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Abstract
The global diabetes surge poses a critical public health challenge, emphasizing the 
need for effective glycemic control. However, rapid correction of chronic hyper-
glycemia can unexpectedly trigger microvascular complications, necessitating a 
reevaluation of the speed and intensity of glycemic correction. Theories suggest 
swift blood sugar reductions may cause inflammation, oxidative stress, and 
neurovascular changes, resulting in complications. Healthcare providers should 
cautiously approach aggressive glycemic control, especially in long-standing, 
poorly controlled diabetes. Preventing and managing these complications 
requires a personalized, comprehensive approach with education, monitoring, 
and interdisciplinary care. Diabetes management must balance short and long-
term goals, prioritizing overall well-being. This editorial underscores the need for 
a personalized, nuanced approach, focusing on equilibrium between glycemic 
control and avoiding overcorrection.

Key Words: Diabetes; Hyperglycemia correction; Management; Microvascular compli-
cations; Glucose control

©The Author(s) 2024. Published by Baishideng Publishing Group Inc. All rights reserved.

Core Tip: Rapid glycemia corrections may unexpectedly lead to microvascular complic-
ations in diabetes. Balancing glycemic control is crucial in diabetes management. 
Prioritizing an individualized, comprehensive care approach is essential to ensure long-
term well-being.
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INTRODUCTION
The global increase in diabetes prevalence poses an ongoing challenge to public health[1,2]. Despite the well-
demonstrated benefits of maintaining blood glucose levels close to normal in preventing or slowing the development of 
diabetes-related complications, a significant portion of those affected by diabetes struggle to reach their glycemic target 
goals[3,4]. A recent case report by Huret et al[5] discussed a 25-year-old woman who has lived with type 1 diabetes since 
the age of 9. Initially, her diabetes was unstable but without complications. During an unplanned pregnancy, her 
hyperglycemia was intensively managed. However, its consequences became evident over the subsequent two years as 
the patient developed a cascade of microvascular complications, including Charcot neuroarthropathy, proliferative 
diabetic retinopathy, gastroparesis, bladder voiding disorders, and end-stage renal failure requiring hemodialysis.

This case highlights an infrequently discussed issue in diabetes management: The ramifications of aggressive 
hyperglycemia correction. While preventing complications and maintaining glycemic control is crucial, the rate and 
intensity of correction, particularly for patients with a history of chronic hyperglycemia, demand equal consideration. 
This case highlights the complexity of diabetes management. Patients must navigate between preventing complications 
and avoiding the perils of overcorrection, which paradoxically leads to a cascade of microvascular complications.

Diabetes management is a multifaceted challenge affecting millions worldwide[6,7]. Prolonged hyperglycemia is 
closely associated with the development of numerous diabetes-related complications, such as cardiovascular disease, 
retinopathy, neuropathy, and nephropathy[8,9]. These complications represent the darker aspects of diabetes, impacting 
both the individual’s well-being and healthcare resources. The primary goal is to correct and control chronic 
hyperglycemia, essential for individuals with diabetes. Naturally, healthcare providers and patients aim for tight 
glycemic control to reduce complications. However, a paradoxical situation may arise when attempting to correct hyper-
glycemia too rapidly and intensively. What if this pursuit takes an unexpected turn, yielding paradoxical outcomes? This 
case reveals a perplexing scenario where rapid correction of chronic hyperglycemia unexpectedly leads to the emergence 
of microvascular complications.

Microvascular complications following rapid glycemic correction in diabetes are complex and not fully understood
[10]. Several theories shed light on this phenomenon. Swift reductions in blood sugar levels can lead to hypoglycemia, 
potentially damaging small blood vessels and nerves while triggering the release of stress hormones, inflammation, and 
oxidative stress[11-13]. This neurovascular theory suggests that rapid improvements in blood glucose levels affect the 
autonomic nervous system, increasing blood flow to extremities, leading to localized inflammation and vascular changes 
contributing to neuroarthropathy[13,14]. Diabetic neuropathy, commonly affecting the feet and reducing protective 
sensation and proprioception, raises the risk of unnoticed injury or trauma, especially when exacerbated by rapid 
glycemic correction. In addition, reperfusion injury can occur when high blood sugar levels are rapidly corrected, causing 
a sudden increase in blood flow to previously poorly perfused tissues, potentially leading to vascular hyperpermeability
[15,16].

It is important to note that the relationship between rapid glycemic correction and these complications is not fully 
understood, and not all individuals with diabetes who experience rapid improvements in blood glucose control will 
develop these complications. However, healthcare providers should exercise caution when implementing aggressive 
glycemic control regimens, particularly in individuals with longstanding poorly controlled diabetes or during the periop-
erative period[16,17].

Preventing and managing these complications involves a comprehensive approach that includes careful glycemic 
control, regular medical check-ups, and addressing other risk factors like hypertension, hyperlipidemia, and smoking[18,
19]. Diabetes care should be individualized, recognizing the unique needs of each patient[20]. Regular monitoring of 
blood glucose levels and overall health is essential to make timely adjustments to the management plan while avoiding 
abrupt corrections[18]. Patient education is crucial to help patients understand the potential consequences of rapid 
hyperglycemia correction and actively engage in their care. A collaborative approach involving endocrinologists, 
nutritionists, diabetes educators, and mental health professionals is necessary to provide comprehensive care. Diabetes 
management should consider both immediate and long-term goals, striking a balance between short-term and long-term 
objectives, given the lifelong nature of the condition[21,22].

CONCLUSION
Therefore, diabetes management is an ongoing process, and this case highlights the complexity of diabetes management. 
Pursuing rapid correction of hyperglycemia, while crucial, may lead to unexpected consequences. A balanced and 
personalized approach, including patient education, interdisciplinary care, and long-term considerations, is the key to 
effective diabetes control. Diabetes management is, in fact, a delicate equilibrium between glycemic control and avoiding 
overcorrection.
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Abstract
Type 1 diabetes (T1D) is a chronic autoimmune condition that destroys insulin-
producing beta cells in the pancreas, leading to insulin deficiency and hyper-
glycemia. The management of T1D primarily focuses on exogenous insulin 
replacement to control blood glucose levels. However, this approach does not 
address the underlying autoimmune process or prevent the progressive loss of 
beta cells. Recent research has explored the potential of glucagon-like peptide-1 
receptor agonists (GLP-1RAs) as a novel intervention to modify the disease course 
and delay the onset of T1D. GLP-1RAs are medications initially developed for 
treating type 2 diabetes. They exert their effects by enhancing glucose-dependent 
insulin secretion, suppressing glucagon secretion, and slowing gastric emptying. 
Emerging evidence suggests that GLP-1RAs may also benefit the treatment of 
newly diagnosed patients with T1D. This article aims to highlight the potential of 
GLP-1RAs as an intervention to delay the onset of T1D, possibly through their 
potential immunomodulatory and anti-inflammatory effects and preservation of 
beta-cells. This article aims to explore the potential of shifting the paradigm of 
T1D management from reactive insulin replacement to proactive disease 
modification, which should open new avenues for preventing and treating T1D, 
improving the quality of life and long-term outcomes for individuals at risk of 
T1D.

Key Words: Type 1 diabetes; Semaglutide; Glucagon-like peptide-1 receptor agonists; 
Insulin therapy; Autoimmune response; Blood glucose monitoring; Β-cell preservation; 
Early screening; Teplizumab; Randomized controlled trials
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Core Tip: New research suggests a novel approach to treating type 1 diabetes (T1D) by using glucagon-like peptide-1 
receptor agonists, specifically semaglutide, to significantly improve blood glucose control and potentially slow the 
progression of the disease in newly diagnosed patients. This strategy, which leads to less insulin dependence and better 
metabolic markers, could change the way T1D is managed in a big way. At the same time, the study supports early T1D risk 
screening, especially in groups with high risk, so that early interventions can be made, evaluating the benefits against the 
possible emotional and financial effects. This dual approach shows that there are bright futures for improving the lives of 
patients with T1D.

Citation: Nassar M, Chaudhuri A, Ghanim H, Dandona P. Glucagon-like peptide-1 receptor agonists as a possible intervention to delay 
the onset of type 1 diabetes: A new horizon. World J Diabetes 2024; 15(2): 133-136
URL: https://www.wjgnet.com/1948-9358/full/v15/i2/133.htm
DOI: https://dx.doi.org/10.4239/wjd.v15.i2.133

INTRODUCTION
Type 1 diabetes (T1D) is a chronic disease that has long posed therapeutic challenges. This ailment, rooted in the 
autoimmune destruction of pancreatic β-cells by T-cells, results in a severe decline of β-cell activity and an eventual 
complete lack of insulin[1-3]. The only treatment for this disease is intensive insulin therapy, which requires multiple 
daily injections or continuous subcutaneous insulin infusion with frequent monitoring of blood glucose. Despite 
advances in closed-loop hybrid pumps and continuous glucose monitoring devices, 75% of subjects with T1D maintain an 
A1c above 7%. Moreover, there is a significant disease burden and emotional burden associated with the diagnosis and 
management of T1D. Even with modern medical breakthroughs, many T1D sufferers still grapple with maintaining 
optimal blood sugar levels. Intensive insulin therapies, though advantageous, can sometimes lead to hypoglycemia, 
presenting a therapeutic conundrum[4,5].

THE POTENTIAL OF GLUCAGON-LIKE PEPTIDE-1 RECEPTOR AGONISTS
Researchers observed promising results in a study examining the potential benefits of Glucagon-like peptide-1 receptor 
agonists (GLP-1RAs) for T1D patients with positive C-peptide levels. Our recent exploration, as published in the New 
England Journal of Medicine, sheds light on a hopeful path. We delved into the impact of semaglutide, a GLP-1RA, 
within three months on ten newly diagnosed T1D patients. These individuals began with an average glycated 
hemoglobin of 11.7% ± 2.1% and a fasting C-peptide of 0.65% ± 0.33% ng/mL, all undergoing standard insulin treatments
[6]. Introducing semaglutide and dietary modifications led to the discontinuation of prandial insulin for all participants 
within a quarter year. Impressively, by half a year, seven had ceased using basal insulin. A year later, the average 
glycated hemoglobin decreased to 5.7% ± 0.4%, while the fasting C-peptide surged to an average of 1.05 ± 0.40 ng/mL. 
Continuous glucose assessments revealed an 89% ± 3% time-in-range[6].

The study entailed a retrospective analysis of 11 normal-weight T1D patients treated with GLP-1RA in conjunction 
with insulin. Notable findings included a significant reduction in HbA1c levels from 10.74% ± 0.96% to 7.4% ± 0.58% after 
12 ± 1 wk of GLP-1RA therapy. Additionally, there was a noteworthy decline in total insulin dose by 64% and a minor 
weight reduction. Importantly, C-peptide concentrations, indicative of endogenous insulin production, surged 
significantly, enhancing pancreatic beta-cell function. Remarkably, 50% of the study participants achieved freedom from 
insulin therapy while on GLP-1RA therapy over the study duration[7].

In the Adjunct One Treat-To-Target Randomized Trial, the addition of liraglutide to insulin therapy in T1D was 
assessed over 52 wk in 1398 adults. Participants were administered liraglutide (at concentrations of 1.8, 1.2, or 0.6 mg) or a 
placebo in conjunction with insulin. The study found that HbA1c levels reduced by 0.34%–0.54% from an initial 8.2%, 
insulin doses diminished more with liraglutide compared to the placebo, and there was a notable weight reduction in the 
liraglutide cohorts. However, liraglutide recipients experienced elevated rates of symptomatic hypoglycemia, and the 1.8 
mg liraglutide group saw a significant rise in hyperglycemia with ketosis. Consequently, despite its benefits, the 
increased adverse events suggest caution in the broader clinical application of liraglutide for T1D[8].

IMMUNOTHERAPY: A SPECTRUM OF OUTCOMES
Various immunotherapies, including Teplizumab, Otelixizumab, and Abatacept, have displayed promise but are not 
without complications. For example, Otelixizumab users have reported headaches, fevers, and rashes, typical reactions to 
anti-CD3 antibodies[9,10]. Teplizumab has been linked to skin issues, leukopenia, respiratory infections, and 
lymphopenia[11-13]. Most issues with Abatacept were related to the infusion process[14,15].
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THE DEBATE ON SCREENING
The question of T1D risk screening remains contentious, especially for those without familial ties to the condition. A 
study by Ziegler et al[5] in Bavaria showcased the viability of screening children during standard pediatric appointments, 
pinpointing 280 children with multiple autoantibodies, 43 of whom later developed T1D[5,16]. The means of early identi-
fication and action are clear. Yet, the financial and emotional tolls of screening warrant consideration. Nevertheless, 
research indicates that psychosocial screenings can pinpoint vulnerable families[17]. Moreover, regions with a high 
prevalence of diabetic ketoacidosis could economically justify presymptomatic T1D screenings[18,19]. The timing and 
approach to screening are debated, focusing on the balance between cost and comprehensive detection[18,20,21].

CONCLUSION
Our findings suggest that early T1D screening, combined with interventions such as GLP-1RA, could significantly 
impede the progression of the disease, especially in high-risk obese individuals. Pediatric professionals should exercise 
heightened caution with patients prone to T1D due to genetic or autoimmune factors. As we venture further into this 
realm, the prospect of an enhanced quality of life for T1D patients becomes increasingly tangible.
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Abstract
Sodium-glucose cotransporter-2 (SGLT2) inhibitors have emerged as a pivotal 
intervention in diabetes management, offering significant cardiovascular benefits. 
Empagliflozin, in particular, has demonstrated cardioprotective effects beyond its 
glucose-lowering action, reducing heart failure hospitalizations and improving 
cardiac function. Of note, the cardioprotective mechanisms appear to be inde-
pendent of glucose lowering, possibly mediated through several mechanisms 
involving shifts in cardiac metabolism and anti-fibrotic, anti-inflammatory, and 
anti-oxidative pathways. This editorial summarizes the multifaceted 
cardiovascular advantages of SGLT2 inhibitors, highlighting the need for further 
research to elucidate their full therapeutic potential in cardiac care.

Key Words: Diabetes; Sodium-glucose cotransporter-2; Cardiovascular diseases; 
Empagliflozin

©The Author(s) 2024. Published by Baishideng Publishing Group Inc. All rights reserved.

Core Tip: Sodium-glucose cotransporter-2 inhibitors like empagliflozin offer cardiopro-
tective benefits that extend beyond blood glucose control, improving heart function and 
reducing failure-related hospitalizations. Ongoing research is essential to elucidate the 
underlying mechanisms, potentially revolutionizing heart failure treatment across 
various patient profiles.
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INTRODUCTION
The global increase in diabetes represents a significant public health challenge and is closely associated with an increased 
risk for cardiovascular diseases (CVD)[1]. The lack of specific treatments to prevent its progression has left a significant 
gap in therapeutic strategies. Consequently, there is an urgent need for novel approaches to prevent and manage 
diabetes-related cardiac complications. Sodium-glucose cotransporter-2 (SGLT2) inhibitors (e.g., empagliflozin), primarily 
known for their glucose-lowering capability, have emerged as unexpected protective agents against CVD in patients with 
diabetes. SGLT2 inhibitors may have beneficial effects on heart failure, including cases with dilated cardiomyopathy, by 
improving cardiac function and reducing hospitalization rates for heart failure[2]. However, the unresolved cardiopro-
tective mechanisms of these inhibitors have stimulated considerable scientific interest. The study by Li et al[3] provides an 
interesting insight into the molecular dynamics through which empagliflozin may exert its therapeutic effects on the 
diabetic heart.

Clinical trials have demonstrated that SGLT2 inhibitors significantly reduce the risk of hospitalization for heart failure 
and cardiovascular mortality. Notably, the DAPA-HF and EMPEROR-Reduced trials highlighted the positive effects of 
SGLT2 inhibition in patients with heart failure with a reduced ejection fraction, including those with and without 
diabetes[4-10]. A comprehensive meta-analysis further reinforced these findings, indicating that SGLT2 inhibitors 
decrease the risk of cardiovascular mortality or first hospitalization for heart failure across a broad spectrum of left 
ventricular ejection fractions[2,4]. Additionally, a meta-analysis involving over 21000 participants revealed consistent 
reductions in the risk of composite cardiovascular mortality or hospitalization for heart failure, as well as all-cause 
mortality[11]. Evidence from clinical studies also indicated that SGLT2 inhibitors can improve diastolic function, partic-
ularly in heart failure with a preserved ejection fraction, a condition commonly observed in diabetic heart disease[12].

Animal studies have similarly provided evidence to support the cardioprotective role of SGLT2 inhibitors. A meta-
analysis of preclinical animal models found that SGLT2 inhibitors reduced myocardial infarct size independent of 
diabetes, indicating a potential for broad cardioprotective applications beyond glucose-lowering effects[13]. Our studies 
demonstrated that empagliflozin could also alleviate obesity-related cardiac dysfunction and attenuate ischemia/
reperfusion injury[14,15]. These studies provided evidence that SGLT2 inhibitors could benefit a wide population of heart 
failure patients, not just those with a reduced ejection fraction.

On the basis of the experimental data provided by Li et al[3], empagliflozin treatment displays therapeutic potential in 
mitigating diabetic cardiomyopathy in db/db mice. The treatment improved cardiac function, reduces myocardial 
apoptosis, and beneficially modulates signaling pathways associated with cardiac health, such as increased adenosine 
monophosphate-activated protein kinase (AMPK)/peroxisome proliferator-activated receptor gamma coactivator-1alpha 
(PGC-1) protein phosphorylation and decreased myosin phosphatase target subunit 1 phosphorylation. Furthermore, in 
vitro studies supported these findings, demonstrating that empagliflozin protects cardiomyocytes from high-glucose-
induced mitochondrial damage, oxidative stress, and apoptosis, effects that were partly reversed by the addition of 
compound C, an AMPK inhibitor. The results were corroborated by the use of Rho kinase inhibitors and PGC-1α overex-
pression, which further validates the role of these pathways in cardiac protection. Interestingly, no SGLT2 protein 
expression was detected in cardiomyocytes, suggesting that the cardioprotective effects of empagliflozin may be 
independent of its glucose-lowering action and possibly mediated by AMPK/PGC-1α pathways. This indicates a 
potential non-glycemic beneficial effect of SGLT2 inhibitors on cardiac function in the context of diabetes, meriting 
further investigation. This study highlights novel mechanisms regarding the effectiveness of SGLT2 inhibitors in treating 
diabetic cardiomyopathy.

SGLT2 inhibitors, beyond their role in glucose excretion, confer cardiac protection through several mechanisms[16,17] 
(Figure 1). Primarily, they act as mild diuretics, which reduce cardiac preload and afterload by promoting natriuresis and 
osmotic diuresis, thereby lessening the cardiac load[18]. They also beneficially shift cardiac metabolism away from fatty 
acid oxidation, which is less oxygen-efficient, towards glucose utilization and potentially towards ketone body 
utilization, thus improving the heart’s energy efficiency[19]. These drugs may also protect against cardiac fibrosis by 
several means. They reduce hyperglycemia-related advanced glycation end-products, downregulate transforming growth 
factor-beta, and inhibit the cardiac sodium-hydrogen exchanger, which together help to prevent hypertrophy and fibrosis
[20,21].

Moreover, SGLT2 inhibitors contribute to reducing arrhythmia risks and modulate ion homeostasis within the heart, 
suggesting a role in improving myocardial cell function and calcium handling[22]. Their cardioprotective effects extend to 
anti-inflammatory and antioxidant actions, because they diminish nuclear factor-kappaB activity and enhance antioxidant 
system activity (e.g., Sestrin2, nuclear factor erythroid 2-related factor 2, heme oxygenase-1)[14,23]. This contributes to 
decreasing oxidative stress, another risk factor for heart failure. In addition, these drugs improve endothelial function and 
arterial compliance, partly through increased nitric oxide production, and affect the secretion of adipokines, which are 
involved in the pathophysiology of heart failure[24-26]. This endothelial protection was confirmed by studies showing 
that empagliflozin suppresses endothelial apoptosis and maintains capillarization through the protein kinase B/
endothelial nitric oxide synthase/nitric oxide pathway, thereby enhancing heart performance[27]. Cai et al[28] further 
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Figure 1 The cardioprotective mechanisms of sodium-glucose cotransporter-2 inhibitors beyond glycemic control. SGLT2i: Sodium-glucose 
cotransporter-2 inhibitor; AMPK: Adenosine monophosphate-activated protein kinase; Akt: Protein kinase B; eNOS: Endothelial nitric oxide synthase; NO: Nitric oxide; 
PGC-1α: Peroxisome proliferator-activated receptor gamma coactivator-1alpha; ULK1: Unc-51 like autophagy activating kinase 1; FUNDC1: FUN14 domain 
containing 1.

demonstrated that empagliflozin mitigates endothelial oxidative stress and inhibits mitochondrial apoptosis via the 
AMPK/unc-51 like autophagy activating kinase 1/FUN14 domain containing 1/mitophagy axis, thereby improving 
cardiac microvascular structure and endothelial function. SGLT2 inhibitors also induce protective autophagy and reduce 
apoptosis in cardiac cells, and they are being investigated for their potential effects on specific molecular pathways such 
as Sestrin2-AMPK, which are associated with heart failure management[14,23,29]. Overall, the multifaceted approach to 
SGLT2 inhibitors highlight their potential as a therapeutic strategy for cardiovascular health, with ongoing research 
continuing to elucidate their complex mechanisms and benefits.

Nevertheless, the exact mechanisms by which SGLT2 inhibitors exert their cardioprotective effects remain under 
investigation, and it is likely that multiple mechanisms act in concert. Perhaps the most striking finding was empag-
liflozin's effectiveness in the absence of SGLT2 expression in cardiomyocytes. This clearly demonstrated the diabetes-
independent action of this drug, highlighting its potential as a targeted therapy for CVD. The cardioprotective effects 
observed in patients with heart failure, including those with CVD, have led to an expansion of the indications for SGLT2 
inhibitors beyond diabetes to include the treatment of heart failure with a reduced ejection fraction, with ongoing 
research potentially further broadening their therapeutic applications. Despite these promising findings, further research 
is necessary to fully elucidate the extent to which these mechanisms contribute to the cardiovascular benefits of SGLT2 
inhibitors, the understanding of which will enhance the clinical application of these agents and potentially lead to more 
targeted treatments for patients with diabetic heart disease.

CONCLUSION
SGLT2 inhibitors have become an essential therapeutic advancement in diabetes management due to their low risk of 
hypoglycemia and notable cardiovascular benefits. In addition to their glucose-lowering effects, SGLT2 inhibitors are 
recognized for their efficacy in treating heart failure through various non-glycemic mechanisms. These include 
hemodynamic changes and anti-inflammatory, anti-fibrotic, antioxidant, and metabolic effects, which together contribute 
to the cardiovascular advantages observed with SGLT2 inhibitor use. Further research is ongoing to fully understand the 
mechanisms through which these inhibitors exert their cardioprotective effects.
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Abstract
Globally, type 2 diabetes mellitus (T2DM) is one of the most common metabolic 
disorders. T2DM physiopathology is influenced by complex interrelationships 
between genetic, metabolic and lifestyle factors (including diet), which differ 
between populations and geographic regions. In fact, excessive consumptions of 
high fat/high sugar foods generally increase the risk of developing T2DM, 
whereas habitual intakes of plant-based healthy diets usually exert a protective 
effect. Moreover, genomic studies have allowed the characterization of sequence 
DNA variants across the human genome, some of which may affect gene 
expression and protein functions relevant for glucose homeostasis. This compre-
hensive literature review covers the impact of gene-diet interactions on T2DM 
susceptibility and disease progression, some of which have demonstrated a value 
as biomarkers of personal responses to certain nutritional interventions. Also, 
novel genotype-based dietary strategies have been developed for improving 
T2DM control in comparison to general lifestyle recommendations. Furthermore, 
progresses in other omics areas (epigenomics, metagenomics, proteomics, and 
metabolomics) are improving current understanding of genetic insights in T2DM 
clinical outcomes. Although more investigation is still needed, the analysis of the 
genetic make-up may help to decipher new paradigms in the pathophysiology of 
T2DM as well as offer further opportunities to personalize the screening, 
prevention, diagnosis, management, and prognosis of T2DM through precision 
nutrition.
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Core Tip: The onset and progression of type 2 diabetes mellitus (T2DM) is influenced by complex interrelationships between 
genetic and dietary factors. Indeed, a number of nutrigenetic studies have identified significant gene-diet interactions related 
to T2DM predisposition, nutrient metabolic status, and dietary intervention responsiveness. Moreover, this knowledge has 
motivated the interest for the design and implementation of genotype-based dietary strategies for improving glycemic 
outcomes compared to conventional nutritional advice. Although more investigation is required, these insights may help to 
explain disease phenotype heterogeneity, with relevance in precision nutrition for the personalized prevention and clinical 
management of T2DM.
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mellitus. World J Diabetes 2024; 15(2): 142-153
URL: https://www.wjgnet.com/1948-9358/full/v15/i2/142.htm
DOI: https://dx.doi.org/10.4239/wjd.v15.i2.142

INTRODUCTION
Type 2 diabetes mellitus (T2DM) is a metabolic disease caused by insufficient pancreatic insulin secretion or defective 
hormone actions in target tissues[1]. T2DM is recognized as a major public health concern due to rising global prevalence 
and negative impact on human wellbeing and life expectancy, being significantly associated with morbidity burden and 
premature mortality[2].

Several factors have been identified to contribute to the prevalence of T2DM including the genetic background[3]. 
Accordingly, a number of sequence DNA variants across the human genome have been characterized, some of which 
may affect gene expression and protein functions relevant for maintaining glucose homeostasis[3-5]. Largely, single 
nucleotide polymorphisms (SNPs) have been the most prevalent studied genetic variations in the field of precision 
medicine, with applications in T2DM prevention and personalized management[6-8]. Moreover, genetic risk scores (GRS) 
have been developed to assess the additive effect of SNPs[9-11].

Of note, the genetic contribution to T2DM status may depend on interactions with environmental issues including diet, 
which may explain some of the inconsistencies reported among epidemiological studies relating diet to chronic diseases
[12]. Thus, interrelationships between genetic variants and dietary features (i.e., intakes of macro and micronutrients, 
eating behaviors, nutritional patterns, and the consumption of particular foods) may influence T2DM risk or disease 
complications by affecting critical pathways involved in glucose signaling, insulin secretion, β-cell function, gluco-
lipotoxicity, inflammation and oxidative stress[12-14]. Therefore, people with higher genetic predisposition should avoid 
certain harmful foods or adopt healthy dietary patterns to delay T2DM onset.

In this context, it has been illustrated that the combination of genetic (52 SNPs in 37 genes) and dietary data (food with 
high sugar content) using machine learning approaches may improve the prediction of T2DM incidence[15]. Likewise, 
high genetic (48 SNPs) and dietary risk scores (based on sugar-sweetened beverages, processed meat, whole grains and 
coffee) were associated with increased incidence of T2DM[16].

In this document, potential interactions between genetic polymorphisms and dietary factors concerning T2DM suscept-
ibility and disease progression are reviewed, some of which have demonstrated a value as biomarkers of personal 
responses to nutritional interventions. Also, novel genotype-based dietary strategies for the prevention and clinical 
management of T2DM are documented. Future directions comprising the integration of genetics with another omics tools 
are also postulated. These insights may help to explain heterogeneity in predisposition to T2DM and the development of 
related systemic complications, with relevance in disease stratification and precision nutrition through the study of the 
human genome.

GENETIC BACKGROUND, DIETARY INTAKE, AND T2DM RISK
A relevant precision nutrition approach in T2DM risk prediction/prevention include the analysis of associations between 
genetic polymorphisms and T2DM that are modulated by dietary features. Indeed, a number of nutrigenetic studies have 
identified significant gene-diet interactions related to T2DM predisposition (Table 1). These include single SNPs mapped 
to genes involved in pivotal physiological processes such as energy breakdown, nutrient utilization, insulin signaling, 
circadian rhythm, cell cycle regulation, pancreatic function, hypothalamic food intake control, neuronal synapse, signal 
transduction, and taste perception, which interact with nutritional factors to influence T2DM risk (Table 1). Among them, 
the consumption of particular foods (vegetables, whole grains, coffee, olive oils, alcoholic beverages, and dairy products), 
macronutrients (carbohydrates, fatty acids, protein, fiber) and micronutrients (iron, folate) intakes, adherence to dietary 
patterns, and eating time schedules (Table 1).

In addition, GRS have been constructed to evaluate the cumulative effects of SNPs on T2DM susceptibility, where 
dietary factors are implicated. For instance, and obesity GRS positively interacted with dietary intake of cholesterol to 
affect insulin resistance in overweight/obese Spanish individuals[17]. Of note, Brazilian subjects with high GRS for 
metabolic disease and total fat intakes had increased blood glucose and insulin-related traits than those with low GRS
[18]. Conversely, lower serum levels of glycated hemoglobin were found in Ghanaian adults with low total fat intake (≤ 

https://www.wjgnet.com/1948-9358/full/v15/i2/142.htm
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Table 1 Gene-diet interactions concerning the risk of developing type 2 diabetes mellitus and individual responses to nutritional 
interventions

SNP 
reference

Gene 
symbol Gene function Risk allele Dietary interaction Main outcome Population Ref.

rs7903146 TCF7L2 Wnt signaling 
pathway

T High dessert and milk 
intakes (above median)

Higher T2DM risk Algerian [83]

rs7903146 TCF7L2 Wnt signaling 
pathway

C Fiber intake Inversely associated 
with T2DM incidence

Swedish [84]

rs7903146 and 
rs4506565

TCF7L2 Wnt signaling 
pathway

rs7903146 (C) 
and rs4506565 
(A)

Per daily 30-g increased 
intake of whole grain 
and per daily 5-g 
increased intake of cereal 
fiber

Decreased risk of 
developing T2DM

Swedish men [85]

rs7901695 TCF7L2 Wnt signaling 
pathway

T Upper protein intake 
quantiles

Higher HbA1c, 
HOMA-IR, blood 
glucose, and insulin 
levels

Polish [86]

rs6696797, 
rs4244372, and 
rs10881197

AMY1 Carbohydrate 
digestion

rs6696797 (A), 
rs4244372 (A), 
rs10881197 (G)

Carbohydrate intake > 
65% of total energy

Higher T2DM 
incidence

Korean women [87]

rs2233998 TAS2R4 Bitter taste perception T High intakes of 
carbohydrates or sugars 
(highest tertile) and low 
intakes of fruits or 
vegetables (lowest 
tertile)

Higher T2DM 
incidence

Korean women [88]

rs1801282 and 
rs3856806

PPARG Fatty acid storage and 
glucose metabolism

rs1801282 
(Pro12), 
rs3856806 (C)

High fat consumption 
(the third sex-specific 
tertile of fat intake

Increased T2DM risk French [89]

rs7756992 CDKAL1 Beta cells function G First tertiles of protein 
and fat intakes

Higher T2DM risk Korean [90]

rs7754840 CDKAL1 Pancreatic beta cells 
function

G Habitual coffee intake Lower risk of 
prediabetes and T2DM

East Asians [91]

rs5215 KCNJ11 Formation of ATP-
sensitive potassium 
(K-ATP) channels in 
pancreatic beta cells

C Habitual coffee intake Lower risk of 
prediabetes and T2DM

East Asians [91]

rs4402960 IGF2BP2 Cellular metabolism 
modulation by post 
transcriptional 
regulation

T Habitual coffee intake Lower risk of 
prediabetes and T2DM

East Asians [91]

rs10517030 PGC-1α Regulation of genes 
involved in energy 
metabolism

C Low-energy diet (daily 
consumption less than 
estimated energy intake)

Positively associated 
with T2DM prevalence 
and insulin resistance 
and negatively 
associated with beta 
cell function

Koreans [92]

rs6265 BDNF Survival and growth 
of neurons, and 
synaptic efficiency 
and plasticity

Met Low-energy (daily 
consumption less than 
estimated daily energy 
intake), low-protein (< 
13% daily energy), and 
high-carbohydrate (70% 
daily energy)

Lower risk for T2DM Koreans [93]

rs161364 and 
rs8065080

TRPV1 Receptor for capsaicin, 
non-selective cation 
channel, and 
participates in 
transduction of 
painful thermal 
stimuli

rs161364 (T) 
and rs8065080 
(C)

High preference for oily 
foods and high fat intake 
from oily foods

Lower risk for T2DM Koreans [94]

rs77768175, 
rs2074356 and 
rs11066280

HECTD4 Glucose homeostasis 
and glucose metabolic 
process

rs77768175 (A), 
rs2074356 (G), 
rs11066280 (T)

Alcohol consumption (> 
5 g/d)

Significantly increased 
risks of T2DM

East Asians [95]

Regulation of the Increasing dietary iron Increased risk of rs10830963 MTNR1B G Chinese [96]
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circadian actions of 
melatonin

intake elevated fasting 
glucose, higher fasting 
glucose, and higher 
HbA1c

rs10830963 MTNR1B Regulation of the 
circadian actions of 
melatonin

G Late dinner Impaired glucose 
tolerance

European [97]

rs10830963 MTNR1B Regulation of the 
circadian actions of 
melatonin

G Late eating Impaired glucose 
tolerance and insulin 
secretion defects

European [98]

rs2943641 IRS1 Insulin signaling T Lower tertiles of 
carbohydrate intake 
(women) and lowest 
tertile of fat intake (men)

Decreased risk of 
T2DM

Swedish [99]

rs7578326 and 
rs2943641

IRS1 Insulin signaling rs7578326 (G) 
and rs2943641 
(T)

Low SFA-to-
carbohydrate ratio (≤ 
0.24)

Lower risk of insulin 
resistance and 
metabolic syndrome

American [100]

rs10423928 GIPR Insulin release 
stimulation

T Highest carbohydrate 
quintile

Decreased T2DM risk Swedish [101]

rs3014866 S100A9 Cell cycle progression 
and differentiation

C High dietary SFA: 
Carbohydrate ratio 
intake

Higher insulin 
resistance

Spanish white 
adults, North 
American non-
Hispanic white 
adults, and 
Hispanic adults

[102]

rs709592 PSMD3 Maintenance of 
protein homeostasis

T Low carbohydrate intake 
(≤ 49.1% energy)

Higher insulin 
resistance

Americans [103]

rs8065443 PSMD3 Maintenance of 
protein homeostasis

A Low (n-3):(n-6) PUFA 
ratio (≤ 0.11)

Higher insulin 
resistance

Americans [103]

rs7645550 KCNMB3 Control of smooth 
muscle tone and 
neuronal excitability

T Low (n-3):(n-6) PUFA 
ratio (≤ 0.11)

Lower insulin 
resistance

Americans [104]

rs1183319 KCNMB3 Control of smooth 
muscle tone and 
neuronal excitability

G High (n-3):(n-6) PUFA 
ratio (> 0.09)

Higher HbA1c levels Hispanics [104]

rs2270188 CAV2 Signal transduction, 
lipid metabolism, 
cellular growth 
control and apoptosis

T Increase of daily fat 
intake from 30% to 40% 
energy

Greater risk of T2DM European [105]

rs10923931 NOTCH2 Wnt signaling 
pathway

T Increasing fiber intake Lower T2DM risk Swedish [106]

rs4457053 ZBED3 Wnt signaling 
pathway

G Increasing fiber intake Lower T2DM risk Swedish [106]

rs3765467 GLP1R Insulinotropic action 
of GLP-1 in β-cells

G Highest tertiles of 
energy, protein and 
carbohydrate 
consumption

Higher risk for 
decreased insulin 
secretion

Japanese men [107]

rs9939609 FTO Regulation of energy 
intake

A Low adherence to the 
Mediterranean diet (≤ 9 
points)

Higher risk of 
prevalent T2DM

Spanish [108]

rs9939609 FTO Regulation of energy 
intake

A Low folate intake (< 406 
μg/d)

Higher fasting plasma 
glucose concentrations

Spanish [108]

rs17782313 MC4R Hypothalamic leptin-
melanocortin 
signaling pathway

C Low adherence to the 
Mediterranean diet (≤ 9 
points)

Higher risk of 
prevalent T2DM

Spanish [108]

SNP: Single nucleotide polymorphism; T2DM: Type 2 diabetes mellitus; SFA: Saturated fatty acids; PUFA: Polyunsaturated fatty acids; HbA1c: 
Glycosylated hemoglobin; HOMA-IR: Homeostasis model assessment-estimated insulin resistance; GLP-1: Glucagon-like peptide-1; TCF7L2: Transcription 
factor 7 like 2; AMY1: Amylase 1; PPARG: Peroxisome proliferator-activated receptor gamma; IGF2BP2: Insulin-like growth factor 2 binding protein 2; 
PGC-1α: Proliferator-activated receptor-gamma coactivator-1alpha; BDNF: Brain-derived neurotrophic factor; TRPV1: Transient receptor potential 
vanilloid-1 channel; HECTD4: HECT domain E3 ubiquitin protein ligase 4; MTNR1B: Melatonin receptor 1B; IRS1: Insulin receptor substrate-1; GIPR: 
Glucose-dependent insulinotropic polypeptide receptor; CAV2: Caveolin-2; ZBED3: Zinc finger BED-type containing 3; FTO: Fat mass and obesity 
associated; MC4R: Melanocortin 4 receptor.
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36.5 g/d) despite carrying more than two risk alleles of vitamin D-related genetic variants[19]. Also, associations between 
a GRS related to insufficient glucose-stimulated insulin secretion and T2DM risk was accentuated in Asian individuals 
with high energy and calcium intakes[20]. Moreover, Korean subjects carrying polygenic variants linked to oxidative 
stress had increased risk of T2DM, which was lowered the by the intakes of dietary antioxidants[21]. Besides, the genetic 
predisposition to T2DM was exacerbated with higher intakes of dietary branched-chain amino acids in Chinese[22].

Regarding specific foods, it was reported that middle-aged Korean adults with high GRS affecting insulin signaling 
presented more instances of insulin resistance when combined with high coffee (≥ 10 cups/wk) or caffeine (≥ 220 mg/d) 
intakes[23]. Likewise, alcohol consumption significantly increased the risk of T2DM especially in Chinese men with low 
genetic predisposition to insulin secretion deterioration[24]. In the same way, the association between the consumption of 
sugar-sweetened beverages and serum glucose abnormalities was stronger in Chileans with high T2DM genetic suscept-
ibility[25]. Conversely, augmented genetic risk for T2DM was ameliorated by increasing the consumption of fruits in 
Chinese population[26]. In line with this finding, lower plant protein intake (< 39 g/d) was identified as a factor 
contributing to increase the risk of T2DM in genetically predisposed Asian Indians[27].

Furthermore, a high GRS for impaired insulin secretion increased the risk of T2DM by consuming a low-carbohydrate 
Western dietary pattern in Korean adults[28]. In Asians, higher fasting serum glucose concentrations were found in 
participants with high T2DM-linked GRS who adopted a Western dietary pattern[29]. On the contrary, it was reported 
that Koreans with high GRS for insulin resistance may be benefited by consuming a plant-based diet with high amounts 
of fruits, vitamin C, and flavonoids[30].

These studies show evidence concerning interactions between genetic variants and T2DM risk depending on dietary 
intakes, which may be useful for the design of nutritional therapies aimed to control the burden of T2DM, although more 
research is needed in populations with different genetic ancestries including Hispanics and Africans.

GENE-DIET INTERACTIONS AFFECTING METABOLIC STATUS IN T2DM PATIENTS
Once T2DM has established, several physiopathological processes affecting glucose/lipid metabolism homeostasis, 
immune function, adipokine secretion, and gut microbiota dysbiosis play a critical role in the development of vascular 
injuries including diabetic heart disease and stroke[31]. Thus, it is important to monitor the metabolic status in T2DM in 
order to prevent or delay the progression of complications associated with this disease.

Accordingly, some studies have analyzed the effect of gene-diet interactions on glycemic, lipid, and inflammatory 
features in T2DM patients, with relevance in clinical disease management. In this regard, studies in Mexican population 
have evidenced relevant gene-nutrient interactions concerning glycemic control and lipid profile in T2DM. For example, 
positive correlations were found between calcium intake and glycated hemoglobin and potassium intake and trigly-
ceride-glucose index only in carriers of the 408 Val risk allele of the SLC22A1/OCT1 Met408Val polymorphism[32]. Also, 
higher blood concentrations of total cholesterol, non-high-density lipoprotein cholesterol, and low-density lipoprotein 
cholesterol were found in carriers of the APOE ε2 allele with low consumption of monounsaturated fatty acids (MUFA), 
whereas carriers of the apolipoprotein E (APOE) ε4 allele with high dietary ω-6:ω-3 polyunsaturated fatty acids (PUFA) 
ratio presented higher glycated hemoglobin levels[33]. Likewise, A1 allele carriers of the DRD2/ANKK1 TaqIA 
polymorphism were protected from serum triglyceride increases by maltose intake, but A2A2 homozygotes were 
susceptible to triglyceride rises through excessive consumptions of total fat, MUFA, and dietary cholesterol[34].

In Iranians with T2DM, Met allele carriers of the brain-derived neurotrophic factor (BDNF) Val66Mat polymorphism 
with high scores of dietary indices showed lower blood levels of triglycerides ((healthy eating index and diet quality 
index), total cholesterol, and interleukin-18 (phytochemical index) than Val/Val homozygotes[35]. Meanwhile, C-allele 
carriers of the APOA2-265 T>C polymorphism had highest means of body mass index, waist circumference, blood 
cholesterol and serum ghrelin and leptin levels when dietary acid load (either potential renal acid load or net endogenous 
acid production) values were high[36]. Of note, higher inflammatory and antioxidant markers including C-reactive 
protein, total antioxidant capacity, superoxide dismutase, and 8-isoprostaneF2alpha were found in B2B2 homozygotes of 
the CETP TaqB1 polymorphism when they consumed diets with high dietary insulin index[37]. Similarly, risk-allele 
carriers (CG, GG) of the peroxisome proliferator-activated receptor (PPAR)-γ Pro12Ala polymorphism who consumed a 
diet with high dietary insulin load and insulin indexes were more likely to be obese and have increased inflammatory 
markers (i.e., interleukin-18, isoprostaneF2α, and pentraxin-3) compared to individuals with the CC genotype[38]. 
Moreover, worse plasma lipid profile was found in participants carrying the AA/AG genotype of the ApoB EcoRI 
polymorphism when increasing the percentage of energy derived from dietary fat, carbohydrates, protein, saturated fatty 
acids (SFA), and cholesterol in comparison to GG homozygotes[39]. In the same way, Del-allele carries of the ApoB Ins/
Del genetic variant who consumed high amounts of MUFA (≥ 12% E) and carbohydrates (≥ 54% E) had higher blood 
levels of triglycerides and low density lipoprotein-cholesterol, while low carbohydrate (< 54% E) intakes were associated 
with raised serum concentrations of leptin and ghrelin in T2DM patients with this same genetic profile compared to Ins/
Ins homozygotes[40]. In addition, an increased risk of obesity was found in carriers of the Del allele of ApoB gene when 
combined with a low consumption of dietary ω-3 PUFA (< 0.6% E) in T2DM subjects[41]. Taken together, these results 
could be useful to prevent cardiometabolic risk factors and later complications in T2DM patients via manipulation of 
dietary intakes of selected nutrients mainly in genetically susceptible individuals. However, more investigation is needed 
in other populations with diverse ancestries and exposed to different environments in order to regionalize antidiabetic 
nutritional treatments.
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GENETIC POLYMORPHISMS AS BIOMARKERS OF GLYCEMIC RESPONSES TO DIETARY ADVICE
Dietary strategies aimed to achieve or improve glucose homeostasis not always have a positive impact in all individuals, 
which can be due to genetic factors. In this sense, some trials have evaluated the value of SNPs as potential biomarkers of 
glycemic outcomes in response to different nutritional interventions. For instance, the variant rs3071 of the SCD gene 
modified blood glucose response to dietary oils varying in MUFA content in adults with obesity, where CC genotype 
carriers showed an increase in blood glucose levels with a high SFA/low MUFA control oil, but reductions in this 
outcome with both high MUFA oil diets[42]. Within the multicenter NUGENOB study, the T allele of the protein 
phosphatase Mg(2+)/Mn(2+)-dependent 1K (PPM1K) rs1440581 genetic variant was associated with higher reductions of 
serum insulin and homeostasis model assessment (HOMA)-B after a high-fat (40%-45% E) diet, whereas an opposite 
effect was found in the low-fat (20%-25% E) diet group[43]. Also, obese individuals who were homozygous for the T-risk 
allele of the transcription factor 7 like 2 (TCF7L2) rs7903146 polymorphism and consumed a high-fat (40%-45% E) diet, 
underwent smaller reductions in HOMA-estimated insulin resistance (HOMA-IR)[44].

Findings from the POUNDS lost trial revealed greater decreases in fasting glucose, serum insulin, and HOMA-IR in T-
allele participants of the glucose-dependent insulinotropic polypeptide receptor (GIPR) rs2287019 variant who were 
assigned to low-fat (20%-25% E) diets[45]. In addition, subjects with the risk-conferring CC genotype of the insulin 
receptor substrate-1 (IRS1) rs2943641 SNP had greater decreases in insulin and HOMA-IR than those without this genetic 
profile in the highest-carbohydrate (65% E) dietary group[46]. Whereas, the T allele of deficient activity of 7-dehydrocho-
lesterol reductase (DHCR7) rs12785878 polymorphism was associated with higher decreases in serum insulin and 
HOMA-IR only in high-protein (25% E) diets[47]. Similarly, greater drops in fasting insulin levels were related to the 
PCSK7 rs236918 G allele in high-dietary carbohydrate (65% E) intakes, especially in white Americans[48]. Of note, carriers 
of the risk allele (A) of the Fat mass and obesity associated (FTO) rs1558902 variant benefited more in improving insulin 
sensitivity by consuming high-fat (40%-45% E) diets rather than low-fat (20%-25% E) regimens[49].

In a Spanish cohort with obesity, improvements in serum insulin levels and HOMA-IR were associated with the 
ADRB3 Trp64Trp genotype after hypocaloric diet with high protein (34% E) content[50]. Besides, AA genotype carries of 
the BDNF rs10767664 variant underwent reductions in insulin resistance markers when consumption of MUFA (67.5%) 
was high[51]. Likewise, TNFA-308GG homozygotes had a better glycemic response after high (22.7%) dietary intakes of 
PUFA[52]. In the same say, UCP3 55CC genotype carriers benefited more (more decreases in blood glucose, serum 
insulin, and HOMA-IR) when consumed a high-protein (34% E) diet[53]. Interestingly, it was suggested that the T allele 
of the ADIPOQ rs1501299 SNP was related to a lack of response of fasting glucose/insulin and HOMA-IR secondary to a 
Mediterranean-style diet in Spanish obese individuals[54]. Insulin resistance was ameliorated after the consumption of 
this same dietary pattern in T allele carries of the RETN rs10401670 gene polymorphism[55]. Comparable results were 
reported concerning insulin resistance reductions in CC genotype carries of the melatonin receptor 1B (MTNR1B) 
rs10830963 variant but not in GC + GG groups after following a hypocaloric diet with Mediterranean pattern[56].

Some studies have evaluated the cumulative effect of multiple SNPs (by calculating GRS) instead of single variants. In 
this context, participants with high genetic risk of glucose abnormalities showed increased fasting glucose after 
consuming a high-fat diet (40%-45% E), which was not observed in subjects assigned to the low-fat (20%-25% E) group
[57]. A lower GRS for diabetes was associated with higher reductions in fasting insulin, glycated hemoglobin, and 
HOMA-IR, and a lesser increase in HOMA-B only when the consumption of dietary protein (15% E) was low[58]. In the 
meantime, insulin resistance improvements were limited to individuals with a higher GRS of habitual coffee consumption 
following a low-fat (20%-25% E) dietary intervention[59].

The influence of the genetic background on metabolic outcomes after dietary treatments have also been assessed in 
T2DM patients. For example, a dietary intervention based on increased intakes of whole grains, vegetables, and legumes 
was able to prevent an age-related increase in blood triglyceride concentrations in Koreans with impaired fasting glucose 
or new-onset of T2DM carrying the TT genotype of the APOA5-1131 T>C SNP[60]. Accordingly, low glycemic index diets 
induced significant decreases of serum lipids, fasting blood glucose, and glycated albumin only in Chinese women with 
T2DM who were FABP2 Ala54 homozygotes[61]. Furthermore, carriers of the FTO rs9939609 risk allele (A) underwent a 
better response in improving body mass index and diastolic blood pressure in response to supplementation with epigal-
locatechin-3-gallate (300 mg/d) in Iranian patients with T2DM[62].

Overall, current evidence suggests a role of selected genetic polymorphisms in modulating the individual metabolic 
responses to some dietary treatments. However, available studies have been performed mainly in Europeans/
Caucasians, with particular genetic backgrounds; therefore, additional studies in different populations are required 
including Latin Americans, Africans, and Asians. Also, the analysis of the effects of supplementation with antioxidant 
micronutrients and bioactive compounds with anti-inflammatory properties is warranted.

GENOTYPE-BASED DIETARY INTERVENTIONS AND GLYCEMIC OUTCOMES
The knowledge about the implication of genetic variants and dietary factors in the onset and progression of T2DM has 
motivated the interest for the design and implementation of genotype-based intervention strategies for improving 
glycemic/metabolic outcomes compared to traditional nutritional prescriptions. For instance, it was evidenced that a 
personalized low-glycemic index nutrigenetic diet (utilizing 28 SNPs with evidence of gene-diet/lifestyle interactions) 
induced higher fasting glucose reductions than a Ketogenic diet in overweight/obese individuals[63]. Likewise, healthier 
effects in HOMA-IR and insulin serum levels were observed in MTHFR 677T allele carriers consuming a GENOMEX diet 
comprising of diet-related adaptive gene polymorphisms highly prevalent in Mexicans[64]. However, no differences were 
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detected regarding glucose homeostasis outcomes at 24 wk of follow-up between a nutrigenetic-guided diet (using 
genetic information of a proprietary algorithm) and a standard balanced diet in obese or overweight American veterans
[65].

In T2DM patients, a case study based on the N-of-1 approach revealed better glycemic control when adhered to a 
genetically-guided Mediterranean diet (high-quality foods rich in fiber and antioxidants that have been proven to exert 
beneficial glycaemia effects) considering genetic variants guiding the personalized selection of macronutrients for the 
nutritional management of T2DM[66]. Similarly, greater improvements in fasting plasma glucose and glycosylated 
hemoglobin concentrations were found in patients with pre-diabetes or T2DM following a personalized nutritional plan 
(taking in consideration SNPs associated with individual responses to macronutrient intakes) compared to conventional 
medical nutrition therapy[67].

Furthermore, some studies have evaluated the utility of genetic disclosure as a tool for T2DM prevention and disease 
control. For example, participants who received diabetes genetic risk counseling together with general education about 
modifiable risk factors and personal stimulus to adopt diabetes lifestyle prevention behaviors reported high levels of 
support, perceived personal control and satisfaction with the genetic counseling sessions[68]. Nevertheless, diabetes 
genetic risk testing and counseling did not necessarily improved disease prevention behaviors such as self-reported 
motivation or prevention program adherence among overweight individuals at increased phenotypic risk for T2DM[69]. 
Moreover, comparison analyzes did not revealed significant differences between genetic testing results and traditional 
risk counseling concerning behavior changes to reduce the risk of T2DM in non-diabetic overweight/obese veterans[70]. 
Given inconsistences in available evidence, more research is needed to translate this knowledge into clinical care in 
T2DM. Further investigation should contemplate information that could interfere with the results including the 
prevalence and metabolic effects of selected SNPs, cultural level of populations, compatibility of dietary plans with 
genotypic characteristics, and the quality of nutritional/lifestyle advice.

FUTURE DIRECTIONS
In addition to genetics, progresses in other omics areas are improving current understanding of the biological/molecular 
mechanisms involved in T2DM pathogenesis and clinical outcomes[71]. Similar to the influence of the genetic 
background, it has been evidenced that epigenetic modifications may alter transcriptional activity resulting in different 
T2DM traits and phenotypes; certainly, different genes responsible for the interindividual variability in responses to 
antidiabetic treatments (including dietary advice) are subjected to epigenetic regulation[72]. More importantly, 
interactions among polymorphisms in key metabolic genes (i.e., TCF7L2), related methylation status, and environmental 
factors have been suggested as a possible etiologic pattern for T2DM[73]. Besides, SNPs in microRNA (miRNA) genes 
may change the structure of miRNAs and their target gene expressions to influence T2DM risk[74].

Also, metagenomic and metabolomic methodologies have emerged to investigate the interrelationships between the 
gut microbiota dysbiosis and their related metabolites (affecting critical metabolic pathways in the host such as immunity 
and nutrient metabolism) in the development of T2DM[75]. Of note, characterization of gut microbiota of individuals 
carrying the risk alleles of the PPARGC1A (rs8192678) and PPARD (rs2267668) variants revealed some taxa (with overrep-
resentation of ABC sugar transporters) putatively associated with insulin resistance and T2DM[76]. Correspondingly, the 
MMP27 rs7129790 polymorphism was strongly associated with high gut abundance of Proteobacteria in Mexican 
Americans with a high prevalence of obesity and T2DM[77].

Moreover, high-throughput proteomics assays have allowed the discovery and representation of potential protein-
T2DM links, providing novel intervention targets in this disease[78]. Interestingly, a set of circulating proteins causally 
associated with T2DM were identified using two-sample Mendelian randomization approaches, which is a validated 
method to examine the causal effect of variation in genes of known function on disease[79]. Also, Mendelian random-
ization analyses did not uncover significant causal effects between proteins (i.e., retinal dehydrogenase 1, galectin-4, 
cathepsin D, and lipoprotein lipase) and diabetes, suggesting that identified proteins are expected to be biomarkers for 
T2DM, rather than demonstrating causal pathways[80].

