved insulin sensitivity, glucose metabolism, 
and insulin secretion in rodents as evidenced by a recent study[185]. In addition, adiponectin improves 
insulin sensitivity through modulating the gut microbiome[186].

Thus, adiponectin has been proposed to have potential therapeutic and preventive applications in 
DFUs through various mechanisms, as outlined in Figure 3.

ADIPONECTIN LEVELS IN DFUS: A COMPREHENSIVE REVIEW OF CURRENT EVIDENCE
To review the available evidence on the measurement of adiponectin levels in DFUs in patients with 
T2DM, a comprehensive search of relevant databases such as PubMed and Google Scholar was 
conducted to identify relevant studies. The findings of seven selected studies are presented chronolo-
gically in Table 1. The results of these studies revealed a consistent pattern, with lower plasma levels of 
adiponectin found in patients with DFUs compared to those without DFUs. A negative correlation 
between the duration of diabetes and the development of DFUs was also observed. The findings further 
indicated a positive association between low plasma levels of adiponectin and DFUs, and that low 
adiponectin levels could serve as a predictor for DFUs. The results of these investigations imply that 
reduced levels of adiponectin in the blood of individuals with T2DM and DFUs may play a role in the 
emergence of foot ulcers by means of microvascular and inflammatory processes.

ROLE OF ADIPONECTIN IN WOUND HEALING AND METABOLIC CONDITIONS: 
INSIGHTS FROM IN VITRO AND IN VIVO STUDIES
Adiponectin has been found to play a crucial role in wound healing, both in vivo and in vitro. Kumada et 
al[187] found that the incubation of human monocyte-derived macrophages with human recombinant 
adiponectin increased tissue inhibitor of metalloproteinases; TIMP-1 mRNA levels in a dose-dependent 
manner without affecting MMPs mRNA levels. Adiponectin selectively increased TIMP-1 expression in 
human monocyte-derived macrophages through the induction of IL-10[187].

Kawai et al[188] investigated the effect of human recombinant adiponectin on an immortalized 
human keratinocyte cell line (HaCaT) and found that adiponectin suppressed the gene expression of 
involucrin, a marker of keratinocyte differentiation, in a dose-dependent manner. Adiponectin also 
upregulated the expression of TGFb1 in HaCaT cells and promoted apoptosis in keratinocytes, which 
could inhibit hyperkeratosis during wound healing in diabetic patients[188,189].

Shibata et al[94] found that adiponectin was a powerful mediator in the regulation of cutaneous 
wound healing. Adiponectin receptors were found in normal human keratinocytes, and adiponectin 
increased keratinocyte proliferation and migration via AdipoR1/AdipoR2 and the ERK signaling 
pathway. Wound closure was significantly delayed in adiponectin-deficient mice compared to wild-
type mice, and both systemic and topical adiponectin treatment improved wound healing in 
adiponectin-deficient and diabetic mice[94].

In 2013, an orally active adiponectin receptor agonist, AdipoRon, was developed and was found to 
have similar effects to adiponectin[76,190], improving insulin sensitivity and glucose tolerance, lipid 
metabolism[190], and vascular dysfunction in type 2 diabetic mice[192].

Salathia et al[193] found that the injection of adiponectin into the skin edges of a wound accelerated 
healing and enhanced epithelialization at the wound margin. Jin et al[194] found that adiponectin 
promoted the growth and migration of preadipocytes in an adipose tissue wound healing study. FGF21 
has also been shown to stimulate the production of adiponectin, which could contribute to the 
expansion of subcutaneous fat and improvement of systemic insulin sensitivity[195].

Kim et al[196] conducted a study on the effects of AdipoRon, a synthetic adiponectin receptor agonist, 
on diabetic nephropathy in T2DM patients. The study found that AdipoRon treatment reversed kidney 
abnormalities caused by diabetes in mice. The renoprotective benefits of AdipoRon were achieved 
through the activation of AdipoR1 and AdipoR2 receptors in the kidneys, which improved pathways 
related to lipid accumulation and endothelial impairment. AdipoRon also increased intracellular Ca2+ 
levels and activated a CaMKK/phosphorylated Ser431LKB1/phosphorylated Thr172AMPK/PPAR 
pathway, reducing oxidative stress and apoptosis, and improving endothelial dysfunction. The study 
also found that AdipoRon had cardioprotective benefits through the same mechanism as shown in the 
kidney[196].
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Table 1 Adiponectin levels in patients with diabetic foot ulcers: A summary of published studies

Adiponectin levels (ng/ mL)

No. Ref. Country Study objective Study design and sample 
size Results Non-

Diabetic

Diabetic 
without 
FUs     

DFU      P 
value

Conclusion

1 Tuttolomondo 
et al[203], 2010

Italy To investigate the plasma levels of 
adiponectin, resistin and IL-6 in 
subjects with diabetic foot in 
comparison with subjects without 
foot complication

Case-control; sample size: 34 
patients with type 2 DM with 
FU and 37 patients with type 
2 DM without FUs

The patients with DFUs exhibited 
higher CRP, HbA1c, lipid profile, IL-
6, resistin and lower levels of 
adiponectin; DFU patients have 
lower median; plasma levels of 
adiponectin; patients with foot 
ulcers had a longer duration of DM, 
higher percentage was associated 
with nephropathy, peripheral artery 
diseases, ischemic heart diseases, 
transient ischemic attacks or stroke

NA 8.48 × 103 
(5.15 × 103

-12.87 × 
103)1

7.145 × 103 
(4.470 × 103

-12.170 × 
103)1

0.022 Adiponectin levels are negatively 
correlated with the duration of diabetes 
and the development of DFUs

2 Zubair et al
[81], 2012

India To investigate the association 
between inflammation and acute 
foot syndrome

Case-control; sample size: 162 
diabetics with FUs & 162 
diabetics without FUs

Adiponectin levels were lower in 
DFU patients than in subjects 
without DFU; multiple linear 
regression analysis showed a 
significant negative correlation 
between adiponectin levels and DFU 
(R2 = -0.0189)

NA 13.4 (12.1-
14.2)1

8.4 (7.1-9.2)1 < 
0.0001

Diabetic subjects with various grades of 
diabetic foot ulcer showed a higher IL-6, 
hsCRP, TNF-α, and lower adiponectin 
plasma levels in comparison with diabetes 
without foot ulcer, independent of the 
concomitant infections

3 Ahmad et al
[82], 2012

India To evaluate plasma levels of 
Cathepsin D, adiponectin, TNF-α, 
IL-6, and hsCRP in subjects with 
diabetic foot in comparison with 
subjects without foot complic-
ations

Prospective cohort 
multicentric hospital-based 
study; sample size: 211 
diabetics with FUs, 208 
diabetics without FUs

The median levels of adiponectin 
were lower in patients with DFUs; 
adiponectin plasma levels were 
found to be negatively correlated 
with various cardiovascular risk 
factors, including hypertension, 
dyslipidemia, and microvascular 
complications such as neuropathy, 
retinopathy, nephropathy, and PAD; 
this was found through both 
multiple linear regression analysis 
and forward stepwise regression 
analysis

NA 13.3 (12.1-
14.2)1

8.5 (7.1-9.5)1 < 
0.0001

Low plasma adiponectin is a predictor for 
DFUs; the study suggests that low levels of 
adiponectin in diabetic patients with foot 
ulcers could be linked to the development 
of foot ulcers through microvascular and 
inflammatory mechanisms. The findings 
also indicate that adiponectin may play a 
role in inhibiting the expression of 
adhesion molecules on endothelial cells, 
which are involved in the inflammatory 
vascular response

Case-control; sample size: A 
total of 515 subjects were 
divided into four study 
groups: Group-I 
(NGT)/control; n = 106), 
group-II known T2DM 
without DFU (T2DM; n = 
139); group-III T2DM with 
neuropathic DFU (DFU-DN; n 
= 191); group-IV T2DM with 

4 Dhamodharan 
et al[204], 2015

India To investigate the genetic 
association of IL-6, TNF-α, and 
SDF-1 polymorphisms with serum 
cytokine, adiponectin, leptin and 
hsCRP levels in diabetic foot 
ulcers

The levels of adiponectin were 
significantly lower in the diabetic 
groups (T2DM, DFU-DN, and DFU-
PVD) compared to the NGT group

536.0 
(0.1-
1787.0)2

528.6 (6.2-
1255.0)2

524.0 (63.3-
1641.0)2 in 
DFU+ DN; 
453.5 (164.9-
1078.0)2 in 
DFU + PVD

< 0.05 Low adiponectin levels can be a biomarker 
of DFUs; SNPs in cytokine/chemokine 
genes are useful biomarkers for DFU and 
can help predict the risk of developing 
DFU
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PVD (DFU-PVD; n = 79)

5 Viswanathan et 
al[205], 2018

India To examine the involvement of IL-
6, TNF-α, and SDF-1) 
polymorphisms in determining 
the susceptibility to foot microbial 
infection, grade of the ulcer) and 
treatment-outcome; (Debridement 
vs amputation) in DFU subjects 
and further, the effect of these 
SNPs on serum cytokine levels 
and biomarkers such as leptin, 
adiponectin, CRP and HOMA-IR

Cross-sectional; sample size: 
270 DFU subjects

Data on adiponectin levels are not 
reported

NA NA NA NA Screening for SNPs in TNF-α, SDF-1, and 
IL-6; among DFU subjects would help in 
identifying high risk individuals and might 
aid in better patient care

6 Anguiano-
Hernandez et al
[206], 2019

México To assess the modification in 
adiponectin, HIF-1α, NF-κB, 
IGFBP-3, VEGF and adiponectin 
in diabetic foot ulcers treated with 
hyperbaric oxygen

Study design: Not specified; 
sample size: 17 ambulatory 
patients and one hospitalized; 
patient with DFUs; 15 were 
males & 3 females; 17 T2DM 
and 1 T1DM; grade 3 and 4 on 
Wagner scale

Adiponectin levels increase after 
therapy

NA NA -14943 ± 
79152 (before 
therapy); -
17281 ± 79622 
(after 
therapy)

0.035 The study found that while treatment 
increased adiponectin levels, the increase 
was not significant; however, all patients 
showed an increase in angiogenesis and 
fibrosis and a decrease in ulcer size and 
infection signs after undergoing HBO2 
therapy. The results suggest that HBO2 
stimulates the expression of IGFBP-3, NF-
κB, and HIF-1α and modulates the inflam-
matory response related to hypoxia

7 Vangaveti et al
[207], 2022

Australia To determine vildagliptin’s effect 
on inflammatory markers and 
wound healing in patients with 
type 2 diabetic foot ulcer

Prospective, randomized, 
double-blind, placebo 
controlled, single-centre 
study; sample size: 50 
participants; 25 were assigned 
to the placebo and 25 to the 
treatment group

Vildagliptin treatment led to 
significant improvements in key 
health markers, including reduced 
HbA1c, hematocrit, total cholesterol, 
LDL cholesterol, and total/HDL 
cholesterol ratio compared to the 
placebo group. Additionally, 
vildagliptin demonstrated a 
protective effect on DFU wound 
healing

NA NA 11822 ± 
2584.03; 
Placebo; 
following; 
treatment 
13138 ± 26712

1.0 The vildagliptin treatment in DFU patients 
improve wound healing with an associated 
reduction in some inflammatory 
biomarkers and a non-significant increase 
in adiponectin

1Data presented as median and interquartile (lower and upper quartile).
2Data presented as mean ± SD.
3Data presented as mean ± SEM.
NA: Not available; DFU: Diabetic foot ulcer; NGT: Normal glucose tolerance; DN: Diabetic neuropathy; PAD: Peripheral artery disease; PVD: Peripheral vascular disease; CRP: C-Reactive protein; hsCRP: High-sensitivity C-reactive 
protein; HIF-1α: Hypoxia-inducible factor-1α; NF-κB: Nuclear factor-kappa B; IGFBP-3: Insulin-like growth factor-binding protein-3; VEGF: Vascular endothelial growth factor; HBO2: Hyperbaric oxygen; IL-6: Interleukin-6; TNF-α: 
Tumour necrosis factor-alpha; SNPs: Single nucleotide polymorphisms; SDF-1: Stromal cell-derived factor; VEGF: Vascular endothelial growth factor; LDL: Low-density lipoprotein; HDL: High-density lipoprotein.

Hong et al[95] conducted a study examining the impact of recombinant human full-length 
adiponectin on human epidermal keratinocyte cell culture. The results showed that adiponectin 
improved the differentiation and lipid content of keratinocytes through modulation of the expression of 
multiple enzymes involved in lipid synthesis and regulation within these cells[95].

Adiponectin replacement therapy has the potential to treat various human diseases, but due to the 
challenges in using the intact protein, efforts have focused on developing peptide and small molecule 
agonists of the adiponectin receptor. One such example is ADP355, a peptide that has low nanomolar 
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Figure 3 The Potential mechanisms involved in adiponectin-mediated wound healing in diabetic foot ulcers. AdipoRon: Adiponectin receptor 
agonist; AdipoR1/AdipoR2: adiponectin receptors 1 and 2; MAPK: Mitogen-activated protein kinases; IRS2: Insulin receptor substrate 2; AMAK: Adenosine 
monophosphate-activated kinase; mTOR: Mammalian target of rapamycin; ECM: Extracellular matrix.

cellular activity and efficacy in treating fibrotic and inflammation-related diseases. On the other hand, 
small-molecule therapies like AdipoRon can be taken orally and target multiple metabolic conditions. 
However, the difficulty in comparing the efficacy of different drug classes due to the use of various in 
vivo models and the limitations of in vitro measures makes it challenging to determine their effect-
iveness. Adiponectin receptor antagonists can still be useful in target validation studies, but direct 
receptor agonists have been shown to be more effective in controlling direct signalling than therapies 
that aim to increase adiponectin production[197].

Studies have shown the potential benefits of AdipoRon, a small-molecule therapy for multiple 
metabolic conditions, in improving various aspects of health. A 2020 study by Choi et al[192] found that 
chronic oral intake of AdipoRon improved vascular function in type 2 diabetic mice through an 
endothelium-independent mechanism. Lindfors et al[198] discovered that AdipoRon reduced proinflam-
matory cytokine expression and improved glomerular inflammation and injury in diet-induced obese 
mice and cultured podocytes. Sun et al[199] showed that AdipoRon reduced inflammation markers and 
apoptosis, improved mitochondrial function, and accelerated wound healing in aged skin. Zatorski et al
[200] found that AdipoRon had a gastroprotective effect and reduced inflammation in stomach ulcers. 
Tarkhnishvili et al[201] found that AdipoRon changed myocardial substrate preference towards higher 
glucose consumption in type 2 diabetic mice, although it was insufficient to enhance cardiac output and 
efficiency. Li et al[202] reported that topical adiponectin was effective in improving clinical signs and 
reducing inflammation in a mouse model of dry eye or alkali burn, while Baradaran-Rafii et al[137] 
showed that topical adiponectin decreased recent corneal neovascularization in rabbits.

Hence, adiponectin plays a vital role in wound healing, tissue regeneration, and metabolic regulation. 
It is typically administered through injections or orally via an adiponectin receptor agonist, such as 
AdipoRon. Studies have shown that adiponectin enhances wound healing, keratinocyte differentiation, 
and improves insulin sensitivity, glucose tolerance, lipid metabolism, and vascular dysfunction in 
diabetic patients. AdipoRon, a small-molecule therapy, has demonstrated similar effects to adiponectin 
and can be taken orally, targeting multiple metabolic conditions. Although challenges exist in 
comparing the effectiveness of various drug classes due to differing in vivo models and in vitro 
limitations, direct receptor agonists have shown promise in controlling signaling better than therapies 
aiming to increase adiponectin production. Overall, adiponectin-based therapies appear to be safe and 
hold potential for treating a range of human diseases.

AREAS FOR FUTURE RESEARCH
Further research is needed to comprehensively understand the effects of adiponectin on DFUs. 
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Although the existing literature has shown favourable outcomes, there is a need for a more detailed 
exploration into the mechanisms underlying adiponectin-mediated promotion of wound healing and 
tissue regeneration. Research studies should be carried out to establish the safety and efficacy of 
adiponectin as a therapeutic intervention for DFUs in the clinical setting. Despite positive preclinical 
outcomes, clinical trials are essential to determine the appropriate dose and treatment schedule, as well 
as any potential adverse effects. Furthermore, additional research is required to identify subgroups of 
patients that may benefit the most from adiponectin therapy. This could include examining whether 
specific genetic or demographic factors influence the effectiveness of adiponectin treatment. Studies 
should be conducted to identify the optimal delivery method for adiponectin therapy, considering that 
while the topical application has been successful in some studies, other delivery methods such as 
injection or implantation may be more efficacious in specific cases. Furthermore, research should be 
conducted to determine whether adiponectin can be used in combination with other treatments for 
DFUs, such as antibiotics or growth factors, to enhance wound healing and tissue regeneration. Further 
investigation is also required into the long-term effects of adiponectin therapy, including its impact on 
wound recurrence rates and overall wound healing outcomes.

CONCLUSION
In conclusion, the available evidence suggests that adiponectin and its receptors agonist may hold 
promise as therapeutic targets for the management of DFUs. However, to fully comprehend the role of 
adiponectin in DFU pathogenesis and treatment, additional research is necessary. Future studies should 
focus on conducting longitudinal investigations to establish a causal relationship between adiponectin 
levels and DFU incidence. Moreover, exploring treatment strategies aimed at elevating adiponectin 
levels in patients with DFUs could provide insights into the potential benefits of adiponectin as a 
therapeutic target. Investigating the specific cellular and molecular mechanisms underlying the 
relationship between adiponectin and DFUs is also necessary for a comprehensive understanding of the 
role of adiponectin in the condition. Additionally, clinical trials that evaluate the efficacy and safety of 
interventions targeting adiponectin levels in DFU prevention and management are needed. Such 
research could help to identify novel therapeutic targets for DFUs, ultimately leading to more effective 
management of the condition.
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Abstract
The detrimental effects of both diabetes mellitus (DM) and hyperglycemia in the 
perioperative period are well established and have driven extensive efforts to 
control blood glucose concentration (BGC) in a variety of clinical settings. It is 
now appreciated that acute BGC spikes, hypoglycemia, and high glycemic 
variability (GV) lead to more endothelial dysfunction and oxidative stress than 
uncomplicated, chronically elevated BGC. In the perioperative setting, fasting is 
the primary approach to reducing the risk for pulmonary aspiration; however, 
prolonged fasting drives the body into a catabolic state and therefore may 
increase GV. Elevated GV in the perioperative period is associated with an 
increased risk for postoperative complications, including morbidity and mortality. 
These challenges pose a conundrum for the management of patients typically 
instructed to fast for at least 8 h before surgery. Preliminary evidence suggests 
that the administration of an oral preoperative carbohydrate load (PCL) to 
stimulate endogenous insulin production and reduce GV in the perioperative 
period may attenuate BGC spikes and ultimately decrease postoperative 
morbidity, without significantly increasing the risk of pulmonary aspiration. The 
aim of this scoping review is to summarize the available evidence on the impact of 
PCL on perioperative GV and surgical outcomes, with an emphasis on evidence 
pertaining to patients with DM. The clinical relevance of GV will be summarized, 
the relationship between GV and postoperative course will be explored, and the 
impact of PCL on GV and surgical outcomes will be presented. A total of 13 
articles, presented in three sections, were chosen for inclusion. This scoping 
review concludes that the benefits of a PCL outweigh the risks in most patients, 
even in those with well controlled type 2 DM. The administration of a PCL might 
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effectively minimize metabolic derangements such as GV and ultimately result in reduced 
postoperative morbidity and mortality, but this remains to be proven. Future efforts to standardize 
the content and timing of a PCL are needed. Ultimately, a rigorous data-driven consensus opinion 
regarding PCL administration that identifies optimal carbohydrate content, volume, and timing of 
ingestion should be established.

Key Words: Preoperative carbohydrate load; Glycemic variability; Surgical outcomes; Glucose variability; 
Blood glucose concentration

©The Author(s) 2023. Published by Baishideng Publishing Group Inc. All rights reserved.

Core Tip: Preoperative fasting reduces the risk for aspiration perioperatively; however, it may contribute to 
intraoperative insulin resistance and glycemic variability (GV). High GV is associated with an increased 
risk for postoperative complications, including mortality. The administration of a preoperative 
carbohydrate load (PCL) may reduce perioperative GV and lower the risk for postoperative complications. 
In this scoping review, we establish the clear negative impact of GV in patients with and without diabetes 
mellitus in a wide range of clinical settings. However, we are unable to determine from the current body of 
literature whether a PCL reduces GV intraoperatively and improves surgical outcomes. Future efforts to 
standardize the content and timing of the carbohydrate load are needed, as well as prospective studies that 
are designed to evaluate the carbohydrate load effect on GV indices.

Citation: Canelli R, Louca J, Hartman C, Bilotta F. Preoperative carbohydrate load to reduce perioperative 
glycemic variability and improve surgical outcomes: A scoping review. World J Diabetes 2023; 14(6): 783-794
URL: https://www.wjgnet.com/1948-9358/full/v14/i6/783.htm
DOI: https://dx.doi.org/10.4239/wjd.v14.i6.783

INTRODUCTION
The detrimental effects of both diabetes mellitus (DM) and hyperglycemia in the perioperative period 
are well established and have driven extensive efforts to control blood glucose concentration (BGC) in a 
variety of clinical settings[1-3].

In critically ill patients, intensive insulin therapy titrated to maintain a BGC of 80-110 mg/dL (4.44-
6.11 mmol/L) has been shown to reduce morbidity and mortality[4]. In neurosurgical patients, intensive 
insulin therapy resulted in reduced postoperative infection rates and shorter intensive care unit (ICU) 
length of stay[5]. However, efforts to maintain tight glycemic control have often resulted in a significant 
increase in episodes of hypoglycemia[5,6], a complication that has been associated with an increase in 
all-cause mortality, cardiovascular death, and death due to infectious disease[7], as well as a prolonged 
ICU length of stay[8].

It is now appreciated that acute BGC spikes, hypoglycemia, and high glycemic variability (GV) lead 
to more endothelial dysfunction and oxidative stress than uncomplicated, chronically elevated BGC. 
This holds true in patients with and without DM[9]. Preoperative fasting is the primary approach to 
reducing the risk for pulmonary aspiration in the perioperative phase; however, prolonged fasting 
drives the body into a catabolic state and therefore may increase GV, which can be problematic for 
patients that have been instructed to fast for at least 8 h before surgery. The stress response to surgery 
enhances gluconeogenesis and hinders glucose uptakes, further exacerbating GV, via the release of 
stress hormones and immune response suppression[10].

Elevated GV in the perioperative period is associated with an increased risk for postoperative 
complications, including morbidity and mortality. GV is more pronounced in patients with baseline 
metabolic disorders such as DM and during certain surgical procedures such as open-heart surgery. 
Preliminary evidence suggests that the administration of a preoperative carbohydrate load (PCL) to 
stimulate endogenous insulin production and reduce GV in the perioperative period may attenuate 
BGC spikes and ultimately decrease postoperative morbidity, however, a data-driven consensus 
opinion regarding this approach has not been established.

The aim of this scoping review is to summarize the available evidence on the impact of PCL on 
perioperative GV and surgical outcomes, with an emphasis on evidence pertaining to patients with DM. 
The clinical relevance of GV will be summarized, the relationship between GV and postoperative course 
will be explored, and the impact of PCL on GV and surgical outcomes will be presented.

A scoping review was used to map this complex, multidisciplinary topic. It was designed to capture 
the important facets of emerging evidence pertaining to perioperative GV, PCL, and postoperative 
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outcomes in patients with and without DM. The methodology of this scoping review was based on the 
framework of Arksey and O’Malley[11]. A scoping review was chosen to capture a wide range of 
literature that may have been overlooked or eliminated in a systematic review.

The first step in this scoping review was to establish the clinical implications of high GV and related 
surgical outcomes by performing a preliminary, non-systematic literature search. The keyword terms 
searched in MEDLINE/PubMed and Google Scholar search engines for this scoping review included 
glycemic, glucose, variability, surgery, surgical, outcomes, and postoperative.

After establishing the problem, the research question of this scoping review was developed. The 
effect of PCL on perioperative GV and postoperative outcomes in patients with and without DM was 
established as the aim of this study. The keyword search terms used to identify pertinent studies that 
addressed the topic included PCL, glucose variability, GV, DM, surgery, and surgical outcome.

Articles were screened for relevance based on title and abstract. Relevant articles were read and 
ranked by all authors individually based on quality of study, pertinence to the aim of the study, impact 
factor of the journal, and impact index per article score. The impact index per article score was obtained 
from Reference Citation Analysis (https://www.referencecitationanalysis.com/), an artificial intelligence 
technology-based open multidisciplinary citation analysis database. Authors then conferred to select the 
final papers to be included in each section of this scoping review. Consideration was given to include 
articles that were very recently published or felt to be pertinent despite low impact index per article 
scores.

GLYCEMIC VARIABILITY: CLINICAL RELEVANCE
Hyperglycemia, hypoglycemia and GV are associated with mitochondrial oxidative stress, endothelial 
cell apoptosis, and inflammatory cytokine release[12]. In this section, the 4 articles listed in Table 1 will 
identify measurable GV indices and will present the clinical relevance of high GV with respect to 
morbidity and mortality in patients with and without DM.

A multicenter, retrospective observational study was one of the first to investigate the relationship 
between GV, rather than hyperglycemia or hypoglycemia, and outcomes and had an impact index per 
article score of 35. This study analyzed 168837 blood glucose measurements from a cohort of 7049 
critically ill patients. Patients were divided into survivors and non-survivors for comparison. Two 
different indices for GV were measured: The standard deviation (SD) from the mean BGC, and the 
coefficient of variance (CV) defined as the SD divided by the mean BGC expressed as a percentage. Both 
SD (1.7 ± 1.3 vs 2.3 ± 1.6 mmol/L, P < 0.001) and CV (20 ± 12 vs 26 ± 13%, P < 0.001) were significantly 
lower for ICU survivors when compared to non-survivors. The two GV indices were independent 
predictors of ICU and hospital mortality and were stronger predictors of mortality than mean BGC[13].

A single-center, retrospective cohort study of 1246 patients with sepsis aimed to investigate different 
measures of GV to determine which was the best predictor of in-hospital mortality risk. This article had 
an impact index per article score of 19.2. Three different indices for GV were measured: Glycemic 
lability index (GLI), mean amplitude of glycemic excursion (MAGE), and SD from the mean BGC. 
Although all 3 GV indices were significant predictors of mortality in patients with sepsis, GLI predicted 
in-hospital mortality [odds ratio (OR) 1.25, 95%CI: 1.20-1.32, P < 0.001] better than MAGE (OR 1.12, 
95%CI: 1.07-1.18, P < 0.001) and SD (OR 1.16, 95%CI: 1.11-1.21, P < 0.001). Additionally, with each 
increasing GLI decile, a higher in-hospital mortality rate was observed. The association of GLI and 
mortality remained after adjusting for a diagnosis of DM[14].

A retrospective study of 1641 patients with an ICU stay > 2 d aimed to determine the association 
between GV and outcome measures, including ICU mortality and ICU-acquired infection. GV was 
assessed using four different indices: SD, CV, GLI, and MAGE. When compared to ICU survivors, ICU 
non-survivors had higher GV as determined by GLI [75.6 vs 50.1 (mmol/L)2/h/wk, P < 0.001], CV (23 vs 
21%, P < 0.001), SD (1.7 vs 1.4 mmol/L, P < 0.001), and MAGE (2.7 vs 2.4 mmol/L, P < 0.001). Mean BGC 
was not predictive of ICU mortality (7.0 vs 7.0 mmol/L, P value not reported). The predictive ability for 
mortality was not different between SD, CV, GLI, and MAGE; however, the risk of death increased 
progressively with each increase in quartile of GLI. When compared to patients without infection, 
patients with ICU-acquired infection had higher GV as determined by GLI [73.5 vs 44.6 (mmol/L)2/h/
wk, P < 0.001], CV (23 vs 20%, P < 0.001), SD (1.6 vs 1.4 mmol/L, P < 0.001), and MAGE (2.7 vs 2.3 
mmol/L, P < 0.001). Mean BGC was not predictive of ICU-acquired infection (7.0 vs 7.0 mmol/L, P 
value not reported). GLI had a better predictive ability for ICU-acquired infections compared to MAGE, 
CV and SD. In patients without DM, GLI was significantly associated with ICU mortality and ICU-
acquired infections, with increasing risk for each quartile increase in GLI. For patients with DM, there 
was no significant association between GLI and ICU mortality; however, there was an association 
between GLI and ICU-acquired infection[15].

A prospective observational study of 8894 patients admitted to the surgical ward aimed to investigate 
the association between GV and clinical outcomes including hospital length of stay, readmission rates, 
and mortality in patients with and without DM. GV was measured in two ways: SD and CV. Higher SD 
and CV were both associated with longer hospital length of stay in patients with DM (9 ± 8 vs 7 ± 5 d for 
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Table 1 Glycemic variability: Clinical relevance

Ref. Patient population Variability index Reported results

Egi et al[13], 2006 7049 ICU patients, DM included ICU survivors vs ICU non-survivors

SD SD: 1.7 vs 2.3 mmol/L, P < 0.001

CV CV: 20 vs 26%, P < 0.001

Ali et al[14], 2008 1246 patients with sepsis, DM included Mortality crude odds ratio, 95%CI

GLI GLI: 1.25, 1.20-1.32, P < 0.001

MAGE MAGE: 1.12, 1.07-1.18, P < 0.001

SD SD: 1.16, 1.11-1.21, P < 0.001

Donati et al[15], 2014 1641 ICU patients, DM included ICU survivors vs ICU non-survivors

SD SD: 1.4 vs 1.7 mmol/L, P < 0.001

CV CV: 21 vs 23%, P < 0.001

GLI GLI: 50.1 vs 75.6 (mmol/L)2/h/wk, P < 0.001

MAGE MAGE: 2.4 vs 2.7 mmol/L, P < 0.001

No infection vs ICU-acquired infection

SD SD: 1.4 vs 1.6 mmol/L, P < 0.001

CV CV: 20 vs 23%, P < 0.001

GLI GLI: 44.6 vs 73.5 (mmol/L) 2/h/wk, P < 0.001

MAGE MAGE: 2.3 vs 2.7 mmol/L, P < 0.001

Akirov et al[16], 2019 8894 surgical patients, DM included Hospital LOS: Low GV vs High GV

SD DM SD: 7 vs 9 d, P < 0.001

SD No DM SD: 7 vs 9 d, P < 0.001

CV DM CV: 7 vs 9 d, P < 0.001

CV No DM: CV 7 vs 9 d, P < 0.001

30 d mortality: Low GV vs High GV

SD DM SD: 5% vs 8%, P < 0.05

SD No DM SD: 3% vs 9%, P < 0.05

CV DM CV: 5% vs 9%, P < 0.05

CV No DM CV: 3% vs 9%, P < 0.05

ICU: Intensive care unit; DM: Diabetes mellitus; CV: Coefficient of variance; GLI: Glycemic lability index; MAGE: Mean amplitude of glycemic excursion; 
LOS: Length of stay; GV: Glycemic variability.

both CV and SD, P < 0.001 for both) and without DM (9 ± 8 vs 7 ± 6 d for both CV and SD, P < 0.001 for 
both). There was no significant association between GV and readmission rates for both DM and non-DM 
patients. When compared to the low CV cohort, high CV was associated with increased 30-d mortality 
in patients with DM (9 vs 5%, OR = 1.8, 95%CI: 1.2-2.6) and without DM (9 vs 3%, OR = 2.7, 95%CI: 2.1-
3.3). Similarly, high SD was associated with increased 30-d mortality when compared to the low SD 
cohort in patients with DM (8 vs 5%, OR = 1.6, 95%CI: 1.1-2.4) and without DM (9 vs 3%, OR = 2.7, 
95%CI: 2.2-3.4)[16].

In summary, for patients in high acuity settings, elevated GV is associated with worse outcomes 
including hospital length of stay, readmission rates, and overall morbidity and mortality in patients 
with and without DM. This holds true for a variety of measured GV indices, including SD, CV, GLI, and 
MAGE. All GV indices appear to be better predictors of morbidity and mortality than mean BGC.

PERIOPERATIVE GLYCEMIC VARIABILITY AND POSTOPERATIVE COURSE
Due to current preoperative fasting guidelines, stress-induced metabolic changes from surgery, and 
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coexisting endocrine disorders in a subset of surgical patients, the perioperative period is frequently 
associated with insulin resistance and high GV[17]. In this section, the 3 articles listed in Table 2 will 
present the impact of perioperative GV on postoperative morbidity and mortality.

The relationship between GV and surgical outcomes has been studied in cardiac surgery. Abnormal 
GV may be more pronounced in this surgical population as a result of the elevated stress response 
associated with cardiopulmonary bypass and increased insulin resistance due to iatrogenic intraop-
erative hypothermia. A prospective, single center observational study aimed to establish whether GV 
was associated with major adverse events (MAEs) after cardiac surgery in DM and non-DM patients, 
and had an impact index per article score of 7.2. A total of 1461 patients undergoing coronary artery 
bypass grafting with or without valvular surgery were enrolled. All enrolled patients had glycated 
hemoglobin (HbA1c) measured within 30 d of surgery. Patients were grouped into HbA1c > 6.5% and < 
6.5% for comparison, and GV was measured by CV. Major adverse event was a composite primary 
endpoint that included in-hospital death, myocardial infarction, re-operation, deep sternal wound 
infection, cardiac tamponade, pneumonia, stroke, or renal failure. Patients that experienced an MAE 
had higher CV when compared to those that did not have an MAE (24 ± 0.07 vs 21 ± 0.08%, P = 0.001). 
Patients with an HbA1c > 6.5% had a higher CV (26 ± 9 vs 20 ± 7%, P < 0.001) than patients with an 
HbA1c < 6.5%[18].

A retrospective study of 5058 patients aimed to investigate the relationship between GV and adverse 
outcomes following total hip and knee arthroplasty and had an impact index per article score of 6. 
Patients were grouped into tertiles defined by CV for comparison of low variability (first tertile, CV ≤ 
11.23%), medium variability (second tertile, CV 11.24%-18.54%), and high variability (third tertile, CV ≥ 
18.55%). Adverse outcomes included hospital length of stay (LOS), 90-d mortality, re-operations, 
periprosthetic joint infections and surgical site infections. Average LOS increased as tertile increased 
(first 4.6 ± 2.5 d, second 5.6 ± 3.9 d, third 6.5 ± 5.5 d, P < 0.001). When compared to patients in the first 
tertile of CV, patients in the third tertile had an increase in the mortality rate at 90 d (0.4 vs 0.1%, OR 
3.25, 95%CI: 0.93-11.35, P = 0.06), periprosthetic joint infections (0.9 vs 0.5%, OR 1.86, 95%CI: 1.10-3.13, P 
= 0.02), surgical site infections (1.4 vs 1%, OR 1.49, 95%CI: 1.01-2.21, P = 0.03). There was no difference in 
the re-operation rate between these two groups[19].

A retrospective cohort study of 264 patients investigated the relationship between GV and 
postoperative outcomes for patients having posterior cervical decompression and fusion. This was a 
relatively new study in the literature and had a low impact index per article score but was included 
because of its pertinence to the topic. Patients were grouped into tertiles based on postoperative CV 
(low < 12.3%, moderate 12.4%-20.7% and high 20.8%-57.9%). Of note, patients with types 1 and 2 DM 
were included. Measured outcomes included inpatient complications, hospital LOS, 90-d readmission, 
revision, and surgical site infection rates. There was no significant difference in the overall rate of 
inpatient complications between the low (12.5%), moderate (17.0%), and high (20.4%) CV tertiles (P = 
0.37). The average hospital LOS was significantly increased for higher CV tertile (low 3.90 vs moderate 
5.73 vs high 6.06 d, P = 0.01). When compared to the low CV tertile, the high CV tertile was associated 
with significantly increased odds of hospital readmission (OR 4.77, 95%CI: 1.10-6.05, P = 0.03) and 
development of surgical site infection (OR 4.35, 95%CI: 1.09-15.05, P = 0.04), but not rates of revision 
surgery (OR 1.76, 95%CI: 0.70-6.50, P = 0.19)[20].

In summary, elevated perioperative GV is associated with increased hospital length of stay and an 
increased risk for postoperative morbidity and mortality for patients with and without DM. The risk of 
reoperation does not appear to be associated with elevated GV.

PREOPERATIVE CARBOHYDRATE LOAD: IMPACT ON GLYCEMIC VARIABILITY AND 
SURGICAL OUTCOMES IN PATIENTS WITH AND WITHOUT DM
Reducing the magnitude of GV has been shown to reduce oxidative stress and systemic inflammatory 
markers in nonsurgical, diabetic patients[21]. In surgical patients, the administration of a PCL increases 
endogenous insulin production, reduces the risk of the body entering a catabolic state, and may reduce 
GV. In this section, the 6 studies listed in Table 3 will present the impact of PCL on GV and surgical 
outcomes. Notably, early PCL studies, including the first three in Table 3, excluded patients with DM, 
citing concerns for delayed gastric emptying, increased risk for aspiration, and/or exaggerated BGC 
response to the PCL. The subsequent three studies were included in this review because they 
established the safety of PCL administration to patients with type 2 DM.

A single center, randomized controlled trial aimed to determine the effectiveness of a PCL on 
postoperative nausea and vomiting and postoperative pain in same-day surgery patients. This article 
had an impact index per article score of 5.0. Patients with DM were excluded. A total of 120 patients 
scheduled for laparoscopic cholecystectomy were randomized into three groups: 40 patients in the 
intervention group were instructed to consume one PCL drink [400 mL, 12.5% carbohydrates (CHO), 
500 kcal/L] the night before surgery and a half PCL drink (200 mL, 12.5% CHO, 500 kcal/L) 2 h prior to 
surgery, 40 patients in the placebo group were instructed to drink 400 mL of flavored (0 kcal/L) water 
before midnight and 200 mL of flavored water 2 h prior to surgery, and 40 patients in the control group 
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Table 2 Perioperative glycemic variability and postoperative course

Ref. Patient population Variability index Reported results

Subramaniam et al[18], 2014 1461 cardiac surgery patients, DM 
included

CV No MAE vs MAE

CV: 21% vs 24%, P = 0.001

HbA1c < 6.5% vs > 6.5%

CV: 20% vs 26%, P < 0.001

Shohat et al[19], 2018 5058 patients for total joint arthroplasty CV 1st tertile of CV vs 3rd tertile of CV

Mortality: 0.1% vs 0.4%, P = 0.06

PPJI: 0.5% vs 0.9%, P = 0.02

SSI: 1% vs 1.4%, P = 0.03

Reop: 1.6% vs 1.5%, P = 0.83

Patel et al[20], 2021 264 patients for cervical spine surgery CV 1st tertile of CV vs 3rd tertile of CV

Complication: 12.5% vs 20.4%, P = 0.37

Hospital LOS: 3.9 vs 6.06 d, P = 0.01

Readmission: 3.4% vs 7.8%, P = 0.03

SSI: 1.1% vs 9.5%, P = 0.04

Reop: 0.4% vs 3.8%, P = 0.19

DM: Diabetes mellitus; CV: Coefficient of variance; MAE: Major adverse event; MI: Myocardial infarction; Reop: Reoperation; DSWI: Deep sternal wound 
infection; CVA: Cerebrovascular accident; PNA: Pneumonia; PPJI: Periprosthetic joint infection; SSI: Surgical site infection.

adhered to traditional fasting after midnight guidelines. The intervention group reported lower nausea 
scores 0-4 h postoperatively when compared to the placebo group (0.65 ± 0.70 vs 1.30 ± 0.85, P < 0.001) 
and the control group (0.65 ± 0.70 vs 1.23 ± 1.10, P = 0.009) but no significant difference in nausea 
between 4-12 h and 12-24 h. The incidence of vomiting at 0-4 h was 17.5% for the intervention group, 
42.5% for the placebo group, and 47.5% for the control group which was significantly lower for the 
intervention group when compared to the placebo group and control group (P < 0.001 and P = 0.004 
respectively). Pain scores were significantly lower in the intervention group when compared to the 
placebo and control groups at 0-4 h (P = 0.001) and 4-12 h (P = 0.005)[22].

A large multi-center, randomized, placebo-controlled phase III trial aimed to evaluate the effect-
iveness of PCL vs placebo in preventing postoperative infections after major elective abdominal surgery. 
This article had an impact index per article score of 13.5. There was no traditional fasting group in this 
study. Patients with DM and patients with fasting BGC > 125 mg/dL (7 mmol/L) were excluded. A 
total of 662 patients were enrolled and randomized into two groups: 331 patients in the intervention 
group were instructed to consume one PCL drink (800 mL, 12.6% CHO, 500 kcal/L) from the night 
before surgery to 2 h prior to surgery, and 331 patients in the placebo group received 800 mL of water 
with the same consumption directions. The primary outcome was the occurrence of at least one 
postoperative infection including superficial or deep wound infection, organ/space infection, urinary 
tract infection, pneumonia, sepsis, and septic shock. The primary outcome occurred in 16.3% of the 
intervention group and 16.0% of the placebo group [relative risk (RR) 1.019, 95%CI: 0.720-1.442, P = 1.00] 
which was not significantly different. Secondary outcomes included insulin requirements, antibiotic 
therapy, total complications, reoperation, ICU LOS, and hospital LOS. BGC was recorded from the first 
hour after surgery to postoperative day 3 and insulin was administered for BGC > 180 mg/dL (10 
mmol/L). Insulin was required in 2.4% of patients in the intervention group and 16.0% of patients in the 
placebo group (RR 0.15, 95%CI: 0.07-0.31, P < 0.001), with a number needed to treat of 7. No other 
secondary outcomes were significantly different. Notably, no aspiration episodes were observed in 
either group[23].

A single-center, randomized controlled study aimed to evaluate the effect of PCL vs fasting on 
outcomes in patients undergoing elective craniotomy. This article had an impact index per article score 
of 3.0. Patients with DM and patients with fasting BGC > 125 mg/dL (7 mmol/L) were excluded. A total 
of 120 patients were enrolled into two groups: 58 patients in the intervention group were instructed to 
consume one PCL drink (400 mL, 12.5% CHO, 500 kcal/L) 2 h before surgery and 62 patients in the 
control group fasted for at least 8 h prior to surgery. The primary outcome was glucose homeostasis 
defined by BGC measurements from blood samples drawn perioperatively. The BGC was significantly 
higher in the intervention group upon entering the operating room (6.3 ± 1.6 vs 5.6 ± 1.0 mmol/L, P = 
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Table 3 Preoperative carbohydrate load: Impact on glycemic variability and surgical outcomes

Ref. Patient population PCL composition and timing Reported conclusion

Singh et al[22], 2015 120 same-day surgery patients, DM 
excluded

12.5% CHO, 500 kcal/L; 400 mL before MN + 
200 mL 2 h before surgery

Intervention vs placebo vs control

Nausea score

0-4 h: 0.65 vs 1.30 vs 1.23, P = 0.001

4-12 h: 0.70 vs 0.83 vs 1.05, P = 0.066

12-24 h: 0.25 vs 0.43 vs 0.35, P = 0.257

Vomit incidence

0-4 h: 17.5% vs 42.5% vs 47.5%, P (I-P) 
≤ 0.001, P (I-C) = 0.004

4-12 h: 7.5% vs 12.5% vs 32.5%, P (I-P) 
= 0.459, P (I-C) = 0.005

12-24 h: 0% vs 2.5% vs 2.5%, P (I-P) = 
0.314, P (I-C) = 0.314

Pain score

0-4 h: 5.75 vs 7.13 vs 6.95, P = 0.001

4-12 h: 3.53 vs 4.08 vs 4.65, P = 0.005

12-24 h: 1.95 vs 2.08 vs 2.25, P = 0.223

Gianotti et al[23], 2018 662 patients undergoing elective major 
abdominal surgery, DM excluded

12.6% CHO, 500 kcal/L; 800 mL between 8 
pm and 2 h before surgery

Intervention vs placebo

Composite infection: 16.3% vs 16.0%, 
P = 1.00

Insulin requirement: 2.4% vs 16%, P < 
0.001

Antibiotic therapy: 30.8% vs 29.9%, P 
= 0.87

Total complications: 28.1% vs 28.4%, P 
= 1.00

Hospital LOS: 11 vs 11 d, P = 0.44

Aspiration events: 0 vs 0, P = 1.00

Liu et al[24], 2019 120 patients undergoing elective 
craniotomy, DM excluded

12.5% CHO, 500 kcal/L; 400 mL 2 h before 
surgery

Intervention vs control

Preop BGC: 6.3 vs 5.6 mmol/L, P = 
0.020

POD3 BGC: 5.6 vs 6.3 mmol/L, P = 
0.001

POD3 handgrip: 25.3 vs 19.9 kg, P < 
0.0001

POD3 PEFR: 315.8 vs 270.0 L/min, P = 
0.036

Postop LOS: 4 vs 7 d, P < 0.0001

Talutis et al[25], 2020 169 patients with DM2 undergoing 
elective major abdominal surgery

55 g CHO in 32 oz (946.35 mL), 5.8% CHO; 16 
oz (473 mL) before MN + 16 oz 2 h before 
surgery

Intervention vs control

Preop BGC: 142 vs 129.5 mg/dL, P = 
0.017

1st postop BGC: 159 vs 173 mg/dL, P 
= 0.23

POD1 BGC: 152 vs 137.5 mg/dL, P = 
0.004

Intraop insulin: 0-16 vs 0-19 units, P = 
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0.63

POD1 insulin: 0-75 vs 0-79 units, P = 
0.09

Complication rate: 20% vs 27%, P = 
0.65

Hospital LOS: 2 vs 2 d, P = 0.38

Aspiration events: 0 vs 0, P = 1.00

Suh et al[26], 2021 134 patients undergoing bariatric 
surgery, DM2 included

50 g CHO in 296 mL, 16.9% CHO, 682 kcal/L; 
296 mL before MN + 296 mL 3 h before 
surgery

Intervention vs control

Hospital LOS: 2.0 vs 2.1 d, P = 0.65

PONV score: 13.8 vs 15.4, P = 0.77

BGC: 140.7 vs 135.3 mg/dL, P = 0.34

Antiemetics: 5.3 vs 6 doses, P = 0.43

Readmission: 4.7% vs 5.7%, P = 0.79

Complication: 3.1% vs 4.3%, P = 0.72

Aspiration events: 0 vs 0, P = 1.00

Lee et al[27], 2022 46 patients with DM2 undergoing 
elective total joint arthroplasty

12.8% CHO, 500 kcal/mL; 400 mL 2-3 h 
before anesthesia

Intervention vs control

CV: 16.5% vs 10.1%, P = 0.008

J index: 25.3 vs 18.9, P = 0.046

HOMA-IR: 8.5 vs 2.7, P < 0.001

Hospital LOS: 3 vs 3 d, P = 0.516

Nausea: 46% vs 29%, P = 0.402

Vomiting: 32% vs 8%, P = 0.066

Hypotension: 5% vs 13%, P = 0.609

Delirium: 18% vs 0%, P = 0.045

Wound dehiscence: 9% vs 8%, P = 
0.999

Pain score at 6 h: 2 vs 2, P = 0.725

PCL: Preoperative carbohydrate load; DM: Diabetes mellitus; CHO: Carbohydrate; MN: Midnight; LOS: Length of stay; BGC: Blood glucose concentration; 
Preop: Preoperative; POD: Postoperative day; PEFR: Peak expiratory flow rate; postop: Postoperative; DM2: Type 2 diabetes mellitus; ERAS: Enhanced 
recovery after surgery; intraop: Intraoperative; PONV: Postoperative nausea and vomiting; CV: Coefficient of variance; HOMA-IR: Homeostasis Model 
Assessment Insulin Resistance.

0.020); was similar on postoperative days 1 and 2; and was significantly lower on postoperative day 3 in 
the intervention group (5.6 ± 1.0 vs 6.3 ± 1.2 mmol/, P = 0.001). Secondary outcomes included handgrip 
strength, pulmonary function as measured by peak expiratory flow rate, postoperative surgical and 
nonsurgical complications, and length of stay. Hand grip strength (25.3 ± 7.1 kg vs 19.9 ± 7.5 kg, P < 
0.0001) and peak expiratory flow rate (315.8 ± 91.5 L/min vs 270.0 ± 102.7 L/min, P = 0.036) were 
significantly better in the intervention group on postoperative day 3. Postoperative length of stay was 
significantly reduced in the intervention group (4 vs 7 d, P < 0.0001)[24].

