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Abstract
Data indicate that perinatal nutritional insults not only-
have short-term consequences on the growth velocity of 
the fetus/neonate but also sensitize to the development 
of metabolic adult diseases. The pathophysiological 
mechanisms involved in the so-called “Developmental 
Origin of Health and Adult Diseases” are still largely un-
known and depend on the type of alteration (nutritional, 
psychological, endocrine disruptors, etc. ), its intensity 
and duration, species, sex and the time during which it 
is applied. Perinatal stress, via  disturbances of both hy-
pothalamo-pituitary-adrenal (HPA) axis and sympatho-
adrenal-system (SAS), as well as brain-adipose axis and 
pancreas alterations could play a crucial role. Interest-
ingly, it has been demonstrated that perinatal insults 
may be transmitted transgenerationally, suggesting that 
these long-term consequences may be inherited via  
epigenetic mechanisms. Finally, since the placenta has 
been demonstrated to be sensitive to perinatal nutrition-
al manipulations, the identification of placental markers 
may thus represent an important new avenue to identify 
the more susceptible babies prone to developing meta-
bolic diseases.

© 2011 Baishideng. All rights reserved.

Key words: Nutritional programming; Epigenetic; Meta-
bolic diseases; Perinatal stress; Placenta; Transgenera-
tional effect; Mitochondria; Brain-adipose axis
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INTRODUCTION
There is growing evidence from both epidemiological 
studies in humans and experimental ones in animals that 
perinatal maternal nutrition (undernutrition or overnutri-
tion) has long-lasting consequences and sensitizes the 
offspring to the development of  several chronic diseases 
such as metabolic syndrome (obesity, hypertension and 
type 2 diabetes). During the prenatal period, maternal 
undernutrition is responsible for intra uterine growth 
retardation (IUGR), resulting in low birth weight. In 
contrast, maternal diabetes during or before pregnancy 
is frequently associated with the birth of  macrosomic 
babies. Interestingly, IUGR and macrosomia increase the 
propensity to develop similar chronic adult diseases al-
though the pathophysiological mechanisms involved may 
be different. It is thus suggested that nutritional imbal-
ances in utero and in early postnatal life play a crucial role 
in the development of  chronic adult metabolic diseases. 
The main focus of  this special issue will be to summarize 
the more recent findings in this field of  research, known 
as developmental origin of  health and adult diseases 
(DOHAD) hypothesis[1]. 

PLACENTA IS A SENSITIVE TARGET OF THE 
PRENATAL NUTRITIONAL ENVIRONMENT
There are several causes that may disturb the prenatal 
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growth of  the fetus, including maternal nutrition, pre-
eclampsia, placenta dysfunction or gestational diabetes. 
In the latter situation, depending on maternal, placental 
and fetal parameters, newborns may present a low birth 
weight for a normal gestational age (thus reflecting an 
IUGR) or in contrast be macrosomic. This important 
cause of  intrauterine malprogramming is reviewed by 
Vambergue et al[2]. In their manuscript entitled “Conse-
quences of  gestational and pregestational diabetes on 
placental function and birth weight”, they also discuss the 
way by which the placenta is presumably a compromised 
target that largely suffers the impact of  maternal diabetes 
or IUGR. The identification of  placental markers may 
thus represent an important new avenue to identify the 
more susceptible babies prone to develop metabolic dis-
eases.

CRITICAL DEVELOPMENTAL TIME-
WINDOWS DICTATE METABOLIC 
OUTCOMES 
The long-term consequences of  perinatal insults are 
extremely variable and depend on several parameters 
such as the type of  “stressor” (nutritional, psychologi-
cal, toxins, endocrine disruptors, viruses, etc.), its intensity 
and duration, species, sex and the time during which it is 
applied. This introduces the important notion of  criti-
cal windows of  developmental plasticity which stipulates 
that depending on the moment the stressor is applied, it 
may or may not induce an irreversible change in develop-
mental trajectory and exert long-term deleterious effects. 
Once again, the critical time-windows may vary accord-
ing to species, organs and presumably sex. Interestingly, 
several reports suggest, at least in animal models, that 
developmental programming of  metabolic diseases is 
potentially reversible by nutritional or targeted interven-
tions during the period of  developmental plasticity. The 
identification of  critical time-windows is thus a promising 
way to explore in order to offer new therapeutic strate-
gies. This important field of  research is reviewed by Mark 
Vickers in this special issue in a manuscript entitled “De-
velopmental programming of  the metabolic syndrome-
critical windows for intervention”[3].

PERINATAL STRESS MAY CONTRIBUTE 
TO THE PROGRAMMING OF ADULT 
METABOLIC DISEASES
The physiological mechanisms involved in perinatal pro-
gramming of  metabolic diseases remain to be elucidated 
but several experimental data indicate that dysfunction of  
stress neuroendocrine systems such as the hypothalamo-
pituitary-adrenal (HPA) axis and sympatho-adrenal sys-
tem (SAS) might play a key role[4]. Since glucocorticoids 
and catecholamines, the respective final products of  HPA 
axis and SAS, are involved both in the adaptation to stress 

as well as in the regulation of  several metabolic param-
eters such as glycemia and blood pressure, the modifica-
tion of  their production may participate in the program-
ming of  metabolic diseases. In a manuscript entitled “Is 
perinatal neuroendocrine programming involved in the 
development of  chronic metabolic adult disease”, David 
Phillips reviews how alterations of  neuroendocrine stress 
systems during the course of  development may modify 
the structure and physiology of  the adults towards a phe-
notype adapted for adversity, which is advantageous if  
the adverse environment persists in adulthood[5]. By con-
trast, these hormonal and phenotypical perinatal adapta-
tions may lead to diseases if  there is a subsequent modi-
fication of  nutritional environment such as overnutrition 
and obesity.

MATERNAL PERINATAL NUTRITION MAY 
PROGRAM OBESITY VIA ALTERATIONS 
OF THE BRAIN-ADIPOSE AXIS
Maternal under- or overnutrition during the perinatal 
period are both responsible for the increased propensity 
to develop metabolic diseases, particularly obesity, sug-
gesting that nutritional imbalances are crucial determi-
nants. In their review (“The mechanisms behind early life 
nutrition and adult disease outcome”), Elena Velkoska 
and Margaret Morris summarize the way by which these 
nutritional insults may have long-term programming ef-
fects[6]. In particular, they summarize the central and pe-
ripheral mechanisms that could be modified by perinatal 
nutritional insults, with a particular focus on the brain-
adipose axis which is a very sensitive target. Recent re-
sults from their team indicate that paternal obesity might 
also play a key role in the programming of  metabolic 
diseases in the offspring, highlighting the possibility that 
unhealthy paternal diets can reprogram gene expression 
in offspring. This opens new avenues and reminds us that 
we also have to take into account the role of  the father 
whose importance has been always neglected so far, at 
least in the case of  DOHAD hypothesis.

PERINATAL NUTRITIONAL 
PROGRAMMING OF AUTONOMOUS 
NERVOUS SYSTEM MAY SENSITIZE 
TO THE DEVELOPMENT OF TYPE 2 
DIABETES
Although all animal models of  maternal nutrition during 
gestation and/or lactation do not all result in modifica-
tion of  birth weight, they are invariably responsible for 
impaired glucose metabolism in the adult offspring, dem-
onstrating that the pancreas is a particularly sensitive tar-
get of  perinatal insults. The precise mechanisms involved 
in the dysfunction of  the pancreas are still be elucidated 
but stress neuroendocrine systems may also be important 
factors. Interestingly, Paulo Mathias and his collabora-
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tors provide strong evidence that the autonomic nervous 
system, via  the release of  acetylcholine and the presence 
of  several muscarinic receptors in pancreatic islets, may 
play an unsuspected role[7]. In their manuscript (“Perinatal 
protein restriction during lactation programs changes to 
autonomous nervous system and insulin secretion regula-
tion in adult life”), they suggest that pancreatic dysfunc-
tions may be attributed, at least in part, to an imbalance 
of  autonomic nervous system activity. 

PERINATAL NUTRITIONAL 
PROGRAMMING OF PANCREATIC ISLET 
ANGIOGENESIS MAY CONDITION BETA 
CELL FUNCTION
Usually, alteration of  insulin secretion is associated with 
a deficit in the β-cell mass in the offspring resulting from 
changes in the development and functional capacity of  
the endocrine pancreas and modifications in insulin sensi-
tivity in tissues such as muscle, liver and adipose tissue. In 
a manuscript entitled “Nutritional programming of  pan-
creatic β-cell plasticity”, David Hill indicates that these 
alterations are associated with developmental changes in 
the islet microvasculature[8]. Although these modifications 
are irreversible if  the nutritional insult persists postnatally, 
reversal strategies could be used soon after birth. David 
Hill reports that β-cells indeed exhibit an inducible plas-
ticity and that a treatment using statins or bone-marrow-
derived stem cells is indeed able to induce angiogenesis in 
the islet microvasculature as well as enhanced prolifera-
tion of  remaining β-cells. The author also summarizes 
the beneficial effects of  metformin and exercise on the 
pancreatic function, suggesting that a beta cell phenotype 
programmed towards risk of  adult diabetes through early 
nutritional insults can be reversed by both pharmaceuti-
cal and lifestyle interventions, pointing out the necessity 
to identify early markers of  adult metabolic diseases. 

PERINATAL MITOCHONDRIA 
PROGRAMMING MAY CONTRIBUTE 
TO THE DEVELOPMENT OF TYPE 2 
DIABETES
Another recent and interesting area concerns the putative 
involvement of  mitochondrial dysfunctions that may be 
involved in the development of  type 2 diabetes. Brigitte 
Reusens and colleagues, in a manuscript entitled “Altera-
tion of  mitochondrial function in adult rat offspring of  
malnourished dams”, give an overview of  the effects of  
mitochondrial alterations when the intrauterine nutri-
tional environment has been insulted[9]. Several nutritional 
perturbations such as maternal protein restriction modify 
ATP production and decrease insulin release in response 
to glucose stimulation. In addition, that kind of  regimen 
also aggravates the disturbed balance between antioxidant 

enzymes, leading thus to β-cell dysfunction. They also 
explain the way by which mitochondria programming 
targets specific pathways depending on the type of  the 
prenatal diet as well as the sex of  the progeny. Although 
most of  the studies have been performed in male ani-
mals, it is becoming increasingly clear that ongoing stud-
ies will also have to be performed in females.

PERINATAL NUTRITIONAL 
PROGRAMMING MAY BE TRANSMITTED 
TRANSGENERATIONALLY
One of  the most fascinating finding of  perinatal pro-
gramming is that adverse consequences of  altered devel-
opmental environment can be passed transgenerationally 
from first generation to the next generations via  mecha-
nisms that do not involve genetic modification. This new 
concept, reviewed by E Zambrano (“The transgenera-
tional effects in developmental programming of  metabol-
ic diseases”), has been observed both from epidemiologi-
cal studies in humans as well as in animal experimental 
models of  perinatal insults such as nutrient restriction 
or overfeeding during gestation and/or lactation, uterine 
blood flow restriction, experimental maternal diabetes 
and fetal overexposure to synthetic glucocorticoids[10]. 
In light of  these observations, it becomes necessary to 
identify people at risk of  developing metabolic diseases 
to minimize the risk of  transmission of  these pathologies 
to future generations.