Additionally, coupling genomic data (i.e., GRS) with conventional phenotypical information (i.e., age, sex, body 
composition, medication use, and vital signs) is being useful for enhancing individual T2DM risk stratification and 
disease prediction[81,82]. Advances in next-generation sequencing technologies and the use of machine learning and 
other artificial intelligence methods became fundamental to analyze these T2DM-associated multiomics datasets.

CONCLUSION
Current evidence support the impact of genetic variation on the risk of developing blood glucose/insulin alterations and 
subsequent T2DM as well as its implication in affecting the lipid, inflammatory, and carbohydrate status in T2DM 
patients through interactions with dietary factors. These include SNPs and other structural variants mapped to metabol-
ically active genes such as TCF7L2, amylase 1, TAS2R4, PPARG, CDKAL1, KCNJ11, insulin-like growth factor 2 binding 
protein 2, proliferator-activated receptor-gamma coactivator-1alpha, BDNF, transient receptor potential vanilloid-1 
channel, HECT domain E3 ubiquitin protein ligase 4, MTNR1B, IRS1, GIPR, S100A9, PSMD3, KCNMB3, Caveolin-2, 
NOTCH2, zinc finger BED-type containing 3, GLP1R, FTO, melanocortin 4 receptor, SLC22A1/OCT1, APOE, DRD2/
ANKK1, APOA2, CETP, PPAR-γ, and ApoB, which have been analyzed using single and cumulative approaches. 
Moreover, some genetic polymorphisms have been identified as putative biomarkers of individual responses to energy-
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restricted nutritional prescriptions aimed to glucose control including those located in SCD, PPM1K, FTO, TCF7L2, GIPR, 
IRS1, DHCR7, PCSK7, ADRB3, BDNF, TNFA, UCP3, ADIPOQ, RETN, MTNR1B, APOA5, and FABP2 genes. Furthermore, 
some genotype-based dietary strategies have been developed for improving T2DM control in comparison to general 
lifestyle recommendations for all people. However, more research is needed in order to expand and confirm these 
findings in other populations less explored such as Latin Americans and Africans considering some sources of variability 
(i.e., allele frequency, quantitative trait locus, and gender influence) incorporating the assessment of the role of food 
bioactive compounds and micronutrients in prospective dietary interventions. In any case, the analysis of the genetic 
make-up may help to decipher new paradigms in the pathophysiology of T2DM as well as offer further opportunities to 
personalize the screening, prevention, diagnosis, management, and prognosis of T2DM.
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Abstract
Type 2 diabetes mellitus (T2DM) is recognized as a serious public health concern 
with a considerable impact on human life, long-term health expenditures, and 
substantial health losses. In this context, the use of dietary polyphenols to prevent 
and manage T2DM is widely documented. These dietary compounds exert their 
beneficial effects through several actions, including the protection of pancreatic 
islet β-cell, the antioxidant capacities of these molecules, their effects on insulin 
secretion and actions, the regulation of intestinal microbiota, and their contri-
bution to ameliorate diabetic complications, particularly those of vascular origin. 
In the present review, we intend to highlight these multifaceted actions and the 
molecular mechanisms by which these plant-derived secondary metabolites exert 
their beneficial effects on type 2 diabetes patients.
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Core Tip: At present, a compelling body of evidence suggests that dietary polyphenols may represent an important alternative 
source to the management of type 2 diabetes mellitus due to their multifaceted actions on glucose homeostasis as well as in 
attenuating many diabetes complications raised because of the hyperglycemic condition. Additionally, new data derived 
from either clinical trials or meta-analyses have started to figure out the usefulness of these bioactive compounds thus 
providing solid clinical shreds of evidence.

Citation: González I, Lindner C, Schneider I, Diaz E, Morales MA, Rojas A. Emerging and multifaceted potential contributions of 
polyphenols in the management of type 2 diabetes mellitus. World J Diabetes 2024; 15(2): 154-169
URL: https://www.wjgnet.com/1948-9358/full/v15/i2/154.htm
DOI: https://dx.doi.org/10.4239/wjd.v15.i2.154

INTRODUCTION
Diabetes mellitus (DM) is a heterogeneous group of chronic metabolic disorders characterized by hyperglycemia 
resulting from defects of insulin action, insulin secretion, or both[1]. This metabolic disease is a global health issue, which 
has been increasing from time to time and it is now considered as one of the most important disorders worldwide. 
According to International Diabetes Federation, 10.5% of adults of the world population are currently living with diabetes 
and this alarming indicator is predicted to rise to 11.3 % (643 million people) by 2030 and to 12.2 % (783 million) by 2045
[2].

Noteworthy, a considerable proportion of the world's burden of diabetes is caused by type 2 DM (T2DM). In this 
regard, T2DM is recognized as a serious public health concern with a considerable impact on human life and health 
expenditures[3]. The onset and progression of T2DM are determined by a complex pathophysiological basis where 
oxidative stress is a crucial contributor not only involved in the disease development but also to diabetes complications, 
particularly those associated with both microvascular (retinopathy, nephropathy, and neuropathy) and macrovascular 
complications (ischemic heart disease, peripheral vascular disease, and cerebrovascular disease[4].

Acute or chronic hyperglycemia upregulates reactive oxygen species (ROS) production in the mitochondrial electron 
transfer chain. This excessive production of superoxide mediates the downregulation of glyceraldehyde-3-phosphate 
dehydrogenase levels, which in turn activates the major pro-oxidative pathways involved in the pathogenesis of diabetes 
complications, such as the activation of protein kinase C, the polyol and hexosamine pathways, the formation of 
advanced glycation end products productions (AGEs), as well as the increased expression of the receptor for AGEs[5-7]. 
On the other hand, antioxidant mechanisms are diminished in diabetic patients, which may further augment oxidative 
stress[8-10].

During the last few years, compelling shreds of evidence have shed light on the usefulness of dietary antioxidants as an 
alternative option in the treatment of T2DM, considering both the adverse effects conferred by conventional pharmaco-
logical treatments as well as the enormous economic burden that lifelong treatments place on patients[11].

In this regard, dietary polyphenols have emerged as an option to manage T2DM[12]. These compounds are one of the 
most abundant secondary plant metabolites, which are grouped into four major families, flavonoids, ligands, stilbenes, 
and phenolic acids, and are widely found in fruits, vegetables, nuts, cereals, and in many beverages such as tea, coffee, 
and red wines. These bioactive phytochemicals can reach and act at several cellular compartment levels including cellular 
membranes by binding to the bilayer interface or by interacting with the hydrophobic fatty acid tails[13].

A growing body of experimental and clinical evidence supports the protective role of these compounds on several 
human diseases through their antioxidant activity and diverse molecular mechanisms[14-18] (Figure 1). This review aims 
to highlight the roles of this large and heterogeneous family of secondary metabolites of plants containing phenol rings, 
on pancreatic islet β-cell functioning and promotion of insulin production and signaling, protection against micro-and 
microvascular complications, protection against the progression of T2DM-associated obesity, management of dyslip-
idemia and gut microbiome dysbiosis. In addition, the capacity of polyphenols to reduce both the formation of advanced 
glycation products and their pathologic consequences is also addressed.

LITERATURE SEARCH
The literature search was conducted using Medline/PubMed, Embase, Cochrane, and RCA, databases. Search terms 
included “type-2 diabetes mellitus”, “prediabetes”, “polyphenols”, “natural antioxidants”, “oxidative stress” and 
“abnormal glucose homeostasis”. Articles published between January 2013 to March 2023 and additional publications 
were retrieved by snowballing. Exclusion criteria included T1DM (autoimmune β-cell destruction), gestational DM, 
pancreatogenic diabetes, drug-induced diabetes, and the monogenic diabetes syndromes.

https://www.wjgnet.com/1948-9358/full/v15/i2/154.htm
https://dx.doi.org/10.4239/wjd.v15.i2.154
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Figure 1 Some polyphenols for which there is documented information about their beneficial properties in the management of the main 
alterations observed in type 2 diabetes mellitus.

Β-CELL DYSFUNCTION AND DEATH
Currently, both clinical and experimental data support that during the development of T2DM, there is not only a 
progressive deterioration in β-cell functioning but also a marked reduction of the β-cell mass in the pancreatic islets of 
Langerhans[19-21]. Many factors such as the glucotoxicity associated with the hyperglycemic state, the oxidative and 
endoplasmic reticulum stresses, as well as the lipotoxicity due to chronic exposure to saturated free fatty acids, are crucial 
elements in decreased β-cell functioning and, eventually in β cell death through apoptosis[19,22,23].

Hyperglycemia is a crucial factor in the onset of oxidative stress in T2DM and it even correlates with the progression of 
disease[24]. Additionally, β-cells are very susceptible to oxidative damage, because of their low antioxidant capacity[25,
26], and consequently, oxidative stress is a very important contributor to the impairment of β-cell functioning[23,27,28]. 
Furthermore, oxidative stress mediates the permeabilization of mitochondrial membranes, and consequently the release 
of cytochrome C and thus β-cell death by apoptosis[29].

Based on their antioxidant activities polyphenols are major regulators of oxidative stress and consequently the 
improvement of mitochondrial functions. At present, compelling pieces of evidence support that many metabolic 
disorders such as type 2 diabetes, are associated with impaired mitochondrial function such as diminished oxidative 
capacity and antioxidant defense, mainly due to the onset of an oxidative stress condition[30,31].

Oxidative stress condition is established by the imbalance between the production of ROS and antioxidant defense 
mechanisms, and where the detrimental ROS activities exceed the antioxidant capacities of the cell. Mitochondrial 
dysfunction is defined by several features including a diminished mitochondrial biogenesis, an altered membrane 
potential, a decrease in the mitochondrial number as well as by an altered activity of oxidative proteins due to the 
accumulation of ROS in cells and tissue[32,33].

Polyphenols can not only exert powerful antioxidant actions and thus protect against oxidative stress[34], they have 
additional capacities to modulate crucial pathways in mitochondrial functionality such as mitochondrial biogenesis, 
mitochondrial membrane potential, ATP synthesis, intra-mitochondrial oxidative status, and apoptosis cell death[35-38]. 
Cocoa catechins can also improve insulin secretion by increasing the expression of some genes involved in mitochondrial 
respiration[39].

Resveratrol is known for its remarkable activities in improving pancreatic β-cell function mainly by its effect on sirtuin 
1 (SIRT1), a master regulator for β-cell function[40]. Cinnamic acid derivatives can improve the insulin-secreting capacity 
of β-cells, by raising the levels of intracellular calcium[41]. Noteworthy, compelling pieces of evidence support that the 
hyperglycemia-associated overexpression of human amylin, also known as islet amyloid polypeptide, can form 
aggregates to favor amylin fibril formation, and these fibrils evoke the activation of caspases cascade, and thus leading to 
β-cell death by apoptosis[42,43]. Several polyphenols such as rosmarinic acid, ferulic acid, epigallocatechin gallate, and 
resveratrol, among many others, can interfere with the formation of fibrillar structures and thus avoid β-cell death[44,45].
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INSULIN RESISTANCE
Insulin receptor (IR) is a tyrosine kinase receptor, which is autophosphorylated upon insulin binding and it is expressed 
in all tissues. The major responders to IR engagement by insulin are the liver, skeletal muscle, and adipose tissue[46]. 
Upon insulin binding complex signaling is activated including several substrates such as insulin or insulin-like growth 
factor-1, IR, IR substrate (IRS)-1, and phosphatidylinositol-3 kinase (PI3K)/Akt or ERK kinases. The phosphorylation of 
IRS1 can recruit PI3K rendering Akt phosphorylated, which in turn can regulate crucial events such as the translocation 
of glucose transporter-4 (GLUT4) to the cell surface, promoting glycogen synthesis through inhibition of glycogen 
synthase kinase 3 activity, the induction of protein synthesis via activation of mammalian target of rapamycin and the 
inhibition of Forkhead transcription factors of the O class (FoxO) transcription factors[47,48].

The inactivation of Akt and activation of FoxO1, through the suppression of IRS1 and IRS2 in different organs 
following hyperinsulinemia, over-nutrition, and inflammation, represent crucial mechanisms for insulin resistance in 
humans[49,50]. Compelling shreds of evidence support that oxidative stress is an important contributor to insulin 
resistance in T2DM[51], and that the overproduction of mitochondrial H2O2[52,53], and the overactivation of NAPDPH 
oxidase, via angiotensin II/AT1 receptor can mediate skeletal muscle insulin resistance[54-56].

ROS are known to actively participate in several crucial physiological processes at the cellular level such as differen-
tiation, cellular signaling, and phosphorylation/dephosphorylation events among many others[57]. The existence of 
various endogenous antioxidant systems is responsible for maintaining ROS at the low levels required to contribute to 
cellular homeostasis[58]. However, the hyperglycemia condition, which is a hallmark of T2DM, is crucial in the 
acquisition of a dysfunctional state of these antioxidant systems, thus favoring the onset of the oxidative stress condition
[59,60]. Thus, this condition is a crucial element in the multifactorial etiology of insulin resistance. Oxidative stress 
impairs β-cell function, which markedly reduces not only insulin production but also its secretion into the circulation. 
Additionally, oxidative stress can reduce GLUT-4 gene expression and translocation to the membrane[61-63].

The c Jun-N-terminal kinases (JNKs) is major signal transducer driving the physio-logical response to several cellular 
stressors, including oxidative stress. Epigallocatechin gallate, the major green tea catechin can protect both the IR and IRS 
proteins from phosphorylation by JNKs, a crucial event in the onset of insulin resistance[63], as well as by reducing the 
expression of the negative regulator of IR protein tyrosine phosphatase 1B (PTP1B)[64].

Resveratrol, which is one of the main polyphenolic compounds of red wines, peanuts, and apples, is a potent activator 
of SIRT1, which is a potent intracellular inhibitor of oxidative stress, and thus attenuates insulin resistance and improves 
insulin signaling in the skeletal muscle cells[65,66]. Additionally, some polyphenols can also stimulate glucose uptake in 
both skeletal muscle and adipocytes by translocating GLUT4 to the plasma membrane through an adenosine 
monophosphate (AMP)-activated protein kinase (AMPK)-dependent pathway[67].

PTP1B is an intracellular enzyme responsible for the deactivation of the IR, resulting in insulin resistance in various 
tissues[68,69]. Hence, PTP1B has become an important target for controlling insulin resistance and T2DM. In this regard, 
many polyphenols have inhibitory activity on PTP1B as demonstrated either by screening platforms for detecting the 
inhibition activity or by Quantitative Structure-Activity Relationship analysis[70,71].

OBESITY
Obesity is the major driving factor of T2DM and it is characterized by chronic low-grade inflammation with permanently 
increased oxidative stress[72,73]. The onset of a chronic condition of oxidative stress in obesity is supported by different 
mechanisms implicated in the homeostasis of adipose tissue, which contributes to the development of pathological 
systemic consequences[74].

On one hand, those associated with increased ROS production such as the adipocytes-associated endoplasmic 
reticulum stress, a sustained increase of NOX activities, as well as the high level of post-prandial-associated ROS 
generation, and on the other, the altered antioxidant defenses observed in obese patients[75-78]. In addition to the 
antioxidant properties of polyphenols, they exert several beneficial effects on obesity far beyond their antioxidant 
capacity[79], such as the attenuation of obesity-linked inflammation[80-82], the beneficial regulation of several key 
obesity path-ways such as the modulation of food intake[81], the inhibition of pancreatic lipase[82,83], decreasing 
lipogenesis by inhibiting both fatty acid synthase activity and the activation of the AMP-AMPK[84,85], and by increasing 
thermogenesis and mitochondrial biogenesis[86].

Finally, some polyphenols have been reported to mediate the suppression of the conversion of preadipocytes into 
adipocytes, which can store an excessive lipid load. This polyphenols-mediated suppression of adipocyte differentiation 
occurs by the regulation of crucial factors such as the CCAAT/enhancer binding protein α, the nuclear receptor 
peroxisome proliferator-activated receptor γ 1 and 2, (PPARγ1, PPARγ2), and GLUT-4 in mature adipocytes[84,86-88].

DYSBIOSIS
Human gut microbiota is considered a complex microbial ecosystem composed of different microorganisms, including 
bacteria, archaea, viruses, fungi, and protists, which are involved in the regulation of many physiological processes and 
numerous diseases[89].



González I et al. Polyphenols and T2DM

WJD https://www.wjgnet.com 158 February 15, 2024 Volume 15 Issue 2

Firmicutes and Bacteroidetes are the main phyla that compose the adult gut flora, regulating the homeostatic 
production of microbiota-induced metabolites such as butyrate, which have anti-inflammatory and antioxidative 
properties, and the production of lipopolysaccharide (LPS), which can promote systemic inflammation and insulin 
resistance through induction of metabolic endotoxemia[90,91].

Growing data raised from both clinical and experimental evidence shows that T2DM patients have an altered gut 
microbiota, where the Bacterioidetes/Firmicutes ratio of the intestinal flora of diabetic patients significantly differs from 
non-T2DM adults[92,93]. A crucial consequence of the quantitative change in gut microbiota composition in T2DM 
patients is the impairment of the expression of gut-microbiota-related metabolites, which have crucial consequences in 
the metabolic regulation of glucose homeostasis, and insulin sensitivity[93].

Short-chain fatty acids (SCFAs) are considered one of the main microbial metabolites, that have crucial effects on the 
expression of glucagon-like peptide-1 (GLP-1) and GLP-2 via stimulating G-protein-coupled receptors, thus contributing 
to improving glucose homeostasis and amplification of insulin sensitivity[94].

Under this dysbiosis condition that affects T2DM patients, structural changes in the intestinal epithelium barrier allow 
LPS translocation into the bloodstream, resulting in increased plasmatic levels of LPS, which in consequence, activates 
Toll-like receptor-4 leading to the production of pro-inflammatory mediators, and sustaining low-grade systemic inflam-
mation[95].

This condition known as metabolic endotoxemia induces a significant decrease in bacterial populations which are 
crucial producers of beneficial gut-derived metabolites such as SCFA, thus supporting the impairment of glucose 
metabolism and insulin resistance[96,97]. In addition, different studies have demonstrated that specific gut microbiota 
dysbiosis in mice models of T2DM, induces GLP-1 resistance and consequently, the impairment of GLP1-induced insulin 
secretion, which is crucial in the acquisition of the insulin resistance condition in diabetic individuals[98].

At present, polyphenols have emerged as novel compounds that could interact with microbiota and exert strong 
regulatory effects on intestinal bacteria, with subsequent regulation of gut microbiota and its derivate metabolites[99]. 
These interactions between polyphenols and gut microbiota can positively affect crucial metabolic markers of T2DM, 
improving systemic inflammation and insulin sensitivity[100,101].

Growing evidence reveals that distinct types of polyphenolic compounds, such as genistein, curcumin, and grifolic acid 
can increase GLP-1 secretion from L-cells via different mechanisms[102-105]. Besides their effect to directly stimulate 
GLP-1 secretion, some polyphenols, particularly luteolin, apigenin, and resveratrol may also naturally suppress DPP-IV 
activity, which potentially increases the half-life of GLP-1, thus stimulating glucose-dependent insulin secretion and 
regulating glycemia[106,107].

Different studies demonstrate that different doses of oral intake of polyphenols including catechins, and (-)-epigalloc-
atechin-3-gallate, can also favor the increase of different microbial populations of SCFA-producing agents in fecal 
samples of human patients, thus improving the insulin sensitivity and glucose homeostasis of individuals[108,109].

In addition, other phenolic compounds including chlorogenic and ferulic acid can also act as antidiabetic agents, 
through significant upregulating of the expression of GLUT4 and PPAR-γ, thus favoring the uptake of 2-deoxyglucose in 
time- and dose-dependent manner, and improving the pathogenesis of T2DM progression[110-112]. Branched-chain 
amino acids (BCAAs) include leucine, isoleucine, and valine, which cannot be synthesized de novo by mammalians and 
consequently, they are acquired either from the diet or gut microbiota. Elevated plasma circulating levels of BCAAs and 
their ketoacids are associated with insulin resistance in obesity and T2DM[113-117].

Conversely, experimental results have demonstrated that lowering BCAA and branched-chain alpha-keto acid levels is 
associated with improved insulin sensitivity and reduced fat accumulation in mouse models[118]. Emerging studies have 
suggested that polyphenol administration may accelerate the catabolism of BCAA, inducing a lowering of circulating 
BCAA levels, thus improving glucose homeostasis and insulin sensitivity[119].

Additionally, some evidence also supports that intestinal catabolites of polyphenolic compounds by the action of the 
gut microbiota could act as a strong antiglycative agent[120,121]. In this sense, dietary polyphenolic intake may have a 
significant positive impact on the generation of glycation products and diabetes-related complications[122,123]. Taken 
together, those findings suggest that a polyphenols-enriched diet can strongly modulate the dysbiotic changes induced by 
hyperglycemia, improving the regulation of metabolites that mediate glucose homeostasis and insulin sensitivity in 
T2DM patients.

VASCULAR COMPLICATIONS
Vascular complications in T2DM are those long-term complications that affect the blood vessel network, and are 
responsible for most of the morbidity, and required hospitalization in these patients[124]. The vascular complications of 
diabetes are classified as either microvascular (retinopathy, nephropathy, and neuropathy) or macrovascular, which 
includes coronary artery, peripheral, and cerebral vascular diseases[125].

At present, a large body of compelling evidence supports that oxidative stress has a key role in the pathogenesis of 
vascular complications in diabetes[126-128]. As a major regulator of vascular homeostasis, the vascular endothelial cells 
play crucial roles by controlling vascular tone through a balance between vasodilation and vasoconstriction, fibrinolysis, 
platelet adhesion and aggregation, leukocyte activation, adhesion, and transmigration, smooth muscle cell proliferation, 
and modulating the growth of blood vessels[129,130].

The onset of an imbalanced vasodilation and vasoconstriction, elevated ROS, and proinflammatory factors, as well as a 
reduced nitric oxide (NO) bioavailability, are crucial elements in the onset of the systemic disorder known as endothelial 
dysfunction[131]. NO is produced in the endothelium by the endothelial NO synthase (eNOS), a Ca2+-calmodulin-
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dependent enzyme that can convert the L-arginine to NO plus citrulline. By activation of soluble guanylyl cyclase and 
modulation of cation channels, NO promotes vascular smooth muscle cells relaxation and thus regulates vascular tone. 
Additionally, NO is a crucial mediator in controlling platelet activation and aggregation[132].

When ROS bioavailability overtakes the antioxidant defenses due to the onset of oxidative stress, superoxide (O2-) 
rapidly inactivates NO and forms peroxynitrite (ONOO-). It is known that peroxynitrite inactivates prostacyclin synthase 
thus favoring the deterioration of vascular health due to the vasodilatory, growth-inhibiting, antithrombotic, and antiad-
hesive effects of prostacyclin. Additionally, peroxynitrite increases the release of prostaglandin H2 and thromboxane A2, 
which are potent vasoconstrictors, prothrombotic, growth- and adhesion-promoting agents[133-135]. A growing body of 
data supports the beneficial roles of polyphenols in protecting against endothelial dysfunction induced by oxidative 
stimuli[136-138].

Of note, some polyphenols, as reported for resveratrol and its derivatives show dual protecting activities, either by the 
expression of Nox4, a ROS-generating enzyme highly expressed in the endothelium, and by enhancing the expression of 
two crucial members of the antioxidant defense of the vascular wall, such as glutathione peroxidase 1 and superoxide 
dismutase 1[139]. Moreover, polyphenols seem to have peroxynitrite-scavenging activity[140]. Furthermore, different 
reports have demonstrated that some polyphenols such as resveratrol and others derived from strawberry and grape skin 
and seeds, can promote the phosphorylation of eNOS at Ser1177 by PI3K/Akt pathway, which is essential for NO 
production[141-143]. In addition, resveratrol is reported to increase both endothelial eNOS mRNA and protein levels[144-
146]. This effect seems to be associated with the effects of resveratrol on SIRT1 and FOXO factors[147].

POLYPHENOLS AND ADVANCED GLYCATION
Advanced glycation is one of the major pathways involved in the onset and progression of T2DM complications, partic-
ularly those associated with the cardiovascular system[148]. Since the pioneering works of the Vlassara group[149,150], a 
huge and compelling body of evidence has demonstrated the paramount importance of AGEs in diabetes complications, 
due to the hyperglycemic condition[151,152].

The formation of AGEs involves the reaction of reducing sugars, such as glucose, with the terminal amino groups of 
proteins, nucleic acids, or phospholipids to initially form unstable Schiff bases, which evolve towards the formation of 
more stable compounds called Amadori products, which by a series of complex reaction yield the AGEs. Degradation of 
both Schiff bases and Amadori products rise to highly reactive short-chain carbonyl compounds, called α-dicarbonyls
[153].

These highly reactive compounds can also be formed by hexose autoxidation, as well as by-products of either the 
glycolytic or polyol pathways and from lipid oxidation. Dicarbolyls can then react non-enzymatically with lysine or 
arginine residues to produce AGEs[154,155].

The AGEs exert their deleterious effects, either directly by cross-linking of proteins, thus disrupting protein functioning 
and turn-over[156,157], or indirectly by binding to a signaling receptor for AGE-modified proteins, known as the receptor 
of advanced glycation end-products (RAGE)[158,159]. Noteworthy, oxidative stress is an important contributor to the 
formation of endogenous eAGEs, by leading to the increased formation of endogenous reactive aldehydes such as 
glyoxal, methylglyoxal (MG), and thus favoring the formation of AGEs[160]. Additionally, when AGEs activate RAGE, 
NADPH oxidase is activated and thus increases ROS levels[161].

At present, compelling evidence derived from experimental and clinical data studies supports the role of different 
polyphenols as very active inhibitors of the deleterious effects of AGEs, through several mechanisms[162,163]. By their 
antioxidant activities, polyphenols are potent antiglycation compounds and antiglycation activity strongly correlates with 
the free radical scavenging activity and antiglycation activity[120], as reported catechins, proanthocyanidins, 
anthocyanin, stilbenoids, and flavonols[164,165]. Additionally, polyphenols have other properties, which are essential to 
reduce the formation of AGEs, such as the chelation of transition metal, as reported for chlorogenic and caffeic acids[166,
167].

The capacity of trapping dicarbonyl compounds is another crucial activity reported for some polyphenols considering 
that dicarbonyls are one of the main precursors of AGEs[154], epigallocatechin-3-gallate, resveratrol, catechin, and 
epicatechin as well as different procyanidins can efficiently trap both glyoxal and MG[162,168,169]. Dicarbonyls are 
detoxified by the glyoxalase system a highly specific enzyme responsible for the detoxification of dicarbonyl species[170]. 
Some polyphenols can even stimulate this detoxifying system[171]. Finally, several reports have demonstrated that 
polyphenols can actively reduce the undesired consequences of the activation of RAGE, either by interfering with 
receptor signaling as well as by reducing its expression[172-174].

LIPID METABOLISM
T2DM has been widely associated with an increased risk for atherosclerotic cardiovascular disease, which is closely 
related to raised plasmatic low-density lipoprotein (LDL) levels with important oxidative changes[175], which support 
diabetic hyperlipidemia and accelerated atherosclerosis, increasing the risk of macrovascular complication and 
cardiovascular morbidity. Noteworthy, LDL is a highly sensitive molecule to hyperglycemia-induced hyperglycemia 
damage and modification, making it highly pathogenic and atherogenic[176,177]. Under hyperglycemic conditions, 
transition metals in the presence of oxygen catalyze the autoxidation of glucose or lipid peroxidation[178]. In addition, 
excess ROS formation in T2DM patients fuels vascular inflammation and mediates oxidized LDL (ox-LDL) formation, 
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Figure 2 Polyphenols have multifaceted actions to support their use in the management of type 2 diabetes mellitus. Due to their positive 
actions on multiple physiopathological mechanisms which are crucial not only in the onset of type 2 diabetes mellitus (T2DM) by protecting and supporting many 
functions of β-cells and insulin signaling, but also in those associated with common T2DM complications by improving dyslipidemia profiles, reducing systemic 
inflammation, dampening the deleterious consequences of the high rate formation of advanced glycation end products production, reducing oxidative stress, as well 
as by supporting vascular functionality. AGE: Advanced glycation end products production; GLP-1: Glucagon-like peptide-1; GLUT-4: Glucose transporter 4; BCAA: 
Branched-chain amino acid; DM: Diabetes mellitus.

which is considered a hallmark feature of atherosclerotic development due to the crucial induction of atherosclerotic 
plaque progression and destabilization in T2DM patients[179-181].

Besides the different pathways that conflux in activate NADPH oxidase and subsequent ROS production in T2DM 
patients, the increased expression of ox-LDL also stimulates NADPH oxidase, thus contributing to increment ROS 
formation and oxidative stress in T2DM patients[182]. In addition, hyperglycemia-mediated mitochondrial ROS 
production can also promote the nuclear factor kappa-beta-mediated entry of monocytes in atherosclerotic lesions, 
fueling the inflammation and progression of unstable plaques, and increasing the risk of macrovascular complication in 
T2DM patients[183], thus, sustaining a vicious cycle that perpetuating ROS production and ox-LDL formation, 
contributes to the progression of atherosclerosis unstable plaques on DM patients.

In recent years, polyphenols have been postulated to lower lipids through different mechanisms that imply beneficial 
effects on cardiovascular diseases of T2DM patients[184]. Based on their antioxidant effects, different studies have shown 
that many polyphenols including resveratrol, apigenin, and some synthetic polyphenol-like molecules can inhibit 
NAPDH oxidase activity, thus decreasing vascular oxidation and atherogenesis in nondiabetic apolipoprotein (apo) 
E–deficient mice[185], as well as improve hyperlipidemia and atherosclerosis in diabetic individuals[186].

Resveratrol based on its antioxidant activities can influence lipid metabolism and is considered an important protective 
compound against LDL oxidation and atherosclerosis progression[187]. In this sense, the free radical scavenging activity 
of resveratrol has been investigated, revealing that this polyphenol compound can interact with free radicals to form 
relatively stable free radicals and non-radicals, resulting in inhibition of lipid peroxidation by Fenton reaction products
[188,189], which may decrease the progression of accelerated atherosclerosis through inhibition of oxidation in T2DM 
patients[190,191].

More recently, it was demonstrated that resveratrol can upregulate eNOS expression by increasing cAMP levels, and 
decreasing ox-LDL-induced oxidative stress in human endothelial cells, leading to a significant improvement of 
endothelial dysfunction and atherosclerosis in mice[192]. Similar results have been demonstrated for quercetin, an 
important flavonoid, which has demonstrated protective effects in diabetic individuals through significantly reversed 
dyslipidemia and hepatic steatosis in diabetic mice, including lowered liver cholesterol and triglycerides contents[193,
194]. Taken together, these findings suggest that dietary polyphenols may be crucial in the regulation of dysregulated 
lipid metabolism through the modulation of antioxidative mechanisms in T2DM patients.

CONCLUSION
A compelling body of evidence suggests that dietary polyphenols may represent an important alternative to the 
management of T2DM due to their multifaceted actions on glucose homeostasis as well as by attenuating many diabetes 
complications raised because of the hyperglycemic condition (Figure 2). Most of the pieces of evidence derived from 
animals and in vitro studies support these issues. However, new emerging data derived from either clinical trials or meta-
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Table 1 Clinical trials and meta-analysis studies in the last five years supporting the roles of dietary polyphenols in the management of 
type 2 diabetes mellitus

Type of study Beneficial effects Ref.

Randomized clinical trial Increased antioxidant capacity and antioxidant gap in T2DM patients García-Martínez et al[195], 
2023

Double-masked, cross-over, dietary 
intervention trial

Improvement of endothelial function in both healthy individuals and T2DM 
patients

Bapir et al[196], 2022

Meta-analysis Improving HbA1c, and insulin levels in T2DM García-Martínez et al[197], 
2021

Randomized, clinical trial Lowering fasting blood glucose levels in T2DM Sirvent et al[198], 2022

Systemic review and meta-analysis Reduction of systolic and diastolic blood pressure and fasting blood glucose levels 
in T2DM patients

Gu et al[199], 2022

Systematic review and meta-analysis Reduction of fasting blood glucose and HbA1c levels Delpino et al[200], 2021

Randomized clinical trial Improvement of glycemic control by reducing insulin resistance Mahjabeen et al[201], 2022

Randomized clinical trial Lowering effects on inflammatory status and oxidative stress biomarkers in 
diabetic patients

Grabež et al[202], 2022

Randomized clinical trial Improvement of glycaemia markers Gómez-Martínez et al[203], 
2021

Systematic review and meta-analysis Improvement of glycemic control and cardiometabolic parameters in patients with 
T2DM

Abdelhaleem et al[68], 2022

Meta-analysis Reduction of insulin resistance, HbA1c levels and fasting blood glucose Delpino and Figueiredo
[204], 2022

Meta-analysis Improvement of glucose control and lowering blood pressure Nyambuya et al[205], 2020

Randomized clinical trial Improvement of postprandial dyslipidemia and inflammation following a high-fat 
dietary challenge in adults with T2D

Davis et al[206], 2020

Meta-analysis Significant reduction in CRP level in patients with T2D Hosseini et al[194], 2021 

Meta-analysis Combined effects with anti-diabetic medication to lowering serum glucose levels in 
individuals with T2D

Raimundo et al[207], 2020

Randomized clinical trial Improvement of glycemic control and lipid profile Hoseini et al[208], 2019

Meta-analysis Lowering fasting blood glucose, HbA1c, and HOMA-IR Huang et al[209], 2019

Randomized clinical trial Improvement of lipid profile and lowering serum biomarkers of inflammation Adibian et al[210], 2019

Randomized clinical trial Lowering postprandial hyperglycemia and serum biomarkers of inflammation Schell et al[211], 2019

Randomized clinical trial Lowering fasting blood glucose and improvement of lipid profile Mollace et al[212], 2019

Systematic review and meta-analysis Lowering the risk of T2D Rienks et al[213], 2018

Randomized clinical trial Reduction of plasma protein carbonyl content and increasing plasma total 
antioxidant capacity

Seyyedebrahimi et al[214], 
2018

T2D: Type 2 diabetes; HbA1c: Glycosylated hemoglobin; HOMA-IR: Homeostasis Model Assessment of Insulin Resistance; CRP: C-reactive protein; T2DM: 
Type 2 diabetes mellitus.

analyses have started to figure out the usefulness of these bioactive compounds, and thus providing solid clinical shreds 
of evidence (Table 1). However, much more research is needed on some topics that may be crucial to explain the current 
controversial results in some clinical studies. In this regard, a full understanding of the metabolisms and bioavailability, 
the assessment of dietary intake by measuring urine or blood polyphenol metabolites, duration of exposure, delivery 
systems that guarantee high stability, as well as more efforts to understand the structure-activity relationship of 
polyphenols, are crucial elements to be considered in the design and execution of more double-blinded clinical trials.
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Abstract
BACKGROUND 
Helicobacter pylori (H. pylori) infection is related to various extragastric diseases 
including type 2 diabetes mellitus (T2DM). However, the possible mechanisms 
connecting H. pylori infection and T2DM remain unknown.

AIM 
To explore potential molecular connections between H. pylori infection and T2DM.

METHODS 
We extracted gene expression arrays from three online datasets (GSE60427, 
GSE27411 and GSE115601). Differentially expressed genes (DEGs) commonly 
present in patients with H. pylori infection and T2DM were identified. Hub genes 
were validated using human gastric biopsy samples. Correlations between hub 
genes and immune cell infiltration, miRNAs, and transcription factors (TFs) were 
further analyzed.

RESULTS 
A total of 67 DEGs were commonly presented in patients with H. pylori infection 
and T2DM. Five significantly upregulated hub genes, including TLR4, ITGAM, 
C5AR1, FCER1G, and FCGR2A, were finally identified, all of which are closely 
related to immune cell infiltration. The gene-miRNA analysis detected 13 miRNAs 
with at least two gene cross-links. TF-gene interaction networks showed that TLR4 
was coregulated by 26 TFs, the largest number of TFs among the 5 hub genes.

CONCLUSION 
We identified five hub genes that may have molecular connections between H. 
pylori infection and T2DM. This study provides new insights into the pathogenesis 
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of H. pylori-induced onset of T2DM.

Key Words: Helicobacter pylori; Type 2 diabetes mellitus; Bioinformatics analysis; Differentially expressed genes; Hub genes
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Core Tip: This bioinformatic research is the one of the first studies to identify the key genes and pathways associated with 
both Helicobacter pylori (H. pylori) infection and type 2 diabetes mellitus (T2DM), using integrated bioinformatics 
analyses. Five hub genes were identified, including TLR4, C5AR1, ITGAM, FCGR2A, FCER1G, and all of which were 
closely related to immune cell infiltration. We also verified their expression in clinical specimens. Hopefully, this study will 
shed some light on the pathogenesis of H. pylori-induced T2DM in the future. This study is of great clinical importance.

Citation: Chen H, Zhang GX, Zhou XY. Identification of hub genes associated with Helicobacter pylori infection and type 2 diabetes 
mellitus: A pilot bioinformatics study. World J Diabetes 2024; 15(2): 170-185
URL: https://www.wjgnet.com/1948-9358/full/v15/i2/170.htm
DOI: https://dx.doi.org/10.4239/wjd.v15.i2.170

INTRODUCTION
The infection rate of Helicobacter pylori (H. pylori) is still increasing recently and it infects almost 50% of the world’ 
population. The prevalence rate is even higher in less developed countries[1]. It not only affects gastric disease but also 
affects extragastric diseases such as non-alcoholic fatty liver disease[2], cardiovascular disease[3], autoimmune disease
[4], and endocrine disorders, such as diabetes[5]. In recent years, the prevalence rate of type 2 diabetes mellitus (T2DM) 
and its complications have also increased significantly[6]. The consequences of poor glycemic control in the long and 
short term can be significant on social and economic levels[7,8]. Patients with T2DM are more susceptible to H. pylori 
infection, according to our previous meta-analysis[9,10]. There is a significant decrease in the eradication rate of H. pylori 
infection in T2DM patients with H. pylori infection compared to T2DM patients without infection[11]. Additionally, H. 
pylori-infected T2DM patients have worse glycemic control capability[12]. All these clinical studies strongly suggest that 
there is an association between H. pylori infection and T2DM.

However, the detailed mechanisms underlying H. pylori infection and T2DM remain unclear. According to previous 
studies, both innate and adaptive immune reactions may be activated in the mucosa of the stomach as a result of H. pylori 
infection[13]. This local inflammation in the stomach may spread systematically as a result of proinflammatory cytokines 
released by the stomach[14]. Chronic low-grade inflammation, which is a feature of H. pylori-associated T2DM, would be 
more likely to develop as a result[15]. Our previous mechanistic study suggested that H. pylori infection induces hepatic 
insulin resistance by the c-Jun/miR-203/SOCS3 signaling pathway[16]. The gut microbiota may also play a role in the 
immune and metabolic homeostasis of the host, and the infection of H. pylori not only disrupts the balance of commensal 
bacterial species in the gastric mucosa but also causes alterations in the microbial composition of the human gut[17]. 
However, these hypotheses have not been formally confirmed and validated.

This study aimed to investigate the potential molecular connections between H. pylori infection and T2DM. We 
identified differentially expressed genes (DEGs) by analyzing gene expression datasets through comprehensive 
bioinformatics analysis. DEGs were screened by combining the results from GEO datasets. Protein-protein interaction 
(PPI) construction, Gene Ontology (GO) term analysis, and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway 
enrichment analyses were performed to identify the hub genes linked to the two diseases. A miRNA-hub gene network 
and transcription factor (TF)-gene mRNA interaction network were also constructed. We sought to provide new insights 
into the pathogenesis of H. pylori-induced onset of T2DM.

MATERIALS AND METHODS
Data sources
The NCBI-GEO database is a publicly available database containing gene expression datasets[18,19]. Three datasets were 
retrieved from the GEO database (https://www.ncbi.nlm.nih.gov/geo/), including two gene expression profiles related 
to H. pylori (GSE60427 and GSE27411) and one dataset related to T2DM (GSE115601). Detailed information on the 
microarray datasets is provided in Supplementary Table 1. Gene expression profiles were set accordingly, including: (1) 
Tissue samples collected from diseased and normal gastric tissues; and (2) datasets with more than three samples.

Identification of DEGs
The NCBI-GEO2R interactive tool was utilized to analyze and compare data under similar experimental conditions from 
two or more sample groups to identify genes significantly differentially expressed for both diseases (https://www.ncbi.

https://www.wjgnet.com/1948-9358/full/v15/i2/170.htm
https://dx.doi.org/10.4239/wjd.v15.i2.170
https://www.ncbi.nlm.nih.gov/geo/
https://f6publishing.blob.core.windows.net/151eb643-f8e5-4189-8a95-49b51dc17844/WJD-15-170-supplementary-material.pdf
https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?
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nlm.nih.gov/geo/query/acc.cgi?)[20]. Genes that satisfied the criteria of log fold change > 0.4 with adjusted P value less 
than 0.05 were identified as DEGs. Genes presenting upregulation or downregulation in both H. pylori and T2DM were 
selected using the Venn diagram web tool (http://bioinfogp.cnb.csic.es/tools/venny/).

Functional enrichment analysis of DEGs
DAVID (Database for Annotation, Visualization, and Integrated Discovery), as an online tool, was used to predict the 
functions of hub genes based on GO enrichment analysis and KEGG pathway analysis (https://david.ncifcrf.gov/)[21] at 
three levels: Biological process (BP), molecular function (MF), and cellular component (CC). Bubble maps were used for 
representing BP, MF, CC, and KEGG pathways, using R package of ggPlot2. A statistically significant P value was 
defined as P value less than 0.05.

Construction of PPI network and identification of hub genes
A public online database, named STRING (https://string-db.org/), can be used to search for and predict PPIs. This 
inclusive resource facilitates the investigation of direct physical associations between proteins, as well as the detection of 
indirect functional connections unveiled through correlation analyses[22]. When common DEGs between different groups 
were identified, they were uploaded to STRING’s official website (https://cn.string-db.org/) and the interactions 
between DEGs and STRING database proteins were then assigned (with a minimum needed interaction score of 0.40). We 
followed the method of Liu et al[23], in which PPI interaction networks were visualized using Cytoscape (Version 3.6.1). 
Cytoscape is from National Institute of General Medical Sciences, United States. We used CytoHubba (Version 0.1) to 
identify hub genes using a maximal clique centrality algorithm.

Evaluation of infiltrated immune cells
To explore the association between infiltrating immune cells and H. pylori infection, data on proportions of the 22 immune 
cell types were obtained using the “cell-type identification by estimating relative subsets of RNA transcripts” 
(CIBERSORT) algorithm (https://cibersort.stanford.edu/). As a result, only samples with a P value of < 0.05 were 
included in the immune cell infiltration matrix. Boxplots and violin plots were utilized to visualize the proportions of 
infiltrated immune cells in each sample and each group. The correlation between expression of the five hub genes and the 
abundance of six immune cell subsets [B cells, CD4+ T cells, CD8+ T cells, macrophages, dendritic cells (DCs), and 
neutrophils] was analyzed in the gene module of TIMER (http://timer.cistrome.org/)[24].

MiRNAs prediction and gene–miRNA interaction network construction
In order to predict their targeted miRNAs, hub genes were selected and analyzed using the miRWalk database (http://
mirwalk.umm.uni-heidelberg.de/). The filter setting with a score of > 0.90 was implemented. The target gene binding 
region was the 3'-UTR, and the intersection with other databases was set to miRDB. Further data processing was carried 
out by Cytoscape.

TF-gene interaction network
The Network Analyst database (https://www.networkanalyst.ca/) was applied to identify human TFs of the related hub 
genes[25]. The database includes all three data sources named JASPAR, ENCODE and ChIP Enrichment Analysis. ChIP 
Enrichment Analysis was used to identify target TFs of hub genes in our current study. Moreover, the Cytoscape tool was 
used to visualize the TF-gene interaction network among TFs and hub genes.

Singlegene gene set enrichment analysis
Gene set enrichment analysis (GSEA) of each hub gene was performed using the “clusterProfiler” R package to identify 
regulatory pathways and biological functions associated with each hub gene. An adjusted P < 0.05 was used to indicate 
significant thresholds for GSEA.

Hub genes validated in clinical specimens
The results of our bioinformatics-based analysis were further verified by RT-qPCR assays. Gastric antrum tissues from 
patients and controls were collected (control: n = 30; T2DM: n = 30; H. pylori: n = 30; T2DM + H. pylori: n = 30).

H. pylori infection was diagnosed by the 13C-urea breath test (Headway Bio-Sci Co., Ltd, Shenzhen, China) according 
to the manufacturer’s instructions. A delta over baseline of > 4% indicates a positive H. pylori infection status. Patients 
with T2DM were diagnosed based on one of the following American Diabetes Association diagnostic criteria: fasting 
blood glucose level ≥ 7.0 mmol/L, 2-hour postload glucose level ≥ 11.1 mmol/L during an oral glucose tolerance test, 
glycated hemoglobin level ≥ 6.5%, or a random plasma glucose level ≥ 11.1 mmol/L in a patient with classic symptoms of 
hyperglycemia or hyperglycemic crisis. This study was approved by the ethics committee of the First Affiliated Hospital 
of Nanjing Medical University (2021-SRFA-034). Total RNA was extracted from each tissue sample using TRIzol 
(Invitrogen, F10488, Waltham, MA, United States), following the manufacturer’s instructions. The kit, EasyScript All-in-
One First-Strand cDNA Synthesis SuperMix for RT-qPCR Kit (TransGen Biotech, Beijing, China), was utilized for reverse 
transcription, with incubations performed at a tempertature 42°C for 15 min and then at 85°C for 15 s. Subsequently, 
StarLighter SYBR Green RT-qPCR Mix (Universal) (Forever Star, Beijing, China) kit was utilized for RT-qPCR analysis, 
with an ABI 7500 system (Applied Biosystems, United States). The primers used are listed in Supplementary Table 2. The 
reaction conditions were as follows: Predenaturation (95°C for 5 min), 40 cycles of denaturation (94°C for 20 s), annealing 
and extension (60°C for 34 s). β-actin was served as an internal control for RT-qPCR. The 2-ΔΔCt method was utilized to 
determine relative the expression levels of genes. Statistical analysis was performed using GraphPad Prism (Version 9.0, 

https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?
http://bioinfogp.cnb.csic.es/tools/venny/
https://david.ncifcrf.gov/
https://string-db.org/
https://cn.string-db.org/
https://cibersort.stanford.edu/
http://timer.cistrome.org/
http://mirwalk.umm.uni-heidelberg.de/
http://mirwalk.umm.uni-heidelberg.de/
https://www.networkanalyst.ca/
https://f6publishing.blob.core.windows.net/151eb643-f8e5-4189-8a95-49b51dc17844/WJD-15-170-supplementary-material.pdf
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Figure 1 Overall workflow of the study. T2DM: Type 2 diabetes mellitus; H. pylori: Helicobacter pylori; DEGs: Differentially expressed genes; TF: 
Transcriptional factor; PPI: Protein-protein interaction; GSEA: Gene set enrichment analysis.

Boston, MA, United States). Expression differences of hub genes were compared using one-way ANOVA in four groups 
(control, H. pylori infection, T2DM, and T2DM with H. pylori infection), and pairwise comparisons within the two groups 
were performed using Student’s t test. Statistically significant was defined as P < 0.05.

RESULTS
Identification of DEGs
Figure 1 illustrated the overall study design. In brief, a total of 3541, 2186 and 1364 DEGs were identified from the 
GSE60427, GSE217411 and GSE115601 datasets, respectively. In the GEO datasets, volcano plots (Figure 2A-C) and 
heatmaps (Supplementary Figure 1) were used to illustrate the dysregulated genes (including upregulated and downreg-
ulated). Among these datasets, 67 common DEGs were extracted, including 48 upregulated and 19 downregulated genes 
(Supplementary Table 3; Figure 2D).

Functional annotation of DEGs
After DEGs were selected, GO and KEGG pathway enrichment analyses were performed to explore the biological 
functions of these genes involving three functional categories: BP, MF, and CC. Major BP terms associated with DEGs 
included regulation of the immune effector process, neutrophil activation and neutrophil mediated immunity 
(Figure 3A). Major CC terms associated with these DEGs included the secretory granule membrane, blood microparticle, 
and tertiary granule (Figure 3B). Finally, MF-associated GO terms were mainly associated with sulfur compound binding, 
heparin binding, glycosaminoglycan binding, etc. (Figure 3C). According to KEGG pathway analysis results, the DEGs 
were mainly enriched for pathways related to complement and coagulation cascades, Staphylococcus aureus infection, and 
neutrophil extracellular trap formation (Figure 3D).

PPI network construction and hub gene selection
The PPI network of DEGs obtained from STRING was subjected to the MCODE plugin of Cytoscape to analyze 
significant modules. A total of 38 nodes and 84 edges were mapped in the PPI network (Figure 4A). From these modules, 
the top functional cluster of modules was selected based on the cutoff criteria of node > 3 and score > 3 (Figure 4B).

Then, the key genes with degree connectivity were ranked by the CytoHubba plugin of Cytoscape. Finally, five 
intersecting genes (TLR4, ITGAM, C5AR1, FCER1G and FCGR2A) with the highest degree were considered hub genes for 

https://f6publishing.blob.core.windows.net/151eb643-f8e5-4189-8a95-49b51dc17844/WJD-15-170-supplementary-material.pdf
https://f6publishing.blob.core.windows.net/151eb643-f8e5-4189-8a95-49b51dc17844/WJD-15-170-supplementary-material.pdf
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Figure 2 The expression levels of differentially expressed genes in three datasets. A-C: The volcano plot distribution of differentially expressed 
genes (DEGs) of GSE60427 (A), GSE27411 (B) and GSE115601 (C). The blue dots indicate the screened downregulated DEGs, red dots indicate the screened 
upregulated DEGs, and the grey dots indicate genes with no significant differences; D: The Venn diagram of DEGs based on the three datasets. DEGs: Differentially 
expressed genes.

further analyses (Figure 4C and D).

Validation of hub genes in human gastric tissues
Expression levels of the five hub genes in the three datasets are shown in Supplementary Figure 2; and were significantly 
upregulated in patients with either H. pylori infection or T2DM alone compared to negative controls. Human gastric 
tissues from four groups were collected (control group, H. pylori infection alone group, T2DM alone group and T2DM 
with H. pylori infection group). All included patients underwent upper gastrointestinal endoscopy and were patholo-
gically diagnosed with chronic superficial gastritis without acute inflammation or atrophy according to the Sydney 
System[26]. The baseline characteristics of the groups are shown in Supplementary Table 4. Through RT-qPCR analysis, 
we found that TLR4, ITGAM, C5AR1, FCER1G and FCGR2A were expressed at significantly higher levels in the T2DM 
with H. pylori infection group (P < 0.05) than in the T2DM group or the H. pylori infection group alone (Figure 4E).

Immune infiltration analysis
Using the CIBERSORT algorithm, we explored differences in immune infiltration between H. pylori-infected versus 
normal gastric tissues. Compared with normal tissues, H. pylori-infected gastric tissues generally contained a higher 
proportion of regulatory T cells, activated NK cells, eosinophils and neutrophils, whereas the proportions of plasma cells, 
activated mast cells and M2 macrophages were lower in H. pylori-infected gastric tissues (Figure 5A and B).

The results obtained using TIMER showed that TLR4 and ITGAM expression correlated positively with CD8+ T cells, 
CD4+ T cells, macrophages, neutrophils, and DCs. C5AR1, FCER1G and FCGR2A expression was significantly associated 
with infiltration of B cells, CD8+ T cells, macrophages, neutrophils, and DCs, among which their mRNA expression levels 
all correlated negatively with B cells (Figure 5C).

https://f6publishing.blob.core.windows.net/151eb643-f8e5-4189-8a95-49b51dc17844/WJD-15-170-supplementary-material.pdf
https://f6publishing.blob.core.windows.net/151eb643-f8e5-4189-8a95-49b51dc17844/WJD-15-170-supplementary-material.pdf
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Figure 3 Functional enrichment analysis of common differentially expressed genes. A: Biological process analysis of differentially expressed genes 
(DEGs); B: Cellular component analysis of DEGs; C: Molecular function analysis of DEGs; D: Kyoto Encyclopedia of Genes and Genomes pathway analysis of DEGs. 
BP: Biological process; CC: Cellular component; MF: Molecular function; KEGG: Kyoto Encyclopedia of Genes and Genomes.

Prediction of further miRNA and analysis of gene-miRNA network
A total of 225 miRNAs was predicted after we uploading the 5 identified hub genes to the miRWalk database. The 
gene–miRNA interaction network is shown in Figure 6A. We detected 13 miRNAs (miR-6848-5p, miR-6796-5p, miR-6740-
5p, miR-8060, miR-6730-5p, miR-5698, miR-12119, miR-6881-5p, miR-6846-5p, miR-7703, miR-6728-5p, miR-7107-5p and 
miR-1914-3p) associated with at least two gene cross-links, as shown in Supplementary Table 5.

TF-gene interaction network
The top ranked TFs were SPI1, MECOM, GATA2, TP63, SALL4, GATA1, MITF, RUNX1 and FLI1 (Figure 6B). Based on 
the results, we found that TLR4 was coregulated by 26 TFs, the highest among the identified hub genes.