A retrospective chart review aimed to determine the effects of a PCL as part of an enhanced recovery 
after surgery (ERAS) pathway on patients with DM. This article had an impact index per article score of 
4.0. The intervention group included a total of 80 ERAS patients with DM undergoing bariatric, gastric, 
pancreatic, and colorectal surgery, and was compared to the control group of 89 non-ERAS patients 
with DM undergoing similar surgeries from 1 year prior to inception of the ERAS pathway. Patients 
with a history of type 1 DM were excluded. The patients in the ERAS group were instructed to consume 
one PCL drink (473 mL, 5.8% CHO) on the night before surgery and another PCL drink on the morning 
of surgery. The non-ERAS patients adhered to traditional fasting after midnight guidelines. Primary 
outcomes included perioperative BGC measurements and insulin requirements. Secondary outcomes 
included development of postoperative complications. The ERAS patients with DM had elevated BGC 
measurements in the preoperative holding area (142, range 66-392 vs 129.5, range 82-316 mg/dL, P = 
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0.017) and on postoperative day 1 (152, range 84-323 vs 137.5, range 86-279 mg/dL, P = 0.004) when 
compared to non-ERAS patients with DM. Intraoperative BGC and postoperative BGC on days 2-5 were 
not different. Intraoperative and postoperative insulin administration did not differ between the two 
groups. The complication rates and hospital length of stay were not significantly different. None of the 
patients experienced an aspiration event[25].

A single center, randomized controlled trial aimed to characterize the impact of PCL administration 
on postoperative outcomes in bariatric surgery. This article had an impact index per article score of 2.0 
but was felt to contribute significantly to the body of literature in this scoping review. Patients with DM 
were included in this study. A total of 134 patients were enrolled and randomized into 2 groups: 64 
patients in the intervention group were instructed to consume one PCL drink (296 mL, 16.9% CHO, 682 
kcal/L) on the night before surgery and another PCL drink 3 h before surgery and 70 patients in the 
control group adhered to traditional “nothing by mouth” after midnight prior to surgery fasting 
guidelines. The primary outcome was a clinically significant reduction in hospital length of stay. 
Secondary outcomes included postoperative nausea and vomiting (PONV), postoperative BGC, 
antiemetics received, hospital readmission rates, and overall complications amongst other outcomes. 
There was no significant difference noted in hospital length of stay between the intervention and control 
groups (2.0 ± 1.2 vs 2.1 ± 0.9 d, P = 0.65). Additionally, there was no significant difference between the 
two groups with regards to PONV scores, postoperative BGC measurements, antiemetics received, 
hospital readmission rates, or postoperative complication rates. Notably, none of the patients 
experienced aspiration during induction of anesthesia[26].

A single center, randomized control trial investigated the effects of PCL on perioperative GV, gastric 
volume, and postoperative outcomes in patients with DM undergoing elective total knee and hip arthro-
plasty. This article was recently published and so has not had a significant amount of time to be 
included as a citation in other works. A total of 46 patients were included in the final cohort of this 
study. Patients were randomized into 2 groups: 22 patients in the intervention group were instructed to 
consume one PCL drink (400 mL, 12.8% CHO, 500 kcal/L) 2-3 h before anesthesia and 24 patients in the 
control group adhered to traditional fasting after midnight guidelines. The primary outcome was GV 
measured by CV and J index (0.001 × [mean + SD]2), calculated from capillary BGC measurements taken 
at 5 intraoperative time points. Patients in the intervention group experienced higher CV (16.5% vs 
10.1%, P = 0.008) and J index scores (25.3, range 17.9-39.7 vs 18.9, range 16.0-25.3, P = 0.046) than the 
control group. Insulin resistance was calculated using the homeostasis model assessment insulin 
resistance value (HOMA-IR) = [fasting glucose (mg/dL) × fasting insulin (µU/mL)]/405. Patients in the 
intervention group experienced higher HOMA-IR scores than the control group (8.5, range 5.6-19.2 vs 
2.7, range 2.2-4.8, P < 0.001). Secondary outcomes included gastric volume, and postoperative complic-
ations including nausea, vomiting, dizziness, hypotension, delirium, wound dehiscence, and pain 
scores. There was no difference between the two groups with respect to gastric volume or any of the 
reported postoperative complications, except for delirium which was higher in the intervention group (4 
vs 0, P = 0.045)[27].

In summary, several early studies that examined patients without DM demonstrated that PCL 
significantly improved patient experience (nausea, vomiting, pain) and postoperative muscle function 
(hand grip strength, peak expiratory flow rate). Administration of a PCL in this patient population also 
reduced postoperative insulin requirements and improved postoperative BGC. Later studies that did 
not exclude patients with DM showed that administration of a PCL does not increase the risk for 
postoperative morbidity in most respects, in particular with regards to aspiration of gastric contents.

DISCUSSION
In this original scoping review, the clinical relevance of GV and the clinically significant relationship 
between GV and surgical outcomes were described. The available evidence on the impact of PCL on GV 
and surgical outcomes in patients with and without DM was presented. High GV has clear negative 
implications in both patients with and without DM in a wide range of inpatient clinical settings; 
however, it remains uncertain whether PCL reduces GV perioperatively and improves surgical 
outcomes in this patient population.

The clinical impact of GV has been studied extensively, in particular as a predictor of morbidity and 
mortality in patients with and without DM in a variety of inpatient clinical settings, including surgical 
and non-surgical. Several different indices of GV, including SD, CV, GLI, and MAGE, show a 
correlation with morbidity and mortality, and so practitioners that use this data point may reasonably 
select whichever index is most accessible for their practice setting. At the same time, the lack of a gold 
standard GV index may reduce standardization across study designs and produce clinical data that is 
more challenging to compare. Two studies presented in this scoping review suggest that GLI may be the 
most accurate predictor[14,15]; however, one study recommends CV as the most practically accessible
[20].

There is a lack of consensus on both the carbohydrate composition and the volume of an optimal PCL
[28]. The type of dextrose-containing solutions used in the reviewed PCL studies varied. Additionally, 
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the timing of PCL administration varied throughout the examined literature. Future research to 
elucidate the optimal type and timing of PCL administration would allow subsequent clinical trials to 
follow more standardized protocols and therefore more definitively determine the risks and benefits of 
the PCL.

Of the studies analyzed for this scoping review, there is a paucity of evidence investigating the 
impact of a PCL on perioperative GV. The one such study included in this review did find an increase in 
GV after PCL administration in 46 patients with DM; however, the investigators analyzed BGC obtained 
from capillary blood, which may not be as accurate as whole blood[29]. In a retrospective analysis of 83 
non-diabetic patients undergoing colorectal surgery, investigators found that a PCL with complex 
carbohydrates had a beneficial impact on GV when compared to a PCL with simple carbohydrates[30]. 
More studies looking directly at the effect of a PCL on GV indices are needed before a consensus 
determination can be reached. Similarly, there is insufficient evidence to determine that PCL improves 
surgical outcomes for patients with and without DM, though it does not appear to be associated with 
worse outcomes.

Despite the widespread exclusion of patients with DM in early PCL studies, there is a significant 
body of evidence suggesting that PCL is safe in patients with well controlled type 2 DM. A narrative 
review of emerging evidence on PCL safety and effectiveness in patients with type 2 DM suggested that 
consuming a PCL raises preoperative BGC; however, the PCL did not significantly impact intraop-
erative or postoperative BGC[30]. Additionally, the PCL improved patient satisfaction measures 
postoperatively without increasing the risk for complications such as aspiration of gastric contents, 
pneumonia, and postoperative surgical site infection[31-34]. Of note, because the PCL reduces GV by 
stimulating endogenous insulin secretion, it is not recommended for those with insulin deficiency such 
as type 1 DM and should be used with caution in patients with poorly controlled type 2 DM or severe 
insulin resistance[35]. Large randomized placebo controlled trials investigating the PCL could 
ultimately determine whether it improves a variety of clinical outcomes or is solely a non-inferior 
intervention that improves patients’ perioperative comfort and satisfaction.

This scoping review was intended to link clinical concepts together with a historical perspective to 
identify knowledge gaps and research opportunities pertaining to present day practice. It was designed 
to summarize emerging evidence pertaining to perioperative GV, PCL, and postoperative outcomes in 
patients with and without DM. By specifying an aim early on, all relevant literature was collected and 
gaps in knowledge were identified. This process allowed for recommendations for future research to be 
made based on where current research is lacking or non-existent.

This scoping review does not incorporate all of the available literature pertaining to this broad topic 
that may otherwise have been included in a systematic review. Instead, this scoping review 
encompassed some aspects of glycemic control that are interconnected clinically but may be concep-
tually separated in literature searches. Each of the three broad topics discussed could be presented as an 
individual systematic review. A literature search that included all of these elements systematically 
would be cumbersome.

Given the limitations of a scoping review, there is the possibility that some available evidence has not 
been mentioned or cited. This is not because the authors have an underlying conflict of interest. None of 
the authors have any personal interest or conflict of interest with regards to this topic.

CONCLUSION
In conclusion, the benefits of a PCL outweigh the risks in most patients, even those with type 2 DM. The 
administration of a PCL might effectively minimize metabolic derangements such as GV and ultimately 
result in reduced postoperative morbidity and mortality, but this remains to be proven. Future efforts to 
standardize the content and timing of a PCL are needed. Prospective studies should be appropriately 
designed to evaluate the PCL effect on GV indices in the immediate postoperative period, and on long 
term postoperative complications in patients with and without DM.
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Abstract
There is growing evidence that diabetes can induce cognitive decline and 
dementia. It is a slow, progressive cognitive decline that can occur in any age 
group, but is seen more frequently in older individuals. Symptoms related to 
cognitive decline are worsened by chronic metabolic syndrome. Animal models 
are frequently utilized to elucidate the mechanisms of cognitive decline in 
diabetes and to assess potential drugs for therapy and prevention. This review 
addresses the common factors and pathophysiology involved in diabetes-related 
cognitive decline and outlines the various animal models used to study this 
condition.

Key Words: Diabetes mellitus; Insulin signaling; Macrovascular disease; Microvascular 
disease; Animal models; Cognitive decline; Pathophysiology
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Core Tip: Diabetes can induce cognitive decline, a phenomenon attributed to fluctuations 
in glycemic status, macrovascular and microvascular disease, deterioration of insulin 
signaling, neuroinflammation, mitochondrial dysfunction, increases in advanced 
glycation end products, the effects of drugs used to treat diabetes, and diabetic 
autonomic dysfunction. Various animal models have been constructed to examine the 
pathophysiology of diabetes-induced cognitive decline.
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INTRODUCTION
According to current data from the International Diabetes Federation (IDF), more than 1 in 10 ten 
persons has diabetes. Diabetes prevalence among adults (20 to 79 year of age) has more than 
quadrupled from 151 million (4.6% of the global population) in 2000 to 537 million (10.5% of the global 
population) in 2021. More shockingly, it is estimated that without changes to intervention strategy, 643 
million people (11.3% of the world population) will develop diabetes by 2030[1].

Diabetes complications are primarily attributed to vascular and metabolic factors associated with the 
disease. Among the major complications are cardiovascular disease, stroke, peripheral artery disease, 
nephropathy, retinopathy, neuropathy, dental disease, and immunocompromise. These are also 
expected to become increasingly pervasive, affecting both the local and global burden of illness[2]. 
Diabetes is a systemic disease, as it can affect nearly every body system. For instance, diabetes can 
disrupt proper cardiovascular, gastrointestinal, immune, or nervous function. The functional 
impairment of the peripheral nervous system can lead to diabetic foot and, in the worst cases, 
amputation and associated physical disability. Diabetic retinopathy can lead to loss of vision and 
blindness. A wide range of cognitive dysfunction can also occur as a consequence of diabetes, and can 
manifest as mild cognitive impairment (MCI) to dementia[3].

There is an increased risk of cognitive decline and dementia in patients with diabetes[4]. This has 
major implications for patient care, particularly in older adults with dementia or pre-dementia with 
cognitive impairment, which are the most typical manifestations in communities worldwide[4]. The 
stages of diabetes-associated cognitive decline depend on the type of diabetes and also the patient’s age. 
For type 1 diabetes (T1DM), the impairment of cognitive function progresses with age. However, for 
type 2 diabetes (T2DM), there are three stages of cognitive function loss, including diabetes-associated 
cognitive decline, MCI, and in the final stage, dementia[2].

Several investigations have revealed that patients with T1DM may suffer from severe impairments in 
information processing, psychomotor efficiency, attention, visuoconstruction, and mental flexibility[5]. 
However, T2DM has been associated more with problems in executive function, psychomotor speed, 
and memory. As a result, older diabetic patients often have slower walking pace, poorer coordination, a 
higher chance of falling, and more fractures, all of which can affect quality of life. In addition, executive 
dysfunction has been linked to the incapacity to carry out daily tasks.

The effects of diabetes on brain function and cognitive decline have received little attention in 
academia. However, a study using brain magnetic resonance spectroscopy discovered various metabolic 
criteria for dementia in diabetic patients and established new links between dementia and diabetes. This 
study also found extremely low levels of N-acetyl aspartate (which affects neuronal integrity), high 
levels of myoinositol, high levels of excitatory neurotransmitters (e.g., glutamate and glycine), and low 
levels of inhibitory neurotransmitters [e.g., gamma-aminobutyric acid (GABA)], which has been linked 
to pain perception problems in diabetic patients[6]. Diabetes also causes brain atrophy, myelin 
degradation, and vacuole dispersion throughout the white matter of the brain in rats[7]. Diabetic 
patients are also thought to have irregularities in the metabolism of neurotransmitters in the brain, 
which leads to neuronal dysfunction and destruction, eventually contributing to the development of 
dementia.

Research regarding the actions of insulin has mainly focused on peripheral diseases rather than brain 
function[8]. However, insulin has been shown to play a role in cognition and neuroprotection in brain. 
Insulin also has an indirect effect on brain function by acting on peripheral tissue. Many circulating 
mediators that fluctuate due to obesity and diabetes can pass across the blood-brain barrier (BBB) and 
contribute to dysfunction in neurons, astrocytes, and microglia[7]. Nonetheless, the mechanism of 
diabetes-induced cognitive decline is still uncertain. Interestingly, this condition shares many cellular 
and molecular pathways with Alzheimer’s disease (AD), the most common form of dementia[9]. Here, 
we describe the putative pathophysiology of diabetes that may contribute to cognitive decline and 
review diabetic animal models used to study this condition. Finally, we discuss the obstacles and future 
directions for elucidating the diabetes-related mechanisms associated with cognitive decline.

FACTORS AND PATHOPHYSIOLOGY OF DIABETES INDUCES A COGNITIVE DECLINE
Figure 1 shows the factors that may contribute to the development of diabetes-induced cognitive 
decline.
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Figure 1 Multifactorial pathophysiology of diabetes-induced cognitive decline.

Macrovascular and microvascular diseases
Many vascular, metabolic, and psychosocial factors have been linked to diabetic-induced cognitive 
decline. Vascular disease, including hypertension and dyslipidemia, has been linked to an increased risk 
of stroke; in diabetic patients, this risk is estimated to be 115% higher for every 1% increase in glycated 
hemoglobin (HbA1c)[10]. Furthermore, cardio- or cerebrovascular abnormalities in the brain can lead to 
cognitive decline and dementia. Patients with T1DM who frequently have cognitive difficulties may 
have both subclinical and overt cerebrovascular disease[3]. T2DM patients with elevated plasma trigly-
cerides and higher cholesterol levels have been demonstrated to have poorer cognitive function[11]. 
Studies have also revealed a relationship between cognitive dysfunction and hypertension in T2DM[6,
7]. However, due to inconsistent findings from observational studies in the general population[8,9], the 
roles of dyslipidemia and hypertension in the development of cognitive decline in diabetics is still 
uncertain and needs further investigation.

Microvascular dysfunction also has been associated with cognitive decline[3,12]. Chronic 
hyperglycemia increases the risk of microvascular dysfunction, which can affect many organs, including 
the eye (retinopathy), kidney (nephropathy), and nerves (neuropathy). There is also a positive 
correlation between the development of cognitive decline and the presence of nephropathy and/or 
retinopathy[13]. Retinopathy has been linked to cognitive decline in adult diabetic patients as it is 
thought to affect intelligence, attention/concentration, and information processing[14].

Hyperglycemia
Hyperglycemia has been linked to cognitive decline[15], and can affect cognitive function in the long 
and short term time. Hyperglycemia has been shown to correlate with impaired working memory, 
attention, and depression. Acute variations in blood glucose have a negative effect on cognitive 
performance, and glycemic control improvement is advantageous for regulating cognitive function. It 
does not cause microvascular structural changes, but has been linked to regional cerebral blood flow or 
osmotic shifts across the neuronal membrane[16]. In contrast, chronic hyperglycemia affects cognitive 
function through the production of advanced glycosylation end-products (AGEs), formation of senile 
plaques and neurofibrillary tangles, and cerebral microvascular disease[17]. A reduction in white matter 
volume has also been connected to diminished executive function and a reduction in the processing of 
information[18].

The negative impact of hyperglycemia on cognitive impairment was validated in a zebrafish study in 
which T1DM was induced with injection of streptozotocin (STZ)[19]. It was discovered that exposing 
zebrafish to water-diluted glucose for 14 d caused sustained memory impairment accompanied by an 
increase in acetylcholinesterase activity. On the other hand, galantamine therapy reversed the memory-
damaging effects of hyperglycemia. These findings revealed a link between acetylcholinesterase activity 
and cognitive impairment in T1DM patients[19].
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However, cross-sectional studies investigating the association of chronic hyperglycemia (as 
evidenced by HbA1c) and cognitive decline in people with T2DM have yielded inconclusive results[20,
21]. However, this association is apparent in older patients, as the improvement in glycemic control also 
improves cognitive function[22]. One study demonstrated that treatment of T2DM with either rosigl-
itazone or glibenclamide (glyburide) improved working memory over 24 wk[16]. Metformin has also 
been shown to reduce the risk of cognitive impairment in diabetic patients[23], but other evidence 
suggests that it may increase the risk[24] or have no effect[25]. Treatment with metformin may reduce 
tau phosphorylation as well as interleukin-1ß-mediated activation of the phosphokinases Akt and 
mitogen-activated protein kinase (MAPK). Furthermore, it can inhibit the mitochondrial respiratory 
chain, increasing cyclic adenosine monophosphate (AMP) and activating protein kinase A and AMP-
activated protein kinase (AMPK)[26]. AMPK activation has been shown to improve memory and 
learning in female animal models[27]. However, when the evidence from observational studies and 
randomized controlled trials is combined, it seems that hyperglycemia and glucose excursions are both 
weakly associated with poorer cognitive function in T2DM patients[28]. As a result, further research is 
needed regarding hyperglycemia as a potentially modifiable risk factor for cognitive decline in diabetes.

Hypoglycemia
The presence of hypoglycemic episodes in diabetic patients has also been linked to cognitive decline and 
an increased risk of dementia[17,18]. The human brain, which accounts for 20% of the body’s metabolic 
consumption, has a greater need for glucose as a fuel source than other parts of the body. As a result, if 
the brain is temporarily depleted of glucose, cognitive and emotional functions are impaired. If left 
untreated, neuroglycopenia can lead to coma, seizure, or brain damage. There is evidence that repeated 
severe hypoglycemia in patients with early-onset diabetes can contribute to slower mental development 
and lower intellectual quotient (IQ)[29]. While the cerebral effects of severe hypoglycemia in adults are 
still not fully clear, insulin-dependent diabetic adults with repeated episodes of severe hypoglycemia 
performed worse on neuropsychological tests than diabetic patients who had never experienced severe 
hypoglycemia[30,31]. Another study found a weak link between the reported frequency of severe 
hypoglycemia and IQ decrement, lower levels of current IQ, and slowed variable reaction times[32]. 
However, this study found no cognitive differences between diabetic patients receiving intensive insulin 
therapy with severe hypoglycemia and those receiving conventional therapy[33]. The impact of several 
episodes of severe hypoglycemia between the ages of 5 year and 15 year is considered mild among 
young adults dependent on insulin. Strict glycemic control is thought to have a significant benefit in 
reducing target organ damage and slowing the progression of nephropathy, retinopathy, and 
neuropathy; however, it increases the risk of severe hypoglycemia. Further research on hypoglycemia 
and cognitive decline is needed to assist diabetic patients and their physicians in making the best 
treatment decisions.

Hyperinsulinemia
Hyperinsulinemia caused by endogenous insulin hypersecretion is common in the early stages of T2DM 
as a result of insulin resistance (IR). Hyperinsulinemia in adults without diabetes is associated with 
poorer cognitive function[26-28] and an increased risk of AD[34]. When compared to normal patients, 
patients with moderate to severe AD had higher levels of insulin in plasma but lower levels in 
cerebrospinal fluid[35]. Insulin therapy, both intravenous and intranasal, has been shown to improve 
cognitive function in AD patients[36]. Insulin injection into the cerebral ventricles of rats has also been 
shown to improve memory in a study that demonstrated an insulin signaling defect similar to that 
found in peripheral tissues could also occur in the hippocampus, resulting in functional insulin 
deficiency and cognitive decline[37]. Rosiglitazone can prevent disruption in memory tasks and reduce 
β-amyloid protein in the brain in transgenic mice that overexpress human amyloid precursor protein 
and develop AD pathology[38,39]. However, more research is needed to determine the link between 
hyperinsulinemia and cognitive decline.

Peripheral and cerebral insulin resistance
Insulin is released into the circulation by the pancreas and can pass the BBB via a carrier-facilitated 
process. The BBB comprises ependymal and endothelial cells, and the blood-cerebral spinal fluid barrier 
has insulin-binding sites that allow insulin to pass through[7]. Insulin receptors are found in the 
hypothalamus, prefrontal cortex, and hippocampus, among other central nervous system (CNS) sites
[9]. The activation of hippocampal insulin receptors is thought to mediate insulin-induced cognitive 
improvement in healthy mammalian brains by facilitating long-term hippocampal potential (LTP), 
which is linked to learning and memory, as well as by increasing the expression of N-methyl-D-
aspartate (NMDA) receptor[10] (Figure 2). Insulin also regulates the production of other neurotrans-
mitters involved in learning and memory, including acetylcholine, norepinephrine, and adrenaline[3], 
and stimulates the accumulation of GABA-A receptors on the postsynaptic membrane[11]. A transient 
surge in peripheral insulin is thought to cause an increase in CNS insulin, which reaches the brain.

In healthy individuals, insulin binds to insulin receptor α-subunits and stimulates the tyrosine kinase 
domain of βsubunits, resulting in autophosphorylation. This autophosphorylation has the potential to 
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Figure 2 Insulin receptor signaling in the hippocampus (adapted from Biessels and Reagan[40], 2015). Cerebral insulin resistance causes 
downregulation of insulin transporters at the blood-brain barrier, limiting the amount of insulin that can enter the brain (step 1), decreasing the expression and/or 
activity of insulin receptors (step 2), modulating the phosphorylation state of insulin receptor substrates (step 3), phosphorylation of Akt (step 4), affecting several 
downstream components in the insulin signaling cascade (including glycogen synthase kinase 3β) (step 5), regulating the phosphorylation state of the microtubule 
protein tau and forkhead box O family of transcription factors (step 6), and impairing the trafficking of GLUT4 to the plasma membrane of the brain (step 7). GSK3β: 
Glycogen synthase kinase 3β; FOXO: Forkhead box O.

activate the phosphoinositide 3-kinase (PI3K)-Akt (also known as PKB) signaling pathway. Akt 
molecules (Akt1, Akt2, and Akt3) are serine/threonine kinases that are activated by PI3K in response to 
growth factors and other cellular stimuli. In the brain, Akt mediates the translocation of glucose 
transporter type 4 (GLUT 4; also known as SLC2A4) to the plasma membrane. Akt also phosphorylates 
and inactivates the forkhead box O (FOXO) transcription factor family and glycogen synthase kinase 3β 
(GSK3β), reducing GSK3β’s ability to phosphorylate the microtubule-associated protein tau.

Chronic peripheral hyperinsulinemia induced by diabetes, obesity, or hyperlipidemia produces 
peripheral IR associated with the brain’s functional and structural changes. It also contributes to the 
dysregulation of insulin signaling in the brain and the development of cerebral IR. Cerebral IR causes 
the downregulation of insulin transporters at the BBB, limiting the amount of insulin that can enter the 
brain, decreasing the expression and/or activity of insulin receptors, and modulating the 
phosphorylation state of insulin receptor substrates such as Akt[7]. T2DM patients have lower Akt 
activation in their adipocytes and skeletal muscle, leading to many damaging effects on neuronal and 
glial cells[40]. Lower Akt activation affects several downstream components in the insulin signaling 
cascade, including GSK3β, which regulates the phosphorylation state of the microtubule protein tau and 
FOXO family of transcription factors. As a result, trafficking of GLUT4 to the plasma membrane is 
impaired. In addition, memory problems, diminished neuroprotective effects, and impaired synaptic 
transmission may result from cerebral IR, all of which may also contribute to the development of 
neurodegenerative illness[20]. However, the mechanisms underlying the relationships between systemic 
metabolic and vascular consequences of peripheral IR and cerebral IR are still largely undefined. 
Observational studies in humans are unlikely to fully elucidate the complex interplay between local and 
systemic factors of IR in the brain and periphery with respect to the mechanism of diabetes-induced 
cognitive decline[41,42].

Mitochondrial dysfunction
Mitochondria are involved in oxidative respiration, energy metabolism, free radical production, and 
apoptosis among other physiological processes[43]. The brain has a high energy requirement, and as 
such it is particularly sensitive to mitochondrial dysfunction. Mitochondria play an important role in 
anti-aging and neurodegenerative disease prevention[44]. The pathogenesis of diabetes and many 
neurodegenerative diseases includes mitochondrial dysfunction, attributed to the production of reactive 
oxygen species (ROS) that can damage proteins, carbohydrates, and lipids. Dysfunctional mitochondria 
are less effective in generating ATP but rather produce more ROS, leading to the oxidative imbalance 
seen in cognitive decline[45].
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One study has reported that hyperglycemia in diabetes enhances mitochondrial oxidative stress and 
ROS generation, which can lead to calcium homeostasis disruption, apoptosis, and memory impairment
[45]. Diabetic rats also had higher levels of superoxide, protein oxidation, and thiobarbituric acid 
reactive substances[46] as well as reduced activities of catalase, superoxide dismutase, and glutathione 
peroxidase in the brain[47]. Excessive oxidative stress causes release of cytochrome C, which starts the 
apoptotic cascade and leads to mitochondrial dysfunction[44]. These findings suggest that diabetes may 
worsen mitochondrial dysfunction and oxidative stress in memory and cognition-related brain regions, 
and may be the fundamental cause of diabetes-related cognitive decline.

Neuroinflammation in the Brain
Diabetes raises the levels of pro-inflammatory cytokines in the brain, which can lead to neuronal 
damage[48]. Additionally, vascular endothelial dysfunction also elevates inflammatory mediators and 
compromises the BBB. When BBB function is impaired, neurotoxic blood proteins such as thrombin, 
fibrin, plasmin, and hemoglobin can potentially enter the brain parenchyma, causing abnormal 
neuronal activity[49]. The pro-inflammatory nuclear factor-kappa B (NF-κB) has been implicated in 
diabetic cognitive decline, and a pharmacological inhibitor that inhibits NF-κB activation has been 
shown to reduce levels of interleukin (IL)-6 and tumor necrosis factor-alpha (TNF-α) and improve 
cognitive decline[50].

A post-mortem examination of a diabetic patient’s hippocampus revealed microglia activity similar to 
that seen in AD patients[17]. TNF-α levels and microglial activation in the brain were found to be higher 
in mice fed a high-fat diet. It has also been suggested that diabetes and obesity cause decreased spatial 
recognition memory in db/db mice, which is linked to increased levels of pro-inflammatory cytokines, 
establishing a relationship between inflammation and cognitive loss[18]. In addition, there is a 
relationship between neuroinflammation and ROS in cognitive impairment. The creation of ROS in the 
diabetic brain has been shown to stimulate several cellular pathways, including the advanced glycation 
end products and its receptor (AGE/RAGE), polyol, and protein kinase C pathways, leading to 
increased brain inflammation and neurodegeneration[49].

Increase in AGEs
Hyperglycemia in diabetes damages tissues and increases intracellular glucose. This condition triggers 
mitochondrial overproduction of reactive oxygen and nitrogen species (RONS) such as superoxide 
anion radical, peroxynitrite, and hydrogen peroxide[51]. RONS, in turn, cause DNA damage and 
overstimulate peroxisome proliferator-activated receptor, a repair enzyme that increases NAD 
consumption while decreasing the activity of glyceraldehyde 3-phosphate dehydrogenase (GAPDH), 
which is already compromised by RONS[52]. As a result, endothelial dysregulation occurs, as does the 
initiation of pro-apoptotic signals, such as the production of AGEs. When AGEs interact with specific 
receptors (RAGEs), a complex pro-inflammatory cascade involving IL-1, IL-6, TNF-α, transforming 
growth factor-β (TGF-β), and vascular cell adhesion molecule-1 (VCAM-1) is activated, increasing 
oxidative stress[51-53]. AGE formation alters the structural and functional properties of proteins in both 
the extracellular matrix and the intracellular region.

Effects of drugs used in the treatment of diabetes
When compared to untreated patients, treated diabetic patients have less improperly aggregated protein 
and less vascular damage[54,55]. Metformin, an insulin sensitizer, can reduce the risk of dementia and 
the rate of cognitive decline in diabetics[54]. Biguanides and sulfonylureas, among other diabetes 
medications, can alter the relationship between tau pathology and diabetes, slowing the onset of 
cognitive decline[55].

It is postulated that the best way to delay the onset of dementia is to improve early prevention 
strategies. Both elderly and middle-aged people with diabetes have poorer cognitive functioning and 
faster cognitive deterioration[56]. A retrospective study found that the association between DM and AD 
is stronger in middle-aged people than in the elderly, implying that age is a significant factor in the 
relationship between DM and AD.

Diabetic autonomic dysfunction and cognitive impairment
Diabetes autonomic dysfunction (DAD) is a complication of diabetes with unexplained and 
undiscovered pathogenesis. DAD is related to poor blood pressure regulation and a higher risk of 
stroke, both of which are risk factors for cognitive impairment[57]. Cognitive decline and autonomic 
dysfunction have comparable fundamental pathologic mechanisms. Autonomic function is 
compromised in patients with MCI, AD, frontotemporal dementia, dementia with Lewy bodies, and 
Parkinson’s disease with dementia. In comparison to age-matched controls with normal cognition, there 
is evidence of sympathetic cardiac autonomic dysfunction in patients with MCI[30]. The correlation 
between blood pressure dysregulation, silent cerebral infarcts, and cognitive decline reveals that 
intermittent chronic declines in cerebral blood flow caused by high blood pressure can lead to cognitive 
decline. This process, however, is still not fully clear and requires additional investigation.
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ANIMAL MODELS OF DIABETES-INDUCED COGNITIVE DECLINE
Zucker diabetic fatty rat
Zucker diabetic fatty (ZDF) rats are a genetically derived Zucker fatty strain model of pathological 
alterations associated with T2DM. Obese ZDF rats have T2DM symptoms such as increased insulin 
levels, obesity, and increased triglyceride levels. Genetically, the ZDF rat model has also been reported 
to have abnormally low brain insulin content[58]. Studies have found that this model has altered 
memory tests and hippocampal-dependent learning due to hyperinsulinemia[59,60]. It is believed that 
leptin receptor deficiency in the hippocampus of ZDF rats impairs LTP in the hippocampal CA1 region 
and affects spatial memory[61]. Another study found that the brains of ZDF rats produced more ROS 
and nitric oxide, as well as suffered more complications of redox homeostasis, mitochondrial function, 
and ATP synthesis[62]. Astrogliosis was discovered in the hippocampus and frontal and parietal 
cortices, and there was an increase in the number of glial fibrillary acidic protein (GFAP) immunore-
active astrocytes in ZDF rats[63]. ZDF rats also exhibit reduced hypothalamic corticotropin releasing 
factor tone due to dysregulation of the hypothalamic-pituitary-adrenal axis[64].

The db/db mouse
The db/db mice are now being used to generate diabetes in rodents to better understand the underlying 
mechanism and etiology of T2DM. This model includes a leptin receptor gene mutation that causes 
hepatic IR, hyperglycemia, hyperinsulinemia, hyperlipidemia, and obesity[24]. The Morris water-maze 
(MWM) test reveals impaired spatial memory in these mice due to decreases in their leptin receptors in 
the hippocampus[61]. The interaction between cytokines and central processes involving the 
hippocampus contributes to cognitive behavioral alteration in this db/db mice[65]. Reportedly, changes 
in hippocampal plasticity and function in db/db mice can be reversed when normal physiological levels 
of corticosterone are maintained, indicating that cognitive impairment in this model may be caused by 
glucocorticoid-mediated deficits in neurogenesis and synaptic plasticity[66].

The released cytokines, such as IL-1, due to obesity and diabetes in this model can also mediate the 
neuroinflammation process and impair hippocampal synaptic plasticity[66]. The debilitation of memory 
and learning process in db/db mice due to metabolic changes has the ability to reduced membrane 
metabolism and tricarboxylic cycle and also restrain the cycle of Gln-Glu/GABA, impartially triggering 
a rise in anaerobic glycolysis[67]. Similarly, Yermakov et al[68], who observed a study on the db/db 
model in the MWM test’s reversal phase, confirmed that it would impact cognitive flexibility. Another 
study using this model was executed to examine the importance of neutrophils in the db/db mice 
model after exposure to hypoxic/ischemic (H/I) insults, which might generate higher morbidity and 
acute ischemic stroke[69].

The ob/ob mouse
Ob/ob mice are a naturally occurring genetic model in which a mutation in the leptin gene causes leptin 
insufficiency. As a result, they have large appetites, develop obesity, and are considered an appropriate 
model for T2DM. A study has been done in ob/ob mice to identify the effect of T2DM disease on tau 
phosphorylation, which concluded that tau hyperphosphorylation affected thermoregulation resulting 
in hypothermia in ob/ob mice[68]. The ob/ob mice with leptin-deficiency showed an increase in LTP in 
the amygdala, indicating that diabetes can have an impact on emotional state[70]. A previous study on 
ob/ob mice showed acute behavioral dysfunction and disability of spatial memory with higher pro-
inflammatory cytokine levels and NF-κB activation compared to the control[71]. Another study looked 
at the lifespan of the ob/ob mouse and found a link between this and the dysregulation of microglia and 
astrocytes. Higher levels of GFAP and decreased levels of microglial markers followed this finding[72].

Goto-Kakizaki rat
The Goto-Kakizaki (GK) rat was developed from a polygenic non-obese Wistar substrain as a non-obese 
diabetic animal model for spontaneous T2DM. A study of brain energy metabolism in diabetic GK rats 
using 13C magnetic resonance spectroscopy found that the glutamate-glutamine cycle between 
astrocytes and neurons was impaired due to astrocytes having a greater TCA cycle rate than neurons
[73]. Soares et al[74] (2019) also demonstrated that diminished brain glycogen metabolism could 
interfere with memory and learning capability in the GK rat model. The present findings resulted in the 
successful induction of aging as one of the characteristics of AD in advanced-age GK rats by increasing 
phosphorylation of tau. Furthermore, there was an increase in amyloid-β levels along with a reduction 
in the levels of synaptic proteins in GK rats[75].

High-fat diet rats and streptozotocin injection
In comparison to the regular diet of rats, a high-fat diet (HFD) represents a diet with a high-fat content 
mixed with fructose or glucose. One study showed that C57BI/6 mice fed a high-fat lard diet increased 
their body weight and had impaired cognitive function due to increased brain inflammation and 
decreased BDNF levels[76]. Rats fed high-calorie diets such as HFD, high glucose, and high fructose 
diets demonstrated changes in energy and lipid metabolism similar to those seen in clinical diabetes, 
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including elevated blood glucose, cholesterol, and triglycerides. This high-calorie diet also decreased 
spatial learning ability, hippocampal dendritic spine density, and LTP at Schaffer collateral-CA1 
synapses. These changes occurred in tandem with a decrease in BDNF levels in the hippocampus[77-
79]. This effect has also been proposed due to increased corticosterone and peripheral IR, which may 
contribute to cerebral IR and increase oxidative stress reaction in the brain[80,81].

Many studies have found that rats fed HFD paired with low-dose STZ also developed obesity and 
cerebral IR, two key hallmarks of T2DM[82,83]. The T2DM rat model closely resembled the natural 
history of disease events to induce IR, impair β cell malfunction and metabolic characteristics of T2DM. 
STZ is an anti-neoplastic and antibiotic drug isolated initially from Streptomyces achromogenes in 1960 
and consists of a nitrosourea moiety that is interposed between a methyl group and glucosamine. Due 
to its severe toxicity to mammalian pancreatic β cells, this drug is commonly used in research to 
generate experimental animal models of T1DM and AD. Its diabetogenic effects are manifested as 
hypoinsulinemia, hyperglycemia, polydipsia, and polyurea in animals, all of which are characteristic 
features of diabetes in humans. Although high-dose STZ causes severe impairment in insulin secretion 
comparable to that seen in T1DM, low-dose STZ has been shown to cause a modest impairment in 
insulin secretion, which is similar to T2DM in its later stages[83]. This model is easily available, cheaper, 
and valuable for future research.

CHALLENGES AND FUTURE DIRECTION
The role of insulin in the brain, particularly the hippocampal region, has been demonstrated to be 
critical for functional and structural changes in the brain for cognitive processes. Insulin plays a trophic 
role in the brain and serves as a metabolic homeostasis regulator, promoting neuroplasticity and high 
energy regulation. Understanding the molecular mechanisms of insulin on brain plasticity is critical for 
identifying the mechanisms that regulate neural plasticity in health and metabolic disease, such as 
diabetes-induced cognitive decline, as well as in neurodegenerative disease, particularly AD[80].

To date, research has confirmed the hypothesis that boosting hippocampal insulin receptor signaling 
could reverse or ameliorate IR-induced neuroplasticity deficits in animal models of T2DM[40]. Previous 
research has also shown that pharmacological and lifestyle interventions can effectively restore 
hippocampal neuroplasticity in a T2DM animal model[81]. Several studies study also looking into the 
efficacy of intranasal insulin administration as an innovative therapeutic strategy to alleviate cognitive 
decline in T2DM, as it allows insulin to be delivered directly to the CNS and avoids systemic hormone 
effects[36,84]. Nonetheless, the findings of these studies raise important questions about the localization 
and effects of intervention strategies, whether they are mediated peripherally or centrally.

The diabetic animal model, which has been used to replicate human cognitive decline, has some 
limitations and is unreliable in determining the exact human brain condition in diabetes. In addition, 
diabetes-related cognitive decline has a convoluted etiology with several variables, such as IR and 
insulin insufficiency, as well as pancreatic cell malfunction, all of which can lead to multiorgan deficits. 
Thus, additional new characteristics of animal models, along with clinical evidence, should be 
empowered.

As in T1DM, the induction of STZ is involved in pharmacologic toxicity by destroying pancreatic β 
cells, which is carcinogenic[85]. The challenge of the STZ-induced animal model involves higher 
mortality of rats due to toxicity is a stumbling block in research. As the toxicity of STZ can impact 
multiple organs, it can resemble a contribution to death instead of diabetic complications[86].

Regarding the development of T2DM animal models, potential systemic consequences of disrupted 
leptin signaling in ob/ob mice to exhibit diabetic peripheral neuropathy should be contemplated[87]. 
Ob/ob and db/mice are assigned as an appropriate model for neuropathy diabetes, exhibiting early 
onset and approximate nature of neuropathy. However, numerous studies have shown that these 
models can result in infertility. Furthermore, they could not perpetuate hyperglycemia levels that are 
inconsistent with the reduction in fasting blood glucose started at the age of 4 wk[88].

HFD rat models can be developed for future investigations that imitate other human conditions. 
Nevertheless, the diet composition may not work well with interstudy data. To better understand 
disease pathogenesis and therapeutic approaches by employing animal models, standardization of 
induction methods and extensive phenotyping should be prioritized.

Furthermore, the HFD and STZ injection models are more expensive and require a long time to 
develop. However, animal experimental models that carry significant heterogeneity of diabetes 
pathology across a broad spectrum of phenotypes seen in patients with cognitive decline must be 
developed and improved in order to make progress in investigating the causative mechanisms of 
cognitive decline in diabetes, particularly in T2DM.
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CONCLUSION
The pathophysiology of diabetes-induced cognitive decline is still elusive. The proposed molecular 
mechanisms are derived from fluctuation in glycemic status that led to macrovascular and 
microvascular dysfunction in blood vessels, an increase in AGEs that trigger cerebral IR in the brain, the 
occurrence of neuroinflammation, and mitochondrial dysfunction that activates apoptosis. Drugs used 
to treat diabetes also may contribute to diabetes-associated cognitive decline. Furthermore, diabetic 
autonomic dysfunction can also be linked to cognitive decline, but the mechanism is still unknown. The 
pathophysiology of diabetes-induced cognitive decline may have a similar mechanism to AD, which 
includes development of IR in the brain, especially in hippocampus region; IR has been shown to affect 
neuroplasticity during cognitive processing. Further studies and the creation of reliable animal models 
to fully understand how diabetes causes cognitive decline are needed. Understanding the association 
between diabetes and cognitive decline will provide a better understanding of pathogenesis and 
cognitive decline in diabetic patients, which may assist future researchers in developing potential 
interventions to alleviate the resulting symptoms of this disease.
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Abstract
The incidence rate of diabetes in pregnancy is about 20%, and diabetes in 
pregnancy will have a long-term impact on the metabolic health of mothers and 
their offspring. Mothers may have elevated blood glucose, which may lead to 
blood pressure disease, kidney disease, decreased resistance and secondary 
infection during pregnancy. The offspring may suffer from abnormal embryonic 
development, intrauterine growth restriction, obesity, autism, and other adverse 
consequences. Resveratrol (RSV) is a natural polyphenol compound, which is 
found in more than 70 plant species and their products, such as Polygonum 
cuspidatum, seeds of grapes, peanuts, blueberries, bilberries, and cranberries. 
Previous studies have shown that RSV has a potential beneficial effect on complex 
pregnancy, including improving the indicators of diabetes and pregnancy 
diabetes syndrome. This article has reviewed the molecular targets and signaling 
pathways of RSV, including AMP-activated protein kinase, mitogen-activated 
protein kinases, silent information regulator sirtuin 1, miR-23a-3p, reactive 
oxygen species, potassium channels and CX3C chemokine ligand 1, and the effect 
of RSV on gestational diabetes mellitus (GDM) and its complications. RSV 
improves the indicators of GDM by improving glucose metabolism and insulin 
tolerance, regulating blood lipids and plasma adipokines, and modulating 
embryonic oxidative stress and apoptosis. Furthermore, RSV can ameliorate the 
GDM complications by reducing oxidative stress, reducing the effects on 
placentation, reducing the adverse effects on embryonic development, reducing 
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offspring's healthy risk, and so on. Thus, this review is of great significance for providing more 
options and possibilities for further research on medication of gestational diabetes.

Key Words: Gestational diabetes mellitus; Complication; Resveratrol; Polyphenol; Pathway

©The Author(s) 2023. Published by Baishideng Publishing Group Inc. All rights reserved.

Core Tip: Resveratrol (RSV) is a natural polyphenol compound. Previous studies have shown that RSV has 
a potential beneficial effect in complex pregnancy, including improving the indicators of diabetes and 
improving pregnancy diabetes syndrome. This article reviews the molecular targets and signaling 
pathways of RSV including AMP-activated protein kinase, mitogen-activated protein kinases, silent 
information regulator sirtuin 1, miR-23a-3p, reactive oxygen species, potassium channels and CX3C 
chemokine ligand 1, and the effect of RSV on gestational diabetes mellitus and its complications. It also 
provides more options and possibilities for further research on medication of gestational diabetes.

Citation: Ma HZ, Chen Y, Guo HH, Wang J, Xin XL, Li YC, Liu YF. Effect of resveratrol in gestational diabetes 
mellitus and its complications. World J Diabetes 2023; 14(6): 808-819
URL: https://www.wjgnet.com/1948-9358/full/v14/i6/808.htm
DOI: https://dx.doi.org/10.4239/wjd.v14.i6.808

INTRODUCTION
Diabetes is a metabolic disease caused by islet dysfunction, insulin resistance (IR), and other factors. Its 
clinical manifestation is hyperglycemia. Among them, type 1 diabetes refers to the inability of the body 
to produce enough insulin, and type 2 diabetes refers to the inability of cells to respond appropriately to 
insulin. Another type of diabetes is called gestational diabetes mellitus (GDM), which occurs when the 
blood glucose level of pregnant women is high.

Approximately 20% of all pregnancies are complicated by GDM, which includes hyperglycemia, IR, 
and fetal maldevelopment. Several factors contribute to the development of GDM, including low-grade 
inflammation in the mother and peripheral IR. Sterile inflammation and infection are key mediators of 
this inflammation and IR[1,2]. Due to the severe complications it causes to both mother and fetus, GDM 
is a serious problem worldwide[3]. At present, insulin and hypoglycemic western medicine are mainly 
used in clinical treatment. Pregnant B safe drugs and insulin treatment are mainly selected according to 
the blood glucose situation. However, long-term use of insulin will do harm to mothers and fetuses. 
Therefore, actively exploring natural non-toxic phytochemicals to prevent and treat diabetes during 
pregnancy is a future development trend.

Based on many in vitro and animal studies, dietary polyphenols have been shown to inhibit 
hyperglycemia, IR, inflammatory adipokines, and modify microRNA profile via the insulin signaling 
pathway[3]. Since the early 1990s, polyphenols have been extensively studied as adjuvant agents to 
attenuate obesity, cardiovascular disease, malignancies, neurodegenerative diseases, diabetes, and 
metabolic syndrome. Resveratrol (RSV) is one of the most studied natural polyphenols, with health 
benefits clearly demonstrated in various in vitro and in vivo models, as well as in clinical studies[4].

RSV belongs to the stilbene-type phytophenol, it is found in more than 70 plant species and their 
products such as Polygonum cuspidatum, seeds of grapes, peanuts, blueberries, bilberries, and cranberries
[5]. The trans-RSV form, which is the most organic form, and the cis-RSV form are the two forms of RSV 
(Figure 1). Accumulating evidence suggests that RSV is a biological modulator and phytoalexin with 
multi-target and multi-action characteristics. In a variety of animal and human models, RSV has 
exhibited a diverse range of biological effects including cardioprotective[6], anti-hypertensive[7,8], 
antiobesogenic[9,10], antiatherosclerotic[11-13], potent anti-inflammatory[14], and antidiabetic[15,16] 
effects.

This article summarizes the mechanism and effect of RSV on GDM and its complications.

PATHWAY AND TARGETS OF RSV IN GDM
There have been many previous studies on the signaling mechanisms involved in diabetes, but there is 
less reported on RSV signaling pathways and targets in GDM. Studies have confirmed the link between 
molecular targets and signaling pathways of RSV including AMP-activated protein kinase (AMPK), 
mitogen-activated protein kinase (MAPK), silent information regulator sirtuin 1 (SIRT1), miR-23a-3p, 
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Figure 1 Chemical structures of trans-resveratrol (3,5,4'-trihydroxystilbene) and cis-resveratrol. A: Trans-resveratrol; B: Cis-resveratrol.

reactive oxygen species (ROS), potassium (K) channels, and CX3C chemokine ligand 1 (CX3CL1) 
(Figure 2).

AMPK
AMPK, a serine/threonine kinase, is conserved in eukaryotes. Under stressful circumstances, AMPK 
controls cellular and overall body energy homeostasis. It is well established that AMPK dysregulation is 
associated with a wide range of diseases including cancer[17], diabetes[18], inflammatory illness[19], 
hypertension, and kidney disease[20], and cardiovascular disease[21]. For optimal placental differen-
tiation, nutrition transport, maternal and fetal energy homeostasis, and membrane protection during 
pregnancy, AMPK is required[22]. Metformin, RSV, and 5-aminoimidazole-4-carboxamide ribonuc-
leotide are AMPK activators that have been shown to reverse pregnancy problems such as GDM, 
preeclampsia, intrauterine growth restriction (IUGR), and premature birth in preclinical studies[23].

A previous study investigated inflammation, oxidative stress, apoptosis, and AMPK in embryos on 
embryonic day 16 in a streptozotocin (STZ)-induced gestational diabetes mouse model. RSV inhibited 
AMPK activity and expression, which further decreased expression levels of p65, IkappaB kinase beta, 
and IkappaB alpha. RSV (8.0 mg/kg) administration significantly downregulated expression levels of 
ROS, superoxide dismutase (SOD), glutathione, and catalase in oxidative stress, and also inhibited 
inflammatory factors expression such as tumor necrosis factor-alpha (TNF-α), interleukin (IL)-1β, C-
reactive protein, and IL-6. Mechanism analyses indicated that RSV inhibited inflammation of embryonic 
cells by the AMPK-mediated nuclear factor kappa B signaling pathway[24].