EPIGENETIC MECHANISMS ARE 
INVOLVED IN THE LONG-TERM 
CONSEQUENCES OF PERINATAL 
NUTRITIONAL PROGRAMMING
The way by which perinatal insults have long-term conse-
quences is reviewed by Claudine Junien and colleagues in 
a manuscript entitled “Epigenetic mechanisms involved 
in developmental nutritional programming”[11]. As briefly 
evoked above, the resulting sustained modification of  
gene expression is not due to genetic mutations but rath-
er involves epigenetic mechanisms that act particularly on 
DNA methylation as well as histones post-translational 
modifications. These epigenetic changes are tissue-
specific and the question remains as to whether surrogate 
tissues obtained by minimally invasive procedures, such 
as the placenta or cord blood, truly reflect early program-
ming in utero or whether adult tissues and cells, such as 
lymphocytes, monocytes or buccal smears, mirror the 
lifelong metabolic memory. Most epigenetic studies have 
addressed the long-term effects on a small number of  epi-
genetic marks of  environmental stressors in human and 
animal models. Recent studies have demonstrated a sexual 
dimorphism both for programming trajectories and in re-
sponse to the same environmental insult, suggesting the 
existence of  different epigenetic mechanisms in males and 
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females. The increasing numbers of  studies based on high 
throughput technologies have revealed additional complex-
ity in epigenetic processes but are necessary steps to identify 
epigenetic marks. A better knowledge of  the epigenomes 
in response to developmental insults might help to envisage 
new therapeutic strategies aiming at modifying the methyla-
tion state of  target genes using specific regimen. After all, 
we are what we eat.
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Abstract
Metabolic disease results from a complex interaction 
of many factors, including genetic, physiological, be-
havioral and environmental influences. The recent rate 
at which these diseases have increased suggests that 
environmental and behavioral influences, rather than 
genetic causes, are fuelling the present epidemic. In 
this context, the developmental origins of health and 
disease hypothesis has highlighted the link between 
the periconceptual, fetal and early infant phases of life 
and the subsequent development of adult obesity and 
the metabolic syndrome. Although the mechanisms are 
yet to be fully elucidated, this programming was gener-
ally considered an irreversible change in developmental 
trajectory. Recent work in animal models suggests that 
developmental programming of metabolic disorders is 
potentially reversible by nutritional or targeted thera-
peutic interventions during the period of developmental 
plasticity. This review will discuss critical windows of 
developmental plasticity and possible avenues to ame-
liorate the development of postnatal metabolic disor-
ders following an adverse early life environment.
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INTRODUCTION
The rates of  obesity and the metabolic syndrome are 
currently at epidemic proportions. Once considered a 
problem of  developed countries, overweight and obesity 
are now dramatically on the rise in developing econo-
mies, particularly in urban settings. Globally, over one 
billion adults are overweight and with 400 million obese, 
it has been ranked as a critical public health issue[1-4]. Fur-
thermore, over 20 million children under 5-year old are 
overweight. This marked increase in childhood obesity 
and related metabolic disorders will translate to a further 
increase in adult obesity, predicted to reach 2.3 billion 
by 2015[4-6]. It is a widely held view that the development 
of  an obesogenic environment, due to ease of  access 
to highly calorific food and reduced energy expenditure 
in work and leisure activities, is the primary cause of  
obesity and related metabolic disorders, particularly type 
2 diabetes (T2DM)[7]. Metabolic syndrome is a com-
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mon complex trait comprising of  a set of  risk factors 
for cardiovascular disease and T2DM and is likely the 
result of  complex interactions between genes, dietary 
intake, physical activity and the environment. Although a 
number of  genes have been identified that are associated 
with obesity and metabolic syndrome in humans[7,8], the 
genetic component of  this condition cannot account for 
the dramatic increase in the prevalence of  obesity and 
the metabolic syndrome in recent years. Relevant epide-
miological and experimental studies have highlighted a 
relationship between the periconceptual, fetal and early 
infant phases of  life and the subsequent development 
of  adult metabolic disorders[9-11]. The terms “develop-
mental programming” and the “Developmental Origins 
of  Adult Health and Disease” are preferentially used to 
describe these associations. The mechanisms underlying 
developmental programming and the role of  genetic vs 
environmental factors remain speculative. One general 
thesis is that, in response to an adverse intrauterine envi-
ronment, the fetus adapts its physiological development 
to maximize its immediate chances for survival. These 
adaptations may include resetting of  set points of  meta-
bolic homeostasis and endocrine systems and the down-
regulation of  growth, commonly reflected in an altered 
birth phenotype. More recently, the “predictive adaptive 
response (PARs)” hypothesis proposes that the degree of  
mismatch between the pre- and postnatal environments 
is a major determinant of  subsequent disease[12,13]. Thus, 
it is thought that whilst these changes in fetal physiology 
may be beneficial for short term survival in utero, they 
may be maladaptive in postnatal life, contributing to poor 
health outcomes when offspring are exposed to catch-up 
growth, diet-induced obesity and other factors[13,14].

DEVELOPMENTAL PROGRAMMING 
OF THE METABOLIC SYNDROME - 
EVIDENCE FROM EPIDEMIOLOGICAL 
AND CLINICAL STUDIES
Following the initial work of  Barker and colleagues that 
demonstrated a relationship between low birth weight 
and an increased risk of  hypertension, obesity, insulin 
resistance and dislipidemia[15-17], the importance of  ma-
ternal nutrition and, in particular, the effect of  poor 
nutrition on birth weight and development of  adult dis-
ease was addressed in studies of  famine exposure. The 
most widely reported of  these being the Dutch Hunger 
Winter of  1944-1945[11,18-20] where the timing of  the ex-
posure was a major determinant in phenotypic outcomes. 
Whereas famine exposure during early gestation was 
associated with adult hypertension[18], reduced maternal 
caloric intake in late gestation was associated with an in-
creased adult adiposity and glucose intolerance[11,21]. Fam-
ine exposure in late gestation led to a greater impairment 
of  glucose tolerance than during early or mid-gestation. 
The rate of  obesity was higher in men exposed in the 
first half  of  gestation and lower in men exposed in the 

last trimester of  gestation as compared to non-exposed 
men[11]. However, the data derived from those exposed to 
famine during the siege of  Leningrad did not show any 
relationship between birth weight and adult metabolic 
sequelae[22]. Thus, while fetal exposure to a substrate lim-
ited environment at most stages of  development appears 
to lead to adult dysregulation of  metabolism, the precise 
mechanisms responsible may vary with the timing of  
exposure. The disparity between the Dutch and the Len-
ingrad studies may be explained by the PARs hypothesis 
- in the Dutch offspring, nutrition was plentiful following 
the famine and thus was mismatched to the predicted 
environment. In the Leningrad cohort, nutritional status 
was poor both before and after the period of  famine and 
thus the PAR may have been appropriate for the postna-
tal environment experienced[23].

In historically undernourished, recently urbanised 
populations such as India, where individuals of  low birth 
weight are exposed to a high-fat western diet, the inci-
dence of  obesity and T2DM is reaching epidemic propor-
tions[24]. Work by Yajnik and colleagues have shown that 
although Indian babies are born with low birth weight, 
they exhibit relatively increased visceral adiposity[24]. This 
is consistent with other studies of  small babies, show-
ing a disproportionate abdominal fat mass during adult 
life, despite a lower body mass index[25]. Although there 
is considerable debate whether catch-up growth in early 
postnatal life is beneficial or not, most studies suggested 
that postnatal “catch-up” growth is associated with adverse 
outcomes in later life[22,26]. Interestingly, work by Parsons  
et al[27] found that men with a lower birth weight who ex-
hibited catch-up growth and achieved a greater proportion 
of  their adult height by age 7, had a risk of  obesity compa-
rable to that of  men with higher birth weights. 

Being born small for gestational age (SGA) is known 
to be associated with an increased risk of  developing the 
components of  the metabolic syndrome, although the 
biological mechanisms underlying this association are still 
unclear. Children born SGA followed by catch-up growth 
have been shown to have elevated serum leptin concen-
trations which are significantly correlated with insulin 
sensitivity parameters[28]. Work by Eriksson et al[29] dem-
onstrated that the ponderal index at birth was a reliable 
predictor of  later obesity and they also found that an early 
adiposity rebound in babies born of  low birth weight was 
associated with obesity in adult life.

Although prenatal growth restriction has clearly dem-
onstrated influences on long term adiposity, it is important 
to recognise that the relationship between birth weight 
and later life pathophysiology is not linear. Large for ges-
tational age babies are also at risk of  obesity and diabetes, 
associations that have been supported by a number of  
studies investigating the long term effects of  maternal hy-
poglycaemia [diabetes or gestational diabetes (GDM)][30-34]. 
In developed societies and societies transitioning to first 
world diets and lifestyle habits, caloric and/or fat con-
sumption are generally excessive and therefore, unremark-
ably, maternal obesity is now a common pregnancy com-
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plication[35,36]. Children exposed to maternal obesity are at 
an increased risk of  developing the metabolic syndrome; 
even though some obese mothers do not fulfil the clinical 
criteria for GDM, they may still have metabolic factors 
that affect fetal growth and postnatal outcomes[37]. Ma-
ternal obesity is associated with obstetric complications, 
including fetal and neonatal death and poor lactation 
outcomes, and is the most significant predictor of  child-
hood obesity[38,39] and metabolic syndrome in offspring[37]. 
Importantly, these effects may be self-perpetuating, as off-
spring of  obese mothers are themselves prone to obesity, 
giving rise to transgenerational effects[40,41].

DEVELOPMENTAL PROGRAMMING 
OF THE METABOLIC SYNDROME - 
EVIDENCE FROM ANIMAL MODELS
Animal models have been extensively used to study the 
basic physiological principles of  the developmental ori-
gins of  health and disease (DOHaD) hypothesis and are 
essential to the search for the mechanistic links between 
prenatal and postnatal influences and risk for developing 
the metabolic syndrome in later life. Although epidemio-
logical data suggest that developmental programming 
occurs within the normal range of  birth size[42,43], most 
experimental work has focused on significant restriction 
of  fetal growth in the assumption that insults impairing 
fetal growth are likely to be those triggering developmen-
tal programming. Several approaches have been adopted 
to induce early growth restriction in animals. These aim 
to elucidate the relationship between early growth restric-
tion and adult onset disease and provide a framework for 
investigating the underlying mechanisms. In the rodent, 
obesity and metabolic disorders have been induced in off-
spring by maternal global undernutrition[44-48], a low pro-
tein diet[49], maternal uterine artery ligation[50,51], maternal 
dexamethasone (DEX) treatment[52], maternal anemia[53] 
or prenatal cytokine exposure[54]. In this context however, 
intrauterine growth restriction (IUGR) is not essential to 
developmental programming but is merely a surrogate for 
evidence that fetal development may be adversely affected.

Epidemiological studies demonstrate that fetal growth 
restriction correlates with adult disease, implying that fetal 
nutritional deprivation is a strong stimulus for program-
ming[55]. So, experimental animal models were developed 
using controlled maternal caloric intake or protein or mac-
ronutrient deficiency. However, in many developed societ-
ies, maternal and postnatal caloric intake can be excessive. 
A number of  researchers have shown that programmed 
obesity may represent a U-shaped curve with a higher 
prevalence of  adult obesity occurring in individuals who 
were on either deprived or excessive planes of  maternal 
nutrition[25,55-58]. 

MATERNAL UNDERNUTRITION
The early work of  Barker and colleagues highlighted 

the role of  fetal nutrition as the primary factor involved 
in the developmental origins of  adult disease. Within 
the laboratory, early life undernutrition can be achieved 
through maternal dietary restriction during pregnancy 
and/or lactation and in some cases during the pericon-
ceptional period[59,60]. At present, those investigating the 
mechanistic links between maternal undernutrition and 
adult disease generally utilize one of  two dietary proto-
cols in the rodent; global undernutrition or isocaloric low 
protein diets, with the maternal low protein (MLP) diet 
being the more extensively used[61-65]. The MLP model 
involves ad-libitum feeding to pregnant rats a low protein 
diet containing 5%-9% (w/w) protein (casein), generally 
a little under half  the protein content but equivalent in 
energy of  a control diet containing 18%-20% (w/w) pro-
tein[61,66]. Offspring from protein restricted mothers are 
15%-20% lighter at birth[63] than offspring of  control fed 
mothers. Extending the MLP diet throughout the period 
of  lactation increases the weight difference and perma-
nently limits later growth. If  MLP offspring are cross-
fostered to mothers fed a control diet, they exhibit rapid 
catch-up growth[63]. This appears to have a detrimental 
effect on life span, which results in premature death asso-
ciated with accelerated loss of  kidney telomeric DNA[67]. 
Altered insulin sensitivity of  adipocytes in MLP offspring 
has also been well documented; the findings of  these 
studies show that enhanced activation of  insulin recep-
tor substrate-1 associated phosphatidylinositol 3-kinase 
(PI3K) activity may be the key to improvements in in-
sulin sensitivity[68]. However, alterations in PI3K subunit 
expression indicate that the adipocytes of  MLP offspring 
may be resistant to insulin’s antilipolytic effects[68].

Experimental observations in the MLP diet model of  
developmental programming highlight many potential 
mechanisms that may be involved in the pathogenesis 
of  obesity and T2DM. These mechanisms include both 
physical and functional changes to various organ and 
endocrine systems. Gene ontogeny analysis of  visceral 
adipose tissue (VAT) from MLP rat offspring revealed a 
global up-regulation of  genes involved in carbohydrate, 
lipid and protein metabolism[69]. Thus VAT in the MLP 
model is marked by dynamic changes in the transcrip-
tional profile of  key metabolic genes.

Global undernutrition during pregnancy is a widely 
used approach to induce nutritional programming of  
obesity. Various models have been developed with differ-
ent levels of  undernutrition during different periods of  
pregnancy. In the rat, a moderate nutritional restriction 
(70% of  normal intake) in the first 18 d of  pregnancy 
results in offspring with significant IUGR that catch up 
in body weight to that of  controls by postnatal day 20. 
These abnormalities increase with age and are most pro-
nounced in male offspring[70].

We have developed rodent models of  developmen-
tal programming using global maternal undernutrition 
throughout pregnancy[47,71]. When dams are fed at 30% of  
ad-libitum intake throughout pregnancy (i.e. a severe level 
of  undernutrition), offspring birth weights and placental 
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weights are 25%-30% lower than offspring of  control 
fed mothers. These offspring display increased adiposity, 
hypertension, hyperinsulinemia, hyperleptinemia, reduced 
locomotor activity, leptin resistance and hyperphagia in 
adult life[47,72,73]. Severe global undernutrition has also been 
shown to result in altered neuroendocrine gene expres-
sion, including pro-opiomelanocortin (POMC), agouti-
related peptide and neuropeptide Y[74,75]. When the degree 
of  undernutrition is reduced to a more moderate level, 
i.e. 50% of  ad-libitum, offspring still display a significant 
level of  obesity in postnatal life. Of  note, if  pre-weaning 
catch-up growth in offspring is prevented by maintaining 
the mothers on the restricted diet throughout lactation, 
offspring do not develop an obese phenotype (authors 
unpublished observations and[76]). This is similar to re-
ports in the MLP model where continuation of  the low 
protein diet into lactation prevents the development of  
the metabolic phenotype, once again highlighting the pos-
sible adverse consequences of  catch-up growth[76].