Functional analysis of hub genes by single-gene GSEA
We performed GSEA on TLR4, ITGAM, C5AR1, FCER1G and FCGR2A to explore the role of these genes in the course of 
H. pylori infection and T2DM and found the top 10 significant items (Figure 7). According to GSEA results, it suggested 
that all these five genes play a direct or indirect role in the pathogenesis of H. pylori infection and T2DM. For example, 
FCG2A is involved in the signaling pathway of “type 1 diabetes mellitus” and the “insulin signaling pathway”, C5AR1 
and FCER1G are involved in the signaling pathway of “type 1 diabetes mellitus”, and ITGAM is involved in the signaling 
pathway of “glycosaminoglycan biosynthesis chondroitin sulfate”.

https://f6publishing.blob.core.windows.net/151eb643-f8e5-4189-8a95-49b51dc17844/WJD-15-170-supplementary-material.pdf
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Figure 4 Protein-protein interaction network showing interactions between common genes and identification of differentially expressed 
genes from this network. A: The protein-protein interaction (PPI) network of differentially expressed genes was constructed by Cytoscape software. The criteria 
of the PPI network were as follows: Confidence score ≥ 0.4 and a maximum number of interactions ≤ 5; B: The top module of the PPI network. MCODE score ≥ 3, 9 
nodes and 21 edges; C: Construction of the PPI network among the 5 hub genes; D: Coexpression analysis of the 5 hub genes using STRING; E: The expression of 
5 hub genes in clinical specimens by RT-qPCR analysis. aP < 0.05; bP < 0.01). T2DM: Type 2 diabetes mellitus; H. pylori: Helicobacter pylori.
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Figure 5 The relationship between hub genes and immune infiltration. A and B The differences in immune infiltration between Helicobacter pylori (H. 
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pylori)-infected gastric tissues and normal gastric tissues; C: Correlation analysis between hub gene expression and immune cell infiltration levels in H. pylori 
infection. H. pylori: Helicobacter pylori. aP < 0.05, bP < 0.01, cP < 0.001.

DISCUSSION
Approximately 50% of the world’s population is infected with H. pylori, and the infection rate is even higher in patients 
with T2DM. Infected patients with T2DM have worse blood glucose control abilities, with great social and economic 
burdens[7,8]. However, the detailed mechanism of the interaction between T2DM and H. pylori infection remains 
unknown. Therefore, it is necessary to increase our understanding of the underlying mechanisms leading to the risk of H. 
pylori infection and T2DM to develop effective treatment approaches.

In this study, we investigated the biological functions, expression levels, and correlations with immune infiltrates of 
common genes with significantly altered expression in both H. pylori-infected individuals and T2DM patients through 
integrated bioinformatics analyses. Our results showed that expression of 67 overlapping genes was altered in gastric 
samples from both H. pylori-infected individuals and T2DM patients. Among these genes, 48 were upregulated and 19 
downregulated. Five hub genes were further identified through PPI analysis. However, regardless of the statistical 
probability, the causality between a candidate genotype and the phenotype of the host remains uncertain[27]. To further 
identify the relationship between genotype (the 5 hub genes) and phenotype (H. pylori-associated T2DM), rigorous 
validation of mechanisms at the molecular, cellular, tissue, and whole-organism levels is needed.

Chronic low-grade inflammation has been definitively shown to correspond with obesity[28] and diabetes[29]. 
However, whether obesity and diabetes drive the inflammation or vice versa remains to be elucidated. Gut microbiota 
play a critical role in the development of the host immune system, making it an important immune organ[30]. Dis-
turbance of the gut microbiota promotes inflammation within the lining of the intestines[31]. The dysbiosis of the gut 
results in bacterial infiltration, allowing microbes to contact the epithelium and causing inflammation[32]. Toll-like 
receptors (TLR) play a key role in host recognition of microbes[33]. TLR4 has been implicated in recognition of bacterial 
lipopolysaccharides, a key element of the cell walls of gram-negative bacteria. This triggers the expression of proinflam-
matory cytokines and chemokines, including tumor necrosis factor-alpha[34]. This inflammatory response is strongly 
linked to insulin resistance, and both TLR4 and its coreceptor CD14 are needed to induce insulin resistance in mice[35]. It 
is believed that TLR4, one of the TLR family members, possesses the potential to trigger nuclear factor-κB when 
confronted with short-chain fatty acids. Consequently, this leads to subsequent stimulation of the immune system[36]. 
Therefore, the inflammation caused by TLR4 serves a crucial function in the development of T2DM related to H. pylori. 
The study conducted by Devaraj et al[37] exhibited a notable rise in the level of TLR4 expression among individuals 
diagnosed with type 1 diabetes. This finding implies that TLR4 actively participates in the inflammatory state associated 
with diabetes. Moreover, knockout of TLR4 alleviated inflammation in rats with diabetes and TLR4 antagonists 
attenuated atherogenesis in mice with diabetes[38]. Based on our results, we speculated that TLR4 participates in the 
pathogenesis of H. pylori-associated T2DM via the TLR signaling pathway.

Other hub genes, ITGAM[39], C5AR1[40], FCER1G[41] and FCGR2A[42], are also reported to be associated with 
diabetes. ITGAM, a monocyte/macrophage marker, is upregulated in T2DM patients[39]. FCER1G was identified as a 
significant gene related to diabetic kidney disease. Gene Expression Omnibus validation using additional datasets 
showed that FCER1G is upregulated in diabetic glomerular lesions compared with normal tissues. This report also 
revealed that abnormal upregulation of FCER1G is related to diabetic glomerular lesions[41].

Clinical variability between individuals infected with any pathogen is enormous, ranging from silent to lethal. One of 
the main reasons is immunity differs among individuals[43]. Tumor-infltrating immune cells function together to defend 
the body against invading factors, such as bacterial infection. Therefore, they can be used as important predictors for 
diagnosis and treatment of diseases[44]. Based on KEGG pathway and immune cell infiltration analyses, we found that H. 
pylori infection is associated with multiple immune cell changes, especially NK cells and regulatory T cells. Through 
single-gene GSEA, we found that high expression of the hub genes TLR4, FCGR2A, and FCER1G was associated with NK 
cell-mediated cytotoxicity in diabetes, which suggests that H. pylori infection might change hub gene expression and 
downstream NK cells to induce T2DM. Further analysis suggested that these 5 hub genes all correlated with B cells, CD8+ 
T cells, macrophages, neutrophils, and DCs. It has been shown that isolated NK cells from T2DM subjects show defects in 
the NK cell-activating receptors NKG2D and NKp46, in association with functional defects in NK degranulation capacity
[45]. Restrepo et al[46] demonstrated that chronic hyperglycaemia is significantly associated with defects in complement 
receptors and Fcγ receptors on isolated monocytes, resulting in phagocytosis impairment. An in vitro study using 
macrophages derived from mouse bone marrow and treated with high glucose showed reduced antibacterial activity and 
phagocytosis for the treated macrophages[47]. In the same study, reduced phagocytosis was shown in peritoneal 
macrophages from mice with T2DM. This might be related to the reduced glycolytic capacity and reserve of macrophages 
following long-term sensitization to high levels of glucose. Reactive oxygen species production was reportedly reduced in 
isolated neutrophils from T2DM tuberculosis patients following phorbol 12-myristate 13-acetate stimulation, and this 
defect in reactive oxygen species production was associated with increased levels of resistin in T2DM patient serum[48]. 
In a comparable study, Perner et al[49] documented the inhibition of superoxide production in neutrophils isolated from 
healthy individuals when subjected to a high-glucose environment. This hindrance was observed to be a consequence of 
the suppression of glucose-6-phosphate dehydrogenase, which disrupted the generation of nicotinamide adenine 
dinucleotide phosphate. Thus, we speculate that these 5 hub genes are involved in H. pylori-associated T2DM through 
immune infiltration. We will validate their relationship through experiments in the future.
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Figure 6 The interaction of hub genes with miRNA/transcriptional factors. A: Interaction network between the hub genes and their targeted miRNAs. 
Hub genes are presented in red squares, whereas miRNAs are shown in green circles. Orange circles represent miRNAs targeting two or more genes 
simultaneously; B: Construction of the transcriptional factor-gene interaction network from Cytoscape.
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Figure 7 Results of single-gene gene set enrichment analysis. A-E: Helicobacter pylori infection; F-J: Type 2 diabetes mellitus.
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This study provides some new insights into the pathogenesis of H. pylori-associated T2DM. However, several 
limitations should be mentioned. First of all, this study had a relatively small sample size and a larger sample size would 
be necessary for further investigations. Secondly, hub genes were identified using bioinformatics analysis and validated 
by a small clinical sample. Validation including RNA-seq from a larger clinical cohort is needed. It is necessary to 
investigate the potential underlying mechanisms involved in these findings in future large-scale prospective studies. 
Thirdly, despite statistical probability, the causality between a candidate genotype and the phenotype of the host is 
uncertain[27]. To identify the relationship between genotype (the 5 hub genes) and phenotype (H. pylori-associated T2DM), 
rigorous validation of mechanisms at the molecular, cellular, tissue, and whole-organism levels is needed.

CONCLUSION
We report 67 common DEGs and five hub genes (TLR4, ITGAM, C5AR1, FCER1G and FCGR2A) in H. pylori infection and 
T2DM. We validated expression of the five hub genes by RT-qPCR. All hub genes were significantly upregulated in 
T2DM patients with H. pylori infection compared with noninfected T2DM patients. Immune infiltration analysis showed 
that H. pylori-infected gastric tissues generally contained a higher proportion of regulatory T cells, activated NK cells, 
eosinophils and neutrophils. Our gene-miRNA analysis detected 13 miRNAs with at least two gene cross-links, and TF-
gene interaction networks showed that TLR4 to be coregulated by 26 TFs, the largest number of TFs among the 5 hub 
genes. This study provides a new idea for elucidating the pathogenesis of H. pylori-associated T2DM at the genetic level.

ARTICLE HIGHLIGHTS
Research background
This prevalence rate of Helicobacter pylori (H. pylori) is high, especially in less developed countries. Its infection related to 
not only gastric diseases but also extragastric diseases such as type 2 diabetes mellitus (T2DM). However, the underlying 
mechanisms connecting H. pylori infection and T2DM remains unclear.

Research motivation
The potential molecular connections between H. pylori infection and T2DM are needed to be identified, in order to further 
elucidate the pathogenesis and the new treatment strategy of H. pylori-infected T2DM.

Research objectives
We aimed to explore the potential molecular connections between H. pylori infection and T2DM using bioinformatics 
analysis. In the future research, we will investigating these identified genes and downstream signaling pathway to 
further understand their relationship.

Research methods
Differentially expressed genes from three datasets commonly present in patients with H. pylori infection and T2DM were 
identified. Hub genes were validated by RT-qPCR using human gastric biopsy samples. Correlations between hub genes 
and immune cell infiltration, miRNAs, and transcription factors were further analyzed.

Research results
This is the first study to identify the key genes and pathways associated with H. pylori infection and T2DM using 
integrated bioinformatics analysis. We identified five hub genes, all of which were closely related to immune cell infilt-
ration.

Research conclusions
We were the first to find out that the 5 hub genes identified are playing important roles in the pathogenesis of H. pylori-
infected T2DM.

Research perspectives
It is necessary to investigate the potential underlying mechanisms involved in these findings in future large-scale 
prospective studies.
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Abstract
BACKGROUND 
Diabetic kidney disease (DKD) is a prevalent complication of diabetes that often 
requires hemodialysis for treatment. In the field of nursing, there is a growing 
recognition of the importance of humanistic care, which focuses on the holistic 
needs of patients, including their emotional, psychological, and social well-being. 
However, the application of humanistic nursing in the context of hemodialysis for 
DKD patients remains relatively unexplored.

AIM 
To explore the experience of humanistic nursing in hemodialysis nursing for DKD 
patients.

METHODS 
Ninety-six DKD patients treated with hemodialysis from March 2020 to June 2022 
were included in the study and divided into the control cluster (48 cases) and the 
study cluster (48 cases) according to different nursing methods; the control cluster 
was given routine nursing and the study cluster was given humanized nursing. 
The variances of negative emotion mark, blood glucose, renal function, the 
incidence of complications, life mark and nursing satisfaction before and after 
nur-sing were contrasted between the two clusters.

RESULTS 
No significant difference in negative emotion markers between the two clusters 
were observed before nursing (P > 0.05), and the negative emotion markers of the 
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two clusters decreased after nursing. The Hamilton Anxiety Rating Scale and Hamilton Depression Rating Scale 
markers were lower in the study cluster than the control cluster. The healing rate of patients in the study cluster 
was significantly higher than the control cluster (97.92% vs 85.42%, P < 0.05). Blood glucose parameters were not 
significantly different between the groups prior to nursing (P > 0.05). However, after nursing, blood urea nitrogen 
and serum creatinine (SCr) levels in the study cluster were lower than those in the control cluster (P < 0.05). The 
incidence rate of complications was significantly lower in the study group compared to the control cluster (6.25% vs 
20.83%, P < 0.05). There was no significant difference in the life markers between the two clusters before nursing. 
While the life markers increased after nursing for both groups, the 36-item health scale markers in the study cluster 
were higher than those within the control cluster (P < 0.05). Finally, the nursing satisfaction rate was 93.75% in the 
study cluster, compared to 75% in the control cluster (P < 0.05).

CONCLUSION 
In hemodialysis for DKD patients, the implementation of humanistic nursing achieved ideal results, effectively 
reducing patients’ psychological negative emotion markers so that they can actively cooperate with the diagnosis 
and nursing, facilitate the control of blood glucose and the maintenance of residual renal function, reduce the 
occurrence of complications, and finally enhance the life quality and nursing satisfaction of patients. It is worthy of 
being widely popularized and applied.

Key Words: Diabetic kidney disease; Hemodialysis; Humanistic nursing; Incidence of complication; Effect

©The Author(s) 2024. Published by Baishideng Publishing Group Inc. All rights reserved.

Core Tip: The study aimed to explore the experience of humanistic nursing in hemodialysis for patients with diabetic kidney 
disease (DKD). The results showed that humanistic nursing effectively reduced patients’ negative emotions, improved 
healing, controlled blood glucose levels, and maintained renal function. It also reduced the incidence of complications and 
enhanced patients’ life quality and nursing satisfaction. These findings highlight the importance of humanistic nursing in 
improving the care and well-being of DKD patients undergoing hemodialysis. The implementation of humanistic nursing 
should be widely promoted and applied in clinical practice.

Citation: Chai XY, Bao XY, Dai Y, Dai XX, Zhang Y, Yang YL. Experience of humanistic nursing in hemodialysis nursing for 
patients with diabetic kidney disease. World J Diabetes 2024; 15(2): 186-195
URL: https://www.wjgnet.com/1948-9358/full/v15/i2/186.htm
DOI: https://dx.doi.org/10.4239/wjd.v15.i2.186

INTRODUCTION
Diabetic kidney disease (DKD) is a renal disease that occurs as a result of diabetic injury. Its incidence is increasing each 
year due to the rising prevalence of diabetes[1]. Hemodialysis is the primary treatment for DKD, as it effectively 
eliminates harmful substances from the bloodstream, thus improving the patients’ quality of life. However, it is important 
to note that DKD patients undergoing hemodialysis face unique challenges compared to other dialysis patients. Firstly, 
the underlying cause of their kidney disease is different, stemming from diabetic kidney injury. Secondly, the close 
association between DKD and the increasing prevalence of diabetes often leads to additional complications and 
comorbidities. Lastly, DKD patients may encounter specific challenges such as disease and program awareness, adhering 
to treatment regimens, and a higher likelihood of developing complications during hemodialysis[2]. These distinctions 
highlight the need for tailored interventions and care approaches for this particular patient population.

Hemodialysis is a treatment method for kidney disease caused by diabetes complications. Over time, uncontrolled 
diabetes can damage the blood vessels and filters in the kidneys, impairing their function. Hemodialysis involves the use 
of a machine called a dialyzer to filter the blood, removing waste products and excess fluids that damaged kidneys can no 
longer effectively eliminate. This treatment helps maintain fluid and electrolyte balance, control blood pressure, and 
remove accumulated waste products. It is important to note that hemodialysis is not a cure for DKD, but rather a 
supportive therapy to manage symptoms and maintain overall health. Other treatments, such as medication, lifestyle 
modifications, and kidney transplantation, may also be considered as part of the DKD management plan.

However, hemodialysis is an invasive procedure that can be time-consuming, which presents specific challenges and 
requirements. Additionally, many patients lack awareness about their disease and the hemodialysis program, leading to 
low compliance with diagnosis and care. This can further contribute to complications during hemodialysis and poor 
patient prognosis[3,4]. In response to these challenges, nursing measures are often employed to enhance patient care. One 
such approach is humanistic nursing, which has emerged because of evolving nursing models. Humanistic nursing 
focuses on treating patients holistically, considering their physical, emotional, and psychological needs. By incorporating 
this approach, healthcare professionals aim to provide individualized and compassionate care, fostering a positive patient 
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experience during hemodialysis. To investigate the application of humanistic nursing in hemodialysis nursing for DKD 
patients, this paper aims to share our experiences and findings.

MATERIALS AND METHODS
Study subjects
Ninety-six DKD patients who received hemodialysis from March 2020 to June 2022 were included in the study and 
divided into the control cluster (48 cases) and the study cluster (48 cases) according to different nursing methods. Among 
them, there were 25 males and 23 females within the control cluster, aged 38-77 years, with an average of (56.43 ± 6.84) 
years. In the study cluster, there were 26 males and 22 females, aged 39-78 years, with an average of (57.05 ± 7.11) years. 
Inclusion criteria were as follows: (1) DKD; (2) Receiving hemodialysis for the first time; and (3) Informed consent. 
Exclusion criteria were as follows: (1) Mental, consciousness and communication disorders; (2) Incomplete follow-up 
data; (3) Renal parenchymal injury caused by other causes; and (4) Combined with other serious diabetic complications 
such as myocardial infarction, cirrhosis of the liver and kidney failure. To implement random allocation, we used a 
random number generator or statistical software to randomly assign patients to different groups.

Setting and participants
Control cluster: Routine nursing: (1) Inform relevant precautions, closely observe all vital signs of patients, and timely 
report to the doctor once abnormalities are found; (2) Give specific guidance in diet, life and exercise; (3) Regularly test 
blood glucose to prevent the occurrence of hypoglycemia; (4) Do an excellent job in daily ward environment nursing; (5) 
Prevent and symptomatically treat complications, including maintaining skin cleanliness, oral care, puncture site care, 
etc.; and (6) Vascular access and catheter care, puncture with rope ladder method and satisfactory buckle method during 
puncture, and continuously replace the puncture site to ensure that the fistula can be evenly stressed; operate in strict 
accordance with asepsis during puncture, catheterization process, upper and bottom dialysis machines, replace the 
catheter heparin cap after the end of dialysis and clean and disinfect the catheter, and inform patients to keep the skin 
around the catheter dry.

Study clusters: Humanized nursing was implemented on the basis of the control cluster, and all nursing staff were 
trained before implementation to enhance their own perception of humanized nursing, and patient-centered nursing was 
always achieved in nursing. The measures included: (1) Health education: Active communication with patients, health 
education could be conducted in the form of health knowledge lectures, one-on-one education, and WeChat video push, 
including methods, processes, precautions, and effectiveness, and the advantages of humanized nursing were informed 
to patients, and similar cases of successful nursing were listed to enhance patient confidence; (2) Psychological 
counseling: Communication with patients with mild tone, understanding their genuine emotions, and guiding patients to 
actively name their concerns, and targeted counseling was given for negative emotional causes, including cognitive 
therapy, attention transfer method, music relaxation therapy, and emotional catharsis method; (3) Fresh green plants 
were placed indoors to relax the patient’s mood; (4) Diet and exercise individualized nursing: The patient’s condition, 
weight and self-metabolism were analyzed, the most appropriate daily food intake and exercise were calculated for the 
patient, and personalized guidance was made. Diet instructs patients to eat more foods containing calcium, protein-rich 
and fresh vegetables, low-sugar fruits, etc.; and (5) Obtain social support: Communicate with patients’ families, often 
stand at the patient’s point of view to understand their behavior and enhance the participation of family members in 
patient care, and strive to create a harmonious, warm, and relaxed family environment at home.

Variables
Negative emotion comparative: The Hamilton Anxiety Rating Scale (HAMA) and Hamilton Depression Rating Scale 
(HAMD) were used to assess the negative emotion[5]. HAMA is a standardized assessment tool used by healthcare 
professionals to quantify the severity of anxiety symptoms in individuals. It measures the presence and intensity of 
various anxiety-related symptoms, such as tension, apprehension, and insomnia. On the other hand, HAMD is a widely 
used instrument that evaluates the severity of depressive symptoms. It assesses factors like mood, guilt, sleep 
disturbances, and suicidal tendencies. Both scales provide valuable insights into the level of anxiety and depression 
experienced by individuals, aiding in diagnosis, treatment planning, and monitoring of progress over time.

Comparative of compliance rate: The compliance of patients is often judged based on the following criteria: (1) Complete 
compliance: The patient follows the doctor’s advice throughout and actively cooperates with nursing staff; (2) Partial 
compliance: The patient may not fully cooperate but can complete nursing activities under the guidance of nursing staff; 
and (3) Non-compliance: The patient completely refuses to cooperate with nursing staff. Patient compliance is determined 
by observing and evaluating their interaction with the healthcare team and their adherence to treatment and nursing 
plans. However, it is important to consider individual differences, patient education level, and social support when 
assessing patient compliance[6].

Comparative blood glucose parameters: A total of 4 mL of peripheral venous blood was drawn from the patients in a 
fasting state or 2 h after a meal, and the supernatant was collected after centrifugation[7].

Comparative renal function indexes: A total of 4 mL of peripheral venous blood was drawn from the patients under a 
fasting state, and the supernatant was collected after centrifugation to detect blood urea nitrogen (BUN) and serum 
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Figure 1 Comparative of negative emotions. A: Before treatment, Hamilton Anxiety Rating Scale (HAMA) scores of the two groups were compared; B: After 
treatment, HAMA scores of the two groups were compared; C: Before treatment, Hamilton Depression Rating Scale (HAMD) scores of the two groups were 
compared; D: After treatment, HAMD scores of the two groups were compared. aP < 0.05, the difference between groups with statistical significance. HAMA: Hamilton 
Anxiety Rating Scale; HAMD: Hamilton Depression Rating Scale.

creatinine (SCr) by automatic biochemical analyzer[8].

Comparison of complications: Common complications in hemodialysis include infection, catheter dysfunction, 
hypoglycemia, hypotension, and heart failure. Intradialytic hypotension (IDH) is common after dialysis. IDH, which can 
be caused by aggressive ultrafiltration due to weight gain during dialysis, can lead to myocardial stunning and cardiac 
arrhythmias, which are associated with an increased risk of death[9]. Obviously, kidney failure has a major impact on 
heart function. Studies have shown that more than half of deaths in patients with end-stage renal disease (ESRD) are due 
to cardiovascular disease, with arrhythmias and cardiac arrest accounting for 38 percent of deaths[10]. The incidence of 
ESRD has nearly doubled in the past 20 years. Infection is the second leading cause of death in this patient population, 
and vascular access-associated infection is the most common identifiable source of infection in hemodialysis patients[11]. 
The quality of vascular access is the most important factor that determines dialysis treatment efficacy. Vascular lumen 
stenosis can lead to increased risk of thrombosis, catheter dysfunction and adverse effects on blood flow[12]. Case studies 
have shown that glucose is transferred from the dialysate into the blood during dialysis and reactive hypoglycemia 
occurs after the end of dialysis. Persistent hypoglycemia can lead to permanent brain damage[13]. Therefore, monitoring 
the above complications is of great significance for evaluating the efficacy of dialysis. All complications that occurred 
during hemodialysis were recorded for both clusters[14].

Quality-of-life comparison: Patient quality-of-life was assessed using the 36-item health scale (SF-36) with a total 
possible score of 100 points[15].

Comparison of nursing satisfaction rate: The self-generated satisfaction questionnaire was used to evaluate satisfaction 
with the nursing care received, out of a total of 100 points. The score ranges were as follows: Satisfaction: ≥ 80 points, 
essential satisfaction: 60-79 points, dissatisfaction: < 60 points; satisfaction rate = (satisfaction + essential satisfaction)/
total × 100%[16].

Statistical methods
Measurement data were expressed as (mean ± SD), and t-tests were used. Enumeration data were expressed as n (%), and 
a χ2 test was used. P < 0.05 was considered statistically significant and data were analyzed in GraphPad Prism 8 software.

RESULTS
Negative emotion contrast
There was no observable variance in negative emotion marks between the two clusters before nursing care (P > 0.05). 
After nursing, the negative emotion marks of the two clusters decreased, and the HAMA and HAMD marks of the study 
cluster were lower than those of the control cluster (P < 0.05) (Figure 1).

Comparison of compliance rates
The compliance rate of patients in the control cluster was 85.42%, whereas it increased to 97.92% in the study cluster (P < 
0.05) (Table 1).
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Table 1 Comparative of compliance rate

Cluster Cases Full compliance Basic compliance Non-compliance Compliance rate

Control cluster 48 16 25 7 41 (85.42)

Study cluster 48 30 17 1 47 (97.92)

χ2 / / / / 4.909

P value / / / / 0.027

Data are n or n (%).

Table 2 Comparative of complication rate

Cluster Cases Infection Catheter dysfunction Hypotension Hypoglycemia Heart failure Occurrence

Control cluster 48 2 3 2 2 1 10 (20.83)

Study cluster 48 1 1 1 1 0 3 (6.25)

χ2 / / / / / / 4.360

P value / / / / / / 0.037

Data are n or n (%).

Table 3 Comparative of life

Cluster Time Social functioning Physical function Role function Affective function Cognitive function

Pre-nursing 51.67 ± 4.47 56.27 ± 3.57 50.14 ± 4.27 62.11 ± 4.27 61.21 ± 4.72Control cluster

Post-carea 58.57 ± 4.28 62.52 ± 3.74 58.16 ± 3.88 68.65 ± 5.08 69.66 ± 5.17

Pre-nursing 51.59 ± 4.07 56.31 ± 4.07 50.09 ± 4.13 62.09 ± 4.31 61.26 ± 4.86Study cluster

Post carea,b 65.25 ± 5.63 67.23 ± 4.24 67.15 ± 4.25 77.15 ± 5.52 78.65 ± 5.06

aP < 0.05, intra-cluster comparative.
bP < 0.05, inter-cluster comparative.
Data are points summarized as mean ± SD.

Comparison of blood glucose indicators
There was no significant variance in blood glucose indices between the two clusters before nursing (P > 0.05). After 
nursing, blood glucose indices decreased in both clusters, and fasting plasma glucose (FPG), 2-hour plasma glucose 
(2hPG) and hemoglobin A1c (HbA1c) levels in the study cluster were lower than those within the control cluster (P < 
0.05) (Figure 2).

Comparison of renal function indicators
There was no significant variance in renal function indices between the two clusters before nursing (P > 0.05). After 
nursing, the renal function indices decreased for both clusters, and BUN and SCr levels in the study cluster were lower 
than those within the control cluster (P < 0.05) (Figure 3).

Comparison of complications
The complication rate of the control cluster was 20.83%, compared to 6.25% in the study (P < 0.05) (Table 2). Complic-
ations included infection, catheter dysfunction, hypotension, hypoglycemia, and heart failure.

Quality of life comparison
There were no significant differences in the quality-of-life marks between the two clusters before nursing (P > 0.05). The 
quality-of-life marks increased for both groups after nursing, but the SF-36 marks were higher in the study cluster than 
the control cluster (P < 0.05) (Table 3). The questionnaire covers eight domains: Physical functioning, role limitations due 
to physical health, bodily pain, general health perceptions, vitality, social functioning, role limitations due to emotional 
problems, and mental health.
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Figure 2 Comparative of blood glucose indicators. A: Comparison of fasting plasma glucose (FPG) level before and after treatment in control group; B: 
Comparison of FPG levels before and after treatment in the study group; C: Comparison of 2-h plasma glucose (2hPG) level in control group before and after 
treatment; D: Comparison of 2hPG levels before and after treatment in the study group; E: Comparison of hemoglobin A1c (HbA1c) level before and after treatment in 
control group; F: Comparison of HbA1c levels before and after treatment in the study group. aP < 0.05, the difference between groups with statistical significance. 
FPG: Fasting plasma glucose; HbA1c: Hemoglobin A1c; 2Hpg: 2-h plasma glucose.

Comparison of nursing satisfaction rate
The nursing satisfaction rate was higher in the study cluster compared to the control cluster (93.75% vs 75%; P < 0.05) 
(Figure 4).

DISCUSSION
Compared to conventional hemodialysis patients with nephropathy, hemodialysis patients with DKD have a higher risk 
of discomfort and complications, resulting in a lower degree of nursing cooperation. Therefore, it is very important to 
strength the care of hemodialysis patients with DKD in the hemodialysis room[17,18]. In routine nursing, attention is 
focused on healing and attention to the patient’s psychology is neglected. This contributes to passivity and singularity, 
which leads to the high negative emotions of patients during healing and will hinder healing progress in serious cases. 
Overall, there is not a positive effect from nursing care; therefore, the exploration of a more effective nursing method is 
necessary[19].
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Figure 3 Comparative of renal function indicators. A: Comparison of blood urea nitrogen (BUN) levels before and after treatment in control group; B: 
Comparison of BUN levels before and after treatment in the study group; C: Comparison of serum creatinine (SCr) level before and after treatment in control group; 
D: Comparison of SCr levels before and after treatment in the study group. aP < 0.05, the difference between groups with statistical significance.

Figure 4 Comparative of nursing satisfaction rate. aP < 0.05, the difference between groups with statistical significance.

With the continuous change of nursing model, humanistic nursing appears and is widely used in various fields. 
Humanistic nursing can be traced back to human nursing at the earliest. It requires nursing staff to have the cognition of 
human science, to implement humanistic nursing for patients, in order to make the patient’ psychology in a satisfactory 
and comfortable state to actively cooperate with nursing staff to complete the whole nursing, to achieve the best nursing
[20]. With the continuous enhancement of humanistic nursing, its core refers to respecting the patient’s life value, 
personality dignity, privacy and face in nursing, without making them feel embarrassed and uncomfortable, which will 
greatly reduce the psychological discomfort caused by physical discomfort, so as to enhance the patient’s negative 
emotions[21,22]. Humanized nursing attaches importance to the psychological needs of patients, through effective 
communication to obtain the real ideas of patients’ thoughts, and through scientific and appropriate methods to guide 
them, in order to help patients establish the best rehabilitation state. Relevant studies have found that meeting the 
psychological needs of patients can enhance their own defense against stress response, facilitate the reconstruction of 
psychological balance, and is important for the enhancement of healing and body immunity[23].

Reasonable control of blood glucose is of great meaning for the enhancement of renal function in patients with DKD, 
and the purpose of nursing implementation is to help patients achieve the expected healing goals, so the detection of 
blood glucose and renal function indicators in patients can reflect the effect of nursing implementation to a certain extent. 
Among them, HbA1c has been officially included in the diagnostic criteria of diabetes, FPG and 2hPG are also the main 
diagnostic criteria, and they are used for the diagnosis of blood glucose levels in diabetic patients[24]. Diabetic 
nephropathy is a chronic kidney disease. Studies have shown that inflammation and depression have a two-way 
connection between people with chronic disease[25]. In chronic kidney disease, the increase in anxiety susceptibility may 
be associated with the inflammatory process of the toxin, the increase of oxidative stress, brain microvascular damage 
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and the participation of the renin-angiotensin system[26]. So we can speculate that after nursing interventions, the 
patient’s anxiety and depression were relieved. This affects the function of inflammation and kidney function, which 
affects the level of blood creatinine.

SCr and BUN are the parameters usually used to estimate renal function of which SCr is a small molecule substance 
metabolized by muscle and BUN is a nitrogen-containing compound in plasma, and the excretion of both into the body is 
completed by glomerular filtration. Glomerular filtration is also decreased when kidney function is compromised, 
causing BUN and SCr to be incompletely eliminated from the body, thus resulting in increased serum levels of both[27]. 
This study found that the implementation of humanistic nursing can better control the blood glucose level of patients 
with DKD facilitating the maintenance of residual renal function. The study found that after the implementation of 
humanistic nursing, the healing, life and nursing satisfaction of patients were remarkably enhanced, and the complic-
ations and negative emotions were remarkably reduced, which suggests that humanistic nursing has a very high 
application value in hemodialysis.

CONCLUSION
In hemodialysis for patients with DKD, the implementation of humanistic nursing has achieved ideal results, which can 
effectively reduce the psychological negative emotion mark of patients, so that they can actively cooperate with the 
diagnosis and nursing, to facilitate the control of blood glucose and the enhancement of residual renal function, to reduce 
the occurrence of complications, and finally to enhance the life quality and nursing satisfaction of patients. It is worthy of 
being widely popularized and applied. However, the main limitations of our study are the small number of studied 
patients and the too short follow-up time. Our intention is to continue to study these aspects in future research with a 
more wide number of DKD patients.

ARTICLE HIGHLIGHTS
Research background
Diabetic nephropathy is one of the common complications of diabetes, and as the disease progresses, patients may need 
to receive hemodialysis treatment. In the process of receiving hemodialysis, patients need long-term treatment, and the 
condition is changeable, so quality nursing services are needed to improve the treatment effect and the quality of life of 
patients. Humanistic nursing is a kind of patient-centered nursing concept, emphasizing respect for patients’ lives and 
personalities, paying attention to patients’ emotions and needs, and providing patients with comprehensive and person-
alized nursing services.

Research motivation
The traditional hemodialysis nursing model often only focuses on the physiological needs of patients, ignoring the 
psychological and social needs of patients, resulting in patients are prone to anxiety, depression and other adverse 
emotions in the treatment process, affecting the treatment effect. Therefore, the purpose of this study is to explore the 
application effect of anthropogenic nursing in hemodialysis nursing of diabetic nephropathy patients, to provide patients 
with more comprehensive and personalized nursing services.

Research objectives
The first is to discuss the application effect of humanistic nursing in hemodialysis nursing of diabetic nephropathy 
patients; the second is to evaluate the impact of humanistic nursing on patients’ quality of life, mental health and 
satisfaction.

Research methods
A total of 96 diabetic kidney disease patients receiving hemodialysis treatment from March 2020 to June 2022 were 
selected as the study objects. The control group was given routine nursing, while the research group was given 
humanized nursing on this basis, including the following aspects: Nurses and patients fully communicate and exchange, 
understand the patient’s condition, family background, psychological state, etc., to provide personalized nursing services 
for patients; psychological support: Nurses provide psychological counseling and support to patients to help them relieve 
bad emotions and enhance treatment confidence; health education: Nurses provide comprehensive health education to 
patients, including diet guidance, exercise guidance, medication guidance, etc., to improve patients’ self-management 
ability; social support: Nurses provide family and social support to help patients deal with difficulties and problems in 
life. The control group received routine care. At the end of the trial, all patients were assessed for quality of life, mental 
health and satisfaction.

Research results
By comparing data from the experimental and control groups, we found that patients in the experimental group were 
better than those in the control group in terms of quality of life, mental health and satisfaction. After receiving humanistic 
care, anxiety, depression and other bad emotions were effectively alleviated, the treatment effect was improved, and the 
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quality of life was improved. At the same time, the satisfaction of the experimental group was also higher than that of the 
control group.

Research conclusions
Humanistic nursing has a remarkable effect on hemodialysis nursing of diabetic nephropathy patients. Through 
humanistic nursing, patients’ mental health and quality of life have been effectively improved, the treatment effect has 
been improved, and the satisfaction of patients has also been improved. Therefore, we suggest to promote and apply 
humanistic nursing concept in hemodialysis nursing of diabetic nephropathy patients.

Research perspectives
From the perspective of patient needs, understand the physiological, psychological and social needs of patients. From the 
perspective of nursing practice, this paper explores the application method and effect of humanistic nursing concept in 
hemodialysis nursing practice. From the perspective of nursing staff, this paper discusses the requirements of humanistic 
nursing on the quality and working style of nursing staff, and the experience and feeling of nursing staff in the process of 
implementing humanistic nursing.
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Abstract
BACKGROUND 
In China, the prevalence of type 2 diabetes mellitus (T2DM) among diabetic 
patients is estimated to be between 90%-95%. Additionally, China is among the 22 
countries burdened by a high number of tuberculosis cases, with approximately 
4.5 million individuals affected by active tuberculosis. Notably, T2DM poses a 
significant risk factor for the development of tuberculosis, as evidenced by the 
increased incidence of T2DM coexisting with pulmonary tuberculosis (T2DM-
PTB), which has risen from 19.3% to 24.1%. It is evident that these two diseases 
are intricately interconnected and mutually reinforcing in nature.

AIM 
To elucidate the clinical features of individuals diagnosed with both T2DM and 
tuberculosis (T2DM-PTB), as well as to investigate the potential risk factors 
associated with active tuberculosis in patients with T2DM.

METHODS 
T2DM-PTB patients who visited our hospital between January 2020 and January 
2023 were selected as the observation group, Simple DM patients presenting to 
our hospital in the same period were the control group, Controls and case groups 
were matched 1:2 according to the principle of the same sex, age difference ( ± 3) 
years and disease duration difference ( ± 5) years, patients were investigated for 
general demographic characteristics, diabetes-related characteristics, body 
immune status, lifestyle and behavioral habits, univariate and multivariate 
analysis of the data using conditional logistic regression, calculate the odds ratio 
(OR) values and 95%CI of OR values.

https://www.f6publishing.com
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RESULTS 
A total of 315 study subjects were included in this study, including 105 subjects in the observation group and 210 
subjects in the control group. Comparison of the results of both anthropometric and biochemical measures showed 
that the constitution index, systolic blood pressure, diastolic blood pressure and lymphocyte count were 
significantly lower in the case group, while fasting blood glucose and high-density lipoprotein cholesterol levels 
were significantly higher than those in the control group. The results of univariate analysis showed that poor 
glucose control, hypoproteinemia, lymphopenia, TB contact history, high infection, smoking and alcohol 
consumption were positively associated with PTB in T2DM patients; married, history of hypertension, treatment of 
oral hypoglycemic drugs plus insulin, overweight, obesity and regular exercise were negatively associated with 
PTB in T2DM patients. Results of multivariate stepwise regression analysis found lymphopenia (OR = 17.75, 
95%CI: 3.40-92.74), smoking (OR = 12.25, 95%CI: 2.53-59.37), history of TB contact (OR = 6.56, 95%CI: 1.23-35.03) 
and poor glycemic control (OR = 3.37, 95%CI: 1.11-10.25) was associated with an increased risk of developing PTB 
in patients with T2DM, While being overweight (OR = 0.23, 95%CI: 0.08-0.72) and obesity (OR = 0.11, 95%CI: 0.02-
0.72) was associated with a reduced risk of developing PTB in patients with T2DM.

CONCLUSION 
T2DM-PTB patients are prone to worse glycemic control, higher infection frequency, and a higher proportion of 
people smoking, drinking alcohol, and lack of exercise. Lymphopenia, smoking, history of TB exposure, poor 
glycemic control were independent risk factors for T2DM-PTB, and overweight and obesity were associated with 
reduced risk of concurrent PTB in patients with T2DM.

Key Words: Type 2 diabetes; Pulmonary tuberculosis; Blood sugar; Infection; Risk factors

©The Author(s) 2024. Published by Baishideng Publishing Group Inc. All rights reserved.

Core Tip: Diabetes mellitus is a metabolic disorder resulting from a combination of genetic factors, environmental influences, 
and lifestyle choices, which lead to impairments in insulin secretion or function. In recent times, there has been a significant 
increase in the incidence of diabetes accompanied by hyperglycemia as its primary manifestation. By conducting case-
control studies within hospital settings, we aim to examine the distinctive features of patients with type 2 diabetes mellitus 
and pulmonary tuberculosis and investigate the potential risk factors associated with the development of tuberculosis in this 
specific population.

Citation: Shi H, Yuan Y, Li X, Li YF, Fan L, Yang XM. Analysis of the influencing factors and clinical related characteristics of 
pulmonary tuberculosis in patients with type 2 diabetes mellitus. World J Diabetes 2024; 15(2): 196-208
URL: https://www.wjgnet.com/1948-9358/full/v15/i2/196.htm
DOI: https://dx.doi.org/10.4239/wjd.v15.i2.196

INTRODUCTION
Diabetes mellitus (DM) is a metabolic disorder caused by genetic factors, environment and lifestyle caused by defects in 
insulin secretion or function. In recent years, the prevalence of DM, the main manifestation of hyperglycemia, has risen 
sharply, reaching 9.7%[1]. In China, type 2 DM (T2DM) accounts for 90%-95% of in all diabetic patients[2]. Tuberculosis 
(TB) is a chronic infectious disease caused by Mycobacterium tuberculosis (M. tuberculosis)[3], most of latent tuberculosis 
infected people have no obvious clinical symptoms. Patients with latent TB, when body resistance decreases or cell-
mediated allergy increases, develop active TB, with pulmonary tuberculosis (PTB) being the most common[4]. China is 
one of the 22 countries with high TB burden with about 4.5 million active TB patients[5]. As many as 130000 TB patients 
die each year, more than twice the total number of other infectious diseases in China[5]. T2DM is one of the risks of 
developing TB, and the incidence of T2DM with PTB (T2DM-PTB) increased from 19.3% to 24.1%. These two diseases are 
closely related and mutually promote[6]. On the one hand, due to the high tissue sugar content, metabolic disorder and 
decreased immune function, M. tuberculosis increases the production of resistant strains, and affects the prognosis of 
T2DM-PTB patients; on the other hand, TB will aggravate the glucose metabolism disorder of T2DM patients, increase the 
incidence of ketoacidosis, and present a dangerous prognosis[7]. T2DM-PTB faces new challenges in the world public 
health field due to its severity, treatment difficulties, and poor prognosis.

China is in a period of rapid growth in the incidence of DM, and the burden of tuberculosis is serious. DM combined 
with tuberculosis has become a major public health problem and the rising prevalence of DM is a potential threat to TB 
control. Based on this, World Health Organization recommends a collaborative framework for clinical management and 
control of DM with TB. Therefore, this study conducted a hospital-based case-control study to observe the characteristics 
of T2DM-PTB patients and explore the risk factors for pulmonary TB in T2DM, providing a scientific basis for the 
prevention and control of T2DM-PTB.
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MATERIALS AND METHODS
General information
In this study, cases (observation group) of selected tuberculosis patients with T2DM from January 2020 to January 2023 
were randomly selected in our hospital, and compared with diabetic patients without tuberculosis in the same period 
(control group).

Selection of the cases
Inclusion criteria for the observation group: (1) DM diagnosis earlier than PTB; (2) active tuberculosis (never received 
anti-tuberculosis chemotherapy or received chemotherapy for 1 month); (3) lived locally for more than 1 year, age > 18 
years old; and (4) was aware of the study and signed informed consent.

Exclusion criteria for observation group: (1) Recovered PTB patients, disseminated PTB, tuberculosis pleurisy, and other 
extrapulmonary tuberculosis; (2) has other endocrine diseases, such as hyperthyroidism, systemic lupus erythematosus, 
rheumatoid arthritis; (3) has diseases that can affect immune function such as acquired immunodeficiency syndrome 
(AIDS), malignant tumor, chronic hepatitis, cirrhosis, primary kidney disease, renal failure, blood disease, renal 
transplantation, gastrectomy; or (4) study subjects have used hormones and immunosuppressants within 4 months.

Selection of control group
The control group was patients with T2DM in our hospital at the same time. Two controls were matched for each case by 
the principle of equal gender, age difference ( ± 3) years and disease duration difference (± 5) years.

Inclusion criteria for the control group: (1) DM patients aged > 18 years who had lived locally for more than 1 year; and 
(2) were aware of the study and signed informed consent.

Exclusion criteria for the control group: (1) Now have other endocrine diseases, such as hyperthyroidism, systemic lupus 
erythematosus, rheumatoid arthritis, etc.; (2) now has diseases that can affect the immune function, such as AIDS, 
malignant tumor, chronic hepatitis and cirrhosis, chemical, primary renal disease, renal failure, hematological disorders, 
post-renal transplantation, gastrectomy, etc.; or (3) patients with pulmonary infection, or patients with tuberculosis 
lesions or suspicious lesions after chest X-ray examination.

Diagnostic criteria
Diagnostic criteria for T2DM[8]: Patients presented with typical T2DM, abnormal glucose test (random glucose 11.1 
mmol/L or fasting glucose 7.0 mmol/L; or oral glucose tolerance test 2h glucose 11.1 mmol/L).

Diagnostic criteria for PTB[9]: (1) Clinical symptoms such as cough, expectoration and fever, typical PTB findings 
combined with chest X-ray and chest computed tomography; (2) tuberculin skin test (PPD) reaction 10 mm; (3) positive 
TB antibody or γ -interferon release test; (4) positive mycobacterium smear culture; and (5) histopathology consistent with 
positive tuberculous change and acid fast staining.

Sample size calculation
The sample size was calculated according to the sample size of the paired case-control study (number of cases: number of 
controls = 1: r):

p1p0Zα and Zβ are the exposure rate of a major risk factor in the observation group and control group, respectively. OR 
represents the odds ratio of the risk factor, the standard normal cut-off for the type I error probability α and the standard 
normal cut-off for the type II error probability β. The literature shows that the glucose control level of T2DM patients is 
closely related to the occurrence of PTB[10], poor glucose control can increase the risk of PTB, its OR value is about 3[11], 
the incidence of poor glucose control in T2DM patients in China is about 60%[12], namely = 0.60, this study took α = 0.05 
(bilateral), β = 0.10, r = 2. The observation group should be more than 81 cases and more than 162 cases in the control 
group. A total of 105 patients in the observation group and 210 patients in the control group were included in this study, 
which met the study requirements.

Questionnaire survey
Using uniform questionnaire and inquiry, the questionnaire mainly included: general demographic characteristics: age, 
gender, marital status, educational level, work and monthly income, DM related characteristics: family history of DM, 
course of disease, diet control and blood glucose monitoring; body immune status: whether the subjects had upper 
respiratory tract infections (such as cold, sinusitis, tonsillitis, otitis media, etc.), bronchitis or pneumonia, skin infections 
(lip herpes, genital herpes, warts, furuncle or abscess) in the last year. The questionnaire was adapted from the immune 
system assessment questionnaire developed by the Chronic Immunodeficiency Center of the University Medical Center 
in Freiburg[13]; Lifestyle and behavioral habits: smoking, alcohol consumption, physical exercise, sleep status, 
tuberculosis exposure history, per capita living area, dust exposure history and contact personnel, etc.
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Physical examination
Measurement of height and weight: After calibrating the instrument, the patient is required to take off his shoes and coat 
according to the standard method. During the measurement, feet are tight, back straight and eyes straight forward.

Blood pressure measurement: Blood pressure is measured by desktop mercury column sphygmomanometer. The 
respondent needs to rest for at least 5 min in a quiet state, and can be measured after the mood is stable. During the 
measurement, the respondent was exposed to his right arm, the arm was placed flat on the table and heart, and the feet 
were placed flat on the ground to relax. Select the appropriate cuff, record the systolic blood pressure and diastolic blood 
pressure in the first and fifth tone of KorotKoff, measuring three times, at least one minute between each two times, and 
averaging the three readings.

Laboratory examination
Fasting blood was drawn and sent to the clinical laboratory, Timely centrifugation, Isolate the serum, Hitachi 7180 was 
used to determine fasting blood glucose, total cholesterol, triglycerides, low-density lipoprotein cholesterol (LDL-C), 
high-density lipoprotein cholesterol (HDL-C), albumin; separated plasma, A SYSMEX XE-2100 hematology for 
hemoglobin, lymphocyte count, etc. Glycated hemoglobin was determined by Alometric.

Quality control
Before the formal investigation, the pre-investigation should be conducted in a certain group of people to find out the 
problems and deficiencies in time, adjust the design of unreasonable items, and improve the content of the questionnaire. 
All the investigators have received systematic and unified professional training, and can participate in the project 
research only after passing the examination. Inform the research subjects before the investigation, and sign the informed 
consent form. Investigators in strict accordance with the requirements of the training inquiry and physical examination, 
not induced questions, truthfully fill in the questionnaire, to ensure the authenticity and reliability of the data, and in the 
survey by personnel audit questionnaire, unified number and corresponding records, the unqualified questionnaire check 
or remove as far as possible. Data entry was conducted by uniformly trained researchers. The double data entry method 
was adopted, and the data was checked after entry. When the two questionnaires were inconsistent, the original data 
were checked, and errors were found and re-entered.

Statistical analysis
Data were entered and statistically analyzed using SPSS 20.0 software. If the quantitative data conforms to the normal 
distribution, the mean standard deviation; the non-normal data adopts the median and the interquartile spacing; the 
qualitative data is represented by the frequency (percentage). For quantitative data satisfying the normal distribution, 
non-parametric test for non-parametric data; and test for comparison between groups. Univariate analysis screened the 
potential risk factors for concurrent PTB in DM patients, multivariate conditional Logistic regression analysis (fitting by 
Cox model in survival analysis) screened the independent influencing factors of concurrent PTB, using the stepwise 
method, and 0.05 and 0.10 were used as the significance level of introduced and excluded variables, respectively. The 
strength of the association of the various influencing factors with PTB was measured by the odds ratio (OR) and its 
95%CI. Before the analysis, all the variables were checked for collinearity. The test level shall be taken as α = 0.05.

RESULTS
General demographic characteristics
A total of 105 eligible T2DM-PTB patients and 210 patients with T2DM alone were collected during the study period. The 
age range of the observation group was 26-86 years, and the mean age was 55.3 ± 11.5 years; the control group was 26-83 
years, 55.7 ± 11.4 years, gender, marital status, educational level, occupational and worker's insurance (P > 0.05), as 
shown in Table 1.

DM-related characteristics
The mean duration of DM in the observation group was 6.8 ± 5.7 years, 7.4 ± 5.6 years, with no statistical difference (P > 
0.05); the proportion of history of hypertension was lower than the control group (P < 0.05), but no significant difference 
in family history of DM (P > 0.05); the incidence of poor glucose control in the observation group was 77.9%, significantly 
higher than 56.5% (P < 0.001). In both groups, drugs were the main way to control blood glucose, accounting for 45.7% 
and 43.8%, respectively, but the proportion of the observation group using oral medicine and insulin was significantly 
lower than that of the control group (10.5% vs 24.8%, P < 0.05). There were significant differences between the two 
groups, and the proportion was 43.8%, while the control group was 43.3%, statistically different (P < 0.05); there was no 
significant difference in the family history of DM and regular blood glucose monitoring (P > 0.05; Table 2).

Test results of laboratory indicators
Systolic BP, diastolic blood pressure, body weight, body mass index (BMI), and lymphocyte count were lower than the 
control group, while fasting glucose and HDL were higher than the control group (P < 0.05). Serum cholesterol and trigly-
ceride levels may differ between the two groups (P = 0.052), but not in height, glycated hemoglobin, hemoglobin, albumin 
and LDL (P > 0.05; Table 3).
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Table 1 General demographic characteristics of the observed and control groups, n (%)

Characteristics Observation group (n = 105) Control group (n = 210) χ2/t P value

Age (yr) 55.3 ± 11.5 55.7 ± 11.4 -0.254 0.800

Gender 0.009 0.926

Male 80 (76.2) 159 (75.7)

Female 35 (23.4) 51 (24.3)

marital status 7.307 0.007

Unwed/divorced/widowed 14 (13.3) 27 (12.9)

Married 91 (86.7) 183 (87.1)

Educational level 0.335 0.163

Illiteracy 13 (12.4) 32 (15.2)

Primary school 18 (17.1) 32 (15.2)

Middle school 62 (59.1) 126 (60.0)

College degree or above 12 (11.4) 20 (9.5)

Occupation 6.491 0.261

Housework and unemployed 34 (32.4) 65 (30.9)

Peasant 22 (21.0) 65 (30.9)

Office worker 13 (12.4) 27 (12.9)

Self-employed worker 12 (11.4) 23 (11.0)

Worker 14 (13.3) 21 (10.0)

Other 10 (9.5) 9 (4.3)

Worker's insurance 2.293 0.130

Yes 45 (42.9) 109 (51.9)

No 60 (57.1) 101 (48.1)

Nutritional status
In terms of nutritional status, clear differences between the rates of overweight, obesity, hypoproteinemia and 
lymphopenia, as detailed in Table 4. The incidence of overweight and obesity was 29.5% and 8.6%, respectively, 
significantly lower than the control group 47.0% and 17.5%, and the incidence of hypoproteinemia and lymphopenia was 
24.2% and 74.2%, respectively, both higher than 11.4% and 45.1% in the control group, while neither group was statist-
ically different between the incidence of hyperlipidemia and anemia, shown in Table 4.

Immunological status of the body
In the case of the observation group, upper respiratory tract infection was 69.5% in the past year, which was significantly 
higher than 47.1% of the control group. Both the observation and control groups were lower in the incidence of bronchitis 
or pneumonia, gastrointestinal infection, and skin infection, and there was no significant difference between the two 
groups. There were significant differences between high infection in the two groups, with the proportion of high infection 
in 70.5% in the observation group and 54.3% in the control group. The difference was statistically significant (P < 0.05). 
However, there was no statistical difference in the incidence of herpes between the two groups, as detailed in Table 5. The 
rates of pharyngeal, tonsillectomy, nasal polypectomy, and appendectomy were low in both groups (< 2%, not listed).

Lifestyle and behavior habits
The comparison of lifestyle and behavioral habits between the two groups are shown in Table 6. The proportion of 
participants with a history of TB contact was significantly higher than the control group (21.0% vs 6.7%), while the kitchen 
was less well-ventilated than the control group (61.9% vs 81.2%). More than 70% of the patients in both groups were able 
to do indoor ventilation regularly, but the proportion of people in the observation group without ventilation habits was 
higher than that in the control group. There were no statistical differences in dust contact history, migrant work history, 
contact situation and per capita living area. A comparison of the distribution of smoking between the two groups found 
that the proportion of current smokers in the observation group was the highest, 49.5%, while the proportion of non-
smokers in the control group was 50.0%. The proportion of current smokers in the observation group was significantly 
higher than that in the control group (P < 0.05).39% and 18% of the observation and control groups were current drinkers, 
and 2.9% and 10.0% were previous drinkers. The proportion of patients in the observation group was 40%, significantly 
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Table 2 Comparison between the observed and control groups in diabetes-related characteristics, n (%)

Characteristics Observation group (n = 105) Control group (n = 210) χ2/t P value

Disease course (yr) 6.8 ± 5.7 7.4 ± 5.6 -0.863 0.389

Family history of diabetes 1.585 0.208

Yes 31 (29.5) 77 (36.7)

No 74 (71.5) 133 (63.3)

History of hypertension 4.123 0.042

Yes 34 (32.4) 93 (44.3)

No 71 (67.6) 117 (55.7)

Poor glycemic control 12.281 < 0.001

Yes 74 (77.9) 100 (56.5)

No 31 (22.1) 110 (43.5)

Regular blood glucose monitoring 0.135 0.713

Yes 25 (23.8) 54 (25.7)

No 80 (76.2) 156 (74.3)

Diabetes treatment modality 10.285 0.016

Unregular treatment 24 (22.9) 36 (17.1)

Oral hypoglycaemic agent 48 (45.7) 92 (43.8)

Insulin 22 (20.9) 30 (14.3)

Oral antidiabetic drugs + insulin 11 (10.5) 52 (24.8)

Diet control attitude 7.141 0.028

Think it's very important 29 (27.6) 53 (25.3)

Think it is generally important 30 (28.6) 91 (43.3)

Think it's not important 46 (43.8) 66 (31.4)

lower than 61% in the control group. According to the sleep status analysis, the proportion of people with difficulty 
falling asleep and habitual snoring was higher than that of the control group, while the drug sleep assistance and sleep 
duration was not significantly different between the two groups.