MAPKs
In diabetes embryos exhibiting developmental abnormalities, a study identified downregulation of 
retinoid X receptors, retinoic acid receptor (RAR) expression, DNA-binding capabilities, and 
phosphorylation of extracellular signal-regulated kinase (ERK) 1/2, but an increase of phosphorylation 
of p38 and c-Jun N-terminal kinase (JNK) 1/2. MAPKs and RARs were activated in rat embryos on 
embryonic day 12 after treatment with RSV (100 mg/kg body weight), then they displayed normalized 
patterns of p38, JNK, ERK, and RAR phosphorylation. This finding suggested that RSV might be able to 
prevent RAR and MAPK dysfunction in the embryos of a mouse model of diabetic embryopathy[25].

SIRTs
SIRTs are involved in metabolic and circulatory processes. Adipocyte differentiation and insulin 
signaling, which are controlled by forkhead box protein O1 and phosphoinositide 3-kinase (PI3K) 
signaling, both depending on SIRT1. The path mechanisms of the nonalcoholic hepatitis, cardiovascular 
illnesses, diabetes mellitus type 2, and metabolic syndrome are partially explained by the decreased 
expression of SIRTs[26].

In fetal endothelial colony-forming cells (ECFCs) and human umbilical vein endothelial cells 
(HUVECs) from pregnancies complicated by GDM, the influence of GDM on SIRT expression and 
activity was researched in a study. RSV significantly increased SIRT expression and activity in HUVECs 
and ECFCs, which may provide new therapeutic targets in the future[27,28].

Another study’s objective was to determine how oxidative stress affected the glucose transporters 
(GLUTs) and human placenta’s glucose absorption. The reduction in GLUT1 expression and glucose 
uptake caused by hypoxanthine/xanthine oxidase was eliminated in the presence of the SIRT1 activator 
RSV. The information given here shows that oxidative stress decreases GLUT1 expression and placental 
glucose absorption through a SIRT1-dependent mechanism[29]. A study of RSV’s effects on myocardial 
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Figure 2 Pathway and targets of resveratrol in gestational diabetes mellitus. AMPK: AMP-activated protein kinase; CK: Creatine kinase; CRP: C-
reactive protein; CX3CL1: CX3C chemokine ligand 1; ERK: Extracellular signal-regulated kinase; GLUT1: Glucose transporter type 1; IL: Interleukin; JNK: C-Jun N-
terminal kinase; LDH: Lactate dehydrogenase; MAPK: Mitogen-activated protein kinase; NOV: Nephroblastoma overexpressed; RAR: Retinoic acid receptor; RAX: 
RNA-dependent protein kinase-associated protein X; ROS: Reactive oxygen species; SIRT: Sirtuin; TNF-α: Tumor necrosis factor-alpha.

cell injury also showed the role of the macrophage stimulating 1/SIRT3 signaling pathway in autophagy 
in type 2 diabetic mice by reducing the body weight of db/db mice, blood glucose level, serum creatine 
kinase, and lactate dehydrogenase levels[30].

MiR-23a-3p
The low miR-23a-3p expression in diabetic patients controls adipocytes’ IR to insulin. Therefore, 
researchers hypothesized that the effect of RSV on mice with GDM was achieved by controlling miR-
23a-3p. Increasing the expression of phosphorylated Akt (p-Akt), miR-23a-3p, p-PI3K, adiponectin, 
leptin, and glucose intake, as well as decreasing the expression of nephroblastoma overexpressed 
(NOV) in IR adipocytes were the end results of this study’s additional treatment with RSV. This study 
shows that RSV can improve lipid metabolism and glucose uptake of mice with GDM and IR adipocytes 
by mediating the miR-23a-3p/NOV axis[31].

ROS
ROS are crucial components of cellular signal transduction and transcriptional regulation, but too much 
ROS production can damage proteins, cellular lipids, and nucleic acids by oxidative alteration. Indeed, 
higher levels of ROS are linked to complications induced by diabetes[32].

Transient hyperglycemia produces persistent ROS formation with decreased SOD2 expression, 
according to the findings of an in vitro study. Additionally, in vivo rat studies have demonstrated that 
maternal hyperglycemia causes amygdala SOD2 reduction, which results in autistic-like behavior in 
offspring. We came to the conclusion that hyperglycemia-mediated chronic oxidative stress and SOD2 
reduction caused by maternal diabetes cause autism-like behavior[33].

RSV showed the unusual potential to lower oxidative stress by two separate pathways in both rats 
and non-human primates since it crosses the placenta in both species. First, improving fetal oxygen 
delivery and increasing uterine arterial blood flow by working through endothelial nitric oxide 
synthase. Consequently, reducing ROS generated by hypoxia prevents oxidative damage. Second, to 
control the genes involved in the redox system directly in fetal tissues. RSV stands out as a potential 
therapy to utilize as an intervention during a pregnancy complicated by GDM because of these special 
features[34].

K channels
K channels are essential for sustaining membrane potential. Pathologies include diabetes mellitus, 
preeclampsia, premature delivery, hypertension, cardiac arrhythmia, and different cancers can all be 
caused by abnormal K channel activity or expression. K channels may be possible targets in the 
mechanism of RSV action, according to an article that discusses the pharmacological effects of RSV on 
the various types of K channels that have been identified in smooth muscle cells[35].

A significant aspect of the pathophysiology of diabetes is the apoptosis of pancreatic beta cells. A 
study found that the expression of sulfonylurea receptor 1, the regulatory subunit of pancreatic ATP-
sensitive K(+) channels, is necessary for RSV to cause beta-cell death[36].

CX3CL1
CX3CL1 contains three exons, is encoded on the long arm of human chromosome 16 at position13. The 
human placenta exhibits CX3CL1 hyperactivity that is induced by hyperglycemia. RSV has anti-inflam-
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matory and antioxidant properties that are influenced by the signaling pathways of the chemokine 
CX3CL1 and its receptor, CX3CR1. RSV (50 μm and 100 μm) administration into the perfusion fluid 
decreased TNF-α and CX3CL1 production[37].

INDICATOR IMPROVEMENT OF GDM
We found that administration of RSV works via three different ways in GDM: (1) Improving glucose 
metabolism and insulin tolerance; (2) regulating blood lipids and plasma adipokines; and (3) 
modulating embryonic oxidative stress and apoptosis[38]. RSV, a potent antioxidant and free radical 
scavenger, can improve the activities of various antioxidative enzymes and reduce the increasing of 
ROS, and then reduce the probability of complications caused by diabetes.

Improving glucose metabolism
In a study, RSV significantly enhanced the pregnant db/+ GDM mouse model’s insulin tolerance, 
glucose metabolism, and reproductive outcome (db/+ is a C57BL/KsJ-Lep mouse, which is genetic 
GDM model that closely resembled human GDM symptoms). Additionally, the researchers discovered 
that RSV reduced the symptoms of GDM by boosting AMPK activation, which in turn decreased 
glucose-6-phosphatase expression and activity in both pregnant db/+ females and their offspring[2]. 
This research provides more evidence in favor of the potential therapeutic benefits of RSV for GDM.

RSV enhanced insulin secretion and restored normoglycemia, glucose tolerance in pregnant dams. At 
15 wk of age, the obesity of the male progeny of GDM + RSV-hemifacial spasm (HFS) was lower than 
that of the offspring of GDM-HFS. Therefore, supplementation of maternal RSV during the third 
trimester of pregnancy and lactation resulted in a number of positive metabolic health outcomes for 
mothers and offspring[39]. RSV may be a better option than the GDM therapies now available.

Furthermore, a pilot study found that supplementing with trans-RSV and Revifast in addition to plus 
D-chiro-inositol/Myo-inositol improves glucose levels, total cholesterol, low-density lipoprotein (LDL), 
and triglyceride (TG) in overweight pregnant women[40]. This data show that RSV is effective not only 
for pregnant diabetes mice but also for pregnant humans.

Regulating blood lipids and plasma adipokines
The level of insulin was substantially higher in the RSV treatment group than in the GDM group; 
however, both the body weight and blood glucose level were markedly decreased. The RSV (240 mg/
kg) therapy group had lower levels of LDL cholesterol, TG, total cholesterol (TC) and leptin levels, and 
higher levels of high-density lipoprotein cholesterol, IL-6, TNF-α, and resistin than the control group. 
Adiponectin levels were markedly raised and significantly decreased in the 240 mg/kg RSV treatment 
group. RSV (240 mg/kg) was also more effective than metformin hydrochloride at regulating adipokine 
levels, controlling blood cholesterol levels, and increasing insulin secretion. RSV lowered blood glucose 
and body weight, increased insulin secretion, and controlled plasma adipokines and blood lipids in 
GDM rats in a dose-dependent manner[41].

A study found that maternal RSV therapy reduced the increase in leptin/soluble leptin receptor ratio 
caused by maternal high-fat (HF) exposure during pregnancy and changed the expression levels of 
genes for essential fatty acid manufacturing enzymes in the offspring. Thus, to lessen the harmful effects 
of GDM, maternal RSV administration may be employed[42].

In a study of human mature adipocytes, after the fat cells were incubated with 100 μM RSV (45 min to 
4 h), RSV increased in triacylglycerol decomposition induced by isoproterenol stimulation, and showed 
an impairment of insulin antilipolytic action, after which the production of fat was significantly 
impaired[43].

Modulating embryonic oxidative stress and apoptosis
According to a study, RSV may be a useful treatment option for women who are pregnant with diabetes 
because it can improve glucose and insulin levels, improve glucose and lipid metabolism, prevent 
apoptosis, and reduce inflammation and embryonic oxidative stress in mice with GDM[24].

In ob/ob mice given RSV, plasma levels of insulin and testosterone levels, whereas the homeostatic 
index of resistance increased. After RSV therapy in obese mice, TNF-α and IL-6 levels returned to nearly 
normal levels. RSV administration led to considerably more oocytes being harvested in wild-type mice
[44].

Coating chitosan with RSV bioactive compounds is an important way for the management of GDM. 
The treatment of RSV-zinc oxide complex coated chitosan (CS-ZnO-RS) maintained the lipid content 
and dramatically reduced the blood glucose concentrations of GDM induced rats. Additionally, the 
levels of inflammation-related components [monocyte chemoattractant protein-1 (MCP-1) and IL-6] as 
well as endoplasmic reticulum stress (p-PERK, p-eIF2α, p-IRE1α, and GRP78) were decreased by CS-
ZnO-RS[45].
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In a study, RSV treatment significantly improved defects in the glucose uptake and insulin signaling 
pathway caused by lipopolysaccharide, TNF-α, and poly (I:C) and significantly decreased the secretion 
and expression of pro-inflammatory cytokines IL-1β, IL-6, IL-1α, and pro-inflammatory chemokines 
MCP-1 and IL-8 in omental, human placenta, and subcutaneous adipose tissue. Taken together, these 
findings indicated that RSV lowered IR and inflammation generated by chemical and microbial agents, 
and RSV might be a helpful prophylactic treatment for pregnancies complicated by IR and inflammation
[46].

AMELIORATION OF GDM COMPLICATIONS
Although pregnancy causes IR condition, it is natural and aids in the provision of glucose to the fetus's 
circulation and diffusion-mediated transfer of glucose into the placenta[47]. Multiple pregnancy 
complications can occur if blood glucose concentrations are not properly managed, and this suboptimal 
in utero environment is likely to affect fetal growth at critical developmental windows. Important organ 
systems undergo harmful structural changes in utero that last into adulthood and put offspring at a 
higher risk of developing non-communicable chronic metabolic disorders like obesity, diabetes and 
cardiovascular disease[34].

Many bioactive redox modulators are used during pregnancy; for example, vitamin C and vitamin E 
supplements can reduce the risk of pre-eclampsia[48], maternal treatment with a mitochondria-targeted 
antioxidant can provide protection during hypoxic pregnancy[49], and lazaroid (lipid peroxidation 
inhibitor) administered along with a low protein diet prevents blood pressure elevation[50]. Also, 
maternal supplementation with RSV has been used as a therapeutic agent for pregnancy complications 
in rodent models such as preeclampsia[51], GDM, and fetal growth restriction[52]. It has been reported 
that the safe dose of RSV for humans is 5 g per day[53]. Relevant studies about RSV intake and the effect 
are summarized in Table 1.

Reducing oxidative stress
RSV may act directly on diabetic pregnant embryos through normalizing oxidative stress induced by 
hyperglycemia[54]. Apoptosis induced by oxidative stress is related to diabetic embryopathies[55]. In 
embryos, RSV can modulate oxidative stress marker normalization, including increases in total thiol 
concentrations, lipid peroxidation and decreased amounts of glutathione associated with 
hyperglycemia. The weakening of oxidative stress further decreased and reduced the chance of 
apoptosis as well as embryonic malformations[38].

RSV was discovered to stop oxidative stress and apoptosis in developing embryos. In a rodent model 
of diabetic embryopathy, RSV (100 mg/kg body weight) administration improved lipid (triglyceride 
60.64%, cholesterol 41.74%), and the glucose (33.32%) profile of the diabetic dams, demonstrating the 
protective effect of RSV on diabetic pregnancy[54]. Therefore, RSV's antioxidant capability is a desirable 
property for reducing oxidative stress during challenging pregnancies and thereby breaking the 
intergenerational cycle of chronic disease.

Using STZ at a dose of 50 mg/kg to cause diabetes in pregnant rats on day 4, followed by 100 mg/kg 
of RSV on days 8 to 12 to promote neurulation. Fetuses were taken on the 19th day of pregnancy and 
submitted to morphologic investigation. The activities of the glutathione peroxidase, superoxide 
dismutase, and scavenging enzymes catalase in the fetal liver were also assessed. RSV has been 
demonstrated with embryo protective effects that are mediated by reducing the oxidative stress brought 
on by maternal hyperglycemia[56].

By administering 100 μM tert-butylhydroperoxide (tert-BOOH) for 24 h, oxidative stress was created 
in a human syncytiotrophoblast (STB) cell model, the BeWo cell line. The reduced STB glucose buildup 
was accompanied by an increase in transepithelial permeability. The inhibitory effect of tert-BOOH on 
2-cleoxyglucose was fully reversed by RSV thanked to a particular effect on transport mediated by 
glucose transporters[57]. This result demonstrated that RSV may influence the results of pregnancy 
disorders linked to oxidative stress.

Reducing adverse effects on placentation
The key players in placentation, an early process essential for placental growth and function that 
involves an appropriate invasion and through remodeling of the maternal spiral arteries during early 
pregnancy, are extravillous trophoblasts (EVTs). The finding of a study indicated that oxidative stress 
interferes with EVT features necessary for the placentation process, which may help explain the link 
between pregnancy disorders and oxidative stress[58].

Using a first trimester extravillous human trophoblast cell line (HTR8/SVneo cells) as a cell model, 
our goal was to examine the impact of high levels of leptin, insulin, TNF-α, and glucose (indicators of 
diabetes in pregnancy), on the process of placentation. Therefore, insulin may have an impact on 
placentation[59]. Because placental formation was affected by leptin and insulin, so we can use RSV to 
regulate insulin release, thus protecting the placenta.
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Table 1 Relevant studies about resveratrol intake and the effect

Model Species Resveratrol 
consumption

Duration of 
treatment Maternal outcomes Offspring outcomes Ref.

C57BL/6 Mice 8.0 mg/kg 16 gestation 
days

Inhibit expression levels of 
inflammatory factors, IL-1
β, IL-6, CRP and TNF-α↓

[24]

C57BL/KsJ-, Lepdb/+ 
(db/+)

Mice 10 mg/kg During 
pregnancy

Glucose metabolism, 
insulin tolerance↑, glucose-
6-phosphatase↓

[2]

C57BL/6 Mice 0.20% 18 gestation 
days

p-Akt, miR-23a-3p, p-
PI3K, adiponectin, leptin↑

[31]

Female ob/ob mice, 
female C57BL/6J mice

Mice 3.75 mg/kg 20 d Plasma insulin and T 
levels↓, IL-6, TNF-α levels 
reverted back to normalcy

[44]

Female Sprague-Dawley 
rats

Rats 100 mg/kg 10 gestation 
days

p38, JNK, ERK, and RAR 
phosphorylation return normal

[25]

Female Sprague-Dawley 
rats

Rats 240 mg/kg 12 gestation 
days

TC, TG, LDL-C, leptin, 
resistin, TNF-α, and IL-6↓, 
HDL-C, adiponectin↑

[41]

Female Sprague-Dawley 
rats

Rats 147 mg/kg 3-wk lactation 
period

Blood glucose levels↓, 
insulin secretion↑

Male offspring obese↓, hepatic 
steatosis, insulin resistance, glucose 
intolerance and dysregulated 
gluconeogenesis↓

[39]

Pregnant rats Rats 100 mg/kg 10 gestation 
days

Glucose and lipid profile↑ Embryo weight↑, rump length, 
somite number↓

[54]

Pregnant rats Rats 100 mg/kg 4 d (gestation 
days 8th to 12th)

- Teratogenic effects↓, scavenging 
enzymes catalase, superoxide 
dismutase, glutathione peroxidase↓

[56]

Hypoxia-induced rat 
model of IUGR

Rats 4 g/kg 9 wk Intra-abdominal fat deposition, 
accumulation of TG and ceramides↓
, plasma lipid profile↑

[62]

Chicken embryo Chicken 1 nM/egg 5 embryonic 
days

Death rate, developmental damage, 
vessel injury↓

[61]

Between the 24th and 28th 
weeks’ gestation

Human 80 mg/day 60 d Total cholesterol, HDL, 
LDL, triglycerides, and 
glucose blood levels↓

[40]

Mature adipocytes Human 100 μM 45 min to 4 h Isoprenaline stimulation↑, 
impaired insulin antili-
polytic action

[43]

Placenta, omental and 
subcutaneous adipose 
tissue and skeletal muscle

Human 200 μM 20 h IL-6, IL-1α, IL-1β, pro-
inflammatory chemokines 
IL-8, MCP-1↓

[46]

Heparinized placentae Human 50 and 100 μM, 5 mL 
boluses at 30 min 
intervals

150 min CX3CL1, TNF-α↓ [37]

CRP: C-reactive protein; CX3CL1: CX3C chemokine ligand 1; ERK: Extracellular signal-regulated kinase; HDL: High-density lipoprotein; IL: Interleukin; 
IUGR: Intrauterine growth restriction; JNK: C-Jun N-terminal kinase; LDL: Low-density lipoprotein; MCP-1: Monocyte chemoattractant protein-1; RAR: 
Retinoic acid receptor; TC: Total cholesterol; TG: Triglyceride; TNF-α: Tumor necrosis factor-alpha.

Reducing adverse effects on embryonic development
Given that organogenesis and embryonal development are the most delicate stage of development, it is 
recognized that diabetes may impair these processes. Potential cause of the observed embryonal 
deformity in diabetic dams is oxidative stress induced by hyperglycemia, which results in apoptosis[4]. 
Numerous complications might arise during a diabetic pregnancy, particularly about embryo 
development. Inadequate or incomplete closure of the neural tube, impaired rate of neurogenesis, 
developmental delay, and failure to generate the right neural connections are a few examples of 
embryonic impairments[60]. Furthermore, several upcoming neurological, physical, and psychiatric 
illnesses may have their roots in these developmental problems. Diabetic malformations are more likely 
to happen in the first trimester.
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In this work, the impact of RSV on the development of chicken embryos in conditions of high glucose 
and the RSV's underlying mechanism were examined. At the embryonic day 1, the high glucose concen-
tration to chicken embryos caused growth retardation, stillbirth, and poor yolk sac blood vessel 
development. RSV supplementation had a substantial impact on reducing developmental harm, 
mortality, and vascular injury before glucose exposure. Aside from that, exposure to high glucose levels 
resulted in oxidative stress, which RSV might treat. Furthermore, excessive glucose dramatically 
reduced the neuronal developmental marker paired box 3, which was thereafter restored by RSV. RSV 
also interfered with gene expression that is controlled by the cell cycle. This study discovered a link 
between hyperglycemia-induced embryonic damage and RSV, which raised the possibility of RSV 
having a protective impact[61].

Reducing offspring's healthy risk
A study showed that RSV administration improved the plasma lipid profile, decreased intra-abdominal 
fat deposition, and reduced accumulation of TG and ceramides in the tissues of offspring with IUGR. 
Additionally, RSV reduced glucose intolerance and IR, decreased Akt signaling in the skeletal muscle 
and liver of offspring with IUGR, and activated AMP-activated protein kinase, all of which may have 
led to better metabolic parameters in IUGR rats treated with RSV. The findings implied that early 
postnatal RSV treatment could enhance the metabolic profile of HF-fed infants born from IUGR-
complicated pregnancies[62].

DISCUSSION
Compared with synthetic drugs, RSV may become a safer and more effective natural drug to treat or 
prevent pregnancy diabetes and its complications. However, due to the low bioavailability and water 
solubility of RSV (< 0.05 mg/mL), we can start from two aspects: Modifying its structure to find 
derivatives with higher activity or developing new dosage forms through new carriers. At present, 
various RSV derivatives have been widely studied, including methoxylated, hydroxylated and 
halogenated derivatives[63,64]. In the preparation research, chitosan has been used to encapsulate CS-
ZnO-RSV[45], a new RSV nano delivery system based on lipid nanoparticles[65], galactosylated poly 
lactic-co-glycolic acid nanoparticles for the oral delivery of RSV[66], and the microparticulate system for 
delivering liquid and solid microparticles of RSV[67]. These research bases provide the goal and 
direction for continue study of RSV absorption in depth.

In addition, RSV could reduce steroidogenesis in rat ovarian theca-interstitial cells by inhibiting of 
Akt/protein kinase B signaling pathway[68], and might enhance normal-weight females' responses to 
controlled ovarian hyperstimulation by RSV's anti-inflammatory, insulin-sensitizing, and antihyper-
androgenism mechanisms[36]. Also there were evidences showed that RSV attenuated lipid 
peroxidation, sperm DNA damage[69] and alleviated testicular cell apoptosis in type 1 diabetes mice
[70]. These observations demonstrated RSV's therapeutic potential for preserving ovarian reserve and 
male sperm quality, we can further increase the research on the beneficial effects of RSV on female and 
male reproduction, and believe that it is a good direction for the research of RSV.

CONCLUSION
As a natural polyphenol compound, RSV has the advantages of low side effects, wide sources, low 
price, and low safety risk. RSV could improve the indicators of GDM by improving glucose metabolism 
and insulin tolerance, regulating blood lipids and plasma adipokines, and modulating embryonic 
oxidative stress and apoptosis. Furthermore, RSV could ameliorate the GDM complications by reducing 
oxidative stress, reducing the effects on placentation, reducing the adverse effects on embryonic 
development, reducing offspring's healthy risk and so on. RSV has high application value in pregnancy 
diabetes and its complications, some of its targets are directly affected, while others are modulated 
indirectly, through changes in their expression levels. This may not only be the advantage of RSV in 
treating diabetes, but also may bring some unexpected side effects. Therefore, in order to meet the needs 
of users, it is still necessary to conduct in-depth research on RSV in the process of use.
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Abstract
BACKGROUND 
The endoplasmic reticulum (ER) is closely related to a wide range of cellular 
functions and is a key component to maintain and restore metabolic health. Type 
2 diabetes mellitus (T2DM) is a serious threat to human health, but the ER stress 
(ERS)-related mechanisms in T2DM have not been fully elucidated.

AIM 
To identify potential ERS-related mechanisms and crucial biomarkers in T2DM.

METHODS 
We conducted gene set enrichment analysis (GSEA) and gene set variation 
analysis (GSVA) in myoblast and myotube form GSE166502, and obtained the 
differentially expressed genes (DEGs). After intersecting with ERS-related genes, 
we obtained ERS-related DEGs. Finally, functional analyses, immune infiltration, 
and several networks were established.

RESULTS 
Through GSEA and GSVA, we identified several metabolic and immune-related 
pathways. We obtained 227 ERS-related DEGs and constructed several important 
networks that help to understand the mechanisms and treatment of T2DM. 
Finally, memory CD4+ T cells accounted for the largest proportion of immune 
cells.
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CONCLUSION 
This study revealed ERS-related mechanisms in T2DM, which might contribute to new ideas and 
insights into the mechanisms and treatment of T2DM.

Key Words: Endoplasmic reticulum stress; Type 2 diabetes mellitus; Biomarkers; Memory CD4+ T cells
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Core Tip: This study revealed endoplasmic reticulum stress-related mechanisms in type 2 diabetes mellitus 
(T2DM), which might contribute to new ideas and insights for the mechanisms and treatment of T2DM.
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INTRODUCTION
Diabetes is a chronic disease that occurs either when the pancreas does not produce enough insulin or 
when the body cannot effectively use the insulin it produces[1,2]. Hyperglycemia is a common effect of 
uncontrolled diabetes and over time leads to serious damage to many of the body’s systems, especially 
the heart, blood vessels, eyes, kidneys, and nerves[3,4]. Recently, the estimated prevalence of diabetes 
among children, adolescents, and adults has increased[5,6]. The majority of people with diabetes have 
type 2 diabetes mellitus (T2DM)[7]. Simple lifestyle measures have been shown to be effective in 
preventing or delaying the onset of T2DM[8]. Recently, with the in-depth understanding of the 
mechanisms of T2DM, many new drugs, such as sodium-glucose cotransporter-2 inhibitors, glucagon-
like peptide-1 analogs, and dipeptidyl peptidase-4 inhibitors, have been gradually applied to clinical 
practice and achieved good results[9-11]. However, the residual risk of these populations remains high, 
especially when combined with other diseases[12].

The endoplasmic reticulum (ER) is closely related to a wide range of cellular functions and is a key 
component to maintain and restore metabolic health[13]. Protein handling, modification, and folding in 
the ER are tightly regulated processes that determine cell function, fate, and survival[14]. Many genetic 
and environmental damages hinder the ability of cells to correctly fold and post-translationally modify 
secreted and transmembrane proteins in the ER, resulting in the accumulation of misfolded proteins in 
this organelle, which is called ER stress (ERS)[15]. Chronic ERS is becoming a key factor in more human 
diseases, including T2DM[16,17]. Recently, the biological mechanisms of ERS in T2DM have been 
gradually explored. YIPF5 mutations can disrupt the ER-to-Golgi trafficking, thereby resulting in T2DM
[16]. Inositol-requiring enzyme 1alpha upregulates miR-200a degradation and stimulates TXINP/
NLRP3-pathway-mediated pyroptosis and renal damage in T2DM[18]. Mfn2 plays an important role in 
ERS, and Mfn2 silencing prevents mitochondrial Ca2+ overload-mediated mitochondrial dysfunction
[19]. ATF5 is a regulator of ERS and β-cell apoptosis in different models of diabetes mellitus[20]. 
Lactogens modulate the ERS pathway, causing enhanced β-cell survival and reduced T2DM incidence
[21]. The development of ERS for the treatment of T2DM has also emerged in clinical trials. A 
randomized placebo-controlled crossover trial indicated that decreased ERS may lead to improvement 
of insulin sensitivity mediated by hyperbaric oxygen[22]. Nevertheless, the role of ERS in T2DM, 
especially the related markers and mechanisms, is still lacking.

Here, we conducted gene set enrichment analysis (GSEA) and gene set variation analysis (GSVA) in 
both proliferating myoblasts and differentiated myotubes, which are important in T2DM. Then, the 
differentially expressed genes (DEGs) and ERS-related DEGs between T2DM patients and healthy 
populations were investigated, sequentially. Furthermore, functional enrichment analysis [Gene 
Ontology (GO), and Kyoto Encyclopedia of Genes and Genomes (KEGG], immune infiltration analysis, 
and three networks [transcription factor (TF)–mRNA, miRNA–mRNA, and drug–mRNA] were detected 
to explore the mechanisms and potential therapeutic agents of ERS in T2DM. The flow chart is shown in 
Figure 1.
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Figure 1 Study flow chart. GSEA: Gene set enrichment analysis; GSVA: Gene set variation analysis; ER: Endoplasmic reticulum; DEG: Differentially expressed 
genes; PPI: Protein–protein interaction; TF: Transcription factor.

MATERIALS AND METHODS
Acquisition and processing of raw data
The raw data of the microarray expression dataset GSE166502[23] and its annotation file GPL10558 
(Illumina HumanHT-12 V4.0 Expression BeadChip) were obtained from Gene Expression Omnibus[24]. 
GSE166502 holds the mRNA expression in proliferating myoblasts and differentiated myotubes in 
patients with T2DM (n = 13) or controls (n = 13).

GSEA and GSVA
We selected and downloaded c2.cp.v7.2.symbols.gmt gene set data through the GSEA database[25], and 
conducted GSEA on the proliferating myoblasts and differentiated myotubes through the clusterProfiler 
package (version 3.14.3)[26]. The statistical process of GSEA was to calculate the enrichment score, 
estimate the significance, and correct the multiple hypothesis tests. We also selected the same data from 
GSEA and conducted GSVA. The different pathways were obtained through the limma package (version 
3.42.2)[27].

Identification of DEGs
After the processing of raw data, we analyzed the data using the limma package with a fold change and 
P for DEGs. The threshold of DEGs was |log2fold change| > 0.263 and P < 0.05 as described previously, 
and the results were visualized as a heat map and volcano map using the pheatmap package (version 
1.0.12).

Acquisition of ERS-related DEGs
GeneCards provides annotated and predicted human gene information, which integrates gene data 
from about 150 network sources, including genomics, transcriptomics, proteomics, genetics, and clinical 
and functional information[28]. In this study, ERS-related genes were downloaded through GeneCards 
with “endoplasmic reticulum stress” as the search keyword. Taking the intersection of DEGs and ERS-
elated genes, we got the ERS-related DEGs and the Venn diagram was drawn through the Venndiagram 
package (version 1.6.20).

Functional enrichment analysis
GO and KEGG pathway analysis can contribute to the interpretation of system-level data and enable 
discoveries[29,30]. In this work, GO terms and KEGG analysis of ERS-related DEGs and potential 
molecular complex were carried out using the clusterProfiler package with P < 0.05, and then visualized 
by the ggplot2 package (version 3.3.3), as described previously[31].

Protein–protein interaction analysis
Protein–protein interaction (PPI) is one of the cores of cellular processing. The analysis of PPI makes the 
relationships among proteins clear and helps the function explanation of potential protein complexes or 
functional modules. In this work, PPI information was surveyed using the String database (version 11.0)
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[32]. The PPI network of ERS-related DEGs was uploaded to Cytoscape (version 3.8.2)[33] and the 
NetworkAnalyzer plugin was used to further processing and analysis. The cytoHubba plugin was used 
to select the top 20 key genes[34].

Network analysis
Transcriptional Regulatory Relationships Unraveled by Sentence-based Text mining (TRRUST, version 
2) manually curated database of human and mouse transcriptional regulatory networks[35]. Current 
TRRUST contains 8444 and 6552 TF-target regulatory relationships of 800 human and 828 mouse TFs. 
TRRUST database also provides information on the mode of regulation (activation or repression). 
miRWalk (version 3.0) stores predicted data obtained with a machine-learning algorithm including 
experimentally verified miRNA–target interactions[36]. The drug–gene interaction database (DGIdb, 
version 4.2.0) builds drug–gene interactions mined from DrugBank, PharmGKB, Chembl, Drug Target 
Commons, Therapeutic Target Database, and others[37]. DGIdb contains > 40000 genes and > 10000 
drugs involved in > 100000 drug–gene interactions or belonging to one of 42 potentially druggable gene 
categories. We obtained the TFs, miRNAs, and drugs of ERS-related DGEs, respectively, and then 
constructed the regulation relationship networks through Cytoscape.

Correlation analysis of immune infiltration
CIBERSORT (version 1.03) calculates the proportion of different types of cells according to LM22[38]. 
The proportion of different cell types can be calculated after the nonnegative matrix decomposition of 
the expression matrix. In this study, the immune infiltration of GSE166502 was analyzed by 
CIBERSORT, and the infiltration of 22 kinds of immune cells in the sample was analyzed. Finally, we 
analyzed the correlation between the expression of the top 20 key genes in the PPI network and the 
immune infiltration.

RESULTS
GSEA and GSVA
Through GSEA, we found that neuroactive ligand–receptor interaction, hypertrophic cardiomyopathy, 
DNA replication, cell cycle, and cardiac muscle contraction were the top five pathways in proliferating 
myoblasts (Figure 2A–F). DNA replication, cell cycle, cardiac muscle contraction, neuroactive 
ligand–receptor interaction, and hypertrophic cardiomyopathy were activated, whereas glycosa-
minoglycan biosynthesis heparan sulfate, glycosaminoglycan biosynthesis chondroitin sulfate, glycosa-
minoglycan degradation, other glycan degradation, and lysosome were suppressed (Figure 2G). Other 
pathways, such as arachidonic acid metabolism, mismatch repair, P53 signaling pathway, metabolism of 
xenobiotics by cytochrome P450, and prion diseases, were also enriched (Figure 2H). Similarly, we 
found that viral myocarditis, steroid hormone biosynthesis, hematopoietic cell lineage, focal adhesion, 
and extracellular matrix (ECM) receptor interaction were the top five pathways in differentiated 
myotubes (Figure 2I–N). Neuroactive ligand–receptor interaction, gap junction, pathways in cancer, 
focal adhesion, and ECM receptor interaction were activated, whereas steroid hormone biosynthesis, 
cardiac muscle contraction, viral myocarditis, hematopoietic cell lineage, and steroid biosynthesis were 
suppressed (Figure 2O). Vascular endothelial growth factor (VEGF) signaling pathway, cell adhesion 
molecules cams, mitogen-activated protein kinase (MAPK) signaling pathway, and apoptosis were also 
enriched (Figure 2P).

Through GSVA, eight pathways were enriched in proliferating myoblasts (Figure 3A and B). RNA 
degradation, DNA replication, and mismatch repair were upregulated, and glycosaminoglycan biosyn-
thesis chondroitin sulfate, other glycan degradation, lysosome, glycosaminoglycan biosynthesis heparan 
sulfate, and steroid biosynthesis were downregulated. Two pathways (steroid hormone biosynthesis 
and steroid biosynthesis) were enriched in differentiated myotubes (Figure 3C and D).

Identification of ERS-related DEGs
We performed DEG analysis on proliferating myoblasts and differentiated myotubes. We obtained 426 
DEGs (188 upregulated and 238 downregulated, Figure 4A and B) and 281 DEGs (135 upregulated and 
146 downregulated, Figure 4C and D) from proliferating myoblasts and differentiated myotubes, 
respectively. Through intersecting with 6893 ERS-related genes, we obtained 227 ERS-related DEGs 
(Figure 4E).

Function enrichment analysis
GO terms include biological processes, molecular functions, and cellular components. There were 227 
ERS-related DEGs enriched in 875 biological process terms, 103 molecular function terms, and 81 
cellular component terms. The results indicated that numerous biological processes were involved in 
extracellular structure organization, collagen fibril organization, ECM organization, cellular response to 
external stimulus, response to ketone, cellular response to fatty acid, cellular response to prostaglandin 
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Figure 2 Gene set enrichment analysis. A: Top five gene set enrichment analysis in proliferating myoblasts; B: Neuroactive ligand–receptor interaction; C: 
Hypertrophic cardiomyopathy; D: DNA replication; E: Cell cycle; F: Cardiac muscle contraction; G: Bubble plot in proliferating myoblasts; H: Ridgeline plot in 
proliferating myoblasts; I: Top 5 gene set enrichment analysis in differentiated myotubes; J: Viral myocarditis; K: Steroid hormone biosynthesis; L: Hematopoietic cell 
lineage; M: Focal adhesion; N: Extracellular matrix–receptor interaction; O: Bubble plot in differentiated myotubes; P: Ridgeline plot in differentiated myotubes.
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Figure 3 Gene set variation analysis. A: Volcano plot of proliferating myoblasts; B: Volcano plot of differentiated myotubes; C: Heat map of proliferating 
myoblasts; D: Heat map of differentiated myotubes.

stimulus, response to fatty acid, response to mechanical stimulus, respiratory tube development, cellular 
response to extracellular stimulus, response to alcohol, and cell–substrate adhesion (Figure 5A). The 
results indicated that numerous cellular components were involved in the collagen-containing ECM, 
ECM component, collagen trimer, ER lumen, ER–Golgi intermediate compartment, Golgi-associated 
vesicle membrane, the complex of collagen trimers, membrane raft, membrane microdomain, membrane 
region, phagocytic vesicle, neuronal cell body, Golgi-associated vesicle, focal adhesion, cell–substrate 
adherens junction, cell–substrate junction, postsynaptic endosome, transport vesicle, COPII-coated ER 
to Golgi transport vesicle, and ER to Golgi transport vesicle membrane (Figure 5B). The results indicated 
that numerous molecular functions were involved in prostaglandin receptor activity, ECM structural 
constituent, prostanoid receptor activity, icosanoid receptor activity, growth factor binding, ECM 
structural constituent conferring tensile strength, platelet-derived growth factor binding, 
transmembrane receptor protein kinase activity, heat shock protein binding, sulfur compound 
transmembrane transporter activity, transmembrane receptor protein tyrosine kinase activity, 
transmembrane-ephrin receptor activity, oxidoreductase activity, ephrin receptor activity, virus receptor 
activity, and hijacked molecular function (Figure 5C). Through KEGG function enrichment analysis, 26 
pathways were significant, such as axon guidance, protein digestion and absorption, focal adhesion, 
protein processing in the ER, cortisol synthesis and secretion, Fc gamma R-mediated phagocytosis, renin 
secretion, glutathione metabolism, AMPK signaling pathway, ECM–receptor interaction, DNA 
replication, calcium signaling pathway, thyroid cancer, aldosterone synthesis, and secretion, lipid and 
atherosclerosis, P53 signaling pathway, other glycan degradation, biosynthesis of amino acids, ABC 
transporters, phospholipase D signaling pathway, and steroid biosynthesis (Figure 5D).

PPI analysis
The network consisted of 227 nodes and 416 edges (Figure 6A). We used the NetworkAnalyzer plugin to 
calculate the degree and combine the score (Figure 6B). We obtained 20 key genes (2 modules with 67 
interactions) via the cytoHubba plugin (Table 1 and Figure 6C).
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Figure 4 Endoplasmic reticulum stress-related differentially expressed genes. A: Heat map of proliferating myoblasts; B: Volcano plot of proliferating 
myoblasts; C: Heat map of differentiated myotubes; D: Volcano plot of differentiated myotubes; E: Endoplasmic reticulum stress-related differentially expressed 
genes. ER: Endoplasmic reticulum.

Network analysis
We obtained 27 TFs and 49 target genes from TRRUST to build the TF–mRNA network (Figure 7A). We 
obtained 51 miRNAs and 25 target genes from miRWalk to build the miRNA–mRNA network 
(Figure 7B). We also obtained 59 drugs and 22 target genes from DGIdb to build the drug–mRNA 
network (Figure 7C).
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Figure 5 Functional enrichment analysis. A: Gene Ontogeny biological processes; B: Gene Ontogeny cellular components; C: Gene Ontogeny molecular 
function; D: Kyoto Encyclopedia of Genes and Genomes.

Correlation analysis of immune infiltration
We demonstrated that memory CD4+ T cells accounted for the largest proportion of 22 immune cell 
types (Figure 8A). Figure 8B showed the distribution of different immune cells in each sample. 
Moreover, we evaluated the correlation between immune infiltration and each sample (Figure 8C). In 20 
key genes, the enrichment degree of each immune cell was different (Figure 8D).

DISCUSSION
T2DM is a complex metabolic disease driven by interactions among diverse environmental and genetic 
susceptibilities[39]. Although environmental and epigenetic factors clearly play a contributory role in 
the pathogenesis of T2DM, genetic factors appear to be the primary contributors to the recent rise in 
T2DM prevalence[40]. More studies have shown that ERS is involved in T2DM[41]. In the present study, 
we first explored the potential pathways in proliferating myoblasts and differentiated myotubes, and 
obtained 227 ERS-related DEGs in T2DM, which may contribute to the occurrence and development of 
T2DM. Later enrichment analysis, immune infiltration, TF–mRNA network, and miRNA–mRNA 
network revealed the mechanisms of T2DM, which provided a way for clinical treatment of T2DM. In 
particular, the drug–mRNA network provided new insights and perspectives into the therapeutic 
reagents.

In GSEA and GSVA, we confirmed that DNA replication, cell cycle, neuroactive ligand–receptor 
interaction, glycosaminoglycan biosynthesis heparan sulfate, glycosaminoglycan biosynthesis 
chondroitin sulfate, glycosaminoglycan degradation, other glycan degradation, lysosome, arachidonic 
acid metabolism, mismatch repair, metabolism of xenobiotics by cytochrome P450, steroid hormone 
biosynthesis, focal adhesion, and ECM–receptor interaction, neuroactive ligand–receptor interaction, 
gap junction, steroid biosynthesis, and cell adhesion molecules were enriched. Moreover, the P53 
signaling pathway, VEGF signaling pathway, MAPK signaling pathway, and apoptosis may contribute 
to T2DM. Previous studies have indicated that these biological processes are related to T2DM[42-44]. 
SRT2104 enhanced renal SIRT1 expression and activity, deacetylated P53, and activated NRF2 
antioxidant signaling, providing remarkable protection against T2DM[45]. The p-ERK/p-JNK/VEGF/
PKC signaling pathway may play an important role in pathological T2DM conditions[46]. TREM-2 
negatively regulates p38 MAPK-mediated inflammatory response in T2DM[47]. These previous findings 
are consistent with our findings in this study.

We identified 227 ERS-related DEGs and later function enrichment analysis demonstrated that the 
enriched biological processes and pathways are highly consistent with the previous GSEA and GSVA 
results. The immune infiltration analysis revealed that memory CD4+ T cells accounted for the largest 
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Figure 6 Protein–protein interaction network. A: Protein–protein interaction (PPI) network; B: PPI network by NetworkAnalyzer; C: PPI network of 20 key genes.
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Table 1 20 key genes

Gene Description MCC-score Degree Closeness Betweenness
COL3A1 Collagen Type III Alpha 1 Chain 11179 16 64.5 1189.37723

COL6A3 Collagen Type VI Alpha 3 Chain 11168 12 62.03333 567.89507

COL4A1 Collagen Type IV Alpha 1 Chain 11167 12 59.91667 480.86034

COL4A2 Collagen Type IV Alpha 2 Chain 10806 10 56.23333 84.68666

COL11A1 Collagen Type XI Alpha 1 Chain 10800 9 54.5 18.34225

PLOD2 Procollagen-Lysine,2-Oxoglutarate 5-Dioxygenase 2 10326 10 56.88333 112.4573

COL22A1 Collagen Type XXII Alpha 1 Chain 10080 8 51.80952 4.88333

SERPINH1 Serpin Family H Member 1 6001 10 60.3 1308.02191

P4HA1 Prolyl 4-Hydroxylase Subunit Alpha 1 5166 9 55.07857 68.74063

MCM7 Minichromosome Maintenance Complex Component 7 1804 14 68.24286 1418.45764

MCM2 Minichromosome Maintenance Complex Component 2 1801 13 63.94524 784.74991

MSH2 MutS Homolog 2 1645 12 62.22619 646.66407

TIPIN TIMELESS Interacting Protein 1596 10 54.1631 37.22401

SMC2 Structural Maintenance of Chromosomes 2 1567 10 53.77976 230.10198

POLA2 DNA Polymerase Alpha 2, Accessory Subunit 1560 8 52.6131 4.22778

ESPL1 Extra Spindle Pole Bodies Like 1, Separase 962 10 56.52976 455.86734

POSTN Periostin 860 15 66.51667 1995.77049

SKP2 S-Phase Kinase Associated Protein 2 771 13 64.5619 1861.813

TRIM32 Tripartite Motif Containing 32 722 8 54.52976 282.93712

SIAH2 Siah E3 Ubiquitin Protein Ligase 2 722 8 57.06905 982.96735

MCC: McCormick.

proportion of 22 immune cell types. T2DM patients are present with self-reactive T cells with a memory 
phenotype[48]. The memory CD4+ T cells develop directly from effector cells and thereby preserve 
features of their effector precursors are reserved[49]. Depending on the immune context, memory CD4+ 
T cells can contribute to immune protection, pathology, or tissue remodeling[50]. The memory CD4+ T 
cells could act as immunological markers for predicting change in β-cell function in T2DM[51]. TFs 
recognize specific DNA sequences to control chromatin and transcription, forming a complex system 
that guides the expression of the genome[52]. Here we obtained 27 TFs, which may contribute to T2DM. 
MiRNA is a class of endogenous noncoding RNA encoding 19–25 nucleotides, which is involved in the 
post-transcriptional regulation of genes[53]. Most of them have high sequence conservation, expression 
timing, and tissue specificity[54]. Recent studies have shown that miRNA is involved in a variety of 
regulatory pathways, we here identified 51 miRNAs to further explain the mechanisms of T2DM. 
Importantly, we also established a drug–mRNA network map to provide new ideas and directions for 
the treatment of T2DM. Immune infiltration plays an important role in the occurrence and development 
of T2DM[55,56]. The memory CD4+ T cells play central roles in immunity in health and disease[57]. We 
also explored the relationship between immune infiltration and T2DM, and we found that memory 
CD4+ T cells were the most numerous types of immune cells in T2DM. Previous studies indicated that 
CD4+ T cells contribute to the destruction of insulin-producing β-cells in type 1 diabetes mellitus[58,59], 
which confirmed our results.

This study has some limitations. First, all the results of the analysis were derived from previous data. 
Despite the efforts we have made in the present, our results still need verification experimentally and 
clinically. Moreover, the TF–mRNA, miRNA–mRNA, and drug–mRNA networks we built in this study 
provided some new ideas and insights for the mechanisms and treatment of T2DM. However, this is 
only the beginning, and more work is still needed in the follow-up.
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Figure 7 Networks. A: Transcription factor–mRNA network; B: miRNA–mRNA network; C: Drug–mRNA network.

CONCLUSION
This study revealed ERS-related mechanisms in T2DM, which might contribute to new ideas and 
insights for the mechanisms and treatment of T2DM.
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Figure 8 Immune infiltration. A: Histogram of immune infiltration distribution; B: Histogram of immune infiltration sample distribution; C: Heat map of immune infiltration correlation; D: Correlation diagram of 20 key genes.
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ARTICLE HIGHLIGHTS
Research background
The endoplasmic reticulum (ER) is closely related to a wide range of cellular functions and is a key 
component to maintain and restore metabolic health.

Research motivation
Type 2 diabetes mellitus (T2DM) is a serious threat to human health, but knowledge of the ER stress 
(ERS)-related mechanisms in T2DM is lacking.

Research objectives
Here, we conducted a bioinformatics analysis to identify potential ERS-related mechanisms and crucial 
biomarkers in T2DM.

Research methods
We conducted gene set enrichment analysis (GSEA) and gene set variation analysis (GSVA) in myoblast 
and myotube form GSE166502, and obtained the differentially expressed genes (DEGs). After 
intersecting with ERS-related genes, we obtained ERS-related DEGs. Finally, functional analyses, 
immune infiltration, and several networks were established.

Research results
Through GSEA and GSVA, we identified several metabolic and immune-related pathways. We obtained 
227 ERS-related DEGs and constructed several important networks that help to understand the 
mechanisms and treatment of T2DM. Finally, memory CD4+ T cells accounted for the largest proportion 
of immune cells.

Research conclusions
This study revealed ERS-related mechanisms in T2DM.

Research perspectives
Our study might contribute to new ideas and insights for the mechanisms and treatment of T2DM.
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Abstract
BACKGROUND 
Lomatogonium rotatum (LR) is traditionally used in Mongolian folk medicine as a 
hypoglycemic agent, but its evidence-based pharmacological effects and me-
chanisms of action have not been fully elucidated.

AIM 
To emphasize the hypoglycemic action mechanism of LR in a type 2 diabetic rat 
model and examine potential biomarkers to obtain mechanistic understanding 
regarding serum metabolite modifications.

METHODS 
A high-fat, high-sugar diet and streptozotocin injection-induced type 2 diabetic 
rat model was established. The chemical composition of the LR was identified by 
high performance liquid chromatography. LR extract administrated as oral 
gavage at 0.5 g/kg, 2.5 g/kg, and 5 g/kg for 4 wk. Anti-diabetic effects of LR 
extract were evaluated based on histopathological examination as well as the 
measurement of blood glucose, insulin, glucagon-like peptide 1 (GLP-1), and lipid 
levels. Serum metabolites were analyzed using an untargeted metabolomics 
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approach.

RESULTS 
According to a chemical analysis, swertiamarin, sweroside, hesperetin, coumarin, 1.7-dihydroxy-
3,8-dimethoxyl xanthone, and 1-hydroxy-2,3,5 trimethoxanone are the principal active ingredients 
in LR. An anti-diabetic experiment revealed that the LR treatment significantly increased plasma 
insulin and GLP-1 levels while effectively lowering blood glucose, total cholesterol, triglycerides, 
low-density lipoprotein cholesterol, and oral glucose tolerance test compared to the model group. 
Furthermore, untargeted metabolomic analysis of serum samples detected 236 metabolites, among 
which 86 were differentially expressed between the model and the LR group. It was also found 
that LR considerably altered the levels of metabolites such as vitamin B6, mevalonate-5P, D-
proline, L-lysine, and taurine, which are involved in the regulation of the vitamin B6 metabolic 
pathway, selenium amino acid metabolic pathway, pyrimidine metabolic pathway, and arginine 
and proline metabolic pathways.