Although maternal macronutrient malnutrition has 
been well studied, the role of  maternal micronutrient 
restriction has not been widely investigated. From the 
limited data available, maternal micronutrient restriction 
has been directly associated with the developmental pro-
gramming of  several features of  the metabolic syndrome. 
Maternal iron deficiency has been a focus of  recent 
studies with several features of  the metabolic syndrome 
observed in offspring following maternal iron depriva-
tion[36]. Work by Gambling et al[77] highlighted that the 
timing of  iron supplementation is critical in reversing the 
effects of  maternal anemia on the developing fetus and 
postnatal sequelae in offspring. These data correlate well 
with human studies showing that iron supplementation 
during pregnancy leads to a higher mean birth weight and 
reduced incidence of  low birth weight infants[78].

Maternal chromium restriction significantly increased 
body weight and fat percentage, especially central adipos-
ity, in both male and female rat offspring[79,80]. Restricted 
vitamin intake during pregnancy has been shown to 
increase the phenotypic expression of  obesity and com-
ponents of  the metabolic syndrome in both female and 
male rats fed a post-weaning obesogenic diet[81]. Maternal 
and perinatal magnesium restriction has also been shown 
to predispose rat pups to insulin resistance and glucose 
intolerance[82,83].

MATERNAL OBESITY
Over recent years there has been an increasing focus on 
developing models of  maternal obesity. Several obeso-
genic models, primarily in the rodent, show a relatively 
common phenotype of  metabolic disorders in offspring, 
although the magnitude of  effects differs with the timing 
of  the nutritional challenge and diet composition[84].

A maternal cafeteria or high fat diet has been shown 
to induce obesity, insulin and leptin resistance[58,85,86], hy-
pertension[87-89], hepatic steatosis and non-alcoholic fatty 
liver disease in offspring[90-92]. Even mild maternal over-

nutrition has been shown to induce increased adiposity, 
glucose intolerance and altered brain appetite regulators 
in offspring[93]. We have recently shown that a moderate 
maternal high fat diet (HF) results in significant obesity 
and hyperinsulinemia in male and female offspring, in-
dependent of  the level of  post-weaning diet[56]. Further-
more, in pregnancies which have been complicated by 
maternal diabetes, GDM or impaired glucose tolerance, 
offspring have been shown to be at an enhanced risk of  
developing features of  the metabolic syndrome[94-97]. In 
the sheep, maternal obesity has been shown to acceler-
ate fetal pancreatic β-cell but not α-cell development[98]. 
Fetuses from obese ewes show increased systemic insulin 
levels due to increased glucose exposure and/or cortisol-
induced acceleration of  fetal β-cell maturation, which 
may contribute to premature β-cell function loss, and 
lead to a predisposition for obesity and metabolic disease. 

The PARs hypothesis suggests that disease only mani-
fests when the actual nutritional environment diverges 
from that which was predicted. So, it is notable that evi-
dence for the programming of  obesity and features of  
the metabolic syndrome come from both nutrient restric-
tion (caloric, protein, iron) and fat-feeding studies, which 
suggests a commonality of  mechanism[99]. 

ROLE OF EPIGENETICS
The ability of  developmental plasticity to generate bio-
logical variation from one genotype is well understood 
and interest has emerged in the clinical significance of  
epigenetic processes, particularly those influenced by the 
external environment[100]. There is increasing evidence 
that “marked” regions of  DNA can become “unmarked” 
under the influence of  dietary nutrients. This gives hope 
for reversing propensities for metabolic disorders and 
other diseases that were acquired in the womb[101].

Experimental data in rodents and recent observations 
in humans suggest that epigenetic changes in regula-
tory and growth-related genes play a significant role in 
mediating the patho-physiological phenotypes derived 
from developmental programming[102,103]. Epigenetic 
processes lead to heritable changes in gene function by 
altering DNA chemistry independent of  sequence and 
may be responsible for tissue-specific gene expression 
during differentiation. These mechanisms may underlie 
the processes of  developmental plasticity[104]. Examples 
of  epigenetic regulation include coordinated changes in 
the methylation of  cytosine in cytosine-guanine (CpG) 

dinucleotides in the promoter regions of  specific genes, 
changes in chromatin structure through histone modifi-
cation (acetylation, methylation, etc.) and post-transcrip-
tional control by microRNA[104]. Histone modifications in 
conjunction with DNA methylation regulate chromatin 
structure and gene expression. However, it is still debated 
where early life and/or environmental factors can influ-
ence the “histone” code in a manner similar to their in-
fluence on DNA methylation[105]. 

Adversity during pregnancy or early neonatal life in ex-
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perimental programming models result in changes in pro-
moter methylation, therefore, directly or indirectly, affect 
gene expression in pathways associated with a range of  
physiological processes[106]. For example, in the rat, altered 
promoter methylation and downstream changes in gene 
expression have been shown for the hepatic glucocorticoid 
receptor (GR) and the peroxisome proliferator-activated 
receptor-α (PPAR-α)[107,108], influencing carbohydrate and 
lipid metabolism[109,110]. Similar epigenetic changes have 
been observed in p53 in the kidney[111] and the angiotensin 
Ⅱ type 1b receptor in the adrenal gland[112], influencing 
renal apoptosis and pressor responses, respectively, and in 
the hypothalamic GR[113,114], influencing stress responses. 
The phenotypic effects of  epigenetic modifications dur-
ing development may not manifest until later in life, es-
pecially if  they affect genes modulating responses to later 
environmental challenges, such as dietary challenges with 
a high-fat diet. The timing of  the developmental windows 
and the induction of  epigenetic changes in key physiologi-
cal systems are not well characterized, but it appears to 
extend from the periconceptional period[115] into postnatal 

life[113,114]. There is also evidence from studies in twins for 
changes in the human epigenome related to age and the 
environment[116,117]. Many of  the genes regulated by epi-
genetic change do not appear to be classically imprinted 
(expressed according to the parental origin of  the allele), 
although some imprinted genes may show altered expres-
sion after perturbations during early development, such as 
if  blastocyst culture in vitro is prolonged[118].

It is hypothesized that alterations in early life nutrition 
can influence DNA methylation since one-carbon metab-
olism is dependent upon dietary methyl donors and co-
factors, including folic acid, choline and vitamin B12

[102,119]. 
Maternal dietary manipulations such as low protein expo-
sure result in aberrant changes in DNA methylation in key 
genes which can be prevented by maternal dietary supple-
mentation with cofactors[107]. Protein restriction in preg-
nant rats has been shown to induce a significant loss of  
DNA methylation concomitant with increased expression 
of  key hepatic genes, including the GR and PPAR-α[107]. 
These epigenetic changes, a result of  altered DNA meth-
yltransferase 1 activity[108], were prevented with maternal 
folate supplementation[107]. Intriguingly, other models of  
early life adversity, apart from nutrition, have also been 
shown to influence epigenetic regulation of  gene expres-
sion. Using a model of  maternal uterine artery ligation, a 
comparison of  IUGR vs normal rats revealed changes in 
DNA methylation at a number of  novel loci, not limited 
to canonical CpG islands or promoters. The specific loci 
affected were in proximity to genes with important roles 
in β-cell function and development[120]. Also, shown in 
this model is that after the onset of  T2DM in adulthood, 
the CpG island in the proximal promoter for pancreatic 
duodenal homeobox (Pdx1) was methylated, resulting in 
permanent silencing of  the Pdx1 locus[121]. Meaney and 
colleagues have extensively investigated the role of  ma-
ternal care during neonatal life on epigenetic regulation 
of  gene expression patterns in the brains of  offspring 

born to “low-caring” mothers. In their studies they 
demonstrate that an increased level of  maternal care in 
the first week of  life alters DNA methylation at specific 
CpGs in the GR gene promoter in the hippocampus of  
the offspring and in turn leads to a phenotype similar to 
that of  maternal undernutrition models. Reversal of  the 
epigenetic change leads to reversal of  the phenotypes. 
Furthermore, Meaney’s team has shown that alterations 
in offspring behavior may be modified by postnatal en-
vironmental enrichment and that these phenotypes can 
be passed from one generation to the next[122-124]. These 
results provide evidence for the role of  social conditions 
beyond the postnatal period in altering patterns of  ma-
ternal care and thus offspring phenotype and illustrate 
the interaction between the effects of  postnatal and post-
weaning environments.

Prenatal undernutrition has been shown to induce 
changes in histone H3 and H4 acetylation, consistent 
with facilitated transcription, in the GR gene in the liv-
er[125]. From a mechanistic standpoint, studies in humans 
linking epigenetic change to metabolic disease risk remain 
very limited although there is some evidence for the in-
heritance of  tissue specific DNA methylation patterns[126]. 
Differences in environmental exposure lead to different 
patterns of  epigenetic marking in the somatic tissues of  
individuals. Twin studies show that DNA methylation 
and histone acetylation patterns diverged more strongly 
in older twin pairs with more marked life history differ-
ences[117].

It has been shown that the promoter in the leptin 
gene is subject to epigenetic programming and leptin gene 

expression can be modulated by DNA methylation[127-129]. 
Recent studies report that impaired glucose tolerance dur-
ing pregnancy is associated with adaptations in leptin gene 
DNA methylation although the functional significance of  
these changes is not yet clear[130]. Yokomori et al[131] dem-
onstrated that methylation of  specific CpG sites and a 
methylation-sensitive protein could contribute to changes 
in leptin gene expression during adipocyte differentiation 
in 3T3-L1 cells. The same group has also shown that both 
methylation of  specific CpG sites and a methylation-sensi-
tive transcription factor contribute to GLUT4 gene regu-
lation during preadipocyte to adipocyte differentiation[132]. 
In addition, differential DNA methylation was observed 
in promoters of  genes involved in glucose metabolism 
including GLUT4[132] and uncoupling protein 2[133], both 
major contributors to the development of  T2DM.

Epigenetic regulators work on the basis that exposure 
to environmental factors during critical periods of  de-
velopment permanently alters the structure or function 
of  specific metabolic systems. Therefore, developmental 
epigenetics is believed to establish ‘adaptive phenotypes’ 
to meet the demands of  the later-life environment[105,134]. 
Implicit in this concept is an important process of  causal-
ity on the cellular level, regulating growth and tissue dif-
ferentiation and involving chemical changes to the DNA 
or of  associated proteins. Once the mechanistic basis of  
the disease is understood, epigenetic processes are po-
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tentially reversible and intervention and strategies aimed 
at reversal could be devised and implemented. However, 
there are still many key questions to be answered[105]: How 
plastic is the system for intervention and reversal and 
what are the critical windows of  development at which 
strategies should be targeted; how many generations does 
it take to reverse an epigenetic imprint and can surrogate 
markers be used for disease prediction? 

CRITICAL WINDOWS OF DEVELOPMENT 
AND AVENUES FOR INTERVENTION
Maternal health and nutrition are key determinants in 
influencing infant growth but the precise molecular 
mechanisms underlying this relationship are largely un-
clear, although it is evident that there are critical windows 
of  plasticity when these effects are important. Evidence 
from animal studies has shown that nutritional and phar-
macological interventions may be able to ameliorate or 
reverse the consequences associated with developmental 
programming. 

One of  the earliest examples of  intervention was that 
of  maternal taurine supplementation to MLP dams. Stud-
ies have shown that taurine concentrations are low in dia-
betic and pre-diabetic states and that physiological plasma 
taurine levels are important for adequate β-cell function 
and insulin action[135]. In MLP rat offspring, β-cell mass 
is decreased at birth and metabolic perturbations last 
through adulthood even though a normal diet is given 
after birth or after weaning[136]. However, supplementing 
taurine to MLP dams restored normal release of  insulin 
from MLP fetal islets, demonstrating how important 
taurine is to the development of  normal fetal β-cell func-
tion[137].

However, MLP diets of  differing composition used 
in different laboratories have yielded inconsistent data 
on the relationship between maternal protein intake and 
offspring blood pressure[66]. A critical role of  methionine 
content in the MLP model was highlighted in work by 
Langley-Evans et al[66] and Rees et al[138,139] whereby differ-
ent levels of  methionine resulted in the MLP diets lead-
ing to different phenotypic outcomes. Several maternal 
dietary co-factors have also been shown to prevent the 
development of  hypertension in offspring of  MLP dams 
although the mechanisms are not well established. Ma-
ternal supplementation with glycine[140,141], folic acid[142,143] 
and choline (authors unpublished observations) has 
been shown to prevent programming-induced elevations 
in systolic blood pressure in offspring in postnatal life. 
There is some evidence for an epigenetic basis to these 
observations utilizing dietary methyl donor and co-factor 
supplementation; clinically relevant reductions in specific 
dietary inputs to the methionine/folate cycles during the 
periconceptional period can lead to widespread epigenetic 
alterations to DNA methylation in offspring and modify 
adult health-related phenotypes[107,115]. Moreover, altered 
methylation of  gene promoters induced in the F1 genera-
tion by a MLP diet during pregnancy has been shown to 

be transmitted to the F2 generation, thus representing a 
mechanism for the transmission of  induced phenotypes 
between generations[110].