Univariate analysis of the risk of patients with T2DM-PTB
Using univariate condition logistic, regression analysis, 12 factors at α = 0.05, including marital status, history of 
hypertension, poor blood glucose control, DM treatment, BMI grouping, hypoproteinemia, lymphopenia, TB exposure, 
high infection, smoking, drinking, and regular exercise. The relative hazards of each contributing factor are shown in 
Table 7. The analysis found that poor glycemic control, hypoproteinemia, lymphopenia, history of TB exposure, high 
infection, smoking, and alcohol consumption were the risk factors for T2DM-PTB. In this study, non-smokers, former 
smokers, and passive smokers were combined as current non-smokers, With it as a reference group, univariate logistic 
regression analysis found that T2DM patients had more than five times higher risk of smoking PTB than non-smokers 
(OR = 5.12, 95%CI: 2.61-10.7; P < 0.001); Combining non-drinkers and previous drinkers as current non-drinkers, With it 
as a reference group, The univariate results showed that the risk of PTB in T2DM patients was 3.39 times higher than that 
in current non-drinkers (OR = 3.39, 95%CI: 1.88-6.12; P < 0.001). Regarding nutritional status, hypoproteinemia (OR = 
2.48, 95%CI: 1.21-5.09) and lymphopenia (OR = 3.91, 95%CI: 2.12-7.21) were both risk factors for T2DM-PTB; while 
overweight (OR = 0.38, 95%CI: 0.22-0.66; P = 0.001) and obesity (OR = 0.32, 95%CI: 0.14-0.70; P = 0.005) than T2DM with 
normal weight, and patients had a lower risk of concurrent PTB. Unmarried (OR = 0.29, 95%CI: 0.12-0.73), history of 
hypertension (OR = 0.59, 95%CI: 0.36-0.98), oral medication and insulin (OR = 0.31, 95%CI: 0.13-0.73), and regular exercise 
(OR = 0.34, 95%CI: 0.20-0.58) were protective factors for T2DM-PTB.

Multivariate logistic regression analysis of the risk of patients with T2DM-PTB
Before the multivariate condition logistic regression analysis, the univariate analysis of OR is significant, marital status, 
high blood pressure, poor blood glucose control, DM treatment, BMI group, low proteinemia, lymphopenia, TB exposure 
history high infection, smoking, drinking, regular exercise 12 factors for collinear diagnosis. The results show that the 
tolerance is between 0.746 and 0.924, and the variance expansion factors are less than 10, and there is no collinearity 
problem. The possible risk factors selected by the results of univariate analysis were used as independent variables, and 
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Table 3 Test results of observation and control groups

Items Observation group (n = 105) Control group (n = 210) χ2/t P value

Height (cm) 169.52 ± 8.81 168.68 ± 7.54 0.881 0.379

Weight (kg) 66.53 ± 13.62 71.75 ± 12.08 -3.249 0.001

Body mass index (kg/m2) 23.00 ± 3.30 25.18 ± 3.40 -5.377 < 0.001

Systolic blood pressure (mmHg) 129.00 ± 20.00 134.00 ± 24.00 -2.544 0.011

Diastolic blood pressure (mmHg) 80.00 ± 10.50 83.00 ± 14.00 -2.504 0.012

Hemoglobin A1c (%) 8.85 ± 2.15 8.90 ± 2.80 -0.873 0.382

Fasting blood glucose (mmol/L) 10.54 ± 3.43 7.83 ± 2.81 -4.517 < 0.001

Hemoglobin (g/L) 136.50 ± 27.00 138.00 ± 21.00 -0.295 0.768

Albumin (g/L) 40.20 ± 8.40 39.68 ± 5.80 -0.247 0.805

Lymphocyte count (109/L) 1.65 ± 0.78 2.08 ± 0.94 -4.168 < 0.001

Triglyceride (mmol/L) 1.28 ± 0.31 1.47 ± 0.36 -1.940 0.052

Cholesterol (mmol/L) 4.68 ± 1.13 4.39 ± 1.62 -1.870 0.061

High-density lipoprotein (mmol/L) 1.20 ± 0.47 1.10 ± 0.39 -2.032 0.042

Low-density lipoprotein (mmol/L) 2.85 ± 1.08 2.70 ± 1.30 -0.713 0.476

Table 4 Comparison of nutritional status between the observed and control groups, n (%)

Items Observation group (n = 105) Control group (n = 210) χ2/t P value

BMI divide into groups 19.702 < 0.001

Normal 65 (61.9) 71 (35.5)

Overload 31 (29.5) 94 (47.0)

Fat 9 (8.6) 35 (17.5)

Anemia 18 (18.4) 28 (15.2) 0.465 0.495

Hypoproteinemia 24 (24.2) 20 (11.4) 7.702 0.006

Lymphocytopenia 72 (74.2) 83 (45.1) 21.773 < 0.001

Hyperlipidemic and hyperlipidemia 46 (50.0) 98 (58.7) 1.812 0.178

Simple hypertriglyceridemia 13 (14.1) 38 (22.8) 2.790 0.095

Simple hypercholesterolemia 8 (8.7) 9 (5.4) 1.057 0.304

Combined hyperlipidemia familial 3 (3.3) 7 (4.2) 0.138 0.710

Simple low HDL cholesterolemia 22 (24.7) 44 (26.7) 0.114 0.736

BMI: Body mass index; HDL: High-density lipoprotein.

the conditional logistic regression analysis was performed with PTB as the dependent variable (the control group was 0), 
and 0.05 and 0.10 as the significance level of the introduced and excluded variables. The assignment method for each 
variable is shown in Table 8.

The statistically significant 12 factors were analyzed by multivariate Logistic regression, which showed that five factors 
entered the model, as detailed in Table 9. Among them, lymphopenia, poor glycemic control, history of TB exposure and 
smoking were risk factors for T2DM-PTB, while overweight and obesity were protective factors. Patients with T2DM-PTB 
with OR lymphopenia (17.75, P = 0.001) and smoking (OR = 12.25, P = 0.002) had more than ten times the risk of TB. 
Being overweight (OR = 0.23, P = 0.011) and obesity (OR = 0.11, P = 0.021) reduced the risk of PTB in T2DM by 77% and 
89%, respectively.
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Table 5 Comparison of body immune status between the observed and control groups, n (%)

Items Observation group (n = 105) Control group (n = 210) χ2/t P value

Upper respiratory tract infection 73 (69.5) 99 (47.1) 14.145 < 0.001

Bronchitis or pneumonia 5 (4.8) 12 (5.7) 0.124 0.724

Gastrointestinal infection 9 (8.6) 20 (9.5) 0.076 0.783

Skin infection 3 (2.9) 9 (4.3) 0.390 0.532

High infection 74 (70.5) 114 (54.3) 7.626 0.006

Bleb 16 (15.2) 26 (12.4) 0.495 0.482

Table 6 Comparison of lifestyle and behavioral habits between the observed and control groups, n (%)

Items Observation group (n = 105) Control group (n = 210) χ2/t P value

History of tuberculosis contact 22 (21.0) 14 (6.7) 14.113 < 0.001

History of dust contact 7 (6.7) 15 (7.1) 0.024 0.876

Smoke 29.017 < 0.001

Current smoker 52 (49.5) 48 (22.8)

Non-smoker 33 (31.4) 105 (50.0)

A former smoker 13 (12.4) 18 (8.6)

Passive smoker 7 (6.7) 39 (18.6)

Drink 18.924 < 0.001

Current drinker 41 (39.0) 38 (18.1)

No drinkers 61 (58.1) 151 (71.9)

A former drinker 3 (2.9) 21 (10.0)

Whether you exercise regularly 16.625 < 0.001

Yes 42 (40.0) 128 (61.0)

No 63 (60.0) 82 (39.0)

DISCUSSION
This paper compared the characteristics of the two groups, and the results showed that there were obvious differences in 
marriage, education, low protein, etc. Our previous study found that the proportion of unmarried (unmarried, divorced, 
widowed) in T2DM-PTB patients was significantly higher. Part of this is that a person has a great relationship between 
their physical and mental health. The ability to care for each other and support each other is very important for 
maintaining mental and physical stability between couples[14]. However, the older unmarried, divorced, widowed, often 
have loneliness, anxiety, anger, sadness and other bad psychological state. This bad mood and mood, it is likely to affect 
the body's metabolic function and immunity, thus making the body more susceptible to M. tuberculosis infection. More-
over, it is also possible that it is related to the poor family income of PTB patients, with some impact on their marriage.

T2DM-PTB is a common chronic wasting disease, patients often lead to nutritional deficiency, and then lead to body 
injury, and then lead to disease recurrence, affecting the prognosis[15,16]. The incidence of T2DM-PTB is as high as 45%-
78.3%[17]. The occurrence of T2DM-PTB is associated with multiple causes[18]. T2DM has high blood sugar levels in the 
body, but due to the lack of insulin, the body cannot convert blood sugar into energy, and can only use protein, fat and 
other metabolites as energy sources, resulting in malnutrition[19]. T2DM is a serious risk of human health disease. In 
addition, because the body is in a state of consumption for a long time, PTB will also cause the body's catabolism 
abnormalities, thus reducing the body's protein and fat reserves, resulting in the body's malnutrition. The T2DM-PTB 
group had higher hypoproteinemia than the T2DM group. It is possible that protein deficiency reduces the cellular 
immune function of the body, which further improves the body's sensitivity to infection, leading to the infection 
aggravating[20]. Another reason may be that in the chronic process from M. tuberculosis infection to TB, the metabolism of 
the patient will accelerate and the production of interleukin-6 and tumor necrosis factor-α may lead to fever, liver 
synthesis of acute phase reaction protein and inhibit the production of serum albumin[21,22]. PTB is a chronic wasting 
disease that is prone to anemia. At the same time, M. tuberculosis proliferation in the patient's body tissue can cause a 
large amount of nutrients to be consumed, including hematopoietic substances, and eventually lead to anemia in the 
patient. About 16%-94% of PTB patients will develop anemia[23]. Our previous study found that there was no significant 
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Table 7 Results of the univariate conditional logistic regression analysis

Variable Odds ratio 95%CI P value

Married 0.29 0.12-0.73 0.009

Poor glycemic control 2.36 1.32-4.22 0.004

Diabetes treatment modality

Unregular treatment 1.00 - -

Oral hypoglycaemic agent 0.76 0.41-1.44 0.401

Insulin 0.98 0.45-2.14 0.960

Oral antidiabetic drugs + insulin 0.31 0.13-0.73 0.007

History of hypertension 0.59 0.36-0.98 0.040

Body mass index divide into groups

Normal 1.00 - -

Overload 0.38 0.22-0.66 0.001

Fat 0.32 0.14-0.70 0.005

Hypoproteinemia 2.48 1.21-5.09 0.013

Lymphocytopenia 3.91 2.12-7.21 < 0.001

History of tuberculosis contact 4.49 1.97-10.23 < 0.001

High infection 1.95 1.21-3.15 0.006

Smoke 5.12 2.61-10.7 < 0.001

Drink 3.39 1.88-6.12 < 0.001

Regular exercise 0.34 0.20-0.58 < 0.001

Table 8 Assignment statement in the multivariate logistic regression analysis of the risk in type 2 diabetes mellitus with pulmonary 
tuberculosis patients

Items Assignment method

Marital status Unmarried, divorced and widowed = 1, married = 2

Hypertension No = 0, Yes = 1

Poor glycemic control No = 0, Yes = 1

Diabetes treatment methods Oral medication = 1, insulin = 2, oral medication and insulin simultaneously = 3, no regular treatment = 4

BMI grouping BMI < 24 = 1, BMI: 24.0-27.9 = 2, BMI ≥ 28 = 3

Hypoproteinemia No = 0, Yes = 1

Lymphocytopenia No = 0, Yes = 1

History of tuberculosis contact No = 0, Yes = 1

High infection No = 0, Yes = 1

Smoke No = 0, Yes = 1

Drink No = 0, Yes = 1

Regular exercise No = 0, Yes =1 

BMI: Body mass index.

relationship between T2DM-PTB and the incidence of diabetic TB, and the incidence of T2DM-PTB will gradually 
increase with the development of the disease.

Our multifactorial study found that in patients with T2MD, having lymphopenia, smoking, a history of TB, and failure 
to control their blood sugar increase the risk of TB. In the execution of cellular immunity, lymphocytes are the most 
important effector cells, which can not only reflect the immune status of the human body, but also be used as a new index 
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Table 9 Multivariate conditional logistic regression analysis of risk factors for type 2 diabetes mellitus with pulmonary tuberculosis

Variable β SE Wald P value Odds ratio (95%CI)

BMI divide into groups

Normal - - - - 1.00

Overload -1.457 0.573 6.475 0.011 0.23 (0.08-0.72)

Fat -2.182 0.943 5.357 0.021 0.11 (0.02-0.72)

Poor glycemic control 1.215 0.568 4.581 0.032 3.37 (1.11-10.25)

Lymphocytopenia 2.876 0.844 11.622 0.001 17.75 (3.40-92.74)

History of tuberculosis contact 1.882 0.854 4.849 0.028 6.56 (1.23-35.03)

Smoke 2.506 0.805 9.686 0.002 12.25 (2.53-59.37)

BMI: Body mass index.

to evaluate the protein reserve of the human body internal organs. By measurement, it can also indirectly evaluate the 
nutritional status of the human body. The previous study of our group found that T2DM was accompanied by lym-
phocyte decline, and the incidence of PTB was 10 times higher than that of T2DM. The decrease in lymphocyte number 
indicates a weakening of cellular immune function as an anti-tuberculosis immune mechanism, which leads to the 
development of TB[24]. After extensive research, it has been proved that balanced nutrition and proper body weight can 
ensure the normal metabolic activities and immune function of the body. Malnourished people often reduce the total 
number of T lymphocytes, the function of the decline, but also can make the mechanical barrier of the body is damaged, 
mucosal resistance decreased, resulting in immune dysfunction, which is easy to cause a variety of infection[25,26].

A large number of studies have shown that smoking can improve the risk of TB. Preliminary meta-analysis showed 
that the risk of TB in smokers is twice that of non-smokers[27]. The previous study of our research group found that the 
risk of TB in diabetic patients is 10 times that of non-smokers. This suggests that among diabetics, smoking causes a much 
greater risk of TB than the average patient. Smoking can damage airway epithelial cilia, inhibit lung phagocyment by 
macrophages, reduce the removal of lung, and increase the risk of lung infection. There are also reports that nicotine in 
cigarettes directly damage macrophages, killing M. tuberculosis[28]. Smoking for a long time leads to a decrease in the 
expression of surface proteins associated with antigen presentation in lung macrophages. After the pathogen enters the 
body, some of them cannot be presented to the immune system, leading to a decrease in the killing of pathogenic bacteria
[29]. Our study showed that smoking and alcoholism is a risk factor for TB, while smoking and alcohol abuse is also a risk 
factor for TB in African population[30]. Smoking and passive smoking are closely linked to drinking, this is because 
drinking has a special social environment, drinking and smoking and passive smoking often coexist, thus improving the 
risk of infection. Previous studies have shown that the risk of active pulmonary TB with over 40 g of daily drinking 
significantly increases[31], and the univariate analysis of our research group also indicates that alcohol consumption is an 
important cause of T2DM-PTB. Some scholars believe that excessive drinking will cause TB, and alcohol will cause direct 
toxicity to the body's immune system, making the body more susceptible to TB[32,33]. Animal experiments have shown 
that chronic and acute alcohol intake can directly damage macrophages and cellular immunity, leading to the deve-
lopment of PTB[34].

BMI is a comprehensive index of long-term lack of energy. Previous studies[35,36] found that BMI (BMI < 18.5 kg/m2) 
is closely related to TB incidence, but the proportion of people with BMI < 18.5 kg/m2 is low (3.5%), and the statistical 
significance is unclear, so further expansion of the sample is needed.

Previous studies have shown that the risk of developing TB gradually increases with increasing age, and men are more 
likely to develop TB[37,38]. Since age is proportional to sex, its relationship with T2DM-PTB cannot be evaluated.

This project intends to use a 1:2 ratio case-control design to obtain more valuable data with a smaller sample size, 
especially in a small number of diabetic patients with active TB. Using conditional logistic regression analysis, the 
deficiency of increased required sample content due to stratification avoided previous univariate stratification analysis. In 
addition, this study uses a matching case-control study, which enables the matching factors to reach a balance between 
the case group and the control group. In the comparative analysis, the influence of these factors can be excluded, so it has 
a high accuracy in the estimation of the model. Combining a 1:2 ratio of case-control trials with conditional Logistic 
regression can improve the detection efficiency of clinical trials and ensure the quality of the trials with a smaller sample 
size.

However, this paper also has some shortcomings. Since the samples in this study were collected from hospitals, there 
are certain limitations in the selection of samples, so it is inevitable that selective bias will occur.

CONCLUSION
In conclusion, T2DM-PTB patients are prone to worse glycemic control, higher infection frequency, smoking, drinking 
and lack of exercise; lymphocytopenia, smoking, exposure to TB history, and poor glycemic control are independent risk 
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factors for T2DM-PTB, overweight and obesity, T2DM, and decreased risk of concurrent PTB.

ARTICLE HIGHLIGHTS
Research background
The characteristics of patients with type 2 diabetes (T2DM) were clarified, and the risk factors of active tuberculosis (TB) 
in T2DM were explored to provide scientific basis for the prevention and control of the disease.

Research motivation
In China, T2DM accounts for 90%-95% of all diabetic patients, and China is one of the 22 countries with high TB burden, 
with about 4.5 million active TB patients; T2DM is one of the risks of developing TB, and the incidence of T2DM with TB 
(T2DM-PTB) increases from 19.3% to 24.1%. These two diseases are closely related and mutually reinforcing.

Research objectives
Clarify the characteristics of patients with T2DM complicated with TB, and explore the risk factors of active tuberculosis 
in T2DM patients, so as to provide a scientific basis for the prevention and control of diseases.

Research methods
T2DM-PTB patients in our hospital were selected as the observation group, and simple T2DM patients in our hospital at 
the same time were selected as the control group. The general demographic characteristics, diabetes-related character-
istics, body immune status, lifestyle and behavioral habits were investigated, and the data were analyzed by conditional 
logistic regression.

Research results
The results found that the physical index, systolic blood pressure, diastolic blood pressure and lymphocyte count were 
significantly lower than the control group, while fasting blood glucose and high-density lipoprotein cholesterol levels 
were significantly higher than the control group, poor glucose control, hypoproteinemia, lymphopenia, TB exposure 
history, high infection, smoking, alcohol consumption were positively associated with PTB in T2DM; married, history of 
hypertension, treatment of oral hypoglycemic agents + insulin, overweight, obesity and regular exercise were negatively 
associated with concurrent PTB in patients with T2DM.

Research conclusions
Patients with T2DM-PTB are prone to worse glycemic control, higher infection frequency, and a higher proportion of 
people smoking, alcohol consumption, and lack of exercise. Lymphopenia, smoking, history of TB exposure, and poor 
glycemic control were independent risk factors for T2DM-PTB, and overweight and obesity were associated with a 
decreased risk of concurrent PTB in patients with T2DM.

Research perspectives
The empirical and comparative perspectives.
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Abstract
BACKGROUND 
Diabetes and thyroiditis are closely related. They occur in combination and cause 
significant damage to the body. There is no clear treatment for type-2 diabetes 
mellitus (T2DM) with Hashimoto's thyroiditis (HT). While single symptomatic 
drug treatment of the two diseases is less effective, combined drug treatment may 
improve efficacy.

AIM 
To investigate the effect of a combination of vitamin D, selenium, and hypo-
glycemic agents in T2DM with HT.

METHODS 
This retrospective study included 150 patients with T2DM and HT treated at The 
Central Hospital of Shaoyang from March 2020 to February 2023. Fifty patients 
were assigned to the control group, test group A, and test group B according to 
different treatment methods. The control group received low-iodine diet guidance 
and hypoglycemic drug treatment. Test group A received the control treatment 
plus vitamin D treatment. Test group B received the group A treatment plus 
selenium. Blood levels of markers of thyroid function [free T3 (FT3), thyroid 
stimulating hormone (TSH), free T4 (FT4)], autoantibodies [thyroid peroxidase 
antibody (TPOAB) and thyroid globulin antibody (TGAB)], blood lipid index 
[low-density lipoprotein cholesterol (LDL-C), total cholesterol (TC), triacyl-
glycerol (TG)], blood glucose index [fasting blood glucose (FBG), and hemoglobin 
A1c (HbA1c)] were measured pre-treatment and 3 and 6 months after treatment. 
The relationships between serum 25-hydroxyvitamin D3 [25 (OH) D3] level and 
each of these indices were analyzed.

https://www.f6publishing.com
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RESULTS 
The levels of 25 (OH) D3, FT3, FT4, and LDL-C increased in the order of the control group, test group A, and test 
group B (all P < 0.05). The TPOAB, TGAB, TC, TG, FBG, HbA1c, and TSH levels increased in the order of test 
groups B, A, and the control group (all P < 0.05). All the above indices were compared after 3 and 6 months of 
treatment. Pre-treatment, there was no divergence in serum 25 (OH) D3 level, thyroid function-related indexes, 
autoantibodies level, blood glucose, and blood lipid index between the control group, test groups A and B (all P > 
0.05). The 25 (OH) D3 levels in test groups A and B were negatively correlated with FT4 and TGAB (all P < 0.05).

CONCLUSION 
The combination drug treatment for T2DM with HT significantly improved thyroid function, autoantibody, and 
blood glucose and lipid levels.

Key Words: Type-2 diabetes mellitus; Hashimoto's thyroiditis; Vitamin D; Selenium agent; Hypoglycemic drugs; Curative 
effect

©The Author(s) 2024. Published by Baishideng Publishing Group Inc. All rights reserved.

Core Tip: Selenium yeast and active vitamin D can reduce thyroid-related antibodies in type-2 diabetes mellitus (T2DM) and 
Hashimoto's thyroiditis (HT) and improve thyroid function. Hypoglycemia drugs can lower blood sugar levels in patients 
and promote blood sugar stability. While most patients with T2DM and HT are currently treated with a single symptomatic 
drug, the effects are unsatisfactory. In this study, the combination of vitamin D and selenium yeast added to hypoglycemic 
agents to treat T2DM patients with HT showed a remarkable therapeutic effect.

Citation: Feng F, Zhou B, Zhou CL, Huang P, Wang G, Yao K. Vitamin D, selenium, and antidiabetic drugs in the treatment of type 2 
diabetes mellitus with Hashimoto's thyroiditis. World J Diabetes 2024; 15(2): 209-219
URL: https://www.wjgnet.com/1948-9358/full/v15/i2/209.htm
DOI: https://dx.doi.org/10.4239/wjd.v15.i2.209

INTRODUCTION
Diabetes is a chronic metabolic disease characterized by chronic hyperglycemia caused by a relative lack of insulin in the 
body. Its incidence increases annually, and approximately 90% of cases involve type-2 diabetes mellitus (T2DM)[1]. 
Thyroid disease is mainly characterized by dysfunction in thyroid hormone secretion. Hashimoto's thyroiditis (HT) is a 
typical autoimmune disease that has also shown an increasing incidence in recent years[2]. The main manifestations of 
HT are elevated levels of thyroid autoantibodies and goiter, which often lead to hypothyroidism with disease pro-
gression. Diabetes and thyroiditis are closely related and often occur in combination. Foreign reports show that thyroid 
dysfunction has a higher prevalence in the diabetic population, at 12.5%-51.6%, which is two to three times that of other 
populations[3,4]. The study found that the incidence of HT in T2DM patients was significantly higher than in the general 
population[5]. The pathogenesis of T2DM and HT is believed to mainly involve insulin resistance, immune factors, 
infection, oxidative stress, genetics, leptin, molecular cytology, and other related factors; however, there is no clear 
consensus on the pathogenesis of T2DM with HT. Western medicine generally adopts symptomatic treatments for these 
two diseases, including hypoglycemic medications, improved thyroid function, and treatment of complications.

Iodine, selenium, and vitamin D are essential for thyroid hormone production in the human body. Deficiencies can 
cause changes in thyroid structure and function[6]. HT is often accompanied by vitamin D deficiency. In foreign 
literature, vitamin D deficiency in patients with HT was as high as 60.6% and was even lower in female patients[7]. 
Vitamin D levels are negatively correlated with thyroid-stimulating hormone levels. Patients with HT with insufficient or 
deficient vitamin D levels are more likely to have subclinical and clinical hypothyroidism than HT patients with normal 
vitamin D levels[8]. However, some studies have conflicting results regarding the effect of vitamin D on the incidence of 
HT[9,10]. Related literature reports that the occurrence of T2DM is relevant to changes in serum 25-hydroxyvitamin D3 
[25 (OH) D3] levels. Supplementation with vitamin D increases serum 25 (OH) D3 levels[11]. Selenium supplementation 
can upregulate activated regulatory T cells' horizons and partially reduce thyroid autoantibodies' horizons[12,13]. Yu et al
[14] explored the effect of the combined treatment of thyroxine and selenium on HT, and the results suggested that the 
combination of the two drugs was significantly better than thyroxine alone in preventing HT progression. However, few 
studies have reported the efficacy of combined treatments with vitamin D, selenium yeast, and hypoglycemic drugs in 
patients with T2DM and HT. This study explored the therapeutic effects of vitamin D, selenium, and vitamin D combined 
with selenium in patients with T2DM and HT. The study further examined 25 (OH) D3 indicators associated with 
combined T2DM and HT.
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MATERIALS AND METHODS
Object
This retrospective study included 150 patients with T2DM and HT treated at The Central Hospital of Shaoyang between 
March 2020 and February 2023. According to the different treatment methods, the patients were split into test groups A 
and B and a control group, with 50 cases per group. The inclusion criteria were: Meeting the diagnostic criteria for T2DM
[15] and in a stable condition; combined with HT and meeting the HT diagnostic criteria[16]: (1) Swollen and tough 
thyroid isthmus, (2) positivity for serum thyroid globulin antibody (TGAB) and thyroid peroxidase antibody (TPOAB); 
(3) thyroid ultrasound showing diffuse enlargement and hypoechoic thyroid gland; (4) thyroid fine needle puncture 
findings consistent with cytological changes of thyroiditis; and (5) thyroid function showing normal range of free T4 (FT4) 
and thyroid stimulating hormone (TSH) levels (< 10 Uiu/L), which was not treated after the initial diagnosis. Among 
them, (1), (2), (3) and (5) are necessary. If the case is atypical, (4) is required for diagnosis. No neurological diseases at 
study completion. The exclusion criteria were: (1) Type-1 diabetes mellitus; (2) severe infectious diseases and other 
autoimmune diseases; (3) heart, liver, kidney, and other serious diseases or malignant tumors; (4) pregnancy; (5) use of 
immunosuppressants, immune checkpoint inhibitors, or glucocorticoid drugs and a recent history of drugs affecting 
thyroid function; (6) history of thyroid trauma or surgical treatment combined with parathyroid dysfunction; and (7) 
chronic inflammation caused by other factors.

The control group received low-iodine diet guidance and hypoglycemic drug treatment. That is, saxagliptin tablets 
(Bristol-Myers Squibb Company, national drug approval number J20110029) were administered orally once daily (5 mg 
daily).

Test group A was administered oral vitamin D (Qingdao Double Whale Pharmaceutical Co., LTD., Sinopod 
H20113033, 4000 u/d) + hypoglycemic drug treatment in addition to the control group treatment[11].

Test group B was administered vitamin D + selenium yeast + hypoglycemic drug treatment. That is, based on test 
group A, oral selenium yeast (Mudanjiang Lingtai Pharmaceutical Co., LTD., Sinomedmedicine approval number: 
H10940161, 100 μg/time, 2 times/day). Treatment was discontinued in cases of adverse reactions, including cardiopul-
monary events, allergies, or elevated blood calcium levels. All patients in each group were treated for 6 months [11,14].

Observation index
(1) General information: Sex, age, and body mass index (BMI) were collected and recorded; (2) laboratory indicators: 
After 8 h of overnight fasting, the subjects were sent to the central laboratory for a venous blood sample the following 
morning. The samples were immediately stored at 4 °C. An automatic chemiluminescence analyzer (I2000SR, Abbott, 
United States) was used to detect serum 25 (OH) D3, thyroid function [TSH, free T3 (FT3), FT4], autoantibody (TGAB, 
TPOAB); automatic biochemical apparatus (Beckman Coulter, AU5800 model) determination of blood lipid index [low-
density lipoprotein cholesterol (LDL-C), total cholesterol (TC), triacylglycerol (TG)], blood glucose index [fasting blood 
glucose (FBG), hemoglobin A1c (HbA1c)]. These indicators were measured in all patients pre-treatment and after 3 and 6 
months of treatment; and (3) the correlations between serum 25 (OH) D3 levels and each index in test groups A and B 
were analyzed.

Statistical analysis
IBM SPSS Statistics for Windows, version 26.0, was used to analyze the project data. Counting variables are expressed as 
n, (%) and compared by χ2 test. Continuous variables are reported as mean ± SD. One-way analysis of variance (ANOVA) 
was used to compare the three groups. If differences were observed, a pound-for-pair comparison was performed. 
Pearson's correlation analysis was used to analyze the relationships between serum 25 (OH) D3 levels and each index. The 
test level of statistical analysis was α = 0.05.

RESULTS
Comparison of general data among the three groups of patients
Comparisons of general data, such as sex, age, and BMI among the three groups (P > 0.05), are shown in Table 1.

Changes in serum 25 (OH) D3 levels in the three groups before and after 3 and 6 months of treatment
Pre-treatment, the 25 (OH) D3 levels in the control group and test groups A and B were 15.15 ± 3.64, 15.62 ± 3.75, and 
14.85 ± 4.17 mg/L, respectively (P > 0.05 for the comparison between the three groups). After 3 months of treatment, the 
25 (OH) D3 levels in test groups A and B were 19.24 ± 4.14 and 22.88 ± 4.60 mg/L, respectively, which were higher than 
that in the control group (16.18 ± 3.09 mg/L). Compared with test group A, the levels in test group B were higher (P < 
0.05). After 6 months of treatment, the levels of 25 (OH) D3 in test groups A and B were 24.87 ± 4.75 and 29.31 ± 5.17 mg/
L, respectively, both of which were higher than that of the control group (16.19 ± 3.14 mg/L). Compared with that in test 
group A, the level in test group B was higher (P < 0.05) (Figure 1).

Changes in thyroid function in the three groups before and after 3 and 6 months of treatment
After 3 and 6 months of treatment, The TSH levels of test groups A and B were lower than those of the control group. 
Compared with those in test group A, the values in group B were lower (P < 0.05). The FT3 and FT4 levels in test groups 
A and B were higher than those in the control group; compared with those in test group A, the levels in group B were 
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Table 1 Comparison of general data among the three patient groups

Group Sex (male/female) Age (yr) BMI (kg/m2)

Control group (n = 50) 23/27 53.78 ± 7.49 22.88 ± 2.31

Test group A (n = 50) 26/24 52.76 ± 7.88 23.07 ± 2.17

Test group B (n = 50) 22/28 52.52 ± 8.13 22.98 ± 2.30

χ2/F value 1.361 0.364 0.085

P value 0.715 0.695 0.918

BMI: Body mass index.

Figure 1 Comparison of serum 25-hydroxyvitamin D3 levels in the three groups pre-treatment and 3 and 6 months after treatment. dP < 
0.0001. 25 (OH) D3: 25-hydroxyvitamin D3.

higher (P < 0.05) (Table 2).

Changes in autoantibody levels in the three groups before and after 3 and 6 months of treatment
Pre-treatment, the TPOAB levels of the control group, test groups A and B were 365.23 ± 87.26, 364.74 ± 86.78, and 365.76 
± 85.99 pmol/L, respectively (P > 0.05 for the comparison between all three groups). After 3 months of treatment, the 
TPOAB levels in test groups A and B were 78.26 ± 48.23 and 270.34 ± 46.25 pmol/L, respectively, both of which were 
lower than that of the control group (347.26 ± 79.56 pmol/L). Compared with that in test group A, the level in group B 
was lower (P < 0.05). After 6 months of treatment, the TPOAB levels in test groups A and B were 233.15 ± 41.26 and 201.23 
± 38.17 pmol/L, respectively, both of which were lower than that of the control group (318.23 ± 74.23) pmol/L. Compared 
with that in test group A, the level in group B was lower (P < 0.05) (Figure 2A).

Pre-treatment, the TGAB levels in the control group, test group A, and test group B were 138.29 ± 16.43, 139.22 ± 16.47, 
and 138.56 ± 16.73 U/mL, respectively (P > 0.05 for the comparison of all three groups). After 3 months of treatment, the 
TGAB levels in test groups A and B were 119.34 ± 12.05 and 117.23 ± 11.34 U/mL, respectively, both of which were lower 
than that of the control group (124.56 ± 15.03) U/mL. Compared with that in test group A, the level in group B was lower 
(P < 0.05). After 6 months of treatment, the TGAB levels in test groups A and B were 93.15 ± 11.23 and 89.37 ± 10.42 U/
mL, respectively, both of which were lower than that of the control group (123.64 ± 14.34) U/mL. It was lower in test 
group B than in group A (P < 0.05) (Figure 2B).

Changes in blood glucose index and blood lipid index in the three groups before and after 3 and 6 months of 
treatment
After 3 and 6 months of treatment, the TC, TG FBG, and HbA1c levels in test groups A and B were lower than those in the 
control group, while these levels were lower in test group B than in group A (all P < 0.05). The LDL-C levels in test 
groups A and B were higher than in the control group. Compared with the test group A, the levels of group B were 
higher (all P < 0.05) (Tables 3 and 4).
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Table 2 Comparison of thyroid function pre-treatment and after 3 and 6 months of treatment in the three groups

Group TSH (mU/L) FT3 (pmol/L) FT4 (pmol/L)

Pre-
treatment

After 3 
months of 
treatment

After 6 
months of 
treatment

Pre-
treatment

After 3 
months of 
treatment

After 6 
months of 
treatment

Pre-
treatment

After 3 
months of 
treatment

After 6 
months of 
treatment

Control 
group (n = 
50)

14.50 ± 2.30 13.29 ± 2.34 12.89 ± 2.18 2.39 ± 0.77 2.57 ± 0.83 2.65 ± 0.82 7.35 ± 1.35 8.27 ± 1.45 8.96 ± 2.05

Test 
group A (
n = 50)

14.49 ± 2.23 8.37 ± 2.33a 4.98 ± 1.45a 2.43 ± 0.80 3.98 ± 0.86a 5.21 ± 1.26a 7.28 ± 1.38 11.27 ± 2.16a 15.51 ± 2.40a

Test 
group B (n 
= 50)

14.70 ± 2.34 8.54 ± 2.41a,b 4.05 ± 1.27a,b 2.48 ± 0.81 4.05 ± 0.90a,b 5.47 ± 1.34a,b 7.26 ± 1.26 11.87 ± 2.27a,b 16.91 ± 2.73a,b

F value 0.133 70.399 416.857 0.162 47.220 89.340 0.063 52.264 155.329

P value 0.875 < 0.001 < 0.001 0.850 < 0.001 < 0.001 0.939 < 0.001 < 0.001

aP < 0.05 vs group pre-treatment.
bP < 0.05 vs 3 months after treatment.
TSH: Thyroid-stimulating hormone; FT3: Free T3; FT4: Free T4

Table 3 Comparison of blood glucose index and blood lipid index pre-treatment, 3 months after treatment, and 6 months after treatment 
in 3 groups

TC (mU/L) TG (pmol/L)
Group Pre-

treatment
After 3 months of 
treatment

After 6 months of 
treatment

Pre-
treatment

After 3 months of 
treatment

After 6 months of 
treatment

Control group (n 
= 50)

5.13 ± 0.86 4.46 ± 0.81 4.16 ± 0.77 3.21 ± 1.02 2.97 ± 0.91 2.93 ± 0.91

Test group A (n 
= 50)

4.98 ± 0.89 3.76 ± 0.75a 2.76 ± 0.68a 3.17 ± 0.96 2.43 ± 0.71a 1.98 ± 0.65a

Test group B (n = 
50)

4.96 ± 0.92 3.07 ± 0.68a,b 2.40 ± 0.69a,b 3.16 ± 1.05 2.08 ± 0.64a,b 1.83 ± 0.60a,b

F value 0.546 43.665 84.262 0.033 17.243 32.575

P value 0.581 < 0.001 < 0.001 0.967 < 0.001 < 0.001

aP < 0.05 vs group pre-treatment.
bP < 0.05 vs 3 months after treatment.
TC: Total cholesterol; TG: Triacylglycerol.

Correlations between serum 25 (OH) D3 level and each index in test group A
Test group A of serum 25 (OH) D3 levels and negatively correlated with FT4, TGAB level (P < 0.05). The other indices 
were not significantly correlated (P > 0.05) (Table 5).

Correlations between serum 25 (OH) D3 level and each index in test group B
Serum 25 (OH) D3 levels in test group B were negatively correlated with FT4 and TGAB levels (P < 0.05). The other 
indices were not significantly correlated (P > 0.05) (Table 6).

DISCUSSION
The onset of HT is insidious and difficult to detect. Its early clinical symptoms are not obvious. By the time the patient is 
diagnosed, there are already symptoms of hypothyroidism present. Early clinical symptoms are not obvious, and 
symptoms of hypothyroidism already exist when the condition is detected and diagnosed. The reduced secretion of 
thyroid hormones damages the physiological function and affects the normal life of patients[17,18]. Diabetes is a common 
endocrine disease in clinical settings. Diabetes combined with HT causes significant damage to the body. HT treatment 
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Table 4 Comparison of blood glucose index and blood lipid index pre-treatment, 3 months after treatment, and 6 months after treatment 
in 3 groups

LDL-C (pmol/L) FBG(pmol/L) HbA1c(%)

Group Pre-
treatment

After 3 
months of 
treatment

After 6 
months of 
treatment

Pre-
treatment

After 3 
months of 
treatment

After 6 
months of 
treatment

Pre-
treatment

After 3 
months of 
treatment

After 6 
months of 
treatment

Control 
group (n = 
50)

1.31 ± 0.43 1.43 ± 0.44 1.48 ± 0.45 13.52 ± 3.35 13.46 ± 3.33 13.37 ± 3.28 9.16 ± 1.55 8.90 ± 1.35 7.65 ± 1.26

Test 
group A 
(n = 50)

1.34 ± 0.43 1.76 ± 0.46a 2.18 ± 0.50a 13.69 ± 3.76 12.34 ± 3.82a 12.98 ± 2.98a 8.98 ± 1.58 8.55 ± 1.30 7.09 ± 1.15a,b

Test 
group B (n 
= 50)

1.33 ± 0.40 1.87 ± 0.48a 2.41 ± 0.58a,b 13.60 ± 3.80 9.64 ± 1.45a 7.30 ± 1.48a,b 9.35 ± 1.52 8.20 ± 1.2a 6.45 ± 1.10a,b

F value 0.067 11.717 44.330 0.031 20.859 49.495 0.712 3.603 13.130

P value 0.935 < 0.001 < 0.001 0.970 < 0.001 < 0.001 0.492 0.030 < 0.001

aP < 0.05 vs group pre-treatment.
bP < 0.05 vs 3 months after treatment.
LDL-C: Low-density lipoprotein cholesterol; FBG: Fasting blood glucose; HbA1c: Hemoglobin A1c.

Table 5 Correlations between serum 25-hydroxyvitamin D3 level and various indexes in test group A

25 (OH) D3
Index

r P value

TSH 0.008 0.866

FT3 -0.027 0.853

FT4 -0.326 0.021

TPOAB -0.017 0.905

TGAB -0.322 0.021

TC -0.041 0.776

TG 0.021 0.143

LDL-C 0.177 0.218

FBG 0.111 0.444

HbA1c 0.035 0.810

TSH: Thyroid-stimulating hormone; FT3: Free T3: FT4: Free T4; TPOAB: Thyroid peroxidase antibodies; TGAB: Thyroglobulin antibodies; TC: Total 
cholesterol; TG: Triacylglycerol; LDL-C: Low-density lipoprotein cholesterol; FBG: Fasting blood glucose; HbA1c: Hemoglobin a1c; 25 (OH) D3: 25-
hydroxyvitamin D3.

mainly involves selenium, glucocorticoids, and a limited intake of iodine. Diabetes treatment is primarily targeted at 
aspects related to its pathogenesis[19]. The effects of single symptomatic treatments for the combination of these two 
diseases are unsatisfactory. However, combined treatments can improve treatment efficacy and patients' quality of life.

A large number of studies have confirmed that HT is closely related to trace elements, such as iodine and selenium[20-
23]. Selenium is mainly present in the human body as selenium protein that participates in the synthesis and metabolism 
of thyroid hormone and can also be used as an antioxidant to reduce inflammation in HT patients[24]. However, the 
influence of selenium on the occurrence and development of HT is still controversial. Early studies have shown that 
selenium is ineffective in treating HT, and other studies have shown that selenium supplementation cannot enhance the 
immune function of healthy people[25]. However, in recent years, more and more studies have found that selenium 
supplementation can reduce the serum autoantibody TPOAB level of HT patients, and other studies have found that 
selenium can not only reduce the serum TPOAB level of patients but also reduce the serum TGAB level of patients[13,26,
27]. Selenium mainly regulates the natural immune response through methionine sulfoxide reductase, and low selenium 
status can increase the incidence of thyroid diseases[28]. Wu et al's epidemiological study in China also confirmed that 



Feng F et al. T2DM complicated with Hashimoto thyroiditis

WJD https://www.wjgnet.com 215 February 15, 2024 Volume 15 Issue 2

Table 6 Correlation between serum 25-hydroxyvitamin D3 level and various indexes in test group B

25 (OH) D3
Index

r P value

TSH -0.205 0.866

FT3 -0.069 0.633

FT4 -0.291 0.040

TPOAB 0.107 0.459

TGAB -0.457 0.001

TC 0.003 0.985

TG 0.148 0.306

LDL-C -0.025 0.861

FBG 0.079 0.587

HbA1c 0.230 0.108

TSH: Thyroid-stimulating hormone; FT3: Free T3: FT4: Free T4; TPOAB: Thyroid peroxidase antibodies; TGAB: Thyroglobulin antibodies; TC: Total 
cholesterol; TG: Triacylglycerol; LDL-C: Low-density lipoprotein-cholesterol; FBG: Fasting blood glucose; HbA1c: Hemoglobin a1c; 25 (OH) D3: 25-
hydroxyvitamin D3.

Figure 2 Comparison of autoantibody levels in the three groups pre-treatment and 3 and 6 months after treatment. A: Changes in thyroid 
peroxidase antibody level; B: Changes in thyroid globulin antibody level. bP < 0.01; cP < 0.001; dP < 0.0001. TPOAB: Thyroid peroxidase antibody; TGAB: Thyroid 
globulin antibody.

low selenium status was related to the increased risk of HT, and increasing the intake of trace element selenium could 
reduce the incidence of HT[29]. According to the available evidence, selenium supplementation appears to be associated 
with the downregulation of thyroid antibody titers and improvements in mood or general health[30].

However, whether there is a relationship between HT and vitamin D remains controversial. Recently, a review has 
shown that vitamin D deficiency is related to the pathophysiological process of HT, hypothyroidism, and thyroid autoim-
munity to a certain extent[19]. A randomized controlled trial further confirmed the benefit of vitamin D supplementation 
in HT remission. 120 Newly diagnosed HT patients were randomly divided into two groups: Group 1 (intervention 
group) and group 2 (control group). Group 1 patients received 60000 IU of vitamin D3 per week and 500 mg of calcium 
tablets daily for 8 wk. Patients in group 2 were only supplemented with 500 mg calcium tablets daily for 8 wk, and the 
follow-up results after 3 months showed that compared with patients in group 2 (-16.6%), the TPOAB level in patients in 
group 1 was significantly decreased (-46.73%) (P = 0.028)[31]. In this study, after 3 and 6 months of treatment, the 
improvement of 25 (OH) D3 level, thyroid function index level, and autoantibody in trial group A and trial group B were 
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better than those in the control group, and trial group B was better than trial group A (P < 0.05), indicating that the 
combined treatment of vitamin D, selenium and hypoglycemic drugs in T2DM patients with HT was more effective. It 
can be seen that supplementation of vitamin D and selenium yeast can increase the content of 25 (OH) D3 in the body, 
improving thyroid function and the level of autoantibodies in patients.

In a 2010 study, Muscogiuri et al[32] found that patients with vitamin D < 20 ng/mL had a higher incidence of 
autoimmune thyroiditis than those with vitamin D > 20 ng/mL and found a linear correlation between vitamin D3 and 
TPOAB. A large sample data by Choi et al[33] also showed that in the general population, the incidence of positive 
TPOAB was 10.1%, and in female patients, the level of vitamin D3 in TPOAB-positive people was lower than that in 
negative people. Studies have shown that polymorphisms of vitamin D receptors, such as BsmI and TaqI, play an 
important role in autoimmune thyroiditis[34]. Our study found that serum 25 (OH) D3 in groups A and B before 
treatment was negatively correlated with FT4 and TGAB (P < 0.05). That is, the lower the level of vitamin D3, the higher 
the risk of hypothyroidism. However, there are few studies on the relationship between 25 (OH) D3 and thyroid function. 
Since the thyroid antibodies in our study mainly include TPOAB and TGAB and thyroid function TSH, FT3, and FT4, we 
cannot rule out whether there is a linear correlation between vitamin D3 and other antibodies that cause hypothyroidism. 
More research on vitamin D3 and thyroid function is needed.

Saxagliptin is a commonly used clinical drug in the treatment of T2DM. It mainly inhibits the physiological activity of 
the DPP-4 enzyme, promotes the improvement of glucagon-like peptide-1 level, fully stimulates islet cells, and rationally 
increases the release of long-acting insulin, thereby reducing the blood glucose level of patients and achieving the effect 
of promoting the stability of blood glucose level[35-37]. Wang et al[38] randomly divided 25 obese subjects with impaired 
fasting glucose or impaired glucose tolerance with an average age of 45 years into 4 groups: Life intervention group, 
saxagliptin 2.5 mg group, saxagliptin 5 mg group, metformin 1500 mg group. Relevant parameters were measured at 
baseline, 4 wk, 12 wk, and 24 wk. The final study showed that the saxagliptin 5 mg group reduced subjects' FBG and 
HbA1c and significantly reduced blood glucose levels 2 h after meals after 24 wk of intervention. As we all know, dyslip-
idemia in T2DM patients is mainly manifested by increased levels of TC, TG, and LDL-C and decreased levels of LDL-C. 
Angellotti et al[39] found that vitamin D supplementation could significantly reduce serum TG levels in patients who did 
not take cholesterol-lowering drugs. Combined with the results of this study, it was found that the three groups of 
patients were treated with saxagliptin, but after 3 and 6 months of treatment, the levels of blood glucose indexes and lipid 
indexes of test group A and B were better than those of the control group, and test group B was better than test group A (
P < 0.05). These results indicate that the combination of vitamin D, selenium, and hypoglycemic agents has a more 
significant effect on T2DM patients with HT. The reason may be that selenium yeast has an obvious inhibitory effect on 
thyroglobulin. After taking selenium yeast, the levels of the two antibodies can be reduced, which is conducive to 
improving hypothyroidism caused by HT. Studies have shown that selenoproteins also affect insulin secretion and its 
biosynthesis. Selenium exists in glutathione peroxidase, protects pancreatic β cells, prevents them from being oxidized, 
maintains the normal function of beta cells, promotes glucose metabolism, and plays a hypoglycemic role[24]. 
Appropriate selenium supplementation in T2DM patients can help the islets recover some functions and improve the 
condition of diabetes. Vitamin D in T2DM patients can effectively improve insulin resistance, promote insulin secretion, 
regulate blood sugar and lipid metabolism, and inhibit inflammation and oxidative stress. Tahrani et al[40] found that 
female T2DM patients with vitamin D deficiency had a higher HbA1c level, and after vitamin D supplementation, the 
Hba1c level was lower than before. Al-shahwan et al[41] supplemented 45 T2DM patients with 2000 IU of vitamin D per 
day, and the results showed that the level of vitamin D in T2DM patients increased and the degree of insulin resistance 
decreased significantly.

There are still some shortcomings in this study, such as single-center, retrospective, and sample size limitations, which 
may impact the results. The follow-up study will expand the region and sample for exploration to provide more compre-
hensive research support.

CONCLUSION
The combination of vitamin D, selenium, and oral hypoglycemic drugs in treating patients with T2DM and HT has a 
significant clinical effect, effectively improving thyroid function, autoantibodies, blood glucose, and blood lipid levels. 
The elevated 25 (OH) D3, FT4, and TGAB levels were reduced.

ARTICLE HIGHLIGHTS
Research background
The pathogeneses of type-2 diabetes mellitus (T2DM) and Hashimoto's thyroiditis (HT) mainly involve insulin resistance, 
immune factors, infection, genetics, leptin, oxidative stress, molecular cytology, and other related fields; however, there is 
currently no clear consensus on the pathogenesis of the co-occurrence of these conditions. Symptomatic treatment for 
these two diseases, including hypoglycemic drugs and improvement in function, is generally performed clinically. 
Selenium yeast and active vitamin D can reduce thyroid-related antibody levels in T2DM and HT and improve thyroid 
function. Hypoglycemia drugs can reduce blood sugar levels in patients and promote blood sugar stability.
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Research motivation
T2DM combined with HT may cause significant damage to the body. Currently, vitamin D amaryl, and selenium yeast 
are used in combination and applied to research in patients with T2DM combined HT rarely reported.

Research objectives
This article explored the therapeutic effect of vitamin D + selenium + hypoglycemic agents in patients with T2DM and 
HT and explored the serum 25-hydroxyvitamin D3 [25 (OH) D3] level and relations with related indicators.

Research methods
The control group was administered low-iodine diet guidance and hypoglycemic drug treatment. Test group A was 
additionally administered vitamin D treatment, while test group B was administered selenium yeast treatment in 
addition to the treatment in test group A. All three groups were treated for 6 months.

Research results
The improvement ranges of 25 (OH) D3 level, thyroid function index level, autoantibody, blood glucose, and blood lipid 
levels in test groups A and B were better than those in the control group, and the improvement of test group B was better.

Research conclusions
The combination of vitamin D, selenium, and oral hypoglycemic agents in the treatment of patients with T2DM and HT 
had a significant clinical effect and effectively improved thyroid function and autoantibody and blood glucose and blood 
lipid levels, increased 25 (OH) D3 levels, and decreased free T4 and thyroid globulin antibody levels in these patients.

Research perspectives
The combination of vitamin D, selenium, and oral hypoglycemic agents for treating patients with T2DM and HT has 
obvious therapeutic effects and is worthy of clinical application.
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Abstract
BACKGROUND 
The effects of viral hepatitis (VH) on type 2 diabetes (T2D) remain controversial.

AIM 
To analyze the causal correlation between different types of VH and T2D using 
Mendelian randomization (MR).

METHODS 
Single nucleotide polymorphisms of VH, chronic hepatitis B (CHB), chronic 
hepatitis C (CHC) and T2D were obtained from the BioBank Japan Project, 
European Bioinformatics Institute, and FinnGen. Inverse variance weighted, MR-
Egger, and weighted median were used to test exposure-outcome associations. 
The MR-Egger intercept analysis and Cochran’s Q test were used to assess 
horizontal pleiotropy and heterogeneity, respectively. Leave-one-out sensitivity 
analysis was used to evaluate the robustness of the MR analysis results.

RESULTS 
The MR analysis showed no significant causal relationship between VH and T2D 
in Europeans [odds ratio (OR) = 1.028; 95% confidence interval (CI): 0.995-1.062, P 
= 0.101]. There was a negative causal association between CHB and T2D among 
East Asians (OR = 0.949; 95%CI: 0.931-0.968, P < 0.001), while there was no 
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significant causal association between CHC and T2D among East Asians (OR = 1.018; 95%CI: 0.959-1.081, P = 
0.551). Intercept analysis and Cochran’s Q test showed no horizontal pleiotropy or heterogeneity (P > 0.05). 
Sensitivity analysis showed that the results were robust.

CONCLUSION 
Among East Asians, CHB is associated with a reduced T2D risk, but this association is limited by HBV load and 
cirrhosis. Although VH among Europeans and CHC among East Asians are not associated with the risk of T2D, 
focusing on blood glucose in patients with CHC is still relevant for the early detection of T2D induced by CHC-
mediated pathways of hepatic steatosis, liver fibrosis, and cirrhosis.

Key Words: Viral hepatitis; Chronic hepatitis B; Chronic hepatitis C; Type 2 diabetes; Mendelian randomization

©The Author(s) 2024. Published by Baishideng Publishing Group Inc. All rights reserved.