CONCLUSION 
These findings indicated that LR may have a hypoglycemic impact and that its role may be related 
to changes in the serum metabolites and to facilitate the release of insulin and GLP-1, which lower 
blood glucose and lipid profiles.

Key Words: Mongolian medicine; Lomatogonium rotatum; Type 2 diabetes; Metabolomics; Swertiamarin; 
Streptozotocin

©The Author(s) 2023. Published by Baishideng Publishing Group Inc. All rights reserved.

Core Tip: Lomatogonium rotatum (LR) is traditionally used in Mongolian folk medicine as a hypoglycemic 
agent. Its evidence-based pharmacological effects and mechanisms of action have not been elucidated. An 
anti-diabetic experiment in rats revealed that LR treatment increased insulin and glucagon-like peptide 1 
levels and decreased blood sugar, total cholesterol, triglycerides, low-density lipoprotein cholesterol, and 
oral glucose tolerance test. These findings indicated that LR may have a hypoglycemic impact and that its 
role may be related to changes in the serum metabolites as well as to facilitating the release of insulin and 
glucagon-like peptide 1, which lower blood glucose and lipid profiles.

Citation: Dai LL, Cho SB, Li HF, A LS, Ji XP, Pan S, Bao ML, Bai L, Ba GN, Fu MH. Lomatogonium rotatum 
extract alleviates diabetes mellitus induced by a high-fat, high-sugar diet and streptozotocin in rats. World J 
Diabetes 2023; 14(6): 846-861
URL: https://www.wjgnet.com/1948-9358/full/v14/i6/846.htm
DOI: https://dx.doi.org/10.4239/wjd.v14.i6.846

INTRODUCTION
Type 2 diabetes mellitus (T2DM) is a chronic metabolic disorder characterized by chronically elevated 
blood glucose (BG) (hyperglycemia) and elevated blood insulin (hyperinsulinemia)[1]. T2DM is treated 
primarily with six classes of anti-diabetic medications, including metformin, glimepiride, repaglinide, 
pioglitazone, sitagliptin, and acarbose[2]. Traditional medicine has a long history of use as a comple-
mentary alternative therapy and has shown promising results in treating T2DM. The demand for 
complementary and alternative medicine has increased owing to its potential to target a multitude of 
metabolic pathways for treating T2DM.

Lomatogonium rotatum (LR) is a dried whole herb derived from the Gentianaceae plant Lomatogonium 
rotatum (L.) Fries ex Nym and is an important medicinal herb utilized in the formulation and practice of 
Mongolian medicine in China[3]. According to a previous study, LR could decrease the body weight of 
obese rats induced by a high-fat high-sugar (HFHS) diet[4]. The LR compounds can activate the bitter 
taste receptors, which have advantageous effects on diabetes[5,6]. The main compounds of LR include 
flavonoids and xanthones, small amounts of iridoids, alkaloids, steroids, and organic acids[6-9]. 
Nonetheless, the protective effects of LR against diabetes have not been thoroughly examined.

It is widely known that T2DM comprises several abnormalities in the systemic metabolism of amino 
acids (AAs), lipids, and glucose[10,11]. The metabolites associated with food metabolism provide a 
direct functional reading of an organism’s physiological condition. Metabolomics analysis is the 
untargeted identification and quantification of all low molecular weight metabolic end products 
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(metabolites)[12]. Metabolomics technology is used to investigate the impact of drugs on endogenous 
metabolite variations and to identify specific biomarkers and their key factors[13]. Moreover, it provides 
a perspective image of downstream gene expression and vital information regarding drug metabolism
[14]. Metabolic profiles of cells, tissues, organs, and biological fluids can be used to infer an individual’s 
health status and help monitor changes in specific diseases[15]. In recent years, metabolomics has been 
used to systematically study the metabolites of patients with T2DM and find biomarkers and possible 
metabolic pathways. The dynamic changes of endogenous metabolites are closely related to the 
occurrence and development of diabetes. Understanding the hypoglycemic effect of LR on T2DM, 
identifying its biomarkers, and clarifying its mechanism by metabolomic studies will have considerable 
clinical significance.

MATERIALS AND METHODS
Materials
The HFHS diet was provided by Liaoning Changsheng Biotechnology Co., Ltd. (Shenyang, China; Batch 
No. 20200925). Analytical citric acid and sodium citrate were obtained from Sinopharm Chemical 
Reagent Co., Ltd. (Shanghai, China). BG, insulin, glucagon-like peptide 1 (GLP-1), total cholesterol (TC), 
triglycerides (TG), high-density lipoprotein-cholesterol (HDL-C), and low-density lipoprotein-
cholesterol (LDL-C) kits were provided by Shenzhen Icubio Biotechnology Co., Ltd. (Shenzhen, China). 
Hematoxylin and eosin (H&E) stain was obtained from Nanjing Jiancheng Technology Co., Ltd. 
(Nanjing, China).

Preparation of LR extract
LR was collected from Xilinhaote grassland, Inner Mongolia, China. Five kilograms of LR was washed, 
dried, and powdered. Then, LR powder was extracted three times with 95% ethanol for 3 h each time. 
The extract was combined, concentrated, and freeze-dried at 60 °C under a vacuum. Carboxymethylcel-
lulose sodium salt solvent was employed to suspend the LR extract. Animals received LR at 0.5 g/kg, 
2.5 g/kg, and 5 g/kg concentrations by oral gavage according to the previous report[16].

Animals and experimental design
SPF grade male Sprague-Dawley rats (batch no. C-NMG2021012507), aged 6-8 wk (initial body weight 
of 180-220 g), were obtained from Changsheng Biotechnology Co., Ltd (Shenyang, China). Rats were 
kept individually in the SPF standard animal room with 30%-40% humidity, 22-25 °C temperature, and 
a 12-h light/dark cycle. After adaptive feeding for 1 wk, rats were randomly assigned to six groups: 
control group; model group; LR-0.5 group; LR-2.5 group; LR-5 group; and metformin group (a clinical 
anti-diabetic drug). The HFHS diet (30% lard oil, 20% sucrose, and 50% standard diet) was fed to the 
diabetic model for 4 wk along with an injection of streptozotocin (STZ) (30 mg/kg)[17], whereas the 
control animals received a commercial standard diet. After modeling, rats in the control and dietetic 
groups received 0.5% carboxymethylcellulose sodium salt (Sigma), whereas rats in the LR and 
metformin groups received 0.5 g/kg, 2.5 g/kg, and 5 g/kg of LR extract and metformin (150 mg/kg) by 
oral administration once per day. All animals were given the treatments outlined for 4 wk. At the end of 
the experimental day, blood was collected from the retro-orbital sinus and centrifuged at 3500 rpm for 
10 min at 4 °C. The supernatant was obtained for enzyme-linked immunosorbent assay and meta-
bolomic analysis. The liver, kidney, and pancreas tissues were surgically removed from each rat for 
H&E staining. The Institutional Animal Care and Use Committee, Inner Mongolian University for 
Nationalities examined and approved all experimental protocols (Approval No. NM-LL-2021-06-15-1).

High performance liquid chromatography chemical determination
One gram of LR powder was accurately weighed and placed in a 50 mL conical flask. Then 20 mL of 
methanol solution was added for 30 min ultrasonic extraction, and the liquid was cooled and weighed. 
Swertiamarin (2 mg), sweroside (1 mg), hesperetin (1 mg), coumarin (4.9 mg), 1.7-dihydroxy-3,8-
dimethoxyl xanthone (1 mg), and 1-hydroxy-2,3,5 trimethoxanthone (1 mg) were carefully weighed and 
put into a 10 mL flask, dissolved in methanol and diluted to scale, shaken well, and filtered through a 
0.45 µm microporous filter membrane (each 1 mL contained 0.2 mg swertiamarin, 0.1 mg sweroside, 0.1 
mg hesperidin, 0.49 mg coumarin, 0.1 mg 1,7-dihydroxy-3,8-dimethoxone, and 0.1 mg 1-hydroxy-2,3,5-
trimethoxone). High performance liquid chromatography (HPLC) analysis was performed on an 
Agilent 1260 InfinityII HPLC system. ZORBAX SB-C18 5-Micron column (4.6 mm × 250 mm) with 
mobile phase water (A) - 0.1% phosphate aqueous solution (B) and gradient elution (0-15 min, 30%-35% 
B; 15 to 25 min, 35%-50% B; 25 to 35 min, 50%-65% B; 35 to 45 min, 65%-70% B; 45 to 50 min, 70%-80% B; 
50 to 55 min, 80%-95%; 55-60 min, 95%-100%). The flow rate was set to 1.0 mL/min, the column 
temperature was set to 30 °C, and the detection wavelength was set at 234 nm. Standards of six 
compounds were purchased (Sigma-Aldrich, St. Louis, MO, United States), and calibration curves were 
performed.
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Serum biochemical markers analysis
An automated biochemical analyzer (Ichem-340; Icubio, Shenzhen, China) was applied to examine the 
serum levels of TC, TG, HDL-C, and LDL-C. GLP-1 and insulin were quantified using enzyme-linked 
immunosorbent assay kits (Bioswamp, Wuhan, China) according to the manufacturer’s instructions. 
Herein, 450 nm was used to measure the absorbance of 100 μL of serum in this experiment.

Oral glucose tolerance test
Rats were fasted for 12 h, after which BG levels were determined using glucometer by obtaining a blood 
sample from the tail vein at 0 min. Subsequently, the rats were orally administered glucose at 2 g/kg 
body weight, and BG levels were recorded at 30, 60, 120, and 180 min post-administration. The 
trapezoidal formula was applied to calculate BG levels to compute the area under the curve (AUC). The 
value of BG at x minutes was denoted by BG (x), and the AUC was determined using the following 
formula: oral glucose tolerance test (OGTT) calculation formula: AUC = 0.5 × (BG0 + BG30)/2 + 0.5 × 
(BG30 + BG60)/2 + 1 × (BG60 + BG120)/2 + 1 × (BG0120 + BG180)/2.

H&E staining
The right liver lobe, kidney tissues, and pancreatic biopsy specimens were embedded with formalin at a 
concentration of 4% and prepared into paraffin slices measuring 3-5 μm thick. Before being examined 
under an Olympus microscope equipped with a CCD camera (DS-U3; Nikon, Tokyo, Japan), the tissue 
sections were stained with H&E. A photographic examination software program (Eclipse E100; Nikon) 
was utilized for microscopic analysis at × 40 magnification.

Metabolomic analysis of serum samples
The serum samples were analyzed for untargeted metabolite profiles using the XploreMET™ (Metabo-
Profile Biotechnology, Shanghai, China). A time-of-flight mass spectrometry system (Pegasus HT; LECO 
Corp., St. Joseph, MI, United States) was used to assay the component with an Agilent gas chroma-
tograph (GC), and a robotic online derivatization station was used to assay the plasma components. The 
list of chemicals and reagents used in the metabolomic analysis is reported above. The process of 
analysis is briefly described in the following parts. Prior to processing, plasma samples were stored at -
80 °C. After thawing the samples on ice, a metabolite extraction procedure was conducted. Initially, 
chloroform was removed from the metabolite extracts using a CentriVap vacuum concentrator. 
Subsequently, a Free Zone freeze dryer (Labconco, Kansas City, MO, United States) was employed to 
lyophilize the samples into a dry powder. Fifty milligrams of frozen serum samples were deposited in a 
microcentrifuge container with 25 mg of zirconium oxide beads and 10 µL of internal calibration 
standards. For automated homogenization, 50 μL of 50% prechilled methanol was added in each 
aliquot. After 20 min of centrifugation at 14000 g and 4 °C (Microfuge 20R; Beckman Coulter, 
Indianapolis, IN, United States), the supernatant was transferred carefully to an autosampler vial 
(Agilent Technologies, Foster City, CA, United States), dissipated to eliminate chloroform in a 
CentriVap vacuum concentrator, and then lyophilized utilizing a Free Zone freeze dryer (Labconco). 
The remaining samples were combined for quality control purposes. The desiccated sample was 
derivatized with 50 μL of methoxyamine (20 mg/mL in pyridine) at 30 °C for 2 h, then 50 μL of MSTFA 
(1% TMCS) containing FAMEs as retention indices were added at 37.5 °C for 1 h. The sample derivat-
ization and GC-TOF/MS analysis were conducted with a robotic multipurpose sample with dual heads 
(Gerstel, Mülheim an der Ruhr, Germany).

After obtaining the raw data, the ChromaTOF software was used to automatically export the original 
GC-TOF/MS data to XploreMET (Metabo-Profile Biotechnology, Shanghai, China). This enabled 
programmed baseline denoising and smoothing, peak selection and deconvolution, the creation of a 
database of references from aggregated quality control samples, metabolite spectrum alignment, 
missing value rectification and imputation, metabolite verification, and data preprocessing (normal-
ization and standardization). Then, all data was converted into comparable data matrices for statistical 
analysis. The standard deviation of the experimental measures was scaled and applied to each result, 
which was then mean-centered. The XploreMET software was used to carry out principal component 
analysis and orthogonal partial least-square discriminant analysis. The sum of squares of the partial 
least-squares weights was weighted using the value of the variable importance in the projection. The 
Kyoto Encyclopedia of Genes and Genomes looked at the metabolic process of many metabolites.

Statistical analysis
The acquired data have been represented as mean ± standard error of the mean. GraphPad prism 7.04 
(La Jolla, CA, United States) was used to conduct the statistical analyses. A one-way analysis of variance 
was applied to the data analysis, and the LSD Multiple Comparison Test was used to evaluate treatment 
differences. P < 0.05 was considered statistically significant, while P < 0.10 indicated a trend. Data of 
differentially expressed metabolites were considered to be statistically significant when a variable was 
variable importance in the projection ≥ 1.2 and a P < 0.05. Univariate statistical analysis (Student’s t-test) 
was used to analyze differential metabolites.
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RESULTS
HPLC determination of the main compounds of LR
Herein, six bioactive compounds were identified by HPLC analysis as the main bioactive constituents in 
LR, including swertiamarin, sweroside, hesperetin, coumarin, 1.7-dihydroxy-3,8-dimethoxyl xanthone, 
and 1-hydroxy-2,3,5 trimethoxanthone with inclusion of 91.10, 6.09, 7.65, 3.04, 29.28, and 3.70 mg/g of 
dry mater, respectively (Figure 1 and Table 1).

LR protected STZ-induced diabetic rats against the onset of hyperglycemia
As shown in Figure 2A, the body weight was significantly increased in the HFHS diet-fed mice, while 
STZ injection sharply decreased the body weight in contrast to those in the control group. LR adminis-
tration and metformin treatment groups significantly reduced (P < 0.05 and P < 0.01 respectively) the 
body weight of mice in comparison with those in the model group. In addition, compared with the 
control group, BG in the model group was significantly increased (P < 0.01), whereas LR at 2.5 g/kg and 
5 g/kg doses and metformin treatments significantly decreased the serum BG level (P < 0.05, Figure 2B). 
The serum insulin level in the model group was significantly higher (P < 0.001) than in the normal 
group. In comparison to the diabetic model group, LR at 2.5 g/kg and 5 g/kg doses, as well as 
metformin treatments, significantly (P < 0.05) increased serum insulin concentrations (Figure 2C). In 
contrast, the level of GLP-1 was significantly reduced in the model group by comparison with the 
control group (P < 0.001), but metformin and LR at a dose of 5 g/kg enhanced the serum GLP-1 
secretion significantly (P < 0.05) as shown in Figure 2D.

The TC and TG levels of the model group were significantly higher (P < 0.001) than the control group, 
whereas serum TC content was significantly lower (P < 0.05) in the three LR groups and the metformin 
group. TG levels were significantly lower in the LR-2.5 and LR-5 groups and the metformin group 
compared to the diabetic model group (Figure 3A and B). Although the level of HDL-C was not 
changed in the comparison between the control and model groups, LR treatment at 2.5 g/kg and 5 g/kg 
doses significantly elevated (P < 0.05) the serum concentration of HDL-C compared to the model group 
(Figure 3C). In terms of serum LDL-C levels, diabetic model animals had significantly higher (P < 0.05) 
LDL-C levels than control animals, whereas the three LR treatment groups and the metformin group 
had significantly lower (P < 0.01) serum LDL-C levels than the model group (Figure 3D).

Effects of LR on histological changes of the pancreas, liver, and kidney tissues in an STZ-induced 
diabetic rats model
Figure 4 shows that the HFHS diet and STZ-induced diabetic rats had extensive granulation of the β 
cells and severe vacuolation of the pancreatic islets, while the control rats had normal pancreatic β cells 
in the islets of Langerhans and the acini. Histological tissue characteristics in the LR and metformin 
treatment groups showed reduced cell granulation and decreased pancreatic islet vacuolation compared 
to the diabetic model group. On the other hand, the structure of the liver lobule was complete in the 
control animals, and cells were organized radially around the central blood vessel. Diabetic model rats 
had evident macrovesicular steatosis of liver cells. In the LR and metformin groups, the hepatic lobule 
structure was restored, and the degree of steatosis was significantly lower than in the model group. 
H&E staining of the kidney sections indicated that the diabetic rats had more visible renal lesions, 
including glomerular hypertrophy, increased glomerular mesangial cells, and more severe mesangial 
matrix damage than the control group. The LR and metformin treatments significantly alleviated 
pathological renal damage in the kidneys of diabetic rats.

Effect of LR on OGTT
In the first 30 min after glucose was given, BG levels were much lower in the LR and metformin groups 
than in the diabetic group (Figure 5A). Additionally, Figure 5B shows that both LR and metformin 
treatment significantly improved the AUC values at 30 min, 60 min, 120 min, and 180 min.

Data quality and identification of metabolites
Using untargeted metabolomics, a total of 236 metabolite annotations were determined in the serum 
samples. Among these, significantly deferentially expressed metabolites mainly include alkaloids and 
derivatives, lipids and lipid-like molecules, organoheterocyclic compounds, and organic acid and their 
derivatives. The results of the principal component analysis indicated that the metabolic profiles of the 
three experimental groups differed significantly, as reflected by the variations between the three sample 
groups. Furthermore, the quality control sample distances were found to be extremely close, suggesting 
a high degree of sample data reliability (Figure 6A-C).

Alteration of metabolite levels and biological metabolic pathways
A metabolomic analysis of the differentially expressed metabolites in serum tissues of diabetic rats and 
the subsequent volcano plot showed that 144 metabolites (67 downregulated and 77 upregulated) were 
expressed differently between the control and the model group, whereas a comparison of the model and 
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Table 1 Content of active compounds measured in the Lomatogonium rotatum extract

Active compound Regression equation R2 Linear range, μg LR extract, mg/g dry mater

Swertiamarin Y = 99.413X + 6.3517 1 1.953-9.826 91.10

Sweroside Y = 198.81X + 0.8476 1 0.431-2.154 6.09

Hesperetin Y = 437.89X + 0.0685 1 0.119-1.002 7.65

Coumarin Y = 365.15X + 0.0103 1 0.118-0.590 3.04

1.7-dihydroxy-3.8-dimethoxyxanthone Y = 214.16X + 2.3704 0.9999 0.098-0.494 29.28

1-hydroxy-2,3,5 trimethoxanthone Y = 90.498X + 7.1204 0.9999 2.026-10.305 3.70

LR: Lomatogonium rotatum.

Figure 1 High performance liquid chromatography determination of the main compounds of Lomatogonium rotatum. A: Chromatogram of 
Lomatogonium rotatum samples; B: Chromatogram of the mixture of reference chemicals. 1: Swertiamarin; 2: Sweroside; 3: Hesperetin; 4: Coumarin; 5: 1.7-
dihydroxy-3, 8-dimethoxyl xanthone; 6: 1-hydroxy-2,3,5 trimethoxanthone.

LR-5 groups revealed 86 deferentially expressed metabolites (67 downregulated and 19 upregulated) 
(Figure 7A and B). According to the order of influencing factors in the LR group comparison, the top 13 
metabolic pathways were selected, as shown in Figure 7C, including vitamin B6 metabolism and biosyn-
thesis of terpenoids, taurine and hypotaurine metabolism, lipid metabolism scabbard of taurine, 
selenium metabolism of AA metabolism, pyrimidine, the original generation of bile acid biosynthesis, 
pantothenic acid salt and histidine biosynthesis and metabolism of coenzyme A, fatty acid, biotin, 
arginine and proline, and aminoacyl-tRNA biosynthetic pathway. In the LR group, the metabolic 
pathway of vitamin B6 was the most influential factor, followed by the metabolic pathway of terpenoid 
backbone biosynthesis, selenium AA, pyrimidine, arginine, and proline.

The representative differential metabolites obtained from the major altered pathways are shown in 
Table 2. The levels of mevalonic acid-5P, D-proline, L-lysine, taurine, pyridoxal, marshrin, honyucitrin, 
isoliquiritigenin, 1H-indole-2,3-dione, oxychlordane, phosphorylcholine, Se-adenosylselenohomo-
cysteine, 1-methyladenosine, LysoPE[0:0/18:3(6Z,9Z,12Z)], PE[20:4(8Z,11Z,14Z,17Z)/P-16:0], Bakers 
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Table 2 Differential metabolites were determined by cross-comparison between different groups in rat serum samples

Control group vs 
model group

Model group vs 
Lomatogonium rotatumNo. Metabolites

VIP FC
Trend P 

value
VIP FC

Trend P 
value

1 Marshrin 1.46 1.16 Decreased 0.016 1.59 0.68 Increased 0.034

2 Honyucitrin 1.67 1.23 Decreased 0.002 1.54 0.68 Increased 0.047

3 Isoliquiritigenin 1.60 1.75 Decreased 0.004 1.79 0.42 Increased 0.018

4 Pyridoxal 1.53 1.33 Decreased 0.029 1.73 1.47 Increased 0.055

5 1H-indole-2,3-dione 1.21 4.08 Decreased 0.019 1.17 0.34 Increased 0.039

6 Oxychlordane 1.41 1.10 Decreased 0.019 1.30 0.92 Increased 0.039

7 Phosphorylcholine 1.55 1.25 Decreased 0.009 1.26 0.84 Increased 0.045

8 Mevalonic acid-5P 1.32 2.16 Decreased 0.001 1.03 0.56 Increased 0.010

9 D-proline 1.37 1.36 Decreased 0.003 1.80 1.39 Increased 0.019

10 L-lysine 1.40 1.50 Decreased 0.006 1.71 2.42 Increased 0.002

11 Taurine 1.67 1.48 Decreased 0.017 1.61 1.59 Increased 0.006

12 Se-adenosylselenohomocysteine 1.25 1.50 Decreased 0.029 2.24 2.35 Increased 0.001

13 1-methyladenosine 1.47 1.46 Decreased 0.019 1.81 0.58 Increased 0.001

14 LysoPE[0:0/18:3(6Z,9Z,12Z)] 1.64 1.45 Decreased 0.003 1.80 0.63 Increased 0.002

15 PE[20:4(8Z,11Z,14Z,17Z)/P-16:0] 1.80 1.68 Decreased 0.001 1.70 0.72 Increased 0.001

16 Bakers yeast extract 1.51 1.17 Decreased 0.012 1.74 0.70 Increased 0.016

17 Ecgonine methyl ester 1.48 1.10 Decreased 0.013 1.23 0.92 Increased 0.033

18 Dihydrothy 1.66 0.79 Increased 0.013 1.59 0.79 Decreased 0.048

19 Pantothenic acid 1.78 0.65 Increased 0.028 1.97 0.61 Decreased 0.024

20 Aromadendrin 4’-methyl ether 7-
rhamnoside

1.35 1.60 Increased 0.030 1.66 2.22 Decreased 0.007

The significance of potential metabolites in the serum of rats induced by Lomatogonium rotatum is shown in this table. FC: Fold change; VIP: Variable 
importance in projection.

yeast extract, and ecgonine methyl ester showed a significant decrease in the model group in 
comparison with the control group. By contrast, LR treatment dramatically increased the above 
metabolites in the serum samples. Moreover, the levels of dihydrothy, pantothenic acid, and 
aromadendrin 4’-methyl ether 7-rhamnoside were greatly elevated in the model group than in the 
control group. Nevertheless, LR obviously reduced the levels of these metabolites. The results indicated 
that most of the metabolites were reversed by LR extract treatment and were regulated to return to 
levels that were comparable to those of the control group.

DISCUSSION
Obesity-related disorders, specifically T2DM, have become one of the world’s greatest health concerns. 
According to multiple studies, a disturbance in energy metabolism is the primary risk factor for the 
development of T2DM. Current clinical applications have recommended single-target medications; 
however, overcoming the problems with these drugs has been difficult. As a result, traditional 
medicines with the advantages of multitargets and multimechanisms could be potential treatments for 
T2DM. LR is a bitter medicinal herb in traditional Mongolian medicine used for bodyweight reduction. 
However, the pharmacological effects of LR and its specific metabolic changes on T2DM are not entirely 
understood. Biological cells respond to a disease state by changing the concentration of a large number 
of metabolites to maintain homeostasis[18]. In this study, serum metabolic profiles were generated 
using ultra-HPLC, and the potential mechanisms of LR in T2DM were examined.

Herein, the HFHS diets plus STZ is a relatively stable method for modeling T2DM. According to the 
results, the HFHS-induced rats had increased body weight and considerably elevated TC, TG, and LDL-
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Figure 2 Effects of Lomatogonium rotatum on body weight, serum glucose, insulin, and glucagon-like peptide 1 levels in the diabetic rat 
model. A: Body weight; B: Serum glucose; C: Insulin; D: Glucagon-like peptide 1. The data represent means ± standard error of the mean (n = 10). aP < 0.05 vs the 
control group; bP < 0.05 vs the model group. GLP-1: Glucagon-like peptide 1; LR: Lomatogonium rotatum; STZ: Streptozotocin.

C plasma levels compared with normal rats. Additionally, increased glucose tolerance significantly 
impaired the plasma levels of glucose, GLP-1, and insulin. This was confirmed that an HFHS diet causes 
weight increase, insulin sensitivity, and impaired glucose tolerance[19]. Therefore, the HFHS-induced 
animal model indicated a typical obesity phenotype.

According to an HPLC analysis, six main compounds were identified from the LR extract. The most 
abundant components were swertiamarin, hesperetin, and coumarin, which have been previously 
documented with effects on obesity and hyperglycemia[20-22], making them the likely effectors of the 
pharmacological activities of the LR extract. The presence of xanthone, another key component in the LR 
extract, is known to have numerous pharmacological effects, including anti-inflammatory and antimy-
cobacterial properties[23]. Nevertheless, its hypoglycemic action has yet to be investigated. In addition, 
experimental results showed that high doses and a medium dose of LR administration indicated similar 
outcomes as metformin. The LR administration significantly reduced the body weight in the model 
group and showed lower serum glucose and lipid contents. Several studies have reported that 
abnormalities of lipid contents in serum are highly related to hyperglycemia[24]. In this study, the levels 
of TC, TG, HDL-C, and LDL-C were significantly reversed after LR administration. TC, TG, LDL-C, and 
HDL-C are important biomarkers, which indicate hyperlipidemia. Moreover, lipid abnormalities drive 
the increase in lipid deposition[25]. Our findings indicated that LR may have a potent hypolipidemic 
effect by decreasing plasma levels of TC, TG, and LDL-C while elevating HDL-C levels. LR could have a 
positive effect on the control of hyperlipidemia.

Dyslipidemia is caused in part by a correlation between carbohydrate and lipid metabolism and 
aberrant BG levels[26]. Herein, glucose levels were significantly elevated in the serum, and the OGTT 
results indicated that diabetic rats developed impaired glucose tolerance. Regarding glucose 
metabolism, LR treatment lowered BG and greatly improved glucose tolerance. The reduction in BG by 
LR administration was associated with a significant improvement in glucose intolerance, as revealed by 
the decreased AUC value in the OGTT response. OGTT was usually used to assess peripheral insulin 
action and insulin resistance in vivo. The OGTT results were accompanied by insulin levels in serum. 
Insulin resistance is related to T2DM and is characterized by the decreased response of insulin-sensitive 
cells or tissues. It can cause impaired peripheral glucose consumption and develop hyperglycemia and 
compensatory hyperinsulinemia. Moreover, the plasma GLP-1 level was improved by LR treatment. 
GLP-1 is a hormone primarily produced in the L cells of the distal ileum and colon. It promotes insulin 



Dai LL et al. LR extract alleviates diabetes mellitus

WJD https://www.wjgnet.com 854 June 15, 2023 Volume 14 Issue 6

Figure 3 Effects of Lomatogonium rotatum on serum total cholesterol, triglycerides, high-density lipoprotein-cholesterol, and low-density 
lipoprotein cholesterol levels in diabetic rats. A: Total cholesterol; B: Triglycerides; C: High-density lipoprotein-cholesterol; D: Low-density lipoprotein 
cholesterol. The data represent means ± standard error of the mean (n = 10). aP < 0.01 and bP < 0.05 vs the model group. HDL-C: High-density lipoprotein-
cholesterol; LDL-C: Low-density lipoprotein cholesterol; LR: Lomatogonium rotatum.

Figure 4 Effects of Lomatogonium rotatum on histological changes of the pancreas, liver, and kidney tissues in the streptozotocin-
induced diabetic rat model. Arrows indicate β-cell vacuolation and granulation in the pancreas, impaired central vein and steatosis in the liver, and renal lesions 
and glomerular hypertrophy in the kidney. LR: Lomatogonium rotatum.

secretion while inhibiting glucagon synthesis. It also plays a significant role in glucose homeostasis and 
is a key biomarker of abnormalities in glucose metabolism[27]. The exposure of cultured gut endocrine 
cells to bitter substances stimulates the release of hormones, including GLP-1[28]. Therefore, LR 
administration significantly improved insulin sensitivity and GLP-1 secretion in diabetic rats. Taken 
together, the physiological results expressively revealed that LR administration had the effect of 
reducing obesity and improving lipid and carbohydrate metabolism.
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Figure 5 Effects of Lomatogonium rotatum on the oral glucose tolerance test of diabetic rats. A: Changes in blood glucose from 0 to 180 min; B: 
Values for the area under the curve. The data represents means ± standard error of the mean (n = 10). aP < 0.05 vs the control group; bP < 0.05 vs the model group. 
AUC: Area under the curve; LR: Lomatogonium rotatum; OGTT: Oral glucose tolerance test.

Figure 6 Metabolomic analysis of Lomatogonium rotatum-treated streptozotocin-induced diabetic rats. A: The Venn diagram displays the 
amount of metabolites with differential expression. Different colors indicate distinct comparisons, whereas overlapping regions show differentially expressed 
metabolites shared by two groups; B: Serum metabolic characteristics of different groups were determined by a principal component analysis diagram; C: Cluster 
heat map of differentially-expressed metabolites in three experimental groups. In each sample, red and blue colors indicated higher and lower expression, 
respectively. LR: Lomatogonium rotatum; QC: Quality control.
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Figure 7 Differential metabolites and pathways across groups. A and B: A volcano diagram illustrated the distinct metabolite compositions between 
control vs model (A) and model vs LR-5 (B). Green and red colors represent significant upregulation and downregulation of metabolites, respectively. Significant 
deferentially expressed metabolites were determined based on a P value < 0.05 and a log2fold-change of at least 2.0; C: XploreMET (Metabo-Profile) was used to 
evaluate the Kyoto Encyclopedia of Genes and Genomes metabolic pathways of the differential metabolites. FC: Fold change; LR: Lomatogonium rotatum; VIP: 
Variable importance in projection.

Figure 8 Schematic summary of metabolic pathways related to the Lomatogonium rotatum effect on streptozotocin-induced diabetic rats. 
The relative levels of significantly altered metabolites were presented in different colors. The blue rectangle represents downregulation, the red rectangle represents 
upregulation, and the gray rectangle reveals no change in contrast to the control. aP < 0.001, bP < 0.01 and cP < 0.05 vs the control group; dP < 0.01 and eP < 0.05 vs 
the model group. Ctr: Control group; LR: Lomatogonium rotatum-treated group; MD: Model group; TCA: Tricarboxylic acid.
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Metabolomics is a high-throughput technology that has been widely used for identifying biomarkers, 
revealing metabolic pathways, and unraveling the mechanisms of metabolic diseases[29]. In this study, 
untargeted metabolomics technology was used to analyze serum metabolites and the metabolic 
pathways of LR administration and to explore its mechanism of lowering BG and anti-diabetic action. 
Our findings revealed that the metabolic pathway of vitamin B6 was the most influential factor, 
followed by terpenoid backbone biosynthesis, selenium AA, pyrimidine, arginine, and proline. 
Metabolites such as pyridoxal, mevalonic acid-5P, proline, lysine, and taurine have been well reported 
on the regulation of T2DM, dyslipidemia, inflammation, and oxidative stress[30-32]. In addition, LR 
administration promoted energy metabolism related to AA.

Recent studies reported AAs may be potentially important in the prevention of diabetes and diabetes-
associated complications[33]. Protein and glucose metabolism are strongly interconnected and 
consequently regulated at the metabolic and molecular levels. AAs relate to glucose metabolism via 
gluconeogenesis, which is a catabolic breakdown of AAs. In metabolomics studies, two important 
potential biomarkers, i.e. D-proline and L-lysine, were identified.

Lysine supplements decreased diabetic complications linked with T2DM in the diabetic rat models 
and in vitro[34,35]. Lysine is an essential AA that plays a major role in calcium absorption, building 
muscle protein, and the body’s production of hormones, enzymes, and antibodies. Animal and human 
studies have shown that it has also demonstrated various beneficial effects in the treatment/prevention 
of diabetes and/or its complications. In diabetes-induced animal models, lysine has shown beneficial 
effects in lowering BG as well as acting as an inhibitor of protein glycation[36]. Lysine is known to react 
with glucose, with the glycated AA being excreted in the urine, and it has been shown to markedly 
minimize the glucose response to dietary carbohydrates without influence on insulin response[37]. 
Lysine could be catabolized to participate in energy metabolism. One mechanism involves the 
conversion of lysine to glutaryl-CoA, which is then converted to acetyl-CoA[38]. In the tricarboxylic acid 
cycle, lysine is metabolized to 2-ketoglutaric acid, which then forms succinate. Additionally, proline 
accelerates insulin secretion in both clonal β cells and isolated mouse islets[39,40].

In the current study, the elevated level of insulin in the LR group could be influenced by the high 
proline level. Moreover, proline could be converted to glutamate and metabolized to pyruvate, which is 
a key metabolite joining the tricarboxylic acid cycle[41]. Pyruvate metabolized to acetyl-CoA 
participates in the regulation of energy metabolism. Subsequently, the inappropriate glucogenic 
metabolism caused by the HFHS diet could be recovered by LR administration (Figure 8). In this view, 
LR administration has the potential to elevate lysine, and proline levels may help with diabetes 
management and blood sugar control.

Vitamin B metabolism was modified after LR administration, and the level of pyridoxal, a key 
metabolite, was restored in the LR groups. Vitamin B6 is an essential cofactor in various transamination, 
decarboxylation, glycogen hydrolysis, and synthesis pathways involving carbohydrate, sphingolipid, 
AA, heme, and neurotransmitter metabolism. The active form of vitamin B6, i.e. 5’-pyridoxine 
phosphate, is associated with protecting cells from DNA damage. 5’-pyridoxine phosphate acts as a 
coenzyme in about 160 enzymatic reactions, regulating the metabolism of glucose, lipids, AAs, heme, 
DNA/RNA, and many neurotransmitters[42]. Furthermore, the effect of vitamin B supplementation in 
preventing diabetic microvascular complications has long been the subject of study. Studies of vitamin 
B6 (pyridoxine, pyridoxine 50-phosphate) and high-dose vitamin B1 have shown that proteinuria can be 
inhibited in diabetic animal models[43]. In patients with T2DM and nephropathy, the combination of 
vitamin B1 (thiamine) and vitamin B6 (pyridoxine) significantly reduced the glycosylation of leukocyte 
nuclear DNA[44]. Addressing the vitamin B deficiency associated with diabetes that has been seen in 
experimental diabetes, particularly in tissues where vascular problems develop, may help to achieve the 
therapeutic advantage of vitamin B supplementation[45,46].

CONCLUSION
In this study, an HPLC method was used to identify swertiamarin, sweroside, hesperetin, coumarin, 1.7-
dihydroxy-3,8-dimethoxyl xanthone, and 1-hydroxy-2,3,5 trimethoxanthone as the main chemical 
constituents of LR. Administration of LR extract for 4 wk in T2DM rats resulted in improvement in BG, 
glucose tolerance, TC, TG, and LDL-C, restoration of insulin and GLP-1 activity, and improvement in 
the histological properties of tissues and organs. The results suggested that the hypoglycemic effect of 
LR may be associated with alterations in serum metabolites, which in turn may facilitate insulin and 
GLP-1 activities, leading to a reduction in BG and lipid profiles.

ARTICLE HIGHLIGHTS
Research background
Although Lomatogonium rotatum (LR) has a long history of usage as a hypoglycemic agent in Mongolian 
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folk medicine, the evidence-based pharmacological properties and mechanisms of action of this 
medicinal plant have not yet been thoroughly explained.

Research motivation
The current study explored the hypoglycemic effects and mechanism of LR in a high-fat, high-sugar diet 
and streptozotocin-induced type 2 diabetic rat model.

Research objectives
The current study aimed to emphasize the hypoglycemic action mechanism of LR in a type 2 diabetic rat 
model and examine potential biomarkers to obtain mechanistic insight into the serum metabolite 
modifications.

Research methods
A combination of feeding a high-fat, high-sugar diet and streptozotocin injections were applied to 
develop type 2 diabetes in rats. The high performance liquid chromatography technique was used to 
determine the chemical composition of LR. LR extract was given through oral gavage at doses of 0.5 g/
kg, 2.5 g/kg, and 5 g/kg on a weekly basis for a period of 4 wk. The histopathological examination, as 
well as the assessment of blood glucose, insulin, glucagon-like peptide 1 (GLP-1), and lipid levels, were 
used to evaluate the anti-diabetic effects of LR extract. A method known as untargeted metabolomics 
was used in order to study the metabolites found in serum.

Research results
The primary active components found in LR included swertiamarin, sweroside, hesperetin, coumarin, 
1.7-dihydroxy-3,8-dimethoxyl xanthone, and 1-hydroxy-2,3,5 trimethoxanone. When compared to the 
model group, the LR therapy resulted in a large increase in plasma insulin and GLP-1 levels while 
simultaneously resulting in a significant reduction in blood glucose, total cholesterol, triglycerides, low-
density lipoprotein cholesterol, and an oral glucose tolerance test. Analysis of blood samples using an 
untargeted metabolomic approach found a total of 236 metabolites, of which 86 showed altered levels of 
expression in the model compared to the LR group. In addition, LR caused significant changes in the 
levels of metabolites such as vitamin B6, mevalonate-5P, D-proline, L-lysine, and taurine. These 
metabolites are involved in the regulation of the metabolic pathways for vitamin B6, selenium amino 
acids, pyrimidine, arginine, and proline.

Research conclusions
These findings indicated that the hypoglycemic effect of LR may be associated with alterations in serum 
metabolites, which in turn may facilitate insulin and GLP-1 activities, leading to a reduction in blood 
glucose and lipid profiles.

Research perspectives
Further research is required to confirm the levels of target gene or protein expression that are linked to 
the changed metabolic pathways and to demonstrate how LR extract lowers blood glucose at the 
molecular level.
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Abstract
BACKGROUND 
Current approaches for the therapy of diabetic retinopathy (DR), which was one 
of leading causes of visual impairment, have their limitations. Animal exper-
iments revealed that restructuring of intestinal microbiota can prevent retino-
pathy.

AIM 
To explore the relationship between intestinal microbiota and DR among patients 
in the southeast coast of China, and provide clues for novel ways to prevention 
and treatment methods of DR.

METHODS 
The fecal samples of non-diabetics (Group C, n = 15) and diabetics (Group DM, n 
= 30), including 15 samples with DR (Group DR) and 15 samples without DR 
(Group D), were analyzed by 16S rRNA sequencing. Intestinal microbiota 
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compositions were compared between Group C and Group DM, Group DR and Group D, as well 
as patients with proliferative diabetic retinopathy (PDR) (Group PDR, n = 8) and patients without 
PDR (Group NPDR, n = 7). Spearman correlation analyses were performed to explore the associ-
ations between intestinal microbiota and clinical indicators.

RESULTS 
The alpha and beta diversity did not differ significantly between Group DR and Group D as well 
as Group PDR and Group NPDR. At the family level, Fusobacteriaceae, Desulfovibrionaceae and 
Pseudomonadaceae were significantly increased in Group DR than in Group D (P < 0.05, 
respectively). At the genera level, Fusobacterium, Pseudomonas, and Adlercreutzia were increased in 
Group DR than Group D while Senegalimassilia was decreased (P < 0.05, respectively). Pseudomonas 
was negatively correlated with NK cell count (r = -0.39, P = 0.03). Further, the abundance of genera 
Eubacterium (P < 0.01), Peptococcus, Desulfovibrio, Acetanaerobacterium and Negativibacillus (P < 0.05, 
respectively) were higher in Group PDR compared to Group NPDR, while Pseudomonas, 
Alloprevotella and Tyzzerella (P < 0.05, respectively) were lower. Acetanaerobacterium and Desulfo-
vibrio were positively correlated with fasting insulin (r = 0.53 and 0.61, respectively, P < 0.05), 
when Negativibacillus was negatively correlated with B cell count (r = -0.67, P < 0.01).

CONCLUSION 
Our findings indicated that the alteration of gut microbiota was associated with DR and its 
severity among patients in the southeast coast of China, probably by multiple mechanisms such as 
producing short-chain fatty acids, influencing permeability of blood vessels, affecting levels of 
vascular cell adhesion molecule-1, hypoxia-inducible factor-1, B cell and insulin. Modulating gut 
microbiota composition might be a novel strategy for prevention of DR, particularly PDR in 
population above.

Key Words: Intestinal microbiota; Diabetic retinopathy; Occurrence; Progression; Southeast coast of China

©The Author(s) 2023. Published by Baishideng Publishing Group Inc. All rights reserved.

Core Tip: Current approaches for the therapy of diabetic retinopathy (DR) have their limitations. Our study 
revealed that alteration of gut microbiota was associated with DR and its progression, and further, this 
association was mediated by multiple mechanisms including producing short-chain fatty acids, influencing 
permeability of blood vessels, affecting levels of vascular cell adhesion molecule-1, hypoxia-inducible 
factor-1, B cell and insulin. Hence, reconstruction of gut microbiota might be a promising strategy for 
prevention of DR.

Citation: Gu XM, Lu CY, Pan J, Ye JZ, Zhu QH. Alteration of intestinal microbiota is associated with diabetic 
retinopathy and its severity: Samples collected from southeast coast Chinese. World J Diabetes 2023; 14(6): 862-
882
URL: https://www.wjgnet.com/1948-9358/full/v14/i6/862.htm
DOI: https://dx.doi.org/10.4239/wjd.v14.i6.862

INTRODUCTION
For the moment, diabetes is one of the fastest developing and worldwide metabolic diseases, with 
multiple complications such as diabetic retinopathy (DR). Global pool analysis of DR in 2010 revealed 
the proportion of DR, and vision-threatening DR in diabetics was 34.6%, 10.2% respectively[1]. DR will 
cause visual impairment and even blindness in adults aged 20 to 74 years old, and is considered as one 
of the primary causes[2]. DR is subdivided into non-proliferative diabetic retinopathy (NPDR) and 
proliferative diabetic retinopathy (PDR). PDR is less common in patients but more threatening to vision 
compared with NPDR[3]. The treatment of PDR and visually threatening diabetic macular edema 
(DME) is a main research topic on DR. Laser therapy, anti-angiogenic therapy, anti-inflammatory 
therapy and surgery are major treatments for PDR. Laser therapy is a classic tool for severe NPDR and 
PDR, aiming to preserve visual acuity[4]. However, laser would impair the central vision and night 
vision[5]. As a main anti-angiogenic therapy, anti-vascular endothelial growth factor (VEGF) is a 
recommended therapy of DR refractory to laser treatment and DME. Contrast to laser monotherapy, 
anti-VEGF therapy can improve visual acuity in inpatients with DME or PDR[6,7]. However, 
considering limited half-life time of anti-VEGF agents, the repetitive injections of anti-VEGF are 
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required at one or two months intervals, causing increased financial burden, increased occurrence of 
endophthalmitis and elevated intraocular pressure[8]. Besides, the long-term therapy of anti-VEGF 
would reduce patient compliance, increase the incidence of treatment interruption, and result in deteri-
oration finally[9]. Almost nearly 50% patients are insensitive or even non-responsive to anti-VEGF 
therapy, but new approved anti-angiogenic therapies as well as effective and evidence-based 
replacement treatments are absent[10,11]. Although glucocorticoids can be used in patients who failed 
to respond to anti-VEGF, the role in treating PDR still need further confirmation and the side effect of 
elevating blood glucose constrains its application in diabetics[9]. Other treatments including anti-
protein kinase C, angiotensin receptor blockers, fenofibrate have their own flaws[12-16].

Chronic low-grade inflammations are already recognized as pivotal players in the development of 
diabetes and its complications including DR. Besides the anti-inflammatory effect via generating short 
chain fatty acid such as butyrate[17], intestinal microbiota also plays a pro-inflammatory role by 
increasing intestinal permeability, releasing lipopolysaccharide (LPS) which was relevant with distant 
inflammatory response and impacted cytokines such as TNF-α and IL-6[18,19]. The roles of microbiota 
on inflammation may explain its possible contribution on occurrence and development of DR. An 
animal experiments showed that intermittent fasting can prevent the occurrence of DR[10]. Only four 
studies aiming at the relationship between human intestinal microbiota and DR have been found[20-
23]. Jayasudha et al[21] performed Illumina sequencing of the internal transcribed spacer 2 region which 
mainly detects fungus. Three other studies performed 16S rRNA sequencing to distinguish the 
microbiota between diabetics with DR and without DR[20,22,23]. Moubayed et al[20] only analyzed fecal 
genus Bacteroides among healthy volunteers, diabetic patients with DR and without DR, lack of 
analysis of the other microbial community types. As for the other two studiers, one of their limits was 
that diabetics enrolled are always treated with metformin[22,23]. Metformin can reduce the severity of 
DR and incidence of NPDR independently and the mechanisms might be anti-angiogenesis and anti-
inflammation[24-27]. Notwithstanding no studies have demonstrated that intestinal microbiota involves 
in the effect of metformin on DR, metformin should also be considered as a confounding factor which 
may affect the accuracy of the conclusion about relationship between intestinal microbiota and DR 
stated by Huang et al[22]. Moreover, the effect of metformin on different microbiota were inconsistent in 
type 2 diabetes mellitus (T2DM) patients, which possibly be impacted by duration of diabetes, gender 
and race[28]. Thus, metformin taken by whole T2DM subjects still probably complicate the analysis of 
gut microbiota[24]. The abundance of intestinal microbiota was obviously affected by diet and 
geographic proximity[29,30]. Different intestinal microbiota may be relevant to same diseases among 
different persons from different areas and with different dietary habits. Our study is focus on exploring 
the differential bacteria between diabetic patients with DR and without DR, as well as diabetic patients 
with PDR and NPDR in south Zhejiang and north Fujian in China, aiming to unravel the link between 
intestinal microflora and DR, and find a new therapeutic target for DR, especially PDR.

MATERIALS AND METHODS
Study population and sample collection
For this study, 45 samples were obtained from patients who are hospitalized in the department of 
endocrinology in the 1st Affiliated Hospital of Wenzhou medical university from August, 2018 to 
September, 2020. Patients were divided into non-diabetics (Group C, n = 15) and T2DM patients (Group 
DM, n = 30), which was further divided into patients with DR (Group DR, n = 15) and patients without 
DR (Group D, n = 15). Further, Group DR was divided into patients with PDR (Group PDR, n = 8) and 
patients without PDR (Group NPDR, n = 7). The enrolled patients are aged between 30-80 years old 
without conditions as pregnant, lactation, current smoker, current drinker, BMI ≥ 27, prescribed for 
metformin, alpha glycosidase inhibitor, antibiotics, probiotics, glucocorticoids, cathartics or PPI within 3 
mo, rheumatoid arthritis, inflammatory bowel disease, or gastrointestinal tract operation. After 
admitted into our department, demographic, medical history, physical examination data were collected 
and several biochemical tests were performed. Participants self-collected a fecal sample, which were 
collected by patients, and stored at -80 ℃ later in less than 24 h. This study was approved by the Ethics 
Committee of the 1st Affiliated Hospital of Wenzhou medical university. All participants gave their 
informed consent. The trial register number is 2018-129.