There has been a lot of  recent focus on the adipokine 
leptin. It has been proposed that deficiencies in leptin 
during critical windows of  development could lead to 
a hardwiring of  obesity[144]. In adult mammals, leptin 
acts on the brain to reduce food intake by regulating the 
activity of  neurons in the ARH. Bouret et al[145,146] have 
shown that neural projection pathways from the ARH are 
permanently disrupted in leptin-deficient (Lepob/Lepob) 
mice. Treatment of  Lepob/Lepob neonates with exog-
enous leptin rescues the development of  ARH projec-
tions and leptin promotes neurite outgrowth from ARH 
neurons in vitro. It is well established that SGA children 
are hypoleptinemic and cord blood leptin concentra-
tions are significantly diminished[147]. These children go 
on to develop obesity and leptin resistance in adult life 
and this can be mimicked experimentally in the rat[47]. 
Thus, perturbations in perinatal nutrition that alter leptin 
levels may have enduring consequences for the forma-
tion and function of  circuits that regulate food intake 
and body weight[145,146,148,149]. Recent work investigating 
neonatal systemic leptin treatment in female Wistar rats 
born following maternal undernutrition has found that 
leptin prevented the development of  diet-induced obesity 
and associated metabolic sequelae in adult life[150]. Leptin 
treatment normalised caloric intake, locomotor activity, 
body weight, fat mass and fasting plasma glucose, insu-
lin, c-peptide and leptin concentrations, suggesting that 
any effect is not restricted solely to a central mechanism. 
Moreover, the effects were specific to animals born of  
low birth weight, with leptin having no effect in animals 
born to control mothers. The observations of  leptin ef-
ficacy in the programmed rat have been replicated in the 
piglet. Work in piglets by Attig et al[151] showed that IUGR 
may be characterized by altered leptin receptor distribu-
tion within the hypothalamic structures involved in meta-
bolic regulation and that leptin supplementation partially 
reversed the IUGR phenotype. The translation of  find-
ings across animal models itself  bodes well for defining 
the role of  leptin during this critical window of  develop-
ment.

Whether this effect of  leptin is central or peripheral 
is unclear - one possibility is that the period of  develop-
mental plasticity is still open and the high leptin levels re-
verse the cuing effects of  prenatal undernutrition[152]. The 
next piece to the puzzle is the question of  the neonatal 
leptin surge; while the surge is well characterised in nor-
mal rodents[153] and may inform a window of  interven-
tion, the presence or absence of  a leptin surge in humans 
is uncertain. Although altered maternal nutrition has 
been shown to alter the timing and duration of  the leptin 
surge, the results are inconsistent across experimental 
models. Yura et al[154] reported a premature onset of  the 
neonatal leptin surge following mild (70% of  ad-lib) ma-
ternal undernutrition whereas MLP offspring display a 
delayed leptin surge[155]. Work by Delahaye et al[156] showed 
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that maternal perinatal undernutrition drastically reduced 
the postnatal leptin surge and altered the development 
of  the POMC neurons in the arucate nucleus of  neona-
tal male offspring. To date, little work has been done in 
maternal obesogenic models but Kirk et al[157] showed a 
prolonged and amplified leptin surge in neonates follow-
ing maternal HF feeding.

Recent work in the rodent has shown that both growth 
hormone (GH) and insulin-like growth factor (IGF)-I 
can resolve several aspects of  the metabolic phenotype 
in developmentally programmed offspring. Utilizing a 
model of  maternal undernutrition to induce fetal growth 
restriction, offspring were fed either a chow or high fat 
diet postnatally. These offspring were hypertensive, obese, 
hyperphagic, hyperinsulinemic and hyperleptinemic; the 
effects of  which were markedly amplified in the presence 
of  a postnatal high fat diet[47]. Treatment of  the adult phe-
notype with GH normalised systolic blood pressure and 
reduced fat mass. However, the hyperinsulinemia was ex-
acerbated as a result of  the diabetogenic actions of  GH[45]. 
A further study in adult females with IGF-I infusion led 
to a complete normalisation of  adiposity, appetite, fasting 
plasma insulin and leptin concentrations in developmen-
tally programmed offspring[46]. These studies highlight the 
role of  the somatotropic axis in programmed metabolic 
disturbances although the longer-term efficacy of  such 
treatments is not known. Trials with GH in small for ges-
tation age children have shown a normalisation in systolic 
blood pressure which was maintained for the 6 yr duration 
of  treatment[158].

Epidemiological and experimental studies have shown 
that developmental programming leads to glucose intol-
erance and an enhanced risk for type 2 diabetes. Work by 
Park et al[121], Raab et al[159] and Stoffers et al[160] has shown 
that treatment of  neonatal rats with the glucagon-like 
peptide (GLP)-1 analog Exendin 4 (Ex-4) reverses the ad-
verse consequences of  developmental programming and 
prevents the development of  diabetes in adulthood. This 
occurs because neonatal Ex-4 prevents the progressive re-
duction in insulin-producing β-cell mass that is observed 
in IUGR rats over time and expression of  Pdx1, a critical 
regulator of  pancreas development and islet differentia-
tion, is restored to normal levels. Although adiposity was 
not examined in this study, GLPs are known to modify 
food intake, increase satiety, delay gastric emptying and 
suppress glucagon release; and therefore further studies 
are warranted. 

The role of  possible direct nutritional interventions 
was highlighted in the work by Wyrwoll et al[161]. Pregnant 
rats were treated with DEX from d13 to term, and off-
spring were cross-fostered to mothers on either a standard 
diet or a diet high in omega-3 fatty acids and remained 
on these diets post-weaning. Maternal DEX reduced 
birthweight and delayed the onset of  puberty in offspring. 
Hyperleptinemia and increased fat mass developed in off-
spring by 6-month of  age in DEX-exposed animals fed 
a standard diet but these effects were completely amelio-
rated by a high omega-3 diet. These results demonstrated 

for the first time that direct manipulation of  postnatal diet 
can limit adverse outcomes of  developmental program-
ming. Furthermore, work by Zambrano et al[162] has shown 
that dietary intervention (changing from an obesogenic 
HF diet to a normal chow diet) prior to pregnancy and 
lactation can reverse metabolic programming of  male off-
spring of  obese rats. 

Although several animal studies have now shown 
that a range of  interventions can reverse or ameliorate 
programming-induced metabolic disorders, translation 
to the human setting as regards optimizing maternal 
health is difficult. Furthermore, some interventions such 
as leptin have gender-specific effects and may potentiate 
an adverse metabolic response in normal offspring[150,163]. 
Some human trials support the initial animal observa-
tions. For example, supplementation with iron and folic 
acid in pregnancy has been shown to increase birthweight 
but this response was modified by maternal nutritional 
status, with infants born to women with better short-
term nutrition having greater birthweight response[164]. 
Whether there is an epigenetic basis to these observations 
similar to those reported for the rat models is not well 
established although it has been suggested that altera-
tions at the H19 differentially methylated region is a likely 
mechanism by which folic acid risks and/or benefits are 
conferred in utero[165].

CONCLUSION
Epidemiological, prospective clinical studies and experi-
mental research have clearly shown that the propensity to 
develop the metabolic syndrome in later life is increased 
when early life development has been adversely affected. 
The pathogenesis is not based on genetic defects but on 
altered genetic expression as a consequence of  an adap-
tation to environmental changes during early life devel-
opment. However, little is known about the interaction 
between the pre- and postnatal nutritional environment 
on either amplification or resolution of  the program-
ming phenotype depending on the degree of  nutritional 
match/mismatch. Thus, experiments to examine the 
PARs hypothesis are required in conjunction with trans-
generational work to further the DOHaD paradigm. 

The molecular mechanisms underlying developmental 
programming are only recently beginning to be inves-
tigated. Epigenetics has now become a model that is 
fundamental to research into DOHaD[2]. The two most 
studied epigenetic mechanisms identified as having a role 
in the adaptive developmental programming of  metabolic 
disorders are DNA methylation and histone modifica-
tions. Availability of  dietary methyl donors and cofac-
tors during a critical window of  fetal development may 
influence DNA methylation patterns. Thus, it has been 
proposed that early methyl donor malnutrition (i.e. excess 
nutrition or undernutrition) could effectively lead to pre-
mature epigenetic aging, thereby conferring an enhanced 
susceptibility to adult disease in later life[166].

Developmental programming research offers a novel 
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approach to investigate the mechanistic basis of  obesity 
and related metabolic disorders which in human popula-
tions predominantly arise from environmental factors and 
lifestyle choices. It is notable that the variety of  different 
insults in early life (caloric, protein, iron, fat-fed) produce 
the same detrimental consequences that occur in adult 
life, which suggests a common mechanism underlies the 
developmental early-life programming of  adult disease. 
A recent emerging focus has been on studies aimed at 
reversing the programmed phenotype; such studies offer 
an exciting potential for new advances in our understand-
ing of  critical windows of  developmental plasticity and 
mechanisms underlying human obesity and related meta-
bolic disorders.
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Abstract
Under-nutrition as well as over-nutrition during preg-
nancy has been associated with the development of 
adult diseases such as diabetes and obesity. Both 
epigenetic modifications and programming of the mi-
tochondrial function have been recently proposed to 
explain how altered intrauterine metabolic environment 
may produce such a phenotype. This review aims to re-
port data reported in several animal models of fetal mal-
nutrition due to maternal low protein or low calorie diet, 
high fat diet as well as reduction in placental blood flow. 
We focus our overview on the β cell. We highlight that, 
notwithstanding early nutritional events, mitochondrial 
dysfunctions resulting from different alteration by diet 
or gender are programmed. This may explain the higher 
propensity to develop obesity and diabetes in later life.
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INTRODUCTION
Before describing and discussing the involvement of  the 
mitochondria in the fetal programming of  adult diseases, 
a brief  introduction on the biogenesis and function of  
mitochondria will be presented.

Mitochondria, their biogenesis and function
It is only recently that the mitochondrial proteome has 
been considered as a dynamic system generated by the 
nuclear DNA (nDNA) and the mitochondrial DNA (mt
DNA). In most human cells, mitochondria contain 103104 
copies of  a circular genome of  16 569 basepairs without 
introns. It contains 37 genes encoding 2 ribosomal RNAs, 
22 tRNAs required for mitochondrial protein synthesis 
and 13 polypeptides[1]. These include 7 of  the 46 poly
peptides of  the complex Ⅰ (NADH dehydrogenase; ND 
1, 2, 3, 4L, 4, 5, 6), one of  the 11 proteins of  complex Ⅲ 
(cytochrome b), 3 of  the 13 polypeptides of  complex Ⅳ 
(cytochrome c oxidase; COX1, 2, 3) and 2 of  the 16 
proteins of  complex Ⅴ (ATP synthase; ATPase6, 8)[2]. 

Mitochondrial biogenesis requires a tight coordination 
between the nDNA and mtDNA to transcribe the genes 
in the nucleus, as well as in mitochondria. The nDNA
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encoded mitochondrial proteins are translated by using 
cytosolic ribosomes and selectively imported into the 
mitochondrion through various import systems[3,4]. These 
proteins include the four units of  the complex Ⅱ, the 
mtDNA polymerase γ, mitochondrial RNA polymerase, 
the mitochondrial transcription factor (Tfam), the mito
chondrial ribosomal proteins and elongation factors, and 
the mitochondrial metabolic enzymes[5].

Three factors, i.e. peroxisome proliferator activated re
ceptor γ (PPARγ) coactivator1α (PGC1α), nuclear respi
ratory factor 1 (NRF1) and Tfam provide a molecular ba
sis for the connection between environmental stimuli and 
mitochondrial biogenesis. PGC1α is part of  the PGC1 
coactivator family which, in addition to its role in the mi
tochondrial biogenesis and through its interaction with the 
PPARγ[6], regulates several functions, including adaptive 
thermogenesis, glucidic metabolism, fatty acid oxidation 
and mitochondrial anabolic and catabolic function. NRF1 
and 2 bind to the promoter region of  a broad range of  
mitochondrial genes encoded in the nucleus, including 
Tfam. NRF1 turns on Tfam, a key transcriptional fac
tor that translocates into the mitochondria and activates 
mitochondrial biogenesis and function through mtDNA 
replication and transcription (Figure 1)[7]. NRF1 may also 
affect expression of  mitochondrial and metabolic genes[8]. 

In addition, PGC1α may promote the mitochondrial 
biogenesis in a cell type-specific manner with the co-activa
tion of  PPARγ. It seems that PPARγ affects mitochondrial 
biogenesis indirectly by enhancing the expression of  PGC
1α since the agonist of  PPARγ rosiglitazone, induced 
endogenous expression of  PGC1α in adipose tissue[9,10]. 
Through this way, PGC1α may drive PPARγ[6] and ame
liorate symptoms of  metabolic disease. In a cellselective 
manner, the efficiency of  the oxidative phosphorylation 
process may also be regulated by PGC1α through the 
transcriptional control of  uncoupling proteins (UCP)[11].