Core Tip: The effects of hepatitis B and C on type 2 diabetes (T2D) remain controversial. The study aims to analyze the 
causal relationship of T2D with chronic hepatitis B (CHB) and chronic hepatitis C (CHC) by Mendelian randomization 
(MR). This MR analysis showed that in East Asians, CHC was not associated with T2D risk, whereas CHB was associated 
with a reduced risk of T2D. Although this MR analysis did not find a causal relationship between CHC and T2D, focusing 
on blood glucose in patients with CHC is still relevant, which helps early detect T2D induced by CHC-mediated other 
hepatic lesions.

Citation: Yu YF, Hu G, Tong KK, Yang XY, Wu JY, Yu R. Effect of viral hepatitis on type 2 diabetes: A Mendelian randomization 
study. World J Diabetes 2024; 15(2): 220-231
URL: https://www.wjgnet.com/1948-9358/full/v15/i2/220.htm
DOI: https://dx.doi.org/10.4239/wjd.v15.i2.220

INTRODUCTION
Type 2 diabetes (T2D) is a chronic metabolic disease characterized by relative insulin deficiency and abnormally elevated 
blood glucose[1]. An epidemiological study has shown that as the prevalence of diabetes increases each year, approx-
imately 1 in 10 adults globally now have diabetes, and it is projected that by 2045, the world will have 693 million 
individuals with diabetes[2,3]. As an incurable disease, the hyperglycemic state in T2D increases the risk of macro-
vascular pathologies, such as cardiovascular disease, and microvascular pathologies, such as nephropathy, retinopathy, 
and peripheral neuropathy[4,5]. T2D is a serious threat to the life and health of patients, especially the thrombotic events 
caused by cardiovascular and cerebrovascular lesions, which are the leading causes of death in patients with T2D[2,6]. 
Obesity, high-fat diet, and physical inactivity are risk factors for T2D, and controlling these risk factors helps reduce the 
risk of developing T2D and improve its prognosis[7,8]. Therefore, controlling the related risk factors, particularly high-
risk factors, is essential for the prevention and treatment of T2D. In recent years, an increasing number of studies have 
reported an association between hepatitis viruses and diabetes mellitus[9], and evidence suggests that chronic viral 
hepatitis (VH) may be a potential risk factor for T2D[10,11].

VH, an inflammatory disease of the liver caused by infection with the hepatitis A virus (HAV), hepatitis B virus (HBV), 
hepatitis C virus (HCV), hepatitis D virus (HDV), or hepatitis E virus (HEV), is a major global health problem[12]. These 
viruses cause acute hepatitis, and HBV, HCV, and HDV infections progress to chronic hepatitis[13,14]. Globally, approx-
imately 257 million individuals have been reported to be infected with HBV, and 71 million are infected with HCV[15]. 
Chronic hepatitis B (CHB) from HBV infection and chronic hepatitis C (CHC) from HCV infection cause persistent 
damage to the liver, resulting in liver fibrosis, cirrhosis, liver cancer, and even death[13,16]. Relevant studies have shown 
that hepatitis B cirrhosis and HCV infection increased the risk of T2D by 74% and 1058%, respectively[11,17], suggesting 
that CHB and CHC are potential risk factors for T2D. This effect may be related to the signaling pathway by which 
hepatitis viruses alter hepatic glucose homeostasis by mediating the overexpression of protein phosphatase 2A to inhibit 
Akt and FoxO1 dephosphorylation[18]. However, some studies have reported that HBV and HCV infections do not 
increase the incidence of T2D[19,20], which indirectly negates the relationships of them. Whether different categories of 
VH, especially CHB and CHC, are associated with the risk of T2D remains controversial, and the causal relationship 
between them needs to be further explored.

Mendelian randomization (MR) is a method for assessing the causal relationship between exposure and outcome 
variables using genetic variants[21]. Due to the randomized nature of allele classification, MR has properties similar to 
those of randomized controlled trials[22]. Although MR cannot be used as a substitute for randomized controlled trials, it 
provides additional evidence for causality analysis[23]. This MR analysis explored the causal relationship between T2D 
and VH, CHB, and CHC from a gene prediction perspective, with the aim of providing additional evidence for risk factor 
studies in diabetes.
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MATERIALS AND METHODS
Study design
MR relies on three primary assumptions[24]: (1) Association assumption: Single nucleotide polymorphisms (SNPs) are 
strongly associated with exposure factors; (2) Independence assumption: SNPs are independent of confounding variables; 
and (3) Exclusivity assumption: SNPs do not act on outcome variables through pathways other than through exposure 
factors. The design is illustrated in Figure 1.

Data sources
Data on VH, CHB, CHC, and T2D were obtained from the BioBank Japan Project (https://biobankjp.org/en/), European 
Bioinformatics Institute (https://www.ebi.ac.uk), and FinnGen (www.finngen.fi/fi). All the data were sourced from 
publicly available databases; therefore, no additional ethical approval was required.

Selection of genetic instrument variables
First, SNPs strongly associated with exposure factors were screened in the genome-wide association studies (GWAS), 
according to a threshold of P < 5 × 10-6 to fulfill assumption 1. Second, independent SNPs were screened, according to R2 
< 0.001 and kb = 10000, to avoid potential bias due to linkage disequilibrium. Third, the F-value of each SNP was 
calculated, and SNPs with F ≤ 10 were excluded. F-value was calculated publicly as F = [R2/(1 - R2)] × [(N - K - 1)/K], 
where R2 = 2 × (1 - MAF) × MAF × β2. R2: The cumulative explained variance of the selected instrument variables on 
exposure; MAF: The effect of minor allele frequency; β: The estimated effect of SNP; and N: Sample size of the GWAS. 
Finally, we referred to PhenoScanner (www.phenoscanner.medschl.cam.ac.uk) and related literature to remove SNPs 
potentially associated with T2D to fulfill assumption 2.

Data analysis
This study followed the STROBE-MR guidelines[25]. The “TwoSampleMR (0.5.7)” program package for R 4.3.1 was used 
to perform the two-sample MR analysis. Inverse variance weighting (IVW), MR-Egger, and weighted median were used 
as basic causality assessment methods. Among these methods, IVW was the primary analysis method[26] that achieved 
unbiased causal estimation without horizontal pleiotropy. MR-Egger and the weighted median are complementary 
methods to MR analysis, with the former providing valid causal estimation in some cases where pleiotropy exists, and the 
latter being less sensitive to outliers and measurement errors.

The MR results were corrected and analyzed using the MR-Pleiotropy Residual Sum and Outlier method (MR-
PRESSO), and the MR analysis was re-executed after removing outlier SNPs (P < 1). Horizontal pleiotropy was assessed 
using MR-Egger’s intercept analysis, and P ≥ 0.05 suggested the absence of horizontal pleiotropy to fulfill assumption 3. 
Heterogeneity was assessed using Cochran’s Q test, and P ≥ 0.05 suggested the absence of heterogeneity. Leave-one-out 
sensitivity analysis was used to assess the robustness of the results and clarify individual SNP that significantly affected 
the pooled results.

RESULTS
GWAS data for exposure factors
The VH data were obtained from FinnGen, which included 377277 European participants (dataset number: finngen_
R9_AB1_VIRAL_HEPATITIS). Data on CHB were obtained from the BioBank Japan Project, which contains information 
on 212453 East Asians (dataset number: bbj-a-99). Data on CHC were obtained from the BioBank Japan Project, which 
contains information on 212453 East Asians (dataset number: bbj-a-101). Eighty-six SNPs closely related to VH were 
provided by FinnGen, 8719 closely associated with CHB, and 1494 closely related to CHC were supplied by the BioBank 
Japan Project. Eleven SNPs for VH, 14 for CHB, and 13 for CHC were included after excluding the effects of linkage 
disequilibrium and confounding variables (Supplementary Table 1). Duplicated and mismatched SNPs were excluded 
based on the EAF values when harmonizing the allelic orientations of the exposure and outcome SNPs. Outlier SNPs 
were excluded from MR-PRESSO correction analysis. Finally, 11 SNPs for VH, nine for CHB, and six for CHC were 
included (Supplementary Table 2).

GWAS data for outcome variables
The T2D data for Europe were obtained from FinnGen, including 365950 European participants (dataset number: 
finngen_R9_T2D). Data on T2D for East Asia were obtained from the European Bioinformatics Institute, and it included 
433540 East Asian individuals (dataset number: ebi-a- GCST010118) (Table 1).

MR analysis results of two samples
The causal effects between the exposure factors (VH, CHB, and CHC) and outcome variable (T2D) were analyzed using 
two-sample MR. A forest plot of the MR analysis is shown in Figure 2, and a scatter plot of the effect estimates for each 
SNP is shown in Figure 3. The results of the intercept analysis are shown in Supplementary Table 3. The results of the 
heterogeneity test are shown in Figure 4 and Supplementary Table 4. The sensitivity analysis is shown in Figure 5.

https://biobankjp.org/en/
https://www.ebi.ac.uk
http://www.finngen.fi/fi)
http://www.phenoscanner.medschl.cam.ac.uk
https://f6publishing.blob.core.windows.net/c6123a7c-1f8a-4d48-ac33-9e8e13b8f9a7/WJD-15-220-supplementary-material.pdf
https://f6publishing.blob.core.windows.net/c6123a7c-1f8a-4d48-ac33-9e8e13b8f9a7/WJD-15-220-supplementary-material.pdf
https://f6publishing.blob.core.windows.net/c6123a7c-1f8a-4d48-ac33-9e8e13b8f9a7/WJD-15-220-supplementary-material.pdf
https://f6publishing.blob.core.windows.net/c6123a7c-1f8a-4d48-ac33-9e8e13b8f9a7/WJD-15-220-supplementary-material.pdf
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Table 1 Details of the Genome-wide association studies included in the Mendelian randomization

Year Trait Population Sample size Web source

2023 VH European 377277 www.finngen.fi/en

2023 T2D European 365950 www.finngen.fi/en

2019 CHB East Asian 212453 https://biobankjp.org/en/

2019 CHC East Asian 212453 https://biobankjp.org/en/

2020 T2D East Asian 433540 https://www.ebi.ac.uk

VH: Viral hepatitis; CHB: Chronic hepatitis B; CHC: Chronic hepatitis C; T2D: Type 2 diabetes.

Figure 1 Mendelian randomization design for causal analysis of viral hepatitis, chronic hepatitis B, chronic hepatitis C and type 2 
diabetes. VH: Viral hepatitis; CHB: Chronic hepatitis B; CHC: Chronic hepatitis C; T2D: Type 2 diabetes; GWAS: Genome-wide association studies; SNP: Single 
nucleotide polymorphisms; LD: Linkage disequilibrium.

Figure 2 Forest plot of Mendelian randomization analysis on the causal relationship between viral hepatitis, chronic hepatitis B, chronic 
hepatitis C and type 2 diabetes. VH: Viral hepatitis; CHB: Chronic hepatitis B; CHC: Chronic hepatitis C; T2D: Type 2 diabetes; OR: Odd ratio; SNP: Single 
nucleotide polymorphisms; MR: Mendelian randomization; CI: Confidence interval; IVW: Inverse variance weighting.

VH: None of the three methods of analysis showed significant causal relationships between VH and T2D in Europeans: 
IVW [odds ratio (OR) = 1.028; 95% confidence interval (CI): 0.995-1.062; P = 0.101], MR-Egger (OR = 1.002; 95%CI: 0.938-
1.069; P = 0.962), or weighted median (OR = 1.014; 95%CI: 0.975-1.054; P = 0.499). Intercept analysis showed no horizontal 
pleiotropy (P = 0.391). Cochran’s Q test showed no heterogeneity (P = 0.119). Sensitivity analysis suggested that the 

http://www.finngen.fi/en
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Figure 3 Scatter plot of Mendelian randomization analysis on the causal relationship between viral hepatitis, chronic hepatitis B, chronic 
hepatitis C and type 2 diabetes. A: Viral hepatitis on type 2 diabetes; B: Chronic hepatitis B on type 2 diabetes; C: Chronic hepatitis C on type 2 diabetes. VH: 
Viral hepatitis; CHB: Chronic hepatitis B; CHC: Chronic hepatitis C; T2D: Type 2 diabetes; MR: Mendelian randomization.

results were robust.

CHB: All the three methods of analysis showed a negative causal association between CHB and T2D among East Asian 
individuals: IVW (OR = 0.949; 95%CI: 0.931-0.968; P < 0.001), MR-Egger (OR = 0.940; 95%CI: 0.901-0.981; P = 0.026), and 
weighted median (OR = 0.954; 95%CI: 0.931-0.979; P < 0.001). Intercept analysis showed no horizontal pleiotropy (P = 
0.640). The Cochran’s Q test revealed no heterogeneity (P = 0.685). Sensitivity analysis suggested that the results were 
robust.

CHC: None of the three analysis methods showed a significant causal relationship between CHC and T2D in East Asians: 
IVW (OR = 1.018; 95%CI: 0.959-1.081, P = 0.551), MR-Egger (OR = 1.152; 95%CI: 0.858-1.548, P = 0.400), and weighted 
median (OR = 1.009; 95%CI: 0.933-1.091, P = 0.821). Intercept analysis showed no horizontal pleiotropy (P = 0.640). The 
Cochran’s Q test showed no heterogeneity (P = 0.376), and the sensitivity analysis suggested that the results were robust.

DISCUSSION
VH is an inflammatory liver disease caused by viruses, such as HAV, HBV, HCV, HDV, and HEV, and is one of the most 
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Figure 4 Funnel plot of heterogeneity analysis on viral hepatitis, chronic hepatitis B, chronic hepatitis C and type 2 diabetes. A: Viral 
hepatitis on type 2 diabetes; B: Chronic hepatitis B on type 2 diabetes; C: Chronic hepatitis C on type 2 diabetes. MR: Mendelian randomization.

common liver diseases[27]. Some evidence suggests that HBV and HCV infection are associated with impaired glucose 
tolerance and increased incidence of diabetes mellitus[28,29], which are potential risk factors for T2D. However, other 
studies have found that neither HBV nor HCV infections are associated with T2D risk[20,30]. The effects of HBV and 
HCV infections on T2D remain controversial, and their causal relationship remains unclear. To further understand the 
potential impact of different types of VH on T2D, MR was used to analyze the causal relationships of VH, CHB, and CHC 
with T2D.

This study found no significant causal association between VH and T2D risk in the European population. Among East 
Asians, CHB was associated with a lower risk of T2D, whereas CHC was not associated with a risk of T2D. The 
Cochrane’s Q-test and intercept analysis showed no heterogeneity or horizontal pleiotropy in these results, and the 
sensitivity analysis showed that the MR results were robust. As the GWAS did not include data on HAV, HDV, and HEV 
infections, this study did not assess the effect of these three types of VH on the risk of T2D. Additionally, the impact of 
CHB and CHC on T2D among Europeans is still being determined because GWAS do not contain available data on CHB 
and CHC in Europeans.

Our results showed that CHC was not associated with T2D risk, which is consistent with previous reports. A United 
States clinical trial, involving 15125 individuals found that neither the prevalence of prediabetes nor diabetes was 
associated with HCV infection, and the level of insulin resistance was not associated with HCV markers[20]. 
Additionally, an Iranian case-control study noted that CHC was not a risk factor for insulin resistance or diabetes in the 
Iranian population[31].
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Figure 5 The results of leave-one-out sensitivity analysis on viral hepatitis, chronic hepatitis B, chronic hepatitis C and type 2 diabetes. A: 
Viral hepatitis on type 2 diabetes; B: Chronic hepatitis B on type 2 diabetes; C: Chronic hepatitis C on type 2 diabetes. VH: Viral hepatitis; CHB: Chronic hepatitis B; 
CHC: Chronic hepatitis C; T2D: Type 2 diabetes.

However, studies supporting the notion that CHC is not associated with T2D are few, and to date, most clinical studies 
have pointed to a correlation between CHC and T2D. Mehta et al[17] suggested that CHC is a potential risk factor for 
T2D, and they found a higher risk of T2D in patients with CHC than that in healthy individuals. An Italian single-arm 
trial noted that a significant effect of HCV on glucose load developed through increased insulin resistance in the liver and 
muscles[32]. The impact of HCV on blood glucose levels and risk of diabetes was more pronounced in patients aged 35-49 
years and in those with severe liver disease[33]. The risk for T2D in patients with CHC has been reported to increase with 
increasing levels of liver fibrosis[34,35]. Additionally, there is evidence that patients with CHC infected with HCV1b and 
HCV3 have a higher incidence of T2D[36,37], implying that the HCV genotype is an essential factor influencing the risk of 
T2D. These results suggest that HCV increases the risk of developing T2D by affecting insulin sensitivity, and that this 
association is related to the degree of liver fibrosis and HCV genotype. Therefore, HCV eradication may help reduce 
blood glucose levels and T2D risk. Gilad et al[38] and Hussein et al[39] found that diabetic patients coinfected with HCV 
who were treated with direct-acting antiviral agents (DAAs) had significant improvements in glycosylated hemoglobin 
levels and insulin resistance, as well as a substantial reduction in diabetes-related microvascular complications[40]. Two 
meta-analyses have shown that DAAs restore HCV-induced alterations in glucose homeostasis by inducing a sustained 
virological response, thereby reducing insulin resistance and T2D risk[41,42]. These findings indicate that anti-HCV 
therapy benefits patients with T2D, and provide indirect evidence that CHC is a risk factor for T2D.

Although considerable evidence points to CHC as a potential risk factor for T2D, this MR analysis, based on genetic 
prediction, did not reveal a causal relationship between them. The MR analysis and clinical trial results differed, possibly 
because of intermediate factors between CHC and T2D. Ruhl et al[20] stated that diabetes risk is associated with elevated 
alanine aminotransferase and gamma-glutamyltransferase activities rather than HCV infection status. The authors 
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suggested that the association between HCV infection and T2D reported in previous studies was related to elevated liver 
enzyme[20]. Related studies have shown that insulin resistance in individuals infected with HCV is associated with 
alterations in alanine transaminase, aspartate aminotransferase, and bilirubin levels[43]. Papatheodoridis et al[44] found 
that the risk of T2D in HCV-infected individuals was associated with hepatic fibrosis, cirrhosis, hepatic steatosis, and 
increased serum triglyceride levels.

Additionally, researchers have observed that HCV infection increases the risk of obesity and metabolic syndrome (MS) 
by affecting the liver. In a clinical study in Virginia, Younossi et al[45] found that HCV genotype three was associated 
with an increased risk of steatosis and fatty liver disease. A Taiwanese study has shown that HCV regulates host lipid 
metabolism and distribution to some extent[46]. Another Taiwanese study showed that the prevalence of MS was higher 
in individuals infected with HCV than that in non-infected patients (24.7% vs 13.2%)[47]. The effects of HCV infection on 
obesity and MS may be mediated through the promotion of hepatic steatosis and fibrosis. Hepatitis C core viral proteins 
in patients with HCV, especially in genotype 3a-infected patients, induced sterol regulatory element-binding protein 1 
and peroxisome proliferator-activated receptor γ gene expression and activity, thereby increasing the transcription of 
genes involved in hepatic fatty acid synthesis, and ultimately promoting steatosis[48]. Hepatitis C core viral proteins, in 
turn, mediate oxidative stress, promote the expression of inflammatory factors, such as tumor necrosis factor-α, 
interleukin (IL)-6, and IL-8, and aggravate the degree of hepatic fibrosis, which exacerbates insulin resistance[49,50]. 
Insulin resistance plays a vital role in MS[47]. This evidence suggests that HCV may affect glucose metabolic homeostasis 
and increase the risk of T2D through intermediate pathways, such as hepatic steatosis, hepatic fibrosis, and cirrhosis. 
However, due to the assumption of the exclusivity of MR, SNPs associated with known risk factors for T2D, such as fatty 
liver, liver fibrosis, and cirrhosis, were excluded as confounding factors, which may be the main reason for the negative 
MR results.

This study suggests that CHB infection is associated with a reduced risk of T2D, which differs from the results of most 
clinical studies. Current studies support the notion that HBV infection is not an independent risk factor of T2D[19]. A 
Taiwanese study involving 1233 individuals found no significant differences in the prevalence of diabetes and glucose 
intolerance between asymptomatic chronic HBV-infected individuals and a non-HBV control group[30]. This is similar to 
the findings of another Taiwanese study that concluded that HBV itself does not confer a predisposition to diabetes[51]. 
Liu et al[52] supported this view from a serological perspective as they found that the serological status of HBV antigen 
(HBsAg) and hepatitis B surface antibody (HBsAb) was not associated with diabetes. Moreover, HBV infection did not 
increase the risk of macrovascular complications in diabetes mellitus[53].

Although most of the current literature suggests that CHB is not associated with T2D risk, some studies support CHB 
as a potential protective factor against T2D. A study of retired Chinese women showed that a HBsAb-positive status was 
associated with better metabolic status and a lower incidence of diabetes mellitus[54]. Another study found that a high 
HBV load is associated with a reduced risk of hepatic steatosis, a mechanism by which HBV reduces the risk of T2D[55]. 
This implies that a high HBV load may be an element of the reduced risk of T2D in patients with CHB rather than HBsAb 
positivity alone. However, most patients with CHB are treated with antiviral drugs, including tenofovir or entecavir, 
which reduce the HBV load in the body. As the viral load decreases, the role of HBV in regulating fat metabolism and 
reducing the risk of diabetes is significantly diminished, which may be the main reason why the results of this MR 
analysis differ from those of clinical studies.

The potential protective effects of HBV infection against obesity and MS provide indirect evidence that supports our 
findings. A cross-sectional study in China showed that the prevalence of MS was significantly lower in patients infected 
with HBV than that in non-infected patients (11.64% vs 12.66%)[56]. A Taiwanese clinical study included 3587 patients 
with HBV infection without cirrhosis and found that high HBV viral load was associated with a reduced risk of extreme 
obesity (OR = 0.30; 95%CI: 0.13-0.68) and centripetal obesity (OR = 0.53; 95%CI: 0.34-0.82)[57]. HBV infection may reduce 
the risk of hepatic steatosis by modulating lipid metabolism, which in turn reduces the risk of obesity and MS. A meta-
analysis showed that the prevalence of steatosis was lower in CHB than that in the general population (OR = 0.81; 95%CI: 
0.71-0.920)[58]. Another study reported that the prevalence of non-alcoholic fatty liver disease was lower in patients with 
HBV infection than that in non-infected patients[59]. A clinical study in Taiwan further showed that patients with 
positive HBsAg possessed lower hypertriglyceridemia (OR = 0.59; 95%CI: 0.52-0.66) and low-density lipoprotein-
cholesterol levels (OR = 0.86; 95%CI: 0.79-0.93) than those with negative HBsAg[60]. Considering that steatosis is an 
essential factor that leads to the progressive impairment of glucose metabolism[61], the role of HBV in regulating hepatic 
lipid metabolism also contributes to the regulation of glucose metabolic homeostasis. This evidence suggests that HBV 
infection is associated with a lower risk of obesity and MS, and that the primary mechanism may be the modulation of 
hepatic fat metabolism, which corroborates our view.

Notably, the risk of T2D increases when CHB progresses to cirrhosis. A meta-analysis of 15 clinical studies showed that 
the incidence of diabetes was comparable between patients with non-cirrhotic CHB and those with asymptomatic HBV 
carriers and non-HBV[11]. In contrast, patients with hepatitis B cirrhosis had a significantly increased risk of T2D (OR = 
1.99; 95%CI: 1.08-3.65)[11]. Epidemiological studies showed that only 2%-4% of patients infected with HBV each year 
worldwide will develop compensated cirrhosis, and only 1.5%-4% of compensated cirrhosis will further develop into 
decompensated cirrhosis[62]. Therefore, most patients with CHB do not have compensated or decompensated cirrhosis, 
which may explain why most clinical studies have not found an association between CHB and T2D. In summary, CHB is 
associated with a reduced risk of T2D; however, this association is limited by HBV load and cirrhosis. It weakens or 
disappears when patients with CHB receive antiviral therapy, and reverses when CHB progresses to cirrhosis.

Few studies have investigated the relationship between T2D and other VH, such as hepatitis A, D, and E. Lin et al[63] 
found that HAV infection was associated with an increased risk of diabetes (OR = 1.13; 95%CI: 1.08-1.18). However, HAV 
vaccination and successful HAV immunization were not associated with the risk of diabetes; therefore, they concluded 
that HAV infection was unlikely to cause diabetes[63]. Zitelli et al[64] found that among patients with chronic HCV 
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infection receiving antiviral therapy, the incidence of diabetes was 3.65 times higher in HEV-positive patients than that in 
HEV-negative patients, suggesting that HEV is a potential risk factor for diabetes mellitus in chronic HCV-infected 
individuals. In summary, there are insufficient studies elucidating the effects of hepatitis caused by HAV, HDV, and HEV 
infections on T2D, and this issue needs to be further explored in subsequent studies.

Our study has some limitations. First, the data on CHB and CHC were derived from East Asians; therefore, the results 
mainly illustrate the effect of CHB and CHC on T2D among East Asians, and it is not yet clear how they affect other races. 
Second, the GWAS only provided an overall dataset on VH among Europeans with availability; it did not include a 
dataset of different types of VH. Therefore, the results of this study can only infer that VH is not associated with T2D risk 
in Europeans, and cannot explain the effects of different types of VH on T2D risk among Europeans. Third, data on HAV, 
HDV, and HEV were unavailable in the GWAS; therefore, their effects on T2D risk were not assessed. Fourth, our data 
were derived from the GWAS; therefore, it was impossible to stratify the analysis for populations with different viral 
loads. Given these limitations, we expect future studies to improve. First, we recommend continuing to promote human 
genome studies worldwide, and provide more comprehensive data for MR analysis of different races. Second, we 
recommend conducting stratified randomized controlled trials to explore the specific effects of the different types, stages, 
and viral loads of VH on T2D.

CONCLUSION
This MR analysis showed that neither VH among Europeans nor CHC among East Asians were associated with T2D risk, 
whereas CHB was associated with reduced T2D risk among East Asians. Although VH among Europeans and CHC 
among East Asians are not associated with T2D risk, focusing on blood glucose in patients with CHC is still relevant for 
the early detection of T2D induced by CHC-mediated pathways of hepatic steatosis, liver fibrosis, and cirrhosis. Further 
studies are needed to explore the causal relationships and mechanisms between different types of VH and T2D.

ARTICLE HIGHLIGHTS
Research background
The causality between viral hepatitis (VH) and type 2 diabetes (T2D) remains unclear.

Research motivation
In this study, a Mendelian randomization (MR) analysis was applied to determine the causality between VH and T2D 
from genome-wide association study data.

Research objectives
We used a MR to identify the causality between VH, chronic hepatitis B (CHB), chronic hepatitis C (CHC) and T2D from 
genome-wide association study data.

Research methods
Two-sample MR was performed to obtain the causality between VH, CHB, CHC and T2D. Summary statistics from the 
FinnGen were used for VH, BioBank Japan Project was used for CHB and CHC, and the European Bioinformatics 
Institute and FinnGen were utilized for T2D.

Research results
The MR analysis showed no significant causal relationship between VH and T2D in Europeans [odds ratio (OR) = 1.028; 
95% confidence interval (CI): 0.995-1.062, P = 0.101] as well as between CHC and T2D in East Asians (OR = 0.949; 95%CI: 
0.931-0.968, P < 0.001), while there was a negative causal association between CHB and T2D among East Asians (OR = 
0.949; 95%CI: 0.931-0.968, P < 0.001). These MR analysis results showed no horizontal pleiotropy or heterogeneity (P > 
0.05), and they were robust.

Research conclusions
Among East Asians, CHB is associated with a reduced T2D risk, but this association is limited by hepatitis B virus (HBV) 
load and cirrhosis. Although CHC among East Asians are not associated with the risk of T2D, focusing on blood glucose 
in patients with CHC is still relevant for the early detection of T2D induced by CHC-mediated pathways of hepatic 
steatosis, liver fibrosis, and cirrhosis.

Research perspectives
Whether different categories of VH, especially CHB and CHC, are associated with the risk of T2D remains controversial. 
CHB is associated with a reduced T2D risk among East Asians, but this association is limited by HBV load and cirrhosis. 
Although VH among Europeans and CHC among East Asians are not associated with T2D risk, focusing on blood 
glucose in patients with CHC is still relevant for the early detection of T2D induced by CHC-mediated pathways of 
hepatic steatosis, liver fibrosis, and cirrhosis.
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Abstract
BACKGROUND 
Glucose and lipid metabolic disorder in patients with type 2 diabetes mellitus 
(T2DM) is associated with the levels of serum tumor markers of the digestive 
tract, such as cancer antigen (CA)199. Therefore, tumor markers in T2DM are 
important.

AIM 
To evaluate the expression of serum tumor markers [CA199, CA242, and car-
cinoembryonic antigen (CEA)] and the clinical implications of the expression in 
T2DM.

METHODS 
For this observational study conducted at Hefei BOE Hospital, China, we enrolled 
82 patients with first-onset T2DM and 51 controls between April 2019 and 
December 2020. Levels of fasting blood glucose (FBG), tumor markers (CA199, 
CEA, and CA242), glycosylated hemoglobin (HbA1c), etc. were measured and 
group index levels were compared. Moreover, FBG and HbA1c levels were 
correlated with tumor marker levels. Tumor markers were tested for diagnostic 
accuracy in patients with > 9% HbA1c using the receiver operating curve (ROC) 
curve.

RESULTS 
The T2DM group had high serum FBG, HbA1c, CA199, and CEA levels (P < 0.05). 
A comparative analysis of the two groups based on HbA1c levels (Group A: 
HbA1c ≤ 9%; Group B: HbA1c > 9%) revealed significant differences in CEA and 
CA199 levels (P < 0.05). The areas under the ROC curve for CEA and CA199 were 
0.853 and 0.809, respectively. CA199, CEA, and CA242 levels positively correlated 
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with HbA1c (r = 0.308, 0.426, and 0.551, respectively) and FBG levels (r = 0.236, 0.231, and 0.298, respectively).

CONCLUSION 
As compared to controls, serum CEA and CA199 levels were higher in patients with T2DM. HbA1c and FBG levels 
correlated with CA199, CEA, and CA242 levels. Patients with poorly controlled blood sugar must be screened for 
tumor markers.

Key Words: Type 2 diabetes mellitus; Carcinoembryonic antigen; Cancer antigen 199; Cancer antigen 242; Glycosylated 
hemoglobin

©The Author(s) 2024. Published by Baishideng Publishing Group Inc. All rights reserved.

Core Tip: Levels of serum cancer antigen (CA)199, carcinoembryonic antigen (CEA), and CA242 demonstrated close 
association with glycosylated hemoglobin (HbA1c) and fasting blood glucose levels in patients with type 2 diabetes mellitus. 
Furthermore, CA199 and CEA levels had good predictive power for HbA1c levels. These findings suggest the need for 
monitoring tumor marker changes in those with poorly controlled blood sugar levels.

Citation: Meng M, Shi LL. Serum tumor markers expression (CA199, CA242, and CEA) and its clinical implications in type 2 
diabetes mellitus. World J Diabetes 2024; 15(2): 232-239
URL: https://www.wjgnet.com/1948-9358/full/v15/i2/232.htm
DOI: https://dx.doi.org/10.4239/wjd.v15.i2.232

INTRODUCTION
In China, an aging population and lifestyle changes have transformed diabetes from a rare disease to an epidemic over 
the past four decades. The global number of individuals aged ≥ 18 years affected by diabetes is projected to increase from 
425 million in 2017 to 629 million in 2045, with type 2 diabetes mellitus (T2DM) accounting for > 90% of the diabetic 
population[1]. Long-term hyperglycemia in patients with T2DM can cause oxidative stress-, inflammation-, and vascular 
endothelial function-related damage. Recent studies have highlighted the association between diabetes and cancer, 
demonstrating that patients with T2DM are significantly more likely to develop malignant tumors than the general 
population[2]. Patients with tumors may experience significant changes in the blood sugar levels during therapy. 
Moreover, diabetes can cause levels of specific serum tumor markers to spike. Although carcinoembryonic antigen (CEA), 
cancer antigen (CA)199, and CA242 are used to diagnose tumors[3], the correlation between their expression levels and 
blood glucose levels in patients with T2DM remains unknown.

Considering these findings, the precise relationship between the levels of tumor markers (CEA, CA199, and CA242) 
and T2DM needs a thorough investigation. This study aimed to address the overarching question: “What is the 
relationship between the expression levels and clinical significance of serum tumor markers (CEA, CA199, and CA242) in 
patients with T2DM?” Addressing this question is crucial for enhancing early tumor screening and improving prognostic 
evaluation, potentially contributing to improved clinical outcomes and management strategies for patients with T2DM 
and comorbid cancer conditions.

MATERIALS AND METHODS
Sample size calculation
The sample size calculation for this study was based on the anticipated difference in tumor marker levels (CA199, CA242, 
and CEA) between patients with T2DM and the control group. Assuming a medium effect size (d = 0.5), a significance 
level (α) of 0.05, and a desired power of 80%, the sample size was estimated using the G*Power software. Based on these 
parameters, ≥ 46 participants were needed in each group. Assuming a 10% loss of data or exclusion, a minimum of 51 
participants in each group was deemed necessary. Finally, 82 patients with T2DM and 51 controls were enrolled in this 
study.

The inclusion criteria set for this study were as follows: (1) Age ≥ 18 years; (2) patients who met the T2DM diagnostic 
criteria established by the guidelines for the prevention and treatment of type 2 diabetes in China (2020 Edition) 
formulated by the diabetes branch of the Chinese Medical Association; these included newly diagnosed patients and 
previously diagnosed patients with poor blood glucose control; and (3) those who or whose families provided informed 
consent. The exclusion criteria were as follows: (1) Patients with heart, liver, kidney and lung dysfunction, acute diabetic 
complications, infectious diseases, autoimmune diseases, acute and chronic inflammatory reactions, and malignant 
tumors; (2) patients on long-term glucocorticoid therapy, given the effect of these medications on blood sugar and lipid 
levels; (3) pregnant or lactating women; (4) patients with acute and chronic pancreatitis, liver cirrhosis, hepatitis, colitis, 
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gallstones, and obstructive jaundice, given that these conditions can cause benign elevation of serum CA199 or CEA 
levels; and (5) patients with incomplete clinical information or inaccurate data.

General information
We recruited 82 patients (47 men) with T2DM from BOE Technology Hospital in Hefei between April 2019 and December 
2020. All patients were diagnosed with diabetes according to the 1999 World Health Organization diagnostic criteria. 
During the same period, 51 individuals (27 men) who underwent health examinations at our hospital's health 
examination center were selected as the control group. The median age was 59.5 (26–81) years in the T2DM group and 46 
(27–68) years in the control group. Table 1, summarizing the general characteristics of the two groups indicates no 
significant inter-group differences. The exclusion criteria for the control group were as follows: (1) Individuals with type 
1 diabetes, acute metabolic disorders associated with diabetes (such as ketoacidosis and hyperosmolar state), acute stroke, 
acute and chronic infections, thyroid disease, and cardiac insufficiency; (2) those with severe liver and kidney 
dysfunction; (3) those with acute and chronic hepatitis, alcoholic liver disease, cirrhosis, gallstone, pancreatitis, chole-
cystitis, and other digestive system diseases; (4) those with tumors; and (5) pregnant women. The study protocol was 
approved by the Medical Ethics Committee and participants provided written informed consent.

Methods
Upon admission, the body mass index (BMI) was calculated by measuring the patient height and weight and collecting 
venous blood after an overnight fast. The levels of alanine transaminase (ALT), aspartate transaminase (AST), creatinine, 
serum uric acid, fasting blood glucose (FBG), triglycerides, total cholesterol (TC), low-density lipoprotein cholesterol 
(LDL-C), and serum tumor markers CEA, CA199, and CA242 were determined using the Roche Cobas8000 biochemical 
immune assembly line and the corresponding test kits. The methods for measuring the parameters were as follows: FBG, 
hexokinase; ALT, IFCC; AST, colorimetric; serum uric acid, colorimetric; creatinine-enzyme; triglycerides, colorimetric; 
TC, enzyme colorimetric; LDL-C, selective clearance; CEA (normal value < 6.5 ng/mL) and CA199 (normal value < 35 U/
mL), electrochemical luminescence; and CA242 (normal value < 20 U/mL), chemiluminescence immunoassay. 
Glycosylated hemoglobin (HbA1c) levels were measured using a Dongcao G8 glycated hemoglobin instrument and the 
corresponding detection kit. All patients underwent routine abdominal ultrasonography and chest imaging [radiograph/
computed tomography (CT)]. Further examinations were performed for patients with suspected tumors including CT, 
magnetic resonance imaging, and gastroscopy.

Statistical analysis
Statistical analyses were performed using SPSS 19.0 software. For normally distributed quantitative data, t-tests were 
used for comparisons, and the data are presented as mean ± SD. The Mann–Whitney rank-sum test and Spearman 
correlation analysis were used for skewed distribution data. A binary logistic regression analysis was conducted using 
FBG, HbA1c, CEA, CA199, and CA242 as independent variables to assess their predictive value for the occurrence of 
T2DM. The receiver operating curve (ROC) analysis was performed for variables with significant differences. Statistical 
significance was set at P < 0.05.

RESULTS
Inter-group comparison of general characteristics
The results revealed no significant differences in the levels of liver and kidney function indicators, lipid metabolism-
related indicators (AST, ALT, uric acid, creatinine, BMI, LDL-C, and TC), age, and sex distribution (P > 0.05). However, 
HbA1c and FBG levels were higher in the T2DM group compared to the control group (P < 0.05; Table 1).

Inter-group comparison of CEA, CA199, and CA242 levels
CEA and CA199 levels were significantly higher in the T2DM group than in the control group (P < 0.001). Although 
CA242 levels were also elevated in the T2DM group, the difference was statistically insignificant (P = 0.068; Table 2).

Logistic regression to analyze risk factors for T2DM
We investigated the association between T2DM incidence as the dependent variable and the following independent 
variables: FBG, HbA1C, CEA, CA199, and CA242 using a binary logistic regression analysis. T2DM occurrence was 
categorized as 0 (did not occur) and 1 (occurred). The results were optimized using a stepwise backward elimination 
method. Our findings indicated FBG [odds ratio (OR) = 43.173, 95% confidence interval (95%CI): 1.513–6.658], HbA1C 
(OR = 4.560, 95%CI: 1.914–10.863), CEA (OR = 1.366, 95%CI: 1.024–1.822), and CA199 (OR = 1.035, 95%CI: 1.013–1.057) as 
independent risk factors for the onset of T2DM, all with P values < 0.05 (Table 3).

Comparison of general clinical characteristics and tumor markers among patients with diabetes with varying HbA1c 
percentages
Based on an HbA1c threshold value of 9%, patients with diabetes were divided into two groups: Groups A (HbA1c ≤ 9%) 
and B (HbA1c > 9%). Age, liver and kidney function, and lipid metabolism were compared between the two groups. The 
results indicated no statistical differences in age, sex, disease course, liver and kidney function, or lipid metabolism-
related indicators between the two groups (P > 0.05). However, group B had higher serum uric acid, FBG, CEA, and 
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Table 1 General characteristics was compared between two groups

Variables Control group (n = 51) T2DM group (n = 82) χ2/Z/t value P value

Gender (male/female) 27/24 47/35 0.244 0.621

Age (yr) 57.98 ± 11.72 59.02 ± 11.58 0.503 0.616

ALT (U/L) 18.40 (13.20, 28.30) 18.75 (13.48, 30.93) 0.558 0.577

AST (U/L) 18.80 (11.80, 30.10) 16.25 (12.48, 24.80) 0.694 0.488

SUA (mmol/L) 312.51 ± 119.36 306.20 ± 102.97 0.323 0.747

Cre (mmol/L) 68.36 ± 27.54 70.16 ± 28.67 0.357 0.721

HbA1c (%) 5.30 (4.30, 6.60) 9.30 (8.18, 11.13) 9.013 0

FBG (mmol/L) 4.46 ± 0.89 10.08 ± 4.30 9.199 0

BMI (kg/m2) 25.15 ± 4.28BMI 25.55 ± 3.40 0.602 0.548

LDL-C (mmol/L) 2.30 (1.90, 3.30) 2.34 (1.94, 3.23) 0.201 0.84

TG (mmol/L) 1.40 (1.10, 2.30) 1.81 (1.09, 2.68) 1.581 0.144

TC (mmol/L) 4.45 ± 1.39 4.46 ± 1.29 0.049 0.961

T2DM: Type 2 diabetes mellitus; ALT: Alanine transaminase; AST: Aspartate transaminase; SUA: Serum uric acid; Cre: Creatinine; HbA1c: Glycosylated 
hemoglobin; FBG: Fasting blood sugar; BMI: Body mass index; LDL-C: Low-density lipoprotein cholesterol; TG: Triglycerides; TC: Total cholesterol.

Table 2 Comparison of carcinoembryonic antigen, cancer antigen 199, cancer antigen 242 between two groups

Variables Control group (n = 51) T2DM group (n = 82) Z value P value

CEA 2.10 (1.40, 2.70) 2.70 (1.90, 3.65) 3.279 0.000

CA199 7.60 (4.40, 10.10) 11.30 (5.57, 22.13) 3.976 0.000

CA242 6.10 (3.10, 6.90) 6.25 (4.13, 9.20) 0.891 0.373

CA: Cancer antigen; CEA: Carcinoembryonic antigen.

Table 3 Multivariate logistic regression analysis of factors associated with the onset of type 2 diabetes mellitus

Factors β value SE Wald P value OR 95%CI

FBG 1.155 0.378 9.330 0.002 3.173 1.513-6.658

HBA1C 1.517 0.443 11.739 0.001 4.560 1.914-10.863

CEA 0.312 0.147 4.505 0.034 1.366 1.024-1.822

CA199 0.034 0.011 9.554 0.002 1.035 1.013-1.057

CA242 0.145 0.115 1.585 0.208 1.156 0.923-1.448

FBG: Fasting blood sugar; HbA1c: Glycosylated hemoglobin; CA: Cancer antigen; CEA: Carcinoembryonic antigen; OR: Odds ratio; 95%CI: 95% confidence 
interval.

CA199 levels than group A (P < 0.05; Table 4).

ROCs of CEA and CA199
The area under the ROC curve (AUC) was calculated for both CEA and CA199 markers. For CEA, the AUC (95%CI) was 
identified to be 0.853 (0.774–0.933, P < 0.001; Figure 1). For CA199, the AUC (95%CI) was identified to be 0.809 
(0.709–0.909, P < 0.001; Figure 1).

Correlation analysis of CEA, CA199, and CA242 levels with HbA1c, FBG, and lipid metabolism in patients with 
diabetes
The results demonstrated a positive correlation between serum CA199, CEA, and CA242 levels and HbA1c levels with 
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Table 4 Comparison of general clinical characteristics and tumor marks of different glycosylated hemoglobin % diabetes patients

Variables Group A (HbA1c ≤ 9%) (n = 
37) Group B (HbA1c > 9%) (n = 45) t/Z value P value

Age (yr) 60.08 ± 9.58 58.16 ± 13.05 0.747 0.457

Gender (male/female) 21/16 26/19 0.009 0.926

Course of disease (yr) 6 (3.00, 10.50) 9 (4, 15.00) 1.627 0.104

BMI (kg/m2) 26.09 ± 2.66 25.11 ± 3.88 1.349 0.181

FBG (mmol/L) 8.41 ± 2.79 11.46 ± 4.84 3.386 0.001

LDL-C (mmol/L) 2.33 (1.93, 3.02) 2.38 (1.94, 3.32) 0.680 0.496

TG (mmol/L) 2.00 (1.23, 3.01) 1.57 (0.96, 2.61) 1.142 0.254

TC (mmol/L) 4.54 ± 1.02 4.40 ± 1.48 0.494 0.623

Cre (umol/L) 71.07 ± 19.33 69.40 ± 34.72 0.261 0.795

SUA (umol/L) 333.64 ± 99.56 283.64 ± 101.27 2.242 0.028

ALT (U/L) 17.30 (12.65, 28.75) 19.90 (14.05, 31.45) 0.778 0.437

CEA (ng/mL) 1.90 (1.20, 2.60) 3.40 (2.60, 5.25) 5.488 0.000

CA199 (U/mL) 7.60 (4.15, 10.60) 21.00 (11.85, 26.85) 4.795 0.000

CA242 (U/mL) 5.90 (3.85, 7.15) 6.50 (4.80, 9.30) 1.622 0.105

HbA1c: Glycosylated hemoglobin; BMI: Body mass index; FBG: Fasting blood sugar; LDL-C: Low-density lipoprotein cholesterol; TG: Triglycerides; TC: 
Total cholesterol; Cre: Creatinine; SUA: Serum uric acid; ALT: Alanine transaminase; CA: Cancer antigen; CEA: Carcinoembryonic antigen.

Figure 1 The receiver operating curve for carcinoembryonic antigen and cancer antigen 199. CA: Cancer antigen; CEA: Carcinoembryonic antigen.

correlation coefficients of 0.308, 0.426, and 0.551, respectively (P < 0.001; Table 5) and FBG with correlation coefficients of 
0.236, 0.231, and 0.298, respectively (P < 0.05; Table 5).

DISCUSSION
Epidemiological studies have demonstrated that the risk of certain malignancies, including hepatoma, hepatocellular 
carcinoma, colorectal cancer, and bladder cancer, is high in patients with T2DM[4,5]. This relationship may be attributed 
to long-term elevated blood glucose levels, insulin resistance, or changes in insulin-like growth factors, although the 
specific mechanisms remain unclear. Tumor markers, including CEA, CA199, and CA242, are mostly used for laboratory 
diagnosis of tumors. In patients with T2DM, chronic inflammatory lesions of beta cells in the pancreatic islets and long-
term glucotoxicity and lipotoxicity can exacerbate chronic inflammation or hyperplasia of the pancreas. This process 
destroys normal pancreatic tissue, with subsequent replacement by adipocytes and fibrous connective tissue. 
Additionally the aforementioned process results in a significant release of CA199 into the bloodstream[6]. Furthermore, 
high blood sugar levels can affect free radical generation, increasing oxidative stress. Severe oxidative stress and high 
blood sugar levels may contribute to increased CEA expression[7]. Additionally, the replacement of normal pancreatic 
tissue by fat cells or fibrous connective tissue leads to the deposition of amyloid substances in pancreatic islet cells, 
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Table 5 Correlation analysis of carcinoembryonic antigen, cancer antigen 199, cancer antigen 242 levels with glycosylated hemoglobin, 
fasting blood sugar and lipid metabolism in diabetes patients

CEA CA199 CA242
Variables

r value P value r value P value r value P value

HbA1c 0.308 0.000 0.426 0.000 0.551 0.000

FBG 0.236 0.033 0.231 0.037 0.298 0.006

LDL-C 0.138 0.216 0.238 0.032 0.240 0.030

TG 0.136 0. 222 0.105 0.346 0.051 0.649

TC 0.077 0.494 0.171 0.125 0.149 0.183

HbA1c: Glycosylated hemoglobin; FBG: Fasting blood sugar; LDL-C: Low-density lipoprotein cholesterol; TG: Triglycerides; TC: Total cholesterol.

followed by tissue destruction, cell degeneration, and necrosis. Hyperglycemia further exacerbates these pathological 
changes, releasing glycoprotein components, including CA242, into the bloodstream[8].

This study comprehensively examined tumor markers in patients with T2DM and healthy control groups. The levels of 
CEA and CA199 were higher in patients with T2DM than in healthy controls, indicating that blood glucose levels may be 
involved in the increase of serum CEA and CA199 levels, which is consistent with the findings of Lipinski et al[9]. 
Pancreatic tissue is affected by diabetes, which is considered an important factor that leads to a false increase in serum 
CA199 levels. Although the CA242 levels did not significantly differ between the two groups in this study, caution is 
advised when drawing conclusions owing to the limited sample size. In patients with T2DM and poorly controlled blood 
glucose levels, a benign increase in the concentration of CA199 and CEA can occur, which does not necessarily indicate 
the presence of malignant tumors. The benign increase in tumor marker CA199 and CEA levels in patients with poor 
blood glucose control can be attributed to “glucotoxicity” damage. However, whether this increase leads to malignant 
tumor development cannot be determined. Therefore, patients must actively control their blood glucose levels to avoid 
further increases in CA199 and CEA levels[10], thereby reducing the risk of developing malignant tumors. Similarly, the 
slight increase in serum CA199 and CEA levels may be due to glucose metabolism disorders in patients with diabetes. 
Hence, increasing the cutoff value for the “normal” levels of CA199 and CEA may be necessary, for distinguishing benign 
digestive tract diseases from malignant digestive tract tumors in patients with diabetes.

HbA1c has a marked effect in promoting CA199 and CEA elevation, providing insight into blood sugar control during 
the previous 3 months in patients[11,12]. In this study, patients with diabetes were divided into two subgroups based on 
their HbA1c levels. CEA and CA199 levels in Group B (HbA1c > 9%) patients were significantly different from those in 
Group A (HbA1c ≤ 9%) patients, with positive correlations observed between serum CA199, CEA, CA242, and HbA1c 
levels. Notably, the positive correlation between serum CA199 and HbA1c levels in T2DM has been demonstrated 
previously[13]. Furthermore, we observed that LDL-C levels positively correlated with CA199 levels. Increased HbA1c 
levels can lead to tissue hypoxia, elevated plasma low-density lipoprotein levels, tissue collagen glycosylation, increased 
blood viscosity, blood stasis, abnormal anticoagulation mechanisms, and enhanced production of free radicals. Moreover, 
these factors can collectively cause pancreatic tissue damage, leading to elevated CA199 levels[14]. The significant 
relationship between increased serum CA199 and CEA and HbA1c levels in patients with T2DM underscores the 
diagnostic value of CA199 and CEA levels for HbA1c percentage. Hence, when clinically using CA199 and CEA to 
identify malignant tumors in patients with T2DM, hypoglycemic treatment should be prioritized to stabilize blood sugar 
levels before tumor marker detection and observation[15].

This study also observed an outstanding dependence between CEA and CA199 levels and hyperglycemia, indicating 
that CEA and CA199 may be related to poor blood sugar and lipid control. Previous studies have displayed that elevated 
CEA levels are associated with oxidative stress, which can be induced by high blood sugar levels[16]. However, increased 
FBG levels in patients with T2DM may contribute to upregulated CEA and CA199 expression, which could be 
significantly associated with a high incidence of pancreatic cancer in these patients[17]. Repetitive injury to pancreatic 
tissue caused by chronic glucose toxicity may be a major factor contributing to the occurrence and progression of 
pancreatic cancer. Active blood sugar control and early screening for pancreatic cancer could potentially reduce the risk 
of malignant tumors in such patients[18]. Additionally, CA199 and CEA have high diagnostic values for digestive system 
tumors and also demonstrate certain diagnostic values for T2DM.

Although our study highlights the association between elevated CEA, CA199, and CA242 levels and T2DM, the broad 
clinical implications are paramount. In a real-world setting, these tumor markers could be early indicators for potential 
complications in patients with T2DM. Regular monitoring of these markers could provide clinicians with actionable 
insights, aiding in therapeutic decisions and possibly leading to timely interventions. The correlation of these markers 
with metabolic indicators, such as HbA1c and FBG, further positions them as potential prognostic tools in T2DM 
management. As our understanding of T2DM deepens, these markers may emerge as vital tools in refining clinical 
strategies and bridging the gap between epidemiological data and hands-on patient care.

Some limitations of this study should be considered. A limited extrapolation of results could occur owing to all the 
study samples being from the same center. Furthermore, considering the relatively small sample size, a cautious 
interpretation of results is warranted.



Meng M et al. Tumor markers associated with glycosylated hemoglobin

WJD https://www.wjgnet.com 238 February 15, 2024 Volume 15 Issue 2

CONCLUSION
Our study detected elevated serum CEA and CA199 levels in patients with T2DM. Additionally, CA199, CEA, and CA242 
levels showcased significant correlations with HbA1c and FBG levels. These findings transcend mere epidemiological 
associations. In the clinical context, the elevated levels of the aforementioned tumor markers in patients with T2DM could 
indicate potential underlying pathologies or complications. Incorporating routine CA199, CEA, and CA242 assessments 
in patients with T2DM care might provide clinicians with valuable insights, aiding in therapeutic decisions, especially for 
those struggling with blood sugar management. Such proactive monitoring could lead to timely interventions, potentially 
mitigating complications and improving patient outcomes. As our understanding of these markers in the T2DM 
landscape improves, they might emerge as pivotal tools in refining patient management strategies and improving overall 
care.

ARTICLE HIGHLIGHTS
Research background
Glucose and lipid metabolic disorder in patients with type 2 diabetes mellitus (T2DM) is closely related to the level of 
serum tumor markers [such as cancer antigen (CA)199] in the digestive tract. Therefore, tumor markers of T2DM are 
important.

Research motivation
To assess the expression and clinical significance of serum tumor markers [CA199, CA242, and carcinoembryonic antigen 
(CEA)] in T2DM.

Research objectives
To study the expression of serum tumor markers (CA199, CA242, and CEA) and its clinical implications in T2DM.

Research methods
We conducted an observational study at Hefei BOE Hospital, Anhui, China, between April 2019 and December 2020 and 
enrolled 82 patients with first-onset T2DM and 51 controls. Levels of fasting blood glucose (FBG), tumor markers (CA199, 
CEA, and CA242), glycosylated hemoglobin (HbA1c), and other metabolic indicators were measured and group index 
levels were compared. FBG and HbA1c levels were correlated with tumor marker levels. Tumor markers were tested for 
diagnostic accuracy in patients with high HbA1c (> 9%) using the receiver operating curve (ROC) curve.

Research results
Compared to the control group, the T2DM group had higher serum FBG, HbA1c, CA199, and CEA levels (P < 0.05). A 
comparative analysis of the two groups based on HbA1c levels (Group A: HbA1c ≤ 9%; Group B: HbA1c > 9%) revealed 
significant differences in CEA and CA199 levels (P < 0.05). The areas under the ROC curve for CEA and CA199 were 
0.853 and 0.809, respectively. Moreover, CA199, CEA, and CA242 levels were positively correlated with HbA1c (r = 0.308, 
0.426, and 0.551, respectively) and FBG (r = 0.236, 0.231, and 0.298, respectively) levels.