DNA extraction and amplification
Fecal samples were snap frozen and stored at -80 ℃ after collection. Bacterial DNA was isolated from 
the fecal samples using MagPure Soil DNA LQ Kit (Magen, United States) following the manufacturer’s 
instructions. DNA concentration and integrity were measured by Nano Drop 2000 spectrophotometer 
(Thermo Fisher Scientific, Waltham, MA, United States) and agarose gel electrophoresis, respectively. 
Polymerase chain reaction (PCR) amplification of the V3-V4 hypervariable regions of the bacterial 16S 
rRNA gene was carried out in a 25 μL reaction using universal primer pairs (343F: 5′-TACGGRAG-
GCAGCAG-3′; 798R: 5′-AGGGTATCTAATCCT-3′). The reverse primer contained a sample barcode and 
both primers were connected with an Illumina sequencing adapter.
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Library construction and sequencing
The amplicon quality was visualized using gel electrophoresis. The PCR products were purified with 
Agencourt AMPure XP beads (Beckman Coulter Co., United States) and quantified using Qubit dsDNA 
assay kit. The concentrations were then adjusted for sequencing. 16S rDNA sequencing were performed 
using Illumina MiSeq platform at Shanghai OE Biotech Co., Ltd.

Bioinformatic analysis
Paired-end reads were preprocessed using Trimmomatic software to detect and cut off ambiguous 
bases(N)[31]. It also cut off low quality sequences with average quality score below 20 using sliding 
window trimming approach. After trimming, paired-end reads were assembled using FLASH software
[32]. Parameters of assembly were: 10 bp of minimal overlapping, 200 bp of maximum overlapping and 
20% of maximum mismatch rate. Sequences were performed further denoising as follows: Reads with 
ambiguous, homologous sequences or below 200 bp were abandoned. Reads with 75% of bases above 
Q20 were retained using QIIME software (version 1.8.0)[33]. Then, reads with chimera were detected 
and removed using VSEARCH[34]. Clean reads were subjected to primer sequences removal and 
clustering to generate operational taxonomic units (OTUs) using VSEARCH software with 97% sim-
ilarity cutoff[34]. The representative read of each OTU was selected using QIIME package. All repres-
entative reads were annotated and blasted against Silva database (Version 123) using Ribosomal 
Database Project classifier (confidence threshold was 70%)[35]. The microbial diversity in fecal samples 
was estimated using the alpha diversity that include Chao1 index, Shannon index and Simpson index. 
The Unifrac distance matrix performed by QIIME software was used for weighted Unifrac principal 
coordinates analysis (PCoA) construction. The 16S rRNA gene amplicon sequencing and analysis were 
conducted by OE Biotech Co., Ltd. (Shanghai, China).

Statistical analysis
Data with normal distribution and homogeneity of variance were compared using independant samples 
t test, otherwise, were compared using Wilcoxon test. Comparisons between groups were performed 
with the clinical characteristics. For associations between clinical characteristics and gut microbial, 
Spearman correlation analysis were performed using R version 3.6.1. Correction for multiple testing was 
performed using false discovery rate with the Benjamini–Hochberg. False discovery rate values < 0.05 
were considered statistically significant.

RESULTS
Clinical and biochemical characteristics
The clinical and biochemical characteristics were compared between Group DM and C as well as Group 
D and DR, Group PDR and NPDR (Tables 1 and 2). The age, sex proportion and BMI did not differ 
between the three pairs mentioned above. Further, the other indexes were comparable between Group 
DM and C except for fasting blood glucose, glycated hemoglobin A1c (Tables 1 and 2). Compared to 
Group D, neutrophil to lymphocyte ratio, CD4+ T cell count were significantly increased in Group DR (P 
< 0.05, P < 0.05), whereas, B cell count, CD8+ T cell count, NK cell count, percentage of NK cell were 
decreased (P < 0.01, P < 0.05, P < 0.01, P < 0.05, Table 2). Patients in Group PDR had a significantly 
lower level of estimated glomerular filtration rate (eGFR) and B cell count (P < 0.05, P < 0.01), and a 
higher level of fasting insulin compared with NPDR (P < 0.05, Table 2).

Sequencing summary
Total 890469 sequences read with an average of 19788.2 reads per sample were obtained among the 45 
samples. 46551 OTUs were observed totally, with a mean of 1034.467 OTUs. The phyla Bacteroidete was 
the dominant intestinal microbiota with approximately 40% (Figure 1). The other three phyla dominated 
in microbiota were Firmicutes, Proteobacteria and Actinobacteria, with average relative abundances of 
29.1%, 19.6% and 5.2% respectively (Figure 1).

Fecal microbiota diversity
The Chao1, Shannon, simpson indexes were significantly higher in Group C compared with Group DM 
(P < 0.001, P < 0.001, P < 0.001, Figure 2A-C). However, they did not differ significantly between Group 
D and Group DR as well as between Group PDR and Group NPDR (P > 0.05, Figure 2D-I).

Weighted and unweighted PCoA showed a distinct distance between Group C and Group DM 
(Adonis, P < 0.01, P < 0.01, Figure 3A and B), whereas Group D and Group DR had no distinction (P > 
0.05, P > 0.05, P > 0.05, P > 0.05, Figure 3C and D). However, the microbiota community in Group PDR 
was not differed from Group NPDR (P > 0.05, P > 0.05, Figure 3E and F).
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Table 1 Basic characteristics compared between Group DM and Group C

Group DM vs Group C
Characteristic

Group DM (n = 30) Group C (n = 15) P value

Age 55.93 ± 9.58 59.73 ± 16.46 NS

Gender, male/female 19/11 9/6 NS

Height 165.70 ± 8.07 162.20 ± 7.78 NS

Weight 64.75 ± 7.67 62.53 ± 8.29 NS

Body mass index 23.47 ± 2.21 23.73 ± 2.27 NS

Waist circumference 84.75 ± 7.78 84.67 ± 8.36 NS

Hip circumference 91.42 ± 7.32 92.07 ± 7.29 NS

Waist hip ratio 0.93 ± 0.05 0.92 ± 0.08 NS

Waist height ratio 0.51 ± 0.05 0.52 ± 0.05 NS

Systolic blood pressure 128.43 ± 11.98 127.80 ± 14.03 NS

Fasting glucose 8.29 ± 2.79 5.34 ± 0.95 < 0.01

HbA1c 9.94 ± 1.96 5.63 ± 0.31 < 0.01

Triglycerides 1.81 ± 1.82 1.72 ± 0.77 NS

LDL-C 3.00 ± 0.97 2.94 ± 0.88 NS

eGFR 92.29 ± 27.65 87.21 ± 30.00 NS

Data are presented as mean ± SD. HbA1c: Glycosylated hemoglobin A1c; LDL-C: Low-density lipoprotein cholesterol; eGFR: Estimated glomerular 
filtration rate; Group C:  Samples with non-diabetics; Group DM: Samples with diabetics; NS: Not significant.

Figure 1 The pie shows average relative abundances of the most four dominated phyla. Relative abundances are presented as percentage.

The composition of fecal microbiota
At the phylum level, Proteobacteria was the most abundant in Group C followed by Bacteroidetes 
(Figure 4A). The abundance of Firmicutes, Bacteroidetes, Proteobacteria and Actinobacteria varied between 
Group DM and Group C (Figure 4A). The Firmicutes to Bacteroidetes ratio was slightly higher in Group 
DM compared with Group C, however, there was no significant difference (r = 0.86 vs r = 0.81, P = 0.53).

At the phylum level, the majority composition of microbiome in Group D and DR were Bacteroidetes 
and Firmicutes (Figure 4B). The relative mean abundance of phylum Bacteroidetes and Firmicutes as well 
as Firmicutes to Bacteroidetes ratio between Group D and Group DR were similar (P = 0.33, P = 0.37, P = 
0.52, Figure 4B). The relative mean abundance of phylum Bacteroidetes, Firmicutes and Firmicutes to 
Bacteroidetes ratio showed a similarity between Group PDR and NPDR (P = 0.71, P = 0.33, P = 0.54, 
Figure 4C).

The linear discriminant analysis effect size revealed that Fusob Cteriaceae, Fusobacteriales, Fusobacteriia, 
Fusobacteriaceae, Desulfovibrionales, Delta Proteobacteria, Burkholderiaceae and Beta Proteobacteriales were 
dominant in Group DR (Figure 5A). Meanwhile, Eubacteriaceae and Pseudomonadaceae were dominant in 
PDR and Group NPDR respectively (Figure 5B).
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Table 2 Basic characteristics compared between samples with diabetic retinopathy and samples without diabetic retinopathy, as well 
as patients with proliferative diabetic retinopathy vs patients without proliferative diabetic retinopathy

Group DR vs Group D Group PDR vs Group NPDR
Characteristic Group DR (n = 

15) Group D (n = 15) P value Group PDR (n = 
8)

Group NPDR (n = 
7) P value

Age 55.87 ± 10.54 56.00 ± 8.90 NS 58.75 ± 11.85 52.57 ± 8.44 NS

Gender, male/female 9/6 10/5 NS 3/5 3/4 NS

Diabetes duration 14.27 ± 7.27 4.045 ± 4.67 NS 15.50 ± 4.99 12.87 ± 9.49 < 0.01

height 165.13 ± 9.26 166.27 ± 6.97 NS 165.75 ± 10.12 164.43 ± 8.90 NS

Weight 64.83 ± 9.11 64.67 ± 6.24 NS 65.19 ± 9.64 64.43 ± 9.22 NS

Body mass index 23.49 ± 1.99 23.45 ± 2.48 NS 23.07 ± 1.24 23.97 ± 2.62 NS

Waist circumference 83.47 ± 8.40 86.03 ± 7.17 NS 85.75 ± 9.77 80.86 ± 6.20 NS

Hip circumference 89.53 ± 8.83 93.30 ± 5.03 NS 92.88 ± 8.17 85.71 ± 8.50 NS

Waist hip ratio 0.93 ± 0.06 0.92 ± 0.05 NS 0.92 ± 0.07 0.95 ± 0.03 NS

Waist height ratio 0.51 ± 0.05 0.52 ± 0.05 NS 0.52 ± 0.07 0.49 ± 0.02 NS

Systolic blood pressure 131.93 ± 13.27 124.93 ± 9.74 NS 135.75 ± 13.79 127.57 ± 12.15 NS

Fasting glucose 9.24 ± 2.95 7.34 ± 2.35 NS 9.61 ± 1.83 8.81 ± 4.00 NS

HbA1c 10.01 ± 1.63 9.87 ± 2.31 NS 9.26 ± 1.62 10.87 ± 1.24 NS

Triglycerides 2.18 ± 2.50 1.44 ± 0.57 NS 2.42 ± 2.90 1.90 ± 2.14 NS

LDL-C 2.78 ± 0.90 3.22 ± 1.02 NS 2.51 ± 1.16 3.09 ± 0.34 NS

eGFR 88.08 ± 32.09 96.51 ± 22.72 NS 69.33 ± 33.84 109.51 ± 7.88 < 0.05

Urine albumin creatine ratio 527.22 ± 1055.30 30.90 ± 52.89 NS 508.40 ± 731.68 548.74 ± 1404.61 NS

Serum creatinine clearance 
value

97.59 ± 52.53 114.66 ± 41.75 NS 94.24 ± 60.68 101.41 ± 45.96 NS

Urea nitrogen 7.65 ± 5.66 5.87 ± 2.24 NS 9.60 ± 7.24 5.41 ± 1.58 NS

Fasting insulin 61.34 ± 24.06 70.91 ± 57.40 NS 73.31 ± 19.84 47.66 ± 21.96 < 0.05

HOMA-IR 3.82 ± 2.13 3.10 ± 2.00 NS 4.53 ± 1.62 23.00 ± 2.46 NS

HOMA-B 0.40 ± 0.25 0.80 ± 1.02 NS 0.36 ± 0.13 0.45 ± 0.36 NS

Platelet 217.60 ± 55.49 203.67 ± 63.63 NS 196.63 ± 43.45 241.57 ± 61.04 NS

Mean platelet volume 11.13 ± 0.85 10.99 ± 0.79 NS 11.40 ± 0.88 10.83 ± 0.76 NS

Platelet distribution width 13.79 ± 1.58 13.95 ± 1.55 NS 14.05 ± 1.55 13.49 ± 1.67 NS

Neutrophil to lymphocyte 
ratio

2.85 ± 0.99 2.10 ± 0.86 < 0.05 2.75 ± 0.90 2.97 ± 1.15 NS

T cell count 1165.87 ± 373.69 1518.00 ± 335.85 NS 1092.75 ± 504.02 1249.43 ± 119.08 NS

B cell count 249.67 ± 82.72 378.87 ± 124.49 < 0.01 198.00 ± 57.65 308.71 ± 66.81 < 0.01

CD4+ T cell count 733.87 ± 299.45 953.2 ± 226.40 < 0.05 684.13 ± 413.77 790.72 ± 49.25 NS

CD8+ T cell count 389.40 ± 116.23 490.47 ± 137.90 < 0.05 371.88 ± 145.83 409.43 ± 76.37 NS

CD4+ to CD8+ T cell ratio 1.91 ± 0.60 2.01 ± 0.42 NS 1.85 ± 0.79 1.98 ± 0.31 NS

NK cell count 220.20 ± 85.18 462.27 ± 250.54 < 0.01 240.00 ± 114.91 197.57 ± 20.12 NS

NK cell percent 12.66 ± 3.65 19.41 ± 9.48 < 0.05 14.05 ± 4.52 11.07 ± 1.33 NS

Data are presented as mean ± SD. HbA1c: Glycosylated hemoglobin A1c; LDL-C: Low-density lipoprotein cholesterol; eGFR: Estimated glomerular 
filtration rate; HOMA-IR: Homeostasis model assessment of insulin resistance; HOMA-B: Homeostasis model assessment of beta-cell function; NS: No 
significance; Group DR: Samples with diabetic retinopathy; Group D: Samples without diabetic retinopathy; Group PDR: Patients with proliferative 
diabetic retinopathy; Group NPDR: Patients without proliferative diabetic retinopathy.
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Figure 2 Alpha diversity analysis of microbiota in the six groups. A: The Chao1 index between Group DM and Group C; B: The Shannon index between 
Group DM and Group C; C: The simpson index between Group DM and Group C; D: The Chao1 index between Group DR and Group D; E: The Shannon index 
between Group DR and Group D; F: The simpson index between Group DR and Group D; G: The Chao1 index between Group PDR and Group NPDR; H: The 
Shannon index between Group PDR and Group NPDR; I: The simpson index between Group PDR and Group NPDR. aP < 0.05. NS: Not significant. Group C: 
Samples with non-diabetics; Group DM: Samples with diabetics; Group DR: Samples with diabetic retinopathy; Group D: Samples without diabetic retinopathy; Group 
PDR: Patients with proliferative diabetic retinopathy; Group NPDR: Patients without proliferative diabetic retinopathy.

At the phylum level, Fusobacteria was significant higher in Group DR than in Group D (P < 0.05, 
Figure 6A). In addition, at the family level, Fusobacteriaceae, Burkholderiaceae, Desulfovibrionaceae and 
Pseudomonadaceae were significantly increased in Group DR than in Group D (P < 0.05, P < 0.05, P < 0.05, 
P < 0.05, Figure 6B). At the genus level, the abundance of Senegalimassilia, S5-A14a and 
Lachnospiraceae_UCG-008 were significantly decreased in Group DR than in Group D (P < 0.05, P < 0.05, 
P < 0.05), whereas, Fusobacterium, Pseudomonas, Lachnospiraceae_UCG-010 and Adlercreutzia were 
significantly increased (P < 0.05, P < 0.05, P < 0.05, P < 0.05, Figure 6C). Further, Eubacterium, Peptococcus
, Desulfovibrio, Acetanaerobacterium, Negativibacillus and Family_XIII_UCG-001 were significantly 
increased in Group PDR compared with Group NPDR (P < 0.01, P < 0.05, P < 0.05, P < 0.05, P < 0.05, P < 
0.05), wherereas, Pseudomonas, Alloprevotella, Tyzzerella and Tyzzerella-3 had a reduction (P < 0.05, P < 
0.05, P < 0.05, P < 0.05, Figure 6D).
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Figure 3 Beta diversity analysis of microbiota in the six groups. A and B: Weighted and unweighted PCoA between between Group DM and Group C; C 
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and D: Weighted and unweighted PCoA between between Group DR and Group D; E and F: Weighted and unweighted PCoA between between Group PDR and 
Group NPDR. Differences were assessed by Adonis. Group C:  Samples with non-diabetics; Group DM: Samples with diabetics; Group DR: Samples with diabetic 
retinopathy; Group D: Samples without diabetic retinopathy; Group PDR: Patients with proliferative diabetic retinopathy; Group NPDR: Patients without proliferative 
diabetic retinopathy.

Spearman’s correlations between the relative abundance of bacterial families, clinical indices and 
biochemical characteristics were performed between Group DR and Group D as well as Group PDR and 
NPDR. In Group D and Group DR, Pseudomonas had a negative correlation with NK cell count (r = -0.39, 
P < 0.05, Figure 7A). However, Senegalimassilia had a positive correlation with NK cell% (r = 0.42, P < 
0.05, Figure 7A). Meanwhile, in Group PDR and Group NPDR, Acetanaerobacterium (r = 0.53, P < 0.05) 
and Desulfovibrio were positively correlated with fasting insulin (r = 0.61, P < 0.05, Figure 7B), when 
Negativibacillus was negatively correlated with B cell count (r = -0.67, P < 0.01) and eGFR (r = -0.66, P < 
0.01, Figure 7C).

DISCUSSION
Disorder in intestinal microbiota composition has been implicated in occurrence and development of 
diabetes mellitus (DM)[36,37]. Intestinal microbiota dysbiosis induces oxidative stress, inflammation, 
insulin resistance and vascular permeability, which probably involves in progression of diabetic 
complication including DR[37,38]. However, the association between intestinal microbiota and DR 
remains unclear. Moubayed et al[20] found diabetic patients have higher relative abundance of 
Bacteroides than non-diabetic patients, however microbiota differences between patients with DR and 
without DR were not detected. A study presented microbiota biomarkers to help diagnosing DR, but 
not analyze the relation between them and clinical markers[22]. Considering existing mature 
examination to make a definite diagnosis of DR, microbiota biomarkers did not contribute much to the 
diagnosis. Besides, there was no evidence to prove that the relationship between biomarkers and DR 
was not accidental. The primary aim of the current study was to assess the gut flora differences of 
persons with DM and healthy controls, of diabetic patients with DR and without DR separately, 
applying 16S rRNA gene sequencing. In addition, the analysis of the correlation between the gut flora 
differences and clinical indexes was taken.

PCOA analysis revealed that the α diversity was decreased significantly in Group DM compared 
those in Group C, which was in line with previous study[22]. Lower bacterial richness was associated 
with several common metabolic markers including overall adiposity, insulin resistance and dyslip-
idaemia coexisted in T2DM[39]. Maintenance of gut nomobiosis played a protective role in glycolipid 
metabolism[40], on the contrary, gut dysbiosis characteristed with reduced microbiota diversity induced 
expansion of pathogenic bacteria, gut inflammation and deterioration of diabetes[41,42]. Signifificant 
variations of gut microbiota between T2DM patients and nondiabetic controls revealed in PCoA was 
showed by a previous report[43], which was accordant with ours. In addition, in accordance with 
previous study, α diversity indexes did not differ significantly between Group DR and Group D[22,23]. 
The α and β diversity did not significantly change between Group DR and Group D as well as between 
Group NPDR and PDR in our study.

At phylum level, Bacteroidota, Firmicutes, Proteobacteria and Actinobacteriota occupied more than 80% of 
community abundance were regarded as the most dominant phyla in each group. A study found that 
the abundance of Firmicutes and Bacteroidetes increased in Group DM compared with Group C, with 
slightly higher Firmicutes/Bacteroidetes ratio in Group DM, consistent to our study[43]. Further, the 
investigation performed by Li et al[44] got the similar results in Han population. Of interests, we found 
that Firmicutes were more abundant in Group DR than Group D, while Bacteroidetes were less abundant 
in Group DR via Wilcoxon test. However, Huang et al[22] got an opposite result. Although the result in 
our study was lack of statistical difference, this distinction also got our attention. Metformin may 
influence Firmicutes abundance[45]. We guessed that metformin received by most diabetic patients 
without DR stated by Huang et al[22] might led to lower abundance of Firmicutes in Group DM without 
DR. Compared with Group D, there was a significant increase abundance of Fusobacteria in Group DR. 
However, the study performed by Sisinthy Shivaji was discordant with ours[23], which possibly due to 
the inconsistent effect of metformin on Fusobacteria[28].

Our results indicated that Fusobacteriacee, Desulfovibrionaceae, Burkholderiaceae and Pseudomonadaceae at 
the family level increased in Group DR compared with Group D. Further, Eubacteriaceae and Pseudomon-
adaceae were predominant in Group PDR and Group NPDR respectively. Fusobacteria and Fusobac-
teriaceae produced short-chain fatty acids including acetate and propionate and their abundance 
increased in non-alcoholic steatohepatitis (NASH) subjects compared to nonalcoholic fatty liver and 
healthy controls[46]. Elevated and propionate in faeces of human NASH subjects were relevant to the 
increase of Th17 in peripheral blood[46]. An study in animal model showed that blocking the IL-23-
Th17-IL-17A pathway would help alleviating DR in mice[47]. Therefore, our results suggested that 
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Figure 4 The composition at phylum level in the six groups. A: The composition at phylum level in Group DM and Group C. The abundance of Firmicutes, 
Bacteroidetes, Proteobacteria and Actinobacteria varied between the two groups; B: The composition at phylum level in Group DR and Group D. The relative mean 
abundance of phylum Bacteroidetes and Firmicutes between Group D and Group DR were similar (P = 0.33, P = 0.37); C: The composition at phylum level in Group 
PDR and Group NPDR. The relative mean abundance of phylum Bacteroidetes, Firmicutes and showed a similarity between Group PDR and NPDR (P = 0.71, P = 
0.33). Group C:  Samples with non-diabetics; Group DM: Samples with diabetics; Group DR: Samples with diabetic retinopathy; Group D: Samples without diabetic 
retinopathy; Group PDR: Patients with proliferative diabetic retinopathy; Group NPDR: Patients without proliferative diabetic retinopathy.

increased Fusobacteria and Fusobacteriaceae may contribute to producing acetate and propionate, 
increasing Th17 and causing DR. Fusobacteriaceae is a gram-negative bacterium producing endotoxin, 
LPS[48]. A study found that Fusobacteriaceae increased and induced LPS in pigs with NASH[48]. And, in 
hyperglycaemic mice, elevation of systemic LPS contributed to the occurrence of DR[49]. Thus, higher 
abundance of Fusobacteriaceae possibly produce LPS and cause DR in our study. Eubacteriaceae is one of 
the bacteria that can metabolize aromatic amino acids to produce p-Cresy lsulfate (a prototype protein-
bound uremic toxin)[50]. P-Cresy lsulfate induced renal cell carcinoma to overexpress hypoxia-
inducible factor (HIF)-1α[51]. In our study, eGFR was lower in Group PDR than NPDR. P-Cresy lsulfate 
which was one of metabolites of great uremic solutes produced by Eubacteriaceae may deteriorate DR by 
elevate the level of HIF-1α in retina in our study.

Compared to Group D, the genera Fusobacterium, Pseudomonas, Adlercreutzia and Lachnospirace-
ae_UCG-010 were increased, but Senegalimassilia, Lachnospiraceae_UCG-008 and S5-A14a were decreased 
in Group DR. Huang et al[22] found that compared with patients with diabetic patients without DR , 
Group DR had decreased Blautia and Lactobacillus and less of them took metformin. Besides preventing 
the occurrence of DR, metformin also increase Blautia and Lactobacillus[27,52]. Accordingly, despite lack 
of statistical differences in the numbers of patients using metformin between the two groups stated by 
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Figure 5 Results of linear discriminant analysis effect size in the six groups. Wilcoxon signed rank test was used for statistical analyzing. The 
threshold of linear discriminant analysis score was set to 2.0. A and B: Red nodes designated microorganism that only been detected in Group DR. The regions 
marked with yellow indicated no significant difference between Group DR and Group D as well as Group PDR and NPDR. Group DR: Samples with diabetic 
retinopathy; Group D: Samples without diabetic retinopathy; Group PDR: Patients with proliferative diabetic retinopathy; Group NPDR: Patients without proliferative 
diabetic retinopathy.

Huang et al[22], we speculated that increased Blautia and Lactobacillus and lower incidence of DR were 
relevant to metformin, and the causal relationship between Blautia, Lactobacillus and DR remained 
uncertain. Patients in Group DR had a larger proportion of Fusobacterium, suggesting a possible larger 
proportion of Fusobacterium Nucleatum (Fn) than in Group D. As a most frequent Fusobacterium Specie, 
FN secreted adhesins recognized vascular endothelial cell receptors and increased the vascular 
permeability contributing to the development of retinopathy possibly[53,54]. This may explain why 
diabetic patients with higher Fusobacterium are more likely to develop DR. Pseudomonas aeruginosa was 
one of Pseudomonas species which was a common pathogen in human body[55]. Pseudomonas aeruginosa 
could help secreting exotoxin to induce hyperpermeability and thrombosis of pulmonary vessels[56]. 
Besides, our study found that Pseudomonas was negatively correlated with absolute value of NK cells, 
consistent to other studies[57,58]. We presumed that Pseudomonas increased the permeability of retinal 
blood vessels and decreased NK cells, resulting in the occurrence of DR. Further experiments were 
needed to confirm the supposition. Adlercreutzia was positively correlated with leptin level which was 
positively correlated with the severity of DR[59,60]. Therefore, Adlercreutzia may promote the 
occurrence of DR by influencing leptin. Senegalimassilia had the genome that produced enterolactone, 
which was one of the two kinds of lignans in mammals and negatively correlated with white blood cells 
and C-reactive protein[50,61,62]. Increased Senegalimassilia would inhibit inflammatory response by 
producing enterolactone, and prevent DR consequently. The relationship between Lachnospiraceae_UCG-
010, Lachnospiraceae_UCG-008, S5-A14a and diabetic complications had not been reported.

Eubacterium, Peptococcus, Desulfovibrio, Acetanaerobacterium, Negativibacillus and Family_XIII_UCG-001 
were higher in Group PDR compared to Group NPDR, while Pseudomonas, Alloprevotella and Tyzzerella 
were lower. Eubacterium is known as a butyrate producer[63]. Sodium butyrate in low concentration can 
promote angiogenesis whereas high concentration sodium butyrate has anti-angiogenic effect[64,65]. 
However, whether Eubacterium in our study promotes DR by generating low concentration sodium 
butyrate needs to be further clarified. Diabetes had a close relationship with cognitive impairment[66-
68]. Diabetics with DR were more likely to suffer cognitive impairment (CI) and patients with higher 
severity of DR were more likely to have higher incidence of CI[69]. In addition, retinal vessel and 
cerebral small vessel had similar embryological origin, size and structure, suggesting that DR and CI 
may have similar pathophysiological basis[69]. A study showed patients with T2DM who had CI had 
higher level of Peptococcus and our study showed patients in Group PDR had a higher level of 
Peptococcus than Group NPDR[70]. Peptococcus may inspire both CI and DR progression in diabetic 
patients. Desulfovibrio desulfuricans was one of three species isolated from human faeces and could 
induce endothelial cell to produce vascular cell adhesion molecule-1 (VCAM-1) relating to the severity 
of DR[71,72]. Elevated level of Desulfovibrio desulfuricans may involve in the progression of PDR. The 
conclusion needs to be further explored due to the lack of analyzing species levels in genera Desulfo-
vibrio.Desulfovibrio and Acetanaerobacterium were positively correlated with fasting insulin level and their 
abundance were higher in Group PDR than Group NPDR in our study. Insulin could induce HIF and 
neovascularization by PI3K and MAPK pathway[73]. Hyperinsulinemia may be the mechanism of 
Desulfovibrio and Acetanaerobacterium promoting PDR. Our study showed that Negativibacillus was 
negatively correlated with B lymphocyte. Considering immune cells including B lymphocyte inhibited 
the formation of pulmonary neovascularization by ischemi, Negativibacillus may promote retinal neovas-
cularization by decreasing B lymphocyte[74]. As stated earlier, Pseudomonas aeruginosa increased the 
incidence of DR by promoting increased vascular permeability. However, Pseudomonas aeruginosa 
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Figure 6 Relative abundance of microbiota displayed by Box and whiskers plots. A-C: Box and whiskers plots display relative abundance of 
microbiota in different level between Group DR and Group D; D: Box and whiskers plots display relative abundance of genera between Group PDR and NPDR. Group 
DR: Samples with diabetic retinopathy; Group D: Samples without diabetic retinopathy; Group PDR: Patients with proliferative diabetic retinopathy; Group NPDR: 
Patients without proliferative diabetic retinopathy.

decreased in Group PDR than Group NPDR. Pseudomonas aeruginosa inhibited HIF, a key molecule of 
developing PDR[75]. Reason for the phenomenon that Pseudomonas aeruginosa was related higher 
incidence of DR but lower incidence of PDR needed further exploration. Butyric acid exhibited anti-
angiogenic effect by inhibit expression of VEGF/KDR gene, and the higher abundance of Alloprevotella 
in the Group NPDR may suppress angiogenesis via butyric acids, thus delay the onset of PDR[76]. 
Tyzzerella produced much propionate which was capable of reducing the expression of VCAM-1 and 
intercellular adhesion molecule-1 (ICAM-1) induced by cytokine[77,78]. The levels of VCAM-1 and 
ICAM-1 in serum and eyes of patients in Group PDR were elevated compared with Group NPDR[79]. 
Hence, Tyzzerella may have slowed the progression of DR by reducing VCAM-1 and ICAM-1. The effect 
of Family XIII UCG-001 on DR was still unknown.
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Figure 7 Correlation heatmap between gut microbiota and clinical indices. A: Correlation heatmap between gut microbiota and clinical indices in 
Group DM (Group DR vs Group D); B and C: Correlation heatmap between gut microbiota and clinical indices in Group DR (Group PDR vs Group NPDR). Different 
colors represent correlation level. Different colors represent correlation level (blue represents for negative correlation, red represents for positive correlation). aP < 
0.05; bP < 0.01. Group C:  Samples with non-diabetics; Group DM: Samples with diabetics; Group DR: Samples with diabetic retinopathy; Group D: Samples without 
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diabetic retinopathy; Group PDR: Patients with proliferative diabetic retinopathy; Group NPDR: Patients without proliferative diabetic retinopathy.

CONCLUSION
Our study explored the differences of intestinal microbiota between group DR and group D, as well as 
group PDR and group NPDR in the Chinese population of the southeast coastal region, rid of the 
interference of metformin. At the family level and genus level, much different microbiota was found 
between group DR and group D, and they may promote the occurrence of DR by affecting immune cells 
mediated by short-chain fatty acids, pro-inflammation response or anti-inflammation, inducing HIF and 
influencing permeability of blood vessels in the fundus. On the genus level, we found that besides 
Pseudomonas, the variation of microbiota composition between group PDR and group NPDR was 
completely different from that between group DR and group D. Some differential bacteria between 
group PDR and group NPDR may affect the level of butyrate or butyric acid, participate in the 
production of VCAM-1, decrease the level of HIF, affect the brain-eye barrier, promote insulin secretion 
and reduce B lymphocytes to promote or postpone the progress of DR. Accordingly, we speculated that 
the disorder of intestinal microbiota may be involved in the occurrence and development of DR, 
providing a possible novel therapeutic target for DR. However, our study lacked the detection at species 
level, as well as the measurement of microbial metabolites and related clinical indicators. The causal 
relationship between intestinal microbiota and the occurrence and development of DR remained 
unclear. Consider the limitation mentioned above, further investigation was required.

ARTICLE HIGHLIGHTS
Research background
For the therapy of diabetic retinopathy (DR), current approaches showed their own limitations. 
Modulation of gut flora was capable of preventing DR, which was revealed by animal experiment.

Research motivation
To provide clues for novel ways to prevention and treatment methods of DR.

Research objectives
This study aims to explore the relationship between intestinal microbiota and DR among patients in the 
southeast coast of China.

Research methods
By 16S rRNA sequencing, fecal samples of non-diabetics (Group C, n = 15) and diabetics (Group DM, n 
= 30) were analyzed. Spearman correlation analyses were performed to explore the associations between 
intestinal microbiota and clinical indicators.

Research results
The alpha and beta diversity did not differ significantly between Group DR and Group D as well as 
Group PDR and Group NPDR. At the genera level, Pseudomonas, Fusobacterium and Adlercreutzia 
were increased in Group DR than Group D while Senegalimassilia was decreased (P < 0.05, 
respectively). At the family level, Pseudomonadaceae, Desulfovibrionaceae and Fusobacteriaceae were 
significantly increased in Group DR than in Group D (P < 0.05, respectively). Pseudomonas was 
negatively correlated with NK cell count (r = -0.39, P = 0.03). In addition, the abundance of 
Pseudomonas, Alloprevotella and Tyzzerella (P < 0.05, respectively) were lower in Group PDR 
compared to Group NPDR, while genera Eubacterium (P < 0.01), Peptococcus, Desulfovibrio, Acetan-
aerobacterium and Negativibacillus (P < 0.05, respectively) were higher. Desulfovibrio and Acetan-
aerobacterium were positively associated with fasting insulin (r = 0.53 and 0.61, respectively, P < 0.05), 
when Negativibacillus was negatively associated with B cell count (r = −0.67, P < 0.01).

Research conclusions
Our research revealed that dysbiosis of gut flora was correlated with DR and its progression among 
diabetics in the southeast coast of China, probably via several mechanisms including producing 
influencing permeability of blood vessels, short-chain fatty acids, affecting levels of vascular cell 
adhesion molecule-1, hypoxia-inducible factor-1, B cell and insulin. Manipulating gut microbiota might 
be a novel way for prevention of DR, particularly PDR in population above.
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Research perspectives
This research perspectives are as fellow: (1) Current treatments for DR did not acquire satisfied effect; 
(2) Animal experiment revealed that reconstruction of gut microbiota could prevent DR; and (3) Does 
alteration of gut microbiota has connection with DR in human?
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Abstract
BACKGROUND 
Diabetic nephropathy (DN) is a microangiopathy of type 2 diabetes mellitus 
(T2DM), which can damage the kidney through various ways and mechanisms 
due to the nature of the disease, involving the renal interstitium and glomeruli. 
However, in the early stage of the disease, patients only showed kidney volume 
increase and glomerular hyperthyroidism, and typical symptoms that are difficult 
to arouse individual attention were noticed.

AIM 
To observe the expression of serum retinol-binding protein (RBP) and urinary N-
acetyl-β-D-glucosaminidase (NAG) in patients with DN, and to analyze their 
value in disease prediction, so as to provide new targets for early diagnosis and 
treatment of DN.

METHODS 
The baseline data of 50 T2DM patients treated in our hospital between January 
2021 and December 2022 were retrospectively reviewed and included in group A. 
The baseline data of 50 patients with type 2 DN admitted to our hospital during 
the same period were collected and included in group B. The baseline data and 
serum RBP and urine NAG expression were compared between the two groups to 
analyze their value in the early prediction of DN.
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RESULTS 
There was no significant difference in age, gender, duration of diabetes, combined hyperlipidemia 
and combined hypertension between the two groups (P > 0.05); the expression of urinary NAG 
and serum RBP in group B was higher than that in group A, and the difference was statistically 
significant (P < 0.05); a multiple logistic regression model was established, and the results showed 
that urinary NAG and serum RBP were related to the presence or absence of injury in diabetic 
patients, and overexpression of urinary NAG and serum RBP may be risk factors for renal injury 
in T2DM patients (OR > 1, P < 0.05); receiver operating curve curve was plotted, and the results 
showed that the area under the curve of urinary NAG and serum RBP expression alone and in 
combination for predicting DN was > 0.80, and the predictive value was satisfactory; bivariate 
Spearman linear correlation analysis showed that there was a positive correlation between urinary 
NAG and serum RBP expression in patients with DN (r = 0.566, P = 0.000).

CONCLUSION 
The increased expression of urinary NAG and serum RBP may be the risk factors leading to the 
progression of T2DM to DN. The possibility of DN can be considered in patients with urinary 
NAG and serum RBP overexpression by examining the expression of urinary NAG and serum 
RBP in patients with T2DM in clinical practice.

Key Words: Diabetic nephropathy; Serum retinol-binding protein; Urinary N-acetyl-β-D-glucosaminidase; 
Prediction; Type 2 diabetes mellitus

©The Author(s) 2023. Published by Baishideng Publishing Group Inc. All rights reserved.

Core Tip: Retinol-binding protein (RBP) can combine with thyroid transporters to form polymer 
complexes, and activated RBP can free in plasma, pass through glomerular filtration, and be absorbed and 
decomposed by renal tubules. N-acetyl-β-D-glucosaminidase is a high molecular glycoprotein acidic 
hydrolase, which is an intracellular lysosomal enzyme mainly present in body fluids, organ tissues and 
blood cells of the body, and has a high expression especially in the proximal renal tubules, thus being 
clinically used as an important indicator for the evaluation of renal tubular function.

Citation: Lin ZH, Dai SF, Zhao JN, Jiang Y. Application of urinary N-acetyl-β-D-glucosaminidase combined with 
serum retinol-binding protein in early detection of diabetic nephropathy. World J Diabetes 2023; 14(6): 883-891
URL: https://www.wjgnet.com/1948-9358/full/v14/i6/883.htm
DOI: https://dx.doi.org/10.4239/wjd.v14.i6.883

INTRODUCTION
Diabetic nephropathy (DN) is a microangiopathy of type 2 diabetes mellitus (T2DM), which is caused 
by many factors such as hemodynamics, glucose metabolism mechanism, oxidative stress, resulting in 
relative or absolute lack of insulin in the body. Patients mainly have persistent elevated blood glucose, 
nutritional metabolism disorders. DN can damage the kidney through various ways and mechanisms 
due to the nature of the disease, involving the renal interstitium, glomeruli, resulting in pathological 
changes in the kidney, such as glomerulosclerosis, but the initial manifestations of patients are only 
increased kidney volume, glomerular hyperfunction, not easy to appear the typical symptoms that 
attract individual attention, only in patients with edema, proteinuria caused detection, but at this time 
the disease has progressed to the irreversible stage, the best time of treatment is missed, the prognosis of 
patients is mostly unsatisfactory[1-3]. Therefore, it is particularly important to find new clinical 
biochemical factors or examination methods to help the early detection of patients with clinical DN to 
guide the development of early intervention means and improve the prognosis of patients. It has been 
reported that tubular injury is earlier than glomerular injury in patients with DN, suggesting that 
tubular injury-related indicators are more significant for guiding the early detection of DN[4-6]. Urine 
N-acetyl-β-D-glucosaminidase (NAG) is a hot indicator in the diagnosis and treatment of kidney-related 
diseases at present, and it has more research value in reflecting kidney injury, especially tubular injury
[7-9]. Retinol-binding protein (RBP) is a transporter of retinol in blood and has significant value in the 
assessment of proximal tubular reabsorption function and glomerular filtration performance[10-12]. 
Based on the biological mechanism of the above two indicators in the body, consider whether they can 
be used as early diseases in patients with DN. In view of this, this study will focus on observing the 
expression of serum RBP and urinary NAG in patients with DN, and analyze the value of the two 
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indicators in disease prediction, providing a new target for early diagnosis and treatment of patients 
with DN.

MATERIALS AND METHODS
General data
Retrospective analysis was performed to collect the baseline data of 50 patients with T2DM admitted to 
our hospital between January 2021 and December 2022, and were included in group A. Within the 
group, there were 30 males and 20 females; the mean age was (43.12 ± 5.02) years. Baseline data were 
collected from 50 patients with type 2 DN admitted to our hospital during the same period and included 
in Group B, Within the group, there were 28 males and 22 females; the mean age was (43.25 ± 5.12) 
years.

Inclusion and exclusion criteria
Inclusion criteria: (1) The diagnosis of T2DM refers to the contents in the [Chinese Guidelines for the 
Prevention and Treatment of Type 2 Diabetes (2013 Edition)][13], which is clinically confirmed by oral 
glucose tolerance test; (2) Patients with DN refer to the contents in [the Expert Consensus on the Clinical 
Diagnosis of Diabetic Kidney Disease in Chinese Adults][14]; (3) No other related diseases of the kidney, 
such as acute and chronic nephritis; and (4) The relevant treatments involved in this study are properly 
preserved.

Exclusion criteria: (1) Combined endocrine diseases, such as thyroid disease; (2) Combined tumor, 
tuberculosis and other cachexia; (3) Patients with kidney damage caused by other reasons, such as long-
term drug history; and (4) Patients with low compliance caused by combined psychological or mental 
disorders, who cannot successfully cooperate with the study.

Baseline data collection method
According to the study objectives and methods, a statistical table of general data was designed, which 
mainly included duration of diabetes, gender, age, combined hyperlipidemia and combined 
hypertension. Participants in this study all came from the same region.

Test methods for laboratory indicators
5 mL of fasting venous blood was collected at a rate of 3500 r/min with a radius of 15 cm, and the 
supernatant was obtained after centrifugation for 5 min. Serum RBP was measured by immunoturbid-
imetry (Beckman AU5800 automatic biochemical analyzer). Patients were asked to randomly obtain 5 
mL of morning midstream urine, centrifuged at 1500 r/min, and the supernatant was obtained after 10 
min of centrifugation to detect urinary NAG by colorimetry (kit produced by Beijing Jiuqiang 
Company). All the above operations were carried out in strict accordance with the instructions of 
relevant instruments, reagents.

Statistical analysis
Data processing was performed using SPSS 24.0 software, and all measurement data were tested for 
normality by Shapiro-Wilk test, and data that conformed to the normal distribution were expressed as 
mean ± SD, and comparisons between groups were performed using the independent samples t-test; 
“%” was used for enumeration data and expressed as χ2 Test, correlation analysis was performed using 
bivariate Spearman line, and logistic regression analysis was used to test the relationship between 
urinary NAG and serum RBP expression and patients with DN; receiver operating curve (ROC) was 
plotted to test the value of urinary NAG and serum RBP in predicting DN, evaluated by area under the 
curve (AUC), AUC ≤ 0.50: No predictive value; 0.50 < AUC ≤ 0.70: Low predictive value; 0.70 < AUC ≤ 
0.90: Moderate predictive value; AUC > 0.90: High predictive value; P < 0.05 was considered statistically 
significant.

RESULTS
Comparison of data between the two groups
There was no significant difference in age, gender, duration of diabetes, combined hyperlipidemia and 
combined hypertension between the two groups (P > 0.05); urinary NAG and serum RBP expression in 
group B were higher than those in group A, and the difference was statistically significant (P < 0.05, 
Table 1).
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Table 1 Comparison of data between two groups

Indicators Group A (n = 50) Group B (n = 50) Statistical value P value

Gender, n (%) χ2 = 0.164 0.685

Male 30 (60.00) 28 (56.00)

Female 20 (40.00) 22 (44.00)

Age (mean ± SD, yr) 43.12 ± 5.02 43.25 ± 5.12 t = 0.128 0.898

Duration of diabetes (mean ± SD, yr) 2.1 5 ± 0.52 2.23 ± 0.55 t = 0.747 0.457

Combined hyperlipidemia, n (%) χ2 = 0.164 0.685

Yes 20 (40.00) 22 (44.00)

No 30 (60.00) 28 (56.00)

Combined hypertension, n (%) χ2 = 0.170 0.680

Yes 18 (36.00) 20 (40.00)

No 32 (64.00) 30 (60.00)

Urine NAG (mean ± SD, U/L) 14.05 ± 2.20 19.45 ± 3.68 t = 8.906 < 0.001

Serum RBP (mean ± SD, mg/L) 43.56 ± 5.50 84.98 ± 15.70 t = 17.606 < 0.001

NAG: N-acetyl-β-D-glucosaminidase; RBP: Retinol-binding protein.

Logistic regression analysis of relationship between urinary NAG, serum RBP and DN
Serum RBP and urine NAG of the included subjects were used as covariates, and the conditions of the 
included subjects were used as dependent variables (1 = DN, 0 = T2DM). After binary regression 
analysis, all the data in 2.1 were included to establish a multiple logistic regression model. The results 
showed that urine NAG and serum RBP were related to the presence or absence of injury in diabetic 
patients, and overexpression of urine NAG and serum RBP may be risk factors for renal injury in T2DM 
patients (OR > 1, P < 0.05, Table 2).

Value analysis of urinary NAG and serum RBP expression in predicting patients with DN
Urinary NAG and serum RBP expression of the included subjects were used as test variables, and the 
conditions of the included subjects were used as state variables (1 = DN, 0 = T2DM) to draw ROC curves 
(Figure 1), and the results showed that the AUC of urinary NAG and serum RBP expression alone and 
in combination in predicting DN were > 0.80, with satisfactory predictive value (Table 3).

Correlation analysis between urinary NAG and serum RBP expression in patients with DN
Bivariate Spearman linear correlation analysis showed a positive correlation between urinary NAG and 
serum RBP expression in patients with DN (r = 0.566, P = 0.000).

DISCUSSION
DN is a common complication in patients with T2DM. Urinary albumin, creatinine, blood urea nitrogen 
and other indicators have been used to assess whether diabetic patients have kidney damage. However, 
since kidney has self-compensation effect, indicators do not show significant changes in early stage 
renal impairment, the sensitivity of these indicators is low, and the above indicators can detect 
abnormalities only when the collective kidney has been damaged. However, irreversible damage has 
occurred in the body kidney at this stage, resulting in difficulty in the early detection of DN[15-17]. In 
view of this, many clinical reports have pointed out that inflammatory response, polyol metabolic 
pathway, abnormal changes in renal hemodynamics, oxidative stress and other mechanisms are related 
to the occurrence and disease progression of patients with DN, in the process of occurrence and 
progression of DN, there are renal tubular reabsorption dysfunction, glomerular filtration changes, and 
abnormal changes of multiple molecules in blood and urine. Thus, whether other indicators in serum or 
urine can be used as early detection of patients with clinical DN[18-20].

RBP is a carrier protein synthesized and secreted by stem cells, which is mainly synthesized by 
carbohydrates and a polypeptide chain, and has a very short half-life, which is necessary to help vitamin 
A transport on hepatocytes to epithelial cells. In many plasma, RBP can bind to thyroid transporter to 
form a polymer complex. Activated RBP can be free in plasma and filtered by glomeruli, where most of 
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Table 2 Logistic regression analysis of the relationship between urinary N-acetyl-β-D-glucosaminidase, serum retinol-binding protein 
and diabetic nephropathy

95%CI
Variable B SE Wals P value OR

Upper limit Lower limit

Constant -9.366 1.808 26.839 0.000 0.000 - -

Urine NAG (U/L) 0.568 0.111 26.338 0.000 1.765 1.421 2.192

Serum RBP (mg/L) 0.346 0.109 9.996 0.002 1.413 1.141 1.751

NAG: N-acetyl-β-D-glucosaminidase; RBP: Retinol-binding protein.

Table 3 Efficacy analysis of urinary N-acetyl-β-D-glucosaminidase and serum retinol-binding protein expression for predicting diabetic 
nephropathy

Indicators AUC 95%CI of AUC SE P value Cut-off value Specificity Sensitivity Youden index

Urine NAG 0.867 0.796-0.939 0.036 0.000 11.855 (U/L) 0.980 0.860 0.840

Serum RBP 0.951 0.902-1.000 0.025 0.000 39.620 (mg/L) 0.980 0.780 0.640

Combined diagnosis 0.974 0.936-1.000 0.020 0.000 - 0.980 0.940

NAG: N-acetyl-β-D-glucosaminidase; RBP: Retinol-binding protein; AUC: Area under the curve.

Figure 1 Receiver operating curve of urinary N-acetyl-β-D-glucosaminidase and serum retinol-binding protein expression for predicting 
diabetic nephropathy. ROC: Receiver operating curve; NAG: N-acetyl-β-D-glucosaminidase; RBP: Retinol-binding protein.

RBP is absorbed and decomposed by the proximal renal tubules for normal use by tissues, and only a 
few is excreted in the urine, so the level detected in serum or urine is extremely low under healthy 
conditions[21-23]. The changes of RBP content suggest the pathological changes of renal tubules and 
glomeruli. Under the action of induction factors, RBP can stimulate oxidative stress in the body and 
increase the damage of oxygen free radicals to the vascular endothelium[24-26].