There is a great variation in the mtDNA across differ
ent cell types. Whereas somatic cells contain up to 4 000 
copies, maternal oocytes may contain as many as 200 000 
copies and sperm as few as 100[12]. This is the reason why 
it is usually accepted that mtDNA is exclusively mater
nally inherited.

Mitochondria are responsible for the production of  
energy by oxidizing pyruvate through the tricarboxylic 
acid (TCA) cycle and lipids through oxydation. These 
processes produce reducing equivalents that then drive 
the electron transport chain (ETC) enclosed within the 
inner membrane to produce ATP. Inevitably, by the prod
ucts of  oxidative phosphorylation, mitochondria are also 
the major source of  reactive oxygen/nitrogen species 
(ROS/RNS). Electrons leaking into the mitochondrial 
matrix can react with molecular oxygen. ROS can occur 
when electrons are in excess in case of  inhibition of  oxi
dative phosphorylation and they can damage macromol
ecules[13]. ROS can also inhibit the activity of  the ETC, 
specifically the iron-sulfur center-containing enzymes of  
the complex Ⅰ and Ⅲ, and mitochondrial aconitase of  
the TCA cycle[5]. Mitochondria also possesses a major 

role in the regulation of  apoptosis. Indeed, several pro
apoptotic proteins reside in the intermembrane space, 
including cytochrome c and apoptosis inducing factor[14]. 
Due to the absence of  protective histone proteins, to the 
close vicinity and the limited DNA repair mechanism, 
mtDNA is a sensitive target for oxidative DNA damage 
by ROS[15]. The mutation rate of  mtDNA is at least 10 
times higher than that of  nuclear DNA[5,16].

Equally important, the TCA cycle is critical for several 
metabolic functions, where its intermediates are used as 
substrates for de novo synthesis of  biomolecules[17]. Beside 
this anabolic process, the TCA cycle also plays a critical 
role in the catabolism where nonessential as well as es
sential amino acids are broken down to TCA cycle inter
mediates and fatty acids are oxidized to acetylCoA. So, 
the different anabolic and catabolic functions of  the mi
tochondria are tightly regulated in response to nutrients 
such as glucose, amino acids and fatty acids. As shown in 
case of  caloric restriction, adipose tissue features a strong 
downregulation of  genes involved in energygenerating 
process such as the TCA cycle and oxidative phosphory
lation[18,19]. In the liver, which participates to maintain an 
adequate level of  sugar in the blood, an upregulation 
of  genes involved in glucogenesis and βoxidation was 
noted, whereas genes involved in the TCA cycle and 
oxidative phosphorylation were down regulated[19]. In the 
muscle, caloric restriction increased mitochondrial activ
ity, at least in human[20].

Impaired mitochondrial function in metabolic diseases
Given the crucial role of  mitochondria for multiple 
metabolic pathways, tight control of  mitochondrial abun
dance and function is imperative for cellular homeostasis. 
Therefore, it is not surprising that a link exists between 
mitochondrial alteration and various diseases including 
diabetes, cancer and precocious aging[5]. Polymorphic 
variation in mtDNA has been associated with metabolic 
diseases. It should be noted that several studies indicate 
that genomic variation in the 37 mitochondrial genes 
plays a critical role in apoptotic and metabolic pathways 
in many tissues including the brain. It is only recently that 
the mitochondrial proteome has been seen as a dynamic 
cross talking system generated to adapt the mitochondrial 
functional capacity to meet the specific needs of  the tis
sue or the disease state[21]. According to the tissue and 
depending of  the functional requirements, the nuclear 
transcriptional programming of  the mitochondrial pro
teome may vary. This is also true for disease state. For in
stance, in type 1 diabetes, an adaptation of  the liver mito
chondrial proteome to support ATP production and fatty 
acid oxidation was observed[21]. The posttranscriptional 
modifications are also tissue and disease specific and may 
modify the localization and function of  the mitochon
drial proteins and enzymes. 

During the process of  reduction of  oxygen to water 
by the ETC, ROS/RNS, such as superoxide, hydrogen 
peroxide, the hydroxyl radical and nitric oxide are gener
ated and cause oxidative damage to target structures. An 
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imbalance between the production of  ROS/RNS and 
antioxidant defenses plays a major role in inducing altera
tions in insulin signaling pathways[22].

ROS and RNS are formed during both pro-inflamma
tory cytokinesmediated βcell aggression in type 1 diabe
tes and glucolipotoxicitymediated βcell dysfunction in 
type 2 diabetes[2326]. 

At least 1.5% of  diabetic patients exhibit mutations 
in mtDNA[27]. Many studies suggest that mitochondrial 
dysfunction is critical in insulinlinked pathologies. Fewer 
mitochondria, lower expression of  mitochondrial genes, 
abnormal mitochondrial morphology and disturbed 
oxidative phosphorylation are commonly described in 
insulin target tissues such as the liver, muscle and adi
pose tissue in the case of  type 2 diabetes[28] or obesity[29]. 
Decrease in the number of  mitochondria causes mito
chondrial dysfunction[30] and mtDNA density is closely 
associated with oxidative function which itself  is linked 
to insulin sensitivity. Indeed, it has been shown that a 
decrease in mtDNA density in peripheral blood cells pre
ceded the development of  type 2 diabetes[31]. Moreover, 
mtDNA density was also associated with abnormal obe
sity before the onset of  type 2 diabetes[32,33]. Mitochon
drial dysfunction results in an accumulation of  fatty acid 
metabolites, diacylglycerol and long chain fatty acid CoA 
which will induce insulin resistance via the activation of  
the phosphokinase C. These changes are accompanied 
by a decrease in both mitochondrial oxidative activity and 
ATP biosynthesis. 

As already mentioned, several studies with type 2 
diabetic patients and nondiabetic subjects with a family 
history of  diabetes featured down regulation of  nDNA
encoded mitochondrial genes. For some authors, this 
may lead to alteration at the level of  the mitochondrial 
biogenesis like the control by PGC1α and NRF1[3436]. 
However, Morino et al[30] did not observe any difference 
in such factors and suspected a confounding influence 
such as being overweight. Disruption of  the nuclear gene 
Tfam in cells reproduced pathophysiological features of  
diabetes[37]. Moreover, maternally inherited alterations in 
mtDNA that disrupt mitochondrial function are known 
to cause an insulin-deficient form of  diabetes resembling 
type 1 diabetes[38].

FETAL MITOCHONDRIAL PROGRAM-
MING
Intrauterine environment is a major contributor to the 
future of  individuals and disturbance at a critical period 
of  development may compromise their health. After the 
observation made by Hales et al[39] in 1991 that men with 
low birth weight had increased susceptibility to develop 
type 2 diabetes and cardiovascular disease, the same as
sociation was found throughout the world. Therefore, 
the concept of  “the thrifty phenotype hypothesis” sug
gested 19 years ago by Hales et al[40] is now accepted by 
the scientific community as being involved in several 
pathologies such as obesity, insulin resistance, diabetes, 

hypertension, cardiovascular disease and even cancer and 
precocious aging. The term “thrifty phenotype” sug
gests that in case of  poor fetal nutrition, resulting from 
either poor maternal nutrition or poor delivery of  nu
trients to the fetus due to other causes such as placental 
dysfunction, an adaptive response is set up by the fetus 
to optimize the growth of  key organs like the brain at 
the expense of  other tissues such as muscles, kidneys 
and endocrine pancreas. It is also accompanied by pro
grammed changes in metabolism, enabling the organisms 
to efficiently use and store nutrients. Such adaptations 
are beneficial for the survival of  the fetus but may be 
detrimental later in life, namely when a mismatch occurs 
between the environment predicted and that one encoun
tered after birth. Then, the concept evolved, introducing 
the notion of  “developmental plasticity” and “predictive 
adaptive response”[41]. If  the insufficient metabolic and 
nutritional environment is the same during fetal life and 
early after birth, the adaptation set up by the fetus will 
be efficient to cope with it but if  not, the adaptations are 
not appropriate and further enhance the risk of  develop
ing metabolic diseases later in life.

It is only recently that attention was paid to the in
volvement of  the mitochondria as putative targets for the 
fetal programming of  adult disease. Indeed, it has been 
proposed that a key adaptation enabling a fetus to survive 
in a limited energy environment may be a programming 
of  mitochondrial function[42].

The Simmons’ group was the first to show in rat that 
uteroplacental insufficiency provoked by uterine artery 
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Figure 1  Mitochondrial gene expression and biogenesis. Environmental 
factors induce PKA and p38  MAPK pathways. PKA phosphorylates CREB 
transcription factor, which is involved in the induction of peroxisome proliferator-
activated receptor γ coactivator (PGC)-1α gene expression. Activation of p38 
MAPK phosphorylates PGC-1α protein, resulting in its stabilization and activa-
tion. PGC-1α activates the expression of the subunits of mitochondrial electron 
transport chain and Tfam, one of the major regulatory factors for mitochondrial 
transcription and replication, through the co-activation of nuclear respiratory 
factor 1-mediated transcription. Tfam subsequently translocates in the mito-
chondrion and directly increases the transcription and replication of mitochon-
drial DNA (Adapted from Remacle et al [45], 2007).
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ligation targeted the mitochondria because it induced a 
lower pyruvate oxidation in the muscle[43] and liver[44] of  
young adult offspring. In muscle, this defect leads to a 
chronic reduction of  ATP available from oxidative phos
phorylation, which compromises glucose transporter 4 
(GLUT4) recruitment, glucose transport and glycogen 
synthesis, contributing to insulin resistance and hyper
glycaemia of  type 2 diabetes[43]. The concept of  mito
chondrial programming could be especially true for cells 
that have a high energy requirement, such as the βcells. 
Indeed, uteroplacental insufficiency also induces mito
chondrial dysfunction in fetal βcells leading to increased 
production of  ROS, reduced ATP production and de
cline in mitochondrial ETC complex Ⅰ and Ⅲ. In turn, 
this drives damage to mtDNA that may progressively 
deteriorate the mitochondrial and βcell function and dia
betes may ensue[42].

Although the model of  placental insufficiency in
duced severe fetal growth restriction due to reduction of  
transfer of  nutrients as well as of  oxygen to the fetus, 
more subtle nutritional disturbances in the intrauterine 
environment have also been shown to program key organ 
during development. In a general population, nutritional 
imbalance in the presence of  an adequate quantity of  cal
ories and oxygen is obviously less drastic but is probably 
more frequent and may have substantial consequence for 
the progeny.

For many years we have investigated several mod
els of  early malnutrition in rats to understand by which 
mechanism developmental programming could occur. 
Most of  our research focused on the βcell development 
in the fetus and newborn and we have evaluated long
term consequences in offspring of  mother fed a low pro
tein diet (LP). We pointed to an alteration at the level of  
the mitochondria but because insulin resistance, diabetes 
and obesity are burning throughout the world, we also 
investigated if  a mitochondrial programming could be a 
common mechanism for several types of  nutrient imbal
ance, including calorie restriction or HF. 

If  the quantity of  calories is adequate during develop
ment but the proteins are low, the development of  many 
organs is altered and the islet cell is specifically targeted 
as reported in several reviews[45] and in some articles 
of  this book. Briefly, although the fetal growth of  the 
offspring from dams fed a LP diet was only reduced by 
5%10%, the fetal βcell mass was smaller. Such a reduc
tion was demonstrated to be due to a low βcell prolifera
tion, a reduced islet vascularisation[4649] and an increased 
susceptibility of  the insulin secreting cell to be destroyed 
by apoptosis in response to aggressive molecules[50,51]. In 
addition, these fetal islets secreted less insulin in response 
to glucose and amino acids[52]. The lower insulin secretion 
was maintained in young adulthood[51,53]. Later in life, the 
LP offspring featured also an increased vulnerability to 
cytokines, ROS[51] and poor capacity to regenerate after 
streptozotocin destruction (unpublished data). On the 
basis of  such pathological characteristics, we investigated 
by proteome and microarray analysis if  a common path

way could be found and we demonstrated that the mi
tochondrion through its TCA cycle was the main target. 
Indeed, 11% of  the altered genes founded in the LP fetal 
islets coded for mitochondrial protein and the expres
sion of  almost every gene involved in the TCA cycle was 
changed by the maternal LP diet[54,55]. 