Research conclusions
Serum CEA and CA199 levels were high in patients with T2DM. HbA1c and FBG levels correlated with CA199, CEA, and 
CA242 levels. Patients with poorly controlled blood sugar levels require tumor marker screening.

Research perspectives
Serum CEA and CA199 levels were higher in patients with T2DM than in controls. HbA1c and FBG levels correlated with 
CA199, CEA, and CA242 levels.
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Abstract
BACKGROUND 
Cardiovascular disease (CVD) is a leading cause of morbidity and mortality 
worldwide, the global burden of which is rising. It is still unclear the extent to 
which prediabetes contributes to the risk of CVD in various age brackets among 
adults. To develop a focused screening plan and treatment for Chinese adults 
with prediabetes, it is crucial to identify variations in the connection between 
prediabetes and the risk of CVD based on age.

AIM 
To examine the clinical features of prediabetes and identify risk factors for CVD in 
different age groups in China.

METHODS 
The cross-sectional study involved a total of 46239 participants from June 2007 
through May 2008. A thorough evaluation was conducted. Individuals with 
prediabetes were categorized into two groups based on age. Chinese athero-
sclerotic CVD risk prediction model was employed to evaluate the risk of deve-
loping CVD over 10 years. Random forest was established in both age groups. 
SHapley Additive exPlanation method prioritized the importance of features from 
the perspective of assessment contribution.

RESULTS 
In total, 6948 people were diagnosed with prediabetes in this study. In pre-
diabetes, prevalences of CVD were 5 (0.29%) in the younger group and 148 
(2.85%) in the older group. Overall, 11.11% of the younger group and 29.59% of 
the older group were intermediate/high-risk of CVD for prediabetes without 
CVD based on the Prediction for ASCVD Risk in China equation in ten years. In 
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the younger age group, the 10-year risk of CVD was found to be more closely linked to family history of CVD 
rather than lifestyle, whereas in the older age group, resident status was more closely linked.

CONCLUSION 
The susceptibility to CVD is age-specific in newly diagnosed prediabetes. It is necessary to develop targeted 
approaches for the prevention and management of CVD in adults across various age brackets.

Key Words: Age; Cardiovascular diseases; Prediabetes; Risk factors; Differences
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Core Tip: Cardiovascular disease (CVD) is a leading cause of illness and death on a global scale, with its worldwide impact 
steadily increasing. However, it is still unclear the extent to which prediabetes contributes to the risk of CVD in various age 
brackets among adults. In this study, we analyzed our prediabetes data from 17 centers between June 2007 and May 2008. 
We found the influential features of different age brackets for the 10-year risk of CVD based on Prediction for ASCVD Risk 
in China. Given our findings, specific prevention strategies are needed for different age groups.
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INTRODUCTION
Cardiovascular disease (CVD) is a prominent contributor to illness and death on a global scale, with its worldwide impact 
steadily increasing[1]. Addressing CVD is a paramount concern for public health worldwide. The prediabetic population 
constitutes a substantial pool of individuals who are at risk of developing diabetes, a contributing factor for CVD. 
Prediabetes refers to a rise in blood sugar levels that is higher than the normal range but lower than the levels seen in 
clinical diabetes. Impaired fasting glucose (IFG) level or impaired glucose tolerance (IGT) is the designated term for this 
condition. According to previous studies, the approximate occurrence of prediabetes in China was 35.7% [95% confidence 
interval (95%CI): 34.2%-37.3%] in 2013 and 38.1% (95%CI: 36.4%-39.7%) in 2018[2]. Moreover, prediabetes has been linked 
to a higher likelihood of combined cardiovascular incidents, coronary artery disease, cerebrovascular accidents, and 
overall mortality[3]. During an examination of the data collected from the National Health and Nutrition Examination 
Surveys 2011-2014, it was found that individuals with prediabetes, as determined by ADA-fasting plasma glucose (FPG) 
or hemoglobin A1c (HbA1c), exhibited a significant occurrence of hypertension (36.6%), dyslipidemia (51.2%), 
albuminuria (7.7%), and reduced estimated glomerular filtration rate (4.6%). In total, 24.3% of the individuals were 
presently smoking, exhibiting a heightened projected 10-year cardiovascular event risk of around 7%[4].

It is still uncertain the extent to which prediabetes contributes to the risk of CVD in various age brackets among adults. 
To develop a focused glycemic screening plan and treatment for Chinese adults with prediabetes, it is crucial to identify 
variations in the connection between prediabetes and the risk of CVD based on age. Given that the occurrence of CVD 
events gradually develops, a predictive model can be utilized to estimate the likelihood for individuals without CVD.

Currently, numerous CVD risk evaluation instruments exist worldwide, with the renowned Framingham Risk Score 
(FRS) being the creation of Framingham Heart Research Institute. Nevertheless, these models rely on the European and 
American sample populations, which predominantly consist of White and Black individuals, and have a comparatively 
limited representation of Asians[5]. The Prediction for ASCVD Risk in China (China-PAR) CVD risk assessment model 
was developed in 2016 to predict the risk of atherosclerotic CVD in China. This model was specifically designed for the 
Chinese population and allowed for the quantitative assessment of CVD incidence risk over 10 years. The China-PAR 
model’s development offered a significant and efficient evaluation tool for predicting CVD risk and promoting primary 
prevention in China[6]. The objective of this study was to forecast the likelihood of CVD in China’s prediabetic 
population by utilizing the FRS and China-PAR models. Additionally, it aimed to analyze the disparities in CVD risk 
prediction between these two models and identify distinct risk factors among younger and older age groups, ultimately 
establishing a targeted prevention strategy.

MATERIALS AND METHODS
Study design
The study’s development set was obtained from a China National Diabetes and Metabolic Disorders Survey, which was a 
comprehensive cross-sectional study. From June 2007 to May 2008, a large epidemiological study was conducted across 

https://www.wjgnet.com/1948-9358/full/v15/i2/240.htm
https://dx.doi.org/10.4239/wjd.v15.i2.240


Xie S et al. Age, prediabetes, and CVD in China

WJD https://www.wjgnet.com 242 February 15, 2024 Volume 15 Issue 2

the nation. It involved 17 clinical centers located in 14 provinces and municipalities throughout the country. In the 
general population, individuals who were 20 years of age or older were chosen using a multistage stratified cluster 
sampling technique. The study design, eligibility criteria, and sampling have been previously published in great detail[7,
8].

Participants
Individuals who had resided in their present locality for more than five years were qualified to take part in the research. 
A total of 54240 people were chosen and asked to take part in the research, yet only 46239 grown-ups finished the 
questionnaire.

We included participants who were diagnosed with prediabetes using the oral glucose test (n = 7263) and excluded 
those who had been previously diagnosed with diabetes (n = 315). Consequently, our final analysis encompassed a total 
of 6948 adults, whom we subsequently categorized into two groups based on age range (as depicted in Figure 1).

Figure 1 Study population flow. CVD: Cardiovascular disease; OGTT: Oral glucose tolerance test.

Data collection
Trained personnel administered a typical survey to gather data on demographic traits, individual and familial medical 
backgrounds, and factors that pose risks to one’s lifestyle[8].

Before the oral glucose tolerance test, participants were given instructions to continue with their regular physical 
activity and diet for a minimum of 3 d. Following a minimum of 10 hours of fasting overnight, a blood sample was 
obtained from a vein using a vacuum tube that contained sodium fluoride. This sample was collected to measure the 
glucose levels in the plasma. Individuals without any documented record of diabetes were administered a typical 75 g 
glucose solution, while individuals who self-reported having diabetes were provided with a steamed bun comprising 
roughly 80 g of intricate carbohydrates for precautionary purposes. Glucose concentrations were measured by drawing 
blood samples at 0, 30 min, and 120 min following the glucose or carbohydrate load[8].

Plasma glucose levels were assessed utilizing an enzymatic method involving hexokinase. Serum cholesterol and 
triglyceride levels were enzymatically assessed using commercially available reagents at the clinical biochemical 
laboratories in each province. Before starting this study, all research laboratories have successfully finished a program for 
standardization and certification.

Definitions
Prediabetes was diagnosed using the diagnostic criteria from the World Health Organization in 1999[9]. The plasma 
glucose testing results were classified into three categories: isolated IFG (fasting glucose level of ≥ 6.1 mmol/L and < 7.0 
mmol/L, and PG2h level of < 7.8 mmol/L); isolated IGT (fasting glucose level of < 7.0 mmol/L, and PG2h level of ≥ 7.8 
mmol/L and < 11.1 mmol/L); and undiagnosed diabetes (fasting glucose level of ≥ 7.0 mmol/L, PG2h level of ≥ 11.1 
mmol/L, or both). Diabetes that had been diagnosed before was determined when the participant answered positively to 
the inquiry, “Has a medical professional ever informed you that you have diabetes?” The overall count of diabetes 
encompassed both previously diagnosed cases and those that had not been identified[8]. Prediabetes was characterized 
by either IFG or IGT.
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Figure 2 Prevalence of metabolic syndrome components by age intervals. MS: Metabolic syndrome.

Assessment of the CVD risk
To assess the CVD risk, the China-PAR and FRS were employed. The China-PAR model is a tool for evaluating 
developed by the China-PAR Risk Assessment Research. A single expert researcher inputted the personal details and test 
outcomes of the volunteers via the online platform (http://www.cvdrisk.com.cn), which encompassed gender, age, 
present address (urban or rural), location (north or south), waist size, total cholesterol (TC), high-density lipoprotein 
cholesterol (HDL-c), existing blood pressure level, usage of antihypertensive medication, presence of diabetes, smoking 
habits, and family history of CVD. On the China-PAR, the 10-year absolute risk percentage for CVD was categorized as 
low (< 5%), intermediate (5%-10%), and high risk (> 10%). The FRS scores were computed by considering six risk factors, 
which encompassed age, gender, TC, HDL-c, systolic blood pressure (SBP), and smoking patterns. To calculate FRS, the 
thresholds were set as TC < 160, 160-199, 200-239, 240-279, and ≥ 280 mg/dL; for SBP, the ranges were < 120, 120-129, 130-
139, 140-159, and ≥ 160 mmHg; and for HDL-c, the values were < 40, 40-49, 50-59, and ≥ 60 mg/dL. The percentage of ten-
year risk was determined by adding up the points (1 point, 6%; 2 points, 8%; 3 points, 10%; 4 points, 12%; 5 points, 16%; 6 
points, 20%; 7 points, 25%; 10 points or more, greater than 30%). The percentage of absolute CVD risk over 10 years was 
categorized as low (less than 10%), moderate (10%-20%), and high (greater than 20%) according to classification[10].

Statistical analysis
The objective of our research was to obtain precise evaluations of the risk elements associated with CVD among various 
age categories in the Chinese population, specifically individuals who are 20 years old or above and have prediabetes. To 
ensure accuracy in a complex survey design, the estimated sample sizes were determined to align with the commonly 
advised criteria[11]. The calculations were adjusted to reflect the entire Chinese adult population (20 years or older) using 
the 2006 Chinese population data and the study’s sampling method. Corrections were made for various aspects of the 
survey, such as oversampling of women and urban dwellers, nonresponse, highly developed economic regions, and 
demographic or geographic disparities between the sample and the overall population[8].

The occurrence rates of CVD were computed for the subcategories based on age factors. To investigate the correlation 
between the 10-year risk of CVD and demographic, lifestyle, and metabolic factors, we employ random forest (RF) 
analysis. SHapley Additive exPlanation (SHAP) values to provide consistent and locally accurate attribution values for 
each feature. This is a unified approach to explain the outcome of RF. SHAP values evaluate the importance of the output 
resulting from the inclusion of feature A for all combinations of features other than A. All P values were not adjusted for 
multiple testing and were considered two-tailed. The R software, version 4.3.2, was utilized for all statistical analyses. 
Two-tailed P values < 0.05 were considered significant.

RESULTS
This study involved a total of 6948 individuals who were diagnosed with prediabetes. Among this total, 1751 individuals 
(25.2%) were between the ages of 20 and 40, while 5197 individuals (74.8%) were above the age of 40, as shown in Table 1. 
In comparison to the younger participants, the older group exhibited a higher proportion of males. The older individuals 
with prediabetes were more likely to engage in smoking, alcohol consumption, and exercise. Additionally, they exhibited 
higher measurements of waist circumference (WC), PG2h, TC, HDL-c, low-density lipoprotein-cholesterol, SBP, and 
diastolic blood pressure (DBP). Moreover, it was observed that 5 individuals (0.29%) in the younger group and 148 
individuals (2.85%) in the older group were found to have CVD.

Figure 2 and Table 2 exhibit the occurrence of metabolic syndrome components according to age intervals. According 
to the data presented in Table 2, prediabetes in older age exhibited a higher tendency towards central obesity and 
elevated blood pressure.

For prediabetes without CVD (n = 6795), the age stratification was used to compare the 10-year absolute risk grading of 
CVD. The findings indicated that there were statistically significant variations in the assessment outcomes of the low-, 
intermediate-, and high-risk categories in different age brackets on the FRS and China-PAR models (P < 0.001). However, 
the deductions made from the disease risk grading remained consistent. In other words, the higher the age, the higher the 
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Table 1 Characteristics of participants, n (%)

Younger group Older group P value

Total 1751 (25.20) 5197 (74.80)

Men 744 (42.49) 3035 (58.40) 0.015

Smoking 402 (22.96) 2204 (42.41) 0.001

Alcohol drinking 412 (23.53) 2328 (44.80) 0.009

Regular physical activity 424 (24.21) 2385 (45.89) < 0.001

Family history of CVD 277 (15.82) 1133 (21.80) 0.173

Antihypertensive drugs 81 (4.63) 346 (6.66) 0.155

Dyslipidemia 84 (4.80) 249 (4.79) < 0.001

Lipid-lowering drugs 13 (0.74) 87 (1.67) 0.007

BMI (kg/m2, 95%CI) 25.0 (24.6-25.3) 24.9 (24.7-25.1) 0.688

WC (cm, 95%CI) 83.2 (82.0-84.4) 84.8 (84.2-85.3) 0.021

FPG (mmol/L, 95%CI) 5.6 (5.5-5.6) 5.5 (5.5-5.6) 0.586

PG2h (mmol/L, 95%CI) 8.2 (8.1-8.3) 8.6 (8.5-8.6) < 0.001

TC (mmol/L, 95%CI) 4.8 (4.7-4.9) 5.0 (5.0-5.1) < 0.001

TG (mmol/L, 95%CI) 1.9 (1.7-2.0) 1.9 (1.8-1.9) 0.985

HDL-c (mmol/L, 95%CI) 1.3 (1.2-1.3) 1.3 (1.3-1.3) 0.029

LDL-c (mmol/L, 95%CI) 2.7 (2.6-2.8) 2.9 (2.9-3.0) < 0.001

SBP (mmHg, 95%CI) 120.0 (118.9-121.2) 131.9 (130.7-133.1) < 0.001

DBP (mmHg, 95%CI) 79.1 (78.2-79.9) 81.2 (80.5-82.0) < 0.001

Abnormal ECG (%) 366 (20.90) 2358 (45.37) < 0.001

Prediabetes category

    IFG (%) 357 (20.39) 1447 (27.84) < 0.001

    IGT (%) 1394 (79.61) 3750 (72.16) < 0.001

CVD (%) 5 (0.29) 148 (2.85) 0.003

CVD: Cardiovascular disease; BMI: Body mass index; WC: Waist circumference; HR: Heart rate; FPG: Fasting plasma glucose; PG2h: 2 h post-load plasma 
glucose; TC: Total cholesterol; TG: Triglycerides; HDL-c: High-density lipoprotein-cholesterol; LDL-c: Low-density lipoprotein-cholesterol; SBP: Systolic 
blood pressure; DBP: Diastolic blood pressure; ECG: Electrocardiography; IFG: Impaired fasting glucose; IGT: Impaired glucose tolerance; 95%CI: 95% 
confidence interval.

10-year risk level of CVD (Table 3). Among the participants, a total of 5320 individuals (which accounts for 78.29% of the 
total) were simultaneously classified as low-, medium-, or high-risk based on both scores. The kappa test revealed a low 
level of agreement between the two methods (weighted κ coefficient of agreement = 0.395-0.400; P < 0.001) (Table 4).

Therefore, we use China-PAR to predict the 10-year risk of CVD for the Chinese. For prediabetes, intermediate/high 
risk of CVD (n = 194 in the younger group and n = 1509 in the older group) is more noteworthy. We utilized the RF with 
all the variables as input variables. The importance matrix plot for the RF method is shown in Figure 3 and revealed that 
the top 10 most important variables contributing to the younger group model were SBP, age, HDL-c, TC, HC, rural area, 
smoking, WC FPG, and TG. For the older group, the top 10 most important variables were SBP, family history of CVD, 
DBP, HDL-c, smoking, TG, age, WHR, FPG, and TC.

To identify the features that had the most influence, we depicted the SHAP summary plot of RF (Figure 4) for both age 
groups. This plot provided a visually concise figure by presenting the range and distribution of importance. It showed 
how high and low features’ values were with SHAP values. Each dot represented the SHAP value of the feature from the 
individual. It was plotted horizontally and was stacked vertically to show the density of the same SHAP value. Then, 
each dot was colored by the value of the feature, from low (yellow) to high (purple). The higher the SHAP value of a 
feature, the more likely occurrence of CVD in 10 years.



Xie S et al. Age, prediabetes, and CVD in China

WJD https://www.wjgnet.com 245 February 15, 2024 Volume 15 Issue 2

Table 2 Prevalence of metabolic syndrome components according to age groups, n (%)

Younger group Older group P value

Central obesity 636 (36.32) 4575 (88.03) < 0.001

High glucose 1751 (100.00) 5197 (100.00) -

High blood pressure 532 (30.38) 2959 (56.94) < 0.001

High TG 708 (40.43) 2280 (43.87) 0.334

Low HDL-c 367 (20.96) 1161 (22.32) 0.500

TG: Triglycerides; HDL-c: High-density lipoprotein-cholesterol.

Table 3 Comparing the absolute 10-year risk of cardiovascular disease between the two methods across different age groups, n (%)

Younger group (n = 1746) Older group (n = 5049) Total (n = 6795) P value

China-PAR

Low (< 5%) 1552 (88.89) 3540 (70.11) 5092 < 0.001

Intermediate (5%-10%) 127 (7.27) 575 (11.39) 702 < 0.001

High (> 10%) 67 (3.84) 934 (18.50) 1001 < 0.001

FRS

Low (< 10%) 1717 (98.34) 3928 (77.80) 5645 < 0.001

Intermediate (10%-20%) 27 (1.55) 904 (17.90) 931 < 0.001

High (> 20%) 2 (0.11) 217 (4.30) 219 < 0.001

CVD: Cardiovascular disease; China-PAR: Prediction for atherosclerotic cardiovascular disease risk in China; FRS: Framingham risk score.

Table 4 Consistency analysis of the 10-year risk of cardiovascular disease absolute risk as predicted by the two models

China-PAR
FRS

Low risk Intermediate risk High risk
Total

Low risk 4923 492 230 5645

Intermediate risk 147 205 579 931

High risk 22 5 192 219

Total 5092 702 1001 6795

FRS: Framingham risk score; China-PAR: Prediction for atherosclerotic cardiovascular disease risk in China.

DISCUSSION
In the general population, fatal CVD is commonly associated with male sex, hypertension, dyslipidemia, diabetes, and 
smoking. Nevertheless, information is scarce concerning the presence of age-related disparities in the influence of these 
risk factors[12]. In China, we conducted a cross-sectional survey to examine how age and risk factors for 10-year risk of 
CVD interact and to determine variations in CVD risk factors among different age groups. Previous studies[13,14] 
support the results indicating that the younger group with hyperglycemia had a higher prevalence of CVD compared to 
the older group. Based on previous studies conducted locally and globally, age is a significant determinant that escalates 
the susceptibility to CVD[15]. Age was determined to have a significant impact on the risk of CVD after eliminating other 
variables that could distort the results.

Individuals with prediabetes have accompanying metabolic risk factors[16]. Metabolic syndrome is characterized by a 
group of metabolic risk factors, such as insulin resistance, central obesity, hyperglycemia, dyslipidemia, and high blood 
pressure[17]. Given that metabolic syndrome encompasses a comprehensive set of metabolic risk factors for 
cardiovascular events, it becomes imperative to anticipate the likelihood of CVD in these individuals. With the onset of 
the 21st century, CVD emerged as the primary reason for untimely death and illness globally, affecting 80% of individuals 
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Figure 3 Importance matrix plot of the random forest model. This importance matrix plot depicts the importance of each covariate in the final predictive 
model. A: Younger group; B: Older group. CVD: Cardiovascular disease; BMI: Body mass index; WC: Waist circumference; FPG: Fasting plasma glucose; PG2h: 2 h 
post-load plasma glucose; TC: Total cholesterol; TG: Triglycerides; HDL-c: High-density lipoprotein-cholesterol; LDL-c: Low-density lipoprotein-cholesterol; SBP: 
Systolic blood pressure; DBP: Diastolic blood pressure; SHAP: SHapley Additive exPlanation.

Figure 4 SHapley Additive exPlanation summary plot of the features of the random forest model. The higher the SHapley Additive exPlanation 
value of a feature, the higher the probability of the 10-year risk of cardiovascular disease. A dot is created for each feature attribution value for each individual, and 
thus one individual is allocated one dot on the line for each feature. Dots are colored according to the values of features for the respective individual and accumulate 
vertically to depict density. Purple represents higher feature values, and yellow represents lower feature values. A: Younger group; B: Older group. CVD: 
Cardiovascular disease; BMI: Body mass index; WC: Waist circumference; FPG: Fasting plasma glucose; PG2h: 2 h post-load plasma glucose; TC: Total cholesterol; 
TG: Triglycerides; HDL-c: High-density lipoprotein-cholesterol; LDL-c: Low-density lipoprotein-cholesterol; SBP: Systolic blood pressure; DBP: Diastolic blood 
pressure; SHAP: SHapley Additive exPlanation.

in underprivileged developing nations, following societal and economic progress. Extensive studies have been conducted 
since the mid-1900s to investigate the causes and risk elements, leading to the identification of various factors like tobacco 
use, high blood pressure, diabetes, and abnormal lipid levels as contributors to CVD[18].

Nonetheless, the correlation between prediabetes and CVD occurrences might compromise the precision of our results 
due to the limited number of CVD patients in our research. Hence, by utilizing the risk score, which includes the initial 
indications of CVD, as substitute measures, we can enhance the precision in identifying the connection between 
prediabetes and risk elements for CVD.

This study estimated the risk of CVD in prediabetes in the next 10 years, as shown by the China-PAR model. China-
PAR incorporates the disease spectrum and prevalence of risk factors in China, including novel factors like WC and place 
of residence, by thoroughly considering the risk factors associated with the previous model. At the same time, the 
examination of the correlation between age and different risk factors was also conducted. A CVD risk prediction model 
suitable for the Chinese population was created, and the cut-off point of different risk stratification was proposed and 
verified; hence, its prediction results were more accurate. The study additionally discovered that both the FRS and China-
PAR models demonstrated a positive correlation between age and the 10-year incidence risk of CVD in the prediabetes 
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population. This suggests that the two methods consistently predict the risk level across various age groups.
In the general populace, diabetes raises the likelihood of both microvascular and macrovascular complications as well 

as premature death leading to a substantial financial burden on society. While there have been limited reports on the link 
between prediabetes diagnosed at a later stage and the risks of CVD and mortality, numerous studies have examined the 
connection between prediabetes diagnosed early and the risks of CVD or mortality. The identification of prediabetes at an 
early stage is considered a separate contributor to the risk of CVD and is linked to a mortality rate of 15%. According to 
the findings of the Emerging Risk Factors Collaboration, an elevated mortality risk was observed among 820900 
participants from 97 prospective studies when fasting glucose levels exceeded 5.5 mmol/L, rather than falling within the 
range of 3.9-5.5 mmol/L[19]. We discovered that the occurrence of prediabetes in younger patients who were recently 
diagnosed was strongly linked to the incidence of CVD. This implies that the prevention and treatment of CVD in the 
future should prioritize prediabetes, especially among the younger prediabetes population.

Regardless of age group, the timely and precise prediction of CVD risk and the subsequent adoption of preventive 
measures significantly improve patients’ well-being and quality of life.

Implementing tactics to prevent both primary and secondary occurrences of CVD and/or its associated risk factors will 
alleviate the financial impact caused by this ailment. CVD risk factors can be categorized into modifiable or non-
modifiable factors. Age, genetics, family history, gender, and race are among the factors involved. The risk factors that 
can be changed are categorized as: (1) Cardiometabolic factors, including high blood pressure, abnormal blood lipid 
levels, diabetes, and being overweight (which collectively make up the metabolic syndrome); and (2) lifestyle factors, 
such as tobacco use, lack of physical activity, poor diet, and low socio-economic status. Furthermore, there is growing 
evidence indicating that apart from genetic predisposition, early family-based environmental factors such as early 
nutrition, socioeconomic status, housing, and neighborhood play a significant role in the occurrence of CVD. Young 
individuals who have a familial background of CVD already possess an unfinished/unusual CVD risk profile. The 
authors Kataria and colleagues[20] examined the variation in plasma lipid levels and systemic blood pressure among 
healthy young college students who have a positive family history of CVD.

Nevertheless, in the case of elderly individuals, a family history of CVD does not pose a substantial threat to the 
ailment. Lifestyle and the environment in which one lives are the primary contributors to the most notable hazards. In the 
elderly population[21], health disparities persist among various regions and residential areas, playing a crucial role in 
determining overall health. Globally, it has been confirmed that there are differences in CVD mortality and levels of risk 
factors between urban and rural areas[22]. According to findings from a future urban-rural investigation, cardiovascular 
event rates were greater in rural regions compared to urban communities in middle- and low-income nations, despite 
urban settings having higher risk factors than rural areas[23]. Moreover, findings from a previous study conducted in 
Finland indicated that older individuals residing in rural regions had a higher occurrence of increased serum cholesterol 
levels and obesity compared to those residing in urban localities[24].

Notably, alcohol consumption has complex and sometimes paradoxical associations with CVD. In recent times, a 
considerable number of epidemiological studies[25] have been released concerning this subject. Experimental evidence 
strongly supports the advantageous impact of moderate alcohol intake, excluding instances of excessive drinking. 
Epidemiological data suggest that alcohol consumption protects some people against ischemic diseases to some degree. A 
J-shaped correlation was observed between the mean intake of alcohol and CVD, as reported in reference[26], which 
means for low to moderate alcohol consumption, a lower CVD risk is observed compared to abstaining and excessive 
drinking. Nevertheless, as most of the protective evidence of low to moderate alcohol consumption on CVD is from 
observational studies, it is uncertain whether this effect is a result of different forms of bias. According to a quantitative 
meta-analysis, individuals who consumed less than 30 g/d of alcohol and did not engage in heavy drinking episodes had 
the lowest risk of ischemic heart disease (relative risk = 0.64, 95%CI: 0.53, 0.71)[27]. Due to the lack of RCT, which is the 
gold standard, the focus in research has now shifted to new analytical methods, such as Mendelian randomization 
studies. However, none of these studies could truly resolve the pressing question of whether alcohol is the protective 
factor of CVD. Therefore, there is remaining controversy regarding the effects of moderate alcohol consumption on CVD.

In individuals with prediabetes, randomized clinical trials have demonstrated that interventions incorporating diet and 
physical activity can decrease the likelihood of developing diabetes. To alleviate the effects of newly diagnosed diabetes, 
it is imperative to enforce public health interventions. According to the latest ADA guidelines, it is recommended to 
annually screen individuals with prediabetes for diabetes and refer them to a lifestyle intervention aimed at promoting 
weight loss[28]. The authors Qiao et al[29] discovered that when analyzing combined data from Asian groups, 75% of 
individuals with prediabetes exhibited isolated IGT following glucose loading. The presence of insulin resistance 
increases the likelihood of developing CVD in both the general population and individuals with diabetes. Additionally, it 
serves as an indicator of the cardiovascular outlook for patients with CVD[30]. The findings of this research validated a 
correlation between age and other contributing elements, which could be significant in elucidating the variations in CVD 
risk factors among younger and older individuals. To prevent and manage CVD, community health centers can offer 
health advice to individuals across various age brackets.

This study has several strengths, including the incorporation of a vast, nationwide study sample; a thorough 
evaluation of their blood sugar levels, encompassing FPG and PG2h; and meticulous recognition of CVD by China-PAR.

This study has some limitations. To define prediabetes, ADA now suggests utilizing HbA1c within the range of 5.7%-
6.4% (39-47 mmol/mol), according to their latest recommendation[31]. Nevertheless, in our research, we detected 
prediabetes by assessing FPG and PG2h. The HbA1c level was not measured, resulting in a decrease in the number of 
prediabetes diagnoses. Furthermore, we meticulously accounted for variables that could influence the results in the 
analyses, although there is a possibility of biases arising from unmeasured confounding and reverse causality. 
Furthermore, the present study’s cross-sectional design poses challenges in determining the causal relationship between 
variables. Further confirmation through prospective research is needed to establish the causal relationship between the 
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research factors and conclusions, as the relationship is currently exploratory.

CONCLUSION
In summary, our findings suggest that prediabetes detected through FPG and PG2h might have a stronger association 
with CVD in younger individuals compared to older individuals. The findings of our study validated that the risk factors 
associated with CVD vary across age groups during the diagnosis of prediabetes. Therefore, age should be specifically 
considered in the care of adults with prediabetes for CVD prevention.
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for the prevention and management of CVD in adults across various age brackets.

Research perspectives
Identification of prediabetes may help develop strategies to prevent and control CVD in China.
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Abstract
BACKGROUND 
Early screening and accurate staging of diabetic retinopathy (DR) can reduce 
blindness risk in type 2 diabetes patients. DR’s complex pathogenesis involves 
many factors, making ophthalmologist screening alone insufficient for prevention 
and treatment. Often, endocrinologists are the first to see diabetic patients and 
thus should screen for retinopathy for early intervention.

AIM 
To explore the efficacy of non-mydriatic fundus photography (NMFP)-enhanced 
telemedicine in assessing DR and its various stages.

METHODS 
This retrospective study incorporated findings from an analysis of 93 diabetic 
patients, examining both NMFP-assisted telemedicine and fundus fluorescein 
angiography (FFA). It focused on assessing the concordance in DR detection 
between these two methodologies. Additionally, receiver operating characteristic 
(ROC) curves were generated to determine the optimal sensitivity and specificity 
of NMFP-assisted telemedicine, using FFA outcomes as the standard benchmark.

RESULTS 
In the context of DR diagnosis and staging, the kappa coefficients for NMFP-
assisted telemedicine and FFA were recorded at 0.775 and 0.689 respectively, 
indicating substantial intermethod agreement. Moreover, the NMFP-assisted 
telemedicine’s predictive accuracy for positive FFA outcomes, as denoted by the 
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area under the ROC curve, was remarkably high at 0.955, within a confidence interval of 0.914 to 0.995 and a statist-
ically significant P-value of less than 0.001. This predictive model exhibited a specificity of 100%, a sensitivity of 
90.9%, and a Youden index of 0.909.

CONCLUSION 
NMFP-assisted telemedicine represents a pragmatic, objective, and precise modality for fundus examination, 
particularly applicable in the context of endocrinology inpatient care and primary healthcare settings for diabetic 
patients. Its implementation in these scenarios is of paramount significance, enhancing the clinical accuracy in the 
diagnosis and therapeutic management of DR. This methodology not only streamlines patient evaluation but also 
contributes substantially to the optimization of clinical outcomes in DR management.

Key Words: Diabetes; Diabetic retinopathy; Non-mydriatic fundus photography-assisted telemedicine; Fundus fluorescein 
angiography

©The Author(s) 2024. Published by Baishideng Publishing Group Inc. All rights reserved.

Core Tip: There is a high consistency between non-mydriatic fundus photography (NMFP)-assisted telemedicine and fundus 
fluorescein angiography (FFA) techniques. The area under the curve of NMFP-assisted telemedicine results for predicting a 
positive result from FFA was 0.955. The specificity, sensitivity, and a Youden index of NMFP-assisted telemedicine were 
100%, 90.9% and 0.909, respectively. The NMFP-assisted telemedicine has a great significant value in the clinical diagnosis 
and treatment of diabetic retinopathy.

Citation: Zhou W, Yuan XJ, Li J, Wang W, Zhang HQ, Hu YY, Ye SD. Application of non-mydriatic fundus photography-assisted 
telemedicine in diabetic retinopathy screening. World J Diabetes 2024; 15(2): 251-259
URL: https://www.wjgnet.com/1948-9358/full/v15/i2/251.htm
DOI: https://dx.doi.org/10.4239/wjd.v15.i2.251

INTRODUCTION
Diabetic retinopathy (DR), a leading ocular pathology causing visual impairment, demonstrates an increased incidence 
and rate of blindness that correlate directly with the duration of diabetes and patient age[1,2]. The current global 
prevalence of DR among diabetic individuals is estimated at 34.6%, with a significant 10.2% progressing to severe visual 
impairment[3]. In China, approximately 87% of diabetic patients are treated in primary healthcare facilities, where 
ophthalmological resources are critically limited, and alarmingly, around 70% of these individuals do not receive 
standardized ophthalmic examinations[4]. Endocrinology departments typically serve as the initial consultation point for 
diabetic patients. However, there is a noted emphasis on metabolic markers such as glycemia and lipidemia, while 
fundus complications are often underprioritized. This leads to delayed referrals to ophthalmology services, usually at 
advanced stages of vision loss or blindness. At this juncture, the visual impairment induced by DR is largely irreversible, 
even with prompt and aggressive therapeutic interventions, significantly impacting patient quality of life and imposing 
substantial socio-economic burdens. Early and accurate diagnosis, followed by timely therapeutic intervention, is pivotal 
in arresting or mitigating the progression of DR[5]. DR can be divided into non-proliferative and proliferative types based 
on its clinical stage. Early screening for DR has become a priority in blindness prevention. Clinically, DR is stratified into 
non-proliferative and proliferative phases. Therefore, the development of an efficient and straightforward screening 
protocol for DR, especially tailored for endocrinologists and primary care practitioners, is imperative[6,7]. Fundus 
fluorescein angiography (FFA) is regarded as the gold standard for DR diagnosis. However, its invasive nature makes it 
unsuitable for mass DR screening. This study aims to evaluate the effectiveness of non-mydriatic fundus photography 
(NMFP)-assisted telemedicine in assessing DR and its various stages by assessing the concordance between NMFP-
assisted telemedicine and FFA in diagnosing and staging DR.

MATERIALS AND METHODS
Subjects
Clinical data from diabetic patients diagnosed at the First Affiliated Hospital of University of Science and Technology of 
China between June 2019 and June 2021 were subject to a retrospective analysis. The study cohort consisted of 93 
individuals (42 females and 51 males), each diagnosed through NMFP-assisted telemedicine and FFA. These patients 
were categorized based on the International Federation of Ophthalmological Societies’ 2002 guidelines for DR screening 
and staging: Stage I involved no evident retinopathy, only minor hemorrhages in the posterior pole; stage II featured 
scattered punctate hyperfluorescent spots with capillary hemangiomas; stage III mirrored stage II in symptoms; stage IV 
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presented with fundus or vitreous hemorrhage due to neovascularization; stage V included fundus neovascularization 
accompanied by fibrous proliferation; and stage VI was characterized by both neovascularization and fibrous prolif-
eration in the fundus, along with tractional retinal detachment. Stages I to III were classified under non-proliferative DR, 
while stages IV to VI fell under the proliferative DR category. Cases with no abnormal fundus findings were designated 
as no DR (NDR). This study adhered to the World Medical Association’ Declaration of Helsinki and received approval 
from the ethics committee of the First Affiliated Hospital of University of Science and Technology of China.

Methods
FFA: Patients initially underwent an allergy test following mydriasis. Those who exhibited no allergic reaction proceeded 
to receive a rapid intravenous injection of sodium fluorescein. Subsequently, their fundus was imaged using the 
Heidelberg confocal laser angiography system (Global Vision, Germany), a sophisticated apparatus designed for detailed 
fundus examination.

NMFP-assisted telemedicine: A skilled endocrinology technician, in a controlled darkroom setting, utilized the Optomed 
Aurora® handheld non-mydriatic fundus camera to capture detailed images of the patients’ fundus. Following a brief 
acclimatization period of five minutes in the examination room, two high-resolution color images were taken of each 
fundus’ posterior pole. These images focused on the macula and optic disc, covering a 45° field of view. To ensure 
optimal image quality, patients were given a five-minute rest period after capturing the image of one eye, followed by 
imaging of the other eye post-pupil recovery. Subsequently, these fundus images, along with patient data, were uploaded 
to a specialized diagnostic platform. Here, an ophthalmologist employed the platform’s advanced software for compre-
hensive analysis, diagnosis, and staging of the fundus condition (Figures 1 and 2).

Observational indicators
The study rigorously assessed the alignment between NMFP-assisted telemedicine and FFA in diagnosing and staging 
DR. Furthermore, it scrutinized the diagnostic efficacy of NMFP-assisted telemedicine in terms of sensitivity and 
specificity for DR, utilizing FFA results as the standard reference.

Statistical analysis
Statistical analysis was executed utilizing SPSS 23.0 software. The Kappa (κ) test was applied to evaluate the congruence 
between NMFP-assisted telemedicine and FFA test results, with κ values interpreted as follows: > 0.75 denoting 
exceptional concordance, 0.61-0.75 suggesting significant consistency, 0.41-0.60 indicating moderate agreement, and < 
0.40 reflecting limited consistency. To ascertain the diagnostic predictive efficacy of NMFP-assisted telemedicine, receiver 
operating characteristic (ROC) curves were employed. A P value of less than 0.05 was set as the threshold for statistical 
significance.

RESULTS
The consistency check between NMFP-assisted telemedicine and FFA in the screening of DR
Of 23 patients (24.7%) were diagnosed with NDR and 70 patients (75.3%) with DR using NMFP-assisted telemedicine, 
whereas, FFA detected NDR in 16 patients (17.2%) and DR in 77 patients (82.8%). κ test analysis suggested consistency DR 
screening results between NMFP-assisted telemedicine and FFA with a κ value of 0.775 (P < 0.001) (Table 1).

The consistency check between NMFP-assisted telemedicine and FFA in the staging and diagnosis of DR
The 70 positive cases, diagnosed using both techniques, were categorized into stages I–VI, with 52 cases showing identical 
staging results. Among the patients diagnosed using NMFP-assisted telemedicine, the distribution across DR stages I, II, 
III, IV, V, and VI was 20, 16, 17, 11, 4, and 2, respectively. In contrast, for those diagnosed using FFA, the numbers were 
15, 18, 21, 10, 5, and 1, respectively. The proportion of stage I patients diagnosed using NMFP-assisted telemedicine was 
slightly higher than that using FFA, while the proportion of patients at DR stages II and III diagnosed using NMFP-
assisted telemedicine was lower than that using FFA. The κ test analysis indicated concordance between the results of 
NMFP-assisted telemedicine and FFA in the diagnosis and staging of DR, with a κ value of 0.689 (P < 0.001) (Table 2).

Diagnostic prediction effectiveness of NMFP-assisted telemedicine by ROC curve
ROC analysis was conducted using the FFA result as the dependent variable (DR assignment = 1, NDR assignment = 0) 
and the NMFP-assisted telemedicine result (DR assignment = 1, NDR assignment = 0) as the independent variable. The 
area under the curve for NMFP-assisted telemedicine in predicting a positive result from FFA was 0.955 (0.914, 0.995; P < 
0.001), with a specificity of 100%, sensitivity of 90.9%, and a Youden index of 0.909 (Figure 3).

Typical fundus photos in different stages
Typical fundus photos in different stages examined by NMFP-assisted telemedicine were exhibited in Figure 4.
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Table 1 Kappa test analysis between non-mydriatic fundus photography assisted telemedicine and fundus fluorescein angiography in 
the screening of diabetic retinopathy

Non-mydriatic fundus photography-assisted 
telemedicineFundus fluorescein angiography
NDR DR

Total (n)

NDR 16 0 16

DR 7 70 77

Total (n) 23 70 93

NDR: No diabetic retinopathy; DR: Diabetic retinopathy.

Table 2 Kappa test analysis between non-mydriatic fundus photography assisted telemedicine and fundus fluorescein angiography in 
the staging and diagnosis of diabetic retinopathy

No-mydriatic fundus photography-assisted telemedicine
Fundus fluorescein angiography

I II III IV V VI
Total (n)

I 15 0 0 0 0 0 15

II 2 13 1 2 0 0 18

III 3 3 15 0 0 0 21

IV 0 0 1 8 1 0 10

V 0 0 0 1 2 2 5

VI 0 0 0 0 1 0 1

Total (n) 20 16 17 11 4 2 70

Figure 1 Operation of the non-mydriatic portable fundus camera when performing fundus examination.

DISCUSSION
Traditional DR screening methods, including direct fundoscopy, indirect fundoscopy, and slit-lamp with preset lens 
methods, are known for their simplicity, speed, and patient cooperation[8,9]. However, these methods often exhibit poor 
accuracy and are not well-suited for mass DR screening. On the other hand, FFA, recognized as one of the most effective 
early DR detection methods, enables physicians to observe capillary non-perfusion patterns and disruptions in the blood-
retinal barrier, providing insights into the source of macular edema-related leakage[10,11]. Consequently, FFA is 
regarded as the gold standard for DR diagnosis. Nevertheless, its invasive nature makes it unsuitable for pregnant 
women, patients with contrast allergies, or those with concurrent systemic illnesses, thereby limiting its applicability in 
mass DR screening.
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Figure 2 Application of non-mydriatic fundus photography-assisted telemedicine.

Figure 3 The receiver operating characteristic curve identified diagnostic prediction effectiveness of non-mydriatic fundus photography-
assisted telemedicine (area under the curve 0.955 with 90.9% sensitivity and 100% specificity).

NMFP, a technique that employs low-density light to capture high-resolution fundus images by enhancing camera 
sensitivity, has been utilized for fundus examinations since the 1980s[12]. Initially, Polaroid film and 35 mm transpar-
encies were used, but technological advancements have significantly improved NMFP, resulting in high-quality, directly 
savable, and shareable images. This method offers several advantages, such as mydriasis-free operation, convenience, 
safety, and effectiveness. Numerous studies on DR screening have indicated that NMFP is a straightforward, objective, 
and cost-effective technique that enhances the efficiency of DR screening[13].

Research by Piyasena et al[14] demonstrated that NMFP surpasses mydriatic examination in sensitivity for detecting 
fundus lesions, particularly smaller ones like tiny retinal hemorrhages, microaneurysms, and neovascularization in 
various fundus areas[15]. Yaslam et al[16] also suggested that NMFP is more patient-friendly and can be widely 
employed for fundus examinations in both type 1 and type 2 diabetes cases. Dunn et al[17] showed that NMFP exhibits 
higher sensitivity in DR screening compared to direct fundoscopy, enhancing diagnostic accuracy for fundus pathology. 
In the current study, no significant difference was observed in the concordance rate between NMFP (75.3%) and FFA 
(82.8%), underscoring the substantial utility of NMFP in DR screening. When using FFA results as the gold standard, 
NMFP-assisted telemedicine demonstrated high diagnostic sensitivity and specificity in DR screening.

NMFP encompasses single-field, double-field, and seven-field photography, with most options offering a 45° field of 
view. Equipment models primarily include handheld, desktop, TV-type, and stereo cameras[18-21]. The advantages of 
the handheld NMFP employed in this study include its compact size, portability, and versatility to operate in various 
body positions, enabling high-definition fundus photography. Technological advancements and the widespread use of 
the internet have transformed DR screening into an efficient mode, with NMFP playing a pivotal role in this screening 
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Figure 4 Typical fundus photos in different stages of non-mydriatic fundus photography-assisted telemedicine. A and B: Photographs of 
normal fundus; C and D: Fundus photograph shows microhemangioma and retinal hemorrhage; E and F: Fundus photograph shows retinal hemorrhage and retinal 
hard exudates.

method. NMFP-assisted telemedicine relies on dedicated information transfer software tailored for remote screening of 
DR patients. In addition to storing and transmitting images, the software can record patients’ medical history and 
physical examination results from each visit, streamlining data extraction, comparison, retrieval, query, and analysis for 
subsequent consultations. The advantages of NMFP-assisted telemedicine include: (1) Enhanced feasibility: Elderly 
diabetic patients with a lengthy disease course, post-cataract surgery individuals, and patients with angle-closure 
glaucoma often struggle with mydriasis. NMFP-assisted telemedicine significantly improves the screening feasibility for 
patients with small pupils[22]; (2) Patient engagement: NMFP-assisted telemedicine allows the storage of fundus images, 
enabling patients to visualize changes in their fundus. This facilitates timely and effective health education, empowers 
patients with essential knowledge about DR, and helps them comprehend disease progression. Consequently, it enhances 
patient compliance and shifts the focus from disease treatment to disease prevention; (3) Improved compliance: By 
avoiding the mydriasis procedure in fundus examination, NMFP-assisted telemedicine enhances patient compliance; (4) 
Accessibility: NMFP-assisted telemedicine is user-friendly, portable, and suitable for bedside data collection, making it 
particularly valuable for fundus screening in pediatric patients or those with limited mobility[23]; (5) Versatile use: This 
straightforward procedure makes fundus screening accessible to non-ophthalmologists, including endocrinologists and 
community physicians; (6) Telemedicine potential: Combining NMFP with telemedicine holds great promise in empha-
sizing the significance of ocular fundus examinations in endocrinology inpatients and primary care hospitals. It facilitates 
access to ophthalmic consultative services and supports clinical and epidemiologic research[16,24]. Digital fundus 
photography and network technology enable the acquisition of patient information, remote screening, consultation, and 
diagnosis, coupled with digital storage and information sharing; and (7) Cost-effectiveness: For endocrinology 
departments, NMFP testing is cost-effective with reusable equipment. For patients, the cost of NMFP testing is lower and 
within the range covered by medical insurance, making NMFP more suitable for large-scale screening in DR diagnosis. 
However, NMFP also has some potential risks. For instance, in telemedicine systems, patient medical information and 
images are transmitted over the internet, which could lead to data security and privacy issues. Moreover, remote 
diagnosis may lack direct face-to-face interaction with patients. Therefore, in practical applications, doctors must be 
vigilant in protecting patient privacy and strive to explain the diagnostic results to the patients as clearly as possible.

The presence, severity, and staging of DR are pivotal factors in the screening of DR, particularly in primary care 
hospitals facing limitations in medical resources. These examination results play a critical role in determining whether 
patients should be referred to higher-level hospitals for further consultation and prompt treatment. This approach 
ensures the early detection of DR, timely intervention, and facilitates the implementation of a hospital-based hierarchical 
diagnosis and treatment system. A real-world, multicenter, and prospective study have demonstrated the efficacy of 
NMFP in both DR screening and grading[25]. In our study, the results obtained from NMFP-assisted telemedicine and 
FFA exhibited remarkable consistency across different DR stages. Besides screening for various fundus lesions, NMFP-
assisted telemedicine also allows for DR staging. The proportion of patients in stage I diagnosed using NMFP-assisted 
telemedicine was slightly higher than those diagnosed using FFA. In contrast, for patients in stages II and III, NMFP-
assisted telemedicine had a lower proportion of diagnoses compared to FFA. NMFP-assisted telemedicine can promptly 
identify early signs such as hard exudates and arterial aneurysms. However, FFA excels in providing a comprehensive 
characterization of retinal blood flow, including all aneurysms, identification of exudates and microhemorrhages, and 
observation of vascular permeability alterations. Consequently, NMFP-assisted telemedicine may occasionally yield false-
negative results.
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Limitations
This article still has some limitations and deficiencies. Firstly, the sample size is small, and secondly, it lacks a cross-
sectional comparison with other DR screening methods, which will be a direction for future research.

CONCLUSION
In summary, early screening and accurate staging of DR can reduce the risk of blindness in patients with type 2 diabetes. 
The pathogenesis of DR is complex, with numerous factors affecting its onset and progression. Therefore, the prevention 
and treatment of DR cannot rely solely on screening by ophthalmologists. Because endocrinology is often the first 
department that diabetic patients visit, endocrinologists need to screen diabetic patients for retinopathy detection and 
early intervention. NMFP-assisted telemedicine can be comprehensively used to facilitate fundus examination among 
endocrinology inpatients and diabetic patients in primary hospitals. In addition, the captured images and basic 
information from NMFP-assisted telemedicine can be archived and uploaded to a software platform to help ophthalmo-
logists diagnose and create medical reports, thereby enabling effective prevention, control, and management of diabetes 
and its fundus complications. Furthermore, the collected image data can be summarized, analyzed, stored digitally, and 
shared for big data analysis. Diabetic patients diagnosed using NMFP-assisted telemedicine can promptly observe their 
fundus lesions and gain essential knowledge about DR in a timely and effective manner, thereby improving their 
awareness of the disease and compliance with treatment and preventing the onset and progression of DR.

ARTICLE HIGHLIGHTS
Research background
Prompt detection and precise classification of diabetic retinopathy (DR) in individuals with type 2 diabetes can lessen the 
likelihood of blindness. Given DR’s intricate causes, relying solely on ophthalmologist examinations may not be enough 
for effective prevention and treatment. Since endocrinologists frequently encounter diabetic patients initially, they play a 
crucial role in early DR screening and intervention.

Research motivation
We endeavored to offer fresh perspectives on the screening approaches for DR.

Research objectives
This study investigates the effectiveness of telemedicine enhanced by non-mydriatic fundus photography (NMFP) in 
evaluating DR and its different stages.

Research methods
This study retrospectively analyzed 93 diabetic patients, comparing NMFP-assisted telemedicine with fundus fluorescein 
angiography (FFA) in detecting DR. It aimed to evaluate the agreement between these methods and used receiver 
operating characteristic (ROC) curves to assess the accuracy of NMFP against the FFA benchmark.

Research results
In diagnosing and staging DR, NMFP-assisted telemedicine and FFA showed substantial agreement with kappa coeffi-
cients of 0.775 and 0.689, respectively. NMFP’s predictive accuracy for positive FFA outcomes, indicated by a ROC curve 
area of 0.955 (confidence interval 0.914 to 0.995) and a P-value < 0.001, was high. The model demonstrated 100% 
specificity, 90.9% sensitivity, and a Youden index of 0.909.

Research conclusions
This study introduces NMFP-assisted telemedicine as a practical, accurate method for examining the fundus, especially 
suitable for endocrinology inpatient care and primary healthcare for diabetic patients. Its use in these settings is crucial 
for improving the accuracy of diagnosing and treating DR. This approach simplifies patient assessments and significantly 
improves clinical results in DR management. The new theories proposed by this study include the importance of 
integrating NMFP-assisted telemedicine into endocrinology and primary healthcare for enhanced DR management. The 
new method proposed is the application of NMFP-assisted telemedicine itself for fundus examination in diabetic patients.

Research perspectives
Future research should focus on expanding the use of NMFP-assisted telemedicine in various healthcare settings for DR 
management, and conducting larger, long-term studies to evaluate its effectiveness. Additionally, exploring technological 
improvements and interdisciplinary collaborations can enhance the accuracy and impact of this approach in DR diagnosis 
and treatment.
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Abstract
BACKGROUND 
Podocyte apoptosis plays a vital role in proteinuria pathogenesis in diabetic 
nephropathy (DN). The regulatory relationship between long noncoding RNAs 
(lncRNAs) and podocyte apoptosis has recently become another research hot spot 
in the DN field.

AIM 
To investigate whether lncRNA protein-disulfide isomerase-associated 3 (Pdia3) 
could regulate podocyte apoptosis through miR-139-3p and revealed the under-
lying mechanism.

METHODS 
Using normal glucose or high glucose (HG)-cultured podocytes, the cellular 
functions and exact mechanisms underlying the regulatory effects of lncRNA 
Pdia3 on podocyte apoptosis and endoplasmic reticulum stress (ERS) were 
explored. LncRNA Pdia3 and miR-139-3p expression were measured through 
quantitative real-time polymerase chain reaction. Relative cell viability was de-
tected through the cell counting kit-8 colorimetric assay. The podocyte apoptosis 
rate in each group was measured through flow cytometry. The interaction be-
tween lncRNA Pdia3 and miR-139-3p was examined through the dual luciferase 
reporter assay. Finally, western blotting was performed to detect the effect of 
lncRNA Pdia3 on podocyte apoptosis and ERS via miR-139-3p.
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RESULTS 
The expression of lncRNA Pdia3 was significantly downregulated in HG-cultured podocytes. Next, lncRNA Pdia3 
was involved in HG-induced podocyte apoptosis. Furthermore, the dual luciferase reporter assay confirmed the 
direct interaction between lncRNA Pdia3 and miR-139-3p. LncRNA Pdia3 overexpression attenuated podocyte 
apoptosis and ERS through miR-139-3p in HG-cultured podocytes.

CONCLUSION 
Taken together, this study demonstrated that lncRNA Pdia3 overexpression could attenuate HG-induced podocyte 
apoptosis and ERS by acting as a competing endogenous RNA of miR-139-3p, which might provide a potential 
therapeutic target for DN.

Key Words: Long noncoding RNAs; Diabetic nephropathy; Podocyte apoptosis; Endoplasmic reticulum stress; Competing 
endogenous RNA
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Core Tip: The expression of long noncoding RNA (lncRNA) protein-disulfide isomerase-associated 3 (Pdia3) was 
significantly downregulated in high glucose (HG)-cultured podocytes. LncRNA Pdia3 was involved in HG-induced 
podocyte apoptosis. LncRNA Pdia3 overexpression attenuated HG-induced podocyte apoptosis and endoplasmic reticulum 
stress by acting as a competing endogenous RNA of miR-139-3p.