NAG is a large lysosomal molecule present in tubular epithelial cells and does not efficiently pass 
through the glomerular filtration membrane[27-29]. NAG is a high molecular glycoprotein acid 
hydrolase, an intracellular lysosomal enzyme mainly present in body fluids, organ tissues and blood 
cells, especially highly expressed in the proximal renal convoluted tubules, and is clinically used as an 
important indicator for tubular function assessment[30-32]. In a healthy state, cause NAG has a large 
molecular weight and cannot normally pass through glomerular filtration, the renal tubules in the early 
stage of DN can still absorb the excessive proteinuria of glomerular filtration. Urine albumin in this 
stage is normal, but the expression of NAG increases, which may be due to the strengthening of 
reabsorption by the renal proximal convoluted tubule, the high protein content in the renal proximal 
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convoluted tubule stimulating the reabsorption system, activation of mitochondrial lysosomal enzyme, 
and increased lysosomal enzyme density, the large release of lytic enzyme and the leakage of lysosomal 
enzyme[33-35]. The results of this study showed that compared with the data of age, gender, duration of 
diabetes, combined hyperlipidemia and combined hypertension in the two groups, the expression of 
urinary NAG and serum RBP in group B was higher than that in group A, suggesting that the 
expression of serum RBP and urinary NAG may be the cause of disease progression to DN in patients 
with T2DM.

In order to further verify the above conjecture, logistic regression model was used in this study. The 
results showed that urinary NAG and serum RBP were related to the occurrence of injury in diabetic 
patients. Urinary NAG and serum RBP overexpression may be risk factors of renal injury in T2DM 
patients, and ROC curve was drawn, the results showed that the AUC of urinary NAG and serum RBP 
expression alone and in combination in predicting DN was > 0.80, and the predictive value was 
satisfactory, suggesting that urinary NAG and serum RBP overexpression are the key to lead to the 
progression of disease to DN in T2DM patients. The possible reasons for analysis may be: (1) When the 
renal tubules are damaged, the glomerular filtration decreased, the renal hemodynamics change, when 
the free RBP passes through the renal tubules, its ability to absorb and decompose the free RBP is 
limited, resulting in a large number of RBP retention, so the RBP in the serum shows a high expression 
state[36-38]; and (2) When the renal tubules degenerate, necrosis, damage and fall off, the NAG in the 
cells enters the urine with the exfoliated and necrotic cells, so a high level of NAG can be measured in 
the urine[39,40]. In addition, the pathways for obtaining urine NAG and serum RBP were relatively 
easy, the combination of urine NAG and serum RBP as early evaluation indicators of DN was based on 
two pathways of urine and blood, which was more reliable than the indicators in pure blood or urine. In 
this study, bivariate Spearman linear correlation analysis was also used, and the results showed that 
there was a positive correlation between urinary NAG and serum RBP expression in patients with DN, 
which may be due to the fact that both indicators are closely related to renal function, so the change of 
one of the indicators will certainly be cited another indicator changes, but the relationship between the 
two indicators lacks clinical demonstration support, and the reliability of the study needs to be further 
explored in the future.

CONCLUSION
In summary, elevated expression of urinary NAG and serum RBP may be risk factors leading to disease 
progression to DN in patients with T2DM, and the possibility of DN can be considered in patients with 
urinary NAG and serum RBP overexpression by examining urinary NAG and serum RBP expression in 
patients with T2DM in clinical practice.

ARTICLE HIGHLIGHTS
Research background
Diabetic nephropathy (DN) is a microangiopathy of type 2 diabetes mellitus (T2DM), which can damage 
the kidney through various ways and mechanisms due to the nature of the disease, involving the renal 
interstitium and glomeruli. However, in the early stage of the disease, patients only showed kidney 
volume increase and glomerular hyperthyroidism, and typical symptoms that are difficult to arouse 
individual attention were noticed. The symptoms were only noticed when the patients developed 
edema and proteinuria. At this time, the disease has progressed to an irreversible stage, and the best 
treatment timing should be taken. Therefore, finding new clinical biochemical factors or examination 
methods to help early detection of clinical DN patients is particularly important to guide the 
development of early intervention measures and improve the prognosis of patients.

Research motivation
This study provided new targets for early diagnosis and treatment of DN.

Research objectives
This study aimed to observe the expression of serum retinol-binding protein (RBP) and urinary N-
acetyl-β-D-glucosaminidase (NAG) in patients with DN.

Research methods
Total 50 T2DM patients were retrospectively reviewed and included in group A. The baseline data of 50 
patients with type 2 DN during the same period were collected and included in group B. The baseline 
data and serum RBP and urine NAG expression were compared between the two groups to analyze 
their value in the early prediction of DN.
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Research results
The increased expression of urinary NAG and serum RBP may be the risk factors leading to the 
progression of T2DM to DN.

Research conclusions
The possibility of DN can be considered in patients with urinary NAG and serum RBP overexpression 
by examining the expression of urinary NAG and serum RBP in patients with T2DM in clinical practice.

Research perspectives
This study showed that urine NAG combined with serum RBP had good application prospects in the 
early detection of DN. Future studies can further expand the research sample size and improve the 
diagnostic accuracy of urinary NAG combined with serum RBP.
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Abstract
BACKGROUND 
Coronavirus disease 2019 (COVID-19) is one of the current global public health 
threats and vaccination is the most effective tool to reduce the spread and 
decrease the severity of COVID-19. Diabetes is one of the important chronic 
diseases threatening human health and is a common comorbidity of COVID-19. 
What is the impact of diabetes on the immunization effect of COVID-19 
vaccination? Conversely, does vaccination against COVID-19 exacerbate the 
severity of pre-existing diseases in patients with diabetes? There are limited and 
conflicting data on the interrelationship between diabetes and COVID-19 
vaccination.

AIM 
To explore the clinical factors and possible mechanisms underlying the interaction 
between COVID-19 vaccination and diabetes.

METHODS 
We conducted a comprehensive search of PubMed, MEDLINE, EMBASE, and 
Reference Citation Analysis (https://www.referencecitationanalysis.com) online 
datab-ases, and medRxiv and bioRxiv gray literature using the keywords "SARS-
CoV-2", "COVID-19", "vaccine", "vaccination", "antibody", and "diabetes" 
individually or in combination, with a cut-off date of December 2, 2022. We 
followed inclusion and exclusion criteria and after excluding duplicate public-
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ations, studies with quantifiable evidence were included in the full-text review, plus three 
manually searched publications, resulting in 54 studies being included in this review.

RESULTS 
A total of 54 studies were included, from 17 countries. There were no randomized controlled 
studies. The largest sample size was 350963. The youngest of the included samples was 5 years old 
and the oldest was 98 years old. The included population included the general population and also 
some special populations with pediatric diabetes, hemodialysis, solid organ transplantation, and 
autoimmune diseases. The earliest study began in November 2020. Thirty studies discussed the 
effect of diabetes on vaccination, with the majority indicating that diabetes reduces the response to 
COVID-19 vaccination. The other 24 studies were on the effect of vaccination on diabetes, which 
included 18 case reports/series. Most of the studies concluded that COVID-19 vaccination had a 
risk of causing elevated blood glucose. A total of 12 of the 54 included studies indicated a "no 
effect" relationship between diabetes and vaccination.

CONCLUSION 
There is a complex relationship between vaccination and diabetes with a bidirectional effect. 
Vaccination may contribute to the risk of worsening blood glucose in diabetic patients and diabetic 
patients may have a lower antibody response after vaccination than the general population.

Key Words: COVID-19; Vaccination; Diabetes mellitus; Antibody; Blood glucose; Immune response

©The Author(s) 2023. Published by Baishideng Publishing Group Inc. All rights reserved.

Core Tip: Coronavirus disease 2019 (COVID-19) is one of the current global public health threats and 
vaccination is the most effective tool to reduce the spread and decrease the severity of COVID-19. 
Diabetes is one of the important chronic diseases threatening human health and is a common comorbidity 
of COVID-19. There are limited and conflicting data on the interrelationship between diabetes and 
COVID-19 vaccination. Vaccination may be at risk of worsening glycemia in diabetic patients, and 
diabetic patients may have a lower immune response after vaccination than the general population, and 
there is a bidirectional relationship between vaccination and diabetes.

Citation: He YF, Ouyang J, Hu XD, Wu N, Jiang ZG, Bian N, Wang J. Correlation between COVID-19 
vaccination and diabetes mellitus: A systematic review. World J Diabetes 2023; 14(6): 892-918
URL: https://www.wjgnet.com/1948-9358/full/v14/i6/892.htm
DOI: https://dx.doi.org/10.4239/wjd.v14.i6.892

INTRODUCTION
The coronavirus disease 2019 (COVID-19) pandemic is one of the greatest public health threats to huma-
nity in more than a century. The disease continues to rage across the globe, spanning countries and 
continents, with severe health, social and economic consequences for the world. COVID-19 is a 
multifactorial disease that affects nearly all organ systems in the body of the patient. Vaccination is one 
of the most effective tools to reduce transmission[1] and decrease clinical severity[2]. As of March 16, 
2022, more than 10 billion different doses of the COVID-19 vaccine, including boosters, have been 
administered worldwide[3]. Diabetes mellitus (DM) is a chronic disease that causes high blood glucose 
levels due to failure of insulin secretion or action[4,5], affecting approximately 537 million adults[6]. DM 
remains one of the major risk factors for serious illness and worse outcomes in people with severe acute 
respiratory syndrome coronavirus 2 (SARS-CoV-2) infection[7-9]. Many studies have shown that hyper-
glycemia is associated with an increase in the frequency and severity of any infection, not just COVID-
19[10]. This raises concerns about the behavior of the COVID-19 vaccination in diabetic patients and the 
effects of having been vaccinated and the factors that influence it[11].

Reassuringly, the vaccine has demonstrated efficacy and safety in the prevention of severe COVID-19 
in both phase III trials and real-world data[12-14]. The vaccine also plays a key role in protecting 
vulnerable populations associated with an increased risk of morbidity and mortality, including patients 
with diabetes[12]. However, there is evidence of multiple immunodeficiencies in patients with DM that 
affect the innate and acquired immune system[15]. Therefore, it can be expected that the protective 
effect of vaccination may be weaker compared to the general population. Previous studies have shown 
reduced immunogenicity to the hepatitis B vaccine in patients with DM, while results are less consistent 
for influenza, pneumococcal, and varicella zoster[16]. In several recent studies using real-world data, 
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vaccine efficacy was found to be lower in patients with DM than in the total population[17,18], while 
another Japanese study reported no significant association between vaccine efficacy and DM[19]. There 
are conflicting results regarding the immune efficacy of the COVID-19 vaccine in patients with DM. 
Furthermore, hyperglycemic crisis, acute myocardial injury[20], Guillain-Barre syndrome[21], and 
herpes zoster[22] are some of the very rare vaccine-related adverse events that have been reported 
occasionally. In patients with pre-existing DM, does the COVID-19 vaccination cause perturbations in 
blood glucose levels or even alter the natural history of the disease? There are very limited data on the 
interrelationship between DM and COVID-19 vaccination.

Therefore it seems important and interesting to understand the interrelationship between COVID-19 
vaccination and diabetes. To elucidate this complexity, we summarized almost all current clinical 
studies and systematically analyzed various factors regarding the interconnection between DM and 
COVID-19 vaccination in order to inform diabetic patients of the optimal vaccination strategy and 
clinical management.

MATERIALS AND METHODS
Identify research question
What is the effect of DM on the immunization effect of COVID-19 vaccination? Conversely, does 
vaccination against COVID-19 disrupt blood glucose? Or accelerate the progression of pre-existing 
diabetic complications?

Identify relevant types of evidence
An experienced information specialist conducted a comprehensive search of PubMed, MEDLINE, and 
EMBASE online databases with no time limit, and the last data update was December 2, 2022. We used 
the keywords "SARS-CoV-2", "COVID-19", "vaccine", "vaccination", "antibody", and "diabetes" 
individually or in combination to achieve a comprehensive literature search. We also searched the gray 
literature of medRxiv and bioRxiv as well as the most recent literature of the Reference Citation Analysis (
https://www.referencecitationanalysis.com). Finally, we manually searched the references cited in the 
original articles included in the study in order to avoid missing any relevant and important literature. 
Inclusion criteria were all studies conducted in humans that discussed the relationship between DM and 
vaccination against COVID-19. Studies that included the same population but reported different data 
and outcomes were also included. Exclusion criteria were: Non-human (animal), non-English, only 
exploring willingness to vaccinate, and participants who were not diabetic or who received a vaccine 
other than the COVID-19 vaccine. The type of diabetes, the type of vaccine, the age of participants, and 
the type of literature were not restricted. A detailed search strategy is available in the Supplementary 
Material.

Study selection
After completing the initial search, two independent reviewers conducted a screening process, and 
literature with quantifiable evidence was included in our review, including case reports, qualitative 
analyses, and other gray literature. We excluded repetitive publications and articles without relevant 
data. One reviewer reviewed the selected articles in their entirety, and studies containing full data 
descriptions were used for data graphs. Any conflicts that arose during the data extraction process were 
discussed or consulted and resolved by third-party experts. All seven authors were involved in the 
discussions. Figure 1 shows a visual representation of the inclusion workflow.

Data charting
A total of 2142 publications were retrieved as of December 2, 2022, and after screening by the inclusion 
criteria described above, we reviewed 208 full-text papers for eligibility, plus three manually retrieved 
papers, resulting in 54 papers included in this review (Figure 1). We extracted data for each paper 
regarding the first author's name, country, study design, basic demographic characteristics of 
participants, the type of vaccination, vaccination regimen, and blood glucose for tabulation and 
discussion. We did not perform any meta-analysis of the data obtained because, as expected, there was 
substantial heterogeneity among the designs, methods, populations, and vaccines used in the studies we 
encountered, making meaningful comparisons between studies impossible. A summary of information 
on the included studies is presented in Table 1.

RESULTS
A total of 54 studies were included[18,23-75], from 17 countries, including 9 from Japan. The earliest 
date of the studies was November 2020[48]. There were no randomized controlled studies, but two 
studies applied propensity score matching (PSM) methods. What was surprising was that one study 
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Table 1 Characteristics of the included studies

Ref. Country Study design Study time 
span Population Sample 

size (n)

No. of 
patients 
with DM (n) 
T1DM T2DM

Sex (F/M)

Age, 
median 
(min-
max), yr

Type and name of 
vaccine Dose schedule Related findings

Zhang et al[23] China Observational 
study

Between 
October 2021 
and January 
2022

The population is aged ≥ 
60 yr with hypertension 
or (/and) DM

1413 620 661/752 67.6 Vero cell (19nCov-CDC-
Tan-HB02)

Two doses (day 
0, day 28)

After vaccination, there was 
no significant abnormal 
fluctuation in blood glucose 
in diabetic patients

Marfella et al[24] Italy Prospective 
observational 
study

December 2020 Healthcare and educator 
workers

478 201 212/266 18-60 mRNA-BNT162b2 (Pfizer-
BioNTech) or ChAdOx1-S 
(Astra-Zeneca) or mRNA-
1273 (Moderna)

One (day 0, day 
21) or two (day 
52) doses

Significant decrease in the 
immune response in people 
with poorly controlled 
blood glucose

Kılınç-Toker et al
[25]

Turkey Retrospective 
study

Between 
August 1, 2021 
and October 31, 
2021

Hospitalized patients 
with COVID-19

541 195 282/259 70.2 (21-98) (CoronaVac) and/or 
BNT162b2 mRNA (Pfizer-
BioNTech)

14 d after dose 2 For hospitalized patients 
after the second dose, 
diabetes was not associated 
with their ICU stay and 
mortality

Barocci et al[26] Italy Observational 
study

Between 
December 2020 
and June 2021

Healthcare workers and 
university staff

2845 8 155/129 43-61 ChAdOx1-S and 
(BNT162b2/BNT162b2 and 
ChAdOx1-S/ChAdOx1-S)

2 mo after dose 2 DM does not affect 
antibody levels

Singh et al[27]1 India Cross-sectional 
study

Between 
January 16, 
2021 and May 
15, 2021

Healthcare workers 5154 0 52 210/305 44.8 ± 13.19 CovishieldTM (ChAdOx1-
nCOV) or CovaxinTM (BBV-
152)

One (day 21) and 
two (day 21-28, 
day 83-97, and 
day 173-187) 
doses

People with T2DM had a 
significantly lower seropos-
itivity rate compared to 
those without

Singh et al[28]1 India Longitudinal 
study

Between 
January 16, 
2021 and 
November 15, 
2021

Healthcare workers 481 0 51 195/286 ≤ 60 years, 
n = 411; > 
60 years, n 
= 70

CovishieldTM (ChAdOx1-
nCOV) or CovaxinTM (BBV-
152)

3 wk, 3 mo, and 6 
mo after dose 2

Participants with T2DM 
have a lower seropositivity 
rate at all time points

Shim et al[29] Korea Retrospective 
study

February2021 Vaccination participants 736 48 433/303 51.5 (20-80) AZD1222, BNT162b2, 
mRNA-1273 and 
Ad26.COV2.S

2 wk before and 
6 mo after dose 2

Diabetics had a lower rate 
of neutralizing antibodies 
after vaccination

Alqassieh et al[30] Jordan Prospective 
observational 
cohort

Between March 
and April 2021

Jordanian adults 288 76 189/151 20-60 
years, n = 
137, > 60 
years, n = 
151

Pfizer-BioNTech or 
Sinopharm

6 wk after dose 2 Although DM negatively 
affected IgG titer, it was not 
statistically significant

Between 
February 23, 
2021 and 

Patients with T2DM do not 
appear to have higher risks 
of AESI and acute diabetic 

Wan et al[31] China 
(Hong 
Kong)

Population-based 
study

Patients with T2DM in 
Hong Kong electronic 
case records

350963 0 350963 167073/183890 64.7 ± 
1.37/68.1 ± 
0.747

BNT162b2 or CoronaVac Complete at least 
one dose of 
vaccination
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January 31, 
2022

complications after 
vaccination

Lee et al[32] South 
Korea

Questionnaire 
study

Between March 
8, 2021 and 
March 11, 2021

Healthcare workers 1603 27 1261/342 37.7 ± 10.89 ChAdOx1 7 d after dose 1 DM is associated with an 
increased risk of grade 3 to 
4 adverse reactions after the 
first dose

Rangsrisaeneepitak 
et al[33]

Thailand PSM observa-
tional study

Between June 8, 
2021 and July 
12, 2021

Healthcare workers and 
T2DM patients

282 94 129/153 30-83 ChAdOx1 nCoV-19 
(AZD1222)

56 d after dose 1 People with T2DM had 
weaker antibody responses 
than those without diabetes 
after the first dose

Sourij et al[34] Austria Multicentre 
prospective 
cohort study

Between April 
and June 2021

T1DM, T2DM, and 
healthy participants

150 75 75 68/82 49.2 ± 14.59 BioNTech-Pfizer, Moderna, 
or AstraZeneca

7 to 14 d after 
dose 1 and 14 to 
21 dafter dose 2

The antibody levels after 
the second vaccination were 
comparable in healthy 
controls and DM patients, 
irrespective of glycaemic 
control

Tawinprai et al[35] Thailand Prospective 
cohort study

Between March 
31, 2021 and 
May 5, 2021

Healthcare workers 796 11 517/279 40 (30-57)3 ChAdOx1 (AZD1222) At least 21 d 
after dose 1 and 
before dose 2

DM reduces the immune 
response to vaccination

Ali et al[18] Kuwait Case-control 
study

August 2021 Non-diabetics and 
patients with T2DM

262 0 81 126/136 49.3 ± 14.59 BNT162b2 (Pfizer-
BioNTech)

At least 3 wk 
after dose 2

Both neutralizing antibody 
and IgG antibody titers 
were significantly lower in 
the T2DM group than in the 
non-diabetic group

Karamese et al[36] Turkey Descriptive study March 2021 Participants over 65 years 
of age who have received 
two doses of vaccine

235 49 111/124 70.4 ± 4.89 CoronaVac 4 wk after dose 1 
and 4 wk after 
dose 2

Lower rates of antibody 
response were detected in 
participants with DM

Lustig et al[37] Israel Single-centre, 
prospective, 
longitudinal 
cohort study

Between 
December 19, 
2020 and 
January 30, 
2021

Health-care workers 2607 139 1883/724 47.7 ± 12.59 Pfizer-BioNTech BNT162b2 1-2 wk after dose 
1 and 1-2 wk 
after dose 2

Decreased antibody 
response in diabetic 
patients after vaccination

Islam et al[38] Japan Cross-sectional 
study

June 2021 Workers 953 21 654/299 21-75 BNT162b2 (Pfizer-
BioNTech)

15 to 71 d after 
dose 2

Spike IgG antibody titers 
were lower in the presence 
of hyperglycemia

Parthymou et al[39] Greece Longitudinal 
observational 
cohort study

September 2021 Healthcare units 
participants

712 50 444/268 50.8 ± 11.49 BNT162b2 (BioNTech-
Pfizer)

3 wk and 3 mo 
after Dose2

DM is not an independent 
factor affecting antibody 
titers

Priddy et al[40] New 
Zealand

Prospective 
cohort study

Between June 
10, 2021 and 
September 18, 
2021

Participants in two 
centers

285 28 156/1296 52 (16-92) BNT162b2 (BioNTech-
Pfizer)

28 d after dose 2 Participants with diabetes 
had lower anti-S IgG 
antibodies compared to 
those without DM

Retrospective Residents in long-term BNT162b2 (Pfizer- 3-4 mo after dose DM is associated with Naschitz et al[41] Israel May 2021 304 103 208/96 ≥ 60
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study geriatric and palliative 
care and assisted living 
facilities

BioNTech) 2 negative serological results

Güzel et al[42] Turkey Prospective 
study

May 20212 Volunteers, outpatient 
clinic people, and 
COVID-19 patients

183 80 98/85 21-60 CoronaVac-SinoVac 21 d after dose 2 IgG antibody levels were 
significantly lower in 
patients with DM than in 
those without DM

Virgilio et al[43] Italy Multicenter 
prospective 
study

Between June 
2021 and 
December 2021

Residents of long-term 
care facilities

555 0 140 378/177 82.1 BNT162b2 (Cominarty) 
Moderna (mRNA-1273)

Before the 
vaccination, 2 
mo, and 6 mo 
after dose 1

Vaccination in elderly 
residents with T2DM is 
associated with a reduced 
humoral immune response

Patalon et al[44] Israel Retrospective 
cohort study

Between 
February and 
May 2021

A large patient cohort 
from Maccabi Healthcare 
Services

4740 377 1914/2826 16-59 
years, n = 
3355; ≥ 60 
years, n = 
1385

BNT162b2 (BioNTech-
Pfizer)

Two vaccinations 
at intervals of 21 
to 27 d

DM is not a relevant factor 
affecting antibody levels

Mitsunaga et al[45] Japan Prospective 
study

Between April 
15, 2021 and 
June 9, 2021

Hospital’s workers 374 6 264/110 36 BNT162b2 vaccine 
(COMIRNATY 
(Tozinameran)

Before 
vaccination, 7 to 
20 d after dose 1, 
and 7 to 20 d 
after dose 2

HbA1c higher than 6.5% 
was a significant suppressor 
of antibody responses

Papadokostaki et al
[46]

Greece Prospective 
observational 
study

Between May 
and September 
2021.

Participants attended the 
vaccination center

174 14 44 107/67 52.6 ± 10.6 BNT162b2 (BioNTech-
Pfizer)

21 d after dose 1, 
7-15 d after dose 
2, and 70-75 d 
after dose 2 but 
before dose 3

It was high and similar after 
the second dose in both 
participants with and 
without DM

Zhao et al[47] United 
States

Prospective 
longitudinal 
study

Between 
December 2020 
and December 
2021

Veterans and healthcare 
workers

124 39 33/91 20-95 BNT162b2 (Pfizer-
BioNTech)

48 h before dose 
1 and dose 2, 1 
mo, 3 mo, 6 mo, 
12 mo after dose 
2, and 1 mo after 
dose 3

DM was significantly 
associated with a decrease 
in response intensity after 
completion of the primary 
vaccine series, but 
responses to the third dose 
were generally robust

Santotoribio et al
[48]

Spain Descriptive, 
retrospective, 
observational, 
and cross-
sectional study

Between 
November 1, 
2020 and March 
31, 2021

Infected patients and 
vaccinated subjects

175 17 112/63 51.0 (19-89) Pfizer-BioNTech At least 21 d 
after dose 2

Serum antibody levels did 
not decrease significantly in 
patients with DM

Mehta et al[49] India Observational 
cohort study

Between March 
2021 and 
October 2021

Vaccinated patients with 
AIRDs

495 63 416/79 56.5 AZD1222 (AstraZeneca) 4 wk and10-14 
wk after dose 2

DM was significantly 
associated with lower anti-
RBD antibodies

There was no difference in 
the primary outcome 
between the two vaccine 
platforms. Unrespons-

Ajlan et al[50] Saudi 
Arabia

PSM prospective 
study

June 14, 20222 Patients from a large 
hospital

431 191 136/295 51.3 ± 16.29 BNT162b2 or ChAdOx1 7 d after dose 1 
and dose 2, and 2 
wk after dose 1 
and dose 2
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iveness was mainly linked 
to DM

Billany et al[51] United 
Kingdom

Prospective 
observational 
study

March 2021 Maintenance 
hemodialysis patients

94 43 38/56 62.1 ± 12.29 BNT162b2 or AZD1222 28 d after dose 1 There was no difference in 
antibody testing with or 
without DM

Aberer et al[52] Austria Multicenter 
prospective 
study

Between April 
and June 2021

DM patients 74 58 16 NR T1DM: 
39.5 ± 14.1; 
T2DM: 
60.6 ± 6.2

BioNTech-Pfizer and 
Moderna and AstraZeneca

First dose No change in insulin dose 
before and after 
vaccination. Vaccination 
significantly reduced TIR in 
T1DM patients, but had no 
effect on TIR in T2DM 
patients

Piccini et al[53] Italy Observational 
cohort study

Between March 
and June 2021

T1DM patients 39 39 0 17/22 18.7 ± 2.19 mRNA-BNT162b1 (Pfizer-
BioNTech) and Moderna 
(mRNA-1273)

One (day 7, day 
14) and two (day 
7, day 14) doses 
and 14 d after 
dose 1 and dose 
2

COVID-19 vaccination was 
safe and not associated with 
significant perturbation of 
glycemic control in patients 
with T1DM

Heald et al[54]1 United 
Kingdom

Observational 
cohort study

Between 
January 14, and 
March 7, 2021

T1DM patients 20 20 0 11/9 53 (26-70) mRNA-BNT162b2 (Pfizer-
BioNTech) and Oxford 
/AstraZeneca

7 d before and 7 
d after dose 1

COVID-19 vaccination can 
cause temporary relative 
hyperglycemia in people 
with T1DM. No 
relationship between 
vaccine type and blood 
glucose perturbation

D'Onofrio et al[55] Italy Observational 
cohort study

July 13, 20212 T1DM (AD) patients 35 35 14/21 36 (27-51)3 mRNA-BNT162b2 
(Comirnaty)

14 d before and 3 
d after dose 1 
and dose 2

No significant differences in 
TIR, TAR, TBR, and CV 
between, after, and before 
the COVID-19 vaccination 
in T1DM patients

Heald et al[56]1 United 
Kingdom

Survey and 
evaluation study

Between 
January 5, 2021 
and April 4, 
2021

Adults (18 years of age or 
more) with T1DM

97 97 0 51/46 44 (18-70) Pfizer-BioNTech or 
Oxford-AstraZeneca

7 d before and 7 
dafter dose 1

In T1DM, vaccination can 
cause a temporary 
perturbation of interstitial 
glucose. There is no 
difference between vaccines

Gouda et al[57] Greece Observational 
study

March 2022 T1DM patients 1358 135 0 72/63 11.7 (5-18) BNT162b2 (Pfizer-
BioNTech), Moderna 
(mRNA-1273), or 
AstraZeneca

7 d before and 7 
d after dose 1, 
dose 2, and dose 
3

SARS-CoV-2 vaccination in 
children and adolescents 
with T1DM is safe and is 
not associated with 
immediate glucose 
imbalance

Sakurai et al[58] Japan Case report December 11, 
20212

Healthy woman 1 1/0 36 mRNA-BNT162b2 (Pfizer-
BioNTech)

First dose mRNA vaccine is associated 
with new-onset T1DM

T1DM may be triggered 
after SARS-CoV-2 

Patrizio et al[59] Italy Case report September 15, 
20212

T2DM patient 1 0 1 0/1 52 mRNA-BNT162b2 (Pfizer-
BioNTech)

Second dose
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vaccination

Aydoğan et al[60] Turkey Case series Between May 
2021 and 
October 2021

One had Hashimoto's 
thyroiditis, and the other 
3 were healthy

4 1/3 27-56 mRNA-BNT162b2 (Pfizer-
BioNTech) or CoronaVac

Second dose Vaccination with BNT162b2 
may trigger T1DM

Sato et al[61] Japan Case report April 19, 20222 Malignant melanoma 
patient

1 0/1 43 mRNA-based SARS-CoV-2 
vaccination

Second dose mRNA vaccine may trigger 
T1DM

Yakou et al[62] Japan Case series December 21, 
20212

T1DM patients 2 2 0 2/0 52-71 mRNA-BNT162b2 (Pfizer-
BioNTech)

Second dose A temporary decrease in 
insulin secretion after 
vaccination

Mishra et al[63] India Case series Between 
January 18, 
2021 and March 
4, 2021

T2DM patients 3 0 3 1/2 58-65 Covishield™ (ChAdOx1-
nCOV) (AstraZeneca)

First dose Vaccination may result in a 
mild and temporary 
increase in blood glucose 
levels

Abu-Rumaileh et al
[64]

Jordan Case report January 14, 
2021

Hypertension patient 1 0/1 58 mRNA-BNT162b1 (Pfizer-
BioNTech)

Second dose COVID-19 vaccine has a 
risk of causing new-onset 
T2DM

Sasaki et al[65] Japan Case report December 13, 
20212

Osteoporosis, mild 
glucose intolerance

1 0 0 1/0 73 Moderna (Spikevax, 
mRNA-1273)

Second dose The development of T1DM 
is attributable to the 
COVID-19 vaccination

Lee et al[66] United 
States

Case Series June 30, 20212 T2DM and hypertension 
patients

3 0 2 1/2 52-87 mRNA-BNT162b1 (Pfizer-
BioNTech) and Moderna 
(Spikevax, mRNA-1273)

First dose Vaccination may trigger a 
hyperglycemic episode and 
DKA

Edwards et al[67] United 
Kingdom

Case Series April 2021 Hypertension, 
hypothyroidism, and 
pre-diabetes

3 0/3 53-68 Covishield™ (ChAdOx1-
nCOV)

First dose The first administration of 
the COVID-19 vaccine can 
trigger an acute 
hyperglycemic crisis

Ganakumar et al
[68]

India Case series November 2021 T1DM 2 2 0 1/1 20-25 COVISHIELD (ChAdOx1 
nCoV-19) or COVAXIN 
(BBV152)

1 to 4 d after 
dose 2

COVID-19 Vaccination has 
the potential to induce DKA

Zilbermint et al[69] United 
States

Case report September 11, 
20212

T1DM 1 1 0 1/0 24 Moderna (mRNA-1273) 15 h after dose 2 A plausible mechanism 
exists between COVID-19 
vaccination and DKA

Yaturu et al[70] United 
States

Case report May 2021 Hypertension, primary 
hyperparathyroidism, 
and obesity patient

1 0 1 0/1 56 BNT162b2 (Pfizer-
BioNTech)

Right after the 
second dose

COVID-19 Vaccination has 
the potential to induce HHS

Kshetree et al[71] United 
States

Case report NR Hypertension and pre-
diabetes

1 1 0 0/1 69 mRNA vaccine 2 mo after dose 3 COVID-19 mRNA vaccine 
has the potential to induce 
DKA

Prasad[72] India Case report March 2021 Patient with T2DM 1 0 1 1/0 73 Covishield 6 d after dose 1 Vaccination may cause 
glycaemic disturbances
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Sasaki et al[73] Japan Case report January 4, 20222 Healthy person 1 1 0 1/0 45 BNT162b2 (Pfizer-
BioNTech)

1 d after dose 1 COVID-19 vaccine might 
trigger the onset of 
fulminant T1DM in 
susceptible individuals

Yano et al[74] Japan Case report November 11, 
20212

Healthy person 1 1 0 1/0 51 Moderna (mRNA-1273) 28 d after dose 1 COVID-19 vaccination can 
induce T1DM in some 
individuals

Ohuchi et al[75] Japan Case report November 
20212

Cutaneous malignant 
melanoma with axillary 
lymph node metastasis

1 1 0 0/1 45 BNT162b2 (Pfizer-
BioNTech)

3 d after dose 2 There is a highly suspicious 
causal relationship between 
fulminant T1DM and 
COVID-19 vaccination

1The authors are the same, but the individual studies are different, including different phases, different samples, and different data.
2Take the date of receipt of the manuscript.
3Median (25th-75th percentile).
4Sample size for completing the second dose.
5Sample size for fully completed questionnaires.
6Contains a Non-binary participant.
7Age (mean ± SD) is divided according to BNT162b2 and CoronaVac groups.
8Sample size for T1DM, of which 70 received at least one dose of the vaccine and the other 65 were unvaccinated.
9mean ± SD.
NA: Not available; NR: Not reported; COVID-19: Coronavirus disease 2019; SARS-CoV-2: Severe acute respiratory syndrome coronavirus 2; PSM: Propensity score matching; HbA1c: Glycated hemoglobin; TIR: Time in range; DM: 
Diabetes mellitus; T1DM: Type 1 diabetes mellitus; T2DM: Type 2 diabetes mellitus; HHS: Hyperosmolar hyperglycemic syndrome; DKA: Diabetic ketoacidosis; AD: Autoimmune diabetes; AIRDs: Autoimmune Rheumatic Diseases; 
AESI: Adverse events of special interest; F: Female; M: Male; ICU: Intensive care unit; TAR: Time above range; TBR: Time below range; CV: Coefficient variation.

analyzed the bidirectional relationship between vaccination and blood glucose[23]. There were 30 
studies that discussed the effect of diabetes on vaccination[18,23-51], two of which were specifically 
about whether DM increased adverse effects after vaccination[31,32], and three of which had 
participants with autoimmune rheumatic disease[49], organ transplantation[50], and a special group on 
blood pressure dialysis[51]. The other 24 studies were on the effect of vaccination on DM[52-75] and 
included 18 case reports or case series[58-75]. The largest sample size was 350,963, a population-based 
study from Hong Kong, China, which evaluated the risk of adverse events of special concern and acute 
diabetic complications after COVID-19 vaccination in the type 2 DM (T2DM) population[31]. Of the 
sample included in the 54 studies, the youngest age was five years[57] and the oldest was 98 years[25]. 
Only one study analyzed the effects of glycemia on both cellular and humoral responses after 
vaccination[24]. Only one study performed a comparative analysis between type 1 diabetes and type 2 
diabetes[34]. The authors of some studies claim that they are reporting for the first time, trying to fill a 
gap in the literature regarding certain relationships between COVID-19 vaccination and DM.

Results on the effect of vaccination on DM
From the current studies, the effect of vaccination on diabetes is mainly manifested in the effect on 
blood glucose after vaccination, with a total of 24 studies describing this relationship, including 18 case 
reports or case series. To make the various characteristics of these case series readily apparent, we have 
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Figure 1 Flow diagram of literature search. 1One study analyzed the bidirectional relationship between vaccination and blood glucose. COVID-19: 
Coronavirus disease 2019.

additionally tabulated a total of 29 cases from these 18 case reports or case series (Table 2). Of these 29 
cases, 12 were new-onset type 1 DM (T1DM) and three were new-onset T2DM. Fourteen cases were 
vaccinated with two doses, 14 with only one dose, and one with a third dose. mRNA vaccines were used 
in 19 cases (13 cases of mRNA-BNT162b2 (Pfizer-BioNTech) and 6 cases of Moderna (mRNA- 1273)) and 
eight cases used the adenoviral vector vaccine Covishield™ (ChAdOx1-nCOV or AstraZeneca). Most 
events occurred within days of vaccination, with the longest being a diagnosis of new-onset T1DM two 
months after the third dose[71]. No deaths were reported. Of these 24 studies, only three indicated that 
vaccination had no effect on blood glucose[53,55,57], while the rest indicated that it may cause an 
increase in blood glucose. No vaccinated individuals with episodes of hypoglycemia were identified. Of 
course, it cannot be ruled out that some patients develop mild or self-limiting hypoglycemia after 
vaccination, which may not cause certain subjective symptoms in patients and therefore may go 
undocumented by clinical diagnosis.

Results on the effect of DM on vaccination
Of the 30 studies on the effect of DM on vaccination, only one study analyzed the correlation between 
blood glucose levels and the humoral and cellular immunity of the organism after immunization[24]. 
Most of the studies examined whether blood glucose levels as an indicator of effect or DM as 
comorbidity negatively affected the immune response to vaccination. Twenty-one of the studies showed 
that DM reduced response to vaccination, while the other nine indicated that DM had no effect on 
vaccine efficiency[23,25,26,30,34,44,46,48,51]. Some studies also quantified the association with vaccine 
biological effects in terms of patient-specific attributes. Fifteen studies expressed a negative correlation 
between age and immune response, with older individuals having a weaker immune response than 
their younger individuals[25,28-30,32-34,36,37,40,42,45,47,51]. Seven studies showed a correlation 
between gender and immune response after vaccination, with women having a more positive immune 
effect than men[25,27,32,33,35,39,44]. Eight studies analyzed the effect of vaccine type on the immune 
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Table 2 Summary of the case report or case series about the effect of SARS-CoV-2 vaccination on blood glucose

Ref. Age 
(yr) Gender Type and name 

of vaccine

Blood glucose 
(mg/dL)/HbA1c (%) pre-
vaccination post-
vaccination

Onset after 
vaccination Pre-existing condition Final 

diagnosis

C-
peptide 
(ng/mL)

GAD65Ab 
(IU/mL) Treatment Outcomes Conclusion

Sakurai et al
[58]

36 Female mRNA-BNT162b2 
(Pfizer-BioNTech)

Normal 501/7.0 3 d after dose 
1

None Fulminant 
T1DM

0.13 NA Insulin 
infusion

Discharged mRNA vaccine is associated 
with new-onset T1DM

Patrizio et al
[59]

52 Male mRNA-BNT162b2 
(Pfizer-BioNTech)

531 871 4 wk after 
dose 2

Vitiligo vulgaris and 
T2DM

Graves’ disease 
and T1DM

1 61.2 Insulin 
analogues

NR T1DM may be triggered after 
SARS-CoV-2 vaccination

56 Male mRNA-BNT162b1 
(Pfizer-BioNTech)

Normal 440/8.2 15 d after dose 
2

Vitiligo vulgaris and 
Hashimoto's thyroiditis

T1DM 1.5 > 2000 Insulin 
infusion

Recovery

48 Male mRNA-BNT162b2 
(Pfizer-BioNTech)

Normal 352/10.1 8 wk after 
dose 2

None T1DM 0.97 94 Low-
carbohydrate 
diet

Recovery

27 Male mRNA-BNT162b2 
(Pfizer-BioNTech)

Normal 320/12.5 3 wk after 
dose 2

None T1DM 0.87 725 Basal insulin Recovery

Aydoğan et 
al[60]

36 Male mRNA-BNT162b2 
(Pfizer-BioNTech) 
and CoronaVac

Normal 526/12.6 3 wk after 
dose 2

None T1DM 0.38 234 Insulin 
infusion

Recovery

Vaccination with BNT162b2 
may trigger T1DM

Sato et al[61] 43 Male mRNA-based 
SARS-CoV-2 
vaccination

94/5.6 655/8.0 14 d after dose 
2

Malignant melanoma Fulminant 
T1DM

0.33 Insulin 
infusion

Discharged mRNA vaccine may trigger 
T1DM

71 Female mRNA-BNT162b1 
(Pfizer-BioNTech)

93/8.1 944/8.0 1 d after dose 
2

T1DM Diabetic 
ketoacidosis

< 0.03 > 2000 Insulin 
infusion

DischargedYakou et al
[62]

52 Female mRNA-BNT162b1 
(Pfizer-BioNTech)

106 494/11.6 1 d after dose 
2

T1DM Diabetic 
ketoacidosis

ND 123 Insulin 
infusion

Discharged

Risk of inducing ketoacidosis 
after vaccination in T1DM 
patients

58 Female Covishield™ 
(ChAdOx1-nCOV) 
(AstraZeneca)

110 183 1 d after dose 
1

T2DM T2DM NR NR Increased dose 
of metformin.

Discharged

64 Male Covishield™ 
(ChAdOx1-nCOV) 
(AstraZeneca)

95 150 1 d after dose 
1

T2DM T2DM NR NR Without 
additional 
intervention

Discharged

Mishra et al
[63]

65 Male Covishield™ 
(ChAdOx1-nCOV) 
(AstraZeneca)

107 186 6 d after dose 
1

T2DM T2DM NR NR Without 
additional 
intervention

Discharged

Vaccination may result in a 
mild and temporary increase 
in blood glucose levels

Abu-
Rumaileh et 
al[64]

58 Male mRNA-BNT162b1 
(Pfizer-BioNTech)

80 1253/13 26 d after dose 
1

Hypertension T2DM 1.1 NR Insulin 
infusion

Discharged COVID-19 vaccine has a risk 
of causing new-onset T2DM
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Sasaki et al
[65]

73 Female Moderna 
(Spikevax, mRNA-
1273)

7.3 318/9.3 8 wk after 
dose 2

Osteoporosis, mild 
glucose intolerance

T1DM 0.48 > 2000 Intensive 
insulin therapy

NR COVID-19 Vaccination may 
lead to the new-onset T1DM

52 Female mRNA-BNT162b2 
(Pfizer-BioNTech)

5.5-6.2 1062/12.0 3 d after dose 
1

Hypertension T2DM and 
nonketotic HHS

NR NR Insulin 
infusion.

Discharged Vaccination may trigger HHS

60 Male Moderna (mRNA-
1273)

7.5 847/13.2 2 d after dose 
1

T2DM T2DM and HHS NR NR Insulin 
infusion

Discharged Vaccination may trigger a 
hyperglycemic episode

Lee et al[66]

87 Male Moderna (mRNA-
1273)

7 923 10 d after dose 
1

T2DM T2DM and HHS 
and DKA

NR NR Insulin 
infusion

Discharged Vaccination may trigger HHS 
and DKA

59 Male Covishield™ 
(ChAdOx1-nCOV)

5.6 594/14.1 21 d after dose 
1

Obesity Hyperglycemic 
ketosis

2352 NR NA Discharged

68 Male Covishield™ 
(ChAdOx1-nCOV)

6.5 918/14.7 36 d after dose 
1

Pre-diabetes Mixed 
HHS/DKA

5612 NR ICU admission Discharged

Edwards et 
al[67]

53 Male Covishield™ 
(ChAdOx1-nCOV)

6.2 576/17.1 20 d after dose 
1

Pre-diabetes DKA 3772 NR ICU admission Discharged

The first administration of 
the adenovirus-vectored 
COVID-19 vaccine can 
trigger an acute 
hyperglycemic crisis

20 Male COVISHIELD 
(ChAdOx1 nCoV-
19)

NR 14.1 1 d after dose 
2.

None Severe DKA NR NR Insulin 
infusion

DischargedGanakumar 
et al[68]

25 Female COVAXIN 
(BBV152)

NR 16.3 4 d after dose 
2

None Severe DKA NR NR Insulin 
infusion

Discharged

COVID-19 vaccination has 
the potential to induce DKA

Zilbermint et 
al[69]

24 Female Moderna (mRNA-
1273)

NR 505/12.0 15 h after dose 
2

T1DM Severe DKA NR NR Insulin 
infusion

NR A plausible mechanism exists 
between COVID-19 
vaccination and DKA

Yaturu et al
[70]

56 Male BNT162b2 (Pfizer-
BioNTech)

5.6 997/14 Right after the 
second dose.

Hypertension, primary 
hyperparathyroidism, and 
obesity

T2DM and HHS NR NR Insulin 
infusion

Discharged COVID-19 vaccination has 
the potential to induce HHS

Kshetree et al
[71]

69 Male mRNA vaccine 5.8 13.7 Two months 
after dose 3

Hypertension and pre-
diabetes

T1DM and DKA 0.4 0.33 Insulin 
infusion

Discharged COVID-19 mRNA vaccine 
has the potential to induce 
DKA

Prasad[72] 73 Male Covishield 92/7.1 215/8 6 d after dose 
1

T2DM T2DM NR NR Insulin 
infusion

Discharged Vaccination may cause 
glycaemic disturbances

Sasaki et al
[73]

45 Female BNT162b2 (Pfizer-
BioNTech)

Normal 344/7.6 1 d after dose 
1

None Fulminant 
T1DM and DKA

NR NA Insulin 
infusion

Discharged COVID-19 vaccine might 
trigger the onset of fulminant 
T1DM in susceptible 
individuals

Yano et al[74] 51 Female Moderna (mRNA-
1273)

Normal 648/10.3 28 d after dose 
1

None Fulminant 
T1DM and DKA

1.72 NA Insulin 
infusion

Discharged COVID-19 vaccination can 
induce T1DM in some 
individuals

Ohuchi et al BNT162b2 (Pfizer- 3 d after dose Cutaneous malignant Fulminant There is a highly suspicious 45 Male NR 655 0.99 Negative NR NR
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[75] BioNTech) 2 melanoma T1DM causal relationship between 
fulminant T1DM and 
vaccination, especially in 
patients treated with ICI

1Unit: mmol/mol and reference range is 20-38.
2Unit: pmol/L and the reference range is 370-1470.
NA: Not available; ND: Not detected; NR: Not reported; COVID-19: Coronavirus disease2019; SARS-CoV-2: Severe acute respiratory syndrome coronavirus 2; HbA1c: Glycated hemoglobin; DM: Diabetes mellitus; T1DM: Type 1 
diabetes mellitus; T2DM: Type 2 diabetes mellitus; HHS: Hyperosmolar hyperglycemic syndrome; DKA: Diabetic ketoacidosis; ICI: Immune checkpoint inhibitors.

response after vaccination in patients with DM, and four of these studies showed an effect[26,27,30,50]. 
There were also studies that concluded that mixed or heterologous vaccination produced better vaccine 
efficiency[25,26]. Three studies suggested that participants with previous SARS-CoV-2 infection would 
have a better antibody response than SARS-CoV-2-naive individuals[28,47,51]. We attempted to 
systematize the variables in the literature regarding the interrelationship between diabetes and 
vaccination and summarized the important findings of the studies related to these variables in Table 3. 
Ten studies mentioned adverse effects of vaccination[23,26-29,33-35,50,53] and only one study 
manifested that it would have an effect on antibody production[29]. Regarding the effect of BMI on 
vaccination, one study stated that a lower BMI increased the risk of grade 3 to 4 adverse reactions 
compared to normal-weight individuals[32], while another study showed that a higher BMI decreased 
the immune response after vaccination[42].

Results for "no effect"
Of the 54 studies included, a total of 12 studies indicated a "no effect" relationship between DM and 
vaccination. Nine of them concluded that DM had no effect on the immune response to the vaccine[23,
25,26,30,34,44,46,48,51]. Similarly, three studies showed no effect of vaccination on DM or blood glucose
[53,55,57]. Of the two studies that specifically investigated DM and adverse reactions to vaccination[31,
32], one suggested that patients with T2DM did not appear to have a higher risk of adverse reactions 
after vaccination[31].