Antioxidants defenses
We knew from the literature that the normal adult βcells 
possess particularly weak antioxidant defenses activity 
compared to other organs such as the liver[56,57], but no 
data were available for fetal and neonatal pancreatic islets. 
With their first breath, newborns are directly exposed to 
an increase in oxygen concentration. A few hours later 
when lactation starts, they are also exposed to another 
type of  nutrition, switching from a diet rich in glucose 
and amino acids in utero to a fatty diet during lactation. 
A microarray analysis performed on mtRNA from cord 
whole blood collected after human cesarean section re
vealed a higher expression of  genes involved oxidative 
stress pathways such as superoxide dismutase (SOD), cat
alase, peroxiredoxins and UCP[58]. Thus, we investigated 
the islet antioxidant activity at birth and after weaning in 
normal rats. While SOD and catalase activity were much 
lower in islets than in the liver, we found an as efficient 
glutathione peroxidase activity (GPX) but that, however, 
decreased thereafter when compared to the liver, weaken
ing the general antioxidant capacity in normal rats post
natally[59]. GPX removes H2O2 produced through the dis
mutation by SOD of  the superoxide anion to O2. When 
the mother was fed the LP diet we found that the GPX 
activity was decreased in fetal islets[59]. Then, a temporary 
efficient GPX activity counterbalancing SOD activity that 
occurs in normal islets was not possible in LP fetal islets. 
This alteration may be one explanation for the increased 
susceptibility of  these fetal islets to cytotoxic aggres
sion. If  a switch to a normal diet is given to the mother 
after birth, a reduction of  islet antioxidant capacity was 
observed in the newborn. If  the LP diet was maintained 
until weaning such lowering was not reported. This ob
servation supports the concept of  the detrimental effect 
of  a mismatch between a suboptimal environment and a 
richer environment after birth[60]. 

We were the first to measure the oxidative stress (OS) 
and the antioxidant capacity in the islets of  3month old 
adult offspring from LP mother. Nitrotyrosine levels 
were significantly higher in the plasma of  offspring when 
the LP diet was present during fetal life or during fetal 
life and lactation[59]. Adult islets expressed higher iNOS 
levels and consequently secreted large amounts of  NO[61]. 
The best way to verify the antioxidant potential of  a cell 
is to measure the activity of  the antioxidant enzymes. 
Maternal LP diet provoked an increased SOD activity 
in adult islets which should increase the level of  H2O2, 
but no concomitant activation of  catalase and GPX was 
observed. This imbalance could lead to higher hydrogen 
peroxide production that may concur to increased oxida
tive stress contributing to the alteration of  the insulin se
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cretion and the increased vulnerability of  the βcell later 
in life[51,59].When total SOD activity was measured, the 
analysis did not allow making a difference between the 
manganese superoxide dismutase (MnSOD) and the Cu/
ZnSOD. An increased expression of  Cu/ZnSOD gene 
but not of  MnSOD was observed in the offspring that 
received a LP diet during gestation or during gestation 
and lactation. When the LP offspring was analyzed at 15 
mo, the expression of  both Cu/Zn and MnSOD genes 
was decreased in the islets[62].

Mitochondrial biogenesis and function  
As mentioned above, the participation of  mitochondria in 
the programming of  βcell dysfunction observed in off
spring submitted to environmental disorders during early 
life was proposed recently[27]. Simmons et al[42] found that 
uteroplacental insufficiency during late gestation, which 
implies nutrient as well as oxygen depletion, induced OS 
and marked mitochondrial dysfunction in pancreatic islets 
of  the intrauterine growth retardation (IUGR) progeny. 
Showing that mitochondrial dysfunction was not limited 
to pancreatic islets[43,44], they proposed that a key factor 
enabling a fetus to survive in a limited energy environ
ment is a reprogramming of  mitochondrial function, 
which can lead to deleterious effects. 

In order to assess whether maternal malnutrition, 
without restriction of  the oxygen supply, should lead to 
mitochondrial programming in islets, we analyzed param
eters of  mitochondrial biogenesis and function in adult 
offspring of  dams fed either a protein restriction (LP), a 
high fat diet (HF) or exposed to a global food restriction 
(GFR) during gestation. 

We found that, independently of  the type of  prena
tal malnutrition, mitochondrial function was affected in 
pancreatic islets of  the adult offspring[53,63]. Thus, mater
nal malnutrition itself  caused mitochondrial dysfunction 
in pancreatic islets from 3month old progeny that may 
predispose to glucose intolerance later in life, namely by 
affecting insulin secretion[64,65]. In vitro, male and female 
islets from control offspring increased their insulin se
cretion in response to glucose. This enhancement was 
less marked in LP offspring and absent in GFR and HF 
3month old animals. This could be associated with dys
functions in energy metabolism, located for a large part 
in mitochondria because ATP production was blunted af
ter glucose challenge in islets of  male and female progeny 
from malnourished dams.

It is becoming obvious that the programming is a sex
specific phenomenon[53,63]. Although the common altera
tion cited above exists, some changes were specific to the 
maternal diet as well as to the sex of  the progeny (Figure 2).  
For instance, in male progeny, the restriction of  nutrients 
seemed to have more consequences since βcell mass, as 
well as the expression of  genes coding for proteins in
volved in energy metabolism and TCA cycle, were found 
altered to a greater extent in LP and GFR rats than in 
HF male animals (Figure 2A). Conversely, a maternal diet 

enriched with animal fat was more pernicious for females 
because HF females presented much more damage than 
LP and GFR females (Figure 2B). Also, independently 
of  the type of  early malnutrition, the pathway leading to 
blunted ATP production in malnourished offspring ap
peared differently in males and females. Indeed, increased 
basal production of  ROS was found only in males of  the 
3 groups (Figure 2A). This latter longterm consequence 
of  prenatal malnutrition could be a determinant for in
ducing sexspecific cellular and molecular effects since 
ROS are known to be able to inactivate the ironsulfur 
centers of  the ETC complexes and TCA cycle enzymes, 
resulting in shutdown of  mitochondrial energy produc
tion[66]. It should be noted that higher ROS production 
in male islets from LP offspring was congruent with our 
previous observation showing the influence of  early mal
nutrition on adult antioxidant potential[59]. Manifestation 
of  progression of  OS was also reported by others for 
IUGR male offspring of  rats exposed to uteroplacental 
insufficiency[42]. In these rats, OS was linked to accumu
lation of  mtDNA mutations in islets and blunted ATP 
production. Indeed, IUGR males presented a reduction 
by 50% of  the activities of  both complexes Ⅰ and Ⅲ 
at 7week of  age that dropped at 15week to less than 
25% of  those of  controls[42]. In female offspring that 
were exposed to low protein, low calorie or HF during 
prenatal life, we reported that the poor capacity of  ATP 
biosynthesis directly involved a down regulation of  cru
cial factors. Indeed, independently of  the type of  early 
malnutrition, each female group showed a reduction in 
the expression of  both malate dehydrogenase and ATP6 
which could decrease the mitochondrial energy produc
tion through the TCA cycle and the ETC (Figure 2B). 

The effect of  altered nutrient availability to the fetus 
on βcell mitochondrial DNA is puzzling. While reduc
tion of  placental blood flow first provoked an increase in 
the number of  mtDNA copies at fetal stage, this number 
decreased with age under the normal value[42]. We did 
not find any modification in LP progeny mtDNA but an 
increase in offspring of  mothers 50% underfed or fed a 
HF during gestation. 

Another consequence of  early malnutrition which is 
sex specific was the over expression of  PPARγ in islets 
from LP, GFR and HF males. This strong PPARγ expres
sion might increase ROS production, via an enhanced 
lipid uptake in cells that are not metabolically adjusted to 
handle this challenge[67]. Moderate amounts of  PPARγ 
are known to be expressed in normal pancreatic βcell 
but its fundamental role in these cells is not fully under
stood[68]. PPARγ appears to be important for glucose ho
meostasis since PPARγ ligands reduced insulin levels by 
targeting the insulin gene transcription[69]. Improvement 
of  mitochondrial biogenesis was also associated with 
enhanced PPARγ function in adipose tissue[9]. Emerging 
evidence suggests that PPARγ ligands, named thiazoli
dinediones, offer benefits for preventing or delaying the 
decline in βcell function[70,71] through effects on lipid 
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transport and metabolism, by modulating the expression 
of  genes involved in glucose sensing[68,72] and by reducing 
ER stress[69]. Although activation of  PPARγ results from 
liganddependent heterodimerization of  PPARγ with 
RXR, over expression of  PPARγ may induce by itself  an 
increase in GSIS in the absence of  exogenous PPARγ 
ligand[68]. These data could also help to explain that LP 
males maintained insulin release despite a blunted ATP 

biosynthesis after glucose challenge. However, we did not 
show the same correlation for GFR and HF, suggesting 
that the excessive level of  over expression of  PPARγ in 
LP rats could be determinant to GSIS. PPARγ has been 
reported to induce expression of  UCP2 in βcells[73], as 
observed in LP male islets. Thus, as postulated above, the 
particularly high level of  PPARγ expression could be a 
key factor inducing UCP2 transcription in LP male islets. 
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Mitochondrial programming in other organs
Mitochondrial dysfunction is not limited to the pancre
atic islets. In the liver, a marked resistance to insulin was 
observed in the young IUGR progeny prior to the occur
rence of  diabetes. Oxidation rates of  pyruvate, glutamate 
and succinate were blunted in isolated hepatic mitochon
dria of  very young IUGR offspring. Increased MnSOD 
protein expression as well as high levels of  4hydroxynon
enal was found already at fetal stage and maintained later 
in life[44]. We also reported a programming that was sex
specific, at the level of  mitochondria in the liver of  off
spring of  malnourished mother[53,63]. After a maternal LP 
diet, although mtDNA content was reduced in male liver, 
no expression of  genes involved in mitochondrial biogen
esis, function and metabolism was found altered while the 
female offspring presented a lower expression of  citrate 
synthesis and malate dehydrogenase, suggesting that the 
ATP production could be affected[53]. The liver of  GFR 
and HF males featured a higher expression of  ND4L and 
COX1, respectively subunits of  complexes Ⅰ and Ⅳ of  
the ETC encoded by the mtDNA and a reduced level of  
citrate synthase and malate dehydrogenase mRNA[63]. In 
the LP offspring, key enzymes that regulate glucose ho
meostasis were found altered in the young and adult prog
eny[74]. An increase in hepatic carbonyl concentration and 
an upregulation of  GPX were also observed in the LP 
adult progeny which may be indicative of  higher oxidative 
stress[75].

In muscle, the reduced pyruvate oxidation provoked 
by uteroplacental insufficiency results in a chronic reduc
tion in the supply of  ATP available from oxidative phos
phorylations, which compromises GLUT4 recruitment, 
glucose transport and glycogen synthesis, contributing to 
insulin resistance and hyperglycemia of  type 2 diabetes[43].

Park et al[76] found that the offspring of  dams fed a LP 
diet during pregnancy and weaning have a lower mtDNA 
content as well as mtDNAencoded gene expression in 
the liver and skeletal muscle. They also reported lower 
mtDNA levels in the total pancreas[76] which was, howev
er, not corroborated by us when only endocrine pancreas 
was analyzed[53].

Several reports documented that vascular structure 
and function can be programmed in early life. It was 
shown that maternal low protein diet impaired vascu
larization in the islets[4649] as well as in the brain[77] and 
muscle[78]. The vascular change may be associated or not 
with hypertension later in life. A clear mitochondrial 
programming at the level of  endothelial cell is not yet 
demonstrated. What is known is that growth restricted 
neonates exhibited endothelial dysfunction very early in 
life, predisposing them to atherosclerosis. Higher mito
chondrial ROS generation and function are associated 
with cardiovascular disease. In neonates with IUGR, 
increased lipid peroxidation was observed in association 
with low levels of  antioxidants and antioxidant enzyme 
activity[79]. It is possible that excessive ROS production by 
placental mitochondria may be released in the fetal cir
culation and may alter vascular mtDNA[80]. Taylor et al[81] 

searched for mitochondrial abnormalities in the aorta of  
adult offspring from a mother fed a HF during gesta
tion and lactation and revealed a lower expression of  the 
mitochondrial genome. Four genes of  the mitochondrial 
encoded mRNA were down regulated among which was 
ATPase6 and six genes of  the nuclear mRNA encoding 
mitochondrial proteins were under expressed, among 
which was MnSOD. 

CONCLUSION
In conclusion, an alteration in the metabolism and the 
nutrition of  the mother affects the mitochondria in sev
eral organs of  the progeny. Alterations are observed at 
birth but aggravate with age. More specifically, imbalance 
or less availability of  nutrients to the β cell, small re
peated increases in ROS production, lower ATP synthesis 
and inadequate antioxidant balance may predispose to β 
cell dysfunction. Some of  these mitochondrial alterations 
seem more dramatic in male animals than in females in 
cases of  nutritional restriction contributing to the early 
development of  a prediabetic state in male progeny. 
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effect of  insulin and insulin resistance, pancreatic islet transplanta-
tion, adipose cells and obesity, clinical trials, clinical diagnosis and 
treatment, rehabilitation, nursing and prevention. This covers epi-
demiology, etiology, immunology, pathology, genetics, genomics, 
proteomics, pharmacology, pharmacokinetics, pharmacogenetics, 
diagnosis and therapeutics. Reports on new techniques for treating 
diabetes are also welcome.