Citation: He YX, Wang T, Li WX, Chen YX. Long noncoding RNA protein-disulfide isomerase-associated 3 regulated high glucose-
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INTRODUCTION
Diabetic nephropathy (DN) is one of the prominent and serious complications of diabetes mellitus. It is caused by 
changes in kidney structure and function, frequently resulting in end-stage renal disease and death[1]. Similar to many 
renal diseases[2,3], DN is characterized by progressive proteinuria, followed by a decline in glomerular filtration along 
with glomerulosclerosis, ultimately causing renal failure. Albuminuria results from renal glomerular filtration barrier 
disruption, which increases barrier permeability and protein leakage into the urine. Podocytes, also known as glomerular 
epithelial cells, are a crucial component of this barrier. Podocytes, as terminal differentiation cells, cannot regenerate 
when injured. Podocyte depletion and structural changes could destroy the glomerular filtration membrane and induce 
albuminuria[4]. Earlier studies have indicated that podocyte loss is among the main reasons for diabetes-induced 
proteinuria and the hallmark events of DN[5-7]. Podocyte apoptosis is an inciting event in DN development and 
correlates with DN progression.

Accumulating evidence has indicated that endoplasmic reticulum stress (ERS) plays a crucial role in DN development 
and progression[8], including podocyte injury[9,10]. Under normal physiological conditions, newly synthesized 
polypeptides translocate into the ER lumen to undergo proper folding, so that they meet the cellular quality control 
criteria for exit from the ER. Disrupted homeostasis, such as oxidative stress or high glucose (HG), causes an imbalance 
between the protein loading and folding capacity of the ER, resulting in unfolded and/or misfolded protein accumulation 
and ER dilatation. This process is known as ERS which consequently triggers an unfolded protein response (UPR)[11]. 
Numerous studies have indicated ERS-induced apoptosis as a critical mechanism mediating podocyte injury in 
DN[12,13]. In particular, tauroursodeoxycholic acid treatment ameliorated podocyte and glomeruli injury in diabetic mice 
by inhibiting ERS, thereby attenuating proteinuria and kidney histological changes[14]. Cyclin-dependent kinase 5 may 
play a crucial role in ERS-induced podocyte apoptosis, which was associated with podocyte apoptosis in DN[15]. 
However, the mechanism underlying ERS-mediated podocyte injury in DN remains largely unclear and needs further 
investigation.

Long noncoding RNAs (lncRNAs) belong to a class of noncoding RNAs of > 200 nucleotides in length lacking protein-
coding potential. Several lncRNAs are involved in many biological processes, such as regulating transcription, 
translation, RNA modification, protein modification, and epigenetic modification of chromatin structures[16,17]. More 
importantly, lncRNAs are associated with the progression and occurrence of metabolic diseases, including diabetes and 
diabetic complications[18]. In particular, lncRNA TCF7 silencing attenuated HG-induced podocyte damage. Therefore, 
lncRNAs are a potential therapeutic target for alleviating DN development to search for novel lncRNAs and alter the 
expression of specific lncRNAs.

We here investigated lncRNA expression profiles and the associated competing endogenous RNA (ceRNA) network 
using high-throughput RNA-sequencing (RNA-seq) technologies in normal glucose (5.5 mmol/L, NG group) and HG (25 
mmol/L, HG group) cultured mouse podocytes. Then, Gene Ontology (GO) and Kyoto Encyclopedia of Genes and 
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Genomes (KEGG) pathway analyses were conducted to determine the function of differentially expressed lncRNAs. The 
present study investigated the function and underlying molecular mechanism of novel lncRNAs in ERS-podocyte 
apoptosis, providing the hope of developing a new and effective therapeutic strategy against DN.

MATERIALS AND METHODS
Cell culture
Conditionally immortalized mouse podocytes were cultured with Dulbecco’s modied eagle medium containing 10% 
fetal bovine serum and antibiotics (100 U/mL of penicillin and 0.1 mg/mL of streptomycin) at 37 °C under humidified 
conditions of 95% air and 5% CO2. The differentiated podocytes were used for the subsequent experiments at 80%-90% 
podocyte confluence. The podocytes were incubated in a medium containing 25 or 5.5 mmol/L of glucose to induce a 
hyperglycemic or normal condition, respectively.

RNA-Seq
TRIzol® Reagent (Life Technologies) was used to extract the total RNA from the podocytes of the NG and HG, according 
to the manufacturer’s instructions. The RNA concentration was measured using the Qubit® RNA Assay kit in Qubit®2.0 
Fluorometer (Life Technologies, CA, United States). The total RNA was purified by depleting rRNA using the Ribo-off 
rRNA Depletion kit (Vazyme Biotech Co., Ltd, Nanjing, China). A cDNA library was then constructed using these 
samples and the VAHTS™ Stranded mRNA-seq Library Prep kit for Illumina® (Vazyme Biotech Co., Ltd, Nanjing, 
China). Sangon Biotech (Shanghai, China) used an Illumina Novaseq6000 sequencer (Illumina Inc., San Diego, CA, United 
States) to sequence the libraries. Differentially expressed lncRNAs with statistical significance between the NG and HG 
groups were determined through P value/false discovery rate (FDR) filtering. A volcano plot filtering approach [|log2 
(fold change)| ≥ 1.0; q value ≤ 0.05] was used to identify significantly and differentially expressed lncRNAs between the 
two groups.

Cell transfection
The cDNA fragments were cloned into the pcDNA 3.1 plasmid vector to construct lncRNA protein-disulfide isomerase-
associated 3 (Pdia3) overexpressing plasmids (pcDNA3.1-lncRNA Pdia3) to overexpress ENSMUST00000153378 (lncRNA 
protein-disulfide isomerase-associated 3, lncRNA Pdia3 for short). The empty vector served as a control. The podocytes 
were transfected with small interfering RNA (siRNA) against lncRNA Pdia3 (siRNA-lncRNA Pdia3) to inhibit lncRNA 
Pdia3 expression. The corresponding scrambled RNA served as a negative control. Additionally, miR-139-3p mimics or 
inhibitors were used to increase or decrease miR-139-3p expression, respectively. The scrambled oligonucleotides (NC 
mimics or NC inhibitors) served as controls. The podocytes from each group were seeded into six-well plates and 
incubated at 37 °C for 24 h for transfection. The cells were transfected or co-transfected with the relevant plasmids using 
opti-MEM and Lipofectamine 2000 reagents (Invitrogen, Carlsbad, CA, United States) following the manufacturer’s 
protocol after attaining 80% podocyte confluence.

Measurement of cell viability
Cell counting kit-8 (CCK-8) was used to measure cell viability, as described by the manufacturer. The differentiated 
podocytes were seeded into 96-well plates and incubated at 37 °C overnight. CCK-8 solution of 10 μL was then added to 
each well. The cells were incubated at 37 °C for 2 h in the dark. An automatic microplate reader was used to measure the 
light absorbance value of each well at 450 nm of wavelength.

Flow cytometry
The podocyte apoptosis rate in the different groups was determined through flow cytometry using an Annexin V-FITC 
and propidium iodide (PI) double staining kit (MultiSciences Biotechnology Corporate Limited, China) after transfection 
for 48 h, following the manufacturer’s instructions. The cells from each group were collected and resuspended in the 
binding buffer to form single-cell suspensions (1 × 106 cells/mL) for staining. The podocytes were then dual stained with 
10 μL annexin-V FITC and 5 μL PI at 37 °C for 5 min to avoid light exposure. Finally, flow cytometry detected the 
percentage of apoptotic podocytes.

Immunofluorescence
The podocytes were washed with phosphate-buffered saline (PBS) and fixed in 4% paraformaldehyde at room 
temperature for 30 min after transfection for 48 h. Next, the cells were permeabilized with 0.5% Triton X-100 for 5 min. 
The cells were blocked in 5% bovine serum albumin (BSA) for 1 h at room temperature. Subsequently, the cells were 
incubated with primary antibodies (podocin, 1:100, Abcam, United States; nephrin, 1:100, Abcam, United States) at 4 °C 
overnight. The cells were washed with PBS and incubated with fluorescence-conjugated secondary antibodies for 1 h at 
room temperature. The podocytes were tinted with 6-diamidino-2-phenylindole (DAPI) for 5 min and photographed 
under a fluorescence microscope (Olympus FV10-ASW, Tokyo, Japan).

Quantitative real-time polymerase chain reaction
Following 48 h of transfection, the total RNA was extracted and purified from podocytes using Trizol reagents according 
to the manufacturer’s instructions. A NanoDrop spectrophotometer detected the concentration and purity of total RNA. 
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Subsequently, a reverse transcription kit (QIAGEN, Valencia, CA, United States) was used to reverse transcribe total RNA 
into cDNA. The expressions of RNA were then quantified by quantitative real-time polymerase chain reaction (qRT-PCR) 
using SYBR®Premix Ex Taq™ (Takara, Dalian, China). The GAPDH or U6 expressions were used as the endogenous 
control for lncRNA Pdia3 or miR-139-3p, respectively. The relative expression of RNA was analyzed using the 2-ΔΔCt 
method. Primers were displayed as follows: LncRNA Pdia3 (forward primers 5’-ATGCGCTTCAGCTGCCTA-3’, reverse 
primers 5’-CGTCAGTTCCAACACATCG-3’); miR-139-3p (forward primers 5’-TCACAGAGGTTGTCCCGGC-3’, reverse 
primers 5’-TATGGTTGTTCACGACTCCTTCAC-3’); GAPDH (forward primers 5’-GCAAGTTCAACGGCACAG-3’, 
reverse primers 5’-CTCGCTCCTGGAAGATGG-3’); U6 (forward primers 5’-CTCGCTTCGGCAGCACA-3’, reverse 
primers 5’-AACGCTTCACGAATTTGCGT-3’).

Fluorescence in situ hybridization
Fluorescence in situ hybridization (FISH), which was performed using the FISH kit (Boster Biological Technology Co. Ltd, 
Wuhan, China) following the manufacturer’s protocol, was used to analyze the subcellular localization of lncRNA Pdia3. 
The lncRNA Pdia3 FISH probe was designed and synthesized by Servicebio Technology (Wuhan, China). After 48 h of 
transfection, the podocytes were fixed in 4% paraformaldehyde for 30 min and permeabilized with 0.5% Triton X-100 for 
5 min. The podocytes were incubated with the fluorescence probe at 37 °C overnight after blocking the permeabilized 
podocytes in 5% BSA. The podocytes were stained with DAPI for 5 min after hybridization. Finally, the images were 
observed under the fluorescence microscope (Olympus FV10-ASW, Japan).

Dual-luciferase reporter assay
The dual luciferase reporter assay was used to assess the direct interaction between lncRNA Pdia3 and miR-139-3p. A 
pmirGLO luciferase expression vector (Cosmo Bio, Tianjin, China) was used to construct the reporter plasmid. The 
predicted lncRNA Pdia3 3’-UTR sequence that interacts with miR-139-3p and artificially mutated sequences within the 
predicted target sites were synthesized and cloned into the pmirGLO luciferase vector, respectively. The wide-type (wt) 
or mutated (mut) luciferase reporter plasmid was then transfected with miR-139-3p mimics or NC mimics into podocytes 
using Lipofectamine 2000 reagents following the manufacturer’s instructions. A non-related miRNA was used as NC 
mimics. The luciferase assay kit (Promega, Madison, WI, United States) was used to measure the luciferase activity after 
transfection for 48 h. The relative luciferase activity was normalized to Renilla luciferase activity.

Western blotting
After transfection for 48 h, the podocytes from each group were lysed by whole-cell lysate for 10 min on ice. The radioim-
munoprecipitation assay lysis buffer was used to extract total proteins from the cultured podocytes, and a bicinchoninic 
acid kit was utilized to determine their concentration. The total proteins were then isolated through sodium dodecyl 
sulfate-polyacrylamide gel electrophoresis and transferred onto polyvinylidene fluoride membranes. After blocking in 5% 
skim milk at room temperature for 1 h, the membranes were probed with primary antibodies [glucose-regulated protein 
78 (GRP78), 1:1000, Abcam, United States; C/EBP homologous protein (CHOP), 1:500, Abcam, United States; caspase-12, 
1:1000, Abcam, United States] overnight at 4 °C and then incubated with the secondary antibody for 1 h. The membranes 
were washed three times with PBST for 10 min, incubated in Western LightningTM Chemiluminescence Reagent 
(PerkinElmer, United States) for 5 min, and visualized by the LabWorksTM imaging system. β-Tubulin (1:1000, Abcam, 
United States) was used as an internal control. ImageJ software (National Institutes of Health, Bethesda, MD, United 
States) was used to analyze the gray value of the target band.

Statistical analysis
Statistical Package for the Social Sciences version 20.0 was used for data analyses. All data were presented as mean ± SD. 
Unpaired Student’s t-tests were used to analyze differences between the two groups. One-way analysis of variance with 
Student-Newman-Keuls or Dunnett’s test was used to assess differences among multiple groups. The Benjamini-
Hochberg method controlled the FDR using sequential modified Bonferroni correction for multiple hypothesis testing. P 
values of < 0.05 were considered statistically significant.

RESULTS
LncRNA Pdia3 was down-expressed in HG-cultured podocytes
Mouse podocytes were cultured under NG or HG concentrations for 48 h. RNA-seq analysis was then performed to 
identify differentially expressed lncRNAs between NG and HG cultured podocytes. RNA-seq revealed that 51 lncRNAs 
were differentially expressed between the NG and HG groups using the following criteria: P value of < 0.001, q-value of < 
0.01 and |log2 (fold change)| > 1, including 20 upregulated and 31 downregulated genes (Figure 1). Among them, 
lncRNA Pdia3 expression was markedly lower in the HG group than in the NG group. The GO and KEGG pathway 
enrichment analyses were conducted to determine the biological role of lncRNAs. Bioinformatic analysis revealed an 
association between lncRNA Pdia3 and ERS (Supplementary material). LncRNA Pdia3 was focused on to further study its 
potential function and action mechanism.

LncRNA Pdia3 overexpression attenuated podocyte apoptosis and ERS in HG-cultured podocytes
First, whether or not lncRNA Pdia3 overexpression attenuated the apoptosis of HG-cultured podocytes was evaluated. 

https://f6publishing.blob.core.windows.net/18f4033e-18e0-433b-a889-6040540c296f/WJD-15-260-supplementary-material.pdf
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Figure 1 RNA-sequencing analysis indicated a total of 51 long noncoding RNAs that were differentially expressed between the normal 
glucose and high glucose groups, which included 20 upregulated and 31 downregulated long noncoding RNAs. lncRNA: Long noncoding 
RNA; HG: High glucose; NG: Normal glucose; Pdia3: Protein-disulfide isomerase-associated 3.

HG could reduce lncRNA Pdia3 expression according to qRT-PCR data, which was consistent with the result of RNA-seq. 
LncRNA Pdia3 expression significantly increased after pcDNA3.1-lncRNA Pdia3 treatment, which indicated successful 
transfection (Figure 2A). Following siRNA-lncRNA Pdia3 treatment, lncRNA Pdia3 expression was significantly reduced 
(Figure 2B), indicating the successful silencing efficiency. Compared with the NG + siRNA-NC group, qRT-PCR data 
indicated that the NG + siRNA-lncRNA Pdia3 group had decreased lncRNA Pdia3 expression (Figure 2C). LncRNA 
Pdia3 expression was significantly increased in the HG + pcDNA3.1-lncRNA Pdia3 group compared with the HG + 
pcDNA3.1-NC group (Figure 2C). Afterward, a CCK-8 assay revealed that siRNA-lncRNA Pdia3 transfection in NG-
cultured podocytes caused a decline in cell viability. By contrast, cell viability was significantly enhanced in the HG + 
pcDNA3.1-lncRNA Pdia3 group compared with the HG + pcDNA3.1-NC group (Figure 2D). Furthermore, flow 
cytometry indicated that lncRNA Pdia3 silencing transfected by siRNA-lncRNA Pdia3 significantly increased cell 
apoptotic rate in NG-cultured podocytes. LncRNA Pdia3 overexpression transfected by pcDNA3.1-lncRNA Pdia3 
obviously reduced cell apoptotic rate in HG-cultured podocytes (Figure 2E and F). Additionally, immunofluorescence 
revealed that podocin and nephrin expression were significantly decreased in the NG + siRNA-lncRNA Pdia3 group 
compared with the NG + siRNA-NC group. By contrast, the HG + pcDNA3.1-lncRNA Pdia3 group demonstrated greatly 
increased podocin and nephrin expression compared with the HG + pcDNA3.1-NC group (Figure 2G and H). These 
results indicated that lncRNA Pdia3 overexpression could attenuate podocyte apoptosis in HG-cultured podocytes.

We further investigated the mechanism underlying the regulatory role of lncRNA Pdia3 in podocyte apoptosis. We 
assessed whether lncRNA Pdia3 modulated ERS in the context of HG-induced podocyte apoptosis. Compared with the 
NG + siRNA-NC group, GRP78, CHOP, and caspase-12 levels significantly increased in the NG + siRNA-lncRNA Pdia3 
group. After transfecting the podocytes with pcDNA3.1-lncRNA Pdia3 under the HG condition, lncRNA Pdia3 overex-
pression significantly reduced GRP78, CHOP, and caspase-12 levels (Figure 2I and J). These data indicated that lncRNA 
Pdia3 overexpression might ameliorate HG-induced ERS in podocytes.

LncRNA Pdia3 regulated podocyte apoptosis by serving as a ceRNA of miR-139-3p
Based on the aforementioned results, we investigated how lncRNA Pdia3 regulated podocyte apoptosis. The subcellular 
localization of lncRNA Pdia3 was assessed using FISH under the assumption of the dependence of one lncRNA’s function 
on its subcellular distribution. As suggested by the subcellular fractionation results presented in Figure 3A, lncRNA 
Pdia3 was primarily expressed in the cytoplasm. Thus, we speculated that lncRNA alleviated HG-induced podocyte 
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Figure 2 The upregulation of long noncoding RNA Pdia3 attenuated podocyte apoptosis and endoplasmic reticulum stress in high 
glucose-cultured podocytes. The downregulation of long noncoding RNA Pdia3 aggravated podocyte apoptosis and endoplasmic reticulum stress in normal 
glucose-cultured podocytes. A: The transfection efficiency of pcDNA3.1-long noncoding RNA (lncRNA) Pdia3 was detected by quantitative real-time polymerase 
chain reaction (qRT-PCR); B: The transfection efficiency of small interfering RNA-lncRNA Pdia3 was detected by qRT-PCR; C: The expressions of lncRNA Pdia3 
were measured by qRT-PCR. GAPDH served as a loading control; D: Quantitative analysis of the relative cell viability; E: Podocyte apoptosis was detected by flow 
cytometry; F: Quantitative analysis of the cell apoptotic rate; G and H: The expressions of nephrin and podocin in podocytes were analyzed by immunofluorescence. 
Scale bar = 50 μm; I: The protein levels of endoplasmic reticulum stress-related factors (glucose-regulated protein 78, C/EBP homologous protein, and caspase-12) 
were analyzed by western blotting. β-Tubulin was used as an internal control; J: Quantitative analysis of glucose-regulated protein 78, C/EBP homologous protein 
and caspase-12. The data were presented as mean ± SD. aP < 0.05. lncRNA: Long noncoding RNA; HG: High glucose; NG: Normal glucose; siRNA: Small interfering 
RNA; Pdia3: Protein-disulfide isomerase-associated 3; GRP78: Glucose-regulated protein 78; CHOP: C/EBP homologous protein.
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Figure 3 The direct interaction between long noncoding RNA Pdia3 and miR-139-3p was revealed. A: The subcellular location of long noncoding 
RNA (lncRNA) Pdia3 was examined by fluorescence in situ hybridization. LncRNA Pdia3 was mainly distributed in the cytoplasm; B: The target binding site between 
lncRNA Pdia3 and miR-139-3p was revealed; C: Dual-luciferase reporter assay was performed to measure the luciferase activity of co-transfecting with miR-139-3p 
mimics or NC mimics and lncRNA Pdia3 wt or mut luciferase reporters. The data were presented as the relative ratio of firefly luciferase activity to Renilla luciferase 
activity. aP < 0.05. ns: No significance. lncRNA: Long noncoding RNA; HG: High glucose; NG: Normal glucose; Pdia3: Protein-disulfide isomerase-associated 3; 
DAPI: 6-diamidino-2-phenylindole.

apoptosis maybe by serving as a ceRNA. Bioinformatics analysis revealed that miR-139-3p may be a possible target of 
lncRNA Pdia3. Figure 3B illustrated the binding sequence prediction of lncRNA Pdia3 and miR-139-3p. Moreover, the 
luciferase reporter assay demonstrated that lncRNA Pdia3-wt and miR-139-3p mimics co-transfection significantly 
decreased luciferase activity compared to lncRNA Pdia3-wt and NC mimics co-transfection. By contrast, no significant 
difference was observed when lncRNA Pdia3-mut was co-transfected with miR-139-3p mimics or NC mimics group 
(Figure 3C). Altogether, the dual luciferase reporter assay indicated that confirmed the in silico prediction of interaction 
between lncRNA Pdia3 and miR-139-3p.

Inhibition of miR-139-3p attenuated podocyte apoptosis and ERS in HG-cultured podocytes
Subsequently, we investigated whether miR-139-3p participated in HG-induced podocyte apoptosis. According to the 
qRT-PCR data, miR-139-3p expression was significantly increased in the HG group compared with that in the NG group, 
which was consistent with the result of RNA-seq. The qRT-PCR results revealed the high transfection efficiency of miR-
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139-3p mimics (Figure 4A). After transfection with miR-139-3p inhibitors, miR-139-3p expression was significantly 
reduced (Figure 4B), indicating the successful silencing efficiency. The qRT-PCR data depicted that miR-139-3p 
expression was increased in the NG + miR-139-3p mimics group compared with the NG + NC mimics group. The miR-
139-3p expression was significantly decreased by miR-139-3p inhibitors transfection in HG-cultured podocytes 
(Figure 4C). CCK-8 then revealed that miR-139-3p overexpression by miR-139-3p mimics significantly decreased the cell 
viability of the NG-cultured podocytes. Further, miR-139-3p inhibition transfected by miR-139-3p inhibitors significantly 
increased the cell viability of the HG-cultured podocytes (Figure 4D). Furthermore, flow cytometry indicated that miR-
139-3p overexpression significantly increased the podocyte apoptosis in NG-cultured podocytes. Inhibiting miR-139-3p 
reduced the podocyte apoptosis in HG-cultured podocytes (Figure 4E and F). Additionalonly, immunofluorescence 
revealed that miR-139-3p overexpression significantly decreased podocin and nephrin expression in NG-cultured 
podocytes. By contrast, miR-139-3p inhibition greatly increased podocin and nephrin expression in HG-cultured 
podocytes (Figure 4G and H). These aforementioned results revealed the potential involvement of miR-139-3p in HG-
induced podocyte apoptosis.

Furthermore, whether or not miR-139-3p regulated HG-induced ERS was determined. MiR-139-3p overexpression 
significantly increased GRP78, CHOP, and caspase-12 levels in NG-cultured podocytes. After transfecting the podocytes 
with miR-139-3p inhibitors under the HG condition, miR-139-3p inhibition significantly reduced GRP78, CHOP, and 
caspase-12 levels (Figure 4I and J). These aforementioned data confirmed that miR-139-3p inhibition ameliorated HG-
induced ERS in podocytes.

DISCUSSION
Here, we focused on the function and underlying molecular mechanism of lncRNA Pdia3, which is a previously uniden-
tified lncRNA, in hyperglycemia-induced podocyte apoptosis. Next, the interplay between lncRNA Pdia3 and miR-139-
3p in podocytes during DN was investigated. LncRNA Pdia3 was significantly downregulated in the HG-cultured 
podocytes, where in HG simulated a DN microenvironment, compared with the NG-cultured podocytes. More im-
portantly, lncRNA Pdia3 modulated ERS and podocyte apoptosis by serving as a ceRNA of miR-139-3p in DN. Therefore, 
we hypothesized that lncRNA Pdia3 was a novel podocyte apoptosis regulator through controlling ERS in DN.

LncRNA Pdia3 (Ensembl ID: ENSMUST00000153378), a 400 bp lncRNA, is located in chromosome 2 (chromosome 2: 
121,244,364-121,255,082). In this study, lncRNA Pdia3 was first found to be involved in HG-induced podocyte apoptosis. 
In the HG-cultured podocytes, lncRNA Pdia3 expression was dramatically downregulated, which is relevant to podocyte 
apoptosis. Moreover, lncRNA Pdia3 overexpression with pcDNA3.1-lncRNA Pdia3 transfection significantly alleviated 
podocyte apoptosis in the HG-cultured podocytes. The crucial role of lncRNAs in regulating the pathological processes of 
podocyte apoptosis in DN, such as PVT1[19], lncRNA SPAG5 antisense RNA1 (SPAG5-AS1)[20], and lncRNA MIAT[21], 
has been confirmed. In our study, lncRNA Pdia3 was first proved to exert a protective effect against podocyte apoptosis.

Notably, lncRNA Pdia3 may be associated with HG-induced ERS. The ER is a key intracellular organelle with multiple 
functions, which is responsible for protein production, folding, processing, and secretion[22], as well as intracellular 
calcium storage and lipid production[23]. Newly synthesized proteins are properly folded and structurally corrected in 
the ER, and then transported to the Golgi apparatus. These folded proteins functioned as secretory or membrane proteins. 
Thus, maintaining ER homeostasis is crucial for cell survival, differentiation, development, and proliferation[24]. Acute 
and chronic hyperglycemia disrupts ER homeostasis, causing unfolded protein accumulation in the ER, which is known 
as ERS[24]. The UPR prevents misfolded protein overloading and restores ER homeostasis. ERS can result in cell death or 
apoptosis if the UPR system fails to restore the ER balance[25]. Emerging evidence has revealed the crucial role of ERS in 
regulating DN-related pathological processes[10]. The ER chaperone protein, GRP78, assists with the proper folding and 
assembly of proteins as a master modulator for UPR. Under ERS, GRP78 preferentially binds to misfolded or unfolded 
proteins and targets misfolded proteins for degradation[26]. Prolonged or intense stress has induced cell apoptosis by 
activating various apoptotic pathways, such as caspase-12 and CHOP. LncRNA Pdia3 silencing through siRNA-lncRNA 
Pdia3 transfection dramatically aggravated ERS in the NG-cultured podocytes in our study, including increasing caspase-
12 and CHOP expression. In contrast, lncRNA Pdia3 overexpression through pcDNA3.1-lncRNA Pdia3 transfection 
dramatically alleviated ERS in the HG-cultured podocytes, including decreasing CHOP and caspase-12 expression. The 
results revealed that lncRNA Pdia3 overexpression ameliorated podocyte apoptosis by alleviating ERS. Several studies 
have extensively evaluated the relationship between lncRNAs and podocyte apoptosis, such as lncRNA 1500026-
H17Rik[27], KCNQ1OT1[28], CDKN2B-AS1[29], lncRNA Hoxb3os[30], and lncRNA XIST[31]. However, only a few 
lncRNAs, such as lncRNA TCF7[32], LINC01619[33] and lncRNA TUG1[10], have been reported to be associated with 
ERS in podocyte apoptosis. LncRNA Pdia3, which is a previously unidentified lncRNA, was confirmed to be a critical 
regulator of ERS in podocyte apoptosis. LncRNA Pdia3 may become a prospective therapeutic approach for DN 
prevention or treatment in the future.

The target-mimetic, sponge/decoy function of lncRNAs on miRNAs recently gained widespread research atten-
tion[34]. The miRNAs are a class of small noncoding single stranded RNAs of approximately 20-22 nucleotides. These 
miRNAs negatively modulate gene expression by binding to the target mRNA and subsequently inducing its degradation 
or suppressing protein translation[35]. LncRNAs served as ceRNAs of miRNA to competitively occupy the shared 
miRNA binding sequences, thereby causing the modulation of gene expression[36]. Previous studies have elucidated the 
association between lncRNA and miRNA that is involved in DN progression[37,38], which was a vital action mechanism 
of lncRNAs. This study revealed that lncRNA Pdia3 overexpression or miR-139-3p inhibition alleviated ERS and 
podocyte apoptosis in the HG-cultured podocytes, including a decrease in caspase-12 and CHOP expression. Further-
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Figure 4 Inhibition of miR-139-3p attenuated podocyte apoptosis and endoplasmic reticulum stress in high glucose-cultured podocytes. 
The overexpression of miR-139-3p aggravated podocyte apoptosis and endoplasmic reticulum stress in normal glucose-cultured podocytes. A: The transfection 
efficiency of miR-139-3p mimics was detected by quantitative real-time polymerase chain reaction (qRT-PCR); B: The transfection efficiency of miR-139-3p inhibitors 
was detected by qRT-PCR; C: The expression of miR-139-3p was measured by qRT-PCR. U6 served as the loading control; D: Quantitative analysis of the relative 
cell viability; E: Podocyte apoptosis was detected by flow cytometry; F: Quantitative analysis of cell apoptotic rate; G and H: The expressions of nephrin and podocin 
in podocytes were analyzed by immunofluorescence. Scale bar = 50 μm; I: The protein expression of endoplasmic reticulum stress-related factors (glucose-regulated 
protein 78, C/EBP homologous protein, and caspase-12) was analyzed by western blotting. β-Tubulin served as an internal control; J: Quantitative analysis of 
glucose-regulated protein 78, C/EBP homologous protein and caspase-12. The data were presented as mean ± SD. aP < 0.05. lncRNA: Long noncoding RNA; HG: 
High glucose; NG: Normal glucose; Pdia3: Protein-disulfide isomerase-associated 3; GRP78: Glucose-regulated protein 78; CHOP: C/EBP homologous protein.
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Figure 5 Mechanistic depiction of the role of long noncoding RNA Pdia3 in endoplasmic reticulum stress and podocyte apoptosis is 
illustrated. Our finding revealed that long noncoding RNA Pdia3 downregulation induced endoplasmic reticulum stress and podocyte injury by acting as a 
competing endogenous RNA of miR-139-3p, which led to diabetic nephropathy progression. lncRNA: Long noncoding RNA; Pdia3: Protein-disulfide isomerase-
associated 3.

more, the dual luciferase reporter assay verified that lncRNA Pdia3 directly interacts with miR-139-3p. These aforemen-
tioned results indicated the importance of lncRNA Pdia3 for preventing HG-induced podocyte apoptosis. LncRNA Pdia3 
overexpression alleviated HG-induced podocyte injury and ERS by serving as a ceRNA of miR-139-3p.

CONCLUSION
In conclusion, our study provided evidence that lncRNA Pdia3 downregulation is a significant contributing factor for 
podocyte apoptosis in DN. LncRNA Pdia3 downregulation could induce ERS and podocyte injury by serving as a ceRNA 
of miR-139-3p, thereby leading to DN progression (Figure 5). Thus, lncRNA Pdia3 played a substantial role in podocyte 
apoptosis in DN. So, it might act as a potential therapeutic target and offer an alternative therapy for DN. However, the 
current study had some limitations. Our study used glucose concentrations (25 mmol/L) to mimic hyperglycemic 
conditions in podocytes, which might not completely reflect the complex situation in DN patients. In addition, our 
experiment was conducted by using only mouse podocytes, which might restrict the generalization of the study results. 
According to their unique genetics, different cell types might respond differently to the same treatment. Whether the 
findings obtained in vitro can be applied to in vivo DN needs to be further investigated. We intend to detect the expression 
and underlying molecular mechanism of lncRNA Pdia3 in DN patients. Our study found that inhibition of miR-139-3p 
significantly reduced ERS. How does miR-139-3p act on ERS needs to be further investigated. The goal of our research is 
to produce knowledge that can be applied as widely as possible.

ARTICLE HIGHLIGHTS
Research background
Podocyte apoptosis plays a vital role in proteinuria pathogenesis in diabetic nephropathy (DN). The regulatory 
relationship between long noncoding RNAs (lncRNAs) and podocyte apoptosis has recently become another research hot 



He YX et al. LncRNA Pdia3 regulate podocyte apoptosis

WJD https://www.wjgnet.com 272 February 15, 2024 Volume 15 Issue 2

spot in the DN field. LncRNAs are a potential therapeutic target for alleviating DN development to search for novel 
lncRNAs and alter the expression of specific lncRNAs.

Research motivation
We here investigated lncRNA expression profiles and the associated competing endogenous RNA (ceRNA) network 
using high-throughput RNA-sequencing (RNA-seq) technologies in normal glucose (5.5 mmol/L, NG group) and high 
glucose (25 mmol/L, HG group) cultured mouse podocytes. Then, Gene Ontology (GO) and Kyoto Encyclopedia of 
Genes and Genomes (KEGG) pathway analyses were conducted to determine the function of differentially expressed 
lncRNAs.

Research objectives
The present study investigated the function and underlying molecular mechanism of novel lncRNAs in endoplasmic 
reticulum stress (ERS)-podocyte apoptosis, providing the hope of developing a new and effective therapeutic strategy 
against DN.

Research methods
Using NG or HG-cultured podocytes, the cellular functions and exact mechanisms underlying the regulatory effects of 
lncRNA protein-disulfide isomerase-associated 3 (Pdia3) on podocyte apoptosis and ERS were explored. LncRNA Pdia3 
and miR-139-3p expression were measured through quantitative real-time polymerase chain reaction. Relative cell 
viability was detected through the cell counting kit-8 colorimetric assay. The podocyte apoptosis rate in each group was 
measured through flow cytometry. The interaction between lncRNA Pdia3 and miR-139-3p was examined through the 
dual luciferase reporter assay. Finally, western blotting was performed to detect the effect of lncRNA Pdia3 on podocyte 
apoptosis and ERS via miR-139-3p.

Research results
LncRNA Pdia3 was down-expressed in HG-cultured podocytes. LncRNA Pdia3 overexpression attenuated podocyte 
apoptosis and ERS in HG-cultured podocytes. LncRNA Pdia3 regulated podocyte apoptosis by serving as a ceRNA of 
miR-139-3p. Inhibition of miR-139-3p attenuated podocyte apoptosis and ERS in HG-cultured podocytes.

Research conclusions
This study provided evidence that lncRNA Pdia3 downregulation is a significant contributing factor for podocyte 
apoptosis in DN. LncRNA Pdia3 downregulation could induce ERS and podocyte injury by serving as a ceRNA of miR-
139-3p, thereby leading to DN progression.

Research perspectives
In the future, whether the findings obtained in vitro can be applied to in vivo DN needs to be investigated. We intend to 
detect the expression and underlying molecular mechanism of lncRNA Pdia3 in DN patients.
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Abstract
BACKGROUND 
Adaptor protein, phosphotyrosine interacting with PH domain and leucine zipper 
1 (APPL1) plays a crucial role in regulating insulin signaling and glucose 
metabolism. Mutations in the APPL1 gene have been associated with the 
development of maturity-onset diabetes of the young type 14 (MODY14). Cur-
rently, only two mutations [c.1655T>A (p.Leu552*) and c.281G>A p.(Asp94Asn)] 
have been identified in association with this disease. Given the limited 
understanding of MODY14, it is imperative to identify additional cases and carry 
out comprehensive research on MODY14 and APPL1 mutations.

AIM 
To assess the pathogenicity of APPL1 gene mutations in diabetic patients and to 
characterize the functional role of the APPL1 domain.

METHODS 
Patients exhibiting clinical signs and a medical history suggestive of MODY were 
screened for the study. Whole exome sequencing was performed on the patients 
as well as their family members. The pathogenicity of the identified APPL1 
variants was predicted on the basis of bioinformatics analysis. In addition, the 
pathogenicity of the novel APPL1 variant was preliminarily evaluated through in 
vitro functional experiments. Finally, the impact of these variants on APPL1 
protein expression and the insulin pathway were assessed, and the potential 
mechanism underlying the interaction between the APPL1 protein and the insulin 
receptor was further explored.

https://www.f6publishing.com
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mailto:doctorxuchao@163.com


Shi P et al. Diabetes-related APPL1 mutation analysis

WJD https://www.wjgnet.com 276 February 15, 2024 Volume 15 Issue 2

RESULTS 
A total of five novel mutations were identified, including four missense mutations (Asp632Tyr, Arg633His, 
Arg532Gln, and Ile642Met) and one intronic mutation (1153-16A>T). Pathogenicity prediction analysis revealed 
that the Arg532Gln was pathogenic across all predictions. The Asp632Tyr and Arg633His variants also had 
pathogenicity based on MutationTaster. In addition, multiple alignment of amino acid sequences showed that the 
Arg532Gln, Asp632Tyr, and Arg633His variants were conserved across different species. Moreover, in in vitro 
functional experiments, both the c.1894G>T (at Asp632Tyr) and c.1595G>A (at Arg532Gln) mutations were found 
to downregulate the expression of APPL1 on both protein and mRNA levels, indicating their pathogenic nature. 
Therefore, based on the patient’s clinical and family history, combined with the results from bioinformatics 
analysis and functional experiment, the c.1894G>T (at Asp632Tyr) and c.1595G>A (at Arg532Gln) mutations were 
classified as pathogenic mutations. Importantly, all these mutations were located within the phosphotyrosine-
binding domain of APPL1, which plays a critical role in the insulin sensitization effect.

CONCLUSION 
This study provided new insights into the pathogenicity of APPL1 gene mutations in diabetes and revealed a 
potential target for the diagnosis and treatment of the disease.

Key Words: Adaptor protein, phosphotyrosine interacting with PH domain and leucine zipper 1; Maturity-onset diabetes of the 
young; Bioinformatics analysis; Gene mutation; Domain

©The Author(s) 2024. Published by Baishideng Publishing Group Inc. All rights reserved.

Core Tip: We identified five new mutations in the adaptor protein, phosphotyrosine interacting with PH domain and leucine 
zipper 1 (APPL1) gene, a critical regulator of insulin signaling and glucose metabolism, in maturity-onset diabetes of the 
young type 14 patients. We conducted bioinformatics and functional experiments and showed that two mutations were 
pathogenic, resulting in reduced expression of the APPL1 protein and mRNA. All mutations were in the phosphotyrosine-
binding domain of APPL1, which is important for its insulin-sensitizing effect. This study gave new insights into the 
pathogenicity of APPL1 mutations in diabetes and revealed potential targets for improved diagnosis and treatment strategies.

Citation: Shi P, Tian Y, Xu F, Liu LN, Wu WH, Shi YZ, Dai AQ, Fang HY, Li KX, Xu C. Assessment of pathogenicity and functional 
characterization of APPL1 gene mutations in diabetic patients. World J Diabetes 2024; 15(2): 275-286
URL: https://www.wjgnet.com/1948-9358/full/v15/i2/275.htm
DOI: https://dx.doi.org/10.4239/wjd.v15.i2.275

INTRODUCTION
Maturity-onset diabetes of the young (MODY) is a rare form of hereditary monogenic diabetes caused by single gene 
mutations, constituting approximately 1%-2% of all diabetes cases[1,2]. A total of 14 MODY phenotypes have been 
identified, exhibiting significant heterogeneity in their clinical presentations. Notably, approximately 80% of MODY cases 
are initially misdiagnosed as either type 1 diabetes mellitus (T1DM) or T2DM[3,4].

MODY14, characterized by mutations in the adaptor protein, phosphotyrosine interacting with PH domain and leucine 
zipper 1 (APPL1) gene, represents one of the least known MODY subtypes. Currently, only two related mutations have 
been reported, namely [c.1655T>A (p.Leu552*) and c.281G>A p.(Asp94Asn)][5-7]. To date, our understanding of 
MODY14 remains limited. To enhance our comprehension of MODY14 and APPL1 mutations, it is crucial to identify 
additional cases, conduct comprehensive research, and consolidate knowledge in this field. By doing so, we can gain a 
deeper understanding of the underlying mechanisms and clinical implications of MODY14, ultimately paving the way for 
improved diagnostic and therapeutic strategies.

The APPL1 gene, situated on chromosome 3p14.3, has 23 exons[8]. It exhibits widespread expression in numerous 
human tissues, such as pancreas, liver, adipose tissue, brain, and muscle[9,10]. APPL1 serves as a multifunctional adaptor 
protein, playing an important role in distinct signal transduction and membrane trafficking pathways. Structurally, it 
contains three primary domains: A Bin-Amphiphysin-Rvs (BAR) domain; a pleckstrin homology (PH) domain; and a 
phosphotyrosine-binding (PTB) domain[11]. These domains facilitate interactions with various signaling molecules and 
receptors, thereby regulating intracellular signaling pathways. The BAR domain can recognize and deform membranes 
with curvature and regulate intracellular trafficking and vesicle formation[12]. The PH domain can bind to phosphoinos-
itides, such as phosphatidylinositol-3,4,5-trisphosphate, and target APPL1 to the plasma membrane, where it participates 
in various signaling pathways[13]. Meanwhile, the PTB domain can interact with adiponectin receptors 1/2, tropomyosin 
receptor kinase A, and other molecules, mediating intracellular signal transduction[14-16].

Current studies indicate that APPL1 is an important mediator of insulin sensitization. APPL1 can facilitate the binding 
of insulin receptor (IR) substrates (IRS) to IR, thereby activating PI3K/Akt signaling pathway and augmenting insulin 
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sensitivity[17]. Notably, in this process, the PTB domain can interact with IR and promote insulin signal transduction. In 
addition, APPL1 participates in adiponectin signaling by binding to adiponectin receptors, thereby enhancing lipid 
oxidation and glucose uptake[18,19]. In summary, further exploration of the interaction and regulatory network of APPL1 
with other signaling molecules is warranted. Further, more clinical evidence is required to elucidate the precise role and 
underlying of APPL1 in diabetes and other metabolic diseases.

In this study, we identified five novel APPL1 mutations, including four missense mutations and one intron mutation. 
To enhance our understanding of MODY14, we performed bioinformatics analysis and in vitro experiments to charac-
terize the functional impact of these mutations. Based on the experimental results and literature review, we discussed 
their implications for diagnosis, treatment, and molecular pathogenesis. Notably, this article was the first to report cases 
of MODY14 in Asia on an international scale. Moreover, our study has identified the largest number of APPL1 mutations, 
providing important data for APPL1 mutation research. By enriching the gene database of MODY14, our discoveries 
provide new insights into the molecular mechanism and clinical management of this rare diabetes, ultimately guiding 
optimal treatment strategies, prognosis predictions, and genetic counseling for affected families.

MATERIALS AND METHODS
Study design
The purpose of this study was to determine the pathogenic status of suspected MODY diabetes in patients and evaluate 
the effects of novel APPL1 mutations on disease development. We performed whole-exome sequencing (WES) to identify 
patients carrying APPL1 gene mutations and conducted bioinformatics analysis of these mutations. Then, we conducted 
in vitro experiments to verify the pathogenicity of these mutations. Finally, the molecular mechanisms and signaling 
pathways involved in MODY pathogenesis were elucidated in this study.

Ethical considerations
This study adhered to the ethical principles outlined in the Declaration of Helsinki of 1964, along with its subsequent 
revisions and equivalent ethical standards. Prior to participation, informed consent was obtained from each participating 
patient or their legal guardian. The Ethics Committee of Shandong Provincial Hospital approved this study.

Patients
The study cohort consisted of 5 patients from five pedigrees. Patients meeting any of the following criteria were enrolled 
for WES: Younger than 30-years-old; had a family history of diabetes; or had negative insulin antibodies. Then, the 
clinical history and blood samples of patients were collected for further pathogenicity analysis.

Bioinformatic analysis
To assess the potential pathogenicity of the identified mutations, MutationTaster (https://www.mutationtaster.org/), 
Poly Phen-2 (http://genetics.bwh.harvard.edu/pph2/index.shtml), Revel (https://sites.google.com/site/revelgeno-
mics), and IntSplice (https://www.med.nagoya-u.ac.jp/neurogenetics/IntSplice/index.html) were utilized. Specifically, 
MutationTaster, Poly Phen-2, and Revel were used for pathogenicity analysis of missense mutations, while IntSplice was 
used for pathogenicity analysis of introns. The visualization of multiple sequence alignment and sequence conservation 
extent were performed by Clustal X and GENEDOC. In addition, we searched the AlphaFold Protein Structure Database 
(https://alphafold.com/) for the structure of wild-type (WT) APPL1 and IR. The ClusPro server (https://cluspro.org) 
was used to analyze protein-protein docking. PyMOL software was employed to visualize the spatial structure and 
changed residues of APPL1. All graphics were created using Biorender (https://www.biorender.com/).

Mutation analysis
Genomic DNA was extracted from blood leucocytes from all study participants using Tiangen Biotech DNA kit. We 
performed WES on blood DNA and applied the SeqCap EZ MedExome Target Enrichment Kit (Roche NimbleGen) to 
capture human exons and adjacent introns after fragmenting, ligating, amplifying, and purifying genomic DNA. DNA 
sequencing was carried out using Illumina HiSeq platform, and the resulting data were aligned to the Hg19 reference 
genome. Mutation calls were made using NextGENe. The identified mutations were further verified by Sanger 
sequencing.

Plasmid construction and transfection
WT and mutant human APPL1 plasmids (transcript ID: NM_012096.3) were generated by the transient overexpression 
vector GV141 (GeneChem, China)[20]. HEK293 cells were transfected with the plasmids and cultured in complete 
medium supplemented with 10% fetal bovine serum (Excell, FSD500, South America), penicillin, and streptomycin. Cells 
were seeded in six-well plates once they reached 80%-90% confluence. Transfection was performed when the degree of 
cell fusion reached 70%-90%. We added 2 μg of corresponding plasmids to each well of the six-well plate and transfected 
them into HEK293 cells. The transfection operation was performed followed the instructions of the Lipofectamine 3000 
(Invitrogen, American) transfection kit. To ensure optimal transfection efficiency, the process was carried out on a sterile 
bench (SW-CJ-IC dual person purification workbench).

https://www.mutationtaster.org/
http://genetics.bwh.harvard.edu/pph2/index.shtml
https://sites.google.com/site/revelgenomics
https://sites.google.com/site/revelgenomics
https://www.med.nagoya-u.ac.jp/neurogenetics/IntSplice/index.html
https://alphafold.com/
https://cluspro.org
https://www.biorender.com/
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Figure 1 Pedigree of 5 diabetes patients with novel adaptor protein, phosphotyrosine interacting with PH domain and leucine zipper 1 
variants. Males and females are represented by squares and circles, respectively. The black padding suggests that the patient has diabetes, the arrow represents 
the progenitor, and the horizontal line indicates a patient who has undergone full exon sequencing. “a” indicates that the patient has the same mutation as the 
proband.

Real-time PCR
After transfection, cells were collected after 24 h and lysed with Trizol (TaKaRa, Japan). Chloroform was added to 
separate RNA from DNA and proteins. The RNA was precipitated with isopropanol and washed several times with 75% 
ethanol. The RNA concentration was measured by nanodrop software after extraction. To convert mRNA into comple-
mentary DNA, reverse transcription was performed following the instructions of the reverse transcription kit manual 
(TaKaRa, Japan) using Mastercycler5333 PCR instrument (Eppendorf, Germany). Next, Bestar SybrGreen qPCR 
mastermix, PCR Forward Primer, PCR Reverse Primer, DNA template, and ddH2O were mixed well in a 96-well plate. 
Finally, qPCR was performed on a real-time fluorescence quantitative PCR instrument (Roche, United States).

Immunoblot analysis
RIPA and PMSF (Shanghai Shenneng Gaming Company, China) were mixed at a ratio of 99:1 in the six-well plate after 48 
h of transfection. Lysis buffer was added to each well, and the cells were scraped with a cell scraper. The lysate was 
transferred to EP tubes and incubated on ice for 20 min. The lysate was centrifuged for 15 min to extract protein. The 
protein concentration was determined using an enzyme-linked immunosorbent assay. Then, loading buffer was added to 
the protein samples and boiled for 10 min. Proteins were separated with different molecular weights by electrophoresis 
on a 10% SDS-polyacrylamide gel. The membrane was transferred and blocked in 5% milk (skimmed milk powder 
purchased from Yili Group, China) for 1 h. Next, primary antibodies (Flag mouse anti 1:1000, β-actin mouse anti 1:7500) 
were added overnight at 4 °C. After recovering the primary antibodies, the membrane was washed with TBST for 10 min 
× 3 times. The secondary antibodies (mouse anti 1:5000) were added and incubated for 1 h. After washing the film, it was 
developed under the Alpha Fluorochem Q imaging analysis system (United States).

Statistical analysis
The experimental data was analyzed using SPSS software (Version 25.0). Measurement data were presented as mean ± SD 
and analyzed using an independent samples t-test. Statistical significance was defined as a P value < 0.05.

RESULTS
Clinical characteristics
We studied 5 patients with APPL1 variants, four of whom had experienced elevated fasting blood glucose before the age 
of 25, while the fifth patient developed diabetes at the age of 39 (Table 1). Patient 1 was diagnosed the diabetes at the age 
of 13, with a family history of diabetes in both his grandmother and father (Figure 1). His grandmother continued taking 
oral hypoglycemic drugs, while his father managed diabetes through diet control, resulting in normalized blood glucose 
level. Patient 1 had obvious polyuria, polydipsia, polyphagia, and diabetic ketoacidosis at the onset of the disease. Insulin 
antibody testing yielded negative results. The patient used insulin therapy after diagnosis, and then his insulin 
autoantibodies and islet cell antibodies turned positive after 8 years of insulin therapy.
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Table 1 Clinical features of patients with adaptor protein, phosphotyrosine interacting with PH domain and leucine zipper 1 mutation

Patient APPL1 variant Sex Age of onset in yr BMI in kg/m2 HbA1C 4%-6% FBG 4.4-6.1 mmol/L

1 c.1894G>T (p. Asp632Tyr) Female 13 14.98 11 8.25

2 c.1898G>A (p. Arg633His) Male 21 36.63 6.9 8.3

3 c.1595G>A (p. Arg532Gln) Male 13 20.62 14.2 11.69

4 c.1926A>G (p. Ile642Met) Male 12 20.52 8.3 8.46

5 c.1153-16A>T (p.?) Male 39 25.91 6.1 7.66

APPL1: Adaptor protein, phosphotyrosine interacting with PH domain and leucine zipper 1; BMI: Body mass index; FBG: Fasting blood glucose; HbA1C: 
Hemoglobin A1c.

Table 2 Pathogenicity analysis of adaptor protein, phosphotyrosine interacting with PH domain and leucine zipper 1 gene mutations

Patient APPL1 variant MutationTaster pathogenicity and 
probability value

PolyPhen-2 pathogenicity and 
score

Revel pathogenicity and 
score

1 c.1894G>T (p. 
Asp632Tyr)

Disease causing (0.995) Benign (0.285) Benign (0.120)

2 c.1898G>A (p. 
Arg633His)

Disease causing (0.999) Benign (0.052) Benign (0.140)

3 c.1595G>A (p. 
Arg532Gln)

Disease causing (1.000) Probably damaging (1.000) Probably damaging (0.477)

4 c.1926A>G (p. 
Ile642Met)

Polymorphism (0.998) Benign (0.007) Benign (0.038)

5 c.1153-16A>T (p.?) Polymorphism (1) - -

APPL1: Adaptor protein, phosphotyrosine interacting with PH domain and leucine zipper 1.

Patient 2 developed diabetes at the age of 21. WES of his family revealed that his father had no diabetes but also carried 
the same mutation. Only his uncle had diabetes in his family. Additionally, patient 2 presented with obesity and 
ketoacidosis at the onset of the disease. After the ketoacidosis subsided, the patient shifted to diet control.

Patient 3 developed diabetes at the age of 13 and had a diabetic grandfather. Although the patient’s father carried the 
same mutation, he remained unaffected by the disease. The patient also had ketoacidosis when he developed diabetes. He 
stopped taking medication after 2 mo of treatment with insulin combined with oral drugs and now only controls glucose 
by diet.

Patient 4 developed diabetes at the age of 12, and only his father had diabetes in his family. It is worth noting that the 
patient’s blood glucose reached 19.81 mmol/L 2 h after a meal, accompanied by hyperinsulinemia (insulin > 300.00 mU/
L 2 h after a meal). The patient relied on oral medication at the onset of the disease and transitioned to glucose control 
through diet and increased exercise.

Patient 5 developed diabetes at the age of 39. Both his mother and grandfather had diabetes. Patient 5 had a son and a 
daughter. His daughter carried the variant but as of the writing of this article had not shown any symptoms of diabetes. 
Patient 5 had been taking oral hypoglycemic drugs since he was diagnosed with diabetes.

Identification of novel variants in the APPL1 gene
We identified five variants, of which Asp632Tyr, Arg633His, Arg532Gln and Ile642Met mutations are missense 
mutations, and 1153-16A>T is an intron mutation (Figure 2A). The Asp632Tyr, Arg633His, and Ile642Met variants are 
located in exon 21, while the Arg532Gln variant is located in exon 17. The 1153-16A>T intronic mutation is upstream of 
exon 14. These four missense mutations are located in the PTB domain of APPL1, which can bind to the IR and regulate 
the insulin signaling pathway (Figure 2B). The Arg532Gln, Asp632Tyr, and Arg633His variants all caused changes in the 
surface potential of APPL protein, while the Ile642Met variant had no obvious abnormality. Among them, the Arg532Gln 
and Arg633His variants resulted in a decrease in positive surface potential, while the Asp632Tyr variant led to the 
elimination of negative surface potential (Figure 2C). These changes in potential indicate that the mutation may disrupt 
the interaction of APPL1 with other macromolecules. Moreover, amino acid mutations can influence protein function and 
folding by altering hydrophilicity (Supplementary Figure 1).