DISCUSSION
Effect of the COVID-19 vaccination on DM
Does COVID-19 vaccination lead to dysglycemia or even a hyperglycemic crisis with serious adverse 
consequences in patients? Of the 54 studies included, most suggested that there may be some 
association between vaccination and blood glucose, mainly in the form of elevated blood glucose or 
even induction of new-onset DM. Table 2 Lists 12 cases of new-onset DM. In addition, Heald et al[54] 
also implied that COVID-19 vaccination can cause temporary relative hyperglycemia in patients with 
T1DM. SARS-CoV-2 infection is known to cause an immune stress response and dysglycemia. The 
worsening of blood glucose that occurs after vaccination is thought to have a possible common 
pathophysiology with the hyperglycemia associated with SARS-CoV-2 infection. Possible mechanisms 
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Table 3 Outcomes of the studies based on the association between vaccination and diabetes

Ref. Assessed variables Findings related to variables Conclusion Limitations

Zhang et al[23] Hypertension, 
Comorbidity, Side effects

None After vaccination, no 
significant abnormal 
fluctuations in blood 
glucose values were 
observed in the DM 
patients

Lack of data on the 
duration of antibodies 
after vaccination in the 
study population

Marfella et al[24] HbA1c, Time since 
vaccination, type of vaccine

On Day 21 after the second vaccine dose, T2DM 
patients with HbA1c > 7% showed significantly 
reduced virus-neutralizing antibody capacity 
than normoglycemic subjects and T2DM 
patients with good glycaemic control. At 21 d 
after the first vaccine dose, neutralizing 
antibody titers and CD4 cytokine responses 
involving type 1 helper T cells were lower in 
T2DM patients with HbA1c levels > 7% than in 
individuals with HbA1c levels ≤ 7%. The 
reduction of HbA1c levels 52 d after vaccination 
was associated with neutralizing antibody titers 
and CD4 cytokine increases

Hyperglycemia at the 
time of vaccination can 
worsen the immune 
response, and proper 
glycemic control can 
improve the immune 
response

The statistical 
significance of the 
relevant indicators was 
relatively low

Kılınç-Toker et al
[25]

Age, sex, mixed 
vaccination, delta variant, 
BMI, Diabetes, 
hypertension, COPD, 
cardiovascular diseases, 
chronic kidney disease, 
cancer

Age, male gender, delta variant, and mixed 
vaccination (CoronaVac plus BioNTech) were 
associated with death. The delta variant had 
higher ICU admission and mortality rate

For hospitalized patients 
who received two doses 
of the vaccine, diabetes 
was not associated with 
their ICU stay and 
mortality

Retrospective design, 
short follow-up, and 
assessment of inpatients 
only

Barocci et al[26] Homologous vaccination, 
heterologous vaccination, 
type of vaccine, vaccine 
schedule, sex, age, BMI, 
smoking, DM, 
cardiovascular diseases, 
respiratory tract diseases, 
previous SARS-CoV-2 
infection, side effects

Heterologous vaccination induced a 
significantly higher humoral response than 
homologous vaccination. The type of vaccine 
influenced antibody titers

DM does not affect 
antibody levels

Results were influenced 
by anti-S IgG levels in 
asymptomatic subjects

Singh et al[27]1 Sex, T2DM, age, BMI, side 
effects, type of vaccine, 
dose 1, dose 2

Gender, presence of comorbidities, and vaccine 
type were independent predictors of antibody 
seropositivity and anti-spike antibody titer 
levels. Patients with T2DM had a significantly 
lower seropositivity rate compared to those 
without the comorbid disease. Seropositivity 
rates were lower in those with T2DM compared 
to those without T2DM. Both vaccine recipients 
had similar mild to moderate adverse events, 
and none had serious side effects

T2DM is associated with 
lower seropositivity rates 
and anti-spike antibody 
titers

No assessment of the 
cell-mediated immune 
response

Singh et al[28]1 Age, previous SARS-CoV-2 
infection, sex, BMI, side 
effects, type of vaccine, 
dose 1, dose 2, T2DM, 
blood group, dyslipidemia, 
ischemic heart disease

The seropositivity rate was significantly higher 
in the ≤ 60 years age group than in the > 60 
years age group at all time points. GMT was 
significantly higher in participants with past 
SARS-CoV-2 infection than in SARS-CoV-2-
naiveindividuals.

Participants with T2DM 
had a lower rate of 
seropositivity at all time 
points

The sample was drawn 
from a healthy 
population with few 
comorbidities

Shim et al[29] Age, DM, type of vaccine, 
side effects, vaccination 
interval, hypertension, BMI, 
sex

There were significant differences in general 
and neutralizing antibodies based on age, 
vaccine type, vaccination interval, pain score, 
diabetes, and hypertension

For all vaccines, subjects 
with diabetes showed 
lower rates of neutralizing 
antibody production after 
vaccination

Vaccination priority 
policies bring hetero-
geneity across age 
groups

Alqassieh et al[30] Age, type of vaccine, 
hypertension, 
cardiovascular disease, DM, 
sex, BMI

Old people (> 60) had lower IgG titers than 
their younger counterparts. The use of the 
Pfizer-Biotech vaccine was positively associated 
with positive IgG titers, while cardiovascular 
disease had a negative effect on IgG titers. 
Although diabetes had a negative impact on 
positive IgG titers, it was not statistically 
significant

Although DM negatively 
affected IgG titer 
positivity, it was not 
statistically significant

Samples were collected 
only once at a specific 
period (6 wk) after 
vaccination

Wan et al[31] Dose 1, dose 2, HbA1c, side 
effects

None Patients with T2DM do 
not appear to have higher 
risks of AESI and acute 
diabetic complications 
after vaccination

Adverse events are 
defined using diagnosis 
codes and may be 
biased by underdia-
gnosis or misclassi-
fication
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Lee et al[32] Sex, age, DM, type of 
vaccine, BMI

Being young, female or underweight, and 
having diabetes were associated with an 
increased risk of developing grade 3 to 4 
adverse reactions after the first dose of the 
ChAdOx1nCoV-19 vaccine

DM is associated with an 
increased risk of grade 3 
to 4 adverse reactions 
after the first dose of 
vaccine, especially in 
women

Sample from relatively 
healthy subjects 
working in hospitals

Rangsrisaeneepitak 
et al[33]

T2DM, age, sex, BMI, side 
effects

After the first dose of AZD1222, the antibody 
response was weaker in T2DM patients than in 
non-diabetic patients. The seroconversion rate 
was higher in the control group than in the 
diabetic group. Older age was associated with a 
weaker antibody response in older diabetic 
patients. The GMC of SARS-CoV-2 IgG 
antibodies at 56 d was significantly lower in 
diabetic patients than in age- and sex-matched 
controls. In the age- and sex-matched controls, 
SARS-CoV-2 IgG antibody levels were 
significantly higher in women than in men. 
During the first 24 h, injection site reactions 
were more common in diabetic patients than in 
healthy controls

After the first dose of 
AZD1222, the antibody 
response was weaker in 
T2DM patients than in 
non-diabetic patients

Participants in the 
control group were 
healthcare workers, so 
natural immunity may 
have been a 
confounding factor

Sourij et al[34] T2DM, eGFR, HbA1c, side 
effects, T1D

Age and renal function were significantly 
associated with the extent of antibody levels. 
The most common side effect was injection site 
reactions, with a significantly lower rate in 
patients with T2DM

The antibody levels after 
the second vaccination 
were comparable in 
healthy controls and in 
DM patients, irrespective 
of glycaemic control

Focused only on the 
humoral immune 
response after 
vaccination, but did not 
investigate the cellular 
immune response

Tawinprai et al[35] DM, hematologic disease, 
sex, age, time since the first 
dose of vaccination, BMI, 
side effects, cardiovascular 
disease, hypertension, 
dyslipidemia, end-stage 
kidney disease

Participants with diabetes or hematologic 
comorbidities had lower concentrations of anti-
RBD antibodies. Anti-RBD antibody concen-
trations were significantly higher in female 
participants than in male participants. The 
immune response was lower in older 
participants. Anti-RBD antibody concentrations 
were significantly higher at 2 and 3 mo post-
vaccination than at 1-mo post-vaccination

Participants with diabetes 
or hematologic 
comorbidities had lower 
concentrations of anti-
RBD antibodies

The presence of 
participants who did 
not complete two anti-
RBD antibody assays 
withdrew from the 
study

Ali et al[18] T2DM, age, sex, BMI, 
comorbidity, previous 
SARS-CoV-2 infection, 
hypertension

T2DM is associated with lower titers of 
neutralizing and IgG antibodies

Both neutralizing 
antibody and IgG 
antibody titers were 
significantly lower in the 
T2DM group than in the 
non-diabetic group

Participants in the 
study were self-selected 
verbally and through 
job advertisements

Karamese et al[36] T2DM, age, hypertension, 
COPD, dose 1, dose 2

Lower antibody response rates were detected in 
participants with T2DM and in those aged 65 
years and older

DM patients have lower 
antibody levels

The study population 
was an advanced age 
group with a high 
number of 
comorbidities

Lustig et al[37] Age, sex, DM, immunosup-
pression, hypertension, 
heart disease, autoimmune 
disorders, BMI

Lower antibody concentrations are consistently 
associated with males, older age, immunosup-
pression, diabetes, hypertension, heart disease, 
and autoimmune disorders

Lower IgG concentrations 
and lower detectable IgA 
antibodies were observed 
in DM patients, indicating 
a reduced antibody 
response to vaccination in 
these patients

The sample was drawn 
from a healthy 
population with few 
comorbidities

Islam et al[38] Hyperglycemia, FPG, age, 
sex, BMI, hypertension, 
smoking, alcohol 
consumption

Spike IgG antibody titers were lower in the 
presence of hyperglycemia and IFG

Vaccine recipients with 
diabetes and IFG had 
lower concentrations of 
SARS-CoV-2 spike IgG 
antibodies than the 
vaccine recipients with 
normoglycemia did

Associations observed 
in cross-sectional 
studies do not 
necessarily indicate 
causality

Parthymou et al[39] Sex, age, smoking, BMI, 
DM, hypertension, statin 
use, vitamin D levels

Age, male gender, and tobacco use are 
negatively associated with antibody titers after 
COVID-19 vaccination

Antibody titers were 
numerically lower in 
diabetic patients, but this 
association was not 
statistically significant

Reliance on question-
naires to record anthro-
pometric parameters 
and medical history 
affects reliability

Priddy et al[40] Age, DM, sex, BMI, race IgG and neutralization responses decreased 
with age. Lower responses were associated with 
age ≥ 75 and DM

Lower responses were 
associated with DM

Most of the IgG and 
neutralization tests 
used are not 
standardized

Cancer, DM, congestive 
heart failure, sex, age, 

Cancer, DM, or congestive heart failure were all 
associated with having a negative serology 

DM is associated with 
negative serological 

There was a large age 
difference between the 

Naschitz et al[41]
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hypertension, COPD, 
cerebrovascular disease, 
chronic liver disease, 
cognitive disability

result results two sample groups

Güzel et al[42] Cardiovascular diseases, 
DM, age, BMI, sex, 
smoking, vitamin use, viral 
load, comorbidities

Cardiovascular disease and diabetes were 
associated with lower IgG antibody levels. In 
the healthcare workers group, IgG antibody 
response values were negatively correlated with 
BMI and age

IgG antibody levels were 
significantly lower in 
patients with DM than in 
those without DM

ELISA test may lead to 
false positive results

Virgilio et al[43] Sex, T2DM, insulin therapy The negative impact of diabetes in determining 
a steeper antibody decline was greater in female 
residents than in male residents. T2DM is 
associated with a reduced humoral immune 
response after SARS-CoV-2 vaccination. 
Antibody kinetics in diabetic patients receiving 
insulin therapy are similar to those in patients 
without diabetes

Vaccination in elderly 
residents with type 2 
diabetes is associated with 
a reduced humoral 
immune response

Data on blood glucose 
or glycated hemoglobin 
levels were not 
specifically collected to 
assess the control or 
severity of diabetes

Patalon et al[44] Sex, age, BMI, COPD, DM, 
congestive heart failure, 
inflammatory bowel 
disease

Females were associated with higher levels of 
antibodies. Lower antibody levels were 
observed in higher age groups

DM is not a relevant 
factor affecting antibody 
levels

The study population 
was older and had 
more comorbidities

Mitsunaga et al[45] Age, Hypertension, HbA1c, 
Outdoor exercises, 
Vaccination interval, BMI, 
COPD, Dyslipidemia, DM, 
Autoimmune diseases, 
Cancer, dose 1, dose 2, BG

Older than 60 years, hypertension, HbA1c 
higher than 6.5%, and lack of outdoor exercises 
were significant suppressors of antibody 
responses, whereas the length of days from the 
first to the second vaccination longer than 25 d 
promoted a significant antibody response

HbA1c higher than 6.5% 
was a significant 
suppressor of antibody 
responses

The sample was 
relatively healthy 
health workers but did 
not include participants 
with serious 
comorbidities

Papadokostaki et al
[46]

Age, DM, dose 1, dose 2, 
sample testing time, 
HbA1c, BMI, duration of 
diabetes, HbA1c

In the diabetic group, Abs-RBD-IgG was 
significantly correlated with age and time, and 
dose after vaccination

The humoral immune 
responses after the second 
dose were high and 
similar in participants 
with and without DM

No comparison 
between type 1 and 
type 2 diabetes

Zhao et al[47] DM, dose 1, dose 2, dose 3, 
age, end-stage kidney 
disease, cancer, steroid use, 
previous SARS-CoV-2 
infection, time since 
vaccination

DM was significantly associated with a decrease 
in response intensity after completion of the 
primary vaccine series, but responses to the 
third dose were generally robust. Age and 
malignancy had a negative effect on the initial 
strength of the humoral immune response. 
Being over 65 years, end-stage renal disease, 
diabetes, and clinical comorbidities of steroid 
use had a negative effect on the humoral 
immune response. SARS-CoV-2 infection 
enhanced the neutralization antibody response 
to the third dose

DM was significantly 
associated with a decrease 
in response intensity after 
completion of the primary 
vaccine series, but 
responses to the third 
dose were generally 
robust

Small sample size

Santotoribio et al
[48]

Age, sex, DM, 
hypertension, heart disease

None Serum antibody levels 
were not significantly 
reduced in patients with 
common conditions such 
as arterial hypertension, 
diabetes, heart disease, or 
chronic respiratory 
disease

No assessment of the 
cell-mediated immune 
response

Mehta et al[49] DM, immunosuppression, 
vaccination interval, sex, 
comorbidity

DM, immunosuppression, and vaccination 
interval were all significantly associated with 
anti-RBD antibodies

DM patients had 
significantly lower titers 
of anti-spiking antibodies 
than patients without 
diabetes

The sample group was 
patients with 
autoimmune rheumatic 
diseases with a high 
proportion of 
comorbidities

Ajlan et al[50] DM, type of vaccine, age, 
triple immunosuppressive 
therapy, side effects, sex, 
time since transplantation

Diabetes and triple immunosuppressive 
therapy appear to significantly affect the 
immune response. Triple immunosuppressive 
therapy and age were identified as significant 
factors in the lack of response to the vaccine 
after the second dose. Response rates after the 
first dose of vaccine with the Pfizer vaccine 
were higher than those with the AstraZeneca 
vaccine

Diabetes mellitus and 
triple immunosuppressive 
therapy appear to 
significantly affect 
response

Lack of immunocom-
petence control group

Patients with detectable antibodies were 
younger than patients without detectable 
antibodies. Patients who were immunosup-
pressed were less likely to have detectable 
antibodies than patients who were not 

Billany et al[51] Age, immunosuppression, 
previous SARS-CoV-2 
infection, sex, race, DM

There was no difference 
in antibody testing with 
or without DM

Small sample size
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immunosuppressed. Patients previously 
infected with COVID-19 were more likely to 
have detectable antibodies than those with no 
history of SARS-CoV-2 infection

Aberer et al[52] TIR, TBR, TAR, T1DM, 
T2DM, carbohydrate 
intake, CV

None At the time of side effects, 
T1DM patients had 
significantly less TIR and 
significantly more TAR, 
while there was no effect 
on T2DM patients

Short assessment time 
and small sample size

Piccini et al[53] Side effects, dose 1, dose 2, 
TIR, time in different 
glucose ranges, mean 
glucose levels, TDD of 
insulin, bolus proportion, 
type of vaccine

Side effects after the vaccination were mild and 
more frequent after the second dose. No severe 
adverse reactions were reported

No significant differences 
in glycemic control and 
glycemic indices were 
observed at different 
times throughout the 
vaccination cycle and 
were independent of the 
vaccine type

Small sample size

Heald et al[54]1 Age, BMI, mode of 
treatment, sex, HbA1c, type 
of vaccine, duration of 
diagnosed T1DM

The fall in the percentage BG on target was also 
greater for those with a median BMI of 28.1 
kg/m2 or more. The fall in the percentage BG 
on target categorized by additional 
Metformin/Dapagliflozin was greater than no 
oral hypoglycemic agents, and the median age ≥ 
53 yr was greater than < 53 yr

In T1DM, COVID-19 
vaccination can cause a 
temporary BG 
disturbance, and this 
effect is more pronounced 
in patients taking oral 
hypoglycemic drugs plus 
insulin and in the elderly

No analysis of changes 
in insulin dose in the 
week following the 
COVID-19 vaccination

D'Onofrio et al[55] TIR, TBR, TAR, CV, dose 1, 
dose 2, insulin dosage, SD

None Pre- and post-CGM data 
collected during the two 
vaccine doses did not 
show any significant 
differences between the 
two groups in terms of 
TIR, TAR, TBR, CV, and 
SD

Small sample size

Heald et al[56]1 Medication, HbA1c, oral 
hypoglycemic drugs plus 
insulin therapy, age, sex, 
type of vaccine, duration 
with diabetes, BMI

COVID-19 vaccination can cause a temporary 
perturbation of interstitial glucose, an effect that 
is more pronounced in patients taking oral 
hypoglycemic agents plus insulin. This effect 
was more pronounced in those with lower 
HbA1c

In T1DM, vaccination can 
cause a temporary 
perturbation of interstitial 
glucose. There is no 
difference between the 
AstraZeneca and the 
Pfizer vaccines

The effects of the first 
and second vaccination 
on interstitial glucose 
regulation could not be 
compared

Gouda et al[57] TIR, TDD of insulin, dose 1, 
dose 2, type of vaccine, 
insulin dosage, average 
glucose level, bolus insulin, 
automated bolus

One week after vaccination, there was a slight 
decrease in TIR along with an increase in mean 
blood glucose levels, but both were statistically 
insignificant

No differences in blood 
glucose or glycemic 
perturbations were shown 
before and after 
vaccination in patients 
with T1DM. There was no 
correlation between 
vaccine side effects and 
TIR

The effects of the first 
and second vaccination 
on interstitial glucose 
regulation could not be 
compared

1The authors are the same, but the individual studies are different, including different phases, different samples, and different data.
COVID-19: Coronavirus disease 2019; SARS-CoV-2: Severe acute respiratory syndrome coronavirus 2; BMI: Body mass index; HbA1c: Glycated 
hemoglobin; TIR: Time in range; TAR: Time above range; TBR: Time below range; CV: Coefficient variation; TDD: Total daily dose; DM: Diabetes 
mellitus;T1DM: Type 1 diabetes mellitus; T2DM: Type 2 diabetes mellitus; AESI: Adverse events of special interest; CGM: Continuous glucose monitoring; 
GMT: Geometric mean titer; GMC: Geometric mean concentration; Abs-RBD-IgG: Anti-SARS-CoV-2 receptor-binding domain IgG; FPG: Fasting plasma 
glucose; IFG: Impaired fasting glucose; BG: Blood glucose; eGFR: Estimated glomerular filtration rate; COPD: Chronic Obstructive Pulmonary Disease.

here include islet cell injury and acute insulin reduction following entry through the islet angiotensin-
converting enzyme 2 (ACE2) receptor[76], cytokine storm[77], oxidative stress, over-activation of the 
renin-angiotensin-aldosterone system[78], and dysregulation of stress hormone release such as cortisol 
and catecholamines leading to increased insulin resistance[79]. The vaccine can activate the immune 
system and inflammatory factors leading to a cytokine storm that reduces pancreatic blood flow or 
directly impairs β-cell function via ACE2 receptors, or the inflammatory response increases the cellular 
oxidative stress and causes pancreatic fibrosis, resulting in decreased insulin synthesis and secretion 
and reduced insulin sensitivity in target tissues, thereby elevating blood glucose levels[80]. Pancreatic 
injury has been reported in individuals following the COVID-19 vaccination, which may be a possible 
cause of hyperglycemia in individuals following vaccination[81,82]. Of these new-onset diabetic patients 
listed in Table 2, many exhibited low c-peptide levels, suggesting pancreatic damage. Another possible 
explanation comes from vaccine excipients, adenoviral vectors, and vaccine SARS-CoV-2 spike protein 
immunogens that trigger similar mechanisms leading to pancreatic damage and inducing subsequent 
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hyperglycemic crises. mRNA vaccine was used in 19 of 29 patients and the adenoviral vector vaccine 
was used in eight. It appears that the mRNA-COVID-19 vaccine was associated with more reports of 
elevated blood glucose compared to the viral vector vaccine. Although the mRNA-COVID-19 vaccine 
does not contain an adjuvant, mRNA appears to have self-adjuvant properties that induce 
autoimmune/inflammatory syndromes and trigger new-onset DM, especially the new-onset T1DM[83].

Vaccination elicits different levels of immune responses within and between individuals and is 
determined by a range of factors either present within the vaccine, such as the type of adjuvant, or 
within the host, such as the immune response genes, one or more of which combine to act together. It is 
important to note that clinicians should remain vigilant for these events, especially for diabetic patients, 
who require strict glucose monitoring and adequate diabetic treatment in the days following 
vaccination.

Effect of DM on COVID-19 vaccination
Does vaccination of diabetic patients affect the inherent efficiency of the vaccine? If so, what factors can 
contribute to these effects?

The efficiency of the vaccine is mainly demonstrated by immunogenicity, neutralizing antibodies, and 
cellular immunity. Twenty-one of the studies included in this review showed that diabetes decreases the 
response after vaccination. Marfella et al[24] compared the neutralizing antibody titers and antigen-
specific CD4 cell responses after the COVID-19 vaccine in a non-diabetic population, a diabetic 
population with well-regulated glucose (HbA1c ≤ 7%), and a diabetic population with poor regulation 
(glycosylated hemoglobin > 7%) capacity, the results showed that the rate of neutralizing antibody 
production and the immune response was significantly reduced in the poorly controlled glycemic 
population, but that T2DM patients with initially poor glycemic control had improved the immune 
responses after achieving good glycemic control. Their data underscore the notion that hyperglycemia 
worsens the immune response and that adequate glycemic control improves the immune response.

The underlying cause of the impaired immune response exhibited by diabetic patients after COVID-
19 vaccination is not fully understood and may be related to the dysfunction of the adaptive immune 
response in diabetic patients. The adaptive immune system can be compromised by poor proliferation 
in response to antigenic stimuli, impaired production of CD4+ T follicular helper cells, and a reduced 
ability to produce effector lymphokines. Diabetic patients have reduced numbers of circulating CD4+ 
cells, reduced CD4+ to CD8+ lymphocyte ratios, reduced lymphocyte proliferative responses, impaired 
monocytes or macrophages, and defective antigen presentation[84]. Intriguingly, some authors have 
found that patients with T2DM present with an increased white blood cell counts, but they are more 
likely to have decreased lymphocytes and more senescent CD4+ and CD8+ T cells[85]. These cells are 
characterized by overexpression of chemokines (particularly C-X-C motif chemokine receptor type 2) 
and exhibit altered migratory capacity, resulting in poorer vaccine responses in diabetic patients. In 
addition, the hyperglycemic environment at the time of vaccination worsens the immunological 
response and also leads to a decreased immune system response to the vaccine.

Age: Age is one of the most critical factors affecting the production of immunoglobulins and 
neutralizing antibodies. In general, younger people have a stronger immune response to the COVID-19 
vaccine and older people have a reduced immune response to vaccination. B-cell activation is critical for 
the effectiveness of antibody production, but there are several age-related changes in B-cell function and 
phenotype. Older adults are usually marked by immune senescence, which may reduce the effect-
iveness of vaccines[86,87]. The immune response to vaccination is controlled by a delicate balance 
between effector T cells and follicular T cells, and the aging process disrupts this balance, leading to age-
related defects in post-transcriptional regulation, T cell receptor signaling, and metabolic function[88]. 
The age-related immune responses may be heterogeneous, and co-morbidities and their treatment may 
also affect the immune response[89]. Therefore, booster vaccines for the elderly may be considered.

Gender: Seven studies observed a stronger immune response after vaccination in women compared to 
men. Genetic differences as well as sex hormone differences can influence vaccine-induced immunity. X 
chromosomes express 10 times more genes than Y chromosomes, and differences in gene expression 
between X and Y chromosomes promote sex differences in vaccine-induced immunity[90]. Testosterone 
suppresses anti-inflammatory immune cells and promotes a more aggressive T helper cell-type immune 
response, thereby reducing the immune response to vaccines. In contrast, estrogen has a suppressive 
effect on pro-inflammatory T cells[91]. In addition, ACE2 receptor expression is influenced by estrogen 
and correlates with the strength of the immune response[92]. Whether diabetes may interact with 
gender to influence the extent and persistence of vaccine response is unclear. We found that five of the 
six studies that observed stronger immune responses in women than in men had study populations 
from healthcare workers[27,32,35,39,44], and, unquestionably, these studies included a higher 
proportion of women in their samples, potentially biasing the results.

Type of vaccine and method of vaccination: Surprisingly, Kılınç-Toker et al[25] observed that mixed 
vaccination (CoronaVac plus BioNTech) produced better vaccine efficiency, and similarly, Barocci et al
[26] found that heterologous vaccination also produced better vaccine efficiency. Wan et al[93] observed 
that two doses of CoronaVac followed by a BNT162b2 heterologous booster may be more effective than 
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three doses of CoronaVac in a diabetic population. A study comparing the immune responses generated 
by mRNA-based vaccines and inactivated whole virus particle vaccines found that mRNA-based 
vaccines induced stronger humoral immune responses and higher levels of cellular responses than 
inactivated whole virus particle vaccines[94]. Adenoviral vectors carry antigens that can persist for long 
periods of time. Anti-glycoprotein IgG antibodies persist until day 180 after single-dose vaccination 
with ChAd3-EBO-Z in phase 1/2a clinics[95], and antibody responses to a single dose of ChAdOx1 
(AZD1222) vaccine have a long half-life[96]. The mixed vaccination may combine the respective 
advantages of the different vaccine types, while the robust humoral response induced by the hetero-
logous booster may be attributed to the extended interval between the primary and booster doses. 
Extended intervals between booster doses may result in higher neutralizing activity and a more 
extensive humoral response through germinal center responses, including somatic cell hypermutation 
and affinity maturation[97]. Evidence from several studies suggests that heterologous inoculation is safe 
and effective and induces a robust humoral response to SARS-CoV-2, allowing for faster protection of 
the target population[98-100].

Obesity: Adipose tissue is another metabolic organ with high ACE2 Levels that may exhibit a 
propensity for SARS-CoV-2 and is also a source of inflammatory adipokines and cytokines that regulate 
glucose and insulin resistance. A previous study suggested that excess adipose tissue may impede 
nutrient supply to immune cells[101]. Obesity leads to adipocyte hypertrophy, which induces low levels 
of inflammation and insulin resistance[102]. In addition, the hyperleptinemia and hyperinsulinemia that 
accompany the obese state contribute to T-cell dysfunction, leading to impaired immune responses
[103]. These mechanisms of immune cell suppression can reduce antibody production after vaccination.

Special Populations: Patients with autoimmune rheumatic diseases, hemodialysis patients, and organ 
transplant patients, a special group with high comorbidity and impaired immune response, have 
significantly lower antibody titers established after vaccination, and the persistence of IgG titers may 
follow different kinetics. Billany et al[51] described 94 patients on maintenance hemodialysis (including 
43 diabetic patients) at the first dose of vaccine antibody response 28 d after vaccination. The results 
showed that neutralizing antibodies were detectable in 75 patients (79.8%), and there was no difference 
in the presence or absence of diabetes on antibody detection in the cohort. Reassuringly, Agur et al[104] 
expressed the same notion. Ajlan et al[50] evaluated the efficacy and safety of two different vaccine 
platforms in 431 patients with liver or kidney solid organ transplants (191 of whom were diabetic 
patients), and they found no difference in efficacy between the two vaccine platforms in solid organ 
transplant patients, with response unresponsiveness primarily related to DM. Bieber et al[105] also 
reached similar conclusions. These findings seem to support the notion that both vaccination and 
booster use in immunodeficient populations are associated with better COVID-19-related outcomes, and 
therefore, regardless of the presence of diabetes, they should be encouraged to receive booster vaccin-
ations to obtain vaccine protection that may be close to that obtained in the general population after two 
doses, and that combination or allogenic vaccination is a vaccination strategy worth considering for 
them.

Adverse reactions: Of the 54 studies included, the earliest study began in November 2020, only two 
years ago so far. SARS-CoV-2 is a novel virus in the history of human viruses, and the COVID-19 
vaccine is even more novel for the human being as a whole, given the incredible speed with which 
many vaccines were developed during the period of COVID-19. It is too early to observe from just two 
years how the vaccine affects the life cycle of patients with pre-existing DM, so the effect of the COVID-
19 vaccine on the natural course of diabetes is more in the form of observed adverse effects. Ten studies 
mentioned adverse reactions after vaccination, and only Lee et al[32] claimed that diabetes had an 
increased risk of grade 3 to 4 adverse reactions, while most studies expressed that people with DM were 
less likely to experience significant side effects after COVID-19 vaccination compared to healthy 
individuals. The most common systemic side effects are headache, chills, fever, and fatigue, and local 
effects are pain, redness, and swelling at the injection site. Most side effects are mild and disappear 
within a few days after vaccination and do not interfere with daily activities. Even for those patients 
diagnosed with new-onset DM or hyperglycemic crisis, their symptoms resolved rapidly with 
reasonable treatment, and there was not a single case of death. Although some very rare and serious 
vaccine-related adverse events have also been reported in myocarditis[106], myocardial infarction[107], 
and Green-Barre syndrome[21], the vast majority of studies have concluded that vaccination is safe in 
patients with DM.

Understanding the factors associated with the strength of the immune response to these vaccines and 
the adverse effects associated with vaccine safety is necessary to optimize vaccination programs. These 
findings support prioritizing vaccination of vulnerable populations such as diabetes and completing the 
vaccination cycle, and in countries where conditions permit, promoting the use of booster doses, 
especially for those special groups with impaired immune responses.

Explanation of "no effect" between DM and vaccination
Of the 54 studies included, a total of 12 studies indicated a "no effect" relationship between DM and 
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vaccination. Piccini et al[53] used two types of vaccines in 39 patients over 16 years of age with T1DM 
who were vaccinated for the entire cycle and showed that no significant differences were observed in 
time in range, time in different glucose ranges, mean glucose levels, total daily dose of insulin, or bolus 
ratios before and after any dose or before and after the entire vaccination cycle. They used a hybrid 
closed-loop system to exclude the effect on glucose brought about by automatic insulin correction of the 
treatment system. No serious adverse reactions were reported, although minor post-vaccination side 
effects were observed. Similarly, another study expressed the same opinion[55]. In a prospective 
multicenter cohort study analyzing T1DM and T2DM patients as well as healthy controls, it was found 
that anti-SARS-CoV-2 S receptor binding domain antibody levels after the second vaccination were 
comparable in healthy controls and in patients with T1DM and T2DM, independent of glycemic control. 
Papadokostaki et al[46] also confirmed this notion. These studies suggest that vaccination has no effect 
on glycemia in patients with DM, regardless of the vaccine type and before and after vaccination; also, 
DM has no effect on vaccine efficacy or safety. We analyzed the possible reasons for the differences in 
the results of these 12 studies compared to other studies: First, when the effect of blood glucose on 
vaccination was studied, it was done in healthy or special populations and not specifically designed for 
diabetic populations, for example, Billany et al's study[51] was from a hemodialysis population. In 
addition, the number of diabetic patients included in these studies was very low. The number of 
diabetic patients in these two studies was 39 and 35, respectively. Therefore, the results cannot be 
extrapolated to all diabetic patients. Second, the clinical characteristics of the diabetic subgroups in these 
studies were not sufficient to explain the heterogeneity of the immune response. The confounding 
factors of diabetics such as age, type of diabetes, severity of the disease, course of the disease, and 
therapeutic schedule may affect the results to some extent. Third, heterogeneity in assay methods, 
differences in the timing of antibody detection (whether it coincides with the lowest value of antibody 
titers), and differences in the period studied (whether it is affected by a mutant strain that exhibits 
antibody unresponsiveness) can lead to differences in the immune response to vaccination among 
vaccinated individuals. Although these differences were faced in other studies as well, it is possible that 
in these 12 studies, it happened to intersect with more factors and showed inconsistent results with 
other studies.

Combining the findings of these studies, we can infer that although vaccination gives diabetic 
patients more possible risk of causing elevated blood glucose than the general population, after 
vaccination, there is a lower antibody response in diabetic patients compared with healthy subjects, but 
there is still a considerable amount and intensity of the vaccine immune response, and overall the 
second dose immune response is higher than the first dose, and diabetic patients with good glycemic 
control and vaccination with the second dose, the immune response can be significantly improved, and 
booster vaccination is advocated in special populations subject to immunosuppression, the immune 
response from mixed vaccination is better than that from a single vaccine type, and heterologous 
vaccination is better than homologous vaccination.

Advantages and limitations and future directions
This is the first systematic review to date to comprehensively analyze the bidirectional effects of 
COVID-19 vaccination and DM. First, the question about the interaction of DM and vaccination is a 
novel one, and our review addresses a very clinically relevant question that both physicians and 
patients are eager to answer. Second, the studies included in this review include a variety of special 
populations, including pediatric diabetes, hemodialysis, solid organ transplantation, and autoimmune 
disease populations, as well as a broad representation of patients with two major types of diabetes, 
which can inform vaccination strategies for patients with DM on a larger scale. Finally, our study data 
are from real-world sources, providing real and reliable information for optimizing vaccination in this 
vulnerable population with DM and providing objective and qualitative evidence for future public 
policy formulation and optimal vaccine strategies.

Of course, there are some limitations to this systematic review. First, as described in Strengths, the 
wide representation of the included populations also implies large heterogeneity. Population hetero-
geneity includes, in addition to the common heterogeneity in demographic characteristics, the health-
seeking behavior of these populations and the geographic distribution of the population, and these 
heterogeneities can introduce bias into the interpretation of the overall results. Second, the small sample 
size of some studies, with a total of 18 cases (series) reported, and the small proportion of people with 
DM in some studies limit the ability to test for possible differential effects between subgroups. Third, 
possibly because of ethical challenges in clinical practice, no randomized controlled studies were found 
among the included studies, although some authors made their best efforts to reduce potential bias from 
selection by using PSM methods. Finally, important reports not published in English may have been 
omitted from this review, or the search strategy failed to capture them.

In the world of the COVID-19 vaccine and DM, many questions remain: How frequent is the new-
onset of DM after COVID-19 vaccination? Which component of the vaccine is more likely to cause 
dysglycemia and will COVID-19 vaccine heterologous vaccination reduce adverse events in patients 
with diabetes? Our systematic review implies some gaps in the literature that could be addressed in the 
future. Studies on the effects of COVID-19 vaccination on DM in type 1 and type 2 for comparative 
analysis and studies on changes in the effects of vaccination on the cellular immunity in patients with 
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DM and the effects of vaccination on the natural course of pre-existing DM are scarce, and there is a 
need for longer follow-up or well-designed large-scale studies in the future to further provide an 
updated and more comprehensive evidence-based basis for the relationship between DM and COVID-
19.

CONCLUSION
In conclusion, there is a complex relationship between vaccination and DM with bidirectional effects. 
Vaccination may contribute to the risk of worsening glycemia in diabetic patients, and diabetic patients 
may have a lower antibody response after vaccination than the general population, but good glycemic 
control can significantly improve the immune response.

ARTICLE HIGHLIGHTS
Research background
Both coronavirus disease 2019 (COVID-19) and diabetes pose a serious threat to human health. 
Vaccination is an effective way to prevent the spread of COVID-19. There are few and conflicting data 
on the interaction between COVID-19 vaccination and diabetes mellitus.

Research motivation
We searched all current clinical studies to explore the complex relationship between COVID-19 
vaccination and diabetes.

Research objectives
We analyzed various factors and possible mechanisms of the interaction between COVID-19 vaccination 
and diabetes in order to inform the optimal vaccination strategy and clinical management of patients 
with diabetes.

Research methods
We comprehensively searched PubMed, MEDLINE, and EMBASE online databases and the grey 
literature of medRxiv and bioRxiv using keywords individually or in combination, with a cut-off date of 
December 2, 2022. We followed the inclusion and exclusion criteria and studies with quantifiable 
evidence were included in the full-text review. We also manually searched for important references 
cited by the included studies.

Research results
A total of 54 studies were included. The earliest study began in November 2020. Thirty studies 
discussed the effect of diabetes on COVID-19 vaccination, with the majority indicating that diabetes 
decreases the response to vaccination. Of the other 24 studies on the effect of vaccination on diabetes, 
most concluded that vaccination was associated with a risk of elevated blood glucose. Twelve of the 54 
studies expressed a "no effect" relationship between diabetes and vaccination.

Research conclusions
There is a bidirectional relationship between vaccination and diabetes. Vaccination may contribute to 
the risk of elevated blood glucose in diabetic patients, and diabetes may have a lower antibody response 
after vaccination than in the general population, but good glycemic control can significantly improve 
the immune response.

Research perspectives
Our review reveals a complex relationship between diabetes and vaccination and suggests some gaps in 
the literature that can be addressed in the future, necessitating well-designed large-scale studies to 
further provide a more comprehensive basis for the relationship between diabetes and COVID-19.
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Abstract
BACKGROUND 
Type 2 diabetes mellitus (T2DM) is a metabolic disease of impaired glucose 
utilization. Imbalance in generation and elimination of free radicals generate 
oxidative stress which modulates glucose metabolism and insulin regulation, 
resulting in the occurrence and progression of diabetes and associated complic-
ations. Antioxidant supplements in T2DM can be seen as a potential preventive 
and effective therapeutic strategy.

AIM 
To compare randomized controlled trials (RCTs) in which antioxidants have been 
shown to have a therapeutic effect in T2DM patients.

METHODS 
We systematically searched the electronic database PubMed by keywords. RCTs 
evaluating the effect of antioxidant therapy on glycaemic control as well as 
oxidant and antioxidant status as primary outcomes were included. The outcomes 
considered were: A reduction in blood glucose; changes in oxidative stress and 
antioxidant markers. Full-length papers of the shortlisted articles were assessed 
for the eligibility criteria and 17 RCTs were included.

RESULTS 
The administration of fixed-dose antioxidants significantly reduces fasting blood 
sugar and glycated hemoglobin and is associated with decreased malondial-
dehyde, advanced oxidation protein products, and increased total antioxidant 
capacity.
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CONCLUSION 
Antioxidant supplements can be a beneficial approach for the treatment of T2DM.

Key Words: Diabetes; Antioxidants; Oxidative stress; Malondialdehyde; Polyphenols; Antioxidant therapy
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INTRODUCTION
Type 2 diabetes mellitus (T2DM) is a chronic metabolic disorder characterized by hyperglycaemia 
which arises from resistance or deficiency of insulin secreted from pancreatic beta cells[1]. Obesity and 
physical inactivity are general well-known risk factors for T2DM as well as its micro (nephropathy and 
retinopathy) and macrovascular (atherosclerotic cardiovascular disease) complications[2]. According to 
the World Health Organization, the prevalence and death rate was 470 million and 1.37 million in 2017, 
respectively, and expected to increase continuously, and the estimated prevalence and death rate in 
2025 will be 570.9 million and 1.59 million, respectively[3]. In India, the prevalence of T2DM and 
impaired fasting glucose was 9.3% and 24.5%, respectively, in 2022. Approximately 45.8% of T2DM 
patients are aware of their diabetes, 6.1% are taking diabetes medication, and 15.1% have diabetes under 
control.

Oxidative stress
Oxidative stress is the excess production or insufficient clearance of highly reactive molecules like 
reactive oxygen species (ROS) and reactive nitrogen species. In physiological conditions, it is generated 
in the non-enzymatic, enzymatic, and mitochondrial processes. Enzymes of respiratory chain, 
phagocytosis, prostaglandin synthesis, and mitochondrial cytochrome P450 system and purine 
degradation produce free radicals[4]. In diabetes, due to hyperglycaemia, the formation of free radicals 
is increased, resulting in an increase in oxidative stress which promotes the rate of protein glycation 
(non-enzymatic), oxidation of glucose, lipid peroxidation, and ultimately impairment of cellular 
machinery, enzymes, and insulin pathways[5].

Oxidative stress targeted molecular pathways in T2DM pathogenesis
In T2DM, the prolonged exposure to high glucose and free fatty acid levels significantly contributes to 
the dysfunction of beta cells. These beta cells are highly sensitive to free radicals (due to low quenching 
and antioxidant activity). Consequently, the oxidative stress can harm mitochondria and significantly 
decrease insulin secretion and may cause insulin resistance (Figure 1). Under physiological conditions, 
cellular metabolic processes like glucose oxidation, generate superoxide anion radical [O2(-)] inside the 
mitochondria which is combated by the antioxidant defence system of the body at a certain level[6]. 
However, in hyperglycaemic conditions, the production of O2(-) is elevated, which decreases the body’s 
antioxidant capacity and consequently generates oxidative stress and damage to several biomolecules 
including DNA[7]. DNA damage activates poly-ADP-ribose polymerase-1 (PARP-1) (DNA damage 
repair enzyme). Since this PARP-1 enzyme is a potent inhibitor of glyceraldehyde 3-phosphate dehydro-
genase of the glycolysis pathway, the intracellular concentration of glycolytic intermediates including 
glyceraldehyde 3-phosphate, fructose-6-phosphate, and glucose-6-phosphate increases[8]. As a result, 
glycolytic intermediates accumulate inside the cell and promote some other pro-oxidant pathways like 
protein kinase C and the advanced glycation end products hexosamine and polyol related pathways[9].

Antioxidants
To counteract the oxidative stress, the human body produce antioxidants at a low concentration which 
significantly delay or inhibit cellular damage[4]. Humans have extremely complex antioxidant systems 
that protect the body's cells and organ systems from free radicals. Antioxidants can be categorized as 
antioxidant enzymes and substrates[10], natural substances[11], combination medications[12], synthetic 
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Figure 1 Systematic representation of metabolic pathways affected by hyperglycaemic and oxidative stress. Hyperglycaemia causes cell 
damage in three ways: (1) By directly increasing oxidative stress which affects glycolytic enzymes; (2) by forming advanced glycation end products which activate NF-
κβ and increase DNA damage; and (3) by affecting diacylglycerol enzyme and ultimately reducing nitric oxide levels.

antioxidants[13], and pharmaceuticals[14]. In the antioxidant enzyme and substrate system, superoxide 
dismutase (SOD), glutathione peroxidase, glutathione reductase, and catalase can combat the oxidative 
stress either directly or sequentially and abolish its excessive development of deleterious effects[15]. The 
non-enzymatic antioxidant system is endogenously produced and scavenges free radicals. It includes 
vitamin C, vitamin D, vitamin E, carotenoids, lipoic acid, selenium, and other dietary derivatives such 
as glutathione and ubiquinol[16].

Antioxidant therapy in diabetes
Exogenous antioxidant supplementation may reduce oxidative stress in T2DM by increasing antioxidant 
levels and decreasing free radical formation[17]. This supplementation potentially improves the 
metabolic pathways including nitric oxide (NO) production, endothelial dysfunction, mitochondrial 
function, and vascular NAD(P)H oxidase activity[18,19]. According to recent clinical data in diabetic 
patients, supplementation of antioxidants improves glycaemic status [glycated hemoglobin (HbA1c) 
and random blood sugar], reduces oxidative stress biomarkers [malondialdehyde (MDA)], and 
increases serum levels of antioxidant enzymes including SOD, catalase, and glutathione peroxidase[5]. 
Golbidi et al[20] investigated the therapeutic use of antioxidants as an adjuvant to standard diabetes 
treatment. Those authors searched the clinical trial studies over the last ten years using terms vitamin E, 
vitamin C, coenzyme Q10 (CoQ10), alpha lipoic acid, L-carnitine, ruboxistaurin, or LY 333531 and 
diabetes and concluded that vitamin supplementation is not beneficial for managing diabetes complic-
ations. In this study, we tried to compare interventional randomized control trials (RCTs) in which 
antioxidants have been shown to have a therapeutic effect in the treatment of T2DM.

MATERIALS AND METHODS
Search methodology: The literature search was carried out in the PubMed NCBI database. The search 
strategy was carried out by combination of (“Diabetes Mellitus, Type 2”[MeSH]) AND “Antiox-
idants”[MeSH]) AND “Oxidative Stress”[MeSH]) using Boolean operators. The fixed dose of 
antioxidant was the inclusion criterion for eligibility.

At the beginning of the literature search, the NCBI PubMed database showed 726 articles. After 
applying filters and limiting the search with “full text”, “five years” (2017 to 2022), and “human 
randomized controlled trials”, 23 RCTs were obtained. Full-length papers of the shortlisted articles were 
assessed for the eligibility criteria and 17 RCTs that fulfilled the inclusion criteria were finally included 
in the study (Figure 2 and Table 1).
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Table 1 Basic characteristics of included studies

No. Study design Setting Population Sample size Intervention Duration Effect of treatment Ref.