Columns
The columns in the issues of  WJD will include: (1) Editorial: To 
introduce and comment on major advances and developments 
in the field; (2) Frontier: To review representative achievements, 
comment on the state of  current research, and propose directions 
for future research; (3) Topic Highlight: This column consists of  
three formats, including (A) 10 invited review articles on a hot 
topic, (B) a commentary on common issues of  this hot topic, and 
(C) a commentary on the 10 individual articles; (4) Observation: 
To update the development of  old and new questions, highlight 
unsolved problems, and provide strategies on how to solve the 
questions; (5) Guidelines for Basic Research: To provide guidelines 
for basic research; (6) Guidelines for Clinical Practice: To provide 
guidelines for clinical diagnosis and treatment; (7) Review: To 
review systemically progress and unresolved problems in the field, 
comment on the state of  current research, and make suggestions 
for future work; (8) Original Article: To report innovative and 
original findings in diabetes; (9) Brief  Article: To briefly report 
the novel and innovative findings in diabetes research; (10) Case 
Report: To report a rare or typical case; (11) Letters to the Editor: 
To discuss and make reply to the contributions published in WJD, 
or to introduce and comment on a controversial issue of  general 
interest; (12) Book Reviews: To introduce and comment on quality 
monographs of  diabetes mellitus; and (13) Guidelines: To introduce 
consensuses and guidelines reached by international and national 
academic authorities worldwide on basic research and clinical 
practice in diabetes mellitus.

Name of journal
World Journal of  Diabetes

ISSN
ISSN 1948-9358 (online)

Indexing/abstracting
PubMed Central, PubMed, Digital Object Identifer, and Directory 
of  Open Access Journals.

Published by
Baishideng Publishing Group Co., Limited
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authors except where indicated otherwise.

Biostatistical editing
Statisital review is performed after peer review. We invite an expert 
in Biomedical Statistics from to evaluate the statistical method used 
in the paper, including t-test (group or paired comparisons), chi-
squared test, Ridit, probit, logit, regression (linear, curvilinear, or 
stepwise), correlation, analysis of  variance, analysis of  covariance, 
etc. The reviewing points include: (1) Statistical methods should be 
described when they are used to verify the results; (2) Whether the 
statistical techniques are suitable or correct; (3) Only homogeneous 
data can be averaged. Standard deviations are preferred to standard 
errors. Give the number of  observations and subjects (n). Losses 
in observations, such as drop-outs from the study should be re-
ported; (4) Values such as ED50, LD50, IC50 should have their 
95% confidence limits calculated and compared by weighted probit 
analysis (Bliss and Finney); and (5) The word ‘significantly’ should 
be replaced by its synonyms (if  it indicates extent) or the P value (if  
it indicates statistical significance). 

Conflict-of-interest statement
In the interests of  transparency and to help reviewersassess any 
potential bias, WJD requires authors of  all papers to declare any 
competing commercial,  personal, political, intellectual, or religious 
interests in relation to the submitted work. Referees are also asked 
to indicate any potential conflict they might have reviewing a 
particular paper. Before submitting, authors are suggested to read 
“Uniform Requirements for Manuscripts Submitted to Biomedical 
Journals: Ethical Considerations in the Conduct and Reporting of  
Research: Conflicts of  Interest” from International Committee of  
Medical Journal Editors (ICMJE), which is available at: http://www.
icmje.org/ethical_4conflicts.html. 

Sample wording: [Name of  individual] has received fees for 
serving as a speaker, a consultant and an advisory board member for 
[names of  organizations], and has received research funding from 
[names of  organization]. [Name of  individual] is an employee of  
[name of  organization]. [Name of  individual] owns stocks and shares 
in [name of  organization]. [Name of  individual] owns patent [patent 
identification and brief  description]. 

Statement of informed consent
Manuscripts should contain a statement to the effect that all human 
studies have been reviewed by the appropriate ethics committee 
or it should be stated clearly in the text that all persons gave their 
informed consent prior to their inclusion in the study. Details that 
might disclose the identity of  the subjects under study should be 
omitted. Authors should also draw attention to the Code of  Ethics 
of  the World Medical Association (Declaration of  Helsinki, 1964, 
as revised in 2004).

Statement of human and animal rights
When reporting the results from experiments, authors should 
follow the highest standards and the trial should comform to Good 
Clinical Practice (for example, US Food and Drug Administration 
Good Clinical Practice in FDA-Regulated Clinical Trials; UK 
Medicines Research Council Guidelines for Good Clinical Practice 
in Clinical Trials) and/or the World Medical Association Declaration 
of  Helsinki. Generally, we suggest authors follow the lead inves-
tigator’s national standard. If  doubt exists whether the research 
was conducted in accordance with the above standards, the authors 
must explain the rationale for their approach and demonstrate 
that the institutional review body explicitly approved the doubtful 
aspects of  the study. 

Before submitting, authors should make their study approved 
by the relevant research ethics committee or institutional review 
board. If  human participants were involved, manuscripts must be 
accompanied by a statement that the experiments were undertaken 
with the understanding and appropriate informed consent of  each. 
Any personal item or information will not be published without 
explicit consents from the involved patients. If  experimental animals 
were used, the materials and methods (experimental procedures) 

section must clearly indicate that appropriate measures were taken to 
minimize pain or discomfort, and details of  animal care should be 
provided.

SUBMISSION OF MANUSCRIPTS
Manuscripts should be typed in 1.5 line spacing and 12 pt. Book 
Antiqua with ample margins. Number all pages consecutively, and 
start each of  the following sections on a new page: Title Page, Abs-
tract, Introduction, Materials and Methods, Results, Discussion, 
Acknowledgements, References, Tables, Figures, and Figure Leg-
ends. Neither the editors nor the publisher are responsible for the 
opinions expressed by contributors. Manuscripts formally accepted 
for publication become the permanent property of  Baishideng 
Publishing Group Co., Limited, and may not be reproduced by any 
means, in whole or in part, without the written permission of  both 
the authors and the publisher. We reserve the right to copy-edit and 
put onto our website accepted manuscripts. Authors should follow 
the relevant guidelines for the care and use of  laboratory animals 
of  their institution or national animal welfare committee. For the 
sake of  transparency in regard to the performance and reporting 
of  clinical trials, we endorse the policy of  the International Com-
mittee of  Medical Journal Editors to refuse to publish papers 
on clinical trial results if  the trial was not recorded in a publicly-
accessible registry at its outset. The only register now available, 
to our knowledge, is http://www. clinicaltrials.gov sponsored by 
the United States National Library of  Medicine and we encourage 
all potential contributors to register with it. However, in the case 
that other registers become available you will be duly notified. A 
letter of  recommendation from each author’s organization should 
be provided with the contributed article to ensure the privacy and 
secrecy of  research is protected.

Authors should retain one copy of  the text, tables, photographs 
and illustrations because rejected manuscripts will not be returned 
to the author(s) and the editors will not be responsible for loss or 
damage to photographs and illustrations sustained during mailing.

Online submissions
Manuscripts should be submitted through the Online Submission 
System at: http://www.wjgnet.com/1948-9358office. Authors are 
highly recommended to consult the ONLINE INSTRUCTIONS 
TO AUTHORS (ht tp ://www.wjgnet .com/1948-9358/
g_info_20100107165233.htm) before attempting to submit online. 
For assistance, authors encountering problems with the Online 
Submission System may send an email describing the problem 
to wjd@wjgnet.com, or by telephone: +86-10-59080038. If  you 
submit your manuscript online, do not make a postal contribution. 
Repeated online submission for the same manuscript is strictly 
prohibited.

MANUSCRIPT PREPARATION
All contributions should be written in English. All articles must be 
submitted using word-processing software. All submissions must 
be typed in 1.5 line spacing and 12 pt. Book Antiqua with ample 
margins. Style should conform to our house format. Required 
information for each of  the manuscript sections is as follows:

Title page
Title: Title should be less than 12 words.

Running title: A short running title of  less than 6 words should 
be provided.

Authorship: Authorship credit should be in accordance with the 
standard proposed by International Committee of  Medical Journal 
Editors, based on (1) substantial contributions to conception and 
design, acquisition of  data, or analysis and interpretation of  data; (2) 
drafting the article or revising it critically for important intellectual 
content; and (3) final approval of  the version to be published. Auth-
ors should meet conditions 1, 2, and 3.
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Institution: Author names should be given first, then the complete 
name of  institution, city, province and postcode. For example, Xu-
Chen Zhang, Li-Xin Mei, Department of  Pathology, Chengde 
Medical College, Chengde 067000, Hebei Province, China. One 
author may be represented from two institutions, for example, Ge-
orge Sgourakis, Department of  General, Visceral, and Transplan-
tation Surgery, Essen 45122, Germany; George Sgourakis, 2nd 
Surgical Department, Korgialenio-Benakio Red Cross Hospital, 
Athens 15451, Greece

Author contributions: The format of  this section should be: 
Author contributions: Wang CL and Liang L contributed equally 
to this work; Wang CL, Liang L, Fu JF, Zou CC, Hong F and Wu 
XM designed the research; Wang CL, Zou CC, Hong F and Wu 
XM performed the research; Xue JZ and Lu JR contributed new 
reagents/analytic tools; Wang CL, Liang L and Fu JF analyzed the 
data; and Wang CL, Liang L and Fu JF wrote the paper.

Supportive foundations: The complete name and number of  
supportive foundations should be provided, e.g., Supported by 
National Natural Science Foundation of  China, No. 30224801

Correspondence to: Only one corresponding address should 
be provided. Author names should be given first, then author 
title, affiliation, the complete name of  institution, city, postcode, 
province, country, and email. All the letters in the email should be 
in lower case. A space interval should be inserted between country 
name and email address. For example, Montgomery Bissell, MD, 
Professor of  Medicine, Chief, Liver Center, Gastroenterology 
Division, University of  California, Box 0538, San Francisco, CA 
94143, United States. montgomery.bissell@ucsf.edu

Telephone and fax: Telephone and fax should consist of  +, 
country number, district number and telephone or fax number, e.g., 
Telephone: +86-10-59080039 Fax: +86-10-85381893

Peer reviewers: All articles received are subject to peer review. 
Normally, three experts are invited for each article. Decision for 
acceptance is made only when at least two experts recommend 
an article for publication. Reviewers for accepted manuscripts are 
acknowledged in each manuscript, and reviewers of  articles which 
were not accepted will be acknowledged at the end of  each issue. 
To ensure the quality of  the articles published in WJD, reviewers 
of  accepted manuscripts will be announced by publishing the 
name, title/position and institution of  the reviewer in the footnote 
accompanying the printed article. For example, reviewers: Professor 
Jing-Yuan Fang, Shanghai Institute of  Digestive Disease, Shanghai, 
Affiliated Renji Hospital, Medical Faculty, Shanghai Jiaotong 
University, Shanghai, China; Professor Xin-Wei Han, Department 
of  Radiology, The First Affiliated Hospital, Zhengzhou University, 
Zhengzhou, Henan Province, China; and Professor Anren Kuang, 
Department of  Nuclear Medicine, Huaxi Hospital, Sichuan Uni-
versity, Chengdu, Sichuan Province, China.

Abstract
There are unstructured abstracts (no more than 256 words) and 
structured abstracts (no more than 480). The specific requirements 
for structured abstracts are as follows: 

An informative, structured abstracts of  no more than 480 
words should accompany each manuscript. Abstracts for original 
contributions should be structured into the following sections. AIM 
(no more than 20 words): Only the purpose should be included. 
Please write the aim as the form of  “To investigate/study/…; 
MATERIALS AND METHODS (no more than 140 words); 
RESULTS (no more than 294 words): You should present P values 
where appropriate and must provide relevant data to illustrate 
how they were obtained, e.g. 6.92 ± 3.86 vs 3.61 ± 1.67, P < 0.001; 
CONCLUSION (no more than 26 words).

Key words
Please list 5-10 key words, selected mainly from Index Medicus, which 

reflect the content of  the study.

Text
For articles of  these sections, original articles, rapid communi-
cation and case reports, the main text should be structured into 
the following sections: INTRODUCTION, MATERIALS AND 
METHODS, RESULTS and DISCUSSION, and should include 
appropriate Figures and Tables. Data should be presented in the 
main text or in Figures and Tables, but not in both. The main 
text format of  these sections, editorial, topic highlight, case 
report, letters to the editors, can be found at: http://www.wjgnet.
com/1948-9358/g_info_20100107165233.htm. 

Illustrations
Figures should be numbered as 1, 2, 3, etc., and mentioned clearly 
in the main text. Provide a brief  title for each figure on a separate 
page. Detailed legends should not be provided under the figures. 
This part should be added into the text where the figures are 
applicable. Figures should be either Photoshop or Illustrator 
files (in tiff, eps, jpeg formats) at high-resolution. Examples can 
be found at: http://www.wjgnet.com/1007-9327/13/4520.
pdf; http://www.wjgnet .com/1007-9327/13/4554.pdf; 
http://www.wjgnet.com/1007-9327/13/4891.pdf; http://
www.wjgnet.com/1007-9327/13/4986.pdf; http://www.
wjgnet.com/1007-9327/13/4498.pdf. Keeping all elements 
compiled is necessary in line-art image. Scale bars should be  
used rather than magnification factors, with the length of  the bar  
defined in the legend rather than on the bar itself. File names should  
identify the figure and panel. Avoid layering type directly over  
shaded or textured areas. Please use uniform legends for the  
same subjects. For example: Figure 1 Pathological changes in 
atrophic gastritis after treatment. A: ...; B: ...; C: ...; D: ...; E: ...; F: ...; 
G: …etc. It is our principle to publish high resolution-figures for the 
printed and E-versions.