Bioinformatic analysis
To assess the pathogenicity of the four missense mutations, we employed MutationTaster, PolyPhen-2, and Revel for 
prediction analysis. Remarkably, all three software tools consistently predicted the Arg532Gln variant as pathogenic, with 

http://
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Figure 2 Distribution of mutation sites in adaptor protein, phosphotyrosine interacting with PH domain and leucine zipper 1 and adaptor 
protein, phosphotyrosine interacting with PH domain and leucine zipper 1 protein and potential changes in mutation sites. A: Exon and 
mutation site distribution of adaptor protein, phosphotyrosine interacting with PH domain and leucine zipper 1 (APPL1) gene; B: Domain and mutation site distribution 
of APPL1 protein; C: Potential change of mutated APPL1 protein. BAR: Bin-Amphiphysin-Rvs; PH: Pleckstrin homology; PTB: Phosphotyrosine-binding; UTR: 
Untranslated region.

MutationTaster indicating a high likelihood of pathogenicity (Table 2). The three prediction outcomes for the Ile642Met 
variant were all benign. Moreover, the Asp632Tyr and Asp632Tyr variants were both pathogenic in MutationTaster and 
benign in PolyPhen-2 and Revel. Multiple alignments of amino acid sequences demonstrated that the residues 
Asp632Tyr, Arg633His, and Arg532Gln were conserved across various species. This implies that they may exert a 
detrimental impact on the structure and function of the protein, reinforcing their potential pathogenicity. However, we 
noticed that in multiple species, the amino acid at position 642 of APPL1 was not isoleucine, but methionine, as in our 
patients’ mutation, indicating that this site may not have a significant influence on the function or structure of the protein 
(Figure 3). Additionally, the pathogenicity analysis of the intronic mutations showed that the prediction results of 
MutationTaster and IntSplice were not pathogenic.

Functional study of WT and mutant APPL1 in vitro
The experiment was used to confirm the pathogenicity of four missense mutations. As shown in Figure 4A, the mRNA 
expression level of APPL1 Asp632Tyr variant decreased by 98% (P = 0.001) compared with WT-APPL1, while the 



Shi P et al. Diabetes-related APPL1 mutation analysis

WJD https://www.wjgnet.com 281 February 15, 2024 Volume 15 Issue 2

Figure 3 Conservation of mutation sites in multiple species.

Figure 4 mRNA and protein expression at mutation sites. A: mRNA expression at the mutation site; B: Protein expression at the mutation site. aP < 0.05; 
bP < 0.001. APPL1: Adaptor protein, phosphotyrosine interacting with PH domain and leucine zipper 1; EV: Empty vector; WT: Wild-type.

Arg532Gln variant decreased by 14% (P = 0.035), indicating that both mutations at these sites resulted in reduced 
expression of APPL1 mRNA. The Arg633His and Ile642Met variants did not cause significant changes in APPL1 mRNA 
expression. In the experiment, we also observed that the expression of mutant proteins was consistent with mRNA 
expression. Compared with WT APPL1, the protein band of the Asp632Tyr-APPL1 variant disappeared, indicating that 
this variant would prevent the expression of APPL1 (Figure 4B). In addition, the protein expression of the Arg532Gln 
variant was significantly reduced compared with WT APPL1, indicating that this mutation also inhibited the expression 
of APPL1 protein. There was no significant change in APPL1 protein expression when mutated at Arg633His or 
Ile642Met, suggesting that these two mutations may not affect the expression of APPL1 protein.

APPL1 pathway analysis and protein docking prediction
To further elucidate the role of APPL1, we searched for APPL1-related protein pathways in the STRING database. Our 
analysis revealed that the insulin-related pathway protein AKT had the highest binding affinity with APPL1 (Figure 5A). 
In the AKT pathway, APPL1 could also bind to IR, which plays a role in insulin sensitization by interacting with the PTB 
domain where our four missense mutations were located. As shown in the Figure 5B, the NPEY motif of IR (with TYR-999 
as the phosphorylation site) might interact with the amino acids between β5 and C-terminal helix of the PTB domain. 
Notably, the Asp632Tyr mutation is in the closest proximity to this binding site. Based on this observation, we speculate 
that this site might be associated with the interaction between APPL1 and IR.

DISCUSSION
MODY14 is an extremely rare form of inherited diabetes caused by mutations in the APPL1 gene. So far, only two 
variants [c.1655T>A (p.Leu552*) and c.281G>A p.(Asp94Asn)] of APPL1 were found to be associated with MODY14. In 
this study, we identified four novel missense mutations and one intronic mutation in APPL1, representing the largest 
number of de novo APPL1 mutations reported so far. For the first time, we demonstrated that two missense mutations 
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Figure 5 Adaptor protein, phosphotyrosine interacting with PH domain and leucine zipper 1-related protein networks and the docking 
between adaptor protein, phosphotyrosine interacting with PH domain and leucine zipper 1 and insulin receptor. A The adaptor protein, 
phosphotyrosine interacting with PH domain and leucine zipper 1 (APPL1)-related protein network. The degree of binding between proteins is indicated by the colors 
from yellow to orange on the nodes. The larger the node, the darker the color, and the higher the degree of binding to the APPL1 protein. The edge shows the 
association of protein-protein; B: The binding of the phosphotyrosine binding domain of APPL1 to insulin receptor proteins. Red is the phosphotyrosine binding 
domain, and blue is the insulin receptor protein.

[c.1894G>T (p.Asp632Tyr) and c.1595G>A (p.Arg532Gln)] in APPL1 are pathogenic. Bioinformatics analysis provided 
compelling evidence for their deleterious effects. In addition, we further investigated the role of APPL1 in insulin 
signaling and elucidated its potential molecular mechanisms.

To determine whether the APPL1 variants of the patients were related to their diabetes symptoms, we performed a 
comprehensive analysis combining their clinical manifestations and in vitro functional experiments. Preliminary experi-
mental validation showed that the mutations carried by patients 1 (carrying mutation Asp632Tyr) and 3 (carrying 
mutation Asp632Tyr) were pathogenic. Considering their age of onset, family history, and the results of bioinformatics 
analysis, these 2 patients were diagnosed with MODY14. Interestingly, patient 1 had some insulin antibodies turned 
positive after many years of insulin therapy, suggesting a subsequent development of T1DM. On the other hand, the 
father of patient 3 carried the mutation but did not develop the disease, indicating potential incomplete penetrance of the 
mutation. Patients 2 and 4 were young at the onset of the disease and only needed medication or diet control. However, 
their family history did not align well with the autosomal dominant inheritance pattern. Pathogenicity prediction and 
functional testing both indicated that their APPL1 variants were non-pathogenic. Therefore, based on the comprehensive 
analysis, we speculated that patients 2 and 4 were more supportive of the diagnosis of T2DM, especially patient 4, who 
was overweight at the onset of the disease. We hypothesized that overeating and obesity may contribute to an earlier 
onset of T2DM in this patient. In addition, patient 5 had a more obvious family history of diabetes but an older age of 
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Figure 6 Role of adaptor protein, phosphotyrosine interacting with PH domain and leucine zipper 1 in the insulin pathway. AKT: 
Serine/threonine kinase Akt; APPL1: Adaptor protein, phosphotyrosine interacting with PH domain and leucine zipper 1; AS160: Akt substrate of 160 kDa; GLUT4: 
Glucose transporter type 4; IRS1/2: Insulin receptor substrate 1/2; PDK1: Pyruvate dehydrogenase (acetyl-transferring) kinase isozyme 1; PI3K: Phosphatidylinositol 
3 - kinase; PIP3: Phosphatidylinositol-3,4,5-trisphosphate; TRB3: Tribble homolog 3.

onset. Taking the pathogenicity analysis into consideration, we propose that patient 5 aligns more closely with the 
diagnosis of T2DM. Therefore, among the five mutations, c.1894G>T (p.Asp632Tyr) and c.1595G>A (p.Arg532Gln) were 
pathogenic mutations, and patients carrying these mutations had MODY14.

Among the three major domains of the APPL1 protein, we found that the four missense mutations were all located in 
the PTB domain, which can bind to both AKT and IR (mainly). We considered that the pathogenicity of the mutation sites 
was related to the reduced sensitizing effect of APPL1 in the insulin pathway. After insulin binds to its receptor, APPL1 
carries IRS1 and IRS2 to the IR and promotes the binding of the IR and IRS by directly interacting with the IR through its 
PTB domain[17,21] (Figure 6). The peptide binding site in most PTB domains is located between strand β5 of the central β 
sandwich and the C-terminal helix[22,23]. When we docked APPL1 and the IR, we found that the β subunit of the IR also 
contained an NPXY motif (NPEY), then the PTB domain docked with it to facilitate the subsequent transmission of insulin 
signals. Therefore, the mutation of pathogenic sites in the PTB domain of APPL1 may affect the binding of the IR and IRS, 
leading to an impaired insulin signaling pathway as well as increased blood glucose and insulin resistance. Furthermore, 
despite the adjacent location of the Asp632Tyr and Arg633His variants, their pathogenicity differs. This observation 
suggests that the Asp632 site may play a crucial role in binding to proteins associated with the insulin pathway.

In addition, the BAR domain of APPL1 can also enhance insulin-stimulated AKT phosphorylation by directly binding 
to AKT and competitively inhibiting Tribbles homolog 3 (mainly), thereby achieving the effects of lowering blood glucose 
(activating AKT to inhibit glucagon-induced hepatic glucose production, promoting glucose transporter type 4 translo-
cation and cellular glucose uptake) and insulin resistance[24-27]. It is noteworthy that all the MODY14 patients we 
identified had mutations located in the PTB domain. Among the previously reported MODY14 patients, the c.1655T>A 
(p.L552*) mutation was also located in the PTB domain, indicating a high aggregation of mutations in the PTB domain
[7]. This suggests that compared to the BAR domain, the PTB domain may play a more significant role in insulin pathway 
signal transduction.

Although mutations in APPL1 are relatively rare, recent advancements in exploring its molecular mechanisms and 
physiological functions have highlighted its key role in regulating glucose metabolism. Through its PTB domain, APPL1 
interacts with AdipoR1 and AdipoR2, facilitating the transmission of adiponectin-stimulated signals to downstream 
targets[28]. In addition, APPL1 may provide a way of communication between the adiponectin and insulin signaling 
pathways, mediating the sensitization effect of insulin on muscle glucose disposal[18,19]. A study showed that APPL1 
can counteract the high-fat diet-induced insulin resistance and hepatic glucose metabolism disorder, and improve blood 
glucose levels and insulin sensitivity in mice. Therefore, APPL1 may serve as a potential target for treating diabetes[11]. 
However, it is worth noting that a study reported that the expression of APPL1 in the muscle of T2DM rats was reduced, 
leading to weakened insulin-induced AKT signal activation[29]. To some extent, this consolidates the key role of APPL1 
in regulating muscle insulin signaling and metabolism, but in this study, patients 2 and 4 who likely had T2DM did not 
show a reduction in APPL1 expression in the in vitro functional experiments.

This study also had some limitations. First, the functional experiments did not fully replicate the real physiological 
environment and conditions. Hence, we cannot completely rule out the possibility that these mutations might impact the 
interaction of APPL1 with other proteins or small molecules. Additionally, we did not verify the pathogenicity of the 
intronic mutation through functional experiments. We also failed to obtain blood samples from some family members for 
genetic testing. This may result in imprecise estimates of the mode of inheritance and penetrance of the mutation, and the 
existence of potential epistatic or modifier factors cannot be definitively determined. In the future, a broader range of cell 
lines or animal models are needed for in vitro and in vivo experiments to further investigate the impact of APPL1 gene 
mutations on the insulin signaling pathway and other metabolic pathways. Our study only serves as an initial invest-
igation of the pathogenic mechanism of MODY14. At the protein level, aberrantly folded proteins can be degraded by the 
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ubiquitin system, while RNA silencing or nonsense-mediated decay can diminish the level or stability of mRNA encoding 
aberrant proteins, thereby attenuating the production of aberrant proteins. These aspects warrant further investigation in 
subsequent research. Future studies should encompass more extensive epidemiological and statistical analysis, as well as 
detailed investigations in molecular biology and systems biology, to reveal the role and regulation of APPL1 gene 
mutations in the complex metabolic network.

CONCLUSION
In summary, this study identified five novel APPL1 variants, of which c.1894G>T (p.Asp632Tyr) and c.1595G>A 
(p.Arg532Gln) were pathogenic variants for MODY14. We believe that the PTB domain of APPL1 plays a significant role 
in the insulin signaling pathway in MODY14 patients. This study provided novel insights and evidence for further 
elucidating the pathogenicity of the APPL1 gene in MODY14 and provided new targets and strategies for developing new 
diagnostic and therapeutic methods.

ARTICLE HIGHLIGHTS
Research background
Mutations in the adaptor protein, phosphotyrosine interacting with PH domain and leucine zipper 1 (APPL1) gene have 
been associated with the development of maturity-onset diabetes of the young type 14 (MODY14), a rare form of 
monogenic diabetes. So far, only two mutations [c.1655T>A (p.Leu552*) and c.281G>A p.(Asp94Asn)] have been found to 
be related to this disease. Due to the limited knowledge of MODY14, it is necessary to identify more cases and conduct a 
comprehensive study of MODY14 and APPL1 mutations. In this study, we discovered five new APPL1 gene mutations by 
whole exome sequencing (WES) and bioinformatics analysis, of which two were confirmed to be pathogenic mutations by 
in vitro functional assays. These mutations were all located in the phosphotyrosine binding (PTB) domain of APPL1, 
which has a significant impact on insulin sensitivity.

Research motivation
This study aimed to identify the pathogenicity and functional role of APPL1 gene mutations in diabetes. It mainly 
identified and evaluated the pathogenicity of APPL1 gene mutations and explored the effects of these mutations on 
APPL1 protein expression and insulin signaling pathway. This will provide potential targets for the diagnosis and 
treatment of MODY14 and will provide new clues for the interaction mechanism of the APPL1 protein and insulin 
receptor.

Research objectives
The main objective of this study was to evaluate the pathogenicity of APPL1 gene mutations in diabetic patient and to 
characterize the functional role of APPL1 domains. By WES and bioinformatics analysis, five novel APPL1 gene 
mutations were identified, among which c.1894G>T (at Asp632Tyr) and c.1595G>A (at Arg532Gln) were confirmed as 
pathogenic mutations by in vitro functional experiments.

Research methods
This study used WES to sequence all the exons in the genome that encode proteins, thus discovering variants associated 
with diseases. Then, bioinformatics analysis was used to align and predict the sequencing results, thus evaluating the 
pathogenicity and conservation of the variants. The pathogenicity was further verified by in vitro functional experiments.

Research results
Our study identified five novel APPL1 gene mutations, among which c.1894G>T (at Asp632Tyr) and c.1595G>A (at 
Arg532Gln) were confirmed as pathogenic mutations by in vitro functional experiments. Both mutations are located in the 
PTB domain of APPL1, which has an important impact on insulin sensitivity. The results showed that the mutations can 
reduce the expression level of APPL1 protein, thus affecting the activation of the insulin signaling pathway and the 
regulation of glucose metabolism.

Research conclusions
APPL1 gene mutations c.1894G>T (at Asp632Tyr) and c.1595G>A (at Arg532Gln) are pathogenic in diabetes, and these 
mutations are located in the PTB domain of APPL1, which has an important impact on insulin sensitivity.

Research perspectives
In the future, the structure and function of APPL1 protein can be further studied, especially the mechanism of action of 
the PTB domain and the binding mode and regulatory effect of APPL1 protein with the insulin receptor. In addition, the 
effect of APPL1 gene mutations on the clinical manifestations and treatment response of diabetic patients can be verified. 
More effective methods and criteria for the diagnosis and treatment of MODY14 can be provided.
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Abstract
BACKGROUND 
Type 2 diabetes mellitus (T2DM) is often accompanied by impaired glucose 
utilization in the brain, leading to oxidative stress, neuronal cell injury and infla-
mmation. Previous studies have shown that duodenal jejunal bypass (DJB) 
surgery significantly improves brain glucose metabolism in T2DM rats, the role 
and the metabolism of DJB in improving brain oxidative stress and inflammation 
condition in T2DM rats remain unclear.

AIM 
To investigate the role and metabolism of DJB in improving hypothalamic 
oxidative stress and inflammation condition in T2DM rats.

METHODS 
A T2DM rat model was induced via a high-glucose and high-fat diet, combined 
with a low-dose streptozotocin injection. T2DM rats were divided into DJB 
operation and Sham operation groups. DJB surgical intervention was carried out 
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on T2DM rats. The differential expression of hypothalamic proteins was analyzed using quantitative proteomics 
analysis. Proteins related to oxidative stress, inflammation, and neuronal injury in the hypothalamus of T2DM rats 
were analyzed by flow cytometry, quantitative real-time PCR, Western blotting, and immunofluorescence.

RESULTS 
Quantitative proteomics analysis showed significant differences in proteins related to oxidative stress, inflam-
mation, and neuronal injury in the hypothalamus of rats with T2DM-DJB after DJB surgery, compared to the 
T2DM-Sham groups of rats. Oxidative stress-related proteins (glucagon-like peptide 1 receptor, Nrf2, and HO-1) 
were significantly increased (P < 0.05) in the hypothalamus of rats with T2DM after DJB surgery. DJB surgery 
significantly reduced (P < 0.05) hypothalamic inflammation in T2DM rats by inhibiting the activation of NF-κB and 
decreasing the expression of interleukin (IL)-1β and IL-6. DJB surgery significantly reduced (P < 0.05) the 
expression of factors related to neuronal injury (glial fibrillary acidic protein and Caspase-3) in the hypothalamus 
of T2DM rats and upregulated (P < 0.05) the expression of neuroprotective factors (C-fos, Ki67, Bcl-2, and BDNF), 
thereby reducing hypothalamic injury in T2DM rats.

CONCLUSION 
DJB surgery improve oxidative stress and inflammation in the hypothalamus of T2DM rats and reduce neuronal 
cell injury by activating the glucagon-like peptide 1 receptor-mediated Nrf2/HO-1 signaling pathway.

Key Words: Duodenal jejunal bypass surgery; Type 2 diabetes mellitus; Neuron apoptosis; Inflammatory; Oxidative stress; 
Hypothalamic injury

©The Author(s) 2024. Published by Baishideng Publishing Group Inc. All rights reserved.

Core Tip: Duodenal jejunal bypass (DJB) increases serum glucagon-like peptide 1 (GLP-1) Levels and enhances brain 
glucose utilization, playing a positive role in the treatment of diabetes. The GLP-1 signal may play a significant role after 
DJB surgery in brain injury related to type 2 diabetes mellitus (T2DM). In the current study, DJB surgery increased the 
serum levels of GLP-1 and upregulated the expression of GLP-1 receptor and antioxidant signaling proteins (Nrf2 and HO-
1) in the hypothalamic tissue of T2DM rats. DJB reduced the expression of hypothalamic inflammatory and nerve cell 
injury-related factors. Therefore, DJB surgery improve oxidative stress and inflammation in the hypothalamus of T2DM rats 
and reduce neuronal cell injury by activating the GLP-1-mediated Nrf2/HO-1 signaling pathway.
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stress and inflammation in diabetic rats via glucagon-like peptide 1-mediated Nrf2/HO-1 signaling. World J Diabetes 2024; 15(2): 
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URL: https://www.wjgnet.com/1948-9358/full/v15/i2/287.htm
DOI: https://dx.doi.org/10.4239/wjd.v15.i2.287

INTRODUCTION
Type 2 diabetes mellitus (T2DM) is a condition characterized by high blood glucose and insulin resistance. It accounts for 
approximately 90% of adult diabetes patients worldwide[1,2]. Long-term uncontrolled diabetes conditions with high 
blood glucose levels and whole-body insulin resistance are associated with neurodegeneration[3,4]. This often results in 
impaired glucose utilization and energy metabolism, leading to oxidative stress in the brain[5-9]. Prolonged oxidative 
stress in the brain can eventually lead to complications, such as inflammation of the central nervous system (CNS) and 
neuronal cell apoptosis[10,11].

Metabolic surgery (also known as bariatric surgery) has been proven to have a beneficial effect on the management of 
type 2 diabetes and obesity[12,13]. For individuals with diabetes, this surgical procedure leads to substantial weight loss, 
improved management of blood glucose levels, and reduced reliance on medication[14-16]. Duodenal jejunal bypass 
(DJB) surgery is one of the procedures based on metabolic surgery and can be used to investigate the mechanisms of 
metabolic surgery in the treatment of diabetes mellitus[17,18]. DJB surgery significantly improves peripheral glucose 
metabolism in T2DM rats, but its effects on diabetes-induced central brain injury remain unclear[19,20].

Glucagon-like peptide 1 (GLP-1) is a hormone produced by L cells in the gastrointestinal tract, that serves multiple 
biological functions[21]. The combination of this hormone and its receptor, GLP-1 receptor (GLP-1R), can increase insulin 
secretion, enhance glucose metabolism, and play an important role in controlling blood glucose homeostasis[22]. Ruze et 
al[23] showed that central GLP-1 improved cerebral glucose uptake in obese and diabetic rats after DJB[23]. In addition to 
its metabolic effects, GLP-1 has also been shown to have neuroprotective effects, and upregulation of GLP-1 can protect 
cells from oxidative stress caused by hyperglycemia and limit brain inflammation[24,25]. Kim et al[26] demonstrated that 
the activation of GLP-1R can enhance the expression of proteins related to oxidative stress and the cell metabolism 

https://www.wjgnet.com/1948-9358/full/v15/i2/287.htm
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regulatory protein NRF2, and upregulate antioxidant enzymes such as HO-1 and SOD to alleviate oxidative stress[26-28].
According to research by Shan Y et al[29], GLP-1R agonists decrease blood-brain barrier breakdown and brain inflam-
mation in an astrocyte-dependent manner[29].

In our previous studies, we found that DJB can increase serum GLP-1 Levels and enhance brain glucose utilization, 
playing a positive role in the treatment of diabetes[30-32].Therefore, GLP-1 might play a role in DJB surgery for T2DM-
related brain injury. In the current study, we investigated the role and mechanism of GLP-1 signaling in neuronal cell 
injury and inflammation in the hypothalamus of T2DM rats treated with the DJB procedure. This study can provide new 
insights into the role and molecular mechanisms of metabolic surgery in the treatment of diabetes and its central complic-
ations.

MATERIALS AND METHODS
Animals and treatment
The male Wistar rats (n = 40, 8 wk old) used in this study were obtained from Jinan Pengyue Animal Ltd. (Pengyue, 
Jinan, China). Rats were housed in individually ventilated cages with 12-h light/dark cycles at 21-23 °C and 30%-40% 
humidity. The rats had free access to food and water. T2DM rat models were established using a high-fat and high-
glucose diet induction paired with streptozotocin intraperitoneal injection (35 mg/kg, Sigma, United States), with 
random blood glucose > 16.7 mmol/L. We randomly divided the T2DM rats into two groups: The DJB group (T2DM-DJB, 
n = 10) and the Sham group (T2DM-Sham, n = 10). Normal control rats (control group, n = 10) were fed a normal diet. All 
the research related to the use of animals in this study has complied with all relevant national regulations and institu-
tional policies for the care and use of animals. The research plan was followed by the National Natural Science 
Foundation of China, No. 82070856, and conducted in Laboratory Animal Center of Weifang Medical University. The 
experimental protocols were approved by the Institutional Animal Care and Use Committee (No. 2021SDL574) and 
Institutional Review Board (No. 2020SDL074).

The detailed surgical and nursing procedures of the animals were performed as previously described[31]. For the DJB 
operation, distal pyloric transection was performed, and the duodenal stumps were closed with nylon sutures (6-0, 
Zhejiang, China). The distal pylorus was anastomosed to the distal stump of the jejunal limb after the jejunum was 
transected 10 cm from the ligament of Treitz. The proximal stump of the small intestine was connected to the digestive 
limb 15 cm from the distal end of the gastrointestinal anastomosis. Sham operations were performed to transect the 
gastrointestinal tract and create an in-situ anastomosis, mimicking DJB surgery. The determination of glucose 
homeostasis pre- and postoperatively was performed as previously described[31].

Tissue processing and preparation
Six weeks after the operation, rats were sacrificed following the completion of testing for blood glucose homeostasis 
indicators, including blood glucose, serum GLP-1, and insulin levels. A portion of the hypothalamic tissues was collected 
from the rat hemisphere and frozen in liquid nitrogen for analysis of mRNA and protein expression. The other cerebral 
hemispheres of the rats were fixed in 4% formalin for immunohistochemistry (IHC) and immunofluorescence (IF) assays.

The expression of differential hypothalamic proteins analyzed by protein chip assay
Hypothalamic tissues were dissected and immediately placed into the SDT lysate buffer (100 mM Tris-HCL, 2% SDS, 100 
mM DTT, pH 7.6.) and then homogenized. The quality of the supernatant proteins was analyzed using SDS-PAGE. The 
supernatant of the hypothalamus homogenate was prepared using filter-aided sample preparation filtration. The prepar-
ations were lyophilized and then redissolved in a 40 μL solution of 0.1% formic acid using a C18 cartridge. Peptide 
segments were separated using the Easy-nLCNano lift flow system and analyzed with the Q ExactiveTM Plus Mass 
Spectrometer. Quantitative analysis was performed using the label-free quantitation algorithm in this project. The 
significance level of protein enrichment for a specific gene ontology (GO) term or Kyoto encyclopedia of genes and 
genomes (KEGG) pathway was assessed using Fisher's exact test. Using Matplotlib software, we categorized the samples 
and proteins, and generated hierarchical clustering heatmaps simultaneously.

Western blotting analysis
Hypothalamus supernatants containing 30 μg of proteins were separated by 12% SDS-PAGE at 110 V for 2 h. The proteins 
were transferred onto a nitrocellulose membrane at 300 mA for 2 h at 4 oC. TBS pH 8.0 with 0.5% Tween 20 was used to 
block the membranes for 1 h. After each membrane was incubated with the primary antibody overnight at 4 °C 
(Supplementary Table 1), it was washed three times with TBS for 30 min. The appropriate secondary antibody was then 
applied to the membrane and incubated for one hour at 23 °C. Protein analysis was conducted using western blotting 
detection equipment from Bio-Rad (United States) and ImageJ software (United States).

Flow cytometry
An ultrasonic sonicator (Virsonic 60) was used to lyse 50 mg of rat hypothalamus tissue. Cytokines interleukin (IL)-1β, IL-
2, IL-4, IL-5, IL-6, IL-8, IL-10, IL-12p70, IL-17A, tumor necrosis factor α, interferon (IFN)-γ, and IFN-αwere measured in 
hypothalamic homogenate supernatants using cytokines combined detection kit (Jiangxi Cell-Gene Biotech CO., Ltd) and 
were analyzed by FCAP Array 3.0 software (BD Biosciences) after collection of events in a flow cytometer (Beckman 
Coulter).

https://f6publishing.blob.core.windows.net/7d866670-50b5-49fe-b9ab-767bf61e2520/WJD-15-287-supplementary-material.pdf
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Immunohistochemistry and immunofluorescence assays
Sections were dewaxed, rehydrated, and then blocked with 10% fetal bovine serum for 30 min before undergoing an 
overnight incubation at 4 °C with the primary antibodies. Sections were incubated with a horse radish peroxidase-
conjugated secondary antibody after being washed with phosphate buffered solution. The slides were exposed to 
diaminobenzidine for five minutes at room temperature prior to IHC examination. Hematoxylin was used for nuclear 
counterstaining. For the IF experiment, the slides were first incubated with the primary antibody. Then, the sections were 
incubated with goat anti-rabbit IgG H&L (Alexa Fluor® 488) (ab150077, 1:1000) secondary antibody for one hour. 4', 6-
Diamidino-2-Phenylindole dye (blue) was used for nuclear staining. Image acquisition was performed using a microscope 
(IX71, Olympus, Japan). The primary antibodies are listed in Supplementary Table 1.

Quantitative real-time PCR
Total RNA was extracted from the hypothalamus using TRIzol reagent (Thermo Fisher, United States) and then reverse 
transcribed to cDNA using a reverse transcription kit (TOYOBO, Japan). SYBR Green (GeneCopoeia, United States) was 
used in the quantitative real-time (qRT)-PCR reaction, which was performed on a Roche Diagnostics (Germany) machine 
and analyzed using the Bio-Rad system. Supplementary Table 2 contains a list of the primer sequences that were used.

Statistical analysis
The data are presented as the mean ± SD by Graph Pad Prism 8.0. Differences between pre and post operation were 
evaluated with a t-test. One-way ANOVA followed by Tukey's test was used to analyze differences between multiple 
groups. P < 0.05 indicated statistical significance.

RESULTS
The expression of different proteins in the hypothalamus after DJB intervention
The results of blood glucose and insulin detection pre and post operation showed that DJB surgery can significantly 
improve glucose homeostasis and alleviate insulin resistance in T2DM rats (Supplementary Figure 1). To investigate the 
expression of different proteins in the hypothalamus of rats between the T2DM-DJB and T2DM-sham groups, we 
conducted a quantitative proteomics (label-free) analysis. The results showed that at least 120 proteins were significantly 
altered (Figure 1A). KEGG enrichment and GO analysis revealed significant differences in signaling pathways and 
proteins related to oxidative stress, inflammation, and neuronal cell injury between the two groups of rats (Figure 1B and 
C).

DJB surgery inhibits hypothalamic oxidative stress in rats with T2DM by activating the Nrf2/HO-1 signaling pathway
The effects of oxidative stress on various stages of diabetic encephalopathy have been demonstrated in recent studies, and 
supporting antioxidant stress therapy is beneficial for improving complications of diabetes in the central nervous system
[6]. We assessed the redox status of hypothalamic tissue using multiple assays (Figure 2A and B). The levels of MDA 
decreased, while the content of SOD increased in the hypothalamus of the T2DM-DJB rats after the operation, compared 
to the T2DM-Sham rats. Nrf2 is involved in antioxidation by upregulating the expression of HO-1 and is inhibited under 
high glucose (HG) conditions, resulting in inflammatory responses and cell injury[33]. We evaluated the effects of DJB 
surgery on the expression of Nrf2 and HO-1 in the hypothalamus of rats with T2DM. As shown in Figure 2C-E, the 
number of Nrf2- and HO-1- positive cells in the hypothalamus of T2DM-DJB rats decreased significantly after the DJB 
operation. The qRT-PCR and western blot data indicated a significant increase in Nrf2 and HO-1 expression following 
DJB surgery in the hypothalamus of T2DM rats (Figure 2F and G). These results indicate that DJB surgery improves 
diabetic hyperglycemia-induced hypothalamic oxidative stress in T2DM rats, possibly achieved by activating the Nrf2/
HO-1 signaling pathway.

DJB surgery exerts antioxidant effects by activating hypothalamic GLP-1 signaling in T2DM rats
GLP-1R has been shown to be expressed in neurons in key regions of the brain and has neuroprotective and anti-inflam-
matory properties, which enhance the expression of the oxidative stress regulatory protein Nrf2/HO-1 to alleviate 
oxidative stress[26]. We measured serum GLP-1 Levels and the expression of hypothalamic GLP-1R in each group of rats. 
The results showed that the fasting serum GLP-1 Level of T2DM-DJB rats after DJB surgery was significantly higher than 
that of T2DM-Sham rats (Figure 3A). In addition, we found that GLP-1R was highly expressed in the hypothalamic tissue 
of T2DM-DJB rats after DJB surgery (Figure 3B-D). These results indicate that DJB surgery enhances the expression of 
Nrf2/HO-1 by upregulating GLP-1 signaling in T2DM rats and plays a role as an antioxidant.

DJB blocks the activation of NF-κB signaling and inhibits the production of proinflammatory cytokines in the 
hypothalamus of T2DM rats
Oxidative stress triggers an inflammatory response by activating the NF-κB signaling pathway, which regulates the 
release of numerous inflammatory cytokines[34]. To determine whether DJB blocked oxidative stress-induced NF-κB 
activation, we used western blotting and qRT-PCR to compare the total NF-κB and its phosphorylation levels in the 
hypothalamus of the three groups of rats. Figure 4A-C shows that the expression of NF-κB and p-NF-κB in the 
hypothalamus of T2DM-DJB rats was significantly reduced compared to that in T2DM-Sham rats after DJB surgery. To 
confirm whether DJB surgery could ameliorate the inflammatory state of the hypothalamus by inhibiting NF-κB 

https://f6publishing.blob.core.windows.net/7d866670-50b5-49fe-b9ab-767bf61e2520/WJD-15-287-supplementary-material.pdf
https://f6publishing.blob.core.windows.net/7d866670-50b5-49fe-b9ab-767bf61e2520/WJD-15-287-supplementary-material.pdf
https://f6publishing.blob.core.windows.net/7d866670-50b5-49fe-b9ab-767bf61e2520/WJD-15-287-supplementary-material.pdf
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Figure 1 The expression of differential proteins in the hypothalamus after duodenal jejunal bypass intervention. A: Heat map of the expression 
of the 120 DEPs between the T [type 2 diabetes mellitus (T2DM)-Sham] rats and D [T2DM-duodenal jejunal bypass (DJB)] rats. The colored column represents the 
sample number, the row name indicates the DEGs, each rectangle in the graph corresponds to the expression value of a sample, red indicates high expression and 
blue indicates low expression; B: Statistics of significantly enriched Kyoto encyclopedia of genes and genomes pathways (T2DM-Sham vs T2DM-DJB); C: GO term 
statistics for significantly enriched genes (T2DM-Sham vs T2DM-DJB).

signaling, we used flow cytometry to measure the levels of the proinflammatory cytokines IL-1 and IL-6. As shown in 
Figure 4D-F, DJB surgery resulted in a significant reduction in the abnormally high expression of IL-1β and IL-6 observed 
in the hypothalamic tissue of T2DM-DJB rats. The qRT-PCR and Western blot results showed a similar trend in the gene 
and protein expression of IL-1β, and IL-6 as observed in the flow cytometry assay (Figure 4G-I). These findings suggest 
that DJB surgery significantly inhibits the NF-κB signaling pathway, effectively improving the inflammatory state of the 
hypothalamus.
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Figure 2 Duodenal jejunal bypass surgery inhibits hypothalamic oxidative stress in rats with type 2 diabetes mellitus by activating the 
Nrf2/HO-1 signaling pathway. A: Analysis of SOD content in the hypothalamus of rats; B: Analysis of MDA content in the hypothalamus of rats; C: Nrf2 and HO-
1 expression in the hypothalamus detected by immunofluorescence (scale bar, 130 µm); D: The percentage of cells expressing Nrf2; E: The percentage of cells 
expressing HO-1; F: Expression levels of Nrf2 and HO-1 in hypothalamus detected by Western blotting; G: The quantitative densitometric analysis of Nrf2 and HO-1. 
aP < 0.05, bP < 0.01, cP < 0.001. T2DM: Type 2 diabetes mellitus; DJB: Duodenal jejunal bypass.
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Figure 3 Duodenal jejunal bypass surgery increases type 2 diabetes mellitus glucagon-like peptide 1 signals and enhances the 
expression of Nrf2/HO-1. A: Serum glucagon-like peptide 1 (GLP-1) secretion of rats in the three groups; B: The quantitative real-time PCR results of GLP-1 
receptor (GLP-1R) expression; C: Expression levels of GLP-1R in the hypothalamus detected by Western blotting; D: The quantitative densitometric analysis of GLP-
1R. aP < 0.05, bP < 0.01, cP < 0.001. T2DM: Type 2 diabetes mellitus; DJB: Duodenal jejunal bypass; GLP-1: Glucagon-like peptide 1; GLP-1R: Glucagon-like peptide 
1 receptor.

DJB surgery improves hypothalamic nerve injury induced by oxidative stress
Glial fibrillary acidic protein (GFAP) is a specific marker of mature astrocytes, and its elevated expression indicates the 
onset of CNS injury[35]. To determine whether DJB surgery ameliorates oxidative stress-induced neuronal injury in the 
hypothalamus of T2DM rats, the number of GFAP-positive glial cells was determined, and the expression levels of GFAP 
were measured using IF, qRT-PCR and western blot analysis. The number of GFAP-positive astrocytes was significantly 
reduced in T2DM-DJB rats after DJB surgery compared to T2DM-Sham rats (Figure 5A and B). The expression of GFAP 
mRNA and protein in the hypothalamus was significantly reduced in T2DM-DJB rats after DJB surgery, as indicated by 
qRT-PCR and western blot analysis (Figure 5C-E). These results suggest that DJB surgery ameliorates oxidative stress-
induced hypothalamic neuronal cell injury.

DJB surgery improves diabetes-induced hypothalamic cell apoptosis in T2DM rats
Oxidative stress induced by diabetes mellitus is a key factor in promoting apoptosis[24]. To evaluate the impact of DJB 
surgery on diabetes-induced hypothalamic cell apoptosis, we analyzed the expression of Cleaved-caspase-3, Caspase-3, 
and Bcl-2 in the hypothalamus of three groups of rats using qRT-PCR and western blot techniques. As depicted in 
Figure 6, the expression of Cleaved-caspase-3 and Caspase-3 was significantly reduced, whereas the expression of Bcl-2 
was increased in the hypothalamus of T2DM-DJB rats following DJB surgery, in comparison to T2DM-sham rats. These 
results confirm that DJB surgery can inhibit the apoptosis of hypothalamic cells and reduce oxidative stress damage.

DJB surgery promotes hypothalamic neurogenesis in T2DM rats
The occurrence of CNS degenerative diseases in diabetic patients is probably caused by a decrease in activated neurons 
and an increase in cell apoptosis. A common method of evaluating a cell's proliferation capacity is to stain it with Ki67. 
Immunohistochemical analysis showed that T2DM-DJB rats had significantly more Ki67-positive cells in the 
hypothalamus post operation than T2DM-Sham rats (Figure 7A and B). The C-fos proteins are often used as markers of 
neuronal activation. IHC staining indicated a significant increase in the number of hypothalamic C-fos positive cells in 
T2DM-DJB rats compared to T2DM-Sham rats (Figure 7C and D). DJB surgery significantly increased the expression of C-
fos and BDNF in the hypothalamus of T2DM-DJB rats compared to T2DM-Sham rats, according to the qRT-PCR and 
western blot analysis (Figure 7E-H). These results suggest that DJB surgery promotes hypothalamic cell growth and 
neuronal activation in T2DM rats.
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Figure 4 Duodenal jejunal bypass inhibits the production of proinflammatory cytokines by blocking the activation of NF-κB signaling in 
the hypothalamus of type 2 diabetes mellitus rats. A: The quantitative real-time (qRT)-PCR results of NF-κB and p-NF-κB expression; B: The expression 
levels of NF-κB and p-NF-κB detected by Western blotting; C: The quantitative densitometric analysis of NF-κB and p-NF-κB; D: Flow cytometry results for standards; 
E: Flow cytometry results for samples; F: Flow cytometry results for the levels of proinflammatory cytokines interleukin (IL)-1β and IL-6; G: The qRT-PCR results of IL-
1β and IL-6 expression; H: Expression levels of IL-1β and IL-6 detected by Western blotting; I: The quantitative densitometric analysis of IL-1β and IL-6. aP < 0.05, bP 
< 0.01, cP < 0.001. T2DM: Type 2 diabetes mellitus; DJB: Duodenal jejunal bypass; IL: Interleukin.

DISCUSSION
Diabetic encephalopathy is one of the chronic complications of T2DM. The World Epidemiological Survey showed that 
patients with T2DM usually have by mild to moderate brain dysfunction[36,37]. Growing evidence has demonstrated that 
an imbalance in glucose homeostasis in T2DM can exacerbate oxidative stress and tissue inflammation in the brain[38]. 
Long-term brain inflammation is typically the main cause of neuronal cell apoptosis, resulting in mild cognitive 
impairment and even neurodegenerative diseases[39,40].

Previous studies have shown that metabolic surgery is effective for weight loss, remission of T2DM, and improvements 
in brain glucose metabolism[23,41].However, the role and mechanisms of DJB surgery in alleviating diabetes-induced 
central brain injury are unclear. In this study, we analyzed the differential protein expression in the hypothalamus 
between the T2DM-Sham group and the T2DM-DJB group of rats using quantitative proteomics (label-free). We found 
that at least 120 proteins in the hypothalamic tissues exhibited significant changes. KEGG enrichment and GO analysis 
revealed significant differences in signaling proteins associated with oxidative stress, inflammation, and neurological 
damage in the hypothalamic tissues of the two groups of rats. Therefore, DJB surgery may improve hypothalamic injury 
in diabetic rats by modulating oxidative stress, inflammation, and neuronal survival.

Recent studies have confirmed the impact of oxidative stress on various stages of diabetic encephalopathy, supporting 
the idea that treatments targeting antioxidant stress can help improve CNS complications associated with diabetes[42]. 
Our results showed that DJB surgery significantly increased the level of SOD and inhibited MDA production in the 
hypothalamus of T2DM rats, thereby effectively reducing hypothalamic oxidative stress. The Nrf2/HO-1 signaling 
pathway is a significant regulator of oxidative stress[43,44]. Yang et al[45] found that HG induced inflammation and 
apoptosis in cerebral microvascular endothelial cells, which may be a result of inhibiting the Nrf2/HO-1-mediated 
antioxidant pathway[45]. Hence, we examined the impact of DJB surgery on the hypothalamic expression of Nrf2 and 
HO-1 in rats with T2DM. The expression of Nrf2 and HO-1 in the hypothalamus of T2DM rats was significantly 
upregulated after DJB surgery. Studies have shown that GLP-1 is involved in regulating oxidative stress and inflam-
mation, in addition to its metabolic effects[46]. Kim et al[26] demonstrated that EX4 exerts antioxidant effects and reduces 
damage to pancreatic β-cells by activating the Nrf2 signaling pathway[26,47]. In this study, DJB surgery increased the 
serum levels of GLP-1 and upregulated the expression of GLP-1R in the hypothalamic tissue of T2DM rats. DJB surgery 
reduces hypothalamic oxidative stress in rats with T2DM by activating the GLP-1-mediated Nrf2/HO-1 signaling 
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Figure 5 Duodenal jejunal bypass surgery improves hypothalamic cell injury induced by oxidative stress. A: The expression of glial fibrillary 
acidic protein (GFAP) in the hypothalamus determined by immunohistochemistry (scale bar, 130 µm); B: The percentage of cells expressing GFAP; C: The 
quantitative real-time PCR results of GFAP expression in the hypothalamus; D: Expression levels of GFAP detected by Western blotting; E: The quantitative 
densitometric analysis of GFAP. aP < 0.05, bP < 0.01, cP < 0.001. T2DM: Type 2 diabetes mellitus; DJB: Duodenal jejunal bypass; GFAP: Glial fibrillary acidic protein.

pathway.
Oxidative stress triggers the massive secretion and release of proinflammatory cytokines in the body, ultimately 

leading to an inflammatory response, which is probably mediated by NF-κB signaling activation[48]. Nrf2 activation 
inhibits the accumulation of ROS and reduces NF-κB activation, thereby suppressing the inflammatory response. Tu et al
[49] demonstrated that GEN, a novel agonist of GLP-1R, provides protection against the hyperglycemia-induced inflam-
matory response in Müller cells and the retinal blood barrier in DR mice. This protective effect is primarily attributed to 
the upregulation of the Nrf2 antioxidant signaling pathway through GLP-1R[49]. The levels of inflammatory cytokines 
and NF-κB activation in the hypothalamus of the three groups of rats were assessed using western blot, flow cytometry, 
and qRT-PCR to investigate the role of DJB in hypothalamic inflammation induced by oxidative stress in T2DM rats. 
Therefore, DJB surgery improved the hypothalamic inflammatory state in T2DM rats by inhibiting NF-κB signaling 
activation and reducing the secretion of proinflammatory cytokines.

Increased expression of the astrocyte biomarker GFAP in the brains of diabetic patients is believed to be a significant 
indication of CNS damage caused by neuroinflammation and tissue changes[35,50]. HG conditions significantly increased 
the expression of GFAP in Müller cells, as demonstrated by both in vivo and in vitro studies. Liraglutide treatment 
reduced oxidative stress and downregulated GFAP expression in Müller cells, protecting them from HG-induced injury
[51]. To investigate the effect of DJB surgery on hypothalamic cell injury in diabetic rats, we evaluated the expression of 
GFAP protein and compared the differences in the number of GFAP-positive cells in hypothalamic tissues among the 
three groups of rats. The experimental results showed that DJB significantly reduced GFAP expression in the 
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Figure 6 Duodenal jejunal bypass surgery improves diabetes-induced hypothalamic cell apoptosis in type 2 diabetes mellitus rats. A: The 
quantitative real-time (qRT)-PCR results of Caspase-3 expression; B: The qRT-PCR results of Bcl-2 expression; C: Expression levels of apoptosis-related proteins in 
the hypothalamus by Western blotting; D: The quantitative densitometric analysis of apoptosis-related proteins. aP < 0.05, bP < 0.01, cP < 0.001. T2DM: Type 2 
diabetes mellitus; DJB: Duodenal jejunal bypass.

hypothalamus of T2DM rats and alleviated hypothalamic cell injury.
Oxidative stress induced by chronic hyperglycemia in diabetes mellitus is an important factor that promotes neuronal 

cell apoptosis[52,53]. Growing evidence suggests that Caspase-3 activation is essential for apoptosis because it regulates 
the translocation and activation of Bcl-2 family proteins, thereby promoting the final stages of apoptosis[50,54]. In this 
study, DJB surgery significantly upregulated the expression of Bcl-2 in the hypothalamus of rats with T2DM, downreg-
ulated the expression of Caspase-3, and inhibited the apoptosis of hypothalamic cells. We evaluated the expression of 
Ki67, C-fos, and BDNF, which are associated with neuronal proliferation, differentiation, and maturation, in diabetic rats 
to determine the effects of DJB surgery on neuronal injury[55]. We found that the number of C-fos positive and Ki67 
positive nerve cells in the hypothalamus was significantly reduced in diabetic rats, accompanied by downregulation of 
hypothalamic BDNF expression. However, DJB significantly reversed these changes. These data suggest that DJB can 
inhibit hypothalamic cell apoptosis in T2DM rats, promote neurogenesis, and reduce diabetes-induced neuronal cell 
damage.

In the present study, we demonstrated that DJB enhanced hypothalamic antioxidant activity and alleviated 
hypothalamic neuronal apoptosis and inflammation in T2DM rats, partly through the upregulation of peripheral GLP-1 
secretion (Figure 8). Since enteric GLP-1 can act on the CNS through two pathways (neural or humoral), our current 
study did not involve the specific pathways through which enteric GLP-1 affects central brain injury[56]. Further invest-
igation is needed to determine the influence of enteric neural or endocrine pathways after DJB surgery on the 
amelioration of diabetes-induced central brain injury by GLP-1.

CONCLUSION
DJB surgery can improve oxidative stress and inflammation in the hypothalamus of T2DM rats and reduce neuronal cell 
injury. This improvement is achieved by upregulating the GLP-1-mediated Nrf2/HO-1 signaling pathway.
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Figure 7 Duodenal jejunal bypass surgery promotes hypothalamic neurogenesis in type 2 diabetes mellitus rats. A: Immunofluorescence 
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analysis the expression of Ki67 (scale bar, 130 µm); B: The percentage of cells expressing Ki67; C: The percentage of cells expressing C-fos; D: 
Immunofluorescence analysis the expression of C-fos (scale bar, 120 µm); E: The quantitative real-time (qRT)-PCR results of C-fos expression; F: The qRT-PCR 
results of BDNF expression; G: Expression levels of C-fos and BDNF detected by Western blotting. The quantitative densitometric analysis of C-fos and BDNF. aP < 
0.05, bP < 0.01, cP < 0.001. T2DM: Type 2 diabetes mellitus; DJB: Duodenal jejunal bypass.

Figure 8 A schema summarizing the protective effects of duodenal jejunal bypass surgery on hypothalamic cell injury induced by 
diabetes. Duodenal jejunal bypass (DJB) surgery significantly reduces hypothalamic oxidative stress injury and inflammation in type 2 diabetes mellitus rats by a 
mechanism depending on glucagon-like peptide 1 (GLP-1)-mediated activation of Nrf2/HO-1 signaling pathway. DJB therapy effectively inhibits hypothalamic 
oxidative stress and inflammatory damage caused by diabetes by GlP-1-mediated activation of Nrf2/HO-1 to inhibit oxidative stress damage in the hypothalamus. In 
addition, DJB inhibits inflammation by upregulating Nrf2 expression, activating the Nrf2/HO-1 axis, and inhibiting the NF-κB pathway. T2DM: Type 2 diabetes mellitus; 
DJB: Duodenal jejunal bypass; GLP-1: Glucagon-like peptide 1; GLP-1R: Glucagon-like peptide 1 receptor; IL: Interleukin.

ARTICLE HIGHLIGHTS
Research background
Type 2 diabetes mellitus (T2DM) is often accompanied by impaired glucose utilization in the brain, leading to oxidative 
stress, neuronal injury and inflammation. Previous studies have shown that duodenal jejunal bypass (DJB) surgery 
significantly improves brain glucose metabolism in T2DM rats, but its role in brain injury and the underlying 
mechanisms are still unclear.

Research motivation
DJB can increase serum glucagon-like peptide 1 (GLP-1) Levels and enhance brain glucose utilization, playing a positive 
role in the treatment of diabetes. Therefore, GLP-1 signaling may play a significant role after DJB surgery in alleviating 
T2DM-related brain injury.

Research objectives
To investigate the role and metabolism of DJB in improving hypothalamic oxidative stress and inflammation condition in 
T2DM rats.

Research methods
A T2DM rat model was induced via a high-glucose, high-fat diet, and a low-dose streptozotocin injection. T2DM rats 
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underwent DJB surgery or Sham surgery. Differential expression of hypothalamic proteins and genes was analyzed by 
protein microarray, flow cytometry, quantitative real-time PCR, western blot, and immunofluorescence.

Research results
Protein microarray results showed significant differences between the T2DM-Sham rats and the T2DM-DJB rats in 
signaling proteins related to oxidative stress, inflammation, and neuronal injury. DJB surgery increased the serum levels 
of GLP-1 and upregulated the expression of GLP-1 receptor and antioxidant signaling proteins (Nrf2 and HO-1) in the 
hypothalamic tissue of T2DM rats. DJB also reduced the expression of hypothalamic inflammatory and nerve cell injury-
related factors, playing a neuroprotective role and reducing hypothalamic injury.

Research conclusions
DJB surgery improve oxidative stress and inflammation in the hypothalamus of T2DM rats and reduce neuronal cell 
injury by activating the GLP-1-mediated Nrf2/HO-1 signaling pathway.

Research perspectives
Further investigation is needed to determine the influence of enteric neural or endocrine pathways after DJB surgery on 
the amelioration of diabetes-induced central brain injury by GLP-1.
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Abstract
The article titled “Accessibility and Utilization of Healthcare Services Among 
Diabetic Patients: Is Diabetes a Poor Man’s Ailment?” gave insights into a 
pandemic systemic disease known as diabetes mellitus. This modern-era pan-
demic affects everyone, regardless of their financial background. As a result, 
diabetes is not a systemic disease which just involves people of low socioeconomic 
status.
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Core Tip: Diabetes is fast becoming a chronic debilitating disease due to poor glycemic 
control by the patients. We have done a short research on the incidence and prevalence 
of diabetes mellitus and found that it is equally affecting the developed as well as 
developing countries. This metabolic disorder affects many organs of the body like 
kidney, eye, heart, liver, brain and skin.
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TO THE EDITOR
The article titled “Accessibility and Utilization of Healthcare Services Among Diabetic Patients: Is Diabetes a Poor Man’s 
Ailment?” is very well-written. Diabetes affects everyone, regardless of their social background. As a result, diabetes is 
not an illness which just involves people of low socioeconomic status. Diabetes patients demand additional medical 
treatments and services than non-diabetic patients due to their increased risk of co-morbidities, inadequate glycemic 
control, and repeated hospitalizations. Regardless of the encouraging increase in the figures of diabetes individuals 
taking medical treatment because of increased knowledge, several personal and institutional issues continue to hinder 
access[1].

The dominance of diabetes amongst high-income people has been linked to physical sedentary habits. In contrast, the 
frequency of diabetes among low-income people has been linked to poor diet and a lack of funds to manage the negative 
consequences of diabetic diseases. Diabetes control requires an easy approach to medical treatment providers. According 
to the existing research, the total sum of patients gaining approach to medical care amenities has grown with time. Yet, 
various variables have been found in the literature search which impedes patient access to the existing medical care 
treatments. However, some patients cannot receive these services, so the fundamental goals of providing such treatments 
are jeopardized. As a result, the health of diabetes patients suffers, particularly in patients from low-income families in 
developing nations. The primary goal of all medical services is to increase the use of medical care services, and this article 
has shown that diabetic patients use these services partly, even while the fraction of people who use these amenities is 
negligible. The level of service is relatively poor. Medical services for diabetes care are lacking in many impoverished 
nations, and healthcare amenities have been stated to be overstressed, particularly in low-income nations, due to the 
increased number of diabetics. A cross-sectional study in Southwest China found that the prevalence of prediabetes as 
well as diabetes was greater amongst urban elderly persons than their rural counterparts, as they had a higher prevalence 
of obesity, central obesity, and physical inactivity[2]. In the National Health Interview Survey, it was discovered that 
diabetes was much more common in low-pay populaces. Another study that studied factors influencing the consumption 
of healthcare facilities related to diabetes encompassed an absence of information on both the disorder and the necessity 
for screening, economic causes, institution-based constraints, absence of syringes and testing apparatus, high wait periods 
at eye hospitals, overcrowded clinics, and distress of the anticipated discomfort[3]. It has been noticed that older adults 
with diabetes use emergency facilities and few outpatient amenities much more than the younger population. According 
to research done by Shalev et al[4], gender affects consumption of health facilities, with females with diabetes using added 
healthcare amenities than their male counterparts[5].

To improve diabetes patients’ access to healthcare services, policies and intervention programmes should be developed 
and focused on reducing the current barriers that impede diabetic patients’ contact with healthcare facilities. Both 
government and non-governmental organizations must concentrate on refining the value of diabetes services, elementary 
healthcare facilities, and health awareness programmes to simplify the delivery of effective care to diabetic patients[6,7].
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