1 Randomized 
controlled trial

Primary Health Care Centre in Podgorica T2DM 
patients 

Total: n = 130; Group I: n = 
65; Group II: n = 65

Group I: 14000 IU vitamin D + metformin; 
Group II: Metformin only

First for 3 
mo and 
later on for 
6 mo

Improves blood HbA1c and 
reduces advanced oxidation 
protein products

Cojic et al[22], 
2021

2 Randomized 
controlled trial

Prince of Wales Hospital, the Teaching 
Hospital of The Chinese University of Hong 
Kong, Shatin, Hong Kong

T2DM 
patients

Total: n = 20; Group I: n = 
10; Group II: n = 10

Group I: 1.4 g/d bilberry (Vaccinium myrtillus 
L.); Group II: Placebo

3 wk Reduces serum HbA1c level by 
4.6% and ascorbic acid by 14%

Chan et al[43], 
2021

3 Randomized 
controlled trial

Department of Anesthesia, Isfahan 
University of Medical Sciences, Isfahan

T2DM 
patients

Total: n = 54; Group I: n = 
27; Group II: n = 27

Group I: Three-gram citrulline daily; Group II: 
Placebo

2 mo Reduces serum fasting blood 
glucose and MDA level by 16% 
and 25%, respectively; Increases 
serum levels of NOx, SOD, and 
GPx by 27%, 2%, and 2.2%, 
respectively

Azizi et al[45], 
2021

4 Randomized 
controlled trial

Khon Kaen University, China T2DM 
patients

Total: n = 24; Group I: n = 
12: Group II: n = 12

Group I: 1000 mg vitamin C; Group II: Placebo 
daily

6 wk Improves blood pressure 
regulation, increases NO 
release, and significantly lowers 
serum MDA and F2-IsoPs 
levels

Boonthongkaew 
et al[23], 2021

5 Randomized 
controlled trial

Department of Clinical Pharmacology and 
Therapeutics, Nizam's Institute of Medical 
Sciences, Hyderabad, India

T2DM 
patents 

Total: n = 60 patients; 
Group I: n = 20; Group II: n 
= 20; Group III: n = 20

Group I: One capsule of T. chebula 250 mg 
twice daily; Group II: One capsule of T. chebula 
500 mg twice daily; Group III: Placebo

12 wk Improves serum NO level and 
reduces oxidative stress 
markers (GSH and MDA) 

Pingali et al[31], 
2020

6 Randomized 
controlled trial

Endocrinology and Metabolism Clinics of 
Golestan Hospital at Ahvaz Jundishapur 
University of Medical Science, Iran (IRCT 
registration number: 
IRCT20120704010181N12)

T2DM 
patients

Total: n = 42; Group I: n = 
21; Group II: n = 21

Group I: One-gram Anethum graveolens (dill) 
powder; Group II: Placebo 

8 wk Decreases serum insulin, 
HOMA-IR, LDL-C, TC, and 
MDA and increases serum level 
of HDL and total antioxidant 
level

Haidari et al[33], 
2020

7 Randomized 
controlled trial

Tan Tock Seng Hospital, Singapore 
(registration number: NCT02776397)

T2DM Total: n = 187; Group I: 
Type 2 diabetes individuals 
with haptoglobin 2-2 (Hp 2-
2); Group II: Type 2 
diabetes individuals 
without haptoglobin 2-2 
(Hp 2-2)

Group I: Total 400 IU of vitamin E daily; 
Group II: Placebo

24 wk Increases reactive hyperaemia 
index, LDL, and ox-LDL 
concentrations

Dalan et al[24], 
2020

8 Randomized 
controlled trial

Isfahan University Endocrine and 
Metabolism Research Centre, Isfahan, Iran 
(IRCT registration number: 
IRCT20180818040827N1

T2DM Total: n = 80; Group I: n = 
40; Group II: n = 40

Group I: 20 g wheat germ; Group II: Placebo 12 wk Significant change in serum TC 
level

Mohammadi et al
[47], 2020

9 Randomized 
controlled trial

Velayat Hospital of Qazvin University of 
Medical Sciences, Qazvin, Iran (IRCT 
registration number: IRCT2017041019669N4)

T2DM Total: n = 62; Group I: n = 
31; Group II: n = 31

Group I: 500 mg of propolis 3 times in a day; 
Group II: Placebo

8 wk Decreases FBS, 2-hp, insulin, 
HbA1c, and HOMA-IR and 
upregulates TAC, SOD, and 
GSH

Afsharpour et al
[40], 2019
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10 Double-blind 
randomized, 
placebo-controlled 
clinical trial

Diabetes Research Center, Endocrinology 
and Metabolism Clinical Sciences Institute, 
Kermanshah University of Medical Sciences, 
Tehran, Iran (IRCT registration number: 
IRCT20140413017254N5)

T2DM Total: n = 80; Group I: n = 
40; Group II: n = 40

Group I: 80 mg Nano curcumin capsules once 
a day; Group II: Placebo

8 wk Improves serum HbA1c, RBS, 
total neuropathy score, and 
total reflex score

Asadi et al[35], 
2019

11 Double-blind, 
randomized, 
parallel, placebo-
controlled trial

Yeh, Chung Shan Medical University Taiwan 
(registration number: NCT02622672)

T2DM Total: n = 50; Group I: n = 
25; Group II: n = 25

Group I: Liquid ubiquinol (100 mg/d); Group 
II: Placebo 

12 wk Reductions in blood HbA1c and 
fasting glucose, and increase in 
SOD activity

Yen et al[29], 2018

12 Single-blinded 
randomized 
controlled clinical 
trial

Medical Laboratories of the Central Blood 
Bank Society, and the Medical Relief Society, 
Gaza Strip, Palestine

T2DM Total: n = 40 patients; 
Group I: n = 10; Group II: n 
= 10; Group III: n = 10; 
Group IV: n = 10

Group I: 500 mg of metformin + placebo twice 
daily; Group II: 500 mg of metformin + 500 mg 
of vitamin C twice daily; Group III: 500 mg of 
metformin + 400 mg of vitamin E twice daily; 
Group IV: 500 mg of metformin + 500 mg of 
vitamin C + 400 mg of vitamin E twice daily

90 d Regulates FBS, HbA1c, HOMA-
IR, and QISCI and improves 
GST, MDA, G6PD, GSH-PX, 
GSHE, and GSHW

El-Aal et al[25], 
2018

13 Randomized 
double-blind 
placebo-controlled 
trial

Baqiyatallah University of Medical Sciences, 
Iran (IRCT registration number: 
IRCT201505301165N4)

T2DM Total: n = 100; Group I: n = 
50; Group II: n = 50

Group I: 500 mg curcumin + 5 mg 
piperine/day; Group II: Placebo 

3 mo Controls insulin, HbA1c, and 
HOMA-IR index

Panahi et al[36], 
2018

14 Randomized, 
double blind, 
parallel group 
design

Clinics Hospital of Porto Alegre T2DM Total: n = 30; Group I: n = 
15; Group II: n = 15

Group I: n-3 PUFAs (capsules containing 180 
mg of eicosapentaenoic acid and 120 mg of 
docosahexaenoic acid; Group II: Placebo

8 wk Reduces serum level of TBARS, 
F2-isoprostanes, and trigly-
cerides

Fayh et al[27], 
2018

15 Randomized 
double-blind 
placebo-controlled 
trial

Tehran University of Medical Sciences (IRCT 
registration number: IRCT2015072523336N1)

T2DM Total: n = 48; Group I: n = 
24; Group II: n = 24

Group I: 800 mg/d resveratrol daily; Group II: 
Placebo

2 mo Decreases MDA and carbonyl 
protein and increases total 
thiol, NOS, and catalase

Seyyedebrahimi 
et al[49], 2018

16 Randomized 
double-blind 
placebo-controlled 
clinical trial

Diabetic Clinic of Golestan Hospital, 
Jundishapur University of Medical Science, 
in Ahvaz, Iran (IRCT registration number: 
IRCT2015081810181N6)

T2DM Total: n = 64; Group I: n = 
32; Group II: n = 32

Group I: 500 mg hesperidin/daily; Group II: 
Placebo

6 wk Increases total antioxidant 
concentration and reduces 
serum concentrations of 
fructosamine, 8-OHDG, and 
MDA

Homayouni et al
[38], 2017

17 Randomized 
double-blind 
placebo-controlled 
clinical trial

Toho University Medical Center T2DM Total: n = 50; Group I: n = 
25; Group II: n = 25

Group I: Resveratrol oligo-stilbene 27.97 
mg/100 mg/d; Group II: Placebo

12 wk Decreases SBP and reactive 
oxygen metabolite significantly 
and also reduces risk of athero-
sclerosis in T2DM patients

Imamura et al
[50], 2017

FBS: Fasting blood sugar; GST: Glutathione S-transferase; G6PD: Glucose 6-phosphate dehydrogenase; GSH: Glutathione; GSHE: Glorisa superba hydroalcoholic extract; HbA1c: Glycated hemoglobin; HDL: High density lipoprotein; 
HOMA-IR: Homeostasis model assessment of insulin resistance; IsoPs: Isoprostanes; LDL: Low-density lipoprotein; LDL-C: Low-density lipoprotein cholesterol; MDA: Malondialdehyde; n-3 PUFA: Polyunsaturated fatty acid; NO: 
Nitric oxide; NOS: Nitric oxide synthase; 8-OHDG: 8-hydroxy-2'-deoxyguanosine; ox-LDL: Oxidised low-density lipoprotein cholesterol; RBS: Random blood sugar; SBP: Systolic blood pressure; SOD: Superoxide dismutase; T2DM: 
Type 2 diabetes mellitus; TG: Triglyceride; TBARS: Thiobarbituric acid-reactive substances; TAC: Total antioxidant capacity; TC: Total cholesterol.

RESULTS
This study was performed to find the effect of antioxidants on oxidative stress in T2DM patients by 



Shrivastav D et al. Antioxidant therapeutic strategies in T2DM

WJD https://www.wjgnet.com 924 June 15, 2023 Volume 14 Issue 6

Figure 2 Flow chart of study selection process. Created from: https://prisma-statement.org/prismastatement/flowdiagram.aspx.

comparing RCT studies. After a literature search in the PubMed database, it was found that the antiox-
idants, including vitamins, free fatty acids, natural products, etc., play diverse roles in combating 
oxidative stress in T2DM patients[21]. It is well known that non-enzymatic antioxidants like vitamins A, 
C, and E, glutathione, lipoic acid, mixed carotenoids, CoQ10, a number of bioflavonoids, antioxidant 
minerals like copper, zinc, manganese, and selenium, as well as cofactors like albumin, folic acid, uric 
acid, and vitamins B1, B2, B6, and B12 are involved in diverse biological functions. Antioxidants have 
shown promise as a potential therapy for the prevention and treatment of cancer, diabetic complic-
ations, and cardiovascular disease (CVD) since ROS have been linked to these diseases. In a study by 
Cojic et al[22], vitamin D supplements were given to proven T2DM patients with an average history of 
4-6 years during a 6-mo follow-up period, and it was found that vitamin D supplementation (14000 IU 
weekly or 4 drops daily for 6 mo) improved blood HbA1c and reduced advanced oxidation protein 
products (AOPP). The triglyceride/thiobarbituric acid-reactive substances (TG/TBARS) index, 
homeostasis model assessment of insulin resistance (HOMA-IR) index, and MDA level were likewise 
affected by this vitamin D treatment. Boonthongkaew et al[23] studied the effect of vitamin C supple-
mentation (1000 mg daily for 6 wk) on blood pressure (BP), oxidative stress, and NO release in T2DM 
patients and revealed that vitamin C supplementation improves blood pressure regulation, increases 
NO release, and significantly lowers serum MDA and F2-isoprostanes (IsoPs) levels. In another study, 
after supplementation of vitamin E (alpha-tocopherol-400 IU) in T2DM patients (duration of diabetes, 9-
11 years), change in the reactive hyperaemia index (RHI) and augmentation index as the primary 
outcome, and pulse-wave velocity (PWV), carotid intima media thickness (CIMT), inflammation 
(hsCRP), derivatives of reactive-oxygen metabolites (dROMs), biological antioxidant potential (BAPs), 
HbA1c, low-density lipoprotein cholesterol (LDL-C), high density lipoprotein cholesterol (HDL-C), and 
oxidised LDL-C (ox-LDL) as the secondary outcomes were measured. Dalan et al[24] concluded that 
vitamin E supplementation does not significantly improves RHI, PWV, CIMT, hsCRP, dROMS, BAPs, 
HDL-C, and HbA1c though a significant fall in ox-LDL levels was observed. Further in subgroup 
analysis, vitamin E supplementation can increase reactive hyperaemia index, LDL, and ox-LDL concen-
trations in the non-Hp-2-2 group. Similarly, El-Aal et al[25] revealed that supplementation of vitamin C 
and/or vitamins E for 90 consecutive days to T2DM patients regulates fasting blood sugar (FBS), 
HbA1c, HOMA-IR, and quantitative insulin sensitivity check index (QUICKI). Further, it also improves 
serum levels of glutathione-S-transferase, MDA, glucose-6-phosphate dehydrogenase, glutathione 
(GSH)-peroxidase, reduced glutathione in erythrocyte lysate, and reduced glutathione in whole blood. 
Polyunsaturated fatty acids (n-3 PUFAs) are long-chain polyunsaturated fatty acids that have 
antioxidant properties. Indeed, n-3 PUFA supplementation has been demonstrated to reduce oxidative 
stress-related mitochondrial dysfunction and endothelial cell mortality, with the benefit mediated by 
increased endogenous antioxidant enzyme activity[26]. In another study conducted by Fayh et al[27], 
supplementation of n-3 PUFAs (capsules containing 180 mg of eicosapentaenoic acid and 120 mg of 
docosahexaenoic acid) to T2DM patients (diabetes history of 6-8 years) non-significantly reduces serum 
levels of TBARS, F2-IsoPs, and triglycerides. CoQ10 is a powerful antioxidant found naturally in the 
mitochondria that is endogenously synthesised and fat soluble. Because of its antioxidant properties, it 
can effectively inhibit the oxidation of fat, protein, and DNA in the body. Deficiency in CoQ10, partic-
ularly ubiquinol (the reduced form of CoQ10), is common in T2DM patients[28]. Yen et al[29] revealed 
that supplementing T2DM patients with ubiquinol (100 mg/d for 12 wk) resulted in a significant 
reduction in blood HbA1c, fasting glucose, and anti-glycaemic agent use (thiazolidinediones by 25% to 
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83%), and increased SOD activity. However, there were no significant changes in the levels of serum 
MDA and ox-LDL. After 12 wk of supplementation, there was a further substantial association between 
the plasma CoQ10 level and the insulin level, HOMA-IR, and anti-hyperglycaemic medication effect 
scores.

Plant-based natural antioxidants are mostly composed of polyphenols (phenolic acids, flavonoids, 
anthocyanins, lignans, and stilbenes), carotenoids (xanthophylls and carotenes), and phenolic acids. 
These naturally occurring antioxidants, particularly polyphenols and carotenoids, have a variety of 
biological effects, including anti-inflammatory, antibacterial, antiviral, anti-aging, and anticancer 
properties[30]. Terminalia chebula, a traditional ayurvedic herb, is well-known for its antioxidant and 
antihyperlipidemic properties. Pingali et al[31] suggested that the supplementation of aqueous extract of 
Terminalia chebula (250 mg and 500 mg twice daily for 12 wk) to T2DM patients significantly improved 
endothelial function, serum NO level, lipid profile, hsCRP levels, and oxidative stress markers (GSH 
and MDA)[31]. Dill, also known as Anethum graveolens L (A. graveolens), is a herb that is frequently used 
as a spice and a remedy. The oils of A. graveolens are also a source of antioxidants, have antibacterial and 
antispasmodic qualities, and are also a source of minerals, proteins, and fibres. According to research, A. 
graveolens exhibits anticancer, antibacterial, anti-gastric-irritation, anti-inflammatory, and antioxidant 
effects[32]. The interventional study of Haidari et al[33] suggested that the supplementation of A. 
graveolens (dill) powder (3 capsules per day, 1 g each daily) to T2DM patients (duration of diabetes, 8-9 
years) significantly decreases serum insulin, HOMA-IR, LDL-C, total cholesterol (TC), and MDA and 
increases the serum level of HDL and total antioxidant level. However, a non-significant difference was 
observed in serum hsCRP (an inflammatory marker) level. Curcumin (C21H2OO6) is a lipophilic 
substance and polyphenol in nature. Due to its chemical structure and presence of hydroxyl and 
methoxy groups, it has many properties, in particular antioxidant, antimicrobial, anti-inflammatory, 
anti-angiogenic, and antimutagenic ones. Curcumin regulates cyclooxygenase-2, lipoxygenase, xanthine 
oxidase, and inducible nitric oxide synthase (NOS), and reduces serum level of MDA[34]. In another 
trial, Asadi et al[35] suggested that the supplementation of nano-curcumin (80 mg per day for 8 wk) to 
T2DM patients (diabetes history of 10-11 years) significantly improves serum HbA1c, random blood 
sugar, total neuropathy score, and total reflex score. Similarly, the administration of curcuminoids (daily 
dose of 500 mg/d) co-administered with piperine (5 mg/d for 3 mo) can control insulin, HbA1c, and 
HOMA-IR index. Further, it also reduces serum hsCRP and creatinine levels in T2DM patients[36]. 
Hesperidin (30,5,7-trihydroxy-40-methoxy-flavanone-7-rhamnglucoside), a bioflavonoid, is a well-
known antioxidant that can reduce risk of cardiovascular disease and T2DM[37]. The oral adminis-
tration of hesperidin at 500 mg/d for 6 wk in T2DM patients (disease history of 3-11 years) increases 
total antioxidant concentration (mean percent change 13.35% ± 19.21%) and reduces the serum concen-
tration of fructosamine (mean percent change 10.10% ± 16.84%), 8-hydroxy-2’-deoxyguanosine (mean 
percent change 25.11% ± 28.23%), and MDA (mean percent change 16.46% ± 18.04%)[38]. Various 
studies evidently prove that propolis (a resin like material synthesized by honey bee) has antioxidant 
properties and is sufficiently capable of scavenging free radicals[39]. The oral supplementation of 
propolis (500 mg, three times a day for 8 wk) to T2DM patients (disease history of 3-11 years) decreases 
FBS, 2-h postprandial glucose, insulin, HbA1c by 14%, and HOMA-IR by 25%, and upregulates total 
antioxidant capacity (TAC) by 19%, SOD by 3%, and GSH by 17%[40]. Anthocyanin is one of the major 
secondary metabolites which have antioxidant properties. Bilberry (Vaccinium myrtillus L.) is a natural 
and big source of anthocyanins[41]. Although bilberry is most typically used to improve vision, it has 
also been shown to lower blood sugar, have anti-inflammatory and lipid-lowering properties, increase 
antioxidant defense, and reduce oxidative stress. As a result, bilberry may be useful in the treatment or 
prevention of inflammation, dyslipidaemia, hyperglycaemia, and elevated oxidative stress, as well as 
CVD, cancer, diabetes, dementia, and other age-related disorders[42]. The oral supplementation of 
bilberry (1.4 g/d of extract) daily for 4 wk reduces serum HbA1c level by 4.6% and ascorbic acid by 
14%. Further, it decreases serum level of lipid standardized vitamin E, allantoin, glutathione peroxidase, 
and superoxide dismutase non-significantly[43]. The non-essential α-amino acid L-citrulline plays a 
major role in liver and kidney regulations. L-citrulline is also beneficial for NO production and 
endothelial cell regulation[44]. The supplementation of L-citrulline (3 g daily for 2 mo) to T2DM patients 
(history of 3.5 years) significantly reduces serum fasting blood glucose and MDA levels by 16% and 
25%, respectively. However, it significantly increases serum levels of NOx, SOD, and GPx level by 27%, 
2% and 2.2%, respectively[45]. Wheat germ (WGEs) is a by-product of the wheat milling process that 
contains a variety of bioactive chemicals. Wheat germ exracts (WGEs) show potential as antioxidants 
since they include a variety of bioactive components. According to the findings of a previous study, 
bioactive compounds present in WGEs lower plasma lipid and oxidation levels[46]. Supplementation of 
WGEs (20 g per day for 8 wk) to T2DM patients results in a significant change in serum TC level, but it 
affects neither serum levels of FBS, HbA1C, TG, LDL-C, HDL-C, VLDL, MDA, and TAC, nor HOMA-IR, 
HOMA-B, QUICKI, TG/HDL ratio, LDL/HDL ratio, systolic blood pressure, and diastolic blood 
pressure[47].

Resveratrol (3,5,4′-trihydroxy-trans-stilbene), a polyphenolic compound and a type of plant 
secondary metabolite, is a potent antioxidant which potentially scavenges the free radicals[48]. Oral 
supplementation of 800 mg/d resveratrol for 2 mo to T2DM patients decreases MDA by 8%, and 
carbonyl protein by 18.54%. However, it increases total thiol by 12%, NOS by 3%, and catalase 12%. 
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Further, it also upregulates the expression of nuclear factor erythroid 2-related factor 2 (oxidative stress 
responsive transcription factor)[49]. Similarly, administration of 100 mg resveratrol tablets (total 
resveratrol:oligo-stilbene 27.97 mg/100 mg/d) daily for 12 wk effectively regulates arterial stiffness. 
Resveratrol supplementation not only decreases systolic BP and reactive oxygen metabolite significantly 
but also reduces risk of atherosclerosis in T2DM patients[50]. In this study, we tried to analyze that how 
imbalance between the production and inactivation of ROS leads to the development of insulin 
resistance and metabolic syndrome. Therefore, preventing the damage caused by oxidation can prove to 
be an effective therapeutic strategy in diabetes. We conducted a comparison of RCTs comparison and 
performed a review of the available literature to summarize the evidence covering the patho-
physiological impact of oxidative stress on type 2 diabetes. Despite these, this study has several 
limitations including the heterogeneity and lower sample size in RCTs lowering its generalizability. 
Further, large size randomized controlled trials in populations of different ethnicity and gender are 
needed to assess its therapeutic implications in T2DM.

DISCUSSION
The literature search revealed that non-enzymatic antioxidants such as vitamins A, C, and E, 
glutathione, lipoic acid, mixed carotenoids, CoQ10, and antioxidant minerals have diverse biological 
functions that can potentially prevent and treat cancer, diabetic complications, and cardiovascular 
diseases. The studies reviewed demonstrated that supplementation of vitamins D, C, and E, n-3 PUFAs, 
and CoQ10 can regulate FBS, HbA1c, and oxidative stress biomarkers such as AOPP, TBARS, and MDA. 
In particular, vitamin D supplementation significantly improved blood HbA1c and reduced AOPP, 
while vitamin C supplementation improved blood pressure regulation and significantly lowered serum 
MDA and F2-IsoPs levels. On the other hand, vitamin E supplementation did not significantly improve 
RHI, PWV, CIMT, hsCRP, dROMS, BAPs, HDL-C, and HbA1c, but it caused a significant decrease in ox-
LDL levels. Furthermore, supplementation of n-3 PUFAs non-significantly reduced serum levels of 
TBARS, F2-IsoPs, and triglycerides, while ubiquinol supplementation resulted in a significant reduction 
in blood HbA1c, fasting glucose, and anti-glycaemic agent use, and increased SOD activity. However, 
there were no significant changes in the levels of serum MDA and ox-LDL. These studies highlight the 
potential benefits of antioxidant supplementation in managing T2DM and the importance of further 
research to establish optimal dosages, treatment durations, and patient populations.

CONCLUSION
The modern lifestyle, which includes an unhealthy diet, a lack of physical activity, and exposure to a 
variety of chemicals from various sources such as pesticides, heavy metals, food additives, and environ-
mental pollution, can all influence the appearance of oxidative stress. Oxidative stress plays an 
important role in the pathogenesis of various metabolic disorders including pre-obesity, obesity, and 
T2DM. The production of ROS endogenously and/or exogenously is a significant contributor to the 
development of T2DM and its complications. Constant efforts have been made by researchers globally 
to develop the therapeutic model to treat T2DM which can ameliorate oxidative stress. In general, 
oxidative stress can be reduced by adopting a balanced lifestyle and healthy diet. Although nutrition 
plays a critical role, the supplementation of a diet with antioxidants like vitamins and natural products 
has the sufficient capacity to downregulate oxidative stress by quenching free radicals and enzymatic 
and non-enzymatic reactions. It is also suggested that these antioxidants may mitigate T2DM via various 
mechanisms like synchronizing or controlling insulin related cell signalling which can regulate gene 
replication, transcription, and translation and increase insulin secretion, and improve function of 
hepatic β cells and glucose reabsorption. Ideally, antioxidant rich food can be taken as part of life in 
early age. Further, it is also clear that antioxidants are sufficiently capable to reduce low grade inflam-
mation with associated diseases. Also, antioxidant therapy might prove to be beneficial while being 
supplemented at the late stage of T2DM.

ARTICLE HIGHLIGHTS
Research background
Type 2 diabetes mellitus (T2DM) is a condition that affects how the glucose is metabolized for energy. 
When there is an imbalance between the creation and removal of free radicals, oxidative stress can 
occur, which affects how the body regulates glucose and insulin, leading to the development and 
worsening of diabetes and related complications. Taking antioxidant supplements may be a promising 
way to prevent and treat T2DM.
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Research motivation
T2DM is a chronic metabolic disorder with increasing prevalence worldwide, and oxidative stress is 
implicated in its complications. Antioxidants may counteract this process and can help in improving the 
metabolic pathways.

Research objectives
To review the current evidence on the role of oxidative stress in the pathogenesis of T2DM and to 
evaluate the effectiveness of antioxidants as a potential therapy for managing diabetes and its complic-
ations.

Research methods
We systematically searched the electronic database PubMed by keywords. Randomized control trials 
(RCTs) evaluating the effect of antioxidant therapy on glycemic control and oxidant and antioxidant 
status as primary outcomes were included. The outcomes considered were: A reduction in blood 
glucose; changes in oxidative stress and antioxidant markers. Full-length papers of the shortlisted 
articles were assessed for the eligibility criteria and 17 RCTs were included.

Research results
The administration of fixed-dose antioxidants significantly reduced fasting blood sugar and glycated 
hemoglobin, and was associated with decreased malondialdehyde and advanced oxidation protein 
products and increased total antioxidant capacity.

Research conclusions
The modern lifestyle and environmental factors can contribute to oxidative stress, which plays a 
significant role in the development of metabolic disorders such as pre-obesity, obesity, and T2DM. The 
use of antioxidants through a balanced diet and/or supplementation can reduce oxidative stress, which 
may mitigate the development and complications of T2DM. Antioxidants can also reduce low-grade 
inflammation associated with various diseases. Further follow-up research is needed to determine the 
optimal timing and dosage of antioxidant therapy for diabetic patients.

Research perspectives
Future research should focus on identifying new antioxidants and their mechanisms of action in 
reducing oxidative stress and preventing or managing T2DM. Additionally, studies on the effectiveness 
of antioxidant supplementation in combination with other therapies, such as exercise and medication, 
should be conducted. Further investigation is also needed to determine the optimal timing and dosage 
of antioxidant supplementation for diabetes prevention and treatment.
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Abstract
BACKGROUND 
Diabetic keratopathy (DK) occurs in 46%-64% of patients with diabetes and 
requires serious attention. In patients with diabetes, the healing of corneal 
epithelial defects or ulcers takes longer than in patients without diabetes. Insulin 
is an effective factor in wound healing. The ability of systemic insulin to rapidly 
heal burn wounds has been reported for nearly a century, but only a few studies 
have been performed on the effects of topical insulin (TI) on the eye. Treatment 
with TI is effective in treating DK.

AIM 
To review clinical and experimental animal studies providing evidence for the 
efficacy of TI to heal corneal wounds.

METHODS 
National and international databases, including PubMed and Scopus, were 
searched using relevant keywords, and additional manual searches were 
conducted to assess the effectiveness of TI application on corneal wound healing. 
Journal articles published from January 1, 2000 to December 1, 2022 were 
examined. The relevancy of the identified citations was checked against pred-
etermined eligibility standards, and relevant articles were extracted and reviewed.

RESULTS 
A total of eight articles were found relevant to be discussed in this review, 
including four animal studies and four clinical studies. According to the studies 
conducted, TI is effective for corneal re-epithelialization in patients with diabetes 
based on corneal wound size and healing rate.

CONCLUSION 
Available animal and clinical studies have shown that TI promotes corneal wound 
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healing by several mechanisms. The use of TI was not associated with adverse effects in any of the 
published cases. Further studies are needed to enhance our knowledge and understanding of TI in 
the healing of DK.

Key Words: Diabetes mellitus; Diabetic keratopathy; Topical insulin; Healing

©The Author(s) 2023. Published by Baishideng Publishing Group Inc. All rights reserved.

Core Tip: Diabetic keratopathy (DK) is a common complication of diabetes mellitus that is responsible for 
poor corneal wound healing. It also reduces quality of vision and quality of life. DK is the result of 
damage resulting from insulin deficiency, hyperglycemia and neuropathy. Topical insulin has been 
described as an effective and safe new treatment for DK that can normalize the ocular surface and healing 
rate of epithelial defects. This review examines the available evidence.

Citation: Leong CY, Naffi AA, Wan Abdul Halim WH, Bastion MLC. Usage of topical insulin for the treatment of 
diabetic keratopathy, including corneal epithelial defects. World J Diabetes 2023; 14(6): 930-938
URL: https://www.wjgnet.com/1948-9358/full/v14/i6/930.htm
DOI: https://dx.doi.org/10.4239/wjd.v14.i6.930

INTRODUCTION
Diabetes mellitus is an international public health concern with many complications, both microvascular 
and macrovascular. The International Diabetes Federation states that 451 million adults worldwide had 
diabetes in 2017, and this number is expected to increase to 693 million by 2045[1].

Diabetic keratopathy (DK) or diabetic corneal epitheliopathy is one of the complications of diabetes 
mellitus. It is a degenerative corneal disease that requires serious attention. DK occurs in 46%-64% of 
patients with diabetes, which affects their quality of life[2]. Ocular surgery, such as corneal tran-
splantation, vitrectomy, and cataract surgery, is a risk factor for corneal epithelial injury in patients with 
diabetes. Most diabetic keratopathies are thought to occur in the corneal epithelium, but they can also 
occur in other layers of the cornea, including the corneal stroma, Descemets membrane, and corneal 
endothelium[3]. DK may present clinically as punctate keratitis, delayed corneal re-epithelialization, 
corneal hypoesthesia, neurotrophic corneal ulcer and corneal edema. Diabetes increases susceptibility to 
spontaneous corneal trauma, including epithelial defects and corneal ulcers. In diabetic patients, any 
corneal epithelial defect or ulcer takes longer to heal and persists longer than in nondiabetic patients[2]. 
These clinical manifestations are mainly caused by glycation product deposition, corneal nerve ending 
damage, decreased tear secretion and oxidative stress caused by hyperglycemia. Studies have shown 
that tear secretion is lower in diabetic patients than in nondiabetic patients[4], and the mucin layer, 
which forms the innermost layer of tear film, is reduced due to the reduced density of conjunctival 
goblet cells[5]. In addition, decreased corneal nerve density, which impairs the tear reflex, results in 
decreased secretion of the aqueous component of tears. Chronic hyperglycemia leads to a decrease in 
insulin, which plays a role in the proliferation of the acinar cells of the corneal epithelial cells and 
lacrimal gland[6]. Diabetic microvasculopathy may affect tear secretion by damaging the lacrimal blood 
supply[7]. Susceptibility, lack of epithelial adherence, decreased corneal nerve plexus and sensitivity are 
part of the pathogenesis for the development of DK[8].

Insulin is a biologically active peptide closely related to insulin-like growth factor (IGF) that can 
stimulate the haptotactic migration of human epidermal keratinocytes and is involved in cell growth, 
proliferation, metabolism and wound healing[9]. The mechanism by which TI improves corneal wound 
healing is not yet fully understood. Insulin is found in the tear film of the eye. Insulin receptors are 
found in the corneal epithelium and ocular surface tissue[10]. The presence of insulin and insulin 
receptors on the cornea and lacrimal glands suggests that insulin may contribute to corneal wound 
healing[11]. Rocha et al[12] also detected insulin in tears and the expression of the insulin receptor and 
IGF-1 receptor (IGF-1R) on the human ocular surface. IGF-1 promotes corneal epithelial healing by 
increasing cell proliferation. The topical application of insulin can stimulate IGF-1R and treat DK[12].

MATERIALS AND METHODS
Search strategy
A literature search was conducted and completed on 10 December 2022. Two databases, namely, 
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PubMed and Scopus, were used to identify all studies concerning topical insulin (TI) treatment for DK. 
Articles were limited to journal articles with the keywords “topical insulin”, diabetes, and keratopathy 
in the field of the search. The following string was used: TITLE-ABS-KEY [“topical insulin” OR (“local” 
AND “insulin”) OR (“topical” AND “insulin”)] AND TITLE-ABS-KEY (“diabetes” OR “diabetic” OR 
“diabetes mellitus” OR “diabetics”) AND TITLE-ABS-KEY (“cornea” OR “corneal” OR “cornea wound 
healing” OR “corneal wound healing” OR “keratopathy” OR “diabetic keratopathy” OR “cornea 
wound” OR “corneal wound” OR “eye” OR “eyes”). The search was further supplemented by manual 
searching for relevant references and using reference citation analysis to find the latest research results. 
We only examined journal articles published from January 1, 2000 to December 1, 2022.

Inclusion and exclusion criteria
Studies that fulfilled the following criteria were included: (1) The experimental group (adults and 
animals) was diabetic; (2) The experimental group with DK was treated with TI or insulin-growth-
factor; and (3) The effects on the cornea, such as the corneal epithelial defect healing rate, healing size, 
time to heal, ocular surface disease index score or tear break-up time, were compared between the 
experimental and control groups. Publications from case reports, letters, and studies without raw data 
were excluded. We would select either the article with the most recent publication date or with the 
largest sample size if multiple articles were published based on the same population and were based on 
one study. In addition, exclusion criteria included articles not published in English, nondiabetic experi-
mental populations, reported effects that were not on the cornea and inadequate information in the 
article’s text.

Data extraction
In the first phase of the search, the first reviewer (Leong CY) reviewed the articles and studies that were 
duplicated and overlapping were excluded. Subsequently, two reviewers (Leong CY and Naffi AA) 
independently screened the titles and abstracts, and irrelevant abstract articles were excluded. The full 
texts of the remaining publications were reviewed by three reviewers (Leong CY, Naffi AA, and Wan 
Abdul Halim WH), and studies meeting the exclusion criteria were eliminated. Finally, the fourth 
reviewer (Bastion MLC) reviewed the articles for comprehensiveness and accuracy.

RESULTS
In the first phase of the search, a total of 588 related articles were found with the above strategy. A total 
of eight articles were found relevant to be discussed in this review, including four animal studies and 
four clinical studies. The flow chart is presented in Figure 1. All articles in this review are listed in the 
reference sources. Table 1 contains a list of characteristics of each animal study, and Table 2 illustrates 
the characteristics of human clinical studies.

DISCUSSION
Animal studies
Nakamura et al[13] studied the effects of combining IGF-1 and a substance P-derived tetrapeptide 
(phenylalanine-glycine-leucine-methionine-amide, or FGLM-NH2) on corneal epithelial wound healing 
in diabetic rats. The corneal epithelium was removed in both diabetic and nondiabetic rats from limbus 
to limbus and treated with eye drops containing 1 mmol/L FGLM-NH2 (Peptide Institute, Osaka, 
Japan) and IGF-1 (1 μg/mL-1) (Becton Dickinson, Bedford, Mass., United States) 6 times daily for 3 d or 
vehicle alone as a control. The area of the corneal epithelial wound was measured several times for up 
to 72 h after treatment onset. A delay in wound closure was observed in diabetic rats compared with 
nondiabetic rats. Similar wound healing processes were observed in normal rats and diabetic rats 
treated with FGLM-NH2 and IGF-1. However, wound closure was significantly faster in diabetic rats 
treated with FGLM-NH2 and IGF-1 than in those treated with vehicle[13].

Zagon et al[14] performed an animal study and reported that the remaining corneal epithelial defects 
were 35% larger in rats with diabetes than in healthy animals. In diabetic rats that received TI, corneal 
healing was significantly enhanced compared to diabetic rats without TI. This study also compared 1, 2, 
or 5 U insulin in healthy and diabetic rats. Insulin concentrations with more than a 5-fold difference 
showed no difference in efficacy and safety for the cornea, as determined by corneal thickness, 
intraocular pressure and ocular surface morphological characteristics[14].

Chen et al[15] studied corneal nerve density depletion in patients with diabetes using corneal confocal 
microscopy and its relationship with TI. The effects of type 1 diabetes on corneal nerves were then 
studied over time using female Sprague-Dawley rats, whereas the impact of TI on corneal nerves was 
investigated using female Swiss Webster mice. In rats with diabetes, nerve occupancy in the subbasal 
plexus was significantly reduced at week 40. TI was applied (0.1 IU daily) to the eyes of diabetes 
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Figure 1  Flow diagram of the literature search.

mellitus rats for 4 wk prevented the depletion of nerves of the subbasal plexus without any effect on 
systemic glycemic control[15].

Yang et al[10] investigated the relationship between TI and the WnT/β-catenin signaling pathway in 
corneal epithelial healing and corneal nerve repair in diabetic mice. Type 1 diabetes was induced in 6- to 
8-year-old male C57BL/6J mice. TI (3 μL) was administered four times daily one week before and one 
week after corneal scraping. This study showed that TI stimulated the accumulation of β-catenin in the 
cell, activated the Wnt/β-catenin signaling pathway, and finally stimulated cell proliferation. In 
addition, a preliminary study of this research showed that TI also promoted epithelial healing in mice 
with type 2 diabetes after corneal injury[10].

Clinical studies
Bastion and Ling[16] retrospectively reviewed 15 eyes of 14 patients who underwent corneal epithelial 
debridement during vitreoretinal surgery to improve the surgeon’s view in 2010 over a 10-mo period. 
This study compared three groups: Patients with diabetes treated with TI 1 U/drop four times daily in 
addition to conventional postoperative therapy, patients with diabetes treated with conventional 
therapy, namely, topical antibiotics and steroids only, and nondiabetic patients treated with conven-
tional therapy. TI (1 U) was prepared using Actrapid HM, Novo Nordisk, Denmark to provide 50 U/mL 
insulin at approximately 1 U per drop 4 times per day. Patients with diabetes treated with TI had 
significantly smaller defect sizes at 24, 36 and 48 h than patients with diabetes treated with conventional 
therapy. In addition, insulin-treated diabetic eyes re-epithelialized within 48 h, whereas conventionally 
treated eyes re-epithelialized within 72 h[16].

Fai et al[3] prospectively studied the effect of TI at three concentrations (0.5, 1, and 2 U per drop) vs 
placebo four times daily on the postoperative wound healing of corneal epithelium in patients with 
diabetes after vitreoretinal surgery. This work was a randomized, controlled, double-blind study. 
Thirty-two eyes of 32 patients with diabetes who underwent intraoperative corneal debridement with a 
Tookes knife with resulting epithelial defects of various sizes were randomized into 3 different concen-
trations of TI or placebo. The insulin used was Actrapid HM 100 U/mL, as in the study by Bastion and 
Ling[16]. The results of this study showed that TI (0.5 U) was superior to the other insulin concen-
trations in achieving a 100% healing rate within 72 h. TI (0.5 U) 4 times a day (QID) was found to be 
most effective for healing corneal epithelial defects in patients with diabetes in this study compared to 
placebo and insulin at higher concentrations after vitrectomy. TI was also shown to be safe for use in the 
human eye[3].

Aniah Azmi and Bastion[17] evaluated the short-term effects of TI (1 U per drop) four times daily for 
one month on patients with diabetic dry eye disease (DDED). This work was a randomized, double-
blind intervention study involving patients with diabetes with dry eye who were randomly assigned to 
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Table 1 Summary of the key characteristics of the included animal studies

Ref. Country Aim Study 
design

Subject groups 
(number)

Insulin type and 
dose Results

Nakamura 
et al[13], 
2003

Japan To study the effect of the 
combination of FGLM-
NH2 and IGF-1 on corneal 
epithelial wound healing in 
rats with diabetes

Animal 4-wk-old male 
Sprague-Dawley 
Streptozocin-induced 
diabetic rats; 100 g (n 
= 20)

FGLM-NH2 (1 
mmol/L) and IGF-1 
(1 μg/mL) 6 times 
per day

Similar wound healing processes were 
observed in normal rats and diabetic rats 
treated with FGLM-NH2 and IGF-1. 
Wound closure was significantly faster 
in diabetic rats treated with FGLM-NH2 
and IGF-1 than in those treated with 
vehicle

Zagon et al
[14], 2007

United 
States

To determine TI normalizes 
delayed corneal wound 
healing in rats with 
diabetes

Animal Male Sprague-Dawley 
Streptozocin-induced 
diabetic rats; 165 g (38 
diabetic rats; 11 
nondiabetic rats)

Bovine insulin 1, 2, 
or 5 U. Single drop 
(20 μL)

TI normalizes corneal re-epithelial-
ization in diabetic rats. No difference in 
efficacy of insulin dose of 1, 2, or 5 U 
and safe for cornea

Chen et al
[15], 2013

United 
States

To determine corneal nerve 
depletion in type 1 diabetes 
rats using corneal confocal 
microscopy and its 
relationship with TI

Animal Female Swiss Webster 
Streptozocin-induced 
diabetic mice; 25-30 g 
(8 diabetic mice; 8 
control)

0.1 IU of regular U-
100 Humulin (Lilly, 
Indianapolis, IN, 
United States) in 10 
μL saline

TI prevent depletion of nerve occupancy 
in the subbasal nerve plexus of the 
cornea without affecting systemic 
glycemic control

Yang et al
[10], 2020

China To investigate the 
relationship between TI 
and WnT/β-catenin 
signaling pathway in 
corneal epithelial healing 
and corneal nerve repair in 
diabetic mice

Animal Streptozocin-induced 
diabetic mice (6 to 8-
year-old-male 
C57BL/6J mice)

Human neural 
insulin (Lilly France 
S.A., Fegersheim, 
France). 3 μL QID (1 
IU/mL)

Insulin contributes to diabetic corneal 
epithelial wound healing and nerve 
injury healing via Wnt signaling, making 
it a potential protective factor for 
diabetic corneal epithelial wounds and 
nerve injuries

IGF-1: Insulin-like growth factor-1; FGLM-NH2: Substance P-derived tetrapeptide; TI: Topical insulin; U: Unit.

be treated with TI or artificial tears (AT). The insulin used was actrapid HM (Novo Nordisk, Bagsvaerd, 
Denmark). Patients were assessed at baseline, week 2, and week 4 of treatment. This study showed that 
TI and AT produced similar improvements in the Ocular Surface Disease Index in the treatment of dry 
eye in patients with diabetes, whose symptoms had improved after both therapies. However, TI 
worsened tear break-up time compared with baseline, but this did not differ from that of the AT group. 
Nevertheless, after one month of treatment, symptoms or clinical signs of DDED did not significantly 
differ between TI and AT[17].

Quiroz-Mendoza et al[18] compared the effect of TI and sodium hyaluronate on the healing of corneal 
epithelial defects in patients with diabetes after corneal epithelial debridement during pars plana 
vitrectomy. This study was a controlled clinical trial in which patients were randomly assigned to 
groups treated with TI 0.5 (IU/drops), 0.15% topical sodium hyaluronate (Hyabak®, Laboratorios Théa® 
México), or combined treatment with 0.5 IU/drop TI and 0.15% sodium hyaluronate. Insulin was 
prepared using recombinant human insulin (Humulin® R, Eli Lilly and Company, Indiana, United 
States). Patients were required to instill TI 4 times per day. Both treatments, i.e., 0.5 IU/drop TI as 
monotherapy and TI combined with 0.15% sodium hyaluronate, were effective in treating corneal 
epithelial defects resulting from intraoperative corneal debridement during pars plana vitrectomy in 
patients with diabetes. The addition of sodium hyaluronate to TI did not provide a greater benefit than 
TI alone. No adverse effects were noted in this study[18].

Clinical studies on TI in other eye conditions
Wang et al[19] reviewed 6 patients with refractory neurotropic ulcers treated with TI. This study was a 
retrospective study of 6 patients with neurotropic corneal ulcers who did not respond to conventional 
medical and surgical treatments. The addition of TI resulted in rapid and complete corneal re-epithelial-
ization after the initiation of treatment[19].

Diaz-Valle et al[20] evaluated treatment with TI for persistent epithelial defects (PED) refractory to 
conventional treatment. This study was a prospective, nonrandomized study that enrolled patients with 
refractory PEDs who did not respond to usual treatment. Patients were treated with insulin eye drops 
four times daily. This study demonstrated that TI accelerates corneal re-epithelialization and improves 
and safety promotes healing in PED patients who are not responsive to standard treatment[20].

Tong et al[21] reported a case of bilateral neurotropic keratitis that was unresponsive to conventional 
therapy and was successfully treated with 25 IU/mL TI six times daily in each eye. The neurotropic 
ulcers dramatically re-epithelialized within 1 wk. In this instance, TI was evidently successful in 
promoting re-epithelialization where other forms of treatment had failed[21].

Galvis et al[22] discussed a case diagnosed with exposure keratopathy after acoustic neuroma 
resection with involvement of the facial nerve and trigeminal nerve that developed into infectious 
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Table 2 Summary of the key characteristics of the included clinical studies

Ref. Country Aim Study design Subject groups 
(number)

Insulin type and 
dose Results

Bastion 
and Ling
[16], 2003

Malaysia To determine whether 
TI improve healing 
rate of corneal 
epithelial erosion 
during vitreoretinal 
surgery

Retrospective 
review

Human (15 eyes of 
14 patients 
underwent corneal 
debridement during 
vitreoretinal surgery)

Actrapid HM, Novo 
Nordisk 1 U QID (50 
UI/mL)

Delayed epithelial healing in diabetic 
eyes compared with normal eyes. 
Diabetic eyes treated with TI had 
significantly smaller defect size than 
diabetic eyes treated with conven-
tional therapy

Fai et al[3], 
2017

Malaysia To investigate the 
effect of 3 concen-
tration of TI in corneal 
epithelial wound 
healing in 
postoperative patient 
with diabetes

Double blind 
randomized 
controlled

Human (32 eyes of 
32 diabetic patient 
underwent corneal 
debridement during 
vitreoretinal surgery)

Actrapid HM, 
Novonordisk 0.5, 1, 2 
U QID

TI 0.5 U QID is most effective for 
corneal re-epithelialization in patients 
with diabetes after vitrectomy 
surgery as compared with placebo 
and higher concentrations. TI is safe 
for human ocular use

Aniah 
Azmi and 
Bastion
[17], 2020

Malaysia To determine the 
short-term effects of TI 
on symptoms and 
signs of dry eye 
disease in patients 
with diabetes

Randomized, 
double-blind 
interventional 
study

Human (320 eyes of 
160 patients with 
diabetes for 
treatment of dry 
eyes)

Actrapid HM, Novo 
Nordisk 1 U QID (25 
UL/mL)

Similar improvement in the Ocular 
Surface Disease Index score for TI 1 U 
QID and standard artificial tears in 
the treatment of dry eye in patients 
with diabetes

Quiroz-
Mendoza 
et al[18], 
2021

Mexico To compare the effect 
of TI and sodium 
hyaluronate in 
epithelial defects 
postoperative in 
patients with diabetes

Controlled 
human clinical 
trial

Human (36 eyes of 
36 patients with 
diabetes who 
underwent corneal 
debridement during 
vitreoretinal surgery)

Recombinant human 
insulin (Humulin® R, 
Eli Lilly and 
Company, Indiana, 
United States) 0.5 
IU/drop QID (25 
IU/mL)

TI 0.5 IU/drops monotherapy and 
combined treatment with 0.15% 
sodium hyaluronate is effective in 
healing corneal epithelial defects after 
intraoperative corneal debridement in 
patients with diabetes. Adding 
sodium hyaluronate to TI did not 
provide additional benefit

TI: Topical insulin; U: Unit; QID: 4 times a day.

keratitis 2 wks after surgery. The patient had a persistent epithelial defect despite topical antibiotics, 
steroids, autologous serum drops, and bandage contact lenses. TI (1 UI/mL) was administered as 
adjuvant therapy four times daily, and the epithelial defect closed completely after 2 wks[22].

Ocular surface toxicity from insulin
Bartlett et al[23] conducted a prospective, randomized, single-masked study in 8 healthy volunteers on 
the safety of TI. Subjects were administered different concentrations: 0, 0.1, 1.0, 10.0, and 100 IU/mL TI 
in one eye and placebo in the other eye. They were evaluated immediately after instillation and 2 h after 
instillation. Several parameters were measured: Stinging, burning, tearing, itching, foreign body 
sensation, visual acuity and slit lamp examination. The results showed no significant difference in 
toxicity between the eyes receiving TI and those receiving placebo[23]. No adverse effect was observed 
in any of the published cases with the use of TI at concentrations up to 100 IU/mL.

Although all clinical data support the safety of TI, a stable formulation of TI is currently not commer-
cially available. Le Nguyen et al[24] first introduced information on the stability of 1 UI/mL insulin eye 
drops. This study utilized the concentration reported for the effective treatment of refractory epithelial 
defects in both diabetic and nondiabetic eyes. The physicochemical and microbiological stability of the 
formulation of TI eye drops were evaluated. TI was prepared by diluting commercial Humalog insulin 
Lispro solution (100 UI/mL) with polyethylene and propylene glycol-based artificial eye drops to a 
concentration of 1 UI/mL. The resultant solution was stored in a multidose eyedropper made of low-
density polyethylene. The stability of this TI formulation was studied at 4 °C for 12 mo in unopened 
eyedroppers and under stimulated use conditions at 4 °C and 25 °C for 30 d. The parameters studied for 
physicochemical stability were visual inspection, pH, turbidity, ultraviolet spectral absorption and 
osmolality.

In addition, insulin and m-cresol concentrations were tested using a new size-exclusion chromato-
graphic method. The results showed that all tested parameters were favorable, and unopened eye 
droppers were physicochemically and microbiologically stable at 4 °C for 12 mo. Under stimulated eye 
conditions, these parameters also remained stable at 4 °C for one month. Furthermore, a similar result 
was observed when solutions were stored at 25 °C under stimulated eye conditions, with no effect of 
potential temperature increases on the insulin and m-cresol concentrations in the insulin eyedropper
[24]. Studies on the stability of studies utilizing higher concentrations of insulin, such as those described 
in the various clinical studies on diabetic eyes with epithelial defects or DDED mentioned earlier in this 
review, are currently lacking. Studies on the stability of TI in various types of AT are also lacking.
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Applications of machine-learning analysis
Artificial intelligence (AI) has been developed and used in the field of ophthalmology. The majority of 
AI research in the past has focused on posterior segment diseases, such glaucoma, retinopathy of 
prematurity, and optic neuropathy[25]. In recent years, an increasing number of studies have employed 
AI to recognize different keratopathies. The use of AI in DED, particularly automatic DED detection and 
categorization, has tremendous potential[26]. The study of DED using machine learning may aid in the 
diagnosis and monitoring of treatments, such as TI.

Limitations
This study was subject to limitations. The literature included in this study used a variety of types, 
dosages and methods of dilution of TI. The methodology to assess outcomes in each study, such as 
cornea wound size and rate, also varied. For animal studies, different types of rats and ages were used, 
and the sample sizes were small. In addition, the sample sizes of clinical studies were also small, and the 
types of diabetic keratopathies were different.

CONCLUSION
Treatment with TI is effective in treating DK, including DDED, epithelial defects after corneal 
debridement and refractory epithelial defects. It offers many advantages, including excellent 
tolerability, availability, cost-effectiveness and, most importantly, safety when applied to the human 
eye, without adverse events. More studies are needed to determine its stability in normal saline and in 
AT of various types, and the advantage of combining TI with AT to increase its contact time and reduce 
the need for frequent dosing warrants further study.

ARTICLE HIGHLIGHTS
Research background
Diabetic keratopathy (DK) is one of the complications of diabetes mellitus. In diabetic patients, any 
corneal epithelial defect or ulcer takes longer to heal and persists longer. Treatment with topical insulin 
(TI) is effective in treating DK.

Research motivation
Insulin is an effective factor in wound healing. The ability of systemic insulin to rapidly heal burn 
wounds has been reported for nearly a century, but only a few studies have been performed on the 
effects of TI on the eye.

Research objectives
The aim of the study is to review clinical and experimental animal studies providing evidence for the 
efficacy of TI to heal corneal wounds.

Research methods
To evaluate the efficacy of TI application on corneal wound healing, the published literature was 
reviewed systematically for publication. The available data was then thoroughly reviewed.

Research results
Eight articles in total, comprising four animal studies and four clinical studies, were identified and 
discussed. According to the studies conducted, TI is effective for corneal re-epithelialization in patients 
with diabetes based on corneal wound size and healing rate.

Research conclusions
Treatment with TI is effective in treating DK. It offers many advantages, including excellent tolerability, 
availability, cost-effectiveness and, most importantly, safety when applied to the human eye, without 
adverse events. Further studies are needed to enhance our knowledge and understanding of TI in the 
healing of DK.

Research perspectives
TI promotes corneal wound healing and was not associated with adverse effects in any of the published 
cases. More studies are needed to determine its stability in normal saline and in artificial tear (AT) of 
various types, and the advantage of combining TI with AT to increase its contact time and reduce the 
need for frequent dosing warrants further study.
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