Tables
Three-line tables should be numbered 1, 2, 3, etc., and mentioned 
clearly in the main text. Provide a brief  title for each table. 
Detailed legends should not be included under tables, but rather 
added into the text where applicable. The information should 
complement, but not duplicate the text. Use one horizontal line 
under the title, a second under column heads, and a third below 
the Table, above any footnotes. Vertical and italic lines should be 
omitted.

Notes in tables and illustrations
Data that are not statistically significant should not be noted. aP < 
0.05, bP < 0.01 should be noted (P > 0.05 should not be noted). If  
there are other series of  P values, cP < 0.05 and dP < 0.01 are used. 
A third series of  P values can be expressed as eP < 0.05 and fP < 0.01. 
Other notes in tables or under illustrations should be expressed as 
1F, 2F, 3F; or sometimes as other symbols with a superscript (Arabic 
numerals) in the upper left corner. In a multi-curve illustration, each 
curve should be labeled with ●, ○, ■, □, ▲, △, etc., in a certain 
sequence.

Acknowledgments
Brief  acknowledgments of  persons who have made genuine con-
tributions to the manuscript and who endorse the data and conclu-
sions should be included. Authors are responsible for obtaining 
written permission to use any copyrighted text and/or illustrations.

REFERENCES
Coding system
The author should number the references in Arabic numerals 
according to the citation order in the text. Put reference numbers 
in square brackets in superscript at the end of  citation content or 
after the cited author’s name. For citation content which is part of  
the narration, the coding number and square brackets should be 
typeset normally. For example, “Crohn’s disease (CD) is associated 
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with increased intestinal permeability[1,2]”. If  references are cited 
directly in the text, they should be put together within the text, for 
example, “From references[19,22-24], we know that...”

When the authors write the references, please ensure that 
the order in text is the same as in the references section, and also 
ensure the spelling accuracy of  the first author’s name. Do not list 
the same citation twice. 

PMID and DOI
Pleased provide PubMed citation numbers to the reference list, 
e.g. PMID and DOI, which can be found at http://www.ncbi.
nlm.nih.gov/sites/entrez?db=pubmed and http://www.crossref.
org/SimpleTextQuery/, respectively. The numbers will be used in 
E-version of  this journal.

Style for journal references
Authors: the name of  the first author should be typed in bold-
faced letters. The family name of  all authors should be typed with 
the initial letter capitalized, followed by their abbreviated first 
and middle initials. (For example, Lian-Sheng Ma is abbreviated 
as Ma LS, Bo-Rong Pan as Pan BR). The title of  the cited article 
and italicized journal title (journal title should be in its abbreviated 
form as shown in PubMed), publication date, volume number 
(in black), start page, and end page [PMID: 11819634   DOI: 
10.3748/wjg.13.5396].

Style for book references
Authors: the name of  the first author should be typed in bold-faced 
letters. The surname of  all authors should be typed with the initial 
letter capitalized, followed by their abbreviated middle and first 
initials. (For example, Lian-Sheng Ma is abbreviated as Ma LS, Bo-
Rong Pan as Pan BR) Book title. Publication number. Publication 
place: Publication press, Year: start page and end page.

Format
Journals 
English journal article (list all authors and include the PMID where 

applicable)
1 Jung EM, Clevert DA, Schreyer AG, Schmitt S, Rennert J, 

Kubale R, Feuerbach S, Jung F. Evaluation of  quantitative 
contrast harmonic imaging to assess malignancy of  liver 
tumors: A prospective controlled two-center study. World J 
Gastroenterol 2007; 13: 6356-6364 [PMID: 18081224   DOI: 
10.3748/wjg.13.6356]

Chinese journal article (list all authors and include the PMID where 
applicable)

2 Lin GZ, Wang XZ, Wang P, Lin J, Yang FD. Immunologic 
effect of  Jianpi Yishen decoction in treatment of  Pixu-
diarrhoea. Shijie Huaren Xiaohua Zazhi 1999; 7: 285-287

In press
3 Tian D, Araki H, Stahl E, Bergelson J, Kreitman M. Signature 

of  balancing selection in Arabidopsis. Proc Natl Acad Sci USA 
2006; In press

Organization as author
4 Diabetes Prevention Program Research Group. Hyp-

ertension, insulin, and proinsulin in participants with impaired  
glucose tolerance. Hypertension 2002; 40: 679-686 [PMID: 
12411462   PMCID:2516377   DOI:10.1161/01.HYP.00000 
35706.28494.09]

Both personal authors and an organization as author 
5 Vallancien G, Emberton M, Harving N, van Moorselaar RJ; 

Alf-One Study Group. Sexual dysfunction in 1, 274 European 
men suffering from lower urinary tract symptoms. J Urol 
2003; 169: 2257-2261 [PMID: 12771764   DOI:10.1097/01.
ju.0000067940.76090.73]

No author given
6 21st century heart solution may have a sting in the tail. 

BMJ 2002; 325: 184 [PMID: 12142303   DOI:10.1136/
bmj.325.7357.184]

Volume with supplement
7 Geraud G, Spierings EL, Keywood C. Tolerability and safety 

of  frovatriptan with short- and long-term use for treatment 
of  migraine and in comparison with sumatriptan. Headache 
2002; 42 Suppl 2: S93-99 [PMID: 12028325   DOI:10.1046/
j.1526-4610.42.s2.7.x]

Issue with no volume
8 Banit DM, Kaufer H, Hartford JM. Intraoperative frozen 

section analysis in revision total joint arthroplasty. Clin Orthop 
Relat Res 2002; (401): 230-238 [PMID: 12151900   DOI:10.109
7/00003086-200208000-00026]

No volume or issue
9 Outreach: Bringing HIV-positive individuals into care. HRSA 

Careaction 2002; 1-6 [PMID: 12154804]

Books
Personal author(s)
10 Sherlock S, Dooley J. Diseases of  the liver and billiary sys-

tem. 9th ed. Oxford: Blackwell Sci Pub, 1993: 258-296
Chapter in a book (list all authors)
11 Lam SK. Academic investigator’s perspectives of  medical 

treatment for peptic ulcer. In: Swabb EA, Azabo S. Ulcer 
disease: investigation and basis for therapy. New York: Marcel 
Dekker, 1991: 431-450

Author(s) and editor(s)
12 Breedlove GK, Schorfheide AM. Adolescent pregnancy. 2nd 

ed. Wieczorek RR, editor. White Plains (NY): March of  Dimes 
Education Services, 2001: 20-34

Conference proceedings
13 Harnden P, Joffe JK, Jones WG, editors. Germ cell tumours V. 

Proceedings of  the 5th Germ cell tumours Conference; 2001 
Sep 13-15; Leeds, UK. New York: Springer, 2002: 30-56

Conference paper
14 Christensen S, Oppacher F. An analysis of  Koza's compu-

tational effort statistic for genetic programming. In: Foster 
JA, Lutton E, Miller J, Ryan C, Tettamanzi AG, editors. 
Genetic programming. EuroGP 2002: Proceedings of  the 5th 
European Conference on Genetic Programming; 2002 Apr 
3-5; Kinsdale, Ireland. Berlin: Springer, 2002: 182-191

Electronic journal (list all authors)
15 Morse SS. Factors in the emergence of  infectious diseases. 

Emerg Infect Dis serial online, 1995-01-03, cited 1996-06-05; 
1(1): 24 screens. Available from: URL: http://www.cdc.gov/
ncidod/eid/index.htm

Patent (list all authors)
16 Pagedas AC, inventor; Ancel Surgical R&D Inc., assig-

nee. Flexible endoscopic grasping and cutting device and  
positioning tool assembly. United States patent US 200201 
03498. 2002 Aug 1

Statistical data
Write as mean ± SD or mean ± SE.

Statistical expression
Express t test as t (in italics), F test as F (in italics), chi square test as 
χ2 (in Greek), related coefficient as r (in italics), degree of  freedom 
as υ (in Greek), sample number as n (in italics), and probability as P (in 
italics).

Units
Use SI units. For example: body mass, m (B) = 78 kg; blood 
pressure, p (B) = 16.2/12.3 kPa; incubation time, t (incubation) = 
96 h, blood glucose concentration, c (glucose) 6.4 ± 2.1 mmol/L; 
blood CEA mass concentration, p (CEA) = 8.6 24.5 mg/L; CO2 
volume fraction, 50 mL/L CO2, not 5% CO2; likewise for 40 g/L 
formaldehyde, not 10% formalin; and mass fraction, 8 ng/g, etc. 
Arabic numerals such as 23, 243, 641 should be read 23 243 641.

The format for how to accurately write common units and 
quantums can be found at: http://www.wjgnet.com/1948-9358/
g_info_20100107145507.htm.
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Abbreviations
Standard abbreviations should be defined in the abstract and on first 
mention in the text. In general, terms should not be abbreviated 
unless they are used repeatedly and the abbreviation is helpful to 
the reader. Permissible abbreviations are listed in Units, Symbols 
and Abbreviations: A Guide for Biological and Medical Editors and 
Authors (Ed. Baron DN, 1988) published by The Royal Society of  
Medicine, London. Certain commonly used abbreviations, such as 
DNA, RNA, HIV, LD50, PCR, HBV, ECG, WBC, RBC, CT, ESR, 
CSF, IgG, ELISA, PBS, ATP, EDTA, mAb, can be used directly 
without further explanation.

Italics
Quantities: t time or temperature, c concentration, A area, l length, 
m mass, V volume.
Genotypes: gyrA, arg 1, c myc, c fos, etc.
Restriction enzymes: EcoRI, HindI, BamHI, Kbo I, Kpn I, etc.
Biology: H. pylori, E coli, etc.

Examples for paper writing
Editorial: http://www.wjgnet.com/1948-9358/g_info_20100316 
080002.htm

Frontier: http://www.wjgnet.com/1948-9358/g_info_20100316 
091946.htm

Topic highlight: http://www.wjgnet.com/1948-9358/g_info_ 
20100316080004.htm

Observation: http://www.wjgnet.com/1948-9358/g_info_ 
20100107142558.htm

Guidelines for basic research: http://www.wjgnet.com/1948-9358/
g_info_20100316092358.htm

Guidelines for clinical practice: http://www.wjgnet.com/1948- 
9358/g_info_20100316092508.htm

Review: http://www.wjgnet.com/1948-9358/g_info_2010 
0107142809.htm

Original articles: http://www.wjgnet.com/1948-9358/g_info_ 
20100107143306.htm

Brief  articles: http://www.wjgnet.com/1948-9358/g_info_2010 
0316093137.htm

Case report: http://www.wjgnet.com/1948-9358/g_info_2010010 
7143856.htm

Letters to the editor: http://www.wjgnet.com/1948-9358/
g_info_20100107144156.htm

Book reviews: http://www.wjgnet.com/1948-9358/g_info_2010 
0316093525.htm

Guidelines: http://www.wjgnet.com/1948-9358/g_info_2010 
0316093551.htm

SUBMISSION OF THE REVISED MANUSCRIPTS AFTER 
ACCEPTED
Please revise your article according to the revision policies 
of  WJD. The revised version including manuscript and high-
resolution image figures (if  any) should be copied on a floppy or 
compact disk. The author should send the revised manuscript, 

along with printed high-resolution color or black and white 
photos, copyright transfer letter, and responses to the reviewers 
by courier (such as EMS/DHL).

Editorial Office 
World Journal of Diabetes
Editorial Department: Room 903, Building D, 
Ocean International Center,
No. 62 Dongsihuan Zhonglu, 
Chaoyang District, Beijing 100025, China
E-mail: wjd@wjgnet.com
http://www.wjgnet.com
Telephone: +86-10-8538-1892
Fax: +86-10-8538-1893

Language evaluation 
The language of  a manuscript will be graded before it is sent for 
revision. (1) Grade A: priority publishing; (2) Grade B: minor 
language polishing; (3) Grade C: a great deal of  language polishing 
needed; and (4) Grade D: rejected. Revised articles should reach 
Grade A or B.

Copyright assignment form
Please download a Copyright assignment form from http://www.
wjgnet.com/1948-9358/g_info_20100107144846.htm.

Responses to reviewers
Please revise your article according to the comments/suggestions 
provided by the reviewers. The format for responses to the 
reviewers’ comments can be found at: http://www.wjgnet.
com/1948-9358/g_info_20100107170340.htm.

Proof of financial support
For paper supported by a foundation, authors should provide a 
copy of  the document and serial number of  the foundation.

Links to documents related to the manuscript 
WJD will be initiating a platform to promote dynamic interactions 
between the editors, peer reviewers, readers and authors. After a 
manuscript is published online, links to the PDF version of  the 
submitted manuscript, the peer-reviewers’ report and the revised 
manuscript will be put on-line. Readers can make comments on 
the peer reviewer’s report, authors’ responses to peer reviewers, 
and the revised manuscript. We hope that authors will benefit from 
this feedback and be able to revise the manuscript accordingly in a 
timely manner.

Science news releases
Authors of  accepted manuscripts are suggested to write a science 
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